Optimised Modal Translation

and Resolution

Dissertation

zur Erlangung des Grades Doktor der
Ingenieurwissenschaften (Dr.-Ing.) der Technischen
Fakultat der Universitat des Saarlandes

von

Renate A. Schmidt

Saarbriicken, 1997

Dekan: Prof. Dr. Alexander Koch

Gutachter: Priv.-Doz. Dr. Hans Jiirgen Ohlbach
Prof. Dr. Harald Ganzinger

Tag des Kolloquiums: 3. November 1997

Abstract

This thesis studies the optimised functional translation of propositional modal logics to
first-order logic, and first-order resolution as a means for realising modal reasoning. The
optimised functional translation maps modal logics to a lattice of clausal logics, called path
logics. The general apparatus of inference for path logics is theory resolution. We show
that satisfiability in basic path logic and certain extensions can be decided by resolution
and condensing without requiring additional refinement strategies. We propose an improved
theory unification algorithm for S4, and we present a calculus of ordered E-resolution with
normalisation. We show also that some essentially second-order modal logics convert to path
logics, which can be exploited for accomodating inference for modal logics with numerical
quantifiers in a calculus of resolution and simple arithmetic.

Zusammenfassung

Diese Arbeit untersucht die optimierte funktionale Ubersetzung von modalen Aussagenlo-
giken in die Pridikatenlogik erster Stufe und deren Behandlung durch Resolutionsverfah-
ren. Die optimierte funktionale Ubersetzung bildet Modallogiken in Klausellogiken, genannt
Pfadlogiken, ab. Der allgemeine Inferenzformalismus fiir Pfadlogiken ist Theorieresolution.
Wir zeigen, Resolution und Kondensierung ohne zusétzliche Verfeinerungsstrategien ist ein
Entscheidungsverfahren fiir die Basispfadlogik und bestimmte Erweiterungen. Wir prisentie-
ren einen verbesserten Theorieunifikationsalgorithmus fiir die Logik S/, sowie ein geordnetes
E-Resolutionskalkiil mit Normalisierungsfunktionen. Wir zeigen aulerdem, da die opti-
mierte funktionale Ubersetzung auch auf Axiomenschemas anwendbar ist. Dies erméoglicht
insbesondere die Einbettung von Modallogiken mit Zdhlquantoren in die Logik erster Stufe
und deren Behandlung mittels eines Kalkiils, das Resolution und Arithmetik verbindet.

Extended abstract

Propositional modal logics enjoy increasing popularity in various fields of computer science.
Many propositional modal logics are decidable, but a serious problem in real applications is
the lack of sophisticated modal theorem provers. Some theorem provers are available that
are based on Gentzen or tableaux calculi, of which none have the level of sophistication
that first-order theorem provers like OTTER or SPASS have. This thesis is concerned with
providing resolution decision procedures for propositional modal logics. This goes hand in
hand with providing an appropriate translation method from modal logic to first-order logic.
The standard relational translation method is based on the possible worlds semantics. It
transforms modal formulae to restricted quantifier expressions involving binary relations.
The problem with this translation approach is the inherent non-determinism in relations,
manifested in the non-termination of standard resolution procedures. Unrefined resolution
is merely a semi-decision procedure for the relational translation. We will not be using the
relational translation method. Instead, we will adopt an optimised form of the functional
translation method, for which resolution is guaranteed to terminate, as we will show.

This thesis studies and formalises the optimised functional translation method for propo-
sitional modal logics and the treatment of inference in resolution procedures, in particular,
theory resolution procedures. The optimised functional translation method is based on the
functional translation method put forward by Ohlbach (1988a, 1991), Herzig (1989) and oth-
ers. This approach follows the functional semantics of modal logic that defines accessibility
between worlds by functions. Herzig noted that a certain optimisation is possible for propo-
sitional modal formulae. The optimisation allows for universal and existential quantifiers to
be swapped arbitrarily. In the relational context this operation is not admissible. However,
in maximal or patched functional models swapping quantifiers is satisfiability equivalence
preserving. This property hinges on the generated frame property that embodies the fact
that truth in a world of a modal formula does not depend on predecessor worlds.

The quantifier exchange operation is important for our decidability result, for it elimi-
nates in the clausal forms all Skolem functions other than Skolem constants. Modal logics
transform by the optimised functional translation to a lattice of clausal logics, called path
logics. The weakest path logic is called basic path logic and is associated with the basic modal
logics K and KD. It forms a fragment of monadic first-order logic with constant symbols
and one binary function symbol, namely juxtaposition. Terms in basic path logic are strings
of variables and constants that we view as paths in the underlying generated frame. The
variables and constants are ordered as stipulated by the prefiz stability property. It requires
that different occurrences of one variable in any clause have the same prefix. We show that
resolution and condensing without additional refinement strategies is a decision procedure
for basic path logic and certain of its extensions. This result is important for three reasons.
One, unrefined resolution and condensing provides a decision procedure for the translation

iii

iv

of many propositional modal logics, including K and arbitrary extensions with D, T" and
4, and also S5. Two, any resolution procedure with condensing and any compatible refine-
ment strategy is a decision procedure for the relevant modal and path logics. For practical
purposes this is paramount, since any fair implementation of a resolution theorem prover
can serve as a reasonable and efficient inference tool for doing basic modal reasoning. This
is confirmed by a series of benchmarks done with OTTER, SPASS, and other special purpose
theorem provers (Hustadt and Schmidt 1997a, 1997b, 1997c, Hustadt, Schmidt and Wei-
denbach 1998). Three, from a logical perspective, basic path logic appears to be the first
solvable class (that is non-trivial) for which unrefined resolution and condensing solve the
class.

The general calculus for path logics is theory resolution. We propose an E-unification
algorithm for the path theory associated with S/ that is more effecient than the algorithms
available in the literature. Our algorithm combines the mutation rules for our identity
law and associativity law, adapted from the general muation rules considered separately in
Comon, Haberstrau and Jouannaud (1994) and Kirchner and Klay (1990). Mutation rules
have the advantage that paramodulating into terms can be avoided. We introduce a general
calculus of ordered E-resolution that is different from the calculus defined in Baumgartner
(1992). Our calculus is based on the saturation approach of Bachmair and Ganzinger (1994)
which admits a strong notion of redundancy that accommodates the simplification rules
required for different path theories. In combination with the method of renaming, ordered
E-resolution results in a considerable efficiency gain.

The optimised functional translation method has another advantage over the relational
method. Tt applies not only to modal formulae, but we show the optimisation applies also
to axiom schemas. A pleasant consequence is that some modal logics not determined by
any elementary class of frames can be embedded in first-order logic. This extends the
applicability for the resolution method (and other first-order theorem proving techniques)
to essentially second-order modal logics, like K extended with McKinsey’s schema. We
make use of the new possibilities in a case study of accommodating graded modal logic in
our first-order setting. Graded modal logic is important in many applications, especially
in knowledge representation and computational linguistics, because it includes numerical
quantifiers such as ‘there are at least n’ or ‘there are more than n’. These operators are
non-standard in the sense that their semantics is not in accordance with the semantics of
< or O. This complicates the translation to first-order logic. We introduce a new and more
expressive modal logic with standard modalities that serves as an intermediary logic. The
translation proceeds then in two steps: We translate graded modal logic into the new modal
logic, followed by the optimised functional translation to first-order logic. The new modal
logic includes a schema that is essentially second-order but which can be approximated in
first-order logic by the optimised functional translation. We demonstrate how automated
inference with counting operators can be realised in a calculus of resolution, paramodulation
and basic arithmetic.

Ausfiihrliche Zusammenfassung

In vielen Teilgebieten der Informatik spielen modale Aussagenlogiken eine tragende Rolle.
Die gingigsten Modallogiken sind entscheidbar, was in Anwendungen enorm wichtig ist.
Allerdings besteht ein Mangel an ausgereiften modalen Theorembeweisern. Der Entwick-
lungsgrad von Implementierungen von Tableau- oder Gentzenkalkiilen fiir Modallogik ist
eindeutig niedriger wie der von Beweisern fiir Logik erster Stufe wie zum Beispiel OTTER und
SPASS. Diese Arbeit befafit sich mit der Problemstellung, Resolutionsverfahren als Entschei-
dungsverfahren fiir modale Aussagenlogiken einzusetzen. Hierzu bedarf es einer geeigneten
Ubersetzung von Modallogiken in die Logik erster Stufe. Der bekannte semantikorientierte
relationale Ubersetzungsansatz basiert auf der Kripke-Semantik und transformiert moda-
le Formeln zu Ausdriicken mit eingeschrinkten Quantoren und bindren Relationen. Ein
Nachteil dieser Methode ist der Nichtdeterminismus inhérent in den Relationen und das of-
fenkundige Problem der Nichtterminierung von Resolutionsverfahren. Unverfeinerte Resolu-
tionsverfahren bieten fiir die relationale Ubersetzung nur ein Semi-Entscheidungsverfahren.
Wir werden in dieser Arbeit den relationalen Ansatz nicht weiter betrachten, sondern wen-
den uns einer Verfeinerung der funktionalen Ubersetzung zu, die, wie wir zeigen werden,
Terminierung von Resolutionsverfahren garantiert.

Die vorliegende Arbeit untersucht und formalisiert den optimierten funktionalen Uber-
setzungsansatz fiir modale Aussagenlogiken und dessen Behandlung durch Resolutions-
verfahren, im allgemeinen durch Theorieresolutionsverfahren. Der optimierte funktiona-
le Ubersetzungsansatz basiert auf dem funktionalen Ubersetzungsansatz, der von Ohlbach
(1988a, 1991), Herzig (1989) und anderen fiir modale Priadikatenlogiken vorgestellt wurde.
Dieser Ansatz bedient sich der funktionalen Semantik von Modallogik, in der die Erreich-
barkeitsbeziehung zwischen Welten durch Funktionen modelliert wird. Herzig hat gezeigt,
daB fiir Formeln in modalen Aussagenlogiken eine Optimierung der Ubersetzungen méglich
ist. Sie erlaubt beliebiges Vertauschen von Existenz- und Allquantoren. In der relationalen
Semantik ist diese Operation nicht zuléssig. In speziellen mazimalen funktionalen Modellen
ist das Vertauschen von Quantoren jedoch erfiillbarkeits- und unerfiillbarkeitserhaltend.

Die Quantorenvertauschungsoperation ist essenziell fiir unser Entscheidbarkeitsresultat.
Damit lassen sich in der Klausalform der Ubersetzung bis auf Skolemkonstanten komplexe
Skolemterme ganz vermeiden. Der Verband der modalen Aussagenlogiken erzeugt mittels der
optimierten funktionalen Ubersetzung einen Verband von sogenannten Pfadlogiken. Dieses
sind Klausellogiken, von denen die schwichste Pfadlogik, die Basispfadlogik, die den Logiken
K und KD zugeordnet ist, ein monadisches Fragment der Logik erster Stufe mit Konstan-
tensymbolen und einer zweistelligen Konkatenationsfunktion ist. Terme dieser Logik sind
Worte, die aus Variablen und Konstantensymbolen gebildet werden und die Pfade in den zu-
grundeliegenden generierten Relationalstrukturen darstellen. Die Variablen und Konstanten
sind einer speziellen Ordnung unterworfen, die durch die Prifizstabilititseigenschaft festge-
legt ist. Geméf dieser Eigenschaft haben verschiedene Auftreten einer Variablen innerhalb

vi

einer Klausel einen eindeutigen Prifix. Wir zeigen, dafl Resolution mit Kondensierung ohne
zusitzliche Verfeinerungsstrategien ein Entscheidungsverfahren fiir die Basispfadlogik und
bestimmte Erweiterungen ist. Dieses Resultat ist aus drei Griinden bemerkenswert. Erstens,
ergeben sich daraus Resolutionsentscheidungsverfahren fiir die Ubersetzung von mehreren
Modallogiken, speziell K und beliebigen Erweiterungen mit den Schemata D, T und 4 und
der Logik S5. Zweitens, ist jedes vollstindige Resolutionsverfahren mit Kondensierung und
beliebigen Verfeinerungsstrategien ein Entscheidungsverfahren fiir die relevanten Modal- und
Pfadlogiken. Ein wichtiger praktischer Vorteil ist: Jeder resolutionsbasierter Beweiser, der
das tbliche FairneBkriterium erfiillt, ist gleichzeitig ein akzeptabler und vergleichbar effizi-
enter Beweiser fiir die Basismodallogiken. Dies bestétigt eine Reihe von Benchmarks mit
OTTER, SPASS und anderen Spezialbeweisern (Hustadt und Schmidt 1997a, 1997b, 1997c,
Hustadt, Schmidt und Weidenbach 1998). Drittens, vom logischen Gesichtspunkt ist bemer-
kenswert, dal die Basispfadlogik die erste 16sbare (und nichttriviale) Klasse erster Stufe zu
sein scheint, die im Resolutionskalkiil mit Kondensierung ohne Verfeinerungen geltst werden
kann.

Das allgemeine Kalkiil fiir Pfadlogiken ist Theorieresolution. Der von uns vorgestellte E-
Unifikationsalgorithmus fiir S4 is effizienter wie die herkémmlichen Algorithmen. Unser Al-
gorithmus verbindet die Mutationsregeln fiir unser Identitits- und Assoziativitdtsgesetz aus
den getrennt betrachteten allgemeinen Algorithmen von Comon et al. (1994) und Kirchner
and Klay (1990). Mutationsregeln haben die schone Eigenschaft, da§ Unifikation innerhalb
von Termen iiberfliissig wird. Wir fithren ein geordnetes E-Resolutionsverfahren fiir Logik
im Allgemeinen ein, welches im Unterschied zu Baumgartner (1992) auf dem Saturierungs-
ansatz von Bachmair and Ganzinger (1994) basiert, der einen michtigen Redundanzbegriff
besitzt. Der Einsatz geordneter E-Resolution und der Technik der Umbenennung bringt
einen Effizienzgewinn, den wir erdrtern.

Der optimierte funktionale Ubersetzungsansatz hat einen weiteren deutlichen Vorteil im
Gegensatz zum relationalen Ansatz. Die Quantorenvertauschungsoperation ist nicht nur fiir
modale aussagenlogische Formeln erlaubt, sondern wir zeigen, daf§ sie auch fiir Axiomsche-
mata moglich ist. Bemerkenswert dabei ist vor allem, daf} einige Modallogiken, die sich nicht
durch eine Klasse von elementaren Relationalstrukturen charakterisieren lassen, so in Logik
erster Stufe eingebettet werden konnen. Dies gilt zum Beispiel fiir die Erweiterung der Logik
K mit dem McKinsey-Schema. Somit wird die Behandlung von solchen nichtelementaren
Modallogiken durch Resolution (und anderen Techniken und Verfahren fiir Logik erster Stu-
fe) ermoglicht. Die Tragweite dieser neuen Erkenntnis zeigt eine Fallstudie der Behandlung
einer Modallogik mit Zdhlquantoren, im Englischen ‘graded modal logic’. In Anwendungen,
zum Beispiel in der Wissenreprisentation und in der Computerlinguistik, sind Zahlquanto-
ren wichtig, denn sie eignen sich zum Modellieren von Ausdriicken wie zum Beispiel ‘es gibt
mindestens n’ oder ‘es gibt mehr wie n’. Die Semantik der Zdhlquantoren liegt quer zu der
Semantik von ¢ und O, was einigen Aufwand verursacht bei der Abbildung in die Logik
erster Stufe. Unsere Ubersetzung erfolgt in zwei Schritten: Wir fithren eine neue méchtigere
Modallogik ein, in die wir die Modallogik mit Zdhlquantoren zunéchst abbilden, und die
wir dann, wie gehabt, in Logik erster Stufe iibersetzen. Fines der Axiome der neuen Zwi-
schenlogik hat dhnlich wie das McKinsey-Schema keine dquivalente Formulierung mittels der
relationalen Ubersetzung. Wir zeigen jedoch, daB sich mittels der optimierten funktionalen
Ubersetzung eine in unserem Rahmen geeignete Formel erster Stufe angeben liBt. Somit
kann die automatische Beweisfithrung fiir die Logik mit Z&hlquantoren in einem System
realisiert werden, das Resolution, Paramodulation und elementare Arithmetik verkniipft.

Acknowledgements

First and foremost I thank Hans Jirgen Ohlbach for his continued support and encour-
agement. The cooperation with him greatly influenced and furthered my thinking about
non-standard translation approaches and their value. He gave me several valuable ideas.

I am indebted to Harald Ganzinger and the Max-Planck-Institut for offering me employ-
ment and the pleasant working environment I was privileged to experience. A suggestion by
Harald led to the considerable improvement of the proof of Theorem 6.5.1. An anonymous
referee made a similar proposal.

My work has received tremendous stimulus from the cooperation with Ullrich Hustadt.
He read much of this thesis very carefully and provided me with helpful suggestions. I
benefited from frequent discussions with Andreas Nonnengart and Christoph Weidenbach
who also read and scrutinised parts of my work. Collective thanks go to my colleagues in
the institute, especially, Uwe Waldmann, Alexander Bockmayr, Sergei Vorobyov, Miroslava,
Tzakova, Luca Vigano, Jirgen Stuber and Georg Struth.

Finally, T wish to express my gratitude to Chris Brink who supervised my work for a
Masters degree obtained from the University of Cape Town.

The PhD was supported financially by the Max-Planck Gesellschaft and two projects
funded by the Deutsche Forschungsgemeinschaft, namely Tics (SFB 314) and TRALOS.

vii

Contents

Introduction

1 Preview
1.1 The optimised functional translation,
1.2 A case analysis: Translating graded modal logic
1.3 Path logics and resolution 0oL
1.4 Decidability by unrefined resolution
1.5 Anordered refinement

2 Modal logic and the functional translation
2.1 Modal logics and the relational semantics
2.2 The functional semantics e e e
2.3 Correspondence theory L Lo
2.4 The functional translation
2.5 Paths and prefix stability o o Lo
2.6 Translating non-serial into serial modal logics

3 The optimised functional translation
3.1 Exchanging quantifiers in maximal functional models
3.2 The quantifier exchange operator
3.3 Functional correspondence theory 0oL,
3.4 Conclusion e e e

4 Translating graded modal logic
4.1 The graded modal logic K oo o
4.2 The multi-modallogic K5 . . .« v o v o v it e e e e e
4.3 Translating K t0 Kp . . . o o o v v e e e e e e e e
4.4 Translating K g to first-order logic
4.5 Conclusion i e e e e e

5 Path logics and theory resolution
5.1 Pathlogics e e
5.2 Resolution and condensing L L oo
5.3 Basic path unification and term depths o0,
5.4 Prefix stability and resolutiono L L 0oL
5.5 Theory resolution e
5.6 Unification for Tand 4. 0 @ i i e e

ix

xi

15
15
19
25
29
34
37

41
41
46
48
93

55
95
o7
61
65
75

CONTENTS

5.7 Mutation for 7" and 4
5.8 Preservation of prefix stability
5.9 Conclusion

6 Decidability by unrefined resolution
6.1 Proving decidability of resolution
6.2 The matrix term representation of clauses
6.3 Variable partitioning
6.4 Prefix partitioning
6.5 Decidability results
6.6 Bounds for literals and variables
6.7 Conclusion

7 An ordered refinement
7.1 Ordered E-resolution
7.2 Orderings compatible with path theories
7.3 Modal definitional forms

7.6 Conclusion

8 Conclusion

Bibliography

A Eliminating second-order quantification with SCAN

B Orderings and ordered E-resolution
B.1 Orderings on terms, atoms, literals and clauses
B.2 Completeness of ground ordered E-resolution

List of figures

Index of notation

Index of schemas, rules and logics

Subject index

125

................................ 125
..................... 129
.............................. 132
7.4 Prefix ordered clauses and decidability of ordered resolution
7.5 Decidability of transitive modal logics

.......... 136
...................... 141
..................................... 149

151

157

165

167

................. 167
.................. 169

173

175

177

179

Introduction

This thesis studies optimised functional translation methods of propositional modal logics
into first-order logic and the behaviour of first-order resolution on these translations.

Propositional modal logics are increasingly being used in various fields of computer sci-
ence, including knowledge representation, the field of logics of programs and computational
linguistics. The popularity of modal logic can be attributed to its incredibly simple syntax,
its natural semantics and decidability. The language of modal logic is a propositional lan-
guage extended with modal quantifier operators ©; and O;. Semantically the fundamental
concept is that of a relational structure defined by a set W of worlds and one or more binary
(accessibility) relations on W. Just about anything in computer science is a relational struc-
ture: graphs are relational structures, orderings are relational structures, various notions of
time are modelled by relational structures (linear or branching structures), labelled state
transition systems for modelling programs and their correctness are relational structures,
attribute value structures are relational structures, and relational structures underly seman-
tic networks. It is no accident that modal logics have been invented in computer science
(dynamic logic) and continue to be reinvented, for example in linguistics (feature logic) and
in artificial intelligence (description logics). In many applications decidability is of immense
importance, for example, in knowledge representation and in hardware or program speci-
fication and verification. Theoremhood in the basic modal logics K and its multi-modal
version K, are decidable, and there are expressive extensions, like propositional dynamic
logic, which remain decidable. Despite the popularity of propositional modal logic and
their pleasant properties a serious problem in real applications is the lack of sophisticated
modal theorem provers. Some theorem provers are available which are based on Gentzen or
tableaux calculi. But, none have the level of sophistication that first-order theorem provers,
like OTTER or SPASS, have.

Many attempts at using resolution theorem provers for modal reasoning have been frus-
trated by the fact that resolution is only a semi-decision procedure for first-order logic. With-
out any heuristics resolution continually produces more and more seemingly non-redundant
clauses without terminating, not even for decidable fragments of first-order logic that cor-
respond to decidable propositional modal logics. The standard translation of modal logics
is based on the relational Kripke semantics, for which unrefined resolution is not a deci-
sion procedure. In the late eighties a number of researchers independently put forward an
alternative translation of quantified modal logics to first-order logic, for which resolution
theorem provers promised to be more efficient, and possibly terminating for propositional
modal logics. This thesis studies this alternative translation approach, called the functional
translation approach, and its optimisation, and exhibits what has often been claimed but
never been substantiated: For many propositional modal logics unrefined resolution decides
modal theoremhood and satisfiability.

xi

xii Introduction

Important for our decidability result is that we use an optimised version of the functional
translation approach. It is obtained by swapping existential and universal quantifiers in a
non-standard way. The optimisation is known to apply to propositional modal formulae. We
show the optimised functional translation applies also to axiom schemas with a somewhat
surprising spin-off that some essentially second-order modal logics, like K plus McKinsey’s
schema, become first-order under the optimised functional translation. This boosts the
applicability of first-order theorem proving techniques for modal reasoning. We utilise this
new-found ability to treat truly second-order modal logics in a case study of accommodating
graded modal logic in a first-order context. Graded modal logic includes numerical quantifier
operators which are important in many applications, like knowledge representation and
computational linguistics. The counting operators are non-standard and require special
treatment, as their semantics is not in accordance with the semantics of ¢ or O. Qur
solution is to translate graded modal logic first into a richer modal logic with standard
modalities and then into first-order logic. The new modal logic includes a schema that
is essentially second-order but has a first-order approximation by the optimised functional
translation. We demonstrate how inference with counting operators can be formalised in a
calculus of resolution, paramodulation and basic arithmetic.

By swapping quantifiers the optimised functional translation eliminates in the clausal
forms all Skolem functions other than Skolem constants. It embeds modal logics in a hier-
archy of clausal logics, called path logics. The basic path logic is associated with the basic
modal logics K and K,y as well as KD, and is a fragment of monadic first-order logic
with function symbols. Basic path logic includes only nullary functions and one designated
binary function, namely juxtaposition. Terms are lists (or strings) of variables and con-
stants and encode accessibility as paths from the initial world. Terms, also called paths,
satisfy the restriction that different occurrences of one variable in any clause have the same
prefix. This property, called prefiz stability, is essential for the decidability proof. We
prove a general result that any complete resolution procedure with condensing is a deci-
sion procedure for the satisfiability problem of formulae in certain path logics, including
basic path logic. The result is important for a number of reasons. It immediately follows
that standard unrefined resolution is a decision procedure for many non-transitive uni- or
multi-modal logics, including K and extensions with D and 1" as well as their multi-modal
versions, and also $5. We also get decision procedures for the transitive modal logics KD/
and S4, though these are not optimal. Exciting about the general decidability result is its
practical value. Namely, many standard first-order theorem provers which are based on
resolution are suitable for facilitating modal reasoning. Moreover, our result allows for any
modifications and refinements, provided they are compatible with the basic calculus. This
provides considerable freedom for experimentation toward attaining good performance, or
for accommodating propositional modal logics also within specialised resolution procedures
devised for extensions and combinations of modal logics. A refinement we study is ordered
resolution, and more generally, ordered E-resolution. Practical experience with resolution
theorem proving suggests our method competes very well with state-of-the-art tableaux or
sequent-based theorem provers.

The thesis contains eight chapters. The following summarises their contents.

Chapter 1 offers by way of examples a preview of the fundamental ideas and results
presented in this thesis.

The main theme of Chapters 2, 3 and 4 is the translation of propositional modal logics
to first-order logic. Chapter 2 defines the essential concepts of propositional modal logic,

Introduction xiii

its relational semantics and the relational translation approach, and gives a formal treat-
ment of the functional semantics, its correspondence theory and the associated functional
translation method. Chapter 3 describes the optimised functional translation approach. It
investigates the transformation of second-order correspondence properties formulated in the
relational language to possibly first-order properties formulated in the functional language.
Chapter 4 presents the application of our techniques to graded modal logic. It demonstrates
how inference with counting operators can be accommodated in a resolution calculus with
paramodulation and the capability to perform basic arithmetical calculations.

Chapters 5, 6 and 7 are concerned with theory resolution and the problem of decidability
by resolution. Chapter 5 introduces the hierarchy of path logics, the clausal logics to which
modal logics translate by the optimised functional translation. It describes and studies the
closure properties of path logics under unrefined resolution procedures with and without
theory unification. Chapter 6 focuses on the decidability problem of path logics satisfying a
term depth bound assumption. It proves that unrefined resolution is a decision procedure for
path logics for which (i) a term depth bound exists, (ii) (theory) unification is decidable, and
(iii) normalisation reduces terms to terms of basic path logic. Chapter 7 presents an ordered
E-resolution calculus with normalisation and is concerned with a conversion to clausal form
that uses the technique of renaming and produces clause sets of reduced complexity.

Chapter 8 is the conclusion and summarises the results obtained. To emphasise the prac-
tical value of the decision results the chapter also includes graphs of an empirical analysis of
the performances of resolution theorem provers as compared to special purpose implemen-
tations for K.

The thesis concludes with a bibliography, an appendix, a list of figures, an index of
notation, an index of schemas, rules and logics, and a subject index. Appendix A briefly
describes the automated method to modal correspondence theory realised with a tool, called
SCAN. Appendix B defines orderings on terms, atoms, literals and clauses, and gives the
proof of ground completeness for ordered E-resolution (defined in Chapter 7).

Most parts of this thesis have been presented at various conferences and have been
published or are due to be published in proceedings volumes or journals.

Chapter 3 (on the optimised functional approach) is based on joint work with Hans
Jirgen Ohlbach and appears in the Journal of Logic and Computation. Chapter 4 (on
graded modal logic) is based on joint work with Hans Jiirgen Ohlbach and Ullrich Hustadt
and is published in a collection on Proof Theory of Modal Logic. The presentation here
corrects some misprints and includes some additional remarks. The notation has been
adapted so as to be conform with the notation of this thesis. The performance analysis
briefly mentioned in the Conclusion is joint work with Ullrich Hustadt which was presented
at the Fifteenth International Joint Conference on Artificial Intelligence. The long version
is to appear in the Journal of Applied Non-Classical Logics.

All other parts are entirely my own work. Chapter 2 (on the functional approach) is a
formalisation from a semantic perspective of what is known, for the most, including some
original results. The material of Chapter 5 (on path logic and theory resolution) can be
viewed as combining and improving the ideas and methods of Ohlbach (1988a, 1991), Zamov
(1989) and Auffray and Enjalbert (1992). The most important result, I feel, is the general
decision result of Chapter 6 for a certain class of path logics. The first version of the proof
is outlined in an extended abstract appearing in a volume of contributions to the Advances
in Modal Logic ’96 workshop, and a detailed version is available as a research report. The
new proof presented here is considerably simpler. The material of Chapter 7 (on ordered

xiv Introduction

E-resolution) has not been published before.

The following lists in chronological order the work which has been published or is due
to be published.!

Functional translation and second-order frame properties of modal logics. Jointly with H.
J. Ohlbach. Research Report MPI-1-95-2-002. Published in Journal of Logic and
Computation 7(5), 581-603 (1997).

Translating graded modalities into predicate logic. Jointly with H. J. Ohlbach and U. Hu-
stadt. Research Report MPI-1-95-2-008. Published in H. Wansing (ed.), Proof Theory
of Modal Logic, Vol. 2 of Applied Logic Series, Kluwer, pp. 253-291 (1996).

Symbolic arithmetical reasoning with qualified number restrictions. Jointly with H. J. Ohl-
bach and U. Hustadt. In Proceedings of International Workshop on Description Log-
ics’95, Vol. 07.95 of Rap., Univ. degli studia di Roma, pp. 89-95 (1995).

Resolution is a decision procedure for many propositional modal logics. Presented at the
Workshop on Advances in Modal Logic (AiML’96). Research Report MPI-I1-97-2-
002. 'To appear in in M. Kracht, M. de Rijke, H. Wansing and M. Zakharyaschev
(eds), Advances in Modal Logic, CSLI Publications, Stanford.

On evaluating decision procedures for modal logics. Jointly with U. Hustadt. In M. Pol-
lack (ed.), Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI’97), Vol. 1, Morgan Kaufmann, pp. 202-207 (1997).

An empirical analysis of modal theorem provers. Jointly with U. Hustadt. To appear in
the Journal of Applied Non-Classical Logics.

Relational grammars for knowledge representation. To appear in Bottner, M. (ed.), Pro-
ceedings of the Workshop on Variable-Free Semantics, Fachbereich Sprach- und Liter-
aturwissenschaft, Univ. Osnabriick (1997).

E-unification for subsystems of S4. To appear in the Proceedings of RTA’98, Lecture Notes
in Computer Science, Springer, Tsukuba, Japan (1998).

Optimised functional translation and resolution. Jointly with U. Hustadt and C. Weiden-
bach. To appear in the Proceedings of TABLEAUX’98, Lecture Notes in Computer
Science, Springer, Oisterwijk, The Netherlands (1998).

LA list of my earlier work concerned with relation algebra, Peirce algebra and knowledge representation
can be found at http://www.mpi-sb.mpg.de/~schmidt/publications/.

Chapter 1

Preview

This chapter introduces the optimised functional translation approach. It gives a preview
of the most important ideas and methods used in this thesis. For illustration, because non-
serial modal logics can be embedded in serial modal logics, we focus in this chapter on serial
modal logics and frames with total accessibility relations.

1.1 The optimised functional translation

Just as the relational translation method of modal logic is based on its relational seman-
tics, the functional translation method and the optimised form are based on its functional
semantics. A functional model is a tuple (W, AF,.) of a set of worlds, a set of so-called
accessibility functions and a valuation mapping that determines the truth of atomic vari-
ables. The essential difference to the familiar notion of validity is that validity for modal
expressions is defined in accordance with

M,z =E<Cp iff M,a(z) E ¢ for some function a € AF

1.1
(L) M,z =0¢p iff M,a(z) = ¢ for any function o € AF.

Figure 1.1 illustrates this definition.

The functional semantics can be viewed as arising from the relational semantics by a
reformulation of relations as sets of functions. The key idea is that any binary relation R
can be defined by a set of (partial or total) functions. In particular, any total relation can
be defined by a set of total functions. For example, a set of total functions that defines
the relation R depicted in Figure 1.2 is the set AFp = {«,} defined as illustrated in
Figure 1.3(a). Any directed edge labelled by « linking two worlds = and y, say, indicates
that the function @ maps the world z to y, that is, a(z) = y. This definition of R is not

o Ve
[0 . .
OQO o~ 4 (P N

Figure 1.1: Validity in a functional model (W, AF,.).

2 Preview

D
ey
R

Figure 1.2: A sample binary relation R

o Daﬂ 3%5

/
a \ 5 \
. 4 570 ap / s
}d 03 «a »}d .3 Y
(a) R defined by {a, 8} (b) R defined by {~,d}

Figure 1.3: Two functional encodings of R

unique. Another set of total functions that defines R is the set {7, d} with v and § defined
as illustrated in Figure 1.3(b). The function vy is like @ and 4 is like 3, except that v maps
the world at the root to its lower successor whereas « maps it to the upper successor, and
¢ maps it to the upper successor whereas 8 maps it to the lower one. A third definition of
R is the set AFr = {a, (3,7, 6} including all four functions. The set of all total functions
that define R is the largest defining set. In this example this set contains eight functions
(its cardinality is determined by the amount of branching in R).

There are many different functional frames which represent the same relational frame.
One such functional frame is sufficient for proving the existence of a model. This means,
we have some freedom in choosing a functional frame which is suited best for our purposes.
The special frame we use is the frame in which the defining set of functions is the set of all
total functions that define R. This frame is referred to as the mazimal functional frame.
We will prove any modal logic complete in the relational semantics is also complete with
respect to the class of all functional frames, and more important, it is also complete with
respect to the class of all maximal functional frames. In maximal frames enough functions
are available, which can be exploited in reducing variable dependencies in (i) the functional
correspondence properties and in (ii) the optimised functional translation.

The functional correspondence property of the axiom schema 4 in a serial context is the
formula

Vz Yaf3y Bla(z)) = v(z)

which expresses ‘local composability’: Viewed from inside any world z, the function v is
the composition of @ and 8. In the maximal frames, as all functions defining a given total
transitive relation are available, in particular, also the composition of any pair of functions,
‘global composability’

(1.2) Vap3y Vz Bla(z)) = y(z)

is true. It is open to which extent this principle generalises. We know transitivity and
reflexivity are accommodated by their global forms, visualised in Figure 1.4. Global identity

1.1 The optimised functional translation 3

4 transitivity °

T reflexivity 03 e
Figure 1.4: Tllustration of functional correspondence properties.

is given by
(1.3) Jda Vz a(z) = =z,

and defines « to be the identity function (denoted by e). In these instances the elimination
of the dependency on the world variable preserves both satisfiability and unsatisfiability
because the respective classes of maximal frames are closed under functional composition
and identity.

The following movement of quantifiers over functions is also possible:

(1.4) JaVB ¢ becomes V[3a 1,
which is based on the equivalence
JaVB ¢ < VA3a

true in any maximal frame. We give an informal argument, why this is this case. Consider
the model of Figure 1.5. The formula OCp is true in the root x because both its successor
worlds y; and y each have a successor in which p is true, namely z; and z3. In the
associated maximal functional model the defining set of accessibility functions is a set AFp =
{a1,... ,ag} with cardinality eight. Suppose in this model the following is not the case.

(1.5) Va3p ‘p is true in B(a(z))’ — IVa ‘p is true in B(a(zx))’.

Suppose the antecedent is true, but no § in AF'g is such that for every function «, p is true
in the world f(«a(z)). Assume aq,...,a4 map y; to z; and as,... ,ag map y; to z9, and
Qs, ... ,0g Map yYs to z3 and ag,... ,a4 map ys to z4. Because AFpg is the set of all total
functions encoding R there must be a function among the as, ag, a7, ag which is like a; for
any world except for the world yo. In particular, this function as, say, assigns yo to the
same world as «; does. This contradicts the assumption that a; maps ys to z4. Hence, 8
can be taken to be the function a7 which proves (1.5).

The optimised functional translation of a modal formula ¢ is obtained by a sequence
of two transformations: (i) the functional translation mapping which mimics the definition
of truth in any functional model, and (ii) the so-called quantifier ezchange operator T,
which swaps quantifiers according the rule (1.4). We will illustrate the conversion to first-
order logic by way of an example. In order to get first-order formulations the functional
translation simulates terms of the form S(a(z)) by [z, a], 5], abbreviated [za/], using the
functional application operation [-,-]. According to (1.1), the functional translation of a
diamond formula and its dual is specified by

1 (Op,8) = Jami(p,[sa]) and m(Bep,s) = Va mp(p, [sa]),

4 Preview

1,2,3,4 Dp

/\

1
5,6,7,8

5,6,7,8 Dp
% Qﬁp

e
N\

LA

Figure 1.5: A relational model of R

where s has one of two forms, either z or [z0;...0,], and « is a variable that does not
occur in s. The following formula is a theorem in the serial modal logic KD.

a By de

Its functional translation is
O¢(p1) = Vo wp(p1,2) = Vo Va (36Vy ~Plrafy] V I63e Plzade]).

The propositional symbol p in p; translates to a monadic predicate P. The boxes translate
to universal functional quantifiers and the diamonds to existential functional quantifiers, in
such a way that each occurrence of a modal operator is uniquely associated with a func-
tional variable, as indicated in (1.6). The quantifier exchange operator moves all existential
quantifiers inward and we get:

Y (p1) = Yz Va (Vy3IB ~Plzafy] V 363e Plzadel).

The order of the quantifiers in the prefix of the first part of the disjunction has been reversed.
Negation produces

=Y (p1) = Iz Ja (IYVB Plrafy] A VéVe —Plrade]),
in which all existential quantifiers precede all universal quantifiers. Its clausal form is:

1. P 1. P
lzaf] which simplifies to 2]

2. ~P[zade] 2. - Plade]’

because the constant z occurs in every term and carries no information. Formally, z is
replaced by the ‘empty list’ []. Underlined symbols denote constants and non-underlined
symbols denote variables. One resolution step is possible and produces the empty clause.
This proves the formula —YII¢(p;) is unsatisfiable, and consequently, p; is a theorem of
KD. The optimisation obtained with T has the pleasant and important property that, the
Skolemised clausal form of =YII¢(¢) for any ¢ does not contain any Skolem terms other
than constants.

1.1 The optimised functional translation 5

By completeness with respect to maximal frames it follows that for any complete modal
logic K3, ¢ is provable in KX iff YII;(X) A =YIIf(¢p) is unsatisfiable in second-order logic.
When YTII;(X) is equivalent to a first-order formula then

¢ is provable in K% iff YII;(3) A =YII¢(¢p) is first-order unsatisfiable.

This kind of statement holds for any translation approach that is sound and complete, in
particular, for the relational translation II,: For any complete and first-order definable logic
K3, provability reduces to testing unsatisfiability of IT,.(3) A —II,(y) in first-order logic.
Since completeness does not imply first-order definability the condition cannot be relaxed.

One important advantage we claim for the optimised functional translation is that
YTIf(X) is first-order for a wider class of logics than II,(X) is. In general, modal axiom
schemas translate to second-order formulae with quantifiers over the unary predicate sym-
bols. Few axiom schemas are first-order definable. This limits the applicability of first-order
deduction to modal logics that are complete with respect to a class of frames restricted by
a set of first-order properties. There are modal logics, like K plus McKinsey’s schema M,
which are complete with respect to some class of frames, but which are essentially second-
order, meaning provably no first-order relational characterisations exist. The second-order
quantifier elimination method of Gabbay and Ohlbach (1992) implemented in SCAN pin-
points the problem. SCAN automatically reduces the input for M to a set of clauses free of
unary predicates but it is impossible to reconstruct the existential quantifiers for the Skolem
functions f and g in a linear fashion, since f depends on %; and g depends on z; and both
f(y1) and g(z1) occur in the same clause:

_'R(E, yl) \ R(yla f(yl))
~R(z,21) V R(z1,9(21))

“R(z,y1) V ~R(z,2z1) V f(y1) # g(z1).

Swapping existential and universal quantifiers makes the hampering variable dependencies
disappear, and a remarkable property of the functional translation and the optimisation
operator T is that this is exactly what happens for M. M is first-order definable in maximal
functional frames. Via the optimised functional translation, first-order deduction is now
applicable to a larger class of modal logics.

The structure of any modal formula determines a characteristic ordering of the variables
in the terms of the functional and also optimised functional translation. This ordering is
captured in the notion of prefiz stability, which says that any variable in IT;(¢), YII;(p) and
their negations has a unique prefix, since any modal operator is uniquely associated with a
variable. For example, in (1.6) the unique prefix of o in any term of II;(p1), YII¢(p1) and
—YII¢(p1) is x, the unique prefix of § is [za|, etcetera. Prefix stability is a fundamental
concept that is exploited in many results of this thesis, including the proof that quantifiers
may be swapped, decidability of theory unification and decidability of resolution. The
prefix stability property reflects that frames can be assumed to be generated frames which
embodies the pleasant property of propositional modal logic that truth of a formula in a
world does not depend on predecessor worlds. We advance that this is another advantage
of the functional encodings over the relational encoding. The functional translations admit
a new perspective of modal logic that is path oriented as opposed to world oriented. In
functional models for Gy to be true at a world we require the existence a one step path
(or function) that leads to a world at which ¢ is true. Evaluating the truth of a formula

6 Preview

(7] &

. card(Y) >n : : card(Y) <n

’nS@'i.Sp .nW‘io—mp
. .
Figure 1.6: The semantics of ¢,¢ and B, .

of modal depth greater than one requires following paths (determined by compositions of
functions) from the initial world. Thus, we will view terms of the form [ra;...a,] or
[... ap] to be paths from worlds z or [], respectively.

1.2 A case analysis: Translating graded modal logic

In basic modal logic it is not possible to express numerical information, like ‘a city is a
place with more than 100000 inhabitants’. There are extensions of K(,,) with additional
numerical quantifier operators, called graded modalities. In this context

(1.7) city = place N 4#100000p€0pPle

is a suitable definition. Graded modalities are (uni-modal or multi-modal) modal operators
indexed with cardinals which fix the number of worlds in which a formula is true. A formula
¢, is true in a world iff there are more than n worlds accessible by a given R in which ¢
is also true. The dual formula B, p, given by —4,-¢, is then true in a world iff there are
at most n accessible worlds in which —¢p is true. More formally, the semantics is defined in
terms of one accessibility relation R by

M,z = $pp iff card({y| R(z,y) and M,y = ¢}) >n
M,z |= Bhp iff card({y|R(z,y) and M,y |= —p}) <n,

as is illustrated in Figure 1.6. (For any set A, card(A) denotes the cardinality of A.) In
the multi-modal context graded modalities have the form ¢;, or B;, and are defined by
a family of relations. We will restrict our attention to graded modalities in a uni-modal
context as defined inside the graded modal logic K.

The semantics is very natural and intuitive, but it has one disadvantage. Most in-
ference systems based on this semantics, in particular, tableaux systems, deal with the
¢.-operators by generating a corresponding number of worlds explicitly. For example, the
formula €100000people triggers the generation of 100001 constant symbols as representa-
tives for the individuals denoting people. Except for counting these constant symbols and
for comparing the length of lists, known tableaux systems do not provide for arithmetical
computation. In particular, reasoning with symbolic arithmetic terms is impossible. For
example, in tableaux systems the formula 4,.1p — #,p which is true for all n can only be
verified for concrete values of n, but in general it cannot be verified for arbitrary values of
n.

A direct translation of formulae with graded modalities into predicate logic requires
the axiomatisation of finite domains. This is feasible only for small cardinalities. We may
translate sentence (1.7) as follows:

1.2 A case analysis: Translating graded modal logic 7

Vz (city(z) <> (place(z) A Jy1...y100000 (Y1 Y2 Ay1r ZYs A - Ay # Y100001 A
Y2 FYs A - AN y2 # y1o0001 A

100000 7 Y100001 A
inhabited-by(x,y1) A ... A inhabited-by(z, y100001) A

people(y1) A ... A people(¥100001))))-

The translation of ¢,-expressions requires (n + 1)n/2 in-equations. Even for small n this is
more than current theorem provers can cope with. One immediate alternative is introducing
set variables and a cardinality function, with which (1.7) can be formulated by:

Vz (city(z) <> place(x) A Y (card(Y) > 100000 A
Vy (y € Y — (inhabited-by(z,y) A people(y)))))-

This is not a feasible alternative either, for the axiomatisation of the cardinality function
then requires the above (n + 1)n/2 in-equations, and this for every n:

VY (card(Y)>n ¢ Fy1.--Ynt1 11 EY Ao Aypp1 EY A

PNAEPRANYLFY3N o AYLF Y1 A
YoFYs Ao Ay # Yng1 A

Yn 7 yn.—H))'

We present a two step translation of graded modal logics into (sorted) first-order logic. In
the first step, we transform graded modal logics into a multi-modal logic with the standard
semantics. In the second step we perform the optimised functional translation. The first
transformation accommodates modal logics of graded modalities, like K, in a new multi-
modal logic, called K g, with two kinds of modalities:

(i) ©p and O, are characterised by a relational frame of infinitely but countably many
different relations R,, (with n a non-negative integer), and

(ii) © and O are characterised by a designated relation E.

More specifically, we translate formulae of the form ¢, into ¢,0¢ and the intuitive idea
underlying this translation is as in Figure 1.7. If ¢ is true in a set Y of worlds with more
than n elements then we introduce an accessibility relation R, that connects the actual
world and a world zy which we can think of as being a representative for the set Y.! This
defines the ¢ -operator. Oy and its associated accessibility relation E expresses that ¢ is
true in all the worlds of the set Y. E connects the world zy with all the worlds in Y and can
be thought of as the membership relation. Thus, ¢,0¢ encodes ‘there is a set with more
than n elements (encoded by <) and ¢ is true for all the elements of this set (encoded by
O)’. Our first problem now is to find a sound and complete axiomatisation of the modalities
Oy Op, © and O that accommodates the graded modalities ¢,, and B,,. It turns out that
the new logic is richer and has some non-standard models which do not reflect our intuition,
but the logic encompasses the graded modal logic. We show, a formula ¢ is a theorem of a
graded modal logic iff the translation of ¢ is a theorem in the new logic. This translation
from K to K g is only an intermediary step in the transformation to first-order logic.

We do not introduce a sort Y.

8 Preview

* v
n

CpOp e R, .

E
u Z.YR) ()
Yn

Figure 1.7: The intended semantics of K g

In the second step, we translate the multi-modal logic K g into first-order logic using
the optimised functional translation. K g includes an axiom that is not first-order definable
in terms of the R,,. But like McKinsey’s axiom, this axiom reduces to a first-order formula
when using the optimised functional translation.

This sequence of translations of a system of numerical modalities first into another multi-
modal logic and then into a sorted first-order logic yields an axiomatisation in terms of a set
of clauses. This axiomatisation can be viewed as defining properties of finite sets. Instead
of counting symbols our proposed resolution calculus will also do arithmetical calculations.

1.3 Path logics and resolution

The optimised functional translation embeds the lattice of complete and first-order definable
modal logics (by the optimised translation) into a corresponding lattice of first-order logics,
which we call path logics. The name is motivated by our new perspective of the modal
semantics. Path logics are clausal logics. The weakest of them is called basic path logic,
because it is associated with the modal logics K and KD which are regarded as being basic
in the functional context. We show that any non-serial modal logic can be embedded in a
serial modal logic and a special case is that K can be embedded in KD adjoined with a new
propositional variable. Clauses of basic path logic have the form

Plafy] V =Q[ade]

and are built from constant symbols, like o and v, variables, like 8 and ¢, a special constant
symbol [], a left associative operation [-,-] and unary predicate symbols, like P and @, as
well as V and —. The only Skolem terms in basic path clauses are constants. Terms, like
[@By] and [ade], which we call paths, are required to satisfy prefix stability for variables.
This is an important language restriction that avoids chaining of variables as in the clause

Plaf] vV QI8 V Rla].

Neither 8 nor v have a unique prefix. Chaining of variables is known to cause all sorts
of difficulties in connection with theory unification and resolution. Prefix stability is an
invariance property with respect to the fundamental operations of resolution procedures,
in particular, forming resolvents, factoring and condensing. Extensions of K and KD with
different sets 3 of schemas give rise to different path logics determined by the corresponding
theories YTII;(X). The theories associated with 7" and 4 involve the formulae (1.3) and (1.2).
Their respective Skolemised formulations are:

right identity: [re] =x

associativity: [z(a o f)] = [zaf].

1.3 Path logics and resolution 9

Inference for basic path logics is facilitated by resolution with syntactic unification as
we demonstrated in a sample derivation for p;, in (1.6) above. Inference for non-basic path
logics is facilitated by theory resolution. Theory resolution combines resolution with normal-
isation and a more sophisticated unification algorithm for solving equations modulo a given
equational theory (or more generally, for testing unsatisfiability with respect to a consistent
set of clauses that defines the given theory). This thesis focuses exclusively on equational
theories for serial modal logics, concentrating on the theories defined by the equations for T
and 4, above. These determine rewrite relations, from left to right as presented above, that
produce normal forms which will be computed by recursive normalisation functions N7 and
Ny.

To illustrate the envisaged resolution procedures we consider two examples. The follow-
ing two clauses

1. Pla]
2. ~Pld'A] vV Q[B]

have no resolvents modulo the empty theory, because P[a] and P[o/(] have different lengths.
Remember [a] is our short hand notation for a([]) and [¢/f] for B(c/([])). However, modulo
right identity P[a] and P[¢/(] have a most general unifier, namely {¢' — «,3 + e}. The
resolvent is:

3. Qloe] [1.1,2.1, right identity]

Q[ce] is logically equivalent to the simpler clause Q[a]. This kind of simplification will be
achieved with normalisation functions applied eagerly. Here, the normalisation function N
will replace clause 3. by:

3. Qlal. [3, NT]

Unification modulo the associativity law is realised by an algorithm akin to the first uni-
fication algorithm for general associativity proposed by Plotkin (1972). It introduces new
variables and unfortunately normalisation does not prevent term growth, which this example
illustrates:

1. Play]V Q]
2. ~P[d/] V R[d/f].

A most general unifier of Play] and P[d/8] is {y — 7' o8, o + a o'} with 7/ being a
new variable. Thus, a resolvent of 1. and 2. is:

3. Qla(y o B)] V Rla(y o B)]. [1.1,2.1, associativity]

The normalisation function N4 for associativity reorganises terms according to the rewrite
rule [z(a o B)] = [zaf)] replacing clause 3. by the following.

3. Qlay'B] V Rlay']. [3, N]

Unification for paths under right identity is decidable. Unification under associativity
is also decidable, since paths are linear terms. We will present an improved unification
algorithm for right identity and associativity that employs mutation rules, which have the
advantage over lazy paramodulation rules that they apply to the top symbols of any pair of
terms, making paramodulating into terms superfluous.

10 Preview

1.4 Decidability by unrefined resolution

We know that any complete resolution procedure R is a semi-decision procedure for first-
order logic. Given any unsatisfiable set S of clauses the procedure is guaranteed to produce
a contradiction in the form of the empty clause. But, the computation will not necessarily
halt if S is a satisfiable set. When R halts without producing the empty clause then the
input set S is satisfiable. Deduction also stops when no new clauses can be produced which
are not variants of clauses already present.

We consider in an example how resolution continually produces more and more clauses
with increasing complexity, for the relational translation. Proving the satisfiability of po =
O(p — Op) amounts to proving the satisfiability of the following set of clauses:

1. =R(z,y) V =P(y) V R(y, f(v))
2. =R(z,y) V ~P(y) V P(f(y))-

(z denotes a constant.) The clauses have two resolvents.

3. =R(z,z) V =P(z) V ~P(f(z)) V ~P(f*(z)) [1.3,2.1]
4. =R(z, f(y)) V R(f(y), f*(y)) V =R(z,y) V ~P(y) [1.2,2.3]

Clause 4. resolves with clause 2. and yields:

5. =R(z, f*(y)) V R(f*(v), f*(v)) V =R(z, f(y)) V ~R(z,y) V -P(y) [2.3,4.4]

This clause also resolves with 2., and again, the resulting resolvent resolves with 2., and
so forth. Repeatedly resolving the new resolvents with 2. yields increasingly longer and
more complex clauses. None of the clauses is redundant and can be deleted. In the limit,
our sample input set S has infinitely many non-variant resolvents. This shows standard
unrefined resolution does not terminate for relational translations of modal formulae.? (I
leave it to the reader to verify that the computation terminates for the optimised functional
translation of ps.)

The example demonstrates, one reason for an unbounded number of non-redundant
resolvents being produced is:

(a) The level of nesting of the terms increases indefinitely (in the example, f(y), f%(y),
f3(y), and so on).

Another reason is:
(b) The number of literals in the resolvents increases indefinitely.

The idea of our decision proof for the optimised functional translation is that of Joyner
Jr. (1976), which has become standard. The aim is to show that any resolution procedure
combined with condensing, given by Ronp, avoids the situations (a) and (b). This is done
by considering any class S of path clauses generated by saturation upon any finite input set
S, and exhibiting for the class,

2There are refinements of resolution that guarantee termination for the relational translation, for which
refer to Fermiiller, Leitsch, Tammet and Zamov (1993) and Hustadt (1997).

1.4 Decidability by unrefined resolution 11

(A) the existence of a term depth bound, as well as
(B) the existence of a bound on the size (cardinality) of any clause

It is important to note that (B) is tied with the maximal number of variables which can
occur in any clause. Given that there is a finite supply of predicate symbols and constant
symbols (those of S), if a bound exists for the number of variables of any clause then the
number of literals in any clause is bounded.

It turns out, no refinements are necessary as unrestricted resolution and condensing
decides satisfiability for basic path logic as well as certain path logics for which (A) holds.
This follows from a very general decision result:

Assuming that a term depth bound exists, there is also a bound for the size of
any clause in the class S of all non-variant basic path clauses built from a finite
supply of constant and predicate symbols.

As can be seen in the derivation for p; above, syntactic unification does not expand terms, as
bindings either rename variables or instantiate variables with constants, and the term depth
bound assumption is true. Consequently, any complete resolution procedure that includes
condensing is a decision procedure for basic path logic and the associated modal logics,
namely K and KD, as well as S5. The result has more general consequences. The result
applies to any theory resolution procedures (unrefined or refined) and to path logics for which
(i) a term depth bound exists, (ii) (theory) unification is decidable, and (iii) normalisation
eliminates non-constant functional terms introduced by unification. These conditions hold
for resolution modulo right identity and associativity. For associativity, (i) can be met by
an artificial term depth bound extracted from the literature. Thus, decidability follows also
for KT, KD} and Sj.

Suppose a term depth bound exists, that is, (A) holds. We aim at proving (B), namely,
exhibiting a bound for the number of literals and/or variables in any clause of S. The
following example illustrates that variable numbers may increase during resolution.

