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Abstract

The purpose of this thesis is to study methods for the semantical control of automated
theorem proving systems for first-order logic (with equality) based on certain effective
abstraction techniques. We propose a general framework called soft typing for clausal in-
ference systems to incorporate the validity/satisfiability of clauses with respect to certain
model hypotheses into the control of inference systems. The effectiveness of the method
is obtained by inferring automatically abstractions that result in approximations of valid-
ity /satisfiability of clauses with respect to these models. For an effective use of soft typing
for ordered resolution and superposition, we propose the use of sets of Horn clauses (with
equality) to represent approximations of model hypotheses for sets of clauses. We show
that certain decidable fragments of first-order logic without equality can be generalized to
non-trivial decidable equational theories. Our abstraction techniques, applied to arbitrary
sets of clauses (with equality), result exactly in the decidable (equational) fragments. The
satisfiability of clauses with respect to the approximations implies the satisfiability in the
original model hypotheses.

Zusammenfassung

Wir untersuchen Methoden zur semantischen Steuerung von automatischen Beweissy-
stemen fiir Logik erster Stufe (mit Gleichheit) mit Hilfe von bestimmten berechenbaren Ab-
straktionstechniken. Wir schlagen ein allgemeines Konzept vor, dass die Beriicksichtigung
der Giiltigkeit beziehungsweise der Erfiillbarkeit von Klauseln beziiglich bestimmter Mo-
dellhypothesen in der Steuerung von Inferenzsystemen ermdoglicht. Dieses Konzept nennen
wir soft typing for clausal inference systems. Die Berechenbarkeit dieser Methoden wird
durch automatische Abstraktionstechniken zur Approximation von Giiltigkeit beziehungs-
weise von Erfiillbarkeit von Klauseln gewéhrleistet. Zur Darstellung der Approximationen
von Modellhypothesen tiber Klauselmengen schlagen wir die Verwendung von Mengen von
Hornklauseln (mit Gleichheit) vor, um Soft Typing von geordneter Resolution beziehungs-
weise Superposition zu erméglichen. Wir zeigen, dass bestimmte entscheidbare Fragmente
von Logik erster Stufe ohne Gleichheit zu nicht-trivialen entscheidbaren Gleichheitstheo-
rien verallgemeinert werden konnen. Die Anwendung unserer Abstraktionstechniken auf
beliebige Klauselmengen (mit Gleichheit) resultiert in diesen entscheidbaren Fragmenten
(Gleichheitstheorien) wobei die Erfiillbarkeit von Klauseln beziiglich der Approximationen
die Erfiillbarkeit in den urspriinglichen Modellhypothesen impliziert.
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Extended Abstract

The purpose of this thesis is to obtain a comprehensive understanding of semantically
guided automated theorem proving and to provide decidable fragments of first-order logic
(with equality) which are suitable for an effective approximation of proof guidance by
semantics. Semantically guided theorem proving is the attempt to establish proofs in
which the meaning of the objects of concern may control the theorem proving process.
The meaning of an object is associated with its truth value with respect to some model
hypothesis. Suppose a model hypothesis satisfies, for example, the axiomatization of a
mathematical theory. Then any (sound) inference from axioms of the theory only yields
true statements with respect to the model hypothesis. Conversely, in some refutational
theorem proving process, so-called reduction inferences from counterexamples of the model
hypothesis may contribute to the derivation of a contradiction. A counterexample could
be, for instance, a negated conjecture.

We propose a general framework called soft typing for clausal inference systems to
incorporate semantics into automated theorem proving systems. The goal of soft typing is
to minimize the derivation of non-reduction inferences by imposing semantical constraints
on the inferences. Soft typing controls theorem proving derivations from clausal inference
systems by a blocking mechanism according to the truth value of the involved clauses
with respect to certain model hypotheses. We show that any clausal inference system
which enjoys the so-called (strong) reduction property is compatible with this concept.
The strong reduction property also implies the compatibility with a general concept of
simplification based on a certain notion of redundancy (Bachmair & Ganzinger 1994).
Simplification techniques are involved in all modern automated theorem proving systems.

A clausal inference system has the reduction property (Bachmair & Ganzinger 1997,
Bachmair & Ganzinger 1998b) with respect to some model hypothesis IV, if for all sets
N of clauses and all minimal counterexamples C for IV in N, there exists a (reduction)
inference in the system that reduces C to a smaller counterexample than C with respect to
some well-founded ordering. By I, we indicate that the model hypothesis may be different
for distinct sets IV of clauses. Intuitively, an inference system which enjoys the reduction
property always contains the necessary inferences to eventually derive a contradiction
from an unsatisfiable clause set. Soft typing relies on the observation that the derivation
of reduction inferences is not only necessary but also sufficient while any non-reduction
inference may at least be temporarily blocked. Soft typing enhances inference systems by
an additional parameter that distinguishes reduction and non-reduction inferences.



2 EXTENDED ABSTRACT

Soft typing is shown to be a suitable concept for semantically guided theorem proving
in terms of (refinements of) resolution and superposition (with selection) (Bachmair &
Ganzinger 1994). Soft typing for semantic resolution explains the refutational complete-
ness of semantic resolution (Slagle 1967) and clarifies, together with soft typing for ordered
resolution, the theoretical background of other prominent concepts of semantically guided
theorem proving methods.

The effectiveness of soft typing for ordered resolution and superposition requires de-
cidable approximations of certain model hypotheses. We propose the use of sets of Horn
clauses (with equality) to represent approximations of model hypotheses for sets of clauses
in the spirit of Frithwirth, Shapiro, Vardi & Yardeni (1991). The approximation is ob-
tained by inferring automatically abstractions from sets of clauses that result in a set H of
Horn clauses. The satisfiability of clauses with respect to the minimal model of # implies
then the satisfiability in the original model hypothesis.

We demonstrate, by a termination analysis of certain refinements of superposition,
the decidability of the satisfiability problem of the class of so-called monadic equational
types with respect to the following equational theories. Monadic equational types are
existentially closed conjunctions of monadic atoms and equations.

e semi-linear sorted equational theories (Jacquemard, Meyer & Weidenbach 1998a)
which strictly embed the (non-linear) shallow equational theories in (Comon, Haber-
strau & Jouannaud 1994),

o semi-standard sorted equational theories (Jacquemard, Meyer & Weidenbach 1998b)
which strictly embed the standard (equational) theories in (Nieuwenhuis 1996), and

o linear shallow typed equational theories which extend the monadic Horn theories
in (Weidenbach 1999) by equality.

All theories are syntactically characterized as certain sets of Horn clauses (with equal-
ity) which allows the automatic abstraction of arbitrary sets of clauses into the theories.
The satisfiability problem is shown to be EXPTIME-complete for linear (semi-standard)
sorted equational theories and linear shallow typed equational theories and EXPTIME-
hard for (non-linear) semi-linear and semi-standard sorted equational theories. Note that
the E-unifiability problem is an instance of the satisfiability problem of (monadic) equa-
tional types. In contrast to the decidability of sorted unification in pseudo-linear sort
theories (Weidenbach 1996b), we show that the word problem is undecidable already in
pseudo-linear equational theories.

We also report on the complexity of the satisfiability problem of monadic types with
respect to sort theories and so-called type theories. In particular, we show the EXPTIME-
completeness for alternating linear (shallow) sort theories and linear shallow type theories
and the EXPTIME-completeness of the non-emptiness problem of semi-linear sort theories.
Moreover, the satisfiability problem of monadic types with respect to alternating non-linear
shallow and semi-linear sort theories is shown to be EXPTIME-hard whereas the inclusion
in EXPTIME remains open.



Ausfiihrliche Zusammenfassung

Das Ziel dieser Arbeit ist ein umfassendes Verstdndnis des automatischen Beweisens mit
Hilfe von Semantik zu erhalten und entscheidbare Fragmente der Logik erster Stufe (mit
Gleichheit) zu identifizieren, die eine berechenbare Approximation der Beweissteuerung
durch Semantik ermdglicht. Automatisches Beweisen mittels Semantik ist der Versuch die
Bedeutung von Aussagen im Beweis zur Steuerung des Beweisablaufs heranzuziehen. Die
Bedeutung einer Aussage wird mit ihrem Wahrheitswert beziiglich einer Modellhypothese
assoziiert. Nehmen wir zum Beispiel an, dass die Axiomatisierung einer mathematischen
Theorie durch eine Modellhypothese erfiillt wird. Jede (korrekte) Inferenz zwischen Axio-
men der Theorie wird dann nur Aussagen produzieren, die beziiglich der Modellhypothese
ebenfalls wahr sind. In einem Widerlegungsbeweis konnen dagegen sogenannte Redukti-
onsinferenzen, die von Gegenbeispielen der Modellhypothese ausgehen, zur Ableitung ei-
nes Widerspruchs beitragen. Die gegenteilige Annahme einer zu beweisenden Vermutung
konnte ein solches Gegenbeispiel sein.

Wir schlagen ein allgemeines Konzept zur Steuerung von automatischen Beweissyste-
men mittels Semantik vor, das wir soft typing for clausal inference systems nennen. Das
Ziel von Soft Typing ist die Minimierung der Ableitung von Inferenzen, die keine Reduk-
tionsinferenzen sind, mit Hilfe von semantischen Restriktionen. Soft Typing steuert die
Herleitung von Beweisen durch klausale Inferenzsysteme indem Inferenzen entsprechend
dem Wahrheitswert der involvierten Klauseln beziiglich von bestimmten Modellhypothe-
sen blockiert werden. Wir zeigen, dass ein klausales Inferenzsystem, das die sogenannte
(starke) Reduktionseigenschaft besitzt, mit Soft Typing vertriglich ist. Die starke Re-
duktionseigenschaft impliziert dariiberhinaus die Vertrdglichkeit mit einem allgemeinen
Konzept von Simplifikation, das auf einem bestimmten Redundanzbegriff (Bachmair &
Ganzinger 1994) beruht. Simplifikationstechniken spielen eine wesentliche Rolle in allen
modernen automatischen Beweissystemen.

Ein klausales Inferenzsystem besitzt die Reduktionseigenschaft (Bachmair & Ganzinger
1997, Bachmair & Ganzinger 1998b) beziiglich einer Modellhypothese IV, wenn es fiir
alle Mengen N von Klauseln and alle minimalen Gegenbeispiele C von IV in N eine
(Reduktions-) Inferenz in dem System gibt, die C' zu einem kleineren Gegenbeispiel als
C beziiglich einer wohlfundierten Ordnung reduziert. Wir weisen darauf hin, dass die
Modellhypothese IV fiir unterschiedliche Mengen N von Klauseln variieren kann. Ein In-
ferenzsystem, das die Reduktionseigenschaft besitzt, enthélt also immer die notwendigen
Inferenzen um einen Widerspruch innerhalb einer unerfiillbaren Klauselmenge herleiten



4 AUSFUHRLICHE ZUSAMMENFASSUNG

zu kénnen. Soft Typing basiert auf der Beobachtung, dass die Ableitung von Redukti-
onsinferenzen nicht nur notwendig ist, sondern auch hinreichend wobei jede Inferenz, die
keine Reduktionsinferenz ist, mindestens temporér blockiert werden kann. Soft Typing
erweitert Inferenzsysteme mit einem zusétzlichen Parameter, der eine Unterscheidung von
Reduktionsinferenzen und anderen Inferenzen ermdoglicht.

Wir zeigen, dass (bestimmte Verfeinerungen von) Resolution und Superposition (mit
Selektion) (Bachmair & Ganzinger 1994) mit Soft Typing vertriglich sind. Soft Typing fiir
semantische Resolution bestétigt nicht nur die Widerlegungsvollstdndigkeit von semanti-
scher Resolution (Slagle 1967), sondern klidrt auch, genauso wie Soft Typing fiir geordnete
Resolution, den theoretischen Hintergrund anderer bekannter Verfahren des automatischen
Beweisens mittels Semantik.

Um Soft Typing fiir geordnete Resolution beziehungsweise Superposition einsetzen zu
konnen, sind entscheidbare Approximationen bestimmter Modellhypothesen notwendig.
Zur Darstellung der Approximationen von Modellhypothesen iiber Klauselmengen schla-
gen wir die Verwendung von Mengen von Hornklauseln (mit Gleichheit) vor im Sinne
einer Verallgemeinerung des Vorschlags von Frithwirth et al. (1991). Die Approximation
erhélt man durch die Ableitung automatischer Abstraktionen von Klauselmengen, die in
einer Menge # von Hornklauseln resultieren. Die Erfiillbarkeit von Klauseln beziiglich des
minimalen Modells von ‘H impliziert dann die Erfiillbarkeit in der urspriinglichen Modell-
hypothese.

Wir demonstrieren mit Hilfe einer Analyse der Termination von bestimmten Verfeine-
rungen von Superposition die Entscheidbarkeit des Erfiillbarkeitsproblems der Klasse der
sogenannten monadischen Gleichheitstypen beziiglich folgender Gleichheitstheorien. Mo-
nadische Gleichheitstypen sind existenziell quantifizierte Konjunktionen von monadischen
Atomen und Gleichungen.

e semi-lineare sortierte Gleichheitstheorien (Jacquemard et al. 1998a), die die (nicht-
linearen) flachen Gleichheitstheorien in (Comon et al. 1994) beinhalten,

e semi-standard sortierte Gleichheitstheorien (Jacquemard et al. 1998b), die die soge-
nannten Standardgleichheitstheorien in (Nieuwenhuis 1996) beinhalten, und

o lineare flache typisierte Gleichheitstheorien, die eine Erweiterung der monadischen
Horntheorien in (Weidenbach 1999) mit Gleichheit darstellen.

Alle Theorien kénnen rein syntaktisch als bestimmte Mengen von Hornklauseln (mit
Gleichheit) beschrieben werden, so dass eine automatische Abstraktion von beliebigen
Klauselmengen in diese Theorien moglich ist. Wir demonstrieren, dass das Erfiillbarkeits-
problem beziiglich linearer (semi-standard) sortierter Gleichheitstheorien und beziiglich
linearer flacher typisierter Gleichheitstheorien EXPTIME-vollstindig ist. Das gleiche Pro-
blem beziiglich (nicht-linearer) semi-linearer und semi-standard sortierter Gleichheitstheo-
rien wird als EXPTIME-hart gezeigt. Wir weisen darauf hin, dass das Unifikationsproblem
ein Teilproblem des Erfiillbarkeitsproblems von (monadischen) Gleichheitstypen ist. Im
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Gegensatz zur Entscheidbarkeit von sortierter Unifikation in pseudo-linearen Sortentheo-
rien (Weidenbach 1996b), konnen wir zeigen, dass das Wortproblem bereits in pseudo-
linearen Gleichheitstheorien unentscheidbar ist.

Weiterhin untersuchen wir die Komplexitidt des Erfiillbarkeitsproblems von mona-
dischen Typen beziiglich Sortentheorien und sogenannten Typtheorien. Wir zeigen die
EXPTIME-Vollstindigkeit fiir alternierende lineare (flache) Sortentheorien und lineare
flache Typtheorien ebenso wie die EXPTIME-Vollstdndigkeit des Leerheitsproblems von
semi-linearen Sortentheorien. Das Erfiillbarkeitsproblem von monadischen Typen beziiglich
alternierender nicht-linearer flacher und semi-linearer Sortentheorien wird als EXPTIME-
hart gekennzeichnet wéhrend das Enthaltensein in EXPTIME ein offenes Problem bleibt.






Chapter 1

Introduction

The central motivation of this thesis is to study methods for the semantical control of
automated theorem proving systems for first-order logic (with equality) based on certain
effective abstraction techniques. We propose a general framework called soft typing for
clausal inference systems, e.g., for (refinements of) resolution and superposition, as a
concept to incorporate the validity /satisfiability of clauses with respect to certain model
hypotheses into the control of the inference process. The effectiveness of the method is
obtained by inferring automatically abstractions that result in approximations of valid-
ity /satisfiability of clauses with respect to these models. We introduce soft typing as
a suitable method to address the problem of semantically guided theorem proving by
demonstrating, in particular, that

e soft typing is compatible with clausal inference systems that enjoy the so-called
(strong) reduction property and, conversely, that clausal inference systems with the
strong reduction property are compatible with a general concept of simplification
based on a certain notion of redundancy.

e soft typing can be established by a suitable notion of (temporarily) blocked clauses
and inferences which reflects the dynamic nature of theorem proving with respect to
semantical considerations.

e soft typing in combination with the (strong) reduction property clarifies the theoret-
ical background of other prominent concepts of semantically guided theorem proving
methods.

For an effective use of soft typing for ordered resolution and superposition, we propose
the use of sets of Horn clauses to represent (approximations of) model hypotheses for sets
of clauses and, in particular, we show that

e certain decidable fragments of first-order logic can be generalized to non-trivial de-
cidable equational theories within the same complexity class.
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e certain automatic abstractions of arbitrary sets of clauses result exactly in the de-
cidable fragments. The satisfiability of clauses with respect to the approximation
implies the satisfiability in the original model hypothesis.

In the following, we give a brief introduction to semantically guided theorem proving
and discuss the main aspects of soft typing for clausal inference systems. We then describe
the idea of automatic abstractions and explain the general concept to obtain the various
decidability results of this work. We conclude this chapter by an overview of complexity
results on the satisfiability problem of certain classes of first-order formulae (with equality)
with respect to the decidable (equational) theories.

1.1 Soft Typing

Automated theorem proving is the mechanization of the process of proving mathematical
theorems. Throughout this work we consider, as the formal language for this purpose, first-
order logic (with equality). A common property among the objects which are potentially
involved in a proof attempt is that the derived objects are logical consequences of at least
those objects that actually motivated the proof step. An inference system or logic calculus,
based on a formal language, approximates the logical consequence relation such that the
computation of theorem proving derivations is effective using the (syntactic) inference
rules of the system. A syntactic inference rule usually describes an inherently local form
of theorem proving since the application of the rule does not involve the particular context
of the premises. The search space induced by such inference rules is therefore eminently
non-deterministic which motivates the investigation of search strategies. In this thesis we
are concerned with the investigation of methods to prune the search space of inference
systems by semantical considerations.

Semantically guided theorem proving is the attempt to establish proofs in which the
meaning of the objects of concern may trigger the next step in a theorem proving deriva-
tion. From a human-oriented point of view, this concept seems to be the natural choice
of theorem proving whereas, from a computational point of view, it is obviously difficult
to capture this particular search strategy. For a formal analysis of semantically guided
theorem proving we reach two fundamental design decisions: (i) the meaning of an ob-
ject is identified with the validity/satisfiability of the object with respect to some model
hypothesis and (ii) we restrict our attention to refutational theorem proving by clausal
inference systems which are based on the particular data structure of clauses. The well-
known resolution calculus (Robinson 1965) is a clausal inference system which plays a
major role throughout this work.

The goal of soft typing for clausal inference systems is to minimize the derivation of
superfluous information by imposing semantical constraints on the inferences. We shall ex-
plain soft typing by analyzing fundamental properties of refutationally complete inference
systems. A sufficient criterion to establish the refutational completeness of a clausal infer-
ence system is the so-called reduction property (Bachmair & Ganzinger 1997, Bachmair &
Ganzinger 1998b). A clausal inference system has the reduction property with respect to
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some model hypothesis I?, if for all sets N of clauses and all minimal counterexamples C
for IV in N, there exists a (reduction) inference in the system that reduces C to a smaller
counterexample than C with respect to some well-founded ordering. By IV, we indicate
that the model hypothesis may be different for distinct sets N of clauses. We may also
call IV the candidate model for N.

Intuitively, an inference system which enjoys the reduction property always contains
the necessary inferences to eventually derive a contradiction from an unsatisfiable clause set
where the presence of the empty clause, as the smallest object in the well-founded ordering,
indicates the contradiction. Soft typing relies on the observation that the derivation
of reduction inferences is not only necessary but also sufficient while any non-reduction
inference may at least be temporarily blocked. Soft typing for clausal inference systems
enhances the inference systems by an additional parameter that distinguishes reduction
and non-reduction inferences.

Example 1.1.1

The following table contains a simple inconsistent set N of clauses. We assume that
soft typing for resolution is applied where A and B are true in the candidate model I*V.
Resolution inferences are restricted to reduction inferences with respect to I%V.

‘ i ‘ Clause C ‘ Remarks ‘
1 — A true in IV, positive clause
2 A—B true in IV
3 | B—>A true in IV
4 | B— false in IV, negative clause

There are two resolution inferences from (1) and (2) as well as (2) and (4) where only the
latter is a reduction inference. Resolution from (2) and (4) yields the unit clause A —.
The new clause set looks as follows:

‘ i ‘ Clause C' ‘ Remarks ‘
1 — A true in IV, positive clause
2 A—B true in IV
3 B— A true in IV
4 | B— false in IV, negative clause
5 | A— false in I, resolvent of (2) and (4)

There are two resolution inferences from (1) and (2) as well as (1) and (5) where again only
the latter is a reduction inference. Resolution from (1) and (5) yields the empty clause.
The example shows that soft typing may control a theorem proving derivation such that
the derivation even becomes a completely deterministic process.

Consider Figure 1.1 which depicts the operational concept of soft typing. At each
step in a theorem proving derivation an inference may be classified as a reduction or
non-reduction inference with respect to the candidate model IV for the current set N of
clauses. In general, however, blocking is not effective for (i) arbitrary candidate models
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Figure 1.1: Soft typing for clausal inference systems

and (ii) arbitrary forms of clauses since the computation of counterexamples is in general
undecidable. For an effective use of soft typing we therefore propose (i) certain abstraction
techniques and (ii) so-called typing functions. The computation of the truth value of at
least some part of an arbitrary clause C' may become decidable with respect to sufficiently
abstracted candidate models. A typing function identifies which part of a clause is subject
to an evaluation. We call this part the type of C. For instance, we may identify the negative
occurrences of monadic atoms in C' as the type of C' and compute abstract candidate
models for which emptiness of monadic predicates is decidable. Whenever the emptiness
of a monadic predicate implies the emptiness with respect to the original candidate model,
we may at least effectively show that C cannot be a counterexample. Note that we discuss
the abstraction concept in the next section. In particular, we will explain the abstraction
step from IV to T" in Figure 1.1 in more details as depicted in Figure 1.2.

We give a brief background of semantically guided theorem proving methods. Seman-
tics in automated theorem proving have already been investigated by Gelernter (1960)
who showed by his geometry theorem prover that already a limited understanding of the
problem set may have an impact on syntactic proof procedures. Slagle (1967) generalized
resolution to semantic resolution and marked in this way the beginning of semantically
guided resolution-based theorem proving with respect to arbitrary first-order model do-
mains. He observed that resolution inferences may be restricted to clauses with distinct
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truth value with respect to an arbitrary model hypothesis and thus generalized also the
well-known set-of-support strategy.

We demonstrate, based on an appropriate construction of the candidate model (for
semantic resolution), that soft typing for semantic resolution explains the refutational
completeness of semantic resolution. Surprisingly, soft typing for semantic resolution
also strictly embeds the so-called ordered semantic hyper-linking method (Plaisted 1994,
Plaisted & Zhu 1997). More precisely, we show that the saturation criterion of ordered
semantic hyper-linking is a particular instance of the saturation criterion of soft typing
for semantic resolution. Saturation refers to the exhaustive application of inference rules.
Hyper-linking distinguishes the approximation of sets of ground instances by unification
and the verification of their unsatisfiability as it is implicitly combined in the resolution
rule. That is, hyper-linking computes the most general unifier of potential hyper-resolution
inferences and adds the premises instantiated by the unifier to the clause set rather than
adding the conclusion. A subsequent enumeration of ground instances in combination
with a decision procedure for propositional logic completes the picture of clause-linking.

Another example of semantically guided theorem proving is the prototypical theorem
prover SATCHMO (Manthey & Bry 1988) and its efficient counterpart, the model gen-
eration theorem prover MGTP (Hasegawa, Fujita & Koshimura 1997), which has been
implemented within the fifth generation project in Japan. It turns out, given an appropri-
ate candidate model, that ordered resolution is compatible with soft typing and, moreover,
that SATCHMO’s (MGTP’s) saturation criterion is an instance of the saturation criterion
of soft typing for ordered resolution (Ganzinger, Meyer & Weidenbach 1997).

In the context of first-order theorem proving with equality, we study the compatibility
of the superposition calculus (Bachmair & Ganzinger 1994) with soft typing. The super-
position calculus includes a powerful redundancy concept which covers many of today’s
redundancy elimination methods. Independently from superposition, we refine the reduc-
tion property to the strong reduction property and argue that any clausal inference system
which enjoys the strong reduction property is compatible with soft typing and simplifica-
tion techniques based on the redundancy concept of Bachmair & Ganzinger (1994).

1.2 Abstractions

For an effective use of soft typing, at least for (refinements of) ordered resolution and
superposition, we propose to use sets of Horn clauses to represent decidable approximations
of candidate models of sets of clauses. The idea is inspired by Friuhwirth et al. (1991)
who use (abstracted) logic programs to infer type information for logic programs. This
concept is related to methods which have been called soft typing (Cartwright & Fagan
1991, Cartwright & Felleisen 1996) in the programming language area. We generalize this
approach to sets of clauses with equality.

Consider Figure 1.2 and suppose that the candidate model for a set NV of clauses is

given by IV. We (i) transform the clauses N into a set of Horn clauses # and (ii) abstract
the clauses in H further to a set of Horn clauses H' for which the satisfiability problem of
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Candidate Model IV | C | Minimal Model T# | C Minimal Model T#'
T T T
Clause Set N = Horn Theory H = | Decidable Theory #'
) )
Distribution Abstraction

Figure 1.2: Abstraction for soft typing

certain formulae with respect to the minimal model T%' of H’ is decidable. With TH' we
obtain a minimal model which is an upper approzimation of the original candidate model.

Example 1.2.1

Suppose that T*' is an upper approximation in which satisfiability of conjunctions of
atoms is decidable. Consider a clause C' = Ay, ... , A, = A. fTH & A; A ... A A, then
INH# A A ... A A, which implies that C is true in IV or, in other words, that C is not a
counterexample of IV,

The dual concept is also possible which then involves lower approrimations. For the
candidate models of ordered resolution and superposition, step (i) can be achieved by
distributing disjunction into conjunctions, i.e. by transforming a non-Horn clause I' —
Aq,..., A, into n Horn clauses I' —+ A; toI' — A,. In this way, we obtain arbitrary Horn
theories which are, in general, undecidable. Further abstraction steps involve variable
renaming and/or restrictions to certain predicates. The impact of the method seems to
be determined by two aspects:

1. Does the abstracted theory describe a non-trivial structure?

2. If so, does this structure sufficiently reflect the structure of the original problem?

In the following, we introduce non-trivial decidable (equational) theories in order to
address the first question. The theories are syntactically characterized which allows to
infer automatically the decidable approximations. The problem of the second question,
however, is not considered in this work. We rather discuss some informal aspects in the
conclusion. In the following section, we will clarify the abstraction step from a Horn
theory H to a decidable theory H' in Figure 1.2 and the subsequent decision procedure.
The details of this process are depicted in Figure 1.3.

1.3 Decidable Approximations

We consider certain monadic Horn theories (with equality) as representations of decidable
approximations. A monadic Horn theory is a finite set of monadic Horn clauses which only
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Figure 1.3: Decision process for monadic Horn theories

contain monadic (unary) predicate symbols (and equality). The equality predicate may
only occur in the positive literals of the Horn clauses. The clauses in a monadic Horn
theory are represented by so-called sorted clauses. The data structure of sorted clauses
simplifies technical matters but is not essential to obtain decidability.

Example 1.3.1

A clause C of the form S(z), P(g(z,y)) — T(f(x,y)) may be represented by a sorted clause
C' of the form S(z) || P(g9(z,y)) — T(f(x,y)) where S(z) is called the sort constraint
of C'. The sort constraint distinguishes monadic atoms of the form S(z) and monadic
atoms which contain complex terms. The sorted clause C’ is logically equivalent to the
clause C.

We consider the satisfiability problem of the theory of monadic (equational) types with
respect to monadic Horn theories. A monadic (equational) type is an existentially closed
conjunction of monadic atoms (and equations). Suppose that a typing function selects
the monadic (equational) type of each clause in a set N of clauses, i.e. each negative
occurrence of a monadic atom (or equation) in a clause is subject to blocking. Then
inferences may effectively be blocked from premises in N whose monadic (equational)
type is unsatisfiable with respect to an upper approximation of some candidate model
whenever the satisfiability problem is decidable with respect to the approximation.

Figure 1.3 shows the decision process for monadic Horn theories. In general, the
satisfiability problem is undecidable with respect to arbitrary monadic Horn theories.
However, given a monadic Horn theory #H, we may abstract # into a so-called shallow
monadic Horn theory H'. A shallow theory is obtained by “flattening” non-shallow terms.
The original idea goes back to the work by Uribe (1992). Intuitively, a term is shallow
whenever all variables in the term occur at most at depth one.

Example 1.3.2

Let # be a monadic Horn theory. Suppose there is a sorted clause C in H of the form
S(z),S(y) |l = T(f(g(x),g(x),y)) which contains a non-shallow term. We may represent
C by its “flattened” version C’ of the form Sy(,)(2),S(y) || — T(f(2,2,v)) and the new
clause D of the form S(z)| — Sy)(g9(x)). Let H' be the set (# \ {C})U{C’,D}. In
this case, the minimal model of H' is even equivalent to the minimal model of H up to
monadic atoms which contain the new predicate symbols Sy ().
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Sort Theory =, Sorted Equational Theory
S )
Type Theory = Typed Equational Theory

Figure 1.4: Classes of monadic Horn theories

The next step in the decision process, which has been called type inference in (Frithwirth
et al. 1991), involves the (finite) saturation of the shallow theory under specialized ver-
sions of ordered resolution and superposition. In particular, we employ variants of sort
resolution and sorted superposition/paramodulation (Weidenbach 1996a) which have been
designed for sorted clauses. Finally, the satisfiability of a monadic (equational) type ¥
with respect to a saturated set N can be decided by (finitely) saturating N and the negated
type —¥. Frithwirth et al. (1991) call the last step type checking.

The undecidability of the satisfiability problem with respect to arbitrary monadic
Horn theories motivates a classification of decidable theories depicted by Figure 1.4. A
sort theory is a monadic Horn theory which contains sorted clauses of the form ¥ || — S(¢)
where ¥ contains only monadic atoms of the form T'(z) with z € vars(t). A clause of a
sort theory is called a sort declaration. The notation is inspired by the logical equivalence
of the clausal representation and the standard representation of sort theories (Weidenbach
1996a).

We distinguish shallow, linear, semi-linear, and pseudo-linear sort theories depending
on the form of ¢ in the sort declarations. A term is semi-linear whenever the paths to
the non-linear occurrences of each variable in the term are labeled by the same symbols.
Pseudo-linearity is a relaxed form of semi-linearity where the non-linear occurrences of
each variable must occur at the same depth throughout the term.

Example 1.3.3

The term f(g(z),g(z), h(y,y)) is semi-linear and pseudo-linear but neither linear nor shal-
low whereas the term f(g(z),g(x), h(x,y)) is pseudo-linear but not semi-linear. The term
f(z,z,y) is shallow, semi-linear, and pseudo-linear but not linear.

The class of type theories strictly embeds the class of sort theories. A type theory
consists of generalizations of sort declarations called type declarations which are of the form
¥ ||©® — S(t) where © may contain arbitrary monadic atoms. The class of type theories
corresponds to the class of monadic Horn clauses considered by Weidenbach (1999). The
notation of type theory is not intended to indicate any relation to the research area of type
theory.
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The concept of sorted equational theories extends the class of sort theories by so-called
sorted equations which are represented by sorted clauses of the form ¥ || — s &~ t where ¥
contains monadic atoms of the form T'(x) with « € vars(s,t). The definition for shallow,
linear, semi-linear, and pseudo-linear equations follows in a straightforward way from the
representation of equations of the form f(s1,... ,s,) = g(t1,... ,tm) and f(s1,... ,8,) ® T
by the terms h(s1,... ,8p,t1,... ,tm) and h(s1,... , Sp, ), respectively. Semi-linear sorted
equational theories strictly embed the (non-linear) shallow equational theories of Comon
et al. (1994). We also consider so-called semi-standard sorted equational theories which
strictly embed the standard (equational) theories of Nieuwenhuis (1996).

The definition of typed equational theories can be obtained in two ways, either from
type theories by adding so-called typed equations of the form ¥ | © — s ~ t where © may
contain arbitrary monadic atoms, or else from sorted equational theories by extending sort
declarations and sorted equations to type declarations and typed equations, respectively.

By a termination analysis of saturation under sorted superposition/paramodulation,
we obtain the following new decidability results of the satisfiability problem of the theory
of monadic equational types with respect to the following equational theories:

e semi-linear sorted equational theories (Jacquemard et al. 1998a) which strictly embed
the (non-linear) shallow equational theories in (Comon et al. 1994),

e semi-standard sorted equational theories (Jacquemard et al. 1998b) which strictly
generalize the standard (equational) theories in (Nieuwenhuis 1996), and

o linear shallow typed equational theories which extend the monadic Horn theories
in (Weidenbach 1999) by equality.

Sort theories and type theories can only be used to decide the satisfiability of monadic
types without equality. The satisfiability problem of types which include equality is re-
stricted to the equational theories. The E-unifiability problem is an instance of the sat-
isfiability problem where the type contains only one equation. We draw the borderline
of decidability by showing that the word problem of pseudo-linear equational theories
is undecidable. In contrast, the satisfiability problem of monadic types with respect to
pseudo-linear sort theories is decidable (Weidenbach 1996b).

1.4 Complexity

We derive several complexity results on the satisfiability problem from the relationship
between sort theories and tree automata. In fact, an (alternating) linear shallow sort
theory is shown to be essentially an (alternating) tree automaton up to a polynomial
increase in the size of the theory. An alternating sort theory contains sort intersection
problems in the sort constraint of the declarations. From an automata-theoretic point of
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‘ Sort Theory ‘ Non-Emptiness H Reference ‘
linear shallow linear e.g. Comon et al. (1997)
linear Weidenbach (1996a)
non-linear shallow | EXPTIME-complete Comon et al. (1997)
(deterministic) polynomial Bogaert & Tison (1992)
semi-linear EXPTIME-complete 4.4.12

| pseudo-linear ‘ decidable | Weidenbach (19965) |

Table 1.1: Complexity of (non-alternating) sort theories

| Sort Theory | Monadic (Variable) Type || Reference
linear shallow 4.3.14
Tmoar EXPTIME-complete 1413
non—‘hl.lear shallow EXPTIME-hard 4.3.13
semi-linear 4.4.11

‘ pseudo-linear ‘ decidable H Weidenbach (19965) ‘

Table 1.2: Complexity of alternating sort theories

view, alternation generalizes non-determinism by adding to the existential states of non-
determinism the universal states of alternation. We also argue that an (alternating) non-
linear shallow sort theory is essentially an (alternating) tree automaton with (syntactic)
equality constraints between brother terms which have been introduced by Bogaert &
Tison (1992).

Table 1.1 lists the complexity of the non-emptiness problem of non-alternating sort the-
ories. The non-emptiness problem is an instance of the satisfiability problem of monadic
types which contain only one monadic atom of the form S(z). The EXPTIME-completeness
for semi-linear sort theories follows from the fact that the transformation to a non-linear
shallow sort theory can be done in polynomial time.

Table 1.2 contains the complexity of the satisfiability problem of monadic (variable)
types with respect to alternating sort theories. Monadic variable types are conjunctions
of monadic atoms of the form S(z). Hence, the satisfiability problem of monadic vari-
able types may express the intersection non-emptiness problem of (non-alternating) tree
automata which is EXPTIME-complete (Frithwirth et al. 1991, Seidl 1994, Veanes 1997).
Note that we consider the satisfiability problem with respect to monadic types which may
include monadic atoms of the form S(¢) where ¢ is an arbitrary term. In combination of
the results given in Table 1.1, we observe that alternation as well as non-linearity result in
an exponential increase in complexity. It is not clear whether the combination of both can
still be solved in simply exponential time which implies that the EXPTIME-completeness
for non-linear shallow and semi-linear alternating sort theories remains open.

Consider Table 1.3. The satisfiability problem of monadic (variable) types with respect



§ 1.4 COMPLEXITY 17

‘ Type Theory ‘ Monadic (Variable) Type H Reference ‘
uniform program 5.2.9
type program EXPTIME-complete 5.3.6
linear shallow 5.2.8

Table 1.3: Complexity of type theories

Sorted Equational Theory ‘ M. Equational (Variable) Type H Reference ‘

linear shallow 6.3.20
l%near semi-shallow EXPTIME-complete 6.7.8
linear 6.4.8
linear semi-standard 6.8.10
non—.h."aear shallow EXPTIME-hard 6.3.19
semi-linear 6.4.7

‘ pseudo-linear ‘ undecidable H 6.5.5 ‘

Table 1.4: Complexity of sorted equational theories

to linear shallow type theories can be settled as EXPTIME-complete. In fact, we can
show that the simultaneous saturation of a type theory and the negated monadic type
can be done in simply exponential time. A subsequent transformation results in simply
exponential time, however, with respect to the number of monadic predicates and not
the size of the theory, in a non-alternating version of the saturated theory. A final non-
emptiness test can be done in linear time. The problem is already EXPTIME-hard for
so-called wuniform programs which are an instance of linear shallow type theories. Type
programs can be transformed in polynomial time into uniform programs.

The conclusion of Table 1.4 and 1.5 is that the presence of equality affects the com-
plexity only by a polynomial increase compared to the same problems with respect to the
theories without equality. Similar to the problem for type theories, we can show that the
simultaneous saturation under sorted superposition/paramodulation of an equational the-
ory and the negated monadic equational type can be done in simply exponential time. A
subsequent transformation adds an exponential factor resulting in a non-alternating ver-
sion of the saturated theory. A final non-emptiness test which does not involve equality
can be done in linear time.

| Type Theory | Monadic Equational (Variable) Type | Reference |
‘ linear shallow ‘ EXPTIME-complete H 7.1.5 ‘

Table 1.5: Complexity of typed equational theories
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1.5 Outline

Chapter 2. We introduce the basic notions and notations which are used throughout
this work. In particular, the syntactic characterizations of various (equational) theories
are given in this chapter. More specific constructions are introduced in the according
chapters.

Chapter 3. Soft typing is presented as a general framework to incorporate semantical
knowledge into theorem proving processes by clausal inference systems. We discuss various
instantiations of soft typing to semantic resolution, ordered resolution, and superposition.
Since minimal models are used throughout this thesis we recall the basic concepts of the
minimal model semantics of logic programs and slightly generalize them to treat equality
appropriately. Formal definitions of abstractions, approximations, and theorem proving
derivations (trees) as well as a brief discussion of the lifting problem complete the soft
typing framework. We close the chapter with an overview of other work from the area
of semantically guided theorem proving and demonstrate that soft typing strictly embeds
other methods of this area.

Chapter 4. We introduce certain (non-linear) sort theories which are represented by a
particular form of clauses. The sort theories essentially correspond to tree automata (with
equality constraints). The purpose of this chapter is to introduce a general concept to
obtain the various decidability results in the subsequent chapters rather than presenting
new results, except for the complexity statements.

Chapter 5. Type theories are generalizations of sort theories. The notation of type
theory is not intended to indicate any relation to the research area of type theory. We
relate type theories to logic programs and obtain complexity results which are similar to
the results for sort theories although the decidability results are not new. We discuss
abstraction techniques which improve upon the known methods for this purpose. Similar
to the chapter on sort theories, the presentation of type theories is also motivated to clarify
fundamental techniques which are later generalized to work for type theories with equality.

Chapter 6. Sorted equational theories are the subject of this chapter. We may view
sorted equational theories either as generalizations of sort theories to include equality or
as equational theories in which the variables carry some sort information. We therefore
relate these theories to tree automata as well as to so-called standard (equational) theories.
We demonstrate the decidability of the E-unifiability problem for various theories and
obtain complexity results for the more general satisfiability problem with respect to certain
forms of first-order formulae (with equality). An undecidability proof of an extension of
the decidable fragment reveals the borderline of computability. Finally, we demonstrate
the decidability of the most general fragment in this chapter which strictly embeds the
standard theories.
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Chapter 3
Soft Typing
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Chapter 4
Sort Theories
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Chapter 5 Chapter 6
Type Theories Sorted Equational Theories
Chapter 7

Typed Equational Theories

Figure 1.5: Dependencies between the chapters

Chapter 7. Typed equational theories are type theories with equality. We show the de-
cidability of the satisfiability problem with respect to certain forms of first-order formulae
(with equality). This problem is in the same complexity class as the similar problem for
sorted equational theories.

Chapter 8. We summarize the main contributions of this thesis and discuss future work.
We briefly report on experiments with an implementation of soft typing with respect to
certain sort theories and motivate further work in this regard. Moreover, we discuss, as
potential applications of soft typing, other decidable classes which involve constructor-
based alphabets in equational theories or non-monadic predicates in decidable first-order
fragments.

How to read the thesis. The dependencies between the chapters are illustrated in
Figure 1.5. The thesis consists of two major parts, Chapter 3 on soft typing and Chap-
ter 4 through 7 on decidability and complexity issues with respect to various (equational)
theories. Both parts can be read independently although Chapter 3 motivates the work of
the subsequent chapters. Conversely, the results of Chapter 4 through 7 have immediate
applications in the general framework of soft typing.

Chapter 4 marks the entry point of the second part and is recommended as an intro-
duction to Chapter 5 and 6. However, the main Chapter 6 of the second part can be read

independently from Chapter 5. Finally, the ideas of Chapter 4 through 6 culminate in
Chapter 7.






Chapter 2

Preliminaries

We define the fundamental notions of orderings and their extensions to orderings on
multisets. Throughout this work, we assume that first-order clauses are represented by
multisets of literals. First-order terms are defined as usual and form, in unordered pairs,
equations. We introduce the standard notions of positions in terms and substitutions.
Certain classes of terms are distinguished, by syntactic characterizations of their variable
occurrences, in shallow, linear, semi-linear, and pseudo-linear categories. The classifica-
tion plays an important role in the identification of decidable (equational) Horn theories.
We use the standard notions of first-order languages and first-order models. At the end
of this chapter, we also define the notion of equational theories and term rewriting sys-
tems. In particular, the definitions of the theories and rewrite systems origin in the survey
of Dershowitz & Jouannaud (1990). Many other preliminary definitions are motivated
by Baader & Nipkow (1998).

2.1 Orderings and Multisets

A quasi-ordering > on a set A is any reflexive and transitive binary relation on A. The
intersection of > and the inverse < is the associated equivalence relation ~ of =, ie.a ~b
whenever ¢ > b and b > a for all a,b € A. An anti-symmetric quasi-ordering > on A
is called a partial ordering on A where anti-symmetric means that, for all a,b € A, if
a > band b > a then a is equal to b. Note that ~ of a partial ordering corresponds to
equality. The difference > of a partial ordering > on A and ~ is called a strict partial
ordering on A, i.e. a = b whenever a = b and not a ~ b for all a,b € A. The difference of
a quasi-ordering > on A and ~ is the associated strict partial ordering ~ of = on A. Note
that, in general, the associated strict partial ordering > is not a strict partial ordering,
since the quasi-ordering > does not have to be anti-symmetric.

Given a quasi-ordering > on A, an element a € A is called mazimal (minimal) in A
if, for all b € A, b = a implies a > b (b < a implies ¢ < b). A quasi-ordering > (on A) is
called total on A if, for all a,b € A, either a > b, or else b = a. It is called well-founded if
each subset of A has a minimal element, i.e. for all B C A there is a b € B such that there



22 § 2. PRELIMINARIES

isno b’ € B with b > b'. It is called Noetherian if there is no infinite descending chain
ag = a1 > as = ... with a; € A for all 4. Note that, assuming the axiom of choice, both
notions are equivalent.

A multiset on a set A is a function M from A to the natural numbers. The intended
meaning of M(a) with a € A is the number of occurrences of a in M. We say that a
is an element of M if M(a) > 0. The inclusion M C N holds whenever M(a) < N(a)
for all @ € A. A multiset M on A is empty, denoted by M = 0, whenever M(a) = 0
for all @ € A. The union, intersection, and difference of multisets are defined by the
identities Mj(z) U Ma(xz) = My(z) + Ma(z), My(z) N Ma(z) = min(M;(z), Ma(z)), and
M (z) \ Mz(z) = max(0, M1(xz) — Ma(x)), respectively. An element a of a multiset M on
A is called mazimal (minimal) with respect to M and a strict partial ordering > on A if
there is no b € A with b > a (a > b). The element a is called strictly mazimal (strictly
minimal) with respect to M and > if there is no b € A with b > a (a = b). We extend
a well-founded strict partial ordering > on A to a well-founded multiset-ordering > as
follows. Given two multisets N and M on a set A, respectively, and a strict partial ordering
= on A, M > N whenever there exist two multisets N’ and M’ on A, respectively, such
that (1) 0 # M' C M, (ii) N = (M \ M') U N’ and (iii) for all a € N’ there is a b € M’
with a > b.

2.2 First-Order Terms and Equations

A signature ¥ is a countably (infinite) set of function symbols where each f € ¥ is
associated with a non-negative integer n, the arity of f. We call a function symbol with
arity 0 a constant symbol. For constant symbols we write lowercase letters a, b, and ¢
whereas non-constant function symbols are denoted by lowercase letters f, g, and h. A
function symbol with arity 1 is called unary. Throughout this work, we assume that
any signature contains at least one constant symbol. Let X be countable infinite set of
variables such that ¥ N X = (). For variables we write lowercase letters z, y, and z.

We define (first-order) terms as usual built up from function symbols and variables.
The set 7 (2, X) of all terms over ¥ and X is inductively defined as (i) X C 7(%, X) and
(ii) for all n» > 0 and all f € ¥ where n is the arity of f, and all ¢1,... ,t, € T(Z,X) we
have that f(t1,...,t,) € T(X,X). Terms are denoted by lowercase letters s, ¢, u, v, and
w. A term of the form f(¢1,...,t,) with n > 0 is called complez whereas a term of the
form a where a is a constant symbol is called constant.

The set of positions of the term ¢ is a set pos(t) of strings over the alphabet of positive
integers. The empty string is denoted by e. We define pos(t) inductively as the smallest
set such that (i) € € pos(t) and (ii) if ¢ is of the form f(¢1,... ,t,) then ip € pos(t) for all
i with 1 < ¢ < n and for all p € pos(t;). The function size:T (X, X) — N maps a term ¢
to its size which is the cardinality of pos(t), i.e. size(t) = |pos(t)|. Given a position p, we
define its depth (length) inductively by (i) |¢] = 0 and (ii) |p| = |g| + 1 with p = ig and i is
a positive integer. The function depth:7 (X, X) — N maps a term to its maximal depth,
i.e. depth(t) = max({|p| | p € pos(t)}).
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Given a term ¢, for p € pos(t), the subterm of t at position p, denoted by t|p, is defined
inductively on the length of p by (i) t|c¢ = t and (ii) t[;, = ti|, where t is of the form
f(t,...,ty) and 1 < i < n. A subterm of ¢ at position p is called proper if p # ¢. We
write t[u], if t|[, = w and, ambiguously, by t[v],, we denote the term that is obtained
from ¢ by replacing the subterm u at position p by the term v. We may omit the explicit
position p of u in ¢ by writing ¢[u] instead of ¢[u],. The function vars:7T(Z, X) — 2% maps
a term ¢ to the set of variables which occur in ¢, i.e. vars(t) = {z € X | there exists p €
pos(t) with t|, = z}. Note that we may use vars with an arbitrary arity. We call p € pos(t)
a variable position if t|, is a variable. A term ¢ is called ground if vars(t) = (. The set of
all ground terms over X is denoted by 7(X).

A variable z which is a subterm of ¢[z], at position p (the occurrence of a variable
in t[z], at position p) is called linear (in t) if  occurs only once in ¢, i.e. t|; # x for all
q € pos(t) with p # ¢. A term ¢ is called linear if every variable (occurrence) is linear in ¢.
We define a shallow term t as a flat term of the form f(z1,... ,z,) where all arguments are
(shallow) variables, i.e. a term ¢ is called shallow if (i) ¢ is a variable or (ii) ¢ is of the form
f(z1,... ,2,) where each z; with 1 <7 < n is a variable. In the literature, shallow terms
have also been defined as terms in which variables may only occur as shallow variables,
i.e. arbitrary ground terms are allowed in ¢. In our context, however, we demonstrate that
this definition does not increase the expressiveness of the according (shallow) equational
theories. Note that a shallow term may not be linear.

Semi-linearity generalizes the concept of non-linear shallow variables to an arbitrary
depth of certain non-linear variable occurrences. Intuitively, viewing terms as trees, semi-
linearity requires all occurrences of a non-linear variable in a term to occur at the same
depth and the paths leading to the occurrences have to be labeled by the same function
symbols.

Definition 2.2.1 (Semi-linear Term)

A term t is called semi-linear if (i) either ¢ is a variable, or else (ii) ¢ is of the form
f(t1,... ,ty) such that (ii.a) each ¢; with 1 < i <n is semi-linear and (ii.b) t; = ¢; for all
i and j with 1 <+¢,j < n and vars(t;) N vars(t;) # 0.

Any (non-linear) shallow term is semi-linear but not vice versa. A term ¢t is called
pseudo-linear if, for all variables & € vars(t), all occurrences of = in ¢ occur at the same
depth in ¢, i.e. |p| = |q| for all € vars(t) with t[z], and t[z],. Any semi-linear term is
pseudo-linear but not vice versa. Note that the intuitive generalization of pseudo-linearity
over semi-linearity is that pseudo-linearity abstracts from the function symbols which
occur on the path to the distinct non-linear occurrences of a variable. For instance, the
term f(g(z),g(z),h(y,y)) is semi-linear and pseudo-linear but neither linear nor shallow
whereas the term f(g(z),g(z), h(z,y)) is pseudo-linear but not semi-linear. The term
f(z,z,y) is shallow, semi-linear, and pseudo-linear but not linear.

A substitution is a function 0:X — T (X, X) such that o(z) # x for only finitely many
variables z. We denote substitutions by the lowercase greek letters o and 7. The (finite)
set of variables that o does not map to themselves is called the domain of o, denoted by
Dom(c),i.e. Dom(c) ={z € X | o(z) # z}. If Dom(o) = {z;,... ,z,} then we may write
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oas{ry — o(x1),... ,&n = o(xy)}. The codomain of o is given by Cod(c) = {o(z) | z €
Dom(o)}. We say that o instantiates z if v € Dom(o). Given a substitution o and a finite
set of variables Y C X, o|y is defined as the substitution with Dom(o|y) = Dom(oc)NY
and, for all variables z € X, o|y(z) = o(z) if z € Y and o|y(z) = z, otherwise. If Y is a
singleton {} we may denote o|(;} by o;. Any substitution can be extended to a mapping
o:T(E,X) = T(X, X) by the usual homomorphic extension. The composition o7 of two
substitutions ¢ and 7 is defined as o7(z) = o(7(z)). Given a term ¢, we may write to
instead of o(t). A term ¢ is called an instance of a term s which is called a generalization
of ¢ if and only if there exists a substitution ¢ such that so = ¢.

An equation, denoted by s = t, is an unordered pair of terms s and ¢t. We define
size(s = t) by size(s) + size(t). For the straightforward extension of the other notions
for terms to equations we assume that & is a special binary symbol (with arity 2). In
particular, an equation s ~ t is called linear if both terms s and ¢ are linear. Note that
variables in a linear equation s =~ t may occur in s and . An equation s = t is called
shallow if both terms s and ¢ are shallow. Similar to the linear case, shallow variables in
a shallow equation s &~ t may occur in s and ¢.

Definition 2.2.2 (Semi-linear Equation)

An equation s = t is called semi-linear if (i) s and ¢ are semi-linear, and (ii) if s is of the
form f(s1,...,sn) then (il.a) if ¢ is a variable then for all ¢ with 1 <7 < n and ¢ € vars(s;)
we have that s; = ¢, or (ii.b) if ¢ is of the form g(¢1,... ,ty) then s; = t; for all ¢ and j
with 1 <7< n, 1<j<m,and vars(s;) N vars(t;) # 0.

Any (non-linear) shallow equation is semi-linear but not vice versa. An equation s ~ ¢
is called pseudo-linear if, for all variables x € vars(s,t), all occurrences of x in s = ¢ occur
at the same depthin s & t, i.e. |p| = |¢| for all z € vars(s,t) with (s = t)[z], and (s = t)[z],-
Any semi-linear equation is pseudo-linear but not vice versa. For instance, the equations
flg(x),g9(z),y) = h(y,g9(x),y) and f(g(z),g(x),y) = y are semi-linear and pseudo-linear
but neither linear nor shallow whereas f(g(z),g(z)) = z is even not pseudo-linear.

An equation s = t is called collapsing if either ¢ is a variable, or else s is a variable. It
is called non-collapsing if s and t are non-variable terms. It is called universal if s and ¢
are variables. An equation s ~ t is called disjoint if vars(s) N vars(t) = 0. Otherwise, it
is called shared.

2.3 First-Order Languages

Throughout this work, we use a first-order language L (with equality) where the alphabet
of L consists of a countably infinite set of predicate symbols, a signature X, a countably
infinite set of variables X, the logical connectives —, A, and V, the quantifiers V and 3,
and the symbol =. Predicate symbols are denoted by uppercase letters P, R, S, and T'.
Each predicate symbol P is associated with a non-negative integer n, the arity of P. We
call a predicate symbol with arity 0 a propositional variable while a predicate symbol with
arity 1 is called monadic or unary.
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We define the formulae of £ as usual, inductively, by (i) any atom P(ty,... ,t,) with
P is a predicate symbol and {t1,...,t,} C T(%,X) is a formula, (ii) any equation s =~ ¢
with s, € T(3, X) is a formula, and (iii) if ® and ¥ are formulae and z € X is a variable
then =&, AT, &V ¥, Vzd, and JzP are formulae. We denote atoms by the uppercase
letters A and B. Note that, for simplicity, we may represent an atom A by an equation of
the form A =~ T where T is a special constant symbol. We define the size of a formula &
(), denoted by size(®), inductively, by size(P(t1,... ,tn)) = 1+ size(t1) + ... + size(ty),
size(s = t) as already defined above, size(—®) = size(®), size(P A V) = size(P) + size(P),
size(® V ) = size(®) + size(V), size(Ved®) = size(®), and size(FzP) = size(P). The
universal and existential closure of a formula & which does not contain any quantifiers is the
formulaVz1,... ,2, (®) and 24, ... ,z, (P), respectively, where {z1,... ,z,} = vars(P).
We may also denote the closure by V® and 3®, respectively. A (positive) literal L is an
atom A or an equation s &~ t while a (negative) literal L is a negated atom —A or a negated
equation —(s =~ t) (a disequation s % t). An atom (literal) (—)A is called monadic if A is
of the form P(t) where P is a monadic predicate symbol.

