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mmueller@ps.uni-sb.de

http://www.ps.uni-sb.de/˜mmueller/

Vorsitzender: Prof. Dr. Harald Ganzinger

Erstgutachter: Prof. Dr. Gert Smolka

Zweitgutachter: Priv.-Doz. Dr. Andreas Podelski

Tag des Kolloquiums: 22. Juli 1998



Kurze Zusammenfassung

Oz ist eine anwendungsnahe Programmiersprache, deren Grundlage eine Erweiterung
des Modells nebenl äufiger Constraintprogrammierung um Prozeduren h öherer Stufe
und Zustand ist. Oz ist eine Sprache mit dynamischer Typ überpr üfung wie Prolog,
Scheme oder Smalltalk. Wir untersuchen zwei Ans ätze, statische Typ überpr üfung f ür
Oz zu erm öglichen: Mengenbasierte Fehlerdiagnose und Starke Typisierung. Wir
definieren ein neues System von Mengenconstraints über Featureb äumen, das f ür
die Analyse von Recordstrukturen geeignet ist, und wir untersuchen das Erf üllbar-
keits-, das Leerheits- und das Subsumtionsproblem f ür dieses Constraintsystem. Wir
pr äsentieren eine mengenbasierte Diagnose f ür Constraint-Logikprogrammierung und
f ür nebenl äufige Constraintprogrammierung als Teilsprachen von Oz, und wir be-
weisen, daß diese unvermeidliche Laufzeitfehler erkennt. Wir schlagen auch eine
mengenbasierte Analyse f ür eine gr össere Teilsprache von Oz vor. Komplement är
dazu definieren wir eine Oz-artige Sprache genannt Plain, die ein expressives starkes
Typsystem erlaubt. Wir stellen ein solches Typsystem vor und beweisen seine Korrekt-
heit.
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Zusammenfassung

Das Modell nebenl äufiger Constraintprogrammierung (Concurrent Constraint Model,
CC) stellt eine einfache und doch m ächtige Grundlage f ür problemnahe nebenl äufige
Programmiersprachen dar. Die Expressivit ät des CC-Modells wird erheblich erwei-
tert durch das Oz Programmiermodell (OPM), welches der Programmiersprache Oz
zugrunde liegt. Oz subumiert etablierte Programmierparadigmen wie das der funk-
tionalen, der objekt-orientierten, oder der constraintbasierten Programmierung. Ins-
besondere verf ügt Oz über Ausdrucksmittel zur Programmierung von constraintba-
sierten Inferenzverfahren, die über alle aus der Constraint-Logikprogrammierung be-
kannten hinaus gehen.

Oz ist eine Sprache mit dynamischer Typ überpr üfung wie Prolog, Scheme oder Small-
talk. Das heißt zum einen, daß Oz eine typsichere Sprache ist, die die typkorrekte Ver-
wendung von primitive Operationen garantiert; es bedeutet andererseits, daß Oz keine
statische Typ überpr üfung durchf ührt. Dynamische Typ überpr üfung ist von Vorteil
f ür die Einfachheit und Flexibilit ät einer Programmiersprache, aber es erschwert die
Fehlersuche in Programmen. In dieser Arbeit untersuchen wir zwei Ans ätze, statische
Typ überpr üfung f ür Oz zu erm öglichen: Mengenbasierte Fehlerdiagnose und Starke
Typisierung.

Mengenbasierte Fehlerdiagnose ist ein Programmanalyseverfahren, dessen Ziel es ist,
Programmierfehler schon zur Übersetzungszeit zu erkennen. Das Verfahren wird
als mengenbasiert bezeichnet, weil es eine Klasse pr ädikatenlogischer Formeln ver-
wendet, die über Mengen von B äumen interpretiert werden (sogenannte Mengencon-
straints). Der Entwurf einer mengenbasierten Programmanalyse verl äuft in drei Schrit-
ten: Zun ächst definiert man eine Klasse von Mengenconstraints, die f ür die gegebene
Programmiersprache und das Analyseproblem angemessen ist. Dann definiert man
eine Abbildung von Programmen in diese Mengenconstraints und beweist, daß die
Abbildung bestimmte Laufzeiteigenschaften des Programms erh ält. Schließlich ent-
wickelt man Algorithmen, um die verwendeten Constraints zu l ösen.

Wir definieren ein neues System von Mengenconstraints über Featureb äumen. Dieses
Constraintsystem ist durch die Analyse von Records motiviert, die in Oz eine zentrale
Rolle spielen, und die in Oz durch Gleichheitsconstraints über Featureb äumen in Oz
integriert sind. Wir untersuchen das Erf üllbarkeits-, das Leerheits- und das Subsum-
tionsproblem f ür Mengenconstraints über Featureb äumen und pr äsentieren eine Reihe
von Algorithmen und Komplexit ätsergebnissen. Mengenconstraints über Featureb äu-
men sind von unabh ängigem Interesse, über ihre Verwendung in der Programmanalyse
hinaus und insbesondere im Vergleich mit bekannten Mengenconstraintsystemen.

Wir geben eine mengenbasierte Diagnose an f ür Constraint-Logikprogrammierung
und nebenl äufige Constraintprogramming als Fragmente erster Stufe von Oz. Als
Korrektheitsbeweis f ür unsere Diagnose zeigen wir, daß sie nur Programme zur ück-
weist, die einen unvermeidlichen Laufzeitfehler enthalten. F ür eine gr össere Teil-



sprache von Oz, die insbesondere Prozeduren h öherer Stufe mit einschließt, geben wir
eine Analyse an und illustrieren sie anhand von Beispielen. Das interessante Korrekt-
heitsproblem f ür diese Analyse lassen wir offen. Durch die Prozeduren h öherer Stufe
wird das Korrektheitsproblem wesentlich schwieriger und die Beweistechniken f ür den
Fall erster Stufe sind nicht mehr anwendbar.

Komplement är zu der mengenbasierten Diagnose untersuchen wir den Entwurf eines
streng statischen Typsystems f ür Teilsprachen von Oz. Wir definieren Plain und wir
zeigen, daß ein expressives starkes Typsystem m öglich ist f ür eine Sprache, die we-
sentliche Elemente von Oz kombiniert: darunter Prozeduren h öherer Stufe, Logische
Variablen und partiell determinierte Datenstrukturen, Zellen und Records. Anderer-
seits heben wir einige Einschr änkungen von Plain gegen über Oz hervor. Plains Typ-
system unterst ützt Recordtypen, Untertypen, polymorphe Typen h öherer Stufe, Modi
und Modus-Polymorphismus. Wir beweisen die Korrektheit unseres Typsystems mit
Hilfe eines Typerhaltungssatzes (subject reduction).
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Short Abstract

Oz is a recent high-level programming language, based on an extension of the concur-
rent constraint model by higher-order procedures and state. Oz is a dynamically typed
language like Prolog, Scheme, or Smalltalk. We investigate two approaches of making
static type analysis available for Oz: Set-based failure diagnosis and strong typing.
We define a new system of set constraints over feature trees that is appropriate for the
analysis of record structures, and we investigate its satisfiability, emptiness, and en-
tailment problem. We present a set-based diagnosis for constraint logic programming
and concurrent constraint programming as first-order fragments of Oz, and we prove
that it correctly detects inevitable run-time errors. We also propose an analysis for a
larger sublanguage of Oz. Complementarily, we define an Oz-style language called
Plain that allows an expressive strong type system. We present such a type system and
prove its soundness.
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Abstract

Concurrent constraint (CC) programming is a simple and powerful high-level model
for concurrent programming. The expressiveness of the CC model has been conside-
rably extended by the Oz Programming Model (OPM) which is realised in the pro-
gramming language Oz. Oz subsumes well-established programming paradigms such
as higher-order functional and object-oriented programming, and it supports problem
solving facilities beyond those known from constraint logic programming.

Oz is a dynamically typed language like Prolog, Scheme, or Smalltalk. This means that
Oz is a type safe language that guarantees type-correctness of primitive operations, but
that it lacks static (compile-time) type checking. This is advantageous for simplicity
and flexibility of the language but it complicates the debugging of programs. In this
thesis we investigate two approaches of making static type checking available for Oz:
Set-based failure diagnosis and strong typing.

Set-based failure diagnosis is a method for program analysis with the goal to detect
programming errors at compile-time. The method is called set-based because it em-
ploys set constraints, a class of predicate logic formulas interpreted over sets of trees.
The design of a set-based program analysis involves the following steps. First, one
defines a class of set constraints that is appropriate for the given language and the ana-
lysis problem. Second, one defines a mapping from programs to set constraints and
proves that this mapping preserves certain run-time properties of the programs. Third,
one provides algorithms to solve the constraints.

We define a new system of set constraints over feature trees. This constraint system
is motivated by the analysis of records, since Oz incorporates records as a central data
structure through equality constraints over feature trees. We study the satisfiability,
emptiness, and entailment problems for set constraints over feature trees and provide a
number of algorithms and complexity results. Set constraints over feature trees are also
interesting independent from their application in program analysis, and in comparison
with other systems of set constraints.

We present a diagnosis for constraint logic programming and concurrent constraint
programming as first-order fragments of Oz. We prove our diagnosis correct by show-
ing that it rejects only programs that contain an inevitable run-time error. For a larger
sublanguage of Oz including higher-order procedures we present a diagnosis and illus-
trate it with examples. The interesting problem of proving correctness for this analysis
is left open. In presence of higher-order procedures, the correctness problem becomes
fundamentally harder, and the proof techniques used for the first-order case fail.

Complementary to the set-based failure diagnosis, we consider the design of strong
static type systems for sublanguages of Oz. We define Plain, and we show that an
expressive strong type system is possible for a language that combines key features
of Oz, namely higher-order procedures, logic variables and partially determined data
structures, cells, and records, and we highlight the restrictions of Plain with respect



to Oz. Plain’s type system supports record types, subtyping, higher-order polymor-
phic types, modes, and mode polymorphism. We prove its soundness through a type
preservation theorem.
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Forschung und Technologie through the Hydra Project (FTZ-ITW-9105), the Esprit
Project ACCLAIM (PE 7195), the Esprit Working Groups CCL (EP 6028) and CCL II
(EP 22457), and the HC&M project CONSOLE (CHRXCT 940495).



Contents

1. Introduction 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. High-level Programming Languages . . . . . . . . . . . . . . 1

1.1.2. Static Program Analysis . . . . . . . . . . . . . . . . . . . . 1

1.2. The Programming Language Oz . . . . . . . . . . . . . . . . . . . . 2

1.2.1. The Oz Programming Model . . . . . . . . . . . . . . . . . . 2

1.2.2. Records and Feature Trees . . . . . . . . . . . . . . . . . . . 3

1.3. Set-based Failure Diagnosis . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1. Set-based Analysis . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2. Set Constraints over Feature Trees . . . . . . . . . . . . . . . 5

1.3.3. Solving Set Constraints . . . . . . . . . . . . . . . . . . . . . 6

1.3.4. Set-based Failure Diagnosis for Concurrent Constraint Pro-
gramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4. Strong Static Typing for Oz . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1. Static versus Dynamic Typing . . . . . . . . . . . . . . . . . 11

1.4.2. Types for Oz . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.3. Failure Diagnosis versus Strong Typing . . . . . . . . . . . . 13

1.5. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.2. Technical Summary . . . . . . . . . . . . . . . . . . . . . . 17

1.6. Publication Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2. Set Constraints over Feature Trees 23

2.1. Constraint Systems over Feature Trees . . . . . . . . . . . . . . . . . 25

2.1.1. Feature Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2. Equality Constraints over Feature Trees . . . . . . . . . . . . 26

xiii



Contents

2.1.3. Set Constraints over Feature Trees . . . . . . . . . . . . . . . 27

2.1.4. Constraints over Non-empty Sets of Feature Trees . . . . . . 29

2.1.5. Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2. Solving Constraints over Non-empty Sets of Feature Trees . . . . . . 30

2.2.1. Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2. Completeness of the Satisfiability Test . . . . . . . . . . . . . 35

2.2.3. Incrementality and Complexity of the Satisfiability Test . . . . 39

2.3. Dropping the Non-emptiness Restriction . . . . . . . . . . . . . . . . 43

2.3.1. Emptiness Test . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.2. Solving Union Constraints . . . . . . . . . . . . . . . . . . . 46

3. Entailment for Set Constraints 49
3.1. Entailment with Polynomial Complexity . . . . . . . . . . . . . . . . 50

3.1.1. Syntactic Containment . . . . . . . . . . . . . . . . . . . . . 51

3.1.2. Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.3. Dropping the Non-emptiness Restriction . . . . . . . . . . . . 61

3.2. Hardness Results on Entailment . . . . . . . . . . . . . . . . . . . . 62

3.2.1. Entailment with Arity Constraints is coNP-hard . . . . . . . . 62

3.2.2. Dropping the Non-emptiness Restriction . . . . . . . . . . . . 70

3.2.3. Entailment with Existential Quantifiers is coNP-hard . . . . . 72

3.2.4. Entailment with Existential Quantifiers is PSPACE-hard . . . 74

3.3. Discussion and Related Work . . . . . . . . . . . . . . . . . . . . . . 80

3.3.1. Set Constraint Systems . . . . . . . . . . . . . . . . . . . . . 80

3.3.2. Tree Constraint Systems . . . . . . . . . . . . . . . . . . . . 85

4. Set-based Failure Diagnosis for CLP and CC 91
4.1. Set-based Failure Diagnosis for CLP over Infinite Trees . . . . . . . . 93

4.1.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1.2. Constraint Logic Programming over Feature Trees . . . . . . 97

4.1.3. Set-based Failure Diagnosis . . . . . . . . . . . . . . . . . . 100

4.1.4. Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1.5. Analysing Constructor Tree Equations . . . . . . . . . . . . . 112

4.2. Set-based Failure Diagnosis for CC over Infinite Trees . . . . . . . . 114

4.2.1. Blocked Reduction or Finite Failure . . . . . . . . . . . . . . 114

4.2.2. Blocked Reduction and Run-time Errors . . . . . . . . . . . . 115

4.2.3. Inevitable Failure versus Possible Failure . . . . . . . . . . . 116

xiv



Contents

4.2.4. Inevitable Failure as a Debugging Criterion . . . . . . . . . . 116

4.3. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5. Set-based Failure Diagnosis for Oz 119

5.1. The Oz Programming Model . . . . . . . . . . . . . . . . . . . . . . 120

5.1.1. The Computational Setup . . . . . . . . . . . . . . . . . . . 120

5.1.2. The Base Language . . . . . . . . . . . . . . . . . . . . . . . 121

5.1.3. Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1.4. Case Statements . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2. Set-based Failure Diagnosis . . . . . . . . . . . . . . . . . . . . . . 125

5.2.1. Constraints, Parallel Composition, and Declaration . . . . . . 127

5.2.2. Procedures, Applications, and Conditionals . . . . . . . . . . 127

5.2.3. Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2.4. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.5. Style Conventions . . . . . . . . . . . . . . . . . . . . . . . 132

5.3. Conditionals Revisited . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4.1. Programming Languages and Models . . . . . . . . . . . . . 138

5.4.2. Program Analysis . . . . . . . . . . . . . . . . . . . . . . . . 141

6. Typed Concurrent Programming with Logic Variables 145

6.1. Plain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1.1. Untyped Plain . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1.2. Typed Plain . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.1.3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2. Type Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.3. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.3.1. Towards Oz . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.3.2. Let-Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.4. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.4.1. Pict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.4.2. Modes in Logic Programming . . . . . . . . . . . . . . . . . 178

6.4.3. ML-style Polymorphism for Logic Variables . . . . . . . . . 179

6.4.4. Types in Concurrent Programming . . . . . . . . . . . . . . . 180

7. Conclusion and Directions of Further Research 181

xv



Contents

A. Mathematical Preliminaries 185

A.1. Sets, Relations, and Mappings . . . . . . . . . . . . . . . . . . . . . 185

A.2. Predicate Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.3. Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 187

References 189

List of Figures 212

List of Theorems 213

Index 215

xvi



1. Introduction

1.1. Motivation

1.1.1. High-level Programming Languages

Computer programming is a complex task. This complexity can be reduced by a pro-
gramming language that provides expressive abstraction mechanisms, which enable a
direct and concise modelling of the application domain. Programming languages are
called high-level if they satisfy this requirement.

The design of high-level programming languages for concurrent and distributed pro-
gramming is an important challenge in computer science today. Many applications are
naturally modelled in terms of multiple concurrent processes which proceed largely
independently but also need to synchronise and communicate with each other; as a
typical example, consider distributed multi-agent systems. Software developers face
a quickly increasing demand for concurrent and distributed applications, especially
since the advent of the world wide web.

Concurrent constraint (CC) programming [120, 180] is a simple and powerful high-
level model for concurrent programming. The expressiveness of this model has been
considerably extended by the Oz Programming Model (OPM) which is realised in
the programming language Oz [174, 195]. OPM subsumes well-established program-
ming paradigms as facets of a general model, for example higher-order functional
and object-oriented programming. By extension of OPM, Oz also supports problem-
solving facilities beyond those known from constraint logic programming [182, 183].

1.1.2. Static Program Analysis

Programming is prone to error. Human beings make errors, both due to the formal
activity of writing programs, and due to the intrinsic complexity of the application
domain at hand. Some of these errors can be avoided by appropriate programming ab-
stractions which help make programs shorter and easier to maintain. Remaining errors
can be very hard to find by testing or program inspection. Therefore, it is desirable to
have automated support for the static (compile-time) detection of programming errors.

1



1. Introduction

Oz is a dynamically typed language. This means that Oz is type safe in that all prim-
itive operations check the type of their arguments at run-time, but that Oz lacks static
type checking. Dynamic typing is advantageous for simplicity and flexibility of the
language but it complicates the debugging of programs. The motivation of this thesis
is to make some static type checking available for Oz. For a language like Oz, this
problem has not been considered before.

We consider two methods for static analysis for Oz: Strong typing and set-based fail-
ure diagnosis. Both methods are somewhat dual to each other: Strong typing aims at
proving that all operations in a program are always type correct, and to accept only
programs for which this proof succeeds. Dually, failure diagnosis aims at proving
that some operation in a program is not type correct, and to reject such programs as
erroneous. Strong typing yields a safety guarantee at the price of restricting the expres-
siveness of the programming language. Failure diagnosis puts few or no restrictions
on the programming language but, as a trade-off, it does not yield a safety guarantee.

1.2. The Programming Language Oz

1.2.1. The Oz Programming Model

Concurrent constraint programming is a model of computation that views concurrent
processes as independent agents that communicate by imposing constraints on shared
variables [120, 180]. Constraints are bits of information that are accumulated in the
constraint store and that restrict the possible values a variable can take: the more con-
straints, the smaller the set. In Oz, constraints are defined as first-order formulas over
a fixed predicate logic structure: we refer to the constraint language and the fixed
structure jointly as a constraint system.

Concurrent processes synchronise on the fact that certain constraints on a variable
become entailed (logically implied) by the constraint store (“ask”). The constraint
store grows monotonically: constraints can be added (“tell”) but are never retracted.
This setup makes it easy to express complex and safe synchronisation patterns [189]
and makes CC a powerful model of concurrent programming.

The Oz Programming Model (OPM) [195] is an extension of the concurrent constraint
model. The programming language and system Oz [174] is based on OPM with which
it was developed hand in hand. OPM makes two essential additions to CC: It adds
higher-order procedures and thus enables functional programming as known for ex-
ample from Scheme [48]. Second, it adds a cell primitive as a primitive for compu-
tation with state. In combination with higher-order procedures, cells enable flexible
object-oriented programming in a concurrent setting [91, 194].

By extension of OPM, Oz also supports features for problem solving with constraints
so that it subsumes the expressiveness of modern CLP languages like cc(FD) [207].

2



1.2. The Programming Language Oz
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Figure 1.1.: Examples of Feature Trees

These features include primitives for the generation of choice points and for the en-
capsulation of complete computation states as building blocks for constraint-based
inference engines [182–184], and constraint systems over feature trees, finite domain
constraints and finite sets of integers [146, 197, 210, 219]. In combination with higher-
order procedures and cells, this makes Oz a truly multi-paradigm language , with ap-
plications ranging from natural language processing, music composition, time tabling,
and the development of graphical user interfaces, to multi-agent systems and dis-
tributed programming [93, 95, 174, 209]). In this thesis we focus on OPM without
the constraint extensions, and we shall not discuss any distribution issues.

Oz is a dynamically typed language. This is partially due to its heritage from concur-
rent constraint programming which is based on a traditionally untyped computation
model, and also to the initial focus of its developers on the expressiveness of OPM
and its new combination of computational primitives. The research presented in this
thesis is motivated by the desire to provide some compile-time type checking for Oz,
or, more generally, for concurrent constraint programming.

1.2.2. Records and Feature Trees

Records are compound data structures whose components can be accessed by name.
This flexibility makes records an important data structure that is supported in many
modern programming languages. Record-like structures also have a long tradition in
computational linguistics [179, 190] for the analysis of the structure in natural lan-
guage. Feature trees [16, 20, 21, 197] model records: see Figure 1.1 for some typical
feature trees. Constraints over feature trees are predicate logic formulas for the descrip-
tion of record structures. This makes them suitable for the incorporation of records into
constraint-based languages [197], for example in Oz.

In Oz, constraints over feature trees play a central role, both for the description of
records in everyday programming and for constraint programming. Therefore, we
take records seriously throughout this thesis. In Oz, records are supported through
the constraint system CFT of equality constraints over feature trees [197, 210]. The
constraint language of CFT is defined as follows, where the symbols a and f are drawn
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from sets of labels and features, respectively.

η :: � x � y
�

a � x � �
x � f1 ��������� fn 	 �

x 
 f � y �
η1 � η2

An equality constraint x � y holds if x and y denote the same feature tree; a labelling
constraint a � x � holds if x denotes a feature tree that is labelled with a at its root; an
arity constraint x � f1 ��������� fn 	 holds if the denotation of x has exactly the features (i. e.,
fields) f1 ��������� fn; and a selection constraint x 
 f � y states that the subtree of x at feature f
is y. For example, the leftmost feature tree in Figure 1.1 is uniquely determined by the
following constraint (as the solution for x):

wine � x � � x 
 colour � y � x 
 year � z � x � wine � colour 	
�
red � y � � 1998 � z � � y � 	�� z � 	

1.3. Set-based Failure Diagnosis

1.3.1. Set-based Analysis

Set-based failure diagnosis is an instance of constraint-based program analysis. This
notion refers to a variety of techniques for static program analysis that reduces the
reasoning about program properties to the solving of appropriate classes of predicate
logic formulas, called constraints. Set-based analysis is an instance of constraint-
based analysis that employs set constraints [85], i. e., predicate logic formulas which
are interpreted over sets of trees. Set-based analysis serves to approximate run-time
properties of programs statically, for example type information: the set of values a
program variable may adopt, or the set of values an expression may evaluate to.

Heintze coined the term “set-based analysis” in his PhD thesis [83]. The history of
set-based program analysis dates back to Reynolds in 1969, and Jones and Muchnik in
1979 [110, 176] who applied it to imperative languages, as well as to Mishra in 1984
who analysed logic programming languages [132, 133]. Later, the application of set-
based analysis to logic programming was pursued by Heintze and Jaffar [82, 86, 87].
More recently, set-based analysis has been applied to functional languages [12, 38, 65,
84, 121, 216, 218].

The typical setup of constraint-based program analysis consists of the following steps.
First, one defines a class of constraints that is appropriate for the given language. Sec-
ond, one defines a mapping from programs to constraints, for example by traversing the
abstract syntax tree of the program and associating constraints to every construct. The
conjunction of these constraints is intended as an abstraction of the program properties
under consideration. The correctness of this abstraction must be shown in a third step.
Finally, the constraint is solved in order to compute a compact representation of the
analysis result. Solving a constraint usually means to check satisfiability or to compute
a distinguished solution of the constraint. We apply set-based analysis to concurrent
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constraint programs [171]. The remainder of this section (Sections 1.3.2 through 1.3.4)
and a large part of this thesis (Chapters 2 through 5) is organised according to the three
steps mentioned above.

One well-known example for constraint-based program analysis is Wand’s formulation
of type inference for the simply typed λ-calculus [213]: It derives equality constraints
over finite constructor trees from a program, solves them by unification, and accepts
a program if the accumulated constraints are all satisfiable: in this case, the constraint
associated with a program describes its most general type. The correctness result states
that execution of “well-typed programs does not go wrong” [123].

Constraint-based program analysis enjoys a great popularity [5, 88, 157]. This is partly
due to its general setup, in which the description of program properties in terms of con-
straints and the reasoning about them is nicely decoupled: soundness of the abstraction
and algorithmic properties of the constraint solving process can be explained and stud-
ied separately. More specifically, set constraints are expressive as a formalism, but
have a simple and intuitive semantics. In comparison with the general abstract inter-
pretation framework [53] set constraints are often more intuitive (even though abstract
interpretation is general enough to express certain set-based analyses [54]).

Theoretical investigations of the various classes of constraints used in program analysis
usually focus on the satisfiability problem. More recently, also the entailment problem
(logic implication) has received some attention [13, 65, 89, 140, 141, 143, 173]. Entail-
ment is interesting in program analysis because it provides explanation for constraint
simplification: simplification means to replace a constraint by a smaller one which is
either logically equivalent and retains all solutions, or which is entailed and retains
the distinguished solution(s). Entailment has also been proposed as a mechanism to
explain subtyping on polymorphic constrained types [27, 121, 203]. This is relevant to
the type checking of module interfaces with polymorphic types.

1.3.2. Set Constraints over Feature Trees

Standard set constraint [85] are interpreted in the domain of sets of finite constructor
trees (Herbrand). For the set-based analysis of constraint languages over feature trees
(i. e., records) we define a new class of set constraints which are interpreted over sets of
feature trees. This system is called FT ��� ar ����� (read “FT-include”). Since Oz allows
for infinite (cyclic) records as in Figure 1.1, our constraint system admits sets which
contain infinite feature trees. A second important reason for infinite trees is the fact
that concurrent programs may be designed for infinite execution and hence are not
expected to terminate. For example, the following program scans an infinite stream
which it expects to contain feature trees labelled with a or b.1 Infinite streams can be

1In most of the examples to come we use Prolog-style clausal syntax. In examples that rely on
higher-order procedures, we switch to a different, roughly Scheme-like notation.
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modelled by infinite feature trees.

scan � xs ��� xs 
 head � x � xs 
 tail � xr ������� process � x � � scan � xr �
process � x1 �	� a � x1 �
������� S1

process � x2 �	� b � x2 �
������� S2

The syntax of set constraints over feature trees is defined as follows.

ϕ :: � x � x1 � ����� � xn
�

x 
 f � x 
 �
a � x � �

x � f 	 �
ϕ1 � ϕ2

This constraint language is defined like the language of CFT constraints, extended by
inclusion constraints of the form x � x1 � ����� � xn. Equations x � y can, of course, still be
expressed by x � y � y � x. The semantics is appropriately lifted to the set domain:
a labelling constraint a � x � holds if x denotes a set of feature trees all of which are
labelled with a at the root; an arity constraint x � f1 ������� � fn 	 holds if x denotes a set
of feature trees, all of which have exactly the features f1 through fn at their root; a
selection constraint x 
 f � y states that x denotes a set of feature trees all of which have a
feature f at their root, and the set of all corresponding subtrees equals the denotation
of y.2 Inclusion constraints x � x1 � ����� � xn are interpreted as usual.

The closest relative of this constraint system is the system of co-definite set constraints
of Charatonik and Podelski [44]. Another close relative of set constraints over feature
trees is the system FT � (read “FT-sub”) of ordering constraints over feature trees [143].
For a detailed comparison with related constraint systems see Sections 3.3.1 and 3.3.2.

1.3.3. Solving Set Constraints

We investigate algorithms and complexity issues for various fragments of our set con-
straints over feature trees. We consider the emptiness problem, i. e., whether or not a
variable denotes the empty set in all solutions of a constraint ϕ, in symbols ϕ

� � x � /0.
We show that this problem is DEXPTIME-hard in general and polynomial when union
constraints are omitted. We also consider the entailment problems of the form ϕ

� � ϕ 

and ϕ

� ��� xϕ 
 for set constraints over feature trees without union constraints. We give
an incremental entailment test with polynomial complexity if only the constraints x 
 f � y,
a � x � , and x � y are admitted, we show that entailment becomes coNP-hard when arity
constraints x � f 	 are added, and that entailment becomes PSPACE-hard when existen-
tial quantification is added (even without arity constraints). The entailment problem
for the full system remains open.

We also define the system of constraints over non-empty sets of feature trees that is
obtained by excluding the empty set from the interpretation domain. We consider this
non-standard domain of non-empty sets of trees for two main reasons. On the one
hand, our application in program analysis suggests to treat the empty set as an illegal

2For discussion on the semantics of the selection constraint see Section 3.3.1.2.
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value (the “empty type”). On the other hand, excluding the empty set helps simplify
technical arguments: we construct our algorithms for the union-free fragments of set
constraints over feature trees by detour through the corresponding systems where the
empty set is excluded. We apply techniques that have been developed for systems of
tree constraints, in particular for FT � [16, 141–143, 145, 197]. We also observe that
the first-order theories of equality constraints over feature trees and over non-empty
sets of feature trees coincide.

1.3.4. Set-based Failure Diagnosis for Concurrent Constraint
Programming

We apply set constraints over feature trees to the analysis of constraint programs over
feature trees. The objective of the analysis is to detect programming errors, in partic-
ular such errors which inevitably lead to a run-time error. This choice will become
clear below. We consider three Oz-style languages of increasing complexity: First,
a language corresponding to constraint logic programming (CLP), then a concurrent
constraint (CC) programming language, and finally OPM. All three languages support
records through CFT constraints [197].

In the CC model as well as in OPM, an inconsistent constraint store is considered a
programming error. This is in contrast to traditional (constraint) logic programming
where failure is part of the backtracking mechanism. A CC program has certainly an
error if every fair execution leads to failure. Furthermore, our programming experience
with Oz indicates that we should also consider a program erroneous that does not fail
only because some application blocks forever.

1.3.4.1. Constraint Logic Programming

The basic idea of our failure diagnosis is illustrated by the following CLP program.

p � x �	� a � x �
q � y �	� b � y �
r � z � � p � z � � q � z �

(P1)

Whenever the procedure (or predicate) r is called, execution will eventually fail since
no feature tree can be labelled with both a and b. In CLP terminology, the call r � z �
is finitely failed. (Since we focus on concurrent programming without backtracking,
we favour the view that the procedure r contains an inevitable failure.) We detect this

7



1. Introduction

failure as follows. We derive from the program the set constraint

p � x � a � x � �
q � y � b � y � �
r � z � z � p � z � q

and observe that it entails r � /0. From this fact we deduce that r � z � is finitely failed for
all z and reject the program. A similar but slightly more complex program is this one:

p � x ��� x 
 f � x � a � x �
q � y �	� y 
 f � y � b � y �
r � z �	� p � z � � q � z �

(P2)

The set constraint associated with this program is the following one.

p � x � x 
 f � x 
 � a � x 
 � �
q � y � y 
 f � y 
 � b � y 
 � �
r � z � z � p � z � q

Again, this analysis entails r � /0. This crucially exploits the fact that the semantics of
σ 
 f � σ 
 requires all trees in σ to have the feature f . If x 
 f � y had only projection seman-
tics, this analysis had a non-empty solution for r (see Example Dfail3 on Page 94).

1.3.4.2. Concurrent Constraint Programming

The essential difference between CLP programs and CC programs is that the latter
may have guarded clauses p � x � � η ������� S. Roughly, such a clause tests whether the
constraint η or its negation holds for the argument z of an application p � z � . If η holds,
execution of p � z � can commit to this clause and proceed with S. If � η holds, then this
clause becomes irrelevant for execution of p � z � . Otherwise, the clause is said to block.

We define the analysis of CC programs through the analysis of an approximating CLP
program. This CLP program is obtained from the CC program by transforming condi-
tional guards into tell statements. For example, the CC program P3 below is approxi-
mated by the program P2 above. Intuitively, this approximation ignores the synchroni-
sation behaviour of guards.

p � x ��� x 
 f � x ������� a � x �
q � y �	� y 
 f � y ������� b � y �
r � z �	� p � z � � q � z �

(P3)

The interpretation of the analysis result needs more care now due to the possibility
that a guarded clause blocks. For instance, if r � z � is called on a free variable z, then
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the clauses of p and q both block forever: the constraint store will not accumulate
any information on z and hence will never entail z 
 f � z or its negation. In general, we
cannot statically exclude this possibility, and hence we obtain a weaker correctness
result for CC or CLP: from the fact that the analysis entails r � /0 we deduce that every
application of r is finitely failed or blocks forever.

1.3.4.3. Oz: Higher-order Concurrent Constraint Programming

OPM extends CC to a higher-order programming language: procedures are first-class
data structures that can be passed as arguments to a procedure and returned as a result.
For example, consider the following statement:3

� ������� x � y � z � � �����	� z � u � u 
 tag� y � � (P4)

This program binds x to a binary procedure with formal arguments y and z. Applica-
tion of this procedure returns a unary procedure in the second argument. This second
procedure asserts that its unique argument u is a feature tree with feature tag leading
to the first argument y of the procedure x. We analyse P4 as follows.4

ϕP4
� x � ������� � arg1:y � arg2:z � � z � ������� � arg1:u � � u 
 tag � y

An application of the procedure x to two variables v and w, followed by an application
of w to x will lead to a failure due to the assertion that the procedure x has a feature
tag:

P4
� �

x � v � w � � � w � x � 
�� � ������� x � y � z � ����� � � � x 
 tag � v � � �����
We analyse this statement as follows.

ϕP4 � ������� � x � � x 
 arg1 � x1 � x 
 arg2 � x2 � v � x1 � w � x2 �
������� � w � � w 
 arg1 � w1 � x � w1

This constraint entails that x � /0 (because there exists no feature tree that has exactly
the features arg1 and arg2 but at the same time the feature tag). We conclude that the
statement P4

� �
x � v � w � � � w � x � will inevitably fail and reject it.

Our analysis is weak with respect to the analysis of higher-order procedures as the
following example illustrates. The procedure

� ������� x � y � z � � y z � � (P5)

3We discuss our analysis for CLP and CC based on a Prolog-style clausal syntax of programs. For
OPM we switch to a Scheme-style syntax that is more convenient to deal with higher-order program-
ming. Embedding CC programs into OPM is straightforward.

4The term notation is used for conciseness here, as an abbreviation for a set constraint over feature
trees. For example, x 
���������� arg1:y � arg2:z � abbreviates the constraint x 
 x �����������! x ��"�� x �$# arg1% y �
x �&# arg2% z � x �&' arg1 � arg2 ( for a fresh variable x � . For the formal definition of this notation see Chapter 2.
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that applies its first argument y to its second argument z is analysed by the constraint

x � ������� � arg1:y � arg2:z � � y 
 arg1 � y 
 � �����	� � y � � y � arg1 	�� z � y 


which reveals that y must be a unary procedure (expressed by the constraint y � arg1 	 ).
Now assuming a binary procedure inc on integers whose analysis is

ϕinc
� inc � ������� � arg1: � � � � arg2: � � � � �

and consider the following statement:

P5
� � � x inc v � (P6)

Our analysis of this program in conjunction with ϕinc will not entail v ��� � � , and so
not find out that v must be an integer: the relationship between the formal arguments y
and z, and hence between the actual ones inc and v, is lost here. The reason is that
we only propagate information from the formal arguments to the actual arguments
of procedures, and not vice versa. In principle, this order could be inverted for in-
put arguments. However, the mode (i. e., input or output) of procedural arguments is
not syntactically apparent in constraint programs, much in contrast to functional lan-
guages: unification and constraint solving allow for data flow in both directions, and
all procedural arguments can, in principle, be input, output, or both. A static mode
analysis, however, seems to requires a full-fledged control-flow analysis for Oz [191],
which is out of scope of this thesis.

On the other hand, the accuracy of the analysis can be easily improved by annotating
procedures with type information. Such annotations can be fit nicely in the constraint
framework, when modelled as prescriptive constraints that a program must satisfy
in addition to the constraints derived by descriptive means. For example, the con-
straint ϕinc above can originate from the analysis of another statement as well as from
an explicit type annotation on inc.

Our analysis for OPM is a reasonable extension of our analysis for CC. The correctness
problem for this analysis, however, is harder than in the first-order case due to the
lack of a denotational semantics for OPM. We leave the correctness problem open;
instead, we illustrate our method with examples and provide style conventions that
summarise the intuitions underlying it. The analysis for Oz has been implemented in
an experimental prototype with an incomplete constraint solver. The feasibility of the
analysis in a development system remains to be explored.

1.4. Strong Static Typing for Oz

Complementary to set-based failure diagnosis, we investigate the possibility of design-
ing an OPM-style language that has a static type system similar to functional languages
like ML or Haskell [130, 162].
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1.4.1. Static versus Dynamic Typing

A type is a set of data objects with a common structure that allow the same set of
operations. Typical types are the set of all integers, and the set of all records that
have a field named address. The attempt to apply an operation to a data structure
of inappropriate type (such as the attempt to multiply a record by 2 or to select the
field address from the integer 42) is called a type error. A programming language
is called type safe if it is checked whether or not the primitive operations are applied
to arguments of proper types, and if their behaviour is well-defined even if the types
are not the expected ones: Thus type errors are detected at least at run-time. Many
modern programming languages are type safe in this sense. In unsafe languages, such
as assembly languages or C [112], programs may behave randomly after a type error.

A programming language is commonly called statically or dynamically typed depend-
ing on whether (most of) the type checking is done at compile time or at run time.
A language is called strongly typed if all type checking is done at compile-time so
that the run-time system can safely ignore types.5 Typical examples for statically
typed and type safe languages are the functional languages SML and Haskell, the con-
current language Pict, the imperative language Modula-3, and the object-oriented lan-
guage Java [35, 78, 130, 162, 169]. Amongst the dynamically typed languages there are
the logic programming language Prolog, the functional language Scheme, the object-
oriented language Smalltalk, and the concurrent languages Erlang and Oz [17, 48, 77,
195, 200].

Strong typing is usually formalised in two steps. First, one determines the run-time
situations that one wants to exclude as type errors. Second, one defines a type system
consisting of a language of type expressions and a set of typing rules. Type expressions
describe run-time invariants of a program such as “the identifier x always refers to an
integer”. At compile-time, every relevant program phrase (identifiers, terms, expres-
sions, statements, etc.) is assigned a type, either automatically or according to explicit
program annotations. A type checker tries to verify the corresponding invariants using
the typing rules, and a successful proof guarantees the impossibility of type errors.

A disadvantage of strong typing is the additional level of complexity that a type system
adds to a language. One source of complexity is simply the formal language of type
expressions which must be mastered by programmers to provide type declarations and
to understand error messages. Automated type inference as in SML [55, 123] alleviates
this problem because it relieves the programmer from many type declarations. Of
course, the programmer must still understand the type language.

To date, type systems for expressive object-oriented programming languages are fairly
complicated and require many type declarations (see, e. g., [1] for recent references).
Another problem is the fact that it is impossible to define a type checker that terminates

5Since all strongly typed languages in this sense are statically typed, and many statically typed
languages are strongly typed, static and strong typing are often used synonymously.
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on all programs and accepts exactly those programs that will never exhibit a run-time
type error (the absence of run-time type errors is an undecidable problem). As a trade-
off, a strong type system enforces a decidable discipline that must reject many type
correct programs and hence restricts the expressiveness of programming language.

The case is dual for dynamically typed languages. Their main strength is the great flex-
ibility with which they support the encoding of high-level programming abstractions,
based on only a small set of simple primitives. This makes dynamically typed lan-
guages ideal as platforms for rapid prototyping and teaching of programming concepts
(see, for instance, the text books based on Scheme [2, 68]). On the other hand, tracing
down a programming error can be a lengthy undertaking and can make the absence of
compile-time type checking painfully apparent.

1.4.2. Types for Oz

As a dynamically typed language, Oz freely supports features that would complicate
strong typing. We focus on the combination of features that sets Oz apart from its rela-
tives, namely logic variables introduced by explicit declaration, first-class procedures,
constraints, and parallel composition. In contrast to constraint logic programming,
Oz has higher-order procedures and explicitly declared logic variables; in contrast
to functional programming, Oz has logic variables and constraints; and in contrast to
the π-calculus [129], communication and synchronisation in Oz is through shared logic
variables instead of message exchange over channels (see also Section 5.4.1).

It is straightforward to devise for Oz a monomorphic type system, which assigns ex-
actly one type to every identifier. It is also possible to adapt an ML-style polymorphic
type system [55, 123], which assigns type schemes to certain procedures. This requires
some more care but works if one follows Wright [217] for the interaction of polymor-
phism and logic variables (see Section 6.3.2). ML-polymorphism is too weak, how-
ever, to type check a number of programs that we found important in the programming
practice of Oz. For instance, polymorphic procedures (or objects with polymorphic
methods) cannot be placed in a cell, assigned to an object’s state variable, or sent along
a channel. This considerably restricts the flexibility of object-oriented programming
and the communication patterns in a concurrent or distributed language. Secondly,
ML-polymorphism cannot type check many convenient higher-order or object-oriented
programming abstractions (see, e. g., [101, 166]).6

Therefore, we consider a type system with universal higher-order polymorphic types
[76, 177]. We also assume a subtyping order on types: type systems with subtyping
allow operations defined on a type T to be applied to all objects whose type refines T

6This is not to say that no object-oriented programming at all is possible with ML-polymorphism.
O’Caml [175] is a language that supports object-oriented programming with ML-style polymorphic
types, but it requires all methods to have a monomorphic types. Also notice that Haskell’s type
classes [80] can express some form of inheritance.
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(“subtypes” of T ). Subtyping is, e. g., used to type check the assignment of an integer
value to a variable of type number (given that “integer” is a subtype of “number”). The
combination of higher-order polymorphic types with subtyping [32, 36] is especially
convenient in object-oriented programming. For instance, a procedure that receives an
object and sends it the message m should have a type that admits as argument every
object implementing the method m. Subtyping is a flexible way to achieve this.

As these examples indicate, one must statically know the data flow to make use of
polymorphism and subtyping (“assign subtypes to supertypes”, “use functions at sub-
type”, “specialise input arguments before application”). In (pure) functional languages
the data flow is given by the syntactic structure of the program. In constraint (logic)
programming and in Oz this is not the case. Unification and constraint solving have
a bidirectional nature, and procedural arguments can be input, output, or both. The
need to statically know the data flow in programs lead us to the definition of Plain, a
language with higher-order procedures, cells, records, and pattern matching (see Chap-
ter 6). The key change in which Plain differs from Oz is that the equality constraint on
variables is replaced by a (single) assignment statement

x : � y �
Execution of x : � y does not unify the current bindings of x and y but blocks until y
is bound to some data structure and then binds x to the same data structure, too. This
is a considerable restriction of Oz as a constraint programming language, in particular
with respect to feature tree constraints. But Plain still admits computation with partial
information; for example, through records with embedded logic variables.

��� ����� � � y � z � x : � � hd:y � tl:z 	 � � ����� �
Like in Oz, Plain’s procedures do not statically distinguish between input and output
arguments. So the type system must enforce a strict static mode discipline in presence
of higher-order polymorphism and subtyping. To this end, we adapt Pierce and San-
giorgi’s mode system for channels [165] to a language with logic variables. We do
not consider the type inference problem for Plain, which is very likely to be undecid-
able [214].

1.4.3. Failure Diagnosis versus Strong Typing

The two methods for program analysis, strong typing and set-based failure diagnosis,
are roughly dual to each other. Strong typing aims at proving that all operations in a
program are always type correct, and it accepts only programs for which this proof
succeeds. It is desirable to accept as many type correct programs as possible, but it
is absolutely necessary to not accept a single type incorrect program. Dually, failure
diagnosis aims at proving that some operation in a program is not type correct, and
it rejects such programs as erroneous. It is desirable to detect as many type errors as
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Figure 1.2.: Failure Diagnosis versus Strong Typing

possible, but ideally no type correct program is rejected. The extreme cases are given
by a strong type system that accepts no program at all, and a failure diagnosis system
that accepts all programs.

Figure 1.2 illustrates this point of view, and it also gives a pictorial summary of the
material presented in this thesis. The complete oval represents all programs in a given
programming language. Assuming a fixed notion of type errors, the fat line separates
the sets of programs that have a type error from those that do not. As mentioned
above, the set of type correct programs is undecidable so that some approximation is
fundamentally needed: strong typing approximates the set of type correct programs,
while failure diagnosis approximates the set of type incorrect programs.7

A strong type system accepts the more type correct programs the more expressive it
is: this dimension is indicated by the arrow superscripted “Various Type Systems”.
Higher expressiveness usually comes with more complicated type expressions and
typing rules and with more expensive type checking problem. Monomorphic type
systems (as known, e. g., from Pascal) are fairly inexpressive and often not satisfac-
tory in practice. More expressive type systems are obtained by adding different forms
of polymorphism, for instance parametric polymorphism as in ML [55, 123], subtype
polymorphism as studied in object-oriented programming languages [31], or mixed

7This duality does not, in general, withstand formal scrutiny. This is mainly due to the fact that
strong typing and failure diagnosis do not talk about the same class of type errors. First, the precise dual
of being provably free of type errors is possibly containing an error, whereas our failure diagnosis for
CC checks whether a program inevitably contains an error.
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forms [32, 36]. A major goal of research in this area is to find expressive type systems
with a decidable, hopefully efficiently decidable, type checking problem whose type
expressions remain intelligible to programmers.

Analogously, failure diagnosis detects the more type errors the more accurately it is
can describe the run time behaviour of programs. In set-based program analysis this
is the case the finer-grained and the more expressive the set description language is
chosen. The expressiveness of such a language depends on the choice of set opera-
tors provided (e. g., union, intersection, projection, complementation). Again, highly
expressive set description languages can become very complex and expensive to deal
with. For example, the satisfiability problem for standard set constraints including all
mentioned set operators is NEXPTIME-complete [10, 19, 40]. One major goal of re-
search in set-based analysis is to find constraint systems which are expressive but can
be efficiently solved. Preferably, some application-relevant problems like entailment
should be efficiently decidable, too.
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1. Introduction

1.5. Contributions

1.5.1. Summary

The underlying motivation of the research reported in this thesis is the question:

How can we provide some static type checking for the dynamically typed
language Oz or, more generally, for a concurrent constraint language with
higher-order procedures?

We tackle this question from the complementary points of view given by strong typing
and failure diagnosis. Our contributions to these two areas correspond roughly to the
two programming paradigms that are most closely related to Oz, namely the paradigms
of functional and logic programming. Notice that Oz actually subsumes both of them.

Strong typing for languages with higher-order procedures has been studied extensively
in the context of functional programming languages and is applied very successfully
there. So a natural rephrasing of the search for a strong type system for Oz is:

How can we adapt strong type systems developed for functional language
to a language based on logic variables?

The language Plain that we design in Chapter 6 answers this question for an expressive
type system with higher-order polymorphism and subtyping.

A main focus of the research in set-based analysis was on logic programming lan-
guages. Since the logic programming tradition has had a major impact on the develop-
ment of Oz and since (constraint) logic programming is an important sublanguage of
Oz, it is reasonable to ask:

How can we adapt set-based analysis techniques from logic programming
languages for a failure diagnosis of Oz?

There are several aspects to this question: � i � Which constraint system is appropriate
for an analysis of Oz? � ii � How does a (set-based) failure diagnosis look for first-order
fragments of Oz, and how can one generalise the diagnosis to a language with higher-
order procedures? � iii � What kind of correctness result is obtained and how can one
prove it?

As an answer to � i � , we propose a new constraint system over sets of possibly infinite
feature trees and analyse it in detail. This investigation constitutes a large part of
this thesis. Answering � ii � , we define an analysis for first-order concurrent constraint
programming, and we extend it to OPM. � iii � As a correctness result, we show that the
analysis for CLP detects finite failure, and that the analysis for CC detects finite failure
unless an application blocks forever.

16
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1.5.2. Technical Summary

In this section we summarise the technical contributions of the thesis.

1.5.2.1. Set Constraints over Feature Trees

We introduce a set constraint system FT � � ar ����� (read “FT-include”) with three dis-
tinguishing properties that distinguishes it from the set constraints that are usually
considered in the literature.

� Constraints are interpreted over sets of feature trees, instead of constructor trees
as usual. This makes our constraint system suitable for the analysis of records
in programming languages, and for the analysis of feature tree constraints in
constraint programming. The analysis of tuples as a special case of records
remains possible.

� Constraints are interpreted over sets of infinite trees, instead of finite ones as
usual. This is necessary for the analysis of infinite data structures as they are
common in constraint logic programming. It is also needed to establish a rela-
tion between the denotational and the operational semantics of constraint logic
programs with possibly non-terminating computations.

� Every constraint is satisfiable and has a greatest solution: This makes the con-
straint system appropriate for the analysis of concurrent programs that specify
infinite computations. Our constraint system shares this property with the co-
definite set constraints [44], which can be embedded into set constraints over
feature trees such that emptiness in the greatest solution is preserved.

We also consider a non-standard system, called FTne� � ar ����� and read “FT-include-
nonempty”, of constraints over non-empty sets of feature trees. Our motivation is
threefold:

� The investigation of constraints over non-empty sets is a conceptual contribu-
tion which credits the central role that emptiness plays in the solving of set con-
straints and in set-based program analysis.

� Constraints over non-empty sets can help to simplify technical arguments. We
consider both constraint solving and entailment first for fragments of FTne� � ar �����
and derive the related results for FT ��� ar ����� from them. Charatonik and Podelski
have proven decidability for set constraints with intersection by detour through
set constraints over non-empty sets [42].