1. Pla]V Qlaf)
2. =P[d/] V R[d']
3. Q[af]V Rlay] [1.1,2.1, empty theory]
Some superfluous variables and literals can be eliminated by condensing, though not in this

example. A clause is condensed if there is no substitution ¢ such that Co g C, that is, if it
does not subsume a proper factor of itself. Condensing reduces

Pla] vV P[G] to P[g] by the substitution {« — G}, and
Pla]V P[y] to Ply] by {ar 1~}

The pairs are logically equivalent (since, for instance, P[g] logically implies P[a] V P[] and
Pla] v P[] subsumes and implies P[3]).
The following example gives some indication of the potential size of clauses in S.

Pla 1] V Plafiv] V Qa B]
V Q[aBa] V PlaB2y3] V Qlafaya] V Plafzys] V Qla B3 7s)

It belongs to the class of clauses with maximal path length m = 3 and the number of
predicate symbols plus constant symbols is £ = 2. The clause has 8 literals and 1 + 3+ 5

(1.8)

12 Preview

aBr bp a L bp afr | bp afr b p
abimnp a Bimp af | yp afim|p
abryq a Pfry2q afr|v2q aBriv|q
aB bgq a (2 bg afe| bg afr b g
afy3p a Boysp afe v3p afays | p
afrysg a Payaq afe|v1g afrys g
afs s p a B3ysp afs | v p afBsys | p
afs s g a P34 afs | vs4q afzys | q

Figure 1.8: The matrix term representation of (1.8) and its prefix partitions.

variables. The problem is, how do we go about proving there is a bound for the number
of literals and/or variables in any such clause. We solve this problem by introducing the
notion of prefix partitioning which induces a nested division of any clause over which an
inductive argument establishes the required cardinality bounds. We develop our argument
for sets of terms and not for clauses. We encode clauses as sets of terms all with the same
length, namely m + 1. The clause (1.8) is encoded by the first set in Figure 1.8, depicted
as a matrix. The symbols b, p and g are new. p and g are so-called predicate constants
that are uniquely associated with the predicate symbols P and). b is the blank symbol
for filling rows so that the predicate constants occur all in the last column. Our goal is to
exhibit the existence of a bound for the height of any such matrix.

Prefix partitioning divides any prefix stable clause according to common prefixes of the
same length. Figure 1.8 depicts the prefix partitions by common prefixes of length zero,
one, two and three, respectively. The first two partitions by common prefixes of length
zero and one coincide and are the entire matrix, because every term begins with [|] and
a, respectively. Figure 1.9 combines the three prefix partitions in one picture, and more
important, it visualises the tree-like division of any prefix stable clause. This division also
guides our induction proof. The literal and variable bounds we give are m-story exponential
functions.

1.5 An ordered refinement

It is not our intention to use unrefined resolution and condensing for automating modal
inference. The generality of the decidability result leaves us lots of room for experimenting
with different refinements for improved performance. We will not attempt to give optimal
refinements. Very many refined procedures exists, for example hyper-resolution, semantic
resolution and lock resolution, to mention just a few. Bachmair and Ganzinger (1994, 1997)
have developed a powerful and very general theory of ordered resolution that accommodates
most of the familiar procedures, including the ones just mentioned. Their theory admits
a strong notion of redundancy which encompasses most known simplification and deletion
rules. Based on the Bachmair-Ganzinger method of saturation up to redundancy we will
define an ordered E-resolution calculus for finitely based equational theories E. The spin-

1.5 An ordered refinement 13

a|f|b|p
al|Bi|m|e
alBr|r|4
alBe|b|g
alBz|v|p
a|P2|v|a
| B3| | D]
a|Ps |7 |4

Figure 1.9: The nested prefix partition of (1.8).

off is, condensing, normalisation and other theory specific simplification rules are instances
of the general redundancy notion. The difficulty of devising a specialisation of ordered
resolution for a particular theory is, finding a suitable ordering < on atoms that will work.
An important prerequisite for the completeness of ordered E-resolution is the compatibility
of < with E. It requires that for any atoms A, A’, B, B',

if A< B, A and A’ are E-equivalent and B and B’ are E-equivalent, then A’ < B’.

The theories we concentrate on are determined by combinations of right identity and asso-
ciativity which form convergent rewrite systems based on the rules

[ze] = x and

[z(co f)] = [zaf].

The rules are oriented by the lexicographic path ordering <, defined from right to left with
e < 0 < [-,+]. The ordering <, is not compatible with either of associativity or identity.3
We will use the following ordering which is compatible with the relevant theories: For any
atoms A and B,

A —<1>;0 B iff (i) Ng(A) <ipo NE(B) (the ordering of the normal forms) or
(ii) Ng(A) = Ng(B) and A <p, B.

Apart from achieving greater efficiency, we hoped that an elementary ordered res-
olution decision procedure can be devised for associative path logics (corresponding to
transitive modal logics). After all, most of the known solvable fragments of first-order
logic (including the relational and semi-functional translations of many decidable modal
logics) can be decided by some form of ordered resolution (Joyner Jr. 1976, Fermiiller
et al. 1993, Hustadt 1997). In many cases an essential ingredient is an encoding and often
the encoding uses the method of renaming (or forming definitional forms). Transformation
to clausal form by renaming has polynomial as opposed to exponential overhead, which the
naive transformation via negation normal form has.

3Tn Section 7.2 and the subsequent sections the index in <, will be suppressed.

14 Preview

Renaming will be considered on the modal level. A given modal formula ¢ is reformulated
by introducing names for subformulae of ¢. For example, renaming produces for

p3=0Op— 0O0O0p
a1 aszasa

the formula

p§ = (@1 + Op) A D(ar ¢ Op) A 0%(ay > Op)
A (a2 <> Oaq) A O(ae < Oaq)
A (a3 <> Oag)]
— (a1 — a3).

It is called a modal definitional form of p3. a1, a9,as are the new variables introduced as
indicated: ay for both occurrences of Op, ao for Oay; and ag for Oas. The conjunction
(a1 > Op) A O(ay <> Op) A O%(a; ¢ Op) is abbreviated by O®) (a; <> Op). It constitutes
the definition of Op and is determined by the maximal modal depth of any occurrence of
Op in p3. Definitions of the general form O can often be simplified. In KT, because
Op — p is an axiom schema, 0™ implies O(™), meaning the definition simplifies to 0.
For the schema 4 = Op — OOp the definition simplifies to 014 and in S4 which includes
both schemas, the definition can be simplified to just Og.

Definitional forms are not unique. We consider forms of renaming producing so-called
prefix ordered clauses. Let Es denote a disjunction of unary literals all with the argument
s. A prefix ordered clause has the form

Eos V Eq[su1] V Ea[suiug] V ...V Ep[su; ... up),

where each u; is either a variable or constant. A prefix ordered clause is a clause of basic path
logic with the set of its terms being totally ordered by the proper subterm ordering. Un-
der the empty theory and associativity this form is preserved by ordered E-resolution with
normalisation. All the variables of any prefix ordered clause occur in the term [su; ... up].
Given that a term depth bound (A) exists, the existence of a bound (B) for the maxi-
mum number of variables in any condensed clause is immediate, and decidability follows, in
particular, for the basic path logic.

Introducing new names for each non-literal subformula of the given ¢ generates clauses
of the form

E()[] \Y El[al] \% EQ[OQOQ] V...V En[OthQ cee Oén] \% En+1[()é1052 e anu]

for u a variable or constant and 0 < n < m for some m. This form is also preserved by
ordered E-resolution under the empty theory and associativity, and decidability for basic
path logic is evident. Moreover, an improved bound for the number of literals of any
condensed clause of this form exists and is a polynomial in the given m and k, as opposed
to the m-story exponential bound for unrefined resolution.

Devising a resolution decision procedure for associative path logics amounts to finding
simplification rules and other strategies that prevent terms to grow indefinitely. We will
discuss this problem without presenting a satisfactory solution.

Chapter 2

Modal logic and the functional
translation

This chapter provides some background on propositional modal logic and its standard rela-
tional semantics and it introduces the functional translation.

Historically, the functional translation approach appeared simultaneously and indepen-
dently in the late eighties in a number of dissertations and publications, namely Ohlbach
(1988a, 1988b, 1991), Farinas del Cerro and Herzig (1988, 1989), Herzig (1989), Auffray
and Enjalbert (1992) and Zamov (1989). Except for Zamov who considers the logic S/ the
functional translation method is defined for quantified modal logic. Survey papers are by
Ohlbach (1993b) and Farinias del Cerro and Herzig (1995).

The functional translation approach is a semantic approach (as opposed to a syntactic
approach which encodes Hilbert-style axiomatisations, see Morgan 1976). It is based on an
alternative functional semantics of modal logic, which evolves naturally from the standard
relational semantics. Starting with a brief review in Section 2.1 of the essential background
on modal logics, the relational semantics and the relational translation, Sections 2.2 and 2.3
introduce the functional semantics and its correspondence theory. Section 2.4 defines the
functional translation mapping and presents a syntactic proof of its completeness. The func-
tional translation mapping embeds modal logics in a lattice of logics we call non-optimised
path logics. The weakest logic in this lattice is called basic non-optimised path logic and will
be defined formally in Section 2.5. One of its pleasant properties important in all subsequent
chapters is prefix stability. Finally, Section 2.6 is concerned with the observation that under
the functional perspective the basic modal logic is the serial modal logic KD rather than
the logic K.

2.1 Modal logics and the relational semantics

The reader is assumed to be familiar with propositional modal logic. Good introductory
textbooks on modal logic are Chellas (1980), Goldblatt (1987) and Hughes and Cresswell
(1996, 1984). There are numerous survey papers, including Bull and Segerberg (1984) and
Fitting (1993). The decisive survey on correspondence theory is van Benthem (1984). The
purpose of this section is to review briefly the basic notions of normal modal logics, including
the relational translation.

K and K, are the basic modal logics we consider. The language of basic modal

15

16 Modal logic and the functional translation

logic is that of propositional logic plus one or more unary modal operators. Propositions
are interpreted as unary predicates of worlds and the modality determines a restricted
form of quantification on a binary relation. In applications like knowledge representation
quantification is over more than one binary relation. Description logics are multi-modal
logics with several modalities (Schild 1991, van der Hoek and de Rijke 1995). The modalities
are <, for uni-modal logics, and <; with 7 in some index set, for multi-modal logics. Since
uni-modal logic is the instance of multi-modal logic in which the index set is a singleton
set, we give the definition of the basic multi-modal logic K(,,). Let V be a finite set of
propositional variables p,q,r,... and let m be a natural number. A modal formula is
defined inductively by:

(i) Every propositional variable p in V' is a modal formula.

(ii) L (false) is a modal formula.
(iii) ¢ — v is a modal formula, when both ¢ and 1 are modal formulae.
(iv) ©jp is a modal formula, when 1 < ¢ < m and ¢ is a modal formula.

The Boolean connectives =, V, A, <> and T (truth) are defined as usual. The modal box
operators O; are duals of the respective diamond operators. By definition, O;¢p = =<,
for any modal formula ¢. A modal schema is a modal formula representing a collection of
modal formulae as determined by the schema. For example, by the schema C;p — p we
mean the collection of formulae {<Cjp — ¢ | ¢ is any modal formula}. A modal aziom is an
instance of a modal schema.

A normal modal logic is defined by a set of modal formulae which includes all proposi-
tional tautologies over some modal language and the schema

K Oip—q) — (Bip =~ Dig)

for each modality, and which is closed under modus ponens and the rule of necessitation:
MP if Fp and Fq then Fp—gq
N if Fp then F O;p.

K and K, are the weakest normal modal logics. In general, normal modal logics are
extensions of the logics K and K(;,) with additional schemas like:

D O;p — <p
T Oip = p

B p— 0;0p

4 O,p — O0;0;p

and additional rules of the form
(2.1) if Fy; and ... and F ¢, thenF .

Throughout the thesis we let ¥ be a finite set of such schemas and rules. By K¥ and K;,,)Z
we denote the smallest normal modal logics containing the schemas in ¥, closed under the
additional rules in . We also use the notational convention by which KT/, for example,
denotes the smallest extension of K in which both T" and 4 are schemas. Alternative names

2.1 Modal logics and the relational semantics 17

for KT4 and KTB/ are S4 and S5. A modal formula ¢ is a theorem of K, K, or their
extensions iff ¢ can be derived from the axioms by using the rules of the appropriate logic.

The standard semantics of normal propositional modal logics, known as the Kripke
semantics or possible world semantics, is given in terms of relational structures called frames.
A frame of a multi-modal logic is a pair F = (W, {R;};) of a non-empty set of worlds W and
a family of binary relations R; on W. The R; are the accessibility relations that determine
the truth of modal formulae in possible worlds. The defining class of frames of a modal logic
determines, and is determined by, a corresponding class of models. A (relational) model is
a pair M = (F,.) of a frame F and a waluation mapping ¢. ¢ is a function that assigns
subsets of W to atomic propositional variables. The model is said to be based on the frame
(W,{R;}i). Truth (or validity) in any model M = (W,{R;}i,:) and any world z € W is
defined inductively by:

M,z = p iff z € 1(p)
M,z fE L

M,z=p =19 iff M,z |= ¢ then M,z = 9

M,z = Oip iff (z,y) € R; and M,z |= ¢ for some y € W.

A modal formula is valid in a frame iff it is valid in all models based on the frame. The
basic modal logic K, is completely determined by the class of all frames (W, {R;};)-

Normal modal logics can be studied systematically by considering the classes of frames
they define. In general, these are subclasses of the class of all frames which define the basic
modal logics. A normal modal logic K(;,)% is said to be sound (respectively complete) with
respect to a class of frames iff for any modal formula ¢, any frame in the class validates ¢ if
(respectively iff) ¢ is a theorem in K(;,)>. A normal modal logic is said to be complete iff
it is complete with respect to some class of frames. In this thesis the logic KD has special
importance. KD is complete with respect to the class of frames in which R is total (or
serial). Figure 2.1 lists the first-order correspondence properties that restrict the classes of
frames for extensions K¥ for a selection of common schemas.

Not every modal schema has an equivalent first-order frame property. A class of frames
comprising of all frames satisfying a set of first-order conditions is said to be an elementary
class. A modal logic is first-order definable if it is characterised by an elementary class of
frames. In Chapter 3 we will consider the extension of K with McKinsey’s schema,

M Dioip — <>z'Dz'p-

The logic KM is not determined by any elementary class of frames. Such logics are said to
be essentially second-order modal logics. KM is also not canonical, which is to say it is not
validated by its canonical frame (constructed with maximally consistent sets). Nevertheless,
Fine (1975) shows KM is complete, and it has the finite model property and is decidable.
M appears to be the smallest example of a schema which is not Sahlqvist. Some normal
modal logics cannot be associated with any class of characteristic frames and these are said
to be incomplete. In this thesis we will not consider any incomplete logics.

The relational translation of modal logics imitates their relational semantics. In general,
the relational translation is a mapping II, of modal formulae into second-order logic. For
any propositional modal logic K(,,)%, II, is a function given by:

VP;...P, Vz . (p,xz) if ¢ is an axiom schema in X, and
I (p) =

Vz 7 (p, x) if ¢ is not an axiom schema.

18

Modal logic and the functional translation

D1

Funct

w. dens.

ME

Op — <p

totality /seriality: Vz Jy R(z,y)

Up —p

reflexivity: Vz R(z,z)

p— 0OCp

symmetry: Vzy (R(z,y) — R(y,z))

Up — O0p

transitivity: Vzyz ((R(z,y) A R(y,z2)) — R(z,z))
0%p — 0%

Vzyzu ((R(z,y) A R(y,z) A R(z,u)) = v (R(z,v) A R(v,u)))
Op = OO

euclideanness: Vzyz ((R(z,y) A R(z,z)) — R(y, 2))
SOp — OC0p

confluence: Vzyz ((R(z,y) A R(z,z)) = (Jw R(y,w) A R(z,w)))
0(0p — ¢) v B(Bg = p)

Vayz ((R(z,y) A R(z,2)) = (R(z,y) V R(y, 2)))

Op — Op

single-valuedness: Vzyz ((R(z,y) A R(z,z)) = y = z2)
O0p — Op

weak density: Vzy (R(z,y) — (3z R(z,2) A R(z,y)))
(Op A q) = O(00p A Og)

Vz3y (R(z,y) A R(y,z) A (Vz R%(y,z) = R(z,2)))

Figure 2.1: Relational correspondence properties

2.2 The functional semantics 19

The F; are unary predicate symbols uniquely associated with the propositional variables p;
occurring in ¢ as defined by the auxiliary function 7, (often denoted by ST). 7, is a function
from modal formulae and worlds to first-order formulae given by:

(i, ©) = P;(7)
mr(L,z) =1

7Tr(<P_>¢,)_77'7‘(90’)—)ﬂ'r(’(,b,)
T (i,) = Ty Ri(z,y) A mr(p,y)-

For sets of schemas the relational translation is given by

= /\ HT(QD),

PES

and for rules, which have the general form (2.1) II, is defined by

(Hr((pl) ARERA Hr((pn)) - Hr((p)a

The translation of schemas and rules (with I,.) yields second-order formulae with universally
quantified predicate variables P;. For some schemas and rules the translations are equivalent
to a first-order formula, for example, the translations for the schema K and necessitation
are first-order tautologies. Since K, is a complete modal logic it follows, ¢ is a theorem in
K () iff the first-order equivalent of its translation II,.(¢) is a first-order theorem. We say the
relational translation is sound and complete for K(,,). For devising inference methods based
on the possible worlds semantics it is important to know the characteristic frame properties
for the axioms in Y. Because we want to implement modal deduction in first-order theorem
provers, we are merely interested in schemas which can be reduced to first-order logic. For
complete and first-order definable modal logics, we will regard II,.(3) as denoting a set of
first-order correspondence properties associated with ¥ and

¢ is a theorem in K(,,y¥ iff II.(X) — IL(p) is a first-order theorem.

Not every complete modal logic can be defined by first-order properties of the accessibility
relations. So, in general, for any complete modal logics K,y

¢ is a theorem in K(,,y¥ iff II.(X) — II;(y) is a second-order theorem.

2.2 The functional semantics

The functional semantics can be viewed as arising from the relational semantics by a refor-
mulation of relations in terms of sets of functions. The fundamental idea is that any binary
relation can be defined by a set of (partial or total) functions.

Theorem 2.2.1 For any binary relation R on a non-empty set W there is a set AFg of
partial functions a from W to W such that the following holds:

(2.2) Vzy (R(z,y) < (Ga a€AFg A a(z) =vy)).

20 Modal logic and the functional translation

Proof. Binary relations can be regarded as many-valued functions. Any relation R is a
function mapping any element z in W to the set R"(z) of R-images of z. By the axiom of
choice, for any family F of non-empty sets there exists a function o : FF — |J F' assigning
to any non-empty set Y in F' an element of Y, that is, o(Y) € Y. o is the choice (or
selector) function. It is not defined on empty sets. If SF' is the set of all choice functions
for F then Y = {o(Y) |0 € SF}. In particular, let SF' denote the set of all choice functions
o: F — W for the family F (C 2W) of sets R"(z), for = in W, with R"(z) # (. Then,
R"(z) = {o(R"(z))| o € SF}. Observe that the composition R” o o' of R”, regarded as a
many-valued function, and any choice function ¢ is a partial function on the set of possible
worlds. Now, let AFg be the set of such partial functions, that is, let AFr = {R" o0 |0 €
SF}. Then R"(z) = {a(z) | a € AFg}, which defines each accessibility relation R over a
set W of worlds as a union of (partial) functions in AFg. O

We call any set AFg such that (2.2) holds a set of accessibility functions defining R, or a
defining function set for R.

In order to avoid quantification over function symbols (in the first-order translation),
like in (2.2), we prefer to use a list notation in which any term

afx) is rewritten as [zal.

[-,:] denotes the functional application operation defined to be a binary (non-associative)
function from W x Par(W, W) to W, where Par(W, W) is the set of all partial functions
over W. Thus, complex terms of the form a,,(...az(a1(z))) become terms of the form

[[[rei]ae] . .. Jaum)]-
We adopt the convention of omitting all parentheses except for the outer pair and write
[zanag. .. an]

instead. Reformulating (2.2), any binary relation R is then defined by a set A F'g of functions
and the operation [-,-] if

(2.3) Vzy (R(z,y) < Ja (a€AFg A [za] =1y)).

« is now a first-order variable in a many-sorted language, as will be made precise in Sec-
tion 2.4 below.

Returning to the theorem, we note that the proof does not uniquely determine A Fp. It
exhibits for (2.2) to hold that, AFf is a suitable (defining) subset of the set

{a € Par(W,W) |3z € W R(z,[za])}.

This definition is very general and also allows us to choose AFg to be a suitable subset of
the set of all total functions a from the domain of R to W given by

{a@ € dom(R) — W |Vz € W R(z, [za])}.

To emphasise the point, as an illustration consider the relation R of Figure 2.2. There
are eight different ways to accommodate this relation in terms of sets of two functions {«, 5},

! Contrary to common convention we use the notation o like relational composition: (f o g)(z) = g(f(x)).

2.2 The functional semantics 21

./.

i

Q\./.
~

Figure 2.2: A sample relation R

a/y. }7.
a a
a7 27 A
PRNICL S o
~ ~
B e B e
}70 }.
PN B N B e
T B

Figure 2.3: Four different functional encodings of R

four of which are depicted in Figure 2.3. « and 3 are total functions from dom(R) to W.
Since the relation is not total, all these a’s and (’s are partial functions from W to W.
Using partial functions from W to W there are even more possible decompositions for a
relation. Figure 2.4 shows an extreme case where the functions «ay, ... ,ag are as partial as
possible and map only one world to another world.

As illustrated in the Preview, for total relations it is always possible to define the relation
in terms of a set of total functions from W to W. For example, the relation R of Figure 2.5
is total and all functions «; are total.

For the general case that R is not total, no set AFr exists that is a set of total functions
from W to W. The problem with this is that the target logic for the functional translation

a3)

./

s

—~

Qg °

Figure 2.4: R encoded by a set of ‘most partial’ functions

22 Modal logic and the functional translation

./'D .a/'i)a,ﬂ
s A R
. is defined by .

\./Q ﬁ\‘.a/Qa,ﬁ
are B as

Figure 2.5: R encoded by the total functions « and 3

has no built-in facilities for dealing with partial functions. [zq] is a first-order term and will
always have an interpretation. Following the standard solution we adjoin a special element L
to W thus obtaining W and encode every partial function « as a total function which maps
the elements for which « is not defined to the new ‘undefined’ world L. Accordingly, any
formula in which such an ‘undefined’ situation occurs is translated into a conditional formula.
Instead of formulating the condition ‘the function « is defined for z’ by an inequality [za] #
1, we introduce a designated predicate deg, called the dead-end predicate, which is defined
by

(2.4) Vz (deg(z) ¢ Va (a€ AFRp — [za] = 1)).

Theorem 2.2.2 Let R be any binary relation on W. Let W+ = W U {1}. The following
defines R by a set AFg of total functions o from W+ to W-: For any z,y € W

(Def-R) Vzy (R(z,y) < (—degr(z) A Ja a€ AFg A [za] = vy))
and deg defined by (2.4).

Proof. We adapt the proof of the previous theorem. Let der be the set {z|—-3y R(z,v)}.
Let AFR be the set of functions « defined by

() (R"oo)(z) ifz ¢ deg and o is any choice function
a(z) =
L otherwise.

The « are well-defined (total) functions from W+ to W-.

Let z,y € W be arbitrary. (z,y) € Riff y € R"(z) if z & der and y € R"(z) iff z & deg
and for any choice function o we have, (R"” o 0)(z) = y iff z & der and there is a function
a in AFg such that a(z) = y. O

(Def-R) defines any binary relation by a set AFg of total functions and a special set der of
worlds, those without R-successor worlds. The right hand side of (Def-R) reads, if = is not
a dead-end in R then there is a total function a, which maps x to y. If R is total then dep
coincides with W and (Def-R) simplifies to (2.3).2

Now we are ready to define the functional semantics formally. A functional frame is a
quadruple

F = (W, {de;}i, {AF;}i, [),

>There is a mistake in (5.2) of Ohlbach and Schmidt (1997), the ‘—’ should be an ‘A’.

2.2 The functional semantics 23

with W a non-empty set of worlds, {de;}; a family of subsets of W, {AF;}; a family of sets
of total functions from W to W and [-,-] : W x |J; AF; — W the functional application
operation. Each AF; is called a set of accessibility functions. A functional model is a pair
(F,t) of a functional frame and a valuation mapping of propositional variables to subsets
of W. Truth (or validity) in any functional model M and any world x € W is inductively
defined by:

M,z =p iff x € «(p)

M,z jE L

MzEp—=y iff M,z = ¢ then M,z E

M,z = iff, z & de; and there is an a € AF; such that M, [za] = ¢.

We will prove a general completeness result which derives from completeness with re-
spect to relational frames by the relationship (Def-R). A functional model can be defined
from a relational model M = (W, {R;};,t) by letting W+ and each de; and AF; be as in
Theorem 2.2.2. The structure

Mf = (WJ_’ {dei}i’ {AF’i}i’ [" ']’ L)

is a well-defined functional model. We say M/ is a functional model based on the relational

model M.

Theorem 2.2.3 Let ¢ be a modal formula and let M = (W, {R;};,¢) be a relational model.
For any x € W,

Mz = iff M zEo.

Proof. The proof is by induction on the structure of the formula ¢. Since the valuation
assignments of the two models are identical, the base case of the induction is trivial. We
also omit the proofs for ¢ being constructed with the propositional connectives and give a
proof where ¢ has the form ©;1). Using Theorem 2.2.2 we have that M,z |= $;4) iff there
is a y € W such that (z,y) € R; and M,y = 9, iff there is a y € W such that z & de; and
Ja€ AF; [za] = y and M,y = 1, iff there is a y € W such that z ¢ de; and 3a € AF; and
M, [za] |E 4, iff z & de; and Ja € AF; such that M, [za] = 1. O

A particularly important construction is the construction of the class of so-called mazimal
functional models (or frames). Any relational model M determines a unique maximal
functional model, denoted by M™, which is defined as follows. M™ is the functional model
in which the function sets are defined by

(2.5) AF™ ={a e Wt — W |Vz € W Ri(z,[za]) or [za] = 1},

the set of all total functions which define R. A maximal functional frame is in fact the
largest functional frame defining a relational frame.

Corollary 2.2.4 Let M be any relational model. For any modal formula ¢ and any z € W,

M,z = iff M™zE .

24 Modal logic and the functional translation

Proof. By Theorem 2.2.3. m|

Van Benthem (1993) uses patching to construct maximal functional models. Given a
functional model define AF,” to be an extension of AF; that is closed under the principle of
patching: Any maximally satisfiable union of domain restrictions of functions inside AFY
must itself be a function inside AF?. Formally, for any function o from W to W and any
reW,

if 38 € AFP and [za] = [zf] then a € AF}.
Clearly, AF? and AF/™ coincide.
Going in the other direction we can construct a relational model M" from a functional
model M. Given that M is a functional model, its corresponding relational model is

M= (W' {R;}i,0),

where W” = W\ {1} and for every i, R; = {(z, [za]) | [za] # L and a € AF}}.

Theorem 2.2.5 Let ¢ be any modal formula and let M be a functional model. For any
zeW,

Mz iff M" zE .

Proof. The argument is almost identical to the argument of the proof of the previous theo-
rem. a

We can show:

Theorem 2.2.6 (i) (M/)" = M, when M is a relational model, and

(i) (M")™ = M, when M is a maximal functional model.

By Theorems 2.2.3 and 2.2.5 completeness with respect to functional frames follows:

Theorem 2.2.7 Any modal logic K(;;)X is complete with respect to a class of relational
frames (models) iff it is complete with respect to a class of functional frames (models).

The theorem ensures that the functional translation which will be defined in the next section
is sound and complete. The results 2.2.4, 2.2.5 and 2.2.6 yield a stronger completeness result
which has special relevance for globalisation and the optimised functional translation:

Corollary 2.2.8 Any modal logic K(,,)% is complete with respect to a class of relational

frames (models) iff it is complete with respect to the class of maximal functional frames
(models).

2.3 Correspondence theory 25

2.3 Correspondence theory

Based on the last two results, by using (Def-R) any relational correspondence property can
be translated into a functional correspondence property. This is done by plugging the defi-
nition (Def-R) into the known relational correspondence property, for example, transitivity.
Assuming seriality (which means we may use (2.3)), we replace R uniformly by da [za] =y
and produce:

Vzyz (R(z,z) A R(z,y)) = R(z,y)
iff Vazyz (Qez=[za]) NGBy =[28])) = 3y y = [z7])
iff Vrzy (Jafy = [zap]) = (Fy y = [z7])
iff Voy Vop3y (y = [zaf] =y = [27])
(2.6) iff Vo Vaf3y [zaf] = [z7]

Alternatively, functional correspondence properties can be derived automatically with the
SCAN algorithm of Gabbay and Ohlbach (1992) (just as the relational correspondence prop-
erties can).® Figure 2.6 lists the general correspondence properties for some schemas com-
puted by SCAN (to avoid cluttering the indexes are omitted). Since SCAN is sound and by
completeness with respect to functional frames (Theorem 2.2.7):

Theorem 2.3.1 The pairs (¢,) of modal axioms and first-order formulae in Figure 2.6
are such that ¢ and 1 are logically equivalent.

For serial modalities the correspondence properties are purely equational, see Figures 2.7
and 2.8 for the Skolemised forms. The pictures illustrate the interpretations of the respective
Skolem terms, and motivate the notation for the respective Skolem functions. For the
schema D, the equational theory is empty. In functional frames that validate T, reflexivity
is captured by the equation [ze(z)] = z, which we refer to as the local (right) identity law.
Symmetry is captured by the local (right) inverse law [z« inv(z,a)] = x, because for any
function o and any world z the local inverse function inv(z,«) maps [za](= a(z)) to the
original world z. The correspondence property (2.6) of the schema 4 is local composability
(or local associativity).

For some schemas the dependency on the world variables may be removed. This opera-
tion is called globalisation. Global composability is the property

(2.7) Vaf3y Va [vaf] = (7],
in which « is independent of z as is made explicit in the Skolemised form

[zaf] = [z(a o f)].

o denotes the binary Skolem function introduced for 3y and defines the composition of any
two functions.

Globalisation moves the world quantifier ‘Vz’ inward as far as possible. Thus global
formulations logically imply the local formulations and are stronger. In general, this means
satisfiability is preserved but not necessarily unsatisfiability. As the global formulations are

3In Chapter 3 and Appendix A we will consider the method of SCAN in more detail.

26

Modal logic and the functional translation

D1

Funct

w. dens.

Mk

Op — ©p

Vz —de(z)

Op —p

Vz Ja ~de(z) A z = [za]

p— OOp

Vz Yo 36 (~de(z) — —de[za]) A (nde(z) — = = [zaf])

Dp — DDp

Vz Yaf 3y (nde(z) A ~de[za]) — [zaf] = [z7]

E|2p — E|3p

VI Yarasas 30102 (—de(x) A —~de[zai] A ~de[zaias]) —
(mde[zf1] A [waranas] = [26162])

Op — OOp

Vz Yaf Iy (nde(z) — —de[zf]) A (—de(z) — [za] = [2067])

OOp — OOp

Vz Vaff Iy (~de(z) = (nde[za] A —de[zf] A [zay] = [z671]))

0(Cp — ¢) v O(Qg — p)

Vz Yoy 366 (de(z) V ~de[za] V [za] = [z7d]) A

de(z) V ~delz] V [7] = [wef]) A

de(z) V [za] = [276] V [z7] = [zaf]) A

de(z) V —delza] V —de[z])

A~ N N~

Op — Op

Vz Yap de(z) V [za] = [z]

O0p — Op

Vz Yo 3By ~de(z) — (de[zf] A [za] = [z67])

(Op A g) = O(B0p A Oqg)

Vz Ja —de(x) A ~de[za] A (36 [zaf] =) A
(Vy de[zay] V (V6T [zayd] = [ze]))

Figure 2.6: Functional correspondence properties.

2.3 Correspondence theory 27

42

D1

0
[ze(z)] == 'D e(x)

[zainv(z,)] =z o é o
inv(z, o)
c(z, a, B)
[z e(@, . 0)] = [za] R L
[zaragas] = [z ei(z, a1, a0, a3) ca(z, a1, oo, a3)]

ci(z,a1,a0,a3) o Co(x,a1,00,03)

a1 (65) a3 *
[LECE impl(w, «, ﬁ)] = [I/B] [] / impl(a:, a, ,3)
i
a ® f(x7 a’ IB)
I .,

(21 (2, B,)] = [za] V [zaiy(z, o, B)] = [20]

Figure 2.7: Theory equations.

28 Modal logic and the functional translation

Funct [za] = [z0] . é .
B
w. dens. [za] = [zf(z,a)g(z, a)] f(:y) %&)
Mk [za(z)b(x)] = « A [za(x)yd] = [zf (2,7,)]
f(;7,90)
— Y)

Figure 2.8: Theory equations (continued).

not definable by modal schemas we may ask whether there are schemas for which globalisa-
tion also preserves unsatisfiability, and if this is the case, are there schemas for which more
can be derived modulo the global theory than modulo the local theory. In both cases the
answer is yes.

Lemma 2.3.2 Let M™ be any maximal model. If M™ satisfies the property
(i) Vz Ja z = [za], then it satisfies Ja Vz = = [za], or if it satisfies
(ii) Yz Yaf Fy [zaf] = [zv], then it satisfies Va8 Iy Vz [zaf] = [z7].

Proof. (i) AF™ contains the identity function e.
(ii) The composition o 8 of any two functions « and (3 is a function. Hence, a0 3 is in
AF™ (as it is maximal). O

By Theorem 2.3.1:

Theorem 2.3.3 Let ¥ C {D,T,4}. KX is sound and complete with respect to the class of
models satisfying the properties of Figure 2.9.

Proof. Because Q141 - .- QnynVz 9 logically implies VzQ1y1 - - - QnYn 1 the local correspon-
dence properties are valid in any model in which their global forms are valid. Hence, if ¢ is
valid in a class of models as specified by Figure 2.9 then ¢ is a theorem in the corresponding
logic K3..

Soundness follows by Lemma, 2.3.2. m|

This result is already exploited in the earliest papers on the functional translation method
(see for example Herzig 1989, Zamov 1989, Ohlbach 1991, Auffray and Enjalbert 1992,
Farinas del Cerro and Herzig 1995, van Benthem 1993).

We refer to the global correspondence property of T' as the (right) identity law. The
global correspondence property of 4 can be viewed as a kind of associativity law (because
under this law any functional variable may be expanded to a string of functional terms).

2.4 The functional translation 29

D de=10
de=0 Az =[ze] ¢ e
4 (nde(z) A ~de[za)) — [zaf] = [z(ao ()] 0o
D,4 de=0 A [zaf] = [z(ao f)] . 07».

T,4 de=0 Az =][ze] A[zaf] = [z(ao)]

Figure 2.9: Global functional correspondence properties.

Globalisation is not admissible for KB. The problem is that any function with an inverse
function is an injection. But for instance the model given by

2D

cannot be defined by a set of injections. Globalisation of the identity for KDB would allow
us to refute non-theorems, for example, p = OOCp — p, because the theory generated by
[zainv’(a)] = = includes also [z inv’(a)a] = .

Globalisation exemplifies that first-order equivalence is more than is required for the pur-
poses of theorem proving. It exploits a property of maximal frames, but unfortunately there
is no justification for universal globalisation. See also van Benthem (1993) and Farinas del
Cerro and Herzig (1995) on this issue.

Chapter 3 considers another instance of how completeness with respect to the class of
maximal frames can be exploited. Specifically, we will see that schemas like McKinsey’s
schema M can be approximated by first-order conditions.

2.4 The functional translation

For technical and also for presentation reasons, we find it useful to use a sorted logic as
target language for the functional translation. We employ the basic many-sorted logic with
a sort hierarchy and sort declarations for function symbols (Walther 1987). In this logic,
a sort symbol can be viewed as a unary predicate and denotes a subset of the domain of
interpretation. A subsort declaration S C T is interpreted as a subset relation M(S) C
M(T), and a function sort declaration like, for example,

[:S1 xSy — S isinterpreted as Vz,y Si(z) A S2(y) = S(f(z,y)).
Quantification can restrict variables to a sort.

Vz:S ¢ is interpreted as Vz S(z) — v, and
Jz:S ¢ is interpreted as Iz S(x) A 1.

Any unsorted logic can be embedded in a sorted logic by introducing just one single sort
denoting the entire domain. The relational translation is embedded in the sorted context
by introducing one sort W for worlds and considering II,(X) A —II,(¢) to be a formula of
sorted logic in which all variables z,y,... are assumed to have sort W.

30 Modal logic and the functional translation

For the functional translation we introduce the sort W, a family {AF;}; of sorts and
a special sort symbol AF* for |J,{AF;}. AF* is the top functional sort and each AF;
is a subsort of AF*. To avoid cluttering we do not always make the sort declarations
explicit. Unless specified otherwise, in the remainder of this thesis the variables z,y, z, . ..
are assumed to be of sort W and will be referred to as world variables. The functional
variables are denoted by Greek letters «;, 5;,;,-.- and are of sort AF;. The sort of the
operation [-,-] is W x AF* — W. The letters s,t,... denote terms of sort W. They will
be referred to as world terms or paths. For terms of sort AF that will often be referred to
as functional terms we reserve the letters u, v, w,....

Just as the relational translation imitates the relational semantics, the functional trans-
lation imitates the functional semantics. The functional translation mapping is denoted by
;. It maps modal formulae of K(;,,)X to sorted second-order or first-order formulae as given
by:

VPi...P, Vr m¢(p,z) if ¢ is an axiom schema in 3, and

(2.8) Iy (p) = {

Vo m¢(p,x) if ¢ is not an axiom schema.

7y is the auxiliary function that maps modal formulae and worlds to first-order formulae. It
defines the unary predicates P; that are uniquely associated with the propositional variables
p; in . For the propositional symbols and connectives, 7y is defined by

7¢(piy s) = Fis
mp(l,s) =1
mi(o = b, 8) = mp(p,8) = mp(h,)

and for the modal operators, it is defined by

Ja; r(p, [say]) if ©; is a serial modality

7rf(<>i(pa 8) = {

—de;(s) A oy mp(p,[sey]) otherwise

)
Vai ¢ (¢, [s04]) if O; is a serial modality

7I-f(D’i(Pa 3) = {

—dei(s) = Yoy mr(p, [sa;]) otherwise.

o; is assumed to be a variable not occurring in s. For a set X of schemas and rules, II; is
defined like II,:

() = N\ Tp(p), and (Mp(p1) A ... ATIp(n)) — s ().
pER

¥ is assumed to be finite. Thus, the set II;(3) is a finite presentation that determines a
theory, in the usual sense by deductive closure. For this reason we will often speak of a
theory I1¢(X) (or later YII;(X)).

We consider two examples. Take McKinsey’s schema M = OCp — OOp. IIf(M) is
given by

VP Vz (—de(z) — Yag(—de[zag] A 3Br P([zarfr])) —
(—de(z) A Jag(—de[zar] — VBr P([zarfr]))).

2.4 The functional translation 31

When its clear from the context, as is the case in a uni-modal context, we omit the indexes of
the variables. Assuming seriality, the functional translation of the formula ps = O(p — <p)
is

It (p2) =V Va (Plza] — 38 Plzaf]).

The functional translation is sound and complete as is made precise by the next theorem
which is a direct consequence of Theorem 2.2.7.

Theorem 2.4.1 Provided K(,,)¥ is a complete modal logic, for any modal formula ¢,
(i) ¢ is a K(;,)X-theorem iff ITf(3) — IIf(¢) is a second-order theorem, and

(ii) ¢ is a K,y X-theorem iff 1) — II;(p) is a first-order theorem, when % is a first-order
formula such that ¢ <> II(X).

By Theorem 2.3.1:

Theorem 2.4.2 The pairs (¢,1) of modal axioms and equational formulae in Figures 2.7
and 2.8 are such that for any modal formula ¢/,

¢’ is a theorem in KDy iff 1 — II;(¢') is a first-order theorem.

In subsequent chapters we will study inference for serial subsystems of S4 relying on the
next theorem, which is immediate by Theorem 2.3.3.

Theorem 2.4.3 For any modal formula ¢, ¢ is a theorem in KT, respectively KD/ or S/,
iff IT;(¢) is a first-order theorem modulo the theory given by

right identity: [ze] = z, respectively

associativity: [z(a o B)] = [zaf]

or both.

A step-by-step syntactic proof

Completeness of II; can also be proved by taking the other route in the following commu-
tative diagram.

completeness w.r.t.
relational semantics

completeness of II,

completeness w.r.t.
functional semantics

completeness of 11

In the presentation above we gave a semantic treatment that proceeded from the upper left
corner down and across. In this section, we go across and down (as we did in Ohlbach
and Schmidt 1997).* This alternative traversal is an example of a ‘killer transformation’

“Here, we give a more general treatment, not restricting ourselves to the serial and uni-modal case.

32 Modal logic and the functional translation

as described in Ohlbach, Gabbay and Plaisted (1994). The functional translation mapping
and the completeness proof is derived by a systematic syntactic method. This approach
is in certain ways simpler and it is more general, in that, we can treat arbitrary Hilbert
axiomatisations of non-classical logics. Arbitrary modal axioms seem not to have been
studied in the functional context before.

The starting point is the relational translation of modal formulae and systems K,,)%. In
the first step, rewriting with respect to (Def-R;) is performed. More specifically, we take the
set I1,(X) of relational correspondence properties and add to it for each R; the definition:

(Def-R;) Vzy (Ri(z,y) ¢ (ndei(z) A o, [za4] = y)).

We then use these equivalences for replacing all occurrences of R; by an instance of the
right-hand side of (Def-R;). In general, adding another formula to a set of formulae may
introduce inconsistencies. We have to make sure that this does not happen. This means we
must prove that,

IT.(X) A =1L (¢) is satisfiable iff A, (Def-R;) A IL.(2) A —II, () is satisfiable.

The («<=)-part of this proof is trivial, since removing a formula does not introduce inconsis-
tencies. The (=)-part of the proof requires extending a model of the left hand side by an
appropriate set of accessibility functions.

Given any relational model M = (W,{R;};,¢) we define its functional extension to be
the model

(2'9) M* = (WJ_a{RZ}Z’{deZ}Z’{AFzm}Z’ ["']’[’)

with { AF;™}; being the family of maximal defining function sets, that is, M* = (M™,{R;};).
This extension is conservative in the sense that M™* does not assign different meanings to
the symbols it shares with M, namely, R; and W. By Theorem 2.2.2, the equivalences
(Def-R;) are true in M*.

Theorem 2.4.4 Let K(,,)X be a modal logic complete with respect to a class of relational
models. A modal formula ¢ is a theorem of K, % iff

(2.10) II,(Z) A -IL-(¢) A A; (Def-R;)
is unsatisfiable.’

Proof. For K(;;)% assumed to be complete, the relational translation is sound and complete
and we have, ¢ is a K(;,)X-theorem iff II,(X) A —II.(¢) is unsatisfiable. It suffices to
show that every model M of II.(X) A —II,(¢) can be extended to a model M’ of both
IT,(3) A -II,(p) and each (Def-R;). The extension that will do the job, is the functional
extension M* of M. |

We can add to (2.10) other declarations and formulae provided they are true in M*, or,
there is another extension of M* which makes the additional definitions true.

>This theorem is the general non-serial and multi-modal version of the functional extension theorem of
Ohlbach and Schmidt (1997, Theorem 4.1).

2.4 The functional translation 33

Corollary 2.4.5 Let K(,;,)~ be a complete modal logic, and let A be a set of sort dec-
larations and formulae free of the predicates R;. A modal formula ¢ is a K(,)X-theorem
iff

I, (S) A =T () A A; (Def-R;) A A

is unsatisfiable, provided the declarations and formulae in A hold in the functional extension
M* of a relational model M, or M* has a conservative extension that satisfies A.

Consider the transformation of the quantificational patterns

3y (Ri(z,y) Ame(pyy)) and Vy (Ri(z,y) = 7 (0, 9))-
After rewriting with respect to (Def-R;) we get for the first pattern
Jy (~dei(z) = o [zou] = y) A mr(p,y)

and, as was done in the proof of Theorem 2.2.3, some simple logical equivalence preserving
manipulations eliminate the equation and yield

—~de;(z) A oy 7 (o, [xay)).
Similarly for the other quantificational pattern we obtain
—dei(z) — Yoy T (g, [Tai]).

The process of rewriting with respect to (Def-R;) preserves logical equivalence. Elimi-
nating every R;-literal from II,(X) and II.(p) leaves us with a formula

I (%) A - (),

say, together with the definitions {(Def-R;)};. Nothing will have been gained if we keep the
formulae (Def-R;) in our formula set because, in general, we cannot prevent a theorem prover
from restoring R;-literals by using the right-to-left implication of (Def-R;). Having done the
rewriting step we want to delete the axioms (Def-R;), but deleting an axiom may turn an
unsatisfiable set of formulae into a satisfiable set. In our setting, fortunately this does not
happen. Proving that every model for the transformed formula set without (Def-R;) can
be turned into a model with (Def-R;) is very easy. After all occurrences of R have been
rewritten, the definitions (Def-R;) are the only formulae remaining in which any R; occur.
This is also true, if, according to Corollary 2.4.5 more formulae A are added, because no
R; predicate occurs in any of the additional formulae in A. This means we can just use the
equivalences (Def-R;) as definitions for R;. Therefore every model for IT} (X) A —IL%(¢) A A,
can be extended by an interpretation for the symbols R; such that (Def-R;) is satisfied. This
is true regardless as to whether a sort AF; is interpreted as a set of functions and [-,-] is
interpreted as the ‘apply’-operation or not.

It is easy to see that the functional translation mapping II; is given by the sequence
of operations we have just gone through: the relational translation II,, adding (Def-R;),
the elimination of the R;-predicates, the elimination of the equations and deleting every
(Def-R;). Thus, Iy can be viewed as a killer transformation.

By combining the previous results and noting that, for any model M

METZE) AT () iff METHS) A T (p),

34 Modal logic and the functional translation

we obtain the soundness and completeness result for the functional translation (Theo-
rem 2.4.1).

Corollary 2.4.5 is useful for making additional refining assumptions. It allows us to
add sort declarations and axioms A to ITf(X) A —IIf(y) while preserving satisfiability and
unsatisfiability, when A holds in the functional extension M* of a relational model M,
or there is an extension M’ of M* that makes A true. For example, since the functional
translation generates terms of a particular form , namely [[[[za1]ag]. .. Jam], we may consider
introducing a new associative binary operation e defined by the sort declaration e : AF* x
AF* — AF* and the statement Vz:W Va, 8: AF* [[za]5] = [z, ae (], where AF* is a new sort.
If we define M’ as an extension of M* in which AF* is interpreted as the set of all possible
compositions of functions in AF' of M', and e is interpreted as ordinary composition of
functions, then, of course, M’ satisfies the above additional definitions (collected in A).
Then any term [[[[zai]as]...] is replaced by a term [z, @ ag ® ... ® @], which is
what we do in the papers Ohlbach and Schmidt (1997) and Ohlbach, Schmidt and Hustadt
(1996). Or, we can go further and instead of introducing e we can view [, -] as an associative
operation as is done in Ohlbach (1988a). In this thesis it is important not to view [-,-] as
an associative operation, though I grant that my convention of omitting the brackets from
[[[za1]az] - ..]am] is suggestive.

2.5 Paths and prefix stability

This section focuses on the class of first-order formulae into which any non-schema, is mapped
by Iy and —II;.

In the standard semantics, the truth of a formula ¢ in a world z depends only on the
truth of subformulae of ¢ in R;-successors of z (finitely many, in K(,,)). This means for the
truth of ¢ in x, the predecessors of = or disconnected parts of the frame are irrelevant. This
is made precise in the generated model property of normal modal logics, which says: Any
complete normal multi-modal logic can be characterised by the class of all generated frames
for that logic. The property allows us to assume any frame is connected and has a starting
world z, say.5 This is reflected more directly in the functional setting, where worlds are
denoted by ‘lists’ of the form

(2.11) [zaq ... o).

The list notation has a distinct advantage, as it expresses not only reachability but it displays
also the path via ai,... ,q, from the initial world z to that world. For this reason terms
of the form (2.11) will also be referred to as paths, even though strictly they define worlds.
(There is a natural correspondence of our reading of a path in a generated frame to the
conventional reading whereby a path is a sequence of nodes in a tree or graph.)

The generated frame property of modal logics is accommodated in the functional or
path encoding by the property known as the prefiz stability property (Ohlbach 1988a) or the
unique prefiz property (Auffray and Enjalbert 1992).7 Tt says, each variable in any IT 7(¢) has
a unique prefiz of other variables. We will now define prefixes and prefix stability formally.

5By a connected frame we mean a frame, in which for any pair of worlds (z,y) € (RUR™)*.

" Auffray and Enjalbert credit Ohlbach for noting this invariance first.

2.5 Paths and prefix stability 35

The definition of prefixes extends the conventional definition of prefixes of strings. Con-
sider a term

t= [zal e QG0G4T .Ozm].

in the target logic of the functional translation mapping. We say any subterm z or [za . . . a;]
(for 1 <i <m) of t is a prefiz in the term t. Furthermore, the prefiz of a variable a1 in
the term ¢ is the term [zaj ... ;). The prefix of the variable a1 is z. z has no prefix.

Let T be any set of terms of the form ¢ as above. T is said to be prefix stable if any
variable a of type AF occurring in T' has exactly one prefix, that is, the set prefix(a,T) =
{s|[sa...] occurs in T} is a singleton set. We say a term t is prefix stable if the singleton
set {t} is prefix stable. The prefiz of a variable a in a prefiz stable set of terms is the unique
prefix of o in any term of the set.

Theorem 2.5.1 Let ¢ be a modal formula. Provided each «; in the definition of 7 is a
fresh variable, the set of terms occurring in IT;(y) is prefix stable.

This can easily be seen to be the case for the example (1.6) we gave in the Preview:

p1 = 0(C0O-p vOOp) and
afy d€
If(p1) =V Va (VY ~Plrafy] vV 363e Plzade]).

Compare p; and and its translation II;(p;). The modal operators and the functional vari-
ables form unique pairs as indicated. « is associated with the first occurrence of a O, 8 with
the first occurrences of a ¢, and so forth. We see the structure of p; determines a char-
acteristic ordering on the variable occurrences in the terms [za/37v] and [zade] of —IIf(p1).
This ordering of the variables is formalised by prefix stability.

Any term (or path) in —II¢(¢) is a list of one world variable and a sequence of functional
variables and the world variable is always the same, as in this example.

=Ilf(p1) = Fz o (VBIy Plzafy] A VéVe ~Plrade))

We do away with the world quantifier 3z by introducing a special world constant [], the
empty list, which we view as the initial world. So, in future we regard —Il;(¢) to coincide
with —7¢(¢, []). Thus, terms in —II¢(y) will have the form

[... am)],
as opposed to [za; ... as]. The reformulation of —ILf(py) is
(2.12) da (VB3y Plafy] A VéVe —Plade]).

Evidently, Theorem 2.5.1 holds also for —II¢(¢).

Because prefix stability of terms is a fundamental concept, it is instructive to give an
independent definition of target logic of —II;. This definition emphasises the particular
ordering of the variables in any literal £P]...] as determined by prefix stability (and the
original modal formula). For reasons that will become clear in the next chapter (where we
define path logics that arise by the optimised functional translation), we call the logic basic

36 Modal logic and the functional translation

non-optimised path logic. The basic non-optimised path logic is associated with the logics
K, KD and their multi-modal versions for which the theory II;(X) is empty.

The language of basic non-optimised path logic is that of monadic sorted first-order logic
extended with a non-associative binary operation |-, -] and a designated constant []. The sorts
are W, {AF;}; and AF*. There are finitely many unary predicate symbols P,(@,... and
possibly also special unary predicates {de;};. Functional variables are denoted by Greek
letters «, 3,... and are possibly indexed by functional subsorts. The constant [| has sort
world. The function [-,-] maps pairs of world terms and functional terms to world terms.
Terms, also called paths, are of the form

[[[[[lea]e2] - - . Jam] or in shorthand notation [aiae ...y

In the language of basic non-optimised path logic there are no world variables and no
compound functional terms.

Let V' be a finite set of unary predicate symbols and let X,, = {a1,...,a;,} be an
ordered set of variables. An atomic basic non-optimised path formula of V over X; is a
monadic literal with an argument of length i:

Play...q;] or —Play,...,q]
Basic non-optimised path formulae are defined inductively by:

(i) Any atomic basic non-optimised path formula over X; is a basic non-optimised path
formula over X;.

(ii) Jait1 @ and Va;41 @ are basic non-optimised path formulae over X;, when ¢ is a basic
non-optimised path formula over X; .

(iii) Any Boolean combination of basic non-optimised path formulae over X; is a basic
non-optimised path formula over X;. For example, ¢ — 1, -, © A 9, etcetera, are
basic non-optimised path formulae over X;, when both ¢ and v are.

A sample basic non-optimised path formula over X3 is the formula
3041 (V023a3 P[alagag] A VQQVO(?, —IP[alagag,]).

Note, it a reformulation in terms of a minimal number of variables of the formula in (2.12)
above.

Theorem 2.5.2 Let ¢ be a basic non-optimised path formula. The set of terms occurring
in ¢ is prefix stable.

Proof. Not difficult. |

Theorem 2.5.3 Let ¢ be any modal formula. —II;(y) is equivalent to a basic non-optimised
path formula.

Proof. Let m be the modal degree of ¢. Associate with each variable in -7 (¢, []) a variable
in X, in an economical way. O

2.6 Translating non-serial into serial modal logics 37

Theorem 2.5.4 Let ¢ be any basic non-optimised path formula. Then a modal formula ¢
exists such that ¢ is equivalent to —II¢(¢p).

Proof. Define a mapping * from basic non-optimised path formulae to modal formulae in-
ductively by

(Bi[ag --.am))" =pi
(b1 = d2)" = ¢1 — ¢5
(Bai ¢)* = O

in such a way that p; is a propositional variable uniquely associated with the predicate
symbol P;. Now, let ¢ = —*. ¢ is a well-defined modal formula and —7s(p,[]) = ¥,
provided the variables are chosen appropriately from X,,. O

The two theorems establish a one-one correspondence between KD-formulae and basic non-
optimised path formulae. Even though we do not define a formal calculus it is immediate
that basic non-optimised path logic is a decidable first-order class, since KD is decidable.

