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Abstract

This thesis presents design, application, implementation, and evaluation ofcomputa-
tion spaces as abstractions for programming constraint services at a high level. Spaces
are seamlessly integrated into a concurrent programming language and make constraint-
based computations compatible with concurrency through encapsulation.

Spaces are applied to search and combinators as essential constraint services. State-
of-the-art and new search engines such as visual interactive search and parallel search
are covered. Search is expressive and concurrency-compatible by using copying rather
than trailing. Search is space and time efficient by using recomputation. Composable
combinators, also known as deep-guard combinators, stress the control facilities and
concurrency integration of spaces.

The implementation of spaces comes as an orthogonal extension to the implementa-
tion of the underlying programming language. The resulting implementation is shown
to be competitive with existing constraint programming systems.



Kurzzusammenfassung

Diese Dissertation beschreibt Entwurf, Verwendung, Implementierung und Evaluierung
von Computation Spaces f¨ur die Programmierung von Constraintdiensten. Spaces wer-
den in eine nebenl¨aufige Programmiersprache integriert. Sie fungieren als Kapseln f¨ur
Berechnungen mit Constraints. Dadurch wird die Kompatibilit¨at zu nebenl¨aufigen Be-
rechnungen gew¨ahrleistet.

Suche und Kombinatoren sind zentrale Constraintdienste, die mit Spaces program-
miert werden. Es werden sowohl ¨ubliche, als auch vollkommen neue Suchmaschinen,
wie zum Beispiel interaktive Suche und parallele Suche, vorgestellt. Durch Kopieren
wird Suche ausdrucksstark und kompatibel mit Nebenl¨aufigkeit. Durch Wiederberech-
nung wird Suche effizient hinsichtlich Speicherbedarf und Laufzeit. Kombinatoren, die
ineinander geschachtelt werden k¨onnen (so genannte deep-guard Kombinatoren), ver-
deutlichen die Kontrollm¨oglichkeiten von Spaces.

Die Implementierung von Spaces erfolgt als orthogonale Erweiterung einer Imple-
mentierung für die zugrundeliegende Programmiersprache. Das Ergebnis ist konkur-
renzfähig zu existierenden Constraintprogrammiersystemen.



Extended Abstract

This thesis presents design, application, implementation, and evaluation of simple ab-
stractions that enable programming of standard and new constraint services at a high
level.

First-class Computation Spaces The abstractions are first-class computation spaces
and are tightly integrated into a concurrent programming language. Constraint-based
computations are delegated to computation spaces.

Computation spaces are promoted to first-class status in the programming language.
First-class status of computation spaces enables direct access to constraint-based com-
putations. The direct access allows powerful control of constraint-based computations
and by this simplifies programming.

Encapsulation Computation spaces encapsulate constraint-based computations which
are speculative in nature, since failure due to constraint propagation is a regular event.
Encapsulation is a must for integrating constraint programming into todays concurrent
and distributed computing infrastructure.

Encapsulation is achieved by a tight integration of spaces into the concurrent pro-
gramming language together withstability as powerful control regime.

Oz Light Computation spaces are integrated into the Oz Light programming language.
The essential features of Oz Light that make the integration of spaces possible are com-
puting with partial information through logic variables, implicit synchronization of com-
putations, explicit concurrency, and first-class procedures.

Oz Light is an idealization of the concurrent programming language Oz that concen-
trates on the features mentioned above.

Search Spaces are applied to state-of-the-art search engines, such as plain, best-
solution, and best-first search. Programming techniques for space-based search are de-
veloped and applied to new and highly relevant search engines. One new search engine is
the Oz Explorer, a visual and interactive search engine that supports the development of
constraint programming applications. Additionally, spaces are applied to parallel search
using the computational resources of networked computers.

Copying and Recomputation In order to be expressive and compatible with concur-
rency, search is based on copying rather than on trailing. Trailing is the currently domi-
nating approach for implementing search in constraint programming systems. The thesis
establishes the competitiveness of copying by a rigid comparison with trailing.

Recomputation is used as an essential technique for search. Recomputation saves
space, possibly at the expense of increased runtime. Recomputation can also save run-
time, due to an optimistic attitude to search.



The combination of recomputation and copying provides search engines that offer
a fundamental improvement over trailing-based search for large problems. The thesis
introduces adaptive recomputation as a promising technique for solving large problems.

Composable Constraint Combinators Spaces are applied to composable constraint
combinators. Composable means that combinators programmed from spaces can com-
bine arbitrary computations, including computations already spawned by combinators.
Combinators obtained from spaces are applicable to all statements of the programming
language without sacrificing constraint propagation. Constraint combinators are shown
to have a surprisingly simple implementation with spaces. Composable combinators are
also known as deep-guard combinators.

Implementation The thesis presents an implementation for first-class computation
spaces as a conservative extension of an implementation for Oz Light. The implemen-
tation is factored into orthogonal support for multiple constraint stores as needed by
multiple spaces, stability, space operations, and search.

The implementation model serves as foundation for spaces in the Mozart implemen-
tation of Oz. Mozart is a production quality system and is shown to be competitive with
existing constraint programming systems.



Ausführliche Zusammenfassung

Diese Dissertation beschreibt Entwurf, Verwendung, Implementierung und Evaluierung
von einfachen Abstraktionen f¨ur die Programmierung von ¨ublichen und neuen Cons-
traintdiensten.

Emanzipierte Computation Spaces Die vorgestellten Abstraktionen sind emanzipier-
te (first-class) Computation Spaces, die nahtlos in eine nebenl¨aufige Programmierspra-
che integriert sind. Berechnungen mit Constraints werden an Computation Spaces dele-
giert.

Die vollständige Emanzipation von Computation Spaces in der Programmierspra-
che erlaubt den direkten Zugriff auf Berechnungen mit Constraints. Der direkte Zugriff
ermöglicht die vollständige Kontrolle dieser Berechnungen und erleichtert damit deren
Programmierung.

Enkapsulierung Berechnungen mit Constraints sind von Natur aus spekulativ, dass
heißt, ihr Fehlschlagen durch Constraintpropagierung ist ein regul¨ares Ereignis. Compu-
tation Spaces enkapsulieren spekulative Berechnungen mit Constraints. Enkapsulierung
ist die Voraussetzung f¨ur die Integration von Constraintprogrammierung in die moderne
Berechnungsinfrastruktur, die typischerweise nebenl¨aufig und verteilt ist.

Enkapsulierung wird durch eine enge Integration von Computation Spaces in die ne-
benläufige Programmiersprache zusammen mit Stabilit¨at als mächtiger Kontrollstrategie
erreicht.

Oz Light Computation Spaces werden in die Programmiersprache Oz Light integriert.
Die wichtigsten Eigenschaften von Oz Light f¨ur die Integration sind: Rechnen mit parti-
eller Information aufgrund von logischen Variablen, implizite Synchronisation von Be-
rechnungen, explizite Nebenl¨aufigkeit, und emanzipierte Prozeduren.

Oz Light ist eine Idealisierung der nebenl¨aufigen Programmiersprache Oz, die sich
auf die oben genannten Eigenschaften konzentriert.

Suche Computation Spaces werden f¨ur aktuelle Suchmaschinen, wie zum Beispiel ein-
fache Suche, Suche nach einer besten L¨osung, und heuristischer Suche (best-first search)
eingesetzt. Es werden Programmiertechniken f¨ur Suche, die auf Computation Spaces ba-
siert, entwickelt. Diese Techniken werden dann f¨ur neue und relevante Suchmaschinen
eingesetzt. Eine neue Suchmaschine ist der Oz Explorer, eine visuelle und interaktive
Suchmaschine, die die Entwicklung von Constraintprogrammen unterst¨utzt. Zusätzlich
werden Computation Spaces f¨ur parallele Suche, die die Ressourcen vernetzter Compu-
ter erschließt, eingesetzt.



Kopieren und Wiederberechnung Suche basiert hier auf Kopieren und Wiederbe-
rechnung anstatt auf Trailing. Damit wird Suche ausdrucksstark und kompatibel zu
Nebenläufigkeit. Trailing ist der momentan vorherrschende Ansatz f¨ur die Implemen-
tierung von Suche. In einem umfassenden Vergleich wird gezeigt, dass Kopieren zu
Trailing kompetitiv ist.

Wiederberechnung fungiert hier als entscheidende Technik f¨ur Suche. Wiederbe-
rechnung spart Platz, m¨oglicherweise durch Laufzeiteinbußen. Wiederberechnung kann
unter Umständen auch Zeit sparen, da sie Suche mit einer optimistischen Strategie ver-
sieht.

Die Kombination von Kopieren und Wiederberechnung ergibt Suchmaschinen, die
entscheidende Vorteile gegen¨uber Trailing-basierten Suchmaschinen bieten. Die Dis-
sertation führt adaptive Wiederberechnung als eine erfolgversprechende Technik f¨ur das
Lösen großer Probleme ein.

Constraintkombinatoren Computation Spaces werden f¨ur Kombinatoren, die inein-
ander geschachtelt werden k¨onnen (so genannte deep-guard Kombinatoren), eingesetzt.
Diese Kombinatoren erm¨oglichen es, alle Ausdr¨ucke der Programmiersprache zu kom-
binieren, ohne dabei Constraintpropagierung zu opfern. Es wird gezeigt, dass sich Kom-
binatoren mit Hilfe von Computation Spaces einfach programmieren lassen.

Implementierung Die Dissertation stellt eine Implementierung von Spaces vor, die
die Implementierung von Oz Light orthogonal erweitert. Die Implementierung besteht
dabei aus den folgenden Komponenten: multiple Constraintspeicher, Stabilit¨at, Suche,
sowie Operationen auf Spaces.

Diese Implementierung ist die Grundlage f¨ur Spaces in der Mozart-Implementierung
von Oz. Mozart ist ein Produktionssystem und ist konkurrenzf¨ahig zu existierenden
Constraintprogrammiersystemen.
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1 Introduction

This thesis presents design, application, implementation, and evaluation of simple ab-
stractions that enable programming of standard and new constraint services at a high
level. The abstractions proposed arecomputation spaces which are integrated into a
concurrent programming language.

1.1 Constraint Programming

Constraint programming has become the method of choice for modeling and solving
many types of problems in a wide range of areas: artificial intelligence, databases, com-
binatorial optimization, and user interfaces, just to name a few.

The success of constraint programming is easy to explain. Constraint programming
makes modeling complex problems simple: modeling amounts to naturally stating con-
straints (representing relations) between variables (representing objects). Integration into
a programming language makes modeling expressive. Adapting models is straightfor-
ward: models can be changed by adding, removing, and modifying constraints. Con-
straint programming is open to new algorithms and methods, since it offers the essential
glue needed for integration.

Last but not least, the popularity of constraint programming is due to the availability
of efficient constraint programming systems. A constraint programming system features
two different components: theconstraints proper andconstraint services.

Constraints Constraints are domain specific. They depend on the domain from which
the values for the variables are taken. Popular domains for constraint programming
are finite domains (the domain is a finite subset of the integers) [143], finite sets [40],
trees [26], records [140], and real intervals [101].

Essential for constraints isconstraint propagation. Constraint propagation excludes
values for variables that are in conflict with a constraint. A constraint that connects
several variables propagates information between its variables. Variables act as commu-
nication channels between several constraints.

Constraint Services Constraint services are domain independent. They support
the generation, combination, and processing of constraints. Application development
amounts to programming with constraints and constraint services.
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Powerful generation of constraints according to possibly involved specifications is
essential for large and complex problems. The availability of a programming language
for this task contributes to the expressiveness of modeling.

Regardless of how many primitive constraints a system offers, combination of con-
straints into more complex application-specific constraints is a must. This makes means
for combining constraints key components of a constraint programming system.

The most important constraint service is search. Typically, constraint propagation on
its own is not sufficient to solve a constraint problem by assigning values to variables.
Search decomposes problems into simpler problems and thus creates a search tree. It is
essential to control shape as well as exploration of the search tree.

A recent survey on research in constraint programming is [149], an introductory book
on programming with constraints is [78], and an overview on practical applications of
constraint programming is [153].

1.2 Motivation

A cornerstone for the initial success of constraint programming has been the availabil-
ity of logic programming systems. They successfully integrated constraints and con-
straint propagation into programming systems that come with built-in search. Most of
todays constraint programming systems are constraint logic programming (CLP) sys-
tems that evolved from Prolog: CHIP [33, 2], Eclipse [154], clp(FD) [25] and its suc-
cessor GNU Prolog [31], and SICStus [17], just to name a few. The CLP-approach to
search is adopted by cc(FD) [148]. Jaffar and Maher give an overview on CLP in [59].

Search All these systems have in common that they offer a fixed and small set of
search strategies. The strategies covered are typically limited to single, all, and best-
solution search. Search cannot be programmed, which prevents users to construct new
search strategies. Search hard-wires depth-first exploration, which prevents even system
developers to construct new search strategies.

This has several severe consequences. Complex problems call for new search strate-
gies. Research has addressed this need for new strategies. New strategies such as lim-
ited discrepancy search (LDS) [50] have been developed and have shown their poten-
tial [155, 19]. However, the development of constraint programming systems has not
kept pace with the development of search strategies, since search cannot be programmed
and is limited. Even well established strategies such as best-first search are out of reach.

Naturally, the lack of high-level programming support for search is an impediment
to the development of new strategies and the generalization of existing strategies.

An additional consequence of the fact that controlling search is difficult, is that tools
to support the user in search-related development tasks are almost completely missing.

2



Given that search is an essential ingredient in any constraint programming application,
the lack of development support is serious.

Combination The most prominent technique for constraint combination is constraint
reification. Reification reflects the validity of a constraint into a 0/1-variable. Con-
straints can then be combined using 0/1-variables. Typically, reified constraints are
combined by boolean combinators or by generalizations thereof such as the cardinal-
ity combinator [146]. Reified constraints are also known as meta-constraints.

Reification as exclusive combination device is problematic, since it dictates an “all
or nothing” policy. All constraints subject to combination must be reified. In particu-
lar, combining a conjunction of constraints (a common case) requires reification of each
conjunct. This results in a dramatic loss of propagation, as reification disables constraint
propagation among the conjuncts. Constraints for which the system offers no reified ver-
sion along with constructions obtained by programming cannot be reified. This renders
programming incompatible with reification, resulting in a dramatic loss of expressive-
ness.

Concurrency Integration into today’s computing environments which are concurrent
and distributed is difficult. The backtracking model for search that has been inherited
from Prolog is incompatible with concurrency. Most computations including interoper-
ating with the external worldcannot backtrack.

1.3 Approach

The approach in this thesis is to devise simple abstractions for the programming of con-
straint services that are concurrency-enabled to start with and overcome the problems
stated in the previous section.

First-class Computation Spaces The abstractions are first-class computation spaces
and are tightly integrated into a concurrent programming language. Constraint-based
computations are delegated to computation spaces.

Computation spaces are promoted to first-class status in the programming language.
First-class status of computation spaces enables direct access to constraint-based com-
putations. The direct access allows powerful control of constraint-based computations
and by this simplifies programming.

Encapsulation Computation spaces encapsulate constraint-based computations which
are speculative in nature, since failure due to constraint propagation is a regular event.
Encapsulation is a must for integrating constraint programming into todays concurrent
and distributed computing infrastructure.

3



Encapsulation is achieved by a tight integration of spaces into the concurrent pro-
gramming language together withstability as powerful control regime. Stability natu-
rally generalizes the notion of entailment. Entailment is known as a powerful control
condition in concurrent execution, which has been first identified by Maher [77] and
subsequently used by Saraswat for the cc (concurrent constraint programming) frame-
work [121, 120]. Stability has been first conceived by Janson and Haridi in the context
of AKL [ 61, 46, 60].

Oz Light Computation spaces are integrated into the Oz Light programming language.
The essential features of Oz Light that make the integration of spaces possible are com-
puting with partial information through logic variables, implicit synchronization of com-
putations, explicit concurrency, and first-class procedures.

Oz Light is an idealization of the concurrent programming language Oz that concen-
trates on the features mentioned above. Smolka discusses in [137] the Oz Programming
Model (OPM) on which Oz Light is based. OPM extends the concurrent constraint pro-
gramming (cc) paradigm [121, 120] by explicit concurrency, first-class procedures, and
concurrent state.

Search Spaces are applied to state-of-the-art search engines, such as plain, best-
solution, and best-first search. Programming techniques for space-based search are de-
veloped and applied to new and highly relevant search engines. One new search engine is
the Oz Explorer, a visual and interactive search engine that supports the development of
constraint programming applications. Additionally, spaces are applied to parallel search
using the computational resources of networked computers.

Copying and Recomputation In order to be expressive and compatible with concur-
rency, search is based on copying rather than on trailing. Trailing is the currently domi-
nating approach for implementing search in constraint programming systems. The thesis
establishes the competitiveness of copying by a rigid comparison with trailing.

Recomputation is used as an essential technique for search. Recomputation saves
space, possibly at the expense of increased runtime. Recomputation can save runtime,
due to an optimistic attitude to search.

The combination of recomputation and copying provides search engines that offer
a fundamental improvement over trailing-based search for large problems. The thesis
introduces adaptive recomputation as a promising technique for solving large problems.

Composable Constraint Combinators Spaces are applied to composable constraint
combinators. Composable means that combinators programmed from spaces can com-
bine arbitrary computations, including computations already spawned by combinators.
Combinators obtained from spaces are applicable to all statements of the programming
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language without sacrificing constraint propagation. It is shown how to make com-
posable combinators compatible with reification while avoiding its “all or nothing” ap-
proach. Constraint combinators are shown to have a surprisingly simple implementation
with spaces. Composable combinators are also known as deep-guard combinators.

Implementation The thesis presents an implementation for first-class computation
spaces as a conservative extension of an implementation for Oz Light. The implemen-
tation is factored into orthogonal support for multiple constraint stores as needed by
multiple spaces, stability, space operations, and search. Copying leads to a simple im-
plementation of search.

The implementation model serves as foundation for spaces in the Mozart implemen-
tation of Oz [95]. Mozart is a production quality system and is shown to be competitive
with existing constraint programming systems.

1.4 Outline

The thesis consists of five parts. The structure of the thesis and dependencies between
chapters are sketched in Figure1.1.

Setting the Stage Chapter2 introduces constraint inference methods and indentifies
underlying concepts for: constraint propagation, constraint distribution, search, and best-
solution search. Chapter3 introduces Oz Light, an idealization of the programming
language Oz, and relates it to full Oz.

Search Chapter4 introduces a simplification of first-class computation spaces for pro-
gramming search engines. Spaces conservatively extend Oz Light. Their design takes
the primitives identified in Chapter2 as input.

Chapters5 through7 develop essential techniques for programming search engines
from spaces. Plain search engines are introduced in Chapter5. Best-solution search
engines and generalizations of best-solution search are discussed in Chapter6. Different
recomputation strategies are developed and evaluated in the following chapter.

The remaining two chapters in this part apply the previously developed techniques
to search engines that are new to constraint programming. The Oz Explorer, a visual
and interactive constraint programming tool, is discussed in Chapter8. Parallel search
engines that exploit the resources of networked computers are presented in Chapter9.

Combinators Chapter10presents the full model of computation spaces that enable the
programming of composable constraint combinators. The next chapter applies spaces to
a wide range of combinators and develops concomitant programming techniques.
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2. Constraint Programming 3. Introducing Oz Light

4. Spaces for Search

5. Search Engines

6. Best-solution Search

7. Recomputation

8. Oz Explorer: Visual Search 9. Distributed Search

10. Spaces for Combinators

11. Constraint Combinators

12. Implementing Oz Light

13. Implementing Spaces

14. Other Approaches to Search

15. Conclusion

Setting the Stage

Search

Combinators

Implementation

Discussion

Figure 1.1: Thesis structure.
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Implementation Chapter12 lays the foundation for the implementation of computa-
tion spaces by outlining an implementation architecture of Oz Light. The next chapter
discusses the implementation of first-class computation spaces together with extensions
such as support for different constraint domains.

Discussion The last part is concerned with evaluating and discussing the thesis’ results.
This includes comparison with other approaches to search and in particular a detailed
comparison with trailing (Chapter14). Chapter15 concludes by summarizing the main
contributions and presenting concrete ideas for future work.

1.5 Source Material

Part of this thesis’ material has already been published in the following articles:

■ Christian Schulte. Parallel Search Made Simple. Techniques for Implementing
Constraint Programming Systems, 2000 [129].

■ Christian Schulte. Programming Deep Guard Concurrent Constraint Combinators.
Practical Aspects of Declarative Languages, 2000 [130].

■ Christian Schulte. Comparing Trailing and Copying for Constraint Programming.
International Conference on Logic Programming, 1999 [126].

■ Christian Schulte. Programming Constraint Inference Engines. International Con-
ference on Principles and Practice of Constraint Programming, 1997 [125].

■ Christian Schulte. Oz Explorer: A Visual Constraint Programming Tool. Interna-
tional Conference on Logic Programming, 1997 [124].

Computation spaces build on a previous treatment of the so-called solve combina-
tor, which shares important aspects with spaces. Section4.7 relates spaces to the solve
combinator. The solve combinator has been published in the following articles:

■ Christian Schulte and Gert Smolka. Encapsulated Search in Higher-order Concur-
rent Constraint Programming. International Symposium on Logic Programming,
1994 [131].

■ Christian Schulte, Gert Smolka, and J¨org Würtz. Encapsulated Search and Con-
straint Programming in Oz. Principles and Practice of Constraint Programming,
1994 [132].

The first implementation of the solve combinator has been done by Konstantin Popov
as masters thesis [109] under my supervision.
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2 Constraint Programming

This chapter introduces essential constraint inference methods and clarifies why con-
straint programming matters. The inference methods covered are constraint propagation,
constraint distribution, and search.

2.1 Constraints

Constraints express relations between variables. Operationally, constraints compute the
values for variables that are consistent with the constraints. That is, constraints compute
with partial information about values of variables.

propagator · · · propagator

constraint store

Computation Spaces Computation with con-
straints takes place in acomputation space. A
computation space consists of propagators (to be
explained later) connected to a constraint store.
The constraint store stores information about values of variables expressed by a con-
junction of basic constraints.

Basic Constraints A basic constraint is a logic formula interpreted in some fixed first-
order structure. The remainder of this chapter restricts its attention to finite domain
constraints. Afinite domain constraint is of the formx ∈ D where thedomain D is a
subset of some finite subset of the natural numbers. IfD is the singleton set{n}, the
constraintx ∈ {n} is writtenx = n, andx is said to be determined ton. Other domains
common in constraint programming are trees and finite sets.

Non-basic Constraints Non-basic constraints typically express relations between sev-
eral variables and are computationally involved. In order to keep operations on con-
straints efficient, non-basic constraints are not written to the constraint store. Examples
for non-basic finite domain constraints arex + y ≤ z or that the values of variables
x1, . . . , xn are distinct.

Constraint Propagation A non-basic constraint is imposed by apropagator. A propa-
gator is a concurrent computational agent that amplifies the information in the constraint
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store byconstraint propagation. In the context of finite domain constraints, amplification
corresponds to narrowing the domains of variables.

Suppose a store that contains the constraintφ and a propagator that imposes the
constraintψ . The propagator cantell (or propagate) a basic constraintβ to the store,
if β is adequate (φ ∧ ψ entailsβ), new (φ does not entailβ), andconsistent (φ ∧ β is
consistent). Tellingβ to a store containingφ updates it to hostφ ∧ β.

x > y

x ∈ {3,4,5} ∧ y ∈ {3,4,5}

Consider the space sketched to the right. The prop-
agator imposingx > y can propagatex ∈ {4, 5} and
y ∈ {3, 4}. The propagator remains: not all of its infor-
mation is propagated yet.

A propagator imposingψ becomesentailed, if it detects thatψ is entailed by the
constraint storeφ. It becomesfailed, if it detects thatψ is inconsistent withφ. A propa-
gator that detects entailment disappears. A propagator is guaranteed to detect entailment
and failure at latest, if all of its variables are determined.

A spaceS is stable, if no further constraint propagation inS is possible. A stable
spaceS is failed, if S contains a failed propagator. A stable spaceS is solved, if S
contains no propagator.

x + 3= y y − 2× x > 1

x ∈ {1, . . . ,6} ∧ y ∈ {1, . . . ,6}

Propagators communicate through the constraint
store by shared variables. Suppose thatx + 3 = y
propagatesx ∈ {1, 2, 3} and y ∈ {4, 5, 6}. The right
propagator then propagatesx ∈ {1, 2}. Narrowingx
triggers the left propagator again to telly ∈ {4, 5}. Now the right propagator is triggered
again, tellingx = 1 which in turn triggers the first propagator to telly = 4. Since both
x andy are determined, the propagators disappear.

2.2 Search

x �= y x �= z y �= z

x ∈ {1,2} ∧ y ∈ {1,2} ∧ z ∈ {1,2}

Typically, constraint propagation alone is not suf-
ficient to solve a constraint problem: a space can
become stable, but neither solved nor failed. The
constraints to the right are unsatisfiable, but no fur-
ther propagation is possible. Similarly, if the domains forx , y, andz are{1, 2, 3}, the
problem has solutions albeit no further propagation is possible.

Constraint Distribution To proceed in this situationdistribution is used: proceed to
spaces that are easier to solve, but retain the same set of solutions. Distributing a space
S with respect to a basic constraintβ creates two spaces: One is obtained by adding the
constraintβ to S, the other by adding¬β to S. It is crucial to chooseβ such that both
β and¬β trigger further constraint propagation. The constraintsβ and¬β are called
alternatives. Distribution is also known aslabelling or branching.
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In the context of finite domain constraints, a possible strategy to distribute a space
is as follows. Select a variablex with a non-singleton domainD and a numbern ∈ D,
and then distribute withx = n. This strategy is known asnaive distribution strategy. A
popular refinement isfirst-fail: select a variable with the least number of values.

Search Trees Search is a complete method for solving finite domain constraint prob-
lems. Initially, create a space that contains the basic constraints and propagators of the
problem to be solved. Then propagate constraints until the space becomes stable. If the
space is failed or solved, search is done. Otherwise, the space isdistributable.

Search proceeds by distributing the space. Iterating constraint
propagation and distribution leads to a tree of spaces, thesearch tree.
Each node in the search tree corresponds to a computation space.
Leaves correspond to solved or failed spaces. Throughout the thesis
failed spaces are drawn as boxes, solved spaces as diamonds,
and distributable spaces as circles.

Exploration An important property of the setup is that the search tree is defined en-
tirely by the distribution strategy. An orthogonal issue is how the search tree is explored.
Possible strategies are depth-first or breadth-first exploration.

A program that implements exploration is calledsearch engine. The strategy im-
plemented by the search engine is referred to bysearch strategy. Besides of different
strategies engines can offer a great variety of functionality:

■ Search for a single solution, several solutions, or all solutions (Chapter5).

■ Interactive and visual search (Chapter8).

■ Search in parallel making use of networked computers (Chapter9).

x + y = z x × y = z

x ∈ {1, . . . ,6} ∧ y ∈ {1, . . . ,6}

Figure 2.1 shows the search tree for the space
sketched to the right, where naive distribution with or-
derx , y, andz is used. The figure’s right part shows the
store of the non-failed nodes before distribution (that
is, after constraint propagation).

Best-solution Search For a large class of applications it is important to find a best
solution with respect to an application-dependent criterion. The naive approach to first
compute all solutions and then select the best is unfeasible. Typically, the number of
solutions grows exponentially with the size of the problem. But even in case the number
of solutions is manageable, one can do better.

The idea of best-solution search is to employ information from an already computed
solution to reduce the remaining search space. The information is expressed by con-
straints: after a solution has been found, the additional constraint that a next solution
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x �= 3x = 3

x �= 2x = 2

x �= 1x = 1
1

3

5

76

4

2

Node x y z

1 {1, . . . ,5} {1, . . . ,5} {2, . . . ,6}
3 {2, . . . ,5} {1,2,3} {3, . . . ,6}
4 2 2 4
5 {3,4,5} {1,2} {4,5,6}

Figure 2.1: Example search tree.

must be better is taken into account. By this additional constraint, the search tree can
become considerably smaller: the constraintprunes the search space.

As an example, consider searching for a solution where the value ofx is largest.
Suppose that there is already a solved spaceS that prescribesx to have the valuen. To
ensure that search starting from a spaceS′ yields a better solution, the propagatorx > n
is added toS′. Searching for a solution ofS′ then can only yield a solution with a value
of x that is greater thann. The spaceS′ is constrained by injecting a constraint to S ′.

Branch-and-bound best-solution search works as follows. The search tree is explored
until a solutionS is found. During exploration, a node isopen, if it is distributable but
has not been distributed yet. All spaces corresponding to open nodes are constrained
now. This is repeated after exploration yields a next solution. If exploration is complete,
the solution found last is a best solution.

x ≥ z y > z

x ∈ {1,2,3} ∧ y ∈ {1,2,3} ∧ z ∈ {1,2,3}

Consider the space sketched to the right.
The goal is to search a solution wherez is
largest. Again, the naive distribution strategy
with order x , y, andz is used. Figure2.2(a)
shows the search tree explored with a left-most depth-first strategy until a first solved
space is found. The value forz is 1, Spaces 3 and 4 are constrained byz > 1. The figure
shows the nodes after injection. Node 5 gets failed (x ≥ z propagatesz = 1) by adding
z > 1. Addingz > 1 to Node 3 propagatesz = 2.

Figure2.2(b)shows the complete search tree. Continuing exploration by distributing
Node 3 creates Nodes 6 and 7, of which Node 6 is a new and better solution (z has value
2). The constraintz > 2 is added to Node 7 which leads to failure (z is 2). Hence, the
best solution computed isx = 2∧ y = 3∧ z = 2.

The search tree for best-solution search is determined also by the order in which
the nodes of the search tree are explored. This is in contrast to “plain” search, where
distribution alone determines the search tree. However, this is the very idea of best-
solution search: use previous solutions to prune the remaining search space.

In the example above, Nodes 5 and 7 are both pruned. The pruning constraints also
interact with the distribution strategy. The strategy possibly considers other constraints
for distribution. In the example, this is not the case. However, the constraintz > 2
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x �= 1

y �= 2y = 2

x = 1
1

32

54

z > 1

Node x y z

1 {1,2,3} {2,3} {1,2}
2 1 {2,3} 1
3 {2,3} 3 2
4 1 2 1

(a) After first solution found.

x �= 2x = 2

x �= 1

y �= 2y = 2

x = 1
1

3

76

2

54

z > 2

Node x y z

1 {1,2,3} {2,3} {1,2}
2 1 {2,3} 1
3 {2,3} 3 2
4 1 2 1
6 2 3 2

(b) After second (best) solution found.

Figure 2.2: Trees for left-most branch-and-bound search.

excludes distribution with respect toz in the subtree issuing from Node 3.

2.3 Programming

The need for programming with constraints arises at the application and at the service
level.

Programming Applications A characteristic task in programming applications with
constraints is the creation of constraints according to a problem specification. This pro-
cess normally extends over several levels of abstraction. It requires programming to
compose application-dependent constraints from system-provided constraints with the
help of combination mechanisms. Common combination mechanisms are booleancom-
binators such as disjunction and negation.

application

script

constraints distributors

search engine

The anatomy of a constraint-based application is
sketched to the right. Thescript is programmed from
constraints and distributors needed for the applica-
tion. A search engine solves the script.
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Programming Services Services are the abstractions required to program applica-
tions, such as propagators, distributors, combinators, and search engines. This thesis
concentrates onprogramming services rather than onapplying services. More specifi-
cally, the interest is on programming generic services such as search and combinators as
opposed to domain-specific propagators.

Programming With Spaces Programming languages allow to build abstractions in
a hierarchical fashion, ranging from simple abstractions programmed from primitives
to sophisticated abstractions programmed from simpler abstractions. To get the whole
process started, the right primitives and their smooth integration into a programming
language is essential.

Here, computation spaces have been introduced as central concept for constraint in-
ference. This is also the route of choice in the remainder of the thesis. The integration
of spaces together with primitive operations on spaces in the concurrent programming
language Oz Light is described.

The primitives of interest are essentially those required to program constraint ser-
vices such as search engines and combinators. The exposition of search in Section2.2
already identified central operations: space creation taking a script as input, control to
decide whether a space is solved, failed, or distributable, space distribution, and con-
straint injection. While in this chapter the intuitive aspects are central, for the purpose of
integration into a programming language the concern is to design a small set of abstrac-
tions that enables the simple programming of constraint services.

Concurrency Concurrency plays two important roles in the thesis’ approach. Firstly,
the underlying programming language is concurrent to fit the needs of todays concurrent
and distributed computing environments. Secondly, constraint propagation itself is in-
herently concurrent. Therefore, control of propagation must be concurrency-aware and
combination mechanisms must be concurrent.
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3 Introducing Oz Light

This chapter introduces Oz Light as the programming language used in the remainder of
this thesis. The introduction serves two purposes. Oz Light is introduced as language on
which the design of computation spaces builds. Extensions and syntactic convenience
for programming space-based constraint services are sketched.

3.1 Overview

The essential features of Oz Light are the following.

Partial Information Oz Light computes with partial information accessible through
logic variables. Information on values of variables is provided by constraints.

Implicit Synchronization Execution automatically synchronizes until enough informa-
tion is available on the variables of a statement. Missing information blocks exe-
cution. New information resumes execution (“data-flow synchronization”).

Explicit Concurrency Computation is driven by multiple concurrent threads. Threads
are created explicitly at the leisure of the programmer.

First-class ProceduresProcedures are first-class citizens: they can be passed as argu-
ments and stored in data structures. Procedures maintain reference to external
entities by lexical scoping.

This chapter gives a brief overview. A tutorial introduction to Oz is [45]. Smolka
discusses in [137] the Oz Programming Model (OPM), on which Oz Light is based.
Oz Light extends the concurrent constraint programming (cc) paradigm [121, 120] by
explicit concurrency and first-class procedures.

Section3.2 introduces Oz Light. The following section covers standard concepts
(such as exception handling), or concepts orthogonal to the basic setup of Oz Light (such
as ports and finite domain constraints). Section3.4 introduces syntactic convenience to
increases the readability of programs used in the remainder of the thesis. The last section
relates Oz Light to full Oz.

