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4.4 The Sierpiński Space-Filling Curve Construction . . . . . . . . . . . . . . . . . . 55
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Abstract

The effectiveness of query optimization in database systems critically depends on the system’s
ability to assess the execution costs of different query execution plans. For this purpose, the sizes
and data distributions of the intermediate results generated during plan execution need to be
estimated as accurately as possible. This estimation requires the maintenance of statistics on the
data stored in the database, which are referred to as data synopses.

While the problem of query cost estimation has received significant attention for over a decade,
it has remained an open issue in practice, because most previous techniques have focused on
singular aspects of the problem such as minimizing the estimation error of a single type of query
and a single data distribution, whereas database management systems generally need to support
a wide range of queries over a number of datasets.

In this thesis I introduce a new technique for query result estimation, which extends existing
techniques in that it offers estimation for all combinations of the three major database operators
selection, projection, and join. The approach is based on separate and independent approxi-
mations of the attribute values contained in a dataset and their frequencies. Through the use
of space-filling curves, the approach extends to multi-dimensional data, while maintaining its
accuracy and computational properties. The resulting estimation accuracy is competitive with
specialized techniques and superior to the histogram techniques currently implemented in com-
mercial database management systems.

Because data synopses reside in main memory, they compete for available space with the
database cache and query execution buffers. Consequently, the memory available to data synopses
needs to be used efficiently. This results in a physical design problem for data synopses, which is
to determine the best set of synopses for a given combination of datasets, queries, and available
memory. This thesis introduces a formalization of the problem, and efficient algorithmic solutions.

All discussed techniques are evaluated with regard to their overhead and resulting estimation
accuracy on a variety of synthetic and real-life datasets.



Kurzfassung

Die Effektivität der Anfrage-Optimierung in Datenbanksystemen hängt entscheidend von der
Fähigkeit des Systems ab, die Kosten der verschiedenen Möglichkeiten, eine Anfrage auszuführen,
abzuschätzen. Zu diesem Zweck ist es nötig, die Größen und Datenverteilungen der Zwischen-
resultate, die während der Ausführung einer Anfrage generiert werden, so genau wie möglich zu
schätzen. Zur Lösung dieses Schätzproblems benötigt man Statistiken über die Daten, welche
in dem Datenbanksystem gespeichert werden; diese Statistiken werden auch als Daten Synopsen
bezeichnet.

Obwohl das Problem der Schätzung von Anfragekosten innerhalb der letzten 10 Jahre in-
tensiv untersucht wurde, gilt es weiterhin als offen, da viele der vorgeschlagenen Ansätze nur
einen Teilaspekt des Problems betrachten. In den meisten Fällen wurden Techniken für das Ab-
schätzen eines einzelnen Operators auf einer einzelnen Datenverteilung untersucht, wohingegen
Datenbanksysteme in der Praxis eine Vielfalt von Anfragen über diverse Datensätze unterstützen
müssen.

Aus diesem Grund stellt diese Arbeit einen neuen Ansatz zur Resultatsabschätzung vor, welcher
insofern über bestehende Ansätze hinausgeht, als dass er akkurate Abschätzung beliebiger Kom-
binationen der drei wichtigsten Datenbank-Operatoren erlaubt: Selektion, Projektion und Join.
Meine Technik basiert auf separaten und unabhängigen Approximationen der Verteilung der At-
tributwerte eines Datensatzes und der Verteilung der Häufigkeiten dieser Attributwerte. Durch
den Einsatz raumfüllender Kurven können diese Approximationstechniken zudem auf mehr-
dimensionale Datenverteilungen angewandt werden, ohne ihre Genauigkeit und geringen Berech-
nungskosten einzubüßen. Die resultierende Schätzgenauigkeit ist vergleichbar mit der von auf
einen einzigen Operator spezialisierten Techniken, und deutlich höher als die der auf Histogram-
men basierenden Ansätze, welche momentan in kommerziellen Datenbanksystemen eingesetzt
werden.

Da Daten Synopsen im Arbeitsspeicher residieren, reduzieren sie den Speicher, der für den Sei-
tencache oder Ausführungspuffer zur Verfügung steht. Somit sollte der für Synopsen reservierte
Speicher effizient genutzt werden, bzw. möglichst klein sein. Dies führt zu dem Problem, die
optimale Kombination von Synopsen für eine gegebene Kombination an Daten, Anfragen und
verfügbarem Speicher zu bestimmen. Diese Arbeit stellt eine formale Beschreibung des Prob-
lems, sowie effiziente Algorithmen zu dessen Lösung vor.

Alle beschriebenen Techniken werden in Hinsicht auf ihren Aufwand und die resultierende
Schätzgenauigkeit mittels Experimenten über eine Vielzahl von Datenverteilungen evaluiert.



1 Introduction

One of the symptoms of an approaching nervous
breakdown is the belief that one’s work is terribly
important.

– Bertrand Russell

1.1 Motivation

A central paradigm unique to database systems is the independence between the way a query is
posed (specified by the user) and how it is executed (which is decided to the database system).
For each query posed, the database system enumerates all possible ways of executing the query (or
in case of very complex queries a suitable subset thereof), called query plans. Then the optimal
plan, that is, the one with the lowest execution cost, is selected [GLSW93, GD87, GM93]. In
order to select the optimal query plan for a query, the costs of query plans with respect to
all affected resources (CPU time, I/O costs, necessary memory, communication overhead) have
to be assessed accurately; these costs depend on the physical properties of the hardware the
database runs on and the sizes of the intermediate results generated during the execution of
the respective plan and, therefore, the data distribution in the queried base relations. A query
plan itself is represented by a physical operator tree (Figure 1.1), with the cost of each operator
being determined by the (size of the) data distribution resulting from the operator(s) at the
child node(s). Whereas the properties of the underlying hardware are known at query-time, the
relevant data sizes and distributions are not, making it necessary to estimate them, as determining
them exactly would entail overhead similar to executing the queries themselves. In most cases,
providing an estimation of the data size and distribution is sufficient, for only the ranks of the
query plans with regard to their costs matter for choosing the correct plan. Providing this type
of estimation is the topic of this thesis.

Besides query optimization there is a number of additional applications for this type of esti-
mations:

• When executing queries in a data-mining or OLAP environment, these queries have the
potential to monopolize a server. Therefore, knowledge of their running times is necessary
to assign the proper priorities to each query or to decide whether spawning a long-running
data-extraction query is worthwhile at all. Similarly, in scenarios with multiple servers, the
cost estimations can be used to implement a load balancing mechanism, which distributes
queries among the servers to improve overall system throughput [PI96]. Unlike the previous
scenario, not only do the ranks of the query plans but also the absolute values of the
estimated costs matter for these types of applications.

• For initial data exploration it may be sufficient for a database system or data mining plat-
form to provide an approximate result for a resource-intensive query. Such approximations
can be provided by the same techniques that estimate data distributions, for the approxi-
mate result can be generated from these.
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TableTable

Hash-Join R1.A = R2.A

Nested Loop Join R1.A = R3.A

Scan R1 Scan R2

Scan R3

Index

Figure 1.1: Example physical operator tree

• When global queries are issued to a mediator-based distributed information system, the
mediator rewrites these into a combination of queries against physical information sources.
The decision about which information sources to query and in which order to query them
is dependent on the “information quality” [NL00] of each source, which can be estimated
by techniques similar to the ones employed in the above scenario.

• Some useful operators that are not native to the SQL standard have to be mapped to
expensive SQL queries to be executed by a database system. An example of this is “top-
k” selection queries [DR99, BGM02], in which the user specifies target values for certain
attributes, without requiring exact matches to these values in return. Instead, the result
to such queries is typically a ranking of the k tuples that best match the given attribute
values. Through the use of statistics on the data distributions present in the database, the
fraction of the data examined to find the best k tuples can be reduced significantly [CG99].

• Finally, correct estimation of the size of views over a database plays a crucial role in the
selection of materialized views [CHS01].

First attempts to provide this type of estimations were based on using standard assumptions
on the distribution of data stored on the database, such as the uniformity assumption used in the
System R optimizer [SAC+93]: all values between the lowest and highest value for an attribute
are assumed to be present, with their frequencies distributed uniformly. Other assumptions con-
sidered include the independence of attribute values (two attributes A1 and A2 are independent,
if for all values a the conditional probability of attribute A1 having a certain value a given a value
for attribute A2 is equal to the probability of A1 having value a) and query uniformity (i.e., all
values are queried with the same frequency) [Chr84]. Since real-life data sets only rarely conform
to these assumptions, this approach resulted in severely inaccurate cost estimation.

The general approach to providing the necessary estimations has been to store a statistical
profiles of the data distributions stored in the database and in some cases of some intermediate
query results as well. There exist a plethora of different techniques for representing this statistical
profile, for which Gibbons et al. have coined the general term “data synopses” [GAB+98, GM99].
Each data synopsis represents a suitable approximation of the data distribution of one or more
attributes of one of the base relations stored in the database. From these data synopses the
necessary estimations are then computed at query-execution time.

2



Chapter 1 – Introduction

There are a number of important issues to consider regarding the construction and use of data
synopses.

• In all application scenarios outlined above, the data synopses need to support queries made
from all three major logical database operators: selection, projection, and join (SPJ). This
not only entails being able to provide an estimation for the result (size) of each query type,
but also having effective means to bound the estimation error for each query type. Many
of the existing approaches are geared towards minimizing the estimation error for range-
selection queries only, and only very few techniques are capable of reducing the estimation
error for join queries effectively.

• Whenever the base data in the database is made up of relations over more than a single
attribute, the issue arises over which (combination of) attributes synopses should be con-
structed. If no synopsis over a combination of two attributes exists, information over the
correlation between the values stored in these attributes is lost. For example, in a relation R
with the attributes Order-Date and Ship-Date, any query containing filter-conditions on
both attributes (e.g. “SELECT * FROM R WHERE |Ship-Date−Order-Date| ≤ 10”) would
potentially exhibit a significant estimation error. On the other hand, the accuracy of data
synopses is generally adversely affected by to the number of attributes it spans. Therefore,
choosing the optimal combination of synopses for a given relational schema, the data distri-
butions in the base relations, and the query workload is a complex optimization problem.
Because finding a “good” combination of synopses requires significant knowledge about the
data distributions stored and the characteristics of the techniques used in connection with
data synopses, the decision which synopses to construct should not be left to the database
administrator, but instead has to be made by the database system automatically.

• In many cases it is not possible to optimize a query when it is first submitted to the database
system (this is referred to as the query’s compilation time), as some of the parameters which
determine the exact query statement may not be instantiated yet. These parameters are
then only specified immediately before the query is executed by the database (this is the
query’s execution time), so that any delay caused by the overhead of query optimization
is noticeable to the user. Because the estimation is invoked (possibly multiple times) for
every candidate plan (the number of which can be very large [Cha98]) at query execution
time, the estimation process itself may not result in significant overhead. Therefore, data
synopses are generally stored in main memory and thus have to be a small as possible, in
order not to take away space otherwise reserved for data caches or buffers for intermediate
query results. Consequently, the estimation accuracy relative to the amount of memory
consumed becomes the critical measure when assessing the performance of data synopses.
Furthermore, whenever multiple synopses are stored, the memory dedicated to data syn-
opses overall has to be divided between them. This gives rise to a further optimization
problem, which is closely connected to the question, which synopses to store overall.

The contribution of this thesis is to provide an overall framework addressing all of the issues
discussed above.

1.2 Problem Description

This thesis is concerned with examining two problem areas in the applications discussed above.
The first one is how to construct synopses for accurate estimation using as little storage and

3
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computational overhead as possible. Based on these synopses the second problem area becomes
how to automatically compute the optimal combination of synopses for a given set of relations,
a (characterization) of the system workload, and limits on the amount of memory available for
all synopses overall; this I refer to as the physical design problem for data synopses.

In the following, I will introduce the general approach for addressing both problems and de-
scribe by which criteria the proposed solutions will be evaluated. Throughout the thesis, I will
describe the different requirements on and properties of data synopses using the query optimiza-
tion as application scenario. However, whenever necessary I will describe the extensions necessary
for other applications.

1.2.1 Synopsis Construction

All the outlined application scenarios require estimation of the result size for all major logi-
cal database operators (select-project-join). A number of approaches [SLRD93, CR94, LKC99,
MVW98], provide a function estimateΘ for each operator Θ, which takes the filter conditions
of a given query and returns an integer representing the number of tuples of the result. For
example, a range-selection estimator selecting all tuples in a interval [a, b], with a, b chosen from
the respective attribute’s domain D, is defined as

estimaterange : D ×D 7→ N.

Each of these estimators is then modelled as a function of two variables, resulting in a reduction
of the estimation problem to a problem of the well-researched field of function estimation.

However, most real-life database queries consist of a combination of multiple operators, so
the above approach infeasible: because now all possible combinations of operators correspond
to separate estimate functions, the number of functions becomes too large. Instead, for each
relation stored in the database, an approximate representation of the underlying data distribution
is stored. Now, when executing a query operator, this operator is executed on the approximate
data distribution. Any property of the approximate data distribution such as size (relevant for
the approximation of the cost of join queries), the number of different attribute values (relevant
for size estimation in queries with duplicate elimination or grouping), skew (relevant for providing
sufficient memory for large join computation), etc. can be derived directly from the approximate
data.

While this approach makes it possible to estimate virtually every query operator, it does not
necessarily result in accurate estimation. I will discuss which requirements are necessary to ensure
accurate estimation of the three major logical operators and how these requirements are reflected
by different design choices for query estimation techniques.

Criteria for Success

In the query-optimization scenario, the benefit provided by a synopsis lies in the improvement in
plan selection. However, this measure is heavily influenced by the particularities of both the query
workload and the optimizer itself. Therefore, the estimation accuracy provided by a synopsis is
used as a measure of its quality instead. Better estimation accuracy typically leads to better
plan selection as well, but there is not necessarily a direct correspondence: in some situations,
even extremely poor estimation may have no adverse effect on plan selection, if the ranking of
the candidate plans remains unchanged.

The accuracy of estimation itself is important when using result-size estimation to estimate
the overall running time of a resource-intensive query, in order to schedule it or decided whether

4
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to spawn it at all, as the absolute running time is the deciding factor for this decision. For some
types of decision-support queries, knowing the size of the final query result before issuing it is
also useful in assessing whether a query returns compact enough information to be handled by
a human user. If not, it may be necessary to add some aggregation or issue a different query
altogether. In each case, the necessary information on query cost and result size need to be
assessed as accurately as possible.

Because data synopses are stored in main memory, the accuracy of a synopsis has to be judged
relative to the amount of memory its storage consumes. In addition to the memory overhead, the
computational overhead required for (a) the construction and (b) the evaluation of a synopsis
need to be considered as well.

1.2.2 Physical Design Problem for Data Synopses

The optimal combination of synopses is dependent on three factors: (a) the characteristics of the
data stored in the database, (b) the current workload, and (c) the amount of memory available for
synopses overall. Initially, all possible combinations of synopses that can be used to answer the
given mix of queries are determined. Among them, the combination is selected that minimizes
the estimation error for all attribute values selected by the given set of queries (with each error-
term weighted by the number of times the corresponding attribute value is selected). Note that
this does not only involve the selection of the optimal set of synopses, but also determining how
the available memory is divided among them.

Criteria for Success

Estimating all possible combinations of synopses and their sizes results in additional overhead,
which commercial database systems avoid by using much simpler schemes for synopsis selection.
In most cases, only synopses over single attributes are employed, with all synopses of equal size
(which severely limits the queries that can be estimated accurately in itself). In order to justify
this additional overhead, the additional estimation accuracy gained through our more elaborate
approach needs to be significant.

In addition, an algorithmic solution to the physical design problem would be a step towards
eliminating synopsis selection from the responsibility of a database administrator. Since choosing
a good set of synopses requires in-depth knowledge of the data and the techniques used for
query estimation, and in addition this set needs to be periodically adapted to evolving workload
properties, this task is not well-suited to human administration.

1.3 Contribution and Outline

The remainder of this thesis is divided into 5 chapters:

In Chapter 2, the design space for data synopses is discussed, with the different design alter-
natives illustrated in terms of previous approaches. With regard to most design alternatives, it
is possible to identify one design choice as clearly superior; these choices are then incorporated
into the design of my own approach to data synopses. In addition, based on this system of design
alternatives, I construct a taxonomy for the plethora of techniques proposed in related work.

Chapter 3 describes how to solve the limited problem of query estimation for queries on a single
attribute only. The salient property of the approach is that – unlike all other approaches to data

5
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synopses – separate and independent approximations are used for the distribution of the attribute
values and the distribution of their frequencies. Consequently, more memory can be assigned to
the more difficult or important approximation problem. In both cases, the approximation is
reduced to a problem of linear fitting, with the attribute values and their frequencies being
approximated through linear spline functions. The resulting technique has been named spline
synopses.

The chapter further elaborates the computation, storage, and use of spline synopses for query
estimation. Special attention is given to join queries, because unlike all other operators, accurate
approximation of the joining relations does not necessarily result in accurate join estimation.
This leads to the introduction of special join synopses capturing the distribution of attribute
values that appear in the join result. Finally, the efficiency and accuracy of spline synopses is
evaluated in comparison to the current state of the art through experiments on various synthetic
and real-life datasets. In the experiments, spline synopses consistently outperform the best his-
togram techniques, while being of identical computational complexity.

Chapter 4 then extends the previous approach to datasets and queries on multiple attributes.
Here, the Sierpiński space-filling curve is used to map the multi-dimensional data to a linearly
ordered domain, over which the approximation is then constructed. This approach leverages the
advantages of one-attribute spline synopses (efficiency, fast computation, independent represen-
tation of attribute values and their frequencies) while avoiding the problems normally inherent
to multi-dimensional synopses (distortion of the attribute-value domain, intractable overhead
for synopsis construction). Again, the efficiency of the resulting synopses is evaluated through
experiments. Again, spline synopses outperform histograms, while offering accuracy competitive
with the best specialized techniques geared towards the limited class of range-selection queries
only.

Chapter 5 finally discusses the physical design problem for data synopses, i.e., how to compute
the optimal combination of synopses for given workload, data, and available memory. Initially,
a formalization of the problem is developed through which the overall problem can be solved
through the enumeration of all potential synopsis combinations and a minimization over the ap-
proximation errors computed during synopsis construction. This approach returns the best set
of synopses as well as how much of the available memory is given to each of them. To reduce the
number of synopsis combinations that need to be considered, the search space is pruned based
on two general observations on the behavior of data synopses. Since these observation not only
hold for spline synopses, but for a large class of data synopsis techniques, a limited form of the
solution can be extended to these other techniques, as well. The practicability and potential
impact of the proposed solution is evaluated on a subset of the queries and data of the TPC-H
decision support benchmark.

Finally, chapter 6 offers a summary of the work and outlines future areas of research. Prelim-
inary results of my work have been published in [KW99, KW00, KW02].

1.3.1 Limitations of This Work

The techniques described in this thesis are limited to numerical data (for both discrete and
real domains). Although string data can be mapped to N using enumeration schemes, some
of the operators specific to strings (such as prefix- and substring-matching [JNS99]) can not
be estimated accurately when approximating this data using spline synopses (or any other of
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the approximation techniques discussed in the next section). This is due to the fact that these
operators require the approximation technique to maintain the correlation between adjacent
occurrences of characters (or substrings). Because the approximation techniques used query
optimization are geared towards representing other types of correlation, string data requires a
different type of approximation, such as (approximate) suffix trees [NP00, JNS99, Ukk93]. How
to reconcile both classes of approximation techniques for estimation of queries requiring both
types of functionality is an open research problem at this time.

7



2 Related Work

One of the problems of taking things apart and seeing how they work
– supposing you’re trying to find out how a cat works – you take that
cat apart to see how it works, what you’ve got in your hands is a
non-working cat. The cat wasn’t a sort of clunky mechanism that was
susceptible to our available tools of analysis.

– Douglas Adams

This chapter gives an overview over work related to the topics of this thesis. When describing
the different approaches it is necessary to identify their distinguishing characteristics concerning
details of how relational tables are approximated. Therefore, it is first necessary to introduce
some notation in Section 2.1. In Section 2.2 the the necessary concepts regarding query processing
are briefly reviewed. Section 2.3 provides a compact introduction to relevant aspects of query
optimization. In Section 2.4 all previous approaches for result (size) estimation are introduced.
In order to provide a classification of these as well as our own work, I initially discuss the design
space for query estimation techniques by introducing the most important design alternatives in
this domain. Previous approaches to the less studied problem of physical design of data synopses
are then discussed in Section 2.5.

2.1 Notation

Relational database systems store data in relations, which can intuitively be thought of as tables
with a certain number of rows and columns. Each row is referred to as a tuple, each column is
referred to as an attribute. An example relation is shown in Figure 2.1.

Employee ID Name Age Salary
1076 Lennon 35 50.000
1077 Harrison 49 75.000
1078 Watters 18 15.000

Table 2.1: Example of a relation

In the following work, I consider a set of relations R = {R1, . . . , Rn}. Each relation
Ri ∈ R has atti attributes Att(Ri) = {Ri.A1, . . . , Ri.Aatti}. The values for each of these At-
tributes Ri.Aj are defined over a domain DRi.Aj of possible values. The value set VRi.Aj ⊂
DRi.Aj ,VRi.Aj = {v1, . . . , vn} is the set of values for Aj actually present in the underlying relation
Ri. The density of attribute Ri.Aj in a value range from a through b, a, b ∈ DRi.Aj , is the number
of unique values v ∈ VRi.Aj with a ≤ v < b. The frequency fk of value vk is the number of tuples
in R with value vk in attribute Ri.Aj . The cumulative frequency ck of value vk is defined as
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the sum of all frequencies fl for tuples vl < vk (i.e., ck =
∑k−1

l=1 fl). The spread si of value vi is
defined as si = vi+1 − vi (with sn = 1). The area ai of value vi is defined as ai = fi · si.

Definition 2.1 (Data Distribution) :
Based on the above, a (one-dimensional) data distribution over a single attribute Ri.Aj

is defined as the set of pairs TRi.Aj = {(v1, f1), (v2, f2), . . . , (vn, fn)}, with fk being the
frequency of value vk. When it is clear or immaterial which relation and attribute are
referred to, the subscript Ri.Aj is dropped when defining data distributions, domains, and
value sets.

To give an example, consider a unary relation R1 over the domain DR1.A1 = N containing the
following tuples t1 = 10, t2 = 10, t3 = 20, t4 = 31, t5 = 40, t6 = 40, t7 = 40, t8 = 70, t9 = 90. Then
VR1.A1 = {10, 20, 31, 40, 70, 90} and TR1.A1 = {(10, 2), (20, 1), (31, 1), (40, 3), (70, 1), (90, 1)}.
Definition 2.2 (Joint Data Distribution) :

A joint data distribution over d attributes Ri.Aj1 , . . . , Ri.Ajd
is a set of pairs

TRi.Aj1
,...,Ri.Ajd

= {(v1, f1), (v2, f2), . . . , (vn, fn)}, with vt ∈ VRi.Aj1
× · · · × VRi.Ajd

and fk

being the number of tuples with value vk. In the following we use the general term data
distribution to refer to both single-attribute and joint data distributions.

The cumulative frequency ci of a value vi = (v1
i , . . . v

d
i ) is defined as ci =

∑
k∈{1,...,|TRi.Aj1

,...,Ri.Ajd
|}

v1
k
≤v1

i
∧...∧vd

k
≤vd

i

fk.

It is sometimes necessary to strip tuples of some of their attributes. For this, I use the opera-
tor |A with the set of attributes A describing the attributes, whose values remain after the opera-
tion. For example, if t1 denotes the first tuple in table 2.1, then t1|{R.Age,R.Salary} = (35, 50.000).

Some approaches to data synopses provide their estimation in the form of an approximate
data distribution. In order to distinguish between the original data and its approximation,
the approximation of the attribute value vi is denoted by v̂i and correspondingly the ap-
proximation of frequency fi by f̂i. Thus, an approximate data distribution is written as
T̂Ri.Aj = {(v̂1, f̂1), (v̂2, f̂2), . . . , (v̂n, f̂n)}.

Definition 2.3 (Frequency Distribution, Cumulative Frequency Distribution) :
Many approaches reduce the part of the estimation problem to a problem of function
estimation by treating a (joint) data distribution as a function f : VRi.Aj 7→ N with f(vi) =
fi. This f is referred to as the frequency distribution function.

The cumulative frequency distribution function is defined analogously, but with f(vi) = ci.

While most of the mathematical notation in this thesis is standard, I use a notation introduced
in [Ive62] that allows simplifying most case statements. The idea is to enclose a true-or-false
statement in brackets, which is treated as a mathematical expression with result 1 if the statement
is true, and result 0 if the statement is false. For example, [12 is prime] = 0 and [102 = 100] = 1.

As many variables used in this thesis have both subscripts and superscripts (e.g., x1
k, . . . x

n
k)

these can easily be confused with exponents. For this reason, all exponents (when applied to
variables) are separated from these by parentheses (i.e. (x)2 = x · x).

9
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2.2 Query Processing

Throughout this thesis, I will concentrate on the estimation of three major query operators
Selection, Projection and Join. The reason for this focus is that most queries specified in the SQL
database language (which is the standard adopted by all commercial database systems [O’N94])
can be specified as a combination of these 3 operators. To illustrate this, it is first necessary to
explain the basic SQL syntax. The basic form of an SQL query is a follows:

SELECT [DISTINCT] result−attributes
FROM relations
[WHERE selection-condition ]
[GROUP BY group-attributes [HAVING selection-condition]]

with relations specifying a subset of R; the set

A :=
⋃

R′∈relations

{R′.A1, . . . , R
′.A|Att(R′)|}

denotes all attributes present in these relations. Then result-attributes is a subset of A specifying
the attributes present in the query answer. Each selection-condition specifies a filter on the tuples
selected. Only tuples, for which the filter condition holds are included in the query answer. A
selection-condition is of the form

selection-condition := [[NOT] A1 θ A2 [{AND | OR} selection-condition]|True|False]

with A1 ∈ A, A2 ∈ A ∪ DA1 and θ specifying a binary comparison operator from {<,≤,=,≥
, >, 6=}. Depending on the underlying domains, some limited mathematical expressions are also
possible for A1 or A2. In addition, it is possible to use results of different SQL queries (which are
then referred to as sub-queries) in place of A2 in a selection-condition. This extension gives SQL
the expressive power of first-order predicate logic. While our approach is capable of estimating
this type of nested queries, I will focus on selection conditions limited to propositional logic.

It is further possible to specify aggregation operators in on single members of the result-
attributes, that return an aggregate of the values in the respective column. The possible op-
erators are (a) Count, (b) Sum, (c) Avg, (d) Max, and (e) Min, which specify (a) the number
of values, (b) the sum of the values, (c) the average of the values, (d) the highest value and (e) the
lowest value in the column. These operators may also be used in a selection-condition following
a HAVING clause.

The result of a query specified through an SQL statement is another table, which contains
all tuples present in the cross-product of the relations in relations, except for the tuples that
do not satisfy the selection-condition and the attributes not present in result-attributes. Thus,
SQL queries are operations on tables that also have results in the form of tables. The DISTINCT
keyword is optional. It indicates that the table computed as an answer to this query should
not contain duplicates (i.e., two copies of the same tuple). If DISTINCT is not specified, then
duplicates are not eliminated; so the result can be a multiset. Finally, the result of a query may be
partitioned into groups using the GROUP BY and HAVING clauses. Here the set group-attributes⊆ A
specifies which combinations of attributes determine the grouping, i.e., all tuples that have the
same value for the attributes in group-attributes are assigned to the same equivalence class. The
selection-condition in the HAVING clause can specify additional conditions on the groups selected
in the final query result. Note that expressions appearing there must have a single value per
group; therefore, aggregation operators are often used here.