� By the exclusion of the empty set, we establish a close relationship between
constraints over trees and constraints over non-empty sets of trees. In particular,
the first-order theories of equality constraints over both domains coincide.
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1.5.2.2. Solving Set Constraints

We consider fragments of the system FT � � ar � � � with restricted constraint languages,
denoted by FT � � ar � , FT � � � � , and FT � , and we provide algorithms and complexity
results for these as well as for the corresponding fragments of FTne� � ar ����� .

� We investigate incremental constraint solving which is important for modular
program analysis.

� We show that the satisfiability problem for FTne� � ar � (no union constraints) can
be solved in incremental cubic time and provide an appropriate algorithm. By
extension of the satisfiability test for FTne� we obtain an incremental algorithm
to compute the greatest solution of an FT � � ar � constraint and to decide empti-
ness. The algorithm is shown to have polynomial complexity of degree 4. We
observe that the satisfiability problem for FTne� � ar � � � and the emptiness prob-
lem for FT � � ar ����� are DEXPTIME-hard, and we conjecture that a DEXPTIME
algorithm can be derived from the literature.

� We give an incremental algorithm that solves the satisfiability problem for pos-
itive and negative FTne� constraints (neither union nor arity constraints) in cubic
time; this implies that also the entailment problem is solvable in cubic time. The
proof relies on the independence property of this constraint system which we
show. We apply the result for FTne� to prove that the entailment problem for FT �
can be solved by an incremental algorithm in time O � n4 � .

� We show that the entailment problem of set constraints over feature trees be-
comes coNP-hard when arity constraints are added, and that it becomes even
PSPACE-hard when existential quantifiers are added. Both hardness results
carry over to FT � � ar � : the entailment problem for FT � � ar � is coNP-hard, and
the entailment problem for FT � with existential quantifiers is PSPACE-hard.

All results hold independent of whether the constraints are interpreted over finite or
infinite trees.

1.5.2.3. Set-based Failure Diagnosis for Oz

We present a method for automated set-based failure diagnosis for concurrent con-
straint programs over feature trees (i. e., records) in terms of set constraints over feature
trees.

� To date, set-based analysis for constraint (logic) programs has focussed on the
least-model semantics of terminating programs. Since we are interested in pos-
sibly non-terminating computations, we consider the greatest model semantics.
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We show that our analysis safely approximates the greatest model of constraint
logic and concurrent constraint programs.

� We relate the greatest model semantics of constraint logic programs over infinite
trees to finite failure. We conclude that our analysis safely approximates the
inevitability of failure for constraint logic programs, and that it approximates the
inevitability of failure for concurrent constraint programs unless an application
blocks forever.

� We also discuss generalisation of our correctness result to larger fragments of
Oz. For a large part of Oz we present a set-based analysis in terms of set con-
straints over feature trees and we give examples to illustrate its appropriateness.

1.5.2.4. Strong Typing for Logic Variables

We define a sublanguage of Oz called Plain to which standard strong type systems
known from functional programming can be applied.

� We give a strong type system with record subtyping, universal higher-order poly-
morphism, and mode polymorphism, and we prove a type preservation and a
type safety result.

� Plain pinpoints some aspects in the definition of OPM which complicate strong
typing, and it marks a starting point from which strongly typed OPM-style lan-
guages can be developed.

� Plain’s expressiveness is comparable to that of Pict, a recent concurrent language
based on the π-calculus. Thereby, Plain contributes to relating two prominent
concurrent programming models: concurrent constraints and process calculi.
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1. Introduction

1.6. Publication Remarks

Several of the results presented in this thesis have been obtained in collaboration
with my colleagues Joachim Niehren, Witold Charatonik, Andreas Podelski, and Gert
Smolka, or are influenced by this collaboration. Some of them have partly been pub-
lished before. This section lists the relevant papers and reports. I would like to thank
my co-authors for the permission to use part of the material therein.

Some of our results for set constraints over feature trees have been developed for or-
dering constraints over feature trees. We adapt them to a set constraint system that is
more flexibly applied to program analysis.

1. MÜLLER, MARTIN, JOACHIM NIEHREN, & ANDREAS PODELSKI (1997). Or-
dering constraints over feature trees. In Proceedings of the 3rd International
Conference on Principles and Practice of Constraint Programming (CP’97),
edited by G. Smolka, vol. 1330 of Lecture Notes in Computer Science, pp. 297–
311, Schloß Hagenberg, Linz, Austria. Springer-Verlag, Berlin.

This paper defines and investigates the constraint system FT � (read “FT-sub”) of or-
dering constraints over feature trees and presents algorithms for deciding satisfiability
and entailment in cubic time. The corresponding results for FTne� � ar � and FTne� (Theo-
rems 3 and 12 on Pages 34 and 54) have been adapted from this paper.

2. MÜLLER, MARTIN, JOACHIM NIEHREN, & ANDREAS PODELSKI (1997). In-
clusion constraints over non-empty sets of trees. In Theory and Practice of
Software Development (TAPSOFT’97), edited by M. Bidoit & M. Dauchet,
vol. 1214 of Lecture Notes in Computer Science, pp. 345–356, Lille, France.
Springer-Verlag, Berlin.

This paper defines and investigates the constraint system Ines of inclusion constraints
over non-empty sets of constructor trees. It was the first to investigate set constraints
over non-empty sets. It also contains the observation that the first-order theories of
equality constraints over infinite constructor trees and over non-empty sets of infinite
constructor trees coincide (corresponding to Theorem 23 on Page 87). The satisfiabil-
ity test for FT � was inspired by the one for Ines. In particular, the detailed complexity
analysis of the satisfiability test for FTne� � ar � is adapted from there (see Section 2.2.3
on Page 39).

3. MÜLLER, MARTIN & JOACHIM NIEHREN (1997). Entailment for set con-
straints is not feasible. Tech. rep., Programming Systems Lab, Universit ät des
Saarlandes.
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This report proves that entailment for Ines constraints (as well as for atomic set con-
straints [85]) is coNP-hard. The coNP-hardness result on entailment for FTne� � ar �
(Theorem 16 on Page 62) has its origins here.

4. MÜLLER, MARTIN & JOACHIM NIEHREN (1998). Ordering constraints over
feature trees expressed in second-order monadic logic. In International Confer-
ence on Rewriting Techniques and Applications (RTA’98), edited by T. Nipkow,
vol. 1379 of Lecture Notes in Computer Science, pp. 196–210, Tsukuba, Japan.
Springer-Verlag, Berlin.

5. MÜLLER, MARTIN, JOACHIM NIEHREN, & RALF TREINEN (1998). The first-
order theory of ordering constraints over feature trees. In Proceedings of the
13th IEEE Symposium on Logic in Computer Science (LICS’98) . IEEE Com-
puter Society Press. To appear.

Both papers investigate, amongst other issues, the entailment problem with existential
quantifiers for the constraint system FT � . Paper (5) show this problem to be coNP-
hard in the case of finite trees and PSPACE-hard in case of infinite trees. The paper (4)
shows that the hardness proof of paper (5) can be transformed such that it applies to
both the case of finite and infinite trees. The PSPACE-hardness results for FTne� and
FT � with existential quantifiers (Theorem 20 on Page 74) have been adapted from
there.

6. PODELSKI, ANDREAS, WITOLD CHARATONIK, & MARTIN MÜLLER (1998).
Set-based error diagnosis of concurrent constraint programs. Tech. rep., Pro-
gramming Systems Lab, Universit ät des Saarlandes.

This paper gives an analysis for concurrent constraint programs over infinite construc-
tor trees and shows that the analysis safely approximates the greatest model of the
program. It observes that finite failure can be characterised by the greatest model
semantics and so proves that the analysis correctly approximates a run-time error in
concurrent constraint programs. To a large extent, Chapter 4 is based on this paper.

7. MÜLLER, MARTIN (1996). Polymorphic types for concurrent constraints.
Tech. rep., Programming Systems Lab, Universit ät des Saarlandes.

8. MÜLLER, MARTIN, JOACHIM NIEHREN, & GERT SMOLKA (1998). Typed
concurrent programming with logic variables. Tech. rep., Programming Sys-
tems Lab, Universit ät des Saarlandes.

The second report defines the language Plain along with a type system with higher-
order polymorphic types, modes and subtypes, and is the basis for Chapter 6. A main
insight underlying Plain is the fact that a type system with higher-order polymorphism
and subtyping only works in presence of static data flow information; this insight was
formulated earlier in the first report.
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1.7. Overview

In Chapter 2 we introduce feature tree constraints to model records in constraint pro-
gramming, and we define set constraints over feature trees. We also investigate the
satisfiability and the emptiness problem for fragments of this system. In Chapter 3
we consider the entailment problem in addition. Chapter 4 defines a set-based failure
diagnosis for constraint logic programming and concurrent constraint programming
in terms of set constraints over feature trees. Chapter 5 generalises the failure di-
agnosis to higher-order procedures, and hence to OPM. Chapter 6 complements the
work on set-based failure diagnosis by designing an Oz-style language with higher-
order procedures and logic variables with a static type system. Chapter 7 assesses
the achievements of this thesis and outlines some directions of future research. Ap-
pendix A introduces some basic mathematical concept and notation.

We imagine three paths through this thesis. The reader interested in set constraints and
their formal properties should read Chapters 2 and 3. The reader interested in set-based
program analysis should read the definitional parts of Chapter 2, and then proceed to
Chapters 4 and 5. The reader interested in typed concurrency with logic variables can
read Chapter 6 independently. To understand the comparison of Plain with OPM, the
reader may want to read the introduction to OPM in Chapter 5. All paths may end in
Chapter 7 on future work.
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2.3. Dropping the Non-emptiness Restriction . . . . . . . . . . 43

Feature trees [16, 20, 21, 197] are a kind of trees which is appropropriate for the de-
scription of record-like structures. The picture below shows two typical feature trees.

wine

red 1998

colour year
cons

fst snd

1 2

A feature tree is a possibly infinite tree with unordered marked edges and with marked
nodes. Edge labels (called features) are functional in that the edges departing from the
same node must be pairwise distinct. The node marks are called labels. The feature
trees above mention the features colour, year, 1, and 2, and the labels wine, red, 1998,
cons, fst, and snd. Feature trees are more general than constructor trees: by using as
features consecutive positive natural numbers starting from 1, constructor trees can be
modelled as feature trees (see the second tree above). Feature trees may be infinite.
Some of them, the rational feature trees can be represented by finite cyclic directed
graphs The graph on the left hand side below describes a feature tree that models the
infinite list 
 1 � 2 � 1 � 2 ������� � , while the graph on the right hand side represents the type of
integer lists, � � � � � int � � nil � cons � int � � � � � � int � � :

cons

1 cons

2

�

nil cons

int

1 2

1

2
1 2

1

2

In the concurrent constraint language Oz, records are modelled as feature trees and
incorporated through the system CFT of feature constraints [197, 210]. Feature con-
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straints are a predicate logic formalism for the description of objects by the values of
their attributes. Feature description languages and feature logics of various kinds have
a long tradition in natural language processing [109, 179, 190, 193]. Their use for the
integration of records in constraint languages is more recent [14, 15, 197].
In this chapter we present a new set constraint system that is appropriate for the ana-
lysis of records and, more specifically, for the analysis of constraint programs over
feature trees; hence set constraints over feature trees. The constraint system consists
of labelling, selection, arity, union, and inclusion constraints.
Traditionally, set constraints have been considered over the domain of finite construc-
tor trees.
Our main motivation to consider feature trees is the analysis of feature tree constraints
in Oz. In CFT, the selection constraint x 
 f � y plays a central role. It asserts that x
denotes some feature tree with a feature f leading to the denotation of y, without
mentioning the label at the root of x; to assert the label at the root of x, there is a
labelling constraint a � x � . Our system of set constraints over feature trees has a similar
selection constraint x 
 f � y stating that x denotes a set of feature trees with feature f and
that y denotes the projection of x at f . In standard set constraint [85], the most closely
related projection constraint x � a � 1�

f � � y � denotes projection both at the feature f and
the tree constructor a. Therefore, the projection constraint is not appropriate for the
analysis of feature selection constraints.
Our interest in infinite trees is also motivated by the program analysis for Oz: since
Oz provides for infinite data structures, we must be able to handle sets of infinite
feature trees. Secondly, infinite trees are needed to give meaning to non-terminating
computations.
Finally, the separation of constraints on labels and features adds flexibility to set-based
analysis. For instance, one can integrate analyses along different dimensions by plac-
ing different bits of information under different associated features. The flexibility
of selection constraints was also found convenient by Flanagan and Felleisen for an
analysis of Scheme [64, 65].
Every set constraint over feature trees is satisfiable and has a greatest solution. The
latter property is crucial for the analysis of non-terminating programs as we shall see
in Chapter 4. Our system shares this property with its closest relative amongst the set
constraint systems, the system of co-definite set constraints [44]. Set constraints over
feature trees can be viewed as a refinement of co-definite set constraints, in analogy
to the fact that CFT refines the constraint system RT [50] of equations over rational
constructor trees [197]. We show that co-definite set constraints can be embedded
into set constraints over feature trees such that the greatest solution is preserved, and
we conjecture that the embedding actually preserves validity for arbitrary first-order
formulas.
This and the following chapter investigate in detail the system of set constraints over
feature trees. We also consider a system of set constraints over the domain of non-
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2.1. Constraint Systems over Feature Trees

empty sets of feature trees, which has the same constraint language but comes with the
global restriction that every variable denotes a non-empty set. The technical motivation
for this is that it is sometimes simpler to solve constraints in two steps, where the
first step considers non-empty sets only and the second step adds the reasoning about
emptiness. We obtain some of our results for constraints over non-empty sets of feature
trees first, and then derive the corresponding result for the set constraint system which
admits the empty set. Also Charatonik and Podelski [42] have proven decidability for
set constraints with intersection by detour through set constraints over non-empty sets
of trees.

We give an O � n3 � algorithm to decide satisfiability for union-free constraints over
non-empty sets of feature trees. For the corresponding system which admits the empty
set, we derive an O � n4 � algorithm to compute the greatest solution and to decide the
emptiness problem, (that is, whether or not a variable denotes the empty set in the
greatest solution of a constraint). We consider union constraints only briefly and show
that the emptiness problem for the complete system of set constraints over feature trees
is DEXPTIME-hard.

Additional motivation to pay special attention to the empty set includes the follow-
ing. First, our application in program analysis suggests to treat the empty set as
an undesirable value: a variable that cannot adopt any value at run-time has the
“empty type” and is bogus. Second, the empty set can be the reason for efficiency
problems and the motivation for ad-hoc optimisations. For example, the implication
a � x � y � � a � x 
 � y 
 ��� x � x 
 � y � y 
�� x � /0 � y � /0 that is valid over sets of constructor
trees is sometimes replaced by a � x � y � � a � x 
 � y 
 � � x � x 
 � y � y 
 for efficiency reasons
(e. g., in [12], an analogous optimisation is used in a solver for a kind of set con-
straints). This simplification is unsound because it does not preserve satisfiability. It is
sound, however, when variables are interpreted over non-empty sets.

Finally, the domain of non-empty sets is related to the domain of trees. We exploit this
by adapting several techniques directly from the constraint system FT � of ordering
constraints over feature trees [141, 143, 145]. We also show that the first-order theories
of equality constraints is the same when interpreted over trees or non-empty sets of
trees.

The discussion of related work is postponed to Section 3.3 in the following chapter.

2.1. Constraint Systems over Feature Trees

2.1.1. Feature Trees

We assume a set V of variables ranged over by x � y � z, and a signature that defines a
set L of labels ranged over by a � b � c, and an infinite set F of features ranged over
by f � g � h. We base our definition of feature trees on the notion of paths. A path p is
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a finite sequence of labels. The empty path is denoted by ε and the concatenation of
paths p and p 
 as pp 
 ; we have εp � pε � p. Given paths p and q, p 
 is called a prefix
of p if p � p 
 p 
 
 for some path p 
 
 . Note that every non-empty tree domain contains
the empty path ε. A set P of paths is prefix-closed if, for all paths p and p 
 , pp 
�� P
implies p � P. A tree domain is a non-empty and prefix-closed set of paths.

A feature tree τ is a pair � D � S � consisting of a tree domain D and function S : D � L
from D into the labels L , called a labelling. Given a feature tree τ, we write Dτ for its
domain and Sτ for its labelling; hence τ � � Dτ � Sτ � . We identify the function Sτ with
the set of pairs � p � a � such that Sτ � p � � a. The set of features defined at the root of
a feature tree τ is called the arity of τ: ��� � τ � � Dτ

� F . For every feature tree τ with
p � Dτ we denote with τ � p the subtree of τ at path p. Formally:

τ � p �
def � � p 


�
pp 
 � Dτ 	 � � � p 
 � a � � � pp 
 � a � � Sτ 	 � if p � Dτ (2.1)

We call a feature tree τ finite if Dτ is finite, and infinite otherwise. A feature tree τ is
called rational if it has only finitely many subtrees and is finitely branching, i. e., if the
set � f

�
exists f : p f � Dτ 	 is finite for all p. The set of all feature trees is denoted

by F T where F and L remain implicit.

The set T of constructor trees can be defined along the same lines. We do not elaborate
on this definition but only remark that constructor trees are isomorphic to feature trees
whose features are the natural numbers IN and which conform to an arity function � :
L � IN; a feature tree τ is said to conform to � : L � IN if � n �

pn � Dτ 	 � � 1 ������� � n 	
whenever � p � a � � Sτ and � � a � � n. The corresponding embedding of constructor trees
into feature trees is denoted by 
 
�� � � .

2.1.2. Equality Constraints over Feature Trees (CFT)

We recall the definition of the feature constraint system CFT [197]. The abstract
syntax of CFT constraints is defined as follows:

η :: � x � y
�

a � x � �
x � f 	 �

x 
 f � y �
η1 � η2

CFT constraints η are conjunctions of so-called primitive constraints. We call x � y
an equality, a � x � a labelling, x 
 f � y a selection, and x � f 	 an arity constraint. The
constraint system CFT is defined by the constraints above and their interpretation in the
following structure. Its domain is F T , the equality symbol � is interpreted as equality
on F T , every label a [resp., every arity � f 	 ] is interpreted as a unary predicate a
[resp., � f 	 ], and every feature is interpreted as a binary predicate 
 f � such that the
following holds.

τ 
 f � τ 
 iff τ � f � τ 

a � τ � iff � ε � a � � Sτ

τ � f 	 iff ��� � τ � � � f 	
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2.1. Constraint Systems over Feature Trees

We identify this structure with its domain and write F T for both. The constraint sys-
tem FT is the subsystem of CFT that one obtains by dropping the arity constraint [16,
21]. The concept of an F T -valuation satisfying a constraint η (or, equivalently, being
a solution of η), written α

� �
F T η, is defined as usual. For instance, every solution of

the constraint below maps x to the feature tree on the right hand side.

� y � z

���
� wine � x � � x 
 colour � y � x 
 year � z �

x � wine � colour 	
�
red � y � � 1998 � z � � y � 	�� z � 	

����
�

wine

red 1998

colour year

We also use feature terms t as a generalisation of first-order terms [197]. Their syntax
is defined as follows, where we always assume that the features in a sequence f are
pairwise distinct.

t :: � x
�

a � f :t �
Occasionally, we write � as an abbreviation of x � x for an arbitrary variable x. We also
use equational constraints of the form x � t whose meaning is defined by an existential
formula 
 
 x � t � � as follows.


 
 x � a � f1:t1 ������� � fn:tn � � � � a � x � � x � f1 ������� � fn 	 �
n�

i 	 1

� yi x 
 fi � yi (2.2)


 
 x � a � f1:t1 ������� � fn:tn ����� � � � � a � x � �
n�

i 	 1

� yi x 
 fi � yi (2.3)

For a typical example consider


 
 x � cons � 1:y � 2:nil � � � � � y 
 � cons � x � � x � 1 � 2 	 � x 
 1 � y � x 
 2 � y 
 � nil � y 
 � � y 
 � 	 �
This constraint determines separately the label a of x, the arity � 1 � 2 	 , and the associ-
ated subtrees y and z. This separation of labelling, selection, and arity constraints in
CFT enable a more fine-grained description of trees than that possible with equational
constraints over infinite constructor trees [50]. When we use x � a � f :t � in the sequel,
we mean the corresponding CFT formula 
 
 x � a � f :t � � � unless otherwise stated.

2.1.3. Set Constraints over Feature Trees (FT 
�� ar 
���� )
We write P � F T � for the powerset of the domain F T of feature trees. Elements of
P � F T � are denoted by σ. For every set σ of feature trees such that p � Dτ for all τ � σ
we define σ � p as the set of subtrees τ � p of trees τ in σ. Formally:

σ � p �
def � τ � p �

τ � σ 	 if � τ � σ : p � Dτ � (2.4)
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2. Set Constraints over Feature Trees

The class of constraints over sets of feature trees is defined by this abstract syntax.

ϕ :: � x � x1 � ����� � xn
�

x 
 f � x 
 �
a � x � �

x � f 	 �
ϕ1 � ϕ2

These constraints are defined like CFT constraints extended by inclusion constraints of
the form x � x1 � ����� � xn. (Equations x � y can, of course, still be expressed by x � y � y �
x.)x As in CFT, we call the primitive constraints x 
 f � x 
 , a � x � , and x � f 	 selection,
labelling, and arity constraints. The primitive constraint x � x1 � ����� � xn is called an
inclusion. Given a constraint ϕ, we write V � ϕ � , L � ϕ � , and F � ϕ � for the variables,
labels, and features occurring in ϕ. The size of a constraint ϕ is defined as the number
of symbols, i. e., variables, labels, and features occurring in ϕ.

The constraint system FT ��� ar ����� is defined by the constraint language above and
their interpretation in the first-order structure which lifts the interpretation of labels,
arities, and features from F T to P � F T � . Its domain is P � F T � , the inclusion and
union symbols � and � are interpreted by set inclusion and set union, every label a
[every arity � f 	 ] is interpreted as a unary predicate a [resp. � f 	 ], and every feature is
interpreted as a binary predicate 
 f � such that

σ 
 f � σ 
 iff σ � f defined and σ 
 � � τ 
 � � τ � σ : τ 
 f � τ 
 	
a � σ � iff � τ � σ : a � τ �
σ � f 	 iff � τ � σ : τ � f 	

Again, we identify the structure of FT ��� ar ����� with its domain P � F T � .8
The name FT � � ar ����� reflects the collection of set operators in addition to labelling
and selection constraints. By restricting the constraint language, we obtain less ex-
pressive subsystems. For example, FT � � ar � is the restriction of FT � � ar ����� that does
not contain union constraints, and FT � contains neither union nor arity constraints.
So FT � � ar � corresponds to CFT just as FT � corresponds to FT. The definition of a
P � F T � -valuation α being a solution of ϕ, written α

� �
P

�
F T � ϕ, is the usual one.

We use the equality constraint x � y as an abbreviation for x � y � y � x. Sometimes
we admit � as a primitive constraint for falsity, since we cannot express it (Proposi-
tion 2.1). We also use inclusion constraints like x � t which mention a feature term t and
whose meaning is defined by the following existential formulas over set constraints.


 
 x � a � f :t � � � � x � f 	 � a � x � �
n�

i 	 1

� yi � x 
 fi � yi � 
 
 yi � ti � � � (2.5)


 
 x � a � f :t ����� � � � � a � x � �
n�

i 	 1

� yi � x 
 fi � yi � 
 
 yi � ti � � � (2.6)

8Most specific for our system is the interpretation of feature selection, in particular in contrast to the
standard projection constraint x 
 a � 1�

k � � y � considered in the literature. For motivation and illustration of
the semantics of σ # f % σ � compare Proposition 2.5 below, and Section 3.3.1.2.
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2.1. Constraint Systems over Feature Trees

2.1.4. Constraints over Non-empty Sets of Feature Trees
(FTne
 � ar 
���� )

We call FTne� � ar ����� the constraint system that we obtain when we restrict the interpre-
tation domain of FT ��� ar ����� constraints to P � � F T � , the domain of non-empty sets
of feature trees. We read FTne� � ar ����� as “FT-include-nonempty”. Again we identify
the structure of FTne� � ar ����� with the system FTne� � ar ����� itself. In analogy to the nota-
tion used above we write FTne� � ar � and FTne� for the subsystems of FTne� � ar ����� without
union constraints, and without union and arity constraints.9

2.1.5. Basic Properties

We mention a number of basic properties of the constraint systems FT � � ar ����� and
FTne� � ar � . Constraint solving will be considered in the following chapter.

Proposition 2.1 (Least Solution)
Every FT � � ar � � � constraint is satisfiable. The valuation which maps all variables to
the empty set is a solution of every FT � � ar ����� constraint.

Proof. A simple check of all primitive constraints. �

Notice that in contrast to FT ��� ar ����� constraints a satisfiable FTne� � ar � constraint need
not have a least solution: all singleton sets are minimal but incomparable elements
with respect to set inclusion.

Proposition 2.2 (Solutions are Closed under Unions)
The set of solutions of any FT � � ar ����� or FTne� � ar ����� constraint is closed under point-
wise union (possibly infinite).

Proof. Given an FT � � ar ����� or FTne� � ar � � � constraint ϕ and a set S of solutions of ϕ,
one easily checks that the pointwise union of the elements of S satisfies all primitive
constraints in ϕ. �

In contrast, neither FT � � ar � � � nor FTne� � ar ����� constraints are closed under inter-
section. For instance, the constraint x � y � z has the solutions α and α 
 with
α � x � � α � y � � � a 	 � α � z � � � b 	 � and α 
 � y � � � b 	 � α 
 � x � � α 
 � z � � � a 	 , whose inter-
section is not a solution since it assigns /0 to y and z but � a 	 to x.

The next property is crucial for our set-based analysis as described in Chapters 4 and 5.

9In [142] we have anticipated the system FTne� and suggested that it should be called Ines(F T ); we
do not follow this suggestion here, to point out the different constraint languages of FTne� and Ines, and
to stress the relationship to FT � � ar ��� � . Notice, however, that we only consider the union-free fragments
of FTne� � ar ��� � in this thesis.

29



2. Set Constraints over Feature Trees

Proposition 2.3 (Greatest Solution)
Every FT � � ar ����� or FTne� � ar ����� constraint has a greatest solution.

Proof. Since, by Proposition 2.1, every FT � � ar � � � or FTne� � ar � constraint ϕ is sat-
isfiable, the set Sol � ϕ � of solutions of ϕ is non-empty. So the pointwise union of all
solutions in Sol � ϕ � is a well-defined set-valuation and, by Proposition 2.2, a solution
of ϕ. �

There is a close relationship between emptiness in the greatest solution and satisfiabil-
ity over non-empty sets of feature trees. For any ϕ, denote with gsol � ϕ � the greatest
solution of ϕ over P � F T � .
Proposition 2.4 (Greatest Solution and Empty Sets)
For all FT � � ar ����� constraints ϕ: The greatest solution of ϕ maps some variable to the
empty set ( � x � V : gsol � ϕ � � x � � /0) if and only if ϕ is non-satisfiable over P � � F T � .
Proof. If, for some x, gsol � ϕ � � x � � /0, then x denotes the empty set in all P � F T � -
solutions of ϕ. Hence ϕ is non-satisfiable over P ��� ϕ � . Vice versa, if gsol � ϕ � � x � �� /0
for all x, then gsol � ϕ � � x � �� /0 is also a P � � F T � -solution of ϕ. �

Another interesting relationship between CFT constraints and FTne� � ar � constraints is
the following one. It states that, with respect to a collection of CFT constraints, the
satisfiability of a sequence of equality constraints can be characterised by the satisfia-
bility of a sequence of inclusion constraints. (In this statement, we identify every CFT
constraint with a set constraint over feature trees by replacing x � y with x � y � y � x.)

Proposition 2.5
Let η1 ������� � ηn be satisfiable and variable-disjoint CFT constraints not containing the
variable y. If the constraint � n

i 	 1 � ηi � y � xi � is satisfiable over P � � F T � , then the
constraint � n

i 	 1 ηi � � n � 1
i 	 1 xi

� xi � 1 is satisfiable over F T .

Proof. One uses the greatest solution of the set constraint � n
i 	 1 � ηi � y � xi � (Defini-

tion 3 on Page 36) to construct a solution of � n
i 	 1 ηi � � n � 1

i 	 1 xi
� xi � 1. �

This proposition would not hold if the semantics of σ 
 f � σ 
 would not require σ � f to be
defined. For a counterexample see the analysis of Example Dfail3 on Page 94.

2.2. Solving Constraints over Non-empty Sets of
Feature Trees

In this section, we devise an incremental algorithm to decide satisfiability of FTne� � ar �
constraints x � y, x 
 f � y, a � x � , and x � f 	 in cubic time. In Section 2.3 we derive an
emptiness test for FT ��� ar � .
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2.2. Solving Constraints over Non-empty Sets of Feature Trees

Intuitively, a satisfiability test is incremental if the input constraint can be input piece-
wise without changing the complexity measure [105].10 Let a satisfiability test with
complexity O � f � n � � be given, assume a sequence of constraints ϕ0 � ϕ1 ������� � ϕk with
respective sizes n0 ������� � nk, and ask for every m � � 0 ������� � k 	 whether the conjunc-
tion � m

i 	 1 ϕi is satisfiable. The naive solution to this problem is to run the satis-
fiability test on all these conjunctions. This approach has worst-case complexity
O � Σk

m 	 0 f � Σm
i 	 0ni � � , or simpler O � k � f � n � � if n � Σk

i 	 1ni is size of the complete con-
junction and k is the length of the sequence. In contrast, an incremental algorithm can
build upon its work to check of � m

i 	 1 ϕi to decide � m � 1
i 	 1 ϕi more efficiently, such that

the total complexity of the problem does not exceed O � f � n � � .

2.2.1. Satisfiability

The main algorithmic problem to be solved is to guarantee termination in presence of
infinite trees.

Example 1 (Termination Problem)

Pick two distinct labels a
�� b and consider the constraint

x 
 f � x 
 � a � x 
 � � y 
 f � y 
 � b � y 
 � � z � x � z � y (2.7)

This constraint is non-satisfiable over non-empty sets: the denotation of z must be a
subset of the denotations of x and y and hence of their intersection. Since no feature
tree can be labelled with both a and b, the denotations of x and y must be disjoint and
hence z must denote the empty set. To detect the inconsistency in (2.7) we derive the
following constraints step by step:

z 
 f � z 
 (from z � x and x 
 f � x 
 where z 
 fresh)

z 
 � x 
 � z 
 � y 
 (from z 
 f � z 
 � x 
 f � x 
 and y 
 f � y 
 and z � x and z � y)

a � z 
 � � b � z 
 � (from z 
 � x 
 � a � x 
 � and z 
 � y 
 � b � y 
 � )
When we apply a similar argument to the constraint

y � x � x 
 f � x (2.8)

we run into a loop, as the reader can easily verify. The critical step of reasoning here
is the first one above which introduces the fresh variable z 
 .

10Incremental algorithms are synonymously called on-line, in contrast to off-line algorithms that re-
ceive their input at once.
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2. Set Constraints over Feature Trees

� Refl � x � x

� Trans � x � y � y � z � x � z

� Incl-Nondis � x � y � x
� �

y

� Symm-Nondis � x
� �

y � y
� �

x

� Quasi-Trans � x � y � x
� �

z � y
� �

z

� Desc-Incl � x 
 f � x 
 � x � y � y 
 f � y 
 � x 
 � y 


� Desc-Nondis � x 
 f � x 
 � x
� �

y � y 
 f � y 
 � x 
 � �
y 


� Clash-Sort � a � x � � x
� �

y � b � y � � � if a
�� b

� Clash-Arity-I � x 
 f � x 
 � x
� �

y � y � g 	 � � if f
�
� � g 	

� Clash-Arity-II � x � f 	 � x
� �

y � y � g 	 � � if � f 	 �� � g 	

Figure 2.1.: Satisfiability of FTne� � ar � Constraints

The reason for the inconsistency of (2.7) is the disjointness of two sets that are required
to have a non-empty intersection. In order to reason about this phenomenon in a termi-
nating manner, we introduce an additional primitive non-disjointness constraint x

� �
y.

We also consider � as a primitive constraint in this section.

ϕ :: � �
�

x
� �

y
�

x � x 

�

x 
 f � x 
 �
a � x � �

x � f 	 �
ϕ1 � ϕ2

The semantics of x
� �

y is defined as follows.

α
� �

P
�
F T � x

� �
y iff α � x � � α � y � �� /0

Notice that non-disjointness is not transitive. Both � and the non-disjointness con-
straint x

� �
y are expressible in FTne� , since

� � � x � a � x � � b � x � � if a
�� b

x
� �

y � � z � z � x � z � y �
are valid FTne� -equivalences. In FT � � ar � , neither of them holds; in particular, notice
that the formula � z � z � x � z � y � holds vacuously in FT � � ar � (pick the empty set as the
denotation of z) while its left does not hold in general.

Figure 2.1 contains axiom schemes which define an infinite set of axioms. Every axiom
is either a primitive constraint, or the implication between a constraint and a primitive
constraint of the form x � y or x

� �
y. These axioms describe the satisfiability problem
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2.2. Solving Constraints over Non-empty Sets of Feature Trees

of FTne� � ar � . In a subsequent step we shall interpret these axioms as rewriting rules to
yield a satisfiability check of FTne� � ar � constraints.

Proposition 2.6 (Soundness)
The structure P � � F T � is a model of the axioms in Figure 2.1.

Proof. By a routine check. For illustration, we prove the statement for rule
(Quasi-Trans). The implications below follow with x

� �
y � � z � z � x � z � y � and transi-

tivity of set inclusion.

x � y � x
� �

z � x � y � � v � v � x � v � z � � � v � v � y � v � z � � x
� �

z

We consider the remaining axioms informally. Axioms (Refl) and (Trans) hold since
set inclusion � is a partial order. Axiom (Incl-Nondis) states that inclusion implies
non-disjointness. This does not hold over the domain of arbitrary sets of feature trees
since the empty set is included in every set but also disjoint with every set. Non-
disjointness is symmetric (Symm-Nondis) since set intersection is commutative. Ax-
ioms (Desc-Incl) and (Desc-Nondis) state that set projection at a feature f is a homo-
morphism with respect to set inclusion and non-disjointness. The axiom (Clash-Sort)
states that labelling is a partial function. Axioms (Clash-Arity-I) and (Clash-Arity-II)
state that two sets with incompatible arity restrictions must be disjoint. �

Figure 2.1 induces a naive fixed point algorithm on sets of primitive constraints that
computes the closure of an input constraint ϕ under the given axioms. (Here, we
identify a constraint with the set of its primitive constraints.) In order for this fixed-
point to be finite we restrict applicability of the reflexivity axiom x � x to those variables
which actually occur in a given constraint; thus, no fresh variables are introduced.
Call this algorithm � . We call a step of this algorithm the addition of a new primitive
constraint to some given constraint according to one of the axioms. A constraint is
called � -closed if the algorithm � cannot proceed. The fixed-point of a constraint
under algorithm � is called its � -closure. If some axiom (A) does not apply to a set of
primitive constraints, it is called A-closed, or closed under (A).

For illustration on how the algorithm works we consider two examples.

Example 2 (Satisfiability Test)
Assume a

�� b. Reconsider the constraint x 
 f � x 
 � a � x 
 � � y 
 f � y 
 � b � y 
 � � z � x � z � y
(where a

�� b) from above (2.7). From this constraint, algorithm � derives z
� �

x by
� Incl-Nondis � , y

� �
x with � Quasi-Trans � , and eventually � via � Clash-Sort � . Now con-

sider another non-satisfiable constraint:

a � x � � x 
 f � x � z � x � z � y � y 
 f � y 
 � b � y 
 � (2.9)

In several steps as above, algorithm � derives from (2.9) the non-disjointness constraint
x

� �
y. Then it derives x

� �
y 
 via � Desc-Nondis � and � via � Clash-Sort � .
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2. Set Constraints over Feature Trees

Proposition 2.7 (Termination)

If ϕ is an FTne� � ar � constraint of size n, then algorithm � terminates after at most
2 � n2 � 1 steps.

Proof. If ϕ has size n, then it contains at most n variables. Since algorithm � does not
introduce fresh ones, it may add at most n2 constraints of each of the forms x

� �
y or

x � y and possibly � . �

Proposition 2.8 (Completeness)

Every � -closed FTne� � ar � constraint which does not contain � is satisfiable over
P � � F T � .

Proof. The proof is postponed to Section 2.2.2 beginning on Page 35. Its structure
is as follows. First, we define a syntactic notion of path consistency on constraints
(Definition 2) and show that every � -closed constraint not containing � is indeed path
consistent (Lemma 2.12). Second, we show that every path consistent constraint is
satisfiable (Lemma 2.11). �

Theorem 3 (Decidability and Complexity for Satisfiability of FTne� � ar � )
The satisfiability problem of FTne� � ar � constraints of size n is decidable and has incre-
mental time complexity O � n3 � and space complexity O � n2 � .

Proof. By Proposition 2.6, ϕ is equivalent to its � -closure. Hence ϕ is inconsistent if
the � -closure of ϕ contains � . Otherwise ϕ is satisfiable by Proposition 2.8. Since �
terminates for all input constraints by Proposition 2.7, � is an effective decision pro-
cedure. The complexity statement is detailed in Section 2.2.3 beginning on Page 39.
There, we use a table of quadratic size to show that we can implement every step
of algorithm � such that it takes time O � n � . This yields an overall time complexity
of O � n3 � . �

In the incremental case, this complexity statement relies on the assumption that appli-
cability of (Clash-Arity-II) can be checked in linear time. This is the case under one of
the following conditions. � i � No arity constraint ever occurs, � ii � the size of the arity
constraints is bounded, or � iii � the arity constraints list the features according to a fixed
order. Under any of these preconditions, the equality test for two arities � f 	 and � g 	 in
the side condition of rule (Clash-Arity-II) can be checked in at most linear time O � n � .
If none of these assumptions hold, the equality of � f 	 and � g 	 requires time n � logn
such that the time complexity of the satisfiability test rises to O � n3 � logn � .
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2.2. Solving Constraints over Non-empty Sets of Feature Trees

Finite Trees

The satisfiability test for FTne� � ar � can be adapted to the case of finite trees by extend-
ing the algorithm with the following occurs check axiom scheme:

� Occurs � x � xi � � n
i 	 1 � xi � yi � yi 
 fi � xi � 1 � � xn � 1 � x � � n � 1

We can implement this occurs check such that we stay in incremental time O � n3 �
and space O � n2 � . This can be done by means of reachability constraints of the form
x � � y which state that there exists n � 1, variable x1 ��������� xn � 1 and y1 ������� � yn, and
features f1 ��������� fn such that

x � xi � � n
i 	 1 � xi � yi � yi 
 fi � xi � 1 � � xn � 1 � y

holds. There are at most O � n2 � such constraints; so Theorem 3 carries over to the finite
tree case.

2.2.2. Completeness of the Satisfiability Test

In this section we complete the proof of Proposition 2.8. It relies on two syntactic
properties of FTne� � ar � constraints, called path reachability and path consistency that
we define first. For every � -closed constraint ϕ not containing � we then define a
mapping from variables into non-empty sets of feature trees (see Definition 3) and
show in Proposition 2.10 that this is the greatest solution of ϕ.

Throughout this section we use the notion “constraint” to mean “FTne� � ar � constraint”.

Definition 1 (Path Reachability)

For all paths p and constraints ϕ, we define a binary relation
ϕ� p between variables,

where x
ϕ� p y reads as “y is reachable from x over path p in ϕ”:

x
ϕ� ε y if x � y � ϕ

x
ϕ� f y if x 
 f � y � ϕ

x
ϕ� pq y if exists z such that x

ϕ� p z and z
ϕ� q y �

For all paths p and constraints ϕ, we define a binary relation
ϕ� p between variables

and labels a [finite sets of features � f 	 ] where x
ϕ� p a 
 x ϕ� p � f 	 � reads as ”a 
 � f 	 �

can be reached from x over path p in ϕ”:

x
ϕ� p a if x

ϕ� p y and a � y � � ϕ �
x

ϕ� p � f 	 if x
ϕ� p y and y � f 	 � ϕ
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2. Set Constraints over Feature Trees

Finally we derive, for all paths p, a unary relation x
ϕ� p which says that a variable “x

has path p in ϕ”:

x
ϕ� p if exists y such that x

ϕ� p y

x
ϕ� p f if exist y � g such that x

ϕ� p � g 	 and f � � g 	

Example 4 (Path Reachability)

Let ϕ be the constraint

x � y � x � f � g � h 	 � a � y � � x 
 f � u � x 
 g � z � z 
 f � x � b � z �
and observe that, among others, the following reachability relations hold for x:

x
ϕ� ε y � x

ϕ� g z � x
ϕ� g f x � x

ϕ� g f y �
x

ϕ� h � x
ϕ� g f � f � g � h 	

x
ϕ� ε a � x

ϕ� g b � x
ϕ� g f a

In the proof of Lemmas 2.11 and 2.12 we make implicit use of the following simple
property of path reachability.

Fact 1 If x
ϕ� f p y then there exists z such that x

ϕ� f z � z
ϕ� p y.

Definition 2 (Path Consistency)

We call a constraint ϕ path consistent if the following two conditions hold for all
x � y � V , a � b � L , g � F and p � F � .

1. If x
ϕ� p a, x

� �
y � ϕ, and y

ϕ� p b then a � b.

2. If x
ϕ� p f , x

� �
y � ϕ, and y

ϕ� p � g 	 , then f � � g 	 .

Definition 3 (Greatest Solution)

Assume a path consistent constraint ϕ closed under (Refl) and (Incl-Nondis), and de-
fine for all x � V

Dϕ
x
�

def � p
�

x
ϕ� p 	 Sϕ

x
�

def � � p � a � � x
ϕ� p a 	

Furthermore, for all x define a set gsol � ϕ � � x � of feature trees as follows:

gsol � ϕ � � x � � def

����
τ ������

1 � Dϕ
x � Dτ and Sϕ

x � Lτ

2 � � p : if x
ϕ� p � g 	 then ��� � τ � p � � � g 	

���
�
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2.2. Solving Constraints over Non-empty Sets of Feature Trees

Lemma 2.9 (gsol � ϕ � is well-defined)

If ϕ is a path consistent constraint ϕ which is closed under (Refl) and (Incl-Nondis),
then for all x � V , p � F � , a � b � L , f � F and g � P � F � it holds that

1. � p � a � � Sϕ
x and � p � b � � Sϕ

x imply a � b.

2. p f � Dϕ
x and x

ϕ� p � g 	 imply f � � g 	 .

Proof. Path reachability statements only hold for variables which actually occur in ϕ.
Hence, in both cases x � x � ϕ and x

� �
x � ϕ due to the asserted closure conditions

(Refl) and (Incl-Nondis). The claims now follow immediately from the definition of
path consistency. �

This lemma shows that, for all x � V , Sϕ
x is a partial labelling on Dϕ

x . Hence there
exists at least one feature tree extending it so that gsol � ϕ � � x � is a non-empty set of
feature trees.

Proposition 2.10 (Greatest Solution)

The valuation gsol � ϕ � is the greatest solution of every � -closed FTne� constraint ϕ not
containing � .

Proof. Follows from the combination of the Lemmas 2.11 and 2.12. �

Lemma 2.11 (Closedness and Path-Consistency Imply Satisfiability)

For every (Refl), (Trans), (Incl-Nondis), (Desc-Incl)-closed and path consistent con-
straint ϕ not containing � , gsol � ϕ � is the greatest solution.

Proof. Let ϕ be (Refl), (Trans), (Incl-Nondis), (Desc-Incl)-closed and path consistent.
By (Refl) and (Incl-Nondis)-closedness and path consistency, gsol � ϕ � is a variable
assignment into non-empty sets of feature trees, as Lemma 2.9 shows. We verify that
gsol � ϕ � satisfies all primitive constraints in ϕ. Maximality is obvious.

Case x � y � ϕ: For all y 
 , if y
ϕ� p y 
 then x

ϕ� p y 
 by the definition of path reachability.

Thus, Dgsol
�
ϕ � �

y � � Dgsol
�
ϕ � �

x � .11 Similarly, for all a 
 � g 	 � , if y
ϕ� p a 
 y ϕ� p � g 	 �

then x
ϕ� p a 
 x ϕ� p � g 	 � by the definition of path reachability. Thus, Lgsol

�
ϕ � �

y � �
Lgsol

�
ϕ � �

x � . In combination, we obtain that gsol � ϕ � � x � � gsol � ϕ � � y � .
Case x 
 f � y � ϕ: We prove the following two equivalences for all p, z, and b:

1. x
ϕ� f p z iff y

ϕ� p z

11For sake of clarity, we drop some of the superscripted ϕ’s in the proof.
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2. x
ϕ� f p a iff y

ϕ� p a

3. x
ϕ� f p � g 	 iff y

ϕ� p � g 	
The first property implies Dgsol

�
ϕ � �

y � � � p
�

f p � Dgsol
�
ϕ � �

x � 	 and the second one
is equivalent to Lgsol

�
ϕ � �

y � � � � p � b � � � f p � b � � Lgsol
�
ϕ � �

x � 	 .

1. If y
ϕ� p z then x

ϕ� f p z since x 
 f � y � ϕ. Suppose x
ϕ� f p z. By definition of

path reachability there exist x 
 and y 
 such that

x
ϕ� ε x 
 � x 
 
 f � y 
 � and y 
 ϕ� p z �

Reflexivity and transitivity, that is, (Refl)- and (Trans)-closedness of ϕ, and

x
ϕ� ε x 
 imply that x � x 
 � ϕ. (Desc-Incl)-closedness ensures y � y 
 � ϕ such

that y
ϕ� p z holds.

2. If x
ϕ� f p a then there exists z such that x

ϕ� f p z and a � z � . The first equiva-

lence implies y
ϕ� p z and thus y

ϕ� p a. The converse is simple.

3. Similar to the previous case.

Case a � x � � ϕ: Reflexivity, i. e., (Refl)-closedness of ϕ, implies that x � x � ϕ. Thus

x
ϕ� ε a such that � ε � a � � Lx.

Case x � f 	 � ϕ: If g � � f 	 , then x
ϕ� ε g by definition of path reachability, and hence

g � Dτ for all τ � gsol � ϕ � � x � . Conversely, if x � f 	 � ϕ then x
ϕ� ε � f 	 , such that

x
ϕ� ε g implies g � � f 	 by path consistency.

Case x
� �

y � ϕ: We have to show that the set Lx � Ly is partial function and that, for all

p, x
ϕ� p � f 	 and y

ϕ� p g imply g � � f 	 (and vice versa with x and y swapped).
For both, path consistency suffices.

Thus gsol � ϕ � is a solution of ϕ. �

Lemma 2.12 (Closedness Implies Path-Consistency)

A constraint is path consistent whenever it does not contain � and is closed un-
der (Incl-Nondis), (Symm-Nondis), (Quasi-Trans), (Desc-Nondis), and the three clash
rules (Clash-Sort), (Clash-Arity-I), and (Clash-Arity-II)

Proof. Let ϕ be a constraint not containing � , and assume that ϕ is closed under
the rules (Incl-Nondis), (Symm-Nondis), (Quasi-Trans), (Desc-Nondis), (Clash-Sort),
(Clash-Arity-I), and (Clash-Arity-II). The proof is by induction over paths p. Let x, y,
a � b, f , and g be arbitrary.
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Case x
ϕ� p a, x

� �
y � ϕ, and x

ϕ� p b:

If p � ε then there exist n � m � 0, x1 ������� � xn, y1 ������� � ym such that

x � x1 � ����� � xn � 1 � xn � a � xn � � ϕ and

y � y1 � ����� � ym � 1 � ym � b � ym � � ϕ

Rules (Incl-Nondis), (Symm-Nondis), and (Quasi-Trans)-closedness imply
that xn

� �
ym � ϕ; this can be shown by a simple induction over n and m.

Hence a � b since ϕ is closed under (Clash-Sort) but does not contain � .

If p � f q then there exists there exist x 
 , y 
 , x 
 
 , and y 
 
 such that:

x
ϕ� ε x 
 � x 
 
 f � x 
 
 � ϕ � x 
 
 ϕ� p a � and

y
ϕ� ε y 
 � y 
 
 f � y 
 
 � ϕ � y 
 
 ϕ� p b �

Since x
� �

y � ϕ we have x 
 � �
y 
 � ϕ by definition of path reachability and

(Incl-Nondis), (Symm-Nondis), and (Quasi-Trans)-closedness (see case
p � ε). (Desc-Nondis)-closedness thus implies x 
 
 � �

y 
 
 � ϕ such that a � b
follows by induction hypothesis.

Case x
ϕ� p � f 	 , x

� �
y � ϕ, and x

ϕ� p g: The proof is similar to the previous case, of
course using axioms (Clash-Arity-I/II) instead of (Clash-Sort). �

2.2.3. Incrementality and Complexity of the Satisfiability Test

We complete the proof of Theorem 3 by proving the following Proposition. Through-
out this section we use the notion “constraint” to mean “FTne� � ar � constraint”.

Proposition 2.13 (Complexity for Satisfiability of FTne� )

Algorithm � can be implemented in space O � n2 � and incremental time complexity
O � n3 � where n is the size of the input constraint, provided one of the following holds:

� No arity constraint ever occurs.

� The size of arity constraints is bounded.

� The arity constraints list the features according to a fixed order.

Otherwise, every step of algorithm � can be implemented such that it has incremental
time complexity O � n3 � logn � .
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2. Set Constraints over Feature Trees

We organise algorithm � as a rewriting on pairs of the form � P� S � where P and S are
called pool and store. Pool P and store S are data structures for primitive constraints
as described below. In what follows below, we confuse pools and stores with the
constraints they represent.

To start out, we fix an input constraint ϕ0 and consider the non-incremental case. The
incremental case is dealt with then.