A clause is a disjunction Ly V...V L, of literals with n > 0 where all variables in the
clause are assumed to be universally quantified. A clause with n = 1 is called a unit clause.
Clauses are denoted by the uppercase letters C and D. We may also use the multiset
representation {Li,... , Ly} to denote a clause Ly V...V L,. Another representation of
a clause C is the sequent style notation I' — A where the antecedent T" is the multiset
of all negative literals of C' and the succedent A is the multiset of all positive literals of
C. We may also use the uppercase greek letters A and II to denote the antecedent and
succedent of a clause, respectively. Note that an antecedent I' is (implicitly) assumed to
be the conjunction of the literals in I' whereas a succedent A can be seen as a disjunction
of the literals in A. A clause of the form — A is called positive and a clause of the form
I' — is called negative. A formula which is a conjunction of clauses is said to be in clausal
normal form. A set of clauses is (implicitly) assumed to be the conjunction of the clauses
in the set. Clause sets are denoted by the uppercase letters NV and M.

2.4 First-Order Structures

A model for formulae of the first-order language £ (with equality) consists of a non-empty
set D, called the domain, and a mapping Z, called an interpretation, that associates to
each function symbol f € ¥ with arity n a function fZ:D"™ — D, to each predicate symbol
P with arity n a relation PZ C D", and to & a binary relation on D?. An interpretation Z
is said to interpret a function symbol, a predicate symbol, or =~ by the associated function
or relation, respectively. We call Z an equality interpretation if ~ is interpreted by Z as
a congruence relation. In this case, the model and 7 are called an equality model and an
equality interpretation, respectively.

We define Herbrand interpretations, as usual, on the domain 7 (%) where the function
symbols “are interpreted by themselves”. Note that we explicitly define the notions of
truth (validity, satisfiability) only for (sets of) clauses with respect to Herbrand interpre-
tations. The extensions to formulae and (non-Herbrand) interpretations are assumed as
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usual. A Herbrand interpretation I is a set of ground atoms and ground equations. We
may also denote Herbrand interpretations by the uppercase letter J. For any predicate
symbol P, we define I(P) = {(t1,... ,t,) | P(t1,-.. ,t,) € I'}. Similarly as above, a Her-
brand interpretation is called an equality (Herbrand) interpretation if = is interpreted as
a congruence relation.

Given a (equality) Herbrand interpretation I, a ground atom A (a ground equation
s ~ t, a ground (positive) literal L of the form A (s ~ t)) is called true in I if A (s = t)
is in I, and is called false in I, otherwise. A ground (negative) literal L of the form —A
(—(s = t)) is true [false] in T if and only if A (s = t) is false [true] in I. A ground clause
is called true in I if one of its literals is true in I, and is called false in I, otherwise. If
a ground expression (atom, equation, literal, clause) E is true in I we write I F E and
also say that I satisfies E. A (equality) Herbrand interpretation I is said to satisfy a
non-ground clause if it satisfies all its ground instances. A clause is called a tautology if it
is true in any (Herbrand) interpretation.

Note that the definition of Herbrand interpretations is fixed for the domain 7 (%) which
implies that the notion of a Herbrand model coincides with Herbrand interpretations. We
may therefore reuse the notion of a model to call a Herbrand interpretation, though
ambiguously, a model of a set N of clauses if it satisfies all clauses in N. In the sequel, by
a model we mean a Herbrand interpretation in the above sense, if not stated otherwise.
A set N of clauses (with equality) is called consistent or satisfiable if N has a (equality)
model, and it is called inconsistent or unsatisfiable, otherwise. The entailment problem
for a set N of clauses (with equality) is to decide for any ground clause C if C is true in
every (equality) model of N, written N £ C. We say that N entails C or that C is valid
in N whenever N F C.

2.5 Equational Theories and Term Rewriting

A binary relation = on 7 (X, X) is called closed under substitutions if and only if s = ¢
implies that so = to for all terms s and ¢ and all substitutions o. It is called closed under
context application if and only if s = ¢ implies that u[s], = u[t], with p € pos(u) for all
terms s, ¢, and u. A binary relation = on 7(X, X) is called a rewrite relation if it is closed

under substitutions and context application. As usual, 2 denotes the transitive closure
and = denotes the reflexive transitive closure of =. Moreover, < denotes the symmetric
closure and & denotes the reflexive symmetric transitive closure of = .

An equational theory £ is a finite set of equations which are implicitly assumed to
be universally quantified. £ is called shallow (linear, semi-linear) if the equations in £
are shallow (linear, semi-linear). The reduction relation =¢C T(X2,X) x T(2, X) (with
respect to &) is defined as u =¢ v if and only if there exists an equation s = t € &, a
position p € pos(u), and a substitution o such that u|, = so and v = u[to],. Two terms
u and v are called unifiable with respect to an equational theory £ if and only if there
exists a substitution o such that uoc &¢ vo. We call the problem of deciding whether
two terms are unifiable with respect to an equational theory £ the E-unifiability problem
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(with respect to £). The word problem (with respect to £) is a particular instance of the
E-unifiability problem where only ground terms u and v are considered. By Birkhoff’s
Theorem we have that £ F u ~ v if and only if u $¢ v. Note that each equation s ~ ¢ in
€ may be represented by a clause — s =~ t in a clause set N. Then u and v are unifiable
with respect to £ if and only if the set N U{u ~ v —} of clauses is unsatisfiable.

A rewrite rule, denoted by s = t, is an ordered pair of terms s and t. A term
rewriting system R (or rewrite system) is a finite set of rewrite rules. The reduction
relation =rC T(X,X) x T(X,X) (with respect to R) is defined as u =g v if and only if
there exists a rewrite rule s = ¢ € R, a position p € pos(u), and a substitution ¢ such that
ulp = so and v = ufto], where so is called a redez and p is called a redex position. We
say that u rewrites to v (with respect to R) if u =g v. A term that cannot be rewritten
(with respect to R) is called irreducible (with respect to R), and reducible, otherwise. A
term ¢ is called a normal form of t (with respect to R) if t =g t' and ¢’ is irreducible with
respect to R. Note that =g is a rewrite relation.

A strict partial ordering > on 7 (3, X) has the subterm property if t - t|, for all terms
t € T(2,X) and all positions p € pos(t)\{e}. A reduction ordering is a well-founded strict
partial ordering that is also a rewrite relation. A rewrite system R is called terminating
if =rC> where > is a reduction ordering. We call R confluent whenever a term s can
be rewritten to terms ¢ and u, i.e. s =g t and s =g u, then ¢ and u are joinable (with
respect to R), denoted by t || g u, for some term v, i.e. ¢ =g v and u =g v. The relation
t g u indicates that the equation ¢t & u converges or has a rewrite proof (with respect to
R). A terminating and confluent rewrite system is called convergent. Given an equational
theory &£, we call a convergent rewrite system R complete for £ if (i) the rewrite rules
of R are contained in &¢ (soundness) and (ii) the equations of £ are contained in &g
(adequacy). If R is complete for £ then &¢=&p which implies that R decides the E-
unifiability problem with respect to £. Note that convergent rewrite systems define unique
normal forms and thus, for convergent rewrite system, two terms are equivalent if and only
if they rewrite to the same normal form.

We assume that critical pairs are defined as usual. A rewrite rule s = r is called
left-linear (right-linear) if s is linear (¢ is linear). A rewrite system is called left-linear
(right-linear) if all of its rewrite rules are left-linear (right-linear). A rewrite system is
called orthogonal if it is left-linear and has no critical pairs. Note that any orthogonal
rewrite system is confluent.






Chapter 3

Soft Typing

Throughout this work we consider clausal inference systems which are based on the partic-
ular data structure of clauses. Any first-order formula can be transformed to the so-called
clausal normal form which is a conjunction of clauses. The clausal normal form transfor-
mation preserves satisfiability. Anything from naive to sophisticated clausal normal form
transformation can be found in the literature. Clausal normal forms are represented by
sets of clauses. We use the following notions and notations for clausal inference systems.

Definition 3.0.1 (Clausal Inference System)
A (clausal) inference scheme w of the form

¢ C

Infe
nfer D

with the main premise C, the side premise C', and the conclusion D is a relation N'x N x N
on sets AN of clauses where C’, C, and D are clause schemes. Ambiguously, a (clausal)
inference m is a tuple (C',C, D) of clauses C’, C, and D, which are instantiations of the
main and side premises and the conclusion, respectively, of an inference scheme 7. The
conclusion of an inference 7 is also denoted by C(7). Unary and n-ary inferences (schemes)
are defined analogously. A clausal inference system Il is a set of inference schemes. Let IV
be a set of clauses. The set II(N) denotes the subset of all inferences in II with premises
in N. The set of all conclusions from premises in N by inferences in II is denoted by
C(II(N)).

Note that we abbreviate the term (clausal) inference scheme to (clausal) inference.
The operational behavior of an inference from premises in NV is that the conclusion of the
inference is added to N. A clausal inference system induces a relation on sets of ground
clauses. In other words, an inference, which is derived in some clause set, will also be
derived in any other clause set which contains the same premises. This implies that any
system of this kind describes an inherently local form of theorem proving processes in the
sense that inferences are drawn independently from the global context of the particular
premises.
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Soft typing is a general framework that extends clausal inference systems by additional
parameters such that global aspects of a problem set may yield better control of the
inference process. By soft typing for a particular inference system II, we mean a refinement
of IT with respect to a particular context (clause set) N such that the refinement contains
less inferences from N than II. The context IV is evaluated by semantic considerations
with respect to certain model hypotheses of N. We obtain soft typing for semantic and
ordered resolution, c.f. Section 3.1.1 and 3.1.2, and for superposition as demonstrated in
Section 3.1.3. Note that a refinement of II is not a clausal inference system in general,
as some restrictions of the refinement may involve the global context of the particular
problem. In order to elaborate on the fundamental ideas of soft typing we recall the basic
concepts of resolution and introduce soft typing for unrefined resolution.

In the sequel, we assume the ground level as default. The lifting problem, i.e. the
problem of finding a suitable approximation of the ground level on the non-ground level,
is of quite some importance to obtain an effective theorem proving procedure for first-order
logic. We discuss the lifting problem in Section 3.5. In the other parts of this chapter,
however, we are interested in properties of the calculi and, in particular, of soft typing
which are independent from these issues.

3.1 Introduction to Soft Typing

The resolution calculus R or simply resolution was invented by Robinson (1965). The
resolution calculus is sound and refutationally complete. A calculus (inference system)
is sound if any inference of the calculus (inference system) is sound, i.e. any conclusion
of a sound inference is a logical consequence of the premises. A calculus is refutationally
complete if, in any (fair) derivation by the inferences of the calculus from an unsatisfiable
formula, a contradiction is eventually derived. See Section 3.4 for a formalization of the
notion of a (fair) derivation.

A calculus is called complete if any logical consequence of the problem can be derived
by the inferences of the calculus. A complete calculus is refutationally complete whereas,
in general, the opposite is not true. However, to demonstrate the unsatisfiability of a
formula refutational completeness is sufficient. An example for a refutationally complete
calculus which is not complete is the resolution calculus R. We define R on the ground
level. It consists of the Resolution inference rule and the Factoring inference rule.

Definition 3.1.1 (Resolution)
The following inference is called Resolution:

CVA Dv-A
CcvD

Infer

where (i) C'V A and D V —A are ground clauses and A is a ground atom.

We call the side premise C'V A and the main premise D V —A the positive and the
negative premise, respectively, of the inference and the conclusion C'V D the resolvent.
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Definition 3.1.2 (Factoring)
The following inferences are called Factoring:

Cv—-Av-A
cv-A

Infer

where (i) C'V —AV —A is a ground clause and A is a ground atom; and

_cvava
CVvVA

Infer

where (i) C V AV A is a ground clause and A is a ground atom.

The first rule is called Negative Factoring whereas the second rule is called Positive
Factoring. In order to demonstrate the refutational completeness of a clausal inference
system, we may abstract from the notion of a derivation. It is actually sufficient to look
at the result of a derivation.

Definition 3.1.3 (Saturation)
Let II be a clausal inference system. A set N of clauses is called saturated with respect to
I1, if N is closed under II, i.e. if C(II(N)) C N.

A clausal inference system II is refutationally complete if, for any set IV of clauses which
is saturated with respect to II, either IV is satisfiable, or else N contains a contradiction.
In clausal theorem proving, the empty clause is the witness for a contradiction. The empty
clause represents the empty disjunction and is therefore always false. From an operational
point of view, the process of exhaustively applying inference rules is called saturation. In
this way, II provides a saturation-based theorem proving method.

The following analysis of resolution is an easy exercise which already contains the
main ideas of proofs of the refutational completeness of general clausal inference systems.
The idea is based on a particular binary tree called the semantic tree. It goes back to a
well-known proof by Robinson (1965).

Theorem 3.1.4 (Soundness and Completeness of Resolution)
The resolution calculus is sound and refutationally complete.

Proof Let N be an unsatisfiable set of ground clauses which is saturated with respect
to R. The Herbrand base of N is any countable set {A4;, A, A3, ...} of ground atoms. A
semantic tree 7 is a labeled binary tree where the root node has no label and otherwise at
level n all left children are labeled A,, and all right children are labeled —A,,. Depending
on the order in which the atoms are listed, there are many semantic trees. To identify a
unique tree, we may assume some fixed total ordering on the ground atoms with A; being
the minimal object. Note that the ordering is well-founded. We observe that each branch
0 of T completely determines a Herbrand interpretation I by assuming that L is true in 1
for all L on 6. Each ground atom in the Herbrand base or its negation appears on 8, but
not both.
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A path in a tree is a sequence of nodes starting at the root node and proceeding from
parent to child. Maximal paths are called branches. A path 6 in T contradicts a clause
C if, for each literal L in C, the negation of L appears on 6. A path is N-closed if 6
contradicts some clause in N. A node [ is called a failure node for N if the path to [ is
N-closed.

The construction is intended to show that the root node of 7 is a failure node for
N. This implies that the empty clause is in N since the trivial path from the root node
to itself only contradicts the empty clause. Every branch of 7 is N-closed, for otherwise
there would be a branch 6 of 7 that induced a Herbrand model of N. Let 8 be a branch
of 7 and let C be a clause in N that 6 contradicts. Since C is finite, there must be some
finite initial segment of § that contradicts C'. Thus every branch in 7 has a finite initial
N-closed segment that contains a failure node for N. Let T* be the subtree of 7 in which
every descendant of a failure node has been deleted. In order to show that 7™ is the trivial
tree, consisting of just the root node, we suppose otherwise.

Since, by Konig’s Lemma, 7* is finite, there is a maximal branch 6 in 7* of the form
0" o A where A is, without loss of generality, a left child and ¢’ is the path to the parent of
A. We assume that A also denotes the according ground atom in the Herbrand base. Note
that A is a failure node and 6 is N-closed but 8’ is not. Let —A be the right sibling of A
in T* where —A is also a failure node, for otherwise the shortest N-closed path beginning
with 6’ o =A would be longer than 6. Since ' is not N-closed, 8’ o = A is an N-closed
branch of 7*.

Let C' and C be some clauses in N contradicted by 6 o =A and 6’ o A, respectively.
Then A must occur positively in C’, for otherwise 8’ would already contradict C’. Likewise
—A must occur in C. We call this situation a local contradiction. The Resolution rule
is a method to resolve this local contradiction. It follows that #' already contradicts
the resolvent D. We may assume that Factoring has been exhaustively applied on the
occurrences of A in both clauses. However, since N is saturated with respect to R, D
must be in N which implies that 8’ is N-closed. This is a contradiction to the assumption
that 7* is non-trivial. [ |

The proof shows which properties of the calculus are important to obtain refutational
completeness, i.e. (i) if an unsatisfiable clause set does not yet contain the empty clause,
then there must be some local contradiction such that Resolution is applicable, and (ii) the
conclusion must be in some sense simpler in order to ensure that the empty clause is even-
tually derived. In general, a calculus that enjoys these two properties is refutationally
complete. Note that the semantic tree approach achieves (ii) indirectly by an ordering on
the Herbrand interpretations induced by the semantic tree (the maximal branch). How-
ever, the approach is limited as the incorporation of arbitrary interpretations is difficult.
Not only semantic resolution but also ordered resolution, as they both deal with par-
ticular model constructions, require a method which is free of the particular choice of
interpretations and whose ordering concept to show termination is independent from the
construction of the interpretation. In the sequel, we assume that an arbitrary but fixed
well-founded and total ordering on ground clauses is given. The smallest clause is the
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empty clause. The clause ordering is an alternative to the previous ordering on Herbrand
interpretation to achieve a termination argument.

The notion of a local contradiction can be generalized to the notion of a counterezample
for some model such that situations like a factor or, for equational reasoning, a redex in a
positive literal are also covered.

Definition 3.1.5 (Counterexample)

Let N be a set of ground clauses and let C' be a clause in N. If C is false in an interpretation
I we call it a counterexample for I. A counterexample C is called minimal in N if C is
the smallest counterexample in N with respect to some well-founded and total ordering
on ground clauses.

We will later see that a so-called admissible clause ordering as given in Definition 3.1.15
is the intended well-founded and total ordering on ground clauses. A candidate model
can be viewed as representing a model hypothesis for N that is based on the currently
available knowledge about V. If a clause is false in the model, more inferences are required.
Conversely, clauses which have the appropriate truth value need not be considered for
inferences.

Definition 3.1.6 (Candidate Model)

Let N be a set of ground clauses which does not contain the empty clause. Let I be a
mapping that assigns to N an (equality) Herbrand interpretation I"V. We call I a model
functor and IV the candidate model for N.

The reduction property of a clausal inference system II generalizes the crucial proper-
ties (i) and (ii) such that, for II to be refutationally complete, there must always be an
inference in II that reduces at least the minimal counterexample (local contradiction) to
a smaller counterexample (smaller falsifying branch interpretation). An inference whose
conclusion is always in some sense smaller than at least its main premise is called mono-
tone. If N is a set of ground clauses and C a ground clause (not necessarily in N),
N¢ denotes the set of clauses D in N such that D is smaller than C' with respect to a
well-founded and total ordering on ground clauses.

Definition 3.1.7 (Reduction Property)

Let II be a clausal inference system. We say that II has the reduction property for coun-
terexamples (with respect to a model functor I) if, for all sets N of ground clauses and
for all minimal counterexamples C for IV in N, there exists an inference in II with main
premise C, side premise C’ which is true in IV and a counterexample for IV¢' | and a con-
clusion D which is a smaller counterexample for IV than C with respect to a well-founded
and total ordering on ground clauses. We call an inference from C' to D a reduction in-
ference and we say C is reduced to D. An inference from C’ and C to D where C is a
counterexample for IV in N, but which may not be a minimal counterexample, is called
a weak reduction inference.

The proposition below states that a clausal inference system which enjoys the reduction
property is indeed refutationally complete. Note that the proof, which implicitly involves
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a Noetherian induction, does not exploit the requirement that a side premise C’ which is
involved in the reduction of a counterexample for IV in N is a counterexample for INer.
However, the inference systems which are shown to be compatible with soft typing match
this requirement. We will later see that soft typing makes particular use of this aspect.

Proposition 3.1.8 (Bachmair & Ganzinger (1997, 1998a))

Let N be a set of ground clauses and let IT be a clausal inference system which has the
reduction property. Suppose that N is saturated with respect to II. Then N is either
satisfiable, or else N contains the empty clause.

Proof Suppose that IT has the reduction property for counterexamples with respect to
some model functor I. If the empty clause is not in N, either IV is a model of N, or else N
contains a minimal counterexample for IV in N. The latter case is impossible. Otherwise,
by the reduction property, C' can be reduced to a smaller counterexample D, which, if
C(II(N)) € N, must be contained in N, and hence would contradict the minimality of C'.

|

The reduction property of a clausal inference system II describes sufficient requirements
of IT to be a refutationally complete theorem proving method. It guarantees that there
are always enough inferences in II to reduce at least the minimal counterexamples of a
particular candidate model. Thus we also call a reduction inference indispensable. On the
other hand, we may abstract from the minimality of counterexamples and call an inference,
which is not a weak reduction inference, dispensable. Note that a weak reduction inference
7 from a clause C, which is not a reduction inference, is also not needed for refutational
completeness. Weak reduction inferences can be avoided by a preference on small clauses
with respect to the clause ordering.

The motivation of a refinement of II, in the sense of soft typing, is to single out dispens-
able inferences in II. In general, however, not all dispensable inferences can be avoided.
In fact, the set of inferences in any effective inference system must be an approximation
of the set of reduction inferences since the identification of counterexamples is undecid-
able. However, the permanent exclusion of dispensable inferences is not possible since, in
general, the status (context) of clauses may change in a theorem proving derivation. In
other words, the notion of being a counterexample is not stable in a derivation. However,
dispensable inference may be blocked dynamically.

Definition 3.1.9 (Blocked Inference)

Let I be a model functor and let N be a set of ground clauses. We say that an inference
with a ground clause C as main premise and a ground clause C' as side premise is blocked
in N, if (i) C' is a counterexample for IV, or (ii) C" is true in I™V¢’, or (iii) C is true in IV,

We define soft typing for a clausal inference system II operationally as an upper ap-
proximation of the reduction inferences of II from premises in a clause set N. From a
denotational point of view, soft typing for II is not a relation on clause sets in the sense of
clausal inference systems, since the problem set NV and the model functor I are involved
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as additional parameters. Consequently, by soft typing for II we mean a certain relation
on sets of premises and conclusions (clauses), a set of contexts (clause sets), and a model
functor I.

Definition 3.1.10 (Soft Typing)

Let N be a set of ground clauses and let IT be a clausal inference system. The refinement
of IT with respect to N which contains only the non-blocked inferences in II is called soft
typing for II.

The process of an exhaustive application of soft typing for IT to a clause set is called
weak saturation.

Definition 3.1.11 (Weak Saturation)
Let N be a set of ground clauses and let IT be a clausal inference system. The set N is
called weakly saturated with respect to II, if V is closed under the soft typing for II.

Note that N is weakly saturated with respect to II if and only if N is saturated with
respect to the soft typing for II. The corollary below is an immediate consequence of
Proposition 3.1.8.

Corollary 3.1.12

Let N be a set of ground clauses and let IT be a clausal inference system which has the
reduction property. Suppose that N is weakly saturated with respect to II. Then N is
either satisfiable, or else N contains the empty clause.

In the following, we apply the concept of the reduction property for counterexamples
to obtain an alternative proof of refutational completeness of resolution. The construction
is based on a particular model functor which, as we will see later, essentially carries over
to the proof of refutational completeness of ordered resolution. The parameters of the
model functor are certain admissible orderings on atoms, literals, and clauses. We define
an admissible atom ordering as a well-founded and total ordering on atoms and show in
which way admissible atom orderings can be extended to admissible orderings on literals
and clauses.

Definition 3.1.13 (Admissible Atom Ordering)

An atom ordering », is a strict partial ordering on atoms. >, is called admissible if >,
is well-founded, and total on ground atoms. A ground atom A is called [strictly] maximal
with respect to a multiset of literals T', if for any L in I with L = (=)B we have A >, B
[A >4 B].

Definition 3.1.14 (Admissible Literal Ordering)

Let >, be an admissible atom ordering. An ordering >; on literals is called a literal
ordering. > is called admissible if (i) »; is well-founded, (ii) the restriction of >; to
ground literals is a total ordering, (iii) if L = (=)A4 and L' = (=)A’ are ground literals,
then L »; L', whenever (iii.1) A =, A’, or (iii.2) A = A’ and the literal L is negative,
whereas L' is positive.
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Note that for any positive literal A, —A is greater than A, whereas —A is smaller than
B if B is a positive literal with B >, A. The multiset extension of an admissible literal
ordering induces an ordering on ground clauses.

Definition 3.1.15 (Admissible Clause Ordering)
Let >; be an admissible literal ordering. A clause ordering . is the multiset extension of
>1. We call =, admissible if >=; is admissible.

Admissible clause orderings are well-founded and total on ground clauses. Moreover,
an admissible clause ordering is compatible with the underlying atom ordering. If the
maximal atom in a ground clause C is greater than the maximal atom in a ground clause
D then C >, D. We shall consider only admissible orderings from now on. We say that
a clause C V A is reductive for the atom A, if A is a strictly maximal atom with respect
to C. Given a set of ground clauses N, we use induction with respect to . to define a
model functor I for resolution on N as follows.

Definition 3.1.16 (Model Functor for Resolution)
Let . be an admissible clause ordering. Let N be a set of ground clauses and let C' be

a clause in N. Suppose that ep and I g have been defined for all clauses D for which
C =, D. Then

1§ = U ED
C>¢D
where
ec = {4}

if (i) C = C'V A is reductive for A and (ii) C is false in IY. Otherwise, ec = 0. IY is
called the partial interpretation up to C. We say that a clause C produces the atom A if
ec = {A} and call C a productive clause. The model functor for resolution I assigns to
N the Herbrand interpretation IV = {Jocn €c-

Note that for any clause C the interpretations I ]CV , IN¢ and |J DeNg €D coincide. The
construction is designed to render the formulas of N true in I”V. The partial interpretation
Ig is intended to be a model of the set No of those clauses in NV that are smaller than C.
The interpretation e¢ is meant to be a minimal extension of Iév that makes C' true.

Lemma 3.1.17 (Bachmair & Ganzinger (1994))

Let >, be an admissible clause ordering. Let I be the model functor for resolution and
let N be a set of ground clauses. Let C be a clause I'y) B — A in N and let D be a clause
in N with D »=. C. If B is false in IY then it is also false in I} and I".

Proof Suppose that B is false in Iév . Suppose that there is an atom A which is true in
v \ [/, g . Then A >, B since clauses which produce atoms smaller than B are also smaller
than C. This implies that B is false in [ Jg and IV, |
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Recall the proof of the refutational completeness of resolution. The crucial Resolution
step involves the two clauses C' and C where A is the maximal literal in ¢! and C,
respectively, with respect to the fixed atom ordering. Similarly, Factoring is also required
only on A and —A, respectively. Hence, Resolution as well as Factoring may be restricted
such that only maximal literals are resolved and factorized with respect to some well-
founded total atom ordering.

There is also another obvious improvement of resolution. Only one of the two Factor-
ing rules is actually required for refutational completeness. Suppose that we skip Negative
Factoring. That is, only positive literals are factorized. However, since occurrences of
literals have to be factorized only if they are also involved in local contradictions, Pos-
itive Factoring and Resolution serve for sufficient factorization of negative literals. We
can actually prove that resolution has the reduction property for counterexamples of IV
even under both improvements. This implies that soft typing for resolution with these
improvements is refutationally complete.

Lemma 3.1.18

Let I be the model functor for resolution. Let N be a set of ground clauses which does not
contain the empty clause and let C' be the minimal counterexample in N for IV. Then
there exists an inference in R from C such that

1. the conclusion is a smaller counterexample for IV than C; and

2. in case of a Resolution inference, C' is the main premise and the side premise is a
productive clause.

Proof Suppose that C' contains a negative literal A which is maximal in C, i.e. C' is of
the form C = A,A — II. Since IV ¥ C we have that A € IV, A C IV, and I NIV = (.
Let C' be a reductive clause of the form I' —+ A, A that produces A. Note that C’ is true
in IV. Thus there is a Resolution inference between C and C’ where D is the conclusion
')A — A,II. Tt follows that D is smaller than C' with respect to >, since the maximal
literal in C has been resolved. Since C' is false in I™V¢' we have that T' C INer C IV and
ANINe' =(. By Lemma 3.1.17 the interpretation IV and the partial interpretation I CIY,
coincide for atoms which are smaller than A which implies that AN IV = () and therefore
that D is a counterexample for I*V.

Suppose that A is a maximal atom in C such that C = A — II, A, A. If C contains only
one occurrence of A, then C would be a productive clause which contradicts the assumption
that C is a counterexample for I”V. Thus there is a Positive Factoring inference on C where
D is the conclusion A — II, A. Again, D is a counterexample for IV and D is smaller
than C with respect to >. |

Throughout this work, we use the concept of the reduction property to analyze and
to prove the refutational completeness of the refinements by soft typing. The most im-
portant parameter is the model functor which has to be defined in a suitable manner
for each refinement. However, soft typing as an undecidable concept demands decidable
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approximations of blocking, possibly with additional properties, e.g., stability throughout
derivations for the permanent exclusion of blocked inferences. Recall that the notion of
being a counterexample is, in general, not stable in a derivation. The abstract notion of
redundancy of clauses proposed by Bachmair & Ganzinger (1994) is a concept for the ap-
proximation of permanent non-counterexamples. More precisely, it is a sufficient criterion
for a clause such that the clause cannot become a minimal counterexample in any deriva-
tion. Note that this point of view is different to the original motivation of redundancy.
In (Bachmair & Ganzinger 1994), redundancy has been introduced as an approximation
of the set of clauses which do not contribute to the construction of the candidate model.

Definition 3.1.19 (Redundant Clause)
Let N be a set of ground clauses. A ground clause C is called redundant in N if N¢g E C.

Note that the clause C is not necessarily a member of N. Ng E C means that C is
entailed by the members of N which are smaller than C' with respect to a well-founded
and total ordering on ground clauses. Suppose that C' is a clause which is redundant in N.
Then C can never be a minimal counterexample for any candidate model IV since, by the
minimality of C, IV would be a model of N¢ and thus also a model of C. Suppose that
N is the set of all non-redundant clauses in N. Then we also have that N/, F C, i.e. there
are always non-redundant clauses in N¢ which already entail C'. It follows that C' can also
not be a minimal counterexample for any model of N(,. This fact implies that redundancy
is stable in any derivation. Redundancy is independent from the particular model of N¢,
i.e. a redundant clause can never be a minimal counterexample for any model functor.

So far, redundancy provides a filter of clauses in a set IV of ground clauses which
are involved as main premises in some inference. On the other hand, a clause C' which
is involved as a side premise is true in some candidate model IV. However, C' is a
counterexample for the candidate model IV¢! . Suppose that IT is a clausal inference system
which has the reduction property. If we can show that any clause C’, which is involved
as the side premise in a reduction inference in II, is actually a minimal counterexample
for the candidate model I™V¢' | then redundancy applies also to side premises. In other
words, in this case we can prove that I’V¢’ is a model of N¢r. Using the model functor for
resolution we may strengthen Lemma 3.1.18 in this regard.

Lemma 3.1.20

Let I be the model functor for resolution and let . be the according admissible clause
ordering. Let N be a set of ground clauses which does not contain the empty clause and
let C be the minimal counterexample in N for IV. Then INe' E N for all clauses C'
in No U {C }

Proof Let C' be a clause in Ng U {C}. In order to show that I’V¢’ is a model of N¢
suppose otherwise that there is a clause D of the form I' — A in N such that INe! i D,
i.e. T C IV and AN INe' = ), and, in particular, ' C I™? and AN IVP = (). Since C
is the minimal counterexample in N for IV and C >, D we have that D is true in IV.
Thus there is a clause D' in N where D’ >, D that produces an atom A in A into IV. It
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follows that D is also reductive for A for otherwise D >, D’. However, then D would be
productive and thus true in I’V¢’ which shows the contradiction. |

We will later see that this property does not hold for the model functor I of or-
dered resolution with selection used in the original work on soft typing for ordered resolu-
tion (Ganzinger et al. 1997). Using I, ordered resolution with selection where redundancy
is imposed on main and side premises is refutationally complete unless dispensable infer-
ences are blocked. This implies that ordered resolution with selection and redundancy
requires dispensable inferences from non-counterexamples, c.f. Example 3.1.39. In this
way, we arrive at a trade-off of soft typing in combination with redundancy. Soft typing
has been designed as a general framework for the optimization of proof search by the
incorporation of the global aspects of a problem set. However, the incompatibility can be
fixed in two different ways, either by an appropriate modification of the clause ordering,
or else by a modification of the model functor. We will discuss both solutions in detail in
Section 3.1.2.

The following definition introduces the strong reduction property for clausal inference
systems which essentially is the reduction property with the additional minimality require-
ment on side premises. Using the above lemma, we obtain that unrefined resolution has
the strong reduction property.

Definition 3.1.21 (Strong Reduction Property)

Let II be a clausal inference system. We say that II has the strong reduction property for
counterezamples (with respect to a model functor I) if, for all sets N of ground clauses
and all minimal counterexamples C for IV in N, there exists an inference in IT with main
premise C, side premise C' which is true in IV and a minimal counterexample for I"c’,
and a conclusion D which is a smaller counterexample for IV than C with respect to a
well-founded and total ordering on ground clauses.

Redundancy may be imposed on clauses which are involved as main or side premises
in inferences of a clausal inference system which has the strong reduction property. It
is also possible to apply redundancy to the conclusions of the inferences as the following
definition suggests.

Definition 3.1.22 (Redundant Inference)
Let N be a set of ground clauses and let 7 be an inference with main premise C' and
conclusion D. The inference 7 is called redundant in N if No E D.

Suppose that II is a clausal inference system which has the strong reduction property.
Recall that any clause C which is involved as the main premise in a reduction inference in
II to a conclusion D is a minimal counterexample for some candidate model IV. It follows
that IV is a model of N¢. Thus any reduction inference in II is non-redundant, for other-
wise N¢ E D and thus IV would satisfy D which implied that D is not a counterexample
for IV. Hence, the notion of a redundant inference is a sufficient criterion for an inference
to be permanently blocked. Finally, redundancy induces a concept of (weak) saturation
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up to redundancy where only (non-blocked) non-redundant inferences from non-redundant
clauses are considered.

Definition 3.1.23 ((Weak) Saturation up to Redundancy)

Let N be a set of ground clauses and let II be a clausal inference system. The set NV
is called (weakly) saturated up to redundancy with respect to II, if any (non-blocked)
inference in II from non-redundant premises in N is redundant in N.

The following theorem summarizes the discussion on the strong reduction property
and redundancy. Any clausal inference system with the strong reduction property is refu-
tationally complete even when all inferences are restricted to non-blocked non-redundant
inferences from non-redundant clauses. As a corollary, we obtain that weak saturation up
to redundancy with respect to unrefined resolution is refutationally complete.

Theorem 3.1.24

Let N be a set of ground clauses and let II be a clausal inference system which is sound and
has the strong reduction property for counterexamples with respect to the model functor
I. Suppose that N is weakly saturated up to redundancy with respect to II. Then N is
either satisfiable, or else IV contains the empty clause.

Proof Suppose that N does not contain the empty clause. If IV is not a model of N,
then N contains a minimal counterexample C for I™V. Since II has the strong reduction
property there is a non-blocked inference from N with main premise C, side premise C’,
and a conclusion D, such that D is a smaller counterexample for I than C and the clause
C' is true in IV and a minimal counterexample in N for IV¢’. We may assume that C
and C’' are non-redundant, for otherwise C' would be entailed by N¢ and thus, by the
minimality of C, be true in IV. Similarly, C’ would be entailed by N¢ and thus, by the
minimality of C’, be true already in IV¢'. By weak saturation, the non-blocked inference
is redundant, i.e. N¢ E D. But this implies, by the minimality of C, that D is true in I%,
which is a contradiction. In sum, IV is a model of N. |

If we just consider saturation up to redundancy, a stronger form of the above theorem
is possible (Bachmair & Ganzinger 1997, Bachmair & Ganzinger 1998a). Let N be a
set of ground clauses which is saturated up to redundancy. Then, in contrast to weak
saturation, any subset of IV is also saturated up to redundancy. In other words, the
relational character of an inference system applied to IV is not affected by redundancy.

Theorem 3.1.25 (Bachmair & Ganzinger (1997, 1998a))

Let N be a set of ground clauses and let II be a clausal inference system which is sound
and has the reduction property for counterexamples with respect to the model functor 1.
Suppose that N is saturated up to redundancy with respect to II. Then NN is either
satisfiable, or else N contains the empty clause.

Note that, if N is satisfiable and saturated, then IV is a model of N. In fact, if M is
the set of non-redundant clauses in N, then I™ is already a model of M and thus also a
model of V.
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Finally, we motivate an abstract notion of simplification based on redundancy in the
context of soft typing. Redundancy can be seen as a concept for the identification of
permanent non-counterexamples. Simplification is then the reduction of a clause, coun-
terexample or not, to a permanent non-counterexample, i.e. simplification proves clauses
(premises) to be permanent non-counterexamples. The proof may contain new clauses
(conclusions) which are, however, smaller than the original. In this way, simplification
approximates the set of reduction inferences by a modification of the problem set itself.

Redundancy is a concept which is not effective. However, many simplification tech-
niques in today’s saturation-based theorem provers are actually effective approximations
of redundancy, e.g., subsumption or, for equational reasoning, conditional rewriting, and
thus can be shown to be completeness preserving for inference systems with the (strong)
reduction property. In this sense, by simplification, we mean a reduction of clauses to
redundant clauses where the reduction produces a proof of redundancy by clauses which
are smaller than the originals.

Definition 3.1.26 (Simplification)
Let N be a set of clauses and let C be a clause in N. We call p an admissible simplification
of the form

Simplify

if C is redundant in (N \ {C}) U {D}. The clause C is called the premise of the simplifi-
cation. The conclusion D of the simplification replaces the premise C' in N.

3.1.1 Semantic Resolution

We recall the basic ideas of semantic resolution (Slagle 1967) which is a particular refine-
ment of the resolution calculus. The semantic filter is based on the truth value of clauses
with respect to an arbitrary model hypothesis. In order to show that semantic resolution
has the reduction property we need, for technical reasons, another variant of Resolution
called Negative Resolution which is equal to Resolution up to the polarity of the premises.
This rule can be avoided if we assume that a certain renaming of the literals is applied
according to the model hypothesis. However, we prefer to use the additional inference as
follows.

Definition 3.1.27 (Negative Resolution)
The following inference is called Negative Resolution:

Ccv-A DV A
CcvVvD

Infer

Then the semantic resolution calculus Rg is defined as a clausal inference system which
consists of the inference rules from the resolution calculus plus the Negative Resolution
rule.
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Definition 3.1.28 (Semantic Resolution)

Let J be a model. Semantic resolution Rg is a refinement of the resolution calculus
R where the inferences by (Negative) Resolution are restricted to premises which have
distinct truth values with respect to J.

A clause C'V —A is said to be negatively reductive for the atom A, if A is a strictly
maximal atom with respect to C. The model functor for semantic resolution is designed
to render the false (negatively) reductive clauses in J true. These clauses are supposed to
be the side premises in the reduction inferences by (Negative) Resolution.

Definition 3.1.29 (Model Functor for Semantic Resolution)

Let J be a model and let >, be an admissible clause ordering. Let NV be a set of ground
clauses. The model J divides the set N of clauses into two disjoint partitions N’ and
N\ N’ such that J falsifies all clauses in N’ and satisfies N\ N'. Let C be a clause in N'.
Suppose that ep, dp, and I have been defined for all clauses D € N’ for which C >, D.
Then

F=0u U e\ U b

C-c.DeN' C-c.DeN'

where
ec = {A} and 6¢c =0
if (i) C = C" v A is reductive for A and (ii) C is false in I}, or else
ec =0 and §¢c = {A}
if (i) C = C" vV A is negatively reductive for A and (ii) C is false in I}, or else
ec =0 and d¢c = 0.

I]CV is called the partial interpretation up to C. We say that a clause C (negatively)
produces the atom A if ec = {A} (0c = {A4}) and call C a (negatively) productive clause.
The model functor for semantic resolution I assigns to N the Herbrand interpretation

IN == (JUUCEN’ 80)\UCEN’ 60

Since there are no local contradictions in N’, the construction of the model functor
implies that IV = N" with N” is the subset of N’ such that N” contains the (negatively)
reductive clauses in N’. In general, however, I is not a model of N \ N, e.g., if N is
unsatisfiable. In Section 3.6.1, we will use this model functor to discuss ordered semantic
hyper-linking (Plaisted 1994, Plaisted & Zhu 1997). Note that in the construction of
the model functor we assume that an admissible clause ordering is given. However, due
to the absence of local contradictions in N’ admissibility could be relaxed such that a
partial ordering on ground clauses is possible where clauses with complementary literals
are incomparable, c.f. (Plaisted 1994).
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The following lemma shows that semantic resolution enjoys the reduction property
and, moreover, that any (Negative) Resolution inference from a minimal counterexample
involves a main premise which is true in J and a side premise which is false in J. In case
of a Factoring inference from a minimal counterexample we may assume that the involved
main premise is a clause in N'\ N” which is false in J.

Lemma 3.1.30

Let J be a model and let I be the model functor for semantic resolution with an admissible
clause ordering .. Let N be a set of ground clauses which does not contain the empty
clause and let C be the minimal counterexample in N for IV. Then there exists an
inference in Rg from C such that

1. the conclusion is a smaller counterexample for IV than C; and

2. in case of a (Negative) Resolution inference, C is true in J and the side premise C’
is false in J and IVc’.

Proof The model J divides the set N of clauses into two disjoint partitions N’ and N\ N’
such that J falsifies all clauses in N’ and satisfies N \ N'. Suppose that C is a clause in
N\ N'. Since C is true in J but a counterexample for I, there is at least one positive
occurrence of an atom A in C such that A € J and A ¢ IV, or at least one negative
occurrence of an atom A in C such that A ¢ J and A € IV. In any case, it follows that
there is a clause C' in N’ which (negatively) produces the atom A. In particular, we have
that C' is false in IV¢'. An inference by (Negative) Resolution from C' and C’ results then
in a smaller counterexample for IV than C. Note that C is true in J and that C’ is false
in J.

Suppose that C' is a clause in N'. Then C contains several (positive, or else negative)
occurrences of the maximal atom A, for otherwise C' would not be a counterexample of
IV, Factoring on A produces a smaller counterexample for IV than C. [ |

The obvious improvements of unrefined resolution are not all possible for semantic
resolution. Both versions of Factoring are required. However, Factoring is only required
on counterexamples. In a (Negative) Resolution inference only the side premise may be
restricted to (negatively) reductive clauses. However, the occurrence of the resolved literal
in the main premise of a (Negative) Resolution inference may be non-maximal.

Example 3.1.31

The following table contains an inconsistent set of clauses. We assume that semantic
resolution is used with the model hypothesis J where A is false and B is true in J. In
addition, we assume the atom ordering B >, A. Due to the semantic filter given by J we
may restrict the (Negative) Resolution inferences to premises with different truth values
with respect to J. The table lists the clauses in ascending order.
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‘ i ‘ Clause C ‘ ec ‘ dc ‘ Remarks ‘
1 — A, B 0 0 true in J, false in IV, positive clause
2 A— B 0 0 true in J, true in IV
3 B— A 0 {B} | false in J, true in IV, negatively
productive
4 | A B— 0 0 true in J, true in IV, negative clause

Note that IV is empty since B has been removed from J. There are two Resolution
inferences from (1) and (3) as well as (3) and (4) yielding (after Factoring) the unit
clauses — A and B —, respectively. Note that the inference from (3) and (4) is actually
dispensable. Constructing the candidate model for the new clause set proceeds as follows:

‘ i ‘ Clause C ‘ Ec ‘ oc ‘ Remarks ‘

— A {4} 0 false in J, true in IV, factorized re-

solvent of (1) and (3), productive

2 —A,B 0 0 true in J, true in IV, positive clause

3 A—B 0 0 true in J, false in IV

4 B— 0 {B} | false in J, true in IV, factorized
resolvent of (3) and (4), negatively
productive

5 B— A 0 0 false in J, true in IV

6 | A, B— 0 0 true in J, true in IV, negative clause

Note that IV now consists of the atom A. There are two Resolution inferences from (1)
and (3) as well as (3) and (4) yielding the unit clauses — B and A —, respectively. Both
clauses are true in J which implies that the model IV does not change. We simply list
the two conclusions.

‘ i ‘ Clause C ‘ ec ‘ oc ‘ Remarks ‘

7 —B 0 0 true in J, false in IV, resolvent of (1) and (3)
8 | A— 0 0 | truein J, false in IV, resolvent of (3) and (4)

Note that tautologies are not listed in the table. Compared to unrefined resolution the
search space becomes narrower but deeper. There are non-deterministic choices but not
as many as in unrefined resolution. The contradiction can be derived in the third level.

In general, semantic resolution does not enjoy the strong reduction property. However,
using the model functor for semantic resolution we may strengthen Lemma 3.1.30 to show
that semantic resolution enjoys a restricted form of the strong reduction property.

Lemma 3.1.32

Let J be a model. Let I be the model functor for semantic resolution and let >, be an
admissible clause ordering. Let N be a set of ground clauses which does not contain the
empty clause and let C be the minimal counterexample in N for IV. Let N be the set
of (negatively) reductive clauses from N which are false in J. Then V¢’ E N, for all
clauses C’ in N¢.
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Proof By construction of the model functor, N is exactly the set of clauses in N which
is rendered true in the candidate model INe'. |

The lemma implies that any clause which is involved as a side premise in a (Negative)
Resolution inference is a minimal counterexample in N” for I’V¢'| but not in N. This
implies that soft typing for semantic resolution is compatible with a relaxed form of re-
dundancy N/ E C of a ground clause C. In other words, simplification may only involve
(negatively) reductive clauses which are false in J. In Section 3.6.1, we argue that ordered
semantic hyper-linking is compatible with simplification of this form.

3.1.2 Ordered Resolution

Ordered resolution is a refinement of resolution with two additional parameters, an ad-
missible atom ordering and a selection function (Bachmair & Ganzinger 1994). We have
already seen that Resolution as well as Factoring may be restricted to maximal occurrences
of literals. However, the preference of maximal negative literals may be overruled by a
selection function that indicates for each clause which occurrences of negative literals are
selected in the clause. Any inference from premises with selected literals is forced to take
place on the selected literals. That is, Positive Factoring on a clause with selected literals
is not possible as well as side premises with selected literals are excluded from Resolution
inferences.

Definition 3.1.33 (Selection Function)

A selection function S assigns to each ground clause a possibly empty set of occurrences
of negative literals. If C is a clause, the literal occurrences in S(C) are called selected.
S(C) = 0 indicates that no literal is selected.

The ordered resolution calculus Rp consists of the inference rules Ordered Resolution
and Ordered Factoring. Ordered Factoring corresponds to Positive Factoring with addi-
tional ordering constraints and selection.

Definition 3.1.34 (Ordered Resolution)
The following inference is called Ordered Resolution:

CVvA Dv-A
CcvVvD

Infer

where (i) C V A is reductive for A, (ii) no literal is selected in C, and (iii) —A either is
selected, or else is maximal with respect to D.

In an Ordered Resolution inference the negative premise is the main premise whereas
the positive premise is the side premise. An Ordered Resolution inference is redundant in
N if the conclusion is entailed by clauses in N smaller than the negative premise.

Definition 3.1.35 (Ordered Factoring)
The following inference is called Ordered Factoring:
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CVAVA

Inf
nfer oV A

where (i) A is maximal with respect to C' and (ii) no literal is selected in the premise.

An Ordered Factoring inference is redundant in N if the conclusion follows from clauses
in N which are smaller than its premise. In order to show the reduction property of ordered
resolution we include the selection function into the definition of the model functor, i.e. a
clause can only contribute to the candidate model if it does not contain any selected literal.
However, in the limit NV of a derivation any clause C' which is false in [, g does not contain
any selected literal anyway. In other words, condition (iii) below could be omitted if we
would not conceptually separate saturation and the reduction of counterexamples.

Definition 3.1.36 ((Prototypical) Model Functor for Ordered Resolution)

Let >, be an admissible clause ordering and let S be a selection function. Let N be a set
of ground clauses and let C' be a clause in N. Suppose that ¢p and I g have been defined
for all clauses D for which C' . D. Then

Ig: U ED
C>cD

where
ec = {4}

if (i) C = C' V A is reductive for 4, (ii) C is false in IY, and (iii) C contains no selected
atom. Otherwise, e¢ = 0. The (prototypical) model functor for ordered resolution I
assigns to N the Herbrand interpretation IV = Ucen éc-

The following lemma shows that ordered resolution enjoys the reduction property.
The proof essentially follows the proof of Lemma 3.1.18. In addition, selected literals
has to be considered. However, any side premise that is involved in the reduction of a
counterexample is a productive clause and, therefore, does not contain any selected literals.
In other words, negative literals can be viewed as side conditions which have to be proved.
Selection is a mechanism to control this process. Only clauses without any selected literals
are considered to be proved and may be involved in the reduction of counterexamples.

Lemma 3.1.37

Let I be the prototypical model functor for ordered resolution. Let N be a set of ground
clauses which does not contain the empty clause and let C be the minimal counterexample
in N for I"V. Then there exists an inference in Rp from C such that

1. the conclusion is a smaller counterexample for IV than C; and

2. in case of an Ordered Resolution inference, C is the main premise and the side
premise is a productive clause.
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Proof All cases except for selection have been shown in the proof of Lemma 3.1.18.
Suppose that C' contains a selected negative literal A4, i.e. C = A, A — II. We proceed
similarly to the case where A is maximal. Let C' be a reductive clause of the formT" —+ A, A
that produces A. Note that I' does not contain any selected literal by condition (iii) of
the model functor and C’ is true in I"V. Thus there is an Ordered Resolution inference
between C' and C' where D is the conclusion I', A — A, II. It follows that D is a smaller
counterexample than C with respect to >.. |

Example 3.1.38

The table contains the same inconsistent set of clauses as in the Example 3.1.31. We
assume that ordered resolution and the prototypical model functor I is used whereas re-
dundancy is not considered. In addition, we assume the atom ordering B =, A and an
empty selection function. The example describes the construction of the partial interpre-
tations [, év . The table lists the clauses in ascending order.

‘ i ‘ Clause C ‘ 1 ‘ Ec ‘ Remarks
— A B 0 {B} | false in I¥, true in I, productive,
B is maximal
2 A—B {B} 0 true in I, true in IV, B is maximal
3 B— A {B} 0 false in I}, false in IV, B is maxi-
mal
4 | AAB— {B} 0 true in IJ = I, true in IV, B is
maximal

There are two Ordered Resolution inferences from (1) and (3) as well as (2) and (4) yielding
(after Ordered Factoring) the unit clauses — A and A, A —, respectively. Note that the
inference from (2) and (4) is actually dispensable. Constructing the partial interpretations
for the new clause set proceeds as follows:

‘ i ‘ Clause C ‘ Ig ‘ ec ‘ Remarks ‘

1 —A 0 {A} | false in IY, true in IV, productive,
A is maximal

2 — A, B {4} 0 true in I, true in IV, B is maximal

3| A4 A— {A} 0 false in 17, false in I

4 A—B {4} {B} | false in I], true in IV, productive,
B is maximal

5 B A {A, B} 0 true in IY, true in IV, B is maximal

6 | A, B— {4, B} 0 now false in I} = I", false in I",
B is maximal

There is only one Ordered Resolution inference from (1) and (3), respectively, which leads
to the contradiction.
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Using the prototypical model functor for ordered resolution combined with an admis-
sible clause ordering, Lemma 3.1.37 does not carry over to show the strong reduction
property of ordered resolution. That is, for any side premise C’ which is involved in a
reduction inference by Ordered Resolution C’ is some counterexample in N for IVc’. In
other words, IN¢' is, in general, not a model of Nc».

Example 3.1.39

The example demonstrates the problem which is actually due to the combination of an
admissible clause ordering and selection. We assume the atom ordering B =, A’ =, A.
Moreover, suppose that the atom A is selected in the clause A — B. The table describes
the construction of IV for an inconsistent set N of clauses which the table lists in ascending
order.

| § | Clause C | 1y | ec | Remarks
— A 0 {A} false in I%, true in I, productive,
A is maximal
2 — A {4} {A"} | false in I, true in I, productive,
A’ is maximal
3 A— B {4, A} 0 false in Iév, true in IV, A is selected,

B is maximal

4 | AA—B {4, A} {B} | false in I%, true in IV, productive,
B is maximal

5 B— {B, A, A} 0 false in IY = IV, false in IV

The clauses (1) and (2) produce the atoms A and A’, respectively. As a consequence, the
clause (3) is false in I but does not produce B into IV since A4 is selected. The atom B
is then produced by the clause (4). However, (5) is the minimal counterexample in N for
IN but V¢’ is not a model for N¢ if C” is the clause (4).

To overcome this problem we consider below a different construction of the model
functor. Another solution is to use the prototypical model functor in combination with
either a restriction of the selection function, or else a modification of the definition of
admissible clause orderings. For the latter choice the selection status of negative literals
has to be part of the ordering. Suppose that the clause (4) is smaller than the clause
(3). Constructing the partial interpretations for the modified clause ordering proceeds as
follows:
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‘ i ‘ Clause C ‘ 1, év ‘ ec ‘ Remarks ‘
1 —A 0 {4} | false in IY, true in IV, productive,
A is maximal
2 — A’ {4} {A"} | false in I, true in I, productive,

A’ is maximal
4 | A,A—B {4, A} {B} | false in IZ, true in IV, productive,
B is maximal

3 A— B {B, A, A} 0 true in I, true in IV, A is selected,
B is maximal
5 B— {B, A, A} 0 false in IJ = I, false in IV

Note that I™¢’ is a model for N for any clause which is smaller than (5).

Definition 3.1.40 ((Prototypical) Admissible Clause Ordering)

Let >; be an admissible literal ordering and let S be a selection function. Let M be the mul-
tiset of the literal occurrences in a clause C. If C is reductive for A and S(C) is non-empty,
then M' = M U{A}, or else M' = M. The multiset M' is called the S-representation
of C. A clause ordering . is the multiset extension of ; on S-representations. We call
¢ admissible if =; is admissible.

This version of an admissible clause ordering is still compatible with the underlying
atom ordering. If the maximal atom in a ground clause C is greater than the maximal
atom in a ground clause D then C' >, D. Using the prototypical model functor for
ordered resolution and the prototypical admissible clause ordering we may strengthen
Lemma 3.1.37 to show that ordered resolution actually has the strong reduction property.

Lemma 3.1.41

Let I be the prototypical model functor for ordered resolution and let >, be a prototypical
admissible clause ordering. Let N be a set of ground clauses which does not contain the
empty clause and let C be the minimal counterexample in N for IV. Then IN¢’ E N¢
for all clauses C' in N U {C}.

Proof Let C' be a clause in Ng U {C}. In order to show that I’V¢’ is a model of N¢
suppose otherwise that there is a clause D of the form ' — A in N such that IVe' i D,
ie. T C INe' and ANINe' =0, and, in particular, I' C I¥? and AN INVP = (. Since C is
the minimal counterexample in N for IV and C >, D we have that D is true in IV. Thus
there is a clause D' in N where D' >, D that produces an atom A in A into IV. It follows
that D is also reductive for A for otherwise D =, D’. Since D is not productive there are
selected literal occurrences in D. However, in this case D would again be greater than D’
with respect to >, which shows the contradiction. |

Example 3.1.42
For an example of soft typing for ordered resolution, we use again the same inconsistent
set of clauses as in the Example 3.1.31 and 3.1.38. We assume the atom ordering B >, A



50 § 3. SOFT TYPING

and an empty selection function. The following table describes the construction of the
partial interpretations I, év . Clauses are listed in ascending order.

