
Computationally Secure Information Flow

Dissertation

Zur Erlangung des Grades eines
Doktors der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I
der Universität des Saarlandes

von

Peeter Laud

Saarbrücken
April, 2002

ISBN 9985-78-703-X

Tag des Kolloquiums: 16.09.2002

Dekan: Prof. Dr. Philipp Slusallek

Gutachter: Prof. Dr. Reinhard Wilhelm
Prof. Dr. Birgit Pfitzmann

Vorsitzender: Prof. Dr. Harald Ganzinger

Abstract

This thesis presents a definition and a static program analysis for
secure information flow. The definition of secure information flow is not
based on non-interference, but on the computational independence of
the program’s public outputs from its secret inputs. Such definition al-
lows cryptographic primitives to be gracefully handled, as their security
is usually defined to be only computational, not information-theoretical.

The analysis works on a simple imperative programming language
containing a cryptographic primitive—encryption—as a possible opera-
tion. The analysis captures the intuitive qualities of the (lack of) infor-
mation flow from a plaintext to its corresponding ciphertext. We prove
the analysis correct with respect to the definition of secure information
flow described above. In the proof of correctness we assume that the
encryption primitive hides the identity of plaintexts and keys.

This thesis also considers the case where the identities of plaintexts
and keys are not hidden by encryption, i.e. given two ciphertexts it may
be possible to determine whether the corresponding plaintexts are equal
or not. We also give an analysis for this case, though it is not a whole
program analysis. Namely, we cannot analyse loops. Nevertheless, with
the help of the analysis one can check, whether two formal expressions
(which are equivalent to the output of programs without loops) have
indistinguishable interpretations as bit-strings.

i

ii

Zusammenfassung

In dieser Dissertation wird eine Definition und eine statische Pro-
grammanalyse für sicheren Informationsfluß präsentiert. Die Definition
des sicheren Informationsflusses basiert nicht auf der Unbeeinflußbar-
keit, sondern auf der komplexitätstheoretischen Unabhängigkeit der öf-
fentlichen Ausgaben des Programms von seinen geheimen Eingaben.
Eine solche Definition erlaubt uns, kryptographische Primitiven elegant
zu bearbeiten, weil ihre Sicherheit meistens nur komplexitätstheoretisch
und nicht informationstheoretisch definiert ist.

Die Analyse arbeitet auf einer einfachen imperativen Programmier-
sprache, die eine kryptographische Primitive—Verschlüsselung—als eine
mögliche Operation enthält. Die Analyse gibt die intuitive Eigenschaft
des (nicht vorhandenen) Informationsflusses von einem Klartext zu dem
entsprechenden Schlüsseltext wieder. Wir geben den Korrektheitsbeweis
der Analyse in Bezug auf die obengegebene Definition des sicheren In-
formationflusses. Im Beweis nehmen wir an, daß die Verschlüsselungs-
primitive die Identität der Klartexte und Schlüssel versteckt.

Diese Dissertation behandelt auch den Fall, daß die Verschlüsse-
lungsprimitive die Identität der Klartexte und Schlüssel nicht versteckt,
d.h. daß man aus zwei Schlüsseltexten möglicherweise herausfinden kann,
ob die entsprechenden Klartexte gleich sind oder nicht. Wir geben eine
Analyse auch für diesen Fall an, obwohl sie nicht auf ganze Program-
me anwendbar ist, da wir keine Schleifen analysieren können. Mit Hilfe
dieser Analyse kann man feststellen, ob zwei formale Ausdrücke (die
gleichwertig zu der Ausgabe der Programme ohne Schleifen sind) glei-
che Interpretation als Bitfolgen haben.

iii

iv

Extended Abstract

When is a program safe to run? One aspect of safety is confidentiality, which arises
when the inputs and outputs of the program are partitioned into several different
security classes. Typically, some inputs of the program may be public and some
confidential; some outputs of the program may become public and some remain
private. In this case one wants the program to have secure information flow — one
wants that nothing about the confidential inputs of the program can be deduced
by observing the public outputs.

A standard tool for keeping information confidential is encryption. A ciphertext
must not reveal the corresponding plaintext to someone that does not have the key.
Theoretically, this hiding of information is not absolute (at least when the encryp-
tion key is shorter than the plaintext), though, someone with (unrealistically) high
computing power may be able to uncover the plaintext from only the ciphertext.

In this thesis we present a definition for secure information flow that considers
a program to be secure if no reasonably powerful attacker can learn something
about the secret inputs of the program by only observing its public outputs. Such
computational security contrasts with most of definitions proposed earlier, which
assert information-theoretical security, requiring that no attacker at all (irrespective
of its power) can deduce something about the secret inputs from public outputs.

Cryptology is the branch of computer science where the definitions stating the
inability of reasonably powerful adversaries are common. Our definition of secure
information flow also has cryptographic nature. The main notion used in the defini-
tion is that of independence. Classically, two random events are independent if the
probability that the first one happens is the same no matter whether the second one
has happened or not. When we are talking about the events happening, then we
always assume that it is easy to figure out, whether the event has indeed happened
or not. For example, we do not consider events like “formula X is satsifiable”, where
X is a random formula of the propositional calculus.

In computational independence, there may be a difference of the probabilities
of the first event happening, depending on whether the second event happens or
not, but this difference must be negligible. If we had not required the outcomes
of events to be explicit, then the definition of computational independence would
have been more complex (the negligibility of the difference of probabilities would
still have been sufficient, but no longer necessary). The notion of independence
also generalises to the case, where the first and the second event can have more

v

outcomes than just two (either happening or not). We define a program to have
computationally secure information flow, if its public outputs are independent of
its secret inputs.

In this thesis we also present a static program analysis for secure information
flow. The concrete semantics of the program is defined to be a mapping over the
probability distributions of program states — the program transforms the proba-
bility distribution of its inputs to the probability distribution of its outputs. We
abstract the probability distributions over program states by pairs of sets of pro-
gram variables — if (X, Y), where X and Y are sets of variables, belongs to the
abstraction of a distribution over program states, then the values of variables in X
are independent from the values of variables in Y in this distribution. The abstract
semantics (i.e. the analysis) is a mapping over the set of pairs of sets of program
variables. Given an abstraction of the probability distribution of program’s inputs,
the abstract semantics maps it to an abstraction of the probability distribution of
the program’s outputs.

Note that formally there can be several different abstractions of the same prob-
ability distribution — if the values of the variables in X are independent of the
values of the variables in Y , then the pair (X, Y) can either belong or not belong
to the abstraction of that distribution. On the other hand, if the values of the
variables in X are not independent from the values of the variables in Y , then the
pair (X, Y) certainly cannot belong to the abstraction of that distribution. We see
that there exists a best abstraction of a distribution — it is the abstraction that
contains all pairs (X, Y) that it can correctly contain. “Program analysis is allowed
to err on the safe side” — given the best abstraction of the probability distribution
of the program’s inputs, the abstract semantics maps it to an abstraction of the
probability distribution of the program’s outputs, but not necessarily to the best
abstraction. Finding the best abstraction of the distribution of program’s outputs
is in general uncomputable, therefore we have to be content with a possibly sub-
optimal abstraction. Now the aim is to get an abstraction that is still “good enough”
and we believe that the analysis that we have devised gives such an abstraction.

This analysis assumes that the encryption operation satisfies some rather strong
(but still totally realistic) security properties. Namely, given two ciphertexts it must
be impossible to find out whether their underlying plaintext is the same or not (note
that for satisfying this property, the encryption operation cannot be deterministic)
and whether they are created with the same key or not. The encryption operations
with such properties are usually constructed from simpler, “primitive” operations
that themselves satisfy some weaker security properties. Mostly, these primitive op-
erations are considered to be pseudorandom permutations, i.e. they are assumed to
look like a uniformly chosen random permutation of the message space for someone
with reasonable computing power.

In this thesis we also present an analysis for the case, where the encryption op-
eration is only a pseudorandom operation and not something with stronger security
properties. The analysis is not a full program analysis, we cannot analyse loops.
Similarly to the previous analysis, this one gives us information about the indepen-

vi

dence of certain sets of variables from other ones. For the purposes of comparing
our results with some earlier ones, we have presented the analysed structure not
as a simple programming language, but as a formal language of expressions. For
the same reason we have added to our analysis the capability to show that two
formal expressions have the same semantics. These earlier results are still quite
different from ours, mainly because they assume that the encryption operation sat-
isfies stronger security properties (same properties that we described before). We
are not aware of any other attempt to automate the analysis of systems containing
pseudorandom permutations.

vii

viii

Ausführliche Zusammenfassung

Wann ist ein Programm sicher auszuführen? Ein Aspekt der Sicherheit ist Vertrau-
lichkeit, die sich daraus ergibt, daß die Eingaben und Ausgaben des Programms in
verschiedene Sicherheitsklassen aufgeteilt werden. Typischerweise sind einige Einga-
ben des Programms vertraulich und andere nicht; einige Ausgaben des Programms
können öffentlich werden, andere bleiben aber geheim. In diesem Fall möchte man
garantieren, daß das Programm sicheren Informationsfluß hat — man möchte, daß
nichts über die vertraulichen Eingaben ableitbar ist, wenn man nur die öffentlichen
Ausgaben des Programms kennt.

Verschlüsselung ist eine Standardoperation um Information geheim zu halten.
Der Schlüsseltext darf jemandem, der den Schlüssel nicht kennt, den entsprechenden
Klartext nicht verraten. Dieses Verstecken der Information ist theoretisch noch nicht
absolut (wenigstens wenn der Schlüssel kürzer als der Klartext ist) — jemand der
über eine (unrealistisch) hohe Rechnerleistung verfügt, kann den Klartext nur aus
dem Schlüsseltext finden.

Wir geben in dieser Dissertation eine Definition für sicheren Informationsfluss.
Ein Programm gilt dann als sicher, wenn kein vernünftig leistungsfähiger Angreifer
aus den öffentlichen Ausgaben des Programms etwas über vertrauliche Eingaben
ableiten kann. Solche komplexitätstheoretische Definition steht im Kontrast zu den
meisten früher vorgeschlagenen Definitionen, die die informationstheoretische Si-
cherheit behaupten. Sie erfordern, daß überhaupt kein Angreifer (ungeachtet von
seiner Leistungsfähigkeit) etwas über vertrauliche Eingaben aus den öffentlichen
Ausgaben ableiten kann.

In der Kryptologie sind Aussagen über die Unfähigkeit eines vernünftig lei-
stungsfähigen Angreifers weit verbreitet. Unsere Definition des sicheren Informati-
onsflusses hat auch diesen kryptographischen Charakter. Der Hauptbegriff, der in
der Definition benutzt wird, ist die Unabhängigkeit. Im klassischen Fall sagt man,
daß zwei Ereignisse unabhängig sind, wenn die Wahrscheinlichkeit, daß das erste
vorkommt, immer gleich ist, ungeachtet davon, ob das zweite Ereignis vorgekommen
ist oder nicht. Wenn wir über die Vorkommen der Ereignisse reden, dann nehmen
wir immer an, daß es einfach auszufinden ist, ob das jeweilige Ereignis wirklich
vorgekommen ist oder nicht. Zum Beispiel, das Ereignis

”
Formel X ist erfüllbar“,

wo X eine zufällige aussagenlogische Formel ist, betrachten wir nicht.

Bei der komplexitätstheoretischen Unabhängigkeit dürfen die Wahrscheinlich-
keiten, daß das erste Ereignis vorkommt, wenn das zweite vorgekommen ist, und

ix

daß das erste Ereignis vorkommt, wenn das zweite nicht vorgekommen ist, auch un-
terschiedlich sein, aber dieser Unterschied darf nur vernachlässigbar klein sein. Hät-
ten wir nicht erfordert, daß die Auskommen der Ereignisse explizit sind, dann wäre
die Definition der komplexitätstheoretischen Unabhängigkeit komplizierter gewe-
sen (die Vernachlässigbarkeit des Unterschieds der Wahrscheinlichkeiten wäre noch
immer hinreichend gewesen, aber nicht mehr notwendig). Die Unabhängigkeit läßt
sich auch für den Fall verallgemeinern, in dem die Ereignisse mehr als zwei (ent-
weder kommt vor oder kommt nicht vor) mögliche Endergebnisse haben können.
Wir haben definiert, daß ein Programm sicheren Informationsfluß hat, wenn seine
öffentliche Ausgaben von seinen vertraulichen Angaben unabhängig sind.

Wir legen in dieser Dissertation auch eine statische Programmanalyse für si-
cheren Informationsfluß vor. Die konkrete Semantik des Programms wird als eine
Abbildung über die Menge der Wahrscheinlichkeitsverteilungen über Programm-
zustände definiert — das Programm wandelt die Verteilung seiner Eingaben in
die Verteilung seiner Ausgaben um. Wir abstrahieren die Verteilungen über Pro-
grammzustände mit Hilfe von Paaren von Mengen der Programmvariablen — falls
ein Paar (X, Y) von Variablenmengen zu der Abstraktion einer Verteilung über
Programmzustände gehört, dann bedeutet das, daß in dieser Verteilung die Werte
der Variablen in X unabhängig von Werten der Variablen in Y sind. Die abstrak-
te Semantik (d.h. die Analyse) ist eine Abbildung über die Menge der Paare von
Mengen der Programmvariablen. Die abstrakte Semantik wandelt eine Abstrakti-
on der Verteilung der Programmeingaben in eine Abstraktion der Verteilung der
Programmausgaben um.

Man muß beachten, daß eine Wahrscheinlichkeitsverteilung im allgemeinen meh-
rere Abstraktionen haben kann — wenn die Werte der Variablen in X unabhängig
von den Werten der Variablen in Y sind, darf das Paar (X, Y) zu der Abstraktion
gehören, aber es darf auch außerhalb der Menge, die die Abstraktion der Vertei-
lung ist, bleiben. Andererseits darf das Paar (X, Y) keinesfalls zu der Abstraktion
dieser Verteilung gehören, wenn die Werte der Variablen in X nicht unabhängig
von den Werten der Variablen in Y sind. Deshalb sehen wir, daß es eine beste
Abstraktion einer Verteilung gibt — diese Abstraktion enthält alle solche Paare
(X, Y), die sie enthalten darf. “Die Programmanalyse darf auf der sicheren Seite
irren” — angewendet auf die beste Abstraktion der Wahrscheinlichkeitsverteilung
der Programmeingaben muß die abstrakte Semantik eine Abstraktion der Wahr-
scheinlichkeitsverteilung der Programmausgaben liefern, aber nicht unbedingt die
beste Abstraktion. Das Problem, die beste Abstraktion der Verteilung zu finden, ist
im allgemeinen unberechenbar, deshalb muß man mit einer möglicherweise subopti-
malen Abstraktion zufrieden sein. Das Ziel hier ist, eine Abstraktion zu bekommen,
die “gut genug” ist. Wir glauben, daß unsere Analyse eine solche Abstraktion liefert.

Bei dieser Analyse nehmen wir an, daß die Verschlüsselungsoperation einige
ziemlich starke (aber immer noch völlig realistische) Sicherheitsbedingungen er-
füllt. Betrachtet man zwei Schlüsseltexte, so muß es unmöglich sein festzustellen,
ob die zu Grunde liegenden Klartexte gleich sind oder nicht (beachten wir, daß
keine Verschlüsselungsprimitive, die diese Bedingung erfüllt, deterministisch sein

x

kann), und ob die Schlüssel, die man beim Erzeugen dieser Schlüsseltexte benutzt
hat, gleich sind oder nicht. Solche Verschlüsselungsoperationen werden meistens aus
einfacheren, “primitiven”Operationen, die gewisse schwächere Sicherheitsbedingun-
gen erfüllen, konstruiert. Meistens nimmt man an, daß diese primitiven Operatio-
nen Pseudozufallspermutationen sind, d.h. für einen Betrachter, der nur über eine
realistische Rechnerleistung verfügt, sollen sie wie zufällig, uniform gewählte Per-
mutationen der Textmenge aussehen.

In dieser Dissertation legen wir desweiteren eine Analyse vor, die den Fall be-
trachtet, wo die Verschlüsselungsoperation nur eine Pseudozufallspermutation ist
und keine stärkeren Sicherheitsbedingungen erfüllt. Diese Analyse ist keine vollstän-
dige Analyse, da wir Schleifen nicht analysieren können. Diese Analyse, wie auch
die vorher beschriebene, gibt uns Informationen über die Unabhängigkeit bestimm-
ter Variablenmengen von anderen. Wir haben den analysierten Formalismus nicht
als Programmiersprache, sondern als formale Sprache der Ausdrücke dargestellt,
weil wir unsere Ergebnisse mit einigen früher veröffentlichten vergleichen wollen.
Deshalb haben wir unserer Analyse auch die Fähigkeit gegeben, zu zeigen, daß zwei
formale Ausdrücke gleiche Semantik haben. Diese früher veröffentlichten Ergebnis-
se sind jedoch ziemlich unterschiedlich von unseren, hauptsächlich weil sie stärkere
Sicherheitsbedingungen (diejenigen die wir vorher beschrieben haben) von der Ver-
schlüsselungsoperation erfordern. Uns sind keine weitere Versuche bekannt, die die
Analyse der Pseudozufallspermutationen enthaltenden Systeme automatisieren.

xi

xii

Acknowledgements

I would like to thank my advisor Prof. Reinhard Wilhelm for inviting me to Saar-
brücken, introducing me to the topic of language-based security and letting me to
pursue it on my own. I am also thankful to him for proofreading this thesis and for
numerous suggestions for better presentation of the material.

Prof. Birgit Pfitzmann has also suggested numerous improvements to this thesis.
I thank her for them.

Christian Probst has proofread the parts of this thesis that are in German.
Danke schön.

I am thankful to German Science Foundation for supporting the research pre-
sented in this thesis by a graduate fellowship under the graduate studies program
“Quality Guarantees for Computer Systems”.

In the implementation of the analysis presented in this thesis I have used some
third-party software. Namely, I have used a library for binary decision diagrams
provided by the model-checking group1 at Carnegie-Mellon University. The graph
visualisation package aiSee2 by AbsInt Angewandte Informatik GmbH is used to
show the results produced by the implementation. I am grateful to both of them.

Finally, I thank my co-workers for the pleasant working atmosphere and my
parents, relatives and girlfriend Monica for their support and patience.

1http://www.cs.cmu.edu/~modelcheck
2http://www.aisee.com

xiii

xiv

Contents

1 Introduction 1
1.1 Secure Information Flow . 2
1.2 Encryption in Programs . 3
1.3 Our Contribution . 4
1.4 Overview of the Thesis . 5

2 Preliminaries 7
2.1 Domains . 8

2.1.1 Partially Ordered Sets . 8
2.1.2 Probability Distributions . 12

2.2 Cryptography . 13
2.2.1 Basics . 14
2.2.2 Indistinguishability . 15
2.2.3 Encryption . 20

3 Computational Security 27
3.1 Syntax and Semantics of the Prog. Language 28

3.1.1 Syntax . 28
3.1.2 Denotational Semantics . 28
3.1.3 An Alternative Formulation for Loops 34

3.2 Security Definition . 36
3.2.1 “Terminating” Programs . 36
3.2.2 Security Definitions . 37

3.3 Discussion . 40

4 Analysis 43
4.1 Abstraction of Distributions . 43

4.1.1 Independence . 44
4.1.2 Keys . 45
4.1.3 Discussion . 45

4.2 Abstract Semantics . 47
4.2.1 Assignments . 47
4.2.2 Control Flow . 50
4.2.3 Discussion . 55

xv

4.3 Shape of the Correctness Proof . 56
4.3.1 Proof Idea . 57
4.3.2 Roadmap . 58

4.4 Structures for the Proof . 59
4.4.1 Unrolling the Program . 59
4.4.2 The Flowchart of an Unrolled Program 66
4.4.3 Configurations of a Flowchart 74
4.4.4 Known and Unknown Values in a Flowchart 80
4.4.5 Same Choices at Both Sides 87
4.4.6 The Interpretation [[2ChartP;X,Y , C]] — Final Shape 91

4.5 Changing the Structures . 95
4.5.1 Ways for Turning One Configuration to Another 95
4.5.2 Changing the Configurations in ConfL

P;X,Y 101

4.5.3 Paths between ConfL
P;X,Y and ConfR

P;X,Y 114
4.5.4 Short Paths . 115

4.6 The Attacker(s) . 117
4.7 Correctness of the Abstraction of Keys 118

5 Implementation 121
5.1 Formulation as Data Flow Analysis 121

5.1.1 Discussion . 127
5.2 Simplified Abstract Domain . 127
5.3 Implementing Transfer Functions 128

5.3.1 Transfer Functions for Assignments 129
5.3.2 Transfer Function for merges 131

5.4 An Example . 134
5.5 Putting [Lau01] to Context . 137

6 Pseudorandom Permutations 141
6.1 Formal Expressions . 143
6.2 Interpretation of Expressions . 144
6.3 Explicit Interpretation of Constructors 145

6.3.1 The Equivalence Relation ∼= 146
6.3.2 Proof of Indistinguishability 148

6.4 More Operators . 152
6.5 Analysis . 153

6.5.1 The Language of Claims . 154
6.5.2 General Rules . 156
6.5.3 Rules for Encryption . 159
6.5.4 Rules for Group Operations 160
6.5.5 Special Rules . 161

6.6 Examples . 162
6.6.1 Block-Ciphers’ Modes of Operation 163
6.6.2 Security of the CBC-Mode 164

xvi

6.6.3 Security of the CTR-Mode 165
6.7 Discussion . 168

7 Related Work 171
7.1 Secure Information Flow . 171
7.2 Probabilistic Noninterference . 172
7.3 Two Aspects of Cryptography . 173
7.4 Faithfully Handling Cryptographic Primitives 175

8 Conclusions and Future Work 177
8.1 Using the Program Structure . 177
8.2 Future Work . 178

8.2.1 Other Cryptographic Primitives 178
8.2.2 Approximating Fixed Points 179
8.2.3 Active Adversaries . 179

Bibliography 181

Index of Notation 187
Nonalphabetic . 187
Alphabetic . 188

Latin . 188
Greek . 192

xvii

xviii

Chapter 1

Introduction

Security is an important aspect of computer systems. In broad terms, a system is
secure if it does not have any undesired functionality.

Security of a system has two basic aspects:

Confidentiality. The system does not publish something about the secret part of
its local state. Typical examples of the contents of the secret part of the local
state are passwords or personal data. Hence the functionality for reading
secret data over the public interface of the system is absent.

Integrity. The system does not allow its state to be changed in an unauthorised
manner. A typical example of the state that has to be changed with care
is the balance of various accounts. Hence, the system offers only limited
functionality for changing that part of its state.

Classically, availability is considered to be the third basic aspect of security. Avail-
ability means, that the normal operation of the system must be hard to disrupt.
Obviously, any reasonable system must have availability. However, availability is
functionality, not the absence of functionality. Therefore we advocate not classify-
ing availability as an aspect of security.

In this thesis we consider a system that contains a computer that has a local
storage and an interface to an outside network, and a program running on that
computer. This program may access both the local storage and the network.

In this setup, we may either have written the program ourselves or have obtained
it from a third party. There are a lot of such parties that offer programs. It is
impossible for us to trust them all — we just do not have enough resources to
convince ourselves of the trustworthiness of every single source of software that we
execute on our computer. Often, we do not even notice that we have obtained a
program that may be running on our computer — executability is becoming more
and more ubiquitous, all kinds of document formats allow for executable content.

In the previous paragraph, trustworthiness may mean two different things —
goodwill and competence. Therefore it is not unthinkable to treat even ourselves
untrusted as the source of programs.

1

2 CHAPTER 1. INTRODUCTION

Running a program received from an untrusted source is always a security risk
as the program may attempt to use the resources of its host computer in an unau-
thorised way.

Security is a complex matter and requires covering all of its aspects. This thesis
only deals with the confidentiality aspect of system security. In a general setting,
this would not be enough to convince oneself that the system is secure. However,
confidentiality is sufficient for security, if the attackers of the system are passive.
A passive attacker can observe the public output of the system, but it cannot
influence the inputs of the system. In our setup, an attacker is some entity that
is connected to the network. The public outputs of the system are the data that
the program writes to the network. The passivity of the attacker means, that it
does not influence what the program reads from the network. Alternatively, it may
mean that the program does not read anything from the network.

1.1 Secure Information Flow

The topic of this thesis is secure information flow. A program is said to have secure
information flow, if the data that it makes public (for example, by writing it to the
network) do not depend on the secret input data of this program (for example, the
secret data on the local storage). Secure information flow is a particularly strong
form of confidentiality. If a program has secure information flow, then it is secure
against passive adversaries.

If we are going to run a program obtained from an untrusted source, then we
must put checks on it. The checks can be done either during or before the execution.

Dynamic checking — checks during the execution — means that the program
is enclosed in some kind of a sandbox that controls the accesses of the program to
the local storage and the network. Probably the most known sandbox is the Java
Virtual Machine (JVM) [LY99]. In the default setting, this sandbox does not allow
the program to access the local storage at all.

The JVM allows the user to authorise the program to access specific files on
the local storage in a specific way (either read, write, rename,. . .). If we give
the program extra privileges, then we must have already convinced ourselves in the
trustworthiness of the supplier of the program. Mechanisms of assigning extra trust
to the programs and possible meanings of such assignments are not the topic of this
thesis.

Entirely preventing the program to access secret data is a rather coarse-grained
approach. A useful refinement of the sandbox is its history-sensitivity. For example,
the sandbox could allow the program to access secret data, but after the program
has accessed it, forbid any further network activity. If we consider the traces of
the program — possible sequences of successive states and actions of the computer
executing the program — then the sandbox would only allow the program to have
such traces that have no network writes after reads of secret data. The enforcement
mechanisms for allowing only “good” traces have been researched by Schneider

1.2. ENCRYPTION IN PROGRAMS 3

[Sch00]. It turns out that there are certain constraints on the subset of the set of
traces that can serve as the set of “good” traces.

The checks that a sandbox makes for ensuring confidentiality could be seen as
instances of Bell-LaPadula’s “no read up” and “no write down” rules [Gol99]. They
rule out certain flows of information either by preventing the computer to access
secret data or by preventing it to publish the secret data that it has already read.

The absence of certain information flows is a property of program traces. Vol-
pano [Vol99] has argued that confidentiality is not really a property of program
traces but a relation over them — all possible traces must look “the same” to an
external observer. Indeed, a program that tries to write something to the network
after having read secret data may still preserve confidentiality, if it always writes
the same data to the network, no matter what the secret data was. Thus a method
that ensures the absence of certain information flows must label some programs
falsely insecure.

In some sense, thinking about confidentiality as a relation over program states
makes it harder to convince ourselves about the security of the program. Namely,
while one may attempt to test, whether all program traces have a certain property
(of not having certain information flows), it is impossible to test, whether all pro-
gram traces look “the same”. Instead of testing, we must do something different,
for example prove the similarity of all program traces.

Our approach has been to design static analyses for checking the observable
sameness of program traces. Basically, it is an attempt to automatically derive
a proof that all possible traces look the same. A nice property of this approach
(designing static analyses) is, that analysing a program is a completely automatic
process. The approach has been pioneered by Denning [Den76, DD77].

Another, related approach for proving the program traces similar is to use typ-
ings [VSI96, ABHR99]. The types are assigned to program variables and also to
program fragments; these types are essentially the same as the security classes. The
type-theoretical approach usually gives simpler checking procedures than static pro-
gram analysis. They may be somewhat inadequate for our purposes.

1.2 Encryption in Programs

A standard way to ensure the confidentiality of certain data is to employ encryption.
The program analysis must be able to handle the encryption operation gracefully
— on the one hand, it must record that a plaintext is recoverable from the corre-
sponding ciphertext and the key, on the other hand, it should note that having the
ciphertext alone is generally not enough to recover the plaintext. An analysis with-
out the last property cannot expect to deliver interesting results about programs
that make significant use of encryption.

What is an encryption, actually? Two different approaches to describe the
nature of cryptographic operations have evolved over the years. One of them is
the Dolev-Yao model [DY83, BAN90, AG99], where the cryptographic operations

4 CHAPTER 1. INTRODUCTION

are operators on formal expressions; the security properties of the operations are
given by rules for constructing and destructing the expressions. For example, one
may specify that for destructing a ciphertext (and for obtaining the underlying
plaintext), one needs to know the key that was used by constructing that ciphertext.
The other approach models messages as bit-strings and cryptographic operations
as probabilistic functions over bit-strings. The security properties of the operations
are expressed in terms of success probabilities of resource constrained adversaries.
Therefore the protection provided by encryption is modelled to be not absolute,
but only good enough against realistic attackers1.

The first approach is easier to argue about and lends itself more readily to
automatic tool support — reasoning about formal expressions is easier that about
the maximal success probabilities of adversaries. The second approach is more
natural — in real world, the messages are bit-strings, there are no formal messages
in real world. One has to make a (greater) leap of faith when translating the results
obtained by the first approach to the real world.

The approach that we have chosen here is the second, computational approach.
It has the following advantages:

• It is closer to the real world.

• It gives us simpler semantics and security definitions.

Indeed, we have to give semantics for whole programs, these programs have richer
structure than formal expressions. It is simple to define that programs work on
bit-strings, it is not so simple to define that they work on formal expressions. If we
had chosen the first, computational approach, then we would have had to introduce
other, non-cryptographic, operations to the language of formal expressions. We
also would have had to define, when two formal messages are equal (beyond the
syntactic equality). And then we would have had the question, how well these
definitions model the real world.

Generally, these two approaches seem rather different. There exist some results,
though, hinting that they may indeed be equivalent [AR00, AJ01]. So far, their
results only hold for the case where the adversary is passive and the size of messages
is bounded. This actually makes their work quite comparable with ours, as we also
consider only passive adversaries. We hope that our work will also advance the
understanding of the equivalence of formal and computational approaches.

1.3 Our Contribution

In this thesis we give a definition of secure information flow that corresponds to the
assumption that the attackers of the system, trying to find out something about
the program’s secret inputs from its public outputs, only have reasonable resources

1Indeed, one can show that if the encryption key is shorter than the plaintext, then a powerful
enough attacker is able to recover something about the plaintext from the ciphertext only.

1.4. OVERVIEW OF THE THESIS 5

at their disposal. Such a definition is necessary for arguing about encryption as
an operation preserving confidentiality. Usually, secure information flow is defined
so, that no attacker at all, irregardless of its power, can deduce something about
the secret inputs of the program from its public outputs. A very powerful attacker
can use brute force to find the encryption key (again, we assume that the key is
shorter than the plaintext that is encrypted with it), therefore the encryption is
not a secure operation for such a definition of security.

The main contribution of this thesis is a program analysis for secure informa-
tion flow, where the definition of secure information flow assumes resource-bound
adversaries. The program analysis is designed for a simple imperative programming
language. A possible operation in the language is the encryption x := Enc(k, y),
which assigns to the variable x the ciphertext corresponding to the plaintext y un-
der the key k. The analysis handles this operation in a special way, reflecting that
one cannot find anything about the value of y from the value of x alone, the key is
also necessary. We also show how to implement this analysis.

The proof of correctness of the analysis unfortunately cannot use standard re-
sults from the theory of abstract interpretation. This is caused by the incompatibil-
ity of the mathematical structures necessary for defining the semantics of programs
and the structures for defining the security. We have devised an ad-hoc proof. The
problems with the proof are likely to reappear when we are going to also consider
active adversaries. We think that our proof may be instructive for the devising of
future proofs of analyses for stronger security properties.

The security requirements for the encryption operation that are necessary for
the analysis presented in this thesis and also in earlier papers are rather strong (but
nonetheless realistic). It is demanded that the encryption operation be repetition
and which-key concealing [AR00], i.e. it must hide the identity of both plaintexts
and keys. Such operations are usually constructed from simpler operations that have
weaker security properties. The “primitive” operations (i.e. operations that cannot
be considered to be constructed from simpler ones) are usually only pseudorandom
permutations. In this thesis we give an analysis that is correct for the case where the
encryption is a pseudorandom permutation. It is not a whole program analysis, we
cannot analyse loops. As far as we know, this is the first attempt to automate the
analysis of systems where the encryption operation is a pseudorandom permutation.

1.4 Overview of the Thesis

In Chapter 2 we give the necessary notation and preliminaries about the complete
partial orders, which are needed for defining the semantics of the programming lan-
guage, and about the complexity-theoretic foundations of cryptography. Cryptog-
raphy is needed for giving the security definition. Also, the proofs of correctness of
the analyses are mostly cryptographic. Chapter 3 gives the syntax and semantics of
our programming language and also gives the definition of secure information flow.
Chapter 4 gives the program analysis and proves it correct. Chapter 5 describes

6 CHAPTER 1. INTRODUCTION

our implementation of this analysis. In Chapter 6 we deal with pseudorandom
permutations. As we said before, we cannot analyse loops, therefore we introduce
the language of formal expressions that correspond to programs without loops.
We define the computational interpretation of these expressions, this interpretation
corresponds to the semantics of programs. The main result of this chapter is an
analysis that allows to check, whether the interpretations of two formal expressions
are indistinguishable or not. Chapter 7 reviews the related work from the areas
of secure information flow and relating the two approaches to cryptography. Fi-
nally, in Chapter 8 we make some concluding remarks and suggest future research
directions.

Chapter 2

Preliminaries

This chapter gives the notation used in the rest of the thesis and introduces the
concepts and basic results that we use.

In Sec. 2.1.1 we start with basic definitions and results about partially ordered
sets. We recall the definition of partial orders and present several instances of par-
tially ordered sets that we are going to use in the rest of the thesis. We then proceed
to define complete partial orders which play a big role in defining the semantics of
programming languages. We define properties of functions over (complete) partial
orders — monotonicity and continuity. We finish this section by defining fixed
points of functions and by presenting some sufficient conditions for their existence.

In Sec. 2.1.2 we present probability distributions over sets and the necessary
notations to translate between elements of sets and probability distributions over
sets. These notations also include tools to “lift” functions between sets to functions
between sets of probability distributions.

Sec. 2.2 gives the necessary definitions from the complexity-theoretical founda-
tions of cryptography. In this thesis, the encryption primitives are used as black
boxes, we only use the fact that they satisfy certain security definitions. The task of
this section is to present these definitions and also some reductions between them.

The security definitions are asymptotic in kind. They state that the success
probability of any attacker rapidly approaches zero, as the complexity of the sys-
tem increases. Here the measure of system complexity is the length of the secret
keys that the system uses. Because of using the asymptotics, we assume that the
complexity of the system may be arbitrarily increased.

In Sec. 2.2.1 we fix the notations that we use and give some basic definitions.
We clarify, what can be an argument to an algorithm. We also define the notions
of polynomial time and polynomial-time computability.

In Sec. 2.2.2 we define the notion of indistinguishability of families of proba-
bility distributions. This is a very general notion, most subsequent definitions can
be stated as indistinguishability of certain families of distributions. Based on this
definition, we give complexity-theoretic definition of independence of random vari-
ables. It is used by the analyses in Chapters 4 and 6. We finish this section by
giving another, seemingly stronger definition of indistinguishability, mostly for the

7

8 CHAPTER 2. PRELIMINARIES

purpose to show the ideas behind the proof of equivalence of two definitions. The
proof of correctness for the analysis presented in Chapter 4, although much more
complex, has the same ideas behind it.

Sec. 2.2.3 deals with encryption. It defines the encryption system and gives
several different security definitions for it. We define, when an encryption system is
a pseudorandom permutation or a pseudorandom function and show that these two
notions are actually equivalent. Being a pseudorandom permutation is all that we
require from the encryption system for the analysis in Chapter 6. The analysis in
Chapter 4 needs more — it is necessary for the encryption to also hide the identities
of the messages that are encrypted and the identities of the keys that are used. We
give the definitions covering these notions in the end of Sec. 2.2.3.

2.1 Domains

We let N denote the set of nonnegative integers {0, 1, 2, 3, . . .}, Z denote the set of
integers {. . . ,−2,−1, 0, 1, 2, . . .} and B denote the set of booleans {true, false}. Let
Pol(Z) denote the set of polynomials with integer coefficients.

For a family of sets {Xn}n∈N, let
∏

n∈N
Xn denote their Cartesian product —

the set of countable tuples, where the n-th component has the type Xn. For f :∏
n∈N

(Xn → Yn) and x ∈ Xi (we assume that the index i is clear from the context)
let f(x) ∈ Yi denote the quantity fi(x).

For a function f : X → X we let f 0 denote the identity function on X and for
each n ∈ N denote fn+1 = f ◦ fn.

For a function f : X → Y and X ′ ⊆ X we let f |X′ denote the contraction of f
to X ′ — f |X′ is a function from X ′ to Y , such that f |X′(x) = f(x) for all x ∈ X ′.

2.1.1 Partially Ordered Sets

Let X be a set. A partial order on X is a relation ≤⊆ X × X that is reflexive
(x ≤ x for all x ∈ X), antisymmetric (x ≤ y & y ≤ x =⇒ x = y for all x, y ∈ X)
and transitive (x ≤ y & y ≤ z =⇒ x ≤ z for all x, y, z ∈ X). A set X together
with a partial order ≤ is called a partially ordered set.

The reverse of a partial order ≤⊆ X ×X is the order ≥, where x ≥ y iff y ≤ x.
For a partially ordered set X let R(X) denote the same set with reversed order.

The smallest possible partial order on X is the diagonal relation, where x ≤ y
iff x = y. We can consider each set as a partially ordered set, if we assume that the
order on the set is the diagonal relation (unless specified otherwise). If the order
on the set X is the diagonal relation, then we call the set X unordered.

