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Preface

This work came into being during my three years’ stay at the German Research
Center of Artificial Intelligence (DFKI) in Saarbriicken. The main motivation of my
work was to bring together three fields of Computer Science which are only appar-
ently unrelated: Knowledge Representation, propositional logics of programs, and
relational databases. Knowledge Representation as an important subfield of artificial
intelligence, however, was definitely the focus of my attention: I did not consider
the remaining two fields in their own right, but rather studied them from a Knowl-
edge Representation point of view. This biased perspective does make sense in that
Knowledge Representation is quite a new field compared to the other two, so that
one can hope research in Knowledge Representation may benefit from such a per-
spective. In fact, this hope came fully true. This is because the connection between
Knowledge Representation and one of the two other fields is as close as it might
possibly be: Standard Knowledge Representation languages, known as description
logics, actually turned out to be just notational variants of well-known propositional
logics of programs. This close connection made it possible to solve some important
open problems in Knowledge Representation: One problem which could be clarified
in this way concerns the relative expressive power of these Knowledge Representa-
tion languages. Although this issue should be placed at the very heart of research in
Knowledge Representation, it was previously hardly investigated. A correspondence
with specific propositional logics of programs yields nontrivial results in this respect.
The same applies to sound and complete axiomatizations and inference algorithms,
particularly for relatively powerful description logics. It is perhaps most interesting
that in the same way it is possible to tackle a fundamental open problem in descrip-
tion logics: It is the problem of recursion, especially the problem of its meaning and
expressive power and how it is to be dealt with algorithmically. Again, nontrivial
results can be achieved by merely establishing an adequate correspondence.

These correspondences give us a host of new and interesting results. Among others,
they tell us that inferences in many description logics are decidable, that is, they
can be computed at least in principle. These results do not, however, tell us how
to deal with such languages efficiently. On the contrary, a precise investigation
of the exact computational complexity has shown that unrestricted reasoning in
description logics is inherently intractable. So the question arises whether it is yet
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possible to single out a specific subset of inferences that cannot only be computed
efficiently, but can also be used in practice. It has turned out that one way to enable
efficiency is to restrict the admissible structure of knowledge bases in a way that
they correspond to what is usually called a database. It is exactly this restriction
that guarantees tractability. It does so even for the most powerful description logic
of the literature, whose inferences are known to be undecidable for the unrestricted
case. This makes the relevant Knowledge Representation language an interesting
alternative to traditional database query languages: Compared to traditional query
languages, this description logic is restricted in its expressive power, but is also
tractable. A more or less direct consequence of this tractability result concerns
reasoning in exactly the same powerful description logic that we investigated as
a database query language, but in a more traditional sense. The only restriction
imposed here is the existence of at least one domain-closure axiom. The result then
states that this restriction alone makes the originally undecidable inferences co-NP-
complete (and thus decidable). Thus decidability can be gained just in return for a
simple domain-closure axiom. Requiring the existence of a domain-closure axiom is
to many applications no essential restriction at all.

Statements

The Introduction summarizes the main results of [Schild, 1991a]. Chapter 2 is based
on [Schild, 1993b] and [Schild, 1994a]. Preliminary results of Chapter 3 and 4 were
presented in [Schild, 1994b, 1994¢,1995].
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Zusammenfassung

Die vorliegende Arbeit beschiaftigt sich damit, die Ausdrucksfihigkeit von Be-
schreibungslogiken so zu erhohen, dafl diese fiir praktische Zwecke einsetzbar werden.
Gleichzeitig soll jedoch die Berechnungskomplexitét, die selbst ausdrucksschwachen
Beschreibungslogiken inharent ist, vermieden werden.

Beschreibungslogiken (auch terminologische Logiken genannt) haben sich in den letz-
ten 20 Jahren innerhalb der Kiinstlichen Intelligenz als einer der wichtigsten Forma-
lismen zur Représentation von Wissen durchgesetzt. Diese Art von Logiken wird zur
formalen Spezifikation von Wissenreprasentationssystemen benutzt, die in der Tra-
dition des legendiren Systems KL-ONE stehen [Brachman and Schmolze, 1985]. Die
Spezifikation mittels einer Logik erlaubt es, sowohl die Leistungen eines Systems als
auch die Bedeutung des abgespeicherten Wissens unabhangig von den in der kon-
kreten Implementierung verwendeten Algorithmen zu charakterisieren. Erst dadurch
werden Systeme vergleichbar und Wissensbasen wiederverwendbar.

Wissensreprasentationssysteme in der Tradition von KL-ONE unterstiitzen die Defi-
nition von Begriffen und deren Beziehungen zueinander. Begriffe werden als intensio-
nal beschriebene Mengen von Objekten und Beziehungen als zweistellige Relationen
zwischen Objekten aufgefaBt. Die definierten Begriffe werden in einer Subsumptions-
hierarchie organisiert. Beim Aufbau dieser Hierarchie werden nicht nur die explizit
angegebenen Subsumptionsbeziehungen beriicksichtigt, sondern auch jene, die in den
gegebenen Definitionen nur implizit vorhanden sind und daher vom System erschlos-
sen werden miissen. Dies ist insbesondere beim Aufbau groferer Begriffshierarchien
von Bedeutung, da der Mensch oft nicht mehr in der Lage ist, das Zusammenspiel vie-
ler einzelner Definitionen zu durchschauen. Mit Hilfe einer solchen Begriffshierarchie
kann dann die eigentliche Anwendung sehr einfach repréasentiert werden.

Kapitel 1 der vorliegenden Arbeit gibt eine detaillierte Ubersicht iiber die Entwick-
lung dieses Teilgebietes der Wissensreprasentation. An dieser Stelle soll es geniigen
zu erwiahnen, daf seit dem Abschlufl des KiL.-ONE-Projektes eine Vielzahl weiterer
Systeme entwickelt wurden, wobei sich zumindest eines dieser Systeme in der indu-

striellen GroBanwendung bewihrt hat [Wright et al., 1993).

Trotz dieses Erfolges gibt es noch einige ungelste Probleme in diesem Bereich. Eines
der wichtigsten betrifft die addquate Behandlung von Rekursion. Rekursion ist ein
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grundlegendes Ausdrucksmittel fiir Definitionen, nicht nur fiir Beschreibungslogiken.
Dennoch ist es weder in KL-ONE noch in den Nachfolgersystemen méglich, Definitio-
nen rekursiv zu formulieren. Hierfiir gibt es im wesentlichen zweierlei Griinde. Erstens
war sehr lange unklar, wie eine addquate Semantik fiir Rekursion in diesem speziellen
Fall auszusehen hat. Bei den tiblicherweise fiir Rekursion verwendeten kleinsten und
groBten Fixpunktsemantiken stellt sich selbstverstandlich die Frage, welche von die-
sen fiir Beschreibungslogiken adiquat ist [Nebel, 1990a, 1991]. Dariiber hinaus war
es lange Zeit unklar, wie diese semantischen Varianten der Rekursion in Beschrei-
bungslogiken algorithmisch zu behandeln sind. Algorithmen, die sowohl korrekt als
auch vollstandig sind, wurden bisher lediglich fiir die ausdrucksschwéchste aller Be-

schreibungslogiken gefunden [Baader, 1990a].

Kapitel 2 ist diesen offenen Fragen gewidmet. Rekursion wird dabei im Kontext
einer Beschreibungslogik betrachtet, die heute als Standardsprache in ithrem Bereich
gilt. Es handelt sich um die von Schmidt-Schauf und Smolka [1991] eingefiihrte Be-
schreibungslogik ALC. Rekursion wird in dieser Sprache in ihrer Allgemeinheit be-
trachtet, lediglich die auch in anderen Bereichen iibliche Beschrankung der formalen
Monotonie wird vorausgesetzt. Diese Beschrankung gewahrleistet die Sinnhaftigkeit
rekursiver Definitionen.

Die Ergebnisse meiner in Kapitel 2 durchgefiihrten Untersuchungen kénnen wie folgt
zusammengefalit werden: Zum einem wird die langandauerende Debatte unter Be-
schreibungslogikern, welche der verschiedenen Fixpunktsemantiken adaquat fir Re-
kursion ist, geklart. Diese Klarung wird durch eine ganaue Analyse dessen erreicht,
was die verschiedenen Fixpunktsemantiken auszudriicken vermégen. Bei dieser Ana-
lyse sind reguldre Ausdriicke iiber Beziehungen grundlegend, also beispielsweise der
transitive Abschluf} einer Beziehung. Ein Ergebnis dieser Analyse ist, daff im Falle
der Standardsprache ALC beide Fixpunktsemantiken — gegebenenfalls koexistierend
— bendtigt werden, um alle zuldssigen reguliren Ausdriicke definieren zu kénnen. In
diesem Sinne relativiert meine Analyse diejenige von Baader [1991], der eine dhnliche
Analyse fiir die schwichste aller Beschreibungslogiken durchfithrte. Baader kam zu
dem Ergebnis, daf in der von ihm betrachteten Sprache die kleinste Fixpunksemantik
fiir sich allein genommen bereits fiir diese Zwecke ausreicht.

Andererseits zeigt meine Analyse auch, dafl beide Fixpunktsemantiken Ausdriicke zu
definieren in der Lage sind, die iiber reguldre hinausgehen. Damit konnte mit Hilfe
von reguldren Ausdriicken eine echle untere Schranke fiir die Ausdrucksmachtigkeit
von Rekursion in ALC gefunden werden. Diese echte untere Schranke konnte auf
alle zuléssigen w-reguléaren Ausdriicke erweitert werden. Diese unteren Schranken der
Ausdrucksméachtigkeit von Rekursion in ALC stellen die ersten bewiesenen echten
unteren Schranken im Bereich der Beschreibungslogiken dar.

Meine gesamte Analyse basiert auf der Beobachtung, dafl zumindest fir ALC die
verschiedenen semantischen Varianten der Rekursion mit Hilfe einer speziellen Mo-
dallogik genau charakterisiert werden kénnen. Es handelt sich um den sogennanten
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propositionalen p-Kalkil. Der propositionale p-Kalkiil wurde von Pratt [1981] und
Kozen [1983] zum SchlieBen iiber Programmschemata nebenléufiger Programme vor-
geschlagen und hat sich inzwischen zu einem Standard im Bereich der automatischen
Programmverifikation entwickelt. Es besteht tatsachlich ein sehr enger Zusammen-
hang zwischen Rekursion in ALC und dem propositionalen p-Kalkiil, was sich da-
durch ausdriickt, daBl es eine Eins-zu-Fins Abbildung gibt. Diese Beobachtung ist
eine Erweiterung der grundlegenden Korrespondenz zwischen Beschreibungslogiken
und propositionalen Modallogiken, die in [Schild, 1991a] beschrieben wird.

Fir den propositionalen p-Kalkil wurden korrekte und vollstdndige Algorithmen
erfolgreich entwickelt, beispielsweise von Vardi und Wolper [1984]. Aufgrund der
erwiahnten Eins-zu-eins-Korrespondenz kénnen diese Algorithmen selbstverstandlich
auch fiir die Behandlung der verschiedenen semantischen Varianten rekursiver Defi-
nitionen in ALC verwendet werden.

Die in Kapitel 2 prisentierten Ergebnisse wurden bereits in [Schild, 1994a] verdffent-
licht.

Kapitel 3 behandelt die Rekursion in einer Beschreibungslogik, die als universell
bezeichnet werden kann, da sie alle Sprachmittel traditioneller Beschreibungslogiken
vereint. Es handelt sich um die von Patel-Schneider [1987] eingefiihrte Referenzspra-
che Y. Zum ersten Mal in der Literatur terminologischer Logiken wird hier nicht
nur die rekursive Definition von Begriffen, sondern auch von Beziehungen betrach-
tet. Die erforderliche Verallgemeinerung der in Kapitel 2 eingefithrten semantischen
Grundlagen ist mit keinerlei Schwierigkeiten verbunden. Die Ausdrucksfahigkeit re-
kursiver Definitionen in ¢ wird exemplarisch verdeutlicht, indem gezeigt wird, daf3
Begriffe wie azyklische Graphen, Baume, balancierte Baume, sowie erfiillbare Und-
Oder-Graphen einfach und elegant definiert werden kénnen. Allerdings mufl diese
zusatzliche Ausdrucksfahigkeit damit erkauft werden, dall eine algorithmische Be-
handlung nicht mehr gleichzeitig korrekt und vollstandig sein kann. Die zusdtzliche
Ausdrucksfahigkeit resultiert mit anderen Worten in der Unentscheidbarkeit der Sy-
steminferenzen.

Kapitel 4 behandelt die Frage, unter welchen Bedingungen Systeminferenzen in-
nerhalb dieses sehr ausdrucksstarken Rahmens dennoch effizient behandelt werden
konnen. Auf den ersten Blick scheint dieses Unterfangen im Widerspruch zu der
generellen Unentscheidbarkeit der Systeminferenzen zu stehen. Eine Moglichkeit,
diesen Wiederspruch aufzulésen, ist, die zuldssige Struktur von Wissensbasen ein-
zuschranken. Eine naheliegende Finschrankung ist es beispielsweise, keinerlei un-
vollstandiges Wissen zu erlauben, so da die zuldssigen Wissensbasen sich auf das
beschranken, was man traditionell als Datenbank bezeichnet.

Eines der wichtigsten Ergebnisse der vorliegenden Arbeit ist, daB diese Einschrankung
es tatsachlich ermdglicht, alle Systeminferenzen in polynomialer Zeit zu ziehen, wobei
sich das entsprechende Problem auch als vollstandig fiir die Klasse P herausstellt.
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Aus beschreibungslogischer Sicht ist dieses Ergebnis von grofler Bedeutung, da es
sich um das erste wirkliche Polynomialzeitergebnis handelt. Alle anderen Ergebnisse
dieser Art setzen eine kiinstliche Vorverarbeitung der gegebenen Begriffshierarchie
voraus, die diese méglicherweise exponentiell vergroBert [Levesque and Brachman,
1987, Donini et al., 1991]. Zudem gelten diese Resultate lediglich fiir Sprachen, deren
Ausdrucksfahigkeit im Vergleich zu der von mir betrachteten Sprache minimal ist.

Aus der Sicht traditioneller Beschreibungslogiken ist eine relativ einfach zu beweisen-
de Konsequenz dieses Polynomialzeitergebnisses besonders interessant. Diese besagt,
daB die iblichen Inferenzen in der universellen Beschreibungslogik ¢/ mit Rekursion
lediglich durch das Hinzufiigen eines speziellen Axiomes co-NP-vollstandig und so-
mit entscheidbar werden. Dieses Axiom muf lediglich die in Betracht zu ziehenden
Objekte auf eine vorgegebene endliche Menge beschrianken. Hierbei ist zu beachten,
dafB in vielen Anwendungen eine solche Menge ohnehin vorgegeben ist.

Aus Sicht der Datenbanktheorie fithrt das hier erzielte Polynomialzeitresultat eine
neue Anfrage- und Schemasprache fir Datenbanken ein, die gleichzeitig komforta-
bel und in polynomialer Zeit auswertbar ist. “Polynomial auswertbar” bezieht sich
in diesem Zusammenhang auf die kombinierte Komplexitil und nicht etwa auf den
wesentlich schwicheren Begriff der Datenkomplexitit [Vardi, 1982]. Diese neue Anfra-
gesprache deckt dabei (wie fast alle traditionellen Anfragesprachen) nicht alle theore-
tisch moglichen polynomialen Anfragen ab, ist jedoch strikt méchtiger als der binére
Relationenkalkiil.

Aus Datenbanksicht stellt sich natiirlich die Frage, ob das vorgestellte Resultat
in Hinsicht auf die fiir Datenbanken unerlafilichen unbekannten Werte erweiterbar
ist. Leider stellt sich heraus, dafl dies nicht der Fall ist, da das mit diesen unbe-
kannten Werten darstellbare unvollstandige Wissen bereits ausreicht, um die co-NP-
Vollstandigkeit der Systeminferenzen zu verursachen. Allerdings ist es mir gelungen,
fir diesen Fall einen polynomialen, approximativen Algorithmus zu entwickeln, der
zwar immer korrekt, aber nur dann vollstandig ist, wenn kein Wert unbekannt ist.

Kapitel 5 schliefllich fafit die gesamte Arbeit ausfiihrlich zusammen und diskutiert
ihre wichtigsten Resultate.
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Chapter 1

Introduction

This introduction is not only to trace out the line of research that led to the present
thesis, but also to make explicit those hypotheses which are presupposed without
further analysis.

1.1 The Knowledge Representation Hypothesis

One of the key assumptions of research in artificial intelligence is that the simulation
of intelligent behavior is not possible without vast amounts of knowledge. It was
Smith [1982] who probably delineated this hypothesis best:

Any mechanically embodied intelligent process will be comprised of struc-
tural ingredients that a) we as external observers naturally take to rep-
resent a propositional account of the knowledge that the overall process
exhibits, and b) independent of such external semantical attribution, play
a formal but causal and essential role in engendering the behavior that
manifests that knowledge.

This hypothesis explains the outstanding role of Knowledge Representation as a sub-
field of Artificial Intelligence. What Smith outlined above actually came to be called
the Knowledge Representation Hypothesis. This hypothesis, however, has its own
right as a general software-engineering paradigm, independent of whether or not the
mechanically embodied process that we have in mind can be called intelligent. From
the software-engineering point of view, the Knowledge Representation Hypothesis
just describes a specific way of designing systems. There are two major characteris-
tics that any system must posses if designed this way. First, it must be possible to
view the basic data structures of the system as propositions representing the overall
knowledge exhibited by the system. This presupposes that these data structures are
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expressions drawn from some language having something like a truth theory. That
is to say, for any such expression it must be clear how the world would have to look
like in order to make it true. This is not to say, however, that the syntax of these
expressions must resemble in any sense that of classical predicate logic. The second
criterion such knowledge-based systems must posses is that the represented knowl-
edge should play a causal role in the behavior of the system itself. In other words,
the system’s behavior should be determined exclusively by the knowledge that it
explicitly represents. In combination with the first characteristic of knowledge-based
systems, this implies that any implementation detail should be totally irrelevant for
the system’s behavior other than perhaps its efficiency.

1.2 The Semantics of Semantic Networks

Of course, once a system is accepted to be knowledge based, some method of rep-
resentation has to be fixed. One popular method originating in natural-language
processing are networks of interrelated semantic terms. The most influential early
effort on this kind of semantic networks is certainly Quillian’s [1966, 1967, 1969]. He
aimed at a “theory of the structure of human long-term memory” [1967] which was
supposed not only to bear psychological plausibility, but also to facilitate natural-
language processing. Quillian’s representation is somehow patterned in the organi-
zation of a dictionary. It is centered around what he called type nodes, where each
type node represents a single English word concept. A definition of such a type node
consists of a group of other type nodes (actually being pointers to them) with asso-
ciative links of various kinds between them. These links include modification links
(attaching modifying properties to a supertype), conjunction and disjunction links,
as well as links pointing to the subject and the object of a verb. An outstanding role
can be attributed to a special kind of link, the so-called “is a” or supertype link. This
type of link makes it possible to organize word concepts in a generalization hierarchy.
The hierarchical organization is supposed to make possible not only a psychologically
plausible memory model, but also a computationally efficient one.

Quillian also gave a simple processing scheme to uncover information residing im-
plicitly in semantic networks. In particular, given two word concepts, potential
relationships between them might be inferred by means of a method which Quillian
called spreading activation. This method propagates in a breadth-first manner some
kind of activation signal through all links emanating from the corresponding type
nodes until an intersection point has been reached. The paths to such intersection
points are then postulated to indicate potential relationships between the two word
concepts.

There were many efforts on evolving semantic networks following Quillian’s initial

work. These include the works of Schank [1973], Hendrix [1979], and Shapiro [1979],
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just to mention a few of them. For a good overview of the evolvement of semantic
networks the reader is referred to [Brachman, 1979] and [Sowa, 1991].

The idea of organizing knowledge in associative networks turns out to be fundamen-
tal, especially when knowledge about the generalization hierarchy is incorporated.
However, as Woods [1975] put forward, typical semantic networks suffer from a lack
of precise meaning. What Woods was concerned with was the semantics of the rep-
resentation itself. Without such a semantics it is left open what a representation is
supposed to represent. Consequently, different representations cannot be compared
to one other. This very issue had been “previously brushed aside under the auspices
of ‘intuition’,” as Brachman [1979] put it. The apparent intuitiveness of semantic
networks, however, can be very misleading. One example of Woods’ is that “is a”-
links can have in principle two meanings. They can be read either as subclass or
as membership relations. In semantic networks the decision which of these different
readings is to be put into effect is left to the user’s personal taste, so that represen-
tations might be ambiguous. But even if this kind of ambiguity was resolved, the
precise meaning of a “is a’-link in the sense of, say, a subset relation would remain
mysterious. In particular, no formal criterion is available in which cases such a link
is to be placed and what the consequences of doing so are. On the other hand,
links of this type play a crucial role in the system’s behavior, especially in inheriting
properties of a supertype to a subtype.

However, there were also early efforts on giving semantic networks a precise semantics.
The first attempt leading in this direction is due to Hayes [1980], who translated parts
of semantic networks into first-order logic.

1.3 The KL-ONE Perspective

In his Ph.D. thesis, supervised by Woods himself, Brachman [1977] followed the line of
research traced out by the work on semantic networks. However, in acknowledging his
supervisor’s criticism of some of the most serious weaknesses of semantic networks, he
actually went far beyond that line of research. Brachman’s thesis led directly to the
development of a knowledge representation system, called KL-ONE [Brachman and
Schmolze, 1985]. KL-ONE’s origin in semantic networks comes into light in at least
two aspects. First, its graphical syntax much resembles that of semantic networks.
In particular, its graphical notation is comprised of labeled nodes interrelated by
associative links, including arcs corresponding to “is a”-links. Second, its original
intent was to represent ‘semantic’ knowledge about English word concepts. In fact,
“initially, the KL.-ONE-project set out to develop a set of representational conventions
that would be sufficient to express any concept expressible in natural language” say
Woods and Schmolze [1992]. This statement must be judged in view of the fact
that Woods was the principal investigator of the project and Schmolze was the key
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developer of the system.

It would be entirely inappropriate, however, to emphasize solely K1.-ONE’s similar-
ities with semantic networks. For KL-ONE is commonly considered as a landmark
not because it stays within the line of ideas set out by its predecessors, but because it
extends beyond this line of ideas. In fact, its very intent was to surmount those defi-
ciencies of semantic networks which have been uncovered inter alia by Woods [1975]
and Brachman [1983]. In particular, KL-ONE radically deviates from its origins in
at least three aspects:

Over and above all, representational notations are given without exception precise
meanings by translating them into first-order logic [Schmolze and Israel, 1983]. This
gives rise to representations the meaning of which is determined independent of any
of the user’s imaginations and independent of domain-specific terms other than those
explicitly represented.

Second, a clear distinction is made between nodes representing classes of objects and
those nodes which represent a single object only. A node of the former type is called
in KL.-ONE’s terminology concept, whereas a node of the latter type is referred to as
nezxus or, as is nowadays more common, individual [Brachman and Schmolze, 1985,
Section 10]. This makes it in turn possible to differentiate between links stating a
subset relation and those which state a membership relation, a fundamental distinc-
tion blurred in semantic networks under the heading of “is a”-links. Links of the
former type are called subsumption links, while links of the latter type are referred
to as assertional links.

Last but not least, based on the precise semantics of KL-ONE’s notational language,
it is possible (and even straightforward) to define the exact meaning of subsumption
and assertional links. This in turn renders possible an automatic classification of
new concepts and individuals into a generalization hierarchy of previously defined
concepts. Classtfication refers to the ability to insert a new concept definition into
the subsumption hierarchy such that the new concept is directly linked to the most
specific concepts it is subsumed by and to the most general concepts that it in turn
subsumes. The term recognition is normally used instead of classification to refer to
the process of computing the most specific concepts a given individual is an instance
of. Without formal semantics, there would be no general criterion whatsoever, in
accordance with which an algorithm can automatically infer implicit subsumption or
assertional relations. It was Lipkis [1982] who devised the first classifier for KL.-ONE,
see also [Schmolze and Lipkis, 1983]. Recognition, however, was hardly tackled during
the KL-ONE project. A notable exception was the work of Mark [1982], tackling a
related problem. This problem concerns the computation of all individuals being
instances of a given concept, the realization problem.

All in all, the KL-ONE project can be called successful in the long run: It not only
led to a substantial amount of still ongoing research, including the development of



1.4 Description Logics 5

various systems, but at least one of its descendants eventually reached the stage of
large-scale industrial applications. It was the CLASSIC system developed at AT&T
which gained this honor [Wright et al., 1993]. A thorough overview of the KL-ONE-
family is given in [Woods and Schmolze, 1992].

1.4 Description Logics

From the very beginning of KL-ONE’s history, special logics have been devised to
underpin the representational foundations of KL-ONE and similar systems. These
logics are to describe in a formally precise manner what can be represented by the
relevant system and what computational service is provided. The first rigorously
defined logic of this kind is due to Brachman and Levesque [1984]. Logics in the spirit
of Brachman and Levesque are nowadays usually called description logics, but are
also known under terms such as concept language or terminological logic. Of course,
various logics of this kind are needed in order to capture all existing systems. What
all these description logics have in common is the fact that they are comprised of two
different syntactic categories, known as concepts and roles. While concepts are to
be thought of as representing particular sets of objects, roles denote binary relations
among objects. Roles are often treated as atomic, in which case they are restricted to
simple role names. On the other hand, a description logic would not deserve its name
if concepts could not be composed out of other concepts and roles. In fact, concepts
can always be built up from simple concept and role names by applying a predefined
set of so-called concept-structuring primitives.! The minimal repository of concept-
structuring primitives shared by all description logics includes concept conjunction
and wuniversal role quantification. It is therefore convenient to refer to a description
logic comprising no concept and role-structuring primitives other than this minimal
repository as the minimal or very weakest description logic. Concept conjunction
is an operator, usually designated by M, which takes two arbitrary concepts as its
arguments and forms a new concept. The resulting concept represents the intersection
of the two sets of objects represented by its arguments. Universal role quantification
is an operator, usually designated by V:, which takes a role and a concept as its
arguments and yields a new concept. In this case the resulting concept represents
the set of all those objects for which each object related to them by the given role
is an instance of the given concept. To be more precise, by concept and role we
refer here to the set of objects and the binary relation among objects represented
by the concept or role rather than the concept and role themselves. If, for instance,
the concept names Student and GradCourse as well as the role name enrolled_in are
given, then a compound concept such as Student N Venrolled_in:GradCourse can be

!Brachman [1979] uses the term epistemological primitive rather than concept-structuring prim-
itive. We shall, however, not adopt Brachman’s terminology because the primitives to be referred
to are dealing neither with sources of knowledge nor with justifications of beliefs.
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formed out of them. Intuitively, this concept captures all those students who are
enrolled in no courses other than graduate courses. But in contrast to what one
might expect, this even includes all students enrolled in no course at all. This is due
to the nature of universal quantification having no existential impact whatsoever.
Of course, there are also concept-structuring primitives capable of excluding such
idle fellows. In particular, existential role quantification is able to do so. Existential
role quantification which is entirely analogous to universal role quantification is not
provided by all systems though. What is almost always provided is a somewhat
restricted version taking a role as its sole argument. In this case, existential role
quantification is of the form 3R rather than AR:C'. Concepts of the form AR, however,
do suffice to preclude ‘idle’ students from being included in the concept above. Simply
conjoining Jenrolled_in impose the appropriate additional restriction on the concept.

In a formally precise fashion, meanings can be given to concepts and roles with the
help of so-called interpretations. Such an interpretation, Z, consists of three compo-
nents. The first component, AZ, is said to be the domain of the interpretation and
is just an arbitrary nonempty set. Another component then fixes the interpretation
of all concept and role names and is referred to as a wvaluation over AT. Such a
valuation is a function mapping concept names to subsets of AT and role names to
binary relations over AZ. The remaining third component consists of what is called

T, extends V in a way

an inlerpretalion function. Such an interpretation function, .
that allows it to deal with arbitrary concepts and roles. In particular, it specifies
how to interpret the concept-structuring primitives of interest by mapping them to
particular set operations on AT or AT x AZ. Any interpretation function maps CT1D,
for instance, to CT N D*, while VR:C' and 3R are mapped to {d € AT : R¥(d) C C*}
and {d € AT : RI(d) # 0} respectively. Here, R¥(d) is assumed to denote what
might be called the application of the binary relation RZ to d. That is to say, it
denotes the set of all those elements, e, of the domain for which (d, e) is a member

of RT.

What all description logics also have in common is a simple facility to define con-
cepts by abbreviating possibly compound concepts to simple concept names. If; for
instance, GradStudent is a concept name, then a definition of this kind might look as
follows:

GradStudent = Student M Venrolled_in:GradCourse M Jenrolled_in.

Expressions of this type are called concept introductions. Meaning is given to them
by imposing additional restrictions on interpretations. In particular, every interpre-
tation function has to map the concept name appearing at their left-hand side to
exactly the same set as the concept at their right-hand side. Interpretations which
meet this restriction are referred to as models.

A finite set of concept introductions then forms a terminology, at least if the condition
is met that there is no concept name appearing more than once at a left-hand side of
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a concept introduction. Often terminologies are additionally required to be acyclic,
which means that the concept introductions can be ordered in a certain way. It must
be possible to order them in such a way that the right-hand side of each concept
introduction uses no concept name appearing at the left-hand side of some preceding
concept introduction, including the concept introduction itself. This is to avoid cyclic
dependencies among concept introductions. Of course, natural recursion is thereby
excluded too. It is entirely straightforward to give meanings to terminologies, at least
when they are acyclic. As with concept introductions, this is done by specifying what
their models are. The models of a terminology are all those interpretations which
are models of every concept introduction of the terminology.

The most important query posed to terminologies is whether one concept subsumes
another, that is, whether the first one is more general than the second. The syntactic
means by which such queries can be expressed is called an inclusion aziom. If both ('
and D are arbitrary concepts, then C' C D forms a legal inclusion axiom. Of course,
a model of such an inclusion axiom is an interpretation whose interpretation function
reflects the intended subset relationship, i.e., the interpretation function has to map
C' to a subset of the set to which D is mapped. Given a terminology, T, it then can
be defined that a concept, C', subsumes another concept, D, just in case every model
of the terminology is a model of D C (' as well. In analogy to the corresponding
notation for logical consequence, we write in this case 7 = D C C. An inference of
this kind—though a simple one—is that Student subsumes GradStudent with respect
to the following terminology:

Student = Person 1 Venrolled.in:Course M denrolled_in,
GradStudent = Student M Venrolled_in:GradCourse M Fenrolled_in.

If two concepts subsume each other, we say that they are equivalent. Moreover, a
concept is said to be coherent if and only if it is not subsumed by the concept L.
The symbol L denotes a special concept being mapped to the empty set by every
interpretation function.

While terminologies are to encapsulate the ‘terminology’” inherent in the application
domain of interest, there clearly has to exist also a means of describing the application
domain itself. Whenever it is possible this description of the application domain
should make use of the extracted terminology. Such a description of the application
domain is usually given by providing concepts and roles with particular instances.
Of course, instances of concepts are objects of the domain, while instances of roles
are always ordered pairs of such objects. As a matter of fact, instead of referring to
the objects of the domain themselves, specific place holders are used. These place
holders are referred to as individual names; and it is an assertion which provides
concepts and roles with instances of the kind just described. A finite collection of
assertions finally forms what is usually called a knowledge base. A typical knowledge
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base of this kind looks as follows:

annie:GradStudent,
(annie, DB_IV):enrolled_in.

It should be clear how to give assertions as well as knowledge bases a precise formal
meaning in terms of models, just as it is already done for concept introductions and
terminologies. Assertions can be used as queries, too, in which case they usually are
evaluated with respect to a knowledge base along with a terminology. The answer
depends in this case on whether every interpretation which is a model of both the
knowledge base and the terminology is also a model of the query. Inferences of
this kind include answering in the positive such queries as DB_IV:GradCourse when
posed to the sample terminology and knowledge base above. This completes our brief
outline of the kernel which KL-ONE and any of its descendants have in common.

At this stage, it is important to note that when presenting this minimal kernel, we did
not intend to convince the reader of the representational or inferential merits of this
kernel. We did intend, however, to demonstrate that systems such as KL-ONE can
be specified at an abstract level independent of any specific detail of their concrete
implementation. As a matter of fact, the actual expressive power of KL-ONE and
any of its descendants extends far beyond what was introduced so far.

1.5 A Fundamental Tradeoff

Formal foundations would be meaningless if a given system’s behavior was not re-
quired to match its formal specification. The minimal condition to be imposed on
the system’s behavior is that it is sound. Soundness means that whenever the sys-
tem draws some particular inference, this inference is actually valid with respect to
the formal semantics. This criterion alone, however, is not very meaningful either.
This is because systems drawing only trivial inferences or even no inference at all
must inevitably be called sound. In particular, a system is always sound if it merely
retrieves all those facts which are explicitly stored without drawing any additional
inference. The same applies to systems drawing no inference at all. This is why one
should impose on the system’s behavior not only the condition of soundness, but also
that of completeness. Completeness refers to the property that whenever a particular
inference is valid according to the formal semantics, the system is actually capable
of drawing this inference within a finite period of time. One major research topic
is therefore to devise inference algorithms being sound as well as complete. This is
a key issue not only for description logics, but for Knowledge Representation as a
whole.

But once there is the commitment to sound and complete inference algorithms, the
computational behavior of the system is tightly coupled with the general computa-
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tional complexity of the inference problem itself. This explains the prominent role of
complexity theory in the field. Complexity theory is concerned with the analysis of
mathematically defined problems rather than the analysis of a given algorithm. This
abstraction enables us to predict within certain bounds the computational behav-
ior of any algorithm being sound and complete for the relevant problem. Suppose,
for instance, a lower computational complexity bound for computing the subsump-
tion relation has been established. Then we know for sure that every sound and
complete algorithm will terminate on an infinite number of inputs not without con-
suming the amount of computational costs specified by the given lower bound. On
the other hand, suppose some upper computational bound has been proven, but the
algorithm at hand terminates on at least one input consuming computational costs
which strictly exceed those specified by the upper bound. In this case, we know in
turn for sure that the given algorithm is not optimal.

Of course, the more expressive a representation language, the harder is the computa-
tion of the corresponding inference. As Levesque and Brachman [1987] put forward,
this raises the issue of finding an appealing tradeoff between the expressive power
and the computational complexity. To single out such a tradeoff turned out to be
one of the grand challenges, especially for description logics. Actually, to find such
a tradeoff is not as easy as was originally thought. Although description logics were
originally claimed to be computationally feasible, in 1988 it was possible to show
that there are description logics satisfying this criterion by no means, even with the
most liberal interpretation of ‘feasible’ one can think of. In particular, in [Schild,
1988] a description logic was given for which there does not exist any sound and
complete algorithm at all. In such a case the corresponding inference problem is said
to be undecidable. Since then a great number of similar undecidability results were
established, including those given in [Patel-Schneider, 1989b] and [Schmidt-Schau$,
1989], just to mention the most important ones. The major challenge is therefore to
single out concept languages the expressive power of which is sufficient to embrace
a given range of application scenarios while inducing computational costs tolerable
for this range of application scenarios. This certainly includes the exploration of the
lower and upper computational complexity bounds. Another important issue is, of
course, to compare different description logics in their expressive power. This issue,
however, was hardly tackled at all, with the exceptions of [Baader, 1990a, 1991] as
well as [Schild, 1994a). In any case, as Doyle and Patil [1991] pointed out, we should
always keep in mind that limited expressive power may threaten the goal of a general
purpose representation language.
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1.6 The Modal Logic’s Perspective on Description
Logics

In their seminal paper, Schmidt-SchauB and Smolka [1991] enhanced the expressive
power of the minimal description logic by a concept-structuring primitive which was
not investigated previously. They considered concept negation in its full generality.
The reasons for Schmidt-Schaul and Smolka in doing so were twofold. First of all,
and certainly above all, negation is an inherent part of any natural language and so it
should also be included in formal languages supposed to capture fragments of it. If,
for instance, our language includes concepts such as Student and GradStudent, from
this point of view, there is no reason other than arbitrariness to declare expressions
such as Student M —GradStudent prohibited. On the other hand, concept negation
provides for concept disjunction as well as for existential role quantification in its full
generality. As is well-known, C'U D and 3R:C is equivalent to ~(=C M —=D) and
-~V R:~C respectively. Schmidt-Schaul and Smolka baptized the resulting descrip-
tion logic ALC, an acronym for Attributive concept Language with Complements.
Nowadays ALC is something like a standard description logic, placed at the very
center of theoretical research.

What makes their paper one of the landmarks in the history of description logics is
that for the first time a sound and complete algorithm is given for a nontrivial descrip-
tion logic. Such an algorithm was previously known solely for a very small description
logic. Tt was Levesque and Brachman [1987], who established both soundness and
completeness in the latter case.

Rather than devising an algorithm for deciding subsumption between two concepts,
Schmidt-Schaufl and Smolka were concerned with deciding the coherence of single
concepts. One of their motivation in doing so was that the two problems are tightly
related. In particular, once the problem of deciding coherence is solved, subsumption
between two concepts can be decided, too, at least if concept negation is available.
This is because a concept, (', subsumes another concept, D, just in case the concept
D1 =C is not coherent. Vice versa, coherence of a concept can, of course, be decided
on the basis of whether or not the concept is subsumed by any other concept known
to be incoherent, say, CN 1M —~CN. Schmidt-Schaul and Smolka’s algorithm is able
to decide correctly the coherence of any concept of ALC. The algorithm determines
the coherence of the concept itself, but does not take into account any terminology.

Apart from the soundness and completeness of their algorithm, Schmidt-Schaufl and
Smolka proved that their algorithm is also near optimal. The worst case complexity
of their algorithm actually matches the general lower complexity bound of coherence
in ALC up to a polynomial. The lower bound that Schmidt-Schaufl and Smolka were
able to establish is as follows. They proved that every sound and complete algorithm
for this problem terminates on an infinite number of inputs not before consuming
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working space at best bounded above by some fixed polynomial in the size of the
input. In technical terms, this means that the corresponding problem is PSPACE-
hard. On the other hand, the working space consumed by the specific algorithm that
they developed is in the worst case quadratically bounded in the size of the input.?
The algorithm is therefore near optimal in this sense.

The results of [Schmidt-SchauB and Smolka, 1991] are well-known by now and form a
cornerstone of the field. It was not discovered until recently, however, that equivalent
results had been known for nearly one and a half decade before the publication of
Schmidt-Schaufl and Smolka’s paper: Equivalent results were in fact already known
in a field which appears to be unrelated at first sight. It is the field of modal logic in
which equivalent results had previously been established.

A reason for the comparatively late discovery of this relationship may be the fact that
from the very beginning, description logics have always been viewed as sublanguages
of first-order predicate logic. When adopting this point of view, concept and role
names correspond to unary and binary predicates respectively. The translation of
all other well-formed expressions of, say, ALC, are then determined by the following
translation scheme:

VR:C ~ VY.R(X,Y)= C(Y),
CND ~ C(X)AD(X),
~C = C(X),
C=D ~ VYX.C(X)e D(X),
CCD ~ YX.C(X)= D(X),
a:C ~ C’(a),
(a,b):R ~ R(a,b).

Of course, one has to take special care of variables, particularly in the presence
of nested role quantifications. Suppose, for instance, in the course of translating
VR:VS:C, we are about to translate the subconcept VS5:C. If the concept itself is
translated into N\V’Y.]N%(X, Y) = (\V’E:JC)(Y), then the subconcept V.5:C' has to be
mapped to VZ.5(Y, Z) = C(Z) rather than to VY.S(X,Y) = C(Y).

Until recently this had been the predominant view on description logics. Careful
inspection of this translation, however, reveals that it is correct though in some sense
not the best one. This is because the translation into first-order logic lacks the
property of a one-to-one mapping. If this translation were a one-to-one mapping,
it would translate not only every syntactically well-formed expression of ALC into
first-order logic, but it would, vice versa, also translate every well-formed first-order
formulae into ALC. This is, however, not possible in the case of ALC, which does not

?In the original paper, the algorithm was analyzed by mistake as consuming in the worst case
only linear space.



12 Introduction

cover first-order logic to its full extent. As a matter of fact, no existing description
logic covers all first-order predicate logic formulae. To discover suitable fragments
of first-order logic is, of course, the whole business of the field. But only a one-
to-one mapping would allow us to transfer results such as complete axiomatizations
established for first-order logic to the description logic’s case.

The syntax of ALC, however, suggests a rather different translation. At least all
those concepts of ALC which do not involve any occurrence of a role quantification
can be translated to formulae of propositional logic in the most natural way. These
concepts clearly correspond to propositional formulae in a one-to-one fashion. From
a syntactic point of view, the translation into propositional logic is rather natural.
From a semantic point of view, however, it gives rise to some confusion. How could
one translate concepts into propositional formulae and vice versa, even though the
former are supposed to denote sets of objects, while the latter denote just truth
values? In other words, it is not immediately evident how this syntactically rather
natural translation is reflected semantically.

This confusion can be readily solved though. The only thing one has to do is to
adopt Kripke’s [1963] well-known possible worlds approach. In order to give modal-
ities such as ‘necessarily’ and ‘possibly’ precise meanings, Kripke suggested to view
propositions as denoting sets of possible worlds rather than single truth values. Such
a set of possible worlds is to be thought of as representing all those situations in
which the relevant proposition holds. He thereby replaced a homogeneous view on
the state of affairs by a pluralistic one. A formula is then considered to be necessarily
true just in case it holds in all the worlds considered to be possible. On the other
hand, a formula is possibly true just in case it holds in at least one of the worlds
considered to be possible. What is or is not considered possible is reflected by some
fixed binary relation among possible worlds, usually referred to as accessibility rela-
tion. Hintikka [1969] generalized Kripke’s possible world setting in view of multiple
accessibility relations. In Hintikka’s setting each of these different accessibility re-
lations is attributed to what might be called agent. In this generalized framework,
the modality of necessity thus captures personal belief or knowledge. In any case,
it is convenient to impose certain restrictions on accessibility relations if the variety
of different modalities is to be taken into account. However, as far as the normal
propositional modal logic is concerned, no such restriction at all is invoked. In this
sense, normal modal logic can be considered the standard modal logic. In the mul-
tiple agent case, normal propositional modal logic is simply referred to as K, the
index m standing for m different agents.

From a formal point of view, K(,) extends propositional logic just by one additional
formation rule. This rule states that if « is an arbitrary formula, then so is K;a.
Here, K; must be one of the Ky, ..., K, different agents. Modal formulae of the form
Ko are to be read as “agent ¢ believes in the truth of @.” Meanings are given to any
formula of K,,) with the help of what came to be called a Kripke structure. Such
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a Kripke structure is comprised of three components. The first component is an
arbitrary set, containing all relevant possible worlds. The second component is a so-
called assignment function. Such an assignment function, 7, assigns a particular set
of possible worlds to each propositional variable. This set contains all those possible
worlds in which the corresponding propositional variable is supposed to hold. The
remaining third component contains for each of the m different agents, K;, a binary
relation, P;, among possible worlds. If wP;w’, that is, if P; contains as its member the
ordered pair (w,w’), then agent K; is assumed to consider w’ as possible whenever
K is in the state of belief represented by w.

The truth value of an arbitrary formula, a, of K(,) in an arbitrary possible world,
w, is determined with respect to such a Kripke structure. Technically speaking, if
M is such a Kripke structure, then an expression of the form M £, a is evaluated.
This expression is intended to mean that the possible world w is among those in
which « holds. Expressions of this kind are evaluated according to the following
semantic rules. If P is a propositional variable, then M =, P holds if and only if
w is a member of m(P). Of course, 7 is the assignment function of the given Kripke
structure. The second semantic rules states that M =, a A 8 holds if and only if
both M |=,, a as well as M =, 8 holds. Another semantic rule deals with negation.
It states that M |=,, =« holds just in case M |=,, a does not. Finally, M |=,, K;a
holds if and only if M =, a holds whenever w' is a possible world such that wP;w’.
Satisfiability is then to be understood in the framework of K, as follows: A formula,
«, is satisfiable if and only if there is at least one Kripke structure, M, and at least
one possible world, w, such that M =, a.

An alternative but ultimatively equivalent style of semantics is often stated instead
of the one just given. Clearly the mapping 7 can be extended to deal with arbitrary
formulae of K., in a way suggested by the given semantic rules. In particular, A and
— have then to be mapped to set intersection and complementation respectively. The
mapping of K;a is somewhat more involved. K;a is mapped to the set of all those
possible worlds, w, such that every possible world related to w by the accessibility
relation P; is a member of the set to which the extended version of # maps a. In
this way, the traditional semantic rules given above have directly been codified into
the assignment function 7. But then it suffices to make a simple check whether or
not w is a member of the set to which the so extended m maps the given formula.

At this stage, the semantic parallel with ALC should be evident. The only thing one
has to realize is the fact that nothing prevents us from reading objects as possible
worlds and vice versa. Then it should be obvious that those operators which corre-
spond to each other by their syntax are mapped to exactly the same set-theoretical
operations. The modal logic K, is actually nothing but a notational variant of
ALC. The following table should suffice to explain this close relationship:
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ALC || K
CN || Pen
CnD || ac Aap
VR:C || Krac
C is coherent || a is satisfiable

This proves that the close relationship with propositional modal logic becomes ev-
ident as soon as description logics are viewed as propositional logics rather than
first-order logics. The first-order logic point of view can therefore be considered as
the main obstacle for uncovering the quite obvious one-to-one correspondence with
propositional modal logic.

The correspondence with K,y was first observed in [Schild, 1991a].®> Once this
observation is made, the host of results established for K(,) can immediately be
carried over to the description logic’s case. These include lower and upper computa-
tional complexity bounds for deciding satisfiability in K., [Ladner, 1977]. Notably,
these bounds correspond exactly to those established by Schmidt-Schauff and Smolka
[1991].4

The one-to-one correspondence with propositional modal logic yields not only results
which are anyway known for the corresponding description logics, but there are also
many interesting consequences previously unknown. This particularly applies to
results on the axiomatization, on the model theory as well as on the expressive power
of ALC. For instance, Lemmon [1966] gave a complete equational axiomatization of
the equivalence relation in propositional modal logic. His axiomatization is based
on that for Boolean algebras. Notably, compared to the axiomatization of Boolean
algebra, Lemmon needed not more than two additional equations so as to deal with
modal operators. The additional equations Kitrue = true and (K;a) A (K;3) =
Ki(a A ) do suffice. When translated into ALC these two equations correspond
to VR:T = T and (VR:C) M (VR:D) = VR:(C 11 D). We thereby gain an elegant
axiomatization of the equivalence relation in ALC too. Such an axiomatization of
ALC does not only give rise to an alternative, purely syntactic view on logics, but
can also serve as a basis for prototypical implementations [Quantz et al., 1994]. For

details the reader is referred to [Schild, 1991a].

Another interesting result which was established for K., but was at best only
implicitly present in the work of Schmidt-SchauB and Smolka [1991] is a property
called Finite Model Property. This property is to be understood as follows. If an

3As a matter of fact, Schmidt [1991] independently observed a semantic parallel with proposi-
tional modal logics. However, she did not explicitly state the correspondence with K, nor did
she substantially exploit this semantic parallel.

