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Abstract

The rapid development and the advancement of digital technologies open a
variety of opportunities to consumers and content providers for using and
trading digital goods. In this context, particularly the Internet has gained
a major ground as a worldwide platform for exchanging and distributing
digital goods. Beside all its possibilities and advantages digital technology
can be misused to breach copyright regulations: unauthorized use and illegal
distribution of intellectual property cause authors and content providers
considerable loss. Protection of intellectual property has therefore become
one of the major challenges of our information society.

Fingerprinting is a key technology in copyright protection of intellectual
property. Its goal is to deter people from copyright violation by allowing to
provably identify the source of illegally copied and redistributed content. As
one of its focuses, this thesis considers the design and construction of various
fingerprinting schemes and presents the first explicit, secure and reasonably
efficient construction for a fingerprinting scheme which fulfills advanced se-
curity requirements such as collusion-tolerance, asymmetry, anonymity and
direct non-repudiation.

Crucial for the security of such cryptographic systems is a careful study
of the underlying cryptographic assumptions. In case of the fingerprint-
ing scheme presented here, these are mainly assumptions related to discrete
logarithms. The study and analysis of these assumptions is a further fo-
cus of this thesis. Based on the first thorough classification of assumptions
related to discrete logarithms, this thesis gives novel insights into the rela-
tions between these assumptions. In particular, depending on the underlying
probability space we present new results on the reducibility between some
of these assumptions as well as on their reduction efficiency.
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Kurzzusammenfassung

Die Fortschritte im Bereich der Digitaltechnologien bieten Konsumenten,
Urhebern und Anbietern große Potentiale für innovative Geschäftsmodelle
zum Handel mit digitalen Gütern und zu deren Nutzung. Das Internet stellt
hierbei eine interessante Möglichkeit zum Austausch und zur Verbreitung
digitaler Güter dar. Neben vielen Vorteilen kann die Digitaltechnik jedoch
auch missbräuchlich eingesetzt werden, wie beispielsweise zur Verletzung
von Urheberrechten durch illegale Nutzung und Verbreitung von Inhalten,
wodurch involvierten Parteien erhebliche Schäden entstehen können. Der
Schutz des geistigen Eigentums hat sich deshalb zu einer der besonderen
Herausforderungen unseres Digitalzeitalters entwickelt.

Fingerprinting ist eine Schlüsseltechnologie zum Urheberschutz. Sie hat
das Ziel, vor illegaler Vervielfältigung und Verteilung digitaler Werke abzu-
schrecken, indem sie die Identifikation eines Betrügers und das Nachweisen
seines Fehlverhaltens ermöglicht. Diese Dissertation liefert als eines ihrer Er-
gebnisse die erste explizite, sichere und effiziente Konstruktion, welche die
Berücksichtigung besonders fortgeschrittener Sicherheitseigenschaften wie
Kollusionstoleranz, Asymmetrie, Anonymität und direkte Unabstreitbarkeit
erlaubt.

Entscheidend für die Sicherheit kryptographischer Systeme ist die präzise
Analyse der ihnen zugrunde liegenden kryptographischen Annahmen. Den
im Rahmen dieser Dissertation konstruierten Fingerprintingsystemen liegen
hauptsächlich kryptographische Annahmen zugrunde, welche auf diskreten
Logarithmen basieren. Die Untersuchung dieser Annahmen stellt einen wei-
teren Schwerpunkt dieser Dissertation dar. Basierend auf einer hier erstmals
in der Literatur vorgenommenen Klassifikation dieser Annahmen werden
neue und weitreichende Kenntnisse über deren Zusammenhänge gewonnen.
Insbesondere werden, in Abhängigkeit von dem zugrunde liegenden Wahr-
scheinlichkeitsraum, neue Resultate hinsichtlich der Reduzierbarkeit dieser
Annahmen und ihrer Reduktionseffizienz erzielt.
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Zusammenfassung

Die rapiden Entwicklungen im Bereich der Informationsverarbeitung und
-übertragung stellen neue Herausforderungen für digitale Medien dar, de-
nen in angemessener Weise begegnet werden muss. Digitale Inhalte können
praktisch kostenfrei ohne Verlust vervielfältigt und sehr schnell ausgetauscht
bzw. verteilt werden. In diesem Zusammenhang spielt das Internet eine be-
deutende Rolle, da es eine universelle Plattform mit globaler Reichweite für
die Nutzung und Verbreitung digitaler Güter bietet. Darüber hinaus sind
viele Anwendungen mittlerweile einfach bedienbar, so dass das Internet zu
einem festen Bestandteil des alltäglichen Lebens geworden ist. Leider wer-
den die technologischen Vorzüge der Digitaltechnik zunehmend zum Verstoß
gegen das Urheberrecht missbraucht: Unautorisierte Nutzung und illegale
Verbreitung des geistigen Eigentums verursachen den Urhebern erhebliche
Schäden. Der Schutz des geistigen Eigentums hat sich daher zu einer beson-
deren Herausforderung unseres Digitalzeitalters entwickelt.

Es wurden bisher verschiedene technische und rechtliche Maßnahmen
zum Urheberschutz vorgeschlagen, die häufig unter dem Begriff Digital

Rights Management (DRM) zusammengefasst werden. Das Ziel von DRM-
Systemen besteht allgemein darin, geeignete Umgebungen und Rahmenbe-
dingungen für den Handel und die Nutzung digitaler Werke zu schaffen, so
dass die Interessen und Sicherheitsanforderungen aller beteiligter Parteien
in sinnvoller Weise berücksichtigt werden können.

Ein Schwerpunkt dieser Dissertation beschäftigt sich mit Fingerprinting-
verfahren, welche eine wichtige technische Maßnahme zum Urheberschutz in
DRM-Systemen darstellen. Um die Rolle und Bedeutung der Fingerprinting-
verfahren innerhalb von DRM-Systemen einordnen zu können, werden im
Folgenden einige zentrale Aspekte dieser Systeme kurz erläutert.

Die Komponenten von DRM-Systemen können in zwei funktionale Klas-
sen unterteilt werden: Komponenten zur Handhabung von Rechten auf di-
gitalen Werken (digitale Rechte) und Komponenten zur Handhabung von
Missbräuchen.

Handhabung von Rechten: Die wesentliche Aufgabe dieser Klasse von
Komponenten ist die Verwaltung von Urheber- und Nutzungsrechten für
digitale Werke. In diesem Zusammenhang ist zu beachten, dass diese Rech-
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te sich nicht nur auf Originalwerke, sondern auch auf dazu ähnliche Werke
(Werkklassen) beziehen.1 Auf diesen im technischen Urheberschutz häufig
übersehenen Aspekt wurde zum ersten Mal in der Arbeit von Adelsbach,
Pfitzmann, and Sadeghi (2000) hingewiesen, die u.a. verschiedene praktische
Methoden zur automatischen Überprüfung der Ähnlichkeit zwischen Werken
(Ähnlichkeitstest) vorschlägt. Ein weiterer wichtiger Aspekt besteht darin,
dass Rechte selbst wiederum durch verschiedene Transaktionen wie Trans-
fer und Lizenzierung weitergegeben werden können. Zu diesen Transaktionen
gehören auch die Protokolle zum Urheberschaftsbeweis. Diese ermöglichen
es den Urhebern, ihre rechtmäßige Urheberschaft auf digitale Werke einer
anderen Partei direkt zu beweisen (siehe Adelsbach, Pfitzmann, and Sa-
deghi (2000)). Diese Aspekte stellen eine notwendige Grundlage für einen
sinnvollen Handel mit digitalen Werken dar.

Handhabung von Missbrauch: Diese Klasse von Komponenten stellt die
technischen Maßnahmen bereit, die zum Schutz der Urheberrechte gegen
Missbrauch eingesetzt werden.2 Diese können wiederum nach präventiven

und abschreckenden Maßnahmen klassifiziert werden.

Präventive Maßnahmen haben das Ziel, den Missbrauch (z.B. unautorisierte
Nutzung, Anfertigung von Kopien oder deren Verbreitung) zu verhindern,
in dem Sinne, dass der Missbrauch mit heute zur Verfügung stehenden tech-
nischen Mitteln nicht möglich sein soll. Idealerweise benötigt man eine ver-
trauenswürdige Plattform, welche den Zugriff auf digitale Inhalte nach be-
stimmten Sicherheitsstrategien kontrolliert.3 Die Realisierung einer solchen
Plattform setzt manipulationssichere Hardware bzw. Software voraus und
ist in der Praxis nur schwer realisierbar.4 Abhilfe bieten die im Folgenden
diskutierten abschreckenden Maßnahmen.

Abschreckende Maßnahmen sind komplementär zu präventiven Maßnahmen
und sollen die Nutzer wegen zu befürchtender Konsequenzen vor illegalen
Aktionen abhalten, indem sie die Identifikation eines Betrügers und das
Nachweisen seines Fehlverhaltens ermöglichen. In diesem Kontext stellen
Fingerprintingverfahren eine Schlüsseltechnologie dar. Ihr Ziel ist es, vor il-
legaler Vervielfältigung und Verteilung digitaler Werke abzuschrecken. Hier-
bei werden robuste steganographische5 Verfahren (Watermarking) verwen-

1Ähnliche Werke entstehen durch nachvollziehbare Transformationen des Original-
werks, wie beispielsweise eine JPEG-Komprimierung eines Bildes.

2Dies ist keine zwingende Einschränkung, da sie auch nicht-technische Maßnahmen wie
gesetzliche Richtlinien und zugrunde liegende Geschäftsmodelle beinhalten können.

3Eine der ersten Ideen in diesem Kontext war der Ansatz zur Superdistribution für
Softwareprodukte. Hierbei soll die Software zwar frei verteilt werden, allerdings soll sie
nur lauffähig sein, wenn die entsprechend notwendige Superdistributionskomponente, bei-
spielsweise ein Dongle, installiert ist (Mori and Kawahara (1990), Cox (1996)).

4Siehe z.B. Anderson (2001) für Probleme, die Hardware betreffen und Barak et al.
(2001) für das Problem der Softwarelösungen mittels sog. “code obfuscation”.

5Mit Steganographie bezeichnet man die Methoden zur verdeckten Kommunikation,



xi

det, um die Identifizierungsinformation des Käufers, den sog. Fingerprint, in
das zugrunde liegende Werk einzubetten, bevor dieses an den Käufer weiter-
gegeben wird. Die Anforderungen an das Watermarkingverfahren sind Un-

wahrnehmbarkeit und Robustheit des Wasserzeichens. Ersteres fordert, dass
die eingebettete Information von dem Käufer nicht wahrgenommen werden
soll und letzteres, dass das eingebettete Wasserzeichen nicht gelöscht wer-
den kann, ohne zugleich das digitale Werk zu zerstören. Findet man nun
eine illegale Kopie, die ähnlich zu einem der Originalwerke ist, so sollte ein
Fingerprintingverfahren es ermöglichen, die Identifizierungsinformation zu
extrahieren und somit die Quelle der illegalen Verteilung zu identifizieren.

Fingerprintingverfahren können unterschiedliche Sicherheitseigenschaften
haben. Eine besonders wichtige und nicht trivial erreichbare Eigenschaft ist
die Resistenz gegen sog. Kollusionsangriffe. Bei diesem Angriff schließt sich
eine bestimmte Anzahl von Besitzern gekennzeichneter Kopien eines Wer-
kes (eine Kollusion) zusammen und versucht, aus ihren Kopien eine neue
Kopie zu erzeugen, aus der sich keine zur Käuferidentifikation verwertbare
Information extrahieren lässt. Eine andere für die Praxis sehr bedeutende,
aber ebenso nicht triviale Eigenschaft, ist die Asymmetrie von Fingerprin-
tingverfahren. Das Ziel besteht hierbei in der Beweisbarkeit einer Identi-
fizierung. Wenn der Verkäufer das gekennzeichnete Werk ebenfalls kennt,
reicht die alleinige Vorlage der Identifizierungsinformation in der Realität
nicht als Beweis aus, um einen neutralen Dritten (z.B. ein Gericht) von ei-
ner unerlaubten Verbreitung des gekennzeichneten Werkes zu überzeugen.
Fingerprintingverfahren können um weitere wichtige und komplexe Sicher-
heitseigenschaften wie Käuferanonymität und direkte Unabstreitbarkeit er-
weitert werden. Käuferanonymität bedeutet, dass der Käufer digitale Werke
anonym erwerben kann und auch weiterhin anonym bleibt, solange er die
erworbenen Werke nicht widerrechtlich verteilt. Im Falle einer unerlaubten
Weitergabe kann jedoch die Anonymität des betrügerischen Käufers aufge-
hoben werden. Direkte Unabstreitbarkeit erlaubt dem Händler, einem Drit-
ten das Fehlverhalten eines betrügerischen Käufers direkt nachzuweisen, oh-
ne dass hierzu die Beteiligung des betroffenen Käufers erforderlich ist. Diese
Eigenschaft ist beispielsweise in einem Rechtsstreit von besonderer prakti-
scher Relevanz. Die Realisierung der genannten Eigenschaften benötigt den
Einsatz anspruchsvoller kryptographischer Techniken, welche im Rahmen
dieser Dissertation detailliert vorgestellt werden. Des Weiteren werden ver-
schiedene Fingerprintingsysteme und die von ihnen erfüllten Sicherheitsan-
forderungen systematisch und modular beschrieben. Insbesondere wird die
erste explizite, modulare, effiziente und beweisbar sichere Konstruktion für
ein Fingerprintingverfahren vorgestellt, welche alle oben genannten Sicher-
heitseigenschaften bietet.

Fingerprintingsysteme verwenden unterschiedliche kryptographische

wobei die zu kommunizierende Information in einem Trägermedium versteckt wird.
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Protokolle und Primitive, deren Sicherheit auf kryptographischen Annah-
men beruhen. Hierbei wird angenommen, dass bestimmte — meist zahlen-
theoretische — Probleme mit vertretbarem Aufwand, d.h. in polynomieller
Zeit, nicht gelöst werden können. Ein in diesem Zusammenhang weithin be-
kanntes Problem beruht auf der Schwierigkeit, diskrete Logarithmen (DL)
in bestimmten algebraischen Strukturen berechnen zu können (McCurley
1990). Die Sicherheit vieler kryptographischer Systeme beruht auf solchen
DL-basierten Annahmen (Maurer 2001). Neben der reinen DL-Annahme
existieren zahlreiche verwandte Annahmen wie beispielsweise die Diffie-
Hellman (DH) Annahme und die Decisional Diffie-Hellman (DDH) Annah-
me (Diffie and Hellman 1976; Brands 1994; Boneh 1998). Bei der konkreten
Formulierung dieser Annahmen hat man jedoch gewisse Freiheitsgrade, die
durch verschiedene Aspekte wie das Berechnungsmodell, den Problemtyp
(Computational, Decisional oder Matching), den zugrunde liegenden Wahr-
scheinlichkeitsraum sowie die tolerierbare Erfolgswahrscheinlichkeit des An-
greifers gegeben sind. Allerdings sind einige dieser Aspekte und ihre Aus-
wirkungen auf die Sicherheitsgarantien in der Literatur nicht ausreichend
beachtet. Eine tiefgehende Analyse DL-basierter Annahmen bildet den an-
deren Schwerpunkt dieser Dissertation. Hierbei werden die kryptographisch
relevanten Parameter identifiziert und zum ersten Mal ein mathematisches
Fundament zur präzisen Definition DL-basierter Annahmen aufgebaut. Die
Annahmen werden, basierend auf diesem neuen Fundament, klassifiziert und
analysiert. Insbesondere werden sie in Abhängigkeit eines neu eingeführ-
ten Parameters untersucht, der sog. Granularität, welche den einer Annah-
me zugrunde liegenden Wahrscheinlichkeitsraum bestimmt. Dies stellt eine
vollständig neuartige Analyse dar, welche im Rahmen dieser Dissertation
gemacht wurde und neue Resultate und hilfreiche Erkenntnisse über die
Zusammenhänge zwischen diesen Annahmen liefert.

Überblick

In Kapitel 1 wird zunächst eine kurze Einführung in die Schwerpunkte und
Resultate dieser Dissertation gegeben. Insbesondere werden Einblicke in die
wichtigsten Aspekte des technischen Urheberschutzes für digitale Werke ge-
geben, um schließlich die Rolle der Fingerprintingverfahren in diesem Kon-
text einzuordnen.

In Kapitel 2 werden die kryptographischen Annahmen basierend auf dis-
kreten Logarithmen (DL) betrachtet. Dabei werden zunächst die zur präzi-
sen Definition kryptographischer Annahmen notwendigen mathematischen
Aspekte untersucht. In diesem Zusammenhang werden die hierfür wichtig-
sten Parameter identifiziert und eingehend beschrieben. Darauf aufbauend
werden die DL-basierten Annahmen klassifiziert und ihre wichtigsten Eigen-
schaften und Varianten unter besonderer Berücksichtigung der identifizierten
Parameter diskutiert. Insbesondere wird der Einfluss der Granularität des
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Wahrscheinlichkeitsraums untersucht. Für einige DL-Annahmen wird bewie-
sen, dass diese für niedrige Granularität zueinander äquivalent sind, während
dies im generischen Sinne für ihre hochgranularen Varianten nicht gilt. Hier-
bei werden Reduktionen zwischen der Diffie-Hellman (DH) Annahme, der
Square Exponent (SE) Annahme und der in dieser Arbeit neu vorgestellten
Inverse Exponent (IE) Annahme für beide Problemtypen, Computational
und Decisional, betrachtet. Erste Ergebnisse über DL-basierte Annahmen
wurden bereits in der Arbeit Sadeghi and Steiner (2001) veröffentlicht. Aller-
dings werden diese Resultate in der vorliegenden Dissertation auf allgemei-
nere Annahmen, d.h. für Gruppen mit nicht primer Ordnung, ausgeweitet
und bewiesen.

In Kapitel 3 werden weitere Notationen eingeführt, die bei den vorgestell-
ten Fingerprintingverfahren verwendet werden. Darüber hinaus gibt dieses
Kapitel einen detaillierten Überblick über die notwendigen kryptographi-
schen Primitive und Unterprotokolle wie Commitment-, Verschlüsselungs-
und Signaturverfahren sowie interaktive Beweissysteme und ihre Zero-
Knowledge Eigenschaft.

In den Kapiteln 4 und 5 werden ein modulares Schema zur Konstruk-
tion verschiedener Typen von Fingerprintingverfahren (symmetrisch, asym-
metrisch, anonym) vorgestellt und die Sicherheitsanforderungen an diese
Verfahren formuliert. Anschließend wird die erste explizite Konstruktion für
ein anonymes asymmetrisches kollusionstolerantes Fingerprintingverfahren
entwickelt und dessen Sicherheitsbeweis angegeben. Hierbei befindet sich in
Kapitel 5 die detaillierte Konstruktion des hierzu entwickelten Kernmoduls,
das Einbettungsprotokoll, das zur sicheren und verifizierbaren Einbettung
der Identifizierungsinformation eingesetzt wird.

Die wesentlichen Ergebnisse bezüglich der neuen Fingerprintingproto-
kolle wurden bereits in den Arbeiten Pfitzmann and Sadeghi (1999) und
Pfitzmann and Sadeghi (2000) veröffentlicht. In dieser Dissertation sind je-
doch eine Reihe weiterer neuer Details hinzugekommen, wie beispielsweise
zum Beweis der Anonymitätseigenschaft, welcher Simulationstechniken ver-
wendet. Hierbei erfordern die Komplexität der Protokolle, die Interaktionen
zwischen den Unterprotokollen sowie die Verwendung informationstheore-
tisch versteckender Commitments den Einsatz neuer Techniken zur Errei-
chung korrekter Simulation.

Resultate

Die wichtigsten Resultate der vorliegenden Dissertation lassen sich folgen-
dermaßen zusammenfassen:

• Die Dissertation beinhaltet neue Einblicke in die Zusammenhänge
zwischen den kryptographischen Annahmen, die auf diskreten Loga-
rithmen (DL) beruhen. Insbesondere werden erstmalig die Zusam-
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menhänge zwischen diesen Annahmen in Abhängigkeit eines neu ein-
geführten Parameters, der Granularität, untersucht, die den einer
Annahme zugrunde liegenden Wahrscheinlichkeitsraum bestimmt. Es
wird bewiesen, dass einige DL-basierte Annahmen für niedrige Gra-
nularität äquivalent sind, während dies im generischen Sinne für ih-
re hochgranularen Varianten nicht gilt. Weiterhin wird gezeigt, dass
Reduktionen für niedrigere Granularität effizienter sind als für höhere
Granularität. Dadurch wird die besondere Bedeutung und Berücksich-
tigung der Granularität bei der Definition der Annahmen unterstri-
chen.

Die zugehörige Analyse basiert auf einer Klassifikation DL-basierter
Annahmen, welche die präzise Formulierung dieser Annahmen erlaubt
und über die bekannten Ansätze deutlich hinaus geht.

• Eine neue DL-basierte Inverse Exponent (IE) Annahme wird ein-
geführt und deren Zusammenhang zu anderen bekannten DL-basierten
Annahmen, wie beispielsweise Diffie-Hellman (DH), durch konstrukti-
ve Reduktionsbeweise dargelegt. Dabei liefern die Beweise auch die
konkrete Sicherheit, d.h. den Reduktionsaufwand. Die IE Annahme
stellt die Grundlage für die Sicherheitsanalyse des in dieser Disserta-
tion eingeführten anonymen Fingerprintingverfahrens dar.

• Die erste explizite, effiziente und beweisbar sichere Konstruktion eines
Fingerprintingverfahrens wird vorgestellt, welche die besonderen Si-
cherheitseigenschaften wie Asymmetrie, Anonymität und direkte Un-
abstreitbarkeit bietet. Insbesondere wird eine detaillierte und explizi-
te Konstruktion für das Kernmodul eines (anonymen) asymmetrischen
Fingerprintingverfahrens, das Einbettungsprotokoll, entwickelt und als
Zero-Knowledge und kollusionstolerant bewiesen.



Contents

1 Introduction and Overview 1
1.1 Copyright Protection . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Rights Handling . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Misuse Handling . . . . . . . . . . . . . . . . . . . . . 3

1.1.2.1 Preventive measures . . . . . . . . . . . . . . 4
1.1.2.2 Deterrent measures . . . . . . . . . . . . . . 6

1.2 Assumptions based on Discrete Logarithm . . . . . . . . . . 7
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Summary of Major Results . . . . . . . . . . . . . . . . . . . 9

2 Exploring DL-based Assumptions 13
2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 General Notational Conventions . . . . . . . . . . . . 15
2.1.2 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Computational Model . . . . . . . . . . . . . . . . . . 18
2.1.4 Indistinguishability . . . . . . . . . . . . . . . . . . . . 18
2.1.5 Algebraic Structures . . . . . . . . . . . . . . . . . . . 19
2.1.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.7 Samplers . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Parameters of DL-based Assumptions . . . . . . . . . . . . . 23
2.3 Defining Assumptions . . . . . . . . . . . . . . . . . . . . . . 33
2.4 The Impact of Granularity . . . . . . . . . . . . . . . . . . . . 40
2.5 Computational DH, SE and IE . . . . . . . . . . . . . . . . . 43

2.5.1 Random Self-Reduction . . . . . . . . . . . . . . . . . 44
2.5.2 Self-Correction . . . . . . . . . . . . . . . . . . . . . . 45
2.5.3 CSE versus CDH . . . . . . . . . . . . . . . . . . . . . 47

2.5.3.1 High Granular . . . . . . . . . . . . . . . . . 47
2.5.3.2 Medium Granular . . . . . . . . . . . . . . . 53

2.5.4 CDH versus CIE . . . . . . . . . . . . . . . . . . . . . 55
2.5.4.1 High Granular . . . . . . . . . . . . . . . . . 55
2.5.4.2 Medium Granular . . . . . . . . . . . . . . . 62

2.6 Decisional DH, SE and IE . . . . . . . . . . . . . . . . . . . . 66
2.6.1 Difficulty in the Generic Model . . . . . . . . . . . . . 66

xv



xvi CONTENTS

2.6.2 DSE versus DDH . . . . . . . . . . . . . . . . . . . . . 73
2.6.2.1 High Granular . . . . . . . . . . . . . . . . . 73

2.6.3 DIE versus DDH . . . . . . . . . . . . . . . . . . . . . 76
2.6.3.1 High Granular . . . . . . . . . . . . . . . . . 76

2.6.4 DSE versus DIE . . . . . . . . . . . . . . . . . . . . . 84
2.6.4.1 High Granular . . . . . . . . . . . . . . . . . 84
2.6.4.2 Medium Granular . . . . . . . . . . . . . . . 88

2.7 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . 92

3 Conventions and Basic Building Blocks 95
3.1 General Notation . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2 Number Theoretic Preliminaries . . . . . . . . . . . . . . . . 99

3.2.1 Factoring Numbers . . . . . . . . . . . . . . . . . . . . 99
3.2.2 Quadratic Residues . . . . . . . . . . . . . . . . . . . . 100

3.3 Random Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.4 Public-Key Cryptography . . . . . . . . . . . . . . . . . . . . 105

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 105
3.4.2 Encryption Schemes . . . . . . . . . . . . . . . . . . . 105

3.4.2.1 Security Requirements . . . . . . . . . . . . . 106
3.4.2.2 ElGamal Encryption Scheme . . . . . . . . . 107
3.4.2.3 Okamoto Uchiyama Encryption Scheme . . . 108

3.4.3 Digital Signatures . . . . . . . . . . . . . . . . . . . . 110
3.4.3.1 Model . . . . . . . . . . . . . . . . . . . . . . 110
3.4.3.2 Security Requirements . . . . . . . . . . . . . 110
3.4.3.3 Schnorr Signature Scheme . . . . . . . . . . . 111

3.4.4 Blind Signatures . . . . . . . . . . . . . . . . . . . . . 112
3.4.4.1 Chaum-Pederson Blind Signature Scheme . . 113

3.5 Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . 114
3.5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.5.1.1 Parameter Generation Mechanisms . . . . . 116
3.5.2 Security Requirements . . . . . . . . . . . . . . . . . . 116
3.5.3 Conventions for Commitments . . . . . . . . . . . . . 118
3.5.4 Quadratic Residue Commitment . . . . . . . . . . . . 119

3.5.4.1 Requirements on Parameter Generation . . . 120
3.5.4.2 Properties . . . . . . . . . . . . . . . . . . . 121

3.5.5 Discrete Logarithm Commitment . . . . . . . . . . . . 123
3.5.5.1 Requirements on Parameter Generation . . . 124
3.5.5.2 Properties . . . . . . . . . . . . . . . . . . . 124

3.5.6 Okamoto-Uchiyama Commitment . . . . . . . . . . . . 125
3.5.6.1 Requirements on Parameter Generation . . . 126
3.5.6.2 Properties . . . . . . . . . . . . . . . . . . . 127

3.6 Interactive Proofs and Zero-Knowledge . . . . . . . . . . . . . 127
3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 127
3.6.2 Proof of Language Membership . . . . . . . . . . . . . 129



CONTENTS xvii

3.6.3 Proof of Knowledge . . . . . . . . . . . . . . . . . . . 130
3.6.4 Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . 132

3.6.4.1 Introduction . . . . . . . . . . . . . . . . . . 132
3.6.4.2 Definition . . . . . . . . . . . . . . . . . . . . 133

3.7 Basic Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.7.1 Proving Knowledge of Discrete Logarithm . . . . . . . 136
3.7.2 Proving Knowledge of Representation . . . . . . . . . 138
3.7.3 Proving Knowledge of Simultaneous Discrete Logarithm139

4 Fingerprinting 141
4.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.1.1 Subjects/Roles . . . . . . . . . . . . . . . . . . . . . . 141
4.1.2 Works and Similarity . . . . . . . . . . . . . . . . . . . 142

4.2 Classification and Research History . . . . . . . . . . . . . . . 143
4.2.1 A Layer Model for Fingerprinting . . . . . . . . . . . . 146

4.3 Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 147
4.3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.3.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . 149
4.3.4 Main Steps of Watermarking . . . . . . . . . . . . . . 150
4.3.5 A Generic Watermarking Scheme . . . . . . . . . . . . 152

4.3.5.1 Watermarking Scheme of Cox et. al . . . . . 154
4.3.6 Collusion-tolerant Encoding/Watermarking . . . . . . 155

4.3.6.1 Introduction . . . . . . . . . . . . . . . . . . 155
4.3.6.2 Model . . . . . . . . . . . . . . . . . . . . . . 156
4.3.6.3 Security Requirements . . . . . . . . . . . . . 157
4.3.6.4 Construction of Boneh and Shaw . . . . . . . 158
4.3.6.5 Security . . . . . . . . . . . . . . . . . . . . . 164

4.4 Symmetric Fingerprinting . . . . . . . . . . . . . . . . . . . . 164
4.4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.4.2 Security Requirements . . . . . . . . . . . . . . . . . . 166
4.4.3 Construction . . . . . . . . . . . . . . . . . . . . . . . 167

4.5 Asymmetric Fingerprinting . . . . . . . . . . . . . . . . . . . 167
4.5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.5.2 Security Requirements . . . . . . . . . . . . . . . . . . 171
4.5.3 Construction Framework . . . . . . . . . . . . . . . . . 173
4.5.4 Embedding . . . . . . . . . . . . . . . . . . . . . . . . 173

4.5.4.1 Model . . . . . . . . . . . . . . . . . . . . . . 173
4.5.4.2 Security Requirements . . . . . . . . . . . . . 174
4.5.4.3 A Construction Framework for Embedding . 175

4.5.5 Construction . . . . . . . . . . . . . . . . . . . . . . . 178
4.5.5.1 Instantiation of Embedding and Extracting . 180
4.5.5.2 Security . . . . . . . . . . . . . . . . . . . . . 181

4.6 Anonymous Fingerprinting . . . . . . . . . . . . . . . . . . . 181



xviii CONTENTS

4.6.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.6.2 Security Requirements . . . . . . . . . . . . . . . . . . 185
4.6.3 Construction Framework . . . . . . . . . . . . . . . . . 189

4.6.3.1 Security . . . . . . . . . . . . . . . . . . . . . 191
4.7 Coin-Based Anonymous Fingerprinting . . . . . . . . . . . . . 191

4.7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 191
4.7.2 Anonymous Electronic Cash Systems . . . . . . . . . . 192

4.7.2.1 Model . . . . . . . . . . . . . . . . . . . . . . 192
4.7.2.2 Main Security Requirements . . . . . . . . . 192
4.7.2.3 Typical Offline Coin System . . . . . . . . . 193
4.7.2.4 Brands’ Offline Coin System . . . . . . . . . 194

4.7.3 General Ideas . . . . . . . . . . . . . . . . . . . . . . . 197
4.7.4 Ideas for Achieving Direct Non-Repudiation . . . . . . 198
4.7.5 Construction . . . . . . . . . . . . . . . . . . . . . . . 200

4.7.5.1 System Setup and Prerequisites . . . . . . . 200
4.7.5.2 Registration . . . . . . . . . . . . . . . . . . 201
4.7.5.3 Fingerprinting . . . . . . . . . . . . . . . . . 205
4.7.5.4 Identification . . . . . . . . . . . . . . . . . . 207
4.7.5.5 Enforced Identification . . . . . . . . . . . . 208
4.7.5.6 Trial . . . . . . . . . . . . . . . . . . . . . . . 208

4.7.6 Security Analysis . . . . . . . . . . . . . . . . . . . . . 209
4.7.6.1 Security for Registration Center . . . . . . . 209
4.7.6.2 Security for Merchant . . . . . . . . . . . . . 211
4.7.6.3 Security for Buyer . . . . . . . . . . . . . . . 212

5 Embedding for Anonymous Fingerprinting 223
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.2 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 224

5.2.1 Reed-Solomon Code . . . . . . . . . . . . . . . . . . . 224
5.2.2 Proving Equality of QR-Committed Encodings . . . . 225

5.2.2.1 Efficiency . . . . . . . . . . . . . . . . . . . . 233
5.2.3 Proving Correctness of Committed Reed-Solomon En-

coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
5.2.3.1 Efficiency . . . . . . . . . . . . . . . . . . . . 240

5.2.4 Proving Equality of Committed Numbers . . . . . . . 241
5.2.4.1 Efficiency . . . . . . . . . . . . . . . . . . . . 248

5.2.5 Committed Encoding from Unary Commitments . . . 249
5.2.5.1 Efficiency . . . . . . . . . . . . . . . . . . . . 251

5.3 Construction for Embedding and Extracting . . . . . . . . . . 252
5.3.1 Instantiation of Embedding . . . . . . . . . . . . . . . 254
5.3.2 Construction for Extracting Procedure . . . . . . . . . 262
5.3.3 Security Analysis . . . . . . . . . . . . . . . . . . . . . 263

5.3.3.1 Security for Merchant . . . . . . . . . . . . . 264
5.3.3.2 Security for Buyer . . . . . . . . . . . . . . . 265



CONTENTS xix

5.3.4 Efficiency of Embedding Protocol . . . . . . . . . . . . 266
5.3.4.1 Discussion on Efficiency of Embedding Pro-

tocol . . . . . . . . . . . . . . . . . . . . . . 269
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Bibliography 272

Index 291

A Deriving Formal Assumptions from the Parameters 299



xx CONTENTS



List of Figures

2.1 The impact of granularity . . . . . . . . . . . . . . . . . . . . 41
2.2 Random Self Reducibility (Medium granularity) . . . . . . . . 44
2.3 Summary of our results . . . . . . . . . . . . . . . . . . . . . 93

3.1 Example of an interactive 2-party protocol . . . . . . . . . . . 99
3.2 The blind signature of Chaum-Pederson (CP) . . . . . . . . . 113
3.3 Zero-knowledge proof of knowledge of discrete logarithm:

ProveDL() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.4 Zero-knowledge proof of knowledge of a representation

ProveRep() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.5 Proving knowledge of simultaneous discrete logarithm

ProveEqDL() . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.1 A layer model for fingerprinting . . . . . . . . . . . . . . . . . 147
4.2 Overview of symmetric fingerprinting . . . . . . . . . . . . . . 165
4.3 The model of asymmetric fingerprinting . . . . . . . . . . . . 169
4.4 The model of anonymous fingerprinting: Purchase . . . . . . 182
4.5 The model of anonymous fingerprinting: Redistribution . . . 182
4.6 The restrictive blind signature of Brands . . . . . . . . . . . . 195
4.7 Proof of correctness of the registration . . . . . . . . . . . . . 202
4.8 Blind signature part of the registration . . . . . . . . . . . . . 202
4.9 Proving equality of the contents of m′ and CDL

emb :
ProveEqComEmb() . . . . . . . . . . . . . . . . . . . . . . . . 206

xxi



xxii LIST OF FIGURES



List of Tables

4.1 The Basic code Γ0(5, 3) of Boneh and Shaw for n = 5, d = 3 . 160

5.1 Table T : Commitments to symbols of Σ in unary and binary
form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

5.2 The codeword table Ts for the symbol syms . . . . . . . . . . 257

xxiii



xxiv LIST OF TABLES



List of Algorithms

1 Embedding algorithm based on BS outer code: EmbedProt() . 163
2 Extracting algorithm based on BS outer code: ExtractProt() . 164
3 Overview of embedding protocol EmbedProt() . . . . . . . . . 177
4 Overview of word construction protocol GenWord() . . . . . 177
5 The Simulator SV∗

for protocol ProveEqEncCom() . . . . . . . 231
6 The Simulator SV∗

for protocol ProveEncRSCom() . . . . . . 239
7 The Extractor E for relation R . . . . . . . . . . . . . . . . . 244
8 The Simulator SV∗

for protocol ProveEqCom() . . . . . . . . . 247
9 Computing with unary commitments DeriveEncCom() . . . . 250
10 Details of embedding protocol EmbedProt() . . . . . . . . . . 262
11 Details of extraction algorithm ExtractProt() . . . . . . . . . 263

xxv



xxvi LIST OF ALGORITHMS



Chapter 1

Introduction and Overview

This chapter gives an outline of the content of this thesis. In particular,
it provides a summary of the major results: It presents the first concrete
and reasonably efficient construction for a fingerprinting scheme fulfilling
the most advanced and desirable security requirements. Further, it presents
the first thorough classification and study of the underlying cryptographic
assumptions that are related to discrete logarithm, and gives new insights
into the relations among these assumptions.

FINGERPRINTING is a key technology supporting the copyright pro-
tection of intellectual property. The main goal of fingerprinting is to

deter people from illegal redistribution of intellectual property by enabling
the rightful copyright owner to trace the source of illegal redistribution. As
one of its focuses, this thesis considers the design and construction of dif-
ferent types of fingerprinting schemes, in particular explicit construction of
secure anonymous fingerprinting schemes.

Fingerprinting schemes employ various cryptographic primitives and pro-
tocols whose security relies on cryptographic assumptions that are usually
based on number theoretic problems. For the fingerprinting schemes pre-
sented here, we are mainly concerned with assumptions based on solving
discrete logarithms (DL) in certain algebraic structures. The precise defini-
tion of DL-related assumptions, and the study and analysis of their relations
is another focus of this thesis.

Before going into the details of each of these topics, we will first give
an overview of the main aspects and technical measures of copyright pro-
tection systems to get the grand picture, and to emphasis the role of the
fingerprinting within such systems. Then we give an overview of the main
aspects of the DL-based assumptions.

1



2 Introduction and Overview

1.1 Copyright Protection

Digital technology and media offer content providers and producers many
business opportunities and consumers many advantages for using, exchang-
ing and trading digital goods (e.g., audio, video, etc.). In this context, the
Internet has taken an important place as a global platform for using and
distributing digital goods, and has become a fixed part of the daily life in
the information society. However, all these technological possibilities face us
also with challenging problems regarding copyright protection of intellectual
property. Digital Rights Management (DRM) systems should provide
the appropriate environment for trading digital works while protecting the
rights and interests of all involved parties in the sense of multi-party security.

One may divide a DRM system into two main components, namely,
Rights Handling and Misuse Handling.

1.1.1 Rights Handling

This component is responsible for handling the copyrights on digital works.
Informally, a copyright, as a form of protection by law, provides an author or
her legal assignees with exclusive rights to control certain uses (e.g., repro-
duction, performance, redistribution) of intellectual and expressive works,
and to authorize others to do the same. Intellectual and expressive works in-
clude literary, dramatic, musical, and artistic works (see, e.g., US Copyright
Office (2002)). Some important aspects in this context are:

• Similarity: Rights cannot only refer to original works, but also to a
class of similar works which we call work-class. Similar works are
those works derived from the author’s original works by means of triv-
ial (understandable) transformations, e.g., a JPEG compressed version
of an image. Note that digital works can be treated on the bit-level,
and on the perceptual level. On the bit-level, each digital work is rep-
resented and identified by its unique bit-string encoding, and works are
considered equal, if and only if they have the same bit-representation.
On the perceptual level, the notion of a work is more “fuzzy”, since
human perception of (digital) works is quite robust against modifica-
tions of works. Here, “fuzzy” means that “one work” on the perceptual
level concerns all works which are sufficiently similar with respect to

the human perception (e.g., rescaled, cropped, rotated or compressed
versions of an image), and each having different bit-representations
(e.g., PNG-, TIFF- or JPEG-encodings of the same image). All such
similar works are included in a work-class. This issue was first noticed
by Adelsbach, Pfitzmann, and Sadeghi (2000). They propose methods
to efficiently represent work-classes, e.g., by means of robust digital
watermarks or robust hashes. Note that the perceptual level is
the more natural way of treating digital works. Therefore, the rights
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handling component should be capable of handling rights on digital
works as understood on the perceptual level.

• Transactions on digital rights: Rights on work-classes can be treated
as digital goods, and thus, they can be subject to various transactions
such as licensing and transfer. For instance, consider a content
provider who may sell the “right to access” (licenses to read or to
listen) to certain objects (special online-news, music) in its database
instead of selling the whole database to consumers. The provider may
transfer certain rights or even all rights on its database to a costumer.
Other types of transactions are proof of authorship on work-classes,
and proof of ownership on rights. These transactions are essential
for reasonable trading, since honest users would (and should) not pur-
chase rights without ensuring that the selling party is either the right-
ful author or an authorized assignee (see Adelsbach, Pfitzmann, and
Sadeghi (2000) and Adelsbach and Sadeghi (2002)).1 Note that after
purchasing digital rights the buyer does not become the legal owner of
these rights, if this purchase violates the copyright conditions — even
if the buyer has purchased that work in good faith!

The rights handling component of a DRM system should enable autho-
rized parties to perform the mentioned transactions on digital rights
at any time.

1.1.2 Misuse Handling

This component is responsible for providing technical and non-technical
measures to protect copyright owners against copyright violations. The
non-technical aspects concern the legal terms, i.e., what the law permits,
and the underlying business models (see also National Research Council
(2000)). Our concern, however, is the technical copyright protection against
misuse, i.e., against unauthorized copying, manipulating, redistributing, etc.
A variety of approaches have been proposed, each having its advantages and

1One may think that prove of authorship is obsolete since there are a few global players
in “Hollywood”, and everyone knows their products (e.g., “Star wars Episode I”), and can
easily recognize the copyright holders. However, some remarks are in place: On the one
hand, even in this case, there may be business models involving small unknown resellers
who are not immediately trusted a priori by potential customers, and therefore, have to
prove that they are authorized to sell licenses. On the other hand, DRM systems should
not be restricted to the distribution of the products of large music and motion picture
industries. They should also support the distribution of “non-famous” works created by
“non-famous” freelance artists, such as photographers, graphic designers or music bands.
Unfortunately, most of today’s DRM proposals do not support this, since they commonly
were initiated by large content providers. Thus, from usual DRM proposals, it is obvious,
that the interests of powerful authors and content providers dominated those of small
ones.
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limitations. The proposed technical measures may be classified in two main
classes, namely, preventive measures and deterrent measures.

1.1.2.1 Preventive measures

The goal of these methods is to prevent misuse. Ideally, one requires a
“trusted media player”, also called “trusted viewer”, enabling only the au-
thorized users to “view” (watch, listen to, execute, etc.) digital works while
controlling the use of works according to the specified rights policies.

In this context, one of the earliest approaches for efficient distribution
of software was super distribution. The idea is to make software freely
available without any restriction, but, the software would run on a system
only if this system have installed the “super distribution technology” (see
Mori and Kawahara (1990) and Cox (1996)).

The realization of such systems requires the combination and interplay
of various components to achieve at least some of the desired properties of
the ideal “trusted media player”. In the following, we will shortly consider
the main aspects and components of such a system:

One may consider the access control to information as the most fun-
damental form of technology for copyright protection of digital property;
only the authorized parties are allowed to access the information or perform
certain actions. In this context, one may classify encryption as a basic
tool implementing a certain type of access control. Encryption schemes
should protect digital content when they are stored or transmitted, and
only those parties possessing the decryption key(s) are capable of access-
ing the content. A well-known application is pay-per-view television. Users
who pay are given keys to be able to decrypt the encrypted content sent
by the station. However, one cannot “prevent misuse”, once the content is
decrypted2: authorized parties may cheat, and reveal the decryption key or
the decrypted content to unauthorized parties. Another basic form of ac-
cess control is employed by today’s operating systems, and can offer limited
security.

The considerable advancements in the area of access control and the au-
thorization languages (see e.g., Jajodia, Samarati, and Subrahmanian (1997)
and Bonatti, de Capitani di Vimercati, and Samarati (2002)) may be ex-
ploited to formalize and express rights statements for digital properties.
Rights expressions may get very complex and may include a variety of as-
pects such as permissions, constraints, obligations, rights owners, etc. For

2This is even the case if the decryption is just in time and on site, meaning that
the content is not decrypted until just before it is used, no temporary copies are ever
stored, and the decryption is physically very close to the usage site. However, skilled
adversaries might still be able to manipulate I/O routines of the computer, and intercept
the decrypted content just before it is used. Note that the I/O routines of the existing
operating systems were not originally designed to hide the information they are processing
(National Research Council 2000).
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instance, consider Aisha and Bill who made a certain video (e.g., how to
find oil in the dessert). George is only allowed (usage permission) to watch
certain parts of the film for a certain period of time (constraint), and he has
to pay usage fee (obligation to pay) to Aisha and Bill (rights owner).

However, existing access control methods offer partially what is really
required for handling rights on digital properties. Note that the access and
use conditions attached to digital properties may get very complex. Further,
access control systems for digital properties must also be able to securely
handle the access policies for long time periods, and deal with administrative
tasks such as archiving a huge amount of different data and document types.

Recent solutions concern the design of Rights Management Lan-
guages. This, relatively new and promising, approach attempts to formu-
late rights and complex access and usage statements and policies (attached
to digital properties) in a formal and machine-readable language enabling
computers to decide whether the inquiries are permitted (see e.g., Gunter,
Weeks, and Wright (2001)).

However, as for encryption, we are faced with the question of what should
be done, once the digital content is in possession of a user. Dishonest users
may let unauthorized users access the content, or they may be able to cir-
cumvent or manipulate rights policies. To protect the system in such an
adversarial environment, solutions with tamper-resistant hardware and
software are indispensable.

However, past hardware solutions based on tamper-resistant hardware
appear to be costly, and ineffective for general-purpose computers.3

To avoid problems with special-purpose hardware, it was desired to de-
sign end-to-end systems based on software to control digital content. Such
systems apply a variety of measures such as secure digital containers,
e.g., in IBM’s cryptolope system (Group 1997). Digital containers are
cryptographically protected files which contain the content, access policies
expressed in the rights management language, fingerprinting information
(see below), etc. A customer purchasing a work in an open environment re-
ceives a cryptographic container containing the corresponding work, a con-
tract on the purchased rights and other necessary information. Any usage
must be confirmed by an observer software that checks the rights attached to

3For instance, a way for distributing software products is to use dongles, hardware
devices plugged, e.g., into the printer port. The software does not work unless the dongle
is installed. The most common type performs a challenge and response protocol between
the dongle and the software. However, dongles turned out to be impractical for mass
software market. Consumers did not accept them since for each application a separate
dongle was needed. Moreover, applying similar preventive measures for mass market
requires agreements among manufacturers of different products, e.g., to prevent producing
CD or MP3 copies, CD burner devices or MP3 readers must have build-in features such
as “copying not allowed” or “do not play a copy”. However, such agreements are hard to
achieve in practice as well as consumer acceptance to use such devices (see also Anderson
(2001)).
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the underlying work. However, implementing secure containers in software
is a difficult task, if not impossible.4

A recent approach which can be applied in this context is Trusted Com-
puting Platforms proposed by Trusted Computing Group (TCG), the
former Trusted Computing Platform Alliance (TCPA) (2002), or by Mi-
crosoft’s Next-Generation Secure Computing Base (NGSCB) (Eng-
land et al. 2003), the former Palladium. In the TCG Specification5 the
tamper-resistance hardware is reasonably reduced to a small module called
Trusted Platform Module (TPM). This technology offers functionalities that
can be used to build much more robust DRM systems. However, without
the appropriate operating system the TPM approach alone cannot prevent
end-users from circumventing the protection measures (see, e.g., Sadeghi
and Stüble (2003)).

1.1.2.2 Deterrent measures

As mentioned in Section 1.1.2.1, the realization of preventive measures in
practice is reasonable only in conjunction with tamper-resistance. Tamper-
resistance, however, is a strong assumption, and depending on the applica-
tion, it may easily be broken by skilled adversaries (see also Anderson and
Kuhn (1996)). Hence, we are back to the original question of what to do
against misuse when the digital content is under the control of the adversary.
Here, the only technical means of hindering misuse are deterrence measures.
These are complementary to preventive measures with the main goal to dis-
courage users from copyright violations. This means that users may copy
or redistribute works illegally, however, copyright holders are provided with
means to detect infringements after the fact (and then proceed with legal
measures against the cheaters.)

A key deterrence technology is fingerprinting. Informally, a finger-
print is a characteristic of an object which distinguishes this object from
other similar objects. Fingerprinting refers to the mechanism of combining
a fingerprint with an object, or to identify fingerprints that are already in-
trinsic to an object. Fingerprints can be used in a variety of applications.
Our concern in this thesis is fingerprinting digital content. Typical scenario
for applying fingerprinting is as follows: A merchant, as the party who holds
rights on digital works, secretly hides (embeds) identifying information (fin-

4Tamper-resistant software should resist manipulation or hide operations or secrets
used by software. One of the methods to realize tamper-resistant software is obfuscation.
Informally, an obfuscator is something like a (efficient) “compiler” that transforms a
program to a new program which has the same functionality as the original program
but “hard” to reverse-engineer (see, e.g., Goto et al. (2001), Hada (2000)). However, the
effectiveness of the proposed methods are proven experimentally, and as Barak et al. (2001)
show in their theoretical investigation of obfuscation, even under very weak formalizations
of the above intuition, obfuscation is impossible.

5At the time of this writing there was no NGSCB specification available.
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gerprint) in the work to be sold. Note that each copy of the original work
obtains its unique fingerprint for the corresponding buyer. For the pur-
pose of embedding one applies steganographic techniques, in particular
watermarking, which are required to embed the fingerprint (watermark)
imperceptibly and robustly. Robustness means that the watermark can-
not be removed without rendering the underlying work useless. Later, if the
merchant finds a redistributed work which is similar to one of her original
works, he should be able to extract the (embedded) fingerprint, and identify
the user(s) who illegally redistributed this work.

An example of a typical application is fingerprinting of digital audio, im-
ages and video to monitor piracy of digital content, and to trace the source of
illegal redistributions. For instance, Pay-TV stations can use fingerprints to
trace subscribers who illegally redistribute the content they (legally) receive.

There are several useful and advanced security properties one desires
the Fingerprinting schemes to provide. The first non-trivial enhancement is
resisting collusion-attacks. In a collusion attack, the adversary has access
to a certain number of fingerprinted copies of the same work, and attempts
to generate a copy which contains no usable information that leads to a
successful identification. Another very important and non-trivial property
is asymmetry of a fingerprinting scheme. Its goal is to provide provable
identification: If the merchant knows the fingerprinted work, as it is the case
for ordinary fingerprinting schemes, the extraction of identifying information
is not sufficient as a proof of treachery (illegal redistribution) to an honest
third party (e.g., an arbiter in a trial).

Further desirable enhancements of fingeprinting schemes are anonymity
for buyers (users) and direct non-repudiation. Anonymity property al-
lows a buyer to purchase works anonymously and remain anonymous as long
as she does not illegally redistribute a work, otherwise her anonymity can
be revoked. Direct non-repudiation enables the merchant to obtain enough
evidence in case of treachery to convince any arbiter, and the accused buyer
does not need to participate in any trial protocol to deny charges. This
property makes 2-party trials possible instead of common 3-party solutions,
and is very useful in practice. To implement the above properties, one needs
to apply sophisticated cryptographic techniques.

In this thesis, we will consider different types of fingerprinting schemes
and present the first concrete construction which offers the advanced security
properties mentioned above.

1.2 Assumptions based on Discrete Logarithm

Fingerprinting schemes apply a variety of cryptographic primitives and
techniques to achieve certain security properties. The security of these
schemes relies, among others, on cryptographic assumptions on the com-
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putational difficulty of some particular number-theoretic problems. A well-
known class of assumptions is related to the difficulty of computing Dis-
crete Logarithm (DL) in cyclic groups (McCurley 1990; Maurer 2001).
Among the various types of problems related to discrete logarithms, the
best known ones, besides discrete logarithm, are the computational and
decisional Diffie-Hellman (DH) assumptions (Diffie and Hellman 1976;
Brands 1994; Boneh 1998).

In earlier days, DL-related assumptions were defined informally and im-
precise. With the development of the modern theoretical cryptography,
cryptographers started to formulate more precise definitions for these as-
sumptions to be able to prove the security of cryptographic systems formally.

In the concrete formalizations of these assumptions, one has various de-
grees of freedom offered by parameters such as the underlying computa-
tional model, problem type (computational, decisional or matching),
probability space or the tolerated success probability of the adver-
sary. However, such aspects are often not precisely considered in the liter-
ature, and their impact on security guarantees are simply overlooked.

In this thesis, we address these aspects by identifying the parameters
relevant to cryptographic assumptions. More precisely, we introduce the
mathematical foundation required to precisely formulate and classify the
assumption related to discrete logarithm. Based on this classification, we
give new insights into the relations between some of these assumptions.
In particular, we give the first analysis of the impact of the underlying
probability space on the usefulness of these assumptions, on the existence
of relations among them and on the efficiency of reductions between them.

1.3 Outline

Chapter 2 explores the cryptographic assumptions based on discrete loga-
rithm, their mathematical foundation and their relations. More precisely,
we identify parameters relevant to concrete mathematical formulation of
cryptographic assumptions, and systematically classify the DL-related as-
sumptions. The classification allows us to formulate general assumption
statements in a compact form and to give novel insights into the relations
between these assumptions. In particular, we investigate the impact of a
newly introduced parameter called granularity. It describes the underlying
probability space of an assumption. Depending on granularity, we prove that
the medium-granular variants of some assumptions are equivalent whereas
their high-granular variants are not equivalent in generic sense. Further, it is
shown that reductions among lower granular assumptions are more efficient
than among their higher granular counterparts. These relations are proven
between a newly introduced assumption, called Inverse Exponent (IE), and
known assumptions such as Diffie-Hellman (DH) for both computational and
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decisional problem types. IE plays an important role in the security analysis
of the anonymous fingerprinting scheme proposed in Chapter 4.

Preliminary results on the DL-assumptions have been published in
Sadeghi and Steiner (2001). In this thesis, these results are generalized to
larger classes of assumptions (general group orders and not only for groups
of prime order) and rigorously proven where the proofs are more involved.

In Chapter 3, we introduce further conventions and mathematical no-
tations required in the context of fingerprinting schemes. Moreover, the
chapter motivates and reviews in detail the main cryptographic primitives
and protocols such as commitment schemes, (blind) signatures schemes, in-
teractive proof systems and the zero-knowledge property.

In Chapters 4 and 5, we first give systematic modular constructions for
different fingerprinting schemes (symmetric, asymmetric, anonymous). In
particular, we give a framework for the embedding procedure which is the
core part of asymmetric fingerprinting schemes. Finally, we introduce the
first explicit construction for a reasonably efficient and secure fingerprinting
scheme which fulfills the advanced security requirements collusion-tolerance,
asymmetry, anonymity and direct non-repudiation. Hereby, Chapter 5
presents in detail the construction of the first explicit embedding proto-
col, which is the core module of the anonymous asymmetric fingerprinting
scheme.

The main results of the fingerprinting part have been appeared in Pfitz-
mann and Sadeghi (1999) and Pfitzmann and Sadeghi (2000). However, new
details have been added, in particular for the proof of anonymity (unlinka-
bility) property which is the core security proof for the proposed anonymous
fingerprinting scheme.

1.4 Summary of Major Results

The major results of this thesis are as follows:

• This thesis presents novel insights into the relations between crypto-
graphic assumptions related to discrete logarithms (DL). In particular,
it investigates for the first time the relation between these assumptions
dependent on a newly identified parameter, ”granularity”, which de-
scribes the underlying probability space of an assumption.

The strong impact of granularity is shown by proving surprising sep-
arability results: some DL-related assumptions are equivalent for
their medium-granular variant whereas their high-granular variants
are provably not reducible with respect to generic algorithms. Fur-
ther, it is shown that reductions for medium granularity can achieve
much better concrete security (reduction efficiency) than the counter-
part high-granular reductions.
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The analyses leading to these results are based on the first thorough
classification of these assumptions introduced in Sadeghi and Steiner
(2001). The classification allows compact and precise formulation of
assumption statements.

• A new DL-related assumption, Inverse Exponent (IE), is introduced
and its relation is shown to other known assumptions such as Diffie-
Hellman (DH). The corresponding reduction proofs are constructive
and give the concrete security (reduction cost). The IE assumption is
useful in the context of the security analysis of the anonymous finger-
printing scheme introduced in this thesis.

• The first explicit and reasonably efficient construction for an anony-
mous fingerprinting scheme is introduced and proven secure. The con-
struction is modular and offers, beside anonymity, also other advanced
security properties such as collusion-tolerance, asymmetry and direct
non-repudiation. In particular, the first concrete construction for the
core module of an asymmetric fingerprinting scheme, namely the em-
bedding protocol, is given. This protocol is applied to securely and
verifiably embed the identifying information into the underlying digital
content.
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Chapter 2

Exploring DL-based
Assumptions

The security of many cryptographic constructions relies on assumptions re-
lated to Discrete Logarithms (DL). In the concrete formalizations of these
assumptions some degrees of freedom are offered by parameters such as com-
putational model, problem type (computational, decisional) or success prob-
ability of the adversary. In this chapter we first present the mathematical
foundations required to precisely formalize and classify assumptions related
to discrete logarithm. Based on this framework we briefly review existing
results on the relation between Diffie-Hellman (DH) and Square Exponent
(SE) assumptions. We then introduce a new assumption, called Inverse Ex-
ponent (IE) assumption, and extend the existing results by proving similar
relations between IE, DH and SE.

In particular, we investigate the effect of a newly introduced parameter
”granularity”, which describes the underlying probability space in an
assumption. Varying this parameter can strongly influence the relations
between different assumptions and leads to surprising results: We prove
that two DL-related assumptions can be reduced to each other for the
medium granularity whereas they are provably not reducible with respect to
generic algorithms for high granularity. Further, we show that reductions
for medium granularity can achieve much better concrete security than
equivalent high-granularity reductions.

MOST modern cryptographic systems rely on assumptions on the com-
putational difficulty of some particular number-theoretic problem.1

1The exceptions are information-theoretically secure systems and systems such as hash-
functions or shared-key encryption relying on heuristic assumptions, e.g., the Random
Oracle Model (Bellare and Rogaway 1993).

13
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One well-known class of assumptions is related to the difficulty of com-
puting discrete logarithms in cyclic groups (McCurley 1990). In this class a
number of variants exists. The most prominent ones, besides Discrete Log-
arithm (DL), are the computational and decisional Diffie-Hellman (DH)
assumptions (Diffie and Hellman 1976; Brands 1994). Less known as-
sumptions are Matching Diffie-Hellman (Frankel, Tsiounis, and Yung
1996), Square Exponent (SE) (Maurer and Wolf 1996), and Inverse
Exponent (IE) (Pfitzmann and Sadeghi 2000), an assumption closely re-
lated to the Inverted-Additive Exponent (IAE) Problem introduced
by MacKenzie (2001)2 and also implicitly required for the security of the
schemes proposed by Camenisch, Maurer, and Stadler (1996) and Davida
et al. (1997). Further related assumptions mentioned in the sequel are Gen-
eralized Diffie-Hellman (GDH) (Shmuely 1985; Steiner, Tsudik, and
Waidner 1996) and the Representation Problem (RP) (Brands 1994).
Several additional papers have studied relations among these assumptions,
e.g., (Shoup 1997; Maurer and Wolf 1998a; Maurer and Wolf 1998b; Biham,
Boneh, and Reingold 1999; Wolf 1999).

In the concrete formalizations of these assumptions, one has various de-
grees of freedom offered by parameters such as computational model, prob-
lem type (computational, decisional or matching) or success probability of
the adversary. However, such aspects are often not precisely considered
in the literature and consequences are simply overlooked. In this chapter,
we address these aspects by identifying the parameters relevant to crypto-
graphic assumptions. Based on this, we present a formal framework and a
concise notation for defining DL-related assumptions. This enables us to
precisely and systematically classify these assumptions.

Among the specified parameters, we focus on a parameter we call gran-

ularity of the probability space which underlies an assumption. Granularity
defines what part of the underlying algebraic structure (i.e., algebraic group
and generator) is part of the probability space and what is fixed in ad-
vance: For high granularity, an assumption has to hold for all groups and
generators; for medium granularity, the choice of the generator is included
in the probability space, and for low granularity, the probability is taken
over both, the choice of the group and the generator. Assumptions with
lower granularity are weaker than those with higher granularity. Nonethe-
less, not all cryptographic settings can rely on the weaker variants: Only
when the choice of the system parameters is guaranteed to be random, one
can rely on a low-granularity assumption. For example, consider an anony-
mous payment system where the bank chooses the system parameters. To
base the security of such a system a-priori on a low-granularity assumption

2Note that SE and IAE are originally called Squaring Diffie-Hellman (Wolf 1999) and
Inverted-Additive Diffie-Hellman (MacKenzie 2001), respectively. They are renamed here
for consistency and clarity reasons.
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would not be appropriate. A cheating bank might try to choose a weak
group with trapdoors (easy problem instances) to violate the anonymity of
the customer. Such a cheater strategy might be possible even if the low-
granular assumption holds: The assumption would ensure that the overall
number of easy problem instances is asymptotically negligible (in respect to
the security parameter). Nonetheless, it would not rule out that there are
infinitely many weak groups! However, if we choose the system parameters
of the payment system through a random yet verifiable process we can re-
sort to a weaker assumption with lower granularity. To our knowledge no
paper on anonymous payment systems addresses this issue properly. Gran-
ularity was also overlooked in different contexts, e.g., Boneh (1998) ignores
the fact that low-granular assumptions are not known to be random self-
reducible and comes to a wrong conclusion regarding the correctness of a
certain self-corrector.

In this chapter, we show that varying granularity can lead to surpris-
ing results. We extend the results of Wolf (1999) to the problem class IE,
i.e., we prove statements on relations between IE, DH and SE for both
computational and decisional variants in the setting of Wolf (1999), which
corresponds to the high-granular case. We then consider medium granular-
ity (with other parameters unchanged) and show the impact: We prove that
the decisional IE and SE assumptions are equivalent for medium granularity
whereas this is provably not possible for their high-granular variants, at least
not in the generic model (Shoup 1997). We also show that reductions be-
tween computational IE, SE and DH can offer much better concrete security
for medium granularity than their high-granular analogues.

The rest of this chapter is structured as follows: In the next section,
we define the basic terminology. Section 2.2 introduces the classification of
discrete-logarithm-based assumptions, and in Section 2.3, we see how this
classification can be used to concisely yet precisely describe assumptions
and relations among them. Section 2.4 focuses on the granularity and its
impact. In sections 2.5 and 2.6, we review existing results on the relation
between Diffie-Hellman (DH) and Square Exponent (SE) assumptions. We
introduce a new assumption, called Inverse Exponent (IE) assumption, and
extend the existing results by proving similar relations between IE, DH and
SE. Further, these sections consider the impact of the granularity parameter
on the relation between assumptions.

2.1 Terminology

2.1.1 General Notational Conventions

By {a, b, c, . . .} and (a, b, c, . . .) we denote the set and the sequence

consisting of the elements a, b, c, . . . . By specifying a set as
{f(v1 , . . . , vn) | pred(v1 , . . . , vn)} we mean the set of elements we get by eval-
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uating the formula f with any instantiation of the n free variables v1 , . . . , vn

which fulfills the predicate pred, e.g., {(v , v 2) | v ∈ N} denotes the set of
all tuples which contain a natural number and its square. Similarly, we
define (f(v1 , . . . , vn) | pred(v1 , . . . , vn)) to be the sequence of elements we
get by evaluating the formula f with any instantiation of the n free vari-
ables v1 , . . . , vn which fulfills the predicate pred. The elements are ordered
according to some arbitrary but fixed order relation on the (instantiated)
argument tuples (v1 , . . . , vn). For example, ((v , v 2) | v ∈ N) denotes the in-
finite sequence of all tuples which contain a natural number and its square,
and where the sequence is ordered, e.g., using the standard order < on N
and the value of v as the sort index.

The evaluation and following assignment of an expression expr to a vari-
able v is denoted by v ← expr. By v R← S we mean the assignment of a
uniformly chosen random element from the set S to variable v . Similarly,
v ∈R S denotes that v is a uniformly distributed random element from set
S . Finally, by t := expr we mean that by definition the term t is equal to
expr.

Simple random variables are specified as v R← S as mentioned above. To
specify more complicated random variables, we use the following notation:
(f(v1 , . . . , vn) :: assign(v1 , . . . , vn)). By this we mean the random variable
having a structure as defined by the formula f and a probability space as
induced by binding the n free variables v1 , . . . , vn via the assignment rule
assign, e.g., ((v , v 2) :: v R← Zn) denotes the random variable consisting of a
tuple which contains an integer and its square where the integer is uniformly
chosen from Zn. Similarly, {f(v1 , . . . , vn) :: assign(v1 , . . . , vn)} defines an
ensemble of random variables indexed by the free variables vi which are
left unspecified in the assignment rule assign and which have by definition
domain N, e.g., {(v , v k) :: v R← Zn} denotes the ensemble of random variables
consisting of a tuple which contain an integer and its k-th power where the
integer is uniformly chosen from Zn and the natural number k is the index
of the ensemble. Finally, let v be some arbitrary random variable or random
variable ensemble. Then, [v ] denotes the set of all possible values of v .

To specify probabilities, we use the notation Prob[pred(v1 , . . . , vn) ::
assign(v1 , . . . , vn)]. This denotes the probability that the predicate pred

holds when the probability is taken over a probability space defined by the
formula assign on the n free variables vi of the predicate pred. For example,
Prob[v ≡ 0 (mod 2) :: v R← Zn] denotes the probability that a random
element of Zn is even.

For convenience, by log we always mean the logarithm to the base two.

2.1.2 Asymptotics

Cryptographic assumptions are always expressed asymptotically in a secu-
rity parameter k ∈ N. To classify the asymptotic behavior of functions
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N → R∗ (with R∗ denoting the set of all non-negative real numbers) we
require the following definitions.

We can extend ordinary relation operators op ∈ {<,≤,=, >,≥} on ele-
ments of R∗ to asymptotic relation operators op∞ on functions f1 and f2

defined as above as follows:

f1(k) op∞ f2(k) := ∃k0 ∀k>k0 : f1(k) op f2(k).

The corresponding negation of the asymptotic relation operators is then
denoted by 6<∞ , 6≤∞ , 6=∞ , 6≥∞ , and 6>∞ , respectively.

For example, f1(k) <∞ f2(k) means that f1 is asymptotically strictly
smaller than f2 and f1(k) 6≥∞ f2(k) means that f1 is not asymptoti-
cally larger or equal to f2, i.e., for each k0 there is a k1 > k0 such that
f1(k1) < f2(k1). However, note that the f1(k) 6≥∞ f2(k) does not imply
f1(k) <∞ f2(k)!

Let poly(v) be the class of univariate polynomials with variable v and
non-negative coefficients, i.e., poly(v) := {∑d

i=0 aiv
i | d ∈ N0 ∧ ai ∈ N0}.

Furthermore, let poly(v1 , . . . , vn) be the class of multivariate polynomials
with n variables vj and non-negative coefficients, i.e., poly(v1 , . . . , vn) :=

{∑d
i=0

∑|Di|
j=1 aij

∏n
l=1 vl

dijl | d∈N0 ∧ aij ∈N0 ∧ (dij1, . . . , dijn)∈Dn
i } where

Dn
i := {(dl | l ∈ {1, . . . , n}) | dl ∈N0 ∧

∑n
l=1 dl = i}. Based on this we can

define the following useful classes of functions:
A negligible function ε(k) is a function where the inverse of any polyno-

mial is asymptotically an upper bound, i.e., ∀d>0 ∃k0 ∀k>k0 : ε(k) < 1/kd.
We denote this by ε(k) <∞ 1/poly(k). If ε(k) cannot be upper bounded in
such a way, we say ε(k) is not negligible and we denote this by ε(k) 6<∞

1/poly(k).
A non-negligible function f(k) is a function which asymptotically can

be lower bounded by the inverse of some polynomial, i.e., ∃d > 0 ∃k0 ∀k >
k0 : f(k) ≥ 1/kd. We denote this by f(k) ≥∞ 1/poly(k).3 If f(k) cannot
be lower bounded in such a way we say f(k) is not non-negligible and
denote this by f(k) 6≥∞ 1/poly(k).

Non-negligible functions are — when seen as a class — closed under
multivariate polynomial composition, i.e., ∀n ∈ N ∀i ∈ {1, . . . , n} ∀p ∈
poly(v1 , . . . , vn)\{0poly} ∀fi ≥∞ 1/poly(k) : p(f1, . . . , fn) ≥∞ 1/poly(k)
where 0poly denotes the null polynomial. This holds also for negligible func-
tions if there is no non-zero constant term in the polynomial, i.e., we select
only elements from the class poly(v1 , . . . , vn) where a01 is zero. For not
negligible and not non-negligible functions this holds solely for univariate
polynomial composition. Finally, the addition (multiplication) of a non-
negligible and a not negligible function is a non-negligible (not negligible)
function. Similarly, the addition of a negligible and a not non-negligible

3Note that not negligible is not the same as non-negligible, there are functions which
are neither negligible nor non-negligible!
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function is a not non-negligible function. The multiplication of a negligible
and a not non-negligible function is a not non-negligible function or even a
negligible function if the not non-negligible function can be upper bounded
by some polynomial.

2.1.3 Computational Model

The computational model is based on the class TM of probabilistic Turing

machines on the binary alphabet {0, 1}. The runtime of a Turing machine
M is measured by the number of simple Turing steps from the initial state
with given inputs until the machine reaches a final state. This is denoted by
RunTime(M(inputs)). The complexity of a Turing machine is expressed as a
function of the bit-length of the inputs encoded on its input tape and defined
as the maximum runtime for any input of a given bit-length. To make the
definition of the probability spaces more explicit, we model a probabilistic
Turing machine always as a deterministic machine with the random coins
given as an explicit input C chosen from the uniform distribution of infinite

binary strings U . However, we do not consider the randomness when calcu-
lating the length of the inputs. The important class of polynomial-time
Turing machines is the class of machines with polynomial complexity:

{A | A ∈ TM;

∀d1; ∃d2; ∀k;

∀inputs ∈ {0, 1}kd1
; ∀C ∈ {0, 1}∞;

: RunTime(A(C, inputs)) < kd2}

When we use the term efficient in the context of algorithms or compu-
tation we mean a Turing machine with polynomial complexity. By a hard
problem we mean the absence of any efficient algorithm (asymptotically)
solving that problem.

In some situations, e.g., in a reduction, a machine M has access to some
other machines O1, . . . ,On and can query them as oracles. We denote this
by MO1,...,On . This means that the machine M can write the input tapes of
all Oi, run them on that input, and read the corresponding output tapes.
However, M does not get access to the internal structure or state of the
oracle.

2.1.4 Indistinguishability

Let two families of random variables X :=(Xk | k ∈ N) and Y :=(Yk | k ∈ N)
be defined over some discrete domain D. They are said to be computa-
tionally indistinguishable iff there is no efficient distinguishing algorithm
D which can distinguish the two asymptotically, i.e., |Prob[D(1k,Xk ) = 1]−
Prob[D(1k,Yk ) = 1]| is a negligible function in k. This is denoted by X

c≈Y .
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X and Y are statistically indistinguishable iff the statistical differ-
ence ∆(X ,Y )(k):=

∑

d∈D |Prob[Xk = d]−Prob[Yk = d]| is a negligible func-

tion. This is written as X
s≈Y .

2.1.5 Algebraic Structures

The following terms are related to the algebraic structures underlying an
assumption.

Finite cyclic group G: A group is an algebraic structure with a set G of
group elements and a binary group operation ∗ : G×G→ G such that
the following conditions hold:

• the group operation is associative, i.e., a ∗ (b ∗ c) = (a ∗ b) ∗ c for all
a, b, c ∈ G,

• there is an identity element 1 ∈ G such that a ∗ 1 = a = 1 ∗ a for all
a ∈ G, and

• for each a ∈ G there is an inverse a−1 ∈ G such that a ∗ a−1 = 1 =
a−1 ∗ a.

The group order is the cardinality of the set G and is denoted by |G|.
In the following, we write group operations always multiplicatively by juxta-
position of group elements; Nonetheless, note that the following results apply
— with the appropriate adaption of notation — also to additive groups such
as elliptic curves. The exponentiation ax for a ∈ G and x ∈ N0 is then

defined as usual as

x times
︷ ︸︸ ︷
a · · · a. The discrete logarithm of a given b ∈ G with

respect to a specified base a ∈ G is the smallest x ∈ N0 such that ax = b or
undefined if no such x exists. The order of a group element b ∈ G is the
least positive integer x such that bx = 1 or ∞ if no such x exists.

A group G is finite if |G| is finite. A group G is cyclic if there is a generator
g ∈ G, such that ∀b ∈ G ∃!x ∈ Z|G| : gx = b. The order of all elements
in a finite cyclic group G divides |G|. In particular, there are exactly ϕ(d)
elements of order d (where d is any divisor of |G|).
All considered assumptions are based on finite cyclic groups. For brevity,
however, we omit the “finite cyclic” in the sequel and refer to them simply
as “groups”.

For more information on the relevant abstract algebra we refer you to the
book of Lidl and Niederreiter (1997).

Algorithmically, the following is noteworthy: Finding generators can be done
efficiently when the factorization of |G| is known; it is possible to perform
exponentiations in O(log (|G|)) group operations; and computing inverses
can be done in O(log (|G|)) group operations under the condition that |G|
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is known. For the corresponding algorithms and further algorithms for ab-
stract or concrete groups we refer you to the books of Bach and Shallit
(1996) and Menezes, van Oorschot, and Vanstone (1997).

Structure instance SI :A tuple (G, g1, . . . , gn) containing a group G as
first element followed by a sequence of one or more generators gi. This
represents the structure underlying a particular problem. We can assume
that the structure instance SI (though not necessarily properties thereof
such as the order or the factorization of the order) is publicly known.

As a convention we abbreviate g1 to g if there is only a single generator
associated with a given structure instance.

2.1.6 Problems

The following two terms characterize a particular problem underlying an
assumption.

Problem family P: A family of abstract relations indexed by their un-
derlying structure instance SI . An example is the family of Diffie-Hellman
problems which relate two (secret) numbers x and y, the two (public) values
gx and gy, and the value gxy where all exponentiations are computed using
the generator g specified in SI . We define a problem family by explicitly
describing its problem instances as shown in the next paragraph.

Problem instance PI : A list of concrete parameters fully describing a
particular instance of a problem family, i.e., a description of the structure
instance SI and a tuple (priv , publ , sol ) where priv is the tuple of values kept
secret from adversaries, publ is the tuple of information publicly known on
that problem and sol is the set of possible solutions4 of that problem in-
stance. When not explicitly stated, we can assume that priv always consists
of elements from Z|G|, publ consists of elements from G, and sol is either a
set of elements from Z|G| or from G.

If we take the aforementioned Diffie-Hellman problem for subgroups of Z∗
p

of order q with p and q prime as an example, a problem instance PI DH is
defined by a tuple

(((Z∗
p/q, p, q), (g)), ((x, y), (gx , gy), {(gxy)}))

where Z∗
p/q denotes the parameterized description of the group and its op-

eration, and p, q are the corresponding group parameters. (More details on
the group description and parameter are given below when group samplers
are introduced.)

4The solutions might not be unique, e.g., multiple solution tuples match a given public
value in the case of the Representation Problem (See Section 2.2, Parameter 1).
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This presentation achieves a certain uniformity of description and allows
a generic definition of types of problems, i.e., whether it is a decisional or
computational variant of a problem. While this might not be obvious right
now, it should become clear at the latest in Section 2.2 below when we give
the explicit definition of the different problem families with Parameter 1 and
the precise definition of problem types with Parameter 2.

For convenience, we define PI SI , PI publ , PI priv and PI sol to be the pro-
jection of a problem instance PI to its structure instance, public, private
and solution part, respectively. Picking up again above example, this means
PI DH

SI := ((Z∗
p/q, p, q), (g)), PI DH

priv := (x, y), PI DH
publ := (gx, gy), and

PI DH
sol := {gxy}, respectively.

2.1.7 Samplers

In the following, we describe different probabilistic polynomial-time algo-
rithms we use to randomly select (sample) various parameters. Note that
these samplers cannot be assumed to be publicly known, i.e., to sample from
the corresponding domains adversaries have to construct their own sampling
algorithms from publicly known information.

Group sampler SGG : A function which, when given a security param-
eter k as input, randomly selects a group G and returns a corresponding
group index. We assume that a group sampler selects groups only of simi-
lar nature and type, i.e., there is a general description of a Turing machine
which, based on a group index as parameter, implements at least the group
operation and the equality test, and specifies how the group elements are
represented. An example are the groups pioneered by Schnorr (1991) in his
identification and signature schemes and also used in the Digital Signature
Standard (DSS) (National Institute of Standards and Technology (NIST)
2000), i.e., unique subgroups of Z∗

p of order q with p and q prime. The
group index would be (p, q) and the description of the necessary algorithms
would be taken, e.g., from Menezes, van Oorschot, and Vanstone (1997).
Note that, in this example, the group index allows the derivation of the
group order and the factorization thereof. However, it cannot be assumed
that the group index — the only information besides the description of the
Turing machine which will be always publicly known about the group —
allows to derive such knowledge on the group order in general.

The set of groups possibly returned by a group sampler, i.e., [SGG ], is called
in the sequel a group family G and is required to be infinite. To make
the specific group family G more explicit in the sampler we often label the
sampler accordingly as SGG , e.g., for above example the sampler would be
named SGZ∗

p/q
.

Furthermore, the set of possible groups G returned by SGG for a given
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fixed security parameter k, i.e., [SGG(1k)], is called group siblings GSG(k).
This represents the groups of a given family G with approximately the same
“security”. We assume that the group operation and equality test for the
groups in GSG(k) can be computed efficiently (in k); yet the underlying
problem is supposedly asymptotically hard.

Slightly restricting the class of samplers, we require that the order |G| of
all G ∈ GSG(k) is approximately the same. In particular, we assume that
the order can be bounded in the security parameter, i.e., ∃d1, d2 > 0 ∀k >
1 ∀G ∈ GSG(k) : kd1 ≤ log (|G|) ≤ kd2 .5 For Schnorr signatures, in the
example given above, a group sampler might choose the random primes p
and q with |q| ≈ 2k and p = rq+1 for an integer r sufficiently large to make
DL hard to compute in security parameter k. See Menezes, van Oorschot,
and Vanstone (1997) and Odlyzko (2000) for the state-of-the-art algorithms
for computing discrete logarithms and Lenstra and Verheul (2001) for a
methodology on how to choose parameters (as a function of the security
parameter k), illustrated concretely for group families such as Z∗

p or elliptic
curves.

