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Preface

The increasing interest in applying temporal logics in various areas of computer science requires
the development of efficient means that allow to reason within such logics. Usually this is re-
alized by an implementable calculus and indeed remarkable progress has been made in the last
two decades. The approaches developed so far can be roughly divided into two main categories:
Either known techniques are extended to cope with the temporal logic syntax, or translation
techniques into predicate logic are defined which allow to exploit already existing calculi. The
former approach has the advantage that derivations remain within the temporal logic syntax,
whereas the latter approach benefits from many years (in fact decades) of experience gained
in classical logic theorem proving. The approach proposed in this work is based on a particu-
lar translation method into classical first-order predicate logic which utilizes certain interesting
translational invariants. The reader is assumed to have detailed knowledge of automated the-
orem proving and formal logic, in particular classical first-order predicate logic. Although the
itroduction of modal and temporal logics is fairly self-contained at least some knowledge of these
logic areas would be quite helpful.

This work is a dissertation submitted under the same title to the “Universitit des Saarlandes”
in 1995. The research was partly carried out in the framework of the project LOGO under grant
ITS 9102 at the Max Planck Institute for Computer Science, Saarbriicken.
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Zusammenfassung

Das stindig wachsende Interesse an Temporallogiken in zahlreichen Gebieten der Informatik
verlangt nach Methoden, mit deren Hilfe effizient und schnell Schlu$folgerungen in diesen Lo-
giken gezogen werden kénnen. Ublicherweise geschieht dies durch die Entwicklung eines im-
plementierbaren Kalkiils, und tatsichlich wurden in den vergangenen Jahren bemerkenswerte
Fortschritte in diese Richtung erzielt. Die bis heute bekannten Verfahren kénnen grob in zwei
Hauptkategorien eingeteilt werden: Entweder werden schon bekannte Techniken fiir andere Lo-
giken (iiblicherweise klassische Priadikatenlogik erster Stufe) erweitert, um mit der neuen Syntax
zurechtzukommen, oder Ubersetzungstechniken in die Pridikatenlogik werden definiert, welche
es erlauben schon bekannte Kalkiile wiederzuverwenden. Die ersteren Ansétze haben den Vorteil
in der Syntax der Temporallogiken zu verbleiben, was die Lesbarkeit von Beweisen erleichert,
wohingegen die letzteren Anséitze von vielen Jahren — sogar Jahrzehnten — Erfahrung auf dem
Gebiet des klassischen Theorembeweisens profitieren.

Der Ansatz der in dieser Arbeit vorgestellt wird, basiert auf einer bestimmten Ubersetzungs-
methode in die klassische Pradikatenlogik erster Stufe und einem darauf aufbauenden Kalkiil,
der gewisse interessante Ubersetzungsinvarianten ausniitzt. Vom Leser wird erwartet, daf sei-
ne/ihre Kenntnisse in Bezug auf die Prinzipien des automatischen Theorembeweisens iiber einfa-
che Grundkenntnisse hinausgehen. Obgleich die Einfiihrung in die Modal- und Temporallogiken
ausfiihrliche Kenntnisse auf diesen Gebieten nicht ausdriicklich verlangt, wére ein vorangehendes
Einarbeiten in diese Gebiete sicherlich recht hilfreich.

Temporallogik: Syntax und Semantik

Eine geeignete Auswahl an Operatoren fiir die zu behandelnden Temporallogiken ist im wesent-
lichen linguistisch motiviert. So zum Beispiel interessiert man sich fiir die Moglichkeit es wird so
sein, daff ausdriicken zu kénnen, ebenso wie von jetzt ab oder bisher galt bzw. es war so, dafs.
Hinzu kommen einfachere Ausdriicke wie immer, aber auch wesentlich kompliziertere wie z.B.
von ... bis oder seit. Fiir jede dieser Moglichkeiten zeitliche Zusammenhinge zu beschreiben,
wurden logische Operatoren festgelegt, und tatséchlich ist ein Grofteil der in der zeitgendssischen
Literatur zu findenden Temporallogiken durch eine Teilmenge dieser Operatoren bestimmt.

Die Temporallogiken, welche in dieser Arbeit vorgestellt und beziiglich eines geeigneten
Kalkiils untersucht werden, basieren ebenfalls auf den oben informell aufgefiihrten Operatoren
und deren zugehorigen Dualoperatoren. Die komplizierteste Logik darunter, 148t jeden dieser
Operatoren und sogar zahlreiche weitere Varianten zu.

Zunichst zur Symbolik: Die temporallogischen Operatoren werden syntaktisch folgenderma-
Ben unterschieden:
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[rl® bisher galt ® (Gegenwart ausgeschlossen)
[rl.® bisher galt ® (Gegenwart eingeschlossen)

[F]® von jetzt ab gilt & (Gegenwart ausgeschlossen)
[Fl.®  von jetzt ab gilt ® (Gegenwart eingeschlossen)
[a]. ® immer ®

O ® galt (es war so, dafl ®)

®,®  ® gilt oder galt (P, oder es war so, dal ®)

® o es wird so sein, daf§ @

@,JI) ® ist, oder es wird so sein, daf} ®

B, o irgendwann @

dU T & gilt bis U wahr ist

®SU & ist wahr seit U galt

Tatséchlich gibt es noch eine Vielzahl weiterer Operatoren die mit den in dieser Arbeit vor-
gestellten Methoden behandelt werden kénnen. Insbesondere die Operatoren U und S erlauben
je nach Interpretation eine grofie Zahl an Varianten. Einige der obigen Operatoren, wie z.B.
®,, scheinen auf den ersten Blick eher kiinstlich zu sein als linguistisch motiviert. Tatséchlich
tragen diese nur eine geringe eigenstindige Bedeutung. Sie entstehen vielmehr nur aufgrund von
Dualititsbetrachtungen (®, = —[F],—). Die eigentliche Bedeutung von &, liegt also in es ist
nicht der Fall, daf$ bisher nicht.

Die Sprache der Temporallogiken bezieht sich auf klassische Ausdriicke in Verbindung mit
den oben genannten Operatoren, so dafl z.B. eine Formel der Art

vz [ P(z) A (Q U S(z))

eine temporallogische Formel darstellt. Bedeutung erhalten derartige Formeln unter sogenannten
temporallogischen Interpretationen, welche Informationen iiber Zeitpunkte und deren Beziehung
untereinander tragen und fiir jeden Zeitpunkt gewisse lokale klassische Interpretationen bereit-
stellen. So z.B. gilt eine Formel & ® in einer gegebenen Interpretation Sy, zum Zeitpunkt ¢ als
wahr, wenn es einen spiiteren Zeitpunkt ¢/ als ¢ gibt, zu dem ® beziiglich S, wahr ist. Etwas
komplizierter gestaltet sich dies fiir Until- und Since-Operatoren. ® U V¥ gilt als wahr zum Zeit-
punkt ¢ (in der Interpretation Sr,), falls ¥ unter Sy, zu einem spéteren Zeitpunkt als ¢ wahr
ist und in der Zwischenzeit (d.h. fiir alle dazwischenliegenden Zeitpunkte) ® unter Iy, gilt.

Relationale Ubersetzung

Die obige Semantik erlaubt nun eine direkte Ubersetzung in die Pridikatenlogik erster Stufe
und zwar wie auf folgende Art und Weise exemplarisch dargestellt

[@,«]u =Jwv<uA[P],

wobei die speziellen Eigenschaften der Relation < noch zu spezifizieren sind. So zum Beispiel
werden dieser Relation in der Logik K;T4.3’ die Eigenschaften der Reflexivitdt, der Transitivitét
und der Rechtslinearitit zugesprochen.

Eine solche Ubersetzung ist im allgemeinen durchaus anwendbar, allerdings stellt es sich
schnell heraus, daB schon sehr einfache Theoreme aufgrund der Ubersetzung aber auch durch
die recht komplizierte Theorie der gegebenen Ordnungen von iiblichen Theorembeweisern kaum
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mehr geeignet behandelt werden kénnen. Dieser Umstand verlangt nach Alternativen, und eine
solche Alternative findet man in der semi-funktionalen Ubersetzung.

Semi-funktionale Ubersetzung

Thren Ursprung hat die semi-funktionale Ubersetzung in der sogennanten funktionalen Uberset-
zung wie sie u.a. von Hans Jiirgen Ohlbach vorgestellt wurde. Die grundsitzliche Idee dahinter
ist, die Verantwortung der Relationen, die durch die Ubersetzung eingefiihrt wurden — im obigen
Beispiel die Relation < — auf eine Menge von geeigneten Funktionen zu iibertragen und zwar
derart, dafl eine Folge von Relationen durch eine Schachtelung derartiger Funktionen simuliert
wird. Daf} eine solche Idee verwirklicht werden kann, ist beweisbar, indem gezeigt wird, daB fiir
jede beliebige (seriale) Relation R auf 7 x 7 — wobei 7 hochstens abzidhlbar viele Elemente
enthilt — eine hochstens abzdhlbar grole Menge Fr von (totalen) Funktionen existiert, sodaf}
gilt
Vu,v R(u,v) < 3f € Fr f(u) =v

Eigentlich ist es dabei nicht unbedingt erforderlich von einer Menge von Funktionen zu sprechen;
stattdessen kann die rechte Seite der obigen Aquivalenz ebenso durch 3z u:z = v ausgedriickt
werden, wobei das Symbol ,: “ eine Funktion in Infixnotation darstellt. Diese Aquivalenz 1iBt
sich nun auf zweierlei Arten ausniitzen: Man kann jedes Vorkommen von R-Literalen in der Uber-
setzung einer noch zu beweisenden modallogischen Formel durch eine Gleichung (positiv oder
negativ) ersetzen, oder aber man tut dies nur fiir bestimmte Vorkommen von R-Literalen, z.B.
fiir alle positiven Vorkommen. Der erstere Ansatz miindet in der funktionalen, der letztere in der
semi-funktionalen Ubersetzung. Beide Verfahren haben gegeniiber der relationalen Ubersetzung
den grofien Vorteil, dafl das Ergebnis nach Klauselnormalformbildung nicht unnétig stark in der
Anzahl der Klauseln wichst, wobei bei der rein funktionalen Ubersetzung auBerdem die Linge
der Klauseln stark verringert wird. Das sehr kompakte Ergebnis, das die funktionale Uberset-
zung liefert, ist der wesentliche Vorteil dieses Verfahrens. Bezahlt werden muf} dieser Gewinn
allerdings dadurch, daf§ die Hintergrundtheorien fiir die verschiedenen Modallogiken mit Hilfe ei-
ner Gleichungstheorie beschrieben werden miissen. So z.B. erhélt man als Hintergrundtheorie fiir
die Modallogik S4 nicht mehr die Reflexivitit und die Transitivitit der Erreichbarkeitsrelation,
sondern statt dessen zwei Gleichungen der Form

Vudru:z=u
Yu,z,y Jzu:z =u:x:y

Derartige Gleichungssysteme (die fiir verschiedene Modallogiken beliebig komplex werden kon-
nen) sind im allgemeinen sehr schwierig zu handhaben. Aus diesem Grunde wird hiufig versucht
in Fillen, in denen diese Theorie nur aus Unit-Gleichungen besteht, diese in einen geeigneten
Theorie-Unifikationsalgorithmus zu iibertragen. Mit Erfolg angewendet wurde dieses Verfahren
bei den meisten Modallogiken deren Hintergrundtheorie sich aus einer Teilmenge der Eigenschaf-
ten Reflexivitit, Serialitit, Transitivitdt, FEuklidizitit und Symmetrie beschreiben 148t.

Die so beschriebene Vorgehensweise ist nicht diejenige, welche in der vorliegenden Arbeit
verfolgt wurde, da insbesondere in den Temporallogiken, aber auch in vielen interessanten Mo-
dallogiken, die Hintergrundtheorie nicht durch eine Menge von Unit-Gleichungen dargestellt
werden kann und somit die Moglichkeit, diese Hintergrundtheorie in eine geeignete Theorie-
Unifikation zu transponieren, nicht mehr gegeben ist. Ohne diese Moglichkeit ist es allerdings
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fiir jeden Theorembeweiser fast unméglich auch nur sehr einfache modallogische Theoreme zu
beweisen, und man ist somit gezwungen nach anderen Lésungsméglichkeiten zu suchen.

Die semi-funktionale Ubersetzung stellte sich als interessante Alternative zur funktionalen
Ubersetzung heraus und zwar nicht nur in Bezug auf diejenigen Logiken, fiir die die funktionale
Ubersetzung keine Theorie-Unifikation zulift, sondern auch in Fillen, in denen eine Theorie-
Unifikation durchaus vorstellbar ist und vielleicht sogar schon entwickelt wurde. Die grundsétz-
liche Idee hinter der semi-funktionalen Ubersetzung liegt darin, nur einen Operatortyp (die -
Operatoren) relational, den anderen Operatortyp hingegen (also die {-Operatoren) funktional
zu iibersetzen. Der scheinbare Nachteil dieses Ansatzes, ndmlich, dafl zwar die Anzahl der Klau-
seln gegeniiber des funktionalen Ansatzes nicht erhéht wird, wohl aber die Lange der Klauseln,
wird dadurch wieder wettgemacht, dafl die Hintergrundtheorie fiir die verschiedenen Modallogi-
ken nicht mehr durch Gleichungssysteme zu beschreiben sind, sondern sich im wesentlichen aus
der rein relationalen Ubersetzung iibernehmen lassen. Ein weiterer wesentlicher Vorteil dieses
semi-funktionalen Ansatzes liegt in einer einfachen syntaktischen Invariante begriindet, welche
sich aus dieser Ubersetzung ergibt. Man kann nimlich zeigen, daff das Ergebnis der Uberset-
zung einer beliebigen modallogischen Formel keine Vorkommen von positiven R-Literalen mehr
enthilt. Diese Ubersetzungsinvariante liBt sich auf interessante Art und Weise verschiedent-
lich ausniitzen. Zum einen erlaubt sie es in vielen Féllen die Nicht- Axiomatisierbarkeit gewisser
Eigenschaften der Erreichbarkeitsrelationen zu beweisen. Als ein einfaches Beispiel sei hier die
Irreflexivitit genannt. Dadurch, daB das Ubersetzungsergebnis keine positiven R-Literale enthal-
ten kann, miissen sich alle iiberhaupt vorkommenden positiven R-Literale in der Hintergrund-
theorie der gegebenen Modallogik aufhalten. Die einfachste Hintergrundtheorieklausel, welche
in jeder serialen Modallogik vorkommt, besteht aus der Unit-Klausel R(u,u: z). Diese Klausel
driickt nichts anderes aus, als daf} alles, was von einer beliebigen Funktion z angewendet auf die
Welt v aus zu erhalten ist, auch schon von R erreicht werden kénnte und spiegelt somit eine
der beiden Richtungen der anfinglich genannten Aquivalenz wider. Es ist also so, da8 fiir die
einfachste seriale Modallogik KD nur ein einziges positives R-Literal betrachtet werden mufl —
namlich R(u,u: ) — und zwar vollig unabhéngig davon, welches Theorem zu beweisen ist. Somit
wire diese eine Unit-Klausel der einzig mogliche Resolutionspartner fiir die Irreflexivititsklau-
sel. Allerdings ist zwischen diesen beiden Literalen kein Resolutionsschritt méglich und somit
kann die Irreflexivitdtsklausel nicht zu einer moglichen Widerlegung der gegebene Klauselmenge
beitragen. Wére nun also die Irreflexivitit axiomatisierbar, dann gibe es auch Formeln, deren
Beweisbarkeit von der Irreflexivitit abhingt. Allerdings haben wir erkannt, dafl die Beweisbar-
keit keiner Formel von der Irreflexivitit abhingen kann und somit ist die Irreflexivitét nicht
axiomatisierbar. Diese Argumentation 148t sich nun auf beliebige Eigenschaften von Erreichbar-
keitsrelationen erweitern, sofern diese Eigenschaften mit der Unit-Klausel R(u,u: z) konsistent
sind und nur aus negativen R-Literalen bestehen. Keine solche Eigenschaft 1d8t sich also axio-
matisieren. Dieses Ergebnis ist eine der Folgen der semi-funktionalen Ubersetzungsidee. Bisher
konnten dhnliche Teilergebnisse nur aufgrund von komplizierten modelltheoretischen Betrach-
tungen gewonnen werden.

Solche Aussagen beziiglich der Nicht-Axiomatisierbarkeit von Eigenschaften der Erreichbar-
keitsrelationen treffen zu konnen, ist nur ein Vorteil des semi-funktionalen Ansatzes. In Bezug
auf die praktische Verwendbarkeit beim automatischen Theorembeweisen fiir Modallogiken er-
gibt sich allerdings ein noch wesentlich interessanterer Vorteil, die Moglichkeit der partiellen
Saturierung von Hintergrundtheorien.
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Partielle Saturierung von Hintergrundtheorien

Unter der partiellen Saturierung einer Hintergrundtheorie ist das Berechnen aller herleitbaren
Konsequenzen aus der gegebenen Theorie zu verstehen. Dabei wird angenommen, dafl diese
Hintergrundtheorie all das widerspiegelt, was iiber ein bestimmtes Pridikat bekannt ist. Damit
wire es also moglich, die Saturierung der Theorie anstelle ihrer selbst zum Beweis eines Theo-
rems zu verwenden. Unumginglich ist dabei allerdings, dal das zu beweisende Theorem keine
weiteren Aussagen beziiglich des durch die Theorie beschriebenen Pridikates macht. Allerdings
ist eine solche Saturierung im allgemeinen unendlich grof, sodaf} sich die Frage des Ersetzens
der Theorie durch ihre Saturierung eigentlich nicht stellt. Dennoch kann das Berechnen einer
Saturierung (mit Hilfe von Formelschemata) sehr niitzlich sein, ndmlich dann, wenn es gelingt
eine Formelmenge zu finden, die in gewisser Form ,einfacher® ist als die urspriingliche Hinter-
grundtheorie, aber dennoch die gleiche Saturierung besitzt. In diesem Falle ist es mdoglich, die
Hintergrundtheorie durch die alternative Formelmenge zu ersetzen und zwar ohne daf sich etwas
an der Erfiillbarkeit oder Unerfiillbarkeit der gegebenen Gesamtformelmenge dndert.

Diese grundsétzliche Idee 148t sich nun auf die Modal- und Temporallogiken iibertragen.
Mit dem Wissen, dafl die einzigen Vorkommen von positiven R-Literalen in der modallogischen
Hintergrundtheorie liegen und diese charakteristisch ist fiir die Logik in der man rechnen mé&chte
(und nicht etwa fiir das zu beweisende Theorem), kann also die Hintergrundtheorie durch ihre
eigene Saturierung ersetzt werden. Dies sei zunichst anhand einer einfachen Modallogik, ndmlich
5S4, beschrieben.

Die Hintergrundtheorie fiir S4 nach semi-funktionaler Ubersetzung lautet

R(u,u)
R(u,u:x)
R(u,v) A R(v,w) = R(u,w)

D.h. S4 ist dadurch charakterisiert, dal die zugehorige Erreichbarkeitsrelation sowohl reflexiv als
auch transitiv ist. Die zusétzliche Unit-Klausel R(u,u: z) stammt aus der Ubersetzung und ist
bei jeder serialen Modal- oder Temporallogik hinzuzufiigen. Wichtig ist, festzuhalten, dafl diese
Klauseln tatsichlich unser gesammtes Wissen in S4 darstellen das wir iiber R haben, da die Uber-
setzung einer beliebigen modallogischen Formel keinerlei positive R-Literale erzeugen wird. Man
kann sich nun recht leicht davon iiberzeugen, dafl die Saturierung dieser S4-Hintergrundtheorie
aus allen Unit-Klauseln der Form R(u,u:z1:22: ... :x,) mit n > 0 besteht. Offensichtlich ist
diese Saturierung unendlich grof}, allerdings ist es durchaus moéglich, eine alternative Klausel-
menge zu finden, die in gewisser Weise einfacher ist als die S4-Hintergrundtheorie und dennoch
die gleiche Saturierung erzeugt. Eine solche alternative Klauselmenge besteht aus

R(u,u)
R(u,v) = R(u,v:x)

Es ist somit moglich, statt der originalen S4-Hintergrundtheorie diese einfachere Theorie zu ver-
wenden, ohne daf} die Erfiillbarkeit oder Unerfiillbarkeit einer gegebenen Formel darunter leidet.
Man beachte, dafl die Méglichkeit der Saturierung einer modallogischen Hintergrundtheorie bei
der relationalen Ubersetzung nicht besteht, da in diesem Falle nicht davon ausgegangen werden
kann, dafl die einzig positiven R-Literale sich nur in der fiir die Modallogik charakteristischen
Hintergrundtheorie befinden. Die relationale Ubersetzung erzeugt durchaus weitere positive R-
Literale, néimlich durch die Ubersetzung von ¢-Formeln.
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Eine weitere duflerst interessante Eigenschaft, die zwar nicht nur im Falle der semi-funktio-
nalen Ubersetzung gilt, sich dort allerdings besonders angenehm auswirkt, ist die sogenannte
Konnektiertheit von Frames. Diese Eigenschaft driickt sich dadurch aus, daf} es ausreicht, nur
solche Welten zu betrachten, die von einer gegebenen Anfangswelt aus iiber die reflexive und
transitive Hiille der Erreichbarkeitsrelation zu erreichen sind. Unter der semi-funktionalen Uber-
setzung bedeutet dies, dafl beliebige Welten durch Terme der Art v:z1: ... : x} ersetzt werden
konnen, wobei k > 0 ist und jedes z; ein beliebiges Element aus Fr darstellt. So zum Beispiel
erhélt man nach Saturierung der Hintergrundtheorie fiir die Modallogik S5 alle Unit-Klauseln
der Art R(u:z1: ... :Zp,uiy1: ... Yp) mit n,m > 0 und somit unter der Konnektiertheitsei-
genschaft die wesentlich vereinfachte Form R(u,v), d.h. die universelle Relation. Auf diese Weise
lassen sich hiufig recht komplizierte Hintergrundtheorien, wie z.B. die der Modallogik KD45,
zu wenigen, oder wie im Falle von KD45, zu einer einzigen Unit-Klausel — ndmlich R(u,v:z) —
reduzieren.

Als ein weiteres Beispiel, diesmal einer Temporallogik, betrachten wir K; T4.30K;D4.3’, die
komplizierteste der in dieser Arbeit betrachteten Temporallogiken. Thre Axiomatisierung besteht
aus 18 temporallogischen Axiomen und die dadurch beschriebene Hintergrundtheorie (nach ei-
nigen offensichtlichen Vereinfachungen) aus 13 Klauseln mit insgesamt 34 Literalen. Alle diese
Literale sind entweder R-Literale oder Gleichheitsliterale und es ist unmittelbar einsichtig, daf
der Suchraum, der durch diese Hintergrundtheorie getffnet wird, immens grof} ist und tatséchlich
von gingigen allgemeinen Theorembeweisern kaum mehr gehandhabt werden kann. Nach Satu-
rierung und Anwendung der Konnektiertheitseigenschaft ergibt sich allerdings eine Hintergrund-
theorie, die nur noch aus 8 Klauseln mit nurmehr 14 Literalen besteht.

Eine weitere interessante Anwendung der semi-funktionalen Ubersetzung findet sich in der
Behandlung von aufsteigenden, absteigenden oder auch beliebig variierenden Doméne bei der
Behandlung von Modal- und Temporallogiken der ersten Stufe. Die Annahme der konstanten
Doméne garantiert, dal Objekte, iiber die in einer Welt gesprochen werden kann, auch in allen
anderen Welten zur Verfiigung stehen. In aufsteigenden Doménen wird hingegen angenommen,
dafl zumindest keine Objekte ,,verloren“ gehen und in absteigenden Doménen, daf in erreich-
baren Welten keine neuen Objekte hinzukommen. Derartige Aussagen werden auf Modellebe-
ne durch gewisse zusitzliche Annahmen iiber die semantischen Eigenschaften von Quantoren
reprisentiert. Diese konnen darauthin dhnlich wie Modaloperatoren gehandhabt werden, d.h.
die Ubersetzung eines Allquantors (Existenzquantors) entspricht im wesentlichen der Uberset-
zung eines (J-Operators (¢-Operators), wenn auch mit einer anderen , Erreichbarkeitsrelation®.
Dies ist am Beispiel einer einfachen Modallogik ausgefiihrt. Die Erweiterung auf kompliziertere
Modal- und Temporallogiken ist danach offensichtlich.

Obgleich man im allgemeinen durch die oben genannten Verfahren eine signifikante Verbes-
serung erhilt, ist es dennoch durchaus mdglich, noch weitere Verbesserungen zu finden. So z.B.
wird gar nicht erst nach alternativen Hintergrundtheorien Ausschau gehalten, sondern direkt
versucht, die berechneten Saturierungen in geeigneten Inferenzregeln widerzuspiegeln. Auf diese
Weise kann mit logikspezifischen Inferenzregeln gearbeitet werden und es ist iiberhaupt nicht
mehr notig, mit komplexen Hintergrundtheorien umgehen zu kénnen.
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Von Saturierungen zu Inferenzregeln

Zur Erlduterung betrachten wir noch einmal die Modallogik S4, die sich ihrer Einfachheit
wegen besonders gut als einleitendes Beispiel eignet. Wie schon vorher erwihnt, ist die S4-
Hintergrundtheorie durch die Unit-Klauseln der Form R(u,u:z1: ... :z,) beschrieben. Offen-
sichtlich kann also ein beliebiges negatives R-Literal genau dann mit einem Element dieser
Saturierung resolviert werden, wenn dieses negative R-Literal von der Art ist, dafl das erste
Argument mit einem Prifix des zweiten Argumentes unifizierbar ist. Diese Beobachtung fiihrt
unmittelbar zu einer geeigneten Inferenzregel, nimlich

-R(a,B:7) VvV C
oC

wobei ¢ den allgemeinsten Unifikator von o und 8 bezeichnet und G: v darstellen soll, dafl der ge-
gebene Term aufgespalten werden kann in einen Préfix § und einen Suffix . Die Korrektheit die-
ser Regel ergibt sich unmittelbar aus dem Wissen um die Saturierung der S4-Hintergrundtheorie.
Thre Vollstandigkeit — im Zusammenspiel mit der klassischen Resolution und Faktorisierung —
verlangt allerdings ein gewisses trickreiches Vorgehen. Dies liegt darin begriindet, daBl zwar
jede Anwendung dieser Regel einer Folge von Resolutionsschritten mit der alternativen S4-
Hintergrundtheorie entspricht, nicht so aber umgekehrt. In gewisser Weise realisiert diese In-
ferenzregel also eine bestimmte Strategie auf den moglichen Resolutionsschritten mit der Hin-
tergrundtheorie. Der Vollstindigkeitsbeweis fiir dieses Inferenzsystem ist somit eigentlich ein
Vollstéindigkeitsbeweis fiir eine bestimmte Resolutionsstrategie.

Auf analoge, wenn auch wesentlich kompliziertere Weise, lassen sich auch komplexere Modal-
und Temporallogiken behandeln. So zum Beispiel besteht das Inferenzsystem fiir die schon oben
genannte Temporallogik K; T4.3®K;D4.3’ aus 7 zusétzlichen Regeln, die alle aus der Saturierung
der K;T4.3®0K;D4.3’ Hintergrundtheorie entstanden sind.

Zur funktionalen Ubersetzung

Wie eingangs schon erwihnt hat die funktionale Ubersetzung — insbesondere in Bezug auf die
Temporallogiken — den Nachteil, daf} die Hintergrundtheorie in Gleichungsform wiedergegeben ist
und sich deswegen nur sehr schwer handhaben li8t. Eigentlich geschieht der funktionalen Uber-
setzung bei dieser Behauptung unrecht, da dieser Effekt gar nicht direkt an der Ubersetzung
liegt, sondern von der strikten Ersetzung der R-Literale auch innerhalb der Hintergrundtheo-
rie herriihrt. Tatséichlich ist es durchaus moglich, die funktionale Ubersetzung fiir Formeln zu
wihlen und dennoch das oben erwihnte Inferenzsystem zu verwenden. Allerdings ist es dann
auch notig, die Unifikation und die Anwendung von Substitutionen etwas zu verdndern. So
z.B. sind dann zwei beliebige Terme der Art a:z und [ unifizierbar unter der Substitution
x/a ~ (. Intuitiv soll ein solcher Ausdruck ausdriicken, dafl  durch etwas ersetzt werden soll,
das, angewendet auf «, zu § fithrt. Die Anwendung einer solchen Substitution erzeugt dabei ein
Residuum welches den Fall abdeckt, daf3 8 iiberhaupt nicht von « aus erreichbar ist. So z.B.
entsteht aus einem Literal der Form P(«a:x) nach Anwendung der obigen Substitution die (be-
dingte) Instanz —R(a, B) V P((), d.h. falls § von « aus erreichbar ist, dann gilt P(3) (da z dann
geeignet instanziiert werden kann). Auf diese Weise arbeitet man eigentlich mit der funktiona-
len Ubersetzung, erzeugt allerdings hin und wieder R-Literale als Residuen, die wiederum mit
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Hilfe des fiir diese Logik bestimmten Inferenzsystems behandelt werden kénnen (gegebenenfalls
muf der Begriff des allgemeinsten Unifikators um die obige Instanziierungsmoglichkeit erweitert
werden). Einige Inferenzschritte, die nach semi-funktionaler Ubersetzung méglich waren, werden
dadurch ausgeschlossen. Der Gewinn ist dabei dennoch nicht ganz so spektakulir wie bei den
vorangegangenen Verbesserungen, und deshalb wurde dieses Verfahren nur fiir einfache Modal-
logiken untersucht. Die Anwendung auf kompliziertere Modal- und Temporallogiken ist danach
allerdings offensichtlich.

Behandelte Logiken

Fiir jede der in dieser Arbeit behandelten Logiken gilt im wesentlichen die gleiche Vorgehens-
weise, d.h. zunéchst wird aus der Axiomatisierung der jeweiligen Logik die Hintergrundtheorie
ermittelt, diese wird dann saturiert und das Ergebnis dieser Saturierung wird danach in eine
geeignete Inferenzregel gegossen. Die Korrektheit dieser Inferenzregeln ergibt sich dabei fast
unmittelbar aus der Saturierung der Hintergrundtheorie. Die Vollstdndigkeit hingegen verlangt
hiufig ein tiefergreifendes Vorgehen. Die jeweiligen Beweise sind fiir jede der behandelten Logi-
ken durchgefithrt worden.

Das Hauptinteresse in dieser Arbeit galt den Temporallogiken. Dennoch ist das vorgestellte
Verfahren auch (und im besonderen) fiir die Behandlung von Modallogiken geeignet. Diese be-
sitzen hiufig eine weniger aufwendige Axiomatisierung als die Temporallogiken und eignen sich
schon aus diesem Grunde besonders als einleitende Beispiele zur Demonstration der vorgestellten
Techniken. Die folgenden Modallogiken wurden in dieser Arbeit untersucht:

K keine besonderen Eigenschaften

KD Serialitit

KB Symmetrie

KT Reflexivitit

K4 Transitivitéit

K5 Euklidizitat

KDB Serialitdt und Symmetrie

KD4 Serialitdt und Transitivitit

KD5 Serialitidt und Euklidizitét

K45 Transitivitiat und Euklidizitéit

KD45 Serialitat, Transitivitdt und Euklidizitat

S4 Reflexivitit und Transitivitdt

S5 Reflexivitit, Symmetrie und Transitivitit
S54.2 Reflexivitit, Transitivitit und Konfluenz

54.3 Reflexivitét, Transitivitdt und Rechtslinearitéit
KD4.38’ Serialitit, Transitivitdt und schwache Rechtslinearitét
S4F Reflexivitéit, Transitivitdt und , Separiertheit*
S4eKD4 Kombination von S4 und KD4

S4.3®KD4.3° Kombination von S4.3 und KD4.3’

Interessanterweise stellte sich bei einigen dieser Modallogiken heraus — z.B. S5, KD5, KD45,
KDB - daf die Hintergrundtheorie nach semi-funktionaler Ubersetzung und Saturierung un-
ter der Konnektiertheitseigenschaft sich zu wenigen (manchmal auch nur einer einzigen) Unit-
Klauseln reduzieren 148t. Fiir derartige Theorien ist es dann selbstversténdlich nicht nétig eigens
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Inferenzregeln zu bestimmen; sie k6nnen direkt in die semi-funktionale Ubersetzung einbezogen
werden.

Temporallogiken, die in dieser Arbeit behandelt wurden, sind die folgenden:

K; keine besonderen Eigenschaften

K:D Serialitét

K;D4 Serialitét und Transitivitét

K; T4 Reflexivitit und Transitivitit

K;T4.3 Reflexivitit, Transitivitdt und Rechts- Linkslinearitét

KiD4.3’ Serialitat, Transitivitdt und schwache Rechts- Linkslinearitét

K:D4dK; T4 Kombination aus K;D4 und K;T4

K;T4.30K;D4.3’ Kombination aus K;D4.3’ und K;T4.3

K; Intervallogik mit Monotonie

K; Intervallogik mit Monotonie, Reflexivitit, Transitivitdt (und Konvexitét)

Zusétzlich zu diesen Temporallogiken wurden weitere Temporaloperatoren betrachtet, deren
Hinzufiigen nichts an der zugrundeliegenden Zeitstruktur dnderten und dennoch von einigem
Interesse sind. Unter diesen Operatoren finden sich z.B. Immer und verschiedene Varianten von
von ... bis und seit.

Vergleich zu gingigen Verfahren

Die in der zeitgenossigen Literatur mit dem hier vorgestellten Verfahren am engsten verwandten
Methoden kénnen in der relationalen Ubersetzung und der rein funktionalen Ubersetzung wie-
dergefunden werden. Erstere hat den groflen Nachteil, dal schon recht einfache Theoreme durch
die Ubersetzung derartig aufgebliht werden, daB kein giingiger Theorembeweiser mit ihnen fer-
tig wiirde. Letztere vermeiden zwar diesen Nachteil, allerdings wird die Hintergrundtheorie mit
Hilfe eines Gleichungssystems beschrieben, welches sich im allgemeinen nicht in einen geeigneten
Theorie-Unifikationsalgorithmus einbinden 1i8t. So z.B. wird in der funktionalen Ubersetzung
aus der schwachen Rechtslinearitét fiir die Logik KD4.3’

u: f(u,v) =vVu=vVo:g(u,v) =u

d.h. eine Klausel, die insbesondere in Kombination mit der aus der Transitivitit stammenden
Unit-Gleichung u: h(u,u: z,u:z:y) = u:z:y, jeden Beweiser in sehr groBe Schwierigkeiten
bringt. Derartige Probleme mit der Gleichheitsbehandlung werden im semi-funktionalen Ansatz
grofitenteils vermieden. Der Fairness halber sollte allerdings erwédhnt werden, dafl dies auch
nicht ganz umsonst geschieht; die stattdessen eingefiithrten Inferenzregeln, wie z.B. die KD4.3’
Inferenzregel, kbnnen durchaus an sehr vielen Stellen einer gegebenen Klauselmenge angreifen.
Dies geschieht allerdings gezielter als im rein funktionalen Ansatz.

Der Vergleich der hier vorgestellten Methode mit génzlich anderen Inferenzmethoden fiir
Temporallogiken ist nicht ganz einfach. Als Beispiel seinen hier typische Tableau- und Sequenzen-
Kalkiile erwdhnt, die sich nur unwesentlich voneinander unterscheiden. Tableau-Systeme eignen
sich insbesondere fiir Modallogiken wie z.B. KT oder S4, da sich die Axiomatisierung dieser
Logiken fast unmittelbar in den Tableauregeln widerspiegelt. Eine typische Tableauregel fiir S4
lautet daher

QA,0A, 0T, 0
A, 00
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Diese Regel ist informell etwa so zu interpretieren: Durch ¢ A wird die Existenz einer Nachfol-
gewelt garantiert, in der A gilt. In allen Nachfolgewelten miissen die Formeln aus I' gelten und
aufgrund der Transitivitdt wird sogar CI" zu iibernehmen sein. Der klassische Anteil €2, sowie
das Wissen um andere erreichbare Welten (QA), kann dabei ignoriert werden, da in S4 Struk-
turen keinerlei Zusammenhénge zwischen verschiedenen erreichbaren Welten existieren miissen.
Diese obige Regel spiegelt also im wesentlichen die Transitivitit der Erreichbarkeitsrelation in
S4 wider. Problematischer wird der Tableau-Ansatz fiir rechtslineare Erreichbarkeitsrelationen,
wie sie typischerweise in Temporallogiken vorkommen. In diesem Fall reicht es nicht aus, eine
geeignete ¢-Formel auszuwihlen und die anderen einfach zu ignorieren. Die Rechtslinearitit
macht ndmlich gewisse Aussagen iiber die Zusammenhinge verschiedener Welten; insbesondere
garantiert sie, daf} zwei beliebige erreichbare Welten vergleichbar sind. Dies hat zur Folge, daf} fiir
zwei gegebene ¢-Formeln zu unterscheiden ist, welche ,zuerst® wahr wird. Beide Moglichkeiten
miissen betrachtet werden, und somit werden zwei ¢-Formeln eine Verzweigung des Tableaus in
zwei Folgeidste erzwingen. Dies ist fiir nur zwei ¢-Formeln noch nicht allzu aufwendig. Hat man
aber mehrere solcher Formeln im aktuellen Tableau, ist jede mogliche Reihenfolge zu beriicksich-
tigen. Dies hat zur Folge, daf§ bei n ¢-Formeln eine Verzweigung in n! (in Worten: n Fakultit)
Aste zu betrachten ist; ein ganz erheblicher Aufwand, vorausgesetzt, die zu beweisende Formeln
ist nicht trivial. Im Falle der schwachen Rechtslinearitit verschlimmert sich dieser Nachteil sogar
noch, da dann fiir je zwei {-Formeln eine Verzweigung in jeweils drei Aste zu betrachten ist.

Auch diese Problematik ist im vorliegenden Ansatz wesentlich abgeschwécht. Als typisches
Beispiel betrachten wir die folgende Formelmenge

O(Pl A |:|—|P2)
O(PQ A D—|P3)
O(Pp—1 ANOP,)
O(Pn A D—|P1)

Fiir jedes n > 1 ist diese Formelmenge S4.3-unerfiillbar und nach den vorherigen Betrachtun-
gen hat ein Tableaukalkiil n! Aste zu iiberpriifen (wobei jeder dieser Aste durch S4 Regeln
geschlossen werden kann). Dies bedeutet selbstverstandlich einen exponentiell grolen Aufwand
betreiben zu miissen. Im semi-funktionalen Ansatz entstehen zunichst 2 x n Klauseln und mit
Hilfe von n Reolutionsschritten (nidmlich gerade denen auf den P;-Literalen) entsteht eine aus
n Unit-Klauseln bestehende unerfiillbare Klauselmenge. Diese Klauselmenge beschreibt einen
sogenannten ,,Zykel“ und die S4.3 Inferenzregeln sind gerade dazu da, einen Zykel der Linge n
in einen Zykel der Linge n — 1 zu iiberfithren. Nach insgesamt 2 x n Inferenzschritten wird also
eine Widerlegung gefunden; eine wesentliche Beschleunigung gegeniiber der Tableaumethode.

Intervallogiken

Obgleich der hier vorgestellte Ansatz eigentlich zur Anwendung auf punkt-orientierte Zeitlo-
giken gedacht ist, ist die angebotenene Vorgehensweise keineswegs nur auf derartige Logiken
beschrinkt. In Intervallogiken betrachtet man gewisse Zeitrdume (eben Intervalle) anstelle von
Zeitpunkten und interessiert sich fiir die Beschreibung von Ereignissen und nicht mehr unbe-
dingt von augenblicklichen Situationen. Dabei unterscheidet man zwischen Logiken, in denen
die Beschreibung solcher Zeitrdume durch feste Grenzen (Zeitpunkte) gegeben ist und solchen
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Logiken, in denen Intervalle als die eigentlichen Primitive angesehen werden (und somit der
Begriff des Zeitpunktes keine Bedeutung mehr hat).

Beide Ansiitze lassen sich mit der in dieser Arbeit vorgestellten Methode behandeln. Im erste-
ren Falle ist es problemlos moglich, eine geeignete (semi-funktionale) Ubersetzung zu definieren,
die den geforderten Anspriichen geniigt; im letzteren Falle kann aufgrund der Axiomatisierung
eine Hintergrundtheorie bestimmt werden, die nach Saturierung und Transformierung in geeig-
nete Inferenzregeln sich ebenfalls der semi-funktionalen Ubersetzung nicht verschlieBt, ja sogar
ein einfaches und kompaktes Inferenzsystem zuléflt. Dies ist exemplarisch anhand von Interval-
logiken von Humberstone und von van Benthem aufgezeigt.

Einschrinkungen

Prinzipiell anwendbar ist der hier vorgestellte Ansatz fiir alle Modal- und Temporallogiken deren
Frame-Eigenschaften sich in der Pridikatenlogik erster Stufe beschreiben lassen. Damit ist auch
schon eine der gesetzten Schranken offensichtlich: Eigenschaften der Erreichbarkeitsrelation die
nicht pridikatenlogisch erfat werden kénnen, sind mit diesem Ansatz auch nicht handhabbar.
Beispielsweise betrachtet man in der Anwendung von Temporallogiken in der Programmverifi-
kation gerne diskrete Zeitstrukturen, in denen gewéhrleistet ist, dal zwischen zwei beliebigen
Zeitpunkten nur endlich viele andere Zeitpunkte liegen kénnen. Diese Eigenschaft ist nicht pradi-
katenlogisch beschreibbar und entzieht sich somit auch dem hier vorgestellten Ansatz.

Allerdings kénnen auch dann Probleme auftreten, wenn alle Eigenschaften der betrachte-
ten Erreichbarkeitsrelationen durch Ausdriicke der klassischen Logik erster Stufe reprisentiert
sind. Leider existiert kein automatisches Verfahren, welches die Saturierung einer Hintergrund-
theorie vollstdndig berechnen kann. Die Bestimmung einer solchen Saturierung, das Entwickeln
einer alternativen Hintergrundtheorie bzw. ihre Transformation in geeeignete Inferenzregeln ist
immer noch zu einem nicht unwesentlichen Teil ein kreativer Akt und leider nicht vollstindig
automatisierbar.

Zukiinftige Betrachtungen

Die in dieser Arbeit betrachteten Zeitstrukturen sind von moglichst allgemeiner Art. Die einzige
Eigenschaft, die von dieser Allgemeinheit abweicht, ist die Linearitéit. Diese Eigenschaft wurde
auch schon deshalb ausgewihlt, weil sie sich der Behandlung durch die funktionale Ubersetzung
in Bezug auf die Umsetzung in geeignete Unifikationsalgorithmen entzieht. Es sind allerdings
auch noch andere Eigenschaften denkbar, die man Zeitstrukturen zugestehen kann und die nicht
in dieser Arbeit behandelt wurden. Dazu gehort z.B. die Dichtheit. Diese Eigenschaft kann
prinzipiell auch mit der vorgeschlagenen Methode behandelt werden. Dies tatsichlich zu tun,
sei spdteren Untersuchungen iiberlassen.

Weitere Eigenschaften (und Operatoren) sind dadurch definiert, dal explizit verzweigende
Strukturen betrachtet werden und zwar nicht nur im Sinne der Modallogik S4 sondern sogar
durch ein explizites Quantifizieren iiber magliche Zukinfte. Auch derartige Logiken wurden in
dieser Arbeit nicht untersucht; es steht allerdings auch fiir diese Sprachen einer Behandlung im
Sinne der hier vorgestellten Methoden nichts im Wege, vorausgesetzt, es steht eine Modelltheorie
zur Verfiigung, die eine Ubersetzung in die Pridikatenlogik erster Stufe erlaubt.
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Zuguterletzt sei noch einmal auf die Diskretheit eingegangen. Wie oben schon erwihnt, ist
diese Eigenschaft nicht pridikatenlogisch beschreibbar und kann somit auch nicht direkt mit
den Saturierungsmethoden behandelt werden. Allerdings ist es moglich, derartige Eigenschaften
(dazu gehort auch die sogenannte Lib-Eigenschaft) in einer Fixpunkt-Sprache zu beschreiben.
Wie so etwas moglich ist, ist auch in der Arbeit beschrieben. Es ist sicherlich sinnvoll, solche
Fixpunkte dahingehend zu untersuchen, ob und wie sie zur Saturierung beitragen kénnen. Es
wird Aufgabe spéterer Untersuchungen sein, festzustellen, ob derartige Erweiterungen denkbar
und wie sie gegebenenfalls auszufithren sind.



Temporal Logic —
Why Bother?

Is there a difference between the two statements “for any two distinct instants, one is earlier
and one is later” and “whatever will have been either was, or is, or will be”? Should we be able
to conclude “I will have been writing” from “I am now writing”? And what is the relationship
between the two phrases “Peter is sitting” and “all moments identical with the present are
(timelessly) moments when Peter is seated”?

Questions like these have preoccupied philosophers, linguists, computer scientists, and Al re-
searchers, and made them highly interested in a formal investigation of temporal relationships.
Philosophers, for instance, tried to learn how to avoid confusing the tensed from the tenseless
as exemplified by the first question above. The part “for any two distinct instants, one is earlier
and one is later” is tenseless, i.e. the “is” does by no means refer to the present. Rather it is
used temporally indefinite (or timeless), whereas “whatever will have been either was, or is, or
will be” is definitely a tensed statement, nevertheless stating essentially the same thing as we
shall see later.

Linguists often grapple with the problem that in the formal examination of natural language
dialogues utterances frequently refer to some temporal order which is usually expressed, at least
in part, through changes in verb-form, or tenses. Intuitively, we would not hesitate to confirm
that “whatever is, will have been” just as we would not disagree that “whatever was going to
happen will (sooner or later) have happened”. In linguistics there is an attempt to provide an
idealized model for aspect in natural language which may shed some light to many interesting
features of its deep semantic structure.

Probably due to a renewed appreciation for the fact that issues involving tense touch on
certain issues of philosophical importance (determinism, causality, and the nature of events,
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of time and of change) the semantics of tense has received a great deal of attention in the
contemporary literature of linguistics and philosophy.

Researchers working in areas of computer science like database theory and concurrent networks
found it more and more important to be able to distinguish between static information and
processes which change the environment dynamically. This gave rise to new and promising
research areas like temporal databases and formal program verification.

This is even more observable in the field of artificial intelligence where it is tried to build a
bridge between philosophy, mathematics and linguistics. Here it often does not suffice to merely
represent temporal relationships; there is also a need for efficient reasoning calculi which make
it possible to draw inferences from the formally described situations.

Realizing what the problems are inevitably raises the question of how these problems can
be overcome. There are three possible responses. As P. F. Strawson noted in his Introduction
to logical theory (see (Strawson 1952)) standard (classical) logic, in the form of the predicate
calculus, seems ill-equipped to cope with statements containing tensed verbs or explicit temporal
reference. He sees phenomena like the one given in the second question on the very beginning
of this section as an indication of the inherent limitation of formal logic, showing that it is
incapable of representing statements of ordinary language.

(Quine 1960), on the other hand, proposes to view tensed statements as to be paraphrased
into an atemporal form and represented in a many-sorted predicate calculus thus making it
fit patterns of classical logic. This then leads to a reformulation of tenses as given in the third
question from above which — for most people — seems at best awkward and at worst misleading.

In the last few decades a third — more positive — response has appeared which takes the form
of developing autonomous formal logics of tense and temporality as first undertaken by Arthur
Prior (see (Prior 1957) for a first attempt along these lines). Such is the approach of Temporal (or
Tense) Logic'. The objective of temporal logic is both, to elucidate reasoning with statements
which have some temporal aspect and to give something of the rigour of modern logical systems
to a language whose sentences resemble those of natural language in being true at one time and
false at another. Slipping between the alternatives posed by Quine and Strawson, such logics
offer a neat compromise. On the one hand, temporality is preserved against Quine’s atemporal
paraphrases, and on the other hand, the scope of formal logic is extended so as to take steps
against Strawson’s misgivings about the limits of logic.