4Ladner [1977] proved his upper bound for the single agent case only. His result is therefore
restricted to ALC with only one single role name. However, Ladner’s proof can straightforwardly
be extended to deal with the multi-agent case too, as Halpern and Moses [1985] noted.
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arbitrary formula, say, «, is satisfiable, then there always exists at least one Kripke
structure with only a finite number of possible worlds and there exists at least one
possible world, w, such that M |=,, a. The Finite Model Property is established with
the help of so-called p-morphisms, describing what kind of relationship must exist
between two Kripke structures so as to be indistinguishable by any formula of K.,).
See e.g. Chapter 5 of Hughes and Cresswell’s [1984] companion of modal logic. In this
sense p-morphism can be considered as a way of describing the expressive power of
K in terms of those semantic structures it is able to distinguish. The significance
of this result for a knowledge representation language such as ALC should be evident.

1.7 The Dynamic Logic’s Perspective on Descrip-
tion Logics

The applicability of Kripke-style semantics turned out to extend far beyond its orig-
inal intent. In particular, it proved to be a proper semantic framework for logics of
programs. These logics are designed in the spirit of Hoare [1969] for the purpose of
reasoning about the correctness and termination of programs. It was Pratt [1976]
who first argued that possible worlds could be seen as program states. In doing so
we can interpret accessibility relations as possibly nondeterministic programs. Of
course, this is only possible when we adopt the common view of programs as state
transitions. But then propositional modal logic as its stands provides a basic frame-
work for reasoning about programs. From this point of view, the modality K,a can
be read as “postcondition « holds after any successful termination of the program
a.” Whenever such a reading is advocated the notation [a]a is usually preferred to
K,a. The well-known Hoare assertion a{a}3 can therefore be captured by a modal
formula of the form a = [a]3. If (a)a is treated as an abbreviation of —[a]—c, then
termination of the program a can directly be expressed by (a)true.

Following Harel et al. [1977] modal logics are referred to as dynamic logics when-
ever this alternative interpretation is put into effect. The term dynamic reflects the
fact that the underlying intuition is of states and state transitions, both dynamic
in nature. In acknowledgement of Hennessy and Milner’s [1985] investigations on
this dynamic reading of K,), Ky is usually referred to as Hennessy-Milner Logic
whenever this reading is preferred. Although the Hennessy-Milner Logic is able to
reason about Hoare assertions and termination, it can do so only if the programs
upon which the reasoning takes place are atomic rather than compound. This is of
course by no means sufficient. The minimal programming repository should include a
possibility of executing two programs consecutively as well as while-loops along with
if-then-else guards. Fischer and Ladner [1979] proposed to resort to the following
fundamental inventory:
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a;b meaning “run a and b consecutively in order;”
a meaning “repeat a a nondeterministically chosen number of times > 0;”
aUb meaning “nondeterministically execute either a or b;”

a? meaning “test a and continue if the result is true.”

Except for the last one, all these constructs are regular in nature. This inventory
of programming facilities forms a good basis for more complex programs such as
while-loops and if-then-else guards. It is instructive to verify that the following
abbreviations do match the intuition behind these complex programs:

ifothenaelseb & (a?;a) U (—a?;a),

whileadoa % (a?;a)"; —e.
But then we are in a position to phrase such inferences as the following. Suppose
the condition « constitutes an invariant of a program, say, a. This is to say that
a is satisfied in any possible termination state of a if it is also satisfied before the
execution. This invariance property can easily be captured by the dynamic formula
[a*](a = [a]a). If the invariant property « is also satisfied by the current state,
then it can be inferred that any termination of the program while 3 do a meets
the postcondition @ A =3. This inference is reflected by the validity of the following
dynamic formula:

(e Ala)(a = [ala)) = [whiledo al(a A=),

Fischer and Ladner [1979] chose the name propositional dynamic logic (or PDL for
short) to refer to the extension of Hennessy-Milner Logic by the basic programming
facilities introduced above. PDL had been placed at the very heart of the research on
propositional logics of programs till the mid 1980’s. This role is, however, nowadays
taken over by the more expressive propositional p-calculus.

Unaware of PDL’s potential influence on his work, Baader [1990a] proposed to aug-
ment ALC by regular role expressions. His motivation in doing so was the observation
that at least in some special cases regular role expressions turn out to be an alter-
native to recursively defined concepts. A recursively defined concept that can be
handled in this way is, for instance, CN = C' TMYRN:CN. Rather than developing
an algorithm capable of dealing with recursion, he devised one for what he called
reqular extension of ALC. This extension modifies ALC in such a way that roles
are not restricted to simple role names, but compound roles defined by the following
formation rule are admissible as well. If B and S are both roles, then so are Ko S,
R*, as well as RUS. The meaning of these new role-structuring primitives should

* corresponds to the reflexive-transitive closure, while o

be evident. The operator
and Ll denote the composition and the union of two binary relations. Baader was
able to establish both soundness and completeness of the algorithm he devised, with-

out, however, analyzing the worst-case complexity of the algorithm. He does not
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analyze the general computational complexity of the corresponding subsumption or
equivalence problem either.

In Baader’s [1990a] paper, a semantic parallel between the regular extension of ALC
and the propositional dynamic logic was not realized because at that time the close
relationship between description logics and propositional modal logic was not known
either. However, once the basic correspondence between ALC and K, is estab-
lished, it becomes quite obvious that Baader’s regular extension of ALC is nothing
but a notational variant of PDL. To be accurate, it is a notational variant of a par-
ticular fragment of PDL. In contrast to full PDL, this fragment does not involve any
test, that is, programs of the shape a?. This correspondence is a straightforward
extension of the basic correspondence between ALC and K,,) and was also first ob-
served in [Schild, 1991a]. If the one-to-one correspondence between test-free PDL
and Baader’s regular extension of ALC is to cover tests, too, then the latter has to
be slightly extended. In particular, Baader’s version of the regular extension of ALC
has to be enriched by the identity role, ¢, as well as by so-called role restrictions.
Role restrictions are frequently emerging in terminological knowledge representation
systems and are special roles of the form R|C projecting the range of the role R to
the concept C. The role restriction has_child|Woman, for instance, can be thought
of as representing the has daughter relationship. The so extended regular extension
of ALC is easily recognized as a notational variant of full PDI. In particular, the
test a? corresponds to a role of the form ¢|C, and, vice versa, the roles ¢ and R|C
correspond to the programs true? and ap; ac? respectively.

The PDL literature contains a number of interesting results which turned out to be
new for the corresponding description logics. The most important result is certainly
that Fischer and Ladner [1979] were able to fix the exact lower and upper computa-
tional complexity bounds for deciding satisfiability of arbitrary PDL formulae. Both
bounds match and are deterministic exponential-time in nature. Notably, none of
these bounds was previously known for the corresponding regular extension of ALC.

Fischer and Ladner [1979] also established the Finite Model Property for PDL. They
do so with the help of what came to be called Fischer-Ladner closure. 1t is exactly
this technique which in the meantime has gained broad acceptance as a powerful
proof technique in the field of description logics too. Complete axiomatizations are
also known for PDL, see [Pratt, 1979] and [Kozen and Parikh, 1981]. These and

other results are summarized in [Schild, 1991a]

Not only PDL itself has been thoroughly investigated, but also several extensions
and variants of it. The most important effort to be mentioned in this connection is
Danecki’s work [1984] on program intersection, the work of Ben-Ari et al. [1982] and
Halpern and Reif [1983] on deterministic programs, Vardi’s [1985] investigations of
the converse of programs, as well as the work of Passy and Tinchev [1985] on data
constants. In each case, it was possible to establish the decidability of the corre-
sponding extension of PDL. Incidentally, all the additional features just mentioned
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are significant not only within the framework of program logics, but also within de-
scription logics. All these additional programming features actually correspond to
the following common concept and role-structuring primitives in the order in which
they are mentioned above: role conjunction, functional roles (also known as features),
the inverse of a role, as well as so-called indiwidual concepls, denoting singleton sets
rather than arbitrary sets of objects.

It was criticized, though, that all these correspondences lack at least two features that
ought to be present in any description logic. On the one hand, the correspondences
presented so far do not incorporate a concept-structuring primitive which is simply
indispensable to most modeling tasks, namely number restrictions. These are special
concepts of the form 32" R and IS™R imposing certain restrictions on the possible
number of fillers of the role R. In particular, they restrict the possible number of
the objects related by the role R in a way suggested by the notation 32" and 3™,
It was also criticized that it is not obvious how assertions can be integrated into
these correspondences as well. This is in contrast to the fact that axioms can quite
easily be integrated into these correspondences. In fact, Baader [1991] and Schild
[1991a] noted independently that it is possible to simulate arbitrary axioms within the
regular extension of ALC itself. De Giacomo and Lenzerini [1994a, 1994c| recently
put forward that both assertions and at least a special kind of number restrictions
can also be encoded within the regular extension of ALC if features are available.
However, the employed simulations are rather involved.

Unnoticed till now remained the fact that there are extensions of PDL that allow
the expression not only of arbitrary axioms, but also of any kind of assertion. This
can be done in a rather straightforward way in combinatory PDL. Combinatory PDIL
has been launched by a group at the Sofia University in Bulgaria in order to remove
some of PDL’s major deficiencies [Passy and Tinchev, 1991]. This extension of PDL
additionally comprises what is called the universe program as well as a special kind
of propositional variables, referred to as data constants or names. The universe
program, v, denotes the universal relation among states, that is, a binary relation
comprising any ordered pair of two states. The universe program enables us to
capture unqualified quantification over states with the help of formulae of the form
[v]a. Data constants, usually denoted by const with appropriate indices, are to be
interpreted as singleton sets containing exactly one state rather than an arbitrary
number of states. Combinatory PDL thus removes a fundamental paradox traditional
PDLs suffer from: Although the intuition underlying PDL is based on states and state
transitions, the syntax of PDL itself is not capable of referring to a single state.

We already mentioned that data constants are known in the field of description logics
as individual concepts. But then, having additionally the universe program at our
disposal, axioms as well as assertions can straightforwardly be translated into the
so extended PDL. The following translation scheme indicates how the corresponding



1.7 The Dynamic Logic’s Perspective on Description Logics 19

translations into combinatory PDL look like:

C=D ~ [V[(ac& ap),
CCD ~ [(ae= ap),

a:C ~ (v)(const, A\ ac),
(a,b):R ~» (v)(const, A (ar)consty).

Combinatory PDIL has been the subject of thorough investigations, a comprehensive
overview of which is given in [Passy and Tinchev, 1991]. In particular, Passy and
Tinchev [1991] showed that the upper and lower computational complexity bounds of
deciding satisfiability in combinatory PDIL match the corresponding bound for PDI.
itself, even with deterministic programs added to combinatory PDL. As far as model
theory is concerned, the Finite Model Property was established by Gargov [1985].
On top of this, Passy and Tinchev [1985] gave deep insights into the consequences
of adopting different kinds of semantics for data constants. The semantic accounts
for data constants differ in whether or not each semantic state is required to have
at least one syntactic counterpart (i.e., a particular data constant denoting this very
state). Last but not least, complete axiomatics were given for combinatory PDL
too, including extensions of combinatory PDI. which encompass additional formulae
and programs corresponding to features, role conjunctions, as well as to number
restrictions. In addition, formulae were axiomatized which correspond to what was
introduced in the field of description logics under the term role-value map. For details

the reader is referred to [Passy and Tinchev, 1991].

What the Thesis Is and Is Not About

We shall not enter into the details of the correspondences mentioned so far. Instead,
in Chapter 2 we shall give the details of another correspondence not mentioned in the
introduction. This correspondence will involve a special logic of programs, known
as the propositional p-calculus. The reasons in favor of this correspondence are
many-fold: First, the p-calculus is strictly stronger in expressive power than PDL.
This means that the correspondence with the propositional u-calculus subsumes the
correspondences with PDL and K.

Second, this correspondence with the propositional p-calculus will solve an important
open problem of description logics, which has to do with recursion. There has been
an intensive debate in description logics on which kind of semantics is appropriate for
recursion and how the different kinds of semantics can be dealt with algorithmically.
Preliminary results in this direction are only known for the very weakest descrip-
tion logic [Baader, 1990b], the correspondence with the propositional p-calculus will
clarify this debate to a large extent.
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Last but not least, for PDL as well as for K(,,) there already exist several excellent
textbooks. K, is thoroughly introduced in [Hughes and Cresswell, 1968, 1984],
[Chellas, 1980], and [Bull and Segerberg, 1984]. Comprehensive introductions to
PDL are given, for instance, in [Parikh, 1979], [Harel, 1984], [Goldblatt, 1987], and
[Kozen and Tiuryn, 1990]. With the close connection of description logics with PDL
and K(,;) in mind, all these text books can be read as if written to the corresponding
description logic.

The results of Chapter 2 on recursion in the standard description logic ALC seem to
be promising. However, ALC was advocated by its inventors because of its “pleasant
mathematical properties” [Schmidt-SchauB and Smolka, 1991] rather than because
of its practical significance for knowledge representation purposes. This raises the
question whether the syntactic and semantic foundations of recursion laid in Chap-
ter 2 can be generalized so as to deal with more expressive languages. Chapter 3
will demonstrate that this is in fact possible in a quite straightforward manner. In
particular, it will be shown that these foundations of recursion can be extended to
a description logic which can be called universal: it is universal in the sense that
it encompasses all traditional concept and role-structuring primitives. Such high
expressive power, however, is gained at the expense of decidability.

But then there is the question whether any mechanical reasoning can take place in this
general setting and Chapter 4 is devoted to exactly this issue. The main result will be
that even tractable reasoning can take place in this setting. However, the only way to
achieve tractability is to abandon incomplete knowledge from knowledge bases. The
resulting knowledge bases are then much more a traditional relational databases than
a knowledge bases. This will immediately lead to a database-theoretical interpreta-
tion of the tractability result. Independent of this interpretation, it is important
to note that the tractability result to be presented in Chapter 4 is, in effect, the
very first tractability result for terminological reasoning, all other results depend on
terminologies being somehow artificially preprocessed.

An overview of the thesis together with a summary discussion of its main results is
compiled in the final Chapter 5.



Chapter 2

The p~-Calculus’ Perspective on
Recursion in Description Logics

2.1 Recursion in Description Logics

Recursion is a fundamental means of definition in all areas of computer science. How-
ever, it is still open how to tackle recursion in description logics, notwithstanding that
nonrecursive definitions can be dealt with easily. So let us begin the discussion with
nonrecursive definitions. A typical example of a nonrecursive definition in description
logics is the following, which defines leaves as nodes that do not have any branch:

Leaf = Nodell —dbranch:T.

It is perfectly straightforward to state the meaning of such a concept introduction in
set-theoretical terms. As usual, the meaning of concepts and concept introductions is
given in terms of interpretations and models. An interpretation T over a domain AT
maps the universal concept T to AZ, each concept name CN to an arbitrary subset
CN7T of AT, and each role name RN to a binary relation RNZ over AT. Moreover,
the logical connectives I, Ll and — are interpreted as the corresponding set operations
on AT, whereas IRN: and VRN: represent existential and universal quantification
over the relation RNT. The meaning of a concept introduction is then given by
requiring that an interpretation is a model of C' = D if and only if the interpretation
maps C' and D to exactly the same subset of the domain. In the case of the concept
introduction given above, this means that each model has to satisfy the following
equation:

Leaf’ = Node’ N {d € AT : there is no e such that (d,e) € branchI}.

There are also algorithms to compute both the subsumption and the equivalence
relation between concepts, even with respect to finite sets of concept introductions
similar to the one just considered [Schmidt-SchauB and Smolka, 1991].

21
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Problems arise, however, when cyclic or recursive concept introductions enter the
bl bl

picture. For example, it is entirely natural to define a tree recursively as a node

which has only trees as branches:!

Tree = Node M Ybranch:Tree. (2.1)

The models of this cyclic concept introduction are characterized by the following
equation:

Tree’ = Node” N{d € AT : for all e such that (d,e) € branch”, ¢ € Tree”}.

Unfortunately, such recursive equations do not always have unique solutions, even
when the interpretation of all undefined concept and role names is fixed. Take, for
instance, an interpretation Z the domain of which is IN, the set of all natural numbers.
Suppose, moreover, Node? is IN, while branch? is the successor relation on IN. Such
an interpretation is a model of (2.1) just in case the following equation is satisfied:

Tree! = INN{n € N : for all m such that m =n + 1, m € Tree’}
= {nelN:n+1¢c Treel}.

The question, then, is whether in all these models the nodes are actually trees or not.
However, the recursive equation above does not tell us anything about that: It has
two conflicting solutions, viz. one in which Tree? is IN, and one in which it is the empty
set. This gives rise to the question which, if any, of these conflicting solutions is to be
preferred. In fact, there is an ongoing discussion on which kind of solution generally
accords best with our intuition.? In essence, there are three rivals which should be
taken into consideration. First, simply allowing all solutions results in what Nebel
[1990a, Chapter 5.2.3] called descriptive semantics. The remaining two alternatives
allow only those solutions which are the least or greatest ones with respect to the
interpretation of all defined concepts (i.e., those concept names which appear on the
left-hand side of a concept introduction). The terms least and greatest, however,
apply only to solutions which agree in the interpretation of all undefined concept
and role names. Nebel [1990a, Chapter 5.2.2] called solutions of this kind least and
greatest fized-point models. The previously mentioned model which interprets Tree as
the empty set is, therefore, a least fixed-point model of (2.1), whereas the other one
interpreting Tree as IN is a greatest fixed-point model. But even if we stick to one
of these alternatives, it is not clear at all how to obtain the corresponding inference
algorithms, except for very small languages [Baader, 1990b).

In some cases, the consequences of choosing one of these semantics can be clarified in
terms of the reflexive-transitive closure B* of a role. Baader [1990b, Theorem 4.3.1]

'If this definition were intended to represent trees accurately, the concept Node would have to
be defined properly, i.e., it would have to be defined in such a way that each Node has at most one
branch-predecessor.

? Among others, Nebel [1990a, 1991], Baader [1990b], as well as Dionne et al. [1992, 1993] have

contributed to this discussion.
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showed that the greatest fixed-point semantics forces the recursive definition of a
tree (2.1) to be equivalent to Tree = Vbranch™:Node. This is, however, neither the
case for the descriptive nor for the least fixed-point semantics. Taking for granted
that recursion is commonly used to express the reflexive-transitive closure of a role,
Baader then came to the conclusion that the greatest fixed-point semantics comes
off best [Baader, 1990b, page 626]. Baader’s conclusion is somewhat misleading in
that it applies only to the particular description logic he considered. As a mat-
ter of fact, he would have come to the opposite conclusion if, instead of concept
conjunction and universal role quantification, he considered the corresponding dual
concept-structuring primitives. For the dual concept-structuring primitives, that is,
concept disjunction and existential quantification over roles, the situation is just the
other way round. To see this, take the following definition of a non-tree as opposed
to the above of a tree:

NonTree = —Node LI dbranch:NonTree. (2.2)

This is to say, a non-tree is something which is either no node or which has some
branch being a non-tree. We shall see below that in this case only the least fixed-
point semantics forces (2.2) to be equivalent to NonTree = Jbranch®:—Node. As
dbranch™:—=Node is equivalent to —Vbranch™:Node, this means that the least fixed-
point semantics of (2.2) expresses the very opposite of the greatest fixed-point se-
mantics of (2.1). Anyway, insofar as solely finite trees are concerned, the least
fixed-point semantics seems to be more adequate in that it excludes infinite chains
of the role branch. In fact, we shall see that it forces (2.1) to be equivalent to
Tree = (Vbranch*:Node) M —3branch®, where the concept Ibranch® stipulates the exis-
tence of some infinite chain of the role branch. We thus allow only acyclic structures
of finite depth, clearly a necessary condition for being a finite tree.

This shows that in order to express the reflexive-transitive closure of a role in a re-
cursive manner, in some cases it is necessary to resort to the greatest fixed-point
semantics, while in others the least fixed-point semantics must be invoked. The
reader might object that in the presence of negation, one could always employ du-
alities such as the one between dbranch®:—=Node and —Vbranch®:Node. In particular,
instead of expressing Jbranch™:—Node, one could first capture Vbranch®:Node with
the help of Tree = Node I Vbranch:Tree. Of course, in order to achieve this, greatest
fixed-point semantics must be invoked. If one would then simply add the concept
introduction NonTree = —Tree, then NonTree should finally capture dbranch™:—Node.
Such a representation does not work though. This is because terminologies of the
form {Tree = NodelMVbranch: Tree, NonTree = —Tree} do not always have any greatest
fixed-point model at all, nor have they always any least fixed-point model! To see
this, observe that it is impossible to maximize (or to minimize) the interpretation of
Tree and its complement, = Tree, at the same time, unless there is only one possible in-
terpretation. Take, for instance, the interpretation over IN from above. This interpre-
tation is a model of the terminology {Tree = Node I Vbranch:Tree, NonTree = —Tree}
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just in case the following two equations are simultaneously satisfied:

Tree! = {neN:n+1¢€ Tree'}, (2.3)
NonTree? = IN\ Tree’. (2.4)

These equations have exactly two solutions in common, namely one in which Tree”
is IN and NonTree” is the empty set, while in the second it is the other way round.

Of course, neither solution is a least or greatest one with respect to both Tree’ and
NonTree”.

This proves not only that both kinds of fixed-point semantics are needed, but that
they are even needed in coexistence if we want to express the reflexive-transitive
closure of roles in the context of existential as well as universal role quantifica-
tions. The notion of least and greatest fixed-point semantics as considered in the
terminological logics literature does not take into consideration this fact. To over-
come this deficiency, we introduce prefixes p and v as explicit references to least
and a greatest fixed-point semantics. In addition, explicit fixed-point prefixes al-
low us to limit the scope of fixed points. For instance, p{(2.1),NonTree = —Tree}
yields the simultaneous least fixed point of the two concept introductions, while
{p{(2.1)}, u{NonTree = —Tree}} refers to two least fixed points computed locally. A
terminology with a sibngle fixed-point prefix in front of it is called least or greatest
fized-point terminology, depending on whether the prefix is g or v.. A finite collection
of such fixed-point terminologies then forms a complex fived-point terminology.

Having complex fixed-point terminologies at our disposal, we can even reason about
the different kinds of semantics. For instance, we can conclude that the greatest fixed-
point semantics of (2.1) in fact expresses the very opposite of the least fixed-point
semantics of (2.2):

v{(2.1)}, p{(2.2)} = NonTree = —Tree.

As it turns out, the overall situation can be analyzed in terms of the well-investigated
propositional p-calculus in a perfectly straightforward way. This was first observed in
[Schild, 1993b, 1993¢]| and [Schild, 1994a]. The propositional p-calculus is an exten-
sion of the propositional multi-modal logic K(,,, launched by Pratt [1981] and Kozen
[1983] as a special logic to reason about (concurrent) programs. The propositional
p-calculus extends K,y by fixed-point operators of the form pz.a and vz.a where
« can be an arbitrary formula of the propositional p-calculus. However, a restric-
tion, called formal monotonicity, 1s imposed on a which requires that the variable x
may occur only positively in . The formulae pz.o and vz.a explicitly represent the
least and the greatest fixed-points of a function loosely associated with the lambda-
expression Ar.a. As x may occur only positively in «a, this function is known to
be monotone. According to the well-known Knaster-Tarski Theorem, this function
therefore has both a unique least as well as a unique greatest fixed-point [Tarski,

1955].
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It will turn out that least and greatest fixed-point terminologies can be expressed
straightforwardly in terms of such explicit fixed-point operators. The only prereq-
uisite for such a representation will be that recursively defined concepts may occur
only positively in their definition. In what follows, we shall use this correspondence
to provide a deeper insight into the computational complexity and the expressive
power of the different kinds of fixed-point semantics.

2.2 The Standard Description Logic ALC

Let us first fix the concept language which will form the basis for our investigations
in this chapter. We consider the standard terminological logic ALC, thoroughly
investigated by Schmidt-SchauB and Smolka [1991] in their seminal paper. ALC is a
well-known description logic, which covers the basic expressive power of a description
logic. It constitutes, for instance, the core language of the system KRZS [Baader and

Hollunder, 1991].

Definition 1. Assume A is the union of two disjoint, infinite sets, called M¢ and
Nx, which contain neither T nor 1.3 The elements of these sets are called concept
names and role names respectively. The concepts and roles of ALC are inductively

defined as follows.

1. Every role name is a role of ALC.
2. Every concept name, T , and L are concepts of ALC.

3. If C and D are concepts of ALC and RN is a role name, then C' 11 D, C'U D,
—(C', VRN:C and JRN:C are all concepts of ALC.

4. These are the concepts and roles of ALC.

Of course, we may use parentheses to resolve ambiguities.

As already mentioned in the introduction, concept names are interpreted as arbitrary
subsets of some domain, while role names are interpreted as binary relations over the
domain. For this very purpose, so-called L-valualions are introduced, which fix the
interpretation of all elements of a set £ of concept and role names.

Definition 2. Assume £ is a set of concept and role names and assume A is an
arbitrary set. An L-valuation V over A is a function which maps each concept
name of £ to a subset of A and each role name of £ to a binary relation over A.

30f course, both sets should be acceptable in deterministic polynomial time, for instance, by
means of some finite state automaton.
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We shall frequently make use of the fact that each L-valuation V over A can be viewed
as a subset of £ x (22 U22%2) i.e., it can be viewed as the set {(TN,V(TN)) : TN &
L}.

Before specifying of how arbitrary concepts of ALC are interpreted, we introduce a
useful projection operation on binary relations.

Notation 1. Assume r C A x A is an arbitrary binary relation over A and d € A.
Then »(d) is defined to be {e € A: (d,¢e) € r}.

Definition 3. An interpretation 7 is a triple (A7, .7, V), where A7 is a set, called
the domain of Z, and V is a A-valuation over AZ. Moreover, .7 is a function, called
the interpretation function of Z, which maps concepts of ALC to subsets of AL
and role names to binary relations over AZ. Tt extends V to deal with arbitrary
concepts of ALC and is inductively defined as follows: TZ is AT, 17 is (), and TN*
is V(TN) whenever TN € N. Now, suppose C% as well as D? have already been
defined, where C' and D are concepts of ALC. Then I is defined as follows:

(CcnDY = CTn D%,
(CuD)Y = CTuD?,
(ﬁc)I = AZ \ CI,
(VRN:C)! = {d e AT: RN%(d) C C*},
(ARN:C)T = {d € AT: RNT(d)nCT #(}.

It can easily be verified that the interpretation function .z of every interpretation
(AT, 1)V) is uniquely determined by AT together with the N -valuation V.

Having specified the syntax and the meaning of the basic expressions, it remains to
define what exactly constitutes a terminology and what its meaning is.

Definition 4. Assume L is a set of concepts and roles. If C'and D are two concepts of
L and R and S are two roles of £, then both C = D and R = S are called axioms of
L. Moreover, such axioms are called concept or role introductions of £ whenever
(' is a concept name and R is a role name. Axioms of the form T = T'11T" are called
inclusion axioms and can be abbreviated by T'C T”. If T" is a concept or role
name, then such an inclusion axiom is also called primitive concept introduction
and primitive role introduction respectively. A terminology of £ is a finite set
T of concept or role introductions of £ such that for every concept or role name TN
there is at most one concept or role T' such that TN = T' is an element of 7T .

In case of ALC, however, we do not consider role introductions because no complex
roles are available in this description logic.
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Definition 5. A concept or role name TN € A is called defined in the terminology
T if and only if there is a concept or role T such that TN = T is an element of 7.
Moreover, TN is primitive in 7 if and only if it occurs in 7, but is not defined in 7.
We denote with def(7T") the set of all concept and role names which are defined in
T, while prim(7T) is the set of all those concept and role names which are primitive

in 7. Finally, undef(7) is defined to be N\ def(T).

Note that undef(7T) comprises all concept and role names which are not defined in
T, no matter whether they occur in 7 or not.

In order to state the meaning of terminologies we have to specify their models. As
usual, models are interpretations forcing something to hold. In case of terminologies,
a model is simply an interpretation respecting every concept and role introduction of
the terminology in the sense that the left-hand side of the concept or role introduction
must denote the same set as the right-hand side. As terminologies such as {CN =
—CN} should not have any model, the domain of a model is required to be nonempty.

Definition 6. An interpretation (AZ,.2, V) with a nonempty domain A? is a model
of an axiom T = T" if and only if T7 = T, and it is a model of a set of axioms if

and only if it is a model of each axiom of the set.

Recall that we treated an inclusion axiom of the form 7' C T as an abbreviation
of T'=TNT' Tt should be stressed that the models of T' C 7" are exactly those
interpretations which interpret T and T" according to the intended subset relation.
That is, an interpretation (A%, .7, V) is a model of T C T" if and only if T C T"%.

Having the notion of a model at hand, we can now define semantic relations such as
subsumption and equivalence.

Definition 7. Suppose AU {T = T"} is an arbitrary set of axioms. Then A is said
to entail 7' = T" if and only if every model of A is also a model of T'= T". Whenever
this is the case, we write A =T = T”, possibly omitting the curly brackets of the
set A, and A altogether if it is empty. We say that 7" subsumes T with respect to
A if and only if A T C T'. Moreover, C' and D are equivalent with respect to
A if and only if | T = T'. Finally, a concept is coherent if and only if it is not
equivalent to L with respect to ().

For the sake of convenience, we may omit the phrase “with respect to A” whenever
A is the empty set. We close this section with a formal definition of cyclic and acyclic
terminologies.

Definition 8. Assume 7 is some terminology and assume TN = T and TN’ = T" are
concept or role introductions of 7. We say that TN = T directly uses TN’ = 7" if
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and only if 7" involves an occurrence of TN'. If T -uses denotes the transitive closure
of directly uses over T, then two concept or role introductions are defined to be
mutually dependent within 7 if and only if they 7-use each other.

The reader may check that the relation mutually dependent within T is always tran-
sitive as well as symmetric, but it is not necessarily reflexive.

Definition 9. A terminology 7 is cyclic if and only if it contains concept or role
introductions which are mutually dependent within 7; otherwise it is acyclic.

It can easily be seen that as far as acyclic terminologies T of ALC are concerned,
every undef (T )-valuation V, can be uniquely extended to a model of 7. This is to say,
there is exactly one model of 7 which extends V, in the sense that an interpretation
(AT, 2V} is defined to extend a L-valuation V, over A if and only if AT = A and
V. C V. However, we have already seen in the introduction that this does not apply
to cyelic terminologies.

2.3 Formal Monotonicity in ALC

So far we took all models of terminologies as admissible. We now introduce prefixes
p and v to invoke least or greatest fixed-point semantics.

Definition 10. Assume £ is a set of concepts and T is an arbitrary terminology
of L. Then u7T is called a least fixed-point terminology of £, whereas v7T is a
greatest fixed-point terminology of L.

In order to state the meaning of such least and greatest fixed-point terminologies, u7
and v7T, all models of 7 which agree in the interpretation of all undefined concept
and role names of 7 must be compared to each other, hence the following definition.

Definition 11. Suppose Z = (AT, .2 V) and J = (A7,.7 W) are arbitrary inter-
pretations such that A7 = AT, If £ is a set of concept and role names, then J is

said to be L-compatible with Z if and only if for every concept and role name TN
of L, TNV = TNZ,

In other words, V and W coincide at least on all elements of £ if Z = (AZ, .2, V) and
J = (A7, 7 W) are L-compatible.

Definition 12. Assume 7 is some terminology and assume Z = (AZ, . Z)V) is an
arbitrary interpretation. Then Z is a least fixed-point model of 7 if and only if
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it is a model of 7" and, additionally, for each other model (A%, .7 W) of T which is
undef (T )-compatible with Z, it holds that CNZ C CNY | for every CN defined in T.
The greatest fixed-point models of T are defined correspondingly by requiring
CNT D CNY instead of CNT C CNY. Furthermore, T is defined to be a model of
pT (or vT) if and only if it is a least (or greatest) fixed-point model of 7.

The motivation for the notion of a fized-point model is the observation that a termi-
nology 7 together with an undef (7T )-valuation V, over A induces an n-ary function
f:(2%)" — (22)", provided that 7 comprises exactly n concept introductions. Con-
sider, for instance, the terminology {Tree = Node I Vbranch:Tree}. This terminology
together with an undef (T )-valuation V, over A induces a function nb : 2% — 2%
which can be thought of as mapping each subset S of A to all those nodes the only
branches of which are among S. Formally, this function is defined for each S C A as
follows:

nb(S) = V,(Node) N {d € A :V,(branch)(d) C S}.

In general, this function will be defined in terms of an interpretation Z = (A, .7, V)
which extends V, in such a way that Treel is S, i.e., T extends the AN -valuation
V, U {(Tree, S)}. Resorting to this interpretation, nb(.S) can simply be defined to be
(Node 1 Vbranch:Tree)”. This definition yields the intended function:

nb(S) = (Node Vbranch:Tree)’
= Node” N {d € AT : branch®(d) C Tree’}
= V.(Node) N {d € A :V,(branch)(d) C S}.

Next we give the general definition of the function induced by 7 and an undef (T )-
valuation.

Definition 13. Suppose 7 is a terminology of the form {CN; = C; : 1 < i <
n}, where CNy,...,CN, are ordered by some fixed total ordering on N¢. Suppose,
furthermore, V, is an undef (T )-valuation over A. Then the function induced by
T and V, is the function f : (22)" — (2°)" defined as follows. Assume S, ..., 5,
are arbitrary subsets of A and (A,.Z)V) is the interpretation which extends the N-
valuation V, UV, over A, where V; is {(CN;,S;) : 1 <i < mn}. Then f(5i,...,5,) is
(T, ... CTY.

It should be clear that V, UV, is in fact an AN -valuation because it combines an
undef (T )-valuation with a def (7 )-valuation, so that each concept and role name is
handled either by the former or by the latter. In the previous section, it has already
been noted that the interpretation function .2 of every interpretation (A, 2, V) is
uniquely determined by the A -valuation V. The C%’s of the definition above are,
therefore, uniquely defined.
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Definition 14. Assume A is an arbitrary set and f is some n-ary function mapping
(22)™ into (22)". An element (S, ..., S,) of (22)" is called fixed point of f if and
only if f(S1,...,5,) is (S1,...,S,), and such a fixed point is a least fixed point of
f if and only if for each other fixed point (S}, ..., 5!) of f, it holds that S; C 5!, for
every i (1 <1 < n). A greatest fixed point of f is defined correspondingly by
requiring S5; O 57 instead of S; C 5.

A moment’s thought should convince the reader that there is a close connection
between the fixed points of the function induced by a terminology and an undef (7T )-
valuation V), on the one hand, and models of 7 on the other hand. Take, for instance,
the by now familiar terminology 7 = {Tree = Node M Vbranch:Tree} and the function
nb induced by T and an arbitrary undef (T )-valuation V,. Every model (A% 2 V)
extending V, is a model of T if and only if Tree’ is a fixed point of the function
nb. Clearly, exactly the same close relationship exists between the least (or greatest)
fixed points of nb and the least (or greatest) fixed-point models of 7.

Proposition 1. Suppose T is some terminology, V, is an undef(T )-valuation over
A, (AT TV) is an arbitrary interpretation extending V,, and f is the function in-
duced by T and V,. Assume, moreover, def (T) is {CNy,...,CN,}, where CNy,...,CN,
are ordered by the same ordering as in the definition of f. Then T is a least (or great-

est) fived-point model of T if and only if (CNT,...,CNZ) is the least (or greatest) fived
point of the function f.

To ensure the existence of least and greatest fixed-point models of a terminology
T the function induced by 7 and an arbitrary undef (7 )-valuation V, should be
monotonically increasing. As customary, an n-ary function f : (22)" — (2%)" is said
to be monotonically increasing (or monotone, for short) if and only if for every
two elements S and S’ of (2%)", it holds that f(S) C f(S’) whenever S C S7. Tt

should be clear that in this case C denotes the component-wise subset relation.

Monotonicity of the function induced by 7 and V), can be achieved by requiring all
occurrences of concept names which are defined in T to be positive, i.e., they must
occur in the scope of an even number of negations. This restriction is called formal
monotonicity.

Definition 15. A terminology, T, of ALC is formally or syntactically monotone
if and only if for every concept introduction CN = C of T, it holds that C' contains
only positive occurrences of all those concept names which are defined in 7. This
is to say, if C' contains an occurrence of a concept name defined in 7, then this
occurrence must appear in the scope of an even number of negation signs —. Clearly,
uT and vT are defined to be formally monotone if and only if 7 is.

An immediate consequence of Theorem 3.2 of [Park, 1970] is the fact that for each
formally monotone terminology 7 and for each undef (T )-valuation V,, the function
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induced by 7 and V), is actually monotone. Apart from the formal monotonicity, 7
is only required to be equivalent to some first-order formula. The latter condition
is actually met by any terminology of ALC. This follows immediately from the
transformation outlined in the introduction on page 11.

Proposition 2. Assume T is some formally monotone terminology of ALC and V,
is an arbitrary undef (T )-valuation over A. Then the function induced by T and V),
ts monotone.

According to the well-known Knaster-Tarski Theorem, monotone functions always
have least and greatest fixed points [Tarski, 1955]. In addition, this theorem states
that the least and greatest fixed points of every monotone function f are unique,
and, in particular, the least fixed point of f is the intersection of all its fixed points,
while the greatest fixed point of f is their union [Tarski, 1955]. The Knaster-Tarski
Theorem will be presented in more detail in the subsequent chapter. Whenever
T is a formally monotone terminology of ALC, the Knaster-Tarski Theorem can
be applied to the function induced by 7 and an arbitrary undef(7 )-valuation in
that the previous lemma assures the monotonicity of this function. According to
Proposition 1 this result can be carried over to the corresponding least and greatest
fixed-point models of T

Proposition 3. Suppose T is some formally monotone terminology of ALC. Then
T has both a least as well as a grealest fired-point model. In particular, an arbitrary
interpretation (AT, TV) is a least (or greatest) fived-point model of T if and only
if for each CN which is defined in T, CNT is the intersection (or union) of all
CNY where .7 ranges over the interpretation functions of all models of T which are

undef (T )-compatible with T.

In a nutshell, this means that the least and greatest fixed-point terminologies of a
formally monotone terminology can be characterized in terms of its ordinary models.

In the introduction we argued that single least and greatest fixed-point terminologies
are too limited in at least two respects. First, they do not allow for reasoning about
different kinds of semantics. Second, we do need both least as well as greatest fixed-
point terminologies of ALC whenever we want to express not only universal, but also
existential quantification over the reflexive-transitive closure B* of a role. In fact, we
shall see in Section 2.5 that as far as formally monotone terminologies of ALC are
concerned concepts like AR*:C' can be defined solely by least fixed-point terminolo-
gies, while VR*:C' can be defined solely by greatest fixed-point terminologies. At this
very point it should be stressed again that it it is not possible to resort to the duality
E VR*C = =3R*:~C in this context. To see this recall that v{A = C T VR:A}
defines VR*:C', but v{A = C MVR:A, A = = A} is neither formally monotone nor

does it have any model.
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We introduce complex fixed-point terminologies just to overcome these deficiencies.
To do so, however, we have to extend the notion of mutual dependency to be appli-
cable to terminologies as well.

Definition 16. Let T' = {77,..,7,} be a set of terminologies. For every two termi-
nologies, 7; and 7;, of I' with 7+ # j we say that 7; directly uses 7; if and only
if at least one concept introduction of 7; directly uses a concept introduction of 7;.
Now, let T'-uses denote the transitive closure of directly uses over I'. Then the ter-
minologies 71, .., 7, are said to be mutually dependent if and only if there are two
terminologies 7; and 7; (1 <1,5 < n) with ¢ # 5 which I'-use each other.

Definition 17. Assume L is a set of concepts. A finiteset I' = {o;7;: 1 <i < n,o0; €
{p,v}} of least and greatest fixed-point terminologies of £ is called complex fixed-
point terminology of £ if and only if def(71), ..., def(7,) are pairwise disjoint, and
Ti, .., T, are not mutually dependent.

Such a complex fixed-point terminology I' is said to be formally or syntactically
monotone if and only if all least and greatest fixed-point terminologies of I' are for-
mally monotone. Notably, formal monotonicity is required for each single fixed-point
terminology of I' rather than for the union of all involved terminologies. Consider,
for instance, the following complex fixed-point terminology:

{v{A = CNVR:A}, u{A = -A}}.

Here, (' is assumed to be some concept not containing any occurrence of A. According
to the definition just given, this complex fixed-point terminology is then formally
monotone although the union of its two constituent terminologies is not.

Not very surprisingly, an interpretation is defined to be a model of a complex fixed-
point terminology I' if and only if it is a model of each least and greatest fixed-point
terminology of I'. Tt is straightforward to generalize the notion of a defined concept as
well as semantic relations such as subsumption and equivalence to deal with complex
fixed-point terminologies.

We have already seen that every formally monotone terminology of ALC does have
both a least as well as a greatest fixed-point model. The question arises, however,
whether this result also applies to an arbitrary formally monotone complex fixed-
point terminology I' = {0:7; : 1 < < n,0; € {p,v}} of ALC. According to the
definition of complex fixed-point terminologies, the terminologies 7y, ..., T, must not
be mutually dependent, so that there is at least one terminology 7; (1 <1 < n) which
does not involve any occurrence of a concept name defined in any other terminology 7;
if 7 # 1. Moreover, 7; is formally monotone since I' is. According to Proposition 3, 7T;
does have a least as well as a greatest fixed-point model. Induction on n then proves
that ' has in fact a model as well.
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Proposition4. Fach formally monotone complex fixed-point terminology of ALC
has a model.

2.4 The Fixed-Point Description Logic ALCpu

So far we dealt with least and greatest fixed points at the metalevel rather than on
the concept level. In what follows, we shall introduce an extension of ALC, called
ALC i, which comprises explicit least as well as greatest fixed-point operators. ALCu
additionally comprises concepts of the form pCN.T and vCN.T , where T stands for
an arbitrary formally monotone terminology of ALCpu, i.e., T may involve not only
concepts of ALC, but also least and greatest fixed-point operators. The meaning
of these concepts is given in terms of the function induced by 7 and an undef (T )-
valuation V,. If T is a terminology such that def(7)is {CNy,...,CN,} and (AL, 2)V)
is an interpretation extending V,, then (uCN;.T)% and (vCN;.T)* represent the jth
component of the least and the greatest fixed point of the function induced by 7 and
V.. However, this is only the case if CN; is actually defined in T; otherwise uCN;. T
is equivalent to L, whereas vCN;.T is equivalent to T.

We consider this extension of ALC for various reasons. First, it is a rather sim-
ple extension to cope with least and greatest fixed points explicitly, and therefore
it provides a unifying framework for all three kinds of semantics. Second, ALCu
will turn out to be a notational variant of the so-called propositional p-calculus.
The propositional p-calculus is well-understood in terms of its expressive power and
computational complexity so that this correspondence will provide us with a better
understanding of ALCp. Last but not least, a certain fragment of ALCu will turn
out to be a suitable framework for analyzing the expressive power and computational
complexity of formally monotone complex fixed-point terminologies of ALC.

Definition 18. The concepts and roles of ALCu are inductively defined as follows.

1. Every role name is a role of ALCp.
2. Every concept name, L and T are a concepts of ALCp.

3. If C" and D are concepts of ALCp and RN is a role name, then C 1D, C'U D,
~C, VRN:C and 3RN:C are all concepts of ALCp.

4. If CN is a concept name and 7T is some formally monotone terminology of
ALCp, then both pCN.T and vCN.T are concepts of ALCu. Concepts of this

form are called least and greatest fixed-point operators respectively.

5. These are the concepts and roles of ALCp.
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In ALCy the notion of formal monotonicity of terminologies is exactly the same as
in ALC. If T contains only one concept introduction, say, CN = (', we may use the
notation yCN.C and vCN.C instead of uCN.T and vCN.T.

We next extend the notion of an interpretation (A%,.7 V) to cope with least and
greatest fixed-point operators. We do so by additionally requiring that (uCN.T)*
is the intersection and (¢vCN.T ) is the union of all CNY where .7 ranges over the
interpretation functions of all models of 7 which are undef (7 )-compatible with Z.
According to Proposition 3, this amounts to requiring that (#CN;.7T)? denotes the
jth component of the least fixed point of the function f induced by 7 and V,. For
this statement to be true, of course, (AZ,.Z, V) must be an interpretation extending
the undef (T )-valuation V, and def (7)) must be of the form {CNy, ..., CN, } such that
1 < j < n. Similarly, (vCN;.T)* denotes the jth component of the greatest fixed
point of the function f.

In [Schild, 1991a], we have shown that ALC is a notational variant of the propo-
sitional multi-modal logic K,,). The main observation is that the elements of the
domain of an interpretation can be thought of as worlds or states rather than objects.
Consequently, concept names can be viewed as propositional variables denoting the
set of worlds in which they hold, and T, L, M, U and = naturally correspond to
the logical connectives true, false, A, V and to =. But then VRN: and JRN: be-
come RN-indexed modalities of necessity [RN] and of possibility (RN) respectively.
This explains why ALC is a notational variant of the propositional multi-modal
logic K., for details, the reader is referred to [Schild, 1991a). The propositional
p-calculus extends Ky by explicit least and greatest fixed point operators to reason
about concurrent programs. The propositional version of the p-calculus has been pro-
posed by Kozen [1983], while Vardi and Wolper [1984] investigated the propositional
p-calculus with multiple fixed points. The fixed-point operators of the latter directly
correspond to those of ALCpu. The only difference is that pCN;. T and vCN;.T are
written as pCN;(CNy,...,CN,):(Cy,...,Cp) and as vCON;(CNy,...,CN,):(Cy, ..., Cy),
provided that 7 is of the form {CN; = C; : 1 <1 < n}.

Correspondence Theorem 1. ALCu is a notational variant of the proposilional
p-calculus with multiple fized points.

In view of of this correspondence, we assume henceforth that all results shown for
the propositional p-calculus and its variants are also shown for ALCu and the cor-
responding variants.

It is worth mentioning that the meaning of the concepts uCN.T and vCN.T is
preserved by renaming any of those concept names which are defined in 7. This is
because (uCN.T)* and (vCN.T)? always gives a local meaning to all concept names
defined in 7. Of course, the local character of the concept names defined in T is just
a consequence of the fact that (uCN.T)¥ and (vCN.T)* are to yield a denotation of
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CN which is the result of a mutual minimalization or maximalization process of the
denotations of all these concept names. The following lemma, due to Kozen [1983,
Proposition 5.7(i)], is devoted to a renaming of concept names defined in 7.

Lemmal. Assume T is an arbitrary terminology such that CN; is defined in this
terminology, but there is no occurrence of the concept name A; in T. Suppose,
moreover, (WCN;. T )en, 4, and (VON;. T )on, 4, are obtained from pCN;. T and from
vCN;.T by replacing each occurrence of CN; with A;. Then the following equivalences
hold if © # j:

|: MONJ'T = (MCNJ'T)CNi/Aiv

|: VCNJ'.T = (VCNj-T)CNi/Ai-

In view of this Lemma, we henceforth assume that in any concept, C, of ALCpu, no
concept name is defined in more than one terminology occurring in C'. This is to
say, there are no two different occurrences of fixed-point operators in € such that
there is at least one concept name which is defined in both of the two fixed-point’s
terminologies.