2.2.3.1. The Non-incremental Case

Initially, the pool contains all primitive constraints contained in ϕ0 and the store is
empty. In order to decide satisfiability of ϕ, we start with the pair � ϕ � � � . A reduction
step � P� S � � � P 
 � S 
 � consists in picking a primitive constraint µ from P, and then
applying all rules of � to S and µ. Reduction terminates with an empty pool or the
detection of an inconsistency; that is with one of � � � S � or � P� S � where � � S. We
denote the reflexive transitive closure of � by � � .

Call a pair (P,S) locally closed if S is closed under one-step consequences with respect
to algorithm � . Reduction is smallest binary relation on pairs � P� S � closed under the
following rule:

� P� S � � � P � � µ 	 � S 
 � S � µ �
if S 
 contains all one-step consequences of S � µ under �
which S does not already contain.

Lemma 2.14 (Invariants of Reduction)

Reduction performs equivalence transformations and preserves local closure. That is,

1. If � P� S � � � P 
 � S 
 � and � P� S � is locally closed, then � P 
 � S 
 � is locally closed, too.

2. If � P� S � � � P 
 � S 
 � , then P � S and P 
 � S 
 are equivalent.

Proof. Straightforward using correctness of � . �

Corollary 5 (Correctness)

1. If � P� � � � � � � � S � , then S is � -closed and equivalent to P.

2. If � P� � � � � � P 
 � S � where � � S, then P is non-satisfiable.

Proof. Immediate from Lemma 2.14. �
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2.2. Solving Constraints over Non-empty Sets of Feature Trees

Data Structures

Now let us consider the data structures for pool and store more closely. Let nv, n f ,
and nl be the cardinalities of V � ϕ0 � , F � ϕ0 � , and L � ϕ0 � , respectively, and let n be the
size of ϕ0. The pool can be implemented such that selection and deletion, as well as
addition of arbitrary primitive constraints can be performed in constant time O � 1 � . We
assume the store to consist of the following components.

1. An array of size nv containing arity constraints x � f 	 (at most one per variable);

2. an array of size nv containing label constraints a � x � (at most one per variable);

3. a table of size nv � n f containing selection constraints x 
 f � y (at most one per vari-
able and feature);

4. a table of size n2
v containing ordering constraints x � y;

5. a table of size nv
2 containing non-disjointness constraints x

� �
y.

Access Operations

The store can be realised with tables and arrays of boolean values such as to provide
for the following operations.

1. Add a primitive constraint in time O � 1 � ,
2. given a variable x, test the presence of a label constraint a � x � and retrieve it in

time O � 1 � ;
3. given a variable x, test the presence of an arity constraint x � f 	 and retrieve it in

time O � 1 � ;
4. given a variable x and a feature f , test the presence of a selection constraint x 
 f � y

and retrieve it in O � 1 � ;
5. test the presence of an inclusion x � y or a non-disjointness constraint x

� �
y in

time O � 1 � ;
6. given a variable x, retrieve the set of all y such that x � y or y � x is in the store in

time O � nv � ;
7. given a variable x, retrieve the set of all y such that x

� �
y is in the store in

time O � nv � .
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2. Set Constraints over Feature Trees

Furthermore, for arbitrary symbols (features, labels, and variables) we can arrange for
on O � 1 � -test of whether it occurs in ϕ at all.

Every primitive constraint and store can have at most O � n � one-step consequences
with respect to � . For instance, consider axiom (Desc-Incl): if x 
 f � x 
 is fixed, then
(Desc-Incl) has at most O � nv � one-step consequences, and if x � y is fixed, then
(Desc-Incl) has at most O � n f � one-step consequences. In both cases there are O � n �
since nv � n f � n. As the reader may want to check, this implies that for all rules but
(Clash-Arity-II) the one-step consequences of some primitive constraint and a store
can be computed in time O � n � . Now consider rule (Clash-Arity-II). We can check
applicability of this rule in time O � n � if one of the following holds.

� If no arity constraint every occurs, i. e., if we consider satisfiability of FTne� con-
straints only, rule (Clash-Arity-II) never applies.

� If the size of arity constraints is bounded, then the test � f 	 �� � g 	 takes constant
time (in the size of the bound).

� If the arity constraints list the features according to a fixed order, then the test
� f 	 �� � g 	 takes time O � F � ϕ � � � O � n � .

If the size of the arity constraints is unbounded, and the features in the arity constraints
are not statically ordered, we must define an order dynamically and order the features
in � f 	 and � g 	 before we compare them. In this case, the test � f 	 �� � g 	 takes time
O � n f � logn f � n f � � O � n � logn � .
There are at most O � n f � n2

v � 2 � nv
2 � nl � nv � distinct primitive constraints. But since

algorithm � derives only primitive constraints of the form x � y and x
� �

y, there are
at most O � nv

2 � proper addition operations on the store. The pool is extended only
when some new primitive constraint is added to the store, hence O � nv

2 � times. In
each case, there are at most O � n � new consequences. Hence, the pool may grow up to
O � n3 � primitive constraints in the worst-case. However, for most of these (namely all
but O � n2 � ) one only needs to do the O � 1 � test to notice that they are already contained
in the store. Hence, the overall complexity is

O � 1 � n3 � n � n2 � � O � n3 � �

2.2.3.2. The Incremental Case

Now let us check that our analysis remains true for the incremental version of our
algorithm. In an incremental algorithm, the input constraint can be added piece-wise to
the pool. Note that our algorithm is already insensitive to the order in which primitive
constraints are picked from the pool. The additional complication is that the number
of symbols nv, n f , and nl in ϕ is not known statically. However, by replacing the
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static tables and arrays by dynamically extensible hash tables we can still guarantee
the complexity estimations on the access operations [60]. In the previous section, we
have assumed the input constraint ϕ0, and hence nv, n f , and nl fixed. The argument,
however, is valid for arbitrarily large nv, n f , and nl. Hence, running the described
algorithm on the conjunction of a sequence of constraints

ϕ0 � ϕ1 � ϕ2 � ����� � ϕm

can never cost more than O � n3 � where n is the overall size of � m
i 	 0 ϕi. So, the algorithm

has an incremental time complexity of O � n3 � .

2.3. Dropping the Non-emptiness Restriction

We extend our results from set constraints over non-empty sets of feature trees to the
full domain of possibly empty sets of feature trees. Essentially all results carry over,
with the notable exception that the satisfiability test now becomes an emptiness test.

The detour through the non-standard domain of non-empty sets is worthwhile. In this
section we shall see that the emptiness test for FT � � ar � is more complicated than the
satisfiability test for FTne� since it requires an explicit propagation of non-emptiness
information.12

2.3.1. Emptiness Test

Since every FT ��� ar � constraint is satisfiable, a satisfiability test for FT ��� ar � does not
make sense. Instead, we transform the satisfiability test for FTne� � ar � into an emptiness
test for the FT � � ar � . This is done in Figure 2.2 which uses a new ternary constraint of
the form x

� �
z y with the following semantics:

α
� �

P
�
F T � x

� �
z y iff α � x � � α � y � �� /0 � α � z � � /0

So, x
� �

z y is equivalent to the formula x
�

y � /0 � z � /0. Furthermore, x � /0 is used as an
abbreviation of a � x � � b � x � for arbitrarily fixed distinct a � b.

Notice in passing that the constraint x
� �

y is not equivalent to the formula
� z � z � x � z � y � over P � F T � since � z � z � x � z � y � is trivially true over possibly empty
sets. More strongly, x

� �
y is not expressible in FT � � ar � . To see this, notice that a

set is non-disjoint with itself exactly if it is non-empty. Hence x
� �

x is equivalent
to x

�� /0, whereas FT � � ar � constraint cannot express emptiness (otherwise, FT � � ar �
could also express the inconsistent constraint x

�� /0 � a � x � � b � x � , in contradiction to
Proposition 2.1 ).

12A similar observation holds for the polynomial result on entailment for FT � in Section 3.1 that we
obtain by detour through FTne� .
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� Refl � x � x

� Trans � x � y � y � z � x � z

� Symm-Nondis � x
� �

z y � y
� �

z x

� Incl-Nondis � x � y � x
� �

x y

� Quasi-Trans � x � x 
 � x
� �

z y � x 
 � �
z y

� Desc-Incl � x 
 f � x 
 � x � y � y 
 f � y 
 � x 
 � y 


� Desc-Nondis � x 
 f � x 
 � x
� �

z y � y 
 f � y 
 � x 
 � �
z y 


� Empty-Sort � a � x � � x
� �

z y � b � y � � z � /0 if a
�� b

� Empty-Arity-I � x 
 f � x 
 � x
� �

z y � y � g 	 � z � /0 if f
�
� � g 	

� Empty-Arity-II � x � f 	 � x
� �

z y � y � g 	 � z � /0 if � f 	 �� � g 	
� Empty-Prop-I � x � /0 � x 
 f � y � y � /0

� Empty-Prop-II � x � /0 � y 
 f � x � y � /0

� Empty-Prop-III � x � /0 � y � x � y � /0

� Empty-Prop-IV � x � /0 � x
� �

z y � z � /0

Figure 2.2.: Emptiness Test for FT ��� ar �
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2.3. Dropping the Non-emptiness Restriction

Now consider Figure 2.2 more closely. Axioms (Refl) through (Empty-Arity-II) are
obtained by straightforward adaptation from Figure 2.1. The most interesting axiom
is (Ines-Nondis) which now derives from an inclusion x � y the constraint x

� �
x y stating

that x is empty if x and y have an empty intersection. The clash axioms are modified to
infer emptiness now, and axioms (Empty-Prop-I) through (Empty-Prop-IV) propagate
emptiness along all primitive constraints. Call � the fixed point algorithm induced
by the axioms in Figure 2.2 with the additional control that the axiom (Refl) is only
applied to occurring variables.

Theorem 6 (Emptiness Test for FT ��� ar � )
Algorithm � is sound and complete, and it can be implemented such that it decides the
emptiness problem of FT � � ar � constraints in incremental time O � n4 � and space O � n3 � .
In more detail:

(Soundness) The structure P � F T � is a model of the axioms in Figure 2.2.

(Complexity) If ϕ has size n, then algorithm � terminates after at most O � n3 � steps,
each of which can be implemented to take at most linear time.

(Completeness) If ϕ is an � -closed constraint with ϕ
� �

P
�
F T � x � /0, then x � /0 � ϕ.

Proof. Soundness follows easily by inspection of the rules. The complexity statement
can be proven just as Theorem 3 in Section 2.2.3. The higher degrees of the polyno-
mials are due to the fact that there is a cubic number of constraints of the form x

� �
z y,

where there were only quadratically many of the form x
� �

y before. Completeness is
shown as Proposition 2.17 below. �

Theorem 6 holds under the same preconditions as Theorem 3 (see the remark on
Page 34): if the size of arity constraints is unbounded and a static order on the fea-
tures cannot be assumed, then the incremental time complexity is O � n4 � logn � rather
than O � n4 � .
In order to complete the proof, we need some additional machinery. For every FT �
constraint ϕ let Empty � ϕ � � � x �

x � /0 � ϕ 	 , and obtain ϕ �	 /0 from ϕ by first dropping
all constraints that mention a variable x � Empty � ϕ � , and then replacing all remaining
constraints x

� �
z y by x

� �
y.

Proposition 2.15 (Eliminating Empty Variables)

Let ϕ be an � -closed FT ��� ar � constraint. Then ϕ �	 /0 is satisfiable over P � � F T � .

Proof. One shows that ϕ �	 /0 is � -closed (and does not contain � ) so that ϕ �	 /0 must be
satisfiable over P � � F T � by Proposition 2.8. �
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Lemma 2.16 (Extending P � � F T � solutions)

Let ϕ be an � -closed FT � � ar � constraint and α be a P � � F T � -solution of ϕ �	 /0. Extend
α to α 
 by mapping all x � Empty � ϕ � to the empty set and all remaining variables
x � V � ϕ � to an arbitrary non-empty set. Then α 


� �
P

�
F T � ϕ.

Proof. If α is a P � � F T � -solution of ϕ �	 /0 then α 
 is a P � F T � -solution of ϕ �	 /0. One
checks for all primitive constraints that mention a variable in Empty � ϕ � that α 
 is a
solution for it. Hence α 


� �
P

�
F T � ϕ. �

Proposition 2.17 (Completeness of the Emptiness Test)

If ϕ is an � -closed constraint with ϕ
� �

P
�
F T � x � /0 then x � /0 � ϕ.

Proof. Let ϕ be � -closed and assume that x � /0
�
� ϕ. This means that x

�
� Empty � ϕ � .

By Proposition 2.15, there exists a P ��� F T � -solution α of ϕ �	 /0. By Lemma 2.16, then
there exists a P � F T � -solution α 
 of ϕ that extends α and satisfies α 
 � x � �� /0. Hence
ϕ

�� �
P

�
F T � x � /0. �

Finite Trees

In analogy to the case of non-empty sets (see Page 35) we can adapt the emptiness test
in Figure 2.2 for FT ��� ar � to the case of finite trees by an occurs check axiom.

� Empty-Occurs � x � xi � � n
i 	 1 � xi � yi � yi 
 fi � xi � 1 � � xn � 1 � x � x � /0 n � 1

and we can implement it such that we stay in incremental time O � n4 � and space O � n3 � .
So Theorem 6 carries over to the finite tree case.

2.3.2. Solving Union Constraints

Theorem 7 (Hardness of Satisfiability for FT � � ar ����� )
The satisfiability problem of FT � � ar � � � constraints is DEXPTIME-hard.

Proof. By reduction of the well-known DEXPTIME-complete emptiness problem of
the intersection of two deterministic top-down tree automata [69, 185]. �

We do not elaborate on the details of this proof, because similar reductions have been
given to prove DEXPTIME-hardness for co-definite set constraints and for set con-
straints with intersection [42, 44, 58]. Given these completeness results, it is also a
good guess to assume DEXPTIME-completeness.
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Conjecture 8 (Complexity of Satisfiability for FT � � ar � � � )
The satisfiability problem of FT ��� ar ����� is decidable in DEXPTIME.

The source of this high complexity is the union constraint; so it is natural to consider
weaker approximations of union. The most prominent one is Mishra’s interpretation
of set constraints over over the non-standard domain of path-closed sets [132]. In this
interpretation, all set expressions denote the smallest path-closed supersets of their
standard set interpretation.13 For instance, the term f � a � a � � f � b � b � is interpreted
by the set � f � a � a � � f � a � b � � f � b � a � � f � b � b � 	 . Unfortunately, the satisfiability problem
of co-definite set constraints interpreted over path-closed sets remains DEXPTIME-
complete [44].

It is tempting to consider an even weaker approximation of union which would,
for example, interpret the term f � a � a � � g � b � b � by the set � f � a � a � � f � a � b � � f � b � a � �
f � b � b � � g � a � a � � g � a � b � � g � b � a � � g � b � b � 	 . This approximation may be interesting if its
complexity is strictly smaller than DEXPTIME. We conjecture this to be the case,
since, as it seems, this constraint system cannot encode the emptiness problem of the
intersection of two deterministic top-down tree automata.

13This approximation is also called Cartesian closure or tuple-distributive approximation [132, 220].
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In this chapter, we investigate the entailment problem for union-free fragments of our
system of set constraints over feature trees. We give an algorithm to decide entailment
ϕ
� � ϕ 
 for FTne� (no union or arity constraints) in time O � n3 � and we derive an entail-

ment test for FT � that takes time O � n4 � . For both FTne� � ar � and FT � � ar � (with arity
constraints but no union constraints) we show that entailment ϕ

� � ϕ 
 is coNP-hard,
and for both FTne� and FT � we show that entailment with existential quantification
ϕ
� � � xϕ 
 is PSPACE-hard. All results hold over both the domains of sets of finite

trees and sets of infinite trees.
Entailment is interesting in program analysis because it provides explanation for con-
straint simplification [13, 65, 89, 140, 141, 143, 173]. Simplification means to replace
every constraint ϕ by a smaller one which is either entailed by ϕ and retains the dis-
tinguished solution(s), or which is logically equivalent to ϕ and retains all solutions.
Retaining all solutions is crucial for a modular program analysis where the analysis
of a complete program should be equivalent to the combination of separate analysis
results for program components.
Consider some typical simplification steps. If a constraint entails the equality between
two variables, then one of them can be replaced by the other one and then be elimi-
nated. This strictly reduces the number of occurring variables and has an immediate
impact on all further constraint processing. One also needs to get rid of variables in
a constraint whose denotation is irrelevant for the analysis, provided the constraint is
satisfiable so that there exists an appropriate denotation at all. Since such variables
are often existentially quantified, this simplification implies minimising the number of
existential quantifiers.
If the constraint system allows only “flat” terms like f � x � y � that have only variables
as immediate subterms, then terms like f � g � a � b � � are “flattened out” with auxiliary,
existentially quantified, variables; for example, a constraint like x � f � g � a � � is replaced
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by the formula � y � z � x � f � y � � y � g � z � � z � a � . In this case, constraint simplification
may involve entailment with existential quantification of the form ϕ

� � � xϕ 
 ; for exam-
ple, to show that f � a � x � is an instance of f � y � x � one may have to check that z � f � a � x �
entails � y � z � f � y � x � � .
Entailment has also been proposed as a mechanism to explain subtyping on so-called
polymorphic constrained types [27, 121, 203]. There, entailment with existential quan-
tification is used to model subtyping on polymorphic types with constrained quantifi-
cation; for example the type � x

�
ϕ � t (read: “type t for all x that satisfy ϕ”) is a subtype

of � y
�
ϕ 
 � t 
 if x � t � ϕ entails � y � x � t 
 � ϕ 
 � for a fresh variable x.

These applications of entailment have motivated the research for complete entailment
tests for various constraint systems and the related complexity questions. This issue
is a fundamental one, but it also has some practical impact: complete entailment tests
correspond to optimal constraint simplification algorithms that could always transform
a constraint to an equivalent one with minimal size.

The design of complete entailment tests was more difficult than many researchers ex-
pected. Henglein and Rehof showed that the entailment problem of so-called structural
subtyping constraints over finite trees is coNP-complete [89]. We have adapted their
proof technique to show coNP-hardness of the entailment problem for two systems
of set constraints (Ines [142] and atomic set constraints [85]) in [140]; furthermore,
we showed for a system of ordering constraints over feature trees that the entailment
problem with existential quantifiers even becomes PSPACE-complete [141, 145]. We
present both hardness results in the context of our system of set constraints over fea-
ture trees. Very recently, Henglein and Rehof showed that entailment for structural
subtyping constraints over infinite trees to be PSPACE-complete [90].

Luckily, constraint simplification needs not be optimal if it is “good enough” and can
be implemented efficiently. From this point of view, the mentioned intractability re-
sults encourage the investigation of sound approximations of entailment for constraint
simplification. For the application in subtyping constrained types these results seem
to be more serious, since there complete entailment plays a crucial role to model well-
typedness.

As an aside notice also that the entailment problem is needed for a constraint system
to be integrated into concurrent constraint programming, because entailment explains
the semantics of CC-conditionals (“ask”).

3.1. Entailment with Polynomial Complexity

We show that the entailment problem ϕ
� �

P �
�
F T � ϕ 
 for FTne� has cubic complexity.

We also prove that FTne� -constraints have the independence property of negated con-
straints [50, 115, 116]: We conclude that even the satisfiability problem for positive
and negative FTne� constraints remains within the same complexity.
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ϕ
�

a � x � iff exists x 
 such that x � x 
 � a � x 
 � � ϕ

ϕ
�

x � y iff x � y � ϕ or x � y

ϕ
�

x
� �

y iff x
� �

y � ϕ or x � y

ϕ
�

x 
 f � y iff ϕ
�

y � x 
 f � and ϕ
�

x? 
 f � � y

where ϕ
�

x � y 
 f � iff exist x 
 � y 
 such that x � x 
 � y 
 
 f � x 
 � y 
 � y � ϕ

ϕ
�

x? 
 f � � y iff exist x 
 � y 
 such that x � x 
 � x 
 
 f � y 
 � y 
 � y � ϕ

Figure 3.1.: Syntactic Containment for FTne�

In order to decide entailment ϕ
� �

P �
�
F T � ϕ 
 between FTne� constraints we must first

decide satisfiability of ϕ, since entailment is trivial if ϕ is non-satisfiable. As we shall
prove, the entailment problem for FTne� is not harder than its satisfiability problem.

3.1.1. Syntactic Containment

Let us write µ for the primitive FTne� constraints.

µ :: � x � y
�

x
� �

y
�

x 
 f � x 
 �
a � x �

An FTne� constraint ϕ entails another one ϕ 
 if and only if ϕ entails all primitive con-
straints in ϕ 
 . As it turns out, the constraint system FTne� is so weak that ϕ only entails
primitive constraints that are already syntactically contained in ϕ (Proposition 3.2).
Since primitive entailment is linear (Lemma 3.3), this yields an incremental entail-
ment test that takes quadratic time in the size of ϕ if ϕ is � -closed, and cubic time in
general.

Figure 3.1 defines the notion that a constraint ϕ syntactically contains µ, written ϕ
�

µ.

Example 9 (Entailment of Selection Constraints)

As an illustration for the most complicated case
of syntactic containment, namely the one dealing
with selection constraints, define the following
constraint (depicted to the right) and observe that
it entails x 
 f � y.

u � x � v

y � u 
 v 
 � y

f f

y � u 
 � u 
 f � u 
 � u � x � x � v � v 
 f � v 
 � v 
 � y (3.1)

51



3. Entailment for Set Constraints

In order to show that syntactic containment coincides with entailment, we must show
in particular that syntactic containment is complete with respect to entailment. Before
we show this, notice the impact of arity constraints:

Example 10 (Syntactic Containment with Arity Constraints)
Syntactic containment is no longer complete if arity constraints are added. In particu-
lar, constraints may entail many non-trivial inclusions then. For instance, consider the
following judgement:

a � x � � x � 	 � a � y � � y � 	 � �
P �

�
F T � x � y � y � x (3.2)

We must show that no primitive constraint µ is entailed by an FTne� constraint ϕ that
is not already contained in ϕ. To show this it suffices to find a solution of ϕ that con-
tradicts µ. More strongly, we show that there is a single solution that contradicts all
such µ at the same time. We show this by means of a satisfiable formula that strength-
ens ϕ and entails the negation of all relevant µ. Such a formula is called saturated. Its
existence will also give us the independence property for FTne� .

Lemma 3.1 (Existence of a Saturated Formula)
For every satisfiable FTne� constraint ϕ, there exists a formula Sat � ϕ � , called a satura-
tion of ϕ, with the following properties.

1. Sat � ϕ � is satisfiable.

2. Sat � ϕ � � � P �
�
F T � ϕ.

3. � µ: If V � µ � � V � ϕ � , then ϕ
��

µ implies Sat � ϕ � � � P �
�
F T � � µ.

Proof. The constructive existence proof of Sat � ϕ � is technically involved and post-
poned to Section 3.1.2 which begins on Page 55. There, Definition 5 defines a formula
Sat � ϕ � in such a way that Sat � ϕ � entails ϕ by construction. Lemmas 3.4 and 3.5 prove
that Sat � ϕ � is satisfiable. The third claim follows from Lemma 3.7. �

Proposition 3.2 (Entailment = Syntactic Containment)
Entailment and syntactic containment coincide for primitive FTne� constraints x � y, x

� �

y, a � x � , and x 
 f � y: if ϕ is an � -closed constraint not containing � and µ is a primitive
constraint, then ϕ

� �
P �

�
F T � µ if and only if ϕ

�
µ.

Proof. It is easy to see that syntactic containment is semantically correct (i. e., ϕ
�

µ
implies ϕ

� �
P �

�
F T � µ). It remains to show that syntactic containment is semantically

complete (i. e., ϕ
� �

P �
�
F T � µ implies ϕ

�
µ). So, assume ϕ

� � µ. If V � µ � �� V � ϕ � then µ
is of the form x � x or x

� �
x such that ϕ

�
µ is trivial. Otherwise, assume V � µ � � V � ϕ � .

Now let Sat � ϕ � be the saturation formula postulated by Lemma 3.1. By Property 2,
ϕ
� �

P �
�
F T � µ implies Sat � ϕ � � � µ. With Property 1, this yields Sat � ϕ � �� �

P �
�
F T � � µ,

and Property 3 implies ϕ
�

µ. �
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Lemma 3.3 (Primitive Entailment is Linear)

Given an � -closed constraint ϕ of size n, we can compute a representation of ϕ in time
O � n � that allows to test syntactic containment ϕ

�
µ for selection constraints in time

O � n � , and for all other µ in time O � 1 � .

Proof. In a linear operation we enter all primitive constraints in ϕ into the data struc-
tures described in Section 2.2.3. The complexity statement for labelling, arity, and
inclusion constraints immediately follows directly from the properties of the data struc-
tures. To check containment of a selection constraint x 
 f � y, we proceed as follows.

1. Check whether there exists z � V � ϕ � such that z � x � ϕ, and then whether there
exists z 
 such that z 
 f � z 
 � ϕ and y � z 
 � ϕ, and

2. check whether there exists z � V � ϕ � such that x � z � ϕ, and then whether there
exists z 
 such that z 
 f � z 
 � ϕ and z 
 � y � ϕ

Clearly, x 
 f � y is syntactically contained in ϕ if and only if both checks succeed. Since
there are two tests for every variable z � V � ϕ � , this is a linear-time operation. �

Theorem 11 (Independence for FTne� )

The constraint system FTne� has the following independence property: for every k � 1
and constraints ϕ � ϕ1 ������� � ϕk, it holds that

if ϕ
� �

P �
�
F T �

k�
i 	 1

ϕi then � i � 1 � i � k : ϕ
� �

P �
�
F T � ϕi

Proof. Assume ϕ
� �

P �
�
F T ��� k

i 	 1 ϕi. If ϕ is unsatisfiable we are done. Also, if ϕ � ϕ j

is nonsatisfiable for some j, then

ϕ
� �

P �
�
F T �

k�
i 	 1

ϕi iff ϕ
� �

P �
�
F T �

k�
i 	 1 � i �	 j

ϕi

Hence we can assume, without loss of generality, that ϕ and ϕ � ϕi are satisfiable for
all i, and that ϕ is � -closed and does not contain � . If there exists an i such that ϕ

�
µ for

all µ with µ � ϕi, then ϕ
� �

P �
�
F T � ϕi and we are done by Proposition 3.2. Otherwise,

there exists µi � ϕi for every i such that ϕ
��

µi. Let Sat � ϕ � be the formula postulated
by Lemma 3.1. Without loss of generality, we can assume that V � ϕi � � V � ϕ � for all
i. Hence V � µi � � V � ϕi � implies Sat � ϕ � � � � µi by Property 3. Therefore:

Sat � ϕ � � � P �
�
F T �

k�
i 	 1

� ϕi �
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Since Sat � ϕ � is satisfiable and entails ϕ (Properties 1 and 2), this contradicts our as-
sumption that ϕ

� �
P �

�
F T � � k

i 	 1 ϕi. �

The independence property of negated constraints is a fundamental property of con-
straint systems, which intuitively says that the constraint system cannot express dis-
junction [105]; this can drastically simplify reasoning with disjunctive formulas. We
do not investigate the independence property in its own right (but see the remark at
the end of this section). For more details and further references on independence
see [42, 105].

Theorem 12 (Entailment and Negation for FTne� )

If ϕ � ϕ1 ������� � ϕk, k � 1 are FTne� constraints with sizes n � n1 ��������� nk, then satisfiability of
ϕ � � ϕ1 � ����� � � ϕk is decidable in time O � n3 � n � Σk

i 	 1ni � and space O � n2 � Σk
i 	 1ni � .

Proof. If ϕ is non-satisfiable then ϕ � � ϕ1 � ����� � � ϕk is trivially non-satisfiable.
By Theorem 3, satisfiability of ϕ can be decided in time O � n3 � and space O � n2 � .
Now assume ϕ to be satisfiable and � -closed. By the Independence Theorem 11,
ϕ � � ϕ1 � ����� � � ϕk is non-satisfiable if and only if ϕ

� �
P �

�
F T � ϕi for some i, and this is

equivalent to ϕ
�� �

P �
�
F T � µ for some i and all primitive constraints µ � ϕi. By Propo-

sition 3.2, ϕ
� �

P �
�
F T � µ iff ϕ

�
µ, hence it suffices to decide syntactic containment for

every µ contained in some ϕi. For each i, there are O � ni � many such µ to be tested
for syntactic containment, each of which takes time O � n � by Lemma 3.3. Hence non-
satisfiability of ϕ � � ϕ1 � ����� � � ϕk can be tested in an additional time O � n � ∑k

i 	 1 ni � . The
overall time complexity adds up to O � n3 � n � ∑k

i 	 1 ni � , and the total space complexity
is O � n2 � n � ∑k

i 	 1 ni � . �

Corollary 13 (Satisfiability of Positive and Negative FTne� Constraints)

If ϕ and ϕ 
 are FTne� constraints with sizes n and n 
 , then entailment ϕ
� �

P �
�
F T � ϕ 
 is

decidable in time O � n3 � n � n 
 � and space O � n2 � n 
 � .

Finite Trees

Theorem 12 carries over to the domain of finite trees. In order to check ϕ
� �

P �
�
F T � ϕ 


we just need to bring ϕ into closed form with respect to algorithm � plus the oc-
curs check (Occurs) on Page 35. The second step remains unchanged: Simply check
whether all primitive constraints in ϕ 
 are syntactically contained in the closure of ϕ.

Conjectures on Independence

We conjecture that the independence property holds for FTne� � ar � if we are given an
infinite set of labels, and even remains to hold when existential quantifiers are admitted
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(that is, ϕ
� � � i

� xiϕi implies � i ϕ
� � � xi ϕi). For FT � � ar � , independence fails because

a � x � � a � y � � � x � y � y � x holds. For FTne� � ar � with a finite set L � � a1 ������� � an 	 of
labels, independence also fails because x � 	 � a1 � y1 � � ����� � an � yn � � � P �

�
F T � y1 � x �

����� � yn � x. Given an infinite set of labels, however, independence for FTne� � ar � may
well hold.

We have two reasons for these conjectures on FTne� � ar � . First, Charatonik and Podelski
have shown that set constraints with intersection have the independence property when
interpreted over non-empty sets of trees [42] and given an infinite signature; over this
domain, set constraints with intersection subsume the constraint system Ines of inclu-
sion constraints over constructor trees [142], and Ines is closely related to FTne� � ar � .
For the extensibility with existential quantifiers we draw intuition from the related
constraint system FT � [143] (see Section 3.3.2). The constraints of FT � coincide
with FTne� constraints but their interpretation is over the domain F T of feature trees.
We have shown in [143] that FT � has the independence property without existential
quantifiers, and that independence fails in presence of existential quantifiers; but a ba-
sic counter example for independence with existential quantification in FT � does not
work for FTne� .14

3.1.2. Saturation

We complete the proof of Proposition 3.2 by constructing a saturated formula as pos-
tulated by Lemma 3.1. To this end, we employ operators Γ1 and Γ2 on constraints.
The operator Γ2 is defined such that Γ2 � ϕ � disentails all µ except selection constraints
(that is, those of the form x

� �
y, x � y, and a � x � ), which are not syntactically contained

in ϕ (Lemma 3.6). The operator Γ1 is necessary to also disentail selection constraints.
Given a constraint ϕ, Γ1 � ϕ � extends it such that Γ2 � Γ1 � ϕ � disentails all relevant µ. In
a sense, Γ1 serves as a “preprocessor” for Γ2.

Definition 4 (Γ1 and Γ2)

Let ϕ be a constraint. For all x � V � ϕ � and f � F � ϕ � let vx f be a fresh variable.
Depending on this choice we define Γ1 � ϕ � as follows, where cl denotes the � -closure
of a constraint:

Γ1 � ϕ � � def cl � ϕ � � � x 
 f � vx f
�

x � V � ϕ � � f � F � ϕ ��	 �
Furthermore, let v1 and v2 be distinct fresh variables, a1 and a2 be distinct labels,
and for every pair of variables x � y � V � ϕ � , let fx and fxy be fresh features. We define

14 The corresponding FTne� formula a  y "�� y 
 x � �
b � b  z "�� z 
 x ��� a  x " (where a �� b) is not valid: if

a �� c and b �� c, then the set ' a � c ( satisfies the left hand side of the implication but none of the disjuncts
on the right hand side.

55



3. Entailment for Set Constraints

Γ2 � ϕ � depending on v1 � v2 � a1 � a2 � fx � fxy as follows:

Γ2 � ϕ � � def ϕ � � � x 
 fx � vx � � � y 
 � y 
 fx � y 
 � � ϕ ��
y � x � x � y � V � ϕ ��	 � 1 �

� � � x 
 fxy � v1 � y 
 fxy � v2
�
ϕ

��
x

� �
y � x � y � V � ϕ � 	 � 2 �

� � � x � �
v1 � x

� �
v2

� � a � L : ϕ
��

a � x � � x � V � ϕ � 	 � 3 �
� a1 � v1 � � a2 � v2 � � 4 �

Example 14 (Contradicting Feature Selection Constraints)
For illustration of Γ1 and Γ2 consider the constraint

ϕcontra
�

def x 
 f � x � y � x (3.3)

which is � -closed up to trivial and non-disjointness constraints and which does not
entail x 
 f � y. In order to disentail x 
 f � y we first compute Γ1 � ϕ � by adding x 
 f � vx f and
y 
 f � vy f to ϕcontra and then computing the � -closure. Now, Γ1 � ϕcontra � is (up to trivial
and non-disjointness constraints)

Γ1 � ϕcontra � � x 
 f � x � y � x � x 
 f � vx f � y 
 f � vy f �
vy f � vx f � vx f � x � x � vx f � y � vx f

(3.4)

Observe that Γ1 � ϕcontra � does not contain vx f � y; that is, Γ1 � ϕcontra � ��
vx f � y. Now

clause � 1 � of Γ2 � Γ1 � ϕcontra � � disentails vx f � y by asserting that y allows selection at
feature fy while vx f does not. Hence, Γ2 � Γ1 � ϕcontra � � also disentails x 
 f � y.

Lemma 3.4 (Properties of Γ1)
Let ϕ be an � -closed constraint not containing � . Then Γ1 � ϕ � is satisfiable and satis-
fies the following two properties for all primitive constraints µ:

1. If ϕ
��

µ and V � µ � � V � ϕ � , then Γ1 � ϕ � ��
µ.

2. If ϕ
��

x 
 f � y, then Γ1 � ϕ � ��
y � vx f or Γ1 � ϕ � ��

vx f � y.

Proof. Let n be the cardinality of the set V � � vx f
�

x � V � ϕ � and f � F � ϕ � 	 and fix
an enumeration var from � 1 ������� � n 	 into V . Then consider the following sequence of
constraints

ϕ0
� ϕ

ϕn
� cl � ϕn � 1 � x 
 f � vx f � if n � 0 and var � n � � vx f

Apparently, Γ1 � ϕ � � ϕn. In order to show that Γ1 � ϕ � is satisfiable, we give an inductive
construction of the form of the ϕi, for all i, and show that each of them is satisfiable.

56



3.1. Entailment with Polynomial Complexity

ϕ0 is � -closed and hence satisfiable by assumption. For the induction step, assume that
ϕi � 1 is � -closed for an i, 0 � i � n, with var � i � � vx f . We show that ϕi

� cl � ϕi � 1 �
x 
 f � vx f � ���ϕi � 1 where

�ϕi � 1
� ϕi � 1 � x 
 f � vx f � vx f � vx f � vx f

� �
vx f � 4 � 1 �

� � � z � vx f
�

ϕi � 1
�

z � x 
 f � 	 � 4 � 2 �
� � � vx f � z

�
ϕi � 1

�
x? 
 f � � z 	 � 4 � 3 �

� � � vx f
� �

z � z
� �

vx f
�

ex. y : ϕi � 1
�

y? 
 f � � z and x
� �

y � ϕi � 1 	 � 4 � 4 �
� � � vx f

� �
z � z

� �
vx f

�
ex. y : ϕi � 1

�
y � x 
 f � and z

� �
y � ϕi � 1 	 � 4 � 5 �

It is clear that �ϕi � 1 is contained in ϕi, hence it suffices to show that �ϕi � 1 is � -
closed. The � -closedness of ϕi is proved by a case distinction. (Refl) follows from
clause (4.1), and (Symm-Nondis) follows from clauses (4.4) and (4.5). The descend
axioms (Desc-Incl) and (Desc-Nondis) do not apply to �ϕi � 1 since no selection con-
straint on vx f is added, and the clash axioms does not apply to �ϕi � 1 because no la-
beling or arity constraints on vx f are added. We check the remaining cases (Trans),
(Incl-Nondis) and (Quasi-Trans).

(Trans) Assume u � v � v � w � �ϕi � 1. We must show that u � w � �ϕi � 1. We make a case
distinction depending on which of the variables x � y � z equal vx f .

If u � v � w �� vx f , then u � v � v � w � ϕi � 1. Hence, due to � -closedness of ϕi,
u � w � ϕi � 1, and therefore u � w � �ϕi � 1.

If u � v � vx f , then u � w � vx f � vx f � �ϕi � 1 follows from clause (4.1).

If u � v � vx f and w
�� vx f , then u � w � vx f � w � �ϕi � 1 follows from the as-

sumption that v � w � vx f � w � �ϕi � 1. The case u
�� vx f and y � z � vx f

is symmetric.

If u � vx f and v � w �� vx f , then u � v � vx f � v � �ϕi � 1 implies, by clause (4.3), that
ϕi � 1

�
x? 
 f � � v. By � -closedness of ϕi � 1 (Trans) it follows that ϕi � 1

�

x? 
 f � � w and hence, by clause (4.3) again, u � w � vx f � w � �ϕi � 1.

The case w � vx f and u � v �� vx f is symmetric, using clause (4.2) instead of
clause (4.3).

If u � w �� vx f and v � vx f , then, by clauses (4.2) and (4.3), ϕi � 1
�

u � x 
 f � and
ϕi � 1

�
x? 
 f � � w. By � -closedness of ϕi � 1, (Trans) and (Desc-Incl), it

follows that u � w � ϕi � 1 and hence u � w � �ϕi � 1.

(Incl-Nondis) Assume u � v � �ϕi � 1. We must show that u
� �

v � �ϕi � 1.
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If u � v �� vx f , then u
� �

v � �ϕi � 1 follows from � -closedness of ϕi � 1.

If u � v � vx f , then u
� �

v � �ϕi � 1 follows from clause (4.1).

If u � vx f and v
�� vx f , then, by clause (4.3) ϕi � 1

�
x? 
 f �
� v. By � -closedness

of ϕi � 1, (Refl) and (Incl-Nondis), x
� �

x � ϕi � 1 and hence, by clause (4.4),
u

� �
v � vx f

� �
v � �ϕi � 1.

The case v � vx f and u
�� vx f is symmetric, using clause (4.5) instead of

clause (4.4) and u
� �

u � ϕi � 1.

(Quasi-Trans) Assume u
� �

v � v � w � �ϕi � 1. We must show that u
� �

w � �ϕi � 1.

If u � v � w �� vx f , then u
� �

w � �ϕi � 1 follows from � -closedness of ϕi � 1.

If u � v � vx f and w
�� vx f , then, by clause (4.3), ϕi � 1

�
x? 
 f � � w. By � -

closedness of ϕi � 1 we know that x
� �

x � ϕi � 1 and hence, by clause (4.4),
u

� �
w � vx f

� �
w � �ϕi � 1.

If v � w � vx f and u
�� vx f , then u

� �
w � u

� �
vx f � �ϕi � 1 follows from u

� �
v �

u
� �

vx f � �ϕi � 1.

If u � w � vx f and v
�� vx f , then u

� �
w � vx f

� �
vx f � �ϕi � 1 follows from

clause (4.1).

If w � vx f and u � v �� vx f , then by clause (4.2), ϕi � 1
�

v � x 
 f � , and hence, by
clause (4.5), u

� �
w � u

� �
vx f � �ϕi � 1.

If u � vx f and v � w �� vx f , then u
� �

v � vx f
� �

v could have been added by
clause (4.4) or clause (4.5).

(4.4) Then, by clause (4.4), there exists v 
 such that ϕi � 1
�

v 
 ? 
 f � � v and
x

� �
v 
 � ϕi � 1. By � -closedness of ϕi � 1 (Trans), ϕi � 1

�
v 
 ? 
 f � � w, and

hence, by clause (4.4) again, u
� �

w � vx f
� �

w � �ϕi � 1.

(4.5) Then, by clause (4.5), there exists v 
 such that ϕi � 1
�

v 
 � x 
 f �
and v

� �
v 
 � ϕi � 1. By � -closedness of ϕi � 1, (Quasi-Trans) and

(Symm-Nondis), w
� �

v 
 � ϕi � 1, so that u
� �

w � vx f
� �

w � �ϕi � 1 by
clause (4.5) again.

If v � vx f and u � w �� vx f , then u
� �

v � u
� �

vx f could have been added by
clause (4.4) or clause (4.5). The argument is similar to the previous one.

Now we check properties (1) and (2) of Γ1 � ϕ � . In both cases, we prove the contraposed
claim.

1. Assume that Γ1 � ϕ � �
µ and V � µ � � V � ϕ � . We show that ϕ

�
µ by case distinc-

tion over µ.
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µ � x � y or µ � x
� �

y: If Γ1 � ϕ � �
µ then µ � Γ1 � ϕ � or x � y. If x � y, then triv-

ially ϕ
�

µ. Otherwise, if x
�� y, note that all basic constraints which are

contained in Γ1 � ϕ � but not in ϕ contain at least one fresh variable. Hence
from x � y � V � µ � � V � ϕ � we obtain µ � ϕ, and therefore ϕ

�
µ.

µ � a � x � : If Γ1 � ϕ � �
a � x � then there exists a variable x 
 such that x � x 
 � a � x 
 � �

Γ1 � ϕ � . By inspection of the form of Γ1 � ϕ � � ϕn one obtains that x 
 � V � ϕ �
and hence a � x 
 � � ϕ. In combination with the assumption that V � µ � �
V � ϕ � which gives x � V � ϕ � we conclude that ϕ

�
a � x � .

µ � x 
 f � y: If Γ1 � ϕ � �
x 
 f � y then there exist variables u � u 
 and v � v 
 such that

Γ1 � ϕ � �
u � x � x � v �

Γ1 � ϕ � �
y � u 
 � v 
 � y � and

u 
 f � u 
 � v 
 f � v 
 � Γ1 � ϕ �
By assumption, x � y � V � µ � � V � ϕ � . Also u � v � V � ϕ � holds since Γ1 � ϕ � �
ϕn contains no selection constraints on fresh variables.

We can without loss of generality assume that u 
 � v 
 � V � ϕ � . In this case
ϕ

�
x 
 f � y follows easily.

To see why we can assume u 
 � v 
 � V � ϕ � , suppose u 
 �
� V � ϕ � . Then u 
 � vu f

by construction of Γ1 � ϕ � � ϕn: Let var � vu f � � i. Then by Clause (4.2)
ϕi � 1

�
y � u 
 f � which means that there must exist variables w � w 
 � V � ϕi � 1 �

such that y � w 
 � w 
 f � w 
 � w � x � ϕi � 1. Hence, we can replace w � w 
 for u � u 

above and obtain the same situation up to renaming. By induction over
var � vu f � we find replacement for u 
 � v 
 in V � ϕ � . The argument for v 
 is
dual.

2. Assume that Γ1 � ϕ � �
z � vx f and Γ1 � ϕ � �

vx f � z. Then by clauses (4.2) and (4.3)
there must exist variables y � y 
 � u � u 
 � V � Γ1 � ϕ � � such that Γ1 � ϕ � �

z � x 
 f � and
Γ1 � ϕ � �

x? 
 f � � z. By definition of syntactic containment these assumptions
imply Γ1 � ϕ � �

x 
 f � z and hence, by case (1) above, ϕ
�

x 
 f � z. �

�

Lemma 3.5 (Γ2 Preserves Satisfiability)

If ϕ is � -closed and does not contain � , then Γ2 � ϕ � is satisfiable.

Proof. Let ϕΓ be the constraint part of Γ2 � ϕ � , i. e., with existential quantifiers and
negated constraints dropped. It is not difficult to see that ϕΓ does not contain � and
that ϕΓ is � -closed up to trivial constraints (x � x and x

� �
x) and symmetric compatibility

constraints. Note in particular, that the fresh features fx occur only once in Γ2 � ϕ � (and
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hence neither (Desc-Incl) nor (Desc-Nondis) applies), and that the fresh features fxy

occur exactly twice in Γ2 � ϕ � , namely in selections at x and y, for which neither x
� �

y
nor, by (Incl-Nondis)-closedness of ϕ, x � y or y � x occur in ϕ.

Hence, by Proposition 2.10, gsol � ϕΓ � as defined in Definition 3 is a solution of ϕΓ. It
suffices to check that gsol � ϕΓ � also satisfies the negated selection constraints added in
clause � 1 � of Γ2 � ϕ � .
Assume � � y 
 � y 
 fx � y 
 � � Γ2 � ϕ � , hence also x 
 fx � vx � Γs � ϕ � and ϕ

��
y � x. � -closedness

of ϕ and ϕ
��

y � x imply that y
� ϕ� ε x and hence y

�ϕΓ� ε x holds. Since fx has a unique
occurrence in Γ2 � ϕ � , this implies that y

�ϕΓ� ε fx, and hence fx
�
� Dgsol

�
ϕΓ � �

y � . �

Lemma 3.6 (Γ2 Contradicts Non-selection Constraints)
Let ϕ be an � -closed constraint which does not contain � , and let µ be a primitive
constraint of the form x

� �
y, x � y, or a � x � . Then Γ2 � ϕ � � � P �

�
F T � � µ if and only if

ϕ
��

µ.

Proof. If Γ2 � ϕ � � � P �
�
F T � � µ then ϕ

��
µ by Lemma 3.5 and correctness of syntactic

containment. For the inverse direction we inspect the definition of Γ2 � ϕ � .
Clause (1) If ϕ

��
x � y, then Γ2 � ϕ � disentails x � y by forcing x to have a feature fx

which y must not have.

Clause (2) If ϕ
��

x
� �

y, then Γ2 � ϕ � disentails x
� �

y by forcing x and y to have a common
feature fxy such that the subtrees of x and y at fxy are incompatible.

Clauses (3) and (4) If ϕ
��

a � x � , then Γ2 � ϕ � disentails a � x � for every label a by forcing
x to contain at least two trees with distinct label. �

Definition 5 (Saturation)
Let ϕ be an � -closed constraint not containing � . The saturation Sat � ϕ � of ϕ is defined
by

Sat � ϕ � �
def Γ2 � Γ1 � ϕ � � �

Lemma 3.7 (Saturation Characterises Syntactic Entailment)
Let ϕ be an � -closed constraint not containing � , and let µ be such that V � µ � � V � ϕ � .
Then ϕ

��
µ implies Sat � ϕ � � � P �

�
F T � � µ.

Proof. Let Sat � ϕ � � Γ2 � Γ1 � ϕ � � . If ϕ
��

µ then Γ1 � ϕ � ��
µ holds by case (1) of

Lemma 3.4. If µ is not a selection constraint, then Γ2 � Γ1 � ϕ � � � � P �
�
F T � � µ holds by

Lemma 3.6. Otherwise, let µ � x 
 a � y. Hence, one of Γ1 � ϕ � ��
vxa � y or Γ1 � ϕ � ��

y � vxa

holds by case (2) of Lemma 3.4. By Lemma 3.6, either Γ2 � Γ1 � ϕ � � � � P �
�
F T � � vxa � y

or Γ2 � Γ1 � ϕ � � � � P �
�
F T � � y � vxa holds, and hence again Γ2 � Γ1 � ϕ � � � � P �

�
F T � � µ. �
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3.1. Entailment with Polynomial Complexity

ϕ
�

/0 a � x � iff x � /0 � ϕ � or ϕ
�

a � x �
ϕ

�
/0 x � y iff x � /0 � ϕ � or ϕ

�
x � y

ϕ
�

/0 x 
 f � y iff x � /0 � ϕ and y � /0 � ϕ � or ϕ
�

x 
 f � y

Figure 3.2.: Syntactic Containment up to Emptiness for FT � � ar �

3.1.3. Dropping the Non-emptiness Restriction

We show that entailment for FT � can also be decided in polynomial time, more pre-
cisely, in time O � n4 � . We obtain this result by extending the corresponding result for
FTne� and it seems that a direct proof would be substantially more involved.

The key to the polynomial complexity result is an extension of our notion of syntactic
containment. Figure 3.2 extends the definition of syntactic containment in Figure 3.1
and defines a relation ϕ

�
/0 µ between FT � constraints and primitive constraints x 
 f � y,

a � x � or x � y. If ϕ
�

/0 µ holds we say that ϕ contains µ up to emptiness. Syntactic
containment up to emptiness suffices to characterise entailment for FT � .

Proposition 3.8 (Entailment = Syntactic Containment up to Emptiness)

The notions of entailment and syntactic containment up to emptiness coincide for prim-
itive constraints: If ϕ is an � -closed FT � constraint and µ is a primitive constraint,
then ϕ

� �
P

�
F T � µ if and only if ϕ

�
/0 µ.

Proof. The direction from right to left (soundness) is clear. For the direction from
left to right (completeness) assume that there exists µ � ϕ 
 such that ϕ

��
/0 µ. From

Proposition 2.15 we know that ϕ �	 /0 is satisfiable over P � � F T � . By Proposition 3.2
we know that ϕ

�� �
P �

�
F T � µ. Hence there exists a P � � F T � -solution α of ϕ �	 /0 such

that α
� �

P �
�
F T � � µ and hence also α

� �
P

�
F T � � µ. By Lemma 2.16, the extension α 


of α that maps all variables in Empty � ϕ � to the empty set and all other variables to non-
empty sets is a P � F T � -solution of ϕ. We show by case distinction over the possible
forms of µ that α 


� �
P

�
F T � � µ. This means that ϕ

�� �
P

�
F T � µ and hence ϕ

�� �
P

�
F T � ϕ 
 .