‘ i ‘ Clause C ‘ 1 ‘ Ec ‘ Remarks ‘
— A,B 0 {B} | false in I¥, true in I, productive,

B is maximal

2 A—B {B} 0 true in I, true in IV, B is maximal

3 B— A {B} 0 false in I2, false in IV, B is maxi-
mal

4 | AAB— {B} 0 true in IJ = I, true in IV, B is
maximal

According to our definition, the only non-blocked inference is by Ordered Resolution from
(1) and (3), yielding (after Ordered Factoring) the unit clause — A. In this way, soft
typing singles out the dispensable inference from (2) and (4). Constructing the partial
interpretations for the new clause set proceeds as follows:

‘ 1 ‘ Clause C ‘ Ig ‘ ec ‘ Remarks ‘

1 —A 0 {A} | false in IJ, true in IV, productive,
A is maximal

2 —A,B {A} 0 true in I, true in IV, B is maximal

3 A—B {4} {B} | false in I¥, true in I, productive,
B is maximal

4 B— A {A, B} 0 true in I, true in IV, B is maximal

5 | A, B— {4, B} 0 now false in IY = IV, false in IV,
B is maximal

Again, only one inference is non-blocked, the Ordered Resolution inference from (3) and
(5), respectively. From this we derive A —, and then, by a Resolution step with (1),
the contradiction. We observe that by choosing counterexamples, computing non-blocked
inferences can be made a completely deterministic refutation process for this example,
whereas ordering restrictions alone or semantic resolution is not deterministic.

In order to demonstrate that ordered resolution with selection has the strong reduction
property, there is, beside the modification of the clause ordering, another more general
solution which also carries over to solve similar problems which arise in the context of
superposition. We may incorporate the minimality requirement for counterexamples of
partial interpretations into the construction of the model functor I. That is, a clause
C may only be productive, if C' does not change the truth value of the clauses which
are smaller than C. This gives an immediate proof for the strong reduction property.
However, in general, there are less productive clauses in a set N of ground clauses and
thus more counterexamples with respect to I”V. In other words, we may turn a productive
clause C into a (minimal) counterexample, in order to enable the system to accomplish
some reduction steps on C, e.g., triggered by selection, before C' can be used as a side
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premise for the reduction of other counterexamples. We propose a modification of the
model functor for ordered resolution in this regard.

Definition 3.1.43 (Model Functor for Ordered Resolution)
Let . be an admissible clause ordering of Definition 3.1.15 and let S be a selection

function. Let N be a set of ground clauses and let C be a clause in N. Suppose that ep
and T Jg have been defined for all clauses D for which C' =, D. Then

Ié«v: U ED
C>¢D
where
ec = {A}

if (i) C = C'V A is reductive for A, (ii) C is false in IY, (iii) C contains no selected atom,
and (iv) IY U{A} ¥ D for all clauses D € N with IY & D and C =, D. Otherwise, ec = 0.
The model functor for ordered resolution I assigns to N the Herbrand interpretation

The following lemma repeats that ordered resolution enjoys the reduction property for
a combination of the modified model functor and the original admissible clause ordering.
Intuitively, the productive clauses of the model functor have the same properties as the
productive clauses of the former prototypical construction.

Lemma 3.1.44

Let I be the model functor for ordered resolution of Definition 3.1.43. Let IV be a set
of ground clauses which does not contain the empty clause and let C be the minimal
counterexample in N for IV. Then there exists an inference in Rp from C such that

1. the conclusion is a smaller counterexample for IV than C; and

2. in case of an Ordered Resolution inference, C' is the main premise and the side
premise is a productive clause.

Proof The proof follows exactly the proof of Lemma 3.1.37. |

More interestingly, using the model functor for ordered resolution we may strengthen
Lemma 3.1.44 to show that ordered resolution actually has the strong reduction property
even with the original admissible clause ordering.

Lemma 3.1.45
Let I be the model functor for ordered resolution of Definition 3.1.43 and let . be an
admissible clause ordering. Let N be a set of ground clauses which does not contain the

empty clause and let C' be the minimal counterexample in N for IV. Then IN¢’ £ Ng
for all clauses C' in N U {C}.
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Proof Let C' be a clause in N¢ U {C}. In order to show that I’Vc' is a model of N¢r
suppose otherwise that there is a clause D of the form I' — A in N such that INe’ E D,
i.e. T C INe' and AN INe' = ), and, in particular, I' C I™? and AN I¥? = (). Since C
is the minimal counterexample in N for IV and C >, D we have that D is true in I%.
However, this already shows the contradiction, since, by condition (iv) of the definition
of the model functor, a clause D which is false in [ g cannot become true by a greater
productive clause. That is, a clause D' in N where D’ >, D cannot produce an atom A
in A into IV, for otherwise D would become true in I3, U {A4}. [ ]

Example 3.1.46

The example demonstrates the behavior of soft typing for ordered resolution. The problem
corresponds to the problem of the Example 3.1.39. We assume the atom ordering B >,
A’ =4 A. Moreover, suppose that the atom A is selected in the clause A — B. The table
describes the construction of IV for an inconsistent set N of clauses which the table lists
in ascending order.

‘ i ‘ Clause C ‘ 1, év ‘ Ec ‘ Remarks ‘
—A 0 {A} | false in I}, true in IV, productive,
A is maximal
2 — A {A} {A"} | false in IY, true in I"V, productive,
A’ is maximal
3 A—B {4, A} 0 false in I3, false in IV, A is selected,

B is maximal

4 | A, A—B {4, A} 0 false in IY, false in I™, non-
productive, B is maximal

5 B— {A"; A} 0 false in I = IV, true in IV

The clauses (1) and (2) produce the atoms A and A’, respectively. As a consequence, the
clause (3) is false in Ig but does not produce B into I since A is selected. However,
neither clause (4) produces the atom B, for otherwise (3) would become true. Thus clause
(3) is the minimal counterexample in N for IV. The non-blocked inference by Ordered
Resolution from (1) and (3) derives the clause — B that triggers the derivation of the
empty clause in the next step.

3.1.3 Superposition

Soft typing is a general framework for the incorporation of semantic control in clausal
inference systems. In the previous sections, we have seen that soft typing for semantic
and ordered resolution are refutationally complete. The motivation of this section is
to demonstrate that soft typing is also compatible with theorem proving technology for
first-order logic with equality. The superposition calculus (with selection) Bachmair &
Ganzinger (1994), is a well-known example in this category. Soft typing for superposition
is in fact refutationally complete. The proofs are similar to the proofs for ordered resolution
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but technically more involved. We need generalized versions of admissible orderings. In
particular, since equality induces a congruence on the Herbrand universe, our conventional
admissible atom ordering has to be refined to an admissible ordering on terms.

Definition 3.1.47 (Admissible Term Ordering)
An ordering > on terms is called a term ordering. > is called admissible if > is a reduction
ordering and the restriction of > to ground terms is a total ordering.

Note that an admissible term ordering induces an admissible ordering on atoms. How-
ever, this atom ordering is more restrictive, since the underlying term ordering has to be
a reduction ordering, at least when equality is present.

Definition 3.1.48 (Admissible Literal Ordering)

Let > be an admissible term ordering. An ordering >; on literals is called a literal order-
ing. > is called admissible if (i) >; is well-founded, (ii) the restriction of >; to ground
literals is a total ordering, (iii) if L and L' are ground literals, then L >; L', whenever
(iii.1) max(L) > max(L'), or (iii.2) max(L) = max(L') and the literal L is negative,
whereas L' is positive. By max(L), we denote the maximal term in L with respect to >.
A ground literal L is called [strictly] maximal with respect to a multiset of literals I, if
for any L' in T we have L =; L' [L =; L"].

Note that for any positive literal s = t, s % t is greater than s = t, whereas s ~ t
is smaller than s % u with s > ¢ > u. The multiset extension of an admissible literal
ordering induces an ordering on ground clauses. We use the admissible clause ordering for
ordered resolution of Definition 3.1.15. We say that a clause I' — A, s = t is reductive for
s~ t,if t Y sand s ~tis strictly maximal with respect to I' — A.

Admissible clause orderings are well-founded and total on ground clauses. Moreover,
an admissible clause ordering is compatible with the underlying term ordering. If the
maximal term in a ground clause C is greater than the maximal term in a ground clause
D then C >, D. This implies that the clause ordering is also compatible with the induced
atom ordering. If the maximal atom in a ground clause C is greater than the maximal
atom in a ground clause D then C' >, D. We shall consider only admissible orderings
from now on. Based on the admissible orderings superposition enjoys the strong reduction
property, see below.

The superposition calculus S is a saturation-based theorem proving method for full
first-order clauses with equality. Superposition is a refinement of paramodulation by ad-
ditional ordering restrictions which have been motivated by the Knuth-Bendix completion
procedure. The completion procedure is a well-known concept for the computation of
convergent rewrite systems. Recall that convergent rewrite systems define unique normal
forms and can, therefore, be used as convenient representations of equality interpretations
(candidate models). Superposition generalizes the idea of Knuth-Bendix completion for
term rewriting systems to first-order clauses with equality. The calculus consists of the
following inference rules.
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Definition 3.1.49 (Superposition Left)
The following inference is called Superposition Left:

> As=xt uls| mv,A - 11
ultle = vo,To,Aoc — Ao, o

Infer

where (i) o is the most general unifier of s and s’, (ii) the clause I'c — Ag,so = to
is reductive for so ~ to and no literal is selected in I'o, (iii) vo % uwo and uo = vo is
selected, or else no literal is selected in uo = vo, Ao and uo = vo is maximal with respect
to Ao — Ilo, and (iv) s’ is not a variable.

Definition 3.1.50 (Superposition Right)
The following inference is called Superposition Right:

Fr>As~t A—->TLuls|=v
To, Ao — Ao, o, ultlo = vo

Infer

where (i) o is the most general unifier of s and s, (ii) the clause T'c — Ag,so = to is
reductive for so ~ to and no literal is selected in T'o, (iii) the clause Ao — Ilo,uo =~ vo
is reductive for uo ~ vo and no literal is selected in Ao, (iv) s’ is not a variable, and
(v) so = to # uo = vo.

Definition 3.1.51 (Equality Resolution)
The following inference is called Equality Resolution:

u~v,A—1TI
Ao — IIo

Infer

where (i) o is the most general unifier of u and v, (ii) uo = vo is selected, or else no literal
is selected in uo = vo, Ao and uo = vo is maximal with respect to Ao — Ilo.

Definition 3.1.52 (Equality Factoring)
The following inference is called Equality Factoring:

A—-TlLuxv,s=t
vo & to, Ao — Ilo, so =~ to

Infer

where (i) o is the most general unifier of s and u, (ii) so = to is maximal with respect to
Ao — Ilo, and (iii) no literal is selected in Ag.

The following construction of the model functor is a generalization of the model functor
for ordered resolution. The partial interpretation I g is inductively constructed as the
congruence closure of the partial rewrite system Rc. Note that any R¢ is a left-reduced
ground rewrite system, i.e. for every rewrite rule s = ¢ in R the term s is irreducible by
Rc \ {s = t}. It follows from the well-known critical pair lemma for term rewrite systems
that any left-reduced, well-founded ground rewrite system is convergent. Thus the truth
value of an equation s =~ t can be determined by rewriting, i.e. s =~ ¢t € I if and only if

s{gt.
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Definition 3.1.53 (Model Functor for Superposition)
Let >, be an admissible clause ordering and let S be a selection function. Let N be a set

of ground clauses and let C be a clause in N. Suppose that Rp, ¢p, and Jg have been
defined for all clauses D for which C' . D. Then

Rc = U ep and IY = R},
C>cD

where
ec ={s=t}

if C is a clause C' V s = t such that (i) C is reductive for s ~ ¢, (ii) C contains no
selected equation, (iii) C is a counterexample for IY, (iv) s is irreducible by R, and
(v) I¥U{s =~ t} ¥ D for all clauses D € NcU{C"'} with I} ¥ D. Otherwise, e¢c = 0. We say
that a clause C produces the equation s = t if ec = {s =~ t} and call C a productive clause.
The model functor for superposition I assigns to N the equality Herbrand interpretation

IN = UC’ENEC‘

This version of the model functor employs, by condition (v), a generalization of con-
dition (v’), C" is a counterexample for IY U {s = t}, which has already been used in the
construction of the model functor in (Bachmair & Ganzinger 1998a). Actually, the simpler
form is required to obtain the reduction property when a reductive clause C of the form
A = II,u =~ v',u =~ v, where u &~ v denotes the strictly maximal literal, is involved as a side
premise in some reduction inference. Suppose that Iév F v ~ v’ holds. In this case, if C
would be productive, then the conclusion of the inference would not be a counterexample
for IV,

In contrast to this local situation, a more complicated global scenario may arise when
several clauses of the form of C, which contain the same maximal term u, occur in N. In
this case when using condition (v’), such clauses may render smaller clauses of this form,
which are false in the candidate model, true subsequently. This implies that, in contrast to
ordered resolution with selection, it is not possible to obtain the strong reduction property
for superposition by an adaption of the clause ordering. However, in our construction of
the model functor, condition (v’) is strictly included and, moreover, similar to the model
functor for ordered resolution, productive clauses are restricted such that smaller clauses
cannot become true subsequently. Thus we obtain the strong reduction property for
superposition even with selection as an immediate consequence, see below.

Similar to Lemma 3.1.17, using admissible clause orderings, we can show that the
construction of the candidate model for superposition is monotone in the sense that a
clause D does not affect the truth value of equations which occur negatively in clauses
in Np.

Lemma 3.1.54 (Bachmair & Ganzinger (1994))

Let >, be an admissible clause ordering. Let I be the model functor for superposition and
let N be a set of ground clauses. Let C be a clause I';s & t - A in N and let D be a
clause in N with D >, C. If s = t is false in IJCV then it is also false in Ig and IV.
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Proof Suppose that s ~ t is false in IY. If s’ and ¢’ are the normal forms of s and t,
respectively, with respect to R¢, then s’ # t'. Furthermore, if u & v is a rule in R\ R¢,
then u = s = s’ and v = t = t'. Therefore, s’ and ' are in normal form with respect to R,
which implies that s = ¢ is false in I and IV. [

The following proof to show that superposition has the reduction property is similar
to the proof for ordered resolution. However, the presence of equality involves a more
complicated case analysis.

Lemma 3.1.55

Let I be the model functor for superposition. Let N be a set of ground clauses which
does not contain the empty clause and let C be the minimal counterexample in N for IV.
Then there exists an inference in S from C such that

1. the conclusion is a smaller counterexample for IV than C; and

2. in case of a Superposition Left or Superposition Right inference, C' is the main
premise and the side premise is a productive clause.

Proof Suppose that C contains a selected or maximal negative literal u ~ v, i.e. C =u =~
v,A = II. Since IN ¥ C we have that A C IV, u~v eIV, andININ =0. Ifu = v
then Equality Resolution derives the conclusion A — IT which is smaller than C and also
a counterexample for I%V.

Suppose that w > v. Since v ~ v is true in IV there is a reductive clause C' of
the form ' — A, s = ¢ that produces s ~ t where s is a subterm of u[s]. Note that T’
does not contain any selected literal and C’ is true in IV. Thus there is a Superposition
Left inference between C' and C' where D is the conclusion uft] = v,['A — AJII. It
follows that D is smaller than C' with respect to >.. Since C' is false in Ig, we have that
I'C IC]Y, CIN and AN Ic]\f, = 0. By Lemma 3.1.54 all w ~ w' € A are also false in IV
which implies that AN IY = () and therefore that D is a counterexample for IV.

Suppose that C contains no selected literals and v = v is a maximal positive equation
in C where u > v, i.e. C = A = II,u = v. Note that u is the maximal term in C. Since
IN # C we have that A C IV, TININ =0, and u =~ v ¢ IV. If I is of the form I, u ~ v
then by Equality Factoring we obtain the clause D of the form v ~ v,A — II',u ~ v.
Clearly, D is a smaller counterexample than C for I%.

Suppose that II does not contain any equation u = v. Note that in this case C is
reductive for u ~ v. If u is reducible by R, then there is a reductive clause C' of the
form I' — A, s = t that produces s ~ ¢t where s is a subterm of u[s]. Note that I' does not
contain any selected literal, C' is true in IV, and (u ~ v) >; (s ~ t) since C' is smaller
than C. Thus there is a Superposition Right inference between C and C' where D is the
conclusion I'y A — AT, u[t] = v. It follows that D is smaller than C with respect to ..
Since C' is false in Icl\f, we have that I' C Ig, CIN and AN Icl\f, = (. By Lemma 3.1.54 all
w =~ w' € A are also false in IV which implies that A N I™ = () and therefore that D is a
counterexample for I%.
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Suppose that u is irreducible by R¢. In this case C fulfills all conditions of a pro-
ductive clause except that A — II might not be a counterexample for IY U {u =~ v}.
Consequently, this must be the reason for C' not being productive. Note that a clause
D in N which is smaller than C must be true in Iév , for otherwise C' would not be the
minimal counterexample for IV, c.f. Lemma 3.1.56. Suppose that there is an equation
s~ t in II which is true in IY U{u & v} where s > t. Thus s is reducible by u ~ v which
implies that s = u for otherwise u would not be the maximal term in C. Moreover, v ~ t
must be true in Ig and therefore also in I”V. Note that s ~ t is maximal with respect to
A — II' where I = IT', s = t. By Equality Factoring we obtain the clause D of the form
vat,A—II',s ~ t. It follows that D is a smaller counterexample than C for I*V. |

Using the model functor for superposition we may strengthen Lemma 3.1.55 to show
that superposition has the strong reduction property with respect to an admissible clause
ordering based on an admissible term ordering.

Lemma 3.1.56

Let I be the model functor for superposition and let >, be the according admissible clause
ordering. Let N be a set of ground clauses which does not contain the empty clause and
let C be the minimal counterexample in N for IV. Then IV¢’ E N for all clauses C’
in Ng U {C }

Proof Let C' be a clause in N¢ U {C}. In order to show that IV¢’ is a model of N¢
suppose otherwise that there is a clause D of the form I' — A in N such that IV’ E D,
i.e. T C INe' and AN INe' = ), and, in particular, T C I™? and AN IVP = (). Since C
is the minimal counterexample in N for IV and C >, D we have that D is true in I%.
However, this already shows the contradiction, since, by condition (v) of the definition
of the model functor, a clause D which is false in [ Jg cannot become true by greater
productive clauses. That is, a clause D' in N where D' =, D cannot produce an equation
s ~ t into IV such that some equation u ~ v in A becomes true in I3, U {s ~ t}, for
otherwise D would become true in I, U {s = t}. [ |

Superposition as a theorem proving method for first-order logic with equality has been
further optimized in various directions by, however, mostly syntactic concepts. In general,
a refinement is compatible with soft typing (and redundancy) if it enjoys the (strong)
reduction property. However, in some cases the notion of counterexamples and/or redun-
dancy have to be adapted in order to achieve refutational completeness for the refinement.
In particular, a weakening of the notion of counterexamples may lead to impractical ver-
sions of soft typing since an effective approximation may be difficult.

An example is the strict superposition calculus (Bachmair & Ganzinger 1997, Bachmair
& Ganzinger 1998b) which is simply the superposition calculus without Equality Factoring.
The refinement is not compatible with arbitrary tautology elimination and, therefore, does
not have the reduction property. Based on so-called weak counterexamples, which are
defined by a notion of direct provability rather than semantic validity, an according weak
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reduction property can be established. Direct provability of an equation u ~ v is obtained
by a (direct) rewrite proof of u ~ v with respect to a rewrite system R that uses only
equation s =~ t from R which are smaller than or equal to u = v. Similar to standard
superposition, the rewrite system R represents the candidate model IV,

A clauseI' — A is a weak counterexample for R if and only if (i) for each negative literal
u = v in I' we have u ||g v and (ii) no positive equation in A has a direct rewrite proof
in R. Note that R is constructed as a left-reduced, well-founded ground rewrite system
which implies, by the critical pair lemma, that u g v is equivalent to u =~ t € I for I
being the congruence closure of R. Hence, weak blocking of ' — A may become effective
by approximating (i) the truth value of I' using the same approximation techniques as
for standard blocking, in particular, the approximations discussed in this work. By weak
blocking we mean a straightforward adaption of blocking to weak counterexamples. The
situation for weak blocking based on (ii), the direct provability of A, is more involved since
the term ordering has to be considered as an additional parameter by any approximation.

Ordered chaining calculi, which have been developed by Bachmair & Ganzinger (1995)
as a generalization of superposition for possibly non-symmetric transitive relations Ry, are
also compatible with soft typing. The candidate models are constructed as models in which
Ry is a transitive relation. For an effective approximation of blocking, decidable fragments
of first-order logic with transitive relations (Ganzinger, Hustadt, Meyer & Schmidt 1999)
could be used. Ordered chaining may also be optimized to a strict version in a similar
way as superposition (Bachmair & Ganzinger 1997). An inference rule called transitivity
resolution, that generalizes Equality Factoring to the symmetric case, can be avoided.
As a consequence, using a similar construction of weak counterexamples, the effective
approximation of weak blocking is possible by approximating (i) from above using the
same techniques as for the non-strict case.

Strict superposition is compatible with a notion of weak redundancy which is a partic-
ular form of redundancy based on weak counterexamples. However, not all superposition
inferences at or below variable positions, i.e. positions of variable occurrences, are weakly
redundant. This problem is actually an instance of the general lifting problem which arises
in the context of non-ground clauses, see Section 3.5. However, certain techniques of an-
other refinement of superposition, the so-called basic superposition (Bachmair, Ganzinger,
Lynch & Snyder 1992, Nieuwenhuis & Rubio 1992), motivated Bachmair & Ganzinger
(1997) to generalize strict superposition to strict basic superposition such that superposi-
tion inferences at or below variable positions can be avoided.

The idea of basic superposition is to block superposition inferences at so-called substi-
tution positions. A substitution position is a generalization of a variable position where
the variable positions of a clause C are “remembered” in all successors of C, e.g., by some
marking mechanism. That is, a substitution position in a clause C refers to a position at
or below a variable position in a predecessor of C. For the basic variant of paramodula-
tion, a further optimization is possible by the so-called variable abstraction (Bachmair,
Ganzinger, Lynch & Snyder 1995). A substitution position may also include the redex
position of a previous basic paramodulation inference. Superposition is a generalization of
paramodulation with additional ordering restrictions. Note that we use specialized basic
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superposition/paramodulation calculi in Sections 6.3, 6.7, and 7.1 as decision procedures
for non-trivial equational theories. In particular, variable abstraction provides for an ele-
gant result for the decidability of unification with respect to certain equational theories.

Syntactic concepts like basic restrictions or even more involved constraints like the
equality and ordering constraints in (Nieuwenhuis & Rubio 1995) usually yield refinements
which are compatible with soft typing. The general motivation of these methods is to find a
better approximation of the ground level by restricting the set of possible ground instances
of non-ground clauses and the inferences on the non-ground level. Thus compatibility with
soft typing is achieved whenever the lifting problem for the refinements can be solved, see
Section 3.5.

3.2 Minimal Model Semantics

The blocking concept of soft typing induces the need for (i) suitable representations of
candidate models and (ii) decision procedures for the validity and/or satisfiability problem
in these representations in order to make effective use of this method. Recall that an
inference is blocked depending on the truth value of its premises with respect to the
candidate model defined by some model functor. If we take a set N of (Horn) clauses
as the representation of (the approximation of) a candidate model the minimal model
semantics of N is a suitable concept for (i) to relate the whole class of (Herbrand) models
of N to the candidate model. Our discussion on minimal model semantics is based on the
introduction to the semantics of logic programs by Apt (1990). Note that (ii) is addressed
in Chapter 4 through 7.

The following discussion is based on first-order logic with equality. Note that a non-
equality atom A may be encoded as an equation A ~ T where T is a special constant
symbol. We assume, in the sequel, that an admissible atom ordering is induced by an
admissible term ordering. If equality is not involved we may relax the atom ordering to a
general admissible atom ordering, i.e. it does not have to be compatible with a reduction
ordering on terms.

The least model I of a clause set N is defined as the unique Herbrand model of NV
which is subset included in any other Herbrand model of N. However, I does not always
exist for arbitrary N. The minimal model I of N is defined as a Herbrand model of NV
such that any Herbrand model which is properly subset included in I is not a model of V.

Definition 3.2.1 (Least and Minimal Model)

Let I be an (equality) Herbrand model of a set N of clauses. We call I the least model of
N if I C J for all (equality) Herbrand models J of N. We call I a minimal model of N if
J # N for all (equality) Herbrand models J with J C I.

Note that the least model is minimal but not vice versa, e.g., take N = {AV B} where
A and B are ground atoms. Then {A} and {B} are minimal but not least models of N.
In general, there are several minimal model for an arbitrary set IV of clauses. However,
for certain classes of satisfiable clause sets there is always a unique least Herbrand model,
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see below.

Suppose that N has the least Herbrand model I. Let J be a superset of I such
that J is still a Herbrand model of N. Suppose that C is a clause in N of the form
P(t1,... ,ty),I' = A. If the extension of P is empty in J, then it is also empty in I.
Thus C is not only true in J but also in I. If the emptiness of P in J is decidable, then
we already have a decidable approximation of the problem N F C, but not of N ¥ C.
Moreover, if I is a superset of some candidate model I™ of some set M of clauses, then
the problem IM E C is also decidable. In this case N is a suitable representation for the
approximation of blocking. The dual problem I™ ¥ C could be approximated by some
subset J of I where I must be a subset of ™. For a general concept see Section 3.3.

The following definition introduces a particular form of clauses called Horn clauses
which contain at most one positive occurrence of a literal. It is well-known that any
satisfiable set H of Horn clauses has a unique minimal Herbrand model which corresponds
to the least Herbrand model of H.

Definition 3.2.2 (Horn Clause)
A clause with at most one positive literal is called a Horn clause.

For an arbitrary set N of clauses, using a different ordering concept for interpretations,
it is also possible to identify a unique perfect model of N (Bachmair & Ganzinger 1991)
which is the minimal model with respect to an ordering ¢ on interpretations. The ordering
>~% is the multiset extension of the inverse < of the term ordering >. The existence of
minimal models (with respect to >*) for consistent, infinite sets of clauses is not trivial, as
> is not well-founded in general. Moreover, perfect models are minimal (the least models)
with respect to subset inclusion in the sense of Definition 3.2.1. Thus representations with
perfect model semantics can also be used for an approximation of blocking. However, the
problem (ii), i.e. the identification of decision procedures, is difficult for non-Horn clause
sets. Another problem is to verify that the perfect model of the representation is always
the appropriate approximation of the candidate model.

Throughout this work, we only employ Horn clause sets for the effective approximation

of blocking. We use a generalization of the well-known immediate consequence operator
for Horn clauses without equality to Horn clauses with equality.

Definition 3.2.3 (Immediate Consequence Operator)
Let H be a set of ground Horn clauses. The immediate consequence operator Ty maps
interpretations I to interpretations Ty (I) by

Tu(I) = (Ty(1))*
where
Ty(I)={u~v|3IT »u~ve Hwith C I}.

The lemma relates the Herbrand models of a set H of Horn clauses with the opera-
tor Ty. As a consequence, any such Herbrand model turns out to be a so-called pre-fizpoint
of Ty, see below. Thus we may concentrate on pre-fixpoints of the consequence operator
in order to investigate the Herbrand models of H.
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Lemma 3.2.4
Let H be a set of (non-negative) ground Horn clauses and let I be an (equality) Herbrand
interpretation. Then I F H if and only if Ty (I) C I.

Proof Suppose that I F H holds and that u &~ v € Ty (I). Thus u & v is in the congruence
closure of Ty (I). Suppose that the equational proof of u ~ v consists of the equations
$1 X t1,... ,8n Rty in Ty (I). Hence, there are clauses 't — s1 & t1,...,Tp = sp &ty
in H such that I'y,... ,T', € I. Since I is a model of H it follows that the equations
81 = t1,...,8, = t, are true in I and therefore u ~ v is also true in I if I is an equality
interpretation.

Suppose that Ty (I) C I holds and let C be a ground Horn clause I' — v =~ v in H
with I' C I. By definition we have that v ~ v € T} (I) and thus u = v € Ty(I). We
conclude that u = v is true in I. |

The definition introduces not only pre-fixpoints but also fizpoints of mappings from
interpretations to interpretations. The idea is to show that Ty has, among all pre-fixpoints,
also fixpoints and, moreover, by the Fixpoint Theorem (Tarski 1955) below, that there is
a least fizpoint for Ty. The least fixpoint of Ty, as it is the least Herbrand model of H,
is a suitable characterization of all Herbrand models of H.

Definition 3.2.5 ((Pre-)Fixpoint)

Let I be an (equality) Herbrand interpretation and let T" be a mapping from interpretations
to interpretations. If T'(I) C I holds, I is called a pre-fizpoint of T. If T(I) = I holds, I
is called a fizpoint of T'.

According to the Fixpoint Theorem, any monotone operator has a least fixpoint. If
the operator is also continuous then it reaches the least fixpoint after n iterations with
n < w.

Definition 3.2.6 (Monotonicity, Continuity)

Let T be a mapping from interpretations to interpretations. 7T is called monotone if, for
all (equality) Herbrand interpretations I and J, I C J implies T'(I) C T(J). We call
T continuous if, for every infinite sequence Iy C I; C I C ... of (equality) Herbrand
interpretations

holds.

Note that a continuous mapping is monotone but not vice versa. The following lemma
shows that the immediate consequence operator generalized to Horn clauses with equality
is indeed continuous.

Lemma 3.2.7
Let H be a satisfiable set of Horn clauses. Then Ty is continuous.
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Proof Let Iy C I; C I, C ... be an infinite sequence of (equality) Herbrand inter-
pretations. Let I be the interpretation |J;,I,. Suppose that u =~ v € Ty(I) holds.
Thus u =~ v is in the congruence closure of Ty (I). Suppose that the equational proof of
u &~ v consists of the equations s; = t1,... ,8m, = tm in Ty (I). Hence, there are clauses
I'n - s1 = t1,... ,I'y = $m =ty in H such that I'y,... ,I';;, C I. Since the sequence
of interpretations is ascending with respect to subset inclusion, there is an interpretation
I, such that I'y,... ,I';, C I. It follows that the equations s; =~ t1,...,s8, = t, are
true in T4 (I}) which implies that u = v is true in Ty(I}) and thus u = v is also true in
Ufzo:O Ty (I n)

In order to show the other direction we prove first that Ty is monotone. Suppose that
I and J are (equality) Herbrand interpretations with I C J and that u = v is true in
Ty (I). Thus u = v is in the congruence closure of T4 (I). Suppose that the equational
proof of u ~ v consists of the equations s; = t1,...,8m & tm, in Ty (I). Hence, there
are clauses I'y — s1 = t1,... , 'y = $m = t,, in H such that I'y,... ,I';; € I and thus
Iy,...,T C J. It follows that u & v is true in Ty (J) which shows that Ty is monotone.

Suppose that u ~ v is true in |J;2 o T (I,). By monotonicity of Ty and since the
sequence of interpretations is ascending with respect to subset inclusion, there is an in-
terpretation Ij such that u =~ v is true in Ty (I). We conclude that v ~ v is true in
TH (U?zo:O In). u

The consequence closure of the immediate consequence operator Ty constructively
defines the minimal model of a satisfiable set H of Horn clauses.

Definition 3.2.8 (Consequence Closure)

Let I be an (equality) Herbrand interpretation and let T be a mapping from interpretations
to interpretations. We define 7" by T°(I): = I and T"Y(I): = T(T™(I)). By T% we
denote the interpretation |J,, ., 7(0).

Theorem 3.2.9 (Fixpoint Theorem (Tarski 1955))

Let T be a mapping from interpretations to interpretations. If T is monotone then T' has
a least fixpoint which is also its least pre-fixpoint. If T' is continuous then 7% is its least
pre-fixpoint and its least fixpoint.

As a corollary, we obtain that T computes the minimal model of any satisfiable set
H of Horn clauses (with equality).

Corollary 3.2.10
Let H be a satisfiable set of ground Horn clauses. Then T}; is the least and thus also the
minimal model of H.

In the sequel, we denote, by T, the minimal model of a satisfiable set H of Horn
clauses.

Definition 3.2.11 (Minimal Model)
Let H be a set of (non-ground) Horn clauses. T denotes the interpretation 7%, where
H' is the set of all ground instances of H.
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Suppose that H has actually been derived, e.g., by an abstraction of some other set IV
of clauses. Given a candidate model IV constructed from the clauses in N, the minimal
model semantics of H allow us to relate the class of Herbrand models of H to IV using
the minimal model T# of H. Further questions like the relation of satisfiability of clauses
in TH# and IV may be studied in this regard. In the next section, we introduce a formal
concept of abstractions to address these questions.

3.3 Abstraction

Soft typing is based on the observation that the derivation of reduction inferences is
sufficient for refutational completeness. Blocking is a method to distinguish reduction
inferences from non-reduction inferences. In general, however, blocking is undecidable.
More precisely, the problem whether a clause C in a set N of clauses is true or false in
some candidate model IV is undecidable. However, there might be approzimations of
IN for which this problem becomes decidable. Informally, the approximation of some
object is a representation of the object which is in some sense simpler than the original.
The motivation of an approximation is to achieve a representation of the original for
which more properties are decidable while some properties of the original are preserved
in the approximation. For instance, it might be desirable that the satisfiability of C
in the approximation implies the satisfiability of C in the original. An abstraction is a
description of how to obtain the approximation of the original. We define an abstraction
operationally as a transformation rule which copies its premise from a set of clauses,
transforms the premise into one or more conclusions, and finally adds the conclusions to
another set of clauses.

Definition 3.3.1 (Abstraction)
An abstraction is written as a rule of the form

Abstract

1
Dy,
where C is the premise and the Dq,... , D, are the conclusions of the abstraction. Let IV

and M be sets of clauses and let C be a clause in N. The abstraction transforms C in N
into the conclusions Dy, ..., D, and adds the conclusions to M.

If M is the result of an exhaustive application of some abstraction to N and if, in
addition, the class of models of M satisfies the conditions of the following definition, then
we call M an approximation. More generally, we define approximations, independently of
a particular representation, as a class of interpretations with the following properties.

Definition 3.3.2 (Approximation)
Let I be an (equality) interpretation and let F be a class of formulae. We call a class
of (equality) interpretations J an approzimation of I for F if for the class F of formu-
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lae either validity (satisfiability) in J implies validity (satisfiability) in I, or, conversely,
validity (satisfiability) in I implies validity (satisfiability) in J. An approximation J is
called decidable for F if validity (satisfiability) in J is decidable for the formulas in F.

Suppose that H is a satisfiable set of Horn clauses which has been obtained by some
abstraction from another set N of clauses. Since the minimal model T of H is a subset
of any other model from the class J of Herbrand models of H, it is interesting to see if
some candidate model IV of N is included in T#, or, in other words, if T# is an upper
approzimation of IV,

Definition 3.3.3 (Upper Approximation)
Let J be an approximation of an (equality) interpretation I for some class of formulae.
An (equality) interpretation J € J is called an upper approzimation of I, if I C J.

Example 3.3.4

Suppose that J is an approximation in which satisfiability of conjunctions of atoms is
decidable. Let N be a set of ground clauses and let I be a model functor. Consider a
clause C = A4,... ,4, - A. We assume that J € J is an upper approximation of any
INoo for the ground instances Co of C. If J ¥ 3 (A1A. .. AAy) then IV  AjoA. . .NAno,
for any ground instance Co of C. Thus any ground instance Co of C is true in IV which
implies that any clausal inference with premise C' is blocked in N.

Definition 3.3.5 (Lower Approximation)
An (equality) interpretation J is called a lower approzimation of another (equality) inter-
pretation I, if J C I.

Example 3.3.6

Suppose that J is an approximation in which validity of disjunctions of atoms is decidable.
Let N be a set of ground clauses and let I be a model functor. Consider a clause C' =
I' - A Aq,...,A,. We assume that J € J is a lower approximation of any I™V?, for the
ground instances D of C. If J EV (A; V...V 4,) then I"? EV(4; V...V 4,), for any
ground instance D of C. Thus any ground instance D of C is true in I’V? which implies
that C cannot be the side premise of a non-blocked inference with A.

A satisfiable set H of Horn clauses is of particular interest since H enjoys the existence
of a unique minimal model which also implies that decidability results with respect to the
class of Herbrand models of H are, in general, easier to obtain than for sets of non-Horn
clauses. For decidability purposes we consider Horn theories which are finite satisfiable
sets of Horn clauses.

Definition 3.3.7 (Horn Theory)
A Horn theory is a finite satisfiable set of Horn clauses.

In the sequel, by a set of clauses, we always mean a finite set of clauses. However, note
that in this section we are not yet concerned with decidability aspects. They are treated
in Chapter 4 through 7. Here, we are interested in possible abstractions from arbitrary
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sets of clauses, i.e., in particular, the model properties of the Horn theories with respect
to their originals. The interesting abstraction parameters are therefore on the level of
the logical structure of clauses, i.e. strictly above the term structure of the clauses. For
example, an obvious abstraction to obtain a Horn theory from a set of general clauses is
to transform disjunctions into conjunctions as the Distribution rule suggests.

Definition 3.3.8
The following abstraction is called Distribution:

Abstract

where (i) L; is either an atom or an equation for all ¢ with 1 <7 < n and (ii) n > 0.

Only clauses with a non-empty succedent are subject to Distribution such that the
result is indeed a satisfiable set of Horn clauses. We call a Horn theory H obtained
by Distribution from a set N of clauses a static Horn theory since H is in some sense
sufficiently conservative to approximate even some candidate model of another set M of
clauses which has been obtained by inferring inferences from N and/or by simplifying N.
We will clarify this point in Section 3.4.

Definition 3.3.9 (Static Horn Theory)
Let N be a set of clauses. Let H be the result of an exhaustive application of the Distri-
bution rule to N. We call H the static Horn theory of N.

The following easy proposition shows that the minimal model of the static Horn theory
of some clause set N is an upper approximation of the candidate model IV at least with
respect to the model functor for ordered resolution. The generalization to the model
functor for superposition is also not difficult.

Proposition 3.3.10
Let I be the model functor for ordered resolution. Let IV be a set of clauses which does
not contain the empty clause and let M be the set of all ground instances of clauses in V.

Let H be the static Horn theory of N. The minimal model T¥ is an upper approximation
of IM,

Proof The proof is by induction on an admissible atom ordering >,. Let C be a ground
instance T'o — Ao, Ao in M of a clause in N which produces Ao into ™. Note that
Ao must be strictly maximal in C. We have to show that Ao € TH. As the induction
hypothesis we assume that if B € I™ then B € T for all ground atoms B with Ao >, B.
By definition, H contains the clause I' — A. Since C is productive we have that I'c C I
and thus, by the induction hypothesis, I'c C TH. We conclude that Ao is also in the
minimal model TH. |
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Only productive clauses which are, in particular, reductive for the produced atom,
participate in the construction of the candidate model for ordered resolution as well as for
superposition. This suggests the following ordered refinement of the Distribution rule to
strictly maximal positive literals, which still transforms sufficiently many clauses for an
appropriate upper approximation, see below.

Definition 3.3.11
The following abstraction is called Ordered Distribution:

- AL

Abstract
strac N

where (i) L is either an atom or an equation and (ii) L is strictly maximal in the premise.

In contrast to a static Horn theory, a dynamic Horn theory which has been obtained
by Ordered Distribution does not provide for an upper approximation for arbitrary de-
scendants of the original set, since different clauses may become productive. However, the
repeated revision of a dynamic Horn theory in a theorem proving process may result in
an improved upper approximation which is closer to the current original than the static
Horn theory.

Definition 3.3.12 (Dynamic Horn Theory)
Let N be a set of clauses. Let H be the result of an exhaustive application of the Ordered
Distribution rule to N. We call H the dynamic Horn theory of N.

Similar to Proposition 3.3.10 for static Horn theories, it is easy to show that the
minimal model of the dynamic Horn theory of IV is in fact an upper approximation of
the candidate model IV with respect to the model functor for ordered resolution. The
generalization to the model functor for superposition is also not difficult.

Proposition 3.3.13
Let I be the model functor for ordered resolution. Let IV be a set of clauses which does not
contain the empty clause and let M be the set of all ground instances of clauses in N. Let

H be the dynamic Horn theory of N. The minimal model T# is an upper approximation
of IM,

Proof Since the candidate model I™ contains only the atoms which are strictly maximal
in the corresponding productive clauses the minimal model T is an upper approximation
of IM  c.f. Proposition 3.3.10. [ |

The previous discussion has been dedicated to certain abstractions of arbitrary sets
of clauses and, in particular, to the properties of the according approximations. The rest
of this section is devoted to a general concept for the connection of approximations with
the blocking concept of soft typing, i.e., in essence, the effective identification of clauses
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which can be subject to blocking with respect to some approximation. We propose the
concept of a typing function similar to the selection function for ordered resolution and
superposition. In general, only certain parts, e.g., the antecedent, of a clause C' may be
evaluated with respect to some approximation. The typing function indicates which literal
occurrences in C are to be checked for the control of the blocking state of C.

Definition 3.3.14 (Typing Function)

A typing function T assigns to each ground clause a possibly empty set of occurrences
of literals. If C is a clause, the literal occurrences in T'(C) are called typed. T(C) = 0
indicates that no literal is typed.

In Chapter 4 through 7, we study decidable approximations which allow for an effective
computation of, e.g., the emptiness of the extension of certain predicates or the unifiability
of first-order terms with respect to non-trivial equational theories. This motivates the
definition of a type which can be seen as the negative (conditional) part of a clause.

Definition 3.3.15 (Type)

The existential closure of a conjunction of atoms (equations) is called an (equational) type.
Let C be a clause I' —+ A and let T be a typing function. If T(C) C T then T(C) is called
the (equational) type of C. We call C a typed clause whenever T'(C) is not empty.

A blocked type is a type of a clause C which is false in some interpretation of a class
of interpretations. In this way, a blocked type serves as a sufficient constraint to block
inferences from or to C, see below.

Definition 3.3.16 (Blocked Type)
Let Z be a class of (equality) interpretations. The type I' of a clause I'; A — A is called
blocked with respect to Z,if T Jx1,... ,z, (') where {z1,... ,z,} = vars(T).

The following lemma shows that any inference from or to a clause with a blocked type
is blocked with respect to any clausal inference system which has the (strong) reduction

property.

Lemma 3.3.17

Let II be a clausal inference system which has the (strong) reduction property for coun-
terexamples with respect to a model functor I. Let N be a set of clauses and let M be
the set of all ground instances of clauses in N. Let C be a clause I'; A — A where T is the
type of C. If T is blocked with respect to {I™} then any inference in TI either from C or
with C as conclusion is blocked.

Proof Suppose that T' is blocked with respect to I, i.e. IM & J3zy,... 2, (I') where
{z1,... ,2,} = vars(T). Thus we may also assume that IMcs ¥ Jzq,... ,z, (T), for all
ground instances Co of C'. Suppose that there is a ground instance Co of C' where Co
is false in IMc- . However, in this case we have that IM¢s £ I'c which is a contradiction
to the assumption that I' is blocked. Thus we may assume that any Co is true in Moo
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and M. In particular, any Co is a non-productive clause. It follows that any inference in
IT from C or with C as conclusion is blocked. |

In the following proposition we summarize the discussion on types and remark that
static and dynamic Horn theories are appropriate approximations for the blocking of in-
ferences which involve typed clauses. Any Horn theory whose minimal model is an upper
approximation of the static or dynamic Horn theory may also be used in this way.

Proposition 3.3.18

Let I be the model functor for ordered resolution or superposition. Let N be a set of
clauses which does not contain the empty clause and let M be the set of all ground
instances of clauses in V. Let H be the static or dynamic Horn theory of N. Let H, be
another Horn theory such that the minimal model 7H+ is an upper approximation of the
minimal model T#. Let C be a clause I', A — A where I is the type of C. If I is blocked
with respect to H,, then I' is blocked with respect to H which implies that I" is blocked
with respect to {IM}.

Since arbitrary Horn theories are, in general, undecidable it is important that further
(decidable) approximations can be incorporated for effective blocking. More precisely, by
a decidable Horn theory H, we mean that there is some theory of formulae (types) ¢ over
H for which TH E ¢ is decidable. We devote Chapter 4 through 7 to the identification of
decidable theories of certain types.

Definition 3.3.19 (Theory of Types)

Let H be a Horn theory and let F be a class of formulae. Let Fg be the set of formulae
in F which contain only predicate and function symbols from H. We call Fg the theory
of F over H and say that Fy is decidable, if T E ¢ is decidable for any formula ¢ in Fpg.
If F is the class of all first-order formulae, Fpy is called the first-order theory over H. We
call Fy the theory of types over H, if F is the class of types.

3.4 Effectiveness

Soft typing for a clausal inference system II has been introduced as a refinement of II
where, in particular, dispensable inferences are blocked dynamically by some model hy-
pothesis. Soft typing is refutationally complete if II enjoys the reduction property for
counterexamples. This property has been shown for various calculi by an analysis of the
local behavior of the inference systems. In contrast, the compatibility of soft typing with
redundancy can be proved by an analysis of the result of a theorem proving derivation,
i.e. the final (weakly) saturated set of clauses. Systems which apply to the strong reduction
property are possible candidates for soft typing with redundancy.

In order to speak precisely about theorem proving processes we need a formalization

of the notion of a theorem proving derivation for soft typing. The following definition
of theorem proving derivations has been originally proposed by Bachmair & Ganzinger
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(1994). Note that, as a prerequisite to the discussion below, that redundancy of clauses
and inferences is stable under the addition of new clauses as well as under the deletion of
redundant clauses.

Lemma 3.4.1 (Bachmair & Ganzinger (1994))
Let N and N’ be two sets of clauses and let II be a clausal inference system.

1. If N C N' then any inference in II, or any clause, which is redundant in N is also
redundant in N'.

2. If N C N’ and all clauses in N’ \ N are redundant in N’ then any inference in II, or
any clause, which is redundant in N’ is also redundant in N.

Proof Part (1) is obvious. For Part (2) recall that for a redundant clause C' in N there
are always non-redundant clauses in N¢ which already entail C. Thus we may assume
that the conclusion of any inference 7 in II, or any clause C, which is redundant in N’ is
entailed by non-redundant clauses. Since all clauses in N'\ N are assumed to be redundant
in N’ we conclude that 7 and C are redundant in N. [ ]

As a consequence, we define a theorem proving derivation by some clausal inference
system II as the process of adding conclusions from inferences in II and deleting redundant
clauses triggered by simplification.

Definition 3.4.2 (Theorem Proving Derivation)

Let IT be a clausal inference system. A (finite or countably infinite) sequence Ny, N1, Na,
. of sets of ground clauses is called a theorem proving derivation by II if each set N;11

can be obtained from its predecessor N; either (i) by adding a set of clauses that can be

deduced by II from Nj;, or else (ii) by deleting a subset of clauses which are all redundant

in NNV;.

The set Noo = U, (>, Nk is called the limit of the derivation. Clauses in N are
called persisting. A theorem proving derivation is called fair with respect to IT if every
inference in IT from premises in N, is redundant in (J ; N;. It is called weakly fair with
respect to II if every inference 7 in II from premises in N, where 7 is not blocked in N,
is redundant in (J; N;.

From an operational point of view, fairness requires an inference system not to delay
any non-redundant inference infinitely. A suitable approximation of (weak) fairness is to
consider periodically inferences from the currently smallest clause C' with respect to its
size, i.e. the number of symbols in C'. Since the ordering by size is well-founded each clause
will eventually be considered. This concept also solves the problem of soft typing with
respect to non-monotone sequences of candidate models in theorem proving derivations.
In general, it is an open problem which properties of candidate models are monotone in
any derivation. In particular, it might be possible that a clause C is blocked and non-
blocked periodically but is never considered in inferences during the non-blocked phase.
However, there are again only finitely many non-blocked clauses smaller than C' with
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respect to size which implies that C will eventually be considered unless C is blocked
forever. See Section 3.5 for a discussion of (weak) fairness of theorem proving derivations
on the non-ground level.

The following lemma does not require the inference system to be sound. Below, we
exploit this freedom for a generalization of theorem proving derivations to derivation trees
where unsound addition of clauses is possible under certain circumstances.

Lemma 3.4.3

Let IT be a clausal inference system. Let Ny, N1, Na, ... be a (weakly) fair theorem
proving derivation with respect to II. Then (i) the clauses in ({J; N;) \ Noo are redundant
in the limit Ny, which (ii) is (weakly) saturated up to redundancy.

Proof If the sequence of NN; is a theorem proving derivation, any clause C in (| J ;N 1)\ Noo
is redundant in some Nj, hence by part (1) of Lemma 3.4.1 redundant in (J; N; which
shows (i). If the theorem proving derivation by II is (weakly) fair, every (non-blocked) in-
ference in IT from N, is redundant in J ; Nj and, therefore, using part (2) of Lemma 3.4.1,
redundant in No. Thus the limit Ny, is (weakly) saturated up to redundancy which im-
plies (ii). [ |

We arrive at the main theorem for (soft typing for) clausal inference systems on the
ground level. Any (weakly) fair theorem proving derivation with respect to a sound system
which has the (strong) reduction property will eventually derive the empty clause from
any unsatisfiable set Ny of clauses. Conversely, if Ny is satisfiable, then IV is a model
of Ny (IY5 7 is a model of N).

Theorem 3.4.4

Let IT be a clausal inference system which is sound and has the (strong) reduction property.
Let Ny, N1, Na, ... be a (weakly) fair theorem proving derivation with respect to II. If
U ; Nj does not contain the empty clause, then N, is (weakly) saturated up to redundancy
and Ny is consistent.

Proof Since the N; constitute a (weakly) fair theorem proving derivation with respect
to II, by part (ii) of Lemma 3.4.3, the set N is (weakly) saturated up to redundancy. In
case II enjoys the reduction property and N is saturated up to redundancy, by Theo-
rem 3.1.25, we have that IV~ is a model of N,. Since, by part (i) of Lemma 3.4.3, the
clauses in (|J; Vj) \ Noo are redundant in Noo, we also have that INe is a model of U; ;-
If IT has the strong reduction property and N, is weakly saturated up to redundancy, by
Theorem 3.1.24, we have that IUi Vi is a model of U, ;- [

The main theorem provides a general framework for deferring inferences due to block-
ing. The effective use of blocking requires approximations of candidate models. Another
component, when we consider theorem proving derivations, is to control the computation
of approximations relative to the progress of the derivation. Recall that, in the previous
section, we have already introduced static and dynamic Horn theories. In general, we have
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to expect that approximations which have to be revised dynamically to be appropriate
provide for a better approximation than static approximations. However, the dynamic re-
computation can be expensive. A static approrimation corresponds to the border where
a one-time computation at the beginning of the derivation is sufficient for an appropriate
approximation of all upcoming candidate models.

Definition 3.4.5 (Static Approximation)

Let IT be a clausal inference system and let I be a model functor. Let N be a set of clauses
and let Ny be the set of all ground instances of clauses in N. Let Ny, N1, Na, ... be any
(weakly) fair theorem proving derivation with respect to II. Let S be a class of (equality)
interpretations and let F be a class of formulae. We call S a (partial) static approzimation
for F if the class S is an approximation of each IVi (IV¢ where N = Nj;, for any clause
C) for F where N; does not contain the empty clause. A (partial) static approximation is
called decidable if S is a decidable approximation.

Most importantly, clauses which have a type that is blocked with respect to a static
approximation can be permanently excluded from the search process. Static Horn theories
are an example of (partial) static approximations for types with respect to any theorem
proving derivation by soft typing for ordered resolution. The generalization to soft typing
for superposition is straightforward as Proposition 3.3.10 can easily be extended in this
regard.

Lemma 3.4.6

Let I be the model functor for ordered resolution. Let N be a set of clauses and let Ny
be the set of all ground instances of clauses in N. Let H be the static Horn theory of N.
Let Ny, N1, Na, ... be a (weakly) fair theorem proving derivation with respect to ordered
resolution. Then H is a static approximation for types.

Proof The proof is by induction on the length of a fair theorem proving derivation. By
Proposition 3.3.10 the minimal model T¥ is an upper approximation of I™°. Thus the
unsatisfiability of types in H implies the unsatisfiability in INo. Tt follows that H is an
approximation of IV for types. As the induction hypothesis we assume that H is an
approximation of I™i for types. In particular, we may assume that the hypothesis holds
for any admissible atom ordering >,. That is, T# contains all atoms which occur in the
succedent of any clause in IV;. Consequently, no matter if NV;;1 has been obtained by
adding logical consequences or by deleting redundant clauses, H is also an approximation
of INi+1 for types. |

In contrast to static approximations, a dynamic approrimation involves the dynamic
character of the approximation in the sense that the approximation may at most be revised
at each step in the derivation. However, the frequency of updates is left open and may
vary from approximation to approximation.



72 § 3. SOFT TYPING

Definition 3.4.7 (Dynamic Approximation)

Let I be a clausal inference system and let I be a model functor. Let N be a set of clauses
and let Ny be the set of all ground instances of clauses in N. Let Ny, N1, No, ... be any
(weakly) fair theorem proving derivation with respect to I. Let D be a (finite or countably
infinite) sequence Jo, J1, Jo, ... of classes of (equality) interpretations. Let F be a class
of formulae. We call D a (partial) dynamic approzimation for F if, for all 7, the class J; is
an approximation of IV (IN¢ where N = N, for any clause C) for F where N; does not
contain the empty clause. A (partial) dynamic approximation is called decidable if each
J; is a decidable approximation.

Clauses which have a type that is blocked with respect to a dynamic approximation
may only be temporarily excluded from the inference process. Note that any static approx-
imation is also a dynamic approximation but not vice versa. In the context of derivations
by ordered resolution (superposition), a dynamic Horn theory represents a particular dy-
namic approximation for types which, in general, has to be revised at each step in the
derivation. The addition of logical consequences as well as the deletion of redundant
information may affect the set of reductive clauses from which the candidate model is
constructed.

Lemma 3.4.8

Let I be the model functor for ordered resolution. Let Ny be a set of clauses and let M,
be the set of all ground instances of clauses in Ny. Let My, My, Ma, ... be a (weakly)
fair theorem proving derivation with respect to ordered resolution where the N; denote
the corresponding sets on the non-ground level. The sequence of dynamic Horn theories
H; of N; is a dynamic approximation for types.