Generator sampler Sg: A function which, when given a description of
a group G for a fixed group family, randomly selects a generator g ∈ G.
We assume that Sg has always access somehow, e.g., via an oracle, to the
factorization of the group order. This information is required by the sampler
as the group index might not be sufficient to find generators efficiently. This
covers the situation where an honest party chooses the group as well as the
generator but keeps the factorization of the group order secret. However, it
also implies that the factorization of the order should in general be public
when the adversary chooses the generators.

Note that the number of generators is ϕ(|G|) and, due to requirements on
group orders mentioned above, always super-polynomial in the security pa-
rameter k: Given the lower bound ∀n ≥ 5 : ϕ(n) > n/(6 log (log (n)))
(Fact 2.102, Menezes, van Oorschot, and Vanstone 1997) and our size re-
strictions on |G| we have asymptotically the following relation: ϕ(|G|)/|G| >
1/O(log k) > 1/k.

Problem instance sampler SPI P : A function indexed by a problem fam-
ily P which, when given a description of a structure instance SI as input,
randomly selects a problem instance PI . Similarly to Sg, we assume that
SPIP gets always access to the factorization of the group order. Further-
more, SPI P gets also access to the discrete logarithms among the different

5This restriction is mainly for easier treatment in various reductions and is not a
hindrance in practical applications: On the one hand, the upper bound is tight (larger
groups cannot have efficient group operations). On the other hand, the common approach
in choosing a safe group order, e.g., as proposed by Lenstra and Verheul (2001), will
relate the group order closely to the negligible probability of guessing a random element
correctly, and hence result in exponential order.
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generators in SI . This is required for some problem families, e.g., IE and
RP(n).6 In most cases and in all examples considered here, this corresponds
to randomly selecting priv and deriving publ and sol from it. For example,
a problem instance sampler SPI DH for the Diffie-Hellman problem family
would return a tuple (SI , ((x, y), (gx, gy), {(gxy)})) with x and y randomly
picked from Z|G| and g taken from SI . When the specific problem family P
is not relevant or clear from the context we abbreviate SPI P to SPI .

Note that the running time of the samplers is always polynomially
bounded in the security parameter k.7

If not stated explicitly we can always assume a uniform distribution
of the sampled elements in the corresponding domains, as done in most
cases of cryptographic applications. The rare exceptions are cases such as
the c-DLSE assumption (Patel and Sundaram 1998; Gennaro 2000), an as-
sumption on the difficulty of taking discrete logarithms when the random
exponents are taken only from a small set, i.e., Z2c with c = ω(log log |G|)
instead of Z|G|, or the Diffie-Hellman Indistinguishability (DHI) assump-
tions introduced by Canetti (1997). The difficulty of these assumptions is
not necessarily their individual specification, e.g., c-DLSE could be defined
by suitably restricting the domain of the sol part of a DL problem instance.
The deeper problem is that proving relations among these and other as-
sumptions seems to require very specific tools, e.g., for randomization and
analysis of resulting success probabilities, and are difficult to generalize as
desirable for a classification as presented here. However, it might be worth-
while to investigate in future work whether these cases can be addressed by
treating the sampling probability distribution as an explicit parameter of
the classification. To make this extension promising, one would have to first
find a suitable categorization of sampling probability distributions which:
(1) captures the assumptions currently not addressed, and (2) offers tools
assisting in proving reductions in a generalizable fashion.

2.2 Parameters of DL-based Assumptions

In defining assumptions, a cryptographer has various degrees of freedom
related to the concrete mathematical formulation of the assumption, e.g.,

6As a practical consequence, it means that for such problem families either this informa-
tion has to be public, e.g., the group index should allow the derivation of the factorization
of the order, or the group and generators are chosen by the same party which samples the
problem instance.

7For SG this holds trivially as we required samplers to be polynomial-time in their
inputs. The input of Sg are the outputs of a single call of a machine (SG) polynomially
bounded by k and, therefore, can be polynomially upper bounded in k. As the class
of polynomials is closed under polynomial composition this holds also for Sg and, using
similar reasoning, also for SPI .
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what kind of attackers are considered or over what values the probability
spaces are defined.

To shed some light in these degrees of freedom we classify intractability
assumptions for problems related to DL and relevant to many cryptographic
applications. We identify the following orthogonal parameters. Additionally,
we give for each of these parameters in a corresponding sublist different
values which can produce significantly different assumptions.

1. Problem family: The following problem families are useful (and
often used) for cryptographic applications. As mentioned in Sec-
tion 2.1.6 we define the problem family (or more precisely their prob-
lem instances) by a structure instance SI (described abstractly by G
and gi’s) and a tuple (priv , publ , sol ):

DL (Discrete Logarithm):

PI DL := ((G, g), ((x), (gx), {(x)})).

DH (Diffie-Hellman):

PI DH := ((G, g), ((x, y), (gx , gy), {(gxy)}))

GDH(n) (Generalized Diffie-Hellman for n ≥ 2):

PI GDH(n) := ((G, g), ((xi |i ∈ {1, . . . , n}),
(g

∏

i∈I xi | I ⊂ {1, . . . , n}), {(g
∏n

i=1 xi)})),

where n is a fixed parameter.8

SE (Square-Exponent):

PI SE := ((G, g), ((x), (gx), {(gx2
)})).

IE (Inverse-Exponent):

PI IE := ((G, g), ((x), (gx), {(gx−1
)})).

Note that for elements x′ ∈ Z|G| \ Z∗
|G| the value x−1 is not

defined. Therefore, PI IE
priv (= (x)) has to contain an element

of Z∗
|G|, contrary to the previously mentioned problem families

where priv consists of elements from Z|G|.

8A slightly generalized form GDH(n(k)) would allow n to be a function in k. However,
this function can grow at most logarithmically (otherwise the tuple would be of super-
polynomial size!)
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RP(n) (Representation Problem for n ≥ 2):

PI RP(n) := ((G, g1, . . . , gn), ((xi | i ∈ {1, . . . , n}), (

n∏

i=1

gxi
i ),

{(x′
i | i ∈ {1, . . . , n}) | (x′

i ∈ Z|G|) ∧ (
n∏

i=1

g
x′

i
i =

n∏

i=1

gxi
i )})),

where n is a fixed parameter.9

IAE (Inverted Additive Exponent Problem):

PI IAE := ((G, g), ((x, y), (g1/x , g1/y), {(g1/(x+y))})).
Similar to IE, PI IAE

priv (= (x, y)) consists of elements from
Z∗
|G|. Additionally, it has to hold that x + y ∈ Z∗

|G|.

SDH (Strong Diffie-Hellman Problem):

PI SDH := ((G, g), ((x, y), (gx , g1/x, gy), {(gxy)})).
Similar to IE, the domain of x is restricted to Z∗

|G|.

2. Problem type: Each problem can be formulated in three variants.

C (Computational): For a given problem instance PI an algorithm A
succeeds if and only if it can solve PI , i.e., A(. . . ,PI publ ) ∈ PI sol .
For the Diffie-Hellman problem family this means that A gets gx

and gy as input and the task is to compute gxy.

There is a small twist in the meaning of A(. . . ,PI publ ) ∈ PI sol :
As |G| is not necessarily known, A might not be able to repre-
sent elements of Z|G| required in the solution set uniquely in their
“principal” representation as elements of {0, . . . , |G|−1}. There-
fore, we allow A in these cases to return elements of Z and we
implicitly reduce them mod|G|.

D (Decisional): For a given problem instance PI 0, a random problem
instance PI 1 chosen with the same structure instance using the
corresponding problem instance sampler and a random bit b, the
algorithm A succeeds if and only if it can decide whether a given
solution chosen randomly from the solution set of one of the two
problem instances corresponds to the given problem instance, i.e.,
A(. . . ,PI publ , sol c)) = b where sol c

R← PI b
sol .10 For the Diffie-

Hellman problem family this means that A gets gx, gy and gc

(where c is either xy or x′y′ for x′, y′ ∈R Z|G|) as input and the
task is to decide whether gc is gxy or not.

9Similar to GDH(n) one can also define here a slightly generalized form RP(n(k)). In
this case, one can allow n(k) to grow even polynomially.

10This definition differs subtly from most other definitions of decisional problems: Here
the distribution of the challenge sol c is for b = 1, i.e., the random “wrong” challenge,
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M (Matching): For two given problem instances PI 0 and PI 1 and a
random bit b, the algorithm A succeeds if and only if it can cor-
rectly associate the given solutions with their corresponding prob-
lem instances, i.e., A(. . . ,PI 0

publ ,PI 1
publ , sol b, sol b̄) = b where

sol 0
R← PI 0

sol and sol 1
R← PI 1

sol . For the Diffie-Hellman prob-
lem family this means that A gets gx0 , gy0 , gx1 , gy1 , gxbyb and
gxb̄yb̄ as input and the task is to predict b.

Initially, only computational assumptions, which follow naturally from
informal security requirements, were considered in cryptography. For
example, a key exchange protocol should prevent the complete recov-
ery of the key which is usually the solution part of an assumption.
However, the later formalization of security requirements, in particu-
lar semantic security (Goldwasser and Micali 1984), requires often the
indistinguishability of random variables. Taking again the example
of a key exchange protocol, it was realized that if you do not want
to make strong requirements on the particular use of exchanged keys
but allow the modular and transparent composition of key exchange
protocols with other protocols, e.g., for secure sessions, it is essen-
tial that an exchanged key is indistinguishable from random keys, i.e.,
not even partial information on the key is leaked. While this does
not necessarily imply decisional assumptions, such assumptions might
be indispensable for efficient systems: There is an efficient encryp-
tion scheme secure against adaptive adversaries under the Decisional
Diffie-Hellman assumption (Cramer and Shoup 1998). Nonetheless,
no system is known today which achieves the same security under a
similar computational assumption in the standard model.11 Finally,
the matching variant was introduced by Frankel, Tsiounis, and Yung
(1996) where it showed to be a useful tool to construct fair off-line
cash. Handschuh, Tsiounis, and Yung (1999) later showed that the
matching and the decisional variants of Diffie-Hellman are equivalent,
a proof which is adaptable also to other problem families.

3. Group family: Various group families are used in cryptographic ap-
plications. The following list contains some of the more common ones.

according to the distribution of sol induced by SPI whereas most others consider it to be
a (uniformly chosen) random element of G. Taking DIE or DDH with groups where the
order has small factors these distributions are quite different! Conceptually, the definition
here seems more reasonable, e.g., in a key exchange protocol you distinguish a key from an
arbitrary key, not an arbitrary random value. It also addresses nicely the case of samplers
with non-uniform distributions.

11There are efficient schemes known in the random oracle model (Bellare and Rogaway
1993), e.g., OAEP (Bellare and Rogaway 1995; Boneh 2001; Shoup 2001; Fujisaki et al.
2001). However, this model is strictly weaker than the standard model and has a number
of caveats (Canetti, Goldreich, and Halevi 1998).
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For brevity we do not mention the specific parameter choice as a func-
tion of k. We refer you to, e.g., Lenstra and Verheul (2001), for con-
crete proposals:

Z∗
p: The multiplicative groups of integers modulo a prime p with group

order ϕ(p) having at least one large prime factor. The group index
is p.

Z∗
p/q: The subgroups of Z∗

p of prime order q. The group index is the

tuple (p, q).

Z∗
n: The multiplicative groups of integers modulo a product n of two

(or more) large primes p and q with p − 1 and q − 1 containing
at least one large prime factor. The group index is n.12

QR∗
n: The subgroups of Z∗

n formed by the quadratic residues with n
product of two large safe13 primes. The group index is n.

Ea,b/Fp: The elliptic curves over Fp with p and |Ea,b| prime with group
index (a, b, p).

The concrete choice of a group family has significant practical impact
on aspects such as computation or bandwidth efficiency or suitability
for a particular hardware but discussing this goes beyond the scope
of this document, namely comparing assumptions. In this scope, it
is mostly sufficient to classify simple and abstract properties of the
chosen family and the public knowledge about a given group. We
established the following two general criteria:

(a) The factorization of the group order contains

lprim: large prime factors (at least one). Formally, it has to hold
that (with P being the set of prime numbers):

∀d>0∃k0 ∀k>k0 ∀G∈GSG(k) ∃p∈P∃r∈N : |G|=pr∧p>kd,

nsprim: no small prime factor. Formally, the following has to
hold:

∀d>0∃k0 ∀k>k0 ∀G∈GSG(k) @p∈P∃r∈N : |G|=pr∧p<kd,

prim: only a single and large prime factor.

Note that this is a strict hierarchy and later values imply earlier
ones. There would also be an obvious fourth value, namely the
order contains no large factor. However, in such cases no reason-
able DL based assumption seems possible (Pohlig and Hellman
1978; Pollard 1978).

12This means that the order of the group is secret if we assume factoring n is hard.
13A prime p is a safe prime when p − 1 = 2p′ and p′ ∈ P.
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(b) The group order is publicly

o: unknown,

o: known,

fct: known including its complete14 factorization.

We assume any such public knowledge to be encoded in the de-
scription returned by a group sampler SG. Note that in prac-
tice the group order is never completely unknown: at least an
efficiently computable upper bound B(|G|) can always be de-
rived, e.g., from the bit-length of the representation of group
elements. This can be exploited, e.g., in achieving random self-
reducibility15 (Blum and Micali 1984) for DDH even in the case
where the order is not known (Boneh 1998).

The cryptographic application will determine which of above proper-
ties hold, e.g., a verifiable group generation will quite likely result in
a publicly known factorization.

Furthermore, note that the group families given above implicitly fix
the properties of the group order factorization (Z∗

p: lprim; Z∗
p/q: prim;

Z∗
n: lprim; QR∗

n: nsprim; Ea,b/Fp: prim), and the public knowledge
about it (Z∗

p: o; Z∗
p/q: fct; Z∗

n: o; QR∗
n: o; Ea,b/Fp: fct).

4. Computational capability of adversary: Potential algorithms
solving a problem have to be computationally limited for number-
theoretic assumptions to be meaningful (otherwise we could never
assume their nonexistence). Here, we only consider probabilistic
polynomial-time algorithms (called adversaries in the following).
The adversary can be of

u (Uniform complexity): There is a single probabilistic Turing ma-
chine A which for any given finite input returns a (not necessar-
ily correct) answer in polynomial time in its input length. As
the complexity of Turing machines is measured in the bit-length
of the inputs the inputs should be neither negligible nor super-
polynomial in the security parameter k, otherwise the algorithm
might not be able to write out the complete desired output or
might become too powerful. To address this issue one normally
passes an additional input 1k to A to lower bound the complexity
and makes sure that the other inputs can be polynomially upper

14If the order is known then small prime factors can always be computed. Insofar the
case here extends the knowledge about the factorization also to large prime factors.

15Informally, a problem is random self-reducible if solving any problem instance can be
reduced to solving the problem on a random instance, i.e., when given an instance x we can
efficiently randomize it to a random instance xR and can efficiently derive (derandomize)
the solution for x from the solution returned by an oracle call on xR.
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bounded in k. In all cases considered here, the inputs in the as-
sumptions are already proportional to the security parameters,
see remarks on the size of groups and on the runtime of samplers
in Section 2.1.7. Therefore we can safely omit 1k in the inputs of
A.

n (Non-uniform complexity): There is an (infinite) family of Tur-
ing machines (Ak | k ∈ N) with description size and running
time of Ak bounded by a polynomial in the security parame-
ter k.16 Equivalent alternatives are a (single) Turing Machine
with polynomial running time and an additional (not necessar-
ily computable) family of auxiliary inputs polynomially bounded
by the security parameter, or families of circuits with the num-
ber of gates polynomially bounded by the security parameter,17

respectively.

Uniform assumptions are (in many cases strictly) weaker than corre-
sponding non-uniform assumptions as any uniform algorithm is also a
non-uniform one. Furthermore, all uniform black-box reductions map
to the non-uniform case (but not necessarily vice-versa!) and hence-
forth most uniform proofs should map to their non-uniform counter-
part. This makes uniform assumptions preferable over non-uniform
assumptions (e.g., honest users are normally uniform and weaker as-
sumptions are always preferable over stronger ones). However, uni-
form assumptions also assume uniform adversaries which is a weaker
adversary model than the model considering non-uniform adversaries.
Furthermore, there are proofs which only work in a non-uniform model.

Further, potentially interesting yet currently ignored, attacker capa-
bilities would be bounds on space instead of (or in addition) to time.
Adaptive adversaries do not seem of concern for pure assumptions.

Ideally, one would consider larger, i.e., less restricted, classes of adver-
saries than the strictly polynomial-time one following from the defini-
tion from Section 2.1.3. It would seem more natural, e.g., to require
polynomial behavior only on inputs valid for a given assumption or to
allow algorithms, e.g., Las Vegas algorithms, with no a-priori bound on
the runtime.18 Unfortunately, such classes are difficult to define prop-
erly and even harder to work with. However, as for each adversary
of these classes, there seems to be a closely related (yet not necessar-
ily black-box constructible) strictly polynomial-time adversary with

16The remarks on input length and runtime mentioned above for uniform complexity
also apply here.

17In the case of circuits the bound on the running time automatically follows and does
not have to be explicitly restricted.

18However, we would have to restrict the considerations to polynomial time runs when
measuring the success probability of adversaries.
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similar success probability, this restriction seems of limited practical
relevance.

5. “Algebraic knowledge”: A second parameter describing the adver-
sary’s computational capabilities relates to the adversary’s knowledge
on the group family. It can be one of the following:

σ (Generic): This means that the adversary does not know anything
about the structure (representation) of the underlying algebraic
group. More precisely this means that all group elements are
represented using an encoding function σ(·) drawn randomly
from the set ΣG,g of bijective19 functions Z|G| → G. Group op-
erations can only be performed via the addition and inversion20

oracles σ(x + y) ← σ+(σ(x), σ(y)) and σ(−x) ← σ−(x) respec-
tively, which the adversary receives as a black box (Shoup 1997;
Nechaev 1994) together with σ(1), the generator.

If we use σ in the following, we always mean the (not further
specified) random encoding used for generic algorithms with a
group G and generator g implied by the context. In particular,
by Aσ we refer to a generic algorithm. To prevent clutter in the
presentation, we do not explicitly encode group elements passed
as inputs to such generic algorithms. However, they should all be
considered suitable encoded with σ.

(marked by absence of σ) (Specific): In this case the adversary
can also exploit special properties (e.g., the encoding) of the un-
derlying group.

This separation is interesting for the following reasons:

• Tight lower bounds on the complexity of some DL-based as-
sumptions can lead to provably hard assumptions in the generic
model (Shoup 1997; Maurer and Wolf 1998b). No such results are
known in the standard model. However, similar to the random
oracle model (Bellare and Rogaway 1993) the generic model is
idealized and related pitfalls lure when used in a broader context
than simple assumptions (Fischlin 2000).

19Others, e.g., Babai and Szemerédi (1984) and Boneh and Lipton (1996), considered
the more general case where elements are not necessarily unique and there is a separate
equality oracle. However, that model is too weak to cover some important algorithms, e.g.,
Pohlig and Hellman (1978), which are intuitively “generic”. Furthermore, the impossibility
results mentioned later still hold when transfered to the more general case.

20Computing inverses is usually efficient only when the group order is known. However,
note that all impossibility results — the main use of generic adversaries — considered
later hold naturally also without the inversion oracle.
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• A number of algorithms computing discrete logarithms are
generic in their nature. Two prominent ones are Pohlig-
Hellman (1978) and Pollard-ρ (1978) paired with Shanks Baby-
Step Giant-Step optimization. Furthermore, most reductions are
generic.

• However, exploiting some structure in the group can lead to faster
algorithms, e.g., for finite fields there is the class of index-calculus
methods and in particular the generalized number field sieve
(GNFS) (Gordon 1993b; Schirokauer 1993) with sub-exponential
expected running time.

• Nonetheless, for many group families, e.g., elliptic curves, no spe-
cific algorithms are known which compute the discrete logarithms
better than the generic algorithms mentioned above.

Note that a generic adversary can always be transformed to a specific
adversary but not necessarily vice-versa. Therefore, a reduction be-
tween two generic assumptions is also a reduction between the specific
counterparts of the two assumptions. However, proofs of the hardness
of generic assumptions or the non-existence of relations among them
do not imply their specific counterparts!

6. “Granularity of probability space”: Depending on what part of
the structure instance is a-priori fixed (i.e., the assumption has to
hold for all such parameters) or not (i.e., the parameters are part of
the probability space underlying an assumption) we can distinguish
among the following situations:

l (Low-granular): The group family (e.g., prime order subgroups of
Z∗

p) is fixed but not the specific structure instance (e.g., param-
eters p, q and generators gi for the example group family given
above).

m (Medium-granular): The group (e.g., p and q) but not the gener-
ators gi are fixed.

h (High-granular): The group as well as the generators gi are fixed.

An assumption defines a family of probability spaces Di, where the
index i is the tuple of k and, depending on granularity, group and
generator, i.e., all parameters with an all-quantifier in the assump-
tion statement. Each probability space Di is defined over problem
instances, random coins for the adversary, and, again depending on
granularity, groups and generators. Note that for a given k there are
exponentially many Di. In the sequel we use the term probability
space instance (PSI) for a single probability space Di.
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7. Success probability: This parameter gives an (asymptotic) upper
bound on how large a success probability we tolerate from an adver-
sary. The success probability is measured over the family of probabil-
ity space instances Di. Violation of an assumption means that there
exists an algorithm A whose success probability α(k) reaches or ex-
ceeds this bound for infinitely many k in respect to at least one of the
corresponding probability space instances Di.

The upper bound and the corresponding adversary can be classified in
the following types:

1 (Perfect): The strict upper bound on the success probability is 1.
Therefore, a perfect adversary algorithm A with success proba-
bility α(k) has to solve the complete probability mass of infinitely
many Di, i.e., α(k) 6<∞ 1.

(1−1/poly(k)) (Strong): The bound is defined by the error probabil-
ity which has to be non-negligible. Therefore, a strong adversary
algorithm A has to be successful for infinitely many Di with over-
whelming probability., i.e., if α(k) is the success probability of A
then 1− α(k) 6≥∞ 1/poly(k).

ε (Invariant): The strict upper bound is a fixed and given constant
0 < ε < 1. Therefore, the success probability α(k) of an invariant
adversary algorithm A has to be larger than ε for infinitely many
Di, i.e., α(k) 6<∞ ε.

1/poly(k) (Weak): All non-negligible functions are upper bounds,
i.e., only negligible success probabilities are tolerated. Therefore,
a weak adversary algorithm A has to be successful with a not
negligible fraction of the probability mass of Di for infinitely many
Di, i.e., if α(k) is the success probability of A then α(k) 6<∞

1/poly(k).

An assumption requiring the nonexistence of perfect adversaries cor-
responds to worst-case complexity, i.e., if the assumption holds then
there are at least a few hard instances. However, what is a-priori re-
quired in most cases in cryptography is a stronger assumption requiring
the nonexistence of even weak adversaries, i.e., if the assumption holds
then most problem instances are hard.

The classification given above is certainly not exhaustive. The explo-
ration of new problem families, e.g., related to arbitrary multivariate func-
tions in the exponents as investigated by Kiltz (2001), might require addi-
tional values for the existing parameters. This can be done without much
impact on the classification itself and other results. However, the need for
a new dimension such as adding probability distributions as a separate pa-
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rameter (see Section 2.1.7) would be of much larger impact. Nevertheless,
from the current experience, above classification seems quite satisfactory.

2.3 Defining Assumptions

Using the parameters and corresponding values defined in the previous sec-
tion, we can define intractability assumptions in a compact and precise way.

The notation for a given assumption is

$s-$t$P$a(c:$c; g:$g; f:$G)

where for each parameter there is a placeholder $X which is instantiated
by the labels corresponding to the value of that parameter in the given
assumption. The placeholders and values (with − denoting that this value
can be absent in the notation and has the same meaning as a corresponding
wild card) are as follows:

• $s: The algorithm’s success probability ($s ∈ {1, (1− 1/poly(k)), ε,
1/poly(k)}).

• $t: The problem type ($t ∈ {C,D,M}).

• $P: The problem family ($P ∈ {DL,DH,GDH(n),SE, IE,RP(n),
IAE,SDH}).

• $a: The algebraic knowledge of the algorithm ($a ∈ {σ,−}).

• $c: The algorithm’s complexity ($c ∈ {u, n}).

• $g: The granularity of the probability space ($g ∈ {h,m, l}).

• $G: The group family ($G ∈ {lprim,nsprim,prim,−}×{o, o, fct,−}×
{Z∗

p, Z
∗
p/q, Z

∗
n, QR∗

n, Ea,b/Fp,−}).21

This is best illustrated in an example: The term

1/poly(k)-DDHσ(c:u; g:h; f:prim)

denotes the decisional (D) Diffie-Hellman (DH) assumption in prime-order
groups (f:prim) with weak success probability (1/poly(k)), limited to generic
algorithms (σ) of uniform complexity (c:u), and with high granularity (g:h).

To refer to classes of assumptions we use wild cards (∗) and sets ({· · · })
of parameter values, e.g.,

21The parameters for G are not completely orthogonal in the sense that some combina-
tions do not exist, e.g., (prim, ·, QR∗

n), and some result in nonsensical assumptions, e.g.,
(·, fct, Z∗

n). Nonetheless, the assumptions still can be defined and insofar this is not really
of concern here.
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{(1−1/poly(k)),ε,1/poly(k)}-CDHσ(c:u; g:h; f:∗)

denotes the class of computational (C) Diffie-Hellman (DH) assump-
tions with uniform complexity (c:u), limited to generic algorithms (σ),
with high-granular probability space (g:h), with some error ({(1 −
1/poly(k)), ε, 1/poly(k)}) and based on an arbitrary group family (f:∗).

Let us turn now to the meaning of an assumption described by above
notation: By stating that an assumption $s-$t$P $a(c:$c; g:$g; f:$G) holds,
we believe that asymptotically no algorithm of complexity $c and algebraic
knowledge $a can solve (random) problem instances of a problem family $P
with problem type $t chosen from groups in $G with sufficient (as specified
by $s) success probability where the probability space is defined according
to granularity $g.

The precise and formal definitions follow naturally and quite mechan-
ically. In defining an assumption we always require a bound k0 for the
asymptotic behavior which says that beyond that bound no adversary will
be successful. As further “ingredients” there are polynomials defined by
their maximal degree d1, d2 and d3 which bind the error probability, time
and description of programs, respectively. Finally, we require a machine
(or family thereof) A (Ai) trying to solve the problem, and various quan-
tifiers specifying (using the various samplers) the required parameters for a
problem instance PI to solve.

Finally, we denote the class of uniform complexity adversaries by UPTM
and the corresponding class of generic adversaries by UPTMσ. The class
of non-uniform complexity and generic non-uniform complexity adversaries
is denoted similarly by NPTM and NPTMσ, respectively.

To illustrate the formal details of assumptions and to provide a feel for
the various parameters we offer three sets of examples. In each set we vary
one of the parameters, namely: (1) the computational complexity, (2) the
less obvious and often overlooked granularity parameter, and (3) the success
probability. The complete details on how to derive the formal assumption
statement from the parameters can be found in Appendix A:

1. Weak computational DL assumptions in the generic model, a group
order with at least one large prime factor and the two variants of
complexity measures (see Parameter 4). Remember that PI DL :=
(SI , ((x), (gx), {(x)})), PI DL

publ := (gx) and PI DL
sol := {(x)}. Fur-

ther, let SGG be a group sampler of some group family G where the
groups have an order with at least one large prime factor.

(a) Assumption 1/poly(k)-CDLσ(c:u; g:h; f:lprim), i.e., the uniform
complexity variant:
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∀Aσ ∈ UPTMσ;
∀d1 > 0; ∃k0; ∀k > k0;
∀G ∈ [SGG(1k)];
∀g ∈ [Sg(G)];
SI ← (G, g);

Prob[Aσ(C,SI ,PI DL
publ ) ∈ PI DL

sol ::

σ R← ΣG,g;
PI DL ← SPI DL(SI );
C R← U

] < 1/kd1 .

(b) Same setting as above except now with a non-uniform adversary
(1/poly(k)-CDLσ(c:n; g:h; f:lprim)):

∀(Aσ
i | i ∈ N) ∈ NPTMσ;

∀d1 > 0; ∃k0; ∀k > k0;
∀G ∈ [SGG(1k)];
∀g ∈ [Sg(G)];
SI ← (G, g);

Prob[Aσ
k(C,SI ,PI DL

publ ) ∈ PI DL
sol ::

σ R← ΣG,g;
PI DL ← SPI DL(SI );
C R← U

] < 1/kd1 .

2. Weak decisional DH assumption variants for prime order sub-
groups of Z∗

p with varying granularity. Recall that PI DH :=

(SI , ((x, y), (gx, gy), {(gxy)})), PI DH
publ := (gx, gy) and PI DH

sol :=
{(gxy)}.

(a) Assumption 1/poly(k)-DDH(c:u; g:h; f:Z∗
p/q), i.e., with high

granularity:
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∀A ∈ UPTM;
∀d1 > 0; ∃k0; ∀k > k0;
∀G ∈ [SGZ∗

p/q
(1k)];

∀g ∈ [Sg(G)];
SI ← (G, g);

(|Prob[A(C,SI ,PI DH/0
publ , solDH/c) = b ::

b R← {0, 1};
PI DH/0 ← SPI DH(SI );
PI DH/1 ← SPI DH(SI );

solDH/c
R← PI DH/b

sol ;

C R← U
]−1/2 | · 2) < 1/kd1 .

(b) As above except now with medium granularity
(1/poly(k)-DDH(c:u; g:m; f:Z∗

p/q)):

∀A ∈ UPTM;
∀d1 > 0; ∃k0; ∀k > k0;
∀G ∈ [SGZ∗

p/q
(1k)];

(|Prob[A(C,SI ,PI DH/0
publ , solDH/c) = b ::

g ← Sg(G);
SI ← (G, g);
b R← {0, 1};
PI DH/0 ← SPI DH(SI );
PI DH/1 ← SPI DH(SI );

solDH/c
R← PI DH/b

sol ;

C R← U
]−1/2 | · 2) < 1/kd1 .

(c) As above except now with low granularity
(1/poly(k)-DDH(c:u; g:l; f:Z∗

p/q)):
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∀A ∈ UPTM;
∀d1 > 0; ∃k0; ∀k > k0;

(|Prob[A(C,SI ,PI DH/0
publ , solDH/c) = b ::

G← SGZ∗
p/q

(1k);

g ← Sg(G);
SI ← (G, g);
b R← {0, 1};
PI DH/0 ← SPI DH(SI );
PI DH/1 ← SPI DH(SI );

solDH/c
R← PI DH/b

sol ;

C R← U
]−1/2 | · 2) < 1/kd1 .

3. Matching IE assumptions in QR∗
n with varying success probability.

Recall that PI IE := (SI , ((x), (gx), {(gx−1
)})), PI IE

publ := (gx) and
PI IE

sol := {(gx−1
)}.

(a) Assumption 1/poly(k)-MIE(c:u; g:h; f:QR∗
n), i.e., the variant with

weak success probability:

∀A ∈ UPTM;
∀d1 > 0; ∃k0; ∀k > k0;
∀G ∈ [SGQR∗

n
(1k)];

∀g ∈ [Sg(G)];
SI ← (G, g);

(|Prob[A(C,SI ,PI IE/0
publ ,PI IE/1

publ , sol IE/b, sol IE/b̄) = b ::

b R← {0, 1};
PI IE/0 ← SPI IE(SI );
PI IE/1 ← SPI IE(SI );

sol IE/0
R← PI DH/0

sol ;

sol IE/1
R← PI DH/1

sol ;

C R← U
]−1/2 | · 2) < 1/kd1 .

(b) Same setting as above except now with invariant success proba-
bility ε (ε-MIE(c:u; g:h; f:QR∗

n)):
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∀A ∈ UPTM;
∃k0; ∀k > k0;
∀G ∈ [SGQR∗

n
(1k)];

∀g ∈ [Sg(G)];
SI ← (G, g);

(|Prob[A(C,SI ,PI IE/0
publ ,PI IE/1

publ , sol IE/b, sol IE/b̄) = b ::

b R← {0, 1};
PI IE/0 ← SPI IE(SI );
PI IE/1 ← SPI IE(SI );

sol IE/0
R← PI DH/0

sol ;

sol IE/1
R← PI DH/1

sol ;

C R← U ;

]−1/2 | · 2) < ε.

(c) Same setting as above except now with strong success probability
((1−1/poly(k))-MIE(c:u; g:h; f:QR∗

n)):

∀A ∈ UPTM;
∃d1 > 0; ∃k0; ∀k > k0;
∀G ∈ [SGQR∗

n
(1k)];

∀g ∈ [Sg(G)];
SI ← (G, g);

(|Prob[A(C,SI ,PI IE/0
publ ,PI IE/1

publ , sol IE/b, sol IE/b̄) = b ::

b R← {0, 1};
PI IE/0 ← SPI IE(SI );
PI IE/1 ← SPI IE(SI );

sol IE/0
R← PI DH/0

sol ;

sol IE/1
R← PI DH/1

sol ;

C R← U
]−1/2 | · 2) < (1− 1/kd1).

(d) Same setting as above except with no tolerated error, i.e., perfect
success probability (1-MIE(c:u; g:h; f:QR∗

n)):
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∀A ∈ UPTM;
∃k0; ∀k > k0;
∀G ∈ [SGQR∗

n
(1k)];

∀g ∈ [Sg(G)];
SI ← (G, g);

(|Prob[A(C,SI ,PI IE/0
publ ,PI IE/1

publ , sol IE/b, sol IE/b̄) = b ::

b R← {0, 1};
PI IE/0 ← SPI IE(SI );
PI IE/1 ← SPI IE(SI );

sol IE/0
R← PI DH/0

sol ;

sol IE/1
R← PI DH/1

sol ;

C R← U
]−1/2 | · 2) < 1.

To express relations among assumptions, we use the following operators
where P and Q are assumptions as previously defined:

P =⇒ Q means that if assumption P holds, so does assumption Q , i.e., P
(Q) is a stronger (weaker) assumption than Q (P). Vice-versa, it also
means that if there is a polynomially-bounded algorithm AQ breaking
assumption Q then there is also another polynomially-bounded algo-
rithm AP which breaks assumption P . Usually, this is shown in a

black-box reduction where AP , or more precisely AAQ

P , breaks as-
sumption P with oracle access to AQ . As a special case for invariant
assumptions, we mean with ε-P =⇒ ε-Q that it should hold that
∀ε′∈ ]0, 1[ ∃ε′′∈ ]0, 1[ : ε′′-P =⇒ ε′-Q .

P ⇐⇒ Q means that P =⇒ Q and Q =⇒ P , i.e., P and Q are
assumptions of the same (polynomial) complexity.

P
α′≥fα(t,α,|G|,...); t′≤ft(t,α,|G|,...)
======================⇒ Q is used to specify the quality of the re-

duction, i.e., the concrete security. It means that if assumption Q
can be broken in time t and with success probability α, we can break
P in time t′ and with success probability α′ bounded by functions ft

and fα, respectively. To measure time, we consider group operations
and equality tests having unit-cost each and oracle calls having cost t.
Obviously, the cost of group operations, the runtime and the success
probability of the oracle, and the size of the groups are not constant
but functions depending on the security parameter k, e.g., α should
be written more precisely as α(k). However, for better readability
we omit this and all asymptotic aspects in the presentation. For the
identical reason, we also cautiously use the O(·) notation even if we
slightly lose precision.



40 Exploring DL-based Assumptions

Let us illustrate this with the following result from Maurer and Wolf
(1996) (for more information on this result see also page 47):

ε-CDH(c:u; g:h; f:o)
α′= α3; t′= 3t+O(log (|G|)2)
==================⇒ ε-CSE(c:u; g:h; f:o)

This means that with three calls to an oracle breaking
ε-CSE(c:u; g:h; f:o) and additional O(log (|G|)2) group operations
we can achieve a success probability of at least α3 in breaking
ε-CDH(c:u; g:h; f:o) where t and α are the runtime and the success
probability of the oracle, respectively.

For simple assumptions, above is interpreted without syntactical conditions
on P and Q , i.e., they may be arbitrary assumptions. If a relation refers to
assumption classes, i.e., they contain some parameters which are not fully
specified and contain wild cards or sets, there is the following syntactical
constraint: The parameters which are not fully specified have to be equal
for both assumptions P and Q . The meaning is as follows: The relation
P OP Q holds for any assumption P ′ and Q ′ we can instantiate from P and
Q by fixing all not fully specified parameters to any matching value with
the additional condition that these values are identical for P ′ and Q ′. To
give an example,

∗-CDH∗(c:∗; g:{h,m}; f:o) =⇒ ∗-CSE∗(c:∗; g:{h,m}; f:o)

illustrates that the result from Maurer and Wolf mentioned above can be
generalized — as proven later in this thesis — to high and medium granular-
ity with arbitrary success probability, complexity and algebraic knowledge.

Furthermore, if we are referring to oracle-assumptions, i.e., assumptions
where we give adversaries access to auxiliary oracles, we indicate it by list-
ing the oracles at the end of the list in the assumption term. For example,
the assumption 1/poly(k)-CDLσ(c:u; g:h; f:lprim;O1-CDL(c:u; g:h; f:lprim)) cor-
responds to the first assumption statement given in the example list above
except that now the adversary also gets access to an oracle breaking the
1-CDL(c:u; g:h; f:lprim) assumption.

2.4 The Impact of Granularity

In Section 2.2, we have identified several parameters to be considered when
defining intractability assumptions. In this section, we will focus on granu-
larity parameter and its impact. Before stating the actual results, let us first
briefly repeat the practical relevance of granularity as alluded in the intro-
duction. Figure 2.1 illustrates exemplarily different variants of the probabil-
ity space for a given security parameter k. The areas labeled with l, m and
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Figure 2.1 The impact of granularity
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h represent the algebraic parameters over which low-, medium- and high-
granular probability spaces are defined.22 Assumptions with lower granu-
larity are weaker, and are therefore more desirable in principle. However,
not all cryptographic settings can rely on the weaker variants: Consider, for
instance, an escrowed anonymous payment system where the bank chooses
the system parameters.23 It would not be appropriate to base the security
of such a system a-priori on a low-granular assumption. This is because a
cheating bank might try to choose a weak group with trapdoors (easy prob-
lem instances) to violate the anonymity of the customer. This case is shown
in Figure 2.1 with a trapdoor group G∗ and its corresponding easy instances.
Such a strategy might be possible even if the low-granular assumption holds:
The assumption would ensure that the overall number of easy problem in-
stances is asymptotically negligible with respect to the security parameter.
In Figure 2.1 weak instances (in area m) represent exemplarily a negligible
portion of the instances of the low-granular space in area l. Yet, the as-
sumption would not rule out that there are infinitely many weak groups.
Therefore, there might not exist a sufficiently large k for which the bank
cannot break the assumption.

In contrast, a high-granular (medium-granular) assumption does not
hold in our example because as shown in the figure, the fraction of weak in-

22Recall that high-granular probability space is defined over the private parts (secret
exponents), the medium-granular over the generators and private parts and finally the
low-granular over groups, generators and the private parts.

23These are electronic payment systems where a third party can revoke the anonymity
of the users under certain circumstances. Because of the revocation ability such systems
can offer the users only computationally secure anonymity.
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stances in area h (m) is not negligible. However, if a high-granular (medium-
granular) assumption holds then the trapdoor groups G∗ in the above ex-
ample would not exist and the bank could not cheat.

Thus, which of the granularity variants is appropriate in cryptographic
protocols depends on how and by whom the parameters are chosen. A
priori we have to use a high-granular assumption. Yet, in the following
situations we can resort to a weaker less granular assumption: The security
requirements of the cryptographic system guarantee that it’s in the best
(and only) interest of the chooser of the system parameters to choose them
properly; the system parameters are chosen by a mutually trusted third
party; or the system parameters are chosen in a verifiable random process.24

Also, at most in these cases we can reasonably assume a group family with
the group order and its factorization to be hidden from the public and the
adversary. As a consequence, it would seem strange to base a cryptographic
system on a high-granular assumption with unknown order factorization:
either the system parameters are chosen by an honest party and we could
resort to a weaker assumption with lower granularity, or the knowledge of the
order and its factorization has to be assumed to be known to the adversary.
Furthermore, care has to be taken for DL-related high- and medium-granular
assumptions in Z∗

p and its subgroups. Unless we further constrain the set
of valid groups with (expensive) tests as outlined by Gordon (1993a), we
require, for a given security parameter, considerably larger groups than for
the low granular counterpart of the assumptions. As informally mentioned
above, assumptions with lower granularity are weaker than assumption of
higher granularity. Formally, this is stated and proven in the following
theorem:

Theorem 2.1

∗-∗∗∗(c:∗; g:h; f:∗) =⇒ ∗-∗∗∗(c:∗; g:m; f:∗) =⇒ ∗-∗∗∗(c:∗; g:l; f:∗)

2

Proof. Assume we are given an adversaryA breaking a low-granular assump-
tion for some group and problem family, some problem type, computational
complexity, arbitrary algebraic knowledge and success probability. Further-
more, we are given an input I corresponding to an assumption of high- or
medium-granular but otherwise identical parameters.

For the reduction, call A on this input I and return the result. To see that
this achieves the desired attack on the medium- or high-granular assump-
tion, note that inputs to an adversary breaking a high- or medium-granular

24This can be done either through a joint generation using random coins (Cachin, Kur-
sawe, and Shoup 2000) or using heuristics such as the one used for DSS key generation
(National Institute of Standards and Technology (NIST) 2000).
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assumption are also valid inputs to a low-granular adversary. Therefore, this
reduction is a legitimate attacker from a runtime perspective exactly in the
case where the oracle itself is a legitimate attacker. Furthermore, the proba-
bility space instances defined by a high- or medium-granular assumption al-
ways partition the probability space instances of a low-granular assumption.
Therefore, it is clear that for a perfect adversary A the reduction breaks
certainly the high- or medium-granular probability space instances which
are part of the low-granular probability space instances which A breaks. As
there are by definition of A infinitely many such low-granular probability
space instances, it automatically follows that for the perfect case the high-
and medium-granular assumption is broken, too. By a counting argument
this also easily extends to the case of strong, invariant and weak adver-
saries, i.e., at least some of the high- or medium-granular probability space
instances which are part of the low-granular probability space instances bro-
ken by A, are broken with the necessary success probability as well.

By an identical argument, it follows that a high-granular assumption
can be reduced to the corresponding medium-granular assumption. This
concludes the theorem.

Remark 2.1. Note that the inverse of above result, a low-granular assump-
tion implies the corresponding high-granular one, does not hold in general:
There are always super-polynomially many of the higher-granular probabil-
ity space instances contained in a given lower-granular instance. Therefore,
there might be situations where infinitely many high-granular probability
space instances — and henceforth the corresponding high-granular assump-
tion — are broken, yet they form only a negligible subset of the enclosing
lower-granular probability space instances and the low-granular assumption
can still hold.

However, if for a given granularity there exists a random self-
reduction (Blum and Micali 1984), then the inverse reduction exists also
from that granularity to all higher granularities. As random self-reductions
are known for all mentioned problem families and problem types in their
medium granularity variant, this equates the medium- and high-granular
cases. Unfortunately, no random self-reduction is yet known for low-granular
assumptions and achieving such “full” random self-reducibility seems very
difficult in general (if not impossible) in number-theoretic settings (Boneh
2000) contrary to, e.g., lattice settings used by Ajtai and Dwork (1997). ◦

2.5 Computational DH, SE and IE

Maurer and Wolf (1996) proved the equivalence between the computational
SE and DH assumptions in their uniform and high-granular variant for both
perfect and invariant success probabilities.
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Figure 2.2 Random Self Reducibility (Medium granularity)
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We briefly review their results, and show that they also hold for weak
and strong success probabilities. We then extend these results to medium
granularity and prove similar relations between IE and DH.

First however, we look at two important aspects: random self-
reducibility and self-correction.

2.5.1 Random Self-Reduction

Informally random self-reducibility is a property which can be used to
show that a problem is uniformly hard if it is hard at all. A problem is
random self-deducible if solving any problem instance can be reduced to
solving the problem on a random instance, i.e., when given an instance I of
a probability space instance P , we can efficiently randomize it to a random
instance IR of P , and can efficiently recover (derandomize) the solution for
I from the solution returned by an oracle call on IR.

We give an informal example to demonstrate this property for discrete
logarithm. Figure 2.2 illustrates the corresponding groups G and generators
g for a security parameter k. Suppose, we are given an oracle ODL which
with success probability α, computes the discrete logarithm x of randomly
chosen values b ∈ G with respect to the given generator g. We construct a
probabilistic algorithm AODL to compute the discrete logarithm for any spe-
cific DL instance ((G, g), (a)) where a = gy (shown in Figure 2.2). Further,
the success probability of AODL is the same as ODL.

For this, we transform a given DL instance a = gy for a given generator
g ∈ G into a random DL instance b = g∗

x for a random generator g∗ ∈ G
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as follows: Select r ∈R Z|G|, rg ∈R Z∗
|G| and call ODL with the input

((G, g∗), (b)) where

g∗ := grg , b := arggrrg = (gy)rggrrg = grg(y+r) = (grg )(y+r) = g∗
x

and x:=y+r. Note that b is a randomly and uniformly distributed value over
G since g∗ is a random group generator, and r is randomly and uniformly
chosen value from Z|G|. When ODL answers x, AODL outputs y = x− r, a
unique number in Z|G|. The output y is a correct discrete logarithm of a if
and only if x is a correct discrete logarithm of b with respect to g. One can
verify this as follows:

a = (b/g∗
r)r

−1
g = (g∗

xg∗
−r)r

−1
g = (g∗

x−r)r
−1
g = (g∗

r−1
g )x−r = gx−r.

Thus, AODL is successful if and only if ODL is successful. Since there is a
single call to ODL and the input distribution to ODL is correct, the success
probability of AODL is also α. If ODL is an efficient algorithm, so is AODL.25

The above example illustrates random self-reducibility for DL over the
medium-granular probability space (see Figure 2.2). For the random self-
reducibility over high-granular probability space we always set rg = 1.

2.5.2 Self-Correction

In the following sections, we are mostly concerned with faulty oracles, i.e.,
oracles which answer with a certain success probability to the legal inputs,
i.e., inputs with correct distribution over the oracle’s input domain. If an
oracle has a small but not negligible success probability, one is interested in
constructing an efficient algorithm which improves this success probability
such that the answers to the legal inputs are almost certainly correct. In
other words, one is interested in performing self-correction on the faulty
oracle.

In our considerations we need to self-correct the faulty CDH oracle to
determine the success probability of certain reductions which appear in later
sections. Suppose, we are given a faulty CDH oracle OCDH which on input
((G, g), (gx, gy)) outputs gxy with a not negligible probability α. Then we
can construct an efficient algorithm for CDH which outputs the correct
answer almost certainly for all legal inputs. One may ask, why not running
such an oracle for O(1/α) times until we get a correct answer! However,
this is of no help, since in general we cannot determine (decide) whether the
output of the oracle is the correct Diffie-Hellman solution or not – this would
mean solving Decisional Diffie-Hellman (DDH) Problem which is assumed
to be hard in the underlying group.

25Note that we assume, the oracle has polynomial running time on all inputs (see also
Section 2.1.3).
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Thus, other (more complicated) approaches have been taken to construct
self-correctors for computational problems such as CDH.

Maurer and Wolf (1996) and Shoup (1997) give different constructions
for CDH self-correctors. For our considerations we will use the result from
Shoup 1997 which is formulated in the following lemma.

Lemma 2.1 (Shoup 1997) Given a CDH oracle with success probability
α, one can construct a probabilistic algorithm for CDH which, for a given
0 < β < 1, answers correctly to all inputs with probability at least α′ = 1−β
making O( log(1/β)

α ) queries to the faulty oracle and performing additional

O( log(1/β)
α log |G|+ (log |G|)2) group operations. 2

Note that Lemma 2.1 does not consider the success probabilities in the
asymptotic framework as we introduced in Section 2.1.2. Thus, for our
considerations we suitably adjust this result when self-correcting a weak or
invariant oracle to a strong oracle.26 This is summarized in the following
corollary:

Corollary 2.1

{(1−1/poly(k))}-CDH(c:∗; g:{h,m }; f:o)
α′≥1−1/2k ; t′=O( tk

α
)+O( k log |G|

α
+(log |G|)2)

=============================⇒
{ε,1/poly(k)}-CDH(c:∗; g:{h,m }; f:o)

2

Proof. We give the proof for weak oracles, and the proof for the invariant
oracle immediately follows.

Assume, we are given a CDH oracle with weak success probability α(k).
In our framework for success probabilities it is reasonable to self-correct this
oracle to a strong oracle, i.e., an oracle with success probability α′(k) where
1− α′(k) 6≥∞ 1/poly(k).

By the straight forward (and naive) application of Lemma, 2.1 one may
set β(k) := 1/2k (k security parameter) and self-correct oracle’s success
probability to α′(k) ≥ 1 − 1/2k implying 1 − α′(k) ≤ 1/2k. Since 1/2k is
asymptotically smaller than the inverse of any polynomial, we can write
1/2k <∞ 1/poly(k). It follows that 1 − α′(k) <∞ 1/poly(k). According
to Lemma 2.1 the self-correction requires O( k

α(k) ) calls to the weak oracle

and O(k log |G|
α(k) + (log |G|)2) group operations where we used log(1/β(k)) =

log(2k) = k.
However, this approach is not conform to our framework of success prob-

abilities and does not work directly. The reason is that in general the above

26Recall that in the asymptotic notion the success probabilities are in fact functions in
the security parameter and for weak and invariant oracles we have α(k) 6<∞ 1/poly(k) and
α(k) 6<∞ ε (see Section 2.2)
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self-correction may not provide us with a polynomial time algorithm. It is
guaranteed to be polynomial only for those values of k (infinitely many ki

by definition) where the success probability α(k) of the weak oracle can be
lower bounded by the inverse of some polynomial p(·), but not necessarily
for other values of k.27 To handle this problem, one can define a family
of algorithms indexed by a polynomial pj(·) which runs the self-correction
with pj(k) rounds (oracle calls). Thus, all members of this family have
the run time O

(
pj(k)

)
+ O

(
pj(k) log (|G|) + (log |G|)2

)
, and therefore are

polynomial. Moreover, there are members of this family which satisfy the
condition for strong success probability. These are exactly the members for
which kp(·) <∞ pj(·) holds. In particular, this holds for the same k values
for which the given weak success probability holds.

However, this is an existential argument and not constructive, as in
general, neither the function α(k) or the ki values are known beforehand
nor they can be approximated by querying the oracle in polynomial time.

Hence, in our framework it suffices to self-correct OCDH such that
α′(k) 6<∞ 1 − 1/2k holds. This implies 1 − α′(k) 6>∞ 1/2k, and since
1/2k <∞ 1/poly(k), it follows 1− α′(k) 6≥∞ 1/poly(k) (i.e., α′(k) is strong.)
This completes the proof.

Remark 2.2. In the proof of his self-corrector Shoup (1997) assumes that
the group order is known. However, by a closer inspection of the proof and
the deployment of the techniques used in Remark 2.16, we can drop this
requirement. Thus, Corollary 2.1 also holds without requiring the knowledge
of the group order. ◦

2.5.3 CSE versus CDH

2.5.3.1 High Granular

We start with the result of Maurer and Wolf (1996) on the equivalence
between the computational SE and DH assumptions in their uniform and
high-granular variant for perfect and invariant success probabilities. This is
formulated in our convention in the following theorem.

Theorem 2.2 (Maurer and Wolf 1996)

ε-CSE(c:u; g:h; f:o)
α′=α; t′=t+O(log |G|)
==============⇒ ε-CDH(c:u; g:h; f:o)

ε-CSE(c:u; g:h; f:o)
α′=α3; t′=3t+O(log |G|)⇐================ ε-CDH(c:u; g:h; f:o)

2

27Note that we might have α(k) = 0 for infinitely many k values, and since the self-
correction costs are proportional to 1/α(k), this would lead to exponentially high number
of oracle calls and group operations.
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Proof. Let 0 < ε1 < 1, 0 < ε2 < 1 be arbitrary constants. Then the following
statements hold:

(a) Given a CDH oracle OCDH which breaks ε-CDH(c:u; g:h; f:o) with
success probability αCDH(k) 6<∞ ε1, there exists an algorithm
AOCDH which breaks ε-CSE(c:u; g:h; f:o) with success probability
αCSE(k) 6<∞ ε1, using a single call to OCDH and O(log |G|) group
operations.

(b) Given a CSE oracle OCSE which breaks ε-CSE(c:u; g:h; f:o) with
success probability αCSE(k) 6<∞ ε2, there exists an algorithm
AOCSE which breaks ε-CDH(c:u; g:h; f:o) with success probability
αCDH(k) 6<∞ ε2

3, using 3 calls to OCSE and O(log |G|) group op-
erations.

From these reductions the theorem immediately follows. Above reductions
are achieved as follows:

Case (a) is quite straightforward as the problem instances of SE are a proper
subset of the problem instances of DH and the answer can be retrieved in
one call to the oracle. In the case of perfect CDH oracle (perfect success
probability) the oracle returns gx2

on the input ((G, g), (gx , gx)). However, in
the case of invariant oracle (faulty oracle) care has to be taken that the inputs
to the CDH oracle are uniformly distributed over oracle’s input domain.28

This can easily be achieved by randomizing a given tuple ((G, g), (gx, gx))
to a random CDH tuple ((G, g), (gx′

, gy′
)), i.e., randomly self-reducing the

problem as follows (see also Section 2.5.1): Choose rx, ry ∈R Z|G| and set

x′ :=x+rx, and y′ :=x+ry. The elements gx′
, gy′

are randomly and uniformly
distributed over G, since due to the randomization, x′, y′ are randomly and
uniformly spread over Z|G|.

29 Note that in the high-granular case an SI =
(G, g) fixes a probability space instance (PSI).

Using oracle’s answer we can determine the desired result as follows:

gx2
=
OCDH(gx′

, gy′
)

grxx+ryx+rxry
=

gx′y′

grxx+ryx+rxry
.

Success probability: There is a single oracle call, and thus, for the success
probability of AOCDH we have αCSE(k) = αCDH(k). Since αCDH(k) 6<∞ ε1

it follows αCSE(k) 6<∞ ε1.

Efficiency: There is only one oracle call and to solve the DSE instance
we need to compute grx , gry , (gx)rx , (gx)ry , grxry and (grxx+ryx+rxry)−1. For

28Note that the success probability of a faulty oracle holds for randomly and uniformly
chosen inputs from the oracle’s input domain.

29that is, ∀(x′, y′) ∈ Z2
|G| and ∀(x, y) ∈ Z2

|G| there exists exactly one pair (rx, ry) ∈ Z2
|G|

such that the equations x′ = x + rx and y′ = x + ry hold.
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exponentiations we can use, e.g., the square and multiply method requiring
O(log |G|) group operations. If we assume that the group order is known
(denoted by the place holder “f:o”), we can efficiently compute the inverse
of the group elements using O(log |G|) group operations.

Case (b) is slightly more involved. The key observation is that

g(x+y)2 = g2xygx2
gy2

.

This implies

(gxy)2 = g2xy = g(x+y)2(gx2
)−1(gy2

)−1 = g(x+y)2−x2−y2
.

Therefore, we can solve CDH with three oracle calls (one for each of g (x+y)2 ,
gx2

and gy2
), the computation of inverses of gx2

and gy2
, and the square

root of g2xy = (gxy)2.

As before, for the faulty oracle we have to uniformly spread the given input
over oracle’s input domain using randomization. Furthermore, we have to
make sure now that all oracle calls are (statistically) independent to be able
to make concrete statements on the success probability of AOCSE . Both
we achieve with independent blinding factors ri ∈R Z|G| and computing

gu2
as OCSE(g(u+ri))/(gu)2rigr2

i . Note that g(u+ri) are randomly and uni-
formly distributed group elements, since u + ri are randomly and uniformly
distributed over Z|G|.

Success probability: There are 3 independent calls to the CSE oracle, and
thus, the success probability of AOCSE is αCDH(k) = αCSE(k)3. Since
αCSE(k) 6<∞ ε2 it follows αCDH(k) 6<∞ ε2

3.

Efficiency: Assuming the group order |G| is known, one can efficiently com-
pute the inverse and square roots of elements in G. Computing the inverse of
elements requires O(log |G|) group operations. For computing square roots
there are two possible cases:

(i) The group order |G| is odd, i.e., gcd(|G|, 2) = 1. In this case, we can use
the following general result: For d with gcd(|G|, d) = 1 and a ∈ G the
equation xd = a has the unique solution x = ac where dc ≡ 1 mod |G|.
The required number of group operations for computing this is in the
order of O(log |G|).
Thus, one can determine the (unique) square root of a = (gxy)2 by
computing c ≡ 2−1 mod |G| and gxy = ac. As mentioned above, the
total cost is in the order of O(log |G|) group operations.

(ii) The group order |G| is even. Thus, there exist two square roots.
To compute these roots, one can apply the methods from Wolf 1999
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(Lemma 11.4 and Theorem 11.5) where the (maximal) cost is in the
order of O(log |G|) group operations.

The two square roots of a are gxy and gxy+|G|/2. To find out which one
is the correct square root of a, we proceed as follows: Assume, |G| = 2es
where gcd(s, 2) = 1. Apply the Pohlig-Hellman algorithm to compute
x, y and xy mod 2e. This requires O(log |G|) group operations.30 Since
2e 6 | |G|/2 we have xy 6≡ xy + |G|/2 mod 2e, and so we can determine
the correct root gxy by computing the discrete logarithm of one of the
roots mod2e.

The costs per oracle call are in the order of O(log |G|) group operations for
computing the square roots, and O(log |G|) group operations for exponen-
tiation and computing the inverses. Hence, for 3 oracle calls the total costs
can be expressed by O(log |G|) group operations.

Next, we extend this result to all other variants related to success probability
(weak, strong) and adversary’s computational complexity (non-uniform) as
stated in the following Theorem:

Theorem 2.3

∗-CSE(c:∗; g:h; f:o)
α′=α; t′=t+O(log |G|)
==============⇒ ∗-CDH(c:∗; g:h; f:o)

∗-CSE(c:∗; g:h; f:o)
α′=α3; t′=3t+O(log(|G|))⇐================= ∗-CDH(c:∗; g:h; f:o)

2

Proof. We consider only the variants related to the weak and strong success
probabilities since the other variants (perfect and invariant) are handled by
Theorem 2.2.

Weak oracles (αCDH(k) 6<∞ 1/poly(k)): The resulting success probability
in both reductions is also weak: In the first reduction, we have αCSE(k) =
αCDH(k) implying αCSE(k) 6<∞ 1/poly(k). In the second reduction, we have
αCDH(k) = αCSE(k)3 which is a power of a not negligible function resulting
in a not negligible function. It follows αCDH(k) 6<∞ 1/poly(k).

Strong oracles (1−αCDH(k) 6≥∞ 1/poly(k)): The resulting success probabil-
ity in both cases is also strong: We use the result of Lemma 2.2 stating that

30Let
∏

pei

i be the prime factorization of the group order |G|. Then using the so-
called Pohlig-Hellman decomposition (Pohlig and Hellman 1978) combined with baby-step
giant-step one can compute the discrete logarithm x of b = gx in G by O(

∑
ei(log |G| +√

pi log pi)) group operations if the memory space for storing d√pie group elements is
available (see also Wolf (1999)) Here, we want to compute the discrete logarithm modulo
2e, i.e., for pi = 2 and ei = e. For this, one requires O(e(log |G| +

√
2 log 2)) = O(log |G|)

group operations.
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if a strong oracle is called polynomially (and independently) many times,
the resulting success probability is also strong: In the first reduction there
is a single oracle call, and in the second case there is a constant number of
oracle calls (3 calls). Hence, the error probability of the algorithm is in both
cases not non-negligible, i.e., 1− αCDH(k) 6≥∞ 1/poly(k).

Efficiency : is the same as in Theorem 2.2.

The following lemma formulates the fact that if a strong oracle is called poly-
nomially (and independently) many times, the resulting success probability
is also strong.

Lemma 2.2 Let k ∈ N, α(k) be a function N → [0, 1] and b, d > 0 some
real constants. Then the following holds:

1− α(k) 6≥∞ 1/poly(k) =⇒ 1− α(k)bkd 6≥∞ 1/poly(k).

2

Proof. Due to the definition we have

1− α(k) 6≥∞ 1/poly(k) =⇒ ∀c > 0 ∀k0 ∃k1 >k0 : α(k1) > 1− 1

kc
1

.

It follows

∀b > 0 ∀d > 0 ∀c > 0 ∀k0 ∃k1 >k0 : α(k1)
bkd

1 > (1− 1

kc
1

)bk
d
1 .

Now, for any b > 0 and any d′ > d > 0 there exists k′
0 ∈ N such that for all

k > k′
0 the relation 1 ≤ bkd ≤ kd′ holds. It follows

∀b > 0 ∀d > 0 ∀d′ > d > 0 ∀c > 0 ∀k0 > k′
0 ∃k1 >k0 : α(k1)

bkd
1 > (1− 1

kc
1

)k
d′

1 .

According to Lemma 2.3 below, for k ∈ N and c ≥ d′ the following holds:

(1− 1
kc )k

d′ ≥ 1− 1
kc−d′

. Since c is arbitrary and since we can write c′ :=c−d′ >
0, it follows:

∀b > 0 ∀d > 0 ∀c′ > 0 ∀k′
0 ∃k1 >k′

0 : α(k1)
bkd

1 > 1− 1

k1
c′

.

This implies 1− α(k)bkd 6≥∞ 1/poly(k) and the proof is completed.

The next lemma provides us with a useful lower bound which we apply in
some proofs (as in the proof of Lemma 2.2).
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Lemma 2.3 Let k ∈ N. Then for all real constants d′ > 0 and c > 0 with
c > d′ the following holds:

(1− 1

kc
)k

d′ ≥ 1− kd′

kc
= 1− 1

kc−d′
.

2

Proof. First, we stress that for a ∈ R, a > −1 and n ∈ N, one can apply the
Bernoulli inequality (1 + a)n ≥ 1 + na, and the claim follows immediately
(set a :=− 1

kc and n := kd′ .)

We prove the claim for n := kd′ ∈ R: For k = 1 this relation obviously
holds. One way to see that it also holds for k > 1 is as follows: Consider
the expressions kd′ ln(1− 1/kc) and ln(1− 1/kc−d′). We expand them using

ln(1− x) = −[x + x2/2 + x3/3 + · · ·+ xn/n + · · · ]

for −1 ≤ x < 1.
The expansion of the first expression is

kd′ ln(1− 1

kc
) = −kd′ [

1

kc
+

1

2k2c
+

1

3k3c
+ · · · 1

nknc
+ · · · ]

= −[
1

kc−d′
+

1

2k2c−d′
+

1

3k3c−d′
+ · · ·+ 1

nknc−d′
+ · · · ]

where x := 1/kc < 1, i.e., kc > 1.
Expanding the other expression we obtain

ln(1− 1

kc−d′
) = −[

1

kc−d′
+

1

2k2(c−d′)
+

1

3k3(c−d′)
+ · · · + 1

nkn(c−d′)
+ · · · ].

where x := 1/kc−d′ < 1, i.e., kd′ < kc.
Next, we compute the difference between these expansions:

∆(k) := kd′ ln(1− 1

kc
)− ln(1− 1

kc−d′
)

= [(− 1

2k2c−d′
+

1

2k2(c−d′)
)

︸ ︷︷ ︸

δ2

+(− 1

3k3c−d′
+

1

3k3(c−d′)
)

︸ ︷︷ ︸

δ3

+ · · ·+ (− 1

nknc−d′
+

1

nkn(c−d′)
)

︸ ︷︷ ︸

δn

+ · · · ].

For k > 1, c > d′ > 0 each difference term δn is positive, i.e.,

δn = (− 1

nknc−d′
+

1

nkn(c−d′)
) =

1

nknc−d′
(−1 + (kd′)n−1) > 0,
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and we can conclude ∆ > 0. Thus, for k > 1 and c > d′ we can write

kd′ ln(1− 1

kc
) > ln(1− 1

kc−d′
),

and by applying the exponential function we obtain

ekd′ ln(1−1/kc) = (1− 1

kc
)k

d′

> eln(1−1/kc−d′ ) = 1− 1

kc−d′
.

and this completes the proof.

2.5.3.2 Medium Granular

Until now we have proved the equivalence between CDH and CSE for their
high-granular variants. The next theorem shows that this relation also holds
for medium granularity.

Theorem 2.4

∗-CSE(c:∗; g:m; f:o)
α′=α; t′=t+O(log |G|)
==============⇒ ∗-CDH(c:∗; g:m; f:o)

∗-CSE(c:∗; g:m; f:o)
α′=α3; t′=3t+O(log |G|)⇐================ ∗-CDH(c:∗; g:m; f:o)

2

Proof. The proof idea of Theorem 2.3 can also be applied here. The only
thing we have to show is that the necessary randomization in the reduc-
tion steps can be extended to the medium granularity variants of CDH and
CSE. Note that for the medium-granular probability space a group G fixes
a probability space instance (PSI).

CDH: We transform a given CDH input tuple ((G, g), (gx , gy)) for a given
generator g ∈ G into a random CDH input tuple ((G, g∗), (g∗

x′
, g∗

y′
)) for a

random generator g∗ ∈ G as follows:

1. We choose rg ∈R Z∗
|G|, rx, ry ∈R Z|G| and set g∗ := grg , x′ :=x+ rx, and

y′ := y + ry.

2. We compute the public part of the input to the CDH oracle as

(gx)rggrgrx = grg(x+rx) = (grg )(x+rx) = g∗
x′

and
(gy)rggrgry = grg(y+ry) = (grg )(y+ry) = g∗

y′
.

The tuple ((G, g∗), (g∗, g∗
x′

, g∗
y′

)) has the correct distribution for CDH
oracle. This is because (i) g∗ is a random group generator, and (ii)
g∗

x′
, g∗

y′
are randomly and uniformly distributed elements of G since,
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due to the randomization, x′, y′ are randomly and uniformly spread
over Z|G|.

31

3. We unblind the result of the CDH oracle as

(g∗
x′y′

)r
−1
g /((gx)ry(gy)rxgrxry) = (gx′y′

)rgr−1
g /((gx)ry(gy)rxgrxry)

= g(xy+xry+yrx+rxry)/g(xry+yrx+rxry)

= gxy.

CSE: We transform a given CSE input ((G, g), (gx)) for a given generator
g ∈ G into a random CSE input ((G, g∗), (g∗

x′
)) for a random generator

g∗ ∈ G as follows:

1. We choose rg ∈R Z∗
|G|, rx ∈R Z|G| and set g∗ := grg and x′ := x + rx.

2. We compute the public part of the input to the CSE oracle as

(gx)rggrgrx = grg(x+rx) = (grg )(x+rx) = g∗
x′

.

Similar to the above case, the tuple ((G, g∗), (g∗, g∗
x′

)) has the correct
input distribution for the DSE oracle. This is because (i) g∗ is a random
group generator, and (ii) g∗

x′
is a random element of G since, due to

the randomization, x′ is randomly and uniformly spread over Z|G|.

3. We unblind the result of the CSE oracle as

(g∗
x′2

)r
−1
g /((gx)2rxgrx

2
) = (gx′2

)rgr−1
g /((gx)2rxgrx

2
)

= g(x2+2xrx+rx
2)/g(2xrx+rx

2)

= gx2
.

The rest of the proof remains the same as the proof of Theorems 2.2 and
2.3.

Remark 2.3. Reduction proofs of a certain granularity can in general be eas-
ily applied to the lower granularity variants of the corresponding assump-
tions. A sufficient condition is that all involved randomizations extend to
the wider probability space associated with the lower granularity parame-
ter. In all the mentioned problem families the random self-reducibility exists
for medium granularity and we can transform proofs from a high-granular
variant to the corresponding medium-granular variant. However, it does
not seem to extend to low-granular variants, since this would require to
randomize not only over the public part of the problem instance PI and
the generator g but also over the groups G with the same associated se-
curity parameter k; this seems impossible to do in the general case and is
easily overlooked and can lead to wrong conclusions, e.g., the random self-
reducibility as stated by Boneh (1998) doesn’t hold as the assumptions are
(implicitly) given in their low-granular form. ◦

31that is ∀(x′, y′) ∈ Z2
|G|, ∀(x, y) ∈ Z2

|G| there exists exactly one pair (rx, ry) ∈ Z2
|G| such

that the equations x′ = x + rx, and y′ = y + ry hold.
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2.5.4 CDH versus CIE

2.5.4.1 High Granular

In the following, we prove that similar relations as between CDH and CSE
also exist between CDH and CIE. As before, we show equivalence between
the high-granular CDH and CIE assumptions: In Lemma 2.4 we prove high-
granular reduction from CIE to CDH assumption for their different variants
with respect to success probability. However, for weak and invariant CDH
oracle the reduction does not work directly, and we need to self-correct the
CDH oracle first.

For the converse reduction (i.e., from CDH to CIE), we first reduce CSE
to CIE (Lemma 2.6), and then apply Theorem 2.3. Finally, we prove that
the same relations hold also for the medium-granular versions, however, we
can achieve them much more efficiently.

Lemma 2.4

{1, (1−1/poly(k))}-CIE(c:∗; g:h; f:fct)
α′=αO(log |G|); t′=O(t log |G|)+O((log |G|)2)
============================⇒

{1, (1−1/poly(k))}-CDH(c:∗; g:h; f:fct);
{(1−1/poly(k))}-CIE(c:∗; g:h; f:fct)

α′≥1−1/2k ; t′=O(tk/α+t log |G|)+O(k log |G|/α+(log |G|)2)
======================================⇒

{ε,1/poly(k)}-CDH(c:∗; g:h; f:fct)
2

Proof. The following statements hold:

(a) Given a CDH oracle OCDH which breaks
{1, (1−1/poly(k))}-CDH(c:∗; g:h; f:fct) with success probabil-
ity αCDH(k), there exists an algorithm AOCDH which breaks
{1, (1−1/poly(k))}-CIE(c:∗; g:h; f:fct) with success probability
αCIE(k) = αCDH(k)O(log |G|), using O(log |G|) oracle calls and
O((log |G|)2) group operations.

(b) Given a CDH oracle OCDH which breaks
{ε,1/poly(k)}-CDH(c:∗; g:h; f:fct) with success probability
αCDH(k), there exists an algorithm AOCDH which breaks
{(1−1/poly(k))}-CIE(c:∗; g:h; f:fct) with success probability
αCIE(k) 6<∞ 1 − 1/2k, using O(k/αCDH(k) + log |G|) oracle
calls and O(k log |G|/αCDH(k) + (log |G|)2) group operations.

Case (a): Given the CDH input tuple ((G, g), (gx)), compute gx−1
=

gxϕ(|G|)−1
. This can be done, e.g., by applying the square and multiply

method which requires O(log |G|) calls to OCDH . Note that for this, ϕ(|G|)
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and consequently the factorization of |G| must be known (This fact is indi-
cated by the place holder f:fct in the assumption.) Further, note that each
time OCDH is called its inputs component gu must be randomized to obtain
oracle calls with properly distributed and statistically independent inputs.32

Success probability: Since there are O(log |G|) independent oracle calls the
resulting success probability is αCIE = (αCDH(k))O(log |G|). Depending on
αCDH(k) we have the following cases:

Perfect oracle (αCDH(k) 6<∞ 1): Clearly, the resulting success probability is
also perfect, i.e., αCIE(k) 6<∞ 1.

Strong oracle (1−αCDH (k) 6≥∞ 1/poly(k)): The resulting success probability
is also strong: Set f(|G|) := O(log |G|). It follows f(|G|) ≤ b log |G| for a
constant b > 0. As discussed in Section 2.1.7, we can assume that the group
order can be bounded in the security parameter, i.e., |G| ≤ 2kd

for some
d > 0. It follows log |G| ≤ kd and we can write

αCIE(k) = αCDH(k)f(|G|) ≥ αCDH(k)bk
d
.

According to Lemma 2.2, a polynomial power of a strong success probability
is itself strong, i.e., 1 − αCDH(k)bk

d 6≥∞ 1/poly(k) and thus, it follows 1 −
αCIE(k) 6≥∞ 1/poly(k).

Efficiency: There are O(log |G|) oracle calls, and per oracle call O(log |G|)
group operations are required for exponentiations and computing inverses.
This makes the total cost of O((log |G|)2) group operations.

Case (b): The proof is similar to the case (a), except that for the weak
and invariant CDH oracle the resulting success probability αCIE(k) cannot
be polynomially bounded, and the above reduction does not work directly.
The success probability of OCDH has to be improved first by means of self-
correction (see Section 2.5.2), a task expensive both in terms of oracle calls
and group operations.

Success probability: As mentioned above, we first self-correct the success
probability of the invariant (weak) CDH oracle to strong success probability.
This is done by applying Corollary 2.1. Thus, we have 1 − αCDH(k) 6≥∞

1/poly(k). Then it follows from Lemma 2.2 that αCDH(k)bk
d

is strong, i.e.,

32This is done as follows: Due to square and multiply method the input tuple to OCDH

at given step is either of the form (gxa

, gx) (multiplication) or of the form (gxa

, gxa

) (squar-
ing) for some a. The inputs are randomized by choosing r, s ∈R Z|G| and inputing the

tuple (gxa+r, gx+s) or (gxa+r, gxa+s) to OCDH . The desired outputs are then computed

as gxa+1

= g(xa+r)(x+s)

gsxa+rx+rs or gx2a

= g(xa+r)(xa+s)

g(r+s)xa+rs .
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we have 1 − αCDH(k)bk
d 6≥∞ 1/poly(k). Since αCIE(k) ≥ αCDH(k)bk

d
it

follows 1− αCIE(k) 6≥∞ 1/poly(k).

Efficiency: Due to Corollary 2.1 the additional costs for self-correcting are
O(k/αCDH(k)) oracle calls and O(k log |G|/αCDH(k)+(log |G|)2) group op-
erations. Thus, the total costs are: O(k/αCDH(k)+ log |G|) oracle calls and
O(k log |G|/αCDH(k) + (log |G|)2) group operations.

In the following Lemma we analyze the behavior of ϕ(|G|)
|G| for group orders

containing no small prime factors. This will be helpful when proving rela-
tions between certain assumptions in the sequel.

Lemma 2.5 Let SGG be a group sampler generating a family G of groups
whose orders contain no small prime factors. Let GSG(k) be the corresponding
group siblings (the set of groups G returned by SGG for a security parameter
k.) Further, let f : N 7→ G be a function such that f(k) ∈ GSG(k) and

∀G′ ∈ GSG(k) , ϕ(|G′|)
|G′| ≥

ϕ(|f(k)|)
|f(k)| . Then it follows 1− ϕ(|f(k)|)

|f(k)| <∞ 1/poly(k).
2

Proof. Let |f(k)| = |G| = ∏m
i=1 pei

i be the prime factorization of the group
order |G| and p = min(p1, · · · , pm) be the smallest prime factor of |G|.
Then it follows |G| = ∏m

i=1 pi ≥ pm and log |G| ≥ m log p, and thus, m ≤
log |G|/ log p ≤ log |G| for log p ≥ 1 (i.e., for p ≥ 2). Moreover, as discussed
in Section 2.1.7, we can assume that the group order can be upper bounded
in security parameter, i.e., |G| ≤ 2kd

for k > 1 and some d > 0. It follows
m ≤ log |G| ≤ kd. Hence, we can write

ϕ(|G|)
|G| =

m∏

i=1

(1− 1

pi
) ≥ (1− 1

p
)m > (1− 1

p
)k

d
.

Since |G| contains no small prime factors, it follows from the definition of no
small prime (see Section 2.2) that for any real constant c > 0, there exists a
k0 such that for all k > k0, 1/p < 1/kc. Thus, we can write

ϕ(|G|)
|G| ≥ (1− 1

p
)k

d
> (1− 1

kc
)k

d
.

According to Lemma 2.3, the relation (1 − 1/kc)k
d ≥ 1 − 1/kc−d holds for

c > d and k ∈ N. Since c is arbitrary, and since for all c > d we can write
c′ := c−d > 0, it follows that for all c′ > 0, there exists a k0 such that for all
k > k0,

ϕ(|G|)
|G| > 1− 1/kc′ and consequently 1 − ϕ(|G|)

|G| < 1/kc′ . This means

1− ϕ(|G|)
|G| <∞ 1/poly(k).

In the following lemma, we prove the reduction from CSE to CIE as-
sumption for their high-granular version. This lemma will be helpful later
when establishing the relation between CIE and CDH assumptions.
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Lemma 2.6

{(1−1/poly(k)),ε,1/poly(k)}-CSE(c:∗; g:h; f:nsprim,o)
α′≥

2ϕ(|G|)−1
|G|

α3; t′=3t+O(log |G|)
======================⇒
{(1−1/poly(k)),ε,1/poly(k)}-CIE(c:∗; g:h; f:nsprim,o)

2

Proof. We prove the following statement: Given a CIE oracle OCIE which
breaks {(1−1/poly(k)),ε,1/poly(k)}-CIE(c:∗; g:h; f:nsprim,o) with success
probability αCIE(k), there exists an algorithm AOCIE which breaks the
assumption {(1−1/poly(k)),ε,1/poly(k)}-CSE(c:∗; g:h; f:nsprim,o) with suc-

cess probability αCSE(k) ≥ 2ϕ(|G|)−1
|G| αCIE(k)3, using 3 oracle calls and

O(log |G|) group operations.
We proceed as follows:

(i) Select b, r1, r2 ∈R Z∗
|G|, compute (gxg−b)r1 = g(x−b)r1 and

(gxgb)r2 = g(x+b)r2 , and query OCIE with ((G, g), (g(x−b)r1 )) and
((G, g), (g(x+b)r1 )). One can expect correct oracle answers with prob-
ability αCIE(k) only if oracle inputs are legal, i.e., only if x± b ∈ Z∗

|G|.
This event occurs with a certain probability which will be deter-
mined later. Assuming these inputs are legal, the oracle calls are
statistically independent since the input elements are randomized

with r1, r2.
33 The oracle answers are g

1
r1(x−b) = OCIE

(
g(x−b)r1

)
and

g
1

r2(x+b) = OCIE

(
g(x+b)r2

)
, each time with probability αCIE(k).