We digress in order to establish connections to related decidable fragments of first-order
logic. There is a one-to-one correspondence between basic non-optimised path logic and the
class of ordered first-order formulae that Herzig defines in (1990). The correspondence is
determined by mapping every atom of the form Pla; ... ay,) to the m-ary atom of the form
P(ay,... ,an). By the same mapping basic non-optimised path logic can been seen to be a
proper fragment of a decidable fragment of first-order logic, called fluted logic, that is part
of Quine’s predicate functor logic. In fact, the definition of basic non-optimised path logic
was inspired by the definition of fluted logic found in Purdy (1996a, 1996b). The mapping
is also useful for encoding modal formulae into first-order logic without function symbols
for which the performance of theorem provers is better. For details refer to Hustadt and
Schmidt (1997a, 1997b), where we describe also how multi-modal formulae can be converted
to unsorted first-order formulae.

The concept of prefix stability as defined above, does not apply naturally to clauses,
the problem being that due to Skolemisation terms are no longer lists of variables. The
definition of prefix stability can be adapted as proposed in Ohlbach (1991) or Auffray and
Enjalbert (1992) by distinguishing different occurrences of a variable (inside or outside the
scope of a Skolem function). This is not enough. To achieve preservation of the adapted
form of prefix stability an eztended (or strong) form of Skolemisation as proposed by Herzig
(1989) needs to be applied. Zamov (1989) proposes a similar solution that involves the
notion of tree-likeness. We will not have to adopt any of these solutions as the optimised
functional translation eliminates from the clausal forms all complex Skolem terms except
for constants.

2.6 Translating non-serial into serial modal logics

This section establishes a connection between non-serial and serial modal logics that allows
us to focus for much of our exposition on serial modal logics. The modal logic K can be
translated into the logic KD adjoined with a special propositional variable de. KD + {de}
is a conservative extension of K.8

81 suspect this result is known, though I have not come across it in the literature.

38 Modal logic and the functional translation

The translation * from K to KD is defined inductively by:

p =p
(L)=1
(p =) =¢" =97
(Cp)" = —de A Op*

Informally, the new propositional variable de has the same interpretation as the dead-end
predicate of the functional translation. It denotes the set of worlds at which the accessibility
relation of K is not defined.

Lemma 2.6.1 Let M = (W, R,.) be any K-model. Let R’ be a total extension of R and
let De be a subset of W such that

(z,y) € R iff z ¢Deand (z,y) € R'.

Let M' = (W, R',/) be a KD-model such that for all atomic p except for de, c(p) = ¢/(p),
and ¢/(de) = De. Then for all K-formulae ¢ and any z € W,

M,z =@ if M zE "

Proof. By induction on the structure of ¢. The base case is easy: u(p) = /(p) = /(p*).
Suppose for any z € W, M,z | ¢ iff M',z = ¢*. the inductive hypothesis. The Boolean
cases are easy. For example, M,z = —¢ iff M,z [£ ¢ iff M' z [£ o* if M'jz E —¢*.
We consider the modal case. M',z = (Op)* if M',z = —de A Op*, if M',z [~ de and
Mz = Op*, iff © € De and Jy (z,y) € R A M,z | ¢*, iff x ¢ De and Jy (z,y) € R' A
M,z =%, iff Jy (z,y) € RA M,z = ¢*, iff M,z = Op*. m|

Theorem 2.6.2 Any formula ¢ is provable in K iff ¢* is provable in KD.

Proof. (=) Any proof of ¢ in K translates to a proof of ¢* in KD, if the translations of the
axioms and rules of K are provable in KD. The translation of the K-axiom is:

(O(p = q) = (Op — Og))" = (=de = O(p — q)) — ((~de — Op) — (~de — Og))
= (-de —» O(p — q)) = (—~de — (Op — Og))
= -de — (O(p — q)) — (Op — Og))

which is provable in KD by implication introduction. Showing that modus ponens and
necessitation for K are provable in KD is straightforward. For instance, assume ¢* is
provable in KD. Then Oy* is provable in KD and so is =de — Oy* which is the same as
(O)™.

(«<=) We prove the contrapositive. Suppose ¢ is not provable in K. Then since K is
complete, £k ¢, that is, there is a K-model M = (W, R,.) that falsifies ¢. Define M’ =
(W,R',/') as in the previous lemma. By that result M,z | ¢ if M',z | ¢*. Thus, M’
does not satisfy ¢*, that is, xp ¢*. Since KD is complete, it follows ¢* is not provable in
KD. O

This result generalises to extensions of K with any theory:

2.6 Translating non-serial into serial modal logics 39

Any formula ¢ is provable in K3 iff ¢* is provable in KDY*.

For the (=) direction we need to convince ourselves that the translation of each axiom in
Y. is derivable from ¥*, but this is clear. The argument for the converse direction does not
require change.

For example, KD/5 is then defined by KD + {de} extended by the axioms

4* (=de — Op) — (—de — O(—de — Op))
5% (—~de A Op) = (—de — O(—de A Op)),

which simplify to Op — (—de — O(—de — Op)) and (—de A Op) — O(—de A Op), respec-
tively.

The generalisation to the multi-modal setting is obtained similarly. By adjoining propo-
sitional variables de; to a given multi-modal logic, we can encode any non-serial modality
<; in terms of a serial modality.

Corollary 2.6.3 Any formula ¢ is provable in K| (m) 2 Iff * is provable in its serial extension.

40

Modal logic and the functional translation

Chapter 3

The optimised functional
translation

This chapter introduces the optimisation operator Y. It extends the applicability of first-
order theorem proving methods to modal logics that are ordinarily not first-order definable
and transforms modal formulae to particularly simple clausal form for which in many cases
satisfiability can be decided by standard resolution. Important for both properties, ‘extended
first-order definability’ and decidability, is that T swaps existential and universal functional
quantifiers.

The idea for swapping quantifiers and simplifying the translation of non-schemas (of
the formulae we which to prove are theorems) was first mentioned by Herzig and others
(Farinas del Cerro and Herzig 1988, Herzig 1989) and it features in Ohlbach (1988a). This
chapter presents the core results announced in Ohlbach (1993a) and proved in Ohlbach
and Schmidt (1997). We show the optimisation applies not only to non-schemas, it applies
also to schemas, bearing first-order functional correspondences and a first-order calculus for
essentially second-order modal logics. The application of the quantifier exchange operator Y
hinges on modal logics being determined by maximal functional models. This is established
in Section 3.1. Section 3.2 defines the operator T and proves the necessary completeness
theorems for the translation by YII;. Section 3.3 is concerned with correspondence theory
exemplified for the schema M.

3.1 Exchanging quantifiers in maximal functional models

We will show that in maximal functional models enough functions are available so that the
following equivalence is true.

(3.1) JaVB 4 < VB3 ¢

Swapping quantifiers does not work in the relational setting. Suppose a formula OCOp is
true at the world z of the model depicted in Figure 3.1. For every world y accessible from
z there is a world accessible from y where p is true, that is,

Vy (R(z,y) — 3z (R(y,z) A ‘p is true in 27)).

Suppose the situation is as in Figure 3.1. In this model we have swapped the existential

41

42 The optimised functional translation

zZ1 p

O%p x

e
.

/\ /\

Z4 TP

Figure 3.1: A relational model M

1,3,6,8 _ 21 P

1,3,5,7
2,4,5,7

2,3,6,7 > z4 Tp

/\

/\

Figure 3.2: The maximal functional extension M™

quantifier 3z with the universal quantifier Vy and evidently the formula
AzVy (R(z,y) — (R(y,z) A ‘p is true in 27))

is false.

But now consider the maximal functional model defined by Figure 3.2 (that combines
eight frames including the four frames of Figure 2.3 of the previous Chapter). The labels i
abbreviate the corresponding accessibility functions ;. In the functional language we can
express the fact that OCp is true at = by

Ya3g ‘p is true at [zaf]’.
In the depicted maximal model we can swap the 34 and the Ya quantifiers:
dBVa ‘p is true at [zaf]

is also true at z, because the function a4 (as well as the function a5) maps the worlds
and 2 to a world where p holds. Moreover, regardless in which one of the worlds z1, 29, 23
or 24, p is true, in this model there is always a function o; which maps y; and ys to the right
worlds. We will show that in any functional frames which is mazimal, it is always justified
to move the existential quantifiers in front of the universal quantifiers. The previous chapter
proves that a relational frame can always be associated with a unique maximal functional
frame, and this is what we need.

For tree-like structures the decomposition into function sets is easier than for arbitrary
structures. Consider the frame

3.1 Exchanging quantifiers in maximal functional models 43

T

ap Y1 a2 oy 22
1
})y2/ \

a1, 09

and suppose OOCp is true at z. For all worlds y accessible from z (y; and ys) and all
worlds z accessible from y (z1) there is a world 2z’ accessible from z such that p is true at 2.
The existentially quantified 2’ depends on y and z. In this frame there is only one possible
instance for z (namely z1). Therefore, 2’ depends actually only on y. The dependencies can
be as follows: for y = y; assign 25 to 2’ and for y = y, assign 23 to 2’ (or vice versa). Different
paths for reaching z = z; may continue to different worlds. Fortunately in propositional
modal logics this situation does not arise, as truth does not depend on predecessor worlds
(in quantified modal logic it can). If one path crossing z; is extended to a world satisfying
some p then all other paths crossing z; can be extended to the same world. To illustrate
this, consider again the formula OOOp which is true at . Then OOp is true at y; and yo
and Op is true at z;. It is sufficient that p is true at either zo or z3, not necessarily in both
worlds.

[:|<>p aq,02

[2t
%%

2

p
O0op — - Op /

Oop

The left picture is a model for the formula OO<Op. In the corresponding functional model
(depicted on the right)

VBB Iy ‘p is true at [zB6"y]

is true. If we let 3 be a1 then we can move the 3y quantifier in front of V33'. In this model

IWVBAE ‘p is true at [z86]’

is satisfied. We have exploited the fact that in propositional modal logics, truth of a formula
in a particular world does not depend on predecessor worlds.

The next theorem proves the equivalence (3.1) necessary for swapping functional quan-
tifiers. It requires the following lemma. We formulate the results for serial models defined
by one binary relation.

Lemma 3.1.1 Let ¥ be a formula of a non-optimised path logic. Let a be a variable in
1 with prefix [zs]. Let M = (W, AF,[-,-],¢) be a functional model in which [zs] = y, and
a1 and @9 are two functions in AF such that [ya1] = [yas].! Let M[a/a1] and M[a/as]
be two models that are like M except that « is assigned the value o and a», respectively.
Then for any z € W

Mlajail,z = it Mla/asl,z = 9.

Proof. Without loss of generality we assume 1 is in prenex normal form, that is, ¢ consists
of a quantifier prefix followed by a quantifier-free matrix 1’. Any term in which « occurs has
the form [zsa...]. Suppose the variables in s are v1,...,7,. The 7; may be existentially

!Underlined symbols refer to concrete elements in the models.

44 The optimised functional translation

or universally quantified. Define two interpretations M; and My which are like M except
that in M1, a has the value a1, and in My, a has the value ay. That is,

Ml = M[:L./@a')/l/jla'-' a'Yn/Q’naa/Qll] and MQ = M[w/&.a’)/l/jla"' a’YTl/Jnaa/(_l?]'

By induction on the structure of ¢’ we show that M satisfies 1)’ iff M satisfies 9.

Only the base case with 9’ = P[zsat] is non-trivial. By prefix stability, @ does not occur
in s and it does not occur in ¢. Thus, the interpretation of s and ¢ does not depend on the
assignment for . Let the interpretations of z, s and the suffix ¢ in M; and My be the
same, say z, s and £, respectively. s and ¢ and are compositions of functions in AF. Suppose
[ya1] = z = [yas]. We have the following situation.

Ej 1
aq
e — 0 .. .*»./N.*». e O ——> O
~ 7
1: y QQ g
The value of [zsat] in M is [zsait] and [zsait] = [yaat] = [zsast] which is the value of

[zsat] in M. It follows that the value for [zsat] in M is in 1 (P) iff the value for [zsat]
in My is in t9(P), since ¢1(P) = t2(P) = ¢(P). (¢1 and 19 are the valuation mappings of M1
and Ms.) This proves the base case.

The induction step is a straightforward application of the induction hypothesis. We
omit the details and conclude, M satisfies 1)’ iff My does too. There are no conditions on
the assignments to the variables «y; in s. Thus, if a -; is universally quantified, we take all
assignments of accessibility functions to +;, and if «y; is existentially quantified, we choose
an appropriate assignment. Consequently, M[a/a1] = ¢ iff M[a/as] E 9. O

Recall from Section 2.4 the definition of the functional extension of a relational model.
The functional extension of a serial relational model M = (W, R,t) is the model M* =
(W,R,AF{,[-,+],¢). By definition, AF* is the largest set of all functions that define R.

In the next theorem, we will write t[xs...] for ¢[[zs...]], meaning the first-order for-
mula v with one or more occurrences of the term [zs...].

Theorem 3.1.2 Let ¢ be of a modal formula true in a relational model M. Let M* be its
functional extension. For the functional translation of ¢ the following equivalence is true in

M*:
(3.2) Vao3B plzsatBt'] < IBVa plzsatBt].

Proof. The right-to-left direction is a valid predicate logic implication. For the left-to-
right direction, suppose the left hand side of the equivalence is true in M*. Define an
arbitrary interpretation M*' which is like M* for z, s and the predicate symbols and
satisfies Va3B y[zsatSt']. That is M* = M*[P/P,z/z,7/7] is such that

Va3p plzsatft'] is true in M*.

Let 1’ denote the formula 1) with every occurrence of the term [zsatSt'] replaced by ¢'. For
any y € W define B(y) by

{B € AFR| vy is the value of [zsat] and 9 is true at [y8] in M*'}.

3.1 Exchanging quantifiers in maximal functional models 45

" Y2 V3 a B V4

P
f7 g fa g |_| fa g / P

U R
z P

g
Plzy172y30874] g . g J P
F

Figure 3.3: A model of AP 3z Iv1Vyay3a3 Vs Plzyiyeysafy4]

B(y) is the set of functions in M*' that map the world y to worlds in which ¢’ is true. Let
F be the set of all B(y). We want to exhibit for M*' the existence of a function 8y in AFg
such that for every world y a function § exists in B(y) with [y8o] = [y8]. It suffices to show

Vyiye B(y1) N B(ya) # 0.

Suppose not. Suppose two worlds y; and yo exists with B(y;) and B(ys) disjoint. Let (q
be any function in B(y1) and B2 any function in B(y2). The situation is as follows:

B o)
Y1 '/17 ’
Q\QAMW
B2 ;W
Y2 ®
\I“ﬂ/,,

Consider the function 8 which is like 81 except that [y28] = 2, that is, § maps y2 not to a
world where 1)’ is false but to z where 1)’ is true. Since A Fg contains all total functions from
W to W, B is in AFg. But then 8 € B(y1) N B(y2). Therefore B(y;) and B(y2) cannot be
disjoint.

For every interpretation M*' we can find some B(y) € F and some 3 € B(y), for y the
value of [zsat], 1 is true in M*'[B/8] and [yBo] = [yB]. Now, we can apply Lemma 3.1.1
and get

MY[B/B = it M*[B/Bo] = 1.

Because M*' |= Va3 1 and because the assignment to « is arbitrary we can conclude that

M*[B/B0] E Va 1. Hence M*' |= 3BVa 1h. O

The following example illustrates the notions of the proof. Figure 3.3 is a model for the
formula

AP 3z Iy Vyoy3adBVys Plzyiyeysafys).

Here {f,g9} C B(y1) and {f,g} C B(y2). Choosing By = f (highlighted by the thick arrows)
as assignment for 8 makes this model satisfy

3P 3z IyVyoy33B8Varys Plzyiveyzafyal.

46 The optimised functional translation

AFR being the maximal set of functions that determine the defining frames, it contains more
functions than merely f and g.

The generalisation of the lemma and the theorem to non-serial and multi-modal models
is routine.

Since ¢ > 1 and —p <> —1) are logically equivalent, the equivalence (3.2) remains true
if both the left-hand side and the right-hand side are negated. This implies that in the
functional translation of modal formulae, as well as in their negation, the quantifiers may be
exchanged, when the sorts AF; are interpreted as a mazimal set of accessibility functions.

3.2 The quantifier exchange operator

We exploit the equivalence (3.1) for moving existential quantifiers outward in the negated
form of the functional translation of non-schemas and for moving existential quantifiers
inward in the translation of schemas.

Formally, the so-called quantifier exchange operator Y converts a non-optimised path
formula into prenex normal form and moves all existential quantifiers of functional variables
inwards as far as possible according to the rule

JaVB ¢ becomes V[Ia 1.

Now, for any modal formula ¢, TII;(¢) has a quantifier prefix consisting of a universally
quantified world variable followed by a sequence of universally quantified variables of sort
AF; and a sequence of existentially quantified variables of sort AF;. The quantifier prefix
of the negation —YII;(y) is then a sequence of existential quantifiers (including the one
existential world quantifier) followed by a sequence of universal quantifiers.

Here is an example (in addition to the example given in the Preview). Consider McKin-
sey’s schema OOp — OOp. Since D is a theorem in KM, the functional translation II;(M)
is given by

VP Vz (Yo3B Plzaf]) — (3VE' Plzd').

The prefix normal form is

VP Vz 3avVp3a’VE Plzaf] — Plzd ().
Applying T yields

VP Vz VBB dad’ Plzaf] — Plzd).

The negation - YII;(M) is given by
(3.3) 3P 3z 38B'Vad' Plzaf] A —Plzd 3]
and in clausal form (with Skolem constants 3, 8" and [], for z):

1. Plaf]
2. =P[d 3.

The example demonstrates the operation T moves functional existential quantifiers in-
ward over universal quantifiers. This causes the opposite movement in the transformation

3.2 The quantifier exchange operator 47

by =YII of non-schemas. In =YTI;(¢) all existential quantifiers precede all universal quan-
tifiers so that existential quantifiers generate just Skolem constants, no complex Skolem
terms. (Chapters 6 onwards will be concerned with classes of such clauses.)

Applying T to a formula v results in a weaker formula 1)’, since ¢ — 9/, for in general,
AzVy " (x,y) logically implies Vy3z 9" (z,y), but not conversely. For any first-order formula
1) the following is logically valid:

l,b — T(@b) and ﬂT(’lﬁ) — —|’l,b.

Refuting ~Y(1)) instead of —) therefore means we are in fact proving a weaker version of
the formula than we originally wanted. The next result provides the conditions under which
working with the weaker form does suffice for proving 1.

Corollary 3.2.1 Let K(D)X be a complete (respectively complete and first-order definable)
modal logic. For any modal formula ¢, ¢ is a theorem in K(D)¥ iff

II;(X) — YIIf(yp) is a second-order (resp. first-order) theorem.

Proof. By Theorem 2.4.1, ¢ is a K(D)%-theorem iff IT;(X) A —II¢(¢p) is unsatisfiable. We
prove

II;(X) A —IIf(¢p) is satisfiable iff II;(X) A =YTIf(yp) is satisfiable.

If II;(X) A —IIf(p) is satisfiable, by Theorem 3.1.2, it has a functional model, in which
—Ilf(p) and ~YIIf(p) are equivalent. Hence, II;(X) A ~YII;(¢p) is true in the model as
well.

Now suppose IT¢(2) A =TTIf(¢) has a model. T moves existential quantifiers to the in-
side. Thus classically, ITf(p) — YII;(¢) and contrapositively =~ YTI¢(¢) — —II¢(¢). There-
fore, I1;(X) A —II;(¢) is true in the same model. O

The question now is: Can we go further? Can we use the quantifier exchange operation
also for the translations of modal aziom schemas? One way of reducing the translation of any
modal schema like McKinsey’s schema to first-order logic is by exchanging existential and
universal quantifiers. Unfortunately, this weakens the schema. This is certainly sound: Any
theorem that can be proved using weaker schemas also follows from the original schemas.
However, weakening a schema may be a source for incompleteness. We may not be able to
prove all theorems in the weaker system.

There are two possibilities. First, we may try exploiting Theorem 3.1.2 and its Corollary
which say that in certain functional models the quantifier exchange rule preserves equiva-
lence. In the proof we needed the maximality condition of functional models. Unfortunately,
this condition is not first-order definable. An infinite approximation is:

p=\Vzix9 (1 # T2 —
Vz (Vai, 238 [zon] = [z6] A [zag] = [z0]))
AVzriz923 ($1 #T9 N x1 # 23 N\ Lo # 23 —

Vz (VYai,as, a3 30 [zag] = [z0] A [zas] = [z0]))
A V.’E1£C21E3.T4 .

48 The optimised functional translation

p is true in maximal functional models. By Corollary 2.4.5, we can add p to II;(X) A
—II;(¢) without changing the consistency. Under the assumption p, IIf(X) and YIIf(X)
are equivalent, and we are licensed to make use of the quantifier exchange operation. But
this means, that we may actually need to use p in the process of finding a refutation. Since
1 is infinite, this is not practical.

Another possibility for ensuring completeness is the following. If we prove, instead of
II¢(¢), the weaker theorem YII¢(¢p), it may turn out that the weaker schemas are sufficient
to prove the weaker theorems, without assuming u. The next corollary confirms this, thus
licensing for modal schemas that quantifiers may be swapped.

Theorem 3.2.2 Let K(D)X be any complete (respectively complete and first-order defin-
able) modal logic with modus ponens and the necessitation being the only rules. Then, for
any modal formula ¢,

¢ is a theorem in K(D)Y iff YII;(3) — YIIf(¢p) is a s.o. (resp. f.0.) theorem

Proof. For the (<) direction, suppose YII;(X) — YIIf(¢) is a theorem. Since II¢(¥) —
TII;(X) holds, IT¢(X) — YIIt(¢) holds. This implies IT;(3) A =Y(IIf(¢)) is unsatisfiable.
Therefore, by Corollary 3.2.1, ¢ is a theorem of K(D)X.

For the (=) direction, suppose ¢ is a theorem of K(D)X. Then ¢ is either an instance
of a schema or it can be obtained by repeatedly applying the rules of K(D)%. The desired
result follows by induction on the length of the proof sequence if we can show, (i) for all
instances ¥ of schemas in X,

TI; (%) — Tz (),
and (ii) for all applications of rules ‘from ¢; and ... and ¢, infer ¢’ in X,
Ni(YTf () = TTf (@) = (YTf(5) = TT¢())-

Let 4[p/p] be an instance of a schema. We have

T (%) = Ty ($[p/p]) it TI(y) = Tz (4[p/p))
iff Vi = by[p/pl,

where Vp'1; is the optimised functional translation YII; (1)) of 9. VP 1y — 1 [p/p] is true,
which proves the base case of (i).
(ii) The proof for the rules modus ponens and necessitation is as easy. a

If there are other rules in X, we must prove case (ii) for these rules individually, which
should not be a problem, in general.

3.3 Functional correspondence theory

For schemas, like 4, T', etcetera, that are definable by a first-order relational property the
operator T has no effect. For example, the existential quantifier in the local associativity
law

vz Vaf3y [zaf] = 7],

3.3 Functional correspondence theory 49

is already as far right as possible in the quantifier prefix. In some instances moving existential
quantifiers inward increases the complexity of Skolem terms which is not desirable. Examples
are the identities associated with the schema Mk:

Vz Ja 36 [zaf] = A Vz Vy VéTe [zayd] = [ze].

For first-order definable complete logics, Corollary 3.2.1 is the important theorem of this
chapter. Otherwise, as we will see, Theorem 3.3.2 is important and assists us in describing
essentially second-order schemas by first-order functional formulae.

There are different methods for solving correspondence problems. The Sahlqgvist tech-
nique is the most widely known method (van Benthem 1984). (Other methods developed
more recently are by Szalas (1993), Simmons (1994).) We adopt the automated approach
of Gabbay and Ohlbach (1992) who devised the SCAN algorithm, which attempts to reduce
arbitrary existentially quantified second-order formulae to equivalent first-order formulae.
This reduction may be applied to the second-order relational, functional or optimised func-
tional translations of modal schemas.

Initially, we will consider how modal schemas can be reduced to their relational corre-
spondence properties and why the reduction fails for McKinsey’s schema. A formal descrip-
tion of SCAN can be found in Appendix A in the Appendix.

The derivation with SCAN of the correspondence property for any given modal schema ¢
requires as input the negation of its translation VP, ... P,1. Take for example the relational
translation for the schema T'= Op — p.

II,(T) = VP Vz(Vy R(z,y) — P(y)) — P(x)).
-IL(T) = 3P 3z (Yy R(z,y) = P(y)) A =P(z))

SCAN goes through three stages, namely forming the clausal form and Skolemising, exhaus-
tively performing C-resolution on P-literals and when this stage terminates, the third stage
attempts to reverse Skolemisation. The clausal form for our sample formula is:

L. _'R(an)ap(y)
2. = P(z).

The only C-resolution step upon P-literals yields

3. “R(z,z), [1,2, C-resolution]

the only clause that remains after purity deletion, which eliminates the original two clauses.
Reversing the Skolemisation process we reintroduce quantifiers and get

dz —R(z,x).
This is negated again and the final result is
Vz R(z,z).

The algorithm has reduced the second-order formula involving a P predicate and an R
predicate associated with the schema T to its first-order equivalent formulation involving

50 The optimised functional translation

only the R predicate. A natural question is: Does SCAN reduce all first-order definable
modal schemas to their characteristic properties of accessibility?

There are two critical points in the algorithm. One, saturation with respect to C-
resolution may not terminate, and two, the reconstruction of the quantifiers for the Skolem
functions may not be possible. For instance, the procedure produces infinitely many non-
redundant clauses for the relational translation of the schema G. KG is determined by
frames of finite R-chains, and this is not first-order definable.

McKinsey’s schema is a simple schema not first-order definable in the relational context
that illustrates a situation where reversing Skolemisation is impossible. (The critical schemas
in the logic K g with counting quantifiers that we will define in the next chapter have a
very similar structure.) McKinsey’s schema M = OOCp — <Op translates to a universally
quantified formula, which we negate to get

3P 3z (Vy1 R(z,y1) — By2 R(y1,y2) A P(y2))) A

(3.4) (Vz1 R(z,21) = (322 R(z1,22) N 7 P(z2)))-

This is converted to the following set of clauses:

1. =R(z,y1) V R(y1, f(y1))
2. =R(z,y1) V P(f(y1))

3. -R(z,z1) V R(y1,9(21))
4. -R(z,2z1)V ~P(g(21))-

z is the Skolem constant for z, f is the Skolem function for y, and ¢ is the Skolem function
for z. As in the previous example, there is only one C-resolvent upon the predicate P
(produced by resolving the clauses 2. and 4.). The final clause set after purity deletion is:

1. =R(z,y1) vV R(y1, f(n1))
3. —R(z,z1) V R(y1,9(z1))
—R(z,y1) V =R(z, 1) V f(y1) # g(z1)-

It is not possible to reconstruct the existential quantifiers for the Skolem functions f and
g producing a linear ordering of quantifiers. The problem is that f depends on y; and g
depends on z; and both f(y;) and g(z1) occur in the same clause (namely 5.). There is a
way of reconstructing quantifiers for f and g by means of parallel Henkin quantifiers:

T (Vy13ys) (R(z,y1) = R(y1,y2)) N (R(z,21) = R(z1,22))
Vz1329 A ((R(z,y1) A R(z,21)) = ya2 # 29).

Unfortunately, Henkin quantifiers are not first-order quantifiers. Since the formula must be
negated in order to get the frame property for the McKinsey schema and it is not clear how
negated Henkin quantifiers are defined, this form is useless for the purposes of automated
reasoning.

If we were allowed to change the variable dependency for f and g in a suitable way
reversing Skolemisation is possible. For (3.4) suitably changing the variable dependency
means, moving the existential quantifiers outward over the universal quantifiers:

3P 3z (JyaVy1 R(z,y1) — (R(y1,92) A P(y2))) A
(329V21 R(z,21) — (R(2z1,22) A = P(22))).

3.3 Functional correspondence theory 51

If we apply C-resolution to this formula we get

_'R(&'a yl) \ R(yla f)
-R(z,21) V R(y1,9)

—R(z,y1) V ~R(z,21) V f #¢

and Skolemisation can be reversed for this set bearing a linearly quantified (first-order) for-
mula which we can negate without problems. But, of course, moving existential quantifiers
outward, and in particular, over universal quantifiers, is in general not admissible. The
operation does not preserve logical equivalence.

In maximal functional frames the situation is such that moving existential quantifiers
outward in the negation of translated schemas is admissible. Above in (3.3), we derived
-YII;(M) for McKinsey’s schema:

(%) 3P 3z 3B8B'Vad' Plzaf] A =Plzd'F]
and its clause form:

1. Plaf]
2. =Pl 3.

C-resolution yields:

[af] # [/ .

Reversing Skolemisation yields:

e 3BVad’ [raf] # [/
and negation produces:
(3.5) Vz VBB Jad [zaf] = [zdF].

This is first-order and equivalent to (x). The corresponding theory equation is that of
Figure 3.4.

The operation T moves all existential quantifiers inward as far as possible, which is more
than the theory demands. For dealing with McKinsey’s schema swapping one quantifier
suffices. The resulting formula is

Vz VA3V 3d [zaf] = [zd/]
and the associated theory equation is

[zf(z, B)B] = [z9(=, B, ") B].

This is slightly stronger than (3.5), but it is still first-order.

Although KM is not complete with respect to a class of frames described by a first-order
property of a relation, KM is complete with respect to some class of frames, which Fine
(1975) defined via normal forms. Therefore, by Theorem 3.2.2, Theorem 2.3.1 and the fact
that YTI;(M) is a first-order property:

52 The optimised functional translation

'/B’a,/B

M [5f(z,0,f)a] = [s9(z, 0,)] \
x,a,ﬂ /
F [2f(z,0,)] = [v9(z, 0, B)a] A [2f (3,0, B)] = [g'(, o A)F]
gz, 0, 8) . *
flaaB) s
ﬁ\ 5

Figure 3.4: ‘Optimised’ theory equations.

Corollary 3.3.1 A modal formula ¢ is a theorem of KM iff
(Vz VBB Jad [zaf] = [zd/B']) — YT f(p) is a first-order theorem.

Since in the clausal forms no Skolem functions appear except for Skolem constants,
reversing Skolemisation is always possible, when the C-resolution procedure terminates.
Theorem 3.2.2 has a corollary useful for practical purposes, namely:

Theorem 3.3.2 Let K(D)X be a complete (respectively complete and first-order definable)
modal logic with modus ponens and the necessitation rule being the only rules. For any
modal formula ¢, if SCAN is successful in eliminating all second-order quantifiers for all
schemas from —=YTI(X) then

¢ is a theorem in K(D)X iff YIIf(X) — YIIf(yp) is a first-order theorem

The result transfers also to multi-modal logics K(;;)X. The result is remarkable, for no
similar result holds for the relational translation.

A sample derivation demonstrates deduction by resolution and paramodulation for Mc-
Kinsey’s schema. The formula

F (O0p A OOq) = O(p A g)

is provable in K4M (a conventional proof can be found in Hughes and Cresswell 1996, pp.
131). Since KM is serial the clausal form of —~YII;(F) is

1. Plaf]

2. Qlen]
3. = Pla] V =Qla]

The paramodulant of 3. with local associativity is

4. =Plaf] V =Q|ap].

3.4 Conclusion 53

With [zf(z,a, 8)a] = [zg(z, o, §)F] a paramodulant is

5. ~Plg([l, e, B)e] v ~Qly([l; o, B)ed-

Now, resolve with 1. to get

6. =Q[g([l, &, B)al.

The empty clause follows then from 6. and 2. We can also infer YII;(M) from YII;(F):
Since KF is serial, the theory approximating it is the conjunction of two identities from
Figure 3.4. The clausal form for M is:

1. Plaf]
2. - Play]

The proof is:

3. P[f(8,)]
4. Plg'([, 8, @)l
5.0

by paramodulating into 1. and 3., and resolving 2. and 4. Cross checking, we note M is
logically equivalent to the instance of F' with ¢ = —p.

3.4 Conclusion

The functional language is in a sense more expressive than the relational language and
therefore properties of frames which are second-order in the relational language may become
first-order in the functional language. It must be stressed that we only showed that we can
prove that a formula ¢ is a KY. theorem by proving a weaker theorem from weaker (possibly
first-order) frame properties, whereas the original (equivalent) frame properties are still
second-order, even in the functional language. But from a practical and theorem proving
point of view, we achieved the desired effect, in that we approximated second-order frame
properties by first-order frame properties without changing the logic.

In summary, thus far the functional translation of modal formulae has been investigated
for the theorems to be proved in some first-order definable modal logics. In the case of
propositional modal logic, it is possible to move in the functional translation of the negated
non-schemas all existential quantifiers over universally quantified ‘accessibility functions’ to
the front. The effect is that complex Skolem terms are avoided and at most Skolem con-
stants occur in the clausal form. This is not new. New is, that the same can be said for the
functional translation of modal schemas. We demonstrated that McKinsey’s schema which
is not first-order in the relational context has a corresponding first-order functional approx-
imation. This formulation can be computed automatically using a quantifier elimination
algorithm like SCAN, if quantifiers are suitably swapped. This is not possible in the rela-
tional language. We have shown that swapping the existential and the universal quantifiers
in the functional language preserves the theorems of the logic, provided the quantifiers are
also swapped in the theorem which we wish to prove.

54 The optimised functional translation

Using the methods proposed in this chapter, we can now apply first-order predicate logic
theorem proving techniques to a wider class of modal systems than was possible before.

Recent incompleteness results found by Gasquet (1994) suggest that optimisation cannot
be readily applied to quantified modal logics. In quantified modal logics the truth of a
formula does depend on predecessor worlds and the equivalence (3.1) does not hold. An
example (due to A. Herzig) shows what can happen. The formula O(3z (p(z) A OOC—p(2)))
is true at the world z of the following model.

. / W p(a)a p(b)

g (), @)
For every world y accessible from z (these are y; and ys2) there is a world in which p(z)
holds (for 41, z is a and for yy, z is b), and for every worlds 3’ accessible from y (z) there
is a world 3" accessible from 3’ (y; and yy are the candidates) such that —p(z) holds at y”.
Now we have to choose either y; or y2 and check whether —p(z) holds, but z was determined
in a previous world, in case that y = y1, z is @ and in case that y = y2, z is b. Our choice
depends on the path we choose to get to 3y’ = z. Therefore, if there are domain quantifiers,
moving existential quantifiers to the front is not always possible. For quantified modal logic
the technique does not work in general (neither does it for relational frames or functional
frames). It remains to be investigated whether exchanging quantifiers is possible at least for
some cases, for example, for the case that domain variables do not occur in different modal
contexts.

Chapter 4

Translating graded modal logic

In the logic of graded modalities it is possible to talk about sets of finite cardinality. Various
calculi exist for graded modal logics and all generate vast amounts of case distinctions. In
this chapter we transform graded modal logic into clausal form by the optimised translation
method via a second intermediary multi-modal logic. The translation is sound and complete.
In contrast to known approaches the resulting resolution calculus enables us to reason with
cardinalities of sets symbolically. We will see in many cases the lengths of our proofs are
independent of the cardinalities. We consider the basic uni-modal graded modal logic K
which we briefly review in Section 4.1. This logic will be accommodated in a normal multi-
modal logic, called K g, that is introduced in Section 4.2 and the embedding of K in K is
described in Section 4.3. The initial reduction to first-order logic by the optimised functional
translation is then straightforward and yields a set of theory clauses that define the original
logic K. However, things are not all that simple as the sample derivations in Section 4.4
will show. The material of this chapter is published in Ohlbach et al. (1996).

4.1 The graded modal logic K

The box operator and the diamond operator of normal modal logics are also called the
necessity and possibility operators. In (1970) Goble defines modal logics with a fixed and
finite number of box modalities that each represent a different grade of necessity. For
example, the formula Ny, A Ny for positive integers m < n, is read to mean v is more
necessary than ¢. Fine (1969, 1972) generalises this idea and introduces modal logics with
numerical modalities. These are now commonly referred to as modal logics with graded
modalities. In a series of papers Fattorosi-Barnaba, de Caro and Cerrato (1985, 1988, 1988,
1990) rediscover and analyse these logics. Recent investigations of graded modal logics are
by van der Hoek (1992). Together with de Rijke he applies graded modal logic to linguistics
and artificial intelligence. In (1993b) they show that generalised quantifiers can be modelled
with graded modalities. In (1993a, 1995) they also show that certain numerical quantifier
operations available in KL-ONE-based knowledge representation languages can be modelled
with graded modalities.

We adopt the definition of the graded modal logic K of van der Hoek (1992). K extends
the basic modal logic K with graded modalities. Formally, the vocabulary of K is that of
propositional logic consisting of finitely many propositional symbols p, ¢, ..., 1L and —, plus
countably many modal operator symbols ¢,, for n € Ny. Formulae of K have the following

55

56 Translating graded modal logic

forms:

p’Q""’ J—’ (10_>¢7 ’n(p'

Negation, disjunction, conjunction, etcetera, are defined as usual in terms of bottom and
implication. Additional modal operators are B,,, ¢!y and ¢!,,, defined by

m,p=-4,~¢p forn>0,

4o =My—p and

. 0o=40, 10N 4,0 withn >0.
4. is read to mean ‘yp is true in more than n accessible worlds’, B, is read to mean ‘-
is true in at most n accessible worlds’, and ¢!,y is read to mean ‘yp is true in ezactly n

accessible worlds’.
The logic K of graded modalities is defined by the following schemas

Al the schemas of propositional logic

A2 np1p = np

A3 Wo(p = q) = ($np = $nq)

A4 Ho—(p Agq) = ((#lap A lng) = ®lngm(p V g))
together with the rules of modus ponens and necessitation for Mo.

Let V denote exclusive-or. The following are theorems of K (van der Hoek 1992).

A5 Ey(p—q) — (H,p — Wyq)

A6 #(pAg) = ($np A #n9)

AT (¢lp A ®lp) = L for n #m

A8 H,-p< (¢opVeipV ...V ep)

A9 —u(pVq) = —up

A10 #nim(pVq) = (#np V $mq)

A1l (®lp A €yp) = L form >mn

A12 #u(p A q) A $m(p A —q) = $npmiap

Observe that ¢ and By coincide with the standard modal operators ¢ and O. K is therefore
a subsystem of K.

The semantics of K, like K, is given by a frame (W, R) consisting of a non-empty set W
of worlds and a binary accessibility relation R over W. Any frame gives rise to a class of
models M = (W, R,.) by adjoining a valuation function + mapping propositional variables
to subsets of W. Truth in a model M for formulae of K at any world z is defined as for K
except the truth of modal formulae is specified by:

M,z = it card({y € W|R(z,y) N M,y = ¢}) >n

1) Mo = By it card({y € W| R(z.y) A M.y = —~p}) <n.

Recall, R"(z) = {y| R(z,y)}. Then, satisfiability of 4, and B,¢ can be reformulated as
follows:

M,z = $p it Y CR'(z) withcard(Y) >nandVyeY : M,y E ¢

(42) M,z = B iff VY CR'(z)withcard(Y) >n,FyeY : M,y E o.

4.2 The multi-modal logic Kpg 57

(The proof is routine.) It is now easy to verify ¢, <> —l,—p.
The axiomatisation of K is sound and complete: For any formula ¢,

@ is provable in K iff ¢ is valid in all frames.

A proof can be found in de Caro (1988) (which improves the proof of Fattorosi-Barnaba
and de Caro 1985).

In the remainder of this chapter we assume the formulae of K to be in negation normal
form which can be obtained by systematically applying the following equivalences from left
to right.

(e V) & (mp A1) pep e ((@—=9) A =)
(P Ath) & (mp V —9) -l < 40
=P (e Vi) e & By

4.2 The multi-modal logic Kz

In this section we define the more expressive multi-modal logic with numeric quantification,
called K i, that encompasses K. Kpg is used as an intermediary logic for transforming
the graded modal logic into first-order logic with the aim of facilitating inference for K by
standard theorem proving methods based on the functional translation. In contrast to K,
K i is a normal modal logic.

K ; has two kinds of modalities ©,, and < and is an attempt at capturing frames of the
form

(43) (W U WY, {Rn}RGNo ’ E)

with WY a subset of the power set 2" and two kinds of accessibility relations R, and E.
R, relates elements of W with subsets Y of W that have cardinality greater than n, and
E relates subsets Y of W to elements of Y. E can be thought as being the converse of the
‘element of’ relationship. The sets Y are in WY .

Frames of K of the form (W, R) can then be embedded in frames of the form (4.3) by
replacing R by the family {R, }nen, together with E, and W by its superset W U WY that
includes also subsets of W. For example, according to the definition of the previous section,
#3530 is true in a world z iff there are at least 4 worlds to which z is related by R. This
definition is depicted in the Figure .1(a). Figure .1(b) depicts its encoding in a frame of
K . The relation R is encoded by the relational composition of the two new relations R3
and E. There is a new world labelled Y which is meant to represent the set of worlds ¥,
Y2, Y3 and yq.

K g differs from an alternative translation into a multi-modal logic called ‘Lcount’, de-
veloped by Andréka, Németi and Sain (1995). In their system there are n-place operators
<, with semantics

M,z = Oppi,... ,on iff there are distinct y1,... ,y, such that
M,y1 E p1and ... and M,y, E ¢,

Calculi based on this semantics, however, seem not to be much different from the calculi
based on the original semantics for graded modalities. In a corresponding tableaux system
one has to introduce witnesses for the worlds again, but this is what we want to avoid.

58 Translating graded modal logic

n Y1
/ /
w ” E "

Ya Ya

(a) (W, R) (b) (WUWY, {Rn}neng, E)

Figure 4.1: Encoding a K frame as a K g frame

Formally, the language of K g is that of K with the operator ¢,, replaced by the operators
Op and ©. Formulae of K g have the following forms:

DG---5 L, o=, Onp, .

The classical connectives are defined in the usual way. The duals of ¢, and < are O, =
-, and O = =0, The intended meaning of Oy,¢ (respectively) is the standard one,
namely ¢ is true in some world accessible by the binary relation R, (resp. E). We call
O and O, the numerical operators and ¢ and O the membership operators. The relations
R, and E are defined as sketched above. Namely, W forms the domain of the R,, and the
co-domain of E and the new class of worlds WY forms the co-domain of the R,, and the
domain of E.

K -formulae of the form ¢,,¢ and B, ¢ can be formulated as K p-expressions of the form

OpOp and 0O,

respectively (this can be seen easily using 4.2). The logic K i is more expressive than
K. Nevertheless, it has similar properties as K. Kp permits arbitrary combinations of
modal operators, not only alternate combinations of necessity and possibility operators. For
example, 030,000 is a well-formed formula of K g, although it may not make much sense
in our intended semantics. However, there are combinations of modal operators which have
no equivalent formulation in K, but which have interesting applications. Here is an example

of such a formula:
Oy (soccer-team — Osoccer-player).

It says that, every set with more than 10 elements that is a soccer team contains only soccer
players. In this way we can distinguish between notions like teams which we interpret as
sets and notions like players which we interpret as elements.!

We now give an axiomatisation for K i and investigate its characteristic frames. The
axiom schemas and rules are: For any n,m € Ny

N1 the axiom schemas of propositional logic and modus ponens

N2 the K-schemas for O, and O:
On(p — q) = (Onp = Ong) O(p — q) — (Op — Og)

'In linguistic applications this distinction may be put to use as proposed in Schmidt (1997b).

4.2 The multi-modal logic Kpg 59

N3 the necessitation rules for O, and O:
If - p then - O,p if - p then - Op

N4 0OpOp— 0O,0p

N5 <,0p— 0,<p

N6 Opp— Opp1p

N7 OpymB(p V q) = (OnOp V OpOg)

N8 (OnB(p A q) A OmD(p A =q)) = Ongmy1Bp

N1-N3 are basic in every normal modal logic. N4 captures that, if something holds
for every set of worlds with more than zero elements, that is, if it holds for every non-
empty set of worlds, then it holds also for all sets with more than n elements. This means,
the composition R, ; E (for n arbitrary) is a subrelation of the composition Ry;E. N5
ensures that no set with more than n elements is empty. A contrapositive version of N6 is
Ont+1p = Opp- It captures that sets with more than n + 1 elements are sets with more than
n elements.

N7 corresponds to A10 and is a bit more complicated to explain. As an example suppose
n = 2 and m = 4. For these values N7 is CgO(p V q) — (Co0p V ©40q) which is equivalent
to

(©6O(p V g) A =Oo0p) — O40q.

In words, if there are more than 6, say 7, worlds in which the formula p V ¢ is true, but it
is not the case that p holds in more than two worlds (that is, —p is true in all but possibly
two worlds) then in the remaining 5 of 7 worlds ¢ is true. The schema says that every
(n + m)-element set can be decomposed into an n-element set and an m-element set, but
note, the schema is slightly stronger.

The intuition underlying N8 is the following. Suppose there is a set Y; with at least n+1
elements where p A g holds and there is another set Yo with at least m + 1 elements where
p A =g holds. Since ¢ and —¢ cannot hold simultaneously in one world, Y; and Y, must
be disjoint. Thus, p holds in Y; U Y5 which is of cardinality at least n + m + 2. Therefore,
Ontm+10p is true.

Now we turn to the semantics of K g. The K-schemas and the necessitation rules allow
us to use the standard Kripke semantics. A K g frame is a relational structure

F= (VV, {Rn}nENan)-

W is a non-empty set of worlds. The R,, are binary relations over W and FE is a designated
binary relation over W. R,, and E satisfy the properties N4'-N8' given below. A model of
K g based on a frame F is a pair M = (F,.) with ¢ defined as before. Truth is defined as
in any multi-modal logic with R,, determining truth for ©,, and F determining truth for <.

The following are the characteristic properties of K p-frames that correspond to the
schemas N4-N8: For any n,m € Ny

N4" Vzyz (Ry(z,y) A E(y,2)) = Ju (Ro(z,u) A Vv (E(u,v) = v = 2)))

N5" Vzy (R,(z,y) — 3z E(y, 2))

N6 Vzy (Rnyi(z,y) = Ra(z,y))

N7 Vzy Ryim(z,y) = Vg Fuv(Ry(z,u) = E(u, f(u)) A Ry (z,v) —
E(v,9(v))) = (Ra(z,u) A R(z,0) A E(y, f(u)) A f(u) = g(v))

60 Translating graded modal logic

N8 Vzyz (Rp(z,y) A Rn(z,2) AVu (E(y,u) = —E(z,u)) —
v (Rpsm+1(z,v) AVw (E(v,w) = E(y,w) V E(z,w)))).

We computed these properties with SCAN, which guarantees soundness of the semantics with
respect to the axiomatisation, that is,

(4.4) if F%, ¢ then gz .

If each of the properties N4'-N8' is first-order then the Sahlqvist Theorem (Sahlqvist 1975,
van Benthem 1983, van Benthem 1984) ensures completeness for K . Unfortunately, N7’ is
still second-order, which forces us to prove completeness explicitly. We do this indirectly for
translated K formulae by using the completeness of K and the soundness and completeness
of the translation into K g which will be proved in the next section. General completeness
for arbitrary formulae of K g is open,? but for the purpose of our translation, this is not
detrimental.

The correspondence property N4’ states that all singleton subsets of the set of worlds
accessible by R, are uniquely represented by a world accessible by Ry. N5’ asserts that
every world accessible by R,, leads via E to another world. We say E is weakly serial. By
N6’ the set { Ry, }nen, of R, relations forms a linear order with Ry being the largest element,
since for any m > n, Ry, is a subrelation of R,,.

The correspondence property N7’ of N7 expresses intuitively that every set y with more
than n + m elements can be decomposed into a set u with more than n elements and a set
v with more than m elements, and if y happens to have exactly n + m + 1 elements then u
and v overlap in at least one element.

N8 expresses, as already mentioned, that for disjoint sets the cardinality of their union
is the sum of the cardinalities of the sets.

For a better understanding of the frame properties it is helpful to think of the variable y
in Ry, (z,y) and E(y, z) as representing a set Y, R, (z,y) as representing that the cardinality
of Y is greater than n, and E(y, z) as representing that z is an element of Y. Then N4'-Ng'
represent:

N4" VYVz (((card(Y) >nAz€Y) = {2z} CY)
N5 Vy (card(Y) >n =Y #£0)
N6" VY (card(Y) >n+1— card(Y) > n)
N7 VY (card(Y) >n+m — Vfg UV ((card(U) > m A card(V) > m) —
if f selects from U and g from V then f(U) € Y A f(U) = g(V)))
N8" VYZ ((card(Y) >n Acard(Z) >m AYNZ =0) —
AV (card(V) >n+m+1AV CY UZ)).

We can show that the frames in the standard class associated with K g have the expected
structure, namely that all worlds accessible by R, have more than n successors by E.
However, non-standard K g-frames exist which do not have this intended structure. The
problem is, we cannot enforce in a normal modal axiomatisation that Ri-accessible worlds
have more than one E-successor. This may be captured by a schema like

O:(3p (Op A O-p)),

%See (i) in Section 4.5

4.3 Translating K to K 61

or a rule similar to Gabbay’s (1981) irreflexivity rule (but this gives no new theory). See also
Prior (1968). The modal language of K and K g is not expressive enough to characterise
this class of frames. On the other hand, we can show using an inductive argument that
whenever an Rj-successor has more than one E-successor, then for any positive integer n
every R,-successor has more than n E-successors. This is to say, the induction step goes
through, but unfortunately the base case of the induction cannot be guaranteed. Because
the translation of the logic K into the logic K g is sound and complete (which we show
in the next section), we know whenever a translated K-formula has a model then it has a
model with the expected structure.

We do not investigate the non-standard models further. It may turn out that they are
p-morphic images of standard models, in which case they are completely irrelevant because
normal modal logics cannot distinguish p-morphic images.

4.3 Translating K to Kz

Now we formally define a translation function IT mapping formulae of K to formulae of K g
and show the translation is sound and complete.

II maps K-formulae to K p-formulae according to the following constraints. For any
propositional variable p and any formulae ¢ and 1,

I(p)
(=) = —II(p)
(e @) = II(p) @QII(1h)

where @ denotes any binary classical connective A, V, — or <.

p

Theorem 4.3.1 (Soundness of IT) The translation IT from K into K g is sound. That is,
for any formula ¢ of K

if ¢ is a theorem in K then TI(y) is a theorem in K g.

Proof. Suppose ¢ is a theorem in K. We proceed by induction on the length of the proof of
¢ and show that the proof sequence of ¢ in K determines a proof sequence of TI() in K g.
We are done if we can show that the II-translations of the schemas and the rules of K are
K p-theorems.

IT leaves the propositional schemas and modus ponens unchanged. The translation of
the necessitation rule N is:

Fk, ¢ implies Fg Do,

If ¢ holds then, by the necessitation rule for O and Oy, OygO¢ holds. Apply modus ponens
using the contrapositive instance with n = 0 of N5 and get Oy<Oy. (Formally, instead of ¢
one has to consider II(y). But for the proofs this makes no difference.)

The translation of A2 is a contrapositive version of N6. It remains to prove the trans-
lations of A3 and A4 can be derived from the axiom schemas of K g by using its rules.

For A3 we prove

M(A3) = O O(p — q) — (Cn0p = ©,0q)

62 Translating graded modal logic

is a theorem in K p. Suppose 0y<O(p — ¢q) and <, 0p hold. Suppose further that =<,0g,
that is, 0,< =g, holds. From Oy<(p — ¢) we infer by N4 that 0,0(p — ¢) holds. By schema
K for O, it follows that O, (Op — Og) holds. This is equivalent to O, (-0Og — —Op), that
is, 0,(O—g — ©=p). Using K for O, we infer 0,0-g — O0,0-p. From —<,0¢, which
is equivalent to O, <$—q, using modus ponens we get O, —p, or equivalently =<, 0p. This
contradicts ©,0p. Thus I1(A43) is derivable in K g.

For A4: Let

¢=000=(p A q) A Cp10p A =0,0p A Opp10g A =05, Og.
Then II(A4) is equivalent to

¢ = (Cnem10(V @) A ~CninO(p V q)).

We prove this in two steps. First, we prove ¢ — Opipm—10(p V ¢). Suppose ¢ holds. It
suffices to show

(4.5) On—10(p A —q).

From <,_10(p A —q), or equivalently ,—10((p V ¢q) A —q), and <p,—10q, or equivalently
Cm-18((p V q) A q), using N8 we deduce Cpipy—10(p V ¢q).

For proving that (4.5) follows from ¢ we proceed by contradiction. Suppose that
-Op_10(p A —g), that is, O, 1<O(—p V ¢) holds. From OyO—(p A g) using N4 we get
O,,—10-(p A q) Since, in general, in any normal modal logic O (and, in particular, O,,_;<)
distributes over conjunction, we obtain

(4.6) On-1(C(=p V @) AO(=p V —9)).

The schema K for O is equivalent to (Op A ¢g) — O(p A g). Thus (4.6) is equivalent to
O,—10(C((—p V @) A (mp V —q))). This in turn is equivalent to O,_1 < -p. Thus =<, 1Op
which contradicts <,,_10p.

Next, we prove ¢ — =<y, 0(p V ¢). Suppose ¢ holds. Then, in particular, =<, 0p and
=<, 0q hold, and =<y 4,,,0(p V q) is derivable by (the contrapositive of) N7. Therefore,
T1(A4) is a theorem in K g. O

For proving completeness of the translation II a semantic proof suffices. The next theo-
rem proves that for a translated formula II(¢) which is true in all K p-frames, ¢ is true in
all K-frames. If TI(¢p) is provable in K i then the soundness of the K g-semantics guarantees
that II(y) is true in all K g-frames, then ¢ is true in all K-frames and then it is provable in
K (by the completeness of K).

Theorem 4.3.2 For any formula ¢ of K,
if =%, O(p) then =gz o.

Proof. Our strategy is the following. Suppose \:?E I(y). (i) For an arbitrary K-frame F
we construct a K g-frame F'. II(¢p) is valid in this particular frame F'. Then we show, (ii)
 is valid in F.

(i): Take any K-frame F = (W, R). We construct a K g-frame F’ as an extension of the
frame F as follows. For any world z € W let R"(z) be the R-image of z. For any finite

4.3 Translating K to K 63

Zn—i—l

Figure 4.2: Case 1 of N7'.

subset Y of R"(z) with card(Y) = n + 1 for n a non-negative integer, we add Y as a new
world to F. We call Y a ‘set-world’. Note, every Y is non-empty. We define every relation
R, for m < n to contain the pair (z,Y’), and, we define the relation E to contain all pairs
(Y, 2) for z € Y. Furthermore, we assume the relations R, and E are the smallest relations
satisfying these conditions. Now, define F’ to be the relational structure

(Wla {Rn}nENo) E)

with W' being the set of worlds of F’ that includes the set of worlds W of F and all set-worlds
Y. Note, the set-worlds have no R,,-successors and the worlds in W have no E-successors.
We show that F’ is a frame for K i by showing that F’ satisfies the properties N4'-N§'.