But how should tensed arguments be treated formally? The aim should be to come up to
meet all parties involved, for, from a philosophical and logical point of view, it should be tried
to break with the traditional view that reasoning can only involve timeless eternal propositions.
From the linguistic point of view, a logical description of such a ubiquitous and important
phenomenon as tense will obviously be quite welcome. In this sense, temporal logic forms a
bridge between linguistics and mathematics.

Tensed arguments obviously have as unstated premises certain assumptions about the struc-
ture of time. Judging which assumptions are physically or meta-physically correct is the job
of a cosmologist or physicist rather than of a logician. The logician’s job is to formalize such
assumptions in logical symbolism. In addition to the formalization of tensed statements, the
systemization of inferences involving such statements has been a primary aim of tense logicians.
But here, as in all non-standard areas of logical theory, a difficult question arises as to which

!Throughout this text the two notions Temporal Logic and Tense Logic will be used interchangeably. Although
Tense and Temporal should not be used synonymously the corresponding logics are not that different.



assumptions about time should be taken axiomatically in the development of deductive sys-
tems of temporal logic. Without an exploration of various possibilities any proposed answer
will inevitably seem arbitrary. Thus many systems of temporal logic have been created which
incorporate differing tense logical principles. Such systems allow the investigation of these prin-
ciples taken singly or in groups. And, in this manner, the covert assumptions behind intuitive
appraisals of tensed arguments are brought to the surface.

But what should the basic entities of temporal logic be? Some people might think of time
intervals, others of time points or instants. Some might think about absolute measures of clocks,
others about the relative (temporal) occurrence of certain events taking place. A formal exam-
ination of time thus requires to fix the basics, i.e. the questions have to be answered whether
we are interested in periods or instances and whether we prefer absolute measurements over the
relative order of the primitives, be it points or intervals. One might object that such differ-
entiations are not really necessary, for one could view intervals as convex sets of time instants
and moments as indivisible intervals. And just as the geometry of Space can be axiomatized
taking unextended points as basic entities, it can equally well be axiomatized by certain regu-
lar open solid regions such as spheres. Likewise, the order of Time can be described either in
terms of instants or in terms of periods of nonzero duration (see (Humberstone 1979) and (van
Benthem 1990)).

The difference might not be too crucial at the first glance but it actually s if we are about
to interpret whatever we gain as a formal logic underneath these primitives. What all these
logics have in common is that certain truths and falsities are associated with the temporal
primitives. But what can possibly be true on intervals and what can possibly be true at instants?
Usually intervals are associated with certain events or processes? and instants with certain
momentary situations. Point structures thus provide with a static view of time, a snapshot of
the environment, whereas interval structures force us to view the world as a dynamic sequence
of events. This shows that it is really most important to distinguish between moments and
intervals, for, just as an example, how could we possibly describe that “a car is driving” only
with the help of time instants? It would certainly not make very much sense to say that the car
is moving in every instant which occurs in a certain convex set of time instants, since movement
doesn’t mean anything in a static description (i.e. in a single moment). Similarly, we run into
difficulties if we try to describe a static truth with the help of events.

The switch from instants to periods is often motivated by a desire to model certain features
of natural language. One of these is aspect, the verbal feature which indicates whether we are
thinking of an occurrence as an event whose temporal stages do not concern us or as a protracted
process. In part, the switch is motivated by a philosophical belief that periods are somehow
more basic than instants. This motivation would be more convincing were periods not assumed
(as they are in many recent works) to have sharply-defined (i.e. instantaneous) beginnings and
ends. It may also be remarked that at the level of experience some occurrences do appear to be
instantaneous. Thus the philosophical belief that every occurrence takes some time (period) to
occur is not obviously true on any level.

What weighs even more is that — up to now — there is no really satisfactory solution to the
problem of finding a suitable sound and complete axiomatization for interval based temporal
logics. Some results along these lines have been obtained but unfortunately none as definitive
as those of instant based temporal logic.

2There are exceptions, however, and some of these exceptions are handled in this thesis as well.
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The objective of this thesis is not to invent new temporal logics, neither is it intended
to develop suitable axiomatizations for interval logics. It is rather meant to provide efficient
calculi for temporal logics whose syntax, semantics, and, in particular, axiomatizations are well
understood today. Therefore, and also because of their close relationship to the (in some sense
simpler) modal logics, calculi for temporal logics based on point structures are examined.

The main idea behind the approach proposed in this thesis is briefly described as follows:
Given a temporal language which is in a sense general enough to cover various temporal logics
occurring in the contemporary literature, a translation is defined which allows us to describe
temporal logic sentences in the language of the first-order predicate calculus®. In fact, there
are several such possible translation methods known today. The approach developed here is
particularly interesting for it combines many advantages of the translation methods known
so far and that without incorporating too many of their respective disadvantages. Omne such
advantage lies in the fact that the translation result is comparatively small in the number of
clauses. Another advantage is that the translation output is in Horn form if the input happened
to be in Horn form. Most striking is the fact that the result thus obtained can be strictly
seperated from the background theory of the logic under consideration. This fact makes it often
possible to show the non-axiomatizability of certain accessibility relation properties in a nice
and elegant way.

This new translation method forms the first part of the technique proposed in this thesis.
The second part concerns the development of calculi which allow us to reason efficiently within
the logics we are interested in.

The separation of the theorem to be proved on the one hand from the background theory
which is induced by the temporal or modal logic in question on the other hand makes it possible
to consider this very theory independently from the rest of the clause set. It usually consists of
a set of clauses which state certain particular properties of the “Earlier-Later” relation (or the
accessibility relation in case of modal logics). These properties are characteristic for the logic
and thus do not depend on the theorem to be proved. The idea is now to compute everything
that might be deducible from this clause set beforehand, i.e. to saturate the theory (with respect
to the inference system which is resolution and maybe also paramodulation). Evidently, this
cannot be done explicitly since this would usually result in infinitly many new clauses. However,
these derivations obey a certain syntactic form and the aim is therefore to make use of the
knowledge about this form. This can be done in two ways: Either an alternative theory clause
set is found which would produce exactly the same saturation and therefore may replace the
original theory, or a suitable set of inference rules is defined which covers the resposibilities of the
background theory in the sense that every application of such an inference rule corresponds to a
resolution step with an element of the saturation. As a matter of fact, such an inference system
realizes a certain strategy on the resolution process and showing the refutation completeness of
this system thus corresponds to proving the completeness of a certain resolution strategy.

As the above description shows, this technique is not at all restricted to the application to
modal and temporal logics. It is general enough to be applied to any problem in which a theory
can be seperated from the theorem to be proved such that this theory can possibly be saturated.
After having found a saturation — i.e. clause schemata that contain exactly the clauses that can
be derived from the theory — it is usually fairly simple to obtain a suitable set of inference rules

3Note that such a translation does not necessarily lead to Quine’s opinion that temporal relationships should
be encoded in the predicate calculus anyway. The translation result is going to be used only for the reasoning
process; the user of the temporal logic under consideration is not supposed to work directly with this translation.
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which may replace the original theory.

Remark: The logics considered in this work are all first-order logics. Still, the choice of
operators and the properties of the underlying modal or temporal structures are rather motivated
by axioms known from the corresponding propositional fragments. In this sense interesting axiom
schemata are introduced as if we had a propositional language in mind. Such axioms usually
induce certain properties of the underlying structure and these properties are taken over to the
first-order level. To state it differently, we are rather interested in model-theoretic properties
than in Hilbert axiomatizations. Nevertheless such an axiomatization (for the propositional
case) is considered to motivate accessibility relation properties we want to deal with.

1.1 Structure of the Work

Chapter 1: Temporal Logic — Why Bother?

The chapter you are currently looking at. Its purpose is to briefly describe the background of
temporal logic and what made me interested in working on such an issue.

Chapter 2: Temporal Logic In this chapter the temporal logics as they are considered
throughout this thesis are introduced. This covers an examination of possible temporal operators
and properties of the underlying temporal structure as well as the formal definition of both the
syntax and the semantics of temporal logics.

Chapter 3: A Digression to Modal Logics = Many modal logics can be viewed as a basis
of temporal logics and in fact main differences can merely be found in some special operators
and certain accessibility relation properties which might not be very common in the modal logic
area. Although this chapter is called and meant as a digression to modal logics it became the
biggest part of this thesis. This is so because most of the inference techniques for temporal logics
are first developed for modal logics and the results thus obtained are utilized in later chapters.

Chapter 4: Back to Temporal Logic  The preceding chapter contains the formal basis
for the development of a resolution-based calculus for the temporal logics introduced in the
second chapter. I was mainly interested in combinations of temporal logics as they appear in
the temporal logic literature and that without any special assumptions about the underlying
structure of time.

Chapter 5: The Linearity Assumption From a computational point of view the linearity
assumption is a fairly complex one. It is interesting in so far as many people think of time as a
linear sequence of moments. The problem with linearity from a theorem proving perspective is
that, in practice, it significantly increases the complexity of finding a proof. Linearity is rarely
considered in the modal logic area and in fact almost no theorem proving system for modal
logics is able to deal with this assumption in an efficient way.

Chapter 6: A Short Digression to Interval Logics  Although the temporal logics con-
sidered in this work are point—based it is often possible to apply the very same techniques to
logics which use intervals as their basic temporal entities. How this works is exemplified in this
chapter with the help of some more or less simple interval logics.

Chapter 7: Summary and Further Work  This final chapter contains a brief summary of
the whole approach and an outlook of what should be investigated (in the light of this approach)
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in the near future. It concludes with a short comparison with other (related) approaches.



Temporal Logic

2.1 Introduction

The main idea behind instant-based Temporal (or Tense) Logics is the extension of classical
propositional or first-order logic by some additional new primitive operators which represent
certain temporal relationships.

Which additional primitives are to be chosen highly depends on the expressive power re-
quired. So, for instance, one could extend classical logic by the addition of a new operator, say
[], such that [ ]® is a formula if and only if ® is one, and which has the intended meaning: ® is
always true or in other words: @ is true at any time. This operator immediately induces another
operator dual® to [, say <>, which has the intended meaning: & is true at some time. Such a
particular interpretation of the operators [ ] and <> has some immediate effect on the properties
of the logic: For instance it will be required that if some formula @ is always true then it is
obviously true now, written [ 1® = ®. Also we might say that at some time is independent
from mow, or in other words: if @ is true at some time then exactly this fact holds at any time,
written )@ = [JO®. These two implications should hold for any formula ® and hence can be
viewed as axiom schemata which partly define our logic. In fact everybody familiar with modal
logics will immediately recognize these properties as the characteristic axiom schemata which
have to be added to the basic modal logic K in order to get S5. This logic S5 has been very well
examined in the last decades and indeed there exist fairly efficient calculi for S5 already?. Hence
at first glance the choice of these particular operators seems to be a pretty good one, for the
syntactical and semantical extensions to classical logic are ostensibly small and the development

!By duality we mean a relationship analogous to the correspondence between universal and existential
quantifiers.
2See also Chapter 3.
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of a calculus is fairly straightforward if at all necessary. And if the expressive power of this logic
suffices for one’s own purposes, there is nothing else to be done.

In general, however, one will sooner or later realize that this logic is only of very limited
expressive power. For example this extension does not allow us to represent something like: it
will be the case that. But of course we can easily change the interpretation of the [ ]-operator
to: from mow on or in other words: henceforth. In this case the (-operator, since it is dual to
the [0, has to be interpreted as: eventually it will be the case that3. What kind of properties
do we expect for this logic? First, we have again that anything which holds henceforth also
holds now. Second, we might want to express that the future of the future is itself future and
this could be done by adding the axiom Q@ = {)®. These two properties are in fact the
characteristic axiom schemata for another well-known modal logic, namely S4, and if there are
no more additional properties required this would be our desired logic.

The same would hold if we were only interested in past operators with an analogous inter-

pretation, or in operators which exclude the present. The former case again results in S4 the
latter in K4 or KD4.

But still one might not be satisfied with the means thus provided. There may be a need for
past operators as well as future operators and this demand changes the situation considerably
as there is now a multi-modal logic to be considered. Multiple modalities are not entirely new
in the modal logic community, although they are often considered as being independent from
each other. Nevertheless, in temporal logics these modalities do in some sense interfere and
therefore this extension can be viewed as one of the simplest logics which separate modal logics
from temporal logics*.

As an example let us consider the so-called Priorian® tense operators F, P,G, H where F®
means: ® will be true and P® means: ® was true. The operators G and H then are the duals
to F' and P respectively. This logic is characterized by two modal K-fragments, i.e. the classical
propositional calculus together with

GP=7)= (GP=G¥) HP®=T)= (H®= HD)

d D

Go H®
one for the future (left column) and one for the past (right column) and the axiom schemata
FF® = F® and PP® = P® which express that the future of the future is again the future
and the past of the past is again the past. In addition we need some “mixing” schemata which
express something in the lines of: If henceforth ® has been true then @ is true now and also: If

it will be the case that hitherto ® then, in particular, ® is true now. Formally: PG® = & and
FH® = O.

In (Kamp 1968) two very interesting independent operators had been introduced, namely
“Until” and “Since” which, as Kamp showed, are expressively complete in the sense that they

3Note that this eventually includes the present, i.e. something which is true now is automatically true
eventually.

4Standard text-books often refer to E. J. Lemmon’s system K; as the minimal tense logic. This logic is
essentially the combination of two modal logics K (one for the past and one for the future fragment) together with
schemata which define the correlation between the past and the future. Transitivity of the earlier-later relation
is thereby not assumed. Our examination of temporal logics will begin with an analysis of this logic K;.

*Due to Arthur Prior.
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can be used to represent all the operators from above (and in fact any temporality one can think
of) provided the underlying time structure is continuous like the reals. Informally ® Until ¥
means: ¥ holds eventually and in the meantime ® holds. Thus <><I> can be represented as: True
Until & and [1® as: not (True Until =®). Such a minimal set of operators is interesting for
theoretical considerations; in a language which is supposed to represent temporal relationships
as “natural” as possible, however, the necessary translations are not appropriate and tend to
produce too much of representational overhead. Nevertheless both “Until” and “Since” are
interesting by themselves as they represent phrases which are very common in natural language
usage.

So far we considered different types of temporal operators but sometimes not only a certain
set of operators is required but also there is a need for special properties of the underlying time
structure. Mostly, a single linear time axis is assumed. Nevertheless one might equally imagine
a branching in the past as well as in the future. Branching in the past is rarely assumed, but
branching in the future may help to represent different future alternatives®. On a linear time
axis the O-operator is therefore to be interpreted as: inevitably it will happen that whereas on
a tree structure it means: there is a future alternative where possibly or it can happen that.
Hence, the choice between branching and linear structures is very closely related to the choice

of interpreting the ) either as inevitably or as possibly.

Further questions which might also arise are for example whether time is dense in the sense
that between any two instants there is a third one, or, alternatively, whether time is discrete,
i.e. between any two instants there are only finitely many others. Other typical questions
which arise are: is there a beginning of time, an end, or both? As a matter of fact all these
properties are axiomatizable in the propositional case and except for the discreteness property
they are expressible for first-order temporal logic as well. But such a lifting to the first-order
level immediately gives rise to new questions like: is the domain constant over time or does
it vary and if so, how? Obviously not each of these decisions inevitably leads to an entirely
different logic. So for example, one might view first-order temporal logic as a generalization
of propositional temporal logic, varying domains as a generalization of constant domains, the
possibility of having a beginning and an end of time as a generalization of endless time, and last
but not least past and future operators as a generalization of the modal logic S4 or KD4".

Certainly it would be most convenient to have some sort of most general temporal logic,
however, as it turns out, this is not possible. Nevertheless, we can get a fairly good approximation
by considering a first-order linear temporal logic with varying domains which allows us to specify
beginning and end of time and which incorporates at least the temporal operators mentioned
above.

The aim of this chapter is to introduce such a logic (i.e. its syntax and its semantics). Later,
efficient resolution-based calculi will be provided which allow us to reason within these logics
and some of their variants.

5In this case the time structure is essentially a tree where the different branches contain the future possibilities
that cannot yet be known. One might also consider a branching in the past for in cases in which a certain order
of events has been forgotten. However, in my view, this should rather be described with additional epistemic
operators of knowledge and belief for otherwise it would be impossible to describe that the order is remembered.

"One might as well think of branching future as an extension of linear future. And indeed if for the branching
case there are newly introduced operators like inevitably and possibly henceforth, we could call it a generalization
of linear time. For the operators mentioned above, however, these logics are uncomparable (Lamport 1980),
(Emerson and Halpern 1983).
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For the beginning, however, we emphasize on constant domains and endless time structures.
Other generalizations will be investigated later.

2.2 Syntax and Semantics of Temporal Logic

We can immediately distinguish between three kinds of temporal operators, namely those with
a universal character like always, henceforth, hitherto, those with an existential character like at
some time, eventually, previously, and those with a mixed character like until and since. Each
of these groups can be split into two subgroups, one which contains the corresponding operators
that may refer to the present (as for instance always, henceforth) and one which contains the
operators that exclude the present (as e.g. eventually, previously). Unfortunately, in the temporal
logic literature it is often the case that different publications use the same symbols with different
meanings. The first thing to do therefore is to provide a uniform syntactical description of the
temporal operators known from the literature.

For instance, we would like to have a single basic symbol for operators with a universal
character and also a single basic symbol for operators with an existential character. For the first
class we like to take the symbol [ ] and for the second the symbol <> in order to avoid conflicts
as much as possible. Now what kind of [_]-operators do we want? There are the past operators,
the future operators and the operators which refer to the whole time axis. These operators have
to be distinguished syntactically and we do so by an extra inner symbol which may be either
“F”, “P”, or “A” according to whether the operator refers to the future, the past or anywhere
on the time axis. Thus we have the symbols [F], [P] and [2] respectively. Analogously there are
the corresponding {)-operators: ®, ® and ¢.

Next we have to indicate whether the present is included or not. The symbols from above
are meant to represent the operators which exclude the present; if the present is to be included,
a subscript “r” is added to the respective symbol®. So for example, always will be represented
as [&l., and it was the case that as ©.

For the “Until” and “Since” operators things get a little more complicated. They combine
both an existential phrase and a universal phrase. The existential part comes from the second
argument of the operator which says: there is a future moment such that and the universal part
comes from the first argument, namely and for every moment inbetween it holds that. For the
first part we again have to distinguish between operators which may refer to the present and
operators which may not. For the second part we have to indicate whether the respective interval
borders are open or closed, and finally there is a need to differentiate between the respective
strong or weak versions®. The basic symbol we are going to use for the “until” will be U and
U and for the “Since” it will be S and S for the strong and weak versions respectively. For any
of these four symbols there is actually a need for three arguments; two which express whether
the interval borders are open or closed and one which excludes or includes the present for the
existential phrase.. However, the addition of three more arguments to temporal operators does
not increase the readability of logical formulae. We therefore decide to leave the Until- and
Since-operator symbols as they are, and that with the intended meaning that the present is

8In modal logics the inclusion of the actual world is enforced by the requirement that the accessibility relation
is reflexive, whence the subscript “r” comes from.
9The strong version of & Until ¥ guarantees that ¥ will inevitably hold, whereas the weak version does not.

In the literature the phrase unless often occurs for a weak until
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excluded for the “eventually”-part and the interval borders are both open. Unless otherwise
stated this will be the informal semantics for the respective symbols.

Now we are in a position where we can describe the temporal logic syntax. As usual we
have the logical symbols V, A, =, =, and < representing or, and, not, implies, and equivalent
respectively. Also there are the symbols V and 3 representing the universal and the existential
quantifiers. In addition we have the unary temporal operators [E]., [E], [P, [?], and [2]'° together
with their dual counterparts @r, @, @T, @, and @,« and the binary temporal operators U, U, S
and S. These symbols altogether are called the logical symbols of the temporal logic language.
In addition there are the non-logical symbols which form the signature of the logic language in
question. These are defined below.

DEFINITION 2.2.1 (THE SIGNATURE OF TL)
The alphabet of our temporal logic language consists of the operators and connectives from above
as well as of the following sets of symbols:

e V is a set of variable symbols
o F is a set of function symbols

o P is a set of predicate symbols
The tuple 71, := (V,F,P) is called a signature for TL.

Together with the preliminaries from above, the recursive definition of terms, atoms, and
formulae is as usual:

DEFINITION 2.2.2 (TERMS, ATOMS, AND FORMULAE)
Let X1y, be a signature for TL.

Terms, atoms and formulae are defined as follows:

e Fach variable symbol x is a term

e If f is an n-ary function symbol and t1...t, are terms then f(t1,...,t,) is a term

If P is an n-ary predicate symbol and ty ...t, are terms then P(t1,... ,t,) is an atom

FEach atom is a formula

If @ and ¥ are formulae and x is a variable symbol then -®, @AY, PV ¥, & = U,
d < U, Vz & and 3x @ are formulae

If @ is a formula and /\ is a unary temporal operators then A® is a formula.

o If ® and V¥ are formulae and A\ is a binary temporal operator then @AV is a formula

We shall sometimes refer to Formry, as the set of TL-formulae.

10We might also think of an always which excludes the present. However, there seems no obvious need for an
operator which states at any time but now.
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The set Formri, represents the language of our logic. However there is still no meaning
associated with the respective sentences. The predicate symbols as well as the function symbols
are meant to denote predicates (relations) and functions in the “real” world. Such a correlation
is usually expressed by a so-called signature interpretation which maps the respective symbols to
real objects. The same will be done here, although there is some slight complication. What we
need is a flexible interpretation, i.e. symbols may change their meaning over time. For instance,
the constant US—-President has a different value today than it had some 20 years ago. We
therefore have to consider different signature interpretations for different time instants and we
call these local to the given moment of time.

DEFINITION 2.2.3 (ALGEBRAS AND STRUCTURES)

An algebra consists of a non-empty set (the algebra’s domain) together with operations (func-
tions) on this set. A structure is an algebra which additionally contains a set of relations over
the algebra’s domain.

Algebras and structures are always associated with a given signature. The respective symbols
of the given signature are interpreted with respect to a structure if each function symbol has
its counterpart in the algebra and each predicate symbol has its counterpart in the structure’s
relation set.

A local signature interpretation in the sense from above is thus a structure which interprets
function and predicate symbols with respect to some particular time instant, namely the one
which is associated with this very structure. This evidently means that any symbol can be
interpreted differently in different moments and they are called flexible then for that obvious
reason. Symbols which do not change their meaning over time are said to be rigid.

A non-temporal formula (sentence) is said to hold in a particular instant if it holds under the
associated local signature interpretation (structure). For an arbitrary temporal formula ® we
have to note that the reference point in time is shifted by the given scope of temporal operators.
So for example [A,® holds now if and only if it is always true that (® holds now). Hence, in
order to interpret formulae we have to be able to refer to the current now and its respective
local signature interpretation. An interpretation in our sense therefore includes a mapping from
instants to local signature interpretations.

We shall distinguish between frames and interpretations where a frame is the basic underlying
structure which includes the set of time instants and the corresponding earlier-later relation on
those instants. From the introduction we know that there are certain agreed requirements on
this relation. These will be fixed by the following definition:

DEFINITION 2.2.4 (FLOW RELATIONS)
A binary relation < is called o flow relation if it obeys the following properties:

o it is irreflexive, i.e. Vx x A x

o it is transitive, i.e. VX, y,2 T <YyAy<z=>2 <2
e it is linear, i.e. Vx,yz Zy=>c<yVvVy<z

e it is infinite, i.e. Vo By <y A Iz z < 1)

Such flow relations are what most people have in mind when they think about properties of
earlier-later as a temporal relationship.
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At this stage we have almost everything that is necessary to give a meaning to the sentences of
the temporal logic language. What remains is to define what we understand by interpretations
and how these interpretations can act as models for temporal logic formulae.

DEFINITION 2.2.5 (FRAMES AND INTERPRETATIONS)
By a frame Fri1, for a signature Y11, we understand any pair (T, <) where T is a (non-empty)
set of time instants and < is a flow relation over T X T.

By an interpretation 71, for Y1, we understand any tuple (D, Fr1, Sioc, T, §) where
o D is the universe of discourse
o Fry, is a frame for Yy,

o Qe 48 a mapping from T to a set of local signature interpretations where all of the local
signature interpretations have a common domain which is D

e 7 is the current instant, the now
e ¢ is a variable assignment, i.e. a function which maps variable symbols to elements of D.

Note that, by this definition, we assume a unique domain over the set of time instants; we are
therefore dealing with a constant domain time structure. The case of varying domains (i.e. the
case where each time instant may have its own local domain) will be considered later.

Frames and interpretations are the means to interpret formulae. The preliminaries from
above already provide a hint on how this is actually going to be performed, namely by an induc-
tive definition on the structure of the given temporal formula. The most basic case evidently is
the interpretation of a single predicate. Such a predicate usually contains terms and therefore
we also need a possibility to evaluate terms in a given interpretation. This is done by extending
the notion of an interpretation to a homomorphism as follows: Each interpretation can easily
evaluate variables by its variable assignment component. For more complex terms f(¢1,... ,ty)
first the function symbol f has to be interpreted by the appropriate local signature interpreta-
tion. This on the other hand can be found by applying the mapping S, to the given current
instant. Now after f has been interpreted the result has to be applied to the evaluation of the
respective arguments and we are done.

DEFINITION 2.2.6 (INTERPRETATION OF TERMS)
Arbitrary terms t are evaluated as follows:

S (t) = </fz(t) if t is a variable symbol
T ASTLt), - STLlte)) it = fltsee- tn)

where St1, = (D, Fri, Sioc, T, ¢) and f is the function associated with f under the local signature
interpretation Soc(7). For convenience we shall abbreviate this by f = (Soc(7))(f) in the sequel.

The following standard notation is introduced for convenience:

DEFINITION 2.2.7
Let ¢ be a variable assignment. We define:

me@:{¢@ ity £

a otherwise
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We usually abbreviate (D, Fr1, Sioc, T, ¢[z/a]) by STL[z/a] and (D, Frr, Sioc, X, ¢) by STL[X]
whenever S, is given by (D, Frr, Sioc, T, @)-

Formulae are interpreted with the help of a satisfiability relation = which takes two argu-
ments, an interpretation and a formula, and returns true if and only if the formula holds in that
particular interpretation.

DEFINITION 2.2.8 (SATISFIABILITY)

Let St = (D, FrL, Sioe, T, ¢) be a TL-interpretation where Fri, = (T, <) is a frame for the
signature Xr1,. A formula @ is said to hold in the interpretation 11, if and only if ST1. =11,
holds, where =11, is recursively defined as follows:

The first part is standard for first-order logics.

%TL |:TL P( ,ti,...) ’Lﬁ %Loc('r)(P)(--- ,C\ETL(tZ’),...)

St L @ iff mnot St Ern @

St L @V U iff St FErL @ or ST, 1, U

St 1L @AY if StL FETL @ and ST L U

StL L @ = U iff mnot St FE1r @ or ST L U

St L @& U iff St T =V and St 1 V= @
St L Vo @ iff Srtulz/a] ErL @ for every a€D

Stu e 3z @ iff Sto[z/a] ErL @ for some a€D

The second part covers the [] and <>—0pemt07“s. Since the <>—opemtor is dual to the [] a short
form for the {-formulae is sufficient to give the idea.

St = B2 iff [x] FTL @ for any x €T with T <X x

StLlx]
St . EH® ff Stulx] B @ for any x€T with 7 < x
St L BR® i Stulx] Ern @ for any x€T with x X 7
St L Bl® iff Stulx] Ern @ for any x€T with x <7
]

St B B2 iff Stulx] FrL @ for any x€T
St L Q@ iff  not St oL (=@

where < denotes the reflerive closure of <

There are two basic symbols for the Until and two basic symbols for the Since as we learned at
the beginning of this chapter and actually each of them needs three arguments. It is enough here
to provide the definition for the basic Until and Since formulae. The corresponding definitions
for the others are obtained by replacing the one or the other < with <.
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St L @U Y iff Stolx] E1n ¥ for some x €T with 7 < x and
STL[€] ETL @ for any EET with 7 < € and € < x

C\}TL |:TL <I>U U Zﬁ C\}TL |:TL UV or C\}TL IZTL @

St L @SV iff Stolx] BT ¥ for some x €T with x < 7 and
STLlé] 1L @ for any E€T with x <€ and § < 1

%TL |:TL OSUT Zﬁ %TL |:TL OS T or %TL IZTL E(}

An interpretation Sy, is said to satisfy a formula @ if STp, =11 . @ is called satisfiable
then and the corresponding interpretation is called a model for ®. We call ® unsatisfiable if no
model for ® exists.

It is easy to see that most (linear) temporal logics known from the literature are instances
(or subsystems) of this logic. For instance we get the first-order version of S5 by eliminating all
temporal operators but [4}, and ¢,. On the other hand first-order S4.3 is realized by considering
and ®, only whereas first-order linear Tense-Logic in the sense of Prior can be achieved by
eliminating all operators but [, [2], ©, and ®. Finally Kamp’s tense logic essentially contains
no other operators than U and S which are in some sense most general as any other temporal
operator can be represented by these two. For instance [4] is equivalent to the conjunction of
and [P] where [F]® can be expressed by —(True U —®) and [P]® by —(True S —-®). Proofs
of these facts are easy but lengthy and will therefore be omitted here. The interested reader is
referred to (Kamp 1968).

So far the temporal logic and some of its variants have been defined. There remains the
question how it is possible to reason within these logics. Evidently, because of the rather
complicated properties of flow relations one cannot seriously expect a — in any sense — simple
calculus. And indeed the calculus itself and its preliminaries as they are developed for this
thesis require a fairly gentle introduction. And what could be more gentle in this sense than the
examination of logics which can be viewed as the forefathers of instant temporal logic, the modal
logics. On the one hand their relation to temporal logics is close enough such that developments
of calculi can quite easily be carried over to temporal logics. On the other hand they (or at least
many of them) are simple enough to demonstrate main technical ideas.
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A Digression to
Modal Logics

A detailed overview on modal logics is out of the scope of this work. The reader not familiar with
the basic modal logic principles is referred to (Chellas 1980) and (Hughes and Cresswell 1968).
Nevertheless, it might be necessary to recall some technical preliminaries at least as long as they
play a crucial role for the sections to follow.

In modal logics we talk essentially about the same non-logical and logical symbols as in
temporal logics, however, we consider merely the two additional (modal) operators O and ¢.
This shows that the temporal logics we have in mind are actually (at least to some extent)
multi-modal logics, i.e. modal logics with multiple modal operators. Temporal operators like
Until and Since do not quite fall into this category, though.

The syntax and semantics for modal logic is by no means different to temporal logic’s syntax
and semantics, i.e. we also consider frames as a pair which consists of a set of worlds' and
an accessibility relation?. A first-order modal logic interpretation then consists of a domain,
a frame, a local signature interpretation which associates structures with each world, an inital
world, and a variable assignment just as we had it for temporal logic. Also the interpretation of
terms and the satisfiability of formulae does not change at all.

Since this work aims at providing a reasoning calculus for temporal logics and since modal
logics are supposed to serve as a special case, we are now faced with the question how it is
possible to reason within modal logics.

In fact, various calculi have been developed up to date, be it tableau, natural deduction
or Gentzen systems (see (Hughes and Cresswell 1968) and (Fitting 1983) for instance). There

!These happened to be time instants in temporal interpretations.
2The earlier-later relation in temporal logics.
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also had been attempts to extend the resolution idea in a way such that some kind of standard
resolution can be applied to modal logics as well (see e.g. (Farinias del Cerro 1985)).

Another approach — the one which is proposed in this thesis — is to find some suitable
translation from modal logic into first-order predicate logic that allows us to exploit the reasoning
techniques developed for classical logic in many years of examination and development3.

The first idea one might have along these lines is to translate the semantics definition for
modal logic directly into the predicate calculus and to utilize standard predicate logic theo-
rem provers to perform reasoning within modal logics. This method — at least in its naive
form — shows to be only little interesting because of the “practical incompleteness” it evokes.
Nevertheless, since it will form a basis for the sequel, it is presented here?.

3.1 Relational Translation for Modal Logics

For convenience recall the syntax and semantics definition for modal logics.

DEFINITION 3.1.1 (FRAMES AND INTERPRETATIONS)
By a frame Fyr, we understand any pair (W, R) where W is a non-empty set (of worlds) and
R is an arbitrary binary relation on W called the accessibility relation between worlds.

By a modal logic interpretation Sy, based on a frame Fyr, = (W, R) we understand any tuple
(D, Fumw, Sioc, T, ¢) where

e D denotes a set of individuals; the universe of discourse
o FuL is a frame

o Sioc 18 a mapping from W to the set of local structures, where the respective domains all
are identical to D.

7 denotes the actual world (the current situation)

e ¢ is a variable assignment, i.e. a function which maps domain variables to elements of the
domain.

We shall usually call Sy, @ modal logic interpretation over the modal logic signature.

The similarities between temporal logic frames and interpretations are evident. For the
moment, the only difference lies in the accessibility relation which is not yet supposed to obey
any special properties. Also there is no particular difference in the interpretation of terms, nor in
the definition of the satisfiability relation. For convenience, however, the satisfiability definition
for modal logics is repeated here, since the following translation approach to be defined later
directly depends on it.

3Note that this does not at all mean to agree with Quine’s opinion that any special treatment, be it for
temporalities or for modalities, should be encoded in a many-sorted classical setting. It just means that reasoning
should be performed classically; the logic language remains as is (i.e. with modal or temporal operators).

* Actually, this kind of translation occurs in various books and papers (see e.g. (Moore 1980)). Unfortunately,
the corresponding soundness and completeness proofs, i.e. the proofs that a given modal formula is (modal logic)
satisfiable iff its translation is classically satisfiable, are usually omitted.
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DEFINITION 3.1.2 (SATISFIABILITY)
Let Syvr = (D, Fuw, Sioes T, @) be a modal logic interpretation where Fyr, = (W, R) is a frame.
A formula ® is said to hold for the interpretation Swy, if and only if Smr EmL @ holds, where
ML is recursively defined as follows:

S Bun P(---stiy-on) i Stoe(T)(P)(- -+ S (ti), - - )

The cases for the classical logical connectives should be clear

Swmr EuL Vzd iff Swwl[z/a] =vmL @ for every a€D

Sur Fuvr 3@ iff Swmu[z/a] Euvi @ for some a€D

%ML IZML O® ’l,ﬁ C\}ML [X] IZML (0] fOT‘ every XEW
such that R(7, x)

Swmr EuL 09 iff Swmwp[x] EmL @ for some xeW
with N(7, x)

An interpretation Swur, is said to satisfy a formula @ if v, FEurn . @ is called satisfiable then
and the corresponding interpretation is called a model for ®. We call ® unsatisfiable if no model
for @ exists.

The simplest normal modal logic (called K) is axiomatized by the standard axioms for
classical propositional logic and the Modus Ponens inference rule together with the axiom schema
0(® = ¥) = (O¢ = OV), which is usually called the K-aziom, plus the additional necessitation

rule®
o

FOd

It can be shown that a modal logic formula is provable in this axiomatization if and only if it
holds in every interpretation of the above kind (i.e. without any special R-properties). This kind
of semantics (called possible-world-semantics, or Kripke-style semantics) had been developed by
Saul Kripke in the early sixties (Kripke 1963). What made this kind of semantics particularly
interesting was the realization that certain axiom schemata added to this axiomatization are mir-
rored by certain properties of the accessibility relation (see also (Hughes and Cresswell 1968),
(Chellas 1980)), also called the background theory of the logic under consideration. It is not
necessary here to provide a detailed list of all modal logics, schemata, and corresponding acces-
sibility relation properties. Only some of the most important modal logics which will play a role
in the sequel are summarized in Table 3.1 together with their respective background theories.

Such correspondences can be found in the standard modal logic literature. Nevertheless,
it is often interesting to know how these are obtained. This is of particular importance if an
axiom occurs which is not as common as the ones listed above. A method for computing such
correspondences is presented in Section 3.1.2.

Since different modal logics are distinguished by their respective additional axiom schemata
and since these axioms are mirrored on the semantics level by certain accessibility relation
properties, the relational translation not only has to take into account the theorem to be proved;
also the characterizing properties are to be added. Moreover, in order to be able to prove that
the given translation preserves both satisfiability and unsatisfiability the given signature and
interpretations have to be translated as well.

5These axioms say nothing about the {¢-operator and therefore a ¢ is in fact considered as a short form for
—=[O~. If this is not desired, the schema ¢® = -[0-® is to be added to the axiomatization.
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Logic SCHEMATA PROPERTIES

KT |O02=¢9 Vu R(u,u)

KB | & =009 Vu, v R(u,v) = R(v,u)

0% = 0P Vudv R(u,v)
0¢ = 00 | Vu,v,w R(u,v) A R(v,w) = R(u,w)

00 = Vu R(u, u)
00 = 00O% | Yu,v,w R(u,v) A R(v,w) = R(u,w)

O0¢ = 02 Vudv R(u,v)
KD45 | 0% = 0O0O® | Yu,v,w R(u,v) A R(v,w) = R(u,w)
00 = 00D | Vu,v,w R(u,v) A R(u,w) = R(v,w)

00 = Vu R(u, u)
0P = 00D | Yu,v,w R(u,v) A R(u,w) = R(v,w)

KD4

S4

S5

Table 3.1: Modal Logic Correspondences

From the definitions above we see that a modal logic essentially consists of the following parts;
the signature, i.e. the alphabet of the language, a (usually recursive) definition of the elements of
the logic (the sentences), the definition of appropriate interpretations, and a satisfiability relation
between interpretations and sentences. Now, given two different logics, a certain translation is
supposed to map these parts from the one logic to the corresponding parts of the other. Therefore
such a translation has to be split into three main components: a signature translation, a formula
translation and an interpretation translation.

3.1.1 The Respective Translation Components

In this section the respective components for the relational translation approach are presented
and that together with the necessary soundness and completeness proofs. For convenience I will
use the same “translation symbol” [ | for each of the components. It will always be clear from
the context which translation component is meant.

DEFINITION 3.1.3 (THE SIGNATURE TRANSLATION)
Let Yz = (V,F,P) be a modal logic signature.

For each n-place f in F let f' be a new function symbol and for each n-place P in P let
P' be a new predicate symbol. Additionally we assume a sort symbol, W, which is supposed to
represent the sort of worlds under consideration and D which denotes the sort of individuals®.
Then let ' = {f' | f e F} U{t} and P' ={P' | P € P} U{R}.

We then define: [Xm1] = (V,F',P’)
[XmL] is then called the predicate logic signature generated from Xy .

5The reader should not be too bothered with this introduction of sorts which have not been mentioned before.
In fact, the most we are dealing with is a multi-sorted rather than an order-sorted scenario in which the respective
sorts cannot be mixed up since each argument position has a fixed sort and there are no sub-sort relations involved.
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Obviously the symbols R and ¢ are supposed to refer to the accessibility relation ® and the
“actual” world T respectively.

DEFINITION 3.1.4 (THE FORMULA TRANSLATION)
There are actually two parts to be defined: a translation of terms and a translation of formulae.
For convenience both are given by the same symbol.

Let t be an arbitrary term and let u denote a world, i.e. u is either a variable symbol of sort
W or the world constant . We define [t], by induction on the structure of t:

[T]y = Z

[ft, e stn)lu = ' Tt Tus e TEnla)

Now let ® be an arbitrary modal logic formula. [®], is inductively defined as follows:

[P(ti,... ytn)]u = P'(u,[tiluy--- s [tn]u)

[~y = ~[®],

|—¢'V\I}-|u = |—(I)—|uV [\I’-|u

and analogously for the other classical connectives
[Vz @], = Vz [®],

EkL‘ (I)-|u = dz [¢-|u

[Od], = Vv R(u,v) = [®],

[OD], = v R(u,v) A [®],

The initial call for the translation of an arbitrary modal formula ® is then [®],, where v denotes
the initial (or actual) world.

DEFINITION 3.1.5 (THE INTERPRETATION TRANSLATION)
Let Svr = (D, Fur, Sioe, T @) be a modal logic interpretation over the signature Y.

For any function symbol f in Sy, let Sioe(7)(f) = fr and define f as:

F(ry b1y stn) = frltr, e s ty)
Analogously for any predicate symbol P let Se(7)(P) = Py and define
P(r,t1,. .. ytn) = Pr(ty,... ,tn)

Now let M be a [Ez1]-structure with:

o M(f") = f for each function symbol f
e M(P') = P for each predicate symbol P
e M(R)=%R

e M(1)=r

We then define [Smr| = (M, ¢) and call [Syr,| the (classical) interpretation generated from
SML-
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As we now have a translation from first-order modal logic into first-order predicate logic, we
have to show that the translation indeed behaves as desired, i.e. we have to show that whenever
a modal logic formula has a (Kripke-) model then its translation has a (classical) model as well
and vice versa. The corresponding proofs are performed by induction over the structure of modal
logic formulae. To this end the following auxiliary lemma turns out to be useful.

LEMMA 3.1.6
Let Sy, = (D, (W, R), Sioc, 7, ¢) be a modal logic interpretation over the signature Xy, let @
be a modal logic formula, x be a world from W, and let u be some world term. Then

[Smulx]] =pu [@], iff [Swme][u/x] EpL [@]y

where [=p1, denotes the classical predicate logic satisfiability relation.

Proof: First it has to be show that the respective interpretations of terms are identical. This
is done by an induction over the term structure:

[SymulX]1([z].) = ¢(z)

[Sme 1 [w/x]([2]u)
[SMuDdT(t]) = [SMuAN(FC - i)
[SMLDAT (- 5 [EiT0s )

A

= fO---, ISvu]1([t]0),---)

= fO6--» [SMulfw/x] (Tt w), )
by the induction hypothesis

= [Swmulle/x](f (u, -, [tilu,---)

= [Saullw/xI(F-- 5t ) )

= [Smulfu/x])([t]u)

Now we can start to prove the lemma for arbitrary modal logic formulae. Note that if @ is
an atom then the proof works similar to the case of the complex terms from above. Also if
® = -0 or & = ¥, o Uy, where o is any classical logical connective, there is no problem at
all. Even if ® =Vz U or if ® = Jx ¥ no difficulties do occur. Therefore consider the case
where & = OU:

[Smex]] FpL [OT],
it [Swmw[x]] FpL Yo R, v) = [V],
iff  [Smwlx]l[v/€] FpL R(t,v) = [V,
for any world ¢

iff  R(x,¢) implies [Swuw[x]][v/¢] Fpo [P,
for any world ¢

iff  R(x,¢) implies [Smw[x][¢]] Fer [V,
by induction hypothesis

if  R(x,€) implies [Sm[¢]] Frer [P,
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iff  R(x,¢) implies [Smr][v/¢] Fpr [Py
by induction hypothesis

iff  R(x,£) implies [Smr[u/x][v/€] Frpr [Ty
u is not free in [U],

it [Swelfu/x][v/¢] FpL R(u,v) = [Py
iff  [Swuil[u/x] EpL Yv R(u,v) = [T,
i [Swillu/x] Fer [OV]y

and similarly for ® = QW

With the help of the above auxiliary lemma the soundness of the relational translation is proved
as follows:

LEMMA 3.1.7
Let Svr, = (D, W, R), Sioc, 7, @) be a modal logic interpretation over ¥y, and let U be a modal
logic formula. Then

Sur, v ¥ it [Swy] Fpe (Y],

Proof: We first have to consider the evaluation of terms. Therefore we have to show that
SmL(t) = [SmL]([t],) for an arbitrary term ¢.

S (z) = ¢(=)
= [Swml(fz].)
SML(f( .o t,..0)) = ff(...,%ML(ti),...)

= Sl ISl (), --0)

by the induction hypothesis
= ISMul(f'(6s- o il - -2)
= [Saml(Tf(-- i)

Thus the relational translation behaves as desired on the evaluation of terms. With that
we can now prove the lemma by induction on the structure of ¥. Note that the base case
(where ¥ is a literal) and the cases where ¥ is composed by two fomulae and a classical
logical connective are again obvious. Also there are no problems if ¥ is a quantified formula.
Therefore consider the case where ¥ = []®:

Smr v, 0@
iff R(r,x) implies SmL[x] EmL @
for any world x

iff  R(r, x) implies [Smw[x]] F=pr [@1.
by the induction hypothesis

iff R(r,x) implies [Smy[w/x] FrL [®]w
by Lemma 3.1.6
iff [Swmel[w/x] FeL R, w) = [@]y
iff [Syu] e (O],
and analogous for ¥ = (&
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Hence relational translation is sound in the sense that for any interpretation satisfying a modal
logic formula ® there is a predicate logic interpretation satisfying the translated version of ®.
In other words, the translation preserves satisfiability. In particular, if the accessibility relation
R for the given interpretation obeys certain properties the corresponding generated predicate
logic interpretation satisfies the respective translations.

Now it is necessary to show that unsatisfiability is preserved as well, i.e. that the translation
is complete. To this end a “reverse-translation” is defined which generates a modal logic inter-
pretation from a given predicate logic interpretation. Note that in proving the soundness of the
reverse-translation the completeness of the actual translation is shown.

DEFINITION 3.1.8 (THE REVERSE TRANSLATION [Spr,] 1)
Let Spr, = (M, ¢) be a classical interpretation over the signature [Xmr]| and let Sy =
(D, W, R), Sioc, T, P) be a modal logic interpretation over Xy, where:

e R=M(R)

e W= M(W)
e D=M(D)

o T=M()

o forany 7' in W: %IOC(TI)(f) = fr’ and gloc(T,) (P) = Py
We define [Spr] ™! = SmL and call Sy the (modal logic) interpretation generated from Spr.

LEMMA 3.1.9
Let Spy, be a classical interpretation over the signature [Yyz,]| and let x € M(W). Then for
any modal logic formula ®:

Seulu/x] ErL [@]  iff [SpL] ' [x] Eve @

Proof: Works similar to the soundness proof in Lemma 3.1.7. It is thus sufficient to consider
only the critical case where ® = OW.

Seiu/x] e [O¥]y

iff Spifu/x] Eprn Yo R(u,v) = [¥],

iff  R(x,€) implies Spr[u/x][v/¢] FpL [Ty

iff R(x, &) implies Spr,[v/€] FErL [V,
since v is not free in [U],

iff R(x,¢) implies [Spr] ' [¢] i ©
by the induction hypothesis

iff  R(x, &) implies [SpL] ' [x][€] v ©

iff [Spr] ™' [x] P OF

COROLLARY 3.1.10

Let Spr, be a classical model for [®],. Then [Spr] ™"

is a Kripke-model for ®.
Proof: Follows easily from Lemma 3.1.9 if u is set to ¢ and x is set to M(¢) = 7.

Thus both soundness and completeness of the relational translation have been shown. Now
assume that there is a modal logic formula ® to be proved valid in some particular modal logic,
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say KD45. This can be performed by proving the unsatisfiability of =®. In order to do this
the relational translation technique allows us to translate =® into ¥ = [=®], and to prove the
unsatisfiability of ¥ instead, provided the necessary additional axioms of the modal logic under
consideration are added. In this example the respective axioms D, 4, and 5 have to be included,
ie. Vzdy R(z,y), Vz,y,z R(z,y) A R(y,z) = R(z,z) and Vz,y,z R(z,y) A R(z,z) = R(y, z).
The following theorem fixes this in a more general setting. It is hereby assumed that ML is an
arbitrary modal logic (as e.g. KD45 and that ML* represents the set of corresponding additional
axioms (which are seriality, transitivity, and euclideaness in the case of KD45).

THEOREM 3.1.11

® is a theorem of the modal logic ML if and only if any predicate logic interpretation satisfying
the ML-Azioms (ML*) is a model for [®],. Formally:

v @ iff ML* =p1, [®],

Proof: Assume |y, @ and assume further that there exists a predicate logic interpretation

which satisfies the axioms of ML* but not the formula [®],. Then this PL-interpretation
satisfies [—®],. However, Corollary 3.1.10 then guarantees the existence of a modal logic
interpretation which satisfies =® and this contradicts the assumption that =pp, ®.
On the other hand assume that every predicate logic interpretation which is a model for
the ML*-Axioms also satisfies [®], and that there is a modal logic interpretation which is
an ML-model for =®. But then there exists a predicate logic interpretation satisfying the
ML*-Axioms which is model for [~®]|, which again contradicts our assumption.