(ii) Using the oracle’s answers in Step (i) compute:

(
g

1
r1(x−b)

)r1

(
g

1
r2(x+b)

)r2
= g( 1

x−b
− 1

x+b
) = g

2b
x2−b2 .

The exponent 2b
x2−b2 is an element of Z∗

|G| because of the following
reasons: b ∈ Z∗

|G|, and as assumed above, x ± b ∈ Z∗
|G| which implies

x2 − b2 ∈ Z∗
|G|. Further, |G| is odd as the group families do not have

any small prime factors in the order.

(iii) Select r3 ∈R Z∗
|G| and query OCIE with

(
(G, g),

( (
g

2b
x2−b2

)r3
))

where
r3 is used for randomization to obtain statistically independent ora-

cle call. The oracle’s answer is g
x2−b2

2br3 = OCIE

(
g

2br3
x2−b2

)
with success

probability αCIE(k).

33Note that for x± b ∈ Z∗
|G| the multiplication with r1, r2 ∈ Z∗

|G| spreads x± b randomly

and uniformly over Z∗
|G|, and consequently

(
g(x−b)

)r1 ,
(
g(x+b)

)r2 are randomly and uni-
formly distributed over input domain of OCIE , implying statistically independent oracle
calls.
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(iv) Compute the desired CSE instance by using the oracle’s answer in
Step (iii)

gx2
=

(
g

x2−b2

2br3

)2br3 gb2 .

Success probability: The probability that both events E1 : x + b ∈ Z∗
|G| and

E2 : x− b ∈ Z∗
|G| occur (in Step (i)) is

Prob[E1 ∧E2] = Prob[E1] + Prob[E2]−Prob[E1 ∨E2]

=
2ϕ(|G|)
|G| −Prob[E1 ∨E2]

≥ 2ϕ(|G|)
|G| − 1

where we set Prob[E1 ∨E2] = 1. Obviously, this is a worst case lower
bound.34

Each time with probability αCIE(k) the oracle outputs the correct value.
There are 3 statistically independent calls to the oracle, and so the resulting
success probability of AOCIE is:

αCSE(k) ≥ (
2ϕ(|G|)
|G| − 1)αCIE(k)3.

In the following, we set λ(k) := αCIE(k)3 and γ(k) := 2ϕ(|G|)
|G| − 1 (Note that

|G| is a function of the security parameter k, see also Lemma 2.5).
Depending on the oracle’s success probability αCIE(k) we have the fol-

lowing cases:

Perfect oracle (αCIE(k) 6<∞ 1): The resulting success probability cannot be
perfect because there is a non-zero error probability when querying the CIE
oracle.

Weak oracle (αCIE(k) 6<∞ 1/poly(k)): The resulting success probability is
(asymptotically) weak: Since |G| contains no small prime factors, it follows

from Lemma 2.5 that 1− γ(k) = 2(1 − ϕ(|G|)
|G| ) <∞ 1/poly(k). Thus, we can

write γ(k) >∞ 1− 1/poly(k), meaning that γ(k) is non-negligible. Further,
we have αCIE(k) 6<∞ 1/poly(k) that implies λ(k) 6<∞ 1/poly(k). It follows
γ(k)λ(k) 6<∞ 1/poly(k) (see also Section 2.1.2). Finally, since αCSE(k) ≥
γ(k)λ(k), it follows αCSE(k) 6<∞ 1/poly(k).

Invariant oracle (αCIE 6<∞ ε1): The resulting success probability is (asymp-
totically) invariant: As shown in the weak case, we can write γ(k) >∞ 1 −
1/poly(k). More precisely, for any ε′ > 0 there exist a k0 such that for

34For this (worst case) lower bound to be meaningful (non-negative) the relation ϕ(|G|)
|G|

>
1
2

must hold, and clearly this is the case as |G| contains no small prime factors.
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all k > k0, γ(k) > 1 − ε′. Since αCIE(k) 6<∞ ε1, for any k′
0 there exists

a k1 > k′
0 such that αCIE(k1) ≥ ε1 and consequently λ(k1) ≥ ε3

1. Hence,
for any k′

0 > k0 there exists a k1 > k′
0 such that αCSE(k1) ≥ ε2 where

ε2 := (1− ε′)ε1
3. This means αCSE(k) 6<∞ ε2.

Strong oracle (1−αCIE(k) 6≥∞ 1/poly(k)): The resulting success probability
is (asymptotically) strong. For this, we first prove that 1 − γ(k)λ(k) 6≥∞

1/poly(k): As shown in the weak case, we can write γ(k) >∞ 1− 1/poly(k).
Further, from Lemma 2.2 follows 1−λ(k) 6≥∞ 1/poly(k).35 Applying Lemma
2.7, we obtain 1−γ(k)λ(k) 6≥∞ 1/poly(k). Since 1−αCSE(k) ≤ 1−γ(k)λ(k),
it follows 1− αCSE(k) 6≥∞ 1/poly(k).

Lemma 2.7 Let f(k), g(k) be functions N → [0, 1]. If 1 − f(k) 6≥∞

1/poly(k) and 1 − g(k) <∞ 1/poly(k), then 1 − f(k)g(k) 6≥∞ 1/poly(k).
2

Proof. Set P (k) := (1− f(k))(1 − g(k)). Obviously, P (k) ≥ 0 for all k, and
we can write

(1− f(k))(1 − g(k)) = 1 + f(k)g(k) − f(k)− g(k)

= −(1− f(k)g(k)) + (1− f(k)) + (1− g(k))

= −(1− f(k)g(k)) + S(k) ≥ 0

where we set S(k) := (1 − g(k)) + (1 − f(k)). S(k) is a not non-negligible
function since it is the sum of a negligible and a not non-negligible functions.
Thus, we can write S(k) 6≥∞ 1/poly(k). From equations above we have
1−f(k)g(k)) ≤ S(k). Since S(k) 6≥∞ 1/poly(k), it follows 1−f(k)g(k) 6≥∞

1/poly(k).

Efficiency: There are 3 calls to OCIE , and O(log |G|) group operations are
required for the exponentiations and computing the inverse elements.

Remark 2.4. For groups of prime order, the resulting success probability
covers also perfect success probability as the special case of elements not in
Z∗

p (i.e., 0) can be tested and handled. ◦

Using the previous results we can now prove the relation between CIE
and CDH assumptions in their high-granular variant.

35λ(k) is a (polynomial) power of a strong success probability.
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Theorem 2.5

∗-CIE(c:∗; g:h; f:fct)
α′≥1−1/2k ; t′=O( tk

α
+t log |G|)+O(

k log |G|
α

+(log |G|)2)
===================================⇒

∗-CDH(c:∗; g:h; f:fct);
{(1−1/poly(k)),ε,1/poly(k)}-CIE(c:∗; g:h; f:nsprim,o)

α′≥( 2ϕ(|G|)−1
|G|

)3α9; t′=9t+O(log |G|)
⇐=======================
{(1−1/poly(k)),ε,1/poly(k)}-CDH(c:∗; g:h; f:nsprim,o)

2

Proof. The following statements hold:

(a) Given a CDH oracle OCDH which breaks ∗-CDH(c:∗; g:h; f:fct) with
success probability αCDH(k), there exists an algorithm AOCDH

which breaks ∗-CIE(c:∗; g:h; f:fct) with success probability αCIE(k) =
αCDH(k)O(log |G|), using at most O( k

αCDH (k) + log |G|) calls to OCDH

and O( k log |G|
αCDH (k) + (log |G|)2) group operations.

(b) Given a CIE oracle OCIE which breaks
{(1−1/poly(k)),ε,1/poly(k)}-CIE(c:∗; g:h; f:nsprim,o) with suc-
cess probability αCIE(k), there exists an algorithm AOCIE which
breaks {(1−1/poly(k)),ε,1/poly(k)}-CDH(c:∗; g:h; f:nsprim,o) with

success probability αCDH(k) ≥ (2ϕ(|G|)−1
|G| )3αCIE(k)9, using 9 oracle

calls and O(log |G|) group operations.

Case (a): Follows immediately from lemma 2.4.

Case (b): According to Theorem 2.3 there is a reduction from
∗-CDH(c:∗; g:h; f:o) to ∗-CSE(c:∗; g:h; f:o) with success probabil-
ity αCDH(k) = αCSE(k)3, using 3 calls to OCDH and O(log |G|)
group operations. Further, according to Lemma 2.6 there is a re-
duction from {(1−1/poly(k)),ε,1/poly(k)}-CSE(c:∗; g:h; f:nsprim,o)
to {(1−1/poly(k)),ε,1/poly(k)}-CIE(c:∗; g:h; f:nsprim,o) with success

probability αCSE(k) ≥ 2ϕ(|G|)−1
|G| αCIE(k)3, using 3 oracle calls and

O(log |G|) group operations. Combining these results we obtain a re-
duction from {(1−1/poly(k)),ε,1/poly(k)}-CDH(c:∗; g:h; f:nsprim,o) to
{(1−1/poly(k)),ε,1/poly(k)}-CIE(c:∗; g:h; f:nsprim,o) with the resulting

success probability αCDH(k) ≥ (2ϕ(|G|)−1
|G| )3αCIE(k)9, using 9 oracle calls

and O(log |G|) group operations. This completes the proof.

Remark 2.5. Theorem 2.5 concerns only group orders with no small prime
factors, and does not cover the gap between the group orders with at least
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one large prime factor and those containing no small primes. Note that
for group orders with only small prime factors these problems are easy to
solve, since one can apply well-known algorithms for solving the discrete
logarithms (see Shoup (1997)).

Remark 2.6. The CDH oracle can be used to multiply two discrete loga-
rithms without knowing them explicitly (e.g., to compute gx2

without know-
ing x). Using CDH oracle one can compute gp(x) for a polynomial p(x)
with integer coefficients or to compute gh(x) for any rational function of
the form h(x) = f(x)/g(x) where f(x), g(x) are polynomials with integer
coefficients. This fact was also mentioned shortly by Maurer (1994). As a
consequence one can use CDH oracle to compute any multivariate polyno-
mial p(x1, x2, · · · xn) or rational function h(x1, x2, · · · , xn) in the exponent.

Let us, for brevity, consider bivariate expressions in exponents. Assume
we are given an oracle which, on input gx, gy, outputs gp(x,y) with a certain
probability, where p(x, y) is a known (fixed) bivariate polynomial whose
degree and form is appropriately defined. We may call this oracle CPE
(Computational Polynomial Exponent) and want to analyze its relation to
CDH oracle. Due to the discussion above, we can easily construct a CPE
oracle using a CDH oracle, however, the converse (reduction CDH to CPE)
is not obvious. This direction was shown in Kiltz (2001): First show the
equivalence between CDH oracle and a CPE oracle which computes polyno-
mials of degree 2 (according to the underlying polynomial definition). We
denote such oracle with CPE(2). Next prove that a CPE(n), i.e, a CPE
oracle outputting p(x, y) of degree n, can be inductively reduced to CPE(2).
◦

2.5.4.2 Medium Granular

Next, we prove the above equivalence (Theorem 2.5) also for medium granu-
larity. Similar to Theorem 2.4, we could argue that due to the existence of a
randomization the result immediately follows also for the medium-granular
case. However, we will show that this reduction can be performed much
more efficiently in the medium-granular case than in the high-granular case;
thereby we improve the concrete security considerably. We start with the
following lemma.

Lemma 2.8

∗-CIE(c:∗; g:m; f:o)
α′=α; t′=t+O(log |G|)
==============⇒

∗-CSE(c:∗; g:m; f:o);

{(1−1/poly(k)),ε,1/poly(k)}-CIE(c:∗; g:m; f:nsprim)
α′≥ϕ(|G|)

|G|
α; t′=t

⇐===========
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{(1−1/poly(k)),ε,1/poly(k)}-CSE(c:∗; g:m; f:nsprim)
2

Proof. We prove that the following statements hold:

(a) Given a CSE oracle OCSE which breaks ∗-CSE(c:∗; g:m; f:o) with suc-
cess probability αCSE(k), there exists an algorithm AOCSE that breaks
∗-CIE(c:∗; g:m; f:o) with success probability αCIE(k) = αCSE(k), us-
ing 1 oracle call and O(log |G|) group operations.

(b) Given a CIE oracle OCIE which breaks
{(1−1/poly(k)),ε,1/poly(k)}-CIE(c:∗; g:h; f:nsprim) with success
probability αCIE(k), there exists an algorithm AOCIE which breaks
{(1−1/poly(k)),ε,1/poly(k)}-CSE(c:∗; g:h; f:nsprim) with success

probability αCSE(k) ≥ ϕ(|G|)
|G| αCIE(k), using 1 oracle call.

Case (a): Given a CIE input tuple ((G, g), (gx)) with x ∈ Z∗
|G|, we construct

AOCSE as follows: Set h := gx, then we have g = ht for some t ∈ Z∗
|G|.

Since x ∈ Z∗
|G|, h is a group generator, and t = x−1 exists as we implicitly

assumed above. Select r ∈R Z|G| and pass ((G, h), (ht+r)) to OCSE where
ht+r = ggr. The reason for the randomization with r is that here the inputs
to OCSE are limited to those with secret exponents x from Z∗

|G| whereas the
success probability of OCSE is defined over the input set with x ∈ Z|G|.

Using the answer of OCSE we compute

ht2 =
OCSE(ht+r)

g2rhr2 =
ht2+2rt+r2

(ht)2rhr2 .

Since t = x−1, we exploit the identity ht2 = (gx)(x
−1)2 = (gx)x

−2
= gxx−2

=
gx−1

to solve CIE input.

Success probability: There is a single call to OCSE. Thus, the resulting
success probability is αCIE(k) = αCSE(k).

Efficiency: There is a single oracle call, and there are O(log |G|) group
operations required for computing the inverses and exponentiations.

Case (b): Given a CSE input tuple ((G, g), (gx)), we construct AOCIE as
follows: Set h := gx then we have g = ht for some t. Next, pass ((G, h), (ht))
to OCIE . Note that OCIE answers correctly (i.e., ht−1

) with probability
αCIE(k) only to the legal queries, i.e., when h is a generator. The probability

for this event is ϕ(|G|)
|G| . Note that in this case t :=x−1 exists, as we implicitly

assumed above. The desired solution to the CSE problem is obtained by
exploiting the identity ht−1

= (gx)(x
−1)−1

= gx2
.
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Success probability: There is a single call to OCIE . Thus, the resulting
success probability is αCSE(k) ≥ ϕ(|G|)

|G| αCIE(k). Depending on the oracle’s

success probability αCIE(k) we have the following cases:

Perfect oracle (αCIE(k) 6<∞ 1): The resulting success probability cannot be
perfect because there is a non-zero error probability when querying the CIE
oracle.

Weak oracle (αCIE(k) 6<∞ 1/poly(k)): The resulting success probability is

weak: αCIE(k) is a not negligible function, and ϕ(|G|)
|G| is always non-negligible

(see also Lemma 2.5) Thus, the product of these terms is a not-negligible
function, implying αCSE(k) 6<∞ 1/poly(k).

Invariant oracle (αCIE 6<∞ ε1): The resulting success probability is (asymp-
totically) invariant. The proof is similar to that of the invariant case in
Lemma 2.6: Since |G| contains no small prime factors, it follows from Lemma

2.5 that 1− ϕ(|G|)
|G| <∞ 1/poly(k). More precisely, for all ε′ > 0 there exist a

k0 such that for all k > k0,
ϕ(|G|)
|G| > 1− ε′. Since αCIE(k) 6<∞ ε1, for any k′

0

there exists k1 > k′
0 such that αCIE(k1) > ε1. Thus, for any k′

0 > k0 there
exists k1 > k′

0 such that αCSE(k1) > ε2 where ε2 := (1 − ε′)ε1. This means
αCSE(k) 6<∞ ε2.

Strong oracle (1−αCIE(k) 6≥∞ 1/poly(k)): The resulting success probability
is (asymptotically) strong. The proof is similar to that of the strong case
in Lemma 2.6: Since |G| contains no small prime factors, it follows from

Lemma 2.5 that 1− ϕ(|G|)
|G| <∞ 1/poly(k). Further, we have 1−αCIE(k) 6≥∞

1/poly(k). Applying Lemma 2.7, we obtain 1− ϕ(|G|)
|G| αCIE(k) 6≥∞ 1/poly(k),

and since 1 − αCSE(k) ≤ 1 − ϕ(|G|)
|G| αCIE(k), it follows 1 − αCSE(k) 6≥∞

1/poly(k).

Combining Theorem 2.4 and Lemma 2.8, we obtain the following theorem
on the relation between the medium-granular variants of CIE and CDH
assumptions.

Theorem 2.6

∗-CIE(c:∗; g:m; f:o)
α′=α; t′=t+O(log |G|)
==============⇒

∗-CDH(c:∗; g:m; f:o);

{(1−1/poly(k)),ε,1/poly(k)}-CIE(c:∗; g:m; f:nsprim)

α′≥
(

ϕ(|G|)
|G|

)3
α3; t′=3t+O(log |G|)

⇐======================
{(1−1/poly(k)),ε,1/poly(k)}-CDH(c:∗; g:m; f:nsprim)

2



2.5 Computational DH, SE and IE 65

Remark 2.7. In Theorem 2.6 we consider group orders containing no small
prime factors (for the reduction CDH to CIE) to obtain comparable results
to the high-granular variant of the reduction. However, the reduction holds
also for general group orders36 although for invariant and strong CIE oracle
we need to self-correct the resulting success probability αCDH after the
reduction (see Corollary 2.1) This is stated in the following lemma.

Lemma 2.9

{(1−1/poly(k)),ε,1/poly(k)}-CIE(c:∗; g:m; f:∗)
⇐=

{(1−1/poly(k)),ε,1/poly(k)}-CDH(c:∗; g:m; f:∗)
2

Remark 2.8. For prime group orders Theorem 2.6 also covers perfect oracles
as the special case of elements not in Z∗

p (i.e., 0) can be tested and handled.
◦

In this section we have analyzed and proved relations between CDH, CSE,
CIE in their high- and medium-granular versions. We can summarize the
advantages of medium-granular reductions over their high-granular variants
as follows:

• The medium-granular reduction of CIE to CDH (Theorem 2.5) does
not require the CDH oracle to be self-corrected.

• The medium-granular reduction (Theorem 2.6) is much more effi-
cient than the corresponding high-granular reduction (Theorem 2.5):
The reduction CIE-CDH requires a single call to the CDH oracle
and O(log |G|) group operations whereas the high-granular version re-
quires, even without self-correction, O(log |G|) (very expensive) or-
acle calls and O((log |G|)2) group operations. Further, the reduction
achieves a success probability which is higher by a power of O(log |G|).
The success probability of the converse reduction CDH-CIE is com-
paratively higher for the medium-granular variant.

• The high-granular variant of Theorem 2.6 works for group orders with
no small prime factors. It does not cover the range of group orders with
at least one large prime factor to those with no small prime factors.
However, this gap is covered by the medium-granular version since the
reduction works for any group order (see Remarks 2.5 and 2.7).

36e.g., it holds also for orders containing at least one large prime factor.
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2.6 Decisional DH, SE and IE

2.6.1 Difficulty in the Generic Model

First we state a Lemma which plays an important role for later proofs in
the context of generic algorithms:

Lemma 2.10 (Schwartz 1980; Shoup 1997) Let p ∈ P and e ∈ N. Fur-
ther, let P (X1, X2, · · · , Xn) be a non-zero polynomial in Zpe [X] of total de-
gree d ≥ 0. Then

Prob[P (x1, x2, · · · , xn) ≡ 0 :: (x1, x2, · · · , xn) ∈R Zn
pe ] ≤ d/p.

2

Using Lemma 2.10, Wolf (1999) shows the following result: There exists
no generic algorithm that can solve DSE in polynomial time if the order
of the multiplicative group is not divisible by small primes. This result is
summarized in the following theorem:

Theorem 2.7 (Wolf 1999)
true =⇒ ε-DSEσ(c:∗; g:h; f:nsprim,o) 2

Remark 2.9. More precisely, Wolf (1999) shows, the probability that any
generic algorithm Aσ can distinguish correct DSE inputs from incorrect
ones is at most (T+4)(T+3)

2p′ where p′ is the smallest prime factor of |G| and
T is an upper bound on the algorithm’s runtime.

Remark 2.10. In the sequel, we will consider several decisional problems and
prove results on the generic complexity of solving them. For known group
orders the generic complexity of these problems is directly proportional to
the smallest prime factor of the group order (similar to the result of Theorem
2.7) In other words, these problems can only be hard if the group order |G|
is free of small primes.37

To make this more clear, consider the following example regarding DDH
for group family with |G| = 2q where q ∈ P is a prime. We assume that
DDH is hard for q. Note that this example can be generalized to any
group families with |G| containing small prime factors. Now, assume we
are given a correct DDH tuple I1 := ((G, g), (gx , gy), (gxy)) and a random
DDH tuple I0 := ((G, g), (gx, gy), (gx′y′

)) with x′, y′ ∈R Z|G|. Since |G| is
even, we can determine the parity parity(exp) := exp mod 2 of the exponents
exp ∈ {x, y, xy, x′y′} as follows:

parity(exp) =

{
0 : if (gexp)q = 1
1 : if (gexp)q = gq.

37Note that if the group order |G| is known, then its small prime factors can easily be
computed by using well-known factoring algorithms.
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This can be exploited to construct an algorithm (distinguisher) D which
solves DDH in G with non-negligible success probability. D gets the tuple
Ib as input, where b is a randomly and uniformly chosen bit, and outputs a
bit D(Ib) such that

D(Ib) :=

{
1 : if parity(z) = parity(x)parity(y)
0 : otherwise

where z is either xy or x′y′. D is successful if and only if D(Ib) = b. The
success probability of D is determined as follows:

Prob[D(Ib) = b] = Prob[D(Ib) = 1|b = 1]Prob[b = 1]

+ Prob[D(Ib) = 0|b = 0]Prob[b = 0]

= 1(
1

2
) +

1

2
Prob[D(Ib) = 0|b = 0]

=
1

2
+

1

2
Prob[D(Ib) = 0|b = 0].

Note that Prob[D(Ib) = 1|b = 1] = 1 always holds. Further, Prob[b = 1] =
Prob[b = 0] = 1/2 holds since b is chosen randomly and uniformly from
{0, 1}. It remains to compute Prob[D(Ib) = 0|b = 0]. For this, we consider
the 4 possible cases for the parities of x and y represented by the disjoint
events Ei,j

Ei,j := {(i, j) : x, y ∈R Z|G| ∧ i = parity(x) ∧ j = parity(y)}

for i, j ∈ {0, 1}. It follows

Prob[D(Ib) = 0|b = 0] =
∑

i,j∈{0,1}

Prob[D(Ib) = 0|b = 0 ∧Ei,j]Prob[Ei,j ]

= Prob[D(Ib) = 0|b = 0 ∧E1,1]Prob[E1,1]

+
∑

i, j ∈ {0, 1}
(i, j) 6= (1, 1)

Prob[D(Ib) = 0|b = 0 ∧Ei,j]Prob[Ei,j].

Since x and y are chosen uniformly and randomly we have Prob[Ei,j ] = 1/4
for all i, j ∈ {0, 1}. Further, we have

Prob[D(Ib) = 0|b = 0 ∧E1,1] = Prob[parity(z) = 0] = 3/4

and for i, j ∈ {0, 1}, (i, j) 6= (1, 1)

Prob[D(Ib) = 0|b = 0 ∧Ei,j] = Prob[parity(z) = 1] = 1/4.

Substituting these results in the above equations we obtain:

Prob[D(Ib) = 0|b = 0] = 1/4(3/4) + 1/4(3/4) = 6/16
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and
Prob[D(Ib) = b] = 1/2 + 1/2(6/16) = 11/16.

According to our definitions of the assumptions in Section 2.3, the ad-
versary’s success probability for decisional assumptions is normalized to
(Prob[D(Ib) = b]−1/2)2 = 6/16. Thus, with (non-negligible) success prob-
ability 6/16 the distinguisher can recognize the correct DDH tuple.

Remark 2.11. Theorem 2.7 holds also for other variants of the assumption
with respect to the success probabilities perfect, weak and strong.

Remark 2.12. It might look surprising that ∗-DSEσ(c:∗; g:h; f:nsprim) always
holds, i.e., it’s a fact, not an assumption. Of course, the crucial aspect is
the rather restricted adversary model (the σ in the assumption statement)
which limits adversaries to generic algorithms. However, note that, conse-
quently, to break DSE, one has to exploit deeper knowledge on the actual
structure of the used algebraic groups. In particular, for appropriately cho-
sen prime-order subgroups of Z∗

p and elliptic or hyper-elliptic curves no such
exploitable knowledge could yet be found, and all of currently known effi-
cient and relevant algorithms in these groups are generic algorithms, e.g.,
Pohlig-Hellman (1978) or Pollard-ρ (Pollard 1978). Nevertheless, care has
to be applied when proving systems secure in the generic model (Fischlin
2000).

Remark 2.13. As we will see later several (impossibility) results are proven
in the generic model. All these proofs use similar techniques to determine
bounds on the amount of information a generic adversary can obtain. For
the better understanding, we describe this below by giving an example for
DDH.

First recall that in the generic model a group element a ∈ G is repre-
sented by its encoding σ(x), with x ∈ Z|G|, using an encoding function σ(·)
chosen randomly from the set ΣG,g of bijective functions Z|G| → G. The
generic adversary Aσ is given σ(1), i.e., the encoding of a generator, and it
is given access to oracles for performing addition σ(x+ y)← σ+(σ(x), σ(y))
and inversions σ(−x)← σ−(x) on group elements (see also Section 2.2)38

A decisional problem in this model is formulated as follows: The ad-
versary Aσ is given the encodings of the secret, solution and random parts
where the latter two parts are in random order. Then Aσ has to decide
on the correct order of these two parts. For DDH it means, Aσ is given
σ(1), σ(x), σ(y) and the elements {σ(xy), σ(c)} in random order. Now, Aσ

has to decide which of the elements {σ(xy), σ(c)} is the encoding of the so-
lution part and which one corresponds to the encoding of the random part.
Assuming Aσ makes T queries to the addition and inversion oracles, we are

38As we will see later, for proving the impossibility of some reductions, Aσ is given
access to additional oracles.
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interested in the amount of information it can obtain. Each time Aσ inter-
acts with these oracles it learns the encoding σ(wi) of a wi ∈ Z|G| where
wi = Pi(x, y, xy, c) is a linear function Pi in x, y, c, and can be determined
by using the previous oracle queries. Aσ has the following possibilities to
obtain information on the encoded values:

(a)Aσ learns distinct (random) encoding of distinct values. More precisely,
for all (i, j) with Pi 6= Pj we have σ(wi) 6= σ(wj).

(b)Aσ learns a linear relation on the values x, y, xy and c. More precisely,
there exists (i, j) such that Pi 6= Pj and σ(wi) = σ(wj), meaning that
either Pi(x, y, xy, c) ≡ Pj(x, y, xy, c) mod |G| holds or Pi(x, y, c, xy) ≡
Pj(x, y, c, xy) mod |G|. Recall that the order of xy, c is random.

In the case (a), the obtained values are independent random values and do
not leak any information to Aσ at all. In contrast, case (b) represents the
only way Aσ may obtain information on the values x, y, xy and c. If Aσ

can find such a relation, we consider it as successful in finding the correct
order of the elements. Hence, we are interested in bounding the probability
of Aσ’s success. For this purpose, it suffices to bound the probability that a
pair (i, j) with i 6= j exists such that Pi(x, y, xy, c) ≡ Pj(x, y, xy, c) mod |G|
or Pi(x, y, c, xy) ≡ Pj(x, y, c, xy) mod |G| when given any T distinct linear
polynomials and the random values x, y, xy, c ∈R Z|G|. As we will see later
this bound is determined by exploiting the result of Theorem 2.10. ◦
In the following Theorem, we show that also DIE cannot be solved by generic
algorithms if the order |G| of the multiplicative group Z∗

|G| is not divisible
by small primes.

Theorem 2.8
true =⇒ ∗-DIEσ(c:∗; g:h; f:nsprim) 2

Proof. The following lemma associates the minimal generic complexity of
solving DIE directly to the smallest prime factor of the order of the un-
derlying group G. Theorem 2.8 immediately follows from this lemma and
Remarks 2.14.

Lemma 2.11 Let G be a cyclic group and g a corresponding generator, let
p′ be the smallest prime factor of |G|. Let Aσ be any generic algorithm for
groups G with maximum run time T . Then the following always holds:

(|Prob[Aσ(C, (G, g), wb , wb̄) = b ::

b R← {0, 1}; C R← U ;
PI ← SPI IE((G, g)); PIR ← SPIPIP (PI SI );
wb ← (PI publ ,PI sol );
wb̄ ← (PI publ ,PIR

sol )

]−1/2 | · 2) ≤ 2(T+4)(T+3)
p′−2
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2

Proof. Assume, we are given the encodings σ(1), σ(x) and {σ(x−1), σ(c)}
where x ∈ Z∗

|G|. After T computation steps the algorithm Aσ can compute

at most T + 4 distinct linear combinations Pi of the elements 1, x, x−1 and
c, i.e., it obtains

σ(Pi(1, x, x−1, c)) = σ(ai1 + ai2x + ai3x
−1 + ai4c),

where aij are constant coefficients. Furthermore, it is not a-priori known to
Aσ which one of the values in {ai3, ai4} is the coefficient for x−1 and which
one corresponds to c. Aσ may be able to distinguish σ(x−1) and σ(c) by
finding relations (collisions) between distinct linear combinations (Pi, Pj)
with i 6= j. This means it obtains σ(Pi(1, x, x−1, c)) = σ(Pj(1, x, x−1, c))
or σ(Pi(1, x, c, x−1)) = σ(Pj(1, x, c, x−1)), implying either Pi(1, x, x−1, c) ≡
Pj(1, x, x−1, c) mod |G| or Pi(1, x, c, x−1) ≡ Pj(1, x, c, x−1) mod |G|. Let E
denote this event. We compute an upper bound for the probability that E
occurs: There are

(
T+4

2

)
= (T+4)(T+3)

2 possible distinct pairs of polynomials
(Pi, Pj). For each such a pair (i, j) we can bound the number of solutions
to Pi ≡ Pj mod pe for any prime power pe that exactly divides |G|, i.e.,
pe+1 6 | |G|. Note that uniformly distributed random values mod |G| are also
randomly and uniformly distributed modpe. More precisely, we consider
the solutions to the following polynomials

Fi,j(x, c) := x[Pi(1, x, x−1, c) − Pj(1, x, x−1, c)] ≡ 0 mod pe

or
Gi,j(x, c) := x[Pi(1, x, c, x−1)− Pj(1, x, c, x−1)] ≡ 0 mod pe.

Here, the polynomials F or G are obtained by multiplying both sides of
the congruence Pi ≡ Pj mod pe with x and then reordering the resulting
congruence.

Hence, we bound the probability that a random tuple (x, c) ∈R Z∗
pe×Z∗

pe

is a zero of the polynomials F or G mod pe. Note that Z∗
|G| is the domain

of the secret exponents of DIE input tuples.
To do this, we first bound the number of solutions (x, c) to F or G mod pe

where (x, c) are randomly selected from Z2
pe : The total degree of each of

the polynomials F and G is two. It follows from Lemma 2.10 that the
probability of a random tuple (x, c) ∈ Z2

pe to be a zero of F or G mod pe

is at most 2(2/p) = 4/p. There are p2e tuples (x, c) in Z2
pe . Thus, there

are at most p2e4/p = 4p2e−1 zeros for F or G mod pe. Further, there are
(ϕ(pe))2 = (pe − pe−1)2 tuples in Z∗

pe × Z∗
pe .
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Hence, the probability that such a tuple is a zero of F or G mod pe is
upper bounded by 4p2e−1/(pe − pe−1)2. It follows

Prob[E] ≤ (T + 4)(T + 3)

2

4p2e−1

(pe − pe−1)2

=
(T + 4)(T + 3)

2

4p2e−1

p2e + p2e−2 − 2p2e−1

= (T + 4)(T + 3)
2p

p2 − 2p + 1

≤ (T + 4)(T + 3)
2p

p2 − 2p
= (T + 4)(T + 3)

2

p− 2

≤ (T + 4)(T + 3)
2

p′ − 2
.

If the complementary event Ē occurs, then Aσ cannot obtain any informa-
tion about the bit b except pure guessing. Thus, the success probability of
Aσ for correctly outputting b is

Prob[Aσ(..) = b] = Prob[E] +
1

2
Prob[Ē]

= Prob[E] +
1−Prob[E]

2

=
1

2
+

Prob[E]

2

≤ 1

2
+

(T + 4)(T + 3)

p′ − 2
.

Remark 2.14. In the classical formulation of decision problems the adversary
gets, depending on the challenge b, either the correct element or a random
element as input, i.e., in the case of DIE the adversary gets gx together with
gx−1

if b = 0 and gc (with c ∈R Z∗
|G|) if b = 1. The formulation used in

Lemma 2.8 considers a slightly different variant of the decisional problem
type: We consider here an adversary which receives, in random order, both,
the correct and a random element and the adversary has to decide on the
order of the elements, i.e., the adversary gets gx and (gx−1

, gc) for b = 0 and
(gc, gx−1

) for b = 1.
This formulation makes the proofs easier to understand. However, note

that both variants are equivalent. ◦

Next, we consider the Decisional Strong Diffie-Hellman (DSDH) Assump-
tion from (Pfitzmann and Sadeghi 1999) in generic model and show in the
following lemma that its minimal generic complexity is associated to the
smallest prime factor of the order of the underlying group G. Theorem 2.9
immediately follows from Lemma 2.12 and Remark 2.14.
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Theorem 2.9
true =⇒ ∗-DSDHσ(c:∗; g:h; f:nsprim) 2

Lemma 2.12 Let G be a cyclic group and g a corresponding generator, let
p′ be the smallest prime factor of |G|. Let Aσ be any generic algorithm for
groups G with maximum run time T . Then the following always holds:

(|Prob[Aσ(C, (G, g), wb , wb̄) = b ::

b R← {0, 1}; C R← U ;
PI ← SPI SDH((G, g)); PIR ← SPIPIP (PI SI );
wb ← (PI publ ,PI sol );
wb̄ ← (PI publ ,PIR

sol )

]−1/2 | · 2) ≤ 3(T+6)(T+5)
p′−1

2

Proof. Assume, we are given the encodings σ(1), σ(x), σ(x−1), σ(y) and
{σ(xy), σ(c)} where x ∈ Z∗

|G| and y ∈ Z|G|. After T computation steps
the algorithm Aσ can compute at most T + 6 distinct linear combinations
Pi(1, x, x−1, y, xy, c) of the elements 1, x, x−1, y, xy and c, i.e., it obtains

σ(Pi(1, x, x−1, y, xy, c)) = σ(ai1 + ai2x + ai3x
−1 + ai4y + ai5xy + ai6c),

where aij are constant coefficients. Furthermore, it is not a-priori
known to Aσ which one of the values in {ai5, ai6} is the coeffi-
cient for xy and which one corresponds to c. Aσ may be able
to distinguish σ(xy) and σ(c) by finding relations (collisions) be-
tween distinct linear combinations (Pi, Pj) with i 6= j. This means
it obtains either σ(Pi(1, x, x−1, y, xy, c)) = σ(Pj(1, x, x−1, y, xy, c))
or σ(Pi(1, x, x−1, y, c, xy)) = σ(Pj(1, x, x−1, x, y, c, xy)), implying
either Pi(1, x, x−1, y, xy, c) ≡ Pj(1, x, x−1, x, y, xy, c) mod |G| or
Pi(1, x, x−1, y, c, xy) ≡ Pj(1, x, x−1, x, y, c, xy) mod |G|. Let E denote
this event. We compute an upper bound for the probability that E occurs:
There are

(T+6
2

)
= (T+6)(T+5)

2 distinct pairs of polynomials (Pi, Pj). For
each such a pair (i, j) we can bound the number of possible solutions
to Pi ≡ Pj mod pe for any prime power pe that exactly divides |G|, i.e.,
pe+1 6 | |G|. Note that uniformly distributed random values mod |G| are also
randomly and uniformly distributed modpe. More precisely, we consider
the solutions to the following polynomials

Fi,j(x, y, c) := x[Pi(1, x, x−1, y, xy, c) − Pj(1, x, x−1, y, xy, c)] ≡ 0 mod pe

or

Gi,j(x, y, c) := x[Pi(1, x, x−1, y, c, xy) − Pj(1, x, x−1, y, c, xy)] ≡ 0 mod pe.
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Here the polynomials F or G are obtained by multiplying both sides of
the congruence Pi ≡ Pj mod pe with x and then reordering the resulting
congruence.

Hence, we bound the probability that a random triple (x, y, c) ∈R Z∗
pe ×

Zpe×Zpe is a zero of the polynomials F or G mod pe (Note that the domain
of the secret exponent x is Z∗

|G|.)

To do this, we first bound the number of possible solutions (x, y, c) to
F or G mod pe where (x, y, c) are randomly selected from Z3

pe . The total
degree of each of the polynomials F and G is at most 3. It follows from
Lemma 2.10 that the probability of a random (x, y, c) ∈ Z3

pe to be a zero of
F or G mod pe is at most 2(3/p) = 6/p. There are p3e tuples (x, y, c) in Z3

pe .
Hence, there are at most p3e6/p = 6p3e−1 zeros for F or G mod pe. Further,
there are ϕ(pe)p2e = (pe − pe−1)p2e tuples (x, y, c) in Z∗

pe × Zpe × Zpe .
Hence, the probability that such a tuple is a zero of F or G mod pe is

upper bounded by 6p3e−1/(pe − pe−1)p2e. It follows

Prob[E] ≤ (T + 6)(T + 5)

2

6p3e−1

(pe − pe−1)p2e

= (T + 6)(T + 5)
3p3e−1

(p− 1)p3e−1

≤ (T + 6)(T + 5)
3

p− 1

≤ (T + 6)(T + 5)
3

p′ − 1

If the complementary event Ē occurs, then Aσ cannot obtain any informa-
tion about the bit b except pure guessing. Thus, the success probability of
Aσ for correctly outputting b is

Prob[Aσ(..) = b] = Prob[E] +
1

2
Prob[Ē]

= Prob[E] +
1−Prob[E]

2

=
1

2
+

Prob[E]

2

≤ 1

2
+

3(T + 6)(T + 5)

2(p′ − 1)
.

2.6.2 DSE versus DDH

2.6.2.1 High Granular

Wolf (1999) shows the following two results on the relation between DSE
and DDH: DSE can easily be reduced to DDH, however, as Theorem 2.11
shows, the converse doesn’t hold.
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Theorem 2.10 (Wolf 1999)

ε-DSE(c:∗; g:h; f:o)
α′=α; t′=t+O(log |G|)
==============⇒ ε-DDH(c:∗; g:h; f:o) 2

Proof. Given a DDH oracle ODDH which breaks ε-DDH(c:∗; g:h; f:∗), one can
construct an algorithm AODDH for breaking ε-DSE(c:∗; g:h; f:o) as follows:
AODDH randomizes its input tuple ((G, g), (gx), (gz)) by choosing r ∈R Z|G|

and constructing the tuple

I = ((G, g), (gX , gY ), (gZ ))

where gX :=gx, gY :=gx+r and gZ :=gz(gx)r. The tuple I has the correct input
distribution for ODDH because (i) gY := gx+r is a random group element
independent of gX , and (ii) the last element gZ is gXY if and only if gz = gx2

,
and it is a random group element otherwise.

Success probability : There is a single call to the DDH oracle with correctly
distributed inputs. Thus, the resulting success probability is αDSE = αDDH ,
and since αDSE is invariant, it follows that αDDH is also invariant.

Efficiency : There is a single oracle call, and by applying the square and
multiply method one requires O(log |G|) group operations for performing
the exponentiations.

Remark 2.15. The reduction in Theorem 2.10 also holds for other variants of
the assumption with respect to the success probabilities perfect, weak and
strong.

Remark 2.16. In the proof of Theorem 2.10 we selected random elements
from Z|G| exploiting that the group order is known. While the group or-
der might not always be publicly known, there is always a publicly known
upper bound B(|G|) on the group order as mentioned in Section 2.2 where
Parameter 3 is discussed. If we now consider the two probability ensembles

X ∗
k := {gx∗

:: G← SG(1k) ∧ g ← Sg(G) ∧ x∗ R← Z2kB(|G|)}

and
Xk := {gx :: G← SG(1k) ∧ g ← Sg(G) ∧ x R← Z|G|},

we prove that they are statistically indistinguishable. First, observe that we
compute in the exponents implicitly modulo |G|. Therefore, it is sufficient
to consider the ensembles

Y ∗
k := {x∗ (mod |G|) :: G← SG(1k) ∧ x∗ R← Z2kB(|G|)}

and
Yk := {x :: G← SG(1k) ∧ x R← Z|G|}.
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Investigating their statistical difference , we can derive following inequalities:

∆(Y ∗,Y )(k) :=
∑

y∈Z|G|

|Prob[Y ∗
k = y]−Prob[Yk = y]|

=
∑

y∈Z|G|

|Prob[Y ∗
k = y]− 1

|G| |

≤
∑

y∈Z|G|

(maxy∈Z|G|
(Prob[Y ∗

k = y])−miny∈Z|G|
(Prob[Y ∗

k = y]))

= |G| (maxy∈ZG
(Prob[Y ∗

k = y])−miny∈ZG
(Prob[Y ∗

k = y]))

= |G| (d2
kB(|G|)/|G|e
2kB(|G|) − b2

kB(|G|)/|G|c
2kB(|G|) )

=
|G|

2kB(|G|)
≤ 1

2k

Clearly, from this it follows that Y and Y ∗ (and indirectly X and X ∗)
are statistically indistinguishable. Given that the behavior of the oracle
machine cannot significantly differ on input distributions which are statisti-
cally indistinguishable from the correct ones — otherwise we would have a
computational and therefore also statistical distinguisher — it is sufficient
to sample random exponents from Z2kB(|G|) to make the reduction work also

for arbitrary group families.39

◦

Remark 2.17. Following Remark 2.3, the result of Theorem 2.10 easily ex-
tends to the medium-granular variant. ◦

Next theorem states that a DSE oracle, even when perfect, is of no help in
breaking DDH assumptions.

Theorem 2.11 (Wolf 1999)
true =⇒ 1-DDHσ(c:∗; g:h; f:nsprim;O1-DSE(c:∗; g:h; f:nsprim)) 2

39A similar argument (but without proof) is given by Boneh (1998) for random self-
reducing of DDH with unknown order. He proposes to sample from ZB(|G|)2 . However, as

in virtually all practical cases B(|G|) is considerably larger than 2k this results in a much
more expensive reduction. Let us consider following (common) example: The computation
is done in subgroups of Z∗

p with prime order q and an obvious upper bound on the group
order is p. For concreteness, let us use the group parameters suggested by Lenstra and
Verheul (2001) for security parameter k = 80, i.e., p and q having approximately 1460
and 142 bits, respectively. While our method requires exponentiation with exponents of
1540 bits, Boneh’s method would require exponentiation with exponents of 2920 bits, i.e.,
a huge difference!
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Remark 2.18. More precisely, Wolf shows, the probability that any Aσ,ODSE

can distinguish correct DDH inputs from incorrect ones is at most (T+5)(T+4)
2p′

where p′ is the smallest prime factor of |G| and T is an upper bound on the
algorithm’s runtime.

Remark 2.19. Theorem 2.11 holds also for other variants of the DDH as-
sumption with respect to success probabilities weak, invariant and strong.
◦

2.6.3 DIE versus DDH

2.6.3.1 High Granular

In the following, we prove that similar relations also hold between DDH
and DIE. We first prove a reduction from DIE to DDH, and then show in
Theorem 2.14 that the converse does not hold in generic model. This means
a DIE oracle, even when perfect, is of no help in breaking DDH assumption.

Theorem 2.12

{(1−1/poly(k)),ε,1/poly(k)}-DIE(c:∗; g:h; f:nsprim)
α′≥ 2ϕ(|G|)−1

|G|
α; t′=t+O(log |G|)

====================⇒
{(1−1/poly(k)),ε,1/poly(k)}-DDH(c:∗; g:h; f:nsprim)

2

Proof. We prove the following statement: Given a DDH oracle ODDH which
breaks {(1−1/poly(k)),ε,1/poly(k)}-DDH(c:∗; g:h; f:nsprim) with success
probability αDDH(k), there exists an algorithm AODDH which breaks the as-
sumption {(1−1/poly(k)),ε,1/poly(k)}-DIE(c:∗; g:h; f:nsprim) with success

probability αDIE(k) ≥ 2ϕ(|G|)−1
|G| αDDH(k), using a single call to OCDH and

O(log |G|) group operations.
Suppose, we are given a DIE input tuple ((G, g), (gx), (gz)) with z = x−1

or z = c where c ∈R Z∗
|G|. We transform the DIE input tuple to a DDH

input tuple ((G, g), (gX , gY ), (gZ)) as follows: Set

gX := gx+a1 , gY := ga2z+a3 , gZ := ga∗
4x+a∗

5z+a∗
6 .

where a1, a2, a3 ∈R Z|G|, a∗4 = a3, a∗5 = a2a1 and a∗6 = a2 + a1a3. Here the
superscript“*” indicates that the corresponding values are constructed.

If z = x−1, we get a correct DDH input tuple ((G, g), (gX , gY ), (gZ))
because (i) X,Y are randomly and uniformly distributed over Z|G| due to
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the randomization with a1, a2, a3 ∈R Z|G|, and (ii) the following holds

XY = a2xz + a3x + a2a1z + a1a3

= a2xx−1 + a3x + a2a1z + a1a3

= a3x + a2a1x
−1 + a2 + a1a3

= a∗4 + a∗5x
−1 + a∗6

= Z.

The case z = c is more involved. Here, we apply the result of Lemma 2.13
which we prove below: For group orders with no small prime factors, the
(constructed) tuples (X,Y,Z) are statistically indistinguishable from tuples
(X ′, Y ′, Z ′) chosen randomly from Z3

|G|, and therefore, also indistinguishable
for the DDH oracle. Thus, also in this case we get a correct DDH input tuple.

Success probability: There is single call toODDH and, therefore, the resulting
success probability is

αDIE(k) ≥ (
2ϕ(|G|)
|G| − 1)αDDH(k).

The factor ( 2ϕ(|G|)
|G| − 1) comes from the fact that the input tuples to ODDH

are legal only if the tuples (X,Y,Z) are randomly and uniformly distributed
over Z|G| (see the proof of Lemma 2.13 for details).

In the following, we set γ(k) := 2ϕ(|G|)
|G| − 1. Note that |G| is a function

of the security parameter k (see also Lemma 2.5). The type of resulting
success probability αDIE(k) depends on the type of αDDH(k). The proofs
are similar to those of Lemma 2.6. Nevertheless, for completeness, they are
given below.

Perfect oracle (αDDH(k) 6<∞ 1): The resulting success probability cannot
be perfect because there is a non-zero error probability when querying the
DDH oracle.

Weak oracle (αDDH(k) 6<∞ 1/poly(k)): The resulting success probability is
(asymptotically) weak: Since |G| contains no small prime factors, it follows

from Lemma 2.5 that 1− γ(k) = 2(1 − ϕ(|G|)
|G| ) <∞ 1/poly(k). Thus, we can

write γ(k) > 1 − 1/poly(k), meaning that γ(k) is non-negligible. Further,
we have αDDH(k) 6<∞ 1/poly(k). It follows γ(k)αDDH(k) 6<∞ 1/poly(k)
(see also Section 2.1.2) Finally, since αDIE(k) ≥ γ(k)αDDH(k), it follows
αDIE(k) 6<∞ 1/poly(k).

Invariant oracle (αDDH 6<∞ ε1): The resulting success probability is
(asymptotically) invariant: As shown in the weak case, we can write
γ(k) >∞ 1 − 1/poly(k). More precisely, for any ε′ > 0 there exists a k0
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such that for all k > k0 we have γ(k) >∞ 1 − ε′. From αDDH(k) 6<∞ ε1,
it follows that for any k′

0 there exists a k1 > k′
0 such that αDDH(k1) ≥ ε1.

Thus, for any k′
0 > k0 there exists a k1 > k′

0 such that αDIE(k1) ≥ ε2 where
ε2 := (1− ε′)ε1. It follows αDIE(k) 6<∞ ε2.

Strong oracle (1 − αDDH(k) 6≥∞ 1/poly(k)): The resulting success proba-
bility is (asymptotically) strong: As shown in the weak case, we can write
γ(k) >∞ 1 − 1/poly(k). Further, we have 1 − αDDH(k) 6≥∞ 1/poly(k). It
follows from Lemma 2.7 that 1−γ(k)αDDH (k) 6≥∞ 1/poly(k). Finally, since
αDIE(k) ≥ γ(k)αDDH(k), it follows 1− αDIE(k) 6≥∞ 1/poly(k).

Lemma 2.13 Let SG be a group sampler of groups whose orders contain
no small prime factors. Further, let Vk and V ′

k be probability ensembles
defined as

Vk := {(X,Y,Z) :: G← SG(1k) ∧
(x, z) ∈R (Z∗

|G|)
2 ∧ (a1, a2, a3) ∈R Z3

|G| ∧
a∗4 = a3 ∧ a∗5 = a2a1 ∧ a∗6 = a2 + a1a3 ∧
X := x + a1 ∧ Y := a2z + a3; ∧ Z := a∗4x + a∗5z + a∗6},

V ′
k := {(X ′, Y ′, Z ′) :: G← SG(1k) ∧ (X ′, Y ′, Z ′) ∈R Z3

|G|}.

Then Vk and V ′
k are statistically indistinguishable. 2

Proof. According to the definition of statistical indistinguishability (see
Section 2.1.4) we have to prove that the statistical difference ∆(V ,V ′)(k) is
negligible in security parameter k (here, for group orders |G| with no small
prime factors)

Clearly, Prob[V ′
k = v] = 1/|G|3 holds for all v ∈ Z3

|G| by definition.

Next, we partition Z3
|G| in two disjoint sets D and its complement D̄ =

Z3
|G|\D such that Prob[Vk = v] ≥ 1/|G|3 for all v ∈ D and Prob[Vk = v] <

1/|G|3 for all v ∈ D̄. Then we can write

∆(V ,V ′)(k) :=
∑

v∈Z3
|G|

|Prob[Vk = v]−Prob[V ′
k = v]|

=
∑

v∈Z3
|G|

|Prob[Vk = v]− 1/|G|3|

=
∑

v∈D

(Prob[Vk = v]− 1/|G|3) +

∑

v∈D̄

(1/|G|3 −Prob[Vk = v]).
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It follows

∆(V ,V ′)(k) ≤
∑

v∈D

(
Prob[Vk = v]− 1/|G|3

)
+

∑

v∈D̄

(
1/|G|3 −minv∈Z3

|G|
(Prob[Vk = v])

)

=
∑

v∈D

Prob[Vk = v]− |D|/|G|3 +

|D̄|
(
1/|G|3 −minv∈Z3

|G|
(Prob[Vk = v])

)
.

We exploit the relations
∑

v∈D Prob[Vk = v] = 1 −∑

v∈D̄ Prob[Vk = v]
and |D| = |G|3 − |D̄|, and substitute them in the above inequality:

∆(V ,V ′)(k) ≤ 1−
∑

v∈D̄

Prob[Vk = v]− |G|
3 − |D̄|
|G|3 +

|D̄|
(
1/|G|3 −minv∈Z3

|G|
(Prob[Vk = v])

)

≤ 1−
∑

v∈D̄

(
minv∈Z3

|G|
(Prob[Vk = v])

)
− 1 + |D̄|/|G|3 +

|D̄|
(
1/|G|3 −minv∈Z3

|G|
(Prob[Vk = v])

)

= −|D̄|
(
minv∈Z3

|G|
(Prob[Vk = v])

)
+ |D̄|/|G|3 +

|D̄|
(
1/|G|3 −minv∈Z3

|G|
(Prob[Vk = v])

)

= 2|D̄|/|G|3 − 2|D̄|
(
minv∈Z3

|G|
(Prob[Vk = v])

)

= 2|D̄|
(
1/|G|3 −minv∈Z3

|G|
(Prob[Vk = v])

)

≤ 2|G|3
(
1/|G|3 −minv∈Z3

|G|
(Prob[Vk = v])

)

where for the last step we used the fact |D̄| ≤ |G|3. Next, we determine
a lower bound for minv∈Z3

|G|
(Prob[Vk = v]). For this, we first consider the

probability Prob[Vk = v] together with the event Ek := E(Vk ) : (1− xz) ∈
Z∗
|G|. It follows

Prob[Vk = v] = Prob[Vk = v ∧ Ek ] + Prob[Vk = v ∧ Ēk ]

where Ēk is the complement of Ek . Thus, we can write

minv∈Z3
|G|

(Prob[Vk = v]) ≥ minv∈Z3
|G|

(Prob[Vk = v ∧ Ek ])

+minv∈Z3
|G|

(Prob[Vk = v ∧ Ēk ]).

Since minv∈Z3
|G|

(Prob[Vk = v ∧ Ēk ]) ≥ 0, it follows

minv∈Z3
|G|

(Prob[Vk = v]) ≥ minv∈Z3
|G|

(Prob[Vk = v ∧ Ek ]).
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Further, we have

Prob[Vk = v ∧ Ek ] = Prob[Vk = v|Ek ]Prob[Ek ]

≥ 1

|G|3
ϕ(|G|) − (|G| − ϕ(|G|))

|G|

≥ 1

|G|3
(2ϕ(|G|)
|G| − 1

)
.

To see this, we consider the probability terms separately:

(i) For all v it holds Prob[Vk = v|Ek ] = 1/|G|3. This is because, if E(Vk )
(i.e., 1 − xz ∈ Z∗

|G|) holds then the tuples (X,Y,Z) are uniformly

distributed over Z3
|G|. One can see this as follows: For any (x, z) ∈R

Z∗
|G| × Z∗

|G| with z 6= x−1 and for any (X,Y,Z) ∈R Z3
|G|, there exist

exactly one tuple (a1, a2, a3) ∈ Z3
|G| such that following equations hold

X := x + a1, Y := a2z + a3, Z := a∗4x + a∗5z + a∗6

where a∗4 = a3, a∗5 = a2a1, a∗6 = a2 + a1a3. We compute a1, a3 from
the first equations and set them in the third and obtain:

Z = XY + a2 − a2xz, a2(1− xz) = Z −XY.

The last equation has a solution for a2 = (Z − XY )(1 − xz)−1 if
gcd(1−xz, |G|) = 1, i.e., 1−xz ∈ Z∗

|G|.
40 Having a2 computed, we can

obtain the other values by computing a1 = X − x and a3 = Y − a2z.

(ii) Prob[Ek ] ≥ 2ϕ(|G|)
|G| − 1: As x, z are elements from Z∗

|G|, there are

at most ϕ(|G|) possible values for 1 − xz which may or may not be
relatively prime to |G|. In the worst case, at most |G| − ϕ(|G|) of
them are not relatively prime to |G|. Thus, in the worst case, the
number of possible values for 1 − xz relatively prime to |G| is still
ϕ(|G|) − (|G| − ϕ(|G|)) = 2ϕ(|G|) − |G|. Therefore, we can write

Prob[Ek ] ≥ 2ϕ(|G|)−|G|
|G| = 2ϕ(|G|)

|G| − 1.

From the above explanation follows

minv∈Z3
|G|

(Prob[Vk = v ∧ Ek ]) =
1

|G|3
(2ϕ(|G|)
|G| − 1

)
.

40The other solutions are all congruence modulo |G|. Note that if d = gcd((1−xz), Z −
XY ) the equation has exactly d solutions for a given (x, z). In this case, we have collisions,
i.e., there exist d different (a1, a2, a3) tuples and that (X, Y, Z) are in general not uniformly
distributed over Z3

|G|.
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Now, we return to the statistical difference of the distributions. Substi-
tuting the above results, we obtain

∆(V ,V ′)(k) ≤ 2|G|3
(
1/|G|3 −minv∈Z3

|G|
(Prob[Vk = v])

)

≤ 2|G|3
(
1/|G|3 − 1

|G|3 (
2ϕ(|G|)
|G| − 1)

)

≤ 2|G|3
|G|3

(
2− 2ϕ(|G|)

|G|
)

≤ 4
(
1− ϕ(|G|)

|G|
)

For |G| with no small prime factors, it follows from Lemma 2.5 that

1 − ϕ(|G|)
|G| <∞ 1/poly(k) and consequently ∆(V ,V ′)(k) <∞ 1/poly(k). This

completes the proof.

Remark 2.20. The above reduction does not hold for perfect success proba-
bility because of the non-zero error probability introduced to the computa-
tion. However, for groups of prime order the reduction also holds for perfect
success probability as the only special case x = 0 can be explicitly handled,
i.e., one can easily test whether g0 = 1 is the input.

Remark 2.21. The reduction in Theorem 2.12 is proven for group orders with
no small prime factors. However, it also holds for all other group orders,
provided the group order is known. Knowing the group order, one can factor
out the small prime factors by well-known factoring algorithms, and then
easily solve the decisional problems DIE and DDH (see also Remark 2.10).
Thus, we have the following theorem.

Theorem 2.13

{(1−1/poly(k)),ε,1/poly(k)}-DIE(c:∗; g:h; f:∗,o)
=⇒

{(1−1/poly(k)),ε,1/poly(k)}-DDH(c:∗; g:h; f:∗,o)
2

◦

The following theorem proves (in generic model) that a DIE oracle, even
when perfect, is of no help in breaking DDH assumptions.

Theorem 2.14
true =⇒ ∗-DDHσ(c:∗; g:h; f:nsprim;O1-DIE(c:∗; g:h; f:nsprim)) 2

Proof. Theorem 2.14 immediately follows from Lemma 2.14 and Re-
mark 2.14.
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Lemma 2.14 Let G be a cyclic group and g a corresponding generator, let
p′ be the smallest prime factor of |G|. Let ODIE be a given oracle which
solves DIE tuples in G and let Aσ,ODIE be any generic algorithm for groups
G with maximum run time T and oracle access to ODIE. Then the following
always holds:

(|Prob[Aσ,ODIE(C, (G, g), wb , wb̄) = b ::

b R← {0, 1}; C R← U ;
PI ← SPI DH((G, g)); PIR ← SPIPIP (PI P);
wb ← (PI publ ,PI sol );
wb̄ ← (PI publ ,PIR

sol )

]−1/2 | · 2) ≤ 2(T+5)(T+4)
p′

2

Proof. Assume, we are given the encodings σ(1), σ(x), σ(y) and
{σ(xy), σ(c)}. After T1 computation steps, Aσ,ODIE can compute at most
T1 + 5 distinct linear combinations Pi(x, y, xy, c) of 1, x, y, xy and c, i.e., it
obtains

σ(Pi(1, x, y, xy, c)) = σ(ai1 + ai2x + ai3y + ai4xy + ai5c)

where aij are constant coefficients. Furthermore, it is not known to Aσ,ODIE

which one of the values {ai4, ai5} is the coefficient of xy and which one
corresponds to c. Further, assume that Aσ,ODIE makes T2 calls to ODIE.
Aσ,ODIE may be able to distinguish σ(xy) and σ(c) by obtaining infor-

mation from either of the following events:

Ea: Aσ,ODIE finds relations (collision) between two distinct linear com-
bination (Pi, Pj) with i 6= j. This means, it obtains either
σ(Pi(1, x, y, xy, c)) = σ(Pj(1, x, y, xy, c)) or σ(Pi(1, x, y, c, xy)) =
σ(Pj(1, x, y, c, xy)).

Eb: Aσ,ODIE gets at least one positive answer from ODIE , i.e.,
it obtains either σ(Pi(1, x, y, xy, c)) = σ((Pj(1, x, y, xy, c))−1) or
σ(Pi(1, x, y, c, xy)) = σ((Pj(1, x, y, c, xy))−1).

We compute an upper bound for the probability that either of the events
Ea and Eb occurs.

Case Ea: In this case we have Pi(1, x, y, xy, c) ≡ Pj(1, x, y, xy, c) mod |G| or
Pi(1, x, y, c, xy) ≡ Pj(1, x, y, c, xy) mod |G|. There are

(
T1+5

2

)
= (T1+5)(T1+4)

2
distinct pairs of polynomials (Pi, Pj). For each such a pair (i, j) we bound
the number of solutions to Pi ≡ Pj mod pe for any prime power pe that
exactly divides |G|, i.e., pe+1 6 | |G|. Note that uniformly distributed random
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values mod|G| are also randomly and uniformly distributed mod pe. More
precisely, we consider the solutions to the following polynomials

Fi,j(x, y, c) := Pi(1, x, y, xy, c) − Pj(x, y, xy, c) ≡ 0 mod pe

or
Gi,j(x, y, c) := Pi(1, x, y, c, xy) − Pj(x, y, c, xy) ≡ 0 mod pe.

Each of the polynomials F and G has the total degree 2. It follows from
Lemma 2.10 that the probability for a random (x, y, c) ∈ Z3

pe to be a zero of
F mod pe or G mod pe is at most 2(2/p) = 4/p. Thus, we have

Prob[Ea] ≤
(T1 + 5)(T1 + 4)

2

4

p

≤ 2(T1 + 5)(T1 + 4)

p′
.

Case Eb: In this case we have Pi ≡ Pj
−1 mod |G|. However, it is not

possible to derive this relation between the polynomials Pi and Pj but only
between their evaluations at the points (x, y, c), i.e., when Pi(1, x, y, c, xy) ≡
Pj(x, y, c, xy)−1 mod |G| (with Pj(x, y, c, xy) 6≡ 0 mod |G|).
Similar to our approach for Ea, for each such a pair (i, j), we can bound
the number of solutions to Pi(x, y, xy, c) − Pj(x, y, xy, c)−1 ≡ 0 mod pe or
Pi(x, y, c, xy) − Pj(x, y, c, xy)−1 ≡ 0 mod pe for any prime power pe that
exactly divides |G|. More precisely, we consider the solutions to the following
polynomials

Hi,j(x, y, c) := Pi(1, x, y, xy, c)Pj (x, y, xy, c) − 1 ≡ 0 mod pe

or
Ii,j(x, y, c) := Pi(1, x, y, c, xy)Pj(x, y, c, xy) − 1 ≡ 0 mod pe.

Here, the polynomial H(x, y, c) is obtained by multiplying both sides
of the equation Pi(1, x, y, xy, c) − Pj(1, x, y, xy, c)−1 ≡ 0 mod pe with
Pj(1, x, y, xy, c). Similarly, we obtain I(x, y, c).

Hence, we bound the probability that a random triple (x, y, c) ∈ Z3
pe is a zero

of the polynomials I or H:41 The total degree of each of the polynomials
H and I is at most 4. It follows from Lemma 2.10 that the probability

41Note that DIE oracle is guaranteed to answer correctly only to the legal inputs, i.e.,
when the secret exponents are elements from Z∗

|G|. Thus, the answer of DIE oracle is
correct if Pi(x, y, xy, c) and Pj(x, y, xy, c) are elements of Z∗

|G|. As the DIE oracle can be
evil on illegal inputs, the adversary can obtain fewer information, if any, than in the case
where the inputs are legal. Hence, to be on the safe side, we give the generic adversary
the advantage that all values Pi(x, y, xy, c) and Pj(x, y, xy, c) are legal inputs to the DIE
oracle.
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of a randomly chosen (x, y, c) ∈R Z3
pe to be a zero of H or I is at most

2(4/p) = 8/p. It follows

Prob[Eb] ≤ T2
8

p
≤ T2

8

p′
.

In total we have

Prob[E] ≤ Prob[Ea] + Prob[Eb]

≤ 2(T1 + 5)(T1 + 4)

p′
+

8T2

p′

≤ 2(T + 5)(T + 4)

p′

where T1 + T2 ≤ T . If the complementary event Ē occurs, then Aσ,ODIE

cannot obtain any information about the bit b except by pure guessing.
Thus, the success probability of Aσ,ODIE for correctly outputting b is

Prob[Aσ,ODIE(..) = b] = Prob[E] +
1

2
Prob[Ē]

= Prob[E] +
1−Prob[E]

2

=
1

2
+

Prob[E]

2

≤ 1

2
+

(T + 5)(T + 4)

p′
.

2.6.4 DSE versus DIE

2.6.4.1 High Granular

In the next theorem, we prove that an oracle breaking 1-DSE(c:∗; g:h; f:∗) is
of no help in breaking ∗-DIEσ(c:∗; g:h; f:∗).

Theorem 2.15
true =⇒ ∗-DIEσ(c:∗; g:h; f:nsprim;O1-DSE(c:∗; g:h; f:nsprim)) 2

Proof. Similar to the proofs of Theorem 2.8 and 2.14, we define a Lemma
which associates the minimal generic complexity of solving DIE directly to
the smallest prime factor of the order of the underlying group G. Theo-
rem 2.15 immediately follows from Lemma 2.15 and Remark 2.14.
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Lemma 2.15 Let G be a cyclic group and g a corresponding generator, let
p′ be the smallest prime factor of |G|. Let ODSE be a given oracle solving
DSE tuples in G and let Aσ,ODSE be any generic algorithm for groups G
with maximum run time T and oracle access to ODSE. Then the following
always holds:

(|Prob[Aσ,ODSE(C, (G, g), wb , wb̄) = b ::

b R← {0, 1}; C R← U ;
PI ← SPI IE((G, g)); PIR ← SPIPIP (PIP);
wb ← (PI publ ,PI sol );
wb̄ ← (PI publ ,PIR

sol )

]−1/2 | · 2) ≤ 2(T+4)(T+3)
p′−2

2

Proof. Assume, we are given the encodings σ(1), σ(x) and {σ(x−1), σ(c)}
where x ∈ Z∗

|G|. After T1 computation steps the algorithm Aσ,ODSE can
compute at most T1 + 4 distinct linear combinations Pi of the elements
1, x, x−1, and c, i.e., it obtains

σ(Pi(1, x, x−1, c)) = σ(ai1 + ai2x + ai3x
−1 + ai4c),

where aij are constant coefficients. Furthermore, it is not a-priori known
to Aσ,ODSE which of the values in {ai3, ai4} is the coefficient for x−1 and
which one corresponds to c. Further, assume that Aσ,ODSE makes T2 calls
to ODSE.
Aσ,ODSE may be able to distinguish σ(x−1) and σ(c) by obtaining infor-

mation from either of the following events:

Ea: Aσ,ODSE finds a relation (collision) between two distinct linear equa-
tions (Pi, Pj) with i 6= j. This means it obtains σ(Pi(1, x, x−1, c)) =
σ(Pj(1, x, x−1, c)) or σ(Pi(1, x, c, x−1)) = σ(Pj(1, x, c, x−1)).

Eb: Aσ,ODSE gets at least one positive answer from ODSE with i 6=
j, i.e., it obtains σ(Pi(1, x, x−1, c)) = σ((Pj(1, x, x−1, c))2) or
σ(Pi(1, x, c, x−1)) = σ((Pj(1, x, c, x−1))2).

We compute an upper bound for the probability that either of these events
occurs.

Case Ea: In this case we have Pi(1, x, x−1, c) ≡ Pj(1, x, x−1, c) mod |G| or

Pi(1, x, c, x−1) ≡ Pj(1, x, c, x−1) mod |G|. There are
(
T1+4

2

)
= (T1+4)(T1+3)

2
distinct polynomial pairs (Pi, Pj). For each such a pair (i, j), we can bound
the number of possible solutions to Pi ≡ Pj mod pe for any prime power
pe that exactly divides |G|, i.e., pe+1 6 | |G|. Note that uniformly distributed
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random values mod|G| are also randomly and uniformly distributed mod
pe. More precisely, we consider the solutions to the following polynomials

Fi,j(x, c) := x[Pi(1, x, x−1, c) − Pj(1, x, x−1, c)] ≡ 0 mod pe

or
Gi,j(x, c) := x[Pi(1, x, c, x−1)− Pj(1, x, c, x−1)] ≡ 0 mod pe.

Here, F and G are obtained by multiplying both sides of the congruence
Pi ≡ Pj mod pe with x and then reordering the resulting congruence.

Hence, we bound the probability that a random tuple (x, c) ∈ Z∗
pe × Z∗

pe is
a zero of the polynomials F or G mod pe (Note that Z∗

|G| is the domain of

the secret exponents of DIE inputs.)

To do this, we first bound the number of solutions to F or G mod pe where
(x, c) are randomly selected from Z2

pe : The total degree of each of the poly-
nomials F and G is two. It follows from Lemma 2.10 that the probability
for a random tuple (x, c) ∈R Z2

|G| to be a zero of F or G mod pe is at

most 2(2/p) = 4/p. There are p2e tuples (x, c) in Z2
pe . Thus, there are at

most p2e4/p = 4p2e−1 zeros for either F or G mod pe. Further, there are
(
ϕ(pe)

)2
= (pe − pe−1)2 tuples (x, c) in Z∗

pe × Z∗
pe .

Hence, the probability that such a tuple is a zero of F or G mod pe is upper
bounded by 4p2e−1/(pe − pe−1)2. It follows

Prob[Ea] ≤
(T1 + 4)(T1 + 3)

2

4p2e−1

(pe − pe−1)2

=
(T1 + 4)(T1 + 3)

2

4p2e−1

p2e + p2e−2 − 2p2e−1

= (T1 + 4)(T1 + 3)
2p

p2 − 2p + 1

≤ (T1 + 4)(T1 + 3)
2

p− 2

≤ (T1 + 4)(T1 + 3)
2

p′ − 2
.

Case Eb: In this case we have Pi ≡ Pj
2 mod |G|. However, it is not pos-

sible to derive this relation between the polynomials Pi and Pj but only
between their evaluations at the points (x, c), i.e., when Pi(1, x, x−1, c) ≡
Pj(1, x, x−1, c)

2
mod |G|. Similar to the case Ea, for each pair (i, j),

i 6= j, we can bound the number of possible solutions to Pi(1, x, x−1, c) ≡
(Pj(1, x, x−1, c))2 mod pe or Pi(1, x, c, x−1) ≡ (Pj(1, x, c, x−1))2 mod pe for
any prime power pe that exactly divides |G|. More precisely, we consider
the solutions to the following polynomials

Hi,j(x, c) := x2[Pi(1, x, x−1, c)− (Pj(1, x, x−1, c))2] ≡ 0 mod pe
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or
Ii,j(x, c) := x2[Pi(1, x, c, x−1)− (Pj(1, x, c, x−1))2] ≡ 0 mod pe.

Here, we obtain the polynomial H(x, c) by multiplying both sides of the con-
gruence Pi(1, x, x−1, c) ≡ Pj(1, x, x−1, c) mod pe with x2 and then reordering
the resulting congruence. Similarly, we obtain I(x, c).

Hence, we bound the probability that a random tuple (x, c) ∈R Z∗
pe × Z∗

pe

is a zero of the polynomials H or I mod pe (as for Ea): The total degree of
each of the polynomials H and I is at most 4. It follows from Lemma 2.10
that the probability for a random tuple (x, c) ∈R Z2

|G| to be a zero of H or

I mod pe is at most 2(4/p) = 8/p. Thus, there are at most p2e8/p = 8p2e−1

zeros for either H or I mod pe. Further, there are
(
ϕ(pe)

)2
= (pe − pe−1)2

tuples (x, c) in Z∗
pe × Z∗

pe .

Hence, the probability that (x, c) ∈ Z∗
pe × Z∗

pe is a zero of H or I mod pe is
upper bounded by 8p2e−1/(pe − pe−1)2. It follows

Prob[Eb] ≤
8T2p

2e−1

(pe − pe−1)2
=

8T2p
2e−1

p2e + p2e−2 − 2p2e−1

=
8T2p

p2 − 2p + 1

≤ 8T2p

p2 − 2p
=

8T2

p− 2

≤ 8T2

p′ − 2
.

In total we have

Prob[E] ≤ Prob[Ea] + Prob[Eb]

=
2(T1 + 4)(T1 + 3)

p′ − 2
+

8T2

p′ − 2

≤ 2(T + 4)(T + 3)

p′ − 2

with T1 + T2 ≤ T . If the complementary event Ē occurs, then Aσ,ODSE

cannot obtain any information about the bit b except by pure guessing.
Thus, the success probability of Aσ,ODSE for correctly outputting b is

Prob[Aσ,ODSE(..) = b] = Prob[E] +
1

2
Prob[Ē]

= Prob[E] +
1−Prob[E]

2

=
1

2
+

Prob[E]

2

≤ 1

2
+

(T + 4)(T + 3)

p′ − 2
.
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2.6.4.2 Medium Granular

In sharp contrast to the above mentioned high-granular case, we prove in the
following theorem that these assumptions are equivalent for their medium-
granular version (other parameters remain unchanged).

Theorem 2.16

{(1−1/poly(k)),ε,1/poly(k)}-DSE(c:∗; g:m; f:nsprim)

α′≥
(

ϕ(|G|)
|G|

)2
α; t′=t

=============⇒
{(1−1/poly(k)),ε,1/poly(k)}-DIE(c:∗; g:m; f:nsprim)

∗-DSE(c:∗; g:m; f:nsprim)

α′≥α−
(
1−

(
ϕ(|G|)
|G|

)2)
; t′=t

⇐==================
∗-DIE(c:∗; g:m; f:nsprim)

2

Proof. We prove the following statements:
(a) Given a DIE oracle ODIE which breaks
{(1−1/poly(k)),ε,1/poly(k)}-DIE(c:∗; g:m; f:nsprim) with success
probability αDIE(k), there exists an algorithm AODIE which breaks
{(1−1/poly(k)),ε,1/poly(k)}-DSE(c:∗; g:m; f:nsprim) with success

probability αDSE(k) ≥
(ϕ(|G|)

|G|

)2
αDIE(k), using a single oracle call.

(b) Given an oracle ODSE which breaks ∗-DSE(c:∗; g:m; f:nsprim) with
success probability αDSE(k), there exists an algorithm AODSE which
breaks ∗-DIE(c:∗; g:m; f:nsprim) with success probability αDIE(k) ≥
αDSE(k)−

(
1−

(ϕ(|G|)
|G|

)2)
, using a single oracle call.

Case (a): Assume, we are given a DSE input tuple ((G, g), (gx), (gz)) where
z is either x2 or a random element c ∈R Z|G|. Set h := gx, and pass
((G, h), (ht), (htz)) to ODIE . Here, we used the relations g = ht and gz = htz

where we implicitly assumed t = x−1. This holds only if x ∈ Z∗
|G| which

occurs with probability ϕ(|G|)
|G| (Note that DIE oracle is not guaranteed to

answer correctly on illegal inputs, i.e., inputs with secret exponents from
Z|G| \ Z∗

|G|.)

If z = x2 then the tuple ((G, h), (ht), (hxt)) is with probability ϕ(|G|)
|G| a legal

DIE input tuple, since we have x = t−1, z = t−2, i.e., the input tuple has
the form ((G, h), (ht), (ht−1

)).

If z 6= x2 then the tuple ((G, h), (ht), (htz)) is a legal input tuple for DIE

oracle with probability
(ϕ(|G|)

|G|

)2
. This holds because (i) h is a generator with

probability ϕ(|G|)
|G| (and thus ht is a legal public part of the DIE input tuple),
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and (ii) hzt is a legal random part of a DIE input tuple only if z ∈R Z∗
|G|

which is true with probability ϕ(|G|)
|G| . Since these events are independent,

the probability for both to occur is
(ϕ(|G|)

|G|

)2
.

Success probability: We have αDSE(k) ≥ αDIE(k)
(ϕ(|G|)

|G|

)
for the correct

case (i.e., z = x2) and αDSE(k) ≥ αDIE(k)
(ϕ(|G|)

|G|

)2
for the random case

(i.e., z 6= x2). Hence, for the resulting success probability the following
holds

αDSE(k) ≥
(ϕ(|G|)
|G|

)2
αDIE(k).

In the following we set γ(k) :=
(ϕ(|G|)

|G|

)2
(Note that |G| is a function of

the security parameter k, see also Lemma 2.5). Depending on the success
probability of DIE oracle we have the following cases:

Perfect oracle (αDIE(k) 6<∞ 1): The resulting success probability cannot be
perfect because there is a non-zero error probability when querying the DIE
oracle.

Weak oracle (αDIE(k) 6<∞ 1/poly(k)): The resulting success probability is

also weak: This holds since ϕ(|G|)
|G| and consequently γ(k) is always non-

negligible, and its multiplication with a not negligible function results in
a not negligible function. Thus, we can write γ(k)αDIE(k) 6<∞ 1/poly(k).
Since αDSE(k) ≥ γ(k)αDIE(k), it follows αDSE(k) 6<∞ 1/poly(k).