The reader may have wondered why there is only an indication of the least fixed-
point operator in the name ‘ALCp’ although it extends ALC not only by least, but
also by greatest fixed-point operators. The reason for this is that we can eliminate
greatest fixed-point operators in favor of least fixed-point operators and vice versa.
For instance, the least fixed-point operator pA.{A = C U3JR:A} is equivalent to the
negated greatest fixed-point operator —vA.{A = =(C U3R:=A)}. It is important
to realize that the terminology {A = =(C' U 3R:—~A)} is syntactically monotone if
and only if so is {A = C'U3JR:A}. Park [1970] showed that this equivalence can be
generalized as follows: Suppose C; is obtained from C; by replacing all occurrences
of concept names defined in T by their negated form. According to Theorem 2.3 of
[Park, 1970], then the following equivalences hold:

= -~uCN. T =vCNACN; =
= —vCN.T = uCNA{CN; =

—'CN'Z' ; (C]\/vZ = CZ) € T},
_'CN'Z' : (C]VZ = CZ) € T}

As —=C; adds exactly two negations to the scope of each occurrence of a concept name
which is defined in 7T, the terminology {CN; = =C; : (CN; = C;) € T} is clearly

formally monotone if and only if 7 is formally monotone.

These equivalences are crucial to obtain a negation normal form. As usual, the
negation normal form of a concept is an equivalent concept involving no negated
compound concepts. In case of ALC, it can be obtained by exploiting de Morgan’s
laws as well as the equivalences | =VR:C = FR:=C and | -3R:C = VR:=C. In
case of ALCpu, however, we additionally have to exploit the dualities for least and
greatest fixed-point operators given above.
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Definition 19. The function nnf maps concepts of ALCu to concepts of ALCp.
Applied to an arbitrary concept, nnf yields the concept obtained from the original
concept by repeatedly applying the following substitution rules:

= ~ C,

-(CND) ~ =CU-D,

-(CUD) ~ —-Cn-D,

~(VR:C) ~ 3R:C,

-(3R:C) ~ YR:AC,

—uCN. T~ vCN{CN; = =C;: (CN; = C;) € T},
—vON.T  ~» uCN.{CN; =—C;: (CN; = C;) € T}.

As above, C; denotes the concept obtained from C' by simultaneously replacing each
occurrence of CNy,...,CN, with its negated form. We call nnf(T) the negation
normal form of 7.

Lemma2. Fvery concept of ALCu is equivalent to its negation normal form.

In view of the fact that many p-calculi considered in the literature do not allow for
mutual fixed points, we should clarify the actual role of these: By mutual fixed points
we mean least or greatest fixed-point operators applied to terminologies comprising
more than one concept introduction. It turns out that we can eliminate mutual
fixed-points in favor of nested ones. Consider, for instance, the mutual fixed-point
vA{A =VR:B,B = VS:(AN B)}. This concept is in fact equivalent to vA.{A =
VRvB.{B =VS:(AMNB)}}, which obviously does not contain any mutual fixed-point.
The following lemma just generalizes this observation.

Lemma3. Assume T is a formally monotone terminology of ALCu which is of the
form {CN; = C;: 1 <i<n}. Assume, moreover, éj and C; are obtained from C; by
simultaneously replacing all occurrences of every CN; (I # 7) with pCN; {CN; = C}
and with vCN.{CN; = C\} respectively. Then uCN;.T is equivalent to uCN; {CN; =
éj} and vCN;.T is equivalent to vCN; {CN; = C;}.

A proof of this lemma is given inter alia in [de Bakker, 1980, Theorem 5.14.e]. Of
course, a finite number of applications of this lemma eliminates all mutual fixed
points.

Corollary 1. Fuvery concept of ALCu is equivalent to a concept of ALCu which

involves solely terminologies which contain al most one concepl introduction.
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Unfortunately, the size of the equivalent concept is not always bounded polynomially
in the size of the original concept.

As Proposition 3 suggests, there exists a close relationship between formally mono-
tone least and greatest fixed-point terminologies on the one hand, and least and
greatest fixed-point operators of ALCpu on the other hand. The least fixed-point
terminology u{CN = ('}, for instance, has exactly the same models as the concept
introduction CN = pA{A = Coyyat, where Conya is obtained from C' by replacing
all occurrences of CN with A. Note, however, that the concept names which are
defined in 7 have a local meaning in pA. 7T and in vA. T, whereas those defined in
fixed-point terminologies have a global meaning. This is due to the fact that ac-
cording to Lemma 1 the meaning of the concepts pA. T and vA.T is preserved by
renaming each concept name which is defined in 7. In contrast to this, renaming
defined concepts does change the meaning of least and greatest fixed-point termi-
nologies. Therefore, for each concept introduction CN; = C; of the least fixed-point
terminology p7, a concept introduction CN; = pA;. Ton, /4, is needed.

Proposition 5. Assume T is some formally monotone terminology of ALC which is
of the form {CN; = C; : 1 <1 < n} and which does not contain any of the (pairwise
distinct) concept names Ay, ..., An. Suppose, furthermore, Ta is obtained from T by
replacing each occurrence of CNy,...,CN, with Ay, ..., A, respectively. Then pT has
the same models as {CN; = pA;.Ta : 1 <0 < n} and vT has the same models as
{CON; = vA;. Tx:1<1<n}.

This proposition describes how to represent formally monotone least and greatest
fixed-point terminologies of ALC by terminologies of ALCp. It should be remarked
that we could have taken also pCN;. T and vCN,.T instead of pA;. T4 and vA;. Tx
because renaming defined concepts does not change the meaning of least and greatest
fixed-point operators. However, we have taken the ones above because they end up
with acyclic terminologies. Let us take a closer look at these terminologies. Ty
is clearly a terminology of ALC since T is assumed to be a terminology of ALC.
This means neither pA;. T4 nor vA;. T4 involve any nested fixed-point operators. In
fact, we shall see that we do not need the full power of ALCu to represent formally
monotone fixed-point terminologies of ALC. In particular, we do not need nested
alternating least and greatest fixed-point operators interacting via a defined concept.

Definition 20. A concept C' of ALCp is called restricted if and only if its negation
normal form does not contain any least fixed-point operator pCN.T (or greatest fixed-
point operator vCN.T') which involves some greatest (or least) fixed-point operator in
which a concept defined in 7 occurs. We denote with ALCH the set of all restricted
concepts of ALCp.

Consider, for instance, the concept pA.{A = VRvB.{B = ANVS:B}}. First,

it is already in negation normal form. Second, it comprises a greatest fixed-point
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operator, viz. vB.{B = ATVS:B}, which is nested in a least fixed-point operator of
the form pA. 7. As there is an occurrence of A in the greatest fixed-point operator
vBAB = ANVS:B}, the concept above is not restricted and is therefore no concept
of ALCG . Observe, however, that yA.{A =VR:uB.{B = ANVS:B}} is restricted.

Remarkably, both Lemma 3 and Corollary 1 hold for ALCu as well. This is because
ALGi restricts only the interaction of nested alternating least and greatest fixed-
points operators which are not needed to eliminate mutual fixed-points in favor of
nested ones.

The following theorem is just an immediate consequence of the observation made
above that the way Proposition 5 reprepresents formally monotone complex fixed-
point terminologies of ALC in terms of acyclic terminologies of ALCu does not en-
counter any non-restricted concept. This is to say, acyclic terminologies of ALy do
suffice for this purpose.

Representation Theorem 1. There is a funclion ® which maps an arbitrary for-
mally monotone complex fixed-point terminology I' of ALC to some acyclic termi-
nology ©(I') of ALG in such a way that T and ©(T') have exactly the same models.
Additionally, © is computable in polynomial time and the size of n(I') is linearly

bounded in the size of T'.

By size we mean the length when considered as a string over N, I, U, =, V, 3, u
and v.

2.5 The Expressive Power of Recursion in ALC

In this section we shall investigate the expressive power of fixed-point terminologies.
In particular, we shall see that the concepts definable by formally monotone complex
fixed-point terminologies of ALC are exactly those concepts which are equivalent to
concepts of AL . We then give a strict lower bound of the expressive power of
ALCGi and of full ALCu in terms of ALC augmented by regular and w-regular role
expressions. Of course, before engaging into details, we have to clarify what exactly
is meant by expressive power and definabilily.

Definition 21. Suppose £ and L’ are two sets of concepts. Then L is at least as
strong in expressive power as L', L' < L for short, if and only if for each concept
in L' there is at least one equivalent concept in £, and L is strictly stronger in
expressive power than £’ if and only if £ < £, but it is not the case that £ < L'
Furthermore, a concept €' is definable by a set of complex fixed-point terminologies
of £ if and only if there is an element I' of the set and there is a concept name CN

which is defined in T' such that I' = CN = C.
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This is to say, £ is at least as strong in expressive power as L’ just in case that
for each concept in L’ there is a concept in £ which has exactly the same meaning,
though the two concepts may differ in their syntax. If there is in addition a concept
in £ which is not equivalent to any concept of L', £ is said to be strictly stronger
in expressive power than £’. For example, it can be shown that ALC augmented by
the reflexive-transitive closure RN* of a role name is strictly stronger in expressive
power than ALC. The definition of definability of concepts takes into account the
fact that the definitional power of terminologies consists in the concept names which
they define. The concept IRN*:C', for instance, is definable by formally monotone
complex fixed-point terminologies of ALC since u{A = CUFRN:A} = A =3IRN*:C,

provided that A is a concept name not occurring in C.

Expressiveness Theorem 1. The concepts definable by formally monotone complex
fized-point terminologies of ALC are exactly those concepls equivalent lo concepls of

AL .

A corresponding result for the propositional p-calculus was given in [Cleaveland and
Steffen, 1991]. This result is of great importance in that it justifies ALCi (rather
than full ALCp) as a unifying framework for the least and the greatest fixed-point
semantics. One part of the proof, viz. the proof that every concept of AL is
definable by some formally monotone fixed-point terminology of ALC, can be based
on Proposition 5. In particular, it can be shown that every least fixed-point operator
pCN. T of ALGi can be replaced with some fresh concept name A; if the least fixed-
point terminology p74 is added and T4 is defined as in Proposition 5. Of course,
every greatest fixed-point operator can be eliminated in an analogous way too. All
fixed-point terminologies needed are then collected together in a complex fixed-point
terminology. Of course, for this being possible all these fixed-point terminologies
must not be mutually dependent. Nested fixed-point operators interacting via a
defined concept, however, might cause problems in this respect. Eliminating the two
fixed-point operators of pA.{A =VR:uB.{B = ATVS:B}}, for instance, in the way
just described would yield two mutually dependent fixed-point terminologies. This
is why concepts such as the one above must be replaced by the equivalent concepts
containing no nested fixed-point operator any more, at least if the nested fixed-point
operators interact via a defined concept. The concept above, for instance, must be
replaced by pA.{A =VR:B,B = ANVS:B}. According to Lemma 3, an elimination
of nested fixed-point operators of this kind is always possible. Nested alternating
fixed-point operators, however, cannot be eliminated in this way. But such concepts
are, of course, not restricted.

Now, recall that Corollary 1 states that each concept of ALCp is equivalent to one
which involves solely terminologies comprising at most one concept introduction.
Recall furthermore that we already noted that this holds also for restricted concepts
of ACCu. But then we can immediately conclude the following theorem.
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Expressiveness Theorem 2. ALCu involving no terminology which comprises more
than one concept introduction is at least as strong in expressive power as full ALCp.
The corresponding statement holds for ALCii as well.

We next compare both ALCGi and full ACCu with the regular and the w-regular
extension of ALC in their expressive power. For the regular extension of ALC see
[Baader, 1991] or [Schild, 1991a). Tt additionally comprises the reflexive-transitive
closure R* of a role, the composition Ro S and union RU .S of two roles, the identity
role ¢, as well as the role R|C restricting the range of a role to a concept. The w-
regular extension of ALC extends its regular extension by the additional concept
dR¥, which stipulates the existence of an infinite chain of the role R.

It is worth mentioning that this language can sometimes be used to clarify the ac-
tual meaning of fixed-point terminologies. For instance, Streett [1985, page 364]
mentioned the following equivalences:

E uA{A=CnNVRA} = (VR:C)N-3R",
L VA{A=CU3IRA} = (3R=C)U 3R“.

Of course, A has to be some concept name not appearing in C'. According to Proposi-
tion 5, both equivalences can be carried over directly to the corresponding fixed-point
terminologies:

p{A=CNVR:A} E A = (VYR:C)N-3R*,
{A=CU3IRA} E A = (IR:C)U IR~

This indicates that some concepts of the w-regular extension of ALC are definable
by formally monotone complex fixed-point terminologies of ALC. The next theorem
together with Expressiveness Theorem 1 implies that formally monotone complex
fixed-point terminologies of ALC are in fact able to define all concepts of the regular
extension of ALC. They are even able to define concepts which are not equivalent to
any concept of the regular extension of ALC.

Expressiveness Theorem 3. ALCy s strictly stronger in expressive power than
the regular extension of ALC, while ALCu is strictly stronger in expressive power
than the w-reqular extension of ALC.
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Proof. Consider the following equivalences, due to Kozen [1983], which presuppose
that A is some concept name not occurring in C':

E VRC = -3R:—C,

= 3RC = uAJA = CU3RAL,
E J(RoS):C = FRIS:C,

= 3(RUS:C = (3RC)U(3S:C),*

E 3(R|C):D = 3FR(CTD),
E deC = (),
= 3R« = pA{A=TRAL

These equivalences can be used directly to prove by induction on the structure of
concepts of the w-regular extension of ALC that ALCu is at least as strong in expres-
sive power as the w-regular extension of ALC. As A does not occur in ', all but the
last equivalence yield restricted concepts in case that €' and D are restricted. The
last equivalence, however, may yield concepts which are not restricted. For instance,
(R 0 5*)“ is equivalent to vA.{A = FR:uB.{B = AU 35:B}}, which is obviously
not restricted. This concerns, however, solely the last of the above equivalences, so
that ALCGi is yet at least as strong in expressive power as the regular extension of
ALC. Now, according to Kozen [1983, Proposition 4.1], there is at least one concept
of ALCy which is not equivalent to any concept of the regular extension of ALC,
viz. vA{A = dRN:A}. Despite the fact that the latter concept is equivalent to a
concept of the w-regular extension of ALC, Niwinsky has shown that this does not

apply to vA.{A = IRN;:AT1IRN,: A} [Streett, 1985, Theorem 2.7)]. O

2.6 The Computational Complexity of Recursion
in ALC

In what follows we shall see that as far as formally monotone terminologies of ALC are
concerned, all three kinds of semantics essentially do not differ in the computational
complexity of the corresponding subsumption relation. In each case, subsumption
turns out to be complete for deterministic exponential time. To be more accurate,
we investigate the computational complexity of the following three problems. For an
arbitrary formally monotone terminology 7 of ALC and for an arbitrary primitive
concept introduction CN C C' of ALC decide whether (a) T = CN C C, (b) uT |
CN C C, and (¢) v7T = CN C C. It turns out that all three problems are hard
for deterministic exponential time, even if 7 is restricted such that it contains at
most one concept introduction. All these lower complexity bounds are obtained

*If we were concerned with linear length-boundedness, we could have taken the equivalent concept

pA{A=(3R:B)U(3S:B), B = C} instead.
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from a result of Fischer and Ladner [1979], which proves that the set of coherent
concepts of the regular extension of ALC is hard for deterministic exponential time.
Inspection of their proof reveals that the syntactic form of the concepts can be
restricted considerably. In fact, the set of all coherent concepts of the form C' I
VYRN*:D such that both C'and D are concepts of ALC and RN is a role name is hard
for deterministic exponential time as well. We shall prove this set to be polynomial-
time (many-one) reducible to each of the three problems mentioned above. The proof
involves the following reductions:

= CNYRN*D = L

iff ACDNYRN:A F A LC -C
iff Y{A=DNVRN:A} E A LC -C
iff pf{A=-DU3IRN:A} E -A C =C.

The last two reductions are immediate consequences of the fact that the correspond-
ing fixed-point terminologies entail A = VRN*:D and A = dRN*:=D respectively.
The first reduction is, however, more involved. Anyway, Fischer and Ladner’s result
holds even if C is of the form CNTIC’, where CN is a concept name, so that the axiom
—A € = can be shown to be equivalent to some primitive concept introduction, viz.

CNLC AU-C".

We shall also show that the entailment relation that integrates all three kinds of
semantics 1s computable in deterministic exponential time. By that we mean the
problem to decide whether AUT = C' = D, for arbitrary formally monotone complex
fixed-point terminologies I' of ALC and arbitrary finite sets AU {C = D} of axioms
of ALGi. According to Proposition 5, all fixed-point terminologies of ' can be
represented by acyclic terminologies of AL, so that we may assume I' to be empty.
Now, Vardi and Wolper [1984] showed the set of coherent concepts of AL to be
computable in deterministic exponential time.? In the same paper Vardi and Wolper
also showed that each concept C' of ALy is coherent if and only if there is a tree-
like interpretation (A”,.Z V) such that the empty word is an element of C*. This
ensures that any axiom C' = D can be internalized within ALCy using the technique
introduced independently by Baader [1991] and Schild [1991a). This means Vardi
and Wolper’s result can be shown to hold also for subsumption with respect to finite
sets of axioms of ALC .

Before going into details, the reader should recall some basic notions of structural
complexity theory. First, problems are usually represented as sets. The first of the
problems mentioned above thus will be represented by the set of all tuples (7, C = D)
such that 7 ranges over all syntactically monotone terminologies of ALC and C' = D

5Concerning the computational complexity of full ALCu, the following is known: Streett and
Emerson [1989] gave an elementary upper time bound for accepting the set of coherent concepts of
ALCp, while Safra [1988] as well as Emerson and Jutla [1988] proved that this set is even computable
in deterministic exponential time, at least when no mutual fixed points are involved.
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ranges over all axioms of ALC with 7 = C' = D. The following fundamental notion
of structural complexity theory states intuitively that some set S is at least as hard
as another set T. T is called polynomial-time m-reducible to S if and only
if there is a total function = : T — S computable in polynomial-time such that
for all , x € T if and only if w(z) € S. If, in addition, there is some constant
¢ > 0 such that for all z, |7(z)| < ¢|z|, then T is said to be polynomial-time
lin-reducible to S. Tt can easily be seen that both polynomial-time m-reducibility
and polynomial-time lin-reducibility are preorders, i.e., they constitute a reflexive
and transitive relation on sets. Given a class C, a set S is called polynomial-time
hard for C if and only if every element of C is polynomial-time m-reducible to S, and
a set 1s polynomial-time complete for C if and only if it is polynomial-time hard
for C and it is a member of C. We omit the corresponding definitions for log space
reductions. For any function ¢ with ¢(n) > n, we denote with DTIME(t) the class
of all sets accepted by deterministic Turing machines whose running time is bounded
above by t(n), for each input of length n. Similarly, for any function s with s(n) > 1,
DSPACE(s) denotes the class of all sets accepted by deterministic Turing machines
whose work space is bounded above by s(n). We define P as U;»o DTIME(n'),
DEXT as (J,sq DTIME(2°"), EXPTIME as [J;»q DTIME(?”i), and PSPACE as
Uiso DSPACE(n'). We shall make use of the fact that EXPTIME is closed under
polynomial-time m-reducibility, whereas DEXT is closed under polynomial-time lin-
reducibility. That is, a set is a member of EXPTIME if it is polynomial time m-
reducible to some set in EXPTIME and a set is a member of DEXT if it is polynomial-
time [in-reducible to some set in DEXT. Note, however, that DEXT is not closed
under polynomial time m-reducibility. After all, for each function f, DTIME(f) is
closed under complementation, i.e., a set is member of DTIME( f) if and only if its
complement is a member of DTIME(f). This implies, for instance, that P = co-P
and EXPTIME = co-EXPTIME and, therefore, any set is polynomial-time hard for
EXPTIME if and only if it 1s polynomial-time hard for co-EXPTIME. According
to the well-known linear speed-up theorem, it holds for each constant ¢ > 0 that
DTIME(2") = Ugso DTIME(d2°"). For details the reader is referred to Chapter 3
of Balcdzar et al. [1988].

For the complexity results to be presented, it is worth mentioning that P C PSPACE C
EXPTIME and, moreover, P is strictly included in DEXT which in turn is strictly
included in EXPTIME. Tt is also known that the class of all sets acceptable in deter-
ministic linear space, i.e., J.so DSPACE(cn) is included in DEXT. It is not known,
though, whether the whole of PSPACE is included in DEXT or vice versa. The only
fact that is known is that PSPACE # DEXT. For all these results the reader is
referred to Theorem 2.8, Proposition 3.1, and Exercise 14 of Chapter 3.9 in [Balcazar
et al., 1988].
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Lower Bounds

For the lower complexity bounds, we shall utilize a result due to Fischer and Ladner
[1979]. Tt states roughly that accepting the set of coherent concepts of the regular
extension of ALC is polynomial-time hard for EXPTIME and requires more than
deterministic time ¢*/ 18" for some constant ¢ > 1, even if the concepts contain at
most one occurrence of * [Fischer and Ladner, 1979, Lemma 4.1 & Theorem 4.4].
Harel [1984] observed that Fischer and Ladner’s proof also shows that this set is
not acceptable in deterministic time 2°", for some constant ¢ > 0 [Harel, 1984,
Theorem 2.14]. Inspection of Fischer and Ladner’s proof immediately reveals that
the syntactic form of the concepts can be restricted further:

Proposition 6. The set of all coherent concepts of the form C TMIVRN*:D such that
both C' and D are concepts of ALC and RN is a role name, henceforth denoted with
FL, is polynomial-time hard for EXPTIME. There is moreover a constant ¢ > 0
such that FL is not @ member of DTIME(2"). Both results hold even if C is solely
composed of concepl names, their negations, as well as T and, additionally, at least
one concepl name occurs in C' positively.

First, we give a lower bound for computing the subsumption relation with respect to
the descriptive semantics.

Complexity Theorem1. The set of all (T,CN C C) such thal T ranges over all
syntactically monotone terminologies of ALC and CN C C' ranges over all concept
introductions of ALC with T | CN C C is polynomial-time hard for EXPTIME.
Moreover, there is a constant ¢ > 0 such that this set is not @ member of DTIME(2").
Both results hold even if T may contain al most one concept introduction.

Proof. In what follows, we shall prove the following. Assume C' and D are arbitrary
concepts which do not contain any occurrence of the concept name A. It then holds
that:

= CNVYRN*D =1 iff ACDNVRN:ARE AL ~C. (2.5)

Take, just for a moment, this reduction for granted. But then the complement of FL
and the following set is polynomial-time [in-reducible to each other: The set of all
({AC DNVRN:A}, A C ~C) such that C' and D range over all concepts of ALC
which do not contain any occurrence of A such that AC DNMYRN:AE AL =C.
As FL is polynomial-time hard for EXPTIME, the latter set is hard for EXPTIME
as well. Now, if this set were a member of (.o DTIME(2°"), the complement of FL
and thus FL itself would be elements of (.5 DTIME(2°"). This would contradict,
however, Proposition 6 which states that for some constant ¢ > 0, FL. is not a member

of DTIME(2").
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We shall prove both directions of (2.5) by contraposition. For the if-part, suppose
C MVYRN*:D is not equivalent to L. That is, there is at least one interpretation
T = (AT, %) such that CT N (VRN*:D)? # LT = . Clearly, CT N (VRN*:D)T # ()
holds exactly when

(VRN*D)T ¢ AT\(CT = -(7. (2.6)

Suppose N is the set of all concept and role names occurring in CTIVRN*:D. Consider
some interpretation J = (AZ,.7) which is N-compatible with Z such that AY =
(VRN*:D)t. As A occurs neither in €' nor in D, such an interpretation J exists. Tt
will turn out that 7 is a model of A C DMYRN:A, but it is not a model of A C (/|
so that {A C DMVRN:A} does not entail A C —~C. The fact that J is not a model
of A C —C is an immediate consequence of the assumption that A7 = (VRN*:D)*
together with (2.6) which states that (VRN*:D)T € =CZ. Since [J is N-compatible
with Z, the functions .7 and .7 map D to the same subset of AT and RN to the same
binary relation over A%, Together with the assumption that A7 = (VRN*:D)” this
proves that J is in fact a model of AC DMVYRN:A :

AT
= (VRN*:D)*
= (D N VRN:YRN*:D)*
= DI n {de AT : RN%(d)
= D7n {deAT: RN7(d)
= (D M VRN:A)7.

(VRN*:D)*}

C
C A7}

To prove the only-if-part of (2.5), assume {A T DNYRN:A} does not entail A C —=C.
That is, there is at least one interpretation, say Z = (AZ,.7), which is a model of
A C DNMVYRN:A, but which is no model of A C =C'. The latter means that AZ ¢ =C7,
i.e., AT N CT # (), whereas the former means A7 must be a subset of (D MVRN:A)Z.
It is folklore that (VRN:C})? is a subset of (VRN:Cy)? if Cf is a subset of CI. Using
this observation it is easy to see that AZ is a subset of (D MVRN:D)%:

AI
(D NVYRN:A)T
DTN (\V'RN:A)I

C DIN(VRN:(DNVRN:A))*
= (DNVYRN:D)! N (VRN:VRN:A)*
C (DNVYRN:D).

Induction on n proves that for any natural number n, A? is a subset of (D I
(VRNY:D)..M(YRN™D)). Asone might suspect, YRN™: D abbreviates VRN:VRN"~1:D
if n > 1, whereas VRN':D is VRN:D. This means, AL is a subset of (VRN*:D)*
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and, therefore, AT N C7 is subset of (VRN*:D)T N CT. As AT N C7T is assumed to
be nonempty, (VRN*:D)T N CT must be nonempty too. But this is just to say that
CTMYRN*:D is coherent. 0

Next, we give lower complexity bounds for the the least and the greatest fixed-point
semantics.

Complexity Theorem 2. The set of all (uT,CN C C) such that T ranges over all
syntactically monotone terminologies of ALC and CN C C' ranges over all concept
introductions of ALC with uT |E CN E C is hard for EXPTIME. There is moreover
a constant ¢ > 0 such that this set is not a member of DTIME(2°). Both results
hold even if T may contain at most one concepl introduction. The corresponding
statements hold for greatest fized-point terminologies as well.

Proof. We have already seen that u{A = C'U3JRN:A} has exactly the same models
as A = JRN*:C and that v{A = C M VYRN:A} has exactly the same models as
A =VRN*:C. The only condition is that A does not occur in C. This means, if A
occurs neither in C' nor in D, then it holds that:

ECNVRND =1 iff v{A=DNVRN:A} ECN A =1
iff pf{A=-DUIRN:A} =CN-A=1.

To proceed, observe that C'MM A = L and the primitive concept introduction A C —~C'
have exactly the same models. Similarly, if C' is of the form CN M C’, C T1—-A = L
and the primitive concept introduction CN C AU —C" have exactly the same models
too. To summarize, if A occurs neither in C' nor in D, and if C' is of the form CNT1C’,
then it holds that:

= CNYRN*D = 1 iff v{A=DNVYRN:A} =ALC-C
iff p{A=-DU3IRN:A} =CNLC AU-C".

This means, the sets whose lower complexity bounds we are about to prove are
polynomial-time lin-reducible to the complement of FL. and vice versa, at least when
taking the restriction into consideration which is mentioned in Proposition 6. As FIL
is hard for EXPTIME, these sets are hard for EXPTIME as well. Furthermore, if
they were a member of 5 DTIME(2"), the complement of FL. would be an element,
of Neso DPTIME(27). As deterministic classes such as DTIME(2?) are closed under
complementation, this would imply that not only the complement of FIL, but also
FL itself would be an element of .o DTIME(2°*). This would contradict, however,
Proposition 6. In fact, according to this proposition, there is a constant ¢ > 0 such

that FL is not a member of DTIME(27). O
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Upper Bounds

Streett and Emerson [1984, 1989] gave an elementary upper time bound for accepting
the set of coherent concepts of full ALCu. Vardi and Wolper [1984] show that the
set of coherent concepts of ALCy is a member of EXPTIME. The next theorem
generalizes Vardi and Wolper’s result to subsumption with respect to finite sets of

axioms of AL .

Complexity Theorem 3. The set of all (A,C = D) such that AU{C = D} ranges
over all finite sels of axioms of ALCi with A= C = D is a member of EXPTIME.

Proof. As already mentioned, Vardi and Wolper [1984, Theorem 3] proved the claim
for A being the empty set. In the same paper they also showed that each concept
C of ALGP is coherent if and only if there is a tree interpretation Z = (A%,.F) such
that the empty word X is an element of C? [Theorem 2]. According to Vardi and
Wolper [1986, Page 197], a tree interpretation is an interpretation (A”,.F) such
that:

1. For some finite alphabet ¥, AT is a nonempty subset of all words over ¥.
2. For every w € ¥* and for every a € ¥, wa € A only if w € AL

3. For each role name RN and all w,w’ € ¥*, (w,w') € RN* only if for some a €
¥, w' = wa and, additionally, for each other role name RN’, (w,w') ¢ RN,

This ensures that any terminological axiom C' = D can be internalized within AL
using the technique introduced independently by Baader [1991] and by Schild [1991a).
This technique utilizes the concept Vz:C' defined as follows if R = {RN; : 1 <i < n}

is a finite set of role names:
Ve:C ¥ vA{A=CNVRN;:A..NVYRN,:A}.

The concept name A must not occur in C'. We have already seen that the concepts
vA{A = CNVRN:A} and YRN*:C' are in fact equivalent. In analogy to this
equivalence, Vz:C' is equivalent to Y(RN;...U RN, )*:C, if R is as above. Suppose
C = D abbreviates the concept (=CUD)N(=DUC). Then for each tree interpretation
T = (AT, .7), it holds that T is a model of C' = D if and only if A € (Vz:C = D)7,
provided R is the set of all role names appearing in C' and D. In addition, it holds
that the empty word X is a element of (Vz:C' = D)* if and only if (Vr:C' = D) is
the full domain A%, so that C = D = ¢’ = D' if and only if E (Vr:C'= D) C
C" = D'. This internalization is clearly computable in polynomial-time and it does
not increase the size of the involved axioms more than linearly. Moreover, it preserves

the restrictedness of the involved concepts. Induction on the cardinality of A shows
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that the set of all tuples (A, C' = D) such that AU {C' = D} ranges over all finite
sets A of axioms of ALy with A = C = D is polynomial-time m-reducible to the
same set but with A restricted to be empty. As the latter is a member of EXPTIME,
the former must be an element of EXPTIME too. O

It should be stressed that according to Representation Theorem 1, the last theorem
actually gives an upper complexity bound for computing the subsumption relation
which integrates all three kinds of semantics.

Corollary 2. Consider the set of all (AUT,C = D) such that T' ranges over all
syntactically monotone complex fived-point terminologies of ALC and AU{C = D}
ranges over all finite sets of azioms of AL with AUT = C = D. This set is a
member of EXPTIME.

2.7 Discussion

Recursion is considered one of the most important means of definition, not only
in description logics. In the setting of description logics recursion refers to termi-
nologies containing concepts or roles the definition of which depend on each other.
Such cyclic dependencies in terminologies are called terminological cycles. Of course,
terminological cycles can be direct or indirect.

Many concepts are in fact most naturally defined by recursion. For instance, it is

rather natural to define trees in the following recursive manner:®

Tree = Leaf LI (Node M Vbranch:Tree).

One might expect the traditional semantics for concept introductions to work in the
presence of such terminological cycles too. However, the problem with customary
semantics is that in such cases it might give rise to ambiguities of the following type.
Consider the recursive definition above. Suppose, the interpretation of Node, Leaf, as
well as branch has already been fixed, but the extension of Tree is to be determined
by the given recursive concept introduction. We would clearly expect something
functioning as a definition to determine what it is supposed to define in a unique
way. In this case, we would expect that the interpretations of Node, Leaf, and branch
result in a unique interpretation of Tree. In general, this means that an interpretation
of all primitive concepts and roles (i.e., all those concept and role names occurring
in the concept introduction, except for the concept to be defined) should always
determine a unique model. In contrast to acyclic concept introductions, those being

S0f course, for the definition’s completeness, appropriate concept introductions for Leaf as well
as Node must be given too. A Leaf can best be defined as a Node having no branch-successor, while
in the context of a tree, a Node is any object having no more than one branch-predecessor.
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recursive may violate this very characteristic of a definition. Such a situation, for
instance, is encountered with the following infinite structure.

branch branch - branch

»{)

O >0 >0 a®
Node Node Node Node

As far as this structure is concerned, the recursive concept introduction above does
not uniquely determine an interpretation of Tree. In particular, there are two different
ways of interpreting Tree, both in accordance with this concept introduction. One
possibility is to interpret Tree as the set of all nodes, in which case it denotes the
same set as Node. On the other hand, Tree can also be interpreted just as the empty
set. This means that there are two rather different ways of satisfying this recursive
definition, notwithstanding that all primitive parts of the definition have been fixed

properly.

This is why the traditional notion of a model is no longer reasonable as soon as
recursion enters the picture. In view of this problem, Nebel [1990a, 1991] refined the
common idea of a model. Inspired by Lloyd’s [1984] work on the semantic founda-
tions of logic programming, Nebel put forward two alternative semantics. In analogy
to Lloyd’s terminology, he baptized these alternatives least and greatest fived-point
semantics. In a nutshell, fixed-point semantics does not consider all models as ad-
missible, but only those which are the least or the greatest with respect to the inter-
pretation of the concept to be defined. Of course, in order to give this minimization
and maximization process reasonable limits, the terms least and greatest refer only to
those models which have the same interpretation domain and agree in the interpre-
tation of all primitive concepts and roles. These two different fixed-point semantics
can be thought of as giving rise to inductive or co-inductive definitions. This is to
say, the two alternative semantics capture different definitions along the line of the
dichotomy “the least set such that...” versus “the greatest set such that....”

Fixed-point semantics turned out to be more suited for recursion than customary
semantics. However, it was disputed for a while which of the two different fixed-point
semantics should be taken, where the most substantial contribution to this debate
is due to Baader [1990a]. He argued that careful inspection of recursive definitions
reveals that recursion is often used to express the reflexive-transitive closure of a role.
Consequently, he then argued, any semantics of recursion should take into account
this fact. The question then arises what kind of fixed-point semantics captures this
reading of recursion. Baader was able to prove that, as far as concept introductions
fitting the pattern CN = C T VR:CN (without any occurrence of CN in ') are
concerned, only the greatest fixed-point semantics supports this reading. Only the
greatest fixed-point semantics aptures in this case exactly the meaning of CN =
VR*:(. One can add that the recursive concept introduction for Tree fits into this
scheme, too, at least when taking into account an appropriate concept introduction
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for Leaf. For in this case Leaf LI (Node M Vbranch:Tree) is actually equivalent to
Node I Vbranch: Tree.”

Taking for granted that recursion is commonly used to express regular role expressions
such as the reflexive-transitive closure, Baader finally concluded that the greatest
fixed-point semantics comes off best. As regards the very weakest description logic,
this is, in fact, the only semantics supporting this reading of recursion.

Baader’s result, however, is somewhat misleading in that its validity is strictly lim-
ited to the very weakest description logic. As a matter of fact, his result is just a
consequence of the fact that he considered only concept conjunction as well as uni-
versal role quantification, but left out the dual concept-structuring primitives. We
pointed out that for the dual concept-structuring primitives the situation is just the
opposite. In particular, in order to express regular role expressions occurring within
existential role quantification, we have to resort to least fixed-point semantics rather
than to greatest fixed points. Take, for instance, the recursive concept introduc-
tion CN = C' U JR:CN. If this concept introduction is to capture the meaning of
CN = dR*:.C, the only way to enforce this reading is by least fixed-point semantics,
which shows that both kinds of fixed-point semantics are needed.

The reader might object that in stronger languages such as ALC, one could employ
the duality between JR:C' and -VR:~(C anyway. Instead of expressing, say, 3R*:C,
one could first capture VR*:=C" with the help of the of CN = -C' M VR:CN. Of
course, in order to achieve this, greatest fixed-point semantics must be invoked. If
one would simply add the concept introduction CN = =CN, then CN should finally
capture AR*:(C. Such a representation, however, does not work. This is because
terminologies of the form {CN = ~C' MVYR:CN, CN = ~CN} do not always have a
greatest fixed-point model, nor do they always have a least fixed-point model. To see
this, observe that it is impossible to maximize (or to minimize) the interpretation of
CN and its complement at the same time. This proves not only that both kinds of
fixed-point semantics are needed, but that they are even needed in coexistence.

This is, however, not the only argument in support of the coexistence of the two
different fixed-point semantics. Another argument attacks the claim that recursion
is mostly used to express regular role expressions. This claim cannot be put into
effect without a thorough investigation on what the least and greatest fixed-point
semantics really express. Such an investigation was carried out in the present chapter.
This was done with the help of a previously unknown, but nevertheless extremely
useful concept-structuring primitive. In particular, we introduced new concepts of

“In fact, if the concept introduction Leaf = NodeM=3branch is put into effect, then Leaf LI(Noder
Vbranch:Tree) is obviously equivalent to (Node M —3branch) LI (Node M Vbranch:Tree). Tt is not hard
to verify that the latter concept is in turn equivalent to the following concept:

(Node M —3branch M Vbranch:Tree) LI (Node M Jbranch M Vbranch:Tree).

The latter concept is finally equivalent to Node M Vbranch:Tree.
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the form dR“, where R can be an arbitrary role. Such a concept denotes all those
objects, d, such that there is at least one infinite R-chain emanating from d. The
significance of a concept-structuring primitive capable of stipulating or forbidding
(when negated) such infinite role chains should be evident. The addition of this new
concept-structuring primitive to the regular extension of ALC results in a description
logic which we refer to as the w-regular extension of ALC. With the help of this new
description logic, the consequences of enforcing the different kinds of fixed-point
semantics can be exactly stated. The analysis, however, is restricted to standard

recursion following the patterns CN = C' M1 VR:CN and CN = C U dR:CN. The

following table sums up the analysis carried out in the present chapter:

least fized-point greatest fized-point
semantics semantics
CN=CnVRCN | CN =VR*:CnN-dR" CN =VR*:C
CN =CUdR:CN CN = dR*:.C CN =dR*:CUdR”

The table shows that the situation in least and greatest-fixed point semantics is
completely symmetric. What this table also shows is that the question which of
the two different fixed-point semantics should be preferred depends on what one
intends to express in that particular case. For example, in the case of the concept
introduction of a tree given above, it is just a question of whether or not trees of
infinite depth are excluded. According to the table just given, the least fixed-point
semantics does exclude them, whereas the greatest fixed-point semantics does not.
Of course, this raises the question whether such an analysis is limited to recursion
fitting into the standard patterns included in the table above.

We pointed out that questions like the latter can be tackled perfectly well in terms
of the explicit fixed-point operators known from program logics, and so can recursion
in ALC as a whole. This is particularly true in view of the need for coexistence of
both kinds of fixed-point semantics. Explicit least and greatest fixed-point operators
are used in logics of programs to state specific correctness properties not expressible
by ordinary dynamic logics. They have been employed successfully to state deadlock
freedom and starvation, see [Flon and Suzuki, 1978]. In the context of first-order
logic, explicit fixed-point operators were investigated by Park [1970], Hitchcock and
Park [1973], as well as de Bakker and de Roever [1973]. Regarding description logics,
the propositional case is more interesting though. The propositional case was first
investigated by Pratt [1981] and, more influentially, by Kozen [1983]. In both cases,
least and greatest fixed-point operators are treated just as a new kind of formu-
lae. This treatment makes it possible to express nested fixed-points operators easily.
In the propositional case, the following notation is common. If x is an arbitrary
propositional variable and « is an arbitrary formula, then pz.« is a least fixed-point
operator, while vz.«a is a greatest fixed-point operator. Fixed-point formulae of the
form pz.cv and vz.a are to be read as “the least x such that o” and “the greatest «
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such that «.”

From a semantic point of view, fixed-point formulae represent the least and the
greatest fixed point of a certain function, hence the name fized-point operator. This
function can be best described with the following notation. If M is an arbitrary
Kripke structure and « is a formula, then let a™ denote the set of all those states,
w, such that M |=, a. This means that o™ denotes exactly those states in which
the proposition « holds. The function we have in mind then maps every set, S, of
states to a™s/s. Here M /s is supposed to denote the Kripke structure which agrees
with M except for the fact that ™ is S. This function is, of course, interesting
only if a involves at least one occurrence of x; otherwise it would denote a constant
function that always yields oM.

Of course, the meaning of fixed-point operators is then given in terms of the least
and greatest fixed points of the function just introduced. This would not be possible
if the uniqueness of these least and greatest fixed points was not guaranteed. This
is usually ensured by imposing a simple restriction on the possible syntactic shape
of fixed-point formulae, referred to as formal monotonicity. This restriction requires
every occurrence of z in pyz.a and ve.a to be positive. This is to say, every occurrence
of  must lie under an even number of negations. The function described above is then
guaranteed to be monotonic. According to the well-known Knaster-Tarski Theorem,
monotonicity of a function in turn ensures the existence and the uniqueness of its
least as well as its greatest fixed point [Tarski, 1955].

It was Kozen [1983] who enriched the Hennessy-Milner Logic with exactly this kind
of fixed-point formulae. The resulting logic is called propositional p-calculus. Kozen
already observed that this logic is at least as strong in expressive power as the
propositional dynamic logic. The PDL formula (while « do a)g, for instance, can
be expressed in a recursive fashion with the help of the least fixed-point formula
H. ((—|0z AB)V (aA <a>x)) Kozen additionally noted that there are even formulae
of the propositional p-calculus not expressible in propositional dynamic logic.

Having in mind that ALC is a notational variant of the Hennessy-Milner logic, we
should expect that recursion can be captured in ALC in terms of explicit fixed-point
operators because so can recursion in the Hennessy-Milner logic. In the context
of ALC, fixed-point operators are to be treated as concept-structuring primitives.
In analogy to the p-calculus, we chose the following syntax for the new concept-
structuring primitives to be introduced: If C' is an admissible concept, then so are
uX.C and vX.C. The variable X is treated as a special kind of a concept name,
referred to as concept variable. Of course, formal monotonicity has to be imposed on
(' in this case too. But then an arbitrary recursive concept introduction, CN = ',
can directly be recast by one of the following two acyclic concept introductions:

CN = ,U,X.CCN/X,
CN = I/X.CON/X.
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The only precondition that CN = (' has to meet is that of formal monotonicity.
This is to say, all occurrences of CN in (' must be positive. In any case, the expres-
sion CNgy,x is supposed to denote the concept obtained from C' by simultaneously
replacing each occurrence of CN with X throughout C'. Observe that this kind of
representation enables us to capture recursion with the help of acyclic concept intro-
ductions rather than cyclic ones. Of course, the choice between the two alternatives
given above depends on whether least or greatest fixed-point semantics is preferred.

If there is an indirect recursion leading through more than one concept introduction,
we have to resort either to nested fixed-point operators or to fixed-point operators
dealing with mutual recursion. Fixed-point operators of the latter type were investi-
gated by Vardi and Wolper [1984] in the framework of the Hennessy-Milner logic. In
the present chapter, we enriched ALC with explicit fixed-point operators in the style
of Vardi and Wolper. We thereby obtained a new kind of description logic which
is actually a notational variant of Vardi and Wolper’s version of the propositional

p-calculus. We chose the name ALCpu for the extended standard description logic
ALC.

Thanks to the one-to-one correspondence with the propositional p-calculus, we can
take advantage of a number of results established for the p-calculus. Most impor-
tantly, this includes several complete decision procedures. The first decision proce-
dure for full propositional p-calculus is due to Kozen and Parikh [1983]. However, the
upper time bound thus obtained was non-elementary. The first decision elementary
procedure was given by Street and Emerson [1984, 1989]. The employed algorithm,
however, still has a triply exponential worst-case time complexity. Exponential-time
procedures were devised by Vardi and Wolper [1984], Emerson and Jutla [1988], as
well as Safra [1988]. Vardi and Wolper’s algorithm is capable of dealing with mutual
recursion, but it works only with the possible occurrences of nested alternating fixed-
point operators restricted. This restriction, however, does not affect those nested
fixed-point operators which are of practical use. In contrast to this, the Emerson and
Jutla’s as well as Safra’s algorithms capture the propositional u-calculus to its full
extent, but without mutual recursion. Axiomatics of full propositional p-calculus has
been a longstanding open problem. This problem was solved recently by Walukiewicz

[1993].

Other interesting results concern the expressive power of the p-calculus. One result
states that the propositional p-calculus is strictly stronger than PDL, even when
there are no nested fixed-point operators available [Kozen, 1983]. One interpretation
of this result is that regular role expressions are not an alternative for recursion in
ALC because they are strictly weaker in expressive power. Another result states
that even when PDL is augmented by so-called repeat formulae, full propositional
p-calculus is still strictly stronger in expressive power than this extension of PDL.
This result is due to Niwinsky and was reported in [Streett, 1985], page 363. The
interesting point about Niwinsky’s result is that repeat formulae correspond in a one-
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to-one fashion to concepts of the form JR“ which we have met before. But then the
question whether the exact meaning of recursion in ALC can always be characterized
in terms of the w-regular role expressions must be answered in the negative.



Chapter 3

The Universal Description Logic
U Incorporating Recursion

So far, we have seen that explicit fixed-point operators provide for a general and—
in terms of computability—also feasible framework for recursion. The idea to use
second-order operators was borrowed from the propositional p-calculus, and so were
many of the results presented on the computational complexity and expressive power.
However, the correspondence with the propositional p-calculus does not extend be-
yond the few concept-structuring primitives of ALC. But ALC was advocated by
its inventors because of its “pleasant mathematical properties” [Schmidt-SchauBl and
Smolka, 1991, page 3] rather than because of its practical significance for knowledge
representation purposes. The question then arises whether fixed-point operators work
equally well in the context of richer languages. It will turn out that the syntactic
and semantic foundations of fixed-point operators developed in the previous chapter
can be extended to deal with a description logic which can be called universal be-
cause it encompasses all existing concept and role-structuring primitives. The major
complication will be the generalization of the notion of formal monotonicity to the
additional concept and role-structuring primitives of . In addition, we shall extend
fixed-point operators to be applicable not only to concepts, but also to roles such
that roles can be defined by recursion as well. The resulting description logic, called
Up, is expressive enough to define standard data structures such as lists, directed
acyclic graphs, trees, binary trees, balanced binary trees, and those AND-OR-graphs
for which there is at least one well-founded solution. Such great expressive power,
however, can only be gained in return for losing computability in principle. This
issue will be tackled later on in Chapter 4.

39
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3.1 The Universal Description Logic i/

Patel-Schneider [1987] presented a general framework for terminological knowledge
representation systems in his PhD Thesis. In particular, one of his goals was to
define the syntax and semantics of a description logic which encompasses all known
extensions. As a result he came up with a general-purpose, universal description
logic, which he called U [Patel-Schneider, 1987, Chapter 5.1]. Of course, U comprises
all those concept-structuring primitives which are provided by the standard concept
language ALC. That is to say, in addition to Boolean operations on concepts, U
contains both existential and universal role quantification of the form VR:C' and
JR:C. In contrast to ALC, however, U also allows for number restrictions. Number
restrictions are indispensable to most modeling tasks, and are therefore supported
by nearly all terminological knowledge representation systems in praxis.