X⊥ denotes the set X]{⊥} (here] denotes the disjoint union). X⊥ is partially
ordered — ⊥ is the smallest element and the other elements are ordered as in X.

The Cartesian product X × Y of partially ordered sets X and Y is again a
partially ordered set. For all x1, x2 ∈ X and y1, y2 ∈ Y define (x1, y1) ≤ (x2, y2)
iff x1 ≤ x2 and y1 ≤ y2. Similarly, if Y is a partially ordered set, then the set of

2.1. DOMAINS 9

functions X → Y is a partially ordered set, too. The order on X → Y is defined
pointwise: for f1, f2 : X → Y define f1 ≤ f2 iff f1(x) ≤ f2(x) for all x ∈ X.

For a set X, the set of all of its subsets is denoted by P(X). The set P(X)
is partially ordered, the order is given by the subset inclusion. If X is partially
ordered and Y ⊆ X, then Y is downwards [resp. upwards] closed, iff x ∈ Y and
x′ ≤ x [resp. x′ ≥ x] imply x′ ∈ Y for all x, x′ ∈ X. The set of all downwards [resp.
upwards] closed subsets of X is denoted by PL(X) [resp. PU(X)].

Let X be a set and Π ⊂ P(X). Then Π is a partition of X if for each x ∈ X
there exists exactly one X ′ ∈ Π, such that x ∈ X ′. The set of all partitions of
X is denoted by Parts(X). Note that Parts(∅) contains one element Π∅ — the
partition with no parts. I.e. Π∅ = ∅ and Parts(∅) = {∅}.

Let Π1, Π2 be partitions of the set X. We say that Π1 is finer than Π2 iff for
each X ′ ∈ Π1 there exists X ′′ ∈ Π2, such that X ′ ⊆ X ′′. Equivalently, for each two
elements x, y ∈ X the following holds: if there exists a part in Π1 that contains
both x and y then there also exists a part in Π2 that contains them both. The set
Parts(X) together with the relation “finer” is a partially ordered set.

Let X be a partially ordered set and let X ′ ⊆ X. We say that a ∈ X is an
upper bound of X ′, if a ≥ x for all x ∈ X ′. The least upper bound of X ′, denoted∨

X ′, if it exists, is an upper bound of X ′, such that
∨

X ′ ≤ a for each a that is
an upper bound of X ′. The lower bounds and greatest lower bound (denoted

∧
X ′)

of a set X ′ are defined dually — by working on R(X) instead of X.
If X ′ = {x, y} is a two-element set then we denote

∨
X ′ also by x∨ y and

∧
X ′

also by x ∧ y. The partially ordered set X is a lattice if all its two-element subsets
(and by induction, all finite subsets) have the least upper bound and the greatest
lower bound.

A chain of a partially ordered set X is a set X ′ ∈ X, such that for each x, y ∈ X ′,
either x ≤ y or y ≤ x holds. A partially ordered set X has finite height, if all its
chains are finite sets and there is an upper bound on their cardinality. This upper
bound is called the height of X and denoted h(X). The following results clearly
hold about h.

Lemma 2.1. Let X, Y be partially ordered sets with finite height. Let Z be a finite
set. Then

• h(X⊥) = h(X) + 1;

• h(X × Y) = h(X) + h(Y)− 1;

• h(Parts(Z)) = |Z|, if Z is not empty;

• h(Parts(∅)) = 1;

• h(P(Z)) = |Z|+ 1.

If X is a partial order and X ′ ⊆ X is a finite chain, then
∨

X ′ exists — it is
equal to the greatest element of X ′. If X ′ is an infinite chain, then it does not

10 CHAPTER 2. PRELIMINARIES

necessarily have the greatest element and
∨

X ′ does not have to exist. A partially
ordered set is a complete partial order (CPO), if all its chains have least upper
bounds. A lattice is a complete lattice, if all its subsets have least upper bounds
(and then all its subsets also have greatest lower bounds [DP90, Thm. 2.16]). Note
that a complete partial order X has the smallest element. Indeed, ∅ ⊆ X is a chain
and each element of X is its upper bound. Therefore

∨
∅ is the smallest element of

X.
Clearly, each partial order with finite height and each lattice with finite height

are complete. If X is a complete partial order and Y ⊆ X is upper closed, then Y
is a complete partial order, too. If X is a complete lattice, Y ⊆ X is upper closed
and Y has the smallest element, then Y is a complete lattice, too.

Lemma 2.2. If X and Y are complete partial orders, then X × Y is a complete
partial order. For a chain Z ⊆ X × Y ,

∨
Z = (

∨
{x : (x, y) ∈ Z},

∨
{y : (x, y) ∈ Z}) .

Similarly, if Y is a complete partial order then X → Y is also a complete partial
order. For a chain Z ⊆ X → Y ,

(
∨

Z)(x) =
∨
{z(x) : z ∈ Z}

for all x ∈ X.

Also, the Cartesian product of complete lattices is a complete lattice and the
set of functions from a set to a complete lattice is a complete lattice.

A function f : X → Y between partially ordered sets X and Y is monotone, if
x1 ≤ x2 =⇒ f(x1) ≤ f(x2) for all x1, x2 ∈ X. A monotone function f : X → Y
between complete partial orders X and Y is continuous, if f(

∨
X ′) =

∨
{f(x) :

x ∈ X ′} for all chains X ′ ⊆ X. The composition of monotone [resp. continuous]
functions is again a monotone [resp. continuous] function.

A fixed point of a function f : X → X is an element x ∈ X, such that f(x) = x.
Let X be a partially ordered set and let y ∈ X. If the following quantities exist,
then we denote

• the least fixed point of f by lfp f ;

• the least fixed point of f that is greater or equal to y, by lfpy f ;

• the greatest fixed point of f by gfp f ;

• the greatest fixed point of f that is less or equal to y, by gfpy f .

We now present some sufficient conditions for the least fixed points to exist.

Proposition 2.3 (Kleene’s fixed point theorem). Let X be a complete partial
order and let f : X → X be a continuous function. Then lfp f exists and

lfp f =
∨
{fn(⊥) : n ∈ N},

where ⊥ denotes the smallest element of X.

2.1. DOMAINS 11

This proposition also appears as Theorem 4.37 in [NN92]; its proof is given
there, too.

Proposition 2.4. Let X be a complete partial order, let y ∈ X and let f : X → X
be a continuous function, such that y ≤ f(y). Then lfpy f exists and

lfpy f =
∨
{fn(y) : n ∈ N} . (2.1)

Proof. Let Y = {x : x ∈ X, x ≥ y}. Then Y is a complete partial order. If x ∈ Y ,
then f(x) ≥ f(y) ≥ y, therefore f(x) ∈ Y and we may consider f as a (continuous)
function from Y to Y . Applying proposition 2.3 to Y and f gives that lfp f in Y ,
which equals lfpy f in X, exists and the equation (2.1) holds.

Proposition 2.5 (Tarski’s fixed point theorem). Let X be a complete lattice
and let f : X → X be a monotone function. Then lfp f exists. If X has finite
height, then

lfp f =
∨
{fn(⊥) : n ∈ N},

where ⊥ denotes the smallest element of X.

This proposition also appears as Proposition A.10 in [NNH99]; its proof is given
there, too.

Proposition 2.6. Let X be a complete lattice, let y ∈ X and let f : X → X be a
monotone function, such that y ≤ f(y). Then lfpy f exists. If X has finite height,
then

lfpy f =
∨
{fn(y) : n ∈ N} .

The proof of proposition 2.6 is identical to the proof of proposition 2.4.
There exists a dual result for each of the Propositions 2.3–2.6 that states a

sufficient condition for the existence (and value) of gfp f or gfpy f . We obtain
them by replacing

• lfp by gfp ;

• ≤ by ≥;

•
∨

by
∧

(also in the definition of CPO);

• ⊥ by >, where > denotes the greatest element of X

in the wordings of those propositions. For example, the dual of Prop. 2.6 is

Proposition 2.7. Let X be a complete lattice, let y ∈ X and let f : X → X be a
monotone function, such that y ≥ f(y). Then gfpy f exists. If X has finite height,
then

gfpy f =
∧
{fn(y) : n ∈ N} .

12 CHAPTER 2. PRELIMINARIES

2.1.2 Probability Distributions

A probability distribution over a set X is a function D : X → [0..1], where∑
x∈X D(x) = 1 (we only consider probability distributions over finite or countable

sets). If x ∈ X and D(x) = z then we also say that the probability distribution
D assigns the weight z to x. Let D(X) denote the set of all probability distribu-
tions over X. For a probability distribution D ∈ D(X), the expression x ← D
denotes that the random variable x is distributed according to D. The expression
x, x′ ← D is equivalent to x ← D and x′ ← D, i.e. x and x′ are two independent
random variables distributed according to D. Multiset comprehensions, for exam-
ple {|f(x) : x← D|}, are used to define new probability distributions from existing
ones. For D ∈ D(X) and f : X → Y the given example is a distribution D′ ∈ D(Y)
given by

∀y ∈ Y : D′(y) =
∑

x∈f−1(y)

D(x) .

A partial order on X defines a partial order on D(X). D1 ≤ D2, where D1, D2 ∈
D(X), iff

∀X ′ ∈ PU(X) :
∑

x∈X′

D1(x) ≤
∑

x∈X′

D2(x) .

As a special case, if X = Y⊥ and Y is unordered, then D1 ≤ D2 iff D1(y) ≤ D2(y)
for all y ∈ Y .

In this case, the set of probability distributions is even a CPO.

Lemma 2.8. If the set Y is unordered, then D(Y⊥) is a CPO.

Proof. Let Di ∈ D(Y⊥), where i ∈ I and I is a suitable index set. Let the set
{Di : i ∈ I} be a chain. Define D ∈ D(Y⊥) by

D(y) = sup{Di(y) : i ∈ I}, for each y ∈ Y

D(⊥) = 1−
∑

y∈Y

D(y) .

Some basic calculus shows that D is indeed a probability distribution — the sum∑
y∈Y D(y) is at most 1. It is also obvious that D is an upper bound of {Di : i ∈ I}.

Assume that D′ is also its upper bound and D 6≤ D′. Then there exists y ∈ Y , such
that D′(y) < D(y). But then there also exists an i ∈ I, such that D′(y) < Di(y)
and hence D′ is not an upper bound of {Di : i ∈ I}. We have shown that D is the
least upper bound of {Di : i ∈ I}.

Let ηD(x) ∈ D(X), where x ∈ X, denote the distribution where x occurs with
the probability 1.

Let D1, D2 ∈ D(X⊥), such that D1(⊥) + D2(⊥) ≥ 1. Then we can define the
sum of D1 and D2, denoted by D1 + D2. It is again a probability distribution over
X⊥. It is defined as follows:

(D1 + D2)(x) =

{
D1(x) + D2(x), if x ∈ X

D1(⊥) + D2(⊥)− 1, if x = ⊥ .

2.2. CRYPTOGRAPHY 13

Note that the sum of probability distributions is associative and commutative. In
general, if D1, . . . , Dk ∈ D(X⊥), then their sum is defined iff D1(⊥)+ · · ·+Dk(⊥) ≥
k − 1.

A product D ∈
∏

n∈N
D(Xn), where Xn are some sets, should be called “a

family of probability distributions (over X)”. However, we mostly call D just “a
(probability) distribution (over X)”. When we use multiset comprehensions to
define new families of probability distributions, then we make explicit that the
parameter n varies. Hence if f :

∏
n∈N

(Xn → Yn) is a countable tuple of functions,
then

{|fn(xn) : xn ← Dn|}n∈N

is a family of probability distributions over Y , and

{|fn(xn) : xn ← Dn|}

is a probability distribution over Yn for some fixed n ∈ N.
We introduce some shorter notation for sets of families of distributions and

functions. Let X = {Xn}n∈N and Y = {Yn}n∈N be families of sets. Denote

•
∏

n∈N
D(Xn) by DN(Xn);

•
∏

n∈N
(Xn → Yn) by X

N
→ Y ;

•
∏

n∈N
(Xn → D(Yn)) by X

N
 Y .

For sets Z and W we denote the set of functions Z → D(W) by Z W . We call
this set the set of probabilistic functions from Z to W .

For a function f : X → Y and x ∈ X we denote f(x) also by f $ x. If f and
x are both complex expressions, then f $ x is more readable than f(x) — we have
to use less parentheses. We also assume that the composition of functions ◦ binds
stronger than $. Thus f ◦ g $ x denotes (f ◦ g) $ x = f(g(x)).

The symbol $ is also useful for overloading. Given f : X → Y and X ′ ⊆ X,
we let f $ X ′ denote the sequence of the values f(x) for all x ∈ X ′. We assume
here that an order of appearing in the sequence is defined for the elements of X.
It is not important, how the order is defined, we only assume that this order is the
same for all sequences that we may construct from the elements of X. We denote
the sequence of the elements of X in this order by 〈x〉x∈X .

2.2 Cryptography

The treatment of cryptography we are presenting here is based on asymptotics (this
is the usual case in complexity-theoretic arguments). The specification of systems
has a parameter n ∈ N, called security parameter, that characterises the security
of the system. Typically, n is the length of the keys in bits. The probability that
the system reaches a certain state, or that some attacker is successful against the
system, is then a function of the security parameter.

14 CHAPTER 2. PRELIMINARIES

2.2.1 Basics

The next definition gives a particular meaning to “never”. If the probability that
something happens is negligible in the security parameter, then this is (by defini-
tion(s)) as good as that something never happens.

Definition 2.1. A function f : N→ R is negligible, if

∀p ∈ Pol(Z) ∃n ∈ N ∀n′ > n : |f(n′)| <

∣∣∣∣
1

p(n′)

∣∣∣∣ .

It is obvious that the sum of negligible functions is again negligible.
Let A be an algorithm. All algorithms that we consider may be probabilistic.

We say that A is a probabilistic polynomial-time (PPT) algorithm, if there exists a
polynomial p ∈ Pol(Z), such that for each input x ∈ {0, 1}∗ the probability that
A(1n, x) makes more than p(n) steps is negligible (the probability is a function of n).
Here 1n denotes a bit-string of n bits 1. The usual way of defining the complexity
classes of algorithms is to demand that the running time of the algorithm must
be bound by some function (from a certain class of functions) of the length of its
argument(s). Here we have defined that the running time of the algorithm must be
polynomial in the length of its first argument. This explains the traditional way
of representing the security parameter in unary, when giving it to an algorithm.
In the unary representation, the length of n is equal to n, while for some other
representations (for example, binary), the length of n might be quite different from
n (for example, logarithmic).

Arguments to algorithms have to be bit-strings. In the following, when we say
that some quantity x is an argument to an algorithm, then we mean that a suitable
encoding of x is given to the algorithm.

Thus we may speak about tuples or sets of bit-strings as arguments of algo-
rithms, or about functions with a finite domain and the set of bit-strings as range.

An algorithm may have access to an oracle implementing a probabilistic func-
tion ω : {0, 1}∗ {0, 1}∗. The algorithm has an extra operation available, this
operation allows the algorithm to submit a bit-string x to the oracle. Whenever the
algorithm invokes this operation, a bit-string y is picked according to the distribu-
tion ω(x) and returned to the algorithm. We denote an algorithm A that assumes
to have access to an oracle by A(·). If we want to stress that the oracle implements
the function ω, then we denote the algorithm by Aω(·). We may also say “algorithm
A accesses ω through oracle interface”.

The algorithm may also have accesses to more than one oracle. In this case, for
each oracle there is an operation available for the algorithm, allowing the algorithm
to submit a bit-string to this oracle.

The functions of type {0, 1}∗ {0, 1}∗ may thus also be considered to be
suitable inputs to algorithms. Sometimes, when we have a set of arguments X that
we want to give to an algorithm A, we do not distinguish the arguments that are
encoded as bit-strings from arguments that the algorithm can access through oracle
interface. Then we denote the application of A on X by A(〈x〉x∈X).

2.2. CRYPTOGRAPHY 15

We also give names to the properties of distributions and functions of being
“realisable” in polynomial time.

Definition 2.2. Let X = {Xn}n∈N be a family of sets whose elements can be out-
puts of algorithms. Let D ∈ DN(X). We say that the distribution D is polynomial-
time constructible, if there exists a PPT algorithm A, such that the distribution of
the outputs of A(1n) is equal to the distribution Dn for all n ∈ N.

Here we also say that the algorithm A samples the distribution D.

Definition 2.3. Let X = {Xn}n∈N and Y = {Yn}n∈N be families of sets whose

elements can be inputs and outputs of algorithms. Let f : X
N
 Y . We say that

f is polynomial-time computable, if there exists a PPT algorithm A, such that the
distribution fn(xn) is equal to the distribution of the output of A(1n, xn) for each
xn ∈ Xn.

2.2.2 Indistinguishability

Indistinguishability of probability distributions is a fundamental concept in cryp-
tography. The security definitions of encryption systems and programs that we are
going to present, are just statements that certain distributions are indistinguishable.

Definition 2.4. Let X = {Xn} be a family of sets whose elements can be inputs
to algorithms. Two families of probability distributions D, D′ ∈ DN(X) are (com-
putationally) indistinguishable (denoted D ≈ D′) if for all PPT algorithms A the
difference

AdvD,D′

A (n) := Pr
[
A(1n, x) = 1 : x← Dn

]
− Pr

[
A(1n, x) = 1 : x← D′

n

]

is negligible in n. AdvD,D′

A
is called the advantage of A on D, D′.

The intuition behind this definition is the following (see also Fig. 2.1): the
algorithm A may find itself in one of two possible worlds. In the first world the
variable x is distributed according to D, in the second world according to D′. The
algorithm A outputs 1 if it guesses that it is in the first world, it outputs a different
value (for example, 2) if it guesses that it is in the second world. The definition
now states that those two worlds are so similar that the guess made by A does not
significantly depend on the world it is placed into.

This is a very universal definition, as X can be any family of sets whose elements
can be inputs to algorithms. For example, it also covers the indistinguishability
of probabilistic functions. According to definition 2.4, two families of probability
distributions D, D′ over sets of probabilistic functions are indistinguishable if for
all PPT algorithms A(·) the difference

Pr
[
Af(·)(1n) = 1 : f ← Dn

]
− Pr

[
Af(·)(1n) = 1 : f ← D′

n

]

is negligible in n.

16 CHAPTER 2. PRELIMINARIES

?
x

D D′

A

MUX

1 2

b ∈ {1, 2}

b

Figure 2.1: Intuition behind indistinguishability

If the advantage of some algorithm A on some distributions D, D′ is not negli-
gible, then we say that A distinguishes the distributions D and D′.

We now state some simple properties of indistinguishability.

Lemma 2.9. Indistinguishability of distributions is a transitive relation.

Proof. Let D, D′, D′′ be three distributions over X = {Xn}n∈N. Assume that D
and D′ are indistinguishable, and D′ and D′′ are indistinguishable. Let A be any
PPT algorithm. Then

AdvD,D′′

A
(n) =

Pr
[
A(1n, x) = 1 : x← Dn

]
− Pr

[
A(1n, x) = 1 : x← D′′

n

]
=

Pr
[
A(1n, x) = 1 : x← Dn

]
− Pr

[
A(1n, x) = 1 : x← D′

n

]
+

Pr
[
A(1n, x) = 1 : x← D′

n

]
− Pr

[
A(1n, x) = 1 : x← D′′

n

]
=

AdvD,D′

A (n) + AdvD′,D′′

A (n),

hence AdvD,D′′

A
is negligible.

A very simple but powerful property of indistinguishability is the following:

Lemma 2.10. Let D, D′ ∈ DN(X) be indistinguishable. Let f : X
N
 Y be

polynomial-time computable. Then the distributions

{|f(x) : x← D|}n∈N (2.2)

and
{|f(x) : x← D′|}n∈N (2.3)

are indistinguishable.

Proof. Suppose that the distributions (2.2) and (2.3) are distinguishable. Let A be a
PPT algorithm that distinguishes them. Let B be a PPT algorithm that implements
f . Then the composition of A and B is a PPT algorithm that distinguishes D and
D′.

2.2. CRYPTOGRAPHY 17

D

D′ D′′
,

()

f(x)

f ′(x′)

x′

x

f ′(x)
f(x)

,

()

x

≈

Figure 2.2: Intuition behind independence

If D is a distribution over X = {Xn}n∈N and the elements of Xn have complex
structure (for example, they are tuples of several components), then we may be
interested, how much do the different components of the elements of Xn depend on
each other. A particular example here is, when Xn = Staten is the set of program
states. A program state is a function that maps each variable (the set of variables
is a finite set) to its value. If Y and Z are sets of variables then we are interested
whether the values of variables in Y and the values of variables in Z are independent
or not.

Definition 2.5. Let X = {Xn}n∈N and Y = {Yn}n∈N be families of sets and let

D ∈ DN(X). Let f, f ′ : X
N
 Y . Then f and f ′ are independent [Yao82, Def. 18,

Thm. 6] in the distribution D, if

{|(yn, y
′
n) : xn ← Dn, yn ← fn(xn), y′

n ← f ′
n(xn)|}n∈N ≈

{|(yn, y
′
n) : xn, x′

n ← Dn, yn ← fn(xn), y′
n ← f ′

n(x′
n)|}n∈N .

Fig. 2.2 illustrates this definition. f and f ′ are independent in the distribution
D iff distributions D′ and D′′ are indistinguishable.

We mainly use this definition in a setup where the sets Xn and the families of
functions f, f ′ have a special shape. Namely, let Y be a set, let Z = {Zn}n∈N be a
family of sets and let Xn = Y → Zn. Let D ∈ DN(X) and let Y ′, Y ′′ ⊆ Y . We say
that the sets Y and Y ′ are independent in the distribution D, if

{|(gn $ Y ′, gn $ Y ′′) : gn ← Dn|}n∈N ≈

{|(gn $ Y ′, g′
n $ Y ′′) : gn, g′

n ← Dn|}n∈N . (2.4)

The previous definition of indistinguishability required that two indistinguish-
able distributions cannot be told apart, based on a single sample. This definition
could be strengthened by allowing multiple samples.

18 CHAPTER 2. PRELIMINARIES

Definition 2.6. Two families of probability distributions D, D′ over X = {Xn}n∈N

are indistinguishable by multiple samples, if for all polynomials m ∈ Pol(Z) and
PPT algorithms A the difference

Pr
[
A(1n, x1, . . . , xm(n)) = 1 : x1, . . . , xm(n) ← Dn

]
−

Pr
[
A(1n, x1, . . . , xm(n)) = 1 : x1, . . . , xm(n) ← D′

n

]

is negligible in n.

However, at least for polynomial-time constructible distributions, these two no-
tions are equivalent. Goldreich [Gol95, Sec. 3.2] shows that the following proposition
holds.

Proposition 2.11. Let D, D′ be two polynomial-time constructible distributions.
Then D and D′ are indistinguishable iff they are indistinguishable by multiple sam-
ples.

We also give the proof of this proposition here, because the used technique has
an important application later.

Proof. In one direction, the claim of the proposition is trivial — if D and D′ are
indistinguishable by multiple samples, then by setting the number of samples to 1
we get that D and D′ are indistinguishable.

Consider the other direction. Suppose that the probability distributions D and
D′ over X = {Xn}n∈N are not indistinguishable by multiple samples. Let A be the

algorithm that distinguishes them using m ∈ Pol(Z) samples. Then AdvD̃,D̃′

A
is

not negligible, where

D̃ = {|(x1, . . . , xm(n)) : x1, . . . , xm(n) ← Dn|}n∈N

D̃′ = {|(x1, . . . , xm(n)) : x1, . . . , xm(n) ← D′
n|}n∈N .

For each n ∈ N and each i ∈ {0, 1, . . . , m(n)} define the following distributions

D
(i)
n ∈ D(Xn):

D(i)
n = {|(x1, . . . , xm(n)) : x1, . . . , xi ← D′

n, xi+1, . . . , xm(n) ← Dn|} .

Then D
(0)
n = D̃n and D

(m(n))
n = D̃′

n. Consider now the algorithm B given in Fig. 2.3.
The algorithm B runs in polynomial time. The following equalities between distri-
butions hold for all n ∈ N and i ∈ {1, . . . , m(n)}:

D(i−1)
n = {|B(1n, i, x) : x← Dn|}

D(i)
n = {|B(1n, i, x) : x← D′

n|} .

We can now define the algorithm Ā that can distinguish the families of proba-
bility distributions D and D′. On input (1n, x) the algorithm Ā uniformly chooses
i from the set {1, . . . , m(n)}, then calls the algorithm B on (1n, i, x) and finally

2.2. CRYPTOGRAPHY 19

The algorithm B(1n, i, x), where i ∈ {1, . . . , m(n)} and x ∈ Xn:

for j = 1 to i− 1 do
generate xj ← D′

n/* D′ is polynomial-time constructible */

end for
xi := x
for j = i + 1 to m(n) do

generate xj ← Dn /* D is polynomial-time constructible */

end for
return (x1, . . . , xm(n))

Figure 2.3: Making a step between distributions D and D′

invokes the algorithm A with the output of B. If x is distributed according to Dn,
then the probability that Ā(1n, x) returns 1 is

Pr
[
Ā(1n, x) = 1 : x← Dn

]
=

1

m(n)

m(n)∑

i=1

Pr
[
A(1n,x) = 1 : x← D(i−1)

n

]
.

If x is distributed according to D′
n, then the same probability is

Pr
[
Ā(1n, x) = 1 : x← D′

n

]
=

1

m(n)

m(n)∑

i=1

Pr
[
A(1n,x) = 1 : x← D(i)

n

]
.

Their difference is

AdvD,D′

Ā
(n) =

Pr
[
Ā(1n, x) = 1 : x← Dn

]
− Pr

[
Ā(1n, x) = 1 : x← D′

n

]
=

1

m(n)

m(n)∑

i=1

(
Pr

[
A(1n,x) = 1 : x← D(i−1)

n

]
− Pr

[
A(1n,x) = 1 : x← D(i)

n

])
=

1

m(n)

(
Pr

[
A(1n,x) = 1 : x← D̃n

]
− Pr

[
A(1n,x) = 1 : x← D̃′

n

])
=

AdvD̃,D̃′

A (n)

m(n)
.

Therefore AdvD,D′

Ā
is not negligible and the distributions D and D′ are not indis-

tinguishable.

The underlying idea of the proof, called the hybrid argument, was to transform
the distribution D̃n into the distribution D̃′

n in a small number of short steps. In
our case

• The hybrids were the distributions D
(i)
n . The extreme hybrids had to collide

with D̃n and D̃′
n.

20 CHAPTER 2. PRELIMINARIES

• A step related two neighbouring hybrids. The steps were done by the algo-
rithm B. A step was “short”, the “difference” of two neighbouring hybrids is
only as big as the “difference” of Dn and D′

n.

• The number of steps was m(n) which is polynomial in n. Here “polynomial”
means “small”.

2.2.3 Encryption

Let Plaintext ⊆ {0, 1}∗ be the set of permitted plaintexts to be encrypted. I.e. an
encryption system must be able to encrypt all bit-strings in Plaintext, it may fail
for other bit-strings.

Definition 2.7. An encryption system is a triple of PPT algorithms (G, E, D),
where

• on input 1n, the algorithm G returns a bit-string of length `(n), where ` ∈
Pol(Z) is a fixed polynomial. The type of algorithm G is therefore

G :
∏

n∈N

D({0, 1}`(n)) .

The algorithm G is called the key generation algorithm and the bit-strings are
called the keys.

• on input 1n, k ∈ {0, 1}`(n) and x ∈ Plaintext, the algorithm E returns a bit-
string y. The length of y must depend only on n and |x|. The type of E is
therefore

E :
∏

n∈N

({0, 1}`(n) × {0, 1}∗ {0, 1}∗) .

The algorithm E is called the encryption algorithm. Its output y is called the
ciphertext for the plaintext x with the key k.

• on input 1n, k ∈ {0, 1}`(n) and y ∈ {0, 1}∗, the algorithm D deterministically
returns a bit-string x. The type of D is therefore

D :
∏

n∈N

({0, 1}`(n) × {0, 1}∗ → {0, 1}∗) .

The algorithm D is called the decryption algorithm.

The triple (G, E, D) must be such, that for each x ∈ Plaintext and each k ∈ {0, 1}`(n),
where k has nonzero probability of being returned by G(1n), the decryption of
encryption of x (both with the key k) must be equal to x, i.e. the equality
D(1n, k, E(1n, k, x)) = x must hold.

2.2. CRYPTOGRAPHY 21

We say that the encryption system is deterministic, if the encryption algorithm E

is deterministic. We say that a deterministic encryption system is length-preserving,
if for all n ∈ N, k ∈ {0, 1}`(n), where k ∈ carrier(G(1n)), and x ∈ {0, 1}∗, the
equality |E(1n, k, x)| = |x| holds.

We now give definitions for the secureness of an encryption system. There are
several possible definition of security and the ”‘right”’ one depends on the intended
usage of the encryption system inside a bigger system. In this thesis we consider two
different kinds of secure encryption systems — pseudorandom permutations [LR85]
and which-key and repetition concealing encryption systems (which-key concealing
encryption is the topic of [BBDP01], repetition-concealing encryption dates back
as far as [GM84]).

For a set X let S(X) ⊂ (X → X) be the set of all permutations of X. Let
U(X) ∈ D(X) be the uniform probability distribution over X — this distribution
assigns to each element of X the weight 1

|X|
.

Definition 2.8. A length-preserving encryption system (G, E, D) is a pseudorandom

permutation (PRP), if for each p ∈ Pol(Z), where {0, 1}p(n) ⊆ Plaintext for each
n ∈ N, the following holds:

{|E(1n, k, ·) : k ← G(1n)|}n∈N ≈ {|π(·) : π ← U(S({0, 1}p(n)))|}n∈N .

It is a pseudorandom function (PRF), if the following holds:

{|E(1n, k, ·) : k ← G(1n)|}n∈N ≈ {|ϕ(·) : ϕ← U({0, 1}p(n) → {0, 1}p(n))|}n∈N .

In the left-hand side, E(1n, k, ·) is assumed to be restricted to bit-strings of length
p(n).

For better understanding of this definition it may be helpful to note that no
algorithm A (even one that does not have to run in polynomial time) can distinguish
a random permutation from the stateful oracle PRP given in Fig. 2.4. The following
equality holds for all A and n ∈ N:

{|Aπ(·)(1n) : π ← U(S({0, 1}p(n)))|} = {|APRP(1n,·)(1n)|} . (2.5)

The oracle PRP “lazily” constructs a permutation of {0, 1}p(n). Its internal state
contains all pairs (xi, yi), where the bit-strings xi are queries that are already made
to it, and yi-s are the answers given by it to these queries. If the oracle PRP is
queried with a bit-string x, then it first checks, whether it has been queried with x
before. If yes, then it returns the same value that it returned before. If no, then it
generates a new value y, such that y has not yet been returned to any earlier query,
saves the pair (x, y) for future checks, and returns y.

The only difference between left- and right-hand side is, that the permutation
given to A is “fixed before” at the left-hand side, while it is “generated on the fly”
at the right-hand side. This obviously does not change the result of A.

22 CHAPTER 2. PRELIMINARIES

State: σ ⊂ {0, 1}∗ × {0, 1}∗.
Initial state σ0 = ∅.
On query (1n, x), where x ∈ {0, 1}≥p(n):

PRP PRF

if ∃y : (x, y) ∈ σ then
result := y

else
repeat

generate y ← U({0, 1}|x|)
until @x′ : (x′, y) ∈ σ
σ := σ ∪ {(x, y)}
result := y

end if
return result

if ∃y : (x, y) ∈ σ then
result := y

else

generate y ← U({0, 1}|x|)

σ := σ ∪ {(x, y)}
result := y

end if
return result

Figure 2.4: The stateful oracles PRP and PRF

Similarly, for all algorithms A an n ∈ N holds

{|Aϕ(·)(1n) : ϕ← U({0, 1}p(n) → {0, 1}p(n))|} = {|APRF(1n,·)(1n)|} . (2.6)

(PRF is defined in Fig. 2.4) The reason is the same. From the equations (2.5) and
(2.6) immediately follows:

Proposition 2.12. An encryption system (G, E, D) is a PRP iff it is a PRF.

Proof. Having equations (2.5) and (2.6), it only remains to show that for all PPT
algorithms A,

Pr[APRP(1n,·)(1n) = 1]− Pr[APRF(1n,·)(1n) = 1]

is negligible (in n). The oracle PRF looks different from the oracle PRP only if
the algorithm A manages to get the same answer from it for two different queries.
Let q(n), where q ∈ Pol(Z), be (an upper bound on) the number of different oracle
queries that A(·)(1n) makes. If the oracle is PRP then the probability that two of
the answers are equal, is 0. If the oracle is PRF then the probability that two of the
answers are equal, is bounded by (q(n))2/2p(n). The difference of these probabilities
is therefore negligible.

The main results of this thesis require the encryption system to satisfy seemingly
stronger security properties than being a PRP. Actually, they are incomparable, be-
cause pseudorandom permutations are deterministic, while the following definitions
require the encryption algorithm to be probabilistic.

We need our encryption system to hide the identity of messages and keys. This
means that if we are given two ciphertexts then we must be unable to find out
whether the corresponding plaintexts were equal.

2.2. CRYPTOGRAPHY 23

Definition 2.9. An encryption system (G, E, D) is repetition concealing [AR00] if
for all PPT algorithms A(·) the difference

Pr
[
AE(1n,k,·)(1n) = 1 : k ← G(1n)

]
− Pr

[
AE(1n,k,0|·|)(1n) = 1 : k ← G(1n)

]
(2.7)

is negligible in n.

In the scenario depicted in (2.7), the adversary A can choose, which bit-strings
get encrypted. The adversary becomes either the encryptions of chosen bit-strings
or it becomes the encryptions of a fixed bit-string of the same length. The definition
requires that the adversary cannot distinguish the encryptions of bit-strings it chose
from the encryptions of 00 · · ·0.

We see that no encryption system where E is deterministic can be repetition-
concealing. Indeed, if E were deterministic, then A could query its oracle twice with
different arguments (of the same length). If the results of the queries are different
then the oracle is E(1n, k, ·), if they are same then the oracle is E(1n, k, 0|·|).

A security definition that looks rather different to the previous definition, but is
nevertheless equivalent to it, was given by Goldwasser and Micali [GM84, MRS86]1.
In their definition of polynomial security, the adversary works in two stages. At the
first stage it outputs two bit-strings x0 and x1 and possibly some information about
its state that is to be inputted to the second stage. Then a bit b ∈ {0, 1} is uniformly
randomly chosen and the second stage of the adversary is given an encryption of
the bit-string xb and the state information outputted by the first stage. The goal
of the second stage is to guess the bit b. The adversary is considered successful, if
it manages to guess it with probability that is significantly higher than 50%. Both
stages of the adversary may access the encryption oracle. Formally, an encryption
system (G, E, D) is polynomially secure, if for all PPT algorithm pairs (A1, A2) the
inequality

Pr
[
b∗ = b : k ← G(1n), (x0, x1, s)← A

E(1n,k,·)
1 (1n), b← U({0, 1}),

y ← E(1n, k, xb), b
∗ ← A

E(1n,k,·)
2 (1n, s, y)

]
≤

1

2
+ α(n)

holds for some negligible function α. The eqivalence of this definition to Def. 2.9 is
shown in [BDJR97].

Also, given two ciphertexts, we must be unable to find out whether they have
been encrypted with the same key or with different keys.

Definition 2.10. An encryption system (G, E, D) is which-key concealing if for all
PPT algorithms A(·),(·) the difference

Pr
[
AE(1n,k,·),E(1n,k′,·)(1n) = 1 : k, k′ ← G(1n)

]
−

Pr
[
AE(1n,k,·),E(1n,k,·)(1n) = 1 : k ← G(1n)

]
(2.8)

1Actually, their definition applies to public-key encryption systems, not secret-key systems. In
public-key scenarios, the public parts of generated key(s) is/are made available to the adversary.
There is a general way to transform a definition dealing with public-key encryption to a definition
dealing with secret-key encryption. Instead of giving the generated public key(s) to the adversary,
we give it access to oracles that encrypt with generated keys.

24 CHAPTER 2. PRELIMINARIES

is negligible in n.

The definitions of repetition-concealing and which-key concealing encryption
systems could also have been given in terms of indistinguishability of distributions.
Namely, (G, E, D) is repetition-concealing iff

{|E(1n, k, ·) : k ← G(1n)|}n∈N ≈ {|E(1n, k, 0|·|) : k ← G(1n)|}n∈N (2.9)

and which-key concealing iff

{|(E(1n, k, ·), E(1n, k′, ·)) : k, k′ ← G(1n)|}n∈N ≈

{|(E(1n, k, ·), E(1n, k, ·)) : k ← G(1n)|}n∈N . (2.10)

Abadi and Rogaway [AR00] also define that

Definition 2.11. An encryption system (G, E, D) is which-key and repetition con-
cealing if for all PPT algorithms A(·),(·) the difference

Pr
[
AE(1n,k,·),E(1n,k′,·)(1n) = 1 : k, k′ ← G(1n)

]
−

Pr
[
AE(1n,k,0|·|),E(1n,k,0|·|)(1n) = 1 : k ← G(1n)

]
(2.11)

is negligible.

It turns out that the following lemma holds:

Lemma 2.13. An encryption system (G, E, D) is which-key and repetition conceal-
ing iff it is which-key concealing and repetition concealing.