Invariant oracle (αDIE 6<∞ ε1): The resulting success probability is (asymp-
totically) invariant: Since |G| contains no small prime factors, it follows

from Lemma 2.5 that 1− ϕ(|G|)
|G| <∞ 1/poly(k). More precisely, for any ε′ > 0

there exists a k0 such that for all k > k0,
ϕ(|G|)
|G| > 1−ε′. It follows that for all

k > k0, γ(k) > (1− ε′)2 = 1− ε′′ where ε′′ := 2ε′− ε′2. Since αDIE(k) 6<∞ ε1,
for each k′

0 there exists a k1 > k′
0 such that αDIE(k1) ≥ ε1. Hence, for each

k′
0 > k0 there exists k1 > k′

0 such that αDSE(k1) ≥ ε2 where ε2 := (1− ε′′)ε1.
This means αDSE(k) 6<∞ ε2.

Strong oracle (1 − αDIE(k) 6≥∞ 1/poly(k)): The resulting success probabil-
ity is (asymptotically) strong: Since |G| contains no small prime factors, it

follows from Lemma 2.5 that 1 − ϕ(|G|)
|G| <∞ 1/poly(k). Then we can write

ϕ(|G|)
|G| >∞ 1 − 1/poly(k) and γ(k) >∞ (1 − 1/poly(k))2 = 1 − 1/poly(k).

Hence, we have 1 − γ(k) <∞ 1/poly(k). From Lemma 2.7 follows 1 −
γ(k)αDIE(k) 6≥∞ 1/poly(k). Finally, since 1− αDSE(k) ≤ 1− γ(k)αDIE(k)
we have 1− αDSE(k) 6≥∞ 1/poly(k).

Case (b): Assume, we are given a DIE input tuple ((G, g), (gx), (gz)) where
x, z ∈ Z∗

|G|, and z is either x−1 or a random element c ∈R Z∗
|G|. Set h := gz
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and pass ((G, h), (ht), (htx)) to ODSE where ht = g and htx = gx for some
t ∈ Z∗

|G|.

If z = x−1 then t = x and the tuple ((G, h), (ht), (hxt)) has the form
((G, h), (ht), (ht2 )) which is a correct DSE input tuple. This is because h is a
generator, and ht is a group element with t ∈R Z∗

|G|. Thus, this instance can
be solved by the given DSE oracle. However, the probability for a correct
answer is not necessarily αDSE(k) since the inputs to the DSE oracle are
limited to those with secret exponents from Z∗

|G| whereas its success prob-

ability is defined over Z|G|. Let α′
DSE(k) and α′′

DSE(k) denote the oracles’
success probabilities under the condition that the random secret exponents
x are chosen from Z∗

|G| and from Z|G| \ Z∗
|G| respectively. It follows

αDSE(k) = α′′
DSE(k)Prob[x ∈R Z|G| \ Z∗

|G|] + α′
DSE(k)Prob[x ∈R Z∗

|G|]

= α′′
DSE(k)

(
1− ϕ(|G|)

|G|
)

+ α′
DSE(k)

ϕ(|G|)
|G| .

By reordering we obtain

α′
DSE(k) =

αDSE(k)−
(
1− ϕ(|G|)

|G|

)
α′′

DSE(k)

ϕ(|G|)
|G|

≥ αDSE(k)−
(
1− ϕ(|G|)

|G|
)
α′′

DSE(k)

≥ αDSE(k)−
(
1− ϕ(|G|)

|G|
)

where in the last inequality we set α′′
DSE(k) = 1 to lower bound α′

DSE(k).
Thus, the oracle answers correctly on the restricted inputs with probability
at least α′

DSE(k) ≥ αDSE(k) − (1− ϕ(|G|)
|G| ).

If z 6= x−1 then t 6= x and the tuple ((G, h), (ht), (hxt)) is a correct (random)
DSE input tuple. This is because (i) h is a generator, and (ii) ht and hxt

are group elements (with x, t ∈R Z∗
|G|) representing legal public and random

parts of the DSE input tuple. However, the inputs to the DSE oracle are
now limited to those with secret exponents (x, t) from Z∗

|G| × Z∗
|G|. Thus,

similar to the previous (correct) case, we can determine the probability that
the oracle answers correctly on these inputs. This probability is α′

DSE(k) ≥
αDSE(k)−

(
1−

(ϕ(|G|)
|G|

)2)
.

Success probability: We have α′
DSE(k) ≥ αDSE(k) −

(
1 − ϕ(|G|)

|G|

)
for the

correct case (i.e., z = x−1) and α′
DSE(k) ≥ αDSE(k) −

(
1 −

(ϕ(|G|)
|G|

)2)
for

the random case (i.e., z 6= x−1). Hence, for the resulting success probability
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the following holds

αDIE(k) ≥ αDSE(k)−
(
1−

(ϕ(|G|)
|G|

)2)
.

In the following we set γ(k) :=
(ϕ(|G|)

|G|

)2
(Note that |G| is a function of

the security parameter k, see also Lemma 2.5). Depending on the success
probability of DSE oracle we have the following cases:

Perfect oracle (αDSE(k) 6<∞ 1): The resulting success probability is also
perfect because DIE instances represent legal inputs to the DSE oracle, and
they all are solved by the perfect oracle.

Weak oracle (αDSE(k) 6<∞ 1/poly(k)): The resulting success probability is
(asymptotically) weak: As shown in the case (a), for |G| with no small prime
factors we have 1−γ(k) <∞ 1/poly(k). The subtraction of a negligible func-
tion from a not negligible function results in a not negligible function, i.e.,
αDSE(k)− (1− γ(k)) 6<∞ 1/poly(k). This implies αDIE(k) 6<∞ 1/poly(k).

Invariant oracle (αDSE 6<∞ ε1): The resulting success probability is (asymp-
totically) invariant: As shown in the case (a), for |G| with no small prime
factors we have 1−γ(k) <∞ 1/poly(k). More precisely, for any ε′ there exists
a k0 such that for all k > k0, 1 − γ(k) < ε′ holds. Since αDSE(k) 6<∞ ε1,
for any k′

0 there exists a k1 > k′
0 such that αDSE(k1) ≥ ε1. Thus, for any

k′
0 > k0 there exists a k1 > k′

0 such that αDSE(k1)− (1− γ(k1)) ≥ ε2 where
ε2 := ε1− ε′. Hence, we can write αDSE(k)− (1−γ(k)) 6<∞ ε2. Finally, since
αDIE ≥ αDSE(k) − (1− γ(k)), it follows that αDIE 6<∞ ε2.

Strong oracle (1−αDSE(k) 6≥∞ 1/poly(k)): The resulting success probability
is (asymptotically) strong: From αDIE(k) ≥ αDSE(k) − (1 − γ(k)) follows
1− αDIE(k) ≤ 1− αDSE(k) + (1− γ(k)). As shown in the case (a), for |G|
with no small prime factors we have 1 − γ(k) <∞ 1/poly(k). Further, we
have 1−αDSE(k) 6≥∞ 1/poly(k). Thus, the right side of the above inequality
is a not non-negligible function as it is the sum of a not non-negligible and
a negligible functions. Hence, we can write 1 − αDSE(k) + (1 − γ(k)) 6≥∞

1/poly(k), implying 1− αDIE(k) 6≥∞ 1/poly(k).

Remark 2.22. The reductions in Theorem 2.16 are proven for group orders
with no small prime factors. However, they also hold for all other group
orders provided the group order is known (see also Remark 2.21) Thus, the
following holds.

Theorem 2.17

{(1−1/poly(k)),ε,1/poly(k)}-DSE(c:∗; g:m; f:∗,o)
=⇒
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{(1−1/poly(k)),ε,1/poly(k)}-DIE(c:∗; g:m; f:∗,o)
∗-DSE(c:∗; g:m; f:∗,o)

⇐=
∗-DIE(c:∗; g:m; f:∗,o)

2

Remark 2.23. The reduction (DIE to DSE) in Theorem 2.16 (2.17 respec-
tively) does not hold for perfect success probability due to the introduced
error probability. However, for groups of prime order the reduction also
holds for perfect oracles as the only special case x = 0 can be explicitly
handled, i.e., one can easily test whether g0 = 1 is the input. ◦

2.7 Summary and Conclusion

In this chapter, we identify the parameters relevant to cryptographic as-
sumptions. Based on this, we present a framework and notation for defining
assumptions related to Discrete Logarithms. Using this framework these
assumptions can be precisely and systematically classified. Wider adoption
of such a terminology would ease the study and comparison of results in the
literature, e.g., the danger of ambiguity and mistakes in lengthily stated tex-
tual assumptions and theorems would be minimized. Furthermore, clearly
stating and considering these parameters opens an avenue to generalize re-
sults regarding the relation of different assumptions and to get a better
understanding of them. A parameter in defining assumptions previously ig-
nored in the literature is granularity. We show (as summarized in Figure 2.3)
that varying this parameter leads to surprising results: We prove that some
DL-related assumptions are equivalent in one case (medium granular) and
provably not equivalent, at least not in a generic sense, in another case (high
granular). Furthermore, we show that some reductions for medium gran-
ularity are much more efficient than their high-granular version leading to
considerably improved concrete security, in particular as medium granular-
ity results in weaker assumptions than high-granular ones. However, note
that medium- or low-granular assumptions apply in cryptographic settings
only when the choice of system parameters is guaranteed to be truly random.
Interesting open questions remain to be answered: While for both CDL and
CDH it can be shown that their high- and medium-granular assumptions
are equivalent, this is not yet known for DDH (also briefly mentioned as an
open problem by Shoup (1999)). Only few relations can be shown for low-
granular assumptions as no random self-reducibility is yet known. However,
achieving such “full” random self-reducibility seems very difficult in general
(if not impossible) in number-theoretic settings (Boneh 2000) contrary to,
e.g., lattice settings used by Ajtai and Dwork (1997). Finally, high granular-
ity is almost intrinsic in the generic model and it is not clear how to extend
the generic model to medium or low granularity. Our surprising results also
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Figure 2.3 Summary of our results
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throw some shadow of doubt onto the use of the generic model as a tool to
show impossibility results. It remains to be further explored whether these
results are due to the limitations of the generic model or are really intrinsic
differences between assumptions with medium and high granularity.
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Chapter 3

Conventions and Basic
Building Blocks

This chapter presents the conventions and the cryptographic primitives that
serve as foundation for the fingerprinting schemes handled in this thesis.
In particular, we motivate and explain in more details those cryptographic
primitives and aspects which play a major role in later considerations.

3.1 General Notation

Set and Groups: The set of natural numbers is N and N0 := N ∪ {0}.
P and Pk denote the set of primes and the set of primes of bit-length
k. Recall that for a positive integer n, Zn denotes the set of integers
modulo n, which is the set of distinct equivalence classes under the relation
of congruence modulo n in Z. The multiplicative group of Zn is denoted
with Z∗

n. For the integers a and b, a|b denotes a divides b.
For a set A, we have An := A×A · · · ×A (n times). An alphabet Σ is

a finite set of symbols sym . Σl denotes the set of strings/words consisting
of l symbols where each symbol is an element of Σ. We denote the length
of a word x with length(x). The subgroup relation is denoted by <, i.e., for
groups H and G we write H < G if H is a real subgroup of G.

Fm denotes a finite field of order m where m is a prime power. The
case m = 2e is of special interest since computations can be implemented
more efficiently. The elements of F2e can be represented as integers from 0
to 2e−1. Thus, they can be encoded by binary words of length e. The addi-
tion and subtraction of elements a, b ∈ F2e are computed by XOR operation
a± b := a⊕ b, i.e., bit wise addition modulo 2. Note that the arithmetic of
elements in such field is identical to polynomial arithmetic modulo a primi-

95
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tive polynomial q(x) of degree e over F2, i.e., one can set F2e := F2e [x]/q(x)
(see Lidl and Niederreiter (1997) or Koblitz (1987)). An element z ∈ G is
represented as a polynomial over F2e . The multiplication and division are
more complex. Multiplication can be performed by first converting the bi-
nary numbers to their polynomial equivalents over the field F2, multiplying
the polynomials and then converting the result back to binary. This can
be implemented efficiently by using logarithmic mappings, i.e., each element
is represented by its discrete logarithm. Multiplication of elements means
adding their logarithms and division means subtracting them.

Vectors: A tuple is usually denoted by a vector. For instance for a set
G, the elements of Gn are represented as vectors ~x := (x1, x2, · · · , xn) with
xi ∈ G. We denote the number of the components/symbols of a vector ~x
by ~length(~x). Given two vectors ~x := (x1, · · · , xn) and ~y := (y1, · · · , yn), we
define the component wise multiplication of these vectors by the operation
•:

~x • ~y := (x1y1, · · · , ynyn)

where xiyi is the ordinary multiplication of the components xi and yi.
Let ⊕ be the XOR operation (bit wise addition modulo 2). Then we

define
~x⊕ ~y := (bin(x1)⊕ bin(y1), · · · , bin(yn)⊕ bin(yn))

where bin() is a binary encoding (see below).

Encodings: Let G be a finite cyclic group. We are mainly concerned with
the following encodings:

Integer encoding: int : G 7→ N0 is an efficiently computable and invertible
integer encoding function.

Binary encoding: bin : N0 7→ {0, 1}l is an efficiently computable and in-
vertible binary encoding function. We denote the binary representation of
x ∈ N0 with

[
xj

]

0≤j≤l−1
:=(xl−1, xl−2, · · · , x1, x0) := bin(x)

where the symbols xi are from {0, 1}. The binary length of an element
x is denoted by length2(x) (for dyadic representation, we obviously have
length2(x) = dlog2(x)e.) For ~x = (x1, x2, · · · , xn) with length2(xi) = l we
define

[
xi,j

]

1≤i≤n,1≤j≤l
:=








x1,1, x1,2, · · · , x1,l

x2,1, x2,2, · · · , x2,l
...

...
. . .

...
xn,1, xn,2, · · · , xn,l








:= ~bin(~x ).
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The dyadic representation of an integer x ∈ N0 is written as x =
∑l−1

j=0 xj2
j

with xj ∈ {0, 1}.

Unary encoding: un : N0 7→ {0, 1}l′ is an efficiently computable (in a security
parameter k) and invertible unary encoding function. We denote the unary
representation of x ∈ N0 as follows:

(xun
0 , · · · , xun

i , · · · , xun
l′ ) := un(x)

where

xun
i := 1i=x :=

{
1 : if i = x
0 : else

for 0 ≤ i ≤ l′.

Remark 3.1. As mentioned above the binary and unary representations of
group elements must be computable. This requires the parameters l and l ′

to be polynomial in the security parameter k: For the binary representation
log(|G|) ≤ l ≤ kd, d > 0 has to hold, and thus, |G| ≤ 2kd

. For the unary
representation |G| ≤ l′ ≤ kd has to hold, and thus, |G| ∈ poly(k). ◦

Protocols and algorithms: The protocols we are concerned with consist
of several parties exchanging messages where each party Pi is modeled by
an interactive probabilistic algorithm. A common model for the computa-
tional complexity of interactive algorithms is based on Interactive Turing
Machines (ITM) (see e.g., Goldwasser, Micali, and Rackoff (1989)). An
ITM is a deterministic multi-tape Turing machine consisting of the follow-
ing components: (i) a local read-and-write worktape, (ii) a local read-only
random tape filled with uniformly distributed random bits before the start of
the computation, and (iii) a read-only receiving tape and a write-only send-
ing tape for communication with other machines (see Goldreich (2001b) for
more details).

We denote a protocol ProtName() between the interactive algorithms
P1, · · · ,Pn as follows:

(P1 : outputP1
; · · · ; Pn : outputPn

)

← ProtName(P1 : inputP1
; · · · ; Pn : inputPn

; ∗ : input).

Each party Pi inputs its input values(s) inputPi
and may obtain output

value(s) outputPi
after the protocol ProtName() has ended. In our notation,

different parties are separated by semicolon. The inputs (outputs) of a party
Pi are separated with comma. Common input, i.e., values input by all
parties, is denoted by the place holder “*”. If a party is not required to input
any value to the protocol, or it does not obtain any output after protocol
completion, then we denote this by a “−” written after the party’s name. If
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a protocol fails, yet, this leaves the system in a safe state, we will (silently)
assume that an abort indicator is passed to the protocols at higher layers,
and if this has no security impact, those protocol(s) also abort.1

Example 3.1 Consider a protocol sum() between three parties P1 and P2

and P3. Let c denote the common input. Further, let inputP1
:=a, inputP2

:=
(b,
√

c) and inputP3
:= d. Assume, only P2 can compute the square root of

c. The output to P1, P2 and P3 should be y1 := b + d +
√

c, y2 := a + d and
y3 := a + b +

√
c, respectively. We denote this scenario with

(P1 : y1; P2 : y2; P3 : y3) ← sum(P1 : a; P2 : b,
√

c; P3 : d; ∗ : c).

Note that the input/output behavior mentioned above applies only to correct
parties, i.e., those who behave according to the protocol.

We use the notation for multi-party protocols also for non-interactive
algorithms executed by a party P, i.e., we write:

(P : outputP)← AlgoName(P : inputP)

and, when it is clear from the context, we omit the name of the executing
party P in the notation and write only

output ← AlgoName(input).

We sometimes present the interaction flow of interactive protocols, as shown
in Figure 3.1, between two (interactive) algorithms P1 and P2. In general,
the interaction (or conversation) between the involved parties consists of
several steps where in each step only one message is sent from or received
by a party. Informally, each party (here algorithm Pi, i = 1, 2), in its current
state, takes the message it receives, may perform some computations and,
outputs a message messPi

to be sent. Finally it enters into its next state.

1One may explicitly consider an indicator signal ind to a party only in case a caller
is required to perform special recovery, e.g., in a protocol where calling on a third party
such as a court is required to resolve the situation.
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Figure 3.1 Example of an interactive 2-party protocol
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...
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3.2 Number Theoretic Preliminaries

3.2.1 Factoring Numbers

The security of many cryptographic schemes relies on the intractability of
factoring integers, i.e., given an integer n ∈ N find pairs (pi, ei) with pi ∈ P
distinct primes and ei ∈ N such that n =

∏m
i=1 pei

i (see also Lenstra (2000),
Lenstra and Verheul (2001))

There exists a number of integer factorization algorithms from which the
most relevant ones are principally similar to those for computing discrete
logarithms. The most efficient known factoring algorithm is the number
field sieve (Lenstra and Lenstra 1993). Its expected running time is of
the order Ln[1/3, c0] where Lx[t, γ] = eγ+o(1))(log x)t(log(log x))1−t

and c0 =
(64/9)1/3 (see also Lenstra 2001).

In many cryptographic applications we are concerned with integers of the
form n = pq where p, q ∈ P and p 6= q.2 The primes p, q should be selected
in such a way that the factorization of n is hard. The main restrictions are
that p and q should have approximately the same bit length f(k) where f is
a polynomial function in the security parameter k, and that they should be
sufficiently large (see Section 2.2 and Menezes, van Oorschot, and Vanstone
1997 and Kaliski 1998 for a discussion on other restrictions)

2The most prominent example for applying integers of this form is the RSA encryp-

tion scheme by (Rivest, Shamir, and Adleman 1978).
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3.2.2 Quadratic Residues

A quadratic residue modulo a given number n ∈ N, n > 1 is defined as
follows:

Definition 3.1 (Quadratic Residues) Let n ∈ N, n > 1 and y ∈ Z∗
n

Then y is called a quadratic residue modulo n, if there exists x ∈ Z∗
n such

that x2 ≡ y mod n. The set of quadratic residues modulo n is denoted as
follows:

QRn := {y ∈ Z∗
n|∃x ∈ Z∗

n : x2 ≡ y mod n}.
3

The values x are called square roots of y and are denoted by x ≡ y1/2 mod
n. An integer a ∈ Z∗

n is called a quadratic non-residue modulo n if a is not
a quadratic residue modulo n. We denote the set of quadratic non-residues
modulo n with QNRn := Z∗

n \ QRn.
Some useful rules for squares and roots are as follows: Let n ∈ N, n > 1

then the following holds:

1. QRn < Z∗
n.

2. x ≡ y1/2 mod n ⇒ −x ≡ y1/2 mod n.

3. y1 ∈ QRn, y2 ∈ QRn ⇒ y1y2 ∈ QRn.

4. y1 ∈ QRn, y2 ∈ QNRn ⇒ y1y2 ∈ QNRn.

5. y1 ∈ QNRn, y2 ∈ QNRn ⇒ y1y2 ∈ QRn.

A useful notation for recognizing quadratic residues from non-residues mod-
ulo a prime number is called Legendre symbol and defined as follows:

Definition 3.2 (Legendre Symbol) Let p ∈ P be an odd prime and y ∈
Z. The Legendre symbol

(y
p

)
is defined as

(
y

p

)

:=







0 : if p|y
1 : if y ∈ QRp

−1 : if y ∈ QNRp

3

The generalization of Legendre symbol to arbitrary odd integers n ∈ N is
called Jacobi symbol defined as follows:

Definition 3.3 (Jacobi Symbol) Let y ∈ Z and n ∈ N, n ≥ 3 be odd
with prime factorization n = pe1

1 pe2
2 · · · pem

m . The Jacobi symbol Jn(y) is
defined as

Jn(y) :=

(
y

p1

)e1
(

y

p2

)e2

· · ·
(

y

pm

)em

.

3
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The Jacobi symbol can assume either the value 1 or −1, but unlike the
Legendre symbol it is not a definite indication of whether a number y is a
quadratic residue modulo n. This means that there exist numbers y ∈ QNRn

with Jn(y) = 1 (but not the opposite). We denote the set of integers (modulo
n) with Jacobi symbol 1 and −1 as follows:

Z(+1)
n := {y ∈ Z∗

n|Jn(y) = 1}
Z(−1)

n := {y ∈ Z∗
n|Jn(y) = −1}.

Further, the following holds:

1. QRn < Z
(+1)
n < Z∗

n.

2. Jn(xy) = Jn(x)Jn(y).

As mentioned before, many cryptographic applications use group families
which are subgroups of Z∗

n where the index n has the form n = pq with
p, q ∈ P (see also Section 3.2.1). Thus, we restrict our consideration to these
group families. In case the factors of n are known, certain computations can
be performed efficiency whereas the same computations are considered to
be infeasible otherwise.

Group Families with Known Group Index Factorization

Let n = pq, p, q ∈ P, p 6= q and p, q odd. Then the following holds:

1. Jn(y) = 1⇔ (Jp(y) = 1 ∧ Jq(y) = 1) ∨ (Jp(y) = −1 ∧ Jq(y) = −1).

2. y ∈ QRn ⇔ Jp(y) = 1 ∧ Jq(y) = 1.

3. Every y ∈ QRn has exactly 4 square roots which can be efficiently
computed.3

Group Families with Special Properties (Blum Integers)

Some computations will be more efficient if the factors of n have the following
property: p ≡ q ≡ 3 mod 4. Integers with this property are also called Blum
integers. For Blum integers the following results hold:

1. −1 ∈ QNRn ∧ Jn(−1) = 1.

2. All non-squares with Jacobi symbol 1 are exactly the negatives of the
squares:

Z(+1)
n \ QRn = −QRn := {−x|x ∈ QRn}.

3Compute xp := y1/2 :≡ y
p+1
4 and xq := y1/2 :≡ y

q+1
4 and apply CRA (Chinese

Reminder Algorithm) to the 4 combinations of ±xp and ±xq (see also Menezes, van
Oorschot, and Vanstone 1997) Thus, there are exact 4 different square roots.
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Thus, we can write |Z(+1)
n \ QRn| = |QRn|. This is important in the

context of commitments schemes based on quadratic residues in later
sections.

Group Families with Unknown Group Index Factorization

One can efficiently compute the Jacobi symbol of an integer or randomly
and uniformly select elements from QRn without knowing the factors of n.4

However, some tasks such as extracting (square) roots and distinguishing
quadratic residues from non-residues modulo an integer n are assumed to
be hard if n is a hard-to-factor integer (see Section 3.2.1). Note that the
computational complexity of some cryptographic primitives (e.g., certain
type of commitment schemes) relies on the difficulty of solving these tasks.
It can be shown that computing square roots is hard under the factoring
assumption, but this is not known for testing quadratic residuosity and, thus,
an assumption is formulated for this case called Quadratic Residuosity
Assumption (QRA). Informally, this assumption says that for n = pq
(product of two large primes) no polynomial algorithm is known which can
decide, with probability significantly better than pure guessing, whether an

element a ∈R Z
(+1)
n is a quadratic residue or not. For a formal definition

of the assumption we generalize our definitions of assumptions from Section
2.3 to capture the following items:

• The underlying algebraic structure Z
(+1)
n is a subgroup of Z∗

n. For
composite n this group is not a cyclic group in general, and thus,
the structure instance contains no group generator. Hence, we allow
structure instances to contain more general groups.

• One can interpret the success probability of an adversary for solving a
computational problem as the sum of the following terms: One term
represents the probability that the adversary finds the solution by
pure guessing, and the other represents its capability of doing more,
i.e., the significance of its success beyond pure guessing. Let |sol | be
the cardinality of the solution domain, and B be the bound on the
tolerated success probabilities for adversary (weak, invariant, etc), as
defined in Section 2.2. The guessing term is then 1

|sol | . We define the

additional term as B
(1−1/|sol |) where we normalized B. Now, we express

the bound for the success probabilities by B ′ := 1
|sol | + B

(1−1/|sol |) .

As an example, consider computational DL-based assumptions with
weak success probability, i.e., B := 1

kd , as defined in Section 2.3. For

4The Jacobi symbol of a ∈ Z∗
n can be computed in O((log n)2) bit operations (Menezes,

van Oorschot, and Vanstone 1997). Choosing quadratic residues is simple since we can
choose a random element a ∈R Z∗

n, and then compute y := a2 mod n. The quadratic
residues y, we obtain in this way, have uniform distribution over QRn since every element
in QRn has exactly 4 roots.
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the upper bound B ′ we can write B ′ = 1
|sol |+

1
kd

(
1

(1−1/|sol |

)
∈ 1/poly(k),

since 1/|sol | ∈ 1/poly(k), so nothing changes with respect to previous
results.

Considering the above issues for the quadratic residuosity assumption it
follows:

• The structure instance contains only a group but no generator. There-
fore, the granularity can only be high or low. For the high-granular

probability space the group family Z
(+1)
n is fixed whereas it is not for

the low granular case since the probability space is defined over the
choice of primes p and q.

• The quadratic residuosity problem family, denoted by index QR, re-
lates a (secret) value w with a (public) value y ∈ G where w is
either a root of y, i.e., w = x :≡ y1/2 or it is the empty string
w = e indicating that no root for y exists. For our purposes, we set

G = Z
(+1)
n , PI QR

SI := (Z
(+1)
n ), PI QR

priv := (w), PI QR
publ := (y) and

PI QR
sol := {0, 1}. The public part is a value y ∈ Z

(+1)
n , and the secret

part is the square root x :≡ y1/2 mod n if y ∈ QRn, and e otherwise.
The solution domain is the set sol := {0, 1} where 0 means quadratic
residue and 1 quadratic non-residue. Thus, we have |sol | = 2.

For our purposes, it suffices to consider the low-granular weak version of

QRA. We also immediately define QRA for group families Z
(+1)
n where the

group index n is a Blum integer.5

Definition 3.4 (Quadratic Residuosity Assumption)

1/poly(k)-CQR(c:u; g:l; f:Z(+1)
n ),

or in terms of probability

∀A ∈ UPTM;
∀d1 > 0; ∃k0; ∀k > k0;

(|Prob[A(C,SI ,PI QR
publ ) ∈ PI QR

sol ::

G ∈ [SG
Z

(+1)
n

(1k)];

SI ← G;
PI QR ← SPI QR(SI );

C R← U
]−1/2 | · 2) < 1/kd1 .

3

5Note that due to Dirichlet’s prime number theorem there are infinitely many integers
with this property.
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Remark 3.2. As elements are sampled from Z
(+1)
n , it always hold that

Jn(a) = 1. From |QRn| = |Z∗
n \ QRn| follows that with probability 1/2 a

randomly selected element is a quadratic residue or not.

Remark 3.3. We consider the low granular version of QRA because in later
protocols the party who generates n is only secure if it generates n correctly.

Remark 3.4. For completeness, one has to define assumptions of the type
above in the generic model. For this, one has to consider the generic model
for such group families first (see also Damg̊ard and Koprowski 2002). How-
ever, this is not our concern in this work, and will be the subject of the
future research. ◦

3.3 Random Oracle

The random oracle methodology introduced by Bellare and Rogaway
(1993) is a model for designing and assessing cryptographic systems (pro-
tocols). Its approach is as follows: First, an ideal computational model
is specified where every party is given access to random functions, called
random oracle. The next step is to design the desired system (protocol)
within this model and then prove its security. Finally, all random oracles are
replaced by efficient cryptographic functions. Thus, one hopes that if the
efficient cryptographic functions do not have security flaws then the protocol
is still secure in the real world (see also Bellare (1998)) The main advantage
of this approach is that it improves on methods and systems which are com-
pletely ad hoc. The main drawback is that there is no real formal connection
between the security proven in the ideal model and the actual security of
the protocol in the real world (after replacing random oracles with “real”
cryptographic functions.) In other words, informal arguments suggest that
there is a close match between the security of the protocol in the ideal and
real world, if the protocol and the replacements of the random oracles are
designed carefully. Many provably secure cryptographic systems are based
on inefficient (and sometimes unrealistic) primitives whereas there are many
efficient systems with very poor or no security analysis. In this context, the
main concern of the random oracle model is to provide the possibility of
having efficient designs and “security”. Although the security-guarantees
achieved in the random oracle model are not at the same level as the stan-
dard provable security approach offers, it is considerably better than ad-hoc
protocol design and security analysis. A typical instantiation of the random
oracle is a cryptographic hash function (see Preneel (1998)). Hash func-
tions such as Secure Hash Algorithm (SHA-1) in Laboratory (1995), MD5 in
Rivest (1992) or RIPEMD-160 in Dobbertin, Bosselaers, and Preneel (1996)
are believed to be “good” enough as replacement for random oracle. The
claim of random oracle model – that the security proofs for protocols in
the ideal model remain valid to a significant degree after converting it into
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the real world – has been defeated by negative results (Canetti, Goldreich,
and Halevi 1998). Informally, they show examples of cryptographic systems
which can be proven secure in the random oracle model, but, all of their in-
stantiations result in insecure cryptographic systems. However, one should
note that these results are created by artificially constructed scenarios which
are not relevant for many real world implementations. These negative results
do not discredit the random oracle scope but rather show its limitations.

3.4 Public-Key Cryptography

3.4.1 Introduction

Cryptosystems can be divided into two classes: symmetric cryptosys-
tems and asymmetric cryptosystems. Informally, the difference between
symmetric and asymmetric systems is as follows: In a symmetric system,
both parties share the same secret information, usually the same secret key.
In an asymmetric system there are different keys, usually a secret key and
a public-key (hence the term “public-key cryptography”) where each key
is used for a different task. The idea of public-key cryptography was first
proposed by Diffie and Hellman in Diffie and Hellman (1976).6 Asymmetric
cryptosystems offer several benefits over symmetric ones. For instance, in
a symmetric cryptosystem, a different key is needed for each possible set of
parties communicating with each other, and additionally, these keys have
to be distributed confidentially. In asymmetric cryptosystems, in contrast,
distribution of keys over authentic channels suffices. Further, asymmetric
cryptosystems allow us to achieve important security goals such as non-
repudiation that is required for accountability. This is crucial when we
require cryptosystems to provide means to provably identify cheating par-
ties, and to make them accountable (for more comparisons between these
classes see Menezes, van Oorschot, and Vanstone (1997)).

3.4.2 Encryption Schemes

In this section we consider asymmetric encryption schemes and their cor-
responding components. Let k denote the security parameter and Mk the
message space (parameterized by the security parameter). Later, we review
briefly concrete encryption schemes which we will use in the fingerprinting
protocols. The components of an asymmetric encryption schemes are as
follows:

• Key generation: The key generation algorithm is described by
the probabilistic algorithm GenKeyEnc() as follows: (sk , pk) ←

6The British government announced that public-key cryptography was originally in-
vented by British cryptographers at Government Communications Headquarters (see
Singh (1999)).
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GenKeyEnc(k) where k is the security parameter, and the strings sk
and pk are the secret key and the public key of the scheme.

• Encryption: Let m ∈Mk be the message to be encrypted called the
plaintext. The encryption function is described by a probabilistic
algorithm Encrypt() as follows: enc ← Encrypt(pk ;m) where pk is the
public key. The output enc is called the ciphertext.

• Decryption: The decryption function is described by the determin-
istic algorithm Decrypt() as follows: x← Decrypt(sk ; enc) where sk is
the secret key of the scheme. The output x is either a plaintext m or
failed . The decryption must fulfill the following correctness condition:
∀k ∈ N,∀(sk , pk) ∈ [GenKeyEnc(k)],∀m ∈Mk then

enc ∈ [Encrypt(pk ;m)]⇒ Decrypt(sk ; enc) = m.

3.4.2.1 Security Requirements

The notion of security for an asymmetric encryption scheme should capture
several properties. In general, we may distinguish between the security of
the scheme against passive adversaries and against active adversaries.
Passive adversaries only observe the communication channel whereas active
adversaries actively attack a target system, e.g., through interaction with the
system or manipulation of communication channels. An encryption scheme
secure against active attacks is also secure against passive attacks. For our
purposes, we require only asymmetric encryption schemes secure against
passive adversaries (semantically secure schemes).

Semantic Security

For an encryption scheme secure against passive attacks, one may desire the
following properties: Firstly, the secret (decryption key) should not be com-
putable from the public (encryption) key. Secondly, messages should not be
recovered by only observing their encryptions. However, these requirements
are still not sufficient because our primary goal is to hide the content such
that the ciphertext and the public parameters reveal even no partial infor-
mation. One of the first attempts to formally define the security against
passive adversaries was polynomial indistinguishability by Goldwasser
and Micali (1984). Loosely speaking, the following game is considered: The
adversary chooses two messages m∗

0,m
∗
1. The encryption oracle (honest user)

chooses one of the messages at random, encrypts it, and gives the result to
the adversary. Next the adversary has to guess which message is contained in
the encryption. The definition requires that no polynomial-time adversary
is able to predict the right message with a probability significantly better
than pure guessing. More formally, we have the following definition:
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Definition 3.5 An asymmetric encryption system, denoted by the tuple
(GenKeyEnc(), Encrypt(), Decrypt(), Mk), is called secure in the sense of
(polynomial) indistinguishability if the following holds:

∀A1,A2 ∈ UPTM;
∀d1 > 0; ∃k0; ∀k > k0;
Prob[A2(stateA1

, encb) = b ::
(sk , pk )← GenKeyEnc(k);
rand R← U ;
(stateA1

,m∗
0,m

∗
1)← A1(k, rand);

b R← {0, 1};
encb ← Encrypt(pk ;m∗

b)

] < 1/2 + 1/kd1 .
3

In the definition above, the adversary consists of the two algorithms A1

and A2 where the “knowledge” of A1 is stored in the state stateA1
, and

can be used by A2. Since the adversary can simply guess b correctly with
probability 1/2, the definition only requires that the adversary’s success
probability should not be significantly better than 1/2.

Note that any asymmetric encryption scheme with deterministic en-
cryption function cannot pass the above definition, because given m∗

0,m
∗
1,

it is easy to find out which message is encrypted to which ciphertext
enc ∈ {Encrypt(pk ,m∗

0),Encrypt(pk ,m∗
1)}.

An alternative definition called semantic security requires that the
adversary should not be able to guess any non-trivial function f(m) of the
message m based on the ciphertext and public information only. Informally,
this means that whatever a passive polynomial adversary is able to compute
given the ciphertext and the public information, it is also able to compute
without this information. Goldwasser and Micali (1984) show that semantic

security is equivalent to the polynomial indistinguishability .

3.4.2.2 ElGamal Encryption Scheme

The ElGamal encryption scheme is a public key encryption scheme pro-
posed by ElGamal (1985). The details of the scheme are as follows:

Key generation: Let G be a finite cyclic group of order q with a group
generator g. An example for a concrete G is the multiplicative subgroup
Z∗

p/q of Z∗
p of order q with p, q ∈R P and q|(p − 1) (see also Section 2.1.7

for generation of these parameters). The public/secret key generated by
GenKeyELG(k) are sk := x ∈R Z|G| and pk := (G, g, h) where h := gx.

Encryption: For a message m ∈ G the ciphertext is

(d1, d2)← EncryptELG(pk ;m)
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where d1 := ga, d2 := pkam and a ∈R Z|G|. Note that the encryption is
probabilistic, as a is chosen randomly.

Decryption: For the ciphertext enc = (d1, d2) the plaintext is:

d1

dsk
1

:= m← DecryptELG(sk ; d1, d2).

It is easy to see that

d2

dsk
1

=
pkam

(ga)x
=

gxam

gxa
= m.

Remark 3.5. Alternatively, the encryption could be computed as (d1 :=
pka, d2 := gam), which can be decrypted in the following way:

d2

dsk−1

1

=
gam

(pk a)x−1 =
gam

gxax−1 = m.

◦

Security

Both forms of the ElGamal scheme are equally secure (Tsiounis and Yung
1998); they are semantically secure under the Diffie-Hellman Decision as-
sumption (see also Section 2.2).

3.4.2.3 Okamoto Uchiyama Encryption Scheme

The Okamoto-Uchiyama (OU) encryption scheme is proposed by
Okamoto and Uchiyama (1998). It is based on efficiently solving discrete log-
arithm in a specific finite subgroup of Z∗

p2 called p-Sylow subgroups where
p ∈R P. The details of the scheme are as follows: Let p be an odd prime
and

Γ = {x ∈ Z∗
p2 : x ≡ 1 mod p}

where Z∗
p2 is a cyclic group of order p(p − 1).7 Γ is the p-Sylow subgroup

of Z∗
p2 . Now, consider the function L(x) = x−1

p . It is well-defined on Γ,

and can be interpreted as a logarithmic function with the property L(ab) =
L(a) + L(b) mod p. Further, the following holds:

Corollary 3.1 (Okamoto and Uchiyama 1998) Let x ∈ Γ such that
L(x) 6≡ 0 mod p, and y ≡ xm mod p2 for m ∈ Zp. Then

m =
L(y)

L(x)
=

y − 1

x− 1
mod p.

2

7The elements of Γ are those from Z∗
p2 with order p. Let g be a generator of Z∗

p2 . One

can write Γ = {1, gp−1, g2(p−1), · · · g(p−1)(p−1)}. It holds for every element a ∈ Γ that
ap ≡ 1 mod p2 and a ≡ 1 mod p.
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We denote this scheme in short with OU-scheme. The components of OU-
scheme are as follows:

Key generation: The public/secret keys generated by GenKeyOU(k) are
sk := (p, q) and pk := (n, g, h, k) with the following properties:

• n = p2q where p, q ∈R P, |p| = |q| = k, gcd(p, q− 1) = 1 and gcd(q, p−
1) = 1,

• g ∈R Z∗
n such that the order of gp := gp−1 mod p2 is p, and

• h = gn mod n.

Encryption: For a message m ∈ Z2k−1 the ciphertext c ←
EncryptOU(pk ;m) is computed as follows:

c := gmhr mod n

where r ∈R Zn.

Decryption: A ciphertext c is decrypted by DecryptOU(sk ; c) as follows:

L(cp)

L(gp)
:= m← DecryptOU(sk ; c)

where cp :=cp−1 mod p2. The decryption follows from the result of Corollary
3.1.

Remark 3.6. A similar encryption scheme based on higher-degree residue is
proposed by Benaloh (1994) (see also Naccache and Stern (1998)). However,
the decryption mechanism of this scheme is very inefficient. ◦

Security

The security properties of the OU-scheme against passive adversary are as
follows (Okamoto and Uchiyama 1998): The security of OU encryption func-
tion is equivalent to factoring numbers of the form n = p2q if the adversary
succeeds in obtaining the whole plaintext.8 This means that if an adversary
algorithm can compute the whole message by using the ciphertext and the
public information, then one can use it to construct an algorithm to factor n.
The scheme is semantically secure under the p-subgroup assumption saying
that hr and ghr′ with r, r′ ∈R Zn are computationally indistinguishable.

8It is not known whether that factoring numbers of this form is as intractable as
factoring numbers of the form n = pq (Okamoto and Uchiyama 1998).
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3.4.3 Digital Signatures

Historically, the main concern of cryptography was designing and analyz-
ing encryption systems to provide confidentiality when communicating over
insecure channels. Today, cryptography is concerned with designing and an-
alyzing a variety of primitives. A primitive fundamental to authentication,
authorization and non-repudiation is the digital signature. Informally, a
digital signature associates a message with an entity. It is a value which
depends on a secret, only known to this entity, and on the message being
signed. The goal of a signature is to unforgeably link the identity of the en-
tity to the signature such that any other entity can verify this link without
knowing the secret values used in the signing. For instance, if a dispute arises
on whether a certain party has signed a document, any honest party can
resolve this dispute. For a good overview on digital signatures see Menezes,
van Oorschot, and Vanstone (1997), and for a comprehensive treatment of
digital signatures see Pfitzmann (1996a).

3.4.3.1 Model

The involved parties are a signer S and a receiver R. Let k denote the
security parameter and Mk the message space (parameterized by the security
parameter). The components of an asymmetric signature scheme are as
follows:

• Key generation: The key generation algorithm is a probabilistic al-
gorithm denoted by (skS , pkS)← GenKeySig(k) where the strings skS

and pkS are called the secret signing key and the public verification
key of the scheme.

• Signing: Let m ∈ Mk be the message to be signed. The signing
function is a probabilistic algorithm denoted by σ ← Sign(sk S ;m)
where skS is the signing key. The output σ is called the signature.

• Verification: The verification function is a deterministic algorithm
denoted by ind ← VerSign(pk S ;m,σ) where pkS is the verification key,
and ind ∈ {true, false} denotes the result of verification. If this result
is true, we say that the signature is valid.

The verification must fulfill the following correctness condition: ∀k ∈
N,∀(skS , pkS) ∈ [GenKeySig(k)],∀m ∈Mk then

σ ∈ [Sign(pkS ;m)]⇒ true ← VerSign(pkS ;m,σ).

3.4.3.2 Security Requirements

The main requirement is unforgeability, i.e., it must be infeasible (impos-
sible) to generate a valid digital signature on a forged message. Informally,
the main types of forgery are:
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• Selective forgery: The adversary succeeds in generating a valid sig-
nature for some messages chosen a priori.

• Existential forgery: The adversary succeeds in forging a signature
for at least one message, not necessarily of his choice (i.e., the message
whose signature is obtained is determined during the attack.)

Informally, the main types of attacks on digital signatures are:

• Known-signature attack: The adversary knows message-signature
pairs where the messages are not chosen by him.

• Chosen-message attack: The adversary obtains valid signatures
on messages which are chosen by him before attempting to forge a
signature.

• Adaptive chosen-message attack: The adversary is allowed to in-
teract with the signer using the signer as an oracle; the adversary may
request signatures for messages which depend on the signer’s public
key and the previously obtained signatures or messages. At the end,
the adversary outputs a new message and a valid signature on it.

The strongest security notion for a digital signature scheme is security
against existential forgery under adaptive chosen-message attack.

There are a variety of proposals for signature schemes offering differ-
ent level of security. Well-known signature schemes are related to RSA
by (Rivest, Shamir, and Adleman 1978) or ElGamal by ElGamal (1985),
Schnorr (1991) and Schnorr (1992). The security of these schemes is based
on heuristic arguments. Some less known schemes with provable security
(and less efficiency) are Goldwasser, Micali, and Rivest (1988), Cramer and
Damg̊ard (1996) and Cramer and Shoup (2000).

In the next section, we briefly review the signature scheme from Schnorr
(1991) which we will use at different places in this thesis.

3.4.3.3 Schnorr Signature Scheme

The Schnorr signature scheme Schnorr (1991) is based on the discrete
logarithm problem and has the following components:

• Key generation: The underlying algebraic structure is a cyclic group
G of order |G| := q in which the computation of discrete logarithms is
assumed to be infeasible.9 For a concrete structure, one can take G
from the group family Z∗

p/q (see Sections 2.1.7 and 2.2). Let g ∈ G
be a group generator. Then we have skS := x ∈R Zq, and pkS := h ≡
gx mod p. We will use the pair (x, h) in the following.

9Note that G must also satisfy other requirements, e.g., one should know efficient
algorithms for the required arithmetic operations in G (see Section 2.1.1).
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• Signing: A signature on a message m ∈ Mk is a pair (c, r) ←
Sign(x;m) where (c, r) ∈ Zq ×Zq can be computed as follows: Choose
w ∈R Zq, and compute a :≡ gw and c := hash(m||a) where hash is a
cryptographic hash function. Finally compute r := w − cx mod q.

• Verification: On receiving (c, r), the receiver’s verification is as fol-
lows: Compute c′ := hash(m||a′) where a′ :≡ grhc, and accept if and
only if c′ = c.

Deriving the Signature from Identification Protocol

Next, we look at this signature from another point of view. Originally,
this signature was derived from Schnorr’s identification protocol. In this
protocol, the owner of the secret value x proves to a verifying party that she
knows a value x such that h = gx without revealing any “useful” information
about x. In other words, this protocol is a (minimum disclosure) proof of
knowledge of discrete logarithm of h (see Section 3.7.1). Fiat and Shamir
(1987) introduced a general approach to transform this type of identification
protocols10 into a signature scheme. The idea is to create a virtual verifier
in the proof protocol by letting the prover (here the signer) compute the
challenge c (see Section 3.7.1) herself as c := hash(m||a) where m is the
message to be signed, and hash is a cryptographic hash function. Now, the
receiver accepts if and only if gr ≡ ah−c for c = hash(m||a).

Security

Pointcheval and Stern (2000) prove in the random oracle model (Section
3.3) that Fiat-Shamir technique provides security against existential forgery
through an adaptive chosen message attack, under the discrete logarithm
assumption.

3.4.4 Blind Signatures

The concept of blind signatures was introduced by Chaum (1983). The
goal is to protect the privacy of users in cryptographic applications such
as anonymous electronic payment systems (see Section 4.7.2). Other than
a normal signature, a blind signature is issued by an interactive protocol
BlindSign() between the signer S and the receiver R. At protocol com-
pletion, R obtains a signature σ′ of S on the message to be signed while
S knows neither the message nor the signature σ ′ on it. For blind signa-
tures there is a further security requirement called blindness. Informally,
it means: Given a set of transcripts of the blind signature protocol runs,
and the set of message-signature pairs generated by these protocol-runs, an

10More specifically, a three-pass honest-verifier zero-knowledge identification protocol
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adversary cannot associate the transcripts to the message-signature pairs
with a probability significantly better than pure guessing.

Next, we review a concrete blind signature scheme from Chaum and
Pedersen (1993). We will apply an extension of this signature, proposed by
Brands (1994), as a building block in our fingerprinting protocols.

3.4.4.1 Chaum-Pederson Blind Signature Scheme

The blind signature scheme proposed by Chaum and Pedersen (1993) is
an extension of Schnorr’s signature scheme we reviewed in Section 3.4.3.3.
Thus, the parameter and key generation remains the same as for Schnorr
with signer’s key pair (x, h). The protocol for this signature is shown in
Figure 3.2. Note that the hash function hash is assumed to behave as a
random oracle (see Section 3.3). We denote the signature protocol with

(R : m′, σ′; S : −)← BlindSignCP(R : −; S : skS ; ∗ : m)

where the message m is the common input, m′ is an unblinded version of m
(a transformation of m), and σ′ := (z′, a′, b′, c′, r′) is the unblinded signature
on m′. The verification is denoted by ind ← VerBlindSignCP(h;m′, σ′) where
ind ∈ {true, false} indicates whether the signature passes the verification.
Here, σ′ is accepted as a signature on m′ if and only if the following relations
hold:

gr′ ≡ a′hc′ mod p, and m′r
′

≡ b′z′
c′
.

.

Figure 3.2 The blind signature of Chaum-Pederson (CP)

R S

z ← mx

w ∈R Zq

a← gw mod p

s ∈R Z∗
q, t, u, v ∈R Zq ←−

z, a, b
−−−−−−−−−− b← mw mod p

m′ ← msgt, z′ ← zsht

a′ ← augv, b′ ← bsum′vatu

c′ ← hash(m′, z′, a′, b′) mod q

c← c′u−1 mod q −
c

−−−−−−−−−−→
gr ?≡ ahc mod p, mr ?≡ bzc mod p ←−

r
−−−−−−−−−− r ← cx + w mod q

r′ ← ru + v mod q
σ′ ← (z′, a′, b′, c′, r′)
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Next, we explain the main ideas behind this protocol: The value z = mx

can be interpreted as a signature since it is computed using the secret key
of the signer. The rest of the message exchanges in the protocol serves as
a proof of this fact to the receiver. The value w is a random variant of
x and b a random variant of z. The verifications are done with respect
to the generator g (as for Schnorr), and with respect to m. Informally,
passing these verifications means that the signer knows a value x such that
h ≡ gx and z ≡ mx. The challenge c in the corresponding proof protocol
is replaced by a hash value hash(m′, z′, a′, b′) based on the approach from
Fiat and Shamir (1987) as mentioned in Section 3.4.3.3. Note that the hash
function is applied to all values obtained in previous steps. The actual blind
signature is the tuple σ := (z, a, b, c, r) that the receiver verifies by checking
whether gr ≡ ahc mod p and mr ≡ bzc mod p hold. This signature is then
unblinded by the receiver to σ′ := (z′, a′, b′, c′, r′).

Security

We briefly and informally consider the main security aspects.

One-more forgery: For some integer l, polynomial in the security param-
eter k, an attacker cannot obtain l+1 valid signatures after q ≤ l executions
of the blind signing protocol with the signer (Pointcheval and Stern 2000).

It is assumed but not proven that CP blind signature is secure against one-
more forgery attack. The basic idea for this assumption is that no matter
how an adversary modify the values in the blind signing protocol, it cannot
compute the hash values c′ except when it chooses these values in the order
specified in the protocol.

Blindness: Any pair (m′, σ′) of message and valid signature the receiver
obtains (view of the receiver) can correspond to any pair (m,σ) which the
signer obtains (view of the signer) in the blind signing protocol (see Chaum
and Pedersen (1993) for a proof sketch).

3.5 Commitment Schemes

A commitment scheme enables one to fix a message such that it cannot
be changed anymore after committing while the committed value is kept
secret from anyone else (Brassard, Chaum, and Crépeau (1988), Damg̊ard
(1998)). To understand the intuition behind a commitment scheme (proto-
col), consider the following example: Suppose, Bill secretly writes a message
on a piece of paper, puts it in a safe which he locks with a key. Bill then
gives the safe to George. Bill cannot change the message anymore because
George has the safe, and thus, Bill is committed to the message. Moreover,
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George does not learn the message unless Bill opens the safe by giving him
the key.11

3.5.1 Model

A commitment scheme for a message space M and commitment space C
involves two parties, a committer C and a receiver R. The main parts
of a commitment scheme are the following two subprotocols: ProtCom() to
commit to a value m ∈ M and ProtOpen() to reveal the committed value,
i.e., to open a commitment. We call the committed value the content of
the commitment.

Parameter Generation: For computing and opening concrete commit-
ments schemes, we usually require specific parameters. On input of the
security parameters par sec , a probabilistic polynomial generating algorithm
GenParCom() returns the required parameters, denoted by par com. These
parameters are the common inputs to the commitment protocol ProtCom().
In Section 3.5.1.1, we will discuss in more details, how and by whom these
parameters can (should) be generated, and distributed.

Commit: The commit protocol is denoted by

(C : stateCm
C ; R : stateCm

R )← ProtCom(C : m; R : −; ∗ : par com).

During this protocol the committer C inputs the message m ∈ M to be
committed. The output to the receiver R is the commitment value Cm to
m and the state stateCm

R for this commitment. The output to C is the state

stateCm
C (Note that in the notation we do not explicitly mention the indicator

ind ∈ {failed , ok} output to each party indicating whether the protocol has
been correctly completed or not.)

For the concrete commitment schemes that we will use later, the com-
mitter applies a prescribed (randomized) algorithm Com() to the message
m and par com. The algorithm is denoted by:

(Cm, keyCm )← Com(m, par com).

The output is the commitment value Cm and the opening key keyCm which
is a part of stateCm

C . Typically we have stateCm
C := (m, keyCm ).

Open: To open a commitment Cm the protocol ProtOpen() is executed
between the (same) committer C and the receiver R. The open protocol is
denoted by

(C : −; R : m′, ind )← ProtOpen(C : stateCm
C ; R : stateCm

R ).

11We assume that there is only one key to this lock, and that the safe is tamper-resistant
such that it cannot be easily broken by George.
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The committer C inputs the state stateCm
C for the commitment Cm and ob-

tains no output. The receiver R also inputs the corresponding state stateCm
R ,

and obtains the output (m′, ind ) where ind ∈ {reject , accept}. More con-
cretely, the output to R is either (m′, ind = accept) with m′ ∈M indicating
that R accepts the message m′ as the content of the commitment Cm, or
the output is (m, ind = reject) for any m meaning that R did not accept.

For the concrete commitment schemes which we will use later, the com-
mitter C sends stateCm

C , and the receiver R uses a deterministic algorithm
VerOpen() denoted as follows:

ind ← VerOpen(stateCm
C , stateCm

R )

where stateCm
R is the commitment state the verifier has stored, and ind ∈

{true , false}. Typically, we have stateCm
R :=(Cm, par com). The open protocol

ProtOpen() outputs accept if and only if VerOpen() outputs true.

3.5.1.1 Parameter Generation Mechanisms

As mentioned in Section 3.5.1, the generation algorithm GenParCom() gen-
erates the parameters par com required for computing and opening (concrete)
commitments. The correct choice of these parameters is crucial for the se-
curity (hiding, binding) of the involved parties. To ensure correctness, we
consider the following approaches:

• Trusted parameter generation: A trusted third party generates par com

(i.e., GenParCom() is trusted)

• Parameter generation without trust: The committer C and the receiver
R run GenParCom() jointly and securely. Thereby, each party has to
take care that its own security requirement is guaranteed, i.e., hiding
property for the committer and binding for the receiver.

Some concrete commitment schemes, we use later, allow the parameter gen-
erating party to open any commitment (computed with the same param-
eters) by using a trapdoor information. We denote this information with
keycom.

In the context of fingerprinting schemes, different commitment schemes
are used as building blocks within more complicated protocols. Depending
on the security requirements, we may apply either of the above approaches
to generate the required parameters. Thus, we can assume that the re-
quired parameters are always correctly generated, no matter which of the
approaches is used.

3.5.2 Security Requirements

The security requirements are the binding (committing) and hiding (se-
crecy) properties. Informally, the first one requires that a dishonest com-
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mitter cannot open a commitment in two different ways, and the second
one requires that the commitment protocol does not reveal any information
about the content of the commitment to the receiver.

To define the hiding property formally, one can use the notion of indistin-
guishability (under chosen message attack) for encryption schemes defined
in Section 3.4.2.1. For the binding property, one considers the success prob-
ability of an adversary algorithm which finds two messages m and m′ with
m 6= m′ such that C := Cm = Cm′ . Each of these properties can be fulfilled
either information-theoretically or computationally. However, it is impossi-
ble for both properties to hold information-theoretically (Brassard, Chaum,
and Crépeau 1988).

Remark 3.7. For the commitment schemes as defined before (Section 3.5.1),
we may define the success probability of an adversary against the hiding
property as follows:

PH :=
Prob[A2(stateA1

, Cm∗
b
) = b ::

par com ← GenParCom∗(k);
rand R← U ;
(m∗

0,m
∗
1, stateA1

)← A1(k, par com, rand);

b R← {0, 1};
(Cm∗

b
, keyCm )← Com(m∗

b , par com);

]

where GenParCom∗() denotes the generating algorithm of the adversary. In
the definition above, the adversary consists of the two algorithms A1 and
A2 where the “knowledge” of A1 is stored in the state stateA1

, and can be
used by A2. If PH ≤ 1/2 for all A1, A2, GenParCom∗(k), and all k, then we
say that the commitment scheme is information-theoretically hiding. If
for all A1,A2,GenParCom∗() ∈ UPTM, PH <∞ 1/poly(k) holds, then we
say that the commitment is computationally hiding.

We may define the success probability of an adversary against the binding
property as follows:

PB :=
Prob[true ← VerOpen(m, keyCm , C, par com) ∧ true ←
VerOpen(m′, keyCm′ , C, par com) ∧m 6= m′ ::

par com ← GenParCom∗(k);
rand R← U
(m,m′, keyCm , keyCm′ , C)← A1(k, par com, rand);

] .

Similar to the hiding property the binding property can be information-
theoretically or computationally. ◦
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3.5.3 Conventions for Commitments

For commitments we use the following notations: Cx := com (x) denotes the
commitment value to a message x ∈M and should not be confused with the
algorithm Com() which outputs the value com (x). For concrete commitment
schemes, we explicitly include all parameters (e.g., par com) in the notation
whenever this is not clear from the context.

The bit-commitment to x ∈ N0 with length2(x) = l is defined as follows:

com (bin(x)) := com (
[

xj

]

0≤j≤l−1
)

:=
(
com (xl−1), com (xl−2), · · · , com (x0)

)
.

For the inverse of bit commitments we write

com (bin(x))−1 := com (
[

xj

]

0≤j≤l−1
)−1

:=
(
com (xl−1)

−1, com (xl−2)
−1, · · · , com (x0)

−1
)

Let x, y ∈ N0 with length2(x) = length2(y) = l. The product and division
of the corresponding bit-commitments are defined as follows:

com (bin(x))com (bin(y))

:= com (
[

xj

]

0≤j≤l−1
)com (

[
yj

]

0≤j≤l−1
)

:=
(
com (xl−1)com (yl−1), com (xl−2)com (yl−2), · · · , com (x0)com (y0)

)

com (bin(x))/com (bin(y))

:= com (
[

xj

]

0≤j≤l−1
)
(
com (

[
yj

]

0≤j≤l−1
)
)−1

:=
(
com (xl−1)com (yl−1)

−1, com (xl−2)com (yl−2)
−1, · · · , com (x0)com (y0)

−1
)

The commitment to a vector ~x := (x1, x2, · · · , xn) ∈ Mn is defined as the
commitment to all its components, i.e.,

com (~x ) :=
(
com (x1), com (x2), · · · , com (xn)

)
.

The bit-commitment to ~x = (x1, x2, · · · xn) with length2(xi) = l is defined
as

com ( ~bin(~x )) :=
[
com (bin(x1)), com (bin(x2)), · · · , com (bin(xn))

]

:=
[
com (xi,j)

]

1≤i≤n,1≤j≤l

:=








com (x1,1) com (x1,2) · · · com (x1,l)
com (x2,1) com (x2,2) · · · com (x2,l)
...

...
. . .

...
com (xn,1) com (xn,2) · · · com (xn,l)








For the inverse of commitments to vectors we write

com ( ~bin(~x ))−1 :=
[
com (bin(x1))

−1, com (bin(x2))
−1, · · · , com (bin(xn))−1

]

:=
[
com (xi,j)

−1
]

1≤i≤n,1≤j≤l
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When it is clear from the context, we omit the bounds of indices i, j, and
write

[
com (xi,j)

]
.

Let ~x = (x1, x2, · · · , xn) and ~y = (y1, y2, · · · , yn) with length2(xi) =
length2(yi) = l. For the product of the bit-commitments we write

com ( ~bin(~x ))com ( ~bin(~y))

:=
[
com (xi,j)

]

1≤i≤n,1≤j≤l
?

[
com (yi,j)

]

1≤i≤n,1≤j≤l

:=
[
com (xi,j)com (yi,j)

]

1≤i≤n,1≤j≤l

:=








com (x1,1)com (y1,1) com (x1,2)com (y1,2) · · · com (x1,l)com (y1,l)
com (x2,1)com (y2,1) com (x2,2)com (y2,2) · · · com (x2,l)com (y2,l)
...

...
. . .

...
com (xn,1)com (yn,1) com (xn,2)com (yn,2) · · · com (xn,l)com (yn,l)








Similarly, we define the division

com ( ~bin(~x ))/com ( ~bin(~y))

:=
[
com (xi,j)

]

1≤i≤n,1≤j≤l
?
( [

com (yi,j)
]

1≤i≤n,1≤j≤l

)−1

:=
[
com (xi,j)com (yi,j)

−1
]

1≤i≤n,1≤j≤l

:=








com (x1,1)com (y1,1)
−1 com (x1,2)com (y1,2)

−1 · · · com (x1,l)com (y1,l)
−1

com (x2,1)com (y2,1)
−1 com (x2,2)com (y2,2)

−1 · · · com (x2,l)com (y2,l)
−1

...
...

. . .
...

com (xn,1)com (yn,1)
−1 com (xn,2)com (yn,2)

−1 · · · com (xn,l)com (yn,l)
−1








3.5.4 Quadratic Residue Commitment

The quadratic residue commitment scheme (QR-commitment) en-
ables the committer C to commit to a single bit. The QR-commitment
scheme is a special case of the probabilistic encryption scheme proposed
in Goldwasser and Micali (1984) (see also Brassard, Chaum, and Crépeau
(1988)).

Parameter generation: The parameter generating algorithm is denoted
by parQR

com ← GenParComQR(k) where k is the security parameter, par QR
com:=n

denotes the required commitment parameter that is a Blum integer. The
message space is Z2 = {0, 1} and the commitment space Z∗

n.

Commit: The QR commitment protocol is denoted by ProtComQR(C :
m; R : −; ∗ : parQR

com). The individual steps of this protocol are as follows:

1. To compute the QR-commitment to a message m ∈ {0, 1}, the com-
mitter C runs the algorithm ComQR(m, par QR

com) specified as follows:
It chooses x ∈R Z∗

n, and computes the commitment to the message
m ∈ {0, 1} as

Cm := comQR(m,x, parQR
com) := (−1)mx2 mod n.
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When it is clear from the context, we omit par QR
com in the notation, and

write only Cm := comQR(m,x).

A QR-commitment to m = 0 represents a quadratic residue and a QR-
commitment to m = 1 represents a quadratic non-residue. Further, we
have stateCm

C := (m,x), keyCm := x and stateCm
R := (Cm, n).

2. The committer C sends Cm to R.

Open: The open protocol for QR-commitment is denoted by
ProtOpenQR(C : stateCm

C ; R : stateCm
R ). The individual protocol steps are

as follows:

1. The committer C sends stateCm
C := (m,x) to the receiver R.

2. The receiver R runs the verification algorithm
VerOpenQR(stateCm

C , stateCm
R ) specified as follows: It checks whether

the following holds:

m ∈ {0, 1}; Cm, x ∈ Z∗
n; Cm = (−1)mx2 mod n.

If all these verifications are satisfied then VerOpenQR() outputs true,
and consequently ProtOpenQR() outputs accept , otherwise reject .

Due to the construction of the QR-commitment scheme, any party who
knows the factorization of n (i.e., p, q) is able to open any QR-commitment
C computed with this modulo n, i.e., decrypt the committed message (see
also Section 3.2.2). We denote this trapdoor information with keyQR

com:=(p, q),
and the corresponding opening algorithm with OpenComQR(keyQR

com;C).

3.5.4.1 Requirements on Parameter Generation

To guarantee the security requirements, the generated parameters must have
the correct form. This can be achieved either by a trusted parameter gen-
eration, or by a verifiable and secure procedure (see also Section 3.5.1.1).

For QR-commitment scheme, as introduced above, trusted parameter
generation simply means that a trusted third party generates par QR

com := n.
However, as we use QR-commitment scheme as subprotocol within other
protocols, in some cases, we need to apply the secure verifiable generation
approach (For instance, when we require that only one of the involved parties
should be able to open the QR-commitments by knowing the factorization
of n.)

One way to do this is to let the committer generate par QR
com. This means,

however, that the committer knows the factorization of n, i.e., the trapdoor
information keyQR

com :=(p, q). As mentioned before, knowing keyQR
com allows the

committer to open any QR-commitment computed with this n. However,
there must be a way for the receiver to verify that the parameter(s) are
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correctly generated.12 To ensure this, we may use either of the following
approaches:

• In the opening phase, the committer C sends stateCm
C := (m,x, keyQR

com)
to the receiver R, and R verifies that n has the correct form, i.e., it is
a Blum integer.

• In the parameter generation phase, the committer also proves (in zero-

knowledge) that −1 ∈ QNRn (see Section 3.6.4 on zero-knowledge
proof systems), e.g., by applying the proof techniques from Goldwasser
and Micali (1984).

Another way to show the correctness of n is as follows: First, apply the
efficient proof protocols of van de Graaf and Peralta (1988) to show
that n has the form prqs where r and s are odd integers, p, q ∈ P, p 6= q
and p ≡ q ≡ 3 mod 4. Then use a protocol from Boyar, Friedl, and
Lund (1991) to show that a given number n is square free, i.e., there is
no prime p with p|n and p2|n. Thus, if both properties are shown for n
then n = pq with p ≡ q ≡ 3 mod 4 hold. Note that the requirement “n
is a Blum integer” is sufficient for the verifier, and it is in committer’s
own interest (hiding property) to construct n as specified.

Remark 3.8. In the context of fingerprinting schemes we will apply the sec-
ond approach since the same parQR

com is used in all subprotocols throughout
the whole protocol, and the receiver should not be able to open the com-
mitment by itself, i.e., it should not know the factorization of n. ◦

3.5.4.2 Properties

Next, we consider the main properties of the QR-commitment scheme.

• Security: The quadratic residuosity commitment scheme
(GenParComQR(),ProtComQR(),ProtOpenQR()), as described above,
is information-theoretically binding, and it is hiding under the
Quadratic Residuosity Assumption (QRA) defined in Definition 3.4
(see also Goldwasser and Micali (1984) and Brassard, Chaum, and
Crépeau (1988)).

• Homomorphic property: The QR-commitment is homomorphic with
respect to XOR (addition mod 2) operation. More concretely,
given the commitments Cm1 := comQR(m1, x1, par

QR
com) and Cm2 :=

12A cheating committer can choose the prime numbers p, q such that it can break the
binding property: Assume p ≡ q ≡ 1 mod 4 then −1 is a square modulo n = pq. Since C
knows the factorization, it can compute square roots u of −1. For a commitment to 0 it
sends comQR(0) :=x2 mod n but it can open it as 1 in opening phase by sending ux mod n
instead of x.
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comQR(m2, x2, par
QR
com) with m1,m2 ∈ Z2 and Cm1 , Cm2 ∈ Z∗

n the fol-
lowing holds:

Cm1Cm2 = comQR(m1, x1, par
QR
com)comQR(m2, x2, par

QR
com)

= comQR(m1 ⊕m2, x1x2, par
QR
com).

Note that if the correctness of n := parQR
com is shown without revealing

its factors (see discussion above) then the product commitment C∗ =
Cm1Cm2 can be opened to m1⊕m2 (i.e., C∗ = (−1)m1⊕m2(x1x2)

2 mod
n) without revealing additional information about the contents of each
of the commitments Cm1 and Cm2 .

• Equality of contents: As a consequence of homomorphic property, we
can test whether two given QR-commitments have the same content
without knowing each individual content: Given the commitments
Cm1 :=comQR(m1, x1, par

QR
com) and Cm2 :=comQR(m2, x2, par

QR
com) com-

pute and open the product C∗ = Cm1Cm2 . Then the following holds:

C∗ = comQR(0, x1x2, par
QR
com)⇐⇒ m1 = m2.

• Inverse of QR-commitment: The inverse of a given QR-commitment to
a value m is again a commitment to the same value m. We formulate
this property in the following lemma.

Lemma 3.1 Let Cm :=comQR(m,x, parQR
com):=(−1)mx2 mod n. Then

the following holds

(Cm)−1 = comQR(m, y, parQR
com) = (−1)my2 mod n

where y ∈ Z∗
n. 2

Proof. Consider the inverse of the given commitment:

C ′
m := C−1

m = (−1)−m(x2)
−1

mod n

= (−1)−m(x−1)2 mod n

= (−1)−m(y)2 mod n

where y := x−1 ∈ Z∗
n. If m = 0 then C ′

m = y2 mod n is quadratic
residue, and represents a QR-commitment to 0. If m = 1 then we
(−1)−1 = −1 mod n, and C ′

m = −y2 mod n is a quadratic non-residue
representing a QR-commitment to 1.

• Blinding: Given a QR-commitment Cm to a message m, one can gen-
erate a random and independent commitment C ′

m to the same message
m by multiplying Cm with a random commitment C0 to m′ = 0. We
formulate this property in the following lemma.
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Lemma 3.2 Let Cm := (−1)mx2 mod n be a given QR-commitment
to the message m ∈ M , and C0 := x′2 mod n a QR-commitment to
zero where x′ ∈R Z∗

n. Then C ′
m :=C0Cm is a random and independent

QR-commitment to m. 2

Proof. Consider the product of the commitments:

C ′
m := C0Cm = x′2(−1)mx2 mod n

= (−1)m(x′x)2 mod n = (−1)my2 mod n

where y :≡ x′x mod n. The value y is randomly and uniformly dis-
tributed over Z∗

n since x ∈ Z∗
n is fixed and x′ is randomly and uni-

formly selected value from Z∗
n. Note that multiplication with a fixed

value x ∈ Z∗
n is a bijection on Z∗

n.

3.5.5 Discrete Logarithm Commitment

The discrete logarithm commitment scheme (DL-commitment) en-
ables the committer C to commit to messages m ∈ M := {0, 1}l of length l
(see e.g., Boyar, Kurtz, and Krentel (1990), Pedersen (1992))

Parameter generation: The parameter generating algorithm is denoted
by parDL

com ← GenParComDL(k, k′) where k, k′ are security parameters,
parDL

com := (p, q, g, h) denotes the required parameters with p, q ∈R P,
length2(q) < l, and q|(p− 1).13 The parameters g, h 6= 1 denote two genera-
tors of the (unique) multiplicative subgroup Z∗

p/q of Z∗
p of order q (see also

Section 2.1.7). The commitment space is Z∗
p.

Commit: The DL commitment protocol is denoted by ProtComDL(C :
m; R : −; ∗ : parDL

com). The individual steps of this protocol are as follows:

1. To compute the QR-commitment to a message in M , the committer C
first represents the message as an integer m in Zq by using an appro-
priate encoding function (see Section 3.1).

2. The committer C runs the algorithm ComDL(m, par DL
com) specified as

follows: It randomly and uniformly selects r ∈R Zq, and computes the
commitment to the message m as

Cm := comDL(m, r, parDL
com) := gmhr mod p.

When it is clear from the context, we omit par QR
com in the notation

and write only comDL(m, r). The states of the committer and the
receiver for the commitment Cm are stateCm

C := (m, r) and stateCm
R :=

(Cm, parDL
com) where keyCm := r

13More concretely, length2(q) = f(k′), length2(p) = g(k) where f, g are polynomials.
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3. The committer C sends the commitment Cm to R.

Open: The open protocol is denoted by ProtOpenDL(C : stateCm
C ; R :

stateCm
R ). The individual protocol steps are as follows:

1. The committer C sends stateCm
C := (m, r) to R.

2. The receiver R runs the verification algorithm
VerOpenDL(stateCm

C , stateCm
R ) specified as follows: It verifies that

the following holds:

m, r ∈ Zq; Cm ∈ Z∗
p; Cm := gmhr mod p.

If all these verifications are satisfied then VerOpenDL() outputs true,
and consequently ProtOpenDL() outputs ind = accept , otherwise reject .

3.5.5.1 Requirements on Parameter Generation

To guarantee the security requirements, the parameters must have the cor-
rect form. This can be achieved either by trusted parameter generation, or
by a verifiable and secure procedure (see also Section 3.5.1.1).

For DL-commitment scheme, as introduced above, trusted parameter
generation simply means that a trusted third party generates par DL

com :=
(p, q, g, h), e.g., at global system setup as global parameters. However, if this
is not desired, we may approach as follows: We let the receiver R generate
parDL

com := (p, q, g, h), and let the committer C verify them in the committing
phase, i.e., C additionally checks whether p, q are primes, g, h ∈ Z∗

p/q and
h 6≡ 1. Note that the committer C should not choose these parameters, since
a cheating committer may choose g and h such that it knows the relative
discrete logarithm between them, being able to break the binding property
of the DL-commitment scheme.

3.5.5.2 Properties

Next, we consider the main properties of the DL-commitment scheme.

• Security: The DL-commitment scheme denoted by the tuple
(GenParComDL(),ProtComDL(),ProtOpenDL()), as described above, is
information-theoretically hiding, and it is binding under the Discrete

Logarithm assumption (Pedersen 1992).

• Homomorphic property: Let r, r1, r2, e ∈ Zq, and let
Cm := comDL(m, r, parDL

com), Cm1 := comDL(m1, r1, par
DL
com),

Cm2 := comDL(m2, r2, par
DL
com) be DL-commitments to the values

m,m1,m2 ∈ Zq. The following relations hold:

Cm2Cm2 = comDL(m1 + m2, r1 + r2, par
DL
com)

(Cm)e = comDL(em, er, parDL
com).
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Using these properties, one can commit to m ∈ Zq using commitments

to its bits as follows: Let m =
∑l−1

j=0 mj2
j with mj ∈ {0, 1} (the dyadic

representation of m), and comDL(mj , rj , par
DL
com) be commitments to

the bits mj where rj ∈R Zq. Then we can write

l−1∏

j=0

(
comDL(mj , rj , par

DL
com)

)2j

= gmhr = comDL(m, r, parDL
com) mod p

with r =
∑l−1

j=0 rj2
j mod q.

3.5.6 Okamoto-Uchiyama Commitment

Any (semantically) secure asymmetric encryption scheme (Section 3.4) can
be a candidate for a commitment scheme. We briefly explain this: In commit
phase the committer C generates a key pair key := (sk , pk )← GenKeyEnc(k)
where k is a security parameter. C encrypts the message m ∈ M , i.e.,
enc ← Encrypt(pk ;m), and sends the commitment Cm = (enc, pk ) to the

receiver R. In the opening phase, C sends (m, state
key

C ) to R where state
key

C

contains the random choices made by GenKeyEnc() to generate key . R
verifies as follows: It regenerates the key pair (sk ′, pk ′) using state

key

C , and
runs the encryption algorithm on m, i.e., enc ′ ← Encrypt(pk ′;m). R accepts
if and only if m ∈M , enc′ = enc and pk ′ = pk .

The commitment scheme we obtain from a (semantically) secure asym-
metric encryption scheme is information-theoretically binding and compu-
tationally hiding.

The encryption scheme to be used as a commitment scheme, is the
Okamoto-Uchiyama (OU) encryption scheme explained in Section 3.4.2.3.

Parameter generation: The required parameters are par OU
com := (n, g, h, k)

as defined in Section 3.4.2.3.

Commit: The OU commitment protocol is denoted by ProtComOU(C :
m; R : −; ∗ : parOU

com). The individual steps of this protocol are as follows:

1. To compute the OU-commitment to a message in M , the committer C
first represents the message as an integer m in Z2k−1 using an appro-
priate encoding function (see Section 3.1).

2. The committer C runs the algorithm ComOU(m, par OU
com) that corre-

sponds to the encryption part of OU encryption scheme. This algo-
rithm selects r ∈R Zn and computes the commitment to m as

Cm := comOU(m, r, parOU
com) = gmhr mod n.

The states of the committer and the receiver are stateCm
C := (m, r) and

stateCm
R := (Cm, parOU

com).
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3. The committer C sends the commitment Cm to R.

Open: The open protocol is denoted by ProtOpenOU(C : stateCm
C ; R :

stateCm
R ). The individual steps of this protocol are as follows:

1. The committer C sends (m, r) to R.

2. The receiver R runs the verification algorithm
VerOpenOU(stateCm

C , stateCm
R ) specified as follows: It verifies that

the following holds:

0 < m < 2k−1, Cm ∈ Zn, r ∈ Zn, Cm = gmhr mod n.

If all these verifications are satisfied then VerOpenOU() outputs true,
and consequently ProtOpenOU() outputs accept , otherwise reject .

3.5.6.1 Requirements on Parameter Generation

As for the previous commitment schemes, we may generate the required
parameters with or without trusted generation.

For OU commitment scheme, we have a similar situation as for the QR
commitment scheme (see the corresponding part in Section 3.5.4): We let
the committer generate parOU

com. This means that the committer knows the
factorization of n, denoted by keyOU

com := (p, q), that allows the committer to
open any OU-commitment computed with n.

To ensure their correctness, we may use either of the following ap-
proaches:

• In the opening phase the committer C discloses the random coins of
the key generating algorithm GenKeyOU(k), and the receiver R verifies
correctness, as mentioned at the beginning of this section.

• The committer C proves in zero-knowledge (see Section 3.6.4) to the re-
ceiver R that the parameters n = p2q and g have the correct form. One
way to do this is to apply the techniques introduced by Camenisch and
Michels (1999b): They present efficient zero-knowledge proofs for the
following tasks: (i) Proving that a committed number is a prime, and
(ii) proving that certain modular relations hold between committed
numbers. More precisely, the latter means that given commitments
com (a), com (b), com (c) and com (d), there are explicit and efficient
(statistically) zero-knowledge protocols for proving that c ≡ a∗b mod d
where the operation ∗ ∈ {+,×, exp} can be the sum, multiplication
and exponentiation in Z.

Hence, the committer can commit to p, p2 and q, and combine these
protocols to prove that p, q are primes with n = p2q and gp(p−1) ≡
1 mod p2.14

14It must also be proven that the content of the commitment hiding p2 is the square of
the content of the commitment hiding p.
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Remark 3.9. In the context of fingerprinting schemes, we will apply the sec-
ond approach since the same parameters par OU

com are used (in subprotocols)
throughout the whole protocol, and the receiver should not be able to open
the commitment, i.e., it should not know the factorization of n. Thus, we
can assume that the output of GenParOU() is always trusted. ◦

3.5.6.2 Properties

Next, we consider the main properties of OU-commitment:

• Security: The OU-commitment scheme denoted by the tuple
(ProtComOU(),GenParOU(),ProtOpenOU()), and described above, is
information-theoretically binding, and it is hiding under the p-
Subgroup Assumption (see also Section 3.4.2.3).