There are two kinds of number restrictions, qualified and unqualified ones. Qualified
number restrictions are either of the form 32" R:C' or 3™ R:C, where both m > 0 and
n > 1 can be arbitrary natural numbers. These concepts represent all those objects,
d, such that the possible number of instances of C' related to d by R is restricted by
norm. Ungqualified number restrictions can be viewed as a special kind of qualified
ones in which €' is always the universal concept. In this case we write 32" R and 3S™ R
in lieu of 32" R:T and 3™ R:T. Another important concept-structuring primitive of
U is called role-value map and has been taken from KL-ONE’s repository [Brachman
and Schmolze, 1985, Section 9.1]. This concept-structuring primitive relates the fillers
of two roles to each other. If R and S are two arbitrary roles, then R < S constitutes
such a role-value map. It represents all those objects, d, such that every object
related to d by R is also related to d by S. Role-value maps permit us to express
such a concept as Person M (has_stafFmember < has_friend). This concept represents
all those persons whose staff members are all their friends. There i1s another concept-
structuring primitive of U, called structural description, also borrowed from KL-ONE
(cf. [Brachman and Schmolze, 1985], Section 9.2). Tt is certainly the least obvious
construct of U. Structural descriptions are a way to describe concepts in a rather
abstract manner by interrelating its role fillers with role fillers of some other concept.
The following concept, for instance, involves such a structural description:

Person M EIPerson:((has_friend (< has_foe) M (has_friend & has_foe)>.

This concept is to represent those persons for whom there exists a second person
such that all friends of the former are foes of the latter and, vice versa, all foes of the
latter are friends of the former. In the most general case, structural descriptions are
of the form 3C:(RB; M...M RB,) with n > 1 such that C' is an arbitrary concept and
the RB;’s are so-called role bindings. Such a role binding is a role formed out of two
other roles. If R and S are two arbitrary roles, then both R QS and R © S are role
bindings. As the example given above suggests, the concept AC:(RB; M ...M RB,,)
represents all those objects, d, for which there is at least one instance of C, say, €, such
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that the ordered pair (d,e) is an instance of each of the role bindings RB,...,RB,.
A role binding of the form R (S S represents all those ordered pairs of objects such
that every object related to the first object by R is related to the second by S. In
contrast to this, R O S represents all those ordered pairs of objects such that every
object related to the second object by S is related to the first by K. Role-value
maps can be viewed as structural descriptions of some special kind. It is instructive
to verify that the role-value map R < S is equivalent to the structural description
AT:((RQ S) M (e @ e¢)). The main stumbling block we have to overcome is the fact
that the role binding ¢ & € is equivalent to the identity role ¢ itself.

These powerful concept-structuring primitives of ¢ give rise to rather involved sub-
sumption and equivalence relations. A nontrivial inference of this kind is, for instance,
the fact that the concept Person1(has_staftmember < has_friend) is equivalent to the
following structural description:

dPerson: ((has_friend ( has_friend) 11
(has_friend © has_friend) I
(has_stafFmember has_friend)).

The first two role bindings state that for each person which is an instance of the
structural description above there exists a second person having exactly the same
friends. The third role binding requires in addition that all staff members of the first
are all friends of the second. Because the second person has exactly the same friends
as the first, the structural description above denotes just all those persons whose staff
members are all their friends. But this is exactly the class of persons represented by
Person M (has_staffmember < has friend).

What is perhaps most important is the fact that U encompasses a great variety of
rather powerful role-structuring primitives, these include such constructs as the iden-
tity role, ¢, Boolean operations on roles, the inverse, R~', of a role, the composition,
R o S, of two roles, as well as the transitive closure, R, and the reflexive-transitive
closure, R*, of a role. In addition, ¢/ allows a role to be formed out of two concepts,
say, (' and D. The resulting role is supposed to represent all those ordered pairs such
that the first component is an instance of C' and the second is an instance of D. Such
a role is denoted by C'x D and is referred to as a product. Apart from some minor
changes in syntax, the definition given so far agrees with that given in Chapter 5.1

of [Patel-Schneider, 1987].

In one respect, however, we shall deviate from U’s original definition. This concerns
the inclusion of individual concepts, a special kind of concepts composed of single
individual names, which were mentioned already in the introduction. If Bill, for in-
stance, is such an individual name, then {Bill} forms an admissible concept of U,
called an individual concept. Concepts of this kind denote singleton sets contain-
ing the very object associated with the individual name that the individual concept
is composed of. With such individual concepts at our disposal, classes such as the
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friends of Bill can be captured: The concept Jhas_friend™':{Bill} does represent ex-
actly this class. The original definition of U does not include individual concepts,
although they are present in the definition of KL-ONE [Brachman and Schmolze,
1985, Section §].

For the following formal definition of the syntax of ¢, we assume N¢, Ng, and Nz
to be countably infinite,! pairwise disjoint sets which contain neither T nor e¢. The
elements of these sets are called concept names, role names, and individual
names respectively. Moreover, A is assumed to be the union of N¢, Nz, and N7,
that is to say, it denotes the set of all concept names, role names, and individual
names. The elements of this set are called term names.

Definition 22. The concepts and roles of U are simultaneously defined as:

1. All concept names, individual concepts, as well as the universal concept T are
concepts of U.

2. All role names as well as the identity role € are roles of /.

3. Suppose C' and D are concepts of U, R and S are roles of U, and n > 1 and
m > 0 are any natural numbers. Then C M D, C U D, -C, 32"R:C, and
I=™R:C are concepts of ¥, while RMS, RS, -R, RoS, Rt, R™*, and
C X D are roles of U.

4. These are the concepts and roles of U.

The concepts and roles of U are divided into atomic and compound ones, as with
the concepts and roles of ALC. All concept and role names, all individual concepts,
the universal concept, as well as the indentity role are said to be atomic. All other
concepts and roles of U/ are compound.

For convenience sake, we introduce the remaining concept and role-structuring prim-
itives as abbreviations in terms of those explicitly included in ¢’s formal definition:

Jr:.c ¥ 32'R.C,
VR:C ¥ 30R.-C,
32np & FrpT
JsmR = 3ISTR.T,
R|IC ¥ RnN(TxC),
R< S ¥ 359RMN-9):T,

TAll these sets should be acceptable in deterministic polynomial time, for instance, by means of
some finite state automaton.
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R* € R*Ue
3C:(RB; M ...MRB,) ¥ F2Y(RB, N..MRB,):C,
RRQS ¥ —(Ro-571),
ROS ¥ —(-Ros™).

The long form of role-value maps is exactly the same as that mentioned in [Patel-
Schneider, 1987], page 72. All other long forms should be straightforward, with the

exception of role bindings, whose long forms are taken from [Schmidt, 1991], page 74.

Of course, the definition of an interpretation and in particular of an interpretation
function has to be generalized in order to cope with the additional concept and
role-structuring primitives of . The other syntactic and semantic notions remain
unchanged, with the notable exception of formal monotonicity that will be treated
in Section 3.4.

Definition 23. Assume L is a set of concepts and roles, whereas A is an arbitrary
set. An L-valuation over A is a function, V, which maps every concept of £ to a
subset of A and each role of £ to a binary relation over A. In addition, V maps each
individual concept of £ to a singleton set containing exactly one element of A.

Definition 24. An interpretation, Z, is a triple (A%, .2, V), where AT is an arbi-
trary set, V is a N-valuation over A%, and .7 is a function extending V to deal with
arbitrary concepts and roles of . The set A? is called the domain of Z, and .7 is
said to be the interpretation function of Z. The latter is inductively defined as
follows. First, TZ is AT and ¢’ is {(d,d) : d € AT}. Then TNZ is V(TN) whenever
TN is an atomic concept or role other than T or €. For the induction step, suppose
that .7 applied to the concepts C' and D as well as the roles R and S has already
been defined. Then .7 applied to concepts and roles of & composed of C, D, R, and
S is defined as follows:

(cnbD)yY = ¢tnDi,

(CubD)y = ctuD?,
(=C)Y = AT\ (T

(I2"R:CY = {de AT YR*(d)nC*| > n},

(s R:CYE = {d e AT :YR*(d)nC*| < m},

(RN S)YY = RInSE,

)

)

)

)

)

Q

(RUSY = RTUSE,

N

(-R
(RoS
(R
(CxD

_ (AT AT\ RT,
= RTosT,

= Uz’Zl(RI)i7

= CT x D%.

le)
~

~

N



60 The Universal Description Logic Uu Incorporating Recursion

As far as the formal syntax and semantics is concerned, this completes the description
of the universal description logic ¢. For a better understanding of this language,
however, it may be better to flesh out some of its most important concept and role-
structuring primitives. In order to do so, we shall take an example drawn from the
domain of directed graphs. In particular, we shall single out directed acyclic graphs
(DAGs for short), trees, binary trees, and lists by means of a terminology of U.

Examplel (DAGs, trees, binary trees, and lists). In the following discussion,
we shall confine ourselves to those directed graphs that are connected. We presuppose
that there is an edge relation, say, K, which all graphs have in common. This makes
it possible to represent a graph by its vertices only. More precisely, an object, d,
represents the directed graph (Vj;, Ey) generated by this object and E. This graph
is given as follows. V; is the set of all those vertices accessible by d, while F; is the
binary relation obtained from E by restricting both its domain and its range to V,
e, Eqgis EN(V; x Vy). Of course, accessible is to be understood in this connection
in the sense of the reflexive, transitive, and symmetric closure of the edge relation,
E. We represent the edge relation by the role name edge, so that the compound
role (edge Ll edge™)* defines exactly this accessibility relation. A vertex which is
a member of an edge-cycle can then be represented in ¢ in a very concise manner
by requiring that it must be related to itself by the transitive closure of edge. The
unqualified number restriction 32*(edge® MM ¢) represents this very situation. On the
other hand, a vertex can be precluded from an edge-cycle just by requiring that all
vertices related to it by the transitive closure of edge have to be different from the
vertex itself, i.e., they must not be related to the vertex itself by the identity role e.
This condition is captured by the role-value map edget < —e. Hence, the directed
graph represented by an arbitrary object, say, d, is acyclic if and only if all those
vertices which are accessible by d are instances of the concept edget < =e. The
corresponding concept introduction is depicted in Figure 3.1. Trees are then easily
defined in terms of DAGs. The only characteristic distinguishing trees from DAGs is
that in contrast to the vertices of a DAG, no vertex of a tree is allowed to have more
than one edge leading to it. The unqualified number restriction 3<'edge™" obviously
corresponds to this very characteristic of trees. If trees are assumed to be represented
by their root rather than by each of their vertices, the accessibility relation of trees
can be captured by the role edge® rather than by (edge Ll edge™ )*. Therefore, a
tree can simply be defined as DAG M Vedge*:3<'edge™. The corresponding concept
introduction can be found in Figure 3.1, and so can the definitions of binary trees
and lists. It is important to note, however, that the definitions given there do not
exclude infinite acyclic structures from being either lists or trees. In order to do so,
we have to use fixed-point operators.
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edge-Cycle = 32'(edge® Me)
Noedge-Cycle = edge™ < —¢
DAG = Vaccessible:Noedge-Cycle
accessible = (edgelledge ")
Tree = DAGT Vedge™:3<'edge™
BinaryTree = Treel Vedge*:3%%edge
List = Wtail*:((Nil LI NonemptyList) 1 (tail* < —c))
Nil = 3=°(head L tail)
3<"head M 3="tail 1 32*(head L tail)

NonemptyList

Figure 3.1: A terminology defining DAGs, trees, binary trees, and lists

3.2 The Expressive Power of U

We shall provide a strict lower bound of U’s expressive power in terms of the well-
known calculus of binary relations [Tarski, 1941]. This result is of importance in at
least two respects. First, the calculus of relations has been studied thoroughly as
a query language for relational databases, at least when generalized to relations of
arbitrary rank [Codd, 1971]. This will be of particular significance for Chapter 4.
The main subject of that chapter will be the investigation of a fixed-point extension
of U as a query language for a special kind of knowledge bases which can be viewed as
relational databases. Second, the expressive power of the calculus of binary relations
can in turn be characterized precisely by means of a certain fragment of first-order
logic, called the elementary theory of binary relations. The only restriction imposed
on formulae of this theory is that they do not involve any nonlogical symbols other
than binary predicate symbols. The calculus of binary relations comprises six fun-
damental operations on binary relations, but no variables and no quantifiers. This
calculus is, however, expressively equivalent to the three-variable fragment of the
elementary theory of binary relations, usually referred to as Lz [Tarski and Givant,
1987, Chapter 3.10]. In combination with the strict lower expressiveness bound men-
tioned at the very beginning of this section, this implies that U is strictly stronger in
expressive power than [s.

We begin the discussion by defining the syntax and semantics of the calculus of
relations. The foundations of this calculus were laid by De Morgan, Peirce, and
Schroder during the second half of the nineteenth century. A brief overview of the
history of the calculus of relations including comprehensive references is given, for
instance, in the preface of [Tarski and Givant, 1987], pages XV-XVII.
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Definition 25. The calculus of binary relations (also called calculus of rela-
tions or simply R for short) consists of two different types of formulae, called relation
designations and sentences. The set of relation designations of R is defined as
follows: First, the relation variables R;,R,..., the universal relation 1, as well
as the identity relation 1 are relation designations of . Moreover, if R and S are
both relation designations of R, then so are R, ﬁ, R-SSR+S R®S, as well
as R @ S. The respective operator signs are called the complement, converse,
absolute product, absolute sum, relative product, and relative sum. There
are no other relation designations of . If R and S are arbitrary relation designations
of R, then the expression R = S is called a sentence of R.

In what follows, we shall present two different (but ultimately equivalent) ways of
giving meanings to relation designations and sentences of the calculus of relations.
The first translates them into first-order formulae of a special kind, that is, those
drawn from the elementary theory of relations. The second maps them into an algebra
of binary relations comprising model-theoretic operations such as complementation,
intersection, union, as well as the composition of binary relations. Of course, this
is exactly the way meanings are given to roles of ¢. In fact, we shall define this
mapping by means of interpretations borrowed from Section 3.1.

Definition 26. The elementary theory of binary relations (also called elemen-
tary theory of relations for short) is the set of all those first-order formulae with
equality which involve no nonlogical symbols other than binary predicate symbols.
All those formulae of the elementary theory of relations which do not contain any
occurrence of a free variable are called sentences.

Definition 27. The function T maps relation designations of # along with ordered
pairs of variables (drawn from the elementary theory of relations) to formulae of the
elementary theory of relations. In particular, an arbitrary relation designation, R,
and two variables, say, X and Y, are mapped to a formula defined by induction as

follows:
R(X,Y) if R is a relation variable;
true if R is 1,
X=Y if R is 1;
- R(X,Y) if R is |';
R(X,Y) = { R(V,X) if R is R";

R(X,Y)AR"(X,Y) if R is R - R",

R(X,Y)V R"(X,Y) if R is R' + R"
7. R(X,Z)NR"(Z,Y) if Ris R O R
VZ.R(X,Z)V R"(Z,Y) if R is R & R".
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Of course, this definition presupposes that relation variables can be viewed as binary
predicate symbols of the elementary theory of relations. The particular cases handling
relative sums and products both assume Z to be an arbitrary chosen variable which

differs from X and Y.

In addition, the operation sign 7 stands also for a function mapping sentences of R to
formulae of the elementary theory of relations as follows. If X and Y are arbitrarily
chosen but fixed variables of the elementary theory of relations such that X # Y,
then 7 maps each sentence, R = 5, of R to the formula V.X.VY. E(X, Y) g(X, Y).
We henceforth denote this formula by (R = S). Finally, we set R to be the set of
all those sentences, a, of the elementary theory of relations for which there is at least

one sentence, R = 5, of R such that (R = 9) yields a.

Having this mapping at our disposal, the meaning of the calculus of relations is
unambiguously determined in terms the elementary theory of relations. A semantics
in this spirit can also be found, for example, in [Tarski, 1941], pages 75-76. Take,
for instance, the following sentence, which forces the relation designation R to be a
one-to-one function mapping the interpretation domain onto itself:

1 = (ROR+1-(ROR+1)-(RO1)-(10R).

If the translation mapping ~is applied to this sentence of R, it yields the sentence of
the elementary theory of relations shown below. Here, we allow ourselves the freedom
of using o — 3 instead of —a V 3:

VXVY. (VZ(R(X,Z)ANR(Y,Z)) - X =Y A
(VZ(R(Z,X)ANR(Z,)Y)) = X =Y A
3Z.R(X, Z) A true A
true NIZ.R(Z.Y).

However, as already mentioned, this is not the only way of giving meaning to relation
designations and sentences of R. Another possibility is to extend the definition of an
interpretation, (AT, .7 V), as given in Section 3.1, so as to cope with both relation
designations and sentences of R. It is convenient to assume that Nz (i.e., the set of
all role names) contains at least all relational variables as its members. Consequently,
R” is then defined to be V(R) whenever R is a relational variable. The interpretation
function, .Z, applied to all other relation designations of R is defined by induction as
follows. First, when applied to 1 and 1, it yields the full domain, A%, and the indentity
relation over A respectively. For the induction step assume that .= applied to some
relation designations, say, R and S, has already been defined. Then (R)Z, (R)Z,
(R-S)E, and (R® S)T are defined to be (AT x AT)\ RE, {({e,d) : (d,e) € R},
RT N ST, and RT o0 ST respectively. Absolute and relative sum are to be interpreted
such that they reflect the duals of the corresponding products, that is, (R + S)%
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denotes RT U ST, whereas (R @® S)T is {(d,e) € AT x AT :Vf e AT, either (d, f) €
RT or (f,e) € ST}. Finally, .7 applied to an arbitrary sentence, R = S, of R yields
AT if RT = ST, and the empty set otherwise.

The following fact states that the first-order semantics for the calculus of relations
and its model theoretical counterpart are ultimatively equivalent in the following
strong sense.

Fact 1. Assume (A% 7 V) is an arbitrary interpretation, and note that the N-
valuation V can always be extended to a first-order interpretation over AT TEN
contains at least all binary predicate symbols of R, then this first-order interpreta-
tion can deal with any formula of R. For every such first-order interpretation, [.]Y,
and every relation designation, R, of R, ﬂfi]]v denotes exactly the same set as RZ.
Therefore, for every sentence, R = S, of R, (RZS) evaluates to true in [.]Y if and
only if (R = S)* yields AL,

Now, returning to the issue of expressive power: It is not hard to see that three
different variables rather than an arbitrary number of variables are sufficient for the
function 7 : Consider, for instance, RES(X,Y). This expression is defined to be
ElZ.]?(X, Z)N §(Z, Y), where Z is a variable different from both X and Y. The first
time when the recursive evaluation of E(X, Z) meets a relative product or sum, the
variable Y can be reused within the new quantification which has to be introduced
then. Similarly, the variable X can be reused in the course of performing g(Z, Y).
This is why the function 7 can manage with three different variables rather than an
arbitrary number of variables. But then ® is clearly a sublanguage of the three-
variable fragment of the elementary theory of relations.

Definition 28. The three-variable fragment of the elementary theory of relations,
called Lz for short, is the set of all those formulae of the elementary theory of relations
which involve at most three different variables.

As a matter of fact, ® captures not only a sublanguage of L, but the whole extent
of Ls. However, before going into detail, we have to generalize the notion of the
expressive power so as to deal with arbitrary languages that have at least the notion
of equivalence in common.

Definition 29. Suppose £ and £’ are two languages with a common notion of equiv-
alence. Then L is said to be at least as strong in expressive power as L', in
symbols £' < L, if and only if for each syntactically well-formed expression of L’
there is an equivalent one of £. On the other hand, £ is strictly stronger in ex-
pressive power than £’ if and only if £’ < £, but it is not the case that £ < L'.
Finally, £ and £’ are said to be equipollent in means of expressive power if

and only if £/ < L and £ < L.
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Expressiveness Theorem 4 (Tarski & Givant). R and Ls are equipollent in means
of expressive power.

This result was reported in [Tarski and Givant, 1987], page 90, item (i). Strictly
speaking, Tarski and Givant prove a slightly weaker theorem. They only show that
R and L are equipollent in means of expressive power if both involve no nonlogical
symbols other than a single binary predicate symbol. Careful inspection of their
proof sketch, however, reveals that their result remains valid when more than one
binary predicate is present. Instead of repeating their proof sketch, or even providing
a clumsy complete proof, we confine ourselves to justifying this generalization by an
example. This unsoundness is justified because in the remainder of the thesis nothing
will depend on the validity of this claim. Rather, we mentioned this claim just to
give an impression of the high expressive power R (and therefore also R) provides.

Example2 (L; < SJA%) Consider the following sentence of the three-variable frag-
ment of the elementary theory of relations:

VX.3YVZ.Ri(X,Y) A Ry(X,Z) = 3X.X # Z A Rs(Y, Z) A Ra(X, X).

It should be obvious that this sentence can be rewritten as follows without affecting
its meaning;:

In what follows, we shall see that there is a sentence of # which is equivalent to this
three-variable sentence. In fact, the “-image of the following sentence of & proves to
be such an equivalent sentence of %:

When resorting to the abbreviations o, 3,v, R,, Rg, and R, it is not hard to verify
that the -image of the sentence just given is equivalent to exactly that sentence of
L3 we aim to express, that is to say, (R, ©@ 1 = 1) = VX.3Y.a. This can be done step
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by step as follows:

(R,®1=1) = VXVZ.(3V. E(X, Y) A true <> true)
= VX.3Y. R.(X,Y);
R(X,Y) = =Ry(X,Y)VVZ=Ry(X,Z)V Rs(Z,Y);
R3(Z,Y) = 3X.R,(Z X)AtrueA Rs(Y,Z)
= 3X.R,(Z,X) A Ry(Y, 7);
R(Z,X) = 3Udrue ARyU,X)ANU=XAX#7
Ry(X, X)A X # Z.

We should not close this part without mentioning that a result similar to the Ex-
pressiveness Theorem 4 has been put forward independently by Borgida [1993]. In
effect, he claims that what we shall call the first-order fragment of U is expressively
equivalent to the three-variable fragment of first-order logic with equality. Of course,
the three-variable fragment must not involve any nonlogical symbol other than unary
and binary predicate symbols or constants. The first-order fragment of U refers
to all those concepts and roles of U which do not involve any occurrence of the tran-
sitive or the reflexive-transitive closure of roles. His proof in support of this claim,

however, contains a major error.?

What we know for sure is that R is a strict lower bound of U’s expressive power and
even of U’s first-order fragment.

Expressiveness Theorem 5. The first-order fragment of the universal description
logic U s strictly stronger in expressive power than the calculus of relations R.

Proof. The following straightforward equivalences form the basis for a proof of the

20ne crucial argument in Borgida’s [1993] line of reasoning is that certain three-variable subfor-
mulae can be transformed into disjunctive normal form. On page 11 of [Borgida, 1993], it is claimed
that the subformula ®(X, Y, Z) can be transformed into an equivalent formula of the form \/, /\j v; ;.
However, this can be accomplished only if ®(X,Y, 7) does not contain any quantifier, which is not
necessarily the case. In the presence of quantifiers, ®(X,Y, 7) has to be transformed into prenex
normal form. That is, it must be transformed in a way that it is of the form @1 X;. ...Q, X, .9,
where the @);’s are either 3 or V and ¢ is quantifier free. Such a transformation, however, might
cause serious problems because it possibly introduces new variables and, thereby, might lead out of
the three-variable fragment.
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fact that the first-order fragment of U is at least as strong in expressive power as :

= 1 = TxT,
|: i = 6,

|: F = _'Rv
= R = R,
E R-S = RNS,
E R+S = RUS,

E R®S = RolS,
= R=S = Y(TxT):((R<SN(S<R)).

These equivalences induce a proof on the structure of relation designations and sen-
tences of R showing that for every such a relation designation and sentence there
exists at least one equivalent concept or role of the first-order fragment of U.

In order to prove that the first-order fragment of U is even strictly stronger in ex-
pressive power than R, we can make use of the following fact. It is known that there
is no formula of ® which is equivalent to this sentence of the elementary theory of
relations:

3XIAYIZVU.(X=UVY =UV Z=U).

This observation is due to Korselt, and was reported in [Lowenheim, 1915], page 448.
In view of Fact 1, this result can be recast as follows. There exists no sentence
(and clearly no relation designation) of the calculus of relations such that for every
interpretation, (AZ,.7)V), it holds that .7 applied to this sentence would yield A if
and only if its cardinality, ] AZ|, is greater than 0, but lower than or equal to 3. The
following concept of U, however, does have this very property:

FHTxT):IH(TT).

We thereby have fixed a concept of & which does not involve any occurrence of a
transitive closure of a role, but which is not equivalent to any sentence and relation
designation of the calculus of relations. O

Of course, this alone proves the first-order fragment of U to be undecidable because
so is the calculus of binary relations [Tarski, 1941]. Another immediate corollary is
the following.

Corollary 3. The first-order fragment of the universal description logic U is strictly
stronger in expressive power than Lz, the three-variable fragment of the elementary
theory of binary relations.
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3.3 Recursion in 4

In what follows we will argue that explicit fixed-point operators gain their full defini-
tional power only in combination with the concept and role-structuring primitives of
U. Tn particular, number restrictions as well as the inverse of a role will be essential
for characterizing lists, trees, and binary trees. This is not surprising because the
corresponding iterative definition of Section 3.1 uses these constructs too. In con-
trast to the iterative definitions, however, fixed-point operators are able to single out
those lists, trees, and binary trees whose depth is finite. This is an improvement, but
there are concepts for the definition of which fixed-point operators seem to be just
indispensable: The solvable vertices of an AND-OR graph are an example. We shall
furthermore argue that additional expressive power can yet be gained when not only
concepts, but also roles are allowed to be defined by means of recursion. It will turn
out that fixed-point operators on roles are able to capture a new role-structuring
primitive which can be thought of as a generalization of the reflexive-transitive clo-
sure of a role. This role-structuring primitive captures the union of all role chains of
the form R™S™ such that n ranges over all natural numbers greater than or equal to
0. A practical application of this new construct will be the definition of a balanced
binary tree.

In Section 3.1 we already dealt with DAGs, trees, binary trees, and lists, but all these
concepts were defined by iteration rather than by induction or recursion. However,
with the exception of DAGs, all these concepts are usually defined by induction, and
it seems to be most natural to do so. Take, for instance, lists. Their customary
definition is by induction. A list is either the empty list, also called nil, or else
there is exactly one head and one tail such that the latter refers to a list again.
When resorting to the concepts Nil and NonemptyList, already defined in Figure 3.1
of Section 3.1, the corresponding recursive concept introduction looks as follows:

List = NilU (NonemptyList M Vtail:List).

In Chapter 2 we have also seen that in order to avoid ambiguities, such cyclic concept
introductions must be given either least or greatest fixed-point semantics. The most
flexible way to do so is to recast recursion in terms of explicit fixed-point operators,
borrowed from the p-calculus. In the case of the recursive concept introduction shown
above, we have to make a decision between one of following two possibilities:

List = puX.(Nil U (NonemptyList M Vtail: X)),
List = vX.(Nil Ll (NonemptyList M Vtail:X)).

The first is to be thought of as representing the least set, S, containing the empty list
and those objects which have exactly one head as well as exactly one tail such that
the tail in turn points to a member of . The second concept introduction represents
the greatest such set. The difference between the meanings of these two concept
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FiniteList = 11X.(Nil U (NonemptyList M tail: X))
FiniteDepthTree = uX.(3%'edge™" I Vedge: X)

FiniteBinary Tree 1 X.(35 edge™" M 3%edge N Vedge: X)

Figure 3.2: A terminology defining lists and trees of finite depth

introductions is that the former requires the recursion to terminate, whereas the
latter does not. In particular, recursion must terminate by satisfying the condition
of its base, i.e., the condition that the current object is an empty list. In Chapter 2
these two different readings were distinguished from each other by means of a new
concept-structuring primitive, 3R%, stipulating that for each object it represents
there is at least one infinite chain of the role R emanating from that object. In terms
of concepts of this kind, the difference between pX.(C MVR:X) and v X.(C TTVR:X)
reduces to the fact that the former is equivalent to VR*:C' 11 =3 R*, while the latter
is equivalent to VR*:C'. The concepts pX.(Nil U (NonemptyList M Vtail: X)) as well
as vX.(Nil U (NonemptyList M Vtail: X)) fit into this scheme, too, at least when the
concept introduction Nil = 3(head LI tail) is taken into account. The explanation is
that Nil is equivalent to Nil 11 Vtail: X with respect to any terminology containing the
aforementioned concept introduction. But then the same equivalence relationship
holds for (Nil U (NonemptyList M Vtail: X)) and (Nil U NonemptyList) M Vtail: X as well.
Obviously, the latter concept fits into the scheme C'TTVR:X. Hence, we obtain the
following equivalences relative to any terminology comprising at least the concept
introduction Nil = 35°(head U tail):

T E wpX.(NilU (NonemptyList 1 Vtail: X)) = Vtail":(Nil Ll NonemptyList) 1 —3tail”,
T E vX.(NilU (NonemptyList M Vtail: X')) = Vtail":(Nil Ll NonemptyList).

The common idea of lists is captured in what the least fixed-point operator expresses,
especially when infinite and recursive lists (i.e., those lists having a tail-chain referring
to themselves) are to be excluded. The greatest fixed-point operator, however, does
include such nonstandard lists. A terminology defining finite, nonrecursive lists with
the help of a least fixed-point is depicted in Figure 3.2. Recall that in contrast to
this, the terminology fixed in Figure 3.1 of Section 3.1 defines a List in such a way
that it excludes recursive lists, but not acyclic, infinite ones. This is why List actually
subsumes FiniteList, but the subsumption does not hold the other way round. In this
sense FiniteList is strictly stronger than List. On the other hand, a corresponding
definition of FiniteList with the help of a greatest fixed-point operator is in the same
sense strictly weaker than List because a greatest-fixed point operator even permits
recursive lists.

It should be clear that trees and binary trees whose depth is finite can be captured in
the spirit of a Finitelist. The corresponding concept introductions are also included
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AND-OR-Graph = Vaccessible: AND-OR-Vertex
AND-OR-Vertex AND-Vertex M =OR-Vertex
ORVertex 1M —AND-Vertex
AND-OR-Vertex M1 3<"edge
uX. (Leaf L

(AND-Vertex I Vedge: X) LI
(ORVertex M EIedge:X))

cC ol

Leaf

SolvableVertex

Figure 3.3: A terminology defining AND-OR graphs

in Figure 3.2. In this connection it is important to note that all these concept
introductions do not make any use of the role-value map edget < —¢ or equivalent
concepts such as 35°(edge™ Me¢) and alike. In the case of DAGs, however, it seems to
be impossible to manage without such concepts. In particular, IR“, expressed with
the help of a fixed-point operator, cannot distinguish between R-chains which are
cyclic and those which are acyclic but infinite. This confirms our impression that the
transitive closure is a role structuring primitive in its own right, even with fixed-point
operators at our disposal. But least and greatest fixed-point operators are concept
structuring primitives in their own right, too, even when the transitive closure as
well as concepts such as IRY are available. By the Expressiveness Theorem 3 of the
previous chapter, it is known that this is definitely true in the case of the w-regular
extension of ALC. In the case of U, we confine ourselves to provide the following
instructive example for which an equivalent handling in ¢/ itself does not seem not
to work either.

Example3 (AND-OR graphs). This exampleinvolves a special class of connected,
directed graphs, known as AND-OR graphs. The vertices of these graphs are exhaus-
tively partioned into two disjoint sets, one which contains so-called AND vertices and
another containing OR vertices. Either kind of vertex is to be thought of as repre-
senting a certain problem whose solution can be decomposed into solving others. In
particular, a problem associated with an AND vertex is solved when a solution to all
those problems has been accomplished which are associated with its edge-successors.
On the other hand, a problem associated with an OR vertex is solved when at least
one of the problems associated with its edge-successors has been solved. Figure 3.3
shows a terminology defining such AND-OR graphs. Of course, we should not run
into a an infinite decomposition sequence in the course of solving a problem, no mat-
ter whether the infinite decomposition sequence is cyclic or not. We define, therefore,
the solvable vertices of an AND-OR graph, G, to be exactly those of its vertices which
span an acyclic and finite subgraph, G, of G such that every AND vertex of G has
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exactly those edges that it has in G. In addition, every OR vertex of (G has to have
at least one of those edges that it has in (G. The fact that a least fixed-point operator
is used rather than a greatest ensures that only those subgraphs count for problem
decomposition which are both acyclic and finite.

The fixed-point operators considered so far are not the only ones we shall deal with:
We consider not only those applied to concepts, but also those applied to roles. Such
least and greatest fixed-point operators are role-structuring primitives of the form
uX.R or vX.R, where in either case R can be an arbitrary role, while X has to be
a distinguished role name, referred to as a role variable. These roles are interpreted
along much the same line as the corresponding fixed-point operators on concepts. In
particular, pX.R can be thought of as representing the least fixed point of a certain
function on X induced by R, whereas vX.R represents its greatest fixed point. A
precise definition of the semantics of such fixed-point operators, however, must be
postponed to Sections 3.4 and 3.5. Having these role-structuring primitives at our
disposal, the reflexive-transitive closure of a role becomes definable in a very concise
manner, as the following equivalence proves:

E R =uX.(eU(RoX)).

The role pX.(e U (R o X)) represents the least binary relation which includes the
identity relation and is closed under composition with the binary relation denoted
by R; therefore it expresses the reflexive-transitive closure of R.

Not only role-structuring primitives (which are supported in &/ anyway) can be ex-
pressed in terms of fixed-point operators on roles, but also new ones such as R™ o S™.
Roughly speaking, this role denotes all those ordered pairs of objects such that the
first is related to the second by an arbitrary role chain of the shape R'S® with 7 being
any positive integer greater than or equal to zero.® The following equivalence holds:

E R'oS™ = pX.(eU(RoXo09)).

In the same spirit, we can capture the relation between nodes of a tree connecting
one node with another just in case both are situated exactly at the same level of
the tree. Given a particular node, we can access the single neighbor of that node
including the node itself by the role ¢ U (edge™ o edge). However, in order to access
all other nodes which are situated at the same level too, we actually have to retreat
to recursion, as the following tree exemplifies:

3Technically speaking, (R™ 0 )7 is defined to be the union of all binary relations (RZ)¢ o (SZ)?
such that 7 is allowed to range over all positive integers greater than or equal to zero.
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at_same_level = pX. (e L (edge™ o X o edge))
BalancedBinaryTree = BinaryTree
Vedge™: ((Elsoedge o edge) LI ‘v’atjame_leveI:EIZQedge>

Figure 3.4: A terminology defining balanced binary trees

If, for instance, the left most node appearing on the dashed line is to be accessed
from the right most one on that line, we first have to follow two edges up to the
root and, then, follow two edges down to the left most node on the dashed line. The
corresponding role introduction defining the role at_same _level with the help of a least
fixed-point operator on a role is depicted in Figure 3.4.

Having the definition of the role at_same_level on hand, that of a so-called height-
balanced binary tree becomes almost trivial. A binary tree is said to be height-
balanced if and only if at any node in the tree, all those maximal paths which emanate
from that node at its left-hand side and its right-hand side differ in length by at most
one, see e.g. [Ralston and Reilly, 1993], page 1188. This means that a binary tree is
height-balanced just in case all nodes that are situated at one level of the tree meet
the following condition: If at least one of the nodes at this level has a path emanating
from it whose length is greater than one, then both the right as well as the left paths
emanating from any other node at this level are all nonempty. The corresponding
concept introduction can be found in Figure 3.4.

3.4 Formal Monotonicity in U

We are now going to lay the foundations of least and greatest fixed-point operators.
As usual, the very foundation of such fixed-point operators, pX. T and v X.T, is the
function on X induced by T and a N-valuation V. The least and greatest fixed points
of this function are then taken as denotations of the relevant fixed-point operators.
Compared with its treatment in Chapter 2, however, this notion has to be generalized
in the following sense. In order to cope also with fixed-point operators on roles, the
case where X is a role variable and T is an arbitrary role has to be taken into account.
As a matter of fact, all permutations of X being either a concept or role variable
and of T being either a concept or a role have to be dealt with. All these cases
are necessary in that U permits of concepts appearing in roles and vice versa. But
then an inductive definition of the function on X induced by 7" and ¥V may invoke
corresponding functions of any of the four different types just described.
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Notation 2. Assume V is an arbitrary L£-valuation over some set, say, A. If CN is a
concept name of £ and S is an arbitrary subset of A, then Ve, sy is the L-valuation
over A which agrees with V, except for the fact that V(CN) is S. That is to say,
Vien,sy denotes the L-valuation (V' \ {(CN,V(CN))}) U {(CN,S)}. For RN being a
role name of £ and S being a binary relation over A, the valuation V(g sy is defined
correspondingly.

Definition 30. Suppose T' is an arbitrary concept or role, TN is a concept or role
name, and £ is a set of concept and role names as well as individual concepts which
comprise as its elements at least those occurring in T'. Moreover, assume that A is an
arbitrary set and that I' is A if TN is a concept name, and A x A otherwise. Similarly,
let ® be A if T' is a concept, and A x A otherwise. Then for every L-valuation, V,
over A, the function on TN induced by 7 and V is a function mapping subsets of
' to subsets of ©. This is defined as follows: Applied to an arbitrary subset of I, say,
S, this function yields the subset of © denoted by TZ. Here, . is the interpretation
function of an arbitrary chosen interpretation (AZ, .7 V') such that AT = A and
Virn,sy C© V'

As in Definition 13, it is important to note that this function is actually well-defined,
inspite of the fact that it is left open which particular interpretation of the form
(AT, IV") such that AT = A and Vin,sy © V' is to be taken. It can easily be
seen that the value of T does not depend on which of the possible interpretations is
actually chosen. The explanation is that these different £-valuations may differ only
in the way they handle those term names which do not occur in £ and, therefore,
do not occur in T either. The value of T, however, does not depend on the these
term names. Anyway, V' is uniquely determined whenever £ coincides with N,
i.e., it contains all existing concept and role names as well as individual concepts
whatsoever. This is due to the fact that in this case V' coincides with Viqw s).

But even with the function on X induced by T and V defined for the general case,
the meanings of fixed-point operators in terms of the least and greatest fixed points
of this function are not necessarily well-defined. This is because neither the existence
nor the uniqueness of these fixed points can be taken for granted. From Chapter 2,
however, we already know that this is ensured by Knaster and Tarski’s fixed-point
theorem for all those functions which are monotonically increasing. Therefore, it
just remains to guarantee that the function on X induced by 7" and V is always
monotonically increasing, no matter which particular M-valuation, V, is taken as a
basis. The notion of syntactic or formal monotonicity developed in Chapter 2 has
been devised for this purpose. It remains to generalize this notion to cope with the
additional concept and role-structuring primitives of .

Definition 31. Assume 7' is an arbitrary concept or role, while TN is a concept
or role name. The positive and negative occurrences of TN in T are defined as
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follows. An occurrence of TN in T is said to be positive (or negative) if and only if this
occurrence appears in an even (or odd) number of different subconcepts and subroles
of T which are either of the form =C, =R, or 3™ R:(', where C' and R can be in each
particular case an arbitrary concept and role respectively. Moreover, T is said to be
syntactically or formally monotonic in 7N if and only if there is no negative
occurrence of TN in T', whereas T is syntactically or formally anti-monotonic
in TN if and only if there is no positive occurrence of TN in T'.

A similar notion has been developed by Park [1970] and Moschovakis [1974] for
full first-order logic, see [Park, 1970], page 67, and Chapter 1B of [Moschovakis,
1974]. In view of our definition, it is important to keep in mind that a universal
role restriction of the form VR:C is treated as an abbreviation of 3<°R:~C. But
then this concept is formally monotonic in an arbitrary term name, say, TN, just in
case (' 1s formally monotonic in TN, whereas R has to be formally anti-monotonic in
TN. Similar comments apply to role-value maps and structural descriptions. More
precisely, because of the fact that the role-value map R < S abbreviates to 3<°(R M
=5):T, it is formally monotonic in TN just in case S is formally monotonic in TN,
but R has to be formally anti-monotonic in TN. So far as structural descriptions are
concerned, it should suffice to consider those of the form 3C:(R; @ S1 M Ry © S2).
Such a structural description abbreviates to 321 (=(R, 0=S7")M=(=Ry055")):C and,
therefore, it is formally monotonic in TN just in case all concept and roles among
C, Sy, and Ry are formally monotonic in TN, but both R, and S, must be formally
anti-monotonic in TNV.

Definition 32. A function, f, mapping subsets of some set, say, I', to subsets of
' is called monotonically increasing, or monotonic for short, if and only if for
every two subsets, S and S’, of A such that S C 5, it holds that f(S5) C f(5).
Moreover, [ is anti-monotonic if and only if for every such two subsets, it holds

that f(5) 2 f(5").

Proposition 7. Assume T is a concept or role of U, TN is a concepl or role name
of U, and V is an arbitrary N -valuation. If T is formally monotonic in TN, then
the function on TN induced by T andV is monotonic, whereas il is anti-monotonic
whenever T is formally anti-monotonic in TN.

Proof. Let A be the set over which V operates, that is, V is a N -valuation over
A. Let fr denote the function on TN induced by T and V. The proof that fr is
monotonic (or anti-monotonic) proceeds by induction on the structure of the concept
or role T

Induction base: We have to consider the cases where T is atomic, i.e., it is either a
concept or role name, an individual concept, the universal concept, T, or the identity
role, €. In each of these cases T' is formally monotonic in TN. It therefore has to be
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verified that the function fr is actually monotonic. It is readily seen that in each of
these cases fr denotes a constant function, with the only exception of T' coinciding
with TN. If, for instance, TN is a concept name different from 7" and the latter is a
concept rather than a role, then fr denotes the constant function that maps every
subset of A to some fixed subset of A. In other words, there is an Sy C A such
that for all S C A, fr(S) is So. Ignoring the possibility that 7" may coincide with
TN, this means that fr is trivially monotonic. So there remains the case when T
coincides with TN. If T"is TN, then fr denotes the identity function mapping either
every subset of A to itself or every binary relation over A to itself, depending on
whether TN is a concept or role name respectively. It should be obvious that every
such an identity function is, in fact, monotonic.

The induction step: Let T be of the form Ty T, Ty U Ty, =Ty, 32"R:C, 3™ R:C,
Ro S, R, RT, or C'xD. In what follows, we shall adopt the convention that for
every concept and role, T", fp denotes the function on TN induced by T’ and V,
where TN and V are taken to be exactly those which we have considered so far.
It is not hard to verify that if all of the functions fr,, fr,, fo, fp, fr, and fg are
monotonic (or anti-monotonic), then so are fr,nr,, frun, fros, fr-1, fr+, as well as
fexp. On the other hand, f_7, is anti-monotonic whenever fr, is monotonic, whereas
it is monotonic whenever fr, is anti-monotonic. Bearing these facts in mind, all of
the induction steps mentioned above are entirely straightforward, except for those
involving qualified number restrictions.

So let us consider the case when T is of the form 3™ R:C. In order to do so, first
assume that T is formally monotonic in TN. That is to say, there is no negative
occurrence of TN in 35" R:C. In view of Definition 31, this implies that there is
neither in C' nor in R any positive occurrence of TN, i.e., both C' as well as R are
formally anti-monotonic in TN. According to the induction hypothesis, both fo as
well as fg are, therefore, anti-monotonic. We are now going to prove that fi<mp.c is
monotonic because fo and fr are anti-monotonic, where we shall adopt the following
convention. Assume I' denotes either A or A x A, dependent on whether TN is a
concept or a role name, so that fi<mp.c can be described as a function mapping
subsets of I' to subsets of A. Recall that for an arbitrary subset, S, of I', fo(.5) and
Jr(S) are defined to be CT and R” respectively, where .7 is an interpretation function
of (AT, T V') such that AT = A and VZTN’S> = V. Resorting to this interpretation

function .2

S, of T

, we can state that the following equations are satisfied, for every subset,

fgngzo(S> = (3§mRC>I
{de A 4RI (d) N CT| < m} (3.1)
= {de A [r(5)(d) N fo(5)] < m}.

If we take two arbitrary subsets of I, say, 57 and Sy, such that S; is a subset of Sy,
then we can come up with the conclusion that fs<mg.(S1) is a subset of fi<mp.o(52),
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too, as the following equations prove:

Jasmp.o(S1)
= {deA:ffr(S)(d)N fc(S1)] < m} (according to (3.1))
C {deA:yffr(S)(d)N fc(S2)] < m} (because fo and fr are anti-monotonic)
= fi<mr.o(S2) (according to (3.1)).

But this means that fi<mp.c 1s monotonic, as was to be shown. The third line above,
however, may call for comment. As fo and fr are known to be anti-monotonic, it is
also known that fo(S1) 2 fe(S2) and fr(S1) 2 fr(S2). An immediate consequence
is then that for every d € AT, fr(S1)(d) 2 fr(S2)(d). From this we can conclude that
for every d € AT, fr(S1)(d) N fe(S1) is a superset of fr(S2)(d) N fe(S2). This means
that the cardinality of fr(S1)(d) N fo(S1) is greater than or equal to the cardinality
of fr(52)(d) N fc(S2). But then for every natural number, m, all those d € A such
that the cardinality of fr(S1)(d)N fc(S1) is not greater than m are, in fact, contained
in the corresponding set with S substituted for Sj.

The remaining cases can be shown analogously. O

Definition 33. Assume f is an arbitrary function mapping subsets of some set, say,
I', to subsets of . A subset, S, of I is said to be a fixed point of f if and only if
f(S) =S, and such a fixed point of f is a least fixed point of f if and only if each
fixed point of f is a superset of it. Similarly, a fixed point of f is a greatest fixed
point of f if and only if each fixed point of f is a subset of it. Finally, a subset,
S, of T' is said to be a prefixed point of f if and only if f(S) C S, while it is a
postfixed point of f if and only if f(S) D S.

Note that the models (A%,.7 V) of a concept or role introduction of the form TN = T
can be recast by means of the fixed points of the function of on TN induced by T'
and V and, accordingly, so can the models of TN C T and T' C TN in terms of its
postfixed and prefixed points respectively.

Fact 2. Assume Z = (AT, .7 V) is an arbitrary interpretation. Then Z is a model of
the concept or role introduction TN = T if and only if TN is a fixed point of the

function on TN induced by T and V, while T is a model of TN T T (or T C TN) if
and only if TN? is a postfixed (or prefixed) point of this function.

As already mentioned, Knaster and Tarski’s fixed-point theorem establishes not only
the existence of unique least as well as unique greatest fixed points of monotonic
functions, but it gives also rise to a characterization of these least and greatest fixed
points in terms of ordinary fixed points, or, alternatively, by means of prefixed and
postfixed points. In its historical formulation, reported in [Tarski, 1955], however,
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the theorem refers to complete latlices rather than to functions of type 2% — 22
or 24%4 5 28%4 which are monotonically increasing with respect to the subset
relation. Clearly, these functions can also be viewed as functions of type 20" — 2T,
at least when I' is taken to be AU (A x A). It is well-known that for every set T’
(not necessarily of the latter kind), the set of all subsets of ', 2", forms a complete
lattice along with the subset relation over I'.

Theorem 1 (Knaster & Tarski). Let I' be a sel. Assume [ is a monotonic func-
tion mapping subsets of T' to subsets of T'. Then the intersection of all fized points
of [ coincides with the intersection of all its prefized points, which is in turn a fived
point of f. Similarly, the union of all fized points of f coincides with the union of
all its postfized points, which is also a fized point of f.