We have not been able to find the proof of this lemma in the literature (neither
have we found Def. 2.10, although we believe that they were known to Abadi and
Rogaway). Therefore we present its proof here.

Proof. Direction (⇒). Suppose that (G, E, D) is not repetition concealing, i.e.
there exists a PPT algorithm A(·) such that (2.7) is not negligible. Modify the
algorithm A(·) so, that it takes two oracles instead of one, but queries only the left
one. For such algorithm, the difference (2.11) is not negligible, i.e. (G, E, D) is not
which-key and repetition concealing.

On the other hand, suppose that (G, E, D) is not which-key concealing, but is
which-key and repetition concealing. This means that there exists an algorithm
A(·),(·) for which (2.8) is not negligible, but (2.11) is negligible. The difference of
(2.8) and (2.11):

Pr
[
AE(1n,k,·),E(1n,k,·)(1n) = 1 : k ← G(1n)

]
−

Pr
[
AE(1n,k,0|·|),E(1n,k,0|·|)(1n) = 1 : k ← G(1n)

]
(2.12)

is not negligible as well. Let Ā(·) be an algorithm that runs the algorithm A(·),(·),
and whenever it queries an oracle (no matter whether the left or right one), Ā(·)

2.2. CRYPTOGRAPHY 25

passes the query to its own single oracle. The difference (2.7) is not negligible for
the algorithm Ā(·), thus (G, E, D) is not repetition concealing. But we just showed
that a which-key and repetition concealing encryption scheme must be repetition
concealing. A contradiction.

Direction (⇐). Suppose that (G, E, D) is not which-key and repetition conceal-
ing, but is which-key concealing. This means that there exists an algorithm A(·),(·)

for which (2.8) is negligible, but (2.11) is not negligible. We again get that their
difference (2.12) is not negligible and thus (G, E, D) is not repetition concealing.

It is believed that primitive block ciphers, for example DES [DES99], Idea
[LM90] and AES [AES01], are pseudorandom permutations. Namely, being a PRP
is their main design goal. If PRPs exist, then which-key and repetition concealing
encryption systems exist, too. Abadi and Rogaway [AR00, Sec. 4.4] demostrate,
how to construct a which-key and repetition concealing encryption system from a
PRP.

26 CHAPTER 2. PRELIMINARIES

Chapter 3

Computational Security

This chapter describes the programming language that we are handling. It gives its
syntax and semantics. This chapter also gives the definition of secure information
flow.

We start this chapter in Sec. 3.1.1 by introducing the syntax of the simple
imperative language that we are going to use throughout this and the next two
chapters. We continue in Sec. 3.1.2 by giving the (concrete) semantics of that lan-
guage. For each program P we define a function Clen[[P]] that maps the initial state
of the program to its corresponding final state. The semantics is thus denotational.
As Clen[[P]] is the concrete semantics of P, we cannot speak about its correctness.
We can only speak about its intuitiveness. It will become rather clear that this
semantics indeed is basically the same semantics that is defined in [NN92, Sec. 4.1].

For the purposes of the next chapter, we give a different specification for (a
part of) the semantics Clen[[P]]. The difference is in defining Clen[[P]] for loops.
The denotational semantics for loops is defined via a fixed-point operation. In
section 3.1.3 we show that the least fixed point of some other operator is equal to
the least fixed point of the operator that was used to define Clen[[P]] for loops in
section 3.1.2. That other operator is more similar to the operator whose least fixed
point is going to be defined to be the abstract semantics (i.e. the analysis) of loops.

Having specified the programming language and its meaning, we move towards
defining the secure programs. Section 3.2.1 defines, when a program runs in ex-
pected polynomial time. The notion of confidentiality is defined only for such
programs. However, we argue that this does not restrict the generality. For a
program P running in expected polynomial time, if its inputs are distributed ac-
cording to some fixed probability distribution D, the structure of Clen[[P]] is simpler
than in the general case (the running time of the program becomes irrelevant and
we do not have to deal with nontermination). We define the output distribution
Cterm[[P]](D) for the program P and the input distribution D. The distribution
Cterm[[P]](D) is only defined for programs P and distributions D, where P runs in
expected polynomial time if its inputs are distributed according to D.

Finally, section 3.2.2 gives the definition of secure information flow. The secu-
rity of information flow is defined through the independence of a program’s secret

27

28 CHAPTER 3. COMPUTATIONAL SECURITY

inputs and public outputs. For comparison we also give another definition based
on semantic security and show that it is subsumed by the first definition.

We finish by discussing some topics in Sec. 3.3. First, we show that our security
definition is just a variant of defining a program secure if it is equivalent to some
program that we have deemed “obviously secure”. Second, we discuss how two
structures on the set of distributions over program states — least upper bounds
and indistinguishability — interact and what this means.

3.1 Syntax and Semantics of the Programming

Language

3.1.1 Syntax

We consider a simple imperative programming language, the While-language
[NN92], for the treatment of our analysis. The language is nevertheless Turing-
complete and can demonstrate all the interesting parts of the analyses. Adding
more features to the language should be rather straightforward.

Let Var be the set of variables and Op be the set of arithmetic, relational,
boolean, etc. operators. The syntax of programs is given by the following grammar:

P ::= x := o(x1, . . . , xk)
| skip
| P1; P2

| if b then P1 else P2

| while b do P,

where b, x, x1, . . . , xk range over Var, o ranges over Op and P1, P2 range over pro-
grams. Sometimes (in the definitions) we also make use of the statement stuck that
denotes a program that never terminates.

We are handling encryption, thus we must have a binary operator Enc ∈ Op that
denotes the encryption operation. We also need a nullary key generation operator
Gen ∈ Op that is used to create “good” keys. The analysis handles these operators
differently from the other ones, taking into account that they are expressing secure
encryption1. Later, when presenting the analysis, we will also need other operators
with special, fixed semantics (namely, unary identity operator that we use for simple
assignments x := y).

3.1.2 Denotational Semantics

We will use a denotational-style semantics as the (concrete) semantics of the pro-
gramming language. This shows our disinterest in how a program computes, we are
only interested in what it computes. Traditionally, a denotational semantics of an

1Decryption does not have to be handled separately, thus it was not mentioned here.

3.1. SYNTAX AND SEMANTICS OF THE PROG. LANGUAGE 29

imperative language maps the input state of a program to its corresponding output
state, i.e. it has the type State→ State⊥, where

• State := Var → Val is the set of program states. A program state of an
imperative language maps the variables to their values; Val is the set of values
(usually not specified any further).

• State⊥ := State] {⊥}. The element ⊥ denotes nontermination.

Such simple formulation is not sufficient for our purposes. We need the following
into account:

The security parameter. The security of the encryption is defined as the neg-
ligibility of a certain advantage of the adversary. Negligibility is defined in
terms of the security parameter n ∈ N, in fact, we have a whole family of
encryption functions, this family is indexed by the security parameter. We
accommodate the security parameter in the semantics by parameterising the
program state by it, too. Thus let Staten := Var→ Valn, where Valn is the
n-th set of values. The semantics Clen[[P]] that we are going to define as the
concrete semantics of the programming language, can actually be seen as a
family of functions mapping the input state to the output state, indexed by
the security parameter. The n-th component of Clen[[P]] works with states of
type Staten.

The types of values. The security of the encryption is defined for encryption
algorithms that work with bit-strings. To be able to use it, we fix Valn :=
{0, 1}`(n). Here ` ∈ Pol(Z) is a fixed polynomial. We call ` the length
polynomial.

Obviously, we also need boolean values (as guards of conditional statements
and loops). We therefore assume that the set Valn is partitioned into two
parts, where the values in one of the parts are meant to denote the boolean
value false and the values in the other of the parts are meant to denote the
boolean value true. For example, the value 0`(n) could denote false and all
other values could denote true.

Probabilistic execution. No deterministic algorithm can satisfy the definition
of security of the encryption. If our semantics of the program language did
not allow probabilistic execution, then our results would hold only for a non-
existent case. To allow probabilism, the range of the semantics must be the
set of probability distributions over program states.

Denote:

• Distr := DN(State).

• Distr⊥ :=
∏

n∈N
D(Staten⊥).

• Distrpol ⊂ Distr and Distr⊥pol ⊂ Distr⊥ contain the distributions
constructible in polynomial time.

30 CHAPTER 3. COMPUTATIONAL SECURITY

Computation length. The encryption system is secure only against polynomially
bounded adversaries. If the program runs for a too long time, then we no
longer can make use of the secureness of encryption. We thus record the
computation length in our semantics.

We let T be the set of possible lengths of computations. The length of a
computation is defined as the number of steps that the program does, thus
T = N.

Let STn = Staten × T. The quantities of type STn are used to record the
final state of the program together with the number of steps that the program
made. Let state : STn → Staten and time : STn → T be the projections
onto the first and second component of STn, respectively.

The semantics Clen[[P]] that we are going to define, maps an initial state Sn,s ∈
Staten to a probability distribution over STn⊥, i.e. to the probability distribution
over the pairs of possible final states and computation lengths, with ⊥ denoting
nontermination. The n-th component of Clen[[P]] has thus the type Transn :=
Staten STn⊥. The type of the entire Clen[[P]] is CLenType :=

∏
n∈N

Transn.
The semantics Clen[[P]] is the (concrete) semantics of the programming language.

The correctness of the abstract semantics (i.e. the analysis) given in the next
chapter is defined with respect to it.

Before defining Clen[[P]], we need semantics for each o ∈ Op. For an operator o

of arity k, the semantics is a family of functions [[o]] : Valk
N
 Val. As the concrete

semantics of the program should be computable in polynomial time (otherwise
we cannot use the security definition for the encryption), we require that [[o]] is
computable in polynomial time.

We mentioned before that we need the set Op to contain certain operators —
namely Enc, Gen and the identity operator (we denote it here by id). The following
must hold for the semantics of these operators:

• ([[Gen]], [[Enc]]) is a which-key and repetition concealing encryption scheme.

• [[id]]n(x) = ηD(x) for each x ∈ Valn.

The semantics Clen[[P]] is defined in Fig. 3.1. The definition is pretty standard
[NN92, Sec. 4.1], except for the extra details about security parameter, probabilism
and recording the length of the computation.

Let us describe the definition of Clen[[P]], as given on Fig. 3.1.

• The semantics of x := o(x1, . . . , xk) replaces the value of the variable x with
a newly computed value. The length of the program is 1.

• The semantics of skip is basically the identity function. We have defined the
length of the program skip to be 0 because we want to keep the equality of
semantics of the programs P, P; skip and skip; P. If we had not considered
the computation lengths, then these three programs obviously would have

3.1. SYNTAX AND SEMANTICS OF THE PROG. LANGUAGE 31

Clen[[x := o(x1, . . . , xk)]]n(Sn) =
{|(Sn[x 7→ xval], 1) : xval ← [[o]]n(Sn(x1), . . . , Sn(xk))|} .

Clen[[skip]]n(Sn) = ηD((Sn, 0)) .

Clen[[P1; P2]]n = composen(Clen[[P1]]n, Clen[[P2]]n)

where composen : Transn ×Transn → Transn is defined as

composen(T1,n, T2,n)(Sn) =

{|〈〈S ′′
n

?
= ⊥ ? ⊥ : (state(S ′′

n), time(S ′
n) + time(S ′′

n))〉〉 :

S ′
n ← T1,n(Sn), S ′′

n ← 〈〈S
′
n

?
= ⊥ ? ηD(⊥) : T2,n(state(S ′

n))〉〉|}

where 〈〈b ? x : y〉〉 is equal to x if b is true, and is equal to y otherwise.

Clen[[if b then P1 else P2]]n = condn(b, Clen[[P1]]n, Clen[[P2]]n)

where condn : Var×Transn ×Transn → Transn is defined as

condn(b, T1,n, T2,n)(Sn) = 〈〈Sn(b) ? T1,n(Sn) : T2,n(Sn)〉〉 .

Clen[[while b do P]] = lfp FP

where FP : CLenType→ CLenType is defined by

[FP(T)]n = condn(b, composen(Clen[[P]]n, Tn), Clen[[skip]]n) .

Clen[[stuck]]n(Sn) = ηD(⊥) .

Figure 3.1: The semantics Clen[[P]]

32 CHAPTER 3. COMPUTATIONAL SECURITY

had the same semantics. It is more convenient to keep this equality. The
security definition will remain the same, no matter whether the length of the
computation of the program skip is 0 or 1.

• The semantics of P1; P2 is basically the functional composition of the seman-
tices of P1 and P2. The auxiliary function compose is used to deal with lifting
the intermediate values to the right domains. From the definition of compose
we also see that the running time of the program P1; P2 is the sum of the
running times of programs P1 and P2.

• The semantics of if b then P1 else P2 chooses either the semantics of P1 or the
semantics of P2, depending on the value of the variable b in the initial state.
An interesting detail here is that checking the value of the variable b takes no
time. Again, this does not change the security definition. The reason for this
definition is to make the proof of Proposition 3.7 simpler.

• The semantics of while b do P is defined so that the equation

Clen[[while b do P]] = Clen[[if b then (P; while b do P) else skip]] (3.1)

is satisfied. Generally, this equation may have several solutions. When com-
paring equation (3.1) with the definition of the function FP in Fig. 3.1 we
see, that the solutions of (3.1) are fixed points of FP and vice versa. The
definition in Fig. 3.1 is such, that we choose the smallest solution of equation
(3.1) as the semantics of while b do P. This is the standard way of defining
the semantics of loops.

• The semantics of stuck maps each program state to nontermination.

The semantics of while b do P is defined through a fixed point computation. We
must make sure that this fixed point exists. It is sufficient to show that CLenType
and FP satisfy the assumptions of Prop. 2.3. Propositions 3.1 and 3.2 show it.

Proposition 3.1. CLenType is a complete partial order.

Proof. CLenType =
∏

n∈N
Transn. If Transn is a CPO for each n ∈ N, then

CLenType is also a CPO and the least upper bounds on CLenType are defined
componentwise. It suffices to show that Transn is a CPO.

Transn = Staten → D(STn⊥). If D(STn⊥) is a CPO then Transn is also a
CPO and the least upper bounds on Transn are defined pointwise. But Lemma 2.8
gives that D(STn⊥) is a CPO.

Proposition 3.2. The function FP in Fig. 3.1 is continuous.

The arguments in the proof of this proposition follow the proof of a similar
result in [NN92, Sec. 4.3] We first show that the functions composen and condn are
continuous in one of their arguments.

3.1. SYNTAX AND SEMANTICS OF THE PROG. LANGUAGE 33

Lemma 3.3. Let U ∈ CLenType. Let F (1) : CLenType → CLenType be
defined by

[F (1)(T)]n = composen(Un, Tn) .

Then the function F (1) is continuous.

Proof. The function F (1) is obviously monotone. Indeed, if Sn ∈ Staten and T′ ≤
T′′, then

[F (1)(T′)]n(Sn) = composen(Un, T′
n)(Sn) =

{|〈〈S ′′
n

?
= ⊥ ? ⊥ : (state(S ′′

n), time(S ′
n) + time(S ′′

n))〉〉 :

S ′
n ← Un(Sn), S ′′

n ← 〈〈S
′
n

?
= ⊥ ? ηD(⊥) : T′

n(state(S
′
n))〉〉|} ≤

{|〈〈S ′′
n

?
= ⊥ ? ⊥ : (state(S ′′

n), time(S ′
n) + time(S ′′

n))〉〉 :

S ′
n ← Un(Sn), S

′′
n ← 〈〈S

′
n

?
= ⊥ ? ηD(⊥) : T′′

n(state(S ′
n))〉〉|} =

composen(Un, T′′
n)(Sn) = [F (1)(T′′)]n(Sn) .

Now let I be an index set and let T(i) ∈ CLenType for all i ∈ I. Moreover, let
T(i) and T(j) be comparable for each i, j ∈ I. Let Sn ∈ Staten. We have

[F (1)(
∨

i∈I

T(i))]n(Sn) = composen(Un,
∨

i∈I

T(i)
n)(Sn) =

{|〈〈S ′′
n

?
= ⊥ ? ⊥ : (state(S ′′

n), time(S ′
n) + time(S ′′

n))〉〉 :

S ′
n ← Un(Sn), S ′′

n ← 〈〈S
′
n

?
= ⊥ ? ηD(⊥) :

∨

i∈I

T(i)
n (state(S ′

n))〉〉|} =

∨

i∈I

{|〈〈S ′′
n

?
= ⊥ ? ⊥ : (state(S ′′

n), time(S ′
n) + time(S ′′

n))〉〉 :

S ′
n ← Un(Sn), S

′′
n ← 〈〈S

′
n

?
= ⊥ ? ηD(⊥) : T(i)

n (state(S ′
n))〉〉|} =

∨

i∈I

composen(Un, Tn)(Sn) =
∨

i∈I

[F (1)(T(i))]n(Sn) = [
∨

i∈I

F (1)(T(i))]n(Sn) .

Here, at the first equals-sign, we have used Lemma 2.2 for Cartesian products.
At the second equals-sign (between first and second row), we have used the same
lemma for functions.

Lemma 3.4. Let b ∈ Var and let F (2) : CLenType→ CLenType be defined by

[F (2)(T)]n = condn(b, Tn, Clen[[skip]]n) .

Then the function F (2) is continuous.

Proof. Similar to Lemma 3.3.

34 CHAPTER 3. COMPUTATIONAL SECURITY

Proof of proposition 3.2. The function FP in Fig. 3.1 is equal to the composition
F (2) ◦ F (1), where

[F (1)(T)]n = composen(Clen[[P]]n, Tn)

[F (2)(T)]n = condn(b, Tn, Clen[[skip]]n) .

Both F (1) and F (2) are continuous, therefore their composition is continuous, too
[NN92, Lem. 4.35].

3.1.3 An Alternative Formulation for Loops

We give another description for the semantics of while-loops. It is easier to use in
the proof of correctness of the analysis.

Instead of the equation (3.1) there are other equations that intuitively may serve
as the specification of the semantics for while-statements. Here we intend to define
this semantics as a solution of the equation

Clen[[while b do P]] = Clen[[if b then P else skip; while b do P]] . (3.2)

The solutions of this equations are exactly the fixed points of the function F̄P, where

[F̄P(S)]n = composen(Clen[[if b then P else skip]]n, S) .

However, we cannot define Clen[[while b do P]] as the least solution of the equation
(3.2), because the least solution is Clen[[stuck]].

Let U = Clen[[if b then stuck else skip]]. For a program P we will show that the
semantics of while b do P is the least solution of (3.2) that is greater than or equal
to U. In other words, Clen[[while b do P]] could also be defined as lfpU F̄P. First, we
must show that this least fixed point exists.

Lemma 3.5. The function F̄P is continuous for each program P.

Proof. This follows directly from lemma 3.3.

Lemma 3.6. U ≤ F̄P(U).

Proof. Let Sn ∈ Staten, then

Un(Sn) =

{
ηD(⊥), if Sn(b) = true

ηD((Sn, 0)), if Sn(b) = false

and

[F̄P(U)]n(Sn) =

{
Clen[[if b then P else skip]]n(Sn), if Sn(b) = true

ηD((Sn, 0)), if Sn(b) = false

Obviously ηD(⊥) ≤ Clen[[if b then P else skip]]n(Sn), therefore U ≤ F̄P(U).

3.1. SYNTAX AND SEMANTICS OF THE PROG. LANGUAGE 35

From the preceding two lemmas follows that lfpU F̄P exists.

Proposition 3.7. For all programs P, Clen[[while b do P]] = lfpU F̄P.

Proof. We show that F̄ i
P(U) = F i+1

P (⊥). The claim of the proposition follows then
from Propositions 2.3 and 2.4 (precisely, from the formulae for computing the least
fixed points).

F̄ i
P(U) = F i+1

P (⊥) is shown by induction over i. If i = 0 then

F̄ 0
P(U) = Clen[[if b then P else skip]] = F 1

P(⊥) .

Suppose that F̄ i
P(U) = F i+1

P (⊥) for some i ∈ N. Let Sn ∈ Staten. Then either
Sn(b) = true or Sn(b) = false. If Sn(b) = true, then

[F̄ i+1
P (U)]n(Sn) = [F̄P(F̄ i

P(U))]n(Sn) =

composen(Clen[[if b then P else skip]]n, [F̄ i
P(U)]n)(Sn) =

{|〈〈S ′′
n

?
= ⊥ ? ⊥ : (state(S ′′

n), time(S ′
n) + time(S ′′

n))〉〉 :

S ′
n ← Clen[[if b then P else skip]]n(Sn),

S ′′
n ← 〈〈S

′
n

?
= ⊥ ? ηD(⊥) : [F̄ i

P(U)]n(state(S ′
n))〉〉|} =

{|〈〈S ′′
n

?
= ⊥ ? ⊥ : (state(S ′′

n), time(S ′
n) + time(S ′′

n))〉〉 :

S ′
n ← Clen[[P]]n(Sn), S ′′

n ← 〈〈S
′
n

?
= ⊥ ? ηD(⊥) : [F̄ i

P(U)]n(state(S ′
n))〉〉|} =

composen(Clen[[P]]n, [F̄ i
P(U)]n)(Sn) = composen(Clen[[P]]n, [F i+1

P (⊥)]n)(Sn) =

〈〈Sn(b) ? composen(Clen[[P]]n, [F i+1
P (⊥)]n)(Sn) : Clen[[skip]]n(Sn)〉〉 =

condn(b, composen(Clen[[P]]n, [F i+1
P (⊥)]n), Clen[[skip]]n))(Sn) =

[FP(F i+1
P (⊥))]n(Sn) = [F i+2

P (⊥)]n(Sn) .

If Sn(b) = false, then

[F̄ i+1
P (U)]n(Sn) = [F̄P(F̄ i

P(U))]n(Sn) =

composen(Clen[[if b then P else skip]]n, [F̄ i
P(U)]n)(Sn) =

{|〈〈S ′′
n

?
= ⊥ ? ⊥ : (state(S ′′

n), time(S ′
n) + time(S ′′

n))〉〉 :

S ′
n ← Clen[[if b then P else skip]]n(Sn),

S ′′
n ← 〈〈S

′
n

?
= ⊥ ? ηD(⊥) : [F̄ i

P(U)]n(state(S ′
n))〉〉|} =

{|〈〈S ′′
n

?
= ⊥ ? ⊥ : (state(S ′′

n), time(S ′
n) + time(S ′′

n))〉〉 :

S ′
n = (Sn, 0), S ′′

n ← 〈〈S
′
n

?
= ⊥ ? ηD(⊥) : [F̄ i

P(U)]n(state(S ′
n))〉〉|} =

{|〈〈S ′′
n

?
= ⊥ ? ⊥ : (state(S ′′

n), time(S ′′
n))〉〉 : S ′′

n ← [F̄ i
P(U)]n(Sn)|} =

[F̄ i
P(U)]n(Sn) = [F̄ i−1

P (U)]n(Sn) = · · · = [F̄ 0
P(U)]n(Sn) = ηD((Sn, 0)) =

〈〈Sn(b) ? composen(Clen[[P]]n, [F i+1
P (⊥)]n)(Sn) : Clen[[skip]]n(Sn)〉〉 =

condn(b, composen(Clen[[P]]n, [F i+1
P (⊥)]n), Clen[[skip]]n))(Sn) =

[FP(F i+1
P (⊥))]n(Sn) = [F i+2

P (⊥)]n(Sn) .

36 CHAPTER 3. COMPUTATIONAL SECURITY

Therefore F̄ i+1
P (U) = F i+2

P (⊥).

3.2 Security Definition

The model of security that we have in mind here is the following: There is a certain
set of private variables VarS ⊆ Var whose initial values we want to keep secret.
After the program P has run, the values of the variables in a certain set VarP ⊆ Var
become public. The attacker tries to find out something about the initial values of
secret variables. It can read the final values of public variables.

We assume that VarS ∩VarP = ∅. This assumption obviously does not restrict
the generality, it may be overcome by introducing extra output variables. This
assumption makes the subsequent arguments a bit simpler (especially Fig. 3.3 and
Sec. 3.3), as we have less cases to handle.

3.2.1 “Terminating” Programs

We define security only for programs that run in polynomial time. We claim that
this decision causes us no loss of generality. Namely, before the attacker obtains the
final values of public variables, it is expected to wait for the program to finish its
execution. If the program runs for too long time and the attacker keeps waiting, then
it cannot find out anything about the initial values of secret variables. Alternatively,
at a certain moment the attacker may decide that the program is taking too long
time to run and should be considered to be effectively nonterminating; the final
state should be considered to be ⊥. We “compose” the original program and the
attacker’s decision-making process about the running time of the program. The
result is a program that runs in polynomial time. We could define the original
program to be secure iff the composed program is.

The next definition formalises the notion of running in polynomial time. Fig. 3.2
gives a transformation for turning an arbitrary program to one that terminates
in polynomial time. This transformation corresponds to the attacker’s decision-
making process about the running time of the program.

Definition 3.1. A program P runs in expected polynomial time for a distribution of
inputs D ∈ Distrpol if there is a polynomial p ∈ Pol(Z), such that the probability

Pr
[
Tn = ⊥ ∨ time(Tn) > p(n) : Sn ← Dn, Tn ← Clen[[P]](Sn)

]

is negligible.

Let TerD[P] ⊆ Distrpol denote the set of all distributions D of inputs, for which
P runs in expected polynomial time.

For a distribution D ∈ TerD[P], the distribution Clen[[P]](D) puts only negligible
weight on ⊥ or on final states where the running time is greater than polynomial.
We can say here, that the program P transforms the distribution D into another

3.2. SECURITY DEFINITION 37

Let l be a new variable. Let len ∈ Op be such, that [[len]]n() is the binary repre-
sentation of some number that is polynomial in n. Let “0”, “+1”, “≤” and “∧” have
their usual meanings.
Construct a program Q as follows:

P Q

skip l := l + 1
x := o(x1, . . . , xk) x := o(x1, . . . , xk); l := l + 1
P1; P2 Q1; Q2

if b then P1 else P2 if b then Q1 else Q2

while b do P′ while b do
(
Q′; b := b ∧ (l ≤ len())

)

The program P is transformed to

l := 0;
Q;
if l > len() then

x1 := 0;
.
xm := 0



 {x1, . . . , xm} = Var

else skip

Figure 3.2: Making the program P terminating

distribution over the program states. We denote this distribution by Cterm[[P]](D)
and define it by

Cterm[[P]](D) = {|state(Tn) : Sn ← Dn, Tn ← Clen[[P]](Sn)|}n∈N .

This distribution (or actually one that is indistinguishable from it) is polynomial-
time constructible. Indeed, an algorithm that samples the distribution Cterm[[P]](D)
could work as follows: it first obtains a sample of D (the distribution D is polynomial-
time constructible) and then runs the program P for at most p(n) steps. Thus
Cterm[[P]] is a function from TerD[P] to Distrpol.

3.2.2 Security Definitions

The “canonical” form of the definition of secure information flow is the following:

Definition 3.2. Let P be a program and let D ∈ TerD[P]. Then P with inputs
distributed according to D has secure information flow if the distributions

{|(Sn $ VarS, state(Tn) $ VarP) : Sn ← Dn, Tn ← Clen[[P]](Sn)|}n∈N (3.3)

and

{|(Sn $ VarS, state(T
′
n) $ VarP) : Sn, S ′

n ← Dn, T′
n ← Clen[[P]](S ′

n)|}n∈N (3.4)

38 CHAPTER 3. COMPUTATIONAL SECURITY

Let P be a program and VarS ⊆ Var.
Define

• Var′S = {x′ : x ∈ VarS}

• Var′ = Var]Var′S

• P′ is the program P, where each occurrence of a variable x ∈ VarS is replaced
with x′.

Replace P with
x′

1 := x1;
.
x′

m := xm;



 {x1, . . . , xm} = VarS

P′

Figure 3.3: Making the variables in VarS read-only

are indistinguishable.

Because of the program P running in expected polynomial time, there is only
negligible probability that Tn or T′

n are equal to ⊥. When we compare this defi-
nition with the definition of independence then we see that a program has secure
information flow for a certain distribution of inputs, if the initial values of the vari-
ables in VarS and the final values of the variables in VarP are computationally
independent. Thus the final values of the variables in VarP are useless for the
attacker.

This definition becomes more compact if we assume that the program P does not
change the values of the variables in VarS. This may seem a significant constraint
but in reality, it is not. We may introduce new variables and use them instead of
the variables in VarS. Fig. 3.3 shows, how to transform any program to a program
that does not assign to the variables in VarS.

Proposition 3.8. Suppose that the program P does not assign to the variables in
VarS. Let D ∈ TerD[P]. Then P with inputs distributed according to D has
secure information flow iff VarS and VarP are independent in the distribution
Cterm[[P]](D).

Proof. Follows directly from the definitions of Cterm[[P]], independence, and secure
information flow.

Finding out whether VarS and VarP are independent or not in the distribution
Cterm[[P]](D) is the task of the analysis presented in the next chapter.

Secure information flow could also be characterised differently, through semantic
security. Semantic security is a more direct description of the uselessness of the final
values of variables in VarP for the attacker.

3.2. SECURITY DEFINITION 39

Definition 3.3. Program P, whose inputs are distributed accordingly to D ∈
TerD[P], is semantically secure, if for all polynomial-time computable functions
f, h :

∏
n∈N

((VarS → Valn) → {0, 1}∗) and all PPT algorithms A there exists a
PPT algorithm B, such that the difference of

Pr
[
A

(
1n, state(Tn) $ VarP, h(Sn $ VarS)

)
= f(Sn $ VarS) :

Sn ← Dn, Tn ← Clen[[P]](Sn)
]

(3.5)

and
Pr

[
B

(
1n, h(Sn $ VarS)

)
= f(Sn $ VarS) : Sn ← Dn

]
(3.6)

is negligible in n.

This definition corresponds to the following scenario. The adversary already has
some knowledge (the value of h) about the secret inputs of P and it wants to find
out something more about them (the value of f). In its quest, the public outputs
of the program must be of no use to it — if the adversary has a certain success
when using the public outputs, then there must also exist a possibility to not use
the public outputs and nevertheless have the same success rate.

Secure information flow and semantic security are related in the following way:

Proposition 3.9. Let P be a program and let D ∈ TerD[P]. If P with inputs
distributed according to D has secure information flow then it is semantically secure.

Proof. Suppose that P with inputs distributed according to D is not semantically
secure, i.e. there exist polynomial-time computable functions f, h :

∏
n∈N

((VarS →
Valn)→ {0, 1}∗) and a PPT algorithm A, such that there is no such algorithm B,
such that the distributions (3.5) and (3.6) are indistinguishable.

Also suppose that P with inputs distributed according to D has secure informa-
tion flow, i.e. the distributions (3.3) and (3.4) are indistinguishable.

We are going to construct an algorithm B′. The inputs of B′ are

• the security parameter 1n;

• a bit-string x ∈ {0, 1}∗.

The algorithm B′(1n, x) does the following:

1. Generates a program state S ′
n according to the distribution Dn.

2. Generates T′
n ∈ STn according to Clen[[P]](S ′

n);

3. Calls the algorithm A with arguments 1n, state(T′
n) $ VarP and x;

4. Outputs the value returned by A.

We also construct an algorithm C. Its inputs are

• the security parameter 1n;

40 CHAPTER 3. COMPUTATIONAL SECURITY

• a sequence VS of the elements of Valn, indexed by VarS;

• a sequence VP of the elements of Valn, indexed by VarP.

The algorithm C(1n, VS, VP) does the following:

1. Calls the algorithm A with arguments 1n, VP and h(VS).

2. If the value returned by A is equal to f(VS), then C outputs 1. Otherwise it
outputs 2.

We now have

Pr
[
B′

(
1n, h(Sn $ VarS)

)
= f(Sn $ VarS) : Sn ← Dn

]
=

Pr
[
A

(
1n, state(T′

n) $ VarP, h(Sn $ VarS)
)

= f(Sn $ VarS) :

Sn, S ′
n ← Dn, T′

n ← Clen[[P]](S ′
n)

]
=

Pr
[
C(1n, Sn $ VarS, state(T

′
n) $ VarP) = 1 :

Sn, S ′
n ← Dn, T′

n ← Clen[[P]](S ′
n)

]
=

Pr
[
C(1n, Sn $ VarS, state(Tn) $ VarP) = 1 :

Sn ← Dn, Tn ← Clen[[P]](Sn)
]
+ α(n) =

Pr
[
A

(
1n, state(Tn) $ VarP, h(Sn $ VarS)

)
= f(Sn $ VarS) :

Sn ← Dn, Tn ← Clen[[P]](Sn)
]
+ α(n),

where α is some negligible function. Therefore the algorithm B′ is a suitable can-
didate for the algorithm B that supposedly did not exist. A contradiction.

3.3 Discussion

Security definition. The security definition that we have given here is quite
similar to one given for programs specified in some process algebra, for example the
spi-calculus [AG99]. One defines a program to be secure if it is equivalent to some
obviously secure program. There can be different ways to define equivalence and
obvious security, these definitions depend on the problem domain.

In our case with a passive adversary, we define two programs P(1) and P(2)

(having the same set Var of variables) with the distributions of inputs D(1) and
D(2), respectively, to be equivalent iff the distributions

{|(Sn $ VarS, state(Tn) $ VarP) : Sn ← D(1)
n , Tn ← Clen[[P

(1)]](Sn)|}n∈N

and

{|(Sn $ VarS, state(Tn) $ VarP) : Sn ← D(2)
n , Tn ← Clen[[P

(2)]](Sn)|}n∈N

are indistinguishable. Obvious security is not really defined at all, it is given by
listing the programs that we consider being obviously secure. In our case, we

3.3. DISCUSSION 41

consider a program P obviously secure, if it does not read the initial values of its
variables. Clearly, the output of such program does not depend on its input.

If a program is secure according to Def. 3.2, then there exists an obviously
secure program that is equivalent to it. Namely, given a program P whose inputs
are distributed according to D ∈ Distrpol, consider the program P′, that first
generates new values for all of its variables (and thereby discarding their input
values) by sampling the distribution D, and then works like the program P. From
the definitions follows that P and P′ are equivalent iff the two distributions in
Def. 3.2 are indistinguishable.

Structures on Distr⊥. In this chapter we have considered two very different
structures on the set Distr⊥ (or on its subsets). Namely, we have used completeness
of Distr⊥ and least upper bounds on it to define the semantics Clen[[P]], and we
have used indistinguishability of distributions over program states to define secure
information flow. A natural question about the relationship of these two structures
arises. As we show below, there is no meaningful relationship.

Let D(1), D(2) ∈ Distr⊥ be two families of distributions over program states.
We now construct two sets of families of distributions D(1,m), D(2,m) ∈ Distr⊥,
where m ∈ N, such that

• if m1 ≤ m2 then D(i,m1) ≤ D(i,m2) for each i ∈ {1, 2} and m1, m2 ∈ N.
Therefore the sets {D(1,m) : m ∈ N} and {D(2,m) : m ∈ N} are chains in
Distr⊥.

•
∨
{D(i,m) : m ∈ N} = D(i) for each i ∈ N.

• D(1,m) ≈ D(2,m) for all m ∈ N. Even more, D(i1,m1) ≈ D(i2,m2) for all i1, i2 ∈
{1, 2} and m1, m2 ∈ N.

We let D
(i,m)
n ∈ D(Staten⊥), where i ∈ {1, 2} and m, n ∈ N be the following

distribution:

D(i,m)
n =

{
D

(i)
n , if n ≤ m

ηD(⊥), if n > m .

It is obvious that the families of distributions D(i,m) are ordered as described and
that their least upper bound is the distribution D(i), because order and least upper
bounds are defined componentwise. The indistinguishability of families of distribu-
tions D(i1,m1) and D(i2,m2) follows from the usage of asymptotics in defining indis-
tinguishability and from the equation D

(i1,m1)
n = D

(i2,m2)
n for all large enough n ∈ N

(namely, for all n > max(m1, m2)).
Thus the (families of) distributions D(i,m) are all indistinguishable from each

other and D(1), D(2) are their least upper bounds. But no requirements at all were
put on D(1) and D(2). They could have been any two distributions.

Let A be a CPO. If f is a function from Distr⊥ to A with the property that
f(D(1)) = f(D(2)) for all families of distributions D(1), D(2) ∈ Distr⊥, where

42 CHAPTER 3. COMPUTATIONAL SECURITY

D(1) ≈ D(2) (clearly, an abstraction function associated with an analysis for se-
cure information flow, should have this property), then the function f cannot be
continuous. Because of that, in the next chapter we cannot use existing fixed point
approximation theorems (for example, [Cou00, Thm. 1, Thm. 2]) for proving our
analysis correct. We have to give a rather ad hoc proof.

Chapter 4

Analysis

In this chapter we present the static program analysis for secure information flow.
The analysis of a program P has a structure similar to the semantics of P, it is
a function mapping the abstraction of the distribution of the inputs of P to the
abstraction of the distribution of the outputs. The analysis is therefore also called
an/the abstract semantics of the program. The key difference between concrete
and abstract semantices is, that the abstract semantics is computable (the concrete
semantics was only “samplable”). Given the program and the abstract input, there
exists an algorithm that computes the abstract output.

In Sec. 4.1 we present the abstract domain PF(Var) (the abstract domain de-
pends on the set of variables Var) — the set of abstractions of distributions over pro-
gram states. We define the representation function βKI

Var from Distrpol to PF(Var)
that maps each distribution to its (best possible) abstraction.