Proof Due to Proposition 3.3.13 each minimal model T is an upper approximation
of the according interpretation I™i. Following the proof of Lemma 3.4.6 each H; is an
approximation of the according (equality) interpretation I for types. |

The previous discussion on theorem proving derivations and their approximations es-
sentially involves linear theorem proving processes. At each point in time either deduction
or simplification steps are possible. However, following the general principle of divide and
conquer, branching of derivations can be useful. We introduce, as a generalization of
theorem proving derivations, so-called theorem proving derivation trees by admitting de-
duction steps to split a set of clauses N into k > 1 alternatives N U My, ..., N U My of
clause sets N U M; such that N is consistent if and only if N U M; is consistent for some
1 < i < k. For example, we might split N U{C V D} on a clause C V D with variable-
disjoint subclauses C' and D into two branches N U{C Vv D,C} and N U {C Vv D, D}.
Note that in both subtrees of N U{C V D} the clause C'V D becomes redundant and can
be deleted. In this way, resolution-based theorem proving methods may be generalized
to Davis-Putnam-like procedures, which significantly improves the performance of such
methods at least on propositional problems. If clauses are split into subclauses which
share some variables, then any derivation in the according subtrees has to accomplish the
dependencies caused by the instantiation of common variables. This approach is related
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to tableaux-based theorem proving methods. Other applications of derivation trees can
be found in Section 3.6.2.

Definition 3.4.9 (Theorem Proving Derivation Tree)

Let II be a clausal inference system. Let N© be a tree such that each node in N© is labeled
by a set of ground clauses. We call N© a theorem proving derivation tree if the labels on
each branch N? in N® induce a (finite or countably infinite) sequence Ng ,NY NS, ... of
sets of ground clauses and, for each non-leaf node N in N©, its successors Ny, ... , N} are
either obtained from N (i.a) by adding a set of clauses that can be deduced by II from N
or (i.b) by deleting a subset of clauses which are all redundant in N, or else (ii) each N;
is a set NV U M; of ground clauses where N is consistent if and only if IV; is consistent for
some 1 <3 <k.

Note that a branch in a derivation tree is not exactly a theorem proving derivation
since (ii) may introduce arbitrary new clauses. However, limit and fairness of derivations
naturally carry over to branches in a derivation tree. The set N = J i Mes; NV, 9 is called
the limit of the branch 8. A theorem proving derivation tree is called fair with respect to
IT if, for every branch N? in N®, every inference in IT from premises in N?, is redundant
in | ;N ]e . Tt is called weakly fair with respect to II if, for every branch N¢ in N©, every
non-blocked inference in II from premises in NY is redundant in U; Nf . The following
theorem is a generalization of the main Theorem 3.4.4 to derivation trees.

Theorem 3.4.10

Let II be a clausal inference system which is sound and has the (strong) reduction property.
Let N© be a (weakly) fair theorem proving derivation tree with respect to TI. Then the
limit N9 of each branch 8 in N® is (weakly) saturated, and N is inconsistent if and only
if on every branch 6 the empty clause is in | J ;i N ]‘.9 .

Proof We may use part (ii) of Lemma 3.4.3 to derive that for each branch 6 in N©,
the limit Ngo is (weakly) saturated. Note that Lemma 3.4.3 is true regardless of the
soundness of deduction steps and can, therefore, be applied to any branch in the deduction
tree. Suppose that there is a branch 6 such that Uj NJ‘? does not contain the empty
clause. In case IT enjoys the reduction property and Ngo is saturated up to redundancy,
by Theorem 3.1.25, we have that IN% is a model of N . Since, by part (i) of Lemma 3.4.3,
the clauses in (U, N. ]‘-9 )\ N& are redundant in N¢ , we also have that IV % is a model of

U r N]‘? and, therefore, a model of Ny. If II has the strong reduction property and Ngo is

weakly saturated up to redundancy, by Theorem 3.1.24, we have that [ U; ™ is a model
of Uj NJQ and, therefore, a model of Nj.

On the other hand, suppose that Ny is consistent. By the definition of theorem proving
derivation trees splitting preserves consistency on at least one branch 6. Since each de-
duction step in a theorem proving derivation is sound, |J ;N ]fo does not contain the empty
clause. ]
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A generalization of static and dynamic approximations to derivation trees is straight-
forward. From a practical point of view, there are encouraging results using the theorem
prover SPASs (Weidenbach, Meyer, Cohrs, Engel & Keen 1998) which computes tree-like
derivations with splitting on variable-disjoint clause parts.

3.5 Lifting

Soft typing for clausal inference systems has been introduced as a general framework for
semantically guided theorem proving. The definition of soft typing on ground clauses
and the appropriate notions of redundancy, saturation, and derivations allow for a clear
investigation of the various properties of this concept. The lifting problem, on the other
hand, involves questions which arise when approximating an inference system defined on
the ground level by an appropriately lifted version of the inference system on the non-
ground level. For an effective use of soft typing for non-ground clauses, we may lift
soft typing by the following approximations of blocking, redundancy, and theorem proving
derivations. Note that by a ground instance o of some inference 7 from a clausal inference
system II we mean the ground inference in IT obtained from 7 by instantiating the premises
and conclusion of 7 with the same substitution o.

Definition 3.5.1 (Blocked Inference (Lifted))

Let I be a model functor and let N be a set of clauses. Let IT be a clausal inference
system. Suppose that M is the set of ground instances of V. We say that an inference 7
from II with a clause C as main premise and a clause C' as side premise is blocked in N,
if for all ground instances wo of 7 from IT we have that (i) C'c is a counterexample for
IM or (ii) C'o is true in IMc's | or (iii) Co is true in IM.

Then soft typing for a clausal inference system II on the non-ground level is the refine-
ment of IT with respect to a set IV of clauses which contains only the non-blocked inferences
in II. In order to combine soft typing with redundancy we need a suitable approximation
of redundant clauses and inferences on the non-ground level.

Definition 3.5.2 (Redundant Clause (Lifted))
Let N be a set of clauses. A clause C is called redundant in N if all ground instances of
C are redundant in the set of ground instances of N.

Definition 3.5.3 (Redundant Inference (Lifted))

Let IV be a set of clauses. The inference m of a clausal inference system II is called
redundant in N if all ground instances of m from II are redundant in the set of ground
instances of V.

The generalization of (weak) saturation up to redundancy to the non-ground level is
immediate. A general theorem proving derivation Ny, N1, Na, ... is a derivation on the
non-ground level in the sense that the sequence of sets of ground instances of each N;
forms a theorem proving derivation.
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Definition 3.5.4 (General Theorem Proving Derivation)

Let II be a clausal inference system. A (finite or countably infinite) sequence Ny, Ny,
Ny, ... of sets of clauses is called a (general) theorem proving derivation by II if the
corresponding sequence My, My, Mo, ..., where each M; is the set of ground instances of
N;, is a theorem proving derivation.

A (general) theorem proving derivation Ng, Ny, Na, ... is called (weakly) fair with
respect to II if the corresponding sequence My, My, Ms, ..., where each M; is the set
of ground instances of Nj;, is a (weakly) fair theorem proving derivation. Note that a
definition of (weak) fairness as in the ground case does not work for the non-ground case
since the set of ground instances of N, is, in general, not equal to My, but may be a strict
subset of My,. For instance, the set of ground instances of Ny, may be a strict subset of
M, if there are non-ground clauses, say C and a variant D of C, which do not persist but
which are periodically added and removed by, e.g., non-strict subsumption. However, the
ground instances of C' (D) can be persisting clauses in the ground derivation whenever
either C or D is present in each N;. We observe that a general theorem proving derivation
is (weakly) fair if there is some clause set N C |J; N; where M is a subset of the set of
ground instances of N such that every inference 7 in IT from premises in N (where 7 is
not blocked in N) is redundant in (J; Nj.

Similar to the ground case, a suitable approximation of (weak) fairness is to consider
periodically inferences from the currently smallest clause C' with respect to its size, i.e. the
number of symbols in C. Since the ordering by size is also well-founded for non-ground
clauses each (ground) clause will eventually be considered. Beside this particular selection
scheme, we may also associate a counter to each clause that is increased each time the
clause changes its blocking status or is involved in a non-strict subsumption step. A clause
with a counter beyond a certain threshold is then excluded from non-strict subsumption
or blocking.

An important property to achieve refutational completeness on the non-ground level
is that any non-redundant ground inference 7 in II must be liftable in the sense that m
is the ground instance of a (non-ground) inference in II. In the literature, this particular
problem is usually referred to as the lifting problem. For resolution on the non-ground
level, it is unification which provides for a suitable approximation such that any inference
by (Negative) Resolution or Factoring is liftable, even the redundant inferences. For su-
perposition, only the non-redundant inferences are liftable which is, however, sufficient.
See also (Bachmair & Ganzinger 1997) for the lifting problem of (strict, basic) superposi-
tion. We obtain as a corollary of the main theorem 3.4.4 that (soft typing for) semantic
resolution, ordered resolution, and superposition are refutationally complete for sets of
non-ground clauses.

Corollary 3.5.5

Let Ny, N1, Na, ... be a (weakly) fair general theorem proving derivation with respect
to semantic resolution Rg, ordered resolution Rp, or superposition S. Then Uj N; is
(weakly) saturated up to redundancy and No is consistent if [ J; V; does not contain the
empty clause.
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The generalization of theorem proving derivation trees to the non-ground level is
straightforward. The notion of static and dynamic approximations has been defined for
any (weakly) fair theorem proving derivation on the ground level. The generalization to
the non-ground level is obvious. In the sequel, we will speak of (non-ground) derivations
in the context of static and dynamic approximations, as the approximations are usually
obtained from non-ground sets of clauses.

3.6 Related Work

Soft typing for clausal inference system has been introduced as a general framework for
the semantically guided inference process with respect to the knowledge about certain
model hypotheses. Gelernter (1960) has shown by his geometry theorem prover that al-
ready some limited understanding of the problem set may have some impact on syntactic
proof procedures. However, the prover was restricted to a particular domain within plane
geometry. The work by Slagle (1967) on semantic resolution marks the beginning of se-
mantically guided resolution-based inference systems with respect to arbitrary first-order
model domains. Basically, inferences may be restricted to counterexamples of the par-
ticular (candidate) model. Reiter (1976) proposes a similar generalization for natural
deduction systems, like the geometry theorem prover from (Gelernter 1960), to arbitrary
first-order models. Following these ideas, another theorem proving concept called hierar-
chical deduction, which is related to model elimination (Loveland 1969), is enhanced by
general models in (Wang 1985, Wang & Bledsoe 1987).

However, effectiveness of semantics requires for a more involved analysis of the (can-
didate) models, since the identification of counterexamples is, of course, undecidable, in
general. In Chapter 4 through 7, we propose methods to infer automatically abstractions
of candidate models for approximating validity and/or satisfiability of clauses in these
models. The concept is related to methods which have been called soft typing (Cartwright
& Fagan 1991, Cartwright & Felleisen 1996) in the programming language area. As mo-
tivated by Frithwirth et al. (1991), we use certain (decidable) sets of Horn clauses (with
equality) to represent effective approximations of candidate models.

Our concept of soft typing for clausal inference systems is, however, not restricted to
these particular model representations. For example, a Herbrand model can be approxi-
mated by a finite set of ground (or constrained) unit clauses where truth as well as falsity
of atoms may explicitly be represented. Models of this kind are generated by a resolution-
based inference system for (dis-)equality constrained clauses (Caferra & Zabel 1990, Ca-
ferra & Zabel 1992). Similar to semantic resolution, the resolution inferences can be
filtered with respect to satisfiability in the model (Caferra & Peltier 19955, Caferra &
Peltier 1995a) where effectiveness is achieved by the decidable constraint language. As
a consequence, the approach can be seen as being essentially semantic resolution for the
enriched language of (dis-)equality constrained clauses.

Leitsch (1997) discusses automated model building based on hyper-resolution decision
procedures. The model building process results for certain classes of clause sets in ground
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atom representations of Herbrand models. We also refer to the comprehensive discussion
of this approach in (Fermiiller & Leitsch 1996).

3.6.1 Soft Typing for Semantic Resolution

A standard perspective of refutational theorem proving is to view refutational proof pro-
cedures as reduction inference systems with respect to a well-founded ordering. The con-
struction of a particular candidate model is only implicitly assumed as some vehicle to
show the refutational completeness. In contrast, the model generation paradigm moti-
vates refutational theorem proving by an explicit construction of the candidate models. A
model generation procedure identifies counterexamples and extends the model hypothesis
accordingly in order to satisfy the counterexamples.

A proof procedure which has been developed in the spirit of model generation is the
semantic hyper-linking method (Plaisted, Alexander, Chu & Lee 1992, Chu & Plaisted
19944, Chu & Plaisted 1994b). There is also a generalization to ordered semantic hyper-
linking (Plaisted 1994, Plaisted & Zhu 1997) which incorporates orderings on ground
atoms. We argue below that this concept is an instance of soft typing for semantic res-
olution since (i) ordered semantic hyper-linking constructs exactly the candidate model
obtained from the model functor for semantic resolution and (ii) the saturation criterion
of ordered semantic hyper-linking is an instance of saturation with respect to soft typing
for semantic resolution.

Suppose that N is a set of clauses and that J is a model such that satisfiability of
(ground) literals with respect to J is decidable. Essentially, ordered semantic hyper-
linking computes ground instances of clauses in N, which are counterexamples for J, and
extends J to J' by the maximal literals of the ground instances. Note that, in this way,
J' remains an effective representation. In Section 3.1.1, we observed that soft typing
for semantic resolution is compatible with the abstract notion of redundancy restricted
to the counterexamples for J. Hence, ordered semantic hyper-linking is compatible with
simplification which involves, however, only the (negatively) reductive counterexamples
for J.

Clause-linking (hyper-linking) of clauses in N with literals obtained from J (J') enu-
merates the appropriate ground instances from N. In contrast to resolution, clause-linking
resolves complementary literals just to compute the most general unifier. More precisely,
a clause-linking step computes the simultaneous most general unifier o by hyper-resolving
all literals in a clause C and then derives Co as the conclusion. Thus clause-linking uses
unification in a similar way as resolution for the identification of suitable ground instances
of an already unsatisfiable subset of clauses. The approach is then refutationally complete
in combination with further enumeration of ground instances and a propositional satisfia-
bility check. In this way, clause-linking distinguishes what resolution combines in a single
inference rule, i.e. the identification of suitable ground instances and the unsatisfiability
test. However, even in the context of ordered semantic hyper-linking, since Co may still
not be ground, a further enumeration of ground instances cannot be avoided, if the input
semantics J is only decidable for ground literals.
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The following simple proposition implies (i) by observing that the candidate model
IN for semantic resolution corresponds exactly to what has been called the “least model”
by Plaisted & Zhu (1997).

Proposition 3.6.1

Let J be a Herbrand model and let NV be set of ground clauses. Let I be the model functor
for semantic resolution. Suppose that J falsifies the clauses in N' C N and satisfies the
clauses in N\ N'. Let N" be the set of (negatively) reductive clauses in N'. Then I” is
a model of N”.

Note that the set E of strictly maximal literals in (negatively) productive clauses
from N" are called “eligible literals” in (Plaisted & Zhu 1997). These literals describe the
difference between J and I", i.e. E corresponds up to negation to the set (I’V\ J)U(J\IV).
We arrive at an immediate corollary of the above proposition.

Corollary 3.6.2

Let J be a Herbrand model and let N be set of ground clauses. Let J' be the model
constructed from J and N by ordered semantic hyper-linking. If J’ is a model of N then
N is saturated with respect to soft typing for semantic resolution.

The corollary demonstrates that (ii) the saturation criterion of ordered semantic hyper-
linking is an instance of saturation with respect to soft typing for semantic resolution.

3.6.2 Soft Typing for Ordered Resolution

The model generation paradigm has also been studied by Manthey & Bry (1988) who devel-
oped the SATCHMO theorem prover. In contrast to ordered semantic hyper-linking (Plaisted
1994, Plaisted & Zhu 1997), SATCHMO constructs models based on sets of Horn clauses and
maintains theorem proving derivation trees. Suppose that N is a set of clauses. SATCHMO
computes consistent subsets H of Horn clauses of N and then selects counterexamples C'
for the minimal model T# of H in order to compute hyper-resolution inferences from C
and H. The conclusions are positive clauses which are considered as potential extensions
for H not only to satisfy C but also to satisfy N in the limit. More specifically, each
positive literal in a conclusion may individually extent H such that we arrive at a tree-like
derivation scheme. Our construction of theorem proving derivation trees provides for a
suitable formalization of this effect. Conversely, if all clauses in N are true in TH then
the set is considered saturated, as it is, obviously, consistent.

For an effective model construction, clauses are required to be range-restricted. A
clause is range-restricted whenever all variables in the succedent also occur in the an-
tecedent. Any set of clauses can be transformed into an essentially equivalent set of range-
restricted clauses. By hyper-resolving on range-restricted clauses, new positive ground
clauses are obtained and the process branches with regard to the disjuncts by extending
H individually with each ground atom of the conclusions. SATCHMO theorem proving
processes are, therefore, theorem proving derivation trees. We arrive at a major drawback
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by observing that, in general, an enumeration of all ground instances is required. Unifi-
cation, as in saturation-based methods, may help as demonstrated by ordered semantic
hyper-linking.

For SATCHMO and MGTP, the problem has been addressed in two different lines of
research. Loveland, Reed & Wilson (1995) propose certain approximation techniques for
the identification of counterexamples in order to limit the combinatorial explosion and to
improve the construction of H. The ideas have been implemented in the SATCHMORE
system. The MGTP theorem prover, on the other hand, has been developed within the
fifth generation project in Japan as an efficient implementation of SATCHMO’s theorem
proving concept. Note that SATCHMO has been implemented as a prototypical system
using Prolog. Similar to the SATCHMORE system, M GTP improves upon the original work
in several ways as reported in the more recent paper by Hasegawa, Fujita & Koshimura
(1997). SATCHMORE essentially computes, as the improvement upon SATCHMO, an upper
approximation TV of the finite failure set Tlfy of H up to the antecedent literals in V.
The finite failure set Tlfj is the set of ground atoms which cannot be derived from H in
any finite derivation. The set T};I corresponds to the Herbrand base up to the maximal
model of H when we restrict our attention to Herbrand models. Note that T# as well as
T},fl are recursively enumerable for any Horn clause set H whereas the maximal model of
H is not. The minimal model T# can be seen as the set of ground atoms which can be
finitely derived from H whereas the maximal model is the minimal model plus the ground
atoms which can be derived from H in infinite (cyclic) derivations. SATCHMORE checks
the positive ground literals A for A C TV where A is the conclusion of an hyper-resolution
inference from a potential counterexample I' — A and H. In this case, the literals in A
may serve as suitable extensions of H. Conversely, if there is a ground atom A in A
such that A ¢ TV, then A is already derivable from H which implies that C is not a
counterexample.

In contrast, MGTP uses a generalization of magic sets (Bancilhon, Maier, Sagiv &
Ullman 1986) and (Beeri & Ramakrishnan 1991) to non-Horn magic sets (Hasegawa,
Inoue, Ohta & Koshimura 1997) which approximate directly the minimal model T of
H by a lower approximation 77. Then, potential counterexamples are checked in the dual
way with respect to 7. Note that the check with respect to the smaller 77, may also be
more efficient compared to the computation with respect to TH. Recently, Ohta, Inoue
& Hasegawa (1998) demonstrated that this concept actually coincides with SATCHMORE
with respect to derivation trees assuming the construction of TV in SATCHMORE is slightly
weakened.

In the following, we demonstrate that the semantic methods in SATCHMO and, in this
way, also in MGTP are essentially an instance of soft typing for ordered resolution. If
we abstract from the particular structure of theorem proving derivations, we can show
that (i) for any set H of Horn clauses constructed by SATCHMO there is a candidate model
obtained from the model functor for ordered resolution which is exactly the minimal model
of H and (ii) the saturation criterion of SATCHMO is in fact a special case of our notion of
saturation with respect to soft typing for ordered resolution. More precisely, for satisfiable
sets H of Horn clauses it turns out that one may always find an admissible atom ordering
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for which (i) the construction of the model functor I for ordered resolution yields the
minimal model of H and thus (ii) H is saturated with respect to soft typing for ordered
resolution which implies, if 79 is a model of N, that all inferences from non-reductive
clauses are blocked and thus that N is weakly saturated, see below. The ordering has to
be constructed from the immediate consequence operator Ty .

Definition 3.6.3 (Compatible Atom Ordering)

Let H be a set of Horn clauses without equality. Let ¢4, for any ground atom A in the
minimal model T of H, denote the minimal index n for which A4 is in T (D). For atoms
A not in TH we set 14: = 0. If =, is an ordering on ground atoms such that A -, B
whenever ¢4 > tp, then we call >, compatible with H.

For compatible admissible atom orderings the model functor I for ordered resolution
of Definition 3.1.43 is simply another method for generating the minimal model T# of H.

Proposition 3.6.4

Let I be the model functor for ordered resolution. Let H be a satisfiable subset of Horn
clauses of some clause set NV, and let -, be an admissible atom ordering that is compatible
with H. Let C be a ground clause where (—)A is a maximal atom in C.

1. Let B be some ground atom. If A -, B then B is in T# if and only if B is in IF.
2. If ~Ain C or {4, A} C C then A is in TH if and only if A is in IZ.

3. H is weakly saturated with respect to Rp and >,.

4. 14 c 1},

Proof The proof for (1) is by induction on the atom ordering. We assume as the induction
hypothesis that (1) holds for all clauses D in which the maximal atom is smaller than
A. Suppose that B is true in TH. By definition of TH there is a Horn clause D =
Bi,...,B, — B in H such that {By,...,B,} C TH. Since B =, By,...,B, we may
apply the induction hypothesis and infer that {Bj,...,B,} C If. Thus the clause D
produces B if B has not already been produced. In both cases B is true in Ig . For the
other direction suppose B is true in Ig . Then there is a productive Horn clause D =
Bi,...,B, = B in H. By the induction hypothesis we derive that {By,... ,B,} C TH.
Thus B is also true in TH.

For (2) suppose that A is true in 7#. By definition of T there is a Horn clause
D=A,...,A, = Ain H such that {A4;,... ,4,} C TH. Note that D is strictly smaller
than C. Since A =4 A1,..., A, we may use (1) to infer that {A1,...,A4,} C IZ and thus
{A1,... A} C IE. Hence, either A is true in IZ, or else D is a productive clause. In
both cases we conclude that A is true in Ig . For the other direction suppose A4 is true in
Ig. Then there is a productive Horn clause D = Ay,... , A, — A in H. By (1) we derive
that {41,...,4,} C TH. Thus 4 is also true in 7.

(3) holds since, by (1) and (2), it follows that I¥ is a model of H and therefore any
inference from clauses in H is blocked.
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To show (4) we use induction on C. Suppose that A is in IZ. Then there exists a
clause D =T — A in H¢c which produces A into I¥. In particular, any B in T is smaller
than A and ' C T g . Using the induction hypothesis for D we may infer that I' C I g .
Therefore, either A is in [ Jg , or else D produces A into IV. In both cases we conclude
that A is in IY. ]

Observe that, part (4) of the above Proposition, motivates a proof for the other direc-
tion I g C1, g which is, however, only true for non-reductive C'. We can show this property
by induction using a specific construction Kg which contains Ig .

Definition 3.6.5
Let I be the model functor for ordered resolution. Let H be a set of ground Horn clauses
and let C' be a possibly non-Horn ground clause with maximal atom A. By K, g we denote
the interpretation

KY — {Ig U{A} if A€ TH and C is reductive for A,

I g otherwise.

K g is different from I, g only if C is reductive for A and if A gets eventually produced
into T by a clause D in H such that D >, C.

Theorem 3.6.6
Let H be a satisfiable subset of Horn clauses of some clause set NV, and let >, be an
admissible atom ordering that is compatible with H. Suppose that T satisfies N.

1. For any ground clause C, we have [, év CK g .

2. Any non-reductive clause C' in N is true in I, év .

Proof We prove (1) by induction on C. Suppose that A is in Ig . Then there exists a
clause D =T' — A, A in N¢ which produces A into IV. In particular, any B in ', A is
smaller than A with respect to >4, and I C I, as well as ANIY = . Using the induction
hypothesis for D we may infer that ' C K and thus I' C IZ. Hence, by part (1) of
Proposition 3.6.4 we get I' C TH. By part (4) of Proposition 3.6.4, we get ANIH = {.
Again by part (1) of this proposition we conclude that ANTH = §. For T to satisfy D,
the atom A must therefore be true in T#. If A is strictly smaller than the maximal atom
in C then, by part (1) of Proposition 3.6.4, A is in IZ. Similarly, if A is the maximal
atom in C but C is not reductive for A, then, by part (2) of the same proposition, A is in
IH®. If C is reductive for A then by definition of K& we have that A is in KZ.

Part (2) is an immediate consequence of (1) by observing that, according to (1) and
part (4) of Proposition 3.6.4, the interpretations IZ and I} coincide for non-reductive
clauses C. By part (1) and (2) of Proposition 3.6.4 IZ assigns the same truth values as
TH to the atoms in C. Thus I} is also a model of C. [



82 § 3. SOFT TYPING

If TH is not only a model of a Horn subset H of N but also a model of N itself then
Theorem 3.6.6 demonstrates that any non-reductive and possibly non-Horn clause C' from
N is true in [ g . It follows that IV is weakly saturated since any inference from clauses in
N is blocked. Note that any main premise of an Ordered Resolution inference as well as
any main premise of an Ordered Factoring step is a non-reductive clause.

Corollary 3.6.7

Let N be a set of ground clauses and let H be a consistent Horn subset of N. If T
satisfies IV then IV is weakly saturated with respect to any admissible atom ordering that
is compatible with H and any selection function.

This corollary indicates that (ii) the SATCHMO saturation criterion is a special case of
saturation with respect to soft typing for ordered resolution.

3.6.3 Abstraction in Derivations

Abstraction in the context of automated proof search has also been received quite some
attention from the perspective of theorem proving derivations. In (Plaisted 1980, Plaisted
1981) proof guidance based on abstractions is obtained by successful resolution-based proof
derivations in some “abstract space” which has been derived from the original problem set.
The idea is to map the original clause set into an abstract form, e.g., several clauses are
identified in an equivalence class, and to search for a proof first in this abstract form. A
successful abstract derivation is then used as a template for the proof on the original level
which is supposed to fill in the “gaps” of the abstract proof. An obvious generalization
of this idea is to build up a hierarchy of abstractions where the abstract derivation on
level n + 1 guides the proof search of level n. Plaisted (1986) motivates that not only
the input set itself may be subject to (input) abstraction but also the (conclusions of)
resolution operations which arise in the abstract derivation. However, the application
of simplification methods in abstract derivations seems to be difficult while preserving
completeness. For instance, subsumption in abstract derivations may delete significant
information which is actually non-redundant in the original level. The problem is actually
due to the somewhat tight combination of abstractions and derivations.

The concept of proof guidance by abstract derivations may also be seen independently
from a particular inference system (Giunchiglia & Walsh 1989, Giunchiglia & Walsh 1992).
Moreover, Giunchiglia & Walsh (1993) state that “false proofs” on the abstract level, as
they have already been mentioned by Plaisted (1981), cannot be avoided, in general. A
false proof corresponds to a successful abstract derivation from an inconsistent abstract
space which has been obtained from a consistent original. In particular, a consistent
subset (theory) of some inconsistent problem set may be mapped to an inconsistent ab-
straction. Proof attempts on the original level according to false proofs may therefore lead
to substantial overhead. Note that false proofs are an instance of the general problem of
trivial abstract spaces. Hence, in combination with the incompatibility of simplification
techniques, we consider the incorporation of abstract derivations as problematic.



Chapter 4

Sort Theories

Soft typing for clausal inference systems is a general framework for semantically guided
theorem proving. A derivation by an inference system can be controlled using the dynamic
blocking concept of soft typing for clauses and inferences. An effective use of blocking, how-
ever, requires decidable approximations of candidate models. In Section 3.3, we introduced
(static, dynamic) Horn theories as a formalism for the representation of approximations of
candidate models. A Horn theory H enjoys the existence of a unique minimal model T#
of H which allows for a convenient relation of all models of H and some candidate model.
However, validity and satisfiability of clauses with respect to a general Horn theory are
undecidable. Thus further abstraction steps are needed for decidability. Throughout this
chapter, by a decidable Horn theory H, we mean that the theory of monadic types over
H is decidable.

We demonstrate that a specialized form of ordered resolution with selection, the so-
called sort resolution calculus (Weidenbach 1996a), can be used as a general decision
procedure for certain variants of so-called sort theories. We present effective transfor-
mations to infer automatically abstractions of Horn theories which result in the class of
decidable sort theories. In this way, we obtain decidable approximations for a particular
form of types. In Chapter 5 through 7, we follow exactly this concept to obtain similar
results for other forms of Horn theories and for non-trivial equational theories which can
be seen as Horn theories with equality.

Frihwirth et al. (1991) have already proposed to use certain classes of logic programs to
infer type information for logic programs. Logic programs and Horn theories are essentially
equivalent. The first step is to consider only monadic Horn clauses in which only monadic
predicates occur. Note that Horn theories which contain only monadic Horn clauses are
still undecidable, in general. Further restrictions on the structure of terms which occur
in the clauses of the theory are needed. We include equality in the definitions below to
obtain a continuous definition which can also be used in the subsequent chapters.

Definition 4.0.1 (Monadic Horn Clause)
A Horn clause I' — A where I' contains only monadic atoms and equations and A is a
monadic atom or an equation is called a monadic Horn clause. A monadic Horn clause
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' — S(t) is called shallow (linear, semi-linear) if ¢ is shallow (linear, semi-linear). A
monadic Horn clause I' — s = t is called shallow (linear, semi-linear) if s =~ t is shallow
(linear, semi-linear).

A monadic Horn theory consists of monadic Horn clauses only. Note that, in general,
a shallow and/or linear monadic Horn theory is a semi-linear monadic Horn theory but
not vice versa.

Definition 4.0.2 (Monadic Horn Theory)
A monadic Horn theory H is a finite set of monadic Horn clauses. #H is called shallow
(linear, semi-linear) if all monadic Horn clauses in H are shallow (linear, semi-linear).

In the sequel, we will show that certain (non-linear) shallow monadic Horn theories
are decidable and that (semi-linear) linear monadic Horn theories can be transformed
into essentially equivalent (non-linear) shallow monadic Horn theories. We may obtain a
monadic Horn theory from an arbitrary Horn theory by Monadic Abstraction where all
non-monadic atoms are simply left out. We may improve the result using, for example,
a particular form of term encoding which transforms a non-monadic atom P(ty,... ,t,)
into a monadic atom S(p(t1,...,t,)) where S is a common monadic predicate symbol
for all non-monadic atoms and p is a new function symbol with the same arity as P.
In (Frithwirth et al. 1991), the symbol S is denoted by the monadic predicate symbol
type. In order to use this form of term encoding for blocking, the original clauses have
to be extended with additional S constraints. However, from a conceptual point of view,
this does not affect the analysis of decidable monadic Horn theories, below.

Definition 4.0.3
The following abstraction is called Monadic Abstraction:

A= L
Abstract —————
BT SL
where (i) L is either a monadic atom or an equation and (ii) I' is the maximal subset of
A such that I' contains monadic atoms and equations only.

Recall that static and dynamic Horn theories are approximations of arbitrary clause
sets where disjunctions of positive literals have been transformed into conjunctions. A
dynamic Horn theory is restricted to the reductive clauses of the according static Horn
theory. An exhaustive application of Monadic Abstraction yields the static and dynamic
monadic Horn theory, respectively.

Definition 4.0.4 (Static/Dynamic Monadic Horn Theory)

Let N be a set of clauses. Let Hg and Hp be the static and dynamic Horn theories of
N, respectively. Let Hg and Hp be the result of an exhaustive application of Monadic
Abstraction to Hg and Hp, respectively. We call Hg the static monadic Horn theory of
N and Hp the dynamic monadic Horn theory of N.
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The following statement is an easy corollary of Proposition 3.3.10 and 3.3.13. Us-
ing Monadic Abstraction, we simply restrict the approximation to monadic atoms and
equations. The generalization to the model functor for superposition is also not difficult.

Corollary 4.0.5

Let I be the model functor for ordered resolution. Let N be a set of clauses which does
not contain the empty clause and let M be the set of all ground instances of clauses in
N. Let Hg and Hp be the static and dynamic monadic Horn theories of N, respectively.
Then the minimal models T%s and T"P are upper approximations of I™ with respect to
monadic atoms and equations.

Consequently, we define monadic (equational) types as the types which may still be
subject to an effective evaluation of satisfiability with respect to the monadic abstractions
of static and dynamic Horn theories.

Definition 4.0.6 (Monadic (Equational) Type)

A type which contains only monadic atoms is called a monadic type. It is called a monadic
equational type if all predicate symbols in the type are monadic. Let C be a clause ' —+ A
and let T be a typing function. If T(C) C T and T(C) contains only monadic predicate
symbols (and equations) then T'(C) is called the monadic (equational) type of C. If each
term which occurs in a monadic (equational) type is a variable then we call it a monadic
(equational) variable type.

The following corollary manifests the goal of this chapter (and also of Chapter 5
through 7). We are interested in automatic abstractions of static/dynamic monadic Horn
theories which lead to decidable approximations for monadic (equational) types. The
unsatisfiability of these types with respect to the approximations allows for an effective
blocking of clauses which contain monadic (equational) type information.

Corollary 4.0.7

Let Ny be a set of clauses. Then the static monadic Horn theory of IVy is a static approx-
imation for monadic (equational) types. Let Ny, N1, No, ... be a (weakly) fair theorem
proving derivation. The sequence of dynamic monadic Horn theories #; of N; is a dynamic
approximation for monadic (equational) types.

We may refer to the static or dynamic monadic Horn theory of a set N of clauses
simply by the monadic Horn theory of N.

4.1 Introduction to Sort Theories

We study so-called sort theories which are a particular form of monadic Horn theories with-
out equality. By a sort theory we mean what has been called the “relativization of a sort
theory” in (Weidenbach 1998), see the example below. A particular refinement of ordered
resolution with selection called the sort resolution calculus (Weidenbach 1996a) serves as
a general decision procedure for the satisfiability of monadic types with respect to a sort
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theory. The sort resolution calculus is based on a particular data structure of the clauses
where certain negative monadic literals are represented separately as sort constraints of
the clauses. This notion allows for a technically simpler presentation of a particular com-
bination of the atom ordering and the selection strategy in the sort resolution calculus.
Thus sort constraints are simply convenient but not essential.

Definition 4.1.1 (Sort Constraint)
A conjunction ¥ of monadic atoms is called a sort constraint.

Note that the similarity of sort constraints and monadic types is coincidental as the
concept of sort constraints does not naturally carry over to monadic equational types which
can be decided by (basic) sorted superposition (Jacquemard et al. 1998a), c.f. Section 6.3,
6.7, and 7.1. In contrast to sort constraints, the type of a clause C' denotes which part
of C may be responsible for an effective blocking with respect to a decidable theory. We
distinguish sort constraints and monadic types as particular data structures to obtain, on
one hand, decision procedures and, on the other hand, to effectively control soft typing.

Definition 4.1.2 (Sorted Clause)
Let A — A be a clause. Let ¥ C A be a multiset of monadic atoms in A. We write A — A
as

UIT— A
where I' = A\ U. We call ¥ ||[T" — A a sorted clause where ¥ is the sort constraint.
A sorted clause ¥ ||T" — A is logically equivalent to the clause U, ' — A.

Example 4.1.3

If all atoms in a sort constraint are of the form S(z) with S a monadic predicate and z a
variable then clauses are relativizations of clauses containing sorted variables (Weidenbach
1998). For example, the sorted clause R(zg,ys) — P(zs) where zg is a variable of sort
S corresponds via relativization to the sorted clause S(z), S(y) || R(z,y) — P(z) that is
logically equivalent to the clause S(z), S(y), R(z,y) — P(z).

Resolution inferences, as defined in the sort resolution calculus, can be restricted to side
premises with solved sort constraints. This guarantees a particular form of the involved
side premises which later provides for a simple termination argument of sort resolution.
Conversely, unsolved sort constraints are selected, while resolution is applied to transform
the sort constraint into solved form.

Definition 4.1.4 (Solved Sort Constraint)

A sort constraint ¥ in a clause ¥ ||T" — A is called solved, if each occurrence of a term in
U is a variable & and there is at least one occurrence of x in I" or A such that x occurs
as the argument of a function. A sort constraint ¥ in which each occurrence of a term in
U is a variable is called non-alternating whenever, for all T(z),T'(y) € ¥, T # T' implies
that x # y. Otherwise, we may call ¥ alternating.
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The notion of “sort declarations” has been originally motivated within the area of
sorted unification, c.f. (Weidenbach 1996a). Here, by a sort declaration, we mean the
relativized version of a “sort declaration” in the traditional sense, i.e. a sort declaration is
a certain form of a sorted Horn clause.

Definition 4.1.5 (Sort Declaration)

A sorted clause Si(z1),...,Sn(zn) || — S(¢) is called a sort declaration if either the sort
constraint S1(z1),...,Sn(x,) is solved, or else t is a variable witht =21 = ... = z,. A
sort declaration is called a term declaration, if ¢ is not a variable and a subsort declaration,
otherwise. A subsort declaration is called ¢rivial if n = 0. A term declaration of the form
¥ || — S(t) where ¥ is non-alternating is called non-alternating. Otherwise, we may call
a term declaration alternating. A sort declaration is called shallow (linear, semi-linear) if
t is shallow (linear, semi-linear). Sort declarations as well as subsort declarations are also
called declarations.

Note that non-trivial subsort declarations have an unsolved sort constraint. We arrive
at the formal definition of a sort theory, which is again the relativization of a “sort theory”
in the traditional sense, i.e. a sort theory is a finite set of sort declarations.

Definition 4.1.6 (Sort Theory)

A sort theory S is a finite set of declarations. S is called shallow (linear, semi-linear) if
all sort declarations in § are shallow (linear, semi-linear). S is called non-alternating if S
does not contain any alternating term declarations and non-trivial subsort declarations.
Otherwise, we may call S alternating.

Note that, in general, a sort theory is a monadic Horn theory but not vice versa while
a shallow and/or linear sort theory is a semi-linear sort theory but not vice versa. The
motivation of this classification is to distinguish shallow and semi-linear sort theories.
We demonstrate that (non-linear) shallow sort theories are decidable and that semi-linear
sort theories can be effectively transformed into essentially equivalent (non-linear) shallow
sort theories. Using this transformation, we can extend the decidability result to semi-
linear sort theories. The notion of alternation is inspired by alternating tree automata
which are considered in Section 4.2. Note that a non-alternating sort theory contains only
declarations with solved sort constraint. Monadic Horn theories, in general, do not comply
with the restriction of sort theories. Sort Abstraction removes the improper information
and transforms a monadic Horn theory H (without equality) into a sort theory S in such
a way that the minimal model 7 is an upper approximation of 7.

Definition 4.1.7
The following abstraction is called Sort Abstraction:

S1(z1),... ,Sn(xn), T — S(t)

Abstract

where (i) S1(z1),...,Sn(zn) is maximal such that it contains only monadic atoms of the
form T'(x) with x € vars(S(t)).
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Sort Abstraction removes certain monadic atoms which occur negatively in the an-
tecedent of a clause. We present a better approximation in this regard in Chapter 5.
However, there is a trade-off for decidability, since the approximation requires then all
clauses to be linear declarations.

Proposition 4.1.8

Let # be a monadic Horn theory without equality. The result of an exhaustive application
of Sort Abstraction to # is a sort theory S while the minimal model T° of S is an upper
approximation of the minimal model T7 of .

Proof By the construction of Sort Abstraction it follows immediately that any exhaustive
application of the rule is finite and results in a sort theory. The minimal model TS is in
fact an upper approximation of T since all clauses with positive literals are abstracted
into § while only negative literals are removed. |

In the sequel, we call a sort theory & which has been obtained by an exhaustive
application of Sort Abstraction to the static or dynamic monadic Horn theory # of a set
N of clauses the sort theory of N. In order to emphasize that S has been obtained from
H we may also say that S is the static or dynamic sort theory of N, respectively. The
following corollary is an immediate consequence of Proposition 4.1.8 and Corollary 4.0.7.

Corollary 4.1.9

Let Ny be a set of clauses without equality. The static sort theory of Ny is a static
approximation for monadic types. Let Ny, N1, N, ... be a fair theorem proving derivation.
The sequence of dynamic sort theories of each NV; is a dynamic approximation for monadic

types.

4.2 Tree Automata

We shall relate (non-linear) shallow sort theories to finite (bottom-up) tree automata
as demonstrated by Weidenbach (1998) in a comprehensive discussion of the systematic
correspondence between various sort theories and distinct classes of tree automata. The
automata approach can be seen as an equally powerful concept as the representation
of sort theories by monadic Horn clauses. In Section 6.2, however, we show that the
automata approach does not capture the satisfiability problem with respect to so-called
sorted shallow equational theories whereas the generalization of monadic Horn clauses
with equality in combination with sorted superposition does. There is also a relation to
set constraints which we, however, do not consider here and instead refer to (Charatonik
& Podelski 1998, Weidenbach 1996a).

We adopt a definition of tree automata by means of Horn clauses. This definition,
though non-standard, is equivalent to the original definition by Thatcher & Wright (1968)
and Doner (1970). The language accepted by a tree automaton is a set of ground terms.
Typical questions related to tree automata are closure properties under boolean operations
like union, intersection, or complementation, and non-emptiness or finiteness tests.
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Definition 4.2.1 ((Alternating) Tree Automaton)

An alternating tree automaton A is a finite set of linear shallow term declarations of the
form Si(z1),...,Sn(zn)|| — S(f(z1,...,z,)) with n > 0 and subsort declarations of
the form Si(z),...,Sm(z)| — S(z) with m > 1. We call A a (non-alternating) tree
automaton if A does not contain any subsort declarations.

We denote the class of (alternating) tree automata by Rec and call a tree automaton a
Rec automaton. Following tree automata terminology, the monadic predicates are called
states and the term declarations of A are transition rules or simply transitions. Subsort
declarations of the form Si(z),... ,Sm(z)|| — S(z) with m > 1 correspond to so-called
alternation rules whereas subsort declarations of the form S(z)|| — T'(x) correspond to
so-called e-transitions. Note that e-transitions are not included in our definition of tree
automata. However, any (non-alternating) tree automaton with additional e-transitions
can be transformed in polynomial time into an equivalent automaton which contains only
non-alternating linear shallow term declarations in compliance with Definition 4.2.1.

A ground term ¢t is recognized by an (alternating) tree automaton A in a state S
if AE S(t). Let S be a subset of all states of A. We call the states in S the final
states (final predicates) of A. A ground term ¢t is recognized by A with respect to St
if ¢ is recognized by A in a final state in S¢. The set L(A) of ground terms which are
recognized by a Rec automaton A with respect to the set of final states of A is called
the language recognized by A. A set L of ground terms is called a recognizable language
with respect to Rec if there is a Rec automaton such that L = L(A). By Rec, we
ambiguously denote the class of languages which are recognizable with respect to Rec.
The Rec class is closed under boolean operations. A non-alternating tree automaton A
is called (bottom-up) deterministic whenever A does not contain any two rules of the
form U | — S(f(z1,...,2zn)) and ¥ || — T(f(z1,...,2,)). Every recognizable language
in Rec is recognized by some (bottom-up) deterministic tree automaton 4 such that a
ground term cannot be recognized by A in more than one state. A non-alternating tree
automaton A is called (top-down) deterministic whenever ¥ = & for any two rules in A
of the form ¥ | — S(f(z1,...,zn)) and ®| — S(f(z1,...,zn)). Every recognizable
language in Rec is recognized by some completely specified tree automaton A such that
every ground term is recognized by A at least in one state. The following problems have
extensively been studied in the area of tree automata.

Definition 4.2.2 (Non-emptiness Problem)
The non-emptiness problem of Rec is the problem whether the language L(.A) recognized
by a tree automaton A is non-empty, i.e. whether L(A) # 0.

Definition 4.2.3 (Membership Problem)
The membership problem of Rec is the problem whether a given ground term ¢ is recognized
by a tree automaton A, i.e. whether ¢ € L(A).

Definition 4.2.4 (Intersection Non-emptiness Problem)
The intersection non-emptiness problem of Rec is the problem whether the intersection of
the languages recognized by a finite sequence of tree automata A, ... , A, is non-empty,
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i.e. whether L(A;)N...NL(Ay) # 0.

In the sequel, we may use straightforward adaptions of the above problems for other
types of automata or theories as well. The non-emptiness problem of Rec is decidable
in linear time and the membership problem of Rec is decidable in polynomial time. The
intersection non-emptiness problem of Rec is EXPTIME-complete (Frihwirth et al. 1991,
Seidl 1994, Veanes 1997). In particular, Frithwirth et al. (1991) merely sketch the proof idea
which is based on the fact that exponential-time algorithms can be simulated by alternating
polynomial-space algorithm (Chandra, Kozen & Stockmeyer 1981). Seidl (1994) shows the
EXPTIME-completeness for deterministic (top-down) tree automata. Veanes (1997) gives
a detailed proof of EXPTIME-completeness for deterministic (bottom-up) tree automata
which implies the EXPTIME-hardness already for deterministic tree automata. For a
comprehensive discussion of the complexity of (non-alternating) tree automata see (Veanes
1997). The following proposition states that (alternating) linear shallow sort theories are
essentially (alternating) tree automata up to a polynomial increase in size.

Proposition 4.2.5

Any (alternating) tree automaton is an (alternating) linear shallow sort theory while any
(alternating) linear shallow sort theory S can be transformed into an (alternating) tree
automaton A where the set of final states of A is the set of predicate symbols which occur
in § such that L(A) = {t | S F S(¢)} and size(.A) is polynomially bounded with respect
to size(S).

Proof Given an (alternating) linear shallow sort theory S, we have to transform all clauses
in § which are trivial subsort declarations and term declarations that do not conform
with transition rules. A trivial subsort declaration || — S’(x) can be represented by
a so-called universal tree automaton A, that simply recognizes all ground terms in the
state S’. Then A, has only one state S’ while size(.A,) is linear in the number of function
symbols which occur in the clauses of S. A linear shallow term declaration of the form
¥ — S(f(...,z,...) with ¢ vars(¥) can then be replaced by the term declaration
S'(z), || — S(f(...,z,...). An alternating linear shallow term declaration of the form
U, ®| — S(t) where ¥ is maximal such that ¥ is of the form Si(z),... , Sp(z) for some
x € vars(t) can be represented by a modified term declaration T'(z),® || — S(¢) and an
alternation rule Sy(z),...,Sn(z)| — T(z). [ |

The representation of tree automata by monadic Horn clauses immediately shows the
close relationship of the automata-theoretic approach and the sort-theoretic approach
though there are stronger limits for the automata-theoretic approach when incorporating
semantic equality, c.f. Section 6.2. However, we shall also relate non-linear shallow sort
theories to a particular generalization of tree automata. Bogaert & Tison (1992) introduce
a generalized form of Rec, automata with (dis-)equality constraints in the transition rules.
A (dis-)equality constraint is a boolean combination of syntactic equalities. The class
Recy of recognizable languages with respect to Recy is a strict superclass of Rec. The
constraints impose (dis-)equality tests in transition rules between brother subterms. A



§ 4.2 TREE AUTOMATA 91

strict subclass of Rec automata is the class of Rec— automata without negation in the
constraints. Non-linear shallow term declarations may represent Rec— automata in the
following way. Suppose that A is a Rec— automaton. We may transform the constraint in
each transition rule of A into a disjunction E; V...V E, of conjunctions E; of equations.
Then we generate n copies of the transition rule containing the respective conjunction F;
of equations. Note that the size of the resulting automaton is exponential in the size of
the constraints of the original automaton. However, in particular, the hardness results
mentioned below have been obtained already for the class of automata which contain only
conjunctions of equations.

Definition 4.2.6 ((Alternating) Rec— Automaton)

A finite set of (non-linear) shallow term declarations of the form Si(z1),... ,Sn(zn)| —
S(f(x1,...,z,)) with n > 0 and subsort declarations of the form Si(z),...,Sn(z)| —
S(z) withm > 1is called an alternating tree automaton A with equality constraints between
brother subterms. We call A a (non-alternating) tree automaton with equality constraints
between brother subterms if A does not contain any subsort declarations.

The variables x;, which are not necessarily distinct, sufficiently represent the conjunc-
tion of syntactic equalities. The notion of recognized ground terms, languages, determin-
ism, and completeness is the same for (alternating) tree automata with equality constraints
between brother subterms as for (alternating) tree automata. The class Recy is strictly
larger than Rec—, e.g., the set of non-well-balanced trees (terms) is recognizable by a Rec
automaton but not by a Rec— automaton (Bogaert & Tison 1992).

Note that Rec: is closed under boolean operations, under determinism and com-
plete specification, whereas Rec— is closed under union and intersection but not under
complementation. The non-emptiness problem of Rec, is decidable though EXPTIME-
complete (Comon et al. 1997) already for automata which contain at most a conjunction of
equations in each transition rule and no disequality constraints. Bogaert & Tison (1992)
show that the same problem is NP-hard for non-deterministic Rec; automata and that it
can be solved in polynomial time for deterministic Rec automata. We obtain, as an im-
mediate corollary of Proposition 4.2.5, that (alternating) non-linear shallow sort theories
are essentially (alternating) Rec— automata up to a polynomial increase in size.

Corollary 4.2.7

Any (alternating) Rec— automaton is an (alternating, non-linear) shallow sort theory while
any (alternating) linear shallow sort theory & can be transformed into an (alternating)
Rec— automaton A where the set of final states of A is the set of predicate symbols which
occur in § such that L(A) = {¢t | S E S(¢)} and size(.A) is polynomially bounded with
respect to size(S).

In Section 6.2, we show that the tree automata approach even with (dis-)equality
constraints between brother terms, however, does not capture the satisfiability problem
with respect to so-called sorted shallow equational theories whereas the generalization of
monadic Horn clauses with equality in combination with sorted superposition does.
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4.3 Decidability

In order to show that satisfiability of monadic types with respect to (non-linear) shallow
sort theories is decidable, we employ sort resolution which is a particular instance of
ordered resolution with selection. We prefer a specialized version of ordered resolution
in order to abstract from the combination of a particular admissible atom ordering and
a selection strategy for sort constraints. Under the proviso that the admissible atom
ordering is compatible with the subterm property, sort resolution is refutationally complete
for monadic Horn theories without equality where the antecedent literals of every clause
have been transformed into the sort constraint. An atom ordering which is induced by an
admissible term ordering is compatible with the subterm property. We assume admissible
literal orderings of Definition 3.1.14 and admissible clause orderings of Definition 3.1.15.
The sort selection strategy selects the unsolved part of a sort constraint with a particular
priority on non-variable terms. More precisely, literals containing non-variable terms are
selected first, followed by so-called empty sorts, i.e. literals containing variables that do
not occur in the non-constraint part of the clause. Literals of subsort declarations are
selected last.

Definition 4.3.1 (Sort Selection)

Let C be a sorted clause of the form ¥ | — II where II is either a monadic atom 7'(u) or
empty. A literal occurrence S(¢) € ¥ is selected whenever (i) ¢ is a non-variable term, or
else (ii) ¥ contains only variables and ¢ ¢ vars(II), or else (iii) ¥ contains only variables
(in particular, ¢ is a variable) with ¢ = u. No other literal occurrence in C is selected. We
call this selection strategy sort selection. A literal occurrence which is selected by sort
selection is called sort selected.

The sort resolution calculus only consists of the Sort Constraint Resolution rule. Fac-
toring is not required for Horn clause sets.

Definition 4.3.2 (Sort Constraint Resolution)
The following inference is called Sort Constraint Resolution:

®| — S(s) S(u),¥||A—T1I

Inf
e &0, Vo ||Ao — Ilo

where (i) o is the most general unifier of s and u, (ii) ® is solved, (iii) S(u) is sort selected,
and (iv) II is either empty or contains exactly one atom.

The refutational completeness of sort resolution on sets of sorted monadic Horn clauses
with empty antecedents is a consequence of the results in (Bachmair & Ganzinger 1994).
In Chapter 5, we employ Sort Constraint Resolution among other rules also for sets of
sorted clauses with non-empty antecedents. The model functor for ordered resolution
provides for an appropriate model construction also for sort resolution. The adaption to
sorted clauses is straightforward.



§ 4.3 DECIDABILITY 93

Corollary 4.3.3 (Bachmair & Ganzinger (1994))

Let I be the model functor for ordered resolution. Let H be a set of sorted monadic Horn
clauses with empty antecedents. We assume that equality is not present in H. Suppose
that H is saturated by sort resolution. Then either H contains the empty clause, or else
I is a model of H.

Note that if I is a model of a saturated set H, then I corresponds to the minimal
model TH' of H' (Weidenbach 1999) where H' contains the term declarations and trivial
subsort declarations of H. The clauses in H \ H' have unsolved sort constraints which
implies that these clauses cannot be productive.

In order to show that the saturation process by sort resolution always terminates for
shallow sort theories, we need sort condensing which is a particular instance of condensing
for sort constraints. Condensing is essentially factorization where the conclusion subsumes
the premise.

Definition 4.3.4 (Sort Condensing)
The following simplification is called Sort Condensing:

S(u), S(u), T||A =11
S(u),T||A—1I

Simplify

where (i) u is a possibly non-variable term.

Sort Condensing is a quite restricted form of general condensing. Sort Condensing can
be done in quadratic time in the size (number of symbols) of the sort constraint. It is an
admissible simplification rule since any premise of Sort Condensing is redundant in the
presence of the conclusion. This is also the case for the more restrictive variant of redun-
dancy which is needed for (basic) sorted superposition/paramodulation, c.f. Section 6.3,
6.7, and 7.1. There is a certain class of shallow monadic Horn clauses which includes
shallow sort theories and which is closed under sort resolution. However, this class is,
in general, not finite. Assuming a finite signature Sort Condensing identifies sufficiently
many clauses to demonstrate effectively that this class is finite up to Sort Condensing and
variant clauses.

Similarly, Joyner Jr. (1976) characterizes a bound term depth and a bound cardinality
of variable components as sufficient conditions for a class of clause sets to be finite up to
condensing and variant clauses. Any set of clauses with respect to some finite number
of predicate and function symbols, where the depth of terms as well as the cardinality of
variable components of these clauses is bound by some constant, is finite up to condensing
and variant clauses. For our purpose, Sort Condensing already provides for a sufficient
contraction of clauses.