10
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A query can now be answered using selection, projection and join operators, I now define their
semantics with regard to data distributions. Data distributions are equivalent to the relations
or query results they represent in the sense that it is possible to reconstruct these from the
data distribution(s) over all attributes that either (a) are selected by the query (i.e., they are
specified in the result attributes clause) or (b) appear in the query’s filter conditions (i.e., they
are contained in at least one selection-condition). Thus, by defining the semantics of an operator
when applied to a data distribution, it is implicitly defined when applied to (part of) a relation
as well. The operator semantics are defined as follows:

Selection: A selection over a selection-condition P is defined as an operation Select[P ] mapping
a (joint) data distribution TA over a set of attributes A ⊆ A to a (joint) data distribution
T ′A with

Select[P ](TA) = {(vi, fi) | (vi, fi) ∈ TA ∧ P (vi)}.
A special sub-class of this query class are range-selection queries, which are characterized
by every attribute having filter condition of type

P := A1 ≤ constant1 ∧A1 ≥ constant2.

Note that with the exception of aggregation operators, all selection conditions in the WHERE
clause express predicates on the attribute values present in the data distribution. This
means that any technique capable of estimating arbitrary selection conditions has to store
an (approximate) representation of the attribute value distribution.

Projection A projection of a data distribution TA over a set of attributes A ⊆ A onto a set of
attributes A′ ⊂ A is defined as follows.

Project(TA) = {(v′, f ′) | v′ = vi|A′ ∧ vi ∈ VA ∧ f ′ =
∑

(vi,fi)∈TA
v′=vi|A′

fi}.

Intuitively this means that all tuples in TA, that are indistinguishable when considering only
the attributes in A′ are combined into one tuple in the result returned by the projection.

Join A join is an operation over two data distributions TA = {(v1, f1), . . . , (vn, fn)}, TA′ =
{(v′1, f ′1), . . . , (v′h, f ′h)} and a simple selection-condition P of the type P := [A1 θ A2 | True]
with A1 ∈ A and A2 ∈ A′. The result is a data distribution TA∪A′ over the union of the
attributes of TA and TA′ defined as

Join[P ](TA) = {(v, f) | v ∈ DA∪A′ ∧ v|A = vi ∈ VA ∧ v|A′ = v′j ∈ VA′ ∧ vi|A1 Θ v′j |A2 ∧ f = fi·f ′j}.
In the special case of the selection-condition being True, the join result is identical to
the cross-product of the tables corresponding to TA and TA′ . Throughout this thesis I
concentrate on joins with the selection condition of the form A1 = A2 (this type of join is
called equi-join), as it is the most common and also the most difficult to approximate (this
is discussed in detail in Section 3.4.3). To denote the data distribution resulting from an
equi-join between two relations Ri, Rj over the condition Ri.Ak = Rj .Al I use the notation

Ri
Ak=Al

./ Rj .

For the sake of simplicity, assume that all selection conditions are connected via AND (this is
not really a limitation as all queries involving OR can be reformulated as the union of multiple
queries that only use AND). Now the evaluation of an SQL query as described above query can
conceptually be described through the use of the above operators.

11
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1. First, for all sub-conditions A1 θ A2 in the selection-condition with A1 and A2 from different
relations, compute the join over the involved relations. Then compute the cross-product
(using the join operator) of the intermediate result(s) and all tables in relations which
were not included in the first pass of joins. The result of these steps corresponds to the
cross-product over all relations in relations, after all tuples not satisfying the sub-conditions
between relations have been removed.

2. From this intermediate result, select all the tuples satisfying the remainder of the selection-
condition.

3. Through projection, remove all the attributes not appearing in result-attributes.
4. If DISTINCT is specified, all frequencies in the resulting data distribution are set to 1.

While the above approach will result in the correct answer, it is in most cases not efficient, for
some tuples may be created only to be removed later. In order to make the execution of a query
more efficient, the single join, project, and select operations are reordered through the query
optimizer in such a way that the query result stays the same. To assess the efficiency of query
execution by different plans (i.e., operator orderings), information on the size, (and in some cases
also the data distribution) of relations and intermediate results is needed.

Definition 2.4 (Result Estimation, Size Estimation, Selectivity) :
Estimation techniques used in query optimization can be distinguished by what type of
estimate they return. When given a query and data distribution the query is applied to,
most techniques return an estimate for the size (expressed as the number of tuples) of the
result. This is referred to as query result size estimation. The fraction of tuples from the
original data still present in the query result is referred to as the selectivity of the query.

In contrast, other techniques provide an estimation of the result data itself (in the form of
a data distribution T ). All necessary aggregate information, such as the size, can than be
computed from T . This is referred to as query result estimation.

2.3 Query Optimization

Different approaches to query optimization can be classified by when the optimization for a given
query is performed.

Static or compile-time optimizers (for example, IBM’s System-R query optimizer [SAC+93]) op-
timize a query at the time it is being compiled, thereby avoiding additional overhead at run-time,
and potentially assessing a larger number of query execution plans, because the optimization time
is less critical. This, however, is problematic as parameters important to the cost computation
(such as available disk bandwidth, processing power and search structures, set cardinality or pred-
icate selectivity) may change between compile-time and run-time, resulting in sub-optimal query
plans. More significantly, in many cases, not all parameters determining a query may be known
at compile-time (for example, when query parameters are specified remotely via host-variables
of a web session). In addition, when queries are specified through tools that generate SQL state-
ments directly, compile and execution time may fall together. As a result, static optimization
can only be applied to a limited number of application scenarios.

An alternative approach is dynamic query optimization [Ant93, CG94, AZ96] (used in Oracle
Rdb), which chooses the execution plan at run-time, thereby benefitting from accurate knowledge
of run-time resources, host variables, and result sizes for sub-queries that have already been
computed. However, in order to restrict the time necessary for optimization, a large part of the

12
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plan is still optimized statically [Ant93]. Thus, good estimation of intermediate result sizes is
still necessary. Another alternative is parametric query optimization [INSS97] which (at compile-
time) generates the optimal plan for several potential values of the parameters on which the
choice of the optimal execution plan is contingent and (at run-time) selects among them.

A hybrid approach called dynamic query re-optimization [KD98] (implemented in the Paradise
database system [PYK+97]), collects statistics at key points in the execution of complex queries,
which are then used to optimize the remainder of the query by either improving resource allocation
or changing the execution plan.

A different approach to dealing with inaccurate result-size estimation at the level of the opti-
mizer is presented in [SLMK01]. IBM’s DB2 optimizer [GLSW93] monitors query executions and
uses the feedback to compute adjustments to cost estimates and statistics, which are then used
in future optimizations. These future optimization are again subject to monitoring, resulting in a
feedback loop. As the adjustments themselves have very limited expressive power (mostly factors
that are multiplied to the original estimates) they cannot replace query estimation techniques;
so this approach does not invalidate the need for query estimation that is accurate in the first
place.

2.4 Query Result Estimation

2.4.1 Design Space for Data Synopses

Recent research in the area of data synopses has led to a plethora of techniques providing the
necessary functionality. In order to categorize all available techniques for query estimation, I now
describe a number of different features characteristic for the different approaches:

Size Estimation vs. Result Estimation

As mentioned before, many techniques estimate only the size of the query result, providing the
estimation for a query operator Θ ∈ {selection, projection, join} by approximating a function
with dimensionality equal to the number of parameters of Θ representing the corresponding
frequency distribution function. For example, a range-selection over a single attribute R.A query
selecting all values in the interval [a, b) can be represented by the 2-dimensional cumulative
frequency function f . For example, to estimate a range selection over a single attribute R.A, the
cumulative frequency function f , the approximation of which we refer to as f̂ . Now, the result
size of a range query selecting all values in the interval [vi, vj) is then estimated1 as Sel[i,j) :=
f̂(vj) − f̂(vi). The estimations for other operators are then provided using a different function
for each operator. Because estimations provided by these different functions cannot be combined
without additional information on the data distribution, additional functions would have to
be constructed and approximated to provide estimations for queries using multiple operators.
Because the number of different operator-combinations occurring in real-life database applications

1For d-dimensional distributions the result size of a selection (v1
i ≤ R.A1 ≤ v1

j ) ∧ . . . ∧ (vd
i ≤ R.Ad ≤ vd

j ) is

estimated using the d-dimensional function f̂ approximating the cumulative frequency as follows:

Sel[i,j) :=
X

xk∈{vk
i

,vk
j
}

1≤k≤d
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−1[xl=vl
i]

!
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is large, this approach is not practical for query optimization. Furthermore, the approach fails
when the filter-predicates are more complex than the range-selection example above.

Example 2.1: Consider the query

SELECT DISTINCT R.Order-date FROM R WHERE |Ship-Date−Order-Date| ≤ 10.

While approaches that approximate the (cumulative) frequency distribution function are
capable of estimating the number of tuples for any possible value of Ship-Date or Order-
Date, they have no representation of the value domain itself, so the (number of) actual
values in the result cannot be estimated.

The problems discussed in the above example stem from the fact that these types of techniques
– when given a range of attribute values – offer accurate estimation of the number of tuples
(or values, when Θ =projection) in that range; however they do not offer any information on
which attribute values vi are contained in V (the only way this information can be gathered
is by checking whether a given value has a frequency different from 0, which typically leads
to significant overestimation of the number of unique values). Summing up, one may say that
techniques that approximate the (cumulative) frequency function only offer good approximation
of the value frequencies fi, but not of the values vi themselves. To make this distinction explicit,
we introduce the following notation.

Definition 2.5 (Value Frequency Approximation, Value Density Approximation) :
When approximating a given data distribution T , the technique used for representing the
attribute value frequencies f1, . . . , f|T | is referred to as the value frequency approximation.

The technique used for representing the attribute values v1, . . . , v|T | occurring in T them-
selves is referred to as the value density approximation.

In order to deal with the above problems, a number of approaches use techniques capable of
estimating the query result itself and not only its size, meaning they store the approximate
data distribution T̂ of a relation stored in the database and apply operators directly to this
distribution. The result of each operation is another approximate data distribution, to which
further operators may be applied. Because the approximation contains information on both the
attribute values and their frequencies, all potential filter conditions can be applied.

The potential drawback of this approach is the fact, that providing estimation of the query
result itself potentially requires more computational overhead, than the query-result size because
potentially the entire data-distribution has to be materialized (consequently, the computational
overhead for computing result size estimation is typically lower). Still, only techniques capable
of estimating the query result as well are capable of dealing with the wide range of selection
predicates occurring in real-life applications; thus, only query result estimation techniques are
suitable candidates for the support of query-optimization.

Support for different Operators

An estimation technique needs to be able to support estimations for all major operators: selec-
tion, projection, join. However, offering the functionality of estimating a query operator result
is meaningless if the technique is not capable of bounding the corresponding estimation error
effectively.

For example, a large number of techniques are geared towards minimizing the variance in fre-
quency approximation error only, i.e. synopsis construction selects the synopsis with the smallest
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error-function f err :=
∑|T |

l=0(fi− f̂i)2. This minimizes the estimation error for a class of equality
queries(equality queries of type R.A = x under the assumption that only values x ∈ VR.A are
queried) and is effective in minimizing the error for range-selection queries [IP95]. However, for
join queries this approach fails, as accurate placement of the approximate attribute values is not
in any way reflected in the error-function f err. Therefore, the number (and approximate value)
of attribute values finding a join-partner when estimating an equi-join query may be significantly
off, leading to large estimation errors when computing a join over a data distribution (see Sec-
tions 2.2). Adding more memory to the corresponding synopses does not necessarily alleviate
this problem, but may make it worse. In essence, this rules out approaches minimizing f err
only, when join queries need to be estimated.

Because most research in the area of data synopses has been geared towards improving range-
selectivity estimation, a large number of approaches result in problems of the described nature for
join and projection queries, the specifics of which will be discussed in Sections 4.1 (for projection
queries) and 3.4.3 (for joins). In summary, data synopses need not only support operators, but
have to be able to reduce the corresponding errors effectively.

High-dimensional Data

When estimating queries specifying filter conditions on more than one attribute of a relation, it
becomes necessary to take into account the correlation between multiple attributes of the data.
To illustrate this, consider the following example: Given a table Employees, containing the
attributes Height (in centimeters) and Weight (in kilograms). Now consider the query

SELECT * FROM Employees WHERE Height < 160 AND Weight ≥ 100.

Assuming one has exact knowledge over both the data distribution THeight and the data distribu-
tion TWeight, and the number of tuples satisfying the condition on Height is 20% of the relation
and the number of tuples satisfying the condition on Weight is 25% of the relation. Still, without
any additional information on the correlation present between the attributes, the only knowledge
gained about the selectivity of the entire query is that its result contains between 0% and 20% of
the relation. Many early approaches use the attribute value independence assumption [SAC+93]
at this point, estimating the selectivity of the composite filter as 25/100 · 20/100 = 5/100, which
often leads to significant estimation errors (in the example, the selectivity is likely to be closer
to 0%). Consequently, even data synopses over single attributes that perfectly estimate the
underlying distributions do not permit accurate estimation for this type of correlation.

In order to provide accurate estimations for this type of queries, the data synopsis has to take
into account the joint data distribution of the queried attributes. This entails preserving the
amount of correlation present in the data.

Definition 2.6 (Correlation) :
Correlation is defined for data points that have two values of different quantity; it measures
inhowfar the value of one quantity can be used to predict the value of another. In the above
example, Height is strongly correlated to Weight, as the taller a person is, the higher
typically his weight. If two quantities are independent (for example: salary and shoe size),
they are said to have zero or no correlation.

As this thesis is concerned with ordinal and particularly cardinal numeric attributes, it is
possible to use numerical measures of the present correlation. Depending on the context,
the linear correlation coefficient [PTVF96] or the Spearman rank-order correlation coeffi-
cient [PTVF96] are used. The latter is more robust with regard to quantities of radically
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different domains, as it does not measure the absolute values of the quantities, but their
rank within the respective domains.

For query (size) estimation two types of correlation are of importance: (a) the correlation
between the multi-dimensional attribute values and their frequencies (this correlation is also
known as the skew of the value distribution) and (b) the correlation between the values different
attributes themselves. While most techniques focus on the first problem, both of them are equally
important for query estimation, which will be discussed in more detail in Section 3.4.3.

Handling of Data Updates

Because the data distributions approximated through data synopses are subject to change when-
ever the corresponding relations or data sets are updated, these changes have to be propagated
to the data synopses as well. For this reason, some approaches offer the option of incremental
updates which either use feedback obtained from observing the actual query results or monitor
updates, deletions and insertions on the data itself and propagate these to the relevant synopses.

Unlike the previously discussed features, where it was possible to identify a ’correct’ design
alternative, there is a trade-off between flexibility towards updates and estimation accuracy.
Because efficient compression (i.e., data reduction) schemes are generally very sensitive to changes
in the data to be compressed, a single insertion, deletion or update may require a complete
reconstruction of the corresponding synopses. This means that substantial overhead for synopsis
construction is incurred whenever data is changed, which is prohibitive in real-life applications.
On the other hand, data synopses that immediately integrate updates immediately with only
negligible overhead generally offer significantly less data compression and thus typically worse
estimation accuracy within the given memory space. Furthermore, when too many updates are
performed, synopses based on this type of techniques may even require complete reconstruction.

As the memory required to store data synopses is normally a critical resource, it is often
preferable to construct synopses that do not immediately integrate changes to the data and
reconstruct these synopses during low system load whenever the data has changed significantly.
While these synopses degrade over time when not updated, their accuracy is typically superior
to begin with, thereby freeing up more space for cache and buffer memory.

2.4.2 Approximation Techniques

The final characteristic feature of approaches providing data synopses is the technique they use
for data reduction. In the following, I introduce the most important classes of techniques.

Histograms

Histogram techniques [PSC84, Poo97, PIHS96, JKM+98, MD88, PI97, BCG01] approximate a
data distribution T by partitioning it into disjoint intervals called buckets. In one-dimensional
histograms (for one attribute) each bucket stores the sum of the frequencies of the attribute
values contained in the corresponding interval, the number of distinct values in the interval and
the highest attribute value. In multi-attribute histograms each bucket stores the sum of the
frequencies of the attribute values contained in the interval, and for each attribute the lowest and
highest value contained as well as the number of distinct values2. There exist a large number of

2A more space-efficient way of storing multi-dimensional histograms is introduced in [DGR01].
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different histogram variants; the different classes can be classified by three3 parameters:

Sort Parameter Specifies which domain is partitioned into histogram buckets (the choices being
attribute values, frequency, and area).

Partition Constraint A mathematical constraint on the source parameter that uniquely identifies
the rule by which the domain of the sort parameter is partitioned.

Source Parameter A parameter derived from the distribution T (the choices being attribute
value spread, frequency, cumulative frequency, and area) used in the partition constraint
to identify the unique bucketization.

A complete taxonomy of histogram variants can be found in [Poo97]. A histogram characterized
in this way is generally described in the following notation:

Partition-Constraint (Sort-Parameter, Source-Parameter)

For example, the well-know Equi-depth histograms, which choose their buckets in such a way
that the sum of the frequencies in each bucket is (approximately) equal among all buckets, are
written as Equi-Sum (V,F).

The most important class of single-attribute histograms use the partitioning constraint V-
Optimal , meaning the buckets are chosen in such a way that the variance between the actual
value and its approximation of the source parameter is minimized (i.e., if the source parameter
is frequency, the error function f err :=

∑|T |
l=0(fi − f̂i)2 is minimized).

It can be shown that V-Optimal(F,F) histograms [IC93, Ioa93, IP95] are optimal for estimating
the result size of tree join, equality join and selection queries. However, as this type of histogram
uses frequency as sort-parameter, information on the exact position of each attribute value has to
be stored explicitly to use this histogram type for estimation, resulting in O(n) storage overhead
and rendering this type of histogram pointless for real-life applications, as the corresponding
data distribution T itself could be stored using less space. The histogram types generally used
in practice are V-Optimal(V,F), V-Optimal(V,A) and Max-Diff(V,A) histograms, as they offer
the best performance for a wide range of data distributions and queries [PIHS96]. Once the data
distribution T is known, construction of an histogram with m buckets requires O(m · |T |2) over-
head for V-Optimal histograms [JKM+98] and O(log2 m · |T |) for Max-Diff histograms [PIHS96].
Producing a query result estimation requires O(|T |) cost when histograms are used; if only the
result-size is of interest, the cost is O(m).

When constructing histograms over multi-attribute distributions, the problem of partitioning
the attribute value domain in such a way that the variance of a source parameter over all buckets
in minimized becomes NP-hard [MPS99]. Thus, any variant of V-Optimal histograms results
in unacceptable computational overhead in practice. In [MD88] a multidimensional variant of
the well-know Equi-depth histogram is introduced, which partitions the attribute value domain
one dimension at a time into buckets enclosing (approximately) the same number of tuples.
In [PI97] several alternatives were introduced, with the most accurate one being multidimensional
Max-Diff(V,A) histograms, which do not base their partitioning on the full multi-dimensional
distribution, but choose the partitioning based on one-dimensional projections of the frequency
distribution.

3In [Poo97] a 4th parameter Partition Class is used, but as all histograms proposed in the literature are of the
class serial. This means that that buckets group elements from T that are contiguous in order and that there
is no restraint on the number of elements that may be assigned to a bucket.
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All the discussed multidimensional histograms are static in the sense that they cannot adapt
themselves to changes in the data distribution without reconstructing the histogram completely.
To overcome this, [AC99, BCG01] introduce a new approach to histogram construction in that
they observe the query workload and the query results and leverage this information for histogram
construction. The resulting histograms are constructed on the fly and continuously updated
through new query feedback. This process not only reflects the data, but also locality in the
access pattern of the workload, and the histograms of [BCG01] are more expressive in that they
allow overlap between buckets. Therefore, the resulting histograms often offer better accuracy
than static multidimensional histograms.

While histograms are typically less accurate than the techniques discussed below, they are easy
to construct, maintain and use. All types of histogram can be used to estimate a query result in
from of a data distribution [IP99] and may thus be used for estimation of virtually any query.
For these reasons, histograms are used in virtually any commercial database system [Poo97].
However, no histogram type is capable of providing both accurate estimation of attribute value
frequency and attribute value density (see Section 3.2), which is problematic for estimating queries
requiring accuracy in both domains (see Section 3.4.3).

Hybrid Techniques for Real-Valued Domains

[GKTD00] introduces a variant of multidimensional histograms aimed at continuous value do-
mains (typically the set of real numbers R) called GENHIST (GENeralized HIStograms). The
partitioning algorithm constructs progressively coarser grids over the data set, with each cell
containing information on the density of values in the corresponding interval. The algorithm
then removes points from (combinations of) dense cells, storing an approximation of the removed
tuples in a bucket. Not all tuples in the area are removed, but only sufficiently many so that
the density decreases to the level of the neighboring cells. Thus creation of a new bucket has a
smoothing effect on the remaining data, making it easier to approximate.

The resulting histograms show good estimation accuracy for range selectivity queries, but offer
no support for other query types (because of the real domain, the authors assume that it is
unlikely that a given attribute value will appear more than once – obviously, this assumption is
violated in most non-real domains). For this reason they are not grouped with other histogram
approaches in this classification.

In [BKS99], a different approach for real-valued value domains is introduced. Here, the so-
called probability density function (PDF) F (x) =

∫ x
−∞ f(t)dt over the frequency distribution

function f is modelled using kernel [Sco92] functions as density estimators. The partitioning
algorithm introduces bucket boundaries at points where the PDF is not sufficiently smooth to
be approximated using a kernel. Inside the buckets themselves, kernel estimators are used. This
approach is generalized to higher dimensions in [GKTD00]. Again, the resulting technique is not
suitable for queries other than range-selectivity estimation.

Parametric Techniques

Parametric techniques (also known as curve-fitting or regression models) [Chr83, Lyn88, SLRD93,
CR94] approximate the data distributions using a mathematical distribution function with a
limited number of free parameters (e.g., coefficients of polynoms). Values for these parameters
are then chosen to fit the actual distribution. If the model is a good fit for the distribution, this
provides an accurate and compact approximation; however, since the shape of the distribution is
generally not known beforehand, this is often not the case.

18



Chapter 2 – Related Work

To gain some degree of flexibility, the approaches of [SLRD93, CR94] use a general polynomial
function and apply least-squares fitting to choose its coefficients. To avoid both overfitting and
the corresponding fitting problem from becoming ill-conditioned [PTVF96], the degree of the
polynomials still has to remain small (both techniques use polynomials of degree less than 10).
In addition, the approach of [CR94] leverages feedback from the actual result sizes to re-fit the
coefficients. Thus it is able to adapt to changes in the value distribution as well as to locality in
the ranges of the distribution being queried by improving the estimation of attribute values that
are queried more frequently.

Generally, parametric techniques only estimate result sizes, and are not capable of providing
full result estimation.

Discrete Transforms

A different approach to achieve the data reduction necessary for synopsis construction is to treat
the frequency distribution function f as a signal on which a discrete transformation is performed
(such as the fast fourier transform(FFT) [PTVF96], the discrete cosine transform(DCT) [Lim90]
or one of many possible wavelet transformation [SRS96]) returning |T | coefficients representing
the original signal. The constructed data synopses then only retains the most significant m
coefficients, from which an approximate frequency distribution function f̂ is reconstructed at
estimation time.

This approach is used in [MVW98], where the wavelet-transform (using Haar wavelets) is
used on the cumulative frequency distribution function. To select the the m most significant
wavelet coefficients, four different thresholding schemes are introduced, the first one selecting the
coefficients by the size of their absolute normalized value4 (thereby minimizing the error-function
f err :=

∑|T |
l=0(f(vi)− f̂(vi))2 [SRS96]), and the other three greedy variants choosing coefficients

by their overall effect on the chosen error metric. The key feature here is that for all thresholding
schemes only the approximation of the value frequencies is examined. There is no approximation
of the attribute-value distribution, resulting in a technique unsuitable for projection and join
queries. While this effectively rules out this approach in the context of query optimization, it can
still effectively be used for approximate answering of OLAP range queries on multidimensional
data cubes [VWI98, VW99]. In [MVW00], a framework for handling incremental updates is
added. The overhead for constructing the wavelet decomposition over a data distribution T is
O(|T |), selecting m final coefficients through thresholding requires at most O(|T |·log2 |T |·log2 m)
operations and the estimation of the size range query has overhead O(min{m, log |T |}).

To overcome the limitations of the previous approach, [CGRS00] approximates an frequency
distribution function f extended by adding the tuple (v′, 0) for all v′ ∈ D, v′ 6∈ V to the data
distribution. To exploit multi-dimensional locality, a different decomposition scheme is used; still
the retained coefficients are selected by their absolute normalized values. While this approach
makes it possible to process aggregation, projection, and join operators, the approximation of
the attribute value distribution is only a by-product of the fitting of the frequency distribution,
meaning that the estimation error for this type of queries is not minimized (this phenomenon
is discussed in more detail in Section 3.4.3). The significant contribution of this work is that
all operators are defined on the wavelet coefficients and also have wavelet coefficients as results,
thereby eliminating the need to materialize intermediate results, and thus speed up the estimation
of complex queries significantly.

4This means that a coefficient at resolution i is divided by
√

2i. This way, coefficients that play a role in the
reconstruction of a large number of frequencies have a correspondingly higher value.
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The basic approach of [LKC99] is similar to [MVW98] but a discrete cosine transformation
is used here instead, as this transformation results in better energy compaction than the Haar
transform [Lim90, RY90]. The final coefficients are then selected via geometrical zonal sampling
meaning that the coefficients are chosen by their geometric position, and not by their value.
Because the DCT is linear transform5, incremental updates are realized by computing the coeffi-
cients of the inserted/deleted data and adding/subtracting them to/from the stored coefficients.
In contrast to [MVW00] any changes to the data do not result in a different set of coefficients
being retained, but is only reflected in the value of the coefficients selected earlier. Because no
information on the attribute value distribution is stored, this approach is limited to selectivity
estimation for range-selection queries.

Probabilistic Models

The techniques introduced in [DGR01, GTK01] approximate the frequency distribution function
by treating it as a probability distribution, which in turn is modelled through probabilistic rela-
tional models [DGR01] or statistical interaction models [GTK01]. As only the value frequency
distribution is modelled, this results in the limitations discussed above; to make join approxima-
tion possible [DGR01] extend their model by introducing binary indicator variables for attribute
values involved in equality joins which indicate whether or not the tuple is present in the join
result.

2.4.3 A Classification of All Approaches

Summing up the different design alternatives discussed in Section 2.4.1, a data synopsis used for
query estimation should have the following properties: It needs to be able to provide estimation
of the query result (and not only its size) , be able to express the correlations found in multi-
dimensional data distributions, support selection, projection, and join queries, and must be able
to effectively minimize the estimation error for each query type. While the ability to update the
synopsis incrementally can save the cost incurred by synopsis recomputations, it generally results
in less efficient data reduction6.

