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Abstract

We develop special superposition calculi for first-order theorem proving in the theories of
abelian groups, commutative rings, and modules and commutative algebras over fields or
over the ring of integers, in order to make automated theorem proving in these theories
more effective. The calculi are refutationally complete on arbitrary sets of ground clauses,
which in particular may contain additional function symbols. The calculi are derived sys-
tematically from a representation of the theory as a convergent term rewriting system.
Compared to standard superposition they have stronger ordering restrictions so that in-
ferences are applied only to maximal summands, and they contain macro inference rules
that use theory axioms in a goal directed fashion. In general we need additional inferences
to handle critical peaks between extended clauses. We show that these are not needed for
abelian groups and modules, and that for commutative rings and commutative algebras
one such inference suffices for any pair of ground clauses.

To facilitate the construction of term orderings for such calculi we introduce theory
path orderings.



Zusammenfassung

Wir entwickeln in dieser Arbeit spezielle Superpositionskalkiile fiir die Theorien der
abelschen Gruppen, der kommutativen Ringe, und der Moduln und kommutativen Alge-
bren iiber Kérpern und den ganzen Zahlen, mit dem Ziel das automatische Theorembe-
weisen in Logik erster Stufe fiir diese Theorien effektiver zu machen. Die Kalkiile sind
widerlegungsvollstindig fiir beliebige Mengen von Grundklauseln, in denen insbesondere
auch beliebige, nicht in der Theorie auftretende, Funktionssymbole vorkommen diirfen. Die
Kalkiile entwickeln wir systematisch aus einer Darstellung der Theorien als konvergente
Termersetzungssysteme. Im Vergleich zu Standardsuperposition haben sie stirkere Ord-
nungseinschrinkungen, so daf§ Inferenzen nur noch auf maximale Summanden angewendet
werden miissen, und sie enthalten Makroinferenzregeln, die Theorieaxiome in zielgerich-
teter Weise anwenden. Im allgemeinen benétigen wir weiterhin Inferenzen, um kritische
Paare zwischen erweiterten Klauseln zu behandeln. Wir zeigen, daf} diese fiir abelsche
Gruppen und Moduln nicht nétig sind, und daf} fiir kommutative Ringe und Algebren eine
Inferenz fiir jedes Paar von Grundklauseln geniigt.

Um die Konstruktion von Termordnungen fiir unsere Kalkiile zu vereinfachen, fithren
wir den Begriff der Theoriepfadordnung ein.
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Extended Abstract

Automated theorem provers face problems when they are used on theories whose axioms
generate large search spaces. Overwhelmed by a huge number of trivial consequences of
each fact, they fail to prove even rather simple theorems.

Our goal in this work is to improve the methods for superposition theorem proving
(Bachmair and Ganzinger 1994c, Bachmair and Ganzinger 1998a) in the context of al-
gebraic theories. We specifically choose abelian groups, commutative rings, and modules
and commutative algebras over the ring of integers or over a field. These theories are im-
portant in many applications, for instance various kinds of numbers and also vector spaces
fall within their scope. Also, they are well-behaved from an algebraic viewpoint, and they
are difficult to handle for automated theorem provers. Their axioms, in particular associa-
tivity, commutativity, distributivity and the inverse law, lead to many permuted variants
of essentially the same term or equation. Moreover, these theories are among the largest
for which refutationally complete calculi have been built.

We develop calculi which are refutationally complete for arbitrary first-order formulas,
without restrictions of the logical structure or the set of function symbols. Logically
there is no difference between using one of our calculi and using some less specialized
refutationally complete calculus together with the axioms that are not integrated in that
calculus, because our theories are axiomatizable in first-order logic, except for the base
rings of modules or commutative algebras. Computations in these base rings are formalized
by constraints, or by usually infinite sets of ground instances.

We achieve calculi that are improved in several respects. First, we strengthen the
ordering restrictions so that inferences apply only to a maximal summand. Second, we
replace certain direct uses of axioms by macro inferences. Standard superpositions into the
inverse law can move a summand from one side of an equation to the other. Instead of doing
this in an unrestricted way, we introduce a macro inference called Isolation that isolates the
maximal terms on one side. Other cases of standard superposition into theory equations
are replaced by introducing semantic matching into the superposition rule. We formalize
this by associating to each original equation an extended set of term rewriting rules, called
its symmetrization, and using these implied rules in the superposition. In this way we
avoid to explicitly add extended clauses. Nevertheless we have to consider critical pairs
between the sets of extended rules of two symmetrizations. That is, in general we have to
add inferences corresponding to these critical pairs to our calculi. By using our knowledge
of the form of symmetrizations we show that no such inferences are needed in the cases
of abelian groups and modules, and that a single inference for any pair of ground clauses
suffices in the cases of commutative rings and algebras. The combination of these stronger
ordering restrictions, macro inferences and redundancy criteria promises to be much more

vii



viii EXTENDED ABSTRACT

efficient than a more general calculus applied to part of the axioms. For instance, in
purely equational reasoning it has been demonstrated that special calculi can improve
performance greatly (Zhang 1993, Marché 1996). For the case of ground equations over a
finite set of constants as the set of free function symbols our calculi generate essentially
the same inferences as the Grobner base algorithms for the respective theories, for instance
the Buchberger algorithm (Buchberger 1970) in the case of a commutative algebra over a
field.

To avoid a separate completeness proof for each theory and to gain a better under-
standing of the general mechanism we have developed a framework that allows to derive su-
perposition calculi systematically from convergent term rewriting systems for the theories.
This framework consists of a parameterized superposition calculus, where the parameters
are a term ordering, a simplification function and a symmetrization function. We assume
certain properties of the parameters which allow to prove refutational completeness of the
parameterized calculus. These properties are rather restrictive, hence the construction
will not work for every theory presentable by a convergent term rewriting system. For
the theories which we consider we define these parameters and show that they satisfy the
required properties. In addition we use abelian monoids as a simple running example
during the development of the general framework.

The role of a simplification function is to transform equations into a theory-specific
normal form, in a way that is compatible with the notion of redundancy for the calcu-
lus. The symmetrization function formalizes the interaction between the theory and other
equations by assigning to each equation in normal form a set of rewrite rules that has the
confluence property of being symmetrized, or for our theories even strongly symmetrized.
Symmetrization is needed in the general framework where it guarantees convergence of
peaks with one of the rules from the theory and where it is used for matching in the su-
perposition inference. The property of strong symmetrization is essential for manipulating
equational proofs, as it allows to normalize the terms in the proof with respect to the
theory. This is necessary in particular for commutative rings and commutative algebras,
since due to the critical peaks between extensions transitivity holds only below a certain
bound in these cases. This situation requires equality proofs whose terms stay within the
given bound. Additional difficulties arise in the proofs that the isolation rules for these
theories are compatible with the notion of redundancy, where we need to relax the bound
slightly by considering only summands.

For the cases of commutative rings, modules and commutative algebras we need term
orderings with properties that cannot be achieved by previously known standard orderings.
To simplify the construction of such term orderings we develop the notion of a theory path
ordering (Stuber 1999) that generalizes the basic idea of the associative path ordering
(Bachmair and Plaisted 1985). In our construction we use techniques of Geser (1996) for
general path orderings.



Ausfiihrliche Zusammenfassung

Fiir automatische Theorembeweiser sind viele wichtige Theorien schwierig, da deren Axio-
mensysteme sehr grofie Suchriiume aufspannen. Uberwiiltigt von einer Vielzahl trivialer
Varianten jeder hergeleiteten Formel kénnen sie selbst fiir einfache Theoreme keinen Be-
weis finden. Dies betrifft vor allem Theorien aus der Algebra. Das Ziel dieser Arbeit
ist es, diese Probleme fiir das Theorembeweisen mittels Superposition (Bachmair and
Ganzinger 1994c, Bachmair and Ganzinger 1998a) zu verringern. Dabei betrachten wir
insbesondere die Theorien der abelschen Gruppen, der kommutativen Ringe, und der Mo-
duln und kommutativen Algebren iiber den ganzen Zahlen oder einem fest vorgegebenen
Korper. Diese Theorien haben viele wichtige Anwendungen, unter anderem umfassen sie
die meisten Zahlensysteme und die Vektorrdume. Sie sind aus mathematischer Sicht recht
gutartig, aber fiir nicht spezialisierte Theorembeweiser schwierig. Thre Axiome, insbeson-
dere Assoziativitit, Kommutativitit, Distributivitit und das Inversenaxiom, kénnen viele
permutierte Varianten einer Gleichung erzeugen. Auflerdem sind diese Theorien unter den
grofBten, fiir die widerspruchsvollstindige Kalkiile entwickelt wurden.

Wir entwickeln Kalkiile, die fiir beliebige Formeln der Logik erster Stufe widerspruchs-
vollstindig sind, ohne Einschrinkung der logischen Struktur oder der Menge der frei-
en Funktionssymbole. Logisch besteht kein Unterschied zwischen der Verwendung unse-
rer Kalkiile und der Verwendung eines weniger spezialisierten widerspruchsvollstdndigen
Kalkiils zusammen mit den nicht in den Kalkiil integrierten Axiomen, da sich unsere
Theorien in Logik erster Stufe axiomatisieren lassen, mit Ausnahme der Grundringe der
Moduln und Algebren. Operationen in Grundringen werden durch Constraints, oder durch
normalerweise unendliche Mengen von Grundinstanzen formalisiert.

Wir erzielen Kalkiile, die in verschiedener Hinsicht besser sind. Zum einen verschérfen
wir die Ordnungseinschrankungen, so daf§ Inferenzen nur noch auf maximale Summanden
angewandt werden kénnen. Zum anderen ersetzten wir bestimmte direkte Anwendungen
der Axiome durch Makroinferenzen. Standardsuperpositionsinferenzen in das Inversenaxi-
om hinein kénnen Summanden von einer Seite einer Gleichung auf die andere bewegen.
Anstatt dies in unkontrollierter Weise zu tun, fithren wir eine Makroinferenz Isolation ein,
die die maximalen Summanden auf einer Seite der Gleichung isoliert. Andere Standard-
superpositionsinferenzen in Theorieaxiome hinein werden durch semantisches Matching in
der Superpositionsregel ersetzt. Formal ordnen wir jeder Gleichung eine Menge von Ter-
mersetzungsregeln zu, genannt die Symmetrisierung der Gleichung, und benutzen diese
implizierten Regeln zur Superposition. Dadurch vermeiden wir das Hinzufiigen erweiterter
Klauseln. Als Konsequenz miissen wir jedoch kritische Paare zwischen den erweiterten Re-
geln zweier Symmetrisierungen betrachten, was im allgemeinen zu zusétzlichen Inferenzen
in unseren Kalkiilen fithrt. Wir kénnen jedoch unsere Kenntnis der Form der Symmetri-
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X AUSFUHRLICHE ZUSAMMENFASSUNG

sierung ausnutzen. Wir zeigen, daf} in den Fillen der abelschen Gruppen und der Moduln
keine solchen Inferenzen nétig sind, und daf in den Fillen der kommutativen Ringe und
der kommutativen Algebren eine Inferenz fiir jedes Paar von Grundklauseln geniigt. Die
Kombination von stirkeren Ordnungseinschrinkungen, Makroinferenzen und Redundanz-
kriterien verspricht eine wesentliche Verbesserung gegeniiber einem allgemeinerem Kalkiil,
der auf einen Teil der Axiome angewendet wird. Im Rahmen von reinem Gleichheitsbewei-
sern wurde dies bereits an Hand von Testproblemen gezeigt (Zhang 1993, Marché 1996).
Fiir den Fall von reinen Grundgleichungen und einer endlichen Menge von Konstanten
als freien Funktionssymbolen erhalten wir in unseren Kalkiilen die gleichen Inferenzen,
die auch der der Theorie entsprechende Algorithmus zur Berechnung von Grébner-Basen
macht, zum Beispiel der Buchberger-Algorithmus (Buchberger 1970) im Fall einer kom-
mutativen Algebra iiber einem Korper.

Um einen separaten Vollstdndigkeitsbeweis fiir jede einzelne Theorie zu vermeiden, und
um ein besseres Verstiandnis der zugrundeliegenden Mechanismen zu bekommen, haben wir
einen allgemeinen Rahmen fiir die Integration von durch konvergente Termersetzungssy-
steme reprisentierten Theorien entwickelt. Dieser Rahmen besteht aus einem parametri-
sierten Superpositionskalkiil, der als Parameter eine Terminierungsordnung, eine Simplifi-
kationsfunktion und eine Symmetrisierungsfunktion hat. Wir fordern von den Parametern
gewisse Eigenschaften, die einen allgemeinen Beweis der Refutationsvollstidndigkeit erlau-
ben. Diese Eigenschaften sind recht restriktiv, daher funktioniert diese Konstruktion nicht
fiir alle durch konvergent Termersetzungssysteme gegebenen Theorien. Fiir die von uns
betrachteten Theorien geben wir geeignete Parameter an und zeigen ihre Eigenschaften.
Auflerdem verwenden wir abelsche Monoide als ein einfaches fortlaufendes Beispiel bei der
Entwicklung des allgemeinen Rahmens.

Die Aufgabe der Simplifikationsfunktion ist es, Gleichungen in eine theoriespezifische
Normalform zu transformieren, und zwar in einer mit dem Redundanzbegriff des Kalkiils
vertriglichen Weise. Die Symmetrisierungsfunktion formalisiert die Interaktion zwischen
Theorieaxiomen und anderen Gleichungen, indem sie jeder Gleichung in Normalform eine
Menge von Termersetzungsregeln zuordnet, die symmetrisiert oder fiir unsere Theorien
sogar stark symmetrisiert sind. Dabei wird Symmetrisierung fiir die Entwicklung des all-
gemeinen Rahmens gebraucht, wo sie die Konvergenz von kritischen Paaren mit der Theo-
rie garantiert. Starke Symmetrisierung ist fiir die Manipulation von Gleichheitsbeweisen
wichtig, da sie Normalisieren beziiglich der Theorie erlaubt. Dies ist insbesondere fiir
kommutative Ringe und kommutative Algebren notwendig, da dort wegen der kritischen
Paare zwischen Regelerweiterungen die Transitivitdt nur bis zu einer gewissen Schranke
beziiglich der Termordnung angenommen werden kann. Diese Situation erfordert Gleich-
heitsbeweise, die nur Terme unterhalb der Schranke enthalten. Besonders schwierig sind
fiir diese beiden Theorien die Beweise, daf Isolation mit dem Redundanzbegriff vertriglich
ist.

Fiir kommutative Ringe, Moduln und kommutative Algebren benétigen wir Term-
ordnungen mit Eigenschaften, die sich nicht mit bekannten Standardordnungen erreichen
lassen. Um die Konstruktion solcher Termordnungen zu vereinfachen entwickeln wir den
Begriff der Theoriepfadordnung (Stuber 1999), die die Grundidee der assoziativen Pfadord-
nung (Bachmair and Plaisted 1985) verallgemeinert. Fiir unsere Konstruktion verwenden
wir Beweistechniken von Geser (1996) fiir allgemeine Pfadordnungen.



Acknowledgments

I thank Harald Ganzinger for his patience and continued support, Uwe Waldmann and
Christoph Meyer for their valuable comments on parts of this thesis, Hubert Baumeis-
ter, Fritz Eisenbrand, Patrick Maier and Georg Struth for interesting discussions, Sergei
Vorobyev for answering my more esoteric questions, and the other members of the Logics
and Computation group and all people at the MPI Saarbriicken for their support and for
providing an excellent research environment.

xi



xii ACKNOWLEDGMENTS



1

Introduction

Automated theorem provers face problems when they are used on theories whose axioms
generate large search spaces. Overwhelmed by a huge number of trivial consequences of
each fact, they fail to prove even rather simple theorems. For instance, this is the case when
resolution (Robinson 1965) is applied to equality problems. The problem can be mitigated
by combining several applications of axioms into macro steps, and by avoiding redundan-
cies in the search space. An instance of the macro step technique is the paramodulation
rule (Robinson and Wos 1969), which replaces certain resolution inferences with equality
axioms. Superposition (Bachmair and Ganzinger 1994c, Bachmair and Ganzinger 1998a)
places strong ordering restrictions on paramodulation and uses the ordering to obtain
powerful techniques for eliminating redundancies. It is the state-of-the-art method for
automated first-order equality reasoning.

Our goal in this work is to further improve the methods for superposition theorem
proving in the context of algebraic theories. We specifically choose abelian groups, com-
mutative rings, and modules and commutative algebras over the ring of integers or over
a field. These theories are important in many applications, for instance various kinds of
numbers and also vector spaces fall within their scope. Also, they are well-behaved from
an algebraic viewpoint, and they are difficult to handle for automated theorem provers.
Their axioms, in particular associativity, commutativity, distributivity and the inverse law,
lead to many permuted variants of essentially the same term or equation. They are among
the largest theories for which refutationally complete calculi have been built.

We develop refutationally complete calculi for arbitrary first-order formulas, without
restrictions of the logical structure or the set of function symbols. Logically there is no
difference between using one of our calculi and using some existing refutationally complete
calculus together with the axioms of the respective theory, as our theories are axiomatizable
in first-order logic. Note however that this does not apply to the integers or the fields used
as base rings for modules or commutative algebras. In these cases first-order reasoning is
used only for the module or algebra, while we do not allow equations between elements of
the base ring. Computations in the base rings are formalized by constraints, or by usually
infinite sets of ground instances.

We achieve calculi that are improved in several respects. First, we strengthen the
ordering restrictions so that inferences apply only to a maximal summand within the top-
level sum. Second, we replace certain direct uses of axioms by macro inferences. Standard
superpositions into the inverse law can move a summand from one side of an equation to
the other. Instead of doing this in an unrestricted way, we introduce a macro inference
called Isolation that isolates the maximal terms on one side. Other cases of standard
superposition into theory equations are replaced by introducing semantic matching into
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the superposition rule. We formalize this by associating to each original equation an
extended set of term rewriting rules, called its symmetrization. By implicitly using these
extensions for semantic matching, we avoid to explicitly add the corresponding extended
clauses. Nevertheless, we have to consider critical peaks between extended rules, which
lead to inferences between the corresponding clauses. We show that these inferences are
not needed in the cases of abelian groups and modules, and that a single inference for
any pair of ground clauses suffices in the cases of commutative rings and algebras. The
combination of stronger ordering restrictions, macro inferences and redundancy criteria
promises to be much more efficient than a more general calculus applied to part of the
axioms. For instance, in purely equational reasoning it has been demonstrated that special
calculi can improve performance greatly (Zhang 1993, Marché 1996).

For the case of ground equations over a finite set of constants as the set of free function
symbols our calculi generate essentially the same inferences as the Grobner base algorithms
for the respective theories, for instance the Buchberger algorithm (Buchberger 1970) in
the case of a commutative algebra over a field.

To avoid a separate completeness proof for each theory and to gain a better under-
standing of the general mechanism we have developed a framework that allows to derive su-
perposition calculi systematically from convergent term rewriting systems for the theories.
This framework consists of a parameterized superposition calculus, where the parameters
are a term ordering, a simplification function and a symmetrization function. We assume
certain properties of the parameters which allow to prove refutational completeness of the
parameterized calculus. These properties are rather restrictive, hence the construction
will not work for every theory presentable by a convergent term rewriting system. For
the theories which we consider we define these parameters and show that they satisfy the
required properties. In addition we use abelian monoids as a simple running example
during the development of the general framework.

For the cases of commutative rings, modules and commutative algebras we need term
orderings that cannot be constructed solely from standard orderings. We develop the
notion of a theory path ordering to simplify the construction of orderings suitable for our
framework (Stuber 1999). Using a technique of Geser (1996), we can prove all properties
except compatibility with contexts, which we achieve by making theory symbols minimal
in the precedence. This approach is analogous to that of the associative path ordering
(Bachmair and Plaisted 1985).

The role of a simplification function is to transform equations into normal form, in a
way that is compatible with the notion of redundancy for the calculus. While the general
notion is simple, we have to prove that for commutative rings and for commutative algebras
the isolation of the maximal term on one side is indeed a simplification.

The symmetrization function captures the interaction between the theory and other
equations. We have introduced general notions of symmetrization and strong symmetriza-
tion with respect to an arbitrary convergent term rewriting system. Symmetrization is
needed in the general framework where it guarantees convergence of peaks with one of the
rules from the theory and where it is used for matching in the superposition inference.
The property of strong symmetrization is essential for manipulating equational proofs in
particular theories. To this end we have shown that strong symmetrization implies semi-
compatibility of normalized rewriting and that convergence of a term rewriting system
RUT modulo F is equivalent to convergence of T-normalized rewriting with R modulo £
(Stuber 1997). Finding equational proofs whose terms are small in the term ordering is
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crucial, because due to critical peaks between extended rules we can only assume that a
ground instance of transitivity holds when its middle term is below a certain bound. The
bound is closely related to critical peaks between extended rules, i.e., peaks which are not
redundant. For the case of abelian groups and modules no such peak exists, which implies
that all instances of transitivity are valid. For the case of commutative rings and algebras
there is at most one critical peak for any pair of rules. The terms at the top of these critical
peaks are single summands. Hence divergence can only occur within summands, and tran-
sitivity holds if the greatest summand of the middle term obeys the bound. This allows to
handle slightly greater terms, namely sums with more summands than the bound. Only
the combination of these techniques allows to prove that the calculi for commutative rings
and for commutative algebras over a fixed ring are complete. In particular this applies to
the proofs that the isolation rules are compatible with the notion of redundancy of the
calculus.

Compared with previous work (Bachmair and Ganzinger 1994a, Bachmair, Ganzinger
and Stuber 1995) we have clarified the relation between the limited validity of transitivity,
extensions of rules, inferences among them and redundancy of these inferences. We use
the presentation of Bachmair and Ganzinger (1998a), where inference systems that reduce
any minimal counterexample in a candidate model are shown to be refutationally com-
plete. Originally only clauses derived from the input set can become counterexamples. By
allowing instances of transitivity to be counterexamples and appropriately placing them
in the clause ordering we get a uniform presentation, with uniform notions of redundancy
and of the reduction property.

We also extend the notion of redundancy to be able to refer to the presence of certain
rewrite rules in an interpretation. This is needed to exploit the structure of the sym-
metrization of the rules to prove redundancy of most extension peaks. To this end we
introduce a notion of logical consequence based solely on candidate models, which is quite
natural and allows to use the standard notion based on all models as a sufficient criterion
for redundancy.

The structure of this work is as follows. Chapter 2 contains preliminaries, Chapter 3
presents the theory path ordering, in Chapter 4 we develop the general framework, in
Chapters 5 to 8 we apply the framework to the theories from abelian groups to commutative
algebras, in Chapter 9 we briefly discuss lifting, and in Chapter 10 we conclude and discuss
some limitations and possible extensions of this work.

1.1 Related work

Our work builds on several strands of research, namely automated first-order theorem
proving, term rewriting, and the theory of Grobner bases.

In automated first-order theorem proving there has been a general trend to build
larger and larger theories into the calculi. The first step was to build equality into resolu-
tion (Robinson 1965), using the paramodulation inference rule (Robinson and Wos 1969).
Stickel (1985) introduced theory resolution to provide a general framework for combining
theory reasoning with resolution. However, in its general form it allows too many inferences
and is not usable without further restriction and refinement. The superposition calculus of
Bachmair and Ganzinger (1994c) imposes strong ordering restrictions on paramodulation
and allows strong notions of redundancy. Our work can be viewed as a systematic way to
derive strong restrictions for equational theories. We use the refined proof technique that
proves refutational completeness by showing that a calculus reduces minimal counterex-
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amples (Bachmair and Ganzinger 1998a). Wertz (1992) builds superposition calculi for
theorem proving modulo E, and in particular modulo AC. He uses equality interpretations
where transitivity holds universally, but has to accept that E holds only below a certain
bound. In contrast to this, Bachmair and Ganzinger (1994a) in their AC-superposition
calculus sacrifice universal validity of transitivity to get universal validity of AC. In prac-
tice this is easier to handle, as AC-matching and AC-unification can be treated as black
boxes. Transitivity in the limit is obtained by computing inferences that correspond to
critical pairs between extended rules. Rubio (1994), Nieuwenhuis and Rubio (1994, 1997),
and Vigneron (1994) consider superposition calculi modulo AC with constraints. Bach-
mair, Ganzinger and Stuber (1995) develop a calculus for commutative rings with a unit
element. They build the calculus on top of the AC-superposition calculus (Bachmair and
Ganzinger 1994a), showing that AC-superposition inferences with axioms become redun-
dant if instead some inferences tailored to rings are made. The proof technique was not
strong enough to avoid certain shortcomings, namely the explicit representation of the sym-
metrization and the weaker notion of redundancy. Superposition calculi for cancellative
abelian monoids require a notion of rewriting on equations instead of terms, since additive
inverses are in general not available (Ganzinger and Waldmann 1996, Waldmann 1997).
The special case of divisible torsion-free abelian groups allows to eliminate unshielded
variables, which avoids the most prolific inferences (Waldmann 1997, Waldmann 1998).
Previously we have shown that our approach is compatible with constraints for the spe-
cial case of integer modules (Stuber 1996, Stuber 1998a). We have also carried it out for
commutative rings in the ground case (Stuber 1998b). Wang (1993) describes a special
technique for reasoning in modules over the integers. His approach is restricted to proving
Horn clauses, i.e., deducing one equation from a set of equations. He shows completeness
only for the case without free function symbols.

Bachmair, Ganzinger and Waldmann (1994) give a superposition calculus for hierar-
chical specifications. In a hierarchical setting any model must interpret the theory symbols
by an interpretation from a given set that formalizes the theory. Thus the interpretation
of the free function symbols must be a conservative extension of the base interpretation.
That is, free function symbols may not introduce new elements into base sorts (“no junk”),
and no new equations between theory terms can become true (“no confusion”). These re-
quirements severely restricts the applicability of this method. Since the interpretation
of theory symbols is fixed, it is possible to use black-box decision methods whenever a
problem falls entirely into the domain of the built-in theory. Boyer and Moore (1988) dis-
cuss the practical implications of such a hierarchical approach. There experiments show
that this is too rarely the case to achieve a substantial speed-up. They propose a tighter
integration of the theorem prover and the built-in theory. We view our work as a way to
achieve this integration.

Term rewriting and Knuth-Bendix-completion (Knuth and Bendix 1970) are techniques
for automated first-order theorem proving for the special case of unit equations. Peterson
and Stickel (1981) give term rewriting systems modulo AC for various algebraic theories,
introduce AC-extensions. We use their convergent term rewriting systems and termination
orderings for abelian groups and commutative rings. Jouannaud and Kirchner (1986)
give a general theory of term rewriting modulo equational theory. In particular they
introduce the notion of coherence and present abstract criteria for a term rewriting system
being Church-Rosser modulo an equational theory. Zhang (1993) considers alternative ring
problems. He defines special completion procedures for abelian groups and distributivity
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which compute only a subset of the critical pairs between axioms and other rules, showing
that other critical pairs are redundant. He reports that this procedure achieves good
results for proving theorems from alternative ring theory. Marché (1996) builds a range
of theories from AC to commutative rings into equational completion. For abelian groups
what he calls symmetrization is our notion of T-normal form, while the first component
of his normalizing pair corresponds to our notion of symmetrization. Symmetrizations are
added to the set of rules explicitly. In contrast to our approach redundancy of certain
inferences between extensions in the symmetrizations is not proved beforehand and hence
not built into the inference system. Marché does not compute inferences below variables;
in that case the equation would not be orientable and the completion would fail. Using the
Cime system for completion with built-in theories (Contejean and Marché 1996), Marché
demonstrates that the special treatment of theories can reduce the number of inferences
greatly and can lead to large speedups.

The notion of symmetrization originates from string rewriting systems for finitely pre-
sented groups. There a group is represented as a finite set of generators and a finite set
of relations of the form w = 1 where w is a word over the generators and their inverses.
A symmetrized presentation of a relation consists of all cyclic permutations of the re-
lation or its inverse. The notion is already present in the work of Dehn (1911), where
it is used to simplify presentations. Dehn shows how to decide the word problem and
isomorphism problem for some finitely presented groups related to topological problems.
Greendlinger (1960a, 1960b) defines symmetrized set of relations explicitly and uses it to
extend the results of Dehn to groups whose symmetrized sets of relations have only small
overlaps. Le Chenadec (1986) generalizes this result to various other theories and shows
that symmetrized presentations can be derived from the canonical term rewriting systems
for the theories.

Another strand of research leading to this work is concerned with Grobner or stan-
dard bases for polynomial simplification. The first algorithm to compute Grobner bases is
the Buchberger algorithm (Buchberger 1970, Buchberger 1984, Buchberger 1987). Origi-
nally only for multivariate polynomials over a field, it has been generalized to polynomials
over other rings, for instance Euclidean rings by Kandri-Rody and Kapur (1988). For
an overview see the book by Becker and Weispfenning (1993). More recently, Bachmair
and Tiwari (1997) have even covered the case of commutative noetherian rings. To ab-
stract from specific base rings Buchberger (1984) introduced the notion of a reduction
ring and showed that standard bases can be computed in reduction rings and in the ring
of multivariate polynomials over a reduction ring. Stifter (1987) has generalized this to
rings with zero divisors and shown that various constructions preserve reduction rings
(Stifter 1991). She has also considered modules over reduction rings (Stifter 1993). The
computation of Grobner bases generalizes both the Euclidean algorithm and Gaussian
elimination (Buchberger 1987). The Euclidean algorithm also shows up explicitly in our
work for the theories of modules and commutative algebras over the integers (see Sec-
tion 7.6). Compared to Grobner bases algorithms we are more restrictive with respect to
the underlying rings, where we allow only fields and the ring of integers. The axioms of
Euclidean rings or reduction rings are not strong enough to for our method. For general
Euclidean rings it is not even clear whether a symmetrization exists. Reduction rings are
almost strong enough, but fail to show that isolation is a simplification rule, because the
axiom for transforming proofs (A5) does not apply due to its very restrictive preconditions.
We also restrict ourselves to integral domains, because strong symmetrization cannot be
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achieved in the presence of zero divisors. Logically the techniques for finitely presented
groups and polynomial rings correspond to the case of ground unit equations where the
free function symbols are a finite set of constants, with various underlying theories. In
this respect our approach generalizes them.

The relation between completion for term rewriting systems, which is the basis of our
calculus, and Grobner basis algorithms has already been noticed by Buchberger and Loos
(1983) and Buchberger (1987). They remark that both decide equivalence with respect
to a canonical term rewriting system or a Grobner base by normalizing and comparing
normal forms for equality, but apart from this their discussion of analogies is informal.
Biindgen (1991, 1996) formalizes this by encoding Grobner basis computation, including
the computation in the base rings, in term rewriting systems. He introduces the notion of
semi-compatibility and uses a similar technique to manipulate his proofs, but he does not
make it explicit. Marché (1994, 1996) has used a similar approach based on his notion of
normalized rewriting. Bachmair and Ganzinger (1994b) use constraints to express compu-
tations in the base ring, which separates them from computation in the base polynomial
ring and abstracts from the details of the particular base ring. We use the same term
rewriting system to represent the theory of commutative algebras.

Refutationally complete superposition calculi for algebraic theories require simplifica-
tion orderings which are total on ground terms, and which obey additional restrictions
imposed by the algebraic theories. In particular, theorem proving modulo some equa-
tional theory E requires that the term ordering is E-compatible. The most important
theory in practice is AC (Bachmair and Plaisted 1985, Delor and Puel 1993, Rubio and
Nieuwenhuis 1995, Kapur and Sivakumar 1997, Baader 1997, Rubio 1999). Additionally,
presenting the theory by a term rewriting system modulo E (Bachmair, Ganzinger and
Stuber 1995, Stuber 1998a, Stuber 1998b) requires that the ordering orients the rules in
this system in the right direction.

Geser (1996) introduces the general path ordering to construct semantic path orderings.
A general path ordering is built recursively from a status function as its only ingredient.
The properties of the ordering are derived from corresponding properties of the status
function. In its original form it is not suitable to derive E-compatible orderings, as the
property of the status function needed for compatibility with contexts does not hold in
the presence of flattening. Nevertheless, the other properties like transitivity and the
subterm property carry over, and the method can easily be extended to other properties,
like totality and E-antisymmetry. To present a such a status function we use a technique
that is very similar to that of Baader (1997).



2

Preliminaries

2.1 Mathematical structures

Sets

We write tuples with angled brackets, like (z1,...,z,).

Functions

Given a function f : A — B and a € A, b € B, we define f[a/b] as the function which
maps a to b and acts like f on A\ {a}.

Binary relations

A binary relation on a set M is a subset of M x M. We write z R y for (z,y) € R.
The composition of two binary relations R and S, written R - S, is defined as {(z,z) |
z Ry and y R z}. The inverse of Ris R~! = {(y,z) | ¢ R y}. For relation symbols such as
>, > and = we use their mirror image to denote the inverse, i.e., <, < and <, respectively.
A binary relation R is called reflezive if (=) C R, irreflezive if RN (=) = 0, symmetric
if R = R, antisymmetric if RN R~ = (=), and transitive if R+ R C R. The transitive
closure R is the smallest subset of M that contains R and is transitive. Analogously
we define the reflezive-transitive closure R* and the symmetric closure R®. For arrow
symbols such as — and = the symmetric closure is denoted by <> and <. respectively.
Let S be a symmetric binary relation. R is called S-compatible if S-R-S C R.

We define the product Ry X Ry of two binary relations R; and Rs on M; and Mo,
respectively, by (z1,z2) (R1 X R2) (y1,y2) if and only if 1 Ry y1 and z2 Ry yo. This is
easily seen to be associative, hence the n-fold product R; x -+ X R, is well defined.

2.2 Orderings

A quasi-ordering is a binary relation that is reflexive and transitive. A (partial) ordering
is a quasi-ordering that is antisymmetric. A strict (partial) ordering is a binary relation
that is irreflexive and transitive. An equivalence is a reflexive, symmetric, and transitive
binary relation.

Any strict ordering < can be extended to a nonstrict ordering (<) = (<) U (=). We
will usually not mention whether an ordering is strict or not, as this will be clear from the
context and the relation symbol used. Each quasi-ordering > can be split into its strict
part (>) = (=) \ (<) and its equivalence kernel (~) = (>)N (<) = (>)\ (>). Then >
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and > obey the strict transitivity laws

z >y and y > z implies x > z, and
x>y and y > z implies £ > 2.

On the other hand, if ~ is an equivalence relation and > is an ~-compatible strict partial
ordering then (>) = (~) U (>) is a quasi-ordering. An equivalence relation S is contained
in the equivalence kernel of any S-compatible quasi-ordering >, because x S y implies
zSyr-ySy.

In the context of some quasi-ordering > we always use > for its strict part and ~
for its equivalence kernel. If we want to be more formal, we will write >=(>), =(>) and
~(>) for > itself, its strict part and its equivalence kernel, respectively. »=(>) allows to
use infix notation for quasi-orderings constructed as the product or intersection of other
quasi-orderings.

Moreover, a quasi-ordering > corresponds to a partial ordering > on ~-equivalence
classes, where = > y if and only if [z]. > [y].. For > we observe that it is well-defined by
transitivity of >, that it is reflexive and transitive because > is, and that antisymmetry
follows because [z]. = [y]. whenever z ~ y. If, on the other hand, > and some equivalence
relation ~ are used to define >, then > is reflexive and transitive because > is.

A binary relation R on M is called total if RUR ' = M?. A strict ordering < is called
total if its reflexive closure (<)U(=) is total. A binary relation R is called S-antisymmetric
if RNR™' C S and total up to S if RUR™'US = M?. Usually R is an ordering and
S is an equivalence. Note that if S; C S then Si-antisymmetry implies Sp-antisymmetry,
and that a binary relation on M is always M?2-antisymmetric. z is a minimal element of a
binary relation > if there exists no ¢ in M such that > y. We call z the smallest element
of > if y > z for all y in M. A binary relation > is called terminating if there is no infinite
descending chain z1 > x5 > --- of elements in M. A binary relation > is well-founded if
each nonempty subset of M has a minimal element with respect to >. Using the axiom of
choice one can show the equivalence of termination and well-foundedness. A well-ordering
is a total ordering whose strict part is well-founded. In a well-ordering every nonempty
subset of M has a smallest element.