• Homomorphic property: It is similar to that of DL-commitments
(see Section 3.5.5) except that for the content m of a commit-
ment must hold m < p. Let e ∈ Z and the commitments Cx :=
comOU(x, rx, parOU

com) and Cy := comOU(y, ry, par
OU
com) be given where

x + y < p and xe < p hold. Then the following relations hold:

CxCy = comDL(x + y, rx + ry, par
OU
com)

(Cx)e = comDL(ex, erx, parOU
com).

3.6 Interactive Proofs and Zero-Knowledge

In this section, we consider interactive proof systems and their main goals,
namely, proof of language membership and proof of knowledge.
Proof systems are widely used in cryptographic systems. We will consider
the zero-knowledge aspect which is an important security requirement on
the proof systems when deployed in cryptographic systems. There is a large
body of literature written on zero-knowledge proof systems. Some major
contributions are from Goldwasser, Micali, and Rackoff (1985), Goldreich,
Micali, and Wigderson (1991), Bellare and Goldreich (1993) and Goldreich
and Krawczyk (1996). Some useful manuscripts are Pfitzmann (1999) and
Bellare and Goldwasser (2001). A comprehensive theoretical work on this
topic can be found in Goldreich (2001b).

3.6.1 Introduction

Suppose someone, say George, claims to be capable of telling the origin of
different wines from a given (agreed upon) palette of wines! However, he is
not willing to disclose his method of recognizing the wines to us. To verify
George’s claim, we may run the following protocol with him: We choose
randomly and secretly a wine sort from the given palette and challenge
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George by asking him the origin of this wine.15 Now, George takes the
wine, and may disappear for some reasonable (or agreed upon) time. As
soon as he is finished, he gives us his response by telling us the origin of
the chosen wine. We will accept only if the answer is correct, otherwise we
will reject. Now, we may have some doubt on George’s “wine culture” and
may run this protocol for several times or we may randomly select a subset
of (e.g., the half of) the wines in the palette and verify whether he can tell
their origin. In either case, we may accept if and only if all responses to
our challenges are correct, or may follow another strategy for accepting or
rejecting the proof (e.g., we may tolerate certain number of failures.) This
simple informal example represents the soul of many interactive proof
systems used in cryptographic applications. An interactive proof system
is a 2-party protocol between two interactive algorithms, a prover P and a
verifier V, where P proves a statement to V. This statement is represented
by the common input x. Each party might have private inputs called
auxiliary input auxX , X ∈ {P,V}. Further, each party has access to a
source of randomness, i.e., a random tape randX . The computational task
of P is to generate a proof, and that of V is to verify its validity.

The fundamental properties of an interactive proof system are com-
pleteness and soundness.

• Completeness: A correct prover P can prove all correct statements
(assertions) to a correct verifier V. For our purposes, both parties
should be efficient (i.e., their running time is polynomial in the length
of the common input which should be a function of security parame-
ter(s), see also Section 2.1.3)

• Soundness: A cheating prover P∗ cannot prove a wrong statement to
an honest verifier, i.e., a verification procedure cannot be faked such
that V accepts false statements.16

The main types of proof systems can be classified as follows: The proof of
language membership and the proof of knowledge. In the former class
a language L and a string x is given where x is defined over an alphabet Σ,
and is known to both parties. The objective of the proof system is for P to
prove to V that x lies in L. In the latter class a binary relation R and a
string x are given. The objective of the proof system for P is to prove to
V that it “knows” a string w called witness such that (w, x) ∈ R. We will
take a closer look at these topics in the next sections.

As mentioned before, the interaction between the interactive algo-
rithms P and V consists of several steps, starting with an initialization.
The initial state of a party X ∈ {P,V} is assumed to be the tuple

15The wine sorts are filled in glasses with exactly the same material and shape.
16The proof is not always absolute but rather probabilistic, i.e., there may be a tolerated

success probability for a cheating prover.
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state0
X := (x, randX , inputX) where x is the common input(s), randX is the

content of X’s random tape, and inputX is its input.17 In each step i, only
one message is sent from or received by a party. Each party X takes the mes-
sage mess i

X it receives and its current state state i
X , does some computations,

and outputs a message mess i+1
X (to be sent) and the next state state i+1

X . At
the end, V outputs an indicator ind ∈ {accept , reject} indicating whether it
accepts or rejects. Most interactive proof protocols we are concerned with
in this work are of the following challenge and response form: Given a
common input, the protocol consists of three moves. The prover P starts
by sending a message to the verifier V. Then V sends a challenge to P, and
in the last move P responds depending on the challenge. Finally, V verifies
this response, and accepts or rejects.

3.6.2 Proof of Language Membership

The main components of a proof system are as follows:

Parameters: The parameters are a language L, and the set of all security
parameters par sec (Note that security parameters concern different aspects,
e.g., the probability representing the degree of the confidence in a proof
system, or the boundary for the success probability in computational prob-
lems.)

Generating algorithm: A probabilistic polynomial-time algorithm GenL()
for the prover P. On input par sec , it outputs pairs (x, aux ) ∈ L.

Protocol: A two-party protocol described by

(P : −; V : ind)← Prove(P : aux ; V : −; ∗ : x, par sec)

The random variable corresponding to verifier’s output ind in this protocol
is denoted by proveV

X() where X may be an honest prover P or a cheating
one P∗. The accepting probability is defined as

Paccept (aux , x, par sec)

:= Prob[ind = true :: ind ← proveV
P(aux , x, par sec)]

where the probability function Prob[·] is induced by the random tapes randP

and randV .

An interactive proof system for language membership is defined as follows:

Definition 3.6 Let L be a language, par sec be the set of security parame-
ters, and γs ∈ par sec. Further, let GenL() be a generating algorithm, and P

17Note that the random tape is the only source of randomness of the corresponding
algorithm (see also Section 2.1.3)
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and V be interactive algorithms. We call a proof system an interactive proof
system for language membership providing information-theoretical
soundness over L, if the following properties hold:

1. Correct generation: For all valid parameters par sec

(x, aux )← GenL(par sec) ∧ x ∈ L.

2. Completeness: For all valid parameters par sec , and all (x, aux ) ∈
[GenL(par sec)], an honest prover can always convince an honest veri-
fier, i.e.,

Paccept (aux , x, par sec)

:= Prob[ind = true :: ind ← proveV
P(aux , x, par sec)] = 1.

3. Soundness: For all interactive algorithms P ∗, for all valid parameters
par sec , for all x 6∈ L and for all aux ∈ {0, 1}∗

Paccept (aux , x, par sec)

= Prob[ind = true :: ind ← proveV
P∗(aux , x, par sec)] ≤ 2−γs .

3

We denote an interactive proof system with (P,V).

Remark 3.10. In a basic proof system, also called atomic proof , there may
be a relatively large success probability for a cheating prover to convince
the verifier. To achieve a higher degree of confidence in the soundness, the
proof is iterated (see also Goldreich (2001b) for more details) Let p be the
success probability of a cheating prover P∗ in the atomic proof, and εs be
the tolerated success probability for P∗. Then the number of iterations is
γs = logp(εs). As an example, consider an atomic proof system where P ∗ has
the success probability p = 1/2 in each iteration. By iterating the atomic
proof for, say γs = 40 times, we achieve the confidence of 1− 1/240. ◦

3.6.3 Proof of Knowledge

As mentioned in Section 3.6.1, interactive proof systems are used in many
cryptographic protocols where a party proves to another party that she
“knows” something (e.g. a secret). In the example of the previous section,
this secret was the method of recognizing wines. Another example is knowing
the square root of a quadratic residue modulo a hard-to-factor integer, or
the discrete logarithm of an integer with respect to a certain basis.

Now, what does it mean when we say an algorithm P ∗ “knows” some-
thing? Roughly speaking, this means that we can use P ∗ as a black box and
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can “efficiently” modify it such that we can successfully compute (extract)
this “something” from it. More precisely, there exists a polynomial-time
algorithm called knowledge extractor E which, given a common input x
and oracle access to P∗ (as black-box), can compute a witness w such that
(w, x) belong to a well-defined relation R, i.e., (w, x) ∈ R. The extractor
can interact with P∗ and keep track of P∗’s state. The knowledge extractor
is allowed to initialize the state of P∗, and to reset P∗ to a previous state
including its random tape randP∗ . This can be seen as a “privilege” given
to the extractor since the verifier V in the real protocol cannot reset the
prover – yet, any real cheater having a successful prover algorithm could do
it. The success probability of E is related to that of P ∗.

Note that proof of language membership or knowledge is a property of
the prover P∗. Thus, when showing this property for a proof system, we
consider cheating provers and honest verifiers.

The components of a proof system for proof of knowledge are defined
similar to that of proof of language membership described in Section 3.6.2.
The following definition for proof of knowledge relies on the definition given
in Bellare and Goldreich (1993).

Definition 3.7 Let R ⊆ {0, 1}∗×{0, 1}∗ be a binary relation, LR :={x|∃w :
(w, x) ∈ R}, par sec be the set of security parameters, GenLR() be a gener-
ating algorithm, and P and V be interactive algorithms. We call a proof
system an interactive proof of knowledge if the following properties hold:

1. Correct generation: For all valid parameters par sec it holds

R 3 (x, aux )← GenLR(par sec).

2. Completeness: For all valid parameters par sec and (aux , x) ∈ R the
accepting probability is

Paccept (aux , x, par sec)

:= Prob[ind = true :: ind ← proveV
P(aux , x, par sec)] = 1.

3. Weak soundness: There exist a polynomial poly and a probabilistic
algorithm E (the knowledge extractor) with oracle access such that
for all probabilistic polynomial-time interactive algorithms P ∗, for all
strings aux and for all x ∈ LR, on input (par sec , x) and oracle access
to P∗, the knowledge extractor E outputs a witness w with (w, x) ∈ R
in expected time

poly(k)

P ∗
accept (aux , x, par sec)

where k ∈ par sec is the computational security parameter and

P ∗
accept (aux , x, par sec)

:=Prob[ind = true :: ind ← proveV
P∗(aux , x, par sec)]
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is the probability that V accepts in interaction with P ∗.

3

Strong soundness: In Definition 3.7, the soundness requirement is called
weak since the definition only considers strings x ∈ LR.18 For strong sound-

ness we require, in addition to weak soundness, that the proof protocol
Prove(), with an appropriate generating algorithm, is a proof of language
membership for LR.19

Remark 3.11. The proof of knowledge is seen as a security condition and
the prover as an adversary trying to convince the verifier to accept. The
acceptance of the verifier should be a measure for prover’s knowledge of the
witness. Therefore, one is interested to relate the success probability of the
extractor to the accepting probability of the verifier. In this context, one
has to handle provers P∗ who have a small success probability. Provers
not knowing the witness should have negligible success probability. Thus,
the extractor E should be successful for all provers with success probability
at least the inverse of any polynomial. However, the smaller P ∗’s success
probability, the smaller is the success probability of E in extracting the
witness. Definition 3.7 captures this issue by letting E ’s running time be
inversely proportional to P∗’s success probability.20 ◦

3.6.4 Zero-Knowledge

3.6.4.1 Introduction

We first informally explain the intuition behind the zero-knowledge aspect.
In Section 3.6.1 we gave an example where George claims to be able to dis-
tinguish wines from a given wine palette, and we discussed a proof system
(protocol) for verifying George’s claim. Loosely speaking, if George does not
want the proof protocol to reveal any information about his method of dis-
tinguishing wines, then the proof system should have the zero-knowledge
property. It is a security requirement that the prover can fulfill in an in-
teractive proof. The zero-knowledge property requires the proof system to
reveal “no knowledge” to the verifier, except the fact that the assertion is
valid, which is itself no knowledge as an honest prover can always prove

18For example, if LR := {x|∃w : w2 ≡ x mod n} the definition does not consider the
case where a cheating prover can convince a verifier that it has knowledge of a square root
w of x 6∈ QRn. However, note that weak soundness suffices for many applications.

19Note that a straight forward extension of weak soundness to all x would not work,
if there is an error probability, because in this case, the knowledge extractor cannot find
any witness.

20Goldreich (2001b) gives also a stringent definition for proof of knowledge called
“strong proof of knowledge” where the knowledge extractor is required to run strictly
in polynomial-time.
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this. In other words, the verifier should gain “no new knowledge” from the
conversation with the prover (i.e., from the protocol-run).21 With “no new
knowledge” for the verifier, we mean that the verifier could easily compute
its view of the proof by only having the common input x and no inter-
action with the prover! Informally, the view of the verifier is what it sees
and does during the proof.22 However, this may seem contradictory since
on the one hand, the verifier should gain no knowledge about the secret,
and on the other hand, it should be able to compute its view of the proof.
As we have seen in our wine example, such proof systems usually consist
of a conversation in form of a sequence of challenge and response pairs be-
tween the prover and the verifier. In the real proof, if the prover knows
the secret, it can answer to all challenges correctly, and thus, there is a
sequence of challenge-response pairs with certain order where the verifier
accepts. This sequence is also called conversation transcript. However,
if a protocol is zero-knowledge then, even without knowing the secret (and
without interaction with the prover), one can construct pairs of challenges
and corresponding responses such that the resulting (constructed) transcript
“looks” like the real proof transcript. In our example, we may record the
conversation on a videotape once between the verifier and the real prover,
and once with a fake prover who does not know how to distinguish the wines.
In the latter case, we agree with the fake prover in advance what answers he
should give in each iteration, or we let him answer and cut out the wrong
ones from the tape. Now, this faked recording looks exactly like the original
proof, and thus, it cannot testify the correctness of the proof. Hence, the
verifier cannot use this recording to convince anyone else!

3.6.4.2 Definition

The zero-knowledge property is a security requirement defined to protect
provers and should be guaranteed as long as the provers follow the protocol.
Thus, zero-knowledge considers only honest provers whereas the verifier is
in general an adversary V∗ who wants to extract knowledge from the prover.
In contrast to an honest verifier, V∗ may have an auxiliary input aux V∗.
This input can be interpreted as the a-priori knowledge of the verifier which
it may have obtained in previous protocols where the prover used the same
secret. Thus, we require that whatever can be efficiently computed from x
and auxV∗ after completing the interaction with the prover on any x, can be
computed from x and auxV∗ without interaction with the prover. To prove

21In particular, the proof should not enable the verifier — after completing the interac-
tion with the prover — to convince any other party that the corresponding statement is
true.

22More precisely, the view consists of the messages the verifier exchanges with the prover
and the content of its random tape. Another way to define the view of the verifier is the
sequence of verifier’s local configurations during the interaction with the prover. However,
the mentioned quantities suffice to determine this sequence.
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the zero-knowledge property, one must show the existence of an algorithm
called simulator SV∗

which given the inputs of the verifier (i.e., common
input and the auxiliary input aux V∗) can compute the view of the verifier.
Note that cheating verifiers V∗ might deviate from the protocol specification,
and might produce a different view as the honest verifiers. Hence, we are
required to give a simulator SV∗

for every V∗. In the following, we consider
only black box reductions, i.e., there is a universal simulator which, given
any V∗ as a black box and V∗’s inputs, simulates the view of V∗ where SV∗

is given the capability (privilege) to reset V ∗’s state, similar to knowledge

extractor with prover (see Section 3.6.3).
The view of the verifier viewP

V∗ is a random variable defined by the run
of the proof protocol with the (honest) prover P. Note that here we consider
the entire view instead of verifier’s final output ind . However, this makes no
real difference since for any V∗ with viewV∗ there exists a verifier V∗∗ which
stores the view and outputs only ind .

The view simulated by the simulator SV∗
is denoted by

SV∗
(x, par sec , auxV∗).
The definition for auxiliary-input zero-knowledge proof is as follows:

Definition 3.8 (Auxiliary-input zero-knowledge, Goldreich 2001b)
Let (P,V) be an interactive proof system, as given in Definitions 3.6 and
3.7. The proof system (P,V) is called perfect zero-knowledge if for
all probabilistic interactive algorithms V∗, there exists a (non-interactive)
probabilistic algorithm, simulator SV∗

, such that for all valid parameters
par sec, for all (x, aux ) ∈ [GenL(par sec)] and for all auxV∗ ∈ {0, 1}∗ the
following conditions hold:

1. On common input x, SV∗
outputs the symbol ⊥ with probability at

most 1/2, (i.e., Prob[SV∗
(x, par sec , auxV∗) =⊥] ≤ 1/2),

2. The probability distributions viewP
V∗ and S ′V∗

(x, par sec , auxV∗) are
identical, i.e.,

viewP
V∗ = S ′V

∗

(x, par sec , auxV∗),

where S ′V∗

(x, par sec, auxV∗) is a random variable describ-
ing the distribution of SV∗

(x, par sec , auxV∗) conditioned on
SV∗

(x, par sec, auxV∗) 6=⊥.

The proof system (P,V) is called statistically zero-knowledge if the prob-

ability distributions viewP
V∗ and S ′V∗

(x, par sec , auxV∗) are statistically indis-
tinguishable, i.e.,

viewP
V∗

s≈S ′V
∗

(x, par sec , auxV∗).

The proof system (P,V) is called computationally zero-knowledge if
the above distributions are computationally indistinguishable, i.e.,

viewP
V∗

c≈S ′V
∗

(x, par sec , auxV∗).
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3

Composition of zero-knowledge protocols: A very important aspect
regarding the zero-knowledge proof systems is the composition of zero-
knowledge proofs. In particular, one expects that the sequential com-
position of zero-knowledge proofs is also zero-knowledge, i.e., if subsequent
zero-knowledge protocols are performed, then the composed protocol must
also be zero-knowledge (intuitively it means that the sum of zeros must also
be zero!). Moreover, this should hold even for polynomially many proofs.
Fortunately, it is proven that the definition of auxiliary-input zero-knowledge
fulfill this requirement, and thus, the zero-knowledge proof is closed under
the sequential composition as expressed in the following lemma:

Lemma 3.3 (Sequential Composition, Goldreich 2001b) Let P be
an interactive algorithm that is zero-knowledge with respect to auxiliary in-
put on some language L. Suppose that the last message sent by P, on input
x, bears a special end-of-proof symbol. Let Q(·) be a polynomial, and let
PQ be an interactive algorithm that, on common input x, proceeds in Q(|x|)
phases, each of them consisting of running P on common input x (if P is
probabilistic, the interactive algorithm PQ uses independent coin tosses in
each of Q(|x|) phases.) Then PQ is zero-knowledge on L with respect to
auxiliary input. Furthermore, if P is perfect zero-knowledge with respect to
auxiliary input, then so is PQ. 2

This lemma is very fundamental and useful when designing zero-knowledge
protocols. Informally, one usually constructs a protocol for proving a certain
assertion. This proof is also called atomic proof. However, the atomic proof
usually does not prove the claim completely, i.e., there is a certain success
probability p for a cheating prover to convince the verifier. To handle this,
the atomic proof is repeated until a certain degree of confidence is achieved
(see also Remark 3.10) Now, the sequential composition lemma guarantees
that if the atomic proof is zero-knowledge, so is also the proof which results
from the repetitions of the atomic proof.

Unfortunately, this result cannot be proven for the parallel or concurrent
composition (see Goldreich (2001b)).

Remark 3.12. When proving zero-knowledge property for a proof system,
resulted from repeating an atomic proof, the overall simulator SV∗

consists
of the iterations of the simulator algorithm except that at the end of the
iteration i, it stores the state state i

V∗ , and resets V∗ to this state if the next
iteration i + 1 fails.23 ◦

23This is because V∗’s behavior might not be the same in each iteration.
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In later sections, we will be concerned with several zero-knowledge proof
systems. Using the result of the composition theorem, it suffices to only
prove the zero-knowledge property for the underlying atomic proof.

3.7 Basic Protocols

In this section, we consider several protocols which usually serve as building
blocks of more complex protocols such as fingerprinting protocols. These
protocols are used to prove certain assertions, mainly based on discrete
logarithm quantities. The used techniques have become standard in the
cryptographic literature, and thus, we mainly refer to the relevant literature.
However, to give the basic idea, we will explain the most basic protocol for
proving knowledge of discrete logarithm in more details.

3.7.1 Proving Knowledge of Discrete Logarithm

A zero-knowledge proof protocol for proving knowledge of a discrete loga-
rithm from Chaum, Evertse, and van de Graaf (1988) is presented in Figure
3.3. In this protocol, the prover P wants to convince the verifier V that she
knows the discrete logarithm x of a given public value h (the common input)
to the base g where g, h are elements of a group G known to V. More pre-
cisely, the parameters are defined as follows: We consider any group family
G containing finite cyclic groups G of known order |G|. Concrete examples
are G := Z∗

p where p ∈R P or G := Z∗
p/q the (unique) multiplicative subgroup

of Z∗
p of prime order q.
Let k be the security parameter and SGG a group sampler. The knowl-

edge relation, describing the objective to be proven, is defined as follows:

R := {
(
x, (G, g, h)

)
|G ∈ [SGG(1k)] ∧ g, h ∈ G ∧ x ∈ Z|G| ∧ gx = h}.

We require another security parameter εS representing the soundness error
we are willing to tolerate. Using this, we can determine the number of
iterations γS of the atomic protocol in Figure 3.3 (see also Remark 3.10 ).

We denote the proof protocol with

(P : −; V : ind)← ProveDL(P : logg(h); V : −; ∗ : G, g, h)

where ind ∈ {accept , reject}.
The idea behind the protocol in Figure 3.3 is as follows: On common

input (G, g, h), the prover P sends to the verifier V a random version a of
h. On binary challenge c, sent by V, P sends a response r which is a linear
equation depending on the random value w, the challenge c, and the secret
x. V accepts if and only if gr = ayc holds.

It can be shown that this protocol is a proof of knowledge with perfect
zero-knowledge property (Schnorr 1991). We informally explain the reasons.
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• Proof of knowledge: If for a value a, P answers correctly to both chal-
lenges, then P must know both values w and r = w + x. This means,
in each iteration, a cheating prover, who does not know x, can in fact
correctly respond to at most one of the two possible challenges. Thus,
in each iteration V accepts with probability 1/2. For γS iterations the
tolerated soundness error will be 1/2γS .24

To extract the discrete logarithm, the extractor E sends a challenge
c = 0 to P∗, and lets P∗ run until it receives the response r0. Then
E resets P∗, sends the challenge c = 1 to P∗, and lets P∗ run until
it receives the corresponding response r1. If both r1 and r2 pass the
verification, then E outputs discrete logarithm x := r1 − r0.

• Perfect zero-knowledge: In the protocol, V can extract information
about the secret x only from the response r. However, for c = 0, r
is a random value w, and for c = 1, r perfectly hides x since it is
the result of an encryption of x with a one-time pad w. Thus, in
both cases no information about x is revealed to V. However, this
is only the intuition behind the zero-knowledge property. To show it
formally, one should construct a black-box simulator SV∗

, and show
that it generates the view of the (cheating) verifier V ∗ with the same
probability distribution. We explain the simulator program briefly:
The simulator computes the protocol quantities backwards, i.e., it first
chooses randomly and uniformly the challenge c ∈R {0, 1}, and the
value r ∈R Z|G|, and computes the value a as a := gr/hc. Now, the
simulator starts V∗ with the given common input x = (G, g, h) (and
auxV∗), and sends a to V∗ who responses with a challenge c∗. If c∗ = c
then SV∗

outputs the view viewSV∗ := (x, a, c, r). Else (c∗ 6= c), it
repeats the above procedure. One can now show that the probability
distribution of this view is exactly the same as in the real protocol,
and that the probability that the simulator fails is at most 1/2.

Remark 3.13. For efficiency reasons, it is desired to have fewer iterations.
A simple way to achieve better efficiency is to choose challenges with more
bits, also called deep challenges. For the protocol in Figure 3.3 this means
that we only replace c ∈ Z2 with c ∈ Z|G|. Now, one can show that this con-
struction fulfills the completeness and soundness requirements but it is not

believed that the protocol is still zero-knowledge (see also Schnorr (1991)).
◦

24Note that the iterations are independent, i.e., each time a new w and a new c should
be chosen. The verifier accepts only if all γS verifications in the repeated protocol end
with true.
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Figure 3.3 Zero-knowledge proof of knowledge of discrete logarithm:
ProveDL()

V
(G, g, h)

P
(G, g, h, x)

w ∈R Z|G|

a := gw

←−
a

−−−−−−−−−−
c ∈R Z2

−
c

−−−−−−−−−−→
r := w + cx mod |G|

←−
r

−−−−−−−−−−
gr ?

= ahc

3.7.2 Proving Knowledge of Representation

The protocol for proving knowledge of representation is the extension of
the protocol for proving knowledge of discrete logarithm to multiple bases
(see, e.g., Chaum, Evertse, and van de Graaf (1988)). Given the generators
g1, g2, · · · , gn ∈ G and an element h ∈ G, prove the knowledge of the integers
x1, x2, · · · , xn such that h :=

∏n
i=1 gxi

i . The vector I = (x1, · · · , xn) ∈ Zn
|G| is

called a representation of h ∈ G to the (generator) base B = (g1, ..., gn).
We denote this by

repr (h,B, I) :⇐⇒ h = gx1
1 ...gxn

n .

The protocol for this proof is shown in Figure 3.4.



3.7 Basic Protocols 139

Figure 3.4 Zero-knowledge proof of knowledge of a representation
ProveRep()

V
(
(G, g1, · · · , gn), h

)
P

(
(G, g1, · · · , gn), h, (x1, · · · , xn)

)

w1, · · · , wn ∈R Z|G|

a :=
∏n

i=1 gwi
i

←−
a

−−−−−−−−−−
c ∈R Z2

−
c

−−−−−−−−−−→
ri := wi + cxi mod |G|

←−
(r1, · · · , rn)
−−−−−−−−−−

∏n
i=1 gri

i
?
= ahc

We denote this protocol with

(P : −; V : ind)

← ProveRep(P : repr (h,B, I); V : −; ∗ : (G,B), h)

where ind ∈ {accept , reject} .
This protocol is a zero-knowledge proof of knowledge of a representation

of h (Chaum, Evertse, and van de Graaf 1988).

3.7.3 Proving Knowledge of Simultaneous Discrete Loga-
rithm

The protocol shown in Figure 3.5 represents a proof that the discrete log-
arithms of two values with respect to different bases are equal. Given the
generators g1, g2 ∈ G and the elements h1, h2 ∈ G, prove knowledge of
x ∈ Z|G| where h1 ≡ gx

1 and h2 ≡ gx
2 . We denote this protocol with

(P : −; V : ind)

← ProveEqDL(P : logg1
(h1), logg2

(h2); V : −; ∗ : (G, g1, g2), h1, h2)

where ind ∈ {accept , reject}. The basic techniques are from Chaum, Ev-
ertse, and van de Graaf (1988). Similar protocols are also the basis for the
techniques in Camenisch and Stadler (1997) for proving polynomial relations
among secret exponents.
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Figure 3.5 Proving knowledge of simultaneous discrete logarithm
ProveEqDL()

V
(
(G, g1, g2), h1, h2

)
P

(
(G, g1, g2), h1, h2, x

)

w′ ∈R Z∗
|G|

←−
a′1, a

′
2−−−−−−−−−− a′1 ← gw′

1 , a′2 ← gw′

2

c ∈R Z2 −
c

−−−−−−−−−−→
gr
1

?
= hc

1a
′
1, g

r
2

?
= hc

2a
′
2 ←−

r
−−−−−−−−−− r ← cx + w′

As usual, the proofs of knowledge can either be made with small chal-
lenges, and be provably zero-knowledge, or with larger challenges for greater
efficiency.



Chapter 4

Fingerprinting

This chapter focuses on fingerprinting schemes, their models, con-
structions and development. It presents a novel, concrete and reasonably
efficient construction for anonymous fingerprinting schemes based on
ideas from digital coin systems. The construction is asymmetric and
collusion-tolerant, and offers direct non-repudiation, i.e., the accused buyer
need not to participate in any trial protocol to deny charges. Thus, in case
of illegal redistribution of digital works the scheme provides the merchant
with enough evidence to convince an arbiter. This is advantageous since
trials with direct non-repudiation are more useful in real life. The difference
is similar to that between the “normal” and “undeniable” signatures.

4.1 Prerequisites

4.1.1 Subjects/Roles

The objects that copyrights, or rights in general, refer to are works repre-
senting different types of digital content (e.g., multimedia, software) denoted
by work . The set WORK denotes the set of all works. A work is created

when it is fixed in a well-defined form for the first time, e.g., in form of im-
ages, video-clips or music (see also US Copyright Office (2002)). The main
roles are as follows:

• Authors/Creators are parties who originate (create) works. The
author of a work is given all rights (defined in the legal framework)
on the corresponding work, or more precisely on the corresponding
work-class.

141
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• Owners are parties who legally obtain rights on a work (and its cor-
responding work-class) by creating that work themselves, or by means
of transactions such as transferring or licensing of rights from others.
They may themselves be authorized to transfer or license rights to
others. Examples are distributors, merchants, license holders. We call
authors and owners authorized parties. For fingerprinting schemes,
we will take merchants, denoted by M, as representative for all au-
thorized parties.

Those parties who obtain/purchase rights via transactions are called
buyers and denoted by B.

• Registration centers are parties who register users or works, and
are denoted by RC.

• Traitors are those dishonest parties who purchase/obtain works
legally, and violate the copyrights by copying and redistributing digital
works illegally (i.e., without authorization). A coalition of dishonest
parties is called a collusion and denoted by COL.

• Arbiter (judges) are honest parties required to be involved in certain
situations such as trial. They are denoted by J .

Each party X should have a digital identity, usually represented through a
public-key pkX . With IDX we denote the set of the identities of all involved
parties X, e.g., the set of identities of buyers is IDB.

Each of the mentioned parties is represented by a probabilistic
polynomial-time algorithm.

4.1.2 Works and Similarity

As mentioned in Chapter 1.1, rights do not only refer to a single work only,
but rather to a set of closely related similar works. Consider for example
an artist who created a digital image work . Then, naturally and legally,
a rotated or compressed version work ′ of work is also considered to be a
creation of this artist. This is because rotating or compressing a digital
image is no creative achievement, and does not lead to new original works
of authorship.

In the context of rights, consider the “right to use an image on a web-
page”. Generally, this right does not only allow a specific image work to be
put on the web-page of the corresponding rights owner. However, the owner
of this right may also put on her web-page a compressed, thumbnail version,
or more generally any similar version work ′ of this image.

In the following, we assume a similarity relation →sim on works
to be given. Here, work→simwork ′ denotes the fact that work is simi-
lar to work ′. Works similar to a work work are called the similarity-
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set/work-class of work and are denoted by the set WORK sim
work := {work ′ ∈

WORK |work→simwork ′}.
To determine whether a work work ′ is similar to a work work ,

i.e., whether it lies in the work-class WORK sim
work , we assume the ex-

istence of an automatic similarity-test which we denote with ind ←
simtest(work ,work ′) where ind ∈ {true , false}. There are different reason-
able ways for testing similarity between works, and we note that conformance
with copyright-laws strongly depends on a suitable definition of similarity.
Possible instantiations are (Adelsbach, Pfitzmann, and Sadeghi 2000):

• Robust hashing: Similar digital works have similar main features. In
the context of database retrieval of multimedia data or authentication
of digital content, these main features are used to compute a charac-
teristic value of digital objects (see, e.g., Lin and Chang (1998) and
Wang et al. (1998)). Using an appropriate metric, one can compare
the characteristic values of works with respect to this metric instead
of the works themselves.

• Robust digital watermarks: Robust digital watermarking schemes
embed additional information in digital objects, such that this infor-
mation can later be detected or retrieved again, even if the digital
object has been modified (see, e.g., Hartung and Kutter (1999), or
Katzenbeisser and Petitcolas (2000)). We will consider watermarking
schemes in section 4.3. We define works similar if they contain the
same watermark.

In the context of fingerprinting , any redistributed work similar to the
original work can be traced depending on the purchased rights: If a merchant
finds a redistributed work work red similar to one of the works work he has
already sold, i.e., true ← simtest(work ,work red ), and if he considers this
work for illegally redistributed then he starts the identification procedure to
trace the source of redistribution.

4.2 Classification and Research History

We classify the fingerprinting schemes for digital works according to the
following properties:

• Collusion-Tolerance: As mentioned in Section 1.1.2.2, a digital work
is fingerprinted by embedding the identifying information (fingerprint)
as a watermark into this work. Each copy of the original work gets
its own and unique fingerprint. The main security requirement on
the underlying watermarking schemes is robustness against attacks
attempting to remove the embedded watermark. This is fine as long as
one watermarked copy is available to the adversary. However, a traitor
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(or a collusion) possessing several fingerprinted copies of a work can
easily compare these copies, detect the differences, and may be able to
generate a copy which does not contain any of the given fingerprints.
In this manner, the traitor(s) can mask his (their) identities. We call
such an attack a collusion attack. Thus, it should be clear that
naive embedding of random fingerprints or serial numbers into works,
as still done in practice, cannot resist collusion attacks.1

Therefore, the first enhancement to conventional fingerprinting
schemes is the addition of collusion-tolerance Blakley, Meadows, and
Purdy (1986), Boneh and Shaw (1995) and Cox et al. (1997). Hereby,
the watermark should tolerate a collusion attack with a given maxi-
mum number of different copies.

• Asymmetry: The first proposed fingerprinting schemes were sym-
metric. In such schemes, the merchant is the one who fingerprints
the corresponding works, and both the buyer and the merchant know
the fingerprinted work. Thus, in the case of redistribution, it is not
clear who has indeed redistributed the work, a dishonest buyer or the
merchant himself. To solve this problem asymmetric fingerprint-
ing was proposed (Pfitzmann and Schunter (1996), Pfitzmann and
Waidner (1997b), Biehl and Meyer (1997)). The idea is as follows:
After identifying a traitor, a proof of treachery should be found in
the redistributed copy. This means that the merchant is able to find
some data in the redistributed work which only the identified traitor
could have computed. In contrast to symmetric schemes, asymmetric
schemes require the underlying work to be fingerprinted via an inter-
active protocol between the buyer and the merchant where the buyer
also inputs own secrets. At the end of this protocol only the buyer
knows the fingerprinted work. The main construction proposed by
Pfitzmann and Schunter (1996) was based on general primitives; an
explicit construction, i.e., without such primitives, was only given for
the case without significant collusions. Explicit collusion-tolerant con-
structions were given by Pfitzmann and Waidner (1997b) and Biehl
and Meyer (1997).2

1An example of a collusion attack is the statistical averaging attack (Hartung and
Kutter 1999). Depending on the watermarking scheme, this attack may require only a few
copies to generate a copy containing non of the fingerprints by computing the average of
the available copies.

2In the context of fingerprinting, we may distinguish between fingerprinting the actual
work or fingerprinting a key for decrypting it. This special variant of fingerprinting is
called traitor tracing (Chor, Fiat, and Naor (1994) and Naor and Pinkas (1998)): Here,
the keys for broadcast encryption (Fiat and Naor 1994) are fingerprinted. Other examples
for traitor tracing schemes are Boneh and Franklin (1999) and Fiat and Tassa (1999).

Asymmetric traitor tracing was introduced by Pfitzmann (1996b) with a construc-
tion based on general primitives. Explicit constructions for this case were also given by
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• Anonymity. As in the “real-life” market places, it is desirable that
also electronic market places offer privacy to customers. Buying works
(pictures, books, etc.) reveals behavioristic information about individ-
uals. Consumer may wish to use different services while maintaining
their privacy. Thus, it should also be possible to purchase fingerprinted
works anonymously. However, the identification of traitors should still
be possible. Anonymous (asymmetric) fingerprinting was introduced
by Pfitzmann and Waidner (1997a). Their construction uses general
theorems like “every NP-language has a zero-knowledge proof system”
(Goldreich 2001a), and is only partly explicit.

In this thesis, we propose an explicit construction based on ideas from
digital coin systems. It is fairly efficient in the sense that all op-
erations are efficient computations with modular multiplications and
exponentiations.

Note that we understand the notion of anonymity in the strong sense
of the original definition by Pfitzmann and Waidner (1997a), i.e., any
coalition of merchants, central parties and other buyers should not be
able to distinguish purchases of the remaining buyers. A fingerprinting
scheme with weak anonymity can easily be constructed by using any
asymmetric fingerprinting scheme under a certified pseudonym instead
of a real identity. In this case, the anonymity is conditioned on the
trust in honesty of some central party. Other constructions for anony-
mous (asymmetric) fingerprinting with weak anonymity are proposed
by Domingo-Ferrer and Herrera-Joancomarti (1998) and Domingo-
Ferrer (1999). The construction of the former is based on general
two-party computation, and that of the latter is based on oblivious
transfer protocols. However, Sadeghi (2001) shows that both schemes
Domingo-Ferrer and Herrera-Joancomarti (1998) and Domingo-Ferrer
(1999) are not secure.

• Direct non-repudiation: The asymmetric property enables the mer-
chant to obtain a proof of treachery in case of illegal redistribution,
and to convince an arbiter in a trial. This may also require the ac-
cused buyer to participate in the trial to deny the charges, if possible.
However, one is interested in a construction which enables the mer-
chant to obtain enough evidence to convince any arbiter that a certain
buyer is a traitor without involving the buyer. We call this property
direct non-repudiation. Obviously, systems offering this property are
more useful in real life since users do not have the burden of storing
evidences. Note that users could rightly or wrongly claim to have lost

Pfitzmann and Waidner (1997b). More efficient construction were given by Kurosawa and
Desmedt (1998); however, they are not asymmetric in the usual sense but arbitrated, i.e.,
a certain number of predefined arbiters can be convinced by the merchant (similar to the
difference between arbitrated authentication codes and asymmetric signature schemes).
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the information needed for the trial, or the password to it, or it could
occur that a dissolved company did not leave such information to its
legal successors. With direct non-repudiation, the provable identifica-
tion works even if the accused user is not reachable. Thus, the trial
is only a 2-party protocol. The difference is similar to that between
normal digital signatures (direct non-repudiation) and undeniable sig-
natures (Chaum and van Antwerpen 1990) where the signer is needed
in trial. This thesis presents an anonymous fingerprinting scheme with
this property. The construction applies methods from coin tracing,3

concretely from Frankel, Tsiounis, and Yung (1996). In particular,
we apply a technique which we call delayed verifiable encryption.
Using this technique, certain information is encrypted in one phase of
the fingerprinting scheme, and securely proven to be correct in a later
phase (delayed verification).

However, the similarity of the fingerprinting scheme to the coin trac-
ing methods is only at the technical level: One does not require a
trusted third party (trustee) as for coin tracing, otherwise one could
use the simple solution with weak anonymity , mentioned before. Fur-
ther, there is a need for closer binding between this encryption and the
coin than in coin tracing to provide an unforgeable link to the license
conditions.

Another approach by Camenisch (2000) for constructing an anony-
mous fingerprinting scheme with direct non-repudiation is based on
group signatures. Regarding one aspect, this construction is more ef-
ficient than the coin-based solution: It needs only one registration for
all purchased works whereas the coin-based construction requires the
buyer to open a new account for each purchase. However, the coin-
based construction allows anonymous legal redistribution whereas
the proposal by Camenisch (2000) does not. Legal distribution means
that a buyer can purchase “right of distribution” allowing her to copy
and redistribute the underlying work after a certain time (e.g., five
years after the purchase time). However, after the redistribution, an
honest buyer should not be wrongly accused by any collusion against
this buyer.

4.2.1 A Layer Model for Fingerprinting

We may represent the whole fingerprinting process by a layer model as shown
in Figure 4.1. At the bottom we have the data-dependent layer representing
the data to be fingerprinted, and the appropriate watermarking schemes.

3This is a mechanism which allows a bank, in cooperation with a trustee, to revoke the
anonymity of a user, and trace the corresponding coins. Such measures are proposed to
deter the misuse of anonymous payment systems for criminal purposes.
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In the next layer, we place the data-independent part of the fingerprinting
scheme. Here, the information to be embedded may be encoded first to
have certain properties, e.g., collusion-tolerance. However, depending on
the watermarking scheme, we may combine these layers in one. Symmetric
fingerprinting schemes include these layers. At the top layer we place asym-
metric fingerprinting which usually uses a symmetric fingerprinting scheme
as a building block. At this layer, interactive proof systems are applied to
securely and verifiably embed identifying information into works such that
on the one hand, only the buyer knows the fingerprinted work, and on the
other hand, the merchant obtains enough information to provably identify
a traitor in case of illegal redistribution.

Figure 4.1 A layer model for fingerprinting

Watermarking
(data-dependent)

Encoding
(data-independent)

Interactive Protocols

4.3 Watermarking

4.3.1 Introduction

Informally, watermarking is a technology to alter a work by embedding
information into that work. Our concern in this thesis are those watermark-
ing schemes which embed the corresponding information imperceptibly.
For surveys on different kinds of watermarking schemes see Katzenbeisser
and Petitcolas (2000).

The watermarking schemes we are interested in embed encoded infor-
mation into works such that this information can be efficiently read only by
authorized parties, and cannot be removed by unauthorized parties, at least
not without rendering the work useless.

4.3.2 Model

Let Σ be a finite alphabet and l ∈ N. A watermark is, in general, represented
by a vector ~wm ∈ Σl. A common choice is Σ = {0, 1}, and in this case, we
denote the watermark by a binary string wm . Each symbol in the watermark
represents the value of a mark. With watermark signal we mean a signal
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which is combined (e.g., added) with the values of the original signal (original
work). A mark determines how the values of the watermark signal should
be combined with the original work.

To make this more clear, consider the following example: A photogra-
pher may embed a watermark wm ∈ {0, 1}l into a digital image as follows:
The watermark consists of l (binary) marks. A mark with binary “1” means
increase the intensity of certain pixels while a binary “0” means decreas-
ing it. The increased/reduced intensity amount represents the value of the
watermarking signal.

Having a work watermarked, one is interested in reading this watermark
later. Reading a watermark means detection or extraction of that water-
mark by authorized parties. Watermark readers requiring the original work
as input are called non-blind, otherwise they are called blind. Through-
out this thesis we are concerned with non-blind readers. A concrete and
well-known scheme which can be implemented for both blind and non-blind
watermarking is proposed by Cox et al. (1996), and is described in Section
4.3.5.1.

There are a variety of models proposed for watermarking schemes (see
Cox, Miller, and Bloom (2002)). The following definitions for the compo-
nents of watermarking schemes are advantageous when we use watermarking
schemes as a building block within more complex systems. Similar defini-
tions are given by Craver, Yeo, and Yeung (1998) and Petitcolas, Anderson,
and Kuhn (1999). More explicit definitions closer to the signal theoreti-
cal model are given by Cox, Miller, and McKellips (1999) and Pitas and
Voyatzis (1999).

The main components of a watermarking scheme are the following
polynomial-time algorithms:

• Key generation: On input of a (security) parameter k, the key gen-
eration algorithm GenKeyWM(k) generates watermarking embedding
key skWM

emb and extracting key skWM
ext (or detecting skWM

det key).

• Embedder: On input of a work work , the watermark ~wm, and
the embedding key skWM

emb , the algorithm EmbedMark() outputs the
watermarked work workWM , also called stego work.

• Extractor: On input of a watermarked work work ′, the secret extract-
ing key skWM

ext , and the original work work , an extracting algorithm
ExtractMark() extracts the embedded watermark ~wm from work ′.

• Detector: On input of a watermarked work work ′, the secret de-
tecting key skWM

det , and the original work work , a detecting algorithm
DetectMark() outputs true or false indicating whether the watermark
~wm is detected in work ′ or not.

We distinguish between the following watermarking schemes:
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• Extracting Watermarking Scheme: An extracting watermark-
ing scheme is a tuple (GenKeyWM(),EmbedMark(),ExtractMark())
such that for all work ∈ WORK , all ~wm ∈ Σl, all
key pairs (skWM

emb , sk
WM
ext ) ← [GenKeyWM(k)] and work ′ ←

EmbedMark(work , ~wm, skWM
emb) the following holds

~wm← ExtractMark(work ′,work , skWM
ext ).

• Detecting Watermarking Scheme: A detecting watermark-
ing scheme is a tuple (GenKeyWM(), EmbedMark(), DetectMark())
such that for all work ∈ WORK , all ~wm ∈ Σl, all
key pairs (skWM

emb , sk
WM
det ) ← [GenKeyWM()] and work ′ ←

EmbedMark(work , ~wm, skWM
emb) the following holds

true ← DetectMark(work ′,work , ~wm, skWM
det ).

In the definitions above, we still have to consider the probability for false
positive in the extraction/detection process. False positive means to ex-
tract/detect a watermark from/in a work which does not actually contain
this watermark. We require the probability of this event to be negligible.

Remark 4.1. In this thesis, we are concerned with symmetric watermarking

schemes, i.e., we set skWM = skWM
emb = skWM

ext and skWM = skWM
emb = skWM

det .4

Remark 4.2. We use watermarking schemes with extracting readers because
we can apply them more efficiently within the fingerprinting schemes. ◦

4.3.3 Requirements

Watermarking schemes can be classified with respect to several criteria such
as the type of underlying work (image, video, audio, text, etc), the degree
of imperceptibility, robustness, security and so on. For our purposes, we
require watermarking schemes which have the following main properties:

• Fidelity: This parameter is a measure for the perceptual indistin-
guishability between the original work and the watermarked work.
The modifications caused by embedding a watermark should remain
under an appropriate perceptible threshold. This implies that there
should be some criteria or metrics according to which one can de-
sign the watermark signal values, and control the amount of distortion
when watermarking a work.

Note that perceptibility criteria depend strongly on the data type. For
audio and video data the metric is defined according to human percep-
tual model, which is not very precise. For programs, however, percep-
tibility means the semantic equivalence as understood in computer
science.

4The existing asymmetric watermarking schemes still suffer under lack of security
(see Furon and Duhamel (2000) and Eggers, Su, and Girod (2000)).
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• Robustness: The watermarking scheme should resist (passive and
active) attacks attempting to remove the embedded watermark unless
the attacks result in a work work ∗ which is not similar to the origi-
nal work work anymore, i.e., false ← simtest(work ,work ∗) where we
understand similarity as defined in Section 4.1.2. By removing a wa-
termark we mean that this watermark is not extractable/detectable
after the attack.

For passive attacks against a watermarking scheme, we consider the
following aspect:

– Secrecy: The stego work (watermarked work) should not leak
any additional information on the secret inputs of the embedder,
i.e., the embedding key skWM and the original work work .

Depending on the application and the type of data, various kinds of ac-
tive attacks on watermarks are possible. In particular, for multimedia
works, there are plenty of possibilities (and tools) to attack the wa-
termark attempting to remove it (see e.g., Petitcolas, Anderson, and
Kuhn (1998), Petitcolas and Anderson (1998) and Anderson (2001)).
For multimedia works, we require the watermarking scheme to also
resist typical attacks:

– Common signal processing: Lossy compression, noisy trans-
mission, digital-analog and analog-digital conversion, resampling,
printing and scanning, adding noise signals, etc.

– Geometric distortion: Scaling, translation, rotation, etc.

Remark 4.3. It is reasonable to consider robustness for watermarks as long
as the modified works work ∗ lie in the work-class of the original work (i.e.,
true ← simtest(work ,work ∗)). This restriction is natural since one is not
interested in works work ∗ which do not have any perceptual similarity to
the original work. For instance, one can always remove the watermark by
strongly distorting the corresponding work. However, in this case, we expect
the quality of the distorted work to be so poor that no one would use it.

Remark 4.4. Some literature define resistance against common signal pro-
cessing as robustness, and the ability to resist unauthorized removal as se-

curity. ◦

4.3.4 Main Steps of Watermarking

Generally, the watermarking process consists of the following steps:

• Appropriate representation: Watermarking schemes operate on cer-
tain representations of works in an appropriate embedding domain.
This representation may be in the original domain (e.g., pixels for
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images), or in a transform domain (e.g., coefficients of a Fourier
transformed image). By using transformations, one attempts to ex-
ploit the transform domain to achieve certain properties for water-
marks, e.g., robustness against data compression. We call the values
that represent a work in the embedding domain (e.g., the Fourier co-
efficients) components.

There is a large body of literature on watermarking schemes. The
majority of the proposals are on watermarking images and videos (but
the proposed techniques can be customized for audio data as well.) In
the original domain, pixels are subject to modifications, e.g., the least
significant bits of pixels are modified (see, e.g., Tirkel et al. (1993)
and Kutter (1998)). In the transform domain, one applies various
types of transformations such as Discrete Cosine Transform, Dis-
crete Fourier Transform, Wavelet Transform, Mellin-Fourier
Transform etc. Some proposals for watermarking schemes based on
these transformations are Ruanaidh, Boland, and Sinnen (1995), Per-
rig, Herrigel, and Ruanaidh (1997), Cox et al. (1997), Herrigel et al.
(1998), and Kundur and Hatzinakos (1998).

One advantage of applying transformations is to make the components
of the data independent, since pixels are usually highly correlated.

The type of the embedding domain has great impact on the proper-
ties of watermarks. For instance, schemes which use discrete cosine
or wavelet transformation are more robust against compression al-
gorithms such as JPEG, whereas those schemes using Fourier-Mellin
transformation of an image are more robust against geometric trans-
formations such as scaling and rotation.

• Choosing components: After determining a representation of the work
in an embedding domain, a subset of the components are chosen (e.g.,
pseudo randomly) and modified. These components carry the marks,
and are called marking positions. The choice of these components is
made with the goal to achieve certain properties such as maintaining
fidelity, and at the same time improving the robustness as much as
possible.

• Watermarks and watermark signal : Watermarks are usually repre-
sented as bit-strings. Each mark is embedded into the work at a
marking positions by modifying the original components in the corre-
sponding embedding domain. The modification is done by combining
the components of the watermark signal with the components of the
original work. The values for the watermark signal may be chosen ran-
domly, and merely associated with the embedding information in some
way. There are different ways of combining watermark signal values
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with the values of original components: One way is to add the wa-
termark signal component to the corresponding original component.5

Another way is to replace the original component by the corresponding
watermark signal component.

The modified work is obtained through replacing the original compo-
nents by their corresponding modified components.

To deal with the imperceptibility issue, each watermark signal value
may be modified by an intensity parameter. The values this parameter
assumes may be determined at key generation, or they may depend
on the individual components being marked, or on the data type of
the underlying work. One way to incorporate the intensity param-
eter is to multiply this parameter with the watermark signal value.
Advanced watermarking schemes use perceptual masking models
to determine the intensity parameters (see, e.g., Swanson, Zhu, and
Tewfik (1998), Cox and Miller (1997), and Wolfgang, Podilchuk, and
Delp (1999)).

• Reading a watermark : Given a watermarked, and eventually modified,
work work ∗, transform it to the representation in the embedding do-
main. Then extract the components that correspond to the marking
positions. If we apply an extracting watermarking scheme, we can di-
rectly interpret the marks. Note that the extracting algorithm should
output the embedded watermark with high probability. One way to
achieve this is to apply error-correcting codes during the selection and
reading process.

In the case of detecting schemes, one usually applies correlation-based
tests (Cox, Miller, and Bloom (2002)). Hereby, one retrieves a hypo-
thetical watermark ~wm∗ from work ∗, and then compute its correlation
with the original watermark ~wm. The detection succeeds if the corre-
lation is above a certain predefined threshold.

4.3.5 A Generic Watermarking Scheme

In Section 4.3.4, we briefly reviewed the main steps of a non-blind water-
marking process. In this section, we consider a generic watermarking scheme
which builds the basis of many known watermarking schemes. Let work be
a work to be watermarked.

1. Transform work to the appropriate embedding domain. We denote
this representation with

~work := (work 1,work 2, · · · ,workm,work δ)

5Other operations used to combine these components can be reduced to addition by
an appropriate transformation. For instance, the multiplication of these components can
be converted to addition by a logarithmic transformation.
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where (work 1,work 2, . . . ,workm) denote those components which can
be modified satisfying the desired data fidelity, and work δ denotes the
rest of the components.

2. Select the marking positions, i.e., the components to be marked. One
may make this choice by randomly choosing the indices, e.g., with
respect to the secret key skWM :=(i1, · · · , il) which is generated by the
key generation algorithm. After selecting the components, we write

~work := (work i1 ,work i2 , · · · ,work il ,work ′
δ)

where work ′
δ now contains work δ and all other components which are

not selected as marking positions.

3. Let ~wm := (wm1,wm2, · · · ,wm l) be the representation of the water-
mark signal, and ~S := (s1, s2, · · · , sl) be the desired watermark inten-

sity. The representation of the watermarked work ~work ′ is obtained
by replacing each work ij , j ∈ [1, l] with work ′

ij := work ij + sjwmj for
j ∈ [1, l]. We denote the representation of the watermarked work with

~work ′ := (work ′
i1 ,work ′

i2 , · · · ,work ′
il
,work ′

δ).

4. Re-transform the watermarked components to obtain work WM .

5. The next phase is reading a watermark: Assume, we are given a
work work ∗ (received signal) with true ← simtest(work ,work ∗). First,
work ∗ is transformed to the domain where embedding took place. We
denote this representation with

~work ∗ := (work ∗
1,work ∗

2, . . . ,work ∗
m,work ∗

δ).

Then those components are extracted which correspond to the marked
ones by using the key skWM. We denote this by

~work ∗ := (work ∗
i1 ,work ∗

i2 , . . . ,work ∗
il
,work ∗∗

δ ).

If we have access to the original components, ~work ij , we can extract a
hypothetical watermark ~wm∗ :=(wm∗

i1
,wm∗

i2
, · · · ,wm∗

il
) where wm∗

ij
:=

(work ∗
ij − work ij )/sj for j ∈ [1, l]. Now, depending on the type of

reader (extracting or detecting), one may apply error-correcting codes
to retrieve the original watermark ~wm , or use correlation methods to
match ~wm∗ against the original watermark signal.

Remark 4.5. It is common that the watermark is a string wm ∈ {0, 1}l. Then
each work ij is changed according to a certain publicly known procedure. In
this case, wmj can only assume a binary value, and thus, there are only
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two possible marked versions of work ij which we denote with work
wmj

ij
,

wmj ∈ {0, 1}. Thus, depending on the value wm j, work ij is replaced either

by work 0
ij , or by work 1

ij .
In the reading phase, one can compare the extracted component work ∗

ij

with work 0
ij and work 1

ij . The extracted mark wm j is then in {0, 1, ?} where
“?” denotes that no decision can be made. ◦

4.3.5.1 Watermarking Scheme of Cox et. al

In this section, we consider a well-known watermarking scheme proposed
by Cox et al. (1996). It is an instantiation of the generic watermarking
scheme explained in Section 4.3.5. To achieve robustness, Cox et al. (1996)
argue that the watermark must be placed in perceptually significant regions
of the underlying work. However, modifying these regions would introduce
visible distortion and violate the desired fidelity. To solve this problem,
they use ideas from spread spectrum communication that is a well-known
steganographic technique. The basic idea is as follows: A narrow-band
message signal (watermark) is secretly and reliably transmitted over a wide-
band channel (cover work). Using this technique the message signal appears
like white noise, and is pseudo-randomly spread over the whole frequency
range, i.e., the low-energy signal is embedded in each of the corresponding
frequency bands.6 An adversary must, therefore, manipulate a large number
of frequency bands to be able to block the message from transmitting since
the adversary does not know over which frequencies the message signal is
spread.

In the context of watermarking, this means that the watermark is statis-
tically spread over the whole work, and since the adversary does not know
which frequency components are marked, it must modify a large number of
frequency components to be able to remove the watermark. This, however,
should with high probability render the resulting work useless regarding its
perceptual quality.

The components work i of ~work are coefficients of Discrete Cosine Trans-

formation (DCT) of work . The components to be marked are chosen
from a certain frequency range (e.g., 1000 largest DCT coefficients but
one can also select them pseudo-randomly.) The watermark components
wmj are chosen from a Normal distribution N(0, 1). Thus, we have
workWM

ij
:= work ij + sjwmj where si is the appropriate strength.

Reading the watermark is done by detection. The detection metric is

6This reconcile the following conflicting issues: High-frequencies are relevant for imper-
ceptibility of the watermark but not for its robustness whereas low-frequencies are relevant
for robustness but useless for imperceptibility.
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normalized correlation as follows:

corr ( ~wm, ~wm∗) :=
< ~work − ~work ∗, ~wm >

‖ ~work − ~work ∗ ‖

where < ~a,~b > denotes the scalar product of two vectors ~a and ~b. The
watermark is detected if corr ( ~wm, ~wm∗) > δ, where δ is an empirically
determined threshold.

Next section considers constructions for watermarks which can resist
collusion attacks of a certain maximum size.

4.3.6 Collusion-tolerant Encoding/Watermarking

4.3.6.1 Introduction

In addition to robustness, we require a watermark to be collusion-tolerant
meaning that even if the adversary has access to a certain number of finger-
printed copies of the same work, it should not be able to remove any of the
embedded watermarks or to generate a new one.7 Recall that each copy of
the original work contains its own unique watermark.

Wagner (1983) mentions collusion attacks in his pioneering work on a
taxonomy for fingerprinting schemes (where he also proposed several meth-
ods for fingerprinting different objects.) Later, Blakley, Meadows, and
Purdy (1986) proposed a construction for collusion-tolerant codes to be em-
bedded into works. However, the code length is exponential in the collusion
size. Chor, Fiat, and Naor (1994) considered the problem of traitor tracing

in the context of broadcast distribution. They proposed constructions to
fingerprint keys which the users obtain for their decoder devices. Boneh
and Shaw (1995) introduced a model for constructing codes which tolerates
collusions of a maximum size collsize (see also Boneh and Shaw (1994) and
Boneh and Shaw (1998)). Their model is based on an assumption called
marking assumption, saying that a collusion can see and change only
those bits in which any two of the colluders’ copies differ. Note that the
model of Boneh and Shaw (1995) abstracts from the watermarking issues
such as watermark security and robustness, and considers only watermark
strings, i.e., it considers the data-independent part of fingerprinting (see the
layer model in Figure 4.1). They present the construction of a code called
basic code which requires a watermark roughly of the length O

(
(collsize)3l

)

bits to convey l bits in a work.8 The basic code can tolerate collusions up
to the number of all users, i.e., collsize = n. In this model, no shorter code
with the same collusion-tolerance is known. Boneh and Shaw (1995) then
applied the ideas from traitor tracing to construct codes which can handle

7One may generalize this attack to the case where adversary has access to different

(watermarked) works.
8Note that the cost for the final watermarking is not included.



156 Fingerprinting

more users (n > collsize) but smaller collusions. These codes are called con-
catenated codes because they are constructed by concatenating symbols
of the basic code. Their construction requires a watermark roughly of the
length O

(
(collsize)4l

)
bits to convey l bits in a work.

Attempts to improve Boneh and Shaw codes regarding the marking as-
sumption and the length of the codes are done in Yacobi (2001) and Mu-
ratani (2001), however, no real breakthrough have been achieved.

A completely different approach is proposed by Kilian et al. (1998). Their
watermarking scheme is the same as that proposed by Cox et al. (1996)
described in Section 4.3.5.1. Using a statistical analysis they argue that
their scheme is already collusion-tolerant. In their scheme O

(
(collsize)2l

)

watermark components are required to convey l bits. A later work by Ergun,
Kilian, and Kumar (1999) gives an almost tight lower bound for this class
of schemes. They relax the assumptions of the model of Kilian et al. (1998)
in the sense that the components need not be independent and normally
distributed.9 Within their model they show that no watermarking can offer
a better collusion-tolerance.

The construction of Boneh and Shaw (1995) has, however, the advantage
that it is data-independent. In this thesis, we will focus on this construction,
review its construction in Section 4.3.6.4, and use it as a building block for
our asymmetric fingerprinting schemes.

4.3.6.2 Model

We use a different notation for the components of collusion-tolerant water-
marking than the notation we used for conventional watermarking in Section
4.3. This is useful for modularity because we can also handle the case where
conventional watermarking schemes are used as building blocks, i.e., we can
separate the data-independent part from the data-dependent part (see also
Section 4.2.1).

The involved parties are a selling party, the merchant M, and a pur-
chasing party, the buyer B. M is the one who runs the algorithms for em-
bedding and extracting watermarks to/from the copies of the original work.
We assume a similarity relation →sim and the corresponding similarity test
simtest() to be given (see Section 4.1.2).

In each sold copy of the original work work ,M embeds a different secret
value ~embi ∈ EMB where ~embi is encoded as a collusion-tolerant watermark.
Here, EMB denotes the domain of embedding values. On redistribution of
a (fingerprinted) work work red , that is similar to one of the original works,
the extracting algorithm should extract the corresponding embedded value
~embj from work red . The components of the schemes are as follows:

9However, the perceptibility measure is still defined by a threshold in Euclidean dis-
tances.
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• Key generation: This algorithm generates parameters and keys
keyemb required for the embedding and extracting procedure. We de-
note this algorithm by

keyemb ← GenKeyEmbed(par emb)

where par emb denotes the corresponding input parameters (e.g., secu-
rity parameters).

This algorithm is performed once for all copies of the underlying work
to be sold.

• Embedding: The embedding procedure, performed byM, is denoted
by

(workfing , recwork
M )← EmbedProt(work , ~emb, keyemb)

where we now denote the watermarked work with work fing , and corre-
sponding record (for the merchant) with recwork

M .

• Extracting: The extracting procedure (performed byM) is denoted
by

~emb ← ExtractProt(work red , keyemb ,REC work )

where work red denotes the redistributed copy for which true ←
simtest(work ,work red ) holds, and REC work denotes all records on the
work work .

4.3.6.3 Security Requirements

We require a collusion-tolerant watermarking scheme to fulfill the following
security requirement.

Security for merchant (Traceability): Given a redistributed (water-
marked) work similar to one of his works, the merchant M can extract the
embedding value of (at least) one traitor, if at most collsize copies were used
in a collusion attack.

More precisely, we call a watermarking scheme collsize collusion-tolerant
(or secure for the merchant) if and only if for all probabilistic polynomial
adversaries A the following holds:

• If M runs EmbedProt(work , ~emb, keyemb) at most collsize time where
M chooses the work work ∈ WORK , and A chooses the different
embedding values ~embi ∈ EMB for the corresponding copies of work
to be fingerprinted,

• and if A outputs a work work red such that true ←
simtest(work ,work red ),
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• then the extracting algorithm ExtractProt(work red , keyemb ,REC work )

outputs one10 of the embedding values ~embj which was input to
EmbedProt() on work previously, except with negligible probability in
a security parameter where the probability space is defined over all
random choices of the involved parties.

4.3.6.4 Construction of Boneh and Shaw

The model proposed by Boneh and Shaw (1995) is a discrete framework
which is data-independent and abstracts the watermarking part (see also
Boneh and Shaw (1998) and Shaw (2000)).

Let Σ0 := {sym1, sym2, · · · , symn} be a finite alphabet, and Γ0 :=
{word 1, · · · ,wordn} ⊆ {0, 1}l be a collection of n codewords where the en-
coding sym i = Γ0(word i) holds. Such a code is called an (l, n)-code. Each
codeword represents a watermark (fingerprint) encoding the corresponding
symbol.11 Each bit of a codeword represents a mark, and can have one of
the values {0, 1, ?} where ? means unreadable.

For a nonempty set of codewords A := {word 1, · · · ,word r} ⊆ {0, 1}l, we
define MATCH A := {i|word 1,i = · · · = word r,i} as the set of all bit positions
on which all codewords word 1, · · · ,word r match.

Let Γ0 be an (l, n)-code, and COL ⊆ Σ0 the set of symbols of a collusion,
and W := Γ0(COL) ⊆ Γ0 denote the set of codewords assigned to these
symbols. With MATCH W we denote the set of bit positions where marks
are identical for the codewords assigned to the elements of COL. We call
the set MATCH W undetectable bits of COL. The set of bit positions not
identical for all elements of the collusion is called detectable bits. Thus,
the detectable bits are those marks different for at least one element of the
collusion COL whereas the undetectable ones are identical for all elements
in COL.

Boneh and Shaw (1995) state the following assumption, called marking
assumption: A collusive adversary A, cannot generate a copy work ∗ of the
underlying work work that contains a codeword word ∗ which differs from the
codewords in W in its undetectable bit positions MATCH W . In other words,
marking assumption says that only those marks can be detected which differ
among the codewords assigned to the collusion, and only these marks can
be changed by the collusion. Based on this assumption, the goal is to define
the set of words a collusion can produce. The set of words constructible by
a collusion of a certain size collsize is called feasible set, and consists of
words which match the undetectable bits of the collusion COL. This set is

10Here, we assumed that the algorithm outputs the embedding value of one of the
traitors, although it may also find the embedding values of other collusion members.

11Note that Boneh and Shaw (1995) set Σ0 := {U1, · · · ,Un} where Ui is the identity of
the user i.
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denoted by F (COL) and defined as follows:

F (COL):=

{word ∈ ({0, 1} ∪ {?})l|word j = word i,j, j ∈ MATCH W ,word i ∈W}

where word j and word i,j denote the j-th bit of the words word and word i.
The marking assumption implies that any collusion COL of size collsize

is only able to generate a work with a fingerprint which lies in the feasible
set of COL. If the generated fingerprint contains an unreadable mark ?, it
is arbitrary set to 0.

Based on the marking assumption, Boneh and Shaw give constructions
for codes that can tolerate collusions of a maximum size. We will consider
their constructions in the following.

collsize-secure codes

Generally, one are interested in constructing codes with the following prop-
erty: Suppose, a collusion (of buyers) of size collsize generates a copy work red

with true ← simtest(work ,work red ). Further, assume that this copy contains
the codeword word red . Having extracted word red from work red , one needs
a mechanism for identifying a subset (or at least one member) of COL by
using word red .12 A code with this property is called collsize-secure codes.

Boneh and Shaw (1995) show that for collsize ≥ 2 and n ≥ 3 there exists
no totally collsize-secure codes. This means that for these parameters
one cannot with certainty extract symbols which are in COL. However, if
one allows a certain error-probability 0 < ε < 1 that the wrong symbol is
extracted, then one can construct a collsize-secure code with ε-error: More
precisely, a collusion-tolerant code is called collsize-secure with ε-error, if
there exists an algorithm which, given a codeword word red generated by a
collusion COL of size collsize , extracts at least one element of COL with
probability 1− ε. The probability space is defined over the random choices
of the merchant, and the random choices of the collusion.

Remark 4.6. Note that, here, we talk about an algorithm extracting (or
identifying) the correct symbols. In the terminology used by Boneh and
Shaw (1995), the alphabet Σ0 is the set of users’ identities, and the extracting
algorithm is called tracing algorithm which outputs the identity of at least
one member of the collusion. For collsize-secure codes with ε error, this
means that with the error-probability ε, the algorithm may wrongly identify
an honest buyer. ◦

12This is the most we can get, since we do not know the collusion’s strategy of using
the information available to its members. For instance, a collusion may not use a certain
codeword at all, and thus, no method can extract a set of of symbols containing the symbol
associated to this codeword.
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To construct such a code, Boneh and Shaw first construct an n-secure code
with ε-error called basic code or inner code. In the following, we call
this code basic code. This code is denoted by Γ0. The length of this code
is nO(1), and hence, too large to be practical. They use the basic code to
construct collsize-secure code with ε-error for collsize < n. The resulting
code is called outer code or concatenated code. In the following we
will call this code outer code. The length of the outer code is of order
cO(1)log(n)O(1) where c := collsize (Note that for collsize := O(log n) the
length of the code becomes poly-logarithmic in the number of the symbols.)
Next, we take a closer look at the basic code Γ0.

Basic code Γ0(n, d)

It consists of n codewords. Each codeword consists of n − 1 blocks
B1, · · · , Bn−1 of length d. The parameter d is important in determining
the error probability of the extraction (tracing). The basic code is denoted
by Γ0(n, d). Each codeword has binary 1 in blocks Bj , j ≥ i, and binary 0 in
other blocks. In general, the i-th basic codeword word Γ0

i of the basic code Γ0

is wordΓ0
i :=0di1d(n−1−i), and has the length l = length2(wordΓ0

i ) = d(n−1).
Each symbol sym i is then encoded with a codeword. The block length pa-
rameter d indicates how many times each column in the code is duplicated.
For brevity, we often omit the repetition and set d = 1.

As an example, consider the code Γ0(5, 3) in the Table 4.1:

Table 4.1 The Basic code Γ0(5, 3) of Boneh and Shaw for n = 5, d = 3

sym Γ0(5, 3)

sym1 1 1 1 1 1 1 1 1 1 1 1 1
sym2 0 0 0 1 1 1 1 1 1 1 1 1
sym3 0 0 0 0 0 0 1 1 1 1 1 1
sym4 0 0 0 0 0 0 0 0 0 1 1 1
sym5 0 0 0 0 0 0 0 0 0 0 0 0

B1 B2 B3 B4

Next, we consider the components of the basic code:

Key generation: The merchant generates the keys and parameters required
for the embedding and extracting of Boneh and Shaw Basic Codewords
(BSBC). The corresponding algorithm is denoted as follows

keyemb ← GenKeyEmbedBSBC(par emb)

where keyemb :=(skWM, parCT), skWM is the secret embedding and extracting
key of the underlying watermarking scheme, and par CT denote the (secret
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and public) parameters required for the basic code such as n, d,Σ0 and the
secretly and randomly selected permutation π ∈R Sl (Sl denotes the set of
all permutations of {1, · · · , l}).13

Embedding : We assume that we are given a robust watermarking scheme
(GenKeyWM(),EmbedMark(),ExtractMark()) which also satisfies the condi-
tions of the marking assumption. For the symbol sym i the merchant takes
the codeword word Γ0

i from Γ0(n, d), and applies π to its bits. The word

to be embedded for the corresponding symbol sym i is wordπ := π(wordΓ0
i )

which is input to the watermarking algorithm.

workfing ← EmbedMark(work ,word π, skWM).

Extracting : Given a redistributed work work red with true ←
simtest(work red ,work ), extract a codeword word red from a redistributed
work work red using the extraction algorithm of the underlying watermarking
scheme, i.e.,

word red ← ExtractMark(work red ,work , skWM).

For the basic code, Boneh and Shaw give an extracting algorithm that with
probability 1 − ε can extract at least one symbol of COL of the maximum
size collsize = n. We denote this algorithm with

COL 3 sym ← ExtractBSBC(sym red , π)

where symred is the symbol extracted from the redistributed work. Note
that symred corresponds to word red since basic codewords encode individual
symbols.

For this construction, Boneh and Shaw prove the following theorem:

Theorem 4.1 (Boneh and Shaw 1995) For n ≥ 3 and ε > 0 let d =
2n2 log(2n/ε). Then the code Γ0(n, d) is n-secure with ε-error. 2

Outer code Γ(L,N, n, d)

Using the basic code Γ0, Boneh and Shaw (1995) show how to construct
shorter codes against collusions of size collsize < n. The basic idea is to
define a code over the alphabet Σ0 of the basic code Γ0(n, d). More precisely,
given an n-secure (l, n)-code with ε-error (here Γ0(n, d)), construct a collsize-
secure (lL,N)-code with N > n symbols by concatenating L ≥ 1 randomly

13Note that the same permutation π is used for all symbols sym i (obtaining the copies
of the underlying work), and must be kept secret. This hides from users which mark in
the work encodes which bit in the watermark string.
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chosen codewords from Γ0(n, d). The resulting code is denoted by Γ :=
Γ(L,N, n, d).

Next, we consider the construction for embedding and extracting proce-
dures of an collusion-tolerant watermarking scheme based on the outer code
of Boneh and Shaw (BSOC).

Key generation: The merchantM generates the keys and parameters keyemb

for the embedding and extracting procedure of the Boneh and Shaw Outer
Code (BSOC). This algorithm is denoted as follows

keyemb ← GenKeyEmbedBSOC(par emb)

where keyemb :=(skWM, parCT), skWM is the secret embedding and extracting
key of the underlying watermarking scheme, and par CT denote the (secret
and public) parameters required for the outer code such as n,N, d, L,Σ0,
and Π0 denotes the set of L permutations πi ∈ Sl, i ∈ [1, L].

Embedding algorithm: The construction for the embedding procedure is sum-
marized in Algorithm 1. The embedding algorithm is denoted by

(workfing , recwork
M )← EmbedProt(work , ~emb, keyemb).

We separate this algorithm into two main components: The first one is an
algorithm for collusion-tolerant encoding (outer codeword) denoted by

word ← GenWord( ~emb, keyemb [GenWord])

where keyemb[GenWord] denotes the corresponding components from the ar-
ray keyemb[] required as inputs to GenWord() (here par CT). The second
algorithm is for embedding this codeword into the underlying work denoted
by

workfing ← EmbedWord(work ,word , keyemb [EmbedWord])

where keyemb [EmbedWord] denotes the corresponding components from the
array keyemb []. Here, this is simply skWM.
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Algorithm 1 Embedding algorithm based on BS outer code: EmbedProt()

EmbedProt(work , ~emb, keyemb)

1. Generating outer codeword : Run the algorithm GenWord( ~emb, parCT)
to generate the outer codeword. The individual steps are as follows:

(a) Check whether ~emb has already been encoded. If yes, use the
corresponding word, otherwise continue.

(b) Choose a new random codeword ~word ′ ∈R ΣL
0 , i.e.,

~word ′ := (sym1, sym2, · · · , symL)

where Σ0 := {0, · · · , n− 1}.
(c) Encode each symbol sym i, i ∈ [1, L] with codewords from Γ0(n, d).

The resulting encoding is denoted by Γ0(sym i), and the resulting
outer codeword with

word :=
(
Γ0(sym1), · · · ,Γ0(symL)

)
.

(d) Remember recwork
M ← (word , ~emb,work ).

(e) Permute the bits of each Γ0(sym i) using πi. The result is denoted
by Γπi

0 (sym i) := πi

(
Γ0(sym i)

)
. The permuted outer codeword is

denoted by word π :=
(
Γπ1

0 (sym1),Γ
π2
0 (sym2), · · · ,ΓπL

0 (symL)
)
.

2. Embedding word : Run the algorithm EmbedWord(work ,word π, skWM)
to embed the outer codeword. In our case, this is the embedding algo-
rithm of underlying watermarking scheme, i.e.,

workfing ← EmbedMark(work ,word π, skWM).

Extracting: Given a redistributed work work red with true ←
simtest(work ,work red ), M runs the extracting procedure as illustrated in
Algorithm 2. The extracting procedure is denoted by

~emb ← ExtractProt(word red , keyemb ,REC work
M )

It consists of two algorithms: Extracting a codeword word red from the re-
distributed work by using the extracting algorithm of the underlying water-
mark scheme, and extracting the embedded value ~emb using the extracting
algorithm for the outer code

~emb ← ExtractBSOC(word red , parCT).
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Algorithm 2 Extracting algorithm based on BS outer code: ExtractProt()

ExtractProt(word red , keyemb ,REC work
M )

1. Extracting redistributed codeword : Extract a codeword word red from a
redistributed work work red using the extraction algorithm of the un-
derlying watermarking scheme, i.e.,

word red ← ExtractMark(work red ,work , skWM).

2. Extracting codeword : Run ExtractBSOC(word red , parCT) to extract the
outer codeword as specified below:

(a) Apply the tracing algorithm ExtractBSBC(sym red
i , πi) to each sym-

bol symred
i of word red to extract a symbol symext

i ∈ Σ0. The re-
sulting codeword is denoted by

~word ext = (symext
1 , symext

2 , · · · , symext
L ).

(b) If word ext matches with a codeword word in REC work
M in at least

L/c symbols, then return the corresponding embedding value ~emb,
otherwise return failed .

4.3.6.5 Security

Boneh and Shaw (1995) show the following result regarding the outer code:

Theorem 4.2 (Boneh and Shaw 1995) Given N, collsize ∈ N, ε ∈ R,
ε > 0, let n = 2collsize, L = 2collsize log(2N/ε) and d = 2n2 log(4nL/ε).
Then Γ :=Γ(L,N, n, d) is a collsize-secure code with ε-error with N symbols
of length length2(word ∈ Γ) = O(Ldn) = O

(
collsize4 log(N/ε) log(1/ε)

)
. 2

Assuming that the underlying watermarking scheme satisfies the conditions
of the marking assumption, the extracting algorithm of the basis code guar-
antees that, with high probability, one can extract a symbol from the un-
derlying alphabet Σ0, and that this symbol comes from one of the traitors.

Thus, if there were at most collsize traitors then the extracted word ~word ext

must match the word of one of these traitors in at least L/c symbols. Hence,
the collusion-tolerant watermarking scheme described in Algorithms 1 and
2 is secure for the merchant.

4.4 Symmetric Fingerprinting

4.4.1 Model

The main parties are merchants M and buyers B. We denote the real
identity of a buyer by IDB. We assume a similarity relation →sim and the
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corresponding similarity test simtest() to be given.
The model for symmetric fingerprinting scheme is illustrated in Figure

4.2.

Figure 4.2 Overview of symmetric fingerprinting
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A symmetric fingerprinting scheme consists of the following components:

• Key generation: M generates the required parameters for the em-
bedding and extracting procedures. This is denoted by

keyemb ← GenKeyEmbed(par emb).

• Fingerprinting: This is a protocol between a merchant M and a
buyer B. M’s secret input is the work work . The common input is the
identity IDB of B. The output to M is a purchase record pur recwork

M

on work for the buyer B or failed meaning that the protocol was not
successfully completed. The output to B is the fingerprinted work
workfing and the associated purchase record pur recwork

B or failed . The
fingerprinting protocol is denoted as follows:

(B : workfing , pur recwork
B ; M : pur recwork

M )

← Fing(B : −; M : work ; ∗ : IDB).