µ � a � x � : Since ϕ
��

/0 a � x � , we know that x
�
� Empty � ϕ � . Therefore α

� �
P

�
F T � � a � x �

implies α 

� �

P
�
F T � � a � x � .

µ � x 
 f � y: Since ϕ
��

/0 x 
 f � y, we know that x � /0
�
� ϕ or y � /0

�
� ϕ. We consider two cases

(the remaining one is symmetric).

If x � /0
�
� ϕ and y � /0

�
� ϕ: Then x � y �

� Empty � ϕ � , and therefore α
� �

P
�
F T � � x 
 f � y

implies α 

� �

P
�
F T � � x 
 f � y.
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3. Entailment for Set Constraints

If x � /0 � ϕ and y � /0
�
� ϕ: Then x � Empty � ϕ � and y

�
� Empty � ϕ � . Hence α 
 maps

x to the empty set and y to a non-empty set. Therefore, α 

� �

P
�
F T � � x 
 f � y.

µ � x � y: Since ϕ
��

/0 x � y, we know that x � /0
�
� ϕ. By a case distinction on whether

or not y � /0 � ϕ as in the previous case we obtain that α
� �

P
�
F T � � x � y implies

α 

� �

P
�
F T � � x � y. �

Theorem 15 (Entailment for FT � is Polynomial)

Let ϕ and ϕ 
 be FT � constraints whose sizes are n and n 
 . Then entailment ϕ
� �

P
�
F T �

ϕ 
 is decidable in time O � n4 � n � n 
 � and space O � n3 � n 
 � .

Proof. By Theorem 6, we can compute the � -closure in ϕ in time O � n4 � and
space O � n3 � . By Proposition 3.8 it suffices to test syntactic containment up to empti-
ness for all primitive constraints in ϕ 
 , of which there are at most n 
 . In analogy to
Lemma 3.3, we can assume the � -closure of ϕ to be represented such that every such
test takes at most linear time. Hence the overall procedure takes time O � n4 � n � n 
 � and
space O � n3 � n 
 � . �

Finite Trees

Theorem 15 carries over to the case of finite trees: we must only adapt the first step of
checking ϕ

� �
P

�
F T � ϕ 
 so that it computes the closure of ϕ with respect to � and the

occurs check axiom (Empty-Occurs) on Page 46. The second step remains unchanged.

3.2. Hardness Results on Entailment

The complexity of entailment between set constraints becomes coNP-hard when arity
constraints are added. This is proven in Section 3.2.1 for FT � � ar � and in Section 3.2.2
for FTne� � ar � . Using the same proof technique, the corresponding results can be be ob-
tained for inclusion constraints over sets of constructor trees [140] and for entailment
for FTne� with existential quantifiers (see Section 3.2.3). Section 3.2.4 strengthens this
result by proving PSPACE-hardness for the entailment problem with existential quan-
tification; this result holds even without arity constraints.

3.2.1. Entailment with Arity Constraints is coNP-hard

We prove the following result.

Theorem 16 (Entailment for FTne� � ar � is coNP-hard)

The entailment problem ϕ
� �

P �
�
F T � ϕ 
 for FTne� � ar � is coNP-hard.
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Proof. Follows from Proposition 3.9 on Page 64. �

Corollary 17 (Satisfiability of Positive and Negative FTne� � ar � Constraints)

The satisfiability problem of positive and negative FTne� � ar � constraints is coNP-hard.

For the proof, we reduce the complement of the propositional satisfiability problem
SAT to an entailment problem between FTne� � ar � constraints. Crucially, the reduction
uses arity constraints. This implies Theorem 16 because SAT is NP-complete, actually
the very first problem for which NP-completeness was proven [52]. The reduction
is based on an idea of Henglein and Rehof [89]. They have considered entailment
between ordering constraints over finite constructor trees with the so-called structural
subtyping order.

3.2.1.1. A Complication of Entailment

Before we give the proof of Theorem 16, notice that it is in contrast to the paper [41]
which claims polynomial complexity for entailment (over the domain of non-empty
sets of finite constructor trees). The algorithm given there is incomplete. This incom-
pleteness is not easily fixed. The next example illustrates a complication of entailment.

The following is a valid entailment over FTne� � ar � -constraints; notably one that de-
pends on the implicit non-emptiness restriction for the denotation of x.

x � a � f :y � � x � a � f :z � � a � y � � y � 	 � �
P �

�
F T � y � z (3.5)

A possible argument is as follows: since the denotation of x is non-empty, the intersec-
tion of the denotations of y and z must be non-empty. The constraint a � y � � y � 	 implies
that y denotes the singleton set � a 	 . By non-disjointness of y and z, the denotation of z
must at least contain a. Thus y � z is entailed. By a similar argument, the following
entailment proposition can be shown valid for FTne� � ar � .

x � a � f :y 
 � g:y 
 
 � � y 
 � b � f :z 
 � g:z 
 
 � � z 
 � a � z 
 � 	 �
x � a � f :u 
 � g:u 
 
 � � u 
 � b � f :v 
 � g:v 
 
 �

� �
P �

�
F T � z 
 � v 
 (3.6)

The variables z 
 and v 
 are related to each other through x which does not denote a
singleton set itself. Rather, for some path (here ff ) does selection from the denotation
of x yield a singleton. Notice that two distinct features f

�� g are necessary to describe
this situation.

This example also illustrates the problem of the algorithm in [41], transposed to the
feature tree notation. Roughly, the algorithm in [41] derives singleton information, for
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example by reasoning as follows:

a � x � � x � 	 � � � ��� � � � � � � x �
a � x � � x � f 	 � x 
 f � y � � � ��� � � � � � � y � � � � ��� � � � � � � x �
�����

� � ��� � � � � � � y � � y
� �

z � y � z

But as we have seen, the derivation of constraints � � ��� � � � � � � x � does not suffice for a
complete entailment algorithm. Rather, one needs a path-based argument like

� � ��� � � � � � � z 
 � � x � ff z 
 � x � ff v 
 � z 
 � v 
 �
This is what the algorithm in [41] fails to do. Hence, the entailment in Example � 3 � 5 �
is correctly detected, while the entailment in Example � 3 � 6 � is not.

3.2.1.2. The Reduction

We assume an infinite set of boolean variables ranged over by u. A clause C is a
finite disjunction of literals u or � u. We write false for the empty clause. A solution
of a finite conjunction of clauses is a boolean variable assignment under which each
of the clauses evaluates to true. The clause satisfiability problem SAT is whether a
given conjunction has a solution. Without loss of generality we assume that no clause
contains both a literal and its negation.

Proposition 3.9 (Reducing SAT to Entailment for FTne� � ar � )
For all x � V there exists a function Φx from clauses C and integers k to existential
FTne� � ar � formulas such that for all C:

1. The size of Φx � C � k � is proportional to k.

2. For all SAT problems � n
i 	 1Ci over k variables the following holds if x

�� y:
n�

i 	 1

Φx � Ci � k � � Φy � false � � � P �
�
F T � x � y iff

n�
i 	 1

Ci is non-satisfiable.

Theorem 16 is an immediate corollary of this Proposition. To see this, notice that
the size of the entailment problem Φx � Ci � k � � Φy � false � � � P �

�
F T � x � y is O � k � n � and

hence polynomial in the size of the given SAT problem.
Before we prove the Proposition, we illustrate the basic idea by an example. Consider
the following clauses over three boolean variables u1 � u2, and u3, and observe that
C1 � C2 is satisfiable while C1 � C2 � C3 is not.

C1
�

def
� u1 � u3 �

C2
�

def
� u1 � � u3 � and

C3
�

def u1
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� y

� y0

� y1

� z

� z 


�����������������
�

x 
 1 � y � a � x � � x � 0 � 1 	
� a � y � � y � 	

y 
 0 � y0 � z � y0 � a � y0 � � y0 � 0 � 1 	
y 
 1 � y1 � z � y1 � a � y0 � � y1 � 0 � 1 	
z 
 0 � z 
 � a � z � � z � 0 � 1 	

� a � z 
 � � z 
 � 	

� ����������������
�

a

� a

a a

a � 	 � a � 	 �

10

0 1

0 1 0 1

Figure 3.3.: An Example for the Reduction of SAT to Entailment for FTne� � ar �

Now fix distinct variables x and y. Proposition 3.9 claims the existence of formulas
Φx � C1 � 3 � through Φx � C3 � 3 � and Φ 
y such that

Φx � C1 � 3 � � Φx � C2 � 3 � � Φy � false � 3 � �� �
P �

�
F T � x � y (3.7)

Φx � C1 � 3 � � Φx � C2 � 3 � � Φx � C3 � 3 � � Φy � false � 3 � � �
P �

�
F T � x � y (3.8)

The formula Φx � C1 � 3 � (to be defined) and the form of its greatest solution are depicted
in Figure 3.3: the formula on the left asserts all feature trees in the denotation of x
to have at least the paths and labels of the tree on the right; at the mentioned paths
they may have at most features 0 and 1, and no feature at all at the mentioned paths of
length 3.

The maximal paths correspond to the boolean valuations of u1 through u3 under
which C1 evaluates to false [89], where the features 0 and 1 correspond to the truth
values false and true. Similarly, as the empty clause evaluates to false under all val-
uations, the formula Φy � false � 3 � constrains y to the set of trees that have exactly the
paths in � 0 � 1 	 3 and are completely labelled with a. As there is only one such tree,
call it τ3, Φy � false � 3 � entails that y � � τ3 	 . (This only holds because the empty set is
excluded from P � � F T � ; over P � F T � only the inclusion y � � τ3 	 is entailed. See also
Section 3.2.2.)

Likewise, the formula Φx � C1 � 3 � � Φx � C2 � 3 � � Φx � C3 � 3 � will constrain x to � τ3 	 , and
hence (3.8) will be valid. In contrast, Φx � C1 � 3 � (and also Φx � C1 � 3 � � Φx � C2 � 3 � ) are
less restrictive with respect to x than Φy � false � 3 � is with respect to y, and hence
Φx � C1 � 3 � � Φy � false � 3 � �� �

P �
�
F T � x � y as well as (3.7) hold.
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3.2.1.3. Proof of Proposition 3.9

This proof covers this whole section. Let us first formalise the intuition given in the
example above. We fix a label a and three distinct features 0 � 1 and 2, and we confuse
the truth values true and false with the features 1 and 0, respectively. (The feature 2 will
be used only farther below.) We represent every boolean valuation β on � u1 ������� � uk 	 as
the following path pk

β.

pk
β
�

def β � uk � ����� β � u1 �

We say that a feature tree τ contains a valuation β, written β � τ, if the following
conditions hold.

1. ��� � τ � pk
β � � /0

2. � p � p a prefix of pk
β : � p � a � � Sτ and ��� � τ � p � � � 0 � 1 	

By generalisation, we say that a tree τ contains a set B of valuations, written B � τ, if� β � B : β � τ. The injective function T establishes a correspondence between the sets
of boolean valuations B and the sets T � B � of feature trees containing B.

T � B � � def � τ � if B � τ 	

For instance, T � � 0 � 1 	 k � is the singleton set containing just the complete binary feature
tree of depth k over the features 0 and 1 which is completely labelled with a.

Now assume that the function Φx has the following properties.

α
� �

P �
�
F T �

n�
i 	 1

Φx � Ci � k � iff α � x � � T � Sol � �

n�
i 	 1

Ci � � (3.9)

α
� �

P �
�
F T � Φy � false � k � iff α � y � � T � � 0 � 1 	 k � (3.10)

Lemma 3.10

If, for all x � V , there exists a function Φx with properties (3.9) and (3.10) then clause
� 2 � in Proposition 3.9 holds.
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Φx � C � k � � Φ̂x � pk
C �

Φ̂x � ε � � x � 	 � a � x �
Φ̂x � 1p � � x � 0 � 1 	 � a � x � � � x 
 � x 
 1 � x 
 � Φ̂x � � p � �
Φ̂x � 0p � � x � 0 � 1 	 � a � x � � � x 
 � x 
 0 � x 
 � Φ̂x � � p � �
Φ̂x � 2p � � x � 0 � 1 	 � a � x � � � x1x2x3 � x 
 1 � x1 � x 
 0 � x2 � x1 � x3 � x2 � x3 � Φ̂x3 � p � �

Figure 3.4.: Reducing SAT to Entailment for FTne� � ar �

Proof.

n�
i 	 1

Φx � Ci � k � � Φy � false � k � � � P �
�
F T � x � y

iff � α : if α
� �

P �
�
F T �

n�
i 	 1

Φx � Ci � k � � Φy � false � k � then α � x � � α � y �

iff � α : if α
� �

P �
�
F T �

n�
i 	 1

Φx � Ci � k � � Φy � false � k � then α � x � � T � � 0 � 1 	 k � by (3.10)

iff T � Sol � �

n�
i 	 1

Ci � � � T � � 0 � 1 	 k � by (3.9)

iff
n�

i 	 1

Ci is non-satisfiable

For the downward implication of equivalence marked (3.9) note that, by Property (3.9),
every valuation α with α � x � � T � Sol � � � n

i 	 1 Ci � � is a solution of � n
i 	 1 Φx � Ci � k � . The

upward implication follows directly from (3.9). For the upward implication of the last
equivalence note that Sol � � � n

i 	 1Ci � � T � � 0 � 1 	 k � if � n
i 	 1Ci is non-satisfiable. For the

downward implication first note that

� B � � 0 � 1 	 k : T � B � �� /0

which implies that /0
�� T � Sol � � � n

i 	 1Ci � � . Hence T � Sol � � � n
i 	 1Ci � � � T � � 0 � 1 	 k �

since T � � 0 � 1 	 k � is a singleton set, and Sol � � � n
i 	 1Ci � � � 0 � 1 	 k since T is injective.

Thus � n
i 	 1 Ci is non-satisfiable. �

It remains to show that there are indeed formulas Φx � C � k � with Property (3.9) whose
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size is proportional to k. For every i � 1 � i � k and every clause C over � u1 ������� � uk 	 let

δi � C � � 1 if � ui in C

δi � C � � 0 if ui in C

δi � C � � 2 otherwise.

This is well-defined because no clause C contains both ui and � ui for a boolean vari-
able ui. Every clause C corresponds to the path pk

C given by

pk
C
�

def δk � C � ����� δ1 � C � �
The definition of Φx � C � k � by recursion over pk

C is given in Figure 3.4. Since every
step of this definition introduces at most three new variables, these formulas have size
proportional to k.

It is easy to verify directly that every solution α of Φy � false � k � satisfies α � y � �
T � � 0 � 1 	 k � , so that Property (3.10) holds. Note also, that Property (3.10) is a con-
sequence of Property (3.9) since T � � 0 � 1 	 k � is a singleton such that α � y � � T � � 0 � 1 	 k �
implies α � y � � T � � 0 � 1 	 k � over non-empty sets.

Observe that � n
i 	 1 Φx � Ci � k � � Φy � false � k � is always satisfiable, for example by every

valuation mapping both x and y to T � � 0 � 1 	 k � . Hence we know that a greatest solution
exists by Proposition 2.10.

Lemma 3.11

For all clauses C over k variables and all x: T � Sol � � C � � � gsol � Φx � C � k � � � x � .

Proof. We show by induction over k that, for all x, τ, and all clauses C over k variables

Sol � � C � � τ if and only if τ � gsol � Φx � C � k � � � x � �

Case k � 0: We have

Φx � false � k � � Φ̂x � ε � � x � 	 � a � x �

By definition of Sol � � C � � τ, the fact that the only valuation over 0 variables is
the empty one, and the definition of gsol � Φx � false � k � � , we reason as follows.

Sol � � false � � τ iff Sol � true � � τ

iff ε � Dτ � � ε � a � � Sτ � and ��� � τ � � /0

iff gsol � Φx � false � k � � � x �
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Case k � 0: The clause C can have one of three forms, uk � C 
 , � uk � C 
 , or C 
 for some
clause C 
 over variables uk � 1 ������� � u1. We only consider the case C � uk � C 
 .
The other cases are similar. For ease of reading, we introduce the following
abbreviations for all f � F:

Dτ � f � � p
�

f p � Dτ 	 f Dτ
� � f p

�
p � Dτ 	

Sτ � f � � � p � a � � � f p � a � � Dτ 	 f Sτ
� � � f p � a � � � p � a � � Sτ 	

If C � uk � C 
 , we have

Φx � C � k � � x � 0 � 1 	 � a � x � � � x 
 � x 
 0 � x 
 � Φx � � C 
 � k 
 1 � � (3.11)

Fix a fresh x 
 . By definition of Sol � � C � � τ and by induction assumption we
have that

Sol � � C � � τ

iff Sol � � � uk � C 
 � � � τ

iff � τ 
 :Sol � � C 
 � � τ 
 and

���� 1 � Dτ �
� Dτ � 0 � Sτ �

� Sτ � 0
2 � ��� � τ � � � 0 � 1 	 � � ε � a � � Sτ

iff � τ 
 :τ 
 � gsol � Φx � � C 
 � k 
 1 � � � x 
 � and

���� 1 � Dτ �
� Dτ � 0 � Sτ �

� Sτ � 0
2 � ��� � τ � � � 0 � 1 	 � � ε � a � � Sτ

It remains to show that this is equivalent to τ � gsol � Φx � C � k � � � x � .15

� � � By definition of the greatest solution, τ 
 � gsol � Φx � � C 
 � k 
 1 � � � x 
 � holds if
and only if:

3. DΦx �
�
C � � k � 1 � �

x � � � Dτ � , SΦx �
�
C � � �

x � � k � 1 � � Sτ � , and

4. for all p and f : if Φx � � C 
 � k 
 1 � �
x 
 � p � f 	 then ��� � τ 
 � p � � � f 	 .

Given equation (3.11), we conclude from � 1 � , � 3 � and the definition of path
reachability that

DΦx
�
C � k � � x � � 0DΦx �

�
C � � k � 1 � � x 
 � � 0Dτ � � 0 � Dτ � 0 � � Dτ

SΦx
�
C � k � � x � � 0SΦx �

�
C � � k � 1 � � x 
 � � 0Sτ � � 0 � Sτ � 0 � � Sτ

Further, if Φx � C � k � �
x � p � f 	 , then there two possibilities:

15Here, we allow path reachability with respect to existential formulas Φ instead of just constraints,
if the mentioned variables are free in Φ. For instance, we write

�
y
�

z � x 
 y � y # f % z � z 
 x � ��� x � f x � .
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3. Entailment for Set Constraints

1. If p � ε and � f 	 � � 0 � 1 	 , then ��� � τ � p � � � 0 � 1 	 � � f 	 follows from
� 2 � .

2. If Φx � � C 
 � k 
 1 � �
x 
 � p � � f 	 for some p 
 with p � 0p 
 , then ��� � τ 
 � p 
 � �

� f 	 follows from � 4 � . Furthermore, Dτ � 0 � Dτ � in � 1 � implies that
��� � τ � 0p 
 � � ��� � τ 
 � p 
 � , hence again ��� � τ � p � � � f 	 .

In combination, Φx � C � k � �
x � p � f 	 implies ��� � τ � p � � � f 	 for all p and

f , and thus τ � gsol � Φx � C � k � � � x � .
��� � For the converse, we assume τ � gsol � Φx � C � k � � � x � and set τ 
 � τ � 0.

Then we check that τ satisfies � 2 � , that τ 
 satisfies � 1 � , and that τ 
 �
gsol � Φx � � C � k 
 1 � � � x 
 � . �

Lemma 3.12
Let � n

i 	 1Ci be a SAT problem over k variables. Then:

� α : α
� �

P �
�
F T �

n�
i 	 1

Φx � Ci � k � if and only if α � x � � T � Sol � �

n�
i 	 1

Ci � �

Proof. We show that the greatest solution of
n�

i 	 1

Φx � Ci � equals T � Sol � �

n�
i 	 1

Ci � � .

gsol �
n�

i 	 1

Φx � Ci � k � � � n�

i 	 1

gsol � Φx � Ci � k � � since
n�

i 	 1

Φx � Ci � k � sat.

by Proposition 2 � 1
� n�

i 	 1

� τ �
Sol � � Ci � � τ 	 by Lemma 3 � 11

� � τ � n�

i 	 1

Sol � � Ci � � τ 	
� � τ �

Sol � �

n�
i 	 1

Ci � � τ 	
� T � Sol � �

n�
i 	 1

Ci � � �

3.2.2. Dropping the Non-emptiness Restriction

We show that the same reduction idea of SAT to entailment applies, with slight modi-
fications, also to the case of possibly empty sets of trees.

Theorem 18 (Entailment for FT � � ar � is coNP-hard)

The entailment problem ϕ
� �

P
�
F T � ϕ 
 for FT ��� ar � is coNP-hard.

70



3.2. Hardness Results on Entailment

Φz
x � C � k � � Φ̂z

x � pk
C �

Φ̂z
x � ε � � x � z

Φ̂z
x � 1p � � x � 0 � 1 	 � a � x � � � x 
 � x 
 1 � x 
 � Φ̂z

x � � p � �
Φ̂z

x � 0p � � x � 0 � 1 	 � a � x � � � x 
 � x 
 0 � x 
 � Φ̂z
x � � p � �

Φ̂z
x � 2p � � x � 0 � 1 	 � a � x � � � x1x2x3 � x 
 1 � x1 � x 
 0 � x2 � x1 � x3 � x2 � x3 � Φ̂z

x3
� p � �

Φ 
 zy � false � � Φ̂ 
 zy � pk
false �

Φ̂ 
 zy � 2p � � N � y � � � y 
 � y 
 1 � y 
 � y 
 0 � y 
 � Φ̂ 
 zy � � p � �
Φ̂ 
 zy � ε � � y � z

Figure 3.5.: Reducing SAT to Entailment for FT � � ar �

Corollary 19 (Satisfiability of Positive and Negative FT � � ar � Constraints)
The satisfiability problem of positive and negative constraints FT ��� ar � is coNP-hard.

The proof is by adaptation of the proof of Theorem 16 in the previous section. There,
we have exploited that we can express singleton sets with FTne� � ar � constraints. This is
no longer the case for FT � � ar � constraints. For illustration, observe that the following
implication holds over non-empty sets of feature trees:

x � 	 � a � x � � y � 	 � a � y � � �
P �

�
F T � x � y (3.12)

Over possibly empty sets it does not. Only a weaker implication holds:

x � 	 � a � x � � y � 	 � a � y � � �
P �

�
F T � x � y � y � x (3.13)

In analogy, Property (3.10) on page 66 does not hold over P � F T � because the empty
set is always a solution for Φy � false � k � . Only the following weaker equivalence holds.

α
� �

P
�
F T � Φy � false � k � iff α � y � � T � � 0 � 1 	 k � (3.14)

If the constraint system can express non-emptiness, we can correct this easily by re-
quiring x to denote a non-empty set in the ε-clause of Figure 3.4:

Φ̂x � ε � � x
�� /0 � x � 	 � a � x � (3.15)

Unfortunately, in FT � � ar � we cannot express non-emptiness.16 We adapt Proposi-
tion 3.9 as follows in order to prove Theorem 18.

16In contrast, set constraints over constructor trees can if the signature contains constants. Therefore,
the adaptation (3.15) indeed works for standard set constraints as we show in [140]. There, of course
Φ̂x � ε � is defined as x � a.
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Proposition 3.13 (Reducing SAT to Entailment for FT � � ar � )
For all x � y � z � V there exists a function Φz

x from clauses C and integers k to existential
FT � � ar � formulas, and an existential FT ��� ar � formula Φ 
 zy � false � such that for all C:

1. The sizes of Φz
x � C � k � and Φ 
 zy � false � are proportional to k.

2. For all SAT problems � n
i 	 1Ci over k variables the following holds if x

�� y:

n�
i 	 1

Φz
x � Ci � k � � Φ 
 zy � false � � � P �

�
F T � x � y iff

n�
i 	 1

Ci is non-satisfiable.

The reduction is given in Figure 3.5. It adapts the reduction of Figure 3.4 in the ε-
clause, and gives an special definition for the formula associated with the clause false.
Instead of forcing all maximal paths in Φz

x � C � k � to the singleton set � a 	 , it asserts
all maximal paths in Φz

x � C � k � to be included in the fixed z, and all maximal paths in
Φ 
 zy � false � to be equal to z. The proof of Proposition 3.13 is completely analogous to
the proof of Proposition 3.9, except that all notions related to valuations (such as: τ
contains β, B � τ, T � B � , etc.) must be made relative to some set σ that denotes the
valuation of z.

3.2.3. Entailment with Existential Quantifiers is coNP-hard

We apply the idea of the two previous sections to the entailment problems ϕ
� �

P �
�
F T �� xϕ 
 and ϕ

� �
P

�
F T � � xϕ 
 with existential quantification but without arity constraints,

and show them to be coNP-hard, too. The idea still rests on Henglein’s and Rehof’s
idea from [89], but the details are original. The reduction works for both sets of infi-
nite trees and sets of finite trees. In the following section, we improve this result by
showing entailment with existential quantification to be even PSPACE-hard.

With existential quantification, the reduction of SAT to an entailment problem becomes
simpler. In the previous sections we have encoded an inconsistent SAT problem by a
set such that all trees in the set have exactly all paths in � 0 � 1 	 k and are either com-
pletely labelled with a or such that selection at all the paths in � 0 � 1 	 k yields the same
set. With existential quantification it suffices to encode an inconsistent SAT problem
by a set of trees which contain at least a given set of paths.

Proposition 3.14 (Reducing SAT to Entailment for FTne� with Existentials)

For all x � V there exists a function Ψx from clauses C and integers k to existential
FTne� formulas such that for all C:

1. The size of Ψx � C � k � is proportional to k.
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Ψx � C � k � � � n
i 	 1 Ψ̂x � pk

Ci �
Ψ̂x � ε � � true

Ψ̂x � t p � x � � � x 
 � x 
 1 � x 
 � Ψ̂x � � p � �
Ψ̂x � f p � x � � � x 
 � x 
 0 � x 
 � Ψ̂x � � p � �
Ψ̂x � ?p � x � � � x1

� x2
� x3 � x 
 1 � x1 � x 
 0 � x2 � x1 � x3 � x2 � x3 � Ψ̂x3 � p � �

Figure 3.6.: Reducing SAT to Entailment for FTne� with Existential Quantifiers

� y
� y0
� y1
� z
� z 


���������
�

x 
 1 � y
y 
 0 � y0 � z � y0

y 
 1 � y1 � z � y1

z 
 0 � z 


����������
�

�

�

� �

� �

1

0 1

0 0

Figure 3.7.: An Example for the Reduction of SAT to Entailment for FTne� with Exis-
tential Quantifiers

2. For all SAT problems � n
i 	 1Ci over k variables the following holds:

n�
i 	 1

Ψx � Ci � k � � � P �
�
F T � Ψx � false � k � iff

n�
i 	 1

Ci is non-satisfiable

Note the distinction of this Proposition to Proposition 3.9: while the latter requires the
conjunction of � n

i 	 1 Ψx � Ci � k � and Ψy � false � k � to entail the (quantifier-free) constraint
x � y, Proposition 3.14 requires � n

i 	 1 Ψx � Ci � k � to entail Ψx � false � k � which does contain
existential quantifiers.

The function Ψx is defined in Figure 3.6. Again, the size of the formulas Ψx � false � k �
and Ψx � C � k � is O � k � n � , i. e., polynomial in the size of the given instance of SAT.
Their construction is similar to the one of Figure 3.4 but, as promised above, strictly
simpler since it does not mention arity constraints or label constraints at all. The clause
C1

� � u1 � u3 over variables u1 � u2, and u3 which we considered above will now be
mapped to the formula Ψx � C1 � k � in Figure 3.7. In every solution of Ψx � C1 � k � , all
feature trees in the denotation of x must have at least the paths in the tree depicted
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on the right; they may have further paths and arbitrary labellings, though. In order to
justify this reduction, we must adapt Property (3.9) which does no longer apply.

We say that a feature tree τ weakly contains a valuation β, written β � w τ, if

� p � p a prefix of pk
β : p � Dτ �

By generalisation, we define B � w τ if � β � B : β � w τ, and similarly we define

Tw � B � � def � τ �
B � w τ 	

Note that Tw � � 0 � 1 	 k � is not a singleton anymore. Then the following properties hold.

α
� �

P �
�
F T �

n�
i 	 1

Ψx � Ci � k � iff α � x � � Tw � Sol � �

n�
i 	 1

Ci � � (3.16)

Lemma 3.15

If, for all x � V , there exists a function Ψx with properties (3.16) then clause � 2 � in
Proposition 3.14 holds.

Proof.

n�
i 	 1

Ψx � Ci � k � � � P �
�
F T � Ψx � false � k �

iff � α : α
� �

P �
�
F T �

n�
i 	 1

Ψx � Ci � k � implies α
� �

P �
�
F T � Ψx � false � k �

iff � α : α
� �

P �
�
F T �

n�
i 	 1

Ψx � Ci � k � implies α � x � � Tw � � 0 � 1 	 k � by � 3 � 16 �

iff Tw � Sol � �

n�
i 	 1

Ci � � � Tw � � 0 � 1 	 k �

iff
n�

i 	 1

Ci is non-satisfiable by � 3 � 16 � �

The remainder of the proof is closely following the lines of the one in Section 3.2.1.
We do not elaborate on it further since the following section contains a stronger result.

3.2.4. Entailment with Existential Quantifiers is PSPACE-hard

We prove the following results.

Theorem 20 (Entailment with Existential Quantifiers is PSPACE-hard)

The entailment problem ϕ
� �

P �
�
F T � � xϕ1 for both FT � and FTne� is PSPACE-hard.
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Proof. Follows from Proposition 3.16 on Page 75. �

Corollary 21 (Negation and Existential Quantification for FT � and FTne� )

Satisfiability of positive and negative existential FTne� formulas, and emptiness of
positive and negative existential FT � formulas is PSPACE-hard (ϕ � � � x1 ϕ1 � �����

� � xn ϕn).

We reduce in linear time the inclusion problem between regular languages REG over
finite words to the entailment problem ϕ

� �
P �

�
F T � � xϕ 
 over FTne� . Since the problem

REG is well-known to be PSPACE-complete [70, 103], this proves PSPACE-hardness
of entailment with existential quantifiers.17

Interestingly, the reduction works both for the case of sets of infinite trees and of finite
trees: Notably, it is possible to encode the Kleene star without referring to infinite
trees. This is in contrast to our earlier result for FT � [141] that suggested the need for
infinite trees (or sets of infinite trees) for the encoding of the Kleene star. We could
drop this restriction in [145].

We consider regular expressions over a finite subset F0 � F defined as follows:

R :: � ε
�

f
�

R � �
R1 � R2

�
R1R2 where f � F0

Note that F0 � F allows arbitrary large alphabets since F is assumed to be infinite.
Every regular expression R defines a non-empty set L � R � of finite words over F0.

Proposition 3.16 (Reducing REG to Entailment with Existential Quantifiers)

Let x and y be arbitrary variables. For every pair of regular expressions R1 and R2

there are existential FTne� formulas Θ � x � R1 � y � and Θ � x � R2 � y � whose sizes are linear
in the sizes of R1 and R2, such that

Θ � x � R1 � y � � � P �
�
F T � Θ � x � R2 � y � if and only if L � R2 � � L � R1 � .

3.2.4.1. First Solution: Infinite Feature Trees

An immediate idea of the proof is to encode every regular set of words (over features)
as a set σ of feature trees all of which share the regular structure: namely such that all
trees in σ contain all paths in L � R � and are labelled with a at all paths in L � R � . For
instance, one may encode the finite set � 1 � 111 	 as the set σ of all feature trees τ with

� � 1 � a � � � 111 � a � 	 � Sτ �
17Essentially the same proof also applies to entailment for FT � . The details will be discussed at the

end of this section.
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and the infinite set � ε � 1 � 11 ������� 	 as the set σ of all feature trees τ with

� � ε � a � � � 1 � a � � � 11 � a � ������� 	 � Sτ �
This information can conveniently be represented by a single feature tree [141]. The
set described thus is given by all feature trees that contain at least the information in
this tree. Here are some typical regular expressions and the associated trees:

f � g
�

a a

f g f g � h �

�

a

f

gh

� f � g � � a
f

g

� f g � h � � a

�
fh

g

A consequence of this encoding is, however, that infinite regular languages are neces-
sarily encoded by sets of infinite trees. Hence, for sets of finite trees this encoding only
works for star-free regular expressions that induce finite languages; since the inclusion
problem for languages defined by star-free regular expressions is coNP-complete, we
obtain only coNP-hardness for the entailment problem over sets of finite trees. But we
can do better.

3.2.4.2. Better Solution: Finite and Infinite Feature Trees

Instead of encoding a regular language L � R � by a set of feature trees all of which have
all paths in L � R � and are labelled with a there, we encode it by a set σ of feature
trees that contains one tree that has all the paths p � L � R � and is labelled with a there.
Intuitively, this is dual to the encoding above. The regular language is not encoded by
an upper bound on the sets (which affects the shape of all contained trees) but a lower
bound (which asserts the existence of one).

The proof covers the remainder of this section. In Figure 3.8 we define an existential
FTne� formula Θ � x � R � y � for every regular expression R and variables x � y. The formula
Θ � x � R � y � clearly has size linear in the size of R. Define the projection p � 1 � σ � of a
set σ to some path p by p � 1 � σ � � � τ 
 � exists τ � σ : τ � p � τ 
 	 .
Lemma 3.17
Let α be a variable assignment and R a regular expression. Then α

� �
P �

�
F T � Θ � x � R � y �

if and only if � p � L � R � : p � 1 � α � x � ��� α � y � .
Proof. By structural induction over R. Let α be a variable assignment.
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Θ � x � ε � y � � x � y

Θ � x � f � y � � � z � x � z � z 
 f � y �
Θ � x � R1 � R2 � y � � Θ � x � R1 � y � � Θ � x � R2 � y �
Θ � x � R � � y � � � z � z � y � Θ � z � R � z � � x � z �
Θ � x � R1R2 � y � � � z � Θ � x � R1 � z � � Θ � z � R2 � y � �

Figure 3.8.: Reducing Inclusion of Regular Languages of Finite Words to Entailment
for FTne� with Existential Quantifiers

ε: α
� �

P �
�
F T � Θ � x � ε � y � iff α

� �
P �

�
F T � x � y

iff ε � 1 � α � x � � � α � x � � α � y �

f : α
� �

P �
�
F T � Θ � x � f � y � iff α

� �
P �

�
F T � � z � x � z � z 
 f � y �

iff � σ : α � z �� σ
� �

P �
�
F T � x � z � z 
 f � y

iff � σ : f � 1 � α � x � ��� α � y �
For the downward implication notice that α � z �� σ

� �
P �

�
F T � x � z � z 
 f � y implies

that σ � f is always defined, and that f � 1 � α � x � � � f � 1 � σ � ; hence f � 1 � α � x � � �
f � 1 � σ � � α � y � . For the upward implication simply set σ � f � 1 � α � x � � .

R � : α
� �

P �
�
F T � Θ � x � R � � y �

iff α
� �

P �
�
F T � � z � z � y � Θ � z � R � z � � x � z �

iff � σ : α � z �� σ
� �

P �
�
F T � z � y � Θ � z � R � z � � x � z

iff � σ : α � z �� σ
� �

P �
�
F T � z � y � x � z and � p � L � R � : p � 1 � σ ��� σ (IA)

iff � σ : α � x � � σ � σ � α � y � and � p � L � R � � : p � 1 � σ ��� σ (**)

(The upward implication of the last equivalence holds since L � R � � L � R � � .
The downward implication holds since � p � L � R � : p � 1 � σ ��� σ implies � p � q �
L � R � : q � 1 � p � 1 � σ � ��� q � 1 � σ � � σ, and so on.) The last formula (**) is equiva-
lent to � p � L � R � � : p � 1 � α � x � � � α � y � (3.17)

The downward implication is simple. For the inverse direction assume (3.17)
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and define
σ �

def

� � p � 1 � α � x � � � p � L � R � � 	
Now, α � x � � ε � 1 � α � x � � � σ holds by definition since ε � L � R � � , and σ � α � y �
holds since � p � L � R � � : p � 1 � α � x � � � α � y � . Furthermore, for all p � L � R � � ,
and

p � 1 � σ � � � τ 
 � exists τ � σ : τ � p � τ 
 	
� � τ 
 � � q � L � R � � : τ 
 � p � 1 � q � 1 � α � x � � � 	
� � � qp � 1 � α � x � � � q � L � R � � 	 � σ

R1 � R2: α
� �

P �
�
F T � Θ � x � R1 � R2 � y �

iff α
� �

P �
�
F T � Θ � x � R1 � y � � Θ � x � R2 � y �

iff � p � L � R1 � : p � 1 � α � x � ��� α � y � and � q � L � R2 � : q � 1 � α � x � ��� α � y �
iff � p � L � R1 � R2 � : p � 1 � α � x � ��� α � y �

R1R2: Note that we have assumed L � R1 � �� /0 and L � R2 � �� /0.

α
� �

P �
�
F T � Θ � x � R1R2 � y �

iff α
� �

P �
�
F T � � z � Θ � x � R1 � z � � Θ � z � R2 � y � �

iff � σ : α � z �� σ
� �

P �
�
F T � Θ � x � R1 � z � � Θ � z � R2 � y �

iff � s � � p � L � R1 � � q � L � R2 � : p � 1 � α � x � ��� σ and q � 1 � σ ��� α � y � by (IA)

Due to our assumption that L � R1 � and L � R2 � are non-empty, the last clearly
formula is clearly equivalent to � p � L � R1R2 � : p � 1 � α � x � ��� α � y � . �

3.2.4.3. Proof of Proposition 3.16

Let a and b two distinct labels.

� � � Assume that L � R2 � �� L � R1 � , so that there exists p0 � L � R2 � such that p0
�
�

L � R1 � . Define a valuation α by

α � y � � � a 	

α � x � �
�� �

τ ������
Dτ

� prefix-closure � L � R1 � R2 � �� p � L � R1 � : τ � p � a � � q � L � R2
�
R1 � : τ � q � b

� �
�
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where prefix-closure � S � is the smallest prefix-closed superset of S. Clearly, α
defines a valuation into sets of feature trees. From Lemma 3.17 we obtain that
α
� �

P �
�
F T � Θ � x � R1 � y � , and α

�� �
P �

�
F T � Θ � x � R2 � y � , because p � 1

0 � α � x � � � � b 	
and � b 	 �

� � a 	 . Hence Θ � x � R1 � y � �� � Θ � x � R2 � y � .
��� � Assume L � R2 � � L � R1 � . Then apparently for all α

� � p � L � R1 � : p � 1 � α � x � � � α � y � � implies � � p � L � R2 � : p � 1 � α � x � � � α � y � � �
By Lemma 3.17, this is equivalent to saying that for all α the following holds: if
α
� �

P �
�
F T � Θ � x � R1 � y � then α

� �
P �

�
F T � Θ � x � R2 � y � ; that is Θ � x � R1 � y � � � P �

�
F T �

Θ � x � R2 � y � . �

3.2.4.4. Dropping the Non-emptiness Restriction

We check that Proposition 3.16 also holds for the domain of possibly empty sets of
feature trees. We check Lemma 3.17 again: the interesting direction is the one from
left to right. To show this, pick R and an P � F T � -solution α of Θ � x � R � y � . We make a
case distinction on emptiness of α � x � in order to prove

� p � L � R � : p � 1 � α � x � ��� α � y � (3.18)

α � x � � /0: By induction over R one shows that this implies α � y � � /0 under the assump-
tion that α

� �
P

�
F T � Θ � x � R � y � . Hence (3.18) holds trivially.

α � x � �� /0: If α � y � � /0 then again (3.18) holds trivially. Otherwise, one checks that α
is a P � � F T � -solution of Θ � x � R � y � . Then (3.18) follows from Lemma 3.17.
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3.3. Discussion and Related Work

3.3.1. Set Constraint Systems

In this section we compare set constraints over feature trees with standard set con-
straints. We briefly survey classes of standard set constraints (for more exhaustive
overviews see [5, 88, 157]), and we consider two standard set constraints more closely,
namely projections x � a � 1�

k � � y � and term inclusions a � x � y � � z.

3.3.1.1. Standard Set Constraints

A general set expression e is built from first-order terms x or a � e � , union e1 � e2,
intersection e1

�
e2, complement ec, and projection a � 1�

k � � e � [85]. All set constraints
mentioned below are interpreted in the domain P � T � of sets of constructor trees. The
denotation of the projection term a � 1�

k � � σ � is defined by

a � 1�
k � � σ � �

def � τ � � τ1 ��������� τn : a � τ1 ������� � τk � 1 � τ � τk � 1 ������� � τn � � σ 	 (3.19)

where 1 � k � n � ��� � a � , and y � a � 1�
k � � x � holds under a P � T � -valuation α if

α � y � � a � 1�
k � � α � x � � . A general set constraint is a conjunction of inclusions of the form

e � e 
 . A positive set constraint is built from positive set expressions that do not
contain the complement operator. A definite set constraint [85] is a conjunction of
inclusions el � er between positive set expressions, where the set expressions er on
the right hand side of an inclusion are furthermore restricted to contain only variables,
constants and function symbols and the intersection operator (that is, no projection
or union). Heintze and Jaffar have called this class definite because every satisfiable
constraint of this class has a least solution.

Charatonik and Podelski [42] define the class of set constraints with intersections (in-
clusions between set expressions built from variables, constructors, and intersection
only) and show them to be equivalent to definite set constraints. They also define the
class of co-definite set constraints [44] whose (flattened) syntax is as follows:

ψ :: � a � x
�

x � y1 � ����� � yn
�

x � a � x � �
x � a � 1�

k � � y �
�

ψ � ψ 

An essential property of co-definite set constraints is that they have a greatest solu-
tion if satisfiable (over finite as well as infinite trees). This property is dual to the
least model property of definite set constraints; hence the name “co-definite”. Other-
wise, both systems are not dual to each other. Devienne, Talbot, and Tison [58, 59]
have extended both definite and co-definite set constraints by so-called membership
expressions. Membership expressions are set comprehensions whose body is an ex-
istentially quantified conjunction of inclusions t � e between first-order terms and set
expressions.
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At the lower end of the scale of expressiveness, atomic set constraints are inclusions
between first-order terms and no further set operators [85]. Inclusion constraints over
non-empty sets Ines [142] are inclusion between first-order terms (their syntax co-
incides with the syntax of atomic set constraints) interpreted over non-empty sets of
trees.

3.3.1.2. Projections

The selection constraint x 
 f � y in our set constraint system FT � � ar ����� corresponds to
the projection constraint x � a � 1�

k � � y � in standard set constraints. There are two differ-
ences, though.

First, recall that the constraint x 
 f � y requires all trees in the denotation of x to have
the feature f . In addition, it constrains y to the projection of x at f : so x 
 f � y is a
constraint on both x and y. In contrast, the projection constraint y � a � 1�

k � � x � does not
restrict the possible values of x: for every value of x there is a solution of y � a � 1�

k � � x � . An
alternative set-up of our constraint system would have used two constraints to represent
the meaning of x 
 f � y, namely y � f � 1 � x � to express projection at f and x 
 f � �

to require
definedness of f . The latter one and the labelling constraint a � x � are used to define
non-trivial sets. In standard set constraints, this is expressed by set terms such as a � y � ,
where the denotation of a � σ1 ��������� σn � is defined as follows.

a � σ1 ������� � σn � �
def � a � τ1 ������� � τn � � τ1 � σ1 ������� � τn � σn 	 (3.20)

A third alternative would have been a system based on feature terms like a � f :x � ,
a � f :x ����� � , � f :x � , and � f :x ����� � whose denotation is defined similar to (3.20) with the
additional flexibility that label, feature, and arity information can be freely combined
or piece-wise omitted. Amongst these alternatives, the system FT � � ar ����� is intrigu-
ing by its simplicity and its similarity to the feature constraint system CFT over trees
which it analyses. Furthermore, the semantics of selection constraints in FT � � ar �����
seems most appropriate for the analysis of selection constraints of CFT; see example
Dfail3 on Page 94.

An interesting property of the selection constraint is the validity of the following im-
plication over P � F T � .

x 
 f � y � � x � /0 � y � /0 � (3.21)

Given two distinct features f and g, we can even express that emptiness of one variable
is equivalent to emptiness of another one (we exploit this in Chapter 4):

� z � z 
 f � x � z 
 g � y � � � x � /0 � y � /0 � (3.22)
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In contrast, the projection constraint x � a � 1�
1 � � y � does not entail x � /0 � y � /0, since it has

a solution that maps y to the set � b 	 and x to the empty set. However, in combination
with a set constructor x � a � y � a similar formula (albeit constructor dependent) holds:18

x � a � y1 � y � � y1 � a � 1�
1 � � x � � � x � /0 � y1

� /0 � (3.23)

In FT ��� ar � , we can express the projection constraint x � a � 1�
k � � y � as follows:


 
 x � a � 1�
k � � y � � � �

def
� x 
 � x 
 
 k � x � a � x 
 � � x 
 � y � (3.24)

Theorem 22 below makes precise what “expressing” means. Intuitively, labelling and
selection constraints in encoding (3.24) separate the two services of the projection
operator a � 1�

k � : applied to a set σ, first determines a subset σ 
 of σ of trees that are
labelled with a and have a kth subtree, and then collect the kth subtrees of all the trees
in σ 
 .19

Constructor trees can be embedded into feature trees; denote with 
 
 � � � : T �� F T the
canonical embedding which we have mentioned on Page 26. On constructor trees, the
constraint system CFT is a refinement of the constraint system RT of infinite construc-
tor trees [50] that is used in Prolog II [51]. To show this, it was proven in [197] that
the embedding 
 
�� � � (extended to first-order connectives) preserves validity of arbitrary
first-order formulas over RT.

Analogously, FT � � ar � � � refine co-definite set constraints in a sense made precise by
the following theorem. If α is a P � T � -valuation then let 
 
 α � � the P � F T � -valuation
that maps all x to � 
 
 τ � � � τ � α � x � 	 . Consider the embedding 
 
�� � � of co-definite set
constraints ψ into FT � � ar ����� constraints ϕ as defined by the clauses (2.5) and (2.6)
on Page 28 and clause (3.24) above.

Theorem 22 (Embedding Co-definite Set Constraints wrt. Greatest Solutions)

For all co-definite set constraints ψ without constraints of the form a � x, the greatest
P � T � -solution of ψ and the greatest P � F T � -solution coincide up to the canonical
embedding 
 
 � � � of constructor trees into feature trees: α is the greatest solution of ψ if
and only if 
 
α � � is the greatest solution of 
 
ψ � � .

Proof. Straightforward. �
Notice that this theorem would fail to hold if the semantics of σ 
 f � σ 
 did not require
all trees in σ 
 to have the feature f . As an experiment, assuming the slightly weaker

18The inverse implication, of course, does not hold because the right hand side does not mention the
label a.

19Notice in passing, that the inverse inclusion a � 1�
k � � y � 
 x cannot be expressed in FT � � ar � . Doing

so, e. g., in order to embed definite set constraints [85], would probably require a term-based constraint
syntax as mentioned on the previous page.
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definition: σ 
 f � σ 
 if and only if σ 
 � � τ 
 � � τ � σ : τ 
 f � τ 
 	 ; then the greatest solution of

x � a � y � � y � b � x � a � z � � z � c

would map x to the empty set (if b
�� c), while the greatest solution of

x � y 
 � a � y 
 � � y 
 � 1 	 � y 
 
 1 � y � b � y � � y � 	
x � z 
 � a � z 
 � � z 
 � 1 	 � z 
 
 1 � z � c � z � � y � 	

would map x to the set of all feature trees that are labelled with a but that do not have
the feature 1.

Co-definite set constraints can express inconsistency, for example by

a � x � x � b � � if a
�� b �

whereas this is impossible in FT � � ar ����� . In particular, FT � � ar � � � constraints cannot
express the co-definite set constraint a � x. However, it can be expressed in the first-
order theory of FT ��� ar ����� as follows:

� y � a � y � � y � 	 � � b � y � � y � x � where a
�� b �

We conjecture that, using this trick, we can embed the full first-order theory of co-
definite set constraints into the first-order theory of FT � � ar � � � such that validity is
preserved.

3.3.1.3. Finite versus Infinite Trees

Consider the following two constraints:

η1
�

def x 
 f � x
η2

�
def x � a � 1�

1 � � x �
Over sets of finite trees, the FT � � ar ����� constraint η1 implies x � /0, because for every
solution α the selection α � x � � f must be defined and α � x � � f � α � x � holds; hence every
tree in α � x � must have the infinite path fff ����� and therefore be infinite. In contrast, the
projection constraint η2 has the solution α � x � � � b � a � b � � a � a � b � � ������� 	 which is a set of
finite trees only.

3.3.1.4. Term Inclusion and Greatest Solutions

The set constraint a � x � y � � /0 (expressible as a � x � y � � z � z � a � z � b if a
�� b) has two

maximal but incomparable solutions over sets of constructor trees, namely the ones

83



3. Entailment for Set Constraints

that map one variable to the empty set /0 and the other one to the full domain P � T � .
Maximality holds for both because the following equivalence is valid.

a � x � y � � /0 � � x � /0 � y � /0 � (3.25)

In other words, the constraint a � x � y � � /0 has no greatest solution because emptiness of x
and y is not independent from each other. Similarly, the constraint f � x � y � � f � a � a � �
f � b � b � has two maximal solutions but no greatest one.

Co-definite set constraints (over sets of constructor trees) and inclusion constraints
over sets of feature trees are two options to avoid this dependency. A third option is to
exclude the empty set [142].