A subset S of M is downward-closed with respect to > if whenever z isin S and =z > y
then also y is in S.

Lezicographic product

Let >; and >, be quasi-orderings on M; and Ms, respectively. The lexicographic
product =1 Xjez =2 of =1 and >3 is the binary relation on M7 X Ms that is defined by

(1, 2) = (=1 Xieg =2) (Y1, Y2)

if either £1 =1 y1, or 1 ~1 y1 and z9 >2 yo. It is easily seen that X, is associative,
hence the lexicographic product =1 Xjep -+ Xjez =pn 0of n quasi-orderings >1,...,>, is
well-defined.

Proposition 2.1 Let »=1,..., >, be quasi-orderings and let =jep = 1 Xjeg - - - Xleg & n-
1. >ez 15 a quasi-ordering.
2. If there exists an infinite descending chain

<-'1311a--- a$1n> > lex <x21a---a$2n> >lex -+
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then there exists an infinite descending subchain
Tj1i i Tjoi PG -«
forsomei=1,....nand 1 <j1 <jos <....
3. If =1,...,>p are well-founded then > ¢ is well-founded.
4. If =1,..., 7=y are total then >, is total.

5. Let Sy,...,Sn be equivalence relations and S = Sy X -+ x Sp. If =; is S;-compatible
fori=1,...,n then =y is S-compatible.

6. Let Sy,...,S, be equivalence relations and S = S1X---xSy. If =; is S;-antisymmetric
fori=1,...,n then = is S-antisymmetric.

Proof: We only prove part of these properties for n = 2. For n > 2 the n-fold lexicographic
product can be considered as the iterated product of two quasi-orderings. Hence properties
which are preserved for n = 2 are also preserved for n > 2.

(2) Suppose there exists an infinite descending chain

(T11,221) >tex (T12,%22) >leg - - - -

Either there exists an infinite descending chain z1j, >1 15, >1 ... in the first component.
Or z; ~1 wj41 ~1 ... from some j > 0 on, and there exists an infinite descending chain
T9j, =2 T2j, >2 ... in the second component, for some j < j; < jo <....

(3) This is the contrapositive of (2).

(5) Let Si,S2 be equivalence relations and S = S; x S3, and suppose that =; is S;-
compatible for i = 1,2. Consider tuples (z1,z2), (2}, ), (y1,y2) and (¥}, y}) such that

(z1,m2) S (T}, Th) =ew (Y1, Y5) S (Y1, o).

Then z1 S1 7} =1 v} S1 y1, and by Si-compatibility of > also z1 >=1 y1. If 1 =1 y1 then
also (z1,T2) » ez (y1,y2). Otherwise z1 ~1 y1. By Si-compatibility of =1 and symmetry
of S this implies 2} ~; y] and hence z{, =2 y5. By Ss-compatibility of »o this implies
x9 =9 Y2 and in turn (z1,Z2) ez (Y1, Y2)-

(6) (z1,T2) ~iex (y1,y2) implies z; ~; y; for 4 = 1,2. Since »; is S;-antisymmetric,
x; ~; y; implies z; S; y; for ¢ = 1,2. Hence (z1,z2) S1 X S2 (y1,y2). O

Lezicographic combination

Let >1,...,>n be quasi-orderings on M. Their lezicographic combination > is a binary
relation on M defined by s > t if and only if

<3>---33) t(tl Xleg «++ Xlex tn) <t>--->t)-

Proposition 2.2 Let »1,..., >, be quasi-orderings and let > be the lexicographic combi-
nation of =1,...,7p.

1. > is a quasi-ordering.
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2. If there exists an infinite descending chain
T1>T2 > ...
then there exists an infinite descending subchain
Tj, > Tjy i -
for some 1 < j1 <jo<....
3. If =1,...,>p are well-founded then > is well-founded.
4. If =1,..., =y are total then = is total.

5. Let S1 D --- D S, be equivalence relations. If »=; is S;-compatible for i = 1,...,n
then > is S,-compatible.

6. Let Si,...,Sy be equivalence relations and S = (\;—; Si. If »; is Si-antisymmetric
fori=1,....n then > is S-antisymmetric.

Proof: These properties follow from the properties of the lexicographic product. O

Note that S-antisymmetry of the lexicographic combination holds if the last component
is S-antisymmetric, since the other components are always M2-antisymmetric.

The length-lezicographic extension

The set of tuples (or words) over a set M is M* = |J,,», M"™. We write Z for a tuple
(x1,.-.,2p). The length [(x1,...,z,)| of (z1,...,2,) is n. The length ordering =, on
tuples is defined by Z >, 7 if and only if |Z| > |g].

Let = be a quasi-ordering on M. The lexicographic extension =7 of = to n-tuples is
the n-fold lexicographic product > X ey - - - Xgep #=. The lezicographic extension =, (>) of =
to M* is |J,,~ =J.;- Note that this makes the lexicographic extension partial, as tuples of
different length are not comparable. We prefer this definition, because the natural total
lexicographic extension does not preserve well-foundedness. Also, in most applications
only tuples of the same length are compared, e.g. in the lexicographic path ordering. The
length-lexicographic extension of > to M™*, written =, (>), is defined as the lexicographic
combination of the length ordering >, on M* and the lexicographic extension of > to M*.
We denote the eztension of a binary relation S on M to tuples of length n over M by
S and the extension to tuples of arbitrary length by S = U0 R,

Proposition 2.3 Let = be a quasi-ordering on M.
1. > yes(>) is a quasi-ordering.
2. If there exists an infinite descending chain
T1 Zltex (=) T2 Zitex (=) - -
then there exists an infinite descending subchain
Tijy > Tijy = - --

forsome 1 <j1 <jo<....
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If = is well-founded then >y, (>) is well-founded.
If = is total then >y, (>) is total.

Let S be an equivalence relation. If = is S-compatible then =jep (=) is S ) _compatible.

S S - BN

Let S be an equivalence relation. If > is S-antisymmetric then =je.(>) is S
antisymmetric.

Proof: (5) The length ordering is S™)_compatible, since only tuples of the same length
can be related in S™. If > is S-compatible then the lexicographic extension is S
compatible, and lexicographic combination preserves S*)-compatibility. Hence the result
is S*)-compatible.

(6) T ~ye; ¥ implies that Z and § have the same length and are equivalent in the
lexicographic extension. Then z; ~ y; for ¢ = 1,...,n, which implies z; S y; by S-
antisymmetry of S, and hence Z S™* 7. O

The multiset extension

The multiset extension was introduced by Dershowitz and Manna (1979). Jouannaud
and Lescanne (1982) show that other natural definitions are equivalent.

A (finite) multiset M over a set S is a function from S into the natural numbers such
that M(z) > 0 only for finitely many z in S. We denote the set of multisets over S
by Ngn. For each z in S, M/(z) denotes the number of occurrences of z in M. Multisets
can be written by enumerating their elements. E.g., we write {1,0,0} for the multiset M
over N with M(0) = 2, M(1) = 1 and M(z) = 0 for z > 1. We say that z is an
element of M if M(z) > 0. The union and difference of multisets M and N are defined
by (M UN)(z) = M(z) + N(z) and (M \ N)(z) = max(M(z) — N(z),0).

Proposition 2.4 {z1,...,2m} = {y1,--.,yn} if and only if m = n and there ezists a
permutation ® such that ©; = yr) fori=1,...,m.

The multiset extension =, of a strict partial ordering > is the strict partial ordering on
multisets over S that is defined by M >,y N if and only if M # N and for all z in S
such that N(z) > M(z) there exists an y in S such that y > z and M (y) > N(y).

Proposition 2.5 Let = be a strict partial ordering on S.
1. > w18 a strict partial ordering.
2. If there exists an infinite descending chain
My = put My =t -+
of multisets then there exists an infinite descending chain
Ty > T2 > -
in S and indices 1 < j1 < jo < ... such that x; € Mj, for i > 1.
3. If = is well-founded then > is well-founded.

4. If = is total then =y is total.
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5. Let My, My and N be multisets over S. Then My = Mo if and only if NUMy =0
N U M.

6. If (~") D (=) is a strict partial ordering on S then (> ) D (>mu)-
Proof: (1) was shown by
(2) We extract this slightly stronger result from the proof of well-foundedness of Der-
showitz and Manna (1979). Consider some infinite descending chain

Ml > mul M2 mul -

of multisets over S. We extend S by a new minimal element | and use the descending chain
to build an infinite tree whose nodes are labeled with elements from S U {L}. We label
the root arbitrarily by L and add a child for each element of M;. Since M; >pu Mii1,
the set N = M; \ M;;1 is not empty, and for each y in N’ = M;,1 \ M; there exists some
z in N such that z > y. We partition N’ into a family (N]),en such that z > y for all
y € N.. We add the elements of N as children of z to the tree for each z € N. If N.
is empty we add the single child 1. Since at each step at least one element is added, the
tree is infinite. The multisets are finite, hence the tree has finite degree, and by Konig’s
Lemma it has an infinite branch. By our construction an infinite descending chain

1> Ty > ...

begins at a child of the root node, and there exist 1 < j; < jo < ... such that z; € M;
for i > 1.

(3) follows from (2).

(4) Suppose = is total, and let M and N be distinct multisets. Let y be the greatest
element of the symmetric difference (M \ N) U (N \ M). Suppose M(y) > N(y). Since
y > z for any element z such that N(z) > M(z), we conclude M >,,,; N. Otherwise
N(y) > M(y), and by the same argument N >,,,; M.

(5) This follows since addition on natural numbers is monotonic.

(6) Since y > z implies y >’ z for z,y € S, M > N implies M >/ . N for M
and N multisets over S. O

Next we consider the multiset extension of a quasi-ordering. Let > be a quasi-ordering
on S. We extend ~ to an equivalence relation ~,,,, on multisets over S by M ~,,.; N
if and only if 37, M(y) = >_,., N(y) for any z in S. This justifies setting [M](z) =
> y~z M(y). We may also consider [M] as a multiset over S/~ by letting [M]([z]) =
[M](z). Furthermore, > induces a partial ordering >=g/. on S/~. We apply the multiset
extension to the strict part >g/. of =g/., and obtain a strict partial ordering on multisets
of equivalence classes. Via the canonical homomorphism this induces a strict partial
ordering >,y on multisets over S that is compatible with ~,;,;. By combining >,
and ~,, we obtain the desired quasi-ordering (>mu) = (=mu) U (~mu) on multisets
over S.

Proposition 2.6 Let > be a quasi-ordering on S.

1. > 18 a quasi-ordering.
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2. If there exists an infinite descending chain
My = mu Mo = mui - - -
then there exists an infinite descending subchain
T > To > ...
for some 1 < j1 < jo < ... such that z; € Mj, for i > 1.
3. If > is well-founded then >, is well-founded.
4. If = is total then =y is total.

5. Let My, My and N be multisets over S. Then My =y My if and only if NUMy = pu
N U M,.

Analogous to the length-lexicographic extension there is also a size-multiset extension,
where the size of the multiset is combined lexicographically with the multiset extension.

The size |M| of a multiset M over S'is ) . M(s). The size ordering =i e on multisets
is defined by M >, N if and only if |[M| > |N|. The the size-multiset extension = gy of
a quasi-ordering > is the lexicographic combination of the size ordering and the multiset
extension of ».

Proposition 2.7 Let > be a quasi-ordering on S.
1. >gnu 1S a quasi-ordering.
2. If there exists an infinite descending chain
My = smut Mo =gt - - -
then there exists an infinite descending subchain
T1 > T > ...

for some 1 < ji < jo < ... such that z; € Mj, fori > 1.
3. If = is well-founded then > sy is well-founded.
4. If > is total then ¥ gy 18 total.

5. Let My, My and N be multisets over S. Then My »gnu Mo if and only if N U
Ml tsmul NUMQ-

2.3 Strictly monotonic functions

Here we show that certain uses of the constructions of the previous section preserve mono-
tonicity. This will be useful when we prove compatibility with contexts of term orderings
which are based on these constructions.

Let »=; be a quasi-ordering on S; for ¢« = 1,2, and let f be a function from S; to Ss.
The function f is called monotonic if z »1 y implies f(z) >=2 f(y), and strictly monotonic
if it is monotonic and z > y implies f(z) »2 f(y).

The extension of a function f : S — S to a function f, : Nglll — Ngfl is defined by
frmu(M)(y) = Ef(w):y M (z) for all z in S; and y in Sy. For functions f,g: S — N2 the
function f Ug: S — N2_ is defined by (f Ug)(z) = f(z) U g(x).
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Proposition 2.8 1. Let > be a quasi-ordering on S. Then the identity on S is strictly
monotonic.

2. The composition of strictly monotonic functions is strictly monotonic.

3. For any multiset N over S and any multiset extension > 4 the function M — MUN
from = pu t0 = 18 strictly monotonic.

4. If f is a strictly monotonic function from = to >=' then the extension fy. of f to
multisets is a strictly monotonic function from =y to = .

5. Let f and g be strictly monotonic functions from > to > .. Then fUg is a strictly
monotonic function from = to =' ..

6. Let f; be a strictly monotonic function from >=; to >} fori=1,...,n. Then

(1, oy zn) = (fi(x1)y- -, fr(zn))

is a strictly monotonic function from >=1 Xieg *+* Xiez =n 10 ¥ Xieg *+* Xiez =

7. Let fig,,. a;_q) be a strictly monotonic function from =; to =t fori=1,...,n and
(1,...,2i—1) in S1 X -+ X S;_1 such that x1 ~1 y1,...,T; ~; y; implies

f(wla---azi—1> (:EZ) N; f(yla---ﬂyi—l) (yl)

for any tuples (z1,...,z;) and (y1,...,y;) in Sy X --- X S;. Then

<.’L‘1, cee awn) = <f() (wl)a f(a';l)(m?)a SRR f(ml,...,xn_l)(a;n))

is a strictly monotonic function from »1 Xjeg -+ Xieg =n 10 =) Xieg *+* Xjeg >0
Proof: (5) Suppose = = y. Then by assumption f(z) = . f(y) and g(z) > ., g(y), and

(fUg)(zx) = f(x) Ug(x) = fy) Ug(e) = fy) Ugly)

by the context property of the multiset extension. Analogously for the strict part.

(6) is the special case of (7) where for each i the functions f,, y are the same for
all values of z1,...,2;_1.

(7) It suffices to consider the case n = 2. Let f = (z1,z2) = (fyy(z1), fiay)(22)),
= =71 Xeg =2 and = tl1 Xlex EIQ

(7.1) For monotonicity suppose (z1,z2) = (y1,y2). Then either z1 >1 y1, or z1 ~1 Y1
and 2 =2 y2. Then f(z1) =1 f(y1), or foy(z1) ~1 fiy(y1) and fig,)(z2) =5 fray)(y2) ~5
fyy (y2). Hence f((z1,22)) = f({y1,92))-

(7.2) For strict monotonicity replace =2 by >s. O

syeensTi—1

2.4 Algebra

See also the books by Lang (1993) or Scheja and Storch (1994).
Let f: S — S be a binary operator. Then f is called associative if

[z, f(y,2)) = f(f(z,y),2) (2.1)
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for any z,y,z € S. It is called commutative if

for any z,y € S. A semigroup (S,-) consists of a set S and an associative operator - on M.
A monoid (M,-,1) is a semigroup (M, -) together with a unit element 1 of M such that

lz=z-1=x (2.3)

for any z in M. A group (G,-,_"',1) is a monoid (M,-,1) together with a function
_~1:. G = G such that
vz tl=xtl.x=1 (2.4)

for any z in G. A semigroup is called commutative or abelian if its operator is commuta-
tive. Commutative semigroups, monoids and groups are often written additively as (S, +),
(M, +,0) and (M, +, —,0), respectively. A ring (R, +,-,—,0,1) consists of an abelian group
(R,+,0) and a monoid (R,-,1) such that the distributivity laws

a-(b1+b2):a-b1+a-b2 (25)
(a1 +az)-b=ai-b+az-b

hold. A ring is called commutative if its multiplication is commutative. The element 1 is
called the unit element of R. We will consider only commutative rings with a unit element.
A zero divisor is an element a # 0 such that ab = 0 for some b # 0. A commutative ring
without zero divisors is called an integral domain. In an integral domain multiplication
obeys the cancellation law. That is, ab = ac implies b = ¢ for a # 0. A unit of a ring is
an element that has a multiplicative inverse. We say that a is divisible by b, written a | b,
if there exists some ¢ € R such that ac = b. Two elements a and b in R are associated if
a|band b | a. In an integral domain this is equivalent to the existence of a unit ¢ such
that ac = b.

2.5 First-order predicate logic
For an introduction to first-order logic see for instance the book by Fitting (1996).

Syntax

We consider first-order languages over the single predicate symbol ~ for equality and
some set F' of function symbols. Additionally there is a set X of variables. A function
symbol f has the arity «(f). Function symbols with arity 0 are called constants.

The set of terms over F' and X is the smallest set 7#(X) such that X C 7#(X), and
if feF, a(f)=nand ty,...,t, € Tp(X) then f(t1,...,tn) € Tr(X).

The set of equations over F' and X is the smallest set E(X) such that if ¢; and ¢ are
terms in 7z (X) then ¢; = to is in Ex(X). The set of formulas over F and X is defined as
the smallest set Fr(X) such that:

1. Ep(X) C Fp(X).
2. T and 1 are formulas in Fr(X).

3. If ¢ is in Fp(X) then —¢ is a in Fpr(X).
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4. If ¢ and ® are formulas in Fp(X) then ¢ A ¢, ¢ Vb, ¢ — 1) and ¢ <> 1 are formulas
in Fr(X).

5. If ¢ is a formula in Fr(X) and z is a variable then Vz ¢ and 3z ¢ are in Fr(X).

We drop brackets according to the standard conventions: —, Vz and dz take precedence
over A and V, which in turn take precedence over — and <>. A variable z is a free
variable of the formula ¢ if it occurs in a atomic subformula of ¢ which is not below a
quantifier Vz or Jz. All other variables in ¢ are called bound. Terms and formulas which
contain no variables at all are called ground.

A substitution o is a mapping from the set of variables X to the set of terms 7p(X),
where o(z) # X for only finitely many z € X. It can be extended in a unique way to a
homomorphism sigma from Tr(X) to Tr(X) by

6(z) = o(x) reX
&(f(tla"'atn)) :f(a(tl)aa&(tn)) fEF

We will write to instead of 6(t) from now on. The domain Dom (o) of a substitution o is
the set of variables {z | o(z) # z}, its range Ran(o) is the set of terms {zo | z € Dom(0)}.
A substitution is ground if its range contains only ground terms. A term s is an instance
of t if s = to for some substitution . A ground instance of ¢ is an instance of ¢ that is
ground. We denote the set of ground instances of ¢ by gnd(t).

A contest u is a term that contains a single occurrence of the special variable [|. We
write u[] to indicate that u is a context. [] itself is the empty contezt. Then u(t] denotes
the term u{[]/t}, where [] is substituted by ¢.

We write f(...,t,...) as an abbreviation for f(u1,...,u;,t, tit1,...,uy). If we write
f(...,s,...)and f(...,t,...) in the same context then s and ¢ are in the same argument
position, and the terms represented by the dots are equal. Let F' be a set of function
symbols. An F'-context is a context whose function symbols are from F'.

A position in a term is a sequence of natural numbers. The composition of positions
is denoted by a decimal dot. The set of positions of a term is defined recursively by
Pos(z) = {e} for variables z and Pos(f(t1,...,tn)) = {ec}U{m.i |1 <i<n, m € Pos(t;)}.
The empty sequence is called the root position and is denoted by e.

Semantics

An F-structure (or F-interpretation) I consists of (i) a nonempty set Uy, called the

universe of I, (ii) for each function symbol f in F a function fr : Uf(f ) Ur, and
(iii) a binary relation =j. Note that we have not required any congruence properties
for the interpretation of equality, as we will need to consider interpretations which are
not transitive. A Herbrand interpretation is an interpretation I where Uy = Tp. An
assignment for I is a function « : X — Uy, which can be extended in a unique way to
a function & : Tp(X) — Us. A formula ¢ is true in I with respect to an assignment a,
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written I, a = ¢, if either

p=T, (2.7)
p=s=t,  and a(s) =y a(t), (2.8)
¢ =, and I, « [ 1, (2.9)
d=11 Ao, and I,a =191 and I, = o, (2.10)
d=11 V ih, and I, =91 or I, |= 1ho, (2.11)
¢ =11 = 1o, and I, a = 91 implies I, a |= 1o, (2.12)
¢ =11 — 9, and I, =1 if and only if I, a |= )9, (2.13)
¢ =Nz, and I, a[z/a] = for all a € Uy, or (2.14)
p=3zd and I, a[z/a] = ¢ for some a € Uy. (2.15)

Let ¢ be a formula and I an interpretation. We say that ¢ is true in I or I is a model
of ¢, written I = ¢, if I, @ = ¢ for all assignments . I is a model of a set of formulas ®,
if I = ¢ for all ¢ € &. By Mod(®) we denote the set of all models of ®. We say that
® is walid if it is true in all interpretations. Let Z be a set of interpretations. Then we
write Z = ® if I = ® for all I € Z. We say that 1 is a logical consequence of ® and write
® =9 if Mod(®) = 1. Two formulas ¢ and 1) are said to be logically equivalent, written
¢ = 1, if ¢ is a logical consequence of ¥ and vice-versa. A set ® of formulas is called
consistent or satisfiable if ® has a model, and inconsistent or unsatisfiable otherwise. It is
well-known that any satisfiable set of formulas has a Herbrand model. In some contexts
we will consider only a subclass M of all models and write ® =4 9 if for all models in M
that satisfy ® also i holds. A special case is when the subclass is determined by a set
of formulas 7. In this context we use the following specialized notions: A formula ) is a
T-consequence of ¢ if T U {¢} = 1. Two formulas ¢ and 1) are said to be T'-equivalent
if ¢ is a T-consequence of ¢ and vice-versa. A set of formulas @ is called T'-consistent if
T U ® has a model, and T'-inconsistent otherwise.

Clause form

A literal is a formula of the form A or =A where A is an atomic formula. A clause is a
formula of the form L; V ... V Ly where Ly, ..., L are literals. A quantifier-free formula
is in clause form if it is a conjunction of clauses. We may equivalently consider such a
formula as a set of clauses. It is well-known that any formula can be transformed into a
clause set that is satisfiable if and only if the original formula is satisfiable.

Equality

Let F be a set of function symbols. An interpretation I is called an equality interpre-
tation (with respect to F) if ~; is a congruence (with respect to F). Formally, an equality
interpretation has to satisfy the following sets of axioms:

Reflexivity
Refl = {z =~ z}
Symmetry
Symm={z~y—y~z}
Transitivity

Trans = {(z =y AN y=z2) >z~ 2z}
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Monotonicity
Mon ={(z1=y1 A ... A zp = yn) = f(z1,---,2n) = f(y1,--,9a) | f € F}

We let
Eq = Refl U Symm U Trans U Mon.
Let E be a set of equations. Two terms s and t are E-equivalent, written s =g t, if
EqQUE Es=~t.
Azioms for algebraic structures

We will need the following algebraic axioms:

Associativity
A+) ={=+y)+t2)=z+(y+2)}
Commutativity
CH)={z+ymy+a}
Distributivity
D(+,)={z-(y+2)=z-y+z-2z}
Unit law
U(+,0) ={z+ 0~ z}
Idempotency

I(+)={z+z =z}

Inverse law

Inv(+,—,0) ={z + (—z) = 0}

We write AC(f) for A(f) U C(f) or just AC when the associative-commutative function
symbols are known from the context. Furthermore, we let ACU(+,0) = AC(+) UU(+,0),
ACD(+,-) = AC(+) UAC(-) UD(+,-) and ACI(+) = AC(+) UI(+), with their respective
abbreviations ACU, ACD and ACI when the function symbols are known from the context.
An equation is called collapse-free if neither side is a variable. A set of equations is called
collapse-free if all its equations are collapse-free.

Automated theorem proving

Given some first-order formula ¢, the goal of automated theorem proving is to deter-
mine whether ¢ is valid. Usually this takes place in the context of some theory T', and
in this case we want to know whether T' = ¢. This can be done by transforming —¢ into
clause form and testing for inconsistency. An inference is a pair ((C1,...,C), D) of a
tuple of clauses C1,...,Cy, called the premises of the inference, and a clause D, called the
conclusion. The inference is sound with respect to T if the conclusion is a T-consequence
of the premises. We say that the conclusion can be derived from the premises by the
inference. A calculus or inference system is a set of inferences. A refutation of a clause
set N in a calculus Calc is a sequence C1,...,C, = L of clauses with n > k such that
each clause Cj is either from N or can be derived from clauses earlier in the sequence
by an inference in Calc. A calculus is refutationally complete for a theory T if for any
T-inconsistent set N of clauses there exists a refutation of N.
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2.6 Constraints

A constraint is a logical formula I' over a language of predicate and function symbols.
A constraint system is a set of constraints together with a satisfaction relation |= that
specifies which ground substitutions o satisfy a constraint I'. A substitution o satisfies (or
solves) a constraint if o = T. A constraint denotes the set of ground substitutions which
satisfy the constraint. A constrained formula is a logical formula with a constraint, written
¢ [I']. The set of ground instances gnd(¢ [I']) of a constrained formula is {¢o | o |=T}.

2.7 Term orderings

An overview of term orderings is given by Dershowitz (1987). A binary relation R on terms
is called compatible with contexts if s R ¢ implies u[s] R u[t] for any context u. It is called
closed under substitutions if s R t implies so R to for every substitutions o. We say that
R has the subterm property if u[t] R t for every nonempty context u. A binary relation R
on terms is called E-compatible if it is =pg-compatible, i.e., s =g s' Rt/ =g t implies s R ¢
for all terms s, ¢, s’ and ¢'. It is called E-antisymmetric if it is =pg-antisymmetric, i.e.,
s Rt and t S s implies s =g t. Note that if a quasi-ordering > on terms is E-compatible
and E-antisymmetric then ~ = =p.

A reduction ordering is a strict ordering on terms that is well-founded, compatible with
contexts and stable under substitutions. If in addition it has the subterm property, it is
called a simplification ordering. We say that > orients the rewrite rule [ = r from left to
right if [ > r.

We say that a quasi-ordering > strictly has some property if both > and its strict
part = have the property. A reduction quasi-ordering is a quasi-ordering on terms that is
well-founded, strictly compatible with contexts and strictly closed under substitutions. If
in addition > has the subterm property, it is called a simplification quasi-ordering. The
strict part of a simplification quasi-ordering is a simplification ordering.

Lemma 2.9 The lexicographic combination of simplification quasi-orderings is a simpli-
fication quasi-ordering.

If (=g) C (~) then transitivity of > implies E-compatibility. Thus if R C (>) and
E C (~) for a term rewriting system R modulo E and a reduction quasi-ordering then R
is terminating modulo E.

The subterm ordering > is defined by s > ¢ if and only if ¢ is a subterm of s. The
subterm ordering is the smallest simplification ordering.

Polynomial interpretation

A polynomial interpretation is a function p that maps terms ¢[z1, . .., zx] to multivariate
polynomials in Z[z1, ..., z;]. The interpretation is defined inductively from polynomials p ¢
in Z[y1, .-, Ya(p)] for each function symbol f, by

p(f(t1,-- - tn)) = pr(p(t), - - -, p(tn)) (2.16)

p(z:) = ;. (2.17)

To compare polynomials we use an ordering >, defined by p[z1,...,zk] >p q[z1,. .., Tk]
if p[ni,...,nk] > g[ni,...,nk] for all ny,...,n, € N22. Finally, we define =, such that

s =p t if and only if p(s) >, p(t).
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Proposition 2.10 Let p be a polynomial interpretation such that for each polynomial
pf(x1,...,%5) all coefficients are nonnegative and each variable occurs at least once in the
polynomial, if f is a constant then py > 2, and if f is unary then py # x. Then =) is a
simplification quasi-ordering that is total on ground terms.

Lemma 2.11 (Ben Cherifa and Lescanne 1987) If ps(x,y) has the form azy+b(z+y)+c
where ac + b — b = 0 then =, is AC(f)-compatible.

The AC-RPO

Let > 4crpo be the associative commutative recursive path ordering (AC-RPO) of Rubio
and Nieuwenhuis (1995)!, with respect to some arbitrary precedence.

Lemma 2.12 (Rubio-Nieuwenhuis) >.cpo is a simplification ordering that is AC-
compatible and total up to AC on ground terms.

2.8 Term rewriting

For a general introduction to term rewriting systems we refer the reader to the book of
Baader and Nipkow (1998). The survey by Dershowitz and Jouannaud (1990) contains
more material on the equational case, which is treated in-depth by Jouannaud and Kirchner
(1986).

We state the properties of term rewriting systems modulo a set of equations E. The
standard case can be obtained by letting E = (). A rewrite rule consists of two terms, the
left-hand side | and the right-hand side r, written [ = r, such that Var(r) C Var(l). In
the context of a term ordering > such that [ > r we identify the equation [ ~ r with the
rewrite rule [ = r. We say the equation [ = r is oriented from left to right by > if [ > r.
A term rewriting system(TRS) is a set R of rewrite rules. A term rewriting system R
rewrites a term s to t, written s =g t, if there exists a rule [ = r € R, a substitution o
and a context u[] such that s = u[lo] and ¢ = u[ro]. The subterm lo is called the redez of
the rewrite step. We say that a term ¢ is irreducible or in normal form with respect to R
if there exists no term ¢ such that ¢t =g ¢'. If s =g ¢ and ¢ is irreducible we say that ¢ is
a normal form of s.

We let i(R) denote the term rewriting system consisting of all instances of rules in R,
and gnd(R) the set of all ground instances. We write E\R for the term rewriting system
{I = r|l=re€i(R), I'=gl}. Wesay that R rewrites s to ¢ with E-matching if s =g\
t. This is equivalent to the standard definition, where s = p\g t if there exists a rule
| = r € R, a substitution o and a context u[] such that s = u[l'], I’ =ac lo and t = u[ro].
Note that for a ground term rewriting system R no further instantiation is possible and

E\R={'=r|l=reR, I'=gl}.
An equational proof of s =t is a sequence
s =1ty <EURt <EUR--- @EURIn =1

where each step is either the application of an equation in F or a rewriting step with R. A
proof of the form ¢; <pg s =g 9 is called a peak, and a proof of the form t; g s =g ty
is called a cliff. We write s | g.g t for a valley proof s =g s' &g t' Epg t and say that

!This ordering has recently been improved by Rubio (1999).
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s and t converge in R modulo E. Note that by not mentioning E in rewrite steps we
assume that R includes any E-steps needed for matching. In most cases E is clear from
the context and we write s || t for s |g.g t. If even R is clear we simply write s |} ¢. By
RY we denote the set of equations provable by a rewrite proof, that is, {s =~ t| s | t}.

The term rewriting system R is Church-Rosser modulo E if s Spurt implies s | g, 1.
Let =p/p = Sp-=pr-Sg. Then R is terminating modulo E if = g/E 18 terminating, i.e.,
there is no infinite sequence

t1 =R/E to =R/E -+ -

If R is both Church-Rosser and terminating modulo E it is called convergent modulo E.
In this case the normal form of every term is unique up to £ and we denote the normal
form with respect to R of a term ¢ by R(t).

Given termination, it suffices to test s |gr,z t for all peaks t; <r t =g t2 and
cliffs t; &g t =g t2, in order to obtain convergence of R modulo E (Jouannaud and
Kirchner 1986).

For the case E = AC convergence of cliffs is ensured by adding AC-eztensions. For
arule! = rin R with [ = f(s,t) where f € Fac, its AC-extension is f(z,l) = f(z,r),
where z is a new variable (Peterson and Stickel 1981). An AC-extension f(z,l) = f(z,7)
is needed only if the cliff

f(f(:z:,s),t) “AC f($af(35t)) =R f(.’II,’/‘)

does not already converge without the extension. In the presence of AC-extensions it is
not necessary to rewrite at a position with an AC-symbol f that also occurs immediately
above. It suffices to consider redexes at the root of an f-context.

We will need versions of the Church-Rosser properties which hold only up to some
bound with respect to a given term ordering . We assume a downward-closed set 7 of
ground terms, which allows to formalize bounds of the forms < s and =< s as well as the
absence of a bound by the sets {¢ | < s}, {t| < s} and the set of all terms, respectively.
An equational proof of t1 = t, on T is a sequence

t1 < RUE 12 < RUE --- <RUE In

where t; € T for all 4 = 1,...,n. Then the term rewriting system R C () is Church-

. T . . . .
Rosser modulo E on T if s & rur t implies s | g.g t. That is, we require convergence only
for equations that can be proved by an equational proof entirely within 7. We let the
set Trans’ of transitivity instances over T consist of all ground instances

(xyVystzVae=zo
such that yo € T. The following lemma goes back to Bachmair and Ganzinger (1994a):

Lemma 2.13 Let R be a term rewriting system that is terminating modulo E, let (>=) =

(;>R/E), and let T be a set of ground terms that is downward-closed with respect to >.
Then R is Church-Rosser modulo E on T if and only if RV |= Trans .

Proof: For the only-if direction consider an instance

t1tVitgits Vit
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of transitivity in Trans’ . Then t € 7. Let us assume that t1 ~tand t = ty hold in RU,
which implies the existence of an equational proof

t Spth Spt] ERt Spt) Spthy ERto.

Since all terms in the subproof #} &pyg t) are less or equal to ¢ they must be in 7, and
we can apply the Church-Rosser property to obtain t| | g t5, and consequently ¢ |z t2.
For the if-direction suppose that R is not Church-Rosser modulo F on 7. Then there
exist either a peak t; <r t =g to or a cliff t; < g t =g to with t € T such that the
corresponding instance of transitivity in Trans’ does not hold. O



3

Theory Path Orderings

3.1 General path orderings

We use the general path ordering of Geser (1996) as a starting point for constructing
quasi-orderings modulo £ on ground terms. Geser’s method of proving compatibility with
contexts from a status being “prepared for contexts” cannot cope with flattening, hence it
is not applicable in this setting. Consequently, we weaken the notion of a status to a that
of a prestatus, which need not be prepared for contexts. By inspection of Geser’s proofs
one sees that his proofs use only the properties of a prestatus, with the exception of the
proofs of reflexivity and of compatibility with contexts. To repair reflexivity we provide
another proof. Compatibility with contexts will be the main topic of Section 3.2. Beyond
the work of Geser we show that natural conditions on a prestatus imply that the induced
GPO is total and E-antisymmetric.

We write >y for > (B>). That is, D,y is the strict part of the multiset extension
of I>. Since > is well-founded, [>,,,; is also well-founded. Given two terms s and ¢ we let
fin(s,t) be the set {(s',t') | {s,t} >mu {s',t'}}. That is, a pair (s',#') is in fin(s, ) if either
both terms are proper subterms of s or ¢, or if one term is equal to s or ¢t and the other is
a proper subterm of the other. For instance,

fin(f(a),9(b)) = {(f(a),b), (b, f(a)), (a, g(b)), (g(b), a), (@, a), (a,b), (b, a), (b, b) }.

A quasi-ordering functional is a function >** which maps any quasi-ordering > on ground
terms to a quasi-ordering =*(>=) on ground terms. A quasi-ordering functional =% is
subterm founded on a set of pairs of terms S if s =%¢(>=) t is equivalent to s =% (> N fin(s, 1))
t for any quasi-ordering > and any pair (s, t) in S. We say that =% is subterm founded if it
is subterm founded on the set of all pairs of ground terms. A quasi-ordering functional > 5!
decreases infinite derivations if for every infinite derivation

S1 %St(t) S9 %St(t)

there exists an infinite derivation ¢; = t9 > ... such that s; > t; for some ¢ > 1. A quasi-
ordering functional > is called a prestatus (on S) if (i) =% is subterm founded (on 5),
and (ii) =% decreases infinite derivations. The general path ordering > gp,(=*') induced
by a prestatus = is the smallest quasi-ordering such that s = f(s1,...,8m) =gpo (=)
g(t1, ... ty) =t if

1. 8 = gpo(=%") t for some i =1,...,m, or

2. 8> gpo (=) tj for each j =1,...,n and s =5 (= gpo (=%)) t.