It is recommended to read all of Section3.2 before proceeding with the remaining
chapters. The material contained in Section3.3 is best read as the need arises.
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3.2 Oz Light: Basics

thread · · · thread

store

Computation in Oz Light takes place in acomputation
space. A computation space features multiplethreads
computing over a sharedstore. A thread is the control
structure of a sequential computation. The store contains the data structures with which
the threads compute. Variables connect threads to the data structures in the store. The
so-far single space is calledtoplevel space.

A thread is a stack of statements. A thread reduces by trying to reduce its topmost
statement. Reduction automatically synchronizes until the store contains sufficient in-
formation on the variables of the topmost statement.

3.2.1 The Store

The store has two compartments: theconstraint store and theprocedure store. The con-
straint store contains logic formulas that represent information about values of variables.
The procedure store contains procedures which are created as computation proceeds.

Procedures are data structures but not values. They are connected to the constraint
store by primitive values called names. The procedure store maps names to procedures.

The constraint store contains information about values of variables represented by
a conjunction ofbasic constraints. Basic constraints are logic formulas interpreted in
a fixed first-order structure, called theuniverse. The elements of the universe are the
values with which threads compute. Variables are ranged over byx , y, andz.

value

simple value

integer literal

atom name

tuple

The Universe The universe containsintegers, atoms,
names, andrational trees [26] constructed fromtuples of
values. Values are ranged over byv and integers byi .

Names (ranged over byξ andη) are primitive entities
that have no structure. There are two special namestrue

andfalse that represent the respective truth values.
Atoms are symbolic values that have identity as defined by a sequence of characters.

Examples for atoms aréatom´, ´nil´, and´|´. A literal is either a name or an atom.
Literals are ranged over byl. A simple value is either a literal or an integer. Simple
values are ranged over bys.

A tuple l(v1 . . . vn) consists of a singlelabel l (a literal) andfields v1, . . . , vn with
n > 0. The number of fieldsn is called the tuple’swidth.

Lists are constructed from tuples and atoms as follows. A list is either the empty list
(the atomnil) or a pair of an element (the head) and a list (the tail). A pair is a binary
tuple´|´(x y) which can be written infix asx|y.
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Constraints A constraintφ is a conjunction of basic constraintsβ. The constraint store
contains a constraint which defines the values the variables can take. A basic constraint
β is one of the following:

■ x = s, which is interpreted that the value ofx is the simple values.

■ x = l(y1 . . . yn), which is interpreted thatx is a tree with labell and subtrees
defined byy1 throughyn.

■ x = y, which is interpreted that the values ofx andy are the same.

In the following a constraint store is often identified with its constraintφ.

Satisfiability and Entailment A constraintφ is satisfiable, if ∃ φ is valid in the uni-
verse. A constraintφ entails a constraintψ , if φ → ψ is valid in the universe. A
constraintφ disentails a constraintψ , if φ entails¬ψ .

Determined, Aliased, and Constrained Variables A variablex is determined by a
constraintφ, if there exists a simple values such thatφ entailsx = s, or if there exists a
literal l and a natural numbern > 1 such thatφ entails∃y x = l(y1 . . . yn). In the former
case,x is determined tos/0, in the latter tol/n. A variablex is aliased to a variabley
by a constraintφ, if x �= y andφ entailsx = y. A variablex is aliased, if there exists
a variabley to which x is aliased. A variablex is constrained by a constraintφ, if x is
determined or aliased byφ.

If the constraint is omitted by which variables are determined, aliased, or constrained,
the constraint stored by the constraint store is assumed.

Telling Constraints Telling a basic constraintβ to a constraint storeφ updates the
constraint store to containφ ∧ β, provided thatφ ∧ β is satisfiable. This means that it is
only possible to tell basic constraints that leave the store satisfiable. Starting out from an
empty store (that is�), the constraint store maintains the invariant to be satisfiable. In
case an attempt to tell a basic constraint would render the store unsatisfiable, the attempt
is said to be unsuccessful.

Dependency A variablex depends on a variable y with respect to a constraintφ, x�φ y,
if either y is aliased tox by φ, orφ entails∃z1z2 x = l(z1zz2) andz �φ y. Analogously,
a variablex depends on a name ξ with respect to a constraintφ, x �φ ξ , if there exists a
variabley that is determined toξ by φ andx �φ y.

17



3.2.2 Threads and Statements

A thread is a stack of statements. A thread can only reduce if its topmost statement can
reduce. Reduction of the topmost statement pops the statement and can also:

■ Tell information to the constraint store.

■ Create a new procedure and enter it in the procedure store.

■ Push statements on the stack.

■ Create a new thread.

Statements are partitioned intosynchronized andunsynchronized statements. Reduc-
tion of an unsynchronized statement takes place independently of the information in the
constraint store. In contrast, synchronized statements can only reduce if the constraint
store provides sufficient information.

Information in the constraint store is accessed by variables: a statementsynchronizes
or suspends on variables. A thread itself synchronizes or suspends, if its topmost state-
ment synchronizes. The set of variables a statementσ and its threadT synchronizes on,
is called itssuspension set and is denoted byS(σ ) andS(T ).

Reduction of threads is fair. If a thread can reduce because either its topmost state-
ment is unsynchronized or otherwise the constraint store contains sufficient information,
it eventually will reduce.

If the last statement of a thread reduces and pushes no new statement, the thread
terminates and ceases to exist. If the topmost statement of a thread can reduce, the thread
is runnable. Otherwise the thread issuspended. A suspended thread becomes runnable
by waking or by resuming. A runnable thread becomes suspended bysuspending the
thread.

The current thread is the thread whose topmost statement is being reduced. By
pushing a statementσ , it is meant thatσ is pushed on the current thread.

3.2.3 Statements

The core statements of Oz Light are shown in Figure3.1. Their reduction is as follows.

Empty Statement The empty statement

skip

reduces without any effect and is unsynchronized.

Tell A tell statement
x = v

is unsynchronized. Its reduction attempts to tellx = v to the constraint store. An
unsuccessful attempt raises an exception, which is discussed later.
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σ ::= skip empty statement

| x = y | x = v tell statement

| σ1 σ2 sequential composition

| proc {x y} σ end procedure creation

| {x y} procedure application

| local x in σ end declaration

| if x then σ1 else σ2 end conditional statement

| thread σ end thread creation

v ::= s simple value

| l(x1 . . . xn) tuple construction

s ::= l | integer literal and integer

l ::= atom | true | false atom and names

x, y, z ::= variable variable

x ::= ε | x x list of variables

Figure 3.1: Statements of Oz Light.

Sequential Composition A sequential composition statement

σ1 σ2

is unsynchronized. It reduces by pushingσ2 and thenσ1.

Declaration A declaration statement

local x in σ end

is unsynchronized. It creates a fresh variabley and reduces by pushingσ [y/x],
wherex is replaced byy in σ [y/x].

Procedure Creation A procedure creation statement

proc {x y} σ end

is unsynchronized. Its reduction chooses a fresh nameξ , stores the procedureλy.σ
under the nameξ in the procedure store, and pushes the tell statementx = ξ .
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The statementσ is thebody and the variablesy are the(formal) arguments of the
procedure. The argumentsy are required to be linear, that is, no variable occurs
twice in y. The variables that occur free inσ but not iny are the procedure’sfree
variables.

The notationξ �→ λy.σ is used for a procedureλy.σ stored under a nameξ . Since
ξ is fresh, storing the procedure under the nameξ maintains the invariant that the
procedure store is a mapping of names to procedures.

Procedure Application A procedure application statement

{x y}

synchronizes on the variablex . Reduction requiresx to be determined to a name
ξ with ξ �→ λz.σ and the number of actual parametersy must match the number
of formal parametersz. Reduction pushesσ [y/z] where the formal parameters are
replaced by the actual parameters.

Conditional A conditional statement

if x then σ1 else σ2 end

synchronizes on the variablex . If x is determined totrue, reduction proceeds by
pushingσ1. Otherwise, reduction proceeds by pushingσ2.

Thread Creation A thread creation statement

thread σ end

is unsynchronized. Its creates a new thread that consists of the statementσ .

3.3 Oz Light Continued

This section is concerned with additional features of Oz Light. The statements that are
discussed in this section are listed in Figure3.2.

3.3.1 Primitive Operations

Equality Test The equality test
x = (y == z)

synchronizes untily = z is either entailed or disentailed. Ify = z is entailed,
reduction proceeds by pushingx = true. If y = z is disentailed, reduction
proceeds by pushingx = false.
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σ ::= x = (y == z) equality test

| {IsDet x y} determination test

| {WaitOr x y} indeterminate synchronization

| x = ˜y | x = y ( + | - | > ) z arithmetic operations

| {Width x y} | {Label x y} tuple operations

indeterminate synchronization(a) Primitive Operations.

σ ::= try σ1 catch x then σ2 end try statement

| raise x end raise statement

{Width x y} | {Label x y} indeterminate synchronization(b) Exception handling.

σ ::= {NewPort x y} port creation

| {Send x y} message sending

{Width x y} | {Label x y} indeterminate synchronization(c) Ports.

σ ::= x::y domain tell

| {FdReflect x y} domain reflection

{Width x y} | {Label x y} indeterminate synchronization(d) Finite Domain Constraints.

Figure 3.2: Statements of Oz Light, continued.

Determination Test The test whether a variable is determined

{IsDet x y}

is unsynchronized. Ifx is determined,y = true, otherwise,y = false is
pushed.

Indeterminate Synchronization The operation

{WaitOr x y}

synchronizes untilx or y is determined. Its reduction has no effect.

Arithmetic Operations Unary minus (̃ ) is an example for arithmetic operations.

x = ˜y

Its reduction synchronizes untily is determined to an integeri . Reduction pro-
ceeds by pushingx = −i .
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Tuple Operations The operation
{Width x y}

synchronizes untilx is determined tos/n. Reduction proceeds by pushingy = n.
Similarly,{Label x y} proceeds by pushingy = s.

A common abstraction is{Wait x} that synchronizes onx being determined. This
can be expressed by either{WaitOr x x} or by

proc {Wait X}
if X==1 then skip else skip end

end

A convenient abstractionFirst that does indeterminate synchronization on two vari-
ables is programmed fromWaitOr andIsDet as follows.{First X Y Z} blocks until
at least one ofX andY becomes determined. IfZ is true (false), X (Y) is determined.

proc {First X Y Z}
{WaitOr X Y} {IsDet X Z}

end

Example 3.1 (Indeterminism) WaitOr introduces indeterminism to Oz Light. In the
following example, it is indeterminate whetherZ is determined to1 or 2:

thread X=1 end thread Y=1 end
if {First X Y} then Z=1 else Z=2 end

3.3.2 Exceptions

Try Statement A try statement

try σ1 catch x then σ2 end

is unsynchronized. It first pushescatch x then σ2 end and thenσ1.

catch x then σ end is used to define the semantics of exceptions. A program-
mer is not allowed to use this statement in programs.

Catch Statement A catch statement

catch x then σ end

is unsynchronized. Its reduction has no effect.

Raise StatementA raise statement

raise x end

is synchronized. Its reduction blocks untilx is determined. All statements until
catch y then σ end (included) are popped. Thenσ [x/y] is pushed.
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3.3.3 Ports and Active Services

Ports provide message sending for communicating concurrent computations. A port
maintains an ordered stream of messages (“mailbox”). ASend-operation on the port
appends a message to the end of the stream. The stream of messages then can be incre-
mentally processed as new messages arrive.

Ports are accommodated like procedures: variables refer to names, which refer to
ports. For that matter, the store is extended by aport store as a third compartment.

Port Creation The statement
{NewPort x y}

is unsynchronized. Its reduction creates a fresh nameξ and stores[x ] in the port
store under the nameξ . Reduction proceeds by pushingy = ξ . The variablex
stored by the port[x ] is the tail of the message stream.

As with procedures,ξ �→ [x ] refers to a port with streamx stored under nameξ .

Message SendingThe statement
{Send x y}

is synchronized. Reduction requiresx to be determined toξ �→ [z1]. The message
y is added to the stream as follows. A new variablez2 is created and the port is
updated to[z2]. The reduction proceeds by pushingz1 = y|z2. Reduction keeps
the invariant that the variable stored in the port is the tail of the message stream.

Ports have been initially conceived in the context of AKL [62]. They have been
adopted in Oz, but as abstractions obtained from cells and not as primitives [137]. Cells
are a more primitive concept to capture concurrent state. Here ports rather than cells are
made primitive, since ports are extended as the presentation of the thesis proceeds in a
way that is not captured easily by the cell-based construction.

Note that ports are an additional source of indeterminism. If messages to a port are
sent by multiple concurrent threads, the order of messages on the stream is indeterminate.

Active Services The Send-operation on ports can be easily extended to deal with
replies to messages. Rather than sending the message, a pair of message and answer
is sent. The answer is a logic variable which serves as place holder for the answer.

This idea is captured by the following procedure definition:

proc {SendRecv P X Y}
local M in M=´#´(X Y) {Send P M} end

end
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proc {Serve XYs P}
if XYs==nil then skip else

local XY XYr X Y in
XYs=XY|YXr XY=´#´(X Y) {P X Y} {Serve XYr P}

end
end

end
proc {NewService P ServiceP}

local XYs Po in
{NewPort XYs Po}
thread {Serve XYs P} end
proc {ServiceP X Y}

{SendRecv Po X Y}
end

end
end

Figure 3.3: Creating active services.

A common abstraction for communicating concurrent computations is the use of
active services. An active service is hosted by a thread of its own. It processes messages
that arrive on a stream and computes answers to the messages.

The procedureNewService as shown in Figure3.3 takes a procedureP and com-
putes a new procedureServiceP that encapsulates message sending. All messages are
served in a newly created thread byServe. A more readable version using syntactic
convenience is available in Figure3.4.

Active services combine concurrency control with latency tolerance. All messages
are served sequentially which makes concurrency control simple. Message sending is
asynchronous and the service’s client can immediately continue its computation. Only
when needed, possibly much later, the client automatically synchronizes on the answer.

3.3.4 Finite Domain Constraints

For finite domain constraints, the constraint store supports the basic constraintx ∈ D.
Here D ⊆ {0, . . . , n̂}, wheren̂ is a sufficiently large natural number. The constraint is
interpreted that the value ofx is an element ofD.

A variablex is kinded by a constraintφ, if x is not determined byφ andφ entails
x ∈ {0, . . . , n̂}. Accordingly, a variablex is constrained, if x is determined, kinded, or
aliased. Note that a variable can be both kinded and aliased.

Telling Domains The statement
x::y
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synchronizes untily is determined to a listn1|· · ·|nk|nil of natural numbers. It
reduces by attempting to tell the basic constraintx ∈ {n1, . . . , nk}.

Domain Reflection The statement

{FdReflect x y}

synchronizes untilx is kinded or determined. Suppose thatD = {n1, . . . , nk}
is the smallest set for whichx ∈ D is entailed and thatn1 < n2, . . . , nk−1 <

nk . Reduction proceeds by pushing a statement that constructs an ordered list
containingn1, . . . , nk :

local z1 local z′1 · · · local zk local z′k in
y = z1|z′1 z1 = n1 · · · z′k−1 = zk|z′k zk = nk z′k =nil

end · · · end

Propagators For the purposes of this thesis it is sufficient to regard a propagator as a
thread that implements constraint propagation. More information on the integration of
propagators into Oz can be found in [160, 87].

3.4 Syntactic Convenience

This section introduces syntactical convenience to ease programming of constraint ser-
vices in the remainder of the thesis. A tutorial account on Oz syntax is [45]. A rigid
treatment of the Oz syntax is [53].

Declaration Multiple variables can be introduced simultaneously. For example:

local X Y in σ end ⇒ local X in local Y in σ end end

If a declaration statement comprises the body of a procedure definition or the branch
of a conditional,local andend can be omitted. For example:

proc {P} Y in σ end ⇒ proc {P} local Y in σ end end

Declaration can be combined with initialization through tell statements:

local X=5 in σ end ⇒ local X in X=5 σ end
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Functional Notation The statementz = {x y} abbreviates{x y z}. Motivated by
this abbreviation,{x y} is said to returnz. Similarly, nesting of tuple construction and
procedure application avoids declaration of auxiliary variables. For example:

X=b({F N+1}) ⇒
local Y Z in

Y=N+1 X=b(Z) {F Y Z}
end

Tuple construction is given precedence over procedure application to allow more
procedure definitions to be tail recursive. The construction is extended analogously to
other statements, allowing statements as expressions. For example:

X=local Y=2 in
{P Y}

end
⇒ local Y=2 in X={P Y} end

Procedure definitions as expressions are tagged with a dollar sign ($) to distinguish
them from definitions in statement position:

X=proc {$ Y} Y=1 end ⇒ proc {X Y} Y=1 end

Procedure definitions can use functional notation by usingfun rather thanproc,
where the body of a functional definition is an expression:

fun {Inc X} X+1 end ⇒ proc {Inc X Y} Y=X+1 end

Lists Complete lists can be written by enclosing the elements in square brackets. For
example,[1 2] abbreviates1|2|nil, which abbreviateś|´(1 ´|´(2 nil)).

Infix Pairs The labeĺ #´ for pairs´#´(X Y) can be written infix:X#Y.

Pattern Matching Programming with tuples and lists is greatly simplified by pattern
matching. A pattern matching conditional

case x of l(y1 . . . yn) then σ1 else σ2 end

is an abbreviation for
if {Width x}|{Label x} == n|l then

y1 . . . yn in x = l(y1 . . . yn) σ1

else σ2

end

The else part is optional and defaults toelse skip. Multiple clauses are handled
sequentially, for example:

case X
of f(Y) then σ1

[] g(Z) then σ2

end

⇒
case X of f(Y) then σ1

else case X of g(Z) then σ2 end
end

26



fun {SendRecv P X}
Y in {Send P X#Y} Y

end

proc {Serve XYs P}
case XYs of (X#Y)|XYr then

Y={P X} {Serve XYr P}
end

end
fun {NewService P}

XYs Po={NewPort XYs}
in

thread {Serve XYs P} end
fun {$ X}

{SendRecv Po X}
end

end

Figure 3.4: Active services using syntactic convenience.

try-statements are also subject to pattern matching. For example:

try σ1

catch f(X) then σ2

end
⇒

try σ1 catch Y then
case Y of f(X) then σ2

else raise Y end
end

end

Figure3.4shows as an example a version of active services that is considerably easier
to read and understand than the formulation shown in Figure3.3.

3.5 Relation to Full Oz

The presentation of Oz Light is targeted at the actual need of the thesis. The most
prominent features of full Oz missing in the previous exposition are as follows.

Values: Records Full Oz offers a richer universe and contains in particular floating
point numbers and records. Records generalize tuples in that subtrees can be re-
ferred to by name rather than by position only. Information on the universe can be
found in [136]. More on records can be found in [140, 7].

Finite Set Constraints In addition to finite domain constraints, full Oz offers con-
straints ranging over finite sets of integers [88, 85].
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Futures Full Oz offers futures as read only variants of logic variables [81]. Futures pro-
vide reliability for programming abstractions such as active services and support
demand-driven execution.

Cells Concurrent state is provided by cells in full Oz. Cells implement mutable bind-
ings of names to variables. The development of the Oz Programming Model by
Smolka [137] covers cells and clarifies their relation to ports.

Classes and ObjectsFull Oz supports concurrent objects that are obtained by instanti-
ation from classes [51]. Classes are subject to multiple inheritances. Objects offer
support mutual exclusion by monitors. By this they are an alternative to active
services for structuring concurrent computations.

Distribution Full Oz supports distributed execution across several computers connected
through the Internet. Distribution is discussed in Section9.2.

Modules Oz offers a powerful module system that supports separate compilation and
both static and dynamic linking [37]. The module system serves also as access
control mechanism for distributed execution, which is discussed in Section9.2.
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4 Spaces for Search

This chapter introduces a simplified model of first-class computation spaces for pro-
gramming search engines.

4.1 Overview

Computation spaces have been introduced as the central mechanism for search in Chap-
ter 2. This chapter follows the idea and integrates spaces into Oz Light to program
search engines. It presents a simplified model for spaces that is sufficient to program
search engines. Chapter10 generalizes spaces for more expressive constraint services.

The integration of spaces into Oz Light is concerned with three major issues.

Language Integration Spaces are integrated smoothly into Oz Light in order to ease
programming of search engines. Ease of programming is facilitated by promoting
spaces to first-class citizens in the programming language. Search engines are then
programmed from operations on first-class computation spaces.

Encapsulation Constraint-based computations arespeculative in that failure is a regu-
lar event. Speculative computations need encapsulation in a concurrent context.
Using backtracking for speculative computations as in Prolog is unfeasible. Most
computations including interoperating with the external world cannot backtrack.

Operations The ease of programming search engines depends on which operations on
spaces are available. This makes the design of suitable operations crucial.

The introduction of computation spaces is organized as follows:

Local Computation SpacesSpeculative constraint-based computations are delegated
to local computation spaces. Their setup is discussed in Section4.2.

First-class SpacesFirst-class spaces provide a handle to encapsulated speculative com-
putations and operations for creation, modification, and access (Section4.3).

Control and Status Computation spaces employ stability as simple control condition.
Stability and stability-based control operations are introduced in Section4.4.
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toplevel

independence encapsulation

local space

Figure 4.1: Independence and encapsulation for local spaces.

Search Operations to support distribution and search are introduced in Section4.5.

Communication Section4.6 refines active services to support communication across
space boundaries while obeying encapsulation.

Section4.7discusses a previous approach for programming search. Section4.8pro-
vides a brief summary of computation spaces for programming search engines.

4.2 Local Computation Spaces

threads

store

toplevel

threads

store

local space

The key idea for encapsulation is to delegate the ex-
ecution of a speculative computation to a local com-
putation space. Alocal computation space features,
like the toplevel space, local variables, local names,
and a private constraint store. Execution in a local
space resembles execution in the toplevel.

Each spaceS provides the same constituents as the toplevel: threads, store, local
variables, and local names. Each entitye (thread, variable, name, and procedure) is
situated in exactly one spaceS, its home (space)H(e). The home of the current thread
is referred to ascurrent space. Similarly, the notioncurrent store is used. Notions such
as determined, aliased, and kinded that are with respect to a constraint refer by default
to the current store.

The basic idea of local spaces is that computations in a local space perform as they
do at the toplevel. However, some points need conservative extension.

Freshness and Visibility The set of variables and names for each space are disjoint.
This means that a fresh variable or a fresh name is fresh with respect to all spaces.

In a local space, variables and names of the toplevel and of the local space itself are
visible. Visible means that computations can access them.

Independence The setup of spaces in this chapter makes two simplifications. Firstly,
no nested spaces are allowed: spaces cannot be created inside spaces. Secondly, after
creation, the space becomesindependent of the toplevel (Figure4.1). Independence is
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guaranteed by the invariant that only determined toplevel variables can be visible in a
local space, non-determined variables are ruled out. This invariant is satisfied by space
creation and is discussed later.

Procedure Application When a procedure application reduces in a local space, the ap-
propriate procedure is taken from the union of the local procedure store and the toplevel
procedure store. As a consequence of the disjointness of names, the procedure to be
applied is uniquely determined.

Tell Execution of a tell statement
x = v

tells x = v in the current space.

Failure An unsuccessful attempt to tellx = v fails a local computation space. Failing
the local space stops all computations: all threads in the local space are discarded.

Input and Output The toplevel is the only space that is designated to execute non-
speculative computations. For this reason input and output is allowed in the toplevel
only. In all other spaces an attempt to perform input or output raises an exception.

4.3 Space Manipulation

This section is concerned with operations that create new spaces, merge spaces with the
toplevel space, and inject computations into existing spaces.

Computation Spaces are First-class Citizens To enable programming, computation
spaces are promoted to first-class status: each spaceS is uniquely referred to by a nameξ
(similar to procedures). A spaceS with first-class referenceξ is accordingly written as
ξ �→ S. Programs can refer to the spaceS by a variable that is determined toξ .

4.3.1 Space Creation

A new space is created by
{NewSpace x y}

Reduction blocks untilx satisfies an independence condition that is explained later. A
new nameξ is created with the toplevel as home. A new spaceS is created as follows:

■ Theroot variable of S is initialized with a fresh variablez with homeS. The root
variable serves as entry point to the constraints ofS and is discussed later.
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■ The set of local variables is initialized to containz. The set of local names and the
procedure store are initialized as being empty.

■ The constraint store is initialized with the constraints of the toplevel.

■ A thread is created inS to execute{x z}.

Finally, the statementy = ξ is pushed.
The procedure passed toNewSpace is calledscript and defines which computation

is performed. To speculatively execute a statementσ , a new space is created by:
S={NewSpace proc {$ _} σ end}

Example4.1makes use of the root variable.

Independence Condition An essential simplification in this chapter is that a local
space has no access to not yet determined variables of the toplevel space. This restriction
ensures that computations in a local space after their initial setup are independent of the
toplevel.

This is achieved by restricting scripts to not refer to undetermined variables via the
free variables of the script. The restriction is not formalized further, since the full model
in Chapter10 does not impose this purely didactic restriction.

No Nested Spaces An additional simplification made in this chapter is that spaces can
be created only at the toplevel. As a consequence, also all other operations on spaces can
be executed only in the toplevel.

Synchronizing on Spaces Operations on spaces other thanNewSpace need to syn-
chronize on a variablex being determined to a nameξ that refers to the spaceS. Execu-
tion is said to synchronize untilx is ξ �→ S.

4.3.2 Merging Spaces

Access to a speculative computation combines two aspects. Firstly, access to the result of
a speculative computation via the root variable. Secondly, access to the entire speculative
computation itself by removing the space serving as encapsulation barrier.

The following primitive combines both aspects

{Merge x y}

Synchronizes onx beingξ �→ S. If S is failed, an exception is raised. Otherwise,S is
merged with the toplevel space as follows:

■ S is marked as merged.

32



■ The set of local variables of the toplevel is updated to include the local variables
of S. The same happens with the local names.

■ Similarly, the procedure store of the toplevel is updated to include the mappings
of S’s procedure store.

■ y = z is pushed, wherez is the root variable ofS.

■ All constraints ofS are told in the toplevel.

Example 4.1 (Speculative Execution)The following statement speculatively evaluates
the functionF (to be read as unary procedure):

S={NewSpace F}

To access the result byX, the spaceS is merged:
X={Merge S}

This is not yet convincing! Before accessing the result by merging the space, the space’s
status must be checked: Has the speculative computation failed? Has it terminated suc-
cessfully? These issues are dealt with in Section4.4.

4.3.3 Injecting into Spaces

It can become necessary to spawn new computations in an already existing space. As
an example consider best-solution search as discussed in Section2.2: A space gets a
constraint “injected” that it must yield a better result than the previous solution.

This is captured by the primitive

{Inject x y}

that synchronizes on:x is ξ �→ S andy refers to a procedure which satisfies the same
independence condition as discussed for space creation. IfS is failed, the operation does
nothing. Otherwise, a new thread inS is created that executes{y z} wherez is the root
variable ofS.

Example 4.2 (Killing a Space)A particular application ofInject is to kill a specula-
tive computation

proc {Kill S}
{Inject S proc {$ _} fail end}

end

by injectingfail into S. fail abbreviates a statement that raises failure, for example
local X in X=1 X=2 end.
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4.4 Control and Status

Example4.1 shows that it is essential to know when and if a speculative computation
has reached a stable state.

Stability The definition of when a space has reached a stable state is straightforward. A
space isrunnable, if it contains a runnable thread. A space isstable, if it is not runnable.
According to this definition, a failed space is stable. A space issucceeded, if it is stable
and not failed.

Status Access Controlling a spaceS requires an operation that blocks untilS becomes
stable and then returns its status.

{Ask x y}

Reduction synchronizes onx being ξ �→ S and S being stable. It reduces accord-
ing to S’s status: if S is failed (merged, succeeded),y = failed (y = merged,
y = succeeded) is pushed. Section4.5.2extendsAsk to accommodate for distrib-
utor threads as needed for search.

Example 4.3 (Example4.1Reconsidered)With Ask it is possible to program a satis-
factory abstraction that speculatively evaluates an expression. The following procedure
takes again a unary procedureP that returns the computation’s result.

fun {Speculate P}
S={NewSpace P}

in
if {Ask S}==failed then nil else [{Merge S}] end

end

Speculate returns the empty list (nil) in case the speculative computation has been
unsuccessful. Otherwise a singleton list containing the result is returned.

Ask synchronizes on stability of a space and then returns its status. Section10.4.2
presents a simpler and more expressive design that does not require synchronization on
spaces but reuses synchronization on variables.

4.5 Search

To support search, spaces need operations for distribution and exploration. An impor-
tant goal of the design is to make distribution programmable and to decompose it into
orthogonal primitives. Distribution is generalized as follows:

Arbitrary Statements Distribution is not limited to be with respect to a single con-
straint. Instead an arbitrary number of statements, calledalternatives, are allowed.

34



Explicit Cloning Distribution is programmed from cloning spaces and committing a
space to a particular alternative.

Problem-independent Exploration Alternatives are problem-dependent and thus re-
quire access to the constraints inside a space. For exploration, it is sufficient to
select alternatives by number. The number-based selection protocol makes the
search engine orthogonal to the script to be solved.

Factoring script and exploration is an important design principle. It follows in
spirit one of the main motivations of logic programming which is often referred to
by the slogan “algorithm= logic+ control”, due to Kowalski [72].

4.5.1 Alternatives

A straightforward approach is to use a choice statement for specifying the alternatives
with which a space is to be distributed:

choice σ1 [] · · · [] σn end

where the statementsσ1, . . . , σn define the alternatives. This approach would statically
fix the number of alternatives.

The primitiveChoose allows an arbitrary number of alternatives:

{Choose x y}

Its reduction blocks untilx is determined to a natural numbern. If n ≤ 0 an exception
is raised. Otherwise, the current threadT is marked asdistributor thread with n alterna-
tives. If S already contains a distributor thread, an exception is raised. This construction
ensures that there can be at most one distributor for a space.

The variabley will be determined to a number between 1 andn. The determination
is controlled by a different primitiveCommit that is used to program exploration of
alternatives. The primitive is discussed in Section4.5.4.

For convenience,
choice σ1 [] · · · [] σn end

abbreviates
case {Choose n} of 1 then σ1 [] · · · [] n then σn end

Multiple Distributors are Considered Harmful A different and seemingly more ex-
pressive design would be to allow multiple distributors per space. This design alternative
has been explored in different flavors in earlier implementations of Oz and has been iden-
tified to be a common source of hard to find programming errors.

The first flavor is to leave the order of distributors undefined. This renders search un-
predictable: explored nodes and search tree size depend on which distributor is consid-
ered first. This in particular collides with recomputation (Chapter7) which presupposes
that exploration can be redone deterministically.

35



The second flavor is to order distributors. A dynamic order that records distributors
in order of creation does not offer any improvement in a concurrent setting. A static
order can improve this, but is difficult to define: all concurrent events must be ordered,
including injection into spaces. In addition, a static order is costly to implement [60, 92].
On the other hand, expressiveness is still unsatisfactory, see Section11.6.

As a consequence, a simple but expressive way to employ multiple distributors is to
explicitly program the order. Multiple distributors are then executed by a single thread
in a well defined order. Since the base language is indeterministic (due to determination
test and message sending), indeterministic creation of distributors is still possible. The
point is that with at most one distributor, this type of error is considerably less likely.

4.5.2 Distributable Spaces

A space isdistributable, if it is stable and contains a distributor threadT . A distributable
space is said to haven alternatives, if its distributor thread hasn alternatives. Conse-
quently, a stable space is succeeded, if it is neither failed nor distributable.

The additional stable state is taken into account byAsk for status access as follows.

{Ask x y}

If x refers to a distributable space which hasn alternatives, reduction pushesy =
alternatives(n).

4.5.3 Synchronizing on Stability

Typically, a distributor creates alternatives that reflect the current information available
in the constraint store. For example, a distributor following a first-fail strategy gives
preference to a variable with smallest domain. Which variable to select is decided best
after all constraint propagation is done, that is, after the current space is stable.

This requires a primitive that allows a thread to synchronize on stability of the current
space. As a followup to the discussion above, it is useful to restrict the number of threads
that can synchronize on stability to at most one. Along the same lines, a space can have
either a distributor thread or a thread that waits for stability.

ThereforeChoose is extended such that it offers synchronization for stability in case
the number of alternatives is one. If a spaceS becomes distributable and has a single
alternative, reduction immediately proceeds as follows: the distributor threadT contains
as its topmost statement{Choose x y} and x is determined to1. This statement is
replaced by pushingy = 1. This possibly makes bothT andS runnable again. A space
that is distributable and has a single alternative is calledsemi-stable. Note that a space
that becomes semi-stable, directly becomes runnable again by reduction of theChoose

statement.
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In the following the procedureWaitStable is used to synchronize on stability that
is programmed fromChoose:

proc {WaitStable}
{Choose 1 _}

end

Example 4.4 (Programming Distribution Strategies) Distributor takes a list of fi-
nite domain variables to be distributed:

proc {Distributor Xs}
{WaitStable}
case {SelectVar Xs} of [X] then N={SelectVal X} in

choice X=N [] X\=:N end {Distributor Xs}
else skip
end

end

WaitStable is employed to synchronize the shaded statement on semi-stability.
This ensures that variable and value selection take place after constraint propagation.

After synchronizing on stability,SelectVar selects a variableX that has more than
one possible value left, whereasSelectVal selects one possible valueN for X. The
binary choice states that eitherX is equal toN or different fromN. The first-fail strategy,
for example, implementsSelectVar as to return a variable with smallest domain and
SelectVal as to return the smallest value.

4.5.4 Committing to Alternatives

For exploration, a space must be reduced with alternatives defined byChoose. This is
done with:

{Commit x y}

Its reduction synchronizes onx beingξ �→ S andS being stable and not merged. Addi-
tionally, it synchronizes ony = n for some natural numbern. An exception is raised, ifS
is not distributable, ifn is less than one, or ifn is greater than the number of alternatives
of S.

Otherwise, the distributor ofS contains a choose statement{Choose z z ′}. This
statement is replaced by pushingy = z ′.