Sec. 4.2 gives the abstract semantics itself. As it maps the abstraction of an
input distribution to the abstraction of the output distribution, it does not explicitly
relate the (secret) inputs and (public) outputs of the program. We use the analysis
together with Proposition 3.8 to derive conclusions about their relationship. The
usage of the analysis is spelled out precisely in Corollary 4.4.

The rest of this chapter is devoted to proving the abstract semantics correct.
In Sec. 4.3 we state the correctness theorem and also sketch the proof idea in
Sec. 4.3.1. In Sec. 4.3.2 we give the roadmap for the rest of this chapter (Secs. 4.4–
4.7), containing the correctness proof itself.

4.1 Abstraction of Distributions

The abstraction maps each D ∈ Distrpol to a pair, where the first, “main” com-
ponent describes, which (sets of) variables are independent of each other, and the
second component records, the values of which variables are distributed (and hence
may be used) as encryption keys.

43

44 CHAPTER 4. ANALYSIS

4.1.1 Independence

The abstraction of D ∈ Distrpol records the independence of (sets of) variables.
Recalling the general definition from Sec. 2.2.2, two sets of variables X, Y ⊆ Var
are independent in the distribution D, if the distributions

{|(Sn $ X, Sn $ Y) : Sn ← Dn|}n∈N (4.1)

and

{|(Sn $ X, S ′
n $ Y) : Sn, S ′

n ← Dn|}n∈N (4.2)

are indistinguishable.
Only recording the independence of variables leaves us unable to discriminate

between different “kinds of independence”. For example: let k, l and x be variables
and let D be a distribution, such that

• the value of k is distributed as a key;

• the value of x is a ciphertext, encrypted with the key k;

• the value of l has been obtained by the operation l = k + 1.

Then neither l nor x are independent of k in the distribution D. But the information
that l conveys about k is much stronger than the information that x conveys.
Someone knowing l may be able to decrypt ciphertexts created by k, but someone
knowing only x certainly cannot. This is a difference that our abstraction should
certainly reflect.

Consider the object called [k]E that we use in the following way: given a state
Sn ∈ Staten, we define the value of [k]E in the state Sn (similarly to the values of
variables). The value of [k]E in Sn (denoted Sn([k]E)) is a black box that encrypts
its inputs with the value of k in the state Sn. The notion of independence is also
defined for such objects (see discussion after Def. 2.4).

Returning to our example, being independent from [k]E distinguishes l and x —
x is independent from [k]E (at least when the encryption is which-key and repetition
concealing) while l is not.

Let Ṽar denote the set Var ∪ {[k]E : k ∈ Var}. If Sn ∈ Staten, i.e. Sn is a
function from Var to Valn, then we consider the domain of Sn to be Ṽar (and its
range to be Ṽaln := Valn ∪ (Valn Valn) — Sn([k]E) is a probabilistic function
from Valn to Valn).

The abstraction βI

Var(D) is equal to the set of all pairs (X, Y), where X, Y ⊆
Ṽar, such that X is independent from Y in the distribution D. Let F(Var) denote
the range of βI

Var, then F(Var) is a subset of P(P(Ṽar)×P(Ṽar)). The following
trivially holds for each element X of F(Var):

• It is symmetric: if (X, Y) ∈ X then also (Y, X) ∈ X, because of the symmetry
in the definition of independence.

4.1. ABSTRACTION OF DISTRIBUTIONS 45

• It is monotone: if (X, Y) ∈ X and X ′ ⊆ X and Y ′ ⊆ Y then (X ′, Y ′) ∈ X.
Indeed, if a PPT algorithm can show the dependence between X ′ and Y ′ in a
distribution D, then the same algorithm also shows the dependence between
X and Y .

• k ∈ Var contains all the information that [k]E contains: if ({k} ∪X, Y) ∈ X

then also ({k, [k]E} ∪X, Y) ∈ X, because the value of [k]E can be computed
from the value of k.

We have made the set of variables Var explicit in the notation (we have de-
fined Ṽar, βI

Var and F(Var)). The reason for this is, that in defining the abstract
semantics for a program we may have to consider the abstract semantices of its
subprograms with respect to different sets of variables (see the def. of abstr. sem.
for branches) and it is not always implicitly clear, what the assumed underlying set
of variables is.

4.1.2 Keys

Our analysis treats encryption in a special way. The abstract semantics for a state-
ment x := Enc(k, y) is different, more optimistic than the abstract semantics of
a generic statement x := o(x1, . . . , xm). The correctness of this special treatment
stems from the security definition for the encryption system. But this definition
(and therefore also the special treatment) is applicable only if the key used for
encrypting is generated by the corresponding key generation algorithm. Our ab-
straction thus has to record, which variables are distributed as keys.

The abstraction βK

Var(D), where D ∈ Distrpol, is a subset of Var, consisting of
all variables k, such that

{|Sn([k]E) : Sn ← Dn|}n∈N ≈ {|[[Enc]]n(k′, ·) : k′ ← [[Gen]]n|}n∈N (4.3)

holds. Here in the left hand side we have the distribution of the encrypting black
box [k]E, whereas on the right hand side we have an encrypting black box that
encrypts with a real key.

The whole abstraction βKI

Var is the pair of abstractions presented so far, βKI

Var(D) =
(βK

Var(D), βI

Var(D)). The range of this abstraction is P(Var)× F(Var), we denote
it by PF(Var). Let keys : PF(Var) → P(Var) and indeps : PF(Var) → F(Var)
be the projections onto the first and second component of PF(Var), respectively.

4.1.3 Discussion

Here we want give an intuitive explanation, what the (in)dependence of a black box
[k]E from a set X ⊆ Ṽar means, versus the (in)dependence of the key k from a set
X ⊆ Ṽar.

Given a key k and a set X ⊆ Ṽar, there are three different possibilities for their
independence:

46 CHAPTER 4. ANALYSIS

• X is independent of {k}. In this case X contains no information about the
key k. This is the usual independence of two sets of variables.

• X is not independent of {k}, but is independent of {[k]E}. In this case the
values of variables and black boxes in X may contain ciphertexts that have
been created with the key k. However, X still contains so little information
about k, that it is of no use in decrypting ciphertexts created with the key k.
Here “decrypting” means not only completely, but also partially revealing the
corresponding plaintext (similarly to semantic security).

• X is not independent of {[k]E}. Then the values of variables and black boxes
in X may help in decrypting ciphertexts created with key k.

Another thing worth mentioning is that ({x}, {x}) ∈ βI

Var(D) is possible also for
variables x ∈ Var (for black boxes, this is the definition of which-key concealedness).
This situation occurs if x has a constant value in D — the probability

Pr
[
Sn(x) 6= S ′

n(x) : Sn, S ′
n ← Dn

]
(4.4)

is negligible in n.
We have shown that βI

Var(D) has certain closedness properties — namely sym-
metry and downwards closedness. There is also another interesting closedness prop-
erty that may help to understand the abstract semantics.

Definition 4.1. Let X ∈ F(Var). We say that X is complete, if for each X, Y, Z ⊆
Ṽar the following implication holds: if

(X, Y) ∈ X (4.5)

and
(X ∪ Y, Z) ∈ X, (4.6)

then also
(X, Y ∪ Z) ∈ X . (4.7)

Lemma 4.1. Let D ∈ Distrpol. Then βKI

Var(D) is complete.

Proof. Let X, Y, Z ∈ Ṽar. Then

{|(Sn $ X, Sn $ Y, Sn $ Z) : Sn ← Dn|}n∈N ≈
(4.6)

{|Sn $ X, Sn $ Y, S ′
n $ Z) : Sn, S ′

n ← Dn|}n∈N ≈
(4.5)

{|Sn $ X, S ′′
n $ Y, S ′

n $ Z) : Sn, S ′
n, S

′′
n ← Dn|}n∈N ≈

(4.6)

{|Sn $ X, S ′
n $ Y, S ′

n $ Z) : Sn, S ′
n ← Dn|}n∈N,

which shows that (4.7) holds for βI

Var(D).

From the proof of this lemma we also see that (4.5) and (4.6) imply

{|(Sn $ X, Sn $ Y, Sn $ Z) : Sn ← Dn|}n∈N ≈

{|Sn $ X, S ′
n $ Y, S ′′

n $ Z) : Sn, S ′
n, S ′′

n ← Dn|}n∈N,

i.e. the values of variables in X, the values of variables in Y and the values of
variables in Z are in some sense “three-way” independent in distribution D.

4.2. ABSTRACT SEMANTICS 47

TerD[P]
Cterm[[P]]

//

βKI

Var

��

Distrpol

βKI

Var

��
PF(Var)

A // PF(Var) ≤ PF(Var)

Figure 4.1: Abstracting the concrete semantics

4.2 Abstract Semantics

The abstract semantics A(Var)[[P]] for a program P is a function whose domain and
range are both PF(Var), where the set of variables Var must contain at least all
the variables that occur in P.

Let us give a precise description, what the correctness of the abstract semantics
means.

Definition 4.2. Let P be a program with variables from the set Var. Let A be a
function with domain and range both equal to PF(Var). We say that A abstracts
the concrete semantics of P, if for each D ∈ TerD[P], the inequality

βKI

Var ◦ Cterm[[P]] $ D ≥ A ◦ βKI

Var $ D (4.8)

holds.

Fig. 4.1 illustrates this definition.
The definition of A(Var)[[P]] is given inductively over the syntax of P.

4.2.1 Assignments

Let X ∈ PF(Var) and let program P be the statement x := o(x1, . . . , xk). We
define Y = A(Var)[[P]](X) as the smallest element of PF(Var), such that

• Y satisfies the rules in Fig. 4.2 and Fig. 4.3;

• indeps(Y) is symmetric and downwards closed.

We do not demand Y to be complete. Demanding the completeness would
complicate the correctness proof. However, it turns out (although we are not going
to prove it here) that it is unnecessary to demand it at all — if X is complete then
Y is complete, too.

Let us give an explanation for the rules in Figures 4.2 and 4.3.

Rule (4.9): The program P changes only the value of the variable x and therefore
also the black box [x]E. It does not change the values of any other variables or
black boxes. In rule (4.9), the sets X, Y ⊆ Ṽar only contain variables and black
boxes whose values are not changed by the program P; the values of variables and

48 CHAPTER 4. ANALYSIS

P is x := o(x1, . . . , xk)
(X, Y) ∈ indeps(X)

x, [x]E 6∈ X ∪ Y
(X, Y) ∈ indeps(Y)

(4.9)

P is x := o(x1, . . . , xk)
(X, Y) ∈ indeps(X)

x, [x]E 6∈ X ∪ Y
x1, . . . , xk ∈ Y

(X, Y ∪ {x, [x]E}) ∈ indeps(Y)

(4.10)

P is x := Enc(k, y)
(X, Y) ∈ indeps(X)

x, [x]E 6∈ X ∪ Y
y, [k]E ∈ Y

(X, Y ∪ {x, [x]E}) ∈ indeps(Y)

(4.101)

P is x := y
(X, Y) ∈ indeps(X)

x, [x]E 6∈ X ∪ Y
X ′ := X ∪ 〈〈y ∈ X ? {x} : ∅〉〉 ∪ 〈〈[y]E ∈ X ? {[x]E} : ∅〉〉
Y ′ := Y ∪ 〈〈y ∈ Y ? {x} : ∅〉〉 ∪ 〈〈[y]E ∈ Y ? {[x]E} : ∅〉〉

(X ′, Y ′) ∈ indeps(Y)

(4.102)

P is x := Enc(k, y)
(X, Y) ∈ indeps(X)

x, [x]E 6∈ X ∪ Y
k ∈ keys(X)

({[k]E}, X ∪ (Y \{[k]E}) ∪ {y}) ∈ indeps(X)
(X, Y ∪ {x, [x]E}) ∈ indeps(Y)

(4.11)

P is x := Gen()
(X, Y) ∈ indeps(X)

x 6∈ X ∪ Y
(X ∪ {[x]E}, Y ∪ {[x]E}) ∈ indeps(Y)

(4.12)

P is x := o()
(X, Y) ∈ indeps(X)

x, [x]E 6∈ X ∪ Y
[[o]] is deterministic

(X ∪ {x, [x]E}, Y ∪ {x, [x]E}) ∈ indeps(Y)

(4.13)

Figure 4.2: The semantics A(Var)[[P]] for assignments; indeps-part

4.2. ABSTRACT SEMANTICS 49

P is x := o(. . .)
k ∈ keys(X)\{x}

k ∈ keys(Y)
(4.14)

P is x := y
y ∈ keys(X)
x ∈ keys(Y)

(4.141)

P is x := Gen()
x ∈ keys(Y)

(4.15)

Figure 4.3: The semantics A(Var)[[P]] for assignments; keys-part

black boxes in those sets are equal before and after the program. Therefore, if the
variables and black boxes in the set X are independent from the variables and black
boxes in the set Y before the program P, then the variables and black boxes in the
set X are also independent from the variables and black boxes in the set Y after
the program P.

We see that all rules in Fig. 4.2 have x, [x]E 6∈ X ∪Y as one of their antecedents.
This is not strictly necessary for all the rules (although it is necessary for rule (4.9)).
It is included in the rules to make them more orthogonal — as x and [x]E are
overwritten by the assignment, their independence from other variables does not
influence the independence of variables and black boxes after the program P.

Note that the independence of X and Y before the program is a necessary
condition for the independence of X and Y after the program, if neither X nor Y
contains x or [x]E. This follows again from the fact that the program P does not
change the values of variables and black boxes in X and Y .

Rule (4.10): Compared to rule (4.9), the additional antecedent of rule (4.10)
states that someone who knows the values of variables and black boxes in Y has all
the necessary information to additionally compute the value of the variable x (and
further, of the black box [x]E) after executing the program P. Moreover, this com-
putation can be done in polynomial time. The independence of X and Y ∪{x, [x]E}
now follows from Lemma 2.10. In this lemma we instantiate the distributions D
and D′ with (4.1) and (4.2). The probabilistic function f in Lemma 2.10 takes the
values of the variables x1, . . . , xk and returns these values and (a sample of) the
value of x after executing the program P.

Rule (4.101): This is a special case of rule (4.10). According to the last an-
tecedent of this rule, someone who knows the values of variables and black boxes
in Y still has all the necessary information to additionally compute the value of
the variable x. A black box encrypting with the value of k is enough for doing the
encryption.

50 CHAPTER 4. ANALYSIS

Rule (4.102): This is again a special case of rule (4.10). It says that if the
program P is x := y, then the value of x after the program can be used instead of
the value of y before the program. Also, the values of x and y together after the
program are no more useful than the value of y before the program.

Rule (4.11): Here we make use of the repetition-concealedness of the encryption.
So, what do we need for the independence of X and Y ∪ {x} after the program P?

Certainly, a necessary condition is the independence of X and Y before the
program P. Indeed, from the downwards closedness of indeps(Y) follows that X and
Y also must be independent after the program P. As we explained before, this is a
necessary condition for the independence of X and Y before the program P.

If we want to make use of the cryptographic properties of encryption, then the
variable k must be a key. Also, it must be rather independent of the variables in X
and Y , as well as the variable y. Namely, it must be impossible to decrypt the value
of x, as created by P. As explained in Sec. 4.1.3, the last antecedent of rule (4.11)
is enough to ensure this.

Rule (4.12): This rule is a rather direct corollary of the which-key concealedness
of the encryption. When we compare the definition of which-key concealedness,
stated through indistinguishability of certain pairs of black boxes (2.10) with the
definition of independence (2.4), then we see that an encryption system is which-key
concealing, if an encrypting black box is independent of itself. Rule (4.12) states
exactly this.

Rule (4.13): This rule is similar to rule (4.12). Namely, the result of the opera-
tion o is always the same value, no matter how many times we do that operation.
Therefore the result of the operation o is independent of itself.

Rule (4.14): If an assignment does not change a variable, then the distribution
of the value of this variable (and also the distribution of the black box encrypting
with the value of this variable) after the assignment is the same as this distribution
before the assignment. Therefore, if the value of the variable k was distributed
as a key before the assignment, and k was not assigned to, then the value of k is
distributed as a key also after the assignment.

Rule (4.141): This rule is similar to the previous rule. The value of x after the
assignment x := y is distributed identically to the value of y before the assignment.

Rule (4.15): The key generation operation creates keys.

4.2.2 Control Flow

Here we define A(Var)[[P]] for all other constructs.

4.2. ABSTRACT SEMANTICS 51

∧

merge(N,Varasgn)

N := b

P1 P2

Figure 4.4: Scheme of defining A(Var)[[if b then P1 else P2]]

Monoid operations

It is easy to see how A(Var)[[P]] should look like, if P is constructed by one of the
“monoid operations”, i.e. if P is either skip or P1; P2 for some programs P1, P2. We
define

A(Var)[[skip]] = idPF(Var)

A(Var)[[P1; P2]] = A(Var)[[P2]] ◦ A(Var)[[P1]],

where idPF(Var) denotes the identity function on PF(Var).

if–then–else

Next we consider the case where P is if b then P1 else P2. Let Varasgn ⊆ Var be
the set of variables that are at the left hand side of some assignment in at least
on of the programs P1 and P2, let N be a variable that is not an element of Var
and let Var′ = Var] {N}. The shape of the definition of A(Var)[[P]] is shown on
Fig. 4.4.

To compute Y = A(Var)[[P]](X), where X ∈ PF(Var), we first compute

Z1 = A(Var′)[[N := b; P1]](X)

Z2 = A(Var′)[[N := b; P2]](X) .
(4.16)

It should be clear that prior to computing the abstract semantices of P1 and P2

we have to “save” the value of b because the operation of merging Z1 and Z2 back
again must take into account, what the variable b was independent of at the start
of the program P. Without saving b this information may get lost as b may get
overwritten.

We then compute Z = Z1∧Z2 (the operation ∧ on PF(Var) = P(Var)×F(Var)
is defined componentwise, on both components, the operation ∧ is set intersection).
Last, Y is defined as the smallest element of PF(Var), such that

52 CHAPTER 4. ANALYSIS

• Y satisfies the rules in Fig. 4.5; square brackets are used for grouping similar
antecedents on this figure;

• Y is symmetric and downwards closed.

In Fig. 4.5 (and in the rest of this thesis), Ṽarasgn denotes the set Varasgn∪{[k]E :
k ∈ Varasgn}.

Let us explain the rules in Fig. 4.5.

Rule (4.17): In this rule, the only entities that may have been changed in one
of the branches are the encrypting black boxes [xi1]E, . . . , [xim]E. At the end of
the branches P1 and P2 (i.e. before merging them together; while giving the intu-
itive explanation of the rules in Fig. 4.5 we assume that both branches have been
run), they are “genuine” encrypting black boxes — the variables xi1 , . . . , xim are all
distributed as keys.

These black boxes are independent of everything else (as given by the antecedent
right above the first group in square brackets) and also of each other (this is given
by the first group of antecedents in square brackets). Indeed, from the first group
of antecedents in square brackets follows through Lemma 4.1, that if K1 and K2

are two subsets of {[xi1]E, . . . , [xim]E}, such that K1 ∩K2 = ∅, then K1 and K2 are
independent of each other.

Therefore it is impossible to find out, whether these black boxes came from the
branch P1 or the branch P2 — this follows from the which-key concealedness of the
encryption primitive.

If a black box is independent of itself in both branches (these are the boxes
[xil+1

]E, . . . , [xim]E, then this black box is also independent of itself after merging.

Rule (4.18): This is a more powerful variant of the previous rule. With respect
to the variables x (with subscripts), it is very similar to the previous rule.

If s = 0, then the two antecedents above the group in square brackets are a
slightly more conservative version of (this follows from Lemma 4.1)

• The antecedent of rule (4.17) above the two groups in square brackets;

• The antecedents in the second group of square brackets in rule (4.17).

Also, the group of antecedents in square brackets in rule (4.18) is exactly the
first group of antecedents in square brackets in rule (4.17). This covers the whole
rule (4.17).

Suppose now, that m = 0. Then the only remaining antecedent containing Z

is the one broken over three lines. Someone that knows the values of variables and
black boxes in Y ∪ {. . .} (the second element of the pair in the antecedent broken
over three lines) at the end of one of the branches (before merging) may be able to
compute the values of variables and black boxes in Y ∪{. . .} (the second element of
the pair in the consequent) after the merge. Indeed, it may be the case that exactly

4.2. ABSTRACT SEMANTICS 53

(X, Y) ∈ indeps(Z)
xi1 , . . . , xil , xil+1

, . . . , xim ∈ Varasgn

({[xi1]E, . . . , [xim]E}, X ∪ Y ∪ {N}) ∈ indeps(Z)


({[xi1]E}, {[xi2]E, . . . , [xim]E}) ∈ indeps(Z)
({[xi2]E}, {[xi3]E, . . . , [xim]E}) ∈ indeps(Z)
. .

({[xim−1]E}, {[xim]E}) ∈ indeps(Z)







({[xil+1
]E}, {[xil+1

]E}) ∈ indeps(Z)
. .
({[xim]E}, {[xim]E}) ∈ indeps(Z)




xi1 , . . . , xim ∈ keys(Z)
(X ∪ Y) ∩ (Ṽarasgn ∪ {N}) = ∅

(X ∪ {[xi1]E, . . . , [xim]E}, Y ∪ {[xil+1
]E, . . . , [xim]E}) ∈ indeps(Y)

(4.17)

xi1 , . . . , xil , xil+1
, . . . , xim , yj1, . . . , yjr

, yjr+1, . . . , yjs
∈ Varasgn(

X ∪ {[xi1]E, . . . , [xim]E},
Y ∪ {N, [xil+1

]E, . . . , [xim]E, yj1, [yj1]E, . . . , yjr
, [yjr

]E, [yjr+1]E, . . . , [yjs
]E}

)

∈ indeps(Z)
(X, {[xi1]E, . . . , [xim]E}) ∈ indeps(Z)



({[xi1]E}, {[xi2]E, . . . , [xim]E}) ∈ indeps(Z)
({[xi2]E}, {[xi3]E, . . . , [xim]E}) ∈ indeps(Z)
. .

({[xim−1]E}, {[xim]E}) ∈ indeps(Z)




xi1 , . . . , xim ∈ keys(Z)
(X ∪ Y) ∩ (Ṽarasgn ∪ {N}) = ∅(

X ∪ {[xi1]E, . . . , [xim]E},
Y ∪ {[xil+1

]E, . . . , [xim]E, yj1, [yj1]E, . . . , yjr
, [yjr

]E, [yjr+1]E, . . . , [yjs
]E}

)

∈ indeps(Y)

(4.18)

w ∈ keys(Z)
w 6∈ Varasgn

w ∈ keys(Y)
(4.19)

xi ∈ Varasgn

xi ∈ keys(Z)
({[xi]E}, {N}) ∈ indeps(Z)

xi ∈ keys(Y)

(4.20)

Figure 4.5: Definition of merge(N,Varasgn)(Z)

54 CHAPTER 4. ANALYSIS

this branch has been taken. For at least one of the branches the probability that
the values of variables and black boxes in Y ∪{. . .} (the second element of the pair
in the consequent) can be computed, is at least 1

2
(i.e. non-negligible).

Also, someone that knows the values of variables and black boxes in Y ∪ {. . .}
(the second element of the pair in the antecedent broken over three lines) at the end
of one of the branches, knows, whether he is able to compute the values of variables
and black boxes in Y ∪ {. . .} (the second element of the pair in the consequent)
after the merge.

Therefore one can often compute the values of variables and black boxes in
Y ∪ {. . .} (the second element of the pair in the consequent) after the merge. The
results of this computation will never be wrong. This is enough for the consequent
of rule (4.18) to hold.

If both m > 0 and s > 0, then the variables x (with subscripts) are still
independent of everything else, including the variables y (with subscripts). This
allows us to put these two cases together.

Rule (4.19): This is just a variant of rule (4.14). The value of the variable w has
not been changed in any of the branches P1 and P2, therefore w ∈ keys(Z) means
that the value of w already was distributed as a key before the if -statement. As it
has not been changed, it also is distributed as a key after the entire if -statement.

Rule (4.20): If xi is distributed according to the same distribution in both
branches of the if -statement (in rule (4.20), it is distributed as a key in both
branches), then it is not necessarily distributed according to that distribution af-
ter that if -statement, as its value may have influenced, which of the branches was
taken. However, if the distribution of xi is same in both branches and is indepen-
dent of the choice of the branches, then it is still distributed in the same way after
the if -statement.

Loops

Let P be while b do P′. The abstract semantics of P is defined similarly to its
concrete semantics given in Sec. 3.1.3. Again, A(Var)[[P]] is defined as a solution to
the equation

A(Var)[[while b do P′]] = A(Var)[[if b then P′ else skip; while b do P′]] .

We first define a function GP′, and then define the semantics A(Var)[[P]] as a certain
fixed point of GP′ . We have

GP′ : (PF(Var)→ PF(Var))→ (PF(Var)→ PF(Var))

GP′(f) := f ◦ A(Var)[[if b then P′ else skip]] (4.21)

A(Var)[[P]] = gfpidPF(Var) GP′ . (4.22)

4.2. ABSTRACT SEMANTICS 55

Here we have gfp instead of lfp because the order on PF(Var) is different (if we
had taken R(PF(Var)) as our domain, then we should have taken the least fixed
point). We also have a different starting point of the iteration — namely idPF(Var).
The reason for this is, that we cannot give a suitable definition of A(Var)[[stuck]].

The well-definedness of the semantics follows from the monotonicity of GP′, the
following lemma and Proposition 2.7.

Lemma 4.2. GP′(idPF(Var)) ≤ idPF(Var).

Proof. We have GP′(idPF(Var)) = A(Var)[[if b then P′ else skip]]. From Fig. 4.5 one
can easily see that merge(N,Varasgn) ≤ idPF(Var). Also, if N is a variable that is
not a member of Var and if Var′ denotes Var] {N}, then

merge(N,Varasgn) ◦A(Var′)[[N := b]] ≤ idPF(Var) . (4.23)

To verify this, replace N by b everywhere in Fig. 4.5.
By the definition of the abstract semantics for if -statements, the semantics

A(Var)[[if b then P′ else skip]] is less or equal than the left hand side of (4.23), which
corresponds to only the false-branch of this if -statement.

The semantics A(Var)[[P]] can be computed according to the formula given by
Prop. 2.7. If we had defined A(Var)[[P]] as the smallest solution to the equation

A(Var)[[while b do P′]] = A(Var)[[if b then (P′; while b do P′) else skip]]

then the semantics would not necessarily have been computable. The number of
variables (each nested if -statement adds one variable) necessary to compute the
iterates would have been unbounded.

4.2.3 Discussion

We have given the abstract semantics and also the abstraction from Distrpol to
PF(Var) before that. Given a program P and the sets of public and private vari-
ables VarP,VarS ⊆ Var, we envision the abstract semantics to be used as follows:

1. Determine the probability distribution D ∈ TerD[P] that the inputs to P are
distributed according to. This distribution has to be found from the context
where P is used. Actually, we do not need D, we only need a X ∈ PF(Var),
such that X ≤ βKI

Var(D). How this distribution D may be determined and this
X may be found, is not the topic of this thesis. We believe that in practice,
one can easily derive from the context of using P, which elements can be safely
assumed to be in keys(X) and indeps(X).

2. Compute Y = A(Var)[[P]](X).

3. Check whether (VarS,VarP) ∈ indeps(Y). If yes, then P has secure informa-
tion flow, if its inputs are distributed according to D.

56 CHAPTER 4. ANALYSIS

Looking at the domain of the abstract semantics (here we mostly have the set
F(Var) in mind), we see that it is much more complex than the domains of the
analyses proposed before. However, this compexity has evolved in a quite natural
way. The analyses based on information-theoretic definitions of secure information
flow have recorded, which variables are low-security (or high-security) variables
(the program analysis based approaches [DD77] record it for each program point,
the type-based approaches [VSI96] once for the whole program). Their domain of
abstract semantics is therefore (more or less) P(Var).

In [Lau01] we noted that for handling the encryption it is not enough to record
the secureness in per-variable basis. Indeed, a ciphertext alone does not reveal
the plaintext, the same goes about the key alone. From the ciphertext and the
plaintext together, however, the plaintext can be found. Therefore we recorded in
[Lau01], which sets of variables are low-security sets of variables, the domain of the
abstract semantics was P(P(Var)). Recording a set of variables as a low-security
set more or less meant that this set of variables was independent from the high
security inputs of the program.

In this thesis we have noted that it is also not enough to record only the inde-
pendece from the secret inputs. For example, rule (4.11) uses the information about
the independence of some set of variables from the encrypting black box [k]E. Such
information is not recorded by the analysis in [Lau01]. The domain F(Var) is iso-
morphic to P(Ṽar)→ P(P(Ṽar)). The earlier analyses can be obtained by further
abstracting (see e.g. [NNH99, Chapter 4]) the abstract semantics introduced here
(and in case of [Lau01], putting some extra requirements on the analysed program).

4.3 Shape of the Correctness Proof

Our main correctness result is the following:

Theorem 4.3. Let P be a program with the set of variables Var. Then A(Var)[[P]]
abstracts the concrete semantics of P.

When we substitute the definition of “abstracts” and the definition of βKI

Var to
this theorem, then we get the following claim. Let D ∈ TerD[P] and X, Y ⊆ Var.
If (X, Y) ∈ indeps(A(Var)[[P]](βKI

Var(D))), then the values of the variables in sets X
and Y are independent in the distribution Cterm[[P]](D).

From this theorem and proposition 3.8 directly follows

Corollary 4.4. Let P be a program with the set of variables Var, whose set of
private variables is VarS and whose set of public variables is VarP. Assume that P

does not assign to the variables in VarS. Let D ∈ TerD[P]. If

(VarS,VarP) ∈ indeps(A(Var)[[P]](βKI

Var(D))),

then P with inputs distributed according to D has secure information flow.

The rest of this chapter deals with proving Thm. 4.3.

4.3. SHAPE OF THE CORRECTNESS PROOF 57

4.3.1 Proof Idea

Let P be a program with the set of variables Var, let D ∈ TerD[P]. In this chapter
we mostly deal with showing that

indeps ◦ βKI

Var ◦ Cterm[[P]] $ D ≥ indeps ◦ A(Var)[[P]] ◦ βKI

Var $ D (4.24)

(compare that with (4.8)). Only at the end of the chapter, in Sec. 4.7, when we have
already proved the above inequality, we show that it also holds when we replace
indeps by keys.

If (X, Y) ∈ indeps(A(Var)[[P]](βKI

Var(D))), then we have to show the indistin-
guishability of distributions

{|(Sn $ X, Sn $ Y) : Sn ← [Cterm[[P]](D)]n|}n∈N (4.25)

and
{|(Sn $ X, S ′

n $ Y) : Sn, S ′
n ← [Cterm[[P]](D)]n|}n∈N (4.26)

Similarly to the proof of Prop. 2.11, for each value of the security parameter n we
want to construct a small number (i.e. polynomial in n) of hybrid distributions,
such that the first and last hybrid are equal to (4.25) and (4.26), respectively, and
the difference of neighbouring hybrids is small. In our case, the following differences
are considered small:

• For each k ∈ keys(βKI

Var(D)), the difference between two distributions on (4.3).

• For each (X, Y) ∈ indeps(βKI

Var(D)), the difference between distributions (4.1)
and (4.2).

• The difference of two distributions on (2.9) and the difference of two distribu-
tions on (2.10). On (2.9) and (2.10), we stated the security of the encryption
system.

• No difference at all is a small difference, too. I.e. we may allow two neigh-
bouring hybrids to be equal.

For each value of the security parameter n we have to construct some kind of
structure (and this structure must have some parameters that we can change) and
give a suitable interpretation to it, such that

• The interpretation of the structure is a probability distribution over the set
StrOutX;Y

n := (X → Ṽaln) × (Y → Ṽaln) (note that the n-th components
of families of distributions (4.25) and (4.26) are probability distributions over
this set).

• For some values of the parameters of the structure, its interpretation must
be equal to the n-th component of (4.25). For some other values of the
parameters, the interpretation of the structure must be equal to the n-th
component of (4.26).

58 CHAPTER 4. ANALYSIS

• Certain changes of the parameters must correspond to the small differences
listed above. Using such changes, it must be possible to quickly change
(“quickly” means that the number of changes must be polynomial in n) the
parameters for (4.25) to the parameters for (4.26).

The structure that we use is basically a flowchart of the program P, where
the loops have been unrolled (we have fixed the security parameter, and P runs
in expected polynomial time, therefore there is a limit on the number of steps
that the program may do). The parameters influence, how the computation along
the flowchart proceeds. For example, some parameters influence the distribution
of inputs to the flowchart (they may be generated from a single sample of the
distribution Dn, but also from multiple samples of it). Some parameters fix, whether
at a certain encryption operation, the value to be encrypted is the input to this
operation, or is 0`(n). Etc.

4.3.2 Roadmap

The proof proceeds as follows. In Sec. 4.4 we define the hybrid distributions. In
Sec. 4.5 we define, which hybrids are neighbouring, and show that the distributions
(4.25) and (4.26) really are connected through a short chain of neighbours (see
comments after the proof of Prop. 2.11). In Sec. 4.6 we summarise the work done in
Sec. 4.4 and Sec. 4.5 by assuming that there exists a PPT algorithm A distinguishing
(4.25) and (4.26), and giving a number of PPT algorithms, each of them trying to
distinguish a pair of distributions whose difference is considered to be small. The
sum of advantages of all these algorithms that we give in Sec. 4.6 is equal to the
advantage of algorithm A, therefore at least one of these algorithms has a non-
negligible advantage and the assumption about the smallness of the difference of
the corresponding pair of distributions is wrong. Finally, in Sec. 4.7 we show that
(4.24) also holds when we replace indeps by keys.

Sec. 4.4 has the following structure. Sec. 4.4.1 shows how to unroll a program.
It also demonstrates that such unrolling does not (distinguishably) change the con-
crete semantics of the program and it either does not change the abstract semantics
of the program or makes it more optimistic. In Sec. 4.4.2 we define the flowcharts of
the program. We do not yet define the interpretation of the flowchart in Sec. 4.4.2,
as we have not yet introduced any changeable parameters there. In Secs. 4.4.3–
4.4.5 we define the configurations of the flowcharts that embody the changeable
parameters. There we also define the interpretation of a flowchart together with a
configuration. We do not introduce all changeable parameters together, but present
them one by one and show for each new parameter, how the definition of interpre-
tation changes. Finally, in Sec. 4.4.6 we fold all these changes together.

Sec. 4.5 has the following structure. In Sec. 4.5.1 we define, how one may change
one configuration to another. There we also show that all these changes correspond
to “small” steps listed above. In Secs. 4.5.2 and 4.5.3 we show that one can change
configurations corresponding to (4.25) to configurations corresponding to (4.26).

4.4. STRUCTURES FOR THE PROOF 59

More concretely, in Sec. 4.5.2 we prove the main result about the possibility of this
changing, and in Sec. 4.5.3 tie up some loose ends. Finally, in Sec. 4.5.4 we show
that this change only needs a “small” number of steps introduced in Sec. 4.5.1.

4.4 Structures for the Proof

4.4.1 Unrolling the Program

Let p ∈ Pol(Z) be an upper bound on the runtime of the program P, when its
inputs are distributed according to D.

Similarly to the proof of Prop. 2.11, we start by fixing the security parameter n
(in the proof of Prop. 2.11, the distributions D

(i)
n were defined for a fixed n, they

were not families of probability distributions). When n has been fixed, then the
maximal running time of P has also been fixed — it is at most p(n).

The unrolled program, denoted by P(n), is basically a sequence of assignments. It
is defined inductively over the program structure. If P is skip or a single assignment,
then P(n) = P. If P = P1; P2, then P(n) = P

(n)
1 ; P

(n)
2 .

If P is if b then P1 else P2, then P(n) is defined as follows. Let Varasgn be the
set of variables that are assigned to in either P1 or P2. Define

Vartrue
asgn := {xtrue : x ∈ Varasgn}

Varfalse
asgn := {xfalse : x ∈ Varasgn}

Varall := Var]Vartrue
asgn]Varfalse

asgn] {N} .

(4.27)

Let Ptrue
1 be identical to P1, except that all occurrences of variables in Varasgn

are replaced with the corresponding variables in Vartrue
asgn. Similarly, let Pfalse

2 be
identical to P2, except that all occurrences of variables in Varasgn are replaced with
the corresponding variables in Varfalse

asgn. Consider the program P′ in Fig. 4.6. We

define P(n) = (P′)(n).
In Fig. 4.6, 〈x1, . . . , xk〉 := N ?〈y1, . . . , yk〉 :〈z1, . . . , zk〉, called the vectorised

choice, is a new kind of statement, replacing the merge-operation. Its semantics
(both concrete and abstract) is defined below. Intuitively, it simultaneously assigns
to the variables x1, . . . , xk either the values of y1, . . . , yk or the values of z1, . . . , zk,
depending on whether the value of N is true or false.

The concrete semantics of the vectorised choice is the following:

Clen[[〈x1, . . . , xk〉 := N ?〈y1, . . . , yk〉 :〈z1, . . . , zk〉]](Sn) =

ηD


(Sn




x1 7→ 〈〈Sn(N) ? Sn(y1) : Sn(z1)〉〉
. .
xk 7→ 〈〈Sn(N) ? Sn(yk) : Sn(zk)〉〉


 , 0)


 ,

where Sn ∈ Staten and 〈〈b ? x : y〉〉 is defined on Fig. 3.1. The concrete semantics
therefore nicely corresponds to the intuition given above. For our purposes, it does

60 CHAPTER 4. ANALYSIS

The program P′:

N := b;
xtrue

1 := x1;
.
xtrue

m := xm;
xfalse

1 := x1;
.
xfalse

m := xm;
Ptrue

1 ;
Pfalse

2 ;
〈x1, . . . , xm〉 := N ?〈xtrue

1 , . . . , xtrue
m 〉 :〈x

false
1 , . . . , xfalse

m 〉

Here {x1, . . . , xm} = Varasgn.