23
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Where >% is understood from the context we will write > gpo for = gpo(ts’f).
Lemma 3.1 (Geser 1996) Let =% be a prestatus.

1. If s =gpo t and t > t' then s >gpo t'.

2. If s> s and s =gpo t then s g5 t.

3. Zgpo 18 transitive and > gy, is well-founded.

The proofs below follow a general schema for proving that >,,, has some property P,
using subterm foundedness and preservation of P by >*.

— Consider some instance P[t1,...,t,] of P. Prove P[ty,...,t,] for the case where some
atom t; = t; in P becomes true by case 1 of the definition of =g4,,. It remains to
consider only case 2, where the prestatus is used.

— Let Fin be the union of all sets fin(¢;,¢;) where ¢; > ¢; is an atom in P.
— Restrict >gp, to Fin, that is, consider (>gp,) N Fin.

— Extend (>gp) NFin to some > p that satisfies P, and that coincides with >g,, on Fin.
That is, (>gpo) N Fin = (>p) N Fin.

— Then by subterm foundedness

ti =" (=gpo) t; if and only if #; =% (>4p N Fin) ¢;
if and only if #; =% (>p N Fin) ¢
if and only if #; =% (>=p) t;.

Use that =% preserves P to conclude that P[ty,...,t,] holds for =% (>,,) and hence
for >=gpo-

Geser (1996) uses this schema to prove transitivity of > g5,.

Lemma 3.2 Let =% be a prestatus. Then > gpo 15 TefleTive.

Proof: We use induction on terms with respect to >. Let s = f(s1,...,Sn) and suppose
>~ gpo 18 reflexive on all subterms of s. In particular, s; =g s; for 4+ = 1,...,m. By
Lemma 3.1 we get s >gpo 8; for i = 1,...,m. It remains to show that s =% (>~g,,) s. Let

>1 be the reflexive closure of (>g4,,) Nfin(s, s). By induction hypothesis s’ >4, s’ for all s’
such that {s,s} Dmu {', s}, s0 (=gpo) Nfin(s,s) = (>=1) Nfin(s, s). Since > is reflexive,
and since =*! preserves reflexivity, s =**(>=1) s. Then

s >=%(>1) s ifand only if s> (>, Nfin(s,s)) s
if and only if s =* (=g Nfin(s,s)) s
if and only if s = (>=gp) s

and we conclude s =g s. O

Lemma 3.3 Let =% be a prestatus that preserves totality. Then > gpo 18 total.
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Proof: By induction on pairs of terms with respect to the multiset extension of the subterm
ordering. Consider two terms s = f(s1,...,8m) and t = g(t1,...,t,).

(1) Suppose s; = gpo t for some s =1,...,m. Then s >4, .

(2) Suppose tj = gpo s for some j =1,...,n. Then t >4y, s.

(3) Otherwise by induction hypothesis s >y, t; for each j = 1,...,n and t >y, s; for
each i = 1,...,n. It remains to show that s =% (>=g,,) t or t =!(>4p,) s. Consider some
total ordering >, on terms. We let s’ >4 t' if either (s',¢') € fin(s,t) and s’ =g, ¢, or
(s',t'y & fin(s,t) and s’ =, t'. Then (=so1a) Nfin(s,t) = (=gpo) Nfin(s,t), s0 s =5 (=tota) t
if and only if s =% (> 4,,) t by subterm foundedness. Clearly =4 is total, so =% (o101
is total since =% preserves totality. We conclude that s =% (=gp0) t or t =% (>gp) s. O

Lemma 3.4 Let =% be a prestatus that preserves E-antisymmetry. Then =gpo 18 E-
antisymmetric.

Proof: Let s and t be terms such that s =g, ¢t and ¢t =4, s and suppose that =gy, is
E-antisymmetric for all pairs of terms s’ and ¢ such that {s,t} > {s',t'}. We have to
show s =g t.

(1) Suppose s =g t by case (i) of the definition of >g4,,. Then s; > gp, t for some i =
1,...,m. By Lemma 3.1 we get s >4, ¢, a contradiction to ¢ =gy, s.

(2) Analogously, t >4,, s by case (i) leads to a contradiction.

(3) So s =gpo t and t =gy, s by case (ii), which implies s =% (> g,,) t and t =5 (= gpp) s.
Let (>45) = (=gpo) Nfin(s, t). By induction hypothesis >, is E-antisymmetric. Since =%
preserves E-antisymmetry and is subterm founded, s = (>g,) t and t =% (=gp,) s imply
s=gt. O

We say that =5 is prepared for E-compatibility if so =*!(>) to for any ground instance
so = to of an equation s =~ ¢ in E and for any quasi-ordering >.

Lemma 3.5 Let E be a set of equations, let =*' be a prestatus that is prepared for
E-compatibility, and suppose that =45, is compatible with contexts. Then =gy, is E-
compatible.

Proof: By induction on (s,t) with respect to >u. Let s = f(s1,...,8m) and t =
g(t1,...,t,). We have to show s =gy, t for any E-step s &g t. Together with reflex-
ivity and transitivity of >g,, this implies (=g) C (>gpo)-

(1) Suppose the E-step is not at the root of s and ¢. Then s; < t; forsomei=1,...,n
and s; = t; for all j # 4 in 1,...,n. By using the induction hypothesis we get s; =g, t;
and s =g, t by compatibility with contexts.

(2) It remains to consider an E-step at the root position. We can write s as s'o
and t as t'o where s’ ~ t' is the equation in E that is used. Since >*! is prepared for
E-compatibility, s =% (= gp,) t follows. O

3.2 Theory path orderings

Theory path orderings generalize the idea underlying the associative path ordering (APO)
of Bachmair and Plaisted (1985), that compatibility with contexts can be achieved for
path orderings if interpreted function symbols are minimal in the precedence. It combines
a lexicographic path ordering on nontheory function symbols with a special treatment of
symbols in the theory, which is formalized by a status function.
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We let F' denote the set of all function symbols, Fr the function symbols in £ and
Fr the function symbols in the theory T'. Since in general not all function symbols in Fr
need to be treated specially by the ordering, we select a set Fr of interpreted function
symbolsinterpreted function symbol such that Fg C F; C Fp. Function symbols not in Ff
are called free. We let Z be the set of terms over F' with an interpreted function symbol
at the root, and A the set of terms with a free function symbol at the root. Terms in A
are called atomic. A precedence >, is a quasi-ordering on function symbols whose strict
part is well-founded. A precedence >, is called TPO-admissible for Fy if f ~, g for any
pair of function symbols from F;, f >, g whenever f ¢ F;j and g € Fr, and f = g
whenever f ~, g for f and g not in F;. A partial ordering > on F'\ Fy can be extended
to a TPO-admissible quasi-ordering on F' by letting f > g whenever either (i) f and g not
in F; and f > g, or (ii) g in Fy. If > is total this is the only TPO-admissible extension.
E.g., for F1 = {+,0} and free function symbols {a, f} with a given precedence f >, a the
TPO-admissible extension is f =, a >, + ~, 0. A quasi-ordering functional =% is strictly
internally prepared for contexts with respect to Fr if

s >=%t(>) t implies f(...,s,...) =%(>) f(...,t,...) and
s >t(>) t implies f(...,s,...) =% (=) f(...,t,...)

for any f in F;. We say that a quasi-ordering functional =% has the multiset properties
for Fy if it satisfies

st <= s>%(>=)t forscAandtc A (MO)

s =)LV Vs, B ()t = f(s1,...,8m) = (=)t forte A (M1)
SIE(R)EV VoS, =)t = f(s1,...,8m) =5(>=) ¢ (M2)
s>(=)t AN s ST () ty = s =5(>) f(t,...,ty) fors€A (M3)
s> (=)t A A s () = 5 =5 () flta, - tn) (M4)

for any f in F;. A quasi-ordering functional > is called a TPO-status for Fy if it is
subterm founded on T2, decreases infinite derivations in Z, is strictly internally prepared
for contexts with respect to Fr, and has the multiset properties for Fj.

The theory path ordering > 50 (>p, >5t) induced by a TPO-admissible precedence ~p
and a TPO-status > is defined as the smallest binary relation such that

s=9g(81,--+5m) Ztpo(>p, =) Wty ..., ty) =t
if
1. 8;i =tpo(>=p, =) t for some s =1,...,m, or
2. 8 >1po(>p, =) t; for each j = 1,...,n and either
(@) g>=p b,

(6) g~ B and {51, m) e (=g =) b1y ) o
(c) g~ph € Frands t“(itpo(tp, =5t)) ¢.

We assume that each function symbol has a fixed arity, hence m = n in case (2b). Where
=p and =% are understood we write =5, for =y, (>=p, =%). To view =po(=p, =%) as a
general path ordering we have to define a suitable quasi-ordering functional. We define
=5t (=p, =) by s = g(s1,---,8m) =5 (=p, =) (=) h(t1,...,t,) =t if and only if
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(2) g>p b,

(b) g ~ph & Fr and (s1,...,sm) Ztez(>) (t1,...,tn), or
(c) g ~ph € Frand s =%(>)t.
Then clearly = tpo(=p, =) = = gpo (=5 (=, =%1)).

Lemma 3.6 Let E be a set of collapse-free equations, let F; O Fg, let =, be a precedence
that is TPO-admissible for Fr, and let =% be a TPO-status.

1. Then =5t(>=p, =%) is a prestatus.

2. If =, is total and if =5t preserves totality on I? then t;f(tp, >=5t) preserves totality.
3. If =% preserves E-antisymmetry on I? then =5t (=p, =) preserves E-antisymmetry.
4. If =% is prepared for E-compatibility then t;}t(tp, >=3t) is prepared for E-compatibility.

Proof: (Prestatus) We have to show that =35t (>,, =5!) preserves quasi-orderings, is subterm
founded and decreases infinite derivations.

(Preserves quasi-orderings) For reflexivity we observe that >, is reflexive and that the
lexicographic extension and =*! preserve reflexivity.

For transitivity suppose that > is a transitive relation and consider ground terms
s =9g(81,---,8m); t=h(t,...,t,) and u = f(uq,...,ux) such that s =5 (>,, =) (=) ¢
and t =3¢ (=5, =) (=) .

(1) Suppose g ~p h and h ~,, f. Then by transitivity of >, also g ~, f, and all three
root symbols must be either equal or from F7y.

(1.1) Suppose g = h = f ¢ F;. Then by assumption (s1,...,8m) =iez(>) (t1,.--,tn)
and (t1,...,tn) Ziez (=) (U1,--.,ux). Since >, preserves transitivity, (s1,...,Sm) Ziez (>)
(uq,...,u) holds as well. This implies s =5¢(>=,, =%)(>) u.

(1.2) Otherwise f, g and h are in F;. Then s =*!(>) t and t =*!(>) u, and since =*!
preserves transitivity s =% (>=) u. Hence s =5t(>=p, =) (>) u.

(2) Otherwise either g >, h or h >, f and we get g >, f by transitivity of >,, which
in turn implies s =5 (>, =) (>) u.

(Subterm founded) Let s = g(s1,...,m) and t = h(t1,...,t,) be ground terms. We
have to show that

s =8 (=p, =) (=) t ifand only if s =5 (>=p, =) (= Nfin(s, 1)) t.
(1) Suppose g %y h. Then

s =5 (=p, =) (=) ¢t ifand only if g, h
if and only if s =5 (>, =) (= Nfin(s, 1)) ¢.

(2) Suppose g ~p h & Fr. Then g = h and m = n, and

s =7 (zp, =") (=)t ifand only if (s1,...,8m) Ziea () (t1, -5 tn)
if and only if (s1,...,8m) Ziee (= Nfin(s,t)) (t1,...,tn)
if and only if 8 =5 (=p, =) (= N fin(s, 1)) ¢,

since s > S1,...,8y, and t > t1,...,1,.
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(3) Otherwise g ~, h € Fy. Then also g € Fr, and

s =5 (=p, =) (=) t ifand only if s >="(>=)¢
if and only if s > (> Nfin(s,t)) ¢
if and only if s =5f(>=p, =) (> Nfin(s,1)) ¢,

since > is subterm founded in case both terms have a symbol from Fy at their root.
(Decreases infinite derivations) Suppose there is some infinite descending chain
ty = (2, =2%) (2) 2 = (2 2™) (2) -
Since >, is well-founded, there exists a minimal function symbol f in the set of root
symbols of ¢, to, ..., and there exists some ¢ > 1 such that root(t;) ~, f for all j > 1.

(1) Suppose f is not in Fy. Then for j > i each term ¢; has the root symbol f and we
have an infinite descending chain

@ty tin) miex (™) (Giv115-- 5 titin) >iea(>=) <o - -

Then there exists an infinite descending subchain ¢;,; >; tj,; = ... for some [ = 1,...,n
and ¢ < j1 < jo < ..., which satisfies ¢;,; < ;,.

(2) Otherwise f € F;. Then all terms are in Z, and we have an infinite descending
chain t; =% (=) t;41 =% (>=) ... . Since =% decreases infinite derivations on Z we get the
desired infinite descending chain in >.

(Preserves totality) Let = be a total quasi-ordering. We consider ground terms s =
g(81,---,8m) and t = h(t1,...,tn).

(1) Suppose g #p h. Since =, is total, either g >, h or h >, g, and hence either
8 =5 (=p, =) (=) t or t =5t (>=p, =) (=) s, Tespectively.

(2) Suppose g = h ¢ Fy. Since the lexicographic extension preserves totality, we have
either (s1,...,8m) Ziez(*=) (t1,-..,tn) O (t1,.-.,tn) =iez(>) ($1,--.,8m). We conclude
that s =5t (=, =) (=) t or t =5t(=p, =%) (=) s, respectively.

(3) It remains to consider the case when g and h are in F;. Then we use that =%
preserves totality.

(Preserves E-antisymmetry) Let = be E-antisymmetric, s = ¢(s1,...,8y) and t =
h(ti,...,t,) ground terms, and suppose s ~5¢(>=,, =*)(>) t. Then g ~, h.

(1) Suppose g = h € F;. Then m = n, and (s1,...,8mn) ~iez(>) (t1,.-.,tn), which
implies s; ~ t; for ¢ = 1,...,m. Since »= is E-antisymmetric, this implies s; =g t; for
1 =1,...,m, and since =g is a congruence we conclude s =g t.

(2) Otherwise both g and h are in Fj. Since >*' preserves E-antisymmetry, >=%(>) is
E-antisymmetric, and s ~(>) t implies s =p ¢.

(Prepared for E-compatibility) Let s = §0 ~ to = t be a ground instance of an equation
§~tin E, where s = g(s1,...,5m) and t = h(ty,...,t,). Since E is collapse-free, g and h
are both in F;. Then g ~, h and s =%/(>=) ¢ for any quasi-ordering =, since »=*' is prepared
for E-compatibility. This implies s =5t (=,, =5) (=) t. O

Lemma 3.7 Let =, be a precedence that is TPO-admissible for Fr, and let =% be a quasi-
ordering functional that is subterm founded on I? and has the multiset properties for F.
Then s =ypo t if and only if s =5 (=1p) 1.
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Proof: We use induction on the pairs (s,t) with respect to >. Let s = g(s1,...,5m)
and t = h(ty,...,tp).

(1) Suppose g and h are not in F;. Then s >y, t if and only if s =% (>,,,) ¢ by (MO0).

(2) Suppose g is in F; and h is not, which implies h >, g. Then s >, ¢ if and only if
there exists some i = 1,...,m such that s; =y, ¢. This is equivalent to s; = (=) t by
the induction hypothesis, and to s =% (=4,,) t by (M1) and (M2).

(3) Suppose g is not in Fy and h is, which implies g >, h. Then s >y, t is equivalent to
s >ipo tj forall j =1,...,n by case (ii) of the definition of >,,. Note that case (i) implies
case (ii) in this context. By induction hypothesis this is equivalent to s = (>, ) t; for
all j =1,...,n, and to s =% (>p,) ¢ by (M3) and (M4).

(4) Otherwise g and h are in Fj.

For the only-if-direction suppose s >, t. If s >4, t by case (i) of the definition
of = p, then there exists some ¢ = 1,...,m such that s; =, ¢. This implies s; = (>p,) ¢
by induction hypothesis, and s = (>4,,) t by (M2). Otherwise case (ii) of the definition
of >y, holds, which explicitly includes s t“(ttpo) t.

For the if-direction assume s =% (>4,,) t. Then s > (>=y,) t; for all j = 1,...,n
by (M4), and s >4y, t; for all j = 1,...,n by induction hypothesis. Together with
8 =5t (>=4p0) t this satisfies case (ii) of the definition of =, hence s =, t. O

Theorem 3.8 Let E be a set of collapse-free equations, let F; O Fg, let =}, be a precedence
that is TPO-admissible for Fr, and let =t be a TPO-status for Fy.

1. Then >y, is a simplification quasi-ordering.

2. If =, is total and =5t preserves totality on I? then > tpo 15 total.

3. If =5t preserves E-antisymmetry on I? then =ipo s E-antisymmetric.
4. If =5t is prepared for E-compatibility then =tpo 15 E-compatible.

Proof: (Simplification quasi-ordering) By Lemma 3.6 =35t(>,, =) is a prestatus. Thus
>itpo 15 a quasi-ordering on ground terms that has the subterm property and >, is well-
founded. It remains to show compatibility with contexts and strict compatibility with
contexts.

Let s = g(s1,---,8m), t = h(t1,---,tn), & = f(ur,---, U8 Ujr1,---,ug), t =
Jf(uy.- Uiyt Uit1, - .., ug), and suppose s >, t. By the subterm property s’ >g,, u; for
j=1,...,k, and §' >4, t by Lemma 3.1.

(Compatibility with contexts) We have to show s’ >4, t'.

(1) Suppose f ¢ Fr. Then s" =5t (>=p, =) (=1po) t' because

<ula"' s Uiy Sy Uj41y--- ,uk> tlez(ttpo) <’U,1, s 7ui,taui+1,- .. auk>

by definition of >,

(2) Otherwise f € Fy. From s =y, t we get s =% (=4,,) ¢t by Lemma 3.7, and by internal
preparedness for contexts s’ =5 (=4,,) ', which is equivalent to s’ =5 (>, =) (>=po) ¥’
for f in Fjy.

(Strict compatibility with contexts) We have to show s’ >4, t' under the assumption
s >¢po t. Since there cannot exist a j = 1,...,n such that ¢; >, s, case (i) of the definition
of =1, cannot be used to obtain t’ =,, s'. Hence it suffices to show s' =5t (=, =) (>=4,,) ¥’
in order to conclude s’ >, t'.
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(1) Suppose f & Fr. Then s' =5t(>=p, =) (=4po) t' if and only if

<’U,1,. sy Uy Sy Uiy 1y - - ,uk> >'le;c(ttpo) <ula"' auiataui—f—la--- 7uk>7

which follows from the definition of > ;.

(2) Otherwise f € Fy. From s >, t we get s =%(>=4p,) t by Lemma 3.7, and by strict
internal preparedness for contexts s’ =%(>=,,) t', which implies s’ =5 (=, =) (>=1p0) ¥’
and in turn s’ >, t'.

(Total) Since =, is total and =*! preserves totality on Z?, we get that =5¢(>=,, =%)
preserves totality by Lemma 3.6(2). Hence >, is total by Lemma 3.3.

(E-antisymmetry) =% preserves E-antisymmetry on Z2, hence =35¢(>=,, =*') preserves
E-antisymmetry by Lemma 3.6(3), and >, is E-antisymmetric by Lemma 3.4.

(E-compatibility) Since =% is prepared for E-compatibility we get that =3(>=,, =*) is
prepared for E-compatibility by Lemma 3.6(4). Since >4, is compatible with contexts it
is E-compatible by Lemma 3.5. O

3.3 From extension function to TPO-status

When defining a TPO-status it is often useful to represent atomic subterms by constants.
This ensures that the ordering obtained from the status for atomic subterms is determined
only by its argument quasi-ordering. For instance, the definition of a TPO-status often
involves normalizing with respect to some distributivity rules. By hiding atomic subterms
in constants no rewriting can take place in atomic subterms. Also, extending an ordering
on constants to terms is more natural and allows to reuse known simplification quasi-
orderings in a status function.

We let F be the set of new constants {¢; | t € A}. That is, we assume that Fo and F
are disjoint, where A contains only terms over F. Then for a given ordering > on terms
over F' we define the ordering >, (=) on constants in Fo by ¢s >, (>)c¢; if and only if
s = t. We will pack atomic subterms into constants from Fo and compare them according
to = (>). Technically, we let U be the convergent term rewriting system {c; = ¢t | t € A},
and write U(t) for the normal form of ¢ with respect to U. We use the term rewriting
system

Pp, = {t = cp | t ground term over FUFg, t¢ Fo, t =U(t) and t' € A}

for packing atomic subterms into constants. The unpacking of ¢ in the definition of Pp, is
needed to remove nested constants in ¢. For termination of Pp, observe that the number
of symbols from F' decreases in each step. For confluence observe that P, contains a rule
ufcg] = cp for each critical pair

cv <=py, uls] =Py, ulcy]

where t' = U(u[s]), s’ = U(s) and u is a nonempty F-context, since U(u[cg]) = U(uls]) =
t' e A

It remains to obtain a quasi-ordering on the packed terms. Let »=; be a function that
maps any quasi-ordering >, on constants F¢ to a quasi-ordering on terms over Fr U Fg,
with the following properties:

1. »¢(>¢) extends >, is strictly compatible with contexts and has the subterm property.



3.3. FROM EXTENSION FUNCTION TO TPO-STATUS 31

2. Whenever there is an infinite descending chain ¢ =¢(>.) t2 >¢(>¢) ... of terms
over FrUF¢ then there exists an infinite descending chain ¢; >, c2 >, ... of constants
in F such that ¢; occurs in some t; for j7 > 1.

3. Let ¢ be a constant in Fg. If ¢ =, ¢’ for all constants ¢’ occurring in a term ¢ then
c >‘t(tc) t.

4. It =¢(>=¢) ¢ then ¢' =, ¢ for some constant ¢’ in t.

Then we will call >=; an extension function. Property 3 is the constant dominance condition
of Baader (1997). Note that it implies property 4 for total .. We can now define a TPO-
status =5 by s =$*(>) t if and only if Pr,(s) =¢(>=. (=)) Pr,(t).

Lemma 3.9 Let =; be an extension function. Then =5 is a TPO-status for Fj.

Proof: (Preserves quasi-orderings) If = is a quasi-ordering on terms then >, is a quasi-
ordering on constants which is extended to a quasi-ordering on terms by >;.

(Subterm founded) ={ is subterm founded on Z2, since for any nonatomic term only
proper subterms are packed into constants, and > is only queried via ..

(Decreases infinite derivations) Suppose there exists some infinite descending chain

S1 %ft(t) S9 %ft(t) -
of nonatomic terms in Z. Then by definition of >£*

Pry(s1) =4(=c (%)) Pry(s2) =e(=e (2)) -

and ¢, >¢ (=)cg, >c (=)... by property 2 of >4, where ¢;, occurs in P, (s;) for some
j > 1. Finally t; > ¢ > ... by the definitions of >, (>) and P, where ¢; is a proper
subterm of s;.

(Strictly internally prepared for contexts) This follows from >=;(>.) being strictly com-
patible with contexts.

(Multiset properties) (MO) follows directly from the definitions and from the fact that
¢ extends >.. (M2) and (M4) follow by the subterm property of >; and by transitivity.
To show (M1) suppose f(s1,--.,8m) =5 (>) t, where ¢ is atomic and thus P, (t) = ¢;. By
property 4 a constant ¢y >, ¢; occurs in some Pg,(s;), and possibly using the subterm
property we get s; =5'(>) t. For (M3) observe that cs is greater than any constant
occurring in some Pp, (t;), and hence in Pg, (f(t1,...,tn))- 0

Proposition 3.10 Let =, be an extension function such that =(>.) is total for any total
quasi-ordering =, on constants. Then =i preserves totality.

Lemma 3.11 Let =, be an extension function such that =¢(>.) is (EU~.)-antisymmetric
for any quasi-ordering =, on constants. Then =$' preserves E-antisymmetry.

Proof: Suppose = is E-antisymmetric and s ~§(>=) t. Then Pp,(s) ~i(=.) Pr,(t) and
hence P, (s) =gu~, Pr,(t). Since > is assumed to be E-antisymmetric, ¢y ~, ¢y implies
s' =g t' for any atomic subterms s’ and t’ of s and ¢. Hence s =g t. O

Lemma 3.12 Suppose Fr O Fg, and let = be an extension function such that »=(>=.)
is E-compatible for any quasi-ordering =. on constants. Then =i' is prepared for E-
compatibility.
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Proof: Observe that due to F7 O Fg contexts at the root consisting of function symbols
in E are left intact by packing. Hence for any instance of an equation in E packing both
sides results again in an instance of the same equation. Thus for an equation s = £ in F
we have Pp,(so) = so’ =(=.) to’ = Pp,(to) by E-compatibility of >, where we define o’
by zo' = Pp,(zo) for all variables z in E. We conclude that so =§(>) to for any ground
instance so = to of an equation s = ¢ in F. O

The following theorem summarizes the construction of a TPO:

Theorem 3.13 Let E be a set of collapse-free equations, let = be an extension function
such that =¢(>) is total, (E U ~)-antisymmetric and E-compatible for any total quasi-
ordering =, on Fg, and let >, be a precedence that is TPO-admissible for Fr. Then
= tpo (=p, =5) is a total, E-antisymmetric and E-compatible simplification quasi-ordering.

3.4 Examples of theory path orderings

In a trivial way any simplification quasi-ordering can be constructed as a TPO, by taking
F7 = F and letting >; be the original ordering. Then A and F¢ are empty, and properties
(3) and (4) of an extension function become void. Being a simplification quasi-ordering,
~ satisfies properties (1) and (2).

On the other end of the spectrum is the lexicographic path ordering, which is obtained
for Fr = 0.

The simplest nontrivial example is an associative path ordering for a single associative
and commutative symbol f. That is, we have E = AC(f) and F; = Fr = {f}. Terms
over Fr U F¢ are ordered according to the multiset of constants from F¢ they contain.
Formally, we associate a complezity x(t) to each term t over Fr U F, where

K,(t) _ K)(tl) U Ki(tQ) for t = f(tl,tg),
{c} for t =c € Fg,

and define »¢(>.) by s =i(>=.) t if and only if k(s) >=pu(>c) K(t). We now show
that this extension function satisfies the requirements of Theorem 3.13. Associativity
and commutativity are collapse-free. Clearly =;(>.) extends . and satisfies properties 3
and 4. The multiset extension of a quasi-ordering has the following properties:

Ml tmul M2 implies NuU M1 tmul N U M2 (31)
My > Mo implies N U My = N U Mo
M, - My implies My > Mo.

Strict compatibility with Fr-contexts is a consequence of (3.1) and (3.2). The subterm
property follows by (3.3). Since the multiset extension preserves well-foundedness, an
infinite descending chain in »;(>.) can only arise from an infinite descending chain in >..
Since we can restrict the ordering to the constants occurring in the infinite descending
chain of multisets, there is an infinite descending chain of constants occurring in these
multisets. Thus >, is an extension function. If >, is total then >;(>.) is total, since the
multiset extension preserves totality. AC-compatibility is obvious from the construction.
Finally we show that the quasi-ordering »=;(>.) is (AC U ~,)-antisymmetric. Suppose
s ~¢(>=¢) t. To take care of ~. we select a representative rep(c) for each ~.-equivalence
class in Fo. That is, ¢ ~, d if and only if rep(c) = rep(d) for any two constants ¢ and d
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in Fo. We replace each constant ¢ in s and ¢ by its representative and obtain terms
s" and t', respectively. Then s’ ~4(>=,) ¢/,

k(s') = My ={cy,...,cx} and
Kz(tl) =M, = {dla cee 7dl}7

and My ~ (=) Ms. Since ~.-equivalent constants are equal in s" and ', we even have
M, = Mj and hence s’ =5c t'. Combining this with s =._ ¢ and t =, ' we get
8 =ACU~, t. We conclude that =;(>) is AC U ~-antisymmetric. Thus »=p,(>p, =§') is a
total, E-antisymmetric and E-compatible simplification quasi-ordering.
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4

Superposition for Convergent Theories

In this chapter we show how to systematically develop a refutationally complete inference
system for a theory given by a convergent term rewriting system.

4.1 The term rewriting system

We require that a theory is represented by a ground term rewriting system 7' that is
convergent modulo an equational theory E. That is, T' is terminating and Church-Rosser
modulo E. Then for any equational proof s &g t there exists a valley proof

S=*>T s' éE t <*:T t.

To avoid explicitly mentioning E-matching everywhere we assume that it is included in 7'.
That is, T = E\T' for some term rewriting system 7. We assume a fixed set of function
symbols F. A function symbol f is free in T if there exists a possibly nonground term
rewriting system T such that T = gnd(f) and f does not occur in 7. Function symbols
which are not free are called interpreted. The set of interpreted function symbols is denoted
by Fr. A term with a free function symbol at the root position is called T'-atomic Atomic
terms will be denoted by a. We let 71 = T'U E U Eq denote the logical contents of T,
where the rules in 71" are understood as equations and Eq is the first-order axiomatization
of equality for F'

For example, consider the theory ACU(+,0) of commutative monoids. For this case
we let £ = AC(+) and T = E\gnd(f) where T = {z +0 = z}. Let F = {f,a,+,0}.
Then f and a are free and + and 0 are interpreted function symbols, and f(a) as well as
f(a+ 0) are atomic terms.

Furthermore, we require an E-antisymmetric and E-compatible simplification quasi-
ordering > that is total on ground terms such that >7 contains 7'. Then s ~7 t if and
only if s =g ¢ for ground terms s and ¢. We will usually omit the subscript 7' as the
ordering used will be clear from the context. An atomic term « is called a mazimal atomic
term in s if s = ula, a1,...,a,] where n >0, ay,...,q, are atomic, wu is an Fp-context,
and a > a; fori =1...n.

For the example we let F; = Fac = {4} and use the precedence

frpa=p0=p(+),

which is TPO-admissible for F7, together with the AC-status tffc( +)° Then the TPO

> tpo (= ps tffc( +)) is a suitable term ordering. This is an APO that uses multiset status

for flattened +-contexts and lexicographic status for the other function symbols. Then for

35
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instance f(a) > f(0+ 0) + a, and f(a + 0) is a maximal atomic subterm in f(a + 0) +
(f(0+a) + a).

4.2 The symmetrization function

The symmetrization function is at the heart of our approach. It maps some given rewrite
rule into a set of rewrite rules that encodes a special rewrite relation appropriate for the
theory. That is, we will construct terminating term rewriting systems of the form

TUlJSr(s~ 1),
s~
where the set of rules Sp(s =~ t) is designed such that s &~ ¢ becomes true and as much as
possible of T and the equality axioms are preserved. It turns out that this works well for
all axioms except transitivity, which causes problems for certain theories.

We start by the notion of a set of rules being (strongly) symmetrized. Being sym-
metrized is a rather technical notion that is required by our general superposition calcu-
lus. It amounts to the convergence of critical pairs that involve a rule from T' or equation
from FE, and hence validity of the corresponding instances of transitivity. The notion of
a strongly symmetrized set of rewrite rules becomes important when we later instantiate
the general framework by specific theories. It will allow to manipulate equational proofs
by normalizing the terms in the proof (see Section 4.9).

A set of rewrite rules S is symmetrized with respect to T modulo E if for all peaks
th <17t =>g1s and for all cliffs t1 &gt =gty we have t; U'TUS to.

The set S is called strongly symmetrized with respect to T modulo E if S can be
partitioned into sets S;, % € I, such that T"U S; is convergent modulo E for all 7 € 1.

Proposition 4.1 If a set of rewrite rules S is strongly symmetrized with respect to T
modulo E then S is symmetrized with respect to T modulo E.

Proof: Consider some peak t1 <1 t =g to or cliff t; < t =g to. The rule from § is in
some S;, and by convergence of T'U S; we get the desired valley proof. O

Note that S being strongly symmetrized implies that peaks of the form ¢; <g, t =g, to
converge, which is not guaranteed if S is symmetrized but not strongly symmetrized.
However, this is still much weaker than convergence, as peaks of the form t; <=5, t =3, t2
need not converge for i # j.

Our goal is to derive (strongly) symmetrized sets of rules directly for some given
equation, so that the equation becomes true in the rewrite system. We break this into two
steps. First the equation is brought into a certain T-normal form by simplification, and
then for any such equation a symmetrized set is obtained by applying a symmetrization
function. For now we only assume that a set Normy of equations in T-normal form is given,
and postpone the discussion of simplification. We continue by discussing symmetrization
functions.

A (strong) symmetrization function St (for T') maps any equation [ &~ r in T-normal
form to a (strongly) symmetrized set of rewrite rules Sy (I = r) such that

ThU{l=r} =ESr(l=r) (
Ldrusp(ary T (
Sr(l~r) < (>) (
I'=1for any I' = r' in Sp(l =) (
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(4.1) ensures soundness, (4.2) ensures that [ ~ r becomes true, (4.3) ensures termination,
and (4.4) ensures that terms smaller than [ cannot be rewritten by Sr(l = r). We call a
rule I’ = ' in Sp(l = r) \ {{ = r} an extension (of | = r). The symmetrization function
is extended to sets of equations in T-normal form by

Sr(R)= |J Srli=r).
I~r€ER

Assumption 4.2 We assume from now on that St is a symmetrization function for T
modulo E.

To obtain a symmetrization function one considers critical peaks of the form ¢; <7 s =g,
to, in a way very similar to Knuth-Bendix completion. To obtain a strong symmetrization
function one also has to consider critical peaks of the form ¢; «<g, s =g, t2. For the
commutative theories that we consider here it turns out that the symmetrization func-
tion obtained by considering the first kind of peaks also makes the second kind converge.
Thus the strong symmetrization property requires no extra effort in these cases. With-
out commutativity, however, an equation may have nontrivial overlaps with variants of
itself. It is infeasible to derive a strong symmetrization function in that case, hence for
instance Le Chenadec (1986) uses ordinary symmetrization for nonabelian groups.

For our example theory of commutative monoids we let an equation be in T-normal
form if both sides are irreducible with respect to T'. Then f(a) = a+a is in T-normal form,
and f(a 4+ 0) = a is not. The strong symmetrization function for this theory maps any
nontrivial equation [ = r with [ > r to the set consisting of [ = r and the AC-extensions
of [ = r. Trivial equations s &~ t where s =5 t are mapped to the empty set. That is,

ST(Szt):Q ifS:AC t,
Sr(l=r)y={l=r} if I = r and [ is not a proper sum,
Srl=r)={l=r}Ugnd{z+1=z+71}) if I > r and [ is a proper sum.

The sets of rules in the range of this function are convergent modulo AC, and the func-
tion satisfies the other properties of a symmetrization function. Hence it is a strong
symmetrization function.

4.3 Ordering literals and clauses

To extend the term ordering >7 to equations, literals and clauses we assign to each of
these a complezity c. For an equation s = t, the complexity is the multiset {s,¢} and
equations are compared by the multiset extension of . For literals we let

c(s = 1) = {{s}, {t}} (4.5)
c(s # 1) ={{s,1}} (4.6)
and > on literals is the two-fold multiset extension of > on terms applied to these com-
plexities. This has the effect that the ordering on literals is the lexicographic combination

of > on the maximal term, the ordering — > + on the polarity of the literal and > on the
minimal term. For a clause C' = L; V L, that is not an instance of transitivity we let

c(C) = ({e(L),- .-, ¢(Ln)}, 0) (4.7)
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That is, the complexity of a nontransitivity clause is the multiset of the complexities of
its literals. The middle term of a ground instance

D=t1%sV sty Vit =t
of transitivity is s. In this case we let

(D) = ({{{s}}}, {ts, 22}) (4.8)

Then the quasi-ordering on clauses is

(t) = tlex(tmul(tmul(tmul(t))); tmul(t))a (49)

where the inner > is the quasi-ordering on terms. That is, the ordering on clauses is the
lexicographic combination of the three-fold multiset extension of the term ordering and
the multiset extension of the term ordering, applied to the complexities. By this definition
transitivity instances with a middle term s are immediately below nontransitivity clauses
with maximal term s in the term ordering. We call the middle term of transitivity instances
and the maximal term of other clauses the dominating term of the clause, since it dominates
the term ordering. Note that the ordering is not only E-compatible. The extensions to
equations and literals are compatible with the symmetry of equality, and the extension to
clauses is compatible with associativity and commutativity of V.