At first sight, it seems not essential thatCommit synchronizes on stability. Typically,
beforeCommit is applied,Ask has been used to test that the space is indeed distributable.
There are search engines (recomputation being one particular example, Chapter7) that
repeatedly applyCommit. For these engines synchronization ofCommit on stability is
convenient and excludes a great deal of programming errors by design.
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4.5.5 Cloning Spaces

A space is cloned by
{Clone x y}

Its reduction synchronizes onx beingξ �→ S andS being stable. It reduces by creating a
cloneξ ′ �→ S′ of S with ξ ′ being a fresh name. Variables and names inS are consistently
renamed to fresh variables and fresh names. Reduction pushesy = ξ ′.

Stability is essential for cloning. It fights combinatorial explosion by ensuring that
all computation is done once and for all before cloning. As will become clear in Sec-
tion 13.5.2, stability is essential for an efficient implementation of cloning.

Example 4.5 (Clone and Merge)Cloning performs a consistent renaming of local vari-
ables and names. As a consequence, the statement

C={Clone S} in {Merge S}={Merge C}

can possibly raise failure! As an example for a spaceS to exhibit this behavior consider
S={NewSpace proc {$ P} proc {P} skip end end}

Example 4.6 (Distribution) Suppose thatS refers to a distributable space with two al-
ternatives. ThenS is distributed by

fun {Distribute S}
C={Clone S} in {Commit S 1} {Commit C 2} [S C]

end

whereS is the space obtained by distribution with the first alternative andC the space
obtained by distribution with the second alternative.

From distribution it is only a small step to provide a first blueprint of a search engine
programmed from spaces.

Example 4.7 (All-solution Exploration) Suppose thatS refers to a space that has been
created for a script to be solved by search. Then all-solution exploration that takesS as
input and returns a list of all succeeded spaces representing solutions is as follows:

fun {Explore S}
case {Ask S}
of failed then nil
[] succeeded then [S]
[] alternatives(2) then [S1 S2]={Distribute S} in

{Append {Explore S1} {Explore S2}}
end

end

HereAppend concatenates two lists. Note thatExplore is restricted to distributable
spaces with two alternatives.
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Example 4.8 (Partial Evaluation with Clone) Cloning can be seen as partial evalua-
tion: the result stored in a stable space can be reused as many times as required. In
particular, local variables are automatically renamed, whenever the space is cloned.

The following procedure sketches this idea. It takes a scriptP as input and returns a
procedure that on application returns whatP would return on application, provided that
encapsulated execution ofP becomes stable:

fun {Evaluate P}
S={NewSpace P}

in
if {Ask S}==failed then proc {$ _} fail end
else proc {$ X} {Merge {Clone S} X} end
end

end

4.5.6 Refining Commit

Commit selects a single alternative. In later chapters, in particular in Chapters5 and6, it
will become apparent that it is useful to be able to select alternatives at a finer granularity.
Rather than committing to a single alternative, it is beneficial to discard some alternatives
(or by abusing language, to commit to a number of alternatives).

To this end,Commit is refined as follows:

{Commit2 x y1 y2}

which synchronizes onx beingξ �→ S andS being stable. Additionally, it synchronizes
on y1 andy2 being determined to natural numbersn1 andn2. If 1 ≤ n1 ≤ n2 ≤ m does
not hold, wherem is the number of alternatives ofS, an exception is raised. The idea is
that only the alternativesn1, . . . , n2 remain, while the numbering observed byChoose
is maintained. Ifn1 = n2, reduction coincides with that ofCommit.

Otherwise, suppose the distributor thread contains{Choose z1 z2} as its first state-
ment. Then this statement is replaced by

local X Y in X=n2− n1 + 1 {Choose X Y} z2=Y+n1− 1 end

Here,X refers to the new number of alternatives, whereasz2 is obtained by adding an
appropriate offset.

Rather than usingCommit2 directly, the following convenient definition ofCommit
is employed:

proc {Commit S X}
case X of N1#N2 then {Commit2 S N1 N2}
else {Commit2 S X X}
end

end
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4.6 Situated Procedure Calls: Services Reconsidered

The setup disallows communication between local computation spaces and the toplevel
space. Even the full model for spaces that is discussed in Chapter10 will restrict com-
munication across spaces such that it is compatible with encapsulation. For some appli-
cations this setup is too strict. Consider the following situations:

Best-first Search Best-first search associates a cost value with each node of the search
tree. The cost value must be computed within the space, since it normally depends
on the script’s variables and constraints. The value itself must be available to the
search engine and must be communicated to the toplevel space.

Database AccessA script might require access to external data. As an example, think of
products and their associated costs from a warehouse database. The script cannot
access the database directly. The request must be sent to a service in the toplevel
space. The answer must be communicated back to the script’s space. This scenario
has remarkable similarity with remote procedure calls (RPC) used in distributed
computing: the computation (the service) is stationary, while the arguments and
the result of the call are transmitted across the network (across spaces). This justi-
fies to refer to this technique assituated procedure call (SPC).

Mapping the two example situations to ports and services, they just correspond to the
operationsSend andSendRecv on ports as introduced in Section3.3.3.

In both situations, the idea to clone and merge the space to get access is unfeasible.
The space of interest is typically not stable and thus cannot be cloned. Moreover, in
situations where cloning would be applicable, it is inappropriate. It is far to costly to
clone the entire space to access a cost value or a small message.

Sending Messages Across SpacesThe messagex to be sent to a port that is situated
at the toplevel must be sendable. Intuitively,x is sendable toS, if x does not refer to
variables and names which are local toS.

A variable x is sendable from S with storeφ to the toplevel space, if there is no
variabley with x �φ y andy is not determined, and there is no nameξ with x �φ ξ and
ξ is situated inS (� is introduced in Section3.2.1).

In casex is sendable fromS to the toplevel space, all constraints onx must be
made available to a variablex ′ that is situated in the toplevel. The constraints are made
available by cloning them fromS to the toplevel. As becomes clear in Section13.7, the
implementation of sending comes for free in that cloning is not needed.

A send statement
{Send x y}

reduces as follows. It synchronizes onx beingξ �→ [z]. If H(ξ) is the current space,
reduction proceeds as described in Section3.3.3.
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fun {Solve P}
S={NewSpace P}

in
case {Ask S}
of failed then failed
[] succeeded then

solved(proc {$ X} {Merge {Clone S} X} end)
[] alternatives(N) then C={Clone S} in

distributed(proc {$ X} {Commit S 1} {Merge S X} end
proc {$ X} {Commit C 2#N} {Merge C X} end
if N==2 then last else more end)

end
end

Figure 4.2: The solve combinator programmed from computation spaces.

An exception is raised ify is not sendable from the current space to the toplevel
space. Otherwise,y is sent tox . The message is then appended to the port’s stream as
follows. The port store is updated toξ �→ [

z′
]

and reduction proceeds by injectingz =
y|z′ into the toplevel space. Since the port store is updated immediately, the sequential
order of messages is maintained.

Getting Answers The procedureSendRecv shown in Section3.3.3 that returns an
answer is programmed fromSend. This is not longer possible in the context of sending
across spaces. If the sender is situated in a local space and the port is situated in the
toplevel, the answer is computed in the toplevel and hence the variable to refer to the
answer must be situated in the toplevel as well.

Therefore,SendRecvbecomes a primitive operation. Its definition is straightforward
and follows the idea that the variable to take the answer is situated in the port’s home.

4.7 Previous Work: Solve Combinator

Previous work by me and Smolka introduced thesolve combinator [131, 132, 136]. The
solve combinator spawns a local computation space and resolves choices by returning
them as procedures. Computation spaces subsume the solve combinator and avoid its
severe limitations.

The solve combinator programmed from spaces is shown in Figure4.2. It takes a
script, creates a space that executes the script, and returns information that depends on
the space status. It combines the abstractions of Example4.3 for speculative execution,
of Example4.8 for providing a solution, and of Example4.6 for distribution.

Spaces provide a more expressive and natural abstraction for programming inference
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services. The main disadvantage of the solve combinator is that it hardwires distribution.
This prevents all but the most straightforward constraint services: while most but not all
services discussed in Chapters5 and6 can be programmed from the solve combinator,
the services in Chapters7 to 11 are out of reach.

Example 4.9 (All-solution Exploration Reconsidered)The solve combinator can be
regarded as a convenient abstraction to programsimple search engines. The following
example shows all-solution exploration as presented in Example4.7 programmed with
the solve combinator.

fun {ExploreAll P}
case {Solve P} of failed then nil
[] solved(P) then [P]
[] distributed(P1 P2 _) then

{Append {ExploreAll P1} {ExploreAll P2}}
end

end

ExploreAll returns a list of unary procedures rather than a list of computation
spaces and, again, is limited to binary alternatives only. The main difference to be ob-
served is that distribution is fully automatic with the solve combinator: this accounts for
both its elegance and its lack of expressiveness.

4.8 Summary

This section summarizes operations on first-class computation spaces as introduced in
this chapter.

NewSpace : Script → Space
Creates a new space with a thread executing the script applied to the root variable
(Section4.3.1).

Inject : Space× Script
Injects a thread executing the script applied to the root variable (Section4.3.3).

Merge : Space → Any
Merges a space with the toplevel and returns the root variable (Section4.3.2).

Ask : Space → Status
Synchronizes until a space becomes stable and then returns the status (Sec-
tion 4.4). Figure4.3(a)summarizes the states of a computation space.

Clone : Space → Space
Creates a clone of a stable space (Section4.5.5).
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(b) State transitions.

Figure 4.3: Summary of space states and transitions.

Commit : Space× Alternative
Commits a distributable space to alternatives of its distributor (Section4.5.4).

Figure 4.3(b) summarizes the transitions between states of a computation space.
States that correspond to stable spaces are shaded. Transitions performed by opera-
tions applied to first-class spaces are depicted with solid lines. Transitions performed by
computation situated in the space are depicted with dashed lines. The picture shows that
stable states are indeed stable with respect to computation inside the space: no dashed
edge starts from a stable state.

Relation to Mozart The operations on computation spaces as discussed here are fully
implemented in Mozart 1.1.1. They are available in a moduleSpace that is loaded on
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demand at runtime. To try any of the examples presented in this thesis, it is sufficient to
write Space.ask rather thanAsk, for example.
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5 Search Engines

This chapter presents simple state-of-the-art search engines. The chapter’s focus is on
familiarizing the reader with basic techniques for programming search engines.

5.1 Depth-first Search

The most basic search strategy is depth-first search (DFS): explore the search tree left-
most depth-first until a first solution is found. In the following, discussion is limited to
distributors with two alternatives, the general case is discussed in Section5.3.

Exploration The procedureDFE (as abbreviation for depth-first exploration) is shown
in Figure5.1. DFE takes a space as argument and tries to solve it following a depth-first
strategy. The procedure is similar to that shown in Example4.7 and is discussed here
again to show how to control exploration until the first solution is found.

If no solution is found, but search terminates, the empty list is returned. Otherwise,
a singleton list with the succeeded computation space is returned. IfS is distributable,
exploration continues with the first alternative. If this does not yield a solution, a clone
is distributed with the second alternative and is solved recursively.

fun {DFE S}
case {Ask S}
of failed then nil
[] succeeded then [S]
[] alternatives(2) then C={Clone S} in

{Commit S 1}
case {DFE S} of nil then {Commit C 2} {DFE C}
[] [T] then [T]
end

end
end

Figure 5.1: Depth-first one-solution exploration.
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proc {Money Root} S E N D M O T Y in
Root = [S E N D M O T Y] Root ::: 0#9
{FD.distinct Root}
S\=:0 M\=:0

S*1000 + E*100 + N*10 + D
+ M*1000 + O*100 + S*10 + T

=: M*10000 + O*1000 + N*100 + E*10 + Y
{FD.distribute ff Root}

end

Figure 5.2: A program for theSEND+MOST = MONEY puzzle.

The Engine The procedureDFE is turned into a complete search engineDFS that can
be used without any knowledge about spaces as follows:

fun {DFS P}
case {DFE {NewSpace P}} of nil then nil
[] [S] then [{Merge S}]
end

end

DFS takes a script as input, creates a new space to execute the script, and appliesDFE

to the newly created space. In caseDFE returns a list containing a succeeded space, its
root variable is returned as singleton list.

Typically, search engines are not programmed from scratch. The Mozart implemen-
tation of Oz offers a search library programmed from spaces [35].

All-solution Search The search engine can be adapted easily to all-solution search as
in Example4.7. It is sufficient to replace the shaded lines in Figure5.1with:

{Commit C 2} {Append {DFE S} {DFE C}}

Example 5.1 (Send Most Money)As an example, consider a variation of a popular
cryptoarithmetic puzzle: Find distinct digits for the variablesS, E , N , D, M, O, T ,
Y such thatS �= 0, M �= 0 (no leading zeros), andSEND + MOST = MONEY holds.
The puzzle’s script is shown in Figure5.2.

Execution ofRoot ::: 0#9 tells the basic constraints that each element ofRoot

is an integer between 0 and 9. The propagatorFD.distinct enforces all list elements
to be distinct, whereas the propagatorsS\=:0 andM\=:0 enforce the variablesS andM
to be distinct from0. The variables for the letters are distributed (byFD.distribute)
according to a first-fail strategy.

Applying the search engineDFS to Money returns[[9 3 4 2 1 0 5 7]].

46



proc {DFE S}
case {Ask S} of failed then skip
[] succeeded then raise [S] end
[] alternatives(2) then C={Clone S} in

{Commit S 1} {DFE S} {Commit C 2} {DFE C}
end

end

(a) Exploration.

fun {DFS P}
try {DFE {NewSpace P}} nil
catch [S] then [{Merge S}]
end

end

(b) Engine.

Figure 5.3: Depth-first search engine using exceptions.

5.2 Simplifying Control: Exceptions

Depth-first search for a single solution has a simple termination condition: either explo-
ration is complete, or a solution is found. The procedureDFE in Figure 5.1 keeps on
testing the latter condition. This leads to a nesting of conditional statements. A sim-
pler approach is to replace testing by raising an exception in case a solution is found
(Figure5.3). The exception contains the solution found.

The benefits of using exceptions become even more apparent for engines that con-
sist of more than a single procedure. With testing, each individual procedure must test
whether exploration must continue. Examples that in particular benefit from exceptions
are limited discrepancy search (Section5.6) and best-first search (Section5.7).

5.3 Binarization

The procedureDFE as shown in Figure5.3handles two alternatives only. A straightfor-
ward way to deal with an arbitrary number of alternatives is by an additional procedure
NE (Figure5.4). To useNE, the procedureDFE must be adopted as follows:

[] alternatives(N) then {NE S 1 N}

A simpler way is to usebinarization by splitting alternatives. Different binarization
strategies are sketched in Figure5.5. Binarization trades an additional procedure similar
to NE for additional commit-operations (c in the table). Section13.8provides evidence
that commit-operations are efficient. Since two alternatives is the most common case,
binarization is a simple and gracefully degrading technique.
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proc {NE S I N}
if I==N then

{Commit S N} {DFE S}
else C={Clone S} in

{Commit C I} {DFE C} {NE S I+1 N}
end

end

Figure 5.4: Exploring alternatives from 1 ton.

Taking runtime into account, balanced binarization looks most promising followed
by right binarization. For single-solution search, right binarization has the additional
advantage that only one commit- and clone-operation are needed for the first alternative.
This is good when search for the first solution almost never goes wrong.

Memory consumption yields an even more compelling argument for right binariza-
tion. Using f clone-operations to compute the first alternative also implies thatf spaces
must be kept in memory during exploration of the first alternative. Therefore right bi-
narization is preferable. In Section6.3 it is argued that right binarization has further
advantages for branch-and-bound best-solution search.

To incorporate right binarization into the search engine for depth-first search, it is
sufficient to replace the shaded part in Figure5.3by:

[] alternatives(N) then C={Clone S} in
{Commit S 1} {DFE S} {Commit C 2#N} {DFE C}

Strategy Operations c f

None Figure5.4 n 1

Left
{Commit S 1#(N-1)}
{Commit C N} 2n − 2 n − 1

Balanced
M=N div 2 in
{Commit S 1#M}
{Commit C (M+1)#N}

2n − 2
⌊
log2 n

⌋

Right
{Commit S 1}
{Commit C 2#N} 2n − 2 1

c Number of commit-operations.
f Number of commit- (clone)-operations forfirst alternative.

Figure 5.5: Binarization ofn-ary distributors (n > 2).
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5.4 Multiple Solutions

Section5.1 sketches how to program all-solution search. In general, searching for all
solutions is unfeasible. It is more realistic to search for a limited number of solutions.

An additional disadvantage of the all-solution engine sketched in Section5.1 is that
the engine returns solutions only after the entire search tree has been explored. In a
concurrent setting, it is natural to output solutions as early as possible such that other
threads can start consuming them.

This idea can be combined with using exceptions for termination. As soon as a
solution is found, the engine applies a procedureCollect to it. Collect then controls
how to output the solution and checks whether to continue exploration. If all desired
solutions have been found,Collect raises an exception that terminates the engine.

A simple example forCollect that implements single-solution search as before is:

proc {Collect S}
raise [S] end

end

A more interesting example isSearchSome that searches for a given numbern of
solutions where the solutions should be available to other threads immediately. When
the search engine starts it immediately returns a logic variableXs. The variableXs refers
to the list of solutions. The definition ofCollect remembers the tail of the list. If a
next solution is found, it is appended to the list of solutions. If alln solutions are found,
Collect raises an exception to terminate exploration.

Demand-driven search is obtained similarly. After a solution is found, the new tail
of the list is chosen as a by-need future. Only when a next solution is requested by
synchronizing on the future search continues. By-need futures are available in full Oz,
although they are not discussed here in more detail (Section3.5gives a glance at futures).

5.5 Explicit State Representation

DFS shown in Figure5.3 maintains its state implicitly as statements on a thread. En-
gines to be discussed later, for example, best-first search in Section5.7, and in particular
parallel search in Chapter9, require access to spaces that comprise the engine’s state.

An alternative formulation of DFE that explicitly maintains spaces is shown in Fig-
ure5.6. The engine maintains the state as a stack of spaces (implemented as list). Ex-
ploration is performed more eagerly than exploration by the engine in Section5.1. The
reason is that the commit-operation shaded gray is immediately applied after cloning.

A straightforward solution to arrive at the same number of exploration steps is to not
store spaces directly. Instead a data structure is used from which the space is computed
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proc {DFE Ss}
case Ss of nil then skip
[] S|Sr then

case {Ask S} of failed then {DFE Sr}
[] succeeded then raise [S] end
[] alternatives(2) then C={Clone S} in

{Commit S 1} {Commit C 2} {DFE S|C|Sr}
end

end
end

Figure 5.6: Depth-first search engine with explicit state.

if desired. A convenient data structure is of course a function that returns the space upon
application. The data structure that is suited best depends on the engine.

5.6 Limited Discrepancy Search

Typically, distribution strategies follow a heuristic that has been carefully designed to
suggest most often “good” alternatives leading to a solution. This is taken into account
by limited discrepancy search (LDS), introduced by Harvey and Ginsberg [50]. LDS has
been successfully applied to scheduling [27, 19] and frequency allocation [155].

Exploring against the heuristic is called adiscrepancy. In the setting here, a dis-
crepancy thus amounts to first commit to the second alternative, rather than to the first.
LDS explores the search tree with no allowed discrepancy first, then allowing 1, 2,. . .

discrepancies until a solution is found, or a given limit for the discrepancies is reached.
Exploration with a fixed number of allowed discrepancies is calledprobing.

Additionally, LDS makes a discrepancy first at the root of the search tree. This
takes into account that it is more likely for a heuristic to make a wrong decision near
the root of the tree where only little information is available. If no solution is found,
discrepancies are made further down in the tree. Figure5.7 sketches how LDS probes,

Figure 5.7: Probes with 0, 1, 2, and 3 discrepancies.
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proc {Probe S M}
case {Ask S} of failed then skip
[] succeeded then raise [S] end
[] alternatives(N) then

if M>0 then C={Clone S} in
{Commit S 2#N} {Probe S M-1}
{Commit C 1} {Probe C M}

else
{Commit S 1} {Probe S 0}

end
end

end

Figure 5.8: Probing for LDS.

where discrepancies are shown by thick vertices (the illustration is adapted from [50]).
Figure5.8 showsProbe that implements probing. It takes a spaceS and the num-

ber of allowed discrepanciesM as input, and raises an exception being a singleton list
containing a succeeded space, if a solution is found. IfS is distributable and no more
discrepancies are allowed (that is,M is zero) probing continues after committing to the
first alternative. Otherwise, a discrepancy is made by committing to the remaining alter-
natives and probing continues with one allowed discrepancy less. If this does not yield
a solution, probing continues by making the discrepancy further down in the search tree.
Note thatProbe uses binarization: the first alternative corresponds to 0 discrepancies,
the second alternative to 1 discrepancy, and thei -th alternative to(i − 1)-discrepancies.

A complete implementation of LDS is obtained straightforwardly fromProbe (Fig-
ure5.9). First, a spaceS running the scriptP is created. Then application ofProbe to a
clone ofS and the number of allowed discrepancies is iterated until either a solution is
found or the discrepancy limit is reached.

proc {Iterate S N M}
if N==M then {Probe S N}
else {Probe {Clone S} N} {Iterate S N+1 M}
end

end
fun {LDS P M}

try {Iterate {NewSpace S} 0 M} nil
catch [S] then [{Merge S}]
end

end

Figure 5.9: Iteration-engine for LDS.
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fun {GetCost S F}
N SF={NewService fun {$ X} N=X unit end}

in
{Inject S proc {$ R} _={SF {F R}} end} N

end

Figure 5.10: Computing a cost for a space.

It is interesting thatLDS is close in structure and shorter (due to exceptions) than
the original pseudo-code for probing in [50]. This demonstrates that spaces provide an
adequate level of abstraction for search engines of this kind. Results of recent research
that has explored improvements of LDS such as ILDS (improved LDS) [71] and variants
of LDS such as DDS (depth-bounded discrepancy search) and IDFS (interleaved depth-
first search) [156, 83, 84] can be adapted to space-based engines easily.

To iteratively apply exploration is a common technique. The presumably best known
example is iterative deepening [69, 70].

5.7 Best-first Search

Distribution makes alocal heuristic decision based only on the variables of a single
space. In some cases it can be preferable to make aglobal decision instead. Best-first
search makes global decisions: each node of the search tree has a cost value associated.
Exploration always continues with the best node, that is, with the cheapest node.

A best-first search engine takes a cost function in addition to the script. The cost
function is problem-specific. Typically, the cost function needs access to the root vari-
able of a script. This is also the most interesting point to be discussed here: the cost is
computed inside the space, but must be made available to the search engine that is exe-
cuted in the toplevel space. With other words, best-first search requires communication
across space boundaries. For communication across space boundaries services are used
as discussed in Section4.6.

Figure5.10showsGetCost that takes a spaceS and a cost functionF and returns the
cost. It first creates a trivial serviceSF by application ofNewService (Section3.3.3)
that makes the argument of the first invocation ofSF available viaN. Cost computation
is by injecting a thread intoS that computes the cost (by application ofF to the root
variable ofS) and applies the serviceSF to that cost.

The rest of the best-first search engine is straightforward. The engine organizes nodes
according to cost. This can be done by priority queues [67, Chapter 5]. Central parts of
best-first exploration are shown in Figure5.11. Figure5.11(a)shows how a given space
S is inserted into a priority queuePQ (Put enqueues an element into a priority queue) ac-
cording toS’s cost. Note that only distributable nodes are inserted. Failed spaces are ig-
nored and succeeded spaces raise an exception to return a solution. Figure5.11(b)shows
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proc {Insert PQ S F}
case {Ask S} of failed then skip
[] succeeded then raise [S] end
[] alternatives(2) then {Put PQ {GetCost S F} S}
end

end

(a) Insertion according to cost.

proc {BFE PQ}
if {Not {IsEmpty PQ}} then S={Get PQ} C={Clone S} in

{Commit S 1} {Insert PQ S F}
{Commit C 2} {Insert PQ C F}
{BFE PQ}

end
end

(b) Exploration.

Figure 5.11: Best-first exploration.

best-first exploration, whereF again refers to a cost function.IsEmpty tests whether a
priority queue is empty, whereasGet removes and returns the cheapest element.

Example 5.2 (Applying Best-first Search)As an example for best-first search, it is ap-
plied to theSEND + MOST = MONEY-problem (Example5.1). An example cost
function isSizeSum: the sum of the sizes of the variables for the letters. The size of a
variable is the cardinality of its domain.BFS is invoked as follows:

{BFS SMM SizeSum}

The cost function has a similarity with first-fail distribution: it chooses the space for
exploration for which propagation has led to the tightest domain.

Best-first search differs essentially from depth-first exploration. Depth-first explo-
ration allows for a backtracking implementation. Best-first exploration can continue at
arbitrary nodes in the search tree. This issue is discussed in more detail in Section14.2.

A severe drawback of best-first search is that it requires exponential memory in the
depth of the search tree for the worst case (similar to breadth-first search). This can be
addressed by recomputation strategies (Chapter7).

Best-first search is just one particular instance of aninformed search strategy. The
point to discuss best-first search in the context of computation spaces is to show how to
apply services as technique for “informedness”. Other informed search engines are A∗-
search [49] and its derivatives such as IDA∗ and SMA∗. These strategies are discussed
by most textbooks on Artificial Intelligence, for example [100, 117].
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6 Best-solution Search

Best-solution search determines a best solution with respect to a problem-dependent
ordering among solutions. The art of best-solution search is toprune the search space as
much as possible by previously found solutions. This chapter presents basic techniques
and generalizations for best-solution search.

6.1 Constraining Spaces

Essential for best-solution search is to inject into a space an additional constraint that
the next solution must be better than all previous solutions. This constraint prunes the
search space to be explored for finding a better solution.

The following function takes a binary order procedureO and returns a procedure
Constrain.

fun {NewConstrain O}
proc {Constrain S BS}

OR={Merge {Clone BS}}
in

{Inject S proc {$ NR} {O OR NR} end}
end

in
Constrain

end

Constrain takes a spaceS and a spaceBS (the best solution so far). It injects into
S that it must yield a better solution thanBS. This is implemented by the orderO on the
constraints accessible from the root variables of the previous solution andS itself.

The solution’s constraints are made accessible by merging a clone ofBS rather than
mergingBS itself. This allows to possibly returnBS as best solution.Constrain can
straightforwardly be optimized by memorizing the solution obtained by merging.

6.2 Iterative Best-solution Search

A simple engine for best-solution search isiterative best-solution search (IBSS). After a
solution is found, search restarts from the original problem together with the constraint
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fun {BABE S BS}
case {Ask S} of failed then BS
[] succeeded then S
[] alternatives(N) then C={Clone S} in

{Commit S 1} {Commit C 2#N}
local NBS={BABE S BS} in

if NBS\=BS then {Constrain C NBS} end
{BABE C NBS}

end
end

end

Figure 6.1: Branch-and-bound best-solution search engine.

to yield a better solution.
Iteration is used as in limited discrepancy search (see Section5.6). Any single-

solution search engine can be used for IBSS. Iteration continues until the search engine
does not yield a solution. The best solution (if any) is the solution found last.

6.3 Branch-and-bound Best-solution Search

IBSS performs well, if it is easy to find a first solution. If finding a first solution already
involves a great deal of search, IBSS is bound to repeat the search in each iteration. In
this situation, branch-and-bound search (BAB) can do better, since it avoids repetition.

The procedureBABE (see Figure6.1) implements exploration for BAB. It takes the
spaceS to be explored and the spaceBS as the best solution so far. It returns the space
for the best solution ornil, if no solution exists. Initially,SolS is nil. The procedure
maintains the invariant thatS can only lead to a solution that is better thanBS. In caseS
is failed, the so-far best solution is returned. In caseS is succeeded, it is returned as new
and better solution (which is guaranteed by the invariant).

The central part is shaded: if following the first alternative returns a better solution
(the invariant ensures that a different space is better), the space for the second alternative
is constrained to yield an even better solution thanBS. Note that here the unique identity
of spaces and thatnil is different from any space is exploited. The latter ensures that
Constrain never gets applied tonil.

Binarization (see Section5.3) has advantages over individually exploring each al-
ternative for BAB. Application ofConstrain can potentially prune several alternatives
simultaneously rather than prune each alternative individually.

A search engineBABS is obtained easily: it creates a space running the script to
be solved, creates a procedureConstrain depending on the order, appliesBABE, and
possibly returns the best solution.
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Example 6.1 (Send Most Money (Example5.1) Reconsidered)To search for a solu-
tion of SEND+MOST = MONEY with the most money, that is,MONEY is as large as
possible, a binary procedureMore is defined as follows. It takes two root variablesO and
N and imposes the constraint thatN is better thanO.

{BABS Money More} returns[[9 7 8 2 1 0 4 6]] as best solution.

6.4 An Alternative Formulation of BAB

Later chapters present search engines that require explicit access to the search engine’s
spaces. For this reason and for additional insight, this section presents a formulation of
BAB that maintains spaces explicitly.

The BAB engine shown in the previous section uses the identity of spaces to deter-
mine whether a space must be constrained. Here, the spaces to be explored are organized
on two stacks: theforeground stack (f-stack) and thebackground stack (b-stack). Spaces
on the f-stack are guaranteed to yield a better solution. Spaces that are not known to
guarantee this invariant are on the b-stack.

The engine can be characterized by how it maintains the invariants for the two stacks:

■ Initially, the b-stack is empty and the f-stack contains the root space.

■ If the f-stack is empty and the b-stack containsS, S is moved to the f-stack after
constrainingS.

■ If a better solution is found, all elements of the f-stack are moved to the b-stack.

■ If a space taken from the f-stack is comitted or cloned, it is eligible to go on the
f-stack itself.

Taking these facts together yields the program shown in Figure6.2. The procedure
BABE takes the f-stack (Fs), the b-stack (Bs), and the currently best solution (BS).

6.5 Prune-search: Generalizing BAB

BAB uses the currently best solution to prune the remaining search space. This section
shows how to generalize this idea: accumulate information on all solutions found so far
to prune the rest of the search space. This technique is calledprune-search (PS).

One particular instance of PS is of course BAB. Accumulation is rather pathologi-
cal: the information is just the last solution found. Pruning is achieved by injecting the
constraint that a solution has to be better than the currently best one.

A different example for PS is searching for all solutions toSEND + MOST =
MONEY with different amounts ofMONEY. A naive approach is to search for all solu-
tions and then remove solutions with the same values forMONEY. For larger problems,
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fun {BABE Fs Bs BS}
case Fs of nil then

case Bs of nil then BS
[] B|Br then {Constrain B BS} {BABE [B] Br BS}
end

[] F|FR then
case {Ask F} of failed then {BABE Fr Bs BS}
[] succeeded then {BABE nil {Append Fr Bs} F}
[] alternatives(N) then C={Clone F} in

{Commit F 1} {Commit C 2#N} {BABE F|C|Fr Bs BS}
end

end
end

Figure 6.2: BABE with explicit state representation.

where one is interested in “essentially different” solutions this approach is unfeasible.
The accumulated information are the different values forMONEY. Initially, the list is
empty. Each solution found contributes a new value to the list. The constraint to be
imposed is thatMONEY must be different from all values in the accumulated list.

From the examples one can see that generalizing BAB to PS is straightforward. The
notion of currently best solution is replaced by currently accumulated information:

■ Initial accumulated information.

■ A procedure that combines the previously accumulated information and a solution
and returns the newly accumulated information.

■ A procedure that takes the accumulated information and computes a constraint to
be imposed. This replacesConstrain in BAB.

Otherwise the engine for PS is identical to the engine for BAB with explicit state as
presented in Section6.4. The formulation for BAB without explicit state cannot be used
for PS, since it relies on the identity of solutions.

An interesting application of PS is symmetry elimination during search. PS has been
used by Backofen and Will for symmetry elimination [9], which has been successfully
applied to the prediction of protein structures [8].
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7 Recomputation

This chapter introduces recomputation as an essential technique for search engines. Re-
computation saves space, possibly at the expense of increased runtime. Recomputation
can also save time, due to an optimistic attitude to search. Saving space and time makes
recomputation an ideal candidate for solving large problems.

7.1 Overview

Search demands that nodes of the search tree must possibly be available at a later stage
of exploration. A search engine must take precaution by either memorizing nodes or
by means to reconstruct them. States are memorized bycloning. Techniques for re-
construction aretrailing andrecomputation. While recomputation computes everything
from scratch, trailing records for each state-changing operation the information neces-
sary to undo its effect. This chapter focuses on recomputation. Trailing and its relation
to both cloning and recomputation are discussed in Chapter14.2.

The basic idea of recomputation with spaces is straightforward: any node in the
search tree can be computed without search from the root node of the search tree and
a description of the node’s path. The procedureRecompute (Figure7.1) recomputes
a space from a spaceS higher up in the search tree and a path between the two spaces
represented as list of integersIs. The path is organized bottom-up, since it can be
constructed easily that way during top-down exploration.

fun {Recompute S Is}
case Is of nil then

{Clone S}
[] I|Ir then

C={Recompute S Ir}
in

{Commit C I} C
end

end

1 2

1 2 1 2

1 2 1 2 1 2
A

B

C

R

A={Recompute R [2 1 1]}
B={Recompute R [2 1]}
C={Recompute R [2 1 2]}

Figure 7.1: Recomputing spaces.
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Indeterminism Recomputation requires that a space can actually be recomputed. For
a spaceS and a pathIs the application{Recompute S Is} must always return equiv-
alent spaces. This can go wrong due to indeterminism. The most likely source of in-
determinism by multiple distributors is ruled out by design (Section4.5.1). A second,
albeit unlikely, source of indeterminism are the indeterministic constructs of Oz Light.

Indeterministic distributor creation is a programming error. The error typically
proves fatal even without recomputation. Due to the indeterminism, the search space
is unpredictable. Its exploration might take few milliseconds or several days.

Note that recomputation does not preclude randomly generated alternatives. A ran-
dom generator is adeterministic program that on each invocation returns a number out
of a pseudo-random sequence of numbers, for example [66, Chapter 3].

7.2 Full Recomputation

The most extreme version of recomputation is to always recompute spaces from scratch.
The procedureDFE as shown in Figure5.1can be extended by two additional arguments:
R for the root space andIs for the path of the current spaceS to the root.