N4': If R, (z,y) A E(y,2) holds then y must be a set-world with card(y) > n and z € y.
For u = {z} we obtain Ry(z,u) A Vv (E(u,v) = v = 2).

N5'": If R,(z,y) then y is a non-empty set-world, that is, 3z E(y, z) is true.

N6": If Ry 11(z,y) then y is a set-world with card(y) > n+1 > n, that is, R,(z,y) holds
as well.

Recall NT":

Vzy Rpim(z,y) = Vfg Juv (Rp(z,u) = E(u, f(u)) A Ry(z,v) —
E(v,g(v))) = (Ba(z,u) A Rp(z,0) A E(y, f(u)) A f(u) = g(v)).

Ry tm(z,y) means that y is a set-world with card(y) > n + m. We distinguish two cases.

Case 1: card(y) =n+m+ 1. Let f and g be functions mapping worlds to worlds. If
there is at least one Rj-accessible set-world u with card(u) > n and f does not map u to
one of its elements (—E(u, f(u))) or there is at least one R,,-accessible set-world v with
card(v) > n and g does not map v to one of its elements (—E(v,g(v))) then we can choose
this u or v, respectively. Then the implication

(4.7) (Bn(z,u) = E(u, f(u) A Bm(z,v) = E(v,9(v))) =
(Bn(z,u) A R (z,0) A E(y, f(u)) A f(u) = g(v))

is true because the premise is false.

Now assume, f chooses for every set-world u with card(u) > n some element f(u) € u
and g chooses for every set-world v with card(v) > m some element g(v) € v. The key
observation for the proof is that for every set with n 4+ m + 1 elements every decomposition
into a set u with n + 1 elements and a set v with m + 1 elements overlaps in at least one
element. Thus, the situation is as depicted in Figure 4.2.

For finding the right v and v we follow this procedure. We start by choosing a subset
u1 C y with n+1 elements. Suppose f(u1) = z1. If there is a subset v C y with card(v) > m

64 Translating graded modal logic

and g(v) = z; we are done. Suppose for no such subset we have g(v) = z1. z; is marked
as ‘not an image of g’. Now we choose another n + 1-element subset us of y which does not
contain 1. Suppose f(u2) = zo. Again, if for some subset v with card(v) > m we find
g(v) = z2 we are done. If not, we mark zo as ‘not an image of g’. We continue until we
have found a suitable u and v, or until exactly n + 1 worlds remain which are not marked
‘not an image of ¢g’. In the latter case we choose this set for u. Suppose f(u) = z. Take
v=y\uU{z}. card(v) =m+ 1 and g(v) # z for all z € y \ u. Since g must select some
element in v, g(v) = x is the only choice. Thus, suitable u and v exist that satisfy (4.7).

Case 2: card(y) > n+m + 1. Take any subset 3’ C y with card(y’) = n+m + 1. By
Case 1, we can find for any f and g subsets u C ¢ and v C y' with the property (4.7). But
these are also subsets of y and therefore the property holds as well.

N8': This property expresses that the union of two disjoint sets of cardinality strictly
greater than n and strictly greater than m is a set with cardinality strictly greater than
n +m + 1, and this is true in F'.

We have proved F' is a frame for K g.

(ii): Let M = (F,.) be any model based on F with ¢ an arbitrary valuation. Define M’
to be the model (F',:). (Observe that +(p) does not, and need not contain set-worlds.) (ii)
follows from

(4.8) Mo g, T(p) it Mo bgy

where z is any world in W. We prove (4.8) by induction on the structure of ¢. The base case
in which ¢ is any propositional variable is trivial. The inductive step for the propositional
connectives goes through easily. We consider the case ¢ is of the form ¢,1. (The case for
¢ of the form M, is dual.) The inductive hypothesis is:

MI,.’E IZFE H(lﬂ) iff M,.’E sz ’Lp

Suppose M',z =5 TI(#n%), that is, G,0% is true at z in M'. Then, R, (z,Y) in F' for
some set Y C R"(z) with n+1 elements and for all z € Y we have M', z =% _ %) and by the
inductive hypothesis M, z =5 1. There are at least n such z, therefore, M,z =% #,9.
Conversely, suppose M, z |=7 #,1. This means the world z has more than n successors
by R in all of which 1 is true. Consequently, a set Y with cardinality n + 1 exists that
contains R-successors y of z and in all y, 1 is true. This implies, in F', £ and Y are
connected by R, and Y is connected to all its elements by E. Thus, ¢,0 is true in z.
This completes the proof. m|

As consequences we get the following two theorems.

Theorem 4.3.3 (Completeness of I1) The translation IT from K into K g is complete.
That is, for any formula ¢ of K,

if Fg, I(p) then Fx o

Proof. Suppose I1(y) is a theorem in K g, that is, F%, (). Then, since K is sound (4.4),

F#, [(p). By the previous theorem =% . K is sound and complete. Therefore, it follows
that I_F ©. O

Now, we can show the completeness of the semantics of K i with respect to its axioma-
tisation for translated formulae.

4.4 Translating K g to first-order logic 65

Theorem 4.3.4 (Relative completeness of K i) For any K formula ¢,
if Fg, H(p) then Fg II(p).

Proof. If TI(p) holds in all K p-frames then ¢ holds in all K-frames (by Theorem 1 4.3.2),
then ¢ is provable in K (by the completeness of K), and then II(y) is provable in K g (by
the soundness of the translation, Theorem 4.3.1). a

4.4 Translating Ky to first-order logic

The Theorems 4.3.1 to 4.3.4 show that inference about numerical quantification formulated
as a formula ¢ of K can be done in the context of the multi-modal logic K z by inference on
the translation II(¢). This is not what we aim to do. We aim at using first-order resolution
methods for reasoning with graded modal expressions. K g being a multi-modal logic we
can immediately use one of the three reductions to first-order logic. As one of the schemas,
namely N7, is not first-order definable in the standard Kripke semantics, relational and
functional translations are disqualified. Instead, we use the optimised functional translation
and it turns out, like McKinsey’s schema, N7 has a first-order functional approximation.

The completeness theorems for the functional translation mappings require that the
modal logics are complete with respect to some class of frames. For K we showed only
relative completeness, that is, K i is complete for the translated K formulae only. Since
this fragment of K g is sufficient for our purpose, we have fullfilled the conditions of Theo-
rems 3.2.2 and 3.3.2.

The functional translation for serial modalities is considerably simpler than for non-
serial modalities. The accessibility relations R, (n € Ny) and E are not serial. Axiom N5,
<Cn0p = O, COp, specifies a weak form of seriality for E. Every world accessible by some R,
(that is, every set-world) has a successor by E.

We do not need the full expressiveness of the language of K . A subset of formulae with
characteristic patterns of modal operators <,, O,, ¢ and O will do. For example, in the
axiomatisation defining K the operators & and O do not occur in the scope of & and O
operators, they always occur in the scope of ¢,, and O,, operators. This is intentional. Only
these patterns make sense in our application of K z. We think of the numerical modalities
picking only sets and the ¢ and O operators picking only elements of these sets. For this
we need a special class of formulae in which the E-successors of worlds accessible by E are
irrelevant, only E-successors of worlds accessible by the relations R,, count. We are therefore
permitted to assume E is serial (which is embodied the next theorem).

The language of K g that we will use is restricted to the set of admissible formulae. We
say a formula ¢ of K g is admissible iff all & and O operators appear in the scope of a <,
or O, operator (for some n). Examples of admissible formulae are:

OnOp, 0p0p, Onp(pA<Og) and O,(—-0Op — Og).

The formulae ¢p and <©,00q on the other hand, are not admissible. We note that the
translation IT maps K formulae to admissible formulae, since the corresponding modalities
for modal operators of K are <,,00 and 0,,¢. Evidently, any substitution instance of N4-N8
is admissible.

Theorem 4.4.1 Let ¢ be an admissible formula of K g. If ¢ is valid in a model then ¢ is
valid in a model in which the relation E (associated with the modalities & and O) is serial.

66 Translating graded modal logic

Proof. Let ¢ be valid in a model M = (W,{Ry}nen,, E,t) Define M’ to be a model
(W,{Ry }neny, F',t) obtained from F by replacing E an extension. E’ includes E and
all pairs (z,z) of z € W for which no y € W exists such that E(z,y). Evidently, E' is serial.

We show that ¢ is valid in M’. The only critical case is where ¢ has a formula equivalent
to ¥ = O¢ A O-¢ as subformula. For 1 is true at any world z in M iff £ has no E-successor
in M. In M’, however, v is false at whenever 1) is true at z in M (otherwise there is
an inconsistency). 1 occurs in the scope of either <, or O, for some n. First, we consider
the case that 1 occurs in the scope of ©,. Let ¢ be the ¢, subformula of ¢ with 1) in its
scope. We may assume ¢’ is of the form <, ((¢p V @) A B). Now, suppose ¢ is true in a
world z of M. Then there is a y € W such that R,(z,y). Since E is weakly serial there is
a z € W such that E(y, z), which implies 9 is false in y of M. Hence, ¢’ is true in z of M
iff it is also true in z of M’. Next, we consider the case that 1) occurs in the scope of O,.
Assume ¢’ is of the form O,((¢ V @) A () and suppose ¢ is true in z € W of M. Then
either there are or there are no y’s in W such that R, (z,y). If there are y’s then we argue
as above. If there are no y’s then ¢’ is trivially true in z of M’. We conclude, ¢ is indeed
valid in M. O

This theorem licenses the translation of the & and O operators without the dead-end
predicate deg. For admissible formulae in K g the translation function 7y can be taken to
be defined for the modal operators by:

(n$, T) = —dey(z) = YV, Wf((Pa [x')’n])

)
T (Onp,) = ~den(z) A Fyn 75 (@, [T70])
77 (Op,x) =Yy 7 (0, [27E])
7 (O, x) = Iy 7p (e, [7E])-

We are now set to compute the first-order formulae for the schemas N4-N8 of K . This is
a mechanical and tedious task, which we left to an implementation of the general translation
procedure and the tool SCAN for eliminating second-order quantifiers.

In our listing of the results below, we use indexes to indicate the sorts of variables and
Skolem terms. The value in the subscript of a Skolem function, say f,, associates the
function with the m-th modality <©,, and AFy, is the sort of the terms formed with f.
The subscript n is part of the name of the Skolem function. It is only used to distin-
guish the different Skolem functions for the different instances of the clauses. (In an actual
implementation, these numbers are the objects of symbolic arithmetical manipulations.)

The following presents for each schema N4-N8, (i) the functional translation, (ii) the
first-order equivalent formulation and (iii) its clause form.

N4: O0p0p — O,0Op.
The functional translation IT;(N4) is

VP Vz ((—dey(xz) = YapIBrPlragfE]) — (mdey(z) — Yy, YoE Plzyd))).
This has a first-order equivalent formulation, namely

(4.9) Vz deg(z) — dey(x) A
Vz (—dey(z) — (Vy, Yog Jap VBE [2Vn0E] = [za0BE]))-

4.4 Translating K g to first-order logic 67

The clause form is:
—deg(x) V dey(z).
N5: Any instance of this schema is valid in every frame in which F is a serial relation.
N6: Opp — Optip.
IT1;(N6) is given by
VPVz ((—de,(x) = Yoy, Plzay)) = (—denti(x) = VB,41 Plzf,41])),
the first-order equivalent by:

(4.10) Vz (dep(z) = dept1(x)) A
Vr (_'den+1(x) - vﬁn—l—l Jday, [wﬂn+1] = [wan]),

and the clause form by:
—dep(z) V depi1(x).
dent1(x) V [2Bn41] = [2gn (2, Bns1)]-

NT: OpimO(p V q) = (CnOp V O 0q)
is translated by II; to:

VPQ Vz ((=dentm(z) A Japtm VBE (PlranimfPE] V Q[ran1mPE]))
= ((=den(z) A Jan Ve Plzanye]) V (mdem(z) A o, Yo Qramdrl))).

This is equivalent to the formula
Vi (denym(z) V (mden(x) A ~dep () AVay, 4, YyE YoE 30E Jo o,
([zansmBEe] = [zanye(on)] A [2animfe] = [tands(am)]))))-

This formula is second-order, for note the terms yg (o,) and dg(a,,). We get a first-
order equivalent formula if we apply the quantifier exchange rule T to IT;(N7):

VPQ Vz ((mdenim(z) A I, 4, VBE (PlranimBe] V Qron+mfs])) —
((—den(z) A Jan Yy Plzanye]) V (mdem(z) A YoE am Qlramidr])))

which is equivalent to the first-order formula

Vz (depim(x) V (mden(z) A —den(z) A
vO‘n-i-m Vye 3BE oy, Vg Jay ([xan—i—mﬁE] = [$an7E] \% [xan—kmﬂE] = [xam(sE])))

The clause form is:

den+m(x) V —dey(z).

denym(z) V ~den,(z).

dentm(z) V [xan+mh1%m($aan+ma’7E)] = [$h22m($aan+ma7Ea 0E)VE]-
denim(z) V [Zanimh 1™z, anim, YE)) = [2h3" (2, anym, YE)OE)-

68 Translating graded modal logic

N8: (OpO(p A q) ACnO(p A —q) = Opnimi10Op
translates to II;(N8):
VPQ Vz (((~den(z) A 3oy VBE (Plzanfr] A QlzanfE])) A

(—dem(z) A am Yve (Plramye] A ~Qramye]))) —
(mdenymi1(z) A Joy 41 Vo5 Plromimde]))

This is equivalent to
Va (dey(x) V depy () V Yoy, Yo, Joy, 441 YoE (mdenymyr () V

3BE I [ranfE] = [zamvE]) A (3BE IvE [ranfE] = [zamYE] V
3B [ronBE] = [Fanimt106] V I [2amVE] = [T0nimi10E])).

The clause form is

den(z) V dep(z) V mdepime1(z) V

T, k17 (2, g,y)| = (2 k27" (2, Qi y Q) -
E E
den(z) V dey(x) V
[zank3E™(z, o, am)] = [Tamk4E™ (2, 0,)] V

[Tan k5™ (x, o, 6p)] = [z 11 (T, o,y 0)dE] V
[‘TamkGTEL‘m(w’ O, 5E)] = [‘TkZTm—H(‘Ta Qp, am)éE]

The clauses sets of the translation of K g are schemas. They represent the conjunction
of all clause instances with the n and m taking on concrete non-negative integer values.
This can be exploited in certain generalisations. For example, the subformula Vz de,(z) —
den+1(z) of (4.10) can be generalised to

Vz (den(z) — dem(z)) for all m > n.

This formula subsumes the subformula Vz (deg(z) — de,(z)) of the translation (4.9) of N4.
The remaining part of (4.10) can also be generalised to:

Vz (~dep(z) = (VB Jan [26m] = [zan)])) for all m > n.
The clause form is
(4.11) dem(z) V [20m] = [zgn" (z, Bm)] for all m > n.
Recall the relational translation of N6. We noted that N6’ generalises to
R, CR, for all m > n.

This ordering on the accessibility relations {Rj}nen, induces a linear ordering on the set
{AF,}nen, of sets of accessibility functions. We capture this ordering by the subsort decla-
ration

(4.12) AF, C AF, for all m > n.

In a resolution calculus this declaration has the same effect as clause (4.11). We therefore
replace (4.11) by the subsort declaration (4.12).

The axiomatisation of K i reduces to the following set first-order clauses which defines
the theory for K g.

4.4 Translating K g to first-order logic 69

P1 den(z) V [z 0] = [z i (2, an, B)7]

P2 AF,, C AF, forallm >n

P3 ~den(z) V dep(x) for all m > n

P4 dentm () V [Tantmh1™™(z, apim, B)] = [zh27™ (T, antm. 8,7) 6]
P5 dentm(x) V [an+mh1™ (2, dntm, B)] = [zh3W"(z, aptm, 5)7]

P6 demax(n,m) (%) V 2denimi1(T) V [20n k1" (3, an, B)] = [2Bmk2"™ (T, an, Brm)]

P7 demax(n,m) (2) V [20n k3" (2, atn, Bpn)] = [2BmkA™™ (2, Ons Brn)] V
[T, k5"™ (x, o,)] = [xkxTnH—l (T, an, Bm)y] V
[2Bmk6™" (2, B, 7)] = [xkﬁTm—f—l (z, o, B)7)-

(The variables 3 and « and the functions h1™ and k1™™—k6™™ without index are variables
and functions of sort AFg.)

Theorem 4.4.2 For any K-formula ¢,
¢ is a K-theorem iff (P1-P7) — YIIf(p) is a first-order theorem.

Proof. By Theorem 3.3.2. O

By way of examples we illustrate how P1-P7 are used during inference with a resolution-
based theorem prover. B. Nebel provided the following examples.

Example 4.4.3 Theset A = {4,437, #oH;L, M1} isan inconsistent set of K-formulae.
With theory resolution we can show the inconsistency in a single step. The K g and the
first-order formulations of ¢¢¢37T, ¢oMs_L and B, | are respectively

Op0030T and —deg[] A —desaof],
CoO030 L and ﬂdeo[] A d€3[10(5],
0,01 and dep|]-

The set A is represented by the following set of clauses:

1. ~deg]] 3. des[09]
2. ~des[aof] 4. dey[],

where 8 and ¢ are variables and @ and o are Skolem constants. Letting n =0 and m =0
in P6 and using the substitution

{op = a0, By — 0, B+ K1%([],c0,70), 6~ k2([], a0,70)}
P6 simultaneously resolves with 1.—4. yielding the empty clause.

The next example is more complicated.

Example 4.4.4 The set B = {#o6o#3T, oéol3 L, .M, 1, M1} of K-formulae is
also inconsistent. B contains the formulae of A (from Example 4.4.3) prefixed with a 4
and the formula B, 1. The set of expressions in B is represented by the following clauses.

1. ~deg] 5. des[yoa'dof']
2. ﬁdﬂo[goa] 6. d61 [goa"]

3. ~des[apaBof] 7. de]

4. ﬁdﬂob’oa’]

70 Translating graded modal logic

For the refutation we use P1 with n = 0 and P6 withn = 0 and m = 0. P1 can immediately
be simplified with clause 1. The instances are:

P1" [z£3([l, @0, B)7] = [za0f]
P6' dey(z) V —der(z) V [kl (z, ag, Bo)] = [£80k2% (z, g, Bo)]-

The result of simultaneously resolving P6’, 1. and 7. with unifier {z — [} is

8. [aok1%([], 0, Bo)] = [Bok2°([], 0, Bo)]-

Paramodulating with 8. and with unifier {ag — ag, o~ k1°9([], @0, 50)}, 3. becomes (this
means we do equality replacement with unification in 3. using the equation 8.)

9. —des([Bok2°([], a0, Bo)BoA))-

This becomes

10. —des[aof' Bof]

when paramodulating with P1’ using the unifier

{Bo = fo(ll, a0, 8), v = k2%([], 20, Bo) }-

We resolve P6' and 4. using unifier {z — [yoa], o — a} to get
11 ~de[v00] V [yoaepk1™([x0a], o, B)] = [voaByk2” ([x0e], e, F)]-

Now, use the unifier

{ag = v0, & = ' = a, oy~ do, B — Bo,
B = k1%([voal, b0, Bo), B+ k2°°([voal, o, B0)}

and apply E-resolution to 5., 10. and 11. and get
12. —|d€1 [j/()a].

(This means we resolve between 5. and 10. using an equation in 11.) Resolving this with 6.
using E-resolution with 8. yields the empty clause. The unifier is

{ao = €0, " — E1%([],e070), Bo 0, " — k2°°([], 070)}-
Example 4.4.5 In this example we show
(4.13) (#np A #g A Bo=(p A q)) = $nimia(pV q)

is a theorem in K by showing that the following set of clauses is refutable. The set represents
the negation of the theorem.

1. —dep|] 5. deo[] V ~P[Boz] V =Q[Bo7]
2. P[Qna] 6. den-l—m—l—l[] \% _‘P[an—i-m—l—lé]
3. ~den]] 7. denymir[] V Qlantm1d]
4. Q[@mal]

5. can be resolved with P3, letting n = 0 and m = n, and 1. yielding
5’. _‘P[ﬂOZY] V _'Q[/BOZY]

4.4 Translating K g to first-order logic 71

This can be paramodulated using the equation in P1 and using the unifier

{LL‘ = []7 /60 = f(?([]aanaﬁ)a v :Y}

The result is:
5", =Planf] V =Qlanf].
Resolve this with 2. and get
8. —Qlanf.

Now, take 6. and paramodulate with P7 using the second equation and the unifier

{1, ongmsr— kng+1(Haanaﬁm)a B+ 4}

and obtain

9. d€n+m+1[] v _'P([ank5nm([]>an’_5)]) v demax(n,m) [] v
[0 k3" ([], s Bm)] = [Bmk4d"™([], an, Bm)] V
[Bmk6™™ ({1, Brm,)] = [kpTmt1 ([@, Bm)8)-

The demax(n,m)[literal can be eliminated from 9. with either 1. or 3. in one resolution step.
The clause

9. deptmiil] V 2 P([ank5™™([], an,0)]) V
[k3™™([], s Bm)] = [Bmk4™™([], an, Bm)] V
[Bm k6" ([], Bm» 8)] = [kn Y41 ([l an, Bm)d]

remains. Take 7. and paramodulate with 9'. and unifier
{antmir = kpn ([an, Bm) }-

We obtain

10. denimir[] V ~P([ank5" ([}, an, 0)]) V ~Q([Brk6™™ ([], B, 9)]) V
[ank3"™([], an, Bm)] = [Bmk4™™([], atns Bm)]-

Use 2. and 4. to get rid of the =P and the =@ literals. The unifier is
{an = an, Bm = Bm, o k5" ([, an,), o = k6" ([], Bm.,3)}-

10. becomes

11. den+m+1[] \ [ank3nm([];gna§m)] = [@mk4nm([];gna@m)]-

This we can use to paramodulate with 8. The unifier is

{8 — k3""([], an, Bm)}

and the result is:

12, denympr[] V 2Q([Bmk4"™([], an, Bm)))-
Resolve this with 4. which yields

13. d€n+m+1[].

Now we use P6 and get

72 Translating graded modal logic

14. dema.x(n,m)[] v [anklnm(“,an,ﬁm)] = [ﬂmk2nm([]aan,ﬁm)]'
Get rid of the deyax(n,m)l] literal by resolving with either 1. or 3. The equation

14" [ank1™™([], an, Bm)] = [Brk2"™ ([], atns Bm)]

remains. We use 8. again and paramodulate with 14’. substituting with

{an = an, B klnm([]aanaﬁm)}
which leaves

15, =Q([Bmk2"™ ([, an, Bm)])-

In the last step we resolve 15. and 4. with unifier

{/Bm = Bm, a— k2nm([]aanaﬂm)}

to get the empty clause.

In the functional translation we can prove instances of formulae with concrete values
assigned to the n and m in the modal operators. There are examples of formulae for which
the proofs with symbolic arithmetic terms instead of concrete values work as well. However,
this approach may not always work. The formula (4.14) below provides an example of a
theorem which is true for all n and m (that satisfy the required restriction), but which can
be proved in our system only for concrete instances of n and m. The situation may be
worse. It may be the case that the proof of a formula for a particular concrete instance n
depends on the instance of the formula for n — 1, and the proof of this instance depends
on the formula for n — 2, and so on, to the formula for 0. Call this ‘induction on foot’.
We now demonstrate a process of how a schema like (4.14) can be proved in our system by
(ordinary) induction for all values followed by a translation step which yields a lemma we
add to our theory.

Suppose there are at least twenty objects in p and at least twenty objects in ¢ and in
all thirty objects exist. Then we expect the intersection of p and ¢ to contain at least 10
objects. Our intuition is captured by the following formula

(4.14) ¢ NCg ANBi=(pAq) = $nimi1—i(PV Q)

withn+m+1—3>0,if we let n =m =19 and j = 9. In Example 4.4.5 we showed (4.14)
for the case that j = 0. Unfortunately there is no resolution-based proof for the general
case. In the next theorem we use induction to prove (4.14).

Theorem 4.4.6 (4.14) is a theorem in K.

Proof. The proof is by induction on j. We proved the base case in Example 4.4.5. Let j > 0.
As induction hypothesis assume

¢.0 A g A .jfl_'(p Aq) = ‘n-}—m—Hf(jfl) (pVaq)

holds. Assume further ¢,p, 4,9, and B;—~(p A ¢) hold. That B;—(p A ¢) holds implies
(—|.j_1—|(p A q) A .j—|(p A q)) \ .j_1—|(p A q) holds.

Suppose B;_1-(p A g) holds. Apply the induction hypothesis to get #,m41—(j—1)(p V
q), which implies 4, 4m+1—;(p V ¢) holds, by using A2.

4.4 Translating K g to first-order logic 73

For the second case assume —M;_1—(p A q) <> #j—1(p A ¢g) holds. Let k = n + m,
p=pA-qand ¢ =p A qin A10. Then

0 AB=(p A q) = €p_n(p A q).

From #,p, respectively #,,9, and BM;=(p A gq) we infer that 4,_;(p A —q), respectively
¢..—i(—p A g), holds. Hence, by A12,

$ninti—j—1((p Aq) V (-p A q))

holds. Using A12 again, this time applied to the formulae

®ninti—ji—1((PA—=q) V(=pAg)) and @;_1(pAq),

we conclude €, 4n+1—j(p V g) holds. This proves the theorem. O

The next result shows we can replace the schema N8 in K g by the corresponding K g-
formulation of the formula (4.14).

Theorem 4.4.7 N8 of K i can be replaced by
(4.15) Cnp A Opg AT;0=(p A q) = Ongmi1—;0(p V q)
forn+m+1—35>0.

Proof. In Theorem 4.4.6 we proved its K-formulation (4.14) is a theorem. Thus, by Theo-
rem 4.3.1, (4.15) holds in K g. It remains to show (4.15) implies N8. This is immediate if
we let 7 = 0 and substitute p A ¢ for p and p A —q for ¢q exploiting OyOT « T (N4). O

Although replacing N8 with (4.15) does not increase the number of provable formulae, we
avoid the induction argument necessary for proving (4.15) which we would have to provide
by hand as we do not have an induction theorem prover at our disposal. Also, we avoid
proving instances of (4.15).

The functional translation of (4.15) into first-order logic is somewhat more complicated
than that of N8. It is given by

VPQ Vz (((—den(z) A oy, VBE PlzaynPE]) A (—dey(x) A o, VOE QlramBE]) A
(—dej(z) = VYa; 3Bp ~(Plza;fe] A Qlza;BE]))) — ((mdentmi1—j(z) A
Ha”+m+1_j V,BE (P[wan+m+1fj,3E] \% Q[-’Ean+m+lfj/85]))))'

Like IT¢(N7) this formula cannot be reduced to a first-order formula. We swap the quantifiers
IVp+m+1-; and Vég. The quantification elimination algorithm SCAN produces then for this
input the following clauses:

P8 demax(n m)() ﬁdeVH-WH-l*j(‘T) \)
[xf'?nmj T, Oy, Ot] = [xanf5nmj(xaanaﬁ)]

(
P9 Emax(nm)() _‘den+m+1—j($) \
[$f7nm]($ Uy)) = (20 [6" (2, i, 3)]

74 Translating graded modal logic

P10 demax(n,m).(x) V —dej(z) V
[f 1 1 (@ an)y] = [wan f2V™ (2,7, a)] V
[xf3ZTrjn+1—j($”Ya am)’)’] = [wamfllnmj (3:’7’ am)]
P11 demax(n,m)(T) V
[xflzTgn+1—j($’7a an)y] = [2an f27™ (z, 7y, o)] V
[xf?’ZTgp-f—l—j(iBa% am)] = [wom f4"™ (,7, am)] V
[xf7?m] (7, o,) B] = [Tan f5™ (2, i, B)]
P12 demax(n,m).(x) V
[z 1500 1 (@, an)y] = [2an f27™ (2,7, an)] V
[$f3ZTgn+1—j(xa’Ya am)y] = [xamf‘lnmj(wa%am)] v
[zf??mj(m,an,am)ﬁ] = [zam f6™™ (z, am, B)]

together with the clause

(4.16) den(z) V dep(z) V —dej(z) V ~deprmi1—j(z),

which is implicit in P1-P7. We can show that, for any positive integers n, m and j,
3kl (k1) € {n,m} x {j,n+m+1-j} such that &k >1.

For, suppose not. Suppose n, m and j exist such that for any k£ and [with (k,1) € {n,m} x
{j,n+m+1-5} we have k < I. Then, n < j, m < jandn <n+m-+1—j. Hence, j <m+1,
and thus, m < j < m + 1, which cannot be for j a positive integer.

If the values n, m and j are such that we can choose k and [with k strictly larger
than [then (4.16) is subsumed by P3. Otherwise, if the values are such that we can choose
identical k and [, then (4.16) is valid in every frame. In either case (4.16) is redundant.

We conclude this section with an example (supplied to us by W. Nutt) in which we
exhibit the computational effect of using the clauses P8—P12.

Example 4.4.8 Suppose the universe consists of at most thirty objects. If there are at
least twenty objects in p and there are at least twenty objects in g, then there are at least
ten objects in p A ¢q. A standard tableaux system for the number operators would generate
twenty witnesses for p, twenty witnesses for ¢ and then it would need to identify ten of
them in order not to exceed the limit of thirty. But there are combinatorially many ways
for identifying ten of them.

In our system we prove the statement by showing the following set of K-formulae is
inconsistent:

{®19p, ®19g, W3 L, WMy—(p Ag)}.

We can choose any other suitable combination of numbers. This will not change the structure
of the proof at all. The functional translations are:

{‘!delg[] A P[alga] V —|d€19[] A Q[blga] V dego[] V deg[] V —|P[ﬂgc] \Y ﬂQ[ﬂgC]}.

The corresponding set of clauses consists of:

1. —deyg[] 4. desol]
2. P[Qflga] 5. deg[] V _‘P[/BQZY] V _'Q[ﬂ91]
3. Q[B19f]

Resolve 5. with P3 and 1. and eliminate the deg[] literal from 5. leaving:

4.5 Conclusion 75

5. =P[By7] V ~Q[B97]

We resolve the instance of P9 with n = m =19, 7 = 9, namely

Pgl delg[] \% —|d€30 [] \%
(78712 9([], cug, og) B] = [19 f62 12 2([], g, B)],
with 1. and 4. and obtain

6. [£75° 1 °([), o9, 01g) B] = [0 6121 °([], 09, B)].

Applying the unifier {By — 75712 9([], @19, }g), u > 7}, we can use this in o paramodu-
lation step with 5. resulting in

7. 2Plahgf61 1 ([, 019, 9)] V —QIF75° 1 °([]; 19, 0y)]
Unify in 2. and 7. with {a/g — a19,a — f619199([],a}g,7)}. Resolving 2. and 7. yields

8. =Q[f73?°([], eng, a19)7]-

Now we use the following instance of P8:

P8’ delg(x) \% —Id€30(.’17) V
[z f757199 (2, ang,) B] = [2a1g f51919 (2, cu19, B)]

This can be reduced with 1. and 4. to the equation
9. [f75°°°([l, g, 019) 8] = [a19 f5 1 (], a9, B)],

which we can now use in ¢ paramodulation step with 8. We get

10. —Qongf5 19 9([], a9, 7)]-

The empty clause is obtained if we resolve 10. with 3. using the appropriate unifier.

4.5 Conclusion

Properties of finite sets can be expressed in the logic of graded modalities. The usual
inference calculi generate for all sets used in the proof at least as many constants (witnesses)
as there are elements in each set. Even for moderate values a vast number of witnesses are
generated which are processed by case distinctions in the proof.

In this chapter we presented an alternative method which avoids case distinctions, in-
stead our method uses limited arithmetical reasoning. It arises in a series of transformation
steps from the logic of graded modalities K into the new normal multi-modal logic K g,
which reduces to first-order logic by the optimised functional translation. The point to note
is that K 5 does not reduce to first-order logic by the standard relational translation, be-
cause one of its axiom schemas is second-order. The optimised functional translation solves
this irreducibility problem, as it exploits the richer structure of the functional models.

Our approach provides a viable alternative inference mechanism to the constraint (or
tableaux) algorithms commonly used in the field of KL-ONE-based knowledge representation.
The graded modal logic K is closely related to the description logic ALC with number
restrictions, called ALCN . In fact, there is an exact correspondence between terminological
operators and modal operators (for details refer to Ohlbach et al. (1995, 1996) or van der
Hoek and de Rijke (1995)).

The proposed approach of this chapter must be viewed as a first step toward efficient
reasoning with finite sets. There are a number of open problems which need to be addressed.

76 Translating graded modal logic

One, a general completeness result for K will allow us to use the full expressivity of
this system. The problematic schema N7 is like McKinsey’s schema in that the technique
of exchanging quantifiers bears a first-order property. It may just be that the theorems
of Fine (1975) for uniform logics can be generalised appropriately for the completeness of
K pg. A uniform logic is an extension of KD and all axiom schemas are uniform formulae.
McKinsey’s schema and N7 are representatives of uniform formulae. For uniform logics
Fine proves general completeness and finite model property theorems. As long as general
completeness of K is not proved, we can guarantee completeness only for the original
K formulae. This is what we wanted from the beginning, but a stronger result would be
preferable.

Two, our first-order theory is represented by a set of axiom schemas which are understood
to be conjunctions of all its instances with the numerical variables instantiated with concrete
values. The implementation of the calculus will rely on theory resolution. The axiom
schemas will be encoded as inference rules. Since the axiom schemas contain equations the
realisation will not be easy, but it is certainly solvable.

Three, the original logic of graded modalities is decidable. Accordingly, we expect a reso-
lution strategy for the translated formulae can be developed that is complete and terminates.
This has yet to be done.

Four, the calculus is still limited in reasoning with arithmetical terms. It remains to be
investigated whether and how this capability can be enhanced.

Five, we can apply our methods to KL-ONE-type reasoning but only for reasoning within
the TBox, which corresponds directly to that in modal logic. We have not accounted for
ABox reasoning about concrete instantiations of concepts/sets and roles/relations (ABox
elements correspond to nominals in modal logic). The functional translation applied to
ABox terms generates many equations. It is not immediate how these can be treated
efficiently.

And six, although McKinsey’s schema is not first-order definable by itself together with
reflexivity and transitivity it is characterised by a first-order property, namely atomicity van
Benthem (1984). It is open whether similarly, this is the case for the combination of N7
with of the other schemas of K 5. We treated the schemas merely individually.

Chapter 5

Path logics and theory resolution

Our aim is to facilitate inference for modal logic by resolution on functional translations.
This chapter defines a lattice of clausal logics, called path logics, into which the optimised
functional translation maps normal modal logics, and it studies their closure under deduction
with emphasis on theory unification.

Section 5.1 defines the lattice of path logics, of which basic path logic is the weakest. It is
associated with the modal logics K, and K, as well as their serial extensions. Basic path
logic extends to non-basic path logics by non-empty theories YII;(X) determined by the
additional modal schemas in 3. Path logics have two important properties: (i) their input
clauses do not contain any Skolem terms other than Skolem constants, and (ii) variables in
any clause have unique prefixes. Inference for basic path logics is facilitated by standard
resolution with syntactic unification, which we briefly consider in Section 5.2. Sections 5.3
and 5.4 study syntactic unification and resolution, in particular, their effects on term lengths
and the preservation of prefix stability. Inference for non-basic path logics with a theory is
facilitated by theory resolution, introduced in Section 5.5. Then we address F-unification
for T" and 4 in Section 5.6, discussing decidability and mutation. In Section 5.7 we focus on
the combination of T" and 4 for which we present an improved F-unification calculus and
prove preservation of prefix stability. The material on E-unification will appear in Schmidt
(1998).

5.1 Path logics

The universal language of the lattice of path logics is a monadic first-order language with
two principal sorts: the world sort W and the functional sort AF* and its subsorts AF; (for
the different modalities). The vocabulary includes unary predicates, variables and constants
of both sorts, one binary function [-,-] for forming world terms, and functional operation
symbols and the equality predicate = as determined by the theory. The symbols P, Q,...
denote unary predicates of which there are finitely many. There are possibly finitely many
designated unary predicates de;. Functional variables are denoted by Greek letters a, 3, . ..
and functional constants by underlined Greek letters «,3,.... Functional variables and
constants may be indexed by sorts. World variables are denoted by the Roman letters
Z,Y,%,.... There is a special world constant, denoted by the empty string [] (for the initial
world). [-,+] is a binary left-associative operation and maps a world-function pair to a world

7

78 Path logics and theory resolution

term, called a path. Let u; denote functional terms. Paths have the form

([[[[Jur]uz] - Jum] or [[[[zur]ug] ... Jum],
or in shorthand notation
[utug ... um] or [zuiug...un).

The following notation and definitions will be used in subsequent chapters. The symbols
u,u1,u2,... and also v,v1,vs,... are reserved for functional terms (when we consider basic
path logic, they denote either functional variables or constants). We reserve the symbols
ug and vy for the leading world constant [] or world variable z in any path. The symbols
s,t,... are reserved for any world terms of the form [] or [u1,us,...]. Usually the term [s]
is malformed since juxtaposition is assumed to be left-associative. When we write [st] we
mean the term [suq...u;], where t = [uy...u;]. Given a world term s = [uguius ... up),
define s|p = up (that is, s|p =[] or =) and s|; = u; for any 0 < i < m.

The definition of prefixes in basic non-optimised path logic (as given in Section 2.5)
extends naturally to path logics. Consider the term

§ = [uou1 e UgUg41 - - - um]

(Often we omit uy and write just s = [u1...].) A prefiz in the world term s is any subterm
up or [ug ...u;] (for 1 <3 <m). The prefiz of a functional term u;y1 in a term s is the term
[uoui ... u;]. The world symbol ug has no prefix.

Similarly, we define suffixes. [w;y1...un] is a suffiz in the term s. The suffiz of a
functional term u; in the term s is [u;q1 ... Up]. Uy, has no suffix. The suffiz of a subterm
[u0u1 ‘e ’U,,] is [ui+1 e um]

A set T of terms is said to be prefix stable (for variables) if any variable a occurring in T’
has exactly one prefix. A clause is said to be prefix stable (for variables) if the set of terms
occurring (at argument position) in the clause has this property. The prefiz of a functional
term w; in a prefiz stable clause (or set of terms) is the unique prefix of u; in any term of
the clause (or set).

The following provides an alternative characterisation of prefix stability.

Theorem 5.1.1 A set T of terms is prefix stable iff for any two terms [ugu; ...u,,| and
[vov1 - ..vp] in T the conditions T1 and T2 hold for variables:

T1 If some variable u; and some variable v; are identical then ¢ = j, and also

T2 the terms of each pair u; and v preceding u; and v;, respectively, are also identical.

The proof is easy. T1 implies every variable u; that occurs in a prefix stable term s =
[ug ... um] occurs exactly once in s. In other words, prefix stable terms are linear terms.
This is an important fact that makes theory unification easier for many theories. T1 also
implies every variable that occurs at position ¢ in some term of the set 7" occurs at position
1 in every term, when it does occur in that term.

'This characterisation was inspired by the definition of tree-likeness found in Zamov (1989, p. 26).

5.1 Path logics 79

We continue defining the syntactic constructs of path logics. Their logical connectives
are A, V and —. By definition, a formula v is a path formula iff it is a conjunction of clauses
that are prefix stable for variables.

The language of basic path logic for which the theory is empty is a restriction of this
language. It has no world variables, ug = [|, there are no compound functional terms and
the equality symbol is not part of its language. Path logics are extensions of the basic path
logic determined by a non-empty theory YII¢(3). We will consider only first-order theories
that are finite sets of clauses or equations, like those considered in Section 2.3.

This completes the syntactic definition of path logics. Their semantic models are given
by Herbrand models. The general deduction calculus is theory resolution which will be
discussed in the subsequent sections.

The class of path logics defined here should not be confused with the path logics of
Auffray and Enjalbert (1992) or Farinas del Cerro and Herzig (1995). There, path logics are
the target logics of the non-optimised functional translation of quantified modal logics. We
can transform any basic non-optimised path formula into a set of clauses of path logic: If 1) is
any formula of non-optimised basic path logic then the clausal form of T (1) is well-formed in
any path logic, provided the operation Y moves all existential functional quantifiers inward
over all universal quantifiers. The transformation in the inverse direction from path logic
to non-optimised path logic is not always defined, because constants in clauses of path logic
are not required to have unique prefixes. The restriction by prefix stability on the structure
of paths is weaker than the restriction defined by the variable ordering in non-optimised
path logics. However, the problem with prefix stability for constants is, it does not remain
invariant under resolution.

Let ¢ be a unary operator on first-order formulae such that ¢(1)) is a clausal form of 1.

Theorem 5.1.2 Let ¢ be any modal formula and suppose it is not a schema. The set
S = ¢(—=TIIf(yp)) of clauses is well-formed in basic path logic (and thus in any path logic),
provided the operation T moves all existential functional quantifiers inward over all universal
quantifiers.

Proof. Routine, using Theorems 2.5.1 and 2.5.3. O

The transformation of any (non-optimised path) formula II;(¢) into a set of path clauses
can be realised by first forming the clausal form of the negation —II;(¢) and then replacing
all complex Skolem terms by constant symbols according to a mapping defined by

T f(an,. @) = f

Let ¢T be a function from any set of first-order formulae to a set of path clauses that contain
no complex Skolem terms defined by: ¢¥ (1) = (c(¢))T. Evidently, for any modal formula

(107
S =¥ (-1;(p)) = (=TT (p))-

At worst the operation ¢ produces a set of clauses with size that is exponentially larger
than the size of the original formula. In Chapter 7 we will consider transformation routines
that avoid the exponential increase in size and cause the output to grow by a linear factor.
The functional translation II; causes a linear increase in size and the replacement by T of
Skolem terms by constants a linear decrease in size. Consequently, the entire transformation
of a modal formula into path logic need have merely a linear overhead.

80 Path logics and theory resolution

5.2 Resolution and condensing

The purpose of this section is to define briefly the basic inference rules of resolution pro-
cedures including condensing. A proper treatment can be found in Eisinger and Ohlbach
(1993), Bachmair and Ganzinger (1997) or Leitsch (1997). Sample derivations were given
in the Preview.

To begin with, some preliminary definitions: Atoms will be denoted by A, B, A1, As, ...,
literals by L, L1, Lo, ..., clauses by C,D,C1,Cs..., and sets of clauses by S,S’. The com-
plementary (or dual) literal of a literal L is obtained by switching the sign and will be
denoted by L™. We regard any clause as a multi-set of literals. The complementary clause
of C=Li V...V L,istheclause C” = L] V...V L. If we speak of logical relationships
among clauses, like logical equivalence or logical implication, we regard clauses or sets of
clauses as representing the corresponding closed formulae. A non-empty clause C is said to
have a most general unifier o when Co, regarded as a set, is a singleton set. This means
Lioc =...= Lyo. (The most general unifier of an empty set is the identity mapping.) Two
clauses are said to be wvariants of each other if they are equal modulo variable renaming.
Two sets S and S’ of clauses are variants of each other if every clause in S has a variant in
S’, and vice versa.

Inference according to the resolution principle employs three kinds of derivation steps:
deduction, deletion and normalisation (of which deletion and normalisation can be regarded
as redundancy elimination steps). Let > be a binary relation on sets of sets of clauses that
defines derivability in a resolution calculus. Deduction, deletion and normalisation rules
have the following general form:

Deduction S>Su{C}
provided C' can be inferred from a subset of clauses in S.
Deletion Su{C} > S

provided C is a redundant clause in S U {C} with respect to S.
Normalisation SU{C} > SU{N(C)}

provided N(C) is a normal form of C with the property that C and N(C)
are logically equivalent.

Deduction based on the resolution principle (as defined by Robinson 1965) produces the
resolvent (C'V C')o, from C V D and C' V D', provided the premises do not have common
variables and D V D'” has a most general unifier 0. Resolution is usually implemented as
a combination of binary resolution and factoring:

CVL c'vr
(Cv Qo
provided C' V L and C' V L' do not share variables, and o is a most

general unifier of L V L.
CVvLiVv...VL,

(CV L))o
provided ¢ is a most general unifier of Ly V ...V Ly,.

Binary resolution

Factoring

A clause Co is called a factor of C'V L if o is a most general unifier of a subclause D V L
of at least two literals of C' Vv L.

5.2 Resolution and condensing 81

The deletion strategy demands deleting any redundant clauses whenever possible. Infor-
mally, a clause is redundant iff it is not needed for finding a proof (a contradiction). For
example, a resolvent that is a variant of a clause derived earlier, is redundant and can be
deleted. Also, a resolvent is redundant if it follows logically from and is more complex than
a clause already in the input set. Of course, as testing logical equivalence is in general un-
decidable more efficient forms of redundancy elimination are employed in theorem provers.
Standard theorem provers make use of subsumption deletion and additional strategies, like
tautology deletion. A clause C subsumes another clause D iff there is a substitution ¢ such
that Co, regarded as a set, is a subset of D, also regarded as a set. When C' subsumes D
then C logically implies D, but not conversely. Subsumption deletion is defined by:

Subsumption deletion SU{C,D} » SU{C}
provided C subsumes D.

We will use a normalising strategy of replacing clauses by their condensations whenever
possible. Condensing is due to Joyner Jr. (1976) and it is shown to be NP-hard by Gottlob
and Fermiiller (1993). A condensation of a clause C is a minimal subset of C' which is also
an instance of it. A clause is condensed if

there is no substitution o such that Co G C,

that is, if it does not subsume a proper subclause of itself.? A condensation of a clause is
logically equivalent to the clause. Because condensations are unique up to variable renaming
we speak of the condensation of a clause C' and denote it by cCOND(C). The condensation
of a set S of clauses is the set cOND(S) = {cOND(C)|C € S}. Condensing is defined by
the following normalising rule. It will be applied eagerly, that is, immediately after any
resolution inference step.

Condensing SU{C} » SU{conD(C)}.

The condensation of a clause is a factor of that clause and consequently, condensing is
available in any fair implementation of resolution with factoring and subsumption. (An
implementation is regarded as being fair if no non-redundant inference is postponed forever.)
Examples that demonstrate the COND operation can be found in the Preview.

Formally, a resolution procedure is a function R from finite sets of clauses to finite sets
of clauses. More specifically, let S denote an input set (a finite set of finite clauses). R(S)
is a finite subset of the union of S and the (possibly infinite) set of instances of resolvents
of pairs of clauses in S. Let

R%(S) =S and
R*L(S) = R(R™(S)), ifn>0.

A resolution procedure R is (sound and) complete, provided the empty clause @) is in R"™(S)
for some n > 0 iff S is unsatisfiable. For any complete resolution procedure R, when for
some n > 0, R™(S) and R™*!(S) are variants and the empty clause is not in R™(S), then
S is satisfiable. When R returns the set of resolvents defined by binary resolution and
factoring we refer to R as unrefined or unrestricted resolution.

2Observe, minimality is with respect to size and the instance Co is regarded as a set.

82 Path logics and theory resolution

By Rnx we denote the combination of any complete resolution procedure R and any
normalisation function N. Define Ry and RY%; by:

Rn(S) = SUN(R(S)\S),
R (S) = N(RY(S)) = N(S), and
R%(S) = Rn(R%H(S)) ifn>0.

Note that Ry does not coincide with R}V For example, Reonp is the procedure R plus
condensing which is applied eagerly. Joyner Jr. (1976) proves condensing is compatible with
any resolution procedure that is complete via semantic trees. Condensing is an instance
of the general redundancy criterion of Bachmair and Ganzinger (1994), and accordingly,
condensing is also compatible with resolution procedures complete by the method of proof
employing ordered minimal model extensions.

A note on our notation will be instructive. R denotes any complete resolution procedure.
Later when we use theory resolution or ordering refinements this will be made explicit in
the superscript. For example, R” will denote any complete theory resolution procedure for
the presentation E, and R~ will denote any complete resolution procedure restricted by the
ordering <. The subscript will determine the normalisation operations used, for example
COND or later we will define normalisation operations Ng which simplify terms according to

given equational theories. ’RE&?D o N denotes then an ordered E-resolution procedure with

1 1 1 Ea'< Ea'< n
condensing and normalisation by Ng. Moreover, Ry, o v, 20d (Rdp o v,,)" are defined

like Ry and R with RE-= instantiated for R and cOND o Ny for N.

5.3 Basic path unification and term depths

In this section we consider the effect of the language restrictions of basic path logic on
substitutions, unifiers and path lengths (or term depths).

Any non-empty substitution ¢ defined over sets of terms in the basic path logic consists
of bindings that have one of two forms

(5.1) a—f or a7,

where o and (8 are variables and v is a constant, because the basic path language has no
compound functional terms. A substitution is said to be admissible for basic path logic iff
its bindings have the form (5.1).

The general transformation rules of syntactic tree based unification (for example, from
Jouannaud and Kirchner 1991) adapt to those of Figure 5.1 for basic path logic. P denotes
a problem set of pairs s =’ t of world terms or u =’ v of functional terms. The symbol
~+ denotes the derivability relation in a unification calculus. | indicates failure of the
unification problem. All other symbols have the usual interpretation, and s and ¢ may be
empty paths. Evidently, any most general unifier of a unification problem over paths without
world variables obtained by the rules of Figure 5.1 is an admissible substitution. As no world
variables occur in basic path clauses, the occurs check rule is superfluous. Soundness and
completeness is immediate by soundness and completeness of the general rules for syntactic
unification.

5.3 Basic path unification and term depths 83

Delete PU{s="5s} ~ P

PU{u="u} ~ P
Decompose P U {[su] = [tv]} ~ PU{u='v, s="1}
Conflict PuU{sul ="[]} ~ 1

PuU{a="p} ~ L

provided a # 3
Coalesce PU{a="p4} ~ Plaw gyu{a='p}
provided a # (8 are variables both occurring in P.
Eliminate P U{a="'4} ~ Plaw B}U{a="p}

provided « is a variable occurring in P and 3 is constant.

Figure 5.1: Syntactic unification rules for basic path logic

Theorem 5.3.1 Let P be a set of pairs s =’ t of paths. Repeatedly applying the above

rules to P yields L iff P is not unifiable, and a tree solved form {a; =7 uq,... ,an =° uy}
iff {&1 — u1,... ,an > uy} is a most general unifier of P.

Recall, in general, a tree solved form is any set of equations {a; =’ wi,...,an =’ un}
possibly with variables f1,... , 3, introduced during unification that do not occur in the

original problem set P, such that (i) any «; is given only one value (formally, o; # o for
any 1 < ¢ < j < n), (ii) the value for any «; is a finite term (a; does not occur in any
uj), (iii) no a; coincides with a new variable §;, and (iv) the new variables are useful and
contribute to the values of other variables (any f; occurs in some ;).

It is important that we keep in mind any term [ugu; ... uy) (With or without ug) is an
abbreviation for a nested term [[[[[Jui]ug]...]un]. This determines how paths are decom-
posed, namely from right to left. The following is one way of deriving a most general unifier
for the terms [afy] and [ade] (from c(—~YIIf(p1)) of the Preview).

{lopr) =" [eddy ¥ {x="ec, [0f] =" [ad]}
Dec. Del

S {y="e B="6, [e]="[e])} ' {y="¢ B=T6}

We did not use the rules Coalesce and Eliminate. In fact:

Theorem 5.3.2 Let P be a singleton set {s =’ ¢} with s and t terms for which T1 for
variables holds. Then the rules Coalesce and Eliminate are redundant.

Proof. These rules are not applicable to s and ¢ when s and ¢ are both constants or when
one is a variable and the other is a constant.

Assume s = [uguy ... un| and t = [vov; ...v,] for both m and n non-zero values. The
only applicable rule is Decompose. {s ="t} becomes

(%) {[wou1 .. tm 1] =" [VoV1 ... Vp 1], Um =" Un}

Suppose u,, is a variable and wu,, # v,. Delete is not applicable. Since T1 holds for s (and
t) no variable occurs more than once in s (and t). Then u,, # u; for all i < m.

84 Path logics and theory resolution

(i) If s and ¢ are variable disjoint, then also u,, # v; for all j < n. This means the
condition of both Coalesce and Eliminate that u,, is a variable in (x) without u,, =" v, is
not true.

(ii) If s and t have common variables then it can happen that v,, coincides with u,, if
m < n. In this case s and ¢ do not have equal length and are not unifiable because a conflict
of the form s = [] will occur with s non-empty, regardless of whether or not we apply the
rules Coalesce and Eliminate. (This is another argument why s and ¢ are not unifiable if
they have different lengths.)

Splitting any P in the search tree into two sets Py = {s =’ t} and P, = J{u =" v}, it
is not difficult to prove the result by an inductive argument on the lengths of the paths in
P. O

Now, we briefly consider term depths. The functional depth of a term s, written 7(s),
is defined as usual. Consequently basic paths of the form [ugu; ... u,] have depth m + 1.
We find it convenient to speak of the term length of a basic path [ugu; ... up] with ug =[],
which we set to m.

Since any admissible substitution does variable renaming or instantiation with a con-
stant, it is immediate that no admissible substitution or unifier changes the lengths (or
depths) of paths. Also, no admissible substitution or unifier increases the number of vari-
ables in terms. On the contrary, sc may have fewer variables that s. Since substitutions
preserve path lengths, so does factoring. It is easy to prove that resolution does not increase
path lengths. Consequently:

Theorem 5.3.3 The depth of all literals (or length of all terms) in R™(S) has an upper
bound, namely, the maximum of the depths of all literals in S:

T(R™(S)) < 7(9).

This establishes that for basic path logic the level of functional nesting is bounded and the
bound is the maximum level of nesting in the input clauses. We have verified the easier
part, namely (A) of the Preview, required for the proof of decidability for basic path logic.

The situation is pleasantly simple for the logic S5. In S5 any sequence of modal operators
can be replaced by the first one in the sequence, and S5 corresponds to the fragment of
monadic first-order logic in one variable (via the relational translation). This is reflected in
the corresponding path logic by the fact that any singleton unification problem [ug . . . uy,] =7
[v1...v,] can be seen to reduce to the unification problem of [u;] =7 [v;]. Such problems
can be solved modulo (a subset of) the rules of Figure 5.1.

5.4 Prefix stability and resolution

This section verifies that basic path logic is closed under the operations of resolution, fac-
toring, subsumption deletion and condensing, which amounts to showing the operations
preserve prefix stability for variables. The theorems and proofs are in line with the preser-
vation results outlined in Ohlbach (1988a, 1991) and Zamov (1989) for tree-likeness.