4.4 Candidate models

In this section we define a model functor I that maps any set N of ground clauses to an
interpretation Iny. We show that Iy satisfies the theory and the equality axioms except
for transitivity.

The construction of the interpretation extends the standard one by Bachmair and
Ganzinger (1998a) in several respects.

Firstly, rewriting is modulo E. Secondly, the built-in term rewriting system 7" is always
included when constructing the interpretation. This ensures that these interpretations
satisfy T'. Thirdly, we have the additional restriction that a clause can be productive only
if the rule it produces is in T-normal form. Finally, the term rewriting systems are built
from symmetrizations of rules, which ensures that they are is always symmetrized.

A ground clause C' V s = t is called reductive for s = t if s = t is strictly maximal in C
and s > t. Only reductive clauses can contribute to an interpretation. Given a set N of
ground clauses, we let N¢ be the set of ground clauses in N which are smaller than C. For
any set NV of ground clauses we inductively define a set Ry of ground rules, a symmetrized
set Sy = St(Ry) of ground rules, and the corresponding interpretation Iy = (T U Sy)%.
We may regard R, S and I as functions which map sets of clauses to sets of rewrite rules
or equations. A rule {{ = r} is in Ry if there exists a clause C = C' V [ = r in N such
that (i) C is false in Iy, (ii) C is reductive for [ = r, (iii) { = r is in T-normal form,
(iv) [ is irreducible by Sn,, and (v) C" is false in (T U Sy, U Sr(l = r))". In this case
we say that C produces | = r in Ry, or that C is productive. The set Ry is well-defined,
since for any ground clause C only the interpretation for smaller clauses in N¢ determines
whether C' produces a rule. Where N is clear from the context we write R¢ for Ry, Sc
for Sy, and I¢ for In,.

Lemma 4.3 Let C = C' V I =~ r be a clause that produces | = r in Ry. Then C' is false
n IN.
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Proof: Since C is false in I, the subclause C’ is also false. By condition (v) C’ is also
false in (7' U Sy, USr(l = r))¥. Since the maximal term of C’ cannot be greater than [,
and since (iv) in combination with left-minimality prevents that clauses greater than C
produce a rule with left-hand side smaller than or equal to I, equations in C’ have the
same truth-value in I and in In. Hence C' is false in Iy. O

We let Ty = ReflU Symm U Mon U E U T.

Lemma 4.4 Let N be a set of ground clauses. Then Iy = Tp.

Proof: The convergent term rewriting system 7" modulo £ is included in the rules used to
define Iy, hence s |} ¢ for all axioms in 7'U E. Reflexivity, symmetry and monotonicity
follow from the definition of |. O

It remains to consider instances of transitivity and clauses in V. These are in general not
true in Iy. For instance, for commutative rings there are cases where two extended rules
overlap in such a way that the resulting critical pair does not converge. Then Sc U T is
not confluent and transitivity does not hold. We say that a clause C' in Trans U N is a
counterexample for Iy if C is false in Iy.

To illustrate these concepts we continue the commutative monoid example. Consider
the set N of the ground clauses

Cs =f(a) = f(0) V f(a) =0
Cs=f(a) +a= f(a)
Cr =f(a) + f(a) = £(0)

The clauses are listed in ascending order with respect to >. The interpretation Iy is
constructed as follows. Clause C; produces the rule f(0) = 0. Clause C is not productive,
since f(0)+a is reducible by f(0) = 0. Clause Cj is not productive, since its positive literal
is not maximal; hence Cs is not reductive. Clause Cj is not productive, since it is true in I,
and not in T-normal form. Clause C5 is not productive, since adding the rule f(a) = f(0)
would also make f(a) = 0 true, which violates condition (v). Clauses Cg and C7 produce
the rules f(a) + a = f(a) and f(a) + f(a) = f(0), respectively. Their symmetrizations
contain the AC-extensions f(a) + f(a) +a = f(a)+ f(a) and f(a)+ f(a) +a = f(0)+a,
which thus are true in Iy when seen as equations. However, f(a) + f(a) = f(0) +a is
false in I, since f(a) + f(a) reduces to 0 and f(0) + a reduces to a. Thus we have the
transitivity counterexample

fla)+ f(a) # fa) + fla) +a Vv fa) + fla) +a# f(0)+a V f(a) + f(a) = f(0) +a.

The clauses Cs, C3 and C5 are the counterexamples in N.
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4.5 Redundancy of clauses and simplification

We will later need to refer to the specific construction of candidate models when we prove
that certain clauses or inferences are redundant. In particular, we need that candidate
models are built from (strongly) symmetrized sets of rewrite rules Sy, and we need to refer
to the presence of certain rewrite rules in Ry. We achieve this in a nice and coherent way
by defining a special notion of consequence that takes into account only interpretations
constructed by the model functor I, and by introducing a new atomic formula s = t that
is true in such an interpretation I whenever the rule s = t is in Ry. Note that the Ry
corresponding to Iy will always be known from the context via the set N of clauses. These
atoms will be used only as unit clauses, and we will refer to them as rewrite rules. For sets
of clauses or rewrite rules N1 and Ny we say that Ny is an I-consequence of N1, in symbols
N |1 Ny, if Iy = Ny implies Iy = Ny for all sets of ground clauses M. Lemma 4.4 can
then be rephrased as =y Tp.

The distinction between = and =y is that for the latter only validity in interpretations
from the set {Inx | N set of ground clauses} is considered. Basic properties of classical logic
like reflexivity, transitivity, monotonicity and the deduction theorem also hold for =7. The
following observation allows to approximate =;:

Proposition 4.5 Let M be a set of ground clauses or rewrite rules, let M' be the sets
resulting from M by replacing any rewrite rule | = r by a unit clause l = r, and let N be
a set of ground clauses such that M' UTy = N. Then M =5 N.

Proof: Observe that M =;r M’ and |=; Tp hold and that = is transitive. O

After having proved refutational completeness of our calculus we will be able to show that
M =; N implies M' UT; E N (Proposition 4.21 on page 49), which approximates =1
from above.

Let C be some ground clause. We write Transc for the set of ground instances of
transitivity in Trans which are smaller than C.The middle term of such an instance of
transitivity is smaller than or equal to the dominating term of C. Then C is redundant
(with respect to T') in a set of ground clauses N if

N¢ U Transc |=[ C.

A (possibly nonground) clause is called redundant in a set of clauses N if all its ground
instances are redundant in the set of ground instances of N. A clause is called redundant if
it is redundant in (). A clause that is redundant in N cannot be the minimal counterexample
for Iy, because some smaller clause in N¢ U Trans¢c would have to be a counterexample
for In as well. Note that by Proposition 4.5 we can use

Ne U Transc UTy = C

as a sufficient criterion for redundancy. This criterion corresponds to the notion of redun-
dancy used by Bachmair and Ganzinger (1998a).

As an example of a redundancy criterion consider the following lemma. It corresponds
to the well-known fact that peaks with a reducible middle term are redundant (Buchberger
1979, Winkler and Buchberger 1983, Kapur, Musser and Narendran 1988).

Lemma 4.6 Let D =11 % sV s &ty V t1 =ty be a ground instance of transitivity such
that the middle term s is reducible by T'. Then D is redundant.
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Figure 4.1: Transitivity with a reducible middle term
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Figure 4.2: Transitivity with a nonpeak middle term

Proof: Let Iy be some interpretation that satisfies Transp and suppose that #; ~ s and
s =~ t are true in Iy. That is, there exists valley proofs ¢; {rusy s and s {ryusy 2
and we have the situation of Figure 4.1. We have to find a valley proof #; | 2 to show
I N IZ t1 =~ t2.

(1) If s is not at a peak then either the proof is already a valley proof or coherence can
be used at s, as sketched in Figure 4.2.

(2) Otherwise it suffices to cut off the peak as indicated in Figure 4.3, in order to
obtain a proof ¢} & t}, that stays below s and hence gives rise to a valley proof ¢1 |} t5. O

Based on our notion of redundancy, we say that a ground clause D is a simplification (with
respect to T') of a ground clause C if {C} UT; |= D and C is redundant in {D}. That is,
C > D, {C}UT, E D, and {D} U Trans¢ =7 C. We write

C

D

or C = D to indicate that C can be simplified to D.
We will now define a slightly stronger notion of simplification that most of our sim-
plification rules satisfy. This allows to combine simplifications more freely, disregarding
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Figure 4.3: Transitivity with a peak middle term that is reducible

their direction as long as the bounds on transitivity are obeyed and the final clause is
smaller than the original. Given ground clauses Ci, Co and D we write C; <=p Cy
if {C1} U Transp =1 Cp and {C2} U Transp |=; Cy. If additionally C; > Co we write
Cy <=»p C5. From the definition it is clear that <= p is an equivalence relation and
<»p is a strict partial ordering on ground clauses. Furthermore, D; > Dy implies
<=p, C <=p,. Finally, C <=»¢ D implies that C' can be simplified to D.

We say that a set of simplifications on literals is uniform with respect to polarity if
Ly = Ly is in the set if and only if L} = L, is in the set, where L is the negation of L;
fori=1,2.

Lemma 4.7 Let S be a set of simplification rules on literals that is uniform with respect
to polarity. Then for any rule L1 = Lo in S we have Ly <=1, Lo.

Proof: Suppose Ly => Lo isin S. Then also L} = L, is in S and both are simplifications.
Hence {Ly} U Transr, =1 L1 and {L5} U Transy, = L}, which is equivalent to {L1} U
Transy,; =1 Lo. Moreover, since L; and L) are equal except for polarity and Transc
depends only on the maximal term of C for any clause C', Trans;, = Trans;, . We
conclude Ly <=, Lo. O

To extend simplification rules from literals to clauses we have the following lemma:
Lemma 4.8 Let C, D and C' be ground clauses.
1. If C simplifies to D then C V C' simplifies to D Vv C'.

2. IfC<=sc D thenCV C'"<»¢c DV C".

Proof: This follows immediately from {C'} Exq D implying {C V C'} Ea D V C', where
M is an arbitrary class of models. O

We now show that rewriting with 7' is a simplification.

Lemma 4.9 If Ly =7 Lo then Ly simplifies to Ls.
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Proof: Ly 2 Ly implies Ly > Ly and {L;} UT} = Ly. To show {Ly} U Transy, =1 Ly
consider some interpretation Iy that satisfies Lo and Transz, and let L; = [-](s; = t;) for
1=1,2.

(1) Suppose L; and Ly are positive. Then sy {7us, t2 and hence s; =7 53 ||t & 1)
and L is also true in Iy.

(2) Otherwise L; and Ly are negative. Suppose L; is false in I, that is, s1 {7us, ti-
Then s9 <7 s1 | t1 =7 to. Since all terms of this proof are bounded by s1 or t1, we get
s2 d1usy t2 and Lo would be false in Iy as well, a contradiction. So L is true in Iy. O

Lemma 4.10 If C =7 D then C <=»¢ D.
Proof: By combining Lemmas 4.9, 4.7 and 4.8. O

By this lemma the following is a simplification rule:

C
T-Rewriting 5)

if C =7 D.

Apart from using rewriting directly as a simplification we can also combine rewrite se-
quences and simplifications to obtain new or more general simplifications. This is useful
when showing that certain transformations are simplifications. It allows to extend simpli-
fications between clauses where the terms in question are irreducible with respect to T' to
clauses where this is not the case. This uniformity is useful in particular for lifting, where
instances may be T-reducible.

Lemma 4.11 Let Cy, Co, Di and Dy be ground clauses such that Cy =1 Cs, Dy =7 Do
and C1 = D1 and suppose that Cy simplifies to Do with respect to T'. Then Cy simplifies
to Dy with respect to T.

Proof: Clearly C1 =¢, Cy and Dy =¢, Dy. Chaining these together with {Dy} U
Transc, =1 Cy we conclude {D;} U Transc, =1 Ci. O

Remember that the symmetrization function is only defined on equations in 7-normal
form. Equations not in this form need to be simplified before symmetrization can be
applied. However, we want to restrict simplifications as much as possible, since ground
simplifications become inferences when they are lifted. We formalize this by assuming that
there exists a function Simpy which maps ground literals to sets of ground literals, such
that L' is a simplification of L for all L' € Simpy(L). We say that Simpy is admissible
with respect to Sy if

{L | Simp;(L) = 0} C Normr,

where Normyp is the set of T-normal forms on which the symmetrization function St
is defined. That is, any equation for which no symmetrization is given by St must be
simplifiable by Simp;. Since > is well-founded, it suffices to nondeterministically apply
simplifications in Simp, to eventually reach a literal in T-normal form. Note that T-
normal forms of literals need not be unique. Such a requirement would lead to unnecessary
simplifications of the smaller side of equations.

Assumption 4.12 We assume from now on that Simpy is admissible with respect to St.
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The definitions of S7 and Simp, impose certain properties on Normy. Since any lit-
eral can be simplified to some literal in T-normal form, and since simplification preserves
Ti-equivalence, any literal has a Tj-equivalent T-normal form. Moreover, for strong sym-
metrization functions the requirement that / is minimal among the left-hand sides of rules
in S7(I = r) translates into the requirement that 7-normal forms of equations are left-
minimal. That is, [ is minimal among the greater sides of T;-equivalent equations. For
if this were not the case, say there exists I’ ~ r' with I’ = v’ and [ > I’ then I’ must be
reducible by Sy(l = r), by some rule with left-hand side smaller than [.

For the example of commutative monoids Simpy consists of rewriting with 7". Addi-
tionally, we can impose some strategy such as leftmost-innermost rewriting.

4.6 The inference system

We present a ground inference system that is based on the parameters introduced in the
previous sections, namely the term rewriting system 7', the ordering =, the set of T-normal
forms Norm7, the symmetrization function St and the simplification function Simpy.
We assume that in each ground clause a literal is selected; either some arbitrary nega-
tive literal, or a positive literal that is maximal in the entire clause. An inference system

is a set of inferences. Each inference has a main premise C, side premises C1,...,Cy, and
a conclusion D. The main premise may either be a clause supposed to be from N, then
we write
Ci ... Cy C
D

for the inference, with the main premise at the right. Or the main premise may be an
instance of transitivity, then we omit it and write

C: ... C,
D ?
for the inference. In this case we state the main premise in the text. This allows uniform
definitions of reduction property and redundancy of inferences. An inference is strictly
decreasing if the conclusion is smaller than the main premise in the clause ordering. All
inferences that we present are sound and strictly decreasing.
We let Supr be the set of the following inferences:
Let I; = r and lg = r9 be rules in Normg and S; = Sp(l; = r;) for i = 1,2. An
extension peak between 1 = r1 and Iy = ro with respect to T' is a rewrite sequence

7"/1 <=5 lll[ll2] =S5 lll[TIZ]

such that I, = 7} isarulein S; for i = 1,2, [; is irreducible by T'U Sy, and [5 is irreducible
by TU Sl.

11%7"1\/01 lg%?"QVCQ
’I"Il ~ l'l[ré] V Cl V CQ

T-Ezxtension Superposition
if (i) I; = r; is selected in l; = r; V C; and in T-normal form for 7 = 1,2, and (ii) there
exists an extension peak 7 =g, xm) 111l5] = sp(lars) 11[ry] between Iy = 71 and

lg = T9.

The transitivity instance corresponding to the peak,

ri # hlo] v I[I] # U[ro] v rl & 1[ry],
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is the main premise of this inference. The explicit premises are side premises.

Lv<C
L'vcC
if (i) L is selected in L V C, and (ii) L' € Simpy(L).

T-Theory Simplification

p#EqgVC
C
if (i) p # ¢ is in T-normal form and selected in p % ¢ V C, and (ii) p =g q.

T-Reflezivity Resolution

s~tVs=tvC
tt Vs ~tvC

if (i) s = ¢ is in T-normal form and selected in s =t V s’ = t' V C, and (ii) s =g ¢'.

T-Equality Factoring

The single premise of Theory Simplification, Reflexivity Resolution and Equality Factoring
is their main premise, they have no side premises.

l~r Vv D [F](s[l"] = t) vV C

[-](s[r']=t) v CV D
if (i) I’ = 7' is the rule with minimal right-hand side among the rules with left-hand
side I" in Sp(l =), (i) I' =g 1", (iii) [-](s[l"] = t) is selected in [-](s[l!"] = t) V C
and in T-normal form, and (iv) [ ~ r is selected in [ = r V D' and in T-normal form.

T-Superposition

Superposition has the main premise [-](s[l”] = t) V C and the side premise [ = r V D. The
restriction to rules with minimal right-hand side in (i) allows to use highly nondeterministic
symmetrization functions that contain many rules with the same left-hand side. These are
convenient in certain confluence proofs (see Sections 7.2 and 8.2), but would lead to many
unnecessary Superposition inferences without this restriction.

An inference with main premise C', conclusion D and side premises C1,...,C},, where
each side premise C; = C{ V l; = r; is reductive for I; = r;, is redundant in N if

NCU'IYranch{li:>7‘i|z'=1,...,n}U{—|CZ{|i=1,...,n} IIID.

Here we exploit that side premises arise from productive clauses. Hence each side premise
C; has the form sz V l; = r;, such that it is reductive for [; = r; and [; = r; is in T-normal
form. We may assume that [; = r; is in Ry and that Cg is false in In. An inference is
called redundant if it is redundant in (.

Let C be the minimal counterexample for Iy and let m be an inference with main
premise C, conclusion D and side premises C,...,Cy such that C > D, and each side
premise Cj is smaller than C, has the form C; =; = r; V C] and is reductive for I; = r;.
We say that 7 reduces C' (with respect to In) if

INE-DAL=rA... Nlg=>1 AN=CL A ... A=C.

An inference system Sup has the reduction property for counterezamples (with respect to I)
if Sup contains an inference that reduces C with respect to Iy for any set N of ground
clauses such that Iy has a minimal counterexample C' # L.
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Lemma 4.13 (Extension Superposition) Let N be a set of ground clauses such that
N does not contain the empty clause. Suppose that the minimal counterexample C for Iy
is an instance of transitivity. Then Supy contains an Extension Superposition inference
that reduces C.

Proof: Let C' be the minimal counterexample and let s be its middle term. Since C is
minimal, instances of transitivity with smaller middle terms are true in Iy. By Lemma 2.13
this implies that 7" U S¢ is Church-Rosser modulo E below s, but that there exists some
peak t; < s = ty such that ¢; and t3 do not converge and ¢, = to is false in Iy. As T is
convergent and S is symmetrized modulo E with respect to T, all peaks involving T" and
all cliffs with E converge, so both rules used in the peak are from S. If the rewrite steps
in the peak were in parallel positions of s then #; and t3 would converge, which is not the
case. Let [{ = 7] and I} = ), be the rules from S¢ used in the peak. For i = 1,2 the rule
I} = r} is from some symmetrization Sr(l; = r;) where l; = r; is a rule in R¢ that has
been produced by some clause C; = I; = r; V C}. If we suppose without loss of generality
that I; > Iy then [y is irreducible by Sr(lo = r2) because this is a condition for D; being
productive, and ls is irreducible by Sr(l1 = 1) because [; > I3 and [ is minimal among
the left-hand sides in Sy (lo = r2). Hence this is an extension peak of the form

ty = s[ri] < s[li[lo]] = s'[ry] = ta.

Since C is the minimal counterexample, the context must be empty, and the peak has the
form
rh << 1j[l5] = 1[r3)].

For such a peak Supy contains the Extension Superposition inference

llzrva{ lg%’/’QVCé
ri =yl v C] Vv C)

where Cj is false in I and [; = r; is a rule in Ry for s = 1,2. Since C7, Cj and ] ~ [[r5]
are false in Iy, the conclusion is false in Iy. Hence the inference reduces C. O

Lemma 4.14 (Theory Simplification) Let N be a set of ground clauses such that N
does not contain the empty clause. Suppose that the minimal counterexample C for In is
a clause in N and that the selected literal [—]|(p = q) of C is not in T-normal form. Then
Supy contains a Theory Simplification inference that reduces C.

Proof: Let C = L V C'" where L is selected in C and L is not in T-normal form. Without
loss of generality we may assume p > q. We may further assume that C’ is false in I, since
otherwise C' would already be true in I¢. Since L is not in T-normal form and Simpy is
admissible, there exists some simplified literal L' in Simp;(L). Then the following Theory

Simplification inference is in Supy:
LvC(C

L'v ¢
Since L' is a simplification of L we know that L' V C’ is a simplification of L V C’ by
Lemma 4.8. If L' V C' were true in Iy this would imply that L vV C’ is true in Iy, a
contradiction. So L' Vv C' is false in Iy. O
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Lemma 4.15 (Superposition) Let N be a set of ground clauses such that N does not
contain the empty clause. Suppose that the minimal counterexample C for Iy is a clause
in N and that the selected literal [-](p = q) of C is in T-normal form, that p = q and that
p is reducible by Sy. Then Supy contains a Superposition inference that reduces C.

Proof: Let C = L V C' where L = [-](p = ¢) is selected in C, L is in T-normal form,
p > q and p is reducible by Sc. Also, we may assume that C’ is false in I, since otherwise
C would already be true in I. Since p is reducible there exists rules [ = r € Ry and
"= r"in Sp(l = r) such that p = u[l"] and I’ =g I". We may assume that I’ = 7’ is chosen
such that 7' is minimal among the rules in Sy (I = r) with left-hand side {’. This rule has
been produced by some ground clause D in Ng. Consider the following Superposition
inference:
~rV D [S(u[l'] = q) vV C'
[-](u[r'] = q) vV C'" vV D!

By assumption L = [-](u[l'] = q) is false in Iy, and by using I’ ~ ', the congruence laws
and transitivity we obtain that L' is false in Iy. The instances of transitivity used have
as their middle term at most the maximal term of C' and are thus smaller than C. Since
C is the minimal counterexample they are true in Iy. As C' and D' are also false in Iy
the conclusion is false in I;. We conclude that the Superposition inference reduces C. O

Lemma 4.16 (Selected literals) Let N be a set of ground clauses such that N does not
contain the empty clause. Suppose that the minimal counterezample C for In is a clause
in N and that a negative literal is selected in C. Then Supr contains an inference that
reduces C.

Proof: Let C = L vV C' where L = —A is selected.

(1) Suppose L is not in T-normal form. Then by Lemma 4.14 there exists a Theory
Simplification inference that reduces C.

(2) Otherwise L is in T-normal form.

(2.1) If p =g ¢ then consider the following Reflexivity Resolution inference in Sup;:

pEqV C
Cl

The conclusion C' is false in Iy.

(2.2) Otherwise assume without loss of generality p > ¢. Since p = ¢ is true in Iy, the
left-hand side p is reducible by Sy, and by Lemma 4.15 Supy contains a Superposition
inference that reduces C. u

Theorem 4.17 Supy has the reduction property for counterezamples.

Proof: Let C be the minimal counterexample for Iy. If C is an instance of transitivity
then by Lemma 4.13 Supy contains an Extension Superposition inference that reduces C.

Otherwise C' is a ground clause in N which is not productive. We do a case analysis
on the condition for productivity that is violated.

(ii) Suppose that C is not reductive for any positive literal s ~ ¢t in C'. Then either
(1) the strictly maximal positive literal is of the form s ~ ¢ and s =g ¢, (2) there exist
more than one maximal positive literal, or (3) the maximal literals are negative.

Case (1) cannot occur, since C is false in Iy .
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In case (2) C has the form s & ¢ V ¢’ = t' V C" where s =ac s’ and t =5¢ ¢'. The
Equality Factoring inference
smtVs=t v
tt vs=tvCor

reduces C.

In case (3) some negative literal in C must be selected, and we may apply Lemma 4.16
to infer that some inference in Sup; reduces C.

(iii) Suppose C = s & t V C" and C is reductive for s = ¢, but s = ¢ is not in T-normal
form. Then by Lemma 4.14 some inference in Sup; reduces C.

(iv) Suppose C = s =t V C' and C is reductive for s = ¢, s &t is in T-normal form,
but s is reducible by S¢. Then by Lemma 4.15 some Superposition inference in Sup;
reduces C.

(v) Suppose C = s =t V C'" and C is reductive for s = ¢, s~ ¢ is in T-normal form,
s is irreducible by S¢, but C' is true in (T'UScUSr(s = t))¥. The only way that this can
happen is that there is another positive equation with maximal term s’ =g s in C’, that
is, ¢! = ¢’ = t' v C", such that ¢ |rus, t'. Then the ground instance

s~tVvs=tva
test' V=tV C

of Equality Factoring reduces C. O

We denote by RC(N) the set of ground clauses that are redundant in N, and by RZ(N) the
set of ground inferences that are redundant in N. By definition RC and RZ are monotonic,
i.e., M C N implies RC(M) C RC(N) and RZ(M) C RZ(N). The following lemma allows
to delete redundant clauses without loosing redundancy of clauses or inferences.

Lemma 4.18 Let N be a set of ground clauses and M = N \ RC(N), and let C and D
be ground clauses. Then N¢ U Transc =5 D implies M U Transc =; D.

Proof: Each clause C' in N¢ \ M¢ is redundant in M, so Mo U Transer =1 C'. Since
Ugr<c Mcr € Mg and Jei_ o Transer € Transe we get that Mg U Transe =1 No. We
conclude that M¢ U Transc =1 D. O

Lemma 4.19
RC(N) =RC(N \ RC(N)) and RI(N) =RI(N \ RC(N)).

A set N of ground clauses is saturated up to redundancy with respect to an inference
system Sup if each inference in Sup with premises from N \ RC(N) is redundant in N. We
say that an inference system Sup is refutationally complete for some theory T if whenever
N UT is inconsistent for some set N that is saturated up to redundancy with respect
to Sup, then N contains the empty clause.

Theorem 4.20 Suppose that T is a ground term rewriting system that is confluent mod-
ulo E, = is an E-compatible and E-antisymmetric simplification quasi-ordering that is
total on ground terms, T C (>), Simpy is a simplification function, and Sr is a sym-
metrization function for T modulo E with respect to = such that Simpr is admissible with
respect to Sp. Then Supy is refutationally complete for Ty.
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Proof: Let N be some set of ground clauses that is saturated up to redundancy with respect
to Supy, and assume that N UT7 is inconsistent but does not contain the empty clause. Let
M be the subset of clauses in IV which are not redundant in N. We first show that I, is
a model of M UTj. Suppose this is not the case and let C' be the minimal counterexample
for Ips, which cannot be the empty clause. Since Supy has the reduction property for
counterexamples, Sup; contains an inference with main premise C, conclusion D and side
premises C1,...,Cy such that each side premise has the form C; = I; = r; V C} and is
reductive for I; = r;, and

Iy |:[—|D ANli=>riN... ANlp=>r A —|C1 Ao A —|C]’c.
Since N is saturated this inference is redundant in N. That is,
NeUTransc U{l; = r;|i= 1,...,n}U{ﬂC£|i: 1,...,n} FEr D.

Since C' is the minimal counterexample Mo and Transc hold in I;. All clauses in N¢
are smaller than C and either in My or redundant in M¢ by Lemma 4.19, hence M¢ U
Transc =5 N¢. Thus Ng holds in Iz, which in turn implies that D holds in Iy, a
contradiction. So there exists no minimal counterexample for Ip; and Is is a model of
M U Ty, in contradiction to its inconsistency. O

We now prove the upper bound on the relation =r promised on page 40:

Proposition 4.21 Let M be a set of ground clauses, let N a set of ground clauses or
rewrite Tules, and let N' be the sets resulting from N by replacing any rewrite rule | = r
by a unit clause l = r. If M =1 N then M UT; = N'.

Proof: Suppose that M UT; £~ N'. Then there exists some Herbrand interpretation I
such that M UT is true in I and N’ is false in I. Let Ny be the set of ground clauses

{C'| C ground clause and I |= C}.

Since all inferences are sound with respect to 77, the set N; contains the conclusion of
an inference whenever it contains all its premises. But this implies that all inferences are
redundant in Ny, hence Ny is saturated and Iy, is a model of N;. Since Ny contains for
each ground atom A exactly one of the single-literal clauses A or = A, a ground atom A
is true in I if and only if it is true in Iy,. Hence M is true and N’ is false in I,. This
implies that N is false in I, as well, and thus M [~; N. O

It remains to consider how to obtain a saturated set of clauses from an initial set that is
not saturated. A theorem proving derivation (with respect to T') is a sequence of sets of
clauses Ny - N F ... such that for all 4 > 0 either N;;1 = N; U {C?} for some clause C
such that NUT) = C, or Nij11 = N; \ {C} for some clause C' which is redundant in Nj.
By this definition whenever I is a model of 77 and N; - N;;1 then I is a model of N; if
and only if I is a model of N;;1. For such a derivation the set of persistent clauses Ny, is
defined as Noo = U;>¢(;>; Nj- A theorem proving derivation is called fair with respect
to a set of inferences Sup if all inferences in Sup from clauses in N4, are redundant in N;
for some 7 > 0.



50 CHAPTER 4. SUPERPOSITION FOR CONVERGENT THEORIES

Lemma 4.22 Let NgF Ny ... be a theorem proving derivation. Then
RC(| JNi) C RC(Nw)  and (4.10)
i

RI(| Vi) C RI(N). (4.11)

Proof: Let N = J; N;. Then any clause in N \ Ny is redundant in some N; and hence
in N, which implies N \ Ny, C RC(N). From N \ (N \ N ) = N, we get

N\RC(N) C Ny CN.
By monotonicity of RC this implies
RC(N \RC(N)) C RC(Nx) € RC(N).

By Lemma 4.19 RC(N) = RC(N \ RC(N)), hence RC(Ny) = RC(N).
The same applies to RZ. O

Theorem 4.23 Let Ng - N1 | ... be a theorem proving derivation that is fair with respect
to Sup. Then Ny is saturated up to redundancy with respect to Sup.

Proof: Redundancy of an inference in N; implies redundancy in | J; V;, and by the previous
lemma it is redundant in N. O

Since N, is saturated, it has a model Iy if it does not contain the empty clause. Since
all clauses in Ny \ Ny, are redundant in some N;, they are also redundant in N4,. Hence
they are Tj-consequences of Ny, and Iy is a model of Ny. On the other hand, if Nj is
Ti-consistent then it has a model I that also satisfies T7. This model I satisfies each N,
hence also Ny, and Ny is Ti-consistent and does not contain the empty clause. We
conclude that 1 € N if and only if Ny is T1-inconsistent.

It remains to consider how to obtain a fair derivation. Since all inferences are strictly
decreasing, they become redundant once their conclusion is added to N. Thus a fair
derivation can be obtained by adding conclusions of inferences in a fair way. This can be
improved by not adding conclusions of inferences which satisfy some sufficient criterion for
redundancy.

Let us now look again at the commutative monoid example, and let us denote the set of
clauses on page 39 by Ny. The minimal counterexample for Iy, is C5. Since its left-hand
side is reducible by C; it can be reduced by the Superposition inference

flO)=0  f(0)+a=0
0+a=0 )

Adding the conclusion Cg = 0+a = 0 to Ny we obtain N; = NoyU{Cg}. Then Iy, = I, as
Cg is not productive, because it is not in 7-normal form. Using the Theory Simplification

inference
O+a=x0

a~0
we obtain Cy = a = 0, which becomes productive in Iy, where No = N3 U {Cy}. With
the two rules f(0) = 0 and @ = 0 in Ry, all ground term over F' can be reduced to 0.
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Since all clauses in Ny contain a positive literal, Iy, is a model of N,. Finally, we point
out that the Extension Superposition inference

fla)+arfla)  fla)+ f(a) = f(0)
fla)+ fa) = f(0) +a
takes care of the transitivity counterexample induced by Cg and C7. In Ny this inference
is redundant, since the conclusion follows from the smaller clauses f(0) = 0 and a = 0.

4.7 Extension peaks revisited

In the Extension Superposition rules stated above any extension peak between two rules
leads to an inference, leading to a large or infinite number of inferences for any pair of
clauses whose symmetrizations overlap. For specific theories we can do much better by
exploiting the known structure of the symmetrizations. For the theories considered in
this work either none or a single Extension Superposition inference suffices; we show that
all other such inferences are redundant. We call the extension peaks that give rise to
these Extension Superposition inferences critical extension peaks. Furthermore, critical
extension peaks are the only cause of transitivity counterexamples. We exploit this to
relax the bound on transitivity somewhat, by bounding only subterms that occur as the
middle terms in critical extension peaks. We will need this extension in the cases of
commutative rings and algebras, where the bound will be on single summands instead of
on the whole sum. Finally, we will generalize a global redundancy criterion that is known
for Grobner basis computation and Knuth-Bendix completion (Buchberger 1979, Kapur,
Musser and Narendran 1988).

Let S; = Sr(l; = r;) for i« = 1,2. Consider some extension peak t; <g, s =g, t2
between rules 1 = 71 and ls = ro. We call such an extension peak redundant in N
if all Extension Superposition inferences that have the peak as their main premise are
redundant in N. We call the extension peak redundant if it is redundant in (.

Lemma 4.24 Lett) <g, s =g, to be an extension peak between rulesly = r1 and ly = ra.
The peak is redundant in N if and only if the extension superposition inference

11%7‘1 12%7‘2

11 = to
with main premise t1 % s V s &ty V t1 = to is redundant in N.
Proof: If the peak is redundant in N then by definition the inference is redundant in N.
For the if-direction consider some extension superposition inference
01Vl1zr1 CQVZQ%’I"Q
CiVCy Vit~
with main premise C =t £t V t % t3 V t1 = to. The inference is redundant in N if

NC U 'I‘.ransc U {ll = 7‘1,[2 = 7‘2} U {—|Cl, —|C2} |:[ Cl \Y CQ V t1 = to.
The inference
l1 T l2 ~ T9
tl ~ tg
with the same main premise C is redundant in N if and only if

N¢ U Transe U {ll = 7‘1,12 = 7"2} IZI 11 = to,

which clearly implies the former. O
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Lemma 4.25 Let t; <= s = to be an extension peak between rules i = 11 and lo = ro. If
C=t1%tVitgta Viirty
18 redundant in N then t1 < s = to s redundant in N.

Proof: By the definition of redundancy for clauses N¢ U Transc =y C, which by the
deduction theorem is equivalent to Ng U Transc U {t1 = t,t = t2} = t1 = t2. From
li=ri Ertst; fori =1,2, we conclude No U Trans¢c U {l1 = 7m,lo = re} Et1 & ta. O

An extension peak is called critical if it is not redundant. A ground instance of transitivity
is called critical if it corresponds to a critical extension peak. A ground term is critical if
it occurs as the middle term of a critical instance of transitivity.

The critical closure ccp(t) of a ground term ¢ is the greatest downward-closed set of
ground terms that contains no critical term greater than ¢. For a ground clause C we let
the critical closure Trans..,(c) be the greatest downward-closed set of ground instances
of transitivity that contains no critical ground instance of transitivity greater than C. So
ccr(t) contains all terms below the smallest critical term greater than or equal to ¢ with
respect to the term, respectively. Analogously, Trans.., (c) contains all ground instances
of transitivity below the smallest critical instance greater than or equal to C with respect
to the clause ordering.

The notion of critical closure allows to increase the bound below which transitivity is
known to hold. If we have an interpretation that satisfies Transc for ground clause C),
then there are no critical extension peaks below Transg,(c). The notion of the critical
closure of a term helps to check this new bound:

Lemma 4.26 Let C be a ground clause with mazimal term s, and let D be an instance
of transitivity that has a middle term in ccr(s). Then D is in Trans, c)-

Proof: Suppose this is false and C' is a ground clause with maximal term s, D is an
instance of transitivity that has a middle term ¢ in ccp(t), but D is not in Transc.,(c)-
Then there is a critical instance D’ of transitivity with D = D’ = C, and D' has a critical
middle term #'. By the definition of the clause ordering and because the critical instance of
transitivity D is the minimal clause containing ¢’ we have ¢ = ¢’ = s. But this contradicts
t in cep(s). O

It remains to find sufficient criteria for a term ¢ being in ccr(s). Below we will give suitable
ones for the particular theories.