Table 2.2 characterizes all approaches discussed above with regard to these criteria. Each
column signifies the ability of a given approach to provide the functionality stated at the top of the
column. Whenever this is the case, I reference the paper(s) in which this is described. Whenever
the same paper appears in multiple columns, the approach introduced in it supports the features of
multiple columns. On the other hand, the features of different papers are typically not compatible.
For example, although both [SLRD93, CR94] are parametric techniques, only [SLRD93] supports
multi-dimensional data and only [CR94] supports incremental updates. The only exception to this
rule are histogram techniques: all of them support all 3 major query operators (the corresponding
techniques being discussed in [PIHS96]) and all of them can be used for result estimation (as
discussed in [IP99]).

The most important fact expressed through this classification is that even though query esti-
mation has been extensively studied, no single technique is capable of bounding the estimation
error for selection, projection and join queries effectively (this will be discussed in more detail

5The DCT is linear in the following sense: Let Fc be the DCT, γ, δ scalars and x, y general k-dimensional vectors.
Then it holds that Fc(γ · x + δ · y) = γ · Fc(x) + δ · Fc(y).

6The fact that the histograms of [BCG01] outperform multi-dimensional Max-Diff histograms is not a con-
tradiction to this, but merely a reflection of the suboptimal partitionings generated through the MHIST-n
partitioning algorithm. With regard to estimation accuracy, all other discussed techniques also outperform
Max-Diff histograms by a wide margin.
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SPJ-queries SPJ-queries Multidimensional Query Result Incremental
supported optimized distributions Estimation Updates

[PI97, AC99] [GMP97, AC99]Histograms all ([Poo97])
[BCG01]

all ([IP99])
[DIR00, BCG01]

Hybrid
Techniques

[GKTD00]

Parametric [SLRD93, CR94] [SLRD93] [CR94]
Discrete [VW99, CGRS00]
Transforms

[CGRS00]
[LKC99, VWI98]

[CGRS00] [LKC99, MVW00]

Probabilistic
Models

[DGR01, GTK01]

Spline
Synopses

√ √ √ √

Table 2.2: Functionality of the different approaches

in Sections 3.2 and 3.4.3). In addition, only histograms and [CGRS00] are capable of providing
query result estimation. Because both criteria are essential to accurate query estimation in the
context of query optimization, query cost estimation is still considered an open issue in this
context [CG94, Cha98].

As for the problem of capturing the correlation present in multidimensional distributions, a
large number of approaches exist that are capable of maintaining multidimensional correlations.
While histogram-based approaches suffer from a variant of the ”curse of dimensionality” causing
unacceptable computational overhead for some histogram types [MPS99] and rapid decline in
estimation accuracy with rising number of dimensions (this is discussed in detail in Section 4.1),
most other techniques offer accurate estimation of multi-dimensional range-queries. However,
the only non-histogram techniques capable of estimating joins and projections are [SLRD93,
CGRS00].

Spline Synopses [KW99, KW00] offer both query result and size estimation for selection, pro-
jection and join queries and consequently support estimation of all major query types. They can
provide estimation for queries over multiple correlated attributes. In addition, they are capable
of minimizing the estimation error for range-selections (see Section 3.5.2), projections (see Sec-
tion 3.5.2) and join-queries (see Section 3.4.4) efficiently. While spline synopses are not capable
to incorporate changes to the data distribution without recomputing the entire synopsis, this
is a consequence of the efficiency of the techniques used forn data reduction. Spline synopses
compute the optimal representation (i.e., the representation with the smallest error) for any
dataset they approximate. As this is a global optimum over the entire data, small changes in the
data may result in a completely different approximation, thereby causing the need for complete
recomputation.

2.4.4 Sampling

Sampling-based techniques [HS92, HNSS95, Haa96, CMN98, GGMS96, LS95] provide result-size
estimation by collecting a small random sample from the data and then scaling the result.

This approach works particularly well for certain types of aggregation: count, sum and average.
Here the sample constitutes an unbiased estimator, with the expected value for performing the
aggregation over the sample being equal to the result of the query itself. In addition, it is possible
to leverage the central limit theorem [Nel95] to obtain confidence intervals for the estimated
answer.
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On the other hand, queries, where infrequent attribute values may significantly influence the
query result (e.g., join estimation, as discussed in [CMN99]), or estimation of the number of dis-
tinct values for an attribute (as discussed in [CCMN00]) require a very large sample to guarantee
a low estimation error. This is problematic, as the process of sampling the disk-resident data is
slow. This is made worse by that fact that even to obtain a small sample, often a large number of
database pages need to be read, as the tuples stored on a given page are often highly correlated
and thus do not constitute a random sample. As an alternative, some systems create a random
sample of the data called a reservoir sample [Vit85] and update it whenever updates, insertions
or deletions occur [GMP97, GM98]. This reservoir can then be accessed much more efficiently.
While the reservoir sample could be stored in main memory and serve as a type of data synopsis
there, the size of such a sample is normally prohibitively large.

In summary, the applications of sampling and data synopses do not overlap significantly, as
data synopses are mainly concerned with the approximate representation of data distributions,
and sampling with the approximate acquisition of them. Thus, I do not compare our approach
to sampling techniques in this thesis. There is, however, a chicken-and-egg relationship between
sampling and data synopses. In many cases, when scanning an entire data set results in too much
overhead, sampling is employed to obtain an approximate data distribution from which a data
synopsis for the given relation is then constructed [CMN98]. In addition, a reservoir sample (on
disk) can be used to incrementally reconstruct a data synopsis in main memory at much reduced
cost [GMP97]. But data synopses can also aid sampling: when using sampling to estimate the
result of a join query (without computing the join itself), partial statistics on the high frequency
values are vital to the efficiency of the sampling algorithm [CMN99].

2.5 Physical Design of Data Synopses

The problem of selecting the optimal combination of synopses for a given combination of data and
workload has not received much attention until recently. This is problematic for in virtually all
application scenarios for data synopses more than one synopsis is needed. While the techniques
described above have resulted in increasingly accurate estimation, to a large degree the efficiency
thus gained is lost through the use of overly simple schemas for selecting synopses and allocating
their memory.

The reconciliation of different synopses as well as dedicated synopses for join queries (a uni-
form random sample over a foreign key join) was initially considered in [AGPR99]. These ideas
are generalized in this thesis, as [AGPR99] is limited to samples as base synopses and a data
warehouse environment with a central fact table connected (via foreign keys) to the respective
dimension tables. An extension of this approach to incorporate workload information (in the
form of access locality) can be found in [GLR00], but it is also limited to the above application
scenario.

The reconciliation problem for spline synopses was first discussed in our own work [KW00],
where a dynamic programming approach is proposed to minimize the error for a given set of
synopses. However, this work offers no solution regarding which set of synopses to construct and
does not take into account the characteristics of the workload. A similar approach for histograms
was proposed in [JJOT01], extending [KW00] by offering heuristics that reduce the overhead of
the dynamic programming problem.

[CN00] considers a limited version of the problem: a set of synopses for query optimization
are selected, based on whether or not they make a difference in plan selection. However, the
approach is limited in a number of ways. Most importantly, synopsis selection is a series of yes-
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or-no decisions, with no consideration of the effect that variations of the size of a synopsis may
have. This also has the consequence that the overall memory allotted to the selected synopses is
utilized in a sub-optimal way. Furthermore, there is no consideration of special, dedicated (join-)
synopses which do not constitute a (sub-)set of the attributes of a single relation.

The physical design problem for data synopses resembles the index selection problem for phys-
ical database design, which has been intensively studied [FST88, CWBC95, RS91, CN99]. How-
ever, there are a couple of fundamental differences between these two problems that make the
synopses problem much more difficult: (1) a synopsis not only chooses an attribute combination
on which it maintains statistics, but its quality is highly dependent on the memory allocated to
it (e.g., for a certain number of buckets in a histogram), and (2) a synopsis on a proper subset
of attributes over which another synopsis is already maintained can be advantageous because
of different approximation accuracies for different query types, whereas with B-tree indexes an
index on a subset of an already indexed attribute combination would (to a first approximation)
be superfluous.
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3 Approximation of a Single Attribute

Size matters not. Look at me. Judge me by my
size, do you?

– Yoda

In this chapter I address, the problem of building an approximation for a data distribution T =
{(v1, f1), . . . , (vn, fn)} over a single attribute. The approach is similar to histogram techniques
in that the underlying value domain V is partitioned into buckets, which store a summary of the
data points contained in them. The way this is done in histograms has significant drawbacks: the
partitioning of V via buckets determines the quality of approximation for both attribute value
frequency and value density. Thus, choosing a partitioning that results in a good approximation of
both domains is often impossible, as these optimization goals are in conflict. Histograms therefore
are generally aimed at minimizing the estimation error for either the attribute value frequencies
(all histograms with source-parameter Frequency) or attribute value density (source-parameter
Values)1.
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Figure 3.1: Example of a spline synopsis

Consequently, spline synopses construct two different, independent approximations (and thus
1Histograms with source parameter Area use an error function that aims to reconcile the approximation of both

domains, but merely place bucket boundaries at the points with the largest gaps in Area, thereby often failing
to construct a good partitioning for either domain.
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partitionings) for capturing the frequency and the density distribution of an attribute (see Fig-
ure 3.1). Not only does this eliminate the above problems, but as the number of buckets for each
distribution is not fixed a priori, it also allows us to assign more memory to the more difficult
(or more important) of the two approximation problems.

The construction of the approximation of attribute-value frequencies is described in Section 3.1
and the approximation of attribute-value density in Section 3.2. Section 3.3 then describes how
to combine the two different approximations and how to choose their sizes for a limited amount
of available memory. In Section 3.4, I then discuss how to use the resulting spline synopsis for
estimation. It turns out that accurate estimation of join queries requires additional information.
This leads to an additional type of dedicated join synopsis, which is discussed in Sections 3.4.3 –
3.4.6. The chapter concludes with an experimental evaluation of join synopses in Section 3.5.

In the following, it is assumed that there is a limit on the number of buckets, M , of the synopsis
representing T . The number of buckets for the two approximations is assumed to be set at m
(for frequency approximation) and m′ (for density approximation) with M = m + m′. It will be
shown that by generating the optimal partitioning for a given number of buckets, the optimal
partitioning for all smaller numbers of buckets is also generated at negligible additional cost.
This property is exploited in Section 3.3.2, where I discuss how to choose the values of m and m′

in adaption to the difficulty of the corresponding approximation problems.

3.1 Approximation of the Attribute-Value Frequencies

To approximate a given value-frequency distribution T , the (observed) value set V is partitioned
into m disjoint buckets, bi = [vlowi

, vhighi
) in the following manner, where lowi and highi denote

the subscripts of the values from V (i.e., not the actual values) that form the left and right bounds
of the (left-side closed and right-side open) value interval covered by the bucket:

∀i ∈ {1, 2, . . . ,m− 1} : highi = lowi+1(low1 = 1, highm = n + 1). (3.1)

For the sake of a simple, uniform notation, T is extended by an artificial tuple (vn+1, 0) with
vn < vn+1.

Unlike histograms, spline synopses approximate the frequency in an interval by a linear func-
tion, resulting in a linear spline function [dB78, Die93] over the m buckets. Because my interest
is in the compact representation of distributions and not in the features more advanced forms
of splines offer (smoothness, differentiability), I have chosen simple linear spline functions for
this task. In contrast to previous approaches to spline-based histograms [PIHS96] these are not
required to form a continuous approximation of T C+

, thereby simplifying the problem of find-
ing the optimal partitioning (see Subsection 3.1.3) and increasing the resulting approximation
accuracy as well.

Using a linear function fi(x) = αi · x + βi to approximate the frequencies for the val-
ues x in a bucket leads to an improvement in accuracy, depending on the linear correla-
tion [PTVF96] of the data within a bucket. First, I define v̄[low,high) := 1

high−low

∑high−1
l=low vl

as the average attribute value within [vlow, vhigh); analogously, I define the average frequency
f̄[low,high) := 1

high−low

∑high−1
l=low fl. The linear correlation for interval bi is then defined as

r[lowi,highi) :=

highi−1P
l=lowi

(vl−v̄[lowi,highi)
)(fl−f̄[lowi,highi)

)

vuuthighi−1P
l=lowi

(vl−v̄[lowi,highi)
)2

vuuthighi−1P
l=lowi

(fl−f̄[lowi,highi)
)2

(3.2)
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For each interval bi, r[lowi,highi) ∈ [−1, 1]. In traditional histograms, the frequency in a bucket bi

is approximated by f̄[lowi,highi). Using the sum of the squares of the error at each frequency as
an error metric, this results in the error for bucket bi if a histogram were used:

histogram err[lowi,highi) =
highi−1∑

l=lowi

(fl − f̄[lowi,highi))
2.

In a spline-based synopsis, using the same error metric the estimation error can be written as:

spline err[lowi,highi) =
highi−1∑

l=lowi

(frqi(vl)− fl)2 (3.3)

Equation 3.3 is minimized to determine the values for αi and βi. At its minimum, derivatives of
spline err[lowi,highi) with respect to αi, βi vanish:

∂spline err[lowi,highi)

∂αi
= 0 and

∂spline err[lowi,highi)

∂βi
= 0

Solving these equations for αi, βi results in

βi =

( ∑highi−1
l=lowi

(vl)2
)( ∑highi−1

l=lowi
fl

)− ( ∑highi−1
l=lowi

vl

)(∑highi−1
l=lowi

vl · fl

)
∑highi−1

l=lowi
(vl)2 −

( ∑highi−1
l=lowi

vl

)2 and (3.4)

αi =

( ∑highi−1
l=lowi

vl · fl

)− ( ∑highi−1
l=lowi

vl

)( ∑highi−1
l=lowi

fl

)
∑highi−1

l=lowi
(vl)2 −

( ∑highi−1
l=lowi

vl

)2 .

By inserting the above terms for αi, βi into Equation 3.3, it is possible to express the error
for this type of estimation as a function of the error in histograms and the linear correlation
rlowi,highi) of the values in bi:

spline err[lowi,highi) = (1− r[lowi,highi)
2) · histogram err[lowi,highi). (3.5)

Obviously, spline err[lowi,highi) is always less than or equal to histogram err[lowi,highi). However,
because of the separation of frequency and density approximation, the storage requirements for
histograms and spline synopses cannot be compared directly. The resulting trade-off will be
further examined by means of experiments in Section 3.5. Summing up the error over all buckets
in the synopsis, the overall error becomes:

spline err =
m∑

i=1

(
(1− r[lowi,highi)

2) · histogram err[lowi,highi)

)
. (3.6)

3.1.1 Fitting the Frequency Function within a Bucket

For the derivation of this basic building block suppose it is assumed that the boundaries of a
bucket are already fixed. For each bucket bi = [vlowi , vhighi) the linear approximation frqi(x) =
αi · x + βi of the attribute frequency that minimizes the squared error in Equation 3.3 has to be
computed. As the Formulas 3.4 are suceptible to roundoff error, I use a numerically more stable
method for the computation of the final values of the coefficients.

Using Definition 3.3, finding frqi that minimizes the error becomes a problem of linear
least squares fitting [PTVF96]; i.e. the data (vl, fl)l=lowi,...,highi−1 is fit via the linear function
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frqi(x) = αi ·X1(x) + βi ·X0(x) with X1(x) = x,X0(x) = 1 and the optimal αi, βi to be deter-
mined. To do this, define the design matrix A of (highi−lowi)×2 components by Al,h = Xl−1(vh),
for l = 1, 2 and h = lowi, . . . , highi − 1. Furthermore, define vector b = (flowi

, . . . , fhighi−1)t.
Now the fitting problem can be rephrased to: find a =

(
αi
βi

)
so as to minimize

spline erri = |A · a− b|2.

This problem can now be solved by Singular Value Decomposition (SVD) [PTVF96, BDF+97] in
the following way: Let the SVD of A be

A = U × Λ× V t , with Λ =




s1

. . .
shighi−lowi




with s1, . . . , shighi−lowi being the singular values of A (i.e., the Eigenvalues of A× AT ). Then a
can be expressed as

a =
2∑

l=1

(
U(i) · b

si

)
V(i),

with V(i) and U(i) being the i-th column of V and U , respectively. While computing the SVD of
the design matrix causes considerable overhead, it is only computed m times, namely, once for
each bucket of the final partitioning.

3.1.2 Computation of the Error for a Single Bucket

Because of Formula 3.5, it is possible to compute the error for fitting an interval of frequency
values by a linear function without calculating the function frq itself, thereby making the com-
putation of the the optimal partitioning of V computationally efficient. For this purpose, it is
necessary to initially compute and store the following prefix-sums for i = 1, . . . , n, requiring O(n)
steps:

ff [i] :=
i∑

l=0

(fl)2 vv[i] :=
i∑

l=0

(vl)2 vf [i] :=
i∑

l=0

fl · vl

f [i] :=
i∑

l=0

fl v[i] :=
i∑

l=0

vl

These sums stored for the entire duration of the synopsis construction and span all values in V
and their frequencies. Using the prefix sums, it is possible to compute the corresponding sums for
intervals; for example the sum of all frequencies in the bucket bi = [vlowi , vhighi) can be computed
as v[lowi,highi) := v[highi − 1]− v[lowi] =

∑highi−1
l=lowi

vl in constant time (i.e. a single subtraction).
Using this notation for the above sums also when restricted to an interval, it is now possible to
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compute the linear correlation for a bucket b = [va, vc) in constant time:

r[a,c) =
vf[a,c) − f[a,c)v̄[a,c) − v[a,c)f̄[a,c) + (c− a)v̄[a,c)f̄[a,c)√

vv[a,c) − 2v̄[a,c)v[a,c) + (c− a)(v̄[a,c))2
√

ff[a,c) − 2f̄[a,c)f[a,c) + (c− a)(f̄[a,c))2

=

c−1∑
l=a

vlfl − v̄[a,c)

c−1∑
l=a

fl − f̄[a,c)

c−1∑
l=a

vl +
c−1∑
l=a

f̄[a,c)v̄[a,c)

√
c−1∑
l=a

vl
2 − 2v̄[a,c)

c−1∑
l=a

vl +
c−1∑
l=a

(v̄[a,c))2
√

c−1∑
l=a

fl
2 − 2f̄[a,c)

c−1∑
l=a

fl +
c−1∑
l=a

(f̄[a,c))2

=

c−1∑
l=a

(vl − v̄[a,c))(fl − f̄[a,c))
√

c−1∑
l=a

(vl − v̄[a,c))2
√

c−1∑
l=a

(fl − f̄[a,c))2
, corresponding to equation

(
3.2

)
.

Now, the resulting error for a bucket bi (Equation 3.5) can easily be computed as

spline err[a,c) = (1− r[a,c)
2) · (ff[a,c) − 2 · f̄[a,c) · f[a,c) + (c− a) · f̄2

[a,c)).

As a consequence, after initially using O(n) operations and O(n) space for the prefix-sum com-
putation, the approximation error for value frequencies for a bucket can be computed in constant
time.

3.1.3 Partitioning of V
To arrive at the best possible estimation of attribute value frequencies, it is necessary to deter-
mine the partitioning (i.e. the boundaries for m buckets) that minimizes the overall error for
frequency approximation (Formula 3.6). When arbitrary partitionings and continuous splines
of arbitrary degree are considered, this is known as the optimal knot placement problem [dB78],
which – due to its complexity – can be practically solved only approximatively by heuristic search
algorithms [Die93, Jup78].

In our case, however, only linear splines are used and only members of V are candidates for
bucket boundaries. Since the value for each highi is either lowi+1 or vn+1 (see Definition 3.1), it
is only necessary to determine the optimal lower bucket boundaries to compute:

f opt err := min
(low2,...,lowm)∈Vm−1

low1≤low2≤...≤lowm

m∑

l=1

(1− r[lowl,highl)
2) · histogram err[lowl,highl) (3.7)

Because the resulting spline function is allowed to be discontinuous at the boundaries of the
chosen intervals b1, . . . , bm, fitting the data in a bucket can be addressed separately for each
bucket bi. The main improvement in efficiency does, however, result from the fact that the
following principle of optimality (also known as the Bellman principle) holds for the partitioning
problem:

Theorem 1. If for l ≥ 2: (lowl, lowl+1, . . . , lowm) ∈ Vm−l+1 is an optimal partitioning of
[vlowl−1

, vhighm) using m − l + 2 buckets, then (lowl+1, lowl+2, . . . , lowm) ∈ Vm−l is an optimal
partitioning of [vlowl

, vhighm) using m− l + 1 buckets.
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Proof: Because (lowl, lowl+1, . . . , lowm) is optimal, it minimizes

E :=
m∑

i=l−1

spline err[lowi,highi) = spline err[lowl−1,highl−1) +
m∑

i=l

spline err[lowi,highi).

Now assume that (lowl+1, . . . , lowm) is not optimal, i.e. there exists a partitioning
(low′l+1, . . . , low

′
m) with

∑m
i=lspline err[low′i,high′i) <

∑m
i=lspline err[lowi,highi). But then

(lowl, . . . , lowm) is not optimal either, for the partitioning (lowl, low
′
l+1, low

′
l+2, . . . , lowm) re-

sults in the overall error E′ = spline err[lowl−1,highl−1) +
∑m

i=l spline err[low′i,hig′hi) < E.

Because of this property, the problem of finding an optimal partitioning can be formulated as
a dynamic programming problem [Sni92]. To do this, I first formulate a recursive redefinition of
Formula 3.7. Define

f opt errhigh,m̄ := the optimal overall error for fitting [v1, vhigh) by m̄ buckets.

Trivially, f opt errhigh,1 = spline err[1,high). Because of Theorem 1, the error for the optimal
fitting over multiple buckets can be computed as

f opt errhigh,m̄ = min
l∈{1,2,...,high}

f opt errl,m̄−1 + spline err[l,high]. (3.8)

Then the overall error produced by the optimal partitioning is

f opt errn,m = min
l∈{1,2,...,n}

f opt errl,m−1 + spline err[l,n].

Computing the optimal partitioning

Using the above definition, the optimal partitioning of V can be computed in the following
way: f opt errhigh,m̄ is computed for all m̄ = 1, . . . , m (outer loop) and high = 1, . . . , n + 1
(see Algorithm 1)2; these intermediate results are stored. Note that this means,that by solving
the partitioning problem for m buckets, the solution for any number of buckets less than m is
also computed at no additional cost. Each computation requires finding the minimum among i
values, each of which can be computed in constant time. Because the intermediate results are
stored, this requires O(n) operations. Therefore the overall running time is O(m · n2) and the
computation requires O(m) storage (the values for f opt err1,ṁ . . . , f opt errn,ṁ can be dropped
once m̄ becomes greater than ṁ + 1).

The computation of each f opt errhigh,m̄ can be further sped up by using the idea proposed
in [JKM+98] to prune the search space through the use of upper bounds for the values of f opt err.
To do this, an upper bound S0 for the size of f opt errhigh,m̄ is used. S0 can be obtained by
computing the error corresponding to an equi-width partitioning, where all buckets are chosen
so that they cover intervals of roughly the same size. This error can be computed in O(j)
steps. When now computing f opt errhigh,m̄ as defined in Equation 3.8, by iterating over all
possible values of l, all values of l for which spline err[l,high) > S0 can be ignored, as they cannot
result in an optimal partitioning. To this end the largest value for l is initially located (using
a binary search), such that spline err[l,high) > S0, which is referred to as l0. When computing
f opt errhigh,m̄, it is now sufficient to consider only values above l0 for l, thereby improving
performance.

2In all algorithms I have ignored the special case occurring if n < 2m. In this case there is sufficient storage space
to store T directly and thus no approximation is necessary.
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1: for l = 2 to n + 1 do
2: f opt errl,1 := spline err[1,l)

3: end for
4: for m̄ = 2 to m do
5: for high = 2m + 1 to n + 1 do
6: minimum = MAXFLOAT; // The following loop solves equation 3.8
7: for l = 2(m− 1) to high− 1 do
8: if minimum > f opt errl,m̄−1 + spline err[l,high) then
9: minimum := f opt errl,m̄−1 + spline err[l,high) // New minimum found? Yes!

10: next splithigh,m̄ := l
11: end if
12: end forf opt errhigh,m̄ = minimum
13: end for
14: end for
15: // Compute the final partitioning
16: low1 := 1
17: current split := next splitn+1,m

18: for m̄ = m− 1 downto 2 do
19: lowm̄ := next splitcurrent split,m

20: current split := lowm̄

21: end for
Algorithm 1: Computing the optimal partitioning

high),[l h
spline_err 

l

1-m,lh
err_f_opt 

0l 1l hl

Figure 3.2: Using upper bounds

In addition, because all possible values for l must be larger than l0, it holds that the value of
f opt errl0,m̄−1 is a lower bound for f opt errl,m̄−1 in the optimal solution. Consequently, S1 =
S0 − f opt errl0,m̄−1 is an upper bound for spline err[l,high) in the optimal solution. Therefore,
the algorithm can now search for the largest value of l, such that spline err[l,high) > S1, which is
referred to as l1. Again, it holds that all values for l must be larger than l1.

Repeating this construction for each iteration an upper bound

Sh := S0 − f opt errlh−1,m̄−1

is computed and using binary search the corresponding lh is detected until lh = lh−1. Then this
lh is used as a limit on l when computing the minimization for f opt errhigh,m̄. The relationship
between f opt errlh−1,m̄−1, spline err[lh,high) and the different values for l is depicted in Figure 3.2

While the worst-case complexity for the algorithm remains the same, the actual run-time
improves dramatically in most cases, as far less spline err values need to be computed. I refer
to this partitioning algorithm as OPTIMAL. This algorithm is identical to Algorithm 1 except
for the initial value chosen for l in line 7. The computation of the initial value of l is described
in Algorithm 2. To obtain the complete OPTIMAL algorithm, Algorithm 2 needs to be inserted
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between lines 6 and 7 in Algorithm 1 and the final value for lh used as the lower bound for the
loop in line 7.

1: // Compute S0

2: S0 := 0
3: width = (high− 1)/m̄
4: for i = 0 to m̄− 1 do
5: S0 := S0 + spine err[1+i·width,1+(i+1)·width)

6: end for
7: h := 0
8: repeat
9: // Now compute the lh corresponding to Sh

10: left := 1
11: right := high− 2
12: while right ≥ left do
13: mid := (left + right)/2
14: if spline errmid,high > Sh then
15: left := mid + 1
16: else
17: right := mid− 1
18: end if
19: end while
20: lh := right · [spline errleft,high ≤ Sh] + left · [spline errleft,high > Sh]
21: h := h + 1
22: Sh := S0 − f opt errlh−1,m̄−1

23: until lh = lh − 1

Algorithm 2: Computing the initial value for l

Greedy Partitioning

Despite the above improvements, the cost for computing an optimal partitioning could still be
unacceptable when n is large. In these cases, a greedy method for the partitioning of V can be
used, which results in a partitioning that is close to optimal while being much more efficient.
This algorithm first partitions V into n/2 trivial bucket and then merges the ones that lead to
the smallest increase in the overall error, until only m buckets are left (see Algorithm 3). Here,
the increase in the error by merging two buckets b1 = [va, vb), b2 = [vb, vc) is denoted as

error[a,b),[b,c) := spline err[a,c) − (spline err[a,b) + spline err[b,c)).

The algorithm consists of 2 loops; the for loop has n/2 iterations in which the error of merging
the trivial buckets is computed, which can be done in constant time. The repeat loop is executed
(n/2) −m times (each repetition reduces the number of buckets by one, there are n/2 buckets
initially, and m upon termination), and executes 4 different types of operations:

1. Removing an item from the priority queue Q. An implementation of priority queues based
on Fibonacci heaps [MNU97] is used in the algorithm, allowing the removal of an item in a
queue of size n in O(log2 n) time.