The variables as well as the constants in any clause of ¢(—=YII¢(y)) have unique prefixes,
which means that T'1 and T2 of Theorem 5.1.1 are true for variables as well as for constants.
However, forming resolvents does not preserve the property T2 for constants, which is the

5.4 Prefix stability and resolution 85

reason why terms in path logic are merely required to satisfy prefix stability for variables.
For example, the resolvent of

~Plaf] vV Qlafn]
Pld'e] V =P[d67]

which both satisfy T1 and T2 for variables as well as for constants, is

Qlaea] vV =Plady].

The constant v has two different prefixes, namely [ae] and [ad].

Arbitrary (admissible) substitution does not preserve T1 (neither for variables nor for
constants) or T2. Take the clause P[af7] and apply the substitution {7 + «}. The result
is P[afa] and does not satisfy T1. Evidently, variable renaming does no harm: Any variant
of a clause (or set of terms) that satisfies T1 and T2 for variables (and/or for constants)
does, too.

In the following we prove that the basic path logic is closed under the application of a
unifier, forming subsets, factoring, condensing, forming disjoint unions, and most important,
resolution. We assume T is a set of terms in the vocabulary of basic path logic. By definition,
two paths s and ¢ (of equal length) are k-equal if s and ¢ are equal except possibly at position
k, that is, for every position i # k, s|; = t|;.

Theorem 5.4.1 Let [ugu; ... up] and [vgv; ... v,] be two terms in T such that for some
k>0,

(5.2) UQ = Vo, U] = V1,y... ,Up_1 = Vp_1 and up 7# vg

and uy is a variable. Let o be the substitution {uy — vg}. Then To satisfies T1 and T2,
provided T does.

Proof. We consider two arbitrary terms in T'o. They are of the form so and to with s and
t some terms in 7. For s and ¢ conditions T1 and T2 hold. We want to show they hold for
the terms so and to, too.

Lemma 5.4.2 The terms so and s are k-equal and differ only when s|; = uy.

Proof. o affects only the variable u; and in any term of T', uj occurs only at position k else
condition T1 is violated. Hence, if uy occurs in s then s|; = uy and for any [# k, s|; # ug.
In this case so|; = v # sl. O

We continue the proof of Theorem 5.4.1. The lemma is true for to and ¢, as well. If neither
s nor t contain the variable u; then the substitution ¢ does not affect s and t. Then so = s
and to = t. In this case so and to trivially satisfy T1 and T2 (since s and ¢ do).

Therefore, we assume without loss of generality that s|, = ug. Then s|xo = vg. Distin-
guish two cases:

(i) t|x # ug and t|; # vg. o leaves ¢ unchanged so that to = t. Suppose so|; = to|; is
a variable. Then so|; = to|; = t|;. Also, j # k and ¢ # k, since otherwise t|; = v
which contradicts our assumption. This implies s|; = so|; = to|; = t|;. By T1 which

86 Path logics and theory resolution

holds for s and ¢ we get i« = j. By T2 for any | < i = j we have s|; = t|;. Hence
i = j < k since otherwise, if i = j = k then s|; = uy # t|; which is a contradiction, or
if i = j > k then since s|; # t|r by assumption, s and ¢ contradict T2. Consequently
by the Lemma so|; = s|; = t|; = to|;. Therefore, conditions T1 and T2 are true for
case (i).

(i) Now we consider the case that t| = uy or t|x = vg. Then to|r = vx = solk. Suppose
so|; = to|; is a variable.

a. If i = k then so|; = vy = to|;. Then, either t|; = uy, or t|; = vi. In either case,
it follows that 7 = k and hence ¢ = j.

b. If j = k then by a similar argument ¢ = j.

c. If i # k and j # k then the Lemma implies so|; = s|; and to|; = t|;. Since
so|; = to|; we have s|; = t|; and it follows by T1 that i = j.

Therefore, so and to satisfy T1.
Let [< i = j be arbitrary. By T2 we have s|; = t|;.

a. Consider the case that | # k. By the Lemma so|; = s|; and to|; = t|;. Since s|;
and t|; coincide, we conclude so|; = to|;. (Note that if t|; = vy then s|y = up # tk
and consequently i = j < k.)

b. For | = k: so|; = v = to|; by assumption.
This completes the proof. O

Theorem 5.4.3 Let o be an idempotent unifier of two terms s and ¢ in T'. If T satisfies
properties T1 and T2 then so does T'o.

Proof. Because ¢ is an idempotent unifier it coincides with a composition o . .. g; of bindings
with o = J; 0;. The order of the application of the bindings in ¢ is arbitrary. We choose
exactly those bindings o1, ... , 0, that do affect s and ¢ and arrange them so that the order
of application of the o; is determined by the position of the variable in the domain of
0; in the terms s and t. We let o1 ...0, be such that for every pair of bindings o; and
oj with 1 <4 < j < n, the variable in the domain of o0; is associated with a position
strictly less than the position associated with the variable in the domain of ;. We have
80 =801 ...0p =to =toy...0,. Now, s and t have equal length. Suppose s = [ugus . . . U]
and ¢t = [vgv1 ... vp]. s and ¢ satisfy the condition (5.2) of the previous theorem with k being
the first position at which s and ¢ differ. In other words, k is the position associated with
the variable in the domain of 1. k is greater than 0. Consequently by Theorem 5.4.1, T'oy
satisfies T1 and T2. Now use an inductive argument to see that To; ..., = To satisfies
T1 and T2. O

This generalises to:

Corollary 5.4.4 Let o be the most general unifier of a non-empty subset 7" of T. If T
satisfies properties T1 and T2 then so does T'o.

Proof. If T' is a singleton set then o is empty and hence T'o = T'. Suppose T has two or
more elements. Choose any two different terms s and ¢ in T'. ¢ is an idempotent unifier of
s and t. Therefore, by the previous result, T'c satisfies T1 and T2. O

5.5 Theory resolution 87

Thus, basic path logic is closed under factoring. Trivially it is also closed under sub-
sumption deletion. The following is easy to see, which proves basic path logic is closed under
condensing and cOND(S) is well-formed in basic path logic.

Theorem 5.4.5 If T satisfies properties T1 and T2 then so does
(i) any subset T" of T', and consequently also

(ii) any condensation T" of T

Theorem 5.4.6 Let T and 1" be two sets of terms in the vocabulary of basic path logic
that have no variables in common. If T and T" satisfy T1 and T2, then their union T'U T"
satisfies T1 and T2, too.

Proof. Let s and t be two terms in 7"UT". Suppose s|; = t|; and s|; is a variable. Then
both s and ¢ are either both in T or they are both in 7”. Hence T1 and T2 are true, since
they are for T' and for T". O

The preservation result for resolution is a direct consequence:

Theorem 5.4.7 The binary resolvent of two clauses satisfying T1 and T2 that have no
common variables also satisfies T1 and T2.

Proof. Let C; and C3 be two clauses that have no common variables satisfying T1 and T2.
Suppose C' is a binary resolvent of C; and Cy with L; and Ly being the literals resolved
upon. Let o be the most general unifier of L; and Ly. Let T}, T and T be the sets of terms
that occur in C, Cy and C, respectively. T} and T5 satisfy T1 and T2 and by the previous
result their union 77 U T5 does too. o is the most general unifier of a subset of 177 U Tb.
Hence, by Corollary 5.4.4, (71 UT5)o = T satisfies T1 and T2. Consequently the resolvent
C satisfies T1 and T2. O

Corollary 5.4.8 Let S be a set of clauses in basic path logic. Then:
(i) Both R(S) and Rconp(S) are well-formed in basic path logic.
(ii) For any n, both R™(S) and R,y (S) are well-formed in basic path logic.

Using Theorem 5.1.2, the fundamental preservation result follows:

Theorem 5.4.9 Let ¢ be any modal formula and S = ¢(=YIIf(y)). Then, for any n,
R™(S) and Riynp(S) are well-formed in basic path logic.

5.5 Theory resolution

The reader is assumed to have some familiarity with theory resolution introduced by Stickel
(1985) and E-unification introduced by Plotkin (1972). A survey paper on resolution in
which theory resolution is treated as well, is Eisinger and Ohlbach (1993). Good survey
papers on unification including theory unification are Baader and Siekmann (1993), Gallier
and Snyder (1992) and Jouannaud and Kirchner (1991), and the paper by Dershowitz and
Jouannaud (1990) also has a section on E-unification.

88 Path logics and theory resolution

For later reference we first recall some definitions and known general facts. Let T be
a theory, given by a set of clauses. A T-model is any model satisfying 7. A formula
is T-satisfiable (respectively T-unsatisfiable) iff it is true in some (resp. no) 7T-model. A
substitution o is a T-unifier of a set or multi-set of terms (or literals) iff for any pair of
terms s and ¢ (or literals L and L) in the set so and to (or Lo and L'c) are equivalent
under T. When T is an equational theory we use the notation F, E-model, etcetera.

In this thesis we focus on total theory resolution, and as a special case resolution under
an equational theory E. The rules of our calculus are total binary theory resolution and
standard factoring defined by:

CVvL c've¥
(CvCho

provided C V L and C' V L' do not share variables, and o is a most
general T-unifier of L V L'

Binary theory resolution

CVvVILiV...VL,
(CV L))o

provided o is the most general (syntactic) unifier of L1 V ... V Ly,.

Factoring

Most general T-unifiers are not necessarily unique. Any set of literals may have one, finitely
many, infinitely many most general T-unifiers, or none at all. The computation of most
general T-unifiers will be implemented in separate unification algorithms. For complete-
ness the procedure must generate a complete (not necessarily minimal) set of most general
T-unifiers.?> Unfortunately, there is no general recipe, and for every theory a complete uni-
fication procedure has to be developed anew. As to ensure completeness of the resolution
procedure an important requirement of theory resolution is that the unification algorithms
are semi-decision procedures.

We will focus on resolution under equational theories and present E-unification algo-
rithms that are decision procedures. The theories we will consider have the pleasant prop-
erty that they have normal forms, which is to say, two terms s and ¢ are F-equivalent iff
their normal forms coincide. Plotkin (1972) showed that E-resolution may be restricted to
one representative of any F-equivalence class, which we realise by a normalisation rule:

Normalisation under £ SU{C} > SU{Ng(C)}.

Ng is a recursive function from terms to their normal forms with respect to E. By this we
mean Ng is a simplification function on the terms in the language determined by E with
the property that t =g Ng(t), and if s =g t then Ng(s) = Ng(t). The application of Ng
to literals and clauses is given by:

NE(:EPS) = :I:P(NE(S)),
NE(C V L) = NE(C) V NE(L) and
Ng(S) = {Ne(C)|C € S}.

Completeness of unrestricted resolution under an equational theory with and without nor-
malisation by Ng is proved in Plotkin (1972). Given a complete E-resolution procedure

3We do not treat infinitary theories. For infinitary theories the procedure must enumerate a complete set
of most general T-unifiers.

5.6 Unification for T and 4 89

RE we define R%E in analogy to Ry. In Chapter 7 we will prove completeness for ordered
E-resolution from which it also follows that unordered resolution by RﬁE is complete. Ob-
serve that Ng simplifies terms and differs from normalisation by condensing which simplifies
clauses (by eliminating literals). We will use normalisation to eliminate functional subterms,
like e and u o .

5.6 Unification for 7 and 4

In this section we focus on equational theories, which we can, by assuming seriality. By E
we will denote any finite presentation YTII;(X) with D in ¥. In particular, the presentations
we consider include one of the equations

right identity: [ze] =z

associativity: [z(a o B)] = [zaf],

or combinations thereof. It goes without saying, these presentations are consistent, as
required. In general, E-unification is finitary iff for any solvable unification problem a
minimal complete set of unifiers exists and the set is finite. We will refer to unifiers under
right identity, associativity or both, as T-unifiers, 4-unifiers or Sj-unifiers, respectively.

Unification of paths under the identity law is finitary and decidable. This can be easily
seen by considering a unification problem in n variables and forming 2™ syntactic unification
problems by replacing some of the variables by e. Each of the problems is decidable by
syntactic unification in linear time. Therefore, unification under right identity is in NP. By
a result of Arnborg and Tidén (1985) for standard right identity it is at worst NP-complete.

Unification under our form of associativity is related to unification under standard asso-
ciativity. In (1972) Plotkin showed unification in free semi-groups is infinitary. He also gives
a unification algorithm that is sound and complete, but it is not guaranteed to terminate.
There are decision procedures for general A-unification by Makanin (1977) and Jaffar (1990),
for example, but these are far too complex for our purposes. Fortunately, though Plotkin’s
algorithm is non-terminating in the general case, it decides unification problems of one lin-
ear equation, or one equation in which no variable occurs more than twice (Schulz 1992).
This implies, unification of paths under the form of associativity we consider is also finitary
(via an appropriate isomorphism). (By exploiting the correspondence to regular expressions
and using methods from automata theory, we expect that unifiability under identity and/or
associativity can be decided in polynomial time.)

Unification algorithms are described in Ohlbach (1988a, 1991), Farinas del Cerro and
Herzig (1995) and Auffray and Enjalbert (1992) for the non-optimised translation of quan-
tified modal logics and in Zamov (1989) for the non-optimised translation of propositional
S4. The first three algorithms are not complete for a minor omission. Problems of the form
{s="sxe}, {s =" s;m0} and {s!a!f(s'a) =" s!f(s)} (using in essence the notation of
the respective authors) are not treated properly, which can be rectified by adding a rule for
deleting the identity constant.

Ohlbach’s rules improve the respective instances of lazy paramodulation. For paths the
general lazy paramodulation rule of Gallier and Snyder (1992) simplifies to:

Lazy paramod. P U {[ss'] ="t} ~ PU{s="1[rs]|="1}

provided s is not a variable and [= 7 is (a variant of) an equation
in Eor E~.

90 Path logics and theory resolution

Delete PU{s="s} ~ P
Decompose PU{s*s' ="t*t'} ~ PU{s="t, s ="1}
Check Pu{a="s} ~o L
when s is not a variable and « occurs in s
Coalesce PU{«a =7 g8} ~ Pla— B} U{a =’ G}
when «a # (3 are variables both occurring in P
Eliminate PU{a="s} ~ Plaw stu{a="3}
when « is a variable occurring in P and s is not a variable
Identity PU{sxaxs =’ t} ~ PU{a ="e, sxs =’ t}
Path-separat. PU{a*s="1xt'} ~ PU{a="t, s="t}
Splitting PU{axs"xs =7 txt"x B xt'}

wPU{a="txt"+pB, B="01%Ps, s"*s="[Foxt'}
when s” and " are non-empty and (;, B2 are new variables.

Figure 5.2: Ohlbach’s unification rules for 1" and 4

Both s and s’ are either empty or have the form [s”u]. An additional condition results im-
proves the computational behaviour (Jouannaud and Kirchner 1991, Baader and Siekmann
1993). Namely, when [is not a variable then s and [have the same root symbol and De-
compose is applied to s =’ [directly after an application of lazy paramodulation. The
appropriate combination of rules for 7' and 4 together with the non-failing rules for syntac-
tic unification (Delete, Decompose, Coalesce and Eliminate) provide a complete system for
computing a complete set of unifiers for a unification problem in the corresponding E.

Figure 5.2 presents a reformulation of the algorithms from Ohlbach (1991) relevant for
propositional S in terms of rules. Ohlbach’s language is a variation from ours. Terms
are lists built from variables and constants of the sort AF with an associative operation *,
making the additional operation o superfluous. (The correspondence to world terms of basic
path logic is given by h([[Ju]) = v and h([su]) = h(s) * u when s # [].) The symbols s, §', ¢
and t' in the figure denote (possibly empty) lists. It turns out, the deletion rule for identity
is not required for solving singleton problems, so that under this condition the system is
complete.

By way of an example we will demonstrate the system can be improved. Figure 5.3
sketches a derivation of S4-unifiers for {a * %y ¢ =" ax % 7}. Terms are decomposed
from left to right. Failure branches are those that do not produce solved forms, that is,
sets of the form {ay =" up,...,an =" un } with each «; occurring exactly once in the set.
The successful branches in the derivation tree are those marked with numbers, whose solved
forms yield the following unifiers:

lL.{a—a, =08, 6]}

2. {a—a, BB, 62}
3. {a—a, B— 8, 6d—[]} (which coincides with 1.)

4 A{a o, B [Brd], 6~ [017]}

5.6 Unification for T and 4

6] = [ap]
% a="a, (829 =7 6]
X p=6 =1 ‘
6=t o~ L
R 5= [| redundant
= B=" 0, [B] ="y ~ ... not solved
¥ gt 6=ty - 2
o B="08, ¥]="v ~ ... notsolved
P B =" [, [Byd] ="~ redundant (()
5" 189 = (5
Dec,Del ﬂ—?@ - 3
= =" 0, [84] =" [v] not solved
e =71, [@:Y] ="[] redundant
T p=" gy, 0= [5152], So="y ~ 4)
Woa=t s, B=" (B8] (820 =" [Ba]
. like (%)
Soa="], [Byd) = efy]
S 0="], [aBy) =]

1d

~ 0 B=", [aByd] =T]

Figure 5.3: A sample derivation of Sj-unifiers according to Ohlbach’s algorithm

92 Path logics and theory resolution

We will give a set of rules applying paramodulation only at the top symbols of the terms
of an equation s =’ ¢ bearing a more efficient unification algorithm. These restricted forms
of paramodulation rules are known as mutation rules and are sound and complete only for
very particular E. For instance, they may be applied where E (is a finite resolvent set of
equations and) defines a syntactic theory. In a syntactic theory a proof of satisfiability of
two terms can always be performed with at most one step at the top of s or ¢. Two results
from the literature are of interest.

(i) Kirchner and Klay (1990) prove mutation rules are complete for syntactic collapse-free
theories.

(ii) Comon et al. (1994) consider mutation with (and without) collapsing equations for
shallow theories and prove any shallow theory is syntactic.

A collapsing equation has the form z = ¢ with x a variable of ¢t and z # ¢. A theory FE is
collapse-free if no presentation of E contains a collapsing equation. A shallow theory has
a finite presentation of shallow equations, defined to be equations s = ¢ with all variables
of s or t occurring at depth one. This is relevant for the identity law which is collapsing
and shallow. The result of Kirchner and Klay is relevant for our associativity law which
can be shown to be syntactic by an analogous argument as in Klay (1991) for ordinary
associativity. (Among the theory equations we derived in an earlier chapter the equation
[za] = [z0] associated with Funct = Op — Op is also shallow.)

There are a number of negative results concerning termination for algorithms with mu-
tation rules. Klay (1991) showed collapse-free syntactic theories exist with undecidable
unification problems. It is also undecidable whether a given finite set E of collapse-free
identities is resolvent or whether the theory defined by E is syntactic. The standard A-
unification algorithm by mutation coincides with the algorithm of Plotkin (1972). Mutation
together with decomposition and merging need not terminate, but since we will consider
only singleton unification problems and our terms are linear, we do not need merging.*

It is not clear from the literature whether the combination of mutation rules for shallow
and collapsing axioms and those for syntactic axioms automatically bear a complete pro-
cedure. The next section outlines a proof for the completeness of the combination of right
identity and associativity, without relying on the notion of syntactic-ness.

Without exploiting the following in this thesis, we state two more results useful for
theories of path logics.

(i) Kirchner and Klay (1990) prove every collapse-free and finitary unifying theory is
syntactic. With the exception of the theories for 7' and B all equations of Figures 2.7,
2.8 and 3.4 are non-collapsing.

(ii) Doggaz and Kirchner (1991) present a completion algorithm for automatically convert-
ing a set F of linear and collapse-free equations to a finite resolvent set of equations.

1 do not know whether there are syntactic theories with undecidable unification problems even without
merging.

5.7 Mutation for T and 4 93

5.7 Mutation for 7 and 4

The normalising functions Nr and N4 rearrange paths according to the rewrite rules

[ze] = = and
[z(v0 B)] = [zaf).

Inductive specifications of Ny and N4 from paths to paths are:

Nr([) =1,
Nr([se]) = Nr(s), and

Nu([) =T,
[

Na([su Ny(s)u] provided u is a functional variable or constant, and
Nu([s(vor)] = Na([Na([sv])v']).

They combine in accordance with Nps(s) = Np(Ny(s)), which first eliminates the o oper-
ation and then the identity constant e. Any term Npy4(s) is said to be in S4-normal form.
Clearly, computing the normal forms Np(s), Ny4(s) and Np4(s) of any finite path s is decid-
able. The set of unification rules for normalised terms is smaller and it is most likely that
unification is more efficient.

We will focus on E-unification of a single equation. This is not a restriction, as general
E-unification can be solved by calls of E-unification of single equations, and in calculi
employing binary resolution and syntactic factoring FE-unification of singleton problems
suffices. More specifically, we make the following assumption.

—

)
)
)
) =
]

Any unification problem has the form P = {s =’ ¢} where s and ¢ are variable
disjoint basic paths, (i) {s,t} is prefix stable, (ii) s and ¢ do not contain world
variables, and (iii) are normalised by Npy.

(ii) is ensured since =YIIf(p) contains no world variables and no world variables will be
introduced during unification. Therefore, admissible substitutions have the form

a— u with u a functional term.

Our unification rules for right identity and associativity are those listed in Figure 5.4.5
s and ¢t may denote empty paths, except where stated otherwise. =’ is assumed to be
unoriented. Observe, the system does not decompose or mutate functional terms involving
o, and no normalisation is done in the unification algorithm. The rules are (in essence)
instances of a subset of the rules from Comon et al. (1994).

There is a subtle difference of Mutate-T' and Mutate-4 to the respective instances of the
general mutation rules, which are

PU{[su] ="t} ~ PU{s="t, u="¢e} and
PU{[su] =" [tv]} ~ PU{[se/]="t, u="dov}.

5The rule I named Variable Eliminate is referred to as Quantifier Eliminate in presentations, like Jouan-
naud and Kirchner (1991), where new variables are indicated by existential quantifiers.

5For readers familiar with this paper we note in our context their cycle breaking rule can be easily seen
to be superfluous, since there are no world variables in the original problem, and for the functional variables
Cycle applies to equations of the form aou =" a or woa =" a, which our algorithm does not produce as we
will see.

94 Path logics and theory resolution

Delete PU{s="1} ~ P
PU{u="u} ~ P
Variable Elim. P U {a =" u} ~ P{aw u}

provided « is an introduced variable and does not occur in .
Decompose PU{[su] =" [tv]} ~ PU{s="t, u="uv}
Mutate-T PU{[sa] ="t} ~ PU{s="t,a="¢}
Mutate-4 PU{[sa] =" [tv]} ~ PU{[sa/]="t, a="d ov}

provided ¢ is a new variable and not both s and ¢ are empty.
Figure 5.4: Unification rules for the path logics associated with 7" and 4

It is clear that the case when u is a constant different from e in the first rule leads to an
unsatisfiable situation o =’ e. In the second rule when u is a constant this leads to the
situation @ =" o/ o v which is unsatisfiable when v is not logically equivalent to e, and in
this case @ =’ o' is redundant.

Mutate-T" binds a variable in a right-most position with the identity constant e and
deletes the variable from the original term. For example, the formula OOp — Op is a
theorem in KT and translates to the input set { P[a3], —P[y]}. We want to find a complete
set of unifiers and if possible a minimal complete set of unifiers, for

{lag) =]}

The only unifier is {« — e,y + B}. The empty clause follows. For the formula <(Op — Op),
which is also a theorem in KT, with input set { P[], —P[y]} the unification problem

{leB] =" Y]}
has two minimal (most general) unifiers:
{a—vy, e} and {a—e, [+ v}

The algorithm computes a third unifier, namely {a — e, [+ e, < — e}, which is not
most general.

Mutate-4 applies to terms s = [uguy ... up] = [Vov1 ...v,] = t with the pair (um,,v,)
either being a variable-constant, a constant-variable or a variable-variable pair. For the first
two constellations there is one transformation by Mutate-4 and for the last constellation
there are two.

{[uou1 . .. um—10] =" [vov1 . .. vn_18]}
& {a="d 08, [upui...um_1a] =" [vgv1...vn_1]}
{{uous - . . Um—10] =’ [vov1 - .- Vp—17]}

4
~ A« =" o7, [uous - - . Um—1] =7 [vov1 ... Vp—1]}

or {y="4"07, [uus... tm_1]=" |[vov1...vn_17']}.

5.7 Mutation for T and 4 95

Provided we add appropriate deletion rules, the search tree for transformations with Mutate-
4 is an instance of the search tree of Plotkin’s (1972) algorithm for word unification modulo
associativity (applied to paths and employing the right-to-left as opposed to the left-to-right
strategy).

Compare the derivation according to Ohlbach’s method in Figure 5.3 with the derivation
in Figure 5.5 according to the mutation system. The successful branches in the derivation
tree yield the following unifiers:

Ao, B Boy, amra}

Aoy B (B"0B) oy, armracf’}
3.{0—e B0 a—a}

4.{6—e Brfof, arracf}

5. {080y, B+ (Boy)od, a— a}

6. {6 >0y, B> ((f"0B)oq)od, ar aop"}.

N =

Clearly, the search tree is considerably smaller and there are no repetitions in the solution
set. The solution set is not minimal, though.

Now, we prove our algorithm is sound and complete. By definition, a set of transforma-
tion rules is complete in a theory E if the following two conditions hold:

Soundness: If P transforms to P’ by the application of any of the transformation rules,
written P ~» P!, then every E-unifier of P’ is an E-unifier of P.

Completeness: For any E-unifier of P, there is some P’ in solved form such that P ~» P’
and the idempotent unifier o associated with P’ is more general than 6 with respect
to the variables occurring in P, written o <g 0] Var(P)].

Formally, a solved form is either the empty set or a finite set of the form {o; =’
UL, ..., O =" up} and a1,... ,ay are distinct variables occurring in no u;. A variable «
is solved in a set P if P includes an o =" u (or u =’ «) and « occurs exactly once in P.
A variable that is not solved is an unsolved variable. By definition, o =g 6[V] iff for any
variable z in V', zo and z6 are E-equivalent, and o <g 0[V] iff there is a substitution such
that oo’ =g 0[V].

Equivalence (inequivalence and inclusion) modulo right identity and associativity will
be denoted by =g; (#s; and <g;).

Theorem 5.7.1 The system of Figure 5.4 is sound.
Proof. By inspecting the rules. O

In the remainder of this section, P denotes a singleton unification problem of basic
paths satisfying assumptions (i), (ii) and (iii). Let P’ be obtained from P by any sequence of
transformations modulo the rules of Figure 5.4. For the next lemma (and also Lemma 5.7.7)
it is important that the initial pair in P is variable disjoint.

Lemma 5.7.2 For any identity o =’ » in P’, the variable o does not occur in wu.

Proof. By inspecting the rules. O

96 Path logics and theory resolution
[aB10] =" [aBn]
25 5="y, [aBy] =" [af]
S B="7, [aB] =" [a] not solved
L B="e, [afy]="[a] not solved
= B="H 0 [af) = [af] 7 "
w0 =", a="a ~ L
Sop=e, [@8] =" [a] not solved
W=, a="aof"
~ §="e, [aBy] =" [ap]
P ag) = [af]
PO 5 78 Gty e 3
& B="e, [af] ="[a] not solved
Xp="Fof a="aof ~ 4
L 5="d 00, [apyd] = [of]
2 B="46" [aBy] ="[a] not solved
w8 ="e, [aBy="[aB] ~ not solved
& B="e, ... mnot solved
S Bt ed, [afy] = [0
: like (¥) ~ 5. and 6.

Figure 5.5: A sample derivation of S4-unifiers

5.7 Mutation for T and 4 97

Lemma 5.7.3 Every P’ irreducible by the rules of Figure 5.4 is in solved form or it is
unsatisfiable in =g.

Proof. The only irreducible equations not in the form o =" u with « a solved variable, have
the form: [sa] =[], a =’ B and a =’ e. If P’ includes any one of these it is not solvable.
Observe, as e does not occur in the starting P situations like [set] =" [] do not arise. O

Theorem 5.7.4 The system of Figure 5.4 is complete.

The core structure of the proof is standard. We let
P = {[su] =" [to]}

with s = [s]y... 8|, and t = [t|1 ... t|,], each non-empty, that is, 1 < m,n. We let 8 be any
S4-unifier of P, that is,

[suld =g, [tv]0.

The aim is to show there is a sequence of transformation of P such that the associated
unifier ¢ is more general than 6. In parallel to transforming P we extend the unifier 8 by
adding bindings of new variables to 6 obtaining #'. Below, in Lemmas 5.7.8 and 5.7.9, we
will define 6’ in such a way that if @ unifies P and P ~» P’, that is, P transforms to P’ in one
step, then 0" unifies P'. The resulting procedure starts with the pair (P,6) and computes
at least one pair (P’,0'), such that

G PP,
(ii) P’ is in solved form,
(iii) 6 C 0" and 0'|y4.(9) = 0 (the restriction of 6’ to the variables of 6 coincides with 6).

By assumption € is a unifier of P, and consequently, by induction on the proof length, 6’
of the final pair is a unifier of P’. This establishes completeness, when every derivation is
finite.

The next lemmas supply the missing details.

Lemma 5.7.5 The unifier o associated with the solved P’ is more general than ¢’ with
respect to the variables of P'.

Proof. Every equation in P’ has the form a =’ u. Since #' unifies P!, a6’ = uf'. ¢ is also a
unifier of P’, hence o = uo = u. Therefore, for any variable « in P’

af = acl’
and this means o is more general than 6’ with respect to Var(P'). O
Since 0 and @' restricted to the variables of P are equivalent, it follows that:

Lemma 5.7.6 The unifier o associated with P’ is more general than 6 with respect to the
variables of P’ and P.

The procedure of transforming (P, #) to a suitable (P’,0') terminates:

98 Path logics and theory resolution

Lemma 5.7.7 Any fair implementation of a unification algorithm for the transformation
system of Figure 5.4 terminates for any P satisfying the assumptions.

Proof. Let 7(s) denote the functional depth of a term s. Define a measure p of any unification
problem P by u(P) = (d,v), where v denotes the number of unsolved variables in P, and
d is determined by the depths of the pairs of world terms in P (of which there are at most
one). More specifically, d = 7(s) + 7(t) if s =7 t € P and both s and ¢ are of type world,
and d = 0 if no such pair exists.

Examine each transformation rule in turn to see that u(P’) is smaller than u(P) under
the lexicographical ordering. Except for Variable Eliminate each rule decreases the value of
d. Variable Eliminate leaves d unchanged but it decreases v. The rules do not convert the
status of any variable from solved to unsolved. |

Next, we consider one step conversions of any pair (P,0) to a suitable pair (P’,#') (in
two lemmas). In order to avoid cluttering in the proofs we write just ‘=" in place of ‘=g;’.

Lemma 5.7.8 Consider P U {[su] =" [tv]} with s = [s|g...s|m] and t = [t|o...t|,] for
1 < m,n. The terms [su] and [tv] are assumed to be in S4-normal form. Let § be any
S4-unifier of P U {[su] = [tv]}, in particular,

(5.3) [suld =g, [tv]6.

0" as defined in the following is in each case an S4-unifier of P'.

(i) If ub =g; v, then let #' = 0 and apply Decompose to P, yielding

P =PU{s="t, u="0}.

(ii) If ub =g, e, then let @ = 6 and apply Mutate-T" to P, yielding

P =PU{s="[tv], u="¢e}.

(iii) If u is a variable a, say, and uf =g; [t| ... t|,v]0 for some 1 <k <mn, then let
0 =000 with 0y = {o/ — [t|g...t|n]}
and apply Mutate-4 to P, yielding
P =PU{[sd/]="t, a="d ov},
for o/ a new variable not occurring in P or 6.

Proof. (i) By assumption (5.3), [su]@ = [tv]@, which implies [(s0)(u8)] = [(t€)(v6)]. Then,
since uf = v0,

[(s6) (u)] = [(6) (u)]-

Consequently, s = tf. Therefore, § = ' is an S/-unifier of P'.

5.7 Mutation for T and 4 99

(ii) @ = @' is an S4-unifier of P’, since uf = e and
[tv]0 = [su]@ by (5.3)

= [(s0)(u8)] = [(sO)e] since uf = e

= s0 by the right identity law.
(iii) @' is well-defined since o' is a new variable that does not occur in .
(a) 0" is an S4-unifier of @ =" o/ o v:

(@' 0v)0' = (o ov)fp0
= ([tlg...tln)ov)d since Oy = {a/ — [t|g..-t|n]}

=of since af = [t|g...t|,v]0
= ([tlg .. tln] ov)0
= afyf = ab’ since afy = a.

(b) @ is an S4-unifier of [so/] =7 t:
[sa)0" = [sa)6pf = [sald = [tv]0 by (5.3)
= [tv]6p0 = [tv)6'.
That is, [sa]8’ = [tv]#’, which implies

[(s6")(8")] = [([tlo - - - tle—1]0") ([tl - - - EInv]6)].

Since [tlg . .. tnv]0" = [tlg - . tnv]060 =]k - . . tav]0 = af by (a),
[(s6")(a8")] = [([tlo - - - t]k-1]6") ()]
Therefore, s¢' = [t|o...t|s_1]¢". Then
[sa/]6" = [(s6")(a'0")] = [([t]o - - - t]k—1]6") (/O]
o0 = /060 = [tk - .- t|n)0 = [tle - - t1n]000 = [t|k - .. 1]n]6". Hence

[sa/10" = [([tlo .- - t|x-1]0") (c/6")]
= [(tlo - - - tlk—116) ([tlx - - - £]n]6")]
=[tlo.. -tk 1tlg---t|n]0
= t0'".

2

This means, ¢’ is an S4-unifier of [sa/] =" t. O
The lemma also covers the cases that v0 =g; e and v0 =g; [s|f ... s|,]0 for some 1 <k <m
and v a variable. Observe that when uf =g [t| .. .t|,v]@ but both u and v are constants,
the conditions of either (i) or (ii) hold. If u and v are both constants then either (a) u = v
or (b) u = @, say, and v = e. (a) implies uf = vf, and (b) implies v0 = e.

It remains to clarify whether there are cases that the lemma does not cover. Is there a
case such that neither of the following hold?

(i) uf =54 2)9,

100 Path logics and theory resolution

(ii) ud =55 e (or vd =g e),

(iii) w is a variable and u@ =g; [t|x...t|,v]0 for some 1 <k <n (or v is a variable and
v0 =g [S|k - - - 8|n]0 for some 1 < k < m).

The answer is, yes, as in this example
P={[ed'f] =" [aba]} and 0={B—cony, §—>a oc}
when in the general case
[8lk - - - S|lmuld =54 [t --.t]nv]0

is true, for some 1 < k <mand 1 <[< n. If u and v are both constants then, as above,
either uf = v0 or uf = e or v = e. The next result deals with the case that one of u or v
is a variable.

Lemma 5.7.9 Let 6 be an S/-unifier of P U {[sa] =’ [tv]} with s = [s]g..-5|m] and
t=1tlo...t|n] for 1 < m,n, and both [sa] and [tv] are in S4-normal form. Let

[S|k - - S|mald =54 [t]i---t|nv]€

for some 1 <k <m and 1 <[< n. If § includes a binding of « to u, that is, a — u € 6,
then let

0" =060y with 6y = {a' — u'}

where v’ is given by u =4 v/ o v" and v’ = vf, and apply Mutate-4 to P, yielding

P =PU{[sd/]="t, a="d ov},
for o' a new variable not occurring in P or . Then ' unifies P'.
Proof. (a) @' is an S/-unifier of o =" o/ o v, since

(o' 0w)d' = (d'bp) o (V'0y) =u' 0V =u=0ab =ab'.

(b) ¢ is an S4-unifier of [so/] =’ t: By assumption [sa]@ = [tv]d, hence [(s0)(af)] =
[(t0)(v0)]. As af = u = ' ov' and v0 = v' we have

[(s6)(u' 0 v') = [(s0)av'] = [(t0)v'].
It follows that [(s0)a'] = t0. Then, [sa]f’ = [sa]06y = [sa]f = t0 = t0', as required. O
For example, the sample pair

P={lad'B]="[ady]} and O={8+—ecy, §—a o€}
is converted to
P'={[ad'f1="[ad], B="Foq} and 6 ={B—r €0y, a0 B e}

The lemma makes assumptions, that are not met in the following two situations. First,
if no u' exists such that u =4 u’ o (vf) then v0 is equivalent to e. This case is dealt with in
(ii) of the previous lemma. Second, the situation that neither a nor v are in the domain of
0 and ab #g; v6 is impossible (for otherwise [sa] and [tv] are not unifiable).

Observe, the lemma implies (iii) of the previous lemma. This completes the proof of
Theorem 5.7.4.

5.8 Preservation of prefix stability 101

5.8 Preservation of prefix stability

Finally we verify that the application of S/-unifiers and S/-resolution preserves prefix sta-
bility. This justifies the assumptions made in the previous section, namely, that the terms
in the initial problem set are basic paths and the world terms on the left hand sides of
the transformation rules of Figure 5.4 are also basic paths. We also prove a preservation
result for forming R%M and Rgf;ND o Ny, -Tesolvents. The proofs are very similar to those for
applying syntactic unifiers and forming standard resolvents (Section 5.4).

In the following we let T' be a set of terms in the vocabulary of basic path logic, because
remember, every theory resolvent is immediately normalised by Np4. The analogue of
Theorem 5.4.1 is not true in its full generality for bindings of S/-unifiers. It is true when
suffixes are variable disjoint, and when more restrictions (to be made precise below) hold
for instantiations with o terms. For bindings of the form « +— e the following is immediate
by Theorem 5.4.1.7

Corollary 5.8.1 Let T be a set of terms in the vocabulary of basic path logic. Let s =
[uouq ... up,] and t = [vov ... v, be two terms in 7" such that for some k > 0,

U = Vo, UL = V1,--- ,Up—1 = Vg1 and ug 7# vg,

ug, is a variable, and the suffixes [ug11 ... U] and [vkyq ... v,] are variable disjoint. Let o
be a substitution {uy — e}. Then Np(To) satisfies T1 and T2, provided T does.

For bindings of the form uj — v o', because they cause the term depth to increase, the
concept of k-equality needs to be generalised to the concept of (k,l)-equality. Two basic
paths s and ¢ are (k,l)-equal if ¢ is like s except possibly the term s|j in the k-th position
is replaced by a string w; ... w; of length [. In other words, s and ¢ are (k,[)-equal provided
s=t,or when s = [s|1...8|p] then ¢t = [s|1...8|g—1w1 ... wiS|k+1- - S|m], Or the other way
around.

Theorem 5.8.2 Let s and ¢ be two terms in T' defined as in the previous result. Let o be
a substitution {uy — w} where

Nrg([w]) = [wy ... w] and wy = vy,

and s and w are variable disjoint.® Then Ny, (To) satisfies T1 and T2, provided T, N74([w])
and the set {[w], [vg...v,]} do.

Proof. Proceed as in the proof of Theorem 5.4.1 with the obvious modifications. Let s and ¢
be any terms in 7" that satisfy the conditions T1 and T2 and consider Np4(so) and Nry4(to)
in Npy(To). It is not difficult to verify that the pairs Ny4(s) and Nr4(so), and also Ny4(t)
and Np4(to), are (k,l)-equal. We assume without loss of generality that s|, = uy (for,
otherwise if uy does not occur in either of s or ¢ then the result is trivially true). Then

Nra(so) = [s]1..-8|p—1W1 - - - wS|gt1 - - - Slm]-

"This is also true for bindings produced by other collapsing equations provided there are no interactions
with other operations preventing elimination by normalisation.

8More accurately, Nr4([w]) coincides with Nra([[], w]) = [[Jw: - . - wi]-

102 Path logics and theory resolution

Since s and [w; ...w;] have no common variables and w satisfies T1 and T2, so does so.
Now, consider two cases: (i) o leaves ¢t unchanged so that to =t and (ii) it does not. In

the either case we need to prove T1 and T2 hold for i and j strictly below k + [. This is

tedious and as the arguments are similar to those of Theorem 5.4.1, we omit the details. O

This theorem and the previous corollary will be used in the induction argument over
the decomposition into bindings of idempotent unifiers proving preservation of T1 and T2
(Theorem 5.8.4).

Lemma 5.8.3 Let s and ¢ be two variable disjoint basic paths. Let ¢ be any S/-unifier
computed by the system of Figure 5.4. Then

(i) o is an idempotent unifier.

(ii) o = o1...07, where the o; are of the form {a; — w} such that for any pair o; and o;
with 1 <14 < j < n, if o; and «; occur at positions k; and k; in s or ¢, then k; < k;.

(iii) If o1 of oy is a variable occurring in s then the following are equivalent.

a. s = [ugui ... up] and t = [vgvy ... v,] have a common prefix [ugu; ... ugy1], ug #
v and ug is a variable.

b. Either 01 = {ux — e} or o1 = {ux — w} where Ny([w]) = [wy...w;] and
w1 = Vg-

(iv) Nui([w]) satisfies T1 and T2 provided s and ¢ do.

(v) {Nyg([w]), [vk - --vs]} satisfies T1 and T2 provided s and ¢ do.

Proof. (i) is evident by the definition of solved forms.

Consequently, o coincides with a composition of bindings ¢;. Compose the bindings as
determined by the positions in s and ¢ of the variables «;. This verifies (ii).

(iii) is true, for, otherwise s and t are not unifiable.

(iv) No unification rule duplicates variables, hence Ny([w]) is a linear term and satisfies
T1 and T2.

(v) S4-bindings of the form a; — w are such that: Ns([w]) has length smaller or equal
to [’Uk . .’Un], and W1 = Vg, W2 = Vk41y -+ 5y Wi—1 = Vg4]—2- If W; = Vg4i1—1 then N4([w]) is
a prefix of [vg ... v,], which means {Ny([w]), [vg ... vy} satisfies T1 and T2. If w; # vy
then w; is a variable introduced by an application of Mutate-4, vgy;—1 is a variable and
o9 = {Vg+i—1 +> w'}. Also, in this case {Ny([w]), [vg ... v,]} satisfies T1 and T2. O

Theorem 5.8.4 Let ¢ be an S4-unifier of two variable disjoint terms s and ¢t in 7. If T'
satisfies properties T1 and T2 then so does Np4(To).

Proof. Let o be o1 ...0; as in (ii) of the previous lemma. Iteratively, consider the triples
s, t and o1, then Np4(so1), Nry4(tor) and o9, etcetera, and apply Corollary 5.8.1 and
Theorem 5.8.2. By (iii), (iv) and (v) of the previous lemma, in any iteration the conditions
T1 and T2 are satisfied by any Np4(so1...0;), Nra(tor...o0;) and oj41. m|

Consequently, using Theorem 5.4.6 which says that the union of two variable disjoint
sets of prefix stable terms is prefix stable, the preservation result for binary theory resolvents
follows. More generally:

5.9 Conclusion 103

Theorem 5.8.5 For E C {right identity, associativity}, the binary RﬁE—resolvent of two
variable disjoint clauses satisfying T1 and T2 also satisfies T1 and T2.

The main preservation theorem follows:

Theorem 5.8.6 Let E C {right identity, associativity}, and let ¢ be any modal formula
and S = ¢(—YIIs(yp)). For any n, (RﬁE)"(S) and (RE . np)" () are well-formed in the
basic path logic.

Proof. By the previous theorem and by preservation of prefix stability under syntactic fac-
toring and condensing. O

5.9 Conclusion

In summary, this chapter defines a lattice of path logics and describes resolution and uni-
fication procedures for basic path logic and for extensions that correspond to modal logics
in which T and 4 hold, and that correspond to S5. It describes, for path clauses obtained
by the optimised functional translation, combinations of known techniques and methods
proposed for clauses obtained by the (non-optimised) functional transformation in Ohlbach
(1988a, 1991), Zamov (1989), Auffray and Enjalbert (1992), and possibly other papers. One
notable difference is worth stressing. Basic path clauses including normalised clauses do
not contain Skolem functions other than constants. This makes exhibiting the existence
of a term depth limit next to trivial, that is, with the exception of K/ and S/. Thus, we
have accomplished the first important goal of proving decidability of resolution with con-
densing, namely the existence of a term depth bound ((A) of the Preview). In general, the
language restrictions are such that the proofs of the results in this chapter are somewhat
simpler (though remaining tedious) than proofs for the non-optimised translations found in
the current literature.

We have illustrated the search space of the unification procedure for S/ based on muta-
tion is considerably smaller than that of Ohlbach’s procedure. The procedure is similar to
the mutation-based procedure proposed by Auffray and Enjalbert (1992) for non-optimised
path clauses. It paramodulates into the top position systematically reducing a pair of terms
from the right to the left. And, we have proved syntactic unification can be simplified for
singleton problems.

We conclude with some remarks concerning further work.

Due to the assumption we make in Section 5.7, in particular, that the input set consists
of one pair of terms. For semantic factoring we need general E-unification for which our
algorithm is not sufficient (this would require a deletion rule of the identity constant and a
more general form of the variable elimination rule). Given a set of terms (literals), computing
the syntactic most general unifier (when it exists) is easier than computing the set of minimal
E-unifiers. Semantic factoring can produce an exponential number of factors causing a
significant overhead. The price we pay for using syntactic factoring is incompatibility with
strategies like tautology deletion. So, evidently there is a tradeoff which should be kept in
mind and deserves further investigation.

Our unification algorithm is not optimal. It does not compute a minimal complete
set of E-unifiers. The redundant unifiers will need to be filtered out by post processing.
Possibly this can be avoided by additional unification rules similar to those of Otten and

104 Path logics and theory resolution

Kreitz (1996) who present a system consisting of ten rules for terms satisfying the stronger
T-string property.

Chapter 6

Decidability by unrefined
resolution

The main purpose of this chapter is to prove any complete resolution procedure with con-
densing is a decision procedure for any finite input set of basic path clauses. We will also
provide an estimate of the size of the class of variable indecomposable and condensed path
clauses. This gives an indication of the complexity of unrefined resolution and condensing.

Section 6.1 outlines the fundamental idea of proving decidability. Briefly, the idea is to
prove any saturated class S of basic path clauses produced by a finite input set is finite.
We suppose a bound exists for the maximal lengths of paths in this class, and our goal is
to show that a bound exists for the number of literals and/or variables in any clause of this
class. This will be done by encoding clauses as matrices of terms. This so-called matrix term
representation is introduced in Section 6.2. Sections 6.3 and 6.4 study variable partitions
and prefix partitions of the encoding. Section 6.5 gives the decidability results for basic path
logic and its generalisations and it discusses the relevance to modal logics. Section 6.6 is
devoted to providing explicit bounds for the number of literals and variables of any clause of
the class S. This requires a complex embedding of variables into a finite power set algebra.
The paper Schmidt (1997a) is a short version of the first four sections.

6.1 Proving decidability of resolution

The basic idea of proving decidability for resolution combined with condensing is due to
Joyner Jr. (1976). By definition, a resolution decision procedure for an effectively specified
class S of clauses is a complete resolution procedure R such that if S C S and S is satisfiable,
then for some n > 0, R"(S) and R"*1(S) are variants.

We will focus on an arbitrary class S of basic path clauses formed by saturation (deduc-
tive closure) with respect to any complete resolution procedure Reonp from a finite input
set S, and prove that S is finite. From the outset we assume the existence of a term depth
bound for any clause in S (that is, (A) of the Preview). Our goal is to prove the existence of
a clause size (cardinality) bound (that is, (B) of the Preview). Then it follows S is finitely
bounded.

The clause size bound is tied with the maximum number of variables which can occur
in any clause of S. More precisely, it is tied with the maximum number of variables which
can occur in any variable indecomposable (sub)clause. Formally, the variable partition of

105

106 Decidability by unrefined resolution

any clause C is the finest partition of C' into disjoint subclauses which do not share common
variables. The subclauses in the variable partition are said to be wvariable indecomposable
or split. Different from Joyner we will not put all ground literals in C' into one single block.
Ground literals will belong to separate blocks, and these are singleton sets. For example,
the variable partition of the clause

P(a) V P(b) V ~Q(2') V ~R(z,y) V =R(y,2) V R(z,2)

is the following.

P(a) | P(b) | ~Q(Z') | ~R(z,y) V ~R(y,z) V R(z, z)

Suppose there is a bound on the number of variables occurring in any variable indecom-
posable and condensed C' of S. Then there can only be a limited number of non-variant
variable indecomposable clauses in the class. In particular, there can only be a limited
number of non-variant variable indecomposable subclauses of any condensed clause. This
implies that any condensed clause in the class is bounded in size. Consequently, the entire
class is bounded in size.

We will develop the idea of partitioning clauses into variable indecomposable subclauses
further. Based on the prefix stability property we will define a finer nested and tree-like
partition of clauses, on the basis of which decidability will be proved by an inductive argu-
ment.

6.2 The matrix term representation of clauses

Assuming that m denotes the maximal length of any term in the input set S C S, we encode
any clause in S by a set of terms of length m + 1. The encoding is a two step conversion. By
introducing new blank symbols which we append to terms shorter than m we obtain terms
with uniform lengths. We convert literals to terms by introducing additional new constant
symbols for positive and negative occurrences of predicate symbols which we append to the
terms. For example, if m = 3 the clause

afbp
(6.1) Plaf] vV =Playd] V Qley'] is represented by | oy dp/

€Y bgq

b is a special blank constant, and p, p’ and ¢ are new and different constant symbols associ-
ated with P, =P and @, respectively. They are called predicate constants. In the described
way any clause C' of S is converted to a set T' of terms all with length m + 1. T can be
viewed as a matrix when we write the terms below each other as in (6.1). This matriz term
representation of a clause helps visualising variable and prefix partitions. Prefix stability is
preserved by the encoding because we append the new predicate constant. Prepending the
new constants would not preserve prefix stability.

Suppose K be the finite set of constant symbols in the term representation of the input
set S. Suppose X is the union of a finite sequence X1, ..., X,, of pairwise disjoint non-
empty sets of variables. Define 7 (X, K) to be the set of all terms that are built from X
and K with the restriction that

seET(X,K) iff s=[uy...Umlmyi1],

6.2 The matrix term representation of clauses 107

where upy,+1 € K and for each 1 <7 <m,

{Xi when u; is a variable, and
Uy

K, when u; is a constant.

Each X; contains the variables that occur in position i of any term in 7 (X, K). Thus,
T (X, K) is the class of strings of length m + 1 built from K and X that satisfy the property
T1 of Theorem 5.1.1. This means, each variable in any subset T' of 7 (X, K) occurs at one
fixed position in any term, but 7' is not necessarily prefix stable. 71" can be viewed as a
matrix with m + 1 columns and as many rows as there are terms in 7.

Lemma 6.2.1 Let C be any basic path clause with maximal term length m. There is a
one-one correspondence between C' and its matrix term representation 7' C 7 (X, K) such
that C is prefix stable iff so is T'.

Proof. Not difficult. O

Reformulated for the term representation our goal is to show there is a bound for the
size of any condensed and variable indecomposable and prefix stable set T C T (X, K). (By
definition, a set T' of terms is condensed if there is no substitution o such that To & T'.)
Or, reformulated for the matrix term representation our goal is to show there is a bound
for the height of any non-variant matrix representing a condensed, variable indecomposable
and prefix stable set T C T (X, K).

We define two operations for dividing and reassembling 7' C T (X, K). Let s be a term
and define

T(s) = {[u1...u]|[su1...w] €T}

T(s) is the set of suffizes of s occurring in T" and may be viewed as a sub-matrix of T'. For
example, if 7" is the matrix of (6.1) then

Bbp

T(la|) =
([o]) L5y

Forming sub-matrices in this way satisfies a kind of associativity: For any terms s and ¢
occurring in 7',

(T'(s))(t) = T([st])-
For reassembly the following operation is used.
sT ={[sur...ui]|[u1...u;] € T}.

Then, sT'(s), more precisely s (T'(s)), denotes the subset of all terms in 7" which have prefix
s. For example, if T is the matrix of (6.1) then

afbp

alT(|la]) =
[a] T ([a]) an 5y

Prepending terms is monotone, that is, T C T" implies sT C sT'. Subsequently, we write
T(a) and aT(«) instead of T'([e]) and [a] T'([e])-

108 Decidability by unrefined resolution

6.3 Variable partitioning

Initially, in this section, we suppose T is a set of terms of basic path logic (not necessarily in
matrix form). The variable partition of a set T' of terms is the finest partition into subsets of
terms that do not have any variables in common. A set of terms is variable indecomposable
(or split) iff its variable partition is a singleton set.

Let 6, be a binary relation on a set T' of terms defined by:

s0,t iff s and ¢ have a variable in common or s = t.

In general, 6, is not an equivalence relation, because transitivity may fail. For example,
[@f]0,[67] and [37]0y[0], but we do not have that [a3]0,[dy]. However, 6, defined over
terms of basic path logic has the following properties.

Lemma 6.3.1 Let T be a set of terms in basic path logic. Let s and t be terms in T' with
s not ground. Then

(i) sOyt iff for some 4, s|; = t|; is a variable.
(ii) sOyt iff s and ¢ have a common prefix [u; ... wu;] with u; a variable.
(iii) 6, is an equivalence relation.
If s is ground then
(iv) sO,t iff s =t.
Proof. Not difficult, exploiting prefix stability. O

We adopt the standard notation. If € is an equivalence relation over a set T then 7'/6
denotes the partition of T. The elements in the partition are pairwise disjoint subsets
s/0 ={t € T'|sOt} of T, and are called blocks.

Theorem 6.3.2 Let T be a set of terms in basic path logic. Then
(i) T'/6, coincides with the variable partition of 7'.

(ii) Each non-ground block in 7'/6, is uniquely associated with a term ¢ = [u; ... u;] where
u; is a variable and ¢ is the prefix of every term in the block.

(iii) Any ground block in T'/0, is a singleton set.

Proof. (i) Since 6, is an equivalence relation, T'/0, is a partition of 7. Evidently, no two
different blocks in 7'/6,, share a variable. Because the blocks cannot be partitioned further,
T/0, = {s/6,|s € T} is the variable partition of 7.

(ii) and (iii) are immediate by (ii) of the previous lemma. O

Properties (ii) and (iii) are important and imply all terms in any block of the variable
partition have one common prefix:

Corollary 6.3.3 Let T C T (X, K) be prefix stable.

6.4 Prefix partitioning 109

Figure 6.1: The variable partition 7'/6,

(i) Each block in the variable partition has the form s7'(s). Every non-ground block is
of the form [sa] T'([sa]), for some variable c.

(ii) If T' is variable indecomposable then all terms in 7" have a common prefix and there
is a prefix s in T such that T = sT'(s).

This proves that the variable partition of a set 7' may be viewed as a matrix arranged and
divided as in Figure 6.1.