Figure 4.6: Transformed program if b then P1 else P2

not matter, how long the running time of the vectorised choice is; here, to just
define it somehow, we have defined, that it takes no time.

The abstract semantics of the vectorised choice is the following. Let P be
〈x1, . . . , xk〉 := b ?〈y1, . . . , yk〉 :〈z1, . . . , zk〉. Let X ∈ PF(Var). We define Y =
A(Var)[[P]](X) as the smallest element of PF(Var), such that

• Y satisfies the rules in Fig. 4.7 and Fig. 4.8.

• indeps(Y) is symmetric and downwards closed.

As we see, the rules in Fig. 4.7 and Fig. 4.8 more or less repeat the rules in
Fig. 4.5. The explanations of the rules on Fig. 4.5 therefore also explain the rules
on Fig. 4.7–4.8.

Having introduced the vectorised choice statement, we also have to define its
unrolled form. If P is a single vectorised choice, then we define P(n) to be P.

Last, let P be while b do P′. Then P(n) is defined as follows:

Q := (if b then P′ else skip)(n)

P(n) := Q; Q; · · ·Q︸ ︷︷ ︸
p(n) times

.

Note that the program P(n) always terminates, no matter what its input is and
what the original program P was. Also note that the size of the program P(n) is
polynomial in n.

The concrete and abstract semantices of P and P(n) are related by the following
two propositions:

Proposition 4.5. The concrete semantices of P and P(n) are related by

Cterm[[P]](D) ≈ {|Sn : Sn ← [Cterm[[P(n)]](D)]n|}n∈N .

4.4. STRUCTURES FOR THE PROOF 61

(X, Y) ∈ indeps(X)
i1, . . . , il, il+1, . . . , im ∈ {1, . . . , k}

({[yi1]E, . . . , [yim]E}, X ∪ Y ∪ {b}) ∈ indeps(X)
({[zi1]E, . . . , [zim]E}, X ∪ Y ∪ {b}) ∈ indeps(X)



({[yi1]E}, {[yi2]E, . . . , [yim]E}), ({[zi1]E}, {[zi2]E, . . . , [zim]E}) ∈ indeps(X)
({[yi2]E}, {[yi3]E, . . . , [yim]E}), ({[zi2]E}, {[zi3]E, . . . , [zim]E}) ∈ indeps(X)
. .

({[yim−1]E}, {[yim]E}), ({[zim−1]E}, {[zim]E}) ∈ indeps(X)







({[yil+1
]E}, {[yil+1

]E}), ({[zil+1
]E}, {[zil+1

]E}) ∈ indeps(X)
. .
({[yim]E}, {[yim]E}), ({[zim]E}, {[zim]E}) ∈ indeps(X)




yi1, zi1 , . . . , yim, zim ∈ keys(X)
xi1 , [xi1]E, . . . , xim , [xim]E 6∈ X ∪ Y

y1, [y1]E, z1, [z1]E, . . . , yk[yk]E, zk, [zk]E, b 6∈ X ∪ Y
(X ∪ {[xi1]E, . . . , [xim]E}, Y ∪ {[xil+1

]E, . . . , [xim]E}) ∈ indeps(Y)

(4.28)

i1, . . . , il, il+1, . . . , im, j1, . . . , jr, jr+1, . . . , js ∈ {1, . . . , k}(
X ∪ {[yi1]E, . . . , [yim]E},

Y ∪ {b, [yil+1
]E, . . . , [yim]E, yj1, [yj1]E, . . . , yjr

, [yjr
]E, [yjr+1]E, . . . , [yjs

]E}
)

∈ indeps(X)(
X ∪ {[zi1]E, . . . , [zim]E},

Y ∪ {b, [zil+1
]E, . . . , [zim]E, zj1, [zj1]E, . . . , zjr

, [zjr
]E, [zjr+1]E, . . . , [zjs

]E}
)

∈ indeps(X)

(X, {[yi1]E, . . . , [yim]E}), (X, {[zi1]E, . . . , [zim]E}) ∈ indeps(X)


({[yi1]E}, {[yi2]E, . . . , [yim]E}), ({[zi1]E}, {[zi2]E, . . . , [zim]E}) ∈ indeps(X)
({[yi2]E}, {[yi3]E, . . . , [yim]E}), ({[zi2]E}, {[zi3]E, . . . , [zim]E}) ∈ indeps(X)
. .

({[yim−1]E}, {[yim]E}), ({[zim−1]E}, {[zim]E}) ∈ indeps(X)




yi1, zi1 , . . . , yim, zim ∈ keys(X)
xi1 , [xi1]E, . . . , xim , [xim]E, xj1, [xj1]E, . . . , xjs

, [xjs
]E 6∈ X ∪ Y

y1, [y1]E, z1, [z1]E, . . . , yk[yk]E, zk, [zk]E, b 6∈ X ∪ Y(
X ∪ {[xi1]E, . . . , [xim]E},

Y ∪ {[xil+1
]E, . . . , [xim]E, xj1 , [xj1]E, . . . , xjr

, [xjr
]E, [xjr+1]E, . . . , [xjs

]E}
)

∈ indeps(Y)

(4.29)

Figure 4.7: The semantics A(Var)[[〈x1, . . . , xk〉 := b ?〈y1, . . . , yk〉 :〈z1, . . . , zk〉]],
indeps-part

62 CHAPTER 4. ANALYSIS

w ∈ keys(X)
w 6∈ {x1, . . . , xk, y1, . . . , yk, z1, . . . , zk}

w ∈ keys(Y)
(4.30)

i ∈ {1, . . . , k}
yi, zi ∈ keys(X)

({[yi]E}, {b}), ({[zi]E}, {b}) ∈ indeps(X)
xi ∈ keys(Y)

(4.31)

Figure 4.8: The semantics A(Var)[[〈x1, . . . , xk〉 := b ?〈y1, . . . , yk〉 :〈z1, . . . , zk〉]],
keys-part

Note that in the right hand side of ≈, the n-th member of the family of prob-
ability distributions is defined using the program P(n) (i.e. different programs for
different members).

Proof. The proof is by induction over the program structure.
If P is an assignment, skip or vectorised choice, then the claim of the proposition

follows immediately.
Also, if P is equal to P1; P2 then the claim follows immediately (by using

Lemma 2.10).
If P is if b then P1 else P2, then the claim follows from the fact, that the

programs (Ptrue
1)(n) and (Pfalse

2)(n) always terminate — they are just sequences of
assignments and vectorised choices. Therefore eagerly computing both branches of
an if -statement cannot lead to nontermination here.

If P is while b do P′, then the distributions in the claim of the proposition
are indistinguishable, because there is only a negligible chance that the number of
iterations of the loop is greater than p(n). We have therefore sufficiently unrolled
P when creating P(n).

Proposition 4.6. Let X ∈ PF(Var). Then A(Var′′)[[P(n)]] ≥ A(Var)[[P]] for each
n ∈ N, where Var′′ is the set of variables of the program P(n).

Note that the set Var′′ does not depend on n, it only depends on P.

Proof. The proof is by induction over the program structure.
If P is an assignment, skip or vectorised choice, then the claim of the proposition

follows immediately.
Also, if P is equal to P1; P2 then the claim follows immediately from the definition

of A(Var)[[P1; P2]] and the monotonicity of functional composition.
Suppose that P is if b then P1 else P2. By the induction assumption, the

abstract semantics of (Ptrue
1)(n) is greater that the abstract semantics of P1, if we

rename the variables in Vartrue
asgn back to variables in Varasgn; similar result holds

for (Pfalse
2)(n) and P2.

Let X ∈ PF(Var). We introduce the following quantities:

4.4. STRUCTURES FOR THE PROOF 63

• Let the programs Q1, Q2, Q3 be the following:

Q1 ≡ N := b; xtrue
1 := x1; · · ·x

true
m := xm; xfalse

1 := x1; · · ·x
false
m := xm

Q2 ≡ Q1; P
true
1

Q3 ≡ Q2; P
false
2 ,

where {x1, . . . , xm} = Varasgn (compare this with Fig. 4.6).

• Let Z1, Z2, Z3 ∈ PF(Varall) be defined by Zi = A(Varall)[[Qi]](X).

• Let Ztrue
i , where i ∈ {1, 2, 3}, be the projection of Zi to the set of variables

(Var ∪ {N}\Varasgn) ∪ Vartrue
asgn. Projecting means removing from the keys-

and indeps-components of Zi all elements that contain something not in the
set to be projected onto. Let Zfalse

i be defined similarly.

• Let Ẑtrue
i ∈ PF(Var ∪ {N}) be equal to Ztrue

i , where the variables in Vartrue
asgn

are renamed back to variables in Varasgn. Let Ẑfalse
i be defined similarly.

Then the following equalities hold (they follow from rules (4.9) and (4.102)):

Ẑtrue
1 = Ẑfalse

1 = A(Var∪{N})[[N := b]](X)

Ẑtrue
2 = A(Var∪{N})[[N := b; P1]](X)

Zfalse
2 = Zfalse

1

Ztrue
3 = Ztrue

2 and therefore Ẑtrue
3 = A(Var∪{N})[[N := b; P1]](X)

Ẑfalse
3 = A(Var∪{N})[[N := b; P2]](X) .

The abstract semantics of if b then P1 else P2 is therefore defined by the application
of the rules in Fig. 4.5 to Ẑtrue

3 ∧ Ẑfalse
3 . The abstract semantics of the program P′

in Fig. 4.6 is defined by the application of the rules in Fig. 4.7 and Fig. 4.8 to the
“union” of Ztrue

3 and Zfalse
3 (the pairs of sets of variables that belong to the indeps-

component of neither Ztrue
3 nor Zfalse

3 , are not used by the rules in Fig. 4.7–4.8).
Therefore

A(Var)[[if b then P1 else P2]] = A(Varall)[[P′]] .

Applying the induction assumption for P′ gives A(Var′′)[[(P′)(n)]] ≥ A(Varall)[[P′]].
From the fact P(n) = (P′)(n) follows the claim of the proposition.

Last, if P is while b do P′, then

A(Var)[[P]] =
∧
{
(
A(Var)[[if b then P′ else skip]]

)k
: k ∈ N}

and

A(Var′′)[[P(n)]] =
(
A(Var′′)[[if b then P′ else skip]]

)p(n)
.

Therefore A(Var′′)[[P(n)]] ≥ A(Var)[[P]].

64 CHAPTER 4. ANALYSIS

k1 := Gen()
if b then

k2 := k1

else
k2 := Gen()

x1 := Enc(k1, y1)
x2 := Enc(k2, y2)

b is independent of {x1, x2} in the end.

Figure 4.9: The example program

From these two propositions follows that for showing (4.24), it is enough to
prove the following proposition:

Proposition 4.7. Let P be a program and let D ∈ TerD[P]. Let Var be the set of
variables of P and let Var′′ ⊇ Var be the set of variables of the programs P(n). Let
X = βKI

Var(D),

D′ = {|Sn : Sn ← [Cterm[[P(n)]](D)]n|}n∈N

and let X, Y ⊆ Ṽar. If for all n ∈ N holds (X, Y) ∈ indeps(A(Var′′)[[P(n)]](X)), then
X and Y are independent in the distribution D′.

In the following we consider the program P(n), where the security parameter has
been fixed. It is a sequence of assignments and vectorised choices (we may assume
that the skip-statements have been removed). Let the number of assignments be s
and let P(n) = A1; · · · ; As, where Ai are individual assignments.

The running example. We now introduce a program, on which we demonstrate
the proof of correctness of the analysis. The program that we have in mind is
presented in Fig. 4.9, and we are going to show, how the independence of the
variable b from the variables x1 and x2 at the end of this program is proved. The
first step of the proof is to unroll the program. There are no loops in the running
example, therefore all unrolled programs, corresponding to different values of the
security parameter, are equal. The unrolled program (for all security parameters)
is presented in Fig. 4.10. We have numbered its lines for easier referencing.

Let us show, how ({b}, {x1, x2}) ∈ indeps(A(Var)[[P(n)]](X)) can be derived, where
P(n) is the program in Fig. 4.10 and X ∈ PF(Var) is the abstraction of the input
distribution. We need to make no assumptions about X. Let Yi, where i ∈ {0, . . . , 9}
be the value of the abstract semantics after the statements 1, . . . , i. I.e. Y0 = X

and Yi = A(Var)[[Ai]](Yi−1), where Ai is the i-th assignment or vectorised choice in
Fig. 4.10. We have

(i). (∅, {b, y1, y2}) ∈ indeps(Y0), because the empty set is independent of every
other set. Also (∅, {b, y1, y2}) ∈ indeps(Yi) for i ∈ {1, . . . , 9} by rule (4.9).

4.4. STRUCTURES FOR THE PROOF 65

1:
2:
3:
4:
5:
6:
7:
8:
9:

k1 := Gen()
N := b
ktrue

2 := k2

kfalse
2 := k2

ktrue
2 := k1

kfalse
2 := Gen()
〈k2〉 := N ?〈ktrue

2 〉 :〈k
false
2 〉

x1 := Enc(k1, y1)
x2 := Enc(k2, y2)

b is independent of {x1, x2} in the end.

Figure 4.10: The example program, unrolled

(ii). ({[k1]E}, {b, y1, y2, [k1]E}) ∈ indeps(Y1) by rule (4.12). The conditions of using
this rule are fulfilled by (i). Also, ({[k1]E}, {b, y1, y2, [k1]E}) ∈ indeps(Yi) for
i ∈ {2, . . . , 9} by rule (4.9).

(iii). k1 ∈ keys(Y1) by rule (4.15). Also, k1 ∈ keys(Yi) for i ∈ {2, . . . , 9} by
rule (4.14).

(iv). ({[k1]E}, {b, N, y1, y2, [k1]E}) ∈ indeps(Y2) by rule (4.10). The conditions of us-
ing this rule are fulfilled by (ii). Also, ({[k1]E}, {b, N, y1, y2, [k1]E}) ∈ indeps(Yi)
for i ∈ {3, . . . , 6} by rule (4.9).

(v). ({[ktrue
2]E}, {b, N, y1, y2, [k1]E}) ∈ indeps(Y5) by rule (4.102). The conditions

of using this rule are fulfilled by (iv). Also, ({[ktrue
2]E}, {b, N, y1, y2, [k1]E}) ∈

indeps(Y6) by rule (4.9).

(vi). ktrue
2 ∈ keys(Y5) by rule (4.141). The conditions of using this rule are fulfilled

by (iii). Also, ktrue
2 ∈ keys(Y5) by rule (4.14).

(vii). ({[kfalse
2]E}, {b, N, y1, y2, [k1]E}) ∈ indeps(Y6) by rule (4.10). The conditions of

using this rule require in this case, that the empty set is independent of some
other set. But this is always the case.

(viii). kfalse
2 ∈ keys(Y6) by rule (4.15).

(ix). ({[k2]E}, {b, y2}) ∈ indeps(Y7) by rule (4.28). This rule is instantiated as
follows:

• X ←− ∅, Y ←− {b, y2}

• l←− 1, m←− 1

• yi1 ←− ktrue
2 , zi1 ←− kfalse

2 , xi1 ←− k2.

These instantiations make the two groups of antecedents of rule (4.28) empty.
The other conditions of using this rule are fulfilled by (v), (vii), (vi) and (viii).

66 CHAPTER 4. ANALYSIS

(x). ({[k2]E, b, y1, y2}, {[k1]E}) ∈ indeps(Y7) by rule (4.28). This rule is instantiated
as follows:

• X ←− {b, y1, y2}. Y ←− {[k1]E}

• l ←− 1, m←− 1

• yi1 ←− ktrue
2 , zi1 ←− kfalse

2 , xi1 ←− k2.

These instantiations make the two groups of antecedents of rule (4.28) empty.
The other conditions of using this rule are fulfilled by (ii), (v), (vii), (vi)
and (viii).

(xi). k2 ∈ keys(Y7) by rule (4.31). The conditions of using this rule are fulfilled
by (vi), (viii), (v) and (vii). Also, k2 ∈ keys(Y8) by rule (4.14).

(xii). ({b}, {x1}) ∈ indeps(Y8) by rule (4.11). The conditions of using this rule are
fulfilled by (i), (iii) and (ii).

(xiii). ({[k2]E}, {b, x1, y2}) ∈ indeps(Y8) by rule (4.11). The conditions of using this
rule are fulfilled by (ix), (iii) and (x).

(xiv). ({b}, {x1, x2}) ∈ indeps(Y9) by rule (4.11). The conditions of using this rule
are fulfilled by (xii), (xi) and (xiii).

4.4.2 The Flowchart of an Unrolled Program

The flowchart of a program (that is a sequence of assignments and vectorised
choices) is a directed acyclic graph (DAG), whose nodes correspond to the op-
erations of the program and whose edges carry the values from the operations that
produced them to the operations that use them. There are also input and output
edges. In general, there is one node per assignment, labelled with the operator of
the assignment.

The variant of the construction of flowcharts that we present here gives extra
attention to the encrypting black boxes. Namely:

• The encrypting black boxes are first class values. This means that the edges
of the flowchart may carry either bit-strings or encrypting black boxes.

• The encrypting black boxes can be inputs to the flowchart or be produced by
a node labelled with Gen.

• Each encrypting black box is used only once. A use of a black box can be
either using it for encryption or outputting it. If we want to encrypt several
times with the same key, then we introduce several copies of the corresponding
black box. This convention is necessary for using the independence of black
boxes from themselves in the arguments.

4.4. STRUCTURES FOR THE PROOF 67

We now give a precise definition of the flowchart for a sequence of assignments
and vectorised choices P, computing the values of X ⊆ Ṽar. We denote this
flowchart by ChartP;X .

A flowchart is a DAG G = (N, E). Nodes are labelled with operators. Edges,
incoming to a certain node, are ordered. Inputs to a flowchart are edges without
sources. Flowchart’s outputs are edges without targets. The sources and targets are
labelled with the elements of Ṽar. One edge may have several targets. Notation:

• Nodes(G) = N ;

• Edges(G) = E;

• inputs(G) ⊆ E — inputs of G;

• outputs(G) ⊆ E — outputs of G;

• −→ρ (v) ∈ E∗ — inputs to the node v;

• ←−ρ (v) ∈ E — output from the node v;

• λN(v) ∈ Op′ — the label of v;

• λI(e) ∈ Ṽar — the label of e ∈ inputs(G);

• λO(e) ∈ Ṽar — the label of e ∈ outputs(G).

Here Op′ := Op] {Genval,MkE, ? :, [? :]E}. The extra elements of Op′ denote the
following operations:

• Genval denotes the operation creating a new encryption key (i.e. a bit-string).
We use Gen to denote the operation that creates a new encrypting black box.

• MkE denotes the operation of creating an encrypting black box, given the
bit-string that is to be used as the key.

• ? : is used for vectorised choices. A node labelled with ? : has three inputs,
corresponding to the boolean variable b and to some variables yi and zi (with
the same subscript; see Fig. 4.7 and Fig. 4.8). The operator [? :]E is also used
for vectorised choices, its three inputs correspond to the variable b and to
black boxes [yi]E and [zi]E.

Inputs to a node v are also called the in-edges of v. Output from the node v is also
called the out-edge of v.

If P is the empty sequence of assignments and vectorised choices, (i.e. P is skip)
then Chartskip;X is a flowchart with zero nodes and |X| edges, where all edges are
both inputs and outputs of the flowchart. The edges are labelled with the elements
of X.

We need an auxiliary notion while giving the definition of ChartA;P;X , where A

is an assignment or a vectorised choice and P is a sequence of assignments and

68 CHAPTER 4. ANALYSIS

vectorised choices. For e ∈ inputs(ChartP;X), where λI(e) = [x]E for some x ∈ Var,
let bb use(e) denote the node or output edge of ChartP;X where the value on e is
used. For Chartskip;X , bb use is the identity function (actually, a partial function,
defined only for the edges that are labelled with some [x]E).

The shape of the flowchart ChartA;P;X depends on whether A is an assignment
or a vectorised choice, and on the operator of the assignment.

A is x := o(x1, . . . , xk)

Here we have assumed that o is not Enc or Gen, nor is A a simple assignment
x := y (these cases are handled separately). If no input of ChartP;X is labelled with
x or [x]E, then ChartA;P;X is equal to ChartP;X . Otherwise, it is constructed in the
following way.

Let N and E be the set of nodes and the set of edges of the flowchart ChartP;X .
Let the edge ex (if it exists) be the input to ChartP;X that is labelled with x. Let E[x]E

be the set of inputs of ChartP;X that are labelled with [x]E. Let O ⊆ {x1, . . . , xk}
contain all xi, such that no input to ChartP;X is labelled with xi. Let exi

, where
xi ∈ {x1, . . . , xk}\O be the input to ChartP;X that is labelled with xi.

The flowchart ChartA;P;X , depicted in Fig. 4.11, is defined as follows:

• The set of nodes: N] {vA}] {ve : e ∈ E[x]E}. We say that the node vA

corresponds to the assignment A in the program A; P.

• The set of edges: E] {ey : y ∈ O} ∪ {ex}, i.e. the edge ex is added only if it
was not already in E.

• The inputs and outputs of the old nodes stay the same. The labels, inputs
and outputs of new nodes are:

– λN(vA) = o, −→ρ (vA) = ex1ex2 · · · exk
, ←−ρ (vA) = ex;

– λN(ve) = MkE, −→ρ (ve) = ex,
←−ρ (ve) = e for each e ∈ E[x]E.

• The outputs are the same as the outputs of ChartP;X .

• The set inputs(ChartP;X)\({ex}∪E[x]E)∪{ey : y ∈ O} is the set of input edges
to ChartA;P;X . The edges in inputs(ChartP;X) retain their labels and bb use-
values. For each y ∈ O, the edge ey is labelled with y and bb use is undefined
for them.

A is x := Enc(k, y)

If no input of ChartP;X is labelled with x or [x]E, then ChartA;P;X is equal to ChartP;X .
Otherwise, it is constructed in the following way.

Let N , E, E[x]E, ex be defined as in the previous case. Similarly to ex, let ey, if
it exists, be the input to ChartP;X that is labelled with y.The flowchart ChartA;P;X ,
depicted in Fig. 4.12, is defined as follows:

4.4. STRUCTURES FOR THE PROOF 69

MkE MkE MkE

ChartP;X

o

x1 xi xk.

if ChartP;X has inputs labeled with xi

ot
h
er

in
p
u
ts

to
C
h
ar

t P
;X

ve

exi

vA

ex

e

ex1

Figure 4.11: Adding x := o(x1, . . . , xk) to the flowchart

• The set of nodes: N] {vA}] {ve : e ∈ E[x]E}.

• The set of edges: (E ∪ {ex, ey})] {e[k]E}. Note that e[k]E is a new edge.

• The inputs and outputs of the old nodes stay the same. The labels, inputs
and outputs of the new nodes are:

– λN(vA) = Enc, −→ρ (vA) = e[k]Eey,
←−ρ (vA) = ex;

– λN(ve) = MkE, −→ρ (ve) = ex,
←−ρ (ve) = e for each e ∈ E[x]E.

• The outputs are the same as the outputs of ChartP;X .

• The set inputs(ChartP;X)\({ex}∪E[x]E)∪{e[k]E, ey} is the set of input edges to
ChartA;P;X . The edges in inputs(ChartP;X) retain their labels and bb use-values.
The edges e[k]E and ey are labelled with [k]E and y, respectively. bb use(e[k]E)
is defined to be vA.

A is x := Gen()

If no input of ChartP;X is labelled with x or [x]E, then ChartA;P;X is equal to ChartP;X .
Otherwise, it is constructed in the following way.

Let N , E, ex and E[x]E be defined as before. The flowchart ChartA;P;X , depicted
in Fig. 4.13, is defined as follows:

70 CHAPTER 4. ANALYSIS

MkE MkE MkE

ChartP;X

Enc

y[k]E

bb use

if ChartP;X has inputs labeled with y

vA

ve

e

ex

e[k]E

ey

Figure 4.12: Adding x := Enc(k, y) to the flowchart

• The set of nodes is N] {vA}] {ve : e ∈ E[x]E}, if the edge ex exists, and
N] {ve : e ∈ E[x]E} otherwise.

• The set of edges is E.

• The inputs and outputs of the old nodes stay the same. The labels, inputs
and outputs of the new nodes are:

– If the edge ex exists, then λN(vA) = Genval,
−→ρ (vA) = ε (the empty

sequence of edges), ←−ρ (vA) = ex;

– λN(ve) = Gen, −→ρ (ve) = ε, ←−ρ (ve) = e for each e ∈ E[x]E.

• The outputs are the same as the outputs of ChartP;X .

• The set inputs(ChartP;X)\({ex}∪E[x]E) is the set of input edges to ChartA;P;X .
They retain their labels and bb use-values.

Our intuition tells us, that if the flowchart contains several nodes labeled with
Gen and maybe also one that is labeled with Genval, all corresponding to the same
assignment x := Gen, then the interpretation should invoke the key generation
operation [[Gen]] once for each node. Actually, this is not necessarily the case.
The configurations defined in the next section contain a partition of the set of all
these nodes and the key generation operation is invoked once for each class of
the partition. For example, in the configurations corresponding to the distributions
(4.25) and (4.26), this partition puts all nodes to the same class. In the intermediate
configurations, the number of classes may be higher.

4.4. STRUCTURES FOR THE PROOF 71

ChartP;X

Gen Gen Gen

x

if ChartP;X has inputs labeled with [x]E

if ChartP;X has an input labeled with x

[x]E [x]E [x]E

GenvalvA

ve

eex

Figure 4.13: Adding x := Gen() to the flowchart

A is x := y

If no input of ChartP;X is labelled with x or [x]E, then ChartA;P;X is equal to ChartP;X .
Otherwise, it is constructed in the following way.

Let N , E, ex and E[x]E be defined as before. Also, let ey, if it exists, be the
input to ChartP;X that is labelled with y. Let Ebb use ⊆ E[x]E be the set of such edges
e labelled with [x]E, for which there exists an input e′ of ChartP;X that is labelled
with [y]E and satisfies bb use(e′) = bb use(e). The flowchart ChartA;P;X , depicted in
Fig. 4.14, is defined as follows:

• The set of nodes in N .

• If the chart ChartP;X has an input edge that is labelled with either x or y
then the set of edges is E\Ebb use\{ex} ∪ {ey}. Otherwise the set of edges is
E\Ebb use.

• In the inputs of the nodes, ex is replaced with ey and each e ∈ Ebb use is
replaced with the input e′ that is labelled with [y]E and has the same bb use-
value.

• The outputs of the flowchart are the same as the outputs of ChartP;X .

• If the chart ChartP;X has an input edge that is labelled with either x or y
then the set of inputs of the flowchart is inputs(ChartP;X)\Ebb use\{ex}∪{ey},
otherwise the set of inputs is inputs(ChartP;X)\Ebb use. The edge ey is labelled
with y. The input edges of ChartP;X that were labelled with [x]E will be
labelled with [y]E. Other input edges retain their labels. Also, bb use-values
of the input edges stay the same.

72 CHAPTER 4. ANALYSIS

ChartP;X

x y

y [y]E

[y]E [x]E

[y]E [y]E

[y]E

different bb use

same bb use

if ChartP;X has an input labeled with y

if ChartP;X has an input labeled with x

[x]E

Figure 4.14: Adding x := y to the flowchart

A is 〈x1, . . . , xk〉 := b ?〈y1, . . . , yk〉 :〈z1, . . . , zk〉

If no input of ChartP;X is labelled with some xi or [xi]E for i ∈ {1, . . . , k}, then
ChartA;P;X is equal to ChartP;X . Otherwise, it is constructed in the following way.

Let N and E be defined as before. For each xi, let exi
(if it exists) be the input

edge of ChartP;X that is labelled with xi and let E[xi]E be the set of input edges
of ChartP;X that are labelled with [xi]E. Let L ⊆ {x1, . . . , xk} be the set of all xi,
such that exi

exists. Because of the shape of the unrolled programs, the flowchart
ChartP;X does not have any input edges that are labelled with b or with any yi, [yi]E,
zi, [zi]E.

A part of the flowchart ChartA;P;X is depicted on Fig. 4.15. Namely, this figure
shows the additional nodes and edges (compared to ChartP;X) that go to the inputs
of ChartP;X labelled with xi or [xi]E. There is a similar construction for each index
i ∈ {1, . . . , k}. However, there is only a single input edge of ChartA;P;X labelled with
b. Additionally, the input edges of ChartP;X that are labelled with something else
than x1, . . . , xk and [x1]E, . . . , [xk]E, are also the input edges of ChartA;P;X .

Formally, the parts of ChartA;P;X are the following:

• The set of nodes is N] {vxi
: xi ∈ L}] {vei

: i ∈ {1, . . . , k}, ei ∈ E[xi]E}.

• The set of edges is

E] {eb}] {eyi
, ezi

: xi ∈ L}] {ei,[yi]E, ei,[zi]E : i ∈ {1, . . . , k}, ei ∈ E[xi]E} .

• The inputs and outputs of the old nodes stay the same. The labels, inputs
and outputs of the new nodes are:

– new nodes vxi
, where xi ∈ L, are labelled with ? :, all other new nodes

are labelled with [? :]E;

4.4. STRUCTURES FOR THE PROOF 73

? :

xi

ziyi

b

[xi]E

[yi]E[zi]E

ChartP;X

same bb use same bb use

[xi]E

[yi]E[zi]E

[?:]E [?:]Evxi

eb

eyi ezi

ei

ei,[yi]E

vei

ei,[zi]E

exi

Figure 4.15: Adding 〈x1, . . . , xk〉 := b ?〈y1, . . . , yk〉 :〈z1, . . . , zk〉 to the flowchart
(a part)

– −→ρ (vxi
) = ebeyi

ezi
, ←−ρ (vxi

) = exi
for each xi ∈ L;

– −→ρ (vei
) = ebei,[yi]Eei,[z]E, ←−ρ (vei

) = ei for each i ∈ {1, . . . , k} and ei ∈
E[xi]E.

• The outputs of the flowchart are the same as the outputs of ChartP;X .

• The set of inputs of the flowchart is

inputs(ChartP;X)\({exi
: xi ∈ L} ∪

k⋃

i=1

E[xi]E)∪

{eb} ∪ {eyi
, ezi

: xi ∈ L}] {ei,[yi]E, ei,[zi]E : i ∈ {1, . . . , k}, ei ∈ E[xi]E} .

The edge eb is labelled with b. The edges eyi
and ezi

are labelled with yi

and zi, respectively. The edges ei,[yi]E and ei,[zi]E are labelled with [yi]E and
[zi]E, respectively. bb use(ei,[yi]E) and bb use(ei,[zi]E) are defined to be equal
to bb use(ei). Other input edges retain their labels and bb use-values.

For each of the input edges of ChartP;X there is a certain set of input edges of
ChartA;P;X , such that they “define” the value on that edge. Namely, for each e that
is an input edge of ChartP;X we let origins(e) be a certain subset of input edges of
ChartA;P;X . If e is also an input to ChartA;P;X , then origins(e) = {e}. Otherwise e is
the out-edge of some node v of the chart ChartA;P;X , we let origins(e) be the set of
input edges to ChartA;P;X that lead to v.

Given two flowcharts ChartP;X and ChartP;Y for the same sequence of assignments
and vectorised choices P, we denote their union (i.e. one takes the union of the sets
of nodes and the sets of edges; the sources and targets of edges and labels of nodes
and inputs and outputs remain the same) by 2ChartP;X,Y . It is again a flowchart.
This flowchart is the basis of the structure that we mentioned in Sec. 4.3.1. In the
following, we are going to define its interpretation (with respect to a certain set of
parameters).

74 CHAPTER 4. ANALYSIS

Gen

Gen Gen

〈k2〉 := N ?〈ktrue
2 〉 :〈k

false
2 〉

ktrue
2 := k1

kfalse
2 := Gen()

x1 := Enc(k1, y1)

x2 := Enc(k2, y2)

k1 := Gen()

N := b

[? :]E

Enc

Enc

x2 bx1

x1

[k2]E y2

[k2]E y2[k1]E y1

[k1]E y1 N
[ktrue

2]E
y2[kfalse

2]E

[k1]E y1 N [ktrue
2]E y2

b

b

b

b

by1 N [k1]E y2[k1]E

y1 b y2 b

[k1]E y1 b [k1]E y2 b

Figure 4.16: The flowchart of the running example

The running example. In the running example we take X = {x1, x2} and
Y = {b}. The flowchart 2ChartP;X,Y of the unrolled program in Fig. 4.10 is given in
Fig. 4.16. The chart ChartP;X lies to the left of the dashed line, the chart ChartP;Y

(a single arrow) to the right. In the right edge of the figure the statements of the
program P, corresponding to the nodes in the left, are given. The figure also shows,
how the flowchart has been constructed, statement by statement. The construction
starts with the last statement x2 := Enc(k2, y2), the flowchart corresponding to this
statement is below the lowermost dotted line. The labels of the input edges of this
flowchart are given in smaller print. Each successive dotted line corresponds to
adding a statement. Note that the flowchart does not change while adding the 4th
and 3rd statements of the program in Fig. 4.10.

4.4.3 Configurations of a Flowchart

A configuration of the flowchart 2ChartP;X,Y represents one particular value of the
“changeable parameters” (see Sec. 4.3.1). Given a flowchart G and its configuration
C, we will define the interpretation [[G, C]]. This interpretation is a distribution
over labellings of the output edges of G with the values from Ṽaln.

4.4. STRUCTURES FOR THE PROOF 75

We present the structure of a configuration and the corresponding interpreta-
tion step by step — i.e. we start by giving as little of the structure as possible, but
enough to be able to define the interpretation. We then introduce another compo-
nents of the configuration and show how to change the interpretation to incorporate
them.

A configuration of 2ChartP;X,Y is a tuple with the following components:

• A partition InpParts(C) of the set of input edges of 2ChartP;X,Y .

• For each assignment or vectorised choice Ai in P (here i ∈ {1, . . . , s}, where s is
the length of P), a partition OpPartsi(C) of the set of nodes in 2ChartP;X,Y that
correspond to this assignment (the nodes labelled with MkE are not considered
here). More concretely, the nodes contained in the parts of OpPartsi(C) are
the following nodes in Figs. 4.11–4.15:

– On Fig. 4.11 and Fig. 4.12 — the node vA.

– On Fig. 4.13 and Fig. 4.15 — all nodes depicted on these figures.

Let MkESeti denote the set of nodes of 2ChartP;X,Y that are labelled with MkE

and whose inputs are created at nodes corresponding to the assignment Ai. Fig. 4.17
presents a probabilistic algorithm that defines (a distribution of) the quantity λE —
a labelling of the edges of the flowchart with the elements of Ṽaln. This distribution
of λE, restricted to the output edges of 2ChartP;X,Y , is defined to be the interpreta-
tion of the flowchart with the configuration C. The interpretation [[2ChartP;X,Y , C]]0
(the subscript 0 denotes the preliminarity of this definition of interpretation of
flowcharts) can therefore be considered to have the type StrOutX;Y

n .
The main element of the algorithm in Fig. 4.17 is the subroutine do assignment.

Notice, how the partition OpPartsi(C) is used — the outer loop (lines 1–23) of the
subroutine cycles over all parts in OpPartsi(C) (and not over all nodes corresponding
to the assignment or vectorised choice Ai). Inside this outer loop, a new value is
computed and then this value is assigned to all elements inside that part in the
inner loop (lines 15–22).

There exists a configuration CL, such that the interpretation of 2ChartP;X,Y with
CL is equal to the n-th component of (4.25). It is the following:

• InpParts(CL) puts all input edges of 2ChartP;X,Y to the same part.

• OpPartsi(CL) puts all nodes in 2ChartP;X,Y corresponding to Ai to the same
part.

There also exists a configuration CR, such that the interpretation of 2ChartP;X,Y

with CR is equal to the n-th component of (4.26). It is the following:

• InpParts(CR) puts all input edges of ChartP;X to one part and all input edges
of ChartP;Y to another.

76 CHAPTER 4. ANALYSIS

algorithm defining λE:

1: call create inputs
2: for i = 1 to s do
3: call do assignment(i)
4: end for

subroutine create inputs

1: for all E ′ ∈ InpParts(C) do
2: generate Sn ∈ Staten according to Dn

3: for all e ∈ E ′ do
4: define λE(e) = Sn(λI(e))
5: end for
6: end for

subroutine do assignment(i)

1: for all N ′ ∈ OpPartsi(C) do
2: let v be an element of N ′

3: let e1, . . . , ek be the in-edges of v (from left to right)
4: if λN(v) = Enc then
5: generate x ∈ Valn by feeding λE(e2) to the black box λE(e1)
6: else if λN(v) = Gen or λN(v) = Genval then
7: generate x ∈ Valn according to the distribution [[Gen]]n
8: else if λN(v) = ? : then
9: let x be λE(e2), if λE(e1) = true, and λE(e3) otherwise

10: else if λN(v) = [? :]E then
11: let x be λE(e2), if λE(e1) = true, and λE(e3) otherwise
12: else
13: generate x ∈ Valn according to [[λN (v)]]n(λE(e1), . . . , λE(ek))
14: end if
15: for all v ∈ N ′ do
16: let e =←−ρ (v)
17: if λN(v) 6= Gen then
18: define λE(e) := x
19: else
20: define λE(e) as a black box [[Enc]]n(x, ·)
21: end if
22: end for
23: end for
24: for all v ∈ MkESeti do
25: let e be the in-edge and e′ be the out-edge of v
26: define λE(e′) as the black box [[Enc]]n(λE(e), ·)
27: end for

Figure 4.17: Interpretation of 2ChartP;X,Y with the configuration C — initial
version

4.4. STRUCTURES FOR THE PROOF 77

• OpPartsi(CR) puts all nodes in ChartP;X corresponding to Ai to one part and
all nodes in ChartP;Y corresponding to Ai to another.