2. Merging two buckets, requiring constant time.
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1: Partition V into n
2 buckets bi = [v2i−1, v2i+1).

2: for l = 0 to n
2 do

3: Compute the error[2l−1,2l+1),[2l+1,2l+3) resulting from merging the buckets bl and bl +1 and
insert the error value into priority queue Q.

4: end for
5: repeat
6: Remove the minimal error[a,b),[b,c) from Q.
7: Merge the buckets corresponding to [a, b) and [b, c).
8: Remove error[a′,a),[a,b), error[b,c),[c,c′) from Q.
9: Calculate the error of joining the new bucket with its left and right neighbor (if these exist);

insert the resulting error[a′,a),[a,c), error[a,c),[c,c′) into Q.
10: until there are only m buckets left.

Algorithm 3: GREEDY-MERGE

3. Calculating the error resulting from a merge, requiring constant time.

4. Inserting an item into Q, again requiring O(log2 n) time.

Since each operation is carried out no more than three times, computing a greedy partitioning is
of complexity O(n log2 n). The algorithm requires O(n) storage. By performing additional m−1
merge operations (i.e., until only one bucket remains), the greedy partitionings for all numbers
of buckets less than m is obtained at very low additional cost. I will refer to this algorithm as
GREEDY-MERGE .

In addition, I consider a second greedy partitioning-algorithm (see Algorithm 4, which takes
the opposite approach: Initially, all tuples are grouped in one bucket. Then the split that leads
to the greatest reduction in the overall error (formula 3.6) is computed and executed, resulting in
an additional bucket. This is repeated, until (after m−1 splits) m buckets remain. Each time the
location of a split is computed, at most O(n) possible split-locations need to be considered. These
splits are then stored in a priority queue holding at most m− 1 values (as only one split-location
is stored for each bucket). Thus the inner loop (lines 12-35) of the algorithm require O(n · log2 m)
overhead. The loop itself is repeated O(m) times, and lines 1-11 compute the optimal split
location in the initial bucket (O(n) operations). Consequently, the overall algorithm requires
O(m · n log2 m) time and O(n) space. Like the optimal partitioning, the greedy partitionings of
V for less that m buckets are computed at no additional cost. I will refer to this algorithm as
GREEDY-SPLIT .

3.2 Approximation of the Value Density

Accurate approximation of the density distribution is of critical importance for the estimation of
all queries involving grouping and aggregation. Therefore, the value densities in V are approxi-
mated in addition to and independently of the value frequencies, such that:

1. the approximation captures the same number of values as V (although it should require less
values to represent V) and

2. the squared deviation between the actual attribute values vl ∈ V and their approximated
counterparts v̂l is minimized.
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1: all buckets := ∅
2: Insert b = [v1, vn+1) into all buckets
3: minimum :=MAXFLOAT
4: // Find the optimal split for the initial bucket
5: for i = 3 to n− 1 do
6: if minimum > error[1,i)[i,n+1) then
7: minimum := error[1,i)[i,n+1)

8: min index := i
9: end if

10: end for
11: Insert the tuple (minimum,min index) into the priority queue Q
12: for i = 3 to m do
13: Remove the tuple (min, ind) from Q with the smallest min
14: Remove the corresponding bucket b′ = [vlow, vhigh) with low < min < high from

all buckets
15: Insert bleft = [vlow, vind) and bright = [vind, vhigh) into all buckets
16: if i 6= m then
17: // Find the optimal split for the new buckets
18: minimum :=MAXFLOAT
19: for i = low + 1 to ind− 1 do
20: if minimum > error[low,i)[i,ind) then
21: minimum := error[low,i)[i,ind)

22: min index := i
23: end if
24: end for
25: Insert the tuple (minimum,min index) into the priority queue Q
26: minimum :=MAXFLOAT
27: for i = ind + 1 to high− 1 do
28: if minimum > error[ind,i)[i,high) then
29: minimum := error[ind,i)[i,high)

30: min index := i
31: end if
32: end for
33: Insert the tuple (minimum,min index) into the priority queue Q
34: end if
35: end for
36: // Now all buckets contains the final buckets

Algorithm 4: GREEDY-SPLIT

Analogously to the approach for frequency distributions, V is partitioned into m′ disjoint
intervals which are referred to as density buckets dbi = [vdlowi , vdhighi), with dlowi and dhighi

denoting the subscripts of the values from V that constitute the bucket boundaries. Analogously
to Formula 3.1, for all i ∈ {1, 2, . . . , m′ − 1} the partitioning requires:

dhighi = dlowi+1 and dlow1 = 1, dhighm′ = n + 1.

Note that the number of buckets, m′, can be chosen independently of the number of buckets, m,
for the frequency distribution of the same attribute. Using the squared deviation of attribute

33



Chapter 3 – Approximation of a Single Attribute

values, the error within bucket dbi is

density err[dlowi,dhighi) =
dhighi∑

l=dlowi

(
vl − v̂l

)2. (3.9)

In order to estimate the value distribution within a bucket, histograms use the equi-spread
assumption [Poo97], meaning that they assume that the values are spread evenly over the bucket’s
width. This means that the j-th value in a density bucket db = [dlow, dhigh) containing D values
is approximated as v̂ = vdlow +(j−1) · vdhigh−vdlow

D . Thus, denoting the number of values in bucket
dbi by Di, the error of the bucket becomes:

histogram density err[dlowi,dhighi) =
Di−1∑

l=0

(
vdlowi+l −

(
vdlowi +

(
l · vdhighi − vdlowi

Di

)))2

. (3.10)

Using the upper and lower values to estimate the approximate spread in buckets has the dis-
advantage that even when the estimation of vdhigh and vdlow is correct3, all possible partition
constraints do not consider the width of a bucket vdhigh − vdlow as a source parameter and thus
are not capable of identifying the best partitioning with regards to attribute density estimation.
To illustrate this, consider the following example:

Example 3.1: Consider the set of attribute values V = {0, 1, 7, 9, 10, 13, 15}, which is approxi-
mated using a 2-bucket V-optimal(V,S) histogram. This means that the final partitioning
of the value domain is based on the variance of the value spreads in the resulting buckets:

o variance :=
2∑

i=1




dhighi−1∑

j=dlowi

si −
(

1
dhighi−dlowi

dhighi−1∑

j=dlowi

si

)



2

.

However, minimizing the overall variance does not necessarily result in the optimal es-
timation of the value domain. If V is partitioned into the 2 buckets b1 = [0, 9),
b2 = [9, 15) the overall variance becomes o variance1 = 33/2 and the overall estimation
error error1 := histogram density err[0,9) + histogram density err[9,15) = 145/4. On
the other hand, the partitioning b1 = [0, 10), b2 = [10, 15) results in the overall variance
o variance2 = 18 and the overall estimation error error2 := histogram density err[0,10) +
histogram density err[10,15) = 47/2. Thus o variance1 < o variance2, but error1 >
error2. Similar examples can be constructed for all other combinations of partitioning
constraint, source parameter and error-function (e.g., if the linear deviation of the attribute
values is used as a measure of the density error (Equation 3.9)).

The above problem has the additional unwanted side-effect, that a density-estimation may become
worse if it receives additional memory.

In order to minimize the error defined in Equation 3.10, the term
vdhighi

−vdlowi
Di

, which denotes
the “gap” between adjacent values in the approximation, is treated as a control variable, denoted
∆i, whose value should be chosen optimally. Note that the best value of ∆i may be larger than
both

vdhighi
−vdlowi

Di
and

vdhighi+1−vdlowi
Di

if the density distribution is skewed towards values closer
to the interval’s upper boundary.

3This is not necessarily the case, as histograms with the sort parameter values typically only store the highest
value in a bucket and estimate the lowest value as the successor of the highest value contained in the previous
bucket [Poo97].
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The formula for the resulting bucket error then is obtained from equation 3.10 by replacing
vdhighi

−vdlowi
Di

with ∆i:

density err[dlowi,dhighi) =
Di−1∑

l=0

(
vdlowi+l −

(
vdlowi

+ l ·∆i

))2

. (3.11)

The parameter ∆i should be chosen such that the bucket’s error is minimized, i.e.

∂density err[dlowi,dhighi)

∂∆i
= 0.

Computing the derivative and solving this equation for ∆i yields

∆i = −3
−vlowiDi + vlowi(Di)2 +

Di−1∑
l=1

(−2l · vlowi+l)

Di (2(Di)2 − 3Di + 1)
, (3.12)

and this indeed results in the minimum value for Equation 3.11.
The optimal density error for a bucket can now be computed by substituting vopti into equa-

tion 3.11. The overall optimal error for the entire attribute-value density synopsis then is the
sum of the errors over all buckets 1,. . . , m′:

d opt errn,m′ =
m′∑

i=1

density err[dlowi,dhighi). (3.13)

Using the prefix-sums defined in Section 3.1.2 it is possible to evaluate Equation 3.12 and
thus density err[dlowi,dhighi) in constant time. Therefore, finding an optimal partitioning of V
and computing the optimal values for the control parameters ∆i is mathematically equivalent to
the partitioning and per-bucket parameter fitting problem for frequency distributions that were
solved in the previous section. Thus the same dynamic programming algorithm or, alternatively,
one of the greedy heuristics can be applied to compute an optimal density synopsis with a given
number m′ of buckets. I refer to the resulting error as d opt err1,m′ .

3.3 Synopsis Storage

In the following I will describe what information is stored in the buckets used for attribute-
value frequency and attribute-value density approximation and how the memory M available to
the entire synopses is divided between the two approximation types (Section 3.3.2). A similar
approach is used to divide the available memory between multiple spline synopses (Section 3.3.3).
To ensure accurate estimation of value frequencies, it is also important to match up the different
approximations to some degree, which is being discussed in Section 3.3.4.

3.3.1 Storage Requirements

The buckets for both frequency and density approximation store 3 values each. Frequency-
approximation buckets store:

(a) the leftmost attribute value in the bucket, and
(b) the two coefficients αi and βi.
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Density-approximation buckets store:

(a) the leftmost attribute value in the bucket,
(b) the fitting-parameter ∆i, and
(c) the number Di of unique attribute values contained in the bucket.

Assuming each value is stored using a constant length number, the storage requirements for both
bucket types are identical.

3.3.2 Reconciling Frequency and Density Synopses for One Attribute

So far I have shown how to minimize the error for each aspect separately, but assumed that the
number of buckets, m for frequency and m′ for density synopses, is fixed and a priori given for each
synopsis. To reconcile both synopses for an attribute, the problem is how to divide the available
memory space between them, i.e., how to choose the values of m and m′ under the constraint
that their sum should not exceed a given constant M . Intuitively, we are interested in allocating
the memory in such a way that the aspect that is more difficult to approximate is given a higher
number of buckets. This amounts to minimizing the combined error of both approximations.
However, to make sure that we do not to compare “apples with oranges” (i.e., value frequencies
versus actual data values), it has to be taken into account that the two approximations refer to
domains with possibly radically different scales. Therefore, the error metrics are first normalized
for the two classes of synopses thereby defining a relative error for each aspect. As the normalizing
factor, I use the highest possible approximation error for each domain, i.e. the maximal difference
between the actual value fi (or vi) and it’s approximation f̂i (or v̂i, respectively), when the
respective domain is approximated using one bucket only. Intuitively, these factors represent the
”difficulty” of approximating each domain. I refer to these factors as f domain and v domain;
the relative error for a single value vi then becomes

(
vl−v̂l

v domain

)2 = (vl−v̂l)
2

(v domain)2
. The relative error

for a single frequency is
(fj−frq(vj)

f domain

)2 = (fj−frq(vj))
2

(f domain)2
.

In addition to this normalization it is desirable to consider the relative importance of the two
synopses. With a query workload that is dominated by range or exact-match queries, frequency
estimations are obviously the key point. On the other hand, with a workload that requires many
estimations of the result size of projection and grouping queries, the density synopses become
more important. This consideration will be discussed in more detail in Chapter 5 in the context
of the physical design problem for data synopses.

To divide the available memory, I exploit the fact that computing the optimal partitioning
of either approximation type for j buckets, using the algorithms of Section 3.1.3, also generates
the optimal partitionings for 1, . . . , j − 1 buckets at no additional computational cost. The same
holds for the GREEDY-SPLIT heuristics; and for GREEDY-MERGE the additional output can
be generated at very small extra cost (with j additional merge operations). Thus, with a given
amount of memory for a total of M buckets, I compute the optimal partitionings and resulting
relative errors for each approximation with up to M − 1 buckets, and then divide the available
memory in such a way that the sum of the combined relative error terms

f d err =
f opt err1,m

(f domain)2
+

d opt err1,m′

(v domain)2
(3.14)

is minimized under the constraint that m ≥ 1, m′ ≥ 1 and m + m′ = M . This is a trivial
combinatorial problem, solvable in O(M) steps.
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3.3.3 Reconciling Multiple Synopses

When the overall available memory M needs to be divided between h different synopses over the
attributes Ri1 .Aj1 ,. . . ,Rih .Ajh

, the sizes of the single frequency and density approximations are
again chosen in such a way that the combined relative error over all synopses is minimized. Thus,
if f d errRil

.Ajl
denotes the combined relative error for the approximation of attribute Ril .Ajl

,
the sizes of each separate approximation is choose so that the term

overall f d errM :=
h∑

l=1

f d errRil
.Ajl

is minimized. Similar to the partitioning problem for V, the bellman principle holds, thereby
allowing to compute the optimal memory allocation using O(h ·M2) operations. While a good
approximative solution can again be computed using greedy heuristics, it is generally the case
that M ¿ n, and therefore the time for computing the optimal memory partitioning insignif-
icant (see Section 3.5.3). Note that solving the minimization problem also gives the values for
overall f d errM̃ for all values M̃ ≤ M .

3.3.4 Matching Frequency and Density Synopses

While the above techniques allow us to minimize the weighted sum of the approximation error for
attribute value density and frequency, this is not always sufficient to guarantee a low estimation
error for the queries described in the previous subsection.

In order to illustrate the problem, I examine a value-frequency pair (vl, fl) from a data distri-
bution T and its approximation

(
v̂l, f̂l

)
. Since frequencies are approximated as linear spline func-

tions frqi, i = 1, . . . , m over V,
(
v̂l, f̂l

)
can be written as

(
v̂l, frqk(v̂l)

)
for some k ∈ {1, . . . , m}.

When approximating attribute-value frequencies, the error of Formula 3.3 is minimized and
the frequencies at the original attribute values v1, . . . , vn are fit, rather than their approxima-
tions v̂1, . . . , v̂n. In most cases (when vl and v̂l belong to the same frequency bucket k, with
frqk(x) = αk · x + βk) this still results in accurate approximation, since the approximation error

for fl := |fl − frqk(v̂l)|
= |fl − frqk(vl + (v̂l − vl))|
= | fl − frqk(vl)︸ ︷︷ ︸

minimized by frequency approx

+αk · (v̂l − vl)︸ ︷︷ ︸
minimized by density approx

|.

The problem becomes apparent either for large values of αk (resulting in a large second term in
the above formula) or when vl and v̂l belong to different frequency buckets. In the latter case
(demonstrated in Figure 3.3), the frequency of vl is estimated as frqk(vl), whereas the frequency
of v̂l by frqt(v̂l), t 6= k. Now, frqk is chosen to fit all points in [lowk, highk), among them (vl, fl),
optimally, thereby reducing the error |fl− frqk(vl)|. The function frqt is fitted to a different set
of points, not including (vl, fl), and therefore a possibly poor estimator for fl.

To avoid this problem, I use T̂ = {(v̂1, f1), . . . , (v̂n, fn)} for the approximation of the frequency
domain, thereby minimizing the approximation error for the attribute values which will later
be used in estimation. So density is approximated first, and the frequency approximation then
uses the approximate density rather than the original distribution. However, T̂ depends on the
number of buckets m′ used for the approximation of the attribute value density, which in turn
depends on the error f opt err1,m (see Formula 3.8) made when fitting T̂ . A straightforward
solution would be to compute the resulting T̂ for all possible M − 1 values of m′, fit them, and
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Figure 3.3: The need for matching approximations

then determine the optimal combination of density and frequency error. This, however, would
increase the computational complexity of our approach by the factor of M . Therefore, I use a
simpler approach. First, the error f opt err1,m for fitting T is computed and used to determine
the corresponding numbers of buckets, m,m′, for frequency and density approximation. Then T̂
is re-computed for this value for m′, which is then used to compute the optimal approximation
of the value frequency, with the resulting spline being the final synopsis. Thus the optimal
partitioning of V for value frequency approximation is only computed twice, instead of M times.
Furthermore, since the f opt err1,m values for fitting T and for fitting T̂ typically close to each
other, both approaches tend to result in the same values for m and m′ and therefore in identical
approximations.

3.3.5 Weighted Approximation

In Chapter 5 it will become necessary to solve a modified version of the approximations described,
for the estimation for each value vi and frequency fi will be assigned a relative weight wi. This
means that the error-functions to be minimized when approximating a bucket bi = [lowi, highi)
are

highi∑

l=lowi

wl(frqi(vl)− fl)2 and
highi∑

l=lowi

wl(v̂l − vl)2.

While this results in changes to some details for the approximation (the prefix-sums used need
to be weighted as well, and the formulas for evaluating the error for a bucket in constant time
change), the computational properties and the overall approach remain the same.

3.4 Using Spline Synopses for Query Estimation

In the following I describe how to use the resulting synopses for estimating the result sizes
of various types of basic queries and for approximative query answering. The focus is on the
following query types: projections or, equivalently as far as result-size estimation is concerned,
grouping with aggregation, range queries on a single attribute, and joins, with projections and
joins possibly restricted to a specified value range (i.e., in conjunction with a range filter). The
extension to complex operator-trees is then straightforward: the initial approximate query-results
at every branch of the operator tree are then subjected to the further operators using the operator
semantics described in Section 2.2.

Because the estimation of join queries is inherently difficult when using synopses for the two
joining relations only (independent of which approximation technique is used ), special join
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synopses are introduced, which provide additional information on the number and value of the
attribute values that find join-partners in the two relations.

3.4.1 Projections (and Grouping Queries)

When estimating the (number of) unique values resulting from a projection over the interval
[a, b), there are three cases to differentiate:

• If [a, b) corresponds to the boundaries of a density bucket dbi (i.e., a = vdlowi and b =
vdlowi+1), the resulting value distribution is

V̂ :=
{

vdlowi
+ l ·∆i

∣∣∣l = 0, . . . , Di − 1
}

.

If only the size of the query result is of interest, the estimation corresponds to the number
of values in bucket i:

P i
[a,b) = Di.

The notation P i
[a,b) is used to indicate that the query over [a, b) is answered using only

bucket i.

• If [a, b) is completely contained in density bucket dbi (i.e., a ≥ vdlowi and b < vdlowi+1), the
resulting value distribution is computed analogously, the only difference being that only
values between a and b are considered:

V̂ :=
{

vdlowi + l ·∆i

∣∣∣l =
⌈

a−vdlowi
∆i

⌉
, . . . ,

⌊
b−vdlowi

∆i

⌋}
.

Again, when only the result size is of interest, the estimation returns only the number of
unique values occurring in V̂:

P i
[a,b) =

⌈
b−vdlowi

∆i
+ 1

⌉
−

⌊
a−vdlowi

∆i

⌋
.

• Finally, an approximate projection query for [a, b) that spans more than one density bucket
can easily be estimated by clipping [a, b) against the buckets and building the union of the
estimations for the intervals [a, vdlowj ), [vdlowj , vdlowj+1), . . . [vdlowj+l

, b). Thus, the estima-
tion problem is reduced to the previous formulas.

Consequently, any projection query requiring the approximation of an approximate value distri-
bution V̂ can be estimated using O(|V̂|) operations. If only the result size is of interest, it can be
estimated using O(m′) operations. Whenever approximating values over discrete value domains
(e.g., integer domains), one can improve the estimation quality by rounding to the next discrete
value.

3.4.2 Range Selections

For purpose of range selections, it is first necessary to introduce a unified notation for the spline
functions frq1, . . . , frqm that approximate the frequency distribution.

Definition 3.1 (Frequency Approximation Function) :
The frequency approximation function described through the attribute frequency approxi-
mation of an attribute Ri.Aj is a mapping frequencyRi.Aj : DRi.Aj 7→ N defined by

frequencyRi.Aj (x) :=
m∑

l=1

frql(x) · [lowl ≤ x < highl].
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If the result it not in N, it is rounded to the next integer. When it is clear, which relation
and attribute are referred to, the subscript Ri.Aj is dropped.

To estimate the query result for a range query with range [a, b), first the approximative den-
sity distribution V̂ is computed for [a, b) using the above technique for projection queries (see
Section 3.4.1), and then the frequency distribution of the range query result is computed as
F̂ = {frequency(v̂) | v̂ ∈ V̂}.

When only the number of tuples in [a, b), i.e., the query result size, is to be estimated, the
computation can be sped up in the following way. Here, it is necessary to differentiate two cases:

• The interval [a, b) is completely contained in a density bucket dbi (i.e., a ≥ vdlowi and
b ≤ vdlowi+1).In this case, the estimation of the result size requires the evaluation of m̃
terms, with m̃ corresponding to the number of buckets bl, . . . , bl+m̃−1 (used for frequency
estimation) that intersect the interval [a, b). For these buckets I now estimate the number
of tuples in the corresponding intervals [a, vlowl+1

), [vlowl+1
, vlowl+2

), . . . , [vlowl+m̃−1
, b). For

each interval I = [start, end) that corresponds to the intersection of density-bucket dbi and
frequency-bucket bj , the number of tuples is estimated as

Si,j
[start,end) : =

bend−vdlowi
/∆ic∑

l=dstart−vdlowi
/∆ie

frqj

(
vdlowi

+ l ·∆i

)
(3.15)

=
(⌈

end−vdlowi
∆i

⌉
−

⌊
start−vdlowi

∆i

⌋
+ 1

)
(βj + αj · vdlowi)

+∆iαj

2

(⌈
end−vdlowi

∆i

⌉
−

⌊
start−vdlowi

∆i

⌋
+ 1

)(⌈
end−vdlowi

∆i

⌉
−

⌊
start−vdlowi

∆i

⌋)
.

The importance of the second equality is that it means Si,j
[start,end) can be evaluated in

constant time. The estimation over [a, b) can now be computed as

Si
[a,b) := Si,j

[a,vlowl+1
) +

(l+m̃−2∑

h=l+1

Si,h
[vlowh

,vlowh+1
)

)
+ Si,l+m̃−1

[vlowl+m̃−1
,b),

requiring O(m̃) operations.

• When interval [a, b) spans multiple density-buckets the estimation problem can be reduced
to the previous formulas by clipping [a, b) against the buckets and building the union of the
estimations for the intervals [a, vdlowj ), [vdlowj , vdlowj+1), . . . [vdlowj+l

, b). Then the selectivity
can be computed as

S[a,b) := Sj
[a,vdlowj

+
( l−1∑

h=1

Sj+h
[dlowj+h,dlowj+h+1)

)
+ Sj+l

[dlowj+l,b)
. (3.16)

For all intervals [start, end) for which the term 3.15 is evaluated the values for start, end
come from the set

Bounds := {max{start, vlow1}, vlow2 , . . . , vlowm , vdlow2 , . . . , vdlowm′ , min{end, vn+1}}

with @middle ∈ Bounds ∴ start < middle < end (otherwise the intervals [start, middle)
and [middle, end) would be evaluated instead). Because there are only m + m′ such com-
binations possible, expression 3.16 can be evaluated using at most O(m + m′) evaluations
of term 3.15.
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Consequently, any range-selection query requiring the approximation of an approximate data
distribution V̂ can be estimated using O(|V̂|) operations. If only the result size is of interest, the
estimation requires O(m + m′) operations.

Because spline synopses provide query result estimation, they can be used to estimate any
filter condition other than range-specifications as well.

3.4.3 The Inherent Difficulty of Join Estimation

In principle, the data synopses constructed so far can also be used when estimating a join
query between two relation R1 and R2: first the approximative density distributions V̂1 and
V̂2 would be computed and the join between them would be performed, resulting in the approx-
imate density distribution V̂join. The join result’s frequency distribution would be computed as
F̂join = {frequency1(v̂) · frequency2(v̂) | v̂ ∈ V̂join}, with frequency1 and frequency2 being the
frequency functions of the two join attributes.

This approach is similar to how joins are estimated by histograms and in [CGRS00] (the only
techniques besides spline synopses capable of both query result and join estimation) in that
first a join is performed on the approximate attribute value distribution and the frequencies of
the values with join partners are then computed as the product of the corresponding frequency
approximations. Unfortunately, this approach does not lead to accurate join estimation. The
reason for this is that even small errors incurred when approximating the attribute value domain
can lead to drastic changes in the number and value of attribute values that find a join partner4.
Therefore, minimizing the average error in the approximation is not sufficient to ensure accurate
join estimation.

Example 3.2: To illustrate this point, consider the approximation of the equi-join between two
data distributions T1 = {(v1, f1), . . . , (vn, fn)} and T2 = {(v1, f

′
1), . . . , (vk, f

′
k)} via spline

synopses. Assume that T1 is approximated exactly. If the approximation of the attribute
density of T2 has very low error, but is not exact, i.e., at least a single value vi and its
approximation v̂i differ by more than 1, then it will not find its correct join-partner. In
case it does not find a join-partner at all (i.e. @j ∈ {1, . . . , n} : v̂i = vj , the join is then
underestimated by at least fi · f ′i .

The same problem exists for histograms, especially since most histogram types are geared towards
minimizing the estimation error for attribute value frequency only. To limit the estimation error
when either fi or f ′i are very large, high-biased [IP95] and various kinds of end-biased [Poo97]
histograms have been proposed, which keep the attribute values with the highest (and in the case
of end-biased histograms also the lowest) frequencies in singleton buckets storing only a single
attribute value. Thereby, these attribute values and frequencies are estimated correctly. Still,
this approach fails whenever an attribute value involved in a join is not in a singleton bucket for
both histograms. Especially in foreign-key joins, where all values are keys in one of the joining
relations and thus only have frequency 1, most high-frequency tuples in the joining relation tend
to be matched up with tuples not in singleton buckets.

Example 3.3: To illustrate that the same problem arises also for join estimation via wavelets,
consider the following example:

T1 = {(v1, 2), (v2, 0), (v3, 7), (v4, 2)} T2 = {(v1, 10), (v2, 10000), . . .}
4The only exception to this are scenarios involving band-joins [DaJB93] with sufficiently large sizes of the band

interval.

41



Chapter 3 – Approximation of a Single Attribute

Even if the approximation keeps all coefficients necessary to represent T2 and drops
only a single coefficient of the representation of T1, the approximation of the join
between the two distributions exhibits a large error, for the approximation T̂1 =
{(v1, 1), (v2, 1), (v3, 7), (v4, 2)} now joins the 10000 T2 tuples with value v2. The reason
for this phenomenon is the fact that the thresholding scheme employed in [CGRS00] mini-
mizes the overall mean squared error

∑T
i=1(fi− f̂i)2 for each relation, which minimizes the

error regarding range selection queries, but disregards accurate join estimation.

In general, regardless of which data approximation technique is used, it holds that it is not fea-
sible to estimate arbitrary join queries from approximations of the joining base relations with
acceptable accuracy. This phenomenon was first discussed extensively in [CMN99] in the context
of sampling:

Theorem [CMN99]: Assume the samples S1, S2 of two joining attributes R1.A1, R2.A2, with S1

sampling the fraction 1/ε1 of R1, and S2 sampling the fraction 1/ε2 of R2. Both samples do not
capture the entire data distribution, i.e. ε1 > 1 and ε2 > 1. Then it is not possible to generate a
sample of the join R1

A1=A2
./ R2 for any fraction 1/εj > 0 from S1, S2.