Lemma 4.27 Transc =y Transee,(c)-

Proof: Let D =t %tV t#ty V11 = t2 be the smallest instance of transitivity such that
Transc ~; D. Then there exists a set of ground clauses N such that Iy = Transc but
In £ D, that is t; = t and t = ty are true in Iy and ¢; & to is false in Iy. There exist
valley proofs ¢; Jrus, t and t J7ys, t2 but no valley proof ¢1 {rus, t2. Hence there exist
rewrite steps in the two valley proofs that form a peak t} < t = .

Suppose this peak converges. Then transitivity instances with a middle term strictly
smaller than ¢ imply #; = t2, in contradiction to our assumption.

Suppose one of the rules used in the peak is from 7. Since T is convergent and Sy
symmetrized modulo E, this implies that the peak converges, which again contradicts the
assumption.
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Suppose one of the rules used is not extended. Since rules are produced only when
their left-hand sides are irreducible, this cannot be the case. Thus the peak is an extension
peak.

Suppose this extension peak were redundant. Since D is a minimal false instance of
transitivity in Iy, the smaller instances in Trans¢c would be true in Iy, and together with
t1 =t and t = to this would imply that #; = ¢y is true in I, a contradiction.

Suppose that both rules are applied strictly below the root, i.e.,

D = ulri] # ulli[l5]] V ulli[l]] % ulli[ra]] V ulri] = ulli[ry]].
But then the smaller instance
D' =1y #hls] v Illy] # fry] Vv ry & 1[ry]
would imply D. Hence

D =ry #ly] v I[l5] # L[ro] v ri & 19

where t = [{[l}}]. This is a critical ground instance of transitivity. Since it is false in Iy, it
cannot be in Transc, which holds in Iy. We conclude that D is not even in Transc.,(c)-
O

In our example theory of commutative monoids there is one critical extension peak for any
two rules if the extensions overlap but the original rules don’t. In such a minimal peak the
flattened left-hand sides of the original unextended rules overlap maximally. E.g., consider
the rules f(a) + f(a) + a = f(a) and f(a) + f(a) + f(a) = f(0). Their symmetrizations
contain AC-extensions which overlap to form the peak

fla) + f(a) + f(a) < f(a) + f(a) + f(a) + a = f(a) + f(0) +a.

This peak is indeed critical. However, other extension peaks of these two rules are redun-
dant. For instance, the peak

f(a) + f(a) + f(a) + f(a) <= fla) + fla) + f(a) + fa) + a = f(a) + f(a) + f(0) + @

is redundant. Whenever the minimal peak converges, we can put a context around the
valley proof to show that this peak converges, too. Note that here only one occurrence
of f(a) from the original rules overlaps. For the example theory a term can occur as
the middle term of a critical extension peak if it is a sum of at least three summands
and is irreducible with respect to 1. The critical closure of such a term ¢ contains all
terms up to ¢, since any term ¢ + p is again critical. Consequently the move from Transc
to Transcc,(c) is not useful for this theory. However, in later chapters we will handle
theories where this extension is needed.

4.8 A redundancy criterion for extension peaks

We now show a redundancy criterion for extension peaks. If the middle term of the peak
is reducible then the peak is redundant, provided that the two smaller peaks resulting
from the overlaps with the reducing rule are redundant. This criterion was invented for
Grobner bases by Buchberger (1979) and adapted to term rewriting systems by Winkler
and Buchberger (1983) and Kapur, Musser and Narendran (1988). The basic idea is
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S3
S1 Sa
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Figure 4.4: Reducible peaks are redundant

illustrated by Figure 4.4. In this diagram the dashed proof shows that the peak t; < s = ¢
is redundant, provided that the peaks t; < s = t3 and {3 < s = t converge.

Alternatively, we may describe this criterion in terms of transitivity. We are interested
in showing that the instance

C=t18sV sty Vit =t

holds in some interpretation Iy, under the assumption that all smaller instances of tran-
sitivity (and other clauses) hold. Then if ¢3 is smaller than ¢; and t9, in particular the
transitivity instances

t1 sV szt Vi ~ts,
t3 sV sty Vi =t and
t16t3 Vigty Vi =ty

hold in Iy, and hence also
sEt3 Vit sV skt Vi =ts.
Now if s ~ t3 holds in Iy, we can conclude that Iy = C.

Theorem 4.28 Let N be a set of ground clauses and let C; = l; = r; V C} be ground
clauses that are reductive for l; = r; for i+ = 1,2. Furthermore, suppose there is an
Ezxtension Superposition inference between C1 and Cy with main premise

C=t18sV sty Vitxt

and {—~C7,—~Cs} U Nc U Transc =1 s = t3 where t1 = t3 and to = t3.
Then the Extension Superposition inference is redundant in N.

Proof: We have to show
NeoUTransg U {l1 = 71, lo = ro} U{=CY, =Ci} =1 C1 v Cy V t =ty
under the assumptions above. So let M be a set of ground clauses such that
I |E No U Transg U{ly = 71, Iy = ro} U{=C], —C}},

which implies that s =~ ¢; and s = t5 are true in I3;. Then by the assumptions there exists
a ground term t3 such that ¢; > t3, %o > t3 and s = t3 is true in I3;. By the argument
above we conclude that ¢1 = ¢ holds in I,,. O
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To apply this in practice it remains to find criteria for the condition
{_'C{a —'Cé} U N¢ U Transg \:I S~ 13

to hold. For instance, suppose that N¢ contains a clause C3 = C§ V I3 = r3 that is
reductive for I3 = r3 and Sy(l3 ~ r3) can be used to reduce s to a suitable t3. Then

{=C1,—=C4} U N¢ U Transc =1 ~C%

implies that the condition is satisfied. Note that for empty Cj this becomes trivial.

This criterion is useful for sets of clauses where each clause overlaps with many other
clauses. As an extreme example, consider a set of n clauses such that there is a critical
pair between any two clauses, resulting in O(n?) overlaps as a whole. Then there is some
minimal rule that can reduce all peaks, and it suffices by this criterion to consider critical
pairs with this rule, resulting in only O(n) overlaps overall.

Buchberger (1979) reports a speedup of this magnitude for Grébner bases, and Kapur,
Musser and Narendran (1988) also report a substantial speedup for the case of Knuth-
Bendix completion modulo AC. They report only a minor reduction in the number of
critical pairs for the non-AC case, which does not lead to an overall speedup. It is not
clear how useful our generalized criterion is for the case of nonunit clauses modulo AC.

4.9 Normalizing equational proofs

In this section we show that convergence with respect to normalized rewriting is equivalent
to convergence with respect to unrestricted rewriting. We then use this result to show that
strong symmetrization implies semicompatibility. That is, for every rewrite step between
two terms there exists a valley proof between the normal forms with respect to the theory.
This allows to normalize equational proofs by normalizing every term of the proof and
replacing the rewrite steps by valley proofs. Then the terms in the normalized proof are
bounded by the theory normal forms of the terms in the original proof. Later we will use
this technique to show that equational proofs stay below a bound up to which transitivity
holds.

Normalized rewriting was introduced by (Marché 1996). It gives rules from 7" priority
over rules from S. For rewrite systems S and T we define T'-normalized rewriting with S
by s =mg t if and only if s =7 u, wu is irreducible with respect to T' and v =g t. We
say that TS is Church-Rosser modulo E if s &puryg t implies that s g ¢ for all terms
s and t.

Lemma 4.29 Let TUS be terminating modulo E. Then T'US is Church-Rosser modulo E
if and only if TS is Church-Rosser modulo E.

Proof: Since (J11s) C (Urus) the if-direction is trivial.
For the only-if-direction the proof is by induction on the following proof ordering: Let

> be §>(TU s)/E extended by a new minimal element L. We order proof steps with respect
to > according to the complexity measure

c(s=>st)=clt<gs)=s
c(s=>rt)=clt<rs)=1
c(sept)=1,
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i.e., only the larger sides of S-steps count. As the proof ordering we use the multiset
extension of the ordering on proof steps.

Suppose that T" U S is Church-Rosser modulo E but T'!S is not, and consider the
smallest proof s < gpurus ¢ such that s {gmg ¢ does not hold. Then s |rus ¢ and there
exists an S-step u =g v (or v <=g u) in s |7us ¢t whose larger side u is reducible by T'. For
u' <1 u =g v there exists a proof v’ |rus v, and we may replace the subproof u =g v
by the smaller subproof u =7 u’ |1rus v. On the whole we obtain a smaller proof

s Yrus v Yrus v drus t

and by induction hypothesis s {115 ¢, a contradiction. O

This suggests that T-normalized rewriting with S can be interchanged freely with rewriting
by TUS.

A relation =g is semi-compatible if s =g t implies u[s] {5 u[t] for all terms s and ¢
and contexts u. Semi-compatibility was introduced by Biindgen (1991, 1996).

Lemma 4.30 Let S be a set of ground rewrite rules which is strongly symmetrized with
respect to T modulo E. Then T-normalized rewriting with S modulo E is semi-compatible.

Proof: Consider a rewrite step s =715 t and a context u. Then by putting the context u|]
around every term in the proof

s=>p...=>78 =gt
which represents the normalized rewrite step, one obtains a proof
uls] =7 ... =7 ul[s'] =5 ult]

of u[s] & u[t]. Since this proof contains only one S-step all the rules used are in T'U S; for
some i € I, where (S;);cs is the partition of S in the definition of strong symmetrization.
Since T'U S; is convergent modulo E, by Lemma 4.29 there also exists a valley proof of
u[s] = u[t] by normalized rewriting. O

Without strong symmetrization it is not possible to remove all peaks between two rules
from S, which are introduced when the symmetrization property is applied to remove
several S/T-peaks consecutively. These S/S-peaks are not bounded by the normal form of
a term in the original proof with added context. In contrast to this, strong symmetrization
and in turn semi-compatibility of normalized rewriting lead to proofs which are bounded
by the T-normal forms of the terms in the proof with added context (Figure 4.5).

4.10 Merging paramodulation

Instead of equality factoring it is also possible to use Merging Paramodulation, by making
the following modifications in the inference system and the completeness proof:

Replace Equality Factoring in Sups by the inference rules Factoring, Merging Paramod-
ulation and Merging Theory Paramodulation, to obtain Su p'\TAP.

s~tvsx=tvC
t&t Vs ~tvC

if (i) s & t is in T-normal form and selected in s &t V s’ = t' v C, (ii) s =g s’ and
t=pt.

T-Factoring
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ult1] ulto] ults]
R} o) o)
T (ult1]) T (ulta]) T'(ults])
TUS : % - TUS TUS N * y TUS
E FE

Figure 4.5: With normalized rewriting

s=tl"lvs=tvC

s=tfr|Vs=tvC

it (@) lI'=r'eT, (i) l' =g!", (ii) s &g ¢, and (iv) s = ¢[I'] is T-normal form and
selected in s = t[l'] V C.

T-Merging Theory Paramodulation

l~rV D sx=tl"lvs=tvC
sxtrvs=tvC

if()I'=reSr(l~r), (1) l'=l", (iii) s &g §', (iv) s = t[l'] is T-normal form and

selected in s = t[l'] V C, and (v) [ ~ r is in T-normal form and selected in [ = r V D.

T-Merging Paramodulation

Theorem 4.31 Sup¥P has the reduction property for counterexamples.

Proof: The proof is similar to that of Theorem 4.17, with the following modified cases:
Case (ii.2): The maximal literal is positive and occurs more than once. That is, the
minimal counterexample C has the form s =<tV s’ =~ ' V C" where s =ac s’ and t =ac t'.
Then the Factoring inference
s=tVvs=tvCo
st v o

reduces the minimal counterexample C.

Case (v): Suppose C = s ~t V C'" and C is reductive for s = ¢, st is in T-normal
form, s is irreducible by S¢, but C’ is true in (T'U Sc U Sr(s ~ t))¥. The only way that
this can happen is that there is another positive equation with maximal term s’ =g s
in C', that is, C' = ¢’ = t' v C", such that ¢t §rus, t' and t > ¢'. Then ¢ is reducible
by TU Sc.

(v.1) If t is reducible by T' then Sup¥ contains the Theory Merging Paramodulation
inference

s=tll'lvsd=t v
s=tlr)vs=tvC

where | = r € T and | =g ', which reduces C.
(v.2) Otherwise t is reducible by some rule I’ = 7’ in Sp(I =~ r) for some productive
clause D =l ~r V D'. Then the following Merging Paramodulation inference

~rVv D  s=tll'lvs=xtv(C
st Vs =t v

reduces C. O
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In this context it is not clear whether Merging Paramodulation or Equality Factoring is
better. On the one hand Merging Paramodulation rewrites ¢ and ¢ independently of each
other, which may lead to duplicated effort. Equality Factoring would combine them in a
negative literal, and the Simplification rule would use a more refined strategy to reach a
T-normal form of this literal. On the other hand, it may be the case that there are no
rewrite rules in 7" or clauses in N that can paramodulate into the greater of the right-hand
sides. In this case Merging Paramodulation would do nothing, while Equality Factoring
would produce a negative literal that would in turn lead to more inferences to do the
simplification.

A theoretical advantage of Merging Paramodulation is that Iy is the perfect model
of N when N is saturated with respect to Sup" (Bachmair and Ganzinger 1991), which
is not the case for Equality Factoring (Moser 1997). Whenever the model construction
encounters a clause with more than one occurrence of the maximal term in positive and
none in negative literals, it may choose which of the literals is made true. Since Merging
Paramodulation rewrites these literals until the left-hand side of the largest one is irre-
ducible, the model construction then chooses this literal, whose normal form with respect
to T'U Sg is larger than the normal forms of the other literals. In contrast to this, Equal-
ity Factoring eliminates the maximal literal, which need not be the maximal one after
reducing the left-hand sides with respect to 7'U Sc¢.
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Abelian Groups

Let AG be the term rewriting system modulo AC for abelian groups of Peterson and Stickel
(1981):

z+0=2z (AG.1)
z+(—z)=0 (AG.2)
z+y+(—y) ==z (AG.2¢)
—0=0 (AG.3)
—(—z)=>=z (AG.4)
—(z+y) = (=) + (=) (AG.5)

In this chapter we let AC = AC(+) and AG = AC\gnd(AG). That is, AG is a ground term
rewriting system that does rewriting with AC-matching with respect to AG. Since AG

contains all ground instances of equations in AG, any Herbrand model that satisfies AG
also satisfies AG. Then AG; = AG U AC U Eq.

Proposition 5.1 AG is convergent modulo AC.

A term with + as its root symbol is called a proper sum. We may consider any term ¢
as a sum t; +--- + t, where n > 1 and ¢; is not a proper sum for s = 1,...,n. We call
ati,...,t, the summands of t. A term t is a summand of the literal [-](p = q) if it is a
summand of p or a summand of ¢. It is a summand of a clause C' if it is a summand of
some literal in C.

We will use the following notational conventions: r, s, ¢, u, v and w are used for
arbitrary terms. For n > 0 we let ni denote a sum ¢; + --- + ¢, where ¢; =ac t for
i = 1,...,n. Also, (—n)t denotes n(—t) and 0t denotes 0. We will use s — ¢ as an
abbreviation for s + (—t). z, y and z denote variables. To simplify the presentation, our
meta-level notation will be modulo ACU for +. That is, when we write s = nt + s’ then
nt denotes n summands which are AC-equivalent to ¢ and which occur somewhere in the
sum, not necessarily in front. Moreover, neither nt nor s’ need to be present. Thus s may
also be of the form nt, s’ or 0, depending on whether s’ =0, n =0, or s =0 and n = 0,
respectively.

5.1 Termination

For the term ordering we construct a theory path ordering. We let F; = Fac = {+} and
use the precedence

o p forp fimp (=) =p 0 =p (+)

59
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which is TPO-admissible for F;. Then we let =aq = >po(>p, tztc(ﬂ). This is the APO
of section 3.4 for f = (+).

Proposition 5.2 =xq is an AC-compatible and AC-antisymmetric simplification quasi-
ordering that is total on ground terms such that AG C (>ag)-

For the remainder of this chapter we write > for > aq.

The ordering on terms induces an ordering >z on integers, because nija > nsa is
independent of the atomic term «, and depends only on my and ny. Formally, we let
n1 = ng if and only if n; > ne > 0, or n; < 0 and n; < ng. Then we obtain the ordering

g =27 —1>g - >72>71>70.
Proposition 5.3 Let ny and ny be integers and « an AG-atomic ground term.
1. ny >z ng if and only if n1a > naa.
2. ny >z no implies nia = noa +r for any ground term r such that o = r.

Proof: 1t suffices to note that + has multiset status in the APO, and that —a« is greater
than na for any n > 0. For the second case note that r is dominated by « in the multiset
extension. O

5.2 Symmetrization

An equation [ = r is in abelian group normal form (or AG-normal form) if 1) [l =r =0,
or (i)l =na, n>1, a>r, and « is AG-atomic and irreducible with respect to AG.
This implies in particular that there are no terms in both sides of the equation that can be
cancelled. A literal is in AG-normal form if its equation is in AG-normal form. We denote
the set of literals in AG-normal form by Normag. For these normal forms we obtain the
following symmetrization function:

Sac(0=0)=10 (AG.S0)
Saglaxr)={a=r} (AG.S1)
Sag(na=r)={na=r} (AG.S2a)
Ugnd({z +na =z +r}) (AG.S2b)
U{—a=n-1a-r} ifn>2. (AG.S2¢)

Lemma 5.4 Sag is a strong symmetrization function for AG modulo AC with respect
to ~AG-

Proof: By Proposition 5.3 and the multiset property we obtain that Sag(l = r) is included
in =g for any equation [ = r in AG-normal form. Minimality of [ among the left-hand
sides of Sy (I = r) is obtained by inspection.

Next we consider soundness. That is, we show how the rules in the symmetrization
can be derived from an AG-normal form and the rules in AG. The only interessting case
is (AG.S2c), which can be obtained from the critical pair

(n—1a g (—a) + na AGgze (—a) +r.
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By adding —r on both sides and applying the inverse law one obtains —a ~ (n — 1)a —r.

It remains to consider convergence modulo AC of Sag(l = r). Cliffs with ground in-
stances of AC converge, since Sag(na = r) contains all ground instances of AC-extensions,
namely (AG.S2b). Peaks between rules in AG converge by convergence of AG. Since the
left-hand side na« is irreducible with respect to AG, we need not consider overlaps of rules
in AG into rules in Spog (! & 7) below the root position. It remains to consider overlaps of
rules in Spg(l & r) into rules in AG, and overlaps among rules in Syg(l = r). The only
nontrivial case is (AG.S3) where the rule is of the form na =~ r with n > 2. Since « is
an atomic ground term that is irreducible with respect to AG, it can only overlap with
itself. Hence it suffices to consider rules of the form nc ~ r where c is a free constant and
n > 2. We have checked the general case of critical pairs of rules in Sag(na = r) into
rules in AG by hand and verified this against a machine-generated list of critical pairs for
n = 3. E.g., for the critical pair above one rewrites the right-hand side to (n — 1)a —r +r
and normalizes with respect to AG, obtaining (n — 1)«, the left-hand side.

For critical pairs of rules in Sag(na = r) into rules in Spg(na = r) the only interesting
rule is (AG.S2b). Suppose the two rules are z +nc = z+r and 2’ + nc = z+r. Then the
AC-unifier {z/z'} of the left-hand sides subsumes all other AC-unifiers of the left hand
sides and we obtain the trivial critical pair 2’ +r ~ 2’ +r. |

5.3 Critical extension peaks and transitivity

Let us now consider extension peaks.

Theorem 5.5 There is no extension peak with respect to AG.

Proof: Extended rules are of the form AG.S2b or AG.S2¢c, so suppose nit; = r1 and
naty = 1o are rules whose symmetrizations S; = Sag(l; = 7;) form an extension peak.
This peak can have two forms:

(n—n1)a+r <g na=g, (n—ny)a+ry

(n —1l)a—r <5, —a=g, (no—1)a—ry

where n > n1,n9 and without loss of generality n; > ny. But then nja =g, (n1—n2)a+re,
that is [y is reducible by Sy, and thus the peak is not an extension peak. O

There are no critical terms either for this theory, hence ccag(t) is the set of all terms and
Trans,(c) = gnd(Trans) for any ground term ¢ and ground clause C.

Corollary 5.6 Transitivity holds in In for all sets of ground clauses N.

Proof: Let C be the empty clause. Then Transc = () and Trans,, ac(c) = gnd(Trans), and
Lemma 4.27 becomes () =7 gnd(Trans). O
5.4 Simplification

We first present AG-Isolation and show that it is a simplification rule. We show that it
is a simplification even if the maximal term is not irreducible with respect to AG, as this
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will make it easier to lift Isolation to nonground clauses. Later we will use a restricted
version in the simplification function for abelian groups.

[](nis1 + r1 = nasa + 7‘2)\

[H((n1 —n2)sy =y — 1)’

if (i) s1 =ac s2, (ii) s1 is not a proper sum, (iii) n1 > ng, (iv) n2 # 0 or r; # 0, and
(v) s1 > 71 and sg > 9.

AG-Isolation

Lemma 5.7 AG-Isolation is a simplification rule.

Proof: Since transitivity is universally valid in any model I in the abelian group case, it
suffices to note that premise and conclusion are AG-equivalent, and that the conclusion is
strictly smaller than the premise. To see the latter we show that at least one side of the
premise is greater than the conclusion. Since s; =a¢ s2 dominate the ordering, it suffices
to consider n; and no. If n; or ng is negative then that side of the premise dominates
the conclusion. If both n; and no are strictly positive then n; is strictly greater than
(n1 —n2)si. In the remaining case where ne = 0 and r1 # 0 we have that n1s1 +71 > nisi.

O

Now we consider which simplification rules are needed to achieve AG-normal form. We
further restrict AG-Rewriting and AG-Isolation in order to keep Simp,g small, since
every simplification will become an inference when lifted. In Simp,g-Rewriting it is not
necessary to use rewriting with AG eagerly and to go all the way to a normal form on both
sides of the equation. We need to reduce only summands which are maximal with respect
to >, since these maximal summands will ultimately become the left-hand side. The
nonmaximal summands will end up in r. Hence it is not necessary to reduce them, once
they have been separated from the maximal terms. Consider an example of simplification
where s > t:

st+s+tx—((—s)+ (t+0))
s+s+tm(—(—9))+ (—(t+0))
s+s+txs+ (—(t+0))

s (L +0) + (1)

= W N
N’ N’ N’ N

(5.
(5.
(5.
(5.
The maximal summand of (5.1) is —((—s) + (¢ + 0)), which includes both s and ¢. It
is rewritten to the top-level sum (—(—s)) + (—(¢ + 0)) where (—(—s)) is the maximal
summand of (5.2), and this in turn is rewritten to s. The last step from (5.3) to (5.4)
isolates s on the left-hand side. Note that ¢ + 0 is not reduced, since s > —(¢t + 0). Of
course, if the term ¢+ 0 were present also on the nonground level, it would be a good idea
to reduce it to t. But in general this is not the case, as there could be a variable instead
of 0. We formalize this intuition in the simplification rules Sum Contraction and Theory

Superposition. Sum Contraction handles the cancellation of several maximal terms, while
Theory Superposition does rewriting inside a maximal term.

H(S—S’erqu
[-](p = q)

if (i) s =ac ¢, (ii) —¢' is a maximal summand in s — s’ + p, and (iii) s — s’ + p > q.

Simpyg-Sum Contraction
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'] +p~q)
[=](u[r] +p = q)
(ii

) ' =ac 1, (iil) u[l'] is a maximal summand in u[l'] + p,

\
7

Simpy g-Summand Rewriting

if (i) Il = r is a rule in AG,
and (iv) u[l'l +p = q.

[-](n101 + 11 = ngag +12).

[]((n1 — n2)og = re — r)’

if (i) @1 =ac ao, (ii) a1 is AG-atomic, (iii) @y is irreducible with respect to AG,
(iv) ny > ng, (v) ng #0or 71 #0, and (vi) ag > 1 and ag > 7.

Simp g-Isolation

We let Simp, (L) consist of all literals L’ such that there exists a simplification by AG-
Sum Contraction, AG-Atom Rewriting or AG-Isolation with premise L and conclusion L'.

Lemma 5.8 Simp,g is a simplification function that is admissible with respect to Sag.

Proof: By Lemmas 4.10 and 5.7 the rules are simplification rules.

It remains to show that any literal not in Normag can be simplified by Simp,g. Let
L = [-](p = ¢q) and assume without loss of generality p > g. Suppose s is the maximal
summand in the sum p. Then p =nis+p' and g =n9s+ ¢, n1 >0, no >0, s> p' and
s > ¢' by the multiset property of »~.

(1) Suppose s = —s', and p’ =a¢ s’ + p”. Then Sum Contraction applies. It cannot be
the case that s’ occurs in ¢’ but not in p’, since this contradicts p > g.

(2) Suppose this is not the case, and s is reducible by AG. Then AG-Theory Super-
position applies.

(3) Otherwise p is irreducible with respect to AG \ {(AG.1)}, and s and —s do not
occur together on one side of the literal. We consider applying AG-Isolation. s is of one
of the two forms a or —a, and we can write L as [-](mia +r1 = moa + r2) such that
m1 and me are integers which are not both zero, my > mg, a > r1 and a > re. Isolation
is applicable if mg # 0 or r1 # 0. If this is not the case then L is of the form [-](mia = r3)
where a > ro. That is, L is in AG-normal form. O

5.5 The inference system

We obtain the ground inference system below. We do not mention selection as it is identical
to the general case.

[F](s—s+p~gq) VvV C
[Fllp~q) vV C

if (i) s =ac &', (ii) —s' is a maximal summand in s — s’ + p, and (iii) s — s’ + p = ¢.

AG-Sum Contraction

Fll]+p~q vV C

[Fl(ulrl+p~q vV C

if (i) I = r is arule in AG, (ii) I’ =ac [, (iii) u[l'] is a maximal summand in u[l'] + p,
and (iv) u[l'l +p = q.

AG-Summand Rewriting
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[](n1a1 + 71 = ngag +1r2) V C

AG-Isolation
[=]((n1 —ng)ay mra—r1) V C

if (i) a1 =ac a2, (ii) a1 is AG-atomic, (iii) o is irreducible with respect to AG,
(iv) m1 > no, (v) ng #0 or 1 # 0, and (vi) a1 > r1 and ag > 79.

nax~rV D [=]((mB)[nd]=~q)V C

[Fl((mB)Ir] =q) v C Vv D
if (i) @ =ac o, (ii) m,n > 1, (iii) @ and S are AG-atomic, (iii) o and S are irreducible
with respect to AG, (v) a > r, and (vi) 8 > q.

AG-Superposition A

naxrV D [F](mB)[l'| =q) vV C

[Fl((mB)fr +i]=q) vV CV D
if 1) I’ =ac na+t, (ii) m,n > 1, (iii) @ and B are AG-atomic, (iv) a and f§ are
irreducible with respect to AG, (v) a > r, and (vi) S8 > g.

AG-Superposition B

nax~rV D [-]((mB)—d]=q) VvV C

[Fl((mB)[(n —N)a—rl=q vV CVD

if (i) @ =pc &, (i) m > 1, n > 2, (ili) @ and S are AG-atomic, (iv) a and j are
irreducible with respect to AG, (v) a > r, and (vi) 8 > g.

AG-Superposition C

Superposition A combines (AG.S1) and (AG.S2a), Superposition B uses the AC-extension
(AG.S2b), and Superposition C superposes with (AG.S2c).

00V C

AG-Reflezivity Resolution C

In practice one might want to replace the literal 0 % 0 in AG-normal form by p % ¢ and
p =ac ¢ in order to find proofs more quickly. Then the corresponding ordering restrictions
on AG-Sum Contraction and AG-Summand Rewriting may be strengthened from > to >.

nax~rVnd =r vC
rgr Vad =rv<C

if (i) @ =ac o, (i) n > 1, (iii) « is AG-atomic, (iv) « is irreducible with respect
to AG, (v) a=r, (vi) a =7/, (vii) r = r'.

AG-Equality Factoring

We let Supg be the set of these inferences, where for each inference the same restrictions
by selection as in the general case apply.

Theorem 5.9 Sup,g is refutationally complete for AG.

Proof: This follow from Theorem 4.20 in combination with Propositions 5.1 and 5.2, and
Lemmas 5.4 and 5.8. Note that due to the absence of extension peaks there are no
Extension Superposition inferences. O
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Commutative Rings

Commutative rings (with a unit element) extend abelian groups by a commutative oper-
ation + with a unit element 1, such that - distributes over +. We will only consider rings
with a unit element. Since - is associative and commutative we let AC = AC(+) U AC()
in this section. The following term rewriting system CR modulo AC is again by Peterson
and Stickel (1981).

r+0=>z (CR.1)
z+(—z) =0 (CR.2)
z+y+(-y) ==z (CR.2e¢)
—0=0 (CR.3)
—(—z)=>=z (CR.4)
—(z+y) = (—2) + (-y) (CR.5)
z:-0=0 (CR.6)
z-1=z (CR.7)
z-(y+2)=(z-y)+ (z-2) (CR.8)
z-(-y)=>—(z-y) (CR.9)

Rules (CR.1)—(CR.5) are the rules for abelian groups. Again, CR contains the necessary
AC-extensions, which in this case is only CR.2e. We let CR = AC\gnd(CR).

Proposition 6.1 CR is convergent modulo AC.

Proof: This follows from the convergence modulo AC of CR (Peterson and Stickel 1981).
O

The set of interpreted function symbols Fcg is {+,-,—,0,1}. In addition to the nota-
tional conventions for abelian groups we let ¢ and 1 denote terms of the form a; ---
where «; is atomic for 4 = 1,...,n. We will call such a term a product. The product
is proper if n > 2. For n = 0 we obtain the empty product, which we identify with the
constant 1. More generally, our meta-level notation will now be modulo ACU for - as well.
That is, when we write ¢ = ¢1¢9 then ¢; or ¢ may be missing, and ¢ can have one of
the forms ¢1, ¢9 or 1, where 9 =1, ¢1 =1, or ¢p1 = ¢p9 = 1, respectively. We say that
¢ divides 1 and write ¢ | ¢ if there exists some ¢’ such that ¢¢’ =ac 1. Division is a
quasi-ordering with equivalence kernel AC. By factoring one obtains a partial ordering,
which is isomorphic to the submultiset ordering on finite multisets over atomic terms.

65
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Hence it is easily seen to be a lattice, and we may write lem(¢1, ¢2) for the least common
multiple and ged (1, ¢2) for the greatest common divisor of ¢ and ¢9. lem and ged are
only determined up to AC. Terms of the form n¢ will be called monomials.

6.1 Termination

In this case we need a more complicated term ordering. We use the lexicographic com-
bination of a quasi-ordering that is essentially the modified associative path ordering
(MAPO) (Delor and Puel 1993), an ordering by polynomial interpretation (Peterson and
Stickel 1981), and the AC-RPO (Rubio and Nieuwenhuis 1995).

We define the first ordering as a TPO for F; = {+, - ,—,0,1}. We assume that a total
precedence =, on F' \ Fy is given, and let >~p also denote the TPO-admissible extension
of =, to F. For the TPO-status we use the method of Section 3.3. That is, we are given a
set of constants Fz and a quasi-ordering >, on F, and we need to define an ordering >
on terms over Fr U F that extends >, and satisfies the conditions of Theorem 3.13.

That ordering is defined by assigning a certain complexity to any term in normal form
with respect to the term rewriting system Dcr = AC\gnd (D/C\R) modulo AC, where Dcg
consists of the rules

—(z+y) = (—2) +(-y) (CR.5)
z-(y+z)=(x-y)+ (z-2) (CR.8)
z-(—y) = —(z-y) (CR.9)

from CR. Hence Dcp is a subset of CR. This term rewriting system is convergent mod-
ulo AC. It distributes - and — over +, and - over —. We denote the normal form of ¢
with respect to Dcr by Dcr(t). A Der-normal form of a term over F; U F is made up
of possibly empty layers of function symbols, with + symbols above — symbols above -
symbols and constants at the bottom. That is,

Dcr(t) = =" (¢1) + -+ =" (¢n)

where n > 1, m; >0, ¢ =ci1---Cip;, ki > 1,and ¢;5 € Fo U{0,1} for 1 <i < n and
1< j <k;. To such a term we assign the complexity

K(DCR(t)) = {(Ktbuml)’ R <K’¢n’mn>}’

where k4 = {ci,...,¢;} for any product ¢ = c;---¢;. To order complexities we first
extend >, to Fo U {0,1} such that ¢ >, 1 >, 0 for any constant ¢ in F¢. The inner
multisets k4 are ordered according to the multiset extension of >, the pairs (x4, m) are
ordered by the lexicographic product of the ordering on the inner multisets and >, and
the complexities k(Dcgr(t)) are in turn ordered by the multiset extension of the ordering
on pairs. We denote the ordering on complexities by >,. Then we define the ordering >,
on terms over Fy U F¢ by s = t if and only if k(Dcr(s)) =« x(Dcr(t)) where s and ¢ are
terms over FyU F¢. Finally we get the TPO-status =5 as the status derived from >=;, and
let
=1(7p) = Zupo (s =1)-

Lemma 6.2 Let >, be a well-ordering on F'\ Fcr. Then =1(>,) is a total ACUDcg-
compatible and AC U Dcr-antisymmetric simplification quasi-ordering on ground terms
that contains CR \ Dcg.
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Proof: We first show that =$¢ is a TPO-status by Lemma 3.9. Clearly >=;(>.) is a quasi-
ordering that extends >..

(Strictly compatible with contexts) Let f,; be the function that maps any complex-
ity x(Dcr(t)) to the complexity x(Dcr(u[t])). To see that f,q is well-defined note that
there is a one-to-one correspondence between AC-equivalence classes of terms in Dcg-
normal form and complexities. Hence Dcr(t) can be reconstructed from a given com-
plexity. We have to show that f, is strictly monotonic for any context u[]. Since strict
monotonicity is preserved by composition, it suffices to consider contexts of depth one.

(1) Consider u = s +[]. Then f,j maps x(Dcr(t)) to £(Dcr(s)) U k(Dcr(t)), which is
strictly monotonic.

(2) Consider u = —[]. Then

fu[]({<l$¢1,m1>, cey (m¢k,mk)}) = {(K)m,ml + 1), cey <m¢k,mk + 1)}

Jup) 1s strictly monotonic, since it is the multiset extension of the pairing of the identity
and the strictly monotonic function z — z + 1.
(3) Consider u = s - []. For s = —"(1)) we get

fup{{sg,,ma), - (g mi) ) = {{Kgy U kg, mi +n),..., (kg Uky, mk +n)}.

In this case f, is the multiset extension of (k4,m) = (kg U Ky, m + n), which is strictly
monotonic, since kg — kg U ky and m — m + n are. Hence f,[ is strictly monotonic for
s = ="(¢). For s = =" (¢p1) + -++ + =" () we see that f,j = (fu,pU---U fy[) where
ug[] = ="(3;) - [ for i = 1,...,l. As a finite union of strictly monotonic functions f, is
strictly monotonic.

(Subterm property) It suffices to consider contexts of depth one, then the subterm
property follows by structural induction. We have to show (1) s+t = ¢, (2) s-t =, ¢, and
(3) —t =4 t. For (1) we observe that x(Dcr(t)) is a proper submultiset of kK(Dcgr(s + t)).
For (2) we observe that for every element of k(Dcg(¢)) there exists at least one element
of k(Dcr(s - t)) with at least one additional factor. For (3) the m; increase by one. Since
nothing else changes, u[t] is in each case greater than t.