It should be clear that any fixed point of f which coincides with the intersection of
all its fixed points is necessarily a least fixed point of f and, correspondingly, any
fixed point of f which coincides with the union of all its fixed points i1s necessarily a
greatest.

Corollary 4. Assume f is a monotonic function mapping subsets of ' to subsels
of I'. Then there is both a unique least and a unique greatest fixed point of f.
In particular, the former coincides with the intersection of all prefized points of f,
whereas the latter coincides with the union of all its postfived points.

3.5 The Fixed-Point Description Logic U

In this section we shall define the syntax and semantics of a description logic, called
Uy, which augments U by least and greatest fixed-point operators both on concepts
as well as on roles. For technical reasons, we add such fixed-point operators not to
U directly, but to a slight modification of it. We shall omit the transitive closure of
roles in that this role-structuring primitive will turn out to be expressible by least
fixed-point operators on roles along with the remaining role-structuring operators of
U. The transitive closure of an arbitrary role, R, free of any occurrence of the role
variable X is, in fact, equivalent to pX.(RU (R o X)). The reader may object that
the latter is not always polynomially bounded in the length of RT. However, Rt is
equivalent to pX.(RU(X 0X)) too. The length of this role is always linearly bounded
in the length of R*. Hence, we may treat Rt as an abbreviation of uX.(RU(X 0 X))
without running into problems. The second modification of U concerns the addition
of a role-structuring operator of the foom R @ S, called relative sum, taken from
the calculus of relations. Having this new role-structuring primitive at hand, we
can represent, for instance, the complement of the grandparent relation in terms of
the complement of the parent relation, along much the same lines the grandparent
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relation can be defined by the composition of the parent relation with itself. In fact,
—parent_of & —parent_of can be thought of as representing the complement of the
grandparent relation. More precisely, it represents all those ordered pairs of objects,
(d,e), such that for each object, f, it holds that either f is not related to d by the
role parent_of or e is not related to f by parent_of. In general, this binary operator
on roles is to be interpreted in such a way that for each interpretation, (A%, .2 V),
(R @ S)T denotes the set of all those ordered pairs, (d, ), of AT x A? such that
for every f € AL either (d, f) is a member of R? or (f,e) is a member of ST. As
a matter of fact, this additional role-structuring operator does not add anything to
the expressive power of ¢ in that R @ S is equivalent to =(=R o =5). However, this
new role-structuring primitive will play an essential role in obtaining the so-called
negation normal form of roles in the sense that it is indispensable for moving role
negations inwards as long as they are applied to noncompound roles.

Definition 34. Assume X to be a nonempty set of distinguished concept and role
names, called concept variables and role variables respectively. The concepts
and roles of Up are simultaneously defined as:

1. All concept names, all individual concepts, all concept variables, and T are
concepts of Up.

2. All role names, all role variables, and ¢ are roles of Upu.

3. Suppose C' and D are concepts of Uu, R and S are roles of Uu, and n > 1
and rm > 0 are any natural numbers. Then C N D, C' U D, =C, 32" R:C, and
AS™ R:C' are concepts of Uy, whereas RT1S, RU S, -R, Ro S, R® S, R71,
and C'x D are roles of Upu.

4. Suppose X is a concept variable and C' is a concept of Uu formally monotonic

in X. Then both pX.C and v X.C' are concepts of Upu.

5. Suppose X is a role variable and R is a role of Uy formally monotonic in X.

Then both pX.R and v X.R are roles of Upu.

6. These are the concepts and roles of Up.

Concepts and roles of the form pX. T and v X.T are called least and greatest fixed-
point operators respectively.

As already suggested, we shall henceforth treat the transitive closure of a role as an
abbreviation defined as follows, where X is always assumed to be a fresh role variable
not occurring in R:

Rt ¥ uX.(RU(X oX)).
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Of course, the definition of an interpretation, as given in Section 3.1, has to be
extended to deal with the additional concept and role-structuring primitives of Upu.
The way relative sums are to be interpreted has already been described: (R @ S)7 is
{{d,e) : for all f € AT (d,f) € RT or (f,e) € ST}. Tt therefore remains to ascribe
meanings to least and greatest fixed-point operators. For an arbitrary interpretation,
(AT, ZV), the definition of both (uX.T)* and (uX.T)? is by induction. Suppose,
fr denotes the function on X induced by 7" and V. Notably, in so doing, it is
implicitly presupposed that 7Y has already been defined. As a matter of fact, this
is presupposed for each interpretation, (A7, .7 W) such that A7 = A and W =
V(x,s), where S ranges here over all subsets of AT or AT x AT, depending on whether
X is a concept or role variable. Then T applied to uX.T and vX.T is defined as
follows:

(X.T)T = A{SCT: fr(S)C S}

(wX.T)r = U{SCT: fr(S) DS}

That is to say, (uX.T)? denotes the intersection of all prefixed points of the function
on X induced by T and V, while (vX.T)* denotes the union of all its postfixed points.
If we were allowed at this stage to apply Knaster and Tarski’s theorem, we would
know that (uX.T)* and (vX.T)* denote the least and the greatest fixed point of the
function on X induced by T and V, as was intended. In order to do so, however,
it must be ensured that this function is monotonic. Of course, Proposition 7 does
guarantee exactly this, but solely in case of T being a concept or role of U rather
than of Uu. Proposition 7, therefore, remains to be generalized in order to deal with
the additional concept and role-structuring operators of Upu.

Proposition 7b. Assume T is a concepl or role of Uy, TN is a concepl or role
name, and V is an arbitrary N -valuation over some sel, say, A. If T is formally
monotonic in TN, then the function on TN induced by T andV is monotonic, whereas
it is anti-monotonic whenever T is formally anti-monotonic in TN.

Proof. Throughout the proof, we shall adopt the following convention. For every
concept or role name, TN, every concept or role, T', and every N-valuation, V, the
function on TN induced by T and V is denoted by f;\; In terms of this notation, we
have to show that, when TN, T' and V are given as in the proposition we are about to
prove, f;\; is monotonic whenever T' is formally monotonic in TN, whereas it is anti-
monotonic whenever 7' is formally anti-monotonic in TN. Just like Proposition 7, the
proof proceeds by induction on the structure of 7'. The induction base as well as the
induction steps are, of course, the very same, except for the additional cases when T
is of the form R S, uX. T, or vX.T'. As far as the first case is concerned, it suffices
to verify the fact that if both f;l’vv and f;\{) are monotonic (or anti-monotonic), then

SO 18 f;ﬁ;s’v. The corresponding proof is straightforward and is, therefore, left to the
reader.
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So let us consider the more difficult case when T is of the form pX.7T'. Assume
pX.T" is formally monotonic in TN, so that 7" is formally monotonic in TN too.
According to the induction hypothesis, we know that for every N -valuation, W, over
A, the function f;],\fw on TN induced by T and W is monotonic. In the sequel, we
shall prove that f;\; is monotonic because so is ij«],\jW, no matter which particular
N-valuation is denoted by W. In order to do so, consider the set I' which is assumed
to be either A or A x A, depending on whether T" is a concept or a role. Moreover,
take two arbitrary subsets, S; and Sy, of I' such that the former is a subset of the
latter. As T is assumed to be a least fixed-point operator of the form pX.T", f;\;
applied to S; with 7 being either 1 or 2 yields the following:

Frv(S) = N{SCT: fy . (S)CSh (32)

In what follows, it will be important that for each subset, S, of I', the function
f;’y(m,si) applied to S yields exactly the same value as fiT"]’\fo,s) applied to 5;. We
shall also make use of the fact that according to the induction hypothesis the latter
function is monotonic. Bearing this in mind, we can reason as follows:

Fry(S)

= N{SCT: fn Ve Sl>( ) C S} (according to (3.2))

= N{SCT: fp Wixs(51) 53 (because fr Wiy (5) = v (1)
C N{sScr: fT; Vix, S>(Sg) C S} (because fT; Vixs is monotonic)

= ﬂ{S g I': fT/vv(’T‘N,SQ)( ) g } (because fT/ V(X S‘)<SQ>) = f;/’V(TN1S2>(S>
= f;\;(Sg) (according to (3.2)).

This just means that fsfvis monotonic, as was to be shown. The involved subset
relation given above is not so obvious as one might think at first glance. It yet can
be checked using solely basic set theory.

The other case when T' is formally anti-monotonic in TN as well as the case that T’
is of the form v X.T' can be shown analogously. O

Corollary 5. Assume that uX.T and vX.T are any concepts or roles of Uy and
(AT, ZV) is an arbitrary interpretation. Then (uX.T)T is the least fized point of the
Junction on X induced by T and V, whereas (vX.T)? is ils grealest fived point.

We are now returning to issues of syntax. In particular, we are going to introduce
some useful restrictions which can be imposed on the syntactic shape of concepts and
roles of Uy without giving up any bit of expressive power. Chapter 4 will make use
of both of these restrictions.

Without loss of generality, we can confine ourselves to the case when each concept
and role variable, X, is bounded by at most one fixed-point operator. That is to say,
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there are no two concepts or roles of Uu of the form pX.Ty and v X.T, such that for
every two concepts or roles either of the form pX. 7T} and pX.T; or of the form v X. T}
and v X.T),, it must be the case that T} coincides with T,. The fact below justifies that
this simplification can actually be put into effect without loss of generality. Hence,
we do so in the remainder of the thesis.

Definition 35. Assume T is a concept or role of Uy, while X is a concept or role
variable. Then an occurrence of X in T is said to be bounded if and only if this
very occurrence appears in at least one subconcept or subrole of T being either of
the form pX. 7" or vX.T’; otherwise it is unbounded. Moreover, T is called closed
whenever there is no unbounded occurrence concept or role variable in 7.

Fact 3. Assume pX.T and v X.T are concepts or roles of Uy not involving any oc-
currence of Y. Here, Y is supposed to be a concept variable if X is one; else it is a
role variable. Assume, moreover, Ty y denotes the concept or role obtained from T
by simultaneously substituting Y for each unbounded occurrence of X in T'. Then
pX.T is equivalent to pY.Tx,y and, similarly, v X.T is equivalent to vY.Tx,y.

The second simplification of Uu’s syntax concerns its negation normal form and is
merely a generalization of the corresponding notion for ALCu, introduced in Chap-
ter 2, page 36.

Definition 36. The function nnf maps concepts or roles of Uu to concepts or roles
of Uu. Applied to an arbitrary concept or role, nnf yields the concept or role obtained
from the original one by repeatedly applying the following substitution rules to all
subconcepts and subroles until no rule is applicable any more:

=T ~ T,

(T NTy) ~ =Ty U =Ty,
(T UTy) ~ =Ty 0Ty,
-3F2"R:C ~ FSTIRC,
35T R:C ~ FFHRC,
“(RoS) ~ —R& -5,
“(R®&S) ~ —Ro-S,
(R ~ (GR)T
—(CxD) ~ (=CxT)U(Tx=D),

—uX.T ~ vX.AT,
~vX.T ~ pX.-T.

In the last two substitution rules, T' denotes the concept or role obtained from T by
simultaneously replacing each unbounded occurrence of X in T" with = X. We call
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the result of applying nnf to an arbitrary concept or role, T, of Uu, the negation
normal form of T'.

It should be clear that —T is formally monotonic in X when T is also. Hence, ILLX._'T
and v X.—T obey the syntactic restrictions imposed on least and greatest fixed-point
operators of Uy whenever pX. T and v X. T also do so.

Inspection of the substitution rules employed to obtain the negation normal form
immediately reveals that the negation normal form of each concept or role of Uy can
be computed in deterministic polynomial time. In addition, the negation normal form
is always linearly bounded in the length of the original concept or role. Another basic
property of the negation normal form of Uu is that it never involves any occurrence
of a negation sign — applied to a compound concept or role. However, its most
important property is the following justifying the use of the term normal form after

all.

Proposition 8. Fuvery concept and role of Uu is equivalent to its negalion normal
form.

Proof. As far as all but the last three substitution rules for obtaining the negation
normal form are concerned, it should be obvious that they constitute equivalence
transformations. That is, these substitution rules replace subconcepts and subroles
by equivalent ones. In order to show that this is also the case for the substitution
rule dealing with roles of the form —(C'x D), it has to be verified whether —(C'x D)
is actually equivalent to (-C'xT) U (T x=D), no matter which particular concepts
of Uy are denoted by C' and D. The following line of reasoning proves that this is
actually the case:

~(CxD)r = (AT x AT)\ (€T x D)
= (AT x AN\ {{d,e) e AT x AT:d e Ct, ec DT}
= {(d,e) e AT xAT:d g CT ored D'}
= {(d,e) € AT x AT :de-CT oree-DY}
= {{d,e) e AT x AT:d e ~CTyU{(d,e) € AT x Al:ec -D}
= (=CT x AT)U (AT x =DT)
= ((=CxT)Uu(Tx=D))~
In the case of the next to the last substitution rule, the proof proceeds as follows.
We assume as usual that T'is either AT or AT x AT, dependent on whether uX.T is

a concept or role. Moreover, we adopt the convention that fr (or f_;) denotes the

function on X induced by T (or —Cf) and V:

(~uX.T) = T\({SCT: fr(S) C S}
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= J{SCTr:/7(I\S)Cr\S}
= H{SCTr:T\ /n(T'\5) 25}
= U{ScT:1.2(5) 28}
= (vX.-T)L.
The fact that —vX.T is equivalent to uX.—T can be shown analogously. O

3.6 Discussion

With U we have a description logic that is capable of defining nontrivial concepts
frequently emerging in artificial intelligence and computer science. These concepts
include lists, DAGs, trees, binary trees, and balanced binary trees, and we can even
define those AND-OR graphs for which there exist at least one well-founded solution.
The origin of Uu’s considerable expressive power is twofold. On the one hand, it
encompasses all traditional concept and role-structuring primitives that are known
from the literature. This part is covered by Patel-Schneider’s universal description
logic . On the other hand, Uy incorporates a general means of recursion which
provides not only for recursive definitions of concepts, but also for recursive definitions
of roles. This part of Uu is covered by least and greatest fixed-point operators, which
can be viewed to be more procedural in flavor.

The only thing that Uy seems to lack is a means of mutual recursion as included
in ALCu. However, it is important to recall that in Chapter 2 it was established
that mutual recursion can be captured by nested fixed-point operators, which are
admissible in Uu. As a matter of fact, Uu is not only able to capture mutual recursion
among concepts, but also among roles, and even among concepts and roles in a mixed
fashion. To illustrate how this can be realized, suppose we want to define the universal
concept T as well as the universal role T x T by mutual recursion. This can be done
by defining the universal role as UnivConcept x UnivConcept and to define UnivConcept
as the projection of the universal role to its, say, first component. One way to capture
the latter definition is to require that UnivConcept is the set of all those objects, d,
for which there exists at least one object, e, such that the ordered pair (d,¢) is an
instance of the universal role. Because of the fact that the object e is not restricted
and because UnivConcept is supposed to include all objects, e can be required to
be an instance of this concept. One possible representation of the projection of the
universal role to its first component is therefore FUnivRole:UnivConcept. The whole
mutual recursion is captured by the following terminology of U:

UnivRole = UnivConcept x UnivConcept,
UnivConcept = dUnivRole:UnivConcept.

Of course, this terminology must be given a greatest fixed-point semantics in that
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we are interested only in those models which correspond to solutions which are max-
imal with respect to the subset relation rather than minimal. We can obviously re-
place throughout the right-hand sides of the concept and role introductions UnivRole
and UnivConcept with their defining parts, that is, UnivConcept xUnivConcept and
JUnivRole:UnivConcept respectively. The resulting terminology, then, looks as fol-
lows:

UnivRole = (3UnivRole:UnivConcept)x (FUnivRole:UnivConcept),
UnivConcept = 3(UnivConceptx UnivConcept):UnivConcept.

The models of this terminology coincide clearly with those of the original. But
then we have already eliminated mutual recursion. So it just remains to recast the
greatest fixed-point semantics in terms of greatest fixed-point operators, resulting in
the following acyclic terminology:

UnivRole = v X.((IXwV.3(YxV):Y)x (IXwV.I(YxV):Y)),
UnivConcept = vY.3(YxY):Y.

This example shows how even mutual recursion among concepts and roles can be
captured in Up by means of nested fixed-point operators. In this particular case,
there are actually no nested fixed operators needed at all because vY.3(Y xY):Y
occurring in the scope of v X. does not involve any occurrence of the role variable X,
so that we can take the following terminology instead of the above:

UnivRole = VX.((EIX:UnivConcept)x(EIX:UnivConcept)),
UnivConcept = vY.3(YVxY):Y.

It is well known that the expressive power of U can be gained only at the expense of
losing decidability [Schild, 1988]. In this sense everything presented in this chapter
would be only of theoretical interest if we were not be able to show how mechanized
reasoning can take place in the framework of Uu. The next chapter is devoted to this
very issue.



Chapter 4

U as a Query Language for
Knowledge & Data Bases

In the previous chapter the expressive power of description logics was extended such
that complex data structures can be represented. This was accomplished, however,
at the expense of losing the chance to mechanize the form of reasoning involved.
But from the correspondence with the propositional p-calculus, it is known that
tractable reasoning is possible in provably intractable concept languages such as
ALC . In particular, tractability can be achieved by guaranteeing that all primitive
concepts and roles are extensionally specified by means of a finite semantic structure,
where such a semantic structure can be viewed as a relational database. Hence this
shows that ALCy can serve as a tractable query language for databases. But at
least from a database point of view, this statement is of theoretical interest only
because it seems to be far fetched to advocate a query language having an expressive
power equal to that of ALCu . The challenge that will be pursued in the present
chapter is whether an analogous tractability result can be obtained for Uu. This
question will be answered in the positive. From the knowledge representation point
of view, however, it would be desirable to have more flexible databases allowing
for some kind of incomplete knowledge as well. A uniform approach to knowledge
and data bases will therefore be developed covering the whole range from relational
databases to traditional knowledge bases. It will turn out that even in the case
of a knowledge base which is unrestricted except for the fact that it must have a
finite domain, a worst-case complexity can be attained which does not exceed that of
the very weakest description logic’s setting incorporating only acyclic terminologies.
Technically speaking, in this case co-NP-completeness (and thus decidability) can be
attained. In view of the undecidability of the original setting, this is a promising and
surprising result.
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4.1 Model Checking Versus Theorem Proving

At the end of the last chapter we were left with the dilemma that on the one hand
we have with Uy a powerful description logic, but on the other hand such high
expressive power was gained at the expense of losing the possibility to mechanize
reasoning. In particular, deciding subsumption between two concept or roles of Uu
is undecidable, because so is subsumption between two roles of U, even with no
terminology taken into account [Schild, 1988]. Even in very small sublanguages of Uy
and U, subsumption with respect to empty terminologies is known to be undecidable
too. This applies, for instance, to a sublanguage of ¢ considered in [Schild, 1991a)
which augments the regular extension of ALC by the inverse of roles as well as
functional roles, where functional roles can be simulated using number restrictions of
the form 3! [Schild, 1991a, Proposition 9]. The same applies to sublanguages of U
being part of that description logic attributed to the very system which has attracted
most attention in the realm of terminological knowledge representation, viz. the Ki.-
ONE-system. The corresponding undecidability proofs are due to Patel-Schneider
[1989b] and Schmidt-Schauss [1989]. Notably, the sublanguage for which Schmidt-
Schauss established undecidability of subsumption between two concepts includes in
addition to the concept-structuring primitives of the very weakest description logic
just role-value maps and composition of roles.

In a sense things become even worse when terminologies are taken into account. In
Chapter 2, for instance, it is proved that in case of the standard concept language
ALC, every algorithm capable of deciding whether or not one concept subsumes an-
other uses exponential time on infinitely many inputs if there is at least one recursive
concept introduction. Notably, this result holds no matter which of the usual kinds of
semantics for recursive concept introductions is presupposed, viz. either descriptive
semantics or least or greatest fixed-point semantics. It is also known that in case of
the very weakest description logic (comprising no concept and role-structuring prim-
itives other than concept conjunction and universal quantification over role names),
there exists no polynomial-time algorithm to decide, with respect to acyclic termi-
nologies, whether or not one concept subsumes another, unless P = NP [Nebel,
1990b]. As Woods and Schmolze [1992] put it, “the surfeit of intractability results
seems to have reached its logical end with the conclusion that practically everything
of any use is intractable (in the worst case).”

Recently, Halpern and Vardi [1991] proposed a possible solution to this problem:
As a starting point, they re-examined the traditional approach to knowledge repre-
sentation, going back to McCarthy [1968]. According to McCarthy the world to be
modeled should be represented by a finite collection of formulae drawn from some
given logic, preferably first-order logic. If a query to be answered is then formu-
lated within the same logic, the answer depends on whether or not this formula is
a logical consequence of the given collection of formulae. In other words, a check
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Va.block(z) & v =aV x =b, )
a #b,a # table,b # table, )
VaVy.on(z,y) |: block(b) A ~Jx.block(z) A on(z,b)
& (z=aNy=0Db)

V. (z=0bAy=table)

Figure 4.1: Representing the sample blocks world by first-order formulae

is made whether every semantic structure which is a model of each of the formulae
representing the world is also a model of the query.

We shall illustrate this traditional approach to knowledge representation by an ex-
ample borrowed from the blocks world. Suppose, we want to represent the following
blocks world and, then, would like to know whether b is a top block or not:

a

b
‘ table ‘

Figure 4.1 gives a representation of this situation in terms of first-order logic in the
spirit of McCarthy. Halpern and Vardi pointed out that such a formalization gives
rise to the problem that the need to represent all facts about the world in terms of
some logic necessitates the use of very expressive logics such as full first-order logic.
One can add to this argument that not only all things that hold in the given world
have to be made explicit, but also all those things which do not hold. This is, of
course, an immediate consequence of the so-called open-world assumption, which is at
the very heart of McCarthy’s approach. In contrast to the closed-world assumption,
the open-world assumption does not assume that all those facts that are not explicitly
mentioned (or that cannot be inferred) are considered to be false. For instance, it
obviously would not suffice to take just the formulae on(a,b) and on(b, table) instead
of the more clumsy formula for on given in Figure 4.1. In fact, in addition to on(a,b)
and on(b, table) it has to be stated that these are the only instances for which the
two-place predicate symbol on is true. A predicate completion of the following form
expresses this fact:

VaVy.on(z,y) = ((:1: =aNy=b)V(z=bAy= table)).

It should be clear that the formula for on given in Figure 4.1 just combines this
formula with on(a, b) and on(b, table) because the conjunction of the latter two results
in a formula equivalent to the following one, which represents the opposite direction
of predicate completion given above:

VI‘V’y.((m =aAy=0b)V(z=bAy= table)) = on(z,y).
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{a,b,table}

2

{a,b} = block(b) A —=3z.block(z) A on(x,b)
{(a,b), (b, table)}

Figure 4.2: Representing the sample blocks world by a semantic structure

It seems to be the case that the use of very expressive logics is particularly necessi-
tated by the need to make also those things explicit which do not hold. But once
a powerful logic such as full first-order logic is chosen as a representation language,
difficulties arise immediately, not the least is its undecidability, which is the case even
with only finite interpretation domains taken into consideration [Trahtenbrot, 1963].

At this point Halpern and Vardi [1991] put forward that in many cases the natural
representation of a world to be modeled is a semantic structure rather than a collec-
tion of formulae. If; as in the traditional approach, queries are represented by single
formulae of a given logic, queries can still be decided, but in this case on the ground
of whether or not the query is true in the given semantic structure. This is to say,
in this case it is sufficient to check whether or not the given semantic structure is a
model of the formula corresponding to the query. The fact that a (closed) formula «
is true in a semantic structure M is usually indicated by M = a. Resorting to this
convention, Figure 4.2 gives such an alternative representation of the blocks world
considered above.

In many cases, model checking has tremendous benefits compared with troublesome
theorem proving, at least in terms of computational complexity. For instance, check-
ing the truth of an arbitrary closed first-order formula, o, in a finite semantic struc-
ture which fixes the interpretation of all predicate symbols and constants occurring
in « is known to be decidable in polynomial space, by Theorem 6 of [Chandra and
Merlin, 1977].! Recall that in contrast to this, there exists no algorithm at all ca-
pable of deciding in each particular case whether a formula of this kind is a logical
consequence of a finite set of first-order formulae, even with only finite interpreta-
tion domains taken into account. On the other hand, it is also known that first-order
model checking is still at least as hard as any other problem solvable using polynomial
space, hence this problem is still very hard [Chandra and Merlin, 1977, Theorem 6].
Restricting the syntactic shape of first-order formulae may not always help in this
respect either. This applies, for instance, to the well-known conjunctive Boolean
queries, i.e., first-order formulae of the form 3X,...9X,.a1 A ... A a,,,, where the a;’s
are restricted to be positive literals, all whose variables are among X7, ..., X,,. In fact,
the problem of checking the truth of conjunctive Boolean queries in a finite semantic
structure is still as hard as any other problem solvable in nondeterministic polyno-

1To be accurate, o must not involve any function symbol other than constants.
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mial time [Chandra and Merlin, 1977, Theorem 7|. Anyway, Halpern and Vardi’s
intention was to forge a new approach to knowledge representation rather than to
give concrete instances.

It should be clear that terminological knowledge representation as it stands is com-
mitted to the traditional theorem-proving approach rather than to model checking,
although theorem proving takes place in case of terminological reasoning in the set-
ting of restricted languages. Let us exemplify this fact by the blocks world considered
above. At first, the terminology inherent in the blocks world domain should be fixed.
For the present purpose, it is sufficient to treat the class of all blocks as well as the
binary relation “lying on” as not further specified. But then they can be represented
by concept and role names, such as Block and on. The only relevant term to be
defined in this domain is that of a top block. It can be characterized as a block on
which there is no block lying. This definition can easily be captured in ALC along
with the inverse of a role:

TopBlock = Block M —3on":Block.

The usual procedure undertaken then is that the concrete world at hand is described
by providing concepts and roles with particular instances supposed to reflect the
situation in the world. This is done by means of so-called assertions, each of which
assigns either a particular individual name with a concept or else a particular ordered
pair of individual names with a role. The assertions describing our example blocks
world look as follows:

a:Block,
b:Block,
table:—Block,
(a,b):on,

(b, table):on.

Assertions of this kind are given meaning by defining an arbitrary interpretation,
(AT, F)V), as a model of a:C if and only if ¥ € C*. Tt is moreover a model of
(a,b):R if and only if (a*,b*) € R*. Here, a’ and b' are assumed to denote the
single elements of AT which are contained in V({a}) and V({b}) respectively. It is
not unusual to impose a general unique-name assumption upon individual names,
meaning that « and b7 denote distinct elements of the domain whenever ¢ and b
are distinct individual names. A finite set of assertions then constitutes a so-called
knowledge base. It should not be surprising that a model of such a knowledge base
is an interpretation which is a model of each of the assertions of the knowledge base.
A query, which can either be an assertion or an axiom, is then said to hold in such a
knowledge base with respect to a terminology if and only if every interpretation which
is a model of the knowledge base and the terminology is also a model of the query.
This just defines the notion of logical consequence within this specific framework.
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a:Block, b:Block, table:—Block, )
(a,b):on, (b, table):on,
a:3%%n~1 a:3<1on,

b:3<'on~! b:3<'on,
table:3<'on™!

T = {TopBlock = Block M —=Jon~"':Block}

=7 b:TopBlock

Figure 4.3: Representing the sample blocks world by a knowledge base

Note that this means particularly that knowledge bases are to be interpreted under
an open-world assumption. It is for this reason why the knowledge base given above
is incomplete in the sense that it solely states that block a lies on block b, while the
latter in turn lies on the table, but it is left open whether there is any other block
lying on a, b, or on the table. A knowledge base which is in this sense complete is
depicted in Figure 4.3.

Recall that in general inferences of the kind as shown in Figure 4.3 are tractable only
if P = NP because the same applies to subsumption in the very weakest description
logic, even with only acyclic terminologies are taken into account. In the presence of
at least one recursive concept introduction, inferences of the kind shown in Figure 4.3
are even provably intractable, at least in the general case.

Therefore, it could be promising to accommodate Halpern and Vardi’s model checking
approach to the case of terminological reasoning, and the present chapter will be
devoted to this. Tt will turn out that even in the case of a slightly restricted version of
Up, answering queries become tractable just by replacing the usual kind of knowledge
bases with single semantic structures. This semantic structure has to fix not only
a finite domain, but also the interpretation of all primitive concepts and roles (i.e.,
those concept and role names which are mentioned somewhere in the terminology or
in the query, but which are not defined).

Figure 4.4 modifies the traditional representation just considered in the spirit of
the model checking approach. A finite semantic structure is shown there, which
fixes the interpretation of each primitive concept and role of T, that is, it fixes the
interpretation of Block and on.

The syntactic representation of such a semantic structure is called a wvivid or phys-
ical knowledge base, emphasizing the fact that it is intended to replace customary
knowledge bases. Such a knowledge base consists essentially of two parts. One com-
ponent consists of a set, D, of individual names, supposed to give an upper bound
for the possible interpretation domains of models. The second consists of a finite set
of assertions of the form TN = §, where § is a unary relation over D if TN is a



4.1 Model Checking Versus Theorem Proving 91

Dom = {a,b,table}
[Block] = {a,b}

fon] = {(ab), (b, table}}
T = {TopBlock = Block M —=3on~"':Block}

=7 b:TopBlock

Figure 4.4: Representing the sample blocks world by a vivid knowledge base

concept name, and a binary relation over D if TN is a role name. An interpretation,
(AT, ZV), is a model of such an assertion just in case TN? equals {a : a € 8} and
{(a®,b%) : (a,b) € S}, respectively, depending on whether TN is a concept or a role
name. Compared with customary knowledge bases, the models a knowledge base of
the kind just described have to meet is the following additional condition: If d is any
element of AZ, then it has to have at least one syntactic counterpart in D, that is,
there must be at least one a € D such that a? = d. The definition of KB =7 Q then
can remain unchanged.

One of the main results of the present chapter is that, even in Uy KB =7 @ can
be decided in deterministic polynomial time in the sense of the Vardi’s [1982] notion
of combined complexity, i.e., it can be decided in deterministic time polynomial in
the sum of the sizes of KB, 7, and ). For this positive result to hold, however,
some restrictions must be invoked: First of all, we have to restrict the syntax of
Up slightly, but this restriction concerns solely the possible occurrences of nested
alternating fixed-point operators. The restriction does not affect those nested fixed-
point operators which are of practical use. In particular, all terminologies given in the
last chapter do not extend beyond the restricted version of Uu. The corresponding
restricted version of Uu is called Uy .

More importantly, the tractability result additionally presupposes that each of the
following three conditions is met.

(a) The knowledge base KB fixes an interpretation domain, say, D, consisting of
a finite number of individual names with a general unique-name assumption
imposed on.

(b) At least all those concept and role names are specified by means of a unary
or binary relation over D which occur in Q or T, except for those which are
defined in 7. In addition, D has to contain at least all those individual names
which occur in T or Q.

(¢) The terminology T is acyclic.

Each of the conditions above calls for comment: First, condition (¢) does not exclude
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recursive concept or role definitions because the fixed-point operators of Ui admit of
encoding them by acyclic, nonrecursive concept or role introductions, at least as far
as least and greatest fixed-point semantics is concerned. Anyway, the most important
conditions are the first two ensuring all primitive concepts and roles to be specified
extensionally by means of a unary or binary relation. This restriction does make
sense since these concepts and roles are exactly those which are not further specified
according to the denotational semantics or the terminology. It can easily be verified
that the sample query of Figure 4.4 obeys each of the conditions above.

This result is significant both from Halpern and Vardi’s [1991] model checking point
of view and from the viewpoint of description logics. From Halpern and Vardi’s
point of view, our result singles out a useful fragment of first-order logic which gives
rise to tractable model checking, even when this fragment is enriched by fixed-point
operators. As opposed to the corresponding tractability results for fixed-point lan-
guages based on full first-order logic [Vardi, 1982], ours is to be understood in terms
of combined complexity rather than the far weaker notion of data complexity. The
crucial difference between these two different complexity measures is that in contrast
to combined complexity, data complexity presupposes an arbitrary but fized query
and in our case also an arbitrary but fized terminology. The difference between these
two complexity measures is perhaps best explained by means of an example. Suppose
that we came up, for instance, with a upper bound of [KB|°U7+IQD This bound is
not only exponential, but even superexponential in terms of combined complexity. In
the sense of data complexity, however, this would yet be a polynomial upper bound.
In fact, for fired T’s and Q’s, |[KB|OUTIHI®D constitutes a polynomial bound. It is
for this reason that if our tractability result is to be understood in the sense of data
complexity, it may be possible for it still to be an exponential lower bound in the
sense of the combined complexity. This actually happens to be the case for the fixed-
point languages based on full first-order logic investigated by [Vardi, 1982]. Anyway,
it should be obvious that the notion of data complexity is not tailored for termi-
nological reasoning because it seems far fetched to presuppose that terminological
reasoning takes place with some fixed terminology or even with some fixed query.

The description logic’s point of view suggests the following interpretation: If we are
able to abandon any incomplete knowledge from our knowledge base, we gain not
only decidability, but also tractability, even in case of the most powerful description
logic considered in the literature. Thus our result suggests that the main source
of computational complexity of terminological reasoning is the ability to express
incomplete knowledge. This finding was confirmed by another result which will
be presented in this chapter too. It explores the consequences of a limited form
of incomplete knowledge by ‘unknown’ individual names corresponding to Reiter’s
[1984] null values in databases. The result states that admitting of individual names
without any general unique name assumption imposed on causes intractability, unless
P = NP, even in case of the standard description logic ALC. Nevertheless, based
on Vardi’s [1986] work on null values in databases, we shall be in a position to give
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an algorithm capable of dealing with such ‘null values’ soundly if approximately.
The resulting algorithm runs not only in polynomial time, but turns out to be also
complete in case no such ‘null value’ is present.

Notice that any finite semantic structure can be viewed as a relational database, and
so can any vivid knowledge base. From this point of view, one interpretation of our
tractability result is that Uy can serve as a powerful, but tractable query language
for databases. This is the reason why we shall compare the query power of U with
traditional database query languages, especially with that of fixed-point languages
based on full predicate calculus, which are known to be intractable in the sense of
combined complexity [Vardi, 1982]).

However, we shall not argue that model checking can replace ordinary terminological
reasoning. On the contrary, we believe that one should try to mediate between
two extremes on a wide-range spectrum between abandoning any kind of incomplete
knowledge on the one hand and allowing for an unlimited use of incomplete knowledge
on the other. One possible compromise in this direction is indicated by another
outcome of the present chapter. In particular, it turned out that even when relaxing
conditions (a) and (b) in such a way that KB is solely required to fix a domain
consisting of a finite number of individual names, the problem of deciding KB =7 @
is still decidable in U . We shall prove that in this case the computational complexity
is essentially the same as that of deciding ordinary subsumption between two concepts
with respect to acyclic terminologies in the weakest concept language. Technically
speaking, in this case deciding KB 7 @) in Ui is co-NP-complete. It will turn out
that the same applies to general terminological reasoning in Uy if a simple domain-
closure axiom is put into effect.

4.2 A Uniform Approach to Knowledge & Data
Bases

This section is devoted to knowledge bases as a means of describing application
domains by providing generic concepts and roles with specific instances. Special
attention will be paid to knowledge bases which can be called in Levesque’s [1986]
sense vivid. According to Levesque vivid knowledge bases are those whose models
have the same structure as the knowledge bases themselves.

In the realm of description logics, knowledge bases are finite sets of so-called asser-
tions, each of which associates either a particular individual name with some concept
or an ordered pair of individual names with some role. Typical assertions of this
kind are, for instance, a:Block and (a,b):on. As we have not only knowledge bases,
but also terminologies at our disposal, we can assume without loss of generality that
those concepts and roles out of which assertions can be formed are simple concept
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or role names. This is because any other concept and role can be replaced by a new
concept or role name if an appropriate concept or role introduction is added. For in-
stance, in the presence of the concept introduction TopBlock = BlockM—3on~!:Block,
a:TopBlock expresses exactly the same assertion as a:(Block M —Jon~":Block). Knowl-
edge bases are usually reduced to finite sets of simple assertions of this sort. In our
account of knowledge bases, however, we shall adopt several deviations from this
prevailing view. The nonstandard view of knowledge bases is needed if traditional
databases are to be covered in that framework too.

o First, we do not implicitly impose any general unique-name assumption on
individual names. Instead, explicit uniqueness azioms of the form a # b can
be stated whenever it is convenient to do so. Such a uniqueness axiom enables
us to impose the restriction on two individual names that they always denote
distinct objects of the domain just by need.

¢ In addition to common assertions of the form a:C' and (a,b): R stipulating spe-
cific instances of ' and R, we introduce assertions enumerating all their in-
stances. Typical examples of assertions of this kind are Block = {a, b, table} as
well as on = {(a, b), (b, table)}. Both kinds of these new assertions make it pos-
sible to succinctly express complete knowledge about the extensions of concepts
and roles whenever it is convenient to do so. In presence of such assertions, we
say that the corresponding concepts and roles are specified extensionally.

o Usually the set of concept and role names out of which assertions can be formed
is left implicit. In our account of knowledge bases, however, this set is made
explicit and is usually denoted by Sig. We thereby fix the set of those concept
and role names we are interested in.

e The most important deviation from the traditional view of knowledge bases
predominating in description logics, however, is the fact that in our account
each knowledge base fixes a certain set of individual names, usually denoted by
the letter D. This set is supposed to limit not only those individual names about
which assertions can be made, but also the possible interpretation domains of
models. This is because each domain element is assumed to have at least one
syntactic counterpart in D. The effect of this restriction is that of a domain-
closure axiom, although domain-closure axioms are more restrictive. Of course,
an explicit domain-closure axiom can be stated only in those cases in which D
contains solely a finite number of individual names, say, a1,...,a,. In such a
case, we can retreat to an axiom of the form T C {a} U ..U {a,}. On
the other hand, such a representation is impossible if D contains an infinite
number of individual names. Anyway, in case D is the set of all individual
names (of which there are countably many), the restriction that all elements
of the interpretation domain have to have at least one syntactic counterpart in
D can clearly be ignored. In this case, only those domains are excluded which
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are not countable. This restriction does not bear any practical importance in
most applications.

The latter deviation from the common view of knowledge bases predominating in
description logics is indispensable for restricting knowledge bases in such a way that
they become vivid. According to [Levesque, 1986], page 93, vivid knowledge bases
are exactly those for which there exists always a one-to-one correspondence with
their models, at least as far as the relevant parts of those models are concerned.
In particular, there has to be a one-to-one correspondence between a certain class
of symbols of the knowledge base and the interpretation domain of the model. In
addition, for every simple relationship of interest, there has to be a type of connection
among symbols in the knowledge base such that the relationship holds among a group
of objects in the model if and only if the corresponding connection holds among the
corresponding symbols in the knowledge base. Applied to knowledge bases of the
particular sort discussed so far, this means that every model, (A%, 2 V), of such
a vivid knowledge base has to satisfy the following two criteria. First, there must
be a one-to-one correspondence between D and the domain AZ. In addition, for
every concept, C, of Sig, it must be the case that an element of AT is a member
of CT just in case the knowledge base asserts the corresponding individual name to
be an instance of C'. This is to say, the knowledge base contains the assertion a:C'.
An analogous relationship must hold, of course, for all roles of Sig too. Because in
our account of knowledge bases each object of the domain has to have a syntactic
counterpart in D, the first criterion can be achieved just by requiring that for each
distinct pair of individual names of D, there is at least one uniqueness axiom. Only
a finite number of such uniqueness axioms is actually needed whenever D is finite.
One way to accomplish the second criterion is to force the knowledge base to contain
exactly one of the two assertions a:CN and a:=CN, for each individual name, a, of D
and each concept name, CN, of Sig, and to impose a corresponding restriction on all
ordered pairs of individual names of D and all role names contained in Sig as well.
A more succinct way is to specify all concept and role names of Sig extensionally.

The main reason to investigate such vivid knowledge bases is the fact that they can
be viewed as a means of syntactically representing parts of interest of single inter-
pretations or, which amounts to the same thing, as relational databases comprising
relations at most of rank one or two. Hence, vivid knowledge bases provide a gen-
eral framework for investigating not only the model checking approach to description
logics, but also description logics as a new kind of query language for relational
databases. Over and above that, our account of knowledge bases is flexible enough
to handle a wide range of knowledge bases which are more general than the vivid
ones: An example of such knowledge bases are those incorporating unknown values,
also known as null values in database theory. This class of knowledge bases can be
captured by relaxing the first criterion characterizing vivid ones, while still retaining
the second. In this case, we just force knowledge bases to specify each concept and
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role name of Sig extensionally. The presence of any uniqueness axiom is not gener-
ally presupposed, but is not forbidden either. Knowledge bases of this type will be
called closed.

In any case, it will be important to impose a certain restriction on the lower bounds
of S1g and D. Both sets should always be large enough to enable knowledge bases to
make assertions about all term names occurring in the terminology or query, except
perhaps for those concept and role names which are defined in the terminology. In
this case, the terminology and the query will be called compatible with the knowledge
base. This restriction will be of particular significance both from the model checking
as well as the query language point of view.

In the remainder of this section, we shall develop all notions discussed so far, but
elucidate also the power of null values by an example. The example tackles the
chromatic number of a given graph, that is, the problem whether for a given number
of k colors, all vertices of the graph can be colored in such a way that each vertex is
colored with exactly one of the & different colors and, moreover, every two vertices
connected by at least one edge do not have the same color.

4.2.1 Finite, Closed, & Vivid Knowledge Bases

Definition 37. Assume L is a set of concepts and roles, while D is a set of individual
names. If C'is a concept of £, R is a role of £, a and b are both individual names of
D, Sy is a set of individual names of D, and &, is a set of ordered pairs of individual
names of D, then a:C, {a,b):R, C = 8;, as well as R = 8, are all said to be
L-assertions over D.

We may speak simply of L-assertions whenever D is understood, and may even use
the term assertion alone whenever £ is understood as well.

For convenience, it is presupposed from now on that for every interpretation, (A7, .7, V),
and every individual name, a, the expression a denotes exactly that element of AZ
which is the only member of the singleton subset of AT denoted by V({a}). This
means that V({a}) is always {a’}.

Definition 38. Assume a:C, (a,b):R, C = &1, and R = S, are arbitrary assertions,
while Z = (AZ,.2)V) is any interpretation. We define the restrictions to be imposed
on 7 to be a model of the assertion as follows.

e 7 is a model of a:C if and only if a* € CZ.
¢ 7 is a model of (a,b):R if and only if (a*,b") € R%.
¢ T is a model of C = &; if and only if C* = {a? : a € S, }.



4.2 A Uniform Approach to Knowledge & Data Bases 97

¢ 7 is a model of R = S, if and only if RT = {(a”,b%) : (a,b) € S,}.

Definition 39. If D is a set of individual names and @ and b are two elements of this
set such that a # b, then the assertion (a,b):—e is said to be a uniqueness axiom
over D. For the sake of readability, we may use @ # b in lieu of (a, b):—e.

Note that an arbitrary interpretation, whose interpretation function is .7

of such a uniqueness axiom if and only if aZ # bZ.

, 1s a model

Definition 40. Assume Sig is a nonempty finite set of concept and role names,
while D is a nonempty set of individual names. Suppose, moreover, A is a set of
Sig-assertions over D which may contain, of course, also uniqueness axioms over D.

Then the triple (D, Stig, A) is said to be a knowledge base.

Definition 41. Assume Z = (AZ, Z)}V) is an arbitrary interpretation and KB =
(D, Sig, A) is a knowledge base. Then 7 is said to be a model of KB if and only

if it is a model of each element of A and, moreover, AT is a nonempty subset of

{a* : a € D}.

This is to say, Z is a model of a KB just in case Z is a model of all assertions and
uniqueness axioms contained in A and, in addition, for each d € AZ, there is at least
one individual name of D, say, a, such that a® = {d}. Roughly speaking, this means
that each semantic object of the domain of Z has to have a syntactic counterpart in

D.

Definition 42. Assume KB = (D, Sig, A) is an arbitrary knowledge base. Then KB
is sald to be finite if and only if D is finite. A concept or role, T', is extensionally
specified in KB if and only if A contains exactly one {T }-assertion over D and this
very assertion is of the form 7' = § such that S is either a set of individuals of D or
a set of ordered pairs of individuals of D, depending on whether T' is a concept or
role. Furthermore, KB is said to be closed if and only if it is finite and all concept
and role names of Sig are extensionally specified in K.

In view of this definition of a finite knowledge base, recall that Sig 1s a set of con-
cept and role names which is always finite, regardless of whether the corresponding
knowledge base is finite or not. It is for this reason that A is finite whenever the
corresponding knowledge base is finite in the sense of the definition above.

The following fact concerning knowledge bases which are closed is due to the fact that
in such a knowledge base all concept and role names of Sig are specified extensionally
exactly once. Tt is therefore impossible to state any contradictory assertions. The



98 Ui as a Query Language for Knowledge & Data Bases

same applies to uniqueness axioms in that closed knowledge bases are able to state
solely inequalities between different individual names with the help of uniqueness
axioms, but it is impossible to stipulate any equalities by means of assertions of the

form (a,b):c or ¢ = {(a,b)} and alike.?
Fact 4. Fach closed knowledge base has at least one model.

We can be more specific and fix a class of straightforward models of closed knowledge
bases. This class of interpretations is characterized in such a way that their interpre-
tation domains are identical to D and, moreover, all individual concepts are mapped
to themselves, while all concept and role names of Sig are dealt with in exactly the
way as suggested by the assertions of A.

Definition 43. Assume KB = (D, Sig, A) is an arbitrary closed knowledge base.
The interpretation (AZ,.Z,V) is then said to be an initial interpretation of KB
if and only if AT is D and, moreover, V deals with an arbitrary individual name,
a € D, and an arbitrary concept or role name, TN € Sig, in such a way that a? is

{a} and, if V(TN) is S, then TN = § is a member of A.
Fact 5. Fach initial interpretation of a closed knowledge base is a model of it.

Definition 44. Assume KB = (D, Sig, A) is an arbitrary knowledge base. Then KB
is said to be vivid or physical if and only if it is closed and for every two distinct
individual names, a and b, of D, at least one of the uniqueness axioms a # bor b # a
is a member of A.

Note that both observations about closed knowledge bases apply to vivid ones, too,
because vivid knowledge bases are defined as a special kind of closed ones.

Example4 (Vivid knowledge base). Consider the knowledge base (D, Sig, A)
such that D, Sig, A are given as follows:
D = {a,b,table},
Sig = {Block,on},
A = {Block = {a,b},a # b,on = {(a,b), (b, table)}, table # a, table # b}.

This knowledge base is vivid.

ZRecall that, as far as closed knowledge bases are concerned, assertions of the form (a, b):c are
not admissible in any case, while an assertion of the form ¢ = {{a, )} would be admissible only if ¢
were a member of Sig. The latter, however, is required to be a set of concept and role names and,
therefore, must not contain the identity role e.
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The difference between vivid and closed knowledge bases consists in the fact that
models of the latter may have some freedom in dealing with individual names. In
particular, if @ and b are two individual names of D such that A contains neither
the uniqueness axiom a # b nor b # a, then a model, (A7, .2, V), of a corresponding
closed knowledge base is allowed to handle ¢ and b in such a way that o = bZ.
A corresponding vivid knowledge base, however, is not allowed to do so in that it
always has to contain at least one of the uniqueness axioms a # b or b # a.