A similar result can be formulated for all other estimation technqiues as well. In the case of
spline synopses it holds that

Theorem 2. Given two synopses over two relations R1.A1, R2, A2, approximating data distri-
butions T1 = {(v1, f1) . . . , (vn, fn)}, T2 = {(v′1, f ′1) . . . , (vk, f

′
k)} with the attribute value domain

being N and rounding used in estimation. Assume that T1 is captured exactly by a spline synopsis.
Further assume that the attribute frequency approximation for T2 is exact, and the attribute den-
sity approximation has error d opt err1,m′ ≤ (min{n, k}), with m′ being the number of buckets
used in the density approximation for T2. Then the estimation of the number of values that find
a join partner may be off by no match := min{n, k} −m′, potentially resulting in an error for
estimating the number of tuples in the join result of

join error max := max
i1,...,ino match∈{1,...n}

∀t∈{1,...,no match−1}:it<it+1


 max

l1,...,lno match∈{1,...k}
∀t∈{1,...,no match−1}:it<it+1




no match∑

j=1

fij · f ′lj





 .

(3.17)

Proof: To show this, I first illustrate how to construct example data distributions T1, T2 for a
given number of buckets m′ used in density approximation for T2 so that the join-estimation error
is equal to the one stated in Term 3.17. Then I show that this term constitutes an upper bound
for the join error, i.e., that it is not possible to construct distributions resulting in greater join
error.
Let T2 = {(v′1, f ′1) . . . , (vk, f

′
k)} with k = 3 ·m and the attribute values defined as follows:

for l = 0, . . .m′ − 1 : v′3l+1 = 4l · k, v′3l+2 = v′3l+1 + 1, v′3(l+1) = v′3l+1 + 5

Consequently, the final partitioning always groups the values v′3l+1, . . . , v
′
3(l+1) in a single bucket

(otherwise there is a least one bucket containing values v′3l+1, v
′
3l and either v′3l+2 or v′3l−1 for

some l ∈ {l = 1, . . .m′ − 1}, resulting in an estimation error of d opt err1,m′ ≥ (k)2; thus, this is
not the optimal partitioning).
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This partitioning results in an error of less than 2 per bucket and thus d opt err1,m′ ≤ (k)
and the value for the fitting parameter ∆i = 1.8 for any bucket. Therefore the approximation
v̂′i, i = 1, . . . , k of the attribute values has the following properties:

for l = 0, . . . m′ − 1 : v̂′3l+1 = v′3l+1, v̂
′
3l+2 = v′3l+2 − 1, v̂′3(l+1) = v′3(l+1) − 1.

So out of three values in each bucket, only the first is approximated correctly. Now choose the
frequencies f ′i , i = 1, . . . , k in T2 in such a way, that for fi = 1 for all i mod l = 1 (i.e. the
corresponding value is approximated exactly), and fi > 1 otherwise. The the 2m′ = min{k, n}−
m′ values that are not estimated exactly do not find a join partner when estimating the join.

Finally, define T1 := {(v′1, f ′1), . . . , v′k, f ′k} (i.e. identical to T2); then the attribute values corre-
sponding to the min{k, n}−m′ largest frequency join with each other. So the join is estimated as
join estimate = k/3 with the real size being join exact = k/3 + join error max. Analogously,
if T1 is defined as T1 = {(v̂′1, f ′1), . . . , v̂′k, f ′k} the estimated join size is k/3 + join error max and
the correct result size k/3.

On the other hand, the join error cannot grow beyond the value of Term 3.17, when the
frequency distribution is captured correctly. This is due to the fact that no matter how large
the error for value density estimation, the smallest values in each bucket are always estimated
correctly. As a consequence, in the above example at least m′ values find the correct join partner.
Therefore the estimation of the number of values that find a join partner may be off by min{k, n}−
m′ at most and thus the overall error for estimating the result size is limited to the min{k, n}−m′

largest combinations of frequencies.

The key result here is that the estimation error for join estimation is not limited directly by
(a function of) the estimation error for the attribute frequencies or attribute densities, i.e., it
is not possible to formulate an upper bound for the join error join error max of the nature
join error max ≤ g(f opt errn,m, d opt errn,m′) for some function g. For this reason, I now
introduce join-synopses dedicated to capturing the distributions present in the join result, thereby
limiting the error for join-estimation. Through these join synopses it is then possible to limit
the join-estimation error by limiting the estimation error for value frequency and value density
estimation.

3.4.4 Join Synopses

In order to provide accurate estimation for equi-joins and also other types of joins, I extend
the idea proposed in [APR99] for sampling to capture join-result distributions in a special class
of join synopses. This approach is feasible because there is typically only a small number of
attribute combinations (when compared to the number of all possible attribute combinations)
that are used in join-operations. Therefore, the number of additional join synopses typically is
of cardinality similar to the number of synopses itself.

There are two types of join synopses: join density synopses, which approximate the distribution
attribute values common to both join attributes and thus present in the join themselves (with the
corresponding frequencies computed via the base relations) and full join synopses which capture
the frequency distribution of the join as well.

Definition 3.2 (Join Density Synopses) :

A join density synopsis for the join R1
A1=A2

./ R2 is an attribute density approximation of
the set J = {v1, . . . , vl} of values that are present in both the data distribution of R1.A1

and that of R2.A2.
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When estimating a join R1
A1=A2

./ R2 query using a join density synopsis, initially the approx-
imate value distribution Ĵ = {v̂1, . . . , v̂l} is computed. Then the value frequencies are computed
using the frequency functions frequencyR1.A1 , frequencyR2.A2 (see Section 3.4.2) described by
the spline functions used to approximate the frequency distributions of the joining attributes:

F̂ = {frequencyR1.A1(v̂) · frequencyR2.A2(v̂) | (v̂) ∈ (Ĵ )}.
As a result, the worst-case error for join estimation is reduced significantly.

Theorem 3. Given two synopses over two relations R1.A1, R2.A2 which approximate the data
distributions T1 = {(v1, f1) . . . , (vn, fn)}, T2 = {(v′1, f ′1) . . . , (vk, f

′
k)} with the attribute value do-

main being N and rounding used in estimation. Then the subscripts of the joining values in R1.A1

and R2.A2 are I = {(i, j) | vi = v′j , i ∈ {1, . . . n}, j ∈ {1, . . . k}}.
Consider the set of values finding a join partner J = {vi | ∃j ∈ {1, . . . k} : (i, j) ∈ I}.

When R1
A1=A2

./ R2 is estimated using a join density synopsis approximating J ⊆ VR1.A1 as
Ĵ = {v̂l1 , . . . , v̂l|J |}, the largest possible error is the size of the join estimation can be described
as

join error max :=
∑

(i,j)∈I
|frequency1(v̂i) · frequency2(v̂i)− fi · f ′j |. (3.18)

Proof: The size of the join result R1
A1=A2

./ R2 is the sum of the product of the frequencies of the
values finding a join-partner: join size :=

∑
(i,j)∈I fi · f ′j . The size of its estimation is then the

estimation of the above sum join size est :=
∑

(i,j)∈I frequency1(v̂i)·frequency2(v̂i). If the esti-
mation of all the frequencies in the join result are either over- or underestimated (i.e., ∀(i, j) ∈ I :
fi · f ′j ≥ frequency1(v̂i) · frequency2(v̂i)∨∀(i, j) ∈ I : fi · f ′j ≤ frequency1(v̂i) · frequency2(v̂i)),
the difference |join size− join size est| is equal to Term 3.18.

Thus, the join estimation error results from inaccuracies in the attribute frequency approximation
only. The error in join size estimation is bounded by the sum of the errors in estimation of the
frequency approximation for all frequencies f join

i,j = fi · f ′j present in the join result.
However, the above formulation conceals one additional problem: while join density synopses

result in correct estimation of the number of joining attribute values (over the entire value do-
main), the fact that the frequencies present in the join result are estimated through the frequency
approximation of the base relation results in the matching problem discussed for range-selection
queries in Section 3.3.4. Unlike the case of the matching problem for range-selection queries,
using the approximate attribute values as additional points for the spline-fitting problem is not
possible without making the frequency approximation more difficult, for the approximate values
in the approximation of joining tuples Ĵ are not necessarily a subset of the approximate values in
the approximation of the attribute density V̂ for either relation. Thus, for every join considered in
the fitting of value frequencies, the number of values for which the fitting is computed potentially
increases by |Ĵ |, significantly increasing the resulting overhead and decreasing the accuracy of
the resulting frequency approximation.

This problem can be avoided by separating the approximation of frequencies in the base rela-
tions from the frequency approximation for the join result.

Definition 3.3 (Full Join Synopses) :

A full join synopsis for a join R1
A1=A2

./ R2 is an approximation of the data distribution
TJ = {(v1, f1), . . . , (vl, fl)} of the join result. It includes both attribute frequency and
density approximation.
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Theorem 4. Given two synopses over two relations R1.A1, R2.A2 which approximate the data
distributions T1 = {(v1, f1) . . . , (vn, fn)}, T2 = {(v′1, f ′1) . . . , (vk, f

′
k)} with the attribute value do-

main being N and rounding used in estimation. Then the subscripts of the joining values are
I = {(i, j) | vi = v′j , i ∈ {1, . . . n}, i ∈ {1, . . . k}}.

Consider the set of values finding a join-partner J = {vi | ∃j ∈ {1, . . . k} : (i, j) ∈ I}. Thus the

data distribution of the join result is TJ = {(vi, fi,j) | (i, j) ∈ I∧fi,j = fi ·f ′j}. When R1
A1=A2

./ R2

is estimated using a full join synopsis approximating TJ as T̂J = {(v̂i, f̂i,j) | (i, j) ∈ I}, the largest
possible error for the join size estimation is

join error max :=
∑

(i,j)∈I
|f̂i,j − fi · f ′j |. (3.19)

Proof: This proof is analogous to the one of Theorem 3. The size of the join result R1
A1=A2

./ R2

is the sum of the product of the frequencies of the values finding a join-partner: join size :=∑
(i,j)∈I fi ·f ′j . The size of its estimation is then the sum of the approximate frequencies in the ap-

proximation of TJ : join size est :=
∑

(i,j)∈I f̂i,j . If the estimation of all the frequencies in the join
result are either over- or underestimated (i.e., ∀(i, j) ∈ I : fi ·f ′j ≥ f̂i,j∨∀(i, j) ∈ I : fi ·f ′j ≤ f̂i,j ,
the difference |join size− join size est| is equal to Term 3.19.

Because of the drawbacks of density join synopses discussed above, I only consider full join
synopses in the following sections.

The overall drawback of using additional join synopses is that they compete for the limited
memory reserved for synopses overall. Thus, by creating and storing additional join synopses,
the quality of frequency and density approximation is reduced elsewhere. For this reason, join
synopses should only be constructed in cases, where “normal” join estimation as described above
is sufficiently inaccurate to justify the required space. In the following (Section 3.4.5), I introduce
a self-tuning algorithm which computes join synopses only in this case. To assess the error for join
estimation for query result estimation, it is necessary to define a new error metric (Section 3.4.4).
Based on the values of this error the algorithm then chooses for which joins to construct join
synopses and chooses their sizes (Section 3.4.5). Finally, the improvement resulting from this
approach and the different types of join synopses is evaluated (Section 3.4.6).

Computing the Join Error

To assess the improvement from the use of additional join synopses it is necessary to define an
error metric for a join estimation, i.e., the error between a join result J and its approximation Ĵ .

For the purpose of selectivity estimation, it might be sufficient to use the deviation in the num-
ber of tuples; however, this is not sufficient for other purposes, since the approximate join-result
might be subject to further operations. This means that both the deviation in the individual tu-
ple frequencies and the deviation in the attribute density distribution of the join-attribute values
that are present in the join result have to be taken into account. In addition, the approximated
and the actual join result may contain a different number of unique attribute values. A priori it
is unclear how to match the values in the approximated join with the values that occur in the
actual result. Simply matching the i-th value in each distribution is not satisfactory, even if J
and Ĵ contained the same number of values.

Example 3.4: To illustrate this point, consider the case where J = {(v1, f1), . . . , (vn−1, fn−1)}
and Ĵ = {(v2, f2), . . . , (vn, fn)}, which would incur a large error if tuples were simply
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matched pairwise in the above orders, although the join result and its approximation match
perfectly except for one value.

Instead, individual tuples should be matched by their join-attribute-value distances to compute
the error between the approximation and the actual result. For tractability this is done in a
greedy fashion:

1. First, match all tuples of equal attribute values, i.e. all (va, fa) ∈ J, (v̂b, f̂b) ∈ Ĵ where va =
v̂b.

2. Then, match the tuples (va, fa) ∈ J, (v̂b, f̂b) ∈ Ĵ where the distance between va and v̂b is
minimal. This is repeated until only tuples from either J of Ĵ remain.

3. Finally ||J | − |Ĵ || unmatched tuples remain. Each is matched with an artificial value with
frequency 0, located in the center of the value set of the join attribute.

Using a merge-based approach, it is possible to compute this matching efficiently. Initially,
both J and Ĵ are merged into a single list sorted by the attribute value of each tuple; in this
process, all exact matches are eliminated (step 1). For each matching in step 2, only the up to
2 ·min{|J |, |Ĵ |} distances between tuples adjacent in the resulting list, and coming from different
sets are considered; these are stored in a priority queue [MNU97]. Each time a pair of tuples is
matched, these are eliminated from the list, and at most one new distance needs to be computed.
Therefore the computational complexity of the three steps is (with p = min{|J |, |Ĵ |} and l =
max{|J |, |Ĵ |}): O(p) (steps 1&3) and O(l log2 l) (step 2). All steps have to be executed once for
each possible allocation of join buckets, so if M denotes the overall number of buckets and k the
number of different attributes in the approximation, the matching has to be carried out M −2 ·k
times, resulting in the overall complexity of O((M − k) · (p + l log2 l)).

Once this matching is obtained, the overall error is computed analogously to the error for
frequency and density distributions, namely, by computing the relative difference in value
and frequency for each matching pair of tuples. The normalizing factors f join domain and
v join domain are computed as before (see Section 3.3.2).

join error :=
∑

all matched tuples (a,b)

(
va−v̂b

v join domain

)2
+

(
fa−f̂b

f join domain

)2

+
∑

all unmatched tuples q in J

(
vq−(v|J|−v0)/2

v domain

)2
+

(
fq−0

f join domain

)2

+
∑

all unmatched tuples q̂ in Ĵ

(
v̂q̂−(v|J|−v0)/2

v domain

)2
+

(
f̂â−0

f join domain

)2

3.4.5 Integrating Join Synopses

Join synopses have been shown to limit the worst-case estimation error for join-queries; still,
because they compete for the memory used by spline synopses, they should only be added, when
the estimation of the corresponding join improves significantly through this. Integrating dedicated
join synopses for selected equijoins again means solving the problem of how to divide memory
between the approximations over all synopses. In the following, I explain how to determine
whether a join synopsis for a particular equijoin Ri

Ac=Ad
./ Rj should be included and how many

buckets this join synopsis receives. As before, I assume that there is memory for a total of M
buckets. Further, let Vjoin denote the density distribution of the join result.
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Assuming that the problem of dividing up the memory for the density and frequency synopses
for all k attributes (see Section 3.3.3) is solved already. This means that the optimal partitioning
for each attribute and corresponding errors for all numbers of buckets (overall) less or equal
to M are known. Now the error resulting from estimating the join using no additional join
synopsis is computed. For this purpose, I compute the approximate join Ri

Ac=Ad
./ Rj using the

straightforward join computation described in Section 3.4.3 and then compute the resulting error,
which is referred to as standard join err.

Furthermore, for l = 1, . . . ,M − 2k, the join approximation resulting from using l buckets
for an additional join synopsis is computed as follows. For each l, the algorithm computes
the join-synopsis using l buckets, and the resulting approximate data distribution T̂l. Based
on T̂l, the corresponding join error is computed, which I refer to as join errl. Also, I define
join err0 := standard join err.

Since essentially the same error metrics are used for join-result and base-data distributions,
their values may be compared directly. Then, the problem of partitioning the available memory
again means finding l such that the overall error

final syn err := overall f d errM−l + join errl is minimal.

For multiple joins, the optimization can be extended analogously to Section 3.3.3; the problem
of partitioning the available memory M for k synopses and h possible joins is again a dynamic
programming problem, requiring O(M2 · (2 · k + h)) operations.

3.4.6 Experimental Evaluation of Join Synopses

As shown in Section 3.4.4, the use of join synopses has significant impact on limiting the worst-
case error for join estimation. To examine how much the use of dedicated join synopses also
impacts join estimation in practice, I consider the following experimental setup. Given two
single-attribute relations R1 and R2 corresponding to the data distributions T1, T2 over the value
domains DR1 = DR2 := {1, . . . , 100}. T1 are T2 defined so that both distribution contain 40
randomly chosen values with |VR1 ∩ VR2 | = 20 (i.e., 20 values find a join partner in the equi-join
R1 ./ R2). The frequencies of the joining tuples are chosen uniformly between 10 and 50.

For these distributions, I then construct two different combinations of synopses for a given
amount of memory M :

(a) A synopsis of each T1 and T2.
(b) A synopsis of T1 and T2 and a full join synopsis of R1 ./ R2.
The sizes for the different synopses are chosen in such a way that the synopses for T1 and T2

have equal size (if M ÷3 is uneven, T1 receives the extra bucket) and the size of the join synopsis
is computed as detailed in Section 3.4.5. I then measure the error for estimating the number of
tuples in R1 ./ R2 for different values of M in Figure 3.4. Even for trivial join-synopses (when
18 values of storage are used, the join-synopsis has only a single bucket for each frequency and
density estimation), the use of a join-synopsis reduces the estimation error by several orders of
magnitude.

This is consistent with other experiments on similar scenarios conducted with and without
join-synopses. As a consequence, when discussing the physical design problem for data synopses
in Chapter 5, join synopses will be used for all joins occurring in the workload.
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Figure 3.4: Error in join size estimation with and without join synopses

3.5 Experiments

In this section, I examine the accuracy on spline synopses for different estimation problems on
synthetic and real-life datasets, comparing them to existing techniques. In order to make a fair
comparison, I compare the estimation error when giving the same amount of storage space to
each technique.

3.5.1 Experimental Setup

The Techniques: I compare spline synopses with the following existing histogram techniques:
equi-width and equi-depth [PSC84], MaxDiff(V,A) [PIHS96], and V-Optimal(V,F) [JKM+98]
histograms. The storage requirements are 3 values (number of distinct attribute values, average
frequency and largest attribute value) for a one-dimensional histogram bucket.

For workloads consisting solely of range selections, I also examine the accuracy of discrete
transform techniques based either on the Wavelet transform [MVW98], using Haar Wavelets,
or the discrete cosine transform (DCT) [LKC99] (because both techniques do not approximate
the attribute-value density, they are not suitable for projection and join approximation). To
determine which Wavelet coefficients to keep for the first technique, I use the first thresholding
method introduced in [MVW98], keeping the largest M coefficients for the experiments shown
here (the other three thresholding methods show only insignificant changes in the approximation
accuracy for the data sets used here). For the discrete cosine transform, the kept coefficients are
selected by reciprocal sampling, which was shown to perform best among all filtering methods
presented in [LKC99]. For both techniques we store 2 values for each coefficient, storing the
coefficient’s value and its index/position.

These techniques are compared with spline synopses using the OPTIMAL, GREEDY-MERGE
and GREEDY-SPLIT partitioning techniques. As described in Section 3.3.1, the storage is 3
values per bucket for the frequency approximation (lowest value, two coefficients of the frequency-
function) or density approximation (lowest value, number of unique values, ∆i). For a fair
comparison, in every experiment instances of each technique that consume the same amount of
storage are compared to each other.

Datasets: The experiments with one-dimensional distributions are carried out with the fol-
lowing representative datasets: two real-life datasets provided by the KDD Data Archive of the
University of California [KDD] and a synthetic one serving as a stress test for the different spline
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techniques. The two real-life data sets are single attributes of the Forest CoverType data set
(581012 tuples, 54 attributes, 75.2MB data size) of which I use (1) the attribute elevation (1978
unique values, medium distortion of frequency and density distribution) and (2) the attribute
horizontal distance to hydrology (189 unique values, small distortion of frequency and density
distribution). Finally, I use a synthetic data set with randomly chosen frequencies (uniform dis-
tribution) and regular density distribution (1000 unique values). Because there is no correlation
between adjacent frequency-values, this results in buckets with very small linear correlation r
(see formula 3.2) and thus constitutes a stress test for the frequency approximation by linear
splines. The datasets are visualized in Figure 3.5.
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Figure 3.5: The one-dimensional datasets used in the experiments

Query Workload: First, an approximation of each data set is computed, which is then used
for three different estimation tasks:

(a) Estimating the size of a self-join. A self join query is used so that the matching problem
discussed in Section 3.4.3 does not affect the join-estimation, because every value has a join
partner. Thus the accuracy of join estimation for self-joins depends solely on the attribute
value frequency approximation. For any other type of join, techniques that do not use
dedicated join synopses perform much worse than spline synopses (see Section 3.4.6). To
enable a fair comparison between all techniques, the spline synopses constructed do not
contain a join synopsis.

(b) Estimating the size |V| range-selection queries of the type SELECT * FROM R1 WHERE
R1.A1 < v, which are issued for all values v ∈ V. The accuracy for this type of esti-
mation depends on both the attribute value frequency approximation and attribute value
density approximation.

(c) Estimating the size |V| projection queries of the type SELECT DISTINCT * FROM R1 WHERE
R1.A1 < v, which are issued for all values v ∈ V. The accuracy of this type of estimation
depends on attribute value density approximation.

In each case I measure the mean squared error

MSE :=
1
|V|

∑

i=1,...,|V|
(exact sizei − approx sizei)2.

3.5.2 Results

The results of the experiments on the two real-life datasets are shown in Figures 3.6 – 3.8.
The x-axis shows the size (specified through the number of values stored) given to the different
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Figure 3.6: Accuracy of different techniques for range queries on two real-life datasets
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Figure 3.7: Accuracy of different techniques for projection queries on two real-life datasets
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Figure 3.8: Accuracy of different techniques for self-join estimation on two real-life datasets

approximation techniques, which is varied to show how efficiently different techniques use addi-
tional memory. The y-axis of each graph shows the MSE for a given query type and size of the
approximation.
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For projection and self-join queries, the OPTIMAL spline techniques consistently outperform
all other techniques, followed closely by the GREEDY spline variants; the only exception are V-
Optimal(V,F) histograms, which outperform spline synopses constructed via GREEDY-MERGE
for self-join estimation on the first dataset. Among the histogram techniques, V-Optimal(V,F)
histograms perform best, for which the partitioning algorithm is of the same asymptotic complex-
ity as the OPTIMAL spline partitioning. For range selections, the spline techniques are again are
more accurate than histograms and the estimation by Wavelets; however, when 40 or more values
are kept, the DCT technique performs slightly better. To give an intuition why spline synopses
outperform the various histogram techniques, consider Figure 3.9. It shows the fitting of the at-
tribute frequencies (with the original data shown as points for each (vi, fi)-combination) through
spline synopses with 6 frequency-estimation buckets and a MaxDiff(V,A) histogram of 8 buckets.
Even though the spline synopses uses less buckets, it can be clearly seen that the spline function
fits the data much more closely than the average frequency stored in each histogram-bucket.
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Figure 3.9: Illustration of the approximation quality

When comparing spline synopses to the DCT/Wavelet transform techniques, it is important
to note that these techniques are geared specifically to range-selectivity estimation and cannot
be used to estimate queries that depend on the attribute-value density of a dataset.

The results for estimating the synthetic ”worst-case” data are shown in Figure 3.10 (I omit the
results for projection estimation since all techniques capture the density domain with absolute ac-
curacy). Again, the Optimal and GREEDY-SPLIT spline techniques outperform all competitors
other than the DCT technique; since no linear correlation can be exploited, the DCT technique
exhibits major gains in this particular experiment.

3.5.3 Running Times

To assess the CPU costs of the algorithms, I measured the running times of approximating the
frequency and density distributions, compute their sizes and to compute integrate a synopsis of
the self-join result for a single attribute and different sizes of n and M with uniformly distributed
vi and fi values for execution on a single processor of a SUN UltraSPARC 4000/5000 (168 MHz),
shown in Table 3.1. I measured the CPU time used for partitioning of the frequency (F-part)
and density domain (V-part) for all partitioning methods (OPTIMAL, GREEDY-MERGE and
GREEDY-SPLIT ).
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Figure 3.10: Accuracy of different techniques on synthetic ”worst-case” data

n = 500 1000 4000Method Step
M = 10 50 10 50 10 50

F-part. 0.38 1.99 1.98 10.27 51.16 264.63Optimal
V-part. 0.38 1.00 1.97 5.93 41.35 133.43
F-part. 0.012 0.018 0.023 0.033 0.097 0.141G-Merge
V-part. 0.008 0.009 0.018 0.020 0.084 0.086
F-part. 0.005 0.017 0.012 0.046 0.068 0.268G-Split
V-part. 0.006 0.023 0.016 0.058 0.083 0.271
J-error 0.060 0.681 0.256 1.45 1.21 6.41All
M-part. 0.000031 0.00325 0.000031 0.00325 0.000031 0.00325

Table 3.1: Running times in seconds

Computing the join synopsis also entails computing the join-error (J-error) for all possible
bucket combinations (see Sections 3.4.4 and 3.4.5). Finally, M-part gives the time used for
determining the final sizes of the different approximations (see Sections 3.3.2 and 3.4.5).
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4 Approximation of Multidimensional
Correlation

I could be bounded in a nutshell, and count myself
king of infinite space, were it not that I have bad
dreams.

– Hamlet

This chapter describes how to extend spline synopses over a single attribute to represent infor-
mation on the correlation between multiple attributes. Sections 4.1 and 4.2 give an overview of
the problems connected with approximating multidimensional data. In Section 4.3 and overview
of my novel approach is given. The approach is based on the use of a space-filling curve originally
proposed by Sierpiński, the properties of which are described in detail in Section 4.4. Section 4.5
then describes how the resulting synopses are used for query estimation. Finally, Section 4.6
contains an experimental evaluation of the overall approach.

4.1 Multidimensional Partitioning and the “Curse of Dimension-
ality”

A straightforward approach to multidimensional approximation would be to extend our tech-
nique through the use of multi-dimensional buckets. Then a multi-dimensional attribute value
distribution could be partitioned into buckets of this type, which would then store a compact
representation (of constant size) of the contained values and frequencies.

Unfortunately, such an approach is problematic: because the space of possible partitionings
increases exponentially with the dimensionality of the data, the problem of finding an optimal
partitioning becomes NP-complete already for much simpler error functions than the ones used
in spline synopsis construction [MPS99]. In addition, to achieve good approximation of the value
density in one-dimensional synopses, it was only necessary that the values contained in a bucket
were (approximately) evenly spaced in a single dimension. To achieve good approximation of
value density in d dimensions (using constant-size buckets), it becomes necessary for the values
to be evenly spaced in all d dimensions, which is only the case for high-dimensional distributions.
To illustrate the problem, consider the approximation in multidimensional histograms. In each
bucket, the number of distinct values present in each dimension is stored. For purposes of estima-
tion it is then assumed that all possible combinations of these values are present, which is known
as the (multi-dimensional) uniform spread assumption. This leads to consistent overestimation of
the number of attribute values (see Figure 4.1) and underestimation of their frequencies, thereby
making histograms very inaccurate for projection and join estimation in more than a single di-
mension. Note that this problem becomes exponentially worse with increase of the dimensionality
of the histogram.
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The specification of constant-sized buckets requires the formulation of rigid assumptions on
the placement of attribute values within a single bucket, which typically do not hold for real-life
data distributions. As a consequence, I use a different approach than the one outlined above.