Recursive applications ofDFE additionally maintain the path to the root of the search
tree. For example, the part of the search engine that explores the second alternative of a
space replaces cloning by recomputation and is as follows:

· · · then C={Recompute R Is} in {Commit C 2} {DFE C R 2|Is}

To base exploration on recomputation alone is unfeasible. Suppose a complete binary
search tree of heightk (where a single node is assumed to have depth 0), which has 2k

leaves. To recompute a single leaf,k exploration steps are needed. Here and in the
following the number of exploration steps is used as cost measure. An exploration step
amounts to a commit-operation and the resulting propagation. This gives a total ofk2k

exploration steps compared to 2k+1 − 2 exploration steps without recomputation (that
is, the number of edges). Hence, full recomputation takes approximatelyk/2-times the
number of exploration steps required without recomputation.

Last Alternative Optimization (LAO) Even though full recomputation is unfeasible,
it allows to study a straightforward yet important optimization for depth-first exploration.
After all but one alternativeA of the root nodeN have been explored, further recompu-
tation from N always starts with recomputingA. The optimization now is to do the
recomputation stepN → A only once. This optimization is well known. For example,
it corresponds to thetrust me instruction in Warren’s Abstract Machine [5].

Let us consider a complete binary search tree of heightk. The rightmost path in the
tree hask+1 nodes and requiresk exploration steps (edges). A left subtree issuing from
a node at heighti on this path requiresi2i−1 exploration steps (this is the unoptimized
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case). Altogether, a tree of heightk requires

k +
k∑

i=0

i2i−1 = 1+ k + (k − 1)2k

exploration steps. This means that LAO saves approximately 2k exploration steps.

7.3 Fixed Recomputation

The basic idea of combining recomputation with copying is as follows: copy a node from
time to time during exploration. Recomputation then can start from the last copyN on
the path to the root. Note that this requires to start from a copy ofN rather than fromN
itself, sinceN might be needed for further recomputation.

A simple strategy isfixed recomputation: limit the number of
steps needed to recompute a node by a fixed numberm, referred
to asMRD (maximal recomputation distance). That is, afterm ex-
ploration steps, a clone of the current node is memorized. This is
sketched to the right. Filled circles correspond to nodes where clones have been created.
The case ofm = 1 coincides with no recomputation.

Analysis Obviously, fixed recomputation decreases the memory needed during depth-
first exploration by a factor ofm. Suppose that the MRD ism and the height of the tree
is k. The case fork ≤ m corresponds to full recomputation. Supposek = lm, where
l > 1. Then each subtree of heightm can be collapsed into a single 2m-ary node. Each
of the collapsed nodes requiresm2m exploration steps. A 2m-ary tree of depthl − 1 has

l−1∑

i=0

(2m)i = 2ml − 1

2m − 1
= 2k − 1

2m − 1

nodes. Altogether, a tree of depthk (for k being a multiple ofm) needs the following
number of exploration steps:

m2m

2m − 1

(
2k − 1

)
.

Hence, fixed recomputation for a MRD ofm takes

m2m−1

2m − 1

the number of exploration steps required without recomputation. The relative overhead
is: for m = 2, 1.25, form = 5, 80/31≈ 2.6, and for largem approximatelym

2 .
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proc {DFRE S R Is D}
case {Ask S} of failed then skip
[] succeeded then raise [S] end
[] alternatives(2) then C in

if D==M then
C={Clone S}
{Commit S 1} {DFRE S C [1] 1}
{Commit C 2} {DFRE C C nil M}

else
{Commit S 1} {DFRE S R 1|Is D+1}
C={Recompute R Is}
{Commit C 2} {DFRE C R 2|Is D+1}

end
end

end

(a) Exploration.

fun {DFRS P M}
S={NewSpace P}
proc {DFRE · · ·} · · · end

in
try {DFRE S S nil M} nil
catch [S] then [{Merge S}]
end

end

(b) Search engine.

Figure 7.2: Fixed recomputation.

LAO How LAO performs for an MRD of 2 is sketched to the
right. Nodes, where a clone is created during exploration, are black.
Nodes, where a clone becomes available due to LAO, are gray. Un-
fortunately, the formulas resulting from mathematical analysis have
no straightforward solved form and thus do not provide additional insight.

Exploration The procedureDFRE (Figure7.2(a)) implements depth-first exploration
with fixed recomputation.S is the currently explored space, andR is the space andIs
the path for recomputation. The maximal recomputation distance isM (a free variable),
whereasD is the current recomputation distance. The shaded line implements LAO.

Exploration maintains the following invariants:

■ 1 ≤ D ≤ M. If D = M, the invariant is maintained by cloning.
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18-Knights (50)
Magic (5)
100-S-Queens (30)
100-Queens (30)

percent

memory time

Figure 7.3: Runtime and memory gain with fixed recomputation.

■ If D < M, {Length Is} = D. If D = M, Is is either empty (due to LAO), or
{Length Is} = D = M.

■ A clone ofS can be recomputed by{Recompute R Is}.

The full search engine is shown in Figure7.2(b). It can be adapted to multiple alter-
natives as usual by binarization (Section5.3). A straightforward optimization to speed
up recomputation is to combine several commit-operations needed for binarization.

Other Search Engines Recomputation can be incorporated straightforwardly into the
search engines presented in Chapters5 and6. Note that LDS does not require recom-
putation, since the number of clones to be stored during exploration is limited by the
typically small number of discrepancies.

The only search engine that requires some effort is BAB. Here recomputation must
also take inject-operations into account (rather than only commit-operations). The dis-
cussion is postponed to Section9.4, which introduces an abstraction for recomputation
that naturally supports BAB.

Empirical Results Figure7.3shows empirical results of fixed recomputation for sev-
eral example programs. All examples have in common that they are large: 100-Queens,
100-S-Queens, and 18-Knights have deep search trees; 100-Queens, Magic, and 18-
Knights feature a large number of constraints and propagators. Detailed information on
the examples can be found in AppendixA.1. As MRD for fixed recomputation the values
given in parentheses are used.

The figures clearly show that fixed recomputation provides significant improvements
with respect to runtimeand memory requirements. It is worth noting that recomputation
can save memory without runtime penalties even if the search tree is shallow (Magic).

Figure7.4 relates the runtime to different MRDs for the 18-Knights problem. For a
MRD from 1 to 10 the runtime is strictly decreasing because the time spent on copying
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Figure 7.4: Runtime for 18-Knights with fixed recomputation.

and garbage collection decreases, while the plain runtime remains constant. With further
increase of MRD the runtime increases due to the increasing recomputation overhead.

Figure7.4 shows a small peak at a MRD of 150. The search tree for 18-Knights
has five failed nodes at a depth of around 260. This means that recomputation has to
perform around 110 recomputation steps for each of the nodes. This phenomenon can be
observed quite often: slight changes in the MRD (like from 100 to 150 for 18-Knights)
results in unexpected runtime behavior. This indicates that for some parts of the search
tree the assumption of recomputation is overly optimistic.

7.4 Why Recomputation Matters

Deep search trees are typical in solving large constraint problems. Large problems re-
quire a large number of decisions before arriving at a solution. A large number of deci-
sions corresponds to a deep search tree.

The following simple facts are essential to understand why recomputation is an ex-
cellent technique for deep search trees and hence an excellent technique for solving large
problems. Section14.3shows by an empirical comparison that recomputation outper-
forms all other constraint programming systems considered.

Space Space is an obvious issue with deep search trees. Since space requirements are
proportional to the tree’s depth, the space required per node in the tree must be
kept as small as possible.

Recomputation has the unique property that the space requirements are indepen-
dent of the nodes and hence independent of the size of the problem. Space just
depends on the tree’s depth (only a list of integers).
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Figure 7.5: Runtime for 18-Knights with adaptive recomputation.

Little Search The size of a search tree grows exponentially with its depth. If a solution
is found at all, only a small fraction of the search tree is explored.

Hence, the right attitude for exploring a deep search tree is to beoptimistic: assume
that a decision made is the right decision.Cloning is pessimistic: it assumes that
each decision is likely to be wrong, since it always invests into cloning to undo the
decision.Recomputation is optimistic: it assumes that every decision is right.

Clustered Failures If exploration exhibits a failed node, it is quite likely that not only a
single node is failed but that an entire subtree is failed. It is unlikely that only the
last decision made in exploration has been wrong.

This suggests that as soon as a failed node is encountered, the exploration attitude
should become more pessimistic. This is addressed in the next section.

It is important to remember that efficient recomputation presupposes copying. Only
their combination allows to select the ratio between optimism and pessimism.

7.5 Adaptive Recomputation

The analysis of fixed recomputation lead to the following two observations. Firstly, the
optimistic assumption underlying recomputation can save time. Secondly, the fixed and
hence possibly erroneous choice of the MRD can inhibit this.

The following strategy is simple and shows remarkable effect, since it honors the
“clustered failures” aspect. During recomputation of a nodeN2 from a nodeN1, an
additional copy is created at the middle of the path fromN1 to N2. This strategy is
referred to asadaptive recomputation.
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Figure 7.6: Memory requirements for 18-Knights.

Runtime Figure 7.5 shows the runtime for adaptive recomputation applied to 18-
Knights. Not only the peak for a MRD of 150 disappears, also the runtime for large
MRD values remains basically constant. Even if copies are created during recomputa-
tion only (that is the MRD is∞) the runtime remains almost unaffected.

Memory While adaptive recomputation is a good strategy as it comes to runtime, it
does not guarantee that memory consumption is decreased. In the worst case, adaptive
recomputation does not improve over copying alone.

Figure7.6shows the active heap memory for both fixed and adaptive recomputation
applied to 18-Knights. The numbers exhibit that avoidance of peaks in runtime is not
paid by peaks in memory (for MRDs between 1 and 5, memory requirements for both
fixed and adaptive recomputation are almost identical and thus are left out).

For deep search trees the following technique saves memory. As soon as exploration
has reached a certain depth in the search tree, it is quite unlikely that nodes high above
are going to be explored. Hence, copies remaining in the upper parts of the tree can be
dropped. This decreases memory consumption and does not affect runtime.

Adaptability This is the real significance of adaptive recomputation: the choice of
the recomputation distance is not overly important. Provided that the distance is not
too small (that is, no excessive memory consumption), adaptive recomputation adjusts
quickly enough to achieve good performance.

Figure7.7compares adaptive recomputation to no and fixed recomputation. The la-
bel n% means that the initial MRD isn percent of the total depth of the search tree. The
comparison with no recomputation (Figure7.7(a)) shows that adaptive recomputation
offers almost always significant speedup. Additionally, it is clarified that the obtained
speedup is almost independent of the initial choice of the MRD. This means thatadapt-
ability is really the most distinguished feature of adaptive recomputation.
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Figure 7.7: Adaptability for different MRDs.

On the other hand, adaptive recomputation performs almost as good as fixed recom-
putation with carefully hand-chosen MRDs (Figure7.7(b)). This substantiates the claim
that adaptive recomputation offers great potential even in case there is almost no knowl-
edge about the problem to be solved. Starting with a rough guess on the initial MRD,
adaptive recomputation behaves well. The runtime remains stable for a variation of the
MRD by a factor of five (that is, between 10 and 50 percent of the total depth of the
search tree),
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8 Oz Explorer: Visual Search

The Oz Explorer is a graphical and interactive tool to visualize and analyze search trees.
The Explorer is programmed from spaces. This chapter presents its motivation, design,
and implementation.

8.1 Development of Constraint Programs

Development of constraint-based applications proceeds in two steps. The first step is
to design a principally working solution. This is followed by the much harder task to
make this solution scale to problems of real-world size. The latter task usually involves
a high amount of experimentation to gain additional insight into the problem’s structure.
Meier reports in [82] that a large part of the development effort is spent on performance
debugging. Therefore it is surprising that existing systems offer little support for the
development of constraint programming applications.

This chapter presents the Oz Ex-
plorer as a visual constraint program-
ming tool. The Explorer uses the
search tree as its central metaphor.
The user can interactively explore the
search tree which is visualized as it
is explored. Visible nodes carry in-
formation on the corresponding con-
straints that can be accessed interac-
tively by predefined or user-defined
procedures. The Explorer can be used
with any search problem, no annotations or modifications are required.

First insights into the structure of the problem can be gained from the visualization
of the search tree. How are solutions distributed? How many solutions are there? How
large are the parts of the tree explored before finding a solution? The insights can be
deepened by displaying the constraints of nodes in the search tree. Is constraint propaga-
tion effective? Does the heuristic suggest the right alternatives? Interactive exploration
allows following promising paths in the search tree without exploring irrelevant parts of
it. This supports the design of heuristics and search engines.
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Names = [alice bert chris deb evan]
Prefs = [alice#chris bert#evan chris#deb chris#evan

deb#alice deb#evan evan#alice evan#bert]

proc {Photo Sol}
Pos = {FD.record pos Names 1#{Length Names}}
Ful = {Map Prefs fun {$ A#B}

(Pos.A+1 =: Pos.B) +
(Pos.B+1 =: Pos.A) =: 1

end}
Sat = {FD.int 0#{Length Prefs}}

in
{FD.distinct Pos}
{FD.sum Ful ´=:´ Sat}
Sol = sol(pos:Pos ful:Ful sat:Sat)
{FD.distribute naive Pos}

end

Figure 8.1: Program to solve the photo alignment problem.

Complex problems require a tool to be practical with respect to both efficiency and
display economy. The amount of information displayed by the Explorer is variable: the
search tree can be scaled and subtrees can be hidden. In particular, all subtrees without
solutions can be hidden automatically.

The Explorer is one particular example of a user-guided interactive search engine
that would not have been possible without first-class computation spaces.

8.2 Example: Aligning for a Photo

This section introduces the Oz Explorer by means of an example. Five people want to
take a group photo. Each person can give preferences next to whom he or she wants to
be placed on the photo. The problem to be solved is to find a placement that satisfies as
many preferences as possible.

Figure 8.1 shows the script that models this problem. The recordPos maps the
person’s name to a position, that is, an integer between 1 and 5. All fields ofPos are en-
forced to be distinct by the propagatorFD.distinct. The list of preferences is mapped
to a listFul of finite domain variables between0 and1, such that each of its elements
is either1 in case the preference can be fulfilled or0 otherwise. The overall satisfaction
Sat is given by the sum of all elements ofFul. The positionsPos are distributed (by
{FD.distribute naive Pos}) following a naive strategy.

Reified propagators are used to map preferences to finite domain variables. A reified
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Figure 8.2: User-defined display for solutions ofPhoto.

propagator employs a boolean control variableb. If the propagator is entailed (disen-
tailed), thenb is constrained to1 (0). If b is 1 (0), the constraint of the reified propa-
gator is enforced (its negation is enforced). The reified propagatorPos.A+1=:Pos.B

(Pos.B+1=:Pos.A) expresses thatA is placed to the left (right) ofB. Thus, the control
variable of the reified propagator stating that the sum of both is1, yields1 if A andB are
placed next to each other, and0 otherwise.

The Explorer is used to search for a best solution to thePhoto problem. The op-
timality criterion is described by a binary procedure stating that the satisfaction must
increase with the solutions found:

{Explorer script(Photo proc {$ Old New}
Old.sat <: New.sat

end)}

The Explorer shows a single distributable node (drawn as a circle). Prompting
for the next solution explores and draws the search tree up to the first solution as
shown to the right. Exploring and drawing the search tree can be stopped at any
time and resumed later at any node. This is important for problems which have
large or even infinite subtrees in its search tree.

Double-clicking the solution displays the constraints of the succeeded computation
space using the Oz Browser (a concurrent tool to visualize basic constraints) [111]. The
first solution is as follows:

sol(pos: pos(alice:1 bert:2 chris:3 deb:4 evan:5)
ful: [0 0 1 0 0 1 0 0]
sat: 2)

Understanding textual output can be difficult. Therefore, the Explorer can employ
user-defined display procedures. Suppose a procedureDrawPhoto that displays con-
straints graphically. The Explorer is configured such that double-clicking a node applies
DrawPhoto to the node’s constraints by

{Explorer add(information DrawPhoto)

Figure8.2(a)shows a particular instance of graphical output for the previously found
solution. An arrow between names shows a fulfilled preference, whereas the circled
number above a name yields the number of non-fulfilled preferences of that person.

Invoking search for all solutions yields the search tree as shown in Figure8.3(a). The
best solution is the rightmost succeeded node.
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(a) All nodes drawn. (b) Failed subtrees hidden.

Figure 8.3: Search tree forPhoto.

AlthoughPhoto is a simple problem, it is hard to find solutions and paths leading to
them. The Explorer provides support to hide all subtrees which contain only failed leaves
by drawing these subtrees as triangles. After applying this functionality, the search tree
looks as shown in Figure8.3(b).

By double-clicking the rightmost solution (the Explorer assists in finding certain
nodes by moving a cursor to it), the best solution is displayed as shown in Figure8.2(b).

The Explorer reports in its status bar that the entire search tree has 72 distributable,
3 solved, and 70 failed nodes. The tree indicates by the length of paths leading to failed
leaves that the alternatives do not result in much constraint propagation. A better distri-
bution heuristic should lead to more constraint propagation. The amount of constraint
propagation depends on how many propagators are triggered to amplify the constraint
store. So it is better to assign a value to a variable on which many propagators depend.

This is done by replacing the shaded distribution strategy in Figure8.1by a strategy
implementing the idea from above:

{FD.distribute generic(order:nbSusps) Pos}

The Explorer is applied to the modified problem to study the impact on the search

(a) All nodes drawn. (b) Failed subtrees hidden.

Figure 8.4: Search tree forPhoto (with improved distribution strategy).
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(a) All nodes drawn. (b) Failed subtrees hidden.

Figure 8.5: Search tree forPhoto (with some symmetries removed).

tree. The resulting tree is shown in Figure8.4. The Explorer’s status bar displays that the
tree now has 54 distributable nodes, 3 solution nodes, and 52 failed nodes. That is, the
number of nodes has decreased by about 25%. From the displayed search tree one can
conclude that it is much harder to prove optimality of the last solution than to actually
find it.

The search tree in Figure8.4 reveals that the third and fourth large subtree have the
same shape. A common reason for subtrees exactly looking alike is that search aims at
symmetrical solutions. By using the Explorer to access constraints of nodes in the right
part of the tree, it becomes apparent that search is aiming at solutions symmetrical (that
is, with people placed in reverse order) to those in the tree’s left part. The search tree
can be reduced in size by removing these symmetries. Some of them can be removed by
placing two persons, say the first and the second in the list of persons, in a fixed order.
Hence, the following constraint is added to the program:

Pos.{Nth Names 1} >: Pos.{Nth Names 2}

Applying the Explorer to the new problem and searching for all solutions draws the
search tree as in Figure8.5(a). The tree now has only 27 distributable nodes, 2 solution
nodes, and 26 failure nodes. Thus, removing just these symmetries reduces the number
of nodes by 50%. Figure8.5(b)displays the tree after hiding all failed subtrees.

8.3 Features

The main features of the Explorer are as follows.

Direct Use and Manipulation The Explorer is provided as an object. It can be invoked
by applying the object to a message containing the problem to be solved. Its usage
does not require any modification of the script. To search for a best solution, an
order implemented as binary procedure must be provided as an additional argu-
ment. After having applied the Explorer to the script, all actions can be invoked
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by mouse-clicking, menu-selection, or keyboard accelerators. Since the Explorer
is provided as an object, creating new instances of the Explorer is possible by
creating new object instances.

Interactive and Incremental Exploration Search can be used in an interactive fash-
ion: the user can explore any part of the search tree step-by-step. Promising paths
in the search tree can be followed without being forced to follow a predefined
strategy. Furthermore, depth-first exploration of the search tree for one solution or
for all solutions is supported. The Explorer is fully incremental: exploration of the
search tree can be stopped at any time and can be resumed at any node.

Ergonomic Visualization After creation of the search tree, the Explorer computes a
layout for the newly created part of the search tree and updates the drawing of the
tree. The drawn tree can be scaled by direct manipulation of a scale bar. Any sub-
tree of the search tree can be hidden by replacing it with a small triangle. Special
support is provided to hide subtrees which contain failed leaves only. By visual-
izing the search tree, one can gain insights into the search process. How are the
solutions distributed? Is a first solution found without too many failed nodes? Is it
hard to prove optimality of the last solution found? The possibility of hiding failed
parts of the search tree assists finding relevant paths leading to solutions.

User-defined Access to Constraints All but the failed nodes carry as information their
computation spaces. Each node’s space can be displayed with user-defined or
predefined display procedures. It is possible to compare the spaces attached to any
two nodes, which assists to understand how the two nodes differ.

Statistics Support The Explorer provides brief statistical information in a status bar.
Additionally, it is possible to display statistical information for each subtree. User-
defined procedures can be used to process and display the statistical information.
For instance, a bar chart showing how many failures occur between solutions can
help to understand how hard it is to prove optimality in best-solution search.

A user manual that includes the description of an API (application programming inter-
face) for the Explorer is [127].

8.4 Implementation

The Explorer manipulates a search tree that is implemented as a tree of objects. Each
node is an object which stores a corresponding first-class computation space. The ob-
ject’s class depends on the space to be stored, that is, whether the space is failed, suc-
ceeded, or distributable.

The implementation is factored into the following three parts:
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User Interface The user interface controls the invocation of operations on the search
tree. Invoking an operation at the user interface sends a message to the object and
leads to execution of the corresponding method.

Layout and Drawing The methods for computing the layout use an incremental ver-
sion of the algorithm presented in [65]. The graphical part of the user interface and
the drawing of the tree uses the object-oriented graphics interface to Tcl/Tk [102]
available in Oz [128]. I first considered using existing tools for computing and
drawing layouts for graphs (for example, VCG [118] and daVinci [38]). Unfor-
tunately, it is hard to design a powerful user interface, since the tools come with
a user interface on their own that allows for limited customization only. More
severely, they fail to support efficient incremental updates.

Exploration Construction of the search tree is started with creating the root node. Fur-
ther nodes are created as exploration proceeds.

The Explorer uses recomputation for two different purposes. Firstly, recomputa-
tion is used during exploration as in Chapter7. In contrast to other search engines
discussed so far, the Explorer keeps the entire explored part of the search tree. The
search tree is kept for visualization but also to allow access to the corresponding
spaces. For this purpose, recomputation is absolutely necessary, since keeping an
exponential number of spaces is unfeasible. The recomputation scheme employed
is similar to that of fixed recomputation (Section7.3) so that only nodes at a certain
depth store a space, all other are recomputed on demand.

A useful optimization is to always recompute spaces of nodes occurring in subtrees
that do not contain a solution1. This is motivated by the fact that the focus of
interest is usually on nodes that are solutions or that lead to solutions.

8.5 Evaluation

This section compares runtime and memory requirements of the Explorer with that of
non-visual search engines. Its purpose is to show that the Explorer is practical and scales
to very large search trees. It demonstrates the costs and benefits of some of the Explorer’s
features. The platform and examples used are described in AppendixA.

Runtime. Figure8.6 shows the runtime for the three example programs in seconds.
“Plain” is the runtime for a standard search engine without any visualization features.
The remaining numbers are taken with the Explorer. “E-Fast” is the Explorer that uses
full recomputation for state access and hides failed subtrees while drawing. “E-Std”
again hides failed subtrees and uses a maximal recomputation depth of 5 for the state

1This technique has been suggested by Joachim P. Walser.
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Figure 8.6: Runtime in seconds.

access. “E-Std” corresponds to the standard configuration of the Explorer. “E-Full”
again uses a maximal recomputation depth of 5 and draws the entire search tree.

For Alpha, using the Explorer introduces a runtime overhead of around 70%. This
overhead is fairly modest, given that each exploration step is very cheap. Drawing the
entire tree is still feasible, although an overhead of approximately 300% is incurred.

Using the Explorer for MT 10A and MT 10B incurs approximately the same over-
head for both problems (MT 10A: around 14%, MT 10B: around 8%). Even full drawing
is still feasible. The smaller overhead of MT 10A and MT 10B compared to Alpha is
due to the higher cost of each exploration step.

For all examples, “E-Fast” and “E-Std” show runtimes that can be regarded as equal.
This means that creating additional copies during exploration to speed up state access is
feasible with respect to runtime.

Memory. Figure8.7 relates the memory requirements of the Explorer to memory re-
quirements of a non visual search engine. The meaning of “Plain” through “E-Full”
is as described before. The memory figures exclude the memory requirements of the
underlying graphics toolkit, which are mentioned below.

The important points for the memory required by the Explorer are as follows:
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Figure 8.7: Memory usage in MB.
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Example E-Std E-Full
Alpha ≈ 1.5 ≈ 5
MT 10A ≈ 3 ≈ 5.5
MT 10B ≈ 4 ≈ 105

Figure 8.8: Approximate memory usage of graphics engine in MB.

■ The memory requirements are modest, even for standard personal computers.

■ Full recomputation for state access can have remarkable impact. For MT 10A, the
required memory is decreased by more than 50%.

■ Memory requirements for the Explorer are independent of the memory require-
ments of the particular problem. When using full recomputation, the memory re-
quired by the Explorer depends only on the size and shape of the search tree. Only
when creating additional copies to speed up state access, the memory requirements
depend on problem size.

■ Drawing the full tree has no strong impact on the memory requirements of the
Explorer itself.

This is different when also considering the memory requirements of the underly-
ing graphics engine (Figure8.8). For all but MT 10B with “E-Full” the memory
requirements remain modest. Drawing the full search tree for MT 10B is a border-
line example. While a standard personal computer with 256 MB can handle this
(no swapping occurs, this is witnessed through the modest runtime), full explo-
ration for bigger examples is out of reach.

■ Hiding failed subtrees is not only essential for arriving at an understanding of the
search tree. It is also an excellent technique to keep the memory requirement low.

The runtime and the memory requirements can be summarized as follows. The Ex-
plorer is perfectly capable of exploring and visualizing very large search trees. Recom-
putation makes the memory requirements problem independent and makes the Explorer
capable of handling large problems with large search trees. Features such as recompu-
tation for state access and hiding of failed subtrees make an essential contribution to the
scalability of the Explorer.

8.6 Related Work

In the following the Explorer is related to the Grace tool [82], which is built on top of
the Eclipse Prolog system [3]. The Grace tool is intended to support the development
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and debugging of finite domain constraint programs. Rather than using the metaphor
of a search tree, it maintains and displays a backtracking history of the finite domain
variables involved.

Exploration of the search space is not user-guided but fixed to a depth-first strategy.
In contrast to the Explorer, it allows tracing of constraint propagation. The display of
information supports different levels of detail, but cannot be replaced by user-defined
display procedures. To use the Grace tool the user’s program requires modification.

Similar in spirit to Grace is the CHIP search tree tool [133] which has been inspired
by the Explorer. The strength of this tool lies in the visualization of finite-domain con-
straint propagation and in particular the visualization of global constraints. As with
Grace, the CHIP search tree tool does not support interactive exploration of the search
tree.

The Oz Explorer is focused on search only and does not address the visualization of
constraint propagation. Instead, the Explorer relies on other tools for that purpose. In
the context of Oz, the Oz Investigator offers this functionality [86].

In the area of parallel logic programming, tools are used to visualize the parallel ex-
ecution of programs, for example, the Must Tool [141, 64] and the VisAndOr Tool [18].
These tools visualize the (OR-parallel) search process, however they are designed to be
used off-line. During execution of a program a trace file is created. After execution has
finished, the tool is used to visualize and analyze the created trace. This is very different
from the Explorer, where exploration is interactive and user-controlled and where the
user has access to the constraints of the search tree.

An overview on current research in the area of analysis and visualization tools for
constraint programming and constraint debugging is [30].

One reason that there are only so few tools for the development of constraint pro-
grams is that controlling search is hard in existing systems. Systems like those men-
tioned earlier provide for a small set of search strategies. In contrast to that, search
engines like single, all, and best-solution search are not built-in, but are programmed
using first-class computation spaces. To deal with problems which would use too much
memory otherwise, recomputation trading space for time can be programmed with first-
class computation spaces.
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9 Distributed Search

This chapter presents distributed search engines that explore subtrees of a search tree in
parallel. Parallelism is achieved by distribution across networked computers. The main
point of the chapter is a simple design of the parallel search engine. Simplicity comes
as an immediate consequence of clearly separating search, concurrency, and distribu-
tion. The obtained distributed search engines are simple yet offer substantial speedup on
standard networked computers.

9.1 Overview

Search in constraint programming is a time consuming
task. Search can be speeded up by exploring several sub-
trees of a search tree in parallel (“or-parallelism”) by co-
operating search engines calledworkers. To the right, the
exploration of a search tree with three workers (the color of
a subtree corresponds to the exploring worker) is sketched.

The chapter develops search engines that achieve parallelism by distributing workers
across standard networked computers. The chapter has two main points. The first point
is to provide a simple, high-level, and reusable design for parallel search. The second
point is to obtain good speedup rather than good resource utilization.

Simple and Reusable Design Parallel search is made simple by separating three is-
sues: search, concurrency, and distribution.

Search Workers are search engines that explicitly manipulate their state. The state cor-
responds to yet to be explored subtrees of the search tree. Explicit manipulation
is mandatory since workers need to share subtrees. This has already been done in
Section5.5for plain search and in Section6.4for best-solution search.

Concurrency The main contribution of this chapter is the design of a concurrent search
engine that adds communication and cooperation between workers. Communica-
tion and cooperation presupposes concurrency.
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Distribution How workers are distributed across networked computers is considered
independently of the architecture of the concurrent engine. An important technique
for sharing nodes across the network is recomputation.

The approach obviously simplifies the design, since it allows to address concerns
independently. It allows to reuse the concurrent architecture for other purposes, such as
parallel execution on shared-memory multiprocessors and cooperative search for multi-
agent systems.

The approach presupposes that search is encapsulated and combines well with con-
currency and distribution. Since Oz is a concurrent language that supports distribu-
tion and since spaces are concurrency-enabled, the parallel search engines can be pro-
grammed entirely in Oz. The programming effort needed is around one thousand lines
of Oz code.

Obtaining Speedup Networked computers are cheap, ubiquitous, and mostly idle.
Hence the criterion of success is whether a simple distributed search engine can offer
substantial speedup. This differs from the traditional criterion of success for parallel
search that aims at good utilization of specialized, expensive, and not widely available
hardware.

A performance evaluation shows that the simple distributed engine offers substan-
tial speedup already for small search trees. Large search trees as common for complex
constraint problems provide almost linear speedup.

Related Work There has been considerable work in the area of parallel search.
Rao and Kumar discuss and analyze the implementation of parallel depth-first search
in [116, 73]. Their focus is on the impact of the underlying hardware architecture and
in particular how to best utilize the resources of the parallel architecture. Parallel execu-
tion on shared-memory multiprocessors and to a lesser extent on networked computers
has received great attention in logic programming, for an overview see [21]. Early work
that uses recomputation to distribute work is the Delphi Prolog system by Clocksin and
Alshawi [23, 24].

Mudambi and Schimpf discuss in [96] distributed search that also relies on recom-
putation. A refinement of this work addresses branch-and-bound search [112]. Perron
briefly sketches parallel search for ILOG Solver in [103]. All these approaches have
in common that they are mostly focused on the description how each separate engine
works. The discussion of the architecture by which the parallel engines communicate
is missing or is at a low-level of abstraction. In contrast, this chapter is concerned with
developing a high-level concurrent architecture underlying parallel search engines.

The approach to independently consider distribution and architecture is a conse-
quence of the fact that distribution is provided orthogonally in Oz. Haridi et al. discuss
this design approach in [48].
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9.2 Distributed Oz

The basic idea of Distributed Oz is to abstract away the network as much as possible.
This means that all network operations are invoked implicitly by the system as an inci-
dental result of using particular language operations. Distributed Oz has the same lan-
guage semantics as Oz Light by defining a distributed semantics for all language entities.
The distributed semantics extends the language semantics to take into account the notion
of site (or process). It defines the network operations invoked when a computation is
distributed across multiple sites.

Partial Network Transparency Network transparency means that computations be-
have the same independent of the site they compute on, and that the possible intercon-
nections between two computations do not depend on whether they execute on the same
or on different sites. Network transparency is guaranteed in Distributed Oz for most en-
tities. While network transparency is desirable, since it makes distributed programming
easy, some entities in Distributed Oz are not distributable.

There are two different reasons for an entity to be not distributable.

■ The entity isnative to the site. Examples are external entities such as files, win-
dows, as well as native procedures acquired by dynamic linking. Native proce-
dures depend on the platform, the operating system, and the process. Particular
examples for native procedures in Mozart are most propagators which are imple-
mented in C++ rather than in Oz [90].

■ Distribution would be too complex. One class of entities for which distribution is
too complex are computation spaces. Furthermore, even a distributed implemen-
tation of computation spaces would be of limited use, since a computation space
typically contains native propagators.

Resource Access For distributed computations that need to utilize resources of a dis-
tributed system, it is important to gain access to site-specific resources. Access is gained
by dynamic linking of functors that returnmodules. Dynamic linking resolves a given
set of resource-names (which are distributable) associated with a functor and returns the
resources (which are site-specific).

A straightforward way to access site-specific resources is accessing them through
active services. The service is distributable while its associated thread is stationary and
remains at the creating site. Thus all resource accesses are performed locally. Services
by this resemble remote procedure call (RPC) or remote method invocation (RMI).

Example 9.1 (Distributable Money) A definition of a functor for theSEND+MOST =
MONEY script as presented in Example5.1 is as follows:
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functor F
import FD
export script:Money
define Figure 5.2
end

The functorF imports theFDmodule and returns a module that has a single fieldscript

that refers to the procedureMoney. The functorF can be linked and its script can be
executed as follows (DFS is introduced in Section5.1):

{DFS {LinkFunctor F}.script}

Compute Servers An Oz process can create new sites acting ascompute servers [36].
Compute server creation takes the Internet address of a computer and starts a new Oz
process with the help of operating system services for remote execution. The created
Oz process can be given a functor for execution. Thus the functor gives access to the
remotely spawned computations. Typically, a functor is used to set up the right active
services and to get access to native resources.

Further Reading An overview on the design of Distributed Oz is [48]. A tutorial
account on distributed programming with Mozart is [150]. The distributed semantics
of logic variables is reported in [47]; the distributed semantics of objects is discussed
in [151]. More information on functors, dynamic linking, and module managers in
Mozart can be found in [37].