Co-definite set constraints. If only constants or monadic terms are allowed on the
left hand side of an inclusion, the critical dependency cannot arise.

Constraints over sets of feature trees. The co-definite set constraint a � x � y � � /0 cor-
responds to the FT � � ar � constraint z � /0 � z � 1 � 2 	 � a � z � � z 
 1 � x � z 
 2 � y which
entails x � /0 � y � /0 (that is, that both x and y denote the empty set) due to for-
mula (3.21).

Constraints over non-empty sets of trees. If the empty set is excluded from the in-
terpretation domain, there are greatest solutions even if terms are admitted on
the left of an inclusion. For example, when Mishra’s set constraints (see Sec-
tion 2.3.2) are interpreted over non-empty path-closed sets, the critical depen-
dency cannot arise. To see this, observe that a � x � y � � z � x � a � 1�

1 � � z � � y � a � 1�
2 � � z �

is a valid equivalence over path-closed sets (for the simple proof, see [43]).

The independence of emptiness between neighbouring projections can also simplify
the satisfiability test for systems of set constraints. Notice that the following implica-
tion between co-definite set constraints is not valid.

a � x1 � x2 � � a � y1 � y2 � � � x1 � y1 � x2 � y2 � (3.26)

In contrast, the analogous FT � implication

x 
 1 � x 
 � x � y � y 
 1 � y 
 � x 
 � y 
 (3.27)

is valid, and is part of the satisfiability check for FT � � ar � presented in Section 2.2.1.
Notice that implication (3.26) does hold over sets of constructor trees under the addi-
tional assumption that both x1 and x2 denote a non-empty set. So it is a valid implica-
tion in the constraint system Ines [142] that excludes the empty set globally from the
interpretation domain of all variables.
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3.3.1.5. Decidability and Complexity of Set Constraints

Various decidability and complexity results have been obtained for different classes of
set constraints. For many the complexity of the satisfiability problem for the full class
of standard set constraints is very high.

Heintze and Jaffar [85] show the satisfiability problem for definite set constraints to
be decidable, thereby giving the first decidability result for a class of set constraints.
Aiken and Wimmers show the class of positive set constraints to be decidable in NEX-
PTIME [10]. Gilleron, Tison, and Tommasi prove decidability for the satisfiability
problem of positive set constraints using so-called tree set automata [74]. Bachmair,
Ganzinger, and Waldmann [19] have noticed the equivalence of positive set constraints
to a certain first-order theory called the monadic class, and could thus show the sat-
isfiability problem of positive set constraints to be NEXPTIME-complete. Later, the
decidability result has been extended to include negated inclusion constraints e

�� e 

by various researchers [8, 39, 75, 199], and to projection by Charatonik and Pachol-
ski [40]. None of these extensions changes the worst-case complexity of the satisfia-
bility problem. Aiken, Kozen, Vardi and Wimmers, have studied complexity of satisfi-
ability for various subclasses of positive set constraints [7], defined by restrictions on
the arities of the function symbols in the given signature.

Charatonik and Podelski show that the satisfiability problem of both set constraints
with intersection and co-definite set constraints is DEXPTIME-complete [42, 44].The
result on set constraints with intersection has also settled the complexity of the sat-
isfiability problem of definite set constraints. Devienne, Talbot, and Tison [58, 59]
have applied tree automata techniques to solve set constraints with membership ex-
pressions (with respect to both the greatest and the least model semantics) and could
show that membership expressions do not change the DEXPTIME-completeness of
the satisfiability problem for either definite or co-definite set constraints, nor affect the
greatest-solution property of co-definite set constraints.

The two set constraint systems without any set operators apart from term construction,
atomic set constraints and inclusion constraints over non-empty sets Ines [85, 142]
have a cubic satisfiability problem [142]. For atomic set constraints, this result was
implicit in the existing literature [84, 85]. In contrast to the polynomial satisfiability,
the entailment problem for both classes is infeasible: we show it to be coNP-hard
in [140].

3.3.2. Tree Constraint Systems

In this section, we compare systems of set constraints with systems of tree constraints,
both with respect to equality constraints and ordering constraints. Figure 3.9 sum-
marises the relationship between some of the mentioned constraint systems over trees
and sets of trees. The constraint systems occupy the nodes of the cube. They are
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tree constraints

feature trees

FT �
FT ��� ar ����� ,
FT ��� ar � , . . .

FT

CFT
FTne� � ar � � �

ordering constraints

equality constraints

tree prefixes

types

co-definite sc,

Ines, . . .

RT
FTne� � ar � � �
Ines � � �

constructor trees

set constraints

Figure 3.9.: Related Tree and Set Constraint Systems
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arranged along three dimensions that tell whether a constraint system talks about con-
structor trees or feature trees (top – bottom), about equality or an ordering relation
(front – back), and about trees or sets of trees (left – right). The edges of the cube do
not imply any further formal relationship between the constraint systems at the nodes.

3.3.2.1. Equality Constraints over Sets and Trees

Set constraints over non-empty sets of trees are closely related to constraint system
over trees. This relation is tightest on the fragment of equality constraints. It was
noticed in [142] that the first-order theories of CFT and Ines coincide when their con-
straint languages are restricted to equality constraints. The analogous result holds
for FTne� � ar � and CFT. Intuitively, the following Theorem 23 says that we can solve
equality constraints over FTne� � ar � by unification. (Of course, we do not obtain the
quasi-linear complexity of unification [197] by simply applying our algorithm to an
equality constraint with x � y replaced by x � y � y � x.)

Theorem 23 (First-order Theory of Equality Constraints)
The first-order theories of equality constraints (including arity constraints) over fea-
ture trees and over non-empty sets of feature trees coincide.

Proof. This follows from the fact that all axioms of the complete axiomatisation of
CFT [20, 197] are valid for non-empty sets of feature trees.
Amongst the five axioms of the theory CFT in [197], four are immediately seen to
hold over P � � F T � : Functionality of features, � x � y� z � x 
 f � y � x 
 f � z � y � z), clash
between different labels, � x � a � x � � b � x � � � � if a

�� b, clash of feature selection
at a tree with inappropriate arity, � x� y � x 
 f � y � x � g 	 � if f

�
� � g 	 , and the axiom� x � y � x � f g 	�� � yx 
 f � y � . The first three are actually part of our satisfiability test for

FT � � ar � in Section 2.2.1. The fifth one is based on the notion of determinants:A de-
terminant is a conjunction of the form x1

� a1 � f 1:y1 � � ����� � xn
� an � f n:yn � for pairwise

distinct variables x1 ������� � xn, and looks as follows (where ˜� ϕ denotes the universal clo-
sure of ϕ):

˜� � !x1 ������� � xn � x1
� a1 � f 1:y1 � � ����� � xn

� an � f n:yn � � (3.28)

Its validity in P � � F T � is again easily seen. �

Notice that axiom (3.28) does not hold (and so Theorem 23 fails) when the empty set
is admitted. For example, consider the following instance of (3.28),� x � y � !z � z � a � f :x � g:y � � � � x� y � !z � a � z � � z � f � g 	 � z 
 f � x � z 
 g � y � �
and notice that it does not hold over P � F T � , because

α
� �

P
�
F T � � � z � z � a � f :x � g:y � � if α � x � � /0 and α � y � �� /0 �
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3.3.2.2. Set Inclusion Constraints versus Tree Ordering Constraints

The constraint system FT � of ordering constraints over feature trees (not sets) is the
second closest relative of FT � � ar ����� [141, 143, 145]. In particular the fragment FT �
is, roughly, FT � transformed into a set constraint system.

The constraints in FT � coincide with those in FTne� (no arity and no union constraints)
where inclusion constraints x � y are replaced by the inverse tree ordering constraints
y � x. FT � constraints are interpreted over feature trees τ whose labelling function Lτ
may be partial on the tree domain Dτ. The ordering constraint is interpreted by

τ � τ 
 iff Dτ � Dτ � and Lτ � Lτ � (3.29)

In the following chapter, we exploit the close relationship between tree constraints
and set constraints over non-empty sets by applying techniques to the solving of set
constraints that have been originally developed for tree constraint systems.

� The satisfiability test for FTne� � ar � in Section 2.2.1 is essentially the same as the
one we have given for FT � [143].

� Surprisingly, also the cubic entailment test for FT � can be transferred almost
unchanged to FTne� [143]; see Section 3.1.

� The same holds for the coNP- and PSPACE-hardness results for entailment with
existential quantification [141]; see Section 3.2.

� An extension of FT � , called FT � � sort � , that allows the labels of feature trees
to be partially ordered is discussed in [137]. It was shown that the satisfiability
test for FT ��� sort � remains polynomial under certain assumptions on the partial
order of labels. It seems straightforward to also extend the satisfiability test for
FTne� � ar � to FTne� � ar � sort � along the lines of FT � � sort � .

Notice in passing that higher fragments of the first-order theory of FT � and FTne� do not
coincide (see the Footnote 14 on Page 55.) For FT � , we have shown that entailment
with existential quantification is PSPACE-complete, both for the cases of finite and
infinite trees [141, 145]; the full first-order theory of FT � is undecidable, in both the
finite tree and the infinite tree case [145]. For FTne� � ar � and FT � � ar � , the decidability
question and a precise complexity characterisation of entailment with existential quan-
tifiers is open. Undecidability for the first-order theory of FT ��� ar ����� is likely [186].

3.3.2.3. Ordering Constraints over Feature and Constructor Trees

There are different options to extend the domain T of constructor trees by an ordering.
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� One option is to enlarge T to also contain tree prefixes [142], that is constructor
trees that may have unlabelled maximal paths. Tree prefixes can be ordered nat-
urally according to equivalence (3.29). On T , this ordering collapses to equality.

� A second, equivalent possibility is to distinguish a special constant symbol � and
define an order by requiring

� � f � t � and t � t 
 iff f � t � � f � t 
 � � (3.30)

for all f and tree sequences t � t 
 of appropriate length. Paths leading to � corre-
spond to maximally unlabelled paths in tree prefixes.

� A third option is to fix an order � on labels and to consider the ordering

τ � τ 
 iff Dτ
� Dτ � and Lτ � Lτ � (3.31)

where Lτ � Lτ � extends � path-wise to trees.

Orders on various classes of constructor trees have been considered in the context
of type systems for programming languages [34, 134]. Mostly, types are modelled
by finite constructor trees over a signature that contains a binary function symbol �
(arrow), where the ordering on trees with the arrow � as their top-level constructor
is monotonic (covariant) in the second position but antimonotonic (contravariant) in
the second one (see also Page 158 for the subtyping rule on functions). In this context,
the orderings (3.29) and (3.31) roughly correspond to what is called non-structural
and structural subtyping. Henglein and Rehof show entailment of ordering constraints
with respect to structural subtyping to be coNP-complete [89] for finite types, and,
more recently, for infinite types [90]. None of the corresponding hardness results
relies on the arrow constructor. The entailment problem for non-structural subtyping
constraints is PSPACE-hard [90] but the exact complexity is open.
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4.1. Set-based Failure Diagnosis for CLP over Infinite Trees . . 93

4.2. Set-based Failure Diagnosis for CC over Infinite Trees . . . 114

4.3. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 117

We consider a concurrent constraint programming language over records, that we
model by means of the constraint system CFT [197] over possibly infinite feature trees.
As common in concurrent programming, we consider non-terminating computations
meaningful. Typical examples for applications that are intended to run forever include
operating systems or web servers. We define a set-based analysis for this language in
terms of set constraints over feature trees, and we prove that it detects the inevitability
of a class of run-time errors. We proceed in two steps: First, we consider the sublan-
guage that contains only unguarded clauses and thus corresponds to constraint logic
programming [104]. This allows us to use results from the theory of (constraint) logic
programming [105, 118] to prove correctness of our analysis for this fragment. Sec-
ond, we adapt our result to concurrent constraint programs by considering guarded
clauses.

Constraint Logic Programming. The standard semantics for terminating constraint
logic programs is given by the least model of their completion [46, 118]. This choice is
natural for programs that always terminate because the least model is given by all pro-
cedure applications (i. e., goals) that terminate successfully in finite time. Tradition-
ally, constraint programs have been interpreted over finite trees (even though modern
Prolog dialects have followed Prolog II [50, 51] in providing constraints over infinite
constructor trees).

In contrast, the standard semantics for possibly non-terminating constraint logic pro-
grams20 is given by the greatest model of the completion. Moreover, the natural inter-

20In logic programming the term perpetual processes has been used synonymously [118].
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pretation of non-terminating logic programs is over infinite trees [118]. The greatest
model is needed to give semantics to infinite computations that build data structures of
arbitrary size. For example, an infinite data structure is needed to explain an infinite
stream of messages.

So far, set-based analysis for (constraint) logic programs has focussed on terminating
computations and hence striven to approximate the least model semantics [69, 86–
88, 132]. Heintze and Jaffar state explicitly that they do not see any use for greatest
models [87]. Furthermore, set-based analysis has usually considered (constraint) logic
programs over finite trees.21 We base our set-based failure diagnosis on greatest mod-
els and constraints over infinite trees.

With every CLP program D we associate a set constraint over feature trees ϕD such
that the greatest solution gsol � ϕD � of ϕD is an upper approximation of the greatest
model of the program’s completion.

gm � D � � gsol � ϕD �
In order to prove this, we apply a technique that is well-known from abstract interpre-
tation [53]. We associate to every CLP program D over feature trees an abstract pro-
gram D# over sets of feature trees and prove that the semantics of the latter is an upper
approximation the semantics of the former. More precisely, if gm � D � and gm � D# � are
the greatest models of D and D#, respectively, then for every predicate symbol p the
maximal element in gm � D# � � p � includes gm � D � � p � . Second, we prove that the great-
est model of the abstract program D# and the greatest solution of ϕD coincide (again,
up to the projection to maximal elements).

We can relate this approximation result of the denotational semantics to the opera-
tional semantics by characterising finite failure over infinite trees through the greatest
model.22 This allows us to infer finite failure of the CLP program from emptiness of
some variable in gsol � ϕ � .
Our analysis of CLP programs is more flexible than the one that we give in the pa-
per [171]. There, we require the constraints in program clauses to be solved before
they can be analysed; here, we show how to analyse CLP program which freely use
constraints in unsolved form.

Concurrent Constraint Programming. The analysis of CC programs is given by
the analysis of the CLP program that we obtain by transforming all conditional guards

21 An analysis for Prolog II that approximates the least model over infinite trees seems to be much
more difficult than it occurs at first glance. This is due to the fact that infinite trees are defined by a
greatest fixed point construction, so that a corresponding analysis would have to approximate the least
fixed point of an operator that refers to the greatest fixed point of another one; this “alternation” seems
to make the analysis considerably harder.

22While results of Jaffar and Stuckey on infinite tree logic programming are closely related [107], the
exact result that we show seems not to be explicit in the literature. See Section 4.1.4.2 for details.
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into tell statements; this means that our analysis ignores the synchronisation behaviour
of conditional guards. This is one reason for our interest in inevitable failure: for most
CC programs with non-trivial recursions (over lists) say, the corresponding CLP pro-
gram that approximates it has more failed computation branches. Hence, diagnosing
possible failure in the CLP program would not imply possible failure in the original
CC program (see also Section 4.2.3).
While we can carry over the approximation result of the greatest model, the operational
interpretation of gsol � ϕ � needs some more care: in CC programs, there may be state-
ments whose reduction blocks forever because a synchronisation condition is never
satisfied. For such CC programs in which every application can eventually reduce,
our characterisation of finite failure through the greatest model still holds. Since we
cannot guarantee statically that application will not block, we must weaken our result
for CC programs: We show that emptiness in gsol � ϕ � implies finite failure in every fair
execution of a CC program D unless there is an application that blocks forever.
In concurrent constraint programming, failure is considered a run-time error. This is in
contrast to CLP where failure is part of the backtracking mechanism. A CC program
has certainly an error if every fair execution leads to failure. In our programming ex-
perience with Oz, programs are also erroneous if they do not fail only because some
application blocks forever. In other words, emptiness in gsol � ϕ � correctly approxi-
mates a run-time property in CLP and CC programs that is useful for debugging.

4.1. Set-based Failure Diagnosis for CLP over Infinite
Trees

We define our set-based failure diagnosis in Figure 4.4 on Page 101. Before we discuss
it in detail, we consider some examples where we suppress irrelevant technical detail.
The reader unfamiliar with CC and CLP may want to consult the definition of the
language in Section 4.1.2 before reading on.

4.1.1. Examples

4.1.1.1. Basic Examples

We call a procedure p finitely failed if every fair execution of an application p � x �
inevitably leads to a failure. The procedure p in Dfail1 is obviously finitely failed in
this sense (if a

�� b):

p � x �	� a � x � � b � x � (Dfail1)

With Dfail1 we associate the following FT ��� ar ����� constraint (the analysis of Dfail1):

p � x � a � x � � b � x �
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from which we infer finite failure of p by noticing that it entails p � /0. Slightly less
obvious but similar is the finite failure of procedure r in Dfail2:

p � x ��� a � x �
q � y �	� b � y �
r � z �	� p � z � � q � z �

(Dfail2)

The constraint associated with Dfail2 states that every actual argument of the proce-
dure p [q] must allow labelling with a [b], and that z must be a valid argument for both
procedures p and q.

p � x � a � x � �
q � y � b � y � �
r � z � z � p � z � q

Since this constraint entails r � /0, we conclude that r is finitely failed. The procedure r
is also finitely failed in the next example which is still a little more complicated:

p � x ��� x 
 f � x 
 � a � x 
 �
q � y �	� y 
 f � y 
 � b � y 
 �
r � z �	� p � z � � q � z �

(Dfail3)

The analysis of Dfail3 is this one:

p � x � x 
 f � x 
 � a � x 
 � �
q � y � y 
 f � y 
 � b � y 
 � �
r � z � z � p � z � q

We reject the program because its analysis entails r � /0. Notice that this were not
the case if the semantics of σ 
 f � σ 
 did not require all trees in σ to have the feature f .
Assuming the weaker semantics, σ 
 f � σ 
 if and only if σ 
 � � τ 
 � � τ � σ : τ 
 f � τ 
 	 , the
analysis of Dfail3 would have a solution α with α � p � � α � x � � � a � b � f :a � 	 , α � q � �
α � y � � � a � b � f :b � 	 , and α � r � � α � z � � � a 	 .
As the program Dfail1 above indicates, our analysis can deal with clauses contain-
ing non-satisfiable constraints. More generally, we do not require the constraints in
clause bodies to be solved before they can be analysed: our analysis is invariant under
equivalence transformations of CFT constraints. For instance, the analysis of the two
programs below is the same.

p � x ��� x 
 f � y � x 
 f � z (Dsolve1)

p � x ��� x 
 f � y � y � z (Dsolve2)
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4.1.1.2. Guarded Clauses

Now consider a program with guarded clauses.

p � x1 �	� η1 ������� a � x1 �
p � x2 �	� η2 ������� b � x2 �
r � z � � c � z � � p � z �

(Dsusp1)

In Dsusp1, the procedure r is considered erroneous. Its body requires z to be labelled
with c, but at the same time z should allow labelling with either a or b according to the
clauses of p. The analysis

p � x1 � x2 � a � x1 � � b � x2 � �
r � z � c � z � � z � p � �����

detects this because it entails r � /0. On application r � u � it is not clear, however, whether
any of the clauses of p will ever be executed. If both guards η1 or η2 are never entailed,
the label inconsistency with respect to u will not be exhibited. So the fact that the
analysis of Dsusp1 entails emptiness of z implies finite failure of the procedure r unless
the application of to procedure p blocks forever.
The next program shows a similar phenomenon. There is no way to execute applica-
tions of p and q on the same argument z without failure.

p � x1 �	� η1 ������� a � x1 � q � y1 �	� η3 ������� c � y1 �
p � x2 �	� η2 ������� b � x2 � q � y2 �	� η4 ������� d � y2 �
r � z � � p � z � � q � z �

(Dsusp2)

The analysis detects this the constraint associated with Dsusp2 entails r � /0:

p � x1 � x2 � a � x1 � � b � x2 � �
q � y1 � y2 � c � y1 � � d � y2 � �
r � z � z � p � z � q � �����

4.1.1.3. Infinite Trees

A program that explicitly talks about infinite data structures is the following one.

p � x �	� x 
 f � y � p � y � (Dinf1)

Reduction of the application p � z � will enter an infinite recursion, which will constrain z
to a feature tree with an arbitrarily long but finite path of f ’s. The program is determin-
istic and will never fail. This program is accepted since its analysis does not entail x
or y to be empty:

p � x � x 
 f � y � y � x
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In comparison, consider the following program and its analysis:

p � x ��� x 
 f � x (Dinf2)

p � x � x 
 f � x
Execution of p � x � will instantaneously terminate and constrain x to an infinite tree
containing the path fff ����� f . The greatest solutions of the analyses of Dinf1 and Dinf2

coincide, but the need for (sets of) infinite trees has different reasons: in Dinf1 it is due
to an infinite computation approximating an infinite tree with arbitrary accuracy, and
in Dinf2 due to a cyclic constraint.23

For a more realistic example consider the following procedure that reads an infinite
stream of variables (constructed with the features head and tail, and the label nil) and
then executes either S1 or S2, depending on whether the variable is labelled with a or b:

scan � xs ��� xs 
 head � x � xs 
 tail � xr ������� process � x � � scan � xr �
process � x1 �	� a � x1 �
������� S1

process � x2 �	� b � x2 �
������� S2

(Dscan)

The associated constraint is this one:

scan � xs � xs 
 head � x � xs 
 tail � xr � x � process � xr � scan �
process � x1 � x2 � a � x1 � � b � x2 �

In the context of Dscan both of the following clauses are erroneous.

p � u �	� u 
 tail� w � w 
 head � w 
 � c � w 
 � � scan � u � (Dscan1)

q � v �	� v 
 tail� w � nil � w 
 � � scan � v � (Dscan2)

An application p � y � (wrt. Dscan1) will fail since in procedure p a list is constructed
and passed to scan which contains an element that is not labelled with a or b. An
application q � y � (wrt. Dscan2) will fail since the argument passed to scan in procedure q
cannot be an infinite list.

The analysis of Dscan1 contains the following constraint and, in conjunction with the
analysis of Dscan, entails p � /0.

p � u � u 
 tail� w � v 
 head � w 
 � c � w 
 � � u � scan � �����
Similarly, the analysis of Dscan2 contains

q � v � v 
 tail� w 
 
 � nil � w 
 
 � � v � scan � �����
and entails q � /0 in conjunction with the analysis of Dscan.

23As another remark to Footnote 21 on Page 92, notice that an analysis of Prolog II approximating
the least model over infinite trees would probably have to distinguish the programs Dinf1 and Dinf2.
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Programs D � set of all clauses p � x �	� S

Statements S :: � η � Tell Statement �
�

p � x � � Application �
�

S1 � S2 � Parallel Composition �
�

��� � � � Null Statement �
Constraints η :: � x � y

�
a � x � �

x 
 f � y �
x � f 	 �

η1 � η2

Configurations C :: � V Dη 
 � S

Variables V � V � V a finite set �

Figure 4.1.: Syntax of CLP(CFT): Constraint Logic Programming over Feature Trees

4.1.1.4. Procedure Clause and Program Points

The procedure p in the program Dchoice below is not finitely failed. Accordingly, the
analysis of Dchoice does not entail q � /0 so that we accept the program.

p � x �	� ��� � �

p � x �	� a � x � � b � x �
(Dchoice)

Yet, whenever the second clause of p will be executed, failure will inevitably occur. In
order to detect this, we can introduce a new procedure for each clause of p, yielding

p � x �	� p 
 � x � p 
 � x �	� ��� � �

p � x �	� p 
 
 � x � p 
 
 � x ��� a � x � � b � x �
(D 
choice)

In this program, p 
 
 is finitely failed, corresponding to the fact that the second clause
of p in Dchoice is finitely failed. Accordingly, the analysis of D 
choice entails p 
 
 � /0.

4.1.2. Constraint Logic Programming over Feature Trees

We assume a set V of variables ranged over by x � y � z, and an alphabet P of constants,
ranged over by p � q, which we call procedure names.
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S1 � S2 � S2 � S1 � S1 � S2 � � S3 � S2 � � S2 � S3 � ��� � � � S � S

consistent renaming of bound variables � α �
V � V 
 η

� � � η 
 S � S 


V Dη 
 � S � V 
 Dη 
 
 � S 


Figure 4.2.: Structural Congruence of CLP(CFT)

4.1.2.1. Syntax

We define a simple concurrent constraint language over feature trees with unguarded
clauses, which we consider as a concurrent constraint language without guards.24 Its
operational semantics is defined by a transition system that corresponds to the standard
one for a constraint logic programming language. Therefore, we call this language
CLP(CFT). We shall also borrow the logic semantics of CLP for this language, and
make use of standard concepts from the CLP literature [105, 118].

The abstract syntax of CLP(CFT) is given in Figure 4.1. A program D consists of a set
of clauses p � x � � S where x is called the formal argument, and S the clause body.25

Every clause body consists of a sets of constraints η and procedure applications p � x � ;
in p � x � , the variable x is called the actual argument of p. As constraint system we
fix CFT. We consider only unary procedures for ease of notation. This does not restrict
the expressiveness of the language if the constraints can express pairing: for CFT this
is the case if we assume at least two distinct features.

The formal argument x of a clause p � x � � S is bound with scope S. All other variables
occurring in S are implicitly bound within S by an existential quantifier. The variables
free in a statement S or a constraint are denoted by fv � S � and fv � η � . A clause p � x � � S
does not contain any free variable.

Given a program of the form D � p1 � x1 � � S1 ��������� pn � xn � � Sn, we denote with PD

the set � p1 ������� pn 	 of procedure names defined in D. We define the definition of p in D,
written Def � p � D � as the set of all clauses p � x � � S in D. A configuration VDη 
 � S
consists of a statement S, a constraint store η, a collection of procedure definitions D,
and a set V of variables such that fv � S � � fv � η � � V holds. Configurations describe
computation states. A configuration VDη 
 � S is well-formed if for every application
p � x � in D or S there is a corresponding procedure p � PD. Throughout this chapter, we
use the term “configuration” to mean “well-formed configuration”.

We identify statements S, definitions D, and configurations C up to consistent renaming
of bound variables and we assume once and for all that bound variables in any S, D,

24We add guards in Section 4.2 and obtain a language that is essentially the committed choice lan-
guage ALPS considered by Maher in [120].

25The symbol D should allude to “definition”.

98



4.1. Set-based Failure Diagnosis for CLP over Infinite Trees

VDη 
 � η 
 
�� V D η � η 
 
 � ��� � � � TELL �
VDη 
 � p � x � 
 � V � fv � S � � � y 	 Dη 
 � S 
 x � y � � APPLY �

if p � y �	� S � D and V
�

fv � S � � � y 	
V Dη 
 � S1 
�� V 
 D 
 η 
 
 � S2

VDη 
 � S1 � S 
�� V 
 D 
 η 
 
 � S2 � S
� CLOSURE �

Figure 4.3.: Operational Semantics of CLP(CFT)

or C are pairwise distinct and distinct from the free variables. Furthermore, we identify
S, D, and C up to the smallest structural congruence � that satisfies the equations
given in Figure 4.2; structural congruence makes parallel composition of statements
commutative and associative with neutral element ��� � � ; two definitions are congruent
if they are identical up to consistent renaming of variables (α-renaming), and two
configurations are congruent if all their components are.

4.1.2.2. Operational Semantics

The operational semantics is given in terms of a one-step reduction relation on config-
urations C. Reduction 
 � is defined in Figure 4.3 as the smallest binary relation on
configurations that satisfies the axioms (TELL) and (APPLY), and that is closed under
the inference rule (CLOSURE).

Tell. A tell statement η reduces without synchronisation by conjoining η to the cur-
rent store. For technical reasons, we allow the constraint store to become non-
satisfiable.

Apply. If the procedure p is defined in D, then reduction of an application p � x � picks
one of the clauses p � y � � S in D nondeterministically, and replaces p � x � by
S 
 y � x � , that is by the clause body S with the actual argument y replacing the
formal one x. The second side condition requires that the local variables in S
are fresh for the current configuration before they are added to the set of used
variables. Hence the bound variables may need renaming before reduction can
take place.

Closure. In combination with the structural congruence, the closure rule states that the
next reduction step for VDη 
 � S can indeterministically deal with any application
or tell statement in S.
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For illustration of rules (TELL) and (APPLY), let D � p � x �
� x 
 f � y � a � y � and consider:

� z 	 D � 
 � p � z � � b � z � 
 � � y � z 	 D � 
 � z 
 f � y � a � y � � b � z �

 � � y � z 	 D z 
 f � y � a � y � � b � z � 
 � ��� � �

The final configuration in this example contains a non-satisfiable constraint store. Such
a configuration is called failed which is considered a run-time error. This is in contrast
to constraint logic programming where failure is an integral part of the search control
mechanism (backtracking).

If an application p � x � has reduced with respect to one of multiple clauses of p, then this
choice is never undone. One says that our language has committed choice semantics.
Notice that a committed choice without guarded clauses is not overly useful in practice.
For example, it is not clear how to define the length predicate on lists such that it would
terminate on every finite list. As mentioned initially, we are interested in CLP(CFT)
programs as relaxations of concurrent constraint programs (see Section 4.2).

4.1.2.3. Computations and Finite Failure

A computation is a maximal (and possibly infinite) sequence of configurations � Ci � ni 	 0,
n � ∞, such that there exist V , D, η, and S with

C1
� VDη 
 � S and � i � n : Ci 
 � Ci � 1 �

A computation � Ci � ni 	 0, is called finitely failed [105, 118] if there exists a (finite)
n 
 � n such that the constraint store in configuration Cn � is inconsistent. A compu-
tation � Ci � ni 	 0 is called fair if every statement that can be reduced in some configura-
tion Ci, i � n, is eventually reduced. The finite failure set FFD of a given program D is
defined as follows:

FFD
�

def � p
� � x 	 D � 
 � p � x � is finitely failed � p � PD � x arbitrary 	

We say that a procedure p � PD is finitely failed if p � FFD.26

4.1.3. Set-based Failure Diagnosis

We formulate our analysis in terms of set constraints over feature trees as defined in
Chapter 2. We also use the notation x � /0 � y � /0 as an abbreviation for a corresponding
set constraint as defined on Page 81.

The analysis is defined in Figure 4.4 as a mapping A from CLP(CFT) programs D to
existential formulas over set constraints. With every program variable x we associate a

26Our definition of FFD deviates slightly from the standard literature [105], where the finite failure
set is a set of “constrained atoms” p � x ��� η rather than a set of predicates: FF D

� ' p � x ��� η
�

fv � η � �
' x ( D η # % p � x � is finitely failed ( . We use a more coarse-grained definition that suffices for our purpose
and simplifies notation.
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A � D � � �
p � PD

A � Def � p � D � �

A � Def � p � D � � � � x1 ����� � xn � p � x1 � ����� � xn �
n�

i 	 1

Axi � Si � �

if Def � p � D � � p � x1 �	� S1 � ������� p � xn �	� Sn

and x1 ��������� xnp pairwise distinct

Ax � S � � � y � A � S � �
�

y ��� y �
x � /0 � y � /0 � if � y 	 � fv � S � � � x 	

A � q � x � � � x � q

A � η � � η

A � S1 � S2 � � A � S1 � � A � S2 �

Figure 4.4.: Set-based Failure Diagnosis for Constraint Logic Programs over Feature
Trees

fresh constraint variable, and we write this constraint variable also as x. This simplifies
notation and eases reading. We also use procedure names as constraint variables. The
analysis interprets parallel composition “ � ” as conjunction.

Procedures. The analysis of a procedure p defined by np clauses p � xi ��� Si, 1 � i �
np, considers all clause bodies Si separately; for each Si, a fresh variable xi is
introduced with respect to which Si is analysed: if Axi � Si � entails xi

� /0, then
every call to this clause will be finitely failed. The constraint p � x1 � ����� � xn

states that all possible arguments for p must be possible arguments for one of
the clauses. If all the xi are constrained to the empty set, then so is p. In other
words, if all clauses of p are finitely failed, then procedure p is finitely failed.27

Clause. The analysis of a statement S with respect to a variable x makes the existential
quantification of the variables in fv � S � explicit, and then states that all these
variables should denote the empty set if and only if x does:�

y ��� y �
x � /0 � y � /0

27The existential quantifiers reflect the variable scope. This is technically convenient and it avoids the
need to supplement constraint simplification by a reachability analysis as for example in [173]. For the
purpose of failure diagnosis alone, we could as well introduce a fresh variable wherever an existential
quantifier occurs.
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Essential for our purpose is the direction from right to left: if any of the y � fv � S �
denotes the empty set and hence indicates a failure in statement S, then x should
be forced to denote the empty set, too.

Application. The analysis of an application q � x � states that the actual argument x
must be valid for the procedure q. In other words, the possible values for x are
bounded by the set of possible values that the formal argument of the procedure q
can take without failing.

Constraints. The analysis of a constraint η is just η itself. This exploits the fact that
we identify every CFT constraint with a set constraint over feature trees where
x � y is replaced by x � y � y � x.

Our analysis reflects the fact that constraints on all program variables may be the
reason for finite failure of a procedure, not only the formal parameters of procedures.
For illustration consider the following example.

Example 24 (Analysis of Failure on Local Variables)

Consider the procedure definition

p � x ��� a � y � � b � y � (Dlocfail)

with its associated analysis (slightly simplified):

p � x � � y � y � /0 � p � /0 � a � y � � b � y � �
If a

�� b, then every reduction of the body a � x � � b � x � will lead to failure; that is, every
computation of p � x � is finitely failed and thus p � FFDlocfail . The analysis detects this
because a � y � � b � y � entails y � /0, which, in combination with y � /0 � p � /0, entails p � /0.

Example 25 (Binary Trees)

In the following program the procedure r is finitely failed.

p � x1 �	� x1
� a � 1:b � 2:b � q � y �	� y � a � 1:b � 2:c �

p � x2 �	� x2
� a � 1:c � 2:c � r � zr �	� p � zr � � q � zr �

(Dcomp)

Finite failure of r is detected through the analysis which entails r � /0:

r � zr � zr � a � 1:b � 2:b � � a � 1:c � 2:c � � zr � a � 1:b � 2:c �

4.1.4. Correctness

Our failure diagnosis is correct in the sense that whenever it entails emptiness of some
procedure then this procedure is finitely failed.
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Theorem 26 (Detection of Finite Failure)

For all CLP(CFT) programs D and all p: If A � D � � � P
�
F T � p � /0, then p � FFD.

(Notice that a implied statement says that whenever the analysis of a CLP(CFT) pro-
gram is non-satisfiable over non-empty sets of feature trees, then the finite failure set
of D is non-empty: If A � D � � � P �

�
F T � � then FFD

�� /0. Cf. also Proposition 2.4.)

In the proof of Theorem 26 we exploit that CLP programs have a logic semantics that
is closely related to their operational semantics. The logic semantics is defined in
Section 4.1.4.1. The proof relies on two insights:

1. Emptiness in the greatest model gm � D � of CLP(CFT) programs indeed implies
finite failure: this is stated in Theorem 30 and proven in Section 4.1.4.3.

2. The greatest solution gsol � A � D � � of the analysis A � D � is an upper approximation
of the greatest model of D: this is shown as Theorem 31 in Section 4.1.4.4.

Both theorems rely on the saturation property [159] of constraint systems that is intro-
duced in Section 4.1.4.2. Now the proof of Theorem 26 is as follows.

Proof. If A � D � � � P
�
F T � p � /0, then gsol � A � D � � � p � � /0. Hence, by Theorem 31, it

holds that gm � D � � p � � /0, and this implies p � FFD by Theorem 30. �

Finally notice that a corollary of Theorem 26 is the analogous statement for CLP(CFT)
over finite feature trees: Every finitely failed computation of a CLP program over
infinite trees also is a finitely failed computation over finite trees.

4.1.4.1. Logic Semantics and Consequence Operator

Every program D is associated a logic semantics given by a first-order formula
compl � D � over CFT constraints. If the definition of procedure p in a program D is

Def � p � D � � p � x ��� S1 � ������� p � x � � Sn

and � yi 	 � fv � Si � � � x 	 for all i, 1 � i � n, then compl � p � is defined as the predicate

compl � p � � def � x p � x � � � � y1 S1 � ����� � � yn Sn �
where parallel composition “,” is interpreted as conjunction. The conjunction of these
formulas for all procedures p in D is called Clark’s completion [46]:

compl � D � � def

�
p � PD

compl � p �

Let D be a program. A D-interpretation I is a function from PD to subsets of F T
and it induces an extension I � F T � of the structure F T in which every p � PD is
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interpreted as the predicate I � p � . Interpretations are ordered by pointwise set inclu-
sion. We denote as BD the greatest D-interpretation, which maps all p � PD to F T ;28

A D-interpretation I is a model of D if compl � D � is valid in the structure I � F T � .
In this case we write I

� � D (instead of I � F T � � � compl � D � ). Likewise, we briefly
write I � α � � S if compl � S � is valid in I under a valuation α. The greatest model of a
program D always exists and is denoted by gm � D � . We write D

� � Φ if the formula Φ
is valid in every model of D.

The consequence operator TD : � PD � P � F T � � � � PD � P � F T � � is defined as fol-
lows, for all D-interpretations I and all p � PD:

TD � I � � p � �
def

�� �
τ � F T ������

I � 
 τ � x � � � � yS � if
p � x �	� S � D � and

� y 	 � fv � S � � � x 	

� �
�

Here, 
 τ � x � denotes the F T -valuation that maps x to τ and all other variables to itself.
The ω-times iterated application of TD to BD is written TD

� ω.

TD
� ω �

def

ω�

n 	 1

TD
n � BD �

Since TD is a monotonic operator on the complete lattice � P � F T � � � � , the Knaster-
Tarski fixed point theorem guarantees the greatest fixed point gfp � TD � of TD to exist and
to coincide with the greatest postfixed point of TD (i. e., the greatest I with I � TD � I � ).

4.1.4.2. The Saturation Property

A constraint logic program is called canonical [106] if the greatest fixed-point of its
consequence operator can be obtained by at most ω iterations from BD, that is, if
gfp � TD � � TD

� ω. In general, only inclusion gfp � TD � � TD
� ω holds. Palmgren shows

that every constraint logic program over a constraint system X is canonical if X has the
saturation property ([159, Theorem 3.11], see also Theorem 29). A constraint system
has the saturation property29 if for all infinite number of constraints η1 � η2 �������

∞�
i 	 1

ηi is satisfiable if and only if � n � ∞ :
n�

i 	 1

ηi is satisfiable �

Proposition 4.1

The constraint systems CFT and FT ��� ar ����� have the saturation property.

28The notation BD alludes to (Herbrand) Base [118].
29The saturation property has nothing to do with the the notion of saturation used in Section 3.1.
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Proof. The claim for CFT follows from the fact that the set of F T -valuations is a
compact metric space (with the order on valuations defined pointwise and in analogy
to the case of constructor trees [118]). The claim for FT ��� ar ����� is trivial, since every
(finite or infinite) selector set constraint is satisfiable (Proposition 2.1). �

This proposition specifically holds for infinite trees. The situation is different for
some other popular constraint systems: For instance, equational constraints over finite
or rational constructor trees do not have the saturation property.

Example 27 (Saturation fails for Finite Trees)

Fix infinitely many x1 � x2 ������� distinct variables and an arbitrary feature f ,
and define, for all i, the constraint ηi by

ηi
�

def xi 
 f � xi � 1

Then every finite conjunction � n
i 	 1 ηi is satisfiable over finite feature trees,

while the infinite conjunction � ∞
i 	 1 ηi is not.

�

x1
� �

�

�

f

f

Example 28 (Saturation fails for Rational Trees)

Fix infinitely many distinct variables y1 � y 
1 � y2 � y 
2 ����� , a fea-
ture f , and infinitely many distinct features f1 � f2 ������� different
from f . Define, for all i, the constraint ηi by

ηi
�

def yi 
 f � yi � 1 � yi 
 fi � y 
i
Then every finite conjunction � n

i 	 1 ηi is satisfiable over ratio-
nal feature trees, while the infinite conjunction � ∞

i 	 1 ηi is not.
Note that every solution of � ∞

i 	 1 ηi must assign to y1 an infinite
tree which contains, for each of the features fi, a subtree with
feature fi at its root.

The failure of saturation does not depend on the availability of
infinitely many features. For example, given features g

�� f ,
labels a

�� b, and distinct variables zi
� z1

i ������� � zi � 1
i for all i, we

can also define:

�

� �

y1
� � �

� �

b

a

z1
� b a

a

b

f

f
g

g

g

f
f1

f
f2

f3

ηi
�

def zi 
 f � zi � 1 � zi 
 g � z1
i � a � z1

i � � ����� zi 
 g � zi
i � b � zi

i �
Theorem 29 (Palmgren: Saturation and Canonicity)
Every program D over a constraint system with the saturation property is canonical.

Proof. See Palmgren [159]. �

Lemma 4.2
For all CLP(CFT) programs D: gm � D � � TD

� ω.

Proof. Proposition 4.1 and Palmgren’s Theorem 29 imply that gfp � TD � � TD
� ω. This

implies the claim in combination with the fact that gfp � TD � � gm � D � . �
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VDη 
 � S 
 � g V D η̃ 
 � S if

�� � η satisfiable and

η̃ a grounding of η w.r.t. V
� GROUND �

Figure 4.5.: Ground Reduction of CLP(CFT)

4.1.4.3. Characterising Finite Failure

We show that, for CLP(CFT) programs, emptiness in the greatest solution is equivalent
to finite failure in the following sense.

Theorem 30 (Greatest Models and Finite Failure)
For all CLP(CFT) programs D and all p � PD: gm � D � � p � � /0 if and only if p � FFD.

Proof. gm � D � � p � � /0 is equivalent to D
� � � � x p � x � and hence to � τ � F T : D

� �
� p � τ � . By Proposition 4.3 this is equivalent to � τ � F T : p � τ � � GFFD and, by Propo-
sition 4.4, to p � FFD. �

For the proof of the necessary Propositions 4.3 and 4.4 we need some additional ma-
chinery first. Let η̃ range over possibly infinite conjunctions of CFT constraints with
existential quantifiers, and note that every feature tree τ can be characterised by a for-
mula η̃ (in the sense that fv � η̃ � � � x 	 and every solution of η̃ maps x into τ). We call η̃
ground w.r.t. V if all solutions of η̃ coincide on all x � V . A configuration VDη 
 � S is
called ground if η is ground w.r.t. V . We call a constraint η̃ a grounding of η w.r.t. V
if η̃ is ground w.r.t. V , entails η and has the same free variables as η.

We now generalise the notion of configuration slightly by allowing η̃ as a constraint
store. A ground computation [105, 118] is a maximal sequence � Ci � ni 	 0, n � ∞, such
that there exist V , D, η, and S where η is ground,

C1
� VDη 
 � S � and � i � n : Ci 
���� 
 � g Ci � 1 �

A configuration C is called [ground] finitely failed if all fair [ground] computations
issuing from C are. The ground finite failure set GFFD of a program D is defined as
follows

GFFD
�

def

�� �
p � τ � ������

� x 	 Dη 
 � p � x � is ground finitely failed �
α
� � η implies α � x � � τ � p � PD �

���
�

Figure 4.5 defines a grounding relation between configurations C1 and C2 that holds
if C1 and C2 are the same except for the constraint store, where that of C2 is a grounding
of that of C1. Ground reduction is defined as the composition 
���� 
 � g of reduction
with grounding.
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Ground reduction is interesting for us due to its close relation to the logic semantics
of programs. By a classical result from (constraint) logic programming, the following
holds (see, e. g., [105, Theorem 6.1 (7)]).

GFFD
� BD

�
TD

� ω (4.1)

In combination with canonicity, we obtain the following proposition.

Proposition 4.3

For all CLP(CFT) programs D, p � PD, and τ � F T : D
� � � p � τ � if and only if p � τ � �

GFFD.

Proof. D
� � � p � τ � if and only if τ

�
� gm � D � � p � . This is equivalent to τ

�
� TD

� ω � p �
by Lemma 4.2 which is clearly equivalent to τ � � BD

�
TD

� ω � � p � . By Equation (4.1),
however, this holds if and only if p � τ � � GFFD. �

The next proposition states that the finite failure set and the ground finite failure set
for CLP(CFT) programs coincide. While this is not a difficult result we have not been
able to find it in the literature.

Proposition 4.4 (FF and GFF coincide for CLP � CFT � )
For all p � PD: p � FFD if and only if � τ � F T : p � τ � � GFFD.

Proof. The implication from left to right holds, since every finitely failed computa-
tion of � x 	 Dη 
 � p � x � induces a finitely failed computation of � x 	 Dη̃ 
 � p � x � if η̃ is a
grounding of η w.r.t. � x 	 . For the converse, assume p

�
� FFD and let � Ci � ∞i 	 1 be a fair

computation with C1
� � x 	 D � 
 � p � x � that is not finitely failed. (The case of finite

computations is simpler.) Let, for all i, ηi be the constraint store of Ci. Since the
computation is unfailed, ηi is satisfiable for all finite i � n. Hence, � ∞

i 	 0 ηi is satisfi-
able by Proposition 4.1. If V ��� ∞

i 	 0 fv � ηi � , then there exists a grounding of � ∞
i 	 0 ηi

w.r.t. V ; hence there exist groundings η̃i of all ηi w.r.t. fv � ηi � . From these we can
easily construct an infinite fair and unfailed ground computation for � x 	 D η̃1 
 � p � x � .
Hence p � τ � �

� GFFD.30 �
30An alternative proof can be based on Jaffar and Stuckey’s result [107] which says that, for pro-

grams D over infinite trees, TD � ω equals BD � # FFD % where # FFD % is the set of ground instances of FFD

#FFD % �
�� �

p � τ ��������
' x ( � fv � η � Dη # % p � x � is finitely failed, and

there is a solution α of η with α � x � � τ

	 

�

By standard results from constraint (logic) programming, this result implies that # FFD % � GFFD. Thus,
it remains to show that # FFD %�� p � � F T if and only if p � FFD. To prove the non-trivial direction from
left to right we need an argument based on saturation similar to the one that we used above.
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4.1.4.4. Approximating the Greatest Model

We show that the greatest model of an arbitrary CLP(CFT) program is approximated
by the greatest solution of the associated analysis.

Theorem 31 (Approximating the Greatest Model)
For all CLP(CFT) programs D: gm � D � � gsol � A � D � � .

Proof. We apply a technique which is well-known in abstract interpretation [53]. We
associate to every program D over CFT an abstract program D# over FT � � ar ����� and
prove that the consequence operator TD# approximates TD. Let the function sup map a
D#-model to a D-model that maps every p � PD to the maximal element in gm � D# � � p � .
Then the fact that TD# approximates TD implies

gm � D � � sup � gm � D# �
(Proposition 4.10). Then we characterise our analysis through gm � D# � (Corrollary 32)

sup � gm � D# � � gsol � A � D � �
and conclude gm � D � � gsol � A � D � � .31 �

The rest of this section is devoted to the completion of this proof. For simplicity, we
shall assume throughout this section that every procedure is defined by exactly two
clauses

Def � p � D � � def p � x �	� S1 � p � x ��� S2

where � y1 	 � fv � S1 � � � x 	 and � y2 	 � fv � S2 � � � x 	
Generalisation to the n-ary case is straightforward. We abstract the multiple clause
definition Def � p � D � by a single clause Def � p � D � # which is defined as follows:

Def � p � D � # � def p � x ��� Bp

Bp
�

def

���
� x � x1 � x2 �

� y ��� y1 � x1
� /0 � y � /0 � S1 
 x1 � x � �

� y ��� y2 � x2
� /0 � y � /0 � S2 
 x2 � x �

����
�

The abstract program D# associated with a program D is given by the set of Def � p � D � #
for all p � PD. The associated operator TD# is defined like TD with BD replaced by
BD#

� P � P � F T � � .
Lemma 4.5
For all CLP(FT � � ar ����� ) programs D: gm � D# � � TD#

� ω

31This deviates from the proof given in [171] which shows the result directly.
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Proof. From Proposition 4.1 and Palmgren’s Theorem 29 we obtain gfp � D# � � TD#
� ω.

The claim follows from gm � D# � � gfp � TD# � . �

The abstraction of an F T -valuation α to a P � F T � -valuation α# is defined by α# � x � �
� α � x � 	 , and the abstraction of a D-interpretation I to a D#-interpretation I # is defined
by I # � p � � P � I � p � � .
Lemma 4.6

For all F T -valuations α, all p � PD, and all interpretations I :

1. If α
� �

F T η then α# � �
P

�
F T � η.

2. If α � x � � I � p � then α# � x � � I # � p � .

Proof. The first claim is proven by a simple check of all primitive constraints. The
second is obvious by definition of I #. �

Propositions 4.7 and 4.8 establish two essential properties of the abstract program D#.
In combination they show that every postfixed point of TD induces one of TD#

(Lemma 4.9).

Proposition 4.7 (Singleton Property)

For all D, I , and p � PD: If I � TD � I � and τ � I � p � then � τ 	 � TD# � I# � .