(Decreases infinite derivations) Suppose there is some infinite descending chain

&(Dcr(t1)) =« £(Dcr(t2)) = - - -
Then there exists an infinite descending chain of pairs
(Kgr,m1) > (Kgy,ma) > ...,
and since > on natural numbers is well-founded an infinite descending chain
Kgs, > mul Ke;, mul - -
Then in turn there exists an infinite descending chain of constants
Cl e Cr>c.nn,

where ¢; occurs in some ¢, for 1 < j; < jo < .... The constants c;,co,... are from Fg,
since there is no infinite descending chain starting in 0 or 1.
(Constant dominance condition) By inspection.
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(AC U DR -compatible) We have to show that >, is AC U D¢gr-compatible. Suppose
8 €ACUDGr §' =t t' € ACUDGg - Then

#(Dcr(s)) = £(Dcr(8')) =x £(Dcr(t)) = £(Dcr(t))

implies s > t.
(AC U Dcg-antisymmetric) We have to show that the quasi-ordering >(>.) is (AC U
Dcr U ~¢)-antisymmetric. Suppose s ~1 ¢ and

Dcr(s) = =™ (1) +--- + —""*(¢%) and
Dcr(t) = =" (1) + - + ="t (¢h1).

Then k(Dcr(s)) ~x £(Dcr(t)) and there exists a permutation 7 such that (kg,, M) ~ies
(Kipry> Mim(i))» and hence Ko, ~mui(=c) Ky, - Now suppose ¢; = ci1---cik; and ¢y =
di1 -+ +dy;. Then there again exists permutations m; such that ¢;; ~ dw(i)rﬁ(i)(j)- Based

on these permutations we show that s é}ACUDCRUNC t. First we normalize s and ¢ with
respect to Dcr. Next we pick a representative for each ~.-equivalence class and replace
the constants c¢;; and d;; by their representatives cgj and d;, i respectively. Then cm =
d;r(i)“(i)(j) for 1 < ¢ < kand 1< j<k; which implies that @, =ac ¢ ;) Where ¢, =
ciy - ¢y, and Q/J;(i) = d;r(z.)l .- d;r(i)l,r Since also m; = ny() for i = 1,. k, we finally
obtain Dcr(s) =ac Dcr(?). Altogether we have shown s =AcuDcgU~e B

(Total) Since > is assumed total, > on natural numbers is total, and since multiset
extension and lexicographic product preserve totality, =;(>.) is total. Hence > is total
by Lemma, 3.10.

(Orients rules from left to right) (CR.2) is oriented from left to right by > (>), because
0 is the minimal constant. For the other rules in CR\ D¢y the right-hand side is a subterm
of the left-hand side, hence by the subterm property of > (>) they are oriented from left
to right. O

Let t’éR be the ordering by polynomial interpretation induced by the following interpre-
tation:

Pt =2
pit =2
( yYy=xz+y+5
( y)=zy
(a:)—2 z+2
p}(cJ (zl,...,zn) ety +2 for f free.

This is the ordering used by Peterson and Stickel (1981) to prove termination of CR
modulo AC, extended to terms containing free function symbols.

Lemma 6.3 ={;; is a total AC-compatible simplification quasi-ordering on ground terms
that orients the rules in Dogr from left to right.

Proof: E%R is a total simplification quasi-ordering on ground terms by Proposition 2.10
and AC-compatible with respect to + and - by Proposition 2.11. By computing the
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polynomials one sees that the rules in Dcr are oriented from left to right:

P (—(z+y) =20 +y) +2=2(x+y+5) +2 =25+ 2y +12
PP (—2) + (—9) =pT (=) + P (—y) +5 =20+ 2+ 2y + 2+ 5 =20+ 2y +9
PRz (y+2) =apR(y+2) =x(y+2+5) =y +x2+ 5z
p°Rz-y+z-2)=ay+z245
CR _ CR _ _
p (@ (-y) =2p " (—y) =22y +2) =22y + 2z
PP (—(z - y)) = 23y + 2

Note that a polynomial nx is greater than n, since variables are instantiated by numbers
> 2. O

We let =cr be the lexicographic combination of >1, t’éR and > 4erpo OVer an arbitrary
precedence.

Proposition 6.4 Let >, be a total precedence on F\ Fcr. Then =cr(>p) is a total
AC-antisymmetric and AC-compatible simplification quasi-ordering on ground terms that
contains CR.

Proof: The lexicographic combination preserves total AC-compatible simplification quasi-
orderings. >cgr(>p) is AC-antisymmetric because > 4crpo is. The rules in CR are oriented
from left to right, because >; orients the rules in CR \ D¢y from left to right and satisfies

[ ~1 r for the rules in Dcgr, and because =P orients the rules in DcRr from left to right.
’ CR g
O

From now on we assume an arbitrary precedence >, and write >cg or even > for >cr(>,).

6.2 Symmetrization

We say a ground equation is in CR-normal form if it is of one of the forms (i) 0 ~ 0; or
(ii) np =~ r wheren > 1, ¢ =a1...a, k>0, ai,...,a are CR-atomic, and ¢ > r.
We let Normcg be the set of literals whose equation is in CR-normal form. We can now
define the symmetrization function for commutative rings as follows:

Scr(0=0)=10 (CR.S1)
Scr(axr)={a=r1} (CR.S2)
Scr(¢m~r)={s=r} (CR.S3a)
Ugnd({y-¢=1y-r}) if ¢is a proper product; (CR.S3b)

Scr(ng =) = {n¢ = r} (CR.S4a)
Ugnd({z +n¢p =z +r}) (CR.S4b)
Ugnd({n(y-¢)=y-r}) (CR.S4c)
Ugnd({z+n(y-¢) =z+y-r}) (CR.S4d)
U{—-¢d¢=>(n-1)¢—r} (CR.S4e)
Ugnd({—(y-¢) = -1 -¢)—(y-r)}) ifn=>2 (CR.54f)

Note that ¢ need not be a proper product for (CR.S4a)—(CR.S4f); this case applies even
to equations like 1 + 1 = 0.
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Lemma 6.5 Let ¢ be a ground product in CR-normal form and r a ground term such that
¢>=crr. Then —p =crnp—r and —(s- @) =crn(s-¢p) —(s-r).

Proof: Since ¢ is in CR-normal form it is also in Dgg-normal form, and hence a minimal
element of its ACD-equivalence class. But then ¢ »=cr 7 implies that ¢ and r are ACD-
distinct, and since »=; is ACD-antisymmetric and total ¢ >; . We have Dcgr(¢) = ¢ and

#(#) = {{r4,0)}. Suppose

Dcr(s) = =™ (¢1) +--- + =" (¢hx) and
Der(r) = ="* (1) + -+ - + ="t (¢y).

Then ¢ =1 r implies that gy =mui(=c) Ky; for any j =1,...,1. We have

k(Dcr(s - @) = {(kg, Ukg,m1),..., (K¢, UKy, my)} and
k(Dcr(—=(s-7))) = {(kp, ULy,,m1 +n1+1),...,(Kg, UKy, mk +n1 +1),

ey

<K,¢1 U/ﬁlwl,m1+nl+1>,...,<lﬂi¢k U Ky, , M —I—nl+1)},

and we see that any pair (kg, U kg, m;) in k(n(s - ¢)) and any pair (kg U kg, m; +nj + 1)
in K(Dcr(—(s-7))) is strictly smaller than (kg U kg, m; + 1) in £(Dcr(—(s- ¢))). Hence
—(s:¢p) =1 1n(s-¢) —(s-r) and —(s-¢) >cr n(s-¢) — (s-r). The case —¢p =1 n¢ —r can
be obtained in the same way by stipulating x(Dcr(s)) = {(0,0)}. 0

Lemma 6.6 Scr s a strong symmetrization function for CR.

Proof: To see that the rules in the symmetrization are oriented from left to right suppose
¢ =cr . Then s ¢ >=cgr s r for any ground term s by compatibility with contexts, and
n¢ =cr v and n(s- @) >cr s-r by the subterm property. Applying monotonicity again,
we get £+ n¢ =crx+7r and z+n(s- @) =cr = + s-r. This covers (CR.52)—(CR.S4d).
(CR.S4e) and (CR.S4f) are oriented from left to right by Lemma 6.5.

By inspection we see that n¢ is minimal among the left-hand sides in Sp(n¢ ~ r).

Next, let us discuss how the rules in the symmetrization can be derived from an
equation ! &~ r in CR-normal form. (CR.S4c) is obtained from the critical peak

n(t-¢) Et- (nid + nog) ¢

(CR.S4e) and (CR.S4f) can be obtained from a critical peak with (CR.2e) as in the case
of abelian groups. The other rules are AC-extensions, which follow by compatibility with
contexts of equality.

Finally we have to show convergence of CR U Scr(! = r) modulo AC for any equation
I = r in CR-normal form. To see that the peaks and cliffs converge it suffices like for
abelian groups to consider overlaps of rules in Scr(l = r) into rules in CR below the root
position, and overlaps among rules in Scg(l = ). The only nontrivial cases are (CR.S3)
and (CR.S4). We observe that no left-hand side of a rule in CR has - immediately above
two free variables. Hence the product ¢ in a rule of the symmetrization cannot be split into
parts when a critical pair is formed, and we may treat it as a constant. We have checked the
general case of critical pairs of rules in Scr(n¢ = r) into rules in CR by hand and verified
this against a machine-generated list of critical pairs for n = 3 and ¢ = ¢. For instance,
the critical pair between (CR.8) and (CR.S4a) above converges by applying (CR.S4c).
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n1¢1¢2

PN

172

Figure 6.1: Convergence of an extended peak

We now come to overlaps of Scr(l = r) with itself. The AC-unifiers of z-¢ and y- ¢ are
{z/y}, {z/ou, - i, y/ou, - -y}, and {z/z i, - - i), y/2- 04, - - - @, }, of which only the
first is most general. Hence (CR.S3) leads only to trivial critical peaks. Similar arguments
apply to addition and multiplication for (CR.S4). As a consequence the peaks are either
trivial, or result from overlaps of AC-extensions, where rewriting takes place in parallel
subterms. O

6.3 Critical extension peaks and transitivity

The symmetrizations of two rules ni¢y = r1 and nogs = 79 always form a peak. For if
without loss of generality n1 > ng then there is a peak

r11 <= nig = (n1 —n2)d + rarhy

where ¢ =ac lem(¢1, ¢p2) =ac 191 =ac P2¢02. Note that this peak is minimal, there is
no peak with a smaller middle term. This is an extension peak if and only if 11 ¢ properly
contains both nj¢; and na¢e. That is, 11 # 1 and ny > no or e # 1.

Theorem 6.7 Let nip; = r; be a rewrite rule in Normcg for i = 1,2, and assume without
loss of generality n1 > no.
These two rules have the single critical extension peak

T1%p1 <= N1 = (n1 — n2)P + roiho

where ¢ =ac lem(py, d2) =ac d191 =ac P2tp2 if (1) Y1 # 1, (2) n1 > no or hy £ 1, and
(8) either (a) ni,ne > 2, (b) n1 > 2, no =1 and ¢2 is a proper product with ged(¢y1, d2) # 1,
or (¢c) n1 =ng =1 and ¢1 and ¢y are proper products with ged(p1, o) # 1.

Otherwise there is no critical extension peak between these two rules.

Proof: First we note that whenever n; = 1 and ¢; is not a proper product for either ¢ =1
or i = 2 then there is no extension peak. Otherwise, if no = 1 and ged(¢1, ¢2) = 1 then the
peak converges, as indicated in Figure 6.1. If this is not the case then either ni,no > 2,
or ng > 2, nyg = 1 and ¢9 is a proper product with ged(¢i,¢2) # 1, or ng = ng = 1
and ¢; and ¢9 are proper products in with gcd(¢1, ¢2) # 1, which is the condition for the
existence of a critical extension peak in the theorem. For this peak we now show that it
is the only one.
By Lemma 4.24 it suffices to show that any Extension Superposition inference

nigr R Napo R 9
11 &ty
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() A trivial o abcwi + abcwy + U1
a rivial overlap: vy + bedwsy + bedwy + bedws
abcwy + abcwi + V1

(b) A nontrivial overlap: vy -+ bedwy + bedwy + bedws

abcwi + abcwi + v

(c) A minimal overlap: bedws + bedws + bedws

Figure 6.2: Overlaps of sums

b1 w) b1 v w
—N——— N —t— N AN
a b wy a b -c- wy
w9 b d w9 d b
~ ——— ~ N —
w, 2 wh W 2
N - . N - S~
w’ w' w
(a) A minimal overlap (b) A nonminimal overlap

Figure 6.3: Overlaps of products

with main premise
C=t1%tVitggta Viirty

is redundant, if the extension peak t; <= t = t3 between n1¢1 = r1 and na¢gs = 19 is not
of the form above. That is, we have to show

Transqc U {n1</>1 = r1,N9¢2 = 7‘2} |:I 11 = to.

Consider some interpretation Iy that satisfies Transc U {ni¢1 = r1,n9¢2 = ro}. We have
to show that ¢; = t3 is true in Iy. Then Ry contains these two rules, Sy = Scr(Rn),
and CR U Sy is Church-Rosser on terms below ¢. Let S; = Scr(l; = r;) for i = 1,2. The
rules from §; can be grouped into the following two most general cases:

vi + ni(wig;) = vi +wir; (6.1)

—(widi) = (ng — 1) (wics) — (wirs)

Other forms may be seen as special cases, where v; or w; are omitted, where n; = 1, or
where ¢; is missing. The analysis of these cases is essentially the same. Without loss of
generality we assume 1 > no.

(1) We start by considering extended peaks of two ground rules [; = r; of the form (6.1).
Since AC-contexts can be moved into v; or w;, we need to consider only overlaps at the
root in which the term at the top of the peak is equal to both left-hand sides.

(a) If the sums n;w;¢; don’t overlap in some product, the rewriting steps are indepen-
dent of each other and the peak is trivially redundant (Figure 6.2a).

(b) If at least one product overlaps then wi¢; =ac wape (Figure 6.2b). Let w be the
greatest common divisor of w; and we. Then w; = ww} for i = 1,2 (Figure 6.3b). Next,
let w' = wi¢$1 =ac whpe. We get the most general nontrivial overlap v + njww’ =ac
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(n—n1)ww +w - [n1w']

S1 \;;\\\\\\\s
yd

(n —n))ww' +w - [rw)] (n —n1)ww +w- [(n1 — no)w' + rowl]
N x -

CRUSN "~_ - CRUSx

*|CR *|CR
51 52

(n —n1)ww' + riww] (n — ng)ww' + reww)

ACUCRUSyN

Figure 6.4: Redundancy of an extended peak

vy + noww' where v; = v + (n — n;)ww' for some v and n. Then v + (n — ny)ww' is the
part that v; and v9 have in common.

If v is not empty, we can show redundancy by taking the smaller proof without v and
putting the context v + [] around every term in the proof. Hence we may assume that v
is empty.

Next we consider the case w # 1 or n > njy. Figure 6.4 shows why such a peak is
redundant. The nonempty context implies that the peak consisting of the boxed formulas
is smaller than n(ww'), hence we may assume the existence of the dashed proof. From
this we get the dotted proof by putting the context (n — ni)ww' + w - [] around its terms
and normalizing it. The terms in the dashed proof have strictly less occurrences of w’
than nyw', and normalizing transforms them into the same number of occurrences of ww’.
Thus, the terms in the dotted proof stay below the bound n(ww'). From the Church-Rosser
property below n(ww') we obtain that (n —nq)ww’ + riww!| Jcrusy (n—ne)ww’ +roww),
i.e., the critical peak converges. Note that we get the critical extended peak if the context
is empty.

(c) The only other overlap of two extended rules at the root position occurs between
rules of the form (6.2), that is —(w;¢;) = (n; — 1)(wi¢i) — (wjir;). Then the overlapping
term is —w =ac —(w1¢1) =ac —(w2¢2) where we let w =pc w11 =ac wape. Figure 6.5
illustrates why this peak is also redundant. We get the dotted proof from the dashed
proof by putting the context (n; — 1)w — [] around it and using the same construction as
in case (b). The dotted proof stays below the bound —w, because the normal forms in
the transformed proof contain no negated occurrence of the maximal product w, and the
ordering is constructed in such a way that any number of positive occurrences is always
smaller than one negative occurrence. O

Corollary 6.8 Any critical ground term t is of the form n¢ where n > 0.

We will now use this to give a sufficient criterion for a term ¢ being in the critical closure
of a term s.
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(n1 — Dw — [n1w]

/ S1 ‘5\
(n1 — Dw — [riw] —[(n1 — na)w + rows] + (n1 — Nw
\\\* *///
CRUSN -, .-~ CRUSN
N x ¥
AC
*|CR
—w
(n1 — DHw — rw; (ng — Dw — rowy
S RTW e i
ACUCRUSN

Figure 6.5: Redundancy of an extended peak

Lemma 6.9 Let s and t be CR-irreducible ground terms, and let n¢ be the mazimal
monomial of t. If ng < s then t € ccor(s).

Proof: Since t is irreducible with respect to CR, and has the maximal monomial n¢, it
has the form n¢ + p where ¢ > p and n >z 1. Since s > n¢, we have s > p. Suppose t
were not in cccr(s). Then there would be a critical term m1) such that ¢ > m > s, so in
particular n¢ > mi > s, a contradiction to n¢ < s. O

We will need this to show that CR-Migration is a simplification.

6.4 Simplification

In this section we present simplification rules and an admissible simplification function for
commutative rings.

[F(s1+p~s2+q)

Fle~a)

CR-Cancellation
if (1) 81 =AC S2-

Cl(=s+p~q),
[](p~s+4q)

CR-Migration

Lemma 6.10 CR-Cancellation and CR-Migration are simplification rules.

Proof: (CR-Cancellation) In the proof we don’t need to distinguish the AC-equivalent
terms s; and ss, instead we always write s. Let

L=[-(s+p=~s+gq) and
L'=[-](p~ 9.
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Clearly s + p = s + q is CRy-equivalent to p = ¢, hence {L} UCR; = L. It remains to
show

{[-](p = q)} U Transy, =1 [-](s +p~ s+ q).

If the literals are positive this is immediate by monotonicity, which holds in any candidate
model Iy. For negative literals we have to show

{s+p=~s+q}UTrans; =1 p =g,

where we must be careful not to exceed the bound on transitivity. Let I be some can-
didate model that satisfies Transy, and s + p = s + ¢. That is, there exists a valley proof
s+plcrusy s t¢-

(1) Suppose one of s, p or ¢ is not in CR-normal form. Then we have the following
situation:

8 +P s+gq
* *| CR

CRUS CRUS
3 +p S'—I—q'

\\\ * *///’/

CRUS ~~. " _.-7 CRUS

N > £
E

If we can cancel s’ from s’ + p’ & s’ + ¢’ then we obtain p’ || ¢, which implies p || ¢. So
assume from now on that s, p and ¢ are in CR-normal form.

(2) If s is a proper sum then it suffices to cancel one summand at a time. So assume
s=¢ors=—ap.

(3) If s = —¢ then we add the context ¢ + [] around every term in the proof and
normalize. Since ¢ is smaller than —¢ which is bounded by the maximal term, transitivity
holds for all terms in this proof, and we obtain p | g.

(4) Otherwise s = ¢. If ¢ is not a maximal summand in ¢ + p or ¢ + ¢, then we may
add the context —¢ + [] around every term in the proof and proceed as in (3).

(5) It remains to consider the case where s = ¢ is a maximal summand. We write Sy
for the set of rewrite rules of the form v +n¢ = u+ 7 in Sy. Welet p = (m —1)¢p +p/,
g = (n—1)¢+ ¢, and move steps with Sy to the front of the rewrite sequences. Assume
without loss of generality m > n.

m¢ + p' ne + ¢
* *
Sd’l* k%% *lsgb
E
nodp + 11 +p’ (1) n9¢ +ro+4q
CRUS s s & CRUS
E

Observe that ng¢ is not reduced at all, and that p’ and ¢’ are only reduced in the valley
proof at the bottom. By taking the valley proof apart we obtain rewrite sequences (m —
ng)$ = r1 and (n —ng)¢ = ro, and a valley proof 71 + p’ || o + ¢'. We will construct the
desired small proof from these parts.
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We first consider the peak formed by the Sy-reductions. Since (m —mng)¢ <cr m¢ and
transitivity holds up to md, this peak converges, even if one of the rewrite sequences is
empty. We obtain the dashed proof in the following diagram:

(m —ng)¢
* *
S¢ S¢
1 (m—n)p+re
A * (2) *x 7/
CRUS g ok ¥~ CRUS
E

Finally, in the following proof we combine the valley proof (1) from above with this
proof (2), under contexts —r1 + (m — 1)¢ + [] and —[] + (m — 1)d + r2 + ¢/, respectively:

—ri+(m-1)¢+r +p —((m—n)p+r2) +(m—1)d+r2+¢
—ri+(m—1)¢+r2+q
CRUS ’CRUS’
CRUS CRUS
m—1)¢ +p' (n—1o+4q

By normalizing this proof we obtain a proof that contains (m — 1)¢ as its maximal mono-
mial, hence transitivity holds for all terms in the proof and we obtain a valley proof
p=(m—-1)p+p | (n—1)¢+ ¢. Note that the normalization removes all occurrences
of —¢ in the dashed part of the proof.

(CR-Migration) Let

C =[-](—s+p=gq) and
D =[-](p=s+q).
Clearly {C} UCR; = D. It remains to show
{[_‘](_3 +p= q)} U Transc IZI [—|](p ~ S+ q)

(1) Suppose the literals are positive, and consider some candidate model I such that
—s+ p ~ g and Transc hold in Iy. That is, there exists a valley proof —s + p {crusy ¢-
We place the context s + [] around every term in the proof and normalize with respect
to CR, and obtain a proof p éACUCRUSN 8 4+ g where each term is smaller than —s + p.
Hence p = s + ¢ is true in Iy by transitivity.

(2) Otherwise the literals are negative. Then we have to show

{p~s+q}UTrans¢c Fr —s+p=q.

Let Iy be a candidate model such that p = s + ¢ and Trans¢c hold in In. Then there
is a valley proof p {crusy s+ ¢g. We add the context —s + [] around every term in the
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proof, normalize with respect to CR, and obtain an equational proof —s+p < ACUCRUSy ¢-
Since any monomial in this proof is bounded by a monomial in —s + p or ¢, all the terms
of the proof are in cccr(—s + p) or cccr(q), whichever is larger. Then transitivity yields

—s+plaq. O

Next we present the simplification rules Simpcg-Sum Contraction, Simpcg-Summand
Rewriting and Simpcg-Isolation, which are sufficient to obtain CR-normal forms of lit-
erals.

[Fl(s =5 +p=q)
[-](p = q)

if (i) s =ac §', (ii) —¢’ is a maximal summand in s — s’ +p, (iii) s — s’ +p = ¢.

Simpcg-Sum Contraction

Sl +p~g),
[F)(ulr] +p = q)

if (i) [ = r is a rule in CR, (ii) u[l] is a maximal summand in u[l'] 4+ p, and
(iii) ull] + p = ¢.

Simpgg-Summand Rewriting

[Fl(n1¢s + 71 = nadp +12)

[Fl((n1 —na)r o —11)

if (i) ¢1 =ac o2, (ii) ¢1 is a product, (iii) ¢; is irreducible with respect to CR,
(iv) ny > ng, (v) ng #0or 71 # 0, and (vi) ¢1 > r1 and ¢9 > 79.

Simpcy -Isolation

We let Simpg (L) consist of all literals L’ such that there exists a simplification by Simpcg-
Sum Contraction, Simpcgr-Summand Rewriting or Simpcgr-Isolation with premise L and
conclusion L'.

Lemma 6.11 Simpcy s an admissible simplification function for Normcg.

Proof: Simpcgr-Sum Contraction and Simpcgr-Summand Rewriting are instances of CR-
Rewriting, and Simpcg-Isolation can be obtained as a sequence of CR-Cancellation and
CR-Migration simplifications. Hence they are simplification rules.

The proof of admissibility is strictly analogous to the one for abelian groups. O

6.5 The inference system
We obtain the following inference systems. Note that the inference rules except for CR-

Superposition are essentially the same as their counterparts for abelian groups.

[F](s—s+p=gq) VvV C
Flp~q) vV C

if (i) s =ac §', (ii) —¢ is a maximal summand in s — s’ + p, and (iii)) s — s’ + p = ¢.

CR-Sum Contraction

Fll]+p=q Vv C

[Flulrl+p~q) v C

if (i) I = r is a rule in CR, (ii) | =ac ', (iii) u[l'] is a maximal summand in u[l'] + p,
and (iv) u[l'l +p = q.

CR-Summand Rewriting



78 CHAPTER 6. COMMUTATIVE RINGS

[F](nig1 + 71 = ngge +12) V C

[=]((n1 —ng)¢r mre—11) V C

if (i) ¢1 =ac ¢2, (ii) ¢1 is a product, (iii) ¢y is irreducible with respect to CR,
(iv) n1 > no, (v) ng # 0 or r1 # 0, and (vi) ¢1 = r1 and ¢ > 9.

CR-Isolation

nigr =ry V Cy oo = 1o V Cy

riY & (n1 — n2)¢—|—7“2’¢2 v Cy VvV Cy

if (i) ¢1 and ¢ are products, (ii) ¢ =ac lem(d1, P2) =ac P11 =ac Potbe, (iii) ¢
and ¢o are irreducible with respect to CR, (iv) 91 #1, (v) ny > ng or iy # 1,
(vi) (&) n1 > ng > 2, or (b) ng > 2, ng = 1, ¢ is a proper product with
ged(d1,¢2) # 1, or (¢) ng = ne = 1 and ¢ and ¢o are proper products with
ged(d1, o) # 1, (vil) ¢1 = r1 and ¢y = ro.

CR-Ezxtension Superposition

The main premise of this inference is

ripr Enid V nid # (n1 —na)d + rahe V riyhpr & (ny — na)d + raths.

ng~rV D [H((mp)ln¢'l=q)VC

[Fl((my)[r]=q) v CV D
if (1) ¢ =ac ¢', (il) m,n > 1, (iii) ¢ and 9 are products, (iv) ¢ and 1 are irreducible
with respect to CR, and (v) ¢ > r and ¢ > q.

CR-Superposition A

CR-Superposition A combines cases (CR.S2), (CR.S3a) and (CR.S4a) of the symmetriza-
tion.

ng=r VD [H[((mp)l'l=q) VC
[Fl((my)[r+tl~=q) vV CV D

if (i) I' =ac no + ¢, (i) m,n > 1, (iii) ¢ and 9 are products, (iv) either n > 2 or ¢

is a proper product, (v) ¢ and 1 are irreducible with respect to CR, (vi) ¢ > r and

Y >q.

CR-Superposition B

Superposition B combines cases (CR.S3b) and (CR.S4b).

ngxrV.D [H(my)l'l~q Vv C

[Fl((mi)[s-rl~q) VCV D
if (i) ' =ac n(s- @), (il) m > 1, n > 2, (iii) ¢ and ¢ are products, (iv) ¢ and 9 are
irreducible with respect to CR, (v) ¢ > r and 9 > g.

CR-Superposition C

Superposition C is for case (CR.S4c).

ngxrVD [H((mp)l'l~q)VC

[Fl((my)[s-r]=q) VOV D
if (i) I' =ac n(s- @), (il) m > 1, n > 2, (iii) ¢ and ¢ are products, (iv) ¢ and 9 are
irreducible with respect to CR, (v) ¢ > r and ¢ > q.

CR-Superposition D
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CR-Superposition D is for case (CR.S4d).

ngrr VD [H((my)[-¢]~q Vv C
[Fl(my)[(n—1)¢p—r]~q) VC VD

if (i) ¢ =ac ¢, (i) m > 1, n > 2, (iii) ¢ and ) are products, (iv) ¢ and 1 are
irreducible with respect to CR, (v) ¢ > r and ¢ > q.

CR-Superposition E

CR-Superposition E is for case (CR.S4e)

ng=r VD [H((mp)l']~=q) VvV C

[Fl((my)[(n —1)p—r]~q) VC VD

if (i) I' =ac —(s- @), (i) m>1, n > 2, (iii) ¢ and 9 are products, (iv) ¢ and 1) are
irreducible with respect to CR, (v) ¢ &= r and ¥ > q.

CR-Superposition F

CR-Superposition F is for case (CR.S4f).

00V C

CR-Reflexivity Resolution C

npg=rVnd =r vC

r#ér’Vnp=r v _C

if (i) ¢ =ac ¢, (i) n > 1, (iii) ¢ is CR-atomic, (iv) ¢ is irreducible with respect
to CR, (v) ¢ =rand ¢ =1, (vi) r = r'.

CR-Equality Factoring

We let Supcg be the set of these inferences, where for each inference the same restrictions
by selection as in the general case apply.

Theorem 6.12 Supcg is refutationally complete for CRy.

Proof: Again this follow from Theorem 4.20 in combination with Propositions 6.1 and 6.4,
and Lemmas 6.6 and 6.11. Note that by using Theorem 6.7 we restrict CR-Extension
Superposition to critical extension peaks. O
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Modules

Consider a ring (R,+Rr,r,—Rr,0r,1gr). A (left) module over R is an abelian group
(M, 4+, —n,00) together with an operation * : R x M — M of R on M such that

lxs=s (7.1)
(a-rb)xs=ax(bx*s) (7.2)
(a+rb)*xx=a*xz+pybxzx (7.3)
ax(T+py)=a*xx+paxy. (7.4)

Note that by (7.1) we only consider unitary modules. A module over a field is called a
vector space.

We will develop a superposition calculus for proving validity in the class of all R-
modules over some fixed ring R. The ring R must be equipped with a well-ordering >
such that 0 <g 1 and 1 <g 7 for any € R\ {0,1}. We restrict R further to be either the
ring of integers with respect to the ordering

0<rl1<p2<p...<p—-1<p—-2<p...

or a field. Note that these are integral domains. We will use that integral domains have
no zero divisors and that they obey the cancellation law for multiplication.

The equation —ps(z) = (—1) * z is valid in any module and allows to eliminate — ;s in
a preprocessing step.

Assumption 7.1 We assume from now on that —p; does not occur.

We obtain the following signature for modules:

v :MxM—M
Op: — M
ar: — R foralla € R
+r,'rR:RxXxR—R
—r:R—R
*x:RxM—M

Apart from these symbols in Fy; there are the free function symbols

f:mel) M

81
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in F'\ Fy. Terms of sort R denote elements of the ring R, and terms of sort M elements
of the module. The following syntactical restrictions prevent equations between elements
of R, which reflects that we have a hierarchical situation where R is fixed.

— Neither rewrite rules nor clauses may contain equations between R-terms.
— On the ground level only constants may occur as R-terms.

— On the nonground level, rules and literals may contain both constants and variables,
but no nested terms of sort R.

— Constraints may contain arbitrary R-terms.

From now on we drop the indices that distinguish operations in M from operations in R,
as the distinction will always be clear from the context. Let M be the following constrained
term rewriting system modulo AC for a module over R.

r+0=>z (M.1)
Oxz=0 (M.2)
lvz=>x (M.3)
vx0=0 (M.4)

vk (z+y)=>vsz+v*y (M.5)
vi* (Vo *x ) > vk [V =101 Vo] (M.6)
z+z=vxz [v=1+1] (M.7)
m*r+zr=>vkx [v="1v1+1] (M.8)
VI*T+va*T = v*T [V=101 + V9] (M.9)
y+z+zr=>y+uvkz [v=1+1] (M.7e)
y+ovisz+r=>ytuv*c [v=uv +1] (M.8e)
ytvikr+vekxzr=>y+vxz [v=uv1+ vy (M.9e)

We let AC = AC(+y) and M = AC\gnd(lV[). That is, M is a ground term rewriting
system that does rewriting with AC-matching. It is obtained from M by instantiating
variables of sort R in such a way by elements of R that the constraints are satisfied. In
this way term rewriting with M incorporates computations in R.

Lemma 7.2 M is locally ground confluent and locally ground coherent modulo AC.

Proof: Local coherence modulo AC holds, since the corresponding cliff converges for (M.1),
and since M contains the extended rules (M.7e)-(M.9¢) for (M.7)—-(M.9).

For local ground confluence modulo AC we have to show that any ground critical pair
modulo AC can be joined by a ground rewrite proof of M modulo AC. For example, let
us consider a critical pair

cx(s+azxt) S ex(arxt+s+apxt) = cx(s+apxt)+cx (ag *t)

for some ground terms s and ¢ and a1, a9, a3 € R such that a3 = a1 4+ a3. This is a ground
instance of the constrained critical pair

v* (y + v3 % x) 1\gefu*(vl>|<:C—{—y+vg>k:c)héf"u*(vl * 1) +v* (y+vexx) [U3 =01+ Vo).
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To show that all ground instances of this critical pair converge, we first normalize both
terms of the critical pair while collecting the constraints of the rules we apply. We obtain
the terms

viky+uoskz [vg =01+ vy A vg=v-v3] and

vikT+vky [v3=v1+va Avs=v-v1 A vg=10-v2 A U7 =05+ Vg

as normal forms. We have to check that the normalization is possible for each ground
instance of the critical pair. For M this is always the case, as the constraints do not
restrict the applicability of rules. It remains to prove that the two irreducible ground
terms obtained by reduction are AC-equivalent. On the nonground level this amounts to
checking that the constraints on the normal forms together imply AC-equivalence of the
two irreducible terms. The constraints can be simplified by substituting definitions and
eliminating variables which not occur in the term:

vky+vgxx [vg =0 (v] + v2)]

vikz+v*y [vr=v-v; +v- V9]
Since R is a commutative ring, we may use rewriting with CR to normalize the constraints:

vkyY+vsxx [vg =v-v1 +v-v9]

vikz+v*xy [vr=v-v1 + V-V

Finally, we propagate the constraints into the terms and verify AC-equivalence with respect
to the AC-axioms for both the ring and the module operations. Since associativity and
commutativity of + and - hold in any commutative ring, this implies equality of the
constants from R and hence AC-equivalence with respect to the module operation + for
any two ground instances.

Technically, this procedure can be emulated by propagating the constraints into the
rules of M _resulting in a system M' and showing convergence of all critical peaks with
respect to M' U CR modulo AC. E.g., (M.9) becomes

V1 * T +vakx = (v] +v2) T

Note that the left-hand sides of rules are the same in M and M’ , hence the critical pairs
stay essentially the same. We have implemented this in Prolog and used it to show that
all critical pairs between rules in M converge. O

For modules we use the notational conventions of abelian groups, and additionally the
following: When we write b * o then this may also denote o for b = 1 and 0 for b = 0.
Also note that an R-expression like for example (a+ b) in a ground term (a+ b) ¢ denotes
the constant obtained by evaluating the expression, and not the expression itself, since a
compound term of sort R is not allowed in this context. We will use s —t as an abbreviation
for s+ (—1) ¢t in M and a — b as an abbreviation for a + (—b) in R.

7.1 Termination

The termination ordering >y for modules follows the same schema as the termination
ordering for commutative rings.
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Again we use the lexicographic combination of a problem-specific TPO, an ordering
by polynomial interpretation, and the AC-RPO. We let F; = F\y = {+, *,—,0,1} UR,
assume a total precedence =, on F \ Fr, and let >=p also denote its TPO-admissible
extension to F. For the TPO-status we again use the method of Section 3.3. Let >, be a
quasi-ordering on Fo. We define an ordering »; on terms over F; U F¢ that extends >,
and satisfies the conditions of Lemma 3.9.