Thus we are able to reason within modal logics just by translating the theorem to be proved into
classical first-order logic and to use standard predicate logic theorem provers (e.g. resolution-
based) to do the job. However, as it turns out, almost every example — provided it is not too
trivial — results in a clause set which requires to rummage through a huge search space simply
because all the special knowledge we originally had about worlds and accessibility relations is
not anymore separated from the actual theorem and thus can hardly be treated in a special
manner. As an example consider the following:

ExAMPLE 3.1.12
Suppose it is our aim to prove the S4-validity of the formula

OUP & o0O00OP

After negation, translation and clause form generation we end up with a clause sets which
counsists of 14 fairly complicated clauses with 53 literals (see Table 3.2). What is particularly
discouraging about these clauses is that almost every literal is an R-literal and that the search
space is almost intractable for any standard theorem prover. And in spite of the fact that this is
a rather simple theorem even sophisticated predicate logic theorem provers have great difficulties
in actually finding a proof.

The aim should therefore be to keep the separation between the knowledge we have about the
frame from the knowledge induced by the theorem. This can hardly be done on the basis of the
relational translation as presented in this section. Rather we need another kind of translation
— and thus modal logic semantics — which help us in this respect. Such a new translation and
semantics (called semi-functional) is presented in later sections.
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R(t,a), R(t,b)

—|R(b,.’L‘),R(L,a),R(CE,fl(.T))

_'R(bax)’_'R(fl(x)ay)aR(" a) P(y)
-R(a,z), P(x), R(¢,b)

—R(a,z), = R(b,y), P(z), R(y, f1(y))
~R(a, ), ~R(b,y),~R(f1(y),2), P(z), P(2)
_'R(L,.’IJ),ﬂR(L,y),R(J?,fQ(.’L‘)), (ya ())
_'R([’aa:)a_'R(Lay)’_'R( ( ),z),R(a: ( )) ( » fa (z,y))
_'R(L,LIJ),—'R(L,’!/),—'R( (y)az),_'P( ( ))7R($7 Q(z))
_'R([’ax)aﬁP(fQ(m))’_'R(L’y)aR(ya f3( ))
_'R(Lﬂx)a_'P(fQ(x))a_'R(Lay)a_'R(f?»( )a )’R(Zaf4(zay))
;1(%([”';")1ﬁP(fQ(x))’_'R(Lay)aﬁR(f3(y)az)’ﬁP(f4(z’y))

Table 3.2: Clauses for OOIP & OUOOOP

However, before we take a look at the semi-functioal translation approach let us first examine
how modal logic correspondences can be obtained algorithmically for this will also be needed
later on.

3.1.2 On Automating Correspondence Theory

Most of the accessibility relation properties that are induced by certain axiomatizations of modal
and temporal logics considered in this work can actually be found in the standard literature.
However, it is often not obvious at the first glance how these properties can be obtained from a
given axiomatization. Until recently, such examinations of frame properties were mainly based
either on pure model theoretic and algebraic considerations ((Segerberg 1971) and (Sahlqvist
1975)) or a rather non-algorithmic way of finding first-order equivalents for second-order (in fact
I1}) formulae (van Benthem 1984a). How such results can be obtained algorithmically was an
open problem for quite some time.

In 1992 Dov Gabbay and Hans Jiirgen Ohlbach (see (Gabbay and Ohlbach 1992a) and (Gabbay
and Ohlbach 1992b)) came up with the SCAN algorithm which allows us to transform 3i-
formulae, i.e. formulae of the form IP ¥ where ¥ is a first-order formula, into equivalent
first-order formulae provided they exist at all. Evidently, it is of no real importance whether
such an algorithm transforms %i-formulae or IT}-formulae for a formula of the one kind can be
viewed as the negation of a formula of the other kind. The main idea behind this approach is to
transform the given %1-formula 3P ¥ into clause normal form (thus skolemization gets involved)
and to perform all possible constraint resolution steps between P-literals’. If this terminates
all the clauses which contain P-literals can be deleted (by the so called purity deletion) and the
remaining clause set provides with the desired result. However, since the original formula had
been skolemized, it is necessary to “deskolemize” the result thus obtained, i.e. all terms which

TA constraint resolution step is a resolution step in which unification does not directly take place which means
that inequalities get produced which act as certain resolution residues. Therefore two arbitrary terms a and b can
be “unified” by introducing the residue a # b.
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had been introduced by skolemization have to be back-translated into existential quantifiers. If
this also succeeds, a first-order equivalent to the original second-order formula has been found.

There are two main possibilities which may prevent a successful termination of the whole
approach. First, it may happen that the resolution process does not terminate because new
clauses which contain P-literals get produced again and again and, second, even if this resolution
process terminates, it might be impossible to deskolemize the resulting clause set. As a simple
example for a successful application of the SCAN algorithm consider the modal axiom schema
O® = [OO®. In the relational translation approach this schema gets translated into

Vuv® [(Fv R(u,v) A ®(v)) = (Vv R(u,v) = Jw R(v,w) A ®(w))]

Here the formula variable ® is universally quantified; in order to be able to apply the SCAN
algorithm it is therefore necessary to negate this translation result (bearing in mind that the
final outcome has to be negated once again). Negating and transforming into clause form then
results in

-R(c, ), ~®(x)

Evidently, there is only one (constraint) resolution step possible between ®-literals and after
performing this step we get

R(a,b)

R(a,c)

=R(c,b)

The constants a, b and ¢ had been introduced by skolemization, hence they have to be back-
translated into existential quantifiers. We thus get:

Ju, v, w R(u,v) A R(u,w) A =R(v,w)
Finally, this result has to be negated again and we end up with
Vu,v,w R(u,v) A R(u,w) = R(v,w)

i.e. the axiom schema {® = OO® characterizes the euclidean frames.

The SCAN algorithm works fine for most of the axiom schemata that usually occur in the
modal and temporal logic literature®. Nevertheless, some examples are known for which first-
order equivalents exist but SCAN does not terminate when fed with these examples. Usually,
the resolvents SCAN produces while in progress do obey certain syntactic patterns and it can
be observed that SCAN’s only problem is that it is not able to deal with such patterns. This
observation lead to another method of eliminating second-order quantifiers in (Nonnengart and
Szatas 1995). In this approach such patterns are represented by fixpoint formulae of the kind
uP.®(P) (vP.®(P) respectively), where P is positive in ® (i.e. the negation normal form of
® contains only positive Ps). It is not necessary to provide a very detailed description of the
technical background behind this approach. Only the most important points are presented here.
The interested reader is referred to (Nonnengart and Szalas 1995).

8In cases where a given axiom schema has no first-order equivalent, however, the algorithm evidently cannot
terminate successfully.
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DEFINITION 3.1.13 (FIXPOINT CHARACTERIZATION)

pP.®(P) < \/ (1)
Bea

vP.®(P) & N\ ®°(T)
BEa

for some ordinal o. The least such ordinal is called the closure ordinal for ®(P). Note that
pP(z).®(P) is the least formula V(Z) such that

U(z) & o([P/¥(2)))

THEOREM 3.1.14 (THE ELIMINATION THEOREM)
If ® and U are positive w.r.t. P then the closure ordinal for ®(P) is less than or equal to w, and

AP[(vVy P(y) = @(P)) A ¥(P)]
<~
U[P/vP(y)-2(P)]

where the above substitutions exchange the variables bound by fizpoint operators by the corre-

sponding actual variables of the substituted predicate.

Proof: (Outline; the reader interested in more details is referred to (Nonnengart and Szalas
1995)).

That the closure ordinal for ®(P) is < w can be seen by showing that ® is continuous w.r.t.
P, i.e. @ distributes over infinite disjunctions for P.

If U[P/vP(y).®(P)] holds then it is easy to check that IP[(Vy P(y) = ®(P)) A ¥(P)] by
letting P(g) = puP(y).®(P).

Finally, let P such that Vg (P(y) = ®(P)) A ¥(P). First we show by induction over 7 that
P(y) = ®4(T).

Base case 7 = 0: holds trivially.

Induction step: suppose P(j) = ®‘(T). @ is positive w.r.t. P and thus also monotone
w.r.t. P. Hence ®(P(y)) = ®(®*(T)) < ®*+1(T). Since (by assumption) P(7) = ®(P) we
have that P(y) = ®*1(T) and we are done with the induction proof.

Thus P(§) = Aje, ®(T) and since the closure ordinal has been shown to be < w we also
have P = vP.®(P). Now recall that ¥ is positive (and thus monotone) w.r.t. P and that

by assumption ¥U(P) holds. From these two facts it follows that U[P/vP(g).®(P)] and we
are done.

Analogously, it is possible to show that
AP[(vy P(g) v ®(P)) A U(P)]
p— _® p—
V[P/vP(g).2(P)]

i.e. the sign of the P is of no importance.
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ExamMpPLE 3.1.15

Let us apply this kind of second-order quantifier elimination to the example schema ¢ & = OOP
again. Evidently, just as for the application of the SCAN algorithm the (relational) translation
result of this schema has to be negated first in order to be able to apply the Elimination Theorem.
This then results in:

v R(u,v) A ®(v)
Fuid A
Fw R(u, w) AVy R(w,y) = ~2(y)

The Elimination Theorem requires a certain form to be applied. A transformation into this form
then leads to
Vz®(z)Vz#£wv
A
Ju, v3P R(u,v)
A
Jw R(u, w) AVy R(w,y) = =2(y)

From the Elimination Theorem we know that this is equivalent to

R(u,v)
Ju, v A
Jw R(u,w) AVy R(w,y) = vd.y #£v

which can easily be simplified (using e.g. v®.y # v < y # v) to
Ju,v R(u,v) A Jw R(u,w) A ~R(w,v)
A final negation then provides us with
Vu,v,w R(u,v) A R(u,w) = R(w,v)

The advantage of this approach on second-order quantifier elimination over SCAN is that it
always terminates provided the input formula can be transformed into the form required for this
Elimination Theorem. However, this cannot always be guaranteed unless we apply a second-
order skolemization in order to get this very form. This fact is actually not too surprising for
there evidently exist second-order formulae which have no first-order equivalent (and may even
not be representable by such fixpoint formulae).

Note that such a second—order quantifier elimination actually applies only to formulae which
can be brought into the form required for the Elimination Theorem. Modal schemata are not
of this form. Finding characteristic properties from modal schemata is therefore also a matter
of the translation (in fact the modal logic semantics). However, it is known that not all modal
logics are complete w.r.t the Kripke style semantics. It is therefore usually necessary to show
the completeness of the axiomatization independently (see also (Sahlqvist 1975)).

3.2 Semi-Functional Translation

3.2.1 Background

In 1988 Hans Jiirgen Ohlbach came up with the so called functional translation for modal logics
which was supposed to eliminate most of the representational overhead that gets produced in
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the relational translation approach®. The main idea behind this functional translation method
was based on the observation that the responsibility of an arbitrary binary relation R C W x W
can be taken over by some suitable set of (partial) functions as it is illustrated in the following
example

f 4!
s B
g 7o
(0%
f Y3
ENYCA
g Y4

where each arrow represents an R-connection. In this example R consists of six pairs, however, as
the example shows, we might equally assume two functions f and g (so-called access functions)
together with the element o and would still be able to access any element from a by some nested
function application. So for instance, v, = g(f()) and B2 = g(a). Evidently, this requires at
least as many functions as there are R-successors for an arbitrary element. Therefore, if there
is an element which has infinitly many R-successors then also infinitly many such functions are
needed. Intuitively, we might think of these functions as follows: Assume an arbitrary element a
and consider all elements z such that R(a,z). In general, R is not a function, i.e. a might have
several R-successors. Now assume a function which maps a to the set of its R-successors and
furthermore consider the set of functions which select elements out of such a set. These selector
functions in comination with the mapping to the R-successors essentially form the set of access
functions Fg that are examined in the functional translation approach.

As a matter of fact, it can easily be shown that under this construction (and provided the
relation R is serial) the formula

Yu,v R(u,v) < 3f € Fr f(u) =v

holds and therefore any occurrence of an R-literal can be substituted by an equation. Now
consider the relational translation of a [-formula

[O®], = Vv R(u,v) = [®],

If we replace the R-literal in this translation according to the above equivalence we get as an
intermediate result'®.
[O®], =Yv (3f € Fr f(u) =v = [®],)

which is equivalent to
VoV f € Fr (f(u) =v = [2])

9See (Ohlbach 1989), (Ohlbach 1988), (Ohlbach 1991), (Auffray and Enjalbert 1992), (Farifias del Cerro and
Herzig 1988).

0The elements of Fr do not necessarily have to be thought of as all the functions which map worlds to R-
accessible worlds. We shall later see that a denumerable set suffices for our purposes. It is thus possible to
introduce an “apply”-functions which accepts an element f of Fr and a world o and returns f(a). In Hans
Jirgen Ohlbach’s notation the apply is represented by a | thus f(a) becomes | (f, @).
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This can finally be simplified to
Vf € Fr |—(I)-|f(u)

Similarly, the translation of a ¢-formula then results in
[0®]y < 3f € Fr [®] f(u)

and it is obvious that no R-literals can occur in the translation result of an arbitrary modal
formula.

However, R-literals were not only introduced by the translation of modal formulae; also
the background theory of the logic under consideration usually says something about R (e.g.
reflexivity and transitivity of R in case of S4). Unfortunately, substituting the R-literals in such
a background theory does not lead to something that nice. For instance, reflexivity gets replaced
by

Vudf f(u) =u

and transitivity becomes

Vu, f,g 3k f(g(u)) = h(u)
It is fairly evident that any pure R-formula gets substituted by an equational formula which
cannot be simplified any further and therefore the price to be paid for the much nicer functional
translation is in the equational clauses to be added. Nevertheless, often some simplifications are
possible. For example, it can be shown that the equation which represents the reflexivity of the
R-relation can be rewritten as

Af Yu f(u) = u

Also, if the background theory happens to be a Horn theory (as it is in case of S4) then the
background theory after functional translation consists of unit equations. This then allows us
to exchange the equational theory by some suitable theory unification algorithm. Up to date
theory unification algorithms for some of the most common modal logics have been developed.

Summarizing, the functional translation approach reduces the number and size of the trans-
lation result significantly when compared with the relational translation. The price to be paid
for this reduction lies in the equational theory which has to be added and unless this theory can
be transformed into a suitable theory unification algorithm it turns out that such an equational
theory is hard to deal with for standard predicate logic theorem provers.

Thus both approaches, the relational and the functional translation method have advantages
and disadvantages. The relational translation results in huge clause sets and fairly simple — at
least easy to understand — background theories and the functional translation results in much
smaller clauses but rather complicated equational background theories.

Now, the idea of the semi-functional translation is to combine the advantages and to avoid
the disadvantages of the two other approaches if possible. As it will turn out the size of the
clause set after semi-functional translation will be just as big as in case of the functional approach
(the clause might get bigger though) and the resulting background theory does not contain any
equations (provided the corresponding theory in the relational translation does not). As we
shall see later it is even possible to find certain restrictions on the background theory after semi-
functional translation which allow us to simplify this theory so considerably that it sometimes
even can be described by a single unit clause.

In what follows the semi-functional translation approach is described. It is called semi-
functional because the operator ¢ is translated functionally whereas the [ is translated as in the
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relational case. Just as in the functional translation case its definition depends on the question
whether we consider serial or non-serial accessibility relations. Since we are mainly interested in
serial relations for the application to temporal logics, this case is considered first. The non-serial
case is briefly examined in Section 3.4 (for some additional information see (Nonnengart 1993)
and (Nonnengart 1992)).

3.3 Serial Modal Logics

There are two possible cases to be distinguished. Either the modal logic under consideration is
serial or it is not. Evidently, if the logic we are interested in is not serial then there exists at least
one world, say x, which has no access to any other world. Since the functions we are looking
for are supposed to map worlds to accessible worlds none of these functions can be defined on y
and thus cannot be total. In serial modal logics we may restrict our attention to total functions
as will be seen shortly.

DEFINITION 3.3.1 (FUNCTIONAL DECOMPOSITION)

Let R be an arbitrary serial binary relation over a denumerable set W. A denumerable set Fy of
total functions from W to W is called a functional decomposition for R if R(«, B) is tantamount
to the existence of an element f in the set Fyp with f(a) = (.

As mentioned earlier, such a functional decomposition is supposed to take over some of
the responsibilities of the accessibility relation. We therefore extend the notion of frames and
interpretations accordingly.

DEFINITION 3.3.2 (EXTENDED FRAMES)
Let Py, = (W, R) be an arbitrary modal logic frame and let Fy be a functional decomposition
of R. Then we call the triple (W, R, Fr) a functional extension of Fyy,-

DEFINITION 3.3.3 (SEMI-FUNCTIONAL INTERPRETATIONS)

Let Sy = (D, Fun, Sioe, T, @) be a modal logic interpretation and let (W, R, Fyr) be a func-
tional extension of Fy. Then we call (D, (W, R, Fg), Siee, T, $) a semi-functional modal logic
interpretation generated from Syr.

Since interpretations have been changed slightly, the definition of the satisfiablity relation
has to be changed as well.

DEFINITION 3.3.4 (SATISFIABILITY RELATION)
Compared to Definition 3.1.2 the satisfiability changes only with respect to ¢-formula, namely

SemL = 0P iff Semu[f(7)] E @

where Sgmr = (D, W, R, Fr), Sioc, 7, @) and f is some element of Fy. All other cases remain
as before.

It has to be shown that there is actually no real difference between a relational Kripke-
interpretation and a corresponding semi-functional interpretation as it is defined above. To this
end it is necessary to guarantee the existence of a functional decomposition for arbitrary serial
accessibility relations and also to show that Kripke-models behave just like extended models do.
The latter can be shown as follows:
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LEMMA 3.3.5
Let Syp, be an arbitrary serial modal logic (possible world) interpretation and let ® be an
arbitrary modal logic formula. Moreover, let Sgyvi, be an extended interpretation generated
from Syp,. Then
SML EF® iff Sgvp @
Proof: By induction on the recursive structure of ®. Since the two kinds of models differ only
in the interpretation of {-formulae this is the only case to be considered here.

Consider ® = QW: Since 3y, satisfies & we have that — assuming the initial world is 7 —
Smw[x] satisfies ¥ for some world x with R(7, x). Since Sgymr is an extended interpretation
generated from Sy, we have that the set Fy is a functional decomposition of R, thus
R(c, B) holds iff there is an f in Fy such that f(a) = 8 for any « and 8. Therefore — and
by the induction hypothesis — it follows that Sgumr[f(7)] satisfies U for some f and thus
SemL 1s a model for OW.

For the other direction assume that Sgumr, = Q. Acording to Definition 3.3.4 this is equiv-
alent to Semr[f(7)] E ¥ for some f € Fy. By the definition of a functional decomposition
we have that R(7, f(7)) and thus we know that for some world x, namely f(7), it holds that
R(7, x) and Semw[x] E V. By the induction hypothesis this is equivalent to Swur[x] = ¥
for some x with R(7, x) which is tantamount to Sy = Q.

There are several ways how to show the existence of a functional decomposition for a given
accessibility relation. A non-constructive, but nevertheless fairly elegant way works as follows:
Consider the set of all functions f from W to W such that f(«) = § implies R(a, 3). This set of
functions obviously is a functional decomposition of R and, according to the famous Lowenheim-
Skolem Theorem, there even exists a countable subset of such functions which obey the desired
properties.

However, there is also a constructive proof:

LEMMA 3.3.6
Let R be an arbitrary serial relation over W x W. If W is a countable set then there exists a
countable functional decomposition Fy of R.

Proof: It will be shown that R can be split into countably many disjoint total and functional
subrelations. To this end we arrange the pairs in R in a two-dimensional field in such a way
that the pairs in a single column all have an identical first element and there are no two
columns which contain pairs with identical first element. Pairs may occur arbitrary often
in one column, though. Then the subrelations we were looking for can be found by simply
collecting the elements of the respective rows. Formally:

Define for any pair (z,y) in W x W: (z,y) = (u,v) iff z = u.
Obviously =~ denotes an equivalence relation. It is thus possible to introduce equivalence
classes []/~ by:
[(z,9)]/~ = {(u,v) € R (z,9) = (u,v)}

and

R/~ =A{l(z,9)]/~ | (z,y) € R}
Both [(z,y)]/~ and R/~ are denumerable, therefore there exist surjective mappings 6 :
Nat — R/~ and ¢; : Nat — 6(7).
Then define f; = {6x(j) | k¥ € Nat} and the functional decomposition Fy of R is then simply
given by the set {f; | j €Nat}.
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The relational translation method was based on the relational (Kripke-style) semantics for modal
logics. Analogously, the semi-functional translation approach is based on the extended (semi-
functional) semantics as it is described above. We therefore have to define a suitable signature-,
interpretation-, and formula translation just as it had been done for the relational translation
approach.

DEFINITION 3.3.7 (THE SIGNATURE TRANSLATION | Xy, ])
| XM differs from the relational signature translation [Xap| only in the additional binary
function symbol “:” (written in infiz notation).

Note that “:” corresponds to the “apply”-function in the functional translation approach.

DEFINITION 3.3.8 (THE INTERPRETATION TRANSLATION |Simr, )

The only difference to the relational case lies in the interpretation of the additional binary
function symbol : which accepts a world and an element of the functional decomposition of
the accessibility relation and returns a new world such that |Svy](:)(a, B) = 7 if and only if

Bla) =1.

DEFINITION 3.3.9 (THE FORMULA TRANSLATION |®],)
The only difference to the relational translation lies in the translation of the Q-operator.

I.OQJU =dz€FR I_(I)Ju:z
In the sequel we shall sometimes omit the sort informations if they are clear from the context.

At this stage all preliminaries are provided to prove the main theorem of this section. It has
to be shown that this translation preserves both satisfiablity and unsatisfiablity.

THEOREM 3.3.10

Let ® be a modal logic formula in negation normal form!'*. Then ® is unsatisfiable (in the
serial modal logic ML) iff |®], cannot be satisfied by any classical model satisfying both Axioms
and Yu,r R(u,u:z)'? where Axioms represent the properties induced by the additional aziom
schemata for the logic ML.

Proof: From Theorem 3.1.11 we know that the relational translation is both sound and com-
plete, i.e. a formula ® is ML-satisfiable iff there exists a classical interpretation (M, ¢)
which is a model for Vx [®], and which interprets the accessibility predicate R just as the
accessibility relation . Moreover, we know from Lemma 3.3.6 that for every serial relation
R there exists a functional decomposition Fr. Thus we do not lose or gain anything if we
simply add the formula'3

Vu,v R(u,v) < Az u:z =v

N A formula is in negation normal form if it contains no implication or equivalence and all negations are moved
inwards as far as possible (i.e. directly in front of the atoms). Evidently any formula can easily be transformed
into an equivalent formula in negation normal form.

12This unit clause describes the important connection between functional decompositions and accessibility
relations. Essentially it guarantees that whatever we can get by the application of an element of the functional
decomposition is accessible.

13Note that this formula is just the same as the one which had to be introduced in the functional translation
approach.
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Now we can show — in analogy to the proof for Theorem 3.1.11 — that ® is ML-unsatisfiable
if and only if |®], has classical model satisfying both Axioms and Yu,v R(u,v) < Iz u:z =
v. To this end it suffices to show that the claim holds for ¢-formulae, other formulae are
treated identically as in Theorem 3.1.11.

Hence consider & = QWU and let Sy, be a model for @, i.e. Sy, Euvr . What has to
be shown is that — under the additional equivalence Yu,v R(u,v) < Iz u:z = v —
Vu (Fv R(u,v) A ®[v] & Jz ®[u:z]). This, however, is in fact trivial.

Thus what we have shown up to now is that ® is ML-unsatisfiable iff | ® ], cannot be satisfied
by any classical model satisfying both Axioms and Vu,v R(u,v) < 3z u:z = v. Remains
to be shown that the left-to-right implication of the latter equivalence is superfluous.

First consider the two implications one by one. The right-to-left implication states that for
any u and v: if there exists an z such that u:z = v then R(u,v) holds, which is equivalent
to Yu,x R(u,u:z). The other implication can be viewed as a conditioned equation and if
we would add its clause form to an arbitrary clause set this would result in:

- R(u,v) Vu: f(u,v) =v

Note that the variables on the left-hand-side of this equation form a proper superset of
the variables on its right-hand-side. Thus it is possible to view this equation as directed
from left to right. Now the negation normal comes into play. The idea is to apply this
equation'® to every non-variable subterm which occurs somewhere in the clause set. Recall
that the only thing we know about the other clauses is that they have been generated by
the semi-functional translation method. What is remarkable about this translation is that
it produces clauses which do not contain any functional decomposition variables provided
the formula to be translated is in negation normal form!5. Thus the conditioned equation
cannot be applied to any of these clauses, neither can it be applied to any of the Axioms.
The only possibility at all is to apply it to the unit R(u,u: z) but this results in a tautology.
Hence this conditioned equation needs not be applied to any clause in the clause set and
therefore it is superfluous.

Thus the semi-functional translation behaves as desired. A first easily observable advantage of
it is that it produces much less clauses than the relational translation.

DEFINITION 3.3.11 (FLATTENED FORM OF MODAL FORMULAE)
The flattened form of a modal logic formula can be obtained by simply ignoring the modal oper-
ators, i.e.

ﬂat(P( ) = P(..)
flat(D®) = flai(D)
flat(0®) = flai(®)

flat(d Vv ) = flat(P) V flat(V)

and similarly for the other connectives

The flattened form is sometimes also called the skeleton of the formula.

YEvidently, by applying an equation a usual paramodulation step is meant.
5The trivial induction on the formula structure is omitted here.
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LEMMA 3.3.12

Let ® be a modal logic formula in negation normal form and let ¥ be the skeleton (flattened
form) of ®. Then the clause normal form of |®|,, consists of exactly as many clauses as the
clause normal form of W.

Proof: By induction on the structure of ®.
The case were @ is a simple atom is trivial. Also if ® is a negative literal or a conjunction
there are no problems. Thus the only cases to be considered are those were @ is a disjunction
or a formula with a modal operator as top symbol.

If ® = Q@' then |®], = Iz |P'|y.,- By induction hypothesis we have that the clause
normal form (cnf for short) of |®'],., contains exactly as many clauses as the cnf of the
skeleton of ®' and we are done.

If ® = O’ then [®],, = Vv ~R(w,v) V |®'], whose cnf contains as many clauses as the cnf
of [®'], and we are again done by the induction hypothesis.

Finally, if ® = ® v ®” and the cnf of |®'|, contains n clauses and the cnf of |®”],
contains m clauses then |® |,, contains n x m clauses which is just as many as (by induction
hypothesis) the number of clauses as in the skeleton of ®.

What has been gained so far? In fact, two of the main goals mentioned at the begining of this
chapter are already fulfilled. The first one was to get a more compact translation result by
reducing the number of clauses that are generated and the second one was the separation of
the background theory from the translated theorem. However, there is a third invariant of this
translation approach which turns out to be useful:

LEMMA 3.3.13
Let ® be a modal logic formula in negation normal form. Then the clause normal form of |®|u
does not contain any positive R-literal.

Proof: Simple induction on the structure of ®.

Thus positive R-literals can occur only in the background theory of the modal logic under
consideration. We shall take advantage of this observation later.

3.3.1 The Semi-Functional Translation From Another Perspective

The semi-functional translation as it has been defined above has its origin in the functional
translation approach for modal logics. In fact, the term “functional” might be a bit misleading.
It is not really necessary to think of functions as the elements of the newly introduced sort since
typical function properties as for instance the fact that two functions are equal if they agree
in all their arguments are not needed. Rather we should think of a more or less arbitrary new
sort and a new symbol “” (which is to be interpreted as a function) and examine such a new
translation in a more abstracted manner.

To this end consider an arbitrary translation of the modal operators. For simplicity let us
assume that either this translation is already dual in the two modal operators or, otherwise, one
of the operators, say the 0, is translated as in the relational translation approach'®. Let us then

'We assume here that the modal logic axiomatization is complete w.r.t. the relational semantics.
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consider the general translation schema:

(O],
[0®

VYw R(u,w) = |®]qy
Q®,u, | ])

i.e. the translation result on a formula Q@ is a function, say (2, which depends on ®, u and also
on the translation function | |. This Q may introduce some new functions, predicates and sorts
which we call the Q-symbols'”. At this stage nothing very strange has happened yet for we could
still prove the same theorems as before provided we treat every ¢ as a —[—. However, if we do
not want to translate the ¢ in terms of the (1 we have to realize that these two operators are not
anymore duals to each other as it is generally required for modal logics. In order to overcome
this problem we have to consider only interpretations in which the schema 0® < —0-® is
valid. Evidently, this schema evaluates to T in the relational translation approach and therefore
requires no special treatment there. Similarly, the functional translation approach treats the two
operators in a dual manner and this schema is again not necessary. This is not true anymore for
the semi-functional translation method and since we do not want to deal with such schemata
directly we have to find out whether O0® < —()—® corresponds to a first-order property of the
function, sort and relation symbols involved, i.e. we try to eliminate the ® from the translation
of this axiom schema. Now let us assume that such a second-order elimination is successful and
results in a formula V. Evidently, ¥ is a first-order formula on R, u, and the 2-symbols then
and we are forced to add ¥ to the formula we get after applying the new translation to any
alledged modal logic theorem for otherwise we could not even guarantee that —QP = O-P is
provable. However, we are not finished yet. W tells us about a correspondence between R and
the Q-symbols. and such a correspondence in fact might induce certain properties on R itself.

ExampLE 3.3.14
As a simple example consider

QUP,u, | ]) =Vw S(u,w) = [Py

In this case the only Q2-symbol is S and the second-order quantifier elimination of O® < —)—®
results in

Vu3v S(u,v) A R(u,v)

Vu,v,w R(u,v) A S(u,w) = v =w

These two clauses, our ¥, will have to be added for they guarantee the duality of (1 and ¢.
Now, if it were the case that for any R there is an S with such properties, in other words the
formula 35 W is equivalent to T, everything would be fine and we had an alternative translation
for arbitrary modal logics. Unfortunately, but not too surprising, 35 V¥ is not equivalent to T.
Once again with the help of the second-order quantifier elimination we can find out that

S ¥ & Vudv R(u,v) AVw R(u,w) = v =w

i.e. such an S exists if and only if R denotes a total function. Hence this translation is sound and
complete for every modal logic where R is functional, i.e. the axiom schema O0® < (& holds'®.

"In case of the relational translation we have that Q(®,u, [ ]) = Jw R(u,w) A [®], and no new symbols are
introduced and in case of the (semi-)functional translation Q(®,u,| |) = Jxr € Fr |®]4., and the Q-symbols
consist of the new sort symbol Fr and the function symbol “”.

815 fact, S is then even identical to R.
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The general idea can thus be summarized as follows: Given an alternative translation (for
Q-formulae in our case) try to find a first-order equivalent for the duality schema O® < —(—®.
If this succeeds we get a formula ¥ on R, “=", and the {2-symbols and what remains is to find
a first-order equivalent for

3Q-symbols ¥

This way we end up with a first-order formula on R which states the exact condition on the ac-
cessibility relation under which the alternative translation is both sound and complete (provided
U is added to the formula to be proved).

Now let us apply this idea to the (semi-)functional translation approach. Here we have
QP,u,| |) =Tzx€Fg [Py

and the first step according to the above observation is to find a first-order equivalent for the
duality schema. As a matter of fact this results in the two clauses (our ¥)

Vu,z € Fr R(u,u: )

VYu,v R(u,v) = x€Fru:x =v
Remains to be shown under which conditions on R there exist such a sort Fg and a function “:”
such that ¥ holds. This is actually another second-order quantification elimination problem but
we can avoid the application of the elimination procedure here for we already know the result
by Lemma 3.3.6, i.e. such a new sort and such a new function exist if and only if R is serial.

Note that this result shows that in case of non-serial modal logics a different translation has

to be chosen. We shall defer this issue until Section 3.4.

3.3.2 (Partial) Saturation of Background Theories

According to Lemma 3.3.13 no positive R-literals do occur in the translation result whatsoever
the input modal formula looks like. This means that the only positive R-literals that might at
all occur in the clause set appear in the background theory that is induced by the modal logic
under consideration. This fact can be utilized by computing everything beforehand that can
possibly be derived from this background theory, i.e. this theory gets saturated. Such a saturation
characterizes the modal logic and is thus independent from the theorem to be proved.

NOTATION 3.3.15
We call a clause C P-positive (P-negative) if there is a positive (negative) occurrence of a P-
literal in C. If, in addition, C is not P-negative (not P-positive) then we call C pure-P-positive
(pure-P-negative).

DEFINITION 3.3.16 ((PARTIAL) SATURATION)
Let P be a designated predicate symbol and let C be a set of P-positive clauses. Then we call the
set of clauses we get by resolution within C and whose elements are pure-P-positive, i.e. the set

{C'| C Fyes C and C is pure-P-positive}

the saturation of C with respect to P.
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As a little example consider the clause set {P(a), "P(z) V P(f(z))}. Its only clause which
is pure-positive w.r.t. P is P(a). However, it is possible to derive more pure-P-positive clauses
by resolution, namely all unit clauses in the set {P(f"(a)) | n > 0}.

Knowing about the saturation of a given clause set is often quite helpful as the following
lemma states.

LEMMA 3.3.17

Let C be a clause set and let P be a designated predicate symbol. Moreover let C' C C be exactly
the subset of C whose elements are positive w.r.t. P. If C" is the saturation of C' with respect
to P then C is unsatisfiable iff C \ C' U C" is unsatisfiable.

Proof: Easy by Definition 3.3.16.

The problem with the above lemma is that saturations are usually infinite. However, if we are
able to find a finite alternative clause set with exactly the same saturation we can use this one
instead.

THEOREM 3.3.18

Let C be a finite clause set, let P be a designated predicate symbol, and let D C C contain
exactly the P-positive clauses of C. Moreover, let B be a finite set of P-positive clauses whose
saturation w.r.t. P is identical to D’s saturation w.r.t. P. Then C is unsatisfiable iff (C\D)UB
s unsatisfiable.

Proof: Follows immediately from the lemma above.

Thus the idea is to extract D and to find a hopefully simpler clause set B with the same
saturation.

ExaAMPLE 3.3.19
Consider the simple background theory given by the clauses:

P(a)
P(f(a))

~P(z), ~P(f(2)), P({(/(2)))
Its saturation is {P(f"(a)) | n > 0} and a fairly easy way to prove this is as follows. First it
has to be shown that each of these elements can indeed be derived. A simple induction over n
will do. For the base case we have to check whether P(a) is derivable from the original clause
set. Since P(a) is even contained in this clause set we are already done. For the induction step
assume that it has been shown that P(f*(a)) is derivable for all £ < n. We thus know that
both P(f"~2(a)) and P(f" !(a)) are derivable and therefore P(f™(a)) can be obtained by two
resolution steps with the third clause from the original clause set. Thus {P(f"(a)) | n > 0} is
at least contained in the saturation we are looking for. Remains to be shown that the converse
also holds, i.e. that the saturation is contained in the derived clause set. To this end it suffices
to show that any pure-P-positive clause which is derivable from {P(f"(a)) | n > 0} and the P-
positive clauses of the clause set under consideration is already of the form P(f"(a)). Evidently,
resolution steps between P(f*(a)), P(f'(a)) and —~P(z),-~P(f(z)), P(f(f(x))) are possible only
if k=141 (or I = k+1) and they result in P(f"*%(a)) (P(f**2(a)) respectively). This derived
unit belongs to {P(f"(a)) | n > 0} and we are done.
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Now consider the somewhat “simpler” clause set

P(a)
~P(z), P(f(z))

Similarly to the above we can show that the saturation of this clause set is also { P(f"(a)) | n > 0}
and therefore (according to the above Theorem 3.3.18) this new clause set may be used to replace
the original background theory.

Recall that these two clause sets are not at all equivalent. It is the mere fact that they do
form a background theory in the sense that they contain the only P-positive literals occurring
anywhere in the whole clause set under consideration which allows us to perform such a “sim-
plification”. Hence what we utilize here is not only that the background theory is something we
know about P but is indeed all we know about P.

Some Simple Modal Logic Examples For Partial Saturation

There are two of the best known serial modal logics where this saturation approach does not lead
to anything new, namely the modal logics KD and KT (also often simply called T). However,
this does not bother us too much for these modal logics background theories are represented by
one or two unit clauses anyway and thus the amount of search necessary for a theorem prover

to prove a theorem in such a logic is certainly not too heavily influenced by these theories!'?.

Now let us consider another fairly simple, although not at all trivial, modal logic, namely
KDB which is axiomatized by the additional axiom schemata (O0® = (@ and & = 0O0®.
As we know from the beginning of this chapter (and of course also from the standard modal
logic literature) these two axiom schemata characterize the seriality and the symmetry of the
underlying accessibility relation. The background theory for KDB therefore is:

R(u,u:x)
R(u,v) = R(v,u)

According to the principle described in the previous section it is our aim to saturate this back-
ground theory?®. This saturation can be found very easily and we end up with

Hence these two unit clauses are sufficient as the background theory for KDB and, although this
seems to be of minor effect, such a replacement at least avoids unwanted cycles in the search
space.

As another, slightly more complicated, example consider the modal logic S4 which is char-
acterized by the accessibility relation properties reflexivity and transitivity?'. The whole back-

%Note that for the logic KD we could incorporate this very unit clause directly in the translation description.
Interestingly this would result in exactly the same clause set we would get if we applied the functional translation
approach.

20Recall that under KDB these two clauses indeed describe all we know about the background theory and not
just something we know of it.

?'The corresponding axiom schemata are 0% = & and 0% = OO%.
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ground theory is therefore given by

R(u,u: )
R(u,u)
R(u,v) A R(v,w) = R(u,w)

Again we have to saturate this clause set bearing in mind that this is indeed all we know
about R, for any formula to be proved unsatisfiable (in S4) won’t contain R-positive clauses.
Let us show now that the saturation consists of the (infinite) set of unit clauses of the form
{R(u,u:z1: ---:z,) | » > 0}. To this end we first have to show that the purely positive
R-clauses in the background theory (which are R(u,u:z) and R(u,u)) are contained in this
set, however, this turns out to be trivial. Then we have to show that the application?? of
two arbitrary elements of the alleged saturation to the transitivity clause does not produce
anything new, and indeed, resolving R(u,u:x1: --- :z,) and R(u,u:y1: - - 1 yp) with the first
two literals in R(u,v) A R(v,w) = R(u,w) results in R(u,u:x1: ++:ZTp:Y1: +** :Ym) which is
already contained in {R(u,u:z1: ---:z,) | n > 0}. Finally, we have to show that the supposed
saturation is not too big, i.e. that each of its elements can in fact be derived and this follows by
a simple induction over n.

So far we have found the saturation of the S4 background theory. Now we have to find an
alternative clause set with exactly the same saturation but which is in some sense simpler than
the original one. Finding such an alternative clause set is still to be performed by a good guess; it
is not yet known how this could be automatized in general and in fact there are some reasonable
doubts that a “complete” automatization can be defined. For this example, however, it is not
very hard to find a suitable clause set, namely

or, equally simple,
R(u,u)
R(u:z,v) = R(u,v)

It is easy to show — similarly to the above — that the saturation of this clause set is identical
to the saturation of the S4 background theory and what we have gained is that we may replace
the background theory for S4 by the two simpler clauses

R(u,u)
R(u,v) = R(u,v:x)

In particular the vanishing of the transitivity clause turns out to be of major importance here.
At this stage it might be helpful to illustrate the effect of the semi-functional translation together
with saturation with the help of a little example.

ExAMPLE 3.3.20
Recall Example 3.1.12 on page 25 where the S4-validity of ¢1Q < OOOOQ was to be shown.

22Sometimes I will use the term applying a clause as short for performing a resolution step with this clause as
one of the parent clauses.
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Semi-functional translation then results in the following clause set:

“R(e:a,x) V -R(e:b,y) V =R(y: f(y),2) V Q(z) V Q(2)

ﬁl(%(b, a)v) V-Q(z:g(x)) V-R(,,y) V ~R(y: h(y), z) V ~Q(z: k(z,9))
R(u,u

- R(u,v) V R(u,v:x)

This set of clauses is not only much smaller than what we got from the relational translation
approach; also the search space has been reduced so considerably that no standard theorem
prover for classical predicate logic will have particular difficulties with it.

It should now be obvious how a logic like KD4 has to be treated. Its background theory is
described by
R(u,u:x)
R(u,v) A R(v,w) = R(u,w)

and it can very easily be shown that the saturation of this theory consists of the set
{R(u,u:z1: - :xzp) | n>1,z; € Fr}

i.e. it differs from the saturation of the S4-theory only in one respect: it lacks the reflexivity
clause R(u,u). However, it is just as easy to find an alternative clause set for this background
theory, as there is for example

R(u,u:x)

R(u,v) = R(u,v:x)

To show that this clause set indeed has the same saturation can be proved in exactly the same
way as it had been done in case of S4.

3.3.3 Exploiting Connectedness

So far only a few of the best known modal logics have been examined with respect to semi-
functional translation and partial saturation (of background theories). Nevertheless, these tech-
niques can equally well be applied to other well known modal logics, as e.g. S5, and they help
to simplify the background theory for actually every modal logic commonly known from the
literature (provided the accessibility relation properties are first-order).

But we can do even better, and that with the help of the so-called connectedness property of
modal frames. Before coming to this let us first have a look at the technique applied to the logic
S5.

As is well known, S5 can be axiomatized by the schemata 0® = &, 0¢ = OOP, and
® = [O0P or, equivalently, by 0P = & and ¢® = OOQP. The correspondence axioms
for the accessibility relation are therefore reflexivity, transitivity and symmetry in the for-
mer and reflexivity and euclideanness in the latter axiomatization. Both are evidently equiv-
alent and hence it does not make any difference whether we choose the one or the other.
Now, the saturation of either background theory consists of all the unit clauses of the form
{R(u:z1: - Tp,uiy1: - Ym) | n,m > 0} as can easily be found out by applying the procedure
described in the last section. Also, it is not very hard to find an alternative clause set which is
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in some sense simpler than the original one but gnerates the very same saturation, for instance

which is still rather complicated.

Nevertheless, this background theory can be much more simplified bearing in mind that we
may consider connected frames as defined in (Segerberg 1971):

DEFINITION 3.3.21 (CONNECTED FRAMES)
A frame Fyr, = (W, R) is said to be connected if there exists a world T in W such that for every
world x in W we have that R* (7, x) where R* denotes the reflexive and transitive closure of R.

Hence, in a connected frame any world can be reached from an initial world by zero or more
R-steps and it is thus impossible to have two or more unconnected “islands” of worlds.

DEFINITION 3.3.22 (GENERATED FRAMES (SEGERBERG))

Given an arbitrary frame Fyr, = W, R) and an arbitrary world 7 in W we define W' = {x €
W R*(1,x)} and ®' = {(x,€) € R | x,& € W'}. The frame (W', R') is then called the frame
generated from Fyrr, (with initial world ).

Evidently, every generated frame is connected. What is more remarkable, however, is that
modal logics are not able to distinguish between connected and unconnected frames and this is
shown by the following

LEMMA 3.3.23 (SEGERBERG)

Let Fyir, be a modal logic frame and let Sy, = (D, Fuw, Sioc, T, $) be an arbitrary interpre-
tation based on Fy,. Moreover, let ® be an arbitrary modal logic formula and let Sy, =
(D, Fyr,s Stoc, T, ¢) where Fyy; is the frame generated from Fyyy, (with initial world 7). Then

Sur EuL @ iff Sy, Eur @
Proof: Can be found in (Segerberg 1971) and (Chellas 1980).

Hence it is possible to restrict our attention to connected frames and we have to find out what
connectedness actually means in extended (semi-functional) frames.

LEMMA 3.3.24
An extended frame (interpretation) is connected (with initial world 7) iff for every world x there
exist some 71, ... ,Y, € Fr (n > 0) such that

X=T:Y1:72:7%3: " Vn

Proof: In connected frames each world x can be reached from the initial world 7 by a finite
sequence of R-transitions, i.e. there exist worlds w1, ... ,w,_1 such that

R(7,w1) A R(w1,w2) A ... AN R(wp—1,X)

which — in the extended functional frames — is just 7:y;:v2:y3: - -+ : 7y, for appropriate +;.
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Thus we may assume that (in the object level syntax)

anyl,... s Yn T=1L1Y1: " - 1Y

holds and this can be utilized as follows.

Recall that the saturation of S5 resulted in an infinite clause set which consists of all unit
clauses of the form R(u:xz1: -+ :Zp,u:y1: -+ 1Y) with n,m > 0 (and universally quantified
variables u, z;,y;). Now consider the subset we get after instantiating the variable u with ¢, the
initial world. Then both arguments of the R-literals are of the form ¢:2;: ---: 2, where every
z; is universally quantified and therefore this term can represent any world. Thus we have that
(under the connectedness assumption) R(¢:Z1: -++ :Zp,t:y1: -+ - 2 Yp) Which can be simplified to
R(v,w), i.e. the universal relation, which obviously subsumes any of the unit clauses described
by R(u:xy: -+ :Zp,uiy1: -+ :Ypm). More formally:

VeIyr, ... ,Yn T =1L1Y1: 1 Yn
=
Vu,z5,y; R(uizr: -+ 1Zp,uiyi: -+ 1ym) © Yo,w R(v, w)

Thus, instead of considering the still rather complicated background theory for S5 as it is
described above, we can simplify (in fact generalize) this theory to the universal relation.

Now, let us have a look at two slightly different modal logics, KD45 and KD5. These are
axiomatized by the clause set

R(u,u:x)
R(u,v) A R(v,w) = R(u,w) (KD45)
R(u,v) A R(u,w) = R(v,w)

and
R(u,u:x)
R(u,v) A R(u,w) = R(v,w) (KDb5)

respectively, i.e. seriality and euclideanness (KDJ5) and, additionally, transitivity (KD45).

A few simple inductions show that the respective saturations then consist of the unit clause
sets with all elements of the form R(u:xi: -+ :Zp,usy1: -+ :Yy) where m > 1 and n > 0 for
KD45 and n > 1 for KD5 (in addition, the saturation of KDJ5 also contains R(u,u:x)). Both
are therefore quite closely related to S5. Unfortunately, since m > 1 (and n > 1 for KD5) these
two arguments are not yet in the form we would like to have them in order to be able to apply
our connectedness assumption. However, since m > 1 we know that m — 1 > 0 and we therefore
get for all m > 1 and n > 0 — thus for KD45 —

V.Tayl,... S Yk T =1L1Y1: o 1Yk
=
Vu,z;,y; R(u:z1: - 1 Zp,ui it -+ 1Y) < Vo, w,z R(v,w: )

and for all m > 1 and n > 1 — thus for KD5 —

V$E]y1,... SYp T = L1y = Yk
=
Vu, i, y; R(u:z1: - 1 Zp,uiyr: - 1ym) © Vo,w, 2,y R(v:z,w:y)
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Locic | BACKGROUND THEORY
KD | R(u,u:z)
R(u,u:x)
KT R(u,u)
R(u,u: )
KDB R(u:z,u)
R(u,u:x)
KD4 R(u,v) = R(u,v:x)
R(u,u)
54 R(u,v) = R(u,v:x)
R(t,i:x)
KD5 R(u:z,v:y)
KD45 | R(u,v:x)
S5 | R(u,v)

Table 3.3: Simplified background theories

The unit clause R(v, w: z) we got for KD45 in fact subsumes the whole saturation and can there-
fore be used as the background theory for the logic KD45 whereas the unit clause R(v:z,w:y)
subsumes almost the whole saturation for KD5; the only clause which is not subsumed is
R(u,u:z) and therefore the background theory for KD5 can be described by the two unit
clauses R(u,u:z) and R(v:z,w:y)?.

Table 3.3 summarizes the results obtained so far concerning the background theories for
some of the best known serial modal logics provided the semi-functional translation is applied
(note that all variables are assumed to be universally quantified) It should be remarked at this
stage how these results, in particular for the logics S5, KD45, and KDS5 are to be interpreted
since, at least at the first glance, their simplicity and generality might be surprising. As Krister
Segerberg found out already in the early ’70s by examining the model theory for various modal
logics (Segerberg 1971), the characteristic frames for S5 are in fact so-called clusters by which he
meant sets of worlds such that each world has access to any other world including itself, hence it
is allowed to assume that the accessibility relation for S5 is the universal relation over W x W.