5HDO�'DWD $SSUR[LPDWLRQ
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Figure 4.1: Approximation of multidimensional attribute value distributions in histograms

4.2 Preserving Correlation

As discussed in Section 2.4.1, size estimation for every query specifying filter conditions on
more than one attribute of the same table requires that the estimation technique maintains
the correlation between attribute values and their frequencies accurately. In addition, it is also
important to maintain the correlation between values of different attributes as well.

To illustrate this, consider a relation R with the attributes Order-Date and Ship-Date
(each coded as an integer). These are strongly correlated, in the sense that the value Ship-Date
is typically a fixed number of days larger than Order-Date (or at least has very small variance
for the difference between these dates). Such a data set (250 tuples, requiring 750 values of
storage) is depicted in Figure 4.2: the values for Order-Date were generated uniformly within
the interval [1, 500], the values for Ship-Date uniformly within [Order-Date, Order-Date + 10].

Preserving this type of correlation is crucial for a large number of queries, as the conditions
specifying the inclusion/exclusion of attribute values generally depend on the attribute-value
distribution. For example a query checking for delayed deliveries:

SELECT DISTINCT ∗ FROM R1 WHERE R1.Ship-Date − R1.Order-Date > 20.

would return no tuples on the original data. Therefore, an estimation technique needs to be able
to preserve the correlation in such a way that none or only very few tuples are returned when
estimating this query.

Figure 4.3 shows the approximation of the data using 30 values of storage space using a 2-
dimensional MaxDiff(V,A) histogram (constructed using the MHIST technique). It can be seen
that the use of the uniform spread assumption within buckets limits the ability of histograms (or
histogram-based techniques) to express the present correlation.

As a measure of the amount of correlation present between the attribute values of 2 attributes
R.A1, R.A2, I use the Spearman rank-order correlation coefficient [PTVF96], which is defined as
follows. Let Li be the rank of the value of attribute A1 in the i-th tuple, Si be the rank of the
value of attribute A2 in the i-th tuple (in case of ties, we use the appropriate midrank), and L̄, S̄
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Figure 4.2: Original Data
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Figure 4.3: MHIST Histogram Approximation

the corresponding average rank. Then the linear correlation coefficient of the ranks is defined as

rs =
∑|T |

i=1(Li − L̄)(Si − S̄)√∑|T |
i=1(Li − L̄)2

√∑|T |
i=1(Si − S̄)2

. (4.1)

The linear correlation coefficient of the example distributions is rs = 0.88, the approximate
distributions resulting from histogram estimation has rs = 0.99, corresponding to the intuitive
interpretation of Figures 4.2 and 4.3.

Most approximation techniques are geared towards preserving the correlation between attribute
value and the corresponding frequency, but disregard correlation between attribute values.

4.3 Spline Synopses and Mapping Multidimensional Data

First, an injective mapping θ : Rd 7→ R is applied to the attribute-value domain of the base data,
reducing the d-dimensional distribution to a one-dimensional one, which is then approximated by
the techniques introduced previously. We store the resulting approximation; when it is used to
estimate a multi-dimensional query, the approximated data is mapped back to Rd via the inverse
mapping ψ := θ−1.

This approach leverages the advantages of the spline techniques discussed previously (efficiency,
accurate representation of both attribute frequency and attribute value density, fast computation)
while avoiding the rigid requirements of multidimensional buckets (see Section 4.1), the compu-
tational overhead entailed by computing the optimal partitioning of multidimensional space and
the lack of accurate value density estimation of transform-based approaches (see Sections 2.4.2
and 3.4.3). The only drawback of this approach is an increase in the overhead necessary for
estimation of range conditions, because unlike in the one-dimensional case (where buckets cor-
respond to intervals containing all values in them) all buckets and values have to be examined,
as the bucket boundaries do not have a simple geometrical interpretation. This is discussed in
detail in Section 4.5. Figure 4.4 shows the interaction between spline synopses and space-filling
curves.

4.4 The Sierpiński Space-Filling Curve Construction

Definition 4.1 (Space-Filling Curves) :
A Space Filling Curve is a surjective, continuous mapping from the unit interval I1 = [0, 1]
to the d-dimensional unit hyper-cube Id = [0, 1]d.
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Approximation via Spline Synopses

Approximate Data ∈ [0,1)Original Data ∈ [0,1)

Original Data ∈ Rd Approximate Data ∈ Rd

Inverse SFC θ SFC ψ

Figure 4.4: Combining Space-Filling Curves (SFC) and Spline Synopses

The first space-filling curve can be traced to Peano [Pea90]. In 1912 W. Sierpiński proposed
a curve construction [Sie12] (Figure 4.7) which is the basis for the curve construction used in
this thesis. While both the Peano and Sierpiński curves described the mapping [0, 1] 7→ [0, 1]d

for d = 2 only, [SR94] extends the construction by Sierpiński to arbitrary values of d. Space-
filling curves have successfully been used in a number of applications [Man83], including high-
dimensional indexing [KF94, LK01] and graphics compression [DCOM00]; the Sierpiński curve
has also been used for heuristic solutions to the Traveling Salesman Problem with Euclidian
distances [PB89, GS92] and partitioning problems in VLSI design [AK95].
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Figure 4.5: Successive partitionings of I2 into 2k identical triangles, each containing a k-digit
binary label and a marked vertex for k = 1, . . . , 4
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Figure 4.6: Successive partitionings of the unit interval into 2k identical subintervals, each con-
taining a k-digit binary label. The marked endpoint is always on the left. k = 1, . . . , 3

The original Sierpiński curve can be constructed by successively partitioning I2 as shown in
Figure 4.5. Here, the k-th partition of I2 consists of 2k identical triangles, each labelled with the
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binary representation of an integer in the range of 0, . . . 2k − 1. One vertex in each triangle is
marked to distinguish it from the others. The unit interval I1 is similarly partitioned, as shown
in Figure 4.6, into subintervals, each labelled and marked at one endpoint.

Each successive partition is obtained by bisecting every triangle or subinterval in the previous
partition. A new label is created by appending an additional digit to the parent’s label; the
half containing the parent’s marked vertex receives a zero, the other half receives a one. The
space-filling curve maps each subinterval onto the subtriangle bearing an identical label and it
maps the marked endpoint of the subinterval to the marked vertex of each triangle. The marked
vertices are therefore visited in a sequence determined by their labels. The curve resulting from
this construction is depicted in Figure 4.7. For the first two instances of the curve in the, the
value corresponding to the position of the vertices in I1 is marked along the curve.
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Figure 4.7: The Sierpiński Curve [Sie12] for d = 2 and k = 2, 4, 6 iterations of the recursive
construction

The Sierpiński Curve extension to d dimensions of [SR94] is defined in terms of two iterated
function systems (IFS) [Bar88]. The first system W generates a sequence of subdivisions on the
hypercube. W defines a family of mappings wi : Rd 7→ Rd as follows:

wi(x1, x2, . . . , xd) =




1/2− (1/2− δ1,i) · x1

1/2− (1/2− δ2,i) · x2
...

1/2− (1/2− δd,i) · xd




where δj,i ∈ {0, 1}, j = 1, . . . , d, i = 1, . . . 2d − 1. Each of the 2d members of W is thus uniquely
defined by the vector Di,d = (δ1,i, δ2,i, . . . , δd,i)T . These vectors are now chosen in such a way
that vector Di,d corresponds to the Gray code [Gra53] value for i of length d. The key idea here
is the fact that the Gray codes for two consecutive values of i differ only by one position.

The second system G of 2d iterated functions gi : [0, 1] 7→ subsets of [0, 1] is used to partition
the unit interval. G is defined as follows:

gi(t) = bd · 2−2d + 2−2d · (i− 1) + 2−d · t, (for 0 ≤ t ≤ 1, i = 1, . . . , 2d − 1) and
g0(t) = [t ≤ (2d − bd) · 2−d]− (2d − bd) · 2−2d + 2−d · t (for 0 ≤ t ≤ 1)

with b1 = 1, bk = 2k−1 − bk−1 + 1, k = 2, . . . , d

Let the unit interval [0, 1] be denoted as I1 and the unit hypercube as Id. Now a one-to-one
correspondence between the system of hypercubes and the sequence of subintervals is defined by
matching the interval defined through t ∈ gi1 ◦ gi2 ◦ . . . gik(I1) with the sub-cube t ∈ wi1 ◦ wi2 ◦
. . . wik(Id). As the number of iterations of both iterated function systems approaches infinity,
the space-filling curve is obtained (as the limit of this construction). We denote the resulting
surjective mapping as ψ : I1 7→ Id and its inverse as φ := ψ−1 : Id 7→ I1.
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The overhead for computing the mapping via either φ or ψ of a single point depends on the
dimensionality d of the space-filling curve and on the number of iterations t of the IFS. The value
t itself is limited by the accuracy of the data type used to store the values vi and their mapping.
To be able to store all possible mapped values after t iterations of the curve construction, the
underlying value type needs to be able to store 2t·(d−1) different values. Consequently, the size of
t corresponds to the size (in bits) of this data type divided by d− 1 and is thus a small constant.
As a consequence, it becomes necessary for synopses over large number of attributes d, to use a
different data type for the lowest value in a bucket (for both frequency and density buckets).

Since in any case t is constant, the overhead for computing the mapping of a single value is
O(d). When using φ to map values from their original domain to I1 for approximation, the
mapped values have to be sorted afterwards. Thus, for a data distribution T , the overhead for
approximation increases by O(d·|T |) plus the overhead for sorting |T | values. In my experiments,
the overhead for sorting generally dominated the mapping costs.

4.4.1 Properties of the Sierpiński Curve

The Sierpiński curve has a number of salient properties important for its use in connection with
spline synopses:

• It contains no distortion, i.e., for arbitrary x, x′ ∈ R, the ranges [x, x + δ], [x′, x′ + δ]
correspond to pieces of the curve of identical length.

• It is symmetric (unlike the Hilbert or Peano curve), i.e. invariant to rotations by multiples
of 90 degrees in the direction of each dimensional axis. This means that independent of
which dimension the different attributes are mapped to, the approximation quality can be
expected to be similar.

• The mapping ψ preserves the Lebesque measure in the following sense: for every Borel set
A ⊆ Id

µ1(φ(A)) = µd(A) [SR94],

when µ1 and µd are the Lebesque measure in R and in Rd respectively. Intuitively, this can
be interpreted as the fact that the Sierpiński curve fills Id with uniform density everywhere.

• The resulting projection ψ preserves distances very well, as ψ is a Lipschitz continuous
mapping of order 1/d, in the following sense:

∀v1, v2 ∈ [0, 1] : ‖ψ(v1)− ψ(v2)‖ ≤ 2
√

d + 6 |v1 − v2|
1
d [SR94] (4.2)

with ‖ · ‖ denoting the L2 norm (Euclidian Distance) between the data points in Rd. This
is optimal in the sense that it can be shown that a surjection from I1 to Id that is Lipschitz
continuous of order σ > 1/d is not possible [Mil80].

The last property is crucial for the use of the Sierpiński curve for the estimation of (multi-
dimensional) attribute value density. Consider the case of a d-dimensional value distribution
V = {v1, . . . , vn}. Each value vi ∈ Rd is then mapped to a value vlin

i ∈ [0, 1], by normalizing each
value (i.e., dividing the i-th component of vi by the highest value in the corresponding domain, for
i = 1, . . . , d) and then applying φ. I then approximate the mapped values V lin := {vlin

1 , . . . , vlin
n }

as V̂ lin := {v̂lin
1 , . . . v̂lin

n }, minimizing
∑|T |

i=1(v
lin
i − v̂lin

i )2. In order to use the resulting approxi-
mation for query estimation, the v̂lin

i are mapped back via ψ at query processing time and the
normalization reversed (i.e., the i-th component of ψ(vlin

i ) is multiplied by highest value in the
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corresponding domain, for i = 1, . . . , d). Because of Equation 4.2, the final approximation error
for a value vi (i.e., ‖ψ(vlin

i )− ψ(v̂lin
i )‖) is limited by the upper bound of 2

√
d + 6 |vlin

i − v̂lin
i |

1
d .

Therefore, the process of constructing a synopsis over d-dimensional minimizes an upper bound
for the overall approximation error

|T |∑

i=0

(fi − f̂i)2 + v domain
f domain · (‖vi − v̂i‖)2. (4.3)

Unlike in the case of one-dimensional synopses, where the overall approximation error is min-
imized, the synopsis construction is only optimal with regard to the (mean squared) error in
I1, but not with regard to the error in Rd. However the notion of minimizing the upper bound
for Equation 4.3 and minimizing the equation itself coincide for all practical purposes when the
large data distribution to be estimated becomes large, as the different mappings of a distance
in I1 to different distances in Id distances average out. In this sense (and the interests of a
simple notation), I refer to the spline synopsis construction in higher dimensions as minimizing
Equation 4.3.

Because our approach means that no rigid assumptions on the placement of attribute values
within a bucket are used, the resulting estimation preserves correlation between values of different
attributes much better. Consider the example data shown in Figure 4.2. The approximation of
this data using a spline synopses requiring 30 values storage is shown in Figure 4.8. Not only
does this estimation resemble the shape of the original data much more than the histogram
approximation (Figure 4.3), it also has a linear correlation coefficient rs = 0.83 much closer to
the original one.
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Figure 4.8: Spline Synopsis Approximation

4.5 Using Multidimensional Spline Synopses for Query Estima-
tion

The key difference between multidimensional and one-dimensional spline synopses is that the geo-
metrical interpretation (in Id) of a bucket’s boundaries are fractals themselves (not d-dimensional
ranges as with multidimensional histograms). Therefore, information on the bucket bound-
aries cannot be leveraged efficiently to eliminate buckets from consideration for range-selection
queries1. Instead, all attribute values have to be materialized and mapped back using ψ before
filtering, resulting in O(d · |T |) overhead, as discussed in Section 4.4. Still, as d is generally a

1However, the process of transforming a d-dimensional range query into a set of one-dimensional range-queries,
that may then be evaluated using all optimizations introduced in Section 3.4 is straightforward. Initially,
all intersections between the curve and the range-boundaries are computed. As the curve itself is a fractal,
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small value (with the possible exception of materialized views in large decision-support systems,
relations used in databases generally have less than 15 attributes), this approach is still suffi-
ciently fast to be used in query optimization. Otherwise, the overall approach remains the same
as for one-dimensional synopses (Section 3.4).

4.6 Experiments

The Techniques: I compare spline synopses with two multidimensional MaxDiff(V,A) his-
tograms computed using the MHIST-2 partitioning algorithm, which were found to be the most
accurate histogram technique for multidimensional data [PI97]. In addition, for workloads con-
sisting solely of range selections, I also examine the accuracy of discrete transform techniques
based either on the Wavelet transform [MVW98], using Haar Wavelets, or the discrete cosine
transform (DCT) [LKC99].

Datasets: The experiments on multidimensional distributions were carried out on two data sets:
(1) 1970 PUMS Census data, of which we use the attributes migplac5 and chborn (661 unique
attribute-value pairs, 70817 tuples), provided by the KDD Archive [KDD], and (2) a synthetic
stress test similar to the one used before, with 400 unique value pairs, 10000 tuples, and randomly
chosen density distribution and attribute-value frequencies.

Query Workload: First, an approximation of each data set is computed, which is then used
for three different estimation tasks:

(a) Estimating the size |V| range-selection queries of the type SELECT * FROM R1 WHERE
R1.A1 < v1 AND R1.A2 < v2, which are issued for all values (v1, v2) ∈ V. The accuracy
for this type of estimation depends on both the attribute value frequency approximation
and the attribute value density approximation.

(b) Estimating the size |V| projection queries of the type SELECT DISTINCT * FROM R1 WHERE
R1.A1 < v1 AND R1.A2 < v2, which are issued for all values (v1, v2) ∈ V. The accuracy
of this type of estimation depends on attribute value density approximation.

In each case I measure the mean squared error

MSE :=
1
n

∑

i=1,...,n

(exact sizei − approx sizei)2,

with n being the number of queries.

4.6.1 Results

The results of the two experiments on multi-dimensional data are shown in Figures 4.9 and 4.10.
For range-selectivity estimation the histogram-based techniques consistently outperformed the
multidimensional MaxDiff(V,A) histograms. Wavelets turned out to be superior to splines for

the number of such intersections is infinite in theory, however, because of the limited accuracy of the data
types used to store the mapped values, the curve is only computed for a limited number t of iterations of the
curve construction (see Section 4.4), resulting in a limited number of intersections (for a detailed treatment
of this topic with regards to the Hilbert curve, see [MJFS01]). Now the intervals along the curve connecting
two of these intersections (without another intersection in between) encompass values that satisfy the range
condition. Furthermore, each of these ranges corresponds to a one-dimensional range in I1. Thus, the result of
the d-dimensional range query can be estimated as the union of the results for all these one-dimensional range
queries.
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Figure 4.9: Accuracy of different techniques for multidimensional CENSUS data
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Figure 4.10: Accuracy of different techniques for multidimensional synthetic data

range queries for one experiment and the DCT based technique was the winner in the other
experiment. However, the winning technique in one experiment performed very badly in the
other one.

The performance of both transform-based techniques depended very much on the sparseness
of the data. With approximating data via Haar Wavelets, as used in the experiment, very sparse
data results in a large number of coefficients of value 0, which can therefore be dropped without
increasing the estimation error. Consequently, the Wavelet technique results in very accurate
approximation for sparse data. The opposite is true in dense domains, however; here all other
techniques perform better. The two datasets are examples for this behavior. While the Census
data contains 661 unique value pairs in a domain of 715 · 13 = 9295 value pairs, the synthetic
data contains 400 value pairs in a domain of 40 · 40 = 1600 value pairs.

In both experiments spline synopses show the 2nd best estimation accuracy, offering perfor-
mance competitive with the winning technique.

Regarding projection estimation, multi-dimensional histograms were consistently outperformed
by the spline techniques by several orders of magnitude.
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5 Physical Design for Data Synopses

According to an optimist, the glass is half-full,
according to a pessimist, the glass is half-empty,
according to an engineer, the glass has twice the necessary
size.

– Unknown

5.1 Introduction

In this chapter, I develop a novel framework for and algorithmic solution to the physical design
problem for data synopses, covering the entire class of SPJ (i.e., select-project-join) queries. In
contrast to the work in [CN00], the approach goes beyond the binary decisions on building vs.
not building a certain synopsis by addressing the fundamentally important issue of how much
memory each synopsis should be given. This is especially important when the role of statistics
management goes beyond choosing good query execution plans, and synopses also serve to predict
absolute run-times and result sizes, which in turn is highly relevant in data mining or Web source
mediation environments. I characterize the exact solution for the optimal choice of synopses for
a given workload. For complexity reasons, I derive various problem-specific heuristics that make
my approach reasonably efficient and thus practical.

The chapter is organized as follows. First, it is necessary to introduce additional notation in
Section 5.2. In Section 5.3 the underlying optimization problem and the used error model are
defined. Section 5.4 then describes how to determine the optimal set of synopses exactly, using
two assumptions which (in earlier experiments) have been found to hold for nearly all datasets
and which lead to a compact formulation of the necessary computations. For large instances
of the optimization problem, I discuss several heuristics to remove potential bottlenecks. In
Section 5.7 it is then shown how to combine the various building blocks of the framework into a
unified algorithm. Section 5.8 contains an empirical validation of the approach in form of several
experiments conducted with the TPC-H decision support benchmark.

5.2 Notation

I consider a set of queries Q := {Q1, . . . , Q|Q|}. Queries can be “approximately answered” by a
set of synopses S := {S1, . . . , Sl} corresponding to the data distributions T1, . . . , Tl. Because in
our context there is never more than one synopsis for a given set of attributes I also write SA with
A being the set of attributes captured by the synopsis, i.e., S{R1.A2,R1.A3} denotes the synopsis
over the two attributes A2 and A3 of relation R1. Analogously, we use the notation T{R1.A2,R1.A3}
to describe the corresponding joint data distribution in the full data set. The size of a synopsis
SA (in terms of the number of values necessary to store SA) is denoted by Size(SA).

A simple (range) selection or projection query can be answered using the data distribution
of the queried relation over the attributes involved in the range selection. A join query can be
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processed by examining the joint data distribution of the joining relations. Thus it is possible to
assign to each query Qi on relation Rp the minimum set of attributes Min(Qi) ⊆

⋃
Rp∈RAtt(Rp),

whose joint data distribution must be examined to answer the query. For example consider the
query q1

SELECT R1.A1 WHERE R1.A2 > 100.

This query can be answered by examining the joint data distribution of relation R1 over the
attributes R1.A1 and R1.A2, thus Min(q1) = {R1.A1, R1.A2}.

When only the size of a result is of interest (for example in the context of query optimization),
it is sufficient to query the attributes that determine the number of tuples in the result; assuming
that no duplicate elimination is performed, in this case the minimum set becomes Min(q1) =
{R1.A2}. Consequently, the set Min(Qi) contains the information which synopses need to be
built in order to answer query Qi while observing all correlations between the relevant attributes.

As join synopses have been shown to be vital to accurate estimation of joins for nearly all
real-life datasets (see Sections 3.4.3 and 3.4.6), I adopt the following approach for all queries
in Q involving joins. For each query Qi involving one or more joins, I add a “virtual relation”
R′ to R representing the joint data distribution of the top node in the corresponding join tree
(i.e. the complete n-way join if the join tree has n leaves). A query involving a join could thus
be modelled by introducing join synopsis over the relevant attributes from the joining relations;
consider query q2:

SELECT R1.A1 FROM R1, R2, R3 WHERE R1.A2 = R2.A3 AND R2.A4 = R3.A5

Here I introduce R′ := R1
A2=A3

./ R2
A4=A5

./ R3. Then Min(q2) = {R′.A1}. Note that it is
only necessary to introduce this R′ if is not present already. If q2 appears more than once in
the workload (either solitary or as a sub-query), R′ is still only introduced once. This approach
corresponds to introducing a full join synopsis (see Section 3.4.4) for every unique join present
in the workload.

5.3 Framework

The physical design problem for data synopses is defined as follows:

Definition 5.1 (Physical Design Problem for Data Synopses) :
When given a number of datasets R := {R1, . . . , Rn}, a workload consisting of SPJ (select-
project-join) queries Q := {Q1, . . . , Qk} and a limited amount of available memory M ,
the physical design problem for data synopses is to determine the best combination S of
synopses that can be stored using up to M memory, so that the estimation error over all
queries is minimized.

This corresponds to the natural goal of maximizing accuracy for query optimization, approximate
query answering, or minimizing the query time when supporting top-k queries [CG99]. If the
synopses in S are only used for query optimization, additional pruning of S may be beneficial, as
synopses that do not influence plan selection can be omitted (see [CN00]); in addition, maximizing
the estimation accuracy for the final set of selected synopses (in this case, by tuning their sizes)
can further improve query optimization.

In the following, it is assumed that each query Qi is mapped to exactly one synopsis Sj ∈ S
which captures all attributes that are relevant for Qi, i.e., attributes on which filter conditions are
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defined as well as attributes that appear in the SELECT clause of the query (see Section 2.2). This
is no limitation, as it is always possible to decompose a more complex query into subqueries such
that the above condition holds for each subquery, when full join synopses are used for each join
in the workload. In fact, an SPJ query would often be the result of decomposing a complex SQL
query (e.g., to produce an intermediate result for a group-by and aggregation decision-support
query). The subqueries that matter in this context are those for which I wish to estimate the
result or result size. In commercial query engines and in most of the prior work on data synopses,
these subqueries were limited to simple range selections. This approach improves the state of the
art in that we consider entire SPJ queries as the building blocks for data synopses.

5.3.1 Storage of Multiple Synopses

In the discussed scenario, the database system has to store multiple synopses over a number of
different attribute combinations. Therefore, in addition to the buckets stored by each synopsis
itself, the following bookkeeping information needs to be stored to construct a directory of all
synopses:

(1) the relation approximated by the synopsis,
(2) the combination of attributes approximated by the synopsis (coded as a bit vector),
(3) the total number of buckets,
(4) the number of buckets used for frequency approximation,
(5) the highest attribute value stored in the synopsis/relation, and
(6) a pointer to the synopsis itself.

Consequently, each synopsis requires additional 6 values storage for this bookkeeping information.
As discussed in Section 4.4, the values used for (2) and (5) may be represented by a different (i.e.,
larger) data type than the other values, when the number of attributes stored in the corresponding
synopsis is very large. This will later be important in connection for the proof of Theorem 5.

5.3.2 The Error Model

The overall goal is to minimize the estimation error over all queries Qj ∈ Q. First consider
a scenario in which all queries only depend on a single synopsis S0 over the data distribution
T = {(v1, f1), (v2, f2), . . . , (vn, fn)}. I define the error for a given query Qj ∈ Q by characterizing
how well the query result Result(Qj) ⊆ T is approximated. Then I define the error over all
queries in Q with respect to a data distribution T as

Error(Q, S0) :=
∑

Qj∈Q

( ∑

i∈{k|vk∈Result(Qj)}
(fi − f̂i)2 + r · (‖vi − v̂i‖)2

)
(5.1)

with the factor r determining the importance of frequency-approximation relative to the im-
portance of density approximation. Thus, if the weights wi are defined as wi := |{Q′ | vi ∈
Result(Q′), Q′ ∈ Q}|, and the factor1 v domain/f domain is used for r, the sum of the errors
for each query posed to synopsis S0 can be written as:

Error(Q, S0) :=
|T |∑

i=1

wi · (fi − f̂i)2 + v domain
f domain · wi · (‖vi − v̂i‖)2, (5.2)

1The choice of the value r does not influence the algorithmic properties of the approach, as any value for r can
easily be incorporated into the reconciliation of frequency and density synopses described in Section 3.3.2.
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with the appropriate values for f domain and d domain. Except for the weights wi, this is
the error function (Equation 4.3) minimized (in the sense described in Section 4.4) by spline
synopses. Since the weights wi can be easily incorporated into the spline construction process
(see Section 3.3.5), minimizing the query error in the case of a single distribution has become a
problem of constructing the optimal spline synopsis.

This is a slight simplification as it ignores approximation errors with regard to the boundary
conditions of a query: when using a synopsis for answering a query some attribute values v̂i

may be included in the approximate answer even though the corresponding vi would not be
in the query result. Likewise, some attribute values may be erroneously excluded. However,
incorporating these effects into our model would result in an optimization problem of intractable
complexity.

In a scenario with multiple synopses S := {S1, . . . , Sl}, each query Qj is answered (depending
on Min(Qj)) by a synopsis in S. To assign each queried attribute combination to exactly one
synopsis, a mapping function

map :
⋃

2{Att(R)|R∈R} 7→ {1, . . . , l} (5.3)

is used. I will describe how to automatically obtain this mapping in Section 5.4.2.
Note that this model assumes that queries over the same attribute combination are always

mapped to the same synopsis (otherwise it would be necessary to store additional information
on the mapping of specific queries, which would in turn compete for the memory available for
synopses). Thus, the error over a set of synopses S := {S1, . . . , Sl} is defined as:

Error(Q,S) =
l∑

i=1

(Error({Qj ∈ Q | map(Min(Qj)) = i}, Si).