• Identification: On the redistribution of a work similar to one of his
works work , M runs the identification algorithm to identify the orig-
inal buyer(s) of this work. M inputs the redistributed work work red

and all purchase records PUR REC work
M on work . The output to M

is the identity IDB∗ of at least one traitor B∗. We denote the identifi-
cation algorithm as follows:

(M : IDB∗)← Ident(M : work red ,PUR RECwork
M ).
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4.4.2 Security Requirements

In this section, we consider the main security requirements for a symmetric
fingerprinting scheme.

Let IDB∗ denote any set of collsize different valid identities, A be a
probabilistic polynomial-time interactive algorithm, and stateA denote the
state of A which we will explicitly use in the following.

Security for merchant (Traceability): The merchant can identify at
least one traitor, if at most collsize copies were used in a collusion attack.

More precisely, we call a symmetric fingerprinting scheme secure for M if
and only if for all adversaries A the following holds:

• If M runs Fing(A : stateA; M : work ; ∗ : IDB∗) with A for at most
collsize times where M chooses the work work ∈ WORK , and A
chooses the valid identities IDB∗ ∈ IDB∗ ,

• and if A outputs a work work red such that true ←
simtest(work ,work red ),

• then the identification protocol Ident(M : work red ,PUR REC work
M )

outputs the identity of a traitor IDB∗ ∈ IDB∗ , except with negligi-
ble probability in a security parameter where the probability space is
defined over all random choices of the involved parties.

Remark 4.7. We may relax this requirement by requiring the identification
to have a fixed error probability ε.

Remark 4.8. For merchant’s security, we may let the adversary choose the
underlying works, instead of the merchant. This would result in a more
general security requirement. Note that the adversary may also obtain useful
information by executing the fingerprinting protocol on different works. For
our purposes, however, we will use the standard definition given above. ◦

Security for buyer (frame proofness): An honest buyer is not identified
as a traitor, no matter how large the size of the collusion against this buyer
is.

More precisely, we call a symmetric fingerprinting scheme secure (frame
proof) for the buyer if and only if the following holds: There is no adversary
A

• that runs Fing(A : stateA; M : work ; ∗ : IDB∗) arbitrarily often with
an honest merchant M, whereM chooses works work ∈WORK , and
A chooses the valid identities IDB∗ different from the identity IDB of
any honest buyer B,

• and can generate a work work red such that
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• the identification protocol Ident(M : work red ,PUR RECwork
M ) outputs

the identity IDB of an honest buyer B, except with negligible probabil-
ity in a security parameter where the probability space is defined over
all random choices of the involved parties.

4.4.3 Construction

To construct a collusion-tolerant symmetric fingerprinting scheme, one may
think of directly using a collusion-tolerant watermarking scheme described
in Section 4.3.6.2. However, the scheme must also guarantee the security
for the buyer as required in Section 4.4.2. To make the framing probability
negligible, the scheme should take care of the following issues: First, there
must be a secret random mapping between the embedding value ~emb and
the identity IDB of an honest buyer. Secondly, the cardinality of the set
of embedding values EMB must be sufficiently large. For appropriately
chosen parameters, one can use the collusion-tolerant watermarking scheme
(based on outer code of Boneh and Shaw) from Section 4.3.6.4 to construct
a secure collusion-tolerant symmetric fingerprinting scheme. Note that the
construction of the outer code automatically assigns random codewords to
the corresponding value ~emb, and the number of symbols N can be chosen
sufficiently large while all other parameters can be computed in polynomial
time.

The resulting scheme is secure for the merchant as discussed briefly in
Section 4.3.6.5. It is also secure for the buyer since the word word chosen
for an honest buyer is completely independent of a word ∗ which any col-
lusion of buyers may be able to generate. Thus, we have to consider the
probability that word ∗ matches a given word in at least L/c symbols, and
this probability can be shown to be sufficiently small.14

4.5 Asymmetric Fingerprinting

In a symmetric fingerprinting scheme both parties, the merchant and the
buyer, know the fingerprinted work. This, however, implies that a redis-
tributed copy does not have to come from one of the original buyers. It
might also come from a cheating merchant or a dishonest employee of the
merchant. In other words, symmetric fingerprinting schemes do not provide
merchants with a proof of treachery that convinces an honest third party.
Thus, they offer no non-repudiation. To solve this problem, asymmetric
fingerprinting (AFP) were introduced by Pfitzmann and Schunter (1996).
The idea is that in case of illegal redistribution the merchant should be able

14This is a binomial probability distribution with parameters n = L, p = 1/2c and mean
L/2c, and then the Chernoff bound (see e.g., Feller (1968) or Alon and Spencer (1992))
can be applied to estimate that the probability for this event is sufficiently small.
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to derive a proof of treachery – similar to a digital signature of a traitor.
In asymmetric schemes, only the buyer knows the fingerprinted work after
the purchase. However, as soon as a redistributed work is found, the mer-
chant can retrieve enough information to identify at least one traitor, and
further, he should be able to prove this fact to any honest party. More-
over, even if legal redistribution is allowed, it should still be possible that
an honest buyer cannot be wrongly accused by a cheating merchant, or by
any other party colluding with the merchant against this buyer. The first
proposal for a general construction of asymmetric fingerprinting schemes
was introduced by Pfitzmann and Schunter (1996). Their construction uses
symmetric fingerprinting schemes as building block. Later, Pfitzmann and
Waidner (1997c) proposed constructions which can tolerate large collusions
– the same collusion size as the underlying symmetric scheme can handle.
A very similar approach was proposed independently by Biehl and Meyer
(1997).

4.5.1 Model

The main parties are merchants M, buyers B and arbiters J . We identify
each purchase by a purchase description text which contains a description of
the underlying work work , and the rights the buyer obtains on this work.15

Figure 4.3 illustrates the main protocols for the purchase and redistribution
in an asymmetric fingerprinting scheme.

15More precisely, we are concerned with rights on a work-class WORK sim
work . However,

for readability reasons, we use the notation for a single work in the following.
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Figure 4.3 The model of asymmetric fingerprinting
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An asymmetric fingerprinting scheme consists of the following protocols:

Setup: M and B generate the required keys and parameters. The main
procedures are as follows:

• The (global) system parameters par AsyFP (e.g., algebraic structure and
related parameters) are generated. This procedure is denoted by

parAsyFP ← GenParAsyFP(par sec).

• Each party X generates a key pair (skX , pkX ) of an underlying (secure)
signature scheme, and distributes pkX reliably and authenticated to
other involved parties, if required. We will use pkX as representative
for X’s identity. The key pair of B is denoted by (skB, pkB).

• M generates the required keys and parameters for the embedding pro-
cedure, i.e.,

keyemb ← GenKeyEmbed(par emb).

Fingerprinting: This is a protocol between a merchantM and a buyer B.
M’s secret input is the work work . The secret input of B is her secret key
skB. M and B also input text , and the identity of the buyer, represented
by her public-key pkB. The output to M is a purchase record pur recwork

M

or failed indicating that the protocol has failed. The main outputs to B are
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the fingerprinted work work fing and a purchase record pur recwork
B or failed .

We denote the fingerprinting protocol as follows:

(B : workfing , pur recwork
B ; M : pur recwork

M )

← Fing(B : skB; M : work ; ∗ : text , pkB).

Identification: This is an algorithm the merchant M runs to identify
the buyer of a redistributed copy work red of the work work for which
true ← simtest(work ,work red ) holds. He inputs work red and all his purchase
records PUR REC work

M for work . Note that we require the construction to
allow legal redistribution. It means that a buyer can purchase “right of
distribution” allowing her to redistribute the underlying work, e.g., 5 years
after the purchase time. However, it should still not be possible to wrongly
accuse an honest buyer (by a cheating merchant or any other party colluding
with him against this buyer.) The output is the identity of a buyer pkB, the
text text used in the corresponding purchase, and a proof string proof (e.g.,
a signature of B). We denote the identification protocol as follows:

(M : pkB, text , proof )← Ident(M : work red ,PUR RECwork
M ).

Trial: This is a protocol performed when a merchantM wants to convince
a third party (an arbiter J ) that a certain buyer B has violated the terms
and conditions regarding a certain purchase described in text . The protocol
involves M and J , and, depending on the construction, it may also involve
the buyer B. Thus, the trial is either a 2-party or a 3-party protocol. M
inputs pkB, text and the proof string proof which he retrieved in the iden-
tification. If B participates, she inputs her purchase record pur recwork

B she
obtained on work during the fingerprinting protocol.16 The main output is
the arbiter’s result. It may be guilty , meaning that she considers B as a
traitor17 or not guilty , meaning that she rejects the accusation. We denote
the trial protocol as follows:

• Two-party trial:

(M : −; J : ind)← Trial(M : pkB, text , proof ; J : −)

• Three-party trial:

(B : −; M : −; J : ind)

← Trial(B : pur recwork
B ; M : pkB, text , proof ; J : −)

where ind ∈ {guilty ,not guilty}. Whenever convenient, we use the no-
tation Trial([B : pur recwork

B ]; M : pkB, text , proof ; J : −) to consider
both possibilities.

16Note that text is not taken as common input since B and M may not be in agreement
with.

17One may consider the output as (guilty , pkB) explicitly indicating the identity pkB of
the traitor.
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4.5.2 Security Requirements

In this section, we consider the main security requirements of an asym-
metric fingerprinting scheme. In contrast to symmetric fingerprinting (Sec-
tion 4.4.2), the requirements concern the trial protocol where the merchant
presents to an arbiter a proof of treachery proof against one or more traitors.

Let IDB∗ denote any set of collsize different valid identities, A be a
probabilistic polynomial-time interactive algorithm, and let stateA denote
the state of A which we will explicitly use in the following. In general,
the adversary comprises any possible collusions of other parties against the
party whose security is being considered.

Security for merchant: An honest merchantM must be able to identify
at least one traitor, and win in the corresponding trial for every illegally
redistributed copy similar to one of his original works, unless the collusion
is larger than the tolerated limit.

More precisely, we call an asymmetric fingerprinting scheme secure for the
merchant if and only if for all A the following holds:

• If M runs the fingerprinting protocol Fing(A : stateA; M : work ; ∗ :
text , pkB∗) with A at most collsize time where M chooses the work
work ∈ WORK , and A chooses text and the valid identities pk B∗ ∈
IDB∗ , and where other transactions (Trial()) withAmay occur between
the executions of Fing(),

• and if A outputs a work work red such that true ←
simtest(work ,work red ),

• then the identification protocol Ident(M : work red ,PUR RECwork
M )

outputs (pkB∗ , text , proof ) with pkB∗ ∈ IDB∗ such that

• the trial protocol Trial([A : stateA]; M : proof , pkB∗ , text ; J : −)
outputs guilty to J , except with negligible probability in a security pa-
rameter where the probability space is defined over the random choices
of all the involved algorithms.

We may additionally require the merchant to be protected from wrong accu-
sations since it would harm his reputation if he loses a trial even though the
identification was successful. Hence, it should be infeasible for an adversary,
even if the collusion size is greater than collsize , to generate a text such that
the identification succeeds, but the trial outputs not guilty .

More precisely, we may extend the previous requirement as follows: We call
an asymmetric fingerprinting scheme secure for the merchant if and only if
for all A the following holds:

• If M runs the fingerprinting protocol Fing(A : stateA; M : work ; ∗ :
text , pkB∗) with A at most collsize time where M chooses the work
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work ∈ WORK , and A chooses text and the valid identities pk B∗ ∈
IDB∗ , and where other transactions (Trial()) withAmay occur between
the executions of Fing(),

• and if A outputs a work work red such that true ←
simtest(work ,work red ),

• then the identification protocol Ident(M : work red ,PUR REC work
M )

outputs (pkB∗ , text , proof ) with pkB∗ ∈ IDB∗ , except with negligible
probability in a security parameter where the probability space is de-
fined over the random choices of all the involved algorithms.

and,

• on successful identification, with the result pkB∗ , the trial protocol
Trial([A : stateA]; M : proof , pkB∗ , text ; J : −) outputs guilty to J ,
except with negligible probability in a security parameter where the
probability space is defined over the random choices of all the involved
algorithms.

Remark 4.9. The requirement for merchant’s security requires the success
probability of the merchant to be overwhelming in both the identification
and the trial protocols. However, in case of the identification, we may weaken
this requirement by allowing a certain bound on the success probability.
With a suitable choice such as 1/2, we may still achieve the determent

effect, however we do not want to harm merchant’s reputation by letting
him fail in the trial with non-negligible probability. ◦
Security for buyer: An honest buyer B should not be found guilty by an
arbiter J , i.e., the output of the trial protocol for this buyer will not be
guilty , no matter how large the size of the collusion against this buyer is.
This requirement is also called frame proofness.

More precisely, we call an asymmetric fingerprinting scheme secure for the
buyer if and only if the following holds: There is no adversary A
• that runs the fingerprinting protocol Fing(B : skB; A : stateA,work ; ∗ :

text , pkB) arbitrarily often with an honest buyer B where A chooses the
purchase descriptions text , and works work ∈WORK , and A may per-
form any other transactions (Trial()) between the executions of Fing(),

• and obtains the data of some purchases (e.g., all works work fing for
which the purchase descriptions text allow legal distribution),

• can generate a work work ∗fing , a text text∗ and a proof string proof ∗,

• and then run the trial protocol Trial([B : pur recwork
B ]; A :

stateA, proof ∗, pkB, text∗; J : −) with an arbiter J where the output
to J is guilty , except with negligible probability in a security param-
eter where the probability space is defined over the random choices of
all the involved algorithms.
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4.5.3 Construction Framework

The main task during the fingerprinting protocol is to embed the secret
identifying information ~emb into the underlying work work where only the
buyer obtains the fingerprinted work work fing at protocol completion. The
construction has to consider the following main issues:

• Verification: The merchant must be provided with mechanisms for
(i) verifying that ~emb has the correct form, (ii) establishing a relation
between ~emb and the (public) parameters representing B’s real identity
(here pkB), and (iii) verifying this relation. All these mechanisms
should not reveal any useful information about ~emb to the merchant.

• Embedding : There must be a mechanism to embed ~emb into work
such that the merchant is convinced that ~emb is correctly embedded
without obtaining any useful information about it, and B obtains a
fingerprinted version of the underlying work without getting any in-
formation enabling her to remove the embedded watermark.

• Extracting: The merchant must be provided with a mechanism for
extracting the value ~emb from a redistributed work work red similar to
one of his original works.

The embedding protocol is the most complex part of the fingerprinting pro-
tocol. We will first consider its model and security requirements. Then we go
through some more details by briefly reviewing a construction for an asym-
metric collusion-tolerant fingerprinting scheme proposed by Pfitzmann and
Waidner (1998). Later, in Chapter 5, we present an explicit construction
for the embedding protocol of an (anonymous) asymmetric collusion-tolerant
scheme.

4.5.4 Embedding

4.5.4.1 Model

The involved parties are the merchantM and the buyer B. The main compo-
nents are the key generation algorithm, the embedding and the extracting
procedures. We assume a similarity relation →sim and the corresponding
similarity test simtest() to be given.

In contrast to the symmetric fingerprinting scheme, the embedding pro-
cedure is an interactive protocol between M and B where the embedding
information ~emb (B’s secret input) should be securely embedded into the un-
derlying work work (M’s secret input). Hereby, the embedding information
~emb is hidden fromM in a commitment denoted by Cemb .

The extracting procedure is performed by M to extract the embedded
information ~emb from a redistributed work work red similar to a work work
the merchant has already sold.
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• Key generation: M generates the required keys and parameters
keyemb for the embedding and extracting procedures. We denote the
key generation algorithm by

keyemb ← GenKeyEmbed(par emb)

where par emb denotes the corresponding parameters (e.g., security pa-
rameters), and keyemb := (keys

emb , key
p
emb) consists of a secret part

keys
emb and a public part keyp

emb . This algorithm is performed once
for all copies of the underlying work to be sold.

• Embedding protocol: The embedding procedure is denoted by

(B : workfing ; M : recwork
M )

← EmbedProt(B : stateCemb

B ; M : work , key s
emb ; ∗ : Cemb , key

p
emb).

The common input is the commitment Cemb := com ( ~emb) to ~emb
(which is usually handed over from the previous protocol), and the
public parameters keyp

emb. B inputs the secret opening information

stateCemb

B for this commitment, andM secretly inputs the work work
to be fingerprinted, and the keys key s

emb for embedding. The output
of the protocol to B is the fingerprinted work work fing , and to M
the record recwork

M which contains work , and the tracing information

denoted by ~trace inf .

Note that, in the following, whenever it is clear from the context, we
will not explicitly mention the commitment parameters par com (as a
part of common input)

• Extracting procedure: The extracting procedure is performed by
M, and is denoted by

~emb ← ExtractProt(work red , keyemb ,RECwork
M )

where work red denotes a redistributed copy for which true ←
simtest(work ,work red ) holds, and REC work

M denotes the set of all
records recwork

M on work .

4.5.4.2 Security Requirements

The embedding protocol must fulfill the following security requirements in
addition to those of a symmetric embedding procedure.

Security for merchant: M must be able to verify that the content of
Cemb is correctly18 embedded into the underlying work at protocol comple-
tion without leaking any useful information about his secret inputs. We
classify these requirements as follows:

18e.g., as a collusion-tolerant watermark or any other specified encoding



4.5 Asymmetric Fingerprinting 175

• Soundness: Let ~emb denote the content of the commitment Cemb . On
common input Cemb , if B obtains any fingerprinted work work fing with
true ← simtest(work ,work fing ) from a run of EmbedProt(), then ~emb
is correctly embedded in work fing according to the specified encoding
(e.g., collusion-tolerant) and the underlying watermarking scheme.

• Secrecy : The embedding protocol should not leak any additional in-
formation onM’s secret inputs (the embedding keys key s

emb , the trac-

ing information ~trace inf , the original work work ) beyond the finger-
printed work workfing .19

Security for buyer: The embedding protocol should not reveal any addi-
tional information on the embedding value ~emb. We express this requirement
as follows:

• Secrecy : On common input Cemb , the embedding protocol should be
zero-knowledge.

Note that we are primarily interested in collusion-tolerant fingerprinting
schemes. In this case, we may see the embedding protocol for the asym-
metric fingerprinting scheme as an extension to the collusion-tolerant wa-
termarking (Section 4.3.6.2) that must additionally fulfill the mentioned
requirements.

Remark 4.10. Note that the buyer does not have any soundness requirement.
This is because, due to our construction, M requires the value ~emb for the
purpose of traitor identification, and thus, it is not in his interest to embed
any information other than ~emb into the underlying work. ◦

4.5.4.3 A Construction Framework for Embedding

We describe a construction framework for the embedding protocol of our
fingerprinting scheme. We separate this protocol into two parts. The first
part is the encoding procedure where the embedding information ~emb is
encoded as specified by the protocol. In our case, this is a collusion-tolerant
codeword. The second part is the watermarking part where this codeword
is embedded into the underlying work. Note that, here, we focus on data-
independent encoding. However, one may combine these two parts if one
applies a data-dependent watermarking scheme such as the one explained
in Section 4.3.5.1.

19Note that we cannot simply require the embedding protocol to be zero-knowledge (for
M) since workfing is revealed to the buyer.
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Encoding: The protocol for the secure encoding ~emb in form of a
collusion-tolerant codeword word is denoted by

(B : −; M : Cword , ~trace inf )

← GenWord(B : stateCemb

B ; M : keys
emb [GenWord]; ∗ : Cemb , key

p
emb [GenWord])

where Cword :=com (word ) is the commitment to word , ~trace inf is the trac-
ing information, key s

emb [GenWord], keyp
emb [GenWord] are the corresponding

components from the array keyemb [] required as inputs to GenWord().
We may further refine this protocol as follows:

• Generating tracing information: The tracing information ~trace inf
for the merchant M is generated. We assume that M generates this
information by himself, and denote the corresponding algorithm as
follows:

~trace inf ← GenTraceWord(par trace inf )

where par trace inf := keyemb [GenWord.GenTraceWord] denotes the
parameters required for GenTraceWord() taken from the array
keyemb [GenWord].

• Encoding embedding information: B may be required to encode the
embedding information ~emb using a publicly known encoding (e.g., an
Error-and-Erasure-Correcting Code, etc). We denote this procedure
by

~emb inf ← GenEmbWord( ~emb, par emb inf )

where par emb inf := keyp
emb [GenWord.GenEmbWord] denotes the corre-

sponding parameters in the array key p
emb[GenWord].

• Proving correct encoding : Now, B has to securely prove to M that
~emb inf has the correct form. For this, B applies a (zero-knowledge)

proof system where she commits to ~emb inf , denoted by Cemb inf , and
proves to M that its content is the encoding of the content of Cemb

according to the given encoding function. This protocol is denoted by

(B : −; M : ind)

← ProveEncEmbCom(B : stateCemb

B , state
Cemb inf

B ; M : −;

∗ : Cemb , Cemb inf , par emb inf )

where ind ∈ {accept , reject}.
• Collusion-tolerant encoding : M and B securely combine the tracing

trace inf and embedding emb inf information in form of a collusion-
tolerant codeword. We denote the corresponding protocol by

(B : −; M : Cword )

← CollTolWord(B : state
Cemb inf

B ; M : par s
CT, ~trace inf ;

∗ : Cemb inf , par
p
CT)
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where par s
CT := keys

emb[GenWord.CollTolEnc] denotes the correspond-
ing secret parameters from the array key s

emb [GenWord], and par p
CT :=

keyp
emb [GenWord.CollTolEnc] the public ones.

Embedding codeword: The collusion-tolerant codeword word is embed-
ded into work . The corresponding protocol is denoted by

(B : workfing ; M : −)

← EmbedWord(B : keycom; M : work , Cword , keys
emb [EmbedWord];

∗ : keyp
emb [EmbedWord])

where keycom denotes the secret key which allows the buyer B to open
any commitment computed with the underlying commitment scheme,
workfing denotes the fingerprinted work, and key s

emb [EmbedWord] and
keyp

emb [EmbedWord] denote the secret and the public parameters input to
this protocol.

Summary: We summarize the main protocols in Algorithms 3 and 4.

Algorithm 3 Overview of embedding protocol EmbedProt()

EmbedProt(B : stateCemb

B ; M : work , key s
emb ; ∗ :

Cemb , key
p
emb)

(B : −; M : Cword , ~trace inf ) ← GenWord(B : stateCemb

B ; M :
keys

emb[GenWord]; ∗ : Cemb , key
p
emb [GenWord]);

(B : workfing ; M : −) ← EmbedWord(B : keycom; M :
work , Cword , keys

emb [EmbedWord] ∗ : keyp
emb [EmbedWord]);

(M : recwork
M ← (work , ~trace inf ));

RETURN (B : workfing ; M : recwork
M )

Algorithm 4 Overview of word construction protocol GenWord()

GenWord(B : stateCemb

B ; M : keys
emb [GenWord]; ∗ :

Cemb , key
p
emb [GenWord])

(M : ~trace inf ) ← GenTraceWord(M : par trace inf );

(B : ~emb inf ) ← GenEmbWord(B : ~emb, par emb inf );

(B : −; M : ind) ← ProveEncEmbCom(B : stateCemb

B , state
Cemb inf

B ; M :
−; ∗ : Cemb , Cemb inf , par emb inf );

(B : −; M : Cword ) ← CollTolWord(B : state
Cemb inf

B ; M :

par s
CT, ~trace inf ; ∗ : Cemb inf , par

p
CT);

RETURN (B : −; M : Cword , ~trace inf )
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Remark 4.11. Note that the above illustrations should only give an overview
of the main protocols and algorithms. One may use any other illustrations
for this, e.g., by presenting the protocols and algorithms for each party
separately. ◦

4.5.5 Construction

In this section, we briefly review the construction of the collusion-tolerant
asymmetric fingerprinting scheme (with 3-party trial) proposed by Pfitz-
mann and Waidner (1997b). It uses a symmetric scheme as a building block
which is based on the outer codes from (Boneh and Shaw 1995) described
in Section 4.4. The idea is as follows:

The buyer B chooses a codeword to be embedded in the underlying work.
She hides this codeword in commitments. In a secure 2-party protocol the
following computations are performed: B proves that the content of the
commitment has the correct form, andM randomly and secretly selects the
half of the symbols of the codeword, and the corresponding commitments are
opened to him. This part of the codeword represents the tracing information
containing enough information for M to identify a traitor in case he finds
a redistributed work – as long as this work is generated by a collusion not
larger than the maximum tolerable collusion size.

Next, the codeword is securely embedded into the underlying work. On
redistribution of a work, similar to one of his (fingerprinted) works,M starts
the identification procedure. In case of illegal redistribution, the construc-
tion should provideM with a proof of treachery which convinces an arbiter.
For this, M shows to the arbiter that he knows “enough” symbols from
those commitments which were not opened to him. However, this is not
straight forward to implement since (i) M usually does not find the entire
codeword of a traitor due to collusions, and (ii) he does not know the secret
opening key of the commitments, and thus, he will not be able to show the
content of these commitments.

In the following, we give a high-level description of the individual com-
ponents of the scheme:

Setup: B generates a key pair (skB, pkB) and distributes pkB reliably to all
involved parties. M generates the parameters keyemb for embedding and
extracting the outer codeword. Here, we have key s

emb := (skWM,Π0) where
skWM is the secret embedding key, and Π0 the set of permutations π for
the bits of Boneh and Shaw basic codewords. Following our notation from
Section 4.5.4.3, the required parameters for the outer code are par s

CT := Π0

and par p
CT := (k, n, d, L,N, ε, collsize) where L and n are chosen as L :=

64collsize log(N/ε), n := 48collsize and d := 2n2(log(4nL/ε) (see also Section
4.3.6.4).
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Fingerprinting:

1. B chooses a random codeword ~word ′ of length L over the alphabet
Σ0 := {1, · · · , n}. We denote this codeword with

~word ′ := (sym1, sym2, · · · , symL).

2. B computes the commitment to ~word ′, and sends the result Cword ′ :=

com ( ~word ′) toM. Then B proves (in zero-knowledge) that the content
of the commitment has the correct form.

3. B signs text and Cword ′ , and sends the result sigB :=
Sign(skB; text , Cword ′) to M.

4. M verifies the signature and accepts if and only if true ←
VerSign(pkB; sigB) holds.

5. M and B run the embedding protocol

(B : workfing ; M : recwork
M )

← EmbedProt(B : state
Cword′

B ; M : work , key s
emb ; ∗ : Cword ′ , keyp

emb)

as described in Section 4.5.5.1.

Identification: On redistribution of a work work red similar to one of his
(fingerprinted) original works, i.e., true ← simtest(work red ,work ), M ex-
tracts the codeword word accuse by applying the extracting algorithm

word accuse ← ExtractProt(word red , keyemb ,REC work
M )

as described in Section 4.5.5.1. Now,M retrieves sigB, text and Cword ′ from
the corresponding purchase record of the given work, and accuses this buyer
B of treachery.

Trial: M presents

proof := (sigB, text , Cword ′ ,word accuse)

to the arbiter J . Then

1. J verifies the signature sigB using the public key pkB of the accused
buyer (as M did in the fingerprinting protocol).

2. M claims to J that word accuse has at least L/2+L/(16collsize ) symbols
in common with word ′ whose symbols are hidden in the commitments
Cword ′ (Pfitzmann and Waidner 1997b). If this claim is not true, the
buyer can defeat it by opening the commitments. Note that B does not
have to reveal the content of her commitments, since she may prove in
zero-knowledge that the claim is not true.

As one can see, this construction requires a 3-party trial since the buyer
must be present in the trial to deny the charges.
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4.5.5.1 Instantiation of Embedding and Extracting

In the following, we will give a brief overview of the embedding and extract-
ing procedures. Later, in Chapter 5, we will present a detailed and explicit
construction for these procedures in the context of anonymous fingerprinting
schemes (with two party trial), and consider their security. The common
input Cemb to the embedding protocol is already the commitment to the

codeword ~word ′ := (sym1, sym2, · · · , symL) (randomly selected from ΣL
0 by

the buyer B.) Thus, in the following, we consider the commitment Cword ′ .

Encoding GenWord(): The main steps of this protocol are as follows:

1. Generating tracing and embedding halfword : M randomly and secretly
chooses an index set IB ⊂ {1, · · · , L}, with |IB| = L/2. It is verified

that |IB| = L/2, and the symbols of ~word ′ at the positions in IB
are selected, and output to M, We denote the resulting tracing half-
word with ~halfword trace and the remaining embedding halfword with

~halfword emb. The tracing halfword ~halfword trace can be represented
by a codeword consisting of the symbols of ~halfword trace at the po-
sitions in IB and “?” at the positions not in IB, i.e., something like
halfword trace := (?, · · · , sym trace s, · · · , ?).

2. Collusion-tolerant encoding : The symbols sym s of ~word ′ are encoded
with the corresponding codewords from the basic code Γ0(n, d). The
resulting codeword, to be embedded for B, is a codeword word from
the outer code Γ.

Pfitzmann and Waidner (1997b) propose an efficient 2-party protocol for the
above computations.20

Embedding word EmbedWord(): An explicit construction for this proto-
col is given in Section 5.3.1, and therefore, we do not repeat it here. Note
that the construction not only works for marking schemes represented in
original pixel representation but also for any scheme where all marks are
disjoint subsets of the data components represented in embedding domain,
and where two versions of the data are given for each mark (see also Remark
4.5).

20For this, the buyer may compute the commitments Cword immediately to the outer
codeword word and apply an efficient zero-knowledge proof from Pfitzmann and Schunter
(1996) to prove that the content of the commitment has the correct form, i.e., the basic
codewords of Γ0(n, d) are the inner symbols of word . (Note that in our definition of the
embedding protocol, the common input Cemb (here Cword ) to the embedding protocol
should always have the correct form).

To obtain the half of the symbols, the merchant may blind and permute the commit-
ments Cword , prove the correctness of this transformation in zero-knowledge, and let the
buyer open the commitments at the desired positions and send back the result.
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Extracting word ExtractProt(): M applies the algorithm
ExtractProt(word red , keyemb ,RECwork

M ) for the outer code similar to
the extracting algorithm described in Section 4.3.6.4, Algorithm 2. The
differences to that algorithm are as follows:

• The search is done – among purchase records PUR REC work
M – for

the pair (IB, ~halfword trace) which has at least L/4collsize symbols in

common with ~word ext . For the choice of parameters see Pfitzmann
and Waidner (1997b).

• The output of the extracting algorithm is a codeword word accuse which
consists of halfword trace at the positions in IB, and of the symbols

from ~word ext at the remaining positions.

4.5.5.2 Security

Pfitzmann and Waidner (1997b) prove that if marking assumption holds for
the underlying watermarking scheme, and all the underlying cryptographic
primitives are secure, then for the chosen parameters the construction pre-
sented in Section 4.5.5 is a secure asymmetric fingerprinting scheme.

4.6 Anonymous Fingerprinting

Anonymous fingerprinting was introduced by Pfitzmann and Waidner
(1997a). In the following, we consider a model and a construction framework
for anonymous fingerprinting schemes.

4.6.1 Model

The main parties are merchants M, buyers B, registration RC centers and
arbiters J . Before buyers can purchase fingerprinted works, they must reg-
ister with a registration center RC.

As before, we identify each purchase by a purchase description text which
contains a description of the underlying work work , and the rights the buyer
obtains on this work. Figures 4.4 and 4.5 illustrate the main protocols for
the purchase and redistribution in an anonymous fingerprinting scheme.
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Figure 4.4 The model of anonymous fingerprinting: Purchase
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Figure 4.5 The model of anonymous fingerprinting: Redistribution
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The main components of an anonymous fingerprinting scheme are as
follows:

Setup: This is similar to that of asymmetric scheme described in Section
4.5.1. We denote the corresponding algorithm for generating the global
system parameters with parAnoFP ← GenParAnoFP(par sec), and the key pair
of the registration center RC with (skRC , pkRC).

Registration: This protocol is performed between a buyer B and a registra-
tion center RC. The common inputs are B’s public-key pkB (representative
for B’s digital identity), and RC’s public key pkRC . The secret input of RC
is its secret key skRC . The outputs are the registration records reg recRC ,
reg recB to RC and B or failed if the protocol fails. We denote the registra-
tion protocol as follows:

(B : reg recB; RC : reg recRC)

← Register(B : −; RC : skRC ; ∗ : pkB, pkRC).

Remark 4.12. One may ask why RC is then needed as the merchants could
play this untrusted role themselves. However, buyers will only be anony-
mous among all people registered at the same registration center, and cor-
responding groups per merchant would be too small to achieve meaningful
anonymity. ◦

Fingerprinting: This protocol is performed between the merchantM and
an (anonymous) buyer B. M’s secret input is the work work . Further, M
may input the public key pkRC of the registration center at which B has been
registered. We consider this key as common input. B inputs her registration
record reg recB. M and B also input the corresponding text text . The
output to M is a purchase record pur recwork

M or failed . The outputs to
B are a fingerprinted work work fing and a purchase record pur recwork

B or
failed . We denote the fingerprinting protocol as follows:

(B : workfing , pur recwork
B ; M : pur recwork

M )

← Fing(B : reg recB; M : work ; ∗ : text , pkRC).

Identification: This protocol is performed between the merchant M and
the registration center RC. M inputs a redistributed work work red which
he wants to trace back to a traitor. M also inputs all purchase records
PUR REC work

M for work . Note that we require the construction to allow
legal redistribution. It means that a buyer can purchase “right of distribu-
tion” allowing her to redistribute the underlying work, e.g., 5 years after the
purchase time. However, it should still not be possible to wrongly accuse an
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honest buyer (by a cheating merchant or any other party colluding with him
against this buyer.) Therefore, RC first checks whether the redistribution
is legal. If negative, RC inputs its registration records REG REC RC . The
output toM is the public-key of a buyer pkB, the text text used in the corre-
sponding purchase, and a proof (string) proof . We denote the identification
protocol as follows:

(M : pkB, text , proof ; RC : −)

← Ident(M : work red ,PUR RECwork
M ; RC : REG RECRC).

If RC refuses to cooperate21 then enforced identification is performed.
In this case, M should have enough evidence to convince an arbiter J to
enforce the cooperation of RC. Enforced identification is similar to identifi-
cation except that now, we involve also an arbiter J . M should obtain the
same outputs as in the identification protocol, and J obtains an indicator
ind ∈ {ok , center guilty}. The output center guilty indicates that J has
noticed misbehavior of the registration center RC. We denote the enforced
identification – as a protocol – as follows:

(M : pkB, text , proof ; RC : −; J : ind)

← EnforceIdent(M : work red ,PUR RECwork
M ; RC : REG RECRC ; J : −).

Trial: This protocol is performed when the merchantM wants to convince
an arbiter J that a buyer B is a traitor. The protocol involves M and J .
M inputs the identity of the accused buyer pkB, the text text , and also the
string proof proof which he has obtained in the identification protocol. The
main output is the arbiter’s result ind ∈ {guilty ,not guilty}.22 If it is guilty
then she is convinced that B is a traitor, if it is not guilty then she rejects
the accusation. We denote the trial protocol as follows:

(M : −; J : ind)← Trial(M : pkB, text , proof ; J : −).

Remark 4.13. If the construction requires the buyer to participate in the
trial, then we have

(B : −; M : −; J : ind)

← Trial(B : reg recB; M : pkB, text , proof ; J : −)

where B inputs her registration record reg recB. Note that in this case, J ’s
result may be center guilty meaning that no resolution could be achieved

21This may be indicated by an indicator output to M.
22One may consider the output as (guilty , pkB) explicitly indicating the identity pkB of

the traitor.
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becauseRC has behaved wrongly. Whenever convenient, we use the notation

([B : −]; M : −; RC : −; J : ind)

← Trial([B : reg recB]; M : pkB, text , proof ; J : −)

to consider both possibilities. ◦

4.6.2 Security Requirements

In this section, we describe the main security requirements for an anony-
mous fingerprinting scheme. The requirements formulated for asymmetric
fingerprinting (Section 4.5.2) must be adapted by new requirements, namely,
anonymity for the buyer and security for the registration center.

Let IDB∗ denote any set of collsize different valid identities, A be a
probabilistic polynomial-time interactive algorithm, and let stateA denote
the state of A which we will explicitly use in the following. In general, the
adversary A comprises any possible collusions of other parties against the
party whose security is being considered.

Security for merchant: An honest merchant M must be able to iden-
tify at least a traitor and win in the corresponding trial for every illegally
redistributed copy similar to one of his original works, unless the collusion
is larger than the tolerated limit. This should hold even if RC belongs
to the collusion. In this case, M may require enforced identification, if
the identification fails, and the output of this protocol to the arbiter may be
center guilty . As discussed in the case of asymmetric fingerprinting (Section
4.5.2), we may immediately formulate the requirement such that merchant
is protected from wrong accusations.

More precisely, we call an anonymous fingerprinting scheme secure for the
merchant if and only if for all A the following holds:

• If M runs the fingerprinting protocol Fing(A : stateA; M : work ; ∗ :
text , pkRC) with A at most collsize time where M chooses the work
work ∈ WORK , and A chooses text , the valid public keys pkB∗ ∈
IDB∗ , and the valid public key pkRC∗ , and where other transactions
(Register(), Ident(), EnforceIdent()) with A may occur between the ex-
ecutions of Fing(),

• and if A outputs a work work red such that true ←
simtest(work ,work red ),

• then the identification Ident(M : work red ,PUR RECwork
M ; A :

stateA) or the enforced identification EnforceIdent(M :
work red ,PUR REC work

M ; A : stateA; J : −) outputs (pkB∗ , text , proof )
to M with pkB∗ ∈ IDB∗ or center guilty to J , except with negligible
probability in a security parameter where the probability space is
defined over random choices of all the involved algorithms.
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and,

• on successful identification, with the result pkB∗ , the trial protocol
Trial(M : pkB∗ , text , proof ; J : −) outputs guilty , except with neg-
ligible probability in a security parameter where the probability space
is defined over random choices of all the involved algorithms.

Remark 4.14. As discussed in Remark 4.9, we may relax the requirement
on M’s success probability in the (enforced) identification by introducing
a certain bound for this probability whereas the success probability in the
trial should be overwhelming. Moreover, we may introduce a further bound
for the success probability in the enforced identification. ◦

Security for buyer: The security for the buyer considers the aspects of
frame proofness and unlinkability . Thus, we call an anonymous fingerprint-
ing scheme secure for the buyer if and only if the following holds:

Frame proofness: An honest buyer B should not be found guilty by an
arbiter J , i.e., the output of the trial protocol for this buyer will not be
guilty , no matter how large the size of the collusion against this buyer is.
In particular, as some redistributions may be legal, a proof of redistribution
must be unambiguously linked to a purchase description text used during
fingerprinting. More precisely, there is no adversary A
• that runs the registration protocol Register(B : −; A : stateA; ∗ :

pkB, pkRC∗) and the fingerprinting protocol Fing(B : reg recB; A :
stateA,work ; ∗ : text , pkRC∗) arbitrarily often with an honest buyer
B where A chooses the valid key pkRC∗ , purchase descriptions text , and
works work ∈ WORK , and where A may perform other transactions
(EnforceIdent(), Trial()) between the executions of Register() and Fing(),

• and obtains the data of some purchases (e.g., all works work fing for which
the corresponding purchase descriptions text allow legal distribution),

• and can generate a work work ∗fing , a text text∗, and a proof string
proof ∗,

• and then run the trial protocol Trial(A : stateA, proof ∗, pkB, text∗; J :
−) with an arbiter J where the output to J is guilty , except with neg-
ligible probability in a security parameter where the probability space
is defined over the random choices of all the involved algorithms.

Unlinkability : Purchases of honest buyers should not be linkable even by a
collusion of all merchants, central parties and other buyers. This means that
a collusive adversary learns nothing about the purchase behavior of honest
buyers except for facts that can simply be derived from the knowledge of who
has registered, and for what number of purchases, and at what time protocols
are executed. This property should even hold for the remaining purchases of
a buyer (or buyers) if the adversary obtains some works this buyer (or these
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buyers) bought. Here, we require that the views of the adversary A from

the registration view reg
A and from the fingerprinting view fing

A are unlinkable.

We consider the unlinkability of these views in two cases, namely, with and
without legal redistribution, and for the same and for two different buyers.23

We start with the case, where text does not allow legal redistribution, and
where there are two different buyers.

More precisely, we call an anonymous fingerprinting scheme unlinkable for
two different buyers, if and only if the following holds: For all adversary A,

• if A carries out with two different (honest) buyers, pk B,0 and pkB,1, two
registrations

Register(B : skB,0; A : stateA; ∗ : pkB,0, pkRC),

Register(B : skB,1; A : stateA; ∗ : pkB,1, pkRC∗)

and then carries out the corresponding fingerprintings

Fing(B : reg recB,b; A : work b, stateA; ∗ : text b, pkRC∗),

Fing(B : reg recB,b̄; A : work b̄, stateA; ∗ : text b̄, pkRC∗)

with these buyers in random order according to a secretly, randomly and
uniformly chosen bit b ∈R {0, 1}, where A chooses the valid key pkRC∗ ,
purchase descriptions text , and works work ∈ WORK , and where A
may perform other transactions (EnforceIdent(), Trial()) between the
executions of these registrations and the corresponding fingerprintings,

• then A cannot guess the bit b with probability significantly better than
1/2 (i.e., which of adversary’s views view reg

A,0, view reg
A,1 in the two regis-

trations corresponds to its views view fing
A,b , viewfing

A,b̄
in the corresponding

fingerprintings) where the probability space is defined over the random
choices of all the involved algorithms.

Next, we consider the transactions for two different buyers, but in the case,
where text allows legal distribution. In this case, RC must be trusted re-
garding the recovery of buyer’s anonymity for that purchase after the dis-
tribution, and thus, the scheme can only offer weak anonymity (see also
Section 4.2). More precisely, we call an anonymous fingerprinting scheme
with legal distribution unlinkable for two different buyers, if and only if the
following holds: For all adversary A

23Note that unlinkability for two different buyers does not necessarily imply unlink-
ability for the same buyer: Consider a fictive system where transactions of buyers are
numbered (e.g., incrementally) in registration, and the buyers have to reveal this num-
ber in fingerprinting. For different buyers this system is unlinkable since the transactions
of these buyers have the same number. However, the transactions of a single buyer are
linkable.
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• if two different (honest) buyers, pk B,0 and pkB,1, carry out two registra-
tions

Register(B : skB,0; RC : skRC ; ∗ : pkB,0, pkRC),

Register(B : skB,1; RC : skRC ; ∗ : pkB,1, pkRC)

and then carry out with A the corresponding fingerprintings

Fing(B : reg recB,b; A : work b, stateA; ∗ : text b, pkRC),

Fing(B : reg recB,b̄; A : work b̄, stateA; ∗ : text b̄, pkRC)

in random order according to a secretly, randomly and uniformly cho-
sen bit b ∈R {0, 1}, where A chooses purchase descriptions text , and
works work ∈ WORK , and where A may perform other transactions
(Register(), EnforceIdent(), Ident(), Trial()) between the executions of
these registrations and the corresponding fingerprintings,

• and then A obtains the outputs work fing
b and workfing

b̄
of the two finger-

printing protocols,

• then A cannot guess the bit b with probability significantly better than
1/2, where the probability space is defined over the random choices of
all the involved algorithms.

Remark 4.15. Similarly, we can formulate the above requirements for the
same buyer, except that the same key pair (skB, pkB) is used as input to the
corresponding protocols (i.e., the key generation algorithm for the buyer is
executed only once.)

◦

Security for registration center: An honest registration center will never
be found guilty, i.e., the output of the enforced identification to the arbiter
J will not be center guilty .

More precisely, we call an anonymous fingerprinting scheme secure for the
registration center if and only if the following holds: There is no adversary
A

• that runs Register(A : stateA; RC : skRC ; ∗ : pkB∗ , pkRC) with RC
polynomially many times where A chooses the valid identities pkB∗ ,
and where other transactions (Ident(), Enforce(), Trial()) with A may
occur between the executions of Register(),

• and can generate a work work red and the corresponding record
pur recwork

A ,

• and then run the enforced identification Enforce(A :
stateA,work red ; RC : REG RECRC ; J : −) with an arbiter J
where the output to J is center guilty , except with negligible proba-
bility in a security parameter where the probability space is defined
over random choices of all the involved algorithms.
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Remark 4.16. One may additionally consider the requirements complete-
ness and no jamming by registration center: The former requirement
means that the registration and fingerprinting succeed if all parties behave
correctly. The latter one means that even if RC is dishonest, B will convince
any honest merchant in fingerprinting, if she has accepted the corresponding
registration. ◦

4.6.3 Construction Framework

The main task during the fingerprinting protocol is to embed the secret iden-
tifying information ~emb into the underlying work work where only the buyer
obtains the fingerprinted work work fing at protocol completion. Similar to
Section 4.5.3, we require the construction to consider the following issues:

• Verification: The merchant must be provided with mechanisms for
(i) verifying that ~emb has the correct form, (ii) establishing a relation
between ~emb and the public parameters of the registration center (e.g.,
its public key), and (iii) verifying this relation. All these procedures
should not enable the merchant to (i) identify buyers, (ii) link the
purchases of buyers, and (iii) obtain any useful information about the
values ~emb.

• Embedding: There must be a mechanism to embed ~emb into work
such that the merchant is convinced that ~emb is correctly embedded
without obtaining any useful information about ~emb, and B obtains
a fingerprinted version of the desired work without getting any infor-
mation enabling her to remove the embedded fingerprint (see Section
4.5.4)

• Extracting: The merchant must be provided with a mechanism to
extract the value ~emb from a redistributed work (which is similar to
one of his original works.)

Note that for an anonymous fingerprinting scheme the merchant needs
to extract the identifying information of one traitor as a whole. This
is more involved than, e.g., the constructions of non-anonymous asym-
metric schemes described in Section 4.5. The reason is that there the
identifying information is not directly extracted from a redistributed
work, but rather in combination with other information (or through
interaction with the accused buyer).

We first review the construction framework proposed by Pfitzmann and
Waidner (1997c). This construction is modular, and is based on certificates.
It presents solutions for the verification, embedding and extracting com-
ponents of the fingerprinting scheme. However, as mentioned above, these
solutions are partially explicit. Understanding this construction framework
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will be helpful in later sections to precisely see the achievements of this part
of this thesis.

The construction of Pfitzmann and Waidner (1997c) is as follows:

Registration: The buyer B chooses a pseudonym in form of a key pair
(skpseudB

, pkpseudB
) of a signature scheme, and signs under her real digital

identity (here pkB) that she will be responsible for this pseudonym. She
sends the result sigpseudB

:= Sign(skB; pkpseudB
) to the registration center

RC, and obtains a certificate certB := Sign(skRC ; pkpseudB
) from RC. With

this signature, RC declares that it knows the identity pkB of the buyer who
has chosen this pseudonym.

Fingerprinting: The following steps are performed:

Verification:

1. The anonymous buyer B secretly computes a signature sig text :=
Sign(skpseudB

; text) on the text text . The value to be embedded is

~emb := (text , sig text , pkpseudB
, certB).

2. B hides ~emb in a commitment Cemb := com ( ~emb), and sends it to M.

3. B proves in zero-knowledge the validity of the signature sig text with
respect to pkpseudB

, and the validity of the certificate certB with respect
to RC’s public key pkRC .

Embedding : B and M engage in an embedding protocol EmbedProt() as
defined in Section 4.5.4.

Identification: M finds a redistributed version work red of his work for
which holds true ← simtest(work red ,work ). M applies the extracting algo-
rithm as for the asymmetric scheme (Section 4.5.5) where he extracts ~emb.
Then

1. M retrieves a proof string proof RC :=(text , sig text , pkpseudB
). Note that

M verifies sig text using pkpseudB
. The string proof RC proves that the

owner of the pseudonym pkpseudB
has redistributed the work related to

the text text .

2. M sends proof RC to the registration center RC, and asks RC to reveal
the real identity of the owner of pkpseudB

. If RC refuses, its cooperation
is enforced. For this,M shows (proof RC , certB) to an arbiter J , where
certB proves that RC must know the corresponding identity. Thus, in
enforced identification, RC either has to identify or will be found guilty.

In any case, RC has to send the buyer’s signature sig pseudB
showing that

she is responsible for this pseudonym pkpseudB
. Now, the final proof is

proof :=(proof RC , sigpseudB
). Note thatM verifies all the values before

making an accusation.
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Trial: The arbiter J verifies that:

1. sigpseudB
is a valid signature of the accused buyer, i.e., whether true ←

VerSign(pkB; sigpseudB
) holds.

2. sig text is a valid signature on text corresponding to this pseudonym,
i.e., whether true ← VerSign(pkpseudB

; sig text) holds.

If these verifications are positive then J declares B for guilty, otherwise she
rejects the accusation.

Discussion

Pfitzmann and Waidner (1997a) do not give an explicit construction for the
verification phase of the fingerprinting explained above – more precisely, for
Step 3. They only employ general results such as “every NP language has an
zero-knowledge proof system” (see, e.g., Goldreich (2001b)). Furthermore,
their framework of the embedding protocol is partially explicit.

In the following section, we present an explicit and fairly efficient solution
to the verification part by exploiting ideas from electronic coin systems.
Based on the framework of Pfitzmann and Waidner (1997a) and the explicit
construction for the verification part, we will give a concrete construction
for the embedding part in Chapter 5.

4.6.3.1 Security

Pfitzmann and Waidner (1997a) show that if the underlying primitives
(embedding protocol, signatures, commitments, etc.) are secure then the
construction framework yields a provably secure anonymous fingerprinting
scheme.

4.7 Coin-Based Anonymous Fingerprinting

4.7.1 Motivation

Based on ideas from coin systems, we present the first explicit and fairly
efficient protocol for the construction framework that we reviewed in Sec-
tion 4.6.3. Before going into the details of the construction, we first give an
overview of the most important aspects of coin systems. Then we explain
how to use the basic ideas of coin systems to construct an anonymous fin-
gerprinting scheme, discuss the problems that arise and how to solve them,
and give an overview of the ideas for achieving direct non-repudiation.
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4.7.2 Anonymous Electronic Cash Systems

4.7.2.1 Model

The main parties in an electronic payment system are a bank, a payer and
a recipient. The system consists of several phases or protocols in which
different parties may interact. In electronic cash systems these phases are
system setup where system parameters are generated, registration where
a user opens an account at the bank, withdrawal where a user withdraws
electronic coins at the bank, payment where a user (payer) spends coins
to a recipient, and deposit where a recipient deposits the obtained coins
to her account at the bank. In an online system payment and deposit are
combined while in an offline system they are separate transactions.

4.7.2.2 Main Security Requirements

The main security properties in payment systems are security against
fraud (integrity) and privacy (confidentiality). Both properties should
be fulfilled in the sense of multi-party security, i.e., no party should be forced
to trust the others a priori. Privacy means that the electronic payment sys-
tem should provide at least the privacy offered by traditional cash systems,
i.e., payments of small amounts can be performed anonymously, so that no
profiles can be collected (at least from the payment data) on what kind of
items people purchase in daily life.

Electronic payment systems preserving privacy are called anonymous
payment systems. There exist quite a lot of proposals for anonymous
cash systems in the literature, e.g., Franklin and Yung (1993), Chaum
(1983), Chaum (1985), Chaum (1989), Chaum, Fiat, and Naor (1990),
Brands (1993).

Anonymous payment systems offer different types of anonymity such as

• which of the involved parties is anonymous (payer, recipient or both),

• in which transactions (withdrawal, payment) which of the involved
parties (payer, recipient or both) is/are anonymous and

• unlinkability, i.e., whether several transactions are anonymous rela-
tive to each other.

Most anonymous cash systems offer only payer anonymity and this only in
the payment, but with unlinkability .

The best-known systems in this class apply blind signatures to realize the
anonymity property (see Section 3.4.4). These cash systems are also known
as coin systems, where a digital coin is a message (representing a monetary
value) blindly signed by the bank (i.e., the bank cannot see the content of
what it is signing). The unlinkability in a coin system means that even a
collusion of the bank and the recipient cannot link the withdrawal and the
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payment of a payer. In other words, the views of the bank in withdrawal and
the view of the recipient in payment are independent where this property
may hold unconditionally or computationally.

An important security requirement on coin systems is double spender
identification. This is a mechanism that allows the bank to link the with-
drawal with the payment of a cheating payer who spent a coin more than
once without authorization. Obviously, this is easy in an online coin sys-
tem where the bank is online in all payments, and immediately checks in its
database whether the corresponding coin has already been spent. However,
in an offline coin system this check can only be done after the fact, and
thus, the payment scheme has to provide the bank with a doublespender
identification mechanism.

For our fingerprinting scheme, we require similar mechanisms as in some
offline coin systems. Thus, as the subject of the next section, we explain
how typical offline coin systems work.

4.7.2.3 Typical Offline Coin System

We briefly explain the typical scenario for an offline coin system with double
spender identification. In the registration and withdrawal phase, the payer
and the bank perform the following transactions:

1. A user (payer) U opens an account at the bank by identifying herself to
the bank. Here, we may consider user’s public key pkU representative
for her digital identity.

2. The bank (here the signer S) blindly signs a secret value called iden-
tity proof i of the user. The resulting signature of the bank output
to the user is attached to a monetary value, and is interpreted as the
underlying coin. We denote the coin with coin.

The type of coin scheme we are going to use requires the user U to
choose i secretly and randomly, apply a one-way function f() to it, and
send the result m :=f(i) blinded to the bank. m can be interpreted as
an account number. The coin will then have the form coin := (m′, τ ′)
where m′, is the unblinded version of m and τ :=Sign(skS ;m′) denotes
the signature of the bank on m′.

3. The user has to securely commit herself to the identity proof i by a
signature (under her real identity) sigU and a proof of knowledge of i
to the signer. The signature indicates that the user is responsible for
the signed content.

The payment protocol consists of a challenge and responses for each spent
coin. The payment and deposit are as follows:
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1. The user U first gives the coin coin to the recipient. The recipient
verifies its validity, i.e., verifies whether it is a valid signature of the
bank, and accepts if and only if this verification is true.

2. The recipient sends a challenge C to the payer who answers with a
response r(i) which is a function of the identity proof i.

3. The recipient verifies this response by a verification function Verify(r),
and accepts the coin if and only if the output is true. Then the recip-
ient stores (coin , C, r).

4. Later, the recipient reveals this record to the bank at deposit.

5. The bank checks for doublespending in its database, and if negative,
it deposits the corresponding amount to the payee’s account.

For such a construction, the doublespender identification is of the following
form:

1. If the payer spends a coin coin more than once, then there will be a
second challenge and response (C ′, r′) for this coin.24 At deposit, the
bank checks its database, and recognizes that this coin is spent more
than once. Note that r should perfectly hide the identity proof i so that
the recipient cannot extract i from one response. The construction
of the coin system enables the bank to compute the identity proof i
using both challenge and responses, i.e., i ← g(C,C ′, r, r′) where g()
denotes the corresponding function fixing the relation between these
parameters.

2. Having computed i, the bank can compute the account number m as
f(i), and thus, link i to the user’s signature sigU obtained from the
user at the withdrawal. Given the one-wayness of f() and the fact
that i is perfectly hidden in a single payment, this signature serves as
a proof for payer’s doublespending.

4.7.2.4 Brands’ Offline Coin System

Brands (1994) extended the blind signature of Chaum-Pederson (CP) (Sec-
tion 3.4.4.1), and used the resulting scheme to construct an anonymous
offline payment scheme. It is the best-known scheme since it is very effi-
cient. In the following, we will explain the main aspects of Brands’ system
where our focus is on the withdrawal part.

Key generation: In addition to the parameters for CP signature, two new
random generators g1 and g2 different from g are selected.

24Note that the domain from which the challenge is chosen is sufficiently (exponentially)
large, and since an honest recipient chooses his challenges randomly, the probability that
the same challenge is selected for both coins is exponentially small.
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Encoding identity proof into a message: To efficiently realize double-
spender identification, a secret value, called identity proof i, only known
to the user, is securely encoded into a coin, and recovered only if the user
doublespends this coin. Therefore, in Brands (1994) the message m to be
signed must have a special form, namely, m := gi

1g2 (which represents the
function f().) This kind of blind signature that hides a specific structure,
such as identity, is called restrictive blind signature.

Now, assume that the blinding can only be done as specified by the CP
blind signing protocol, then the result of the blinding will be m′ ≡ gis

1 gs
2g

t.
The construction of the corresponding payment protocol in Brands’ system is
such that the payer can only pass the corresponding verifications if she knows
a pair of values (i1, i2) such that the unblinded version m′ of m is m′ ≡ gi1

1 gi2
2 .

The pair (i1, i2) is called a representation of m′ with respect to the generators
g1 and g2. Now, one can show that the two representations of m′, i.e.,
(i1, i2, 0) and (is, s, t) are the same (Chaum and Pedersen 1993). Thus,
the identity proof as i :≡ i1/i2 remains intact, and as mentioned above,
doublespending leads to recovery of i. For completeness, this signature is
illustrated in Figure 4.6.

Figure 4.6 The restrictive blind signature of Brands

R S

z ← mx

w ∈R Zq

a← gw mod p

s ∈R Z∗
q, u, v ∈R Zq ←−

z, a, b
−−−−−−−−−− b← mw mod p

m′ ← ms, z′ ← zs

x1, x2 ∈R Zq

pk coin ← gx1
1 gx2

2 mod p
a′ ← augv , b′ ← bsum′v

c′ ← hash(m′, z′, a′, b′, pk coin) mod q

c← c′u−1 mod q −
c

−−−−−−−−−−→
gr ?≡ ahc mod p, mr ?≡ bzc mod p ←−

r
−−−−−−−−−− r← cx + w mod q

r′ ← ru + v mod q
σ′ ← (z′, a′, b′, c′, r′)

coin ′ ← (m′, pk coin , σ′)

We denote the signature protocol of Brands (Br) with

(R : (m′, pk coin), σ′; S : −)← BlindSignBr(R : −; S : skS ; ∗ : m).
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The coin coin ′ contains a CP signature σ′ on m′ and pk coin called public
coin key. This value is fixed for the corresponding coin by being hashed
with other values.

The verification of the coin is denoted by

ind ← VerBlindSignBr(pkS ; (m′, pk coin , σ′))

where ind ∈ {accept , reject}.
In the payment, the payer sends coin ′ to the recipient together with the
values r1, r2 as responses to the challenge C sent by the recipient. These
responses are computed as r1 := Ci1 + x1, r2 := Ci2 + x2 where (x1, x2) are
the secret values chosen by the payer, and (i1, i2) is a representation of m′

– more precisely, the payer gives a proof of knowledge of a representation.
Using a verification equation the recipient can verify these responses. Thus,
each payment reveals two linear equations on the secrets (i1, i2, x1, x2).

In the case of doublespending, the recipient will have four linear equations
and can extract the identity proof as i := (r1 − r′1)/(r2 − r′2) where C ′, r′1, r

′
2

are the challenge and valid responses of the second payment.

Now, one has to justify why it is hard for an adversary to find any other
form of blinding such that the required verifications are passed but the rep-
resentation (i1, i2) of m′ is different than (is, s) such that the identity proof
cannot be extracted in case of doublespending. Here, we require an assump-
tion called restrictiveness assumption. This assumption was mentioned
in Brands (1993) and Brands (1994) but fairly informal. Here, we will give
a formal and general definition for it.

Recall from Section 3.7.2, by repr (m,B, I) we denote that a vector I =
(i1, ..., in) ∈ Zn

q is the representation of a message m ∈ G to the (generator)
base B = (g1, ..., gn), i.e.,

repr (m,B, I) :⇐⇒ m = gi1
1 ...gim

n .

We now consider an adversary A who executes the blind signing protocol
with an honest Brands’ signer S polynomially many times. A outputs a rep-
resentation Ij of each input message mj. Note that we make the assumption
with actual outputs in places where the real protocols only have proofs of
knowledge. We let the output of the blind signature protocol to adversary
be its state statej

A (instead of the pair (m′, σ′)). At the end, A outputs valid
signatures, again with representations of the signed messages m′. Finally,
for any vector (representation) I 6= 0 let I denote the line it generates (going
through the points (0, 0) and I), i.e., the set of its scalar multiples.

The assumption is that all the output representations I ′
j′ are scalar multiples

of the input representations Ij except with negligible probability in the
security parameter k.
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Assumption 1 (Restrictiveness Assumption)

∀Q ∈ poly(k); ∀A ∈ UPTM;
∀d1 > 0; ∃k0; ∀k > k0;
Prob[¬

(
{I ′1, . . . , I ′l′} ⊆ {I1, . . . , Il}

)
∧ ∀j = 1, . . . , l :

repr (mj, B, Ij) ∧ ∀j′ = 1, . . . , l′ : repr (m′
j′ , B, I ′j′) ∧ true ←

VerBlindSignBr(pkS ; (m′
j′ , pk coin ,j′ , σ

′
j′)) ∧

all pairs (m′
j′ , pk coin ,j′) are different ::

parSignBr ← GenParSignBr(par sec);
l← Q(k); (skS , pkS)← GenKeySign(par SignBr[GenSignKey]);

rand R← U ;
(state1

A,m1, I1)← A(k, rand, pkS);
(A : state2

A; S : −)← BlindSignBr(A : state1
A; S : skS ; ∗ : m1);

(state3
A,m2, I2)← A(state2

A);
(A : state4

A; S : −)← BlindSignBr(A : state3
A; S : skS ; ∗ : m2);

...
(A : state l

A; S : −)← BlindSignBr(A : state l−1
A ; S : skS ; ∗ : ml−1);

(state l+1
A ,ml, Il)← A(state l

A);

(A : state l+2
A ; S : −)← BlindSignBr(A : state l+1

A ; S : skS ; ∗ : ml);(
l′, ((m′

1, pk coin ,1, σ
′
1), . . . , (m

′
l′ , pk coin ,l′ , σ

′
l′)) , (I ′1, . . . , I

′
l′)

)
←

A(state l+2
A )

] ≤ 1/kd1 .

Here, par SignBr denotes the global parameters (group, generators,
etc.) generated by the generation algorithm GenParSignBr(), and
parSignBr[GenSignKey] denotes the parameters required for the key gener-
ation algorithm of the signer. To obtain the original Brands’ signature, we
set n = 2.

In the next section, we will explain, how we can apply the ideas of such a
coin scheme to construct and anonymous fingerprinting scheme.

4.7.3 General Ideas

The basic idea for using an offline coin system with double-spender identifi-
cation to construct an anonymous fingerprinting scheme is as follows: Reg-
istration corresponds to withdrawing a coin. Note that “coins” only serve
as a cryptographic primitive and have no monetary value. During finger-
printing, the coin is given to the merchant, and in principle a first payment
with the coin is made.25 So far, the unlinkability of the cash system should
guarantee that the views of the registration center and the merchant are

25Actually the protocol is simpler, more like “zero-spendable” coins where the coin as
such can be shown but any response to a challenge leads to identification. For intuitiveness,
we nevertheless still call this response “second payment” in the informal part.
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unlinkable. Then a second payment with the same coin is started. Now, in-
stead of giving the buyer’s response to the merchant, it is embedded in the
work. After a redistribution, the merchant can extract the second response
from the underlying work, and carry out double-spender identification.

However, we are now concerned with new problems, since there are im-
portant differences to the cash systems. We require

1. an efficient mechanism for the verification phase of the fingerprinting.
In particular, a mechanism for establishing an unambiguous link to
the purchase description text (as also required to allow legal redis-
tribution). Recall that in cash systems, double-spender identification
has no such property: The merchant simply obtains one fixed secret
identity proof i, independent of which coins were double spent and
how often.

2. an efficient mechanism to secretly and verifiably embed the second
payment response into the underlying work.

To solve the first problem, the first idea is to sign text with a secret key
whose corresponding public key pk text , the coin key , is included in the coin.
However, the registration center, as the signer of the coins, can forge coins
even in such a way that they can be linked to a certain withdrawal (where
the buyer may have signed the withdrawal data). Hence, the real problem
is how to show that the particular coin with pk text is in fact one that the
accused buyer has withdrawn. Pfitzmann and Sadeghi (1999) propose an
explicit solution to this problem, however, their solution requires the buyer
to repudiate an accusation with a wrong coin: For this, she should present
a different coin, and the blinding elements that link it to the specific with-
drawal from which this coin is supposed to come. Thus, a 3-party trial
is required. Although the results in Pfitzmann and Sadeghi (1999) build a
part of the research done within this thesis, we do not go through its details.
Instead, we will present a more enhanced solution which is also coin-based,
but, in contrast to the mentioned solution, requires only a 2-party trial, i.e.,
the merchant is provided with a direct proof that does not involve the buyer
(direct non-repudiation).

Further, in Chapter 5, we will present an explicit solution to the second
problem, i.e., an explicit construction for secure embedding.

4.7.4 Ideas for Achieving Direct Non-Repudiation

In this section, we give an informal overview of the construction with direct
non-repudiation, i.e., where the merchant can convince an arbiter without
participation of the accused buyer. As described in Section 4.7.3, we want
to fix the actual purchase description text by signing it with respect to a
key pk text contained in the coin, and it remains to link this key unforgeably
to a particular buyer after a redistribution.
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The basic idea is to commit to this coin-key pk text (unconditionally bind-
ing) during the registration, and such that the identity proof i is the secret
key needed for decryption, i.e., pk text :=Decrypt(i; enc) where enc represents
this commitment. The buyer must sign this encryption enc under his real
identity so that he is bound to it. Hence, once the merchant learns i due
to a redistribution, it is possible to decrypt enc, and verify which coin key
pk text the buyer planned to use. Note that the buyer is not needed in this
step; this is essential for the direct non-repudiation.

Each i is only used for one coin so that the link between the particular
coin and the corresponding encryption enc will be unique.

The next question is how to force the buyer to encrypt the same pk text in
enc as he uses in the coin – clearly, if he can encrypt another value, his real
coin will later not be attributed to him. Hence, we need a kind of verifiable
encryption. However, at this point there is nothing to verify the encryption
against since pk text is deep inside the perfectly blinded coin.

Here, we can apply the ideas from coin tracing .26 In particular, we
can apply the ideas from Frankel, Tsiounis, and Yung (1996) for Brands’
cash scheme, where a similar problem exists with an encryption enc∗ for a
trusted third party. The solution is to provide an additional specific encoding
M := f ′(pk text) (with f ′ as the one-way encoding function) of pk text whose
content is invariant under blinding. During registration (withdrawal), the
buyer proves in zero-knowledge that enc and M have the same content. The
registration center RC then blindly signs M , and the buyer transforms it to
M ′. This is Brands’ blind signature that has the form (M ′, pk text , σ

′) where
σ′ := Sign(skRC ; (M

′, pk text)) (see Section 4.7.2.3).
Later, in fingerprinting (payment), the merchant sees the real pk text , used

in the coin, in clear. The buyer then opens the blinded encoding M ′, which
has the same content as M , and the merchant verifies that this content is
really pk text . Overall, this implies that also enc contained the correct pk text .

However, there are two main differences to the ideas in Frankel, Tsiounis,
and Yung (1996): Firstly, we use the identity proof as a key instead of a
trusted third party’s key as common in coin tracing. Secondly, in Frankel,
Tsiounis, and Yung (1996), the coin and M are blindly signed in two different
signatures. If we did this, traitors could successfully attack the scheme by
combining wrong pairs of coins and M ’s. Hence, we need a combined blind
signature on the pair (M,m), where the pair can be uniquely decomposed
both in the blinded and unblinded form. Thus, we need another modification
to that scheme. More concretely, in our scheme, this combination is the
product N of the encoding of the identity proof m = f(i) (in the coin)
and the encoding M = f ′(pk text) of pk text , i.e., N := mM . We denote the

26This is a mechanism which allows a bank, in cooperation with a trustee, to revoke the
anonymity of a user, and trace the corresponding coins. Such measures are proposed to
deter the misuse of anonymous payment systems for criminal purposes.
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resulting blind signature on this combination by coin ′:=(N ′, pk text , τ
′) where

τ ′ := Sign(skRC ; (N
′, pk text)), and N ′ has the property that it is the product

of the blinded versions m′, N ′ of the encodings m and N .
Hence, while the coins and the encodings M in Frankel, Tsiounis, and

Yung (1996) are constructed using the same pair of group generators in a
discrete-logarithm setting, we use four generators, and construct coins and
M using different pairs. The blind signature is made on the product. Note
that more generators in conjunction with Brands’ system have been used sev-
eral times in the past, e.g., in Brands (1993), Brickell, Gemmell, and Kravitz
(1995), Frankel, Tsiounis, and Yung (1998). The restrictiveness assumption

of the blind signature scheme (see Assumption 1), together with proofs of
knowledge that the values are formed over the correct generators, guarantee
that a buyer cannot decompose the product in two non-corresponding ways
at both sides. The security of RC relies on the correct decomposition, and
RC cannot trust the merchants to verify zero-knowledge proofs in finger-
printing correctly. Hence, one aspect of the decomposition, i.e., the fact
that the buyer knows the discrete logarithm of pk text over the correct gen-
erator, is only substantiated by a Schnorr signature (Schnorr 1991) towards
RC. We will explain this in more details in Section 4.7.6.1 where we handle
RC’s security.

4.7.5 Construction

We now present the details of the construction which we informally described
in the previous section.

4.7.5.1 System Setup and Prerequisites

For simplicity, we assume that there is only one registration center. The
merchantM and the buyer B generate the required keys and parameters as
follows:

• Algebraic structure: We use a cyclic group G of order |G| := q
where efficient algorithms are known for multiplying, inverting, de-
termining equality of elements, testing membership and randomly se-
lecting of elements. Further requirements are: The computation of
Decisional Strong Diffie-Hellman (DSDH) (see Sections 2.2 and 2.6)
in G should be infeasible, the generators must be truly random,27 and
no party, even RC who will typically generate the underlying algebraic
group, should know the relative discrete logarithms of the generators
to each other. We use the notation parAnoFP ← GenParAnoFP(par sec)

27One way to verify the randomness of the generators is as follows: Select a non-secret
string r of a certain length uniformly and randomly, e.g., by using an old random number
table. Using r, generate primes q and p and elements ei ∈ Z∗

p deterministically. Compute

the generators as gi ≡ e
(p−1)/q
i . If a gi is not a generator, repeat its choice.
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for the procedure of generating the (global) systems parameters (e.g.,
the group and generators, etc).

For concrete constructions, one can take the group family Z∗
p/q (see

Sections 2.1.7 and 2.2). Once and for all, a group G from this family,
and different generators g, g′′, h′′, g1, g2, g3, g4 ∈ G \ {1} are selected.

• Hash functions: The hash functions hash and hash ′ are fixed for
the underlying protocols of Brands (Sections 4.7.2.4 and 3.4.4.1) and
Schnorr (3.4.3.3) signatures.

• Key generation and distribution: Each party X generates a key
pair (skX , pkX ) of an underlying signature scheme, and distributes pkX

reliably and authenticated to other involved parties, if required. We
will use pkX as representative for X’s identity. For RC, this key pair
has the following form skRC := x ∈R Z∗

q and pkRC := h ≡ gx mod p.
We will use (x, h) in the following.

• Embedding keys: M generates the keys and other required pa-
rameters for the embedding/extracting procedure, i.e., keyemb ←
GenKeyEmbed(par emb) where keyemb := (keys

emb , key
p
emb) with key s

emb

denoting the secret part of the embedding/extracting parameters, and
keyp

emb denotes the public part (see Sections 4.5.4 and 5.3.1)

• Commitment schemes: The underlying commitment schemes are
the QR and the DL commitment schemes denoted by (GenParQR(),
ProtComQR(), ProtOpenQR()) and (GenParDL(), ProtComDL(),
ProtOpenDL()) (see Sections 3.5.4 and 3.5.5).

The parameters for the DL-commitment are par DL
com = (p, q, g′′, h′′).

The parameter for the QR-commitment is par QR
com = n′ where n′ :=p′q′,

and is generated by the buyer B during the embedding subprotocol
of each fingerprinting protocol-run.28 She should be the only party
who knows the factorization of n′, denoted by keyQR

com := (p′, q′), which
enables her to open any QR-commitment computed with the public
parameter n′.

4.7.5.2 Registration

The registration protocol is given in Figures 4.7 and 4.8. In the following
we explain the figures and relate them to the detailed descriptions.

28The generation of n′ is such that only B knows the factorization of n′ while other
parties (here M) should be convinced that n′ has the correct form (see Section 3.5.4)
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Figure 4.7 Proof of correctness of the registration

B RC

i, j, i′, y ∈R Z∗
q

h1 := gi
1;h3 := gi

3

pk text := gi′
4

enc := (d1, d2) := (hy
3pk text , g

y
3 )

sigcoin ← Sign(pkB;h1, h3, enc)

(M1,M2) := (gj
3, pk

j
text)

−−
h1, h3, enc,
−−−−−−−−−−−→

sigcoin ,M1,M2

h1g2 6= 1?
Verify sigcoin

M1 6= 1?

←−
correctness proof
−−−−−−−−−−−−−−→

N := h1g2M1M2 N := h1g2M1M2

Figure 4.8 Blind signature part of the registration

B RC

z ← Nx

w ∈R Zq

a← gw mod p

s ∈R Z∗
q ←−

z, a, d
−−−−−−−−−− d← Nw mod p

z′ ← zs, N ′ ← N s

u, v ∈R Zq

a′ ← augv, b′ ← dsuN ′v

c′ ← hash(N ′, z′, a′, b′, pk text)

c← c′/u mod q −
c

−−−−−−−−−−→
gr ?≡ ahc, N r ?≡ dzc mod p ←−

r
−−−−−−−−−− r← cx + w mod q

r′ ← ru + v mod q
coin ′ ← (N ′, pk text , τ

′)

1. Opening a one-time account: B chooses the identity proof i ∈R

Z∗
q randomly and secretly, and computes h1 :≡ gi

1 (with h1g2 6= 1),
the “account number” from Brands’ system, and h3 :≡ gi

3, which we
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introduced specially as a public key for the ElGamal encryption.

2. Coin key and encryption: The value i′, also selected secretly and
randomly by B, serves as the secret coin key and pk text :≡ gi′

4 mod p
as the corresponding public key. B encrypts this public coin key into
a ciphertext enc using ElGamal encryption where h3 is the applied
public key. She computes a signature sig coin ← Sign(pkB;h1, h3, enc)
under her normal identity, and sends it to RC, who verifies it. This
signature later shows that B is responsible for this “account” identified
by the keys h1 and h3 and for the public key pk text encrypted in enc.

3. Encoding for delayed verifiable encryption: The pair
(M1,M2) := (gj

3, pk
j
text) is the additional encoding of pk text whose con-

tent is invariant under the subsequent blinding operation. RC will
verify that M1 6= 1. The content is uniquely defined because M1 6= 1
uniquely defines j 6= 0, and then M2 and j uniquely define pk text .

4. Correctness proofs: B sends the public values to RC and gives
certain correctness proofs. Intuitively, this is in particular that h1

and h3 contain the same identity proof i, and that the content of the
encryption (which is uniquely defined given h3) equals the content of
the pair (M1,M2) as defined above. Formally, B has to give a zero-
knowledge proof of language membership that the values (i, j, i′, y)
exist such that the public values, i.e., h1, h3, enc,M1,M2 fulfill the
prescribed equations, i.e., the underlying language is

L := {(h1, h3, d1, d2,M1,M2)| ∃ (i, i′, j, y) ∈ (Z∗
q)

4 :

h1 ≡ gi
1 ∧ h3 ≡ gi

3 ∧ d1 ≡ giy
3 gi′

4 ∧
d2 ≡ gy

3 ∧M1 ≡ gj
3 ∧M2 ≡ gi′j

4 }.

We denote the protocol for the proof of correctness with ProveCor().

One way to implement this protocol is to apply the simple protocol
ProveEqDL() (Section 3.7.3) for i, and the specific indirect discourse
proof from Frankel, Tsiounis, and Yung (1996) for the remaining pa-
rameters. However, there is also a general efficient zero-knowledge
proof system for proving low-degree polynomial relations in exponents
comprising this and many similar situations. Such systems are pro-
posed in Camenisch and Stadler (1997), Camenisch (1998), Camenisch
and Michels (1999a). Note that it is not possible to use exactly the
same type of proof as in Section 3.7.3 for the other values because

one equation is M2 = gji′

4 , where neither gj
4 nor gi′

4 can be public.
Here, we can apply Camenisch’s techniques for polynomials, e.g., by
first committing to the secret inputs using information-theoretically
hiding commitments, and then proving the desired relations in zero-
knowledge. The commitments can be interpreted as blinded versions
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grgi′
4 , gr′gj

4 of the required intermediate values gi′
4 , gj

4 where r, r′ ∈R Zq

and g ∈ G is a random generator. For our purposes, we will employ
this approach, and use Camenisch’s zero-knowledge proofs (for various
types of modular relation between secret exponents) in a straight for-
ward and modular manner. For this, the buyer B proceeds as follows:

(a) Commit to the secret values (i, i′, j, y, i′j, iy) using information-
theoretically hiding DL-commitment using new random genera-
tors g, h ∈ G (no confusion with other generators such as RC’s
public key should occur.) The resulting commitments are A0 ≡
gihr0 , A1 ≡ gihr1 , A2 ≡ gi′hr2 , A3 ≡ gjhr3 , A4 ≡ gyhr4 , A5 ≡
gi′jhr5 , A6 ≡ giyhr6 where r0, · · · , r6 ∈R Zq. We call A0, · · ·A6

auxiliary commitments, and call the secret exponent of the
generator g in an auxiliary commitment Ai the g-part of Ai.

(b) Send A0, · · · , A6 to M, and prove the following predicates in
zero-knowledge:

i. the g-part of A0 is equal to logg1
(h1) and

ii. the g-part of A0 is equal to logg3
(h3) and

iii. the g-part of A0 is equal to the g-part of A1 and

iv. the g-part of A2 is equal to the g4-part of the representation
of d1 and

v. the g-part of A3 is equal to logg3
(M1) and

vi. the g-part of A4 is equal to logg3
(d2) and

vii. the g-part of A5 is equal to logg4
(M2) and

viii. the g-part of A5 is equal to the g-part of A2 multiplied by
the g-part of A3 and

ix. the g-part of A6 is equal to the g-part of A1 multiplied by
the g-part of A4.