6.4 Prefix partitioning

For the definition of prefix partitions, it is essential that T is a set of terms of equal length
and forms a matrix. Suppose T' C T (X, K). We define a sequence of m equivalence relations
0; (one for each of the first m columuns in the matrix representation of 7'): For any 1 < < m,
0; is the relation on 7" given by

s0;t iff s and t have a common prefix of length ¢

We say a set T of terms is prefix indecomposable if the terms in 7' all have one common
prefix (at least of length one).
For example, the 6;-partition of the matrix in (6.1) consists of two blocks:

b
“B2 1 na [exba).

aydp

The common prefix of length one in the first block is [@] and the common prefix in the
second block is [¢]. The 02- and #3-partitions are identical and consist of three blocks:

aebp|, |adyp' | and |ey bgq]|-

Further examples of prefix partitions can be found in Figure 1.8 of the Preview.

Lemma 6.4.1 Let T C 7(X, K).

(i) For every 4, 6; is an equivalence relation and partitions 7.

110 Decidability by unrefined resolution

Figure 6.2: The prefix partition 7'/0;

(ii) The sequence 04, ... ,0,, is a descending chain, or equivalently, for any s € T', s/6,, C
S/Hm_l g e g 8/01.

(iii) If T is prefix stable then, for any s € T', s/6, C s/6;.

(iv) If T is prefix stable and variable indecomposable then T is prefix indecomposable.

Proof. (i) and (ii) are straightforward.

(iii) For every non-ground terms s,t € T, sf,t means s and ¢ share a variable. Prefix
stability for variables implies s6t, that is, s and ¢ have a common prefix of at least length
one. Otherwise, for ground terms s6,t iff s = ¢ (Lemma 6.3.1 (iv)) iff s and ¢ have a common
prefix of length one iff s6,t.

(iv) is by (iii), since T is prefix indecomposable iff s/0; = T, for any s € T O

Theorem 6.4.2 Let T C 7 (X, K) be prefix stable and let s be any term occurring in 7.
Then

(i) The blocks s/6; in T'/0; are of the form tT'(t) for some t.

(ii) The blocks in T'(s)/0; are of the form ¢ T'([st]) for some t.

Proof. Let t be the common prefix of length 7 of the terms in s/6; and s'/6; with s’ some
suffix of s. O

Therefore, like the blocks in the variable partition, the blocks in a prefix partition have the
form sT(s). Compare the prefix partition 7'/6; in Figure 6.2 with the variable partition
T/0, in Figure 6.1.

The sequence, or nesting, of increasingly finer prefix partitions given by 61,... ,8,, in-
duces a tree-like structure on any prefix stable set of terms as depicted in Figure 6.3 (and
Figure 1.9). The proof of (B) will be based on this structure. The next two theorems prove
any sub-matrix 7'(s) has the same properties as s7T'(s).

The following is a corollary of Theorem 5.4.5, which says that prefix stability is preserved
by taking subsets.!

'The next three results correct Theorem 4.3 of Schmidt (1997c).

6.4 Prefix partitioning 111

Figure 6.3: Nested partitioning of T

Corollary 6.4.3 Let T'C 7 (X, K) be prefix stable. Then
(i) For every i, every block s/6; in T'/0; is prefix stable.
(ii) For every s, sT(s) and T'(s) are prefix stable.

In general, prefix stability is not preserved by prepending prefixes. However, a consequence
of Theorem 5.4.6 is:

Corollary 6.4.4 Let {sT(s)}s be a collection such that {sT(s)}s C T/0; and the sT'(s)
are pairwise variable disjoint. If each s T'(s) is prefix stable then the union (J, s T'(s) is prefix
stable.

For condensedness a stronger result holds.

Theorem 6.4.5 Let 7' C 7 (X, K) be prefix stable. The following statements are equiva-
lent:

(i) T is condensed.
(ii) For every s, sT'(s) is condensed.

(iii) For every s, T'(s) is condensed.

Proof. (iii) implies (i), since T' = T'([]). We prove that if T'(s) is not condensed then s7'(s)

is not condensed, which implies 7" is not condensed, that is, (i) implies (ii) implies (iii).
Suppose T'(s) is not condensed. Then there is a substitution ¢ such that T'(s)o is a

proper subset of T'(s). Since prepending a term s is order preserving we conclude (s T'(s))o =

112 Decidability by unrefined resolution

s(T(s)o) is a proper subset of s7T'(s) and this means s7T'(s) is not condensed. Since s7T'(s)
and T'\ s T'(s) have no common variables (by prefix stability) we derive that

To=(T\sT(s)oUsT(s)o=(T\sT(s))UsT(s)o.
This is a proper subset of (T'\ sT'(s)) UsT(s) = T. Hence T is not condensed. O

6.5 Decidability results

We now show the process of repeatedly partitioning a matrix 7" and its sub-matrices T'(s)
by common prefixes has a finitely bounded number of levels, that is, each partition consists
of a bounded number of blocks/sub-matrices of bounded size/height.

The underlying inductive construction is this. Let 7% denote any matrix of width i, more
precisely, any sub-matrix of suffixes of any T' C T (X, K). Starting with the smallest matrices
T' of width one, we will iteratively build the matrix 7™%!, by combining at each level a
set of variable indecomposable and non-variant 7% with a common constant or variable u to
form a matrix T¢+!. That is, T"*! = wT*"!(u) for some u. By the results of the previous
sections, the construction in such that each 7" is condensed and prefix stable.

Theorem 6.5.1 Let m be a given natural number. There is a bound for the size of any
condensed set 7" of terms in the basic path logic with length at most m.

Proof. It suffices to prove any variable indecomposable and condensed T is finitely bounded,
because, if this is the case then there are finitely many non-variant such 7. The proof is by
induction on the length i of suffixes in the matrix representation of 7' (Lemma 6.2.1) using
the nested tree-structure induced by prefix partitioning (Figure 6.3).

The base case is easy. The last column of any T consists of just (predicate) constants.
So, any variable indecomposable and condensed T of width one is ground, and thus a
singleton set. In other words, the height of any variable indecomposable and condensed T
is ng = 1.

The inductive hypothesis says, there is a bound n;, say, for the height of any variable
indecomposable and condensed T* of width i < m. This implies there are finitely many such
non-variant 7%, and consequently:

(" There is a bound 7,1 for the height of any condensed T*.

In the inductive step, we assume T*t! of width i + 1 is variable indecomposable and con-
densed. Corollary 6.3.3 implies 7! = u T**!(u) for some constant or variable u. By Corol-
lary 6.4.3 and Theorem 6.4.5, T%!(u) is prefix stable and condensed. Hence, using ("), the
height of 7%t (u) is bounded by n;1, which means T+ is, too.

This proves there is a bound n,,1 for the height (size) any variable indecomposable and
condensed T™+1. |

With this theorem we have achieved our goal (as set out for this thesis) of exhibiting the
existence of a size bound and hence a variable bound for basic path clauses in any saturated
class S. This is the most important theorem of this chapter from which decidability for a
range of path logics and the corresponding modal logics follows. As syntactic unification
does not cause term lengths to increase (Theorem 5.3.3), it immediately follows that any
procedure Roonp With empty theory terminates for any finite input set of path clauses.
Formally:

6.5 Decidability results 113

Corollary 6.5.2 Any complete resolution procedure with condensing is a decision proce-
dure for the satisfiability problem of a finite set of finite clauses of the basic path logic.

Proof. There is no growth of terms (Theorem 5.3.3), the basic path logic is closed under
resolution with condensing (Theorem 5.4.9), by Theorem 6.5.1 there is no unbounded growth
of the size of clauses, and any compatible refinement will merely reduce the size of S. O

Formulated more generally:

Theorem 6.5.3 Any complete resolution procedure with condensing and possibly a nor-
malisation function Ng is a decision procedure for the satisfiability problem of a finite set
of finite clauses in path logics, provided

(i) a term depth bound exists,
(ii) unification is decidable, and

(iii) the normalisation function is effective and returns basic path clauses.

Although any input set is a set of basic path clauses without any non-constant occurrences
of functional terms, condition (iii) is important as theory unification may introduce non-
constant functional terms.

Condition (i) can be interpreted in two ways. Namely, a term depth bound exists for the
particular resolution procedure. Or, an a priori term depth bound exists for the particular
path logic. The latter can be extracted from the literature on modal logic, for example, from
proofs of the finite model property or termination proofs of tableaux procedures. The given
term depth bounds can then be used in a simple blocking mechanism to stop the theorem
prover from generating clauses of depth greater than the given value.

Theorem 6.5.3 defines exactly the class of path logics (in general, with a theory) for
which unrestricted resolution plus condensing terminates always. Because the translation of
modal formulae into path clauses has linear time and space complexity, it is immediate that
Theorem 6.5.3 provides a decidability result for the satisfiability problem in those modal
logics which can be embedded in path logics such that conditions (i)—(iii) hold. We do
not know exactly which modal logics meet the conditions of Theorem 6.5.3. But, all three
conditions are met by the following modal logics:

Corollary 6.5.4 Resolution and condensing combined with any compatible refinement
strategies is a decision procedure

(i) for basic path logic and for the translation of K, KD, S5, and the multi-modal versions
of K and KD,

(ii) for the translation of KT, and
(iii) for KD4 and S4.

Proof. (i) follows by Theorem 5.1.2, Corollary 6.5.2 and the remarks on p. 84 about embed-

ding S5 into the basic path logic.
(ii) Use E-resolution, condensing and normalisation modulo E as defined in Chapter 5.
(iii) Use E-resolution and condensing with unification and normalisation defined as in
Chapter 5, and an a priori term depth bound extracted from Ladner (1977), for example.
O

114 Decidability by unrefined resolution

Another important question is, are there practical elementary resolution decision pro-
cedures for transitive modal logics? For practical purposes the solution using an artificial
term depth bound is poor (Hustadt, Schmidt and Weidenbach 1998). Bounds implicit in
proofs of the finite model property or termination proofs of tableaux procedures are highly
non-optimal. Consequently, the search space is unrealistically large even for small input
formulae. For example, the maximal depth of the trees underlying the models constructed
by Ladner (1977) for S/ is n?, where n is the number of symbols in the input formula. It is
clear from inspecting the algorithm that a better bound can be given, see Vigano (1997), for
example. Further discussion of the problem can be found in Section 7.5 of the next chapter.

6.6 Bounds for literals and variables

The potential search space for unrefined resolution is enormous. In this section we will
derive an explicit estimation based on an alternative direct proof method of decidability
(first published in Schmidt (1997¢, 1997d)). This requires a technical encoding of variables
that exploits the tree-like structure of the prefix partitions (Figure 6.3).

Our strategy is, to show there is an embedding of the variables of T" into a finite Boolean
algebra. It is natural to look for an embedding that encodes the variables of a given set T
in terms of the finite entities of 7', that is, in terms of the constants. The problem is, how
do we deal with condensing. Ideally we want the encoding to have a natural property that
captures the condensedness property of the clause. The encoding we use is weaker. It has a
natural property that is necessary but not sufficient for condensedness. We encode variables
by sets of tuples that represent the set of suffixes of the given variable and the necessary
property for a T to be condensed is the antichain property. It requires that the encodings
of variables with the same prefix form an antichain. (An antichain is a subset of pairwise
incomparable elements in a poset (P,C).) The encoding of variables will be by a family of
embeddings {fs}s. Each f; will map any variable a with prefix s to a tuple-encoding of the
sub-matrix T'([sa]) that represents the set of suffixes of the variable. The most difficult part
of the proof is showing that, if there is a subset relationship between the encodings of the
pairs of variables (that is, the antichain property is not true) then one of the corresponding
blocks is redundant with respect to condensing (Theorem 6.6.3).

Let T C T (X, K) be prefix stable. Define f, recursively as follows: For every prefix [su]
in (any term of) T

(i) if s has length m — 1 and u € X,;, U K then

{p|[sup] € T} if u is a variable
fo(u) = .
u otherwise, and

(ii) if s has length 0 <4 <m —1 and v € X;; U K then:
fS(u) = {(f[su](ui+2)a s af[suui+2...um_1](um)ap) | [suui+2 s ump] € T}
if u is a variable, and fs(u) = u otherwise.

For technical reasons the f; are defined also for constants. The restrictions of each f; to
constants are identity mappings. Restricted to variables each f; maps v = a to a set of

6.6 Bounds for literals and variables 115

tuples that encodes the set of suffixes of & in T'. s in the index of f; is the unique prefix of
ainT.
The encoding is best explained with an example. Consider the matrix of (6.1):

afbp fole) ={(8:b,p),
aydp flay(v) ={0,2)} ({(¢,2)}.9,0")}
€7 bg fra) ={(& 9}

The encodings of the variables a, v and v are defined inductively starting with the variables
closest to the end of any term. The suffix of v is [§p'] and its encoding by fi,) (because [
is the prefix of) is the singleton set containing the tuple (d,p'). Similarly, the encoding of
the suffix [bg] of 7' by fiq is the tuple (b, g). The variable a occurs twice and the encoding
of its two suffixes by i is (8,4,2) and (fiy(1).5.2) = ({(6.2)}.0.1).

Denote the domain of each f; restricted to variables by X;. Any X is the set of variables
of T that all have prefix s and prefix stability ensures that distinct X; and X, are disjoint.
In the base case (i) of the definition of fs, the restriction of fs to variables is a mapping
from X, to a subset of the set of predicate constants. For example

sBp

fs(B8) =1{p, for
(B) = {p,q} fo sBa

If s has length m — 2 as in

safBp
safq
saygq

the restriction of f, to variables is a mapping from X to a subset of the product (KU2K)x K.
In this example, fs(a) = {({p,¢},p), ({p,¢},9), (7,9)}. In general, the restriction of f, to
variables is a mapping X, — 2Pi+1 where s is a prefix in T of length 0 < i < m and B;,;
is defined recursively by

Bn,=K
B; = (KU2B+1) x ... x (KU2Pm) x K forany 1<i<m.

Since K is finite, each 251 is a finite Boolean algebra. Thus:

Provided the restriction of fs to variables is an injection of X, into 2Bi+1, it
follows that (i) the size of each fs(a) is bounded by card(B;11) for 7 the length
of s, and (ii) each X, is bounded by 2¢ard(Bit1)

X is the set of variable with prefix s that occur at position i + 1, meaning X; C X;1. So,
Xit1 = Use 1, Xs where I; is the set of prefixes s of length ¢ in T'. It then follows there are
also bounds for the sizes of any X;;1 that are used to build any prefix stable and condensed
set T C T(X, K) with given depth m. This provides then another proof for the existence
of variable and literal bounds (Theorem 6.5.1).

116 Decidability by unrefined resolution

Next we prove the restriction of f; to variables is indeed an injection. f; is not an
injection for every T, especially not if T' is not condensed, because both variables a1 and awo
in

sai1p

Sag p

for example, are mapped to {p}.
We need the following mapping. Let o be an arbitrary variable in X; C X;; with prefix
s. For any T (not necessarily condensed) define a mapping

ha : aT([sa]) — fs(a)
from the sub-matrix aT'([sa]) of suffixes with prefix a to the encoding of a specified by

ha([aui-l-? cee qu]) = (f[sa] (Uit2),--- af[saqu...um_l}(um)aﬂ)'

That is, h, maps any suffix [u;ts ... unp] beginning with a to the tuple of encodings of
the u;; following a.

Lemma 6.6.1 Let 7' C 7 (X, K) be prefix stable. Let a be a variable in X;,; with prefix
s. Then h,, is a surjective function.

Proof. We readily see that h is well-defined, total and single-valued. That h is onto, that
is, for any tuple f in fs(a) a term t exists in aT([sa]) such that hq(t) = f, follows from
the definition of f;. |

We will show that h, is a bijection, provided T' (or o T'([s«r])) is condensed (Theorem 6.6.6).

Lemma 6.6.2 Let 77 C 7 (X, K) be prefix stable. Let o and § be two different variables
in T with a common prefix s. If fs(a) = fs(5) then

(i) T is not condensed, and

(ii) there is a substitution o such that (aT([sa]))o C BT ([sF]), provided card(aT([sa])) <
card(8T([sA]))-

Proof. (ii) implies (i): Suppose aT'([sa]) is smaller in size than 8 7T([sf]). We will construct
a substitution ¢ from fs(a) and fs(8) such that (aT([sa]))o is a subset of ST ([sf]). It
follows that s T'(s)o is a proper subset of s T'(s). Therefore, s T(s) is not condensed and by
Theorem 6.4.5, T' cannot be condensed either.

(ii) Assume s has length 7. Consider any suffix of @ that has the form

t1 = [tytitjte - - - ump)
with ¢ being a string of constants [a ... q;]. Its tuple encoding is
7 = (Ql s Qjaf[sat](y)a@a s 7@39)7

where 4 = fy(u) for any u with prefix s’. The tuple f belongs to both f,(c) and fs(0).
Since hg is onto (Lemma 6.6.1), there is a term ¢y in S7T([sf]) such that hg(t2) = f. This

6.6 Bounds for literals and variables 117

all constants ()
aT(sa]) S |a| t |7 (aa)
all constants (8)
BT(spl) q|B| t |0 (88)

Figure 6.4: aT([sa]) UBT([sB])

means, there is a variable ¢ in 3T ([sg]) with prefix [sft] such that flsaq(Y) = fis,(0). That
is, in f(B3) the tuple f is associated with some suffix

to = [t(S’UZ'_|_]'+2 P ’Ump]

of B. t1 and to have a similar form: They are equal at all positions filled with constants
and their variables form pairs determined by equal encodings. ¢; and 9 are variable disjoint
(otherwise prefix stability is violated). Hence, there is a most general substitution ¢’ such
that 10’ = t9 with o’ determined by equal 4 and ¥ stemming from u and v that are variables.
For example, the binding v +— ¢ is in ¢’. Let ' be the union of all such most general unifiers
0 with t10 € T([sf]) for t; € T'([sa]). Then 0 = {a + B} U@ is a substitution such that
(aT(jsa)))o C BT([sA). 0

The next lemma is slightly more general and relates condensedness to antichains of the
variable encodings.

Lemma 6.6.3 Let T C 7 (X, K) be prefix stable. Let a and 3 be two different variables in
T with a common prefix s. If fs(a) C fs(5) then there is a non-trivial substitution o such
that (aT([sa]))o C BT ([sp]).

Proof. Suppose a # and fs(a) C fs(8). Suppose s has length 7. As in the previous
proof our aim is to construct a suitable substitution o based on the information provided
by the relation fs;(a) C fs(8). Again, o will include the binding g = {a — (G} plus other
substitutions 6.

118 Decidability by unrefined resolution

Given that fs(a) C fs(83), the sets aT([sa]) and 8T ([sf3]) can be viewed as depicted in
Figure 6.4. T'([sc]) is the union of the set

() {[.-.p]|[sc...p] € T with the ‘... being constants only}

and sets of the form

() [ty] T ([saty])

for v any variable following « so that at the positions between o and only constants
occur (that is, ¢ is a string of constants). Analogously, T'([s3]) is the union of a ((3)-part
of constants only, and (80)-parts of the form [t'6] T'([sBt']). Because fs(a) C fs(83), the
(a)-part of T'([sa]) is a subset of the (3)-part of T'([s(])-

Let

—

= (1. aj, flsa(7); Uitjss -+ Um, D),

be an arbitrary element of fs(«). It is also an element of f(3). Then, ¢ and t' coincide. By
the argument also used in the previous proof we know a variable § exists in T'([sf]) such
that flsas(7) = fisp1(0). Applying the previous lemma, we infer that there is a substitution
0 such that

() (YT ([setn]))0 C 6 T([s525))-

0 contains the binding vy — 4.
Therefore, a substitution o that is such that (aT'([sa]))o C B8T([sf]) as required by the
theorem is

oo U {06 satisfies (x) with v a variable in some (a«)-part of aT([sa])}.
This completes the proof. O

If there is substitution ¢ such that (aT'([sa]))o C BT([sf]) and « and B are different then
the block [sa]T([sa]) of T is redundant, and both sT(s) and T are not condensed. For
condensed 7" and s T'(s) a necessary requirement is then that fs(a) Z fs(0), for every pair
of different variables. In other words:

Theorem 6.6.4 Let T' C T (X, K) be prefix stable. If T' is condensed then f; satisfies the
antichain property: The set of images of X by fs forms an antichain.

Proof. By Lemma 6.6.3. |

The antichain property of the f; is a necessary but not a sufficient condition for con-
densedness. One problem are constants. The set

sayp
sBop

is not condensed but it does satisfy the antichain property, because fs(a) = {(v,p)} and
fs(B) = {({p},p)} are not comparable. The redundancy eliminating substitution is {§ — ~}

6.6 Bounds for literals and variables 119

and involves binding a constant which is not conveyed by the encoding. Here is another
example:

s P dp
s Bralg
572 B2 an g

fs(7) and fs(y2) are not comparable, but the set is not condensed.

Theorem 6.6.5 Let T'C 7 (X, K) be prefix stable and condensed. For any prefix s occur-
ring in 7', the restriction of f, to variables is an injection from X, into 2Zi+1,

Proof. Suppose X non-empty. fs is total and it is single-valued (that is, if a = [then
fs(a) = fs(B)), hence, it is a function. By Lemma 6.6.2 (i), fs is one-one. O

Now it follows that for condensed T', h,, is an injection, and more precisely:

Theorem 6.6.6 Let 7' C T (X, K) be prefix stable. Let o be any variable in X;;; with
prefix s. If T' is condensed then h, is a bijection.

Proof. In Lemma 6.6.1 we showed that h, with a a variable in 7" (not necessarily condensed)
is a surjection. Let

t1 = [QUuit2 ... ump] and o = [awits - .. Vm4]

be arbitrary terms in a7 ([sa]) and assume hq(t1) = ha(t2). This means fi,q)(uite) =
fisa)(Vit2)s flsauiis)(Wit3) = fisav;,.)(Vit+s), etcetera. For every constant § occurring in
aT([sqa]), fs(8) = B. This means t; and to are equal at all positions that are filled with
constants, in particular, p = ¢. Thus, if ¢; contains no variable, neither does t2 and t; = ts.

If 1 does contain a variable, let v be the first variable following «, that is, let ¢ is a
string of constants and

t1 = [0t YUjgj41---ump], then to = [atdvifjt1...vmD]

for some suitable viyji1,-.. ,Um. Since ha(t1) = ha(t2), flag(¥) = flag(d) and this implies
that v = d, using Theorem 6.6.5. Repeat the argument for the variables following .
We conclude that if hy(t1) = hq(t2) then ¢ = to, that is, h, is one-one. O

This proves there is a one-one correspondence between aT'([sa]) and fs(«), provided T is
condensed. Or, if T' is not condensed then there is a one-one correspondence between the
condensation of aT'([sa]) and fs(c). Thus, aT([sa]) and fs(«) have the same cardinality.

Recall (from the beginning of the section), f, maps the variables in X, to 2Bi+1, where
By, = K and B; = (K U2Bi+1) x B;,; for any 1 <4 < m. We let k denote the cardinality
of K and b; the cardinality of the sets B;. The b; are given by

b=k and b= (k4 2+).by; for 0<i<m.

Lemma 6.6.7 Let T' C 7 (X, K) be prefix stable and condensed. Let K be a finite set of
constants. Then:

120 Decidability by unrefined resolution

(i) For any variable a, card(fs(a)) = card(aT([s])) < bj+1, when s has length 4.

(ii) The size of any non-ground block [sa] T'([sa]) in the variable partition of T" is bounded
by b;+1, when s has length <.

Let s be any given prefix of length . Then:
(iii) card(X,) < 2bi+1,

(iv) There are at most 2%+ many non-variant and condensed sub-matrices of the form
[sa] T([s])-

Proof. Since f, : X, —> 2Pi+1 is an injection (Theorem 6.6.5) it follows card(f,(c)) < b;y1
and card(X;) < 2%+1, This proves (i) and (iii). (iv) follows from (iii), and (ii) is by (i) and
Corollary 6.3.3 (i). O

An instance of (ii) gives a bound for the cardinality of any variable indecomposable and
condensed non-ground set T, namely b;. The bound is an m-story exponential function and
it is highly non-optimal, because we know (from Theorem 6.6.4), fs maps the variables in
X, not onto 2B+ but onto antichains in 28i+1,

A result by Sperner (1928) gives a bound for the maximal cardinality of any antichain in
a finite power set algebra. Some more notation is needed. Let [n] denote the set {1,... ,n}
of natural numbers. The family of subsets of [n] is denoted by 2[", and the family of k-
element subsets by ([Z]). |z| denotes the largest integer which is not greater than a given
real number z.

Theorem 6.6.8 (Sperner 1928) Let n > 2 be an integer. Let A C 2" satisfying X ¢ Y
forall X,Y € A with X £Y.

(i) Then card(A) < (Ln72J)'
(ii) This bound is best possible and it is attained iff

A {(7[:/1]2) if n is even
((n_[ri])ﬂ) or ((nj[ﬁ])ﬂ) if n is odd.

The following two functions define improved bounds for the number of variables in the first
position of a sub-matrix 7% of width ¢ and the cardinality of T*, for T* condensed. Let

ni—1

apg=0 and a;= (an‘—1/2J

) for0<i<m

and
no==k and n;=(k+a;) n;1 for 0 <7 < m.

Theorem 6.6.9 The cardinality of any condensed and prefix stable T C T (X, K) is bounded
by 7.

6.6 Bounds for literals and variables 121

Proof. By induction on the width i of the sub-matrices T* of suffixes determined by nested
prefix partitioning (Figure 6.3) embodied in Corollaries 6.4.3 and 6.4.4 and Theorem 6.4.5.

In the base case consider any condensed set T'' of terms with length one. T is a set
of predicate constants and a proper subset of K. The size of any T is less than k. Thus,
ag = 0 and ng = k.

Assume the number of variables in the first position of any condensed and prefix stable
T" is at most a;_1 and card(T?) < n;_;. Any T**! is the union of non-variant matrices
of the form aT"(a) and of the form BT%(8), with T%(ca)) and T%(8) condensed and prefix
stable. There are at most as many non-variant a7"%(a) as there are antichains in 28m—i
(Theorem 6.6.4). By Sperner’s theorem and the inductive hypothesis there are at most
(Ln?:}%) -n;_1 of those. Thus card(T*t!) < a;-n;_1 + k-nj_1 = n;.

The original T" has width m + 1 and the required bound for T is then np,. O
The bound n,, is a nested product of nested binomials and is an improvement over the
bound b; which is a product of nested exponential functions. However, the new bound
remains an m-story exponential, because:

Lemma 6.6.10 For any 0 < ¢ < m, there is some ¢ > 0 such that a; > 2¢™-1,

Proof. Tt suffices to prove that for any positive integer n, there is a value ¢ > 0 such that
(Ln% J) > 29", We consider only the case that n is a natural number divisible by four. Then
both n and n/2 are even.

(1) = () = ey e

_2:(n-1)-2- 2 (n/241)
nf/4-(nf4—-1)-...-3-2
since every alternate value in the numerator is an even value divisible by some value of first
n/4 values in the denominator. Thus, ¢ for n divisible by four is 1/4. Analogously, we can

verify that the claim is true for all positive n. O

It now follows easily that a; and n; for 0 < ¢ < m are exponential functions in which the
level of exponentiation increases with .

Let S be any class of variable indecomposable, condensed and non-variant clauses built
from a given finite number of predicate and constant symbols with maximal path length m.

Theorem 6.6.11 Let k be the number of constant symbols in the matrix term representa-
tion of S.

(i) The number of literals in any variable indecomposable clause of S is at most ny,_1.
(ii) The size of S is at most 7y,.

Proof. (i) The largest possible variable indecomposable and condensed set in matrix form
that is non-ground has the form a 7™ (). It is bounded in size by n,,_1 using the previous
theorem (or b; using Lemma 6.6.7). All variable indecomposable and condensed ground
clauses are singleton sets.

(ii) Each clause in S is variable indecomposable and condensed and translates to a
variable indecomposable block of the form [sa] T'([sa]) using the matrix term representation.
The entire class translates to a prefix stable and condensed set 7' C 7 (X, K). Hence, (ii)
follows by the previous theorem. O

122 Decidability by unrefined resolution

6.7 Conclusion

The most important result is the decidability result for a range of path logics (Theo-
rem 6.5.3). In conclusion we discuss its applications and significance. The result is im-
portant for several reasons. One, as we explained in Section 6.5, it renders resolution based
decision procedures for a number of modal logics, including K, KD, KT, KD/, S} and S5.

Two, the theorem can be applied in all areas of computer science in which modal logics
are used. We already mentioned description logics used knowledge representation are in
essence multi-modal logics. A reformulation of Corollary 6.5.4 (i) is: Resolution and con-
densing provides a decision procedure for the consistency problem of sentences in ALC.?
Resolution and condensing may also be used for doing arithmetic inside the algebraic coun-
terparts of modal logics. The algebraic versions of K and K(;,) are Boolean algebras with
unary operators (Jénsson and Tarski 1951 & 1952). In particular, the Boolean set algebras
with operators, called complex algebras, provide models for normal modal logics. Decid-
ability for K(,,) transfers to: Resolution and condensing provides a decision procedure for
the satisfiability problem of algebraic identities of Boolean algebras with unary operators,
as well as closure algebras, when assuming an artificial term depth bound.

We obtain a resolution decision result for basic non-optimised path logic and Herzig’s
(1990) class of ordered first-order formulae (which we briefly considered in Section 2.5).
Because the result which allows us to permute quantifiers carries over (Corollary 3.2.1),
satisfiability of any ordered formula can be decided by testing the satisfiability of the ap-
propriate ‘optimisation’ of the ordered formula using resolution combined with condensing.

The decidability result for S5 has an interesting consequence for the monadic class. The
monadic class is the class of first-order formulae without function symbols built from unary
predicate symbols, only, using arbitrary quantification. It is commonly known that any
monadic first-order formula 1 can be transformed into a formula of S5 by first transforming
%) into an equivalent formula in one variable and then using the inverse mapping of * given
by:

p* = P(z) for p a propositional symbol

1* =1
(=) =¢" =9~
(Cp)* =3z ¢*.

Since S5 is determined by the class of universal frames, that is, frames of the form (W, W?)
with truth is defined by

(W, W20),z =0 iff (W,W?2,.),y=¢ forsomeyecW,

it immediately follows: ¢ is a theorem of S5 iff ¢* is a theorem of the monadic class. Joyner
Jr. (1976) and others show that ordered resolution can be equipped with simplification
techniques to ensure termination for the monadic class.®> Corollary 6.5.4 (i) implies that

2Decidability for ALC is known (Schmidt-Schaufl and Smolka 1991), who show that the coherence test
(that is, the consistency test) and the subsumption problem (that is, the theoremhood problem) are decidable
and moreover, both problems are PSPACE-complete and can be decided in linear space.

3Bachmair, Ganzinger and Waldmann (1993) present a decision procedure ordered resolution and super-
position for the monadic class with equality.

6.7 Conclusion 123

satisfiability for any formula in the monadic class can be decided by restricted or unrestricted
resolution and condensing on the optimised translations of the S5-reformulations. Because
the translation cannot be effective, it is doubtful whether this approach is practical. (Testing
satisfiability in S5 is NP-complete whereas testing satisfiability in the monadic class is
NEXPTIME-complete.)

The third and very practical consequence of our decidability result (especially, Theo-
rem 6.5.2 for basic path logic) is that, any complete and fair implementation of a resolution
theorem prover is a suitable (terminating) inference machine for modal reasoning, subsump-
tion testing in description logics, arithmetic with algebraic identities and reasoning with
ordered formulae. Even though condensing is not explicitly present in all resolution theo-
rem provers, this is not a problem. Most theorem provers have factoring and subsumption
deletion rules, which implies condensing is in fact implicit in any fair implementation. Be-
cause for many modal systems no special refinement strategies of resolution are required,
all we have to implement, is a front end for transforming modal formulae to their path
encodings and then we can use any resolution theorem prover at hand. As our results admit
any compatible refinements, we have complete freedom to fine tune our theorem prover for
specific purposes, for example, for improved performance or for integration into a resolution
procedure predetermined by other considerations.

The potential search space for unrefined resolution is enormous. As established in
Lemma 6.6.7 and Theorem 6.6.11, the worst case limits for the size of resolvents (and
their number) are m-story exponential functions, where m is the maximal length of any
term in the input set. It is not clear whether these bounds can be improved, but this issue
is not of practical importance. A marked increase in efficiency can be achieved using the
refinement techniques discussed in the next chapter.

124 Decidability by unrefined resolution

Chapter 7

An ordered refinement

This chapter introduces a refined resolution calculus for the path logics of Chapter 5. In
particular, we assume path logics with an equational theory with normal forms which can
be described in the language of the basic path logic, namely for the combinations of D,
T and 4. The refinement we study is ordered E-resolution on definitional clausal forms
obtained by the technique of renaming. Both renaming and ordered resolution mean a
considerable efficiency gain. Renaming is a very efficient method of producing clause sets,
and the refinement of resolution by an ordering restriction will restrain the growth of terms
noticeably. The ordered theory resolution procedure we will present combines the saturation
approach of Bachmair and Ganzinger (1994, 1997) and E-resolution with normalisation of
Plotkin (1972).

Section 7.1 presents a general definition of ordered E-resolution procedure with normali-
sation and proves completeness. Section 7.2 introduces an ordering which is compatible with
the theories we concentrate on. Section 7.3 is devoted to the conversion of definitional forms
by renaming. For path logics the resulting clauses are in a form, called prefix ordered, which
are introduced and studied in Section 7.4. Though decidability for the path logics with term
depth limit by ordered resolution follows from the main theorem of the previous chapter we
give an independent and very simple argument for the basic path logic. Section 7.5 discusses
decidability by resolution for K and S4.

7.1 Ordered E-resolution

In the literature we find two papers that deal with or mention ordered E-resolution. Baum-
gartner (1992) presents a general ordered theory resolution calculus and proves completeness
by the excess literal parameter method (Anderson and Bledsoe 1970). And, Bachmair and
Ganzinger (1997) mention (in a paragraph) how ordered E-resolution on the ground level
can be treated in their framework of saturation up to redundancy. In this section we present
the latter approach in detail, including a lifting lemma, that renders a complete calculus also
for non-ground inference. The calculus we consider is not specific to path logics.

As usual, completeness of ordered E-resolution will be achieved by proving completeness
on the ground level and lifting it to the non-ground level. Proving ground completeness
requires an enumeration of the set of all ground literals over the Herbrand universe.! The

!For some F an enumeration of a subset of all ground literals over the Herbrand universe is sufficient, for
example, of the subset of unique normal forms.

125

126 An ordered refinement

Bachmair-Ganzinger method of proof requires
(i) any total well-founded strict ordering < on the set of ground literals
with the two additional properties that for any atoms A and B,
(i) A< —-A and
(iii) if A < B then —A < B.

We refer to an ordering that has these three properties as admissible. An ordering on ground
clauses is admissible if it is the multi-set extension of an admissible ordering on literals.
An ordering of non-ground expressions is admissible if it is the extension of an admissible
ordering of ground expressions as stipulated by: A < B iff for any ground substitution o,
Ao < Bo. This implies that < is stable under the application of substitutions: for an
arbitrary pair A and B of non-ground atoms, if A < B then Ao < Bo for any substitution
.

Commonly, the ordering < arises from a precedence, which is a well-founded and total
strict ordering on the function, predicate and logical symbols. The precedence is extended
to a well-founded total strict ordering on multi-sets of ground terms, multi-sets of ground
atom, multi-sets of ground literals and sets of ground clauses. These orderings, in turn, are
extended to non-ground terms, literals, clauses and sets of clauses in such a way that well-
foundedness, strictness and admissibility are preserved. There are a number of standard
ways that the orderings can be defined from a given precedence. (The reader not familiar
with these can consult Appendix B.1, or the survey paper of Dershowitz and Jouannaud
(1990), or Bachmair and Ganzinger (1994, 1997).)

A sufficient condition enabling us to adopt the general Bachmair-Ganzinger method for
proving completeness is: Compatibility of the ordering < with E. It requires a total ordering
on ground E-congruence classes, which we denote by <. By A we denote the set of all
ground atoms in the Herbrand universe. (A, <) is a total well-founded and strict ordering.
For any X and Y in A/=p (or more generally 24) define:

(7.1) X <Y if VA€ XVB€EY A< B.

Any ordering <, for which <¥ orders A/=p totally, is said to be compatible with E. Tt is
not difficult to verify that when < is stable under substitution then <* is, too.

Let < be an admissible ordering on clauses which is compatible with E. Now, we define
ordered E-resolution with respect to <. The ground resolution rule is:

CVAV...VA, C'v-A
cvc

provided (i) A; =g ... =g A, =g A, (ii) no atom in C is E-equivalent to

any A;, (iii) every atom in C is strictly smaller than any A; with respect

to <, and (iv) —A is <-maximal in C' V - A.

Ground ordered E-resolution

(The first three conditions can be combined in two conditions: (i) the Ay,...,A4,,A all
belong to the same congruence class A/=p, (ii) every atom in C belongs to a congruence

7.1 Ordered E-resolution 127

class strictly smaller than A/=p with respect to <¥.) The general resolution rule is:

CVAV...VA, C'v-A
(CvCo
provided (i) o is a most general E-unifier of 41 V ... V A, V A, (ii) no

atom in Co is larger or equal to any A;o with respect to <, (iii) = Ao is
<-maximal in (C' V =A)o.

Ordered E-resolution

Implicit renaming of variables ensures that the premises are variable disjoint.

A powerful concept is that of redundancy. A ground clause C is redundant in a set S
(not necessarily ground) with respect to an ordering < if there is a (possibly empty) set of
ground instances Cio1,... ,Cpo, of clauses in S such that

E (Cio1 A ... NChoy) = C

and for any i, Cjo; < C. A non-ground clause C' is redundant in S if every ground instance
of C is redundant in S.

The left premise of the above resolution rule is referred to as the positive premise and
the right premise as the negative premise. An ordered inference step deriving D from the
positive premise C), and the negative premise C), is redundant in a set S of clauses if S
contains clauses Cy,, ... ,Cy,, all strictly smaller than C), and

EE=(CyACpy A...AChp,) — D.

Redundancy justifies, for instance, the elimination of tautologies (since = T) and the
replacement of clauses by their normalisations.

Normalisation SU{C} » SU{N(C)}

provided N(C) is a normal form of C' with the property that (i) N(C) < C,
and (ii) N(C) and C are logically equivalent under E.

For practical purposes we may stipulate that N(C) can be computed effectively. Condensing
is an instance of this rule.

By RF< we denote any complete resolution procedure employing the above rules. By
definition, a set S is saturated up to redundancy with respect to R¥= if all inferences with
non-redundant premises from S are redundant in S.

Next, we establish (refutational) soundness and completeness for RE:=.

Theorem 7.1.1 (Ground completeness of ordered E-resolution) Let < be an ad-
missible ordering on ground atoms. Ground ordered E-resolution restricted by < with
and without refinements compatible with redundancy is a sound and complete resolution
procedure.

Proof. By the saturation based construction of Bachmair and Ganzinger (1994, 1997) found
also in Appendix B.2. O

For the lifting lemma we need:

128 An ordered refinement

Lemma 7.1.2 Let (A, <) be a set of atoms ordered by a (partial) strict ordering. Suppose
< is stable under the application of substitution. For any two substitutions ¢ and p, if o
is more general than p, that is, 0 <g p[Var(A)], and Ap is <-maximal in Ap, then Ao is
<-maximal in Ago.

Proof. Let 0 be a substitution such that 08 =g p[Var(A)]. Then Ap is maximal in Ap iff it
is not the case that a B exists in A such that Ap < Bp, or equivalently, Acf < Bo#6. This
implies, by the contrapositive of stability under substitution that, no B exists in A such
that Ao < Bo, in other words, Ao is maximal in Ag. m|

An analogous result is true for (A/=g, <F).

Theorem 7.1.3 (Lifting Lemma) Suppose < is an admissible E-compatible ordering on
clauses. Let C; and Co be two variable disjoint clauses, and let C' be a ground RE=X.
resolvent of the ground clauses C1p and Cov. Then there is an RE:=_resolvent C of C; and
C5 such that CO = C’ for some substitution 6.

Proof. Assume, on the ground level,
Cip=D] VA V...VA, and Cov=DyV A

are such that {A},..., AL} is the largest (with respect to size) subset of atoms occurring
in Cyp included in A'/=p, every atom in D] is strictly smaller than any A}, and —A’ is
maximal in D} V —A’. On the non-ground level let

C1:D1\/A1V...\/An and 02:D2v_|A

such that Aq,..., A, are the atoms in C; with A;u = A} for any ¢ and Av = A’. Then,
Dy = D} and Dov = D).

Let A = pUwv. Then A is an E-unifier of 41 V ... V A, V A. There is a most general
E-unifier 0 of A; V ...V A, V A, and moreover, a unifier 6 exists such that 06 =g A[V],
where V is the set of variables occurring in 4; V...V A, V A.

We show that the conditions (ii) and (iii) of the resolution rule are true in order to be
able to form a resolvent of C and Cs. Let B be any atom in D;. We show that if Bo /=g
is comparable with Ao /=g then Bo/=g <¥ Ao/=g. BA = By = Bof is a ground atom in
D} with Bof/=p <¥ Acf/=p = A'/=pg. By Lemma 7.1.2 and since <” is stable under the
application of substitution, it follows that Bo/=p <¥ Ao/=p. Similarly, —A is <-maximal
in Dy V —A.

Consequently, C; and Co have an R¥=-resolvent C = (D; V Ds)o. Thus C0 = (Dy V
D3)o) = (D1 V D9)A = D1y V Dov = D} V Db, = C', as required. O

By Theorem 7.1.1 and the Lifting Lemma:

Theorem 7.1.4 (Completeness of ordered E-resolution) Let < be an admissible or-
dering which is compatible with E. Ordered E-resolution by R < with and without refine-
ments compatible with redundancy is sound and complete.

7.2 Orderings compatible with path theories 129

As general E-unification is an expensive operation, it may be preferable to use a calculus
comprising of at least binary ordered FE-resolution and syntactic ordered factoring as in
Baumgartner (1992) together with E-normalisation. An advantage of this calculus is that
E-unification needs to be applied only to singleton problems, which is less expensive than
general E-unification. A disadvantage then, is that for example tautology deletion is no
longer compatible. Tautology elimination is especially useful in connection with clauses
originating from definitional forms (defined later in Section 7.3).

7.2 Orderings compatible with path theories

The theories we focus on are assumed to be finitely based equational theories E forming
convergent rewrite systems oriented by an ordering <. In general, this implies the sets of
rules of the rewrite systems are finite, the £ admit unique normal forms, and recursive
normalisation functions Np exist. An important consequence for us is that the unique
normal forms are the least elements in the E-congruence classes.

In particular, we focus on the equational path theories of the schemas T and 4. The
associated rewrite rules are:

[ze] = =z,

[z(co B)] = [zaf].

They are oriented by the lexicographic path ordering <, determined by any total well-
founded precedence < in which

(7.2) e<o=<[,-]

The status of [-,-] is right-to-left. Technically this means the permutation 7 in the defi-
nition of the ordering <!+l is the inversion of the ordering of the arguments of [-,-] (see
Appendix B.1). All this means is that, when we compare two paths,

[su] and [se(uo (ece))]
say, their ordering is determined by the following alternative encoding

fu, f(s,01)) and f(uo(ece), fe f(s,])),

in which [su| corresponds to f(u, s), and according to which [su] <, [se(u o (e o e))].

Keep in mind, the normal forms defined by N7, Ny and Np4 are basic paths, that is,
terms of the kind [u; ...wuy], where each u; is either a functional variable or a functional
constant.

Now, we define the extensions of <, to atoms, literals and clauses. As is common,
we denote all these by the same symbol, namely <. The ordering on ground atoms is
the lexicographic path ordering determined by the extension of the precedence (7.2) with
predicate symbols having lower precedence than function symbols. This implies the ordering
on ground atoms is determined first by the ordering on the arguments and then on the
ordering of the predicate symbols: Ps < Qt iff (i) s < t or (ii) s =t and P < Q. We assume
the ordering on literals is the multi-set ordering on a multi-set encoding of any atom A by
{A} and any negated atom —A by {4, A} (there are other ways of defining an ordering on

130 An ordered refinement

ground literals). The ordering on ground clauses is the induced multi-set ordering. The
corresponding orderings on non-ground expressions are defined in analogy to the following
for atoms: for any non-ground atoms A and B

A< B iff for any ground substitution o, Ac < Bo.

The described orderings are admissible.

It depends on the theory E whether or not < is compatible with £. For the empty
theory the question is irrelevant. By the general completeness result of the previous section
(Theorem 7.1.4) the following is immediate.

Corollary 7.2.1 Let < be the lexicographic path ordering on atoms induced by any prece-
dence on the basic vocabulary. Then, R~ and R,y are complete resolution procedures for
the basic path logic.

Finding a compatible ordering for non-empty F is less straightforward. Assuming that
e<a<pg<...<0=<[,] for path logics with associativity and identity we have that

Pla] < Plaf],
regardless of whether @ < 8 or 8 < @. When 8 < a then
Plaf] < Ple(ao (eo¢e))],

implying that Pla]/=g and P[af]/=F are not comparable by <¥ and hence < is not
compatible with associativity and identity. The ordering < is also not compatible with
associativity alone as demonstrated by this example.

Plaf] < Plegy], but Plafy] < Plaofg],

when the constants are smaller than o and also when o < v < « (since vy < a o 8 and thus
@, F(B, f(2,11)) < flaeB,]]), in both cases).

We will now define a compatible ordering <*, without requiring special precedences on
constants. Suppose < is based on the precedence (7.2) with predicate symbols being smaller
than function symbols. Define (A, <*) by the lexicographic combination of the orderings
(Ng(A), <) and (A, <). More specifically, for any A, B € A, let

A<*B iff (Np(4),4) < (Ng(B),B),

that is, (i) Ng(A) < Ng(B) or (ii) Ng(A) = Ng(B) and A < B. The idea is that the
induced ordering <**¥ of the congruence classes mirrors the total ordering by < of the
unique normal forms.

Lemma 7.2.2 If the extension of (A, <) to ground literals is admissible then so is the
extension of (A, <*) to ground literals.

Proof. Tt is not difficult to verify that the operation -* preserves being a total and well-
founded strict ordering, and the properties that A < - A and if A < B then =A < B remain
invariant under -*. |

7.2 Orderings compatible with path theories 131

Lemma 7.2.3 Let E be an equational path theory which forms a convergent rewrite system
oriented by <. If (A4, <) is a total well-founded and strict ordering on ground atoms then
so is (A/=pg,<"P).

Proof. We just show that every pair of distinct X and Y in A/=p are comparable by <*-¥
and leave the remainder for the reader to fill in. Let A € X and B € Y be arbitrary. Ng(A)
and Ng(B) are the least elements of (X, <) and (Y, <), respectively. That is, Ng(4) < A
and Ng(B) < B. Without loss of generality, assume Ng(A) < Ng(B). Hence A <* B. O

This proves the ordering <* on sets of ground expressions is compatible with E.

As before, on the non-ground level the ordering <* is defined by, A <* B iff for any
ground substitution o, Ac <* Bo, that is, (Ng(Ao), Ao) < (Ng(Bo), Bo).

The ordering <* is a suitable ordering (Lemmas 7.2.2 and 7.2.3) giving us complete
ordered E-resolution procedure for path logics satisfying identity and/or associativity (by
Theorem 7.1.4). Like condensing the relevant normalisation functions Ng are instances of
the general normalisation rule of the previous section. Also covered is semantic condensation.
The semantic condensation of a clause C is the smallest subset C' of C such that C' =
Ng(Co)? for some substitution . Therefore:

Theorem 7.2.4 Ordered E-resolution restricted by <* with and without redundancy elim-

. . . . X E,<X* E,<X% E,<%
inating refinements (in particular, R¥=<", Ry, > Rodwo and R /.. o NE‘) are complete

resolution procedures for path logics with E C {associativity, identity}.

Finally we observe, for the theories under consideration <* is determined by the proper
subterm ordering. More precisely:

Lemma 7.2.5 Under the empty theory or associativity the ordering <* among (ground or
non-ground) atoms in normal form is determined by: Ps <* Qt provided (i) s is a proper
subterm of ¢, or (ii) s =t and P < Q.

Proof. For E = (), Ng is the identity mapping and Ps <* Qt iff Ps < Qt. It is not difficult
to prove: s < t iff s is a proper subterm of ¢, when s and ¢ are basic paths.

For E = {associativity }, instantiation with complex functional terms of the form u o v
preserves the orderings. That is, if s is a proper subterm of ¢ then so <* to, for any
substitution o. O

This is not the case under collapsing axioms. For example, under identity

Pla] <* Qaf] only when P < @, but
P[a] and Q[af] are not comparable when @ < P,

since Ng(Q[ae]) = Qla] < Pla] and Pla] < Q[aB]. We need an additional restriction in (i):

Lemma 7.2.6 Under identity the ordering <* among (ground or non-ground) atoms in
normal form is determined by: Ps <* Qt iff (i) s is a proper subterm of ¢ and P < @, or
(i) s=tand P < Q.

*Here, Ng(Co) must be viewed as a set.

132 An ordered refinement

7.3 Modal definitional forms

A special form of clausal form often used in automated theorem proving is the (clausal)
definitional forms obtained by renaming (Plaisted and Greenbaum 1986, Boy de la Tour
1992, Eder 1992). Tseitin (1970) introduced definitional forms for propositional formulae for
efficiency reasons. The conventional transformation of a given (propositional or first-order)
formula ¢ to clausal form does conversion to conjunctive or negation normal form followed
by Skolemisation. This causes an exponential size increase, because it uses distributivity
laws. In contrast, the conversion to definitional form by renaming has linear time complexity
and causes merely a linear increase in size. In point of fact, for any endeavour of facilitating
modal deduction by resolution type inference, the efficiency argument is decisive. Except
for S5, most modal logics we consider in this thesis are PSPACE-complete and a natural
prerequisite is that the complexity of the reduction of a modal formula to clausal form
should not exceed that of testing satisfiability for the given logic. A second reason why
definitional forms are often preferred is that the structure of the original formula is retained
in the clausal form provided definitions are introduced for every non-literal subformula.
For similar reasons modal definitional forms are being used in modal resolution calculi as
described in Mints (1989, 1990). A pleasant side effect for us is that, definitional forms give
us more control over the Skolem terms (constants in our situation).

We need some notation for identifying occurrences of subformulae in a given formula
@. Let O be a set of elements identifying occurrences (or positions) in a formula.®> When
writing ¢[¢1]o we assume O is a non-empty set of occurrences of 11 in ¢. By @[— ¥2]o
we denote the formula obtained from ¢[1);]o by replacing every occurrence in O of ¢, by
Pa.

The fundamental idea of renaming can be explained best on propositional formulae. The
method introduces new propositional symbols for subformulae of the given ¢ and exploits
the replacement of equivalents property (and possibly the monotonicity laws of — and <).
For propositional logic the replacement of equivalents property is:

(7.3) (%1 &) = (elt1]o < @1 = ¢2]o).

It says, the formula @[t — 1)2]o is obtained from ¢[1);]o by replacing every occurrence in
O of 41 by its logical equivalent 5. In particular, if we let a be a new propositional variable
and ¥ a subformula of ¢ then

(¥ < a) = (p[¥]o < @[= alo).

A definitional form of a propositional formula ¢ is obtained by the repeated application of
the following rule:

¢ becomes (¢ <> a) = @[— alo,

for O a subset of occurrences of 1) in ¢ and a a new propositional variable not occurring in
. ¥ <> a is called the definition or defining part of 1, and we say a defines 9. Conversion
to definitional form does not preserve logical equivalence, but we have: Any definitional
form of a formula is valid iff the formula is valid. Equivalently, ¢ is (un)satisfiable iff so is

3Usually occurrences are sequences of natural numbers that identify nodes in the syntactic tree represen-
tation of a formula.

7.3 Modal definitional forms 133

(¥ <> a) A o[— a]o. We will prove a corresponding result for modal definitional forms
below.
Consider an example. For the formula

pa=(P—q)—(-pAq)
a1 as ao

we introduce the new propositional names a1, a2, as as indicated, a1 for p — ¢, as for =p A ¢
and ag for a; — ay (other choices are possible), and get the definitional form

pd=1[(a1 < (p = @) A(az < (=P A Q) A (a3 < (a1 — az)] = as.

—py4 is unsatisfiable, which we prove by refuting —p. Now, note that each definition a; < v
is a set of clauses with at most three literals. Evidently, the conversion of —p% to the clausal
form ¢(—p?) has linear complexity both with regards time and space.

Definitional forms are not unique, and there are different forms of renaming that are
utilised in different situations. We have used a common strategy of iteratively introducing
new names for all smallest subformulae that are not literals. Advanced forms of renaming are
discussed in Plaisted and Greenbaum (1986) and Rock (1995) and are implemented in the
theorem prover sPASS (Weidenbach, Gaede and Rock 1996, Weidenbach 1997). A sensible
simplification is to use the replacement of equivalents property sparingly, and instead use
the monotonicity property of — or converse monotonicity property of <, for positive and
negative context application, respectively. Namely:

(1 = 2) = (plth1lo = ¢l = 12]o)

provided the context of the occurrences in O of 1 are all positive, and

(1 < 92) = (e[h1]o = ¢lth1 = 22]o)

provided the context of the occurrences in O of 11 are all negative. An occurrence of a
subformula has positive polarity if it is one inside the scope of an even number of (explicit
or implicit) negations, and an occurrence has negative polarity if it is one inside the scope of
an odd number of negations. For example, above in ps the subformula —p A ¢ has positive
polarity, p — ¢ has negative polarity, and both ¢ and 1 in ¢ <> % have neither positive
nor negative polarity regardless of the polarity of the double implication. The appropriate
optimised reduction rules are then

¢ becomes Df(a,v) — @[t — alo

and D(a,) denotes the definition of 1 given by

P — a, provided every occurrence in O of 1 has positive polarity
P < a, provided every occurrence in O of 1 has negative polarity, and
P < a, otherwise.

For the sample formula ps an optimised definitional form is

[(a1 = (p = q) A(ag + (-p A q)) A (az + (a1 — a2)] — a3

134 An ordered refinement

because it produces a smaller clause set.
In first-order logic the replacement of equivalents and monotonicity properties are con-
text sensitive. A definitional form of a first-order formula ¢ is obtained by the repeatedly

applying
¢ becomes D(A,v) — p[tp — Alo,

where D(A,) denotes the definition of ¢ and depending on the polarity of the occurrence
of v, it is the universal closure of 1) — A, 1) < A or ¥ <> A. The symbol A denotes an atom
P(z1,...,xzy) for P a new predicate symbol and z1, ...,z are the free variables of .