Since the error of each synopsis Si is dependent on the memory size Size(Si) of the synopsis,
this is more accurately stated as:

Error(Q,S) = min
(Size(S1),...,Size(Sl))∈Nl

l∑

i=1

(Error({Qj ∈ Q | map(Min(Qj)) = i}, Si)) (5.4)

under the constraint that
∑l

i=1 Size(Sl) is equal to the memory size M available for all synopses
together. Thus the problem of optimizing the estimation error for the entirety of queries in the
workload can be seen as a problem of selecting the optimal set of synopses and choosing their
sizes.

5.4 Synopsis Selection and Memory Allocation

To illustrate the issues involved in the selection of the optimal set of synopses, consider a workload
Q = Q1 ∪ Q2, Q1 containing no1 queries Q′ (i.e., queries of type Q′ whose fraction in the entire
workload is proportional to no1) with Min(Q′) = {{R1.A1}} and Q2 containing no2 queries Q′′

with Min(Q′′) = {{R1.A2}}. Then these can be answered by either

(a) two synopses S{R1.A1} and S{R1.A2} over each single attribute
(b) one synopsis S{R1.A1,R1.A2} over the joint data distribution of R1.A1 and R1.A2.
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Therefore, to compute the optimal error for the overall available memory M we have to evaluate

Error(Q) :=

min
{Error for combination (b)︷ ︸︸ ︷

Error(Q, S{R1.A1,R1.A2}) , (with Size(S{R1.A1,R1.A2}) = M)

min
Size(S{R1.A1})∈N
Size(S{R1.A2})∈N

(
Error(Q1, S{R1.A1}) + Error(Q2, S{R1.A2})

)

︸ ︷︷ ︸
Error for combination (a)

}
(with Size(S{R1.A1}) + Size(S{R1.A2}) = M)

and keep track of the resulting synopses and memory partitioning. So the problem of computing
the optimal set of synopses (and the corresponding memory allocation) becomes a two-step
process:

(1) Computing Error(Q′, Sx) for all candidate synopses Sx and all possible combinations of
queries Q′ ⊆ Q that may be mapped to Sx and the maximum amount of Memory M
to be used for Sx. This requires O(M · |Tx|2) steps (for the OPTIMAL partitioning, see
Section 3.1.3) for each pair of Sx and Q′ and also generates the values of Error(Q′, Sx) for
all values of Size(Sx) ≤ M .

(2) Selecting the optimal set of synopses from a set of candidates computing an optimal memory
partitioning such that the weighted sum over all synopsis errors (weighted by the number
of times each synopsis is queried) becomes minimal for the synopses included in the optimal
solution. Since the weights change according to the combinations of synopses in the solu-
tion, this is a different and more difficult problem than finding the optimal combination of
synopses for different relations. It will be shown in Section 5.4.2, the problem of synopsis
selection and memory partitioning are closely related and thus solved together.

In the following (Sections 5.4.1 and 5.4.2), I will show how to solve the above problem for a
single dataset R ∈ R. The sub-solutions for all datasets in R can then be combined to solve the
overall problem (Section 5.4.3). Since the resulting solutions are computationally expensive, I
will describe in Section 5.6 how to reduce the computational cost through the use of heuristics.

The key idea of my approach is to use two properties that hold for over the plethora of query
(size) estimation techniques to prune the search space of all possible combinations of synopses
and their sizes significantly. While both properties were found to hold for all combinations of
queries and data sets tested in this thesis, only one of them can be shown to hold for every
query/data combination possible. For the other property datasets can be constructed, for which
it does not hold; therefore it should be seen as an efficient heuristic.

5.4.1 Pruning the Search Space

Note that in the example of Section 5.4 the combinations S ′ = {S{R1.A1}, S{R1.A1,R1.A2}} or
S ′′ = {S{R1.A2}, S{R1.A1,R1.A2}} were never considered. This is due to a simple property of spline
synopses, which also generally holds for both histograms and Wavelet-based approximations:

Observation 5.1 “Pruning Property” :
When answering queries over the set of attributes a, a synopsis Sx, over the set of attributes
x with a ⊆ x will yield more accurate answers than a synopsis Sy if x ⊂ y and both synopses
are of identical size.
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While artificial data distributions can be constructed that do not obey the above observation,
the pruning property was found to hold in all experiments on real-life datasets. The intuition
behind it is the fact that by including more attributes in a synopsis, the number of unique
attribute-value combinations vi in the corresponding data distribution increases as well (in this
respect, the synopsis selection problem is similar to the one of index selection), making it harder
to capture all attribute values/frequencies with acceptable accuracy.

In the above case, it means that S{R1.A1} answers queries posed to R1.A1 better than
S{R1.A1,R1.A2} (using the same memory). Similarly S{R1.A2} is an improvement over S{R1.A1,R1.A2}
for queries posed to R1.A2. Thus the combination S = {S{R1.A1}, S{R1.A2}} generally outperforms
S ′ or S ′′.

Using the above observation, it becomes possible to characterize the set of candidate synopses
in a compact manner. Consider a single relation R. Then the sets of attribute combinations of
R queried is

Syn(R,Q) := {Min(Qi) | Qi ∈ Q}
Now the set of all candidate synopses for R can be defined as:

Cand(R,Q) := {Sx | x =
⋃

z, z ⊆ Syn(R,Q)}

This means that the set of all candidate synopses forms a lattice (see Figure 5.1) over the
attribute-combinations queried; e.g. if the set of all queried attribute combinations is

Syn(R,Q) = {{R.A1}, {R.A2}, {R.A2, R.A3}, {R.A3}}

then the set of candidate synopses becomes

Cand(R,Q) =
{{R.A1}, {R.A2}, {R.A3}, {R.A1, R.A2}, {R.A1, R.A3}, {R.A2, R.A3}, {R.A1, R.A2, R.A3}}.

The intuition behind the definition of Cand(R,Q) is the following: if a Synopsis Sy is in

2A1A

321 AAA

21AA 32AA

3A

31AA

Figure 5.1: The lattice of candidate synopses

Cand(R,Q), it must be considered, for it is the most efficient way to answer a subset of queries
of R using only one synopsis (all other synopses capable of answering the same subset would be
less efficient, due to the pruning property). Conversely, if Sy 6∈ Cand(R,Q) then y must be of
the form y = cand ∪ nocand with cand ∈ {⋃ z, z ⊆ Syn(R,Q)}, nocand ⊆ Att(R), and ∀x ∈
nocand : (cand ∪ x) 6∈ {⋃ z, z ⊆ Syn(R,Q)}. But then Scand answers the same set of queries as
Sy and does so more efficiently, since cand ⊂ y.

In addition to the pruning property, I utilize a second property of spline synopses to prune the
search space even further.
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Observation 5.2 “Merge Property” :
For a set of queries Q each querying the same combination of attributes A, the error for
answering the queries using one synopsis S over A with M memory is smaller than the
error using two synopses S1, S2 over A, which together use memory M .

The intuition for this property is the following: By joining the synopses S1 and S2, the esti-
mation for the (potentially) overlapping regions in S1 and S2 is improved, as additional memory
is invested in its estimation. It is a trivial consequence that the merge property also holds for
combinations of more than two synopses over A. In contrast to the pruning property, it is possible
to prove that the merge property always holds.

Theorem 5. For a set of queries Q over the same attribute combination A, the error for an-
swering these queries by a single synopsis Sunion is less to or equal to the error for Q with two
synopses S1, S2, which together require the same amount of memory as Sunion.

Proof: In Section 5.3.2 it was shown that the error for a set of queries corresponds to the error of
the fitting-problem posed in Equation 5.2. Therefore, if I can show that the value for Equation 5.2
is smaller for Sunion than for S1 and S2, the overall statement follows.

This will be done in the following manner: Based on a given S1, S2 and Q, I will construct
a corresponding Sunion in terms of the bucket-partitioning used for fitting attribute frequencies
and values. I will show that the overall error is less or equal for Sunion; now, since our parti-
tioning method for constructing spline synopses traverses the space of all possible partitionings,
either Sunion or a synopsis with better overall error will result from running the spline synopses
construction on Q.

First, it is necessary to consider the storage requirements for spline synopses: buckets for both
frequency- and attribute-value approximation store 3 values (see Section 3.3.1); in addition, a to-
tal of 6 values storage for bookkeeping information is required (see Section 5.3.1). Therefore, each
synopsis requires 6 + 3 · (number of buckets) of storage. Because no further further bookkeeping
information is stored, it is necessary to require that each synopsis approximates all values be-
tween the lowest and highest value stored2. Otherwise it would not be possible to decide whether
at run-time whether a query can be approximated by a synopsis or not, for the incoming queries
may not be part of the workload the synopses were constructed over.

I also need to introduce the following notation: Define F Erri as the respective error for
the problem of fitting the frequencies (i.e.

∑T
i=0 wi · (fi − f̂i)2) in Synopsis Si. Define the

constraint error F Erri
[low,high) as

∑high−1
i=low wi ·(fi−f̂i)2 for Si. Define D Erri and D Erri

[low,high)
analogously, only with regard to fitting of the attribute-values.

Define Ii = [vstarti , vendi) as this interval of the values approximated by Si. If I1 and I2 overlap,
it has to be decided to which synopses to map the (parts of) queries in Q querying I1∩I2. As it is
not possible to map every single query to a synopsis individually without introducing additional
information, each query (part) querying the interval I1 ∩ I2 is mapped to the synopsis with the
lower overall error in the area of intersection.

Without loss of generality I assume that vstart1 ≤ vstart2 . For purposes of approximation,
each interval Ij is partitioned into buckets; I define a partitioning into k buckets as a k − tuple

P = (lowj
1, . . . , low

j
k) corresponding to the buckets [v

lowj
1
, v

lowj
2
), . . . , [v

lowj
k
, vendj ).

Now, given synopses S1 using b1 buckets (of which bf
1 are used for frequency-approximation)

and S2, using b2 buckets (bf
2 defined analogously), I construct Sunion with at most b1 + b2 + 2

2For synopses over more than one attribute, it suffices to require that all values between the highest and lowest
value in I1 after the mapping by the space-filling curve are stored.
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buckets, requiring the same amount of memory (as the bookkeeping overhead is only incurred
once, not twice, which allows to store the two additional buckets3).
Regarding the construction, I have to differentiate 3 scenarios:

I1 ∩ I2 = ∅: In this case, I can construct Sunion on the union of the buckets in S1 and S2, as
there is no overlap between them. In order to fulfill the requirement of synopses approximating
all values in the interval [vstart1 , vend2), I need to add two additional buckets (one for frequency,
the other for attribute-value approximation) covering [vend1 , vstart2). Since these aren’t queried,
however, this doesn’t influence the resulting error. Therefore Error(Q, Sunion) = F Err1 +
F Err2 + D Err1 + D Err2 = Error(Q1, S1) + Error(Q2, S2).

I1∩I2 6= ∅, I1∩I2 6= I1, I1∩I2 6= I2: In this case, I first construct the frequency approximation
of Sunion using at most bf

1 + bf
2 buckets. Here I have to differentiate 2 cases:

(a) F Err1
I1∩I2

≤ F Err2
I1∩I2

(*): Denote the partition for the frequency-approximation in S1

by P f
1 = (low1

1, . . . , low
1
bf
1

), for S2 P f
1 = (low2

1, . . . , low
2
bf
2

). Let k be the smallest index

such that vlow2
k

> vend1 . If bf
2 > 1, such a k must exist and we construct the partition-

ing for frequency-approximation in Sunion as P = (low1
1, . . . , low

1
bf
1

, end1, low
2
k, . . . , low

2
bf
2

).

Otherwise (if bf
2 = 1), the partitioning constructed is P = (low1

1, . . . , low
1
bf
1

, end1).

In both cases, the corresponding frequency-approximation is Sunion has at most bf
1 + bf

2

buckets. The corresponding error for fitting the frequency-values is F Errunion = F Err1+
F Err1

I1∩I2
+F Err2

[end1,end2) ≤ F Err1+F Err2
I1∩I2

+F Err2
[end1,end2) = F Err1+F Err2

(because of (*)).

(b) F Err1
I1∩I2

> F Err2
I1∩I2

: In this case, the proof is analogous, with k defined as the
largest index, such that vlow1

k
≤ vstart2 and P = (low1

1, . . . , low
1
k, low

2
1, . . . , low

2
bf
2

) (if bf
1 =

1 then P = (low1
1, low

2
1, . . . , low

2
bf
2

)). In this case F Errunion = F Err2
+F Err2

I1∩I2
+

F Err1
[start1,start2) ≤ F Err2 + F Err1

I1∩I2
+ F Err2

[start1,start2) = F Err1 + F Err2.

The attribute-value approximation of Sunion can now be constructed similarly, yielding a syn-
opses with b1 + b2 buckets, with Error(Q, Sunion) ≤ F Err1 + F Err2 + D Err1 + D Err2 =
Error(Q1, S1) + Error(Q2, S2).

I1 ∩ I2 = I2: Again I have to separate two cases:

(a) F Err1
[start1,end1) + D Err1

[start1,end1) ≤ F Err2
[start1,end1) + D Err2

[start1,end1): in this case
we simply include all buckets in S1 into Sunion. Then Error(Q,S) = F Err1 +
D Err1 + F Err1

[start1,end1) + D Err1
[start1,end1) ≤ F Err1 + D Err1 + F Err2

[start2,end2) +
D Err2

[start2,end2) = Error(Q1, S1) + Error(Q2, S2).

(b) Otherwise I again have to construct a new partitioning for both frequency and density-
approximation such that F Errunion ≤ F Err1 + F Err2 and D Errunion ≤ D Err1 +
D Err2, using at most b1 + b2 + 2 buckets. For the frequency-approximation in Sunion

this is done in the following way: denote the partition for the frequency-approximation
in S1 by P f

1 = (low1
1, . . . , low

1
bf
1

), for S2 by P f
1 = (low2

1, . . . , low
2
bf
2

). Now define k as the

number of buckets in S1 such that vlowi < vstart2 , define k′ as the number of buckets
3Note this still holds for synopses over a large number d of attributes, that use a larger data type for the lowest

value in a bucket, as in this case the bookkeeping for a synopsis stores 2 values of this type itself.
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in S1 such that vlowi ≥ vend2 . Then I construct P = (low1
1, . . . , low

1
k, low

2
1, . . . , low

2
bf
2

,

end2, low
1
k′ , . . . , low

1
bf
1

). This results in k+1+bf
2 +(bf

1−k′+1) buckets, which is at most bf
1 +

bf
2+1, since k′−k ≥ 1. The resulting error for approximation of value frequencies is F union =

F Err1
[start1,start2) + F Err2. The construction for the attribute-value approximation is

similar.

Because both of these properties typically apply also to approximation by histograms or
wavelets, the following results also apply to the physical design problem when these techniques
are used as base synopses4. It is necessary to use a different error measure, however, as it is not
possible to match pairs of values and frequencies in the original data and the approximation,
because the size of a data distribution |Tx| is not invariant when approximated by either of these
techniques. Instead, I suggest the use of an error measure that tracks the difference between
the actual and the approximated data distribution, and computes its own matching, such as the
MAC distance [IP99] or the error-metric introduced for join-errors in Section 3.4.4.

5.4.2 Selecting the Synopses for a Single Relation R

In the following I will describe, for a given set Q of queries over a single relation R, how to
compute the optimal combination S of synopses, their sizes, and the corresponding mapping of
queries, such that all queries can be answered and the overall error becomes minimal.

The problem resembles the issue of selecting the optimal set of (multicolumn) indices for a given
workload, as the trade-off is similar: by selecting a synopsis or an index over a larger number of
attributes, the number of queries this synopsis or index supports is increased, while at the same
time its cost also rises. However, the synopsis selection problem is unique, and substantially more
difficult, for a number of reasons:

(1) The size of the synopsis for a given attribute combination is not fixed. Therefore, a synopsis
that provides poor estimations at size m might be quite useful at size m′,m′ > m. So
not only all potential combinations of synopses have to evaluated, but also all possible
combinations of their sizes.

(2) A standard B-tree index over attributes A1, . . . , Ah can be used to support queries over any
prefix A1, . . . , Ah′ , h

′ ≤ h; thus the presence of such an index makes indexes over prefixes
superfluous. In contrast, a synopsis over the set of attributes A = {A1, . . . , Ah} can answer
queries over all subsets of A, but because the approximation quality deteriorates with the
inclusion of additional attributes (see Section 5.4.1), additional synopses over subsets of A
may still be beneficial.

(3) The maintenance costs of data synopses are only a second-order issue, as synopses do
not have to be constantly kept up-to-date, but can be re-computed once their accuracy
deteriorates too far.

Therefore, exact or heuristic optimization methods for index selection, such as the formulation as
a 0-1 integer linear program [CFM95] or index merging [CN99], cannot be applied in this context.

As shown before, the optimal combination of synopses Sopt can consist of synopses over single
attribute combinations from Syn(R,Q) that are optimal for a particular query in Q, as well as
synopses for the joint attribute combinations of multiple members of Syn(R,Q), which are not

4Because both techniques generally only optimize the approximation of the attribute value frequencies, this holds
only with regard to the corresponding frequency error

P|T |
i=0((fi − f̂i)

2.
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optimal for any single query but more efficient than other combinations of synopses (using the
same amount of memory) capable of answering the same queries. Now I want to capture this no-
tion algorithmically, describing a method to construct a set of synopses for a given workload/data
combination. I first introduce the necessary notation:

Opt SynA,M is defined as the combination of synopses for answering all queries over the attribute
combinations in A ⊆ Syn(R,Q) using memory M as constructed below.

Opt ErrA,M describes the overall error resulting from Opt SynA,M .

Now consider the problem of computing the optimal combination of synopses Opt SynA,M for
given A and M . Opt SynA,M has one of the following forms:

(a) Opt SynA,M = {SSA} with Size(SSA) = M (one synopsis for all queries over the attribute
combinations in A).

(b) Opt SynA,M = Opt SynA′,m′ ∪ Opt SynA−A′,M−m′

(a combination of the optimal synopses for answering two disjoint subsets ofA with A′ 6= ∅).
Because of the merge property, only decompositions for which Opt SynA′,m′ ∩
Opt SynA−A′,M−m′ = ∅ have to be considered.

Which combination is optimal depends on the error resulting from each alternative:

In case (a) Opt ErrA,M = Error( {Q′ | Min(Q′) =
⋃
A}

︸ ︷︷ ︸
The set of queries answered by SSA

, {SSA}) with Size(SSA) = M .

In case (b) Opt ErrA,M = min
m′∈{1,...,M−1}

Opt ErrA′,m′ + Opt ErrA−A′,M−m′

Therefore, it is possible to compute the optimal set of synopses for A by computing the minimal
error for cases (a) and (b) and choosing the memory partitioning that minimizes the correspond-
ing error. Note that by computing the optimal combination of synopses in the above manner, a
mapping that dictates which attribute combinations from Syn(R,Q) are mapped to which syn-
opses is also computed implicitly: because of the above decomposition, S := Opt ErrSSyn(R,Q),M

is of the form S = {SSA1
, . . . , SSAl

} with each a ∈ Syn(R,Q) being a member of exactly one
A1, . . . ,Al. While more complex models are possible, in which queries over the same attribute
combination are mapped to different members of S, this would mean that additional information,
from which the correct mapping for each single query could be derived at run-time, would have
to be stored (creating contention for memory with the actual data synopses).

Using the above definitions, the final set of synopses kept for R using memory M is
Opt SynSSyn(R,Q),M , the corresponding error being Opt ErrSSyn(R,Q),M . However, it is still
necessary to prove that the optimal solution can indeed be obtained based on the decompositions
described above:

Theorem 6. The set Opt SynA,M constructed in the above manner is the optimal combination
of synopses for answering all queries in Q over the attribute combinations in A, when the pruning
and merge properties hold.

Proof: I show that S := Opt SynA,M using the above construction implies that S is the optimal
combination of synopses answering all queries over the attribute combinations in A using memory
M . This is proven by induction over |A|:
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|A| = 1 : Then Opt SynA,M = {SA} (no partitioning involving multiple synopses possible be-
cause of the merge property), and because of the pruning property SA is the best way to
answer queries over A.

|A| → |A|+ 1 : Now I assume that all Opt SynA,M for |A| ≤ h are indeed optimal and try to
show the optimality for Opt SynA,M with |A| = h+1. This is shown by contradiction:

Assumption: There exists a solution Sopt = {Sx1 , . . . , Sxt} (with Size(Sxi) = mi, i =
1, . . . , t) such that the resulting overall error Erropt over all queries is indeed smaller than
Opt ErrA,M with Sopt 6= Opt SynA,M .

• (Case 1) |Sopt| = 1 : Then Sopt = {SA′}, with Size(SA′) = M . Since Sopt has a
smaller Error than Opt ErrA,M , Sopt 6= {SA (as SA is a possible synopsis combination
for Opt SynA,M and thus Error(Q, {SA) ≥ Opt ErrA,M > Erropt). However, since
Sopt must be able to answer all queries over A, A ⊂ A′ holds. Then it follows from the
pruning property that Opt SynA,M results in better accuracy than Sopt, contradicting
the previous assumption.

• (Case 2) |Sopt| > 1 : Because of the merge property, I assume that all queries to
the same attribute combination a ∈ A are mapped to the same synopsis. Should this
not be the case, it is possible replace Sopt by S ′opt, for which all synopses over the
same attribute have been merged, resulting in a smaller error. If it is now possible to
contradict the assumption for S ′opt, it is thereby contradicted for Sopt, too.
Sopt can now be written as Sopt = S1 ∪ S2,S1 6= ∅,S1 6= S,S2 := S − S1 with S1 =
{Sx1

1
, . . . , Sx1

p
},S2 = {Sx2

1
, . . . , Sx2

q
}, p ≤ h, q ≤ h. Because all queries over the same

attribute combination are mapped to the same synopsis, both S1 and S2 each answer
queries over the attribute combinations in disjoint subsets A1,A2 of A with A1 ∪
A2 = A. Then it follows from the induction hypothesis that Opt SynA1,

Pp
i=0 Size(S

x1
i
)

results in a smaller error than S1 for queries over attribute combinations in A1, and
Opt SynA1,

Pq
i=0 Size(S

x1
i
) results in a smaller error than S2 for queries over attribute

combinations in A2. It follows that the error for OptA,M is less than the one caused
by Sopt, contradicting the assumption.

5.4.3 Selecting the Synopses for all Relations

The error over all relations for total memory size M can now be written as

Error(Q,S) = min
(M1,...,M|R|)∈N|R|

|R|∑

i=1

Opt ErrSSyn(Ri,Q),Mi
(5.5)

under the constraint that
∑|R|

i=1 Mi = M . This is equivalent to the initial definition in Equa-
tion 5.4. Expression 5.5 can be solved by dynamic programming using O(M2 · |R|) operations.
By keeping track of the memory partitioning (M1, . . . , M|R|), it is then possible to determine the
optimal set of synopses S :=

⋃
i=1,...,|R|

Opt SynSSyn(Ri,Q),Mi
.

5.5 Enumeration of all synopses combinations

To enumerate all possible combinations of synopses and mappings for a given relation R and a
set of queries Q over R, the following algorithm (Algorithm 5) is used. Each single combination
is encoded the following way:
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Definition 5.2 (Combination of synopses and map) :
A single combination of a candidate set of synopses, a corresponding mapping-function map
and a set of (yet) unmapped queries is described as a 3-tuple (synopses, map, free queries),
with synopses being the set containing the attribute combinations over which synopses are
to be constructed. map corresponds to the mapping function defined in Section 5.3.2; i.e. for
every queried attribute combination a ∈ Syn(R,Q) map contains the pair (a, a′) meaning
queries on a are mapped to the synopsis Sa′ . Attribute combinations not yet mapped are
stored in the set free queries. The 3 components of a combination x are referred to as
x.synopses, x.map and x.free queries, respectively.

In order to compute all synopses combinations, the algorithm iterates over all members of the
set of candidate synopses Cand(R,Q) and for each member Sx computes all possible synopsis
combinations capable of answering all queries in Q over the attributes contained in x. As de-
scribed in Section 5.4.1, Cand(R,Q) forms a lattice, which is traversed bottom-up; i.e. if y ⊂ x,
then Sy is traversed before Sx. To this end, the set of candidate synopses is enumerated as
Cand(R,Q) = Sc1 , . . . , Sc|Cand(R,Q)| (with ci denoting attribute combinations) in such a way that
∀l = 1 . . . |Cand(R,Q)| − 1 : |ci| ≤ |ci+1|. The outer loop of the algorithm then traverses the
synopses in this order. In the inner loop, the algorithm computes all combinations for synopses
over a set of attributes ci, which are stored as Candidates(ci). After iterating over all candidates,
all possible synopses combinations for all queries on R are stored in Candidates(ctop) with ctop

being the top element of the lattice (i.e. ∃Sci ∈ Cand(R,Q) : ∀Sc′ ∈ Cand(R,Q) : c′ ⊂ ci).
If the pruning of candidate synopses described in Section 5.6 is employed, the lattice structure

may be destroyed, for some of its elements are missing. In this case, the candidates are still
traversed in the same way, however, it is necessary to execute lines 6-33 one more time, substi-
tuting the set of all elements that are the top-elements of a limited subset of Candidates (i.e.
{ci ∈ Cand(R,Q : @c′ ∈ Cand(R,Q) : ci ⊂ c′}) for Predecessors(c1) in line 6 and 8.

5.6 Reducing the Computational Overhead

So computing the optimal set of synopses S for a given query Q can be broken down into three
steps:

(1) Computing the error for each candidate synopsis and each combination of queries.

(2) Computing the optimal set of synopses for each relation Ri ∈ R and all possible values Mi

for the allocated memory.

(3) Solving Equation 5.5 to determine how much memory to dedicate to each relation’s syn-
opses.