The models for KD45 are (according to his investigations) characterized by either a single cluster
as for S5 or a single world together with a cluster such that this particular world has access
to each element of the cluster. The characteristic frames for KD5 are almost exactly as those
for KD45; the only difference is that the single world does not necessarily have access to all
elements in the cluster.

If we compare these Segerberg results with the saturated background theory we got for these

23 Actually this can be even further simplified, for this first unit clause is subsumed for every instance but one,
namely R(c,c:z). Hence the two unit clauses R(¢,¢:x) and R(v:z,w:y) would already suffice in case of KD5.
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logics then we can see that for S5 we indeed got the universal accessibility relation and that for
KD45 indeed every world has access to every other world which itself is somehow accessed and
that for KD5 indeed any two worlds which have predecessors have access to each other.

It seems remarkable how the Segerberg results which have been found by model theoretic ex-
aminations are mirrored in the saturation approach and that with mere syntactic means.

3.4 Non-Serial Modal Logics

The semi-functional translation as described in the previous section works not only for the serial
case but also for non-serial accessibility relations, however it has to be changed slightly then.
And although non-serial modal logics are not of main interest in the examination of temporal
logics, it might nevertheless be interesting here to see how the approach works in non-serial
frames, be it just for completeness reasons.

The first problem we are faced with is that in the non-serial case there is no functional
decomposition for the accessibility relation as defined in Definition 3.3.1 on page 32. At least
we cannot guarantee such a suitable set of total functions and in classical predicate logic all
functions are usually assumed to be total. We can overcome this problem by arbitrarily extending
these functions so that they really become total, but also taking care for which worlds this has
happened. Recall that for each world which has R-successors the generated functions in the
corresponding functional decomposition are indeed defined. These worlds are called normal
worlds then and it can be shown that functional decompositions defined in this slightly different
way obey the property that a world a can access a world 3 if and only if « is normal and there
exists an element in the functional decomposition of the accessibility relation which maps the o
to the S.

Thus the semi-functional translation then has to be changed to (N(w) denotes the normality-
predicate):
[0P]yw = N(w) ATz | Py s

i.e. it differs from the semi-functional translation for serial modal logics only in the additional
normality-literal N (w).

However, the basic background theory also changes. In the serial case we always have at least
the unit clause R(u,u: z) in the background theory. Now, in the non-serial case, this gets slightly
more complicated, namely the conjunction of N(u) = R(u,u:z) and R(u,v) = N(u).

Now, what effect does this have in the application of the saturation method? The method itself
evidently does not have to be changed, it has been described for general first-order theorem
proving. But obviously, since the background theory has changed for the non-serial case, the
saturation result will also change. Let us have a look at an example, say the modal logic KB
whose background theory (after semi-functional translation) gets

=N(u) V R(u,u: )
=R(u,v) V R(v,u)
= R(u,v) V N(u)

where the final clause needs not be considered for the moment since it does not contain any
positive R-literals.
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Now, saturating the first two clauses is very easy and results in

=N(u) V R(u,u: x)
=N(u)V R(u:z,u)

and together with —R(u,v) V N(u) we would actually be done. Nevertheless, after realizing
that the translation of any formula produces clauses without any negative N-literals, we see
a chance for some further simplification. First note that the N-literal in the additional clause
- R(u,v) V N(u) can only be resolved within the background theory. We therefore do perform
these possible resolution steps beforehand and end up with the theory

- N(u) V R(u,u: x)
-N(u) V R(u:z,u)
=N(u)V N(u:z)

This third clause is quite interesting, because of self-resolution possibilities which result in
- N(u)V N(u:zy: ---:z,) and the special case with u instantiated to ¢ this (after applying the
connectedness assumption again) leads to =N (¢) V N (v: ). This clause states that if the initial
world is normal then every world which is somehow accessible is normal as well. On the other
hand, if the initial world is not normal then no world can be normal (again by the connectedness
assumption). Altogether this means that either each world is normal or no world is normal and
this can be represented by ~N(u) V N(v).

Thus reasoning in KB can be performed as follows: First try to prove the theorem within KDB
and if this succeeds prove the theorem under the assumption that no world is normal, i.e. ignore
all those clauses which contain N-literals. Both proofs can evidently be performed much more
easily than a single proof with the full KB background theory.

Again, after a little thought, it is not very surprising that under KB either each world or no world
is normal, since the symmetry axiom already ensures that every world which has a predecessor
also must have a successor and since it can be assumed by the connectedness assumption that
the initial world is the only world which possibly has no predecessor then either every world has
a successor or every world in W (which then consists only of the initial world) has no successor.

This very technique can equally be applied to other non-serial modal logics as well, as for
instance K45 or K5 with a similar result. As an example consider K5 with its background theory

N(u) = R(u,u: z)
R(u,v) = N(u)
R(u,v) A R(u,w) = R(v,w)

During the saturation process one derives N (u) = R(u:z,u:y) and this, together with R(u,v) =
N(u) leads again to N(u) = N(u:z) which, as we recall, guarantees that either every or no
world is normal. Therefore reasoning within K5 and K45 can be performed by first proving
the theorem within KD5 (KD45 respectively) and then, under the assumption that the initial
world is the only world at all, prove it again with a significantly reduced clause set. All in all
this shows that reasoning within these non-serial modal logics is scarcely harder than reasoning
within their serial version.

One slight exception to this rule can be found in the logic K4. Here it cannot be derived
that either every world or no world is normal. We are therefore forced to perform the whole
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saturation for K4 and can hardly hope for similar simplifications, although the simplifications
we are about to obtain are still considerable. Recall the K4 background theory:

N(u) = R(u,u:x)
R(u,v) A R(v,w) = R(u,w)
R(u,v) = N(u)

First of all note that the third of these clauses is actually superfluous and that because of the
following reason. In the construction of a functional decomposition for a non-serial accessibility
relation we artificially augmented the domain of the respective functions such that they became
total. Those worlds for which such an augmentation occurred were considered as not normal
and the effect of this operation had to be taken into account in the modal logic background
theory by adding

Vu,v R(u,v) & Nu) AJzu:z =v

instead of the simpler
Vu,v R(u,v) & Jxu:z =v

which we had for serial modal logics. However, this equivalence for non-serial accessibility
relations is actually a bit overloaded. As a matter of fact it suffices if the normality predicate
occurs only in one of the two directions. Hence

R(u,v) = Iz urz =v
Nu)ANIzu:z =v = R(u,v)

does the same job bearing in mind that the only critical case in the construction of a suitable
functional decomposition is that the mere existence of a function which maps a to 8 does not
yet guarantee that R(c, ) holds. It also has to be ensured that the a is normal and thus the
functions have not been augmented for «. For the other direction it is not really necessary
to guarantee the normality of « if we know already that o has a successor in the R-relation.
Nevertheless, adding the normality of « is by no means wrong; it is just not necessary but still
might be helpful as we saw in the earlier examples. For the background theory for K4 it turns
out to be of no help and hence is ignored.

Performing the saturation process for the other two clauses results in all clauses of the form
Nw)AN(u:zi) Ao .AN(u:z1: -+ :Zp—1) = R(u,u:zq1: -+ 1 y)

with n > 1. Finding a suitable alternative clause set which generates exactly the same saturation
can now easily be found and we end up with

N(u) = R(u,u: )
N(v) A R(u,v) = R(u,v:x)

which still is significantly simpler than the original background theory from above.

3.5 Other Miscellaneous Modal Logics

The examples presented so far had in common that they were represented by sets of Horn
clauses. However, this approach is by no means restricted to Horn clauses, it works equally well
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for non-Horn sets, although finding the saturation and a suitable alternative background theory
usually turns out to be more difficult then.

As a little example consider the modal logic S4F which is axiomatized by the usual axioms
for S4 together with the axiom schema

A QOU = D0 V )

In order to determine the first-order property induced by this extra axiom we have to apply our
second-order quantifier elimination theorem, i.e. we have to solve the problem:

FuaP, T [ A OOV A Q(O-D A -T)],
After translation and some simple transformations we get

Vw ¥ (w) V —R(v, w)
A
Ju,v 3O, U ®(u) A R(u,v)
A
v’ R(u,v') A =T (') AVw R(W',w) = -~ (w)

Eliminating ¥ thus results in

®(u) A R(u,v)
Ju, v 3P A
' R(u,v") A =R(v,v") AVw R(v',w) = —®(w)

A further transformation into the required for the Elimination Theorem leads to

Vw =®(w) V ~R(z,w)
Ju,v,x 3P A
®(u) A R(u,v) A R(u,z) A =R(v, x)

and after eliminating ® we and up with

Ju,v,z R(u,z) A R(u,v) A ~R(v,z) A ~R(z,u)
Hence the original axiom schema is equivalent to

Vu,v,w R(u,v) A R(u,w) = R(w,u) V R(v,w)

which is a non-Horn formula. As a full background theory for S4F we thus get

R(u,u)

R(u,u:x)

-R(u,v),"R(v,w), R(u, w)

- R(u,v), "R(u,w), R(w,u), R(v,w)

which indeed looks fairly complicated.

Now, an easy induction shows that the saturation for this clause set is given by

R(u,v:z1: -+ :zp), R(v,w)
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with n > 024,
This saturation looks suffciently simple to find a suitable alternative clause set with exactly
the same result. And indeed such a possibility is e.g. the theory given by

R(u,v) = R(u,v: )
R(u,v) V R(v,w)

Although this clause set is undoubtly much more convenient than the original background theory
it is still possible to compute a lot of redundant clauses, as for example any clause of the form

R(u,v) V R(v,w:1: -+ : Tp)

which is subsumed by R(u,v) V R(v,w). A simple possibility how such redundancies can be
avoided is to introduce new auxiliary predicates as follows

S(u,u)
S(u,v) = S(u,v: )
S(u,v) = R(z,v) V R(u,y)

where the predicate symbol S acts as an auxiliary predicate which is new to the whole clause
set, i.e. it must not occur in the theorem to be proved. Evidently, the saturation w.r.t S results
in S(u,u:z1: -+ :zy) with n > 0 and therefore the only derivable pure-R-positive clauses are
exactly those from the saturation of the original clause set.

The usage of such auxiliary predicates often turns out to be very useful. As a final example
consider the modal logic S4.2 which is axiomatized by the S4-Axioms O® = & and O = OO
together with the so called directedness or confluence property given by ¢C1® = [0OP. Whereas
the first two axioms characterize the reflexive and transitive frames, the third axiom defines the
following property:

Vz,y,z R(z,y) A\ R(z,z) = Jw R(y,w) A R(z,w)

These three formulae are again pretty complicated as a background theory and we therefore try
some simplification with the help of the saturation technique (together with the connectedness
assumption and possibly auxiliary predicates).

First observe that from this axiomatization it can be proved that the axiom schema
O0(®@ = ¥) = (002 = O0V)

is valid. Also it can easily be seen that the inference rule

[0}
OO
is valid as well.
Now define a new modal operator, say B by
o < OO

24The reader might wonder why the saturation of such a non-Horn clause set does not produce arbitrary long
clauses. And indeed, usually this would happen unless the length of clauses is reduced by simple replacement
factorization steps. This example is just of that kind.
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There is nothing unusual with this new operator, however, we want to deal with it in just the
same way as we treat the other operators, i.e. we want to be able to translate formulae containing
this M into first-order logic and that with the help of a suitable accessibility relation. To this end
we have to guarantee that this new operator obeys both the K-Axiom M(® = V) = (Hd = BT)

and the necessitation rule o

o

and indeed by the observations from above these two preliminaries are fulfilled. Now consider
again the directedness property for S4.2 which is given by ¢00® = OOP. Under the definition
of B this is equivalent to B® = —M-® which in fact characterizes the seriality of the new
accessibility relation. Thus instead of the directedness property we simply include the seriality
of the new accessibility relation, say S. The price to be paid for this is that we have to find (and
to add) the first-order property induced by the definition of the B-operator. Fortunately, this is
not too difficult. As a matter of fact it results in the two clauses®>(considering semi-functional
translation of course):

VudzVw R(u: z,w) = S(u,w)

Yu,v,w R(u,v) A S(u,w) = R(v,w)

We therefore end up with the following first-order axiomatization of the background theory for
S4.2 under semi-functional translation:

R(u,u:zpg)

R(u,u)

=R(u,v), "R(v,w), R(u,w)
S(u,u:zg)

_'R(u: fR(u)7 w)’ S(“’a w)
-R(u,v),S(u,w), R(v, w)

where the respective index denotes the functional decomposition the respective symbol is sup-
posed to belong to. This clause set seems to be even more complicated than the one we originally
had. Nevertheless, it has a big advantage over the former: It can more easily be saturated. And
in performing this saturation we finally end up with (again under the connectedness assumption):

R(u,u:zy: -+ 1 xp) n>0
R(u,v: f(v):y1: -+ :1ym) m>0

This looks much better?®, for we can very easily imagine a clause set which produces exactly
the same saturation, namely

R(u,u)

=R(u,v), R(u,v:x)

R(u,v: f(v))

Note that the first two of these clauses in fact form the background theory for S4. Thus in
order to get the theory for S4.2 it is sufficient to add the simple unit clause R(u,v: f(v)) to

%5This result can be obtained by another application of the Elimination Theorem. The proof is simple and is
therefore omitted here.

26The watchful reader might have noticed that the saturation should actually contain the clause schema
R(u,v:xs:z1: ---:2;) as well, however, this one is not really necessary for every formula to be translated will
not contain any B-subformula.
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the theory for S4. At the first glance, this result is quite surprising for the skolem function f
depends on v only and not on both v and v. Frames with such properties thus consist of an
S4 structure together with a non-degenerated cluster (Segerberg 1971) such that each world of
the S4 structure has access to this very cluster. However, as Segerberg already claimed, 54.2
frames are characterized by non-degenerated clusters with a final (last) cluster and therefore
our result from above is in fact identical to what Segerberg had found out by applying certain
model-theoretic filtration techniques.

3.6 On Definability and Axiomatizability

Several modal logics have been examined in the earlier sections of this chapter. Originally
these modal logics were given by Hilbert axiomatizations (see e.g. (Lewis 1912a), (Lewis 1913),
(Lewis 1912b), (Lewis 1914)). After Saul Kripke defined the so-called possible world semantics
(cf. (Kripke 1963)) the area of modal logic correspondence theory was born (see (van Benthem
1990) and (van Benthem 1984a)). Here it was the aim to examine how certain axiom schemata
correspond to properties of the underlying accessibility relation, i.e. to find out which properties
can be axiomatized with the help of axiom schemata and which axioms do have first-order
correspondences. Some axioms and their corresponding properties have already been mentioned
in previous chapters of this work. So, for instance, we considered properties like reflexivity,
transitivity, and euclideanness which descend from the axiom schemata (0® = &, 0® = P,
and O = 00 respectively.

For many applications, however, one might have certain accessibility properties in mind and
wonder whether these can be at all axiomatized. So, for instance, one might be interested in
irreflerivity rather than reflexivity and is desperately searching for a suitable axiom. Unfortu-
nately, the poor fellow can’t be very successful in his attempt and it is quite instructive to see
— with the help of the semi-functional translation approach — why this is so.

Recall that under semi-functional translation the only positive R-literals do occur in the
background theory. Hence, if the translated formula contains R-literals at all (and it usually
will) then these are negative. Now, the irreflexivity property is described by a single unit
clause, namely —R(u,u) and the only way how this unit clause can act as a resolution partner
is by unifying it with a positive R-literal which has to be contained in the background theory.
However, the simplest background theory — the one for KD (or K if we also consider non-
serial modal logics) — consists of only one such clause which is R(u,u:z) (N(u) = R(u,u:x)
respectively) and it is obvious that no resolution step is possible between this theory clause
and the irreflexivity axiom which is thus shown to be superfluous. Since the irreflexivity axiom
cannot provide anything new, it cannot be axiomatized, for otherwise, assume there were a
schema ® which axiomatizes irreflexivity. Then it would be possible to refute the negation of
® after adding the unit clause = R(u,u). But since this unit clause has no resolution partner
this refutation could have been performed already without this very unit clause and therefore
irreflexivity would follow from KD or K alone which it obviously does not.

Now let us have a look at asymmetry, i.e. the accessibility relation property Vz,y R(z,y) =
—R(y, ). This property, written in clause normal form, consists entirely of negative literals and,
in spite of the fact that certain resolution steps are possible, it is evident that the corresponding
resolvents cannot be further processed, they are dead-ends. It thus makes no difference whether
we add asymmetry or not; modal logics are not able to distinguish between arbitrary frames
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and asymmetric frames and hence there is no axiom schema, for this property.

As another example for an accesssibility relation property which cannot be axiomatized in
the modal logic language consider weak discreteness. We call a frame weak discrete if every
world has a direct successor according to the accessibility relation, formally

Vz3y R(z,y) A -3z R(z,2) A R(z,y)
In the semi-functional approach this can slightly be simplified to
Vr3yvz - R(z,z) V ~R(z,z:y)

and the transformation into clause normal form then results in = R(z, z), " R(z, z: f(z)).

This time there are two possible resolution steps with the background theory clause R(u,u: x)
but, evidently, the two resolvents thus obtained are both dead-ends and therefore weak discrete-
ness is also not axiomatizable.

What these examples have in common is that the accessibility relation properties which fail
to be axiomatizable are pure- R-negative (i.e. their respective negation normal form consists only
of some negative but no positive R-literals). This is by no means a coincidence as the lemma
below demonstrates.

LEMMA 3.6.1
A pure-R-negative accessibility relation property?” which is at all consistent with R(u,u: )
cannot be axiomatized.

Proof: Along the lines of the examples from above. There is no resolution step possible between
the property clauses and the clauses stemming from the theorem to be proved. However, any
resolvent which can be derived with the help of the background theory is again a negative
clause and can never lead to a refutation unless the background theory itself together with
the negative property are contradictory but this has been ruled out.

The above preliminary that the accessibility relation property must be consistent with the
background theory is absolutely necessary, for there are in fact pure- R-negative properties which
can be axiomatized, witness Vz,y —R(z,y) which is axiomatized by O(® A =®).

Intuitively, one may view the above result as follows: Axiom schemata say something about
the existence rather than the non-ezistence of accessibilities. So, for instance, the axiom (0® =
® in some sense “generates” arrows from worlds to themselves and the schema & = 0O0®
“generates” the additional reversal for each arrow. Negative properties, however, exclude certain
accessibilities and are therefore — up to some minor pathological exceptions — not axiomatizable.

Such pure- R-negative properties are by no means the only ones which are not axiomatizable.
Recall that by Segerberg’s connectedness result we know that modal logics cannot distinguish
between connected and unconnected frames. So, for instance, it is impossible to axiomatize
the universal relation. Equivalence relations, however, are axiomatizable, and — as we found out
with the saturation approach — this together with connectedness results in the universal relation.

Another property for which it is easy to see that it is not axiomatizable is connectedness
itself, for, otherwise, there would exist formulae which are valid in connected frames but not
in unconnected frames and Segerberg’s result would not hold. Let us summarize this in the
following lemma:

2TRecall that a formula is pure- R-negative if its negation normal form contains no positive R-literal.
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LEMMA 3.6.2

Let U be an accessibility relation property for which another strictly weaker property ' exists
such that U’ together with the assumption of connectedness implies ¥ but U’ without the
connectedness assumption does not imply ¥. Then V¥ is not axiomatizable.

Proof: Suppose there were an axiom which characterizes the class of frames with property ¥
and consider an arbitrary instance of this schema. Since modal logics cannot distinguish
between connected and unconnected frames it follows that this instance is provable from
U’ already. Therefore (since the instance was arbitrary) the whole axiom schema is valid in
every frame with property ¥’ and thus ¥ follows from ¥’. This, however, contradicts the
assumption that ¥’ alone does not imply ¥ and therefore ¥ cannot be axiomatizable.

This result can be even further generalized to:

LEMMA 3.6.3

Let C be a class of frames with property ®, let U be a property consistent with ® and let ¥’ be
strictly weaker than ¥ such that U’ together with connectedness implies ¥ (but ¥’ alone does
not imply ¥). Then ¥ is not axiomatizable.

As an example consider S4-frames and the additional property of strong directedness:
Vz,y3z R(z,z) A R(y, z)

It is sufficient — according to the above lemma — to find a strictly weaker property which implies
strong directedness on S4 frames under the connectedness assumption. Such a property is not
very hard to find, namely weak directedness (see Section 3.5)

Vu,z,y R(u,z) A R(u,y) = 3z R(z,2) A R(y, 2)

sometimes also called diamond-property or confluence-property. Since in connected frames all
worlds are accessible from some initial world 7 by the reflexive and transitive closure of the
accessibility relation and since the accessibility relation for S4 is already reflexive and transitive
we have that R(r,w) for all worlds w. This — together with weak directedness — immediately
leads to strong directedness.

3.7 Varying Domains

In varying domains we do no more assume that there is a single domain common to all worlds.
Rather we assume that each world might have its own universe of discourse. This slightly changes
some of the former definitions. For instance, interpretations do not refer to a unique domain, but
the respective domains are all given by the mapping 3. which maps worlds to structures. This
means that mentioning the domain is not anymore necessary in the interpretations; the respective
local domains can be accessed via Sjoc. Also the satisfiability relation changes accordingly:

DEFINITION 3.7.1 (SATISFIABILITY IN VARYING DOMAINS)
Let Sy = (Fuw, Sioc, 7, @) be a (varying domain) modal logic interpretation.

Sur Ev Ve @ iff Swwfz/a] Ewvr @ for any a € domain(Siec(T))
Svr v 32 @ iff Swwlz/a] Evn @ for some a € domain(Sic(T))

The other cases remain as before.
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This new definition obviously has an immediate effect on the relational translation of modal
logic formulae. In addition to the new predicate symbol R we also have to add a symbol E
which is supposed to represent the “existence” relation.

DEFINITION 3.7.2 (THE FORMULA TRANSLATION)

[Vz @], = Vz E(u,z)= [®],
[Fz @], = 3z E(u,z)A[®],

All other cases remain as before.

Note that by this definition it is easy to see that constant domains are a special case of
varying domains since in constant domains the additional unit clause E(u,z) which just states
that any element occurs in every world simplifies the above to Definition 3.1.4.

We omit the soundness and completeness proofs of this formula translation since they do not
provide anything particularly new?®. Much more interesting is a closer look at the E-predicate
and its occurrences inside translated formulae. As a matter of fact, any such occurrence is very
similar to the occurrences of R-predicates inside translated formulae. Thus, the introduction of a
functional decomposition for this “existence” predicate makes it possible to consider a significant
simplification:

LEMMA 3.7.3
Let Fp be a functional decomposition of the binary relation E. Then each element of Fr denotes
a total function and the relational translation can be modified to the (semi-) functional version:

|\Vz @], = Yy |[P@|u[z/u:y]
|3z @], = 3y [P|u[z/u:y]

where y ranges over Fg and |®|,[z/u:y] means that any occurrence of x inside |® |, is to be

replaced by u:y.

Proof: Totality of the functions is guaranteed by the fact that no domain is empty. Soundness
and completeness of the translation is proved along the lines of the proofs in the constant
domains case. Note that if the domains may vary arbitrarily then the background theory
for the ezistence-predicate consists only of the unit clause E(u,u: z). The translation given
above just reflects that this unit clause can already be incorporated into the translation
procedure.

This translation already takes into account that there is no further theory behind the “existence”-
predicate. Very often, however, one is interested in certain extra properties as e.g. increasing
domains or decreasing domains. These are examined in the following two sections.

%8The only thing that should be mentioned here is that an appropriate interpretation translation which maps
varying domain modal logic interpretations to classical interpretations evidently has to combine all local domains
into a single domain and distinguishes the respective domains only with the help of the “existence” relation. This
means that the interpretation of a certain predicate might hold for an element even though this element does not
belong to the current domain. However, this is but a harmless property; it just means that predicates are in fact
interpreted globally rather than locally.
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3.7.1 Increasing Domains

The axiom schema which describes increasing domains is OVz®(z) = VzO®(x)? and its rela-
tional reading gets
Vu, v,z E(u,z) A R(u,v) = E(v, )

i.e. if the domain element z exists in world v und v is accessible from u then x exists in v as well.
W.lo.g. we can assume that the accessibility relation is not symmetric for otherwise we would
immediately be faced with a constant domain structure. Now recall that in arbitrary varying
domains the only theory clause we had to include was the simple unit clause Yu,z E(u,u: x)
and in fact, we were able to incorporate this simple clause by modifying the formula translation
similar to the way we treated the modal logic KD.

For more complicated modal logics the additional theory axioms could not be simplified to
a single unit clause and therefore a translation had to be chosen which also produces negative
R-literals, but nevertheless can be used to simplify the theory axioms. Similar things happen
here in case of increasing domains. First of all, the formula translation from above has to be
changed to:
|Vz @, = Vz E(u,z)= |®],

|3z @], = Ty [P]u]z/u:y]

i.e. | | treats the quantifiers V and 3 similar to the modal operators. It is easy to see that the
clause normal form of the translation of any modal logic formula which is in negation normal
form contains no positive E-literal.

Thus we are in a position where we can try to simplify the theory axiom for increasing
domains, again analogously to the simplification of the accessibility relation properties given
earlier.

A first simplification is:

Vu,z,y E(u,y) = E(u:z,y)

if R is serial or
VYu,z,y N(u) A E(u,y) = E(u:z,y)

if seriality of R is not assumed.

It can easily be checked that the additional assumption of R’s transitivity does not lead to
anything further. Also reflexivity has no effect that is not yet stated by the above simplification.
Therefore this simplification is indeed characteristic for increasing domains if we consider the
modal logics K, KD, KT, K4, KD4, and S4%°.

Euclideanness of the accessibility relation also doesn’t lead to any particular problems. Note
again, that euclidean frames consist either of a single non-degenerated cluster or a single world
followed by such a non-degenerated cluster. Obviously — under the assumption that the domains
are increasing — there are constant domains within clusters thus the only additional axioms to be
added are those which state that any domain element occurs in any world which is different from
the initial world ¢, and this can simply be done by adding the unit clause Yu,z,y E(u:z,v:y)
where = ranges over the functional decomposition of R and y over the functional decomposition

2% Applying the Elimination Theorem to this schema is an easy exercise and is omitted here.
30Note that the simplified axiom also guarantees that domain elements exist in worlds which can be accessed
by more than one R-step, regardless of whether R is transitive or not.
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of E3'. This way we may simplify the property E(u,u:z) to E(t,¢:x) and indeed these two
unit clauses are sufficient for both KD5 and KD45.

Adding reflexivity or symmetry immediately leads to constant domains and the non-serial
cases are captured by the slightly modified clause

Yu,v,2,y N(u) = E(u:z,v:y)

i.e. the normality of u acts as a constraint.

3.7.2 Decreasing Domains

The characteristic axiom schema for decreasing domains is VzO®(z) = OVz®(z) and the cor-
responding relational property is thus

Vu,v Vz E(u,z) A R(v,u) = R(v, )

Its similarity to the axiom schema for increasing domains suggests an analogous way of dealing
with it. As can easily be found out the theory clauses to be added then are E(u,u:y) and
E(u:z,z) = E(u,z) for KD, KT, KD4, and S4 and E(i,.:z) and E(u,v:z:y) for KD5 and
KD45 (where = ranges over Fr and y ranges over Fg respectively). It is evident that for the
non-serial modal logics the respective N-literals also have to be taken into account.

3.8 Multi-Modal Logics

Most temporal logics can be viewed as multi-modal logics, i.e. as modal logics with several modal
operators. It therefore makes sense to introduce the basic techniques that we are going to apply
to temporal logics already in this chapter.

The principle behind multi-modalities is in fact very simple if the corresponding basics for
single modalities are already understood. Evidently, since there are several modal operators
under consideration there are also several accessibility relations to be introduced in the semantics
definition®?. Thus multi-modal frames consist of a set of worlds together with a set of accessibility
relations, one for each modal (-operator.

Actually, in some sense we already became acquainted with such a multi-modal logic. Recall
the examination of the modal logic S4.2 for which we introduced a new modality ® just for the
purpose of being able to derive a simple saturation. We were not really interested in formulae
which include this new operator, nevertheless its corresponding accessibility relation had to be
taken into account during the saturation process.

Now, all the techniques developed for single modalities apply for multi-modalities as well,
i.e. relational and semi-functional translations are possible, saturations can be performed and
alternative background theories can be searched for.

As a simple “practical” example consider the epistemic modalities of belief such that for
each of the agents involved in a certain setting there is a “belief”-operator. For instance, [1,®

31This explanation is rather informal. The fact can be formally proved by saturating the background theory
and applying the connectedness assumption. Since this does not significantly differ from the earlier examples this
formal proof is omitted here.

32Obviously, since we are talking about a Kripke-style possible world semantics here, all modalities involved
are implicitly supposed to obey the K-axiom and the necessitation rule.
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then represents: “agent z believes ®”. Typically for such a scenario is the wish to be able to
talk about a mutual belief, which not only expresses what all the agents believe but also what
they belief that the others belief etc. A simple axiomatization of such a mutual belief operator
then might look as follows:

Oyp® = @

O MB(I) = Vr D_,,UD M B(I)

Oye® = OpypgVeOd,®

Uup® = OusUup?®

i.e. if something is mutually believed it is true and also everybody believes it and everybody
believes that it is mutually believed and it is mutually believed that everybody believes it and,
finally, every mutual belief is itself mutually believed.

What has to be done next after finding such a suitable axiomatization is to look for first-order
accessibility relation properties which correspond to these very axioms. And if we do so for the
axiomatization above we end up with

Ryrp(u,u)

Rx(u,v) = RMB(

Ry (u,v) A Ryp(v,w) = Ruyp(u,w)
Ryrs(u,v) A Ry (v, w) = Rup(u,w)
RMB(U,U) /\RMB(’U,’U)) = RMB( ,w)

<
~—

?

u
u
u
u

where an R, represents the accessibility relation for the belief operator for agent « and Ry/p
evidently describes the mutual belief accessibility relation.

Thus we are at a stage where we can apply the saturation technique to Rjsp>* and we end up
with all units of the form

Ryp(u,u:z1:29-- 1 2y)
where n > 0 and each of the x; may belong to any of the respective functional decompositions.

Now, finding an alternative clause set which generates exactly the same saturation is a very
simple task indeed. One such possiblity is for instance given by

Ryrg(u,u)
Ryp(u,v) = Vza Ryp(u,v:zy)

where « is either an agent’s name or just M B.

If we compare these two clauses with the original background theory for mutual belief we
immediately see how considerable simplifications by saturation can be, and that not only for
single modalities but also for multi-modal logics.

3.9 From Saturations to Inference Rules

For quite a lot of modal logics the semi-functional translation approach allowed us to simplify
the background theory after saturation so considerably that is was often even reduced to a few

33For simplicity we assume here that no further properties for any of the accessibility relations involved is
assumed.
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unit clauses. There were exceptions, however, witness S4, for which the saturation was not that
successful, although the simplifications are still significant.

The idea to follow in this section is — instead of trying to find an alternative clause set for
the saturation found — to cast the whole saturation set into a suitable inference rule.

The method how this can be done will be illustrated by some examples.

3.9.1 An Inference System for 5S4
Recall the saturation for the modal logic S4:

R(u,u)
R(u,u: )

R(u,u:xy: -+ 1 xp)

What can immediately be seen from this set is that each first argument of the respective R’s
is a variable and that each second argument “starts” with the same variable. This observation
guarantees that — given an arbitrary unsatisfiable formula to be refuted — a corresponding finite
and unsatisfiable set of ground instances of clauses taken from this formula contains negative
R-literals only of the form R(a,a:fB;1: ---: () where a and the (3; are arbitrary ground world
terms. This, on the other hand, gives rise to the assumption that it might be sufficient to always
unify the first argument of such a negative R-literal with a prefiz of its second argument and
thus to forget about the whole background theory or its saturation.

This idea is formalized in the sequel.

DEFINITION 3.9.1 (WORLD-TERM PREFIXES)
Lett=a:pB1:---: 0, be a world term.

Then we call any t' = a:B1: ---: B with 0 < k < n a prefix of t.

DEFINITION 3.9.2 ((MoOST GENERAL) S4 PREFIX UNIFIER)
Let t and t' be two world terms and let o be a most general unifier of t and some prefiz of t'.

Then we call 0 a most general S4 prefix unifier of the (ordered) pair (t,t').

DEFINITION 3.9.3 (THE S4 INFERENCE RULE)
Let a and B be two arbitrary world terms and let C' be an arbitrary clause. Then

-R(e, B),C
ocC

where o is an S4 prefiz unifier of (a, B) is called the S4 Inference Rule.

DEFINITION 3.9.4 (THE S4 INFERENCE SYSTEM)

The S4 Inference System consists of the standard resolution and factorization rules together with
the S4 Inference Rule.

Such prefix unifiers are supposed to eliminate negative R-literals in the clause set. How this
is done, and why this is indeed correct is described in the following lemma.
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LEmMA 3.9.5
Let § be an S4-model for the clause —R(a, 8),C and let o be a prefix-unifier for a and 3. Then
& is also an S4-model for oC.

Proof: Obviously $ is a model for =R(ca, 03),0C. Remains to be shown that ~R(ca,of3) is
S4-unsatisfiable. This, however, follows simply from the fact that o« is a prefix of o8 and
this contradicts one of the clauses R(u,u:z1: ... :2p).

Remains to be shown that this S4-inference rule can really act as a replacement for the S4
background theory, i.e. it has to be shown that the resulting inference system is both sound and
complete.

LEMMA 3.9.6
The S4 Inference System is sound.

Proof: Resolution and factorization have not been changed at all compared to the classical case
and are thus sound. Soundness for the S4 Inference Rule follows from the lemma above.

The usual way to prove the completeness of a resolution based inference system is by first
showing the completeness for the ground case and to prove that any such ground refutation can
be lifted to the non-ground level. Essentially this will be done here as well, however, as it turns
out, this is not quite as simple as in the classical predicate logic case.

LEMMA 3.9.7
Let C be an S4-unsatisfiable set of ground clauses (without positive R-literals). Then C can be
refuted with the help of the S4 Inference System.

Proof: This works essentially as in the classical case. The only thing to be considered is the
special treatment of the (negative) R-literals. According to the Herbrand Theorem, finitly
many ground instances of the background theory saturation are sufficient. Hence, every
negative ground R-literal is of the form —R(«, 3) where « is a prefix of 3 and therefore each
resolutions step on R-literals can be replaced by an application of the S4 Inference Rule.

In spite of the similarities between this ground completeness proof and the corresponding proof
in the classical case we run into some troubles when we try to follow a similar analogy for the
lifting to the non-ground level as illustrated by the following simple example.

ExAMPLE 3.9.8

Consider the simple two-literal clause —R(t,u), = R(¢,u: f(u)). A possible unsatisfiable ground
instance of this clause is =R(t,t:a), = R(t,t:a: f(1:a)).

Now, on this ground level the S4 Inference Rule can be applied to either of the two ground
literals and doing so results in = R(:,c:a) (or = R(s,t:a: f(r:a)) respectively). Unfortunately,
neither of the corresponding applications on the non-ground level produces a result which is
more general than the non-ground resolvent and thus the lifting fails.

Nevertheless, the above example gives us a hint how this problem can be overcome. For, if
we had chosen another ground instance, namely

_'R(La [')’ _'R(l’, Lt f([’))

we would be able to lift at least one of the two possible ground refutations. The problem is thus
that an arbitrary given unsatisfiable ground instance is not yet enough; it ought to be in some
sense minimal.
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DEFINITION 3.9.9 (MINIMAL GROUND SUBSTITUTIONS)

Let C be a clause set and let o and X be two ground substitutions (on the variables occurring in
C). o is called smaller than A w.r.t. the given clause set C, denoted by o <¢ A, if for every world
variable u in C we have that o(u) is a prefic of A(u). o is called strictly smaller than A on C
(written o <¢ A) if 0 =¢ X but not A <¢ 0. o is called minimal w.r.t. C if oC is unsatisfiable
and there is no A <¢ o such that AC is unsatisfiable.

LEMMA 3.9.10
For each unsatisfiable clause set C there exists a minimal ground substitution o such that oC is
unsatisfiable.

Proof: Follows simply from the fact that each world-term has only finitely many prefixes.

DEFINITION 3.9.11 (OVERESTIMATED VARIABLES)

Let =R(a,u: B+ : Bn) be a literal with world variable u and let o be a ground substitution such
that o(c) is a proper prefiz of o(u)®*. This occurrence of w is then called overestimated by o
and the literal ~R(c,w: (1 -+ : (By) is called unprocessable under o.

DEFINITION 3.9.12 (RELEVANT PREFIXES)

Consider the literal L = —R(«, 8) and let o be a ground substitution such that oo is a prefiz of
of3. Then we call the smallest prefiz of B, say B1, such that o« is a prefix of o1 the relevant
prefix of 8 with respect to L and o.

Intuitively, unprocessable literals are those literals on which a potential step with the S4 In-
ference Rule cannot be lifted. In such a case the right hand side of this literal starts with a world
variable which is the relevant prefix w.r.t. the given literal and the given ground substitution.
We are now going to show that inference steps on such unprocessable literals are not necessary.

LEMMA 3.9.13
Minimality of ground substitutions is preserved under the S4 Inference Rule provided it is applied
to a single S4-unsatisfiable clause.

Proof: Let C = =R(a, ), C' be a single S4-unsatisfiable clause and let cC = =R(oc,ca:7),cC’
be an S4-unsatisfiable ground instance of C such that the application of the S4 Inference
Rule to =R(oa,oa: ) can be lifted. Let uC’ be the corresponding (lifted) result on C.
is more general than ¢ therefore there exists a A such that ¢ = Au. Pictorially, we have the
following situation:

-R(o, B8),C" % =R(oa,0a:y),0C"

uC’ TN oC'

Now assume that A is not minimal w.r.t. uC’. Then there exists a A’ < X such that \'uC’
is unsatisfiable. Define ¢’ as ¢/ = Mu. Then o' = My < Ay = 0. Moreover we know that
o'C is unsatisfiable since N'uC’ is unsatisfiable and X'uC (and thus ¢'C) is equivalent to
M uC'. Hence o'C is unsatisfiable and ¢/ < o and therefore ¢ is not minimal w.r.t. C' which
contradicts our assumption and we are done.

LEMMA 3.9.14
Let C be a single S4-unsatisfiable clause and let C' be a minimal unsatisfiable ground instance
of C. Then there exists an application of the S4 Inference Rule which can be lifted to C.

3By a proper prefix of a world-term ~ we mean a prefix 4 of y such that +y is not a prefix of +'
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Proof: Suppose every literal in C is unprocessable. Then each literal is of the form —R(«;, u;: 3;)
and any such mention of wu; is overestimated. However, since o is minimal, there must be
an occurrence of u; where u; is not overestimated. This cannot be on a right-hand side
of one of the R-literals because otherwise this R-literal would not be unprocessable or the
occurrence would not belong to the corresponding relevant prefix. Now take any of these
overestimated variables, say u, and find a literal where u is not overestimated. The right-
hand-side of this literal must contain an overestimated variable (since again this literal
would not be unprocessable otherwise) and this variable (let us call it v) must be different
from u; in fact we know that o(u) is a proper prefix of o(v). Now we start the whole search
again with v and this leads us to a variable w such that o(v) is a proper prefix of o(w)
and so on. Thus if every literal is unprocessable then there are infinitly many different
world variables and this is impossible. Therefore there exists at least one literal which is
not unprocessable and thus the corresponding Inference Rule step on oC' can be lifted.

LEMMA 3.9.15
Let C be a single S4-unsatisfiable clause. C' can be refuted with the help of the S4 Inference
Rule.

Proof: Let o be minimal w.r.t. C' (o exists because of Lemma 3.9.10). The proof is performed
by induction over the length of oC.

Base case: ¢C is a unit clause. By the previous lemma we know that there exists a
o-processable literal and since the clause under consideration consists of only one literal
this one must be o-processable. Hence an S4 inference step can be performed and we
immediately get the empty clause.

Induction step: By the previous lemma we know that there is a liftable S4 Inference Rule
step and by Lemma 3.9.13 the ground result is a minimal instance of the corresponding
resolvent on the non-ground level. Since the size of the resolvent is smaller than the one for
oC the induction hypothesis applies and we are done.

LEMMA 3.9.16
Resolution and factorization suffice to derive a single S4-unsatisfiable clause from an arbitrary
S4-unsatisfiable clause set.

Proof: Let C be the S4-unsatisfiable clause set and let o be an arbitrary ground substitution
such that oC is S4-unsatisfiable but no proper subset of oC is. Moreover let C’ be obtained
from ¢C by ignoring all R-literals. Evidently, for each R-literal in ¢C we have that its
left-hand argument is a prefix of its right-hand argument. Furthermore we know that oC’
is classically unsatisfiable. Hence oC’ can be refuted (by resolution alone) and performing
exactly the same derivation steps on oC results in a pure-R-negative clause (with literals
of the form —R(«a,a: ---)). This derived clause is clearly S4-unsatisfiable and therefore
the lemma holds for the ground case. However, all inference steps performed up to now
were only resolutions steps and therefore the derivation of the S4-unsatisfiable clause can be
lifted to C (resolution and factorization steps). Hence we are able to derive a S4-unsatisfiable
clause from an arbitrary S4-unsatisfiable clause set and we are done.

LEMMA 3.9.17
The S4 Inference System is refutation complete.
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Proof: Let C be an unsatisfiable clause set. By Lemma 3.9.16 we have that a single S4-
unsatisfiable clause can be derived by resolution and factorization and from Lemma 3.9.15
such a clause can be refuted with the help of the S4 Inference Rule.

Thus we have shown that this inference system is both sound and complete. For convenience
this is fixed by the following theorem.

THEOREM 3.9.18
Let ® be a modal logic formula in negation normal form. Then

b is S4-unsatisfiable iff | ®], can be refuted with the S4 Inference System

Proof: Follows from Lemmas 3.9.6 and 3.9.17.

The completeness proof might suggest that it is necessary to first apply resolution and factoriza-
tion steps until an R-clause is derived which then hopefully can be refuted by the S4 Inference
Rule. However, this order has been chosen only to simplify the completeness proof. It should
be evident that applications of the S4 Inference Rule do not necessarily have to be delayed until
pure- R-negative clauses are derived.

3.9.2 An Inference System for KD4

At the first glance it seems obvious how an inference system for the modal logic KD4 might look
like. The only difference between the saturations of the background theories for S4 and KD4 lies
in the absence of the reflexivity unit clause and this suggests that the notion of a KD4 prefix
unifier has to be changed accordingly.

So let us fix this with the help of some useful definitions.

DEFINITION 3.9.19 (KD4 PREFIX UNIFIER)
Let (s,t) be an ordered pair of world terms and let o be the most general unifier of s and a
proper prefiz of t. Then o is called a KD4 prefix unifier of the pair (s,t).

DEFINITION 3.9.20 (THE KD4 INFERENCE RULE)
The rule

-R(a, 8),C
oC

where o is a KD4 prefiz unifier for (o, 3)
15 called the KD4 Inference Rule.

For S4 the corresponding inference rule was sufficient in order to get a refutation complete
inference system together with standard resolution and factorization. However, the KD4 Infer-
ence Rule is not enough for this purpose. As a trivial counter-example consider the unit clause
—R(1,u) which is obviously KD4-unsatisfiable but cannot be refuted with the help of the KD4
Inference Rule. It is thus necessary to add a further inference rule which helps in such cases.
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DEFINITION 3.9.21 (THE KD4 ELIMINATION RULE)
The rule
-R(a,u),C

u
Ca:w

where u does not occur in «
and x is a new variable of sort Fr

18 called the KD4 Elimination Rule.

DEFINITION 3.9.22 (THE KD4 INFERENCE SYSTEM)

The KD4 Inference System consists of the classical resolution and factorization rule together
with the KD4 Inference Rule and the KD4 Elimination Rule.

The soundness of the S4 Inference System was pretty evident because of the background
theory saturation we knew about. Analogously, neither the KD4 Inference Rule nor the KD4
Elimination rule poses any problems.

LEMMA 3.9.23
The KD4 Inference System is sound.

Proof: Soundness of the KD4 Inference Rule follows immediately from our knowledge about
the saturation of the KD4 background theory.

For the soundness of the KD4 Elimination Rule it suffices to bear in mind that arbitrary
instantiation is sound and therefore — since u does not occur in « — it is certainly true that
any KD4 model S for the clause ~R(a,u),C is also a model for =R(a, a: z),C¥, . Now,
the literal ~R(a, a: z) is KD4-unsatisfiable for any z. Thus S is a model for C¥,, and we
are done.

LEMMA 3.9.24
An application of the KD4 Inference Rule on a clause C with literal L corresponds to a resolution
step between this literal L and an element of the saturation of the KD4 background theory.

Proof: Consider the clause

~R(a,B),C

where o is a KD4 prefix unifier for («,3) and let 8’ be the proper prefix of § such that o
is the most general unifier of « and 3. Then 8 = 3':3;: --- : 8, with n > 1 and we thus
have the situation

R, fri -1 Bn),C

with ca = o/3'. Now consider the unit clause
R(u,u:my: -+ :xy)

from the saturation of the background theory for KD4. Evidently, a resolution step between
the two latter clauses results in ¢C' and this is just what has been claimed.

Recall that in the refutation completeness proof for the S4 Inference System we could take into
account the fact that a given minimally unsatisfiable ground instance guarantees that each world
variable occurs somewhere not overestimated. This is not necessarily true anymore in case of
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KD4 as the example with the unsatisfiable unit clause =R(¢,u) shows. A possible unsatisfiable
ground instance of this clause might be =R(i,::a) and indeed this ground instance is minimal
since there exists no other ground substitution y such that =R (ut, u(u)) is unsatisfiable and p(u)
is a proper prefix of o(u). Nevertheless, u is evidently overestimated and therefore it cannot
be guaranteed that every variable occurs somewhere not overestimated. It can be observed,
however, that if a variable u occurs only overestimated in a single KD4-unsatisfiable clause
then it occurs only on right-hand arguments of the respective R-literals. This fact allows us to
perform suitable KD4 Elimination Rule steps.

LEMMA 3.9.25
The KD4 Inference System is refutation complete.

Proof: In analogy to the completeness proof for S4 it suffices to show that any single KD4-
unsatisfiable clause can be refuted with the help of the KD4 Inference System.

Now consider an arbitrary KD4-unsatisfiable clause C with a minimally unsatisfiable ground
instance oC'. If each variable which occurs overestimated also occurs somewhere on a left-
hand argument of a R-literal then the proof that there is a liftable step with the KD4
Inference Rule follows exactly the lines of the corresponding proof for the S4 Inference
Rule. Therefore assume that there is a variable, say w, which occurs only overestimated.
By the observation from above we know that this u occurs only on right-hand arguments
of the R-literals and thus C' is of the form

-R(a1,u:B1),... ,~Rlam,u:B,),C"

and each o(«;) is a proper prefix of o(u). Hence all the o(e;) can be ordered under the
prefix relation and there is a maximal one, say o(ay), such that for all j # k we have that
o(a;) is a prefix of o(ay), and even that o3, = (). This is so, because if each of the literals
with maximal oy had a non-empty o8 then the minimality of ¢ would guarantee that u
is not overestimated. Thus we have that 8y = 0 and, moreover, that o(ay) is the direct
prefix of o(u). Therefore the KD4 inference step on =R (cay, o(u)) can be simulated on the
clause C by a KD4 Elimination step in the sense that cC'\ {-R(oay,o(u))} — i.e. the result
of a KD4 Inference Rule application on ¢C - is an instance of Cy, ., — the result of a KD4
Elimination Rule application to C. Hence any KD4-unsatisfiable clause C' can be reduced
with the help of either the KD4 Inference Rule or the KD4 Elimination Rule to a smaller
KD4-unsatisfiable clause and the lemma follows by induction over the length of C.

3.9.3 An Inference System for Mutual Belief

Let us again have a look at the Mutual Belief example in Section 3.8. After saturating the
background theory we ended up with all units of the form

Ryp(u,u:xi:29-- 1 Tp)

where n > 0 and each of the x; belongs to any of the functional decompositions. The strong
relation between this set of unit clauses and the saturation of the S4 background theory is
pretty obvious. They differ mainly in the fact that variables may belong to different functional
decompositions. Nevertheless, the observations which lead us to the inference system for S4 do
apply here as well, i.e. whenever there is an occurrence of a negative Rysp-literal we try to unify
its left-hand-side with a prefix of its right-hand-side.
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Thus the inference system for Mutual Belief does not have to be changed at all compared with
the S4 Inference System, even the soundness and completeness proofs remain unchanged.