9.3 Architecture

The concurrent search engine consists of a singlemanager and severalworkers. The
manager initializes the workers, collects solutions, detects termination, and assists in
finding work for workers. Workers explore subtrees, share work with other workers, and
send solutions to the manager.

9.3.1 Cooperation

Manager and workers are understood best as concurrent autonomous agents that com-
municate by exchanging messages. The architecture of the concurrent search engine
composed from manager and workers is sketched in Figure9.1.

Initialization The concurrent search engine is initialized on behalf of the manager.
The manager sends anexplore-message for the root node of the search tree to a single
worker. This single worker then starts working by exploring. A worker that currently
explores a subtree isbusy andidle otherwise.
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Manager

Worker · · · Worker

Worker

■ explore subtree
(contains starting node)

■ share node
(returns node)

■ stop work

Manager

■ collect solution from worker
(contains solution)

■ find work for idle worker
(contains worker reference)

Figure 9.1: Architecture of concurrent search engine.

Exploration A worker works by exploring nodes of the search tree. By working it
generates new work (new nodes).

Finding Work Suppose that workerWi is idle. It announces this fact to the manager
by sending afind-message. The manager then tries to find a busy workerWb that is
willing to share work withWi . If the manager finds work, it informsWi by sending an
explore-message containing the work found. To allow communication back from the
manager toWi , thefind-message contains a reference toWi .

The manager maintains a list of possibly busy workers which are not known to be
idle, since the manager has not received afind-message from them. From this list the
manager picks a workerWb and then sends ashare-message toWb.

WhenWb receives ashare-message, it first checks whether it has enough work to
fulfill the request. A worker receiving ashare-message can be unable or unwilling to
share work. It can be unable, because it is idle. It can be unwilling, because it has so little
work left such that sharing it might make the worker idle itself (for example, the worker
has only a single node left). In case the worker is willing to share work, it removes a
node from its own pool of work and sends it to the manager. When the manager receives
the node, it forwards the node to the requesting worker.

If the manager is informed that ashare-messagehas been unsuccessful, it tries the
next busy worker. If all busy workers have been tried, it starts over again by re-sending
the initialfind-message.

Collecting Solutions When a worker finds a solution, it sends acollect-message
containing the solution to the manager.

Termination Detection The manager detects that exploration is complete, when the
list of presumably busy workers becomes empty.
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Figure 9.2: Summary of messages.

Stopping Search If the search tree needs partial exploration (for example, single-
solution search) the manager can stop search by sending astop-message to all workers.

Almost all communication between manager and workers is asynchronous. The only
point where synchronization is needed, is when the manager decides whether finding
work has been successful. This point is discussed in more detail in Section9.3.3.

Important Facts The concurrent search engine does not loose or duplicate work, since
nodes are directly exchanged between workers. Provided that the entire tree is explored,
the number of exploration steps performed by the concurrent engine is the same as by
the standard depth-first engine.

The exploration order is likely to be different from left-most depth-first. The order
depends on the choice of the nodes to be exchanged between workers and is indetermin-
istic. For all-solution search this has the consequence that the order in which the manager
collects solutions is indeterministic. For single-solution search this has the consequence
that it is indeterministic which solution is found. In addition, it is indeterministic how
many exploration steps are needed. The number can be smaller or greater than the num-
ber of exploration steps required by depth-first exploration. The phenomenon to require
less steps is also known assuper-linear speedup.

9.3.2 Worker

A worker is a search engine that is able to share nodes and that can be stopped. Fig-
ure9.2(a)summarizes which messages a worker receives and sends. The ability to share
work requires explicit state representation (Section5.5). A worker knows the manager
and maintains a list of nodes that need exploration (“work pool”).

Concurrent Control The worker is implemented as active service (Section3.3.3). It
runs in its own thread and sequentially serves the messages it receives. This simple
design is enough to ensure consistency of the worker’s state in a concurrent setting.

84



The worker recursively invokes exploration as sketched in Section5.5by sending an
exploration message to itself. By message sending, exploration and communication with
the manager is easily synchronized.

Which Node to Share A promising candidate is the highest node in the search tree,
since it is likely that the subtree issuing from it is large (“large work granularity”). A
large subtree prevents that the requesting worker becomes idle soon and thus helps to
avoid excessive communication. Later it will become clear that sharing the highest node
is a particularly good choice for distribution.

9.3.3 Manager

The manager is implemented as an active service, the messages it sends and receives
are summarized in Figure9.2(b). The manager knows all workers. They are needed for
initialization and for stopping. The manager maintains a list of workers not known to be
idle and a list of solutions.

Finding Work Finding work can be a time consuming task since it can take several
attempts to seek for a worker that is able to share work. Hence, it is unfeasible to block
the manager while seeking work.

A design that does not block the manager is as follows. When the manager receives
a find-message, it spawns a new thread that takes the current list of busy workers as
snapshot. Directly after thread creation, the manager is again available to serve incoming
messages. If no work has been found, the initialfind-message is sent again to the
manager and the thread terminates. This is repeated until either work is found or no
presumably busy workers are left.

The solution to take a snapshot of the currently busy workers upon message receipt
is simple but has the following drawback. The manager might ask workers that are still
contained in the snapshot but have already announced that they are idle themselves. This
can result in a delay of the manager to find work and thus the initially requesting worker
might remain idle for a longer period of time.

9.3.4 Best-solution Search

The main design issue in best-solution search is how to maintain the so-far best solu-
tion. The sequential branch-and-bound engine always knows the so-far best solution (BS

in Figure 6.2). This is difficult to achieve in a concurrent setting with several work-
ers. Maintaining the best solution for each worker would require a large communication
and synchronization overhead. Instead, a design is preferred, where both manager and
workers maintain the so-far best solution as follows:
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Manager When the manager receives a new solution through acollect-message, it
checks whether the solution is really better. If the solution is better, the manager
sends it to all workers. This requires abetter-message that contains the so-far
best solution.

Worker When a worker finds a new solution, it stores the solution as so-far best solution
and informs the manager by sending acollect-message.

When a worker receives abetter-message, it checks whether the received solu-
tion S1 is better than its so-far best solutionS2.

Note that it is correct albeit inefficient, if the worker does not check whether the
received solutionS1 is better. IfS1 is worse,S1 will be replaced anyway, since
the manager eventually sends a solution which is at least as good asS2 (since it
receivesS2 from this worker). It might be better in case the manager has received
an even better solution from some other worker.

The architecture sketched above entails that a worker might not always know the so-
far best solution. This can have the consequence that parts of the search tree are explored
that would have been pruned away otherwise. Thus the loose coupling might be paid by
some overhead. This overhead is referred to asexploration overhead.

The worker is based on the branch-and-bound search engine with explicit state as
presented in Section6.4.

9.4 Distributed Search Engines

This section discusses how to adopt the concurrent search engine such that its workers
are distributed across networked computers.

Search Engine Setup The setup of the search engine uses compute servers. The man-
ager is created first. Then a new Oz process is created for each worker. Typically, each
process is created on a different networked computer. In case a computer has more than a
single processor, it can make sense to create more than a single process on that computer.

Each newly created process is given a functor that creates the worker service. It is
important that the functor can be given first-class, since the worker requires access to the
manager service. Applying the functor returns reference to the now created worker.

Distributing Nodes Since spaces are not distributable, workers cannot exchange work
by communicating spaces directly. Scripts are not distributable, since they typically
contain references to native propagators. However, a functor that on application returns
the scriptis distributable. This means that the root space can be recomputed via the script
from the given script-functor by all workers.
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Given the root space, work can then be communicated by communicating paths in
the search tree that describe how to recompute nodes:

node ←→ root + path

When a worker acquires new work, the acquired node is recomputed. This causes
overhead, referred to asrecomputation overhead. The higher the node in the search tree,
the smaller the recomputation overhead. For this reason, sharing the topmost node is a
good choice. Since all nodes are subject to sharing, a worker must always maintain the
path to recompute a node.

Recomputable Spaces In the following,recomputable spaces (r-spaces for short) are
employed as convenient abstractions for distributed search engines. An r-space supports
all space operations. Additionally, an r-space provides anexport operation that returns
the path for recomputation. Search engines that employ r-spaces rather than “normal”
spaces are otherwise identical, since r-spaces provide the same programming interface.

The key feature of an r-space is that commit-operations are executed lazily on de-
mand. Lazy execution is beneficial for two reasons. Firstly, not the entire search tree
might be explored during single solution search (this point is discussed in Section5.5).
Secondly, a node might be handed out to some other worker and thus might be wasted
for the current worker.

An r-space encapsulates the following three components:

Sliding Space It is initialized to a clone of the root space.

Pending Path A list of pending commit-operations.

Done Path A list of already done commit-operations.

The sliding space always satisfies the invariant that it corresponds to a space that has
been recomputed from the root space and the done path.

Initialization Creation of an r-space takes a pathP as input. The sliding space is ini-
tialized to a clone of the root space. The pending path is initialized to the pathP.
The done path is initialized to the empty path.

Commit A commit to thei -th alternative addsi to the pending path.

Update Updating an r-space performs all commit-operations on the pending path. Then
the pending path is added to the done path and is reset.

Ask, Clone, Merge Ask, clone, and merge update the r-space first and then perform the
corresponding operation on the sliding space.

Export Export returns the concatenation of done and pending path.
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An r-space is extended straightforwardly to support best-solution search by storing a
list of operations rather than a simple path. This list of operations contains elements of
the formcommit(i) andconstrain(x), wherei is the number of an alternative andx
is a solution. This presupposes that solutions are distributable.

The optimization that workers check whether received solutions are better (Sec-
tion 9.3.4) helps to reduce the number ofconstrain(x)-elements on a path. Keep-
ing the path short is important, since each operation on the path might be executed by
multiple workers and even a single worker might execute each operation more than once.

Network Failure What is not considered by now and left as future work is network
failure. However, the interest is mostly on local area networks, where network failure is
infrequent.

9.5 Evaluation

The examples used for evaluation are all common benchmark problems: Alpha, 10-S-
Queens, Photo, and MT 10 (AppendixA.1). They vary in the following aspects:

Search Space and Search Cost All but MT 10 have a rather small search space where
every exploration step is cheap (that is, takes little runtime).

Strategy For Alpha and 10-S-Queens all-solution search is used. For Photo and MT 10
best-solution search is used.

Number of Solutions 10-S-Queens has a large number of solutions (every tenth node
is a solution). This makes the example interesting, because each solution is for-
warded to the manager. This assesses whether communication is a bottleneck and
whether the manager is able to process messages quickly.

The choice of examples addresses the question of how good parallel search engines
can be for borderline examples. MT 10, in contrast, can be considered as a well-suited
example as it comes to size and cost.

Total Overhead Figure9.3shows the total overhead of a distributed search engine for
the examples. The overhead is taken as the additional runtime needed by a distributed
search engine with a single worker, where both worker and manager execute on the same
computer compared to a sequential search engine. Information on the used software and
hardware platforms can be found in SectionA.3.

The numbers suggest that for examples with small search space and small search
cost, the overhead is less than 25%. This is due to the additional costs for maintaining
r-spaces and message-sending to an active service. For large examples (MT 10), the
overhead can be neglected. The overhead of around 50% for 10-S-Queens is due to
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Figure 9.3: Total overhead of distributed search engine.

frequent communication between worker and manager. Compared to the small search
cost, this overhead is quite tolerable.

Speedup Figure9.4shows the speedup that is obtained for the examples with a vary-
ing number of workers. All examples offer substantial speedup. For three workers all
examples yield at least a speedup of two, and for six workers the speedup exceeds three.
The speedup for MT 10 with six workers is larger than 4.5.

For all combinations of workers and examples but 10-S-Queens with six workers the
coefficient of deviation is less than 5% (in particular, for all combinations of MT 10 less
than 2%). For 10-S-Queens with six workers the coefficient of deviation is less than
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Figure 9.4: Speedup.
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10%. This allows to conclude that speedup is stable across different runs and that inde-
terminism introduced by communication shows little effect on the runtime. Moreover,
this clarifies that both minimal and maximal speedup are close to the average speedup.

Work Granularity Figure9.5shows the average work granularity which is amazingly
coarse. Work granularity is the arithmetic mean of the sizes of subtrees explored by a
worker in relation to the size of the entire tree. For all combinations of examples and
workers the granularity remains close to ten percent. This means that the simple scheme
for sharing work is sufficient.

Manager Load A possible drawback of a single manager is the potential of a perfor-
mance bottleneck. If the single manager is not able to keep up with processingfind-
messages, workers might be idle even though other workers have work to share. Fig-
ure9.6shows the load of the manager, where a load of 50% means that the manager is
idle during half of the entire runtime.

For all examples the manager has a load of less than 50%. For the more realistic
examples Photo and MT 10 the load is less than 15%. This provides evidence that the
manager will be able to efficiently serve messages for more than six workers. There are
two reasons why the load is quite low. Firstly, work granularity is coarse as argued above.
Coarse granularity means that workers infrequently communicate with the manager to
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Figure 9.6: Manager load.

find work. Secondly, each incoming request to find work is handled by a new thread.
Hence, the manager is immediately ready to serve further incoming messages.

Recomputation Overhead Figure9.7 shows the recomputation overhead. The num-
bers suggest that the overhead for recomputation is always less than 10%. This means
that the price paid for distributing work across the network is low.

Exploration Overhead Exploration overhead occurs for branch-and-bound search and
is due to the different order in which solutions are found (Section9.3.4). Figure9.8
shows the exploration overhead for Photo and MT 10. The exploration overhead is al-
most exclusively the cause for the speedup loss.

Exploration overhead is a consequence of performing branch-and-bound in parallel
and is independent of the implementation of the search engines. A different approach
to parallel best-solution search is presented by Prestwich and Mudambi in [112]. They
usecost-parallelism, where several searches for a solution with different cost bounds are
performed in parallel. This technique is shown to perform better than parallel branch-
and-bound search.
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10 Spaces for Combinators

This chapter extends computation spaces for programming composable constraint com-
binators. Composable means that combinators programmed from spaces can combine
arbitrary computations, including computations already spawned by combinators.

10.1 Overview

Space-based programming of composable combinators requires that spaces are freely
composable themselves. This is achieved by allowing spaces to be nested inside spaces,
leading to a tree of spaces.

Example 10.1 (Negation with Spaces) This example considers the issues that arise
with spaces for programming combinators. Spaces localize failure through encapsula-
tion. Hence, an obvious application for spaces seems to program a negation combinator
for arbitrary statements. To be more concrete, the negation ofX=Y is considered.

If encapsulated execution ofX=Y fails, the negation ofX=Y holds. If encapsulated ex-
ecution ofX=Y becomes stable,X=Y holds. However, due to the independence restriction
introduced in Chapter4, space creation waits until bothX andY become determined.

The independence condition prevents deciding failure early. IfX andY are aliased,
speculative execution should already be able to detect failure. IfX andY are kinded to
integers and have disjoint domains, speculative execution again should detect failure.

To accommodate for early failure detection, spaces must be created immediately and
constraints must be propagated into spaces immediately (“nested propagation”).

Encapsulation must take variables situated in superordinated spaces into account. For
example, speculative execution ofX=Y aliasesX andY. The aliasing must be encapsulated

toplevel

nested propagation encapsulation

local space

Figure 10.1: Nested propagation and encapsulation for spaces.
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inside the local space and must be invisible in the toplevel space (Figure10.1).
Stability must take into account that a non-runnable space is not necessarily stable.

For example, as soon as the thread executingX=Y terminates, the space is not runnable.
However it is far from being stable: it can fail due to tells onX andY.

The point to use spaces for combinators is to allow combination of arbitrary state-
ments. The point to make spaces composable is that statements that themselves employ
combinators are eligible for further combination. A variety of combinators including a
negation combinator are discussed in Chapter11.

The chapter is concerned with the following aspects:

Space Tree Spaces are organized in a tree that features nested propagation and encap-
sulation (Section10.2).

Space Tree Manipulation Space creation, cloning, and merging of spaces are extended
to deal with the space tree. This in particular includes control conditions for the
applicability of space operations (Section10.3).

Control and Status Stability is extended to capture nested propagation. A status mech-
anism that casts synchronization on spaces into synchronization on variables even
supports debugging (Section10.4).

The search-specific aspects of spaces such as distributor creation and committing to
alternatives remain unchanged. The relation of spaces to the underlying programming
language is discussed in Section10.5.

10.2 Space Tree

As argued before, composable spaces lead to aspace tree. The root of the space tree is
thetoplevel space. The direct predecessorS1 of a spaceS2 in the space tree is itsparent
space, and is writtenS1

.
< S2. Symmetrically,S2 is a child space of S1. The transitive

closure of
.
< is denoted by<, and the transitive and reflexive closure by≤.

Important subsets of the space tree with respect to a single spaceS are:

↑S := {
S′ | S′ < S

} ⇑S := ↑S ∪ {S} = {
S′ | S′ ≤ S

}

↓S := {
S′ | S < S′

} ⇓S := ↓S ∪ {S} = {
S′ | S ≤ S′

}

A spaceS1 is superordinated to a spaceS2, if S1 ∈ ↑S2. A spaceS1 is subordinated to a
spaceS2, if S1 ∈ ⇓S2. Note that a space is subordinated but not superordinated to itself.

The space tree is not to be confused with the search tree. Spaces that implement
nodes of a search tree are typically created by cloning. As will become clear in the
following section, spaces of a search tree are siblings in the space tree.
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Space Constituents The constituents of a space and notions such as situated entity and
home space remain unchanged. In the following,SC refers to the current space.

Freshness and Visibility As before, the set of variables and names for each space are
disjoint. Variables and names are visible in all spaces that are subordinated to their home.
That is, computations in spaceS can potentially refer to variables and names in⇑S.

Procedure Application When a procedure application reduces inS, the appropriate
procedure is taken from the union of procedure stores in⇑S. As a consequence of the
disjointness of names, the procedure to be applied is uniquely determined.

Tell In order to capture nested propagation, execution of a tell statement

x = v

tells x = v in all spaces⇓SC . This ensures an important monotonicity invariant: if
S1

.
< S2 andφi is the constraint ofSi , thenφ2 entailsφ1 (“children know the parent’s

constraints”). The invariant holds since children initially inherit the parent’s constraints
(Section10.3.1).

Failure An unsuccessful attempt to tellx = v fails SC . Failing SC stops all computa-
tions in⇓SC as follows: all threads in⇓SC and all spaces↓SC are discarded.

Sendability Sendability as defined in Section4.6disallows undetermined variables in
messages. Sendability can be liberalized as follows. A variablex is sendable from S1

with storeφ to S2, if S2 ∈ ⇑S1 and: there is no variabley with x �φ y andS2 < H(y),
and there is no nameξ with x �φ ξ andS2 < H(ξ) (� is introduced in Section3.2.1).

Example 10.2 (Space Tree) Consider the space tree in the top-left of Figure10.2. The
toplevel space isS0, the spacesS1 andS2 are children ofS0, andS21 is child of S2. The
variablex is situated inS0 and the variabley is situated inS2.

The variablex is visible in all spaces, andy is visible in S2 andS21. The variablex
is sendable toS0 from all spaces, andy is sendable fromS21 to S2 but not toS0.

■ Telling x = b in S2 also tellsx = b in S21 ∈ ⇓S2.

■ Telling x = b in S0 tells x = b in all spaces. SpaceS1 is failed by the tell.

■ Telling y = a in S21 effectsS21 only. Now, y is sendable fromS21 to S0, but still
not sendable fromS2 to S0.
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{x} S0

S1 x = a {y} S2

S21

{x} S0

S1 x = a {y} x = b S2

x = b S21

{x} x = b S0

S1 failed {y} x = b S2

x = b S21

{x} x = b S0

S1 failed {y} x = b S2

x = b, y = a S21

tell x = b in S2

tell x = b in S0

tell y = a in S21

Figure 10.2: Space tree evolution for Example10.2.

10.3 Space Tree Manipulation

This section is concerned with space creation, cloning, and merging.

10.3.1 Space Creation

A new space is created by

{NewSpace x y}

Reduction blocks untilx becomes determined. A new nameξ is created with homeSC .
A new spaceS is created as child ofSC the following way:

■ Theroot variable of S is initialized with a fresh variablez with homeS.
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■ The set of local variables is initialized to containz. The set of local names and the
procedure store are initialized as being empty.

■ The constraint store is initialized with the constraints ofSC . This ensures the
invariant that a child’s constraint always entails the parent’s constraint.

■ A thread is created inS to execute{x z}.

Finally, the statementy = ξ is pushed.

Visibility of Spaces Due to the script’s free variables, com-
putations inS can potentially access all variables situated in
⇑S. And by construction, all children ofS can be referred to
in S. Altogether, computations inS (black to the right) can
possibly refer to any space (gray) in

V(S) = {S2 | S1 ∈ ⇑S, S1
.
< S2}

Note thatV(S) includesS and excludes the toplevel.

Space Access is Explicit An important invariant in the design of first-class computa-
tion spaces is that reference to a space isexplicit. The only way to gain first-class access
to a space is by passing references obtained byNewSpace. This also entails that there is
no first-class reference to the toplevel space.

A different design would be to allow implicit access by a primitive{ThisSpace x}
that returns a reference to the current space. Implicit access would render abstractions
programmed from spaces unsafe. Computations controlled by space-based abstractions
could gain access to the current space and could break the abstraction’s invariants. On
top of that, implicit access would allow to gain access to the toplevel. Having no first-
class access to the toplevel space simplifies the design considerably. Otherwise, most
operations need to take care of the toplevel space as a special case.

Cloning Spaces Cloning also creates new spaces and needs to take into account the
space tree. Firstly, cloning a spaceS includes cloning all spaces in⇓S. Secondly, the
parent of the clone is the current space, which makes cloning similar to space creation.

10.3.2 Merging Spaces

Reduction of
{Merge x y}

synchronizes onx beingξ �→ S. Reduction considers the following special cases:

■ If S is failed, the current spaceSC is failed.
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■ If S is merged, an exception is raised.

■ If S is not admissible, an exception is raised. Admissibility is explained below.

■ If both SC andS contain a distributor thread, an exception is raised. This maintains
the “at most one distributor” invariant (Section4.5.1).

Otherwise,S is merged withSC as follows:

■ S is marked as merged.

■ The set of local variables (names) ofSC is updated to include the local variables
(names) ofS. The invariants discussed in Section10.2exclude conflicts.

■ Similarly, the procedure store ofSC is updated to include the mappings ofS’s
procedure store. Again, no conflicts are possible.

■ y = z is pushed, wherez is the root variable ofS.

■ All constraints ofS are told inSC .

Admissibility Merging must obey a straightforward tree condition. Suppose that the
spaceS to be merged is included in↑SC . By mergingS, the space tree would evolve
into a cyclic graph. Therefore, execution of{Merge x y} such thatx is ξ �→ S, raises
an exception ifSC ∈ ⇑S. Note that even the caseS = SC is excluded, since it is most
likely a programming error worth being detected.

Spaces to which merging can be applied areadmissible. To
the right, the current space is black while the admissible spaces
are gray. The set of admissible spaces with respect to the space
S (typically, S is the current space) is defined as

A(S) := V(S)− ⇑S

= {S2 | S1 ∈ ⇑S, S1
.
< S2} − ⇑S

Admissibility is a very general condition. This has the advantage that admissibility
can be used as single control condition for all operations on spaces. The following
example shows that admissibility for merging is indeed useful.

Example 10.3 (Downward Merge: Partial Evaluation) Example 4.8 shows how to
employ cloning and merging of spaces for partial evaluation.

The essence of using spaces for partial evaluation is to compute a
space and to use it multiply by merging a cloneS1 of it. Typically, the
clone S1 is a child of the toplevel spaceS. The cloneS1 is merged to
a spaceS2 which is subordinated toS but not toS1. This “downward
merge” is sketched to the right.

S

S1 S2

S2
merge
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Merged Spaces are not Transparent The attempt to perform an operation on a
merged space raises an exception. A different design would make merged spaces trans-
parent: after mergingS with SC , any reference toS is automatically redirected toSC

instead (similar to logic variables). This design, however, would make space access
implicit. In particular,ThisSpace could be programmed:

fun {ThisSpace}
S={NewSpace proc {$ _} skip end} in _={Merge S} S

end

10.3.3 Injecting into Spaces

The operation
{Inject x y}

with x beingξ �→ S is also restricted in thatS must be admissible. Additionally, ify
refers to a procedure with homeS′ andS′ �∈ ⇑S, an exception is raised.

Merged Spaces are Still not Transparent The hypothetical design that makes merged
spaces transparent would allow to expressInject from NewSpace andMerge:

proc {Inject S2 P}
S2={NewSpace proc {$ X} {Merge S1 X} {P X} end}

end

HereS1 andS2 would refer to the same space after mergingS1 with S2. Since merged
spaces are not transparent,Inject is primitive. It is possible to create a space with the
right computations. However, the space has the wrong identity.

10.4 Control and Status

The motivating Example10.1outlined that a space that is not runnable is not necessarily
stable: it still can be speculative in that the space might fail. There are two reasons why
a spaceS can still fail, even thoughS is not runnable:

■ The spaceS contains a threadT that synchronizes onx that is situated in↑S. In
case a constraint is told onx in ↑S, T is woken and makesS runnable.

In this situation,T is globally suspended or speculative. If T suspends on a vari-
ablex with H(x) < S, T globally suspends for H(x). Theglobal suspension set
G(T ) is the set of variables on whichT globally suspends.

■ A variablex situated inS′ ∈ ↑S is constrained inS. In case a constraint is told
on x in S′, S can fail. This can only be the case, if the constraint store ofS is not
entailed by the constraint store ofS ′. The constraint inS is speculative. Otherwise,
the tell would already failS ′ (andS would be discarded instead).
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Figure 10.3: Summary of space states and transitions.

10.4.1 Stability

The intuition is thatS is stable, if no tell in↑S can affectS. This is formalized as follows.

Runnable and Blocked A spaceS is runnable, if ⇓S contains a runnable thread. Oth-
erwise,S is blocked. According to this definition, a failed space is blocked.

Stable and Suspended A spaceS is stable, if S is blocked and remains blocked regard-
less of any tell statements executed in↑S. A space issuspended, if it is blocked
but not stable.

Succeeded and Distributable A space isdistributable, if it is stable and contains a dis-
tributor. A space issucceeded, if it is stable but neither failed nor distributable.

Entailed and Stuck A space isstuck, if it is succeeded and contains a thread. Other-
wise, a succeeded space isentailed. The distinction between entailed and stuck
spaces is of great importance in Chapter11.
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Figure10.3(a)summarizes the states of a space and their relationship. Recall that
a space can also be semi-stable (Section4.5.3). Semi-stability is an orthogonal issue
and hence requires no discussion here. Figure10.3(b)summarizes state transitions for
spaces. A solid line represents a transition that occurs upon application of a space oper-
ation, the other “implicit” transitions are represented by dashed lines.

Stability of a spaceS is defined with respect to threads in⇓S. One reason is that a
thread inS can control and synchronize on computations in↓S. A further reason is due
to cloning: cloning synchronizes on stability and also clones subordinated spaces.

Since stability is defined with respect to trees of spaces, the following holds:

■ If S is blocked, all spaces in↓S are blocked. Dually, ifS is runnable, all spaces in
↑S are runnable.

■ If S is stable, spaces in↓S need not be stable. Dually, ifS is suspended, spaces in
↑S need not be suspended.

Stability captures synchronization that arises naturally with concurrent computations.
Consider a speculative computation inS that processes data (that is, constraints) pro-
vided by some other concurrent computation. The spaceS becomes suspended if not all
required data is provided. Only after all data is provided,S can become stable.

Stability has been first conceived by Janson and Haridi in the context of AKL [61,
46, 60]. Stability naturally generalizes the notion of entailment. Entailment is known
as a powerful control condition in concurrent execution, which has been first identified
by Maher [77] and subsequently used by Saraswat for the cc (concurrent constraint pro-
gramming) framework [121, 120].

It is instructional to study stability and how stability interacts with failure and merg-
ing spaces by means of some examples.

Example 10.4 (Stability is Pessimistic) An important aspect of stability is that it is a
pessimistic but safe and decidable approximation that a space is not speculative. Con-
sider the following example

proc {Loop} {Loop} end
S={NewSpace proc {$ X} {Loop} end}

S is definitely not speculative, but never becomes stable. In the following example
local Y in S={NewSpace proc {$ X} Y=1 end} end

S never becomes stable, even though lexical scoping ensures that no tell onY can failS.

Example 10.5 (Local Versus Global Variables) SupposeS is created by
local Y in S={NewSpace proc {$ X} X=Y end end

After the thread that executesX=Y terminates,S becomes stable: regardless of what
is told for Y, S cannot become failed. This is in contrast to Example10.1, where the
constraint is speculative.
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Example 10.6 (Failure and Stability) Consider the following example:
S1={NewSpace proc {$ S2}

S2={NewSpace proc {$ X} Y=1 end}
end}

whereY is a variable introduced in a space in↑S1. BothS1 andS2 eventually become
suspended, sinceS2 can be failed by a tell onY. By telling Y=1, both spaces eventually
become stable. By tellingY=2, S2 eventually becomes failed andS1 stable.

Example 10.7 (Merging and Stability) After execution of
S1={NewSpace proc {$ S2}

Y in S2={NewSpace proc {$ X} Y=1 end}
end}

S1 andS2 eventually become suspended. By
{Inject S1 proc {$ S2} {Merge S2 _} end}

S1 eventually becomes stable.

10.4.2 Status Variable

Ask as introduced in Section4.4 synchronizes on stability of a space and then returns
its status. A simpler design that casts synchronization on spaces to synchronization
on variables is based on the idea of astatus variable. As soon as a space reaches a
stable state, information according to its status is told on the status variable.Ask is then
programmed from a primitive that accesses the status variable.

Each spaceS features astatus variable x that is situated inS’s parent spaceS ′. The
status variablex is created whenS is created and is manipulated as follows:

1. If S is merged,x = merged is injected intoS ′.

2. If S becomes failed,x = failed is injected intoS ′.

3. If S becomes distributable and hasn alternatives,x = alternatives(n) is in-
jected intoS′.

4. If S becomes entailed,x = succeeded(entailed) is injected intoS ′.

5. If S becomes stuck,x = succeeded(stuck) is injected intoS ′.

An additional provision, referred to asfreshening, is needed for stable spaces that
become runnable again (by application ofInject or Commit, Figure10.3(b)):

6. If S is stable and becomes runnable again, a fresh variabley with home S ′ is
created andS’s status variable is replaced byy.
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fun {Deref X}
case X of suspended(X) then {Deref X} else X end

end
fun {Ask S}

case {Deref {AskVerbose S}} of succeeded(_) then succeeded
[] X then X
end

end

Figure 10.4:Ask programmed fromAskVerbose.

Status variable access is provided by the following primitive operation

{AskVerbose x y}

which synchronizes onx beingξ �→ S. It returnsS’s status variablez by pushingy = z.
The design ofAskVerbose is simple, but suffers from a subtle possibility of hard

to find programming errors. If the current space is subordinated toS, a thread can syn-
chronize onS’s status variable. Typically, this is the result of a programming error:S
can never become stable due to a thread that suspends globally onz. To avoid this dead-
lock scenario, the application ofAskVerbose is restricted to admissible spaces. For an
admissible space it is guaranteed that this situation cannot occur. Section13.3.5clarifies
that the restriction to admissible spaces is essential for the implementation.

Relation to Mozart The Mozart implementation of spaces deviates slightly in the
handling of the status variable. It uses futures (read-only variants of logic variables, see
Section3.5) instead of logic variables to offer protection against programming errors.

10.4.3 Debugging Support

A quite common situation is that a space suspends due to a programming error. De-
bugging tools that are programmed from spaces need to account for this situation (the
Explorer is a particular example, Chapter8). Therefore the design is extended:

7. If S becomes suspended, a fresh variabley with homeS ′ is created andS’s status
variable is replaced byy. The statementx = suspended(y) is injected intoS ′.

FromAskVerbose it is straightforward to programAsk, as is shown in Figure10.4.

Example 10.8 Consider the following example, where the variablesX andY are not
determined and superordinated toS:

S={NewSpace proc {$ _} {Wait X} {Wait Y} end}
Z={AskVerbose S}
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The thread created to execute the script forS eventually globally suspends onX.
That is, the spaceS becomes suspended. HenceZ is determined tosuspended(_).
After executingX=1, the thread suspending onX resumes but globally suspends
again onY. And again S suspends, which means thatZ is constrained tosus-
pended(suspended(_)). Telling Y=1 eventually results inZ being determined to
suspended(suspended(succeeded(entailed))).

10.5 Choice of Programming Language

Computation spaces presuppose the essential features of Oz Light. First-class procedures
are essential for space creation and injection. Implicit synchronization is essential to
synchronize on stability of spaces. Concurrency is essential for controlling speculative
computations and for a clear model of attaching computations to spaces.

An additional design decision of Oz is that procedures are relational rather than func-
tional. Relational means that results are passed as side effects on variables. This decision
has no impact on the design of spaces. Any language will do, provided it offers the es-
sential ingredients such as implicit synchronization through logic variables, concurrency,
and first-class procedures. Smolka describes in [139] a variant of Standard ML that of-
fers these features. Spaces can straightforwardly build on top of this language. My
paper [130] exemplifies this by using spaces for composable constraint combinators in
the context of this variant of SML.

The decision to use Oz is motivated by the following facts. Firstly, as a corollary to
the above discussion, the language of choice is independent of spaces. Secondly, using
Oz has the advantage that all program fragments are for real. The programs can be tried
with Mozart [95] as a production quality system. The programs are the abstractions that
are used in Mozart. The programs serve as foundation for the thorough evaluation of the
approach in this thesis.
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11 Constraint Combinators

This chapter discusses composable concurrent constraint combinators programmed from
spaces as constraint combination method. Spaces are applied to a broad range of com-
binators: negation, generalized reification, disjunction, and implication (conditional). It
is empirically shown that a space-based implementation of combinators is competitive
with a native C++-based implementation.