Note that the subroutine do assignment in Fig. 4.17 is nondeterministic — on
the 2nd line it chooses an element of the set of nodes N ′, but it is not fixed,
which one. Different nodes may have different labels on their in-edges, therefore
the interpretation of flowcharts has not generally been uniquely defined. For con-
figurations CL and CR it has been uniquely defined — all nodes in the same set
N ′ ∈ OpPartsi(CL) or N ′ ∈ OpPartsi(CR) have same labels on their in-edges. Gen-
erally, however, we have to put some hygiene conditions on the configurations of
the flowchart 2ChartP;X,Y .

Given a configuration C, we define a partition edgeParts(C) over the edges of
2ChartP;X,Y . It is defined in such way, that if two edges e, e′ belong to the same
part of edgeParts(C), then λE(e) = λE(e′). The partition edgeParts(C) contains the
following parts:

• For each part E ′ ∈ InpParts(C) and each x ∈ Ṽar, the set of all e ∈ E ′, where
λI(e) = x, is a part in edgeParts(C).

• For each i ∈ {1, . . . , s} and each N ′ ∈ OpPartsi(C), the set of out-edges of
the nodes in N ′ constitute a part in edgeParts(C).

We have introduced the following notational convention — the names of base com-
ponents of configuration begin with capital letters, the names of derived components
begin with small letters.

The hygiene condition put on configurations C is the following:

• Let i ∈ {1, . . . , s}, N ′ ∈ OpPartsi(C) and v, v′ ∈ N ′. Let e be an in-edge of
v and e′ be an in-edge of v′, such that they have the same position in the
sequences −→ρ (v) and −→ρ (v′). Then e and e′ must belong to the same part in
edgeParts(C).

It is clear that CL and CR satisfy this condition.
We are now going to extend the configurations with more components. The

components introduced so far do not yet allow us to introduce the necessary “small
steps” for turning CL to CR.

InpKeys(C) ⊆ inputs(2ChartP;X,Y) is a component of C. All members of the set
InpKeys(C) must be labelled with some [k]E for k ∈ Var and for each e ∈ InpKeys(C)
labelled with [k]E, the part in partition InpParts(C) that contains the edge e must
only contain edges labelled with [k]E.

The construction of λE in Fig. 4.17 corresponds to having InpKeys(C) = ∅.
For the general case, Fig. 4.18 gives the necessary change to Fig. 4.17. We see
that InpKeys(C) is somehow related to the keys-part of the elements of PF(Var)
(similarly, InpParts(C) is somehow related to the indeps-part of these elements).

BoxNull(C) ⊆ InpKeys(C) ∪ Nodes(2ChartP;X,Y) is a component of C. All nodes
in BoxNull(C) must be labelled with Gen.

78 CHAPTER 4. ANALYSIS

Replace the subroutine create inputs by

1: for all E ′ ∈ InpParts(C) do
2: if E ′ = {e1, . . . , ek} and e1, . . . , ek ∈ InpKeys(C) then
3: generate x ∈ Valn according to [[Gen]]n
4: for all e ∈ E ′ do
5: define λE(e) as a black box [[Enc]]n(x, ·)
6: end for
7: else
8: generate Sn ∈ Staten according to Dn

9: for all e ∈ E ′ do
10: define λE(e) = Sn(λI(e))
11: end for
12: end if
13: end for

Figure 4.18: Adding InpKeys(C) to the interpretation of flowcharts

Replace the 20th line of the subroutine do assignment in Fig. 4.17 by

if v ∈ BoxNull(C) then
define λE(e) as a black box [[Enc]]n(x, 0`(n))

else
define λE(e) as a black box [[Enc]]n(x, ·)

end if

Also, replace the 5th line of the subroutine create inputs on Fig. 4.18 with almost
the same excerpt (only replace the check “v ∈ BoxNull(C)” with the check “e ∈
BoxNull(C)”).

Figure 4.19: Adding BoxNull(C) to the interpretation of flowcharts

The construction of λE in Figures 4.17 and 4.18 corresponds to having BoxNull(C)
equal the empty set. For the general case, Fig. 4.19 gives the necessary changes
to these figures. We see that BoxNull(C) is somehow related to the repetition-
concealedness of the encryption primitive.

In Fig. 4.19, the black box [[Enc]]n(x, 0`(n)) operates as follows. If an input is
submitted to this black box, then it discards that input, encrypts the bit-string
0`(n) and returns the result of that encryption.

One can say that the parts InpKeys(C) and BoxNull(C) somehow control the
inputs to the flowchart (the result of generating a new key can be seen as an
input, too). The next two components, EncNull(C) and IfNewKeys(C), control
some aspects of the computation.

EncNull(C) ⊆ Nodes(2ChartP;X,Y) is a component of the configuration C. All
nodes in EncNull(C) must be labelled with Enc. The construction of λE presented
this far corresponds to having EncNull(C) = ∅. The modifications for the general
case are given on Fig. 4.20.

Before defining the component IfNewKeys(C) and explaining, how it affects the

4.4. STRUCTURES FOR THE PROOF 79

Replace the 5th line of the subroutine do assignment on Fig. 4.17 by

if v ∈ EncNull(C) then
generate x ∈ Valn by feeding 0`(n) to the black box λE(e1)

else
generate x ∈ Valn by feeding λE(e2) to the black box λE(e1)

end if

Figure 4.20: Adding EncNull(C) to the interpretation of flowcharts

Replace the 11th line of the subroutine do assignment on Fig. 4.17 by

if v ∈ IfNewKeys(C) then
generate x′ ∈ Valn according to the distribution [[Gen]]n
if ←−ρ (v) ∈ edgeNull(C) then

let x be the black box [[Enc]]n(x, 0`(n))
else

let x be the black box [[Enc]]n(x, ·)
end if

else
let x be λE(e2), if λE(e1) = true, and λE(e3) otherwise

end if

Figure 4.21: Adding IfNewKeys(C) to the interpretation of flowcharts

interpretation of the flowchart, we have to define another derived component of the
configuration C. Let edgeNull(C) be the smallest set of edges of the flowchart, such
that the following conditions are satisfied.

• If e ∈ BoxNull(C) is an edge, then e ∈ edgeNull(C).

• If v ∈ BoxNull(C) is a node, then ←−ρ (v) ∈ edgeNull(C).

• Let v be a node of the flowchart that is labelled with [? :]E. Let −→ρ (v) =
ebetrueefalse. If both etrue ∈ edgeNull(C) and efalse ∈ edgeNull(C), then also
←−ρ (v) ∈ edgeNull(C).

The set of edgeNull(C) contains such edges e, where the computation of λE assigns
a black box that encrypts 0`(n) to the edge e.

IfNewKeys(C) ⊆ Nodes(2ChartP;X,Y) is a component of the configuration C.
All nodes in IfNewKeys(C) must be labelled with [? :]E. The construction of λE

presented this far corresponds to having IfNewKeys(C) = ∅. The modifications
for the general case are given in Fig. 4.21. We see that IfNewKeys(C) is somehow
related to the which-key-concealedness of the encryption primitive.

Summary

The base components of a configuration C as used as follows:

80 CHAPTER 4. ANALYSIS

• InpParts(C) determines the input partition to 2ChartP;X,Y .

• OpPartsi(C) fixes, which nodes denote the same operation and which nodes
denote different operations.

• If e ∈ InpKeys(C), then the value on e is a black box encrypting with a “real”
key, not just with a value of a variable.

• If e ∈ BoxNull(C) or v ∈ BoxNull(C), then the encrypting black box that is
generated at e or v does not encrypt its input, but encrypts the constant 0`(n).

• If v ∈ EncNull(C), then the operation Enc at v encrypts 0`(n), not its input.

• If v ∈ IfNewKeys(C), then the operation [? :]E at v generates a new black box
as its output, instead of using its inputs.

4.4.4 Known and Unknown Values in a Flowchart

The configurations defined so far are still not enough for transforming the configu-
ration CL to the configuration CR. When looking at the analysis rules (4.28) and
(4.29), we see that their antecedents (pertaining to indeps(X)) never contain both
the variables yi and zi. Actually, in the explanation of rule (4.18) we said that
for computing the values of the variables xi after merge (i.e. after the vectorised
choice), we only need to know the value of the guard variable and the values of the
variables xi in one of the branches (i.e. either the values of the variables yi or the
values of the variables zi).

Here we want to introduce the interpretation of flowcharts, if we only give values
to a subset of its input edges. These subsets are not arbitrary ones, as the first
thing we are going to define the set of allowed subsets.

Given the program P = A1; · · · ; As and the set X ⊆ Ṽar, we define the sets
KVX

i ⊆ P(Var), where 0 ≤ i ≤ s. The set KVX
s is equal to {X}, the set KVX

0

contains the possible sets of input variables that may be initialised.

The sets KVX
i are defined inductively, in the order of decreasing i. As already

mentioned, KVX
s = {X} — to compute the values of the variables in X we need to

know the values of the variables in X at the end of the program and nothing else.

Suppose that KVX
i has been defined. If Ai is an assignment x := o(x1, . . . , xk)

(including all possible “special cases”), then

KVX
i−1 = {〈〈x

?
∈ Z ? Z\{x} ∪ {x1, . . . , xk} : Z〉〉 : Z ∈ KVX

i } . (4.32)

I.e. if we can compute the values of X at the end of the program from the values of
Z after the assignment Ai, then, if Z contains x, we need the variables at the right
hand side of Ai before the assignment Ai.

4.4. STRUCTURES FOR THE PROOF 81

If Ai is 〈x1, . . . , xk〉 := b ?〈y1, . . . , yk〉 :〈z1, . . . , zk〉, then

KVX
i−1 =

{
Z\{x1, . . . , xk} ∪

k⋃

j=1

〈〈xj

?
∈ Z ? {b, yj} : ∅〉〉 : Z ∈ KVX

i

}
∪

{
Z\{x1, . . . , xk} ∪

k⋃

j=1

〈〈xj

?
∈ Z ? {b, zj} : ∅〉〉 : Z ∈ KVX

i

}
. (4.33)

I.e. if we can compute the values of X at the end of the program from the values
of Z after the vectorised choice Ai, then, if Z contains some xj, we need the guard
variable b and either the variables yj or the variables zj before the vectorised choice
Ai.

Having defined the sets KVX
i , we introduce a new component KnownInps(C) of

the configuration C of the flowchart 2ChartP;X,Y . KnownInps(C) is a subset of the
input edges of 2ChartP;X,Y , such that

• There exists a set SX ∈ KVX
0 , such that an input edge of ChartP;X belongs to

KnownInps(C) iff it is labelled with x or [x]E for some x ∈ SX .

• There exists a set SY ∈ KVY
0 , such that an input edge of ChartP;Y belongs to

KnownInps(C) iff it is labelled with x or [x]E for some x ∈ SY .

Computation of λE in Figures 4.17–4.21 is changed as described in Fig. 4.22.

The definition of [[2ChartP;X,Y , C]] (we now introduce the notation without the
subscript 0; [[2ChartP;X,Y , C]]0 still denotes the interpretation defined in Figures
4.17–4.21) also changes respectively. First, the type of the interpretation of the
flowchart changes — the probability distribution is no longer over the set StrOutX;Y

n ,
but over the set (StrOutX;Y

n)⊥ — if λE assigns ⊥u to any of the output edges of
the flowchart 2ChartP;X,Y , then the interpretation is considered to have picked ⊥.
But this is not the only case where ⊥ appears. We want ⊥ appear more often —
often enough for the following claim to hold.

Let ConfL
P;X,Y be the set of all such configurations C of the flowchart 2ChartP;X,Y

that satisfy

• InpParts(C) puts all inputs of 2ChartP;X,Y to the same part;

• EncNull(C) = ∅;

• For each assignment Ai in P, OpPartsi(C) puts all nodes corresponding to Ai

to the same part;

• InpKeys(C) = ∅;

• BoxNull(C) = ∅.

82 CHAPTER 4. ANALYSIS

• In Fig. 4.18, λE(e) is only defined for an edge e in the way given on the figure,
if e ∈ KnownInps(C). If e 6∈ KnownInps(C), then λE(e) := ⊥u. Here ⊥u is a
new symbol, it denotes an unknown value.

• In subroutine do assignment in Fig. 4.17, add between the 3rd and 4th lines:

if λN(v) 6= ? : and λN(v) 6= [? :]E then
if λE(ei) = ⊥u for any of the edges e1, . . . , ek then

let x be ⊥u

go to line 15
end if

else
if λE(e1) = ⊥u or

λE(e1) = true and λE(e2) = ⊥u or
λE(e1) = false and λE(e3) = ⊥u then

let x be ⊥u

go to line 15
end if

end if

• The subroutine do assignment also constructs new black boxes. We define
that attempting to create a black box that encrypts with ⊥u results again in
⊥u.

Figure 4.22: Adding KnownInps(C) to the interpretation of flowcharts (1st part)

The only thing that can vary for the configurations C ∈ ConfL
P;X,Y is the component

KnownInps(C). It may be chosen freely (subject to the constraints that we gave
when introducing the component KnownInps(C)).

We want to define [[2ChartP;X,Y , C]] in such a way that the sum of distributions
∑

C∈ConfLP;X,Y

[[2ChartP;X,Y , C]] (4.34)

exists and is equal to the n-th component of (4.25). Recall that n is the security
parameter that we have fixed at the beginning of Sec. 4.4.1.

Similarly, let ConfR
P;X,Y be the set of all such configurations C of the flowchart

2ChartP;X,Y that satisfy

• InpParts(C) puts all inputs of ChartP;X to one part and all inputs of ChartP;Y

to another;

• EncNull(C) = ∅;

• For each assignment Ai in P, OpPartsi(C) puts all nodes of ChartP;X corre-
sponding to Ai to the same part and all nodes of ChartP;Y corresponding to
Ai to another part;

4.4. STRUCTURES FOR THE PROOF 83

• InpKeys(C) = ∅;

• BoxNull(C) = ∅.

Again, KnownInps(C) may vary freely. We want the sum of distributions

∑

C∈ConfRP;X,Y

[[2ChartP;X,Y , C]] (4.35)

to exist and to be equal to the n-th component of (4.26).
As an example, where the presented claims about ConfL

P;X,Y and ConfR
P;X,Y do

not hold, consider the program

z1 := y1; z2 := y1;
〈x1, x2〉 := b ?〈y1, y2〉 :〈z1, z2〉

and suppose X = {x1, x2} and Y = ∅. We then have KVX
0 = {{b, y1, y2}, {b, y1}}.

The flowchart 2ChartP;X,Y has three input edges, labelled with b, y1, y2. The set
ConfL

P;X,Y has two elements C1 and C2, corresponding to the two elements {b, y1, y2}

and {b, y1} of KVX
0 . If we denote Di = [[2ChartP;X,Y , Ci]], where i ∈ {1, 2}, then D1

assigns no weight to ⊥ and D2 assigns as much weight to ⊥ as D (the initial
distribution) assigns to program states where the value of b is true. Therefore
D1(⊥) + D2(⊥) is smaller than 1 and D1 + D2 is undefined. In this example we
would like D1 to also assign some weight to ⊥ — namely as much as D assigns to
states where the value of b is false.

We now proceed to define for each i ∈ {1, . . . , s} the function fX;i (if Ai is an
assignment) or the functions f true

X;i and f false
X;i (if Ai is a vectorised choice) from the

set KVX
i to the set KVX

i−1. With help of these functions, we are able to precisely
specify, for which picks of λE the interpretation [[2ChartP;X,Y , C]] has to pick ⊥.

Suppose that Ai is an assignment x := o(x1, . . . , xk). Let Z ∈ KVX
i . Then we

define

fX;i(Z) := 〈〈x
?
∈ Z ? Z\{x} ∪ {x1, . . . , xk} : Z〉〉 .

Compare this definition with (4.32). We see that fX;i(Z) ∈ KVX
i−1.

Suppose that Ai is 〈x1, . . . , xk〉 := b ?〈y1, . . . , yk〉 :〈z1, . . . , zk〉. Let Z ∈ KVX
i .

Then we define

f true
X;i (Z) := Z\{x1, . . . , xk} ∪

k⋃

j=1

〈〈xj

?
∈ Z ? {b, yj} : ∅〉〉

f false
X;i (Z) := Z\{x1, . . . , xk} ∪

k⋃

j=1

〈〈xj

?
∈ Z ? {b, zj} : ∅〉〉 .

Compare these definitions with (4.33). We see that f true
X;i (Z) ∈ KVX

i−1 and f false
X;i (Z) ∈

KVX
i−1. We also see that if none of the variables xj are elements of Z, then f true

X;i (Z) =
f false
X;i (Z).

84 CHAPTER 4. ANALYSIS

The algorithm ValidChoice(P, X, B, S0):

return VCStep(s, X, B, S0)

subroutine VCStep(i, S, B, S0)

if i = 0 then
return S

?
= S0

end if
if i ∈ VCP and B(i) = true then

return VCStep(i− 1, f true
X;i (S), B, S0)

else if i ∈ VCP and B(i) = false then
return VCStep(i− 1, f false

X;i (S), B, S0)
else

return VCStep(i− 1, fX;i(S), B, S0)
end if

Figure 4.23: Right choices for S0 ∈ KVX
0

Let VCP ⊆ {1, . . . , s} be the set of all indices i, such that Ai is a vectorised
choice. Let B : VCP → B. Consider the algorithm ValidChoice in Fig. 4.23. In this
algorithm, S0 is supposed to be an element of KVX

0 . This algorithm defines for each
set of choices the “right” initial knowledge.

We can now finally integrate the component KnownInps(C) to the computation
of the interpretation [[2ChartP;X,Y , C]]. The interpretation is given in Fig. 4.24.

Basically, the algorithm given in Fig. 4.24 just calls the algorithm ValidChoice

with the values of booleans at vectorised choices. The question here is, what to
do if we do not know the value of the guard variable at some vectorised choice.
The subroutine constructB then assumes that value to be true, but actually it does
not matter at all. If the value of the guard variable is unknown at some vectorised
choice Ai, then none of the variables in the left hand side of Ai are known afterwards
and therefore f true

X;i and f false
X;i are equal for the set of known variables after Ai.

Now the property for ConfL
P;X,Y and ConfR

P;X,Y that we mentioned before in-
deed holds, as witnessed by the following lemma.

Lemma 4.8. Let C be a configuration of 2ChartP;X,Y . Let ConfP;X,Y be the set
of configurations of 2ChartP;X,Y that contains C and that also contains every other
configuration C ′ where KnownInps(C) 6= KnownInps(C ′) and where all other compo-
nents of C and C ′ are (pairwise) equal. Then the following equality holds:

[[2ChartP;X,Y , C]]0 =
∑

C′∈ConfP;X,Y

[[2ChartP;X,Y , C ′]] .

Proof. Let R be the set of all possible random choices that are made by

• the PPT algorithm sampling the initial distribution D;

• the PPT algorithms at the nodes of 2ChartP;X,Y , computing the semantics of
operators;

4.4. STRUCTURES FOR THE PROOF 85

Let SX ∈ KVX
0 be the set of labels of input edges e of ChartP;X , such that e ∈

KnownInps(C) (see the def. of KnownInps(C)). Let SY ∈ KVY
0 be defined similarly.

Computation of [[2ChartP;X,Y , C]]:

1: pick λE according to the computation in Figures 4.17–4.22
2: let BX := constructB(λE, X)
3: let BY := constructB(λE, Y)
4: if ValidChoice(P, X, BX , SX) and ValidChoice(P, Y, BY , SY) then
5: return λE|outputs(2ChartP;X,Y)

6: else
7: return ⊥
8: end if

subroutine constructB(λE, Z)

1: let B be the partial function from VCP to B that is nowhere defined
2: for all i ∈ VCP do
3: if ChartP;Z contains a node corresponding to Ai then
4: let the edge eb be the first input to the nodes corresponding to Ai in ChartP;Z

5: if λE(eb) = ⊥u then
6: B := B[i 7→ true]
7: else
8: B := B[i 7→ λE(eb)]
9: end if

10: else
11: B := B[i 7→ true]
12: end if
13: end for
14: return B

Figure 4.24: Adding KnownInps(C) to the interpretation of flowcharts (2nd part)

86 CHAPTER 4. ANALYSIS

• the black boxes, when they are used for encryption.

R can be seen as the set of bit-strings of certain, large enough length.
When we have fixed an element r ∈ R, then we have fixed all choices that are

made by these algorithms. This means, that we have fixed the value of λE that is
picked by [[2ChartP;X,Y , C]]0. We denote the restriction of λE to the output edges of
2ChartP;X,Y by [[2ChartP;X,Y , C]]r0.

We may assume that the structure of R is such, that for a fixed r ∈ R, the
values of λE picked by [[2ChartP;X,Y , C ′]], where C ′ ∈ ConfP;X,Y , are all equal to
the value of λE picked by [[2ChartP;X,Y , C]]0 for the same r (except for the edges
that are labelled with ⊥u). Given the value of λE picked by [[2ChartP;X,Y , C ′]] for a
fixed r ∈ R, we denote the restriction of λE to the output edges of 2ChartP;X,Y by
[[2ChartP;X,Y , C ′]]r.

Fixing r fixes λE and therefore also the values of guard variables at vectorised
choices. I.e. we have fixed BX , BY : VCP → B in the calls to the algorithm
ValidChoice at the 4th line on Fig. 4.24. This fixes also SX and SY on Fig. 4.24 and
finally the configuration C ′ ∈ ConfP;X,Y , such that KnownInps(C ′) corresponds to
these sets SX and SY .

We have seen that for each r there exists exactly one Cr ∈ ConfP;X,Y that does
not pick the value ⊥ for that set of random choices r. Also, for that set of random
choices, the values of [[2ChartP;X,Y , C]]0 and [[2ChartP;X,Y , Cr]] are equal.

By the definition of R we have

[[2ChartP;X,Y , C]]0 = {|[[2ChartP;X,Y , C]]r0 : r← R|}
∑

C′∈ConfP;X,Y

[[2ChartP;X,Y , C ′]] = {|[[2ChartP;X,Y , Cr]]
r : r← R|} .

From this the statement of the lemma immediately follows.

When we apply this lemma for CL and ConfL
P;X,Y then we get that the sum of all

distributions [[2ChartP;X,Y , C]], where C ∈ ConfL
P;X,Y , is equal to (4.25). Similarly,

applying this lemma for CR and ConfR
P;X,Y gives that the sum of all distributions

[[2ChartP;X,Y , C]], where C ∈ ConfR
P;X,Y , is equal to (4.26).

Summary

• If an input edge of 2ChartP;X,Y is not a member of KnownInps(C), then the
value on it is unknown, denoted by ⊥u.

• All nodes, except those that are labelled with ? : or [? :]E are strict with
respect to ⊥u — if any of their inputs is ⊥u, then their output is ⊥u, too.

• A node labelled with ? : or [? :]E certainly needs the value on its first input
— if this value is ⊥u, then also the output of the node is ⊥u. Depending on
the value on the first input, the node needs either the value on the second
input (if the value on the first input is true) or the value on the third input
(if the value on the first input is false).

4.4. STRUCTURES FOR THE PROOF 87

• For each possible value of KnownInps(C), the first inputs to nodes correspond-
ing to vectorised choices must have certain values. If they do not have such
values, then the interpretation of the flowchart returns ⊥.

4.4.5 Same Choices at Both Sides

The component KnownInps(C) is necessary for handling vectorised choices; without
it we cannot hope to handle them so precisely as given by the rules in Fig. 4.7. But
it also brings its own problems. Namely, let C ∈ ConfL

P;X,Y and C ′ ∈ ConfR
P;X,Y

be such, that KnownInps(C) = KnownInps(C ′). We would like to show the closeness
of (4.34) and (4.35) by showing the closeness of all such pairs C and C ′. However,
the interpretation of 2ChartP;X,Y with the configuration C can be rather different
from the interpretation with the configuration C ′.

For example, consider the program

〈x〉 := b ?〈y〉 :〈z〉;
u := Enc(k, x)

and let X = {x} and Y = {u} (if b, y and z are independent of [k]E then x is
independent of u). The set KVX

0 contains two sets of variables — {b, y} and {b, z}.
The set KVY

0 also contains two sets of variables — {b, y, k} and {b, z, k}. Assume
that the configurations C and C ′ mentioned before are such, that KnownInps(C)
and KnownInps(C ′) correspond to the sets SX = {b, y} and SY = {b, z, k}. Suppose
that the initial probability distribution D is such, that the probability that the
value of b is true is 1

2
. Now

• [[2ChartP;X,Y , C]] assigns to ⊥ the weight 1. Indeed, not getting ⊥ would need
different values for the input labelled with b in ChartP;X and ChartP;Y . But
this is impossible by the definition of ConfL

P;X,Y .

• [[2ChartP;X,Y , C ′]] assigns to ⊥ the weight 3
4
. Here we can get different values

for the inputs labelled with b in ChartP;X and ChartP;Y .

This is a big difference.
In th example above, the value of the input labelled with b in ChartP;Y does not

really seem to matter that much. It is only used to choose either the value of y or
the value of z as the value to be encrypted. As the encryption hides the information
anyway, it seems not so important, whether the value of y or the value of z was
encrypted.

Our solution to the problems with KnownInps(C) is similar — we are looking
for guard variables whose value does not matter. We are going to add one more
(base) component SameIf(C) to the configurations C.

We start by defining the derived components fictUse(C), fictitious(C) and
constEdge(C).

A fictitious edge of the flowchart 2ChartP;X,Y is an edge e whose value does not
matter, when we are computing the interpretation [[2ChartP;X,Y , C]]. We are free to

88 CHAPTER 4. ANALYSIS

change the label λE(e), this will not change the values of λE on the output edges
of 2ChartP;X,Y .

fictitious(C) ⊆ Edges(2ChartP;X,Y), defined below, only contains fictitious edges.
While defining it, we also define fictUse(C) — the set of fictitious uses (of the values
carried by edges). The elements of fictUse(C) are uses of edges — basically pairs
of a node v and a position in the sequence of edges −→ρ (v).

• Let v be a node. If v ∈ EncNull(C), then the second argument to v is fictitious
— i.e. (v, 2) ∈ fictUse(C). Indeed, recall that v ∈ EncNull(C) means that the
encryption operation at v encrypts not its second argument, but a fixed bit-
string 0`(n).

• Let v be a node. If v ∈ IfNewKeys(C) (and then λN(v) = [? :]E) then all
(three) arguments to v are fictitious — (v, 1), (v, 2), (v, 3) ∈ fictUse(C). In-
deed, if v ∈ IfNewKeys(C) then the choice operation at v generates a new
encrypting black box and does not use its inputs at all.

• Let e be an edge and let Ue be the set of its uses, i.e.

Ue = {(v, i) : v ∈ Nodes(2ChartP;X,Y),−→ρ (v) = e1, . . . , ek, ei = e} .

If Ue ⊆ fictUse(C), then e ∈ fictitious(C).

• Let v be a node. If←−ρ (v) ∈ fictitious(C), then all arguments to v are fictitious.
I.e. if k is the number of inputs to v, then (v, 1), . . . , (v, k) ∈ fictUse(C).

The derived component constEdge(C) records, which edges are labelled with
constant values by λE. It has the following definition.

• Let e be an input edge of 2ChartP;X,Y , labelled with x ∈ Var. If ({x}, {x}) ∈
indeps(βKI

Var(D)), then e ∈ constEdge(C).

• Let v be a node of 2ChartP;X,Y , labelled with o ∈ Op. If o is a nullary
operation and [[o]] is deterministic, then ←−ρ (v) ∈ constEdge(C).

We will now make an assumption about the initial probability distribution D.
We already should have made this assumption in Prop. 4.5, but here is the first
place where we are going to use it, therefore we make it here. We assume that if the
value of some variable x is constant in the distribution D (i.e. (4.4) is negligible),
then the probability (4.4) is actually 0, i.e. the value of the variable x really is a
constant, without even a negligible probability of having some other value. This
assumption does not restrict the generality, as it can change the distribution D only
negligibly.

The component SameIf(C) is just a boolean value. The interpretations of
the flowchart [[2ChartP;X,Y , C]]0 and [[2ChartP;X,Y , C]] presented so far correspond to
SameIf(C) = false. For the case SameIf(C) = true, let us state a hygiene condition
first.

4.4. STRUCTURES FOR THE PROOF 89

In subroutine do assignment in Fig. 4.17, add after the 3rd line:

let Z ∈ {X, Y } be such that v ∈ Nodes(ChartP;Z)
let W be Y , if Z is X. Otherwise let W be X.
if SameIf(C) and

(
λN(v) = ? : or λN(v) = [? :]E

)
then

let v′, if it exists, be a node in ChartP;W corresponding to the same vectorised
choice Ai as v
if v′ exists and v and v′ do not belong to same part of OpPartsi(C) then

let e′1 be the first in-edge of v′

if e1 ∈ fictitious(C) and e′1 6∈ fictitious(C) then
let λE(e1) := λE(e′1) . /* i.e. change λE(e1) */

else if e1, e
′
1 ∈ fictitious(C) and not e1, e

′
1 ∈ constEdge(C) then

if W is X then
let λE(e1) := λE(e′1)

end if
end if

end if
end if

Figure 4.25: Adding SameIf(C) to the interpretation of flowcharts

• Let SameIf(C) = true. Let Ai be a vectorised choice and suppose that there
exist a node vX in ChartP;X and a node vY in ChartP;Y that both correspond
to Ai. Let eX and eY be the first inputs to vX and vY , respectively (recall
that the first input corresponds to the guard variable). Then at least one of
the following cases must hold:

– eX and eY belong to the same part in edgeParts(C);

– eX ∈ fictitious(C) or eY ∈ fictitious(C);

– eX ∈ constEdge(C) and eY ∈ constEdge(C).

Fig. 4.25 gives the necessary change to the interpretations of flowcharts
[[2ChartP;X,Y , C]]0 and [[2ChartP;X,Y , C]] for the general case. As we see from this
figure, we try to use the value on a non-fictitious edge. If both edges (e1 and e′1)
are fictitious, then we just fix somehow, which of the values λE(e1) and λE(e′1) we
use (we have fixed that the edge in ChartP;X has priority).

We see that if the only difference of configurations C and C ′ is SameIf(C) 6=
SameIf(C ′), then [[2ChartP;X,Y , C]]0 and [[2ChartP;X,Y , C ′]]0 are equal. Indeed, the
computation of these interpretations may differ only in values assigned to fictitious
edges.

We define that SameIf(C) = true for all C ∈ ConfL
P;X,Y and SameIf(C) = false

for all C ∈ ConfR
P;X,Y . It is obvious that the hygiene condition holds for all C ∈

ConfL
P;X,Y — the case “eX and eY belong to the same part in edgeParts(C)” applies

for all relevant eX and eY . As the introduction of SameIf(C) is orthogonal to the
introduction of KnownInps(C), Lemma 4.8 still holds.

90 CHAPTER 4. ANALYSIS

Adding the component SameIf(C) to the configuration C still does not help
us to avoid the big difference between corresponding configurations in ConfL

P;X,Y

and ConfR
P;X,Y , but it allows us to control, where it occurs. Let us first define an

auxiliary notion.

Definition 4.3. Let C be a configuration of 2ChartP;X,Y . We say that C has no
ties between sides, if

• The partition InpParts(C) is such, that there are no such parts in InpParts(C)
that contain edges from both ChartP;X and ChartP;Y .

• For each i ∈ {1, . . . , s}, the partition OpPartsi(C) has similar property —
there are no such parts in OpPartsi(C) that contain nodes from both ChartP;X

and ChartP;Y .

The following lemma holds.

Lemma 4.9. Let C be a set of configurations of 2ChartP;X,Y with the following
properties:

• SameIf(C) = true for each C ∈ C.

• For each SX ∈ KVX
0 and SY ∈ KVY

0 there exists exactly one C ∈ C, such that
KnownInps(C) is defined by SX and SY .

• For each C ∈ C, the configuration C has no ties between sides.

• Let SX ∈ KVX
0 . Consider an arbitrary configuration C ∈ C, such that

KnownInps(C) is defined by SX (and by some element of KVY
0). The set

SX must uniquely determine all components of C, restricted to nodes and
edges of ChartP;X . This means, that if C ′ is another configuration, such that
KnownInps(C ′) is defined by SX , then the parts in InpParts(C) and InpParts(C ′)
that contain the inputs of ChartP;X , must be equal. Also, the intersection of
EncNull(C) with the set of nodes of ChartP;X must be equal to the intersection
of EncNull(C ′) with the set of nodes of ChartP;X . Similar requirements hold
for OpPartsi(·), BoxNull(·) and IfNewKeys(·).

The set SX therefore determines a configuration of the flowchart ChartP;X (not
2ChartP;X,Y). Let us denote it by C[SX].

• There is similar requirement for the elements of KVY
0 . They must also uniquely

determine the components of configurations, restricted to nodes and edges of
ChartP;Y . We let C[SY] denote the configuration of ChartP;Y determined by
SY ∈ KVY

0 .

Let C′ be another set of configurations of 2ChartP;X,Y that is obtained from C by
setting SameIf(C) to false for each C ∈ C. Then

∑

C∈C

[[2ChartP;X,Y , C]] =
∑

C′∈C′

[[2ChartP;X,Y , C ′]] . (4.36)

4.4. STRUCTURES FOR THE PROOF 91

Proof. This lemma is actually rather similar to Lemma 4.8. The difference is that
here we do not have a single configuration C, such that the sum of the interpre-
tations of configurations (4.36) is equal to [[2ChartP;X,Y , C]]0. Nevertheless, we can
still give a single computation that has the same output distribution as the right
hand side of (4.36).

First note that the interpretation of flowcharts can also be defined for ChartP;X

(together with a suitable configuration) and ChartP;Y (together with a suitable con-
figuration) alone, not only for 2ChartP;X,Y .

Consider the following computation:

1. Uniformly randomly choose SX from the set KVX
0 .

2. Compute λE according to [[ChartP;X , C[SX]]]0

3. Let B = constructB(λE, X), where the algorithm constructB is given in
Fig. 4.24.

4. Call ValidChoice(P, X, B, SX). If it returns true then output λE. If it returns
false, then go back to 1st step.

This computation runs in expected polynomial time (in the size of P) and it returns
the same distribution as the right hand side of (4.36), restricted to the outputs of
ChartP;X . If we replace X by Y in this computation, then it returns the same
distribution as the right hand side of (4.36), restricted to the outputs of ChartP;Y .
Taking these two together gives us the whole distribution at the right hand side of
(4.36), because the values on the outputs of ChartP;X and the values on the outputs
of ChartP;Y are independent of each other.

For getting the distribution on the left hand side of (4.36), we have to change
the values on some edges, while computing the interpretations [[ChartP;X , C[SX]]]0
and [[ChartP;Y , C[SY]]]0. As these values are fictitious, changing of them does not
change the result of the computation.

Summary

If SameIf(C) is true, then the computation of the interpretation of the flowchart
attempts to not use the values on fictitious edges as the guards of choices.