3.9.4 “Mixing” S4 and KD4

As another example for multi-modalities consider a logic which is based on a S4 and a KD4
fragment such that the accessibility relation for the former is just the reflexive closure of the
accessibility relation of the latter. Or, in other words, let (I be the modality of the KD4 fragment
and let O* be the modality of the S4 part (with associated accessibility relation symbol R for
00) then any formula of the form [0*® is true in a world w if and only if ® is true in w and,
in addition, in every world accessible from w by R as well. The basic principles behind this
multi-modal logic will play a crucial role in the development of calculi for the temporal logics
to be considered later.

As a first attempt to reason within this combination we might consider a translation approach
which helps us with this problem, namely one which translates the S4 modalities in terms of the
KD4 modalities. This would result in something like:

O] = [®]LAVo R(u,v) = [®]]
[dO®]L = Vv R(u,v) =[],

v

The advantage of this kind of translation is that there is only one accessibility relation to be
considered. Its disadvantage lies in the fact that [0*-formulae get translated into conjunctions
and {*-formulae get translated into disjunctions and therefore the clauses we obtain after clause
normal form transformation become fairly big (and also we get lots of them).

As an alternative we might consider another translation, namely
[O®]2 = Vo R*(u,v) = [®]2
[O2]; = Vv R(u,v) = [2];

which keeps off a lot of this representational overhead.

These two translation approaches are indeed equivalent provided we guarantee that R* rep-
resents the reflexive closure of R as is shown in the following lemma.

LEMMA 3.9.26
Let R* represent the reflexive closure of R. Then [®]! is equivalent to [®]2.

Proof: Follows by a simple induction over the structure of ®. For the only interesting case
(where ® = [0*U) it suffices to realize that the translation [ ]! can be reformulated into:

[D*\Il]}u =VYv (v=1uV R(u,v)) = [\Il]},
Since R* is the reflexive closure of R we have that
R*(u,v) < u=vV R(u,v)

and thus
[O*9],, & [0V,
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The translation [ ]? is to be preferred because it results in fewer and smaller clauses. The
price to be paid, however, is that we have to deal with a more complicated background theory
whereas describing [1* in terms of [J would mean to merely consider the KD4 background theory.
Under translation [ ]2 we have a KD4 and a S4 background theory together with the additional
information that R* denotes the reflexive closure of R. Whether or not this really simplifies
reasoning within the combined logic will have to be investigated in the following.

Let us first have a look at the axiomatization of this very multi-modal logic (which we shall
call S4&KD4 in the sequel). It consists of the two modal logic fragments for S4 and KD4 and
a combination axiom which guarantees that the one accessibility relation is indeed the reflexive
closure of the other, hence the full axiomatization is given by

0o = ¢

0o = 0doe
e =92

0e =00
"¢ < OPAD

where the usual K-axioms, the necessitation rules and Modus Ponens have to be added. Ev-
idently, the first two axioms describe the KD4 part and the third and fourth axiom the S4
fragment. The final axiom then provides the relationship between the two [J-operators such
that we get the following background theory for S4®KD4 (after semi-functional translation):

R(u,u:x)

R(u,v) A R(v,w) = R(u,w)
R*(u,u)

R*(u,u:z*)

R*(u,v) A R*(v,w) = R*(u,w)
R(u,v) = R*(u,v)

R*(u,v) = R(u,v) Vu=v

where z (z*) ranges over the functional decomposition of R (R*). Actually, the transitivity of
R* is redundant here for it follows already from the other properties (the reflexive closure of a
transitive relation is transitive itself).

Our aim is now to saturate these properties and to find suitable inference rules which finally may
replace the background theory (or its saturation). To this end we have to determine the set of
pure-R*)-positive clauses that are derivable from the S4®KD4 background theory by resolution
on R™-literals.

NOTATION 3.9.27

Given the functional decompositions Fg,,... , Fr, we denote by a € (Fg, U...U Fg, )* that «
is a sequence ay:ag: -+, such that each «; (1 < i < m) is an element of Fg, U... U Fg,.
To indicate that at least one of the members of « belongs to Fr we write: Jo; € a; € Fr. A
sequence which consists only of functional decomposition variables is usually represented by an
overlined variable symbol, e.g. by . Moreover, we sometimes write «: 8 to indicate that the
world term in question can be split into a prefix a and a suffix sequence (.
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LEMMA 3.9.28

The set of clause schemata of the form
R*(u,u:T) with T € (FrU Fg+)*
R(u,u:T) with Jdr;€T z;€FR

R(u,u:z:y)Vu:x =u with x:7 € (Fp«)*

is derivable from the S4®KD4 background theory (where x* means that x is a symbol repre-
senting an element of Fgx.

Proof: First we show that R*(u,v) = R*(u,v: ).

R*(u,v) A R*(v,w) = R*(u,w) Transitivity of R*

R(u,v) = R*(u,v) R is a subrelation of R*
R(u,u: x) Seriality of R

R*(u,v) A R(v,w) = R*(u,w) by the first two
R*(u,v) = R*(u,v:x) plus the third

Also we have that R*(u,v) = R*(u,v:z*) by

R*(u,v) A R*(v,w) = R*(u,w) Transitivity of R*
R*(u,u:x*) Seriality of R*
R*(u,v) = R*(u,v:z*) by resolution

Then it follows by induction that

R*(u,u)

o Rl

This covers the first clause schema.

Similarly we proceed for the second schema. Note that we can show from the background
theory that R*(u,v) = R(u,v:z), R(u,v) = R(u,v:z*) and R(u,v) = R(u,v:z). Proofs
of these facts are a bit tedious; they can easily be checked by a standard theorem prover,
however. Then we get by induction that

R*(u,u)
R*(u,v) = R(u,v:x)

LCERA bt

where T # () and Jz; € Fg and this covers the second clause schema.

For the third schema recall that R(u,v) = R(u,v:z*) and that R*(u,u:Z) (in particular
in the case where Vz; € Fg+). Thus we can show (again by induction) that

= R(u,u:T)

R*(u,u:T) with Vx; € Fg«
R(u,v) = R(u,v:z*) = R(u,u:T:J)Vu=u:T
R*(u,v) = R(u,v) Vu=v

where Vz;,y; € Fr+. Thus, in particular, R(u,u:z*:7) Vu = u:z* and we are done.
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The clause schemata from the previous lemma do not cover all positive clauses which are some-
how derivable from the background theory. They are sufficient, however, and this is shown
next.

LEMMA 3.9.29
Let ® be a S4®&KD4-unsatisfiable clause set. Then there exists a finite set of instances of the
derived clause schemata, say C, such that C U ® is (classically) unsatisfiable.

Proof: First recall that the transitivity of R* is already derivable from the fact that R* is the
reflexive closure of the transitive relation R and thus is redundant. We now show two main
facts:

1. R*(u,v) = R(u,v) Vu = v can be simplified to R(u,u:z*) Vu:z* =u

2. R(u,v) AN R(v,w) = R(u,w) and R(u,v) = R*(u,v) become redundant under the
derived clause schemata

It then follows immediately that the derived clause schemata cover all positive clauses which
are derivable from the given background theory and therefore the lemma holds.

The first of the two facts can easily be proved as follows: Let @ be the clause set which results
from the semi-functional translation and clause form transformation of some S4®KD4-
unsatisfiable formula. Then there exists a finite set of ground clauses from clauses of ®
and a finite set of ground clauses from the S4®KD4 background theory such that the union
of these finite clause sets is classically unsatisfiable and can be refuted (for example by
some standard resolution theorem prover). In particular there is a finite set of instances of
the clause R*(u,v) = R(u,v) V u = v involved and we are going to prove what has been
claimed by an induction over the number of instances of this very clause. In the base case
this clause is not required at all and we are already done. Therefore assume that there
are n > 0 ground instances needed. Now consider any path® through the clause set which
contains all the literals -R*(a, §) which stem from R*(u,v) = R(u,v) V u = v and whose
unsatisfiability requires at least one of these R*-literals. Such a clause set must exist for
otherwise all these instances were not necessary for this very ® and we would be finished
anyway. Now the only possibility to resolve these literals —~R*(«,3) is by a resolution
step (paramodulation steps are not possible because there are no further equational clauses
involved) with instances of R*(u,u), R*(u,u:z*), or R(u,v) = R*(u,v). However, the
first and the third of these possibilities can be ignored for they would result in tautologies.
Remains the second possibility and this results in just the simplification that has been
claimed.

The second of the facts from above can also very easily be shown. It suffices to observe
that any pair (o, ) in the R relation is also in the R* relation (which is obvious) and
that the clauses containing R-literals are closed under transitivity. This requires four very
simple cases to be checked. As an example consider the case where two instances of the
clause schema R(u,u:z*:7) V u:z* = u are resolved with the transitivity clause. This
results in R(u,u:z*:g:v*: W) Vu:z* = uVu:z*:7:v* = u:x*: 7 which is subsumed by
R(u,u:z*:7) Vu:z* = u.

35By a path through a set of k ground clauses we understand any set of k literals which contains a literal from
each of the k£ ground clauses.
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Thus we are now at a stage where we can try to find an appropriate set of inference rules which
replaces the saturation of the background theory. Such a set of inference rules is supposed to
cover the responsibilities of each of the derived clause schemata and the close relation to both
S4 and KD4 provides already with a hint how a suitable inference system for S4®KD4 might
look like. Essentially we need an S4 rule for the R*, the KD4 rules for R and a further rule for
the equational clauses (which say something about the relation between R and R*).

DEFINITION 3.9.30 (THE S4@KD4 INFERENCE RULES AND SYSTEM)
The S4®KD4 Inference System consists of the classical resolution, factorization and paramodu-
lation rules together with the following S4®KD4 Inference Rules

_'R*(aaB:'Y)’C _'R(O‘aﬂ:’Y)aC
oC oC
v € (FrRU Fg+)* Jz; €y zi€EFR
o = mgu(a, B) o = mgu(a, B)
ﬂR(a,u),C _'R(Q,BZ’YI(S),C
Cg:w O'C,U(/B:'Y) =oa
provided u does v:6 € (Fp+)*
not occur in « o = mgu(a, §)

Note that it suffices to assume that the -y in the last of the above inference rules consists only of
a single Fr«-term.

Before the soundness and refutation completeness of this inference system is proved let
us have a look at an example which shows the main difference between the two translation
approaches.

ExAMPLE 3.9.31
Consider the modal logic formula

O*(PADOQ)=0O(PVDOQ))
After negation and clause normal form transformation we end up with

P(i:a*)
~R(1:a”,u), Q(u)
—P(t:a*:b%)
—QL:a*:b*: %)
In fact, there are only two inference steps possible, both with the second clause involved, namely

a resolution step between the two Q-literals and a KD4 Elimination Step on the R-literal. The
latter immediately leads to a dead-end, the former, however, results in

—R(t:a*,1:a":b%: ")

Again there is only one possible further step, and that with the last one of the above rules. This
step then yields
via*: b =1:a"
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and this equation together with the two P-literals immediately leads to the empty clause.

But what would happen if we tried the other approach, i.e. if we translated the “starred”
operators in terms of the other modalities. This would mean that we have to show the KD4-
unsatisfiablity of the formula we get after translating each [0*® into ® A J® and each {*® into
dVOP. As a matter of fact such a translation and a following clause form transformation results
in a clause set which consists of about 40 clauses and approximately 180 literals. Presenting
this clause form here would be a boring task indeed and is therefore omitted. What this shows,
however, is how significant the savings are if we treat the [J* as an operator on its own and not
simply as an abbreviation.

We now proceed with the soundness and refutation completeness proofs for the S4®KD4
Inference System.

LEMMA 3.9.32
The S4®KD4 Inference System is sound.

Proof: The proof is in full analogy to the corresponding proof for the inference systems for S4
and for KD4. Only the last of the new S4@KD4 Inference Rules — the one which introduces
an equation — has not yet been considered. Its soundness, however, follows immediately
from the fact that any of its applications corresponds to a resolution step with an instance
of the clause schema

R(u,u:x*:9),u:z* =u

which belongs to the saturation of S4@KD4’s background theory.

For the completeness proof of the Inference System we have to take into account that equations
can be derived and therefore some equation handling is necessary. For convenience, we consider
the so called “simultaneous paramodulation” as it had been introduced in (Benanav 1990). This
approach is particularly interesting for it obeys a lifting lemma, something which is not possible
for paramodulation in general. Informally, simultaneous paramodulation (s-paramodulation
for short) differs from standard paramodulation in that an equation a = f is paramodulated
into every subterm « whereas in standard paramodulation terms are replaced one at a time.
Evidently, any s-paramodulation step can be simulated by a series of standard paramodulation
steps.

LEMMA 3.9.33 (BENANAV’S S-PARAMODULATION LIFTING LEMMA)

Suppose that Cy,Cs,C},Ch and C' are clauses such that C' is an s-paramodulant of C into C
and that C; subsumes C] (i.e. some instance of C is a subset of C{) and Cy subsumes C}. Then
either Cy subsumes C' or there exists an s-paramodulant C of Cy into C such that C subsumes
C'.

LEMMA 3.9.34

The S4®KD4 Inference System is refutation complete on ground clauses.

Proof: This follows immediately from the resolution and s-paramodulation completeness and
the fact that (on ground clauses) there is a one-to-one correspondence between resolution
steps with an instance of the derived clause schemata and an application of one of the new
inference rules.

What the general refutation completeness of the S4@KD4 Inference System is concerned we are
again faced with the problem that a general lifting lemma does not hold for the new inference
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rules. Therefore we are not able to lift an arbitrary refutation of an arbitrary unsatisfiable
ground instance to the general level. What we can show, however, is that there exists an
unsatisfiable ground instance and a refutation for this clause set which can be lifted. To this
end some auxiliary lemmas turn out to be useful.

LEMMA 3.9.35
Let C be a single S4@ KD4-unsatisfiable clause. C' can be refuted with the help of the S4®KD4
Inference System.

Proof: Since C is S4@KD4-unsatisfiable there exists a minimal ground substitution ¢ such that
oC is S4@KD4-unsatisfiable. ¢C' can be refuted according to Lemma 3.9.34 but suppose
that none of the steps in this refutation can be lifted. Then each of the literals in C is of the
form —R(™) (o, ui: ;) with u; overestimated w.r.t. o and at least one of these u; occurs only
on right-hand arguments (for otherwise we would be able to find infinitly many different
variables — see the corresponding proofs for S4 and KD4). However, not each of these literals
can be a R*-literal for otherwise this ground substitution were not minimal. Therefore —
in analogy to the corresponding proof in case of KD4 — we are able to find a maximal ooy
(with B, = 0) such that the KD4 Elimination Rule can be applied on —R(ay,ux) and this
step lifts the corresponding step on " R(cay, o(ug)). Note that this very literal must indeed
be a R-literal rather than a R*-literal for otherwise u were not overestimated in this literal
and the corresponding step could be lifted. Hence in any case there is a liftable step which
reduces the size of ¢C' and the proof is completed by a simple induction over the length of

oC.

LEMMA 3.9.36
Any clause C of the form

_'R(*) (Oél,Ul : /81)5 .. 7_'R(*) (ana Unp - /671)

for which a ground substitution o exists such that o«; is a proper prefix of o(u;) is S4&KD4-
unsatisfiable.

Proof: First we show that at least one of the u; occurs only on right-hand side arguments of
the literals in C. To this end consider any of the u;, say ui. If uy occurs in a left-hand
argument, say in ag, we know that o(u1) is a proper prefix of o(ug) and thus u; and us
are different. We start our search again, this time with wus, i.e. if us occurs on a left-hand-
side, say in a3, then u; and us are both different from w3 and this progression can only be
stopped by finding a variable which does not occur on left-hand-sides.

Now consider C without the literals =R™)(... ,u;: - -- ). The very same situation holds for
this subclause, i.e. there is a variable, say u;, which occurs only on right-hand sides on this
subclause (it might occur on a left-hand side in the literals ~R™)(... ,u;: ---) though).
Doing so for all world variables finally leads us to the possibility of permuting C' such
that for any literal ~R®™) (i, u;: B;) only the variables uq,... ,u;—1 can occur in ¢; and, in
particular, there is a variable u; such that for every ﬂR(*)(aj, uj: f;) no world variable at
all occurs in ;. Evidently, for any evaluation of the o; we are able to instantiate u; such
that each ~R(™) (aj,uj: B;) gets S4dKD4-unsatisfiable and that without instantiating any
of the other world variables (this instantiation certainly depends on the domain variables
in the a;). Due to our construction there is now another world variable without any world
variable on the left-hand side of its occurrences and again there is a suitable instantiation
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(of domain variables) which yields the unsatisfiablity of these literals and so on. The lemma,
thus follows immediately by a simple induction over the number of world variables  which
occur in the form -R™ (... ju: ---).

LEMMA 3.9.37
Let C be a clause of the form

_‘R(*) (ala /31)7 ey _'R(*) (ana /Bn)

and let o be a ground substitution such that oc; is a (proper) prefix of o3; for every 1 < i < n.
Then either C' is S4@KD4-unsatisfiable or a conditioned equation can be derived from ocC with
the help of the S4@KD4 Inference System and this derivation can be lifted to C.

Proof: W.l.o.g. we can assume that C and oC are of equal length. Since each oq; is a (proper)
prefix of o 8; we have that either there is a liftable step or each of the §; is of the form w; : ;.
In the former case we are either able to reduce the size of C' by applying this liftable step or
we already have derived a conditioned equation by this liftable derivation. In the latter case
we are again guaranteed that at least one of these variables u; occurs only on right-hand
side arguments and the previous lemma then guarantees that C' is S4®KD4-unsatisfiable.

NOTATION 3.9.38

A ground literal of the form —R(«, a: () is called equality introducing (an E-literal for short)
if 8 € (Fgr-)*. The unconstraint part of a clause set is obtained by ignoring the R®*)-literals
occurring in this clause set.

LEMMA 3.9.39
Let C = C',-~R(a,a: Bf: ---: %) be a clause in an S4®KD4-unsatisfiable set C of ground
clauses. C remains unsatisfiable if we replace C by the set

{Ca: 8 =a|1<i<n}

Proof: Recall from Lemma 3.9.29 that a finite number of ground instances from the derived
clause schemata suffices to refute a given S4@ KD4-unsatisfiable clause set. Hence, bearing
the above clause C in mind, the clause

R(a,a:ﬂf: :ﬂ;)aa:ﬂf =

must be part of the background theory and the literal R(a,a: 3f: ---: 35) does not occur
anywhere else in the clause set. Therefore the only possible resolution step between this
theory clause and the given clause set results in replacing each occurrence of the literal
“R(a,a:f7: -+ : (%) by a: ff = a. Applied to C this results in

C',a: 8 = .

Now there is a paramodulation step possible between this clause and the original clause C'
which leads to
C',=R(a,a:B5: -+ : ).

For this new negative R-literal the same observations can be made as for its ancestor
- R(a,a:f7: -+ : 3}), i.e. there exists a clause

R(a,a:,@;: :B:z)aa:ﬂ; =«
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in the background theory and therefore the clauses
Cla:fr=a

and
Cla ﬂR(aaa:ﬁg: e IB:L)

are derivable. This proceeds until we reach C',=R(«,a: ;) from which only the clause
C',a: % = a can be derived. Hence, everything which is derivable from the E-literal in
original clause C is contained in the clause C', a: 8 = @ and we are done.

LEMMA 3.9.40
Let C be a S4@KD4-unsatisfiable set of clauses. Then C can be refuted with the help of the
S4® KD4 Inference System.

Proof: Let ¢C be an S4®@KD4-unsatisfiable ground instance of C. Evidently, according to

Lemma 3.9.35 it suffices to show that there exists a liftable derivation of a single S4¢KD4-
unsatisfiable ground clause. The proof is performed by induction over the number of E-
literals in oC.

Base case: there are no E-literals in ¢C. Then we are able to derive the empty clause
from the unconstraint part of ¢C and that with the help of resolution, factorization and
s-paramodulation. Recall that any such inference can be lifted to the unconstraint part of
C. Performing exactly the same sequence of inference steps to C and C thus results in a
single unsatisfiable clause and we are done.

Induction step: let 0E be an E-literal in a clause 0C € oC and let 0C' = oC \ {cE} and
aC' = (6C \ {ocC}) U {cC'}. By the induction hypothesis we are able to derive a single
S4@KD4-unsatisfiable clause oD from oC’. Performing exactly the same derivation steps
on oC therefore results in a clause oD V o FE and, according to the induction hypothesis,
this derivation can be lifted. Now it is easy to see that we may replace the original clause
oC by 6D V oF and remain S4@KD4-unsatisfiable since by the induction hypothesis each
literal in oD is S4@KD4-unsatisfiable. At this stage we can apply Lemma 3.9.39 which
guarantees that oD V oE can be replaced by the clauses oD V a: 3f = «; without loosing
unsatisfiability and we thus end up with a clause set with fewer E-literals. The Lemma
therefore follows by the induction hypothesis.

3.9.5 An Inference System for S4F

Recall the saturation result for the background theory of S4F

R(u,vizy: -+ 1xy), R(v,w)

An alternative clause set with exactly the same saturation is (see Section 3.5):

S(u,u)
S(u,v) = S(u,v: )
S(u,v) = R(z,v) V R(u,y)

How could an appropriate inference rule for S4F look like which covers the responsibilities of
this background theory? There obviously are some similarities between the S4F saturation and
the S4 saturation and indeed a suitable inference rule can be found along these lines, namely:
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DEFINITION 3.9.41 (THE S4F INFERENCE SYSTEM)
Let o is a S4 prefiz unifier of (v,5). Then we call

-R(a, B), @
-R(7,0),V
c®,00

the S4F Inference Rule. The S4F Inference System consists of the standard resolution and
factorization rules together with the S4 and the S4F Inference Rules.

Showing the soundness of this inference system is in fact a trivial task since we know about
the soundness of the S4 inference rule (and S4F is stronger than S4) and the soundness of the
S4F inference rule follows immediately from the correctness of the S4F saturation.

Remains to show that this inference system is complete.

As a matter of fact it is fortunate that we already investigated the corresponding complete-
ness of the S4 Inference System for we are running into similar troubles here. Again, there is
no problem to show the ground completeness and again, the actual problem lies with the lifting
lemma. We therefore try to incorporate the knowledge we have gained from S4 case into the
corresponding proof for S4F.

To this end consider two other inference rules which — for the moment — are supposed to replace
the S4F Inference Rule, namely

~R(c, B), @
_'R(f)la 5)7 \Ij and —_‘S(’Y, B), \IJ
~5(7.5)., T P

where o is an S4 prefix unifier of («, ().

Evidently, these two alternative inference rules are taken directly from the saturation of the
alternative background theory for S4F and thus their correctness follows trivially. Moreover,
it is also very easy now to show the completeness of these two rules (together with resolution,
factorization and the S4 Inference Rule of course). As a matter of fact, completeness follows
almost immediately from the completeness of the S4 Inference System, for, assume we have
an unsatisfiable set of (negative) R-clauses3®. Then there exists an unsatisfiable set of ground
instances from these clauses which can be refuted according to the ground completeness of these
inference rules. However, steps performed with the first of these two rules can trivially be lifted
since they do not require any variable instantiation. This way we can perform all these liftable
steps one after the other and end up with a single unsatisfiable clause (which may contain both
negative R-literals and negative S-literals). This very clause can now be refuted according to
Lemma 3.9.15 and we are done.

Thus we have taken a major step towards the refutation completeness of the S4F Inference
System. The rest is fixed by the following:

THEOREM 3.9.42
The S4F Inference System is sound and complete.

36Standard resolution and factorization steps can be lifted anyway.
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Proof: Soundness is no problem at all as mentioned earlier. Remains to show completeness
and that with the help of the above observations concerning the completeness of the al-
ternative inference system. To this end it suffices to show that there is a refutation with
the alternative inference system such that an application of the first of the two new rules
is always immediately followed by an application of the second new inference rule. This,
however, is fairly easy, for consider the first liftable application of the second new inference
rule (recall that sooner or later there must be such a liftable inference step). If this applica-
tion immediately follows the first application of the first inference rule both together form
a liftable step of the S4F inference rule. Otherwise we can at least restructure the (ground)
refutation such that the step immediately preceding this liftable application becomes the
first rule application at all. The theorem thus follows immediately by induction over the
length of the refutation.

3.10 Functional Translation

Although the search for a suitable inference rule application has already been simplified signif-
icantly one still might object that quite a lot of negative R-literals remain which may act as
parent clauses for the new inference rules. We therefore try to reduce the number of possible
inference steps by a further restriction (on the S4 Inference System for convenience) and that
by applying the S4 Inference Rule only in certain cases. To this end a new inference mechanism
is developed which is again based on the R-literals and which (syntactically) forbids undesired
inference steps.

Evidently, it would be quite welcome if a clause set contains only a few of these R-literals,
for the new inference rules can only be applied to such literals. We therefore consider again the
functional translation as proposed in (Ohlbach 1989), (Ohlbach 1988), (Ohlbach 1991), (Auffray
and Enjalbert 1992), and (Farinas del Cerro and Herzig 1988). Please note that only the formula
translation method from the above approaches is considered here; the reasoning process to be
defined later differs significantly from the above methods.

DEFINITION 3.10.1 (FUNCTIONAL TRANSLATION)
Let ® be a modal logic formula.

O], = Vz |[Ply:.z
[0®], = Tz [Ply.z

All the other cases are treated by the usual homomorphic extension of the above. The initial call
is again: [®],.

This functional translation can be viewed from the semi-functional perspective as a semi-
functional translation followed by resolution steps with the single unit clause R(u,u:z) wherever
possible and finally throwing away all the old clauses from the translated formula which did
contain negative R-literals. And in fact there is no difference at all to the semi-functional
translation if we just kept the conditioned equation

R(u,v) = Iz u:z =v
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in the clause set for then the original clauses can easily be reconstructed®’.

The idea is now to change the unification in a way such that the effect of the conditioned
equation is taken directly into account. This will result in resolvents which carry certain residues
and these residues are to be manipulated by the S4 Inference Rule. Note that after this functional
translation is performed there are no R-literals left in the given clause set.

DEFINITION 3.10.2 (DIRECT PREFIX)

The direct prefix pre(a) of a world term « is the unique prefiz of a such that every other prefiz
of a is either « itself or a prefiz of pre(a). In the sequel, whenever the the prefix of some world
term is mentioned the direct prefix is meant.

DEFINITION 3.10.3 (THEORY UNIFICATION)
Let a:x and B be two world terms. The substitution

o= {z/a~ )

is called the theory unifier for a:x and 8 with residue ~R(c, B) (read as: z leads from o to [3).
Applying this substitution to a clause C results in the clause Cg“”” V =R(a, B) which is called the
conditioned instance of C.

DEFINITION 3.10.4 (THEORY UNIFICATION ALGORITHM)

A unification problem consists of a pair (E,c) where E is a set of equations and o is a sub-
stitution. Such a unification problem is said to be solved if E is empty and o is of the form
{lzs/t;] | 1 < i < n} where the x; are variables and the t; are terms that do not contain x; and
are of the same sort as x;. Solving a unification problem means to apply certain transformation
rules of the following kind:

decomposition
{ara=p:b}UE,0) — ({a=ba=p}UE, o)

orientation
{a=p:2} UE,0) — ({B:z=a}UE,o0)

application(z ¢ ()
({cia=PYUE,0) — (B lo/a~ floo)

occurs check(z € ()
({a:z=pP}UE,0) —  failure

where o denotes the usual composition of substitutions. The above transformation system con-
tains only those rules that are necessary to unify world terms. Other (classical) terms are unified
as usual.

The latter definitions would not make much sense if we had not the following property of

translated formulae:

LEmMA 3.10.5
The prefix of functional decomposition variables is unique.

37 As a matter of fact, this formula translation differs slightly from the other functional translation approaches.
The differences are not crucial, however.
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Proof: This holds obviously after translation and is not violated by any inference step (unifi-
cation) (see also (Ohlbach 1989)).

DEFINITION 3.10.6 (FUNCTIONAL INFERENCE SYSTEM)

The functional S4 Inference System consists of resolution, factorization, and the S4 Inference
Rule, however, R-substitution and thus unification of world-terms works according to the defini-
tion 3.10.3 and 3.10.4.

Again it has to be shown that this inference system is sound and complete. To this end the
following definition is quite helpful.

DEFINITION 3.10.7 (FULL RELATIVIZATION)
Let C be a clause generated after functionally translating the modal logic formula ®. Let

{z1,... ,zn} be the set of universally quantified functional decomposition variables occurring
in C and let

o=A{...,z;/pre(z;) ~ uj,...}
where the u; are new world variables. Then oC' is called the full relativization of C.
As an example consider the modal expression OQCIP. Its functional translation (with initial

world ¢) results in
VrIyVz P(i:z:y: 2)

The full relativization of this formula is then
VuIyVo = R(t,u) V " R(u:y,v) V P(v)

Evidently, the full relativization is a means to obtain the semi-functional translation result from
a functionally translated modal formula.

LEMMA 3.10.8
The Functional Inference System is sound.

Proof: In fact, nothing has changed but unification. It is thus enough to show the soundness
of the new substitution here. To this end it suffices to show that the full relativization is an
equivalence transformation, since any substitution can be viewed as a classical instantiation
of the full relativization.

Recall that a modal formula is S4-unsatisfiable if its functional translation together with
the background theory

is unsatisfiable. The first and the third of these clauses in fact describe the equivalence
R(u,v) @ Iz u:xz=v

and indeed, according to this equivalence any clause and its full relativization are equivalent.
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LeMMA 3.10.9
Let C be a single S4-unsatisfiable clause. Then C can be refuted with the help of the S4 Inference
Rule (under the new unification).

Proof: By induction on the number of functional decomposition variables in C.
Base Case: no variables. Done by Lemma 3.9.17.

Induction Step: By Lemma 3.9.17 we know that there is at least a step in the full rela-
tivization of C' which leads nearer towards the empty clause. Now suppose that in one of
the residues, say ~R(a, u), u is overestimated. Since C3'", ~R(c, u) contains less variables
than C it can be refuted and that with a first step not involving the literal ~R(c,u). This
first step can be performed in C' as well (modulo the different instantiation) and we end
up either with a clause with less variables (in which case the induction hypothesis can be
applied) or with a clause with the same variables but less literals. In this latter case we
start the whole procedure with this new clause again and this ultimately leads to the empty
clause.

For the other case assume that none of those world variables is overestimated. Then the
clause Cpre((f’)) * is unsatisfiable and contains less (in fact none at all) variables and can
thus be refuted. The first step of this refutation can analogously be applied to C' as well and
we thus get a new clause which is unsatisfiable and smaller than C. Therefore we finally
end up with the empty clause here, too.

With this almost all necessary steps towards the completeness proof for the Functional Inference
System are done.

THEOREM 3.10.10
The Functional S4 Inference System is sound and complete.

Proof: Soundness follows from Lemma, 3.10.8. Completeness is shown along the lines of the
completeness proof for S4 Inference System in Lemma 3.9.17. It suffices to show that it is
always possible to derive a single unsatisfiable clause which then can be refuted according
to Lemma 3.10.9.

The advantage of the functional approach is that the R-literals are hidden as long as possible.
This means that inference steps which were possible in the semi-functional approach are not
necessarily possible anymore. Thus the search space gets reduced even further.

At this stage a comparison between this Functional S4 Inference System and the approaches
proposed by e.g. Hans Jiirgen Ohlbach seems adequate. What the formula translation is con-
cerned the difference is very small indeed. The major difference lies within the reasoning process.
In Ohlbach’s approach every occurrence of an R-literal in the relational translation gets replaced
by a (positive or negative) equation according to the definition

Vu,v R(u,v) & Az u:z =v

in particular this means that the background theories which consist solely of R-literals in the
relational and in the semi-functional translation are represented by sets of equational clauses.
Unfortunately, reasoning with such equations is fairly complicated and therefore an attempt
was made to cast these equations into suitable unification algorithms. Note that whenever the
background theory in the relational translation is Horn then the resulting theory after functional
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translation consists of unit equations and indeed, the background theories for most of the well
known modal logics consists of Horn formulae. Up to date unification algorithms for almost
any combination of the schemata D, T, B, 4 and 5 have been developed. The advantage of this
approach after such unification algorithms have been found is obviously that no further special
reasoning within the background theory is necessary. However, it also has some disadvantages.
First, the development of suitable unification algorithms is not a trivial task at all and this may
be a major reason why such algorithms have been defined for a rather limited number of modal
logics (accessibility relation properties in fact). Second, even if a unification algorithm has been
defined it might produce exponentially many unifiers for a single unification problem (as the S4
case shows for instance) and thus a single resolution step might produce exponentially many
resolvents.

The Functional Inference System as proposed in this work avoids such difficulties at least
to some extent. Recall that the theory unification as defined in Definition 3.10.3 is unitary.
Application of such a unifier, however, results in a clause which is extended by some residue,
namely an R-literal. In a sense, this R-literal contains the information about further possible
unifiers as they are directly computed in Ohlbach’s approach. In fact, if we tried to find all
possible instantiations which make the resulting residue unsatisfiable we would obtain the set
of unifiers computed by Ohlbach’s unification algorithm. However, we are not forced to com-
pute all such possible instantiations. In fact, we often even postpone any possible inference
step with this residue until a clause is derived which contains nothing but R-literals. Until
we reach this point variables get more and more instantiated and thus reduce the number of
possible unification results. It thus makes sense to think of the Functional Inference System as
a functional translation approach in Ohlbach’s sense, however, combined with some kind of lazy
unification. Nevertheless, although this sounds superior to Ohlbach’s approach, it also has some
disadvantages for it may unify terms which are not unifiable in Ohlbach’s sense. This is possible
in cases as the following: consider the two literals P(c:a:x) and ~P(s:b:y). According to the
Functional Inference System these two literals can be made complementary, e.g. by applying the
substitution z/c:a ~ ¢: b: y with residue = R(¢:a,¢:b:y). In Ohlbach’s approach these two liter-
als could not be made complementary for any common instance of both argument terms would
have to have both ¢:a and ¢: b as its prefix which is impossible. This impossibility is also hidden
somewhere in the Functional Inference System, namely in the residue —R(::a,t:b:y). Note
that this residue is equivalent to the disjunction of the two literal —R(::a,u) and —R(¢: b, u)
(according to the full relativization) and it is impossible to “solve” both literals together. Thus
the Functional Inference System may produce impossible constraints, something which cannot
happen in Ohlbach’s approach. A possibility how this problem could be overcome would be to
test the constraint part of a resolvent for satisfiability immediately after it has been generated.
Whether or not this turns out to be useful is a matter of future examinations. For the moment,
the Functional Inference System at least seems to be an interesting alternative to Ohlbach’s
approach.

3.11 A Word on Constraint Resolution

The way we treat negative R-literals in translated formulae suggests a constraint resolution
approach in the sense of (Biirckert 1990) and (Biirckert 1991). In fact, there already exists an
approach along these lines which is proposed in (Scherl 1993). The main idea behind Biirckert’s
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constraint resolution approach is to distinguish between the actual theorem to be proved and
a certain background theory for which a special inference mechanism exists. Any clause then
consists of two parts: A clause body and a certain constraint. Resolution steps can only be
performed between literals in the clause bodies and the aim is to derive empty clause bodies
instead of empty clauses. Such empty clause bodies do not yet guarantee the unsatisfiablity of
the whole clause set, however. What remains to be shown is that the collection of constraints
which are associated with empty clause bodies can be instantiated such that the result of this
instantiation is valid in the background theory.

This very idea forms the basis of Richard Scherl’s approach on modal logic theorem prov-
ing. He considers the relational translation for modal formulae and treats negative R-literals
in translated formulae as constraints which have to be solved in a suitable background theory.
However, the pure relational translation turned out to be not very convenient for, as we know
from Section 3.1, it also produces positive R-literals in the translation result. Based on the fol-
lowing observation he therefore developed a means to avoid such positive R-literals in translated
formulae.

ExAmPLE 3.11.1
Consider the modal (sub-)formula PV OOQP. After relational translation we get

P(1) VVu R(i,u) = Vv R(u,v) = Jw R(v,w) A P(w)

and a clause form transformation then results in

P(t) V-R(t,u) V- R(u,v) V P(f(u,v))
P() V-R(t,u) V =R(u,v) V R(v, f(u,v))

Now it can be shown3® that this can be simplied — provided R is serial — to
P() V =R(,u) V =R(u,v) V P(f (u,v))

where the clause
_'R(”a u) \ _'R(’U,, U) \ R('Ua f('u'a 'U))

has finally to be added to the whole clause set.

This can be done for any such positive occurrence of an R-literal inside formulae if it is only
guaranteed that R is serial. It is thus possible to translate modal formulae in a way such that no
positive R-literals occur in the translation result, although the background theory gets extended
then. Now, after the background theory can be distinguished from the translation result it is
possible to perform constraint resolution in Biirckert’s sense. However, the constraint theory
which now consists of the accessibility relation properties of the modal logic in question and the
additional theory clauses from the translation often turn out to be pretty complicated. Scherl
therefore proposes to perform the satisfiablity test for constraints by using Ohlbach’s functional
translation and unification approach.

At this stage is might be useful to compare Scherl’s method with the (semi-)functional
approach proposed in this work.

38 This result has been further developed and generalized in (Ohlbach and Weidenbach 1995).
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A first observation is that Scherl’s way of extracting theory clauses from the translation result
of a modal formula results in unneccessarily complicated additional clauses. For instance, in the
example above the extra clause could be simplified to the unit clause

Yu,v R(v, f(u,v))

i.e. the constraint part for such new theory clauses can always be ignored (see also (Ohlbach
and Weidenbach 1995)). But now we can observe something very interesting: the extra clauses
that are generated by translating arbitrary modal formulae must be unit clauses of the form

VZ R(ay, fi(T))

and the function symbols f; all have to be different because each of them has been generated by
some skolemization step. This allows us to provide a characterization of the background theory:
it consists of the accessibility relation properties together with a finite set of unit clauses of the
form R(c, fi(Z)) where all f; are different. Since we know now, at least to some extent, how
the background theory looks like we can try to saturate this background theory.

EXAMPLE 3.11.2

Consider the background theory for S5, i.e. reflexivity and euclideaness of the accessibility rela-
tion together with the unit clause R(u, f(u)). Note that this means that the translated formula
contained only one {¢-operator which was in the scope of exactly one [J. Saturating this simple
clause set results in all clauses of the form

R(f™(u), f™(u))  for n,m >0
as can easily be checked.

Now, how can we exploit the connectedness assumption here? As a matter of fact, connect-
edness is mirrored by the assumption that any world can be represented by a suitable application
sequence of the skolem functions involved. In the example above this means that for every world
u there exists an i such that u = f*(1) since f is the only skolem function occurring in the back-
ground theory. Now, the clause schema R(f™(u), f™(u)) holds for every u, in particular for « and
since f™(+) and f™(:) both denote arbitrary worlds we end up with the universal relation for R
just as expected. Note that in general we have to assume arbitrarily many such skolem functions
and this makes it hard to saturate the resulting unit clauses with the S5 accessibility relation
properties. These difficulties are avoided in the semi-functional approach for there the only
additional clause is R(u,u:z) which covers the responsibilities for all the units VT R(a;, fi(Z)).

Summarizing, Scherl’s translation approach can be viewed as a first step towards the semi-
functional translation method. Unfortunately he did not realize that his extra clauses can be
simplified to units. Also, he did not think of saturating his background theory which would
be possible, although not very easy, even if the simplification to unit clauses would not be
performed. Finally, his idea to apply Ohlbach’s theory unification in order to solve remaining
constraints can only work if such a theory unification algorithm exists. However, as mentioned
earlier in this chapter, such algorithms do only exist for a limited number of modal logics and
in particular only for modal logics whose accessibility relation properties can be represented by
Horn formulae. Nevertheless, for such modal logics it definitly makes sense to apply a constraint
resolution approach.
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In cases where the background theory does not consist of Horn formulae it might still be useful
to think about constraint resolution and that in particular in the light of the semi-functional
translation approach. However, one has to be aware of the problems that might arise then.

ExAMPLE 3.11.3
Consider again the multi-modal logic S4®KD4 and show the validity of the formula

0Q = (PVO(P= Q)
Transforming the translation of its negation then results in the clause set

“R (e, u) V Q(u)
~P()
P(t:a*)
—Q(e:a%)

In constraint notation we therefore have something like

Q(u) Il R, u)
-P() |0
P(za®) || 0
—Q:a®) || 0

A resolution step between the (Q-literals results in
0 || Re,e:a®)

This constraint is not yet valid in the S4@KD4 background theory. However, no further (stan-
dard) resolution step is possible as can easily be checked. Completeness of this approach is
therefore only obtained if we also consider non-standard (constraint) resolution steps between
the P-literals which would result in

Now the collection of the constraints associated with the empty clause bodies which is
R(t,e:a*)Veiia® =1
is valid in the S4@KD4 background theory and we are done.

This example shows that it might be necessary to perform resolution steps between literals
whose arguments are not unifiable. Unfortunately, there are usually many such possibilities in a
given clause set and therefore a constraint resolution approach with background theories as the
one for S4®&KD4 turns out to be rather disappointing.
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Back To
Temporal Logic

Instant temporal logics can be viewed as multi-modal logics with operators that refer to the
future, the past, or segments of the time axis. In fact, various temporal logics occur in the
literature and they differ mainly in the assumptions about the topology of time. Often even
logics as S4 and S5 are sometimes called temporal simply because their modalities can have a
temporal reading. Unfortunately, both S4 and S5 are too little expressive for most purposes since
they refer to only one direction of time or even only to the entire time structure. Nevertheless,
there are some fairly simple modal logics which — although having just one single modality
— turned out to be useful for some theories with a temporal background. So, for instance,
Goldblatt showed in (Goldblatt 1980) that the two-dimensional Minkowski Space-Time can be
axiomatized by S4.2, a logic we examined in Section 3.5. In spite of such “pathological” cases
temporal logics are usually considered as multi-modal and — up to some minor exceptions — these
will be the logics we examine.

The techniques that have been developed for modal logics in the last chapter are going to
be used for these temporal logics now. l.e. — assuming that we have an axiomatization for the
temporal logic we are interested in — we determine the background theory of this logic with
respect to the semi-functional semantics, saturate this background theory, derive a finite set of
clause schemata which serves as an alternative background theory and finally either look for a set
of clauses whose saturation contains exactly these clause schemata or try to cast the background
theory represented by these schemata into suitable inference rules.

These techniques are applied to every temporal logic we are interested in. For convenience
we shall start our examinations with the simplest Tense Logics that appear in the literature.
By adding more and more new combinations and properties these logics are extended until we
finally reach the “general” temporal logic defined in Chapter 2.
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4.1 Lemmon’s Minimal Tense Logic K;

The simplest logic that occurs in the temporal logic literature is E. J. Lemmon’s Minimal Tense
Logic K; (see (Prior 1967) and (Prior 1968)). It is motivated by the following minimal postulates
regarding the truth-conditions of tense-logical formulae (in a more contemporary syntax):

S =y 0 iff S, ®

S, 0= T iff SE, OVS =, U
SE 00  iff I R(z,y) AS |, @
SE 0@  iff W R(y,z)AS =, @

Lemmon showed that the tense logical formulae that can be derived from these postulates,
propositional calculus and quantification theory are precisely those that can be derived by sub-
stitution, Modus Ponens, some standard axiomatization for propositional logic, the rules

0 0]

and the additional axioms
(@ = T) = (o = [FT)
Fl® = 0) = (B9 = [F]7)
OFE=> o
OE=d

where [F] and [?] are short for = ® — and - ® — respectively.

Evidently, this Minimal Tense Logic is of very limited expressive power. Nevertheless it
shows to be a good starting point for it serves as a first step towards the examination of more
complex temporal logics.

Now, having a closer look at the K; axiomatization we immediately notice that the only
axioms we are not yet familiar with are ® [P]® = & and ® [F]® = ®. The other axioms and
rules just guarantee that this logic is normal, which means that we may consider accessibility
relations in the semantics. We therefore have to determine the first-order properties that are
induced by the two new axioms and we do so by applying the Elimination Theorem 3.1.14 on the
two relational translation results. Let us consider the axiom ¢ [P1® = & first. After translation
its negation we get

Rp (u, ’U) N
Ju,v3® | Yw Rp(v,w) = &(w) A
—@(u)

where Rp denotes the accessibility relation! for [F] and Rp denotes the accessibility relation for
[?] respectively?.
Applying the Elimination Theorem then results in

Ju,v Rp(u,v) A ~Rp(v,u)

!The term accessibility relation is actually used for modal logics rather than temporal logics. In a temporal
interpretation they should be called earlier-later relation for convenience.
2Thus Rr represents the earlier-relation and Rp denotes the later-relation.
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and the original axiom schema is therefore equivalent to
Vu,v Rp(u,v) = Rp(v,u)

Similarly, we obtain for the other axiom ® [FI® = ® the first-order property
Vu,v Rp(u,v) = Rp(v,u)

so that in fact the one relation turns out to be the converse of the other; something that could
have been expected from Lemmon’s original motivation.

Our aim is now to apply the semi-functional translation approach to this logic. Note, that
seriality is not assumed for the respective accessibility relations and we therefore have to consider
the semi-functional translation method for non-serial modal logics here. In doing so we end up
with the following translation (see section 3.4)

[[E]®], = Vv Rp(u,v)=[®],
[B]®], = Vv Rp(u,v)= [P,

[® @y = Ne@)AJzp [®)y.ap

[® @]y = Np(u)A3zp [P)y.ap
where the other cases remain as before

together with the background theory

Vu,zp Np(u) = Rp(u,u:zp)
Vu,zp Np(u) = Rp(u,u:zp)
VYu,v Rp(u,v) = Rp(v,u)
Vu,v Rp(u,v) = Rp(v,u)

Evidently, Np (Np) denotes the normality predicate for Rr (Rp respectively) and the variables

indices are supposed to indicate to which functional decomposition the variables belong to.
Because of the strong correlation between Rr and Rp it is worthwhile to replace occurrences

of the one by the other in the translation definition. We thus get the following simplification

[ @]
[Ele]
1§ @]
RZd

for the semi-functional translation and

= Yv R(u,v) = |®],
Vo R(v,u) = | @],

u
w = NP(’U,)/\H.’EP L(}JUpr

Vu,zrp Nr(u) = R(u,u:zF)
Vu,zp Np(u) = R(u:zp,u)

for the background theory (where R is short for R and Rp has been rewritten in terms of R).

This background theory is already saturated and because of its simplicity it certainly makes
not very much sense to think about inference rules which cover this theory’s responsibilities. We
therefore stop the examination on K; here and consider some simple but nevertheless interesting
extensions to K.
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4.2 Simple Extensions to K;

K; is the weakest of all the temporal logics that have modalities for the past as well as for
the future since the only assumption made for K; is that the earlier- and the later-relation are
converse. In analogy to the simplest extension to the modal logic K we assume that time has
neither a beginning nor an end 3.

4.2.1 Adding Seriality to K;

Interestingly, such an additional assumption simplifies the semi-functional translation and the
corresponding background theory even further, because it it makes it possible to ignore the
normality-predicate. The semi-functional translation for the logic K;D is thus given by*

[Fl®], = Vo R(u,v)= |®],
[Fl®|, = Vv R(v,u) = |®],
L@QJU = dzp L(I)Ju:wp
L@ ]y, = Fzp [Pluizp

and the background theory simplifies to

VYu,zp R(u,u:xp)
Vu,zp R(u:zp,u)

4.2.2 Adding Transitivity to K;D

As a further extension to the K; we consider now the additional axiom schemata
[F]® = [FI[F]®  and [F]® = [¢][r]®

which express transitivity of the Earlier- and of the Later-relation respectively. Actually, only
one of these two axioms is necessary since — under the assumption that the Earlier-relation is
converse to the Later-relation — transitivity of the one implies transitivity of the other.