Let D be the term rewriting system consisting of the distributivity rule (M.5), and let
D = AC\gnd(D). Then D is convergent modulo AC. We will assign a complexity « to
any ground term over F; U F¢ in D-normal form. Let ¢ be such a ground term. It has the
form

t=aq1* " %Ak, ¥C1 + -+ ap1* - *ank, *Cpy

where n>1, k; >0, ¢; € FcU{0,1}, and a;; € Rfori=1,...,nand j =1,...,k. In
the ordering we need to identify constants ¢; in the same ~.-equivalence class, hence we
assume a function rep : Fo — F¢ such that rep(c;) = rep(c;) if and only if ¢; ~. ¢;. We
extend rep to Fo U {0,1} by rep(0) = 0 and rep(1) = 1. The ordering >, is extended to
Fc U{0,1} such that ¢ >, 1 >, 0 for any constant ¢ in Fo. We let

occ(t,c;) =1{j | ¢j ~c ci}
#(t,c;) = |occ(t, ¢

CS(t,CZ’) = {<a11,. .. ,a1k1>,. cey (anl, . ,ankn)}

That is, occ(t,c;) is the set of indices of the occurrences of constants in the same ~-
equivalence class as cj, #(t,¢;) is the number of these occurrences, and cs(t,¢;) is the
multiset of the tuples of coefficients associated with these occurrences. To each equivalence
class we associate the tuple (rep(c;), #(t,¢;i),cs(t, ¢;)). Finally, we let k(t) be the set of
tuples for the constants from F that occur in t. We order these complexities according to
the multiset extension of the lexicographic combination of ., > and the multiset extension
of the length-lexicographic extension of >»r. We denote the ordering on complexities
by =k. Then we define the ordering >=; on terms over F;y U Fo by s »=; t if and only
if K(D(s)) =, k(D(t)) where s and ¢ are terms over F; U F¢. Finally we get the TPO-
status tft as the status derived from >, and let

=1(=p) = =tpo(=p, =37).

Lemma 7.3 Let >, be a well-ordering on F \ Fyi. Then >=1(>p) is a total AC U D-
compatible and AC U D-antisymmetric simplification quasi-ordering on ground terms that
contains M \ D.

Proof: (Simplification quasi-ordering) We begin by showing that >=$¢ is a TPO-status by
Lemma 3.9.

(Strictly compatible with contexts) Let f, be the function that maps any complex-
ity k(D(t)) to the complexity «(D(u[t])), and let

D(t) = ai1 * -+ * @1, x 1 + -+ + Qp1 * - * Qg * Cp-

To see that f,[ is well-defined, observe that a term in normal form can be reconstructed
up to AC U ~.-equivalence from its complexity, and that x maps terms in an AC U ~-
equivalence class to the same complexity. We show that f,[ is strictly monotonic for any
context u[] by considering contexts of depth one.
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(1) Consider u = s + [].
(1.1) Suppose s = by * -+~ * by x d.
(1.1.1) Suppose no ¢; is ~.-equivalent to d. Then

fup(5(2)) = 5(2) U{(rep(d), 1,{{br,...,b)})}

and f, is strictly monotonic.
(1.1.2) Otherwise d ~, ¢; for some i = 1,...,k. Suppose without loss of generality
d ~. c1. Then

fup(s(t)) = {{c1, #(t, e1) + L es(t, e1) U {(br, ..., b)) 1)}
U {{ci, #(t, ci),cs(t, ) | ¢i #ecc1}

Consider the function that maps a tuple (¢, n, M) to (¢,n+ 1, M U {{(b1,...,b)}) ifc ~.d
and to (c,n, M) otherwise. This function is strictly monotonic according to Proposi-
tion 2.8(7). Hence its multiset extension f, is strictly monotonic.

(1.2) Otherwise s is a proper sum, and f, can be obtained as a finite composition of
the strictly monotonic functions of case (1.1). Hence f, is strictly monotonic.

(2) Consider u = a * []. Then f,j maps any tuple (a1, ...,ax) of coefficients in the
multiset in the third component to (a,as,...,a;). This mapping is strictly monotonic.
By multiset extension, lexicographic product with identity functions for the first two com-
ponents and again multiset extension we obtain f,;, which we conclude to be strictly
monotonic.

(Subterm property) It suffices to consider contexts of depth one, then the subterm
property follows by structural induction. We have to show (1) s+t >=; ¢t and (2) a*xt > t.
For (1) we observe that x(D(s +t)) has at least one additional tuple or a tuple whose
second component increases when compared to x(D(t)). For (2) we observe that in each
tuple in k(D(t)) the lengths of the tuples in the multiset in the third component increase
by one.

(Decreases infinite derivations) Suppose there is some infinite descending chain

KZ(D(tl)) K K,(D(tg)) ke -
Then there exists an infinite descending chain of tuples
<cl,’rL1,M1> - <CQ,'n,2,M2> -

Since > on natural numbers and > g and its extensions are well-founded, there exists an
infinite descending chain

Cl > c¢C2 > ¢.--
in the first component, where ¢; occurs in some ¢;, for 1 < j; < jo < .... The con-
stants c1,co,... are from F¢, since there is no infinite descending chain starting in 0

or 1.

(Constant dominance condition) The constants are in the first component of each tuple,
hence they dominate the ordering.

(ACUD-compatible) We have to show that >; is ACUD-compatible. Suppose s < acup
s' =it ©acup t. Then
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implies s > t.
(ACUD-antisymmetric) We have to show that the quasi-ordering =;(>.) is ACUDU~,-
antisymmetric. Suppose s ~;(>.) ¢t and

k(D(s)) = {{c1,m1, My),...,{ck, mg, My)} and
H(D(t)) = {(dl,nl,N1>, ey <dl>nl;Nl>}-

Then £(D(s)) ~x k(D(t)), k =1, and there exists a permutation 7 such that ¢; = d(;),
m; = Ny and M; = Ny for i = 1,..., k. We can now show that D(s) & acu~, D(2).
First we replace each constant ¢ by its representative rep(c). Let s’ and ' be the resulting
terms. They can be written as s’ = sy +--- + s and ¢/ = ¢; + --- + t; where s; consists
of the terms containing ¢; and ¢; of the terms containing d;. From M; = N we infer
that ¢; and d ;) are associated with the same tuples of coefficients from R, and that hence
8i =AC tr(;) and in turn s' =xc t'. We conclude that s =acupun~. -

(Total) Since »., > and > g are total, and since multiset and lexicographic extension
as well as lexicographic product preserve totality, =;(>.) is total. Hence > is total by
Lemma, 3.10.

(Orients rules from left to right) Rules (M.1), (M.3) and (M.4) are oriented from left
to right by the subterm property, rule (M.2) because 0 is the minimal term.

(M.6) decreases the length of the tuples of coefficients. More formally, consider some
ground instance (M.6)o and let ¢ = Pr,(z0), by = v10, by = veo and b = vo. Then we
have to show that

K(D(by * (b2 * 1)) = k(D(b*1)).

Now consider some triple (¢;, nj, {@1,...,a,}) in x(D(¢)). This corresponds to the triple
(ciymi, {b1b2a1, ..., bibaay, }) in k(D(by * (be * t))), which is greater than the corresponding
triple (c;,n;, {ba@1,...,bay,}) in kK(D(b=*t)), because tuples of coefficients are ordered by
the length-lexicographic extension of > pg.

(M.7)—(M.9¢) decrease the number of occurrences of some constants in the sum. We
consider some ground instance (M.7)o and let t = P, (zo) and b = vo. Then we have to
show that

K(D(t+1t)) =4 (D(b*1)).

Suppose
H(D(t)) = {<Cl,’l’l1, Ml)a R <ckank7 Mk>}

Then x(D(¢ + t)) contains a triple (¢, 2n;, M; U M;) where n; > 0, which is greater than
(ciyni, M) in k(D(bxt)) for i = 1,...,k. For (M.8)-(M.9e) the proof is essentially the
same, differences affect only the third component of triples. O

We let ti’,[ be the quasi-ordering induced by the following polynomial interpretation. It is
essentially the same as for commutative rings:

Py =2
=2
M _
py(r,y)=z+y+5

pl\f('u,a:):'u-w

pl}/[(azl,...,zn):z1+---+zn+2 for f free.
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Lemma 7.4 813/[ is a total AC-compatible simplification quasi-ordering on ground terms
that orients D from left to right.

We let =\ be the lexicographic combination of >, 813,[ and > gcrpo OVer an arbitrary
precedence.

Lemma 7.5 Let >, be a total precedence on F \ Fyi. Then =m(>p) is a total AC-
antisymmetric and AC-compatible simplification quasi-ordering on ground terms and con-
tains M.

Proof: Analogous to the case of commutative rings. O

We will use the next lemma to prove that rules in the symmetrization are oriented from
left to right.

Lemma 7.6 Let a be an M-atomic term in M-normal form, let r be a ground term such
that o =\ 7, and let b, " and m be elements of R such that b' =g b"”. Then b’ x a =\
b xa+m .

Proof: By a similar argument as for commutative rings we can infer a >; r from « being
in M-normal form and D U AC-antisymmetry of >;. Suppose

k(D(r)) = {{c1,n1, M1), ..., (ck,ng, Mi)}.

Then
K(a) ={{ca, 1, {1} >« £(D(r))

implies ¢q > ¢ fori = 1,...,k, since the second and third component of the tuple in ()
are minimal. If we now compare

k(D' * ) = k(b * a) = {{ca, 1, {(V) 1)}
and

k(DB *a+mx*71)) = k(" * @) Uk(D(m * 7))
<CC¥7 L, {<b”>}>} U {<clan1’ Mi)a ) <Cka Tk, Mllc>}

where we see that all triples in k(D(m x 7)) are smaller than (c,,1,{(t')}) in the first
component, and that (c,,1,{(")}) is smaller than (c,,1,{(¢')}) in the third component.
O

Proposition 7.7 M is ground convergent modulo AC.

Proof: Termination is proved by inclusion of M in >y, hence confluence and coherence
follow from the local properties proven in Lemma, 7.2. O
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7.2 Symmetrization

We start by defining M-normal forms. Remember that for each equation there has to be
an M-equivalent normal form. M-equivalence is preserved by multiplying both sides of an
equation with a unit. For R = Z the units are 1 and —1, and for R a field any nonzero
element is a unit. This allows to make the coefficient on the maximal summand positive in
the case of integers, and 1 in the case of fields, which are the minimal choices in the given
orderings. An equation ! = r is in M-normal form if either (i)l = r =0, or (ii) > r,
[ is irreducible with respect to M and [ = r has one of the forms (a) a =~ r where « is
M-atomic, or (b) b* a = r where a is M-atomic, R = Z and b > 1. The set of equations
in M-normal forms is denoted by Normy;. We use the following symmetrization function,
where we write b’ =7 b for b’ = b" + mb and b’ >p b":

Sm(0~0)=0 (M.S1)
Su(a=r)={a=r} (M.S2)
Subrxamxr)={txa=>b"xa+mxr|t =7V} (M.S3)

Lemma 7.8 Sy is a symmetrization function for M.

Proof: Sm(l = 1) is terminating by Lemma 7.6. For left-minimality the only nontrivial
case is (M.S3), where we observe that for b > 0 and any two distinct integers b; and by
with difference mb not both b; and be can be in the interval [0,b). Hence at least one of
them is greater than or equal to b with respect to >g.

Next we have to show that the rules in the symmetrization Sy(l = r) are a consequence
of I = r and M. The only interesting case is again (M.S3). From the normal form bxa =~ r
we can derive (M.S3) in two steps, using the rules (M.6) and (M.9). Consider the critical
pair

mxr<=mx(bxa) = (mb) * .

This covers all rules in Syi(! & r) with b = 0. The remaining rules are then obtained from
critical pairs of the form

Vsa+mxr<b xa+ (mb)xa=bxa,

where b’ = b" + mb.

It remains to show convergence modulo AC of M U Sy;(I = r). Local coherence is not
a problem, since no rule in Syr(l = r) has the only AC-symbol + at the root position. For
local confluence the only cases to consider are again those of overlaps of rules in Sy (Il =~ r)
into M strictly below the root position, and of overlaps of Sy (I = r) with itself.

(1) Overlaps of rules in M into rules of Sy(l & 7) cannot occur, as the left-hand sides
are normalized with respect to M. There is no critical overlap of (M.S2) into M, since
(M.S2) has a free function symbol at the root. It remains to consider overlaps of (M.S3)
into M. Since [ is irreducible with respect to M, there can be no overlaps at the root
position. There exist overlaps below the root position into (M.6), (M.8), (M.9), (M.8e)
and (M.9e).

(1.1) We first consider the peak

ax (" xa+mxr) S axl xa)= (ab) * o,

where b’ =} b". By normalizing the left-hand side with M we obtain

(ab") x a + (am) x 7.
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(1.1.1) Suppose ab’ = ab”. Since R is an integral domain, we may cancel a on both
sides. We obtain b’ = b”, which contradicts b’ =g b".
(1.1.2) Suppose ab’ =g ab”. Then Sy (b * a ~ r) contains the rule

(ab') x a = (ab"”) x a + (am) * r,

since ab’ =¢™ ab’’. By applying this rule to (ab’) * & we obtain convergence.
(1.1.3) Otherwise ab” =g ab’. In this case the rule is oriented the other way:

(ab") * a = (ab') x a + (—am) x r

Applying this rule to (ab”) *x a+ (am) * r and canceling (am) * r against (—am) x r yields
(ab) * au

(1.2) The peaks with the remaining rules are all analogous to the following one:
b"*a-l—m*r-l—bo*al\g3b'*a+b0*al\é>g (b' + by) * a,

where b’ =} b". Rewriting the left-hand side with (M.9) yields (b" + by) * o+ m * 7.
(1.2.1) Suppose b’ + by = b” + by. This cannot be the case, since this would imply
b' = b" by cancellation, in contradiction to b’ =g b".
(1.2.2) Suppose b’ + by =g b" + by. Then there exists a rule

(b +bg) xa= (b" +bg) xa+mx*r

in SMbxa=r).
(1.2.3) Otherwise b" + by =g b’ + by. Then Sy (b * o = ) contains

(0" +bg) xa= (b +bg) *a+ (—m) *r,

and canceling m * r against —m * r we again obtain convergence.

(2) It remains to show check overlaps of Sy (I = 7) into itself. Overlaps of (M.S2) into
itself are trivial.

For (M.S3) the only overlap is at the top-level. It is

M,S3 M.S3
bl xa+myxr € b xa = bhxa+mgx*r,

where b <" b =" by.

(2.1) If b = bY) then m1b =b" — b = — bl = mab, by canceling b we get m; = mo,
and we conclude that the peak is trivial.

(2.2) If b >R b then

M.S3
blxa+mixr = bhxa+ (me—my)*r+my*r =M byxa+mg*r,

since b = b' —mb = by + mab —m1b = by + (mg — m)b implies b} =" bf.
2.3) The remaining case of b)) =g b" is analogous. O
g 2 1 g

Note that it is crucial for this proof that R has no zero divisors. If this were not the case,
say biby = 0 for by,be € R\ {0}, then for a rule by x @ = r the critical pair

bl*rl\gsbl*(bg*a)hgﬁ()*a
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would not converge. To make it convergent the symmetrization would need a rule that
does not contain «, which would violate the condition of left-minimality. Hence such rings
are beyond the scope of this approach.

The symmetrization function defined above allows any rewriting step that decreases
the coeflicient in the ordering, hence in general there exist many rules with the same left-
hand side. This simplifies the confluence proof above, because any peak can be closed
with a single Sy-step. But it would also lead to superfluous Superposition inferences if
used without the restriction that only Superposition inferences with minimal right-hand
side are needed.

7.3 Critical extension peaks and transitivity

Theorem 7.9 There are no extension peaks with respect to M.

Proof: For fields there are no extended rules in the symmetrization, so R = Z is the only
interesting case. Now let b; *«; = 7; be a rewrite rule in Normy and S; = Syi(b; * o = 1)
for 1 = 1,2. Clearly S; and Sy can only overlap if @« =ac a1 =ac a9. Assume without loss
of generality that by > by. Then by *1 can be reduced by the rule by xas = by — baxas+1o
in So. Hence there is no extension peak. O

There are no critical terms with respect to M, hence ccy(t) = cem(C) = T for any ground
term ¢ and ground clause C.

Corollary 7.10 Transitivity holds in In for all sets of ground clauses N.

7.4 Simplification

For modules we will use the following Isolation rule. Its conclusion is almost in M-normal
form, the only conditions missing are that s’ is atomic and irreducible with respect to M.
Note that the conclusion is uniquely determined up to the sign of the unit u and the
order of p and ¢ in the difference. Which variant occurs depends on the orientation of
the premise. We do not break the symmetry between the two sides of the premise by
an ordering restriction, because this simplifies the proof that Isolation is a simplification.
Here our goal is to prove that Isolation is a simplification even without these restrictions,
later we will add them in order to decrease the number of inferences.

[F](b' s +p= b xs" +q)

[Fl(bxs' mux(g—p)
if (i) s’ =ac s, (ii) b = u(b/ — ") where (a) R=7Z, b>1 and u = sign(d’ — b") for
b #b" or(b) Risafield,b=1andu= (' =b") ! for ¥ #b",0or (c)b=0andu =1
for ¥ =b", (i) o' *s’' +p=b*xs' or b *s" +q>bx*s, and (iv) s’ = p and s" = q.

M-Isolation

Remember that by our notational convention a coefficient of 1 is tacitly assumed wherever
a coefficient is missing.

Lemma 7.11 M-Isolation is a simplification rule.

Proof: Since Isolation preserves M-equivalence and transitivity holds universally, and since
the conclusion is smaller than the premise, Isolation is a simplification. O
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Like in the preceding chapters the simplification function will consists of a subset of these
simplifications which obeys additional ordering restrictions. Analogously to the case of
commutative rings we restrict Simp,;-Rewriting on a literal L to redexes either inside or
above a maximal summand. We restrict M-Isolation to irreducible atomic terms. Finally,
as always the premise of the simplifications has to be oriented such that its left-hand side
is not smaller than the right hand side.

[](b' *s' + 0" 5" +p=q)

Flbxs+prq)
if (i) 8" =ac 8", (ii) b = b/ +b", (iii) b’ ' is a maximal summand in b’ x "+ b" x " +p,
and (iv) o' x s +b" x " +p = q.

Simpyr-Sum Contraction

Sl +p~g),
[Fl(ulr] +p~q)
if (i) l = risarulein M, (ii) u[l] is a maximal summand in u[l]+p, and (iii) u[l]+p = g.

Simpy-Summand Rewriting

[H(' x o' +pr b+ +q)

Flbxo/ ~ux(¢—p)
if (i) o =ac ", (ii) b = u(b) — v") where (a) R=7Z, b>1 and u = sign(t/ — b")
for o #b", or (b) R is a field, b= 1 and v = (' = b")~! for b’ #b", or (c) b= 0 and
u=1for ¥ =", (iii) either b’ =g bor p # 0, (iv) o is M-atomic and irreducible with
respect to M, (v) @ = p and " = ¢. and (vi) ¥’ xo' +p = b" x " + q.

Simpy;-Isolation

Note that the conclusion of a Simpy-Isolation is in M-normal form. We let Simpy(L)
consist of all literals L' such that there exists a simplification by Simp,,-Rewriting or
Simpy-Isolation with premise L and conclusion L'.

Lemma 7.12 Simp,; s an admissible simplification function for Normy;.

Proof: Simp,,-Rewriting and Simp,,-Isolation are restrictions of the rules proven to be
simplifications in Lemma 7.11, hence they are simplification rules.

It remains to show that Simp,; is admissible for Normy;. That is, we have to show
that any literal is either in Normy; or be simplified by Simpy;. Let L = [=](p = ¢) be some
ground literal. We may assume without loss of generality that p > q.

(1) If p = ¢ = 0 then L is in M-normal form.

(2) Otherwise p contains a maximal summand b’ * s’. Then p =b'x s’ + p'.

(2.1) Suppose p' contains another summand " x s” with s =p¢ s’. That is, p =
b x s+ 0"+ s" + p”. Then Simpy;-Sum Contraction applies.

(2.2) Suppose b * s’ is reducible by M. Then Simpy;-Summand Rewriting applies.

(2.3) Otherwise s’ is atomic, and b *s’ = b’/ is the only summand in p containing «'.
Let g = b" x o” + ¢’ where o/ =aAc o” and " = 0 denotes absence of o”. There can be at
most one summand containing o/, otherwise ¢ would be greater than p.

(2.3.1) If o' > 0, b”" =0 and p = 0 then L is in M-normal form.

(2.3.2) Otherwise condition (ii) determines b such that b is minimal and either &’ > b
or p # 0, and Isolation applies. O
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7.5 The inference system

We obtain the ground inference system below. Note that we have omitted the ordering
restrictions that select the maximal literal; these are the same as in the general case.

[F](bxs+b*xs'+p=q)V C
[F]((b+V)*s+p=gq) VC

if (i) s =ac ', (ii) b#* s is a maximal summand in b* s + b’ * s’ + p, and
(iii) bxs+ b xs'+p>=q.

M-Sum Contraction

Clwll+p~qg vV C
[FJ(ulr]+p~q) vV C
if (i) I = risarulein M, (ii) u[l] is a maximal summand in u[l]+p, and (iii) u[l]+p = g.

M-Summand Rewriting

[t «d +p=b"*xa"+q) VC

[F](bxa' =ux(qg—p)) VC
if (i) o =ac ", (i) b = u(bl —b") where (a) R=7Z, b>1 and u = sign(/ — ")
for ¥ #b", or (b) Ris a field, b=1and u = (' — b")"! for ¥’ #b", or (c) b= 0 and
w=1 for b =b", (iii) either ¥’ =g b or p # 0, (iv) o' is M-atomic and irreducible
with respect to M, (v) &/ = p and o” = ¢. and (vi) V' o' +p = b" x o' + ¢q.

M-Isolation

bxa~xrV D [F](p[t) x'] = q) V C
[ *a+mx*r]=q) VCV D

M-Superposition

if (i) @ =ac o, (ii) b’ =} ", (iii) b” is the minimal ring element in ¥+ Rb, (iv) bxa ~ r
is in M-normal form, and (v) [=](p[d’ * &/] = ¢) is in M-normal form.

Condition (iii) becomes integer division in the case of R = Z, where b is the smallest
positive remainder that can be obtained. For fields b” is always zero.

p#qVC
C
if (i) p =ac ¢, (i) p # ¢ is in M-normal form.

Reflexivity Resolution

srVvitxr v<C
rgr Vicr vC

if (i) s =ac t, (ii) s = r and ¢t = 7’ are in M-normal form, and (iii) r = r'.

M-Equality Factoring

We let Supy; be the set of these inferences.

Theorem 7.13 Supy; s refutationally complete for M.

Proof: Strictly analogous to the proof for abelian groups, this follows from Theorem 4.20

in combination with Propositions 7.7 and 7.5, and Lemmas 7.8 and 7.12. O
7.6 Improving superpositions at the root position

We will now exploit that the integers are an Euclidean ring with respect to >p. That is,
the remainder of an integer division is smaller then the divisor in > p.
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Example 7.14 Suppose we have two equations 10 x ¢ = r1 and 6 x ¢ = ro where ¢ > 11
and ¢ > ry. We get the following sequence of superpositions, where the first column gives
the results of the superpositions and the second the equations in M-normal form (except
for the last):

10xec=m
6*xc=re
dexc+ro~m dxcmry+ (—1)xre
2%c+ri+ (—1)xro =1y 2xcm (—1)*xr +2%7r9
(=2)xr1+4*xrg=r + (—1) 19 0~ 3*711 4+ (—5) *x7r9

We notice that this sequence computes the greatest common divisor for the coefficients
on ¢, using Euclid’s algorithm.

More generally, consider two positive ground literals b; * a = r; and by *x @ =~ ry where
b1 > by > 1. By M-Superposition and contraction of summands containing r; and ry we
get the following general sequence:

bixa~xnr
by xa =~ 1o

bs % & * 1 + My x 19

! n
by x a &= my, %11+ m, *7T2

! n
0~ my g 71+ My g %72

Equation number 7 is obtained by superposing with equation :—1 into i—2 for 3 < i < n+1.
Then m; and b; are the quotient and remainder, respectively, of the integer division of b;_o
by b;_1. That is, b;_o = m;b;_ 1+b and b;_1 > b;. Weletml—l m{ =0, my =0,
my = 1, and m{ = m}_, — m;ym}_; and m = m} , —m;m! , for3<7,<n—|—1 which
preserves the invariant b; = b1mZ + bem!. Finally, b, is the greatest common divisor of
by and be, and b, = m) by + m/be. In the presence of the last two equations the other
equations become redundant. Their left-hand sides can be reduced by equation n such
that it no longer contains the maximal term «, and the resulting equation is a consequence
of equation n + 1. Note that those two equations are smaller than the equations to be
shown redundant.

The computation on the coefficients is the extended Euclidean algorithm, which not
only computes the greatest common divisor b = b,,, but also the Bézout coefficients mi =
m,, and mg = m!" such that b = m1b; + mabs.

Lemma 7.15 (von zur Gathen and Gerhard 1999, Lemma 3.12)

and |m |<

i—1 z—l

|m;~|§b for2<i<n+1.

For i = n this implies |m;| < —2 and |mgy| < & o5, since by, 1 is at least 2b. Moreover, with
this restriction m; and mq are determlned uniquely. For i = n+ 1 we get [m;_ | < %2
im!", | < . Onthe other hand 0 = bym], ,, +bym! | implies that [bym/,, | = [bom/ ] is
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a common multiple of b; and by. The least common multiple is b1bo/b, hence |bym;, ;| >
biba/b and |bomny 1| > biby/b, which implies |m;, | > ba/b and |m; | > bi/b. We
conclude [m;,_ || = ba/b and |m], ;| = b1 /b. Hence we can write equation n+1 equivalently
as

(bg/b) TR (bl/b) * T9.

We can now give two inferences which replace the sequence of superpositions. In the
inference system they replace the corresponding M-Superposition inferences in the top-
level sum. Note that the standard inference is kept for by = bs.

b ~r VC  bytag~re VD
M-GCD Superposition A 1R =T 2 ¥ Qg R T2

bxarxmi*xri+moxrg VCV D

if (i) a1 =ac a2, (i) b = miby + mabs, (iii) b = ged(by, be), (iv) —2 < my < 2,
(v) —g—}) <mg < g—}), (vi) by > be > 1, and (vii) b; * o = r; is in M-normal form for
i=1,2.

bixar~mr Vv C boxag =19 VD

(bz/b) * ] R (bl/b) x79 VCV D
if (i) a1 =ac a2, (i) b = miby + moby, (iii) b = ged(by, bs), (iv) -2 < my < &,
(v) —% <mg < g—}), (vi) by > be > 1, and (vii) b; * o = r; is in M-normal form for
i=1,2.

M-GCD Superposition B

Here the expensive computation of the GCD on the term level is replaced by a computation
of the extended GCD in the integers. Analogous inferences were used by Kandri-Rody
and Kapur (Kandri-Rody and Kapur 1988) for the computation of Grébner bases over a
Euclidean domain and by Wang (Wang 1993) for integer module reasoning. Note that for
fields this is not useful, as the remainder is already zero after a single Superposition step.
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Commutative Algebras

Let (R,+Rr, r, —R,0R,1g) be a commutative ring. A (commutative) R-algebra is a com-
mutative ring

(CA,+ca,-ca,—ca,0ca, lca)

together with a ring homomorphism () : R — CA. In this chapter we will develop a
superposition calculus for theorem proving with respect to all R-algebras over a fixed R.
For R we allow the same rings as in the case of modules, namely the ring of integers
and fields. Like for modules we drop the subscripts indicating whether the ring operation
belongs to R or CA, as this will be clear from the context. We assume that the CA-
operations —, 0 and 1 are eliminated in a preprocessing step using the term rewriting
system

—z = (—1)z
0= (0)
1=(1).

and

This terminates, since in each step one of the symbols is removed, and it is confluent, since
there are no critical pairs. This leads to the signature

+, - :CAxCA—CA
a: —R foralla € R
+, - :RxR—R
—:R—R
() :R— CA.

Free function symbols operate again on CA:
f: CAM) — CA.

Terms of sort R are interpreted by elements of R, while terms of sort CA are interpreted
by elements of the algebra CA. We impose the same restrictions on the use of R-terms
as for modules. We use the same notational conventions as for commutative rings, except
for the meta notation n¢. Instead we often omit - and use juxtaposition to indicate
multiplication. We will use s — (b)t as an abbreviation for s + (—b)¢, and we will identify
t and (1)t where appropriate. Let CA be the following constrained term rewriting system

95



96 CHAPTER 8. COMMUTATIVE ALGEBRAS

modulo AC = AC(+) U AC(-). This is essentially the term rewriting system of Bachmair
and Ganzinger (1994b).

z+(0) =z (CA.1)

(0)z = (0) (CA2)

Dr =z (CA.3)

z(y +2) = 1y + 22 (CA.4)

(vi) + (v2) = (v) [v="11+v] (CA.5)
(v1){v2) = (v) [v="01-v] (CA.6)
z+z=(v)z [v=1+1] (CA.7)

(vi)x +z = (v)z [v="v1+1] (CA.8)
(vi)z + (vo)z = (v)z [v = V1 + Vo] (CA.9)
Y+ (v1) +(v2) = y+ (v) [v=v1+ vy (CA.5e)
y(v1){va) = y(v) [v=v1-v9] (CA.6e)
y+zrz+z=>y+ (v)r [v=1+1] (CA.7e)
y+(v)z+z=y+ (v)r [v=1r+1] (CA.8e)
Y+ (vi)z + (vo)z =y + (v)x [v =01 + V9] (CA.9¢)

We let CA = AC\gnd (EK), which again consists of those ground instances of AC\EK that
satisfy the constraints.

Lemma 8.1 CA is locally ground confluent and locally ground coherent modulo AC.

Proof: We have shown this by the same approach as for modules. O

8.1 Termination

We slightly modify the ordering for modules to obtain an ordering >ga for commutative
algebras. For the first component let Ff = Foa = {+, -,(_)} U R. We assume a well-
ordering >, on F'\ Fy, and let >, also denote its TPO-admissible extension to F. To
apply Section 3.3 we assume as given a quasi-ordering >, on F¢ and extend it to a quasi-
ordering >; on terms over F; U F¢. Let D be the term rewriting system consisting of the
distributivity rule (CA.4), and let D = AC\gnd(D). Then D is convergent modulo AC.
Let ¢t be any ground term ¢ over F7 U F that is in D-normal form. Then

t=(a11) -+ (a1g, )1 + -+ + (@n1) -+ (ank, ) Pn

where n > 1, k; >0, ¢ = cj1---¢cy; and l; > 0 for ¢ = 1,...,n. We use a similar
complexity measure as in the case of modules, with two modifications. The constants in
the first component are replaced by products, and the tuples in the multiset in the third
components become multisets. Here we identify products in the same AC U ~.-equivalence
class, or equivalently the multisets M, of coefficients in ¢ in the same ~ ;. -equivalence
class. Hence we extend the representation function rep from F to products over F¢ so
that it maps products in an AC U ~.-equivalence class to a multiset over Fo representing
the product. That is, if ¢ =acu~, ¥ then rep(¢p) = rep(1p). We let

occ(t, di) = {j | #j =Aacu~. ¢i}
#(ta ¢’L) = ‘OCC(t, ¢Z)‘
CS(t, ¢z) = {{alla R aa'lkl}a R {anla s aa'nkn}}
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That is, occ(t, ¢;) is the set of occurrences of products in the same AC U ~.-equivalence
class as ¢;, #(t, ;) is the number of these occurrences, and cs(t, ¢;) is the multiset of the
multisets of coefficients associated with these occurrences. To each AC U ~-equivalence
class of products we associate a tuple (rep(¢;), #(t, ¢d:),cs(t, ¢;)). Finally, we let x(t) be
the set containing the tuples for the products occurring in ¢. We let the ordering > be the
multiset extension of the lexicographic combination of >, > and the multiset extension of
the size-multiset extension of >g. Then we define the ordering >; on terms over F; U F¢
by s = t if and only if kK(D(s)) =« k(D(t)) where s and ¢ are terms over F; U F;. We get
the TPO-status =5 as the status derived from >, and let =1(>p) = Ztpo(>=p, =5,

Lemma 8.2 Let =, be a well-ordering on F\ Fca. Then =1(>p) is a total AC U D-
compatible and AC U D-antisymmetric simplification quasi-ordering on ground terms that
contains CA \ D.

Proof: (Simplification quasi-ordering) We begin by showing that >3¢ is a TPO-status by
Lemma 3.9.

(Strictly compatible with contexts) Let f, be the function that maps any complex-
ity k(D(t)) to the complexity x(D(u[t])), and let

D(t) = (a11) -+~ (a1k,)P1 + -+ + (an1) - - (@nk, ) Pn

wheren > 1, k; >0 ¢; =cj1---¢y, and [; > 0 for i = 1,...,n. By the same argument as
for modules f,) is well-defined. We show that f, is strictly monotonic for any context ul[]
by considering contexts of depth one.

(1) Consider u = s + [].

(1.1) Suppose s = (by) - - (by)1.

(1.1.1) Suppose no ¢; is AC U ~.-equivalent to . Then

fup(6(t)) = £(t) U{(rep(¥), 1, {{b1,..., b} })}

and f, is strictly monotonic.
(1.1.2) Otherwise ¥ =acu~, ¢; forsome i =1,..., k. Suppose without loss of generality

1Y =ACU~, ¢1- Then

fup(6(t)) = {{rep(¢1), #(t, ¢1) + 1,cs(t, 1) U {{b1,...,bi}})}
U {(rep(¢:), #(t, i), cs(t, i) | i #acu~, $1}-

Consider the function that maps a tuple (rep(¢),n, M) to

(rep(¢),n +1,MU {{bla s ,bl}}>

if ¢ =acu~, ¥ and to (rep(¢),n, M) otherwise. This function is strictly monotonic ac-
cording to Proposition 2.8(7). Hence its multiset extension f, is strictly monotonic.

(1.2) Otherwise s is a proper sum, and Ju[ can again be obtained as a finite composition
of the strictly monotonic functions of case (1.1). Hence f,[) is strictly monotonic.

(2) Consider u = s - [].

(2.1) Suppose s = (b1) -+~ (b;)p. Then f, maps any tuple (rep($),n,{Ma, ..., My})
in k(t) to

(rep(</>) U rep(w)ana {Ml UN,...,MpU N}>

where N = {b1,...,b}, which clearly is strictly monotonic.
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(2.2) Otherwise s is a proper sum, and f,; is a finite union of the functions of case (2.1),
which again is strictly monotonic.

(Subterm property) It suffices to consider contexts of depth one, then the subterm
property follows by structural induction. We have to show (1) s+t >=; ¢t and (2) s-t > t.

In case (1) k(D(s +t)) contains at least one additional tuple or a tuple whose second
component increases when compared to x(D(t)). In case (2) the sizes of the multisets in
the third component strictly increase for each tuple in x(D(¢)).

(Decreases infinite derivations) Suppose there is some infinite descending chain

&(D(t1)) = £(D(t2)) =& - .- -

Then there exists an infinite descending chain of tuples

(rep(¢1),n1,M1) - <I'ep(¢2),n2,M2> -

Since > on natural numbers and >pg and its extensions are well-founded, there exists an
infinite descending chain

rep(¢j1) = mul (=¢) rep(¢j2) mut (=¢) - - -

in the first component. By Proposition 2.6(2) there exists an infinite descending chain
Cl ™cC2 > ¢ ...

where ¢; occurs in some ¢;, and hence in ¢, for 1 < j; < jo <....

(Constant dominance condition) The constants dominate the first component of each
tuple, hence they dominate the ordering.

(ACUD-compatible) We have to show that >; is ACUD-compatible. Suppose s < acup
s' =yt ©acup t. Then

implies s > t.
(ACUD-antisymmetric) We have to show that the quasi-ordering »4(>.) is ACUDU~ -
antisymmetric. Suppose s ~;(>.) ¢t and

K(D(s)) = {(rep(¢1),m1, M1), ..., (rep(¢x), mi, M)} and
K(D()) = {{rep(1), 1, N1), ..., (rep (), nu, Np) }-

Then k(D(s)) ~x k(D(t)), k =1, and there exists a permutation = such that rep(¢;) =

rep(Yr(s)); Mi = Mgy and M; = Ny for @ = 1,...,k. We can now show that
D(s) &acu~, D(t). We associate to each product ¢ the product ¢/ = ¢;--- ¢, derived
from the representative rep(¢) = {c1,...,¢,}. Let s’ and ¢’ be the terms resulting from

replacing any product ¢ in D(s) and D(t) by the corresponding product ¢'. They can be
written as s’ = s; +--- + s, and ¥/ = t; + --- + ¢; where s; consists of the terms contain-
ing ¢; and t; of the terms containing 1;. From M; = Ny(; we infer that ¢; and ¢7T(Z are
associated with the same multisets of coefficients from R, and that hence s; =ac t7(;) and
in turn s’ =5¢ t'. We conclude that s =pcupu~, t-

(Total) Since »., > and » g are total, and since multiset and lexicographic extension
as well as lexicographic product preserve totality, =;(>.) is total. Hence > is total by
Lemma 3.10.
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(Orients rules from left to right) Rules (CA.1)—(CA.3) are oriented from left to right
by the subterm property. The distributivity rule (CA.4) is explicitly excluded here. For
(CA.5) and (CA.6) we have

#(D({a1) + (az)))

1 {(0,2, {{a1}, {a} 1)}
r(D({a1)(az))) = {(0,1,{{a1, a2} })}
r#(D({(a)) = {(0,1,{{a} })},

hence (a1) + (a2) =1 (a) and (a1){az) >1 (a) for any a;,as,a in R.