Definition 45. Assume L is a set of concepts and roles, D is a set of individual
names, while both Z = (AT, 2. V) as well as J = (A7, .7, W) are any interpretations.
Then Z and J are said to be (L£,D)-isomorphic if and only if there exists a one-
to-one function, h, mapping AT onto A7 such that for every individual name, a, of
D, every concept, C, of £, and every role, R, of L, all the following equations are
satisfied:

a = h(d"),
cY {h(d) : d € C*},
R7 = {{h(d),h(e)) : (d,e) € R"}.

Fact 6. Assume KB = (D, Sig, A) is a vivid knowledge base. Then every two models
of KB are (Sig,D)-isomorphic.

Roughly speaking, this means that the models of any physical knowledge base,
(D, Sig, A), are unique in the sense that both their domains as well as the way
they handle those term names contained in Sig and D are identical, at least modulo
renaming the elements of their domains.

4.2.2 Knowledge Base Queries

So far, we have specified what is meant by knowledge bases and their models and
we have fixed some basic properties of closed and vivid knowledge bases. It remains,
however, to describe how such knowledge bases can be queried and, then, how the
answers are determined. On top of that, we shall see that in case of vivid knowledge
bases, evaluating queries reduces, in effect, to model checking.

Definition 46. Let £ be a set of concepts and roles. A query of L is either an
axiom of £ or an L-assertion over some set of individuals.

Definition 47. Assume KB is an arbitrary knowledge base, T is a terminology, and
@ is a query. Then @ is said to hold in KB with respect to T, in symbols KB =1 Q,
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if and only if each interpretation which is a model of both B and 7T is a model of
Q as well. Moreover, we write KB =7 Q if and only if ) does not hold in KB with
respect to T .

Fact 7. Assume KB is a knowledge base, T is a terminology, and a:C' as well as
(a,b):R are any Up-assertions. Then KB 7 a:—C if and only if there is at least
one interpretation which is a model of KB, T, and a:C. Similarly, KB 7 (a,b):= R
if and only if there is at least one interpretation which is a model of KB, T, and

(a,b):R.

So far we gave meanings to queries posed to any knowledge base along with a ter-
minology. In doing so we have ignored the fact that only certain queries make sense
when a particular knowledge base and a particular terminology is given and that
terminologies should go with the given knowledge base too. It does make sense, of
course, to restrict attention to those queries and terminologies which are built up
from term names each of which is drawn from either Sig, D, or the set of those con-
cept and role names which are defined in the terminology. Whenever the terminology
as well as the query satisfy this condition, we say that both are compatible with the
given knowledge base.

Definition 48. Assume KB = (D, Sig, A) is an arbitrary knowledge base, T is a
terminology, and @) is a query. Then 7 and @) are said to be a compatible with
KB if and only if all term names occurring in 7 and ) are among Sig U D, except
for those concept and roles names which are defined in 7.

We have already seen that all initial interpretations of closed knowledge bases are
models and that all models of single vivid knowledge bases are (Sig, D)-isomorphic to
each other. But then all models of a vivid knowledge base are known to be (Sig, D)-
isomorphic to any of its initial interpretations. This means that each vivid knowledge
base can be viewed as one possible syntactic representation of a certain part of any
of its initial interpretations, namely exactly that part which all initial interpretations
of it have in common. In this connection recall that all initial interpretations of
a vivid knowledge base differ only in their handling of those term names which
are neither contained in Sig nor in D. This indicates that there is an intimate
relationship between model checking and querying vivid knowledge bases, at least as
far as terminologies and queries compatible with the knowledge base are concerned.
However, there still remains a minor difference. The difference is that the definition
of the semantic relation KB |7 @ universally quantifies over all interpretations
which are models of both KB and T and, of course, there can be more than one such
interpretation, even when KB is a vivid knowledge base. Therefore, it remains to be
shown that in this case, it suffices to choose an arbitrary interpretation which is a
model of both KB and T (for example, an initial interpretation of B being a model
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of T') and, then, to check whether or not this particular interpretation is a model of
@ as well. In other words, it must be shown that querying vivid knowledge bases,
in effect, reduces to model checking. To prove this fact, the following lemma will be
useful.

Lemmad4. Assume L is a set of concepls or roles of Uu, while Ly is a set of concepl
and role names and D is a set of individual names such that the union of Ly with
D contains all those term names which occur in al least one concept or role of L.
Then every two interpretations which are (Lo, D)-isomorphic are also (Lo U L, D)-
isomorphic.

This lemma can be proved by induction on the structure of the concepts and roles

of L.

Proposition9. Assume KB is a vivid knowledge base. Assume, moreover, that T
is an acyclic terminology of Uu and @Q is a query of Up such that T and Q are

compatible with KB. Finally assume I is an arbitrary chosen model of KB and T .
Then KB =7 Q if and only if T is a model of Q.

We may, of course, chose any initial interpretation of KB being a model of T as one

particular model of KB and T.

Proof. Suppose @ is of the form T} = Ty and KB is (D, Sig, A). It clearly suffices
to prove that if Z = (AZ,. 2 V) and J = (A7, .7, W) are two interpretations which
are models of both KB and T, then Z and J are ({7}, T,}, D)-isomorphic, so that T
is a model of T} = Ty if and only if J is also a model of T} = T;. Recall, according
to Fact 6, Z and J are already known to be (Sig, D)-isomorphic. As T is assumed
to be acyclic, Z and J can be shown to be not only (Sig, D)-isomorphic, but also
(Stg U def (T ), D)-isomorphic. But then the last lemma immediately yields that 7
and J are ({11,7:}, D)-isomorphic. Lemma 4 can actually be applied to this case by
assigning Lo with StgU def (T) and £ with {77, T;}. All preconditions of the lemma
are then met in that 7 and T} = T, are assumed to be compatible with B. The
term names occurring in 7} and T, are therefore among Sig U D U def (T).

So it remains to give a proof of the fact that Z and J are not only (Sig, D)-isomorphic,
but also (Sig U def(T),D)-isomorphic. The proof proceeds by a straightforward
induction on the number of concept and role introductions of 7. More precisely,
we are going to show that for each set of concept and role names, £, containing
at least those of Sig, T and J are (L U def(T ), D)-isomorphic whenever they are
(L, D)-isomorphic. As regards the induction base, one has to consider the case when
T is the empty terminology, in which case the claim to be proved holds trivially
in that def(7) is in this case empty. For the induction step, choose an arbitrary
concept or role introduction of T, say, TN = T, such that T does not involve any
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concept or role name which is defined in 7. The only term names occurring in T
are therefore among £ U D. As T is assumed to be acyclic, the existence of such a
concept or role introduction is actually guaranteed. According to the last lemma, it
immediately follows that Z and J are also (£ U {T'}, D)-isomorphic and, therefore,
also (LU{TN}, D)-isomorphic. The induction hypothesis then can be applied to the
terminology 7' = T\{TN = T'} and the set of concept and role names £ = LU{TN }
with the result that Z and J are (L' U def (T'), D)-isomorphic too. But then we are
already done because £ U def (T') coincides with £ U {TN} U def (T \ {TN = T})
and, therefore, also with £ U def (7). O

Now let us look at the example of the chromatic number of graphs, which demon-
strates the power of ‘null values’ of closed knowledge bases. First, let us define
the notion of the k-colorability of graphs. A directed graph, (V, E), is said to be
k-colorable if and only if there is a total function f : V — {1,...,k} such that
f(v) # f(w) whenever (v,w) € E, see e.g. [Garey and Johnson, 1979], page 191.
In the following example we are going to explain how to construct, given an arbi-
trary directed graph, a closed knowledge base along with a query such that the given
graph is k-colorable if and only if the query holds in the closed knowledge base with
respect to the empty terminology. The part of the knowledge base which represents
the given graph can be thought of as being vivid. The knowledge base constructed
contains also k different individual names, each representing a single color, including
appropriate uniqueness axioms imposed on each pair of distinct ‘colors’. Because of
the fact that there is no uniqueness axiom at all between a vertex and a color, the
resulting knowledge base is closed rather than vivid. Each individual name repre-
senting a color can, therefore, be viewed as a null value. The query, then, forces each
vertex of the graph to take one of the k£ colors such that no two vertices of the graph
take the same color whenever they are connected by at least one edge. We shall
confine ourselves in the example to the case of three colors. The reduction, however,
works for any other number of colors in an entirely analogous way.

Example5 (3-colorable graphs). Consider an arbitrary directed graph, G = (V| E),
such that V' is a finite set of individual names. Assume Vertex, Colory, Colors, Colors
are pairwise distinct concept names, while edge and accessible are pairwise distinct
role names. Finally, assume red, green, as well as yellow to be distinct individual
names not contained in V. Let KBg be the knowledge base (D, Sig, A) such that D,
Sig, and A are given as follows.

(a) D=V U{red, green, yellow };
(b) Sig = {Vertex, edge, accessible, Color;, Color,, Colors };

(c) Ais the set containing all and only the following Sig-assertions and uniqueness
axioms over D:

Vertex = V,
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edge = I,
accessible = {(a,b):a,b€ V},
Color; = {red},

Color, = {green},
Color; = {yellow},
red #* green,
red # vyellow,

green # yellow.

The graph G is then 3-colorable if and only if for an arbitrary but fixed individual
name of V', say, ag, the following ALC-assertion does not hold in KBg with respect
to the empty terminology 0:

3
ap:—Vaccessible: |_|(Co|or2- M Yedge:—Color;).

=1

As one might think, | |?_, (Color;Vedge:=Color;) is shorthand for the concept (Color;I1
Vedge:=Color; ) LI ... U (Colors M Vedge:~Colors).

We are going to give a proof of this claim because 1t will serve later on as a key argu-
ment in providing a lower computational complexity bound for querying closed knowl-
edge bases. Throughout the proof we use 3Colorable in lieu of Vaccessible: | |?_, (Color;I1
Vedge:=Color;). First, let us prove the if-part. In order to do so, assume that
KB g ag:—3Colorable. We have to show that this assumption leads to the con-
clusion that the graph G is 3-colorable. According to Fact 7, there is at least one
model of KBg, say, T = (AT, L V), such that af € 3Colorable’. The fact that 7
is a model of KBg and, therefore, also one of the uniqueness axioms red # green,
red # yellow, and green # yellow, all included in A, forces red?, green”, and yellow”
to denote pairwise distinct elements of AZ, say, 1, 2, and 3 respectively. The fact
that Z is a model of Color; = {red}, Color; = {green}, and of Colors = {yellow},
also all contained in A, forces Color?, Color}, Color? to denote the sets {1}, {2}, and
{3} respectively. But then a? is an element of 3Colorable? just in case the following
subset relation is satisfied:

3
accessiblez(ag) C (|_|(Co|or7;I—I‘v’edge:—'Color,;))I
—_—

=1

= {aT:aeV}

{i : edge” (i) C AT\ {i}} (4.1)

I
la

-
Il
-

{i: for every j such that (i, j) € edge’, j #i}.

I
a

-
Il
-
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Because of the fact that accessible’ (al) is {a” : a € V'}, this subset relation means
in particular that for each a € V, af is a member of {1,2,3}.

In order to continue, consider the total function f : V — {1,2,3} such that for
every a € V, f(a) is defined to be a®. This function is well-defined in that for each
a €V, a is actually a member of {1,2,3}, as we just remarked. To prove that G is
3-colorable, it remains to verify that f(a) # f(b) whenever (a,b) € E. Hence, take
two arbitrary elements of V', say, a and b, such that (a,b) € E. As T is a model
of edge = E, (a”,b?) is, therefore, known to be an element of edge’ and, as f(a)
and f(b) are defined to be a” and b% respectively, (f(a), f(b)) must be an element of
edge” too. According to the subset relation (4.1) given above, it follows immediately

that f(a) # f(b). This completes the if-part.

For the only-if-part assume G is 3-colorable. This is to say, it is assumed that
there exists a total function f : V. — {1,2,3} such that f(a) # f(b) whenever
(a,b) € E. In what follows, we shall define an interpretation which is a model of
KBg, but which will turn out to be no model of ayg:—3Colorable. This will prove that
KB = ag:—3Colorable.

The basis of this interpretation can be any AN -valuation, V, over A satisfying the
following constraints:

A = {17273}7
V(Vertex) = {f(a):
= {{/(a)

a €V},
= f(0)) = {a,b) € EY,
V(accessible) = {(f(a), f(b)) :a,bE V},

)
V(edge)
)
V(Colory) = V({red}) ={1},
)
)
)

(Colorz = V({green}) = {2},
= V({yellow)) = {3},
= {f(a)} whenever a € V.

It can easily be seen that whenever V is such a valuation, the interpretation (A%, ., V)
with AT = A is always a model of KBg. It thus remains to prove that this interpre-
tation is no model of the assertion ag:—=3Colorable. That is, it must be shown that
al ¢ —3Colorable’ or, equivalently, that al € 3Colorable’. The latter clearly holds
just in case the following subset relation is satisfied:

(Color; ‘v’edgel—'C°|°ri)>I

e

accessible” (al) C
1

edge ) € {1,2,3}\ {:}}

Il
||'Cw i

= U{z for all j such that (i,7) € V(edge), j # 1}
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We shall see that this subset relation is trivially satisfied in that the set J?_,{i :
for all j such that (i,7) € V(edge), j # i} does contain each element of the domain
of Z, i.e., it contains each element of the set {1,2,3}. In order to do so, it suffices
to verify that j # ¢ whenever (7, ) is an element of V(edge). Consider an arbitrary
ordered pair, say, (i, j), which is a member of V(edge). Inspection of the definition of
V(edge) immediately reveals that there have to exist two elements of V', say, a and b,
such that f(a) is 1, f(b) is j, and (a,b) € E. But then the assumption made about f
implies that f(a) cannot be equal to f(b). But then ¢ # j, as was to be shown. O

4.3 Querying Vivid Knowledge Bases

In this and the following section, we shall explore the computational complexity of
querying all kinds of knowledge bases, i.e., vivid, closed, and finite ones. One of
the main results will be that only vivid knowledge bases give rise to tractable query
answering. However, evaluating queries posed to vivid knowledge bases and acyclic
terminologies will turn out to be among the hardest problems that are solvable in
polynomial time, that is, it is P-complete, even in case of the standard description

logic ALC.

4.3.1 A Polynomial-Time Algorithm

We are now going to present a polynomial-time algorithm for evaluating queries posed
to vivid knowledge bases and acyclic terminologies. More precisely, the algorithm
computes for an arbitrary query, @), an acyclic terminology, 7, and a vivid knowledge
base, KB, a Boolean value supposed to reflect whether or not @) holds in KB with
respect to 7. Of course, the algorithm deals solely with those 7’s and @’s which are
compatible with B. The main characteristic of the algorithm is that it is sound and
complete, at least as far as a certain fragment of Uu is concerned. Another important
characteristic of the algorithm is that its running time is polynomially bounded in
the length of the sum of the sizes of the given knowledge base, the terminology, and
the query. The fragment of Uu for which the algorithm will turn out to be both
sound and complete, called Ui, merely restricts the possible occurrences of nested
alternating fixed-point operators. This restriction, however, does not affect practical
usability.

In case fixed-point operators are absent, the algorithm is quite straightforward. At its
very heart there is a procedure, called ext, which computes for an arbitrary concept

or role, T, a set which corresponds to the value of TZ, where .7 is the interpretation

function of a certain model of KB. If KB is (D, Sig, A), then according to Fact 6, all
models of KB are pairwise (Sig, D)-isomorphic. But then it does not matter which
particular model is actually chosen. For convenience’s sake, we decided to take one
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of those which we called on page 98 initial, this is to say, a model (A% .7 V) such
that AT is D and, moreover, for each individual name, a € D, V({a}) is {a}. Given
such a valuation over D, the procedure computes what corresponds exactly to the
result of applying .Z to T', where I is part of an arbitrary chosen interpretation,
(AT, T V"), such that AT = D and V C V'. The actual value of TZ does not depend
on which specific initial interpretation of KB is taken as a basis because only those
T’s will be dealt with whose only term names are among Stg U D. This means that
the possible interpretations, (AZ,.Z V'), may differ only in their handling of those
term names which do not occur in 7. The value of T is, of course, independent of
the interpretation of these term names.

The value of T? is computed by ezt in a recursive fashion. In case of T being an
atomic concept or role, it yields the value V(T') specified by V, unless T is either T
or ¢, in which case it just yields D itself and the identity relation over D respectively.
In case of compound concepts or roles, the value of 77 is computed with the help
of the corresponding values of the subconcepts and subroles, mimicing the semantics
of the particular concept or role-structuring primitive involved. This can be done
employing operations of basic set theory only. In particular, each of these operations
can be computed by at most O(§D|*) steps, at least as far as U is concerned.

Acyclic terminologies are dealt with as follows. Whenever ezt is called with 7" being
a concept or role name which is among those defined in 7, it computes the result of
applying T to the right-hand side of the corresponding concept or role introduction
of 7. In order to avoid recomputations, however, for each call of ezt its result has to
be stored. This means that in particular those concept and role names are evaluated
solely once which are among those defined in 7. For this purpose a memory space of
size O(n2 + nﬂ|D|2) will do if n is the sum of the sizes of T and T . To see this, realize
that there can be at most O(n) different memory entries, the size of each cannot
exceed O(n + g DJ*). Figure 4.3.1 depicts the recursive procedure ezt in full details.

Difficulties arise, however, as soon as fixed-point operators enter the picture. The
reader may object that, as is pretty well-known, both least and greatest fixed points
of monotonic functions can be computed by iteration. If the domain of the monotonic
function is finite, then even a finite number of iteration steps will do. We are going
to explain this point in some detail because fixed points will actually be computed by
ext with the help of finite iteration, though not exactly in the standard way. So take
an arbitrary monotonic function mapping subsets of some set, say, I', to subsets of T.
No matter whether I' is finite or not, the least and the greatest fixed point of f can be
characterized by means of the so-called ordinal powers of f. Ordinals can be thought
of as sets constructed out of the empty set. The first finite ordinal, 0, corresponds to
(), the second, 1, to {#}, the third, 3, to {(),{0}}, and so on. In fact, the successor,
a4+ 1, of an arbitrary ordinal, a, can always be treated as the set a U {a}. The first
infinite ordinal is then w, the set of all positive integers greater than or equal to 0.
It is also the first limit ordinal in the sense that it is not the successor of any other
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algorithm : ext (T, 7,D,V);
global variable : F; % L. qmatea-valuation over D
let for every concept, C, top(C) be D and for every role, R, top(R) be D x D;
if E(T) is defined then begin S := E(T); goto L2 end;
if V(T') is defined then begin S := V(T); goto L2 end;
if T€def(T) & (T'=T') €T then begin S := ext(T",7,D,V); goto L1 end;
begin case T of :
T S :=7D;
€ S :={(a,a):a € D};
T,NT, Sy :=ext(Ty, T,D,V); Sy := ext(Ty, T,D,V); S := 51Ny
T UuT, Si:=ext(Ty,T,D,V); Sy := ext(Ty, T,D,V); S := 51 USy;
=T if T, is compound
then S := ext(nnf(-T1),T,D,V)
else if Tiedef(T)& (T =Ty) €T
then S := ext(nnf(-T,),7T,D,V)
else begin S, := ext(T),7T,D,V); S :=top(Th)\ S end;
32" R:C Sp:=ext(R,T,D,V); Sc:=ext(C, T,D,V);
S:={a€D:ySr(a)NSc| > n};
JsmRp.C Sp:=ext(R,T,D,V); Sc:=ext(C,T,D,V);
S:={a €D:yYSr(a)NSc| < m};
uX. Ty if V(X) s not defined then W :=V U {(X,0)} else W :=V;
S := fizp(Ty, X, T,D,W);
v X.T, if V(X)is not defined then W :=V U {(X,top(T}))} else W :=V;
S = fizp(Ty, X, T,D,W);
RoS Sr:=ext(R,T,D,V); Ss:=ext(S,T,D,V);S := SroSs;
Ra S Sp:=ext(R,T,.D,V); Ss:=ext(S,T,D,V);
S :={(d,e) : for every f € D, (d, ) € Sg or (f,€) € Ss};
R™! Sr:=ext(R,T,D,V); S:={(a,b):(b,a) € Sr};
CxD Sc == ext(C,T,D,V); Sp:=ext(D,T,D,V); S:=ScxSp
end case;
L1 :if T is closed and not equal to T or ¢ then F := FU{(T,S)};
L2 : return S;

Figure 4.5: The algorithm ext

ordinal. With the help of w, we can again construct an infinite sequence of ordinals,

w41, w42, and so on, the collection of which together forms another limit ordinal,
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denoted by wl. This construction process continues indefinitely. We can specify an
ordering, <, on the collection of all ordinals by defining o < 3 if and only if a € 3,
where both « and 3 are arbitrary ordinals. For a formal account of ordinals confer
[Halmos, 1974]. The ordinal powers of f are finally defined by induction as follows.
First, f1 © and f*° are 0 and T respectively. Moreover, fT **! is defined to be
F(f1), while o+l is f(f+*). Whenever a is a limit ordinal, fT * and f+® are
U{f™ : 3 < a} and N{f** : B < a} respectively.

As already mentioned, the least as well as the greatest fixed point of f can be
characterized by means of ordinal powers of f, no matter whether I' is finite or
not. The following proposition, usually attributed to Kleene, describes how such a
characterization appears.

Proposition 10 (Kleene). Assume [ is an arbitrary monotonic function mapping
subsets of some set, say, I', to subsets of I'. Then there exist ordinals, o and 3, such
that f1 and f¥** coincide with the least and the greatest fired point of f respectively.

When T is finite, the least and the greatest fixed point of f can be obtained by finite
iteration. The explanation is as follows. Due to the monotonicity of f, the infinite
sequence f19 fT1 increases with respect to the subset relation, whereas f+°, f¥, ...
is decreasing. Whenever I is finite and has a cardinality of n, this clearly means that
both sequences have to be stabilized, so to speak, when f1 and f** are reached, or
even before that. This is to say, if [ has a finite cardinality of n, then f = fi»+!
and f¥* = 41 Both f1 as well as f+* are therefore always fixed points of f. But
then f1is f10 U ... U f, which in turn coincides with fT itself, and therefore so
does f1. By induction it can be shown that for every ordinal, «, it holds that f
equals fT whenever n < a. Now, according to the previous proposition, it is known
that there exists an ordinal, say, 3, such that the least fixed point of f is exactly
. As we have just seen, the latter coincides with f1 if n < 8. On the other hand,
if B < n, then f19 coincides also with f™ because f'° is already a fixed point of f.
This means that f1 is in any case not only a fixed point of f, but also the least
such fixed point because so is f17. The proof of the fact that f+" is the greatest fixed
point of f proceeds analogously. This proves the following proposition.

Proposition 11. Assume [ is an arbitrary monotonic function mapping subsets of
some set, say, I', to subsels of I'. If 1" is finite and ils cardinalily is n, then the least
and the greatest fixed point of [ coincide with f™™ and f¥ respectively.

It should be clear how this proposition provides for an alternative characterization
of (uX.T)* and of (vX.T)* whenever . is part of an interpretation, (A%, .2 V), such
that AT has a finite cardinality of n. In particular, if fr is the function of X induced
by T and V, then according to the last proposition, the following two equations are



4.3 Querying Vivid Knowledge Bases 109

always met:

IUXTI = fCTna
vX.TT = [

At a first glance, this seems to give rise to an efficient method for computing the result
of applying .Z to least and greatest fixed-point operators if the interpretation domain
is finite. As a matter of fact, in the presence of nested fixed-point operators, the worst-
case complexity of the induced method can be exponential and even superexponential.
To see this, consider the following concept:

——N—
pX. (CN UpY. (X UIRN:Y)).

-

d=ef c

The computation of pX.C* with C being (CNUpY.D) and with D being (XUIRN:Y)
proceeds with the help of the last proposition as follows. As a first iteration step, the
value of C* has to be computed with V(X) being set to §). The result will correspond
to fe(0) = fc™. Before this value can be computed, xY.DT with V(X) being set to
0 has to be computed by iteration too. This is done by computing First D¥ with
V(X)=0and V(Y) = 0. The second step of this inner iteration loop then computes
the value of D¥ with V(X) = 0 and V(Y) being set to the result of the previous step.
After at most §D| + 1 iteration steps, .7 applied to xY.D with V(X) = () and V(Y)
being assigned with the result of the previous step will eventually yield the same
value as the previous step. At this stage, the least fixed point of the function of Y
induced by D and V(x gy has been obtained and its union with V(CN) immediately
yields the set corresponding to fo(0).

The second step of the outer loop then computes fo(fc(0)) = fc™ in the same
manner. In the course of computing this value, the result of applying .2 to uY.D
has to be computed once more, but this time with V(X) being set to fc™ rather
than fo™. The computation of the least fixed point of the function of Y induced
by D and Vix, oty ay again require 1D| 4 1 iteration steps. In the worst case, the
result of applying . to uY.D has to be computed for a number of D] 4 1 different
values assigned to V(X). The computation of the latter may require in each case
again D] + 1 iteration steps. All in all there can be O((§D| 4 1)*|uX.C|) recursive
calls in the course of computing pX.C%. TIn the general case, there can even be
O((YD] + 1)1 |uX.C]) such calls with d being the maximal nesting depth of fixed-
point operators in uX.C'.®> In the presence of fixed-point operators on roles, there
can be even O((]D]* 4 1) |uX.C|) calls of ext in that the computation of the least
and greatest fixed points can require in this case a number of D x D| 4 1 iteration

3 Nesting depth is to be understood in such a way that, for instance, uX.(CN UuY.(X UIRN:Y))
has a maximal nesting depth of 1.
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steps rather than just §D| + 1. Because of the fact that the upper bound of d is
determined by the size of the concept uX.C', in any case, this method would give rise
to an upper bound of the number of recursive calls of ext which is superexponential

in [pX.Cl+ 4D].

In the special case of the concept pX.C' with C being (CNUpY.D), however, the inner
loop need not reset V(Y) to () each time the outer loop invokes the computation of .7
applied to pY.D with a new value assigned to V(X). As a matter of fact, whenever
newly invoked, the inner loop can continue with the same value of V(Y) as that it was
assigned to when the previous call of the inner loop terminated. The justification for
doing so is as follows. Suppose the outer loop invokes the inner with V(X) = fot.
The inner loop then computes the least fixed point of the function of Y induced by
D and V5 ; iy and will eventually terminate with V(Y) being assigned with exactly
this least fixed point. The next time the inner loop is called, it will be called with
V(X) = fcT*Y and, therefore, it will have to compute the least fixed point of the
function of Y induced by D and V<X’fcﬁ+1>. Now the old value of V(Y) is always a
subset of the current least fixed point to be computed. This can be seen as follows.
The old value of V(Y) represents the least fixed point of the function of Y induced
by D and V<X’fcﬁ>. This least fixed point is obviously a subset of the least fixed point
of the function of Y induced by D and V<X’fcﬁ+1> in that D is formally monotonic in

X and foT C fe"*1. The next proposition states that in order to compute a least
fixed point by iteration, it is actually sufficient to start with an arbitrary subset of
the least fixed point to be computed rather than (.

The proposition will make use of the following notational convention. Assume that
for every natural number ¢ > 0 and every subset, S, of ', f*(.S) is defined to be S
if 1 =0, and f(f"7'(S)) otherwise.

Proposition 12. Assume [ is an arbitrary monotonic function mapping subsets of
some set, say, I', to subsets of I'. Suppose, moreover, I' has a finite cardinality of
n. Then for every subset, Sy, of the least fixed point of f and for every superset, Sy,
of ils grealest, the least and the greatest fized point of f coincide with f*(Sy) and
7 (S1) respectively.

Notably, the last but one proposition is just a special case of the last one. The former
restricts Sy and S; to ) and T respectively. In this special case, f"(Sp) is [T and

Proof. According to Proposition 11, the least and the greatest fixed points of f
coincide with f™ = f*(¢)) and f+* = f*(T') respectively. Consider two arbitrary
subsets of T', say, Sy and Sy, such that Sy C f"(0) and S; D f™(I"). Tt is easily seen
that f™(Sp) and f"(S;) are equal to f"(0)) and f™(T) respectively. Indeed, the fact
that f is monotonic along with the assumption that Sy C f"(@) and S; 2 f™(I")
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algorithm : fizp(T, X, 7,D,V);
So :=V(X); 1:=0;
repeat j:=1i+1; S; := ext(C,T,D,V(xs,) until S; = Sj;

i

return 5;;

Figure 4.6: The algorithm fixp

entails that f"(Ss) C J"(f(8)) = £7(0) and that f*(S1) 2 f2(f*(T) = FA(T)
On the other hand, the monotonicity of f together with the fact that ) C Sy and
D S, implies also that f*(0)) C f"(So) and that f*(T') O f"(S;). But then
) C fM(0) € f(So) and f7(Sy) 2 fM(T') O f*(S1). We can conclude that

I
fTL
f7(So) and f™(Sy) are equal to f"(0) and f*(T") respectively, as was to be shown. O

(S0
(S0

At least as far as the special case of the concept pX.C' with C being CN U pY.D is
concerned, this justifies that concept variables have to be initialized only once and,
then, can be assigned new values in a monotonically increasing fashion. This enables
us to compute the value of (uX.C') by a number of at most O(2(4D| + 1)|uX.C|)
calls of ezt rather than O((4D| 4 1)?|uX.C|) such calls. In the general case, O((d +
(D] + 1)|uX.C]) are sufficient with d being again the maximal nesting depth of

fixed point operators. In the presence of fixed-point operators on roles, a maximal

number of O((d + 1)(4D|* + 1)|uX.C]) calls will do.

Figure 4.6 shows a straightforward procedure, called fizp, computing for any concept
or role, T', which is formally monotonic in X, the least and the greatest fixed point
of the function, fr, on X induced by T and V. If V is a valuation over a finite set
having a cardinality of n, then fizp computes a set corresponding to fF(V(X)). If
V(X) is initialized properly, that is, if it is either a subset of the least fixed point of
fr or a superset of its greatest, f7(V(X)) yields either the least or the greatest fixed
point of fr.

However, it should be clear that, if the method just described for initializing the value
of V(Y) only once was encountered with a concept of the form g X.(CNUrY.D) rather
than pX.(CN U pY.D), it would produce unsound results. This can be explained as
follows. Suppose the inner loop is about to compute the greatest fixed point of the
function on Y induced by C and V<X’fcﬁ+1>. This means that at the previous time
when the inner loop was invoked, it must have terminated with V(Y') being assigned
with the greatest fixed point of the function of ¥ induced by C' and Vix, fotiy: This
old value of V(Y) is, however, not necessarily a superset of the current fixed point the
inner loop is about to compute. On the contrary, the former is always a subset of the
latter in that D is formally monotonic in X and, moreover, fc™*! is a subset of fo™.
In other words, the preconditions of the last proposition are in this case violated. But
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the method of initializing concept and role variables only once does work for a large
number of concepts and roles of Uu. Consider the following definition of restricted
concepts and roles of Uy, just generalizing the corresponding one for ALCp given in
Chapter 2, page 37.

Definition 49. A concept or role of Uy is called restricted if and only if its negation
normal form does not contain any subconcept or subrole of the form pX.T (respec-
tively #X.T') which involves in turn at least one subconcept or subrole of the form

vY.T' (respectively pY.T") such that X # Y and X occurs in 7'. We denote with
Ui the set of all and only those concepts and roles of Uu which are restricted.

In terms of Emerson and Lei [1986] restricted concepts correspond exactly to those
having alternation depth 1. Tt is important to realize that Uy seems to include all
those fixed-point operators and even nested ones which are of practical use. It does
exclude only those concepts and roles which involve a greatest fixed-point operator
nested in a least fixed-point operator or vice versa such that the inner contains at
least one occurrence of the concept or role variable quantified by the outer. Note in
this connection that in almost all cases it is not clear at all what concept or roles
which are not restricted really express. For instance, it is instrumental to try to find
out what the concept pX.(CN UvY.(X U3IRN:Y)) is supposed to mean.

The following lemma explores in detail the worst-case complexity of the algorithm
we have presented and shows that it 1s always polynomial in nature.

Lemma5. Assume T is an acyclic terminology of Uy, Q is a query of Uy, and V
is a valuation over a nonempty set, say, D. Then ext(T,T,D,V) terminales and il
does so after performing at most O(n*YD|? + n*YD|* + niD|*|V|) steps, where n is
the sum of the sizes of T and T .

Proof. Whenever ext(T,7,D,V) is called, it first checks whether or not E(T) is
defined and retrieves the value if it actually exists. That is, if 7" was evaluated
previously, the result as stored in F is retrieved. As we have argued before, the
size of E is bounded above by O(n* + ngD|?). This piece of code therefore requires
not more than a number of O(n? + ngD|*) steps. If this test fails, ext(T,7T,D,V)
checks whether V(T') is defined and, if this is not the case, whether T is defined in
7. Both tests can obviously be carried out by O(|V]|) and O(|T|) steps respectively.
Dependent on the syntactic shape of T', the procedure then computes the value of S
by applying certain operations of basic set theory to recursively computed subsets of
D and D x D, where a possible call of fixp is to be thought of as being replaced by its
procedure body. If T"is of the form =T}, for some concept or role, T}, an additional
check must be made whether there is some Ty such that (7} = T,) € T and then,
depending on the outcome, either the negation normal form of =77 or that of =T}
must be computed too.
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algorithm : holds(Q, KB, T) with KB = (D, Sig, A) being vivid;
global variable : F;

E = 0;

V:={TN,8): (TN =8)e A, TN & def(T)} U{{({a},{a}): a € D};
if there is some Q4 € A such that holds(Qa, D, V,T) = false
then return true

else return holds(Q,D,V,T);

Figure 4.7: The algorithm holds /3

In each particular case, the operations of basic set theory mentioned can be computed
by not more than O(4D|?) steps. If T is of the form =T, then an additional number
of O(n) steps has to be taken into account for the computation of the negation normal
form. On top of this, there are in each case not more than O((4D|*> + 1)n) recursive
calls of ext, where the factor of §D|? + 1 is due to fixed-point operators. All in all,
the number of steps performed by ext(T,7,D,V) is thereby bounded above by the
following order of magnitude:

O (DI + 1)) (n® + g D) + [V + [T] + (4D]* + n)))
< O(((dDP + 1)n) (n? + ndDP* + V)
< O(m*D” + n*D|* + niDP*|V).
Concerning the above line of reasoning, note that n = |T| + |T| is always greater

than 0 and it is obviously also greater than |7|. Moreover, {D| is by assumption
greater than 0 as well. 0

Having the algorithm ezt on hand, which is now guaranteed to terminate in polyno-
mial time, it is not hard to give the remaining top level parts of an algorithm which
is capable of checking KB =7 @ in polynomial time whenever KB = (D, Sig, A) is
vivid. As already explained, at first a valuation, V. over D has to be computed which
corresponds to an initial model of XB. Because the valuation computed should not
only correspond to an initial model of KB, but should also serve as a basis for a model
T, only those assertions of A have to be taken into account which do not specify
any concept or role name defined in 7. Of course, one must then check whether any
model of T based on V is actually a model of KXB. But then it just remains to check
whether such a model is a model of () as well. Both of the latter tests can easily be
done with the help of ext. The corresponding top level algorithms can be found in
Figures 4.7 and 4.8.
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algorithm : holds(Q,D,V,T);

begin case () of :

a:C : return a € ext(C,T,D,V);

(a,b):R : return (a,b) € ext(R,T,D,V);

C ={a,...,an} . return ext(C,7,D,V) = {a,...,an};

R ={(a1,b1),....;{(an,b,)} : return ext(R,T,D,V) = {(a1,b1),..., (an,by)};
T, =T, : return ext(T,,7,D,V) = ext(Ty, T,D,V);
end case;

Figure 4.8: The algorithm holds /4

Proposition 13 (runtime of holds). There is a polynomial, p, such that whenever
holds(Q,KB,T) is called with KB being a vivid knowledge base and with T being an
acyclic terminology of Uy and @ a query of Uy such that T and @ are compatible
with KB, holds(Q, KB, T) will terminate after performing a number of steps bounded
above in the sum of the sizes of Q, KB, and T by p.

Proof. Throughout the proof it is assumed that KB is of the form (D, Sig, A). With
the help of this knowledge base, holds(Q,KB,T) first computes a certain (Sig \
def (T))-valuation, ¥V, over D. This is be done by performing not more than O(|A|+
|T]) steps and the size of the resulting valuation is bounded above by O(|Sig|qD|?).
The procedure then calls holds(Q;, D, V,T) with a number of g 4|+1 different queries,
@, each of which has has a size not exceeding the maximum of the sizes of ) and
A. In each particular case, holds(Q;, D, V,T) calls in turn ezt (T}, T,D,V) with some
concept or role, T;, the size of which is always bounded above by that of ();. Apart
from this, holds(Q;,D,V,T) does not perform any computation which is relevant due
to its computational costs. According to the last lemma, each call of ext(7;,7,D,V)
takes not more than a number of O(n?qD|* + n?YD|* 4+ n;4D|*|V|) steps, provided
that n; is |T;| + |T]. Note that |T;| + |T| is known to be lower than or equal to
Qi + |T| < maz(|Q],|A|) + |T| < |Q| + |A] +|T]. All in all the number of steps
performed by holds(Q, KB, T ) is bounded above by the following order of magnitude
if n is the sum of the sizes of @), A, and T:

O((n + [SigliDP?) + (LAl + 1)(n*4D|* + n*{D|" + ngD|*|V]))).

Note that for each knowledge base, (D, Sig, A), D as well as Sig are supposed to be
nonempty. Because of the fact that in our particular case, (D, Sig, A) is vivid, A
must be nonempty, too, since it has to contain at least one assertion extensionally
specifying a member of Sig. The above order of magnitude is bounded above by the
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following one:

O(n + |S1gl4DI* + n*YDI*| Al + n*i DI Al + nf D*[V]|Al)
O(n + [S1g[4DI* + n*YDI*|A] + n*IDI*|A| + nqD|*|S1g|| Al)

<
< O(™IDI*| Al + nf DI*|Sigl|Al).

This just means that there is a polynomial, p, such that the maximal number of steps

performed by holds(Q), KB, T ) does not exceed p(|Q|+ |KB| + |T]). 0

4.3.2 Correctness of the Algorithm

In this section we shall establish the soundness and completeness of holds(Q,KB,T)
with respect to KB 7 Q. That is to say, we will prove that the procedure
holds(Q,KB,T) terminates returning the value “true” if and only if KB =7 Q.
Of course, the correctness of the subprocedures firp and ext must be established
first. The following notion will be a crucial prerequisite for the correctness of fizp.
In effect, it states that a valuation, V, initializes a concept or role variable, X, in

such a way that enables fizp to compute the least or the greatest fixed point of the
function on X induced by T and V.

Definition 50. Assume pX.T and v X.T are fixed-point operators of Uu. Assume,
moreover, V is a L-valuation over a set, A. £ has to contain at least all those atomic
concepts and roles which occur in pX.T or vX.T', except for T and e. Then V is said
to initialize pX.T if and only if V(X) is a subset of the least fixed point of the
function on X induced by 7" and V. Furthermore, V initializes v X.T' if and only
if V(X) is a superset of the greatest fixed point of the function on X induced by T
and V.

The following lemma establishes the correctness of fizp(T, X, 0, D, V) under the as-
sumption that ext(T,0, D,V x sy) works correctly. When this assumption is put into
effect, fizp(T, X,0,D,V) yields exactly the least fixed point of the function f if V
initializes pX.T and f is the function on X induced by 7" and V. If V initializes
vX.T, then fixp(T, X,0,D,V) yields exactly the greatest fixed point of this function.
This partial correctness of fixp is an immediate consequence of Proposition 11.

Lemma6 (Partial Correctness of fizp). Assume pX.T is any fized-poinl opera-
tor of Uy . Assume, moreover, V is a L-valuation over a finite set, D, such that V
initializes pX.T. Finally, assume that for every S 2 V(X)) such that Vx5 initializes
pX.T, ext(T,0, D,V x,s)) returns f(S) if f denotes the function on X induced by T
and V. Then fizp(T, X,0,D,V) returns the least fived point of f. This stalement
holds also with pX.T replaced with vX.T, bul in this case, firp(T,X,0,D,V) returns
the greatest fized point of f.



116 Ui as a Query Language for Knowledge & Data Bases

Lemma7 (Partial Correctness of ezt for empty terminologies). Assume T is
a concept or role of Uy . Suppose, furthermore, V is a L-valualion over a finite set,
D, such that L initializes all least and greatest fized-point operators occurring in T.
Finally, assume that (AT, T V') is an arbilrary interpretation such that AT = D and
V C V. Then ext(T,0,D,V) returns TT whenever it is called with a value of the
global variable E such that for every (T',Sq:) in E, St = T'F. After lermination,
the new value of E s always a superset of the old and still obeys the latter condition.

Proof. Assume that the value of the global variable E/ meats the condition that for

every (T",5") in F, S’ = T". We then have to prove that ext(T,0,D,V) returns TZ.
The proof proceeds by induction on the structure of T'.

Induction Base. As regards the induction base, we have to consider the cases when
T is T, ¢, or a concept or role name.

1. Consider the case T'= T. By definition ezt(T,0, D, V) returns in this case D.
Recall that T7 is defined to be AT and that AT and D denote exactly the same
sets. It immediately follows that ext(T,0,D,V) returns TZ.

2. Consider the case T' = e. By definition, ext(e,(,D,V) returns in this case
{{a,a) : a € D}. Recall that & is defined to be {(a,a) : a € AT}. Tt immedi-
ately follows that ext(e,(), D, A, V) returns €.

3. Consider the case T € N. First, recall that V is assumed to initialize all fixed-
point operators of T'. This presupposes that V is a L-valuation over D such that
L contains at least all atomic concepts and roles occurring in T, except for T
and e. In particular, this implies that V(T') is defined. But then ext(7,0,D,V)
returns V(7). Because T is a concept or role name, 77 is defined to be V(T).
Therefore, ext(T,{,D,V) returns T7.

Induction Step. All cases are trivial, except for T' being a fixed-point operator of the
form uX. T or v X.T'. We shall concentrate on least fixed-point operators since the
the proof for greatest fixed-point operators proceeds analogously. In the case of a
least fixed-point operator, we have to show that ext (uX.T',(), D, V) returns (uX.T")L.

If there exists a St such that (uX. 7", St) is a member of £, then the returned value is
St. According to the conditions imposed on the value of E, St is equal to (uX.T")%,
as was to be shown.

It therefore remains to consider the case when there exists no Sy such that (uX.T', St)
is a member of . Recall that V is initializes all least and greatest fixed-point op-
erators occurring in pX.7". In particular, this implies that V(X) is a subset of the
least fixed point of f if f be the function on X induced by 7" and V. But then V(X)
must be defined. In this case, ext(uX.T,0,D,V) calls fizp(T, X,0,D,V) and then
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returns the result of this call. Here, we would like to apply Lemma 6 because it would
immediately prove that fizp(T, X,0, D, V) yields the least fixed point of f. However,
in order to apply this lemma, it must be guaranteed that for every S 2 V(X) such
that Vx,sy initializes uX.T", ext(1",0,D,Vx sy) returns f(.5). This looks as if the
induction hypothesis can be applied to each of these calls. The induction hypothesis,
however, is applicable just in case that for each of the S above, V(x sy initializes all
least and greatest fixed point-operators occurring in 7. Lemma 8, given below, states
that this precondition is actually satisfied. According to the induction hypothesis,
ext(T',0,D,Vx,s)) therefore returns T'7 whenever .7 is the interpretation function
of an arbitrary interpretation, (A7, W), such that A = D and Vixsy € W.
It should be clear that f(S) agrees with T7'7. But then we can conclude that for
for every S O V(X) such that V initializes uX. T, ext(T,0, D,V x sy) returns f(S5).
ext(uX.T',0,D,V) then calls fizp(X,T',0,D,V). According to Lemma 6, this call
returns the least fixed point of the function f. But then ext(uX.7',0,D,V) returns
(pX.T")*, as was to be shown. O

Lemma8. Assume pX.T is a fized-point operator of Uy in negation normal form.
LetV be a L-valuation over a set, A, such that'V initializes all least and greatest fized-
point operators occurring in pX.T, including pX.T itself. Then for every S O V(X)
such that Y x sy initializes pX. T, it holds that not only V, but also V x sy inilializes
all least and greatest fized point-operators occurring in T. An analogous statement

holds for vX.T as well, at least when requiring S C V(X)) instead of S O V(X).

Proof. We shall concentrate on the case for uX.7T" as the proof for v X.T proceeds
analogously. Throughout the proof, we shall adopt the convention that the least and
greatest fixed point of any monotonic function, f, is denoted by Ifp(f) and gfp(f)
respectively. In addition, we adopt the convention that f; v always denotes the
function on X induced by T and V, not only for the specific T', X, and V given above.
The fact that V initializes pX.T can then simply be expressed by V(X) C lfp(f;v)

To begin with, consider some arbitrary S O V(X) such that Vix sy initializes pX.T'.
This means that Vix ¢y(X) = 5 C lfp(f;WX’)). To continue consider an arbitrary
least or greatest fixed-point operator of the form pY. 7" or vY.T" occurring in T'. We
have to show that not only V, but also Vx s initializes pY.T" (or vY.T"). That is
to say, in the case of pY.T", it must be shown that Vix s(Y) C lfp(f;,’v(xﬂ). In the
case of VY. T, Vix 5(Y) 2 gfp(f%’,’v(xﬂ) must be established.

First, consider the case vY.T". We have to show that Vix (YY) 2 gfp(f;,’v(xﬁ).
Recall that ¢ X.T (and therefore also T') is not only in negation normal form, but it
is also restricted. According to the definition of restrictedness, this means that 7"
must not involve any occurrence of X. By assumption, V initializes vY.T", that is to
say, V(Y) D gfp(f;,y). It should be obvious that the function f;:,’v coincides with
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f;,’v(x 5 because T" does not involve any occurrence of X. Therefore, gfp(f;,y) agrees

with gfp(f;:;’v(x@) too. But then we have already achieved the desired conclusion:

Vixs)(Y) = YY) 2 gfp(fry) = ap(fryps):

The other case when there is an occurrence of Y. 7" in T is somewhat more involved.
In this case, the definition of restrictedness states that 7" might involve an occurrence

of X. The proof of V(x5 (Y) C pr(f;/

,V<x,s>) proceeds as follows:

lfp(f;/,v<x7s>)

= N{S": f;UV(x S>(S') C S5’} according to Proposition 11)

S B (S) ST e (S0 = P (5))

2 MN{95: f;’,VWS/)(V(X)) C S} (because f;’ﬂ&ys/) monotonic & V(X) C 5)
= M5 fro

)
NS fry(S7) €5}
Up(f;/,v)
V(Y)
= Vix,s(Y)

because Vix y(x)y = V)

according to Proposition 11)
V initializes Y. T")

because Y is distinct from X).

1%

(
(
( -

ooy (S C &Y (beeanse [y (VX)) = Foy s (5)
(
(
(
(

The last line might call for comment. It should be clear that that V(X,5>(Y) does not
differ from V(Y) if Y is distinct from X. According to our general assumption that
no concept or role variable is quantified twice (see Page 80), this means particularly
that Y must be distinct from X. But then V(X,Lq)(Y) actually agrees with V(Y'). This
completes the proof of Lemma 8. O

The following example is to demonstrate that the validness of the last lemma is
strictly limited to restricted concepts and roles of Uu.