We thus get as the background theory for K; augmented by seriality and transitivity (called
K;D4 in the sequel®)

R(u,u:zp)

R(u:zp,u)

R(u,v) A R(v,w) = R(u,w)

The formula translation does not change at all compared to the definition above and we therefore
know — provided the theorem to be proved is in negation normal form — that there are no positive
occurrences of an R-literal in the translation result. Hence these three clauses describe all we
know about the positive R-occurrences and we apply the saturation technique to this background
theory.

3Such an additional assumption might cause problems if there is a wish for representing something like a “Big
Bang”. For most applications, however, these assumptions make sense.

“This name has been chosen for uniformity. As usual, serial versions of a modal logic are named by an
additional D.

5As commonly used in the modal logic literature D stands for seriality and 4 stands for transitivity.
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LEmMMA 4.2.1
The saturation of the background theory for K;D4 consists of all unit clauses of the form

Ru:xi: -+ iZp,uiy1: =+ 1 Ym) withn +m > 1

where the x; range over the functional decomposition of Rp and the y; range over the functional
decomposition of Rp

Proof: We first have to show that each of these units indeed belongs to the saturation and we
do so by induction over n + m.

Base Case: n+m = 1.

Then the units under consideration are just R(u,u:zr) and R(u:xp,u) which obviously
are contained in the saturation since they already belong to the background theory.

Induction Step: suppose we have already shown that R(u:zq: -+ :Zp,u:y1: -+ : Ym) be-
longs to the saturation for all n,m with n +m < k. We now have to show that all of these
units with n+m = k are also contained in the saturation. We consider three different cases:

Case 1: n =0 and m = k > 1. By induction hypothesis we know that R(u,u:zr) and
R(u,u:yi: -+ :yg—1) both belong to the saturation. Two simple resolution steps with the
transitivity clause then result in the derivation of R(u,u:yi: - - :yg).

Case 2: n =k > 1 and m = 0. Analogous.

Case 3: n,m > 0 and n + m = k. By the induction hypothesis we know that both unit

clause schemata R(u,u:y1: - :yp) and R(u:z1: - -+ : 2y, u) belong to the saturation. The
desired result can be derived by two resolution steps between these units and the transitivity
clause.

Now we have to show that no element of the saturation has been forgotten, i.e. we have
to show that this is all we gain by saturation. To this end we check whether the alledged
saturation already contains all pure-R-positive clauses that can be derived by resolving
elements of this set of unit clauses with the transitivity clause. This, however, is just
as simple. Consider one of these units, say R(u:z1: -+ :Tp,uzyi: -+ :Ym), and per-
form a resolution step with the transitivity clause (e.g. its first literal). This results
in “R(u:y1: -+ :ym,w) V R(u:z1: -+ : zp,w) and a further resolution step with, say
R(u:zi: -+ :zjuzyi: -+ :y;) (which can only be applied if either m = 0 or ¢ = 0) then
leads to either R(u:zi: -+« 1 Ziyp,usyr: ---:1yj) or R(uimy: -+ 1 Zp,uiyr: -+« 1 Ymyy) de-
pending on whether m = 0 or ¢ = 0. In any case the result is already contained in the
alledged saturation and we are done.

Knowing about a saturation is not yet enough; we have to find out whether there is a suitable

alternative clause set with the same saturation or even a new inference rule which does a similar
jobS.

5Tt can also be imagined to incorporate this saturation set in a suitable constraint satisfaction algorithm. For
this logic K;D4 this would mean to allow resolution steps only between literals which are not R-literals and to
check whether each of the R-literals of the respective resolvents could be simultaneously brought into the form
“R(a:f1: -+ Bp,iy1: -+ 17m) (where the 8; belong to the functional decomposition of Rp and the 7; range
over the functional decomposition of Rr) by some suitable instantiation. This works in principle but is not further
considered here, for it does not quite fit into the treatment of some of the logics examined later.
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LEMMA 4.2.2
The saturation of the clause set

is identical to the saturation of the K;D4 background theory.

Proof: Obviously, the first and the third clause suffice to derive any unit clause schema of the
form R(u,u:yi: -+ :ymy) where m > 1 and the y; range over the functional decomposition
of Rp. In order to show that any unit clause of the form R(u:zi: -+ 1 Zp,uty1: - : Ym)
can be derived we only have to perform n successive resolution steps with the fourth clause
and we are done.

Showing that the saturation of the background theory for K;D4 is all we can get is just as
simple. It suffices to realize that any resolvent between a unit of the background theory and
either clause from above results in a clause which is already contained in the saturation.

Whether or not the original background theory for K;D4, i.e.

R(u,u:xF)
R(u:zp,u)
R(u,v) A R(v,w) = R(u,w)

should really be replaced by
R(u,u:zp)
R(u:zp,u)
R(u,v) = R(u,v:xp)
R(u,v) = R(u:zp,u)

is more or less a matter of taste. In theorem provers in which the transitivity clause does not
receive any special treatment” the alternative theory usually behaves slightly better.

Now let us, instead of working with such an alternative background theory, try to find a
suitable K;D4 Inference System which can replace the background theory. This will be done in
lines of section 3.9 where appropriate inference rules had been found for S4, KD4, Mutual Belief
and S4F. The techniques developed there will find their counterpart in the application to K;D4,
although some slight changes are necessary. The newly to be defined inference rule for K;D4
looks very similar to the S4 Inference Rule; it is only the unification that changed.

DEFINITION 4.2.3 (THE K;D4 INFERENCE RULE)
The rule
-R(a:v,8:9),C
oC

where o = mgu(a, 3),
Y€ (FRP)*7 b€ (FRF)*7
and either y 0 or § # 0

"see e.g. (Bachmair and Ganzinger 1994b)



4.2 SIMPLE EXTENSIONS TO K; 91

is called the K;D4 Inference Rule.

DEFINITION 4.2.4 (THE K;D4 ELIMINATION RULES)

The K;D4 Elimination Rules are defined in accordance with the definition 3.9.21, the KD4
Elimination Rule. Note that we need two such elimination rules for KiD4, one for its future and
one for its past fragment.

_|R(Oé, ’U,), C —|R(’U,, Oé), C
Cg:mp Cg:zP
with u € o with u € o

where u & « is short for: there is no occurrence of u in a.

DEFINITION 4.2.5 (THE K;D4 INFERENCE SYSTEM)

The K;D4 Inference System consists of the (classical) resolution and factorization rules together
with the KyD4 Inference Rule and the K;D4 Elimination Rules.

We now have to show that this inference system is both sound and refutation complete.

LEMMA 4.2.6

The K;D4 Inference System is sound.

Proof: Soundness of the K;D4 Inference Rule follows easily from the fact that the application
of a K;D4 prefix unifier for («, ) to the literal =R(a, 3) results in a K;D4-unsatisfiable
instance. The resolution and the factorization rule remain as in classical first-order predicate
logic and thus both are evidently sound. What the K;D4 Elimination Rules is concerned
first note that instantiating v with a: zr in a clause =R(a,u), C is sound and results in

“R(a,a:zr),Cy. 4,
Obviously, the literal =R(«, a: zp) is K;D4-unsatisfiable and therefore this instance is equiv-
alent to Cy., .

Proving the refutation completeness of the K;D4 Inference System is again in the lines of Section

3.9.2, i.e. we show that a single unsatisfiable clause can be derived from an arbitrary unsatisfiable

clause set and also that any unsatisfiable clause can be refuted.

Again we are faced with the problem that it is not always possible to lift a ground proof to
the general level as exemplified by the following example.
Consider the clause C = —R(u: fp(u),t:ap:bp),C" and its ground instance (with o(u) =
trap:cp) oC = =R(t:ap:cp: fp(tiap:cp),t:ap:bp),ocC’. Evidently, the K;D4 Inference
Rule can easily be applied to cC and this results in ¢C’ then. However, the only corresponding
steps that are possible on the non-ground level result in either of the clauses C'[u/t:ap:bp] or
C'[u/v:ap] or C'[u/d], i.e. in resolvents which are not more general than cC’. However, just as
in the modal logic case this problem can be overcome by assuming minimal substitutions.

LEMMA 4.2.7
Let C be a single K;D4-unsatisfiable clause. Then C' can be refuted with the help of the K;D4
Inference System.
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Proof: Let ¢ be a minimal ground substitution for C. Evidently, each literal in ¢C' can be
deleted with the help of the K;D4 Inference Rule. Now suppose that none of these possible
inference steps can be lifted to C'. Then each literal in C is either of the form —R(«;, u;: ;)
or of the form —R(u;: a;, ;) where u; is overestimated w.r.t. o. If each of these u; on a
right-hand (left-hand) argument would also occur in the relevant prefix of a left-hand (right-
hand) argument then there were infinitly many instant variables® and this is impossible.
Hence, there exists at least one u which occurs only on right-hand (left-hand) arguments.
We thus have that (the case where u occurs only on left-hand sides is symmetric)

C= _'R(alau:/gl)’ s ,—|R(an,u: ﬁn)a C,

where u does not occur in the relevant prefixes of any a; or any term in C’. Now consider
oC'. Since the o-instance of each of these R-literals is K;D4-unsatisfiable we have that

o(=R(ai,u: F;)) = ~R(a;:vi,ai:0;:0(5;))

where the a; represents the common prefix of the respective left and right-hand sides. Now,
each of these a; is a proper prefix of o(u) and therefore the a; can be ordered. This means
that one of them, say ai, is maximal in the sense that every a; is a prefix of a;. Since
o is minimal by assumption we can conclude that §; consists of only one Fg,-term and
also that o((1) (and thus ;) and 7, are of zero length for otherwise instantiating u by a;
instead of a;: 67 would be sufficient for the unsatisfiability of C' (note that a; is maximal).
Hence we have that the literal =R(a1,u: (1) is actually —=R(a1,u) and that oy = a1 and
o(u) = aj:7 where v is a one-element sequence of Fg,-terms. We can therefore apply the
first of the K;D4 Elimination Rules on the literal ~R(c1,) and this results in a resolvent C
such that ¢C = ¢(C \ {=R(c1,u)}). As it turns out, although the application of the K, D4
Inference Rule to = R(o(a1),0(u) cannot be lifted to =R(a1,u), there is an application of
a K;D4 Elimination Rule on the non-ground level with exactly the same effect.

LEMMA 4.2.8
The K;D4 Inference System is refutation complete.

Proof: According to Lemma 4.2.7 it suffices to show that it is always possible to derive a single
K;D4-unsatisfiable clause from the translation of an arbitrary K;D4-unsatisfiable formula
®. This, however, is almost trivial, for consider an arbitary K;D4-unsatisfiable ground
instance oC of C, the clause set obtained after translating ® (for convenience we assume
that no proper subset of oC is unsatisfiable). Evidently, the unconstraint part of oC does
not contain the empty clause’ but nevertheless is K;D4-unsatisfiable and can be refuted by
resolution and factorization. These steps can be lifted and therefore the very same sequence
of inference steps can be applied to C as well. This results in a pure- R-negative clause which
must be K;D4-unsatisfiable and we are done by Lemma, 4.2.7.

8See the corresponding proof for the S4 Inference System. Note that the term instant variable is used in
temporal logics just as the term world variable has been used in modal logics.
9Tt can easily be checked that the translation definition guarantees that no pure- R-negative clause is generated.
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4.2.2.1 Summarizing the calculus for K;D4

The temporal logic K;D4 is axiomatized by a usual axiomatization of classical propositional
logic plus the K-axioms for the two operators [F] and [?], i.e.

F(®=7T) = (Fe=[[D)
Fle=v) = (Fle=[V),

the necessitation rules for [F] and [?], i.e.

and, in additon, the axiom schemata

o= [FOd
=[O
Fo = &
Flo=> 0o
[Fo = [F[FEo
[Pl = [F[F]®

The semi-functional translation for a first-order constant domain temporal logic formula in
negation normal form is given by

Pt Y u = Py i)

[~®]u = |2y

(2 ATy = [2]uA [Ty
[Ee], = Vv R(u,v) = 2],
[F1®], = Yv R(v,u) = |®],
I_@ D/, = dzp I_@Ju::cp

L@ (I)Ju = dzp L(I)Ju:wp

|Vz @], = Vz |®],

LEL’E ‘I)Ju = Jz LQ)JU

Showing the (first-order constant domain) K;D4-validity of a modal formula ® then means to
transform —® into its negation normal form, say ¥, and to refute the clause normal form of
| ¥ |, with the help of the K;D4 Inference System.

4.2.3 Adding Reflexivity to K;D4

In K;D4 the [Floperator is to be interpreted as: it will be the case in all future times, i.e. the
present is not necessarily included. Often, however, one would rather prefer the interpretation
“henceforth” instead which indeed includes the present. As proposed in the introductory Chapter
2 on temporal logic syntax and semantics this means that the operators and [?]. are to be
chosen where the little subscript indicates that the reflexive closure of the Earlier- and the
Later-relation are to be considered. In doing so, we have to add the axiom schemata

[F.® = @
,® = d
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and leave the rest of the axiomatization as for K;D4'°. Let us call the resulting logic K; T4, where
the T now indicates that the seriality assumption has been replaced by the stronger reflexivity
property!l.

For K; T4 we now proceed as we did for K; D4, i.e. we determine the saturation for the K; T4
background theory which is given by

R(u,u)

R(u,u:xp)

R(u:zp,u)

R(u,v) A R(v,w) = R(u,w)

and try both, to find an alternative (and hopefully simpler) background theory and to cast this
background theory into a suitable inference rule.

LEmMMA 4.2.9
The saturation of the K; T4 background theory consists of all unit clauses of the form

Ruzzy: i Tp Uiyt -+ 1Ym)

with n,m > 0, the z; range over the functional decomposition of Rp and the y; range over the
functional decomposition of Rp.

Proof: Analogous to the proof for Lemma 4.2.1.

Because of the strong similarities between the saturations for the background theories of K;D4
and K;T4 there is no problem at all in finding an alternative background theory for K;T4.

LEMMA 4.2.10

The saturation of the clauses
R(u,u)
R(u,v) = R(u,v:zp)
R(u,v) = R(u:zp,u)

is identical to the saturation of the K; T4 background theory.
Even the search for a suitable K;T4 Inference Rule leaves no particular diffculties.

DEFINITION 4.2.11 (K;T4 PREFIX UNIFIER)

Let (s,t) be an arbitrary pair of world terms such that there exists a future prefiz s’ of s and a
past prefiz t' of t. Then any unifier o for s' and t' is called a K;T4 prefix unifier for the ordered
pair (s,t).

Note that the only difference between K;T4 prefix unifiers and K;D4 prefix unifiers is that
the former does not require that at least one of the two prefixes has to be a proper prefix.

Owhere each temporal operator gets the subscript “r”. Note that these two additional axioms subsume the
seriality axioms which are therefore superfluous. Also note that actually only one of these two axioms is needed
because — due to the fact that the Earlier-relation and the Later-relation are convers — the reflexivity of the one
immediately implies the reflexivity of the other.

UEvidently, K; T4 thus consists essentially of two modal S4 fragments together with the mixing axioms that
guarantee that the one accessibility relation is the converse of the other.
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DEFINITION 4.2.12 (THE K;T4 INFERENCE RULE AND SYSTEM)
The rule
_|R(Ol, /B)a c
oC

where o is a Ky T4 prefiz unifier for (a, )
is called the K;T4 Inference Rule.

The inference system which consists of the classical resolution and factorization rules together
with the K;'T4 Inference Rule is called the K;T4 Inference System.

Soundness and refutation completeness is now proved in analogy to the corresponding proofs
for S4 and the K;D4 Inference System.

THEOREM 4.2.13
The K; T4 Inference System is sound and refutation complete.

Proof: Soundness of the K;T4 Inference Rule follows immediately from the fact that an appli-
cation of a K;T4 prefix unifier for a pair (o, 3) to the literal —=R(«, §) results in a literal
which is complementary to one of the literals in the saturation of the K;T4 background
theory.

The refutation completeness proof is again split into two main parts. It has to be shown
that

e 3 single K;T4-unsatisfiable clause can be derived from an arbitrary K;T4-unsatisfiable
clause set

e such an unsatisfiable clause can be refuted

For the first part consider an arbitrary unsatisfiable ground instance of the clause set.
Evidently, the unconstraint part of these ground clauses are unsatisfiable and, since uncon-
straint clauses do not contain any R-literals, can be refuted by resolution and factorization.
This refutation can be lifted and the very same sequence of inference steps applied to the
original clause set results in a single unsatisfiable clause. Remains to be shown that this
resulting clause, say C, can be refuted. To this end consider a minimal unsatisfiable ground
instance oC of C. Recall that the reflexivity of R guarantees that every instant variable!?
must occur somewhere not overestimated for otherwise the ground instance could not be
minimal. Evidently, cC can easily be refuted by applying the K; T4 Inference Rule to each
of its literals in arbitrary order. Unfortunately, such a refutation cannot necessarily be
lifted. What can be shown, however, is that an order on the literals exists such that the
refutation of oC in this particular order can be lifted. This order is obtained by finding
at least one processable literal, i.e. a literal for which the application of the K;T4 Inference
Rule on its ground instance can be lifted. Such a processable literal must exist if the ground
instantiation is minimal for otherwise we would be able to find for each variable u which
occurs somewhere overestimated another variable v (also somewhere overestimated) such
that o(u) is a proper subterm of o(v). This, however, is impossible for there are only finitly
many variables at all. Hence, there exists at least one processable literal in C' and we are
done by induction over the length of C.

12Instant variables are variables that range over the set of time instants just like — in a modal setting — world
variables range over the set of worlds.
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4.3 Mixing K;D4 and K;T4

The linguistic motivation for K;D4 lies in the @ and the @—Operators which are to be interpreted
as “it will be” and “it was” respectively. K;T4 is motivated by the two operators and [2].
which are to be read as “henceforth” and “hitherto”. The respective dual operators in these
two logics are of no real importance at least from a linguistics point of view. For instance,
the [Floperator in K;D4 is to be read as: “in all (proper) future times” which rarely occurs in
everyday natural language usage since the present is usually not excluded in such constructs.
Neither does the ©, in K;T4 have an obvious equivalent in natural language usage, since a term
like “it was the case that P” should not hold simply because P is true now, even if it never was
before.

Therefore one is actually interested in the two operators ¢ and (and also ® and [2], for
the past mirror images'3) which, unfortunately, are not duals.

There are two possible solutions to this problem: the first (and technically simpler one) is
to “translate” each and each @, (and similarly for the mirror operators) in terms of [F] and
each ® by extending the formula translation | | accordingly:

B2 )., [E]@]y A (@]
|_<I">r¢'Ju = L@‘I)JuVL@Ju

The advantage of this extension is obvious: we remain inside K;D4 and we do not have to worry
about any further interrelations.

Nevertheless, this translation extension also has an obvious disadvantage: the clause set obtained
after clause form transformation gets rather big and that in the number but also in the size of
clauses. It therefore makes sense to think about alternatives and one such alternative can be
found along the lines of Section 3.9.4, i.e. all temporal operators are kept as primitives which
means that no operator is translated in terms of another. Evidently, this requires to axiomatize
the interrelation between [F]. and [F] (and between [P]. and [P] respecively) and that by adding
the axiom schemata [£].® < [£]® A @ and [P, ® < [P]® A ®.

The effect of this method is that the formula translation remains as simple as it was before (for
both K;D4 and K;T4) but there is a price to be paid for that: first-order properties induced by
the above two equivalences are to be added to the background theory of the resulting combined
logic.

Let us have a look at the axiomatization of this combined logic (which will be called
K;D4®K; T4 in the sequel). It consists of all classical propositional tautologies together with
the axiom schemata

[F,® = &
Flo= 6o
Fo = [FI[FEP
[F.® = [F.[F],®
o= [FO

® = [, ®
[F.® < [F|®A D

plus their respective mirror images.

13By a mirror image of an axiom schema we understand the result of replacing all future operators by the
corresponding past operators and vice versa.
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Moreover, there are Modus Ponens and the usual Necessitation rules

3,8 = T 3 o 3 )
v [e Ee Mo @

As a matter of fact we are not really interested in such Hilbert style axiomatizations. We
rather examine the background theory that is induced by these schemata (after semi-functional
translation).

R(u,v) = R*(u,v)

where it has already been taken into account that Ry (u,v) is identical to Rp(v,u) (and similarly
for R, and R}). Evidently, the “starred” symbols are those which stem from the subscribed
operators. Actually, the transitivity of R* is not really necessary here because it follows already
from the other clauses (the reflexive closure of a transitive relation is itself transitive).

Not too surprising, this background theory is even more complicated than the background
theories we considered so far and working directly with it seems hopeless. We therefore determine
its saturation, i.e. the set of pure-R-positive clauses that are derivable from the theory (modulo
subsumption).

LEMMA 4.3.1
The saturation of the background theory for K;D4®K;T4 (modulo subsumption) consists of all
clauses of the form

R*(u:Tp,u:UF)
R(u:Tp,u:yYr)

where either Tp ¢ (Fgy,)* or Jr ¢ (Fry )"
R(u:ZTp:Zp,u:Yr:Wr) VUu:Tp = u:YF

where Tp,zp € (Fg:,)" and Yp,wr € (Fgs )"

where Tp,zp € (Frp U FR*P)* and yr,wr € (Fr, U FR*F)*'

Proof: First we have to show that all instances of the above clause schemata can be derived
from the background theory. To this end note that from R*(u,v) it follows that R*(u,v: z};)
as well as R*(u:zp,v), R*(u,v:zFr), and R*(u:zp,v) (this can easily be checked either by
hand or with the help of a standard theorem prover). We thus have

R*(u,u)

R
R*(u,v) = R = R*(u:Tp,u:7F)

R

R
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which covers the first clause schema.

For the second schema note that

R*(u:Tp,u:YF)

R(u:Tp,u:Yr:zp)
. R(u,v:zF) :>{ Rlu:T5: 2p.u:T5
R(U’U)i{R(U:.’L‘P,’U) (u:TP: zp,u:YF)
hence
R(u:ZTp,u:Jr: zp) )
R(u:Tp:zp,u:YF)
E VTR g » = R(u:Tp,u:7r)
R(u:zp,v where Zp ¢ (Fr-)* or yF ¢ (Fg)*
R(u,v) = Rlu.v:op) P ¢ (Fry)" or yr & (Fry)
R(u:zp,v) )

Remains the third schema. First note that R*(u:Zp,u:yFr) holds and that in particular for
the case Tp € (Fgs,)* and Y € (Fg;,)". Together with R*(u,v) = R(u,v) Vu = v we thus
have

R*(u:Tp,u:Yr)
where Tp € (Fgs,)* and Yr € (Fry)" - L o
i = R(u:ZTp:Zp,u:Yp:Wr)Vu:Tp =u:Yp
oo > T vy 7 € (|
e and 7r, 0F € (Fr;,)*

and we are done with the third clause schema as well.

Next we have to show that this is all that can be derived (as pure—R(*)—positive). To this
end we have to check whether the pure-R®*)-positive clauses in the background theory are
instances of the clause schemata (which is trivial) and whether all pure-R™*)-positive clauses
that are derivable from the clause schemata and the clauses

R(u,v) A R(v,w) = R(u,w)
R*(u,v) AN R*(v,w) = R*(u,w)
R*(u,v) = R(u,v) Vu=v
R(u,v) = R*(u,v)

are already members of the clause schemata as well. This is just as easy for the second,
third and fourth clause above. The only non-trivial case consists of the transitivity of R
together with the third clause schema. Therefore consider a resolution step between the
first literal of the transitivity clause and the third clause schema. This results in

u:yr =u:Tp V -R(u:yr: wr,w) V R(u:Tp:Zp,w)

A further resolution step is only possible if either the yr and the wr in the above clause
are both empty or the Tp and the Zp in the clause schema are both empty. In the first case
we get

R [EE— N — [ p— -
w:Tp:Zp =u:Tp:zp:Tp Vu:Tp=u:Yr V R(u:Tp:Zp:Tp :Zp ,u:YF: WF)
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and in the second case we end up with
wWTp=uwYrVu:Yr:Wr:Yr = u:Yr:Wr vV R(u:ZTp:2p,w: Yr: Wr: Y :WE')
Obviously, both results are subsumed by the third clause schema and we are done.

Again there are two possibilities how to proceed: we either try to find a nice alternative back-
ground theory or we try to replace this saturation (and thus the whole background theory) by
some suitable inference rules. We do not consider the former possibility here since a “nice”
alternative background theory is not in sight. We therefore search for interesting inference rules
and that in the lines of sections 4.2.2 and 4.2.3.

To this end we again “read” the inference rules from the saturation set and essentially adopt
the inference rules from those we know already from other — more or less similar — logics.

DEFINITION 4.3.2 (THE K;D4®K,;T4 INFERENCE SYSTEM)
We consider the following inference rules

ﬁR*(a:’)’,,Blé),C ﬁR(a:fy,ﬁ;d)’C
oC oC
o = mgu(a, 3) o = mgu(a, ) and
Y € (Frp U FRy)" either 3z €y x € Fr,
6 € (Frp U FRy)* or 3yed ye Fr,

—R(a:y1:72,8:01:62),C
oC,o(a:v) =o(B:61)
0= mgu(a, )

Y1572 € (Frs,)*
61,62 S (FR})*

_'R(Ot, U,), C _'R(ua a)a C
Co:zp Co:zp
where u & where u &

The KiD4®K,; T4 Inference System then consists of (classical) resolution and factorization to-
gether with the above rules.

Evidently, the first three rules correspond to the three clause schemata that have been derived
by saturating the K;D4®K,;T4 background theory and the final two are meant to take care of
the K;D4 specialties.

The effect of the one new inference rule above which introduces an equality may not be easily
comprehensible at the first glance. The following example might help to understand what this
rule is about.
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ExXAMPLE 4.3.3
Show the K;D4@K,; T4-validity of

QA G EP) = EHQV E.P)
ie. try to refute &(Q A ©.[E1P) A &(-Q A ©, —P).

Semi-functonal translation results in:

Qe:ap)

_'R(”: a’?’: *Pa u)a P(u)
—Q(e: )
—P(¢:cp:dy)

There is only one reasonable first step (and that a resolution step between the P-literals) which
results in:
—R(t:ap:bp,t:cp:dy)

The equality introducing inference rule from above then yields ¢: a} = ¢: ¢} which together with
the two Q-literals leads to the empty clause.

After the inference system for K;D4®K;T4 has been defined we have to show its soundness
and refutation completeness and again this is fairly easy with the means provided in the earlier
sections.

LEmMmA 4.3.4
The K;D4®K;T4 Inference System is sound.

Proof: The application of any of the first three new inference rules corresponds to a resolution
step with an instance of one of the derived clause schemata. The soundness for the final
two rules is established in exactly the same way as in case of K;D4.

LEMMA 4.3.5

A single K;D4® K, T4-unsatisfiable clause C' can be refuted.

Proof: Works almost exactly as in the proof of Lemma 4.2.7. Only one particularity might
be worth mentioning: Suppose that some instant variable occurred only on right-hand

arguments of C' and that no inference step on a minimal ground instance of C' is liftable.
In case of K;D4 we then knew that C is of the form

... R(aj,u:f),...,C

and that for one of these literals, say =R(«,u: ), we have that 8 = ) and o« is a direct
prefix of o(u).

The same holds for K;D4® K, T4 as well, however, what if this very literal is not an R-literal
but an R*-literal? Fortunately, this cannot happen for then it would already be sufficient
to instantiate u by the direct prefix of o(u) without loosing unsatisfiability. But then o
would not be minimal and therefore the literal in question must be an R-literal and the
proof proceeds exactly as in Lemma 4.2.7.

LEMMA 4.3.6
The K:D4®K; T4 Inference System is refutation complete.
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Proof: Exactly as in case of Lemma 3.9.40, i.e. it is shown that a single K;D4® K, T4-unsatisfiable
clause can be refuted and that it is always possible to derive either a single K;D4® K, T4
unsatisfiable clause or a conditioned instance which can be used to derive such a K;D4®K; T4
unsatisfiable clause. Since there are only finitly many possibilities to derive conditioned
instances this will ultimately terminate.

4.4 The Always-Operator

Up to now we examined logics which know about the henceforth, the hitherto, the eventually,
and the previously together with the respective duals. In addition there may be a need for
an always in order to be able to represent some overall truth. In the introductory chapter on
temporal logics we already learned about a temporal logic which captures just this “always”-
operator, although it didn’t know how to treat any other of the operators we are interested in.
This logic is actually the modal logic S5 and in the chapter on modal logics we have learned
how the semi-functional translation approach deals with S5 very efficiently.

The problem with S5 is its very limited expressive power. One can hardly imagine any serious
application of temporal logic where S5 would really suffice as the temporal logic. Nevertheless
there might be a need for such operators in addition to the ones we have already learned about.

One possibility of adding such an Always-operator, say is to consider it as mot primitive,
i.e. by translating it in terms of the other operators we already know. A first idea in these lines

would be to extend Qp by:
L[a)®], = [[E@], A [[EL2],
L@T QJU = L@r(}Ju \ L@r (I)Ju
in the sense that ® is always true if and only if ® will be true henceforth and was true hitherto.

Alternatively, one could imagine to translate this new operator in terms of always in the future
and always in the past by

L(}Ju = L(I)Ju A LQJU A “E]CI)Ju
[Dr @)y = [ B)uV @],V O @)y

where the respective |®], has to be added to ensure that the present is not excluded.

Even some kind of a mixture of the two possibilities above could be contemplated, as for instance

LéJu = L(I)Ju A UE(}JLL
L@r@Ju = |_<P> @,V L@réju

One of the disadvantages all these possibilities have in common is that the clause set which is
finally generated suffers from an exponential increase in the number of [Al-operators. Another
disadvantage is that an obvious property one has in mind as an essential property for the Always-
relation, the transitivity, does not follow from this translation. Whereas in standard modal logics
a problem like the latter one can quite easily be overcome by simply adding the axiom schema
[a,® = [a].[a].® we do not have this possibility here simply because the [Al-operator is not
primitive. We are therefore forced to think about alternatives.

The alternative proposed here is along the lines of the examination of K;D4®K;T4: we con-
sider [Al. as a primitive operator and add the suitable schemata to the axiomatization. Notwith-
standing, for reasons that will become clear in the following chapter we do not yet include the
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full axiom [4],® < [F].® A [P].®. Rather we simplify it slightly to only one of its two directions,
namely [A].® = [F.® A [P].®. The schema [2],® = [Al.[4].®, however, is to be added anyway.

The first of these axioms describes our main intuition about the always and the latter fills
the transitivity gap. The semi-functional formula translation thus looks like this!*:

|2, @], = Vv Ra(u,v) = |®],
L@rq)Ju = dza L(I)Ju:a:A

where the other cases remain as before.

The background theory for this logic'® then consists of the background theory of K;D4®K; T4
plus

R} (u,v) = Ra(u,v)

Ry (u,v) = Ra(v,u)

R4(u,v) AN Ra(v,w) = Ra(u,w)
This background theory is quite easy to be handled for us now since the only positive literals
are R 4-literals, thus the saturation to be derived for this theory does not change for any of the

other temporal relations. Now what the saturation of the R 4-predicate is concerned we end up
with a neat result.

LEMMA 4.4.1
The saturation of the R 4-predicate results in the clauses of the form
Ry(utzy: -+ i Zp,Uiy1: -+ 2 Ym)
where n,m > 0 and each z;,y; belongs to the functional decomposition for any of the relations
Rp, Rr, Rp, R}y, or Ru.
Proof: From the reflexivity of R} we derive the reflexivity of R4. Now we can easily prove

that

4

Ry(u,v) = <

{ Ra(u:za,v)

From this it follows that at least all elements of the alledged saturation are derivable.
Remains to be shown that there are no other derivable unit clauses. To this end we apply
this clause schema, to the transitivity clause for R4 and end up with a unit which is already

contained in the clause schema. For the other two new axioms we also cannot find anything
that has not yet been derived and so we are done.

14Note that under the given axiomatization we indeed have that the always-relation is serial. Thus the semi-
functional translation for serial logics suffices.

15From the axiomatization it follows that the axiom schemata for reflexivity and symmetry hold as well. The
canonical name for this logic would thus be K;D4®K; T4DK;T5. This looks rather awkward and will therefore
be omitted in the sequel.
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Now, what is so neat about this saturation? It doesn’t look much simpler than the saturations
for the other temporal relations. The point is that we are now able to take the connectedness
assumption into account which we successfully utilized already in the chapter on modal logics.

LEMMA 4.4.2
The connectedness assumption for KyD4®K; T4 (with or without the [Al-operator) leads to

Yudri,... ,xp 4 =1L:121: -0 12y,

for some n > 0 and each z; belongs to one of the functional decompositions involved.
Proof: The connectedness assumption states that any world can be accessed from the initial

world by the reflexive and transitive closure of the union of the respective accessibility
relations, i.e.

Vuu=1tV Rp(t,u)VRp(t,u)V...V3Iv Rp(t,v) A Ra(v,u) V...
In terms of the semi-functional translation this means that
Vuu=1VIzpu=r:zpVITpru=1:2pV...VIZr,yau=1:Tp:ya V...

and this is just what has been claimed.

Temporal logics as an — in this sense — instance of multi-modal logics do not at all differ from
modal logics what this assumption is concerned, i.e. the Segerberg result which states that no
modal logics can distinguish between connected and non-connected frames also works for tem-
poral logics. Thus we may assume that the temporal structure under consideration is connected
and in doing so we end up with the following:

LEMMA 4.4.3
The saturation for R, together with the connectedness assumption results in the universal
relation for R4, i.e.

Vu,v Ra(u,v)

Proof: The saturation for R4 consists of all units of the form

Ry(urmy: -+ 1Zp,uiy1: -+ 2 Ym)

with n,m > 0 and each z;, y; belongs to the functional decomposition of any of the relations
Rp, Rr, Rp, Ry or R4 according to Lemma 4.4.1. Thus, in particular we have that

Ra(tixy: -+ iTp,tiy1: - - 1 Ym)

and each of these two argument schemas can be simplified to arbitrary variables according
to Lemma 4.4.2.

Hence, the effect of adding an always-operator to the temporal logic K;D4®K;T4 (with respect
to the semi-functional translation) can be summarized as follows: simply extend the formula
translation | | by

& @], = Vv |2,

[6,0]u = o4 [Du.ay
Note that the simple unit clause R 4(u,v) has already been incorporated into the translation here
and therefore needs not to be included in the background theory. This on the other hand means
that no extra inference rules are necessary when the Always is included; everything necessary is
already included by the translation.
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The Linearity
Assumption

Having a look back to the introductory chapter on temporal logics we can see that we have got
quite far already. Up to now we considered several temporal logics with both past and future
operators and the earlier-later properties we examined are approaching nearer and nearer to-
wards the properties of a flow relation. Two major flow relation properties are not yet examined
though, the irreflexivity and the linearity.

What the irreflexivity is concerned we already have an answer, although — unluckily — a
negative one. According to Section 3.6 on page 52 there is no axiom schema which characterizes
the irreflexive frames. This does not mean that no axiom schema implies irreflexivity®, although
none of the axiom schemata we are interested in is of such a kind.

However, recall that the reason why the irreflexivity is not axiomatizable lies in the fact that
modal logics cannot distinguish between irreflexive and non-reflexive frames and therefore any
formula that is valid in irreflexive frames is also valid in all non-reflexive frames simply because
adding irreflexivity or not makes no difference (the other direction is trivial anyway for every
irreflexive frame is a non-reflexive frame in particular). Still, this may be not very satisfying
for not assuming reflerivity does not mean assuming non-reflexivity. Nevertheless, it carries us
pretty near towards irreflexivity and this is the best we can achieve.

Another property we were interested in was linearity and we are faced with the question
whether there is an axiom schema that characterizes this property. Unfortunately, the answer
is again negative: There is no axiom schema, that characterizes the linear frames for modal or

'For instance the so called Lib-Axiom given by 0(0® = &) = (0% characterizes the transitive and backward
well-founded frames and thus implies irreflexivity. Note that this property induced by the Lob-Axiom is not
first-order expressible and therefore cannot be handled directly by the approach presented in this work.
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temporal logics and it will be shown why this is so with the means provided in Section 3.6.
Nevertheless, there is no reason to be too bothered by this negative result for there are indeed
axiom schemata that characterize some slightly weaker form of linearity, the forward- and the
backward-linearity, and in the light of the connectedness assumption these will lead us to general
linearity.

As with the other special properties like reflexivity and transitivity, the linearity property
comes into play via some suitable axiom schemata. Under reflexivity, i.e. the only operators we
assume are [F]. and [P], typical linearity axioms are

FLELD = O) Vv F([FLT = )

GoNOT = G (2N D)V OO, DAT)
O 2= G0V EH @

for the forward (future) linearity and the respective mirror images for the backward (past)
linearity. It might be surprising at the first glance that these three axiom schemata, although
they look entirely different, all denote forward-linearity. Anyway, it can easily be checked that
applying the Elimination Theorem on either of these axioms results in the first-order property

Yu,v,w R*(u,v) A R*(u,w) = R*(v,w) V R*(w,v)

i.e. in right-linearity on reflexive frames.

Such properties will have to be examined in this chapter. However, before they are added
to the rather complicated temporal logics of the last chapter we start our investigations on the
corresponding extensions to the slightly more gentle modal logics.

5.1 The Modal Logic 54.3

S54.3 is the smallest extension of S4 that obeys the linearity assumption. Hence it is axiomatized
by the already well-known axiomatization of S4 plus one of the first two axioms from above, for
instance J(0® = ¥) v O(OV¥ = ). The background theory under semi-functional translation
is therefore given by:

R(u,u)
R(u,u: )
R(u,v) A R(v,w) = R(u,w)
R(u,v) A R(u,w) = R(v,w) V R(w,v)

This theory is already fairly complicated and theorem provers will have quite some difficulties in
proving even simple theorems. Let us therefore try to simplify the above theory with the means
provided so far.

Evidently, the background theory for S4.3 is a superset of the background theory for S4.
Hence, we get as a first part of the saturation of the background theory for S4.3 all unit clauses
of the form

R(u,u:xi:x9: -+ 1 Zy)

with n > 0 and z; € Fg for all 0 < 1 < n. From this and the connectedness assumption it is
possible to derive general linearity for R, i.e. Vu,v R(u,v) V R(v,u) as is shown in the following
lemma.
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LEMMA 5.1.1
Under the connectedness assumption the background theory for S4.3 is equivalent to

R(u,u: )
R(u,v) A R(v,w) = R(u,w)
R(u,v) V R(v,u)

Proof: By the observation from above we have that R(u,u:x1:x2: - - :x,) for any world vari-
able u and any x; € Fr. Two resolution steps with the transitivity clause then yield

R(urzy: -+ txp,uiyr: ~o - 2 Ym) VR(UI YL - 1 Ym, Ui Ty -+ 1Ty
with n,m > 0 and x;,y; € Fg. In particular we then have that
Rbimy: oo ipytiyr: - i Ym) VR Y1 - i Ymy b X1t - 1 Ty
Now recall that the connectedness assumption is expressed by
Vudzi,... ,zp 4 =112 - 12k

The arguments in the above two-literal clause schemata therefore refer to any world what-
soever, or, more formally,

Yudzi, ... ,2pu=1121: 2
=
Ru:zy:  1Zp,utyr: o tYm) VRW: Y1 -+ tymyuizy: o 1 xy) & R(u,v) V R(v,u)

and thus right-linearity can be replaced by general linearity which even subsumes reflexivity.

Hence, the saturation idea together with the connectedness assumption frees us from some
superfluous ballast, namely the conditional part of right-linearity. The connectedness assumption
is in fact essential in this proof for otherwise it were possible to have several unconnected
(parallel) linear time axis and these could by no means be simplified to a single one. As a little
side-effect, we therefore get the following corollary.

COROLLARY 5.1.2
Linearity is not modal logic axiomatizable.

Proof: According to Section 3.6 an accessibility relation property @ is not axiomatizable if there
exists a strictly weaker property which implies @ under the connectedness assumption. Now,
right-linearity is strictly weaker than linearity but nevertheless implies linearity in connected
frames. Therefore, linearity is not axiomatizable.

What should be done next is to find a representation of the S4.3 background theory which suits
better the idea of having inference rules instead of a background theory. To this end, we should
try to get rid of the transitivity clause in its usual form and we do so as follows.

LEMMA 5.1.3
The S4.3 background theory can be described by
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Proof: According to Theorem 3.3.18 on page 39 it suffices to show that the saturations of both
clause sets

R(u,u:x) R(u,u)
R(u,v) A R(v,w) = R(u,w) A) and R(u,v) = R(u,v:z) B)
R(u,v) V R(v,u) R(u,v) = R(w,v) V R(u,w)

are identical.

Evidently, clause set B) is implied by A) and therefore its saturation is contained in the

saturation of A). It is therefore sufficient to show the existence of a clause schema which
1. is contained in the saturation of B)

2. contains the saturation of A)

Such a schema obviously describes the saturation of both A) and B) then.

Now, consider the clause schema,
R(ui,u2:%2) V R(uo,u3:T3) V...V R(up_1,Un:Tp) V R(tp, u1:T7)
with n > 1 and z; € Fr. For the first part we show by induction over n that
R(u1,u2) V R(ug,uz) V...V R(up—1,un) V R(tn,u1)

is contained in the saturation of B) and then that the right-hand argument of each such
disjunctive element can be arbitrarily inflated by functional decomposition variables.

Base Case: n = 1: trivial, since R(u,u) is contained in B).

Induction Step: suppose R(u1,u2)V R(ug,u3) V...V R(uy—1,u,)V R(uy,u1) has already be
shown to belong to the saturation of B). A single resolution step with R(u,v) = R(w,v) V
R(u,w) then results in R(ui,u2) V R(ug,u3) V...V R(tp, up+1) V R(tup+1,u1) and we are
done.

Now note that for an arbitrary clause C = R(a, ) V C' it is possible to derive C =
R(a,B:z) V C' by a single resolution step with the clause R(u,v) = R(u,v:z). What has
been claimed thus follows easily by induction over the respective lengths of the functional
decomposition variable sequences.

For the second part of the proof we have to check whether every clause in the saturation
of A) is an instance of the above clause schema. Evidently, this is no problem for both
R(u,u:z) and R(u,v)V R(v,u). Remains to be shown that any pure-R-positive clause that
can be derived from

R(ui,u2:%2) V R(ug,u3:T3) V...V R(Uup—1,Un:Tp) V R(tp, u1:77)

and the transitivity clause is already an instance of this schema. Thus consider the clause
set

- R(u,v) V-R(v,w) V R(u,w)

R(ui,u2:T2) V...V R(up,u;:77)

R(vi,v2:72) V...V R(vm,v1: 77)
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The first resolution step results in:
—R(ug:T2,w) V R(u,w) V R(ug,u3:T3) V...V R(uy, u:T7)
and after a second resolution step we end up with
R(u,v2:72) V R(v2,v3:73) V...V R(vp,u2:T2) V R(ug,u3:T3) V...V R(up, u: T7)
This clause schema is indeed an instance of the schema we already have; hence we are done.
Now, for S4.3 we know both its saturation and a suitable clause set which generates exactly this

saturation and which is “simpler” than the original background theory. Thus we can try to find
an appropriate inference rule for S4.3 just as we did for the other modal and temporal logics.

A first idea for such an inference rule would be to “read” it directly from the saturation we
know. This would result in something like:
—R(a1, 1), Ch
_'R(a% 132)3 02

_‘R(anaﬁn)a Chn
0Cy,0Cs,... ,0C,

where ¢ is an S4 prefix unifier for (a;4+1,0;) and («@1,8,). Such an inference rule, however,
regardless whether it would turn out to be complete or not, does not quite suit the resolution
paradigm which states that inference rules should be applied locally to one or two clauses rather
than possibly the whole clause set.

Another possibility for a suitable inference rule can be found by having a closer look at
the newly derived background theory for S4.3. Evidently, the first two clauses are those of the
background theory for S4 and thus the S4 Inference Rule could act at least as one of the inference
rules for S4.3 as well.

What the third clause — R(u,v) = R(w,v) V R(u,w) — is concerned it could be imagined to
result in an inference rule like
_LR(Oé, /8)7 Cl
_'R('% 5)a Co
-R(oca,00),0C,0C,

where o is the most general (classical unifier) for (7,3). This rule would be sound but, un-
fortunately, not complete (even together with the S4 Inference Rule). The problem is that the
interaction between the S4 part and the third theory clause has not been taken into account this
way. But we can quite easily overcome this problem by observing that the third theory clause
can be generalized to

R(u,v) = R(w,v) V R(u,w:z1: -+ :2p)

and this generalization finally leads to the following:

DEFINITION 5.1.4 (THE S4.3 INFERENCE RULE)
The rule
—nR(a, ,3), 01
- R(y,46),Co where o is an S4 prefiz unifier for (v, 5)
-R(oa,06),0C,0C

1s called the S4.3 Inference Rule.
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DEFINITION 5.1.5 (THE S4.3 INFERENCE SYSTEM)
The S4.3 Inference System consists of the S4 Inference System together with the S4.3 Inference
Rulé?.

LEMMA 5.1.6
The S4.3 Inference System is sound.

Proof: The soundness of the S4 Inference System is evident. Remains the S4.3 Inference Rule.
We have to show that any S4.3 interpretation which satisfies the antecedent of the S4.3
Inference Rules also satisfies its consequent. To this end assume that there exists an S4.3
interpretation & which is a model for —R(«, 8) V C1 and for —R(v,d) V Cy but not for
- R(ca,06) VoCi V oCy where o is an S4 prefix unifier of (v, ). This means that there
exists a variant & of & such that

S = R(oa, 06) A ~R(oe, o8) A ~R(o7y, 06)

S is an S4.3 interpretation and therefore R is both linear and transitive. It thus follows
that
S| R(oa, 07) A~ R(ow, 0f3)

Now recall that R(u,v) = R(u,v:z) for any S4.3 interpretation and that o+ is a prefix of
of (since o is an S4 prefix unifier of (v, 3)). Hence & is a model for both R(ca, 03) and
- R(oa,c3) which is a contradiction. It is thus not possible for any S4.3 interpretation to
satisfy the antecedent of the S4 Inference Rule but not its consequent and we are done.

LEMMA 5.1.7
The S4.3 Inference System is ground complete.

Proof: Any application of one of the inference rules is justified by the saturation of the S4.3
background theory.

The idea behind the completeness proof for the S4.3 Inference System is to reduce it to the
completeness proof for the S4 Inference System. To this end we consider an alternative Inference
Rule, namely
-R(a1, p1),Ch
—R(ag, £2), C2
—R(a1, B2), 7 R(a2, B1), C1, Co

This alternative rule would be very inefficient indeed for it can be applied to any two R-literals.
However, it is pretty obvious that an application of this rule followed immediately by an appli-
cation of the S4 Inference Rule to the application result generates a resolvent that could have
been obtained from a single application of the S4.3 Inference Rule. Intuitively, the alternative
inference rule tries to cut potential cycles into two smaller ones (where by a cycle we mean a set
of R-literals which is inconsistent with the S4.3 background theory). The S4.3 Inference Rule
does something similar, however, it cuts not arbitrarily but into two portions such that one of
them is trivial (i.e. it can be eliminated with the S4 Inference Rule). This does not only reduce
the number of possible cuts, it also takes into account that every cycle is finite and must contain
neighbourhood elements.

2Note that the S4 Inference Rule can be viewed as a special case of the S4.3 Inference Rule if the two parent
clauses are identical.
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We now proceed as follows: First we show that we are able to derive a single S4-unsatisfiable
clause from an arbitrary S4.3-unsatisfiable set of R-clauses with the help of the alternative
inference rule. This clause can then be refuted by a finite number of applications of the S4
Inference Rule. Finally we show how the refutation obtained this way can be transformed into
a refutation within the S4.3 Inference System.

LEMMA 5.1.8
It is possible to derive (by resolution and factorization) a S4.3-unsatisfiable set of R-clauses from
an arbitrary S4.3-unsatisfiable clause set.

Proof: Obvious, since this can easily be done on the ground level and any resolution and
factorization step can be lifted.

LEMMA 5.1.9
A single S4-unsatisfiable clause can be derived from an arbitrary S4.3-unsatisfiable set C of
R-clauses and that with the help of the alternative Inference Rule.