Lemma 4.3.5

Let S be a (non-linear) shallow sort theory. Then & can be finitely saturated by sort
resolution and Sort Condensing. The productive clauses in the saturated set form a
(non-linear) shallow sort theory which consists of term declarations and trivial subsort
declarations.
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Proof The only clauses in a shallow sort theory which have an unsolved sort constraint are
non-trivial subsort declarations. Only descendants of non-trivial subsort declarations are
involved as main premises in Sort Constraint Resolution inferences. Conversely, the side
premise C’ of a Sort Constraint Resolution inference must have a solved sort constraint,
i.e. C' is either a (non-linear) shallow term declaration or a trivial subsort declaration.
The idea of the proof is then to show that (i) there is a certain subclass of shallow monadic
Horn theories which includes § and which is closed under Sort Constraint Resolution and
(ii) this class is finite with respect to Sort Condensing and variant clauses. For (i) we shall
argue that the following class of clauses is closed under Sort Constraint Resolution.

Ti(t),... , Tu(t), S1(z1),- .. , Sm(zm) || — S(&)

where n and m are possibly zero and t is a shallow term. Note that the sort constraint
Si1(z1),. .., Sm(zm) does not have to be solved and {z1,...,z,} C vars(t). We call a
clause of the above form the invariant.

Obviously, the class includes any (non-linear) shallow sort theory. Any inference that
involves an invariant as the side premise is only possible if n = 0 and the sort constraint
of the invariant is solved, i.e. if the invariant is a (non-linear) shallow term declaration
or a trivial subsort declaration. Thus an invariant that is involved as the main premise
may only be reduced to another invariant by a (non-linear) shallow term declaration or
by a trivial subsort declaration which implies (i). Since any invariant contains at most
one shallow term t, there only finitely many invariants over a finite signature up to Sort
Condensing and variant clauses, which implies (ii). |

Non-alternating (non-linear) shallow sort theories as well as (alternating, non-linear)
shallow sort theories without non-trivial subsort declarations are already saturated by
sort resolution. In other words, saturation by sort resolution is the transformation of an
alternating sort theory (tree automata) into an essentially equivalent sort theory with-
out non-trivial subsort declarations (alternation rules). However, the alternation in the
saturated theory is then encoded in alternating term declarations.

Proposition 4.3.6

Let S be an alternating (non-linear) shallow sort theory. Then S can be finitely saturated
by sort resolution and Sort Condensing in simply exponential time with respect to size(S)
resulting in a sort theory &’ such that size(S') is at most simply exponentially larger than
size(S).

Proof We show that the number of clauses may increase at most simply exponential where
each new clause is polynomially bound in size. Given an alternating (non-linear) shallow
sort theory S over a signature X, we may assume that X contains only the function symbols
which occur in clauses in §. Let n be the number of non-trivial subsort declarations in
S and let n, be the number of distinct monadic atoms in the sort constraints of the n
declarations. Suppose that we compute the “reachability” closure among the n non-trivial
subsort declarations. More precisely, the number of non-trivial subsort declarations which
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can be derived from the n non-trivial subsort declarations by an exhaustive application
of sort constraint resolution (when selecting all negative sort constraint literals) is at
most n * 2™ denoted by ng. We consider ny as a conservative approximation of the
number of clauses which are actually derived in a recursive process from non-trivial subsort
declarations and new term declarations.

Let m be the number of function symbols in 3 and let k& be the maximal arity among all
arities of the function symbols in X. The instantiation of the non-trivial subsort declaration
Si(z),...,Si(z)| — S(z) with the largest sort constraint by a term f(y1,... ,yx) results
in a clause C of the form Sy(f(Ut, -~ yuk))s-- » i Wrs - s w) | = S (wry- - 18):
Clearly, there are at most ng * m distinct (linear) instances of this form of the ng non-
trivial subsort declarations and even ng * m % 281 distinct non-linear instances. Let r
be the number of term declarations in S of the form ¥ || — S1(f(y1,--- ,¥k)). Thus sort
constraint resolution may derive at most r conclusions from C' and these declarations.
Suppose that r is the maximal number of term declarations of the above form for all
monadic atoms which occur in the sort constraint of a non-trivial subsort declaration.
Then there are at most [ conclusions derivable from C' and the term declarations in S.
We conclude that there are at most [" * ng * m new term declarations derivable by sort
constraint resolution in a linear theory. Note that {" reduces to a polynomial whenever
the set of term declarations in & corresponds to a top-down deterministic automaton.

In a non-linear theory at most I” * ng * m % 2~ new term declarations are derivable.
Note that the exponential increase caused by non-linear term declarations can polyno-
mially be represented by syntactic equality constraints which allow, in addition to the
conjunction, also the disjunction of equations. |

The previous proposition states that saturation by sort resolution transforms an alter-
nating (non-linear) shallow sort theory S into an equivalent at most simply exponentially
larger theory &’ which does not contain non-trivial subsort declarations. We show that
a subsequent transformation of the remaining alternating term declarations in &’ results
in an essentially equivalent non-alternating theory S” which is still simply exponentially
larger than the original theory S§. Intuitively, the complexity of the second transformation
depends only on the number of “states” in the theory and not on the number of clauses.
The idea is inspired by the work of Devienne, Talbot & Tison (1997) and is based on a
subset construction on the powerset of all monadic predicate symbols which occur in §.
Consider the following inference rule.

Definition 4.3.7 (State Union)
The following inference is called State Union:

T — Se(s) || — Se(u)

Tnf
nier Vo, 80| — Seua(s)o

where (i) o is the most general unifier of s and u.

From an automata-theoretic point of view, if the same input symbol can be read in
two states Sy and Sg then we may assume that this symbol can be read in a state Syus
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which is supposed to recognize the intersection of all ground terms recognized in Sy and
Ss. The exhaustive application of State Union is continued by an exhaustive application
of the following simplification rule which actually replaces the premise by the conclusion.

Definition 4.3.8 (De-Alternation)

The following simplification is called De-Alternation:

Sq:.(ll?), S‘I”(w)a o' || —1I
S(I)UCI"("E>) \I!I || —II

Simplify

Obviously, De-Alternation encodes the alternation over one variable into a single state.
In this way, an alternating (non-linear) shallow sort theory &’ without non-trivial subsort
declarations can be transformed into a non-alternating theory 8” such that the minimal
model of &' is essentially equivalent to the minimal model of S”.

Proposition 4.3.9

Let S be an alternating (non-linear) shallow sort theory without non-trivial subsort
declarations and let P be the set of predicate symbols which occur in §. Then §
can be transformed into a non-alternating (non-linear) shallow sort theory &' such that
() T8(P)N...NTS(P,) = T‘SI(S{PI,___,Pn}) for any set of predicate symbols Pi,... ,P, € P
and (ii) size(S') is at most simply exponentially larger than size(S) with respect to the
cardinality of P.

Proof Given an alternating (non-linear) shallow sort theory S without non-trivial subsort
declarations, we may assume that any predicate symbol P € P is equivalent to the pred-
icate symbol S¢p;. Suppose that S’ has been obtained by an exhaustive application of
State Union to the clauses in § followed by an exhaustive application of De-Alternation.
The proof of (i) can be done by a simple induction on an admissible atom ordering which is
compatible with § and &', respectively. For (ii) observe that only State Union introduces
new clauses which implies that &’ is larger than S by at most 2/P| more clauses. |

The idea of State Union and De-Alternation marks only the beginning of possible
improvements to represent efficiently (alternating) theories. For instance, so-called bi-
nary decision diagrams (BDD) (Bryant 1986, Bryant 1992) may be used, in practice, as
an appropriate data structure for an efficient computation of the satisfiability status of
(monadic) types.

The next theorem summarizes the discussion and states that the theory of monadic
types over shallow sort theories is decidable. Any shallow sort theory may be finitely
saturated by sort resolution such that the candidate model of the saturation is the minimal
model of the theory. By a subsequent saturation with sort resolution between the saturated
theory and a negated monadic type we can effectively compute the satisfiability of the type
with respect to the theory.

Theorem 4.3.10 (Weidenbach (1998))
Let S be a (non-linear) shallow sort theory. The theory Fs of monadic types over S is
decidable.
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Proof Let 3z1,... ,z, (¥) be a monadic type in Fs where {x1,... ,x,} is the set of free
variables in ¥. Note that S F 3x1,... , 2, (¥) holds if and only if 75 F Jzy,... ,z, ()
holds if and onmly if 7° ¥ Vzi,...,z, (-¥) holds. In order to check whether S F
dz1,... ,2, (¥) holds we add as a goal the clause | — to the saturated set &' and
saturate the result by Sort Constraint Resolution. By Lemma 4.3.5 § can be finitely sat-
urated into §’. Subsequently, only steps between clauses in &’ and the goal are required.
Moreover, since the goal is purely negative we can delete all clauses with unsolved sort
constraints from &’. The saturation process terminates since any application of Sort Con-
straint Resolution either reduces the multiset of all term depths or the overall number of
variables. |

Example 4.3.11

We demonstrate the inference process of soft typing for ordered resolution triggered by
static and dynamic sort theories. We assume that a typing function identifies the sort
constraint of each clause C as the monadic type of C. Hence, the notion of blocked
types induces the notion of blocked sort constraints, i.e. a sort constraint is blocked if it is
false with respect to the static or dynamic sort theory. For simplicity, we use the clause
representation by sorted clauses in order to highlight the blocking part of a clause. For
Ordered Resolution and Ordered Factoring inferences, the clauses are assumed to be in
the standard format. Suppose that >, is an admissible atom ordering induced by the
ordering R > S > T > @ on the predicate symbols where >, is compatible with the
subterm property. Let N be a set of clauses as listed in the following table. Maximal
literals are marked by *.

(1) I —Q(a)"

(2) I — R(a,a)"

(3) | —5(a)",T(a)
(4) Q@),T(z) || R(z,z)*  —S5(z)

() S(@) || R(z,y)*  —=T(y)

(6) T(y) |l — R(z, f(f ()"
(7) T(x) || R(z, f4(z))* —

The dynamic sort theory Sp with respect to N consists of the two facts Q(a) and S(a)
generated from the clauses (1) and (3), respectively. The sort constraints of clauses (4),
(6), and (7) are blocked, because T' is empty with respect to Sp. There is only one
Ordered Resolution step from (2) and (5) yielding (after resolution with (3) on S(a) and
factorization of T'(a))

(8) | —T(a)*

Now clause (3) becomes redundant and Sp changes to {Q(a),T(a)}. The clauses (4),
(6), and (7) are no longer blocked. Nevertheless, the Ordered Resolution inferences from
(4) and (6), and (6) and (7) result in clauses with a blocked sort constraint. Thus both
inferences are blocked since any ground instance of the inferences is blocked, c.f. the lifted
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version of blocked inferences in Section 3.5. An appropriate approximation of this notion
using sorted clauses is to consider the sort constraint of the conclusion. We may assume
that an inference is blocked if the sort constraint of the conclusion is blocked. The only
possible inference is from (2) and (4) eventually generating

(9) | —S(a)*

The atom S(a) is added to Sp and now the inference from (5) and (6) is no longer blocked,
resulting in the clause

(10) T(z)|l = T(f(f(2)))*

The clause (10) is added to Sp and an Ordered Resolution step from (6) and (7) results
in the clause T'(z), T(f(f(x)))|| — from which the empty clause in derivable in three
Ordered Resolution steps.

With respect to our above example, the static sort theory Sg contains the ground
facts Q(a), S(a), T(a) and the two clauses Q(z),T(z)|| — S(x), || = T(y). The sort T
collapses to include arbitrary elements. Nevertheless, the possible inference from (4) and
(6) results in a sort constraint that is unsolvable with respect to Sg allowing to delete the
conclusion of this inference.

By relating (alternating) linear shallow sort theories to tree automata, we obtain the
following complexity result.

Theorem 4.3.12
The satisfiability problem of the theory of monadic variable types over (alternating) linear
shallow sort theories is EXPTIME-complete.

Proof We show that the EXPTIME-hardness holds already for non-alternating linear
shallow sort theories by a reduction of the intersection non-emptiness problem of tree
automata (Veanes 1997). Given n tree automata Aj,...,A, we may assume without
loss of generality that the state sets of the automata are mutually disjoint and that each
automaton A; with 1 < i < n has exactly one final state St,. We collect the transition rules
of all automata in a non-alternating linear shallow sort theory &, c.f. Proposition 4.2.5.
Then L(A;) N ... N L(A,) # 0 if and only if S F S (z),..., S, ()| —. Note that
the intersection non-emptiness problem does not remain EXPTIME-hard if the number
of automata is bounded which implies, in particular, that the satisfiability problem is
EXPTIME-hard if the number of monadic predicates is not bounded.

We show that the problem is in EXPTIME. Given an alternating linear shallow sort
theory & and a monadic variable type 3z (¥) from the theory over S, we add the non-
trivial subsort declaration ¥ || — Sg(z) to S and transform the result in simply exponential
time into a non-alternating linear shallow sort theory &’ due to (Devienne et al. 1997) or,
alternatively, by Proposition 4.3.6 and 4.3.9. We may assume that Sf does not occur in S.
Devienne et al. (1997) demonstrate that a so-called quasi-automaton can be transformed
in simply exponential time into an equivalent (bottom-up deterministic) tree automaton.
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The class of quasi-automata strictly embeds the class of alternating linear sort theories.
By Proposition 4.2.5, 8’ can be transformed in polynomial time into an equivalent tree
automaton A where we assume that St is the only final state of A. Then § F Jz (¥) if
and only if L(A) # (. Note that the non-emptiness test of tree automata is decidable in
linear time. |

The above theorem implies the EXPTIME-hardness of the satisfiability problem not
only of the theory of monadic variable types but also of the theory of (general) monadic
types over (alternating) non-linear shallow sort theories.

Corollary 4.3.13
The satisfiability problem of the theory of monadic (variable) types over (alternating,
non-linear) shallow sort theories is EXPTIME-hard.

In the proof of Proposition 5.2.8, we will show the EXPTIME-completeness of the
satisfiability problem of the theory of (general) monadic types over linear shallow type
theories. We obtain as an immediate corollary that the satisfiability problem of the theory
of monadic types over (alternating) linear shallow sort theories is EXPTIME-complete.
The EXPTIME-completeness of the same problem for non-linear theories remains open.

Corollary 4.3.14
The satisfiability problem of the theory of monadic (variable) types over (alternating)
linear shallow sort theories is EXPTIME-complete.

From the perspective of sorted unification, sort resolution implements the test of well-
sortedness and emptiness of sorts, as well as sorted unification (Weidenbach 19964) on
the sort constraint literals. More precisely, the saturation by sort resolution of a shallow
sort theory with a negated ground monadic type corresponds to the test of well-sortedness
whereas a negated monadic variable type is an emptiness test of sorts. Recall that a
monadic variable type is a monadic type with each term in the type being a variable. The
same situation using a negated monadic type with arbitrary terms corresponds to sorted
unification with respect to non-empty “well-sorted” unifiers. In contrast, sorted unifica-
tion may also produce empty “well-sorted” unifiers which is reflected by sort resolution
in the derivation of a monadic type that corresponds to an emptiness test for sorts, as
demonstrated by the following theorem.

Theorem 4.3.15 (Weidenbach (1998))

Let S be a (non-linear) shallow sort theory and let C be a negative clause of the form
Si(t1),... ,Sn(tn) || —. We can derive a clause T1(y1),... ,Tk(yx) || — from C and S by
Sort Constraint Resolution if and only if the sorted unification problem z1 = ¢1,... 2, =
t, has a “well-sorted” most general unifier with respect to the sort theory & where each
x; is new and has the sort S;.

It is important to see that sorted unification does not involve an emptiness test on
the sorts T1(y1), ... , Tk(yx) which explains the difference in complexity compared to the
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satisfiability problem of the theory of monadic types. This emptiness test could express
an intersection non-emptiness test from an automata-theoretic point of view. Using the
following theorem of Weidenbach (1998) in combination with Theorem 4.3.15, we may infer
that the satisfiability problem of the theory of monadic types over (non-linear) shallow
sort theories is NP-hard.

Theorem 4.3.16 (Weidenbach (1998))

Sorted unification in (non-linear) shallow sort theories is NP-complete, finitary and the
number of “well-sorted” most general unifiers is simply exponential in the size of the sort
theory and the unification problem.

If we assume that the number of distinct monadic predicate symbols is fixed, an empti-
ness test for sorts can be done in polynomial time following another theorem of Weidenbach
(1998).

Theorem 4.3.17 (Weidenbach (1998))
Suppose that the number of sorts is constant. Then emptiness of sorts with respect to
(non-linear) shallow sort theories can be decided in polynomial time.

4.4 Semi-linear Approximations

The theory of monadic types over shallow sort theories is decidable. This result has been
improved by Weidenbach (1996 a) using a so-called (Semsi-linear) Flattening transformation
of certain non-shallow sort theories into essentially equivalent shallow sort theories. The
transformation introduces a new monadic predicate for each occurrence of a proper non-
variable subterm in a term declaration where the number of new symbols is linear in the
number of function symbols which occur in the sort theory. The minimal model of the
resulting shallow sort theory is at least an upper approximation of the minimal model of
the original sort theory. Flattening replaces in a top-down manner each occurrence of a
non-variable proper subterm ¢; by a variable £ where an additional sort constraint on
restricts the ground instances of  to the “well-sorted” ground instances of . Note that
Flattening abstracts from non-linear non-shallow occurrences of variables.

Definition 4.4.1
The following abstraction is called Flattening:

U || = P(f(te,... ,tiy.-. ,tn))
U = S, ()
St (), @, 0" || = P(f(t1,-.. ,2,--- ,tn))

Abstract

where (i) ¥, ¥’ is solved, (ii) t; is a non-variable term, (iii) ¥’ is maximal such that
vars(¥') C wars(t;), (iv) ¥” C ¥’ is maximal such that ¥” is solved in the conclusion,
(v) S, is a new monadic predicate, and (vi)  is a new variable.
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Example 4.4.2

Let S be a sort theory which contains a term declaration C of the form S(z),S(y)| —
T(f(g(x),9(x),y,y)). An exhaustive application of Flattening to & results in a sort theory
S’ which contains Sg(gc)(z),S!’](w) (), S(w) || = T(f(2,7',y,y)) as the “flattened” version
of C and new declarations of the form S(z) || — Sy(z)(g(z)) and S(z) || — S!'](l,)(g(:c)).

The non-linear shallow occurrences of the variable y are not renamed. S’ is a non-linear
shallow sort theory.

In the sequel, a monadic predicate S; refers to the new predicate which has been
introduced by Flattening for a non-variable term ¢. The newly introduced declarations
represent, from an automata-theoretic point of view, tree automata which recognize in a
state S; exactly the “well-sorted” ground instances of the original term ¢. The following
proposition suggests that Flattening may be applied to arbitrary sort theories. However,
minimal models are preserved only for sort theories in which each term declaration may
contain, beside linear occurrences of variables, also shallow non-linear occurrences of vari-
ables. In other words, all occurrences of variables in term declarations have to be linear
except for shallow occurrences. For arbitrary sort theories the transformation yields a
sort theory whose minimal model is an upper approximation of the minimal model of the
original theory.

Proposition 4.4.3
Let S be a sort theory. Exhaustive application of Flattening to S terminates and results
in a (non-linear) shallow sort theory.

Proof Termination follows from the fact that the Flattening replaces a clause by two
clauses which both have less function symbols than the premise. Flattening is not appli-
cable to a clause that is a shallow declaration, since all terms at depth two of the positive
atom are always variables (if they exist). On the other hand, if the direct subterm of
a positive atom is not shallow, it has a subterm at depth two which is not a variable
and therefore Flattening applies. Hence, Flattening terminates in a shallow sort theory.
Observe that Flattening introduces a new monadic predicate symbol for each occurrence
of a non-variable proper subterm in a term declaration. Thus the number of new symbols
is linear in the number of function symbols which occur in the sort theory. Note that
the result may contain non-linear shallow sort declarations if and only if S contains sort
declarations with non-linear shallow variable occurrences in positive atoms since these oc-
currences are not renamed. |

In the sequel we call a sort theory which has been obtained by an exhaustive application
of Flattening to a sort theory S the flat approrimation of S. We already mentioned that
a flat approximation preserves the minimal model of certain sort theories up to the new
predicates while the minimal model of the flat approximation of arbitrary sort theories
yields an upper approximation of the original minimal model. As a preliminary lemma,
we show that (i) the extension of a new predicate S; in the minimal model of the flat
approximation consists only of ground instances of ¢ and that (ii) these ground instances
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[4

are “well-sorted” with respect to the sort constraints of the original occurrence of ¢.

Lemma 4.4.4

Let S be a sort theory and let Sg be the flat approximation of §. Let I be the minimal
model of Sg. Let t be a non-variable term for which a new monadic predicate symbol .S;
has been introduced by Flattening. Let C' be the immediate conclusion ¥ || — S(t) of
Flattening on ¢. Then for all ground atoms S;(s) which are true in I there is a ground
substitution o such that (i) s = to and (ii) ¥o is true in I.

Proof The proof is by structural induction on terms. Let ¢ be a non-variable term for
which a new monadic predicate symbol S; has been introduced by Flattening. Let Cr be
the final sort declaration ®, ¥’ || — Si(t') in Sp where ¥’ is the maximal subset of ¥ such
that vars(¥’') C vars(t') and @ contains only new atoms introduced by Flattening. For
simplicity we may assume that vars(¥’) C vars(¥). Suppose that there is a ground atom
S¢(s) which is true in I. The statements (i) and (ii) obviously hold if ¢ is a constant since
U is empty in this case. Suppose that ¢ is a non-constant term f(¢,...,t,). Thus ¢’ is a
term of the form f(zi,...,z,). We assume as the hypothesis that (i) and (ii) hold for all
proper non-variable subterms in ¢. It follows that there is a ground substitution 7 such
that Sy(t')7 = Si(s). Note that Sy occurs positively only once in Sp, namely in Cr. Since
I is a model of Cr and ®, ¥’ is solved we have that & C I and ¥'7 C I. Note that &
contains the new atoms S, (z;) for all non-variable terms ¢; in ¢ and thus each S, (z;)7 is
true in 7. By the induction hypothesis we may assume that there is a ground substitution
o such that x;7 = t;o and ¥;0 is true in I for each non-variable term ¢; where each ¥; is
the maximal subset of ¥ such that vars(¥;) C vars(t;). Note that ¥ = ¥' U |J; ¥; up to
factoring. If ¢; is a variable then we may simply let t;0: = x;7 which implies that ¥'c is
true in I. We conclude that s = to holds and Yo is true in 1. |

Flattening may be improved by an identification of exact copies of non-variable sub-
term occurrences. Consider the above example where C is a term declaration of the
form S(z),S(y) || — T(f(9(z),9(z),y,y)). We may identify the occurrences of the sub-
term g(x). Thus the result of an improved flattening of C' is a shallow term declaration
Sg(2)(2),S(y) || — T(f(2,2,y,y)) and only one shallow term declaration for g(x) of the
form S(z)| — Sy(z)(9(x)). More generally, an according adaption of Flattening to the
so-called Semi-linear Flattening improves the abstraction for the semi-linear non-shallow
occurrences of variables.

Definition 4.4.5
The following abstraction is called Semi-linear Flattening:

II,’ \I'I H — A[t]lh
| — Si(2)
St(.’E), \117111" || _>A[p17 v apn/x]

Abstract

where (i) A is a monadic atom, (ii) ¥, ¥’ is solved, (iii) ¢ is a non-variable subterm at
position p; with |p1| = 2, (iv) the positions p, ... ,p, refer to all positions g of ¢ in A with
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lg| = 2, (v) ¥’ is maximal such that vars(¥') C wars(t), (vi) ¥’ C ¥’ is maximal such
that U” is solved in the conclusion, (vii) S is a new monadic predicate, and (viii) z is a
new variable.

The proof of the following proposition on the termination of Semi-linear Flattening is
similar to the proof of Proposition 4.4.3. The complexity for the number of new predicate
symbols is still linear in the number of function symbols which occur in the original sort
theory.

Proposition 4.4.6
Let S be a sort theory. Exhaustive application of Semi-linear Flattening to S terminates
and results in a (non-linear) shallow sort theory.

In the sequel we call a sort theory which has been obtained by an exhaustive application
of Semi-linear Flattening to a sort theory S the semi-linear flat approzimation of S. The
following lemma, on the minimal model properties of the new predicates introduced by
Semi-linear Flattening corresponds to the technical Lemma 4.4.4 for Flattening.

Lemma 4.4.7

Let S be a sort theory and let Sgr be the semi-linear flat approximation of §. Let I be
the minimal model of Sgr. Let ¢t be a non-variable term for which a new monadic pred-
icate symbol S; has been introduced by Semi-linear Flattening. Let C be the immediate
conclusion ¥ || — S¢(t) of Semi-linear Flattening on ¢. Then for all ground atoms Si(s)
which are true in I there is a ground substitution o such that (i) s = to and (ii) Yo is
true in I.

Proof The proof is similar to the proof of Lemma 4.4.4. The important observation for
the extension of Flattening to Semi-linear Flattening is that for a term ¢ only exact copies
of ¢, which occur at the same depth where ¢ occurs, are abstracted into a unique sort. Even
variants of ¢ are abstracted into different sorts, for otherwise the result would already be
too restrictive. |

The (Semi-linear) Flattening abstracts sort theories such that the minimal models
of the approximations are upper approximations of minimal models of the original sort
theories.

Proposition 4.4.8
Let S be a sort theory and let Sp be the (semi-linear) flat approximation of S. The
minimal model J of Sg is an upper approximation of the minimal model I of S.

Proof Let >, be an admissible atom ordering which is compatible with §. The proof
is by induction on >,. Let P(¢)7 be a ground atom which is true in I. Thus there is a
clause C of the form ¥ || — P(¢) in §. Since ¥ is solved we have that ¥r is ground and
true in I. Let Cr be the corresponding flattened clause ®,¥'|| — P(t') in Sp where &
contains the new atoms introduced by (Semi-linear) Flattening and ¥’ is a subset of ¥,
c.f. Definition 4.4.1 (4.4.5). For simplicity we may assume that vars(¥’) C vars(¥). For
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the base case suppose that ¥ is empty which implies that ¥’ is empty. We have to show
that there is a ground substitution o such that ®¢ is true in J and t7 = t'7o. This is
indeed the case using statement (ii) below which can be shown for the base case without
using the hypothesis (i). We assume as the hypothesis that (i) for all A where P(t)7 >, A
if A €I then A € J. Note that ¥r is true in I and by the hypothesis (i) U7 is also
true in J which implies that ¥’7 is true in J. Similar to the base case it remains to show
that there is a ground substitution o such that ®¢ is true in J and t7 = t'70. If t is a
constant then ¥ is empty. This case belongs to the base case. If ¢ is a variable then P(t')7
is obviously true in J since ® is empty and ¥'r is true in J. Suppose that ¢ is a complex
term f(t1,...,tn).

We show that (ii) for each proper non-variable subterm s of ¢ there is a ground atom
Ss(s') which is true in J. The proof is by structural induction on terms. Suppose that
f(t1,-.. ,tp) is a term such that each ¢; is either a variable or a constant. By definition
each constant ¢; is abstracted into a term declaration || — St (¢;) in Sp which implies
that the base case of (ii) holds. Suppose that f(¢i,... ,t,) is a term such that at least one
t; is a complex term. We assume as the hypothesis that the statement (ii) holds for all
proper subterms of the complex terms ¢;. Let D be a term declaration &', %" | — Sy,(t})
in Sg for a complex term t; where ®' contains the new atoms and ¥” is a subset of U,
c.f. Definition 4.4.1 (4.4.5). For simplicity we may assume that vars(¥") C vars(¥). Since
Ur is true in I we have that ¥”7 is true in I. The hypothesis (i) implies that ¥”7 is true
in J. By the hypothesis (ii) there is a ground substitution o such that ®'c is true in J.
Thus Sy, (t;)7o is true in J which implies (ii).

By Lemma 4.4.4 (Lemma 4.4.7), part (i), we may assume that there is a ground
substitution o such that (ii) holds with s’ = so. We conclude that there is a ground
substitution o such that ®¢ is true in J and t7 = t'7o. |

Semi-linear Flattening yields exact approximations for semi-linear sort theories. The
proof of the following proposition actually shows that Flattening yields not only an ex-
act approximation for linear sort theories but also for sort theories in which each term
declaration may contain, beside linear occurrences of variables, also shallow non-linear
occurrences of variables. However, semi-linearity already subsumes this case.

Proposition 4.4.9

Let S be a linear (semi-linear) sort theory and let Sg be the (semi-linear) flat approxima-
tion of §. The minimal model J of Sg is equivalent to the minimal model I of § up to
the new atoms introduced by (Semi-linear) Flattening.

Proof The direction I C J has been shown in the proof of Proposition 4.4.8. In order
to show that J C I up to the new atoms suppose that >, is an admissible atom ordering
which is compatible with Sp. The proof is by induction on >,. Let P(#')7A be a ground
atom which is true in J where P is not a new symbol. Thus there is a clause Cr of the
form ®,¥'|| — P(t) in Sp where t' is a shallow term and ® contains only new atoms
introduced by (Semi-linear) Flattening. Since Cr is a sort declaration we may assume
that ®\ C J and ¥'7 C J. Let C be the according original clause ¥ || — P(t) in S where
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U’ is a subset of . For simplicity we may assume that vars(¥’) C vars(¥). For the base
case both ® and ¥’ are empty. Thus ¢ is shallow and ¥’ = ¥ for otherwise & would not
be empty. Consequently, ¥ is empty which implies that P(¢)7A is true in I.

We assume as the hypothesis that for all A where A is not a new atom and P(t')7A >, A
if A€ Jthen A€ 1. If t is a constant then ® and ¥’ are both empty. This case belongs
to the base case. If ¢’ is a variable then @ is empty which implies that ¥/ = ¥. By the
hypothesis we have that ¥’r is true in I. Thus P(¢)7) is true in I. Suppose that t' is
a shallow term f(xi,...,x,). Thus t is a term of the form f(¢,...,¢,). Again, by the
hypothesis we have that U’r is true in I. It remains to show that there is a substitution o
such that ¢t7o = ¢'7A and ¥7o is true in I. By definition ® contains the new atoms Sy, (z;)
for each non-variable unique term #;. Since ®\ is true in J we may apply Lemma 4.4.7
to derive that there is a ground substitution ¢ such that z;\ = t;0 and ¥;0 is true in
J for each non-variable term t; where each ¥; is the maximal subset of ¥ such that
vars(¥;) C vars(t;). By the hypothesis ¥;o is true in I for each non-variable term ¢;.
Note that ¥ = ¥’ U |J, ¥; up to factoring. Since only exact copies of a non-variable term
t; at the same depth are abstracted into a unique sort S (z;) the ground substitution o
is already of the form such that ¢t7o = t'7A. We conclude that P(t)7o is true in I since
Uro is true in 1. |

It turns out that the theory of monadic types over semi-linear sort theories is decid-
able (Weidenbach 1996a). Semi-linear Flattening is an effective abstraction from semi-
linear sort theories to non-linear shallow sort theories for which satisfiability of monadic
types has been shown to be decidable.

Theorem 4.4.10
Let & be a semi-linear sort theory. Then the theory Fs of monadic types over S is
decidable.

Proof Let Sp be the semi-linear flat approximation of §. By Proposition 4.4.6 Sg can
be effectively computed where Sg is a shallow sort theory. Due to Theorem 4.3.10 the
theory of monadic types over shallow sort theories is decidable. Let 3zq,... ,z, (¥) be a
monadic type in Fs where {z1,... ,x,} is the set of free variables in ¥. Note that S F
Jx1,... ,2, (V) holds if and only if T° F Iz, ... ,z, (¥) holds and, by Proposition 4.4.9,
if and only if TSF E 3z1,... , z, (¥) holds under the proviso that ¥ does not contain any
new atoms introduced by Semi-linear Flattening. It follows that the theory of monadic
types over semi-linear sort theories is decidable. |

The following corollary is a consequence of Corollary 4.3.13.

Corollary 4.4.11
The satisfiability problem of the theory of monadic (variable) types over (alternating)
semi-linear sort theories is EXPTIME-hard.
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For non-alternating semi-linear sort theories, we can derive the EXPTIME-completeness
of the non-emptiness problem from the EXPTIME-completeness of the same problem with
respect to Rec— automata (Comon et al. 1997). Flattening transforms any non-alternating
semi-linear sort theory into a linearly larger non-alternating non-linear shallow sort theory.

Corollary 4.4.12
The non-emptiness problem of non-alternating semi-linear sort theories is EXPTIME-
complete.

The following corollary is a consequence of Corollary 4.3.14 and Proposition 4.4.3.

Corollary 4.4.13
The satisfiability problem of the theory of monadic (variable) types over (alternating)
linear sort theories is EXPTIME-complete.

Weidenbach (1999) argues that even the full first-order theory over semi-linear sort
theories is decidable by, however, automata-theoretic means. More precisely, the first-
order theory over Rec. has been shown to be decidable (Comon & Delor 1994) while
a non-linear shallow sort theory can be seen as a Rec: automaton. In contrast to the
automata-theoretic approach, for an effective saturation-based computation in the first-
order theory over semi-linear sort theories, Skolemization has to be carried out with respect
to the minimal models of the sort theories.

Theorem 4.4.14 (Weidenbach (1999))
Let S be a semi-linear sort theory. Then the first-order theory over § is decidable.

We restrict our attention to saturation-based decision procedures and conclude that
(Semi-linear) Flattening is a suitable concept for effective soft typing with respect to
arbitrary static/dynamic sort theories and monadic types.

Corollary 4.4.15

Let Ny be a set of clauses without equality. The (semi-linear) flat approximation of the
static sort theory of Ny is a decidable static approximation for monadic types. Let Ny, N1,
Ny, ... be a fair theorem proving derivation. The sequence of (semi-linear) flat approxi-
mations of the dynamic sort theories of each N; is a decidable dynamic approximation for
monadic types.



Chapter 5

Type Theories

We study so-called type theories which are certain monadic Horn theories in order to
identify decidable fragments for which at least the theory over monadic types is decidable.
Recall that sort theories are a special case of monadic Horn theories. In particular, the
antecedent of clauses in a sort theory is restricted to a form in which each occurrence
of a term is a variable. Sort Abstraction transforms an arbitrary monadic Horn theory
into a sort theory by excluding the improper literals from the antecedent of each clause.
Type Abstraction carries out a similar transformation where, however, all monadic atoms
are kept in the approximation. In this way, arbitrary monadic atoms may occur in the
antecedent (sort constraint) of the clauses in the approximation. We call these clauses type
declarations which strictly generalize sort declarations such that the non-constraint part
of the antecedent may contain monadic literals. An appropriate representation of type
declarations are sorted clauses of the form ¥ | ©® — S(t) where U is the sort constraint
and © contains arbitrary monadic atoms.

Definition 5.0.1 (Type Declaration)

A sorted clause U || © — S(t) is called a type declaration if ¥ || — S(t) is a sort declaration
and © contains monadic atoms only. It is called proper whenever © is non-empty. A type
declaration is called shallow (linear, semi-linear) if t is shallow (linear, semi-linear).

As a generalization of sort theories, we define type theories as finite sets of type dec-
larations.

Definition 5.0.2 (Type Theory)
A type theory T is a finite set of type declarations. 7 is called shallow (linear, semi-linear)
if all type declarations in 7 are shallow (linear, semi-linear).

Note that, in general, a type theory is a monadic Horn theory but not vice versa. We
demonstrate that linear shallow type theories are decidable and that arbitrary monadic
Horn theories can be effectively transformed into (linear shallow) type theories. Monadic
Horn theories, in general, do not comply with the restriction of type theories. More
precisely, Type Abstraction removes the improper information and transforms a monadic
Horn theory H (without equality) into a type theory 7 in such a way that the minimal
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model T7 is an upper approximation of T*. There is, however, a trade-off for decidability
as linearity has to be imposed on the positive literals in each clause.

Definition 5.0.3
The following abstraction is called Type Abstraction:

S1(.’E1>, .- aSn(mn)’GaF — S(t)
S1(z1)y--- ,Sn(zn) || © — S(t)

Abstract

where (i) S1(z1),... ,Sp(zn) is maximal such that it contains only monadic atoms of the
form T'(z) with € vars(t) and (ii) I" is maximal such that I contains non-monadic atoms
and equations only.

Sort Abstraction may remove certain monadic atoms which occur negatively in the
antecedent of a clause. Type Abstraction improves the approximation obtained by Sort
Abstraction such that all monadic atoms in the antecedent are kept in the abstracted
clause. However, there is a trade-off for decidability, since the approximation has to be
further abstracted such that all clauses are linear type declarations.

Proposition 5.0.4

Let H be a monadic Horn theory without equality. The result of an exhaustive application
of Type Abstraction to H is a type theory 7 while the minimal model 77 of T corresponds
to the minimal model 7% of H.

Proof By the construction of Type Abstraction it follows immediately that any exhaustive
application of the rule is finite and results in a type theory. The minimal model T7
corresponds to T since all clauses with positive literals are abstracted into 7. |

We call a type theory 7 which has been obtained by an exhaustive application of Type
Abstraction to the static or dynamic monadic Horn theory H of a set N of clauses the
type theory of N. In order to emphasize that 7 has been obtained from # we may also
say that 7T is the static or dynamic type theory of N, respectively. The following corollary
is an immediate consequence of Proposition 5.0.4 and Corollary 4.0.7 for sets of clauses
without equality.

Corollary 5.0.5

Let Ny be a set of clauses without equality. The static type theory of Ny is a static
approximation for monadic types. Let Ny, N1, N, ... be a fair theorem proving derivation.
The sequence of dynamic type theories of each IV; is a dynamic approximation for monadic

types.

Type theories are represented by sorted monadic Horn clauses where the antecedent of
the clauses is divided into a sort constraint part and a clause part. The Sort Constraint
Resolution inference rule operates on the sort constraint part whereas Type Resolution has
been designed to resolve the literals in the clause part of the antecedent. However, from
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a technical point of view, saturation by type resolution may generate clauses of the form
U || S1(z1),--. ,Sn(zy) — II which may be transformed into logically equivalent clauses of
the form ¥, S1(z1),... ,Sp(x,) || — II. The Type Simplification does so and guarantees in
this way not only that we obtain the same form of productive clauses as in the saturation
of sort theories but also provides for technical simplicity for the extension of type theories
to equality, c.f. Chapter 7.

Definition 5.0.6 (Type Simplification)
The following inference is called Type Simplification:

UIA—-TII
U, Al =11

Simplify

where (i) A contains only monadic atoms of the form S(z).

Type Simplification can be justified as a simplification rule in the sense that the premise
becomes redundant in the presence of the conclusion whenever the admissible clause order-
ing distinguishes the occurrences of negative literals in the constraint and non-constraint
part. In the sequel, we assume that Type Simplification is applied eagerly with the highest
priority in any saturation by type resolution.

5.1 Logic Programs

We shall relate type theories to logic programs with monadic predicates. In fact, type the-
ories, which are finite sets of monadic Horn clauses, correspond exactly to logic programs
with monadic predicates (and goals). Hence, in the sequel, by a monadic logic program
(with monadic predicates only) or simply by a logic program, we mean a type theory which
does not contain any negative Horn clauses. Note that (monadic) logic programs are al-
ready powerful enough to encode any recursively enumerable language. This motivates
a classification of decidable fragments of logic programs. An example of a class of logic
programs, for which, e.g., the membership problem is EXPTIME-complete (Frithwirth
et al. 1991), is the class of type programs. Intuitively, a type program corresponds to a
“decoupled” version of its original. The so-called Projection abstraction transforms logic
programs into type programs. Projection “decouples” the relation between the variables
which occur in positive atoms in a logic program.

Example 5.1.1

Suppose that a logic program 7 contains the clauses || — Q(f(a,b)); || — Q(f(b,a)),
and || Q(f(z,y) = P(f(x,y)). The minimal model T7 of T consists of the ground atoms
Q(f(a,b)), Q(f(b,a)), P(f(a,b)), and P(f(b,a)). The type program obtained by Pro-
jection contains the clauses | — Q(f(a,b)); | — Q(f(b,a)); |Q(f(z,y)) — Si(z);
1Q(f(xz,y)) — Sa(y), and Si(x), S2(y) || — P(f(z,y)). The minimal model of the type
program is an upper approximation of 77 with the additional atoms P(f(a,a)) and
P(f(b,b)), up to the new atoms.
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We define type programs in terms of particular linear type theories. Observe that the
class of type programs is a strict superclass of the class of linear sort theories.

Definition 5.1.2 (Type Program)

Let T be a type theory. We call T a type program if for each clause C in T either (i) C is a
linear term (sort) declaration, or else (ii) C is a type declaration of the form ¥ ||© — S(z)
where the variable £ may occur (non-linearly) in ¥ and ©.

We call a clause of the form of case (ii) an ezpansion clause. Note that for any subsort
declaration there is a logically equivalent expansion clause but not vice versa. Projection
introduces for each variable x in the linearized version of a positive atom in a clause C an

expansion clause which carries the “type” information of x with respect to the antecedent
of C.

Definition 5.1.3
The following abstraction is called Projection:

U6 — S(t)

Ska(Y1)s -+ 5 Sk (ym) | — S(E)
\Il||®—>51(:r1)

Abstract

v H S _)Sn(xn)

where (1) ¥ ||© — S(t) is not a linear term declaration, (ii) ¢ is a non-variable term, (iii) ¢’
is a linear term with t'o = ¢t and o is a renaming such that the variables in vars(t')\ vars(t)
are new, (iv) {z1,... ,z,} = vars(t) Nvars(¥,0), (v) {y1,..- ,ym} C vars(t') is maximal
such that for all ¢ with 1 < ¢ < m there is a j with 1 < j < n such that y;0 = z; where
ki = j, and (vi) for all j with 1 < j < n the monadic predicate symbol S; is new.

The following proposition is an immediate consequence of the construction of Projec-
tion. In particular, Projection terminates on any logic program, since each application of
the abstraction rule transforms a clause into a linear term declaration.

Proposition 5.1.4
Let 7 be a logic program. Exhaustive application of Projection to 7 terminates and
results in a type program.

Proof Termination follows from the fact that Projection transforms the premise into a
linear term declaration and several expansion clauses which are not subject to a subse-
quent abstraction step. Projection generates from clauses, which are not yet linear term
declarations, only linear term declarations and expansion clauses which implies that the
result of an exhaustive application of Projection is in fact a type program. |

In the sequel, we call a logic program which has been obtained by an exhaustive
application of Projection to a logic program 7 the type program of 7. The following
proposition follows by an easy induction on an admissible atom ordering.
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Proposition 5.1.5
Let 7 be a logic program. The minimal model of the type program of 7 is an upper
approximation of the minimal model 77 .

Recall the concept of (Semi-linear) Flattening for an effective abstraction of arbitrary
sort theories into (semi-linear) shallow approximations. We present a related Typed Flat-
tening method combined with a certain Linearization rule for the transformation of type
theories into linear shallow type theories. The minimal model of the approximation is
shown to be an upper approximation of the minimal model of the original. The theory of
monadic types over linear shallow type theories is decidable (Weidenbach 1999). In the
context of sort theories, (semi-)linear sort theories have been identified as classes of sort
theories for which (Semi-linear) Flattening yields an exact approximation. However, in
contrast to the (semi-)linear sort theories, an exact syntactic characterization of a class
of theories from which Typed Flattening and Linearization yield an exact approximation
of the original is difficult due to the complex variable occurrences in the monadic Horn
clauses. A sufficient condition is, for example, that any two distinct variables which occur
in the positive literal of a clause C do not occur both in any variable disjoint partition of
the antecedent of C.

The motivation to present type programs and Projection is to show that (Typed)
Flattening of type programs yields an exact approximation in the sense that the minimal
model of the original logic program is essentially preserved. Moreover, Typed Flattening
of arbitrary logic programs (combined with Linearization) improves upon Projection in
the sense that the minimal models of the type programs obtained by Projection are upper
approximations of the minimal models of the linear flat approximations.

Given a type program, (Typed) Flattening transforms each linear term declaration in
the program into a linear shallow term declaration. In this way, we obtain logic programs
which are called uniform programs by, e.g., Charatonik, McAllester, Niwinski, Podelski
& Walukiewicz (1998) who show that the non-emptiness problem for uniform programs
is EXPTIME-complete (even for sets of infinite trees). Frithwirth et al. (1991) give a
definition of uniform programs which is syntactically different but, in essence, describes
the same class. The only difference of uniform programs to type programs is that the term
declarations in uniform programs are shallow.

Definition 5.1.6 (Uniform Program)
Let T be a type program. We call T a uniform program if each term declaration in 7 is
shallow.

Frihwirth et al. (1991) show that the minimal models of uniform programs express
exactly the class of regular sets, i.e. sets of terms (trees) which are recognizable by a
tree automaton. This observation also follows from the fact that uniform programs can be
finitely saturated by sort resolution such that the set of productive clauses in the saturated
set form a linear shallow sort theory which in turn corresponds to a tree automaton,
c.f. Lemma 5.2.5, as demonstrated in the next section. Another motivation of this lemma
is to show that the theory of monadic types over linear shallow type theories is decidable.
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5.2 Decidability

In order to show that satisfiability of monadic types with respect to linear shallow type
theories is decidable, we employ type resolution which is an adaption of sort resolution
for type theories. Type resolution is also a particular instance of ordered resolution with
selection. Under the proviso that the admissible atom ordering is compatible with the
subterm property, type resolution is refutationally complete for monadic Horn theories
without equality. An atom ordering which is induced by an admissible term ordering is
compatible with the subterm property. We assume admissible literal orderings of Defini-
tion 3.1.14 and admissible clause orderings of Definition 3.1.15. Note that the satisfiability
problem has already been shown to be decidable by Weidenbach (1999). We present a sim-
ilar proof which is later shown to carry over to more general results with respect to certain
equational theories, c.f. Chapter 7.

Given a sorted clause of the form ¥ ||©® — II where © contains monadic atoms and
II is either a monadic atom or empty, the type selection strategy selects the occurrences
of negative monadic literals in © at first with a particular priority on non-variable terms.
In fact, the type selection strategy is equivalent for literal occurrences in ® and in the
unsolved part of ¥ where the occurrences in © have a higher priority. Recall that the
sort selection strategy selects literals containing non-variable terms first, followed by so-
called empty sorts, i.e. literals containing variables that do not occur in the non-constraint
part of the clause. Literals of subsort declarations are selected last. The motivation of
this strategy is to prohibit an increasing term depth during a saturation process by type
resolution. The potential increase of the term depth by one may only be tolerated in
non-trivial subsort declarations in favor of a technically simpler presentation.

Definition 5.2.1 (Type Selection)

Let C be a sorted clause of the form ¥ || © — II where © contains monadic atoms and II is
either a monadic atom 7'(u) or empty. A literal S(¢) € ¥ is selected whenever © is empty
and (i) t is a non-variable term, or else (ii) ¥ contains only variables and ¢ ¢ wvars(II),
or else (iii) ¥ contains only variables (in particular, ¢ is a variable) with ¢ = u. A literal
S(t) € O is selected whenever (iv) ¢ is a non-variable term, or else (v) © contains only
variables and ¢ ¢ wars(Il), or else (vi) © contains only variables (in particular, ¢ is a
variable) with ¢ = u. No other literal in C is selected. We call this selection strategy type
selection. A literal which is selected by type selection is called type selected.

Type selection is a generalization of sort selection for clauses with non-empty non-
constraint antecedents. Note that we could employ case (i) through (iii) of type selection
for a termination proof of the saturation of (non-linear) shallow sort theories by sort
resolution since the involved clauses have an empty non-constraint antecedent part. For
the decidability result on linear shallow type theories, the additional cases (iv) through (vi)
are required.

The type resolution calculus consists of the Sort Constraint Resolution rule and the

Type Resolution rule. Type Resolution corresponds to Sort Constraint Resolution on the
non-constraint part of the involved clauses. Factoring is not required for Horn clause sets.
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Definition 5.2.2 (Type Resolution)
The following inference is called Type Resolution:

@ — S(s) U S(u), A —1I

Inf
Her ®0, Vo | Ao — Ilo

where (i) o is the most general unifier of s and u, (ii)  is solved, (iii) S(u) is type selected,
and (iv) II is either empty or contains exactly one atom.

The refutational completeness of type resolution and Type Simplification is a conse-
quence of the results in (Bachmair & Ganzinger 1994). The model functor for ordered
resolution provides for an appropriate model construction also for type resolution. The
adaption to sorted clauses is straightforward.

Corollary 5.2.3 (Bachmair & Ganzinger (1994))

Let I be the model functor for ordered resolution. Let H be a set of sorted monadic
Horn clauses without equality. Suppose that H is saturated by type resolution and Type
Simplification. Then either H contains the empty clause, or else I is a model of H.

In order to show that the saturation process by type resolution always terminates for
linear shallow type theories, we need intersection condensing which is, similar to Sort
Condensing, a particular instance of condensing for sort constraints. Condensing is essen-
tially factorization where the conclusion subsumes the premise. Intersection Condensing
is needed to contract equal conjunctions of atoms in sort constraints which may express
intersection non-emptiness problems.

Definition 5.2.4 (Intersection Condensing)
The following simplification is called Intersection Condensing:

S1(2);- - Sn(®), S1(y),- - Sn(y), ¥ || = 11
S1(z),... ,Sn(z), T[] = II

Simplify

where (i) z,y ¢ vars(¥,II).

Intersection Condensing is a quite restricted form of general condensing. Intersection
Condensing can be done in polynomial time in the size (number of symbols) of the sort con-
straint. It is an admissible simplification rule since any premise of Intersection Condensing
is redundant in the presence of the conclusion. This is also the case for the more restrictive
variant of redundancy which is needed for (basic) sorted superposition/paramodulation,
c.f. Section 6.3, 6.7, and 7.1.

Lemma 5.2.5 (Weidenbach (1999))

Let T be a linear shallow type theory. Then 7 can be finitely saturated by type resolu-
tion, Type Simplification, Sort Condensing, and Intersection Condensing. The productive
clauses in the saturated set form an (alternating) linear shallow sort theory which consists
of (alternating) linear shallow term declarations and trivial subsort declarations.
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Proof The idea of the proof is to show that (i) there is a certain subclass of linear
shallow monadic Horn theories which includes 7 and which is closed under type reso-
lution and (ii) the conclusion of each inference by Sort Constraint Resolution or Type
Resolution is either (ii.a) strictly smaller than the main premise with respect to the lex-
icographic combination of the multiset of all term depths and the number of monadic
atoms in the sort constraint and the antecedent, or else (ii.b) a clause of the form
Ti(t), .. ,Tu(t), S1(z1),--- , Sm(zm)|| — S(u) where u and ¢ are non-variable shallow
terms. Note that there are only finitely many clauses of the form of case (ii.b) over a finite
signature up to Sort Condensing, Intersection Condensing, and variant clauses. For (i) we
shall argue that the following class of clauses is closed under type resolution and Type
Simplification.

Uy, , U, S1(21), ..., Sm(zm) |© — S(t)

where n and m are possibly zero, each ¥; is of the form T1(%;), . .. , Tk, (¢;) where each t; is
a non-variable term, © contains monadic atoms of the form S(u) with u is a non-variable
term, and ¢ is a linear shallow term. Note that the constraint Si(z1),...,Sm(zm) does
not have to be solved. We call a clause of the above form the invariant.

The class of invariants includes any linear shallow type theory. Any inference that
involves an invariant as the side premise is only possible if n = 0, © is empty, and the sort
constraint of the invariant is solved, i.e. if the invariant is a linear shallow term declaration
or a trivial subsort declaration. Note that the eager application of Type Simplification
guarantees that a clause of the form ¥ || Si(x1),... , Sm(@m) — II is simplified to a clause
of the form ¥, Sy(z1),... ,Sm(zm) || — II. Thus an invariant that is involved as the main
premise may only be reduced to another invariant by a linear shallow term declaration or
by a trivial subsort declaration which implies (i).

Consider a Sort Constraint Resolution (Type Resolution) inference from an invariant
and a linear shallow term declaration. If the invariant is a non-trivial subsort declaration,
then the conclusion is a clause of the form of case (ii.b) where ¢ = u. If the invariant is a
clause of the form Si(z1),...,Sm(zm)| — II where there is at least one variable z; with
1 < i< m and z; ¢ vars(IT), then the conclusion is a clause of the form of case (ii.b).
In all other cases, the conclusion is a clause with a strictly smaller multiset of all term
depths which implies (ii.a). On the other hand, an inference from any invariant and a
trivial subsort declaration decreases the number of monadic atoms in the sort constraint
(antecedent) by one which shows (ii).

The saturated set may still contain clauses with an unsolved sort constraint and/or
non-empty antecedents. However, these clauses cannot be productive which implies that
the set of productive clauses are term declarations and trivial subsort declarations which
form a linear shallow sort theory. |

The process of saturation by sort resolution of some linear shallow type theory is
strongly related to what has been called type inference by Frithwirth et al. (1991). In
particular, uniform programs are transformed into so-called regular programs similar to
the saturation process by sort resolution which transforms a linear shallow type theory
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into a linear shallow sort theory. In fact, from a model-theoretic point of view, the dis-
tinct syntactic classes are essentially equivalent whereas the classes of linear shallow type
theories and linear shallow sort theories are syntactically distinguished from uniform pro-
grams and regular programs, respectively, but have a strong similarity. More precisely, the
above lemma (and (Frithwirth et al. 1991)) shows that linear shallow type theories do not
improve upon the expressiveness of linear shallow sort theories. Saturation always yields
a candidate model which is completely specified by a linear shallow sort theory. Note that
the class of linear shallow sort theories corresponds to the class of tree automata which
confirms the observation of Frihwirth et al. (1991) that the minimal models of uniform
programs express exactly the class of regular sets, i.e. sets of terms (trees) which are
recognizable by a tree automaton.

In the context of soft typing, linear shallow type theories may improve the extraction of
“regular” information encoded by some clause set compared to linear shallow sort theories.
In Section 5.3, we will show that Typed Flattening, which is similar to the Flattening
of arbitrary sort theories, computes linear shallow approximations of type theories. In
particular, we improve upon the Projection of arbitrary logic programs into type programs.

The following proposition states that, similar to (non-linear) shallow sort theories,
saturation by type resolution transforms a linear shallow type theory in simply exponen-
tial time into an equivalent linear shallow sort theory. However, in practice, we expect
potentially larger saturated theories compared to the saturation of sort theories due to
the additional inferences on non-constraint antecedent atoms. In the following proof the
size of these atoms is involved as an exponent in the overall number of derivable clauses.
Moreover, these atoms may encode arbitrary intersection non-emptiness problems which
are checked during saturation.