Example 6. Consider the following concept of Uu, where CN is a concept name
distinct from both X and Y:

=D
LX(CN UvY. (X 1Y),

def
=C

It should be clear that this concept is not restricted because vY.D involves a free
occurrence of X. Let V be an arbitrary L-valuation over a nonempty set, A, such
that V(CN) = A and V(X) = V(Y) = (. It will turn out that Vix g with § = A
does not initializes vY.D, although V initializes both pX.C' and vY.D, and although
V(x,s) initializes uX.C.
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It can easily be verified that the greatest fixed point of the function f;’v isV(X) =10,
while the least fixed point of fgy is V(CN) = A. The fact that V(X)) is 0 implies
that V(X)) is trivially a subset of the least fixed point of fgy. But then V initializes
pX.C. On the other hand, V initializes also vY.D. This is due to the fact that V(Y)
is trivially a superset of the greatest fixed point of f;’v because both are equal to
the empty set. This means that V together with pX.C satisfies all preconditions of
Lemma 8. The conclusion of this lemma, however, is violated. In particular, V x s
does not initialize vY.D if S = A, but V x sy initializes uX.C'. To see this, first
observe that V x s initializes uX.C' because Vx s(X) = S = A is trivially a subset
of lfp(f;v) = A. On the other hand, Vix 5(Y) = V(Y) = 0 cannot be a superset
of gfp(f;,y(xs)) = Vix,5(X) =5 = A, unless A = (). But A = ) contradicts the

assumption that A is nonempty.

It remains to generalize the partial correctness of .7 to nonempty terminologies. We
shall make use of the well-known fact that we can rid of terminologies in the following
way; for details confer Chapter 3.2.5 of [Nebel, 1990a].

Notation 3. Assume T is an arbitrary concept or role of Uy and assume T is an
acyclic terminology of Uu. Then T stands for the concept or role of Uy obtained
from T by simultaneously substituting T; for TN; whenever TN; = TN; is a concept
and role introduction of 7. This substitution process is continued until 77 contains
no occurrence of def(T') any more.

Fact 8. Assume T is an arbitrary concept or role, while 7 is an acyclic terminology.

Then for every model, (AT, . T V), of T, it holds that T7 = (Tr)7.

Based of this fact, the following lemma can be shown by a straightforward induction
on the number of recursive calls of .7

Lemma9. Assume T is a concept or role of U, while T is an acyclic terminology
of U . Assume, moreover, that V is a L-valuation over a finite set, D, such that L
comprises at least all atomic concepls and roles, except for T and e and except for
those which are defined in T. Then ext(T,T,D,V) returns ezactly the same value
as ext(Tr,0,D,V). Of course, both procedures must be called with the same value of
the global variable F.

Proposition 14 (Correctness of ext). Assume T is a concept or role of Uy and
assume T is an acyclic terminology of Uy . Moreover, suppose V is a L-valuation
over a sel, D, such thal L is a set of alomic concepts and roles comprising at least
all those occurring in T, except for T and e. In addition, L is assumed to contain no
concepl variable. Finally, il is assumed that (AT, Z. V') is an arbitrary model of T
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such that AT =D andV CV'. Then ext(T,T,D,V) returns TT whenever it is called
with a value of the global variable E such that for every (T',S") in E and S' = T'.
After termination, the new value of K is a superset of the old and still meels the
latter condition.

Proof. According to Lemma 9, ext(T,7,D,V) returns exactly the same value as
ext(T7,0,D,V). Because T is assumed to be a model of T, Proposition 14 in turn
ensures that the returned value is exactly (T7)%. But according to Observation 8,
(Tr)* is equal to TZ. O

Correctness Theorem1 (for holds). Assume KB is a vivid knowledge base. As-
sume, moreover, T is an acyclic terminology of Ur and Q) is a query of Ui such that
T and Q are compatible with KB. Then the procedure holds(Q,KB,T) terminales
returning “true” if and only if KB =7 Q.

Proof. We concentrate on the case when () is a query of the form T} = T,. The
other cases proceed analogously. Assume KB is (D, Sig, A). Consider a L-valuation
Y over D as constructed by holds(Q,KB,T). L contains here exactly all concept and
role names of Stg as well as all those individual concepts composed of an individual
name of D. Then holds(Q), KB, T) returns “true” if and only if ext(Ty,T,D,V) and
ext (T2, T,D,V) return exactly the same values. Take an arbitrary interpretation,
T = (AT, 1)V, such that AT = D and ¥V C V'. It should be obvious that Z is
a model of KB. In addition, assume that for every concept or role introduction,
TN = T, of T, TN? denotes exactly the same set as TZ. We have the freedom to
make this assumption because 7 is solely required to agree with the L-valuation V,
but £ does not contain any concept or role defined in 7. But then Z is not only a
model of KB, but also a model of 7. According to Proposition 9, KB =7 @ holds
if and only if 7 is a model of Q). Therefore, it remains to show that ext(7,,7,D,V)
returns exactly the same value as ext(T5,7,D,V) if and only if Z is a model of Q.
According to Proposition 14, ext(Ty,T,D,V) and ext(Ty, T, D, V) return T{ and T§
respectively. Therefore, holds(Q,KB,T) returns “true” if and only if 77 and T¥
denote exactly the same sets, as was to be shown. O

4.3.3 P-Completeness of Vivid Knowledge Bases

Complexity Theorem 4. Consider the set of all and only those triples of the form
(KB, T,Q) such that KB =7 Q. Here, it is assumed that KB ranges over all vivid
knowledge bases, T ranges over all acyclic terminologies of Uy, and @ ranges over
all queries of Uyr such that T and @Q are compatible with KB. This sel is also log
space complete for P, even with T additionally restricted to be a terminology of ALC
and with Q as a particular fized ALC-assertion.
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Proof. The fact that the set under consideration is a member of P is an immediate
consequence of Proposition 13 when combined with Correctness Theorem 1. As to
show that it is log space hard for P, too, we shall employ an entirely straightforward
reduction from a problem which is among those most commonly known to be log
space hard for P, viz. the circuit value problem.

Loosely speaking, a circuit is a finite sequence of equations each of which assigns a new
propositional variable with some Boolean expression built up from those propositional
variables the values of which have been determined by a previous equation of the
circuit. Propositional variables are drawn from a predefined set, say, {Xi,..., X, },
such that m is some natural number greater than or equal to 1. In a formally precise
sense a circuit is a finite sequence of equations of the form (X; = Fy,..., X, = E,)
such that n < m. For each ¢ with 1 <1 < n, the equation X; = F; has to obey one
of the following four syntactic shapes:

X, = true;
X, = false;
X; = —Xj, for some j such that 1 <j <

Xi = X; ANXg, for some j,k such that 1 <j<iand 1 <k <.

The restriction imposed on the indices of X; and X} is to avoid cyclic dependencies
among propositional variables. Given such a circuit, the truth values assigned to the
propositional variables are uniquely determined in the order X, ..., X,,. The circuit
value problem, CVP for short, then, consists of the set of all those circuits for
which the propositional variable, X,,, with the highest index, m, evaluates to true.
This well-known problem was shown by Ladner [1975] to be log space hard for P.

When an arbitrary circuit, C, is given, it is not hard to construct an acyclic termi-
nology, 7T¢, of ALC along with a vivid knowledge base, (D,Stg, A), such that the
following close relationship holds: C is a member of CVP if and only if the query t: X,
holds in (D, Sig, A) with respect to T¢. This can be accomplished by assigning D with
{t,f}, Sig with {True, False, X, ..., X, }, and A with {True = {t}, False = {f} ,t # f}.
Moreover, each element of T¢ is obtained from the corresponding equation in C by
simultaneously replacing all occurrences of the symbols true, false , A, and = by True,
False, M, and = respectively. Not only that the resulting knowledge base is vivid, but
Te and t: X, are also compatible with this knowledge base. Tt should be obvious that
only constant memory space is needed for computing 7¢ as well as (D, Sig, A). We
thereby have already established that CVP is log space reducible to the set under
consideration. But then the latter is log space hard for P because so is CVP. O



122 Ui as a Query Language for Knowledge & Data Bases

4.4 Querying Closed & Finite Knowledge Bases

After having fixed the exact computational complexity of vivid knowledge bases,
we shall now explore closed and finite ones. We will come up with a lower com-
plexity bound for closed knowledge bases and an upper bound for finite ones. The
lower bound states that closed knowledge bases give rise to a worst-case complex-
ity which is essentially not better than that of determining validity in propositional
logic: Querying closed knowledge bases will turn out to be co-NP-hard. This nega-
tive result holds even for a single fized query of the standard description logic ALC
and with no terminology taken into account. On the basis of Vardi’s [1986] work on
null values in databases, we shall show how queries to closed knowledge bases can be
evaluated efficiently though. In particular, we will devise an algorithm for ¢ which
is not only sound and runs in polynomial time, but also complete for vivid knowledge
bases.

We then will give an upper complexity bound for knowledge bases without any re-
striction but finiteness imposed on. In particular, we shall prove that in this case
the worst-case complexity is not greater than that of determining validity of propo-
sitional formulae. This is to say, the problem of evaluating queries is in this case
a member of co-NP. The complementary problem is therefore solvable in nondeter-
ministic polynomial time. From this we will finally conclude that deciding in Uy
all traditional kinds of terminological inferences becomes a member of co-NP just by
adding an arbitrary domain-closure axiom. This result remains valid even if arbitrary
finite sets of axioms and assertions are allowed.

4.4.1 Co-NP-Hardness of Closed Knowledge Bases

To begin with, we provide a lower computational complexity bound for querying
closed knowledge bases.

Complexity Theorem 5. Consider the set of all those triples of the form (KB, T, Q)
such that KB =7 Q. Here, il is assumed that KB ranges over all closed knowledge
bases, T ranges over all acyclic terminologies of Ui , and Q) ranges over all queries
of Uiw such that T and Q) are compatible with KB. This set is polynomial-time hard
for co-NP, even if T is empty and Q) is some fixed ALC-assertion.

Proof. The claim that the set under consideration is polynomial-time hard for co-
NP is an immediate consequence of Example 5, presented at the very end of the
next to the last section. The essence of this example was that for an arbitrary but
fixed natural number, k, the problem of k-colorability of directed finite graphs is
polynomial-time reducible to the complement of set that is considered here. The
fact that Example 5 actually gives rise to such a polynomial-time reduction can
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easily be checked: The closed knowledge base constructed is obviously computable
in deterministic time bounded above linearly in the size of the given graph. The size
of the relevant ALC-query, however, is only for an arbitrary but fixed & polynomially
bounded in k. The restriction that & must be fixed does not matter though. In
fact, according to Garey et al. [1976], the problem of k-colorability of finite graphs
is polynomial-time hard for NP for every fixed k& > 3, see also [Garey and Johnson,
1979], page 191. The complement of the set considered here is, therefore, polynomial-
time hard for NP because so is the k-colorability of graphs for any fixed £ > 3. O

4.4.2 A Co-NP Upper Bound for Finite Knowledge Bases

The next theorem provides an upper complexity bound for querying knowledge bases
in Ui without any restriction but finiteness imposed on knowledge bases.

Complexity Theorem 6. Consider the set of all those triples of the form (KB, T, Q)
such that KB =7 Q. Here, it is assumed that KB ranges over all finite knowledge
bases, T ranges over all acyclic terminologies of Uy, and Q) ranges over all queries

of Uiw such that T and Q are compatible with KB. This set is a member of co-NP.

Notably, this upper bound matches the lower bound for closed knowledge bases. In
other words, despite the fact that the only restriction that finite knowledge bases
have to meet is that they fix a finite upper bound for the interpretation domain,
they essentially give rise to the same worst-case complexity as the far more restricted
closed ones.

Proof. The fact that the set under consideration is a member of co-NP can be
gathered with some effort from Complexity Theorem 5. To demonstrate how this
can accomplished, suppose we are given an arbitrary finite knowledge base, KB =
(D, Sig, A), an acyclic terminology, T, of Ui, as well as a query, @, of Ui. T and
Q) are, of course, assumed to be compatible with XB. We shall devise a nondeter-
ministic algorithm which guesses, in effect, an interpretation being a model of both
KB and T and, then, checks whether or not this very interpretation is a model of
Q) as well. If the interpretation turns out to be no model of (), then it is known
that KB &7 . On the other hand, the existence of such an interpretation is always
guaranteed if KB [£7 Q. This gives rise to a nondeterministic method by which the
complement of the set under consideration can be accepted in polynomial time.

As a matter of fact, the algorithm guesses a syntactic representation of the parts
of interest of an interpretation rather than the interpretation itself. This syntactic
representation is a vivid knowledge base of the form KB' = (D', Sig', A'): D' is a
nonempty subset of D and Sig’ is the set of all those concept and role names of Sig
which are not defined in T, i.e., Sig’ is Sig \ def(T). For this it suffices to guess
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a nonempty subset, D', of D and, then, to guess for each TN € Sig’ an assertion
of the form TN = S. Here, § is some subset of D’ if TN is a concept name, and
some subset of D' x D’ otherwise. The size of each such an assertion is obviously
bounded above by O(|TN |4 |D’ x D'|). Thus all in all the size of A’ is bounded above
by O(|Sig'| + 4Sig'||D" x D'| + |7’|?), including a number of not more than §D’|?
uniqueness axioms. This means that the size of the vivid knowledge base guessed is
polynomially bounded in the length of KB.

The particular vivid knowledge base which was guessed can clearly be viewed as a
syntactic representation of a particular Sig’-valuation over D’. Note that it may be
the case that D' is a proper subset of D. At the same time, A, T, as well as () may yet
contain some individual name of D, say, a, which is not contained in D’. But then a
has to be mapped to some element of D'. This is why it does not suffice to guess just
KB': A mapping, .*, for the individual names not contained in D' has to be guessed
as well. This mapping maps all individual names of D\ D' to individual names of D'.
Such a mapping can obviously be represented by a subset of (D \ D) x D', the size
of which is polynomially bounded in the size of XB. We assume this mapping being
canonically extended to assertions, axioms, and sets of assertions and axioms. This
is to say that .* applied to such an item yields the original one, except that every
individual name, a, of D\ D' is replaced with a*.

*

T* and Q* can then easily be seen to be compatible with KB’ because neither 7*
nor (* involves any occurrence of an individual name of D\ D’ any more. But then,
according to Complexity Theorem 5, we can check in deterministic polynomial time
whether or not each assertion of the A* holds in KB' with respect to 7*. If the
outcome is positive, then KB’ can be thought of as representing together with the
mapping .* the parts of interest of one possible model of KXB. Because Sig’ does
not contain any concept or role name which is defined in 7, this model of KB can
be extended, so to speak, to a model of 7. According to Complexity Theorem 5,
we can check also in deterministic polynomial time whether or not Q* holds in B’
with respect to T*. If the outcome of this test is negative, whereas that of the first
is positive, then KB’ represents together with .* a model of KB and 7 which is no
model of Q. In this sense KB’ constitutes together with .* a counterexample falsifying

KB 7 Q.

The foundations of this nondeterministic procedure are laid by Lemma 10, shown
below. Assume that KB 7 @ does not hold. Lemma 10 then guarantees the
existence of a specific vivid knowledge base, KB’ = (D', Sig’, A’) with D' C D and
Sig = Sig \ def(T), along with a mapping, .* : D\ D' — D’. Together KB’ and
S fulfill the following property: Each assertion of A* holds in KB’ with respect
to 7*, but Q* does not hold in KB'. According to Complexity Theorem 5, the
latter conditions can altogether be checked in deterministic time bound above by
polynomial in the sum of the sizes of A*, Q*, KB', and T*. Because the size of KB’
is itself bounded above by a polynomial in the size of KB, and so is obviously the
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algortihm : nondet_holds(Q,KB,T) with KB = (D, Sig, A) being finile;
guess a vivid knowledge base KB = (D', Sig', A')
such that D' C D and Sig' = Sig\ def (T );
guess a mapping, .*, consistently replacing each occurrence of all individual
names of D\ D' with some individual names of D';
if Jor every Qa € A, holds(Q 4, KB, T*) = true
and  holds(Q*,KB', T*) = false

then return false;

Figure 4.9: The nondeterministic algorithm nondet_holds

size of A*, we end up with a nondeterministic upper time bound, polynomial in the
sum of the sizes of @), KB, and 7. The corresponding nondeterministic algorithm
can be found in Figure 4.9. O

Lemma1l0. Assume KB = (D, Sig, A) is a closed knowledge base. Assume, more-
over, T is an arbitrary acyclic terminology of Uy and Q is a query of Uu such that
T and Q are compatible with KB. Then the following two statements are equivalent.

(a) It does not hold that KB =71 Q.

(b) There exists a vivid knowledge base, KB' = (D', Sig', A"), with D' C D and
Sig’ = Sig \ def(T) and there exists a mapping, .* : D\ D' — D' such thal
KB’ =7+ Q4 holds for every Qu € A, but KB’ 7+ Q* does not hold.

Again, .* is assumed to be canonically extended to assertions, axioms, as well as sets
of assertions and axioms.

Proof that (a) implies (b). Assume KB (=7 (). This is to say, there is at least one
interpretation, say, Z = (AT, .7, V), which is a model of both KB and T, but which
is no model of ). According to the definition of a model of a knowledge base, this
implies that Z is also a model of A and A is a nonempty subset of {a : a € D}.
Without loss of generality, we can clearly make the additional assumption that AZ
is a subset of D. In the sequel we are going to consider a vivid knowledge base,

KB' = (D', Sig', A'), defined in terms of Z as follows:
DI déf AI
Sig € Sig\ def(T),
A TN =S TN € Sig, V(TN) = S}.
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It should be obvious that Z is a model of this vivid knowledge base.

We are going to consider a mapping .* : D\ D' — D’ and its canonical extension
to assertions, axioms, and sets of assertions and axioms. This mapping is defined
such that for every two individual names, a,b € D, a* and b* yield exactly the same
individual name of D' if and only if «Z = b7. A moment’s thought should convince
the reader that such a mapping preserves Z’s modelhood of A, 7, and @). That is,
7 is a model of A* and T because it is a model of A and T and, moreover, Z is no
model of * because it 1s no model of () either. Therefore, Z is not only a model
of KB', but also a model of 7* and Q}, for every Q4 € A. At the same time, 7
is not a model of @*. According to Proposition 9, this single interpretation already
proves that KB’ =7+ Q% holds for every Q4 € A, but KB’ =7+ Q* does not hold.
We thereby succeeded in fixing a particular vivid knowledge base KB', along with a
mapping .*, which together meet exactly the conditions of statement (b).

Proof that (b) implies (a). Consider a vivid knowledge base, say, KB’ = (D', Sig’, A'),
such that D' C D and Sig’ = Sig )\ def(T), along with a mapping, .* : D\ D' — D'.
Assume KB' =7+ Q% holds for every Q4 € A, but KB' =7+« Q* does not hold. All

conditions of statement (b) are therefore met.

According to Proposition 9, an arbitrarily chosen interpretation, T = (A% % V),
being a model of both KXB" and 7* is a model of each assertion of A*, but is no model
of @*. Because neither A*, 7, nor Q* involve any occurrence of some individual
name of D not contained in D', without loss of generality, we can assume that 7 is
chosen such that a? is (¢*)? whenever a is an individual name of D\ 7’. Such an
interpretation can be thought of as simulating the given mapping .*. But then it is
not necessary any more to apply .* to A, 7, and () in advance. This is why in this
case 7 is not only a model of A* and T, but also a model of A and 7. For the
same reason, Z is no model of () because it is no model of Q* either. If we were able
to show that 7 is also a model of KB, then, according to Proposition 9, we would
already have reached the desired conclusion that KB 7 Q.

The conclusion that Z is not only a model of A, but also one of KB, is readily
gathered from the fact that Z is a model of KB'. AT is therefore a nonempty subset
of {a? : a € D'}. But then AT is also a nonempty subset of {aZ : a € D} because
D' is a subset of D. This means that all conditions for Z being a model of KB are
actually met, that is, Z is a model of A and A is a nonempty subset of {a’ : a € D}.
This completes the proof of Complexity Theorem 6. O

4.4.3 A Co-NP Upper Bound for Domain-Closed Reasoning

As far as the proof just given and Complexity Theorem 6 is concerned, A is restricted
to a set of assertions each of which extensionally specifies some concept and role name
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of Sig. This restriction is due to the fact that A is part of a finite knowledge base.
Inspection of the proofs, however, reveals that in any of the two proofs nothing
essential depends on this restriction. As a matter of fact, both proofs remain valid
even with A generalized to an arbitrary finite set of Ui -assertions and axioms of
Uy . One important restriction has to be imposed on A though. This restriction
concerns the second condition all models of finite knowledge bases have to meet:
Their interpretation domain must always be a subset of {a? : @ € D}, for some given
finite set of individual names D. In effect, this is the crucial point in both proofs.
However, such an upper bound for the possible interpretation domains can also be
provided by a simple domain-closure axiom.

Definition 51. Assume A is an arbitrary set of axioms and assertions. Let D =
{ay,...,a,} be a finite set of individual names which contains at least all those indi-
vidual names occurring in A. Then the inclusion axiom T C {a;} U ... U {a,} is
said to be a domain-closure axiom for A.

Note that for every finite set of individual names, D = {ay,...,a,}, and for every
interpretation, Z = (AZ,.Z)V), it holds that Z is a model of the domain-closure
axiom T C {a;} U ...U {a,} just in case AT is a subset of {a? : a; € D}. This is
exactly what we already identified as the crucial point of the last two proofs. This is
why Complexity Theorem 6 can be extended to the more general case when A is a
finite set of Uy -assertions and axioms of Ui comprising at least one domain-closure
axiom for it. Of course, the definition of KB =7 @ must be extended so as to deal
also with B being replaced by such an A.

Definition 52. Assume AU {@} is an arbitrary set of assertions and axioms. Then
() is said to be entailed by A, in symbols A = Q, if and only if every interpretation
which is a model of each element of A is a model of () as well.

Recall that terminologies are nothing but finite sets of axioms of some special kind.
A terminology can therefore be incorporated into the set A itself rather than giving
its own index as in KB =7 Q.

Corollary 6. Consider the set of all those tuples of the form (A, Q) such that A = Q.
Here, QQ ranges over all queries of Uy . A ranges over all finite sets of axioms of
Ui and Ui -assertions such that A contains at least one domain-closure axiom for

AUA{Q}. This set is a member of co-NP.

The inferences captured by this corollary include problems such as whether all undi-
rected graphs are 3-colorable having at most 6 vertices such that at least 3 of them
have an outdegree lower than or equal to 2. Of course, we should exclude all those
graphs which are trivially not colorable because their edge relation is not irreflexive
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(that is, those graphs which involve at least one edge emanating from a vertex lead-
ing back to the same vertex). The inference identified by the following example does
satisfy all preconditions of the corollary above.

Example7 (3-colorability). Assume A comprises all the following assertions and
axioms:

Vertex = {vl,v2,v3,v4 v5,v6},

edge LT (Vertex xVertex) N ¢,

edge™’ = edge,

T C  323%(T xVertex):3%edge,

T C {viju{v2}u{v3tu{va}u{vs}u{ve}u {1} {2} U {3},

1 £ 2,
143,
2 4 3.

Then A |= Vertex C ||, (¢ 1 Vedge:—i) holds if and only if every undirected graph,
(V, E), with the following properties is 3-colorable: Its edge relation, F, is irreflexive
and V' comprises at most 6 vertices of which at least 3 have an outdegree lower than
or equal to 2.

Notably, the inclusion axiom T E 323(T xVertex):3%%edge simulates a cardinal-
ity restriction in the sense of [Baader et al, 1994]. In particular, it simulates
(> 3 (Vertex 1 35%edge)). As a matter of fact, all kinds of cardinality restrictions
considered by [Baader et al., 1994], that is, those of the form (> n C) and (< m C),
can be simulated in this way too. Meaning is given to such cardinality restrictions in
a straightforward way by defining that an arbitrary interpretation, (Af, 2, V), is a
model of (> n C) if and only if CT| > n, while it is a model of (< m () if and only
if §CT| < m. But then cardinality restrictions of the form (> n C) and (< m C') are
at least in a weak sense equivalent to the inclusion axioms T C 327(T x T):C and
T C 35™(T xT):C respectively. By being equivalent in a weak sense we refer to the
restriction that they denote the same models only so far as models with nonempty
domains are concerned.

4.4.4 An Approximate Algorithm for Closed Knowledge Bases

Despite the discouraging result on the lower computational complexity bound for
querying closed knowledge bases, there is yet a possibility to circumvent the worst-
case complexity resulting from such knowledge bases. One possibility is indicated
by the work of Vardi [1986] on null values in databases: He devised an algorithm
capable of dealing with them approximately. Vardi’s algorithm is not only sound,
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but is also complete whenever no null value is present in the database. Details can
be found in Section 5 of [Vardi, 1986]. It turns out that Vardi’s ideas can also be
incorporated into our procedure holds so as to enable it to handle closed knowledge
bases at least in an approximate fashion. In order to see how this can be realized,
recall, if KB = (D, Sig, A) is a vivid knowledge base, then holds(Q,KB,T) at first
computes a particular L-valuation, V, over D. This valuation is then used as a basis
for subsequent computations, especially when subprocedures such as ext(T,7,D,V)
are called. V is computed in such a way that, if A contains as its member the
assertion TN = § and TN is not defined in 7, then V(TN) is S. In addition, V maps
every individual concept {a} with a € D to the set {a}, so that V corresponds to an
initial interpretation of XB.

If KB is closed rather than vivid, things become somewhat more involved. Con-
sider, for instance, a closed knowledge base, KB = (D,Sig, A), such that D is
{a,b,c,z}, Sig contains as its member the concept name CN, and A denotes the
set {CN = {a,b},a # b,a # ¢,b # c}. Because of the lack of any uniqueness ax-
iom for the individual name z, this knowledge base is closed rather than vivid. The
valuation V as computed by holds(Q),KB,T) would then yield {a, b} as the value of
V(CN). If V was part of an arbitrary model, (A%,.7 V), of KB, then V could assign
V({z}) with either V({a}), V({b}), or V({c}), or else to none of them. In the former
two cases V({z}) would belong to V(CN), in the latter two cases it would belong to
D\ V(CN). Nevertheless, V(CN) = {a, b} turns out to be a good approzimation in
that 1t contains all those individual names which are in this sense necessarily con-
tained in V(CN). This indicates the possibility that the original algorithm as it stands
can deal with closed knowledge bases as well, at least approximately. It is not hard to
see that approximations of this kind are preserved by concept-structuring primitives
which are monotonic in nature such as concept conjunction and disjunction. How-
ever, this does not apply to concept and role negation. To see this, suppose in the
course of performing holds(Q,KB,T), ext(=CN, T ,D,V) is called with V(CN) being
approximated by {a,b}. As CN is some concept name of Sig which is not defined in
T, ext(~CN,T,D,V) would yield D\ V(CN), that is, the set {¢,z}. The question is
whether this is a good approximation too. Because of the presence of the uniqueness
axioms a # ¢ and b # ¢, V({c}) can be identified neither with V({a}) nor with
V({b}). But then V({c}) is, in fact, necessarily contained in D\ V(CN). In contrast
to this, it is possible to identify V({z}) either with V({a}) or with V({b}): In this
case V({z}) would belong to V(CN) rather than to D\ V(CN). This suggests that
ext(-CN,T,D,V) should yield the set {c} as an approximation because ¢ is the only
individual name necessarily belonging to D\ V(CN). This can be achieved by modify-
ing ext(=CN,T,D,V) in such a way that it returns V(=CN) rather than D\ V(CN).
Of course, an appropriate approximation must then assigned with V(=CN). In par-
ticular, for every individual name, TN, of Sig which is not among those defined in
T, holds(Q,KB,T) has to compute not only an approximation of V(TN), but also
one for V(=TN). The former is computed in exactly the same way as in the origi-
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nal version of holds; to explain how V(=TN) is computed in the general case, some
additional conceptual machinery will be useful.

Definition 53. Assume KB = (D, Stg, A) is an arbitrary knowledge base. If a and
b are two distinct individual names of D, then we say that a disagrees in KB
with b if and only if either ¢ # b or b # a is a member of A. Similarly, if (a1, b;)
and (az, by) are two distinct ordered pairs of individual names of D, then {(a,b1)
disagrees in KB with (a2, bs) if and only if A contains as its member at least one
of the uniqueness axiom ay # aq, az # ay, by # by, or by # by.

The modification of holds to be made can be described as follows, where the resulting
approximate versions of holds/3 as well as holds/4 will henceforth be referred to as
approx_holds. Whenever TN is a concept or role name of Sig \ def(T) such that
A contains an assertion of the form TN = S, then approz_holds(Q,KB,T) assigns
not only V(TN) with S, but additionally it assigns with V(=TN) the set of all those
individual names of D (or ordered pairs of individual names of D if TN is a role
name) which disagree in KB with all elements of S. It should be obvious that if B
is vivid, then V(=TN) coincides with D\ § (or with (D x D)\ S if TN is a role
name). In addition, for every individual name, a € D, V(—{a}) is assigned with the
set of all those individual names which disagree in KB with a. On the other hand,
V({a}) is the set {a}, just as in the original version of holds. Again, if KB is vivid,
V(—{a}) coincides with D\ V({a}). Only two modifications of ezt remain to be
made. The resulting approximate version of ext will be referred to as approz_ext.
First, as already explained above, approz_ext(=T,7T,D,V) has to yield V(=T rather
than top(T) \ V(T') whenever T is an atomic concept or role not defined in 7. The
second modification concerns number restrictions of the form 3<™R:C, implicitly
involving a negation in the sense that they are equivalent to =32™+'R:C'. The
original version of ext(3™R:C,T,D,V) would return {d € D : §Sg(d) N Sc| < m},
where S and Sg are assigned with ext(C,7T,D,V) and ext(R,T,D,V) respectively.
Because of the fact that both S¢ as well as Sg are themselves only approximations,
ext (3™ R:C, T, D, V) might include individual names not necessarily belonging to it.
This is why approz_ext (3™ R:C, T, D, V) returns the set of all those individual names
which disagree in LB with all individual names of {d € D : §Sg(d) N S¢| > m + 1}.
This does make sense because the latter set is exactly what ext(32" T R:C,T,D,V)
would yield.

Not only does the modified algorithm share with the original one its polynomial
running time, no matter whether applied to vivid or closed knowledge bases, but
when applied to vivid knowledge bases, its behavior agrees with that of the original.
In the case of a vivid knowledge base, approz_holds(Q,KB,T) is therefore both
sound and complete with respect to KB =7 @, at least with the same conditions
imposed on @, KB, and T as in Correctness Theorem 1. At least for a certain kind
of basic queries, approz_holds((Q),KB,T) turns out also to be sound with respect to
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KB E7 Q. In particular, it is sound when @ is an arbitrary assertion of the form
a:C or (a,b):R. For such basic assertions, approz_holds works very well. However,
for queries of the form C' = D. for instance, approz_holds may come up with the
result that the set of those individual names necessarily belonging to €' and D are
exactly the same, although the two concepts may differ in the potential individual
names belonging to them.

Soundness Theorem 1 (for approxz_holds). Assume KB = (D, Sig, A) is a closed
knowledge base. Assume, moreover, T is an acyclic terminology of Uy and Q is a
query of Uy such that T and Q) are compatible with KB. Finally, assume that Sig
does not contain any concepl or role name as ils member which is defined in T . If

Q is either of the form a:C or (a,b):R, then the procedure approx_holds(Q,KB,T)
terminates returning “true” only if KB =7 Q.

Proof. AssumeV is the valuation as computed by approz_holds(Q, KB, T ). Consider
an arbitrary vivid knowledge base, KB' = (D', Sig, A’), with D' C D. Let .* :
D\ D' — D' be an arbitrary mapping such that for every query, Q4 € A, @} holds
in KB' with respect to 7*. Finally, let V' be the valuation as computed by the
original version of holds(Q*,KB', T*). Then the following can be proven.

Assume approx_ext and ext are called with global variables £ and £’
respectively. It is assumed that for every concept, C', and every individual
name, a, a* € E'(C) if a € E(C'). We assume also that for every role, R,
and every two individual names, a and b, (a*,b*) € E'(R) if (a,b) € E(R).
Then for every concept, C, of Uy , and for every individual name, a, of
D, a € approz_ext(C,T,D,V) only if a* € ext(C*,T*, D', V). Similarly,
for very role, R, of Ui, and for every two individual names, a and b, of

D, (a,b) € approz_ext(R,T,D,V) only if (a*,b*) € ext(R*,T*, D', V).

Take, just for a moment, this claim for granted. The proof will be given later on.

Now, suppose approz_holds(Q, KB, T ) returns the value “true.” We then will have to
come up with the conclusion that KB =7 Q. Because Sig is assumed contains as its
member no concept or role name which is defined in 7, approz_holds(Q4,D,V,T)
returns “true” for every Q4 € A. Therefore, “true” must also be the outcome of
approz_holds(Q,D,V,T). This is to say, if @ is of the form a:C, for instance, then a
must be a member of approxz_ext (C,T,D,V). But then, according to the claim above,
a* is known to be a member of ext(C*, T*, D', V). This why holds(Q*, KB', T*) yields
in this case “true.” The same reasoning applies to queries of the form (a, b): R as well.
Because KB’ is a vivid knowledge base with which 7* and Q* are compatible, Cor-
rectness Theorem 1 then guarantees that KB’ =7+ Q*. At this stage it is important
to recall that in all the reasoning done so far, KB’ is assumed to be an arbitrary vivid

knowledge base, KB' = (D', Sig', A'), such that D' C D, Sig' = Sig\ def(T) = Sig,
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and Q% holds in KB’ with respect to T*, for every query, Q4 € A. But then,
according to Lemma 10, we can conclude that KB =7 Q.

So it remains to prove the claim given above. The proof is by induction on the
number of concept and role introductions of 7. The nontrivial part of the induction
is its induction base, in which case T is empty. The induction base is established
by induction, too, but this time by induction on the structure of T'. We can clearly
assume without loss of generality that T is already in negation normal form because
approz_ext always invokes the computation of the negation normal form of negated
compound concepts and roles.

As regards the induction base, we have to consider the case when T is atomic. In
this case T' can be T, ¢, or another atomic concept or role such that either E(T') or
V(T) is defined. All but the last case are trivial. So consider, for instance, the case
when T is an atomic concept other than T such that V(T) is S.

If 7' is an individual concept, say, {b}, then approz_ext(T,T,D,V) yields the set {b}.
But then a € approz_ext(T,T,D,V) = {b} is possible only if @ = b. This is why
a € approz_ext(T,T,D,V) = {b} implies that a* € ext(T*,T*, D', V') = V'({b*}) =
{a"}.

If T is a concept name, say, CN, then approz_ext(T,T,D,V) yields V(CN). The
latter is assigned with a set of individual names, S, such that A contains the assertion
CN = S. On the other hand, the correctness of ext(CN*,T*,D', V'), shown in the
previous section, guarantees that this call of ext returns S§* because @)} holds in
KB' with respect to T* for every Q4 € A, including the particular case of Q4
being CN = S. But then a € approx_holds(Q,KB,T) = {b} implies that a* €
ext (CN*, T*, D', V') = S*.

As regards the induction step, the only interesting cases are when T is of the form =T}
and 3™ R:C. In all other cases, roughly speaking, one can make use of the monotonic
nature of the relevant concept and role-structuring primitives in a straightforward
way. So, first consider the case when T is a concept of the form —(C. Because
of the fact that T is assumed to be in negation normal form, C' must be atomic.
But then approz_ext(—~C,T,D,V) returns exactly that value which is assigned with
V(=C). We have to show that a € approz_ext(=C,T,D,V) = V(~C) implies a* €
ext(—-C*,T*,D',V'). In what follows it will be important to bear in mind that V
is computed by approz_holds(Q,KB,T) in a way that V(—=C') denotes the set of all
those individual names which disagree in KB with all individual names of V(C).
The claim that a* € ext(—~C*,T7*, D', V') will be shown by reductio ad absurdum.
This is to say, the contrary assumption will be shown to lead to a contradiction.
Now, ext(=CN*,T*, D', V') returns D' \ V(C)* and, therefore, if «* was no member
of ext(=C*,T*, D', V'), then a* would obviously be a member of V(C')*. But then
a* would be identical to some individual name contained in V(C), say, b. As a is
known to disagree in KB with all individual names of V(C'), this would imply that
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a must particularly disagree in KB with b = a*. Therefore, A would have to contain
as its member either a # a* or a* # a. This immediately contradicts the assumption
that for every assertion, @4, of A, Q% holds in KB’ with respect to 7*. For, if Q4
is either @ # a* or a* # a, @} is in both cases a* # a*. It should be clear that in
such a case Q% cannot hold in KB’ with respect to 7*. The remaining cases proceed
analogously. 0

4.5 The Database Query Power of U

In the last section we have seen that querying vivid knowledge bases by means of
the description logic Ui is tractable in the sense of Vardi’s [1982] combined com-
plexity, This is to say, it is computable in deterministic time bounded above by a
polynomial in the sum of the sizes of the given knowledge base, the terminology,
and the query. We have also demonstrated that an arbitrary vivid knowledge base,
say, (D, Stg, A), determines an interpretation of all concept and role names of Sig,
which is unique up to renaming the elements of the interpretation domain. This fact
was captured in a formally precise fashion by showing that all models of (D, Sig, A)
are (Sig, D)-isomorphic to each other. In particular, all models of (D,Sig, A) are
(Stg, D)-isomorphic to an initial interpretation of (D,Sig, A). That is, they are
(Stg, D)-isomorphic to those models of (D, Sig, A) whose domain is not only D, but
deal also with the concept and role names of Sig in exactly the way suggested by the
assertions of 4. This observation just confirms the fact that vivid knowledge bases
actually serve the very purpose they are designed for: a syntactic representation of
an interpretation. Of course, such an interpretation can be viewed as a relational
database and so can a vivid knowledge base. Take, for instance, the vivid knowledge
base (D, Sig, A), we met before, where D is {a,b,table}, Sig is {Block,on}, and A
denotes the set {Block = {a,b},on = {(a,b), (b,table)},a # b,a # table,b # table}.
This knowledge base can clearly be thought of as one possible syntactic represen-
tation of a relational database of the form (D, Ry, R;) the domain, D, of which is
{a,b,table}. As one might suspect, R; is then a relation of rank 1 comprising a
and b as its only elements. On the other hand, R; is a relation of rank 2 which
comprises the ordered pairs (a,b) as well as (b, table) as its only elements. This very
database corresponds in a one-to-one fashion to exactly that part which all initial
interpretations of (D, Sig, A) have in common. In view of this close relationship, it is
interesting to note that closed knowledge bases correspond to those databases which
incorporate unknown values, known as null values in database theory.*

4Technically speaking, closed knowledge bases correspond to what Reiter [1986] called extended
relational theories and what Vardi [1986] called closed-world logical databases, whereas vivid knowl-
edge bases would be called in Vardi’s terminology physical databases.
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4.5.1 Polynomial-Time Queries to Databases

For the following formal definition of relational databases, we presuppose the exis-
tence of a fixed, countable universal domain, U.

Definition 54. A type of a relational database is a tuple of natural numbers greater
than or equal to 0. If @ = (ay, ..., a,) is such a type, then a relational database of
type d (also called database for short) is a tuple of the form (D, Ry, ..., R,) such
that D is a finite subset of the universal domain U and, moreover, for every ¢ with
1 <1 < n, R;is a subset of D%, i.e., it is an a;-ary relation over D. The set D is
called the domain of the relational database. For each ¢ with 1 <1 < n, a; is called

the rank of R;.

Note if a; is 0, R; is a subset of D, the set containing the empty tuple () as its only
element. Thus R; takes in this case exactly one of the values () and {<>} In this
sense relations of rank 0 are to be thought of as Boolean relations.

From the database point of view, a natural question that arises concerns the exact
expressive power of Ui as a query language for relational databases. In database
theory the expressive power of query languages is tackled in the following abstract
sense: If any database query is treated as a function mapping databases to certain
answer sets, then an interesting question is to what extent a given query language is
able to capture the set of all such query functions which are computable in principle.
The following definition formalizes this interpretation of database queries as functions
mapping databases to certain answer sets. The original definition can be found in

Section 2 of [Chandra and Harel, 1980], page 158.

Definition 55. Assume d is a type of a relational database and b is a natural number
greater than or equal to 0. A computable query function of type @ — b
(also called query function for short) is a partial function, fg, mapping relational
databases of type @ to subsets of U® such that the following three conditions are met.

1. Applied to a relational database the domain of which is D, fq yields a subset

of D, at least whenever it is actually defined on the given database.

2. fo is a partial recursive.

3. Let DB =(D,Ry,....,R,) and DB" = (D', R}, ..., R) be isomorphic in the sense
that there exists a one-to-one function, h, mapping D onto D’ such that for
every i with 1 < ¢ < n, Rl is {(h(d1),...,0(ds,)) : (di,...,ds;) € R;}. Then
fo(DB') has to be equal to {(h(dy),..., h(d})) : {di,...,dy) € fo(DB)}.

The first two conditions impose the restriction on fg that it is a partial recursive (i.e.,
computable) function, mapping relational data bases to relations over the domain
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of the given database. The third condition is usually referred to as a consistency
criterion and states that the result of the query function should not depend on the
internal representation of the database it is applied to. Rather, databases should be
treated as sets of tuples the particular codification of which should play no essential
role whatsoever.

As databases are supposed to deal with large amounts of data, it does make sense,
of course, to restrict attention to those query functions which are computable in
polynomial time rather than imposing no upper bound at all on the time needed to
compute a query function. The following definition gives a neat characterization of
this class of query functions and is taken from [Chandra and Harel, 1982], page 117.

Definition 56. The set of all polynomial-time query functions, in symbols, QP,
is the set of all those query functions, fg, which are total and for which the set

{<DB,CZ> .d e fo(DB)} is a member of P.

Whether restricted in this way or not, the notion of a computable query function does
not take into account the size of the query needed to express the query function. The
definition of a polynomial-time query function, for instance, relates the time needed
for the computation of a query function just to the sum of the sizes of the given
database and the outcome. It is for this reason that it may be the case that a query
language is actually able to express a certain polynomial-time query function, but
the size of the database query needed to do so increases, say, exponentially with the
size of the answer set. At this level of abstraction, however, there seems to be no
possibility of including the size of database queries too. This is only possible when
particular query languages are stated.

4.5.2 Fixed-Point Queries to Databases

Many query languages for databases are based on the calculus of relations together
with those based on predicate calculus. Recall from Chapter 3.2 that the former can
be recast in terms of the predicate logic too. We shall therefore concentrate in the
following discussion on predicate logic as a query language for databases. We shall
pay particular attention to the question whether such query languages are able to
express query functions beyond the polynomial-time computable ones and, if not,
whether they can express at least all polynomial-time query functions. It is well-
known from [Aho and Ullman, 1979] that as it stands first-order predicate logic is
not able to express such an important query function as the transitive closure of a
binary relation. This is why we shall consider the following extension of first-order
logic incorporating fixed-point operators.

Definition 57. Let L be first-order logic with equality and no nonlogical symbols
other than the predicate symbols Py, Py, P; and so on. Then Lp is I augmented by
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the following additional formation rule: Assume « is a formula of Ly such that the
predicate symbol P;, the arity of which is a;, occurs only positively in «, that is, P,
appears in an even number of distinct subformulae of o which are of the form —/3,
where (3 is in each particular case an arbitrary formula of Lyu. If the only free variables
X, then both (Xq, .., X)) pPecx and (X1, ..y X))V P

are formulae of Ly as well. Ly is, of course, closed under Boolean connectives and

of @ are among Xy, ...,

under universal and existential quantification.

The additional formation rule introduces least and greatest fixed-point operators
along much the same line as the corresponding concept and role-structuring primitives
of Uu, though, here they are more general in that they allow least fixed point operators
applied to predicate symbols of arbitrary arity. Loosely speaking, a formula of the
form (X1, ..., X,,)puP;.a, for instance, is to be thought of as representing the least P
such that P;(Xy,..., X,) ¢+ a becomes true. An example of a formula of this kind
is the following, representing the reflexive-transitive closure of the binary predicate
symbol P:
(X, YV)uPy. (X =Y V3IZP(X, Z) N Py(2,Y)).

On the basis of formulae of this kind, one can formulate database queries too:

Definition 58. If « is a formula of Ly the only free variables of which are among
X1,..., X, and the only free predicate symbols of which are among P, ..., Py, then
(X1yeeey X0n)o(Pyy.oey Pr)a is a database query of Lpu.

Each database query of Ly induces a unique query function. If (Xy, ..., X,,).( Py, ..., Py
is a database query of Ly such that the predicate symbols Py, ..., P, are of arity
ai, ..., ay, respectively, then the associated query function, fq, is of type (ay, ..., az) —
n and is given as follows. When applied to a database of type (ay,...,ay), say
(D, Ry, ..., Rg), the query function fo yields a specific n-ary relation over D: It
yields the set of all those tuples (di,...,d,) of D" such that a evaluates to true in
an interpretation with interpretation domain D if X; is assigned with d; and P; is
interpreted as R;, for every 7 and j with 1 <17 < n and 1 < 7 < k. For details,
including the precise semantics of Ly, the reader is referred to [Chandra and Harel,
1982], page 110f. The set of all those query functions associated with at least one
database query of Ly is denoted by FP.

It can readily be seen that, if an arbitrary but fixed database query of Ly is given,
then the relevant query function can be computed in deterministic time bounded
above by a polynomial in the sum of the sizes of the input database and the output
relation. Therefore, FP, the set of all those query functions associated with some
database query of Ly, is a subset of the set of all polynomial-time computable query
functions. A proof of this fact was outlined by Chandra and Harel [1982], page 119,
item (i). In the same paper, however, they prove also that FP does not cover all
polynomial-time computable query functions. A polynomial-time computable query
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function not expressible by any database query of Ly is, for instance, the one which
merely checks whether the cardinality of the domain of the given database is even
or not, cf. [Chandra and Harel, 1982], page 122f, also item (ii) on page 119. The
same applies to such natural query functions as those counting the number of tuples
contained in a relation, see page 125 of [Chandra and Harel, 1982].

Expressiveness Theorem 6 (Chandra & Harel). FP is a proper subset of QP.

There exist, however, query languages covering exactly the class of all polynomial-
time query functions. Omne query language for which this has been shown to be
true is Chandra and Harel’s )L having much of a programming language computing
relations over some finite domain. For details, including a proof that QL covers QP,

see Section 4 of [Chandra and Harel, 1980].

We aim in this section at relating the expressive power of U to that of existing query
languages. In this connection, a specific subset of FP is of particular significance.
This subset of FP is restricted to those database queries of Ly which do not involve
any fixed-point operator applied to a predicate symbol whose arity is greater than
2. This is to say, subformulae of the form (Xi,..., X, )pP,.a and (X1,..., X, )vP.«
are admissible only if the arity of the predicate symbol P; is not greater than 2. The
corresponding subset of FP will be denoted by FPE. This set of query functions is
of particular importance in that fixed-point operators as they manifest themselves in
Up (and therefore also in Ui ) are subject to exactly the same restriction. Recall in
this connection that, when viewed in terms of predicate logic, description logics such
as Up allow per se only predicate symbols of arity 1 or 2, namely those corresponding
to concepts and roles. Gaifman investigated the consequences of adopting this very
restriction on fixed-point operators of Ly and came up with the conclusion that it
actually excludes some query functions from FP. The following result was reported
in [Chandra and Harel, 1982], page 116, item (2), and is ascribed there to personal
communication with Gaifman.