Like in first-order logic, in modal logic the context is important. For example, the
replacement of equivalents for normal modal logics is:

0™ (1 ¢ h2) = (@[i]o < el = Palo),

where n is the maximum modal depth of any occurrence in O of 1. O™ (11 <> 1b2) denotes
the ‘modal universal closure’ of the formula 1, <> 15 and is defined by

O™ = A Oy AT A ... A O,

for n a non-negative integer. 0" denotes a string of n box operators, formally, 0% = ¢ and
O"%p = 00" 'y for n > 0. Intuitively, if 0y is true in a world z then ¢ is true in z and
all worlds reached from z by n steps.

We have some freedom in defining modal definitional forms and the definition we give
now is very general. For a given modal formula ¢ a (modal) definitional form of ¢, denoted
by %, is obtained by repeatedly introducing for any subformula 1 of ¢ a new propositional
variable ¢ and transforming ¢ to the formula

D(a,) = o[y = alo
with
o®) (¢ — a) provided every occurrence in O of 9 has positive polarity

D(a,®) = { O™ (4 + a) provided every occurrence in O of 1 has negative polarity, and
O™ (4 <> a) otherwise,

and n is the modal depth of the occurrence 1 in ¢ that is replaced by a, or if we replace
more than one occurrence by a, n is the maximal modal depth. Peculiar to modal logic,
we may be more economical and simplify O™ in the defining part to OM)i_if (n;); is the
sequence ni, ... ,Nn, of modal depths of the occurrences of 1) that are replaced by a. Then,
Oy =0™p A ... A O™ . The Preview gives a non-optimal definitional form of

(7.4) ps = 0Op— O0O0p.
aq a3a2a1

Another definitional form is

p4 = [(a1 <> Op) A D?(ay <> Op) A
D(a,2 — Da,l) A (a3 — Daz)] — (G,1 — G,3).

A formula is not logically equivalent to its definitional form, but:

7.3 Modal definitional forms 135

Theorem 7.3.1 Let ¢ be any modal formula in K(,,)% and let ©% be a definitional form of
. Then

¢ is a theorem in KX iff sois o?.

Proof. 1t suffices to prove the result for one step of the transformation procedure. Let 1 be
any subformula of ¢ and let a be a new propositional variable not occurring in ¢. To avoid
cluttering we write ¢[v] instead of ¢[1]o and ¢[a] instead of @[y — a]o. We prove:

() @[] is a theorem iff O™ (a «» 4) — pla] is a theorem.

The following, in essence, replacement of equivalents, is a theorem in K,,)¥.

(") 0™ (3 < a) = (¢[¢] ¢ ¢la])

(The proof is by induction on the structure of ([+].)* For the (=) direction of (') suppose
¢ holds (is a theorem) in K,,,)¥. Assume O™ (4 <+ a) holds, too. Applying modus ponens
twice, first with (") and then with ¢[1)] — ¢[a], we derive that ¢[a] holds. Discarding the
assumption that O™ (1) <+ a) holds, we conclude that O™ (1) <> a) — ¢[a] is a theorem of
K.

For the (<) direction assume O™ (1) <+ a) — ¢[a] holds. Then, using ("),

0(n) (¥ < a) — (¢la] A (¢[a] < [¥]))

holds, which implies O™ () <+ a) — (@[a] — @[4])) and this is equivalent to

(O™ () < a) = pla]) = P[y].

An application of modus ponens yields ¢[t)] as required.

The proof(s) of: @[¢)] is a theorem iff O™ () — a) — [a] is a theorem (respectively,
O™ (1 < a) — ¢[a] is a theorem), for when the occurrences in O of 9 all have positive
polarity (respectively, negative polarity) are similar. O

In some modal logics definitional forms have simpler forms, in particular, a simpler
context. The next result lists some simplifications for the defining part D(a,) of different
modal logics.

Theorem 7.3.2 Let ¢ be any modal formula with subformula 1 occurring in the scope
of maximally n modal operators. In extensions of K that include the following schemas
the defining part D(a,v) = O™ (1) @ a), for @ either <+, — or <, is equivalent to the
appropriate formula in the right column of the following table:

T=0p—p O"(4 Q@ a)
4=0p— 0O0p (v @a) ADO(yp Qa)
T,4 O(4 @ a)

Proof. The proof is routine. For example, when a logic includes the schema T then O")
implies O™1) for all 0 < m < n. O

4The proof for the analogue property of first-order logic can be found in Mendelson (1987, Proposition 2.8).

136 An ordered refinement

In general, it makes a difference if we introduce the definitional form in the modal context
or if we postpone it to after the conversion to first-order logic. For example, p3 translates
by Iy in KD to

VaP[a] = VaVpYyPlafy]
Ay AszAs Ay

Above in (7.4) we replaced both occurrences of Op by the new symbol a1, but evidently the
corresponding replacement is not possible here. On the first-order level four names would
be introduced as indicated.

It is not difficult to see, transformation of modal formulae to definitional form (that
avoids the application of any distributive laws) followed by the optimised functional trans-
lation to clausal form of basic path logic can be achieved by a linear time algorithm.

7.4 Prefix ordered clauses and decidability of ordered reso-
lution

This section studies two renaming methods. The resulting clausal forms have the property
that the terms in any clause are ordered by the subterm ordering. We call clauses with this
property prefix ordered. We will see, prefix ordering is preserved by ordered resolution for
the empty theory and associativity.

Initially, we assume that names are introduced systematically for modally quantified
propositional subformulae. More precisely, we assume any modal formula ¢ has been con-
verted to a form

¢ =Dy = ¢,
where
i) D, is the conjunction of all defining parts D(a, 1)),
%)

(ii) 9 has the form Q... Qg for 9" a propositional formula and Q; ... Qy a sequence
of modal operators, and

(iii) ¢’ is a propositional formula.

Consider a sample formula p5 = &(=<O0(—p A ~¢) A 7). A definitional form that satisfies
the assumptions is

(7.5) ps = Dps = pg = [B(a1 & ©0(=p A =) A (a2 ¢ O(=a1 A7))] = as.

Using the translation for serial modalities, the set S = ¢ (=II1;(¢?)) consists of the following
clauses:

1. =Ai[a] V =Playg] 5. 2 As[] V A4[d]
2. 2 Ai[a] V ~Qlaf] 6. ~Az[] v —R[d]
3. Ai[a] V Plavg] V Qlaypf] 7. Ao[] V-A1[6] V R[d]

4. —As).

7.4 Prefix ordered clauses and decidability of ordered resolution 137

The set of terms of any clause is ordered by the proper subterm ordering, called the prefix
ordering.

Formally, we say a clause is prefix ordered if it is a clause of basic path logic and has the
form:

(7.6) Eos V Eq[sui] V Eg[sujug| V ...V Ey[suy ... uy).
Each E;[su; ... u;] denotes a (finite and possibly empty) disjunction
Li[suy...u;] V...V Lg[su ... u;]

of literals with the same argument [su; ...wu;]. s may be the empty path. (The notation L;s
makes the argument s of the literal L; explicit.) Evidently, a clause is prefix ordered iff the
set of its terms is ordered totally by the proper subterm ordering.

We will now present a general characterisation of clausal forms c¥ (=I1;(¢?)) that orig-
inate from definitional forms and satisfy (i), (ii) and (iii) above. Recall that, —IIf(¢) =
Jdz —7ms(p,z) and the empty string is the Skolem constant associated with Jz. Then
S = Y (-1 (p?) = T (- (D, — ¢')) is given by

(7.7) ' (m(Dy, [1)) U " (=n (e, 1))-

Lemma 7.4.1 The set ¢ (-7(¢/,[])) is a set of clauses of the form
L[} V... V L),

and each clause in ¢ (-7 (¢/,[])) is ground and prefix ordered.

Proof. Since ¢' is a propositional formula the paths in its translation are all empty and
cf(—-7(¢',[])) is a set of clauses of unary literals of the form +P[]. (In the example, ¢’ is ay

and ¢ (- (¢', [])) = {-42[]}.) O

Lemma 7.4.2 Let C be any clause in c' (m(Dy,[])). For serial modal logics, C has the
form

tAlar...an) V Loy . ..apuy .. ug] V...V Lgag ... apug ... oug),
and for non-serial modal logics, C' has the form
tAlar...an] V Eylay ... an] V Eifaqg ... aqui] V ...V Egloq ... auug .. ug),

for n > 0 and m, k > 0. In both cases, C is prefix ordered.

In the example, clauses 1. to 3. originate with the definition O(a; <> <&(—p A —q)) and
clauses 5. to 7. originate with ag <> O(—ay A T).

Proof. We will verify only the serial case. For the non-serial case we must also consider the
additional dead-end expressions.
D, is a conjunction of definitions of the form

(I) D"(a «— Ql . Qk’lpl), D"(a — Ql .. lepl) or D"(a > Ql e Qkip,)

138 An ordered refinement

for 4" a propositional formula and Q... Qj a sequence of modal operators. O"(a <> 1))
is equivalent to 0"(—a V 1) A O"(a V —1)) (because O distributes over conjunction). By
the functional translation for serial modal logics, the formulae in (') transform to one of the
following or their conjunction

(”) Voai ... Yoy, (—IA[al . an] V Qru ... Qrug ’(p”)
Vai ... Va, (Alag ...an] V QTur ... Qpuk).

The modal prefix O™ becomes a prefix of universal quantifiers Va; ... Va,,, the propositional
variable a becomes a unary predicate variable A, and % and —) become complementary
formulae Qiu; ... Qrug %" and Qyu1 ... Q ux ¥" . The terms in " and 4" " are identical,
they are [ag ...apu; ... ug]. Each @Q; denotes either a universal quantifier or an existential
quantifier depending on whether Q; is a box or a diamond operator and @;" denotes the
dual quantifier of @Q;. It follows that the clauses in the optimised clause form of (") have
the required form. |

Theorem 7.4.3 Let ¢ be any multi-modal formula. Any clause in S = ¥ (=II;(p?)) is
prefix ordered.

Proof. By Theorem 5.1.2 (S is well-formed in path logics) and Lemmas 7.4.1 and 7.4.2. O

The second form of renaming we consider is an instance of the first. Renaming is done
for any non-literal subformula, that is, the conditions (ii) and (iii), above, are replaced by

(ii) % has the form ¢’ @ 9" for @ a Boolean connective, Qi for Q either a O or a <
operator, and 1’ and 9" are propositional atoms or negations of atoms, and

(iii) ¢’ is a propositional atom or literal.

The following describes the clausal form.
Corollary 7.4.4 Clauses in S = ¢* (=II(¢?)) have the form

Ll[al ... 0p V Lg[al an]
\Y Lg[al .. .an] \% L3[O{1 .. .Otn]

V Lg[al . anu]

Ll[al ... 0p
Ll[al ... 0p
Ll[al . Qpl V LQ[al an] V L3[a1 Otn’U,]
L]

with 0 < n < m (for some m), u a variable or a constant, and all clauses are prefix ordered.

Proof. The first two clauses stem from definitions of the propositional expressions ' @)",
The next four from definitions of modal expressions Q1)/, and the final clause originates
from the literal ¢'. O

The three literal clauses for the modally quantified formula Q' emanate in non-serial
contexts (where the dead-end literals keep track of defined-ness) and can be avoided by
either translation according to Section 2.6 into a serial context or by renaming on the first-
order level (after translation by YTIy).

7.4 Prefix ordered clauses and decidability of ordered resolution 139

Ordinary unrestricted resolution does not preserve the prefix ordering. A sample deriva-
tion on the sample set S for p¢ in (7.5) is:

8. = As[] V —P[§v0] [1,5,empty E]
9. =A[0] v R[] V —P[év8]. [7,8,empty E]

Clause 9. is not prefix ordered. (Of course, clause 9. can be split into prefix ordered sub-
clauses, but for example —A4;[ad] V R[ad] V = Pladyf] cannot.)

For theories not involving collapsing axioms, like the empty theory and the theory con-
taining just associativity, prefix ordering is preserved by ordered E-resolution with normal-
isation using Rg’;x or Rf&;;o Ng- Thisis due to the fact that there is a correlation between
<* and the proper subterm ordering for associativity (Lemma 7.2.5), but not for the col-
lapsing axioms. For example, when As the largest predicate symbol occurring in the two

clauses

1. —|A2[a1] \Y —|P[051052]
2. Ag[al] \Y —|A1[Oé1052] \Y R[O[lag],

then an ordered resolvent with respect to <* and modulo identity is

3. Plaiog] V -Ailaq 8] V Rlaif], [1,2,identity]

which is not prefix ordered. Consequently, the following results apply only to the empty
theory and associativity. Let < denote the proper subterm ordering.

Lemma 7.4.5 Let o be a most general E-unifier of a subset T” of a set T of prefix ordered
terms.

(i) If o is a syntactic most general unifier, then (T'o, <) is prefix ordered.

(ii) If o is a most general unifier modulo associativity, then (Ng(To), <) is prefix ordered.

Proof. Because the proper subterm ordering < remains invariant under the application of
any ground substitution o and Ny(s)o < N4(s)o implies Ny(so) < Ny(so). O

Therefore, for the empty theory or associativity, condensing and factoring (including both
syntactic and semantic factoring modulo associativity followed by normalisation) preserves
the prefix ordering. For preservation of the ordering in resolvents we need:

Lemma 7.4.6 Let (T,<) and (T',<) be two finite variable disjoint and prefix ordered
chains of terms. Let E be either empty or let E contain just associativity. Suppose o is
an idempotent most general E-unifier of ¢ and ¢’ and Ng(to) = Ng(t'o) are maximal in
Ng(To) and Ng(T'o), respectively. Then (Ng((T'UT")o), <) is a prefix ordered chain.

Proof. We must show that for any s € T and any s’ € T', Ng(so) and Ng(s'c) coincide
or are related by <. Both are prefixes of Ng(toc) = Ng(t'o), the maximal element in
Ng((T UT')o). Then [Ng(so)r] = [Ng(s'o)r'] for some strings r and r'. If Ng(so) is
shorter than Ng(s'c), then Ng(so) < Ng(s'c), otherwise we have that Ng(s'o) < Ng(so).

O

140 An ordered refinement

The two lemmas together with Lemma 7.2.5 imply:

Theorem 7.4.7 Any resolvent of two prefix ordered basic path clauses by R~ and Rgonn
X X
modulo the empty theory and any resolvent by ’Ri}; or Ré’:ND o N

is prefix ordered.

modulo associativity,

Hence:

Theorem 7.4.8 Let ¢ be any modal formula and S = ¢ (=II;(¢?)) with ¢¢ defined
as in this section. For any n, any clause in (R=)"(S), (Raonn)™(9), (R;LQ;X)"(S) or
(R4’<x)™(S) is prefix ordered.

COND o Ny

For the empty theory, a term depth bound exists and decidability follows with little effort
for ordered resolution, as we will see now (without relying on Theorem 6.5.1). Evidently,
the number of variables in any prefix ordered clause

E()S V E1 [sul] V EQ[SUlUQ] V...V En[sul . un]

is given by the number of variables in largest term occurring in the clause, namely [su; . . . uy].
This proves the existence of a variable bound as required by (B) of the Preview. Therefore:

Theorem 7.4.9 Ordered resolution with respect to < is a decision procedure for finite sets
of prefix ordered clauses of basic path logic.

Consequently:

Corollary 7.4.10 Resolution restricted by either < or <* applied to prefix ordered clauses
obtained by renaming provides a decision procedure for the satisfiability problem of modal
formulae in K, KD and their multi-modal versions.

The obvious question now is, what efficiency gain can be achieved by the ordering re-
finement and renaming. We assume that renaming is done on any non-literal subformulae
and any clause in S = ¢¥(=II;(p?)) has the form:

(7.8) E()[] \Y El[al] \Y Ez[alaz] V...V En[alag - an] \Y En+1[041042 - anu]

with 0 <n < m and u either a variable or a constant (Corollary 7.4.4).

Theorem 7.4.11 The form (7.8) is preserved by R=- and R;L\’,jx-resolution with and with-
out condensing.

Proof. Without loss of generality we assume the premises are in normal form. Resolvents
of premises that do not include a constant do not include constants either, and have the
required form. If a premise includes a constant ¢ it occurs in a maximal term with respect
to the proper subterm ordering. As the argument of the maximal atom with respect to <
has as argument a <-maximal term, all variables of the resolvent occur in Ao of the ordered
resolution rule. The only possible partners for resolution are without constants, or have the
same constant ¢« in the last position of the <-maximal terms. O

7.5 Decidability of transitive modal logics 141

Let S be the class of clauses built from a given finite number of predicate and constant
symbols with maximal path length m satisfying the following conditions: Any clause is
condensed and prefix ordered, and moreover, any clause has the form (7.8).

Theorem 7.4.12 Suppose there is a supply of k£ predicate symbols, [constant symbols and
path lengths do not exceed m.

(i) The number of literals in any clause of S is at most 2k(m + 1).

(ii) The size of S is at most (I + 1)22k(m+1),
Proof. (i) The largest clause in the class S is

PV APV ...V BV P

V Pilai] V =Pilaq] V ... V Pglay] V = Pyfaq]

V Pilajas] V —Pilaias] V ...V Pylayas] V = Pglaias]
VvV o...

V Pilar...am1] V...V -FPlar...an-1]

V Pilay...am_1u] V...V 2P ... p_1u].

Each line represents 2k literals, and in all there are 2k(m + 1) literals in the clause.

(i) There are 2% clauses of the form Ey[], including the empty clause. Because there are
2k- (141) literals of the form +P;[u], there are 2%#"(+1) non-variant clauses of the form E;[u].
Similarly, we see there are at most 225" (1) non-variant clauses of the form E,1[a; ... apu]
for any 1 < n < m. These are used to build clauses of the form (7.8), and there are then at
most

22%k. 92k . .92k (14 1)

m times

22k 22k

such clauses. There are 2°% choices for Ey|] choices for any E,[a; ... ap] with1 <n <m,
and [+ 1 choices for u in the maximal term. (A more precise bound is 22% 4- 22k . 22k . (] +
1) ... 226mFD) (14 1) = 22K(1 4 1) (2% — 1) /(2%F —1).) O

This gives an indication of the worst case space complexity of ordered resolution for the ba-
sic path logic and the associated basic modal logics. Compare this with the bound given in
Theorem 6.6.11 for unrestricted resolution and condensing. The complexity for the trans-
lation of S5 is much better since paths have length at most one, namely (i) 4k and (ii)
(I +1)2* for the number of literals in any clause and the size of the class S, respectively.

7.5 Decidability of transitive modal logics

Unrefined resolution provides decision procedures for transitive modal logics, like K/ and S/,
provided an artificial term depth bound is specified in advance (Corollary 6.5.4). This is not
very satisfactory. This section discusses the problems of devising an elementary (ordered)
resolution decision procedure for path logics including associativity, reviewing the method of
Zamov (1989), who claims to have a resolution decision procedure using lock resolution on

142 An ordered refinement

definitional forms of the path logic associated with S4. Unfortunately, due to its brevity and
a number of (mostly small) mistakes, Zamov’s presentation is extremely difficult reading.

The problem with path logics associated with transitive modal logics is that unification
modulo the associativity law expands terms. The language determined by the theories
including associativity includes the operator o with which complex functional terms can be
formed and substituted into variables causing term expansion. Qur aim is to find refinements
that ensure terms cannot grow indefinitely, for then decidability follows by Theorem 6.5.3.
The refinements must achieve two things: control the repetition of constants in paths and
control the number of variables in terms.

The following example demonstrates how constants are duplicated during unordered
inference. The formula

(7.9) pe = 0(0(p — q) = —p) = S=0(p — q)

is not a theorem in KD/, because —pg = O(O(p A —q) V —p) A OO(—p V q) is satisfiable in
the single world model with both p and ¢ false in the world. The clausal form of pg is

1. Plag]V —Plq]
2. ~Q[apB] v ~P[d]
3. =P[yd] vV Q[vd].

The problem is, under associativity the first two clauses produce an infinite set of resolvents.

4. =Pla] V -Q[aBp] [1, 2, associativity]
5. =Pla] V =Q[aB8S] [1, 4, associativity]

For K/, the solution to the problem of indefinite strings of constants is a suitable form of
renaming. Renaming all non-literal subformulae (as defined in the previous section) bears
prefix ordered clauses of the form

E()[] V El[al] V...V En[alag .. .an] V En+1[a1a2 .. .anu].

At most one constant occurs in any such clause (Corollary 7.4.4) and this form is preserved in
the ordered calculus under associativity (Theorem 7.4.11), but not in general under identity
(recall the example from Section 7.4 on page 139).

We briefly digress to demonstrate what happens for the sample set under an unordered
constraint approach as proposed in Mohr (1995). The constraint approach postpones uni-
fication to the end of the computation. The input set for pg reformulated in terms of
constraints is

1. PzV-Py |z #[aB]Vy #[d
2. -Qz V —Py | z#[aB]Vy #[d
3. ~PrV Qy |z # [y Vy #[vd].

7.5 Decidability of transitive modal logics 143

Resolution steps similar to the above result in increasingly larger constraints:

4. =Py V -Qz' | z#[aB]Vy#[a Ve #£[dB]Vz#[d] [1,2,assoc.]
5. =Py V -Qz" | z#[@B|Vy#[a] Vi #[dB]Vz#[d] [1,4,assoc.]
V.’E” 7£ [all]V.’L’I 7& [Ot”]

Clauses 4. and 5. are condensed. Observe the chains y, o, z,o/, 2" and y,a,z,d, 2, ", z"
of variables across the inequalities. Clearly then, constraints alone do not avoid infinite
computation. The problem of indefinite strings of constants for theory resolution is aggra-
vated, because not only do we have repeated occurrences of the same constant (for example
(B occurs three times in the constraint of 5.), we note also the number of variables increase
rapidly. (End of digression)

The next problem is, how can we control the increase of variables under associativity. The
root of the problem is that unification under associativity splits variables and introduces
new ones. For example, a most general unified term of [afy] and [a15171] is the term
[v574y37y271]- The reduction of the unification problem for this example is:

{laBy] =" [eapim]}
~ {y="yom, [afye]=" [}
{y="yom, Bi="v07, [af]="|ays]}
{(y="mom, Bi="10%, B="moy, [ay]="[u]}
? ? ? ? ?
{y="mom, Bi=" v0%, B= 1oy, ai= Y507, a= 75}

¢ 8

The clauses

1. Pla] v Q[af] V R'[afy] V Rlap]
2. Qleu] V Playf1] V R"[e1 fim1] V —R[af]

have six resolvents, the one associated with the unifier computed above being:

3. Pla1] V Q[aras] V Qlarasas] V Plagagasay) [1,2, associativity]

V R'loyasazasas]) V R [aasazasas).

For §4 we will now define two simplification rules that reduce the number of variables
in clauses. The rules can be viewed as stemming from the reduction law OOp < Op.

Some additional notation will be useful. We introduce notation for dividing and re-
assembling clauses according to prefixes which is analogous to that for sets of terms used in
Chapter 6. First, we extend the definition of the operation of prepending prefixes to clauses.
For any clause C = L1t; V ... V Lyt,, the clause

L1 [Stl] V...V Ln [Stn]

obtained from C by adding s as prefix to every term in C will be denoted by sC. The
operation is monotone (if C C D then sC C s D).

144 An ordered refinement

C(s) denotes the clause obtained from the subclause C' of C of all literals with prefix s by
removing the prefix. This operation too, satisfies the same properties as the corresponding
operation for sets of terms, namely (C(s))(t) = C([st]). For example, let

(7.10) C = PsV Q[sa] V R[sany] V Q[saf] V R[saBy] V P'[saft].
Then

C(s) =PIV Qo] V Rlaa] V Q[af] V Rlefy] v P'lat]
C([se]) = Q[vV Ra] v Q[B] v R[] v P'[1]
C([sef]) = QN V Rla] v P't.

[t BT

If C(s) is the clause Lit; V ... V Lyt, then the subclause of C containing all literals with
prefix s is given by s C(s) and denotes the largest subclause of the form

Ll[stl] V...VL, [Stn].
s C(s) may be empty and ¢; are empty or non-empty strings. For the sample C of (7.10)
[sef]C([sef]) = Q[saB] V Rsafy] v P'[sapt].

The first rule we introduce is the following replacement rule:

Replacement of pairs of variables SU{C = [saf] C([sap]) vV C'}
> SU{D = [sa] C([safd])V C'}

provided the variable @ does not occur in C’.

The rule replaces any pair a8 of variables, which occurs always as a sequence in a variable
indecomposable clause, by one variable. Prefix stability ensures that the variable 8 does
not occur in C’. By this rule

Plafg] V R[af] is replaced by Pla] V R[a], and
Pla] V Rlafv] V Q[apfy] is replaced by Pla] V Rlaf] V Qlaf)].

Lemma 7.5.1 Let C' and D be as in the ‘Replacement of pairs of variables’ rule. Then C
and D are logically equivalent modulo the laws of right identity and associativity.

Proof. It is easy to see that C and D subsume each other, for C{8 — e} =g; D and
D{a—ad' op} =g, C. O

Modulo associativity we merely have that D subsumes C, which means that clauses of the
form C' can be removed from S, when D is in S, and only then.
The second rule removes excess literals from clauses.

Deletion of literals
SU{C = [sap] C([saf]) V Li[sat1] V ...V Ly[sat,] V C'}
> SU{D = [sa] C([saf]) Vv C'}
provided (i) no term of the form [sa...] occurs in C’, (ii) for any 1 <7 <
n, either ¢; = [] or t; = [ut'] and u # S, and (iii) the family {(L;,%;)}; is a
subset of the set {(L,t) | L[saft] € [saB]C([saf])}-

7.5 Decidability of transitive modal logics 145

The conditions hold for the clause of (7.10) as

V,; Li[sat;] = Q[sa] V R[say]
(saf)C((sf)) = Qsa] V Risaxfn] v P'[sapt]
C' = Ps.

Condition (iii) concerns the literal heads and the suffixes of a and § in \/, L;[sat;] and
[saB]C([saf]), respectively. The condition is satisfied, because {(Q,[]), (R,7)} is a subset
of {(Q,]]),(R,7), (P',t)}. The rule removes Q[sa] V R[say] from C and deletes the variable
[from the remainder leaving

D = PsV Q[sa] V R[say] V P'[sat].

Lemma 7.5.2 C and D as in the ‘Deletion of literals’ rule are logically equivalent modulo
right identity and associativity.

Proof. Assume the set {(L;,t;)}; is a subset of the set of pairs (L,t) with L[saft] €
[saB]C([saf]). Then t is empty or a string of constants, for otherwise ¢ has two prefixes,
[sa] and [saf)], and prefix stability is violated. \/; L;[sat;] is the subclause

[se](C([sa]) \ BC([sah]))

of C, and neither « nor 8 occur in C'.

[sa]C([saf]) V C' can be obtained from C' by instantiating S with e, normalisation and
eliminating \/, L;[sat;] by standard condensing. This proves the left-to-right direction, that
is, C implies D. The right-to-left direction follows since [sa]C([saf]) V C' subsumes C, for
Ny([sa]C([saf]){a — o' o f}) V C' is a subset of C. O

This result is a generalisation of Zamov’s (1989) Lemma 4.5.

Lemma 7.5.3 The two rules are compatible with ordered S4-resolution, with and without
condensing and normalisation (as defined in Section 7.2).

Proof. For each rule we show, C is redundant in S U {C, D}. Without loss of generality
suppose C' and D are in normal form. For both rules, D < C is a consequence of the
property: [sat] < [saft], for any terms s, ¢ and any variables «, (. (The property is
encoded as f(t, f(a,s)) </ f(t, f(B, f(ca, s))). The relationship is evident since the second
argument f(a,s) on the left hand side is a subterm of the second argument f(3, f(«,s)) of
the right hand side.) Then L[sat] < L[saft] and hence

[sa]C([sab]) V C' < [saB]C([saf]) V C'.
Also, [sa]C([saf]) V C' < [saf]C([saf]) V Li[sat1] V ...V Ly[sat,] V C". O

We say two literals L and L' are adjacent to each other if the lengths of their arguments
differ by one. The ‘Deletion of literals’ removes repetition in adjacent L[sat] and L[saft].
For example, one of the @ literals in

C = P[al] V Q[alag] V Q[alazag] V P[a1a2a3a4] V R'[a1a2a3a4a5]

146 An ordered refinement

is superfluous. The clause is equivalent to the following;:
D = Play] V Q[aias] V Plajasas] V R [asasas].

The two simplification rules do not suffice to avoid duplication of constants and repetition
across non-adjacent literals as in

P[Oél] \Y Q[alag] \Y P[alazag] \Y Q[a1a2a3a4] V....

Zamov claims this kind of repetition can also be eliminated, but his argument is not conclu-
sive. Also, I see a problem with eliminating duplication in certain cases of adjacent E;[...],
like for instance in the clause

C= R'[al] \Y P[alaz] \Y Q[a1a2] V Q[alagag] \Y P'[alagag] \Y R"[a1a2a3a4]

where {(P,[]),(Q,[])} is not a subset of {(Q,[])} (as required by (iii) of the ‘Deletion of
literals’ rule).

Now, we consider an example which I chose because the proof by unrestricted resolution
duplicates constants, and analogously the proof by the semantic diagram method includes
a label with duplicate constants. The formula

(7.11) p7 =<0(COp —Op)
B o $

is a theorem in S/ (and also in KD/). A clausal form obtained by transformation to negation
normal form and Skolemisation is

1. Plapyd]
2. = Plagd].

It reduces to the empty clause with the most general unifiers of {[a8vd] =’ [o/34]} being:

op={d = aoBoyod, §+ 6§ 0opBoif}
oo ={d' = aofBory, d+— Bod}.

Then [afyd]or =4 [afByd' B8] and [afydlos =4 [afBy3d]. Note the duplicate occurrence of
the constant symbol 5.

A proof using the semantic diagram method of Hughes and Cresswell (1996) is presented
in Figure 7.1. The values 1 and 0 below a symbol are the assignments (true or false) to the
corresponding subformulae. To begin with, in the initial world [] the formula p7 is assigned
the value 0 (thus, the 0 below the < in the first line). Assignments for modal subformulae
are also marked by an asterisk either in the superscript or subscript. Asterisks have the
following meaning: If Oqp is false in a world x then 4 is false in all accessible worlds, which is
indicated by the x in the superscript of 0*. 1 with the assignment false will be carried over
to all subsequent worlds. We assume reflexivity, so, ¥ must be false in z, which explains
the 0 below the O. If O is assigned false in the world x then 1 is false in some successor
word. This information, that is, the existence of a world in which v is false, is carried by
the subscript of 0, below the O. Accordingly, we create a successor world which we name
[4] to illustrate the analogy to the resolution proof, and so forth. The bold face assignments
in the last line are contradictory, which means we have found a refutation.

7.5 Decidability of transitive modal logics 147

[<O(odp — Op)
0*0,

[8] <©0Op — Op, O(COp — Op)
1, 0 0, 0,

[62] Op, O(OOp — Op)
1*1 0, 111 1 11

[6y8] <Op — Op, p, O(COp — Op)
* 00,0 10,1111 11

[8y84] p, p, O(COp — Op)
010 1111 11

Figure 7.1: A tableaux refutation of (7.11)

An ordered resolution proof exists without any occurrences of constants in resolvents.
The ingredients are renaming of all non-literal subformulae and a particular ordering of the
predicate constants. Relying on Theorem 7.3.2 for

—|p‘% = O(ay — Op) A O(ag — <ay1) A O(ag < Op) A O(ayg < (a2 — a3z)) A
O(as < Oag) A O(ag + <as) A —ag,

and the fact that S/ is a serial modal logic, the clausal form ¢ (=II;(p9)) is given by clauses
1. to 8. of Figure 7.2. The figure presents a derivation of the empty clause. The black dots
mark the clauses which constitute a proof and indicate how often clauses are used. The
applied ordering is determined by the following ordering on the predicate symbols

Ag <= A5 < Ay < Ay < A1 < A3 < P.

This ordering was chosen in accordance with Zamov’s specification for his lock resolution
procedure. He requires that (i) complementary literals have identical values, (ii) literals Lqs
with an argument that is a prefix of the argument of a literal Lo[st], has a smaller value than
Ly[st], and (iii) literals complementary to a literal with an occurrence of a constant have
smaller values than literals complementary to a literal with no occurrence of a constant.

Zamov relies on being able to dispense with clauses that contain constants, in his
Lemma 4.1. The statement of the lemma seems to claim for a refutable set S originat-
ing from a modal theorem there is a resolution proof that does not include constants except
for those occurring in the initial clauses of S. This cannot be, because under lock resolution
on maximal literals, the literal A4[af] in clause 11. of Figure 7.2 is not maximal and the
derivation of the empty clause without using resolvents containing constants is impossible.
But, the proof of the lemma seems to be concerned with a different problem altogether. It
argues resolvents of any premises in S do not include constants. This cannot be, either. A
counter example is the clause 9. Possibly it was overlooked that {6 — 6’0 3, a+> yod'}
is also a most general unifier of the problem [a8] =" [yd].

For the moment the only solution for deciding satisfiability in path logics associated
with transitive modal logics is to use imparted term depth bounds. Another solution that
will undoubtedly work, is to simulate the corresponding tableaux decision algorithms by
resolution.

148

An ordered refinement

o 1.
2.
° 3.
o4
® 5.
oo 6.
oo 7.
e 8.
. Aj[ay] V Asla]
e 10.
e 11.
12.
e 13.
14.
15.
16.
17.
18.
e 19.
20.
21.
® 22,
23.
e 24,
e 25.
26.
e 27.
28.
e 29,
e 30.

—Ai[a] V Plaf]
—As[e] V Aifey]
Asla] V = Plad]
Ayla] vV Ag[]
Aala] V = A3[a]
Asla] V 2 A4[af]
Agla] V = 45[af]
~ 4[]

—Ai[a] V As[ef]
Aslaf] V A1 o]

—Azla] V Ag[ayf
As[y0'] v ~Ai[y]

As[a]
—Az[e] V As|ayf]
—Asz[a] V Ag[ayf]
—Asla] V Asayd]

Ag[af] vV A1 [a]

VvV A [a@]

A6 [Ot]
A
—Asla] V Aglaryf]

—Asaf] V Aglal

—Az[e] V Ag[ar]
Ay [a,@] V Agla]
As [aﬂ] V Agla]
As[a] V Aglaf]
Aglaf] V Aglal]
Agla] V AglaB]

As[e]

0

V —|A1 [aﬁ]

[1,3,id.,assoc., Np4]
[1,3,id., assoc., N74]
[5,10,id., assoc., Nr4]
[2,11,id., assoc., Nr4]
[6,11,id., assoc., Np4]
[6,11,id., assoc., Ny4]
[6,12,1d., assoc., N74]
[7,15,id., assoc., Nr4]
[2,13,id., assoc., Nr4]
[7,13,1d., assoc., N74]
[7,13,id., assoc., Ny4]
[8,18,id., assoc., Np4]
[2,18,id., assoc., Np4]
[2,19,id., assoc., Np4]
[2,19,id.,assoc., Np4]
[4,22,id., assoc., Np4]
[6,24,1id., assoc., Nr4]
[6,24,id., assoc., Nr4]
[7,25,1d., assoc., N74]
[7,25,id., assoc., Ny4]

(variant of 15.)

(variant of 16.)

(subsumed by 16. & 21.)

(variant of 27.)

[7,25, repl. of pairs of vars]

[8,29,id., assoc., Nr4]

Figure 7.2: A refutation of (7.11) by RILS

COND 0 Ny

-resolution.

7.6 Conclusion 149

7.6 Conclusion

The previous chapter showed for many path logics and the corresponding modal logics
unrestricted (theory) resolution is a decision procedure. The search space is enormous, as
the largest possible non-redundant clause in the search space has m-story exponential size.
In this chapter we studied ordered E-resolution and the method of renaming. Renaming
provides an efficient means of transformation to clausal form. We gave a completeness
proof for saturation up to redundancy by ordered E-resolution. We looked at finitely based
theories which form convergent rewrite systems. The ordered calculus is restricted by a
lexicographic combination <* determined by the ordering < that orients the rewrite rules
of E and the ordering on the unique normal forms. Decidability for basic path logic follows
easily when we employ renaming (rendering prefix ordered clauses). An indication of the
gain in efficiency for the basic path logic (with empty E) is the single story exponential
space requirement in the worst case.

By the general decidability result of the previous chapter, ordered E-resolution with
respect to <* is a decision procedure for path logic associated with K, KD, KT, KD/ and
S/, for the latter with a given term depth bound. A remaining challenge is to develop
decision procedures not relying on given bounds.

Finally, we note that E-unification problems for prefix ordered clauses often have simpler
solutions. In general, when using a calculus requiring semantic factoring we would need
general E-unification. However, it turns out that for assciativity alone (that is KDJ/) the
unification algorithm of singleton problems (of Section 5.7) suffices. This is not the case
for KT or S4. For instance, Plaf] V P[afy] has no (most general) KD/-unifier, nor has
it a syntactic (most general) unifier. But, the clause has a most general KT and S4-
unifier, namely {y +— e}. I envisage that in these cases simple add-ons to the algorithms of
Section 5.7 will be more efficient than general E-unification.

150 An ordered refinement

Chapter 8

Conclusion

As outlined in the Introduction the goal has been to develop optimised resolution based
inference methods for propositional modal logics. To this end, I studied the functional
translation approach and its optimisation. I described how the relational semantics sys-
tematically transforms to the functional alternative semantics on which the corresponding
functional translation is based. As discussed in Chapter 2, the fundamental idea is that of
decomposing any binary relation into a set of functions and a set identifying the dead-ends
of the relation. This bears a translation of any modal formula into a decidable monadic first-
order fragment. It involves a special function symbol for encoding accessibility in terms of
paths. I named this logic non-optimised path logic and presented a new direct definition
independent of modal logic. I noted that any non-serial modal logic can embedded in a
serial modal logic by adjoining a special variable for recording undefinability.

The next transformation employs the operation by which existential and universal quan-
tifiers are swapped. Semantically, this optimisation is embodied in special maximal or
patched functional models, which are important for another reason. Namely, certain func-
tional correspondence properties can be simplified by eliminating the dependency of the
functional quantifiers on the world quantifier. I exhibit in Chapter 3 the optimised trans-
lation applies not only to formulae we aim to refute, it applies also to axiom schemas and
produces approximate first-order formulations for modal schemas that are not equivalently
first-order definable. Consequently, first-order inference techniques become available for
genuine second-order logics, like K extended with McKinsey’s schema and the modal logic
Kpg.

The logic K g is a new multi-modal logic which approximates the graded modal logic
K. It serves as an intermediary logic for realising reasoning about numerical quantifiers in
a first-order resolution calculus enhanced with simple arithmetic, as described in Chapter 4.
The chapter is a fairly complex application of the translation techniques and illustrates the
power of our approach.

The optimised functional translation associates propositional modal logics with a lattice
of clausal logics, called path logics, defined in Chapter 5. The weakest path logic associated
with K, KD and K{,;) and its serial extension is the basic path logic. Path logics have a
number of pleasant properties important for the decidability result. Input clauses of path
logic contain no Skolem function symbols other than constant symbols, which avoids growth
of terms during unification. The second essential property is prefix stability of the terms,
which remains invariant under deduction. Chapter 5 studies E-unification for 7" and 4 in
greater detail. It presents an improved algorithm for 7" and 4 that is based on mutation

151

152 Conclusion

rules, which have the advantage that terms are worked off top down making paramodulation
into terms superfluous.

Path logics are of general interest in the fields of logic, computational complexity and
resolution theorem proving. In particular, the basic path logic is a new solvable class
that is PSPACE-complete (because K, KD and K(,,) are). The basic path logic is in fact
isomorphic to a reduct of the Bernays-Schonfinkel class (a solvable class of 3*V* prefix
formulae). Chapter 6 is devoted to the problem of deciding satisfiability in basic path logic
by resolution and condensing. As far as I know, basic path logic is the only non-trivial
solvable class for which no additional refinements are needed. Moreover, in contrast to
many decidability proofs for other solvable classes, the increase of the functional nesting of
terms is not a problem in basic path logic. Terms do not expand during deduction. However,
the numbers of literals and variables in clauses may increase. Our proof of the existence
of literal and variable bounds relies on a new technique of nested prefix partitioning of any
set of terms. A complex encoding of variables that accommodates condensedness by the
antichain property in a finite power set algebra allows us to give a worst case limit of the
size of generated clauses. For a number of path logics and their modal counterparts, namely
S5 and Ky and its extensions with D, T' and 4 modalities, decidability by resolution
combined with condensing and any compatible refinements follows (and possibly a given
term depth bound).

Modern theorem provers use forms of ordering restrictions and sophisticated renaming
techniques. Chapter 7 defines a general ordered E-resolution calculus based on saturation
up to redundancy and studies the clausal forms produced by renaming on the modal level.
There is a marked increase in efficiency quantified by the worst case single story exponential
space requirement as opposed to the m-story exponential space requirement, for basic path
logic. 1 analysed the problem of deciding the path logics associated with transitive modal
logics, which still needs resolving.

Based on the results obtained, I claim the endeavour of doing modal inference by the
optimised functional translation into first-order logic and conventional resolution theorem
proving is a promising and viable alternative approach. The following explains the advan-
tages and discusses some open problems.

Automatic transformation: The basic procedure and the basic framework for dif-
ferent modal logics is always the same. The transformation of modal formulae to clausal
form can be done automatically with linear time and space overhead. For the most, the
transformation of axiomatisations to path logics can be done automatically by using the
Gabbay-Ohlbach method. Finding appropriate and efficient reasoning mechanisms for test-
ing satisfiability with respect to theories, especially with respect to theories not treated in
this thesis, deserves further investigation.

Expressive power: The optimised functional translation is more powerful than the
relational translation. For one, it captures also essentially second-order modal logics in a
first-order setting. Two, the optimised functional language is more fine-grained than the
relational language. Paths carry more information, in a concise manner. In particular,
paths and prefixes make the history of worlds explicit, which relational expressions do not
do directly. It so happens that the point that paths embody information about predecessor
worlds can also be exploited in tableaux approaches as is done in the different prefixed

153

tableaux calculi of Fitting (1983), Massacci (1994), Governatori (1995) and others (see
Section 6 in Goré 1995).

Decidability: I have presented elementary resolution procedures that decide satisfia-
bility for non-transitive modal logics. No additional refinement restrictions are required to
guarantee termination, with practical implications especially for casual users. Users wanting
to test the satisfiability or theoremhood of a modal formula may use his or her favourite
resolution theorem prover (provided it is fair). I covered only a selected number of modal
logics and the corresponding path theories. Accordingly, much remains to be done. Some
open questions are: Exactly which modal logics and path logics have the three properties re-
quired by the general decidability result? For given path theories, are there terminating and
efficient unification procedures? It is open whether there is or can be a uniform approach
bearing terminating algorithms for a larger subclass of path logics. Can the decidability
results be generalised to decidable path logics that do not have the particular normal forms
we require, for example the path logic associated with the modal logic KM ? A particularly
important problem concerns the practical solution of decidability by resolution for transitive
modal logics. Connected with this, how can periodicity be detected in a resolution calculus?
Does there exist a modal logic without the finite model property and a corresponding path
logic decidable by a resolution procedure?

Possible extensions: Decidability of modal theoremhood by translation to first-order
logic circumvents the limitations of special purpose modal reasoners regarding extendibility.
Within the framework of first-order logic and resolution theorem proving there is much
room for extension and further exploration. It is conceivable that extending the translation
technique is easier in many cases than extending both the theory and the implementation of a
tableaux or sequent theorem prover. Extensions that come to mind are relational operations
as in propositional dynamic logic and the different KL-ONE variants above ALC, extensions
with multi-dimensional modal operators like Tarskian set constraint operators (excluding
the p-operator) and modal predicate logics. It is very likely that there are interesting and
useful combinations of propositional modal logics with decidable fragments of first-order
logic that can be accommodated in the functional framework. Reasoning with nominals,
known as ABox elements in the description logic context, poses no serious problem, even
though this means reasoning with equations. I envisage a superposition calculus restricted
by the ordering we used in Chapter 7 and conjecture it provides a decision procedure.

Availability of sophisticated theorem provers: Sophisticated and well-tested res-
olution theorem provers are freely available. OTTER is the most widely used and best known
first-order theorem prover (McCune 1994). Two theorem provers which are based on the
resolution and superposition framework of Bachmair and Ganzinger (1994, 1997) are SPASS
(Weidenbach et al. 1996, Weidenbach 1997) and Saturate (Nivela and Nieuwenhuis 1993).
What we seem to lack at this moment are theorem provers for theory resolution, but a fea-
sible, though not optimal, alternative is to use superposition and paramodulation instead.

Practical experience: We have some practical experience, and very encouraging
benchmark results are available with which I want to conclude.

The decision result of this thesis initiated an empirical investigation by U. Hustadt of
available implementations of decision procedures for K{;,,) including our approach combining

154 Conclusion

the optimised functional translation and first-order resolution. The tests were done on a
large set of randomly generated multi-modal formulae. The graphs of Figures 8.1 and 8.2 are
an extract from an extensive analysis reported on in Hustadt and Schmidt (1997a, 1997b,
1997c), and Hustadt et al. (1998).

The systems evaluated are the XRZS system developed for description logics includ-
ing ALC which uses a tableaux method (Baader and Hollunder 1991), a system called
KSAT based on a Davis-Putnam algorithm for propositional modal logic (Giunchiglia and
Sebastiani 1996a), the Logics Workbench (LWB) which is based on a sequent calculus
(Heuerding and Schwendimann 1996), OTTER Version 3.0 with the hyper-resolution setting
(McCune 1994), and the prototype sSPAss Version 0.42 implementing standard resolution re-
stricted by an extension of the Knuth-Bendix ordering (Weidenbach et al. 1996, Weidenbach
1997). The graphs are percentile graphs. Each point in any graph is a triple (¢,p, ¢) which
carries the information that, p out of one hundred randomly generated formulae with com-
plexity ¢ were each solved in at most ¢ seconds. The complexity of the formulae is determined
by the ratio of the number of conjunctions over the number of propositional variables. The
fixed parameters for the generated formulae are: five propositional variables, three disjuncts
in any clause and modal degree two for the graphs of Figure 8.1 and four propositional
variables, three disjuncts in any clause and modal degree one for the graphs of Figure 8.2.

The sets of formulae for the first figure were generated according to the scheme of
Giunchiglia and Sebastiani (1996a, 1996b). This scheme has some shortcomings that is
conveyed by the valleys on the right for all theorem provers except for spPAss. For the
concerned region very few hard formulae are generated. Harder formulae are obtained by
filtering out certain trivially unsatisfiable formulae.! The performance observed, then, is
as depicted in the second figure. The benchmarks demonstrate, in practice, performance
depends very much on the refinements used and the sophistication of the implementation.
Also, they indicate the competitiveness of utilising resolution theorem provers for modal
theorem proving.

'If a generated formula has a subset of purely propositional clauses that is unsatisfiable then the formula
is said to be trivially unsatisfiable.

155

KRI'S (Tabl eaux) KSAT (Mbdal Davi s- Put nam

20 20
Ratio LIN Ratio L/IN

VB (Sequent) OTTER (Fyper-Tesol ution)

2

20
° Ratio UN

SPASS (Ordered resolution)

Figure 8.1: The performance of different theorem provers for K,

156 Conclusion

KRI'S

KSAT

SPASS

R
#517 16 18 20 S
Ratio LIN

Figure 8.2: The performance for a harder problem set

Bibliography

Anderson, R. and Bledsoe, W. W. (1970), A linear format for resolution with merging and
a new technique for establishing completeness, J. ACM 17, 525-534.

Andréka, H., Németi, I. and Sain, I. (1995), On interpolation, amalgamation, universal
algebra and Boolean algebras with operators, Unpublished manuscript, Univ. Budapest.

Arnborg, S. and Tidén, E. (1985), Unification problems with one-sided distributivity, in
J.-P. Jouannaud (ed.), Proc. Intern. Conf. on Rewriting Techniques and Applications,
Vol. 202 of Lecture Notes in Computer Science, Springer, pp. 398-406.

Auffray, Y. and Enjalbert, P. (1992), Modal theorem proving: An equational viewpoint, J.
Logic Computat. 2(3), 247-297.

Baader, F. and Hollunder, B. (1991), KRZS: Knowledge Representation and Znference
System: System description, Technical Memo TM-90-03, DFKI, Kaiserslautern.

Baader, F. and Siekmann, J. H. (1993), Unification theory, in D. M. Gabbay, C. J. Hog-
ger and J. A. Robinson (eds), Handbook of Logic in Artificial Intelligence and Logic
Programming, Vol. 2, Oxford Science Publ., pp. 41-125.

Bachmair, L. and Ganzinger, H. (1994), Rewrite-based equational theorem proving with
selection and simplification, J. Logic Computat. 4(3), 217-247.

Bachmair, L. and Ganzinger, H. (1997), A theory of resolution, Research Report MPI-I-
97-2-005, Max-Planck-Institut fir Informatik, Saarbriicken. To appear in Handbook of
Automated Reasoning.

Bachmair, L., Ganzinger, H. and Waldmann, U. (1993), Superposition with simplification
as a decision procedure for the monadic class with equality, in G. Gottlob, A. Leitsch
and D. Mundici (eds), Proceedings of the Third Kurt Géodel Colloguium (KGC’93), Vol.
713 of Lecture Notes in Computer Science, Springer, pp. 83-96. The long version is
Research Report MPI-1-93-204, Max-Planck-Institut fiir Informatik, Saarbriicken.

Baumgartner, P. (1992), An ordered theory resolution calculus, in A. Voronkov (ed.), Proc.
LPAR’92, Vol. 624 of Lecture Notes In Artificial Intelligence, Springer, pp. 119-130.

Boy de la Tour, T. (1992), An optimality result for clause form translation, J. Symbolic
Computat. 14, 283-301.

Bull, R. A. and Segerberg, K. (1984), Basic modal logic, in D. Gabbay and F. Guenther
(eds), Handbook of Philosophical Logic, Vol. 11, Reidel, pp. 1-88.

157

158 BIBLIOGRAPHY

Cerrato, C. (1990), General canonical models for graded normal logics (Graded modalities
IV), Studia Logica 49, 241-252.

Chellas, B. F. (1980), Modal Logic: An Introduction, Cambridge Univ. Press.

Comon, H., Haberstrau, M. and Jouannaud, J.-P. (1994), Syntacticness, cycle-syntacticness
and shallow theories, Inform. and Computat. 111(1), 154-191.

de Caro, F. (1988), Graded modalities II, Studia Logica 47, 1-10.

Dershowitz, N. and Jouannaud, J.-P. (1990), Rewrite systems, in J. van Leeuwen (ed.),
Handbook of Theoretical Computer Science B: Formal Methods and Semantics, North-
Holland, chapter 6, pp. 243-309.

Doggaz, N. and Kirchner, C. (1991), Completion for unification, Theoret. Computer Sci.
85, 231-251.

Eder, E. (1992), Relative Complezities of First Order Calculi, Artificial Intelligence, Vieweg,
Wiesbaden.

Eisinger, N. and Ohlbach, H. J. (1993), Deduction systems based on resolution, in D. M.
Gabbay, C. J. Hogger, J. A. Robinson and J. Siekmann (eds), Handbook of Logic in

Artificial Intelligence and Logic Programming: Logical Foundations, Vol. 1, Clarendon
Press, Oxford, pp. 183-271.

Farifias del Cerro, L. and Herzig, A. (1988), Linear modal deductions, in E. Lusk and
R. Overbeek (eds), Proc. CADE’88, Vol. 310 of Lecture Notes in Computer Science,
Springer, pp. 487-499.

Farifias del Cerro, L. and Herzig, A. (1989), Automated quantified modal logic, in P. B.
Brazdil and K. Konolige (eds), Machine Learning, Meta-Reasoning and Logics, The
Kluwer International Series in Engineering and Computer Science: Knowledge Repre-
sentation, Learning and Expert Systems, Kluwer, pp. 301-317.

Farinas del Cerro, L. and Herzig, A. (1995), Modal deduction with applications in epistemic
and temporal logics, in D. M. Gabbay, C. J. Hogger and J. A. Robinson (eds), Handbook
of Logic in Artificial Intelligence and Logic Programming: Epistemic and Temporal
Reasoning, Vol. 4, Clarendon Press, Oxford, pp. 499-594.

Fattorosi-Barnaba, M. and Cerrato, C. (1988), Graded modalities I11, Studia Logica 47, 99—
110.

Fattorosi-Barnaba, M. and de Caro, F. (1985), Graded modalities I, Studia Logica 44, 197-
221.

Fermiiller, C., Leitsch, A., Tammet, T. and Zamov, N. (1993), Resolution Method for the
Decicion Problem, Vol. 679 of Lecture Notes in Computer Science, Springer.

Fine, K. (1969), For Some Propositions and so Many Possible Worlds, PhD thesis, Univ.
Warwick.

Fine, K. (1972), In so many possible worlds, Notre Dame J. Formal Logic 13(4), 516-520.

BIBLIOGRAPHY 159

Fine, K. (1975), Normal forms in modal logic, Notre Dame J. Formal Logic 16, 229-237.

Fitting, M. (1983), Prefized Tableau Systems, Vol. 169 of Synthese Library: Studies in
Epistemology, Logic, Methodology, and Philosophy of Science, Reidel, chapter 8.

Fitting, M. (1993), Basic modal logic, in D. M. Gabbay, C. J. Hogger, J. A. Robinson and
J. Siekmann (eds), Handbook of Logic in Artificial Intelligence and Logic Programming:
Logical Foundations, Vol. 1, Clarendon Press, Oxford, pp. 365-448.

Gabbay, D. M. (1981), An irreflexivity lemma with applications to axiomatizations of con-
ditions on linear frames, in U. Monnich (ed.), Aspects of Philosophical Logic, Reidel,
pp- 67-89.

Gabbay, D. M. and Ohlbach, H. J. (1992), Quantifier elimination in second-order predicate
logic, S. Afr. Computer J. 7, 35-43. Also in Proc. KR*92, 425-436.

Gallier, J. and Snyder, W. (1992), Designing unification procedures using transformations:
A survey, in Y. N. Moschovakis (ed.), Logic From Computer Science (Berkeley, CA,
1989), Vol. 21 of Math. Sci. Res. Inst. Publ., Springer, New York, pp. 153-215.

Gasquet, O. (1994), Déduction automatique en logique multi-modale par traduction, PhD
thesis, Univ. Paul-Sabatier, Toulouse.

Giunchiglia, F. and Sebastiani, R. (1996a), Building decision procedures for modal logics
from propositional decision procedures: The case study of modal K, in M. A. McRobbie
and J. K. Slaney (eds), Automated Deduction: CADE-13, Vol. 1104 of Lecture Notes
in Artificial Intelligence, Springer, pp. 583-597.

Giunchiglia, F. and Sebastiani, R. (1996b), A SAT-based decision procedure for ALC, in
L. C. Aiello, J. Doyle and S. Shapiro (eds), Proc. KR’96, Morgan-Kaufmann, pp. 304—
314.