11.1 Introduction

Spaces can be used to encapsulate and control speculative computations. This allows to
program combinators where execution of constraints subject to combination is delegated
to local spaces. The logic behind the combinator is programmed then from space op-
erations. Whereas combinators allow to program constraints, spaces allow to program
combinators. The composable setup of spaces makes space-based combinators compos-
able to start with. Composable combinators are also known asdeep-guard combinators.

Applications Our experience shows that applications of constraint combinators in fi-
nite domain programming are not frequent. However, they turn out to be of great im-
portance for other constraint domains, like feature or finite set constraints. In particular,
they have turned out to be essential in the area of computational linguistics [34], where
constraints from different domains are combined naturally.

A second area of application is prototyping constraints. Starting from already imple-
mented constraints new constraints can be developed by combining them at a high level.
After experiments have shown that they are indeed the right constraints, a more efficient
implementation can be attempted. This motivation is similar to that for constraint han-
dling rules (CHR) [39]. Spaces are primitives to combine constraints, a feature that an
implementation of CHRs already presupposes.

Related Work Combinators for constraint programming is not a new idea. Previ-
ous approaches include Saraswat’s concurrent constraint programming framework [121,
120], the cardinality combinator by Van Hentenryck and Deville [146], and cc(FD) [148].
The approaches have in common that the combinators considered are “flat” as opposed
to “deep”: the constraints that can be combined must be either built-in, or allow a simple
reduction to built-in constraints (cardinality combinator).
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A deep guard combinator has been proposed and implemented first in Nu-Prolog
by Naish [99, 98]. The solution was not fully general in that reduction was limited to
groundness rather than entailment. The first language that provided a full design and
implementation of deep guards was AKL [61, 46, 60].

The approaches mentioned so far offer afixed set of combinators. Here the focus is
on primitives and techniques for combinators. For all combinators except constructive
disjunction (available in cc(FD)), it is shown how to program them from spaces.

A different approach to combining constraints arereified constraints (also known
as metaconstraints). Reification reflects the validity of a constraint into a 0/1-variable.
Constraints can then be combined by using the 0/1-variable. Spaces are not intended as a
replacement for reified constraints. As is discussed in Section11.3, a space-based reifi-
cation combinator can offer better propagation in cases where reified constructions prop-
agate poorly. Space-based reification is applicable to all expressions, including propaga-
tors for which a constraint programming system does not offer a reified version.

11.2 Concurrent Negation

This section familiarizes the reader with spaces for programming combinators by show-
ing how to program a concurrent negation combinator from them.

For a given constraintφ, the negation combinator provides an implementation for the
constraint¬φ. The negation combinator¬φ executes the propagator forφ and:

■ disappears, if the propagator forφ becomes failed.

■ fails, if the propagator forφ becomes entailed.

Execution ofφ by the negation combinator requiresencapsulation of the computa-
tion performed byφ. Basic constraints that are told by propagation ofφ must be hidden
from other computations. Basic constraints that are told by other computations must be
visible toφ. First-class computation spaces are used as encapsulation mechanism.

Some Abstractions The following abstractions are helpful in the remainder of this
chapter. Quite often no access to the root variable of a space is needed, hence it is
convenient to allow a nullary procedure:

fun {Encapsulate P}
{NewSpace if {ProcedureArity P}==1 then P

else proc {$ _} {P} end
end}

end

To simplify presentation the following procedureStatus is used (for the definition
of Deref see Figure10.4on page103):
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fun {Status S}
case {Deref {AskVerbose S}}
of failed then failed
[] succeeded(S) then S
[] alternatives(_) then stuck
end

end

Detecting Programming Errors A stuck space (see Section10.4) is stable, but neither
failed nor entailed. If a spaceS becomes stuck, it contains propagators or threads that
synchronize on variables that are local toS (otherwiseS would be suspended).

This means that constraint propagation withinS has not been strong enough to com-
pletely drive reduction of all threads and propagators. Usually, a stuck space is the result
of a programming error. In the following, this is modeled by raising an exceptionerror.

The Combinator The concurrent negation combinator takes a statement (as nullary
procedureP) and creates a space runningP. To make the combinator concurrent, a new
thread is created that blocks until the created space becomes stable.

proc {Not C}
thread

case {Status {Encapsulate C}}
of failed then skip
[] entailed then fail
[] stuck then raise error end
end

end
end

11.3 Generic Reification

Reification is a powerful and natural way to combine constraints. This section presents
a generic reification combinator which is shown to provide stronger propagation than
constructions that use reified propagators alone.

Reification The reification of a constraintφ with respect to a 0/1-variableb (a finite
domain variable with domain{0, 1}) is the constraintφ ↔ b = 1. The idea behind
reification is to reflect whetherφ holds into thecontrol variable b is 0 or 1.

Operationally, it is important that reification is bidirectional:

“⇒” If φ holds,b = 1 must hold. If¬φ holds,b = 0 must hold.

“⇐” If b = 1 holds,φ must hold. Ifb = 0 holds,¬φ must hold.
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Having 0/1-variablesb that reflect validity of constraints allows for powerful means
to combine constraints. Common examples for combination are boolean connectives
expressed by propagators (Sections8.2and11.4contain examples of reification).

Direction “⇒” can be programmed along the lines of the negation combinator of
Section11.2. Suppose thatS refers to a space running the statement to be reified andB

refers to the 0/1-variable. Then direction “⇒” is as follows:
〈“⇒”〉 := case {Status S}
〈“⇒”〉 := of failed then B=0
〈“⇒”〉 := [] entailed then B=1
〈“⇒”〉 := [] stuck then raise error end
〈“⇒”〉 := end

For the case of direction “⇐” whereB is determined to 0, if the spaceS becomes
entailed, the current space must be failed. Otherwise, ifS becomes failed, nothing has to
be done. This behavior is already realized by the above encoding of direction “⇒”.

Space Merging Consider the case of direction “⇐” for b = 1. The required opera-
tional behavior includes two aspects. Firstly, a computation state must be established as
if execution ofσ had not been encapsulated. Secondly, ifσ has not yet been completely
evaluated, its further execution must perform without encapsulation.

Both aspects are dealt with byMerge. Here,Merge takes a spaceS2 and merges
it with the current spaceS1 (which is S2’s parent) as follows. IfS2 is failed, alsoS1

becomes failed. Otherwise:

1. All constraints ofS2’s constraint store are told toS1’s constraint store. By this, the
effects of computations performed inS2 are made available inS1.

2. All propagators and threads situated inS2 now become situated inS1. From now
on, they execute as if they had been created inS1 in the first place.

UsingMerge, direction “⇐” of the reification combinator is encoded as follows:
〈“⇐”〉 := if B==1 then _={Merge S} else skip end

The Combinator The reification combinator is obtained from the implementation of
both directions, which must execute concurrently. Concurrent execution is achieved by
creating a thread for each direction. The procedureReify takes a procedure for the
statement to be reified and returns a 0/1-variable:

fun {Reify E}
S={Encapsulate E}
B

in
B::0#1 thread 〈“⇒”〉 end thread 〈“⇐”〉 end B

end
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Example 11.1 (Comparison with Propagator-based Reification) Consider the reifi-
cation of the conjunction ofx + 1 = y and y + 1 = x with respect to the variableb,
wherex andy are finite domain variables. Similar reified constraints occur in computing
Hamiltonian paths1. Ideally, reification should determineb to 0, since the conjunction is
unsatisfiable. Posting the constraints without reification exhibits failure.

To obtain a reified conjunction, the conjuncts must be reified by introducing control
variablesb1 andb2:

b1 = (x + 1= y) ∧ b2 = (y + 1= x) ∧ b ∈ {0, 1} ∧ b1× b2 = b

Neitherb1 nor b2 can be determined, thusb cannot be determined.
The reification combinator developed in this section is applied as

B={Reify proc {$} x + 1= y y + 1= x end}

Both constraints are posted in the same local spaceS. Exactly like posting them in the
toplevel space, propagation failsS. Indeed, the reification combinator determinesb to 0.

This shows that using spaces for reification can yield better constraint propagation
than reifying each propagator individually. Individual propagator reification encapsu-
lates the propagation of each propagator. This in particulardisables constraint propa-
gation in reified conjunctions. This is a major disadvantage, since reified conjunctions
occur frequently as building block in other reified constructions.

On the other hand, the generic reification combinator offers weak propagation in case
the control variable is 0, because it does not impose the constraint’s negation. Instead
of propagation, constraints told by other propagators are tested only. Whenever a reified
propagator is available, it is preferable to use it directly. So the reification-combinator
offers additional expressiveness but does not replace reified propagators.

11.4 Disjunction

This section shows how to program disjunctive combinators that resolve their alternatives
by propagation rather than by search. Disjunctive combinators occur frequently in a
variety of application domains, a well-known example is scheduling.

Consider a disjunction
σ1 ∨ · · · ∨ σn

that is composed ofn statementsσi , where theσi are the disjunction’salternatives. A
straightforward operational semantics is as follows:

1. Discard failed alternatives (⊥ ∨ φ is logically equivalent toφ).

1This fact has been brought to my attention by Tobias M¨uller.
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2. If a single alternativeσ remains, reduce the disjunction toσ (a disjunction with a
single alternativeσ is equivalent toσ ).

3. If all alternatives have failed, fail the current space (a disjunction with no alterna-
tives is equivalent to⊥).

This operational semantics can be directly encoded by the reification operator as
introduced in Section11.3. The well-known encoding reifies each alternativeσi with
respect to a 0/1-variablebi . The disjunction itself is encoded byb1+ · · · + bn ≥ 1.

Example 11.2 (Placing Squares) The suggested operational semantics is driven by fail-
ure only. It can be beneficial to also take entailment of alternatives into account.

As an example consider the placement of two squaress1 ands2 such that they do not
overlap. A well known modeling of this constraint is

x1+ d1 ≤ x2 ∨ x2+ d2 ≤ x1 ∨
y1+ d1 ≤ y2 ∨ y2+ d2 ≤ y1

The meaning of the variablesxi , yi , anddi is sketched to the
right. The squares do not overlap, if the relative position ofs1 with
respect tos2 is either left, right, above, or below. As soon as one
of the relationships is established, the squares do not overlap.

s1

s2

x1

x2

y1

y2

d1

d2

Supposes1 is placed left tos2. Since the first and second alternative are mutually
exclusive (so are the third and fourth), the first and second reified propagator disappears.
However, the third and fourth remain.

Assume a constraint storeφ and a disjunctionφ1∨φ2 whereφ1 is entailed byφ (that
is, φ → φ1 is valid). Under this condition,φ1 ∨ φ2 is logically equivalent to� ∨ φ2,
which in turn is equivalent to�. This justifies

4. If an alternative is entailed, reduce by discarding all alternatives.

Taking entailment into account has the advantage that execution can be more effi-
cient, since computations that cannot contribute are discarded early. In a composable
setup, this might allow for earlier reduction of other combinators and by this provide
better propagation.

The implementation of the disjunctive combinator can be simplified by the following
observation: it is sufficient to discard all failed alternatives but the last one. If a single
alternative remains, commit to it, regardless of whether the alternative is failed or not.
Merging a failed space fails the current space (see Section10.3.2). In the following, the
discussion is limited to a binary combinator. Its generalization is straightforward.

A procedureOr that takes two alternativesA1 andA2 (again encoded as first-class
procedures) decomposes naturally into three parts: space creation for encapsulated ex-
ecution of the alternatives, a concurrent controller, and reduction as discussed before.
This yields:
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proc {Or A1 A2}
S1={Encapsulate A1} S2={Encapsulate A2}
fun {Reduce S1 S2} 〈Reduction〉 end

in 〈Controller〉
end

The controller blocks until eitherS1 orS2 becomes stable. This indeterminate choice
is encoded byFirst, which blocks until one of its arguments becomes determined. If
it returnstrue (false), its first (second) argument is determined (Section3.3.1). The
controller appliesFirst to the status of bothS1 andS2:

〈Controller〉 := if {First thread {Status S1} end
〈Controller〉 := thread {Status S2} end}
〈Controller〉 := then {Reduce S1 S2}
〈Controller〉 := else {Reduce S2 S1}
〈Controller〉 := end

The controller guarantees stability of the first space to whichReduce is applied.
Finally, reduction is programmed as follows:

〈Reduction〉 := case {Status S1}
〈Reduction〉 := of failed then _={Merge S2}
〈Reduction〉 := [] entailed then {Kill S2}
〈Reduction〉 := else case {Status S2}
〈Reduction〉 := of failed then _={Merge S1}
〈Reduction〉 := [] entailed then {Kill S1}
〈Reduction〉 := else raise error end
〈Reduction〉 := end
〈Reduction〉 := end

The part ofReduce that does not have a gray background executes immediately, since
the controller ensures thatS1 is stable. The gray part synchronizes on stability ofS2.
Kill kills a space by injecting failure (Example4.2).

Reification of a statementσ can be programmed from disjunction as follows:

{Or proc {$} B=1 σ end
proc {$} B=0 {Not proc {$} σ end} end}

Programming reification from disjunction has the disadvantage thatσ is executed twice.
This points out a deficiency in the designs of AKL and early versions of Oz, where
neither spaces nor reification but disjunction was available as primitive.

11.5 Conditional

This section shows how to program conditionals that use arbitrary statements as con-
ditions. In particular, it presents how to use continuations that allow to share variables
between condition and body of a conditional.
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A conditional consists of three constituents, all of which are statements: aguard G,
a body B, and anelse-constituent E . A common suggestive syntax is

cond G then B then E end

The partG then B is called theclause of the conditional.
Programming a conditional from computation spaces is straightforward. The pro-

gram used for programmingNot (see Section11.2) is adapted as follows:

proc {Cond G B E}
case {Status {Encapsulate G}}
of failed then {E}
[] entailed then {B}
[] stuck then raise error end
end

end

whereG, B, andE are procedures for the conditional’s guard, body, and else constituent.
A common desire is to introduce variablesx locally in the guardG and to subse-

quently use them in the body. Thus the conditional should synchronize on entailment
of ∃xG. In the current setup, the bindings computed forx in G are not accessible. An
inefficient solution is to execute the guard expression again together with the body.

A more satisfactory solution is to let the guard pass the variables to the body. This can
be accommodated by using the root variable of a space. In the context of a programming
language with first-class procedures the sharing of variables between guard and body is
straightforward by letting the guard return as result a function for the body:

local x in G fun {$} B end end

Here B can refer to variables declared in thelocal-expression. Programming the con-
ditional is now straightforward.

proc {Cond G E}
S={Encapsulate G}

in case {Status S}
of failed then {E}
[] entailed then B={Merge S} in {B}
[] stuck then raise error end
end

end

Note that the body is not passed as argument toCond but is computed by the guardG.

Parallel Conditional A common combinator is aparallel conditional that features
more than a single clause with a committed choice operational semantics: As soon as
the guard of a clause becomes entailed, commit the conditional to that clause (that is,
continue with reduction of the clause’s body). Additionally, discard all other guards.
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Encoding the parallel conditional from computation spaces follows closely the pro-
gram for the disjunction presented in Section11.4. In fact, the setup of the computation
spaces for guard execution and the concurrent controller can remain unchanged.

〈Reduction〉 := if {Status S1}==entailed then
〈Reduction〉 := {Kill S2} {{Merge S1}}
〈Reduction〉 := elseif {Status S2}==entailed then
〈Reduction〉 := {Kill S1} {{Merge S2}}
〈Reduction〉 := else raise error end
〈Reduction〉 := end

Adding an else-constituent is straightforward.

Clauses for Disjunction The disjunctive combinator presented in Section11.4can be
extended to employ clauses as alternatives. This extension is straightforward but two
issues require some consideration. Firstly, when to start execution of a clause’s body?
Secondly, for which clause employ reduction by entailment?

Execution of the parallel conditional evaluates a clause’s bodyB only after the
clause’s guardG has become entailed. This in particular ensures that the thread to com-
pute B has terminated. A disjunctive combinator, in contrast, can already commit to a
clauseC if its guardG is not yet stable, provided the clause is the last remaining.

It is desirable that evaluation ofC ’s body B starts afterG has been completely ex-
ecuted. This is guaranteed, since procedure application synchronizes onB. And B is
determined to a procedure only after the entire guard has been executed.

As discussed in Section11.4, it is beneficial to consider both failure and entailment
of alternatives for the disjunctive combinator. Reduction by entailment is justified by the
fact that if an alternativeA is entailed, it is logically equivalent to�. This does apply to
a clause only if its body is known to be logically equivalent to�. A solution is to tag
clauses as�-clauses and apply reduction by entailment to�-clauses only.

11.6 Andorra-style Disjunction

The disjunctive combinator discussed in Section11.4resolves remaining alternatives by
propagation only. On the other hand, distributors encode disjunctive information as well
and are resolved by search only.

A prominent idea originating from logic programming is to combine these two as-
pects as follows. Reduce all disjunctive combinators as far as possible by propagation.
If no further propagation is possible, choose one of the not-yet reduced disjunctive com-
binators and apply distribution to further drive reduction. By this, reduction consists of
interleaving deterministic (propagation) and non-deterministic (distribution) reduction,
where deterministic reduction is given preference.

The idea has been conceived in the context of Prolog, where the disjunctive combi-
nators are Horn clauses, and are, in Prolog, only reduced by search. The above described
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principle has been first discovered by D. H. D. Warren and has been calledBasic An-
dorra Principle by Haridi and Brand in 1988 [44]. It has been independently discovered
by Smolka in 1991, who referred to it asresiduation [135]. Residuation occured first in
the work of Aı̈t-Kaci and Nasr [6], even though there has been no explicit link to search.
Similar ideas have already been explored in MU-Prolog by Naish [98].

The following encoding combines both styles of reduction. Propagation and distribu-
tion is linked by acontrol variable. For a disjunction withn clauses, the control variable
x is a finite domain variable with initial domain{1, . . . , n}. Failure of a clauseCi results
in exclusion ofi by creating a propagator forx �= i . If x gets determined, the disjunction
reduces with thex-th clause.

In addition, a distributor for the control variablex is created. This implies that if nor-
mal reduction does not suffice to reduce to a single clause, the distributor assigns a value
to the control variablex and by this drives execution of the disjunction by distribution.

A different way of encoding would be to start directly from the disjunction as intro-
duced in Section11.4and use the constraintx = i in the guard of the disjunction. The
drawback of the encoding is that it cannot be extended to handle�-clauses, since the
guards will not become entailed due to the constraints on the control variable.

At first sight, the demonstrated combination of propagating and distributing disjunc-
tions looks promising. Its practical use, however, is limited due to hard-wired con-
trol. Systems built on the Andorra principle suffer from the inflexible control [119, 60].
Moolenaar and Demoen describe in [94] how selection criteria like least number of al-
ternatives (first-fail) can be implemented on an abstract machine level. While strategies
like first-fail might be appropriate in some situations, they might fall short in others. The
right thing is as usual: make it programmable and provide commonly used abstractions.

Since on the other hand sophisticated selection abstractions for finite domain vari-
ables are available, the following approach works well in practice. Make the control
variables for the disjunctions explicit and control distribution by distribution of the con-
trol variables.

11.7 Discussion and Evaluation

The Mozart implementation of Oz (version 1.1.0) switched from a native C++-based im-
plementation of combinators to a space-based implementation. Information on tech-
niques for native implementation of combinators can be found in [60, 80, 79]. The main
motivation has been to simplify the implementation. The goal has been to decrease the
maintenance effort which turned out to be prohibitive for the native implementation.

The native implementation requires widespread support. Support for encapsulation
is needed, which is shared by the space-based implementation. The native implemen-
tation requires extension of the underlying abstract machine by several instructions and
specialized data structures (instead of spaces). A particular source of problems has been
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Figure 11.1: Runtime (in milliseconds) for examples using combinators.

the implementation of a concurrent control regime in C++ as a sequential language.
This is very much in contrast to the space-based implementation. Spaces are provided

completely orthogonal, most of their supporting routines are loaded on need (for more
details see Chapter13). And spaces are concurrency-enabled to start with.

Reduction and Propagation The runtime for deep-guard combinators is determined
by two factors: the runtime needed for reduction and the runtime for propagating con-
straints to spaces. The latter aspect is more important for constraint applications: typ-
ically, combinators are created once at problem setup time. Most of the computational
effort is then spent on search for a solution which involves a great amount of propagation.

Figure11.1(a)shows the runtime of Append. Append is the typical tail-recursive
program that appends two lists with 10000 elements. Append is just concerned with
reduction. Here the space-based implementation is around 50% slower than the native
implementation. The reason why the native implementation is faster is that the entire
reduction consists only of space and thread creation directly followed by reduction. This
is faster in a native implementation since no first-class space is created and no overhead
is incurred by executing Oz programs. In addition, it is clarified that both conditional
and disjunctive combinator have the same runtime behavior.

Figure 11.1(b) shows the runtime for the example Length. Length computes the
length of a list, where a disjunctive combinator is used to propagate the length of a list to
and from a finite domain variable. This is iterated a hundred times as follows: from a list
the length is computed, from the length a list is computed,. . ., and so on. The runtime
for Length is thus dominated by propagation. Here the space-based implementation is
even slightly more efficient than the native implementation. The reason is that due to
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Figure 11.2: Runtime and memory requirements for different implementations of Bridge.

the simplifications that have become possible by removing the native implementation of
combinators, the entire implementation has become more efficient.

These experiments suggest that the space-based implementation is competitive to
the native C++-implementation as it comes to runtime. Native combinators are slightly
faster for programs where execution time is dominated by reduction of combinators. For
examples where the runtime is dominated by constraint propagation, both approaches
offer approximately the same execution speed.

Comparison to Reification Figure11.2shows runtime and memory requirements for
the Bridge example. Bridge is a small scheduling problem (AppendixA.1). A central
constraint for Bridge is that two tasks that require the same resource do not overlap in
time. The formulation used is the single-dimensional variant of the non-overlap con-
straint for squares as discussed in Example11.2. Here the runtime is dominated by
propagation which explains why native and space-based implementation offer the same
runtime. They also require roughly the same memory. The comparison to an implemen-
tation that uses propagator-based reification stresses that combinators are not a replace-
ment for reified propagators but rather an addition.

Figure11.2(b)reveals that space consumption of space-based and native combinators
is approximately the same.
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12 Implementing Oz Light

This chapter outlines the implementation architecture of Oz Light. The architecture
serves as foundation for the implementation of first-class computation spaces.

12.1 Overview

The chapter is concerned with the implementation aspects of Oz Light that are funda-
mental for the implementation of spaces. The first issue is the store and in particular the
variables in the store. The second issue is synchronization and control of threads.

The implementation is sequential: there is at most one thread executing at a time.
The architecture features the following components:

Store The store implements the constraint-graph. Its nodes are the variables and the val-
ues. Its edges represent equality-constraints between nodes. The central operation
on the store is tell which possibly inserts new edges into the graph.

Emulator The emulator executes threads. Execution possibly creates new threads, cre-
ates new nodes in the store, and performs tell operations on the store. The details
of the emulator are of little concern for spaces. It suffices, that after execution of a
thread, its status and its suspension set is available from the emulator.

Scheduler The scheduler is the implementation’s main control instance. It maintains a
pool of runnable threads and provides fair execution control for runnable threads.
The scheduler creates, suspends, wakes, and terminates threads.

How the actual statements of Oz Light are implemented is orthogonal to the imple-
mentation of spaces. A sketch of a complete implementation of a language similar to
Oz Light is [80]. Scheidhauer discusses implementation and evaluation of the emulator
in [122]. Mehl discusses the implementation of store and scheduler in [79].

12.2 Synchronization

The implementation’s most distinguished service is thread synchronization. When a
threadT suspends, its topmost statement is in charge of computing the suspension set
S(T ). As soon as new constraints on a variablex ∈ S(T ) become available,T is woken.
To implement synchronization efficiently,T is attached to all variables inS(T ).
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(a) Variable.

f/n

· · ·
(b) Value. (c) Reference.

Figure 12.1: Nodes in the constraint store.

As soon as new constraints become available on a variablex , the attached threads
are made runnable by waking them. The set of suspended threadsS(x) attached to a
variablex is called thesuspension set of x . The suspension set of a variable is typically
implemented as a list. Waking the threads inS(x) is also called towake the variable x .

The emulator provides access to the suspension set of threadT . The scheduler at-
taches a suspended threadT to the variablesS(T ). The store detects which variables
must be woken. Again, the scheduler wakes the particular variables.

A thread that is woken isnot guaranteed to make any progress. Even though new
constraints are available, the topmost statement might still be unable to reduce. For
example, if a thread synchronizes onx + y = z and onlyx has become determined
while y is still unconstrained. The reason is that the implementation does not track how
much information is needed to resume a thread. It just makes the safe but pessimistic
approximation that new constraints on a variable wake the thread.

12.3 Store

The constraint store implements theconstraint-graph. Its nodes represent variables and
values. Its edges represent equality-constraints between variables and values.

Nodes The constraint store has three different kinds of nodes (Figure12.1). A vari-
able node has a link to its suspension set. Avalue node for a simple value has no
outgoing edges. A value node for a tuple nodef/n hasn outgoing edges that point to
the nodes for itsn subtrees. Areference node is created by constraining variables. It has
a single outgoing edge pointing to any other node in the store. In the following, nodes
and their entities are silently identified.

The implementation combines all store compartments in that it has nodes for proce-
dures and ports. For example, a procedure nodeP has two links to implement a closure:
to the free variables ofP, and to the code (statement) ofP.

Binding Variables Ideally, tellingx = v would redirect all links that point tox to v
instead. This is not feasible: there is no simple way to efficiently maintain the incoming
edges ofx . Instead, a variable node is turned into a reference node. Figure12.2shows
how a new constraint is added to the store.X refers to a variable node, whereasY refers

118



X Y
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scheduler wakes{T1, T2}

Figure 12.2: Binding a variable node.

to a value node. TellingX=Y to the store wakesX and turns the variable node into a
reference node pointing toY. Turning a variable node into a reference node is called to
bind the variable (node). If a variable nodex is bound to another variable nodey, both
variables are woken: new information is available on bothx andy.

Reference nodes in the store are transparent. Routines that access the store implicitly
follow links from reference nodes (“dereferencing”). A garbage collector, for example,
is free to remove reference nodes (“path compression”).

Unification Unification is used to achieve equality between two subgraphs in the store.
An example is sketched in Figure12.3. As far as spaces are concerned, unification adds
edges into the store and possibly wakes variables. For more details of unification in the
context of Oz, consider Mehl’s thesis [79].

12.4 Scheduler

The scheduler is the implementation’s main control instance. It maintains a pool of
runnable threads and provides fair execution control to the pool. It controls thread tran-
sitions: the scheduler creates, suspends, wakes, and terminates threads.

Thread Selection The scheduler maintains therunnable pool containing runnable
threads. When a new thread is created, it is added to the runnable pool. When a thread
is woken, it is also added to the runnable pool.

X Y

f/2 f/2

1

*⇒

X Y

f/2 f/2

1

*⇒

X Y

f/2 f/2

1

Figure 12.3: Unification example.
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Figure 12.4: Thread states and their transitions.

The scheduler selects threads fairly. This is typically achieved by maintaining the
runnable pool as a queue. The thread selected for execution is called thecurrent thread.

Thread State Figure12.4shows thread states and the transitions between them. The
scheduler controls execution of runnable threads. After selection of the current threadT ,
the scheduler applies the emulator toT . After execution ofT stops, the scheduler takes
the necessary actions depending onT ’s execution status:

Terminated The threadT has been completely executed and is discarded.

Preempted The threadT is still runnable but has used up its time slice. It is entered
into the runnable pool to be run again later. Preemption together with organizing
the runnable pool as a queue guarantees fairness of execution.

Suspended The topmost statementσ of T has blocked and cannot reduce. The state-
mentσ itself decides on which variables it synchronizes. The suspension setS(T )
is available from the emulator. The scheduler entersT to all variables inS(T ).

Runnable Threads Since a thread can suspend on more than a single variable, threads
contained in a variable’s suspension set can already be runnable. Therefore, a thread
carries a mark that identifies it as being runnable. A thread is entered into the runnable
pool only if it is not yet marked as runnable. As a corollary, a thread contained in a
suspension set of a variable can also be terminated. In the following, it is assumed that
the scheduler takes care of runnable and terminated threads during waking.
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13 Implementing Spaces

This chapter discusses the implementation of computation spaces. The implementation
of Oz Light is extended by nodes for spaces and situated entities, by a scheduler that
handles situated threads and tests stability, and by the space operations proper.

13.1 Overview

The central points in implementing first-class computation spaces are the following:

Space Tree (Section 13.2) The space tree is implemented by space reference nodes
which provide first-class access to space nodes. The implementation operates on
space nodes for all but first-class access. Situated nodes implement links to home
spaces as required for situated entities. Multiple stores are simulated by a single
store that provides the view to the constraints for a single space at a time.

Stability (Section 13.3) The implementation of stability comprises two parts. The first
part is concerned with the information required to detect stability and how the
information is maintained as computation proceeds. The second part is how and
when to actually test a space for stability.

Merge (Section 13.4) Merging is an involved transformation of the space tree, since it
simultaneously changes the home of a large number and variety of data structures.
In particular, merging must consistently maintain stability information.

Search (Section 13.5) The implementation of search is concerned with distributors and
cloning. While cloning resembles many aspects of copy-based garbage collection,
it also features unique aspects.

Richer Basic Constraints (Section 13.6) Stores are generalized to cover aliasing of
variables, tree constraints, and finite-domain constraints.

Ports (Section 13.7) Message-sending across space boundaries and in particular send-
ability is discussed.

Performance Overview (Section 13.8) The last section gives an overview of the per-
formance of space operations.
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13.2 Space Tree

This section is concerned with data structures for spaces and extensions needed for mul-
tiple stores and situated computations.

13.2.1 Nodes and Links

The model for first-class computation spaces (Chapters4 and10) separates the first-class
reference to a space (a name) from the space proper. The implementation follows this
setup. First-class references are implemented byspace reference nodes. Spaces proper
are implemented byspace nodes.

Space Reference Nodes Space reference nodes introduce a new type of node to the
store. A space reference features a link that points to a space node. The only purpose of
a space reference is to provide first-class reference to space nodes.

Space Nodes A space node is implemented by a data structure that organizes the space
nodes as a tree (“parent link”). The implementation of spaces is mostly concerned with
space nodes. This justifies that space abbreviates space node in the following. In addition
to the parent link, a space node has links to all components of a space: root variable,
status variable, and so on.

Current Space Node The implementation maintains thecurrent space (node). The
current space node is set by the scheduler: when a threadT is selected as current thread,
the current space is set toH(T ). Making a spaceS currentinstalls the space, which in
particular involves the installation of the store ofS (to be discussed later).

Situated Nodes Threads, variables, procedures, and ports are situated in their home
space. This is implemented by a link pointing to the appropriate space node (“home
link”). Upon creation, the home link is initialized to point to the current space node.

Failed Nodes A failed space node carries a mark that identifies it as failed.

Discarded Nodes A spaceS1 is discardedimplicitly, if a spaceS2 ∈ ↑S1 fails, since
S2 has no access toS1. Hence, discarded nodes require an explicit test. The test traverses
the space tree by following parent links fromS1 until a failed node or the toplevel node
is encountered. In case a failed node is encountered,S1 is discarded.
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Figure 13.1: Thread states and their transitions including failure.

Safe and Unsafe Links Due to different directions of links with respect to the space
tree, links can be either safe or unsafe.

Upward Links Home links and parent links pointupwards and aresafe. While com-
putation proceeds in the current space, upward links are guaranteed to refer to
non-failed spaces.

Downward Links Links to threads and to spaces as implemented by space references
point downwards and areunsafe. Links to threads are stored in suspension sets of
variables and in the scheduler’s runnable pool. Downward links can point to failed
or discarded spaces. An attempt to follow an unsafe link must always be preceded
by a test whether the referred space is failed or discarded.

Garbage Collection An obvious advantage of separating space references from space
nodes is a factorization of concerns. An additional advantage is that the potential for
memory reclamation during garbage collection is increased. Failed space nodes (as well
as merged space nodes) are not retained during garbage collection. If the space reference
remains accessible, it is marked appropriately such that space operations can test whether
the operation is applied to a failed or merged space. This is sufficient, since no operation
needs access to failed and merged space nodes.

13.2.2 Threads

Failure introduces new states and new state transitions for threads (Figure13.1). When a
spaceS is failed, all threads in⇓S are discarded. Both runnable and suspended threads
can be discarded. Discarding is implicit as opposed to the other state transitions that are
performed by the scheduler. An additional transition is that suspended threads can be
created (discussed later).

Waking Threads Waking takes into account that threads are situated and can be pos-
sibly discarded. Execution of a tell statementx = n in spaceS wakes only threadsT
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with H(T ) ∈ ⇓S. The test whetherH(T ) ∈ ⇓S traverses the space tree starting from
H(T ) until eitherS or the toplevel is encountered. IfS is encountered,H(T ) ∈ ⇓S and
T is woken. Additionally, the test reveals whetherT is discarded, in which caseT is
dropped fromx ’s suspension set.

The Scheduler The scheduler as main control instance of the implementation is en-
hanced in order to support computation spaces. It maintains the current space, which
refers to the home space of the current thread. The scheduler works as follows:

1. Select a runnable threadT from the runnable pool.

2. If T is discarded, continue with1.

3. Install H(T ). If installation fails, continue with1. Otherwise,T becomes the
current thread andH(T ) becomes the current space.

4. RunT .

5. TestH(T ) for stability (Section13.3).

6. Continue with1.

The test whetherT is discarded is necessary. The test during waking is not sufficient,
sinceT might have been discarded after waking.

13.2.3 The Store: Model

The model introduced in Chapter10 defines that each space has a private constraint
store. The private store is inherited from the parent upon space creation and a tell in
S is repeated in all spaces in↓S. The implementation improves over the naive model
in that it maintains a single store shared among all spaces. The single store facilitates
sharing of common constraints, avoids repeated tells, and conservatively extends the
store implementation of Oz Light.

The implementation of the single store is introduced in two steps. Firstly, an abstract
model of a single store together with the invariants that make it faithful with respect to
the naive model is introduced. Secondly, a concrete implementation based on the abstract
model known as scripting is described.

In the sequel, a simplified version of the store is described that contains only basic
constraintsx = n. Extensions are considered in Section13.6.
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Figure 13.2: Example space tree and corresponding full graph.