Expressiveness Theorem 7 (Gaifman). FP is a proper subset of FP.

4.5.3 Database Queries of U

When viewed in terms of predicate logic, the description logic Uy (and therefore also
Ui ) is a sublanguage of Ly, even with the fixed-point operators of Ly restricted to
be applicable only to predicate symbols the arity of which is not greater than 2. The
query functions associated with database queries of Uy are, therefore, a subset of
FPE. We have, of course, to state what exactly is meant by such database queries.

Definition 59. Assume L is a set of concepts and roles. If T' is an element of £
such that T" does not involve any occurrence of an individual name and such that the
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only concept and role names occurring in 7" are among TNy, ..., TNy, except for the
bounded ones, then (TNy, ..., TINy).T is said to be a database query of L.

We precluded individual names from being part of a database query of £ because
constants usually are not admissible in database queries of Lu either. However, noth-
ing but some additional complexity in notation prevents us from including individual
names.

Again, each database query of £ induces a unique query function. In particular, if
(TN, ..., TN;).T is a database query of £, then the associated query function, fg, is
of type (ay,...,ax) — b, where the a;’s and b are either 1 or 2, dependent on whether
in each particular case TN; and T are concepts or roles respectively. When applied to
a database of type (a1, ..., ay), say, (D, R1, ..., Ry), the query function fg then yields
TT, where .7 is the interpretation function of an arbitrary interpretation of the form
(AT, 1)V) such that AT is D and, moreover, for every i with 1 < i <k, V(T;) is R;.
For every set of concepts and roles, £, we denote with QL the set of all those query
functions associated with some database query of L.

A natural question that arises in this connection concerns the relationship between
querying databases by database queries of, say, Uu, and querying corresponding vivid
knowledge bases by Uu-assertions. It should not be surprising that this relationship
is actually very close. Take an arbitrary database query of Uu, say, (TNy, ..., TNy).T,
the associated query function of which will be denoted by fo,. We are going to
query an arbitrary database, DB = (D, Ry, ..., Ry), of the appropriate type, that is,
the rank of each R; (1 <1 <k)is 1if TN; is a concept name, and 2 otherwise. If the
domain of the database is treated as a set of individual names, then such a database
can clearly be represented directly by a vivid knowledge base. In particular, it can
be represented by KB = (D, Sig, A), where D is D, Sig is {TNy,...,TN;} and A is
the union of the set {TN; = R, : 1 < < k} with the set of all uniqueness axioms
over D. Then for every element, a, of D, it holds that a € fg,.(DB) if and only if
KB |=¢ a:T. In this way a query function associated with some database query of Uu
can be simulated.

We have already argued that, when viewed in terms of predicate logic, Uy is a
sublanguage of L, even when the latter is restricted such that fixed-point operators
are applicable to unary and binary predicate symbols only. But then it is immediately
obvious that QUi is a subset of FPX. Recall that FPM restricts the arity of those
predicate symbols to which fixed-point operators are applied, but all others are not
subject to any restriction at all. This is why FPP includes query functions of type
(ay,...,a,) — b with at least one a; (1 < i < n) being greater than 2. Neither Uu nor

Ui does include any such query function. Therefore, neither QUu nor QU covers
FpUL.

Expressiveness Theorem 8. QUi is a proper subset of FPU.
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Proof. We have just argued that QUu and FP[™ do not denote the same class of
query functions. So we shall concentrate on proving that the first is a subset of
the second. We have to show that all query functions associated with at least one
database query of Uy are included in FpP,

Consider an arbitrary query of Uy, say, (TNy,...,TN,).T. In what follows it is pre-
supposed that each TN; with 1 < ¢ < n has a unique predicate symbol associated
with it, say, Pry,. In addition, each concept and role variable X appearing in T', no
matter whether bounded or not, is associated with a unique predicate symbol, say,
Px. Of course, predicate symbols associated with a concept must be unary, whereas
those associated with a role must be binary. On the basis of (TN;,...,TN,,).T", we are
going to construct a particular database query of U . This query is as follows:

(X).(Prn, s ---, PTNn)ff(X) if T is a concept;

(X,Y).(Prn,, ooy Pen, )T(X,Y) i T is a role.
The function 7 maps a concept of Uy along with a variable to a formula of Lp.
Similarly, a role of Uy is mapped along with a ordered pair of variables to a formula

of Lu. This function is inductively defined as follows:

Pe(X) if C is a concept name;
true if Cis Ty
Ch(X) A Co(X) if Cis Cy 1 Cy;
Ch(X) vV Co(X) if Cis Cy U Cy;
C(X) = { - D(X) if C is = D;
V5. .3V, AL, R(X,Y) A D(Y;) if C is 32" R:D;
=3V, TV ATV R(X,Y) A D(Y;) if C s ST R:D;
(X)uPx,.D(X) if C is uX;.D;
(X)vPx,.D(X) if Cis vX;.D.
R(X,Y) if R is a role name;
X=Y if R is e

Ri(X,Y)ARy(X,Y)  if Ris Ry Ry;
Ri(X,Y)V Ry(X,Y)  if Ris Ry U Ry;

- 5(X,Y) if R is =S,
R(X,Y) = { 3Z.R(X,Z)ANRy(Z,Y) if R is Ry o Ry;
VZ.R\(X,Z)V Ry(Z,Y) if R is Ry & Ry;
S(V, X) if R is S™%;
C(X) A D(Y) if R is C'xD;

(X,Y)uPx,.5(X,Y) if R is pX,.S;
(X,Y)rPx,.S(X,Y) if R is vX;.S.




140 Ui as a Query Language for Knowledge & Data Bases

The variables Z and Y; must be fresh variables drawn from Lpu.

It is easily seen that the resulting formulae are, in fact, formulae of Lu: The syntactic
restriction imposed on Lu’s fixed-point operators, is met because a corresponding
restriction is invoked on fixed-point operators of Uu as well. In this connection, it is
important to note that the notion of formal monotonicity in Uy is defined in such a
way that any concept or role name is formally monotonic in 3™ R:C' just in case it
occurs both in C as well as in R solely negatively (see page 31). This situation is
reflected by the negation sign occurring in the resulting formulae of Lu. Moreover,
it should be obvious that the resulting formula of Ly involve only those fixed-point
operators which are applied to unary and binary predicate symbols.

The fact that the query functions associated with the database queries (T Ny, ..., TN,,).C
and (TNy, ..., TN,,).R of Uy agree with those associated with the corresponding database
queries of Ly can be shown by induction on the structure of €' and R. The proof,
however, is as straightforward as tedious. We therefore omit the full proof. O

By the transitivity of the proper subset relation, we are now in a position to conclude
that QU is not only a proper subset of FPI, but also one of FP and QP. Among
others, this implies that QU does not cover such simple polynomial-time query
functions as those counting the number of tuples of a relation because these query
functions are not included in FP either.

We should not close this section without emphasizing that U is the only query
language mentioned in this section which is tractable in the sense of Vardi’s [1982]
combined complexity. For Ly is known to be EXPTIME-complete in the sense of the
combined complexity. This remains true even with fixed-point operators restricted in
such a way that they are applicable to predicate symbols whose arity is not greater

than 2 [Vardi, 1982].

4.6 Discussion

In this chapter singled out a subclass of terminological reasoning in U which is
decidable, i.e., can in principle be mechanized. The main result was that termino-
logical reasoning in this powerful description logic becomes not only decidable, but
also tractable just by replacing a customary knowledge base by a vivid (also called
physical) knowledge base. The characteristic of a vivid knowledge base is that it de-
notes, in effect, a single model rather than a number of models. We were concerned
with the problem of checking in each particular case whether a query, @), holds in a
knowledge base, KB, with respect to a terminology 7. We proved this problem to
be decidable in deterministic time bounded above by a fixed polynomial in the sum
of the sizes of KB, @, and T if the following conditions are met:
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(a) The knowledge base KB fixes an interpretation domain, say, D, consisting of
a finite number of individual names with a general unique-name assumption
imposed on.

(b) At least all those concept and role names are specified extensionally in KB
which occur in Q) or T, except for those defined in 7. In addition, D has to
contain at least all those individual names which occur in 7 or Q).

(c) The terminology T is acyclic.

This result is of interest both from Halpern and Vardi’s [1991] model checking point
of view as well as from the viewpoint of description logics. From Halpern and Vardi’s
point of view, our result singles out a useful fragment of first-order logic which gives
rise to tractable model checking, even when this fragment is enriched by fixed-point
operators. As opposed to the corresponding tractability results for fixed-point lan-
guages based on full first-order logic [Vardi, 1982], ours is to be understood in terms
of combined complexity rather than the far weaker notion of data complexity.

The description logic’s point of view suggests the following interpretation: Whenever
we are able to abandon any kind of incompleteness from the knowledge base, we
gain not only tractability, but also a great deal of expressive power that covers every
concept and role-structuring primitive one could ask for.” In this connection it should
be emphasized that the description logic U4 under consideration is based on Patel-
Schneider’s universal description logic ¢. The description logic ¢ is universal in that
it incorporates every traditional concept and role structuring primitive. In particular,
it encompasses all those primitives attributed to the very system which has attracted
most attention in the realm of terminological knowledge representation, the KL-ONE-
system. Notably, Patel-Schneider [1989b] as well as Schmidt-SchauB [1989] proved
that even in very small sublanguages of KL-ONE’s description logic, subsumption is
undecidable.

In addition to the concept and role-structuring primitives of U, Uy includes addi-
tional primitives which provide a general framework for recursive concept and role
definitions. This extension of ¢ allows for an explicit representation of recursion by
least and greatest fixed-point operators in a way that condition (c), requiring the
given terminology to be acyclic, is never violated. We deal not only with fixed-point
operators on concepts, but also with those on roles. Despite the fact that in Uy
only those fixed-point operators are admissible which have an alternation depth of at
most 1, as Emerson and Lei [1986] would call them, this extension of U is yet able
to capture mulual recursion.

5The observation that tractability can be gained in principle when abandoning any kind of
incomplete knowledge has been made previously by Donini et al. [1992]. However, their observation
concerns solely a description logic which is very pure in expressive power. Moreover, Donini et al.’s
result does not take any nonempty terminology into account.
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Our tractability result is the only in existence for terminological reasoning, at least
when the fundamental assumption that terminologies are nonempty is put into effect.
Although all other tractability results retreat either to description logics which are
pure in expressive power or to nonstandard semantics, all these results presuppose
an expansion process applied to terminologies in advance.® This expansion process
replaces all occurrences of those concept and role names which are defined in the
given terminology by the right-hand side of the relevant concept or role introduction,
confer Chapter 3.2.5 of [Nebel, 1990a] for details. In the course of such an expansion
process, however, a terminology may increase by an exponential. The overall upper
complexity bound obtained by all but our tractability result is therefore still expo-
nential in nature. So far as standard terminological reasoning is concerned, Nebel
[1990b] proved that in the presence of nonempty terminologies, no tractability result
can be achieved, unless P is NP. This holds even with the expressive power limited
to that of the very weakest description logic.

Not only is the subclass of terminological inferences that we singled out tractable,
but it is also useful. Many examples show this. In the previous chapter we saw that
such standard objects as directed acyclic graphs, trees, and binary trees can easily
be defined by means of an acyclic terminology of Z. With the help of the additional
fixed-point operators of Ui, even objects such as balanced binary trees as well as
an AND-OR graph for which there exists at least one well-founded solution can be
captured. Moreover, it should be clear that any graph or any finite collection of
graphs can be directly represented by a single vivid knowledge base. But then the
tractable subclass of terminological inferences we singled out includes the retrieval of
exactly those graphs which are an instance of any of the objects just mentioned. This
is certainly also interesting from the database point of view. In fact, the restriction
imposed on knowledge bases so as to obtain tractability, results in what is usually
called a relational database. Our result thus shows that Ui can serve as a powerful
but tractable query language for relational databases of this kind. From this point
of view, it is important to note that we know from the previous chapter that even
the first-order fragment of U is strictly stronger in expressive power than the well-
known calculus of binary relations, the basis for many traditional database query
languages [Codd, 1971]. But then the question arises how powerful Ui is compared
to other more traditional database query languages. This issue was also explored in
this chapter. It turned out that Uu (and therefore also Uy ) is strictly weaker than a
well-known fixed-point language based on full first-order logic. However, this is not
surprising at all because the latter is (in contrast to Uy ) intractable in the sense of
the combined complexity. Of course, tractability cannot be achieved for free.

Our tractability result suggests that the main source of computational complexity of
terminological reasoning is the ability to express incomplete knowledge. This finding

5This applies to the work on restricted languages carried out by Levesque and Brachman [1987],
Lenzerini and Schaerf [1991], Donini et al. [1991], and Buchheit et al. [1994], but also to Patel-
Schneider’s [1989a] results for nonstandard semantics.



4.6 Discussion 143

is confirmed by another outcome of this chapter. It states that even a quite limited
form of incomplete knowledge by means of what is called in databases null value
causes co-NP-completeness. The co-NP-completeness remains valid even with termi-
nologies restricted to be empty and with queries additionally restricted to be some
fized query of the standard description logic ALC. But then the co-NP-completeness
holds not only in the sense of combined complexity, but also in the sense of data com-
plexity. Based on Vardi’s [1986] work on null values in databases, we were yet able to
give an algorithm capable of dealing with null values soundly though approximately.
The algorithm runs not only in polynomial time, but is also complete whenever no
null value is present.

However, this is not to say that model checking could replace ordinary terminological
reasoning. On the contrary, abandoning any kind of incomplete knowledge and al-
lowing for an unlimited use of incomplete knowledge are just two extreme points on a
wide-ranged spectrum. One should aim for a happy mean. An auspicious compromise
was already indicated in this this chapter: We presented a result concerning termino-
logical reasoning in a more traditional sense. The result was that in U, entailment
with respect to a finite set of arbitrary assertions and axioms becomes a member
of co-NP just by adding a domain-closure axiom. Such a single domain-closure ax-
iom restricts, in effect, the interpretation domain to a finite number of individual
names. Notably, in this case terminological reasoning in Uy has essentially the same
worst-case complexity as the very weakest description logic’s setting with acyclic ter-
minologies only. From a theoretical point of view, the membership of co-NP means
that terminological reasoning shares with propositional logic the desirable property
that counterexamples are always not only short, that is, polynomial length-bounded,
but also verifiable in deterministic polynomial time. From a practical point of view,
especially from the viewpoint of deterministic computations, this means that in the
presence of a domain-closure axiom, terminological reasoning in Ui is yet decidable,
in exponential time. This is because a nondeterministic guess of an appropriate coun-
terexample can be simulated by exhaustive search. This proves that decidability can
be gained just in return for a simple domain-closure axiom. Requiring the existence
of a domain-closure axiom is to most applications no essential restriction at all. On
the other hand, terminological reasoning seems not to become applicable until an
expressive power such as that of ¢4 has been attained. Practical algorithms obeying
an acceptable average case complexity, however, still await development.

Another promising direction for future research is a generalization of our results
to the nonstandard semantics which Patel-Schneider [1987] developed for ¢ on the
basis of Belnap’s [1977] four-valued semantics. Interpretation functions of this kind of
semantics map, for instance, a concept to a pair of subsets of the domain rather than
to a single subset. One subset is to be interpreted in exactly the same way as in the
traditional case, that is, it is the set of those objects belonging to the given concept. In
contrast to this, the second subset is to be thought of as set of those objects belonging
to the complementation of the concept. Patel-Schneider’s semantics deviates from
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standard semantics in that these two subsets are neither required to cover the whole
domain nor are they required to be disjoint. In other words, an arbitrary object of the
domain may belong to a concept, to its complementation, to both, or to neither. It
is in this sense that this semantics is four-valued in nature. This makes it possible to
handle not only indifferent, but also inconsistent information. Formally, this semantic
variant is given in terms of what can be called extended interpretations. Such an
extended interpretation, (A%, 2V, 2. V), consists of two interpretations having the
same interpretation domain. The interpretation (A% .27V} is to be understood in
the standard sense, whereas (A7, .T, V) is a so-called complementary interpretation.
Complementary interpretations are defined exactly as an ordinary interpretations,
except that concept and role-structuring primitives are interpreted in the same way
as their duals in standard interpretations. For instance, (CT1D)? is defined to be C*U
DT . This reflects the situation that an object belongs to the complementation of CT1D
just in case it belongs either to the complementation of €' or to the complementation
of D. Both .F and .F are also nonstandard in their interpretation of negation. In
particular, =77 is defined to be TZ, while =T is TZ. But then =77 and T7 are
neither necessarily disjoint nor do they always cover the whole interpretation domain
AT (or AT x AT if T is a role). For details, the reader is referred to Chapter 5.3.1 of
[Patel-Schneider, 1987].

Although this four-valued semantics was originally developed for U, it can be ex-
tended to deal with the additional fixed-point operators of Uy as well.” This non-
standard semantics makes it possible to relax the notion of a vivid knowledge base
considerably by allowing for indifferent as well as inconsistent knowledge. Suppose,
for instance, it is known that Hillary is a first lady, but it is not clear at all whether
she 1s President or not. Suppose also that, as far as Bill is concerned, it 1s known that
he is definitely no first lady (because of his sex), but there are contradictory assertions
whether he is President or not. This very situation is captured by a nonstandard
vivid knowledge base comprising the following assertions:

FirstLady = {Hillary},
—Firstlady = {Bill},

President = {Bill},
—President = {Bill}.

“Just for the readers familiar with it, a four-valued semantics for pX.T', for instance, as follows.
Take an arbitrary extended interpretation, say, (AT, Ty, I V). Let fr be the so-called function
on X induced by T, V, and V. If T is either AT or AT x A, depending on whether uX.T is a
concept or a role, then this function maps every subset, S, of T to T7. Here, 7 is the inter-
pretation function of an arbitrary extended interpretation (AZ .7 Vix sy, T.V). Let fr be the
corresponding complementary function mapping S C T to T, for an arbitrary extended interpre-
tation (AT .7V, .‘7,?()@5)). Then (uX.T)T is defined to be {S C T : S C fr(S)}, whereas
(pX.T) is |J{S C T : S D fr(S)}. This means that (uX.7T)T is handled just as in the standard

semantics, but (pX.T)7 is dealt with as if it were a greatest fixed-point operator.
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Observe that this knowledge base is four-valued in that its knowledge about Bill’s
status as President is contradictory, while Hillary’s presidential status is indefinite.
If we pose the following two queries to this knowledge base, we obtain in the former
case a definite negative answer, but in the latter case still an indefinite answer:

KB | Bill:(FirstLady M —President),
KB [ Hillary:(FirstLady I —President).

The explanation is that the positive extension of FirstLady M —President is {Hillary} N
{Bill} = ), whereas its negative extension is {Bill} U {Bill}. Hillary, therefore, belongs
neither to FirstLady M —President nor to the complementation of this concept, but Bill
is included in the complementation.

It can easily be seen that it does not matter whether queries are evaluated with
respect to the four-valued or the standard semantics whenever four-valued knowledge
bases of this kind bear neither indifferent nor inconsistent knowledge. A polynomial-
time algorithm which mimics the four-valued semantics can be developed entirely
analogously to that for the standard two-valued semantics. But then our tractability
result holds also within framework of the four-valued semantics, while additionally
allowing for inconsistency as well as indefiniteness.
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Chapter 5

Summary & Conclusion

In the introduction several one-to-one correspondences between description logics
and propositional modal and dynamic logics were presented. We argued that all
these correspondences become quite obvious once description logics are viewed as
propositional logics rather than sublanguages of first-order logic. As De Giacomo and
Lenzerini [1994a] put it, particularly the correspondence with propositional dynamic
logic “provides an invaluable tool for devising decision procedures for very expressive
D[escription] L{ogic]s.”
on the model theory, expressive power, and axiomatics of description logics.

One can add that it is also an invaluable source for results

The most powerful correspondence is the one relying on combinatory PDL, presented
in Chapter 2. This correspondence is powerful enough to incorporate all standard
features of a description logic, including arbitrary concept introductions and axioms.
This works with a rather straightforward translation, even in case of assertions. The
description logic’s framework thus covered is quite general. Thanks to the correspon-
dence with combinatory PDIL., this framework is at the same time well-understood in
terms of computational complexity, model theory, as well as axiomatics. As a matter
of fact, the framework thus obtained is one of the most powerful for which all kinds
of terminological and assertional reasoning are known to be decidable.

One fundamental facility is missing though: recursion. In the setting of description
logics recursion refers to terminologies containing concepts or roles the definition of
which depend on each other. Of course, such cyclic dependencies can be direct or
indirect. The lack of recursion contrasts with the fact that especially many concepts
are most naturally defined by recursion. For instance, it is rather natural to define
trees in the following recursive manner:

Tree = Leaf LI (Node M Vbranch:Tree).

The translation into combinatory PDI. does not impose any restriction on the syn-
tactic shape of axioms of this kind. This seems to imply that the framework obtained

147
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through the correspondence with combinatory PDL as it stands is already capable of
dealing with recursion. However, in this framework recursive concept introductions
are given the same semantics as acyclic concept introductions, an approach which is
by no means adequate. The problem with customary semantics is that it might give
rise to ambiguities of the following type if recursion is present. To see this, consider
again the recursive definition above. Suppose, the interpretation of Node, Leaf, as
well as branch has already been fixed, but the extension of Tree is to be determined
by the given recursive concept introduction. We would then expect something func-
tioning as a definition that it uniquely determines what it is supposed to define. In
this case, we would expect that the interpretations of Node, Leaf, and branch result
in a unique interpretation of Tree. In general, this means that an interpretation of all
primitive concepts and roles (i.e., all those concept and role names occurring in the
concept introduction, except for the concept to be defined) should always determine
a unique model. In contrast to acyclic concept introductions, those being recursive
may violate this very characteristic of a definition. Such a situation, for instance, is
encountered with the following infinite structure.

branch - branch - branch

>

0 O O O
Node Node Node Node

As far as this structure is concerned, the recursive concept introduction above does
not uniquely determine an interpretation of Tree. In particular, there are two different
ways of interpreting Tree, both in accordance with this concept introduction. One
possibility is to interpret Tree as the set of all nodes, in which case it denotes the
same set as Node. On the other hand, Tree can also be interpreted just as the empty
set. This means that there are two rather different ways of satisfying this recursive
definition, notwithstanding that all primitive parts of the definition have been fixed

properly.

This is why the traditional notion of a model is no longer reasonable as soon as
recursion enters the picture. In view of this problem, Nebel [1990a, 1991] refined the
common idea of a model. Inspired by Lloyd’s [1984] work on the semantic founda-
tions of logic programming, Nebel put forward two alternative semantics. In analogy
to Lloyd’s terminology, he baptized these alternatives least and greatest fived-point
semantics. In a nutshell, fixed-point semantics does not consider all models as ad-
missible, but only those which are the least or the greatest with respect to the inter-
pretation of the concept to be defined. Of course, in order to give this minimization
and maximization process reasonable limits, the terms least and greatest refer only to
those models which have the same interpretation domain and agree in the interpre-
tation of all primitive concepts and roles. These two different fixed-point semantics
can be thought of as giving rise to inductive or co-inductive definitions. This is to
say, the two alternative semantics capture different definitions along the line of the
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dichotomy “the least set such that...” versus “the greatest set such that....”

Fixed-point semantics turned out to be more suited for recursion than customary
semantics. However, it was disputed for a while which of the two different fixed-point
semantics should be taken, where the most substantial contribution to this debate
is due to Baader [1990a]. He argued that careful inspection of recursive definitions
reveals that recursion is often used to express the reflexive-transitive closure of a role.
Consequently, he then argued, any semantics of recursion should take into account
this fact. The question then arises what kind of fixed-point semantics captures this
reading of recursion. Baader was able to prove that, as far as concept introductions
fitting the pattern CN = C M VYR:CN (without any occurrence of CN in ') are
concerned, only the greatest fixed-point semantics supports this reading. Only the
greatest fixed-point semantics aptures in this case exactly the meaning of CN =
VR*:(C. One can add that the recursive concept introduction for Tree fits into this
scheme, too, at least when taking into account an appropriate concept introduction
for Leaf. For in this case Leaf LI (Node M Vbranch:Tree) is actually equivalent to
Node " Vbranch: Tree.

Taking for granted that recursion is commonly used to express regular role expressions
such as the reflexive-transitive closure, Baader finally concluded that the greatest
fixed-point semantics comes off best. As regards the very weakest description logic,
this is, in fact, the only semantics supporting this reading of recursion.

Baader’s result, however, is somewhat misleading in that its validity is strictly limited
to the very weakest description logic. As a matter of fact, his result is just a conse-
quence of the fact that he considered only concept conjunction as well as universal
role quantification, but left out the dual concept-structuring primitives. In chapter 2,
we pointed out that for the dual concept-structuring primitives the situation is just
the opposite. In particular, in order to express regular role expressions occurring
within existential role quantification, we have to resort to least fixed-point semantics
rather than to greatest fixed points. Take, for instance, the recursive concept intro-
duction CN = C'UJR:CN. If this concept introduction is to capture the meaning of
CN = dR*:.C, the only way to enforce this reading is by least fixed-point semantics,
which shows that both kinds of fixed-point semantics are needed.

The reader might object that in stronger languages such as ALC, one could employ
the duality between JR:C' and —VR:~(C anyway. Instead of expressing, say, 3R*:C,
one could first capture VR*:=C" with the help of the of CN = -C' M VR:CN. Of
course, in order to achieve this, greatest fixed-point semantics must be invoked. If
one would simply add the concept introduction CN = =CN, then CN should finally
capture 3R*:C'. Such a representation does not work because terminologies of the
form {CN = -CNVR:CN, CN = =CN} do not have any greatest fixed-point model at
all, nor have they any least fixed-point model. To see this, observe that it is impossible
to maximize (or to minimize) the interpretation of CN and its complement at the
same time. This proves not only that both kinds of fixed-point semantics are needed,
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but that they are even needed in coexistence.

This is, however, not the only argument in support of the coexistence of the two
different fixed-point semantics. Another argument attacks the claim that recursion
is mostly used to express regular role expressions. This claim cannot be put into
effect without a thorough investigation on what the least and greatest fixed-point
semantics really express. Such an investigation was carried out in Chapter 2. This
was done with the help of a previously unknown, but nevertheless extremely use-
ful concept-structuring primitive. In particular, we introduced new concepts of the
form dR¥, where R can be an arbitrary role. Such a concept denotes all those ob-
jects, d, such that there is at least one infinite R-chain emanating from d. The
significance of a concept-structuring primitive capable of stipulating or forbidding
(when negated) such infinite role chains should be evident. The addition of this new
concept-structuring primitive to the regular extension of ALC results in a descrip-
tion logic which we refer to as the w-reqular extension of ALC. With the help of this
new description logic, the consequences of enforcing the different kinds of fixed-point
semantics can be exactly stated. The analysis, however, should be restricted to stan-
dard recursion following the patterns CN = CTIVR:CN and CN = CU3R:CN. The
following table sums up the analysis of Chapter 2:

least fixed-point greatest fized-point
semantics semantics
CN =CnVRCN || CN =VR<CN-3RY CN =VR::C
CN =CUdR:CN CN = JdR*:.C CN =dR*:CUdR”

The table shows that the situation in least and greatest-fixed point semantics is
completely symmetric. What this table also shows is that the question which of
the two different fixed-point semantics should be preferred depends on what one
intends to express in that particular case. For example, in the case of the concept
introduction of a tree given above, it is just a question of whether or not trees of
infinite depth are excluded. According to the table just given, the least fixed-point
semantics does exclude them, whereas the greatest fixed-point semantics does not.
Of course, this raises the question whether such an analysis is limited to recursion
fitting into the standard patterns included in the table above.

In Chapter 2 it was pointed out that questions like the latter can be tackled perfectly
well in terms of the explicit fixed-point operators known from program logics, and
so can recursion in ALC as a whole. This is particularly true in view of the need for
coexistence of both kinds of fixed-point semantics. Explicit least and greatest fixed-
point operators are used in logics of programs to state specific correctness properties
not expressible by ordinary dynamic logics. They have been employed successfully to
state deadlock freedom and starvation, see [Flon and Suzuki, 1978]. In the context
of first-order logic, explicit fixed-point operators were investigated by Park [1970],
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Hitchcock and Park [1973], as well as de Bakker and de Roever [1973]. Regarding
description logics, the propositional case is more interesting though. The proposi-
tional case was first investigated by Pratt [1981] and, more influentially, by Kozen
[1983]. In both cases, least and greatest fixed-point operators are treated just as a
new kind of formulae. This treatment makes it possible to express nested fixed-points
operators easily. In the propositional case, the following notation is common. If =
is an arbitrary propositional variable and « is an arbitrary formula, then pz.o is a
least fixed-point operator, while vz.« is a greatest fixed-point operator. Fixed-point
formulae of the form pz.«o and vz.« are to be read as “the least x such that o” and
“the greatest x such that «.”

From a semantic point of view, fixed-point formulae represent the least and the
greatest fixed point of a certain function, hence the name fized-point operator. This
function can be best described with the following notation. If M is an arbitrary
Kripke structure and o is a formula, then let a™ denote the set of all those states,
w, such that M =, a. This means that o™ denotes exactly those states in which
the proposition « holds. The function we have in mind then maps every set, S, of
states to aM=/s. Here M s is supposed to denote the Kripke structure which agrees
with M except for the fact that z™ is S. This function is, of course, interesting
only if a involves at least one occurrence of x; otherwise it would denote a constant

function that always yields o™.

Of course, the meaning of fixed-point operators is then given in terms of the least
and greatest fixed points of the function just introduced. This would not be possible
if the uniqueness of these least and greatest fixed points was not guaranteed. This
is usually ensured by imposing a simple restriction on the possible syntactic shape
of fixed-point formulae, referred to as formal monotonicity. This restriction requires
every occurrence of z in uz.a and ve.a to be positive. This is to say, every occurrence
of  must lie under an even number of negations. The function described above is then
guaranteed to be monotonic. According to the well-known Knaster-Tarski Theorem,
monotonicity of a function in turn ensures the existence and the uniqueness of its
least as well as its greatest fixed point [Tarski, 1955].

It was Kozen [1983] who enriched the Hennessy-Milner Logic with exactly this kind
of fixed-point formulae. The resulting logic is called propositional p-calculus. Kozen
already observed that this logic is at least as strong in expressive power as the
propositional dynamic logic. The PDL formula (while o do a)f, for instance, can
be expressed in a recursive fashion with the help of the least fixed-point formula
UT. ((ﬁa AB)V (a A <a>x)) Kozen additionally noted that there are even formulae
of the propositional p-calculus not expressible in propositional dynamic logic.

Having in mind that ALC is a notational variant of the Hennessy-Milner logic, we
should expect that recursion can be captured in ALC in terms of explicit fixed-point
operators because so can recursion in the Hennessy-Milner logic. In the context of
ALC, fixed-point operators are to be treated as concept-structuring primitives. In
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analogy to the p-calculus, in Chapter 2 we chose the following syntax for the new
concept-structuring primitives to be introduced: If €' is an admissible concept, then
so are uX.C' and v X.C'. The variable X is treated as a special kind of a concept name,
referred to as concept variable. Of course, formal monotonicity has to be imposed on
C' in this case too. But then an arbitrary recursive concept introduction, CN = C',
can directly be recast by one of the following two acyclic concept introductions:

CN = puX.Con/x,
CN = uX.Covx.

The only precondition that CN = (' has to meet is that of formal monotonicity.
This is to say, all occurrences of CN in €' must be positive. In any case, the expres-
sion CNgnyx is supposed to denote the concept obtained from C' by simultaneously
replacing each occurrence of CN with X throughout . Observe that this kind of
representation enables us to capture recursion with the help of acyclic concept intro-
ductions rather than cyclic ones. Of course, the choice between the two alternatives
given above depends on whether least or greatest fixed-point semantics is preferred.

If there is an indirect recursion leading through more than one concept introduction,
we have to resort either to nested fixed-point operators or to fixed-point operators
dealing with mutual recursion. Fixed-point operators of the latter type were investi-
gated by Vardi and Wolper [1984] in the framework of the Hennessy-Milner logic. In
Chapter 2 we enriched ALC with explicit fixed-point operators in the style of Vardi
and Wolper. We thereby obtained a new kind of description logic which is actually a
notational variant of Vardi and Wolper’s version of the propositional p-calculus. We

chose the name ALCp for the extended standard description logic ALC.

Thanks to the one-to-one correspondence with the propositional p-calculus, we can
take advantage of a number of results established for the p-calculus. Most impor-
tantly, this includes several complete decision procedures. The first decision proce-
dure for full propositional p-calculus is due to Kozen and Parikh [1983]. However, the
upper time bound thus obtained was non-elementary. The first decision elementary
procedure was given by Street and Emerson [1984, 1989]. The employed algorithm,
however, still has a triply exponential worst-case complexity. Exponential-time pro-
cedures were devised by Vardi and Wolper [1984], Emerson and Jutla [1988], as well
as Safra [1988]. Vardi and Wolper’s algorithm is capable of dealing with mutual
recursion, but it works only with the possible occurrences of nested alternating fixed-
point operators restricted. This restriction, however, does not affect those nested
fixed-point operators which are of practical use. In contrast to this, the Emerson and
Jutla’s as well as Safra’s algorithms capture the propositional p-calculus to its full
extent, but without mutual recursion. Axiomatics of full propositional p-calculus has
been a longstanding open problem. This problem was solved recently by Walukiewicz

[1993].

Other interesting results concern the expressive power of the p-calculus. One result
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states that the propositional u-calculus is strictly stronger than PDL, even when there
are no nested fixed-point operators available [Kozen, 1983]. One interpretation of this
result is that regular role expressions are by no means an alternative for recursion
in ALC because they are strictly weaker in expressive power. Another result states
that even when PDL is augmented by so-called repeat formulae, full propositional
p-calculus 1s still strictly stronger in expressive power than this extension of PDL.
This result is due to Niwinsky and was reported in [Streett, 1985], page 363. The
interesting point about Niwinsky’s result is that repeat formulae correspond in a one-
to-one fashion to concepts of the form IR“ which we have met before. But then the
question whether the exact meaning of recursion in ALC can always be characterized
in terms of the w-regular role expressions must be answered in the negative.

However, even when enhanced by recursion, ALC is doubtlessly too weak to be
considered as a general purpose representation language. It is not even clear at
all what the representational merits of this description logic are. The definition of
a tree, for instance, can be represented in this setting only partially, not to men-
tion other definitions of practical significance. The integration of a few additional
concept-structuring primitives as successfully carried out in [de Giacomo and Lenz-
erini, 1994b] does not improve the situation in principle. On the other hand, this
limited framework is computationally feasible only in a very weak sense. From the
correspondence with the propositional p-calculus, we know that in this setting sub-
sumption is computable in deterministic exponential time [Emerson and Jutla, 1988,
Safra, 1988]. In this sense, recursion in ALC can be computed at least in principle.
From Chapter 2 it is also known that computing subsumption in this setting requires
for an infinite number of inputs an amount of time at best bounded by a fixed expo-
nential in the size of the input. But this means that even in this limited framework
the basic inference is provably intractable. Even worse, according to [Nebel, 1990b)],
subsumption in the very weakest description logic is tractable only if P is NP, which
is commonly assumed to be false. In technical terms, subsumption is in this mini-
mal setting co-NP-complete. Notably, for this co-NP-result to be valid, only acyclic
terminologies must be taken into account.

Therefore, Chapter 2 left us with a dilemma. On the one hand, the definitional power
of recursion in ALC is by no means strong enough to capture concepts of practical
significance. On the other hand, even in its restrictedness, this framework can be
considered as computationally feasible only with an interpretation of feasible which
is certainly too liberal for most applications.

In Chapter 4 we aimed at squaring this circle. We were encouraged to do so by
Halpern and Vardi’s [Halpern and Vardi, 1991] recent manifesto on model checking
versus theorem proving. In this manifesto they put forward that intractability in
knowledge representation is often caused by the way logical languages are used rather
than by the logics themselves. The traditional way of using logics in knowledge
representation goes back to McCarthy [1968]. Traditional knowledge representation
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uses logics not only to phrase queries, but first and foremost to represent the world
to be modeled itself. Halpern and Vardi pointed out that the need to represent
all facts about the world necessitates the use of very expressive logics. One can
add that particularly the need to represent all those facts which do not hold would
not possible without very expressive logics. But even in very small logics, deciding
logical consequence is mostly intractable, not only in the realm of description logics.
At this very point Halpern and Vardi argued that the intractability inherent in this
traditional approach might be circumvented whenever it is possible to represent the
given world by a single semantic structure rather than by a collection of formulae
denoting a number of such models. In many cases, a representation by a single
semantic structure is not only possible, but also the most natural representation.
If queries are still phrased within some logic, then in this case the answer depends
on whether or not the given semantic structure is a model of the query. This is
to say, it suffices to check whether or not in the given semantic structure the query
evaluates to true. In many cases model checking has tremendous advantages in terms
of computational complexity. An example in support of this is that checking the truth
of arbitrary first-order formulae in a finite semantic structure is decidable though still
intractable in a strict sense [Chandra and Merlin, 1977]. In contrast to this, deciding
logical consequence in full first-order logic is not only intractable but undecidable
[Church, 1936a, 1936b]. Notably, this undecidability result remains valid even with

only finite interpretation domains taken into account [Trahtenbrot, 1963].

The lesson of Halpern and Vardi’s manifesto is that even in undecidable logics, a
type of reasoning can take place which is not only computable in principle, but
also useful. Reasoning of this type resorts to world descriptions consisting of single
semantic structures, not of collections of formulae. Of course, what we thereby lose
is the ability to state only particular aspects of an application domain without giving
a complete description of it.

Although Halpern and Vardi’s manifesto was aimed at knowledge representation as a
whole, it has immediate consequences for description logics. In order to see this, we
have to return to propositional logics of programs. Though not explicitly stated, one
of the motivations of Halpern and Vardi to advocate model checking for knowledge
representation purposes was certainly that in other areas model checking already
proved to be useful. This is particularly true for propositional logics of programs,
a field in which Vardi has been active. Traditionally, logics of programs are also
used in the theorem-proving style to deduce correctness and termination properties
from a formal specification of a program. Recently, it has been observed that these
logics can also be employed to verify properties of specific transition systems such as
finite automatons. A transition system consists of a finite set of states along with a
binary transition relation among states. Of course, transition systems are given by
single semantic structures rather than by formal logical specifications. Especially the
propositional p-calculus proved to be a powerful tool for verifying properties of tran-
sition systems. In this case properties of transition systems are expressed by formulae
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of the p-calculus. Then a check is made whether or not a given transition system
satisfies this property. As far as a slightly restricted fragment of the propositional
p-calculus is concerned, this kind of model checking can be performed even in linear
time. Linear-time upper bounds for model checking in fragments of the propositional
p-calculus were achieved by Emerson and Lei [1986], Arnold and Crubille [1988], as
well as Cleaveland and Steffen [1991]. In each case only the possible occurrences of
nested alternating fixed-point operators have to be restricted so as to achieve a linear
upper bound. But the fact that recursion in ALC can be perfectly captured with
the help of the propositional p-calculus already indicates how tractable reasoning
can take place in this setting too. Incidentally, those fragments of the propositional
p-calculus for which model checking was shown to be tractable are sufficient to cap-
ture practically relevant recursion in ALC. From the description logic’s point of
view, such a type of reasoning presupposes ordinary knowledge bases to be replaced
by single semantic structures. Because semantics structures comprise in Levesque’s
[1986] sense only vivid knowledge, we refer to them in the context of description logics
as vivid knowledge bases. Thus any incomplete knowledge must be abandoned from
knowledge bases if tractability is to be obtained. Although this very restriction is tol-
erable for many application scenarios, ALC’s limitations in expressive power are not
tolerable, even when enhanced by recursion. An important question is then whether
this kind of tractable reasoning under complete knowledge can take place in richer
languages as well. Therefore, we considered in Chapter 3 Patel-Schneider’s [1987]
universal description logic ¢. This description logic is called universal with full right
because it encompasses all concept and role-structuring primitives ever considered
in the literature, except for nonstandard ones such as defaults. ¢/ was then enriched
by least and greatest fixed-point operators similar to those introduced in Chapter 2.
The main complication was to accommodate the notion of formal monotonicity to
deal with the additional concept and role-structuring primitives of ¢/. In particular,
negations implicitly residing in number restrictions of the form 3™, role-value maps,
and structural descriptions had to be taken into account. In analogy to the corre-
sponding extension of ALC, the resulting description logic is called Uu. However, in
contrast to ALCu, U comprises not only fixed-point operators on concepts, but also
those on roles. Notably, fixed-point operators on roles were never considered before.

In Chapter 4 we then investigated the computational complexity of model checking
in a certain fragment Uu. Like AL this fragment restricts only the possible oc-
currences of those nested alternating fixed-point operators which are of no practical
significance. It turned out that model checking can be performed even in this ex-
tremely powerful setting in polynomial time. In particular, it can be performed in
deterministic time bounded above by a fixed polynomial in the sum of the sizes of
the given vivid knowledge base and the query. Interestingly, this tractability result
remains valid even with arbitrary acyclic terminologies taken into account. In this
case it must be guaranteed that the extension of each primitive concept or role is
actually specified by the given vivid knowledge base. This is to say, each concept and
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role name occurring somewhere in the query or in the terminology must be specified
if it is not defined by the terminology.

Our result is significant and new both from the viewpoint of Halpern and Vardi’s
[1991] work on model checking as well as from the description logic’s point of view.
From Halpern and Vardi’s point of view, our result singles out a useful fragment of
first-order logic which gives rise to tractable model checking, even when this frag-
ment is enriched by a general means of recursion. As opposed to the corresponding
tractability results for fixed-point languages based on full first-order logic (see e.g.
[Vardi, 1982]), ours is to be understood in terms of Vardi’s [1982] notion of com-
bined complexily rather than the far weaker notion of data complexity. The crucial
difference between these two different complexity measures is that data complexity
presupposes an arbitrary but fired query and, in the present case, also an arbitrary
but fized terminology, whereas combined complexity does not do so. The difference in
meaningfulness of these two different complexity measures is perhaps best explained
by means of an example. Suppose that we came up with, say, a deterministic lower
and upper time bound of [KB|CUTI+I2) which is not only exponential, but even su-
perexponential in terms of combined complexity. In the sense of data complexity this
would yet be a polynomial upper bound because for fized T’s and Q’s, [KB|CUTI+I2N
actually constitutes a polynomial time bound. It should be obvious that the notion of
data complexity is, therefore, not tailored for terminological reasoning. For it seems
far fetched to presuppose that terminological reasoning takes place with some fixed
terminology or even with some fixed query.

From the description logic’s point of view, our result states that, whenever we are
able to abandon any kind of incomplete knowledge from the knowledge base, we
gain not only tractability, but also a great deal of expressive power that covers every

' Another interpretation

concept and role-structuring primitive one could ask for.
of our tractability result is that the main source of computational complexity of
terminological reasoning is the ability to express incomplete knowledge. This finding
is confirmed by another outcome of Chapter 4 stating that even a quite limited
form of incomplete knowledge by means of what is called a null value in databases
causes co-NP-hardness. This co-NP-hardness result remains valid even without any
nonempty terminology taken into account and additionally with queries restricted
to be some fized query of the standard description logic ALC. This hardness result
holds therefore even in the sense of data complexity. We were yet able to devise an
algorithm capable of dealing with null values soundly though approximately. The
resulting algorithm runs not only in polynomial time, but is also complete whenever
no null value is present.

!The observation that tractability can be gained in principle when abandoning any kind of
incomplete knowledge has been made previously by Donini et al. [1992]. However, their observation
concerns solely a description logic which is very pure in expressive power and does not take any
terminology into account.
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Our tractability result is the only one in existence for terminological reasoning, at
least when nonempty terminologies are are to be taken into account. Despite the
fact that all other tractability results retreat either to description logics which are
extremely pure in expressive power or to nonstandard semantics, all these results
presuppose an expansion process applied to terminologies in advance.” This pro-
cess replaces all occurrences of those concept and role names defined in the given
terminology by the right-hand side of the relevant concept or role introduction; see
Chapter 3.2.5 of [Nebel, 1990a) for details. In the course of such an expansion pro-
cess, however, a terminology may increase by an exponential, so that the overall
upper time complexity bounds obtained by all but our result are still exponential
in nature. In fact, as far as standard terminological reasoning is concerned, Nebel
[1990b] proved that in the presence of terminologies, no tractability result can be
achieved, unless P is NP. This holds even with the expressive power limited to that
of the very smallest description logic.

Not only is the subclass of terminological inferences that we singled out tractable,
but it is also useful. Many examples can be put forward to show this. We have
seen in Chapter 3 that such standard objects as directed acyclic graphs, trees, as
well as binary trees can easily be defined within the setting that we have considered.
In addition, even such involved objects as balanced binary trees and those vertices
of an AND-OR graph for which there exists at least one well-founded solution were
captured as well. It should be clear that any graph or even any finite collection of
graphs can straightforwardly be represented by a single vivid knowledge base. But
then the tractable subclass of terminological inferences that we singled out includes
the retrieval of exactly those graphs being an instance of any of the objects just
mentioned. As vivid knowledge bases are nothing but relational databases, this
means that Ui can serve as a powerful but tractable query language for databases.
But then the question arises how powerful the description logic Uy is compared to
other more traditional database query languages. This issue was also explored in
Chapter 3. It turned out that Uu (and therefore also Upi) is strictly weaker than a
well-known fixed-point query language based on full first-order logic. However, this
is not surprising at all because the latter is in contrast to U still intractable in the
sense of the combined complexity. Of course, tractability cannot be achieved for free.

Of course, abandoning any kind of incomplete knowledge and allowing for an un-
limited use of incomplete knowledge are just two extreme points on a wide-ranged
spectrum. An auspicious compromise was already indicated by another outcome of
Chapter 4 concerning terminological reasoning in a more traditional sense. It states
that ordinary terminological reasoning in Uy becomes a member of co-NP just by
adding a domain-closure axiom, restricting the interpretation domain to a finite num-
ber of individual names. In this case terminological reasoning in Ui has essentially

2This applies to the work on restricted languages carried out by Levesque and Brachman [1987],
Lenzerini and Schaerf [1991], Donini et al. [1991], and Buchheit et al. [1994], but also to Patel-
Schneider’s [1989a] results for nonstandard semantics.
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the computational worst-case complexity which is inherent in the very weakest de-
scription logic. That is, domain-closed reasoning in U is co-NP-complete. From a
practical point of view, especially from the viewpoint of deterministic computations,
this means that in the presence of a domain closure axiom, terminological reasoning
in Ui 1s yet decidable, namely in exponential time.

This proves that enormous expressive power can be gained in return for a simple
domain-closure axiom, while still retaining a worst-case complexity which is essen-
tially not greater than that caused by terminological reasoning in the very weakest
setting. As a matter of fact, requiring the existence of a domain-closure axiom is to
most applications no essential restriction at all. On the other hand, terminological
reasoning seems not to become applicable until an expressive power such as that of
Uil has been attained. Practical algorithms obeying an acceptable average case com-
plexity, however, still await development for terminological reasoning under closed
domains.
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