Goble, L. F. (1970), Grades of modality, Logique et Analyse 13, 323—-334.

Goldblatt, R. (1987), Logics of Time and Computation, Vol. 7 of CSLI Lecture Notes,
Chicago Univ. Press, Chicago.

Goré, R. (1995), Tableau methods for modal and temporal logics, Technical Report TR-
ARP-15-95, Australian National Univ., Canberra. To appear in D’Agostino, M., Gab-
bay, D., Hihnle, R. and Posegga, J. (eds), Handbook of Tableau Methods, Kluwer.

Gottlob, G. and Fermiiller, C. G. (1993), Removing redundancy from a clause, Artificial
Intelligence 61, 263-289.

Governatori, G. (1995), Labelled tableaux for multi-modal logics, in P. Baumgartner,
R. Hahnle and J. Posegga (eds), Theorem Proving with Analytic Tableauz and Related
Methods, Vol. 918 of Lecture Notes in Artificial Intelligence, Springer, pp. 79-94.

Herzig, A. (1989), Raisonnement automatique en logique modale et algorithmes d’unifica-
tion., PhD thesis, Univ. Paul-Sabatier, Toulouse.

160 BIBLIOGRAPHY

Herzig, A. (1990), A new decidable fragment of first order logic. In Abstracts of the 3rd
Logical Biennal, Summer School and Conference in Honour of S. C. Kleene, Varna,
Bulgaria.

Heuerding, A. and Schwendimann, S. (1996), On the modal logic K plus theories, in
H. Kleine Bining (ed.), Proc. CSL’95, Vol. 1092 of Lecture Notes in Computer Sci-
ence, Springer, pp. 308-319.

Hughes, G. E. and Cresswell, M. J. (1984), A Companion to Modal Logic, Methuen, London.

Hughes, G. E. and Cresswell, M. J. (1996), A New Introduction to Modal Logic, Routledge,
London.

Hustadt, U. (1997), Resolution-based decisison procedures for subclasses of first-order logic.
Forthcoming PhD thesis, Univ. d. Saarlandes, Germany.

Hustadt, U. and Schmidt, R. A. (1997a), An empirical analysis of modal theorem provers.
To appear in J. Appl. Non-Classical Logics.

Hustadt, U. and Schmidt, R. A. (1997b), On evaluating decision procedures for modal logics,
Research Report MPI-1-97-2-003, Max-Planck-Institut fur Informatik, Saarbriicken.

Hustadt, U. and Schmidt, R. A. (1997c), On evaluating decision procedures for modal
logics, in M. Pollack (ed.), Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence (IJCAI’97), Vol. 1, Morgan Kaufmann, pp. 202-207.

Hustadt, U., Schmidt, R. A. and Weidenbach, C. (1998), Optimised functional translation
and resolution. To appear in Proc. TABLEAUX’98, Lecture Notes in Computer Science,
Springer.

Jaffar, J. (1990), Minimal and complete word unification, J. ACM 37(1), 47-85.

Jonsson, B. and Tarski, A. (1951 & 1952), Boolean algebras with operators, Part T & II,
Amer. J. Math. 73 & 74, 891-939 & 127-162.

Jouannaud, J.-P. and Kirchner, C. (1991), Solving equations in abstract algebras: A rule-
based survey of unification, in J.-L. Lassez and G. Plotkin (eds), Computational Logic:
Essays in Honor of Alan Robinson, MIT-Press, pp. 257-321.

Joyner Jr., W. H. (1976), Resolution strategies as decision procedures, J. ACM 23(3), 398
417.

Kirchner, C. and Klay, F. (1990), Syntactic theories and unification, in J. C. Mitchell (ed.),
Proc. LICS’90, IEEE Computer Society Press, Philadelphia, pp. 270-277.

Klay, F. (1991), Undecidability properties of syntactic theories, in R. V. Book (ed.), Rewrit-
ing Techniques and Applications: Proc. RTA’91, Vol. 488 of Lecture Notes in Computer
Science, Springer, pp. 136-149.

Ladner, R. E. (1977), The computational complexity of provability in systems of modal
propositional logic, SIAM J. Computing 6(3), 467-480.

BIBLIOGRAPHY 161

Leitsch, A. (1997), The Resolution Calculus, EATCS Texts in Theoretical Computer Science,
Springer.

Massacci, F. (1994), Strongly analytic tableaux for normal modal logics, Proc. CADE-12,
number 814 in Lecture Notes In Artificial Intelligence, Springer, pp. 723-737.

McCune, W. (1994), OTTER 3.0 reference manual and guide, Technical Report ANL-9/4/6,
Argonne National Lab., Argonne, IL.

Mendelson, E. (1987), Introduction to Mathematical Logic, third edn, Wadsworth &
Brooks/Cole, Pacific Grove, California.

Mints, G. (1989), Resolution calculi for modal logics, Amer. Math. Soc. Transl. 143, 1-14.

Mints, G. (1990), Gentzen-type systems and resolution rules. Part I: Propositional logic,
Proc. COLOG-88, Vol. 417 of Lecture Notes in Computer Science, Springer, pp. 198
231.

Mohr, E. (1995), Resolution-based calculi for modal logics, Diplomarbeit, Univ. d. Saarlan-
des, Germany.

Morgan, C. G. (1976), Methods for automated theorem proving in nonclassical logics, IEEE
Trans. Comput. C-25(8), 852-862.

Nivela, P. and Nieuwenhuis, R. (1993), Saturation of first-order (constrained) clauses with
the Saturate system, in C. Kirchner (ed.), Proc. RTA’93, Vol. 690 of Lecture Notes in
Computer Science, Springer, pp. 436—440.

Ohlbach, H. J. (1988a), A Resolution Calculus for Modal Logics, PhD thesis, Univ. Kaisers-
lautern, Germany.

Ohlbach, H. J. (1988b), A resolution calculus for modal logics, in E. Lusk and R. Over-
beek (eds), Proc. CADE’88, Vol. 310 of Lecture Notes in Computer Science, Springer,
pp- 500-516.

Ohlbach, H. J. (1991), Semantics based translation methods for modal logics, J. Logic
Computat. 1(5), 691-746.

Ohlbach, H. J. (1993a), Optimized translation of multi modal logic into predicate logic, in
A. Voronkov (ed.), Proc. LPAR‘93, Vol. 698 of Lecture Notes in Artificial Intelligence,
Springer, pp. 253-264.

Ohlbach, H. J. (1993b), Translation methods for non-classical logics: An overview, Bull.
IGPL 1(1), 69-89.

Ohlbach, H. J., Gabbay, D. and Plaisted, D. (1994), Killer transformations, Research Report
MPI-1-94-226, Max-Planck-Institut fiir Informatik, Saarbriicken.

Ohlbach, H. J. and Schmidt, R. A. (1997), Functional translation and second-order frame
properties of modal logics, J. Logic Computat. 7(5), 581-603. Also available as Research
Report MPI-1-95-2-002, Max-Planck-Institut fir Informatik, Saarbriicken.

162 BIBLIOGRAPHY

Ohlbach, H. J., Schmidt, R. A. and Hustadt, U. (1995), Symbolic arithmetical reasoning with
qualified number restrictions, in A. Borgida, M. Lenzerini, D. Nardi and B. Nebel (eds),
Proc. Intern. Workshop on Description Logics’95, Vol. 07.95 of Rap., Dipartimento di
Informatica e Sistemistica, Univ. degli studia di Roma, Rome, pp. 89-95.

Ohlbach, H. J., Schmidt, R. A. and Hustadt, U. (1996), Translating graded modalities into
predicate logic, in H. Wansing (ed.), Proof Theory of Modal Logic, Vol. 2 of Applied
Logic Series, Kluwer, pp. 253-291. Also available as Research Report MPI-1-95-2-008,
Max-Planck-Institut fiir Informatik, Saarbriicken (May 1995).

Otten, J. and Kreitz, C. (1996), T-string unification: Unifying prefixes in non-classical
proof methods, in P. Miglioli, U. Moscato, D. Mundici and M. Ornaghi (eds), Proc.
TABLEAUX’96, Vol. 1071 of Lecture Notes in Artificial Intelligence, Springer, pp. 244—
260.

Plaisted, D. A. and Greenbaum, S. (1986), A structure-preserving clause form translation,
J. Symbolic Computat. 2, 293-304.

Plotkin, G. (1972), Building-in equational theories, in B. Meltzer and D. Michie (eds),
Machine Intelligence 7, American Elsevier, New York, pp. 73-90.

Prior, A. N. (1968), Egocentric logic, Nous 2, 191-207.

Purdy, W. C. (1996a), Decidability of fluted logic with identity, Notre Dame J. Formal Logic
37(1), 84-104.

Purdy, W. C. (1996b), Fluted formulas and the limits of decidability, J. Symbolic Logic
61(2), 608-620.

Robinson, J. A. (1965), A machine-oriented logic based on the resolution principle, J. ACM
12(1), 23-41.

Rock, G. (1995), Transformations of first-order formulae for automated reasoning, Diplo-
marbeit, Univ. d. Saarlandes, Germany.

Sahlqgvist, H. (1975), Completeness and correspondence in the first and second order se-
mantics for modal logics, in S. Kanger (ed.), Proc. 8rd Scandinavian Logic Symposium,
1973, North-Holland, pp. 110-143.

Schild, K. (1991), A correspondence theory for terminological logics: Preliminary report,
Proc. IJCAI’91, pp. 466-471.

Schmidt, R. A. (1997a), Decidability by resolution for propositional modal logics. Submitted
to J. Automated Reasoning.

Schmidt, R. A. (1997b), Relational grammars for knowledge representation. To appear
in Bottner, M. (ed.), Proc. of the Workshop on Variable-Free Semantics, Fachbereich
Sprach- und Literaturwissenschaft, Univ. Osnabriick.

Schmidt, R. A. (1997c), Resolution is a decision procedure for many propositional modal
logics. To appear in Kracht, M., de Rijke, M., Wansing, H. and Zakharyaschev, M.
(eds), Advances in Modal Logic, CSLI Publications, Stanford.

BIBLIOGRAPHY 163

Schmidt, R. A. (1997d), Resolution is a decision procedure for many propositional modal log-
ics, Research Report MPI-1-97-2-002, Max-Planck-Institut fiir Informatik, Saarbriicken.

Schmidt, R. A. (1998), E-unification for subsystems of S4. To appear in Proc. RTA’98,
Lecture Notes in Computer Science, Springer.

Schmidt-Schau}, M. and Smolka, G. (1991), Attributive concept description with comple-
ments, Artificial Intelligence 48, 1-26.

Schulz, K. U. (1992), Makanin’s algorithm for word equations: Two improvements and
a generalization, in K. U. Schulz (ed.), Word Equations and Related Topics (Proc.
IWWERT’90), Vol. 572 of Lecture Notes in Computer Science, Springer, pp. 85-150.

Simmons, H. (1994), The monotonous elimination of predicate variables, J. Symbolic Com-
putat. 4(1), 23-68.

Sperner, E. (1928), Ein Satz iiber Untermengen einer endlichen Menge, Math. Z. 27, 544—
548.

Stickel, M. E. (1985), Automated deduction by theory resolution, J. Automated Reasoning
1, 333-356.

Szalas, A. (1993), On the correspondence between modal and classical logic: An automated
approach, J. Logic Computat. 3(6), 605—620. Also available as Research Report MPI-
1-92-240, Max-Planck-Institut fiir Informatik, Saarbriicken.

Tseitin, G. S. (1970), On the complexity of derivations in propositional calculus, in A. O.
Slisenko (ed.), Studies in Constructive Mathematics and Mathematical Logic, Part II,
Consultants Bureau, New York, pp. 115-125. Reprint in Siekmann, J. and Wrightson,
G. (eds) (1983), Automation of Reasoning: Classical Papers on Computational Logic,
Vol. 2, Springer, 466—483.

van Benthem, J. (1983), Modal Logic and Classical Logic, Atlantic Heights: Bibliopolis, The
Humanities Press, Napoli.

van Benthem, J. (1984), Correspondence theory, in D. Gabbay and F. Guenther (eds),
Handbook of Philosophical Logic, Vol. 11, Reidel, pp. 167-247.

van Benthem, J. (1993), Beyond accessibility: Functional models for modal logic, in
M. de Rijke (ed.), Diamonds and Defaults, Kluwer.

van der Hoek, W. (1992), On the semantics of graded modalities, J. Appl. Non-Classical
Logics 2(1), 81-123.

van der Hoek, W. and de Rijke, M. (1993a), Counting objects in generalized quantifier
theory, modal logic, and knowledge representation, in J. van der Does and J. van Eijck
(eds), Generalized Quantifiers: Theory and Applications, ILLC, Univ. Amsterdam.

van der Hoek, W. and de Rijke, M. (1993b), Generalized quantifiers and modal logic, J.
Logic, Language and Inform. 2, 19-58.

van der Hoek, W. and de Rijke, M. (1995), Counting objects, J. Logic Computat. 5(3), 325—
345.

164 BIBLIOGRAPHY

Vigano, L. (1997), A Framework for Non-Classical Logics, PhD thesis, Univ. d. Saarlandes,
Germany.

Walther, C. (1987), A Many-Sorted Calculus Based on Resolution and Paramodulation,
Research Notes in Artificial Intelligence, Pitman, London.

Weidenbach, C. (1997), Spass: Version 0.49, J. Automated Reasoning 18, 247-252.

Weidenbach, C., Gaede, B. and Rock, G. (1996), SPASS & FLOTTER, version 0.42, in M. A.
McRobbie and J. K. Slaney (eds), Automated Deduction: CADE-13, Vol. 1104 of Lec-
ture Notes in Artificial Intelligence, Springer, pp. 141-145.

Zamov, N. K. (1989), Modal resolutions, Soviet Math. 33(9), 22-29. Translated from Izv.
Vyssh. Uchebn. Zaved. Mat. 9 (328) (1989) 22-29.

Appendix A

Eliminating second-order
quantification with SCAN

Gabbay and Ohlbach (1992) developed the SCAN algorithm as a general tool for eliminat-
ing second-order quantification, that is particularly useful for doing modal correspondence
theory automatically.! In this thesis we employ SCAN for computing the relational and
functional correspondence properties for modal schemas. The analysis of the computation
of SCAN led to the discovery of axioms, that are ordinarily not first-order definable in the
relational setting, but have first-order functional correspondence properties by the optimised
functional translation method (discussed in Chapter 3).

SCAN reduces existentially quantified second-order sentences to equivalent first-order for-
mulations. Given a second-order sentence the algorithm generates sufficiently many logical
consequences keeping from the resulting set of formulae only those in which no second-order
variables occur. There are three stages that involve: (i) Skolemisation, (ii) C-resolution and
(iii) reverse Skolemisation.

As input SCAN takes second-order formulae of the form

=3P ... 3P, 1,

where P; are existentially quantified predicate variables and 1 is a first-order formula. (SCAN
can also be applied to universally quantified v, because negation will yield an existentially
quantified formula that the algorithm can then manipulate. Negating SCAN’s output pro-
duces the result for universally quantified formulae.) In the first stage, the Skolemisation
stage, SCAN transforms a given existentially quantified second-order formula into clausal
form via negation normal form and Skolemisation.

In the second stage, SCAN performs a special kind of constraint resolution, called C'-
resolution. It generates all and only resolvents and factors with the second-order variables
that are to be eliminated. In the process the algorithm produces equations and inequations.
The calculus is defined by the following two rules plus purity deletion.

CV P(s1,...,8n) DV =P(ty,... . 1t,)
C\/D\/Sl#tl\/...\/sn#tn

C-resolution

P(s1,...,83)V P(t1,... ,t,) VC
P(Sl,... ,Sn)\/CVSlséth...VSn#tn.

C-factoring

!scAN is short for ‘synthesizing correspondence axioms for normal logics’.

165

166 Eliminating second-order quantification with SCAN

The conclusions are referred to as a C-resolvent upon P and a C-factor upon P, respec-
tively. All possible C-resolvents and C-factors upon the predicate variables Pi,... , P, are
generated. When all C-resolvents and C-factors upon a particular literal and the rest of
the clause set have been generated, purity deletion removes all clauses in which this literal
occurs.

If the C-resolution stage terminates this yields a formula in which the specified second-
order variables are eliminated. This formula is equivalent to the second-order formula origi-
nally put into the algorithm. If no clauses remain after purity deletion, then v is a tautology.
And if C-resolution produces the empty clause, then 9 is unsatisfiable.

In the third stage, SCAN takes the subset of the generated clauses remaining after purity
deletion (in which the variables P; have been eliminated successfully), in the case that it is
non-empty, and attempts to reconstruct the quantifiers for the Skolem functions by reversing
Skolemisation. Reversing Skolemisation is not always possible, in particular, it is not, if the
input formula is not first-order definable.

If the input formula is first-order definable then provided SCAN terminates the result
is a first-order equivalent. If the input formula is not first-order definable and stage two
terminates successfully bearing a non-empty set not containing the empty clause then SCAN
produces equivalent second-order formulae in which the specified second-order variables
are eliminated but quantifiers involving functions occur. These typically involve Henkin
quantifiers.

SCAN is not complete for arbitrary second-order formulae. By a complete quantifier elim-
ination algorithm we mean an algorithm that is guaranteed to find the equivalent first-order
formula if there is one. In general, no complete algorithm exists, for otherwise arithmetic
is enumerable. For the particular case of second-order formulae arising from the relational
translation of modal axioms, it is an open problem whether a complete algorithm exists.

Appendix B

Orderings and ordered FE-resolution

B.1 Orderings on terms, atoms, literals and clauses

A (strict) ordering, denoted by <, is an irreflexive and transitive binary relation. A strict
ordering over a set X is total if for any pair of distinct elements z,y € X, either z < y or
y < z. In general, a relation R over a set X is well-founded iff there is no infinite sequence
(z;)ien of distinct elements of X such that for any i € N, (z;11,7;) € R.! In particular,
a strict ordering < over X is well-founded iff there is no infinite descending sequence such
that z1 > z2 > This is the case iff any subset of X has a <-minimal element.

We assume a given well-founded (mostly also total) strict ordering < on the vocabulary.
< is called the precedence. We will give two constructions that lift the precedence to well-
founded strict orderings among compound terms, atoms, literals or clauses with a common
root.

The first construction employs the lexicographic ordering. It defines an ordering on
tuples of fixed length n. Let {(X;, <:)}ieq1,... n} be a finite family of strictly ordered sets.
The lexicographic ordering over this family is the lexicographic combination of the orderings
that is defined to be the product (X7 X ... X X,,, <) ordered as specified by

(xla"' axﬂ) = (yla"' ayn)a

provided (i) 1 <1 y1, or (ii) some k exists such that for any 7 below k, z; = y; and zx <g yk-
A lexicographic ordering is well-founded (total) iff all its component-wise orderings are well-
founded (total). More specifically, lifting the precedence to compound terms requires the
lexicographic order (X", <jex) of the nth power of a strictly ordered set (X, <). Let f be
an n-ary function on terms. f is said to have lezicographic status if </ is defined by:

(s1,---55n) =T (t1,.. ,tn)
if
(i) a permutation 7 exists on {1,... ,n} with (8z(1),--- ,Sx(n)) <lex (tr(1)s--- »tr(n)) and

(ii) for any 4, s; < f(t1,... ,tn)-

'Dershowitz and Jouannaud (1990) say R is terminating.

167

168 Orderings and ordered E-resolution

Since constants are nullary functions they do not have status according to this definition.

The second construction employs the more general concept of a multi-set ordering. The
multi-set ordering will primarily be used for defining an ordering on clauses from a strict
ordering on literals. Remember we regard a clause as being a multi-set of literals. Let X
be a set. A multi-set C over X is given by a function from X to the natural numbers.
Intuitively, for any x € X, C(x) specifies the number of occurrences of z in C. We say,
z is an element of C if C(z) is non-zero. Let C' and D be two multi-sets. Their union
C U D is defined by (C U D)(z) = C(z) + D(z) and their intersection C N D is defined by
(CND)(z) = min(C(z), D(z)). We use the notation

CvD for CUD,
CVL for CU{L},

and for example

C=-AVvBVB for C(-A)=1,C(B)=2and
C(L) = 0, for any other literal L.

A multi-set ordering, written <1, on finite multi-sets over a set X is an extension of a

strict ordering < defined by: C' <y D if C # D and
Vxe C (D(z) < C(z) >TyeD (x<yAC(y) <D(y))),

in words, for any z that occurs more often in C than in D, there is some y that is larger
than z and occurs more often in D than in C. This definition ensures that, using the clause
notation,

DVvCiV...VCy<nuDVC,

if for any 7 € {1,... ,n} we have C; < C. A multi-set ordering <,,; on finite multi-sets is
well-founded (total) iff the underlying ordering < is well-founded (total).

Consider again an n-ary function f on a set of terms strictly ordered by <. f is said to
have multi-set status if </ is an ordering defined by: (s1,...,sn) <7 (t1,... 1) if

{81,... ,Sn} ~mul {tl,. .. ,tn}.

The next step in lifting the precedence < on the vocabulary to a well-founded strict
ordering on the entire Herbrand universe? employs an instance of the concept of a recursive
path ordering. Assume a precedence < and assume each non-nullary function in the voca-
bulary has either lexicographic or multi-set status. A recursive path ordering, written <,
(over a precedence < and the family {(</)}; of orderings) is defined by:

F(81,-- 5 8m) <rpo 9(t1,--- ,tn)
provided one of three cases holds,

(i) for some %, f(s1,..-,5m) =rpo ti,

2the absolutely freely generated ground term algebra,

B.2 Completeness of ground ordered E-resolution 169

(ii) if f < g then s; <rpo g(t1,-.- ,tn), for each j, or
(iii) if f = g then (s1,...,5m) <{po (t1y-e s tm)-

<fpo means (<rpo)/. If each non-nullary function has lexicographic status and 7 is the
identity function then the induced recursive path ordering is called a lexicographic path
ordering and is denoted by <. If each non-nullary function has multi-set status then the
induced recursive path ordering is called a multi-set path ordering and is denoted by <mpo-

The final step is lifting the ordering of the Herbrand universe to the set of literals and
the set of clauses over the Herbrand universe. The ordering on the atom set is defined from
the ordering on the Herbrand universe by a recursive path ordering (either a lexicographic
path ordering of a multi-set path ordering). We let the ordering on literals be given by the
multi-set ordering on a multi-set encoding of literals. Any positive literal L is encoded by
a singleton set { L } and any negative literal by the set {L", L™} with two copies of the
complementary literal of L. The ordering on the set of clauses is then determined by the
multi-set ordering of the ordering on the literal encodings.

When the precedence on the function symbols and the predicate symbols is a well-
founded total strict ordering then so is the ordering on the set of ground clauses.

Orderings on ground expressions (terms, atoms, literals and clauses) lifts to non-ground
expressions by the definition: s < t if for any substitution o, so < to.

B.2 Completeness of ground ordered F-resolution

In this section we prove Theorem 7.1.1.

To begin with we supply some preliminary definitions. A Herbrand model (or interpre-
tation) I is a set of ground atoms and the presence of an atom A in I means A is true in I
and A is false in I. In general, a clause Ly V ...V L, is true in [iff some positive L; = A;
is in I or for some negative literal L; = —A;, A; is not in I. Falsehood is defined dually.
As we are concerned with E-resolution and we will construct an F-model, we relativise the
definition of truth: An atom A is E-satisfiable in I iff I contains some atom FE-equivalent
to A (and similarly for clauses).

The hard direction of the completeness theorem is proving that for any unsatisfiable set S
of ground clauses there is a deduction of the empty clause from S. Bachmair and Ganzinger
(1994, 1997) prove this by constructing a certain Herbrand model Is for any S that is closed
under ground deduction and does not contain the empty clause. The construction of Ig is
such that, any clause C is in S iff it is E-satisfiable in Ig, and this implies any E-unsatisfiable
saturated set S contains a contradiction.

The idea of the construction of the Herbrand model Ig is the following. Suppose S
is a set of ground clauses. Define Is inductively with respect to <, by starting with the
minimal clauses of S, identifying maximal ground atoms and iteratively adding the asso-
ciated smallest equivalent atoms to partial models I forming minimal extensions. This
process is iterated for S\ {C}, and so forth. Because < is admissible and E-compatible,
every E-congruence class A/=p of ground atoms has a smallest element, which we denote
by infL (A/=g).® These will function as representatives in the Ic. Formally, define ¢ and

3When E forms a convergent rewrite system oriented by <, then inf (4/=r) coincides with Ng(A).

170 Orderings and ordered E-resolution

IC by
{inf-(A/=g)} provided (i) A is maximal in C, (ii) infL(A/=g) & I¢, (iii)
€c = C is E-unsatisfiable in I¢, and
0 otherwise
and

Ic=|[{ep|D < C}.

I is intended to be an E-model of the clauses (in S) strictly smaller than C, and ¢¢ is a
minimal extension such that C is F-satisfiable in I U ec. The intended Herbrand model
Ig of S is defined by

Is = J{ec|C € S}.

A clause C for which e¢ is non-empty is called a productive clause. We say C produces
inf(A/=g).
Recall, ground deduction is defined by:

CVAV...VA, C'Vv-A
cvc

provided (i) A; =g ... =g A, =g A, (ii) no atom in C is E-equivalent to

any A;, (iii) every atom in C is strictly smaller than any A; with respect

to <, and (iv) —A is <-maximal in C' V = A.

Ground ordered E-resolution

This inference rule is sound, because the conclusion is a logical consequence of its premises.
The next lemma and theorems prove completeness for ground inference. The proofs are very
similar to the proofs for ordered resolution under the empty theory, and parallel the proofs
found in Bachmair and Ganzinger (1997) for general resolution (Lemma 3.3, Theorem 3.4
and Lemma 5.2). To avoid cluttering we will write ‘true’ when we mean ‘E-satisfiable’ and
‘false’” when we mean ‘E-unsatisfiable’.

Lemma B.2.1 Let S be a set of ground clauses. Any productive clause C' in S is FE-
satisfiable in Ig.

Proof. Since g¢ is non-empty and is contained in Ig, C' is E-satisfiable in Ig. O

Theorem B.2.2 Let S be a saturated set of ground clauses (with respect to the above
ground resolution rule) and the empty clause is not in S. Then Ig is an E-model of S.

Proof. The proof is by contradiction. Because every productive clause in S is true in Ig (by
the lemma), we assume there are non-productive clauses in S that are not true in Ig. Then
there is a smallest such clause. Let C be the smallest non-productive clause in S that is not
true in Ig. Suppose A is the maximal atom in C. We distinguish two cases.

(i) inf5 (A/=E) € Is: Let C = C' vV =A. Suppose D in S produces inf(A/=g). Then
D=D'VA V...V A,,for {A;,... ,A,} the largest set of atoms occurring in D’ that is
included in A/=p. This set is maximal in D/=p with respect to <¥ and every atom in D’

B.2 Completeness of ground ordered E-resolution 171

is strictly smaller than any A; with respect to <. C and D resolve and produce C' VvV D'
which is in S. Evidently, C' V D' < C. We get a contradiction if we show that C' v D' is
false in S. Now, as C is false in Ig, C' is also false in Ig. It remains to prove D’ is false in
Is. By the definition of a productive clause, D is false in Ip. Hence, D’ is false in Ip. This
implies D' is false in Is. For, suppose not. Two situations are possible.

a. Assume D' = D" V B with B maximal in D'. B is smaller than A. Then, since D' is
true in Ig, inf (B/=g) is in Is. Hence there is a clause C that produces infL(B/=g) and
C < D. However, then inf_(B/=g) € Ip and D is true in Ip which contradicts one of the
conditions of D being productive.

b. Assume D' = D" V =B with =B maximal in D’. D’ istrue in Ig impliesinf_ (B/=g) ¢
Is, which in turn implies inf(B/=g) ¢ Ip, hence D is true in Ip. Again, this is a
contradiction.

(ii) inf (A/=g) & Is: No A" E-equivalent to A occurs negatively in C, for otherwise C
is true in Ig. Suppose C' is such that C = C' V A1 V ... V A, and the set {A1,...,A,}
the largest set of atoms occurring in C that is included in A/=pg. A is maximal in the
set {Ay,...,A,}. infL(A/=Eg) is not in I, else inf- (A/=g) € Is which contradicts our
assumption. Now, we prove C is false in I, since then C is true in I U {infL(A/=g)},
and therefore, C is productive which contradicts that infL(A/=g) ¢ Is. We assume C is
true in I and consider two cases.

a. B occurs positively in C' and inf. (B/=pg) € I¢. Hence inf.(B/=pg) € Ig, and both
C'" and C are true in Ig, which is a contradiction.

b. No atom B with inf. (B/=g) € I¢ occurs positively in C’. Suppose C' = C" Vv —-B
and —B is maximal in C'. inf. (B/=g) & I¢. Since C is false in I there is a clause D in S
that produces inf . (B/=g). By assumption, B < A. This implies D < C, and consequently,
inf. (B/=g) € I¢, which is a contradiction. O

Completeness of ground inference without redundancy follows. With redundancy the proof
is more technical.

Theorem B.2.3 Let S be a set of ground clauses and < an admissible ordering on atoms
compatible with E. Let S be saturated up to redundancy with respect to ground ordered
E-resolution. Then, for any atom A and any clause C in S with maximal atom A,

(i) if C produces inf(A/=g) then C is not redundant, and for any clause D in S that
is strictly smaller than C, D is true in I, and

(ii) C is true in Ig.

Proof. Case (i): The proof is by induction determined by the ordering <. Let A be any
atom. Assume for any B < A and any D with maximal atom B the properties (i) and (ii)
hold.

Suppose C' is a clause with maximal atom A and produces inf (A/=pg). First, we prove
C is not redundant. If C' is redundant then either = C or there are n clauses Cy,...,Cy in
S (n > 0) such that C; < C for each 7 and = (C1 A ... A Cp) = C. In the case that = C,
C is a tautology and is true in all models, in particular, also in I¢. This contradicts one of
the conditions that C' is productive. In the alternative case, since C is false in I, one of
the C; is also false in Io. However, according to the definition of I, Cj is true in I¢.

Second, we let D be any clause in S with D < C and show D is true in I by considering
three situations.

172 Orderings and ordered E-resolution

a. The maximal atom of D is strictly smaller than A. By (ii) of the inductive hypothesis
D is true in Ig. This is the case, when 1. B is an atom that occurs positively in D and
inf (B/=p) € Ig, or when 2. no atom of D has its smallest E-equivalent in Ig. In the first
case, inf_ (B/=g) is produced by either D or some clause D' € S smaller than D. In either
situation inf_(B/=pg) € I¢, which implies D is true in I¢. In the second case, every atom
of D occurs negatively therein and no atom of D has its smallest E-equivalent in Io. Hence
D is true in I¢.

b. A occurs in D and D is redundant in S. This means there are clauses D1,... ,D, € S
(n > 0) with D; < D for each i and = (D1 A ... A D,) — D. By the inductive hypothesis
each D; is true in Is. By an argument like the one in a. for D, each D; is also true in I¢.
Therefore, D is true in I¢ (using modus ponens).

c. A occurs in D and D is not redundant in S. We assume D is false in I and derive
a contradiction. A does not occur positively in D. Suppose D = D' V —A. Suppose
C=C"V A V...V A, with the restriction that no atom in C’ is E-equivalent to any A;.
C' v D' is a resolvent of C and D. Inferences with non-redundant clauses in saturated sets
are redundant, and this means, C' V D’ is redundant with respect to S. Then there are
clauses Dq,... ,D, € S (n > 0) with D; < C' vV D' for every i and = (D1 A ... A D) — D.
D' is false in I (since D is false in I and A does not occur positively in D'). C' is false in
I (since C produces A and A does not occur positively in C'). Consequently, one of the D;
must also be false in I¢. But, since D; < C'V D' < D, D; is true in I¢, by the definition
of I, C-

Case (ii): Our goal is to show C is true in Ig, which we do by induction. The inductive
hypothesis is that all D € § strictly smaller than C are true in Ig. If C is redundant in S
then clearly C' is true in Ig, because the clauses smaller than C' that imply C' are all true
in Ig. Also, if C' is productive then it follows easily that C is true in Ig. The difficult part
is proving the result for when C' is both non-redundant and non-productive. Suppose C is
false in I5. Let A be the maximal atom of C.

a. inf(A/=pg) € Is: Then A does not occur positively in C. Assume C = C' V —A.
Suppose D produces inf (A/=g) and D = D' Vv A; V ... V A, such that C' v D' is
the resolvent of C and D. If C' V D’ belongs to S then we obtain a contradiction as in
Theorem B.2.2 (i). The inference of C' V D' is redundant, and hence C' V D’ is redundant
in S. Then, as before, there are clauses D1,...,D, € S (n > 0) with D; < C' vV D’ for
every i and = (D1 A ... A D) = D. C is false in Ig then so is C'. D' is false in Ig.
Therefore, some D; is false in Ig. But, by the inductive hypothesis D; is true in Ig.

b. inf(A/=g) & Is : This means no atom A’ E-equivalent to A occurs negatively in
C and it follows C = C' vV A. C satisfies all the properties of being productive, which
contradicts our assumption. O

The essential property used in both theorems is that, if the subclause D’ of a productive
clause D = D' V A is false in Ip then D’ is false in Is. For the property to hold, it is crucial
that < is compatible with E, and the congruence classes are ordered by <”.

List of figures

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4

7.1
7.2

8.1

Validity in a functional model (W, AF,1). 1
A sample binary relation B e 2
Two functional encodings of R 2
Tllustration of functional correspondence properties. 3
A relational model of R oL 4
The semantics of ¢pand B, L L L Lo 6
The intended semantics of Ku . . o« o v oot i e e e e 8
The matrix term representation of (1.8) and its prefix partitions. 12
The nested prefix partition of (1.8).. Lo o 13
Relational correspondence propertieso L. 18
A sample relation R 21
Four different functional encodingsof R 21
R encoded by a set of ‘most partial’ functions Lo 21
R encoded by the total functionsaand 8o oL 22
Functional correspondence properties. 26
Theory equations. o . i i i e e e e e e e 27
Theory equations (continued). Lo 28
Global functional correspondence properties. 29
A relational model M Lo 42
The maximal functional extension M™ L. 42
A model of AP 3z Iy Vy2y3a30Vys PlayivaysafBya] - - o o v o oo o o 45
‘Optimised’ theory equations. o 52
Encoding a K frameasa Kp frame 58
Case L of NT'. e 63
Syntactic unification rules for basic path logic 83
Ohlbach’s unification rules for Tand 4 90
A sample derivation of S4-unifiers according to Ohlbach’s algorithm 91
Unification rules for the path logics associated with Tand 4 94
A sample derivation of S4-unifiers Lo 96
The variable partition T/6, 109
The prefix partition T'/60; 110
Nested partitioning of 7" 111
aT([sa))UBT([sB]) - - -« v o o e e e 117
A tableaux refutation of (7.11) L L 147
A refutation of (7.11) by R“cgél’vgz NpgTesolution. . ..o 148
The performance of different theorem provers for K,y 155

173

174

LIST OF FIGURES

8.2 The performance for a harder problem set

[]
Index of notation
A B A e 80
Ay AJ=F oo 126
7 132, 134
Qe e e e e et e 120
AF AFR ..o 1, 19, 22
AFG e 22
AFE 24
AF™ 23
AF e 30
Oy By Yy e e e 1,19, 36, 77
g, ﬁi,’yi, 30
QU By et e 4, 46, 77
A e 16
Y I 3, 20, 22, 30, 33, 77
2 115
D e 119
R 1,16
On 0 134
O%) e 134
70 P 7, 58
Dn (11'1 FE) 7, 58
W, 6, 56
O et e 58
CoD, . e 80
C(8),8C e 143
C ettt e e 27,79
card(A) oo 6
O e e 3, 20, 25, 28
... 29
10711 5 2 81
D(@yth) coeeeiiiii 133, 134
Dy 136
L 14, 133, 134
de (special propositional variable) 37
deydeR .. ovvoee e 22
dei .. 22
A e 33
D et e e e 80
Ot e e 1, 16
O (I KE) e 7, 57, 58
On (N KE) i 7, 57, 58
O 6, 55

175

W, 56
LN = P 58
R 16
E (equational theory).............. 12, 88, 89
E (membership relation)............ 7, 57, 59
Es EiS i 14, 137
S T 95
< 126
e 3, 28
B 27
[R 170
P 17
7 114
L (failure) ..o 82
L (false) oo 16
L (undefinedness)coooiiiiiiint 22
Bl e e e 116
0 o 169
inf (A/=E) e 169
T S S 16
= (rewrite relation) 13, 93
IMPL .o 27
X7 25, 27
L 1,17, 23, 56
K (set of constants)...................... 106
B 11, 119
) 2 80
Lis 137
B et 95
e 13, 82, 126, 129, 167
< 126
< 167
% 130, 131
LEX s st ee e 167
<UD - e e 13, 129, 169
Sl ¢ 13
S 139
Mo 17, 56, 59

176

INDEX OF NOTATION

P’Q)

b, q,T,

E
R’_<

COND o Ng?

NE e oo e

1,17, 19, 56

RN RO e e 82
RE S 127
= (rewrite relation) 13, 93
8, S 80, 81, 169
S 10, 105, 121, 141
[SE] e e 78
Sy e e 30, 78
SO e 143
SCO(8) e 144
ST 107
ST(8) et 107
/0 e 108
A 16
O e 11, 80, 82
B 38, 122
K e e e e 90
et 29
T (theory) .. .oouvuiini i 88
T (set of terms)covviiiiiiin.. 85, 106
) Y A 107
() e) 107
T/0 . 108
T e 112
TX K)o 106
b e 78
2 84
0,0 .. 97
B e e 109
O e 108
L 16
A e e 82
N 95
LT 7 14, 78
T T 30
UQPyVQ + v v v e vevennnetnnetosetssensssonannnas 78
7 116
X 3, 41, 46, 79
1 4,41, 46
Vi 16
VU e ettt e e e e e e 78
W 1,17, 23, 56
L 24
WL 22
Y 57
X, X e 106
D O 115
LyUYyZyeer oeeemnmne e, 1,17, 30, 77
PP 4,10
Y 7, 56, 57

Index of schemas, rules and logics

inference rules

Binary resolution..................... 80
Binary theory resolution.............. 88
C-Hfactoring..........c.ooooiiiiiat. 165
C-resolution......................... 165
Condensing.........cocveveeieieneenan. 81
Deduction ool 80
Deletion ...t 80
Deletion of literals................... 144
Factoringooooii 80, 88
Ground ordered E-resolution ... 126, 170
Normalisation 80, 127
Normalisation under £ 88
Ordered E-resolution................ 127
Replacement of pairs of variables 144
Subsumption deletion................. 81

miscellaneous tags

(A), (B) v 10, 105
NA N8 e 59, 60
PLl-PT i, 69
P8P12. .o 73, 74
T1, T2 oo 78

modal logics

K 8,11, 15-17, 36, 37, 77, 113, 122, 140,

149, 151
KS oo 5,16, 17, 39, 53
KMD)S ..o 47, 48, 52
KB .o 29
KD4, 8, 11, 15, 17, 36, 37, 113, 122, 140,

149, 151
KDB ..o 29
KDJ ..o 11, 113, 122, 141, 149
KDUS oo 39
KF oo 53
Kfooooiiiiii . 103, 125, 135, 142, 153
KIM oo 52
KG..oo i 50
KM....... 5,17, 30, 46, 51, 52, 151, 153
Ky eeeeennnn 15, 16, 77, 113, 122, 151
2 S 16, 135
KT........ 11, 14, 94, 113, 122, 135, 149
KT oo, 16, 17

177

S4 ...11, 14, 15, 17, 90, 91, 96, 103, 114,
122, 125, 135, 141, 143, 149, 153

-normal form........ol 93
unification/mutation for ~ 93
S5....11,17, 84, 113, 122, 132, 141, 152
resolution /unification for ~......... 84

modal schemas and rules

A1-A12 .o 56
B 16, 18, 26, 27
D..........oool. 16, 18, 25-27, 29
Dl 18, 26, 27
F o 52
4o 3, 16, 18, 26, 27, 29, 135

mutation for ~..................... 94

rewrite rule for ~.......... 13, 93, 129

unification for ~ 89
42 . 18, 26, 27
5 T 18, 26, 27
Funct.........coooiiiiiii... 18, 26, 28
G 18, 26, 27, 50
Koo 16, 58
M............... 5, 17, 29, 30, 46, 50, 52
Mk..oooovoieiiii.... 18, 26, 28, 49
MP (modus ponens).................. 16
N (necessitation)..................... 16
NI-N8 ..o 58, 59
T.......... 3, 16, 18, 26, 27, 29, 101, 135

mutation for ~......... 94

rewrite rule for ~.......... 13,93, 129

unification for ~ 89
W dens.........oooiiiiiin. 18, 26, 28

rewrite rules
forT, 4., 13, 93, 129
for identity, associativity 13, 93, 129
unification rules

Check .o 90
Coalesce ..oovveiii i 83, 90
Conflict 83
Decompose.................... 83, 90, 94

178 INDEX OF SCHEMAS, RULES AND LOGICS

Delete......cooeviiiiiiiit 83, 90, 94
Eliminate............... ... 83, 90
Tdentity - .. oovieei 90
Lazy paramodulation................. 89
Mutate-4.......coooeiiiiiii it 94
Mutate-T'......covviiieiniiinen.. 94
Path-separation 90
Splitting.oovvevii 90

Variable Eliminate.................... 94

Subject index

accessibility
function ...l 20, 23
relation........... ...l 17
adjacent ...t 145
admissible
formula.........l 65
ordering..........oooiiiiiiiiiiiiia. 126
substitution............ oL 82, 93
antichainl 114
PropPerty .. cvvvieeeeiennnnenn.. 114, 118
application, functional ~............ 3, 20, 33
associativity.........ooeiiiia 8, 28, 31, &9
rewrite rule for ~............ 13, 93, 129
unification.........., 89
local ~ .. oo 25
atomic, basic non-optimised path formula . 36
atomicity ... 76
axiom, modal ~.......o ool 16
basic
modal logic..............o il 15
pathlogic................. ... 8, 77,79
Bernays-Schonfinkel class 152
binary
resolution ...t 80
theory resolution 88
block... ..o 106, 108
canonical modal logic..................... 17
clause ... 80, 168
complementary ~ 80
condensation of a ~/set of ~s........ 81
condensed ~............ ...l 11, 81
log. equiv./impl. among ~s........... 80
most general unifier of a ~ 80
productive ~ L 170
redundant ~..................... 81, 127
variable indecomposable/split ~ 106
variable partitionof a ~............. 105
variant ~s/sets of ~s...........o 80
collapse-free equational theory 92
collapsing equation........................ 92
compatible, F-~ ordering 13, 126
complementary literal/clause.............. 80

179

complete

normal modal logic................... 17

quantifier elimination algorithm 166

resolution procedure........ 81, 127, 170

set of unification rules................ 95

translation ... L 19

w.r.t. a class of frames................ 17
composability, local/global ~........... 2,25
condensation

of a (set of) clause(s) 81

SEeMAaNtiC ~...vviiiii i 131
condensed

clause... ..o 11, 81

setof terms L. 107
condensing ...l 11, 81
confluenceiiiil.. 18
constant

functional ~. o oL 7

predicate ~ ...l 106
correspondence

functional ~ theory 2, 25, 48

relational ~ theory 17,19
dead-end predicate..................oo.t 22
defining

function set ...l 1,20

PATt .o e 132
definition..........coooiiiiiiiiiiit 14, 132
definitional form................. 13, 132, 134

modal ~...... ... 14
deletion

strategy ... 81

subsumption ~...... o oL 81

unification rule 83, 94
dense, weakly ~..... ool 18
depth, term ~ol 84
derivability...............o.o it 80
diagram, semantic ~ method............. 146
dual

literalooveii 80

modal operator....................... 16
E (equational theory).............. 12, 88, 89

-model ... 88

180 SUBJECT INDEX
-satisfiable......... L. 88 translation 1, 3, 15, 21, 29, 30
-unification............. 87 variable............. 30, 77
—unifier ... 88
—unsatisfiable .. oo 88 generalised quantifiers..................... 55
normalisation under ~................ 88 generated model property................. 34
ordered ~-resolution 12, 125, 126 global

elementary, class of frames................ 17 composability 2,2

equation ~isation............o..ooiilat 24, 25
collapsing ~ouieiiiii 92 graded/numerical modality 6, 55
shallow ~/~al theory................. 92 ')

equivalent, logically ~ clauses............. 80 Herbrand model/interpretation........... 169

essentially second-order 17 . .

. identity

euchdeanngis 1 é? function 3

xtended, Skolemisation...................37 T MR oesrrrosnenosnssnes st

szgnsion’ functional ~.................... 32 (global right) ~............. 8,28, 31, 89

’ local (right) ~.....cooviiiiiiiit 25

faACtOT ..ot e 80 rewrite rule for ~............ 13,93, 129

£ : unification under (right) ~........... 89

ACtoringvoevi i 80, 88 .

FAIT + vttt 81 TABE v e D 20

false . oo 16 }ncomplete normal modal logic ... 17

finitary E-unification...................... 89 indecomposable

first-order definable 17 PrefiXt /v 109

fluted logic......covenenii i 37 . variable ~ ... 106, 108

form %nput set R E LT R TEPETEERERETE 10, 81
definitional ~ - . - 132 %nterpretatlon, Herbrand N 169
solved ~. ..o 90 inverse, local (right) ~............c...o.. 25

formula o (B D)€ qUal .o 101
basic non-optimised path ~........... 36 k-equal 85
modal ~............ 16 Kripke semantics.................coooon.... 17
ordered first-order ~.................. 37
path ~ ... 79 lazy paramodulation 89

frame length.................. 84
KE-r~ e 59 lexicographic
functional ~................. 22 ordering.........cooiiiiiiiiiiia.. 167
maximal functional ~.............. 2,23 path ordering........................ 169
model based ona ~.................. 17 Status ..o 167
relational ~...................... 17 BFEING . .ot e 125
validity ina ~...................... 17 lemmaooooiiiiiiii 127

function linearcoooiiii i 78
accessibility ~ ... 20, 23 literal, complementary/dual ~ 80
defining ~set............. ...l 1, 20 local
identity ~ ... 3 (right) identity 25

functional associativity ...ovv v 25
application 3, 20, 33 composabilityooia... 2,25
constant ... 7
correspondence theory.......... 2, 25, 48 maximal functional model/frame....2, 23, 41
extension..................o ool 32 McKinsey’s schema, 17
frame.........c.o i 22 membership operator...................... 58
model............. L. 1,23 modal
model based on relat. model.......... 23 AXTOM oot 16
optimised ~ translation .. 1, 3, 24, 41, 46 basic ~ 10giCcovii i 15
semantics........coveiunn... 1,15, 19, 41 definitional form................. 14, 134
term ..o 30 formula...... L. 16

SUBJECT INDEX 181
logic. ... 15 ordered
normal ~ logic.............l 16 E-resolution 12, 125, 126
rule ..o 16 first-order formula................ ... 37
schemacooooiiiiiiiiii 16 prefix ~ ..ol 14, 136, 137
serial ~ logic..........ooiiiiit 1,15 orderingooiiiiiiiiiii i 167
theorem il 17 admissible ~ o ool 126
model E-compatible ~ 13, 126
K B oo e 59 lexicographic ~...................... 167
basedon aframe..................... 17 lexicographic path ~ 169
E-[T-rm i 88 multi-set ~ ...l 168
functional ~ oL 1, 23 multi-set path ~ 169
functional ~ based on relat. model....23 recursive path ~ 168
generated ~ property................. 34 strict ...l 167
Herbrand ~ ..o, 169 subterm ~ol 137
maximal functional ~............. 23, 41 well-founded ~........... ...l 167
relational ~........ ... ool 17)
relational ~ based on funct. model. . . .24 paramodulation..................ool 70
MOAUS PONENS. ... vvueeeeeeeeaans 16 lazy ~ooeii 89
monadic classo 129 partition....... ... ool 108
most general subitem unifier 80 prefix ~......o. 12,109
multi-setooiii 168 variable ~..................... 105, 108
ordering. ..., 168 patching, patched frame................... 24
path Ordering 169 path e 30, 34, 36, 78
status......ooiiiii i 168 basic ~ logic................... 8,717, 79
mMubtation.o 92 forrpula """""""""""""""" 79
FOT oo 94 logic ... 8, 77, 79
tor T 94 non-optimised basic ~ logic/formula. .35
FOF S oo 93 normal forms of ~s.................. 129
""""""""""""""""" unification.......................... . 82
necessitation........... ... ool 16 pola?lty """"""" STy 133
negation normal form 57 possible world semantics 17
nominals 76 precedence.............oiiiiiiiin 126, 167
non-op t1rn1sed """""""""""""""" predicate constant 106
basic ~ path logic/formula 35 PrefixX. ..o 5, 35
normal Inaterm.......covvvieieennnn... 35, 78
~ forms of path theories............. 129 1ndecomp9sable """ AR 109
modal logic 16 of a functional term in a clause/set ... 78
Sfms FOTI oo 93 of avariable................. 35
LT orderedoiiiinn... 14, 136, 137
unique ~ forms...........l 129 .
L partition..............oooiin 12, 109
normalisation 88, 127 o
for 4 9. 93 stability ...l 5, 34
for T+4 """""""""""""" ’ 03 stable..... il 35, 78
OF 2 MR presentation........o i 30
for T 9, 93
produce an atom.............ciiiiinn... 170
under E/l 88 .
. productive clausecoiiiia.... 170
normalising strategy 81
numerical operator........................ 58 quantifier exchange operator............ 3, 46
OCCUITENCE . . oo eiee e e e e e e 132 recursive path ordering................... 168
operator redundancyoooiiiit 12, 127
membership ~............. ...l 58 saturated up to ~........... ... 127
numerical ~........ ..o oL 58 redundant
optimised functional translation..1, 3, 24, 41, clause ...l 81, 127
46 inferencel 127

182 SUBJECT INDEX
refined subitem resolution 10, 12, 125 extended ~....... ... il 37
relation TEVEISE N e tveeeeenenaeenenns 50, 165
accessibility ~........ol 17 solved
imageundera ~..........L. 20 form......... il 90, 95
relational tree~form ...l 83
correspondence theory 17, 19 variable o 95
frame..........c oo 17 sound
model 17 resolution procedure............. 81, 170
model based on funct. model 24 set of unification rules................ 95
Semanticst 1,15 translationol 19
translation................ ... 1,17 w.r.t. a class of frames................ 17
Tenaming...........ooueiiionaiaaan... 13, 132 split
resolution oL, 80 clause ... 106
binary ~ o 80 set of termsl 108
binary theory ~.............., 88 stability
O 165 prefix ~. ..o 5, 34, 78
complete ~ procedure....... 81, 127, 170 under application of substitutions ... 126
decision procedure................... 105 status
for S5 .o 84 lexicographic ~...........ol 167
ordered F-~ 12, 125, 126 multi-set ~ ... 168
principle.......... i 80 strategy
procedurecoviiiiiiiiiiiien.. 81 deletion ~ ...l 81
refined ~ol 10, 12, 125 normalising ~ oL 81
theory ~ ... oo 87 strict ordering il 167
unrefined/unrestricted ~.......... 10, 81 substitution
reverse Skolemisation................. 50, 165 admissible ~....... ...l 82, 93
rewrite rules............ 13, 93, 129 stable under application of ~s....... 126
right SubSUmMe 81
(global) ~ identity.......... 8, 28, 31, 89 subsumption deletion 81
local ~ identity................ 25 subterm ordering.................. 137
local ~ inverse........................ 25 suffix
rule, modal ~........ oL 19 in a term/of a subterm 78
set of ~es ... 107
satisfiable, E-/T-~o, 88 syntactic theory............... . il 92
saturated up to redundancy.............. 127
saturation.................oooll 12, 105 T (theory) «..ovuveiinii i 88
SCAN . ottt aens 5, 25, 49, 60, 165 -model ... 88
schema, modal ~......... 16 -satisfiable.........o il 88
semantic —unifier ... 88
diagram method..................... 146 -unsatisfiablel 88
condensationc..oiii.... 131 TBOX oo 76
semantics term
functional ~................ 1, 15, 19, 41 depth ... 84
Kripke/possible world ~.............. 17 functional ~...... il 30
relational ~........ 1,15 (k,D)-equal ~......... ...l 101
serial kequal ~l 85
modal logic..........coiiiiilt 1,15 prefixinan~.........o ool 35, 78
relation..............oooiiiiit 17 prefix indecomp. set of ~s........... 109
weakly ~. ..o 60 prefix stable ~/set of ~s.............. 35
set-world ... i 63 splitset of ~s ...l 108
shallow equation/equational theory........ 92 suffix in a ~/of asub~............... 78
B2 e ottt e e 105 variable indecomposable set of ~s ... 108
Skolemisation world ~ ..o 30

SUBJECT INDEX 183
theorem, modal ~.............. 17 in a relational model.................. 17
theory ... 30 valuation............ ... L 17, 23
binary ~ resolution................... 88 variable
collapse-free equational ~............. 92 functional ~............ ... 30, 77
resolutionl 87 indecomposable................. 106, 108
shallow ~ ... i 92 partition..............., 105, 108
Syntactic ~ ... 92 prefixof a ~......oooiiilLL 35
unification.............. 88 prefix stable for ~s................... 78
total solved/unsolved ~.................... 95
relation. ..o 17 world ~ ... 30
strict ordering.............., 167 variant clauses/sets of clauses............. 80
theory resolution 88
translation weakly
functional ~.......... 1’ 3’ 15’ 21’ 29’ 30 dense......oooiiiiiiiii i 18
optimised functional ~....... 1, 3, 41’ 46 serial ... 60
relational ~ 1, 17 well-foundedl 167
sound and complete N~ 19 world ..o 17
tree St~ 63
K - 37 BOITIIL .o 30
solved fOrm . v nnn oo 83 variable ol 30
truth.......ooo 16, 56
in a functional model 23
in a Herbrand model 169
in a relational model.................. 17
undefined Ll 22
unification
completeness, soundness of ~......... 95
B 87
ford. 89
for T .o 89
for S4 oo 93
for S5 .. 84
in basic path logic.................... 82
syntactic ~ ... oLl 82, 83
theory ~ ... 88
under (right) identity................. 89
under associativity 89
unifier
E-[T-~ . i 88
S 89
most general ~ ool 80
S o 89
T e 88, 89
uniform logic............... L 76
unique normal forms..................... 129
unrefined /unrestricted resolution 10, 81
unsatisfiable, E-/T-~ 88
unsolved variable............... 95
validity
inaframe...............ooiit 17

in a functional model 23