Proposition 5.2.6

Let 7 be a linear shallow type theory. Then 7 can be finitely saturated by type resolution,
Type Simplification, Sort Condensing, and Intersection Condensing in simply exponential
time with respect to size(T) resulting in a type theory 7' such that size(7’) is at most
simply exponentially larger than size(T).

Proof We follow the proof of Proposition 4.3.6. We show that the number of clauses may
increase at most simply exponential where each new clause is polynomially bound in size.
Given a linear shallow type theory 7 over a signature X, we may assume that 3 contains
only the function symbols which occur in clauses in 7. Let n be the number of proper
type declarations in 7 and let g be the number of distinct monadic predicate symbols
which occur in the clauses in 7. In contrast to the proof of Proposition 4.3.6, it is difficult
to compute the “reachability” closure among the n proper type declarations. Instead, we
estimate the overall number nr of derivable new type declarations with respect to the
powerset 27 independently from the number of term declarations in 7 to avoid recursive
dependencies.

Let m be the maximal size size(©) of the proper type declarations of the form ¥ ||© —
S(t) in T, let k be the maximal number of distinct variables which occur in a proper type
declaration in 7, and let &k, be the maximal arity among all arities of the function symbols
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in ¥. Then we may assign to k variables k x 27 distinct combinations of monadic atoms
of the form T'(z) which implies that n x k x 27 linear shallow type declarations of the form
U || — S(t) where ¥ contains only monadic atoms of the form 7'(x) can be obtained from
the n proper type declarations. By 7, we refer ambiguously to the quantity n * k * 2¢ and
the form of the derivable clauses. More generally, there are at most n  k kg * 2(m+1)*a
linear shallow type declarations derivable from the n proper type declarations.

However, further computations are only possible on the clauses of the form (i). Suppose
that C is a clause ¥| — S(t) of the form (i). Whenever ¥ contains a monadic atom
T(z) with x ¢ vars(t) saturation by type resolution actually computes intersection non-
emptiness tests on U. Note that there are at most k (g, if & > ¢) intersection non-
emptiness problems encoded in C (with respect to Intersection Condensing), since variables
which do not occur in the positive atom originate from the non-constraint part of some
proper type declaration. Let m; be the number of function symbols in ¥. Then, from
an intersection non-emptiness problem, we may derive my * kq * 2¢ subproblems (with
respect to Sort Condensing) using (alternating) linear shallow term declarations of the
form ®| — T(f(y1,---,Yk,))- We conclude that there are at most i * g * my % kg * 27
clauses derivable from clauses of the form (i). [ |

Similar to the saturated alternating shallow sort theories which are obtained from
saturation by sort resolution, a saturated type theory can be further transformed by State
Union and De-Alternation into an equivalent non-alternating linear shallow sort theory
due to Proposition 4.3.9. The next theorem summarizes the discussion and states that
the theory of monadic types over linear shallow type theories is decidable. Any linear
shallow type theory may be finitely saturated by sort resolution such that the candidate
model of the saturation is the minimal model of the theory. By a subsequent saturation
with sort resolution between the saturated theory and a negated monadic type we can
effectively compute the satisfiability of the type with respect to the theory. A negated
monadic type is a negative clause and thus any clause with an unsolved sort constraint
may safely be removed from the saturated theory. For the satisfiability test of monadic
types with respect to a linear shallow type theory, we arrive at the same test with respect
to linear shallow sort theories.

Theorem 5.2.7
Let 7 be a linear shallow type theory. The theory F7 of monadic types over 7 is decidable.

Proof Let 3zq,... ,z, (¥) be a monadic type in Fr where {z1,... ,z,} is the set of free
variables in ¥. Note that 7 F 3z1,... , 2, (¥) holds if and only if T7 E Jzy,... ,z, ()
holds if and only if T7 ¥ Vxi,...,2,(-¥) holds. In order to check whether T F
dz1,...,2, (¥) holds we add as a goal the clause ¥ || — to the saturated set 7' and
saturate the result by type resolution and Type Simplification. By Lemma 5.2.5 T can
be finitely saturated into 7”. Subsequently, only steps between clauses in 7' and the goal
are required. Moreover, since the goal is purely negative we can delete all clauses with
unsolved sort constraints from 7’ and obtain 7" which is a linear shallow sort theory.
The Theorem 4.3.10 states that the theory of monadic types over (non-linear) shallow sort
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theories is decidable. |

Devienne et al. (1997) demonstrate that uniform programs can be transformed into
essentially equivalent (non-alternating) tree automata in simply exponential time which
implies that the non-emptiness test of uniform programs is in EXPTIME. Following these
ideas, we show that the satisfiability problem of the theory of monadic types over linear
shallow type theories is EXPTIME-complete. In the next section, we can show that this
result carries over to type programs.

Proposition 5.2.8
The satisfiability problem of the theory of monadic (variable) types over linear shallow
type theories is EXPTIME-complete.

Proof The EXPTIME-hardness follows from the EXPTIME-completeness of the satisfi-
ability problem of the theory of monadic variable types over (alternating) linear shallow
sort theories. We show that the problem is in EXPTIME. Given an alternating linear
shallow type theory 7 and a monadic type J1,... ,z, (¥) from the theory over T, we
add the expansion clause ¥ || — Sg(x) to T where z is a new variable and transform the
result in simply exponential time into a non-alternating linear shallow sort theory 7" due
to Proposition 5.2.6 and 4.3.9. We may assume that S¢ does not occur in 7. By Propo-
sition 4.2.5, T’ can be transformed in polynomial time into an equivalent tree automaton
A where we assume that St is the only final state of A. Then 7 F Jx1,... ,z, (¥) if and
only if L(A) # 0. Note that the non-emptiness test of tree automata is decidable in linear
time. |

An immediate corollary of the previous proposition is that the satisfiability problem
of the theory of monadic (variable) types over uniform programs is EXPTIME-complete.

Corollary 5.2.9
The satisfiability problem of the theory of monadic (variable) types over uniform programs
is EXPTIME-complete.

We obtain as a corollary of Theorem 4.4.14 and Lemma 5.2.5 that the full first-
order theory over linear shallow type theories is decidable by, however, automata-theoretic
means, c.f. the discussion of Theorem 4.4.14.

Corollary 5.2.10 (Weidenbach (1999))
Let 7 be a linear shallow type theory. Then the first-order theory over 7T is decidable.

5.3 Linear Approximations

The theory of monadic types over linear shallow type theories is decidable. A transforma-
tion of arbitrary type theories into linear shallow type theories is possible similar to the
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(Semi-linear) Flattening of sort theories. We demonstrate that Typed Flattening com-
bined with Linearization transforms arbitrary type theories (logic programs) into linear
shallow type theories such that the minimal model of the approximation is an upper ap-
proximation of the minimal model of the original. For type programs, (Typed) Flattening
yields an even equivalent linear shallow type theory (uniform program) with respect to
minimal models up to the new predicates. We also show that Typed Flattening with
Linearization improves upon the Projection abstraction with respect to minimal models.
The distinction of Typed Flattening and Linearization is not essential but considerably
simplifies the proof presentation.

Typed Flattening introduces a new monadic predicate for each occurrence of a proper
non-variable subterm in the positive atom of a clause where the number of new symbols is
linear in the number of function symbols which occur in the theory. The minimal model of
the resulting shallow type theory is at least an upper approximation of the minimal model
of the original theory. Typed Flattening replaces in a top-down manner each occurrence of
a non-variable proper subterm ¢; by a new variable £ where an additional sort constraint
on x restricts the ground instances of z to the “well-sorted” ground instances of ¢t. Typed
Flattening abstracts from non-linear non-shallow occurrences of variables.

Definition 5.3.1
The following abstraction is called Typed Flattening:

U V|0 = P(f(tr,.-- tiy--- ,tn))
T | ©— S, (t:)
St (2), @, 0, ¥"|© = P(f(t1,... ,2,... ,tn))

Abstract

where (i) @ contains all new atoms of the form Si(y), (ii) ¥, ¥’ is maximal such that
U, ¥ is solved in the premise, (iii) ¢; is a non-variable term, (iv) ¥’ is maximal such that
vars(¥') C wvars(t;), (v) ¥” C ¥ is maximal such that ¥” is solved in the conclusion,
(vi) S, is a new monadic predicate, and (vii) x is a new variable.

Example 5.3.2

Let T be a type theory which contains a clause C of the form S(z), S(y) || S(f(z,y)) —
P(f(9(z),y,v)). An exhaustive application of Typed Flattening to 7 results in a non-
linear shallow type theory 7' which contains Sy(2), S(y) || S(f(z,v)) — P(f(2,9,9))
as the “flattened” version of C' and a new declaration of the form S(z)| S(f(z,y)) —
Sg(z)(9(z)). The non-linear shallow occurrences of the variable y are not renamed.

In the sequel, a monadic predicate S; refers to the new predicate which has been intro-
duced by Typed Flattening for a non-variable term ¢. The newly introduced declarations
represent, from an automata-theoretic point of view, tree automata which recognize in a
state S; exactly the “well-sorted” ground instances of the original term ¢. The following
proposition suggests that Typed Flattening may be applied to arbitrary type theories.
However, minimal models are preserved only for, e.g., type programs. For arbitrary type
theories the transformation yields a theory whose minimal model is an upper approxima-
tion of the minimal model of the original theory.
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Proposition 5.3.3
Let 7 be a type theory. Exhaustive application of Typed Flattening to 7 terminates and
results in a (non-linear) shallow type theory.

Proof Termination follows from the fact that Typed Flattening replaces a clause by two
clauses which both have less function symbols than the premise. Typed Flattening is not
applicable to a shallow monadic Horn clause, since all terms at depth two of the positive
atom are always variables (if they exist). On the other hand, if the direct subterm of a
positive atom is not shallow, it has a subterm at depth two which is not a variable and
therefore Typed Flattening applies. Hence, Typed Flattening terminates in a shallow type
theory. Note that the result may contain non-linear shallow monadic Horn clauses if and
only if 7 contains monadic Horn clauses with non-linear shallow variable occurrences since
these occurrences are not transformed. |

In the sequel, we call a type theory which has been obtained by an exhaustive appli-
cation of Typed Flattening to a type theory 7 the flat approximation of T. The following
proposition states that the flat approximation of type programs are uniform programs
where the minimal model of the type program is essentially preserved.

Proposition 5.3.4

Let T be a type program. The flat approximation 7z of 7 (achieved by (Typed) Flat-
tening) is a uniform program and the minimal model of 77 is equivalent to the minimal
model of 7 up to the new atoms introduced by (Typed) Flattening.

Proof The only clauses in 7" which are subject to (Typed) Flattening are linear term
declarations that form a linear sort theory. In fact, the flat approximation of a linear sort
theory is a linear shallow sort theory, c.f. Proposition 4.4.3. Note that Typed Flattening
of linear sort theories corresponds exactly to Flattening of linear sort theories. By Propo-
sition 4.4.9, the flat approximation (by Flattening) of a linear sort theory has the same
minimal model as the original theory up to the new atoms. Thus the result is a uniform
program with a minimal model that corresponds to the minimal model of 7 up to the new
atoms. |

We may conclude that the theory of monadic types over type programs is decidable.
(Typed) Flattening is an effective abstraction from type programs to uniform programs.
The satisfiability of monadic types over linear shallow type theories has been shown to be
decidable, c.f. Theorem 5.2.7. The class of linear shallow type theories includes the class
of uniform programs.

Theorem 5.3.5
Let 7 be a type program. Then the theory Fr of monadic types over T is decidable.

Proof Let Tz be the flat approximation of 7. By Proposition 5.3.4, we have that Tz
is a uniform program. Due to Theorem 5.2.7, the theory of monadic types over linear
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shallow type theories is decidable. Let Jz1,... ,z, (¥) be a monadic type in F7 where
{z1,... ,z,} is the set of free variables in . Note that § F Jzy,... ,z, (¥) holds if
and only if T° & Jzy,...,z, (¥) holds and, by Proposition 5.3.4, if and only if TSF F
dz4,...,2, (¥) holds under the proviso that ¥ does not contain any new atoms introduced
by Typed Flattening. It follows that the theory of monadic types over type programs is
decidable. |

Since the transformation of a type program into an equivalent uniform program can
be computed in polynomial time, we obtain as a corollary of Proposition 5.2.8 that the
satisfiability problem of the theory of monadic types over type programs is EXPTIME-
complete.

Corollary 5.3.6
The satisfiability problem of the theory of monadic (variable) types over type programs is
EXPTIME-complete.

The Corollary 5.2.10 states that the first-order theory over linear shallow type theories
is decidable (Weidenbach 1999). The Proposition 5.3.4 implies that type programs can be
transformed into essentially equivalent uniform programs which are, in fact, linear shallow
type theories. Thus the full first-order theory over type programs is decidable by, however,
automata-theoretic means. Recall that the first-order theory over Rec: has been shown
to be decidable (Comon & Delor 1994) while a (non-linear) shallow sort theory can be
seen as a Rec— automaton. Uniform programs can be finitely saturated by sort resolution
such that the candidate model of the saturated set is defined by productive clauses which
form a shallow sort theory. The candidate model corresponds to the minimal model of the
saturated set.

Corollary 5.3.7
The first-order theory over type programs is decidable.

As we have already shown in the Example 5.3.2, Typed Flattening does not linearize
the shallow occurrences of non-linear variables in the positive atoms in each clause of a
theory. However, for the decidability of shallow type theories, it seems to be difficult to
avoid the Linearization of the positive atoms. For example, Weidenbach (1999) argues
that the sorted unification problem with respect to arbitrary sort theories, which is un-
decidable, can be reduced to the same problem with respect to non-linear shallow type
theories. Observe that Linearization improves upon a naive renaming by additional “sort”
information for each renamed variable.

Definition 5.3.8
The following abstraction is called Linearization:
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v e — Liz],

Sz (1), Sz, (@), ¥, ¥ ||© = L[p1/z1,... ,0n/Zn]
|0 — Sy, (z)

Abstract

U0 —S;, (v)

where (i) L is a monadic atom, (ii)  is a non-linear variable in L at position p, (iii) the
positions p1,... ,p, refer to all other positions of z in L, (iv) ¥ is maximal such that
xz ¢ vars(¥), (v) each Sg, is a new monadic predicate, and (vi) the z1,...,z, do not
occur in the premise.

The following proposition suggests that Linearization may be applied to arbitrary type
theories. However, for a linear flat approximation, we prefer to apply Typed Flattening
first, for, in general, a better approximation may be obtained.

Proposition 5.3.9
Let 7 be a type theory. Exhaustive application of Linearization to 7 terminates and
results in a linear type theory.

Proof Termination follows from the fact that Linearization replaces a clause by several
clauses which all have less non-linear variable occurrences than the premise. Linearization
is not applicable to a linear monadic Horn clause. On the other hand, if there is a non-
linear variable occurrence in a positive atom Linearization applies. Hence, Linearization
terminates in a linear type theory. Note that if 7 is a shallow type theory Linearization
only renames the variables in shallow occurrences. The result is a linear shallow type
theory. |

In the sequel, we call a type theory 7’ which has been obtained by an exhaustive
application of Typed Flattening to a type theory 7 followed by an exhaustive application
of Linearization to 7" the linear flat approzimation of T. In order to show that the minimal
model of a linear flat approximation is an upper approximation of the minimal model of the
original theory, we need a technical lemma similar to Lemma 4.4.4 and 4.4.7, respectively,
for the (semi-linear) flat approximation of sort theories. We show that (i) the extension
of each predicate P in the minimal model of the linear flat approximation consists only
of ground instances of the linear renaming of a term ¢ which occurs in a positive atom in
the original theory and that (ii) these ground instances are “well-sorted” with respect to
the sort constraints of the original occurrence of ¢ at least on one variable in the linear
renaming of ¢. In particular, by case (i), we mean that the linear flat approximation
preserves the term structure of the original terms which occur in positive atoms.

Lemma 5.3.10

Let T be a type theory and let 7z be the linear flat approximation of 7. Let I be the
minimal model of 7r. Suppose that there is a ground atom P(t')r which is true in I
where t' is a linear shallow term. Let Cr be the clause ®',®,¥'||©" — P(¢') in Tr that
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produces P(t')7 into I. Let C be the (non-linear, non-shallow) clause ¥ ||©® — P(t) which
corresponds to Cp where U is maximal such that vars(¥) C vars(t) and each term which
occurs in ¥ is a variable. We may assume that &' contains all new atoms introduced
by Linearization, ® contains all new atoms introduced by Typed Flattening, ¥’ is the
maximal subset of ¥ such that vars(¥’') C vars(t'), and ©' = ©. Then there is a ground
substitution o such that (i) ¢'7 = ¢"o where ¢” is the linear renaming of ¢ and (ii) for all
variables z € vars(t") there is a ground substitution A such that (¥, 0)o|,\ is true in I.

Proof The proof is by structural induction on terms. For simplicity we may assume that
vars(¥') C vars(¥) and vars(©') = vars(©). Suppose that there is a ground atom P(t')7
which is true in I. If ¢ is a constant then (i) and (ii) obviously hold. However, note also
that in this case ¥ is empty and thus ¥’ is empty. &' and ® are also empty. Since t =t
and Cp is true in I there is a ground substitution X\ such that ©') is true in 1.

Suppose that ¢ is a non-constant term f(¢1,...,t,). Thus ¢ is a term of the form
f(z1,... ,2,) and t” is a term of the form f(¢],... ,t!) where each ¢/ is the linear renaming
of t;. We assume as the hypothesis that both statements hold for all proper non-variable
subterms in ¢. Let 77 and 71, be two ground substitutions such that P(t')rpr, = P(t')r
where Dom(rp) = vars(®) and Dom(711) = vars(t')\ Dom(7p). Note that the substitution
TF instantiates the variables in ¢ which represent the flattened non-variable arguments
t; of t. The substitution 77, instantiates the variables in ¢’ which represent the linearized
shallow variables t; of ¢.

Since I is a model of Cr and vars(®', ®, ') C vars(t') we have that (', ®7p, ¥'rp) C
I. Moreover, there is a minimal substitution A such that ©'rz\ C I where Dom(\) C
vars(®'). Note that ®' contains the new atoms Sy, (z;) introduced by Linearization for
the non-linear shallow variables in ¢ and thus each Sy, (x;)7z is true in I. Note that &
contains the new atoms S, (z;) introduced by Typed Flattening for all non-variable terms
t; in t and thus each Sy, (z;)7F is true in I. By the induction hypothesis for (i) we may
assume that there is a ground substitution o such that z;7p = t]o for each non-variable
term ¢;. If ¢; is a variable then we may simply let ¢/'o: = x;7. Note that this also implies
that ¥'c is true in I. It follows that ¢'7 = t"o holds which implies (i).

From the induction hypothesis for (ii) it follows that for each non-variable term ¢; and
for all variables z € vars(t}') there is a ground substitution A’ such that (¥;, ®")o|\' C I
where each ¥; is the maximal subset of ¥ such that vars(¥;) C vars(t;). Note that
¥ =¥ U, ¥; up to factoring. We may assume that the hypothesis applies to ©' since
Typed Flattening always inherits this part of the antecedent completely. What remains are
the terms ¢; which are variables. ©'c|y = ©'7|,, holds for each ¢; which is a variable since
t!o = x;7r. Tt follows that there is a ground substitution A’ such that ©'c|w\ = ©@'rf
and thus ©'c| A'A = ©'r A, Therefore, we have that ©'cuwA'A C T. '

Let t; be a variable which corresponds to a non-renamed variable z; in t'. Since ¥'c
is true in I there is a ground substitution A\’ such that ¥o|x )\ is true in I. Suppose
that t; is a variable which corresponds to a renamed variable x; in t'. Thus there is a
new atom Sz, (z;) in ® introduced by Linearization. Since the clause containing Sg,(z;)
as the positive atom is true in I and by the definition of Linearization, there is a ground
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substitution A’ such that ¥"o|; A’ is true in I where ¥” is the maximal subset of ¥ such
that vars(¥") = {z;}. Since all ¥; and ¥” are pairwise variable-disjoint we conclude that
there is a substitution A’ such that (¥,©)c|,\’ is true in I for all variables z € vars(t").

In fact, we could also prove a stronger statement for (ii) for the shallow variables
of a flattened term. Let T' be the set of all shallow variables ¢/ in ¢". Then o|r = 7|7
Informally, the relation with respect to ¥, ©® among the variables which occur as arguments
of a linear shallow term is not lost by the linear flat approximation since such variables
are not approximated. |

Typed Flattening combined with Linearization abstract type theories such that the
minimal models of the approximations are upper approximations of minimal models of
the original theories.

Proposition 5.3.11
Let T be a type theory and let Tz be the linear flat approximation of 7. The minimal
model T7F is an upper approximation of the minimal model 77

Proof The proof is similar to the induction proof of Proposition 4.4.8 since the hypothesis
extends to include also the non-constraint antecedent part of the clauses in 7. This part
is completely inherited by Typed Flattening. The prerequisites for an appropriate proof
are contained in the proof of part (i) of Lemma 5.3.10. [ ]

We restrict our attention to saturation-based decision procedures and conclude that
Typed Flattening /Linearization is a suitable concept for effective soft typing with respect
to arbitrary static/dynamic type theories and monadic types.

Corollary 5.3.12

Let Ny be a set of clauses without equality. The linear flat approximation of the static
type theory of Ny is a (decidable) static approximation for monadic types. Let Ng, Ny,
Na, ... be a fair theorem proving derivation. The sequence of linear flat approximations of
the dynamic type theories of each NV; is a (decidable) dynamic approximation for monadic

types.

The following proposition states that the minimal model of the type program of a
logic program 7 (type theory) obtained by Projection is a (proper) upper approximation
of the minimal model of the linear flat approximation of 7. The proof shows the potential
strictness by a counterexample for the other direction.

Proposition 5.3.13

Let 7 be a type theory and let 7z be the linear flat approximation of 7. Let 7p be
the type theory which has been obtained by an exhaustive application of Projection to
T. Then T77 is an upper approximation of T7F up to the new atoms introduced by the
abstractions but not vice versa.



124 § 5. TYPE THEORIES

Proof Let >, be an admissible atom ordering which is compatible with Tr. The proof
is by induction on =,. Let P(#)r be true in T7F where P is not a new symbol. Thus
there is a clause Cp of the form &' /& ¥'||®" — P(t') in Tr and the original clause C
of the form ¥ ||©® — P(t) in 7 where ¥ is maximal such that vars(¥) C wvars(t) and
each term which occurs in ¥ is a variable, t' is a linear shallow term, @' contains all
new atoms introduced by Linearization, ® contains all new atoms introduced by Typed
Flattening, ¥’ is the maximal subset of ¥ such that vars(¥’) C vars(t'), and © = ©. For
simplicity we may assume that vars(¥’) C vars(¥) and vars(©') = vars(©). Let Cp be
the according clause S1(y1),--- , Sm(ym) || — P(t") in Tp where t" is the linear renaming
of t. Furthermore, there are m clauses C; = ¥ || © — S;(y;) in Tp. For simplicity we may
assume that vars(C;) C vars(C) for each C;. For the base case ¥ and © are empty. Thus
&', ¥’ and ©' are empty and m = 0. It follows that P(t"))\ is true in 777 for all ground
substitutions A. By Lemma 5.3.10, part (i), there is a ground substitution o such that
' = t"o which implies that P(t')7 is true in 777.

We assume as the hypothesis that for all B where P(t')T >, B and B is not a new
atom if B € T7F then B € T7?. If t' is a variable or a constant then P(#')r is obviously
in T77. Note that a clause containing a positive atom of this form is not part of the
abstractions. Consequently, we may apply the hypothesis directly to all antecedent literals
in Cp. Finally, we may assume that ¢’ is a term of the form f(zi,...,z,), i.e. t is a term
of the form f(¢1,...,t,) and t” is a term of the form f(¢{,... %) where each ¢/ is the
linear renaming of ¢;. By Lemma 5.3.10, part (i), there is a ground substitution o such
that ¢'7 = t"o. By part (ii) we have that for all variables € vars(t") there is a ground
substitution A such that (¥,©)o|,A C T7F which implies, by the induction hypothesis,
that (¥, ©)o|A C T7P. As a consequence, for all variables y; there is a ground substitution
A such that each S;(y;)oly, is true in 777 since T7P is a model of each C;. Since T77 is
also a model of Cp we have that P(t")o is true in T77 and we conclude that P(#)7 is true
in 777,

The following example shows that, in general, the minimal model 77% is not an
upper approximation of T7P. Suppose that 7 contains the clauses | — Q(f(a,b));
| — Q(f(b,a)), and ||Q(f(z,y) — P(f(z,y)). The linear flat approximation of N
contains the clauses || — Si(a); || — Sa2(b); Si(z),S2(y) || — Q(f(z,y)); || — Ss(b);
I = Sa(a); Ss3(z),Sa(y) | = Q(f(z,y)), and [ Q(f(z,y) = P(f(z,y)). In this case,
the minimal model T7F of the approximation is exactly the minimal model T7 up to
the new atoms, i.e. T7F contains Q(f(a,b)), Q(f(b,a)), P(f(a,b)), and P(f(b,a)). On
the other hand, the projection contains the clauses | — Q(f(a,b)); || — Q(f(b,a));
1Q(f(z,y)) = Si(z); [|Q(f(z,y)) = Sa2(y), and Si(z), S2(y) || — P(f(z,y)). The min-
imal model T7P of the projection is a superset of T7F up to the new atoms. It contains
up to the new atoms the additional atoms P(f(a,a)) and P(f(b,b)). [ |



Chapter 6

Sorted Equational Theories

(Semi-linear) sort theories and (linear) type theories have been characterized as decid-
able fragments of the general class of monadic Horn theories. In particular, the theory of
monadic types over these theories is decidable by saturation-based methods. The approxi-
mation of an arbitrary theory by a decidable fragment may allow to decide the satisfiability
of a formula with respect to the original theory. We have shown that soft typing for clausal
inference systems, as a general framework for semantically guided theorem proving, can
effectively be used with respect to approximations by these sort and type theories.

Sort Abstraction and Monadic Horn Abstraction have been designed to filter out im-
proper information from the clauses, in particular, any occurrences of equality. However,
a generalization of monadic Horn theories which include equality may provide for a bet-
ter approximation of the satisfiability of monadic types and may also allow to decide
the unifiability of first-order terms with respect to these equational theories. We call the
unifiability problem with respect to a (sorted) equational theory the E-unifiability problem,
c.f. Chapter 2. The word problem is a particular instance of the E-unifiability problem on
ground terms. The process of unifying terms with respect to an equational theory is called
E-unification. For a formal definition of (sorted) equational theories see Definition 6.1.2
below. A decidable E-unifiability problem may allow the effective blocking with respect
to (monadic) equational types.

A major aspect of the decidable sort and type theories is that these fragments can
be naturally extended to decidable sorted equational theories and typed equational the-
ories, respectively. We demonstrate that the decidability of E-unifiability with respect
to these theories can be obtained by a generalization of sort resolution to sorted super-
position (Weidenbach 1996a) which is a specialized form of (basic) superposition with
selection (Bachmair et al. 1995, Nieuwenhuis & Rubio 1995). The decidable sort theo-
ries are strongly related to certain tree automata whereas the decidable sorted equational
theories do not have an immediate counterpart in this area. In fact, we can show that
even Rec: automata (Bogaert & Tison 1992) do not appropriately capture these frag-
ments. The so-called standard theories (Nieuwenhuis 1996) are, however, closely related
to the decidable sorted equational theories. Our results strictly improve upon the standard
theories.
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This chapter is also devoted to the analysis of abstractions that effectively transform
general Horn theories with equality into the decidable equational theories such that the
minimal model of the abstracted theory is an upper approximation of the minimal model
of the original theory. We present effective transformations to infer automatically abstrac-
tions of Horn theories which lie in the class of decidable approximations.

6.1 Introduction to Sorted Equational Theories

We study so-called sorted equational theories which are a particular form of monadic
Horn theories with equality. A sorted equational theory can be seen as a sort theory
where positive occurrences of equations are possible. That is, a sorted equational theory
consists of sort declarations and so-called sorted equations which correspond to equations
with an additional sort information on the variables. An appropriate representation of a
sorted equation is a sorted clause of the form ¥ | — s = ¢t where ¥ is the sort constraint.
It turns out that the similarity of sort constraints and monadic types is a coincidence. For
example, an extension of sort constraints by (dis-)equations leads to inference processes
by sorted superposition which are difficult to control, c.f. Chapter 7. We distinguish sort
constraints and monadic equational types as particular data structures to obtain, on one
hand, decision procedures and, on the other hand, to effectively control soft typing.

Definition 6.1.1 (Sorted Equation)

A sorted clause of the form Si(z1),...,Sn(zn)|| — s = t is called a sorted equation if
either S1(x1),... ,Sn(zn) is solved, or else s = t is disjoint collapsing or disjoint universal
with {z1,... ,2,} C vars(s = t). A sorted equation ¥ || — s = ¢ is called collapsing (non-
collapsing, universal, disjoint, shared) if s = t is collapsing (non-collapsing, universal,
disjoint, shared). A disjoint collapsing or disjoint universal sorted equation ¥ || — s =~ ¢
is called trivial if vars(¥) Nwvars(s) = 0 or vars(¥) Nwvars(t) = 0.

A sorted clause V|| s ~ t — is called a sorted disequation if | — s ~ t is a sorted
equation. A sorted equation ¥| — s = t (disequation V| s = t —) is called shallow
(linear, semi-linear) if the equation s = t is shallow (linear, semi-linear). A non-collapsing
sorted equation of the form ¥ | — s = ¢t where ¥ is empty is called non-alternating.
Otherwise, we may call a sorted equation alternating.

The notion of sort constraints allows for a technically simpler presentation of a particu-
lar combination of the term ordering and the selection strategy in the sorted superposition
calculus. Moreover, we may impose so-called basic restrictions on the sort constraints to
block further superposition inferences (Weidenbach 1996a). Thus sort constraints are con-
venient but not essential. We arrive at the formal definition of sorted equational theories.

Definition 6.1.2 (Sorted Equational Theory)

A sorted equational theory £ is a finite set of sorted equations and sort declarations.
€ is called shallow (linear, semi-linear) if the sorted equations and sort declarations in
& are shallow (linear, semi-linear). & is called non-alternating if £ does not contain
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any alternating term declarations, alternating sorted equations, and non-trivial subsort
declarations. Otherwise, we may call £ alternating.

Note that, in general, a sort theory is a sorted equational theory but not vice versa
while a shallow and/or linear sorted equational theory is a semi-linear sorted equational
theory but not vice versa. The motivation of this classification is to distinguish shallow
and semi-linear theories. We demonstrate that (non-linear) shallow sorted equational
theories are decidable and that semi-linear sorted equational theories can be effectively
transformed into essentially equivalent (non-linear) shallow sorted equational theories.
Using this transformation, we can extend the decidability result to semi-linear sorted
equational theories. Monadic Horn theories, in general, do not obey the restriction of
sorted equational theories. Equational Sort Abstraction removes the improper information
and transforms a monadic Horn theory H into a sorted equational theory £ in such a way
that the minimal model T¢ is an upper approximation of 7.

Definition 6.1.3
The following abstraction is called Equational Sort Abstraction:

Sl(.'L'l), . ,Sn(.’lin),]_—‘ — L

A
bstract 51(5171);"' ,Sn(l'n)H — L

where (i) L is either a monadic atom or an equation and (ii) Si(z1),... , Sp(zy) is maximal
such that it contains only monadic atoms of the form 7'(z) with z € vars(L).

Equational Sort Abstraction removes certain monadic atoms which occur negatively in
the antecedent of a clause. We present a better approximation in this regard in Chapter 7.
However, there is a trade-off for decidability, since the approximation requires all clauses
to be linear declarations and equations.

Proposition 6.1.4

Let H be a monadic Horn theory. The result of an exhaustive application of Equational
Sort Abstraction to % is a sorted equational theory £ while the minimal model T¢ of £ is
an upper approximation of the minimal model 7% of H.

Proof By the construction of Equational Sort Abstraction it follows immediately that any
exhaustive application of the rule is finite and results in a sorted equational theory. The
minimal model T°¢ is in fact an upper approximation of T since all clauses with positive
literals are abstracted into £ while only negative literals are removed. |

In the sequel, we call a sorted equational theory £ which has been obtained by an
exhaustive application of Equational Sort Abstraction to the static or dynamic monadic
Horn theory H of a set N of clauses the sorted equational theory of N. In order to empha-
size that £ has been obtained from H we may also say that & is the static or dynamic sorted
equational theory of N, respectively. The following corollary is an immediate consequence
of Proposition 6.1.4 and Corollary 4.0.7.
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Corollary 6.1.5

Let Ny be a set of clauses. The static sorted equational theory of Ny is a static approx-
imation for monadic equational types. Let Ny, N1, Na, ... be a fair theorem proving
derivation. The sequence of dynamic sorted equational theories of each NN; is a dynamic
approximation for monadic equational types.

6.2 Tree Automata and Standard Equational Theories

We shall relate sorted equational theories, on one hand, to certain combinations of tree
automata with equational theories inspired by Comon (1995), and, on the other hand, to
so-called standard theories (Nieuwenhuis 1996). On the way to an effective computation of
the satisfiability of (ground) monadic equational types with respect to a sorted equational
theory, the E-unifiability (word) problem with respect to the theory has to be solved.
Recall that a sorted equational theory, in general, contains a sort theory and a finite set
of sorted equations. In Section 4.2, we have already demonstrated that certain classes of
sort theories correspond to classes of tree automata.

Given a signature ¥, we denote the closure of a set L of ground terms from 7 (X)
with respect to an equational theory £ by (S¢)(L): = {s € T(Z) | 3t € L with t &¢ s}.
Suppose that £ is a linear shallow sorted equational theory which contains a sort theory
S and a set £ of equations with empty sort constraints. The sort theory S corresponds
to a tree automaton A and £ is an equational theory. Let L be the set of ground terms
recognized by A. Then the word problem s ¢ ¢ for ground terms s and ¢ can be
reduced to the membership problem for s € (&¢)({t}) if the closure set is recognizable.
More generally, for a goal s =~ t where s and ¢ are both linear terms with vars(s) N
vars(t) = 0, E-unifiability with respect to £ is equivalent to the non-emptiness problem
of {so | o is a ground substitution} N (&¢)({to | o is a ground substitution}). Note that
the set of ground instances of s and ¢ are both recognizable by tree automata.

Kaji, Toru & Kasami (1997) as well as Comon (1995) and Jacquemard (1996) investi-
gate the recognizability of the closure of recognizable sets with respect to certain forms of
term rewriting systems. Kaji et al. (1997) show the recognizability of the (right-)closure of
a certain class of (right-)linear, confluent term rewriting systems applied to linear terms.
The variables occurring in the left and right hand side of a rule s = ¢ are assumed to be
linear in s and, moreover, s and the subterms of ¢ are related by additional restrictions
which can be effectively computed. Comon (1995), on the other hand, shows with the fol-
lowing theorem that the E-unifiability problem over linear (disjoint) terms with respect to
certain linear equational theories is decidable. In fact, the construction of Comon (1995)
can be used to decide the E-unifiability problem over linear terms with respect to the
systems of Kaji et al. (1997). Jacquemard (1996) generalized the results of Comon (1995)
to so-called linear growing term rewriting systems.

Theorem 6.2.1 (Comon (1995))
Let £ be a linear equational theory where all variable occurrences in the equations in &

are shallow. Let L be a recognizable language. Then (S¢)(L) is a recognizable language.
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Arbitrary ground terms may occur in equations in £. However, these occurrences do
not increase the expressiveness upon linear shallow equational theories as ground terms
may always be represented by, e.g., a finite number of linear shallow sort declarations.
We briefly sketch the idea of the proof of the above theorem. The construction is based
on a tree automaton Ay which recognizes L and which contains a unique state S, for
each ground subterm s; in each equation f(s1,...,8p) =~ t in € such that s; (and only
s;) is recognized by A in Ss,. If s; is a variable then S, is the final state of a universal
tree automaton. In some sense the subterms s; are abstracted by Ay. Note that Ay can
be constructed such that the difference of the size of the automaton which recognizes L,
i.e. the number of transition rules, and the size of Ay is linear in the size of &, i.e. the
number of function and predicate symbols which occur in the equations of £. Then Ay is
completed with respect to the inference rule Automata Completion.

Definition 6.2.2 (Automata Completion)
The following inference is called Automata Completion:

F(s1y--vy8n) = g(t1, ... ,tm) S1(z1)y--- 3 Sn(zn) || = S(f(z1,--- ,20))

Infer
Ti(z1), .- s Tm(@m) || = S(g(21, ... ;2m))
where (i) f(s1,...,8n) = g(t1,... ,tm) is a linear equation in which variables may only
occur at shallow positions, (ii) if ¢; with 1 < ¢ < m is a ground term or a variable z with
x ¢ vars(f(s1,... ,8n)), then T;: = Sy, or else (iii) if ¢; with 1 < ¢ < m is a variable such

that ¢; = s; with 1 < j < n, then T}: = §;.

The completion does not introduce new states which implies that only polynomially
many new transition rules are added to Ay with respect to the number of rules of Ay
and the number of equations in £. The conditions (i) through (iii) can be checked in
linear time in the size of £. An inference by paramodulation from the premises of Au-
tomata Completion yields a clause of the form S1(s1),...,Sn(sn) | — S(g(t1,... ,tm)).
Due to the construction of the Automata Completion, the conclusion is equivalent to the
clause T1(x1), ... , Tim(zm) || — S(g(z1,... ,2m)). In this way, we arrive at a close relation
between the automata-theoretic approach and our saturation-based method using super-
position/paramodulation. Note, however, that the idea of Automata Completion actually
inspired our approach. Another justification to use concepts with a stronger expressive-
ness than automata-theoretic methods is that the recognizability result of Theorem 6.2.1
cannot be extended to non-linear shallow equational theories as stated in the following
lemma. The proof is based on an easy pumping argument.

Lemma 6.2.3
There is a recognizable set L and a non-linear shallow equational theory &£ such that

(&¢)(L) is not recognizable.

Proof Suppose that the signature ¥ consists of a binary function symbol f, a unary
function symbol s, and a constant symbol a. Let L be the singleton {a} and let £ be
the non-linear shallow equational theory {f(z,z) =~ a}. Suppose, for the purpose of a
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contradiction, that (&¢)(L) is recognized by a tree automaton A where S denotes the
distinguished set of final states of A. We assume, without loss of generality, that A is
deterministic. Since A has only finitely many states, there are two distinct terms s™ (a)
and s™?(a) which are recognized by A in the same state S. Note that s”(a) denotes the
term s(s""1(a)) for any n > 0 where s%(a): = a. Since we have that f(s"!(a), s"(a)) €
(&¢)(L) and A is deterministic, there is a sorted clause (transition rule) of the form
S(z1),S(z2) || — Se(f(x1,22)) where Sf € S is a final state of A. Thus it follows that
AE Se(f(s™(a),s™ (a))). However, we may also conclude that A E Sg(f(s™(a), s (a)))
which shows the contradiction because the term f(s™ (a),s™(a)) is not in (&¢)(L). M

There is a simple Rec— automaton A, though, which recognizes the language (S¢)(L)
from the above proof. Take || — T(a); T(z)| — T(s(z)); T(z), T(y)| — T(f(z,v)),
and T'(z) || — Sg(f(z,x)) as the only transition rules of A where St is the final state of A.
Then L(.A) is obviously the set {f(z,z) | z € T(X)} of ground terms which corresponds to
(&¢)(L). However, the next lemma states that there are also non-linear shallow equational
theories such that even Rec, automata are too weak to recognize the according closure
set. In the proof we use again a pumping argument which is based on (equivalence) classes
of terms that correspond to well-balanced trees. Intuitively, we show that the syntactic
(dis-)equations of the transition rules are too weak to distinguish the equivalence classes
induced by the “semantic” equality of the equational theory.

Lemma 6.2.4
There is a recognizable set L and a non-linear shallow equational theory £ such that

(&¢)(L) is not in Rec..

Proof Suppose that the signature ¥ consists of the binary function symbols f and g and a
constant symbol a. Consider the non-linear shallow equational theory £, which consists of
the equation f(z,z) =~ g(z,z), and the set L of ground terms {g(s1,s2) | s1,s2 € T(X)}.
Let L' be the closure (&¢)(L) of ground terms with respect to £. Suppose that L’ is
recognized by a Recy automaton A where § denotes the distinguished set of final states
of A and n is the number of states of A. We assume, without loss of generality, that A is
deterministic and completely specified.

We define a sequence of ground terms which correspond to well-balanced trees. Let ¢4
be the ground term f(a,a) and let, for all ¢ > 1, t;11 be the ground term f(¢;,¢;). For
all i > 1, the cardinality of the equivalence class of t; with respect to &g is 22 1. Let
i be the integer [log(log(2n + 2))]. Then, for each i > g, there are two syntactically
distinct ground terms u; and v; which are equivalent to ¢; with respect to <¢ such that
u; and v; are recognized by A in the same state S;. Note that f(u;,v;) € L' which
implies, by assumption, that f(u;,v;) is recognized by A in a final state T; € S. Since
A is deterministic, it follows that there is a sorted clause (transition rule) C; of the form
Si(z1), Si(z2) || — Ti(f(z1,22)) in A such that A F C;o where o is a substitution that
maps x1 to u; and x to v;. We arrive at a “hierarchy” of transition rules C; starting
from 7 > ip. In fact, for all ¢ > ip, the variables x; and x5 in the respective clause C; are



§ 6.2 TREE AUTOMATA AND STANDARD EQUATIONAL THEORIES 131

distinct since there are always pairs of terms similar to u; and v;, for all 7 > ¢y, which are
syntactically distinct. In other words, a syntactic equality constraint cannot occur in any
of these transition rules. Note also that the following argumentation is independent from
the potential presence of syntactic disequations in the transition rules.

Since A has only finitely many states and transition rules, there are two distinct integers
j and k with j > k > iy such that the respective clauses C; and C}, in A are of the form
Sj(fbl), Sj(.’l?z) | — Tj(f($1,l‘2)) and Sg(z1), Sk(z2) || — Tk(f(z1,z2)), respectively, with
S;j = Sk. Since x; is distinct from x5 in C; we have that A F Cjo where o is a substitution
that maps z; to a term u; and x2 to a term u;. Note that u; is equivalent to the term ¢;
with respect to £ whereas uy, is equivalent to the term t; with respect to £. It follows that
the term f(u;,ug) is recognized by A in the final state T; which shows the contradiction
because this term is not in L'. [ |

The above lemma implies that the syntactic equality constraints of Rec— automata
are not suitable to solve the E-unifiability problem with respect to non-linear shallow
equational theories. The class of non-linear shallow sorted equational theories is a strict
generalization of Rec— automata. We demonstrate below that the combination of this
class and saturation-based methods is an appropriate concept to address the E-unifiability
problem.

Fassbender & Maneth (1996) also investigate the decidability of E-unification with
respect to theories induced by certain term rewriting systems called top-down tree trans-
ducers. Syntactic restrictions based on distinct function and constructor alphabets apply
here. They show that E-unification in top-down tree transducers with only one function
symbol in the alphabet is decidable. Due to the constructor-based restrictions the re-
sults are difficult to compare to our characterization by semi-linearity. Otto, Narendran
& Dougherty (1995) show that E-unification is decidable in equational theories axioma-
tized by confluent string-rewriting systems. Limet & Réty (1997) show the decidability
of E-unification with respect to theories represented by a particular class of confluent,
constructor-based term rewriting systems. The set of possibly infinite solutions is repre-
sented by so-called tree tuple synchronized grammars. A term rewriting system is trans-
formed into such a grammar which then simulates narrowing. The additional restrictions
on the term rewriting system are syntactic. However, semi-linear theories are difficult to
compare to the constructor-based systems in this approach. Comon et al. (1994) inves-
tigate the properties of non-linear shallow theories which are an instance of semi-linear
equational theories. Shallow presentations can be transformed into equivalent so-called
cycle-syntactic presentations for which decidability of unification has been shown. The
first-order theory of the quotient algebra T(F')/— is also shown to be decidable where F
is finite and F is (non-linear) shallow. However, the proof techniques are entirely different
to our approach.

Nieuwenhuis (1996) generalizes the result of Comon et al. (1994) to so-called standard
theories that extend non-linear shallow theories in such a way that non-ground terms
containing linear variable occurrences are allowed in certain restricted positions in both
sides of the equations. An equation f(si,...,s,) = g(t1,... ,tn) in a standard theory
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may contain linear terms s;, respectively ¢;, where all other equations with top symbol f,
respectively g, must have linear term occurrences only at the position ¢. Non-linear variable
occurrences are limited to shallow positions. Nieuwenhuis (1996) employs saturation-
based methods which are closely related to our work. In fact, the decidability results
are obtained by termination analyses of saturation under the basic superposition calculus
from (Nieuwenhuis & Rubio 1995). In the sequel, we refer to standard theories by standard
equational theories which are defined as follows.

Definition 6.2.5 (Standard Equational Theory)

A standard signature is a signature where every function symbol f with arity n has an
associated set of shallow positions sh(f) and a set of linear positions lin(f) such that
sh(f)Nlin(f) = 0 and sh(f) Ulin(f) = {1,... ,n}. The argument s; of a term ¢ of the
form f(s1,...,sn) is called a shallow position argument of t if i € sh(f) and is called a
linear position argument of t if i € lin(f). A term ¢ is called standard whenever t is a
variable or a term of the form f(s1,...,s,) where for all i with 1 < i < n if i € sh(f) then
s; is a variable or a ground term or if ¢ € lin(f) then s; is a linear term in ¢. An equation
s = t is called standard whenever (i) s is linear and ¢ is ground, or else (ii) s is a standard
term of the form f(...,g(¢),...) and ¢ is a variable, or else (iii) s and ¢ are standard terms
that share only shallow variables and no variable z with = € vars(s) Uwvars(t) is a shallow
and a linear position argument of s or t. An equational theory which consists of standard
equations only is called standard.

The class of semi-linear sorted equational theories is significantly larger than the class
of (non-linear) shallow equational theories but, however, does not strictly include the
standard equational theories because of case (ii) in the above definition. We present a
strict generalization of semi-linear and standard equational theories in Section 6.8 by the
so-called semi-standard sorted equational theories.

Theorem 6.2.6 (Nieuwenhuis (1996))
The E-unifiability problem with respect to standard equational theories is decidable.

We consider the following example which has been inspired by Nieuwenhuis (1996).
The example shows that the limits of the approach are due to a weak representation of
“schematic” information that appears during saturation. We therefore propose to use
“sort” information as an appropriate concept for the finite representation of a larger class
of theories. The particular data structure of “sorts” allow “sorted” refinements of (basic)
superposition/paramodulation that make particular use of this information.

Example 6.2.7

Consider the equational theory given by the equations f(g(z),y) =~ h(y) and f(z,z) =~
g(z). The class of standard equational theories does not include this theory. The closure
of the non-standard theory under basic superposition leads to an infinite set of equations
g(h™(g(x))) =~ h™"*1(g(x)) if the admissible term ordering is induced by a precedence g > h.
The infinite expansion can be avoided by abstracting the linear (semi-linear) term g(z) into
a sort declaration || — S(g(z)). We transform the original theory into a sorted shallow
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equational theory consisting of the sorted Horn clauses | — S(g(z)), S(z) || — f(z,y) =
h(y), and || — f(z,z) = g(z). We can effectively saturate the sorted shallow equational
theory under sorted superposition to H U {S(z) — g(x) = h(z); S(x) — S(h(x))} where
we assume that the admissible term ordering is induced by the precedence f > g > h > S.

The finite representation of infinite schematic terms has received quite some atten-
tion, see (Hermann & Salzer 1996) for an overview. We conclude that our methods are
related, on one hand, to the combinations of tree automata with equational theories in-
spired by Comon (1995), and, on the other hand, to the standard equational theories
in (Nieuwenhuis 1996). Unlike these two approaches, we use a particular refinement of
(basic) superposition/paramodulation combined with a certain finite representation of
schematic information which is generated during the saturation process.

6.3 Decidability

In order to show that satisfiability of monadic equational types with respect to (non-linear)
shallow sorted equational theories is decidable, we employ sorted superposition which is a
particular instance of (basic) superposition with selection. Similar to sort resolution, we
prefer a specialized version of superposition based on the combination of an admissible term
ordering and a particular selection strategy for sort constraints and (dis-)equations. For
refutational completeness of sorted superposition, the atom ordering must be compatible
with the subterm property. An atom ordering which is induced by an admissible term
ordering is compatible with the subterm property. We assume admissible literal orderings
of Definition 3.1.48 and admissible clause orderings of Definition 3.1.15.

Given a sorted clause of the form ¥ | ©,I' — II where © contains monadic atoms, "
contains equations, and II is either an equation or a monadic atom, the equality selection
strategy selects any occurrences of equations in I first. Whenever I is empty, occurrences
of negative monadic literals in © are selected with a particular priority on non-variable
terms. In fact, the equality selection strategy is equivalent for literal occurrences in ©
and in the unsolved part of ¥ where the occurrences in © have a higher priority. Recall
that the sort selection strategy select literals containing non-variable terms first, followed
by so-called empty sorts, i.e. literals containing variables that do not occur in the non-
constraint part of the clause. Literals of subsort declarations are selected last whereas, for
sorted equations, we generalize the strategy to select a negative occurrence of a literal S(x)
whenever the equation is of the form z = ¢ or ¢t =~ x with & ¢ vars(t). The motivation of
the equality selection strategy is to prohibit an increasing term depth during a saturation
process by sorted superposition. The potential increase of the term depth by one may only
be tolerated in non-trivial subsort declarations and sorted equations of the above form in
favor of a technically simpler presentation.

Definition 6.3.1 (Equality Selection)

Let C be a sorted clause of the form ¥ | ©,I' — II where © contains monadic atoms, T’
contains equations, and II is either an equation or a monadic atom or empty. A literal
S(t) € ¥ is selected whenever © and I' are empty and (i) ¢ is a non-variable term, or
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else (ii) ¥ contains only variables and ¢ ¢ wvars(II), or else (iii) ¥ contains only variables
(in particular, ¢ is a variable) with vars(¥) = {¢} and II is either a disjoint collapsing
equation s ~ t with ¢ ¢ vars(s), or else a monadic atom T'(¢). A literal S(¢) € © is
selected whenever T' is empty and (iv) ¢t is a non-variable term, or else (v) © contains
only variables and ¢ ¢ vars(Il), or else (vi) © contains only variables (in particular, ¢ is
a variable) with vars(©) = {t} and II is either a disjoint collapsing equation s ~ ¢ with
t ¢ vars(s), or else a monadic atom 7'(¢). (vii) Each literal s ~ ¢t € I" is selected. No other
literal in C' is selected. We call this selection strategy equality selection. A literal which
is selected by equality selection is called equality selected.

Equality selection is a generalization of sort selection and type selection for clauses
with equality. Note that we only need case (i) through (iii) for a termination proof of
the saturation of (non-linear) shallow sorted equational theories by sorted superposition
since the involved clauses have an empty non-constraint antecedent part. For a similar
result on linear shallow typed equational theories, the additional cases (iv) through (vi)
are required. Finally, the decidability of full monadic equational types with respect to
these theories requires all cases of the equality selection strategy.

The sorted superposition calculus consists of the inference rules Sort Constraint Res-
olution, Sorted Superposition Left, Sorted Superposition Right, and Equality Resolution
whereas the sorted paramodulation calculus consists of the inference rules Sort Constraint
Resolution, Sorted Paramodulation Left, Sorted Paramodulation Right, and Equality Res-
olution. By Sort Constraint Resolution, we mean an adaption of the inference rule of
Definition 4.3.2 to sorted clauses with non-empty antecedents as given below. Both calculi
are adaptions of superposition with selection (Bachmair & Ganzinger 1994) and paramod-
ulation with selection, respectively, to sorted clauses in combination with the equality
selection strategy with additional basic restrictions on the sort constraint inspired by the
basic versions of the calculi (Bachmair et al. 1995, Nieuwenhuis & Rubio 1995). Superpo-
sition is a generalization of paramodulation with additional ordering restrictions.

We briefly recall the idea of basic restrictions in the context of superposition and
paramodulation calculi. Recall that a position p in an expression is called variable posi-
tion if a variable occurs at p. A superposition inference may be prohibited at so-called
substitution positions. A substitution position is a generalization of a variable position
where the variable positions of a clause C' are “remembered” in all successors of C, e.g.,
by some marking mechanism. That is, a substitution position in a clause C refers to a
position at or below a variable position in a predecessor of C. Note that we avoid a formal
definition of substitution positions and basic restrictions in favor of a simpler presentation
of the decidability proofs. However, we shall emphasize substitution positions by frames
around subterms which occur at substitution positions, e.g., the occurrence of a term g(x)
at a substitution position in a literal S(f(g(z))) is depicted by S(f( g(z)|)). For the ba-
sic variant of paramodulation, a further optimization is possible by the so-called variable
abstraction (Bachmair et al. 1995). A substitution position may also include the redex
position of a previous basic paramodulation inference.

Sorted superposition exploits the fact that all subterm positions in a sort constraint
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are substitution positions. Thus superposition/paramodulation inferences on literals in
the sort constraint are not needed. The inference rules of sorted superposition and sorted
paramodulation are defined accordingly. Note that we only consider sets of sorted clauses
which have been obtained by a transformation of arbitrary sets of clauses using Equational
Sort Abstraction. Any term in the sort constraint of a sorted clause obtained this way
is a variable. Bachmair & Ganzinger (1998a) speak of schematic sets of clauses which
are characterized as a class of clause sets which are, as input sets, compatible with basic
inference systems. More precisely, any substitution position of a clause C' in a schematic
set is a variable position of C. Any clause set obtained by Equational Sort Abstraction is
a schematic set.

The saturation of (non-linear) shallow sorted equational theories by the sorted paramod-
ulation calculus is a terminating process. For an effective computation of the satisfiability
of monadic equational types, there is an elegant method based on a further refinement
of sorted paramodulation to the basic sorted paramodulation calculus and variable ab-
straction. The idea has been proposed by Nieuwenhuis (1996). The refinement imposes
basic restrictions on all substitution positions in the sort constraint as well as the actual
clause part. The basic sorted paramodulation calculus consists of the inference rules Sort
Constraint Resolution, Basic Sorted Paramodulation Left, Basic Sorted Paramodulation
Right, and Equality Resolution whereas the basic sorted superposition calculus consists
of the inference rules Sort Constraint Resolution, Basic Sorted Superposition Left, Basic
Sorted Superposition Right, and Equality Resolution. From a technical point of view, sorted
paramodulation uses a constraint inheritance strategy by which equality constraints ob-
tained by unification are eagerly propagated to the non-constraint part of a sorted clause
whereas the strategy for basic sorted paramodulation keeps the full equality constraint.
Substitution positions can be represented by syntactic equality constraints. In Chap-
ter 7 we demonstrate that basic sorted paramodulation also serves as a decision procedure
for typed equational theories and the respective monadic equational types. We assume
throughout this chapter that Sort Condensing and Intersection Condensing are eagerly
applied. Both simplification rules are compatible with the particular redundancy concept
which is required for the basic/sorted versions of the calculi since Sort Condensing and
Intersection Condensing have been restricted to the factorization of variant sort constraint
literals.