4.4.6 The Interpretation [[2ChartP;X,Y , C]] — Final Shape

Here we once more state the definition of the interpretation of flowcharts already
given in Figures 4.17–4.25. This time, however, we will integrate the changes to the
main algorithm.
� The interpretation [[2ChartP;X,Y , C]] — sampling algorithm:

1: call create inputs
2: for i = 1 to s do
3: call do assignment(i)

92 CHAPTER 4. ANALYSIS

4: end for
5: let BX := constructB(λE, X)
6: let BY := constructB(λE, Y)
7: let SX ∈ KVX

0 and SY ∈ KVY
0 be such, that the define KnownInps(C)

8: if ValidChoice(P, X, BX , SX) and ValidChoice(P, Y, BY , SY) then
9: return λE|outputs(2ChartP;X,Y)

10: else
11: return ⊥
12: end if

� subroutine create inputs

1: for all E ′ ∈ InpParts(C) do
2: if E ′ = {e1, . . . , ek} and e1, . . . , ek ∈ InpKeys(C) then
3: generate x ∈ Valn according to [[Gen]]n
4: for all ei ∈ E ′ do
5: if ei 6∈ KnownInps(C) then
6: define λE(ei) := ⊥u

7: else if ei ∈ BoxNull(C) then
8: define λE(ei) as a black box [[Enc]]n(x, 0`(n))
9: else

10: define λE(ei) as a black box [[Enc]]n(x, ·)
11: end if
12: end for
13: else
14: generate Sn ∈ Staten according to Dn

15: for all e ∈ E ′ do
16: if e ∈ KnownInps(C) then
17: define λE(e) := Sn(λI(e))
18: else
19: define λE(e) := ⊥u

20: end if
21: end for
22: end if
23: end for

� subroutine do assignment(i)

1: for all N ′ ∈ OpPartsi(C) do
2: let v be an element of N ′

3: let e1, . . . , ek be the in-edges of v (from left to right)
4: if λN(v) 6= ? : and λN(v) 6= [? :]E and ∃j : λE(ej) = ⊥u then
5: let x be ⊥u

6: else if λN(v) = ? : or λN(v) = [? :]E then
7: let x be do choice(v, e1, e2, e3)
8: else if λN(v) = Enc then

4.4. STRUCTURES FOR THE PROOF 93

9: if v ∈ EncNull(C) then
10: generate x ∈ Valn by feeding 0`(n) to the black box λE(e1)
11: else
12: generate x ∈ Valn by feeding λE(e2) to the black box λE(e1)
13: end if
14: else if λN(v) = Gen or λN(v) = Genval then
15: generate x ∈ Valn according to the distribution [[Gen]]n
16: else
17: generate x ∈ Valn according to [[λN(v)]]n(λE(e1), . . . , λE(ek))
18: end if
19: for all v ∈ N ′ do
20: let e =←−ρ (v)
21: if λN(v) 6= Gen then
22: define λE(e) := x
23: else if v ∈ BoxNull(C) then
24: define λE(e) as a black box [[Enc]]n(x, 0`(n))
25: else
26: define λE(e) as a black box [[Enc]]n(x, ·)
27: end if
28: end for
29: end for
30: for all v ∈ MkESeti do
31: let e be the in-edge and e′ be the out-edge of v
32: if λE(e) = ⊥u then
33: define λE(e′) := ⊥u

34: else
35: define λE(e′) as the black box [[Enc]]n(λE(e), ·)
36: end if
37: end for

� subroutine do choice(v, e1, e2, e3)

1: let Z ∈ {X, Y } be such that v ∈ Nodes(ChartP;Z)
2: let W be Y , if Z is X. Otherwise let W be X.
3: if SameIf(C) and

(
λN(v) = ? : or λN(v) = [? :]E

)
then

4: let v′, if it exists, be a node in ChartP;W corresponding to the same vectorised
choice Ai as v

5: if v′ exists and v and v′ do not belong to same part of OpPartsi(C) then
6: let e′1 be the first in-edge of v′

7: if e1 ∈ fictitious(C) and e′1 6∈ fictitious(C) then
8: let λE(e1) := λE(e′1) ./* i.e. change λE(e1) */
9: else if e1, e

′
1 ∈ fictitious(C) and not e1, e

′
1 ∈ constEdge(C) then

10: if W is X then
11: let λE(e1) := λE(e′1)
12: end if

94 CHAPTER 4. ANALYSIS

13: end if
14: end if
15: end if
16: if λE(e1) = ⊥u or

λE(e1) = true and λE(e2) = ⊥u or
λE(e1) = false and λE(e3) = ⊥u then

17: let x be ⊥u

18: else if λN(v) = ? : then
19: let x be λE(e2), if λE(e1) = true, and λE(e3) otherwise
20: else if λN(v) = [? :]E then
21: if v ∈ IfNewKeys(C) then
22: generate x′ ∈ Valn according to the distribution [[Gen]]n
23: if ←−ρ (v) ∈ edgeNull(C) then
24: let x be the black box [[Enc]]n(x, 0`(n))
25: else
26: let x be the black box [[Enc]]n(x, ·)
27: end if
28: else
29: let x be λE(e2), if λE(e1) = true, and λE(e3) otherwise
30: end if
31: end if
32: return x

� subroutine ValidChoice(P, X, B, S0):

1: return VCStep(s, X, B, S0)

� subroutine VCStep(i, S, B, S0)

1: if i = 0 then
2: return S

?
= S0

3: end if
4: if i ∈ VCP and B(i) = true then
5: return VCStep(i− 1, f true

X;i (S), B, S0)
6: else if i ∈ VCP and B(i) = false then
7: return VCStep(i− 1, f false

X;i (S), B, S0)
8: else
9: return VCStep(i− 1, fX;i(S), B, S0)

10: end if

� subroutine constructB(λE , Z)

1: let B be the partial function from VCP to B that is nowhere defined
2: for all i ∈ VCP do
3: if ChartP;Z contains a node corresponding to Ai then
4: let the edge eb be the first input to the nodes corresponding to Ai in ChartP;Z

5: if λE(eb) = ⊥u then
6: B := B[i 7→ true]

4.5. CHANGING THE STRUCTURES 95

7: else
8: B := B[i 7→ λE(eb)]
9: end if

10: else
11: B := B[i 7→ true]
12: end if
13: end for
14: return B

The presented algorithm obviously runs in polynomial time. We assume that a
representation for the encrypting black boxes has been fixed. This representation
must also accommodate the case, where some encrypting black box really is a black
box — i.e. when it can be accessed only through the oracle interface.

4.5 Changing the Structures

4.5.1 Ways for Turning One Configuration to Another

Let C be a configuration of G = 2ChartP;X,Y . We let matters(C) denote the set
of inputs of 2ChartP;X,Y whose values are really used during the computation of
[[G, C]]. Formally, matters(C) := KnownInps(C)\fictitious(C).

A configuration C of G = 2ChartP;X,Y can be changed to another configuration
C ′ (denoted C ↔ C ′; the reflexive transitive closure of the relation ↔ is denoted

by
∗
↔) in any of the ways described below. Some of these ways (1, 2, 6, 9) do not

change the distribution [[G, C]] at all. The others change it, but “only a little”, in
the sense of short steps in the proof of Prop. 2.11. Let X = βKI

Var(D).

1. The partition InpParts(C) may be changed — it does not matter, which parts
the fictitious and unknown inputs belong to. We define C ↔ C ′ and C ′ ↔ C,
if there exists a set of edges Ef ⊆ inputs(G)\matters(C), such that

• there exists a part E ′ ∈ InpParts(C), such that Ef ⊆ E ′ and Ef 6= E ′;

• InpParts(C) and InpParts(C ′) differ in the following way: the part E ′ ∈
InpParts(C) is replaced by two parts in InpParts(C ′) — by Ef and E ′\Ef ;

• other components of C and C ′ are equal.

2. Similarly, OpPartsi(C) may be changed — it does not matter, which parts the
fictitious nodes belong to. Actual definition of C ↔ C ′ and C ′ ↔ C is similar
to way 1.

3. If the partition InpParts(C) contains a part E ′ = {e1, . . . , el}, where λI(e1) =
· · · = λI(el) = [k]E for some k ∈ keys(X), then one may change InpKeys(C) by
adding all elements of E ′ to it or removing all elements of E ′ from it.

4. Let E ′ be defined as in the description of way 3. If all elements of E ′ are in
InpKeys(C), then one may add them all to or remove them all from BoxNull(C).

96 CHAPTER 4. ANALYSIS

5. Let Ē ∈ InpParts(C) and suppose that there exists (X̄, Ȳ) ∈ indeps(X) such
that the labels of the edges in Ē all belong to X̄ ∪ Ȳ . In this case Ē may be
partitioned to sets ĒX , ĒY ⊆ inputs(G), such that the labels of the edges in
ĒX [resp. in ĒY] all belong to X̄ [resp. to Ȳ]. I.e. the part Ē in InpParts(C)
may be replaced with ĒX and ĒY in InpParts(C ′). The same transformation
of C may also be done in the other direction.

6. If the encrypting black boxes reaching a node v that is labelled with Enc all
originate (origination is given by bb use) from nodes and inputs in BoxNull(C),
then one may change EncNull(C) by adding v to it or removing v from it.

7. Let Ai be an assignment of the form x := Gen(). Let V ∈ OpPartsi(C) be
such, that all nodes in V are labelled with Gen (i.e. none are labelled with
Genval). Then the nodes in V may all be added to or all be removed from
BoxNull(C).

8. Let Ai be an assignment of the form x := Gen(). Let V ∈ OpPartsi(C) and
let {V1, V2} be a partition of V . If all nodes in V are labelled with Gen,
then one may replace the part V in OpPartsi(C) with parts V1, V2. The same
transformation of C may also be done in the other direction.

9. Let Ai be an assignment of the form x := o(), where [[o]] is deterministic. Then
OpPartsi(C) may be freely changed (as long as the hygiene conditions of the
configuration remain satisfied). The same holds for the vectorised choices,
because they are deterministic as well.

10. Let v be a node labelled with [? :]E. If the values on its two input edges that
carry encrypting black boxes originate only from

• input edges from InpKeys(C) or

• nodes v labelled with Gen, such that the part V ∈ OpPartsi(C) that
contains v does not contain nodes labelled with Genval,

then one may change IfNewKeys(C) by adding v to it or removing v from it.

Note that it is impossible to change KnownInps(C) or SameIf(C).
Let us define a partial order on the set of configurations of the flowchart G.

Definition 4.4. Let C1, C2 be two configurations of the same flowchart, such that
KnownInps(C1) = KnownInps(C2) and SameIf(C1) = SameIf(C2). We say that C1 is
finer grained than C2 (denoted C1 v C2), iff

• InpParts(C1) is a finer partition than InpParts(C2);

• OpPartsi(C1) is a finer partition than OpPartsi(C2) for all i ∈ {1, . . . , s};

• EncNull(C1) ⊇ EncNull(C2);

4.5. CHANGING THE STRUCTURES 97

• InpKeys(C1) ⊇ InpKeys(C2);

• BoxNull(C1) ⊇ BoxNull(C2);

• IfNewKeys(C1) ⊇ BoxNull(C2).

From the definition follows that if C1 ↔ C2 then either C1 v C2 or C2 v C1. It
also follows that C1 v C2 implies fictitious(C1) ⊇ fictitious(C2).

For each of the ways that change the distribution [[G, C]] (i.e. ways 3, 4, 5, 7,
8 and 10), let us give an algorithm that makes the step between the distributions
[[G, C]] and [[G, C ′]]. This algorithm is analogous to the algorithm B in Fig. 2.3. This
time we will not have just one algorithm B, but several (indexed by the number
of the way and, in case of using X (this happens by way 3 and way 5), also by an
element of keys(X) or indeps(X)); this makes the whole proof more complex, but
not significantly.

The algorithms B take the following arguments:

• The security parameter 1n.

• The flowchart G and its two configurations C and C ′. These three arguments
correspond to the argument i in Fig. 2.3. We assume w.l.o.g. that C ′ is finer
grained than C.

Additionally, the algorithms B take some arguments corresponding to the argument
x in Fig. 2.3. The nature of these arguments depends on the way of changing the
configurations.

Algorithm B3;[k]E

We start with the algorithm B3;[k]E. Here [k]E is the label of the edges mentioned
in the description of way 3. As way 3 is about keys(X), the algorithm B3;[k]E

additionally takes as its argument an encrypting black box (that it accesses through
the oracle interface). This black box can be distributed according to the n-th
component of either the left or the right family of distributions on (4.3).

The algorithm B
(·)
3;[k]E

(1n, G, C, C ′) works by sampling [[G, C]] with the following

changes to the algorithm presented in Sec. 4.4.6. Let E ′ be the part in InpParts(C)
from the description of way 3 (the algorithm B3;[k]E can find this part from C and
C ′).

• In the subroutine create inputs, check whether the variable E ′ of the subrou-
tine is equal to E ′ from the description of way 3. If this is the case, then for
each ei ∈ E ′ do not compute λE(ei) as given in the subroutine create inputs,
but let λE(ei) be equal to the oracle that is given to B3;[k]E.

It is obvious that if the oracle given to B3;[k]E is equal to the n-th component
of the family of distributions in the left hand side of (4.3), then B3;[k]E samples
[[G, C]]. If the oracle given to B3;[k]E is equal to the n-th component of the family
of distributions in the right hand side of (4.3), then B3;[k]E samples [[G, C ′]].

98 CHAPTER 4. ANALYSIS

Algorithm B4

The additional argument to B4 is again an encrypting black box (accessed through
oracle interface). This black box can be distributed according to the n-th component
of either the left or the right family of distributions in (2.9).

The description of the algorithm B
(·)
4 (1n, G, C, C ′) is the same as the description

of the algorithm B3;[k]E. The subroutine create inputs is changed in exactly the
same way. The comments about sampling either [[G, C]] or [[G, C ′]] also stay the
same, one only has to replace B3;[k]E by B4 and (4.3) by (2.9).

Algorithm B5;X̄,Ȳ

The additional arguments to B5;X̄,Ȳ are two functions. First of them, vX , is a

mapping from X̄ to Ṽaln. Second of them, vY , is a mapping from Ȳ to Ṽaln. The
pair (vX , vY) can be distributed either according to the n-th component of (4.1) or
(4.2).

The algorithm B5;X̄,Ȳ (1n, G, C, C ′, vX , vY) works by sampling [[G, C]] with the
following changes to the algorithm presented in Sec. 4.4.6. Let Ē, ĒX and ĒY be
as in the description of way 5 (the algorithm B5;X̄,Ȳ can find them from C and C ′).

• In the subroutine create inputs, check whether the variable E ′ of the subrou-
tine is equal to Ē from the description of way 5. If this is the case, then
compute λE(e), where e ∈ Ē, not as in the subroutine create inputs, but as
follows:

– If e ∈ ĒX then λE(e) := vX(λI(e)).

– If e ∈ ĒY then λE(e) := vY (λI(e)).

Obviously, if (vX , vY) is distributed according to the n-th component of (4.1), then
B5;X̄,Ȳ samples [[G, C]]. If (vX , vY) is distributed according to the n-th component
of (4.2), then B5;X̄,Ȳ samples [[G, C ′]].

Algorithm B7

The additional argument to B7 is an encrypting black box (accessed through oracle
interface). This black box can be distributed according to the n-th component of
either the left or the right family of distributions in (2.9).

The algorithm B
(·)
7 works by sampling [[G, C]] with the following changes to the

algorithm presented in Sec. 4.4.6. Let V ∈ OpPartsi(C) be as in the description of
way 7 (the algorithm B7 can compute it from C and C ′).

• In the subroutine do assignment, check whether the variable N ′ is equal to
V . If this is the case, then do not compute the values λE(←−ρ (v)) for v ∈ V
as in the subroutine do assignment, but let λE(←−ρ (v)) be equal to the oracle
given to B7.

4.5. CHANGING THE STRUCTURES 99

Similarly to previous cases, B7 samples either [[G, C]] (if the black box given to it
is distributed according to the n-th component of the left family of distributions
in (2.9)) or [[G, C]] (if the black box given to it is distributed according to the n-th
component of the right family of distributions in (2.9)).

Algorithm B8

The additional arguments to B8 are two encrypting black boxes (accessed through
oracle interface). This pair of black boxes can be distributed according to the n-th
component of either the left or the right family of distributions in (2.10).

The algorithm B
(·),(·)
8 works by sampling [[G, C]] with the following changes to

the algorithm presented in Sec. 4.4.6. Let V ∈ OpPartsi(C), V1, V2 ∈ OpPartsi(C
′)

be as in the description of way 8 (the algorithm B8 can compute them from C and
C ′).

• In the subroutine do assignment, check whether the variable N ′ is equal to
V . If this is the case, then do not compute the values λE(←−ρ (v)) for v ∈ V as
in the subroutine do assignment, but

– If v ∈ V1 then let λE(←−ρ (v)) be either the left oracle given to B8 (if
v 6∈ BoxNull(C)) or the left oracle given to B8, where the argument to
the oracle has been fixed as 0`(n) (if v ∈ BoxNull(C)).

– If v ∈ V2, then define λE(←−ρ (v)) similarly, but replace the left oracle with
the right oracle.

Similarly to previous cases, B8 samples either [[G, C]] (if the pair of black boxes given
to it is distributed according to the n-th component of the left family of distributions
in (2.10)) or [[G, C ′]] (if the pair of black boxes given to it is distributed according
to the n-th component of the right family of distributions in (2.10)).

Algorithm B10

The additional arguments to B10 are four encrypting black boxes (accessed through
oracle interface). This pair of black boxes can be distributed either according to
the n-th component of

{|(E(1n, k, ·), E(1n, k′, ·), E(1n, k, ·), E(1n, k′, ·)) : k, k′ ← G(1n)|}n∈N (4.37)

or according to the n-th component of

{|(E(1n, k, ·), E(1n, k′, ·), E(1n, k′′, ·), E(1n, k′′, ·)) : k, k′, k′′ ← G(1n)|}n∈N, (4.38)

where E is the algorithm implementing [[Enc]] and G is the algorithm implementing
[[Gen]].

This is also a valid “small step”. Indeed, the following lemma holds.

100 CHAPTER 4. ANALYSIS

Lemma 4.10. If ([[Gen]], [[Enc]]) is a which-key concealing encryption scheme, then
the families of distributions (4.37) and (4.38) are indistinguishable.

Proof. This can be shows by several applications of (2.10). Indeed,

{|(E(1n, k, ·), E(1n, k′, ·), E(1n, k, ·), E(1n, k′, ·)) : k, k′ ← G(1n)|}n∈N ≈

{|(E(1n, k, ·), E(1n, k, ·), E(1n, k, ·), E(1n, k, ·)) : k ← G(1n)|}n∈N ≈

{|(E(1n, k, ·), E(1n, k, ·), E(1n, k′′, ·), E(1n, k′′, ·)) : k, k′′ ← G(1n)|}n∈N ≈

{|(E(1n, k, ·), E(1n, k′, ·), E(1n, k′′, ·), E(1n, k′′, ·)) : k, k′, k′′ ← G(1n)|}n∈N,

where each ≈ follows from (2.10).

The algorithm B
(·),(·),(·),(·)
10 (1n, G, C, C ′) works as follows:

1. Let v be the node from the description of way 10. The algorithm B10 can
find it from C and C ′.

2. Uniformly randomly choose Wtrue from

{E ′ ∈ InpParts(C) : E ′ ⊆ InpKeys(C)}∪

{V ∈ OpPartsi(C) : Ai is x := Gen(), @v ∈ V : λN(v) = Genval} .

3. Uniformly randomly choose Wfalse from the same set.

4. Execute the algorithm sampling [[G, C]] with the following modifications:

• In the subroutine create inputs, check whether the variable E ′ of the
subroutine is equal to Wtrue. If this is the case, then for each ei ∈ E ′

do not compute λE(ei) as given in the subroutine create inputs, but let
λE(ei) be equal either to the first oracle given to B10 (if ei 6∈ BoxNull(C))
or to the first oracle given to B10 where the argument to the oracle has
been fixed as 0`(n) (if ei ∈ BoxNull(C)).

• In the subroutine do assignment, check whether the variable N ′ is equal
to Wtrue. If this is the case, then do not compute the values λE(←−ρ (v′))
for v′ ∈ Wtrue as in the subroutine do assignment, but let λE(←−ρ (v′)) be
either the first oracle given to B10 (if v′ 6∈ BoxNull(C)) or the first oracle
given to B10, where the argument to the oracle has been fixed as 0`(n)

(if v′ ∈ BoxNull(C)).

• The previous two modifications are also done for Wfalse, but the first
oracle is replaced with the second oracle.

• Let e1e2e3 = −→ρ (v), where v is the node mentioned in the description of
way 10. When the subroutine do assignment is considering the node v,
check whether λE(e2) and λE(e3) are the first and the second oracle of
B10, respectively1. If either λE(e2) or λE(e3) is something different, and
they are not ⊥u, then abort the computation sampling [[G, C]].

1The flow of these oracles through the flowchart G has to be kept track of.

4.5. CHANGING THE STRUCTURES 101

• The value λE(←−ρ (v)) is defined as follows:

– If λE(e1) = ⊥u, then λE(←−ρ (v)) = ⊥u.

– If λE(e1) = true, then λE(←−ρ (v)) is equal to either the third oracle
of B10 (if Wtrue 6⊆ BoxNull(C) or Wfalse 6⊆ BoxNull(C)) or the third
oracle of B10 where the argument to the oracle has been fixed as
0`(n) (if Wtrue, Wfalse ⊆ BoxNull(C)).

– If λE(e1) = false, then λE(←−ρ (v)) is equal to either the fourth oracle
of B10 (if Wtrue 6⊆ BoxNull(C) or Wfalse 6⊆ BoxNull(C)) or the fourth
oracle of B10 where the argument to the oracle has been fixed as
0`(n) (if Wtrue, Wfalse ⊆ BoxNull(C)).

5. If the computation sampling [[G, C]] was aborted then go back to the 2nd step.
Otherwise output the result of sampling.

The algorithm B10 samples either [[G, C]] or [[G, C ′]]. This is so, because the
choices of Wtrue and Wfalse are independent from the random choices done during the
sampling of [[G, C]]. Note also that the expected running time of B10 is polynomial
in the size of the flowchart (B10 has non-negligible chance of choosing Wtrue and
Wfalse correctly, as there are only polynomially many possible choices), therefore
also polynomial in the security parameter n.

4.5.2 Changing the Configurations in ConfL
P;X,Y

Obviously, our reason for introducing the ways of changing the configurations was
to use them for changing the configurations in ConfL

P;X,Y to configurations in

ConfR
P;X,Y . More concretely, we plan to turn every configuration C ∈ ConfL

P;X,Y

to a configuration C ′ where C ′ has no ties between sides (Def. 4.3).
Well, not actually every last configuration in ConfL

P;X,Y . There may be config-

urations C ∈ ConfL
P;X,Y , such that [[G, C]] = ηD(⊥) and for every configuration C ′,

such that C
∗
↔ C ′, also [[G, C ′]] = ηD(⊥).

When computing [[G, C]], we construct the functions BX , BY : VCP → B (lines
5 and 6 in the “main program” in Sec. 4.4.6). If SameIf(C) = true, then necessarily
BX = BY .

Definition 4.5. Let C ∈ ConfL
P;X,Y and let SX ∈ KVX

0 and SY ∈ KVY
0 be such,

that KnownInps(C) is defined through SX and SY . We say that C is valid, if
there exists a function B : VCP → B, such that ValidChoice(P, X, B, SX) and
ValidChoice(P, Y, B, SY) hold.

If C ∈ ConfL
P;X,Y is not valid, then [[G, C]] = ηD(⊥). Also, if C

∗
↔ C ′, then

[[G, C ′]] = ηD(⊥), because we cannot change KnownInps(C) and SameIf(C) while
changing configurations.

It is easy to find out, whether C ∈ ConfL
P;X,Y is valid or not. One can compute

the set ValidPair 0 ⊆ KVX
0 ×KVY

0 , such that C is valid iff KnownInps(C) is defined by

102 CHAPTER 4. ANALYSIS

SX ∈ KVX
0 and SY ∈ KVY

0 , such that (SX , SY) ∈ ValidPair 0. For each i ∈ {0, . . . , s}
we define the sets ValidPair i ⊆ KVX

i ×KVY
i . The definition inductive, in the reverse

order over i. If i = s then

ValidPair s = {(X, Y)} .

Let ValidPair i be defined. If Ai is an assignment then

ValidPair i−1 = {(fX;i(SX), fY ;i(SY)) : (SX , SY) ∈ ValidPair i} .

If Ai is a vectorised choice then

ValidPair i−1 = {(f true
X;i (SX), f true

Y ;i (SY)) : (SX , SY) ∈ ValidPair i}∪

{(f false
X;i (SX), f false

Y ;i (SY)) : (SX , SY) ∈ ValidPair i} .

We now state the main result of the current Section.

Proposition 4.11. If (X, Y) ∈ indeps(A(Var)[[P]](X)) then for each valid C ∈

ConfL
P;X,Y there exists a configuration C ′, such that C

∗
↔ C ′ and C ′ has no ties

between sides.

The proposition is proved by the induction over the length of P.
Base: the program P is skip. Let C ∈ ConfL

P;X,Y and let the configura-
tion C ′ be equal to C, except that InpParts(C ′) contains two parts — the set of
edges of Chartskip;X and the set of edges of Chartskip;Y — instead of one. We have
A(Var)[[P]](X) = X an therefore (X, Y) ∈ X. Thus C ↔ C ′ by the way 5 of changing
the configurations.

The rest of this section deals with the induction step. Let P be a program
and A be an assignment or a vectorised choice and consider the program A; P. Let
C ∈ ConfL

A;P;X,Y . Setting the stage, we define the following quantities with respect
to the program A; P:

• Let s be the length of the program A; P and let the sets KVX
i and relations

fX;i, f true
X;i and f false

X;i , where 0 ≤ i ≤ s, be given with respect to the program
A; P (in this case, the corresponding sets and relations for the program P are
simply the same ones, where 1 ≤ i ≤ s).

• Let SX ∈ KVX
0 and SY ∈ KVY

0 be such, that KnownInps(C) is defined through
them.

We have to relate the configuration C with some configuration C̄ ∈ ConfL
P;X,Y .

If A is an assignment then there exist S̄X ∈ KVX
1 and S̄Y ∈ KVY

1 , such that
fX;1(S̄X) = SX and fY ;1(S̄Y) = SY . Let C̄ be such, that KnownInps(C̄) is defined
through S̄X and S̄Y (this uniquely determines C̄).

If A is a vectorised choice, then there exist S̄X ∈ KVX
1 and S̄Y ∈ KVY

1 , such that
either f true

X;1 (S̄X) = SX and f true
Y ;1 (S̄Y) = SY or f false

X;1 (S̄X) = SX and f false
Y ;1 (S̄Y) = SY .

4.5. CHANGING THE STRUCTURES 103

Assume w.l.o.g. that f true
X;1 (S̄X) = SX and f true

Y ;1 (S̄Y) = SY . Let C̄ be such, that
KnownInps(C̄) is defined through S̄X and S̄Y .

The induction assumption gives us the configuration C̄ ′, such that C̄
∗
↔ C̄ ′ and

C̄ ′ has no ties between sides. Let us expand the meaning of C̄
∗
↔ C̄ ′ a bit and

define the following quantities:

• Let X̄ = A(Var)[[A]](X). When talking about changing the configurations of
the program P, the ways 3 and 5 refer to X̄.

• Let C̄0, C̄1, . . . C̄t be configurations of the program P, such that

– C̄0 = C̄ and C̄t = C̄ ′;

– C̄0 ↔ C̄1 ↔ · · · ↔ C̄t.

We assume that the configurations C̄j, where 0 ≤ j ≤ t, satisfy certain prop-
erties. If P is the program skip, then these properties are trivially satisfied. Oth-
erwise, these properties follow from the construction of these configurations (the
construction is given below) and the induction over the length of P.

P1. If e ∈ InpKeys(C̄j), where the input edge e of the flowchart 2ChartP;X,Y is
labelled with [k]E, then k ∈ keys(X̄).

P2. C̄0 w C̄1 w · · · w C̄t.

As the next step, we define configurations Cj, where 0 ≤ j ≤ t, of the program
A; P. The configuration Ct will be the configuration C ′ that we are looking for. Let

• KnownInps(Cj) = KnownInps(C) and SameIf(Cj) = SameIf(C).

• OpPartsi(Cj) = OpPartsi(C̄j) for 2 ≤ i ≤ s. OpParts1(Cj) is defined by
InpParts(C̄j) — two nodes of 2ChartA;P;X,Y that correspond to A belong to the
same part in OpParts1(Cj) iff the out-edges of these nodes (or the out-edges of
the following nodes labelled by MkE) belong to the same part in InpParts(C̄j).

The elements InpParts(Cj), EncNull(Cj), InpKeys(Cj), IfNewKeys(Cj) and
BoxNull(Cj) must be defined, too. The partition InpParts(C0) puts all inputs
of inputs(2ChartA;P;X,Y) to the same part. The sets EncNull(C0), InpKeys(C0),
IfNewKeys(C0) and BoxNull(C0) are all empty. Thus C0 = C.

The elements InpParts(Cj), EncNull(Cj), InpKeys(Cj), IfNewKeys(Cj) and
BoxNull(Cj), where 1 ≤ j ≤ t, depend on the configuration Cj−1 and the way
of changing the configurations that turned C̄j−1 to C̄j. Together with defining the

elements of Cj, we also show that Cj−1
∗
↔ Cj.

Before enumerating the ways of changing C̄j−1 to C̄j we give a partial specifica-
tion of InpParts(Cj). Namely, there has to exist a function
descendj : inputs(2ChartA;P;X,Y)→ InpParts(C̄j), such that:

1. For each e ∈ inputs(2ChartA;P;X,Y) there exists e′ ∈ descendj(e), such that
e ∈ origins(e′).

104 CHAPTER 4. ANALYSIS

2. For each e1, e2 ∈ inputs(2ChartA;P;X,Y), if descendj(e1) 6= descendj(e2), then e1

and e2 belong to different parts of InpParts(Cj). In other words, if e1 and e2

belong to the same part of InpParts(Cj), then descendj(e1) = descendj(e2).

3. If A is 〈x1, . . . , xk〉 := b ?〈y1, . . . , yk〉 :〈z1, . . . , zk〉, e is an input edge of
2ChartA;P;X,Y labelled with b and for all e′ ∈ descendj(e), where e ∈ origins(e′),
the edge e′ is labelled with [k]E, then either e 6∈ matters(Cj) or for all
e′ ∈ inputs(2ChartP;X,Y), where e ∈ origins(e′), the edge e′ is labelled with
[k]E.

In other words, if there is a node labelled with ? : (and not [? :]E) correspond-
ing to A, and if this node is not fictitious (i.e. its out-edge is not fictitious),
then descendj(e) must contain the out-edge of this node or some other node
having the same properties (label and fictitiousness).

Because of the 1st and 2nd properties, if Ē is a part in InpParts(C̄j), then
descend−1

j (Ē) is a union of parts in InpParts(Cj). Also, because of these proper-
ties and by the definition of OpParts1(Ct), the configuration Ct = C ′ satisfies the
requirements put on it by the proposition.

We also partially specify InpKeys(Cj) and BoxNull(Cj):

P3. Let ē ∈ inputs(2ChartP;X,Y). If ē is labelled with [k]E for some k ∈ Var and
ē ∈ InpKeys(C̄j) [resp. ē ∈ BoxNull(C̄j)], then for each e ∈ origins(ē), where e
is labelled with [k′]E for some k′ ∈ Var, the inclusion e ∈ InpKeys(Cj) [resp.
e ∈ BoxNull(Cj)] holds.

Consider now the possible ways of turning C̄j−1 to C̄j.

Way 1

Let A be the assignment x := o(x1, . . . , xk) or the vectorised choice
〈x1, . . . , xk〉 := b ?〈y1, . . . , yk〉 :〈z1, . . . , zk〉. The components InpKeys(Cj),
IfNewKeys(Cj), BoxNull(Cj) and EncNull(Cj) are equal to the corresponding com-
ponents of Cj−1. Let Ē ∈ InpParts(C̄j−1) be the part that was split to two parts
Ēf , Ēnf ∈ InpParts(C̄j), where Ēf contains only fictitious inputs. Let Ef = E1∪E2,
where E1 contains all those edges that are labelled with variables (or black boxes
of these variables) in the left hand side of the assignment or vectorised choice A

and E2 contains all edges that are labelled with something else. Let V be the set
of nodes corresponding to A, such that the out-edges of the nodes of V are in E1.
All nodes in V are fictitious. The first step in changing the configuration Cj−1 to
Cj is done by way 2, making V an extra part of OpParts1(Cj).

Let EA = descend−1
j−1(Ē). InpParts(Cj) contains the following parts:

• For each E ∈ InpParts(Cj−1), where E ∩ EA = ∅, InpParts(Cj) contains E.

• For each E ∈ InpParts(Cj−1), where E ∩ EA 6= ∅, let Ef contain all edges
e ∈ EA ∩ E, where

4.5. CHANGING THE STRUCTURES 105

– for all input edges e′ of 2ChartP;X,Y , if e ∈ origins(e′), then e′ ∈
fictitious(C̄j);

– there exists an input edge e′ of 2ChartP;X,Y , such that e ∈ origins(e′) and
e′ ∈ Ēf .

If Ef = ∅ then InpParts(Cj) contains E. If Ef 6= ∅ then InpParts(Cj) contains
Ef and E\Ef . As the edges in Ef are all fictitious, way 1 can be used to split
the set E in two, when changing the configuration Cj−1 to Cj.

It should be rather obvious, how descendj is defined. For these sets E in
InpParts(Cj−1), where E ∩ EA = ∅, the equality descendj−1(e) = descendj(e) holds
for all e ∈ E. For these sets E in InpParts(Cj−1) that were split to two sets Ef

and E\Ef in InpParts(Cj), the equality descendj−1(e) = descendj(e) holds for all
e ∈ E\Ef with the exception that Ēnf is substituted for Ē. For the edges e ∈ Ef

we define descendj(e) = Ēf .

Ways 2, 6, 7, 8, 9 and 10

The yet undefined components of Cj are equal to the corresponding components of
Cj−1, except for

• For way 6, EncNull(Cj) = EncNull(Cj−1) ∪ EncNull(C̄j).

• For way 7, BoxNull(Cj) = BoxNull(Cj−1) ∪ BoxNull(C̄j).

• For way 10, IfNewKeys(Cj) = IfNewKeys(Cj−1) ∪ IfNewKeys(C̄j).

The function descendj is equal to descendj−1. The same change that turned C̄j−1

to C̄j also turns Cj−1 to Cj (this follows from the property P3).

Way 3

The components IfNewKeys(Cj), BoxNull(Cj) and EncNull(Cj) are equal to the cor-
responding components of Cj−1. The set InpKeys(Cj) contains at least as much
elements as InpKeys(Cj−1); below we add more elements to it. Let ē1, . . . , ēl and
k be defined as in the wording of the way 3 of changing the configurations. Let
Ē = {ē1, . . . , ēl}. Consider the rule that was used to derive k ∈ keys(X̄); this
consideration allows us to make certain assumptions about X.

Rule (4.14) or Rule (4.30) The partitions InpParts(Cj−1) and InpParts(Cj) are
equal and descendj = descendj−1. Let EA = descend−1

j−1(Ē). The edges in EA are all
labelled with [k]E. The set EA is a union of some parts E ∈ InpParts(Cj−1). The
way 3 of changing the configurations is applied to Cj−1 with respect to these sets
E. The elements in all these sets E are added to InpKeys(Cj).

Rule (4.141) Let A be k := k′. This case is similar to the rule (4.14). The only
difference is that the edges in EA are labelled with [k′]E.

106 CHAPTER 4. ANALYSIS

Rule (4.15) Here we just take Cj = Cj−1 and descendj = descendj−1.

Rule (4.31) The function descendj equals descendj−1. Let the vectorised choice
A be 〈x1, . . . , xm〉 := b ?〈y1, . . . , ym〉 :〈z1, . . . , zm〉. Because of the assumed relation-
ship between KnownInps(C) and KnownInps(C̄), the input edges of 2ChartA;P;X,Y

labelled with z1, . . . , zm or [z1]E, . . . , [zm]E are not elements of matters(Cj−1). The
key k that we fixed before enumerating the possible rules for deriving k ∈ keys(X̄),
is some xr for r ∈ {1, . . . , m}.

Let EA = descend−1
j−1(Ē). Let E(1), . . . , E(l) ∈ InpParts(Cj−1) be such, that

EA = E(1) ∪ · · · ∪ E(l). Each such set Ei only contains edges labelled with b, [yr]E
or [zr]E. Let E

(i)
b , E

(i)
[yr]E

and E
(i)
[zr]E

be the subsets of E(i) containing all those edges

that are labelled with b, [yr]E or [zr]E, respectively. We add the elements of E
(i)
[yr]E

and E
(i)
[zr]E

to InpKeys(Cj). The difference between partitions InpParts(Cj−1) and

InpParts(Cj) is, that instead of including the part E(i), the partition InpParts(Cj)

includes the parts E
(i)
b , E

(i)
[yr]E

and E
(i)
[zr]E

. For each set E(i), we have to make a
number of steps to turn Cj−1 to Cj:

1. If neither E
(i)
[zr]E

nor E
(i)
b ∪ E

(i)
[yr]E

are empty, then we make a step using the

way 1 and split the set E(i) to sets E
(i)
[zr]E

and E
(i)
b ∪ E

(i)
[yr]E

.

2. If neither E
(i)
b nor E

(i)
[yr]E

are empty, then we make a step using the way 5 and

split the set E
(i)
b ∪E

(i)
[yr]E

to sets E
(i)
b and E

(i)
[yr]E

. We can use that way, because

({[yr]E}, {b}) ∈ indeps(X) — see the antecedents of rule (4.31).

3. If E
(i)
[yr]E

is not empty, then we add its elements to InpKeys(Cj) using the

way 3. If E
(i)
[zr]E

is not empty, then we add its elements to InpKeys(Cj) using
the way 3.

In the rest of the proof, while we are making the steps to turn Cj−1 to Cj, we
will no longer add the qualifiers “if the set . . . is not empty”. We will implicitly
assume that they are there. Neither will we explicitly refer to the antecedents of
the rules, we will just say “split the set . . . to sets . . . and . . . by using way 5”.

Way 4

The components InpKeys(Cj), IfNewKeys(Cj), InpParts(Cj) and EncNull(Cj) are
equal to the corresponding components of Cj−1. The set BoxNull(Cj) contains at
least as much elements as BoxNull(Cj−1), below we will add more elements to it.
The function descendj is equal to descendj−1.

Let Ē ∈ InpParts(C̄j−1) be the set, where Ē = BoxNull(C̄j)\BoxNull(C̄j−1). Let
[k]E be the label of the edges in Ē.

4.5. CHANGING THE STRUCTURES 107

If A is an assignment k := Gen(), then we obtain BoxNull(Cj) by adding to
BoxNull(Cj−1) all nodes whose out-edges are in Ē. The configuration Cj−1 can be
turned to Cj by using way 7 of changing the configurations.