From (CA.7)-(CA.9) we consider only (CA.7), the others are analogous. We consider
some ground instance (CA.7)o, let ¢ = Pp,(zo) be the term resulting from replacing
atomic subterms by constants, and let b = vo. Then we have to show that

k(D(t +t) = k(D((b)1)).

Suppose
£(D(t)) = {{rep(¢1),n1, M1), ..., (rep(¢x), g, M) }-

Then
Iﬁ:(D(t + t)) = {(rep(¢1), 27?,1, 2M1>, cey <rep(¢k), 27’Lk, 2Mk>}

which is greater than
K(D((b)t)) = {(rep(¢1), 1, M), ..., (rep(¢r), nk, M)}
(CA.5e)—(CA.9e) follow from (CA.5)—(CA.9) by compatibility with contexts. O

We let t% A be the quasi-ordering induced by the following polynomial interpretation,
which is again derived from the one for commutative rings:

pgA:2 fora € R

pgx('u) =v+1
pi (@ y) =z +y+5
PNz, y) =y
pJ(;A(:vl, Ip) =Z1+ -+ Ty +2 for f free.

Lemma 8.3 t% A @5 a total AC-compatible simplification quasi-ordering on ground terms
that orients D from left to right.

We let >=ca be the lexicographic combination of >1, t’é A and = 4o oOver an arbitrary
precedence.

Proposition 8.4 Let >, be a total precedence on F\ Fca. Then =ca(>p) is a total
AC-antisymmetric and AC-compatible simplification quasi-ordering on ground terms and
contains CA.

Proof: Analogous to the case of commutative rings. O

Lemma 8.5 Let ¢ be a product in CA-normal form, let r be a ground term such that
¢ =ca 1, and let b/, b" and m be elements of R such that b’ =g b". Then (V)¢ =ca
(") + (m)r.
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Proof: Again we can use D U AC-antisymmetry of >1 to infer ¢ > r from ¢ being in
CA-normal form. Suppose

£(D(r)) = {(rep(¢1),n1, M), ..., (rep(¢x), nk, Mi)}-

Then

k(#) = {(rep(¢), 1,{0})} >« £(D(r))

implies rep(¢) > mu(>c) rep(¢;) for i =1,..., k. If we now compare

K(D((t')¢)) = 6((t')¢) = {{rep(¢), 1, {{t'}})}

and

K(D((t") ¢ + (m)r))

K((b")¢) U k(D((m)r)

{(rep(¢), 1, {{"}})} U {(rep(¢1), 1, M7), ..., (rep(ér), m, My) }
)
)i

we see that all triples in k(D({m)r)) are smaller than (rep(¢),1,{{d'}}) in the first compo-
nent, and that (rep(¢), 1, {{b"}}) is smaller than (rep(¢),1,{{¥’'}}) in the third component.
O

Proposition 8.6 CA is convergent modulo AC.

Proof: Termination follows again from inclusion of CA in >ca, hence confluence and
coherence follow from the local properties of Lemma 8.1. O

8.2 Symmetrization

An equation | = r is in CA-normal form if either (i) I =r =0, or (ii) { »=ca r, [is
irreducible with respect to CA, and [ = r has one of the forms (a) (1) = (0), (b) a = r,
(c) ¢ = r where ¢ is a proper product of atomic terms, or (d) (b)¢ ~ r where R = Z and
b > 1, and ¢ is a proper product of atomic terms. The symmetrization function Sca maps
each case in the definition of an CA-normal form to a set of rewrite rules as follows:

Sca(0=0) = (CA.S1)
Sca((1) = (0)) = {t = (0) [t #(0)} (CA.52)
Scala=r)={a=r} (CA.S3)
Scalp=r)={p=>r} (CA.S4a)

U gnd({z¢p = zr}) (CA.S4b)

Sca((byp = 1) = {(b')p = (b")p + (m)r | b =7 b"} (CA.Sba)
U gnd({(t')zd = (b")zp + (m)zr | b/ =7 b"'}) (CA.S5b)

Lemma 8.7 Sca is a symmetrization function for CA.

Proof: For termination the only nontrivial cases are (CA.S5a) and (CA.S5b), which are
handled by Lemma 8.5.

Left-minimality follows in the same way as in the case of modules.

Next we consider soundness. We can infer (CA.S2) from (1) ~ (0) by multiplying
both sides with ¢ and using the rules (CA.2) and (CA.3). Note that ¢ # 0 is required by
the ordering. There’s nothing to prove for (CA.S3) and (CA.S4a). (CA.S4b) is obtained
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by compatibility with contexts. Soundness of (CA.Sba) can be shown analogously to the
case of modules, using critical pairs with the rules (CA.6e) and (CA.9). This also works
for (CA.S5b), one only has to add the context z[] in the beginning.

It remains to show convergence modulo AC of CA U Sca(l = r). Local coherence is
obtained by the included AC-extensions. For local confluence the only cases to consider
are again those of overlaps of rules in Sca (I = r) into CA strictly below the root position,
and of overlaps of Sca (I = r) with itself.

(1) We have checked convergence of the overlaps of rules in the symmetrization into CA.
We present only the two most interesting cases. We consider an equation (b)¢ = r in CA-
normal form.

(1.1) The first is the overlap of (CA.Sba) into (CA.9):

CA_S5a CA.9

(") + (m)r + (bo)p =" (V) + (bo)p = (V' + bo)b,

where ' =7 1. By the cancellation law b # b” implies b’ +by # b”+bg. Ifb'+by > b"+by
then
(b + bo)p “Z" (V" + b + (m)r,

since b’ + by =} b" + by. Otherwise b + by >g b’ + by and

(0" + bo)p + (mhr =7 (B + bo)p + (—m)r + (m)r Sca (b + bo)o,

since b 4 by =, ™ b' + bo.
(1.2) The other overlap which we consider is of (CA.S5b) into (CA.6):

(mo) (") + (m)r) “3E (mo) ()¢ S (mob) ¢,

where again b’ =7 b”. We can reduce the left-hand side to (mgb”)¢ + (mom)r. This
time we use the cancellation law for multiplication, which follows from R being an integral
domain, to infer mgb’ # mgb” from b’ # b". If mgb' =g mob” then

(mob)p “=" (mob") ¢ + (mmo)r,

mmo

since mob’ =" mob”. Otherwise mob” > g mob’ and

(mob' Y + (mmg)r “E5% (mgb) + (—mmg)r + (mmo)r =ca (mob)d,

since mob” =, """ mob'.
(2) It remains to consider overlaps of Sca ((b)¢ ~ r) into itself.
(2.1) An overlap at the top-level is
() + (ma)r T () "= ()¢ + (ma)r,

where b <" b =" by.

(2.1.1) If b = bl then m1b=b' — b = b’ — by = myb, by canceling b we get m; = ma,
and we conclude that the peak is trivial.

(2.1.2) If b > bf then

(B + (mi)r “ET (Wb + (mo — ma)r + (my)r =ca (B3)d + (mo)r,

since b = b' —m1b = by + mab —m1b = by + (mo — m1)b implies b =7"2"" bf.
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(2.1.3) The remaining case of by =g b} is analogous.
(2.2) Between extensions with respect to multiplication we get the overlap

(03) (61} + (ma)r) "3 () (By)¢ “=" (B1) ((B5)6 + (ma)r),
where b] ="' b and b}, =;"* b;. We have the reductions
() ((BY) b + (m1)r) =ca (b7)(b3)¢ + (b) (ma)r
T () (V) + (mo)r) + (Bh) (ma)r
Zcoa (B10) ¢ + (mab + mabh)r

and

(b1)¢ + (b7) (ma)r
(bY@ + (ma)r) + (b)) (ma)r
5)P + (m1by + mob)r.

(01) ()¢ + (ma2)r) =ca (b2)
CAgsb )
:>CA <bl b

The last terms of these reductions are equal, since

maby + miby = mob +ma (b + maob) = mab] + miby + mimab

mlb'zl + mgb’l = mlbg + mQ(blll + mlb) = mlbg + mgblll + mom1b
are equal. O

8.3 Critical extension peaks and transitivity

The critical extension peaks for algebras turn out to be analogous to those of commutative
rings.

Theorem 8.8 Let (b;)¢; = 1; be a rewrite rule in Normca for i = 1,2 and assume
without loss of generality by >R bo.
These two rules have at most the single critical extension peak

11 <= (b1)¢ = (b1 — maba)d + (ma)rarhs

where ¢ =ac lem(¢i, d2) =ac d1¥1 =ac P2P2 and by — maby <g bo, if (i) Y1 # 1,
(7i) b1 >R by or e # 1, and (iii) either (a) by =r 1 and by =g 1, (b) by =g 1, bo =1 and
@2 is a proper product with ged(¢p1, d2) # 1, or (¢) by = by =1 and ¢1 and ¢o are proper
products with gcd(¢p1, P2) # 1.

Otherwise there is no critical extension peak between these two rules.

Proof: The peak is clearly the minimal peak of the two rules. There are two things to
show, namely that nonminimal peaks are redundant, and that minimal peaks violating
the condition are either not extension peaks or redundant. We start with the latter. Let
S; = SCA(<bz'>¢z' = 'I"i) for i = 1,2.

(1) Suppose one of the conditions (i)—(iii) is violated. First note that condition (i)
is equivalent to (b;)¢; being irreducible with respect to S, and that condition (ii) is
equivalent to (be)¢o being irreducible with respect to Si, and that this also holds for a
symmetrization of the form (CA.S2). Hence if (i) or (ii) is violated then the peak is not
an extension peak.
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Figure 8.1: Convergence of an extended peak

Now suppose (iii) is violated. Then by = 1, as otherwise (a) would hold. If b; = 1 and
¢; is not a proper product then S; is of the form (CA.S3) and contains no extended rules.
If bo = 1 and ged(¢1, p2) = 1 then the peak is redundant, as Figure 8.1 shows.

(2) It remains to show that any peak t; <= s = to between (b1)¢1 = 71 and (b2)p2 = 72
that is not of the form above is redundant. That is, the corresponding Extension Super-
position inference

(bi)pr=r1 (b2)pa = o
tl ~ tg

with main premise C' = t; £ s V s £ t3 V t1 = t9 has to be redundant. If s is reducible
by CA then C is redundant by Lemma 4.6, which implies redundancy of the peak by
Lemma, 4.25. So let us assume from now on that s is irreducible with respect to CA.
This is the case if and only if s has the form (b)¢. Note that for b = 1 we write (b)¢ to
represent ¢. This poses no problems, since it leads to essentially the same rewrite steps.
To show redundancy of the peak, we have to show

Transg U {(bz)(]ﬁz =T | 1= 1,2} IZI 11 = io.

Consider some interpretation Iy that satisfies Transc U {(b;)¢p; = r; | i =1,2}. Then
Ry contains these two rules, Sy = Sca(Ry), and CAU Sy is Church-Rosser below s. Let
Si = Sca((bi)p; = ;) for i = 1,2. The extended rules are of the forms (CA.S4b), (CA.S5a)
and (CA.S5b). We can ignore extended rules of the form (CA.S2), since these reduce any
nonzero term and there can thus be no extension peak. To simplify matters we consider
only (CA.S5b), which modulo ACU is a generalization of (CA.S4b) and (CA.Sba). Thus
we assume that the overlapping rules have the form

(b)¢ = (bi) + (mi)ebir

where b, = b— mlb; and ¢ =ac ¢ih; for i = 1,2. We assume without loss of generality
that 11 and 1 are chosen such that the rules overlap at the root position. i and 1, are
products, since as subterms of s they are irreducible with respect to CA. Then s = (b)¢
and t; = (bj)¢p + (m;)pr; for ¢ = 1,2. We have to find a proof t; {causy t2 for each
case where the peak is not of the form above. To this end it suffices to exhibit a proof
t1 é<s to, since CA U Sy is Church-Rosser below s.

(2.1) Suppose ¢ is not the least common multiple of ¢; and ¢o. Then 11 and )2 have a
common factor ¢ # 1, and we let ¢} and 4 such that ¢; =ac ;. This case is illustrated
in Figure 8.2. We can also factor out 1 from ¢, i.e. ¢ =ac ¢ithip =ac ¢'1p where we let
¢ =ac ¢il. Furthermore, we let s' = (b)¢’ and t, = (b})¢'+ (ml)4} - r;, S; contains a rule
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Figure 8.2: Redundancy of an extended peak

s' = t, and there is a peak t| <g, s’ =g, t}. Since §' is smaller than s, the corresponding
transitivity instance
thgs v gthvi) ~t

is smaller than C, and ¢} =~ t} is true in Iy by induction hypothesis. By putting the
context 1 - [] around every term in the proof ¢} | ¢, (dashed) and normalizing with respect
to CA, we obtain a proof t; & t, (dotted). Since any term ¢ in ¢, || ¢!, is smaller than s,
the CA-normal form of 1 - ¢ is smaller than s =5c 9 - s’. These normal forms bound the
terms in t; < to, hence all terms in ¢, < ¢, are smaller than s. We conclude ¢ {¢ AUSy o

(2.2) Suppose this peak is not minimal due to the choice of coefficients.
(2.2.1) Suppose b =g by. By definition of the symmetrization function this can only
be the case for R = Z. We may assume that the smaller peak

P1r1 < (b1)d = (b1 — maba) + (ma)thars

converges. We let m =1 for b > 0 and m = —1 for b < 0, and put the context

ul] = ()¢ + (m)([] = (b1)¢)

around every term in the peak and the dashed valley proof (see Figure 8.3). We normalize
with respect to CA and obtain a proof (x) that connects the side terms of the inner peak

(b —mby)p + (m)p1r1 <= (b)p = (b — mmabe)d + (mma)ihors.

Each rewrite step of the original proof becomes a valley proof in () by Lemma 4.30.
Since valley proofs are bounded by the terms at their ends, it suffices to show that the
normalized terms of the original proof stay below (b)¢. We consider some term (b')¢ with
b < R b1:

ul[(t) g + 1] = () + (m)(() ¢+ 1 — (b1)¢)

where ¢ >=ca 7. It is normalized to

(b+m(b' —b1))d + (m)r.
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Figure 8.3: Redundancy of an extended peak due to a nonminimal coefficient at the top
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Figure 8.4: Redundancy of an extended peak due to nonminimal coefficients at the sides

m was chosen such that by »=pg b implies b =r b+ m(d' — by): the interval [0,b;) is
mapped to [b — by,b) for b > 0 and m = 1, and to (b,b+ b1 for b < 0 and m = —1,
and in both cases b is greater with respect to > than any element of the interval. Hence
(b)p =R (b+m(b —b1))d+ (m)r. The existence of the rewrite proofs (xx) on the left and
the right follows from S; and Sy being strongly symmetrized with respect to CA.

(2.2.2) Suppose b = b; but the side terms of the peak are not minimal. Then there
exists a peak b} <= b = bf such that {b],b5} < {b},b,}. We then have the situation of
Figure 8.4. The dotted proof stays below (b)¢. The proof () exists since the peak in the
middle is smaller than the original peak at the outside; hence it converges by assumption.
The valley proofs (**) on the sides exist by strong symmetrization. O

Corollary 8.9 1. For R = Z any critical ground term t is of the form (b)¢ where b > 0.

2. For a field R any critical ground term t is of the form ¢.

We will now use this to give a sufficient criterion for a term ¢ being in the critical closure
of a term s.

Lemma 8.10 Let s and t be CA-irreducible ground terms, and let (b)¢ be the mazimal
monomial of t. If (b)¢ =< s then t € ccca(s).

Proof: Analogous to the case of commutative rings. O

We will need this to show that CA-Isolation is a simplification.

8.4 Simplification

The rules for simplification are strictly analogous to those for modules over R. However,
the proof that these transformations are indeed simplifications is more complicated in this
case, since transitivity is not universally valid.

[FI)s" +p = (B")s" +q),
[=]((b)s" ~ (u) (g —p))
if (i) ¢’ =ac ", (ii) b = u(b — b") where (a) R=7, b>1 and u = sign(t/ — ") for

CA-Isolation




8.4. SIMPLIFICATION 107

b #b" or (b) Risafield,b=1andu = (b' —b")"Lfort/ b, or (c) b=0and u = 1
for o = 0", (iil) (')s' +p > (b)s' or (b")s" + q = (b)s’, and (iv) s’ > p and " > q.

Lemma 8.11 CA-Isolation is a simplification rule.

Proof: In the proof we write s for s’ =5¢ s”. Let

L=["]((t)s +p~ (t')s +q)
L' = [7]((b)s = (u)(q — p))-

Using monotonicity with respect to the contexts

(w)([] = (¥")s —p)

for positive and
(W H[]+(")s +p

for negative literals and normalizing with CA we can transform (b')s + p = (b")s + ¢ into
(b)s = (u)(q — p) and vice-versa. Thus {L} U CA; | L'. It remains to show

{LI} U Transy, |:[ L.

Suppose that L is the smallest literal where this does not hold. We will show that this
leads to a contradiction.

(1) Suppose s is reducible by CA, say to t. Then by induction hypothesis the smaller
instance

1)t +p = (b7)t +q),
[=1({b)t = (u)(q — p))
of CA-Isolation is a simplification, which by Lemma 4.11 implies that the original instance
is also a simplification.

(2) Otherwise s is irreducible with respect to CA. Then either s = ¢ or s = (d)¢ where
¢ is irreducible. For the case s = ¢ we let d = 1 in the following. We also assume without
loss of generality (b')s’ = (b")s".

(2.1) Suppose L; and Ly are positive. Then we have to show

{(b)s = (u) (g — p)} U Transy, |=r (b)s +p ~ (b")s +q.

Let Iy be an interpretation such that {(b)s ~ (u)(q — p)} U Transy, is true in Iy. Then
there exists a valley proof (b)s |causy (u)(¢ —p) (dashed in Figure 8.5). We put the
context (u~!)[] + (b")s + p around every term in this proof and normalize with respect
to CA. We obtain a proof (db')¢ +p & (db")¢ + q (dotted). Tt remains to check that any
monomial in this proof is bounded by (b')s.

If s = (d)¢ for d # 1 then any of the normalized terms contains only one coefficient.
Hence it is smaller than (b')s = (b')(d)¢, which contains two.

Otherwise s = ¢ and d = 1. For the case where R is a field the coefficients do not
matter, because only ¢ alone is a critical term. For the case R = Z the coefficients in the
original proof are in the interval [0,b]. If b’ > " > 0 then v = 1 and the coefficients are
mapped to [b”,b']. Otherwise b’ < b” and ¥’ < 0, u = —1 and the coefficients are mapped
to [b',b"]. In both cases the interval is bounded by b' with respect to > g.
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ACUCAUSN

Figure 8.5: Positive isolation is a simplification
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Figure 8.6: Negative isolation is a simplification

Hence transitivity holds for the terms in the dotted proof and there exists a rewrite
proof (db')¢ + p lbcausy (db")¢ + g. By composing this proof with (b')s =ca (db')¢ and
(db"Yp Eca (b")s at the ends we obtain a rewrite proof showing that (b')s +p ~ (b")s + ¢
is true in Iy.

(2.2) Otherwise L and L' are negative, and we have to show

{(t')s +p = (b")s + ¢} UTransy, =1 (b)s = (u)(q — p)-

Let Iy be an interpretation such that {(¢')s+p = (b"')s + ¢} U Transy, is true in Iy. Then
there exists a valley proof (V')s +p Jcausy (0”)s + g (dashed in Figure 8.6). We put
the context (u)([] — (b")s — p) around every term in this proof and normalize with respect
to CA. We obtain a proof (db)$ & (u)(q — p) (dotted). Again we have to verify that the
monomials in this proof are bounded by (b')s.

If s = (d)¢ for d # 1 then again any of the normalized terms is smaller than (¢')s due
to a smaller number of coefficients.

Otherwise s = ¢ and d = 1. For fields it suffices to note that the greatest product in
the proof is ¢. For integers b’ =g b" implies that either b’ > 4" > 0 or ¥ < 0 and ¥’ < b".
In the first case the coefficients of the untransformed proof are in [b”,b'], u = 1 and the
coefficients are mapped by z +— u(z — b”) to [0,b]. In the second case u = —1 and the
coefficients are mapped from [0, b"] to [0, b].

Again all the terms in the dotted proof stay below the bound, transitivity holds, and
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there exists a rewrite proof (db)¢ lcausy (u)(¢ — p). By composing this with (b)s =>ca
(db)¢ we obtain a rewrite proof for (b)s = (u)(q — p). O

Like in the preceeding chapters the simplification function will consists of a subset of these
simplifications with additional ordering restrictions.

(s + )+ p~ ),

[Fl((b+b)s +p~q)
if (i) s =ac &, (ii) (b)s is a maximal summand in (b)s + (b')s’ + p, and (iii) (b)s +
(t)s'"+p=q.

Simpg -Sum Contraction

Flulll +p~q),

[Fl(ulr] +p~q)

if (i) I = risarulein CA, (ii) u[l] is a maximal summand in u[l]+p, and (iii) u[l]+p >
q.

Simpap -Summand Rewriting

[HI((0) ¢ +p =~ (b") " + q),

[FI((bY¢' = (u)(a—p))
if (i) ¢' =ac ¢, (i) b = u(¥' — ") where (a) R=7Z, b>1 and u = sign(t/ —b")
for b # b", or (b) Ris a field, b=1and u = (' — ")~ for ¥ £b", or (c) b= 0 and
u=1for ¥ =0b", (iii) ¥’ =pbor p#£0, (iv) ¢ =a1...ax, k>0, «; is CA-atomic
fori=1,...,k, (v) ¢' is irreducible with respect to CA, (vi) ¢' = p and ¢" = ¢, and
(vii) (')¢' +p = (t")¢" +q.

Simpgy -Isolation

We let Simp 4 (L) consist of all literals L’ such that there exists a simplification by Simpc -
Rewriting or Simpg ,-Isolation with premise L and conclusion L'.

Lemma 8.12 Simpcy is an admissible simplification function for Normcp .

Proof: Simpca-Rewriting and Simp 4-Isolation are restrictions of the rules proven to be
simplifications in Lemma 8.11, hence they are simplification rules.

It remains to show that Simpq, can simplify any literal that is not in CA-normal form.
This proof is strictly analogous to that for modules. O

8.5 The inference system
This leads to the following ground inference system.
[H]({b)s + ()s"+prq) V C

[F]((b+V)s+pr~gq) VC

if (i) s =ac &, (ii) (b)s is a maximal summand in (b)s + (b')s’ + p, and (iii) (b)s +
(s +p = q.

CA-Sum Contraction

il +p=qg vV C

Hlulrl+p=q) vV C
if (i) I = r is a rule in CA, (ii) u[l] is a maximal summand in u[l] + p, and
(iil) u[l] +p = ¢

CA-Summand Rewriting
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FI(Y +p= ()" +q) V C

[Fl((b)¢' = (u)(qg —p)) V C
if (i) ¢' =ac ¢", (ii) b = u(d — b") where (a) R=7Z, b>1 and u = sign(d’ — b")
for b # b", or (b) Ris a field, b=1and u = (b’ — ")~ for ¥’ # ", or (c) b= 0 and
u=1for ¥ =0b", (iii) ' =gpbor p#£0, (iv) ¢ =a1...ax, k>0, «; is CA-atomic
fori=1,...,k, (v) ¢' is irreducible with respect to CA, (vi) ¢' = p and ¢" = ¢, and
(vii) ()" +p = (V)¢ + 4.

CA-Isolation

¢r=rvD [Hs[d]~t) VT

[-](s[r] =t) v C Vv D
if (i) ¢ =ac ¢, (ii) [-](s[¢] = t) is in CA-normal form, and (iii) ¢ = r is in CA-normal
form.

CA-Superposition A

The preceding rule combines (CA.S3) and (CA.S4a).

¢=rvD [H[d=xt)VvC

[-](s[yr]=t) v C VvV D
if (i) ¥é =ac ¢, (ii) ¢ is a proper product, (iii) [-](s[¢'] = t) is in CA-normal form,
and (iv) ¢ ~ r is in CA-normal form.

CA-Superposition B

This is for superposition with rules of the form (CA.S4b).

(byp~r VvV D [H(sll]=t) v C

[Z](s[(p")p + (m)r] = t) v C'V D

if (i) I =ac (V)¢, (ii) b/ =7 b", (ili)) R = Z and b > 1, (iv) ¢ is a proper product of
atomic terms, (v) 0 < b" < b, (vi) [2](s[l] = t) is in CA-normal form, and (vii) (b)¢ = r
is in CA-normal form.

CA-Superposition C

This is for case (CA.S5a).

(byp~rv D [F(s[l]=t) Vv C
(] (s[(t")pp + (m)ypr] = t) v C V D
[

CA-Superposition D

if (i) I =ac (V')9o, (ii) b’ =7 b", (ili) R =Z and b > 1, (iv) ¢ is a proper product of
atomic terms, (v) 0 <" < b, (vi) [-](s[l] = t) is in CA-normal form, and (vii) (b)¢ ~ r
is in CA-normal form.

This is for rules of the form (CA.S5b) in the symmetrization.

(b1)p1 =11 V O (ba)po =12 V Oy
rih1 & (b — mabg)d + (ma)ratpr V C1 V Co
if (1) ¢ =ac lem(¢1,¢2) =ac P11 =ac patp2, (i) 0 < by — maby < by, (ili) 91 # 1,
(iV) by > by or 1,02 75 1, (V) either (a) by > 1 and by > 1, (b) by > 1, by, =1 and ¢2 is
a proper product with ged(¢é1,¢2) # 1, or (¢) by = be =1 and ¢1 and ¢ are proper
products with ged(¢1, o) # 1, (vi) (b;)¢; = r; is in CA-normal form for 7 = 1,2.

CA-Extension Superposition
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The main premise of this inference is the transitivity instance
r1p1 # (b1)@ V (b1)@ # (b1 — mabe)p + (ma)raths V r19h1 = (b1 — mab2) + (ma)raths.

p#qVC
c
if (i) p =ac ¢, (ii) p % ¢ is in CA-normal form.

Reflexivity Resolution

srVitxr v C

CA-Equality Factori
quality Factoring TRV i~V O

if (i) s =ac t, (ii) s = r and ¢t = r’ are in CA-normal form, and (iii) r > r'.

We call the set of these rules Supc,.

Theorem 8.13 Supc, is refutationally complete for CA;.

Proof: Strictly analogous to the proof for commutative rings, this follows from Theo-
rem 4.20 in combination with Propositions 8.6 and 8.4, and Lemmas 8.7 and 8.12. By
using Theorem 8.8 we again restrict CA-Extension Superposition to critical extension
peaks. O

Like in the case of modules it is possible to replace sequences of superpositions in the
root context by GCD Superposition inferences, as described in Section 7.6. After the first
superposition inference has unified the products ¢; and ¢o from the two clauses, resulting
in their least common multiple ¢, the sequence of superpositions proceeds with maximal
product ¢ strictly analogously to the case of modules.
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9

Lifting

In this chapter we discuss informally how our calculi can be lifted, the specific problems
that arise and how they can be resolved. We do not do this formally, as this is a technically
involved and tedious exercise that does not in itself provide new insights. Nevertheless it
will be needed for the implementation of these calculi.

9.1 Free variable lifting

Free variable lifting represents a set of ground terms (or formulas) as the set of all ground
instances of some nonground term. This limits the expressibility, and leads to problems
when the set of ground instances is not uniform. Take for instance the inference rule
AG-Isolation. If we apply this rule to a nonground equation of the form z + p =~ ¢ then we
can in general instantiate z by a sum of maximal and nonmaximal terms, and these are
treated differently in the ground inference. This difference must be reflected in the lifted
inference.

Hllp=gq) VvV C
((F((n1 —n2)s my2 —y1) V C)o
if (i) o0 € CSS(p ~ac nis+y1 A ¢ =ac nes+ y2) (ii) so is AG-atomic or a variable,
(iii) so is irreducible with respect to AG, (iv) n1 > ne, (v) ne # 0 or y10 # 0, and
(vi) soc A y10 and so & yq0.

AG-Isolation

Here CSS(p =ac miz +y1 A q =ac nox + y2) denotes a complete set of solutions of the
unification problem, analogously to the complete set of AC-unifiers for a single equation.
The main problem with this inference is that it can introduce additional term structure
below free variables, and that it does this in a rather prolific way. Since ny and ns are
not bounded, there is an infinite number of conclusions if p or ¢ contain free variables. To
preserve refutational completeness of the calculus the enumeration of conclusions has to
be interleaved with other inferences.

Since inferences are restricted to maximal terms the AC-unification problems will gen-
erally be smaller than with more general calculi. However, the double exponential case can
still occur for abelian groups and commutative rings, as superpositions with an equations
of the form z + --- + z = r into a term y; + - -+ + yx may occur (Domenjoud 1992).

Condition (iii) of the inference shows that we can apply the technique of Boudet,
Contejean and Marché (1996) to prune the set of AC-unifiers.

Without experiments it is not clear how these problems affect the performance of
theorem proving, and in particular how they compare to the problems more general calculi
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have with the axioms. However, these problems are caused by free variables in sums, which
can be eliminated in some cases (see Section 9.3).

9.2 Lifting by constraints

There are many advantages of using constraints to lift our calculi. Constraints avoid
the double exponential number of AC-unifiers, it suffices to check AC-unifiability, which
is NP-complete (Kapur and Narendran 1992). The technique for proving refutational
completeness of constrained calculi is via reduced ground instances of clauses, which implies
the basic restriction (Bachmair, Ganzinger, Lynch and Snyder 1995, Nieuwenhuis and
Rubio 1995). That is, no superpositions into the substitution part are needed, and the
information about the substitution is inherited via the constraint. Furthermore, it is
possible to keep the information which term has been considered maximal in an inference
in the constraint of the conclusion, in order to restrict further inferences to those which are
consistent with this assumption. This is important especially in the case of free variables
in sums, where otherwise the splitting of a free variable into a maximal and a nonmaximal
part can be repeated without limit. The drawback of constrained calculi is that the need
to keep track of reducedness complicates the completeness proof further. Therefore we
have chosen not to do it here. Previously we have carried this out for the special case of
modules (Stuber 1996, Stuber 1998a). From this experience we are confident that it also
works for the calculi here, in a straightforward way.

For the case of abelian groups the constraints contain only AC-unification problems
and ordering restriction, which can be solved by the method of Comon, Nieuwenhuis and
Rubio (1995). For modules and algebras it is not clear how to handle the constraints for
the computation in the base rings, as these contain both addition and multiplication and
do not fall into the scope of decision procedures for Presburger arithmetic. It is however
at least possible to give a semi-decision procedure that interleaves constraint-solving with
the computation of inferences.

9.3 Elimination of free variables

As we have seen variables occurring in certain contexts give rise to a particularly huge
number of inferences. The most problematic case is that of variables in top positions, like
z in x + p = ¢g, where z can contain the maximal term. This happens only if the variable
is not shielded, that is it does not occur below a free function symbol somewhere else in C.
In this case inferences below = are necessary.

We use modules to demonstrate some techniques to remove these free variables. For
modules over the integers also variables immediately below * are problematic, say z in
some subterm v x z. Any productive equation b x o = r where b > 2 gives rise to a
superposition inference with such a subterm. In this case there are also many inferences
with M, in particular with distributivity, which replaces v+ by v*y+v+*z, and with (M.6),
which replaces v * ¢ by v’ *  and adds a constraint v = vov".

We now investigate situations where these problems can be avoided or at least alleviated
somewhat. Let us first consider the general case for unshielded variables at the top. We
try to eliminate these variables by simplification. As an example consider the clause

dxx56c1 Voxxzkce V3Ixr=cs.
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Under the assumption that z is the maximal term, it can be simplified to
2xx 6 (—1)*kci+ca V3keg #2xco Vaxe+(—1)*co+cs.

In general there remains at most one negative literal where the coefficient b on z is the
greatest common divisor of the coefficients of the negative literals in the original clause
(cf. Section 7.6). It can be used to reduce all coefficients on z in positive literals, which
thus become smaller than b. If the GCD is 1, z can be eliminated completely.! Since z
need not be maximal, one has to do a case split with respect to £ being maximal or not,
which can be represented by suitable constraints. Note that we cannot simplify clauses
where z occurs only in positive literals in this way; take for instance 2%z ~ ¢; V 3%z = co.

One can carry this further for modules over fields, since there each equation b*x a =~ r
can be simplified to a normal form « = . In this case any negative literal b* z % r can
be used to eliminate z from a clause completely.

If additionally we know that all models are infinite, we can eliminate the positive part
as well. Suppose we are given the clause C =z ~r V... Vz =71, V C’', where z occurs
neither in C’ nor in any r;, which is true in an infinite model I. Then any assignment
of values in I to variables in C satisfies C. Given any assignment, since the model is
infinite there exists some value in the model which is distinct from all the r; under that
assignment. If we assign this to z, leaving other variables unchanged, C' must be true
under that assignment. Since z does not occur in C’, all assignments satisfy C’ and we
may simplify C to C'.

Also, if all left-hand sides of rules in R¢ have the form « instead of b * «, no overlaps
with subterms of the form b * x need to be considered.

!This technique can be obtained by applying ground completion to the negated clause.
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10

Conclusion

We have presented refutationally complete ground superposition calculi for abelian groups,
commutative rings, modules and algebras over a fixed ring. Compared to previously known
calculi they promise to improve theory reasoning by a more directed use of the theory,
through the use of macro inferences, stronger ordering restrictions, and theory-specific
redundancy criteria. Whether these calculi live up to their promise in practice remains to
be investigated. As they have not yet been implemented, we have not had the opportunity
to carry out experiments.

On the theoretical side we have gained a better understanding of techniques to build
equational theories into superposition calculi. Our formalism works for the well-behaved
commutative theories that we consider, and it is easy to see that it also works for the empty
theory, AC, and ACU. Other extensions of AC such as ACI should also be easy. Boolean
rings are very close to the algebra over the two-element field. Modules and algebras over
slightly more general base rings are another possible extension. In particular, reduction
rings (Buchberger 1984) are suitable for everything except to prove that isolation is a
simplification. It seems feasible to find a slight strengthening of the reduction ring axioms
that still covers the common examples of reduction rings. It is not clear how well theories
without commutativity such as the theory of groups can be handled by our formalism.
While a symmetrization exists, the lack of a strong symmetrization makes the manipulation
of equational proofs more difficult, which could cause problems with simplification.

For other theories the underlying framework needs to be extended. For commutative
algebras over base rings with zero divisors we cannot achieve convergence of all critical
peaks required by symmetrization. A possible solution would be to handle these critical
peaks outside of a symmetrization, so that they must converge before a symmetrization is
added to a candidate model. Syntactically this would lead to additional inferences.

Further away are extensions that require a more general notion of term rewriting such
as nonsymmetric rewriting for transitive relations (Levy and Agusti 1993, Bachmair and
Ganzinger 1998b). The simplest case would be ordered abelian groups, as this would
require only the unconditional case. More difficult would be ordered rings, because mono-
tonicity of the ordering with respect to multiplication has as a side condition that the
multiplier is positive. This needs a notion of symmetrization that includes conditions.
The same problem also occurs for fields, where the inverse exists only for nonzero ele-
ments. This requires negative conditions, which leads even outside of the horn clause
fragment.
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atomic term, 26 decreases infinite derivations, 23
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free function symbol, 26, 35
free variable, 16
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ground substitution, 16
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monotonicity, 18
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term rewriting system, 20
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terminating modulo E, 21
theorem proving derivation, 49
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total, 8
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