The Full Graph The store is modeled by a single graph, referred to as thefull graph.
Edges in the full graph point from a variable nodex to a value noden and are labelled

by a spaceS. An edge in the full graph is referred to byx
S→ n. The key point is that a

variable node can have multiple outgoing edges labelled by different spaces. An example
space tree together with its corresponding full graph is shown in Figure13.2(the home
of bothx andy is S0).

The full graph maintains the following invariants:

Situatedness
x

S→ n *⇒ H(x) ≤ S

This is obvious: a variablex is only visible in spaces⇓H(x).

Orthogonality

x
S→ n and x

S′→ n′ *⇒ S �< S′ and S′ �< S

This invariant guarantees both consistency and minimality.

Consistency If x
S→ n, then for allS′ ∈ ↓S there is nox

S′→ n′ with n �= n′.

Minimality If x
S→ n, then for allS′ ∈ ↓S there is nox

S′→ n.

If x
S→ n andH(x) = S, both invariants together guarantee that there is no other

link for x . This in particular entails that a linkx
S→ n for the toplevel spaceS is the only

link for n.
The single operation on the graph is an attempt to tellx = n in a spaceS. A failed tell

attempt failsS and removes all edgesx ′ S′→ n′ for all x ′, n′, and allS′ ∈ ⇓S. Execution
of the tell covers the following cases:

Equal Below x
S′→ n andS < S′: Removex

S′→ n′ and insertx
S→ n (minimality).

Different Below x
S′→ n′, S < S′, andn �= n′: Fail S′ and insertx

S→ n (consistency).
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(a) Tell y = 2 in S2.
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(b) Tell x = 1 in S0.

Figure 13.3: Results of tells in Example13.1.

Equal Above x
S′→ n andS′ ≤ S: Do nothing (minimality).

Different Above x
S′→ n′, S′ ≤ S, andn �= n′: Fail S (consistency).

New Otherwise, insertx
S→ n.

Example 13.1 (Operations on the Full Graph) Consider the following tell attempts to
the full graph shown in Figure13.2.

■ Tell y = 2 in S2: “New” applies (Figure13.3(a)).

■ Tell x = 1 in S0: “Equal Below” for S1 and “Different Below” for S2 applies
(Figure13.3(b)).

■ Tell y = 1 in S1: “Equal Above” applies (space tree and full graph remain un-
changed).

13.2.4 The Store: Implementation

Scripting realizes a subgraph of the full graph that corresponds to the current spaceS and
supports switching to a different spaceS ′. The subgraph contains all links for spaces in
⇑S. If S is current, all spaces in⇑S are said to beinstalled. The subgraph is referred to as
installed graph. Due to the orthogonality invariant, the installed graph has the property

126



that a variable node can have at most one outgoing edge. This allows to conservatively
extend the implementation of Oz Light to handle multiple bindings in different spaces.

When switching the current space fromS1 to S2, constraints (links) forS1 must be
deinstalled while the constraints (links) forS2 must be installed. Each space maintains a
trail and ascript, which are as follows.

■ If S is installed, the script is empty. Otherwise, the script records all linksx
S→ n

with H(x) < S.

■ If S is installed, the trail records all variablesx with x
S→ n andH(x) < S.

Otherwise, the trail is empty.

Both script and trail care about speculative constraints only, that is about linksx
S→ n

with H(x) < S. Suppose thatS′ is the current space andH(x) = S. Either the link is
installed anyway (S′ ∈ ⇑S), or it cannot be observed (S′ �∈ ⇑S). As a consequence, both
trail and script for the toplevel space are empty.

Supervisor Threads Space switching is thread-driven. When the scheduler picks a
threadT for execution,H(T ) is made current by installation. This means that installa-
tion of a spaceS can be requested by creating a thread inS.

The implementation of scripting requires that the constraints contained in scripts are
supervised bysupervisor threads. Therefore the implementation maintains the following
invariant. If the script ofS is not empty, thenS is either runnable or for each variablex
in the script, there exists a supervisor threadT with H(T ) = S that suspends onx .

Supervisor threads are very attractive for detecting stability in Section13.3. This
is due to the fact that if a non-installed space has speculative constraints, it also has a
speculative thread. Hence, considering threads for stability is sufficient.

Single Supervisor Thread At most one supervisor thread for all variables in the trail
is sufficient. Mehl [79] observes, that ifS is runnable, no supervisor thread needs to be
created, sinceS is installed eventually. This can be even further optimized. In case there
is already a thread inS that synchronizes onx , no supervisor thread forx is needed.

Variable Binding Binding a variable nodex in S checks whether the binding is specu-
lative (H(x) �= S). If the binding is speculative,x is recorded on the trail before turning
it into a reference node.

Binding a variable covers all cases as for telling to the full graph. “Equal Above”,
“Different Above”, and “New” are as in Oz Light, since they deal with links that are
currently installed. “Equal Below” and “Different Below” are handled by supervisor
threads. If the variable nodex is bound in spaceS and there is a constraint forx in the
script of spaceS′ ∈ ↓S, then there exists a supervisor threadT that suspends onx with
H(T ) = S′. When bindingx in S, T is woken and eventuallyS becomes installed.
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Script Deinstallation A new supervisor threadT is created. For each variable nodex
stored inS’s trail the pair〈x, n〉 is put in the script ofS. Heren is the value to whichx
is constrained. Simultaneously, the variable node forx is reestablished andT is added
to x ’s suspension set. After deinstallation the parent ofS is installed.

Script Installation A space is installed by tellingx = n for all script entries〈x, n〉.
As a consequence, installation can fail due to a failed tell attempt. If installation has
been requested by a supervisor thread, cases “Equal Below” and “Different Below” are
handled by installation.

No threads need to be woken during installation. If the script ofS contains〈x, n〉,
the constraintx = n has been available whenS has previously been installed. Hence, a
thread that suspends onx must have been woken whileS has been installed. The situation
is slightly different for supervisor threads since they are created during deinstallation.
But their very purpose is that they are woken by tells in superordinated spaces only.

Space Switching Switching between arbitrary spacesS1 and S2 iterates single step
installation and deinstallation. All spaces up to the toplevel space are deinstalled and all
spaces from the toplevel space toS2 are installed. This can be optimized by deinstalling
only up to the closest common ancestor space ofS1 andS2.

Example 13.2 (Scripting) Let us consider as an example for scripting the situation as
displayed in Figure13.2. The corresponding store and space tree withS0 as current space
is shown in Figure13.4(a). Installed space nodes have a gray background. Space nodes
which are not installed are displayed with their script as content. The nodes for the store
are as introduced in Section12.3. The threadsTi are the supervisor threads forSi .

Telling x = 1 in S0 executes as follows (shown in Figures13.4(b)to 13.4(e)):

■ The tell bindsx and wakes the threadsT1 andT2.

■ RunningT2 fails S2.

■ RunningT1 installsS1. The binding ofy is recorded on the trail ofS1.

■ Deinstallation ofS1 creates a script entry〈y, 1〉 and a new supervisor threadT3.

Single Trail Each space has a private trail. This can be optimized by using a single
trail common to all spaces. The single trail has multiple sections separated by marks.
Each section corresponds to an installed space. The topmost section corresponds to the
current space. Entries are made only for the current space, that is, to the topmost section.

Tells in Arbitrary Spaces Later the need arises to perform tellsx = v in a spaceS
different from the current space (merging is a particular example, Section13.4). This
can be accommodated by creating a thread inS with x = v as its single statement.
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(a) Situation corresponding to Figure13.2with S0 current.
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(b) After telling x = 1.
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(c) After unsuccessful installation attempt ofS2.
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(d) After installation ofS1.
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(e) After deinstallation ofS1.

Figure 13.4: Computation states for Example13.2.
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Related Work Supporting multiple variable bindings simultaneously depending on
the computational context occurred first in the area of Or-parallel Prolog implementa-
tions [21]. Gupta and Jayaraman classify in [41] approaches according to the cost of
three essential operations: creation (space creation, here), switching (space switching,
here), and binding-lookup. It is argued that at most two operations can be implemented
in constant time. A detailed analysis of this problem can be found in [115]. Scripting
decides to make creation and lookup constant time.

Scripting has the following advantages. It is a conservative technique that allows to
stick to a single outgoing link per variable. Computations in a space do not pay any
overhead for looking up bindings. Enforcing consistency and minimality comes for free
by using threads. Additionally, supervisor threads are convenient for detecting stability.

The main disadvantage of scripting is that it is an inherently sequential technique
because it only supports the view for a single space at a time. The Penny system, a
parallel implementation of AKL, uses a different solution that provides multiple views
at a time [93, 92]. Each variable maintains a list of speculative bindings indexed by
the space for which the binding is valid. Montelius shows in [92] that this solution is
efficient, since speculative bindings are infrequent.

Podelski and Smolka study situated simplification in [105] as a technique for detect-
ing entailment and failure of rational tree constraints used in local computation spaces.
In particular, the presented techniques are proven correct. Smolka and Treinen discuss
scripting for testing entailment of record constraints [140]. Scripting is not fully incre-
mental in that script installation and deinstallation redo work. Podelski and Van Roy
present a truly incremental algorithm in [106].

13.3 Stability

The implementation of stability deals with two aspects: maintaining information on
runnable and suspended threads, and testing stability based on that information. To
decide whether a spaceS is stable, it is necessary to know whether⇓S contains runnable
threads or globally suspended threads. To decide whether a stable spaceS is stuck, it
is necessary to know whetherS contains locally suspended threads. Semi-stability and
distributable threads are discussed in Section13.5.1.

13.3.1 Runnable Threads

Each spaceS maintains arunnable counter #rS. The runnable counter #rS is zero, if
and only if⇓S contains no runnable thread. Rather than counting all threads in⇓S,
the implementation employs acascaded scheme as follows: #r S counts the number of
runnable threads inS plus the number of runnable children ofS.

The runnable counter is incremented when a runnable thread is created and when a
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Figure 13.5: Example for managing runnable counters.

suspended thread is woken. Incrementing #rS is done as follows: #rS is incremented
by one and if #rS has been zero before, incrementing continues with the parent ofS.
Incrementing possibly continues until the toplevel space is reached.

The runnable counter is decremented when a thread terminates or suspends. Decre-
menting is dual to incrementing: if, after decrementing, the value of #r S is zero, decre-
menting continues with the parent ofS.

If a spaceS becomes failed, all runnable threads in⇓S are discarded simultaneously
by decrementing the runnable counter ofS’s parent. Runnable threads that now have
become discarded are still in the runnable pool but the scheduler can safely ignore them.

Example 13.3 (Managing Runnable Counters) Suppose a space tree as sketched to
the left of Figure13.5. Creation and termination of threadsT1 andT2 with H(Ti ) = Si

results in values for the runnable counters as shown in the subsequent space trees.

A different and naive design would be to maintain the number of runnable threads
in ⇓S for each spaceS. The disadvantage compared to the cascaded counting scheme
is obvious: if a thread inS becomes runnable (suspended), the numbers in all spaces
in ⇑S must be incremented (decremented). The cascaded scheme stops incrementing
(decrementing) as soon as the first runnable space is encountered while traversing⇑S
upwards. This in particular entails that creating and waking a threadT whereH(T ) is
already runnable does not require any traversal of the space tree.

An additional advantage of the cascaded scheme is that it supports failure well. All
runnable threads in a subtree can be discarded without requiring explicit access to its
threads. This in particular allows to consider discarded threads in the runnable pool
as garbage during garbage collection. Garbage collection of discarded threads together
with the non-cascaded counting scheme has been a constant source of problems in early
implementations of Oz.

13.3.2 Globally Suspended Threads

A blocked spaceS is stable, if the spaces in⇓S do not contain threads which globally
suspend for spaces in↑S (speculative constraints are discussed later). Each spaceS
maintains the threads in⇓S that globally suspend for a space in↑S. Unfortunately, a
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number similar to the runnable counter is not sufficient. This is due to the fact that if a
thread globally suspends forS, it does not necessarily globally suspend for spaces in↑S.

Hence, the implementation maintains aglobal suspension set for each spaceS that
contains threads that globally suspend for spaces in↑S. As with suspension sets of vari-
ables, the implementation allows inclusion of already discarded threads. When testing
whether a space has globally suspended threads, discarded threads are removed.

When a threadT globally suspends forS, the thread is inserted into the global sus-
pension sets of all spaces in⇑H(T )−↑S. Insertion is performed by traversing the space
tree starting fromH(T ) up toS.

Waking a threadT removes it from all global suspension sets in⇑H(T ). This is
optimized by marking globally suspended threads upon suspension. Only if a thread
carries a global suspension mark, removal from global suspension sets is considered.

13.3.3 Speculative Constraints

An important insight is that testing for speculative constraints comes for free. This is
a consequence of supervisor threads: ifS2 contains a speculative constraint forS1, it is
guaranteed that there is a supervisor thread situated inS2 that globally suspends forS1.

Only testing stability of installed spaces (in particular for the current space) needs
special attention. Here the supervisor thread has not yet been created. But the needed
information is already available: a space has speculative constraints if its trail is not
empty.

13.3.4 Local Threads

A stable spaceS is stuck, if it contains threads. The number of threads situated inS
is maintained for each spaceS. The number is incremented upon thread creation and
decremented upon thread termination.

13.3.5 Checking Stability

When a spaceS becomes stable, the scheduler makes the stability information available
by telling the status toS’s status variable. The information is told as soon as a space
becomes blocked (AskVerbose in Section10.4.3). Hence, the scheduler is concerned
with suspended and stable spaces.

The stability test is performed directly after updating the stability information:

1. If the current spaceSC is runnable, continue with the next thread.

2. DeinstallSC (which is blocked) and make its parent current.
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3. Tell SC ’s status to the status variable ofSC . Tells toSC ’s status variable are possi-
ble, since the current space (SC ’s parent) is the home ofSC ’s status variable.

4. Check spaces in⇑SC by traversing the space tree starting from the current space
upwards, until the first blocked spaceSb is encountered. Inject a new threadT
runningskip into Sb: eventuallySb is checked on behalf ofT .

Bottom-up Checking and Admissibility are Essential Stability checking is per-
formed bottom-up. This is necessary due to tells on status variables. A tell on the status
variable forS possibly wakes threads inA(S) (the set of admissible spaces with respect
to S is introduced in Section10.3.2). Hence spaces inA(S) can become runnable. Pro-
ceeding bottom-up together with admissibility guarantees that checkingS cannot make
S runnable by waking threads in↓S.

Stability Checking is Complete If S becomes stable,S is eventually checked for sta-
bility. This is obviously the case for blocked spaces: the thread ofS that terminates last,
lets the scheduler checkS. Suppose thatS is globally suspended andS’s global suspen-
sion set containsT . Let us first consider the caseH(T ) = S. ThenS can become stable
only if T becomes runnable first (failure is trivial). Then,S is installed and thus checked
for stability. If S < H(T ), the threadT is contained inH(T )’s global suspension set.
This means thatS is eventually checked on behalf of a thread injected toS.

13.4 Merge

The implementation of space creation and injection is straightforward given the material
presented in the previous sections. In contrast, merging performs a possibly involved
transformation of the space tree.

When a spaceS1 is merged to a spaceS2, S1 is called thesource andS2 thedestination
of the merge operation. The destination of a merge operation is always the current space.

Making Space Nodes Transparent All entities situated in the sourceS1 must become
situated in the destinationS2. All entities situated inS1 carry a link toS1. The implemen-
tation uses the same technique as for binding variables:S1 is marked as merged, and a
reference toS2 is stored inS1. Subsequent accesses consider a merged space transparent
and follow the reference until an unmarked space is encountered (“dereferencing”). Also
the access to a space’s parent uses dereferencing.

Testing Admissibility The sourceS1 must be admissible for the current spaceS2. Ad-
missibility (S1 �∈ ⇑S2) is checked by traversing⇑S2. If, while traversing,S1 is encoun-
tered,S1 is not admissible. If the toplevel space is reached,S1 is admissible.
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Figure 13.6: Space trees for downward and upward merge.

Speculative Constraints The speculative constraints of the sourceS1 are made avail-
able toS2 by installing the script ofS1. Since script installation possibly tells constraints
new toS1, threads are woken. Note that script installation can failS2.

Runnable Threads To better understand how the runnable counter of the destination
S2 is updated, upward and downward merges are discussed separately (Figure13.6).

For anupward merge (Figure13.6(a)), the destinationS2 is the parent of the source
S1. Suppose thatS1 is runnable and hasn runnable child spaces and threads.S2 looses
the runnable childS1. Hence, its runnable counter is decremented by one. On the other
hand, its runnable counter is incremented byn, since it acquiresn runnable threads and
spaces. The runnable counters in↑S2 remain unchanged, sinceS2 remains runnable (the
current thread executes the merge inS2). In caseS1 is blocked, nothing is done.

For adownward merge (Figure13.6(b)), the source’s parentS is an element of↑S2.
Again, if S1 is blocked, nothing is done. Suppose thatS1 is runnable. ThenS looses
a runnable child, hence its runnable counter is decremented by one. And again, the
runnable counter ofS1 is incremented by the value ofS2’s runnable counter. Upward
and downward merge have the same effect, the distinction is to ease explanation.

Upward merges are common: merging a solution space computed by a search engine
is upward. Example10.3discusses the use of downward merges for partial evaluation.

Globally Suspended Threads Let us first consider an upward merge. If a threadT
in S2 is globally suspended for a space in⇑S1, T is already contained in the global
suspension sets of⇑S1.

A downward merge is more involved. Consider a globally suspended threadT in
S2. The threadT is at least globally suspended forS (the parent ofS2). Hence, after
merging,T becomes globally suspended forS ′ with S ≤ S′ ≤ S1. ThusT is entered
into the global suspension sets of all spacesS ′.

Installation of S2’s script during merging possibly changes the global suspension
set of S2. However, the order of script installation and global suspension set update is
insignificant. If a threadT is woken by script installation, it will be removed from all
global suspension sets anyway.
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Local Threads The number of local threads ofS2 is incremented by the number of
local threads ofS1.

The Operation The merge operation{Merge x y} is as follows:

1. Test whetherx is determined to a space reference. If not, suspend onx or raise an
exception.

2. Access the space nodeS1 from the space reference node.

3. Raise an exception, ifS1 is merged or not admissible.

4. Raise an exception, if bothS1 andS2 are distributable.

5. Fail the current space, ifS1 is failed.

6. Merge the space nodeS1 with the current space nodeS2:

(a) Draw a link fromS1 to S2.

(b) Install the script ofS1 and possibly markS2 as failed.

(c) Incorporate stability information ofS1.

7. Mark S1 as merged.

8. Tell thatS1 is merged (inject a thread, if merge is downward).

9. Constrain the root variable ofS1 to y.

13.5 Search

13.5.1 Choose and Commit

The implementation provides more general support for distributors than actually required
byChoose. Choose itself is obtained from this more general support. This more general
support allows distributors to be written in C++. For example, the Mozart implementation
of Oz implements standard distribution for finite domain variables in C++.

A distributable space node contains a reference to a distributor. A distributor provides
support for creation, it can be queried for its numbers of alternatives, and it provides
functionality to commit to an alternative.

Distributor Creation When a new distributor is created, it is passed a newly created
variablex serving as synchronization variable. The thread that has created the distributor
immediately suspends onx . A reference tox and the number of alternatives is stored by
the distributor. If the space is already distributable, an exception is raised.
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Semi-stability The stability test checks whether a stable space is distributable. If the
space is not distributable, execution proceeds as before. If the space has a unary dis-
tributor D, the synchronization variable ofD is determined and execution of the sus-
pending thread can proceed. Otherwise, the status variable is determined to the tuple
alternatives(n), wheren is the number of alternatives.

Commit Invocation of the commit operation, as provided by the distributorD returns
the numberk of alternativesD has after performing the commit. Ifk is zero or one,D is
discarded. Ifk is one,D has at least determined the synchronization variable. In general,
D has performed a tell to the constraint store or has created a new thread. Additionally,
a fresh status variable is created that is bound toalternatives(k).

13.5.2 Cloning Spaces

Cloning makes a copy of a spaceS. All objects that are reachable fromS are copied by
graph copying that preserves sharing. Recursively copying a graph of objects is well-
known from copying garbage collectors (for example [158, 63]). The following aspects
need to be taken into account for cloning spaces.

Stability is Essential Copying assumes that no links point into the spaceS to be
copied. If there are links, these links must be copied as well. This would imply a
traversal ofall data structures rather than only those reachable fromS. Stability ensures
that there are no links that point intoS. The only links that can point downward (Sec-
tion 13.2.1) are links to runnable or globally suspended threads. A stable space does
neither contain runnable nor globally suspended threads.

Retaining the Original During garbage collection, the original is discarded. Graph
copying changes the original objects by marking and storing forward pointers. Thus the
original space must be restored after copying. The implementation uses a trail for the
information needed to reestablish the original.

Taking Situatedness Into Account A stable spaceS typically contains references to
entities that are situated in↑S. Entities situated in↑S must not be copied. Suppose that
S1 is copied and that the home of the entity isS2. The tree of computation spaces is
traversed upwards starting fromS2. If during traversalS1 is encountered, it holds that
S2 ∈ ⇓S1 and the entity is copied.

This solution is inefficient in that the space tree is traversed for each situated entity. A
first improvement is that threads need no situatedness-check. This is due to the invariant
that all references to threads are downward with respect to the tree.

The remaining situatedness checks can be optimized easily. Before copying ofS
starts, all spaces in↑S are marked. If during copying a situated entity with homeS ′ is
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encountered, the check is performed by testing whetherS ′ is marked. A further opti-
mization is to avoid dereferencing, which is required for accessing the home space (this
is due to merging, Section13.4). Dereferencing can be avoided by markingall spaces
including merged spaces that otherwise are considered transparent during dereferencing.

Example 13.4 (Taking Advantage of Situated Entities) Entities situated in↑S are not
copied when cloningS and hence require no memory. This can be utilized by explicitly
situating data structures by wrapping them using procedural abstraction. For example,

S={NewSpace proc {$ X} Y in {Wait Y} X=Data end}

whenS is cloned,Data (potentially large) is cloned. This is avoided by
fun {GetData} Data end
S={NewSpace proc {$ X} Y in {Wait Y} X={GetData} end}

When cloningS, Data is not cloned.

Janson describes in [60] how to situate tree constraints. Each node has a reference
to the creating space and unification updates the reference accordingly. The technique
always incurs memory overhead for all data structures. Its applicability is definitely
limited. Typically, data is either used as input to the computations in a space, or data is
subject to local computations anyway and the optimization cannot offer any advantage.
If the data is used as input, it can be situated if necessary by procedural abstraction.

Implementation Effort The close relationship to garbage collection keeps the imple-
mentation effort for cloning small. The Mozart implementation, for example, uses the
same templates for garbage collection and for cloning. The templates are specialized
during compile-time for garbage collection and cloning.

13.6 Richer Basic Constraints

This section is concerned with extensions required by richer basic constraints.

13.6.1 Variable Aliasing

For a store with equations between variables, the implementation is extended as follows.

Aliasing Order Telling a speculative constraintx1 = x2 where Si = H(xi ) and
S2 ≤ S1 requires that the binding is established fromx1 to x2 (“binding is upward”).
If S1 is the current space, this condition (“bind local to global variable”) is essential
for entailment, since it ensures the minimality invariant introduced in Section13.2.3.
Smolka and Treinen discuss in [140] that this criteria is sufficient for entailment.

The “binding is upward” condition is needed for stability depending on globally sus-
pended threads. If a threadT suspends onx1 or x2, T becomes speculative for bothS1
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Figure 13.7: Oscillating threads (Example13.5).

andS2. If the link had been established fromx2 to x1, the scheduler would enterT to the
global suspension set ofS1 but not to the global suspension set ofS2. HenceS2 might be
detected as stable, even thoughT is speculative forS2.

Supervisor Threads Script creation forS takes into account that variable pairs〈x1, x2〉
can be put into the script. In this case,H(x1) ∈ ↑S andH(x2) ∈ ↑S (otherwise,x1 = x2

is not speculative). Hence, the supervisor thread suspends on bothx1 andx2.

Script Installation No threads are woken during script installation. If the script con-
tains a variable pair〈x1, x2〉, all threads that suspend onx1 or x2 have already been
woken when the binding has been established for the first time.

Example 13.5 (Oscillating Threads) This example demonstrates why it is essential to
not wake threads during script installation. Consider a spaceS0 with childrenS1 andS2

(Figure13.7). EachSi (i ∈ {1, 2}) contains a speculative bindingx = yi together with
threadsTi1 andTi2 that are runnable but when being run will immediately suspend onx .
Further suppose that the scheduler executes the threads in orderT11, T21, T12, T22.

When T11 is executed,S1 is installed. As said above,T11 suspends. NowT21 is
executed,S2 is installed, andT21 immediately suspends. And now the disaster takes
place:T12 is run. By installingS1, the speculative binding is installed which wakesT11.
The same happens with execution ofT22: by installingS2, T21 is woken again. Now both
T11 andT21 are runnable again. Their execution will in turn makeT12 andT22 runnable
. . .: S1 andS2 never become blocked and thusS is never detected as being stable.

13.6.2 Tree Constraints

Telling a tree constraint can introduce new variable bindings. This is taken into account
during script installation. Suppose thatS contains the speculative constraintx = f (y)
and in a space in↑S the constraintx = f (n) is told. When installing the script forS,
the tell y = n is performed. Threads that suspend ony are woken, sincey = n is new.
If during script installation new variable bindings are possible, threads are woken.

Note that a situation as in Example13.5cannot happen. Only pairs〈x, v〉 are entered
into the script: provided that no new tree constraints are told onx , the next installation
of the script does not wake any threads.
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13.6.3 Finite Domain Constraints

The domain of a finite domain variable can be repeatedly narrowed. This also holds
true for finite set variables and feature constraints. Variables that can be repeatedly
constrained are referred to asconstraint-variables.

Constraint Trailing So far it was sufficient to record the variable being constrained
on the trail. For a constraint-variable also the current constraint (for example, the current
domain of a finite domain variable) is stored. Undoing the speculative constraint on a
constraint-variable reestablishes the constraint from the trail.

Dually, the constraint on a variablex is stored in the script for a spaceS. This
requires no extension of the script data structure. Assume thatx ∈ D. A pair 〈x, y〉 is
put into the script, wherey is a new constraint-variable withH(y) = S andy ∈ D.

Time-marking Multiply constraining the same constraint-variable also means to mul-
tiply trail the constraint-variable and its associated constraint as described above. This is
not necessary, only the initial constraint must be reestablished.

A common technique to avoid multiple entries on the trail for the same variable is
time-stamping, which has been first considered in CHIP [1, 2]. The idea is as follows:
each time a new speculative context is entered (in this context, a space is installed) a
global time-stamp is incremented. When a variable is constrained, the variable is marked
with the global time-stamp. The variable must only be trailed, if its time-stamp is less
than the global time-stamp.

Time-marking is used as a different implementation that requires less memory at a
slight expense in runtime for space installation. When a variable is constrained for the
first time in the current space, it is marked (just a single bit). If a variable carries a mark,
it needs no trailing. When the current spaceS is deinstalled, the marks of all variables are
reset (the marked variables are found in the trail). For the new current space (S’s parent)
the trail is scanned and all variables on the trail are re-marked. The same technique is
used in script installation.

Time-marking is used since speculative constraints on constraint-variables are infre-
quent. This is different from the motivation for time-stamping, where the trail stores in-
formation needed for trailing-based search (Section14.2discusses trailing-based search
and its comparison to copying).

Variable Aliasing Variable aliasing must respect situatedness (Section13.6.1). This
also holds true for constraint-variables. In particular, the case can arise where a
constraint-variable must be bound to a non-constrained variable. When considering sta-
bility, the technique described by Van Roy, Mehl, and Scheidhauer in [152] to first create
a local constraint-variable to which both global variables are bound is incorrect. W¨urtz
considers stability and wrongly proposes this technique for finite domain variables [160].
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13.7 Ports

The main issue with message sending to ports across space boundaries is testing send-
ability. Consider a send operation{Send x y}, wherex is determined to a port with
homeS1 and S2 is the current space. IfS1 = S2, no checking is required. Otherwise
the constraints ony are checked by constraint graph traversal similar to the graph traver-
sal for cloning. All situated nodesv encountered during traversal are checked whether
H(v) ≤ S1, where the same optimized situatedness test as in cloning is used.

13.8 Performance Overview

This section gives an overview of the performance of operations on spaces. An empirical
comparison with other constraint programming systems is contained in Section14.3.
AppendixA.2 provides more information on the used software and hardware platform.

Oz Light Operations Figure13.8(a)shows the performance of the central operations
of Oz Light. These figures serve as comparison to the performance of space operations.

Space Operations Figure13.8(b)shows the performance of space operations. The
script for “Space creation” and “Inject” containsskip as its body. The space used for
“Clone” contains its root variable. “Distributor commit” captures creation of a binary
distributor and committing to one of its alternatives. “Alternative reduction” reduces a
ternary to a binary distributor (Section4.5.6).

Reducing alternatives of distributors is efficient. This justifies the usage of bina-
rization as discussed in Section5.3. Message sending for a typical message (a tuple
containing a port, an atom, and a list with two integers) is one order of magnitude slower
with testing sendability.

Cloning Spaces The time needed to clone a space depends on the number of variables,
constraints, threads, and propagators situated in the space. Figure13.8(c)shows the
number of spaces that can be cloned per second depending on the space’s content. The
spaces used are as follows: “n Constraints” containn domain constraints for the domain
{1, . . . , 100}, “n Propagators” containn binary propagators forx �= y, and “n Threads”
containn threads that synchronize on a single variable.

The numbers show that cloning is linear in the number of basic constraints, propaga-
tors, and threads. Cloning gets more efficient as the spaces contain more content. This
is due to the fact that the overhead for cloning the data structures representing the space
itself remains constant regardless of its content.
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Figure 13.8: Base performance of operations (in thousand operations per second).
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Figure 13.9: Base performance of search engines (in thousand nodes per second).
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Search Engines The numbers in Figure13.9 give the performance of basic search
engines in thousand nodes explored per second. All engines explore a complete binary
search tree with 216−1 nodes. For “BAB (failed)” all leaves of the search tree are failed,
whereas for “BAB (solutions)” all leaves are solutions. While the former gives an upper
bound on the performance, the latter is a lower bound.

“Explorer (Hidden)” gives the performance of the Explorer (Chapter8) for exploring
the search tree, “Explorer (Full)” includes drawing of the entire search tree, without
hiding any part of it.

The numbers yield important information on the minimal size of a search problem
that can be tackled efficiently using space-based search engines. Due to the little over-
head of search engine, they are efficient enough to be employed for even small problems.

142



14 Other Approaches to Search

This chapter compares space-based search with approaches to search found in other con-
straint programming systems. A general discussion is followed by a detailed comparison
of copying with trailing as the dominating implementation technique for search. Empir-
ical evaluation demonstrates that copying-based search together with recomputation is
competitive with trailing-based search and is superior for large examples.

14.1 Other Constraint Programming Systems

Most of todays constraint programming systems are constraint logic programming
systems (CLP) that evolved from Prolog and inherited Prolog’s search capabilities:
CHIP [33, 2], Eclipse [154], clp(FD) [25] and its successor GNU Prolog [31], and SIC-
Stus [17], just to name a few. Also cc(FD) [148] shares the approach to search taken by
CLP-based systems. Jaffar and Maher provide an overview on CLP in [59].

Screamer [134] is based on Common Lisp and supports finite domain constraints and
backtracking search similar to Prolog. Claire [20] is a programming language for set-
based and rule-based programming. Search is supported by a versioning mechanism that
allows backtracking search. SALSA [75] is a language for the specification of search
algorithms that cover distribution strategies for tree search as well as neighborhood-
based search (local search). SALSA requires a host language that supports search (for
example, Claire) as compilation target. ALMA-O [4] extends Modula-2 by constructs
for the creation of choice points which are resolved by backtracking-based search.

ILOG Solver [113, 114, 103, 57] is a constraint programming library that uses C++

as its host language. Solver provides finite domain constraints, finite set constraints, and
constraints over real numbers. OPL [145, 147] is a constraint modeling language that
uses Solver as its underlying execution platform.

All systems mentioned so far have in common that their implementations are based
on trailing rather than on copying. The next section compares copying and trailing.

Close relatives to computation spaces are AKL and Curry. AKL [46, 60] has pio-
neered encapsulated search and stability. An extension of AKL with finite domain con-
straints is described in [14]. Curry [42] is a functional logic language that also provides
encapsulated search [43]. Encapsulated search in Curry has adopted a variant of the solve
combinator [131, 132] (Section4.7 discusses the solve combinator and its limitations).
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The combinator in Curry offers distributors with a dynamic number of alternatives which
has not been possible with the originally proposed solve combinator.

Predefined Search Strategies All CLP-based languages support single- and all-
solution search. Best-solution search is controlled by a single cost variable and amounts
to search for a solution with smallest or largest cost. CLP-based systems offer an in-
teractive toplevel that allows the user to prompt for multiple solutions. The interactive
toplevel cannot be used within programs. Eclipse provides visual search through the
Grace tool [82] (the Grace tool is discussed in Section8.6).

Solver (and hence OPL) additionally offers LDS [50], DDS [156], and IDFS [83]
(Section5.6). Best-solution search in Solver also uses a cost variable. To avoid recom-
putation of the best solution, the program must be modified to explicitly store solutions.
Search in Solver is incremental in that solutions can be computed on request.

Best-solution search based on a cost-variable requires to map the ordering between
solutions as possible with spaces to a single value. This can result in complicated so-
lutions that might compromise propagation (think of mapping two variables to a single
cost variable to express a lexicographic order).

Programming Exploration Only Solver (and OPL) and Curry offer support for pro-
gramming exploration, where Curry offers the same programming model as the solve
combinator. Programming exploration in Solver is based on limits and node evalua-
tors [103, 147]. Programmable limits allow to stop exploration (time limit, for example).
Node evaluators map search tree nodes to priorities. Node priorities determine the ex-
ploration order of nodes. Additionally, a special priority discards nodes.

Solver supports switching between arbitrary nodes in the search tree by full recom-
putation. For example, best-first search needs to switch between arbitrary nodes. To limit
the amount of switching, Solver uses an additional threshold value. Only if the cost im-
provement exceeds the threshold, nodes are switched. This results in an approximation
of best-first search. Fully interactive exploration is not feasible with full recomputation.