Proof. Let p � PD and τ � I � p � . Assume I � TD � I � . Without loss of generality we
assume that

I 
 τ � x � � � F T
� y1 S1 �

Pick τ such that I 
 τ � x � 
 τ � y1 �
� �

F T S1 and define α � 
 τ � x � 
 τ � y1 � . From Lemma 4.6
one easily obtains

I # � α# � �
P

�
F T � S1

Furthermore, since α# maps x and all variables in � y1 	 to a non-empty set, we have

I # � α# � �
P

�
F T � � y ��� y1 � x � /0 � y � /0 � S1

Clearly, this implies

I # � 
 � τ 	 � x � � � P
�
F T � � x1

� x2

���
� x � x1 � x2 �
� y1 � y ��� y1 � x � /0 � y � /0 � S1 
 x1 � x � �
� y2 � y ��� y2 � x � /0 � y � /0 � S2 
 x2 � x �

����
�
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because we can extend 
 � τ 	 � x � by mapping x1 to � τ 	 , y1 to α# � y1 � , and all of x2 and y2
to the empty set. But this is just

I # � 
 � τ 	 � x � � � P
�
F T � � x1

� x2
� y1

� y2 Bp

which by definition of Def � p � D � # implies � τ 	 � TD# � I # � . �

Proposition 4.8 (Union Property)

For all D and all D#-interpretations J : If J has a greatest element for all p � PD, then
TD# � J � � p � also has a greatest element for all p � PD.

Proof. Let p � PD and σ1 ������� � σn � TD# � J � � p � . Let p � x � � S be the unique clause
for p in D# and let � y 	 � fv � S � � � x 	 . Define αi � p � � σi, and αmax � p � � � n

i 	 1 σi. By
definition of TD# this implies that

� i � 1 � i � n : J � αi
� ��� yS �

It suffices to show that

J � αmax
� � � yS

This can be shown by a structural induction over S. For the base case given by con-
straints η we exploit the fact that solutions of FT � � ar � � � constraints are closed under
unions (Lemma 2.2); for the base case given by applications p � y � we use the assump-
tion that J has a greatest element and, hence, is closed under union, too. �

Proposition 4.9 (Abstraction Property)

For all D and D-interpretations I : If I � TD � I � then I# � TD# � I# � .

Proof. Assume I � TD � I � , and let p � Pp and σ � I # � p � . We have to show that
σ � TD# � I # � � p � . By definition of I # we know that � τ � σ: τ � I � p � . By the Singleton
Property we know that � τ � σ : � τ 	 � TD# � I # � ; so σ � TD# � I # � follows from the Union
Property. �

Let the function sup map every σ � P � P � F T � � to its greatest element if it exists.
Somewhat sloppily, we also use sup as a function that maps a D#-interpretation J to a
D-interpretation sup � J � � I where, for all p � PD, I � p � � sup � J � p � � .32

Proposition 4.10 (Abstraction of Greatest Models)

For all D: gm � D � � sup � gm � D# � .
32sup is to counterpart of the abstraction function which, in the abstract interpretation framework, is

called the concretisation function.
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Proof. Since gm � D � � TD
� ω by Lemma 4.5, gm � D � is a postfixed point of TD; i. e.,

gm � D � � TD � gm � D � � . By Proposition 4.9, this implies gm � D � # � TD# � gm � D � # � , so
gm � D � # is a postfixed point of TD# . But since gm � D# � � TD#

� ω is the greatest postfixed
point of TD# , we obtain gm � D � # � gm � D# � . By the Union Property, gmD# is closed
under unions, and hence gm � D � � sup � gm � D# � . �

Now we show that, for all CLP(CFT) programs D, every postfixed point of TD# induces
a solution induces a solution of A � D � and vice versa. As a consequence, we obtain that
the greatest model of D# coincides with the greatest solution of A � D � up to sup.

Lemma 4.11 (Postfixed Points and Solutions Coincide)

For all CLP(CFT) programs D, all D#-interpretations J and F T -valuations α:

1. If J is closed under unions, then J � TD# � J � implies sup � J
� �

P
�
F T � A � D � .

2. If α
� �

P
�
F T � A � D � then α# � TD# � α# � .

Proof. Fix D, let p � PD, and define �
�
x Bp

� � x1
� x2

� y1
� y2 Bp. Notice that �

�
x Bp is

of the form
� x1

� x2 � x � x1 � x2 � B1
p � B2

p �
and that A � Def � p � D � � is of the form

� x1
� x2 � p � x1 � x2 � A1 � A2 �

where the Bi
p and Ai are identical, except that Ai contains a constraint of the form y � q

if and only if Bi
p contains an application q � y � .

1. If J � TD# � J � , then for all σ � J � p � : J � 
 σ � x � � � P
�
F T � � xBp. By the Union Pro-

perty and since J is closed under unions, this implies J � 
 sup � J � p � � � x � � � P
�
F T �� �

x Bp, so there exist σ1 � σ2 with

J � 
 sup � J � p � � � x � 
 σ1 � x1 � 
 σ2 � x2 � � �
P

�
F T � x � x1 � x2 � B1

p � B2
p �

Define α � 
 sup � J � p � � � x � 
 σ1 � x1 � 
 σ2 � x2 � . From sup � J � p � � � σ1 � σ2 we easily
obtain sup � J � α � �

P
�
F T � p � x1 � x2. It remains to check that

sup � J � 
 σ1 � x1 � 
 σ2 � x2 � � � P
�
F T � A1 � A2 �

Let q � y � be an application in Bi
p, i ��� 1 � 2 	 , and let α 
 extend α such that J � α 
 � �

q � y � . Then α 
 � y � � J � q � holds. Since J is closed under union, this implies
α 
 � y � � sup � J � q � , and hence sup � J � α 
 � � P

�
F T � y � p.
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2. If α
� �

P
�
F T � A � D � , then there exist σ1 � σ2 such that

α 
 σ1 � x1 � 
 σ2 � x2 � � �
P

�
F T � p � x1 � x2 � A1 � A2

Let σ � α# � p � . To prove α# � TD# � α# � it suffices to show that

α# � 
 σ � x � 
 σ1 � x1 � 
 σ2 � x2 � � �
P

�
F T � x � x1 � x2 � B1

p � B2
p

Define β � 
 σ � x � 
 σ1 � x1 � 
 σ2 � x2 � . By definition of α#, σ � α# � p � implies σ �
α � p � . From α � p � � σ1 � σ2 we obtain that β

� �
P

�
F T � x � x1 � x2. Now let

y � q be an inclusion occurring in Ai, i � � 1 � 2 	 , and let α 
 be an extension of
α 
 σ1 � x1 � 
 σ2 � x2 � such that α 


� �
P

�
F T � y � q. Hence α 
 � y � � α � q � which implies

that α 
 � y � � α# � q � ; so there exists an analogous extension β 
 of β such that
α# � β 
 � � P

�
F T � q � y � . �

Corollary 32 (Characterisation of Set-based Analysis)

gsol � A � D � � � sup � gm � D# �

Proof. By Lemma 4.11, case � 2 � , gsol � A � D � � # is a postfixed point of TD# and hence
gsol � A � D � � # � gm � D# � since gm � D# � is the greatest postfixed point of TD# . By
Lemma 4.11, case � 1 � , gm � D# � is a solution of A � D � since it is closed under unions.
Hence, gm � D# � � gsol � A � D � � . �

4.1.5. Analysing Constructor Tree Equations

Our analysis naturally generalises to constructor tree equations:

Ap � x � a � y1 ��������� yn � � � a � x � � x � 1 ������� � n 	 �
n�

i 	 1

x 
 i � yi (4.2)

This analysis is natural since it is just our analysis of constraints up to the canonical
interpretation of constructor tree equations as CFT constraints (see Page 27). The
corresponding analysis of x � a � y � in terms of co-definite set constraints would be

Ap � x � a � y1 ��������� yn � � � x � a � y1 ������� � yn � �
n�

i 	 1

yi � a � 1�
i � � x � (4.3)

In terms of FT � � ar ����� constraints, there is no reasonable alternative to (4.2). There
seems to be an alternative to the analysis (4.3) in terms of set constraints over construc-
tor trees, though: one might wonder whether it is possible to strengthen the analysis of
equations by mapping equations to equations.
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Programs D � set of all guarded clauses p � x ��� η ������� S

Figure 4.6.: Syntax of Guarded Clauses

VDη 
 � p � x � 
 � V � � z 	 Dη 
 � S 
 x � y � � GUARDAPPLY �

if

���� p � y ��� η 
 ������� S � D � fv � S � � � y 	 � � z 	
V

�
fv � S � � � y 	 � η

� �
F T

� z � η 
 
 x � y � �

Figure 4.7.: Operational Semantics of CC(CFT)

Ap � x � a � y � � ?� x � a � y � � a � y � � x (4.4)

The immediate advantage of deriving stronger equality information is that equations
can be handled much more efficiently than inclusion constraints. This analysis is, how-
ever, incorrect because it invalidates Theorem 26: the program Dcstr below contains no
finitely failed procedure, but the analysis according to (4.4) is non-satisfiable.

p � x1 �	� x1
� a � b � b � � q � y � � y � a � u � v � � p � y �

p � x2 �	� x2
� a � c � c � � r � zr �	� zr

� a � b � b � � q � zr �
s � zs �	� zs

� a � c � c � � q � zs �

(Dcstr)

The analysis of Dcstr according to � 4 � 4 � is:

p � a � b � b � � a � c � c � �
q � y � y � a � u � v � � a � u � v � � y � y � p �
zr
� a � b � b � � zr � q � zs

� a � c � c � � zs � q

This constraint is non-satisfiable, because it entails

a � b � b � � a � c � c � � a � u � v � � a � b � b � � a � c � c �
which is non-satisfiable: x and y must not denote the empty set since a � b � b � � f � x � y �
implies b � x and b � y. Since f � x � y � � a � b � b � � a � c � c � either α � x � � α � y � � � b 	 or
α � x � � α � y � � � c 	 must hold In both cases, either a � c � c � � f � x � y � or a � b � b � � f � x � y � is
not satisfied.
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4.2. Set-based Failure Diagnosis for CC over Infinite
Trees

We now consider the concurrent constraint language that we obtain by extending the
language CLP(CFT) by guarded clauses. We adapt the analysis and the correctness
proof. A guarded clause has the form defined in Figure 4.6. Call CC(CFT) the corre-
sponding extension of CLP(CFT). Apparently, unguarded clauses are the special case
of guarded clauses with trivial guards:

p � x ��� y � y ������� S

The operational semantics of application with guarded clauses is adapted in Figure 4.7.

Guarded Apply. Reduction of an application p � x � may pick a clause p � y � � η 
 ������� S
only if the constraint store η in the current configuration entails η 
 .

Define, for every program D the unguarded approximation ug � D � by replacing every
guarded clause with an unguarded one where ������� is replaced by parallel composition:

� η ������� S � � η � S

Then define the analysis of a CC(CFT) program D via the analysis of its unguarded
approximation: A � D � � A � ug � D � � .

4.2.1. Blocked Reduction or Finite Failure

In contrast to unguarded clauses, it is possible that an application p � x � never re-
duces because the guards of all clauses of p are never entailed. We say that p � x �
blocks forever. Call a procedure p blocked forever if in every computation issuing
from � x 	 D � 
 � p � x � at least one application will block forever. For a trivial example
consider the following statement.

p � x ��� a � x 
 �
������� b � x 
 �
q � y �	� p � z �

No computation issuing from a call to q can accumulate enough information on z in the
constraint store to entail or disentail � x 
 a � x 
 � . Hence the call p � z � will never reduce.
For another example consider:

p � x ��� x 
 f � y � p � y �
q � y �	� z 
 f � z ������� ��� � �

r � z �	� p � z � � q � z �
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Reduction of the application r � u � will constrain u to a tree with a finite path fff ����� f of
arbitrary finite length; yet, the guard u 
 f � u in the clause of q (which asks whether x
denotes a tree with an infinite path fff ����� ) will never be entailed.

Hence, for CC(CFT) our correctness result must be weakened with respect to the re-
sult for CLP(CFT). It still shows that and to what degree certain run-time errors are
detected.

Theorem 33 (Detection of Finite Failure or Blocked Reduction)

For all CC(CFT) programs D: If A � D � � � P
�
F T � p � /0 then p either finitely fails or

blocks forever.

Proof. By contradiction. Assume A � D � � � P
�
F T � p � /0 and suppose that there is a com-

putation � Ci � ni 	 1 of � x 	 D � 
 � p � x � which does neither finitely fail nor block forever.
Clearly, this computation induces a computation of ug � D � that neither fails nor blocks
forever, since application of an unguarded clause is possible without any side condi-
tion. Theorem 26 implies that A � ug � D � does not entail emptiness for any procedure,
and therefore A � D � � A � ug � D � does not. �

4.2.2. Blocked Reduction and Run-time Errors

In most cases, an infinitely blocked application can be considered erroneous. Under
this assumption, Theorem 33 states that our analysis indeed detects certain run-time
errors in concurrent constraint programs automatically. Studies in the expressiveness
of concurrent computation may take an alternative point of view, namely that a blocked
application simply is not observable and thus (observationally) equivalent to the empty
program ��� � � . For example, encodings of lazy functional computation with logic vari-
ables [152, 170] block the reduction of statements that are not needed for the overall
result. In these encodings, all blocked statements could in principle be woken with-
out the danger of inducing additional run-time errors. More delicate are encodings of
choice [150, 158]. For example, the program

p � x �	� a � x �
������� S1

p � x �	� b � x �
������� S2

����� p � z � �����
is, from this point of view, equivalent to the parallel composition

p � x �	� a � x �
������� S1

q � x �	� b � x � ������� S2

����� p � z � � q � z � �����
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because the involved guards are mutually exclusive so that either p � z � or q � z � is guar-
anteed to block forever. The correctness of such choice encodings crucially relies on
the fact that at most one of the encoded branches (S1 or S2) is executed because they
might perform incompatible operations.

For programs that rely on blocked reduction as a programming technique and hence
do not consider it an error, Theorem 33 can still be used to explain our analysis. How-
ever, it may be necessary to interpret emptiness in the greatest solution as a warning
rather than an error message. The information that some computation is unfailed only
because it does block forever is important debugging information anyway.

4.2.3. Inevitable Failure versus Possible Failure

Apart from the inevitability of errors it would we useful to also obtain information
about the possibility of errors (that is, whether there exists at least one finitely failed
computation of a program). This is true in particular for non-deterministic languages.

Can we improve Theorem 33 accordingly? The answer is no since our analysis ap-
proximates conditional guards as tell statements. In most cases, this approximation
yields programs that trivially have one failed computation. For illustration, notice that
many programs operating on lists will contain a guarded choice of the typical form:

p � x1 �	� x1
� nil ������� S1

p � x2 �	� x2 
 head � y � x2 
 tail � z ������� S2

The procedure p expects x to be constrained to a (tree modeling a) list; in this case
it does not block forever and is (supposedly) unfailed. In its unguarded abstraction,
however,

p � x1 �	� x1
� nil � S1

p � x2 �	� x2 
 head � y � x2 
 tail � z � S2

the application p � x � has one trivially failed computation if x is constrained at all; even
if x is properly constrained to a list and has label nil or cons.

4.2.4. Inevitable Failure as a Debugging Criterion

The choice of inevitable failure as a criterion for faultiness of a program deserves some
discussion. Why, in particular, is it not possible to do without the set-based analysis
altogether and simply run the program for a limited amount of time?

In the CLP case, the answer is mostly positive: If a CLP program is inevitably failed,
then every run of the program will eventually exhibit it. Of course, it is difficult to
know beforehand whether the running program or the constraint solver will exhibit this
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error earlier, but in practice there is a certain chance that simply running the program
is the better alternative. On the other hand, if a CLP program fails then one knows that
it is possibly failed, which is a stronger diagnostics in the CLP case and hence clearly
desirable.

In the CC case, the answer is negative: Simply running a CC program is not sufficient
to detect the error “inevitable failure or blocked reduction”: If one observes a blocked
application during program reduction one does not know � i � whether this application
will indeed block forever, and � ii � even if one can prove this one does not know whether
an error is prevented by the fact that the application blocks (in other words, whether
an error would occur could the application be unblocked).

A second question may come to mind: Why not simply test a CC program by running
its unguarded approximation instead, i. e., by ignoring synchronisation during testing?
This is not useful, since possible failure of the CLP approximation is not an interesting
debugging criterion as shown in the previous section.

4.3. Related Work

In the logic programming community, the status of types is more controversial than in
the functional programming community. In particular, the notion of a type error is less
clear in logic programming than it is in functional languages, since the semantics of
logic programs is based on predicate logic in which every syntactically well-formed
expression has a meaning. In operational terms, there is no inherent distinction be-
tween type error and a logic failure in logic programming. For an overview of several
approaches to types in logic programming see Pfenning’s collection [164], and the
recent report by Meyer [122].

Yardeni and Shapiro [220] were the first to suggest that a type in logic programming
should be an upper approximation of the program’s least model semantics. Similarly,
our failure diagnosis computes types of CC programs as upper approximations of the
program’s greatest model semantics. Such types pertaining to the denotational se-
mantics of programs have been called semantic types by Heintze and Jaffar [87], in
contrast to types pertaining to the operational semantics. Yardeni and Shapiro [220]
gave a tuple-distributive abstraction YP of the consequence operator TP. Heintze and
Jaffar [85] defined an operator TP based on set-substitutions and showed that is more
accurately than YP approximated the least model semantics.

Mishra gave an analysis for logic programs in terms of constraints path-closed sets,
and proven that his analysis approximated the least model semantics [132]. It has been
noticed, however, that his analysis was so weak that it rather approximated the great-
est model semantics [87, 171]. The characterisation of the greatest model semantics
(for logic programs over infinite trees) in terms of finite failure, as we have discussed
it above, is original to our paper [171]. Yardeni, Fr ühwirth, Vardi, and Shapiro [69]
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characterised the membership problem in the least model of a logic program in a sub-
class of so-called unary-predicate programs based on tree automata. Devienne, Tison,
and Talbot present an implementation of their analysis based on tree automata [201].

Charatonik and Podelski [45] show that set-based analysis can be used to approx-
imate temporal properties of logic programs that are intended to describe possibly
non-terminating computations.
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In this chapter, we extend the failure diagnosis from CC to a large sublanguage of Oz
with higher-order procedures, cells, feature tree constraints, and conditionals: that is,
our analysis comprises essentially the whole Oz Programming Model (OPM) accord-
ing to [195], except that we fix CFT as the underlying constraint system in order to
incorporate records. OPM is considerably more expressive than CC due to the pres-
ence of higher-order procedures (and cells). Nonetheless, the extension of our failure
diagnosis is rather smooth. This is a desirable situation because it allows one to under-
stand the analysis for the simpler first-order fragment first.

On the other hand, the problem of correctness of our diagnosis for OPM becomes fun-
damentally harder in contrast to CC due to the presence of higher-order procedures.
The correctness proof for CC in the previous chapter is based on the logic semantics
borrowed from constraint logic programming. An analogous argument is not available
for Oz since there is no denotational semantics for Oz, even with cells put aside.33 No-
tice also, that it is not easily possible to reduce a program with higher-order procedures
to a first-order program. Therefore, a correctness proof for OPM probably has to argue
directly on the operational semantics.

In an experimental implementation of our analysis for Oz, we have found it useful
for debugging and the automated detection of errors. We illustrate the analysis by a
number of examples, and we provide a set of style conventions that summarise the
intuitions underlying the analysis. The material presented in this chapter has an explo-
rative character for two reasons. First, we leave open the question of how to prove the
diagnosis correct. Second, the integration of our diagnosis into a production quality

33It is an open research problem how such a denotational semantics would look like, in particular
since it would have to subsume the denotational semantics of both CC and lambda calculus.
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compiler and its feasibility and scalability needs to be explored. So the problem of
automated failure diagnosis for Oz is left unsettled, but we hope that this chapter can
serve as a source of inspiration for future research.

We also take a closer look at conditionals. As we shall see, a careful analysis of
conditionals is crucial for the accuracy of the failure diagnosis. More specifically, the
immediate extension of our analysis from CC to OPM (with higher-order procedures)
yields a less accurate analysis, in particular due to the analysis of conditionals. As a
remedy, we provide a simple syntactic condition on conditionals to avoid this problem.
More generally, we notice that both cost and accuracy of the analysis can be drastically
improved if the data flow through conditionals is statically known. This data flow
information includes the knowledge which variables the conditional guards depend
on, and which variables become constrained (their value is provided) during execution
of a conditional clause.

The constraint setting makes it easy to improve the analysis by annotating variables
with type information. Such an annotation is a predicate that describes the possible
values which a variable is expected or intended to take. Annotations nicely fit in the
constraint framework as they can be interpreted as prescriptive constraints on the pro-
gram, in addition to the constraints derived from the program by purely descriptive
means.

5.1. The Oz Programming Model

In this section, we recall the definition of OPM, where we mostly follow Smolka’s
paper [195]. The reader familiar with Oz and OPM may want to skip the follow-
ing section and proceed directly to Section 5.2. We do not give many examples on
programming in Oz, but refer the reader instead to the other publications on Oz, the
demos that are part of the Oz distribution [91, 174], as well as the examples for Plain
in Section 6.1.3.

5.1.1. The Computational Setup

Concurrent computation in OPM is organised in terms of processes, called threads,
over a shared store. Each thread represents an independent unit of concurrent compu-
tation with its own control structure. The shared store is the means through which the
threads communicate and on which they synchronise.

thread � � � thread

store
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The store contains possibly partial information about the values which a variable may
take on. According to the different kinds of information, the store is partitioned in
three segments, called the constraint store, the procedure store and the cell store.

The constraint store hosts a conjunction of first-order formulas that we call constraints.
Typical constraints include equations between variables (i. e., x � y), and between vari-
ables and atomic entities such as integers and symbolic constants. In particular we
assume a class of constants called names. The procedure store maps names to proce-
dures, and the cell store maps names to cells. The only way to update the constraint
store is to tell it a new constraint, which means to add it as a new conjunct to the store.
Procedure and cell store are updated whenever new procedures and cells are defined.

If the constraint store does not entail (logically imply) any constraints on a variable x
apart from equality to other variables, then x is called unbound. If the constraint store
implies equality of a variable and some data structure (such as a name), then x is called
bound to this data structure. If x is bound to a name mapped to a procedure or a cell
we also say that x is bound to a procedure or a cell. The constraint store is required
to remain satisfiable. The attempt to tell a constraint that is inconsistent with the store
is called a failure and is considered a run-time error. The constraint store is organised
such that one can only add new information to it but never retract any: the amount of
information in the constraint store grows monotonically.

Synchronisation between threads is through the constraint store only. A thread can
block until some constraint is entailed by the constraint store. Due to the monotonicity
property, this implies that synchronisation conditions are safe: if such a condition is
true once, it will stay true forever. No race conditions can occur. This also yields
the straightforward fairness condition that every reducible thread must eventually be
reduced. Like the constraint store, the procedure store grows monotonically, whereas
the cell store does not. This is intentional, since it is incorporated into OPM exactly
for supporting computation with state change which is essentially non-monotonic. But
a direct synchronisation on the cell store is carefully avoided.

5.1.2. The Base Language

We assume a set V of variables ranged over by x � y � z and a set N of names ranged
over by n. Figure 5.1 defines the syntax of the basic OPM statements S. Typi-
cal constraints are denoted by η. The statement � ������� x � y � S � defines a procedure
with identifier x, formal arguments y, and body S. The statement � x y � applies a
procedure with identifier x to the actual arguments y. The conditional statement
� � � � x1 η1 ������� S1 � � � � x2 η2 ������� S2 � consists of two guarded clauses.34

34Notice that OPM according to [195] does not have such a choice construct, whereas Oz has one. We
consider it here because it makes the embedding of CC(CFT) programs into OPM trivial. The analysis
is not substantially affected by this choice.
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S :: � � � ����� � � x � S � � Variable Declaration �
�

S1
� �

S2 � Parallel Composition �
�

��� � � � Null Statement �
� � ������� x � y � S � � Procedure Definition �
� � x y � � Procedure Application �
�

� ��� � x1 η1 ������� S1 � � � � x2 η2 ������� S2 � � Conditional �
�

η � Tell Statement �
� � � � � � x y � � Cell Definition �
� � ��� � � x y z � � Cell Exchange �

Figure 5.1.: Syntax of OPM Statements

In a guarded clause � � xη ������� S � we call � xη the guard and S the body. We identify
� xη with η if x is an empty sequence. The statement � � � � � x y � defines a cell with
identifier x and initial content y. The exchange statement � ��� � � x y z � operates on a cell
with identifier x and provides z as the new content of x and y as reference to the old
content of x.

According to [195], OPM is parametrised with respect to the underlying constraint
system. We fix constraints η to be drawn from the feature tree constraint system CFT
defined in the Chapter 2. In this context we treat names simply as labels which, im-
portantly, do not have a concrete notation in OPM.

In a procedure definition � ������� x � y � S � and a declaration ��� ����� � � y � S � the variables y
are bound with scope S.35 In a guarded clause � � yη ������� S � , the variables y are bound
with scope η and S. Free and bound variables of a statement S are defined as usual and
denoted by fv � S � and bv � S � .
Computation in OPM proceeds by reduction on statements. It employs an interleaving
semantics, meaning that only one statement reduces at a time; there is no simultane-
ous reduction of more than one statement. The atomic reduction steps are defined as
follows.

35The fact that the notion of “bound variable” can mean both “bound in a statement” and “bound in
the store” will not lead to confusion since the first one is a static concept and the second one a dynamic
concept. We are aware that we could resolve the ambiguity by distinguishing between identifiers (static)
and variables (dynamic) but avoid this for simplicity.

122



5.1. The Oz Programming Model

Variable Declaration. The reduction of a declaration statement ��� �	� � � � x � S � is un-
synchronised; it picks fresh variables y and replaces the declaration ��� �	� � � � x � S �
by the statement S 
 y � x � that is obtained from S by simultaneously substituting y
for all free occurrences of x in S.

Null Statement. The null statement ��� � � does not reduce and is not observable.

Tell Statement. Reduction of a tell statement η is unsynchronised; it reduces to ��� � �
after η was successfully told to the current store.

Procedure Definition. Reduction of a procedure definition � ������� x � y � S � is un-
synchronised; it chooses a fresh name n, extends the procedure store by
� ������� n � y � S � and tells x � n to the constraint store. Note that it is the constraint
store (not the procedure store) that will exhibit the failure if another definition
with identifier x has been executed before.

Procedure Application. A procedure application � x y � synchronises on the fact that
x is bound in the constraint store. If x is bound to a name n and the procedure
store contains � �����	� n � y � S � , then the application is replaced by S 
 y � x � ; that is,
by the procedure body S with the actual arguments y replacing for the formal
ones x. The situations that x is bound but not to a name, or that x is bound to a
name that is not mapped to a procedure are run-time errors.

Conditional. A conditional � � � � x1 η1 ������� S1 � � � � x2 η2 ������� S2 � synchronises on one
of two conditions. If the current constraint store entails one of the guards � xi ηi

(i � 1 � 2) then the conditional is replaced by � � ����� � � xi � Si � . If it entails both
guards, then reduction of the conditional is indeterminate. This choice is never
undone (“committed choice”). If the current constraint store entails the negation
of both guards, a run-time error is flagged.

Cell Definition. Reduction of a cell definition � � � � � x y � is unsynchronised; it chooses
a fresh name n, extends the cell � � � � � n y � , and tells x � n to the constraint store.

Cell Exchange. Reduction of a cell exchange � ��� � � x y z � synchronises on the fact
that x is bound in the constraint store. If x is bound to a name n and the cell
store contains � � � � � n y 
 � , then this entry is updated to � � � � � n z � , and the exchange
statement is replaced by y � y 
 . The situations that x is bound but not to a name,
or that x is bound to a name that is not mapped to a cell are run-time errors.

Synchronisation on cells is as simple as synchronisation on procedures. Once x is
bound to a cell, the exchange statement does not synchronise at all. It enables commu-
nication between producer and consumer of the cell content and delegates all synchro-
nisation to these two.
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Patterns t :: � a � f :t � �
a � f :t ����� � � � f :t � � � f :t ����� �

Statements S :: � ����� � ��� � � x � � � t1 ������� S1 � � � t2 ������� S2 � � Case �

Figure 5.2.: Syntax Extension for Pattern Matching

Cells add a second form of indeterminism to OPM; when multiple concurrent threads
perform an exchange on the same cell, then the final cell content depends on reduction
order. Multiple cell exchanges do not interfere with each other, though. Mutual ex-
clusion of concurrent operations on a cell is guaranteed, since an exchange performs a
read and a write operation on a cell in an atomic step.

5.1.3. Names

Names serve different purposes in OPM. First, they provide an interface between con-
straints, which bear a first-order logic semantics, and procedures and cells, which
have none. As a consequence, they support an untyped equality test test at all data
types (similar to eq in Scheme) that is particularly convenient in object oriented-
programming where one can test for object identity:

� � � obj � self ������� S � � �����
Third, names model locations at which cells are located. This is essential since there
may be multiple references to the same cell, and every operation on the cell must
be visible to all of them. Finally, OPM provides a primitive operation to create new
names, independent of the definition of procedures and cells, as unique tokens.

Since there is no explicit notation for names, names behave just as constant symbols
with the additional guarantee that they are globally unique and cannot be forged. In
combination with lexical scoping, the generation of new names is a flexible mechanism
to ensure privacy in an untyped setting. (In typed languages some of these services can
be offered by abstract data types.)

5.1.4. Case Statements

Figure 5.2 adds some syntactic sugar to model case statements with pattern matching.
A case statement like ��� � � x � � � t1 ������� S1 � � � t2 ������� S2 � provides elegant support for
the decomposition of records and is common in functional programming languages. A
pattern t is a partial description of a feature tree. More specifically, the label can be
omitted if unknown, and an ellipsis is used if the available features are not completely
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known. In case clauses such as � a � f :x ����� � ������� S � and � a � f :x � ������� S � , the variables x
are bound with scope S. In this context, the variables x are also called pattern variables.

Pattern Matching. A variable x matches a pattern t if x is bound to a feature tree that
has all the labels and features mentioned in t. For example, a feature term a � f :y �
is matched by every tree that has at least the label a and the feature f at the root.

Case Statement. Reduction of a case statement ��� � � x � ��� t1 ������� S1 � � � t2 ������� S2 �
synchronises on the fact that the current information on x in the constraint store
matches one of the patterns t1 or t2. The situation that x will never match t1 or t2
is a run-time error.

Case statements are not primitive in OPM, since pattern matching is easily expressed as
an entailment problem. For example, a variable x matches a pattern a � f1:x1 ����� fn:xn ����� �
if the constraint store entails

a � x � � � y1 x 
 f1 � y1 � ����� � � yn x 
 fn � yn

or, equivalently, x � a � f1:x1 ������� � fn:xn � g:y � for some features g and variables y.
The variable x matches a � f1:x1 ������� � fn:xn � if in addition the constraint store en-
tails x � f1 ��������� fn 	 ; that is, if the constraint store entails

a � x � � x � f1 ������� � fn 	 � � y1 x 
 f1 � y1 � ����� � � yn x 
 fn � yn �
or, equivalently x � a � f1:x1 ��������� fn:xn � . So case statements can easily be expressed with
the conditional of the base language. For example,

��� � � x � a � f :y ����� � ������� S1 � � � b � g:z � ������� S2 �
is equivalent to the guarded conditional below, provided that x

�
� V � t1 � � V � t2 � .

� � � � y � a � x � � x 
 f � y � ������� S1 � � � � z � b � x � � x � g 	 � x 
 g � z � ������� S2 �

5.2. Set-based Failure Diagnosis

The analysis is defined in Figure 5.3 as a mapping A from OPM statements S to ex-
istential formulas A � D � over FT � � ar � � � constraints. The analysis uses the following
criterion to mark programs as dubious and reject it.

Rejection Condition. A program D is no good if A � D � is non-satisfiable over non-
empty sets of trees.

In the remainder of this section we explain the analysis stepwise along with illustrating
examples.36

36In addition, most of the examples from Section 4.1.1 can be easily adapted to the compositional
OPM syntax. However, the analysis of a CC(CFT) program according to Figure 4.4 is more accurate

125



5. Set-based Failure Diagnosis for Oz

A � η � � η

A � S1
� �

S2 � � A � S1 � � A � S2 �

A � ��� ����� � � x � S � � � � xA � S �

A � � ������� x � y1 ����� yn � S � � � � y1 ����� � yn � x � �����	� � arg1:y1 ������� � argn:yn � � A � S � �

A � � x y1 ����� yn � � � � z1 ����� � zn

��������
�

������� � x � � x � arg1 ������� � argn 	 �

x 
 arg1 � z1 � ����� � x 
 argn � zn �

y1 � z1 � ����� � yn � zn

���������
�

A � � � � xη ������� S � � A � ��� �	� � � � x � η
� �

S � �

A � � ��� � x1 η1 ������� S1 � � � � x2 η2 ������� S2 � �

� � y1
� y2

��������
�

y � y1 � y2 �

A � � x1 η1 ������� S1 � 
 y1 � y � �

A � � x2 η2 ������� S2 � 
 y2 � y �

� �������
�

if � y 	 � fv � � � � � x1 η1 ������� S1 � � � � x2 η2 ������� S2 � �

A � � � � � � x y � � � � � � � � x � � x � 	

A � � ��� � � x y z � � � � � � � � x � � x � 	

Figure 5.3.: Set-based Failure Diagnosis for OPM
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5.2.1. Constraints, Parallel Composition, and Declaration

There is no surprise as to the analysis of parallel composition and of constraints: the
analysis of constraints exploits again the fact that every CFT constraint is also an
FT � � ar � constraint,

Declaration. In the analysis of variable declaration note that the assertion x � /0 � p � /0
is dropped; it was used in Chapter 4 to relate emptiness of a local variable to
emptiness of the analysis of the enclosing procedure.

In presence of global variables, this technique of localising inconsistencies at proce-
dures does not work anymore. For example, let z be a global variable and consider the
following program (where is an arbitrary variable):

� ������� x � � a � z � � � � � ������� y � � b � z � � (Dglobal)

Apparently, the procedures x and y have an inconsistent view as to the value of the
global variable z. However, this does not imply that either � x u � or � y v � are finitely
failed: none of them is. Only in combination of both indeed yields a finite failure:

� x u � � � � y v �
Therefore, our rejection condition takes all variables into account. Intuitively, this
means that we consider a great number of program points in addition to the call points
of procedures.

5.2.2. Procedures, Applications, and Conditionals

Since procedures are first-class in OPM, they can be referred to by variables which
may also occur everywhere else in the program. Hence the analysis must be able
to constrain variables to denote procedures of appropriate arity. For this purpose,
we introduce a new label �����	� and an infinite number of (pairwise distinct) features
arg1 � arg2 ������� that may not occur everywhere else in the program.

Furthermore, we allow procedures with arbitrary arity in this chapter. For first-order
procedures, a simple syntactic test can guarantee that all of them are applied with
the correct number of arguments. In presence of higher-order procedures, we must
explicitly reason about procedure arities.

Procedures. The analysis of � ������� x � y � S � states that x is a procedure with arity n,
and that all of its formal arguments must be consistent with the use of the formal
arguments y1 ��������� yn in the procedure body S. Notice that the body of a procedure
is analysed independent of whether it is applied or not.

than the analysis of the corresponding OPM program according to Figure 5.3. For further illustration,
see Section 5.3.
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Application. The analysis of a procedure application � x y � states that x is a procedure
that has arity n and that allows all possible values of y as arguments.

Single Clause Conditionals. A conditional that consists of only one clause is as-
sumed to be used for synchronisation. That is, it is assumed that its guard will
eventually be entailed and, therefore, that its body is executed in every fair com-
putation.

Binary Clause Conditionals. For conditionals with two (or more) clauses we assume
at least one of its clauses is eventually executed. Conditionals are analysed
clause-wise. The occurring variables are renamed to avoid any unwanted de-
pendency between the clauses to arise whose execution is mutually exclusive.

Case Statements. The analysis of case statements is defined via their translation to
the basic conditional form (see Page 125).

In Section 5.3 we consider possible refinements of the analysis of conditionals.

5.2.3. Cells

The indeterminism provided by cells and conditionals is different: While conditionals
make the choice between multiple clauses locally explicit, the choice between multi-
ple exchanges on the same cell is implicit. This complicates the analysis of cells in
comparison with the analysis of conditionals. In case of conditionals, the analysis of
its clauses is combined in a union constraint. This is, in general, impossible for cells
which leave the choice implicit. It makes the analysis of cell contents a global issue
instead of a local one as the analysis of conditionals. Locally, we can only derive little
information on cells.

Cell Definition. For the analysis of cells we introduce a special label � � � � . The analysis
of a cell definition � � � � � x y � derives that x must denote a cell, but we derive no
constrains on y.

Cell Exchange. From � ��� � � x y z � we derive that x must denote a cell, but no con-
straints on y or z.

This analysis is fairly weak as it does not derive any information about the set of val-
ues that a cell may hold during its life time. This may be improved by a global data
flow analysis that can delimit the set of references to a given cell. Alternatively, pro-
grammers could provide an annotation restricting the possible values that the analysis
accepts for a cell.
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5.2.4. Examples

To acquaint the reader with the modified syntax, we start with the example Dfail2 from
the previous chapter in OPM syntax:

� ������� x � x 
 � a � x 
 � �
� ������� y � y 
 � b � y 
 � �
� ������� z � z 
 � � x z 
 � � � � y z 
 � � �

(Dfail2)

As analysis of Dfail2 we obtain:

�����	� � x � � x 
 arg1 � x 
 � a � x 
 � �
�����	� � y � � y 
 arg1 � y 
 � b � y 
 � �
z 
 � x 
 � z 
 � y 


We reject Dfail2 since its analysis entails z 
 � /0.

5.2.4.1. Procedures vs. Records

Consider a program that uses x both as a procedure and as a record identifier.

� ������� x � y � S � � � a � x � (Dtypeerr1)

The analysis rejects the program Dtypeerr1 since the associated constraint entails x � /0.

�����	� � x � � a � x � � �����
Similarly, field selection on a procedure is rejected:

� ������� x � y � S � � � x 
 f � z (Dtypeerr2)
The associated constraint is this one:

�����	� � x � � x � arg1 	 � x 
 f � z � �����

5.2.4.2. Arity Mismatch

The procedure Dar2 contains an arity mismatch.

� ������� x � z1z2 � S � � � � x y � (Dar2)

The analysis derives the following constraint, which entails x � /0.

x � arg1 � arg2 	 � x � arg1 	�� �����
Similarly, programs that contain two applications with different arities are rejected:

� x y � � � � x z1z2 � (Dar3)
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The failure indicated by the fact that the analysis of Dar3 entails x � /0 is not necessarily
exhibited at run-time; it is possible that no application with illegal arity will ever be
executed. Rather, if x is never bound, both applications will block forever and are
considered erroneous for this reason.

A third related example illustrates the requirement that all procedures should agree
about the values of their joint global variables.

� ������� x � x 
 � � u x 
 � � � � � ������� y � y � � u y y � � (Dar4)

The procedure x in Dar4 expects u to be a unary procedure, while y applies u with two
arguments. The analysis entails u � /0 by a similar argument as for the two previous
examples.

5.2.4.3. Higher-order Procedures

In the following program, x is a higher-order procedure that takes a procedure and
applies it to a single argument. The application � x u � is erroneous since u is bound to
a binary procedure.

� ������� x � y � � y z � � � � � x u � � � � �����	� u � v1v2 � S � (Dar5)

The error is detected because the analysis of Dar4 entails u � /0.

x 
 arg1 � y � y � arg1 	 � u � y � u � arg1 � arg2 	�� �����

5.2.4.4. Multiple Procedures

Execution of two definitions for the same variable like in

� ������� x � y � S1 � � � � ������� x � z � S2 �
will lead to a failure due to the attempt to bind x to two different names. Our ana-
lysis detects many such situations. � i � If

�
y
� �� �

z
�
, the analysis will force x to denote

a unary and a binary procedure at the same time. � ii � If S1 and S2 use their argu-
ments at different types, emptiness of x will be entailed. For illustration, consider
� ������� x � y � a � y � � � � � �����	� x � y 
 � b � y 
 � � . Figure 5.8 on Page 137 gives a refinement of the
analysis of procedures (in a different context) which can improve the accuracy of the
analysis in cases like this.

5.2.4.5. Conditionals

The following conditional is considered erroneous because guard and body do not
agree: the guard tests for some condition and the body contradicts it. If this clause is
ever committed to, it will inevitably lead to failure.

� � � � yx 
 f � y � a � x � ������� b � y � � � �����
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Program � ������� length � x n �
if x � nil ������� n � 0
+ � y � z x � cons � y � z � ������� ��� �	� � � � m � � length z m � � � � inc m n � �

Analysis length � �����	� � arg1:x � arg2:n � �
x � x1 � x2 � n � n1 � n2 � length � length1 � length2 �
x1
� nil � n1

� 0 � x2
� cons � y � z � �

length2 
 arg1 � u1 � length2 
 arg2 � u2 � z � u1 � m � u2 �
inc 
 arg1 � v1 � inc 
 arg2 � v2 � m � v1 � n � v2

Figure 5.4.: Analysing the Procedure Length.

The following example is similar and rejected for the same reason.

� � � a � x � ������� � x y � � � ����� �
A particularity of our analysis is that we reject a conditional clause which is never
executed because its guard is known to be inconsistent. For example:

� � � a � x � � b � x � ������� S � � �����
The Procedure Length. Figure 5.4 gives an OPM procedure that implements the
function length and its analysis, in which we have dropped the existential quantifiers
for better readability. We also assume that inc is statically known to be bound to a
binary operation on integers; therefore we decide to treat inc as a constant symbol, in
contrast to the variable length. This global type assumption can be expressed by the
constraint

inc � ������� � arg1: � � � � arg2: � � � � �
Simplification of the analysis of length yields the solved form

length � ������� � arg1:x � arg2:n � � x � nil � cons � y � z � � n � � � � �
Its greatest solution for length is

�����	� � arg1:nil � cons � � � � � � arg2: � � � � �
where we write

�
instead of P � F T � for better legibility. The expected type of length

is �����	� ��� � � � � � � � � � � � where � � � � � X � is the greatest solution of the equation

L � nil � cons � X � L � �
So the approximation is indeed correct.

Arity Constraints. We have used arity constraints at different places in the analy-
sis. They are indispensable exactly where arity constraints syntactically occur in the
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program: that is, in tell statements where records are constructed and in conditional
guards where records are decomposed.

Everywhere else, we could get rid of them. For example, to catch the arity mismatch
in program Dar2, the analysis does not necessarily require arity constraints. Rather, we
could introduce another special feature ��� and use the integers as labels to derive

A � � �����	� x � y1 ����� yn � S � � � � y1 ����� yn � x � ������� � ��� :n � arg1:y1 ��������� argn:yn � � A � S � �
In this case, the analysis of Dar2 would entail that � x 
 � x 
 
 � x 
 ��� � x 
 � 1 � x 
 � � x 
 ��� � x 
 
 �
2 � x 
 
 � � and hence x � /0. Similarly, an additional label none and an analysis of feature
selection of the form

A � x 
 f � y � � x 
 f � y � � � x 
 � x 
 ��� � x 
 � none � x 
 � �
could be used to justify rejection of Dtypeerr2 without the need for arity constraints.
A third option to treat this phenomenon is to derive � �����	� � x � from x 
 f � y, and
to assume that a � x � � � �����	� � x � is satisfiable for all a

�� �����	� whereas, of course,
������� � x � � � �����	� � x � is not. A more general treatment would assume an order on the
labels, e. g., a lattice (cf. [137]).

5.2.5. Style Conventions

We give an informal summary of the principles that underly our analysis. These prin-
ciples can be seen as style conventions which a programmer should adhere when ap-
plying the analysis in order to avoid spurious error messages.

Every good program should

1. never reduce to a configuration with an inconsistent constraint store.

2. not contain statements that are unfailed only because they block forever.

3. contain only conditionals such that at least one of its clauses allows unfailed
execution.

4. not contain procedures that are unfailed only because they are never applied.

5. contain no set of procedures which disagree about the values of their joint global
variables.

6. not contain any guarded clause whose guard is inconsistent with its body.

7. contain only conditionals with consistent guards.

The first two principles should be familiar from Chapter 4 where we diagnosed failure
or infinite suspension as run-time errors of CC programs. Underlying the clauses (3)–
(5) is the decision not to accept any statement that is only correct because it is never
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executed: Conditionals with clauses that are all in conflict with the context � 3 � do
not abide by this principle; neither do procedures with an inconsistent body � 4 � , or
multiple procedures that cannot be executed concurrently because they do not agree
on their joint global variables � 5 � . Principle � 4 � corresponds to our analysis of finite
failure in the previous chapter: a finitely failed procedure inevitably fails if but only if
it is applied. If Principle � 5 � is violated in a given program, then the program is unfailed
only if some procedure is never applied. We want to prohibit this situation, justified
by the intuition that a procedure should allow an arbitrary number of applications.
Clauses (6) and (7) need further explanation.

Both Principles (6) and (7) reject a conditional clause � η ������� S � if the statement η
� �
S

is inconsistent with its context, independent of whether it is executed at all. This treat-
ment of guards is clearly related to the unguarded approximation of Section 4.2. In
addition, it implicitly introduces a program point for each conditional clause instead
of just one for the complete conditional. In the CC-case, this corresponds to the intro-
duction of auxiliary predicates as discussed in Section 4.1.1.4.

For programs that are hand-written by humans, the principles seem to be easy to obey.
They may not be stable under program transformations such as partial evaluation or,
more generally, they seem less convincing for automatically generated programs. In
this case, however, it seems still worthwhile to report violation of these principles; in
particular, since the programmer is always free to ignore the warnings and execute the
program nonetheless.

5.3. Conditionals Revisited

Reconsider the length-example in Figure 5.4 and notice that length1 is unconstrained.
For this reason, the analysis cannot infer the expected type � � � � � � � for the first argument.
In the length-example, the variable z only occurs as an argument of the recursive appli-
cation of length, z remains unconstrained, too. This weakness is due to the pessimistic
operation of renaming all variables free in a conditional for the analysis of its clauses.
It is pessimistic since it ignores the possibility of variables which have the same value
during executions of all conditional clauses.

This section shows that it is important to exploit some data flow information in order
to improve the accuracy of the analysis of conditionals. The next examples should
illustrate this point.

Recursion and Data flow. Most recursive procedure on lists have a form similar to
this one.

� ������� x � y � � � � y � nil ������� ��� � � � � � � z y 
 cdr � z ������� � x z � � �
Clearly, x is bound to a procedure whenever the second clause of the conditional is
executed. This fact is crucial for the analysis of this statement to be as accurate as the
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A � � � � � x1 η1 ������� S1 � � � � x2 η2 ������� S2 � � � � y1

� y2

����
�

y � y1 � y2 �
A � � � x1 η1 ������� S1 � � 
 y1 � y � �
A � � � x2 η2 ������� S2 � � 
 y2 � y �

� ���
�

if � y 	 � nonP � � ��� � x1 η1 ������� S1 � � � � x2 η2 ������� S2 � �

Figure 5.5.: Analysing Conditionals with respect to Parameters

one for the corresponding first-order statement.

Procedure Calls. A similar weakness applies to all procedure calls that occur in only
one of two branches of a conditional. For example, from the program

� ������� x � y � � � � η1 ������� � p x y � � � � η2 ������� � q x y � � �
the analysis in Figure 5.3 will not deduce that x and y should denote integers – even if
the analysis of the procedure definitions p and q yields that both are binary operations
on integers.

The Base Case of a Recursion. The procedure forall applies its second argument as
a unary procedure to every element in the list that it receives as the first argument.

� ������� forall � xs � p �
� � xs � nil ������� ��� � �

� � x � xr � xs 
 head � x � xs 
 tail � xr ������� � p x � � � � f orall xr p � �
The intended use of forall implies that p is bound to a unary procedure whenever the
second clause of the conditional is executed. In general this cannot be guaranteed. In
addition, if forall receives the empty list nil as the first argument it cannot fail, inde-
pendent of the second argument. This is the case because the higher-order argument p
is not used at the base case of a list recursion. Therefore, our analysis will not reject
an application such as � forall nil 42 � as finitely failed.

In a first-order setting, this example is well-known to the logic programming commu-
nity (e. g., see [149]), where an analysis such as ours does not find out that the ternary
append-procedure expects lists in the second and third arguments.

� ������� append � xs � ys � zs �
� � xs � nil ������� zs � ys

� � x � xrxs 
 head � x � xs 
 tail � xr �������
� z � zr � zs 
 head � x � zs 
 tail � zr

� � � append xr ys zr � �
The analysis of conditionals can be improved a lot if (some) data flow information is
statically known; that is, if it is known
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length � ������� � arg1:x � arg2:n � �
x � x1 � x2 � n � n1 � n2 �
x1
� nil � n1

� 0 � x2
� cons � y � z � �

length 
 arg1 � u1 � length 
 arg2 � u2 � z � u1 � m � u2 �
inc 
 arg1 � v1 � inc 
 arg2 � v2 � m � v1 � n � v2

Figure 5.6.: Analysing the Procedure Length with respect to Parameters.

� on which variables it depends which clause a conditional is committed to
(tested),

� and which variables may be constrained on execution of the clauses (con-
strained).

All other variables can be assumed constant for all executions of the conditional. Let
us call these variables parameters of the conditional. The values of parameters are
(neither conditions nor results) not related to the conditional branching of control, but
they are simply accessed. Hence it is reasonable to adopt the

Parameter Principle. Parameters should not be renamed.

Figure 5.5 improves the analysis of conditionals accordingly, using nonP � S � to de-
note the subset of fv � S � containing all non-parameters of S. There are two important
advantages in knowing conditional parameters.

1. The analysis derives fewer union constraints and more equalities instead. Hence
the analysis becomes strictly more accurate.

2. The constraint solving becomes simpler. Since the treatment of inclusion con-
straints is substantially more expensive than that of equality constraints, the over-
all cost of constraint solving may drop significantly; this is in particular so, if we
make the reasonable assumption that most variables occurring in a conditional
are parameters.