Proof: Let oC be an S4.3-unsatisfiable ground instance of C. It suffices to show that the lemma
holds for oC since an application of the alternative inference rule can trivially be lifted to
C (there are no instantiations involved).

Consider any refutation of oC (which exists according to Lemma 5.1.7). Evidently, whenever
the S4.3 Inference Rule gets applied it is also possible to apply the alternative inference
rule to the very same literals. Thus if we replace every application of the S4.3 Inference
Rule by an application of the alternative inference rule and ignore every application of the
5S4 Inference Rule we end up with a single S4-unsatisfiable clause.

LEMMA 5.1.10
The S4.3 Inference System is refutation complete.

Proof: From Lemma 5.1.8 we know that a S4.3-unsatisfiable set of R-clauses can be derived
from an arbitrary S4.3-unsatisfiable set of clauses by resolution and factorization. It would
now be possible to derive a single S4-unsatisfiable clause from this clause set if we had the
alternative inference rule at hand and, evidently, this single clause could easily be refuted
by the S4 Inference Rule. Remains to be shown that such a refutation can be transformed
into a refutation within the S4.3 Inference System.

To this end consider the first literal in the single unsatisfiable clause to be eliminated by the
S4 Inference Rule and find the parent clauses in the original clause set from where it descents.
These parent clauses (and the involved literals) can be found since in the derivation of this
very literal no variable instantiation has been performed. The corresponding application of
the alternative inference rule together with the final application of the S4 Inference Rule
can now be performed by a single application of the S4.3 Inference Rule (or by the S4
Inference Rule if the literal under consideration had not been generated by the alternative
inference rule). This way we are able to replace each S4 Inference Rule application in
the refutation of the single S4-unsatisfiable clause by an application of a rule in the S4.3
Inference System and that without any need for the alternative inference rule. Hence there
exists an (alternative) refutation that can be simulated by the S4.3 Inference System and
we are done.
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5.2 Linearity and K;T4

The modal logic S4.3 can hardly be called a temporal logic. Recall that even the simplest
temporal logic we considered, Lemmon’s minimal tense logic Ky, knows about both past and
future, although in a fairly restricted way. Therefore a linear temporal logic closest to S4.3 would
be K;T4.3, i.e. the temporal logic for which the Earlier and the Later relations are reflexive,
transitive and right-linear®. A possible axiomatization would thus be:

GroND T = Q@A V)V DD DA
O, PNV = O (AP T)VO(DDAT)

together with the well-known axiomatization for K;T4. Note that indeed both of these axioms
are necessary because, unlike transitivity, right-linearity of one does not imply right-linearity of
the other.

Thus we are able to describe the background theory for K;T4.3 as:

and again we have to determine the saturation of this background theory.

LEMMA 5.2.1
The saturation of the K;T4.3 background theory contains

R(u,v) V R(v,u)

under the connectedness assumption.
Proof: It is easy to show (whether by hand or by using a standard theorem prover) that

R(u,v:zp)V R(v:zp,u)
R(u, v) V R(v,u) = { R(v:zp,u)V R(u,v:zp)
Since R is reflexive we get by induction

Rurzy: -+ txp,uiyr: - 1 Ym) VR(UI YL - 1 Ym, Ui Ty - 1Ty

with n,m > 0 and w;,y; € Fr, U Fg,.

Now the connectivity assumption guarantees that for each u there exist some z1,..., 2
such that u = ¢:21: -+ : 2z hence we have that

R(u,v) V R(v,u)

as an element of the saturation of the K;T4.3 background theory.

3Note that because of the strong correspondence between Earlier and Later the right-linearity of Later is
tantamount to the left-linearity of Earlier.
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With this result we can simplify the background theory for K;T4.3 to:

R(u,u)

R(u,u:zp)

R(u:zp,u)

R(u,v) A R(v,w) = R(u,w)
R(u,v) V R(v,u)

in a way similar to the case of S4.3. The advantage of this representation of the background
theory is that it simplifies the process of finding the corresponding saturation.

LEMMA 5.2.2
The saturation of the K;T'4.3 background theory consists of all clauses of the form:

R(u1:Z1,u2:791) V R(ug: Ta,u3:72) V- -+ V R(Up—1:Tn_1, Un:Tn-1) V R(tp: Ty, u1:7n)

where T; € (Fr,)* and 3; € (Fr,)*.

Proof: Evidently, each of the positive clauses in the background theory is indeed contained in
the alledged saturation. Also, if we apply arbitrary resolution steps between the transitivity
clause and any instance of the clause schemata we end up with a clause that is already
contained and thus these clause schemata at least contain the saturation.

Remains to be shown that these clauses are also contained in the saturation. To this end
we first show that the clauses

R(ui,u2) V R(ug,u3) V-V R(up—1,upn) V R(tn,u1)

are derivable from the background theory and that by induction over n.

Base Case: n = 1, i.e. we consider the unit clause R(u,u) which trivially belongs to the
saturation.

Induction Step: assume we have shown that
R(u1,u2) V R(ug,ug) V-V R(up—1,un) V R(tn,u1)

belongs to the saturation. Then we perform a resolution step between the literal R(uy,,u1)
and the first literal of the transitivity clause which results in

R(u1,u2) V R(ug,u3) V---V R(up—1,un) V R(tp,w) V - R(u1,w)

After a final resolution step with the linearity clause R(u,v) V R(v,u) and a renaming of w
into un41 we end up with

R(u1,u2) V R(ug,ug) V-V R(up—1,un) V R(tn, Upt+1) V " R(Un41,u1)

and we are done.

Now it suffices to show that

) = { )
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i.e. each literals in the derived clause schema can be augmented by arbitrarily many fu-
ture variables in the right and arbitrarily many past variables in the left-hand argument.
Evidently, all clauses in the alledged saturation are thus derivable. Now, both clauses
R(u,v) = R(u,v:zp) and R(u,v) = R(u:zp,v) follow immediately from the transitivity
clause and R(u,u:zp) (R(u:zp,u) respectively). A simple induction over the length of the
respective functional decomposition variable sequences then completes the first part of the
proof, namely that the elements of the alledged saturation can indeed be derived.

Remains to be shown that actually nothing more is derivable. To this end it suffices to show
that the transitivity clause gets redundant under the derived clause schemata. Proving this
fact is a bit tedious but is included here for completeness reasons. First, for convenience, let
us use the abbreviation Clug, u1] for the clause schema R(u2: T3, u3: 7z, - .- , R(unTn, u1:Tn)),
i.e. Clug,u;] covers the whole clause schema except for the literal R(u:Z1,u2:91). Then
the derived clauses are of the form

R(u:T,vy) V Clv, u]

and we consider resolution steps between this clause schema and the transitivity clause.
After the first such step we get

—R(v:y,w) V R(u:Z,w) V Clv, u

A further resolution step is only possible if either this 7 = () or the T in R(u:Z,vy) V Clv, u]
is empty. In the first case we have to resolve between

-R(v,w)V R(u:Z,w) V Clv, u]
R(a:z,6:79) vV C[B, a

and this results in
R(u:z,5:7) V Cla:Z,u] V C[B, a]

which can easily be seen to belong to the clause schema already and for the second case we
perform a resolution step between

—R(v:y,w) V R(u:Z,w) V Clv, u]
R(a, 8:2) V C[B, ]

which leads to
R(u:z,B:Z) V Clv,u] vV C[B,v:7]
which obviously belongs to the clause schema as well.

It is thus not possible to derive anything new from the transitivity clause which is thus
redundant.

The similarities between this saturation and the saturation of the background theory for S4.3
are evident. The main difference lies in the additional past variables that may occur on left-hand
side arguments. It is thus not too surprising that the inference system to be defined for K;T4.3
is also very similar to the one of §4.3.
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DEFINITION 5.2.3 (THE K;T4.3 INFERENCE RULE AND SYSTEM)
The K;T4.3 Inference Rule is defined as

_1R(Ot, /6)5 Cl
_'R(77 6)7 CZ
-R(ca,00),0C,0C,

where o is a K;'T4 prefiz unifier of (v, 5).

The K;T4.3 Inference System consists of the K;'T4 Inference System together with the K;T4.3
Inference Rule.

The preliminaries provided in the previous section now make soundness and completeness
proofs for the K;T4.3 Inference System fairly easy. In fact they don’t have to be changed at all.
A mere repetition of the proofs is therefore omitted here.

THEOREM 5.2.4

The K;T4.3 Inference System is sound and refutation complete.

Proof: The only difference to the S4.3 case lies in the additional past operators involved. There-
fore the completeness proofs are to be reduced to the corresponding proof in K;T4 rather
than S4. Everything else remains the same.

5.3 The Always-Operator revisited

Recall from Section 4.4 how the Always had been introduced to the (non-linear) temporal logics.
The main idea was to consider the Always-operator as a new primitive and to add the axiom
schemata [4],® = [a].[a].® and [4],® = [F].® A [p].®. Finding the corresponding properties of
the accessibility relations and saturation of the thus obtained background theory resulted in the
universal relation for R4. Now, what would have happened if we choosed the full equivalence
[A].® < [F].® A[P],® as one of the axiom schemata instead? Then, in addition, we would get the
property
Ry(u,v) = Rp(u,v) V Rp(v,u)

as an element of the background theory and since R4 turned out to become the universal relation
we would automatically get the full linearity of the underlying time structure.

This is the reason why we had to delay the full equivalence in Section 4.4 up to now: we
were simply not yet able at that stage to talk about linearity. After we have learned how
to deal with linearity, however, we can simply add the full equivalence to the axiom set and
nothing else has to be changed. Thus, augmenting K;T4.3 by the [Al-operator by adding the
implication [A],® = [F].® A [P].® is tantamount to augmenting K;T4 by the full equivalence
[A].® < [F].® A [P].® (transitivity has to be added in both cases, evidently). Hence, it is possible
to get linearity by a suitable introduction of the Always operator.

It might be surprising at the first glance that the introduction of an operator can influence
properties of the other operators. Indeed, if there were no other additional axioms than the
equivalence which defines in terms of [£]. and [?]. then such an influence would be impossible.
However, this equivalence was not the only new axiom; recall that also the transitivity for the
relation R4 — which does not follow from the other axioms — had been assumed as well. But
evidently, any extra property for some relation that is defined in terms of other relations will also
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impose extra properties on these other relations and this is what happened with the transitivity
assumption for the Always-relation.

5.4 Linearity Without Reflexivity

The (right-)linearity axiom ¢®@ A QU = Q(OP A V) V (P A QT) results — after semi-functional
translation and under the implicit assumption of connectedness — in the property R(u,v)VR(v,u)
for all instants w and v. It thus implies reflexivity of the accessibility relation. Even without
explicitly adding the reflexivity axiom to the axiomatiztion it at least yields reflexivity for every
world that is not identical to the initial world 7. If this is too strong a property for the intended
axiomatization we have to think about something different and this can be found in the axiom

QPAQU = Q(OPAT)VO(PAT)V O(DAQTD)
which states that two worlds are either comparable or identical, or, more formally,
R(u,v) A R(u,w) = R(v,w) Vv =wV R(w,v)

Note that the R corresponds to a < rather than a < this way.

In this section we are going to examine how the techniques developed for the previous sections
can be exploited to find a suitable inference system for modal and temporal logics that obey
this very property.

5.4.1 Linearity and KD4
Recall the background theory for KD4

R(u,u:x)
R(u,v) A R(v,w) = R(u,w)

and add the right-linearity (without the reflexivity assumption)
R(u,v) A R(u,w) = R(v,w) Vv =wV R(w,v)

Let us call the logic under consideration KD4.3’ where by 3’ we mean the modified right-linearity
from above. This background theory can be somewhat simplified as follows:

LEMMA 5.4.1
The background theory for KD4.3’ can be simplified to:

R(u,u:x)
R(u,v) A R(v,w) = R(u,w)
R(u,v) Vu=vV R(v,u)

Proof: Again this is done by exploiting Segerberg’s connectedness assumption. First recall
that the saturation of the KD4 background theory results in all unit clauses of the form
R(u,u:T) with T # (). Resolving these units with the right-linearity axiom 3’ produces all
clauses of the form

Ru:ZT,u:g) Vu:T=u:gV R(u:9,u:T)



5.4 LINEARITY WITHOUT REFLEXIVITY 117

with Z,7 # (). However, if exactly one of the Z,7 has zero length then the disjunction holds
trivially because of the already derived unit clauses and if both have zero length the axiom
is a tautology simply because of the middle equation. We thus have the above schematic
disjunction even without restrictions. Therefore, and by the connectedness assumption, we
have that both w:7Z and w:¥ represent arbitrary worlds and thus the disjunctive schema
can be simplified to the third clause from above.

Such a simplified background theory facilitates the problem of finding the saturation of the
background theory.

LEMMA 5.4.2
The saturation of the KD4.3’ background theory consists of all positive clauses of the form

R(ui,u9:T3) V R(ug,u3:T3) V...V R(tup,u1:T7)
R(u1,u2) V R(ug,u3) V...V R(up,u1) V us = usg
where n > 1 and Ty, # () for some 1 < k < n.
Proof: From the KD4.3’ background theory it evidently follows that

R(u,v) = R(u,w) V R(w,v)
This — together with R(u,v) Vu = vV R(v,u) — immediately leads to the second clause
schema.
For the first clause schema we have that

R(u,u:x)

R(u,v) = R(u,w) V Rw,v) } = Rl uz) V Rluz,ug) V..V Rltn, v :2)

and this — together with R(u,v) = R(u,v:z) — yields
R(ui,u2:T3) V R(ug,u3:T3) V...V R(up, u1: T1)

with n > 1 and 7 # 0 for some 1 < k < n.

Remains to be shown that these clause schemata are closed under transitivity. This is
obvious whenever the first schema is involved. Also it is easy to see that the result of
applying two resolutions steps between the transitivity clause and the second schema results
in a clause which is subsumed by this second clause schema. Hence nothing more than the
above clause schemata can be derived and we are done.

The knowledge we have gained about the saturation of the background theory almost immedi-
ately determines a suitable set of inference rules.

DEFINITION 5.4.3 (THE KD4.3’ INFERENCE SYSTEM)
The KD4.3’ Inference System consists of the KD4 Inference System, i.e. classical resolution and
factorization plus the extra KD4 rules

—~R(e, B8),C where o is a KD4 prefix
oC unifier for (o, 3)
~R(a,u),C where u does not occur in «

cu., and = is a new variable of sort Fr
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together with the following rules

_‘R(CV, ﬁ)a Cl 7 . S4
~R(v,6),Cy where o is an S4 prefiz

—R(oa,06),0C;,0C unifier of (,6)

~R(a,f), Gy h s the most !
ﬂR(’Y,é-),CQ whnere o 18 e Mmos genera

unifier of (v,8) and («, )

ca=o0f,0C1,0C,

The first of the two new rules from above could equally be described by:

_|R(Oé, ﬁl : ﬁ?), C1
_'R(’)la 6)7 Co
-R(oca,00),0C,0C,
where o = mgu(vy, 1)

and it might be surprising at the first glance that it is not required that £y # (), or in other
words, that we are considering an S4 prefix unifier rather than a KD4 prefix unifier. Informally,
the reason for this is that in the saturation of the KD4.3’ background theory it is not required
— at least what the first clause schema is concerned — that each of the functional decomposition
variable sequences has to be non-empty. There is only a need for at least one of these sequences
to be non-empty; for all the others we have to be able to unify v and 8; : B2 and this is realized
in the first one of the two new inference rules.

Note that the linearity assumption gives rise to an interesting inference rule that might help
reducing the search space considerably, namely

—R(ay,u:f1),... ,mR(an,u:5,),C
C
where u & «; and u &€ C

Its soundness follows from the fact that — in the antecedent — the interpretation of one of the
a; must be maximal (latest) and that u could be instantiated to an arbitrary time instant later
than this maximum. This was not possible in case of KD4 for there it could not be guaranteed
that the a; are linearly ordered.

LEMMA 5.4.4

The KD4.3’ Inference System is sound.

Proof: There is certainly no problem with the rules of the KD4 Inference System for nothing
has changed compared with KD4.

Soundness of the second new inference rule follows immediately from the background theory
clause
R(u,v) Vu=vV R(v,u)

For the first new inference rule assume there is an KD4.3’ interpretation & which satisfies
both =R(a, 1:2) V Cy and —R(,d) V Co but is not a model for —~R(ca,dd) VoC; V oCy
where o is the most general unifier for v and ;. Then there exists a variant & of &
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which satisfies R(oa, 0d) as well as —aCq, =0Cs, =R(a, B1: 2) V C1 and = R(7,d) V Cs. In
particular
S = R(oa,06) A ~R(oa, 001 :002) A —R(o7y,006)

S is an KD4.3’ interpretation and we thus have
S = R(oa, 06) A =R(oa, 081 :002) A (R(66,07) V 06 = a7)

The first literal and the final disjunction together yield R(oa,o7y) either directly or by
transitivity of R and therefore

$ E R(oa,07) A=R(0a,0p::0/)

But now recall that ¢ is the most general unifier of v and ;. This means that we actually
have
$ = R(oa,077) A —R(oa, 0v: 02)

This now leads to a contradiction because in any KD4.3’ interpretation it holds that
R(u,v) = R(u,v:z) and therefore we can derive R(ca,07:Z) from R(ow,o7y) and thus
in particular

S = R(oa, 07y: 082) A —R(oa, 07y: 03)

Hence every KD4.3’ interpretation that satisfies the antecedent of the second new inference
rule also satisfies its consequent and we are done.

A common way to prove the ground completeness of a resolution—based calculus is by an in-
duction over the number of excess literals in a given unsatisfiable set of clauses. For the modal
and temporal logics considered so far this was not really necessary for there were always pos-
sibilities to reduce the (theory)-unsatisfiability to certain special cases or even to the classical
unsatisfiability. This does not work anymore here, at least not that easily, and we have to come
back to formerly known procedures. Unfortunately, the excess literal idea neither works for
simultaneous paramodulation cannot be handled properly. As an example consider the ground

clauses
P(a) vV Q(a)
a=1b
—|P(a)
—Q(b)

Evidently, Q(a), a = b, and —Q(b) are inconsistent and can be refuted by performing a s-
paramodulation step from a = b into Q(a) with result Q(b) and deriving the empty clause from
Q(b) and —Q(b). Unluckily, if this sequence of inference steps is applied to the original clause
set from above then we not end up with P(a) but with P(b) and the induction hypothesis
cannot be applied. We therefore switch to an alternative — though closely related — ground
completeness proof, namely one which consists of an induction over the number of unsolved
paths in a given theory-unsatisfiable clause set. The main idea behind this proof technique can
briefly be described as follows. A path through a set of n clauses consists of n literals, such
that there is a literal from each given clause. Evidently, if each path is classically unsatisfiable
then the whole set of clauses is classically unsatisfiable and can be refuted with standard means.

“In temporal logics to be considered later it might even happen that a non-unit clause can be derived.
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We are therefore done if we are able to show that a theory—unsatisfiable set of paths can be
transformed (by applying the given inference rules) into classically unsatisfiable paths. An
induction over the number of paths would not help, since each inference step usually increases
the number of paths through a given clause set. Nevertheless, it is possible to focus on certain
special paths, the so-called unsolved paths instead. In showing that the application of inference
rules sooner or later decreases the number of unsolved paths the induction will go through.

DEFINITION 5.4.5 (GROUND PATHS, COVERING PATHS)
By a ground path (or just path) L (of length n) we understand a sequence of ground literals

(L1,...,Ly)

A path is called (classically) satisfiable if the conjunction of the literals contained in this path is
(classically) satisfiable® and unsatisfiable otherwise. A path L covers a path K if all models of
K satisfy L.

The following facts follow immediately from the above definition.

LEMMA 5.4.6
e If the path L = (L1,...,Ly) covers the path K = (K1,... ,K,) and L,41 is an arbitrary
ground literal then (Ly,... , Ly, Ly4+1) covers (Ky,... , Ky, Lyi1)

e If the path K is covered by an unsatisfiable path £ then K is unsatisfiable
e An unsatisfiable path is covered by any path

A path which contains complementary literals needs no theory step. Also any path which
is covered by some other path is not of any interest for, if the covering path gets extended
such that it becomes classically unsatisfiable then the (extension) of the covered path must be
unsatisfiable as well according to the above lemma. Covered paths therefore need no special
treatment. There is an exception, however. If there are two (or more) paths that cover each
other then one of these paths has to act as a representative for these paths unless there exists a
further path which covers both but is not covered by them.

DEFINITION 5.4.7 (PATHS THROUGH C, #UP(C), SOLVED PATHS)
Let C = (C4,... ,Cy) be a list of clauses. Then any path (L1,... ,L,) such that L; € C; for all
1 <% < n is called a path through C.

A path through C is called solved if it either contains complementary literals or it is covered by
some other path through C which is not covered by the path under consideration. By #UP(C)
we understand the number of unsolved paths through C under the restriction that any two paths
that cover each other count as one.

LEMMA 5.4.8

Let the clause C be obtained by a KD4.3’ Inference System step on the (ground) clause set C.
Then #UP(CU{C}) < #UP(C).

®In the sequel satisfiablity means classical satisfiability unless otherwise stated.
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Proof: This is trivial in case of the KD4 Inference Rule for consider the situation
-R(a,a:f),C]
Co
Cn
Cl

Evidently, each path (L, Lo, ... , Ly, L)) through CU{C} is covered by (L}, Lo, ... , L,, L})
which is also a path through C U {C}. In particular, every path which contains the
- R(a,a: ) gets covered and therefore it is even the case that #UP(C U {C}) < #UP(C).

In case of an s-paramodulation step we are faced with the following situation

a=0,0]
Cs
Cn
Co [a/ﬁ] ) Ci

where C5 [a/ 3] is meant to express that any occurrence of a in Cj is replaced by 5. Now let
L=(Ly,...,Ly,Ly+1) be a path through CU{C}. If L, € Cf then (Ly,... , Ly, L1) covers
L unless Ly11 = Ly and if L1 = a = § then (L, Lo, ..., Ly, La[a/B]) covers L unless
Ly 1 = L [a/f]. In either case the number of unsolved paths is at least not increased.

Remain the cases of the resolution rule and the new KD4.3’ Inference Rules. The situation

we then have is as follows
L 1 C{

L27 Cé

G
R,C1,Cy

where R denotes the residue of the rule application (in case of a resolution rule appli-
cation R is just false). Let L = (L1,...,Lyn,Lp+1) be a path through C U {C}. Evi-
dently, if L € C] then (Ly,...,Ly,,L1) covers £ unless L,.1 = L;. Similarly, if Ly €
CY then (Li,Ls,...,Ly, L) covers L unless L,y1 = Lo. This also works the other
way round, i.e. if L1 is not R then L is covered by either (L,41,Lo,... , Ly, Lyt1) or
(L1, Ly+41,--- y Ly, Lyy1). Thus the number of unsolved paths is again not increased.

LEMMA 5.4.9
A KD4.3’-unsatisfiable path L can be refuted by the KD4.3’ Inference System.

Proof: This should be obvious if £ contains no E-cycle®. On the other hand, if £ contains an
E-cycle of length n then this E-cycle can be used to derive n — 1 equations (this can be
shown by induction over n). Moreover, this E-cycle won’t be necessary anymore then and
the number of literals in £ is reduced by one. Hence, the lemma follows by induction on
the number of E-cycles contained in L.

5Recall that an E-cycle is a set of negative R-literals from which an equation can be derived. Also note that it
is never necessary to apply an equation to an element of the background theory since such an equation can only
be obtained from the background theory which is supposed to be saturated.
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LEMMA 5.4.10
The KD4.3’ Inference System is refutation complete on ground clauses.

Proof: This follows by induction on the number of unsolved paths #U P(C) through the given
clause set C. In case of #U P(C) = 0 we have that C is classically unsatisfiable and therefore
can be refuted. In case of #U P(C) > 0 recall that any inference step on a unsolved path
does not increase the total number of unsolved paths. However, according to Lemma 5.4.9,
any unsolved (unsatisfiable) path can be refuted and therefore — sooner or later — this
number will decrease.

LEMMA 5.4.11
The KD4.3’ Inference System is refutation complete.

Proof: In analogy to the corresponding proof for the S4.3 Inference System, i.e. we delay
unliftable KD4 inference steps and replace KD4.3’ Inference Rule applications on the ground

instances of two clauses
_'R(aa u: 16)1 Cl
_'R(77 5)7 02

which are not liftable by the following inference step
_‘R(Ot, u: 18)1 Cl

_'R(’Ya 5)7 02
_'R(a7 (5)7 _'R(77 u: /B)a 01, &

where the corresponding ground instance of —R(vy,u: ) is KD4-unsatisfiable. Therefore,
the original KD4.3’ Inference Rule application can be simulated by a step of the alternative
inference rule immediately followed by a KD4 Inference Rule application. Moreover, each
application of the alternative inference rule can be lifted and therefore it is possible to
derive (on the ground level as well as on the non-ground level) a single KD4-unsatisfiable
clause. Now note that this KD4-unsatisfiable clause can be refuted and this means that
there is at least one R-literal in this clause on which a KD4 Inference Rule application is
possible. This possible step could have been performed already after this literal had been
generated by the alternative inference rule and therefore an induction on the length of the
unsatisfiable clause (or induction over the number of alternative inference rule applications)
the refutation obtained can ultimatly be transformed into a refutation within the KD4.3’
Inference System.

Note that the first of the two new KD4.3’ Inference Rules could be further optimized. Consider
the following set of clauses
_'R(aa B: 7)5 C1
ﬁ}2(/37 5)1 Cy
-R(6,a),C3

Evidently, it is possible to derive the clause Ci,Cs,Cs from this clause set. However, after
applying the first new inference rule to the first two clauses we would end up with =R(«, §), Cy, Co
and this result together with the third clause from above would yield a = §, C, Cs, C3 instead of
what we originally expected. The reason for this is pretty obvious: After we performed the first
inference step we lost the information that we are actually dealing with a proper cycle rather
than with an equation introducing cycle. There are two ways to avoid such a problem. One
possibility would be to change the order of inference steps. In the above example this would
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mean to start with the second and third clause — obtaining —R(3, ), C2, C3 — and then add the
first clause (with result —R(3,3: ), C1,C2,Cs). This finally leads to derive C1,Ca,Cs just as
desired.

Another, maybe more sensible way of dealing with such possibilities would be to change the first
of the two new inference rules to

_'R(Oé, /6)5 Cl
_'R(’Ya 5)a Co
—R(oca,00),0C,0C,

where ¢ is the most general unifier of v and 5. This rule alone evidently would not be sufficient.
We therefore have to add further rules of the form

_'R(a’lg)’cl _'S(aaﬂ)acl
—|R(’)’,5),02 —|R(’Y, 5),02
=S(oca,00),0C1,0C, =S(oa,c6),0C,0C,
where o is a KD4 prefix where o is a S4 prefix

unifier of the pair (v, 3) unifier of the pair (v, )

_'R(a’lg)acl _'S(O‘aﬂ)aol
_'S(’Ya 6)7 02 _'8(77 6)7 02
-S(ca,06),0C1,0C, -S(oa,06),0C,0C,
where o is a S4 prefix where o is a S4 prefix

unifier of the pair (v, ) unifier of the pair (v, )

ﬂS(O&,ﬁ), C’1
0'01,0'02

where o is a S4 prefix
unifier of the pair (a, 3)

where the predicate symbol S is new to the whole clause set. The close relationship between the
=S and the —R is pretty evident. The main difference between these two is that the S contains
the information that is has been obtained by a step which promises a proper cycle. Therefore,
although this alternative Inference System contains more rules than what we originally had,
it forbits some steps which are unnecessary but nevertheless possible in the KD4.3’ Inference
System.

5.4.2 The Linear Version of K;D4

As we now know how to deal with the linearity property for the modal logic KD4 we can easily
apply the very same ideas to the next complicated of the temporal logics we consider, namely
K;D4. As a matter of fact, a calculus for the linear version of K;D4 (which we shall call K;D4.3’
in the sequel) can be easily obtained from the calculus for KD4.3".

Let us first have a look at the axiomatization of K;D4.3’. In addition to the standard
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necessitation rules and Modus Ponens we consider the following axiom schemata:

Foe= 6o

Flo = [F[Fo

Flo = O

[F]® = [PI[*]®

o=[FO

=[O
GOINGT=P@ADPT)VH@ATD)VH(ODPAD)
QINQPTU = Q@ADPT)VO(BPAT)VHODAD)

Note that there are two linearity axioms to be included, one for the past and one for the future
fragment of the temporal logic under consideration, however, not both of the transitivity axioms
are really needed; in the presence of the other schemata either one follows from the respective
mirror image.

The background theory we obtain from this axiomatization then is:

where R denotes the accessibility relation Rr and the relation Rp is described in terms of Rg.

As in the case KD4.3’ these linearity axioms can be simplified and this will be shown in the
following lemma.

LEMMA 5.4.12
The two linearity axioms in the background theory for K;D4.3’ can be simplified to the single
clause

R(u,v) Vu=vV R(v,u)

Proof: It can fairly easy be shown from the background theory (e.g. with the help of a standard
theorem prover) that

R(u,v:zp)Vu=v:zpV R(v:zp,u)
R(u:zp,v)Vu:zp =vV R(v,u:xp)

R(u,v) Vu=vV R(v,u) = {
The following clause is clearly valid as well
R(t,t) V=1V R(1,1)
for it denotes a trivial tautology. Both together therefore yield (by a simple induction)

R(t:Z,0:g)Ve:T=1:gV R(1:7,1:T)

where T,y € (FRP UFRF)*.
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Now recall that the connectedness assumption guarantees that any time instant u can be
represented in the form u = ¢:Z with Z € (Fg, U Fg,)*". Hence the derived clause schema
may be simplified to

R(u,v) Vu=vV R(v,u)

and we are done.

LEMMA 5.4.13
The saturation of the K;D4.3’ background theory can be described by the following clause
schemata;:

R(uy:71,u2:792) V R(ug: T2, u3:93) V... V R(uy: Ty, u1:91)

withn > 1, 7; € (Fr,)*, Ui € (Fr)*, and not all T;,7; are empty
R(u1,u2) V R(ug,u3) V...V R(ug,u1) Vus = uy

withn > 2

Proof: First note that from the background theory it follows that R(u,v) = R(u,w)V R(w,v)
(this can easily be checked by any standard theorem prover). From this it follows that

R(u:zp,u) .
R(u,v) = R(u,w) V R(w,v) } = R(u:zp,up) V...V }jv(l?ﬁ—;’;‘q) V R(up,u1)

and similarly

R(u,u:xp)

R(u,v) = R(u,w) V R(w,v) } = R(ui,u2:zp) V...V R(up—1,un) V R(un,u1)

withn >1

Therefore we have that

R(ui:zp,u2) V...V R(up,u)

R(uy, .V R(un, L -
REUl 7)‘2 xF(u V:ITR) (s 1) = R(u1:Z1,u2:92) V...V R(up: Ty, u1:71)
R( ) (u rp,v ) Withnz 1’x_i€ (FRP)*ame (FRF)*

and for some 7,75 # 0

and this covers the first clause schema.

For the second clause schema consider both

R(u,v), R(v,u),u =v
_'R(ua U)a R(U, w)a R(w, U)

In case of n = 2 we are already done. For greater n assume we have already shown that
R(ul, U,Q) \Y R(’U,Q, ’u,3) V...V R(un,l, ’u,1) \Y Uz = U1
A resolution step between R(un—_1,u1) and ~R(u,v), R(u,w), R(w,v) then leads to

R(u1,u2) V R(ug,u3) V...V R(up,u1) V ug = ug

"Note that the connectedness assumption requires that the variables in z may belong to any of the functional
decompositions of the accessibility relations in question.
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and we are done by induction on 7.

In order to guarantee that these are indeed all clauses that can be obtained we have to show
that the clause schemata are closed under transitivity. This is again obvious whenever the
first clause schema is involved, i.e. anything that can be derived is either already contained
or subsumed by the first clause schema. The second clause schema is identical to the second
clause schema in case of the logic KD4.3’ and therefore nothing changes in this case and we
are done.

DEFINITION 5.4.14 (THE K;D4.3’ INFERENCE SYSTEM)
The KyD4.3’ Inference System consists of the classical resolution, factorization and paramodu-
lation rules together with the K¢ D4 Inference System and the following new inference rules:

_1R(Ot, /6)’ Cl
_'R('% 6)7 CZ
-R(oca,00),0C,0C,

where o is a K; T4 prefiz unifier of (v, )

_‘R(CY, /B)a Cl
_'R(77 6)a Co
0B =o0a,0C1,0Cs

where o is the most general unifier of (a, ) and (v, 5)

Note that the close relationship between KD4.3’ and K;D4.3’ is mirrored by the similarities
between the respective background theory saturations and the corresponding Inference Systems.
It is therefore not very surprising that the soundness and the refutation completeness proofs for
the K;D4.3’ Inference System are almost identical to the corresponding proofs in case of KD4.3".
We therefore omit such a repetition and just fix the final result in a theorem.

THEOREM 5.4.15
The K;D4.3’ Inference System is sound and refutation complete.

5.4.3 Linearity plus S4¢KD4

In the earlier sections concerning the linearity assumption we examined only rather simple modal
and temporal logics. Now before we start with the development of a resolution based calculus for
more complicated linear temporal logics we should try to find out how this linearity influences
the saturation of the background theory for “mixed” modalities in the sense of S4dKD4. To
this end we proceed as we did for the other logics we considered, i.e. we translate the Hilbert
style axiomatization into a set of accessibility relation properties, simplify this set if possible,
determine its saturation (under the semi-functional translation), and finally cast this saturation
into some suitable inference rules.

To this end let us first have a look at the full axiomatization of S4®KD4 under linearity
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(S4.30KD4.3’ in the sequel).

0¢ = &

0*e = O+

Q*ONQ*T = O (DA QD) VO (O*D A YD)

0% = 0@

0o = 0o

QPAQU = Q(PAQT)VO(RAT)VO(ODPAT)
0" < 0OPAD

The background theory induced by this axiomatization is then given by

R*(u,u:z*)
R*(u,u)
R*(u,v) A R*(v,w) = R*(u,w)
R*(u,v) AN R*(u,w) = R*(v,w) V R*(w,v)
R(u,u:x)
R(u,v) A R(v,w) = R(u,w)
R(u,v) A R(u,w) = R(v,w) Vv =wV R(w,v)
R(u,v) = R*(u,v)
R*(u,v) = R(u,v) Vu =v
Evidently, some redundancies are contained in this property set. So, for instance, the transitivity

of R* is not necessary since it follows already from the transitivity of R and the fact that R*
denotes the reflexive closure of R. Moreover, the right-linearity clauses can be simplified:

LEMMA 5.4.16
Under the connectedness assumption the right-linearity clause R* can be simplified to

R*(u,v) V R*(v,u)

and the right-linearity clause for R is redundant.
Proof: It is easy to check that

R*(u:z,v) V R*(v,u:x)
R*(u,v:z)V R*(v:z,u)
R*(u:z*,v) V R*(v,u: z*)
R*(u,v:z*)V R*(v:z*,u)

R*(u,v) V R*(v,u) =

Moreover we have that R*(¢,t¢) V R*(¢,¢) by the reflexivity of R* and we therefore get by a
simple induction that
R*(t:ZT,0:9) VR (1:7,1:T)

where 7,7 € (Fr U Fg+)*. Hence the connectedness assumption can be applied and we end
up with the linearity clause for R*

R*(u,v) V R*(v,u)

Now, two resolution steps between this linearity clause and R*(u,v) = R(u,v) Vu = v
result in
R(u,v) Vu=vV R(v,u)

and therefore the right-linearity clause for R is redundant.
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LEMMA 5.4.17
The saturation of the background theory for S4.30KD4.3’ is determined by

R*(u1,u2:%3) V R® (ug,u3:T3) V... VR® (up_1,un:T) V R® (up, u1 : 1)
withn > 1,7; € (FrU Fg-)* forall1 <i<mn
R(u1,u9:Z3) V R(ug,ug:T3) V...V R(up—1,Un:Tp) V R(tn, u1 : 1)
withn >1,7; € (FrU Fg«)* for all 1 <i <n, T; € (Fg-)* for some1 < j<n
R(ui,u2:T2:92) V...V R(Up—1,Un:Tr:Yn) V R(Un, u1 1 T1:91) Vu; 1 T = uj:T;
withn >1,1<4i,7<n,andTg:y; € (Fg+)* forall1 <k <n

where an R -literal arbitrarily denotes either an R- or an R*-literal.

Proof: It is easy to check (e.g. with the help of a standard theorem prover) that each clause of
the form
R (u,v) = R™ (u,w) V R™ (w, v)

which is not just R*(u,v) = R(u,w) V R(w,v) follows from the background theory. More-
over, it holds that each of the clauses

R™(u,v) = R™ (u,v:2™)

(unless it is R*(u,v) = R(u,v:z*)) also follows from the background theory. Both together
— in addition with the reflexivity of R* — therefore lead to any of the first two clause schemata
from above by a simple induction argument.

Similarly we can prove that any instance of the third clause schema is derivable. To this
end it suffices to show that

R*(u,v) = R(u,w) V R(w,v) Vu=w

holds within the background theory. This — together with R(u,v) = R(u,w) V R(w,v) and
R*(u,u) — then guarantees the derivability of

R(ui,u2) V... R(up,u1) Vus = ug
and therefore also of
R(ui,u2) V... R(up,u1) Vu; = uy

This results and the clause R(u,v) = R(u,v:z*) finally results in any instance of the third
clause schema.

In order to show that these schemata cover everthing that is derivable from the background
theory we have to check whether they are closed under

R(u,v) A R(v,w) = R(u,w)
R*(u,v) = R(u,v) Vu =
R(u,v) = R*(u,v)
This is trivial in case of R*(u,v) = R(u,v) Vu = v and R(u,v) = R*(u,v) and also very

easy whenever one of the first two schemata is involved. Remains to be shown that the
third clause schema is closed under transitivity. To this end let us abbreviate

R(u1,u2:T2:72) V...V R(up,u1 :T1:71)
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by ®; and
R(v1,12:22:22' ) V ...V R(vy,v1:21: 27 )

by ®2. Now let 0 = {v;/up+1:Trr1:Upr1) and let @3 denote®

R(ui,u2:T2:72) V...V R(ug—1,ur: T : Jg)V
R(ug+1,Uk+2:Thy2:Jhr2) V-V R(Un—1,Upn: T Tn) V R(tn,u1 1 T1:77)V
R(ug,vir1:Zi51:Zi01) V R(vig1,via2:Zi72: 2102 ) V.o .. V R(vp, v1: 21 : 217)V
R(v1,v2:23:23") V...V R(vj_g,vi—1:Z1—1:Z1—1") V R(vj_1,0(v;): Z: ")

®3 looks rather complicated but nevertheless it is pretty obvious that ®3Vu;, : Z;; = uj, 1 75,
belongs to the third clause schema. Now we perform two resolution steps between the
transitivity clause and both ®1 V u;, :Z;; = uj, : 75, and @2V v;,: 7, = vj,:Zj,. This results
in

@3V ui, 1 Ti) = ujy 1Ty V o(viy): Ziy = U(vh):%

which is subsumed by ®3 V u;, : 7;; = uj, :7;;. Hence, nothing new can be gained from the
transitivity and we are done.

Note that the third clause schema can equally be replaced by the two schemata
R(ui,u2:72) V R(ug,u3:93) V...V R(tun—1,Un:Yn) V R(tn,u1: 2177) Vur: 2] = g

R(ui,u2) V...V R(up,u1),us = uy

Both are instances of the third schema but also, both together imply every instance of the third
schema.

At this stage a little example seems convenient which shows how powerful the equality
introduction has to be in order to form a complete set of inference rules.

EXAMPLE 5.4.18
Consider the two unit clauses
=R(t:a,0:b:c*: d¥)
- R(1:b,t:a:€")
Informally they claim that ¢:a is later than or equal to v:b:c*:d* (v:a > v:b:c*:d* for short)
and that ¢:b > t:a:e*. We know that t:a:e* > ¢:a and that ¢:b:c¢*:d* > v:b. Therefore, if

one of the ¢*,d*, e* were not the identity on its argument then we would have a contradiction.
Thus we have that all of the following terms are equal

9V

*

ic
ot d*

~ & -~ o~ 0~

ST QR Q2

and we have to be able to derive this fact, or actually, we should be able to derive the empty
clause from, say, P(t:a:e*) and = P(s:b: c*). Obviously, the third schema from above covers all

8Note that a subscript of the form k + 4 is implicitly assumed to be modulo n and, similarly, a subscript of the
form ! + ¢ is implicitly assumed to be modulo m.



130 CHAPTER 5. THE LINEARITY ASSUMPTION

these possibilities. This shows that this schema is very powerful, but also that its transformation
into a suitable inference rule would open quite a big search space. However, if we used the
alternative equality introductions instead then there would be just two possible outcomes for
the first application, namely t:a:e* = t:a and ¢v:b: ¢ = ¢:b. These two equations reduce the
original set of unit clauses to

—R(t:a,t:b:d¥)

—R(:b,1:a)

P(i:a)

—P(¢:b)

Now a further equality introduction step can be applied to the first two R-literals, this time
with the result ¢:b:d* = ¢: b which further reduces the first unit clause from above, yielding
= R(::a,c:b). Up to now only the first of the two new schemata had come into play and what we
gained is a possibility to apply the second new equality introduction which results in ¢:a = ¢: b.
Now this — together with the two P-literals — immediately leads to the empty clause and we are
done.

What this example shows is that the alternative equality introductions make it possible to
get rid of unnecessary symbols step—by—step, whereas the more complicated clause schema which
we derived by saturating the background theory provides all possibilities at once (whether they
are needed or not).

In the above example we talked about inference rules as if we had them already. The way
how they ought to be defined should be obvious, however.

DEFINITION 5.4.19 (THE S4.30KD4.3’ INFERENCE SYSTEM)
The S4.30KD4.3’ Inference System consists of the S4DKD4 Inference System together with the
following inference rules

=R™)(a, By : B2), C1 where o = mgu(y, 1) and either
—R"(y,4),Cy B2 & (Fr+)* or at least one of the
-R*(ca,06),0C1,0C parent literals is an R*-literal

_'R(Cl, /81 : 132)3 Cl
_'R(’Ya 5)5 Co
-R(ca,06),0C,0C,

_‘R(Ot, /B)a Cl
_'R(’Ya 5)a 02
oca=o08,0C1,00C,

vhere @ =B (), (0,0)

Soundness and completeness is now proved along the lines of the corresponding proofs for
S4dKD4, S4.3 and KD4.3’.

LEMMA 5.4.20
The S4.3®KD4.3’ Inference System is sound.

Proof: Soundness of the third new inference rule follows immediately from the background
theory clause R(u,v) Vu=vV R(v,u).
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For the second new inference rule recall that any S4.3®KD4.3’ interpretation satisfies
R*(u,v) V R(v,u) as well as R(u,v) A R*(v,w) = R(u,w) and R(u,v) = R(u,v:T). Now
assume there were a S4.3®KD4.3’ interpretation which is a model for =R(oa, 0y: 032) and
- R(07,00) and which also satisfies R(oa,0d). This model would satisfy R*(¢d,07y) and
therefore also R(oa, o) and even R(ow,0y:T). But this contradicts the assumption that
the interpretation under consideration satisfies “R(oa, oy: 0f2) and therefore the second
new inference rule is sound.

Soundness of the first new inference rule follows analogously; the proof is just as easy as for
the other rules and is therefore omitted here.

The first of the three new inference rules might require a little bit of an explanation. The
remarkable thing about it is that an R*-literal gets derived even though the parent clauses do
not necessarily contain R*-literals. In this case, however, this inference rule can only be applied
if one of the elements of (2 belongs to the functional decomposition of R. Now, this rule is
supposed to reduce a potential proper cycle by one, i.e. to some extent it has to simulate the
first of the clause schemata that have been derived for S4.3®KD4.3’. Now consider the possible
instances of this very schema in which no R*-literal occurs and for all but one, say L, of the
sequences it is the case that every decomposition term consists of elements from Fr«. The rule
might now be applied to L and another clause and if we did derive a R-literal instead of an
R*-literal we would not be able to detect that we are actually dealing with a proper cycle instead
of one that induces some equality. Deriving the R*-literal safes us from such a mistake.

LEMMA 5.4.21
The S4.30KD4.3’ Inference System is refutation complete.

Proof: Ground completeness can be shown along the lines of Section 5.4.1. I.e. it has to be
shown that a S4.3@KD4.3-unsatisfiable set of unit clauses can be refuted and that the
application of any inference rule does not increase the number of unsolved paths through
the unsatisfiable clause set under consideration. Therefore any not yet solved path can
eventually be refutes and hence the number of unsolved paths is eventually decreased which
means that a (classically) unsatisfiable set of clauses can be derived. Since every (classically)
unsatisfiable set of clauses can be refuted the empty clause can be derived from an arbitrary
S4.3® KD4.3-unsatisifiable set of ground clauses then. Now, showing that no inference rule
application does increase the number of unsolved paths is in fact very easy and can be
exemplified on one of the new inference rules (the corresponding proofs for the other new
inference rules are similar). Let us consider the two clauses in the given clause set

_'R(*) (CV, B: ’7)7 C{
=R (8,6),C

with further clauses Cs, ..., Cy, such that the first new inference rule can be applied (i.e.
either there exists a ; € Fr or at least one of the two R™)literals is in fact a R*-literal).
Let (Ly,... ,L,) be an aritrary path through (C1,... ,Cy). The result of applying the first
new inference rule to C; and Cy then is

Cnt1 = ~R*(a,0),C1, C;

Evidently, if L1 € C] or if L,41 € C] then each path (Li,..., Ly, Lyy1) is covered by
(L1,... ,Ln,L1) ((Lpt1,--- , Ln, Lnt1) respectively). Also, if Ly € C} or if L,y € Ch then
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each path <L1, LQ, cee ,Ln, Ln—|—1> is covered by <L1, LQ, cee ,Ln, L2> (<L1, Ln—|—1; .. ,Ln, Ln—|—1)
respectively). In all other cases (L1,...,Ly) is just extended by —R*(a, d) and therefore
the number of unsolved paths in not increased.

In order to show that a single S4.3®KD4.3-unsatisfiable path can be refuted consider
L = (Ly,...,L,). If £ is classically unsatisfiable then there is no problem. Therefore
assume that £ has a classical model but nevertheless is S4.3®KD4.3-unsatisfiable. W.l.o.g.
we can assume that any equations in £ can be ignored (they can be used to reduce the literals
and we can assume that all possible reductions have been performed). By assumption there
exists a finite number of instances of the clause schemata such that £ together with these
clauses is classically unsatisfiable. If no instance of the third clause schema is needed then
there is no problem at all. Hence assume that at least one instance of the third clause schema
is required in order to (classically) refute L. It suffices then to show that an equation can be
derived since such an equation can be used to reduce the literals in £ and this can happen
only finitly often so that — eventually — no further instance of the third clause schema is
required. Recall that an equation can be derived if there is an instance of the third clause
schema, say C, such that for every R-literal in C the respective complement is contained
in £. Now assume that no such C does exist. Then each instance (and there is at least
one) of the third clause schema contains an R-literal whose complement is not contained
in L. Hence, if we extend L by each such element we obtain a (classically) satisfiable path
through a (classically) unsatisfiable set of clauses which is impossible. Therefore at least
one equation can be derived and we are done.

5.5 More Linear Temporal Logics

The construction of an inference system for S4.3®KD4.3’ marks a main step towards the
resolution-based inference system for the first-order linear temporal logic we are interested in.
Recall that we have to be able to deal with past operators as well as future operators and that
in both versions of either excluding or including the present. Also there might occur other op-
erators like the Always but this operator does not bother us too much for we have found out
already that the saturation of the Always results in the universal accessibility relation and hence
there are no complications to be expected.

5.5.1 The Temporal Logic K;T4.3®¢K;D4.3’

We are now at a stage where it is possible to introduce the most complicated of the temporal
logics we want to consider, namely the temporal logic with past and future operators (both
proper and not proper) and linearity in all its possible occurrences. The corresponding back-
ground theory will be the most expressive and complicated one we consider. And although some
of the operators that have been introduced in the introductory chapter are not yet contained in
this logic the background theory will not change later on.