Definition 6.3.2 (Sort Constraint Resolution)
The following inference is called Sort Constraint Resolution:

Tl —S(s)  S(u),®||A—TII

Inf
ner Vo, ®0 || Ao — Ilo

where (i) o is the most general unifier of s and w, (ii) ¥ is solved, (iii) S(u) is equality
selected, and (iv) no literal is equality selected in Ao.

Definition 6.3.3 ((Basic) Superposition/Paramodulation Left)
The following inference is called Superposition Left:
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V|| »s=t ®|u[s| ~v,A =11
Yo, ®o || uftlo = vo, Ao — Ilo

Infer

where (i) o is the most general unifier of s and ', (ii) ¢ ¥ s and ¥ is solved, (iii) v ¥ wu,
(iv) uo = wvo is equality selected, or else no literal is equality selected in uo = vo, Ao,
and (v) s’ does not occur at a variable position. If condition (v) is replaced by (v’) s’
does not occur at a substitution position, we speak of a Basic Superposition Left. If we
drop the requirement (iii), i.e. v ¥ u, the inference is called a (Basic) Paramodulation Left
inference. The conclusion of a Basic Paramodulation Left inference is refined to

Yo, ®o || ua[ ~ vo, Ao — Ilo

The refinement is called variable abstraction (Bachmair et al. 1995, Nieuwenhuis 1998).
Note that ® does not have to be solved.

Definition 6.3.4 ((Basic) Superposition/Paramodulation Right)
The following inference is called Superposition Right:

V|| »s~t d| s uls=v
Vo, ®0 || — ultlo = vo

Infer

where (i) o is the most general unifier of s and s, (ii) ¢ ¥ s and ¥ is solved, (iii) v ¥ u and
® is solved, s’ does not occur at a variable position. If condition (v) is replaced by (v’) s’
does not occur at a substitution position, we speak of a Basic Superposition Right. If we
drop the requirement v ¥ u of case (iii) the inference is called a (Basic) Paramodulation
Right inference.

Definition 6.3.5 (Equality Resolution)
The following inference is called Equality Resolution:

U||lu~v,A—=1I
Yo || Ao — Ilo

Infer

where (i) o is the most general unifier of u and v and (ii) uo = to is equality selected, or
else no literal is equality selected in uo = vo, Ao. Note that ¥ does not have to be solved.

We do not explicitly define the computation and maintainance of substitution po-
sitions in the basic variants of the inference rules. For simplicity, we assume that the
substitution positions of clauses, which are involved as premises in some inferences, are
inherited to the conclusions. The following corollary states that (basic) sorted superposi-
tion/paramodulation is refutationally complete for schematic sets of sorted monadic Horn
clauses with equality.

Corollary 6.3.6 (Weidenbach (1996a))

Let N be a schematic set of sorted monadic Horn clauses (with equality). Suppose that
N is saturated by (basic) sorted superposition/paramodulation. Then either N contains
the empty clause, or else IV is satisfiable.
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The following lemma states that (non-linear) shallow sorted equational theories can
be finitely saturated by sorted superposition. We show that there is a certain class of
shallow monadic Horn clauses which includes shallow sorted equational theories and which
is closed under sorted superposition. Assuming a finite signature, Sort and Intersection
Condensing identify sufficiently many clauses to demonstrate effectively that this class is
finite up to Sort and Intersection Condensing and variant clauses. The set of productive
clauses in a set of clauses which has been finitely saturated by sorted superposition contains
shared and trivial sorted equations and includes a (non-linear) shallow sort theory which
consists of term declarations and trivial subsort declarations. The definition of productive
clauses is straightforward by an adaption of the model functor for superposition to sorted
superposition.

Lemma 6.3.7

Let £ be a (non-linear) shallow sorted equational theory. Then £ can be finitely saturated
by sorted superposition, Sort Condensing, and Intersection Condensing. The productive
clauses in the saturated set form a (non-linear) shallow sorted equational theory which
consists of (non-linear) shallow term declarations, trivial subsort declarations, and (non-
linear) shallow sorted equations with a solved sort constraint.

Proof The only clauses in a shallow sorted equational theory which have an unsolved sort
constraint are non-trivial subsort declarations and disjoint collapsing/universal shallow
sorted equations. The idea of the proof is to show that (i) there is a certain subclass
of shallow monadic Horn theories with equality which includes £ and which is closed
under sorted superposition and (ii) this class is finite with respect to Sort and Intersection
Condensing and variant clauses. For (i) we shall argue that the following class of clauses
is closed under sorted superposition.

Tl(t)a--- aTn(t)’Sl(xl)’--- aSm(xm) || — L

where n and m are possibly zero, L is either a monadic atom S(u) or an equation u ~ v,
t is a non-variable shallow term, and v and v are shallow terms. Note that the constraint
S1(z1),-.. , Sm(xm) does not have to be solved. We call a clause of the above form the
nvariant.

Obviously, the class includes any (non-linear) shallow sorted equational theory. Any
inference that involves an invariant as the side premise is only possible if n = 0 and the
sort constraint of the invariant is solved, i.e. if the invariant is a (non-linear) shallow term
declaration, a trivial subsort declaration, or a (non-linear) shallow sorted equation with a
solved sort constraint. Thus an invariant that is involved as the main premise may only be
reduced to another invariant by a (non-linear) shallow term declaration, a trivial subsort
declaration, or a (non-linear) shallow sorted equation with a solved sort constraint. See the
case analysis below. Since any invariant contains at most three shallow terms, there are
only finitely many invariants over a finite signature up to Sort and Intersection Condensing
and variant clauses, which implies (ii).

Let C be a clause of the form of the invariant and suppose n = 0. We consider all
inferences in which C is involved as the main premise. Suppose that the sort constraint



138 § 6. SORTED EQUATIONAL THEORIES

S1(xz1),. .., Sm(zm) is solved in C. In this case, C may only be involved in a Superposition
Right inference. The involved side premise must also have a solved sort constraint. Both
premises must be sorted equations. Suppose that the equation s ~ s’ in the side premise
is disjoint collapsing, i.e. s’ is a variable z and = ¢ wvars(s). Note that the side premise
does not contain a literal S(z) in the sort constraint, for otherwise this literal would be
selected. Since we do not superpose into variables, a Superposition Right inference results
in a clause of the form of the invariant. In all other cases, the most general unifier is
simply a renaming. It follows that any conclusion D is of the form of the invariant where
the sort constraint of D may be unsolved but does not contain any non-variable term.

Now suppose that the sort constraint Si(z1),...,Sn(zm) is unsolved in C. First, we
consider the case in which C is either a non-trivial subsort declaration or a sorted equation
where L is a disjoint collapsing equation of the form z; ~ ¢ and z; ¢ vars(t). Suppose that
C is of one of these forms, i.e. there is at least one occurrence of a variable x; such that the
according literal S;(z;) is selected. By Sort Constraint Resolution we may derive a clause
D of the form of the invariant where n’/ is the number of occurrences of the non-variable
term ¢ in D. If the other involved premise is a term declaration then n’ = m — 1 where
m is the number of occurrences of x; in the sort constraint of C. If it is a trivial subsort
declaration then n’ = 0.

For the second case, suppose that there is at least one occurrence of a variable x; in
the sort constraint of C' with z; ¢ wvars(L). The according literal S;(z;) is selected. By
Sort Constraint Resolution we may derive a clause D of the form of the invariant where
n' is the number of occurrences of the non-variable term ¢ in D. If the other involved
premise is a term declaration then n’ = m — 1 where m is the number of occurrences of z;
in the sort constraint of C. If it is a trivial subsort declaration then n’ = 0. However, the
sort constraint in D may still be unsolved.

Suppose that n > 0 in C. The equality selection strategy prefers a literal T;(¢) with a
non-variable term ¢, i.e. potential occurrences of a literal S;(z;) with z; ¢ vars(L) are not
selected in the presence of ¢t. All literals T;(t) are selected. By Sort Constraint Resolution
on some Tj(t) we may derive a clause D of the form of the invariant where n’ is the number
of occurrences of ¢ in D. In any case, we have that n’ = n — 1 which implies (i).

The saturated set may still contain clauses with an unsolved sort constraint. However,
these clauses cannot be productive since the unsolved part is equality selected which im-
plies that the set of productive clauses are (non-linear) shallow term declarations, trivial
subsort declarations, and (non-linear) shallow sorted equations with a solved sort con-
straint which form a (non-linear) shallow sorted equational theory. [ |

Example 6.3.8

Consider the saturation process of the shallow sorted equational theory from the Exam-
ple 6.2.7 by sorted superposition. We assume that the admissible term ordering > is in-
duced by the precedence f = g = h > S. In particular, we have that f(z,y) = g(z) = h(z)
and f(z,y) > h(y) in any non-ground approximation of >.
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The saturation process by sorted superposition generates the clauses (4) and (5) by Su-
perposition Right inferences.

The clauses (1)—(5) are saturated by sorted superposition.

Corollary 6.3.9
Shallow sorted equational theories can be finitely saturated by sorted paramodulation.

Proof The only difference between sorted superposition and sorted paramodulation is
that the sorted paramodulation calculus paramodulates into both sides of equations, as
opposed to the ordering restrictions of superposition. However, we only paramodulate
with right hand sides of equations that are not smaller than the respective left hand side.
Therefore, the proof of Lemma 6.3.7 carries over to sorted paramodulation. |

Example 6.3.10
With respect to the Example 6.3.8 sorted paramodulation produces the additional clause (6)
by a Paramodulation Right inference from the clauses (2) and (4).

(6) S(@)| = f(z,x) = h(z)

Note that the clause (1) subsumes the clause (6). However, the clauses (1)—(6) are satu-
rated by sorted paramodulation.

Nieuwenhuis (1996) shows that every finite set of shallow equations can be closed under
paramodulation in polynomial time. Starting from a non-alternating linear shallow sorted
equational theory, sorted superposition/paramodulation essentially computes superposi-
tion/paramodulation steps among the non-collapsing equations and the term declarations
which implies the following corollary.

Corollary 6.3.11

Let £ be an non-alternating linear shallow sorted equational theory. Then £ can be
finitely saturated by sorted superposition/paramodulation, Sort Condensing, and Intersec-
tion Condensing in polynomial time with respect to size(€) resulting in a sorted equational
theory &' such that size(€') is polynomially larger than size(E).

Collapsing equations could be used to derive non-trivial subsort declarations whereas
non-linear equations may introduce alternation in the term declarations and thus pos-
sible intersection non-emptiness tests. It follows that the linearity requirement ensures
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that only non-emptiness tests are computed during saturation which are solvable in lin-
ear time. The above corollary indicates that equality adds only a polynomial degree in
complexity. This observation and Proposition 4.3.6 imply that saturation by sorted super-
position/paramodulation of an (alternating, non-linear) shallow sorted equational theories
can be done in simply exponential time.

Proposition 6.3.12

Let £ be an (alternating, non-linear) shallow sorted equational theory. Then &£ can be
finitely saturated by sorted superposition/paramodulation, Sort Condensing, and Inter-
section Condensing in simply exponential time with respect to size(€) resulting in a sorted
equational theory &’ such that size(€') is at most simply exponentially larger than size(&).

Recall the subset construction in Section 4.3 which involves the inference rule State
Union and the simplification rule De-Alternation. The Proposition 4.3.9 states that any
alternating (non-linear) shallow sort theory & without non-trivial subsort declarations can
be transformed into a non-alternating theory &’ such that the minimal model of S is
essentially equivalent to the minimal model of §’. In particular, De-Alternation encodes
the alternation over one variable into a single state. We may use the same technique to
obtain the following corollary.

Corollary 6.3.13

Let £ be an (alternating, non-linear) shallow sorted equational theory without non-trivial
subsort declarations and let P be the set of predicate symbols which occur in £&. Then
& can be transformed into a (non-linear) shallow sorted equational theory £ in which all
term declarations are non-alternating and all sorted equations have non-alternating sort
constraints such that (i) T7¢(P) N...NT¢(P,) = TSI(S{ph___ ,p,}) for any set of predicate
symbols Py,... ,P, € P and (ii) size(£’) is at most simply exponentially larger than
size(€) with respect to the cardinality of P.

Since Sort and Intersection Condensing are compatible with basic restrictions, the
above results on finite saturation hold also for the basic variants of the sorted superposi-
tion/paramodulation calculus.

Corollary 6.3.14
Shallow sorted equational theories can be finitely saturated by basic sorted superposition
and basic sorted paramodulation.

In particular, this corollary allows for a simple decidability proof of E-unification with
respect to shallow sorted equational theories. There are only finitely many applications of
Basic Paramodulation Left (and Equality Resolution) on some given (dis-)equation with
respect to a clause set that is finitely saturated by basic sorted paramodulation. The
subsequent applications of Sort Constraint Resolution have already been shown to be
terminating.

Theorem 6.3.15
Unifiability with respect to finitely saturated shallow sorted equational theories is decid-
able.
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Proof Two arbitrary terms v and v are unifiable if and only if we can derive the empty
clause from the saturated theory and the goal clause ||u &~ v —. Since the shallow sorted
equational theory is saturated, no inferences inside the theory need to be considered. Fur-
thermore, the goal is purely negative, so we can delete all clauses with an unsolved sort
constraint from the saturated theory as well as all non-trivial subsort declarations. Let us
in particular assume that our theory is saturated by (basic) sorted paramodulation. Fol-
lowing the equality selection strategy the disequation u = v in the goal is selected. Thus
only (Basic) Paramodulation Left or Equality Resolution inferences can be performed until
the disequation is resolved. For a theory saturated under (basic) sorted paramodulation,
every position in the disequation has only to be considered once for a Basic Paramodu-
lation Left inference. Hence, the application of Basic Paramodulation Left and Equality
Resolution terminates on the goal clause, resulting in a clause Si(t1),...,Sp(tn) || —-
Now exhaustive application of Sort Constraint Resolution terminates on this clause, be-
cause the lexicographic combination of the overall number of variables in the clause and
the multiset of all term depths decreases with any Sort Constraint Resolution application.

|

Recall Lemmata 6.2.3 and 6.2.4 which state that tree automata as well as Rec— are
in some sense too weak to recognize the closure (&¢)(L) of ground terms with respect to
a recognizable set L and a non-linear shallow equational theory £. In contrast, by Theo-
rem 6.2.1, tree automata can recognize the closure (&¢)(L) with respect to a recognizable
set L and linear equational theories in which all variables are shallow (Comon 1995). We
have shown that this result can be used to decide E-unifiability of linear “goal” terms s
and t with vars(s) N vars(t) = 0 with respect to £. We conclude that, in contrast to the
automata-theoretic approach, the particular data structure of (non-linear) shallow sorted
equational theories in combination with sorted superposition are a suitable concept to
relax (i) the linearity requirement on the equations of £ and the goal and (ii) the variable
disjointness of the goal terms. Our approach addresses (i) by the explicit representation
of the equational information in the saturated set such that equality is not only involved
in the (automata) completion but also in the recognization process of a goal and (ii) by
an explicit control of the instantiation of the goal terms through unification, similar to
so-called narrowing techniques.

Example 6.3.16

Consider the set N of clauses (1)—(6) of the Example 6.3.10 which has been saturated by
(basic) sorted paramodulation. We compute the E-unifiability of two pairs of terms with
respect to N. Given the pair of terms f(z,y) and h(y), we add the following (sorted)
disequation to the theory.

(7) 1/ (z,y) = h(y) =

A Basic Paramodulation Left inference from the clause (1) and (7) results in the clause (8)
of the form S(z) ||| h(y) | = h(y) —. A subsequent Sort Constraint Resolution step from (3)

and (8) yields the clause (9) of the form || ~ h(y) —. A final application of Equality
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Resolution from (9) yields the empty clause. Therefore, f(z,y) and h(y) are unifiable with
respect to N. Another example demonstrates that the two terms f(a,z) and h(z) where
a is some constant are not unifiable with respect to IV.

(7) I f(a,z) = h(z) =
) S(a)ll -
(9) l9(a) = h(a) —

The saturation under sorted paramodulation does not produce the empty clause. However,
the clauses (8) and (9) are produced before the procedure eventually stops. Thus the theory
and the negated monadic equational type have a model which shows that f(a,z) and h(x)
are not unifiable with respect to V.

The next theorem summarizes the discussion and states that the theory of monadic
equational types over (non-linear) shallow sorted equational theories is decidable. Any
shallow sorted equational theory may be finitely saturated by basic sorted paramodulation
such that the candidate model of the saturation is the minimal model of the theory. By
a subsequent saturation with basic sorted paramodulation between the saturated theory
and a negated monadic equational type we can effectively compute the satisfiability of the
type with respect to the theory. A negated monadic equational type is a negative clause
and thus any clause with an unsolved sort constraint may safely be removed from the
saturated theory.

Theorem 6.3.17
Let £ be a shallow sorted equational theory. The theory F¢ of monadic equational types
over & is decidable.

Proof Let 3z1,... ,z, (¥,0,I") be a monadic equational type in Fg where {z1,... ,z,}
is the set of free variables in ¥,©®,I'. Moreover, ¥ is maximal such that ¥ contains
only monadic atoms of the form S(z) and z € vars(©,I'), © contains other monadic
atoms, and I contains equations. Note that £ F Jzq,... ,z, (¥, 0,T) holds if and only if
T¢E3xy,...,2,(¥,0,T) holds if and only if T¢ ¥V x1,... ,2, (-(¥,O,T)) holds. In or-
der to check whether £ F 3z4,... ,2,(¥,0,T') holds we add the sorted clause ¥ || ©,T" —
to the saturated set £ and saturate the result by basic sorted paramodulation. By Corol-
lary 6.3.14 £ can be finitely saturated by basic sorted paramodulation into £’. In the
following we call a negative clause a goal. Only steps between clauses in £ and goals are
required. Moreover, since goals are purely negative we can delete all clauses with unsolved
sort constraint from £’ as well as all non-trivial subsort declarations.

The equality selection strategy also applies to goals. If a goal contains equations then
all equations are selected whereas the monadic atoms are not selected. In case a goal does
not contain any equations all monadic atoms from the non-constraint part are selected
whereas the literals in the sort constraint are not selected. If a goal has an empty non-
constraint part all literals in the sort constraint are selected.

Due to Theorem 6.3.15 basic sorted paramodulation on the equational part of goals
terminates. The next step is to solve the non-constraint monadic part of goals. Similar
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to the proof of Theorem 6.3.15 we argue that there are only finitely many applications of
Basic Paramodulation Left on the non-constraint monadic part using variable abstraction.

Finally, goals with empty non-constraint part are actually monadic types. Since only
Sort Constraint Resolution is applicable to monadic types we may discard all sorted equa-
tions from the saturated theory £'. Consequently, £ becomes a shallow sort theory and
we may apply Theorem 4.3.10 to show termination. |

According to the proof of Theorem 4.3.12, by Proposition 6.3.12 and by Corollary 6.3.13,
we obtain the following complexity result. Note that satisfiability tests on monadic variable
types do not involve any superposition/paramodulation inferences but only computations
with respect to the linear shallow sort theory within a linear shallow sorted equational
theory.

Corollary 6.3.18
The satisfiability problem of the theory of monadic variable types over (alternating) linear
shallow sorted equational theories is EXPTIME-complete.

The above corollary implies the EXPTIME-hardness of the satisfiability problem not
only of the theory of monadic variable types but also of the theory of (general) monadic
equational types over (alternating) non-linear shallow sorted equational theories.

Corollary 6.3.19
The satisfiability problem of the theory of monadic equational (variable) types over (al-
ternating, non-linear) shallow sorted equational theories is EXPTIME-hard.

In the proof of Proposition 7.1.5, we will show the EXPTIME-completeness of the
satisfiability problem of the theory of (general) monadic equational types over linear shal-
low typed equational theories. We obtain as an immediate corollary that the satisfiability
problem of the theory of monadic equational types over (alternating) linear shallow sorted
equational theories is EXPTIME-complete. The EXPTIME-completeness of the same
problem for non-linear theories remains open.

Corollary 6.3.20
The satisfiability problem of the theory of monadic equational (variable) types over (al-
ternating) linear shallow sorted equational theories is EXPTIME-complete.

Sorted superposition/paramodulation implements the test of E-unifiability with re-
spect to (sorted) monadic Horn theories. The E-unifiability test of two terms induces
repeated tests of well-sortedness, as well as tests of emptiness of sorts and sorted unifica-
tion (Weidenbach 1996a) on the sort constraint literals. More precisely, the saturation by
sorted superposition/paramodulation of a shallow sorted equational theory with a negated
ground monadic equational type corresponds to an attempt to solve the word problem
given by the equations in the type where the sort constraint of the type represents a test
of well-sortedness. The same saturation with a negated non-ground monadic equational
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type corresponds to an E-unifiability test of the equations in the type where the sort
constraint of the type encodes emptiness tests of sorts and sorted unification problems.

We shall exploit the complexity results for sorted unification with respect to shallow
non-equational sort theories to derive similar results on the number of most general unifiers
of an equational problem with respect to shallow sorted equational theories. The following
theorem is an easy extension of Theorem 4.3.15 from shallow sort theories to shallow sorted
equational theories.

Theorem 6.3.21 (Weidenbach (1998))

Let £ be a (non-linear) shallow sorted equational theory. Let C' be a clause of the form
S1(t1)y--- ,Sn(tn) || —. We can derive a clause T1(y1),... ,Tx(yx) || — from C and € by
Sort Constraint Resolution if and only if the sorted unification problem z1 = ¢1,... ,z, =
t,, has a “well-sorted” most general unifier with respect to the shallow sort theory contained
in £ where each z; is new and has the sort S;.

Nieuwenhuis (1996) has already demonstrated that there are simply exponentially
many minimal (irreducible) unifiers of an equational problem with respect to a finite set
of Horn clauses that is saturated under basic paramodulation. The idea is to show that
saturation implicitly generates a polynomially branching narrowing tree whose overall size
is then simply exponential. Using the same argument, it follows that saturation under
basic sorted paramodulation of a sorted disequation ||s =~ ¢t — and a saturated shallow
sorted equational theory £ produces at most simply exponentially many sorted clauses of
the form S1(t1),...,Snp(tn) || — in the size of s = ¢ and &.

Recall that Theorem 4.3.16 states that sorted unification in (non-linear) shallow sort
theories is NP-complete and that the number of “well-sorted” most general unifiers is
simply exponential in the size of a shallow sort theory and the sorted unification problem.
Thus from Theorem 6.3.21, 4.3.16, and 6.3.15 we obtain that there are at most simply
exponentially many “well-sorted” most general unifiers for a unification problem with
respect to a finitely saturated shallow sorted equational theory.

Corollary 6.3.22
The number of “well-sorted” most general unifiers with respect to a finitely saturated
shallow sorted equational theory £ is simply exponential.

6.4 Semi-linear Approximations

The theory of monadic equational types over shallow sorted equational theories is de-
cidable. In analogy to the transformation of semi-linear sort theories into essentially
equivalent shallow sort theories, we can improve the result for shallow sorted equational
theories using an extension of Semi-linear Flattening to sorted Horn clauses with equality
called Semi-linear Equational Flattening. The transformation introduces a new monadic
predicate for each occurrence of a proper non-variable subterm in a term declaration or
a sorted equation where the number of new symbols is linear in the number of function
symbols which occur in the equational theory. Semi-linear Equational Flattening replaces
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in a top-down manner each occurrence of a non-variable proper subterm ¢; by a variable x
where an additional sort constraint on z restricts the ground instances of z to the “well-
sorted” ground instances of t. Given a semi-linear sorted equational theory, the minimal
model of the resulting shallow sorted equational theory is essentially equivalent to the
minimal model of the original equational theory while for arbitrary sorted equational the-
ories the minimal model of the result is an upper approximation of the minimal model of
the original. Note that we do not consider the adaption of Flattening, which is a proper
instance of Semi-linear Flattening, to Equational Flattening.

Definition 6.4.1
The following abstraction is called Semi-linear Equational Flattening:

O, V| — Litly,

| = Si(t)
Si(x), O, ¥" || = Llpy, ... , pn/x]

Abstract

where (i) L is either a monadic atom or an equation, (ii) ¥, ¥’ is solved, (iii) ¢ is a
non-variable subterm at position p; with [pi| = 2, (iv) the positions pi,... ,p, refer to
all positions ¢ of ¢ in L with |g| = 2, (v) ¥’ is maximal such that vars(¥’') C vars(t),
(vi) ¥” C ¥’ is maximal such that ¥” is solved in the conclusion, (vii) S; is a new
monadic predicate, and (viii) z is a new variable.

Note that Semi-linear Equational Flattening differs from Semi-linear Flattening only
in case (i) which includes, in addition to monadic atoms, also equations. In a similar way,
Flattening carries over to Equational Flattening. In the sequel, a monadic predicate S
refers to the new predicate which has been introduced by Semi-linear Equational Flattening
for a non-variable term ¢. The newly introduced declarations represent, from an automata-
theoretic point of view, tree automata which recognize in a state S; exactly the “well-
sorted” ground instances of the original term ¢. The following proposition suggests that
Semi-linear Equational Flattening may be applied to arbitrary sorted equational theories.
However, minimal models are preserved only for semi-linear sorted equational theories. For
arbitrary sorted equational theories the transformation yields a sorted equational theory
whose minimal model is an upper approximation of the minimal model of the original
theory.

Proposition 6.4.2
Let £ be a sorted equational theory. Exhaustive application of Semi-linear Equational
Flattening to £ terminates and results in a (non-linear) shallow sorted equational theory.

Proof The proof is similar to the proof of the Proposition 4.4.3. |

In the sequel we call a sorted equational theory which has been obtained by an exhaus-
tive application of (Semi-linear) Equational Flattening to a sorted equational theory £ the
(semi-linear) flat approzimation of £. The following lemma on the minimal model prop-
erties of the new predicates introduced by Semi-linear Equational Flattening corresponds
to the technical Lemma 4.4.7 for Semi-linear Flattening.
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Lemma 6.4.3

Let £ be a sorted equational theory and let £ be the (semi-linear) flat approximation
of £. Let I be the minimal model of Esr. Let ¢ be a non-variable term for which a new
monadic predicate symbol S; has been introduced by (Semi-linear) Equational Flattening.
Let C be the immediate conclusion ¥ || — S¢(t) of (Semi-linear) Equational Flattening
on t. Then for all ground atoms Si(s) which are true in I there is a ground substitution
o such that (i) I F s = to and (ii) Yo is true in I.

Proof The proof is similar to the proof of Lemma 4.4.4 and Lemma 4.4.7. |

The Semi-linear Equational Flattening abstracts sorted equational theories such that
the minimal models of the approximations are upper approximations of minimal models
of the original equational theories.

Proposition 6.4.4
Let &£ be a sorted equational theory and let £r be the (semi-linear) flat approximation of
£. The minimal model T¢F is an upper approximation of the minimal model T¢.

Proof The proof is similar to the proof of Proposition 4.4.8. |

Semi-linear Equational Flattening yields exact approximations for semi-linear sorted
equational theories.

Proposition 6.4.5

Let £ be a linear (semi-linear) sorted equational theory and let £ be the (semi-linear)
flat approximation of £. The minimal model of £ is equivalent to the minimal model of
& up to the new atoms introduced by (Semi-linear) Equational Flattening.

Proof The proof is similar to the proof of Proposition 4.4.9. |

It turns out that the theory of monadic equational types over semi-linear sorted equa-
tional theories is decidable. Semi-linear Equational Flattening is an effective abstraction
from semi-linear sorted equational theories to non-linear shallow sorted equational theories
for which satisfiability of monadic equational types has been shown to be decidable.

Theorem 6.4.6
Let &£ be a semi-linear sorted equational theory. Then the theory F¢ of monadic equational
types over £ is decidable.

Proof Let £r be the semi-linear flat approximation of £. By Proposition 6.4.2 £ can
be effectively computed where £ is a shallow sorted equational theory. Due to Theo-
rem 6.3.17 the theory of monadic equational types over shallow sorted equational theories
is decidable. Let 31, ... ,z, (¥) be a monadic equational type in Fg where {z1,... ,z,}
is the set of free variables in ¥. Note that £ F Jz1,... ,z, (¥) holds if and only if
T¢ E3xz1,... ,2, (V) holds and, by Proposition 6.4.5, if and only if T¢F F Jx4,... , z, (¥)
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holds under the proviso that ¥ does not contain any new atoms introduced by Semi-linear
Equational Flattening. It follows that the theory of monadic equational types over semi-
linear sorted equational theories is decidable. |

The following corollary is an immediate consequence of Corollary 6.3.19.

Corollary 6.4.7
The satisfiability problem of the theory of monadic equational (variable) types over (al-
ternating) semi-linear sorted equational theories is EXPTIME-hard.

The following corollary is an immediate consequence of Corollary 6.3.20 and Proposi-
tion 6.4.2.

Corollary 6.4.8
The satisfiability problem of the theory of monadic equational (variable) types over (al-
ternating) linear sorted equational theories is EXPTIME-complete.

We restrict our attention to saturation-based decision procedures and conclude that
Semi-linear Equational Flattening is a suitable concept for effective soft typing with respect
to arbitrary static/dynamic sorted equational theories and monadic equational types.

Corollary 6.4.9

Let Ny be a set of clauses. The (semi-linear) flat approximation of the static sorted equa-
tional theory of Ny is a decidable static approximation for monadic equational types. Let
Ny, N1, Na, ... be a fair theorem proving derivation. The sequence of (semi-linear) flat
approximations of the dynamic sort theories of each NV; is a decidable dynamic approxi-
mation for monadic equational types.

6.5 Undecidability

The theory of monadic equational types over semi-linear sorted equational theories has
been shown to be decidable, which includes the decidability of the E-unifiability problem
with respect to this class of theories. In this section, we discuss the limits of effective E-
unification and demonstrate that already the word problem with respect to the so-called
pseudo-linear equational theories is undecidable. A term t is pseudo-linear whenever each
non-linear variable x in ¢ occurs at the same depth in ¢, c.f. Chapter 2 for a formal defini-
tion. Intuitively, pseudo-linearity generalizes semi-linearity such that each pair of distinct
paths to the non-linear occurrences of a variable have to be of the same length and not, as
for semi-linearity, have also to be labeled by the same symbols. The extension of pseudo-
linearity to equations and equational theories is straightforward. Note that every semi-
linear theory is pseudo-linear but not vice versa. The equations f(h(z),g(z)) = g(g(x))
and f(h(z),g9(x),y) = y are both pseudo-linear and form a pseudo-linear equational the-
ory which is not semi-linear. The equation f(h(z),g(z)) ~ g(z) is neither semi-linear nor
pseudo-linear.
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Oyamaguchi (1990) has demonstrated that the word problem for right-ground term
rewriting systems is undecidable whereas the word problem in left-linear and right-ground
term rewriting systems is decidable in polynomial time. In the undecidability proof for
right-ground systems, rewrite rules which simulate a transition of one configuration of
a Turing machine to the next contain non-linear variable occurrences at different depth.
Recall that non-linear variable occurrences at different depth are excluded from semi-
linear and pseudo-linear theories. We follow a similar idea in the following proof by an
encoding of the transitions of a Turing machine in a pseudo-linear term rewriting system
R over a signature which contains unary function symbols and constant symbols only
(string rewriting system or Semi-Thue system). The rewriting rules are all of the form
f(g(z)) = f'(¢'(z)). The reduction of the halting problem (blank tape accepting problem)
is completed by adding certain left-linear (right-ground) rewrite rules to R. We obtain
an orthogonal (left-linear, no critical pairs) term rewriting system R' for which the ac-
cording equational theory (symmetric closure) £ simulates exactly the computations of
the original Turing machine. Note that £ is close to the simplest case of pseudo-linear
non-shallow equational theories. In this way, Theorem 6.5.5 characterizes a gap between
semi-linear and pseudo-linear equational theories with respect to our combination of sat-
uration and abstraction of Sections 6.3 and 6.4. In contrast to pseudo-linear equational
theories, Weidenbach (19965) shows that sorted unification with respect to pseudo-linear
sort theories (the theory of monadic types) as a generalization of semi-linear sort theories
is still decidable.

Definition 6.5.1 (Turing Machine)

A Turing machine M is a T-tuple (Q, 2, X, 0, g0, b, F') where (i) @Q is a finite set of states,
(ii) X is a finite set of tape symbols disjoint from @, (iii) X;, is a subset of X called the
set of input symbols, (iv) J is a mapping from @ X X to subsets of @ x ¥ x {left,right},
called the transition function of M, (v) qo is the initial state of M, (vi) b € X is a tape
symbol called blank, and (vii) F' C @ is the set of final states. M is called deterministic
if § is functional, i.e. the range of § is a singleton set. An instantaneous description or
ID of M is any string agfB where ¢ € Q and o, € T*. A move of M is a pair (v, w)
of ID’s where either v = aagB and w = ag'd'f if (¢',d’,1eft) € §(q,a) or v = aagef
and w = ad’eq'B if (¢',a’,right) € §(q,a) for all ¢,a,a’ € X, q,¢' € Q, and , 3 € T*.
The binary relation of all moves of M is denoted by a4, and its transitive and reflexive
closure by ;.

The intended meaning of an ID of the form aagB of M is to give a complete descrip-
tion of the execution state of M called the configuration of M: q is the state of M, «
corresponds to the contents of the tape of M from the left edge of the tape to the symbol
a pointed to by the head, and 8 denotes the rest of the contents of the tape to the right
of the head.

Definition 6.5.2 (Turing Machine Language)
Let M be a Turing machine. The language accepted by M is the set L(M) of strings given
as:

L(M) ={w € X}, | gow Fy agB with ¢ € F and agf is an ID}
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We introduce the notion of a walid computation of a Turing machine which is non-
restrictive in the sense that any Turing machine can be effectively transformed into a
Turing machine that performs valid computations only. In particular, case (iii) can be
guaranteed by additional transition rules that replace, after reaching a final state, all
non-blank symbols on the tape by b and then proceed to a final state.

Definition 6.5.3 (Valid Computation)

Let M be a Turing machine. A wvalid computation of M is a non-empty sequence of strings
(ws,...,w,) where (i) each w; is an ID of M of the form d*E*QX*b>® (b* denotes an
infinite string of the blank symbol b), (ii) w; is the initial ID of the form b>®goub™ with
v € X7, (iii) wy is a final ID of the form b*¢b> with ¢ € F, and (iv) w; Faq wiyq for all

1 with 1 <17 <n.

We use the following obvious connection of valid computations of a Turing machine
M and the language accepted by M.

Lemma 6.5.4
Let M be a Turing machine. Then there is a valid computation of M with initial ID
b>govdb™ if and only if v € L(M).

We call the problem of deciding whether the language accepted by a Turing machine
contains the empty word or not the blank tape accepting problem of Turing machines. If,
for a Turing machine M, the language L(M) accepted by M contains the empty word,
then we say that M accepts the blank tape. This problem is well-known to be undecidable
by a reduction of the halting problem of Turing machines.

Theorem 6.5.5
The word problem with respect to pseudo-linear equational theories is undecidable.

Proof We reduce the blank tape accepting problem of Turing machines. Let M be a
deterministic Turing machine which performs only valid computations. Without loss of
generality we assume that F' = {¢¢} and that §(g¢,a) = 0 for all tape symbols a € X, i.e. a
move is not possible after M reaches the final state g¢. For the construction of the pseudo-
linear equational theory £, let ¥¢ be the signature X W {aq | a € X,9 € Q} W {¢, 90, h}
where € is a constant symbol and the other function symbols are unary. The symbols a,
b, and ¢ denote unary function symbols in the rest of this proof. We use string notation
to denote the (ground) terms over g, i.e. a1asz...an(z) and ajas...an(e) (araz...ay)
denote aj(as(...an(z))) and aj(az(...an(€))), respectively.

Given the signature ¥q = ¥¢ \ {go, h}, the configurations of M are represented by
terms of the form b*3% b*. The symbols of the form a, represent both the state ¢ and the
position of the head which is pointing to a. More precisely, a configuration b®aaqBb>
of M with a,8 € ¥* a € X, and g € Q is represented by a string (term) of the form
b*aa,Bb*.

We construct a semi-Thue system R according to the transition function 6 of M
over the signature X54. Let R be the smallest set of rewrite rules such that for each
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a,a',c € ¥ and each ¢,¢' € Q either (i) caq(z) = cya'(z) € R if §(q,a) = {(¢',a’,Left)}
or (ii) agc(z) = a'cy(z) € R if §(g,a) = {(¢',a’,right)}. It follows that M accepts the
blank tape if and only if there is a term s of the form b*b,,b* and a term ¢ of the form
b* by b* with s S g t.

Let Ry be the ground term rewriting system which consists of the rewrite rules go(e) =
bgo(€), go(€) = bg,h(€), h(€) = bh(e), and h(e) = e. The construction of R; implies that
the ground term go(e) can be rewritten by R; to any ground term of the form b*b,,b*. Let
Rs be the left-linear (right-ground) term rewriting system which consists of the rewrite
rules by (z) = by (€) and bbg(x) = bg(e). Then exactly the ground terms of the form
b*bg; X% can be rewritten by Ry to the ground term bg(€). Let R’ be the term rewriting
system RUR; URj. It follows that M accepts the blank tape if and only if go(€) = g/ by, (€)-
Note that M accepts the blank tape if and only if there is a rewriting sequence of the
form go(€) =g, u =R v =R, by (€) where u and v are ground terms over the signature X¢.
Moreover, observe that R' is indeed orthogonal (left-linear, no critical pairs) since M is
deterministic and by the assumption that after reaching the final state ¢f no further moves
are possible. The orthogonality of R’ implies that R’ is confluent such that any rewriting
sequence go(€) = s by, (€) can be reordered into a rewriting sequence of the above form.

We construct £ as the symmetric closure of the rewrite rules of R, i.e. £ is the set
{s = t]|s=te€ R'} of equations. Observe that £ is in fact a pseudo-linear equational
theory. The ground term by, (€) is irreducible with respect to R’ which implies, again using
the orthogonality of R’, that M accepts the blank tape if and only if go(e) S¢ bge(e). M

This reduction also proves that (&g)(L) is not necessarily recognizable by a tree
automaton when L is recognizable and £ is a pseudo-linear equational theory. As a
corollary from the previous theorem, we obtain that the E-unifiability problem with re-
spect to pseudo-linear (string) equational theories in which all equations have the form
f(g(2)) = f'(¢'(x)) (no ground equations) is undecidable. The word problem in such a
system is decidable, since equations of the above type are length-preserving.

Corollary 6.5.6

Given a signature X which contains only unary function symbols and constant symbols, the
E-unifiability problem with respect to pseudo-linear equational theories over ¥ in which
all equations are of the form f(g(z)) = f'(¢'(x)) is undecidable.

Proof Given a Turing machine M, we assume the same conditions as in the proof of
Theorem 6.5.5. Moreover, the rewrite system R is constructed in the same way as above.
Note that R is a semi-Thue system in which all rewrite rules are of the form f(g(z)) =
f'(¢'(z)). Let R; be the term rewriting system (semi-Thue system) which consists of
the rewrite rules gob(z) = bgo(x) and gobg,(xz) = bg,b(x). Given a substitution o, the
construction of R; implies that a term gob(y)o can always be reduced by R; to a term
of the form b*bbg,b(y’) whenever the variable y is instantiated by o to a term of the form
b*bg,(y')o’ where ¢’ is an arbitrary substitution. Let Ry be the term rewriting system
(semi-Thue system) which contains only the rewrite rule bbg,(x) = bgb(x) such that
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only a term of the form b*bbg(z') can be reduced by Ry to a term bgbb*(z'). Let R’
be the term rewriting system R U R; U Re. Then, by a similar reasoning as above, we
have that M accepts the blank tape if and only if there is a substitution o such that
gob(y)o S¢ bgb(2)0. [ |

6.6 Standard Equational Theories

The E-unifiability problem with respect to the so-called standard theories or standard
equational theories has been shown to be decidable by Nieuwenhuis (1996). Recall Defini-
tion 6.2.5 of standard equations and standard equational theories. The syntactic charac-
terization of standard equational theories includes non-linear shallow variable occurrences
which cause substantial difficulties when using automata-theoretic concepts as we already
demonstrated in Section 6.2. Nieuwenhuis (1996) has partly overcome these problems by
the saturation-based methods of basic superposition/paramodulation. Standard equations
may have non-linear shallow variables which are, however, restricted to dedicated posi-
tions for each function symbol in the signature. From a technical point of view, these
restrictions avoid overlappings of non-linear shallow variables and more complex terms.

With (Semi-linear) Equational Flattening of (semi-linear) sorted equational theories
we have demonstrated that these restrictions can also be dropped. However, semi-linear
sorted equational theories do not subsume standard equational theories. There is one
form of standard equations which is not embedded by the semi-linear case: the form
f(...,g9(x),...) = x where g is a unary function symbol with additional restrictions on the
positions of linear terms and non-linear shallow variables in other equations, c.f. case (ii)
of Definition 6.2.5. Obviously, the subterm g(x) cannot be transformed into a sort dec-
laration. However, we can show that E-unification in those theories can still be decided
by basic sorted paramodulation. The following discussion mainly follows the previous
argumentation on shallow and semi-linear sorted equational theories though the proofs
are much more involved. We slightly generalize the form of invariants of the saturation
process. The definition of shallow terms has to be adapted such that not only variables
but also constants as arguments of shallow terms are allowed. In the sequel, we will use
this generalized definition of shallow terms.

Definition 6.6.1 (Semi-shallow Sorted Equation)

We call a sorted equation ¥ || — f(t1,... ,t,) = « semi-shallow if for all i with 1 <i <n
the term ¢; is either a variable or a term of the form g(z) where g is a unary function
symbol. If there is any g(x) among the t; then all other ¢; which are variables are distinct
from z.

Note that several occurrences of a subterm g(z) with a unique function symbol g
are possible in a semi-shallow sorted equation. The following definition of semi-shallow
sorted equational theories explicitly excludes this case. However, a semi-shallow sorted
equation with several occurrences of a subterm of the form g(z) can easily be transformed
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into a semi-shallow sorted equation with only one occurrence of g(x) and a semi-linear
sorted equation. Consider the semi-shallow equation f(g(z),g(z)) ~ z. We transform the
equation into a semi-shallow equation f'(g(z)) ~ x and a semi-linear (shallow) equation
f(z,z) = f'(z). The two new equations are logically equivalent to the former equation if f’
is a fresh function symbol. Nevertheless, we omit a formal definition of the transformation
here to simplify technical matters. Note that, in general, the transformation does not work
to extend the class of standard equational theories using the approach of Nieuwenhuis
(1996). Suppose, for example, that lin(f) = {1} and sh(f) = {2}. In this case, an
equation f(z,z) ~ f'(z) is not allowed since the first argument contains at a linear position
argument the variable x which is not a linear term in the equation. In other words, in
standard equational theories we cannot freely introduce new non-linear shallow equations
due to the restrictions of shallow and linear position arguments.

Definition 6.6.2 (Semi-shallow Sorted Equational Theory)

A sorted equational theory £ is called semi-shallow if all declarations in £ are shallow
and all sorted equations in £ are shallow or semi-shallow where each semi-shallow sorted
equation ¥ | — f(t1,...,t,) = z in £ contains at most one t; of the form g(z).

With the distinction of shallow and semi-shallow sorted equational theories we show
that the technical difficulties in (Nieuwenhuis 1996, Nieuwenhuis 1998) are due to the
somewhat artificial definition of semi-shallow equations of the form f(...,g(z),...) =z
with the occurrences of terms of the form g(z). The decidability proof of shallow sorted
equational theories is substantially easier than the proof for semi-shallow theories.

In order to show that the generalized fragment is still closed under basic sorted
paramodulation we have to treat certain equations which contain variable disjoint sides
carefully, e.g., the equation f(x,y) =~ g(z). Equations of this form cannot be oriented
by any admissible ordering and thus have to be applied in both directions. Saturation
may not terminate when such equations are superposed on subterms of the form g(x) in
an equation f(...,g(z),...) =~ z. Arbitrary deep term structures can be generated by
subsequent paramodulation steps. However, it is possible to transform such equations dy-
namically during the saturation process. For example, the equation f(z,y) ~ g(z) can be
transformed into equations f(z,y) ~ a and g(z) =~ a where a is a new constant symbol. As
a consequence we have to show that only a finite number of new symbols can be generated.

Consider the simplest equation ¢ = y. If this equation is derived we can just stop
saturation since the Herbrand universe collapses in this case. For more complicated sorted
equations with variable disjoint sides and solved sort constraint, e.g., ¥|| — = ~ ¢ and
x ¢ wvars(t), we can still deduce that either ¥ is empty or the Herbrand universe col-
lapses since z ¢ wars(¥). As we have mentioned above, a critical situation may come
up when such equations are superposed onto a subterm g(z). In general, this may hap-
pen using sorted equations of the form ¥| — z = ¢ and also ¥ || — g(z) = t where
z ¢ vars(t). Importantly, equations of the form ¥| — fi(z1,...,2n) = fo(y1,--. ,Ym)
where {z1,...,2,} N {y1,--- ,ym} = 0 and n,m > 1 do not have to be considered.
Paramodulation by those equations onto a subterm g(z) is not possible.

Consider the transformation of a sorted equation S(z)| — g(z) = f(y,y) into two
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equations S(z)| — g(z) = a and S(z)|| — f(y,y) = a. Such a transformation step
is called splitting. The splitting of similar unsorted equations has already been used
in (Nieuwenhuis 1996). If the constant symbol a is a new symbol splitting clearly preserves
(un-)satisfiability. However, (un-)satisfiability is also preserved if the constant a is being
reused if a has been introduced before for the same solved sort constraint S(z). The
situation for a sorted equation C of the form ¥ || — = = ¢ is easier. We may replace C' by
a sorted equation C’ of the form ¥ || — z ~ a where a is a unique constant symbol which
can be reused for all sorted equations of the form of C. The derivation of a sorted equation
D of the form ¥ || — ¢ = a is not required in this case since C’ is already a generalization
of D. Consider, for example, the sorted equation S(y)|| — « = f(y,y). The equation is
true whenever either the sort S is empty or the Herbrand universe contains exactly one
element. Splitting introduces with a an explicit name for this element.

Splitting terminates for clause sets which contain only finitely many sorts. There are
two important observations. For finitely many sorts there are an exponential number of
intersections of sorts. Thus variables can have only finitely many different sorts. Shallow
equations in which both sides have root symbols with arity greater than one are not split.
For if one side contains a newly introduced constant symbol as an argument, splitting
would generate new constant symbols which depend on previously introduced symbols.
For example, splitting of a sorted equation S(z)|| — f(z,a) = h(y, z) generates a sorted
equation S(z)|| — f(z,a) =~ b where a is a constant symbols previously introduced by
splitting and b is a new constant symbol. In this way splitting would not terminate in
general.

Definition 6.6.3
Let N be a set of clauses. A splitting step is defined as the simplification of a clause in N
by the rule UniversalSplit:

V|| wz=xt
V| »z=xa

Simplify

where (i) the sort constraint ¥ is solved in the premise, (ii) ¢ is a non-variable shallow
term, (iii) « ¢ vars(t), and (iv) @ is a unique constant symbol reserved for UniversalSplit,
as well as by the rule UnarySplit:

V| = g(@) =
V| —g(x) ~
V|| —t=a

t
Simplify .

where (i) the sort constraint ¥ is solved in the premise, (ii) ¢ is a non-variable shallow
term, (iii) ¢ is a unary function symbol, (iv) = ¢ wvars(t), and (v) if there is a clause
¥ || — g(z) = bin N then let a: = b or, otherwise, let a be a fresh constant symbol.

Proposition 6.6.4
Let X be a finite signature and let NV be a set of clauses over X of the form:

V| —z=a
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and the form:
Ul »g(zr)=a

where the sort constraint ¥ is solved, a € ¥ is a constant, and g € ¥ is a unary function
symbol. Then the set N is finite up to variable renaming and Sort Condensing.

Proof Let n be the number of different monadic predicate symbols occurring in clauses
of N. Then there are 2" different sort constraints on one variable up to Sort Condensing.
Consequently, the set N contains in the order of 2" different clauses up to variable renaming
and Sort Condensing. [ ]

In the following proposition we show that splitting can only be applied finitely many
times. Sorted equations are split only if one side is an (unsorted) variable z (by Universal-
Split) or a term g(x) (by UnarySplit) where g is unary and z is a (sorted) variable. More
complex sorted equations f(s1,...,8n) = h(t1,...,tn) are not split if f and h are n-ary
functions with n > 1 and the s; and t; are variables or constants. Recursive occurrences
of formerly introduced constants would lead to an infinite splitting process. Recall that
UniversalSplit reuses the same constant symbol in each application. A constant symbol
introduced by UnarySplit can be seen as a name for a particular intersection of sorts on
one variable. In this sense constants are reused by UnarySplit whenever the same inter-
section of sorts arises several times. Finally, splitting is applied only to sorted equations
in which both sides are shallow. Obviously, there are only finitely many different shallow
sorted terms over a finite signature.

Proposition 6.6.5
Let N be a set of clauses over a finite signature. Then splitting can be applied only finitely
many times in any derivation of basic sorted paramodulation with splitting.

Proof Only the rules UniversalSplit and UnarySplit may introduce new constant symbols.
We discuss the proof for UnarySplit. The proof for the rule UniversalSplit is a special case
of the proof for UnarySplit. We assume that all sort constraints are minimal in the
sense that no further Sort Condensing is possible. Let C be a clause ¥ | — g(z) = t
from N where the conditions of UnarySplit hold for C. Suppose that there is no clause
V|| — g(xz) = bin N. In this case UnarySplit introduces a new constant symbol a and
transforms C to C' = ¥|| — g(z) ~ a. Note that in general the sort constraint ¥ is not
in solved form in C’ anymore since the equation does not contain the variables of ¢.

Suppose the sort constraint of C’ has been simplified to ¥’ where ¥’ does not need
to be in solved form. The constant a may be viewed as a label for ¥/ and g, not for ¥
and g. Thus in a subsequent application of UnarySplit to a clause ¥| — g(z) = t' a
new constant has to be introduced. However, an application of UnarySplit to a clause
U'|| — g(x) = t' can reuse the constant a.

By Proposition 6.6.4 there are only finitely many clauses of the form ¥ || — g(z) = a.
Thus UnarySplit introduces only finitely many new constant symbols. Note that there
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are only finitely many different shallow sorted terms over a finite signature up to variable
renaming and Sort Condensing. Thus UnarySplit can even be applied only finitely many
times. m

Proposition 6.6.6

Let N and N’ be two sets of clauses such that the set N’ is the result of a transformation
of N by the rules UniversalSplit and UnarySplit. Then N is satisfiable if and only if N’
is satisfiable.

Proof Let N be a set of clauses and let C be the clause U|| — z = ¢ in N where the
conditions of UniversalSplit hold for C, in particular, z ¢ vars(¥) for otherwise ¥ would

not be solved. Let D be the conclusion ¥ || — x = a of an application of UniversalSplit
to C. Let N' be the set {N \ C} U {D}.

Suppose I is a model of N. To show that D is true in I we distinguish two cases.
Suppose that o is a ground substitution where Yo C I and ¢ Dom(co). Thenzr ~to € I
for all ground substitutions 7 since C' is true in I and z ¢ vars(t). In particular, we have
that a =~ to € I. By the transitivity and symmetry of = it follows that 7 = a and thus
Dot are true in I for all ground substitutions 7. On the other hand, suppose that for
a ground substitution o with & ¢ Dom(o) there is a sort constraint literal A € ¥ where
Ao ¢ I. Then Dor is also true in I for all ground substitutions 7. Consequently, I is a
model of N’. The other direction is similar.

Let N be a set of clauses and let C be the clause ¥ || — g(z) =~ t in N where the
conditions of UnarySplit hold for C. Let C' and D be the conclusions ¥ || — g(z) ~ a
and ¥ | — t = a, respectively, of an application of UnarySplit to C. Let N’ be the set
{N\C}uU{C', D}.

Suppose I is a model of N. If there is no clause ¥ || — g(z) = b in N then a is a fresh
constant symbol and we may construct I’ by adding, for all ground substitutions o such
that o C I, the ground instances g(z)o ~ a and to =~ a to I. Note that for any ground
substitution o with ¥o C I we have that g(x)o = to is true in [ since C is true in I. Thus
I’ is a model of N'.

Let C" be a clause ¥ || — g(z) ~ b in N. In this case a has been chosen to be equal
to b. Since C” is true in I the clause C’ is also true in I. To show that D is true in I
we distinguish two cases. Suppose that o is a ground substitution where Wo C I. Then
g(z)o ~ to € I and g(z)o ~ b € I since C and C" are true in I, respectively. By the
transitivity of ~ we have that tc ~ b and thus Do are true in I. On the other hand,
suppose that for a ground substitution o there is a sort constraint A € ¥ where Ao ¢ I.
Then Do is also true in I. Consequently, I is a model of N'.

The other direction follows immediately since C is a consequence of a (sound) paramod-
ulation step on a in C’ to t using D. [ |

Note that both splitting rules are monotone in the sense that the conclusions are
always smaller than the premise, assuming that constants are the smallest objects in the
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term ordering. It follows by the previous result that both splitting rules are admissible
simplification rules.

Corollary 6.6.7
We assume a finite signature. The combination of the basic sorted paramodulation calculus
with splitting is sound and refutationally complete.

Proof By Proposition 6.6.6 splitting preserves (un-)satisfiability. We may additionally
assume that splitting is an admissible simplification rule, see the previous discussion. Due
to Proposition 6.6.5 splitting can be applied only finitely many times and thus fairness
is not affected. Consequently, the corollary follows from the soundness and refutational
completeness of basic sorted paramodulation. |

6.7 Decidability

In order to show that satisfiability of monadic equational types with respect to semi-shallow
sorted equational theories is decidable, we employ basic sorted paramodulation. Similar to
the previous decidability proof, the atom ordering must be, in particular, compatible with
the subterm property. An atom ordering which is induced by an admissible term ordering
is compatible with the subterm property. We assume an admissible term ordering which
is compatible with the arity of non-unary function symbols and in which constants are the
smallest objects. A term ordering > is compatible with the arity of non-unary function
symbols whenever for all function symbols f with arity n > 1 and for all unary function
symbols g we have that f(z1,...,z,...,zy)0 > g(z)o for all ground substitutions . We
assume admissible literal orderings of Definition 3.1.48 and admissible clause orderings of
Definition 3.1.15 and use the equality selection strategy of Definition 6.3.1. The motivation
of this strategy is to avoid an increase in term depth during saturation by basic sorted
paramodulation.