Encapsulation and Control AKL shares encapsulation and stability with computation
spaces. Curry offers encapsulation and a simpler and a more limited control regime than
stability: execution stops as soon as a speculative constraint is told. Apart from the lim-
itations that are caused by the solve combinator (Section4.7), this restriction resembles
the independence restriction of Chapter4 and excludes full compositionality and specu-
lative execution, as for example needed for programming combinators (Chapter11).

Solver controls and encapsulates search by a manager. Multiple independent man-
agers are possible but cannot be nested with automatic propagation of constraints. Man-
agers support two different modes of operation: edit and search mode. Propagation and
search is disabled during edit mode which allows the setup of constraint problems, in-
cluding removal of constraints.
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14.2 Comparison with Trailing

Search demands that previous computation states must possibly be available at a later
stage of computation. A system must take precaution by either memorizing states or
by means to reconstruct them. States are memorized bycopying. Techniques for re-
construction aretrailing andrecomputation. While recomputation computes everything
from scratch, trailing records for each state-changing operation the information neces-
sary to undo its effect.

Copying offers advantages with respect to expressiveness: multiple nodes of a search
tree are available simultaneously for further exploration. This is essential for concurrent,
parallel, breadth-first, and user-defined search strategies. Implementation can be simpler,
since copying is independent of operations and is only concerned with data structures.

On the other hand, copying needs more memory and might be slower since full copies
of the computation states are created. Hence, it is not at all clear whether copying is
competitive to trailing or not.

This section shows that copying is indeed competitive and that it offers a viable
alternative to trailing for the implementation of constraint programming systems. It is
clarified how much more memory copying needs. It is examined for which problems
copying is competitive with respect to runtime and memory. For large problems with
deep search trees this section confirms that copying needs too much memory. It is shown
that in these cases recomputation can decrease memory consumption considerably, even
to a fraction of what is needed by trailing.

14.2.1 Expressiveness

The main difference between copying and trailing as it comes to expressiveness is the
number of nodes that are simultaneously available for further exploration. With copy-
ing, all nodes that are created as copies are directly ready for further exploration. With
trailing, exploration can only continue at a single node at a time. In principle, trailing
does not exclude exploration of multiple nodes. However, they can be explored in an
interleaved fashion only and switching between nodes is a costly operation.

Having more than a single node available for exploration is essential to search strate-
gies like concurrent, parallel (Chapter9), or best-first (Section5.7). The same prop-
erty is crucial for user-defined interactive exploration as implemented by the Oz Ex-
plorer (Chapter8).

Resource Model Copying essentially differs from trailing with respect to space re-
quirements in that it ispessimistic: while trailing records changes exactly, copying makes
the safe but pessimistic assumption that everything will change. On the other hand, trail-
ing needs to record information on what changes as well as the original state of what
is changed. In the worst case — the entire state is changed — this might require more
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memory than copying. This discussion makes clear that a meaningful comparison of the
space requirements for trailing and copying is only possible by empirical investigations,
which are carried out in Section14.2.5.

14.2.2 Implementation Issues

This section gives a short discussion of the main implementation concepts and their
properties in copying- and trailing-based systems. The most fundamental distinction
is that trailing-based systems are concerned withoperations on data structures while
copying-based systems are concerned with thedata structures themselves.

Copying Copying needs for each data structure a routine that creates a copy and re-
cursively copies contained data structures. A system that features a copying garbage
collector already provides almost everything needed to implement copying. For exam-
ple in the Mozart implementation of Oz, copying and garbage collection share the same
routines parametrized by a flag that signals whether garbage collection is performed or
whether a node is being copied.

By this all operations on data structures are independent of search with respect to
both design and implementation. This makes search in a system an orthogonal issue.
Development of the Mozart system has proven this point: it was first conceived and
implemented without search and only later search has been added.

Trailing A trailing-based system uses a trail to store undo information. Prior to per-
forming a state-changing operation, information to reconstruct the state is stored on the
trail. In a concrete implementation, the state changing operations considered are updates
of memory locations. If a memory update is performed, the location’s address and its
old content is stored on the trail. This kind of trail is referred to assingle-value trail.
Starting exploration from a node puts a mark on the trail. Undoing the trail restores all
memory locations up to the previous mark. This is essentially the technology that is used
in Warren’s Abstract Machine [157, 5].

In the context of trailing-based constraint programming systems two further tech-
niques come into play:

Time-stamping With finite domains, for example, the domain of a variable can be nar-
rowed multiply. However it is sufficient to trail only the original value, because in-
termediate values need no restauration: each location needs to appear at most once
on the trail. Otherwise memory consumption is no longer bounded by the number
of changed locations but by the number of state-changing operations performed.
To ensure this property, time-stamping is used: as soon as an entity is trailed, the
entity is stamped to prevent it from further trailing until the stamp changes again.
Note that time-stamping concerns both the operations and the data structures that
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must contain the time-stamp. Section13.6.3discusses time-marking as an alterna-
tive to time-stamping.

Multiple-value Trail A single-value trail needs 2n entries forn changed locations. A
multiple-value trail uses the optimization that if the contents ofn > 1 successive
locations are changed,n + 2 entries are added to the trail: the location’s address,
n itself, andn entries for the locations’ values.

For a discussion of time-stamps and a multiple-value trail in the context of the CHIP
system, see [1, 2]. A general but brief discussion of issues related to the implementation
of trailing-based constraint programming systems can be found in [59].

Trailing requires that all operations are search-aware: search is not an orthogonal
issue to the rest of the system. Complexity in design and implementation is increased:
it is a matter of fact that a larger part of a system is concerned with operations rather
than with basic data structure management. A good design that encapsulates update
operations will avoid most of the complexity. To take advantage of multiple-value trail
entries, however, operations require special effort in design and implementation.

Trailing for elaborated data structures can become quite complex. Consider as an
example adding an element to a dictionary with subsequent reorganization of the dic-
tionary’s hash table. Here the simple model that is based on trailing locations might be
unsuited, since reorganizing data structures alters a large number of locations. In general,
copying offers more freedom of rearranging data structures. M¨uller and Würtz discuss
this issue in the context of finite domain constraints in [89].

The discussion in this section can be summarized as follows. A system that features
a copying garbage collector already supports the essential functionality for copying. For
a system that does not require a garbage collector, implementing trailing might be as
easy or possibly easier depending on the number and complexity of the operations.

14.2.3 Criteria and Examples

This section introduces constraint problems that serve as examples for the empirical
analysis and comparison. The problems are well known and are chosen to be easily
portable to several constraint programming systems (Section14.3).

The main characteristics of the problems are listed in AppendixA.1. Besides of
portability and simplicity they cover a broad range with respect to the following criteria.

Problem Size The problems differ in size, that is in the number of variables and con-
straints, and in the size of constraints (that is the number of variables each con-
straint is attached to). With copying, the size of the problem is an important pa-
rameter: it determines the time needed for copying. Additionally, it partly de-
termines the memory requirements (which is also influenced by the search tree
depth). Hence, large problem sizes can be problematic with copying.
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Propagation Amount Strong propagation narrows a large number of variables. This
presupposes a large number of propagation steps, which usually coincides with
state changes of a large number of constraints. The amount of propagation deter-
mines how much time and memory trailing requires: the stronger the propagation,
the more of the state is changed. The more of the state changes, the better it fits
the pessimistic assumption “everything changes” that underlies copying.

Search Tree Depth The depth of the search tree determines partly the memory require-
ments for both trailing and copying. Deep search trees are a bad case for trailing
and even more for copying due to its higher memory requirements.

Exploration Completeness How much of the search tree is explored. A high explo-
ration completeness means that utilization of the precaution effort undertaken by
copying or trailing is high.

The criteria are mutually interdependent. Of course, the amount of propagation deter-
mines the depth of the search tree. Also search tree depth and exploration completeness
are interdependent: If the search tree is deep, exploration completeness is definitely low.
Due to the exponential number of nodes, only a small part of the tree can be explored.

Familiar benchmark programs are preferred over more realistic problems such as
scheduling or resource allocation. The reason is that the programs are also intended
for comparing several constraint programming systems. Choosing simple constraints
ensures that the amount of constraint propagation is the same with all compared systems.

Evaluations of Oz that specifically address scheduling problems are [159, 160]. Re-
ports on successful applications of copying-based search are [54, 56, 123, 52].

14.2.4 Copying

This section presents and analyses runtime and memory requirements for Mozart. Ap-
pendixA.2 contains more information on hardware and software platforms.

Figure14.1displays the performance of the example programs. The fields “Copy”
and “GC” give the percentage of runtime that is spent on copying and garbage collec-
tion, the field “CGC” displays the sum of both fields. The field “Max” contains the
maximal amount of memory used in Kilobytes, that is how much memory must at least
be available in order to solve the problem.

The numbers clarify that for all but the large problems 100-Queens and 18-Knights
the amount of time spent on copying and garbage collection is around one fourth of the
total runtime. In addition, the memory requirements are moderate. This demonstrates
that for problems with small and medium size copying does neither cause memory nor
runtime problems. It can be expected that for these problems copying is competitive.

On the other hand, the numbers confirm thatcopying alone for large problems with
deep search trees is unsuited: up to two third of the runtime is spent on memory manage-
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Example
Time Copy GC CGC Max
msec % % % KB

Alpha 1975 20.2 0.0 20.2 19
10-Queens 739 33.5 0.0 33.5 20
10-S-Queens 572 21.4 0.0 21.4 7
100-Queens 868 49.3 18.7 68.0 21873
100-S-Queens 26 28.6 0.0 28.6 592
Magic 606 13.3 14.1 27.4 6091
18-Knights 5659 44.2 22.3 66.5 121557

Figure 14.1: Runtime and memory performance of example programs.

ment and memory requirements are prohibitive. The considerable time spent on garbage
collection is a consequence of copying: the time used by a copying garbage collector is
determined by the amount of used memory.

The two different implementations ofn-Queens exemplify that copying gets consid-
erably better for problems where a large number of small propagators is replaced by a
small number of equivalent global propagators.

14.2.5 Copying versus Trailing

As discussed before, one of the most essential questions in comparing trailing and copy-
ing is: how pessimistic is the assumption “everything changes” that underlies copying.
An answer seems to presuppose two systems that are identical with the exception of
trailing or copying. Implementing two competitive systems is not feasible.

Instead, the memory requirements of a trailing implementation are computed from

0 20 40 60 80 100

18-Knights
Magic
10-S-Queens
100-S-Queens
10-Queens
100-Queens
Alpha

(percent)
multiple-value trail + single-value trail

Figure 14.2: Memory use of trailing versus copying.
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0 20 40 60 80 100

18-Knights 86.5

Magic 66.8

100-S-Queens 13.3

100-Queens 42.6

percent

Figure 14.3: Memory use of fixed recomputation versus trailing.

the requirements of a copying implementation as follows. Before constraint propagation
in a nodeN begins, a bitwise copy of the memory area occupied byN is created. Af-
ter constraint propagation has finished, this area is compared to the now changed area
occupied byN . The altered locations are those that a trailing system must have trailed.

Figure14.2 shows the percentage of memory needed by a trailing implementation
compared to a copying implementation. The total length of bars depicts the percentage
needed by a single-value trail, whereas the dark-colored bar represents the need of a
multiple-value trail implementation.

The percentage figures for the multiple-value trail are lower bounds again. Locations
that are updated by separate single update operations might happen to be successive even
though an implementation cannot take advantage of this fact. It is interesting to note that
a multiple-value trail offers some improvement only for 10-S-Queens and 100-S-Queens
(around 10%). Otherwise, its impact is quite limited (less than 2%).

The observation that for large problems with weak propagation (100-Queens and 18-
Knights) trailing improves by almost up to two orders of magnitude coincides with the
observation made with respect to the memory requirements in Section14.2.4. For the
other problems the memory requirements are in the same order of magnitude and trailing
roughly halves them.

What is not captured at all by the comparison’s method is that other design decisions
for propagators would have been made to take advantage of trailing, as has already been
argued in Section14.2.2.

14.2.6 Recomputation versus Trailing

Fixed recomputation (Section7.3) uses less memory than trailing. Figure14.3shows
the percentage of memory that fixed recomputation takes in comparison to the memory
needed by trailing.

Trailing and copying are pessimistic in that they make the assumption that each node
needs reconstruction. Recomputation, in contrast, makes the optimistic assumption that
no node requires later reconstruction. For search trees that contain few failed nodes, the
optimistic assumption fits well. In particular, problems with very deep search trees can
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4−1

1.44 4.15

SICStus
1.19 1.46 1.12 20.63

1.99
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4.02 1.71

Solver
2.66 1.45 1.16 2.16

2.37

1.01

1.03

4−1

1−1

4−1

1.66 2.57 3.49

Mozart performs worse Mozart performs better

Figure 14.4: Empirical runtime comparison.

profit from the optimistic assumption, since exploration completeness is definitely low.

14.3 System Comparison

This section compares Mozart, a copying-based system, with several trailing-based sys-
tems. AppendixA.2 contains more information on the used software and hardware plat-
forms. The point to compare systems is to demonstrate that a system that is based on
copying can be competitive with trailing-based systems.

All systems support Alpha, 10-Queens, 100-Queens, and 18-Knights. The propaga-
tors that are used for 10-S-Queens and 100-S-Queens are available in Mozart and Solver
only. Eclipse does not support the exactly-constraint that is used in Magic.

Figure14.4shows a relative performance comparison of Mozart with Eclipse, SICS-
tus, and Solver. The figures to the left are without recomputation, the figures to the right
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use adaptive recomputation. As initial value for the MRD 10% of the search tree depth
is used (Section7.5 discusses the little impact of the initial MRD). A number off be-
low the middle line together with a light gray box means that Mozart performsf -times
better. Otherwise, the other system performsf -times better than Mozart.

The figures clearly indicate that a system based on copying is competitive as it comes
to runtime. Even for problems that profit from recomputation, performance is still com-
petitive without recomputation. In general, this is of course only true if the available
memory is sufficient.

The numbers for Mozart with adaptive recomputation show that copying together
with recomputation for large problems and deep search trees outperform trailing-based
systems. An important point is that adaptive recomputation isautomatic and does not
require any parameter tuning.

Impact of Finite Domain Implementation The runtimes of course do not depend
only on the systems’ search capabilities, but also on their finite domain implementation.
It has been tried to keep the examples’ implementations for the different systems as sim-
ilar as possible. Even if a system provides special constraints for a particular example,
the programs do not take advantage:

■ 10-Queens and 10-S-Queens can be implemented more efficiently in SICStus by
directly using indexicals as provided by the underlying constraint solver [16].

■ Both Eclipse and SICStus implement domains as list-of-intervals rather than as
bit-vectors and list-of-intervals as Mozart does: this explains why Mozart is sur-
prisingly efficient for 10-Queens and 10-S-Queens in comparison.

■ The performance of Magic for SICStus is due to a naive implementation of the
exactly-constraint [15].
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15 Conclusion

This chapter summarizes the main contributions of the thesis and presents concrete ideas
for future work.

15.1 Main Contributions

This thesis develops computation spaces as simple programming abstractions for con-
straint services at a high-level. The thesis presents a tight integration of spaces into a
concurrent programming language. The tight integration is proven to ease programming
and integration into todays concurrent and distributed computing environments. The
thesis demonstrates the appropriateness of spaces by applying them to state-of-the-art
search engines, to entirely new search engines, and to composable constraint combina-
tors. The thesis presents a simple yet efficient implementation that competes with today’s
best commercially available constraint programming systems.

Search Spaces cover state-of-the-art search engines, such as plain, best-solution, and
best-first search. They cover new and highly relevant search engines such as visual and
interactive search and parallel search utilizing the computational power of networked
computers. Spaces allow for succinct programs which are amenable to generalization.
Examples are the generalization of branch-and-bound to prune search and search engines
with explicit state to concurrent search engines. The Explorer and parallel search engines
exemplify the rich support for controlling search.

Recomputation The combination of recomputation and copying provides search en-
gines that offer a fundamental improvement over trailing-based search for truly large
problems. The thesis shows that adaptive recomputation is an excellent technique for
solving large problems. The thesis establishes the competitiveness of copying by a rigid
comparison with trailing.

Encapsulation and Integration Computation spaces provide encapsulation to specu-
lative constraint-based computations, a must for the integration of constraint program-
ming into todays concurrent and distributed computing infrastructure. Encapsulation is
achieved by a tight integration of spaces into the concurrent programming language Oz
together with stability as powerful control regime. The tight integration is shown to be

153



advantageous. It is the tight integration into a programming language that accounts for
ease of programming. It is the tight integration with concurrency that enables program-
ming of composable constraint combinators and parallel search engines.

Coordinating Speculative Computations Ports as well-established communication
mechanism are generalized to allow global coordination by communication with spec-
ulative computations while obeying encapsulation. Active services based on ports pro-
vide a familiar programming model resembling remote procedure call (RPC) and remote
method invocation (RMI).

Composable Combinators Composable combinators (also known as deep-guard
combinators) are shown to have a surprisingly simple implementation with spaces. They
are show-cases for concurrency and encapsulation. The fresh look at combinators by
simple composition from abstractions contributed new insights such as how to employ
stability to detect programming errors due to stuck computations.

Implementation The implementation is factored into orthogonal support for con-
straint stores, stability, space operations, and search. Scripting is used as a technique
that requires few and conservative extensions. Supervisor threads effectively decouple
constraint-dependent aspects from the rest of the implementation. Copying leads to a
simple implementation of search that takes little effort.

Production Quality System Spaces and services programmed from spaces have al-
ready proven their usefulness and maturity to many users of the Mozart implementation
of Oz. The Mozart implementation is a production quality system that is successfully
used in large applications. It offers unique tools like the Oz Explorer for the devel-
opment and distributed search engines for the deployment of applications due to the
material developed in this thesis.

Impact Some ideas in this thesis have already proven their impact. The CHIP search
tree tool [133] has been inspired by the Explorer. Encapsulated search in Curry is based
on a variant of the solve combinator [43].

On a more general level, I am convinced that future constraint programming systems
will support the programming of search engines. I am also convinced that the com-
bination of copying and recomputation will establish itself as a serious alternative for
implementing search that at least matches the virtues of trailing.

15.2 Future Work

Formal Model The informal model for computation spaces presented in Chapters4
and10serves as starting point on how to use and implement spaces. This thesis provides
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evidence that spaces are indeed useful and can be implemented efficiently. Given this,
the investment into a formal model for spaces seems justified. The hope is that such a
model exists and that it is useful to formalize and prove interesting properties on spaces.
A particularly interesting and challenging question is whether the implementation with
its central invariants can be proven correct.

Libraries Instead of Languages This thesis introduces computation spaces as ab-
stractions that support the programming of constraint services. Spaces are tightly inte-
grated into a concurrent programming language. This integration is undoubtedly useful
as witnessed by application of spaces to composable constraint combinators and parallel
search engines.

However, a valid and interesting question is: what if the language does not provide
concurrency and implicit synchronization? How can the programming capabilities pro-
vided by spaces be transferred to a library in a programming language neutral way?
The library approach to constraint programming has been proven successful by ILOG
Solver [113]. Further attempts in this direction are Figaro [55] and CHOCO [74].

Dependency Recording The search strategies considered in this thesis do not record
and utilize information why a particular node in the search tree failed. So-calledlook-
back schemes [29, 68] analyze information found in the search tree’s nodes and continue
exploration at a node such that the same conflict is not encountered again. This form of
exploration requires elaborate control and recording of dependency information.

Spaces provide elaborate control. It is interesting to understand what additional space
primitives are required for lookback schemes. It is in particular interesting how depen-
dency recording, which depends on the constraint domain, can be integrated with spaces
while keeping their domain-independence.

Resource Adaptive Recomputation The thesis has demonstrated the great potential
of adaptive recomputation for solving truly large problems. Adaptive recomputation
exclusively bases its decision whether to copy or recompute on the shape of the search
tree. The costs associated with recomputation and copying for a particular problem are
not considered. The hope is that by taking these costs into account, search efficiency can
be further improved.

Search Factories The presentation of search engines in this thesis individually covers
various strategies and programming techniques: parallelism; recomputation strategies;
single, all, and best solution search; visualization; interactivity. From a users perspective
it is desirable that these features can be orthogonally combined by a search factory: the
factory returns a custom-made search engine that has the features required by a particular
application. While increasing usability, this idea can help to understand what are the
minimal abstractions needed to support a particular feature of a search engine.
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Chew, Henz, and Ng describe a search toolkit in [22] that allows the orthogonal com-
bination of some of the features introduced in this thesis. However, the more challenging
features such as parallelism and different recomputation strategies are not covered.

Reusing Parallel Engines One of the main goals for parallel search engines in Chap-
ter 9 has been a reusable design. That the design is indeed reusable and delivers good
performance on shared memory multiprocessors has not yet been assessed. Popov is cur-
rently working towards an implementation of Oz that provides thread-based parallelism
on multi-processor machines [110]. This implementation will allow to check whether
this claim holds true. Ideally, the concurrent search engine should run without any mod-
ification and deliver good speedup.

Generational Garbage Collection A copying garbage collector is a particularly bad
choice for copying-based search. Spaces that are copied by cloning will be copied several
times by the garbage collector. This accounts for excessive runtime spent on memory
management. This is worsened by the fact that copies created for nodes near to the root
of the search tree tend to live for a long time. Moreover, these copies do not change.

These facts make a classical case for generational garbage collection [158, 63]. With
generational garbage collection, the memory areas that change more often are collected
more often. Areas that contain data that changes infrequently are collected infrequently.
The hope is that by generational garbage collection the time spent on garbage collection
can be dramatically decreased.
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A Benchmark Problems and
Platforms

This appendix contains information about examples and platforms used for evaluation.

A.1 Benchmark Problems

This section describes the example constraint problems. Their main characteristics are
listed in FigureA.1. All are familiar benchmark problems.

Example Distr. Fail. Sol. Depth Var. Constr.
100-Queens 115 22 1 97 100 14850
100-S-Queens 115 22 1 97 100 3
Magic 13 4 1 12 500 501
18-Knights 266 12 1 265 7500 11205

(a) Single-solution search.

Example Distr. Fail. Sol. Depth Var. Constr.
Alpha 7435 7435 1 50 26 21
10-Queens 6665 5942 724 29 10 135
10-S-Queens 6665 5942 724 29 10 3

(b) All-solution search.

Example Distr. Fail. Sol. Depth Var. Constr.
Bridge 150 148 3 28 198 313
Photo 5471 5467 5 27 61 54
MT 10 16779 16701 79 91 102 121
MT 10A 17291 17232 60 91 102 121
MT 10B 137011 136951 61 91 102 121

(c) Best-solution search (BAB).

Figure A.1: Characteristics of example programs.

157



Alpha Alpha is the well-known cryptoarithmetic puzzle: assign variablesA, B, . . ., Z
distinct numbers between 1 and 26 such that 25 equations hold.

100-Queens, 100-S-Queens, 10-Queens, and 10-S-Queens For the popularn-Queens
puzzle (placen queens on an×n chess board such that no two queens attack each
other) two different implementations are used.

The naive implementation (n-Queens) usesO(n2) disequality constraints. This is
contrasted by a smarter program (n-S-Queens) that uses three propagators for the
same constraints.

Magic The Magic puzzle is to find a magic sequences of 500 natural numbers, such that
0≤ xi ≤ 500 andi occurs ins exactlyxi times. For each element of the sequence
an exactly-constraint (ranging over allxi ) on all elements of the sequence is used.
The elements are enumerated in increasing order following a splitting strategy.

18-Knights The goal in 18-Knights is to find a sequence of knight moves on a 18× 18
chess board such that each field is visited exactly once and that the moves return
the knight to the starting field. The knight starts at the lower left field.

Photo This example is presented in Chapter8, although a larger set of persons and
preferences is used (9 persons and 17 preferences).

Bridge Bridge is a small and well-known scheduling example [10, 32]. It requires ad-
ditional constraints apart from the usual precedence and resource constraints.

MT 10, MT 10A, MT 10B These are variants of the famous 10× 10 job-shop schedul-
ing problem due to Muth and Thompson [97]. All variants useSched-
ule.serialized (edge-finding) as serialization-propagator. MT 10 uses
Schedule.firstsLastsDist, MT 10A usesSchedule.lastsDist, and
MT 10B usesSchedule.firstsDist as resource-oriented serializer More in-
formation on the serialization propagator and the resource-oriented serializer can
be found in [35, Chapter 6].

A.2 Sequential Platform

All numbers but those for distributed search engines in Chapter9 have been made on a
standard personal computer with a 700 MHz AMD Athlon and 256 Megabytes of main
memory using RedHat Linux 7.0 as operating system. All times have been taken as wall
time (that is, absolute clock time), where the machine was unloaded: difference between
wall and actual process time is less than 5%.
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Computer Processors Memory
a 2× 400 MHz Pentium II 256 MB
b 2× 400 MHz Pentium II 512 MB

c – f 1× 466 MHz Celeron 128 MB

(a) Hardware.

Workers Combination
1 a
2 a,b
3 a,b,c
4 a,b,c,d
5 a,b,c,d,e
6 a,b,c,d,e,f

(b) Combinations.

Figure A.2: Computers used for evaluation distributed search engines.

The following systems were used: Mozart 1.1.1, Eclipse 5.1.0, SICStus Prolog 3.8.5,
and ILOG Solver 5.000.

The numbers presented are the arithmetic mean of 25 runs, where the coefficient of
deviation is less than 5% for all benchmarks and systems.

A.3 Distributed Platform

The performance figures presented in Chapter9 used a collection of standard personal
computers running RedHat Linux 6.2 connected by a 100 MB Ethernet. The combination
of computers for varying number of workers is shown in FigureA.2. The manager has
always been run on computer a.

159



160



Bibliography

[1] Abderrahamane Aggoun and Nicolas Beldiceanu. Time Stamps Techniques for
the Trailed Data in Constraint Logic Programming Systems. In S. Bourgault and
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breadth-first,11
depth-first,11

exploration completeness,148
Explore, 38–39
ExploreAll, 42
Explorer,69–78
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F

f-stack→ stack, foreground
fail, 33
failure,31, 95, 102

clustered,65
fairness,18
false, 16
FdReflect, 21, 25
field, 16
Figaro,155
finite domain,9
finite set,27
finite set constraint,27
First, 22
functor,81
future,27–28, 103

G

GetCost, 52
GNU Prolog,2, 143
graph

full, 125
installed,126

guard,112

H

home space,30

I

IBSS→ search, iterative best-solution
IDFS→ search, interleaved depth-first
ILDS→ search, improved limited discrepancy
independence,30–32
indeterminism,22–23, 60
information

partial,9, 15
Inject→ space operation, inject

inject constraint,12
input,31
Insert, 53
integer,16
IsDet, 20–21
Iterate, 51

K

Kill→ space operation, kill
18-Knights,63–67, 149–151, 158

L

Label, 21–22
label,16
labelling,10
LAO → last alternative optimization
last alternative optimization,60–62
LDS→ search, limited discrepancy
LDS, 51
Length (Native),115
Length (Space),115
lexical scoping,15
link

downward,123
safe,123
unsafe,123
upward,123

list, 16, 26
literal, 16

M

Magic,63, 67, 149–151, 158
mailbox,23
manager,82
manager load,90–91
Merge→ space operation, merge
merge,121, 133–135

destination,133
downward,134
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source,133
upward,134

message sending,40–41
metaconstraint,106
method invocation

remote,81
minimality, 125
minus

unary,21
module,28, 81
Money, 46
monotonicity invariant,95
Mozart,43–44, 158
MRD→ maximal recomputation distance
MT 10, 89–92, 158
MT 10A, 76, 158
MT 10B, 76, 158

N

name,16
fresh,19, 30, 95
visible,30, 95

NE, 48
negation,93–94
nested propagation,94–95
network transparency,81
NewConstrain, 55
NewPort, 21, 23
NewService, 24, 27
NewSpace→ space operation, create
nil, 16
node,118

open,12
reference,118
value,118
variable,118

Not, 107
notation

functional,26

O

object,28
operation

arithmetic,21
determination test,20–21
domain reflection,21, 25
domain tell,21, 24–25
equality test,20–21
indeterminate synchronization,21
message sending,21, 23
port creation,21, 23
tuple,21–22

OPL,143
OPM→ Oz Programming Model
optimistic,65
Or, 110
Or (Native),115
Or (Space),115
or-parallelism,79
orthogonality,125
output,31
overhead

exploration,86, 91
recomputation,87, 91
total,88–89

Oz
distributed,81–82
full, 27–28

Oz Programming Model,4, 15

P

pair,26
parent space,94
path,59

done,87
pending,87

path compression,119
pattern matching,26–27
performance overview,121, 140–142
pessimistic,65
pessimistic approximation,101
Photo,89–92, 158
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Photo, 70
platform

distributed,159
sequential,158–159

port,23, 121, 140
port store,23
Probe, 51
probing,50
problem size,147
procedure argument,20
procedure body,20
procedure call

remote,40, 81
situated,40

procedure store,16
procedures

first-class,15
process,81
propagation amount,147–148
propagator,9, 25

entailed,10
failed,10
reified,70

prune-search,57–58
PS→ prune-search

Q

100-Queens,63, 67, 149–151, 158
10-Queens,149–151, 158
100-S-Queens,63, 67, 149–151, 158
10-S-Queens,89–92, 149–151, 158

R

r-space→ space, recomputation
rational tree,16
recomputation,145, 150–152

adaptive,65–67
fixed,61–64
full, 60–61

recomputation distance

maximal,61
Recompute, 59
record,27
reduction

fair, 18
Reify, 108
renaming

consistent,38
residuation,114
resume,18
RMI →method invocation, remote
root variable,31, 96
RPC→ procedure call, remote
runnable counter,130
runnable pool,119

S

SALSA, 143
scheduler,117, 119–120, 124
scheme

lookback,155
Screamer,143
script,13, 32, 127

deinstallation,128
installation,128, 138

scripting,126
search,29, 34–39, 121, 135–137

A∗, 53
all-solution,46
best-first,40, 52–53
best-solution,11–13, 55–58, 85–86
branch-and-bound,12, 56–57, 63
demand-driven,49
depth-bounded discrepancy,51
depth-first,45–46
IDA ∗, 53
improved limited discrepancy,51
informed,53
interactive,69–78
interleaved depth-first,51
iterative best-solution,55–56
iterative best-solution search,55
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iterative deepening,52
limited discrepancy,50–52, 63
multiple-solution,49
plain,12
single-solution,45
SMA∗, 53
visual,69–78

search engine,11, 38
search space

prune,12, 55
search strategy,11
search tree,11, 94
search tree depth,148
semi-stability,136
Send, 21, 23
Send Most Money,46, 57
sendability,140
SendRecv, 23, 27, 41
service

active,23–24, 30, 40–41, 81, 84
SICStus,2, 143, 151–152, 158
site,81
situatedness,125, 136–137
Solve, 41
solve combinator,41–42
Solver,143, 151–152, 155, 158
space,9, 16

admissible,98, 103, 133
blocked,100, 103
constrain,12, 55
current,30
discarded,95
distributable,11, 36, 100
entailed,100
failed,10, 31, 95
first-class,29, 31
installed,126
local,29–31
recomputable,87
runnable,34, 100
semi-stable,36, 101
sliding,87
solved,10
stable,10, 34, 100

stuck,100
subordinated,94
succeeded,34, 100
superordinated,94
suspended,100
switching,128
transparent,99
visible,97

space access
explicit, 97
implicit, 97

space installation,122
space manipulation,31–33
space node,122

current,122
discarded,122
failed,122
garbage collection,123
situated,122

space operation
ask,34, 42
ask verbose,103
choose,35–37
clone,38–39, 42, 97, 136–137
commit,37–39, 43, 136
create,31–32, 42, 96–97
export,87
inject,33, 42, 99
kill, 33
merge,32–33, 38, 42, 97–99, 102, 108

space reference node,122
space tree,94–95, 121–130

manipulation,94, 96–99
SPC→ procedure call, situated
Speculate, 34
speculative,29
speedup,89–90

super-linear,84
stability, 29, 34, 36–38, 100–102, 121, 130–

133, 136
checking,132–133

stack
background,57
foreground,57
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Standard ML,104
state representation

explicit, 49–50
statement

case,26
catch,22
choice,35
conditional,19–20
declaration,19, 25
empty,18–19
pattern matching conditional,26
procedure application,19–20, 31, 95
procedure creation,19–20
raise,21–22
sequential composition,18–19
synchronized,18
tell, 18–19, 31, 95
thread creation,19–20
try, 21–22, 27
unsynchronized,18

Status, 106
status,29, 94, 99–104
status access,34
status variable,102–103

freshening,102
store,16, 117–119

current,30
implementation,126–130
model,124–126

supervisor thread,127, 132, 138
single,127

suspend,18
suspension set,18

global,99, 132
of a variable,118

symmetry elimination,58
synchronization,117–118

data-flow,15
implicit, 15

syntax,25–27
system comparison,151–152

T

tell, 10, 17
arbitrary space,128

tell attempt
unsuccessful,17

terminate,18
ThisSpace, 99
thread,16, 18

current,18, 120
discarded,31
globally suspended,99, 131–132, 134
local,132, 135
preempted,120
runnable,18, 120, 130–131, 134
speculative,99
suspended,18, 120
terminated,120

thread selection,119–120
thread state,120, 123
time-marking,139
time-stamping,139, 146–147
�-clause,113
toplevel space,16, 94
trail, 127

multiple-value,147
single,128
single-value,146

trailing, 145–151
true, 16
truth value,16
tuple,16

U

unification,119
universe,16

V

value,16
simple,16

variable
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aliased,17
aliasing,137–139
binding,118–119, 127
constrained,17, 24
depending on a name,17
depending on a variable,17
determined,17
free,20
fresh,19, 30, 95
global,101
kinded,24
local,101
sendable,40, 95
shared,10
visible,30, 95

W

Wait, 22
WaitOr, 21
WaitStable, 36–37
wake

a thread,18, 117–118, 123–124
a variable,118

Width, 21–22
width, 16
work granularity,85, 90
worker,79, 82

busy,82
idle, 82
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