The axiomatization of (the propositional fragment of) this temporal logic is fairly complicated
but should not be omitted at this point (see Table 5.1). This axiomatization can be viewed as
a piece-by-piece axiomatization of the temporal logic we are interested in. Some of the axioms
above are in fact redundant, nevertheless this axiomatization covers what one might have in
mind when thinking of a temporal logic based on these operators.
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[F.® = &
(], @ = [£],[5],. @
NG T = O, DAT)V O (DA, T)
the S4.3 future fragment
Fo = &
[F1® = [FI[F®
GOINGTU=HOIAD)VH@AT)VEH@AD D)
the KD4.3’ future fragment
[£,® < [P AP
the combination of future operators
&= &
[ ® = [}[7}.®
O, ONQ T = O (O, PAT)V OB A D, T)
the $4.3 past fragment
Flo =&
[F]® = [¢][¢]®
GOINQPT=QOIANT)VO(BAD)VO(@AD D)
the KD4.3’ past fragment
(e < FldA D
the combination of past operators

¢ = [, ®
® = .69
o=[FO
d=[FOd

the past—future relation

Table 5.1: K;T4.3®0K;D4.3’ Axioms
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Now we should have a look at the “Earlier-Later” properties that are induced by this axiom-
atization. First we note that the final two axioms from above again guarantee that the (proper)
“Earlier-Later” is just the converse of the (proper) “Later-Earlier”. We make use of this fact
by considering only the (proper) “Earlier-Later”; describing the corresponding properties of
the other relation in terms of this one. Note that in the following set of accessibility relation
properties the symbol R* refers to the operator [Fl. and R to [Fl.

R*(u,u)

R*(u,u: z%)

R*(u:zp,u)

R*(u,v) A R*(v,w) = R*(u,w)

R*(u,v) AN R*(u,w) = R*(v,w) V R*(w,v)
R*(u,w) A R*(v,w) = R*(u,v) V R*(v,u)
R(u,u:xF)

R(u:zp,u)

R(u,v) A R(v,w) = R(u,w)

R(u,v) A R(u,w) = R(v,w) Vv =wV R(w,v)
R(u,w) A R(v,w) = R(u,v) Vu=vV R(v,u)
R(u,v) = R*(u,v)

R*(u,v) = R(u,v) Vu =0

This clause set is quite complicated. However, as already mentioned earlier, there are some
redundancies that can be eliminated and, moreover, further simplifications are possible which
make use of the connectedness assumption.

LEMMA 5.5.1
The K;T4.3®K;D4.3’ background theory consists of the following set of clauses:

R*(u,u: z%)
R*(u: %, u)
R*(u,v) V R*(v,u)

Proof: This could be checked with any standard theorem prover provided it has been shown
already that the various linearity properties can be simplified to R*(u,v) V R*(v,u) and
R(u,v) Vu = vV R(v,u) respectively. The proof of this fact is exactly as for the temporal
and modal logics we considered earlier and is therefore omitted here.

What the other “missing” properties is concerned: they can easily be proved from the
ones given here. So, for instance, reflexivity of R* follows immediately from the strong
linearity of R* and the linearity of R can directly be derived from R*(u,v) V R*(v,u) and
R*(u,v) = R(u,v) Vu = v. Finally, the transitivity of R* follows from the transitivity of
R and the fact that R* denotes the reflexive closure of R.
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LEMMA 5.5.2
The saturation of the K;T4.3®0K;D4.3’ background theory is determined by

R*(u1:Z1,u2:72) V - .. VR® (up_1 : Tty Un : Tn), R (up : Ty, w1 1 77)
withn > 1 and 7; € (Fg, UFR*P)*, Ui € (Frp U FR*F)* foralll <i<mn
R(ui:ZT1,u2:92) V...V R(Up—1:Tpn_1,Un: Un) R(tn: Tr,u1:77)
withn > 1 and T; € (FRP UFR*P)*, Y; € (FRF UFR})* foralll <i<n
but T; ¢ (Fr,)* or g; & (Fr,)* for some 1 <i<mn
R(ui:Z7: %17, u0:52: 92 ) Voo . V R(Un: T T, un s Y1) VU T = 02
withn > 1 and 7;:7;' € (Fg;,)* and 7;: ;' € (Fgy,)*

Proof: Can be performed exacly as in the corresponding proof for the logic S4.3¢KD4.3’ in

Lemma 5.4.17 on page 128. The only particularities are that — in addition — clauses of the
form

R(u,v) = R(u:Z,v:7) with 7 € (Fg, U FR},)* and y € (Fg, U FR})*
can be derived from the background theory; all the rest remains essentially the same.

Note that here — just as in case of S4.30KD4.3’ — the third clause schema could equally be
replaced by two less general schemata. We shall make use of this in the definition of the
K;T4.3®0K:D4.3’ Inference System.

DEFINITION 5.5.3 (THE K;T4.3®K;D4.3’ INFERENCE SYSTEM)

The K;T4.3®K;D4.3’ Inference System consists of the Ky T4®K,D4 Inference System together
with the following inference rules

where o = mgu(y1, 1), B2 € (Frp U FR)",
Y2 € (Frp U Fgs,)* and either

B2 & (Frp)* or vo & (Fr,)* or at least

one of the parents is an R*-literal

_'R(*) (OA, ﬂl . BZ)a C’1
_'R(*) ('71 2, 5), 02
-~R*(oa,06),0C,0C,

_'R(aa ﬂl : BZ)a C’1
—R(y1:72,0),C
—R(oca,06),0C1,0C,

_'R(Oé, /3)3 Cl
_'R(77 5), 02
ca=0cf8,0C1,0Cy

A

THEOREM 5.5.4
The K; T4.30K;D4.3’ Inference System is sound and refutation complete.

Proof: In full analogy to the corresponding proofs of Lemmata 5.4.20 and 5.4.21.

5.6 Until and Since-Operators

The temporal logics examined so far can all be viewed as certain special multi-modal logics since
the operators under consideration are in fact modal O and ¢ operators (though we had several of
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them). Now point oriented temporal logics differ from modal logics in two respects. First, there
are some particular accessibility relation properties like the linearity which seldomly occur with
other interpretations than the temporal one, and second, there are certain temporal operators
which wouldn’t make much sense in a general modal logic setting. Two of the most interesting
of such operators are the Until and the Since as they are described in the introductory chapter
on temporal logics. Both of these operators (and their respective variants) are not definable in
terms of the other temporal operators we examined up to now”. Nevertheless, their semantics
can be described in terms of the “Earlier-Later” relation and therefore it is also possible to define
the relational translation for these operators:

[@U V], = FvR(u,v)A[T], A

Vw R(u, w) A R(w,v) = [®]4
[®S¥], = FvR(wu)A[¥], A

Vw R(v,w) A R(w,u) = [®]y

Also, it is pretty easy to find the semi-functional translation for these operators, namely

U VY|, = 3Fzr [V]y:zr A
Vw R(u,w) N R(w,u:zp) = | D]y

SV, = Fzp |[¥V]y.zp A
Vw R(u:xzp,w) A R(w,u) = |P]q

And indeed the semi-functional translation for such positive occurrences of the Until and Since
operators result in formula without any positive R-literals and this was one of our main require-
ments for the saturation method to be applied.

Unfortunately, some complications arise when such an Until or a Since formula occurs within
an odd number of negation signs. From the view of the pure relational translation approach
there are still no problems for the negation can be moved inward the first-order formula just as
usual. In the semi-functional translation approach, however, we end up with something like

[~(®¢UV)], = VYvR(u,v)=["¥], V

Jzp R(u:zp,v) A 7Py zp
[-(®S¥)], = VYvR(v,u)=|-¥], V

dzp R(v,u:zp) A 7P|y 2p

i.e. there are still positive occurrences of R-literals remaining and this seems to be somewhat
perturbing.

A way to overcome this problem is to change the definition of the Until and the Since slightly
such that the translation of such negative occurrences does not produce any positive R-literals
and the general idea behind this little change is the equalization of R*(«, #) with = R((3, @) under
the linearity assumption. The semi-functional translation then gets

[-(®U V)|, = Vv R(u,v)=|-¥], V
Jzp _'R*(U,’W iUF) A L_‘(I’Ju:wF

Yo R(v,u) = [-¥], V
Jzp “R*(u:zp,v) A [7P]y:zp

Lﬁ(é S \P)Ju

9This was already shown by Hans Kamp in (Kamp 1968).
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and the original requirement is saved. However, there remains the question to be answered
whether we are really allowed to do this since in the given properties of the R predicate it
is nowhere stated that R is irreflexive and this irreflexivity seems a crucial property for the
equalization of the two possible not- Until translations. In fact we are not even able to guarantee
irreflexivity because this (purely negative) property is not axiomatizable as has been shown
in Section 3.6. Nevertheless, we are allowed to change the definition, for the problem is not
really found in the fact that irreflexivity cannot be axiomatized but the in reason why this is so.
Recall that we found out in Section 3.6 that any purely negative accessibility relation property
that is at all consistent with the other given accessibility relation properties has no effect what
the satisfiablity and the unsatisfiablity of a modal or temporal logic formula is concerned and
therefore cannot be axiomatized. In particular this means that adding the irreflexivity or not
makes no difference; modal and temporal logics cannot distinguish. In this light we may assume
that R is irreflexive and therefore we are allowed to perform this tiny change in the translation
of a negative Until-formula.

To state it otherwise, suppose we had defined a new (kind of negative Until) operator, say
® U T, in the above sense, i.e. which gets translated into

|®UV|, = Vo R(u,v)=|-¥]|, V
Jzp “R*(v,u:zp) A =Py zp

In order to shown that there is no essential difference between the —=U and the U we consider
the property that characterizes the axiom schema,

~(®dUV) = (@TD)

and we do so by applying the second order quantifier elimination technique from Section 3.1.2.
To this end we have to negate the axiom schema (better the two implication directions) and
therefore try to find a first-order equivalent for both ~«(® U U) A ~(dU¥) and DU T AP U ¥
with existentially quantified ® and ¥ respectively. So, let us first have a look at PU T AP U T
which gets (relationally) translated into

Jv R(u,v) A ¥(v) AVw R(u,w) A R(w,v) = ®(w)
Ju, ®, U A
Vo R(u,v) A ¥(v) = Jw R(u,w) A ~R*(v,w) A ~®(w)

First we try to eliminate the W. To this end the above formula is transformed into

Vo =¥ (v) V ~R(u,v) V 3w R(u,w) A ~R*(v,w) A ~®(w)
Ju, @, ¥ A
Vo R(u,v) A ¥(v) = Jw R(u,w) A —~R*(v,w) A ~®(w)

which is equivalent to (according to the quantification elimination theorem)

R(u,v)
A
Ju, ®,v | ~R(u,v) V Iw R(u,w) A ~R*(v,w) A ~®(w)
A
Vw R(u, w) A R(w,v) = ®(w)
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This can slightly be simplified and, since we intend to eliminate the ® as well, has to be trans-
formed into
VYw ®(w) V = R(u,w) V ~R(w, v)
A
Ju, ®,v R(u,v)
A
Jw R(u,w) A ~R*(v, w) A ~®(w)

A second application of the elimination theorem then results in
Ju,v,w R(u,v) A R(u,w) A =R*(v,w) A =R(w,v)
Thus the original implication ® U ¥ = —(® U ¥) is characterized by the first order formula
Vu,v,w R(u,v) A R(u,w) = R*(v,w) V R(w,v)

a formula that is not only consistent with the background theory we are considering but even is
implied by it.

Next we have to proceed analogously for the other direction of the given equivalence, i.e. we
try to find a first-order equivalent to —(® U ¥) A —(® U ¥) with existentially quantified ® and
W. Relational translation results in

Vv R(u,v) A ¥(v) = Jw R(u, w) A R(w,v) A ~®(w)

Ju, @, ¥ A
v R(u,v) A ¥ (v) AVw R(u,w) A =R*(v,w) = ®(w)

Eliminating ¥ then leads to

Jv R(u,v)
A
Ju,® | —=R(u,v) V Iw R(u,w) A R(w,v) A =®(w)
A
Vw R(u,w) A =R*(v,w) = ®(w)

which can be transformed into

Vw ®(w) V ~R(u,w) V R*(v,w)
A
Ju, v, P R(u,v)
A
Jw R(u,w) A R(w,v) A ~®(w)

Now we can eliminate the ® and we end up with
Fu, v, w R(u,v) A R(u,w) A R(w,v) A R*(v,w)
Thus the given implication —=(® U ¥) A ® U ¥ is characterized by
Vu, v, w = R(u,v) V-R(u,w) V-R(w,v) V-R*(v,w)

a formula that is consistent with the background theory under consideration and moreover that
is purely negative.
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We thus may use ® U ¥ whenever there occurs a ~(® U ¥) provided we add the characteristic
formulae just obtained. However, the first of these two formulae was implied by the background
theory anyway and the second is purely negative. Therefore both cannot play any role what the
(un-)satisfiability of translated temporal logic formulae is concerned and hence are redundant.
The same result can be obtained for the other possible Until-operators and also for the
various Since-operators and we finally can conclude this section with the following lemma.

LEMMA 5.6.1
The negation normal form for =(® U ¥) is ® U ¥’ where ® (V') denotes the negation normal
form of =® (- respectively).

This way the semi-functional translation of any temporal logic formula results in a first-order
formula which does not contain any positive R— or R*-literal.

Note that this construction absolutely requires the linearity assumption. Otherwise, the first
of the two characteristic properties we obtained by second-order quantifier elimination would
have to be added to the background theory and this would inevitably have a considerable effect
on the saturation process.
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A Short Digression
to Interval Logics

The basic entities of the temporal logics we considered up to now were time instants and various
Earlier-Later-relations. This choice is certainly not the only possible. We might equally think
of temporal intervals and suitable relations between these. Still, even after we have made a
decision for the one we do not really exclude the possibility of talking about the other. So, for
instance, we might view intervals as convex sets of instants or instants as indivisible intervals.
The latter is commonly used in the field of processes, actions and events which are assumed
to have a certain duration in the sense that an event which occurs in some time interval does
not occur in any of its subintervals. The other possibility also occurs frequently. Even if
there is no real interest in talking about instants explicitly, intervals are represented by an
ordered pair of instants which is to be interpreted as the set of moments that ezist between
these two instants (see e.g. (Allen 1981b), (Allen 1983), (Allen 1984), (Allen and Hayes 1985a),
(Allen and Hayes 1985b), (Allen and Hayes 1985c), (Allen and Hayes 1987), (Allen 1981c),
(Allen 1981a), (McDermott 1982), (Halpern and Shoham 1986), (Shoham 1987), (Shoham 1986),
(Shoham 1988) on both issues?).

In this chapter I will briefly describe how the techniques devoloped in the earlier sections
can be utilized for both, intervals as basic entities and intervals as convex sets of instants.

!One might also consider other possibilities. So, for instance, one might think of events as the basic primitives
together with some causality relation and define both intervals and instants in terms of causal relationships
between events. In (Winnie 1977) instants are defined as mazimal sets of pairwise simultaneous events where two
events are simultaneous if neither is a (direct or indirect) cause of the other. In this sense an interval could be
defined as a subset of an instant.
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6.1 Intervals as Convex Sets of Instants

A first very simple way of talking about intervals in a point oriented setting would be to translate
operators of the kind (L) with the intended meaning: (L)® iff there ezists a future interval —
i.e. a convex set of later instants — such that ® holds in every moment of this interval, in terms
of Until and Since operators. For the above operator (L) this would mean:

(L)®u = |O(@UT)]y

The disadvantage of this approach is that formulae are still to be evaluated with respect to
single moments of time and therefore processes and events cannot be represented. For instance,
if ® describes the event I am walking from the bus stop to the cinema and if ® indeed holds for
a certain time interval then it would not make very much sense to interpret this as ® holds in
every moment of this interval. One might accept that I am walking on every such moment but
certainly not that I am walking from the bus stop to the cinema on every such moment.

Therefore, if we want to use intervals as the primitives we talk about but nevertheless want
to represent intervals by means of instants and Earlier-Later-Relations we are forced to change
the temporal logic semantics slightly. Fortunately, this change is not very difficult. It mainly
consists of exchanging the current instant by a pair [t1,t2] which is supposed to represent the
current interval and to interpret (and thus also to translate) formulae with respect to such pairs
of instants. All the rest essentially remains as before.

Now let us assume a set of modalities in the sense of (Allen 1984) and (Shoham 1988), i.e. we
assume the Diamond-operators (M), (B), (E), (M), (B), and (E), with the intended meaning

—~

M)® @ holds at some interval beginning immediately after the current one

(B)® @ holds at some interval during (and beginning with) the current one
(E)® & holds at some interval during (and ending with) the current one
(M)® @ holds at some interval ending immediately before the current one
(B)® @ holds at some interval of which the current one is a beginning

&l

)® @ holds at some interval of which the current one is an end

A possible semi-functional translation into first-order predicate logic could then look like this:

LP(--.sarg,-- ) =  Pltite,. .. larg ] ) ---)
(M)®@] 1, 1] = Jzr [Pl i 00

(B)®][1,,1] = dzp -R*(to,t1:2%) A [P [t1,t1: 2%)]
L(EY® ] 1t,20] = Jzp 2R (t2,t1:2F) A [Py 05 0]
L(M)®] 4, 0] = Jzp [Pt ap,t)

L(E)‘I)J [t1,t2] = Jzr [P] [t1,t2:zF]

L<F>‘I>J [t1,t2] = Jzp D] [t1:zp,t2]

The respective translations of the corresponding dual operators should be obvious. For example
the operator [M], i.e. the operator which is dual to (M), would have to be translated into

M@ ], 1) = Y ~R(u, 1) V [ @[y 1]

Note that many other interesting interval operators can be described with the help of the above

primitive operators. As an example consider the operator (D) such that a formula (D)® has
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the informal meaning: ® holds in a proper superinterval of the current interval. This operator
can easily be defined by

(D)® < (B)(E)®

such that it is to be translated into

L<E>(I)J [t1,t2] — zp,yr LCI)J [t1:zpsta:yr]

An adequate background theory for the R-predicates is then K;T4.3¢ K;D4.3’ and the inference
system for this logic forms a sound and refutation complete inference system (under the above
translation) for the given interval logic.

6.2 Intervals as Basic Temporal Entities

As it has been mentioned in the introductory chapter on temporal logic the achievements gained
in the area of interval logics have not yet gone as far as for instant temporal logics at least what
a Priorian setting is concerned. I.e. that the Priorian principle of considering basic temporal
entities as primitives for the interpretation of certain temporal operators has not been taken
over in many interval logics that occur in the temporal logic literature.

The interval logics that are examined in this section are the ones presented in (Humberstone
1979) and (van Benthem 1990). The basic entities are intervals rather than instants and the
operators as they have been used in the instant temporal logics are taken over in order to be
able to express an ordering on such intervals. Whereas instants were intuitively assumed to be
indivisible primitives such an assumption cannot be made for intervals with a clear conscience.
I.e. in addition to the temporal order, as it has been examined for instant temporal logics, there
is a need for representing subintervals. As a matter of fact nothing prevents us from introducing
new operators whose semantics is defined in terms of such subinterval relations and this is exactly
what Humberstone and van Benthem did in their examinations.

The main idea behind the formal semantics definition for interval logics is thus to assume
frames which consist of intervals instead of instants and a temporal as well as a subinterval rela-
tion on such primitives. However, an immediate complication arises when it becomes necessary
to define what it means that a certain formula ® holds over an interval I. It has to be agreed
whether this means that ®’s truth stretches over the interval or not. Humberstone indeed made
the assumption that @ is true over an interval if and only if @ is true throughout this interval
although this is a rather intuitive interpretation for it is not obvious what “throughout an in-
terval” could possible mean. Since we are not able to talk about the elements of an interval in
the sense of moments in time such a description remains pretty vague. Another problem which
immediately came into Humberstone’s mind was about the interpretation of the negation —. If
= is to be interpreted classically, then —® holds over an interval iff it is not the case that ® holds
over this very interval. This is definitely weaker than stating that @ is False throughout the
interval and there seems no obvious solution to the problem of being able to express complete
absense of ® on an interval. Humberstone’s idea to cope with this difficulty was to introduce
another strong negation (called NOT by van Benthem) with some intuitionistic flavour and he
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axiomatized this new operator by?

FNOT® = —-®
if FNOT® = -V then F NOT® = NOT U

This axiomatization is not quite given in a Priorian style but it can be reformulated in terms of
Priorian operators if we define

Q] EOc®  iff Q€] =@  for every subinterval £ of 7

Then a formula NOT @ can be represented as [lc—® where the — remains classical and the
above axiomatization gets reformulated into

FOc® = @
if FO-® = U then - Oc® = OV

What the first part of this axiomatization is concerned: we are already familiar with such a
schema for it obviously amounts to the reflexivity of the subinterval relation. The second part,
however, still looks rather unusual although, as we see below, it merely describes transitivity.

LEMMA 6.2.1
The Hilbert style rule
if FO® = ¥ then 0@ = OcW

characterizes the transitivity of the subinterval relation.

Proof: This is another case for the second-order quantifier elimination. Suppose that - O-® =
U but not - O-® = OV for some ® and U, i.e.

36, U A
Fu |[Oc® A OV,

where the translation function | |, is to be defined as for the relational translation for
instant temporal logics by

0
M
&
N

|

Yov Eu= [P,
FvvCuA [P,

>
M
i
)

|

We thus get
Vu U(u)VIvv CuA-P(v)
36, ¥ A
Ju (Voo Cu= @(v)AJwwCuA-¥(w))

Now the Elimination Theorem of Section 3.1.2 can be applied and this results in
Yo v Cu= ®(v)

Ju 3@ A
Jw,v' w CuAv CwA—-2(v))

2 Actually, instead of an axiomatization, Humberstone defines natural deduction sequents for the operators to
be introduced. The rules given here are therefore rather “translations” from Humberstone’s original formulation
into a Hilbert calculus.
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A second application of the Elimination Theorem then leads to
Ju,v,wvCEwAwCuAvZu

and since the original input had to be negated we have to negate once again and we end up
with
Yu,v,wuEvAvCw=uCw

Hence, instead of the Hilbert rule
if FO-® = ¥ then 0@ = Oc¥
we can alternatively switch to the axiom schema
Oc® = 009
without causing any difficulties. Note that this result could also be obtained as follows:

e F Oc-® = OO @ follows from the rule by letting ¥ be - 9®.

e On the other hand, if we have that - Oz ® = OcUc-® then the rule can be derived from
the axiomatization, for assume that we have - O-® = ¥. From this we can show (with
necessitation rule amd K-axiom for O plus Modus Ponens) that - O-0O-® = O .
This — together with - O-® = OO ® and standard propositional calculus — then yields
F0Oz® = O ¥ and we are done.

In particular this means that a completeness result under - O-® = O-0Oc® also serves as a
completeness result under this rule.

Quite a big part of Humberstone’s interval logic is axiomatized now, however, it should be
evident that still something is missing, namely a correlation between the temporal order opera-
tors and the subrelation operator. The mixing postulates as they are suggested by Humberstone
are

®d=>NOT-Hd
®-NOT® = @

and in terms of the [ operator these can be reformulated as

Go=>0-0
OOcd= 0

where this second schema is equivalent to
®d=>0-0

These axioms suit our intuition that any interval later (earlier) than the current interval is also
later (earlier) than an arbitrary subinterval of the current interval. Moreover, these schemata
guarantee that “later” intervals cannot overlap with the current interval.

Now we have reached a stage were we can define a minimal interval logic (which van Benthem
called K;) by



146 CHAPTER 6. A SHORT DIGRESSION TO INTERVAL LOGICS

DEFINITION 6.2.2 (VAN BENTHEM’S MINIMAL INTERVAL Logic Kj;)
The minimal interval logic K; is aziomatized by the minimal temporal logic Ky together with the
necessitation rule and the K-Aziom for Oc and the azioms

O-®= @
Dgéiugmg(ﬁ
®©o=0-0
®d=0-

Van Benthem also defines the logic K, which in addition contains the axiom [F]® = [F][F]®,
hence assumes transitivity of the Earlier-Later relation. In what follows we shall examine a
resolution based calculus in the lines of the earlier chapters for both K; and (slightly modified)
K.

LEMMA 6.2.3
The K; background theory (in light of the semi-functional translation) is given by

uCu

urzc Eu
uCoAvCw=ulw
Nr(u) = R(u,u: zF)
Np(u) = R(u:zp,u)
R(u,v) Aw C u = R(w,v)
R(v,u) ANw C u= R(v,w)

where it is already taken into account that the Later-FEarlier relation can be described in terms

of the Earlier-Later relation.

Proof: The top five of these clauses are obvious. Note that in K; neither the seriality of Rp
nor of Rp is assumed; therefore the “normality” predicates have to be introduced. The
other two can be shown by an application of the Elimination Theorem. Since the respective
proofs of the two clauses are very similar it suffices to go through one of the two here.

Consider the axiom ¢ ® = ([ ® ®. After negation and relational translation we get

Jv R(v,u) A ®(v)
Fuid A
Jw w C u AVz R(z,w) = ~®(x)

This has to be brought into the form that fits with the requirements of the Elimination
Theorem, thus
Vy (y) Vy # v
A
Ju3id R(v,u)
A
Jw w CuAVz R(z,w) = -®(z)

Now the Elimination Theorem can be applied:
Ju,v R(v,u) AJww CuAVz R(z,w) = z #v

and after a tiny simplification and a final negation we end up with the last one of the clauses
from above.
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According to the techniques developed for modal and (instant-based) temporal logics the satu-
ration of the respective background theories has to be determined now.

LEMMA 6.2.4
The saturation of the K; background theory is described by

u:T Cu
Np(u) = R(u:T,u:yrp:2)
Np(u) = R(u:yp:T,u: %)

with T,z € (Fp)*.

Proof: From «:Z C u and the transitivity of C it follows immediately that © C v = u: 2z C v.
By a trivial induction over the length of T we get that every unit of the form u:Z C u can
be derived. Moreover, no other C-literals are derivable for this could only happen with the
help of the transitivity clause. However, any resolution step between the transitivity clause
and the unit schema u:T C u produces literals that are already in the form u: 7 C u.

The two monotonicity clauses can therefore be simplified to

R(u,v) = R(u:T,v)
R(u,v) = R(u,v:T)

from which the other clause schemata follow by some simple resolution steps. Furthermore,
no resolution step between these schemata and the simplified monotonicity clause leads to
anything new and we are done.

Interestingly, we would obtain the same result if we chose the schema O [F]® = [F]0-® instead
of the two monotonicity axioms.

LEMMA 6.2.5
The axiom schema

Oc[He = O

characterizes both forms of monotonicity at once.

Proof: We determine the first-order equivalent of {r [F]® = [F]O-® by applying the Elimina-
tion Theorem. To this end consider the negation and relational translation of this schema.

Jv v CuAVw R(v,w) = ®(w)
Ju3d A
' R(u,v") A Jw' w' E o' A =®(w')

After some simple transformations the Elimination Theorem can be applied and we get
Fu,vv Cu AT Rlu,v') AJw w' C o' A-R(v,w)
The final negation then leads us to
Vu,v,w,z R(u,v) A\w CuAzCv= R(w,z)

which obviously is equivalent (under the reflexivity assumption for C) to the conjunction
of the two monotonicity properties.
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Since we know now about the saturation of the K; background theory it might be worth having
a look for alternative clause sets with an identical saturation.

LEMMA 6.2.6
The saturation of the clause set

ulCu

urzrc Eu

ulv=uzc Lo
Nr(u)AwCuAvCu:zp = R(w,v)
Np(u) A wCu:zp Av Eu= R(w,v)

is identical to the saturation of the K; background theory.

Proof: Follows immediately by a simple induction argument.

This alternative clause set is interesting for two reasons. First, and not very surprising, C turns
out to be an S4 relation and second, the clauses containing an R are not recursive, i.e. they
behave essentially like unit clauses. Hence, an inference system for K; can easily be obtained by

LEMMA 6.2.7
If ® is a K;-unsatisfiable formula in negation normal form then

1], U Nr(u)AwCuAvCurzyp = R(w,v)
T Np(u)Aw Cu:zp Av Eu= R(w,v)

can be refuted by resolution, factorization and the rule

a:fLy,C
oC

where o is the most general unifier of o and vy, and § € (F¢)*.

The formula translation is thereby defined as:

[Oc®]u
LOE(I'Ju

Yov Cu= [D],
JzeFr [Py

The other cases remain as before.

Proof: O is an S4 operator. The proof thus works exactly as the corresponding proof for the
S4 Inference System.

Now let us have a look at K, i.e. K; with the additional assumption of transitivity for
the Earlier-Later relation. However, I would like to modify K, slightly for simplicity reasons.
Recall that in the semi-functional translation method we prefer serial modalities over non-serial
ones because of the annoying Normality predicates which cover the cases of non-normal worlds.
Therefore let us assume seriality, and the interval logic we are considering, which we call Kj in
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the sequel, is thus axiomatized by

Fo= o
EFo = [F[FP
Floeo= @0

Fl® = [¢][¢]®
O-® = &
Dgéiugmg(ﬁ
OE (I) = Dgé

and the background theory we obtain from this axiomatization is

u:zrc Eu
uCvAvCw=ulw
R(u,v) Az CuAy Ev= R(z,y)

where again it is already taken into account that Rp can be described in terms of Rp by
Rp(u,v) & Rp(v,u). Now, saturating this background theory is not a very difficult task.

LEMMA 6.2.8
The saturation of the K background theory consists of all unit clauses of the form

uw:T Cu with T € (Fp)*

R(u:zp:J,u:Z) withy € (Fr U Fg,)*
R(u:y,u:zp:Z) andZ € (F- U FR,)*

Proof: For the first clause schema this should be obvious. For the others note that the clauses
R(u,v) =

can be derived from the background theory. By induction it then follows that
R(u,v) = R(u:7,v:%)

with § € (Fc U Fg,)* and Z € (Fr U Fr,)*. The two R-schemata can then be derived by
performing a resolution step with the R-unit-clauses from the background theory.

In order to show that no more clauses are derivable it suffices to resolve the schemata with
the transitivity and the monotonicity clauses. This is trivial in case of the C predicate. The
transitivity of the R predicate works almost as easy. We illustrate this for the case where
we only consider the schema R(u:g,v:zp:Z) A first resolution step results in

R(v:zp:Z,w) = R(v:g,w)
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with Z € (Ft UFR,)* and § € (F- UFR,)*. A further resolution step with R(u:y,v:zp:Z)
is only possible if u gets instantiated with v:zp:Z7. The resulting unit clause fits the
pattern of the second clause schema and thus the transitivity of the R predicate is shown
redundant. The monotonicity clause causes even less problems. It merely adds further Fi-
variables to either argument of an R predicate and therefore produces nothing new.

The simplicity of the K background theory immediately gives rise to the following inference
system.

DEFINITION 6.2.9 (THE Kj INFERENCE SYSTEM)
The K Inference System consists of the classical resolution and factorization rule together with

a:fZ~,C where o = mgu(a, )
oC and B € (Fp)*

-R(a:f,7:6),C where 0 = mgu(c,),8 € (Fc U Fg,)*,6 € (Ft U Fr,)*
oC and either 3 starts with a Fg, term or § starts with a Fg, term

-R(a,u),C
Cg:mp
provided u does not occur in o
-R(u,a),C
Cg:wp

LEMMA 6.2.10

The Kj, Inference System is sound.

Proof: this follows trivially from the fact that every application of one of the two new inference
rules corresponds to a resolution step with an instance of the background theory saturation
and thus corresponds to a sequence of resolution steps with the Kj background theory
clauses.

LEMMA 6.2.11
The K, Inference System is refutation complete.

Proof: Evidently, it is possible to derive a single Kj-unsatisfiable clause C from an arbitrary
K;-unsatisfiable set of clauses. Now consider a minimal unsatisfiable ground instance oC' of
C. If none of the steps in ¢C can be lifted then each literal in C' contains an overestimated
variable. In analogy to the refutation completeness proof for the S4 and the KD4 Inference
Systems we would be able to find arbitrarily many different interval variables and this is
impossible. Hence, at least one step on the ground level must be liftable and what has been
claimed follows by induction over the length of C.

The monotonicity schemata are the only axioms in K; and K} that express some interrelation
between temporal ordering and subintervals. Several additional axioms and properties can be
imagined, however. For instance, one might require some kind of linearity® or “super-interval
property” which states that every two intervals have a common superinterval.

3In interval logics one would certainly not require that any two intervals are temporally ordered in the sense
that one of them is (temporally) before the other. A more appropriate property would be: either one is before
the other or the two intervals do overlap.
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Another very interesting property would be to demand that intervals are convex. Convexity
is usually defined in terms of points which form the interval. Such a description would not
work here since there are no time instants available in the interval logics we are considering.
Its formulation in terms of intervals could be: Any interval (temporally) inbetween two other
intervals is part of the convex union of the other two, or, more formally,

Yau, v, w,v' R(u,v) A Rv,w) A\uCv' AwCv' =vCo

It might be surprising at the first glance that the temporal logics we are considering cannot
distinguish between arbitrary interval structures and convex interval structures.

LEMMA 6.2.12
Convexity does not contribute anything new to the saturation of the background theory of Kj.

Proof: Consider the convexity property
R(u,v) AR(w,w) AuC v AwC v = v T

and perform resolution steps between the C-literals and the saturation of the Kj background
theory. This results in the clause schema

R(v':Z,v) A R(v,v":9) = v Cv

where both T and 7 belong to (F)*. Now these two R-literals have to be simultaneously
unified with the schemata of the form R(u:Z,u:yr:Z) or R(u:yp:T,u:Z) from the given
saturation. Such an attempt, however, must fail as exemplified by the following: If the
literal ~R(v': T, v) is resolved with R(u:y,:T,u:Z) then we obtain

Ru:Z,u:yp:7:T) = u:Z Cu:yp:T.

No further resolution steps are possible because of sort clashes and hence no new pure-
positive clause can be derived. Therefore, the pure-positive clauses that are derivable with
the additional convexity property are exactly the ones we already had.

COROLLARY 6.2.13
K;, is a logic of convex interval structures.

The fact that our temporal logics cannot distinguish between convex and non-convex struc-
tures has an immediate effect on the axiomatizability of this property.

COROLLARY 6.2.14
Convexity is not axiomatizable.

Proof: Since the saturation of the Kj, background theory is not influenced by the convexity
property we know that any formula which can be proved under the convexity assumption
also follows from Kj alone. Now assume there were an axiom schema @ for convexity. Since
this property does not follow from Kj there must exist an instance of ® which is valid
under convexity but cannot be proved valid without this extra assumption. This, however,
contradicts the fact that no such formula exists.
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A final remark on convexity: Humberstone assumed a property which is somewhat related
to convexity and linearity, namely*: Any interval later than some subinterval of the current
interval is either later than, or overlaps with, the current interval. Le.

VYu,v,w v CuA R(v,w) = (R(u,w)VIz (z CuAzC w))
A possible axiom which characterizes this property can be found in
OcO&O2AT) = (Oc@ Vv H )

This property is not further examined here. It is interesting in so far as it disallows temporal
branching within intervals.

4 Actually, the sequent rule introduced by Humberstone is a bit different; it corresponds to the same first-order
property, however.



Summary and
Future Work

7.1 The Approach

7.1.1 The General Framework

Although only applied to modal and temporal logic theorem proving, the approach presented
in this work is actually fairly general. It can be briefly summarized as follows: Given as input
a set of clauses and some distinguished predicate symbol R that occurs within these clauses,
we divide the input into two disjoint subsets such that one of the two consists of exactly those
clauses which contain a positive occurrence of R. This set we call the positive theory of R!. This
theory now has to be saturated, i.e. we look for a finite set of clause schemata which represents
all the pure- R-positive clauses that are derivable within this theory. Provided we are successfull
we can make use of the saturation result in two different ways: Either we try to find a finite set
of R-positive clauses which is somewhat simpler than the theory of R but nevertheless generates
the same saturation, or we transform the schemata into suitable inference rules which then may
replace the theory.

Either possibility is fairly large-scale and it certainly would not make very much sense to
perform the whole procedure for every theorem to be proved. If, however, the theory is known
beforehand such that formulae cannot add anything further to it? then the procedure described
above can be applied once and for all for the logic itself, and that independently of the theorems
to be proved.

! Obviously, we might equally consider the negative occurrences and speak of the negative theory then.
*Le. in case of a positive theory there are only (negative) R-constraints in the non-theory clauses.
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7.1.2 Application to Modal and Temporal Logics

The naive relational translation into first-order predicate logic certainly does not help here since
the accessibility relation symbol R (which is the only imaginable candidate for a background
theory) may occur both positively and negatively in the translation result®.

A way out of the dilemma can be found by applying the semi-functional translation approach.
There are several advantages with this method. First of all the number of generated clauses
is identical to the number of clauses generated by the functional translation approach and is
therefore small compared to the relational translation result. Moreover, it does not produce
any positive R-literals and this means that the background theory is strictly separated from the
theorem to be proved. This often allows us to detect — with simple proof-theoretical means — the
non-axiomatizability of accessibility relation properties . Also, and this might be interesting for
people working in the area of modal and temporal logic programming, the translation output is
in Horn form if and only if the input formulae are in Horn form.

Because of the strict separation of the logic background theory from the theorem to be
proved, the semi-functional translation fits the pattern of the general framework.

There remains only one further question, namely how to obtain the background theories
for the logics we are interested in. In cases were the logic is described in terms of modal
interpretations — and thus properties of the underlying accessibility relation — this theory is
already given. Otherwise certain axioms are provided such that the theory has to be obtained
from such an axiomatization. In case of well-known modal and temporal logics the respective
correspondences can be found in any related text-book. In all the other cases we have to apply
a second-order quantifier elimination to obtain the corresponding property. One such possibility
occurs in this text as the Elimination Theorem®*. What the semi-functional approach additionally
demands is the extra clause R(u,u:z) (or N(u) = R(u,u:z) for non-serial logics) and we are
back in the general framework described above, i.e. we saturate the resulting theory and either
find a simpler alternative theory with identical saturation or transform it into a suitable inference
system.

7.2 Possible Caveats

Obviously, there are possibilities where the one or the other step in the informal procedure from
above cannot be applied. For instance, it might happen that the given axiomatization results
in properties which are not first-order, witness the discreteness property which is often used in
connection with program verification. In such a case the approach wouldn’t work. However, it
is often possible to describe such properties in terms of infinitary logic (fixpoint calculus) as it is
described in the Elimination Theorem. Although it is not clear yet how such fixpoint formulae
can be used in a saturation process, it is at least worth an examination. Finally, there might be
problems with the saturation process itself. As an example consider the modal logic S4.2 which
does not behave very nicely during the attempt to saturate its background theory. In such cases
it is often possible to define some suitable auxiliary operators which are to be described in terms

3For some very sophisticated clause form transformations a suitable seperation would be possible, though.
Nevertheless, the theory gets so complicated then that the saturation process turns out to be very difficult.

“Note that the completeness of the axiomatization with respect to the interpretations we obtain by finding
correspondence axioms has to be shown seperately then.
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of the already existing operators such that the resulting theory can be saturated more easily (as
an example see again the modal logic 54.2).

Still, there are lots of possible sources for the one or the other technical problem, be it in
finding suitable inference rules or proving the soundness and the completeness of the resulting
inference system. There is no fully automatic system yet and, in fact, such a system cannot
really be expected.

7.3 Other Properties and Operators

7.3.1 Accessibility Relation Properties

There are fairly interesting accessibility relation properties which are first-order definable but
have not been examined in this work. One of these is density, i.e. the property that for two
arbitrary worlds « and 3 with R(«, ) there is a third world v with R(a,v) and R(v, ().
Saturating the resulting background theory is certainly possible, although with similar technical
problems as in case of §4.2. There is some evidence however, that the definition of auxiliary
operators helps here as well. In case of temporal logics we may consider the axiom @ Flo=> 6o
instead of the usual density axiom (O00® = O®, define M as ® [F], and proceed as in case of S4.2.

Quite opposite to density is discreteness, a property which is not first-order describable and
therefore can only be handled by the proposed approach if there is a way to deal with fixpoints
in the saturation process. Nothing along these lines has been done yet but the general idea is
certainly worth an examination and that also with regard to such complicated properties.

7.3.2 Operators

An interesting operator which frequently occurs in the literature of temporal logic is the so called
Nezt-operator. It often plays a role in applications like program specification and verification.
The existence of this operator is evidently closely related to the discreteness of the underlying
earlier-later relation, although not necessarily with all its inductive power. We can easily imagine
some kind of weak discreteness which is first-order definable and for which a Next-operator would
make sense. In this case the Nezt would have to be treated just as the individual belief operator
in the examination of “mutual belief” in Section 3.8.

Further interesting operators can be found for the so called CTL-like structures (Emerson
and Halpern 1986) where it is possible to explicitly quantify over the various branches within
a temporal structure. With such languages it is possible to distinguish between the inevitably
and the eventually and also between the henceforth and the possibly forever. CTL itself (and its
even more complicated sibling CTL*) is defined on the basis of a discrete structure, however.
Nevertheless, even if discreteness is not assumed, such operators definitly make sense and it
would be worthwhile to examine how the approach presented in this thesis can possibly handle
them.

7.4 Decidability of the Propositional Fragment

The logics considered in this work are all first-order and semi-decidable. However, most of the
propositional fragments of the respective logics are even known to be decidable. Decidability
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has not played a role in this work, though. It would certainly be interesting to examine whether
— and if so, how — the obtained calculi can be extended by ordering strategies and/or depth
restrictions such that a derivation process definitly will stop eventually provided the logic under
consideration is indeed decidable.

7.5 Comparison with Other Approaches

As the functional translation method is the “forefather” of the semi-functional approach it is not
too surprising that there are the most common grounds. Essentially, what the two approaches
have in common is that they use similar translations into first-order predicate logic such that
the translation results of the one can quite easily be transformed into the translation result
of the other. Both methods do not really need anything more since the clauses obtained after
translation are (classically) satisfiable if and only if the original modal formula was (modal logic)
satisfiable. At this stage both methods are not yet very convincing, though. It is therefore tried
to make use of certain translational invariants and the special knowledge about the respective
modal logic background theories. This is where the two approaches differ significantly. In
the functional translation the background theory is described in terms of an equational system
which sometimes can be transformed into a suitable unification algorithm provided the theory
consists only of unit equations. However, if accessibility relation properties like linearity are to
be considered then the equational system has to remain as is. This is a rather serious problem
because it is not at all clear how an appropriate guidance through the search space could be
described then. In the semi-functional translation approach the background theory does not
change compared to the relational translation®. Nevertheless, the particular syntactic structure
obtained this way has some nice and interesting properties which can be utilized in the saturation
of the background theory.

A quite closely related approach had been defined in (chung Chan 1990). In this work the
propositinal modal logic S4.3 is examined with respect to the functional translation approach,
and that quite similarly to Section 3.10, although with a different set of inference rules. For
instance, according to the calculus defined in this thesis, it is possible to derive P(8) from
P(a:r) and =R(3,a)®. Such a derivation is not possible within the S4.3 Inference System as
it is described in Section 5.1. However, from the S4.3 Inference System it would be possible to
derive the empty clause from —P(3), P(a:z), and =R(5, ). Chan’s system thus seems to be
a bit more forward-directed than the S4.3 Inference System. Unfortunately, (chung Chan 1990)
lacks completeness results and even soundness is merely checked by some operational justification
of pseudo-code.

Christoph Brzoska’s translation approach (Brzoska 1993) is also related to some extent.
His target language is not temporal logic in general, however. What he is rather interested
in is temporal logic programming and therefore he assumes certain syntactic restrictions on
the temporal logic formulae under consideration. The translation itself is nevertheless closely
related to the functional translation method. A major difference can be found in the treatment of
the background theory. In (Brzoska 1993) this theory is taken care of by some constraint solver
which looks for integer solutions for some given integer constraint problem. The special syntactic

SThere are some exceptions, witness S4.2. These are not crucial, however.
5Some liberties have been taken with the original formulation.
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structure of translated formulae is thereby an additional source of simplification possibilities’.

Although not directly related, known extensions of the tableau or Gentzen type sequent
calculi should be compared as well (see for example (Rescher and Urquhart 1971) and (Goré
1993)). For modal logics like S4 such tableau systems look fairly promising. For example, a
typical S4 tableau rule looks like this:

0A,OA,OT, Q
A, 00

Informally, this rule is to be interpreted as follows: Having a tableau for some world in which A
and formulae A are in the scope of some (s, formulae I'" are in the scope of s and {2 denotes
classical formulae which cannot be further split by the standard tableau rules, we switch to a
new accessible world in which A is true (according to the ¢ A) and guarantee that OT" holds there
as well. This rule is motivated by the fact that in such a new world at least all the formulae
in I" should be true because these hold in every world accessible from the current one and thus
in particular in the world accesses by the ¢ in ¢ A. Moreover, because of the transitivity of the
accessibility relation, we have that (0" holds there and by reflexivity it is even the case that T’
is subsumed by [OI'. We may thus ignore all the QA if we are able to close the tableau for ¢ A
already, i.e. the formulae in As are of no further importance then.

This approach works in (possibly branching) tree structures because different accessible
worlds do not necessarily have to be related. The situation changes considerably if linearity
comes into play. Suddenly any two worlds with a common predecessor are comparable with
respect to the earlier-later relation. Suppose the current tableau contains exactly two ¢-formulae,
QA and ¢B. From the S4.3 axiom 3 we know that one of the two (or both) comes first. If the
world in which A holds comes first then (B holds there; and if the world in which B holds comes
first then QA holds there. This means that there are two different branches to be openend, one
for each possible situation. This may not yet be too crucial for two ¢ formulae, but if there are
more, say n, we see that n! (in words: n faculty) such branches have to be opened and there
seems no way to simplify or to reduce this. Even worse, if not S4.3 but KD4.3’ is considered
then for any pair there are three possible branches to be opened and this increases the branching
rate by another factor of n. As an example consider the following formula set

O(Pl A D—|P2)
O(PQ A D‘!Pg)
O(Pr—1 ANO-P,)
O(Pn A D—|P1)

This set is S4.3-unsatisfiable and what the tableau calculus has to do is to produce n! branches
each of which can be closed with the S4 subsystem.

"In addition, Brzoska considers metric operators and dense structures.



158 CHAPTER 7. SUMMARY AND FUTURE WORK

Comparing this with the semi-functional translation approach we get:

Pi(v:aq)
“R(t:a1,u) VP (u)
Py(v:ay)
—R(t:ag,u) V- Ps(u)

P,(t:ap)
=R(t:apn,u) V P (u)

And after n resolution steps we end up with

—R(t:a1,t:a2)
—R(t:ag,t:a3)

—R(t:an,t:a1)

These resulting clauses can be refuted by n further S4.3 Inference Rule steps and therefore only
2 x n steps are necessary to derive the empty clause from the original formulae; a small number
compared to n!.

A calculus somewhere in the middle between the functional translation and the above tableau
system can be found in the so called prefized tableauz (see (Fitting 1983), (Reddy 1995)). Here
the idea is to associate prefixes with modal formulae which essentially represent worlds and to
manipulate such extended modal formulae as follows®:

a: [FI® — agi:®
a: ®d - afi: @
a: P& — ah;: ®
a:@@ - ap;:®

where each transformation gets a new index number. The rest of the tableau rules are just
as usual with the exception that a tableau can only be closed if there are two complementary
formulae in this tableau and the corresponding prefixes codesignate. Modal logics are distin-
guished by the different definitions for codesignation. It is not necessary here to provide with
the full definition in case of temporal logics. It should suffice to note that essentially two pre-
fixes codesignate if they are unifiable in the sense of the functional translation. The calculus
developed by Reddy seems to be complete for K;D4; there is no proof, however. The actual
aim, namely the development of a calculus for discrete K;D4.3’, is not fulfilled, not even if dis-
creteness is dropped. Reddy remarks that linearity cannot be handled that easily and proposes
a, as he called it, conditional codesignation. The main idea is to close branches (which get a
certain condition), to combine the resulting conditions, and to check whether this combination
is universally valid (under linearity). This has not been worked out in the thesis, however.

8The choice of the small letters has its origin in the Priorian tense operators G, F, H, and P.
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