We assume that the basic restrictions are maintained by some marking mechanism
that identifies substitution positions in the clauses. However, basic restrictions outside
the sort constraint are only required for clauses of the form ¥ | — f(t1,...,tm) = =
where f(t1,... ,tm) = x is a semi-shallow equation with at least two occurrences of the
subterm . That is, substitution positions have to be maintained only for repeated
occurrences of the subterm g(x). For example, a shallow sorted equation S(g(y))| —

~ y may be transformed into S(g(y))| — ¢(y) = y whereas g(y) in a semi-shallow
sorted equation of the form S(g(y))|| — f (, ) ~ y must be marked to indicate

that it occurs at a substitution position. If substitution positions are maintained by
equality constraints, we may use a constraint inheritance strategy that propagates equality
constraints eagerly into the clause part unless a semi-shallow sorted equation is generated.
The constraint propagation corresponds to a weakening of the equational constraint which
is always possible, c.f. (Nieuwenhuis & Rubio 1995).
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In the following lemma we do not explicitly include constants as arguments of (semi-
)shallow terms in the definition of the invariant, although constants may also occur in this
way during saturation. However, as long as constants are the smallest objects in the term
ordering, constants can only be replaced by constants using paramodulation. Therefore,
we skip this case to simplify technical matters.

Lemma 6.7.1

Let £ be a semi-shallow sorted equational theory. Then £ can be finitely saturated by
basic sorted paramodulation, splitting, Sort Condensing, and Intersection Condensing.
The productive clauses in the saturated set form a semi-shallow sorted equational theory
which consists of (non-linear) shallow term declarations, trivial subsort declarations, and
semi-shallow sorted equations with a solved sort constraint.

Proof The closure process is parameterized by an admissible term ordering > with the
additional proviso that constants are the smallest symbols with respect to > and that for
all function symbols f with arity n > 1 and for all unary function symbols g we have that
f(z1,...,@,... ,xn)0 = g(x)o for all ground substitutions . We assume that splitting
is applied with the highest priority, i.e. a sorted equation is always split before any other
rule is applied to this equation. We show that the class of clauses of the following form is
closed under basic sorted paramodulation with splitting;:

1. S1(8)y--- ,Sn(8), T1(t),... , Tm(t),¥ || — L where n and m are possibly zero, L is
either a monadic atom S(u) or an equation u = v, s and ¢ are non-variable shallow
terms, u and v are shallow terms, and ¥ contains only literals of the form S(z) or
S(a). Note that ¥ does not have to be solved.

2. 9| = f(z1,---,9(x),... ,xy) = ¢ where n is possibly zero, g is a unary function
symbol, g(z) occurs only once, and ¥ is solved.

3. Tu(t),... , Tn(t),¥ || — f(t1,...,tm) = = where n is possibly zero, g is a unary
function symbol, f(t1,...,tn) = x is a semi-shallow equation with at least two
occurrences of the subterm , t is a non-variable shallow term, ¥ contains only
literals of the form S(y) or S(a). Note that ¥ does not have to be solved.

Each clause of the original semi-shallow equational theory belongs to Category 1 or Cate-
gory 2 and has a solved sort constraint. The predicates in these clauses are all predicates
of the original theory.

Assuming a finite signature there is only a bounded number of clauses which belong
to each of the three categories because the depth of all these clauses as well as the length
of variable chains between its literals is bounded. Hence, there are only finitely many
different clauses of this form up to Sort and Intersection Condensing and variant clauses.
If the saturation process produces only clauses of this form, it will terminate.

If a rule in Category 1, 2, or 3 has unsolved sort constraints then we can perform a Sort
Constraint Resolution inference. The result is a clause of the same category. The equality
selection strategy prefers a literal S(¢) with a non-variable term ¢, i.e. potential occurrences
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of a literal S(z) with z ¢ vars(L) are not selected in the presence of t. Otherwise, there are
several ways to apply Basic Paramodulation Right on clauses with solved sort constraints:

1. The Basic Paramodulation Right of a clause C; in Category 1 on a clause C5 in Cate-
gory 1 results in a clause C3 of the same category shown in the proof of Lemma 6.3.7.
This result still holds for terms which are shallow in the sense that they may contain
not only variables but also constants as arguments since constants are the smallest
objects in the term ordering. Note that the invariant in Lemma 6.3.7 may contain
only one non-variable ¢ in the sort constraint in contrast to clauses of Category 1.
However, using Sort Constraint Resolution such unsolved sort constraints can be
transformed into the form of the sort constraint that appears in the invariant of
Lemma 6.3.7.

2. The Basic Paramodulation Right of a clause C; in Category 1 on a clause Cs in
Category 2 results in a clause C5 of Category:

(a) 3 if C contains a non-collapsing equation and is applied at topmost position.

(b) 2 if C; is a non-collapsing sorted equation of the form ¥| — g(z) =~ h(x)
and is applied on non-topmost position. Note that an equation of the form
f(s1,...,x,...,s,) = g(x) where k > 1 cannot be applied because it is oriented
from left to right due to the assumption that the term ordering > is in a sense
compatible with the arity of function symbols.

(c) 1if C; is a sorted equation of the form V| — x =t or ¥| — g(x) =~ t where
x ¢ wvars(t) and is applied at non-topmost position. Splitting ensures that ¢
is always a constant. Note that the equation in ('3 may contain constants as
arguments. However, we do not consider this case explicitly here to simplify
technical matters. Informally, constants can only be paramodulated to other
constants since constant symbols are assumed to be the smallest objects in the
term ordering. Thus constants may be seen as variables in this case.

(d) 1 if Cy contains a collapsing equation, regardless of topmost or non-topmost
application.

3. The Basic Paramodulation Right of a clause C; in Category 2 on a clause Cs in
Category 1 results in a clause C3 of Category:

(a) 3 if Cy contains a non-collapsing equation. If the equation in C3 does not
contain any non-variable marked subterm then C3 belongs to Category 1.

(b) 1 if Cs contains a collapsing equation or a sort declaration.

4. The Basic Paramodulation Right of a clause C; in Category 2 or 3 on a clause
C> in Category 2 or 3 results in a clause C3 of Category 1. Note that if both
C1 and Cs belong to Category 2 then two different non-variable terms may occur
in the sort constraint of the resulting clause C3 of Category 1. For example, if
C1 = S1(y)|| = f(9(z),y) = x and Cy = S2(2)|| — f(z,h(z")) = 2’ then C5 =
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S1(h(2")), S2(g9(z)) || — 2’ =~ . Another example explains the restriction of semi-
shallow theories where only one occurrence of a term g(z) is allowed in each semi-
shallow equation. Suppose C; = || — f(g(z),9(x)) = v and Co = || — g(h(y)) =y
where (' is obviously semi-shallow but is not allowed in the original clause set. Then
we may derive C3 = || — f(y,g(h(y))) = h(y) which is also not semi-shallow.

5. The Basic Paramodulation Right of a clause C; in Category 3 on a clause (s in
Category 1 or vice versa results in a clause C3 of Category:

(a) 3 if Cy contains a non-collapsing equation. If the equation in Cs does not
contain any marked subterm of the form g(z) then C3 belongs to Category 1.

(b) 1 if Cs contains a collapsing equation or a sort declaration.

It is important to see that clauses of Category 3 which contain several occurrences of a
subterm g(z) appear only during the saturation process. The occurrences of the g(x) in
those clauses are marked due to basic restrictions. In other words, a paramodulation step
on a subterm g(z) is only possible in clauses of Category 2. Those clauses either belong
to the original theory or are conclusions of case 2b. |

The complexity of saturation by basic sorted paramodulation with splitting remains
simply exponential since any inference which involves semi-shallow sorted equations may
only derive polynomially more clauses compared to inferences from (non-linear) shallow
sorted equations. This observation and Proposition 6.3.12 imply that saturation by basic
sorted paramodulation with splitting of an (alternating) semi-shallow sorted equational
theory can be done in simply exponential time.

Proposition 6.7.2

Let £ be an (alternating) semi-shallow sorted equational theory. Then £ can be finitely
saturated by basic sorted paramodulation, splitting, Sort Condensing, and Intersection
Condensing in simply exponential time with respect to size(€) resulting in a sorted equa-
tional theory £’ such that size(£') is at most simply exponentially larger than size(&).

Recall the subset construction in Section 4.3 which involves the inference rule State
Union and the simplification rule De-Alternation. The Proposition 4.3.9 states that any
alternating (non-linear) shallow sort theory S without non-trivial subsort declarations can
be transformed into a non-alternating theory &’ such that the minimal model of S is
essentially equivalent to the minimal model of &’. In particular, De-Alternation encodes
the alternation over one variable into a single state. We may use the same technique to
obtain the following corollary.

Corollary 6.7.3

Let £ be an (alternating) semi-shallow sorted equational theory without non-trivial subsort
declarations and let P be the set of predicate symbols which occur in £. Then £ can be
transformed into a semi-shallow sorted equational theory £’ in which all term declarations
are non-alternating and all sorted equations have non-alternating sort constraints such that
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(i) T¢(P)N...NTE(P,) = T (S(p,,... p,}) for any set of predicate symbols Py, ... , P, € P
and (ii) size(€’) is at most simply exponentially larger than size(£) with respect to the
cardinality of P.

Semi-shallow sorted equational theories over a finite signature can be finitely saturated
by basic sorted paramodulation and splitting. Thus the decidability proof of E-unification
with respect to semi-shallow sorted equational theories can be established analogously to
the proof for shallow sorted equational theories of Theorem 6.3.15. In particular, there are
only finitely many applications of Basic Paramodulation Left (and Equality Resolution)
on some given (dis-)equation with respect to a clause set that is finitely saturated by basic
sorted paramodulation. The subsequent applications of Sort Constraint Resolution have
already been shown to be terminating.

Theorem 6.7.4
Unifiability with respect to finitely saturated semi-shallow sorted equational theories is
decidable.

Proof The result follows from the proof of Theorem 6.3.15 which can easily be extended
to semi-shallow sorted equational theories. |

The next theorem summarizes the discussion and states that the theory of monadic
equational types over semi-shallow sorted equational theories is decidable. Any semi-
shallow sorted equational theory may be finitely saturated by basic sorted paramodulation
such that the candidate model of the saturation is the minimal model of the theory. By
a subsequent saturation with basic sorted paramodulation between the saturated theory
and a negated monadic equational type we can effectively compute the satisfiability of the
type with respect to the theory. A negated monadic equational type is a negative clause
and thus any clause with an unsolved sort constraint may safely be removed from the
saturated theory.

Theorem 6.7.5
Let £ be a semi-shallow sorted equational theory. The theory of monadic equational types
over £ is decidable.

Proof The proof is similar to the proof of the Theorem 6.3.17. |

Following the proof of Theorem 4.3.12, by Proposition 6.7.2 and Corollary 6.7.3, we
obtain the following complexity result. Note that satisfiability tests on monadic variable
types do not involve any paramodulation inferences but only computations with respect
to the linear shallow sort theory within a linear semi-shallow sorted equational theory.

Corollary 6.7.6
The satisfiability problem of the theory of monadic variable types over (alternating) linear
semi-shallow sorted equational theories is EXPTIME-complete.
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The above corollary implies the EXPTIME-hardness of the satisfiability problem not
only of the theory of monadic variable types but also of the theory of (general) monadic
equational types over (alternating) semi-shallow sorted equational theories.

Corollary 6.7.7
The satisfiability problem of the theory of monadic equational (variable) types over (al-
ternating) semi-shallow sorted equational theories is EXPTIME-hard.

In the proof of Proposition 7.1.5, we will show the EXPTIME-completeness of the
satisfiability problem of the theory of (general) monadic equational types over linear shal-
low typed equational theories. We obtain as a corollary that the satisfiability problem of
the theory of monadic equational types over (alternating) linear semi-shallow sorted equa-
tional theories is EXPTIME-complete. The EXPTIME-completeness of the same problem
for non-linear theories remains open.

Corollary 6.7.8
The satisfiability problem of the theory of monadic equational (variable) types over (al-
ternating) linear semi-shallow sorted equational theories is EXPTIME-complete.

We shall exploit the complexity results for sorted unification with respect to shallow
non-equational sort theories to derive similar results on the number of “well-sorted” most
general unifiers of an equational problem with respect to semi-shallow sorted equational
theories. The following theorem is an easy extension of Theorem 4.3.15 from shallow sort
theories to semi-shallow sorted equational theories similar to Theorem 6.3.21.

Theorem 6.7.9 (Weidenbach (1998))

Let £ be a semi-shallow sorted equational theory and let C be a negative clause of the
form Si(t1),...,Sn(tn)|| —. We can derive a clause Ti(y1),... ,Tk(yx)|| — from C
and £ by Sort Constraint Resolution if and only if the sorted unification problem z; =
t1,... ,xn = t, has a “well-sorted” most general unifier with respect to the shallow sort
theory contained in £ where each x; is new and has the sort S;.

The Theorem 4.3.16 states that sorted unification in (non-linear) shallow sort theories
is NP-complete and that the number of “well-sorted” most general unifiers is simply ex-
ponential in the size of a shallow sort theory and the sorted unification problem. Thus
from Theorem 6.7.9, 4.3.16, and 6.7.4 we obtain that there are at most simply exponen-
tially many “well-sorted” most general unifiers for a unification problem with respect to
a finitely saturated semi-shallow sorted equational theory.

Corollary 6.7.10
The number of “well-sorted” most general unifiers with respect to a finitely saturated
semi-shallow sorted equational theory £ is simply exponential.
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6.8 Semi-standard Approximations

The theory of monadic equational types over semi-shallow sorted equational theories is
decidable. Similar to the transformation of semi-linear sorted equational theories into
essentially equivalent shallow sorted equational theories, we can improve this result by a
modification of Semi-linear Equational Flattening called Semi-standard Equational Flat-
tening. The transformation introduces a new monadic predicate for each occurrence of a
proper non-variable subterm in a term declaration or a sorted equation where the number
of new symbols is linear in the number of function symbols which occur in the equational
theory. The difference to Semi-linear Equational Flattening is that shallow occurrences
of unary subterms of the form g(x) in a so-called semi-standard sorted equation of the
form || — f(...,g(x),...) =~ z are not transformed. Semi-standard Equational Flat-
tening replaces in a top-down manner the remaining occurrences of a non-variable proper
subterm ¢; by a variable z where an additional sort constraint on  restricts the ground
instances of x to the “well-sorted” ground instances of t. Given a so-called semi-standard
sorted equational theory, the minimal model of the resulting semi-shallow sorted equa-
tional theory is essentially equivalent to the minimal model of the original equational
theory while for arbitrary sorted equational theories the minimal model of the result is an
upper approximation of the minimal model of the original.

Definition 6.8.1 (Semi-standard Sorted Equation)
We call a sorted equation VU || — f(t1,... ,tn) = z semi-standard if f(t1,... ,t,) is semi-
linear and there is one unary symbol g such that ¢; = g(z) for all ¢; with = € vars(¢;).

Definition 6.8.2 (Semi-standard Sorted Equational Theory)

A sorted equational theory £ is called semi-standard if all declarations in £ are semi-linear
and all sorted equations in £ are semi-linear or semi-standard where each semi-standard
sorted equation ¥ | — f(t1,...,tn) = z in £ contains at most one t; of the form g(z).

The class of semi-standard sorted equational theories strictly subsumes the class of
standard equational theories (Nieuwenhuis 1996), c.f. Definition 6.2.5. In particular, de-
spite the generalization to semi-linear variable occurrences and the sort information on the
variables, the partitioning of the argument positions of each function symbol into shallow
and linear position arguments is omitted.

Definition 6.8.3
The following abstraction is called Semi-standard Equational Flattening:

O,V || — Litlp,
! || —)St(t)
Si(z), @, 9" || = Llp1, ... ,pn/]

Abstract

where (i) L is either a monadic atom or an equation, (ii) ¥, ¥’ is solved, (iii) ¢ is a
non-variable subterm at position p; with |pi| = 2, (iv) the positions pi,... , p, refer to
all positions ¢ of ¢ in L with |g| = 2, (v) ¥’ is maximal such that vars(¥’) C wvars(t),
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(vi) ¥” C ¥’ is maximal such that ¥” is solved in the conclusion, (vii) S; is a new
monadic predicate, (viii) z is a new variable, and (ix) if L is a semi-standard equation
s = y then y does not occur in ¢t.

Semi-standard Equational Flattening differs from Semi-linear Equational Flattening
only in the additional case (ix) which prohibits the transformation of subterms of the
form g(z) in sorted equations of the form ¥| — f(...,g(z),...) = z. In the sequel,
a monadic predicate S; refers to the new predicate which has been introduced by Semi-
standard Equational Flattening for a non-variable term ¢. The newly introduced dec-
larations represent, from an automata-theoretic point of view, a tree automaton which
recognizes in a state S; exactly the “well-sorted” ground instances of the original term
t. The following proposition suggests that Semi-standard Equational Flattening may be
applied to arbitrary sorted equational theories. However, minimal models are preserved
only for semi-standard sorted equational theories. For arbitrary sorted equational theories
the transformation yields a sorted equational theory whose minimal model is an upper
approximation of the minimal model of the original theory.

Proposition 6.8.4

Let £ be a sorted equational theory. Exhaustive application of Semi-standard Equational
Flattening to £ terminates and results in a (non-linear) semi-shallow sorted equational
theory.

Proof The proof is similar to the proof of the Proposition 4.4.3. Note that an occurrence
of g(x) in a semi-standard equation f(...,g(z),...) =  is not abstracted. [ |

In the sequel we call a sorted equational theory which has been obtained by an ex-
haustive application of Semi-standard Equational Flattening to a sorted equational theory
& the semi-standard flat approximation of £. The corollary below on the minimal model
properties of the new predicates introduced by Semi-standard Equational Flattening fol-
lows from the technical Lemma 4.4.7 for Semi-linear Flattening.

Corollary 6.8.5

Let £ be a sorted equational theory and let £gr be the semi-standard flat approxima-
tion of £. Let I be the minimal model of £sr. Let t be a non-variable term for which
a new monadic predicate symbol S; has been introduced by Semi-standard Equational
Flattening. Let C be the immediate conclusion ¥ || — S¢(¢) of Semi-standard Equational
Flattening on ¢. Then for all ground atoms S¢(s) which are true in I there is a ground
substitution o such that (i) I F s ~ to and (ii) ¥o is true in I.

Proof The proof is similar to the proof of Lemma 4.4.4. See also Lemma 4.4.7. |
The Semi-standard Equational Flattening abstracts sorted equational theories such

that the minimal models of the resulting approximations are upper approximations of
minimal models of the original equational theories.
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Proposition 6.8.6
Let £ be a sorted equational theory and let £ be the semi-standard flat approximation
of £. The minimal model of £ is an upper approximation of the minimal model £.

Proof The proof is similar to the proof of Proposition 4.4.8. |

Semi-standard Equational Flattening yields exact approximations for semi-standard
sorted equational theories.

Proposition 6.8.7

Let £ be a semi-standard sorted equational theory and let £ be the semi-standard flat
approximation of £. The minimal model of £F is equivalent to the minimal model £ up
to the new atoms introduced by Semi-standard Equational Flattening.

Proof The proof is similar to the proof of Proposition 4.4.9. |

The following theorem states that the theory of monadic equational types over semi-
standard sorted equational theories is decidable. Semi-standard Equational Flattening is
an effective abstraction from semi-standard sorted equational theories to non-linear semi-
shallow sorted equational theories for which satisfiability of monadic equational types
has been shown to be decidable. Note that the class of semi-standard sorted equational
theories strictly subsumes the class of standard equational theories (Nieuwenhuis 1996),
c.f. Definition 6.2.5.

Theorem 6.8.8
Let £ be a semi-standard sorted equational theory. Then the theory Fg¢ of monadic
equational types over & is decidable.

Proof Let £ be the semi-standard flat approximation of £. By Proposition 6.8.4 &g
can be effectively computed where £ is a semi-shallow sorted equational theory. Due to
Theorem 6.7.5 the theory of monadic equational types over semi-shallow sorted equational
theories is decidable. Let Jz1,...,z, (¥) be a monadic equational type in Fg where
{z1,... ,2,} is the set of free variables in ¥. Note that £ F Jz1,... ,2, (¥) holds if
and only if 7€ E 3x1,... ,z, (¥) holds and, by Proposition 6.8.7, if and only if T¢F E
dz1,... ,2, (¥) holds under the proviso that ¥ does not contain any new atoms introduced
by Semi-standard Equational Flattening. It follows that the theory of monadic equational
types over semi-standard sorted equational theories is decidable. |

The following corollary is an immediate consequence of Corollary 6.7.7.

Corollary 6.8.9
The satisfiability problem of the theory of monadic equational (variable) types over (al-
ternating) semi-standard sorted equational theories is EXPTIME-hard
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The following corollary is an immediate consequence of Corollary 6.7.8 and Proposi-
tion 6.8.4.

Corollary 6.8.10
The satisfiability problem of the theory of monadic equational (variable) types over (al-
ternating) linear semi-standard sorted equational theories is EXPTIME-complete.

We restrict our attention to saturation-based decision procedures and conclude that
Semi-standard Equational Flattening is a suitable concept for effective soft typing with
respect to arbitrary static/dynamic sorted equational theories and monadic equational

types.

Corollary 6.8.11

Let Ny be a set of clauses. The semi-standard flat approximation of the static sorted
equational theory of Ny is a decidable static approximation for monadic equational types.
Let Ny, N1, N, ... be a fair theorem proving derivation. The sequence of semi-standard
flat approximations of the dynamic sort theories of each N; is a decidable dynamic ap-
proximation for monadic equational types.






Chapter 7

Typed Equational Theories

We study so-called typed equational theories which are a particular form of monadic Horn
theories with equality. A typed equational theory can be seen as a type theory where
positive occurrences of equations are possible. In particular, a typed equational theory
consists of type declarations and so-called typed equations. A type declaration strictly
generalizes sort declarations such that the non-constraint part of the antecedent may
contain monadic literals. Similarly, typed equations correspond to sorted equations with
additional monadic literals in the antecedent. In this way, typed equational theories are for
the type theories (logic programs) what sorted equational theories are for sort theories,
a generalization to equality to a certain degree (positive occurrences). An appropriate
representation of type declarations and typed equations are sorted clauses of the form
U|[O© — S(t) and ¥||©® — s = t, respectively, where ¥ is the sort constraint and ©
contains arbitrary monadic atoms.

Definition 7.0.1 (Typed Equation)

A sorted clause U || © — s &~ t is called a typed equation if ¥ || — s &~ t is a sorted equation
and © contains monadic atoms only. A typed equation ¥ ||© — s =~ t is called shallow
(linear, semi-linear) if the equation s ~ t is shallow (linear, semi-linear).

Definition 7.0.2 (Typed Equational Theory)

A typed equational theory &£ is a finite set of typed equations and type declarations. £ is
called shallow (linear, semi-linear) if the typed equations and type declarations in £ are
shallow (linear, semi-linear).

Note that, in general, a sorted equational theory is a typed equational theory but not
vice versa. We demonstrate that linear shallow typed equational theories are decidable
and that arbitrary monadic Horn theories with equality can be effectively transformed
into (linear shallow) typed equational theories. Equational Type Abstraction transforms a
monadic Horn theory # into a typed equational theory £ in such a way that the minimal
model T is an upper approximation of 77. There is, however, a trade-off for decidability
as linearity has to be imposed on the positive literals in each clause, similar to the situation
of type theories (without equality), c.f. Chapter 5.
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Definition 7.0.3
The following abstraction is called Equational Type Abstraction:

51(1'1), . ,Sn(xn), @,F — L

Abstract
S1(z1)y.-- ,Sn(xn)||© — L

where (i) L is either a monadic atom or an equation, (ii) Si(z1),...,Sn(zy) is maximal
such that it contains only monadic atoms of the form T'(z) with z € vars(L), and (iii) I'
contains all non-monadic atoms and equations in the sort constraint of the premise.

Recall that Equational Sort Abstraction may remove certain monadic atoms which
occur negatively in the antecedent of a clause. Equational Type Abstraction improves the
approximation obtained by Equational Sort Abstraction such that all monadic atoms in
the antecedent are kept in the abstracted clause.

Proposition 7.0.4

Let H be a monadic Horn theory. The result of an exhaustive application of Equational
Type Abstraction to % is a typed equational theory £ where the minimal model T¢ of £
is an upper approximation of the minimal model 7% of H.

Proof By the construction of Equational Type Abstraction it follows immediately that
any exhaustive application of the rule is finite and results in a typed equational theory.
The minimal model T¢ is in fact an upper approximation of 77 since all clauses with
positive literals are abstracted into £ while only negative literals are removed. |

In the sequel, we call a typed equational theory £ which has been obtained by an
exhaustive application of Equational Type Abstraction to the static or dynamic monadic
Horn theory H of a set N of clauses the typed equational theory of N. In order to emphasize
that £ has been obtained from H we may also say that £ is the static or dynamic typed
equational theory of N, respectively. The following corollary is an immediate consequence
of Proposition 7.0.4 and Corollary 4.0.7.

Corollary 7.0.5

Let Ny be a set of clauses. The static typed equational theory of Ny is a static approx-
imation for monadic equational types. Let Ny, Ni, Na, ... be a fair theorem proving
derivation. The sequence of dynamic typed equational theories of each N; is a dynamic
approximation for monadic equational types.

7.1 Decidability

In order to show that satisfiability of monadic equational types with respect to linear shal-
low typed equational theories is decidable, we employ basic sorted paramodulation, Type
Simplification, Sort Condensing, and Intersection Condensing. Note that Type Simplifi-
cation moves the non-constraint part of a clause of the form ¥ || S1(z1),... ,Sp(zy) = II
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to the sort constraint part. In the context of basic sorted paramodulation, the sort con-
straint essentially represents a particular part of a clause in which each term occurs at a
substitution position, i.e. each term in the sort constraint is blocked for paramodulation.
Since S1(z1),... ,Sn(zy) contains only variable positions, Type Simplification does not af-
fect the refutational completeness and, in particular, does not cause any lifting problems.
Similar to the previous decidability proofs, the atom ordering must be compatible with
the subterm property. An atom ordering which is induced by an admissible term order-
ing is compatible with the subterm property. We assume admissible literal orderings of
Definition 3.1.48 and admissible clause orderings of Definition 3.1.15 and use the equality
selection strategy of Definition 6.3.1. The motivation of this strategy is to prohibit an
increase in term depth during a saturation process by basic sorted paramodulation.

We only consider sets of sorted clauses which have been obtained by a transformation
of arbitrary sets of clauses using Equational Type Abstraction. Any term in the sort
constraint of a sorted clause obtained this way is a variable. In other words, any clause
set obtained by Equational Type Abstraction is a schematic set. The saturation of linear
shallow typed equational theories by the basic sorted paramodulation calculus is a termi-
nating process. We assume that Type Simplification, Sort Condensing, and Intersection
Condensing are eagerly applied. Sort and Intersection Condensing are compatible with
the particular redundancy concept which is required for the basic/sorted versions of the
calculi.

Lemma 7.1.1

Let € be a linear shallow typed equational theory. Then £ can be finitely saturated by basic
sorted paramodulation, Type Simplification, Sort Condensing, and Intersection Condens-
ing. The productive clauses in the saturated set form a linear shallow sorted equational
theory which consists of linear shallow term declarations, trivial subsort declarations, and
linear shallow sorted equations with a solved sort constraint.

Proof The idea of the proof is to show that (i) there is a certain subclass of linear
shallow monadic Horn theories with equality which includes £ and which is closed un-
der basic sorted paramodulation and (ii) the conclusion of each inference by Sort Con-
straint Resolution or Basic Paramodulation Left/Right is either (ii.a) strictly smaller
than the main premise with respect to the lexicographic combination of the multiset of
all term depths, the number of non-substitution positions, and the number of monadic
atoms in the sort constraint and the antecedent, or else (ii.b) a clause of the form
Ti(t),-.. ,Tu(t), S1(z1),.-- , Sm(zm) || — L where ¢ is a non-variable linear shallow term
and L is either a monadic atom S(¢) or a disjoint equation s & ¢ with s is a linear shallow
term. Note that there are only finitely many clauses of the form of case (ii.b) over a finite
signature up to Sort Condensing, Intersection Condensing, and variant clauses. For (i) we
shall argue that the following class of clauses is closed under basic sorted paramodulation
and Type Simplification.

Uy, , Uy, S1(21), ..., Sm(zm) ||© = L

where n and m are possibly zero, each ¥; is of the form T1(%;), ... , Tk, (¢;) where each t; is
a non-variable term, © contains monadic atoms of the form S(¢) with ¢ is a non-variable
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term, L is either a monadic atom S(u) or an equation v =~ v, and u and v are linear
shallow terms. Note that the constraint Si(z1),...,Sm(zm) does not have to be solved.
We call a clause of the above form the invariant.

The class of invariants includes any linear shallow typed equational theory. Any infer-
ence that involves an invariant as the side premise is only possible if n = 0, © is empty,
and the sort constraint of the invariant is solved, i.e. if the invariant is a linear shallow
term declaration, a trivial subsort declaration, or a linear shallow sorted equation with a
solved sort constraint. Note that the eager application of Type Simplification guarantees
that a clause of the form ¥ || S1(z1),... , Sm(Zm) — II is simplified to a clause of the form
U, S1(z1),--- ,Sm(zm) || — II. Thus an invariant that is involved as the main premise
may only be reduced to another invariant by a linear shallow term declaration, a trivial
subsort declaration, or a linear shallow sorted equation with a solved sort constraint which
implies (i) by a case analysis similar to the proof of Lemma 6.3.7.

In order to show (ii) we use variable abstraction. Recall that using basic sorted
paramodulation we may abstract from the right hand sides of the rewrite rules. That
is, not only variable positions can be marked as substitution positions but also the posi-
tion of the redex when the right hand side has been inserted. In the proof of Lemma 5.2.5,
Sort Constraint Resolution (Type Resolution) has already been shown to be monotone in
the sense of case (ii). Note that Type Resolution is generalized by (Basic) Paramodulation
Left.

Consider a Sort Constraint Resolution inference from an invariant and a linear shallow
term declaration. If the invariant is a non-trivial subsort declaration or a disjoint collaps-
ing/universal sorted equation then the conclusion is a clause of the form of case (ii.b).
In all other cases, the conclusion is a clause with a strictly smaller multiset of all term
depths which implies (ii.a). On the other hand, an inference from any invariant and a
trivial subsort declaration decreases the number of monadic atoms in the sort constraint
by one.

Suppose that C is the main premise of the form of the invariant in a Basic Paramod-
ulation Left inference where ® denotes the sort constraint of C, ® = S(u[s]),®’, and
s’ does not occur at a substitution position. By the equality selection strategy S(u[s'])
is selected. Let C' be the side premise ¥ || — s ~ t where ¥ is solved and s =~ t is a
linear shallow equation. We may assume that s is not a variable x, for otherwise either
a selected literal S(z) occurs in ¥, or else a clause || — z =~ y can be derived from C’.
The conclusion D is a clause ¥o, ® || S(u[[to ]]),®" — L of the form of the invariant. Note
that since s is a linear shallow non-variable term, the most general unifier between s and
s’ can be represented by a minimal substitution o with Dom (o) C vars(s). Note also that
the number of non-substitution positions in D is strictly smaller than in C. If ufto] is a
variable and ©’ contains only monadic atoms of the form S(z) then D will be simplified
by Type Simplification to the clause Vo, ®, S(u[to]),0' || — L.

Suppose that C is the main premise of the form of the invariant in a Basic Paramod-
ulation Left inference where ® denotes the sort constraint of C and © = S(u),®’. By the
equality selection strategy S(u) is selected. Let C’ be the side premise ¥ || — S(s) where
U is solved and s is a linear shallow term. The conclusion D is a clause Yo, ® ||©' — L
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of the form of the invariant. Similarly as above, since s is linear shallow and w is not
a variable, the most general unifier between s and u can be represented by a minimal
substitution o with Dom(o) C vars(s). Note again that the number of non-substitution
positions in D is strictly smaller than in C.

Suppose that C is the main premise of the form of the invariant in a Basic Paramodu-
lation Right inference where @ is the solved sort constraint of C, i.e., in particular, n = 0,
and O is empty. Furthermore, suppose that L is of the form L[s'] where s’ does not occur
at a substitution position. Let C’ be the side premise ¥ || — s ~ t where ¥ is solved and
s ~ t is a linear shallow equation. The conclusion D is a clause o, ® || — L[[to ] of the
form of the invariant where n < 1. Note that L[to] is again a linear shallow atom or equa-
tion, c.f. Lemma 6.3.7. Note also that since s is linear shallow, the most general unifier
between s and s’ can be represented by a minimal substitution o with Dom(c) C vars(s).
Note again that the number of non-substitution positions in D is strictly smaller than
in C. However, in this case, we even do not need the variable abstraction argument for
termination since L also contains only linear shallow terms. That is, termination also
follows by a combinatorial argument on the distinct forms of linear shallow terms. In sum,
we have that (ii) holds.

The saturated set may still contain clauses with an unsolved sort constraint and/or
non-empty antecedents. However, these clauses cannot be productive which implies that
the set of productive clauses are term declarations, trivial subsort declarations, and sorted
equations with a solved sort constraint which form a linear shallow sorted equational
theory. [ |

The following proposition states that, similar to (non-linear) shallow sorted equational
theories, saturation by basic sorted paramodulation transforms a linear shallow typed
equational theory in simply exponential time into an equivalent linear shallow sorted
equational theory.

Proposition 7.1.2

Let £ be a linear shallow typed equational theory. Then £ can be finitely saturated by
basic sorted paramodulation, Type Simplification, Sort Condensing, and Intersection Con-
densing in simply exponential time with respect to size(€) resulting in a typed equational
theory & such that size(€') is at most simply exponentially larger than size(£).

Proof We follow the proof of Proposition 5.2.6. It is important to see that the number of
clauses may increase at most simply exponential where each new clause is polynomially
bound in size. Given a linear shallow typed equational theory £ over a signature ¥, we may
assume that X contains only the function symbols which occur in clauses in £. Note that
the saturation by sorted paramodulation is similar to the saturation of a linear shallow
type theory by type resolution. We only have to consider the additional inferences which
involve sorted equations.

Let my be the number of function symbols in ¥. Let m be the maximal size size(O)
of the clauses of the form ¥ ||©® — L in £, let k, be the maximal arity among all arities of
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the function symbols in ¥, and let g be the number of distinct monadic predicate symbols
which occur in the clauses in £. We observe that the size of the non-constraint antecedents
in the clauses does not grow during saturation. More precisely, a Basic Paramodulation
Left inference is possible only once on each subterm which occurs in the non-constraint
antecedent part of a clause. Thus there are at most linearly many derivable clauses in
the size m with respect to a single linear shallow sorted equation and m * ¢ * mj x kg * 24
derivable clauses with respect to all possible linear shallow sorted equations over ¥ and
the ¢ monadic predicates where ¢ is some constant which refers to the distinct forms of
equations. The number of clauses derivable by Basic Paramodulation Right inferences can
be estimated in a similar way. |

Similar to the saturated (non-linear) shallow sorted equational theories which are
obtained from saturation by sorted superposition/paramodulation, a saturated typed
equational theory can be further transformed by State Union and De-Alternation into
an equivalent linear shallow sorted equational theory in which all term declarations are
non-alternating and all sorted equations have non-alternating sort constraints by Corol-
lary 6.3.13. Unifiability with respect to finitely saturated linear shallow typed equational
theories is decidable following similar techniques which have been used for (non-linear)
shallow sorted equational theories. Note that the productive clauses in the saturated set
form a linear shallow sorted equational theory.

Theorem 7.1.3
Unifiability with respect to finitely saturated linear shallow typed equational theories is
decidable.

Proof Two arbitrary terms u and v are unifiable if and only if we can derive the empty
clause from the saturated theory and the goal clause ||u = v —. Since the linear shallow
typed equational theory is saturated, no inferences inside the theory need to be considered.
Furthermore, the goal is purely negative, so we can delete all clauses with an unsolved
sort constraint or a non-empty antecedent from the saturated theory. Since the result is
actually a linear shallow sorted equational theory, we may proceed exactly as in the proof
of Theorem 6.3.15. [ ]

The next theorem summarizes the discussion and states that the theory of monadic
equational types over linear shallow typed equational theories is decidable. Any linear
shallow typed equational theory may be finitely saturated by basic sorted paramodulation
such that the candidate model of the saturation is the minimal model of the theory. By
a subsequent saturation with basic sorted paramodulation between the saturated theory
and a negated monadic equational type we can effectively compute the satisfiability of
the type with respect to the theory. A negated monadic equational type is a negative
clause and thus any clause with an unsolved sort constraint or a non-empty antecedent
may safely be removed from the saturated theory. For the satisfiability test of monadic
equational types with respect to a linear shallow typed equational theory, we arrive at the
same test with respect to linear shallow sorted equational theories.
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Theorem 7.1.4
Let £ be a linear shallow typed equational theory. The theory F¢ of monadic equational
types over & is decidable.

Proof The proof is similar to the proof of the Theorem 6.3.17. By Lemma 7.1.1 £ can
be finitely saturated. Moreover, since a monadic equational type is encoded as a negative
clause we can delete all clauses with unsolved sort constraints or non-empty antecedents
from the saturated set. The result is a linear shallow sorted equational theory. |

By observing that a linear shallow typed equational theory together with a negated
monadic equational type can still be saturated in simply exponential time, we obtain that
the satisfiability problem of the theory of monadic equational types over linear shallow
typed equational theories is EXPTIME-complete.

Proposition 7.1.5
The satisfiability problem of the theory of monadic equational (variable) types over linear
shallow typed equational theories is EXPTIME-complete.

Proof The EXPTIME-hardness follows from the EXPTIME-completeness of the satisfi-
ability problem of the theory of monadic variable types over (alternating) linear shallow
sorted equational theories. We show that the problem is in EXPTIME. Given a linear
shallow typed equational theory £ and a monadic equational type Jz1,... ,z, (¥) from
the theory over £, we add the (expansion) clause ¥| — St(z) to & where z is a new
variable and transform the result in simply exponential time into a linear shallow sorted
equational theory £ due to Proposition 7.1.2 and Corollary 6.3.13. We may assume that
St does not occur in £. It is important to see that Equality Resolution involves only a
polynomial unifiability test on the equations in ¥. Hence, we may apply the previously
mentioned proposition and corollary in this more general setting.

By Proposition 4.2.5, the non-equational part of £ can be transformed in polynomial
time into an equivalent tree automaton A where we assume that St is the only final state
of A. Then £ F Jz1,... ,z, (V) if and only if L(A) # 0. Note that the non-emptiness
test of tree automata is decidable in linear time. |

From Corollary 6.3.22, we obtain that there are at most simply exponentially many
“well-sorted” most general unifiers for a unification problem with respect to a finitely
saturated linear shallow typed equational theory.

Corollary 7.1.6
The number of “well-sorted” most general unifiers with respect to a finitely saturated
linear shallow typed equational theory £ is simply exponential.
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7.2 Linear Approximations

The theory of monadic equational types over linear shallow typed equational theories is
decidable. In correspondence to the transformation of type theories into shallow type the-
ories, we can improve this result using an extension of Typed Flattening to sorted monadic
Horn clauses with equality called Typed Equational Flattening. The transformation intro-
duces a new monadic predicate for each occurrence of a proper non-variable subterm in
a type declaration or a typed equation where the number of new symbols is linear in the
number of function symbols which occur in the equational theory. Typed Equational Flat-
tening replaces in a top-down manner each occurrence of a non-variable proper subterm ¢;
by a variable x where an additional sort constraint on x restricts the ground instances of
z to the “well-sorted” ground instances of t. The minimal model of the resulting shallow
typed equational theory is an upper approximation of the minimal model of the original
theory. Typed Equational Flattening abstracts from non-linear non-shallow occurrences
of variables.

Definition 7.2.1
The following abstraction is called Typed Equational Flattening:

VAR |© — Lit],
T’ || © — Si(t)
St(x)a @a \Il; \II" || ©— L[p/x]

Abstract

where (i) L is either a monadic atom or an equation, (ii) p is a position with |p| = 2, (iii) ®
contains all new atoms of the form Sy (y), (iv) ¥, ¥’ is maximal such that ¥, ¥’ is solved in
the premise, (v) t is a non-variable term, (vi) ¥’ is maximal such that vars(¥’) C vars(t),
(vii) ¥ C ¥’ is maximal such that ¥” is solved in the conclusion, (viii) S; is a new
monadic predicate, and (ix) z is a new variable.

In the sequel, a monadic predicate S; refers to the new predicate which has been intro-
duced by Typed Equational Flattening for a non-variable term ¢. The newly introduced
declarations represent, from an automata-theoretic point of view, tree automata which
recognize in a state S; exactly the “well-sorted” ground instances of the original term ¢.
The following proposition suggests that Typed Equational Flattening may be applied to
arbitrary typed equational theories. The transformation yields a theory whose minimal
model is an upper approximation of the minimal model of the original theory.

Proposition 7.2.2
Let £ be a typed equational theory. Exhaustive application of Typed Equational Flatten-
ing to £ terminates and results in a (non-linear) shallow typed equational theory.

Proof The proof is similar to the proof of Proposition 5.3.3. |

In the sequel we call a typed equational theory which has been obtained by an exhaus-
tive application of Typed Equational Flattening to a typed equational theory £ the flat
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approzimation of £. Typed Equational Flattening does not linearize the shallow occur-
rences of non-linear variables in the positive atoms or equations in each clause of a theory.
However, for the decidability of shallow typed equational theories, it is difficult to avoid
the Equational Linearization of the positive atoms and equations. Note that the sorted
unification problem with respect to arbitrary sort theories, which is undecidable, can be
reduced to the same problem already with respect to non-linear shallow type theories. Ob-
serve that Equational Linearization improves upon a naive renaming by additional “sort”
information for each renamed variable. However, Equational Linearization differs from
Linearization in Definition 5.3.8 only in case (i).

Definition 7.2.3
The following abstraction is called Equational Linearization:

T, U0 — Llz],

Sz (1), Sz, (@), ¥, ¥ ||© = L[p1/z1,... ,0n/Zy]
| ©— S, (z)

Abstract

O —S;,(x)

where (i) L is either a monadic atom or an equation, (ii) z is a non-linear variable in L
at position p, (iii) the positions p;, ... ,p, refer to all other positions of z in L, (iv) ¥ is
maximal such that = ¢ vars(¥), (v) each Sy, is a new monadic predicate, and (vi) the
z1,... ,Zy do not occur in the premise.

The following proposition suggests that Equational Linearization may be applied to
arbitrary typed equational theories. However, for a linear flat approximation, we prefer
to apply Typed Equational Flattening first, for, in general, a better approximation may
be obtained.

Proposition 7.2.4
Let £ be a typed equational theory. Exhaustive application of Equational Linearization
to £ terminates and results in a linear typed equational theory.

Proof The proof is similar to the proof of Proposition 5.3.9. |

In the sequel we call a typed equational theory which has been obtained by an exhaus-
tive application of Typed Equational Flattening to a typed equational theory £ followed
by an exhaustive application of Equational Linearization to £ the linear flat approrima-
tion of €. The following lemma on the minimal model properties of the new predicates
introduced by Typed Equational Flattening corresponds to the technical Lemma 5.3.10
for Typed Flattening/Linearization.

Lemma 7.2.5
Let £ be a monadic Horn theory without equality and let £r be the linear flat approxi-
mation of £. Let I be the minimal model of £x. Let t be a non-variable term for which a
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new monadic predicate symbol S; has been introduced by Typed Equational Flattening.
Let C be the immediate conclusion ¥, © || — Si(t) of Typed Equational Flattening on ¢
where ¥ is maximal such that ¥ is solved. Then for all ground atoms S;(s) which are
true in I there is a ground substitution o such that (i) I E s = t"o where " is the linear
renaming of ¢ and (ii) for all variables z € vars(t") there is a ground substitution A such
that (¥, ©)o]|A is true in 1.

Proof The proof is similar to the proof of Lemma 5.3.10. |

Typed Equational Flattening combined with Equational Linearization abstract typed
equational theories such that the minimal models of the resulting approximations are
upper approximations of minimal models of the original theories.

Proposition 7.2.6
Let £ be a typed equational theory and let £ be the linear flat approximation of £. The
minimal model T%F is an upper approximation of the minimal model T¢.

Proof The proof is similar to the induction proof of Proposition 4.4.8 since the hypothesis
extends to include also the non-constraint antecedent part of the clauses in £. This part is
completely inherited by Typed Equational Flattening. The prerequisites for an appropriate
proof are contained in the proof of part (i) of Lemma 5.3.10. |

We restrict our attention to saturation-based decision procedures and conclude that
Typed Equational Flattening/Linearization is a suitable concept for effective soft typing
with respect to arbitrary static/dynamic typed equational theories and monadic equational

types.

Corollary 7.2.7

Let Ny be a set of clauses. The linear flat approximation of the static typed equational
theory of Np is a (decidable) static approximation for monadic equational types. Let Ny,
Ni, Ns, ... be a fair theorem proving derivation. The sequence of linear flat approx-
imations of the dynamic typed equational theories of each N; is a (decidable) dynamic
approximation for monadic equational types.



Chapter 8

Conclusions

The purpose of this thesis is (i) to obtain a comprehensive understanding of semantically
guided theorem proving and (ii) to provide decidable fragments of first-order logic (with
equality) which are suitable for an effective approximation of proof guidance by semantics.

The main contribution with respect to (i) is the general framework of soft typing for
clausal inference systems. Soft typing controls theorem proving derivations from clausal
inference systems by a blocking mechanism according to the validity/satisfiability of the
clauses with respect to certain model hypotheses. Any clausal inference system which
enjoys the so-called (strong) reduction property is compatible with this concept. The strong
reduction property also implies the compatibility with a general concept of simplification
based on a certain notion of redundancy. These concepts play a central role in all modern
automated theorem proving systems.

We have shown that soft typing is a suitable concept for semantically guided theorem
proving in terms of (refinements of ) resolution and superposition (with selection) (Bachmair
& Ganzinger 1994). Soft typing for semantic resolution explains the refutational com-
pleteness of semantic resolution (Slagle 1967) and clarifies the theoretical background of
ordered semantic hyper-linking (Plaisted 1994, Plaisted & Zhu 1997). In particular, we
have demonstrated that the saturation criterion of ordered semantic hyper-linking is an
instance of the saturation criterion of soft typing for semantic resolution. Soft typing
for ordered resolution, on the other hand, covers the theoretical aspects of the SATCHMO
theorem prover (Manthey & Bry 1988) and its efficient counterpart, the model generation
theorem prover MaTp (Hasegawa, Fujita & Koshimura 1997).

The effectiveness of soft typing for ordered resolution and superposition requires de-
cidable approximations of certain model hypotheses. We propose the use of sets of Horn
clauses to represent (approximations of) certain model hypotheses for sets of clauses in the
spirit of Frithwirth et al. (1991). Approximations are obtained by inferring automatically
abstractions from sets of clauses that result in sets of Horn clauses. The satisfiability of
clauses with respect to the approximations implies then the satisfiability in the original
model hypotheses.

As the main contribution for (ii) we have demonstrated the decidability of the sat-
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isfiability problem of the class of monadic equational types with respect to the following
equational theories. Monadic equational types are existentially closed conjunctions of
monadic atoms and equations.

e semi-linear sorted equational theories (Jacquemard et al. 1998a) which strictly embed
the (non-linear) shallow equational theories in (Comon et al. 1994),

e semi-standard sorted equational theories (Jacquemard et al. 1998b) which strictly
generalize the standard (equational) theories in (Nieuwenhuis 1996), and

o linear shallow typed equational theories which extend the monadic Horn theories
in (Weidenbach 1999) by equality.

All theories are syntactically characterized as certain sets of Horn clauses (with equal-
ity) which allows the automatic abstraction of arbitrary sets of clauses into the theories.
The satisfiability problem has been shown to be EXPTIME-complete for linear (semi-
standard) sorted equational theories and linear shallow typed equational theories and
EXPTIME-hard for (non-linear) semi-linear and semi-standard sorted equational theo-
ries. Note that the E-unifiability problem is a special case of the satisfiability problem
of (monadic) equational types. In contrast to the decidability of sorted unmification in
pseudo-linear sort theories (Weidenbach 1996b), we have shown that the word problem is
undecidable already in pseudo-linear equational theories.

We have also reported on the complexity of the satisfiability problem of monadic types
with respect to sort theories and so-called type theories. In particular, we have shown the
EXPTIME-completeness for alternating linear (shallow) sort theories and linear shallow
type theories and the EXPTIME-completeness of the non-emptiness problem of semi-
linear sort theories. Moreover, the satisfiability problem with respect to alternating non-
linear shallow and semi-linear sort theories has been shown to be EXPTIME-hard whereas
the inclusion in EXPTIME remains open. It is not clear whether the combination of
alternation and non-linearity involves additional exponential increase in complexity.

8.1 Future Work

Soft typing for clausal inference systems is a general framework to incorporate seman-
tics into automated theorem proving processes. The impact of soft typing seems to be
determined by two aspects:

1. Does the abstracted theory describe a non-trivial structure?
2. If so, does this structure sufficiently reflect the structure of the original problem?
Efficiency. From a theoretical point of view, we have addressed the first question by

demonstrating the decidability of non-trivial (equational) theories which can automatically
be obtained by an effective abstraction from arbitrary sets of clauses (with equality). The
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‘ Problem ‘ Status ‘ Derived ‘ Kept ‘ Deleted using S ‘
5-1-154-3-2 satisfiable 929 233 7
4-7-2-2-0 satisfiable 1156 400 369
4-9-2-2-0 unsatisfiable 139 61 37
8-1-10-4-2 satisfiable 867 276 349
8-1-8-4-2 satisfiable 111 49 42
5-2-80-3-2 | unsatisfiable 32 12 0
5-1-85-3-2 | unsatisfiable 15 15 0

Table 8.1: Experiments with static sort theories

current status of implementation is that soft typing with respect to static sort theories has
been implemented in the theorem prover SPASs (Weidenbach et al. 1998). A static theory
is obtained once from the original problem set at the beginning of a theorem proving
derivation and remains admissible throughout the derivation.

Table 8.1 provides experimental evidence about the effects of blocking based on a static
sort theory & (Ganzinger et al. 1997). SPAsS has been tested on several hundred knowl-
edge bases written in ALC. The language ALC is a notational variant of multi-modal
propositional logic K that can be translated into first-order logic such that resolution
with subsumption and condensing becomes a decision procedure for the resulting frag-
ment of first-order clause logic (Schmidt 1997). Hence, any resolution-based prover with
subsumption and condensing can be used as a decision procedure for this class.

The deletion of clauses which have a blocked monadic type with respect to S is one of
the key techniques to make resolution an efficient decision procedure on these problems.
The table shows the names of several representative problems, the number of derived
clauses, kept clauses, and the number of clauses deleted as a result of a blocked monadic
type in §. These clauses cannot be deleted by usual redundancy criteria. The problems
become significantly harder without the deletion of clauses which have a blocked monadic
type (at least a factor of 2, except for the “easy” final two examples).

We also introduced a theoretical concept for dynamic theories which have to be revised
at every step in a theorem proving derivation. Neither a dynamic version of the sort
theories nor the decidable equational theories have been implemented yet. At least the
implementation of dynamic versions of the (equational) theories requires the analysis of
efficient representations. An implementation of soft typing with respect to (dynamic
versions of) the (equational) theories may require a more involved representation by, e.g.,
binary decision diagrams (Bryant 1986, Bryant 1992), to deal with the exponential time
complexity.

Constructor-based equational theories. The equations in semi-linear (sorted) equa-
tional theories involve non-linear occurrences of variables only at the same depth. This
requirement can be relaxed using so-called constructor-based alphabets. A constructor-
based alphabet is a signature in which function symbols and so-called constructors are
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distinguished. The occurrences of function symbols and constructors in the equations
of a constructor-based equational theory are then subject to certain restrictions. Decid-
able constructor-based equational theories, as investigated by, e.g., Fassbender & Maneth
(1996) and Limet & Réty (1997), are possible candidates for effective soft typing.

Non-monadic predicates. Beside equational theories, we may also consider decidable
fragments of first-order logic which involve non-monadic predicates. For example, we have
studied first-order fragments which are obtained by the (relational) translation of propo-
sitional modal logics. In (Ganzinger, Hustadt, Meyer & Schmidt 1999) we have shown
how ordered chaining (Bachmair & Ganzinger 1995) may be used to obtain resolution
decision procedures for the relational translation of a range of multi-modal propositional
logics with transitive accessibility relations such as the logics K4 and S4. However, for soft
typing, suitable abstractions of arbitrary sets of clauses into the decidable fragments are
required which, in particular, preserve certain validity and/or satisfiability properties.

Andréka, van Benthem & Németi (1996) proposed another interesting decidable frag-
ment of first-order logic called the guarded fragment which also captures a large portion
of multi-modal propositional logics. In (Ganzinger, Meyer & Veanes 1999) we have stud-
ied certain two-variable variants of the guarded fragment which still enjoy a sufficient
expressiveness and, unlike the full guarded fragment (Gradel 1998), remain decidable if
additional closure properties of the accessibility relation, such as transitivity, are involved.
In particular, we have shown, using Rabin’s tree theorem (Rabin 1969), that the monadic
two-variable guarded fragment with binary relations that are transitive, symmetric and/or
reflexive, is decidable. Any non-monadic predicate in the monadic fragment appears as
a so-called guard. The monadic two-variable guarded fragment strictly embeds the first-
order fragment considered in (Ganzinger, Hustadt, Meyer & Schmidt 1999).

Two open problems arise in order to exploit these results for soft typing. Similar to
the previously mentioned fragment, suitable abstractions have to be studied to obtain
the monadic two-variable guarded fragment (with additional relations) from arbitrary sets
of clauses under the proviso of certain model-theoretic aspects. Secondly, the current
decidability proof does not give a clear complexity bound. A careful analysis may reveal a
simpler and sufficient representation which allows more efficient, probably resolution-based
decision procedures for the decidable fragment. However, there are a lot more possibilities
to obtain effective soft typing which cannot be covered here.

Adequacy. The second question whether a particular approximation is actually appro-
priate to describe the underlying mathematical structure of a clause set, is another open
problem at least in the context of automatic detection of adequate approximations. It
is difficult to recognize mathematical structures by syntactic properties of their formal-
ization. An indirect solution to this problem could be to relax the abstraction in a way
that the resulting approximation is closer to the original. An efficient inference system
in combination with powerful simplification techniques may still terminate with a high
probability on a given class of approximations, although this class may be undecidable.
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