For each of the these proofs there is an explicit efficient zero-knowledge
proof (see e.g., Camenisch (1998), Camenisch and Michels (1999a),
Boudot (2000)). Thus, there exists a simulator for each of them, and
the overall simulator can be constructed from these simulators. Note
that one may construct more efficient protocol(s) for proving this in-
stead of the straight forward use of the above building blocks. How-
ever, for the reasons we will see in Section 4.7.6.3 on buyer’s anonymity,
we choose this type of construction.

5. Withdrawal: Now, RC gives a blind signature on the combination of
a coin and the encoding (M1,M2). Let m :≡ gi

1g2 = h1g2 be the value
(typically signed in Brands’ blind signature scheme), M :≡ M1M2,
and N ≡ mM . This N is the common input to the blind signing
protocol, i.e.,

(B : (N ′, pk text), τ
′; RC : −)← BlindSignBr(B : −; RC : x; ∗ : N)
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shown in Figure 4.8 for completeness. In Brands (1994), an additional
value pk coin is included in the hashing; we use pk text in that place
(see also Section 4.7.2.4). As a result, B obtains the “coin” coin ′ =
(N ′, pk text , τ

′), where N ′ ≡ (mM)s, and τ ′ = (z′, a′, b′, r′) is called the
signature on (N ′, pk text).

29 We denote the blinded versions of m and
M by m′ ≡ ms ≡ gis

1 gs
2 and M ′ ≡M s ≡ gs′

3 pk s′
text , where s′ = sj.

4.7.5.3 Fingerprinting

The main common input in fingerprinting is the purchase description text .
We assume that each text is fresh for both buyer and merchant in this
protocol, i.e., neither of them uses a value text twice. This can be achieved
by a number of standard techniques. The individual protocol steps are as
follows:

1. Text signing and coin verification: B selects an unused coin
coin ′ = (N ′, pk text , τ

′). He uses the corresponding secret key i′ to make
a Schnorr signature sigtext on text where we include pk text in the hash-
ing). B sends (coin ′, m′, M ′, s′, sigtext) to M. Now, M first verifies
the blind signature: He computes c′ ≡ hash(N ′, z′, a′, b′, pk text) mod q

and tests whether gr′ ≡ a′hc′ and N ′r
′ ≡ b′z′c

′

mod p hold. We say
that a coin is valid if and only if it passes these tests. He then verifies
sigtext using pk text from coin ′.

2. Verification of decomposition: M first verifies that N ′ ≡ m′M ′,
N ′ 6= 1 and m′ 6= 1. Then B proves to M in zero-knowledge that
he knows a representation of m′ with respect to (g1, g2), and of pk text

with respect to g4. The zero-knowledge proof protocol ProveRep() for
the former is given in Section 3.7.2, and for the latter the protocol
ProveDL() is given in Section 3.7.1.

3. Delayed part of verifiable encryption: M verifies whether M ′ ≡
gs′
3 pk s′

text holds. Details why this verification is sufficient can be seen in
the proof of the security for the registration center in Section 4.7.6.1.

4. Proving equality of committed and encoded numbers: B takes
the representation (is, s) of m′ ≡ gis

1 gs
2 as the value ~emb to be em-

bedded in the underlying work, i.e., ~emb := (is, s). In the following
we set r1 = is, r2 = s. Since M should not get any useful informa-
tion on ~emb, B hides it in a commitment. While the certificate-based
framework in Pfitzmann and Waidner (1997a) leaves the type of com-
mitment open (Section 4.6.3), we have to provide an efficient link from
the given “encoding” m′ of ~emb := (r1, r2) to the type of commitments

29In the sense of Section 4.7.4 this is not only the coin, but also still contains the blinded
encoding of pk text . However, in the following, it is simpler to call this unit a coin.
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needed in the further stages of the embedding procedure EmbedProt().
For normal fingerprinting (with and without collusion tolerance), these
are quadratic residue commitments to individual bits of ~emb.30 In our
construction, B first computes the DL commitments to a binary rep-
resentation of r1 and r2. These commitments are denoted by

CDL
emb := comDL(bin( ~emb), ~x, p, q, g′′, h′′)

=
[
comDL(ru,w, xu,w, p, q, g′′, h′′)

]

1≤u≤2, 0≤w≤l−1

where xu,w ∈R Zq.

B sends CDL
emb to M, and proves (in zero-knowledge) that CDL

emb is a
DL-commitment to the same value encoded in m′, i.e., the content
of the commitments CDL

emb is a pair (r1, r2) ∈ Z∗
q × Z∗

q with m′ ≡
gr1
1 gr2

2 mod p. This can be done using the zero-knowledge protocol
shown in Figure 4.9.

Figure 4.9 Proving equality of the contents of m′ and CDL
emb :

ProveEqComEmb()

B M

u = 1, 2 and 0 ≤ w ≤ l − 1

(r1, r2)← ~emb := (is, s)

ru =
∑l−1

w=0 ru,w2w

xu,w ∈R Zq

xu ←
∑l−1

w=0 xu,w2w

comDL
u,w ← g′′ru,wh′′xu,w −

comDL
u,w

−−−−−−−−−−→ comDL
u ←

∏l−1
w=0(com

DL
u,w)2

w

REPEAT γs times
eu, yu ∈R Z∗

q

V ← ge1
1 ge2

2

rcomDL
u ← g′′euh′′yu −

rcomDL
u , V

−−−−−−−−−−→
resu ← cru + eu mod q ←−

c
−−−−−−−−−− c ∈R Z2

zu ← cxu + yu mod q −
resu, zu−−−−−−−−−−→ gres1

1 gres2
2

?≡ V m′c

g′′resuh′′zu
?≡ rcomDL

u (comDL
u )c

END REPEAT

30For traitor tracing, they are quadratic residue commitments to small blocks of emb

represented in unary. Such a representation can also be derived efficiently from commit-
ments to the bits.
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This proof protocol is similar to other proofs concerning knowledge
of representations of numbers with respect to certain generators as
described in Section 3.7.2. As usual, we could also use larger challenges
c at the cost of the real zero-knowledge property. We denote this
protocol by

(B : −; M : ind)

← ProveCorComEmb(B : state
CDL

emb

B ; M : −; ∗ : CDL
emb ,m

′).

Note that this protocol proves only that
∑

ru,w = ru but not that
the values ru,w are binary; such a proof will be a side effect of
the embedding protocol when DL commitments are mapped to QR-
commitments. Moreover, in our definition of embedding protocol (Sec-
tion 4.5.4), we assumed the common input Cemb to the embedding
protocol to have the correct form. For our particular instantiation,
however, the embedding protocol itself takes care of this issue, and
verifies that Cemb indeed consists of the commitments to the bits of
~emb.

5. Embedding: On common input CDL
emb , B andM run the embedding

protocol

(B : workfing ; M : recwork
M )

← EmbedProt(B : state
CDL

emb

B ; M : work , key s
emb ; ∗ : CDL

emb , key
p
emb).

Section 5.3 gives a detailed construction for this protocol.

4.7.5.4 Identification

1. Merchant retrievals: On redistribution of a work work red for which
true = simtest(work ,work red ) holds,M extracts a value ~emb = (r1, r2)
from the redistributed work using the extraction algorithm

~emb ← ExtractProt(work red , keyemb ,REC work
M )

described in Section 5.3 (see also Section 4.5.4.1). This value should
be ~emb = (r1, r2) with r2 6= 0; thus he sets s := r2 and i := r1/r2. He
computes m′ ≡ gis

1 gs
2 mod p, and uses it to retrieve coin ′,M ′, text and

sigtext from the corresponding purchase record of the given work. If any
of these steps do not succeed, he gives up. (The collusion tolerance of
the underlying code might have been exceeded.) Otherwise, he sends
to RC the triple proof RC := (i, text , sigtext).

2. Registration center retrieval: On input proof RC , the registration
center RC searches in its registration database for a buyer who has
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registered the one-time account number h1 ≡ gi
1, and retrieves the

values (pkB, enc, sigcoin), where pkB corresponds to the real identity
of B.

RC refuses identification if it is clear from text that the redistribution
was legal. Otherwise, RC decrypts enc using i to obtain pk text , and
verifies that sigtext is a valid signature on the values (text , pk text) for
this public key pk text with respect to the generator g4.

31 If positive,
RC sends the retrieved values to M.

3. Merchant verification: IfM gets an answer (pkB, enc, sigcoin) from
RC, he first verifies that sig coin is a valid signature with respect to
pkB on the triple (h1 ≡ gi

1, h3 ≡ gi
3, enc). He also verifies that enc

correctly decrypts to the value pk text contained in coin ′ with respect
to the secret key i and the generator g3. If one of these tests fails, or
M receives no answer, he starts enforced identification.

4.7.5.5 Enforced Identification

IfM has to enforce the cooperation of RC, he sends

proof ′RC := (coin ′, s′, i, s, text , sigtext)

to an arbiter J . J verifies the validity of coin ′ and calls its compo-
nents (N ′, pk text , τ

′) as usual. Then she verifies that N ′ ≡ m′M ′ for
m′ ≡ gis

1 gs
2 mod p and M ′ ≡ gs′

3 pk s′
text mod p. Finally, she verifies that sigtext

is a valid signature on the values (text , pk text) for the public key pk text with
respect to the generator g4.

If any of these tests fails, J rejects M’s claim. Otherwise, she sends
proof RC :=(i, text , sigtext) toRC and requires values (pkB, enc, sigcoin). Then
J verifies them as M does in Step 3 of identification.

4.7.5.6 Trial

M tries to convince an arbiter J that B, with the identity pk B, has illegally
redistributed the work bought under the rights described in text . Note that
in the following B is not required to participate in the trial.

1. Proof string: M sends to J the proof string

proof = (coin ′, s′, i, s, sigtext , enc, sigcoin ).

31 This is necessary for the security of RC by guaranteeing that the division of N ′ into
m′ and M ′ is correct, even if RC is supposed to identify all redistributors independent of
text .
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2. Verification of identity proof i: J computes h1 ≡ gi
1 and h3 ≡

gi
3 mod p, and verifies that sig coin is a valid signature on (h1, h3, enc)

with respect to pkB. If yes, it means that i, the discrete logarithm of an
account number h1 for which B was responsible, has been recovered
by M, and thus, as we will see, B has redistributed some work. It
remains to verify the link to text .

3. Verification of text : J verifies the validity of coin ′, and calls its
components (N ′, pk text , τ ′). She then verifies that N ′ ≡ m′M ′ for
m′ ≡ gis

1 gs
2 mod p and M ′ = gs′

3 pk s′
text mod p. She also verifies the

signature sigtext on the disputed text text with respect to pk text and
the generator g4. These verifications imply that if the accused buyer
owned this coin, he must have spent it in the disputed purchase on
text . Finally, J verifies that this coin belongs to B: She tests whether
enc correctly decrypts to pk text , if one uses i as the secret key. If all
verifications are passed, J finds B guilty of redistribution, otherwise
she rejects (M should be declared as the cheating party).

4.7.6 Security Analysis

In this section, we present proofs for the security of the construction accord-
ing to the security requirements outlined in Section 4.6.2. We recall these
requirements briefly in the corresponding security analysis section.

Note that the requirements completeness and no jamming by registration

center are straightforward to verify for our scheme (see also Remark 4.16).
Hence, we immediately proceed with the main security requirements.

4.7.6.1 Security for Registration Center

We prove that if the registration center RC is honest, an honest arbiter will
never output that RC is guilty.

We need the restrictiveness of the underlying blind signature scheme for
showing that the value m′ used in fingerprinting “contains” the same iden-
tity proof value i as the original m, and also that the delayed verification
of pk text works. Brands (1994) only works with two generators g1, g2, while
we use four. However, in the underlying report (Brands 1993) the same
assumptions are made for any number of generators g1, . . . , gn. Coin sys-
tems with more than two generators have also been presented in Brickell,
Gemmell, and Kravitz (1995) and Frankel, Tsiounis, and Yung (1998). The
exact assumption we need is the following:

Assumption 2 (Restrictiveness with Schnorr signature) Let k be a
security parameter, Q ∈ poly(k), and A ∈ UPTM the adversary that can
interact with a Brands’ signer (as in Figure 4.8) Q times for messages N of
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its choice where A also has to output representations of all these messages,
i.e., quadruples (i1, . . . , i4) such that

N = gi1
1 · · · gi4

4 .

At the end, A has to output a message N ′ with a valid signature τ ′ and a
representation (i′1, . . . , i

′
4) of N ′ except that it need not show i′4, but only

values (h′
4, i

′′
4 ,msg , sigmsg) such that N ′ = g

i′1
1 · · · h′

4
i′′4 and sigmsg is a valid

Schnorr signature on msg for the public key h′
4, and the generator g4 (with

h′
4 included in the hashing). We then define i′4 := i′′4 logg4

(h′
4).

Then for all Q and all A the probability that A fulfills all the mentioned
conditions, and that the vector (i′1, . . . , i

′
4) is not a scalar multiple of one of

the vectors (i1, . . . , i4) is negligible in k where the probability is taken over
the random choices of the signer and A.32

Remark 4.17. Note that in the “normal” restrictiveness assumption (see Sec-
tion 4.7.2.4), the adversary has to output complete representations of both,
the blinded and unblinded values, i.e., also i′4. In our case, we had to make
the above, stronger assumption. This is because the adversary only outputs
a factor i′′4 of i′4, and, instead of the other factor i′ := i′4/i

′′
4 , a Schnorr sig-

nature with respect to the corresponding public key h′
4 = gi′

4 . The intuitive
idea why this is reasonable is that a Schnorr signature is a non-interactive
proof of knowledge of the secret key in random oracle model. Such argu-
ments are mentioned, e.g., in Brands (1994), Frankel, Tsiounis, and Yung
(1996), Frankel, Tsiounis, and Yung (1998) and Camenisch (1998). ◦

Lemma 4.1 The construction for the anonymous fingerprinting scheme
from Section 4.7.5 is secure for the registration center under the restric-
tiveness assumption with Schnorr signature (Assumption 2). 2

Proof. RC can be found guilty by an arbiter J only in enforced identifica-
tion, because in a trial J only finds either B or M guilty. There are two
possibilities how this could happen:

1. If the adversary can convince J to enforce identification by showing
proof ′

RC , but RC does not find a registration under the corresponding
account number h1.

2. If RC finds such a registration, but the values (pk B, enc, sigcoin) do
not pass the arbiter’s tests. Since RC’s own tests during registration
guarantee the correctness of sig coin , the remaining possibility is that
enc does not decrypt to the value pk text shown in proof ′

RC .

32One may formulate this assumption in a general way, as we have done for the normal
restrictiveness assumption (Assumption 1, in Section 4.7.2.4).
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In both cases, the tuple proof ′
RC shown by the adversary must contain a

valid coin coin ′ = (N ′, pk text , τ
′) and values (i, s, s′) such that N ′ = m′M ′

with m′ ≡ gis
1 gs

2 and M ′ ≡ gs′
3 pk s′

text . Moreover, it must contain a Schnorr
signature sigtext on some text , which is valid with respect to pk text and the
generator g4. Hence, as far as the output is concerned, the adversary needs
exactly what it also needs in our restrictiveness assumption, with (i′1, . . . , i

′
4)

= (is, s, s′, i′s′) where i′ is defined as the discrete logarithm of pk text with
respect to g4.

Furthermore, the registration protocol guarantees that the adversary has
to prove knowledge of a representation of each common input N for which
the blind signature protocol is executed. These are normal interactive proofs
of knowledge (see Section 3.7.2); hence from any adversary successful in our
scenario we can, together with the extractors, construct another adversary
that actually outputs the representations, so that the assumption applies to
it.

By the actual predicate proved, these representations are of the form
(i1, 1, i3, i4) where h1 = gi1

1 , M1 = gi3
3 , M2 = gi4

4 hold, and additionally
h3 = gi1

3 . The restrictiveness assumption, therefore, guarantees that the
quadruple (is, s, s′, i′s′) defined by proof ′

RC is a scalar multiple of such a
quadruple (i1, 1, i3, i4). The factor can only be s, and if it were 0, the entire
quadruple would be 0, and thus, N ′ = 1, in contradiction to the validity of
the coin. Thus, s 6= 0 and i1 = i, i3 = s′/s, and i4 = i′s′/s.

The first equation means that the value i shown in proof ′
RC was actually

used in a registration. This excludes Case 1 of how RC could be found
guilty.

During this registration, RC verified in the correctness proof (ProveCor())
that the content of the encryption enc = (d1, d2) equals the content of M2

blinded by the exponent logg3
(M1). We have now shown that M1 = g

s′/s
3

and M2 = g
i′s′/s
4 . The content of this pair is gi′

4 = pk text by the definition in
Section 4.7.5.2, Step 3. This also excludes Case 2 of how RC could be found
guilty.

4.7.6.2 Security for Merchant

We prove, if an adversary who engages in at most collsize executions of
fingerprinting with the merchant for a certain work, and then produces
another copy similar to the original, then the merchant will obtain a valid
digital identity as an output in identification, together with a text used, and
a string proof , and then wins a trial with any honest arbiter. This should
hold even if the registration center is cheating, and belongs to the collusion
against the merchant. In this case, the protocol for enforced identification
may be needed if normal identification fails, and the output for the arbiter
in this protocol may indicate that RC is guilty.
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Lemma 4.2 Given a collsize collusion-tolerant and secure embedding
scheme, the construction of the anonymous fingerprinting scheme from Sec-
tion 4.7.5 is secure for the merchant under the restrictiveness assumption
(Assumption 1, Section 4.7.2.4). 2

Proof. The embedding and extracting algorithms EmbedProt() and
ExtractProt() guarantee that whenever a collusion of the maxi-
mum size collsize redistributes a work work red , for which true ←
simtest(work ,work red ) holds, then with very high probability, M can ex-
tract a value ~emb that belongs to a traitor (see also Section 5.3.3). More
precisely, ~emb is a pair (r1, r2) such that gr1

1 gr2
2 ≡ m′ where (r1, r2) should

be the content of the commitment CDL
emb which is input to the embedding

protocol EmbedProt().33

Using the value m′, M can retrieve the corresponding values text and
(coin ′, M ′, s′, sigtext) where coin ′ is a valid coin, sigtext is a valid signa-
ture on text , and for the component N ′ of coin ′, the equations N ′ ≡ m′M ′

and M ′ ≡ gs′
3 pk s′

text hold. Setting (i, s) ≡ (r1/r2, r2) implies gis
1 gs

2 ≡ m′.
Assuming the restrictiveness assumption (Section 4.7.2.4) holds, r2 is non-
zero, or M will obtain an evidence that RC has cheated, i.e., colluded
with traitors and signed values with wrong representation. Now proof ′

RC =
(coin ′, s′, i, s, text , sigtext) enables him to ask RC for identification and, in
the worst case, have it enforced by J , because J only performs verifications
whose validity has just been listed.

Together with the values that RC must return,M obtains a valid proof
string proof : In a trial, J only performs verifications thatM also performed
in the identification or fingerprinting protocol, so that M will not lose.
M is also protected from making wrong accusations: Even if there are

more than the tolerated number of traitors, M’s verifications in identifica-
tion (Section 4.7.5.4) guarantee that whenever he makes an accusation he
will not lose in the trial.34

4.7.6.3 Security for Buyer

Frame proofness

The security requirement for the buyer considers an honest buyer B who
correctly follows the protocols and keeps the obtained results secret, in par-
ticular the (fingerprinted) work bought. No matter what the other parties
do, the output of the trial with an arbiter will not declare this buyer guilty

33Note that this is guaranteed by the soundness of the zero-knowledge proof (of knowl-
edge) ProveCorComEmb() proving that the content encoded in m′ is the same as the one
in CDL

emb , and by the soundness of the embedding protocol for merchant (Section 5.3.3.1).
34These verifications verify the unambiguous link between the quantities i, coin, pk text ,

text , sigcoin and pkB.
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of illegal redistribution, even if the adversary can obtain fingerprinted works
of B for certain texts (e.g., by means of past legal redistribution).

Lemma 4.3 The construction for the anonymous fingerprinting from Sec-
tion 4.7.5 is frame proof for the buyer under the Quadratic Residuosity

Assumption 1/poly(k)-CQR(c:u; g:l; f:Z
(+1)
n ) and the discrete logarithm as-

sumption 1/poly(k)-CDL(c:u; g:l; f:Z∗
p/q), and under the assumption that the

signature scheme sig text is secure.35 2

Proof. Consider a trial with B for a specific text text ∗ generated by A.
The verification of the identity proof i in the trial guarantees that B is only
held responsible for one of his own one-time account numbers h1 ≡ gi

1, and
that adversary’s proof proof ∗ in the trial must contain i (see also Section
4.7.5.6). Note that one-time account means that the identity proof i is used
only once. We consider the possible situations for the adversary to recover
the identity proof i:

We first consider the case where the adversary is not given access to the
data of a purchase.36 In this case, the only knowledge the adversary can
obtain about i is from:

1. h1 and h3,

2. the correctness proofs in registration,

3. the proof of knowledge of a representation of m′ with respect to (g1, g2)
within the fingerprinting protocol, and

4. the embedding protocol EmbedProt() also within the fingerprinting
protocol (Note that the decryptions the buyer makes cannot be used as
an oracle here because the results only become known to the adversary
in a redistribution.)

In all the other steps, e.g., the ElGamal encryption, the buyer only uses
values that are already known, like h3.

Now, the correctness proofs in the registration protocol are zero-
knowledge, and so is also their sequential composition due to the compo-
sition theorem for auxiliary input zero-knowledge proofs. The same holds
for the proof of knowledge of a representation of m′ during fingerprinting.
Moreover, the embedding protocol EmbedProt() is (computationally) zero-
knowledge under QRA. This follows from Lemma 5.13 (see Section 5.3.3).
Note that in the embedding protocol, it is not inM’s interest to embed any

35Here, this is a Schnorr signature which is secure under CDL in the random oracle
model (Section 3.4.3.3).

36The data may come from a legal distribution, or from an illegal one the buyer may
have done once in the past.
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other information than ~emb into the underlying work.37 Further, the QR-
commitments are semantically secure under QRA, and the DL-commitments
are perfectly hiding. Thus, the adversary A could try to compute i from
h1, h3 and the QR-commitments. This, however, implies that A can either
break the QRA or the DL assumption.

Hence, the only way for the adversary to compute i is in fact from the
resulting work in a purchase to which the adversary has access. Let text be
the text used in that purchase, and coin ′ the corresponding coin withdrawn
from the account h1. The adversary may try to frame B by generating a
different text text∗ 6= text , and linking to B’s identity. For this, it requires a
signature sig text on text∗ with the pk text from coin ′. The adversary cannot
use any other pk ∗

text to sign text∗ with respect to h1 because on the one
hand, the signature sigcoin fixes the encryption enc and the public key h3

to be used with the account number h1, and on the other hand, enc and
h3 together uniquely fix pk text . Thus, A has to generate a signature sig text

on text∗ where the verification key is pk text . However, the secret key i′

corresponding to pk text in coin ′ is known only to B, and the only information
B reveals on i′ are zero-knowledge proofs in registration and fingerprinting
protocols, and the signature sig text on text . If the signature scheme is secure
against active attacks, this does not help the adversary to forge a valid
signature with respect to pk text on text∗. Here, sig text is a Schnorr signature
which is secure against active attacks in the random oracle model under DL
assumption (Section 3.4.3.3).

Anonymity

Purchases of honest buyers should not be linkable even by a collusion of all
merchants, central parties and other buyers. In our construction, the only
information common to all registrations of a buyer is her global key pair
(skB, pkB).

Lemma 4.4 The construction for the anonymous fingerprinting scheme
from Section 4.7.5 is unlinkable in the random oracle model under the

Quadratic Residuosity Assumption 1/poly(k)-CQR(c:u; g:l; f:Z
(+1)
n ), the de-

cisional strong Diffie-Hellman assumption 1/poly(k)-DSDH(c:u; g:l; f:Z∗
p/q),

and the assumption that Sign(; ) is a secure signature scheme. 2

Proof. First, we consider the case where text allows legal redistribution. In
this case, RC must be trusted regarding the recovery of buyers’ anonymity
after a (legal) redistribution. Recall that we use each identity proof i only
once. The buyer B only uses the key pair (skB, pkB) to generate the signa-
ture sigcoin , and uses neither the keys nor this signature in the fingerprinting

37Otherwise, he cannot obtain a proof of treachery against cheating buyers.
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protocol. Further, due to the buyer’s frame proofness requirement (see Sec-
tion 4.7.6.3), M should not be able to produce a fake sigtext on a fake text
text∗ even if he is provided with the data from redistributions of a buyer.
Therefore, RC would not provide M with the identity of this buyer whom
M accuses as traitor. Thus, other fingerprintings and possible redistribu-
tions of a buyer are statistically independent of one registration and the
corresponding fingerprinting.

Next, we consider the case where text does not allow legal distribution.
We focus on the question whether a pair of views from the registration
view reg and the corresponding fingerprinting view fing protocol are linkable.

Following the requirement for unlinkability given in Section 4.6.2, we let
an adversary carry out two registrations and then the two corresponding fin-
gerprintings in random order according to a uniformly chosen bit b ∈R {0, 1}.
We show that the adversary will not be successful in guessing which views
correspond to each other, otherwise one can use this adversary to break a
reasonable cryptographic assumption. The proof consists of several scenar-
ios where each scenario defines certain views of the registrations and the
corresponding fingerprintings. We consider the main scenarios S1, · · · , S8

(Note that each scenario may also contain several sub-scenarios). The first
scenario S1 is called the real world scenario where the registration and fin-
gerprinting views (in random order) are given as in the real protocols. The
last scenario S8 defines “constructed” views of registrations and fingerprint-
ing which are completely independent of the bit b, i.e., no distinguisher can
ever guess this bit with a probability better than pure guessing. We prove
that all subsequent pairs of scenarios between S1 and S8 are indistinguish-
able, otherwise we can use the corresponding scenario distinguisher, denoted
with DS , to construct an algorithm which breaks a cryptographic assump-
tion. Finally, it follows from the transivity of indistinguishability that also
in the real world no distinguisher for the bit b can exist, and thus, the views
are unlinkable.

We proceed with the proof as outlined above for the transactions of two
different buyers. The proof for unlinkability of the transactions of the same
buyer is similar.

S1: The adversary runs the first registration protocol Register() with one
of the buyers. The outputs are this buyer’s view view reg

B,0 and the view of

the adversary view reg
A,0. We denote this view by the pair (recv reg

A,0, stateA)

where recv reg
A,0 denotes the messages from B to A, while the variables stateA

model the adversary’s entire state between protocol executions. Similarly,
the second registration protocol is executed.

Now a bit b is uniformly chosen; it denotes on which registration the first
execution of the fingerprinting protocol Fing() is based, assuming that the
registrations succeeded from the buyers’ point of view.
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The values sent by B are

recvReg
A,0 = (pkB,0, h1,0, h3,0,M1,0,M2,0, enc0, sigcoin ,0, c0, recv

ProveCorReg
A,0 ),

recvFing
A,b = (coin ′

b,m
′
b,M

′
b, s

′
b, sig text,b, recv

Embed
b , recvProveCorFing

A,b ),

and similarly for recv reg
A,1 and recvfing

A,b̄
. The meaning of the notations is

as follows: recvProveCorReg
A,0 denotes the received messages of the correctness

proofs in the registration, and recvProveCorFing
A,0 denotes the received mes-

sages of the correctness proofs in the fingerprinting. We define the latter as
(recvProveCorDecom

A,b , recvProveCorComEmb
A,b ) where recvProveCorDecom

A,b denotes the re-
ceived messages for the proof of correct decomposition/representation, and
recvProveCorComEmb

A,b denotes the received messages for the proof of correctness

of the commitment CDL
emb input to the embedding subprotocol. Further, c0 is

the only value sent in the withdrawal subprotocol, coin ′
b = (N ′

b, pk text,b, τ ′
b)

is the coin, recvEmbed
b denotes the received messages in the embedding proto-

col (during fingerprinting). The texts to be signed may be chosen adaptively
by A in Fing().

In the following scenarios, we show that certain components from the
above tuples can be simulated (either by using other components or by
random and independent values). For readability, we will fade out these
components in the corresponding tuple. However, note that for the over-
all simulation to be correct these components must be considered in the
corresponding tuples and in all subsequent scenarios.

S2: We first derive an equivalent scenario to S1 where we fade out some
components because we can easily simulate them from the other components.

• Simple simulations: The triple (skB, pkB, sigcoin) is not used in any
other components; a simulator can therefore generate its own key pair,
and compute sigcoin with it. Further, it can compute the value N ′ in
coin ′ as the product of m′ and M ′, and the value M ′ as gs′

3 pk s′
text .

• Zero-knowledge proofs simulations: The correctness proofs in
the registration and fingerprinting protocols are zero-knowledge (with
perfectly hidden secret inputs), and thus, they can be simulated.38

Further, the embedding protocol is computationally zero-knowledge
(under QRA assumption) where the input to this protocol is hidden
in information-theoretically secure DL commitment (see also Section
5.3.3). Thus, it can also be simulated.

38Note that all required auxiliary commitments (see Section 4.7.5.1) are left out in the
views since they are, due to their construction, random group elements and independent
of all other values.
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• Coin simulation: We show how to simulate the blind signature τ ′

and the challenge c. This does not follow trivially from unlinkability
of Brands’ scheme because we reuse some internal values from the
withdrawal in the rest of the protocol (beyond what is used in Brands’
scheme), e.g., we use the blinding exponent s in s′ ≡ sj. We claim
that c can be simulated by an independent random value, and τ ′ =
(z′, a′, b′, r′) by a correct random signature on N ′, i.e., the simulator

chooses w′ ∈R Z∗
q and computes z′ ≡ N ′x, a′ ≡ gw′

, b′ ≡ N ′w
′

, c′ ≡
hash(N ′, z′, a′, b′, pk text), and r′ ≡ c′x + w′.39

We show that the real c is also random and the real τ ′ is a random
signature on N ′, and both are independent of each other and all other
values.

For the randomness of c, even for a cheating RC, we work in the ran-
dom oracle model (see Section 3.3) for hash as done by Frankel, Tsiou-
nis, and Yung (1996) and Frankel, Tsiounis, and Yung (1998). Then
for each input tuple to hash that has not occurred before, the output
c′ is random and independent of all values chosen up to this time, in
particular u. Furthermore, the inputs of the (honest) buyers contain a
new random value pk text each time, and thus, only repeat with negli-
gible probability. Hence, the simulation of c is correct. It follows that
even a cheating registration center RC∗ must choose (z, a, d, r) with
the correct relations, i.e., such that a value w exists with z ≡ N x,
a ≡ gw, d ≡ Nw, and r ≡ cx + w.40 Then r is uniquely determined by
the verification equation.

Given the correctness of (z, a, d, r), one can easily show that buyer’s
signature τ ′ has the structure claimed above where w′ := wu + v: In
the blind signing protocol we have z ′ := zs = N sx = N ′x, a′ := augv =
gwugv = gwu+v, b′ := dsuN ′v = N swuN ′v = N ′wu+v.

It remains to show that this w′ is uniformly distributed independent
of the remaining values in the view. This is true because the (honest)
buyer selects u and v randomly and uniformly, and the only other place
where u and v are used in the real protocol is in the computation of c,
and we have already shown that c can be replaced by an independent
random value.

39Note that the simulator is given the secret key x of RC while RC is a part of the adver-
sary. As mentioned in Section 3.4.4.1 the blind signature protocol is a proof of knowledge
of x. Thus, we let our simulator run the corresponding extractor in the registration, and
extract the secret key x.

40More precisely, if it chooses (z, a, d) differently, it will only pass the buyer’s verification,
and get information on the bit b with negligible probability. This is because one can easily
extract such a w and x from acceptable responses to two challenges c 6= c∗.
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S3: The remaining components we have to consider now are as follows:

recvReg
A,0 = (h1,0, h3,0,M1,0,M2,0, enc0),

recvFing
A,b = (pk text ,b,m

′
b, s

′
b, sig text,b).

In the following scenarios, we are going to simulate certain components in
the registration or fingerprinting views by replacing them with random val-
ues. Since these components are common inputs to the zero-knowledge pro-
tocols recvProveCorReg

A,0 and recvProveCorFing
A,b , it is not guaranteed by the defini-

tion of zero-knowledge that there exist a simulator when these inputs are not
legal. Thus, we might not be able to get a correct simulation of the overall
view forA. However, we can handle this problem by a careful construction of
the zero-knowledge protocols as follows: In the real protocol the prover com-
mits to the secret inputs (exponents) using information-theoretically hid-
ing commitments (auxiliary commitments), and proves knowledge of them.
Then all the zero-knowledge subprotocols within this protocol are performed
on these commitments for the proof of modular relations between the secret
exponents, etc. Due to the perfect hiding property, these commitments can
be opened to any value, and thus, for the simulation, these commitments
are always legal for the considered language. Hence, all zero-knowledge sub-
protocols can be simulated by definition, and the simulator for the main
zero-knowledge protocol can be constructed from these simulators. This is
the reason why we used this approach for the construction of the protocol
ProveCor() in Section 4.7.5.2.

Hence, each time we replace one of these components, we should keep in
mind that the main (zero-knowledge) proof of language membership can be
correctly simulated even though the inputs are not legal.

We start with simulating the encryption enc (in S2) by an ElGamal
encryption on a fixed value. This scenario should be indistinguishable from
S2. Otherwise, there exists a scenario distinguisher DS that we can use
to break the semantic security of ElGamal encryption.41 Note that this is
based on the Decisional Diffie-Hellman (DDH) assumption (Sections 2.2 and
2.6).

41It suffices to consider only passive adversaries, since the encryption is performed only
once per each key, and it is never decrypted. Thus, we can play the “fictive game” with an
passive adversary Aenc against the semantic security of the encryption scheme: Aenc gives
its message pair (p0, p1) to the ElGamal encryption oracle, and receives the ElGamal
encryption encb∗ of one of these messages randomly chosen by the oracle according to
b∗ ∈R {0, 1}. Note that one of these messages (e.g., p0) has the correct form as in the
real view whereas the other one is random. Now, the adversary constructs all components
of registration and fingerprinting views correctly as specified by the protocol. It then
includes encb∗ in recv

Reg
A,0 instead of enc0, and runs the scenario distinguisher SD. If the

output of SD indicates the correct scenario then the adversary outputs b∗ = 0, otherwise
b∗ = 1. The same procedure is done for enc1.
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S4: The received message tuple can now be written as follows:

recv reg
A,0 = (h1,0, h3,0,M1,0,M2,0) = (gi0

1 , gi0
3 , gj0

3 , g
i′0j0
4 ),

recvfing
A,b = (pk text,b,m

′
b, s

′
b, sig text,b) = (g

i′b
4 , gibsb

1 gsb
2 , sbjb, sig text,b).

Similarly we can write this for the indices 1 and b̄. For the relation to
Diffie-Hellman-type problems, where only one generator is given, we abbre-
viate g1 as g (confusion with g in the withdrawal protocol should not occur)
and let g2 = gα, g3 = gβ , g4 = gγ . Recall that the generators were gener-
ated (at system setup) in a way that is random (even if RC cheats). This
is important for the following simulations, where we can use random values
in the place of α, β and γ. We now rewrite the entire remaining view of
the adversary. The only points where the remaining “buyer” reacts on a
message from the adversary are the signatures on the purchase descriptions
text , which we now write sigtext := sigg′,i′(text) if g′ is the generator and i′

the secret key. We include the generators so that one remembers to simulate
them, and one final global state stateA of the adversary.

recv reg
A,0 = (gi0 , gβi0 , gβj0 , gγi′0j0),

recv reg
A,1 = (gi1 , gβi1 , gβj1 , gγi′1j1),

recvfing
A,b = (gγi′b , gibsb+αsb , sbjb, siggγ ,i′b

(text b)),

recvfing

A,b̄
= (gγi′

b̄ , gib̄sb̄+αsb̄ , sb̄jb̄, siggγ ,i′
b̄
(text b̄)),

view glob = (g, gα, gβ , gγ , stateA).

S5: We show that we can replace gβi0 in recv reg
A,0 by an independent random

value, and still remain indistinguishable from the previous scenario. Oth-
erwise, the following algorithm would break the Decisional Diffie-Hellman
assumption: On input (g, gx, gy, u), where u is either gxy or an independent
random value, use the unknown values x and y in the place of β and i0,
respectively. More precisely,

1. simulate the above view by choosing b, α, γ, j0, i
′
0, s0, and i1, j1, i

′
1, s1

randomly,

2. compute the values where β and i0 do not occur as usual (note that
this simulator knows b, and thus, in which fingerprinting view i0 is
used),

3. simulate the remaining values, i.e., gβ, gi0 , gβi0 , gβj0 , gβi1 , gβj1 and
gi0s0+αs0 , as gx, gy, u, (gx)j0 , (gx)i1 , (gx)j1 and (gy)s0gαs0 ,

4. run the scenario distinguisher DS on these views and output the bit
which DS outputs. Note that this bit corresponds to a scenario (here
S3 or S4), and we let the DDH distinguisher guess u = gxy if SD’s
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output corresponds to S3, and random otherwise. Since the simu-
lated views have the correct form as specified in the protocol, and
the scenario distinguisher DS has non-negligible success probability,
then the success probability of the DDH distinguisher will also be
non-negligible.

Now, we can obviously fade out this independent random value and
proceed in the same way with gβi1 . Thus, this leaves us with:

recv reg
A,0 = (gi0 , gβj0 , gγi′0j0),

recv reg
A,1 = (gi1 , gβj1 , gγi′1j1),

recvfing
A,b = (gγi′b , gibsb+αsb , sbjb, siggγ ,i′b

(text b)),

recvfing

A,b̄
= (gγi′

b̄ , gib̄sb̄+αsb̄ , sb̄jb̄, siggγ ,i′
b̄
(text b̄)),

view glob = (g, gα, gβ , gγ , stateA).

S6: Next, we show that one can replace gibsb in recvfing
A,b by an independent

random value u, and still remain indistinguishable from the previous sce-
nario. Otherwise, we can construct an algorithm which breaks Decisional

Strong Diffie-Hellman (DSDH) Assumption (see Sections 2.2 and 2.6).
First, note that the distribution remains unchanged if we use a random

value s′b in the place of sbjb, and set jb = s′b/sb instead of choosing it ran-
domly (for b = 0, 1). We can, therefore, rewrite the received message tuple
as

recv reg
A,0 = (gi0 , gβs′0/s0 , gγi′0s′0/s0),

recv reg
A,1 = (gi1 , gβs′1/s1 , gγi′1s′1/s1),

recvfing
A,b = (gγi′b , gibsb+αsb , s′b, siggγ ,i′b

(text b))

recvfing

A,b̄
= (gγi′

b̄ , gib̄sb̄+αsb̄ , s′b̄, siggγ ,i′
b̄
(text b̄))

view glob = (g, gα, gβ , gγ , stateA).

and similarly for the indices 1 and b̄.
On input of DSDH-tuples (g, gx, g1/y , gy , u) where u is either gxy or a

random value, we simulate a view by letting the unknown values x, y play
the roles of ib, sb, similar as above:

1. Randomly choose b, α, β, γ, j0, i
′
0, s′0, j1, i

′
1, s′1 and ib̄, sb̄,

2. Construct all corresponding values (the given gy−1
corresponds to

g1/sb). Now, as in the previous case, we run the scenario distinguisher
DS on these views, and the SDDH distinguisher outputs the bit which
DS outputs. Again, here we can interpret the bit accordingly, i.e., if
DS indicates the previous scenario then SDDH distinguisher outputs
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u = gxy, and random otherwise. Since the simulated views has the cor-
rect form as specified in the protocol, and the scenario distinguisher
DS has non-negligible success probability, then the success probability
of the SDDH distinguisher will also be non-negligible.

Note that the second component in recv fing
A,b is now ugαsb which is a

random value independent form all other values since u is a randomly
and independently chosen value. Thus, we can fade out this value as
well.

Then we go through the same procedure for gib̄sb̄ . Thus, we have now
the following views:

recv reg
A,0 = (gi0 , gβs′0/s0 , gγi′0s′0/s0),

recv reg
A,1 = (gi1 , gβs′1/s1 , gγi′1s′1/s1),

recvfing
A,b = (gγi′b , s′b, siggγ ,i′b

(text b))

recvfing

A,b̄
= (gγi′

b̄ , siggγ ,i′
b̄
(text b̄))

view glob = (g, gα, gβ , gγ , stateA).

S7: Now, gα is the only remaining component with α, and α is random.
Hence, we can also fade out this value. Similarly, we can omit g ib and gib̄ .
This leaves us with

recv reg
A,0 = (gβs′0/s0 , gγi′0s′0/s0),

recv reg
A,1 = (gβs′1/s1 , gγi′1s′1/s1),

recvfing
A,b = (gγi′b , s′b, siggγ ,i′b

(text b)),

recvfing

A,b̄
= (gγi′

b̄ , s′b̄, siggγ ,i′
b̄
(text b̄)),

viewglob = (g, gβ , gγ , stateA).

Using the same technique as above, we now replace gβ/s0 by an indepen-
dent random value u: We use the DDH assumption and let x and y play
the roles of β and 1/s0 (Note that 1/s0 modulo q is also a random num-
ber.) Again, we can correctly simulate all components, and they would have
correct distribution in the case u = gxy. With random u, we get a compo-
nent us′0 , which is random, and we can fade it out (Note that any u 6= 1
is a generator.) The same holds for gβ/s1 . Then gβ is the only remaining
component with random β, and we can fade it out.
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Thus, the received message tuple can be written as follows:

recv reg
A,0 = (gγi′0s′0/s0),

recv reg
A,1 = (gγi′1s′1/s1),

recvfing
A,b = (gγi′b , s′b, siggγ ,i′b

(text b)),

recvfing

A,b̄
= (gγi′

b̄ , s′b̄, siggγ ,i′
b̄
(text b̄)),

view glob = (g, gγ , stateA).

S8: Now, sb ∈R Z∗
q is a randomly and uniformly chosen value and unrelated

to any of the other components. It follows that the components gγi′bs′b/sb in
registration tuples are also randomly and uniformly distributed (one-time
pad operation by the random value 1/sb ∈ Z∗

q in exponents) and unrelated
to the fingerprinting components. Thus, we can also fade them out which
leaves us with

recvfing
A,b = (gγi′b , s′b, siggγ ,i′b

(text b)),

recvfing

A,b̄
= (gγi′

b̄ , s′b̄, siggγ ,i′
b̄
(text b̄)),

view glob = (g, gγ , stateA),

This means that the remaining “buyer” sends only random independent
values in the registration unrelated to the fingerprintings. Her behaviour
can be simulated without even choosing a value b since it is only an index
now. Thus, the views are independent from the bit b, and no adversary can
link them. It follows from transitivity of indistinguishability that also no
successful distinguisher of the real world views exists.

Finally, the following theorem follows from the lemmas 4.1, 4.2, 4.3 and
4.4:

Theorem 4.3 The construction from Section 4.7.5 is a secure anonymous
fingerprinting scheme. 2



Chapter 5

Embedding for Anonymous
Fingerprinting

This chapter presents in details the first explicit construction for the
embedding protocol of a fingerprinting scheme which is collusion-tolerant,
asymmetric, and anonymous.

5.1 Introduction

We present the construction for the embedding and extracting procedures of
our fingerprinting scheme. We require the scheme to be collusion-tolerant,
asymmetric and anonymous. In particular, the construction of such a scheme
must guarantee that in any redistributed work, generated by a collusion of
a given tolerable size, the merchant can find the information which comes
from at least one traitor. In other words, after finding a redistributed work
and extracting a codeword from it, the merchant is faced with the problem
of error-correction with probably too many errors.

Let us take a look at the constructions we had so far, and briefly dis-
cuss whether they can offer a solution to this problem: In the symmetric
collusion-tolerant scheme, described in Section 4.4, the merchant prepares a
list of the codewords he has already assigned to his buyers. In identification,
he uses this list and the word extracted to identify a traitor. However, the
usage of such codes is restricted, since for embedding and extracting large
amount of information the number of codewords, which the merchant has
to keep track of, might get very large.

The next construction is the asymmetric fingerprinting scheme (with 3-
party trial) described in Section 4.5. In this construction, the merchant
knows half of the codeword and the commitments on the other half. He

223
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then prepares a list of these halfwords which he uses in the identification
together with the extracted codeword. However, to obtain a complete code-
word, which he requires for a proof in a trial, the buyer must be involved
in the trial, and asked by the arbiter to open her commitments (therefore,
3-party trial). Hence, the evidences the merchant can retrieve are not suf-
ficient for an arbiter to decide that an accused buyer is guilty. The reason
is that the extracted codeword has too many errors to be reasonably de-
coded. In particular, this construction is not appropriate for an anonymous
fingerprinting scheme since M does not know the identity of his buyers.

As mentioned before, we need a construction which guarantees that at
least for one of the traitors all of his committed bits can be extracted from
the redistributed work. To handle this, Pfitzmann and Waidner (1997c)
propose a construction framework for a collusion-tolerant asymmetric fin-
gerprinting scheme with 2-party trial. They propose to combine an asym-
metric fingerprinting scheme, based on concatenated codes, with Error-and-
Erasure-Correcting Codes (EECC) such that the extracted bits come from
the same traitor.

The embedding protocol in Pfitzmann and Waidner (1997c) is partially
explicit. In the following sections, we will focus on this construction, and
give explicit protocols for its realization, and analyze its security.

5.2 Building Blocks

In this section, we consider those primitives and cryptographic protocols
which will serve as building blocks for the embedding procedure of our fin-
gerprinting protocol.

5.2.1 Reed-Solomon Code

A Reed-Solomon (RS) Code (Reed and Solomon 1960) is an error-
correcting block code. A block code of length L containing N elements
over the alphabet Σ is a set of N L-tuples where each L-tuple takes its com-
ponents sym i from Σ. We denote a code with C. An element of C is called
a codeword denoted by vector notation ~word := (sym1, · · · , symL).

Block codes are specified by their main parameters L,N and d∗ where d∗

is the minimum distance of the code defined as the Hamming distance
HD( ~word 1, ~word 2) between two distinct codewords ~word 1, ~word 2 ∈ C, i.e.,
d∗ := minHD( ~word 1, ~word 2). Another important parameter is the dimen-
sion dim or information length of a code C. It is defined as dim := log |Σ| N
(logarithm to the base |Σ|).

Reed-Solomon codes belong to one of the most important classes of lin-
ear codes, namely, the cyclic codes. A code C over a field Fq is called
linear if C is a linear subspace of FL

q over Fq, namely, for all codewords
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~word 1, ~word 2 ∈ C and the values a1, a2 ∈ Fq we have a1
~word 1+a2

~word 2 ∈ C.
A linear code C is called cyclic code if C is a cyclic subspace. A subspace S
of a vector space FL

q over Fq is cyclic if whenever (a1, a2, · · · , aL) ∈ S then
(aL, a1, · · · , aL−1) ∈ S.

The dimension of a linear (L,N, d∗)-code C is the dimension of the sub-
space C of FL

q over Fq. If dim is the dimension of C then we say that C
is a linear [L, dim , d∗]-code over Fq. The difference L − dim is called the
redundancy of C.

The length L of an RS-code over Fq is L = q − 1. Thus, the length is
the number of nonzero elements in the ground field. The message m to be
RS-encoded is represented as a polynomial m(x) :=

∑l−1
s=0 msx

s over the field

Fq with ms ∈ Fq. We denote the RS-encoding with ~h← RS(~m, parRS) where
parRS denotes the required parameters. Here, we use the vector notation for

m(x) and its RS-encoding h(x), i.e., we write ~m :=(m0, · · · ,ml−1), and ~h :=
(h0, · · · , hL−1). Note that the field operations are operation on polynomials
over the underlying field.

For any T < L/2 there exists an RS-code of minimum distance d∗ = 2T +
1 and the dimension dim = L−2T , i.e., the code can correct up to T errors.
An RS-code can be constructed as follows: Let α be a generator of Fq. The

so-called generator polynomial for this code is g(x) =
∏2T

i=1(x−αi). The
code can then be generated by multiplying g(x) with message polynomials
m(x) of degree less than L− 2T over Fq. Basically, codes with d∗ = 2T + 1
are used to correct up to T errors. However, one can use them to correct T1

errors and T2 erasures1 where 2T1 + T2 + 1 ≤ d∗ holds.
For more detailed information on error-correcting codes see Vanstone

and van Oorschot (1995) or van Lint (1999).

5.2.2 Proving Equality of QR-Committed Encodings

We consider a protocol ProveEqEncCom() in which a prover P proves to
a verifier V that the contents of two given QR-commitments are different
encodings of the same value. The encodings we are concerned with are
binary bin() (here dyadic) and unary un() encodings (see Section 3.1).

Description: Let (GenParComQR(),ProtComQR(),ProtOpenQR()) be a
QR commitment scheme with the parameter par QR

com = n. Let Cbin
a and Cun

a∗

be given commitments that are supposed to be the QR-commitments to the
binary and unary encoding of the same value a ∈ Σ:={0, 1, · · · ,m−1} ⊂ N,

1An erasure can be viewed as an error for which the position is known but the value
(magnitude) not. The task of the decoder is here to restore or fill the erasure positions.
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i.e., these commitments have the following form:

Cbin
a := comQR(bin(a), ~x , n) =

[
comQR(abin

i , xi, n)
]

1≤i≤l

Cun
a∗ := comQR(un(a∗), ~y , n) =

[
comQR(a∗j

un, yj , n)
]

1≤j≤l′

where a and a∗ denote their contents, and (abin
1 , abin

2 , · · · , abin
l ) := bin(a),

(a∗1
un, a∗2

un · · · , a∗l′un) := un(a∗) denote the binary and unary encoding with

abin
i ∈ {0, 1} for 1 ≤ i ≤ l and a∗

j
un := 1j=a∗ :=

{
1 : if j = a∗

0 : else
for

1 ≤ j ≤ l′, and xi, yj ∈R Z∗
n.

Remark 5.1. The required QR-commitment parameter par QR
com = n is ob-

tained via a trusted parameter generation. This means, depending on the
requirements and the application, the required parameters can be generated
either by a trusted third party or by a secure and verifiable procedure. In
the second approach, one party (here the prover P) generates the parameter
parQR

com and proves its correctness to the other (here the verifier V). See
Section 3.5.4 for details. ◦

In protocol ProveEqEncCom(), the prover P proves to the verifier V that
the contents of Cbin

a and Cun
a∗ are the binary and unary encodings of the same

symbol, i.e., a = a∗.
This protocol is denoted by

(P : −; V : ind)← ProveEqEncCom(P : stateC
P ; V : −; ∗ : C, par QR

com)

where stateC
P := (state

Cbin
a

P , state
Cun

a∗

P ) is the opening information for the com-
mitments C := (Cbin

a , Cun
a∗ ) and ind ∈ {accept , reject} is the output to the

verifier indicating whether it accepts or not.
The underlying language L, describing the objective to be proven, is

defined as follows:

L :=
{

(Cbin
a , Cun

a∗ , n, k, l, l′)|

n ∈ [GenParComQR(k)] ∧ Cbin
a ∈ (Z(+1)

n )l ∧ Cun
a∗ ∈ (Z(+1)

n )l
′ ∧

∃a, a∗ ∈ Σ ∧ ∃~x ∈ (Z∗
n)l ∧ ∃~y ∈ (Z∗

n)l
′ ∧

Cbin
a = comQR(bin(a), ~x , n) ∧ Cun

a∗ = comQR(un(a∗), ~y , n) ∧
a = a∗

}

.

Construction: The generating algorithm for this language, denoted by
GenEqEncCom(), outputs

(
(Cbin

a , Cun
a∗ , n, k, l, l′), (~x , ~y)

)
(see also 3.6.2).

The individual protocol steps are as follows:



5.2 Building Blocks 227

1. P encodes all symbols ds ∈ Σ (0 ≤ s ≤ m − 1) using both encoding
functions, commits to them, and constructs the table T shown in Table
5.1. For the sake of completeness we use different symbols ds and d′s
for each column.

Table 5.1 Table T : Commitments to symbols of Σ in unary and binary
form

ds comQR(bin(ds)) comQR(un(d′s))

0 comQR(dbin
0,1 ), · · · , comQR(dbin

0,l ) comQR(d ′un
0,1), · · · , comQR(d ′un

0,l′)

1 comQR(dbin
1,1 ), · · · , comQR(dbin

1,l ) comQR(d ′un
1,1), · · · , comQR(d ′un

1,l′)

...
...

...

m− 1 comQR(dbin
m−1,1), · · · , comQR(d ′bin

m−1,l) comQR(d ′un
m−1,1), · · · , comQR(d ′un

m−1,l′)

We denote the binary and unary commitments at row s with

Cbin
s := comQR

(
bin(ds), ~xs, n

)
=

[
comQR(dbin

s,i , xs,i, n)
]

1≤i≤l

Cun
s := comQR

(
un(d ′

s), ~ys, n
)

=
[
comQR(d ′un

s,j, ys,j, n)
]

1≤j≤l′

for s ∈ [0,m − 1]. Note that, for simplicity, the randomizing compo-
nents ~xs, ~ys and the modulo n of the QR-commitments are omitted in
the table.

2. P selects a random permutation σ of Σ and permutes the rows of table
T by applying σ. P sends the resulting table Tσ to V.

3. V responds with a (randomly chosen) binary challenge c.

4. If c = 0, then P sends resp0 :=(σ, stateCs
P ) for s ∈ [0,m−1] to V where

stateCs
P :=(state

Cbin
s

P , state
Cun

s
P ), state

Cbin
s

P :=(dbin
s , ~xs), state

Cun
s

P :=(d′un
s , ~ys),

state
Cbin

s
V := (Cbin

s , n) and state
Cun

s
V := (Cun

s , n).

Now, V proceeds as follows:

(a) Computes T = σ−1(Tσ),

(b) Verifies for each s ∈ [0,m−1] that row s of T contains the correct
commitments to the binary and unary encodings of the elements
ds, d

′
s ∈ Σ:

true
?
= VerOpenQR(state

Cbin
s

P , state
Cbin

s
V ) ∧

true
?
= VerOpenQR(state

Cun
s

P , state
Cun

s
V )
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(c) For each s if the opening algorithm returns true verifies that

ds = bin−1(dbin
s ) = un−1(d′

un
s ).

Note that this check is needed since the verification algorithm
VerOpenQR() only checks whether the opening information is cor-
rect (see also 3.5.4). It does not verify that the content of the
commitments are equal.

5. If c = 1 then P sends resp1 := (s′, state
Cs′,∗

P ). Here s′ is the permuted
row which is supposed to contain the encodings of a and a∗. Further,

state
Cs′,∗

P := (state
Cbin

s′,∗

P , state
Cun

s′,∗

P ) is supposed to be the opening infor-
mation of the commitments Cbin

s′,∗ and Cun
s′,∗ (which are supposed to be

Cbin
s′,∗ := Cbin

s′ Cbin
a , Cun

s′,∗ := Cun
s′ Cun

a∗ .)

Now, V proceeds as follows:

(a) Computes C ′bin
s′,∗ := Cbin

s′ Cbin
a and C ′un

s′,∗ := Cun
s′ Cun

a∗ .

(b) Verifies that

true = VerOpenQR(state
Cbin

s′,∗

P , state
C′bin

s′,∗

V ) ∧

true = VerOpenQR(state
Cun

s′,∗

P , state
C′un

s′,∗

V ).

where state
C′bin

s′,∗

V := (C ′bin
s′,∗, n) and state

C′un
s′,∗

V := (C ′un
s′,∗, n).

(c) Verifies that the quantities C ′bin
s′,∗ and C ′un

s′,∗ are commitments
to zero by checking the corresponding opening information

(state
Cbin

s′,∗

P , state
Cun

s′,∗

P ) sent by P.

Lemma 5.1 The protocol ProveEqEncCom() is complete. 2

Proof. For this property, it is assumed that both parties are honest, and
behave according to the specified protocol. Thus, we can assume that P
correctly computes the table T (and Tσ). It is easy to see that V accepts for
c = 0. To see this for c = 1, consider the following relations

C ′bin
s′,∗ = Cbin

a Cbin
s′

=
[
comQR(abin

i , xi, n)
][

comQR(dbin
s′,i, xs′,i, n)

]

1≤i≤l

=
[
comQR(abin

i ⊕ dbin
s′,i, xixs′,i, n)

]

1≤i≤l

=
[
comQR(abin

i ⊕ dbin
s′,i, vi, n)

]

1≤i≤l



5.2 Building Blocks 229

and

C ′un
s′,∗ = Cun

a Cun
s′

=
[
comQR(aun

j , yj , n)
][

comQR(d ′un
s′,j, ys′,j, n)

]

1≤j≤l′

=
[
comQR(aun

j ⊕ d ′un
s′,j, yjys′,j, n)

]

1≤j≤l′

=
[
comQR(aun

j ⊕ d ′un
s′,j, wj , n)

]

1≤j≤l′

where vi := xixs′,i and wj := yjys′,j (Note that ~v :=
[

xixs′,i

]

1≤i≤l
and

~w :=
[

yjys′,j

]

1≤j≤l′
).

Consider now the opening of Cbin
s′,∗: Since ds′ = a, and thus, dbin

s′,i = abin
i ,

it follows from homomorphic properties of the QR-commitment
[
abin

i ⊕ dbin
s′,i

]

1≤i≤l
=

[
0

]

1≤i≤l
.

The same applies to Cun
s′,∗, i.e.,

[
a∗un

j ⊕ d ′un
s′,j

]

1≤i≤l′
=

[
0

]

1≤j≤l′
.

Lemma 5.2 The protocol ProveEqEncCom() is perfectly sound. 2

Proof. If (Cbin
a , Cun

a∗ , n, k, l, l′) 6∈ L, we show that even a computationally
unrestricted prover cannot convince the verifier with probability better than
1/2.

Assume, we are given (Cbin
a , Cun

a∗ , n, k, l, l′) 6∈ L (i.e., in particular a 6= a∗)
and an arbitrary prover P∗ with an arbitrary auxiliary input auxP∗ . We
show that P∗ can at most pass one of the V’s challenges.

Suppose, V has accepted the response resp0, i.e., it verifies that each row
of the table Tσ is correctly constructed. We show that P∗ cannot reveal a
response resp1 which V would accept. Now, consider the case c = 1: V’s veri-
fication of resp1 would be successful if and only if (C ′bin

s′,∗, C
′un
s′,∗, n, k, l, l′) ∈ L,

and C ′bin
s′,∗, C

′un
s′,∗ are commitments to zero. A successful verification implies

that there exist ds′ , d
′
s′ ∈ Σ such that ds′ = a and d′s′ = a∗. Since we

assumed that ds′ = d′s′ holds, it follows that a = a∗ which is a contra-
diction. Thus, P∗ cannot correctly open the resulting commitments, and
consequently V will not accept the response in this case, unless P ∗ is capa-
ble of opening the QR-commitments Cbin

s′ , Cun
s′ in two different ways. This is,

however, not possible even for all powerful P∗ since QR commitment scheme
is information-theoretically binding.

Conversely, consider the case where V has accepted the response resp 1.
Thus, there exist ds′ , d

′
s′ ∈ Σ such that ds′ = a and d′s′ = a∗. Since we

assumed that a 6= a∗ it follows that ds′ 6= d′s′ and thus, row s′ in the table
Tσ is not correctly constructed2. However, this would mean that V would

2According to the protocol, each row s of T must contain the commitments to a different

element ds of Σ (which V additionally checks) However, for the soundness property it
suffices that the table contains, at least in one row, the (binary and unary) commitments
to a. The specified form of the table T is necessary for the zero-knowledge property.
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not accept resp0 unless P∗ is capable of opening QR-commitments Cbin
s′ , Cun

s′

in two different ways. Again, this is not possible even for all powerful P ∗

since QR commitment scheme is information-theoretically binding.
Hence, after sending the table Tσ, P∗ can correctly answer to at most

one of the two possible challenges, and since P ∗ does not know the challenge
in advance, its success probability is at most 1/2.

Lemma 5.3 The protocol ProveEqEncCom() is perfect zero-knowledge. 2

Proof. We construct a simulator SV∗
with black-box access to V∗ as given

in Algorithm 5 that we will explain in the following. The inputs to SV∗
are

parQR
com = n, Cbin

a and Cun
a∗ .

Our goal is to show that SV∗
generates a view with identical distribution

as V∗’s view in the real protocol. Thus, we must verify that all quantities
computed by the simulator are of correct form:

In Algorithm 5, SV∗
computes all quantities according to the real pro-

tocol except for the construction of the table T in case c = 1 (see Step 3).
In this case, SV∗

proceeds as follows:
First, it computes the unary commitments to a∗+1 mod m, a∗+2 mod m

and so on. It is not difficult to see that this can be done by rotating the
unary commitments Cun

a∗ once at a time.
Secondly, SV∗

computes the binary commitments Cbin
s by using the unary

commitments Cun
s . This is done by applying algorithm DeriveEncCom() from

Section 5.2.5 (where the corresponding encoding function Encode() is the
binary encoding bin().)

Thirdly, the table T is constructed in Step 3c by randomly entering
(Cbin

s , Cun
s ) to any m − 1 rows of T and (Cbin

a )−1, (Cun
a∗ )−1 in the remain-

ing row. The reason for entering the inverse commitments in that row is
that the simulator does not know the opening values for the commitments
Cbin

a , Cun
a∗ , in particular, the randomizing parts ~x, ~y. Thus, it will not be able

to response with the opening information for the product commitments C bin
s′,∗

and Cun
s′,∗ computed by the verifier.

Finally, all rows are blinded in Step 3d to obtain independent commit-
ments which follows from Lemma 3.2 stating that the result of multiplication
of a given QR-commitment with a random QR-commitment to zero is again
a random commitment to the same value.

Remark 5.2. A trivial solution for constructing the table T is to fill all
rows with random values except for one row where the commitments
(Cbin

a )−1, (Cun
a∗ )−1 are entered. However, the resulting protocol will not be

perfectly zero-knowledge (that we actually prefer) since the simulated val-
ues will not have the same probability distribution as the values in the real
protocol (see also Footnote 2.) ◦
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Algorithm 5 The Simulator SV∗
for protocol ProveEqEncCom()

Input: Cbin
a , Cun

a∗ , n = parQR
com

1. Choose c ∈R {0, 1}, and a random permutation σ of Σ.

2. If c = 0, construct the table T 0
σ by computing the commitments

Cbin
s := comQR

(
bin(ds), ~xs, n

)
and Cun

s := comQR
(
un(d ′

s), ~ys, n
)

where

s ∈ [0,m− 1], ~xs ∈R (Z∗
n)l and ~ys ∈R (Z∗

n)l
′
.

3. If c = 1, compute the table T 1
σ as follows:

(a) Use the unary commitment Cun
a∗ to compute the unary com-

mitments Cun
s := comQR

(
un(d ′

s), ~ys, n
)

to d′s := a∗ + s mod m
with s ∈ [0,m − 1]. To add 1 mod m each time, shift
the individual commitments in the commitment tuple C un

a∗ :=
(
comQR(a∗1

un, y1, n), · · · , comQR(a∗l′
un, yl′ , n)

)
one position to the

right, and once for all remaining m− 1 values (rows).

(b) Use Cun
s to compute the corresponding binary commitments C bin

s

for each ds 6= a. For this, use the algorithm DeriveEncCom() from
Section 5.2.5 where the encoding function Encode() is the binary
encoding bin(). According to this algorithm and Lemma 5.10,
the commitment to each bit dbin

s,i of ds can be computed as fol-

lows: comQR(dbin
s,i , zi, n) :=

∏

j:dbin
j,i 6=0bin comQR

(
d ′un

s,j, ys,j, n
)

where

for each i (1 ≤ i ≤ l) the set {j : dbin
j,i 6= 0bin} indicates all ele-

ments dj ∈ Σ whose binary encodings contain a 1 at their i-th
bit position.

(c) Construct the table T as follows: Enter randomly (C bin
s , Cun

s ) to
any m− 1 rows of T . In the remaining row, denoted by s′, enter
the inverse commitments (Cbin

a )−1, (Cun
a∗ )−1.

(d) Blind the binary and unary commitments (Cbin
s , Cun

s ) at each
row s of the table T by multiplying them with commitments
to zero, i.e., compute Cbin

s Cbin
s,0 and Cun

s Cun
s,0 where Cbin

s,0 :=

comQR(bin(0), ~x′
s, n), Cun

s,0 := comQR(un(0), ~y′s, n), ~x′
s ∈R (Z∗

n)l,

and ~y′s ∈R (Z∗
n)l

′
.

4. Start the verifier V∗, send T c
σ to it, and wait until V∗ sends the chal-

lenge c∗.

5. IF c∗ = c, THEN

(a) send respc accordingly: resp0 as in the real protocol and

resp1 :=(s′, state
Cbin

s′,0

P , state
Cun

s′,0

P ) with state
Cbin

s′,0

P :=(0bin, ~x′
s′ , n) and

state
Cun

s′,0

P := (0un, ~y′s′ , n).

(b) wait until V∗ outputs indV∗. Then output the view viewSV∗ =
(T c

σ , c, respc, indV∗).

ELSE output the symbol ⊥.
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We consider the simulated view (T c
σ , c, respc, indV∗), and compare it to

the real view.

• T c
σ : is a table consisting of (independent and random) unary and bi-

nary QR-commitments to all symbols of Σ:

For c = 0, the table T 0
σ is constructed exactly as in the real protocol.

For c = 1, the table T 1
σ is by construction a permutation of a table

T under a random permutation σ′ of Σ (the table is filled randomly)
Further, T consists of binary and unary QR-commitments to all sym-
bols in Σ which is conform with the real protocol. For the row with
the entry ((Cbin

a )−1, (Cun
a∗ )−1) it follows from Lemma 3.1 that

C ′bin
a := (Cbin

a )−1

= comQR(bin(a), ~u, n) =
[
comQR(abin

i , ui, n)
]

1≤i≤l

C ′un
a∗ := (Cun

a∗ )−1

= comQR(un(a∗), ~u′, n) =
[
comQR(a∗j

un, u′
j , n)

]

1≤j≤l′

where ui :≡ x−1
i , u′

j :≡ y−1
j and xi, yj ∈R Z∗

n. Thus, C ′bin
a and C ′un

a∗

are again binary and unary QR-commitments to a and a∗ respectively
(see also Section 3.5.4).

The commitments in the table T 1 are random and independent due
to the blinding step. This follows from Lemma 3.2 stating that the
result of multiplication of a given QR-commitment with a random QR-
commitment to zero, is again a random commitment to the same value.
More precisely, the randomizing parts are determined as follows: For
the binary commitments we have x′

s,i

∏

∆i
ys,j if s 6= a, and x′

a,iui if
s = a. For the unary commitments ys,jy

′
s,j if s 6= a∗, and y′s,jus,j if

s = a∗.

• c∗: The challenge c∗, sent by V∗ has the correct distribution since SV∗

maintains the distribution of c∗ by verifying whether c∗ = c and acting
accordingly.

• respc: By construction respc has the same distribution as in the real
protocol: In the case c = 0 all components of resp0 have the cor-

rect form because state
Cbin

s
P = (ds, ~xs), state

Cun
s

P = (d′s, ~ys), σ is a ran-
dom permutation of Σ, ds, d

′
s ∈ Σ for all s, n ∈ [GenParComQR(k)],

~xs ∈R (Z∗
n)l, and ~ys ∈R (Z∗

n)l. Thus, the view has exactly the same
distribution as in the real protocol.

Also in the case c = 1, all components of resp1 have the correct
form: s′ is the result of a random permutation, and the quantities

state
Cbin

s′,0

P = (bin(0), ~x′
s′) and state

Cun
s′,0

P = (un(0), ~y′s′), with ~x′
s′ ∈R



5.2 Building Blocks 233

(Z∗
n)l, ~y′s′ ∈R (Z∗

n)l and n ∈ [GenParComQR(k)], are the correct open-
ing information for the commitments C ′bin

s′,∗ and C ′un
s′,∗, as in the real

protocol. The reason for this is that the quantities C ′bin
s′,∗, C ′un

s′,∗ are
random commitments to zero. We can see this by considering the
verifications of the verifier V∗:

C ′bin
s′,∗ := Cbin

a Cbin
s′ = Cbin

a Cbin
s′,0(C

bin
a )−1 = Cbin

s′,0

C ′un
s′,∗ := Cun

a∗ Cun
s′ = Cun

a∗ Cun
s′,0(C

un
a∗ )−1 = Cun

s′,0.

Finally, the probability that the simulator fails is at most 1/2 since the
simulated view is taken only if c∗ = c. The running time of the simulator is
polynomial since every step of Algorithm 5 can be performed in polynomial
time.3

From the previous lemmas we conclude the following theorem:

Theorem 5.1 The protocol ProveEqEncCom() is perfect zero-knowledge
proof of language membership. 2

Remark 5.3. The construction for the protocol ProveEqEncCom() can also
be used for arbitrary encodings (with binary symbols). However, in gen-
eral, the protocol appears to be computationally zero-knowledge (not per-
fect zero-knowledge) unless there exists an efficient procedure for deriving
the commitments to one encoding from the commitments to the other en-
coding as we have seen for the unary and binary encoding in the simulator
algorithm (see Algorithm 5). Assume now, we are given two arbitrary en-
codings e1 and e2 which encode z ∈ G to binary strings of length l and l ′. S
constructs the table T . Since S does not know the content a it chooses an
arbitrary row s′ of T and writes the entry

(
(Ce1

a )−1, (Ce2
a∗)−1

)
in this row.

Now, with high probability two rows in T contain commitments to the same
symbol a (and a∗ respectively). This means that the simulated T has not
the same probability distribution as the table in the real protocol. In case
of QR-commitments, one may show that if a distinguisher D distinguishes
both tables then D can be used to construct a distinguisher distinguishing
quadratic residues from non-residues, and this is considered to be hard un-
der Quadratic Residuosity Assumption (QRA) (see Section 3.5.4 for QRA).
◦

5.2.2.1 Efficiency

We consider the main costs from different perspectives, namely, the number
of required commitments, the number of main operations for the involved

3All required operations, i.e., shifting commitments, multiplication, computing inverse
elements, random selection of elements and membership test in Z∗

n, permutation of the
finite set Σ and computing the inverse of the encodings bin() and un() can be performed
in polynomial time.
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parties, and the number of communicated bits. Note that for different chal-
lenges c, we have different costs for different types of operations. We take
the challenge with higher costs.

• Number of commitments: m(l + l′) = m(log n + m) for computing the
table T

• Number of operations for P:

– Multiplication: l + l′ = log n + m multiplications modulo n (in
case c = 1)

– Squaring: m(l + l′) = m(log n + m) squarings modulo n (in case
c = 1)

• Number of operations for V:

– Multiplication: l + l′ = (log n + m) multiplications modulo n (in
case c = 1)

– Squaring: m(l + l′) = m(log n + m) squarings modulo n (in case
c = 0)

• Communicated bits: 2m(l + l′) log(n) = 2m
(
log(n) + m

)
log(n)

Note that we have m(l+ l′) = O(poly(k)) where k is the security parameter.

5.2.3 Proving Correctness of Committed Reed-Solomon En-
coding

We consider a protocol ProveEncRSCom() in which a prover P proves to a
verifier V that given two QR-commitments, the content of one them is the
Reed-Solomon (RS) encoding of the content of the other one over the finite
field F2e .

Description: Let z ∈ G be the value to be RS-encoded, and a be the
binary encoding of z, i.e., a = bin ◦ int(z). The value z and its RS-encoding

are represented as polynomials
∑l′−1

s=0 csx
s, and

∑l′′−1
s′=0 c′s′x

s′ over F2e where
cs, c

′
s′ ∈ F2e (see also Section 5.2.1)
Let fs := bin ◦ int(c′s) and hs′ := bin ◦ int(c′s′) for s ∈ [0, l′ − 1] and s′ ∈

[0, l′′ − 1] where we have length2(fs) = length2(hs′) = e. Recall that we
use vector convention to denote the above polynomials with their binary
encoded coefficients fs and hs′ , i.e., we write ~f := (fl′−1, · · · , f0) and ~h :=
(hl′′−1, · · · , h0) where ~h represents the RS-encoding of ~f , i.e., ~h := RS(~f ) .
Note that since the underlying field is F2e , we can set a := ~f .

Now, let (GenParComQR(),ProtComQR(),ProtOpenQR()) be a QR com-
mitment scheme with parQR

com = n (see Remark 5.1 for the generation of n).
Further, let CF

f and CF
h be given commitments that are supposed to be the
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commitments to ~f and its RS-encoding ~h. They are denoted in general as
follows

CF
f := comQR(~f , ~x, n) =

[
comQR(fs,j, xs,j, n)

]

0≤s≤l′−1,1≤j≤e

CF
h := comQR(~h , ~y, n) =

[
comQR(hs′,j, ys′,j, n)

]

0≤s′≤l′′−1,1≤j≤e

where xs,j ∈R Z∗
n and ys′,j ∈R Z∗

n.
In the protocol ProveEncRSCom() the prover proves to V that the con-

tents of CF
h is the RS-encoding of the content of CF

f over F2e . The protocol
is denoted by

(P : −; V : ind)← ProveEncRSCom(P : stateC
P ; V : −; ∗ : C, parQR

com)

where stateC
P := (state

CF
f

P , state
CF

h
P ) denotes the opening information for the

commitments C := (CF
f , CF

h ) and ind ∈ {accept , reject} is the output to the
verifier indicating whether it accepts or not.

The underlying language L describing the objective to be proven is de-
fined as follows:

L :=
{
CF

f , CF
h , n, l′, l′′, k, e)|

n ∈ [GenParComQR(k)] ∧CF
f ∈ (Z∗

n)l
′e ∧ CF

h ∈ (Z∗
n)l

′′e ∧
∃~f ∈ Fl′

2e ∧ ∃~h ∈ Fl′′

2e ∧ ∃~x ∈ (Z∗
n)l

′e ∧ ∃~y ∈ (Z∗
n)l

′′e ∧
CF

f = comQR(~f , ~x, n) ∧CF
h = comQR(~h , ~y, n) ∧

~h = RS(~f )}.

Construction: The generation algorithm for this language, denoted by
GenEncRSCom(), outputs

(
(CF

f , CF
h , n, l′, l′′, k, e), (~x, ~y)

)
. The individual pro-

tocol steps are as follows:

1. P chooses z′ ∈R G (a random version of z). Let a′ be the binary
encoding of z′ and ~f ′ be the encoding of z′ over F2e (as mentioned
above for ~f ). As for a we can set a′ := ~f ′. Let ~h ′ be the RS-encoding
of z′ over F2e . Again, as for f and h the coefficients of f ′ and h′ are
binary encoded. P computes the QR-commitments to these encodings

CF
f ′ := comQR(~f ′, ~x′, n) =

[
comQR(f ′s,j, x

′
s,j, n)

]

0≤s≤l′−1,1≤j≤e

CF
h′ := comQR(~h ′, ~y′, n) =

[
comQR(h′

s′,j, y
′
s′,j, n)

]

0≤s′≤l′′−1,1≤j≤e

where x′
s,j ∈R Z∗

n, y′s′,j ∈R Z∗
n. P sends these commitments to V.

2. V sends a binary (and randomly selected) challenge c ∈R {0, 1} to P.



236 Embedding for Anonymous Fingerprinting

3. If c = 0, then P sends resp0 := (state
CF

f ′

P , state
CF

h′

P ) to V.

V proceeds as follows:

(a) Verifies that

true
?
= VerOpenQR(state

CF
f ′

P , state
CF

f ′

V ) ∧

true
?
= VerOpenQR(state

CF
h′

P , state
CF

h′

V )

where state
CF

f ′

V := (CF
f ′ , n) and state

CF
h′

V := (CF
h′ , n).

(b) Checks whether the content of CF
h′ is the RS-encoding of the

content of CF
f ′ over F2e .

4. If c = 1, then P sends the response resp1 := (state
CF

f ′′

P , state
CF

h′′

P ) where
CF

f ′′ and CF
h′′ are supposed to be the commitments computed as CF

f ′′ :=

CF
f ′CF

f , CF
h′′ :=CF

h′CF
h , and state

CF
f ′′

P :=( ~f ′′, v, n), state
CF

h′′

P :=( ~h ′′, w, n) are

supposed to be the corresponding opening information where ~f ′′ ∈ Fl′
2e ,

~h ′′ ∈ Fl′′
2e , ~v ∈ (Z∗

n)l
′e and w ∈ (Z∗

n)l
′′e. (Note that ~f ′′ and ~h ′′ denote

the contents of CF
f ′′ and CF

h′′ , and for the components of v and w the
following should hold vs,j := x′

s,jxs′,j and ws′,j := y′s,jys′,j.)

Now, V proceeds as follows:

(a) Computes C ′F
f := CF

f ′CF
f and C ′F

h′′ := CF
h′CF

h .

(b) Verifies that

true
?
= VerOpenQR(state

CF
f ′′

P , state
C′F

f ′′

V )

true
?
= VerOpenQR(state

CF
h′′

P , state
C′F

h′′

V ).

where state
C′F

f ′′

V := (C ′F
f ′′ , n) and state

C′F
h′′

V := (C ′F
h′′ , n).

(c) Verifies that ~h ′′ = RS( ~f ′′) holds, i.e., it checks whether the content
of CF

h′′ is the RS-encoding of the content of CF
f ′′ .