Only step 3 is of low computational overhead, while steps 1 and 2 are expensive even for small
instances of Syn(R,Q). This means that while the described method scales up well with a rising
number of relations, it still becomes necessary to ensure the tractability of the computation
of Opt SynSSyn(R,Q),M for relations in which many different attribute combinations are being
queried (recall that the potential application domains include data mining tasks on datasets that
may have dozens of attributes). I address potential bottlenecks for both step 1 and 2 for a single
relation R in the following sections.
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1: for i = 0, . . . , |Cand(R,Q)| do
2: if ci ∈ Syn(R,Q) then
3: Temp Candidates.insert({Sci}, {(ci, ci)}, ∅)
4: Temp Candidates.insert(∅, ∅, {ci})
5: end if
6: Temp Candidates.insert(∅, ∅, ∅)
7: for all p′ ∈ Predecessors(c1) do
8: for all x ∈ Temp Candidates do
9: for all y ∈ Candidates(p′) do

10: if (x.synopses∩y.synopses = ∅∧x.free queries∩y.free queries = ∅)∧@cj , ck, cq ∈
Cand(Ri,Q : ((cj , ck) ∈ x.map ∧ (cj , cq) ∈ x.map ∧ ck 6= cq) then

11: if ci ∈ Syn(R,Q) then
12: Temp Cand2.insert(x.synopses∪y.synopses∪{Sci}, x.map∪y.map∪{(ck, ci) |

ck ∈ (x.free queries ∪ y.free queries)} ∪ (ci, ci), ∅)
13: Temp Cand2.insert(x.synopses ∪ y.synopses, x.map ∪ y.map,

x.free synopses ∪ y.free synopses ∪ {ci})
14: else
15: Temp Cand2.insert(x.synopses∪y.synopses∪{Sci}, x.map∪y.map∪{(ck, ci) |

ck ∈ (x.free queries ∪ y.free queries)}, ∅)
16: Temp Cand2.insert(x.synopses ∪ y.synopses, x.map ∪ y.map,

x.free synopses ∪ y.free synopses)
17: end if
18: end if
19: end for
20: end for
21: Temp Candidates = Temp Cand2

22: Temp Cand2.clear()
23: end for
24: for all cand ∈ Temp Candidates do
25: if |cand.map| ≥ |{a | a ∈ Cand(R,Q) ∧ a ⊆ ci ∧ @a′ ∈ Cand(R,Q) : a′ * ci ∧ a ⊆ a′}|

then
26: Temp Candidates(ci).delete(cand) // Not all subsumed queries mapped
27: end if
28: Candidates(ci) = Temp Candidates
29: Temp Candidates.clear()
30: end for
31: end for

Algorithm 5: Enumeration of all synopsis combinations

Computation of the Error Values

Before computing Opt SynSSyn(R,Q),M for a given relation R, it is necessary to compute
Error(Q′, Sx) for Size(Sx) ranging from 1 to M , for all Sx ∈ Cand(R,Q) and all combinations
of queries Q′ ⊆ Q that can be answered by Sx (i.e., all combinations of queries corresponding
to disjoint attribute combinations ⊆ x). Computing each Error(Q′, Sx) means constructing the
corresponding synopsis with memory M and requires O(|Tx|2 · M + M2) operations (because
the construction process computes Error(Q′, Sx) for all Size(Sx) < M at no additional cost, its
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necessary to construct the synopsis only once). It follows that this potential bottleneck can be
addressed by either reducing the number of combinations of x and Q′ considered or by reducing
the complexity of computing each Error(Q′, Sx), i.e., of constructing the corresponding synopsis.

Reducing the number of x, Q0 combinations: It is possible to significantly reduce the
number of combinations under consideration by assuming that all future queries are equally likely
to access a given (multidimensional) attribute-value region in the synopsis. This would mean that
instead of minimizing the weighted error in Equation 5.2, all weights would be uniformly set to
wi := 1. So the workload information in Q is then used to obtain how often certain attribute
combinations are queried, however, no information on query locality is used with regard to
attribute values. This makes it possible to maintain large traces of previously executed queries
without using significant memory, for now only the number of queries to each synopsis have to
be tracked.

It is important, that this simplification is only made when computing the Error values used
for determining the combination and size of the synopses stored. Locality information (if col-
lected) can still be used when computing the final synopses themselves. Under this assumption,
Error(Q′, Sx) has to be computed only once for each x. Q′ then corresponds to the set of
all possible queries on Sx. Thus the number of different synopses to compute would be given
by |Cand(R,Q)| (I will discuss methods for reducing |Cand(R,Q)| itself in Section 5.6). Also
Error(Q′, Sx) with Size(Sx) = M can now be characterized as

Error(Q′, Sx) = |Q′| · error for approximating Tx in M memory.

= |Q′| ·
|T |∑

i=1

(fi − f̂i)2 + r · (‖vi − v̂i‖)2

This approach also allows the Error values to be computed lazily (i.e., whenever the underly-
ing database system, data-mining or mediation platform has free resources) and stored until the
corresponding datasets change significantly. I refer to this heuristic as Uniform-Locality.

Reducing the overhead of synopsis construction: The overhead caused by this part of the
algorithm can be reduced significantly, by (initially) not using the OPTIMAL algorithm when
generating synopses, but using the faster and less accurate GREEDY-MERGE and GREEDY-
SPLIT heuristics. The important, empirically observed, feature here is that the loss in accuracy
is relatively uniform for all candidate synopses, resulting in Error values that lead to a synopsis
set S′ very close to the optimal set S. A similar approach is possible using histograms; an
approximate algorithm for partitioning V-Optimal histograms can be found in [JKM+98].

After S has been selected, the final synopses in S can be (re-)computed using the optimal
algorithm; the resulting overall running time is significantly shorter than before, since generally
| ⋃
i=1,...,n

Cand(Ri,Q)| À |S|. We refer to this heuristic as Greedy-Construction.

Reducing |Cand(R, Q)|
With the modifications of the previous subsection, the overhead of both step 1 & 2 in the
construction of the (near-)optimal synopses is determined by the size of the set of candidate
synopses Cand(R,Q):

In step 1 we have to construct |Cand(R,Q)| synopses to obtain the resulting Error values, and

in step 2, reducing the cardinality of Cand(R,Q) is crucial to limit the number of different
combinations of attributes A′,A−A′ examined in sub-case (b) of the construction of Opt Syn.
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Therefore, I consider merely a small number of “promising” attribute combinations for synopses
in Cand(R,Q). The key to finding such promising attribute combinations is to be able to
“guess” the resulting Error values with reasonable accuracy without having to actually compute
them. I found during our experiments with multidimensional spline synopses, that |Tx| is a good
indicator regarding the size of the resulting approximation error, i.e., if |Tx| < |Ty| then typically
Error(Q′, Sx) < Error(Q′, Sy) when Size(Sx) = Size(Sy). Intuitively, utilizing this rule means
assuming that all data distributions are “equally difficult” to approximate and thus the resulting
approximation error depends on the size of the data distribution.

Based on these considerations, the set of “promising” synopses Ĉand(R,Q) is chosen in the
following way. Initially, for each synopsis Sa ∈ Syn(R,Q), Sa is added to Ĉand(R,Q), as it
is the best way to answer queries over the attribute combination a only. For the remaining
synopses Sa ∈ Cand(R,Q) then a rating of each synopsis val(x) := |Tx|/|Q′| is computed, with
Q′ being the number of queries in Q for which Sa can be used. Then, only a small number of the
remaining synopses Sy corresponding to the lowest values for val(y) is included in Ĉand(R,Q).
In the following, I will refer to this heuristic as Small-Cand.

5.7 Putting the Pieces Together

Solving the physical design problem for data synopses can be characterized as a 4-step process:

(a) Collection of workload information: Initially, it is necessary to acquire the necessary
information about the access behavior of the workload, which can be done automatically
by the data manager that processes the queries. The details of this information depend on
the heuristics employed for solving the physical design problem: when assuming that all
data points of a table are equally likely to be accessed (Small-Cand, see Section 5.6), it is
only necessary to collect the access frequency of each attribute combination present in the
workload. Otherwise, it is also necessary to store the access frequencies for attribute value
combinations; however, this should only be done for tables that are both very important
(e.g., resource-intensive) and exhibit significant locality in their access behavior.

(b) Enumeration of all possible synopsis combinations: As described in Section 5.4.3 the
synopses selection problem can be solved for each relation independently; from the resulting
sub-solutions the overall combination can then be obtained by solving Equation 5.5. To
obtain the sub-solution for each relation Ri ∈ R, first all possible synopsis combinations of
Opt SynA,M for Ri are computed. This is done by traversing the lattice of the attribute
combinations in Cand(Ri,Q) in the order of the sizes |Tx| of the data distributions at each
node. For each node we compute all synopsis combinations possible from its attribute
combinations Ai and all subsets of Ai corresponding to nodes in the lattice (as well as
potential mappings from queries to synopses).

(c) Minimization of the error values As described in Section 5.4.2, each of the combinations
of synopses and mappings corresponds to an Opt Err expression, which is defined in the
form of a minimization problem. In order to determine the best synopsis combination, it is
necessary to compute the corresponding values for Opt Err. This is done by constructing
the corresponding synopses and evaluating the error for the resulting data distributions.
The minimum Opt Err expression corresponds to the optimal synopsis combination.

By combining the enumeration and minimization steps, it is furthermore possible to avoid
solving identical minimization-problems more than once. Each time a new (sub-) combi-
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nation of synopses/mapping is created, the corresponding minimization problem is solved
immediately. Because each new combination is either created by joining two previously
know combinations together, plus at most one additional synopsis, the corresponding min-
imization problem can be solved using the solutions for the two joining synopses in at most
O(M) steps.

(d) Construction of the final synopses The overall optimal solution can now be obtained
from the sub-solutions for each relation by minimizing Equation 5.5.

5.7.1 Running Times

The computational overhead of our techniques is caused by (a) the computation of the candidate
synopses, (b) the solving of the resulting minimization problems, and (c) the enumeration of all
possible minimization problems. The running times for (a) and (b) are discussed in Section 3.5.3,
including the cost of memory reconciliation. The loss in estimation quality connected with
GREEDY synopsis construction is discussed in Section 3.5.2. In order to assess the cost of (c),
enumerating all minimization problems, I measured the time the algorithm uses to construct all
possible synopsis combinations for a given set of attributes A for which all possible subsets were
queried (i.e. 2|A| different types of queries and thus the same worst-case number of potential
synopses). The running times for this worst-case stress test are shown in Table 5.1. Obviously,
even though the space of all combinations grows exponentially with the size ofA, the enumeration
is still reasonably efficient for up to 20 attributes, which covers the range of query-relevant
attributes in most tables (including join views) in relational databases.

# Attributes Running time (sec.) # Attributes Running time (sec.)
4 0, 009 sec. 12 1, 23 sec.
8 0, 049 sec. 16 93, 93 sec.

Table 5.1: Running times for the enumeration of all synopses on a SUN UltraSPARC 4000 (168
Mhz)

5.8 Experiments

To validate the approach and to demonstrate its accuracy, I have implemented the techniques and
applied them to a scenario based on the TPC-H decision support benchmark. In this scenario,
I compared the synopses selection techniques introduced in this paper against several simpler
heuristics. Because I am not aware of other approaches to the given problem, these heuristics
are not intended to represent opponents. Rather, some represent assumptions commonly used in
connection with synopses selection in commercial database systems. Others are used to examine
how much approximation accuracy is affected by simpler approaches to either synopses selection
or memory allocation.

5.8.1 Base Experiment

I used a subset of the queries of TPC-H , chosen to be large enough to make the synopses-selection
problem non-trivial yet small enough to facilitate understanding of the resulting physical design.
The queries selected were Q1, Q6, Q13, Q15 and Q17, referring to the Lineitem, Part, Orders,
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and Customer tables5. Table 5.2 shows the query-relevant attribute sets, the minimum sets
Min(Qi), for the above five queries.

Query Min-Set
Q1 L.Shipdate
Q6 L.Shipdate, L.Discount, L.Quantity
Q13 J1.Extended price, J1.Clerk, J1.Discount, J1.Return Flag
Q15 L.Extended price, L.Shipdate, L.Discount
Q17 J2.Container, J2.Discount, J2.Quantity, J2.Brand

Table 5.2: The Mininmum Sets for the used queries

I chose the minimum sets in Table 5.2 according to a result-size approximation scenario, i.e.,
I only selected those attributes that are necessary to estimate the number of tuples in the query
results (for queries which have an aggregation as the last operator, the result-size was estimated
before the aggregation). This results in five multidimensional data distributions. Three of these
are projections of the Lineitem table, referred to as L onto subsets of its attributes (which all
overlap so that there are a number of different, potentially suitable combinations of synopses).
The other two data distributions to be approximated are join synopses J1 := Lineitem ./
Orders and J2 := Lineitem ./ Part. For our experiments, I used a scaled-down version
of the TPC-H data with scale factor SF= 1/100 ) and SF ∗ 500 KBytes memory available for all
synopses together).

The physical design technique presented in this paper was compared to six heuristic competi-
tors that were generated from the following two option sets for synopses selection and memory
allocation.

Synopses selection:

Single A single-dimensional synopsis was allocated for each attribute that appears at least once
in the minimum sets of the five queries. While this heuristics cannot be expected to perform
comparably to the more sophisticated allocation schema, I included it since most commercial
database systems still use one-dimensional synopses/histograms only. So this heuristic gives
an idea of the loss in accuracy when ignoring multi-attribute correlation.

Table One multidimensional synopsis is allocated for each table, and this synopsis covers all
attributes of the table that appear in the minimum sets. This heuristic results in a large
single synopsis reflecting all correlations between attributes. However, because of the merge-
property, its accuracy may be significantly less than synopses using subsets of attributes.

and Memory allocation:

Uniform Each synopsis is given the same size. Again, this assumption can be found in commercial
database systems.

Tuples The size of a synopsis is proportional to the size of the table that it refers to, measured
in the number of tuples that reside in the table (where a join result is viewed as a table,
too) multiplied with the number of attributes covered by the synopsis.

5The non-numerical values present in a TPC-H database are coded as numbers. For example, P.Brand consists
of a constant text string and two integers in the range [1, 5]. We only store the 25 possible number combinations.
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Values The size of a synopsis is proportional to the size of the unique value combinations among
the attributes over which the synopsis is built.

The synopsis-selection technique of this paper is referred to as Opt Syn, the corresponding mem-
ory reconciliation as Opt Size. To illustrate the importance of memory reconciliation for our
overall approach, we also combined our synopsis-selection with the Uniform, Tuples and Values-
based memory allocation; i.e., the optimal set of synopses was first generated and the sizes of
these synopses were then computed using the above heuristics. For each set of synopses I exe-
cuted 1000 instances of each query (using different, uniformly distributed, inputs for the query
parameters, as specified in the benchmark) and used the available synopses to estimate the result
sizes. I measured the average relative error of the result sizes:

Relative Error := 1
n

∑

i=1,...,n

|(exact size(i)−estimated size(i))|
exact size(i)

with n being the number of instances of all queries together. All queries occur with the same
frequency in all experiments. The results of the first experiment are shown in the first three
columns of Table 5.3. In this set of experiments, the technique employed for synopses selection

Selection Memory Original data Skewed data Query locality
Single Uniform 1.98 7.98 10.19

Tuples 1.98 7.42 9.72
Values 1.92 7.62 9.34

Table Uniform 1.46 3.14 4.96
Tuples 1.47 3.17 5.11
Values 1.43 3.47 5.01

Opt Syn Uniform 1.05 1.14 1.04
Values 1.04 1.01 1.27
Tuples 1.03 1.08 1.17
Opt Size 1.04 0.83 0.85

Table 5.3: Experiment I, II and III : The relative error for the original TPC-H data, skewed data
and data with strong locality

had significant impact on the resulting approximation accuracy, whereas the way memory is
allocated only results in negligible changes to the overall error.

5.8.2 Skewed and Correlated Data

As described in Section 4.2, for purposes of approximation it is crucial to preserve the correlation
contained in the data. Unfortunately, the original TPC-H data is generated using uniformly ran-
dom distributions for each attribute, resulting in almost completely uncorrelated data6, which
is not a good benchmark for data approximation techniques. Therefore, I ran a second set of
experiments using the same schema, but with skewed and correlated data. This more realistic
kind of data was generated the following way:

6The exceptions being O.Totalprice (correlated with L.Tax, L.Discout, L.Extendedprice), L.Shipdate
(correlated with O.Orderdate), L.Commitdate (correlated with O.Orderdate) and L.Receiptdate (cor-
related with L.Shipdate).

79



Chapter 5 – Physical Design for Data Synopses

Skew in attribute-value frequencies. The attribute-value frequencies were generated so that
the frequency of the attribute values was Zipf-like distributed; i.e., the frequency of the i-th most
frequent value is proportional to (1/i)θ where θ is a control parameter for the degree of skew. In
this experiment θ = 1 was used.

Correlation between attributes Here the generated data was permuted in order to obtain
the desired correlation. After creating the data according to the TPC-H specification, then
(randomly chosen) permutations were performed on the values of selected attributes in order to
create specific correlations between pairs of attributes. The correlation itself was specified in terms
of the linear correlation coefficient rs as defined in Equation 4.1. For each of the following pairs of
attributes data with a linear correlation coefficient rs ∈ [0.725, 0.775] was created: (L.Shipdate,
L.Quantity), (J2.Brand, J2.Container), (P.Partkey, P.Brand).
The results for this experiment are shown in the fourth column of Table 5.3. Again, the choice of
the synopses-selection technique was most important with regards to the resulting approximation
error: the Opt Syn technique developed in this paper reduced the error by a factor of 7 and 3
compared to the Single and Table heuristics, respectively. In addition, with Opt Syn for synopses
selection, the use of our memory reconciliation technique Opt Size resulted in noticeable further
improvement. So for this more realistic dataset, the combination of Opt Syn and Opt Size
outperformed all competitors by a significant margin.

5.8.3 Query Locality

The above experiments were repeated using a workload that exhibited significant locality, again
using the data exhibiting significant skew and correlation. For this experiment, the input pa-
rameters were generated for the TPC-H queries using a Zipf-like distribution (θ = 0.25), first
executing 1000 queries of each type to obtain the weights wi (see equation 5.2) then used to
construct the synopses. Subsequently, I ran another 1000 queries (with different parameters gen-
erated by the same probability distribution) for which the error was measured. The results for
this experiment are shown in the fifth column of Table 5.3. The trends from the previous ex-
periment can be observed here as well: the synopses-selection technique clearly outperforms the
simpler approaches, with the estimation accuracy further improving when memory reconciliation
is used.
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6 Conclusion

When in Rome, burn it.

- GCU Arbitrary, “The state of the art”

In this thesis, I have developed a new framework for providing query result (size) estimation
based on spline synopses. Unlike most previous approaches, spline synopses provide a unified
approach for a number of different estimation problems, such as accurate estimation for (combi-
nations of) different operators, representation of the correlation present between both the values
of different attributes in one relation and also multidimensional attribute values and their fre-
quencies, and the physical design problem for data synopses. Spline synopses have been designed
based on the set of design choices identified through the study of the design space for data syn-
opses in Chapter 2. They have been shown to cause low overhead, and with regards to estimation
accuracy consistently outperform the best known histogram techniques and offer estimation ac-
curacy to specialized techniques geared towards minimizing the estimation error for a single
operator only.

While a number of important questions has been answered in this work, it has also raised new
issues that may lead to interesting areas of research. In the following, I will briefly discuss some
of these.

Further Pruning through Principal Component Analysis In order to achieve further
reduction on the number of synopsis combinations considered in the solution of the physical
design problem for data synopses, I hope to be able to characterize very weak and very strong
correlation between values of different attributes in compact form, and then prune synopses that
contain the joint data distribution over these attributes. Future work will include exploring the
use of Principal Component Analysis as a dimensionality reduction technique to exploit situations
when two or more attributes are highly correlated or, in the extreme form, functionally dependent.

Context-based Space-Filling Curves and Data Rearrangements The mapping of multi-
dimensional data to a linear domain by the Sierpiński curve is limited in the sense that many
data sets that show a very simple structure in their original domain, do not exhibit this structure
after mapping and thus become much harder to approximate. For example, consider a data
distributions that have a value distribution corresponding to a grid. A solution to this problem
would the the construction of context-based space-filling curves [DCOM00], that adapt themselves
to the given data and are then used in place of the Sierpiński curve.

The tradeoff involved here is the fact that now the shape of the context-based curve has
to be stored in addition to the approximation, thus making this approach only feasible, when
the resulting increase in approximation accuracy is significant. In [DCOM00], where the context-
based curves are used for data compression, the approach did not result in improved compression;
however, the formalism used to describe curves was able to express a very large number of different
curves, thereby resulting in prohibitive storage overhead for the curve description itself. In the
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scenario of data synopses, the context-based curves would only be employed, when the multi-
dimensional distribution of attribute values exhibits a significant amount of structure, which can
the be leveraged in the curve construction. Suitable techniques for the detection of structure
(most importantly self-similarity) and variable-sized encoding of curve descriptions have been
developed in the context of iterated function systems. Combining context-based curves with
the techniques of this thesis may result in a hybrid approach that represents value distribution
partially through linear fitting and partially through encoding of structure information through
a suitable curve.

A closely related area is the study of how data can be rearranged to improve the efficiency
of compression or approximation. While this combination may result in very difficult problems
(for example, concerning compression through run-length encoding, the problem of finding a
data rearrangement that minimizes the number of runs is NP-complete [OR86]), the fact that
the simple process of sorting the data by value frequencies results in a class of histograms [IC93]
optimal for many estimation problems, may lead to a hybrid approach similar to the one discussed
above for spline synopses where the data is initially rearranged, then approximated via spline
synopses and after estimation the reordering reversed.
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7 Summary of this Thesis

Query estimation is vital for a number of applications in the context of database systems, most
importantly query estimation. Techniques used in this scenario must be able to estimate queries
made up of arbitrary combinations of selection, projection, and join operators, use the space
available for synopses storage efficiently (for more memory may then be used for the page cache
and workspace buffers), must be able to represent the correlation present between both values of
different attributes and between attribute values and their frequencies, and provide both query
result and size estimation.

To this end, I have proposed a technique called spline synopses, that is based on independent
and separate approximations of the distributions of attribute values and their frequencies. This
makes it possible to assign more memory to the more difficult or important estimation problem,
which is crucial for overall accuracy, for both types of approximation are relevant for query es-
timation. For both approximation types, efficient algorithms have been developed that compute
the optimal approximation for each domain and also find the best combination of both types of
approximations. To ensure accurate estimation of join queries, an additional class of join syn-
opses has been introduced, which was shown to limit the worst-case join error and improved the
join estimation for experimental data by several orders of magnitude.

Through the use of the Sierpiński curve to map multi-dimensional data to a linearly ordered
domain (where it is approximated) and back (at estimation time), it is possible to extend spline
synopses to represent the correlation between multiple attributes, while still being able to lever-
age their other advantages. The only disadvantage of this approach is a slight increase in the
overhead of query estimation.

I have motivated and defined the physical design problem for data synopses, and developed an
algorithmic approach to its solution. Based on two general observations on the properties of data
synopses it is possible to prune the space of synopsis combinations that need to be considered by
the algorithm significantly. As these properties hold for a wide class of data synopsis techniques
it is further possible to extend the algorithm (within the limits of the base synopses employed) to
other techniques such as histograms. For large instances of the design problem, heuristics exist
that alleviate computational bottlenecks.

For all of the studied subproblems, my algorithms were shown to have small enough overhead
to be used in practice and to be efficient with regard to the tradeoff between used memory and
estimation accuracy. Regarding estimation accuracy, spline synopses consistently outperform the
best known histogram techniques, while offering accuracy competitive with specialized techniques
geared towards range-selectivity estimation only. Regarding the physical design problem for data
synopses, it has been shown that the proposed algorithm significantly increases the estimation
accuracy compared to combinations of various heuristics. This is the first comprehensive solution
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to the physical design problem for data synopses.

In summary, spline synopses satisfy all requirements on query estimation techniques and outper-
form all previously proposed techniques, thereby increasing the flexibility, efficiency, and practi-
cability of query estimation in database systems.
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8 Zusammenfassung der Arbeit

Das akkurate Schätzen der Größe von Datenbankanfragen ist von entscheidender Bedeutung für
diverse Anwendungen im Bereich von Datenbanksystemen, insbesondere bei der Auswahl des
besten Ausführungsplans einer Anfrage. Techniken, die hierfür eingesetzt werden, müssen in der
Lage sein, die Resultate von Anfragen, die aus beliebigen Kombinationen der Operatoren Selek-
tion, Projektion und Join bestehen, schätzen zu können. Weiterhin müssen sie den Speicher, der
für Daten Synopsen reserviert ist, effizient nutzen (so dass mehr Speicher für den Seitencache und
Ausführungspuffer bleibt), in der Lage sein, die Korrelationen zwischen den Werten verschiedener
Attribute innerhalb einer Relation und zwischen verschiedenen Attributwerten und deren Fre-
quenz zu repräsentieren, und akkurate Abschätzungen sowohl für das Resultat einer Anfrage als
auch dessen Größe liefern.

Zu diesem Ziel wurden Spline Synopsen vorgestellt, eine Technik, die auf der separaten und un-
abhängigen Approximation der Verteilung der Attributwerte eines Datensatzes und der Verteilung
der Häufigkeiten dieser Attributwerte basiert. Dieser Ansatz ermöglicht es, anders als bei bish-
erigen Techniken, mehr Speicher für das wichtigerer bzw. schwerere Approximations-Problem zu
verwenden. Da beide Arten der Approximation relevant für die Abschätzung von Anfragen sind,
ist dies essentiell, um hohe Genauigkeit der Abschätzungen zu erzielen. In beiden Fällen war es
möglich, effiziente Algorithmen zur Bestimmung der optimalen Approximation für eine gegebene
gegebenen Verteilung zu formulieren. Um ferner die genaue Abschätzung von Join-Operatoren
zur gewährleisten, wurden zusätzliche Join Synopsen eingeführt, welche den Schätzfehler für
Join-Anfragen sowohl im Bezug auf dessen Obergrenze, als auch in Experimenten mit synthetis-
chen Datenverteilungen effektiv minimieren.

Durch die Benutzung der Sierpiński Kurve war es ferner möglich, mehr-dimensionale Daten-
verteilungen in einen linear geordneten Raum (wo diese dann approximiert werden) und die
resultierende Approximation (zum Zeitpunkt der Abschätzung) wieder in den ursprünglichen
Raum abzubilden. Durch diesen Ansatz konnten Spline Synopsen für die Approximation mehr-
dimensionaler Daten eingesetzt werden, ohne ihre sonstigen Eigenschaften zu verlieren. Der
einzige Nachteil unserer Methode im Vergleich zur Approximation ein-dimensionaler Daten ist
zusätzlicher Rechenaufwand bei der Abschätzung einer Anfrage.

Das Problem, die optimale Kombination von Synopsen für eine gegebene Kombination aus Daten,
Anfragen und verfügbarem Speicher zu bestimmen, wurde zunächst motiviert, und ein algorith-
mischer Ansatz zu dessen Lösung entwickelt. Aufgrund von zwei allgemeinen Eigenschaften von
Daten Synopsen war es möglich, den Suchraum der Kombinationen von Synopsen, welche hierfür
betrachtet werden müssen, stark einzuschränken. Da diese Eigenschaften nicht nur für Spline
Synopsen, sondern für eine Vielzahl von Techniken gelten, ist es möglich, den algorithmischen
Ansatz (im Rahmen der Möglichkeiten der genutzten Daten Synopsen) auf diese Techniken, wie
z.B. Histogramme, auszuweiten. Für große Instanzen des Problems wurden ferner Heuristiken
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vorgeschlagen, welche gezielt den Aufwand für rechenintensive Teilprobleme verringern.

Für alle untersuchten Bereiche konnte gezeigt werden, dass die resultierenden Algorithmen ef-
fizient genug sind, um in der Praxis Verwendung zu finden und zudem den verfügbaren Speicher
effektiv nutzen. Im Bezug auf die Schätzgenauigkeit übertreffen Spline Synopsen durchgehend die
besten bekannten Histogramm-basierten Ansätze und bieten mit auf einzelne Operatoren spezial-
isierten Techniken vergleichbare Resultate. Ferner erhöht die Auswahl der Synopsen durch den
vorgestellten Algorithmus die Schätzgenauigkeit gegenüber der Synopsenauswahl durch Kom-
binationen diverser Heuristiken drastisch. Unsere Arbeit ist die erste umfassende Studie des
Auswahlproblems für Datensynopsen.

Zusammenfassend ist festzuhalten, dass Spline Synopsen alle Anforderungen an Anfrage-
Abschätzung in Datenbanksystemen erfüllen, und in Bezug auf Genauigkeit, Flexibilität und
Effizienz die bisher bekannten Techniken überbieten.
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