It is clearly undecidable whether a variable in a conditional is a parameter since this
depends on run-time properties of procedures. So we cannot hope for anything better
in general than an approximation of parameter-hood. One obvious such approximation
is this one:

Parameter Approximation. View those variables as parameters that occur only as
procedure identifier in applications or as cell identifier in exchange statements.
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A � x � � t ������� S � � � x � x � t � A � S � � if fv � t � � � x 	
A � � � � � x � � � t1 ������� S1 � � � t2 ������� S2 � � � ��� � � y � �

� x1� x2� y1� y2

����
�

x � x1 � x2 � y � y1 � y2 �
A � x1

� � t1 ������� S1 � 
 y1 � y � 
 x1 � x � �
A � x2

� � t2 ������� S2 � 
 y2 � y � 
 x2 � x �

� ���
�

Figure 5.7.: Analysing Case Statements

Figure 5.6 shows the adapted analysis of the length procedure. The key improvement
with respect to Figure 5.4 is shaded grey. Simplification of this constraint yields

length � �����	� � arg1:x � arg2:n � � xs � nil � cons � y � z � � n � � � � � z � x �
The greatest solution for length of this constraint is

������� � arg1: � � � � � � � � arg2: � � � �
which, in this case, is exactly the expected type.

Syntactic Sugar. The parameter approximation above considers variables as non-pa-
rameters whenever they occur in constraints or in conditional guards. This is safe but
rather pessimistic, and somewhat annoying given the central role that constraints play
in OPM. Constraints are used both to construct and to decompose data structures. For
example, the selection constraint x 
 f � y constrains both x and y in general. Frequently,
however, it is used as a selection function on x, assuming that x is bound to a record
with field f . In this case, x 
 f � y expresses a new constraint only on y. When used such,
the variable x in x 
 f � y is a parameter in a conditional like

� � � η ������� ��� ����� � � y � x 
 f � y � � � y z � � � � ����� �
but this is not acknowledged by the given approximation. As a second example, as-
sume that the variables map and fold are bound to library procedures on lists. Then
they behave as constants and hence are parameters in the following conditional even
though they occur in an equational constraint.

� � � x � map ������� � x y1 y2 y3 � � � �����
To further improve the analysis, we have three options.

Annotations. Enrich the syntax by special conditional forms (or other program an-
notations) which make intended parameters explicit. In functional programs, the data
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A � � ������� x � y1 ����� yn � S � � � � y � x � �����	� � � :n � arg1:y1 ��������� argn:yn � � A � S � � n fresh

A � � x y1 ����� yn � � � �����	� � x � � x � � � arg1 ������� � argn 	 � � n
i 	 1 yi � x 
 argi �

A � � � � � x1 η1 ������� S1 � � � � x2 η2 ������� S2 � � �

� y1
� y2

��������
�

y � y1 � y2 �
A � � � x1 η1 ������� S1 � � 
 y1 � y � �
A � � � x2 η2 ������� S2 � � 
 y2 � y � �

� y � y � �
� � � � y � ������� y � y1 � y � y2

���������
�

where � �
� � � � x � ��� y � x 
 � � y � � � � ��� � � x � �

and � y 	 � fv � � ��� � x1 η1 ������� S1 � � � � x2 η2 ������� S2 � �

Figure 5.8.: Analysing Conditionals with Automated Parameter Detection

flow through conditionals is statically clear. In OPM this is not the case; instead, one
could let the programmer provide (unchecked) data flow information by marking the
intended return parameters explicitly.

��� � � x � ��� t1 ������� S1 � � � t2 ������� S2 � � � ��� � � y

Given such annotations, all variables except x and y can be treated as parameters. The
corresponding analysis is given in Figure 5.7. Notice that the annotation � � ��� � � y
is essential, because the variables constrained by a conditional are not syntactically
determined either.

Conditional Constraints. Detect parameters during constraint solving by means of
conditional equations. A solution for the special case of procedures is given in Fig-
ure 5.8 using names. The definition of the predicate � � � � � assumes another predicate
� � � ��� � � x � that holds exactly for names.

Control Flow Analysis. Determine conditional parameters by a control flow analysis.
The design of a full-fledged control flow analysis for Oz is an interesting research topic
of its own.
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5.4. Related Work

5.4.1. Programming Languages and Models

The history of models for concurrent computation reaches back into the 60’s and 70’s
to the net theory of Petri [163], and to work on buffered communication between se-
quential processes by Dijkstra [61], Brinch-Hansen [28], and Kahn [111]. The more
recent development of high-level models for concurrent computation and program-
ming can be summarised by two main lines of research: one of them is based on
process calculi and the other one on the concurrent constraint model.

5.4.1.1. Process Calculi

Process calculi and process algebras provide a message passing model of concur-
rent computation (see [126] for references). Most influential amongst them is the
π-calculus by Milner, Parrow, and Walker [128, 129]. The π-calculus generalises
and simplifies Milner’s CCS [124, 125], the Calculus of Communicating Systems. It
also draws intuitions from Hewitt and Agha’s actor model [3, 96] that formulates the
early vision of concurrent computation as organised in terms of concurrent processes
(called actors) that communicate freely by exchanging messages. CCS is influenced
by Hoare’s language CSP [99, 100] of Communicating Sequential Processes, on which
the communication models of occam [30] are based.

In the π-calculus, messages are received along channels, and channels can be passed
as messages. This allows the π-calculus to express process mobility and to model dy-
namically reconfigurable networks of processes (that is, new processes can be created
dynamically and then be communicated with). It also subsumes the λ-calculus, one
of the most important models of deterministic computation [127]. Channel commu-
nication is synchronous in that both sender and receiver will block until a message
has been exchanged. For the development of programming languages, asynchronous
versions of the π-calculus [24, 102] (where the sender does not block) have been con-
sidered. For instance, the languages Pict and join calculus [67, 169] are based on an
asynchronous versions of the π-calculus.

5.4.1.2. (Constraint) Logic Programming

Logic programming is based on the vision of computation as deduction [114], and
took some of its original motivation from an application in natural language process-
ing [49]. Logic programs are interpreted as predicate logic formulas from the Horn
clause fragment and operationalised by SLD resolution and backtracking search. The
language Prolog is almost synonymous with the logic programming paradigm. A key
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contribution of logic programming to the field of programming is the concept of par-
tially determined data structures, that is data structures with embedded (logic) vari-
ables which act as place holders for unknown values. As computation proceeds, the
logic variables are further instantiated via unification, so that the data structures get
more and more refined.

Logic programming was developed further in two directions. Jaffar and Lassez [104]
defined the constraint logic programming scheme CLP(X) which parametrises logic
programming over a constraint system X while retaining most of its properties. In
CLP(X), unification is generalised to satisfiability checking and solving of constraints
for the constraint system X. This parameterisation made a variety of new data struc-
tures available in logic programming, by way of new constraint systems over numbers
(integers and reals), booleans, trees (infinite trees, feature trees), sets, and others. This
greatly enhanced the usability and the efficiency of logic programming in problem
solving. For entry points into the related research see [23, 105, 208].

5.4.1.3. Concurrent Logic Programming

Another line of research took off from the insight that logic variables are an expressive
concept to model complex communication and synchronisation patterns in concurrent
programming. For instance, by synchronising on a logic variable to become bound one
can express data driven computation as considered in data-flow languages [57]. This
expressiveness was first recognised in Relational Language [47]. Subsequently, it led
to the development of a plethora of concurrent logic programming languages [189], in
particular with tailwind from ICOT’s decision to use a concurrent logic programming
language for their ambitious Fifth Generation Project.

Concurrent logic programming gave up the identification of computation and deduc-
tion. The speculative exploration of alternatives with backtracking search (“don’t
know” non-determinism) was replaced by synchronisation and committed choice
(“don’t care” non-determinism). Committed choice means that the choice of one al-
ternative branch of computation cannot be retracted. A variety of synchronisation pat-
terns were proposed and operationally specified, some of them quite involved [189].
In 1987, Maher [120] made a breakthrough in showing that entailment between con-
straints was the logic concept underlying these synchronisation schemes. This estab-
lished a unifying logic view on concurrent control with logic variables and enabled a
reconciliation of constraint logic programming with concurrent logic programming.

5.4.1.4. Concurrent Constraint Programming

Based on Maher’s insight and influenced by process calculi such as CCS [124, 125],
Saraswat developed the framework of concurrent constraint programming [180]. Syn-
tactically, CC gave up the restrictive clausal syntax from Prolog and adopted a more
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flexible compositional syntax instead, which was influenced by CCS. Conceptually,
it contributed the organisation of concurrent computation in terms of multiple agents
which interact with each other by means of constraints imposed on shared logic vari-
ables and placed in the so-called constraint store. The basic operations on the con-
straint store are imposing (“telling”) new constraints on the variables and testing (“ask-
ing”) for the presence of constraints. The attempt to tell a constraint which is inconsis-
tent with the constraint store is to a run-time error. Hence, the tell operation requires a
satisfiability test, while the ask operation is modelled by entailment checking.

Concurrent processes synchronise on the fact that certain constraints on a variable
become available in the constraint store. This allows for complex synchronisation
conditions to be expressed easily and, since constraints are never deleted, it yields
monotonic synchronisation conditions. Thus communication through shared variables
is a reliable and high-level concept in CC. Dynamically reconfigurable networks can be
expressed without reverting to the indeterministic concept of channel communication
as process calculi.

Before CC arrived, research in constraint (logic) programming had led to the proposal
of various delay primitives, which added a weak form of concurrency (“coroutining”).
Delay primitives were pioneered by Colmerauer with Prolog II and Naish with Mu- and
Nu-Prolog [51, 148] and are present in all modern Prolog systems today. Their concur-
rent control regime had proven beneficial for the writing of new constraint solvers. The
CC framework gives a simple explanation for them and opens up additional flexibility
for the development of new constraint solvers. Programming languages and notations
based on the CC model include cc(FD), AKL, and Oz [108, 174, 207].

5.4.1.5. Operational Models for Oz

Various aspects of Oz have been investigated on the basis of small calculi.
Smolka [194] defines the γ-calculus and relates it to the π-calculus as well as to the
eager and the lazy λ-calculus calculus. Smolka also shows how to model concurrent
objects in the γ-calculus. Niehren and M üller define the ρ-calculus which extends
the γ-calculus by parametrising it with a constraint system, and prove that ρ prop-
erly contains the “applicative core” of the π-calculus [154]. A ρ-calculus over order-
ing constraints between variables has been considered in [136]. Niehren investigates
the δ-calculus and proves that it can adequately embed both the eager and the lazy
λ-calculus [151, 152]. He also shows how to embed the complete π-calculus into δ.
All these calculi exclude constraint inference features. For entry points to these is-
sues see [174, 182–184]. Details on the object model of Oz are presented in [91, 194].
Names in Oz have been inspired by the concept of naming in the π-calculus [128, 129].
The interaction of constraint systems with names is discussed in [154, 155]. For further
details of its practical issues, notably in the object system, see [91, 184].

Recently, Victor and Parrow have proposed the fusion calculus [160, 161] as a simplifi-
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cation of the π-calculus that should, at the same time, allow its extension by constraint
programming features such as variable equations. Research in the fusion calculus is
driven by the study of program equivalences and not by programming desirables (com-
pare also Section 6.4.1).

5.4.1.6. Concurrent Functional Languages

There are various proposals for concurrency extensions of functional languages. The
ones related to logic variables include the futures in Multilisp [81] and the I-structures
in Id [18]. The functional language Erlang [17] supports message-based communi-
cation (somewhat similar to the π-calculus). Futures, I-structures, and logic variables
have in common that they provide a place holder for a data structure that is to be com-
puted concurrently. They differ in how they deal with multiple assignment. Futures
enforce single assignment syntactically, logic variables as in Oz combine multiple “as-
signments” to the same variable by unification, and I-structures raise a run-time error
on second assignment (so does Plain). In contrast to a future, a logic variable can be
created independently from the process that will bind it. In contrast to logic variables
and similar to channels, I-structures require explicit operations to access the data.

Also, Id’s M-structures [22] and OPM’s cells are related. M-structures are updatable
containers that can be full or empty. Reading from an empty M-structure blocks the
reader, and writing to a full M-structure is a run-time error. The read and write oper-
ations on M-structures are not atomic. In contrast, cells in OPM hold logic variables.
An exchange operation replaces the current content of a cell by a new one in an atomic
operation. This guarantees mutual exclusion of multiple concurrent operations on the
same cell which is crucial for computation with state. Once the cell is available, oper-
ations on it are unsynchronised. Thereby, the access to variables in a cell is decoupled
from the synchronisation between producer and consumer of constraints on these vari-
ables. The presence of logic variables is essential here: one can put a logic variable in
a cell and compute the new value afterwards.

5.4.2. Program Analysis

Set-based analysis for higher-order programming languages has received some atten-
tion recently in the context of functional languages [12, 38, 65, 84, 121, 216, 218]. Set-
based analysis for constraint programming has, to the best of my knowledge, not been
investigated so far. We briefly comment on the most closely related program analysis
systems, and we add a remark on the constraint systems used there in contrast to the
one we use.
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5.4.2.1. Program Analysis Systems

Bourdoncle [26] investigates abstract debugging for imperative languages in the
framework of abstract interpretation. Abstract debugging analyses a program with
respect to so-called invariant and intermittent assertions; invariant assertions must al-
ways hold at a given program point, and intermittent assertions must hold eventually.
Invariant assertions can be used to derive sufficient conditions for a program to fail at
some point.

Flanagan’s MrSpidey [65] is a static debugger for Scheme and part of the program-
ming environment DrScheme [63]. MrSpidey approximates the data flow in Scheme
programs and derives set expressions for every program point in order to prove that no
run-time error will occur at certain program points. MrSpidey’s main goal is the static
detection of errors.

Wright’s Soft Scheme [38, 216, 218] is the precursor of MrSpidey at Rice. Soft typing
for Scheme tries to eliminate all run-time type checks which it can prove to succeed.
It also reports to the programmer program points that will necessarily fail if they are
reached at all. Wright shows that all run-time type errors in a checked program will be
caught by one of the remaining type checks.

Aiken and Wimmers [11, 12] develop a soft type system for FL [9] based on a very
expressive set constraint system with union, intersection, and complement They give
an interpretation of their constraints in a domain of types, essentially the standard ideal
model [119] for functional types. Aiken has developed a demonstrator version of their
analysis for the experimental functional language Illyria [4].

Wadler and Marlow present a type system for the first-order fragment of Erlang [121],
a functional language with server-based concurrency. Their system uses subtyping
constraints based on a simplified version of Aiken and Wimmers’s system [11].

Heintze [84] proposes a set-based analysis for the functional language ML. His analy-
sis is a global program analysis and cannot be used to analyse programs module-wise.

Aiken and colleagues develop BANE [6] as a tool box for constraint-based analysis of
different programming languages, including ML and Java. BANE is based on a mix-
ture between set and tree constraints that has, for instance, beeb used for an analysis
of unhandled exceptions in ML [62].

5.4.2.2. Covariant Ordering Constraints

Our failure diagnosis for OPM is based on the same set of constraints that we employed
for a concurrent constraint language. More technically speaking, our analysis of OPM
is based on constraints interpreted over sets of feature trees with a fully monotonic
(covariant) order. This is in contrast to most other analyses for languages with higher-
order procedures, in particular with all work mentioned above (except for Bourdoncle’s
analysis for Pascal which is first-order).
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Most constraint systems used for the set-based analysis for higher-order procedures
are interpreted over an ordering that is monotonic or antimonotonic depending on the
top-level constructor (usually � ) or the tree selectors (such as dom and rg). The co-
variant ordering is used to deal with output arguments of procedures, the contravariant
ordering deals with input arguments.

Since the data flow through OPM procedures is not statically apparent (in contrast to
procedures in functional languages) we must treat input and output arguments alike.
As a consequence, we lose much information along higher-order functional data flow.
On the other hand, the analysis of multiple applications of the same procedure is kept
fully separate.
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This chapter presents a concurrent higher-order programming language called Plain.
The main design objectives for this language have been that it should be a close relative
of OPM that

� has an expressive strong type system with record-based subtyping and higher-
order polymorphic types (in contrast to ML type schemes), but

� retains most of OPM’s expressiveness as far as concurrent, functional, and
object-oriented programming are concerned.

Higher-order polymorphic types are required for cells that contain polymorphic data
structures and they are convenient for data structures that embed polymorphic proce-
dures (e. g., to describe modules). They are particularly useful in a distributed setting
(e. g., see [209]) since they enable one to send polymorphic procedures along a chan-
nel, an idiom which is ill-typed in ML. Higher-order polymorphic types are also re-
quired to type check certain higher-order programming abstractions, for instance in the
context of typed object-oriented programming (e. g., see [166]); there, the combination
of higher-order polymorphic types with subtyping is especially convenient [1].

As it turns out, both design objectives can be met by simplifying OPM’s store model
such that it does not contain equality constraints between variables and hence does
not require equational constraint solving (i. e., unification). In Plain, the abstract con-
straint store of OPM is replaced by a more detailed and self-contained store model,
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and equational constraints are replaced by (single) assignment

x : � y �
Execution of x : � y does not assert equality between x and y (and unify their current
bindings) but blocks until y is bound to some data structure D and then binds x to the
same D, too. The decision to give up unification makes Plain a considerable restriction
of Oz as a constraint programming language, in particular with respect to tree con-
straints. But Plain still admits computation with partially determined data structures
such as records with embedded logic variables.

��� �	� � � � y � z � x : � � head:y � tail:z 	 � � ����� �
This retains important expressiveness of logic variables, including the following: The
possibility to express cyclic data structures, demand-driven computation and data
flow computation [152, 170], safe (monotonic) synchronization in concurrent pro-
gramming [189], and latency tolerant communication in concurrent and distributed
programming [209]; it also includes the implementation of tail recursive procedures
returning lists which is impossible in functional programming languages (e. g., [131]).

Plain’s type system employs record-based subtyping and higher-order universal poly-
morphism [76, 177]. It also features access modalities (modes), which have been in-
troduced for channels by Pierce and Sangiorgi [165]; we show that one can adapt their
system to a language with logic variables. Modes for logic variables are essential to
make the type system work. Neither constraints on logic variables nor procedures in
constraint programming impose a static distinction between input and output (even
though it is often made implicitly). However, this distinction is essential for every type
system that provides a non-trivial order on types, such as the subtyping order and the
instantiation order on polymorphic types: it must be possible to use the procedure out-
put of a (more specific, smaller) subtype as input of a (less specific, greater) supertype,
and instantiation of polymorphic types must occur along the data flow [136].37

Static typing in a system with ordered types requires that the data flow is statically
known. In functional languages this is ensured by the restriction to applicative syntax;
it is not the case for OPM where equational constraints x � y are a central computa-
tional concept; equational constraints do not have a notion of input and output. In order
to solve this technical problem, Plain replaces equational constraints by an assignment
statement; while assignment remains an equation semantically, it has a statically fixed
input/output behaviour. Plain adapts also the operational semantics of the OPM prim-
itives such that they use assignment instead of equational constraints; in particular,
such a modification was needed for the semantics of cells. We do not consider type

37Note in passing that one can provide OPM with an ML-style polymorphic type system subject to
Wright’s restriction of polymorphic generalisation [123, 217]. This system does not require static data
flow information, but it rules out many higher programming abstraction, e. g., in the object system. For
preliminary results on this topic see [138].
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inference for Plain, which is very likely to be undecidable [214]; for further details see
Section 6.4.1.3.

The changes in OPM that lead to Plain can be understood as adding a static notion of
input and output to a language that, due to its nature, does not make this distinction
explicit. Some of these additions affect the operational semantics (assignment) and
some the type system (mode discipline). We show that these changes suffice to adapt
standard strong type systems with an order on types to OPM, i. e., to a language with
logic variables and higher-order procedures.

Plain’s expressiveness is also well-comparable with Pict [169], a recent concurrent
programming language based on the π-calculus [128, 129]. So Plain’s design also
contributes to recent efforts [152–154, 160, 161, 194, 211] to relate the concurrent pro-
gramming models based on constraints with those based on channel communication.
Plain seems to be the first typed concurrent programming language with higher-order
procedures and logic variables, with Id [18] being its closest relative in this respect:
So Plain is also of interest as an instance of what Harper has called the HOT style of
programming (higher-order, typed), extended to deal with logic variables [212].

6.1. Plain

6.1.1. Untyped Plain

Plain inherits the computational setup from the Oz Programming Model, which is
given by concurrent threads that communicate and synchronise through a shared store.
In contrast to OPM, Plain considerably simplifies the store model. Plain’s store binds
variables to data structures but does not contain explicit equations between unbound
variables. The data structures may contain embedded logic variables, of which typ-
ically only some are bound. Thus, Plain accommodates partially determined data
structures. The unbound variables in such a record can serve as the communication
medium between concurrent threads.

6.1.1.1. Statements, Store, and Configurations

The abstract syntax of Plain is given in Figure 6.1. A data structure D is a procedure,
a record, or a cell. A record � a:y 	 has fields y at pairwise distinct features a. We use
the same notational conventions as for feature terms.38

38This notion of records deviates from OPM where records carry labels. This is not an essential
difference but brings Plain closer to conventional programming languages with records, in particular
with functional languages. It is mostly due to Oz’s heritage in logic programming that records have
labels in OPM.
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Data Structures D :: � � ������� � y � S � � Procedure �
� � a:x 	 � Record �
� � � � � � x � � Cell �

Expressions E :: � x � Variables �
�

D � Data Structures �
Statements S :: � x : � E � Assigment �

� � x y � � Application �
� � ��� � � x � a:y ����� � S � � Pattern Matching �
� � ��� � � x y � z � S � � Exchange �
� ��� ����� � � x � S � � Declaration �
�

S1
� �

S2 � Parallel Composition �
�

��� � � � Null Statement �
Configurations C :: � Vρσ 
 � S

Variables V � V � V a finite set �
Store σ : V � D � N

Reference Store ρ : N � D

Figure 6.1.: Syntactic and Semantics Objects of Plain
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consistent renaming of bound variables � α �
S1

� �
S2 � S2

� �
S1 � S1

� �
S2 � � � S3 � S2

� � � S2
� �

S3 � ��� � �
� �

S � S � S
� �

��� � �

� ����� a1:y1 ����� a2:y2 ����� 	 � � ����� a2:y2 ����� a1:y1 ����� 	
� � � � � x � ����� a1:y1 ����� a2:y2 ����� ����� � S � � � ��� � � x � ����� a2:y2 ����� a1:y1 ����� ����� � S �

Figure 6.2.: Structural Congruence of Plain

The statements are all known from OPM with two exceptions: the assignment x : � E
of an expression E to a variable x, and the cell exchange � ��� � � x y � z � S � on variable x
with arguments y and z, and with continuation S. In contrast to the cell exchange
statement of OPM, Plain’s has a variable binder: in � ��� � � x y � z � S � , the variable z is
bound within S.39 For technical simplicity, we restrict case statements to contain a
single clause only.40

We write the set of procedures, cells, and records as P , C , and R , respectively. The
sets of data structures D is defined as their union: D � P � C � R . Recall that V
and N denote the set of variables and names. A store is a pair ρσ of finite partial
functions where σ maps variables to data structures or names, and ρ maps names to
data structures. We require that ρ � σ � x � � is defined when σ � x � � N . We write ρ �

and σ � for the totally undefined store functions. If x � dom � σ � , then we say that x is
bound in the store σ. If σ � x � � D , we say x is bound to σ � x � , if σ � x � � N say that x is
bound to a cell with current contents ρ � σ � x � � . The free variables fv � σ � and fv � ρ � of a
store are defined as follows.

fv � σ � �
def dom � σ � � fv � rg � σ � �

fv � ρ � �
def fv � rg � ρ � �

The monotonic extension of a store σ by a new binding of x to d is written σ � x �� d and
defined by

σ � x �� d �
def

���� σ 
 d � x � if x
�
� dom � σ �

σ otherwise

An extension “of the empty store” such as σ � � x �� d for d � D � N is abbreviated to
just x �� d by dropping σ � . Note that this is not the standard notion of extension for

39For further discussion on assignment and exchange, the statements in Plain that differ from OPM,
see Section 6.3.1.

40In practice, this restriction is not possible since it restricts the expressiveness of case statements to
that of field selection on records. The type checking of multiple-clause case statements can be added
based on standard machinery, usign type constructors and variant types [34].
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V ρσ 
 ����� �	� � � � x � S � 
 � V � � x 	 ρσ 
 � S if x
�
� V � DECLARE �

V ρσ 
 � x : � y 
 � V ρ σ � x �� σ � y � 
 � ��� � � if y � dom � σ � � ASSVAR �
V ρσ 
 � x : � � a:y 	 
 � V ρ σ � x �� � a:y 	 
 � ��� � � � ASSREC �
V ρσ 
 � x : � D 
 � Vρ 
D � n � σ � x �� n 
 � ��� � � � ASSDATA �

if D � P � C � n �
� dom � ρ �

V ρσ 
 ��� x y � 
 � Vρσ 
 � S 
 y � z � � APPLY �
if ρ � σ � x � � � � ������� � z � S �

V ρσ 
 ��� � � � � x � a:y ����� � S � 
 � V ρσ 
 � S 
 z � y � if σ � x � � � a:z ����� 	 � MATCH �
V ρσ 
 ��� ��� � � x y � z � S � 
 � V ρ 
 � � � � � y � � σ � x � � σ 
 � S 
 z 
 � z � � EXCHANGE �

if ρ � σ � x � � � � � � � � z 
 �
V ρσ 
 � S1 
�� V 
 ρ 
 σ 
 
 � S2

V ρσ 
 � S1
� �

S 
�� V 
 ρ 
 σ 
 
 � S2
� �

S
� CLOSURE �

Figure 6.3.: Operational Semantics of Plain

partial functions: It is allowed to extend a store σ by a binding for a variable that σ
already binds, but in this case the extension has no effect. This implies that extension
preserves the bindings in the store: Hence, it is called “monotonic”.

A configuration is a tuple Vρσ 
 � S consisting of a statement S, a store ρσ, and a set V of
(dynamically created) variables such that fv � S � � fv � σ � � fv � ρ � � V holds. With every
configuration V ρσ 
 � S we associate a statement S � C � that represents the bindings of
ρσ in terms of assignments and extends S accordingly. The statement S � C � associated
with a configuration C is defined as follows.

S � Vρσ 
 � S � � def S � � σ
�
x � � D x : � σ � x � � � σ

�
x � � N x : � � � � � � ρ � σ � x � � �

6.1.1.2. Operational Semantics

We identify statements S, data structures D, and configurations C up to consistent
renaming of bound variables and we assume once and for all that bound variables in
all S, D, or C are pairwise distinct and distinct from the free variables. Furthermore,
we identify S, D, and C up to the structural congruence given in Figure 6.2. Parallel
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composition of statements is commutative, associative, and has the neutral element
��� � � . Records � a:y 	 and patterns � a:y ����� � are identified up to reordering of their fields.
Two configurations C and C 
 are congruent if their associated statements are: formally,
C � C 
 if and only if S � C � � S � C 
 � .
The operational semantics of Plain is defined in terms of a one-step reduction relation
on configurations. Reduction 
 � is defined as the smallest binary relation on config-
urations that satisfies the axioms in Figure 6.3 and is closed under the inference rule
(CLOSURE).

Declaration. Reduction of variable declaration ��� ����� � � x � S � is unsynchronised; pro-
vided the declared variables x do not occur in the current configuration, they are
added to the set of used variables and ��� �	� � � � x � S � is replaced by S. This rule
may require renaming of the declared variable before reduction.

Assignment. There are three rules for assignment x : � E depending on the expression
E on the right hand side. The assignment x : � y of a variable y to x waits for y
to be bound in the current store, and then extends the store by the binding of x
to σ � y � . Reduction of an assignment x : � D where D is a record � a:x 	 directly
extends the store by binding x to � a:x 	 . Reduction of x : � D where D is a cell or
a procedure first creates a fresh name m. Then the store is extended by binding x
to n and n to y. In OPM, these assignment forms correspond to procedure and
cell definition. The following example illustrates declaration and assignment.

� x 	 ρ � σ � 
 ����� �	� � � � y � y : � � a:x 	 � � x : � y �

 � � x � y 	 ρ � σ � 
 � y : � � a:x 	 � � x : � y


 � � x � y 	 ρ � y �� � a:x 	 
 � x : � y


 � � x � y 	 ρ � y �� � a:x 	 � x �� � a:x 	 
 � ��� � �

In this example, x is bound to � a:x 	 such that a cyclic record is constructed.

Application. Reduction of an application � x y � synchronises on the fact that the store
binds x to a procedure � ������� � z � S � ; then, it replaces the application with the
procedure body S 
 y � z � with the actual arguments replacing the formal ones.

Pattern Matching. A matching statement � ��� � � x � a:y ����� � S � synchronises on the fact
that the store binds x to a record that matches the pattern � a:y ����� � . We say that a
record matches a pattern � a:y ����� � if it has at least the features in a, that is, if it is
of the form � a:z 	 . A special case of matching is field selection on records. For
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instance, consider the following reduction.

� x � y 	 ρ y �� � a:x � b:y 	 
 ��� ��� � � y � b:z ����� � x : � z �

�� � x � y 	 ρ y �� � a:x � b:y 	 
 � x : � y


�� � x � y 	 ρ y �� � a:x � b:y 	 � x �� � a:x � b:y 	 
 � ��� � �

Cell Exchange. A cell exchange � ��� � � x y � z � S � synchronises on the fact that x is
bound to a cell, say with current content z 
 . If this is the case, the store is up-
dated at the name σ � x � to point to the new cell content y, and then the exchange
statement is replaced by the continuation S in which the former content z 
 is sub-
stituted for the bound variable z. For instance, let V � � x � y � y 
 	 , fix a name n
such that ρ � n � � � � � � � y 
 � and consider the following example.

Vρ x �� n 
 � y : � x
� � � ��� � � x y � z � � ��� � � x z � z 
 � ��� � � � �


�� V ρ x �� n � y �� n 
 ��� ��� � � x y � z � � ��� � � x z � z 
 � ��� � � � �

�� V ρ 
 � � � � � y � � n � x �� n � y �� n 
 ��� ��� � � x y 
 � z 
 � ��� � � �

�� V ρ 
 � � � � � y � � n � 
 � � � � � y 
 � � n � x �� n � y �� n 
 � ��� � �
� V ρ x �� n � y �� n 
 � ��� � �

6.1.2. Typed Plain

In this section we present a type system for Plain. This type system is inspired by the
one that Pierce and Turner give for Pict [169] which in turn rests on a long tradition of
type systems for functional languages.41

6.1.2.1. Types are Protocols

In the concurrent setting, types are appropriately viewed as protocols. The communi-
cation of concurrent threads with each other through the shared store is mediated by
logic variables. For this communication to work smoothly there must be consensus
between the threads on the access protocols for the shared variables. These protocols
include two kinds of information:

� Structural: “Which data structures may a variable be bound to?”

� Modal: “Is it legal to read from and/or write to a variable?”

41For excellent overviews of type systems for programming languages see the classical paper by
Cardelli and Wegner [37], and Cardelli’s more recent handbook article [34].
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Types are a means to describe such access protocols for variables. Typical types42

include these ones:

? � � � : grants the right to read a variable and guarantees that reading will yield an
integer; denies write access, that is the right to bind a variable.

! � � � : grants the right to bind the variable to an integer; denies read access.

ˆ � � � : grants the right to read integers from a variable and to write integers to it.

? � a:T 	 : grants the right to read a variable and guarantees that reading will yield
a record that has at least the feature a. Furthermore, it is guaranteed that the
selection of the field at a will yield a variable with type T . Write access is
denied.

! � a:T1 � b:T2 	 : grants the right to bind a variable to any record that has at least the
features a and b, provided their associated fields have types T1 and T2.

! � ������� ? � � � � : grants the right to bind a variable to a procedure that can safely be
applied to variables of type ? � � � .

? � α � � ������� ?α ! � � � � : grants the right to read a procedure from a variable, and apply it
to all pairs of arguments of which the first provides read access, and the second
one allows writing an integer.

We write x:T for the assumption that variable x has type T . Type assumptions for
multiple variables are grouped in so-called type environments Γ. Type checking is
protocol validation: namely, the process of verifying that a given type environment Γ is
respected by a configuration C and all configurations one obtains by reduction from C;
we write this as Γ � C.

Subtyping defines an order Γ � Γ 
 on type environments such that C respects Γ when-
ever C respects Γ 
 ; intuitively, this is the case if Γ describes the more permissive proto-
col in allowing more operations on the mentioned variables than Γ 
 . This order on type
environments is obtained by lifting a corresponding order on types T � T 
 pointwise
to environments. Typical subtypings include:

? � � ��� ? � � � : the protocol that grants reading of arbitrary numbers from a variable
is less specific than the protocol that gives the additional guarantee that only
integers will be read. Hence, every variable respecting the protocol ? � � � will
also respect the protocol ? � � � . This makes the reasonable assumption that all
integers are numbers.

ˆT � ?T : the protocol that grants read and write access to a variable for structures
of type T is obviously respected if the variable is only read from.
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Vρσ 
 ��� x y � � � S � E if σ � x � �
� N � or σ � x � � N and ρ � σ � x � � �

� P

Vρσ 
 ��� x y � � � S � E if σ � x � � � ������� � z � S 
 � � � y � �� �
z
�

Vρσ 
 ��� ��� � � x y � z � S � � � S 
 � E if σ � x � �
� N � or σ � x � � N and ρ � σ � x � � �

� C

Vρσ 
 ��� � � � � x � a:y ����� � S � � � S 
 � E if σ � x � �
� R

Vρσ 
 ��� � � � � x � a:y ����� � S � � � S 
 � E if σ � x � � � b:z 	 � � a 	 �� � b 	

Figure 6.4.: Type Errors of Plain

Type checking is formalised as usual, by means of a proof system for judgements of
the form Γ � C. A second auxiliary proof system is used to define subtyping T1 �
T2. This proof system will guarantee that C respects Γ whenever Γ � C is derivable.
Figure 6.4 defines the set E of configurations containing a type error. If C respects
some environment, then type safety is guaranteed (see Section 6.2). This means that C
will never reduce to an ill-formed configuration C � E .

Notice that multiple assignment to the same variable is not a type error, and the type
system will not exclude the possibility of multiple assignment; neither does the type
system guarantee that a variable will eventually be bound to a data structure. The
type system will only guarantee that a variable is never assigned two data structures of
different type.

6.1.2.2. Types

Figure 6.5 defines the abstract syntax of types. For technical reasons, we use two
syntactic categories of types ranged over by P and T , respectively. If a distinction
is necessary, we call P a proper type. There are three modes, a read-only mode ?, a
write-only mode !, and a read/write mode ˆ. A type is a pair consisting of a mode and
a proper type, or, a proper type P is a type with its top-level mode stripped off.

We assume two infinite sets of type variables T V ranged over by π and of mode
variables M V ranged over by µ. Type and mode variables are jointly referred to by α.
Types that do not contain type variables α are called monomorphic.

There is a proper monomorphic type per data structure. Hence there are procedure
types � ������� T � , record types � a:T 	 , and cell types � � � � � T � . In analogy to records,
we require the features of record types to be pairwise distinct and identify record
types up to reordering of fields. The only primitive monomorphic type is the empty
record type � 	 . A procedure type � ������� T � describes procedures that take arguments

42We consider only types that describe very simple protocols; see also Section 6.4.

154



6.1. Plain

Proper Types P :: � � ������� T � � Procedure Type �
� � a:T 	 � Record Type �
� � � � � � T � � Cell Type �
�

π � Proper Type Variable �
� � α � P � Polymorphic Type �

Modes M :: � ? � Read �
�

! � Write �
�

ˆ � Read/Write �
�

µ � Mode Variable �
Types T :: � MP � Moded Proper Type �
Type and Mode Variables α :: � π

�
µ

Figure 6.5.: Plain Types
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of types T , a record type � a:T 	 describes records with fields a and associated types T ,
and a cell type � � � � � T � describes cells that hold variables of type T .

Every type variable π is a proper type and every mode variable µ is a mode. Fur-
thermore, there are polymorphic types of the form � α � P where α is either a type
or a mode variable.43 The type variable α in � α � P is bound in P. The free and
bound type variables in a type T are defined as usual and written ftv � T � � ftv � P � and
btv � T � � btv � P � . This notion extends pointwise to environments. Polymorphic types
of the form � α1 ������� � αn � P are sometimes abbreviated by � α � P. If n � 0 then � α � P
simply means P. As for statements and data structures we assume all bound and free
type variables to be pairwise distinct. Note, however, that the order of variables in
the quantification prefix of a polymorphic type does matter. For instance, the types� π1 � � π2 � ������� ?π1 !π2 � and � π2 � � π1 � ������� ?π1 !π2 � are distinct.

A polymorphic procedure type � π � � �����	� T � describes procedures that have every type
of the form � ������� T � 
 P � π � , obtained by substituting some proper types P for the type
variables π. For instance,� π � � ������� ?π !π �
is the type of the identity procedure which assigns its first argument to its second one.

6.1.2.3. Subtyping

Subtyping is the smallest relation on types satisfying the rules given in Figure 6.6.
The first eight rules define subtyping on monomorphic types, the two last ones extend
subtyping to polymorphic types.

The rules (REFL) and (TRANS) require subtyping to be a preorder, and it is easy to see
that it even is a partial order up to consistent renaming of bound type variables.

Modes. The six topmost rules are taken from Pierce and Sangiorgi’s mode system
for channels [165]. The rules (READSUB), (WRITESUB), (READ) and (WRITE) de-
fine subtyping on types in terms of subtyping of proper types. Rules (READSUB)
and (WRITESUB) are obvious: a type that allows reading and writing is more permis-
sive than a type that grants exclusively reading or writing.

Rule (READSUB) states that a read-moded type ?P becomes smaller in the subtyping
order as the guarantees on the type P of the read expression become more specific. For
instance, ? � � � � ? � � � if � � � � � � � for some proper types � � � and � � � . Since there
are more operations (readers) defined on integers than on numbers, ? � � � is the more
permissive type. Read modes are monotonic with respect to the subtyping order; one
also says that read-moded types are ordered covariantly.

43In choosing universal polymorphism here we deviate from [144]. The existential polymorphism
in [144] was inspired by Pict, and also motivated by the comparison of Plain with Pict, but universal
polymorphism seems more appropriate for a language with higher-order procedures.
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P � P � REFL �
P1 � P2 P2 � P3

P1 � P3

� TRANS �

ˆP � ?P � READSUB � ˆP � !P � WRITESUB �
P1 � P2

?P1 � ?P2

� READ �
P1 � P2

!P2 � !P1

� WRITE �

T � T 


� �����	� T 
 � � � �����	� T �
� PROCSUB �

T � T 


� a:T ����� 	 � � a:T 
 	
� RECSUB �

� π � P1 � P1 
 P2 � π �
� INST-P � � µ � P � P 
M � µ �

� INST-M �

P1 � P2� α � P1 � � α � P2

� POLY �

Figure 6.6.: Plain Subtyping

A write mode inverts the order on types; see rule (WRITESUB). A write-moded type
!P becomes smaller in the subtyping order as it becomes more specific with respect to
the type P of the data structures to be written. For instance, ! � � � � ! � � � if � � ��� � � � .
Since there are fewer integers than numbers, ! � � � is the more permissive type and
! � � � the more specific type. Write modes are antimonotonic respectively contravariant
with respect to the subtyping order.

Two types with read/write mode are subtypes of each other if and only if they are
equal. Since read/write moded types must simultaneously be ordered covariantly and
contravariantly (as read moded types and write moded types, respectively), they are
invariant with respect to subtyping.

Monomorphic Types. A record type T is a subtype of another record type T 
 if T
has at least the features in T 
 and the corresponding fields of T and T 
 are in covariant
subtype relation; see rule (RECSUB).

Rule (PROCSUB) states that a procedure type � �����	� T � is a subtype of � �����	� T 
 � if
T 
 � T , that is, if the argument types are in contravariant subtype relationship. In other
words, procedure types become smaller along the subtype order as their argument
types become greater. In this case, more argument types respect the procedure type
and hence the procedure is more permissive.

There is only trivial subtyping for cells. Note that every cell always supports the read
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operation to obtain its current content and the write operation to replace its content
with another variable. Hence, in analogy to subtyping of read/write moded types, cell
types must be invariant.

Polymorphic Types. Rule (INST-P) says that the polymorphic type � π � P1 is a sub-
type of every type that is obtained by substitution of some P2 for the proper type vari-
able π in P1. For instance, the polymorphic identity type is smaller than every more
specific identity type:

� π � � ������� ?π !π � � � �����	� ? � � � ! � � � �
Rule (INST-M) is analogous for mode polymorphic types of the form � µ � P. For
instance, a procedure that is well-behaved on all arguments of types µπ and � � � � � µπ �
independent of the mode µ, will also be well-behaved on arguments of types ?π and
� � � � � ?π � which fix the mode.

� µ � � π � � ������� µπ � � � � � µπ � � � � π � � ������� ?π � � � � � ?π � �
Rule (POLY) defines how to compare two polymorphic types with the same quantifier
prefix � α. A polymorphic types � α � P1 is subtype of another one � α � P2 if P1 is a
subtype of P2. Note that this subsumes polymorphism of both forms � π � P and � µ � P.

In Plain, unary functions are implemented as binary procedures that read their input
from the first argument and write the result to the second one. The type of such pro-
cedures is � ������� ?P1 !P2 � . The induced subtyping rule on these types coincides with
the usual subtyping rule on function types T � T 
 which makes the function type
constructor � covariant in its range type and contravariant in its domain type.44

T 
1 � T1

?T 
1 � ?T1
� READSUB � T2 � T 
2

!T 
2 � !T2
� WRITESUB �

� �����	� ?T1 !T2 � � � ������� ?T 
1 !T 
2 �
� PROCSUB �

6.1.2.4. Type Checking

A type assumption is a variable-type pair x:T . A type environment Γ is a finite set of
type assumptions for distinct variables x1 ������� � xn, written

x1:T1 ������� � xn:Tn �
The extension of an environment Γ by x:T is written as adjunction Γ � x:T and is only
well-defined if Γ contains no type assumption for x yet. The notion Γ � Γ 
 is defined

44Pierce and Sangiorgi [165] have proposed this mode system for the π-calculus in order to recover
subtyping as previously studied in typed functional languages. They present the analogous example (in
terms of π-calculus) as one validation for their mode system.
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Γ � x:T
x:T � Γ � VAR �

Γ � y:T

Γ � � a:y 	 :? � a:T 	
� REC �

Γ � E:T

Γ � E:T 

T � T 
 � SUB �

Γ � y:T

Γ � � � � � � y � :? � � � � � T �
� CELL �

Γ � y:T � S

Γ � � ������� � y � S � :? � α � � �����	� T �
� α 	 � ftv � Γ � � /0 � PROC �

Γ � x:!P Γ � E:?P

Γ � x : � E
� ASGN �

Γ � x:? � ������� T � Γ � y:T

Γ � � x y �
� APPL �

Γ � x:T � S

Γ � ��� ����� � � x � S �
� LOCAL �

Γ � x:? � a:T 	 Γ � y:T � S

Γ � � � � � � x � a:y ����� � S �
� MATCH �

Γ � S1 Γ � S2

Γ � S1
� �

S2

� CONC �

Γ � x:? � � � � � T � Γ � y:T Γ � z:T � S

Γ � � ��� � � x y � z � S �
� EXCH �

Γ � ��� � �
� SKIP �

Figure 6.7.: Typing Plain Expressions and Statements
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analogously. The inference system in Figure 6.7 defines two well-typedness judge-
ments of the form Γ � E:T and Γ � S.

An expression E is said to have type T with respect to environment Γ if Γ � E:T is
derivable. A statement S is said to respect an environment Γ if Γ � S is derivable. A
configuration Vρσ 
 � S respects an environment Γ if its associated statement does: Γ � C
if and only if Γ � S � C � . An expression E is said to be well-typed if it has a type with
respect to some environment. A statement S, a store ρσ, and a configuration Vρσ 
 � S
are said to be well-typed if they respect some environment. An expression, statement,
or configuration that is not well-typed is called ill-typed.

Variables receive their type by lookup in the environment; see rule (VAR). Data
structures must allow inspection, hence all of them have read-moded types; see
rules (PROC), (CELL), and (REC). By rule (SUB), expressions can freely be promoted
along the subtyping order. Rules (CELL) and (REC) should be fairly clear: the type
of a record or a cell is straightforwardly derived from the types of the record fields
and the cell content, respectively. With respect to a given environment Γ, a proce-
dure � ������� � y � S � has every type � �����	� T � such that its body S respects Γ under the
additional type assumptions y:T on the formal arguments. Furthermore, the procedure
type can be shown polymorphic in all type variables that do not occur in Γ (but that
may occur in the argument types T ). An assignment x : � E is well-typed if there exists
a proper type such that x has type !P and E has type ?P. For an application � x y � ,
an exchange � ��� � � x y � z � S � , or a matching � � � � � x � a:y ����� � S � to be well-typed, rules
(APPL), (EXCH), and (MATCH), x must allow read access. The types of further ar-
guments must match the requirements by the type of x. The rules (LOCAL), (CONC),
and (SKIP) are trivial.

6.1.3. Examples

In this section we illustrate Plain by means of examples.45 We allow for the OPM-
style notation � ������� x � y � S � as an alternative notation for x : � � ������� � y � S � . We assume
new proper base types � � � and

� �	� � , along with the integers 1 � 2 � 3 ������� as primitive data
structures (constants) of type � � � and the booleans true and false as constants of type

� ��� � , and we freely use some basic operations such as addition � on these types.

Further, we assume a minimal extension to Plain that enables type checking recursive
procedures over streams (infinite lists). We assume an additional proper type � � � � � T �

45All examples have been tested by an experimental implementation of Plain compiling to Oz.
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that describes lists of variables of type T and provide the following typing rules:

Γ � � 	 :? � � � � � T �
� NIL �

Γ � E:M � � � � � T �
Γ � E:M � hd:T � tl:M � � � � � T ��	

� UNFOLD �

Γ � x:T Γ � y:? � � � � � T �
Γ � � hd:x � tl:y 	 : ? � � � � � T �

� CONS �
Γ � E:M � hd:T � tl:M � � � � � T ��	

Γ � E:M � � � � � T �
� FOLD �

Notice that it is immediate to type check cyclic lists with these rules, for example as in
the statement

��� ����� � � x � x : � � hd:y � tl:x 	 � �
A generic extension of Plain by recursively defined data types à la SML, and the addi-
tion of case statements with multiple clauses is possible with standard techniques.

6.1.3.1. Basic Examples

The identity procedure has the following polymorphic type.

� ������� � x y � y : � x � : ?� π � � ������� ?π !π �
This corresponds to the expected polymorphic type � π � π � π of the identity in func-
tional languages. Notice that the identity is not the only procedure with the type
? � π � � �����	� ?π !π � . The other ones include the trivial procedure

� ������� � x y � ��� � � � : ?� π � � �����	� ?π !π � �
as well as many procedures that side-effect variables other than its formal arguments.
One such procedure is

� ������� � x y � z1 : � z2 � : ?� π � � ������� ?π !π �
provided z1 : � z2 is well-typed. (Actually, this procedure has every binary procedure
type, be it monomorphic or polymorphic.) More generally speaking, the type of a pro-
cedure specifies which kinds of operations it may perform on its arguments. It does
not guarantee that any operations are performed on the arguments at all. Furthermore,
the operations performed on global variables of a procedure are not visible in the pro-
cedure’s type.

Types convey some of the synchronisation behaviour of a procedure. In particular, all
input modes in procedure argument types indicate that an application of this procedure
might block when it accesses the corresponding embedded variable. For example, the
procedure that waits until its first argument is bound to a record before it applies its
second one has the type

� ������� � x y � � � � � � x � � � y � � � : � ������� ? � 	 ? � ������� � �
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More fundamentally, the procedure wait that waits for its argument to be bound at all
has this type:

� ������� � x � � � ����� � � y � y : � x � � : ? � π � � �����	� ?π �
Note that the procedure wait is not very useful in Plain so far since no statement can
synchronise on an assignment being executed. It becomes extremely useful though
once sequential composition S1;S2 of statements is added with the operational seman-
tics to first reduce S1 and then S2.46

Pattern matching on records subsumes field selection. For example, here is a procedure
selecting the field a from its first argument and assigning it to the second one.

� ������� � x y � � ��� � � x � a:z ����� � y : � z � � : ? � π � � ������� ? � a:?π 	 !π �

6.1.3.2. Semaphores

Semaphores are a standard mechanism for guaranteeing multiple exclusion in a con-
current setting [61]. A semaphore is a data structure with a request and a release
operation. Multiple concurrent activities may request the semaphore. Once a request
operation has succeeded, an option is granted to perform the corresponding release.
All subsequent requests on the same semaphore are blocked until this operation has
been performed to release the semaphore.

In Plain, semaphores can be implemented by a procedure newsema with type

newsema : ? � ������� ! � ������� ! � ������� � � �
On application of newsema, a new cell is created; the cell is initialised with an empty
record which is used as a token. Next, a unary procedure req is defined which imple-
ments the request operation of the semaphore as an operation on the cell. The cell is
private to the request operation and thus cannot accidentally or maliciously be side-
effected.

� ������� newsema � req � ��� ����� � � c �
tok : � � 	 � � c : � � � � � � tok � � �

� �����	� req � rel � � � ����� � � new �
� ��� � � c new � old �

� ��� � � old � � � ������� rel � � new : � old � � � � � �

On application of the procedure req to some argument rel, the current cell content
old is replaced by a fresh unbound variable new. The variable old is then matched
against the empty record pattern � � . This operation will succeed immediately on the

46We do not consider sequential composition here since its addition does not affect the type system at
all. Our experiences with Oz however indicate that every practical language of this family must support
sequential composition [91, 174].
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first application of req, while a subsequent request may find old to be an unbound
variable and block on pattern matching. When the match has reduced and thus the
request was successful, a release procedure rel is returned. On application of rel, old is
assigned to new and thus unblocks the pattern matching of the subsequent application
of req. The sequence of request and release operations dynamically yields a chain of
assignments as follows.

tok � old1 : � new1
� old2 : � new2

� old3 : � new3 �����

Notice that the procedure rel does not operate on formal arguments at all but is meant
to side effect the store.