Lemma 5.4 The protocol ProveEncRSCom() is complete. 2

Proof. For this property, it is assumed that both parties are honest and
behave according to the specified protocol. For c = 0, one can easily see
that V accepts. To see this for c = 1, consider the commitments C ′F

f ′′ and



5.2 Building Blocks 237

C ′F
h′′ . From homomorphic properties of the QR-commitments follows

C ′F
f ′′ = CF

f ′CF
f

= comQR(~f ′, ~x ′, n)comQR(~f , ~x , n)

= comQR(~f ′ ⊕ ~f, ~x ′ • ~x , n)

=
[
comQR(f ′

s,j ⊕ fs,j, x
′
s,jxs,j, n)

]

0≤s≤l′−1,1≤j≤e

=
[
comQR(f ′′

s,j, vs,j, n)
]

0≤s≤l′−1,1≤j≤e

where f ′′
s,j := f ′

s,j ⊕ fs,j, and vs,j := x′
s,jxs,j, and

C ′F
h′′ = CF

h′CF
h

= comQR(~h′, ~y ′, n)comQR(~h , ~y , n)

= comQR(~h ′ ⊕ ~h , ~y ′ • ~y , n)

=
[
comQR(h′

s′ ⊕ hs′ , ~y′s′~ys′ , n)
]

0≤s′≤l′′−1

=
[
comQR(h′

s′,j ⊕ hs′,j, y
′
s′,jys′,j, n)

]

0≤s′≤l′′−1,1≤j≤e

=
[
comQR(h′′

s′,j, ws′,j, n)
]

0≤s′≤l′′−1,1≤j≤e

where h′′
s′,j := h′

s′,j ⊕ hs′,j (i.e., h′′ := h⊕ h′), and ws,j := y′s′,jys′,j.

Note that for two polynomials ~f, ~f ′ defined over F2e it holds

~f + ~f ′ := ~f ⊕ ~f ′ := (fl′−1 ⊕ fl′−1, · · · , f0 ⊕ f0)

where fs ⊕ f ′
s = (fs,e−1 ⊕ f ′

s,e−1, · · · , fs,0⊕, f ′
s,0) and s ∈ [0, l′ − 1].

As specified by the protocol, h and h′ are RS-encodings of f and f ′, i.e.,
h :=RS(f) and h′ = RS(f ′). It follows from the linearity of the RS-encoding

h′′ = ~h⊕ ~h′ = RS(~f)⊕ RS(~f ′) = RS(~f ⊕ ~f ′) = RS( ~f ′′)

where ~f ′′ := ~f ⊕ ~f ′.

Lemma 5.5 The protocol ProveEncRSCom() is perfectly sound. 2

Proof. If (CF
f , CF

h , n, l′, l′′, k, e) 6∈ L we show that the success probability of
even a computationally unrestricted prover is at most 1/2.

Assume, we are given (CF
f , CF

h , n, l′, l′′, k, e) 6∈ L (i.e., in particular h 6=
RS(f)), and an arbitrary prover P∗ with an arbitrary auxiliary input auxP∗ .
We show that P∗ can at most pass one of the V’s challenges.

Suppose, V has accepted the response resp0, i.e., it has verified that
(CF

f ′ , CF
h′ , n, l′, l′′, k, e) ∈ L holds, in particular, ~h′ = RS(~f ′). Now, consider

the case c = 1: V’s verification of resp1 would fail because of the following
reason: The verification is successful if and only if (CF

f ′′ , CF
h′′ , n, l′, l′′, k, e) ∈

L, i.e., there exist f ′′ and h′′ with ~h′′ = RS( ~f ′′) where ~f ′′ = ~f ′ ⊕ ~f , ~h′′ =
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~h ′⊕~h should hold due to the homomorphic property of the QR-commitment.
However, since we assumed h′ = RS(f ′), it follows from the linearity of RS-
code that ~h′′ 6= RS(f ′′) unless P∗ is capable of opening the QR-commitments
in two different ways. This is, however, not possible even for all powerful
P∗ since QR commitment scheme is information-theoretically binding.

Conversely, suppose, V has accepted the response resp 1, i.e., there exist
f ′′ and h′′ with ~h′′ = RS( ~f ′′) where ~f ′′ = ~f ′⊕ ~f , ~h′′ = ~h ′⊕~h should hold due
to the homomorphic property of the QR-commitment. Since we assumed
h 6= RS(f), it follows from the linearity of RS-code that ~h′ 6= RS(f ′) where
~f ′ = ~f ′′⊕ ~f , ~h′ = ~h′′⊕~h . However, this would mean that V would not accept
resp0 unless P∗ is capable of opening QR-commitment in two different ways.
This is not possible even for all powerful P∗ since QR commitment scheme
is information-theoretically binding.

Hence, after sending CF
f ′ , CF

h′ , P∗ can correctly answer to at most one
of the two possible challenges, and since P∗ does not know the challenge in
advance, its success probability is at most 1/2.

Lemma 5.6 The protocol ProveEncRSCom() is perfect zero-knowledge. 2

Proof. We construct a simulator with black-box access to V ∗ that can gen-
erate a view with the same distribution as V∗’s view in the real protocol.
The simulator SV∗

is given in Algorithm 6.
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Algorithm 6 The Simulator SV∗
for protocol ProveEncRSCom()

1. Choose c ∈R {0, 1}.

2. Choose z′ ∈R G.

(a) Determine its encoding ~f ′ and its RS-encoding ~h ′ = RS(~f ′) over
F2e .

(b) Compute the following quantities: CF
f ′ := comQR(~f ′, ~x ′, n), CF

h′ :=

comQR(~h ′, ~y ′, n), C ′F
c := CF

f ′/(CF
f )c and C ′′F

c := CF
h′/(CF

h )c.

3. Start the verifier V∗, send C ′F
c , C ′′F

c , and wait until V∗ sends challenge
c∗.

4. IF c∗ = c, THEN

(a) send respc accordingly, i.e., resp0 := (state
CF

f ′

P , state
CF

h′

P ) and

resp1 := (state
CF

f ′

P , state
CF

h′

P ).

(b) wait until V∗ outputs indV∗. Then output the view viewSV∗ =

(C ′F
c , C ′′F

c , c, respc, indV∗).

ELSE output ⊥.

We consider the simulated view (CF
f ′ , CF

h′ , c, respc, indV∗), and compare
it to the real view.

• C ′F
c , C ′′F

c : For c = 0 we have QR-commitments C ′F
0 = CF

f ′ , C ′′F
0 =

CF
h′ , i.e., these quantities are constructed in exactly the same way

as in the real protocol. For c = 1 the quantity C ′F
1 := CF

f ′/CF
f is a

QR-commitment to the polynomial ~f ′′ := ~f ⊕ ~f ′. This simply follows
from the homomorphic properties of QR-commitments (see Section
3.5.4). ~f ′′ is a random polynomial over F2e since it is a one-time
pad of ~f with the randomly and uniformly chosen polynomial ~f ′ over
F2e . Similarly, the quantity C ′′F

1 := CF
h′/CF

h is a QR-commitment to a

random polynomial ~h′′ := ~h′ ⊕ ~h. Further, we have ~h′′ = RS( ~f ′′) since
RS-encoding is a linear operation. Thus, C ′F

1 and C ′′F
1 have the correct

form, and the same distribution as CF
f ′′ and CF

h′′ in the real protocol.

• c∗: The challenge c∗, sent by V∗ has the correct distribution, since SV∗

maintains the distribution of c∗ by verifying that c∗ = c and acting
accordingly.

• respc: By construction the response resp c has the same distri-
bution as in the real protocol: In the case c = 0, we have
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resp0 := (state
CF

f ′

P , state
CF

h′

P ). This is the opening information of QR-

commitments to a random polynomial ~f ′ and its RS-encoding over
F2e as in the real protocol. In the case c = 1, we have resp1 :=

(state
CF

f ′

P , state
CF

h′

P ). This is again the opening information of the QR-

commitments CF
f C ′F

1 = CF
f ′ and CF

hC ′′F
1 = CF

h′ to a random polynomial
f ′ and its RS-encoding h′ as in the real protocol.

The probability that the simulator fails is at most 1/2 since the simulated
view is taken only if c∗ = c. The running time of the simulator is polynomial
since every step in Algorithm 6 can be performed in polynomial time.

From the previous lemmas we can conclude the following theorem:

Theorem 5.2 The protocol ProveEncRSCom() is a perfect zero-knowledge
proof of language membership. 2

Remark 5.4. One may use protocol ProveEncRSCom() for any linear code
over F2e . In general, the encoding of ~f is represented as ~h := ~fG where G is
a dim × L generating matrix. ◦

5.2.3.1 Efficiency

We consider the main costs from different perspectives, namely, the number
of required commitments, the number of main operations for the involved
parties, and the number of communicated bits. Note that for different chal-
lenges c, we have different costs for different types of operations. We take
the challenge with higher costs.

In the following, we can exploit that l′ = log(a) since the encoding is over
F2e , and that l′′ = |F2e | − 1 = 2e − 1 since l′′ is the length of the RS-code.

• Number of commitments: e(l′ + l′′) = log(a) + e(2e − 1)

• Number of operations for P:

– Multiplication: e(l+l′) = log(a)+e(2e−1) multiplications modulo
n (in case c = 1)

– Squaring: e(l + l′) = log(a) + e(2e − 1) squarings modulo n (in
case c = 0)

• Number of operations for V:

– Multiplication: e(l′ + l′′) = log(a) + e(2e − 1) multiplications
modulo n (in case c = 1)

– Squaring: e(l′ + l′′) = log(a) + e(2e − 1) squarings modulo n (in
case c = 0)
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• Communicated bits: 2e(l′ + l′′) log(n) = 2
(
log(a) + e(2e − 1)

)
log(n)

Note that we have (l′ + l′′) log(n) = O(poly(k)) where k is the security
parameter.

5.2.4 Proving Equality of Committed Numbers

We consider a protocol ProveEqCom() in which a prover P proves to a ver-
ifier V that the contents of two different commitments (here QR and DL
commitments) are equal.

Description: Let the tuple (GenParComQR(), ProtComQR(),
ProtOpenQR()) be the QR-commitment scheme with par QR

com = n, and
(GenParComDL(),ProtComDL(),ProtOpenDL()) be the DL commitment
scheme with parDL

com = (p, q, g, h), as defined in Sections 3.5.4 and 3.5.5. See
also these sections for the choice of the corresponding parameters.

Let CQR
a and CDL

a∗ be given commitments that are supposed to be the
QR-commitment and DL-commitment, i.e., they have the following form:

CQR
a := comQR(a, ~x, n) =

[
comQR(ai, xi, n)

]

1≤i≤l

CDL
a∗ := comDL(a∗, ~y, n) =

[
comDL(a∗i , yi, n)

]

1≤i≤l

where a and a∗ denote the corresponding contents, and supposed to be equal,
xi ∈R Z∗

n and yi ∈R Zq and length2(a) = length2(a
∗) = l. In the protocol

ProveEqCom(), the prover P proves to V that the contents of CQR
a and CDL

a∗

are equal, i.e., a = a∗, and that it knows the opening information for these
commitments.

The protocol is denoted as follows

(P : −; V : ind)← ProveEqCom(P : stateC
P ; V : −; ∗ : C, par QR

com, parDL
com)

where stateC
P :=(state

CQR
a

P , state
CDL

a∗

P ) denotes the opening information for the
commitments C := (CQR

a , CDL
a∗ ) and ind ∈ {accept , reject} is the output to

the verifier indicating whether it accepts or not.
As usual, we first consider the language describing the objective to be

proven. Since DL-commitments are information-theoretically (perfectly)
hiding, the prover must also prove knowledge of their contents. For this,
we have to define the corresponding relation R. R and the language L are
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defined as follows:4

R :=
{(

(a,~x ), (a∗, ~y)), (CQR
a , CDL

a∗ , n, (p, q, g, h), (k, l))
)
|

n ∈ [GenParComQR(k)] ∧ (p, q, g, h) ∈ [GenParComDL(k)] ∧
a, a∗ ∈ {0, 1}l, ~x ∈ (Z∗

n)l, ~y ∈ Zl
q :

CQR
a = comQR(a, ~x, n) ∧ CDL

a = comDL(a, ~y, p, q, g, h)
}
,

L :=
{
(CQR

a , CDL
a∗ , n, (p, q, g, h), (k, l))|

∃a, a∗ ∈ {0, 1}l ∧ ∃~x ∈ (Z∗
n)l,∧∃~y ∈ Zl

q

:
(
((a,~x ), (a∗, ~y)), (CQR

a , CDL
a∗ , n, (p, q, g, h), (k, l))

)
∈ R ∧ (a = a∗)

}
.

Construction: The generation algorithm for this language, denoted by
GenEqCom(), outputs ((CQR

a , CDL
a∗ , n, (p, q, g, h), (k, l)), (~x, ~y)). The individ-

ual protocol steps are as follows:

1. For 1 ≤ i ≤ l, P prepares the strings b1 := (b1,1, · · · , b1,l), and
b2 := (b2,1, · · · , b2,l) where b1,i ∈R {0, 1} and b2,i := b̄1,i is the binary
complement of b1,i.

2. P computes the following sets of auxiliary commitments

CQR
1 := comQR(b1,

~x ′
1, n) =

[
comQR(b1,i, x

′
1,i, n)

]

1≤i≤l
,

CQR
2 := comQR(b2,

~x ′
2, n) =

[
comQR(b2,i, x

′
2,i, n

]

1≤i≤l
,

CDL
1 := comDL(b1, ~y ′

1, p, q, g, h) =
[
comDL(b1,i, y

′
1,i, p, q, g, h)

]

1≤i≤l
,

CDL
2 := comDL(b2, ~y ′

2, p, q, g, h) =
[
comDL(b2,i, y

′
2,i, p, q, g, h)

]

1≤i≤l

where ~x ′
1, ~x ′

2 ∈R (Z∗
n)l and ~y ′

1,
~y ′

2 ∈R (Zq)
l.

3. P sends these commitments to V.

4. V responds with a random challenge c ∈R {0, 1}.

5. If c = 0, then P opens the auxiliary commitments by sending the

response resp0 := (state
CQR

1
P , state

CQR
2

P , state
CDL

1
P , state

CDL
2

P ) to V.

V verifies first

true
?
= VerOpenQR(state

CQR
1

P , state
CQR

1
V )

true
?
= VerOpenQR(state

CQR
2

P , state
CQR

2
V )

true
?
= VerOpenDL(state

CDL
1

P , state
CDL

1
V )

true
?
= VerOpenDL(state

CDL
2

P , state
CDL

2
V )

4Note that L is a subset of the language LR defined by the relation R.
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where state
CQR

j

V :=(CQR
j , n) and state

CDL
j

V :=(CDL
j , p, q, g, h) for j ∈ {1, 2}.

Next, V verifies that b2,i = b̄1,i, and that the content of CQR
1 is the

same as the content of CDL
1 , and the content of CQR

2 is the same as the
content of CDL

2 .

6. If c = 1, then P sends resp1 := (I, state
CQR

∗,I

P , state
CDL

∗,I

P ). Here, I is
the index set I = {j|bj,i = ai} where each j ∈ {1, 2} points to a
commitment in CQR

j and CDL
j whose content is supposed to be equal

to ai and a∗i respectively.5 Further, CQR
∗,I and CDL

∗,I are supposed to be
the commitments computed as

CQR
∗,I := CQR

a

[
comQR(bj,i, x

′
j,i, n)

]

1≤i≤l
,

CDL
∗,I := CDL

a /
[
comDL(bj,i, y

′
j,i, p, q, g, h)

]

1≤i≤l

where j ∈ I, and state
CQR

∗,I

P := (bin(0), ~v ), state
CDL

∗,I

P := (bin(0), ~w ) are
supposed to the corresponding opening information for these commit-
ments with ~v ∈ (Z∗

n)l and ~w ∈ Zl
q (Note that the components of the

vectors ~v , ~w will then be vi := xix
′
j,i mod n and wi := yi − y′j,i mod q.)

V proceeds as follows:

(a) Computes

C ′QR
∗,I := CQR

a

[
comQR(bj,i, x

′
j,i, n)

]

1≤i≤l
,

C ′DL
∗,I := CDL

a∗ /
[
comDL(bj,i, y

′
j,i, n)

]

1≤i≤l

where j ∈ I.

(b) Verifies that

true
?
= VerOpenQR(state

CQR
∗,I

P , state
C′QR

∗,I

V )

true
?
= VerOpenDL(state

CDL
∗,I

P , state
C′DL

∗,I

V ).

(c) Verifies that C ′QR
∗,I and C ′DL

∗,I are commitments to zero using the
opening information sent by P.

Lemma 5.7 The protocol ProveEqCom() is complete. 2

Proof. The completeness of the protocol can easily be verified by applying
the homomorphic properties of the QR and DL commitments similar to that
of the previous protocols.

5To be in general case, we may let the prover send also the index set I∗ = {j|bj,i = a∗
i }.

However, for the objective to be proven here, I∗ = I must hold. Thus, we use only I.
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Lemma 5.8 The protocol ProveEqCom() is perfectly sound. 2

Proof. We show that a cheating prover P∗, even with unrestricted computing
power, cannot convince the verifier except with the probability of at most
1/2.

This is done in two steps: First we prove weak soundness and then strong
soundness. The reason for proving weak soundness is that the language
membership for equality of QR and DL commitments always holds as DL-
commitment is perfectly hiding, and thus, there always exists a value to
which a commitment can be opened.

For weak soundness we prove that the prover indeed knows the contents
of CQR

a and CDL
a∗ . For this, we construct a knowledge extractor E which,

on the common input Y := (CQR
a , CDL

a∗ , n, (p, q, g, h), (k, l)) ∈ L, can extract
X :=

(
(a,~x ), (a∗, ~y)

)
with (X,Y ) ∈ R from any successful prover P∗. The

extractor is given in Algorithm 7.

Algorithm 7 The Extractor E for relation R

1. Start P∗ from its initial state state0
P∗ , and wait until it sends

CQR
1 , CQR

2 , CDL
1 , CDL

2 . The contents of these commitments are denoted
with b1, b2, b

∗
1, b

∗
2. Store the resulting state state 1

P∗ of P∗ at this stage.

2. Send the challenge c = 0 to P∗, and wait until P∗ returns resp0 =
(b1, ~x′

1, b2, ~x′
2, b

∗
1,

~y′1, b
∗
2,

~y′2).

3. Start P∗ at state state1
P∗ , send the challenge c = 1, and wait until P∗

returns resp1 = (I, (bin(0), ~v ), (bin(0), ~w )).

4. If both resp0 and resp1 pass the corresponding verifications, then
output the following quantities: a = (a1, · · · , al) with ai = bj,i,
~x = (x1, · · · , xl) with xi ≡ vi(x

′
j,i)

−1 mod n, a∗ = (a∗l , · · · , a∗1) with
a∗i = b∗j,i, and ~y = (y1, · · · , yl) with yi ≡ wi + y′j,i mod q where j ∈ I.

5. Otherwise, repeat (go back to the first step).

If E halts, it will output
(
(a,~x ), (a∗, ~y)

)
such that the relation R holds:

From response resp0, E has all bj,i values and all randomizing components,

i.e., ~x′
j = (x′

j,1, · · · x′
j,l) and ~y′j = (y′j,1, · · · , y′j,l) for j = 1, 2. From resp1, it

knows which of bj,i and b∗j,i are equal to ai and a∗i . Thus, it can determine

(extract) the contents a and a∗ of CQR
a and CDL

a∗ .
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To extract the randomizing components of the commitments, we consider
the product commitments CQR

∗,I and CDL
∗,I . For the QR commitment we have

CQR
∗,I =

[
comQR(ai, xi, n)

]

1≤i≤l

[
comQR(bj,i, x

′
j,i, n)

]

1≤i≤l

=
[
comQR(ai ⊕ bj,i, xix

′
j,i, n)

]

1≤i≤l

=
[
comQR(ai ⊕ bj,i, vi, n)

]

1≤i≤l

where vi := xix
′
j,i. This implies that xi ≡ vi(x

′
j,i)

−1 mod n. Similarly, for
the DL-commitments we can write

CDL
∗,I =

[
comDL(ai, xi, p, q, g, h)

]

1≤i≤l
/

[
comDL(bj,i, x

′
j,i, p, q, g, h)

]

1≤i≤l

=
[
comQR(ai − bj,i, yi − y′j,i, p, q, g, h)

]

1≤i≤l

=
[
comQR(ai − bj,i, wi, p, q, g, h)

]

1≤i≤l

where wi := yi − y′j,i mod q. This implies that yi ≡ wi + y′j,i mod q.
Next, we consider the success probability of the extractor: Let C denote

the common input and Aε denote the set of all possible random tapes randP∗

for the prover P∗. Aε is the sample space underlying the interaction between
E and P∗.6 The set Aν := Aε × {0, 1} is the sample space underlying the
interaction of P∗ and V, i.e., Aν :=

{
(rand, chall )|rand ∈R Aε ∧ chall ∈R

{0, 1}
}

where chall is the random tape of the verifier consisting of only
one bit. Further, let Θ be the random value representing the commitments
T := (CQR

1 , CQR
2 , CDL

1 , CDL
2 ), and RESP0, RESP1 be the random variables

representing the responses of P∗ to the challenges chall = 0 and chall = 1
of the verifier V. Consider now the following events

E0
T :=

{
rand ∈ Aε|Θ(rand) = T ∧ true = Verify(C, T,RESP 0(rand))

}

E1
T :=

{
rand ∈ Aε|Θ(rand) = T ∧ true = Verify(C, T,RESP 1(rand))

}

where Verify() denotes all V’s verifications after receiving resp c =
RESP c(rand).

For rand ∈ E0
T ∩E1

T the extractor outputs the tuple X =
(
(a,~x , a∗, ~y)

)

such that (X,Y ) ∈ R where Y =
(
(CQR

a , CDL
a∗ ), n, (p, q, g, h), (k, l)

)
. We

determine the probability for this event. For fixed Θ(rand) = T , we consider
the accepting event

ET := {(rand, c) ∈ Aν |Θ(rand) = T ∧ true = Verify(C, T,RESP c(rand))}.
6The length of the random tape randP∗ of an interactive algorithm (function) P∗ is a

function fP∗(·) in the length of the common input |C|. Here, we can set Aε :={0, 1}fP∗ (|C|)

because the extractor E only initializes P∗ and makes no other random choices. The
random tape randP∗ is assigned a random string rand ∈R Aε. After this no other random
sources are used.
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Now, we claim that for any T the following holds

Prob[E0
T ] + Prob[E1

T ] = 2Prob[ET ]

where Prob[ET ] := PP∗(C, aux ) denotes the success probability of P∗. To
see this, let CHALL be the random variable denoting V’s challenge. Then
we can write

Prob[ET ] = Prob[ET |CHALL = 0]Prob[CHALL = 0]

+Prob[ET |CHALL = 1]Prob[CHALL = 1]

=
1

2
Prob[ET |CHALL = 0] +

1

2
Prob[ET |CHALL = 1]

=
1

2
Prob[E0

T ] +
1

2
Prob[E1

T ]

=
1

2
(Prob[E0

T ] +
1

2
Prob[E1

T ]).

For the success probability PE (C, aux ) of the extractor E we can write

PE ≥
∑

T

Prob[E0
T ∩E1

T ]

=
∑

T

(
Prob[E0

T ] + Prob[E1
T ]−Prob[E0

T ∪E1
T ]

)

≥
∑

T

(
Prob[E0

T ] + Prob[E1
T ]−Prob[Θ = T ]

)

=
∑

T

(
Prob[E0

T ] + Prob[E1
T ]

)
− 1

=
∑

T

(
2Prob[ET ]

)
− 1

= 2PP∗ − 1

The expected number of iterations is 1
PE
≤ 1

2PP∗−1 , i.e., inverse polynomial

proportional to the success probability of P∗ (see Section 3.6.3 ). Further,
each iteration of Algorithm 7 consists of steps which can be performed in
polynomial time.

Next, we prove the strong soundness: If
(
CQR

a , CDL
a∗ , n, (p, q, g, h), (k, l)

)
6∈

L then an arbitrary prover P∗, who can even open the commitments
(CQR

a , CDL
a∗ ), cannot convince the verifier V with probability better than 1/2.

The proof for this part is similar to that of 5.2.2 since both constructions
are based on the same cut and choose principle. Also here, we can conclude
that the prover is only successful if it can open QR-commitments in two
different ways, which is not possible since the QR-commitment scheme is
information-theoretically binding.
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Lemma 5.9 The protocol ProveEqCom() is perfect zero-knowledge. 2

Proof. We construct a simulator with black-box access to V ∗ that can gen-
erate a view with the same distribution as V∗ has in the real protocol. The
simulator SV∗

is given in Algorithm 8.

Algorithm 8 The Simulator SV∗
for protocol ProveEqCom()

Inputs: CQR
a , CDL

a∗ , n, (p, q, g, h)

1. Choose c ∈R {0, 1}.

2. Prepare CQR
1 , CQR

2 , CDL
1 , CDL

2 as specified in the real protocol.

3. Compute the commitments C ′QR
1,c := CQR

1 /
(
CQR

a

)c
, C ′QR

2,c :=

CQR
2 /

(
CQR

a

)c
, C ′DL

1,c := CDL
1

(
CDL

a∗

)c
and C ′DL

2,c := CDL
2

(
CDL

a∗

)c
.

4. Start the verifier V∗, send C ′QR
1,c , C ′QR

2,c , C ′DL
1,c , C

′DL
2,c and wait until V∗

sends challenge c∗.

5. IF c∗ = c, THEN

(a) send the response respc according to the challenge c: Here, the

simulator sets resp0 :=(state
CQR

1
P , state

CQR
2

P , state
CDL

1
P , state

CDL
2

P ) and

resp1 := (I, state
CQR

I
P , state

CDL
I

P ) where I = {j : bj,i = 0}.
(b) wait until V∗ outputs indV∗. Then output the view viewSV∗ :=

(C ′QR
1,c , C ′QR

2,c , C ′DL
1,c , C

′DL
2,c, c, respc, indV∗).

ELSE output ⊥.

In the following, we consider the distribution of the simulated view
(CQR

1,c , CQR
2,c , CDL

1,c , CDL
2,c , c, respc, indV∗).

• C ′QR
1,c , C ′QR

2,c , C ′DL
1,c, C

′DL
2,c: For c = 0 these commitments are generated

in exactly the same way as in the real protocol.

For c = 1, the content of the commitments C ′QR
1,c , C ′DL

1,c is d1,i :=ai⊕b1,i,

and that of the commitments C ′QR
2,c , C ′DL

2,c is d2,i := a∗i ⊕ b2,i. Here, d1,i

is random since it is a one-time pad of a fixed ai with random b1,i.
Further, d2,i = d̄1,i because b2,i = b̄1,i and ai = a∗i . Thus, these
commitments have the same distribution as CQR

1 , CQR
2 , CDL

1 , CDL
2 in

the real protocol.

• c∗: The challenge c∗, sent by V∗ has the correct distribution, since the
simulator SV∗

maintains the distribution of c∗ by verifying whether
c∗ = c and acting accordingly.



248 Embedding for Anonymous Fingerprinting

• respc: By construction respc has the same distribution as in the real
protocol. For c = 0 this is clear. For c = 1, the index set I points
to those commitments in C ′QR

1 , C ′QR
2 , C ′DL

1 and C ′DL
2 whose contents

make up a binary string equal to a. This is because for any j ∈
I we have bj,i = 0, and thus, the content of the corresponding i-

th commitment in C ′QR
j , C ′DL

j is dj,i := ai ⊕ bj,i = ai. Hence, the
QR and DL commitments restricted to I have the same content as
CQR

a and CDL
a which correspond to the correct distribution as in the

real protocol. Further, state
CQR

I
P , state

CDL
I

P contained in resp1 are the
opening information for the QR and DL commitments to zero (bj,i = 0)
as in the real protocol.

The probability that the simulator fails is at most 1/2 since the simulated
view is taken only if c∗ = c. The running time of the simulator is polynomial
since every step in Algorithm 8 can be performed in polynomial time.

From the lemmas above we conclude the following theorem.

Theorem 5.3 The Protocol ProveEqCom() is perfect zero-knowledge proof
of knowledge. 2

5.2.4.1 Efficiency

We consider the main costs from different perspectives, namely, the number
of required commitments, the number of main operations for the involved
parties, and the number of communicated bits. Note that for different chal-
lenges c, we have different costs for different types of operations. We take
the challenge with higher costs.

In the following we have l = log(a).

• Number of commitments: 4l

• Number of operations for P:

– Multiplication: l multiplications modulo n, and l multiplications
modulo p (in case c = 1)

– Exponentiation: 2l squarings modulo n, and 2l exponentiation
modulo p (in case c = 0)

• Number of operations for V:

– Multiplication: l multiplications modulo p, and l multiplications
modulo n (in case c = 1)

– Exponentiation: 2l squarings modulo n, and 2l exponentiation
modulo p (in case c = 0)

• Communicated bits: 2l(log(n) + log(p))
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Note that we have l(log n + log p) = O(poly(k)) where k is the security
parameter.

5.2.5 Committed Encoding from Unary Commitments

In this section, we describe an algorithm which allows us to compute the QR-
commitment to a well defined encoding of a value, given the commitment
to the unary encoding of that value. The algorithm is from Pfitzmann and
Waidner (1997b).

Description: Let Σ := {0, 1, · · · ,m} ⊂ N be a finite alphabet and
Encode() : Σ 7→ {0, 1}l be a computable and invertible encoding. Let
Encode(Σ) := W := {w0, · · ·wm}. We assume, w.l.o.g., wa := Encode(a),
for a ∈ Σ.

Suppose, we are given the QR-commitment to the unary encoding of
a ∈ Σ. We denote this commitment with

Cun
a := comQR(un(a), ~y , n) =

[
comQR(aun

s , ys, n)
]

1≤s≤l′
.

We want to compute the commitment

Cwa := com (wa,~z , n) =
[
comQR(wa,j , zj , n)

]

1≤j≤l

to the corresponding encoding wa := Encode(a) (Note the content a of Cun
a

is not known). The algorithm for deriving this commitment is denoted by

Cwa ← DeriveEncCom(Cun
a , par drv )

where par drv denote the required parameters, e.g., Σ, the mapping Encode(),
etc.

Construction: The algorithm DeriveEncCom() is given in Algorithm 9.
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Algorithm 9 Computing with unary commitments DeriveEncCom()

Inputs: Cun
a , par drv

1. Compute the QR-Commitments to the encoding of zero symbol of Σ,
i.e., to w0 := Encode(0):

Cw0 = comQR(w0, ~x0, n) =
[
comQR(w0,j , x0,j , n)

]

1≤j≤l

where ~x0 ∈R (Z∗
n)l.

2. Determine the sets ∆j := {s : ws,j 6= w0,j} of those symbols s in Σ
whose encoding ws differs from w0 at the j-th bit position.

3. Compute the commitment to the j-th bit of wa as follows

Cwa,j := comQR(wa,j , zj , n) = comQR(w0,j, x0,j , n)P

where zj = x0,j
∏

s:ws,j 6=w0,j
ys and P :=

∏

s:ws,j 6=w0,j
comQR(aun

s , ys, n).

4. Determine the commitment to wa as

Cwa := com (wa,~z , n) =
[
comQR(wa,j , zj , n)

]

1≤j≤l
.

Lemma 5.10 Algorithm DeriveEncCom() is correct. 2

Proof. Due to the homomorphic properties of QR-commitment, the quantity
Cwa,j is a QR-commitment for whose content c the following holds:

c = w0,j +
∑

s:ws,j 6=w0,j

aun
s

= w0,j + 1ws,j 6=w0,j

= w0,j + 1wa,j 6=w0,j

= wa,j .

As an example, assume that the encoding Encode() is binary encoding with
w0 = 0. Given the unary QR-commitment to a, compute the commitment
to j-th bit of the binary encoding of a, i.e., w bin

a,i , as follows

comQR(wbin
a,j , zj , n) = comQR(0, x0,j , n)

∏

s:ws,j 6=w0,j

comQR
(
aun

s , ys, n
)
.

Since wbin
0 := 0, ∆j := {s|wbin

s,j 6= wbin
0,j} is the set of all s where w bin

s,j = 1.
Now, if a = s for a s ∈ ∆j , then we have aun

s = 1, and aun
s = 0 for s 6= a. In
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this case, we can write Pj :=
∏

∆j
comQR

(
aun

s, , ys, n
)

= comQR
(
1, zi, n

)
where

zi ∈ Z∗
n. This means, Pj is a commitment to 1 since only one of its terms

is a commitment to 1, and the others are commitments to 0. It follows that
wbin

a,j = 1. Similarly, Pj will be a commitment to zero, i.e., w bin
a,j = 0, if there

is no s ∈ ∆j such that s = a.

5.2.5.1 Efficiency

• Number of commitments: The number of required commitments is
l + |Σ|, i.e., l commitments for w0 and |Σ| commitments of the input
Cun

a .

• Number of operations:

– Multiplication: For each j ∈ [1, l], ∆j multiplications modulo n

are required to compute Cwa,j . In total, we have
∑l

j=1 |∆j|.
– Squaring: l squarings modulo n are required for computing Cw0 .

Note that l, |Σ| ∈ poly(k) where k is the security parameter.
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5.3 Construction for Embedding and Extracting

The idea is as follows: Each party, merchant and buyer, learns its own
halfword, but this time, these halfwords are linked together. Each symbol
consists of two halfsymbols, one known to the buyer and the other known to
the merchant. In the identification, after extracting a word from the redis-
tributed work, the symbols which do not match on the known halfsymbols
are directly excluded. What remains is a word with many erasures, to which
the Error-and-Erasure-Correcting Code (EECC) decoder is applied.

For completeness, we give a high-level description of the embedding pro-
tocol. The main structure is the same as defined for embedding in Section
4.5.4.3, except that some input/output variables have now slightly different
names.

Key generation: M runs the key generation algorithm keyemb ←
GenKeyEmbed(par emb) where keyemb =: (keys

emb , key
p
emb) consists of a secret

part keys
emb and a public part keyp

emb .

Encoding: The protocol for encoding the embedding value ~emb in form
of a collusion-tolerant codeword word is denoted by

(B : −; M : Cword )

← GenWord(B : stateCemb

B ; M : ~halfword trace ; ∗ : Cemb , par
p
CT, parEC)

where Cword := com (word ) denotes the commitment to word , and
par p

CT, parEC ∈ keyp
emb denote the parameters for the collusion-tolerant en-

coding and for the EECC.
Let the codeword to be embedded consist of L symbols from the al-

phabet Σ (Note that L,Σ ∈ par p
CT). In the following protocol steps M’s

tracing information and B’s embedding information are appropriately en-
coded and then combined to make up the final codeword to be embedded in
the underlying work. The individual steps of the protocol are as follows:

1. Generating tracing halfword : M secretly generates L halfsymbols.

~halfword trace ← GenTraceWord(par trace inf )

where par trace inf denotes the corresponding (security) parameters,
and

~halfword trace =: (halfsym trace 1, · · · , halfsym traceL).

2. EECC encoding of embedding halfword :
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(a) B encodes ~emb using an appropriate Error-and-Erasure-
Correcting Code (EECC) into L halfsymbols halfsym emb s. This
algorithm is denoted by

~halfword emb ← EECC( ~emb, par EC)

where parEC denotes the required parameters for EECC and

~halfword emb =: (halfsym emb1, · · · , halfsym embL).

(b) B commits to this halfword

Chw emb := com ( ~halfword emb)

:= [com (halfsym emb1), · · · , com (halfsym embL)],

and sends the result Chw emb to M.

The embedding halfsymbols will be combined with the tracing
halfsymbols to form the symbols of the final codeword (see Step
4).

3. Proof of correct EECC encoding: B proves (in zero-knowledge) to M
that the content of the commitment Chw emb is the correct EECC
encoding of the content of Cemb . The protocol is denoted by

(B : −; M : ind)

← ProveEncECCom(B : stateCemb

B , stateChw emb

B ; M : −; ∗ : A)

where A := (Cemb , Chw emb , parEC) denotes the common input,

stateChw emb

B denotes the opening information for the commitments
Chw emb , and ind ∈ {accept , reject} indicates whether M accepts or
rejects.

4. Constructing collusion tolerant codeword: M and B compute the
collusion-tolerant codeword word to be embedded. The protocol is
denoted by

(B : −; M : Cword )

← CollTolWord(B : stateChw emb

B ; M : par s
CT, ~halfword trace ; ∗ : B)

where B := (Chw emb , par
p
CT) denotes the common input, and par s

CT

denotes the secret parameters for the collusion-tolerant encoding. The
protocol steps are as follows:

(a) Combining halfwords: The halfsymbols halfsym trace s and
halfsym embs are mixed into symbols syms. This is done by
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applying the secret random permutations subst s ∈ parCT of the
underlying code alphabet Σ. We denote this by

syms := substs(halfsym traces‖halfsym embs)

where syms ∈ Σ, s ∈ [1, L], and ‖ denotes the concatenation.7

The codeword associated to B is

~word ′ := (sym1, · · · , symL).

(b) Collusion-tolerant encoding : The codeword ~word ′ is encoded to
a collusion-tolerant codeword word .

Embedding codeword: The codeword word is embedded into work . The
corresponding protocol is denoted by

(B : workfing ; M : −)← EmbedWord(B : keycom; M : work , Cword , keyemb)

where keycom denotes the secret key constructed such that it allows the buyer
B to open any commitment computed with the underlying commitment
scheme, and workfing denotes the fingerprinted work.

Next, we will give a detailed instantiation of the components of the
embedding protocol.

5.3.1 Instantiation of Embedding

In the following, we present explicit constructions for the components of the
protocols GenWord() and EmbedWord ().

Collusion-tolerant code Γ: We instantiate the collusion-tolerant code by
the outer code Γ(L,N, n, d) defined over the alphabet Σ := Zn (see Section
4.3.6). Recall that the meaning of the parameters are as follows: n is the
size of the alphabet over which the outer code Γ is defined, L is the length
of the outer code and is as function of the maximum collusion size collsize ,
d = 2n2 log(2nL/ε) is the block length of the basic codewords, and N is the
number of symbols to be assigned by codewords. We assume n :=n1n2, and
that n1 and n2 are small powers of 2 where n1 = 2κ1 and n2 = 2κ2 . Thus,
each symbol of the outer code is the concatenation of two strings of lengths
κ1 and κ2 bits.8 Note that we have Σ1 = Zn1 and Σ2 = Zn2 .

For the embedding parameters we have

7The use of the permutations subst s is necessary for merchant’s security (Pfitzmann
and Waidner 1997a).

8The parameters (L, d, n1, n2) are chosen as polynomial functions of the given security
parameters k, γ, and the maximum size of the collusion collsize. Note that the tracing
error probability ε is usually defined as a function of a security parameter γ (here, ε:=2−γ).
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• par p
CT :={L,N, n, d, n1, n2, n, collsize , ε,Σ1,Σ2,Σ}, par s

CT :={ ~subst ,Π0}
are the public and secret parameters for the outer code of Boneh and
Shaw where

– ~subst := (subst1, · · · , substL) are L random permutations of the
(finite) code alphabet Σ ⊂ N0 and

– Π0 := {π1, · · · , πL} is the set of permutations for the bits of basis
codewords as described in Section 4.3.6.4.

• keyp
emb := {parRS, par

p
CT}, keys

emb := {skWM, par s
CT} are the public and

secret embedding keys where

– parRS denotes the parameters for RS-code (e.g., L, Fn2 and the
generating polynomial g(x), see Section 5.2.1), and

– skWM is the secret embedding and extracting key of the underlying
watermarking scheme (see Section 4.3).

Bit-commitment scheme com (): We can instantiate this primitive with
QR-commitment scheme or OU-commitment scheme (see Section 3.5). We
take the QR-commitments where parQR

com = n′ and keyQR
com := (p′, q′) is the

factorization of n′. In the embedding protocol n′ is generated by the buyer
B and then proven to be of correct form in a verifiable and secure proce-
dure (see Sections 3.5.4 and 4.7.5.1 for more details on generation of these
parameters). In the following, we omit writing par QR

com and only write n′.

Error and erasure correcting code RS(): We instantiate the EECC with
the Reed-Solomon code (see Section 5.2.1) defined over the finite field F2κ2

and denoted with RS(). The code length is L.

Remark 5.5. Pfitzmann and Waidner (1997c) show that it is sufficient to
use an EECC-code which tolerates 3n1L errors and L − L/collsize era-
sures to guarantee the security for the merchant. When applying RS-
code, they show that L ≥ 2L∗/ log(L∗) is a sufficient condition where
L∗ :=

(
length2(

~emb)
)
collsize , and it is required that n1 ≥ 24collsize . ◦

Generating tracing halfword ~halfsym trace: M secretly gener-
ates the tracing halfsymbols by randomly choosing halfsym trace s ∈R
Σ1 for s ∈ [1, L]. The halfword is then ~halfword trace =:
(halfsym trace1, · · · , halfsym traceL).

Reed-Solomon encoding of embedding halfword: The RS-encoding
of ~emb is denoted by ~halfword emb := (halfsym emb1, · · · , halfsym embL)
where halfsym embs ∈ F2κ2 for s ∈ [1, L].

Proof of equality of committed numbers ProveEqCom(): The com-
mon input Cemb to the embedding protocol EmbedProt() is supposed to be
a commitment to ~emb. Since we use QR-commitment within the embedding
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protocol, we would like Cemb to be QR-commitment. However, in the proto-
cols previous to the embedding protocol, the commitments to ~emb are based
on DL-commitments which we denoted with CDL

emb (see Section 4.7.5.3).

To solve this problem, we need a way to transform the DL-commitment to
the corresponding QR-commitment. More concretely, we need a proof that
the content of both commitments are equal. We implement this with the
protocol ProveEqCom() explained in Section 5.2.4.9

Thus, in the following Cemb represents QR-commitments to ~emb.

Proof of correct RS encoding ProveEncRSCom(): Since we instantiate
EECC with RS-code, we can instantiate protocol ProveEncECCom() with the
protocol ProveEncRSCom() from Section 5.2.3. In this protocol, B proves to
M that the content of a commitment Cbin

hw emb is the RS-encoding of the con-
tent of the commitment Cemb . Here, Cbin

hw emb denotes the QR-commitment

to the binary encoding of ~halfword emb. We denote this binary encoding
with

~halfword emb
bin

:= (halfsym embbin
1 , · · · , halfsym embbin

L )

where

halfsym embbin
s := (halfsym embbin

s,0, · · · , halfsym embbin
s,κ2−1)

for s ∈ [1, L]. The QR-commitment to the binary encoding is:

Cbin
hw emb := comQR( ~halfword emb

bin
, ~x , n′)

:=
[
comQR(halfsym embbin

s , ~xs, n
′)

]

1≤s≤L

:=
[
comQR(halfsym embbin

s,j , xs,j , n
′)

]

1≤s≤L, 0≤j≤κ2−1

where xs,j ∈R Z∗
n′ .

Constructing collusion tolerant codeword CollTolWord(): To imple-
ment protocol CollTolWord() we slightly modify its procedure as outlined in
Section 5.3:

1. B encodes ~halfword emb in unary. We denote this with

~halfword emb
un

:= (halfsym embun
1 , · · · , halfsym embun

L )

where halfsym embun
s := (halfsym embun

s,0, · · · , halfsym embun
s,n2−1).

9Note that we consider this protocol as a part of embedding protocol, but, one may
also consider it as a protocol previous to the embedding protocol, and use its output as
common input to the embedding protocol.
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2. B computes the QR-commitments to ~halfword emb
un

Cun
hw emb := comQR( ~halfword emb

un
, ~y , n′)

:=
[
comQR(halfsym embun

s , ~ys, n
′)

]

1≤s≤L

:=
[
comQR(halfsym embun

s,j, ys,j, n
′)

]

1≤s≤L, 0≤j≤n2−1
.

We denote the commitments to the individual halfsymbols
halfsym embun

s as follows:

Cun
hs embs

:= comQR(halfsym embun
s , ~ys, n

′)

:=
[
comQR(halfsym embun

s,j, ys,j, n
′)

]

0≤j≤n2−1
.

3. For each halfsym embs, s ∈ [1, L], B proves toM that the commitments
Cbin

hs embs
and Cun

hs embs
have the same content. This is done with the

protocol ProveEqEncCom() described in Section 5.2.2.

4. For each halfsym trace s, M uses the commitments Cun
hs embs

to
compute the commitments Cwsyms

to the basic code encod-
ing wsyms

:= Γ0(syms) of the symbol syms where syms :=
substs(halfsym embs||halfsym trace s). To see how this is done, we il-
lustrate it by using the Tables Ts shown in Table 5.2.

Table 5.2 The codeword table Ts for the symbol syms

halfsym traces halfsym embs sym′
s syms wsyms

:=substs(sym
′
s) :=Γ0(syms)

0 0 0 5 0001 · · · 111
1 1 3 1111 · · · 111
...

...
...

...
n2 − 2 n2 − 2 0011 · · · 111
n2 − 1 n2 − 1 0000 · · · 111

1 0 n2 0111 · · · 111
1 n2 + 1 0000 · · · 111
...

...
...

...
n2 − 2 2n2 − 2 0000 · · · 111
n2 − 1 2n2 − 1 0000 · · · 111

...
...

...
...

...

n1 − 1 0 n− n2 0000 · · · 000
1 n− n2 + 1 0000 · · · 111
...

...
...

...
n2 − 2 n− 2 0000 · · · 001
n2 − 1 n− 1 0000 · · · 111
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The first column of Table 5.2 contains all possible search halfsym-
bols halfsym traces ∈ Σ1 with length2(halfsym trace s) = κ1. For
each of these search halfsymbols there are n2 possible embedding
halfsymbols halfsym embs ∈ Σ2 with length2(halfsym embs) = κ2.
The third column contains the symbols sym ′

s ∈ Σ determined by
halfsym traces‖halfsym embs, and the fourth column contains the per-
mutations of symbols sym ′

s determined by subst s(sym
′
s).

The last column of the table contains the encoding of each symbol sym s

with a basic codeword wsyms
:=Γ0(syms) from Boneh and Shaw where

lw := length2(wsyms
) = (n − 1)d. For readability, the basic codewords

in the table are shown without repeating, i.e., we set d = 1 (see also
Section 4.3.6.4). Note that the figures in the last two columns of the
table are only examples.

The procedure for computing Cwsyms
is as follows:10 Let r be the value

of halfsym traces in the Table 5.2, and consider the corresponding row
r in the table.

(a) M first prepares the commitments to the unary encoding of sym-
bols sym′

s. For this, he arranges a tuple of n commitments, where
at the positions, rn2 to rn2 + n2 − 1 he places the commitments
Cun

hs embs
, and at the remaining n− n2 positions he places random

commitments to zero. We denote this tuple of commitments with
Cun

sym ′
s
.

(b) M permutes the commitments in Cun
sym′

s
by applying the permuta-

tion substs. The resulting commitment is the unary commitment
Cun

syms
:= substs(C

un
sym ′

s
) to the symbol syms.

(c) On input Cun
syms

and the parameters par drv required for the un-
derlying encoding, M runs the algorithm DeriveEncCom() from
Section 5.2.5 to compute the commitment Cwsyms

, i.e.,

Cwsyms
← DeriveEncCom(Cun

syms
, par drv )

for s ∈ [1, L]. The encoding of the symbols sym ′
s is done according

to the Boneh and Shaw basic code, i.e., Γ0(sym
′
s) as mentioned

above.

(d) The commitment Cword to the word word is denoted by

Cword := (Cwsym1
, Cwsym2

, · · · , CwsymL
).

(e) The individual commitments Cwsyms
in Cword are permuted before

actual embedding, i.e.,

Cwordπ :=
(
π1(Cwsym1

), π2(Cwsym2
), · · · , πL(CwsymL

)
)
.

10This commitment should have the form Cwsyms
:= comQR(wsyms

, ~z, n′) for some ~z ∈
(Z∗

n′ )lw .
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For simplicity, we will use the notation word for the codeword to
be embedded in the following.

Embedding word EmbedWord(): Let word be the codeword to be em-
bedded into work with length2(word ) := l. For embedding this codeword,
M exploits the homomorphic property of the underlying QR commitment
scheme. Note that in the following expressions, for simplicity, we omit writ-
ing the parameters of the QR-commitment i.e., the random values chosen
from Zn′ and the modulo number n′.

M proceeds as follows (see also Section 4.3.5):

1. Transform work to an appropriate embedding domain (e.g., frequency
coefficients). We assume that the components of work in the embedding
domain are represented as bit strings. We denote this representation
by

~work := (work 1,work 2, . . . ,work l′ ,work δ).

2. Select the components which should carry the marks, i.e., the marking
positions. For this,M applies the embedding key skWM := (i1, · · · , il).
Let (work i1 ,work i2 , . . . ,work il) be the selected components. We as-
sume that the individual marks are disjoint, meaning that the modi-
fied positions in the bit strings are disjoint. For each mark, there are
two possible versions of the underlying work, one marked with a bi-
nary 0 and one with a binary 1 (see also Remark 4.5). We denote the
two versions of each component work ij with work 0

ij and work 1
ij . With

∆ij :={u : work 0
ij ,u 6= work 1

ij ,u} we denote the set of those bit positions
in work ij where both versions are distinct. Recall that work ij ,u denotes
the u-th bit in the string work ij .

Without loss of generality, we write

~work := (work i1 ,work i2 , . . . ,work il ,work ′
δ)

Note that we arrange the components of ~work in this way for readability
reasons, and should keep in mind their correct order for the purpose of
secure embedding.

3. M marks each of the selected components with zero, i.e., he replaces
work ij , ij ∈ skWM with work 0

ij . We denote the resulting zero codeword

with word 0, and the marked version with

~work
0
:= (work 0

i1 ,work 0
i2 , . . . ,work 0

il
,work ′

δ).

4. M commits to work 0
ij , and for each ij , he multiplies comQR(work 0

ij )

with commitment comQR(word j) at bit positions ∆ij where the two
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(marked) versions of this component are distinct. We denote this com-
putation as follows:

C∗
work

fing
ij

:= comQR(word j)
[
comQR(work 0

ij ,u)
]

u∈∆ij

:=
[
comQR(word j ⊕ work 0

ij ,u)
]

u∈∆ij

:=
[
comQR(workfing

ij ,u)
]

u∈∆ij

where word j denotes the j-th bit in the word word , and work fing
ij ,u :=

work 0
ij ,u ⊕ word j denotes the modified version of work ij ,u.

Now, if word j = 1 then those bits at positions ∆ij are flipped through

exoring with 1, andM obtains the commitment comQR(work 1
ij ) to the

component work 1
ij . Otherwise (word j = 0) the corresponding compo-

nent remains unchanged. We denote the final result with

C∗
workfing := [Cwork i1

, · · · , Cwork il
].

5. M sends Cworkfing := [C∗
workfing , Cwork ′

δ
] with the reversed ordering to B

where Cwork ′
δ
:= comQR(work ′

δ). Note thatM may not need to commit
to work δ, and may send it as plaintext.

6. B decrypts the commitments Cworkfing using keyQR
com, i.e.,

~workfing ← OpenComQR(keyQR
com, Cworkfing )

7. B re-transforms the components ~workfing to the original domain to
obtain workfing .

As one can see, if both parties behave according to the procedure explained
above, it follows from the homomorphic property of the QR-commitment
and the correctness of the underlying watermarking scheme that B obtains a
fingerprinted work in which the constructed codeword is correctly embedded.
Thus, we can conclude the following lemma:

Lemma 5.11 The protocol EmbedWord() is complete. 2

Remark 5.6. Reducing data expansion: In the embedding procedure de-
scribed before, we used commitments to individual bits. This leads to a
large data expansion. The number of bits is at most O

(
lwork log(n′)

)
where

lwork := length2(
~work ) is the bit length of the underlying work in embedding

domain, and n′ is the public parameter of the QR-commitment (In case the
security requirements are not violated, one may reduce the number of bits
by sending work δ in plaintext.)
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To further reduce the number of commitments, we can use a commitment
scheme which enables us to commit to many bits at the same time. For this,
Pfitzmann and Schunter (1996) propose a procedure in which they apply
an encryption scheme based on higher degree residue as the underlying
commitment scheme (see Benaloh (1994) and Naccache and Stern (1998)).
However, the decryption algorithm of this scheme is very inefficient. Instead,
we can apply the OU encryption scheme (Okamoto and Uchiyama 1998)
which has a very efficient decryption (see Sections 3.4.2.3 and 3.5.6). In the
following we explain how this can be done.

We compute commitments Cwork ′
µ

to consecutive strings work ′
µ of the

representation of the underlying work where length 2(work ′
µ) = k′ and 2k′

< p
must hold for OU-scheme (see Section 3.5.6)

If a bit work ′
µ,ν belongs to work ij , we XOR word j at that position.

Since M knows the value work ′
µ,ν , he can perform the XOR operation by

adding/subtracting 2νword j to/from the value of the bit-string work ′
µ. To

do this,M shifts the corresponding bit word j in word to the ν-th position by

computing
(
comOU(word j)

)2ν

. More concretely, if work ′
µ,ν = 0 he computes

comOU(work ′
µ)

(
comOU(word j)

)2ν

= comOU(work ′
µ + 2νword j)

otherwise (work ′
µ,ν = 1)

comOU(work ′
µ)/

(
comOU(word j)

)2ν

= comOU(work ′
µ − 2νword j).

In this way, we can strongly reduce the number of bits to at most
O

(
lwork

k′ log(n′)
)

where n′ = p′2q′ is now the corresponding modulo parame-
ter of the OU-scheme. The additional cost are local multiplications for the
shifting operations. For instance, by using square and multiply exponentia-
tion scheme, this cost is maximal in the order of O(log(ϕ(n′)), where ϕ(n′)
is the group order in OU-scheme. ◦

We summarize the instantiation of the embedding protocol in Algorithm
10. For brevity, we consider the correct execution of protocols where ind =
accept , otherwise the protocols are aborted.
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Algorithm 10 Details of embedding protocol EmbedProt()

(B : −; M : ind) ← ProveEqCom(B : stateCemb

B , state
CDL

emb

B ; M : −; ∗ :
Cemb , C

DL
emb);

(M : ~halfword trace ∈R ΣL
1 );

(B : ~halfword emb)← RS(B : ~emb, parRS);

(B : −; M : ind) ← ProveEncRSCom(B : stateCemb

B , stateChw emb

B ; M :
−; ∗ : Cemb , Chw emb , parRS);
for s = 1 to L do

(B : −; M : ind)← ProveEqEncCom(B : state
Cbin

hs embs
B , state

Cun
hs embs

B ; M :
−; ∗ : Cbin

hs embs
, Cun

hs embs
);

end for;
for s = 1 to L do

(M : Derive Cun
sym ′

s
from Cun

hs embs
);

(M : Cun
syms

← substs(C
un
sym′

s
));

(M : Cwsyms
)← DeriveEncCom(M : Cun

syms
, par drv );

end for;
(
M : Cword ← π1(Cwsym1

), · · · , πi(CwsymL
)
)
;

(M : work 0)← EmbedMark(M : work ,word 0, skWM);
(M : Cworkfing ← CwordCwork0); {multiplication should be understood as
defined in Section 5.3.1}
(B : ~workfing)← OpenComQR(B : keyQR

com;Cworkfing );

(B : Obtain work fing by re-transforming ~workfing to the original domain )

5.3.2 Construction for Extracting Procedure

After finding a redistributed copy work red for which true ←
simtest(work ,work red ) holds, the merchant M applies the extraction algo-
rithm denoted by

~emb ← ExtractProt(work red , keyemb ,REC work
M ).

The extraction procedure for the embedding procedure in Algorithm 10 is
presented by Algorithm 11.
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Algorithm 11 Details of extraction algorithm ExtractProt()

1. Extract an outer codeword from work red using the extracting algo-
rithm of the underlying watermarking scheme.

word red ← ExtractMark(work red ,work , skWM).

2. For each of the L positions of the outer code

(a) apply the tracing algorithm ExtractBSBC(sym red
i , πi) of the basis

code Γ0 to identify symbols symext
i , i ∈ [1, L] (see Section 4.3.6.4),

(b) decrypt each of these symbols using subst−1
i , and

(c) separate each symbol sym ext
i into two halves of length κ1 and

κ2 bits. The resulting outer codeword is denoted by ~word ext ,
and the halfword consisting of the first halfsymbols is denoted by

~halfword traceext .

3. Search among purchase records REC work
M of the underlying work

work for the one where the corresponding ~halfword trace has at least
L/collsize halfsymbols in common with halfword trace ext .

4. Reconstruct the value ~emb from the second halfsymbols of word ext as
follows:

(a) Exclude all those symbols sym ext
i which cannot belong to this

traitor because their first halfsymbols are different from those in
halfword trace . The remaining second halfsymbols represent a

word ~halfword embext
i with many erasures.

(b) Run the decoding of EECC (here RS-decoding) to obtain ~emb.

5.3.3 Security Analysis

In this section, we analyze the security of the embedding/extracting
procedure according to the requirements defined in Section 4.5.4.2.
We assume that we are given a robust watermarking scheme
(GenKeyWM(),EmbedMark(),ExtractMark()) which also satisfies the con-
ditions of the marking assumption. Further, we use the QR commit-
ment scheme (GenParComQR(),ProtComQR(),ProtOpenQR()) and the DL-
commitment scheme (GenParComDL(),ProtComDL(),ProtOpenDL()) as de-
fined in Section 3.5.

The embedding procedure consists of two main parts: A part where
the merchant M and the buyer B are involved in the proof protocols
ProveEqCom(), ProveEncRSCom(), ProveEqEncCom(), and a part where the
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merchant alone performs local computations, in particular on the commit-
ments to certain encodings of the embedding value ~emb (see Algorithm 10).

5.3.3.1 Security for Merchant

The security requirements for the merchant are soundness and secrecy as
defined in Section 4.5.4.2. Soundness guarantees that if the buyer obtains a
fingerprinted work after the completion of the embedding protocol then the
desired information is correctly embedded into the underlying work. Secrecy
guarantees that the embedding process reveals no additional information on
merchant’s secret inputs beyond the fingerprinted work. In the following,
we show that the scheme fulfils these requirements.

• Soundness: First, we consider the proof subprotocols ProveEqCom(),
ProveEncRSCom(), ProveEqEncCom() within the embedding proce-
dure. It follows from Lemmas 5.2, 5.5 and 5.8 that each of these
protocols is a perfectly sound proof system. Further, due to the logic
of the main protocol the inputs of these subprotocols match with the
outputs of the preceding subprotocols:

In the subprotocol ProveEqCom(), B proves knowledge of the contents
of the commitments Cemb and CDL

emb , and that these contents are equal
(Theorem 5.3). Here, a proof of knowledge and a proof of language
membership is required contrary to a mere proof of language mem-
bership.11 In the subprotocol ProveEncRSCom(), B proves that the
content of Chw emb is the RS-encoding of the content of Cemb .

Finally, in the subprotocol ProveEqEncCom(), she proves that the con-
tent of Cun

hw emb is the unary encoding of the content of Chw emb . In
both cases, a proof of language membership is sufficient since QR-
commitments are information-theoretically binding. It follows that
the contents of commitments Cemb , Chw emb and Cun

hw emb are the cor-
rect encodings of the content of CDL

emb as specified by the protocol.

Next, we considerM’s own computations regarding the construction of
the desired codeword. These are the computation of the commitments
Cun

syms
, Cwsyms

and finally embedding the content of Cword with the
algorithm EmbedWord(). Since Cun

hw emb has the correct form as men-
tioned above, it follows from Step 4 of the algorithm CollTolWord()
(Section 5.3.1) that also the content of Cun

syms
has the correct form.

The correctness of the content of Cwsyms
follows from the correctness

of the algorithm DeriveEncCom() (see Section 5.2.5). Thus, the content
of Cword has the correct encoding as specified by the protocol. The

11The reason for proof of knowledge is that the applied DL-commitment is information-
theoretically hiding, and thus, there always exist a content of CDL

emb in the corresponding
language, and so, the language membership is trivial.
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correctness of EmbedWord() follows from the homomorphic property
of the QR-commitments, and from the correctness of the underlying
watermarking scheme (Lemma 5.11). It follows that the content of
Cword will be correctly embedded into the underlying work. Thus, if B
obtains a fingerprinted work work fing so the specified encoding of ~emb
is embedded in workfing .

By definition of the embedding and extracting procedures, if a value
~emb is correctly embedded into a work work , then the extraction al-

gorithm ExtractProt() extracts this value from a version of work red for
which true ← simtest(work ,work red ) holds.

• Secrecy : Due to the construction,M generates the quantities key s
emb :=

{Π0, ~subst , skWM} , ~halfword trace , Cword secretly and locally. Further,
he keeps the components of the original work ~work secret, and the only
information B obtains is the fingerprinted work work fing .

Note that the collusion-tolerance is a security requirement of the fingerprint-
ing protocol. However, we remark that according to the construction, the
embedding protocol already embeds a collusion-tolerant encoding of ~emb
into the underlying work, and the properties of the construction (collsize-
secure outer code, and RS-encoding, etc.) guarantee that as long as the
maximum tolerable collusion collsize is not exceeded, the extracted value is
the embedding value ~emb of a traitor (Pfitzmann and Waidner (1997a)).

Thus, we can conclude:

Lemma 5.12 The embedding protocol described in Section 5.3.1 is secure
for the merchant. 2

5.3.3.2 Security for Buyer

The security requirement for the buyer is secrecy as defined in Section
4.5.4.2. It guarantees that the embedding process reveals no information
on buyer’s secret inputs. In the following, we show that the embedding
protocol is zero-knowledge.

Secrecy : Each of the subprotocols involving the secret inputs of the buyer,
i.e., ProveEqCom(), ProveEncRSCom(), ProveEqEncCom() is a perfect zero-
knowledge proof. This follows from Theorems 5.1, 5.2 and 5.3. However,
due to the construction of the embedding protocol, the (sequential) com-
position of these subprotocols is not perfect zero-knowledge since in the
subsequent subprotocols, B (the prover) computes new QR-commitments
to the secret inputs and sends them to M (the verifier). For the overall
simulation, one can simulate these commitments by QR-commitments to
fixed values, and if a distinguisher exists distinguishing the real view from
the completely simulated one, then one can use it to break the semantic
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security of the QR commitment which is based on QRA.12 Thus, it follows
from the general composition theorem for sequential composition of auxil-
iary input zero-knowledge protocols (see, e.g., Goldreich and Oren (1994)
and Definition 3.8 in Section 3.6.4):

Lemma 5.13 The embedding protocol described in Section 5.3.1 is compu-
tationally zero-knowledge (for the merchant) under Quadratic Residuosity

Assumption (QRA). 2

Thus, under QRA, the embedding protocol leaks no additional information
on ~emb to M except the information M obtains on ~emb from the QR-
commitment Cemb which is again secure under the QRA assumption.13

5.3.4 Efficiency of Embedding Protocol

In this section, we consider the efficiency of the main components of the
embedding protocol. The costs we consider for the efficiency are the number
of required commitments, the number of main operations for the involved
parties, and the number of communicated bits.

Before going into details, we recall in the following the main convention
we make use of: We denote the binary length of a value a with length 2(a),
and denote the length of a word word defined over an alphabet A with
lengthA(word ). Thus, we have κ2:=length2(n2) and lengthFn2

(RS( ~emb)):=L.

We further set lemb := length2(
~emb). Since we apply RS-code, we have L =

n2−1. Further, since the encodings of ~emb is over F2κ2 , we can write lemb =
κ2lengthFn2

(emb). The length of the basic code Γ0(n, d) used to encode

the symbols of Σ := {0, 1, 2, · · · , n− 1} is given by length 2(w ∈ Γ0(n, d)) =
(n− 1)d. The main parameter for the QR-commitment is par QR

com = n′ (see
Section 3.5.4), and those for the DL-commitment are the primes p and q.
Note that we have parDL

com = (p, q, g, h) (see Section 3.5.5).
For the zero-knowledge protocols we consider the efficiency only for one

iteration. The total efficiency of each of these protocols will then be γS

times the efficiency of one iteration where γS is the number of the itera-
tions. Further, note that in zero-knowledge protocols, we always consider
the challenge with larger costs.

Proving equality of committed numbers ProveEqCom()

• Number of commitments: There are 3lemb QR-commitments and 3lemb

DL-commitments required.

12Note that we obtain an overall perfect zero-knowledge protocol, if we input all these
commitments together with other common inputs as a “global common input” to the main
protocol. However, we will then lose the desired modularity.

13Note that semantic security is sufficient since the commitments are never opened.
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• Number of operations for M:

– Multiplication: There are 2lemb modulo n′ and 2lemb modulo p
multiplications.

– Exponentiation: There are 2lemb squarings modulo n′ and 2lemb

exponentiations mod p

• Number of operations for B:

– Multiplication: There are 2lemb modulo n′ and 2lemb modulo p
multiplications.

– Exponentiation: There are 2lemb squarings modulo n′ and 2lemb

exponentiation mod p.

• Communicated bits: There are 3(log(n′)+ log(p))lemb bit transmitted.

Proof of correct EECC encoding ProveEncRSCom()

• Number of commitments: There are 2length 2(n2)
(
lengthFn2

( ~emb) +

lengthFn2
(RS( ~emb))

)
QR-commitments. Using the above relations, we

have 2(lemb + Lκ2) = 2(lemb + κ2(n2 − 1)).

• Number of operations for M:

– Multiplication: There are length2(n2)
(
lengthFn2

( ~emb) +

lengthFn2
(RS( ~emb))

)
multiplications modulo n′. Using the above

relations, we have lemb + (n2 − 1)κ2 multiplications modulo n′.

– Exponentiation: There are length 2(n2)
(
lengthFn2

( ~emb) +

lengthFn2
(RS( ~emb))

)
squarings modulo n′. Using the above rela-

tions, we have lemb + (n2 − 1)κ2 squarings modulo n′.

• Number of operations for B:

– Multiplication: Identical to that forM.

– Exponentiation: Identical to that forM.

• Communicated bits: There are 2length 2(n2)
(
lengthFn2

( ~emb) +

lengthFn2
(RS( ~emb))

)
length2(n

′) bits transmitted. Using the relations

above, we have 2
(
lemb + Lκ2

)
log(n′) = 2

(
lemb + κ2(n2 − 1)

)
log(n′).

Proof of Equality of Binary and Unary Committed Numbers
ProveEqEncCom()

• Number of commitments: There are n2

(
length2(halfsym embs) + n2)

= n2

(
κ2 + n2) QR-commitments.
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• Number of operations for M:

– Multiplication: There are 2n2

(
length2(halfsym embs) + n2) =

2n2

(
κ2 + n2) multiplications modulo n′.

– Exponentiation: There are n2

(
length2(halfsym embs) + n2) =

n2

(
κ2 + n2) squarings modulo n′.

• Number of operations for B:

– Multiplication: Identical to that forM.

– Exponentiation: Identical to that forM.

• Communicated bits: There are 2Ln2

(
length2(halfsym embs) + n2) =

2Ln2

(
κ2 + n2) bits transmitted.

Deriving codeword DeriveEncCom():

• Number of commitments: For each Cbin
hs embs

, s ∈ [1, L], the output of
this algorithm is the QR-commitment Cwsyms

to the basic codeword
wsyms

of the symbol syms. For computing these commitments, M
requires the commitment Csyms

, and the commitment Cw0 to the basic
codeword w0 for the symbol “0” in Zn. The former one consists of n
QR-commitments. For the latter one, M actually needs to compute
(n− 1) QR-commitments (Note that these commitments are used for
the computation only, and we do not need to repeat them d times,
i.e., we can set d = 1). Thus, effectively L(n − 1) + Ln = L(2n − 1)
commitments are required.

• Number of operations for M:

– Multiplication: Only those commitments in Csyms
are multiplied

which are at the positions where wsyms,j differs from w0,j . Due
to the structure of the basic codewords (see Section 5.2.5), we
have |∆j | = j, and the number of multiplications required for
each syms is

∑n−1
j=1 |∆j | = n(n − 1)/2. For L symbols, we have

Ln(n− 1)/2.

Embedding EmbedWord()

Let lwork := length2(
~work ) be the bit length of the underlying work. Assume,

we require at most λ bits of the underlying work to embed one mark.

• Number of commitments:
Since each bit in the codeword word is repeated d times, M has to
commit to at least dλlength2(wsyms

) = dλ(n − 1) bits of the under-
lying work for each symbol sym s. Thus, the number of required QR-
commitments is at least λLd(n− 1). However, this number is at most
lwork .
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• Number of operations for M:

– Multiplication: Commitments are multiplied only at the posi-
tions where marks has to be embedded, i.e., dλLlength 2(wsyms

) =
λLd(n − 1) multiplications modulo n′ are required (for comput-
ing commitments to the remaining bits of the work only squaring
modulo n′ are required.)

– Exponentiation: We require at most lwork squarings modulo n′.

• Number of operations for B: At most lwork square roots modulo n′

must be computed which we may interpret as the cost for maximal
O(lwork log(ϕ(n′))) multiplications modulo n′.14

• Number of communicated bits: There are at most lwork log(n′) bits sent
to the buyer.

5.3.4.1 Discussion on Efficiency of Embedding Protocol

In the following, we consider the maximal cost for the buyer and the mer-
chant.

• Main costs for merchant : Among the zero-knowledge protocols,
ProveEqEncCom() is the most costly one: The computational cost is
O(n2

2) = O(n2) = O(poly(k)) multiplications, and the number of QR-
commitments is in the same order, i.e., O(n2).

Regarding other parts of the embedding protocol, the most costly
ones are the algorithms DeriveEncCom() and EmbedWord(). The for-
mer algorithm requires O(Ln) = O(n2) = O(poly(k)) commitments
and O(Ln2) = O(n3) multiplications. The latter requires at least
O(Ldn) = O(n4 log n) and at most lwork QR-commitments that, ob-
viously, determines the number of the required operations and the
communicated bits respectively.

Thus, as one can see, the computational and communicational costs
are strongly dominated by the costs of EmbedWord().

• Main costs for buyer : Among the zero-knowledge protocols,
ProveEqEncCom() is the most costly one: The computational cost
is O(n2) = O(poly(k)) multiplications, and the number of QR-
commitments is in the same order, i.e., O(n2).

Regarding other parts of the embedding protocol, the dominant
costs for B lies in EmbedWord() where in worst case, she may have
to compute lwork square roots modulo n′ which requires maximal
O(lwork log(ϕ(n′))) multiplications modulo n′.

14Let n′ = p′q′ where p′, q′ are known Blum integers. Then one requires the expected
running time of O

(
(log p′)3

)
bit operations to compute a square root modulo n′.
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Thus, the major part of the computational and communicational cost is
caused by the embedding EmbedWord() where it may be required to com-
mit to all bits of the underlying work. In this context, the type of the used
commitment has a great impact on the computational, storage and commu-
nicational costs, in particular for the buyer B. As shown in Remark 5.6, we
can strongly reduce these costs by using a commitment scheme which allows
us to commit to many bits at the same time.

5.4 Conclusion

In Section 4.6 and this chapter, we presented the first explicit and reasonably
efficient construction for an anonymous fingerprinting scheme, and proved
its security. The construction is modular and offers several advanced security
properties such as collusion-tolerance, asymmetry and anonymity. A further
property of our construction is that it provides direct non-repudiation, i.e.,
in case of illegal redistribution, the rightful copyright holder alone can obtain
enough evidence against the cheating user(s) and convince any honest third
party. In particular, we give the first explicit construction for the core
module of the fingerprinting scheme, namely, the embedding protocol. In
this protocol the identifying information is securely and verifiably embedded
into the underlying digital content.

Implementing the anonymity property requires a more enhanced and
complex protocol design. However, as we have shown, the complexity of
the whole fingerprinting protocol is dominated by the complexity of the
embedding procedure, so that the anonymity is currently not the bottleneck
for implementation. The bottleneck for real life applications is rather the
collusion-tolerance. This is because the best known collusion-tolerant codes
are still too long to be practical. The construction is more practical for
applications which do not require this property.

The most known proposals for collusion-tolerant encoding use completely
different approaches that cannot be easily compared with each other (see
also Section 4.3.6). However, some important issues are as follows: The
construction in Boneh and Shaw (1995) and Boneh and Shaw (1998) is data-
independent collusion-tolerant encoding and abstracts from the underlying
watermarking schemes whereas the constructions in Kilian et al. (1998) and
Ergun, Kilian, and Kumar (1999) are already collusion-tolerant watermark-
ing schemes, and thus, data-dependent. Further, the latter constructions
use real numbers and do not consider error-analysis for discrete value imple-
mentation. Moreover, while Boneh and Shaw (1998) prove a lower bound for
their codes and a large gap still remains, Ergun, Kilian, and Kumar (1999)
give an almost tight lower bound for their construction.

In this thesis, we used the codes from Boneh and Shaw (Boneh and
Shaw (1995), Boneh and Shaw (1998)) as the underlying collusion-tolerant
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encoding, in particular, because its data-independency makes a modular
design of asymmetric fingerprinting schemes easier. The design of shorter
collusion-tolerant codes is an ongoing research. Since our fingerprinting
schemes are modular, new codes can efficiently be incorporated into our
protocols. Another issue which may be of interest is to examine whether
the class of watermarking schemes introduced in Kilian et al. (1998) (and
Ergun, Kilian, and Kumar (1999)) can be efficiently made asymmetric.
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Appendix A

Deriving Formal
Assumptions from the
Parameters

The “mechanics” of deriving the formal assumption statement from its short
form $s-$t$P$a(c:$c; g:$g; f:$G) — as described in Section 2.3 the $X’s are
placeholders of the parameters defined in Section 2.2 — is as follows:

1. Group and problem family: Just fix the group, generator and
problem instance sampler SGG , Sg, and SPI P corresponding to group
family $G and problem family $P, respectively. In the context of
generic relations, $G does normally not fix a particular group family
and sampler but gives just some specific constraints on group families,
e.g., groups with large prime factors indicated by “lprim”. In such a
case SGG denotes an arbitrary sampler for an arbitrary group family
fulfilling the given constraints on the group family and the constraints
on samplers given in Section 2.1.7.1

2. Problem type: Prepare the assumption formula $F as the probabil-
ity statement $P defined as “Prob[”. $Ppred .“ :: ”. $Pdef .“]”. The .
denotes the string-concatenation operator and the variables $Ppred and
$Pdef are the probability predicate and the probability space instance
definition, respectively. They are defined depending on the problem
type $t as follows (where SPI P is the problem sampler fixed in item 1
above and where the source of SI is explained in item 3 below):

• $t = C: Initialize $Pdef to “PI ← SPI P(SI );” (the problem in-
stance to solve) and add “C R← U ;” (the random coins for the
adversary) to it. Define $Ppred as “A(C,SI ,PI publ ) ∈ PI sol”.

1In practice, only the later application of this relation using specific assumptions im-
plied by a cryptographic systems will determine the concrete choices of group family and
sampler.
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• $t = D: Initialize $Pdef to the concatenation of “b R← {0, 1};”
(the random bit used as challenge), “PI 0 ← SPIP(SI );” and
“PI 1 ← SPIP(SI );” (the real problem instance and an auxiliary
problem instance for the random public part), “sol c

R← PI b
sol ;”

(one possible solution), and “C R← U ;”. $Ppred is defined as
“A(C,SI ,PI publ , sol c) = b”. Additionally, the probability state-
ment $P is normalized to “2 · |Prob[$Ppred :: $Pdef ]− 0.5|”.
• $t = M: Initialize $Pdef to the concatenation of “b R← {0, 1};”

(the random bit used as challenge), “PI 0 ← SPIP(SI );”
and “PI 1 ← SPIP(SI );” (the two problem instances to
match), “sol 0

R← PI 0
sol” and “sol 1

R← PI 1
sol” (two cor-

responding solutions), and “C R← U ;”. $Ppred is defined
as “A(C,SI ,PI 0

publ ,PI 1
publ , sol b, sol b̄) = b”. Additionally,

the probability statement $P is normalized as above to “2 ·
|Prob[$Ppred :: $Pdef ]− 0.5|”.

3. Granularity: Depending on the granularity value $g do the following
(where SGG and Sg are the group and generator sampler fixed in
item 1):

• $g = l: Prepend “G ← SGG(1k);”, “gi ← Sg(G);” (for as many
i ∈ N as required by the problem family, e.g., one generator for
DL and n generators for RP(n)), and “SI ← (G, g1, . . .);” to
$Pdef .

• $g = m: Prepend “∀G ∈ [SGG(1k)]; to $F. Prepend “g ←
Sg(G);” and “SI ← (G, g1, . . .);” to $Pdef .

• $g = h: Prepend “∀G ∈ [SGG(1k)];”, “∀gi ∈ [Sg(G)];”, and
“SI ← (G, g1, . . .);” to $F.

4. Computational complexity and algebraic knowledge: Depend-
ing on the computational complexity $c do the following:

• $c = u: Prefix $F with “∀A ∈ UPTM;”, “∃k0;”, and “∀k > k0;”.

• $c = n: Prefix $F with “∀(Ai | i ∈ N) ∈ NPTM;”, “∃k0;”, and
“∀k > k0;”. In $Ppred replace “A” by “Ak”.

If the considered assumption is in the generic model ($a = σ) then
replace everywhere “A”, UPTM and NPTM by “Aσ”, UPTMσ

and NPTMσ, respectively. Furthermore, append “σ R← ΣG,g;” (the
choice of the random encoding function) to $Pdef .

5. Success probability: Depending on the success probability $s do the
following to finish the formal assumption statement:

• $s = 1: Append “< 1” to $F, i.e., immediately after $P.



301

• $s = (1−1/poly(k)): Append “∃d1;” immediately after the all-
quantifier on adversary algorithms in $F. Append “< (1−1/kd1 )”
to $F.

• $s = ε: Append “< ε” to $F.

• $s = 1/poly(k): Append “∀d1;” immediately after the all-
quantifier on adversary algorithms in $F. Append “< 1/kd1”
to $F.

Evaluating $F by expanding the variables , i.e., $P, $Ppred and $Pdef , and
applying the string-concatenation operator gives now the desired precise
formal assumption statement.
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