6.1.3.3. Lazy Streams

By means of partially determined data structures Plain can conveniently express lazy
streams. A lazy stream is a possibly infinite list whose evaluation is deferred and
demand-driven. When some element of a lazy stream is requested, the stream is eval-
uated just up to this element and evaluation of the tail of the stream is deferred again.
This means that evaluation of the stream always terminates if only a finite part is de-
manded. Consider a binary procedure nat

nat : ? � ������� ? � � � ? � � � � � ! � � � � �
that computes the lazy stream of natural numbers larger than some given n. It is inter-
esting to consider the type of nat more closely, in particular the type ? � � � � � ! � � � � of its
second argument. By the rules (FOLD) and (UNFOLD) this type is equivalent to each
of the finite unfoldings of the following form

? � hd:! � � � � tl:?hd: � ! � � � � tl:? � hd:! � � � � ����� tl:? � � � � � ! � � � ��	 	 	
that restrict the whole spine of the stream to be read-only. This suggests that nat will
write the integer elements of the stream, while the stream itself will be provided from
the outside. Note that these two opposite modes correspond to the

� outgoing “functional” data flow of nat that specifies to compute the infinite
sequence of natural numbers, and the

� ingoing flow of demand that requests computation of a finite prefix of this se-
quence.

Here is an implementation of the procedure nat.

� ������� nat � n s � ��� ����� � � m � � � � � � s � x � r ����� � x : � n
� �

m : � n � 1
� � � nat m r � � � �
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Assuming an unbound variable s : ˆ � � � � � ˆ � � � � , a typical application of this procedure is

one : � 1
� � � nat one s �

Reduction of the application blocks on pattern matching since s is not bound yet. We
can express demand for the smallest number in the stream by binding s to a record
whose field hd serves as container for this number (assume n1 and s 
 fresh):

s : � � hd:n1 � tl:s 
 	
This activates the pattern matching, the assignment n1 : � one, and the recursive call
� nat two s 
 � (where two is bound to 2). By binding the tail s 
 , we can demand subse-
quent elements in the stream.

A second example along these lines is the procedure

� ������� f ib � x1 x2 s � � � � � � s � x � s 
 ����� � x : � x1 � x2
� � � fib x2 x s 
 � � �

with this type:

fib : ? � �����	� ? � � � ? � � � ? � � � � � ˆ � � � � �
This procedure computes an infinite list of natural numbers according to the generation
principle of the Fibonacci numbers: every element of the list (from the third onwards)
is the sum of the two preceding ones. These two preceding numbers are passed as
additional arguments of fib through the recursion. The following typical application
of fib defines s as the stream of Fibonacci numbers (beginning with the third one) and
binds n1 and n2 to its first two elements.

� f ib one one s � � � s : � � hd:n1 � tl:s 
 	 � � s 
 : � � hd:n2 � tl:s 
 
 	
Again note that the type of the list argument exposes the fact that the list elements are
not only produced but also read during the recursion.

6.1.3.4. Channels

Another example for stream-based programming is the following implementation of
channels with an asynchronous send and a synchronous receive. It is also an example
for Plain procedures whose type is polymorphic in the mode of its arguments.

A channel for variables of type T is an abstract data type with two operations put and
get of the following types:

put : ? � �����	� T �
get : ? � �����	� ? � �����	� T � �

The put operation takes a variable of type T , puts it into (“sends it along”) the channel,
and then terminates. The get operation takes a variable of type ? � ������� ?T � , that is,
a reference to a procedure cont for arguments of type ?T ; then it takes (“receives”)
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a variable from the channel and applies cont as a continuation to it. Combination of
these operations in a record with fields put and get yields the following type of channel
interfaces:

? � put:? � �����	� T � � get:? � �����	� ? � �����	� T � � 	
Now we proceed to implement a polymorphic procedure newchan that generates new
channels for variables of arbitrary type and arbitrary mode.

newchan : ? � µ � � π � � �����	� ! � put:? � ������� µπ � � get:? � ������� ? � ������� µπ � � 	 �
Note that the procedure newchan is polymorphic in type and mode of the variables to
be put in the channel. Therefore newchan is guaranteed not to perform any operations
on the variables put into a channel since it cannot safely assume read or write permis-
sions on them. newchan simply passes the variables to the receiver continuation for
further processing. Here is the Plain code for the procedure newchan.

� ������� newchan � chan �
��� �	� � � � s0 cput cget put get �

cput : � � � � � � s0 � � � cget : � � � � � � s0 � � �
� ������� put � z �

��� �	� � � � s2 � � ��� � � cput s2 � s1 � s1 : � � hd:z � tl:s2 	 � � � � �
� ������� get � cont �

��� �	� � � � s2 �
� ��� � � cget s2 � s1 � � ��� � � s1 � hd:z � tl:s3 ����� � s2 : � s3

� � � cont z � � � � � � �
chan : � � put:put � get:get � �

We implement a channel as a variable s0 referring to a stream and two cells cput and
cget realizing the pointers into s. On creation, the stream is empty and both pointers
refer to the first slot. On application of the procedure put on a variable z, the cur-
rent content s1 of cput is replaced with a fresh variable s2 and then s1 is bound to
� hd:z � tl:s2 	 . This advances the pointer cput. On application of the procedure get on a
variable cont, the current content s1 of cget is replaced with a fresh variable s2; then s1

is matched against the pattern � hd:z � tl:s3 � . When s1 is bound to a record of this form,
cont is applied to z and s3, the remainder of the stream, is assigned to s2.

6.1.3.5. Mode Polymorphism

As a final set of examples we give the types of some standard procedures on lists as
further illustration on higher-order and mode polymorphism. We do not give their
implementation here since they require a multiple clause conditional that we have not
defined. Instead, we rely on the intuitions the reader brings along from some higher-
order programming language.

The procedure member returns a boolean depending on whether some element in a list
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is bound to a given data structure. member has the following type:

member : ? � π � ? � ������� ?π ? � � � � � ?π � !
� �	� � �

To decide membership, the list must be recursively decomposed (i. e., read), and its
elements as well as the given data structure must be compared for equality (i. e., read).

The procedure length returning the length of a list must recursively decompose (i. e.,
read) its list argument. However, it needs not access the list elements themselves. Thus
the type of length is mode polymorphic.

length : ? � µ � � π � � ������� ? � � � � � µπ � ! � � � �
Similarly, the procedure map that maps one finite list into another one with respect
another given binary procedure need not itself perform any operation on the list el-
ements. Rather, these are passed to the procedural argument that is responsible for
further processing.

map : ? � µ1 � � µ2 � � π1 � � π2 � � ������� ? � � � � � µ1π1 � ? � ������� µ1π1 µ2π2 � ? � � � � � µ2π2 � �
Procedures that are polymorphic in the type of some (component) of their arguments
are very restricted in the operations they may perform on these arguments. For in-
stance, a procedure of type

?� µ � � ������� µP ? � � � � � µP � �
may perform only one interesting operation on its first argument, namely place it into
the cell received as a second argument. This is safe since the type of the first and the
second argument share the mode variable. Hence a procedure of the given type is this
one:

� ������� assign � x y � � ��� � � x y � z � ��� � � � � : ? � µ � � π � � ������� µπ ? � � � � � µπ � �
Also observe that procedures with the following types must ignore their arguments.

?� µ � � ������� µP µP �
?� µ � � ������� ? � a:µP 	 µP �

A typical procedure with a higher-order polymorphic type is one implementing func-
tion composition.

� ������� compose � f1 f2 f3 � � �����	� f3 � x y � ��� �	� � � � z � � f1 x z � � � � f2 z y � � � �
One of its types is this one

compose : ? � π1 � � π2 � � �����	� ? � � � � ������� � π1 � ? � �����	� ?π1 !π2 � ! � � � � ������� � π2 � �
where, for all P, � � � � �����	� � P � � � µ � � π � � �����	� ? � � � � � µπ � !P � . This type allows us to check
the application

� compose length iseven isevenlength �
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where length : ˆ � � � � �����	� � � � � � and iseven : ? � �����	� ? � � � !
� ��� � � .

6.2. Type Safety

The type system is sound in the sense that it excludes the type errors listed in Fig-
ure 6.4. To prove this result one first checks that no erroneous configuration can be
well-typed (Proposition 6.1). Next one shows that it is an invariant of reduction for a
statement to respect an environment Γ (Theorem 34). Soundness of the type system
and hence type safety is then easily obtained (Corollary 35).

In this section we write judgements like Γ � S or T � T 
 as an abbreviation for the
statement that these judgements are derivable.

Proposition 6.1

If Γ � C then C
�
� E .

Proof. See Page 169 below. �

Theorem 34 (Type Preservation)

If Γ � C1 and C1 
 � C2 then Γ � C2.

Proof. See Page 171 at the end of this Section. �

Corollary 35 (Type Safety)

If Γ � C and C 
�� � C 
 then C 
 �
� E .

Proof. By induction over the length of the reduction C 
�� � C 
 . The base case C 
�� 0C 

(i. e., C � C 
 ) follows from Proposition 6.1, and the induction step with Theorem 34. �

In the remainder of this section we prove the Type Preservation Theorem 34.

The Type Preservation Proof

We first prove some standard Lemmas on well-typed statements (Lemmas 6.2–6.6).
The corresponding Lemmas for configurations follow immediately, since congruence
and well-typedness on configurations is defined in terms of their associated statements:

1. � C1 � C2 : C1 � C2 iff S � C1 � � S � C2 � .
2. � Γ � C : Γ � C iff Γ � S � C � .

In the sequel we shall denote with A either a proper type P or a mode M.
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Lemma 6.2 (Congruence)
Well-typedness is invariant under structural congruence: If Γ � S1 and S1 � S2 then
Γ � S2.

Proof. Structural induction over S1. �

Lemma 6.3 (Weakening)
If x

�
� fv � S � , then Γ � x:T � S if and only if Γ � S.

Proof. On inspection of the typing rules for statements one notes that in any derivation
of Γ � S only the type assumptions for the variables in fv � S � matter. The proof is by
induction over the derivation of Γ � S. �

Lemma 6.4 (Variable Substitution)
If Γ � x:T � y:T � S then Γ � x:T � y:T � S 
 y � x �
Proof. Induction over the derivation of Γ � x:T � y:T � S. �

Lemma 6.5 (Type Substitution)
If Γ � S then Γ 
 P � π � � S and Γ 
M � µ � � S.

Proof. Induction over the derivation of Γ � S. �

Lemma 6.6 (Subtyping)
If Γ � x:T1 � S, T2 � T1, and ftv � Γ � x:T1 � � ftv � Γ � x:T2 � then Γ � x:T2 � S.

It is due to the subtyping rule (RECSUB) that the claim fails without the assumption
that ftv � Γ � x:T1 � � ftv � Γ � x:T2 � . The additional field types which may be added on sub-
typing may contain additional free type variables which may conflict with the side
condition of rule (PROC).

Proof. We prove the claim simultaneously with the corresponding one for expressions:

If Γ � x:T1 � E:T , T2 � T1, and ftv � Γ � x:T1 � � ftv � Γ � x:T2 � then Γ � x:T2 � E:T .

The proof is by induction over the derivation of Γ � x:T1 � S or Γ � x:T1 � E:T . We make a
case distinction over the rule that was applied last.

� VAR � In this case E must be a variable. If E
�� x, then the claim is trivial due to the

Weakening Lemma 6.3; hence assume E � x. Then Γ � x:T1 � E:T implies that
x:T � Γ � x:T1 and hence T1

� T . Thus, we can derive Γ � x:T2 � x:T as follows:

Γ � x:T2 � x:T2
x:T2 � Γ � x:T2

Γ � x:T2 � x:T1
T2 � T1
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� SUB � In this case the derivation has the form

...
Γ � x:T1 � E:T 

Γ � x:T1 � E:T T � T 


We conclude with the induction assumption that Γ � x:T2 � E:T 
 is derivable and
obtain Γ � x:T2 � E:T by rule (SUB).

� PROC � In this case, there exist variables y and statements S such that E � � �����	� � y � S �
and x

�
� � y 	 , and also there exist type and mode variables α and types T with

T � ? � α � � �����	� T � . From rule (PROC) we know that

Γ � x:T1 � y:T � S

is derivable which implies by induction assumption (and x
�
� � y 	 ) that

Γ � x:T2 � y:T � S

is derivable. From the side condition of (PROC) we also know that

� α 	 � ftv � Γ � x:T1 � � /0 �
and since ftv � Γ � x:T2 � � ftv � Γ � x:T1 � by assumption, we obtain

� α 	 � ftv � Γ � x:T2 � � /0 �
Hence Γ � x:T2 � � �����	� � y � S � :T � ?� α � � ������� T � is derivable.

The remaining cases are similar or simpler. �

Proposition 6.1

If Γ � C then C
�
� E .

Proof. If C � E then C has one of the forms defined in Figure 6.4. These are easily
seen to be ill-typed. For instance, assume that C has the form V ρσ 
 � � x y � � � S, let
σ � x � �

� P , and assume Γ � C for some Γ. Then there are types T such that

Γ � x:? � �����	� T �
by rule (APPL). Furthermore, by definition of well-typed configurations (see Page
160) and the assumption that σ � x � �

� P , there exists D � R � C such that Γ � x : � D.
Hence

Γ � x:! � 	 or � T : Γ � x:! � � � � � T � �
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Such a Γ cannot exist, since there exists no common subtype of ? � ������� T � and either
! � 	 or ! � � � � � T � . Hence C is ill-typed. �

Given three sequences α1, α2, and α3, we say that α1 is a subsequence of α2 if there
is an order preserving injection from α1 into α2, and we say that α1 is a subsequence
of α2 with rest α3 if α1 and α3 are subsequences of α2 and partition α2.

Lemma 6.7
If � α1 � P1 � � α2 � P2 is derivable then

1. α2 is a subsequence of α1 with rest α3, and

2. there is a sequence A of types and modes such that P1 
 A � α3 � � P2 is derivable.

Proof. The last steps in the derivation of � α1 � P � � α2 � P 
 are determined by the se-
quence α2 and may involve applications of rules (INST-P), (INT-M), and (POLY) only.
The proof is by induction over the length of the sequence α1. �

Lemma 6.8 (Application)
If Γ � � x y � � � x : � � ������� � z � S � is derivable then there exist types Tz, variables α and a
sequence A of types and modes such that

1. � α 	 � ftv � Γ � � /0

2. Γ � z:Tz � S

3. Γ � y � � Tz 
 A � α �
Proof. Assume Γ � � x y � � � x : � � ������� � z � S � . From rules (PROC) and (ASGN) we then
know that there are types Tz and type and mode variables α such that � α 	 � ftv � Γ � � /0,
as well as

Γ � z:Tz � S �
Γ � � �����	� � z � S � : ?� α � � ������� Tz � � and

Γ � x:!� α � � �����	� Tz � �
This implies claims (1) and (2). Further, we know from rule (APPLY) that there exist
types Ty such that Γ � y � � Ty and

Γ � x : ? � �����	� Ty � � and Γ � y:Ty

It follows from the definition of subtyping that there exist types Tx and variables α 

such that Γ � x � � ˆ � α 
 � � ������� Tx � and

ˆ � α 
 � � ������� Tx � � ! � α � � ������� Tz � � and

ˆ � α 
 � � ������� Tx � � ? � ������� Ty �
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From the left subtyping and contravariance of write modes we obtain

� α � � ������� Tz � � � α 
 � � ������� Tx �
Lemma 6.7 yields that α 
 is a subsequence of α with rest α 
 
 , and that there exist A1

such that � ������� Tz � 
 A1 � α 
 
 � � � ������� Tx � and thus Tx � Tz 
 A1 � α 
 
 � . From the second
subtyping we similarly obtain that there exist A2 such that Ty � Tx 
 A2 � α 
 � . Since α 
 

and α 
 are disjoint, these subtypings in combination yield:

Γ � y � � Ty � Tx 
 A2 � α 
 � � Tz 
 A1 � α 
 
 � 
 A2 � α 
 �
Merging the sequences A1 and A2 (along the subsequencing of α 
 and α 
 
 in α) yields
the required TM such that Ty � Tz 
 TM � α � , and hence proves (3). �

Proof of Theorem 34

The proof is by rule induction [215] over the definition of the operational semantics.
We assume that Γ � S � C1 � and show that Γ � S � C2 � .

Application: In this case there exist variables x � y � z where y and z are disjoint se-
quences, and statements S � S 
 such that

S � C1 � � � x y � � � x : � � ������� � z � S � � � S 

S � C2 � � S 
 y � z � � � x : � � �����	� � z � S � � � S 


To show Γ � S � C2 � it suffices to show that Γ � S 
 y � z � . By Lemma 6.8 we know that there
exist variables α and a sequence A of types and modes such that

1. � α 	 � ftv � Γ � � /0

2. Γ � z:Tz � S

3. Γ � y � � Tz 
 A � α � .
From (1) and (2) we obtain with the Type Substitution Lemma 6.5 that

� Γ � z:Tz � 
 A � α � � Γ � z:Tz 
 A � α � � S

Let Ty
� Γ � y � and observe that ftv � Γ � z:Tz 
 A � α � � � ftv � Γ � z:Ty � trivially holds. Hence

assumption (3) and the Subtyping Lemma 6.6 yield that

Γ � z:Ty � S �
From the Weakening Lemma 6.3 (and since y and z are disjoint sequences) we obtain

Γ � y:Ty � z:Tz � S �
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and by the Variable Substitution Lemma 6.4 that

Γ � y:Ty � z:Tz � S 
 y � z � �
Finally, we apply the Weakening Lemma 6.3 again to conclude

Γ � y:Ty � S 
 y � z � �

Assignment: In this case the configurations are of the following form:

C1
� Vρσ 
 � x : � E

C2
� Vρ 
 σ 
 
 � ��� � �

where either E � D , or E � V and E � dom � σ � . If x � dom � σ � , then the assignment
is ignored, hence ρ 
 � ρ � σ 
 � σ, and S � C1 � � x : � E

� �
S � C2 � . If x

�
� dom � σ � , then by

definition of S � C � it holds that S � C1 � � S � C2 � . In both cases, Γ � S � C1 � trivially implies
Γ � S � C2 � .

Other Cases: The cases for pattern matching (Match) and cell exchange (Exchange)
are similar to the application case but simpler because they do not need a polymor-
phism argument. The rule for variable declaration (Declare) and the closure rule
(Closure) are trivial. �

6.3. Extensions

6.3.1. Towards Oz

In contrast to OPM [195], Plain is rather restricted. Some language features have
been omitted for brevity’s sake and can be added and typed using standard machinery.
This includes for instance boolean conditionals and boolean types, multiple-clause
case-statements and variant types, and also recursive types as needed for cyclic data
structures. Other features that are omitted from Plain do not occur in modern functional
languages because they complicate static typing: these include first-class patterns (for
instance, by abstracting over the feature of a record or a record pattern), run-time type
tests (“dynamics”), as well as several aspects of Oz’s object system [91].

For Plain, the most specific difference to OPM is the omission of equations and general
constraint systems. A secondary difference is the fact that cell exchange comes with a
continuation. The omissions of equations and the modification of cell exchange were
necessary to make the type system work. In this section we explain why. We also give
a brief outlook on constraint systems.
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6.3.1.1. Equational Constraints

Unification is the operation to impose an equational constraint between two data struc-
tures in the store. Assignment can be seen as a restricted equational form, and its
reduction as the restriction of unification binding a previously unbound variable. For a
first generalisation of assignment towards unification, consider a bidirectional assign-
ment statement of the form x : � : y that behaves either as x : � y or as y : � x. Since static
typing requires the types of variables to be known statically, the best possible typing
rule for bidirectional equations x : � : y that preserves type safety is

Γ � x:ˆP Γ � y:ˆP

Γ � x : � : y
� BIDIRECT �

Note that this allows for P to contain nested read and/or write modes. For example,
the type P � � a:? � � � 	 yields a useful instance of (BIDIRECT).47

Unification of complex data structures like records subsumes the bidirectional assign-
ment, but it also performs a recursive traversal of a given data structure while gen-
erating additional equations. The data flow is directed dynamically. Due to this re-
cursion, a typing rule for an equational constraint must be even more restricted than
(BIDIRECT):

Γ � x:T Γ � y:T

Γ � x � y
T does not contain ? or ! � UNIF �

In effect, this rule trivialises subtyping on the types of all expressions that may be
mentioned by an equality constraint. Hence, in a language where telling equations is
a central operation, one ends up losing virtually all subtyping. For this reason, Plain
uses (directed) assignment x : � y instead of the equations x � y as OPM.48

6.3.1.2. Cell Exchange

The cell exchange � ��� � � x y z � in OPM does not have a continuation. Its operational
semantics makes use of an equation z 
 � z and hence � ��� � � x y z � suffers from the sub-
typing problem. In Plain style, the semantics of � ��� � � x y z � would appear as

V ρσ 
 ��� ��� � � x y z � 
 � Vρσ 
 y � σ � x � � 
 � z 
 � z if ρ � σ � x � � � z 


An immediate option to get better typing is to replace the equation by an assign-
ment. However neither z : � z 
 nor z 
 : � z is preferred over the other. Both of them

47It is not by accident that this corresponds to the trivial subtyping rule for cells: cells are invariant
with respect to subtyping, because they support reading and writing inseparably. Similarly, the unifica-
tion operation subsumes both binding (reading) and matching (writing) on logic variables.

48It is, of course,safely possible to have bidirectional assignment or equations in addition to directed
assignment.
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are needed (recall the discussion of mode polymorphism for the channel encoding in
Section 6.1.3.4). Plain’s modified cell exchange � ��� � � x y � z � S � defers to the continu-
ation S the decision at which mode to use the old content of x.

Another option would have been to have cells always holding records with some (arbi-
trary but fixed) feature a and to combine cell exchange with field selection at a. With
this convention and the semantics of exchange given by

V ρσ 
 ��� ��� � � x y z � 
�� V ρσ 
 y � σ � x � � 
 � z : � z 
 if ρ � σ � x � � � z 


we could consider Plain’s exchange statement � ��� � � x y � z � S � as an abbreviation of

��� �	� � � � y 
 � y 
 : � � a:y 	 � � � ��� � � x y 
 z � � � � ��� � � z � a:z 
 ����� � S � �
We decided against this option to keep cells independent of the other data structures.

6.3.1.3. Constraints over Flat Domains

The rule (BIDIRECT) suffices to explain the bidirectional data flow present in con-
straint systems over flat domains. This includes finite domain constraints over in-
tegers but also finite sets of integers (see [73, 146, 206, 219] and references therein).
Therefore, it is straightforward to integrate a statically typed version of Oz’s finite do-
main and finite set constraint systems into Plain: to variables from these constraint
systems we assign read/write-moded types ˆ � � � and ˆ � � � � � � , and to typical constraint
propagation procedures (see [94]) we assign types plus : ? � �����	� ˆ � � � ˆ � � � ˆ � � � � or
union : ? � ������� ˆ � � � � � � ˆ � � � � � � ˆ � � � � � � � .

6.3.1.4. Extensible Records

Record constraints allow field-wise record construction using the selection constraint.
This possibility can be added to Plain as follows: First, liberalise the store by mapping
variables not only to complete records, σ � x � � � a:T 	 but to records whose fields need
not all be present: write this as σ � x � � � a:T ����� 	 . Second, introduce an assignment
statement x � a : � y that extends the record x by the feature a and the associated field y.
The extension σ � x �� � a:y ����� 	 of a store σ by a feature a at x is defined by:

σ � x �� � a:y ����� 	 �
����
��
� σ 
 � a:y 	 � x � if x

�
� dom � σ �

σ 
 � b:y a:y 	 � x � if σ � x � � � b:y 	 � a �
� � b 	

σ otherwise

�

Execution of the statement x � a : � y in a configuration that maps x to a procedure, a cell,
or a complete record without the field a is a type error.
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Note that store extension remains a monotonic operation: the binding of a variable
to an extensible record can be refined to mention more fields but fields can never be
retracted.

V ρσ 
 � x � a : � y 
�� V ρσ � x �� � a:y ����� 	 
 � ��� � �

The situation that x is bound to a procedure or a cell on reduction of x � a : � y is a
type error. The operational semantics of pattern matching need not be changed at all.
Observe, however, that the side condition σ � x � � � a:z ����� 	 of the corresponding rule
silently adapts and now requires that σ � x � be an extensible record with at least the
fields a being known.

Extensible records can be easily type-checked provided that the record type mentions
all fields that are accessed in a program. The rule (EXTREC) accepts an extension of x
by field y at feature a whenever the type of x has write mode and contains the feature
a, where it allows y’s type.

Γ � x : ! � a:T ����� 	 Γ � y : T

Γ � x � a : � y
� EXTREC �

6.3.2. Let-Statement

We show how to extend Plain by a let-statement as common from functional program-
ming. This is useful to give more accurate modes in the common situation that a vari-
able is initialised on declaration. It is also needed to adapt an ML-style polymorphic
type system to Plain. While we have considered ML-polymorphism as too restrictive
with respect to some common programming patterns in Oz, it may become important
as part of an ongoing language design that embeds concepts of Oz into a call-by-value
functional programming language [196].

In most Plain programs, the type system requires all local variables to have read/write
moded types of the form ˆP. (The only exception in this thesis is the local variable
in the procedure wait defined on Page 162 which is used solely for synchronisation
purposes.) It is clear that most variables will have both, a writer and a reader.

However, there are usually only few places where a variable can be bound but many
places where it is read. A frequent case is for variables to be initialised just once
on declaration and to be only read everywhere else. In order to statically exclude an
erroneous second assignment as in the statement

��� ����� � � x � x : � 1
� �

x : � 2 � �
one should consider the following slight syntax extension. Define a new statement

��� � ��� x : � E � S �
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where the variable x is bound both in E and S. The operational semantics of ��� � � � x : �
E � S � is defined as follows:

V ρσ 
 ����� �	� � � � x � x : � E � 
 � V 
 ρ 
 σ 
 
 � ��� � �

Vρσ 
 ��� � � � � x : � E � S � 
 � V 
 ρ 
 σ 
 
 � S

This statement is type-checked according to the following customised rule:

Γ � x:?P � E:P Γ � x:?P � S

Γ � ��� � ��� x : � E � S �
� LETREC �

Note that Γ � ��� � ��� x : � E � S � implies Γ � ��� �	� � � � x � x : � E
� �

S � but not vice versa.

It is possible to adapt ML-style polymorphism for a language with higher-order pro-
cedures and unification. The key observation to be made here is that logic variables
behave like reference cells with respect to their interaction with polymorphism.

In more detail, one needs the following insights in order to apply standard machinery:

� A let-statement is needed as defined above.

� Procedures may have a polymorphic type only if they are introduced by a let-
statement and need no evaluation.

In combination, these conditions guarantee that polymorphic procedures can be in-
stantaneously created and bound to a fresh variable: ��� � � � x : � � ������� � y � S � � S 
 � . The
atomicity of declaration and binding is crucial for the type soundness result.

These conditions correspond to Wright’s proposal for typing polymorphic procedures
in presence of reference cells [217]. Wright solves, in a very simple manner, the prob-
lem that the na ı̈ve generalisation of the Hindley/Milner system [55, 123] from a pure
functional language to a language with reference cells is not sound, i. e., type safety
fails [202]. Wright’s solution has meanwhile been adopted in the revised definition of
SML [130].

6.4. Related Work

6.4.1. Pict

One of the closest relatives of Plain is Pict, a concurrent programming language based
on the π calculus [169].
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6.4.1.1. The Untyped Language

The π-calculus is designed as a minimal base for concurrent computation which can
express concurrent versions of data structures and procedures with channel commu-
nication as its essential computational primitive. This minimality is intriguing from
a foundational perspective, but of limited practical use. When designing a high-level
languages, many basic programming abstractions must be encoded. The join calcu-
lus [67], a variant of the π-calculus, is superior in this respect as it directly supports a
procedural form (the “join”).
Following OPM, Plain provides essential programming primitives directly: Records,
higher-order procedures, and cells. Due to logic variables, there is no need for a ded-
icated communication primitive in Plain. Once a logic variable is bound to a data
structure it becomes indistinguishable from it. This is in contrast to channels which
remain distinct from the data structure they receive. Channels and locks can be ex-
pressed in Plain as synchronised data structures. Our programming experience with
Oz shows that concurrent threads typically communicate through custom-built syn-
chronised objects, where the combination of data flow synchronisation with logic vari-
ables, sequential composition and locks proves essential [91, 92]. Plain can conve-
niently express Pict programs as our channel encoding from Section 6.1.3.4 illustrates.
However, it needs considerable effort to express in Pict partial data structures and data
flow synchronisation with logic variables.

6.4.1.2. The Type System

The type system of Plain is directly inspired by the one of Pict that, in turn, is firmly
based on research on type systems for functional languages, more specifically on the
one around the system Fω� that combines higher-order polymorphism and subtyping
(see [32, 36, 76, 177] and [169] for further references). More specifically, we have
applied Pierce and Sangiorgi’s mode system for channels to a concurrent language
with logic variables. However, the meaning of modes differs between Pict and Plain.
In Pict, ?P is the type of a channel carrying values of type P: the mode is not separate
from the channel type constructor. Hence, in contrast to Plain, nested modes do make
sense in Pict. For instance, the Pict type ˆ?P describes input/output channels carrying
input channels for values of type P: this reflects the fact that channels are entities
separate from the data they carry and that there are explicit operations to access this
data. In contrast, logic variables can be seen as once only communication channels that
become indistinguishable from the data structure they eventually receive. In addition,
mode polymorphism as in Plain, which allows one to abstract over a mode and then to
instantiate it separately, does not suggest itself in Pict; there, mode polymorhism can
be expressed with bounded polymorphic types [36].
We have used universal higher-order polymorphism [76, 177]. This is in contrast to
Pict whose basic form of polymorphism is existential [169]. There, messages are the
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basic typed entities (“packages”) about which only partial information is revealed to
the receiver process (abstract types) [31, 135]. For a procedural language like Plain,
universal polymorphism seems more appropriate. To facilitate a direct comparison
between Plain and Pict, we have also defined a type system for Plain with existential
polymorphism [144] (note, however, that existential polymorphism can be encoded by
higher-order universal polymorphism [178]). Pict’s type system is much larger than the
one we presented for Plain, containing variant types, recursive types, kinds, etc. [169]
We have kept Plain simple to focus on the language design point of view, but we do
not foresee any Plain-specific difficulties in extending its type system accordingly.

6.4.1.3. Type Inference

We have not considered the type inference problem for Plain, which is very likely to
be undecidable: The closely related type inference problem for the the “polymorphic λ
calculus” System F [76, 177] is undecidable [214], and the addition of subtyping does
not seem to make type inference any simpler. Currently, the design of type inference
heuristics for type systems with subtyping and higher-order polymorphism is a chal-
lenging research topic. With Pict, Pierce and Turner have made important progress on
this issue but it seems not to be settled, in particular with respect to recursive types.
Initially, Pict’s approach to type inference was based on an algorithm that Cardelli
described for a functional language, but this is no longer the case [33, 167, 168]. We
expect these experiences to be useful for a decent implementation of Plain; different in
spirit, we also anticipate the usefulness of a mechanism to “bypass the type checker”
as in TEL [192] which might change the game considerably.

6.4.2. Modes in Logic Programming

In logic programming, modes often describe the instantiation state of procedure argu-
ments (ground, non-ground, free) directly before or both, before and after procedure
application [29, 56, 192, 198].

In the typed Prolog dialects TEL and Mercury [192, 198], the mode of procedure argu-
ments must be declared. For instance, input arguments must be ground on procedure
application, and output arguments will be ground thereafter. Mercury strictly enforces
this discipline such that computation with partially determined data structures (that is,
arguments which are neither ground nor free) becomes impossible. In TEL, on the
other hand, variables can be declared as “open” which enables all programming tech-
niques developed for Prolog. This effectively bypasses the type checker which treats
open variables as ground. In both systems, modes are very simple due to their restric-
tion to ground arguments (at least during type checking). The system we present for
Plain is more complex: since Plain caters for partially determined data structures, its

178



6.4. Related Work

type and mode system must deal with modes that occur on every level in the structure
of a data type.

In concurrent logic programming, variable moding has always played a special role.
Preceding Maher’s logical characterisation of synchronisation as entailment [120],
read-only annotations on variables were used to explain synchronisation patterns op-
erationally; these could become rather complex, as for instance in Concurrent Pro-
log [187]. The annotations were checked during unification, and the attempt to bind
an unbound read-only variable lead to a suspension. Modes were also considered as a
means to exclude failure: since failure is due to disagreement between two producers
for the same variable, multiple producers were excluded. Notice that this concept of
modes is a resource-sensitive one, which contains information both on directional data
flow and multiplicities.

The Relational Language [47] and its successor Parlog [79] made the declaration of
input and output arguments obligatory in procedures; mode declarations were checked
at run-time. The modes only referred to the top-level constructor of a record, not to
its subterms. Strand [66] put away with unification altogether and disallowed multiple
assignment to the same variable; the second assignment to the same variable lead to
a run-time error. Directed variables [113] as in Doc and Janus [98, 181] are restricted
even further in that they disallow multiple readers. Thus directed variables express
point-to-point communication (cf. “linear channels”) rather than a multicasting. While
the write-once property can be guaranteed statically, the read-once property remains to
be checked at run-time. More recently, Ueda proposed to call programs with directed
variables well-moded [204, 205] and gave algorithms to check well-modedness in Flat
GHC programs statically.

6.4.3. ML-style Polymorphism for Logic Variables

MLOG [172] is an extension of ML by logic variables due to Poirriez. In MLOG,
the type system is used to separate strictly the “functional types” (such as “ � � � ”) from
the “logic types” (such as “unbound or � � � ”) used to describe data structures that may
contain embedded logic variables. This strict seperation simplifies the implementa-
tion of logic variables as an extension of existing ML compilers, but it overlooks the
expressiveness of logic variables as a synchronisation mechanism in concurrent and
distributed programming. The typing of logic variables in MLOG is based on an pro-
posal by Leroy and Weis [117] that is nowadays outdated by Wright’s proposal [217].

Minamide [131] describes a type system for a restricted form of logic variables in a
statically typed functional language. In Minamide’s system, no data structure may
contain more than one embedded logic variable (which he calls a “hole”). Although
this considerably restricts the expressiveness of logic variables, it enables some pro-
gramming techniques that are well-known in the logic programming community [200],
such as difference lists and tail-recursive definition of procedures like append or map.
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Mycroft and O’Keefe [147] have adapted the ML-type system [123] to logic program-
ming. Their system underlies the programming languages G ödel and Mercury [97,
198]. Some preliminary results on ML-style type checking for an Oz-style language
including feature tree constraints can be found in [138].

6.4.4. Types in Concurrent Programming

In sequential programming, the prevailing view of type checking is that it guarantees
safety of operations on data structures. This view must be refined in concurrent com-
putation since concurrency introduces the possibility of additional erroneous situations
such as deadlock, livelock, starvation, race conditions, and the like. For example, it is
desirable to guarantee the availability of services in a client-server system. From this
point of view, it is useful to consider types as protocols that specify the interaction be-
tween concurrent processes, and to view type checking as protocol verification. Since
memory and data structures can also be modelled as concurrent processes, this point
of view properly generalises the traditional sequential approach.

We have taken the view that modes in type systems for concurrent languages describe
(very simple) protocols. More complex protocols might account for the multiplicity of
operations on resources, such as requiring “at least one reply per request” or “exactly
one release per lock on a semaphore”; or they might describe more complex temporal
behaviours such as the behaviour of process that offers services that vary over time. In
this thesis we do not deal with multiplicity or temporal protocol properties. For some
recent work on resource sensitive type system for concurrent programming languages
see [25] and references therein, and for behavioural type systems see Nierstrasz [156].
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7. Conclusion and Directions of
Further Research

The question that motivated the research reported in this thesis was:

How can we provide some static type checking to the dynamically typed
language Oz?

We have approached this question from two complementary sides, and we could con-
tribute a number of results to both of them.

First, we have shown that an expressive strong type system is possible for a language
that combines key features of Oz, namely higher-order procedures, logic variables and
partially determined data structures, cells, and records. The design of the correspond-
ing language Plain marks a design option for “strongly typed Oz”, and Plain is one
inspiration for an ongoing language design that embeds concepts of Oz into a call-by-
value functional programming language [196]. In addition, Plain provides a new link
between two prominent concurrent programming models: concurrent constraints and
process calculi. However, Plain is not Oz. Plain is not a constraint language anymore
and, most notably, leaves open the question of strong typing for feature tree constraints.

Second, we have suggested failure diagnosis as a new class of set-based program ana-
lysis that is dual to strong typing and that does not attempt to prove the absence of
run-time errors but their inevitability. We have shown how to achieve this goal for a
concurrent constraint language over infinite trees. We have also proposed a set-based
analysis for a large fragment of Oz. This analysis seems intuitively reasonable and an
experimental implementation has been encouraging by proving its usefulness in fin-
ding errors. Unfortunately, a correctness result for this analysis has not been achieved.
Such a result should, independent on the analysis, characterise in which sense a pro-
gram is indeed ill-formed if the analysis rejects it.

We leave the problem open as a challenge for future research. There seem to be two
options to tackle it. Either one could try to find a denotational semantics for (a frag-
ment of) Oz against which to judge correctness of the analysis; we expect this to be
fairly tricky, given that Oz subsumes both CC and the untyped λ-calculus. Or one
could try to justify the analysis solely by reasoning about Oz’s operational semantics.
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As part of our set-based failure diagnosis, we have defined a new system of set con-
straints that is appropriate for the set-based analysis of languages that support record
structures. We have settled many algorithmic and complexity issues for this constraint
system that are relevant for their application in program analysis. We have argued
the design decisions that lead to this constraint system, and we hope that it can be of
independent interest to the constraint community.

The more general question that I consider still open is:

Which is the best way to provide some static type checking for a concurrent
constraint language with higher-order procedures?

The critical word “best” asks for a compromise between so diverse aspects as effec-
tiveness in static debugging, restrictions on programming flexibility, efficiency of im-
plementation, scalability and ease of use. The right balance between these can only be
obtained by practical experimentation.

Let us mention a number of approaches that we consider worth investigating more
closely next.

Flanagan’s static debugger for Scheme [63, 65] provides inspiration for modular pro-
gram analysis with set-constraints, as well as for the presentation of constraints.

Aiken and F ähndrich have proposed a program analysis with constraints that are in-
terpreted over a special domain. These constraints lie “half-way between” equality
constraints over trees and set inclusion constraints [62]. The hope is that this sys-
tem allows one to have one’s cake and eat it, too: exploit the expressiveness of set
constraints where necessary, but enjoy the efficiency of solving tree constraints where
possible.

We have observed more than once the need for data flow information in order to im-
prove the program analysis. It is hence desirable to investigate data flow analysis for
Oz in a more principled way, as well as its interaction with set-based analysis. Most
relevant in this context appear Shivers’s [191] and, once again, Flanagan’s set-based
data flow analysis for Scheme.

Type systems that combine higher-order polymorphic types and subtyping (as in Plain
or Pict) suffer from the fact that they do not allow automated type inference [214].
Pierce and Turner propose a heuristics for automated type reconstruction that they
call “local type inference” [168], which they claim to be simple and intuitive enough
such that it can be part of the language definition (as opposed to being implementation
specific) and as such can easily be absorbed by programmers.

Recently, Smolka has sketched a redesign of Oz that embeds constraint programming
concepts into a (dynamically typed) version of ML [196]. It may be interesting to
reconsider Plain’s type system in this context: Independent of syntactic difference,
we expect the technical insight to survive that subtyping on logic variables requires
a mode discipline. However, the situation might change in a subtle way due to a
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different choice of primitive operations on logic variables (such as the ones sketched
in the slides complementary to [196]). On the other hand, the most natural choice for a
strong type system for an extension of ML is an appropriate extension of the ML type
system. As for Plain, the immediate challenge for a typed Oz remains: how to treat
tree constraints in a strong type system. Some preliminary results on this topic can be
found in [138].

In this context, we must reconsider the restrictions of the ML type system that have
led us to base Plain on a more powerful type system. In order to overcome these
restrictions we could try to extend the ML type system. Language designs of interest
in this context include O’Caml [72, 175], a promising attempt to integrate objects into
ML, and O’Labl [71], an extension of O’Caml by polymorphic records and variants.
Alternatively, we could investigate a more flexible interaction of static and dynamic
type checking than usual, and allow the programmer to “bypass the type checker” for
doing something “ill-typed”. To my knowledge, this has not been pursued yet in the
context of a functional language.
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In this chapter we introduce some basic concepts from set theory and predicate logic,
as well as some notational conventions.

A.1. Sets, Relations, and Mappings

A set is an unordered collection of objects called its elements. We write x � s if x is
an element of the set σ, We write � x1 ������� � xn 	 for the finite set that contains exactly
the elements x1 through xn, and we write /0 for the empty set that has no elements.
If P is a property, then we denote with � x �

P � x � 	 the set of all elements that have
property P. The number of elements in σ, i. e., the cardinality of σ, is written as

� �
s
� �
.

A set is called finite or infinite depending whether its cardinality is finite or infinite.
A set σ1 is said to be a subset of a set σ2, written σ1 � σ2, if every element of σ1

is also an element of σ2. If σ1, and σ2 are arbitrary sets, we write σ1 � σ2 for the
union of σ1 and σ2, σ1 � σ2

� � x �
x � σ1 or x � σ2 	 , σ1

� σ2 for the intersection of
σ1 and σ2, σ1 � σ2

� � x � x � σ1 and x � σ2 	 , σ1
�
σ2 for the difference of σ1 and σ2,

σ1
�
σ2 � x � x � σ1 and x

�
� σ2 	 , For all sets σ, we write P � s � for the powerset of σ, i. e.,

the set of all subsets of σ given by P � s � � � s 
 � s 
 � s 	 , and as P � � s � the set of all
nonempty subsets of σ, i. e., P � � s � � P � s � �

/0.

An n-tuple � x1 ������� � xn � is a finite sequence of n objects. An n-ary relation between sets
σ1 through σn is set of tuples � x1 ������� � xn � such that x1 � σ1 � x2 � σ2 ������� , and xn � σn.
If R is a binary relation between σ1 and σ2 and x1 � σ1 and x2 � σ2, then we allow xRy
as an alternative notation for � x1 � x2 � � R. If R is a binary relation, then we write R � for
the reflexive and transitive closure of R, i. e., the smallest relation containing R that is
reflexive and transitive.

A (total) function f from σ1 to σ2, written f : σ1 � σ2, is a binary relation between σ1
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and σ2 such that for every x1 � σ1 there is exactly one x2 � σ2 such that � x1 � x2 � � f . A
partial function f from σ1 to σ2, written f : σ1 � σ2, is a binary relation between σ1

and σ2 such that for every x1 � σ1 there is at most one x2 � σ2 such that � x1 � x2 � � f .

Given a (total or partial) function f from σ1 to σ2, the domain of f is the subset of σ1 on
which f is defined, and the range of f is the subset of σ2 whose elements are obtained
as f � x1 � for some x1 � σ1. Formally, dom � s � � � x1

�
exists x2 � σ2 such that f � x1 � �

x2 	 and rg � s � � � x2
�

exists x1 � σ1 such that x2
� f � x1 � 	 . The domain of a total

function f : σ1 � σ2 is σ1.

The composition of f : σ1 � σ 
1 and g : σ2 � σ 
2 where rg � f � � dom � g � is the function
g � f : σ1 � σ 
2 defined by � g � f � � x1 � � g � f � x1 � � for all x1 � σ1. If f is a function from
σ1 to σ2, and if x1 � σ1 and x2 � σ2, then f 
 x2 � x1 � defines the function that coincides
with f on dom � f � � � x1 	 and maps x1 to x2: f 
 x2 � x1 � � � � x1 � x2 � 	 � � � x 
 � x 
 
 � � � x 
 � x 
 
 � �
f and x1

�� x 
 	 . We call f 
 x1 � x2 � an extension of f .

A.2. Predicate Logic

A signature Σ is a ranked alphabet of function and predicate symbols, where every
function symbol f and every predicate symbol p is associated an non-negative ar-
ity ��� � f � resp. ��� � p � . If ��� � f � � 0 we call f a constant symbol. Let A be some set.
An � A � Σ � -interpretation is a function that maps every predicate symbol p � Σ with
��� � p � � n to an n-ary relation over A, and every function symbol f � Σ with ��� � f � � n
to a function the set of n-tuples over A to A. A Σ-structure is a pair A � � A � I � where
A is a the domain of A , and I is an � A � Σ � -interpretation.

A first-order language L consists of a set V of variables, a signature Σ, a collection
of logic connectives such as � � � � � � � , and quantifiers � and � , possibly an equality
symbol � and usually parentheses ‘ � ’ and ‘ � ’. We define as usual the first-order terms
and the formulas over L , as well as the set of variables free (resp., bound) in a formula
Φ which we write as fv � Φ � (resp., bv � Φ � ). A formula Φ is called closed if fv � Φ � � /0.
A constraint system is given by a first-order (constraint) language L and a structure A .
The constraint language L defines a set of formulas called constraints. All constraint
languages in this thesis contain conjunction � as the only logic connective.

If A � � A � I � is a Σ-structure, then an A-valuation is a function α : V � A from
the variables into the domain of A . We define as usual the concept of a valuation α
satisfying a formula Φ in A , written α

� �
A Φ. Given a structure A , we say a formula

Φ is satisfiable in A , written A
� � Φ, if there exists a valuation α such that α

� �
A Φ

and in this case α is called a solution of Φ in A . We write the set of solutions of a
formula A as Sol � A � . We say that Φ is valid in A , or that A is a model of Φ, if α

� �
A Φ

for all valuations α. We say that Φ entails Φ 
 in A , written Φ
� �

A Φ 
 , if Φ � Φ 
 is
valid in A , and that Φ1 is equivalent to Φ2 (in A) if Φ1 � Φ2 is valid in A . The
satisfiability problem for a constraint system � L � A � is whether an arbitrary constraint
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ϕ � L is satisfiable in A , and The entailment problem for a constraint system � L � A � is
ϕ1

� �
A ϕ2 holds for two constraints ϕ1 � ϕ2 � L . A theory is a set of first-order formulas.

Given a constraint system � L � A � we call the associated first-order theory the set of
formulas over L , extended by arbitrary first-order connectives and quantifiers, that are
valid in A .

A.3. Notational Conventions

A sequence of syntatic objects X1 ������� � Xn is abbreviated as X if the length n of the
sequence does not matter, and we denote with

�
X
�
the length of such a sequence. For

two syntactic objects X and Y of the same category, we denote with 
Y � X � the substi-
tution of Y for X in syntactic objects. The simultaneous substitution 
Y1 � X1 � ����� 
Yn � Xn �
of Y1 ������� � Yn for pairwise distinct X1 ������� � Xn is abbreviated by 
Y � X � . Moreover, we
denote with X :Y the finite sequence of pairs X1:Y1 ����� Xn:Yn.

187



“Now I declare that’s too bad!” Humpty
Dumpty cried, breaking into a sudden pas-
sion. “You’ve been listening at doors – and
behind trees – and sown chimneys – or you
couldn’t have known it!”
“I haven’t, indeed!” Alice said very gently.
“It’s in a book.”

– Lewis Carroll, Through the Looking Glass
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et synthétiser des phrase sur ordinateur. Publication Interne 43, Université de
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[144] MÜLLER, MARTIN; JOACHIM NIEHREN, & GERT SMOLKA (1998). Typed
concurrent programming with logic variables. Tech. rep., Programming Sys-
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[164] PFENNING, FRANK (ed.) (1992). Types in Logic Programming. Logic Pro-
gramming Series. The MIT Press, Cambridge, MA.

204



Bibliography

[165] PIERCE, BENJAMIN & DAVIDE SANGIORGI (Jun. 1993). Typing and subtyp-
ing for mobile processes. In Proceedings of the IEEE Symposium on Logic in
Computer Science, pp. 376–385. IEEE Computer Society Press.

[166] PIERCE, BENJAMIN C. & DAVID N. TURNER (Apr. 1994). Simple type-
theoretic foundations for object-oriented programming. The Journal of Func-
tional Programming, 4(2):207–247. Cambridge University Press, Cambridge,
England.

[167] PIERCE, BENJAMIN C. & DAVID N. TURNER (1997). Pict: A programming
language based on the pi-calculus. Compiler, documentation, demonstration
Programs, and standard Libraries; available electronically. Version 4.0.

[168] PIERCE, BENJAMIN C. & DAVID N. TURNER (1998). Local type inference. In
Proceedings of the 25th ACM Symposium on Principles of Programming Lan-
guages, pp. 252–265. ACM Press, New York.

[169] PIERCE, BENJAMIN C. & DAVID N. TURNER (1998). Pict: A programming
language based on the pi-calculus. In Proof, Language and Interaction: Essays
in Honour of Robin Milner, edited by G. Plotkin, C. Stirling, & M. Tofte. The
MIT Press, Cambridge, MA. to appear.

[170] PINGALI, KESHAV K. (Oct. 1987). Lazy evaluation and the logic variable.
Tech. rep., Cornell University. Proceedings of the the Institute on Declarative
Programming. Austin, Texas.

[171] PODELSKI, ANDREAS; WITOLD CHARATONIK, & MARTIN MÜLLER (1998).
Set-based error diagnosis of concurrent constraint programs. Tech. rep., Pro-
gramming Systems Lab, Universit ät des Saarlandes. http://www.ps.
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