If A has some other form, then the properties of descendj−1 and property P3
give us that the set

EA = {e : ē ∈ Ē, e ∈ origins(Ē), e is labelled with some [k′]E}

is a subset of InpKeys(Cj). The set BoxNull(Cj) is obtained from BoxNull(Cj−1) by
adding the elements of EA to it. The configuration Cj−1 can be turned to Cj by
using the way 4 of changing the configurations (once for each E (i) ∈ InpParts(Cj−1),
where E(i) ⊆ EA).

Way 5

Let Ē, X̄, Ȳ , ĒX , ĒY be defined as in the wording of the way 5 of the configurations.
Consider the rule that was used to derive (X̄, Ȳ) ∈ indeps(X̄).

Rule (4.9) The sets InpKeys(Cj), EncNull(Cj), IfNewKeys(Cj) and BoxNull(Cj)
are equal to the corresponding components of Cj−1. Let A be x := o(x1, . . . , xk)
and let EA = descend−1

j−1(Ē). No edge in Ē is labelled with x or [x]E, therefore the

edges in EA are only labelled with such elements of Ṽar that are also the labels
of some edge in Ē. For each input edge e of 2ChartA;P;X,Y in the set EA there is a
corresponding input edge ē of 2ChartP;X,Y in the set Ē; because of the details of the
construction of flowcharts given in Sec. 4.4.2, the edges e and ē are the same.

Let E(1), . . . , E(l) ∈ InpParts(Cj−1) be such, that EA is equal to their union.

Let E
(i)
X = E(i) ∩ ĒX and E

(i)
Y = E(i) ∩ ĒY for all i ∈ {1, . . . , l}. The partition

InpParts(Cj) is obtained from the partition InpParts(Cj−1) by removing the sets

E(i) from it and adding the (nonempty) sets E
(i)
X , E

(i)
Y to it. Splitting each of the

sets E(i) to sets E
(i)
X and E

(i)
Y turns the configuration Cj−1 to the configuration

Cj, these splittings can be done by the way 5 of changing the configurations. The
function descendj is equal to descendj−1 everywhere except on the elements of EA.

Applying descendj to e ∈ EA gives either ĒX or ĒY , depending on whether e ∈ E
(i)
X

or e ∈ E
(i)
Y for some i ∈ {1, . . . , l}.

Rule (4.10) The sets InpKeys(Cj), EncNull(Cj), IfNewKeys(C) and BoxNull(Cj)
are equal to the corresponding components of Cj−1. Let A be x := o(x1, . . . , xk)
and let EA = descend−1

j−1(Ē). Let E(1), . . . , E(l) ∈ InpParts(Cj−1) be the parts whose
union is EA. Only one of the sets ĒX and ĒY may contain edges labelled with x
or [x]E, assume w.l.o.g. that ĒX contains no such edges. Let V be the set of nodes
labelled with o whose outputs are the members of Ē (also including such a node
whose output is an input to a node that is labelled with MkE and whose output is
a member of Ē). The possible elements of the set EA are the elements of Ē (that
are not labelled with x or [x]E) and the inputs to the nodes in V .

108 CHAPTER 4. ANALYSIS

Define now the sets E
(i)
Y , where 1 ≤ i ≤ l, as follows: E

(i)
Y contains all such

elements e ∈ E(i) where

• either e ∈ ĒY ,

• or e is an input to a node v ∈ V and the requirements on descendj state that
descendj(e) must include the out-edge of v

• or e is an input to a node v ∈ V and e 6∈ ĒX .

Let E
(i)
X = E(i)\E

(i)
Y . The partition InpParts(Cj) is obtained from InpParts(Cj−1)

by removing the sets E(i) from it and adding the (nonempty) sets E
(i)
X , E

(i)
Y to it.

Splitting each of the sets E(i) to sets E
(i)
X and E

(i)
Y turns the configuration Cj−1

to the configuration Cj, these splittings can be done by the way 5 of changing

the configurations. Indeed, the edges in sets E
(i)
X may be labelled only with the

elements of X̄ and the edges in sets E
(i)
Y by elements of Ȳ ∪ {x1, . . . , xk}. But the

pair (X̄, Ȳ ∪ {x1, . . . , xk}) is a member of indeps(X) by the rule (4.10).

The function descendj is equal to descendj−1 everywhere except on the elements
of EA. Applying descendj to e ∈ EA gives either ĒX or ĒY , depending on whether

e ∈ E
(i)
X or e ∈ E

(i)
Y for some i ∈ {1, . . . , l}.

Rule (4.101) This rule is similar to rule (4.10). The only difference is, that some
of the relevant input edges of 2ChartA;P;X,Y are labelled with a black box, not with
a variable. The argumentation for rule (4.10) can be turned to the argumentation
for rule (4.101) by replacing the set {x1, . . . , xk} with the set {[k]E, y}.

Rule (4.102) Define InpKeys(Cj), IfNewKeys(Cj), EncNull(Cj), BoxNull(Cj), EA,
E(1), . . . , E(l) as in the argumentation for rule (4.10). Let the assignment A be
x := y.

We define the sets E
(i)
X and E

(i)
Y (i ∈ {1, . . . , l}) as follows. Let e ∈ E(i).

• If e is not labelled with y or [y]E, then e ∈ E
(i)
X iff e ∈ ĒX . Otherwise e ∈ E

(i)
Y .

• If e is labelled with y or [y]E, then e may count as an input to 2ChartP;X,Y

twice — once labelled with y or [y]E and once labelled with x or [x]E. If
both instances of e belong to ĒX or both belong to ĒY , then e also belongs
to corresponding E

(i)
X or E

(i)
Y . If one of the instances belongs to ĒX and the

other one belongs to ĒY then e belongs to E
(i)
X iff the instance of e labelled

with x or [x]E belongs to ĒX , otherwise e ∈ E
(i)
Y . If e only counts once as an

input to 2ChartP;X,Y then we apply the previous case.

The partition InpParts(Cj) and the function descendj are defined as in the argu-
mentation for rule (4.10). The configuration Cj−1 is changed to Cj by splitting the

sets E(i) to sets E
(i)
X and E

(i)
Y , using way 5.

4.5. CHANGING THE STRUCTURES 109

Rule (4.11) Let A be x := Enc(k, y) and let EA = descend−1
j−1(Ē). Let

E(1), . . . , E(l) ∈ InpParts(Cj−1) be the parts whose union is EA. Only one of the
sets ĒX and ĒY may contain edges labelled with x or [x]E, assume w.l.o.g. that ĒX

contains no such edges. Let V be the set of nodes labelled with o whose outputs
are the members of Ē (also including such a node whose output is an input to a
node that is labelled with MkE and whose output is a member of Ē). Because of
the structure of the analysis A(Var)[[·]] and the construction of the flowcharts, the
set V has at most two elements: there are at most one node in ChartA;P;X and at
most one node in ChartA;P;Y that correspond to the assignment A. Denote these
nodes by vX and vY (if they exist) and denote their inputs that are labelled with y
by ey;X and ey;Y and their inputs that are labelled with [k]E by e[k]E;X and e[k]E;Y .
The possible elements of the set EA are the elements of Ē (that are not labelled
with x or [x]E) and the inputs to the nodes in V .

Consider a set E(i). The edge ey;Z ∈ E(i), where Z is either X or Y , satisfies
exactly one of the following statements:

ES1. either ey;Z is not an input to 2ChartP;X,Y or ey;Z 6∈ matters(C̄j−1);

ES2. ey;Z ∈ matters(C̄j−1) and ey;Z ∈ ĒX ;

ES3. ey;Z ∈ matters(C̄j−1) and ey;Z ∈ ĒY ;

There is one more case, if ey;Z 6∈ EA:

ES4. ey;Z ∈ matters(C̄j−1) and ey;Z 6∈ Ē.

Again, we partition the set E(i). This partition includes the sets E
(i)
X and E

(i)
Y ,

but it may include more parts. An edge e ∈ E(i) that is neither ey;X , ey;Y , e[k]E;X

nor e[k]E;Y belongs to E
(i)
X iff it belongs to ĒX , otherwise it belongs to E

(i)
Y . An

edge ey;Z ∈ E(i), where Z is either X or Y , belongs to either E
(i)
y , E

(i)
X or E

(i)
Y ,

depending on whether the statement ES1, ES2 or ES3 is true for ey;Z . If ES1 is

true, then the part E
(i)
y exists. If e[k]E;Z ∈ E(i) then there is a part E

(i)
[k]E

that

contains e[k]E;Z . Similarly to previous cases, we have now defined InpParts(Cj): it

is equal to InpParts(Cj−1), except that the parts E(i) are replaced with parts E
(i)
X ,

E
(i)
Y , E

(i)
y and E

(i)
[k]E

.

The mapping descendj is equal to descendj−1, except that descendj(e) = ĒX for

e ∈ E
(i)
X and descendj(e) = ĒY for e ∈ E

(i)
Y , e ∈ E

(i)
y and e ∈ E

(i)
[k]E

.

Adding the edges e[k]E;X and e[k]E;Y to the set InpKeys(Cj−1) gives us set
InpKeys(Cj) and adding them to the set BoxNull(Cj−1) gives us the set BoxNull(Cj).
The set EncNull(Cj) equals EncNull(Cj−1) ∪ {vX , vY }.

Several steps are necessary for turning the configuration Cj−1 to Cj:

Step 1. For each i ∈ {1, . . . , l}, where E
(i)
[k]E

exists, split the set E(i) to sets E
(i)
[k]E

and E
(i)
X ∪ E

(i)
Y ∪ E

(i)
y , using the way 5 of changing the configurations.

Step 2. For each i ∈ {1, . . . , l}, where E
(i)
[k]E

exists, add the element of E
(i)
[k]E

to

InpKeys(Cj) by using the way 3 of changing the configurations.

110 CHAPTER 4. ANALYSIS

Step 3. Add the elements in the part(s) containing e[k]E;X and e[k]E;Y to
BoxNull(Cj), using the way 4 of changing the configurations.

Step 4. We can now use the way 6 of changing the configurations to add vX

and vY to the set EncNull(Cj). We do it.

Step 5. For each i ∈ {1, . . . , l}, where E
(i)
y exists, the edge ey;Z ∈ E

(i)
y is fictitious.

We split the set E
(i)
X ∪ E

(i)
Y ∪ E

(i)
y to sets E

(i)
X ∪ E

(i)
Y and E

(i)
y , using the way 1 of

changing the configurations.
Step 6. For each i ∈ {1, . . . , l}, we split the set E

(i)
X ∪ E

(i)
Y to sets E

(i)
X and E

(i)
Y ,

using the way 5 of changing the configurations. We have shown Cj−1
∗
↔ Cj.

Rule (4.12) This rule is handled similarly to the rule (4.9). In addition to split-

ting the sets E
(i)
X and E

(i)
Y we also have to use the way 8 of changing the configu-

rations to turn OpParts1(Cj−1) to OpParts1(Cj).

Rule (4.13) This rule is again handled similarly to the rule (4.9). In addition

to splitting the sets E
(i)
X and E

(i)
Y we also have to use the way 9 of changing the

configurations to turn OpParts1(Cj−1) to OpParts1(Cj).

Rule (4.28) Let A be 〈x1, . . . , xk〉 := b ?〈y1, . . . , yk〉 :〈z1, . . . , zk〉. The sets
EncNull(Cj) and BoxNull(Cj) are equal to the corresponding components of Cj−1.
Because of the assumed relationship of KnownInps(C) and KnownInps(C̄), the input
edges labelled with z1, . . . , zk or [z1]E, . . . , [zk]E are not elements of matters(Cj−1).
Let EA = descend−1

j−1(Ē) and let E(1), . . . , E(l) ∈ InpParts(Cj−1) be the sets whose
union is EA. Let V be the set of nodes labelled with [? :]E whose outputs are the
members of Ē. The edges in EA may be labelled with b, [yi]E, [zi]E or the labels of
elements of Ē (except [xi]E).

For each edge eb ∈ EA, labelled with b, at least one of the following claims holds:

• eb is fictitious in Cj−1;

• the set V contains all non-fictitious nodes that have eb as one of their inputs.

Indeed, suppose that the edge eb is not used only at the nodes that correspond
to A and whose outputs are labelled with some [xi]E. I.e. eb is also used at nodes
whose outputs are labelled with some xi. This case is not possible, because the
consequent of rule (4.28) does not contain any of the variables xi.

Suppose now that the edge eb is only used at the nodes corresponding to A

and whose outputs are labelled with some [xi]E. Suppose that j is the smallest
number where the configuration C̄j−1 is turned to C̄j using way 5 of changing
the configurations, such that the necessary condition (X̄, Ȳ) ∈ indeps(X̄) is derived
using either the rule (4.28) or (4.29). Then the set Ē must contain all (non-fictitious)
input edges of 2ChartP;X,Y that are labelled with [xi]E. If j is not the smallest number
with such property, then either eb 6∈ EA or the edge eb is fictitious, as shown by the

4.5. CHANGING THE STRUCTURES 111

following construction of Cj (and also by the construction of Cj at the handling of
rule (4.29) below).

We start with the function descendj. It is equal to descendj−1, except for edges
e ∈ EA. On these edges e it is equal to either ĒX or ĒY , depending on which of
these two sets contains an edge e′, such that e ∈ origins(e′). If both sets contain such
edge e′ (this may only happen if e is labelled with b), then the value descendj(e)
may be freely chosen.

For a set E(i), where i ∈ {1, . . . , l}, we define the following subsets:

• The sets E
(i)
b;X , E

(i)
b;Y , E

(i)
[yi1

]E;X , . . . , E
(i)
[yim]E;X , E

(i)
[yil+1

]E;Y , . . . , E
(i)
[yim]E;Y ,

E
(i)
[zi1

]E;X , . . . , E
(i)
[zim]E;X and E

(i)
[zil+1

]E;Y , . . . , E
(i)
[zim]E;Y . Each of those sets

contains all edges e ∈ E(i), such that the label λI(e) and the index of
descendj(e) (either X or Y) are equal to the subscript(s) of the set.

• The sets E
(i)
X = E(i) ∩ ĒX and E

(i)
Y = E(i) ∩ ĒY .

All these defined sets together constitute a partition of E(i). The partition
InpParts(Cj) is obtained from the partition InpParts(Cj−1) by replacing the parts
E(i) with all the parts defined above.

Several steps are necessary for turning the configuration Cj−1 to Cj. During
the description of turning Cj−1 to Cj we also define the sets InpKeys(Cj) and
IfNewKeys(Cj). These sets contain at least as many elements as their counterparts
in Cj−1, but may also contain more elements.

Step 1. Using the way 9 of changing the configurations, change OpParts1(Cj−1)
to OpParts1(Cj).

Step 2. For each i ∈ {1, . . . , l}, split E(i) to sets E
(i)
[zi1

]E;X , . . . , E
(i)
[zim]E;X ,

E
(i)
[zil+1

]E;Y , . . . , E
(i)
[zim]E;Y and

E
(i)
b;X ∪ E

(i)
b;Y ∪ E

(i)
X ∪ E

(i)
Y ∪

m⋃

h=1

E
(i)
[yih

]E;X ∪
m⋃

h=l+1

E
(i)
[yih

]E;Y (4.39)

using the way 1 (several times) of changing the configurations.

Step 3. For each i ∈ {1, . . . , l}, split (4.39) to E
(i)
b;X ∪ E

(i)
b;Y ∪ E

(i)
X ∪ E

(i)
Y and

m⋃

h=1

E
(i)
[yih

]E;X ∪
m⋃

h=l+1

E
(i)
[yih

]E;Y (4.40)

using the way 5 of changing the configurations.
Step 4. For each i ∈ {1, . . . , l}, split (4.40) to sets E

(i)
[yi1

]E;X , . . . , E
(i)
[yim]E;X ,

E
(i)
[yil+1

]E;Y , . . . , E
(i)
[yim]E;Y , using the way 5 (several times, the necessary elements of

indeps(X) are given by the two groups of antecedents of rule (4.28)) of changing the
configurations.

112 CHAPTER 4. ANALYSIS

Step 5. For each i ∈ {1, . . . , l}, h ∈ {1, . . . , m} and Z ∈ {X, Y } add the edges in

E
(i)
[yih

]E;Z and E
(i)
[zih

]E;Z to InpKeys(Cj), using the way 3 of changing the configurations.

Step 6. Add the nodes in V to IfNewKeys(Cj), using the way 10 of changing the

configurations. After this step, the sets E
(i)
b;X and E

(i)
b;Y are either empty or contain

only a fictitious edge.
Step 7. For each i ∈ {1, . . . , l}, split E

(i)
b;X ∪ E

(i)
b;Y ∪ E

(i)
X ∪ E

(i)
Y to E

(i)
b;X , E

(i)
b;Y and

E
(i)
X ∪ E

(i)
Y using the way 1 (twice) of changing the configurations.

Step 8. For each i ∈ {1, . . . , l}, split E
(i)
X ∪E

(i)
Y to E

(i)
X and E

(i)
Y , using the way 5

of changing the configurations.

Rule (4.29) Let A be 〈x1, . . . , xk〉 := b ?〈y1, . . . , yk〉 :〈z1, . . . , zk〉. The sets
EncNull(Cj) and BoxNull(Cj) are equal to the corresponding components of Cj−1.
Because of the assumed relationship of KnownInps(C) and KnownInps(C̄), the input
edges labelled with z1, . . . , zk or [z1]E, . . . , [zk]E are not elements of matters(Cj−1).
Let EA = descend−1

j−1(Ē) and let E(1), . . . , E(l) ∈ InpParts(Cj−1) be the sets whose
union is EA. Let V be the set of nodes labelled with [? :]E whose outputs are the
members of Ē that are labelled with [x1]E, . . . , [xm]E. Let W be the set of nodes
labelled with ? : or [? :]E whose outputs are the other members of Ē. The edges in
EA may be labelled with b, yi, zi, [yi]E, [zi]E or the labels of elements of Ē (except
[xi]E).

For each edge eb ∈ EA, labelled with b, at least one of the following claims holds:

• The set W contains a node that has eb as its input.

• eb is fictitious in Cj−1;

• the set V contains all non-fictitious nodes that have eb as one of their inputs.

Indeed, suppose that the edge eb is not used only at the nodes that correspond
to A and whose outputs are labelled with some [xi]E I.e. eb is also used at nodes
whose outputs are labelled with some xi. Then there exists an edge ēb ∈ Ē that is
labelled with some xi. The node whose out-edge is xi is an element of W .

Suppose now that the edge eb is only used at the nodes corresponding to A

and whose outputs are labelled with some [xi]E. Suppose that j is the smallest
number where the configuration C̄j−1 is turned to C̄j using way 5 of changing
the configurations, such that the necessary condition (X̄, Ȳ) ∈ indeps(X̄) is derived
using either the rule (4.28) or (4.29). Then the set Ē must contain all (non-fictitious)
input edges of 2ChartP;X,Y that are labelled with [x]E. If j is not the smallest number
with such property, then either eb 6∈ EA or the edge eb is fictitious, as shown by the
following construction of Cj.

We start with the function descendj. It is equal to descendj−1, except for edges
e ∈ EA. On these edges e it is equal to either ĒX or ĒY , depending on which of
these two sets contains an edge e′, such that e ∈ origins(e′). If both sets contain such
edge e′ (this may only happen if e is labelled with b), then the value descendj(e)

4.5. CHANGING THE STRUCTURES 113

must be chosen so that the requirements put on descendj still hold. I.e. if possible,
descendj(e) must contain an out-edge of W .

For a set E(i), where i ∈ {1, . . . , l}, we define the following subsets:

• The sets E
(i)
b;X and E

(i)
b;Y contain such edges e ∈ E(i), that

– e is labelled with b;

– there are no nodes in W that have e as their in-edge.

The set E
(i)
b;X contains edges e where descendj(e) = ĒX , and the set E

(i)
b;Y

contains edges e where descendj(e) = ĒY .

• The sets E
(i)
[yi1

]E;X , . . . , E
(i)
[yim]E;X , E

(i)
[yil+1

]E;Y , . . . , E
(i)
[yim]E;Y ,

E
(i)
[zi1

]E;X , . . . , E
(i)
[zim]E;X and E

(i)
[zil+1

]E;Y , . . . , E
(i)
[zim]E;Y . Each of those sets

contains all edges e ∈ E(i), such that the label λI(e) and the index of
descendj(e) (either X or Y) are equal to the subscript(s) of the set.

• The sets E
(i)
z;X and E

(i)
z;Y . They contain all edges in EA that are labelled

with zj1 , . . . , zjs
or [zjr+1]E, . . . , [zjs

]E. The set E
(i)
z;X contains all such edges e,

where descendj(e) = ĒX , and the set E
(i)
z;Y contains all such edges e, where

descendj(e) = ĒY .

• The sets E
(i)
X and E

(i)
Y . They contain all remaining edges e ∈ EA, where

descendj(e) = ĒX or descendj(e) = ĒY , respectively.

All these defined sets together constitute a partition of E(i). The partition
InpParts(Cj) is obtained from the partition InpParts(Cj−1) by replacing the parts
E(i) with all the parts defined above.

Several steps are necessary for turning the configuration Cj−1 to Cj. During
the description of turning Cj−1 to Cj we also define the sets InpKeys(Cj) and
IfNewKeys(Cj). These sets contain at least as many elements as their counterparts
in Cj−1, but may also contain more elements.

Step 1. Using the way 9 of changing the configurations, change OpParts1(Cj−1)
to OpParts1(Cj).

Step 2. For each i ∈ {1, . . . , l}, split E(i) to sets E
(i)
z;X , E

(i)
z;Y , E

(i)
[zi1

]E;X , . . . ,

E
(i)
[zim]E;X , E

(i)
[zil+1

]E;Y , . . . , E
(i)
[zim]E;Y and

E
(i)
b;X ∪ E

(i)
b;Y ∪ E

(i)
X ∪ E

(i)
Y ∪

m⋃

h=1

E
(i)
[yih

]E;X ∪
m⋃

h=l+1

E
(i)
[yih

]E;Y (4.41)

using the way 1 (several times) of changing the configurations.
Step 3. For each i ∈ {1, . . . , l}, split (4.41) to

E
(i)
X ∪

m⋃

h=1

E
(i)
[yih

]E;X ∪
m⋃

h=l+1

E
(i)
[yih

]E;Y (4.42)

114 CHAPTER 4. ANALYSIS

and E
(i)
b;X ∪ E

(i)
b;Y ∪ E

(i)
Y using the way 5 of changing the configurations.

Step 4. For each i ∈ {1, . . . , l}, split (4.42) to sets E
(i)
X , E

(i)
[yi1

]E;X , . . . , E
(i)
[yim]E;X ,

E
(i)
[yil+1

]E;Y , . . . , E
(i)
[yim]E;Y , using the way 5 (several times) of changing the configura-

tions.

Step 5. For each i ∈ {1, . . . , l}, h ∈ {1, . . . , m} and Z ∈ {X, Y } add the edges in

E
(i)
[yih

]E;Z and E
(i)
[zih

]E;Z to InpKeys(Cj), using the way 3 of changing the configurations.

Step 6. Add the nodes in V to IfNewKeys(Cj), using the way 10 of changing the

configurations. After this step, the sets E
(i)
b;X and E

(i)
b;Y are either empty or contain

only a fictitious edge.

Step 7. For each i ∈ {1, . . . , l}, split E
(i)
b;X ∪ E

(i)
b;Y ∪ E

(i)
Y to E

(i)
b;X , E

(i)
b;Y and E

(i)
Y

using the way 1 (twice) of chining the configurations.

This completes the proof of Proposition 4.11.

4.5.3 Paths between ConfL
P;X,Y and ConfR

P;X,Y

Proposition 4.11 gives for each (valid) C ∈ ConfL
P;X,Y a configuration C ′ with

“severed ties” between ChartP;X and ChartP;Y . The set of all these configurations C ′

cannot yet serve as the set C of configurations in Lemma 4.9, as the configurations
C[SX] and C[SY] for SX ∈ KVX

0 and SY ∈ KVY
0 are not yet uniquely determined.

However, it is easy to change the configurations C ′ further, so that they become
uniquely determined.

If C is a configuration of 2ChartP;X,Y , then let C|X denote the “restriction” of C
to ChartP;X , i.e.

• InpParts(C|X) = {E ∩ inputs(ChartP;X) : E ∈ InpParts(C)};

• OpPartsi(C|X) = {N ∩ Nodes(ChartP;X) : N ∈ OpPartsi(C)};

• KnownInps(C|X) = KnownInps(C) ∩ inputs(ChartP;X);

• the sets EncNull(C|X), BoxNull(C|X), InpKeys(C|X) and IfNewKeys(C|X) are
equal to the corresponding components of C intersected with either the set of
edges or the set of nodes of ChartP;X .

The configuration C|Y of ChartP;Y is defined similarly.

Lemma 4.12. If C, C1, C2 are configurations of some flowchart G, such that C ↔
C1, C ↔ C2, C w C1 and C w C2, then there exists a configuration C3, such that
C1

∗
↔ C3, C2

∗
↔ C3, C1 w C3 and C2 w C3.

Proof. The configuration C3 is obtained by applying to C1 the same change of
configurations that changed C to C2. For all pairs of ways of changing C to C1 and
changing C to C2 this is possible. Alternatively, C3 is obtained by applying to C2

the same change of configurations that changed C to C1.

4.5. CHANGING THE STRUCTURES 115

Lemma 4.13. Let C and C ′ be configurations of 2ChartP;X,Y , such the components
SameIf(C) and SameIf(C ′) are equal and both C and C ′ have no ties between sides.

If C|X
∗
↔ C ′|X and C|Y

∗
↔ C ′|Y , then C

∗
↔ C ′.

Proof. Indeed, if one can apply a change of configurations to C|X or C|Y , then one
can also apply the same change of configurations to C (because the other side will
not interfere). Applying all the changes that change C|X to C ′|X and C|Y to C ′|Y ,
changes C to C ′.

If C1, C2 ∈ ConfL
P;X,Y and KnownInps(C1|X) = KnownInps(C2|X), then C1|X =

C2|X . Proposition 4.11 gives us the configurations C ′
1 and C ′

2, such that C1
∗
↔ C ′

1

and C2
∗
↔ C ′

2. Obviously also C1|X
∗
↔ C ′

1|X and C2|X
∗
↔ C ′

2|X . By Lemma 4.12,
there exists a configuration C3 of ChartP;X , such that C3 v C ′

1|X , C3 v C ′
2|X ,

C ′
1|X

∗
↔ C3 and C ′

2|X
∗
↔ C3. Applying this construction repeatedly for all (valid)

C ∈ ConfL
P;X,Y , where KnownInps(C) is defined through a certain SX ∈ KVX

0 (and

through some element of KVY
0), gives us a configuration C[SX] of ChartP;X , such

that C ′|X
∗
↔ C[SX] for all (valid) C ∈ ConfL

P;X,Y , where KnownInps(C) is defined
through SX .

We construct the configurations C[SY] of ChartP;Y similarly. We can now change
each valid C ∈ ConfL

P;X,Y to some configuration C ′ with severed ties between sides,
and change this configuration further to a configuration C ′′, such that C ′′|X = C[SX]
and C ′′|Y = C[SY], where SX ∈ KVX

0 and SY ∈ KVY
0 are such, that KnownInps(C)

is defined through SX and SY . The relationship C ′ ∗
↔ C ′′ follows from Lemma 4.13.

The set of all such configurations C ′′ can serve as the set C of configurations in
Lemma 4.9.

For each C̃ ∈ ConfR
P;X,Y we also need a configuration C̃ ′′ of 2ChartP;X,Y , such

that the set of all these configurations C̃ ′′ could be the corresponding set C′

of configurations in Lemma 4.9. These configurations C̃ ′′ are already simple to
construct. Let KnownInps(C̃) be defined through SX ∈ KVX

0 and SY ∈ KVY
0 .

Let C1, C2 ∈ ConfL
P;X,Y be two valid configurations, such that C1|X = C̃|X and

C2|Y = C̃|Y . We have C1|X
∗
↔ C[SX] and C2|Y

∗
↔ C[SY]. We define C̃ ′′ so, that

C̃ ′′|X = C[SX] and C̃ ′′|Y = C[SY]. By Lemma 4.13, C̃
∗
↔ C̃ ′′, because the elements

of ConfR
P;X,Y have no ties between sides.

We have now given two sets of configurations C and C′, such that the sums of
interpretations of the flowchart 2ChartP;X,Y together with the elements of these sets
are equal. We also have shown how to change a configuration C ∈ Conf L

P;X,Y to a

configuration C ′′ ∈ C or a configuration C̃ ∈ ConfR
P;X,Y to a configuration C̃ ′′ ∈ C′

in a number of short steps.

4.5.4 Short Paths

Only one thing is still missing. We have not yet shown that the number of these
short steps is small. We want an algorithm running in polynomial time in s (which

116 CHAPTER 4. ANALYSIS

is polynomial in the security parameter n) to be able to find for each configura-
tion C ∈ ConfL

P;X,Y the corresponding configuration C ′′ and also the sequence of
configurations C = C0 ↔ C1 ↔ · · · ↔ Ct = C ′′. If the number of configurations
were polynomial in s, then such an algorithm would clearly exist. The algorithm
would just search for a path in a graph whose nodes are configurations and edges
are given by the relation ↔. We have shown before that such a path exists.

However, the number of configurations is superpolynomial. Nevertheless, the
construction of the sequence of configurations given in the proof of Proposition 4.11
still produces a configuration of polynomial length. Also, the construction can be
executed in polynomial time.

The construction in the proof of Proposition 4.11 produces a sequence of con-
figurations C0 ↔ · · · ↔ Ct, such that C0 w · · · w Ct. The length of this sequence
(i.e. the number of different elements in it) cannot be greater than the height of the
partially ordered set of configurations. Let us estimate this height. A configuration
is a tuple of its components, therefore the set of configurations is the Cartesian
product of the sets of possible values of components. Consider the components of
a configuration C of 2ChartP;X,Y .

• The component InpParts(C) is an element of the partially ordered set of par-
titions over the set of input edges of 2ChartP;X,Y . The height of this par-
tially ordered set is equal to the number of input edges to 2ChartP;X,Y (by
Lemma 2.1). This number is polynomial in s.

• The component OpPartsi(C) is an element of the partially ordered set of
partitions over the set of nodes of 2ChartP;X,Y corresponding to the assignment
or vectorised choice Ai. The height of this partially ordered set is equal to the
number of these nodes, the number of these nodes is polynomial in s. There
are altogether s such components — i.e. the number of such components is
polynomial in s.

• The components EncNull(C), BoxNull(C), InpKeys(C) and IfNewKeys(C) are
all elements of the partially ordered set of subsets of the set of nodes and
edges of 2ChartP;X,Y . Its height is one more than the number of nodes and
edges in the flowchart 2ChartP;X,Y , i.e. it is polynomial in s.

• The components KnownInps(C) and SameIf(C) are elements of unordered sets.
The height of unordered sets is 1.

The height of the partially ordered set of configurations is not greater than the sum
of the heights of the partially ordered sets of its components. There is a polynomial
number (in s) of components, each having a polynomial height. Therefore the
height of the partially ordered set of configurations is polynomial in s.

The construction given in the proof of Proposition 4.11 allows us to construct
this sequence of configurations C0 ↔ · · · ↔ Ct in time polynomial to s. Indeed,
we have to do s induction steps and in each of the steps construct such a sequence

4.6. THE ATTACKER(S) 117

of polynomial length. The amount of work necessary for constructing such a se-
quence in one of the induction steps is proportional to the length of the sequence
constructed in the previous induction step and is therefore polynomial in s.

We have now given a proof of Proposition 4.7, because we have presented all
components of the hybrid argument that proves it. Hence we have also shown that
(4.24) holds. The next section can be considered to be a summary of this proof.

4.6 The Attacker(s)

Let us summarise the proof of (4.24) by giving the analogue of the algorithm Ā in
the proof of Proposition 2.11.

Suppose that (X, Y) ∈ indeps(A(Var)[[P]](X)), but there exists an algorithm A

that can distinguish the distributions (4.25) and (4.26). The analogue is the follow-
ing: for each algorithm B (with subscripts) that we defined in Sec. 4.5.1 we define
an algorithm Ā (with the same subscripts). These algorithms take the following
inputs:

• The security parameter 1n.

• The same (specific) inputs that the algorithm B with same subscripts takes.

The specific inputs of an algorithm B are all its inputs, except the security param-
eter, the flowchart G, and two configurations C, C ′.

The specific inputs of an algorithm B could be distributed by two possible
distributions. The corresponding algorithm Ā attempts to distinguish these two
distributions. The algorithms Ā are constructed so that the sum of their advantages
is equal to the advantage of A. Therefore at least one of the algorithms Ā has
non-negligible advantage. But this violates our assumption that all these pairs of
distributions, namely

• the two distributions on (4.3), where k ∈ keys(X);

• the two distributions on (2.9);

• the distribution (4.1) and the distribution (4.2), where (X, Y) ∈ indeps(X);

• the two distributions on (2.10);

• the distribution (4.37) and the distribution (4.38)

are indistinguishable.
The algorithm Ā (with subscripts) works as follows:

1. Construct the unrolled program P(n) and the flowchart 2ChartP(n);X,Y .

2. Construct the sets of configurations ConfL
P(n);X,Y and ConfR

P(n);X,Y .

118 CHAPTER 4. ANALYSIS

3. For each C ∈ ConfL
P(n);X,Y construct the corresponding configuration C ′′, as

defined in Sec. 4.5.3. Also, construct the derivation sequence C = C0 ↔
C1 ↔ · · · ↔ Ct = C ′′. Let S(C) be the set of all such pairs of configurations
(Ci−1, Ci), where i ∈ {1, . . . , t} and Ci−1 ↔ Ci by one of the ways 3, 4, 5, 7,
8, 10.

4. Similarly, for each C̃ ∈ ConfR
P(n);X,Y construct the corresponding configura-

tion C̃ ′′, the derivation sequence showing C̃
∗
↔ C̃ ′′, and the set S(C̃) of pairs

of configurations from that derivation sequence, where one configuration has
been changed to another by one of the ways listed before.

5. Let S the multiset of pairs of configurations that is the multiset union of all
sets S(C) and S(C̃) that have been constructed. I.e. if the same pair (C1, C2)
occurs in more than one of the sets S(C) and S(C̃), then the multiplicity of
this pair is greater than 1 in the multiset S.

6. Randomly uniformly choose one pair (C, C ′) from the set S.

7. If C ↔ C ′ by a way that does not correspond to the subscripts of Ā (it must
be done by the right way and, if it is done by way 3 or 5, then the element
of keys(X) or indeps(X) also must be the right one) then output “failure”2.

8. Otherwise call the algorithm B (with the same subscripts as Ā) with argu-
ments 1n, 2ChartP(n);X,Y , C, C ′ and the specific inputs that were given to
Ā.

9. If B returns ⊥, then output “failure”. Otherwise call A with the value out-
putted by B (recall that this value has the type (X → Ṽaln)× (Y → Ṽaln))
and output, whatever A outputs.

4.7 Correctness of the Abstraction of Keys

For fully proving Theorem 4.3, we still have show that (4.24) also holds, when we
replace indeps by keys in it. We are going to show it here.

Let P be a program with the set of variables Var and let D ∈ TerD[P]. Let X =
βKI

Var(D) and Y = A(Var)[[P]](X). Suppose that k ∈ keys(Y) for some k ∈ Var. We
are going to show that in the distribution Cterm[[P]](D), the variable k is distributed
as a key, i.e. k ∈ keys(βKI

Var(Cterm[[P]](D))). Note that we have already shown that
(4.24) holds.

Let b be a variable that is not a member of Var and let Q be the program

b := FlipCoin(); if b then P else k := Gen(),

2In the definition of indistinguishability (Def. 2.4) we check whether Ā outputs 1 or not. In
the terms of this definition, “failure” is just something that is not 1.

4.7. CORRECTNESS OF THE ABSTRACTION OF KEYS 119

where FlipCoin ∈ Op is such, that [[FlipCoin]]n returns true with probability 1
2

and
returns false with the same probability.

Let Var′ := Var] {b} and Var′′ := Var′] {N}, where N is another new
variable (which we are going to use in computing the abstract semantics of the
if -statement). Define the following quantities:

X′ := A(Var′)[[b := FlipCoin()]](X)

X′′ := A(Var′′)[[N := b]](X′)

Z1 := A(Var′′)[[P]](X′′)

Z2 := A(Var′′)[[k := Gen()]](X′′)

Z := Z1 ∧ Z2 .

Then A(Var′)[[Q]](X), that we denote with Y′, is equal to merge(N,Var)(Z).
The abstract semantics of programs is defined so, that the equalities

indeps(X′) = {(X, Y ∪ {b}) : (X, Y) ∈ indeps(X)}

indeps(X′′) = {(X, Y ∪ {N, b}) : (X, Y) ∈ indeps(X)}

hold, this follows from the rule (4.10). Nothing changes the variables N and b in
the program P, therefore they are just brought along in the computation of the
abstract semantics, such that in the end the equality

indeps(Z1) = {(X, Y ∪ {N, b}) : (X, Y) ∈ indeps(Y)}

holds. Taking here X = {[k]E} and Y = ∅, we get that ({[k]E, {N, b}) ∈ indeps(Z1).
We also have keys(Z1) = keys(Y) and therefore k ∈ keys(Z1).

In the other branch of Q, we also have k ∈ keys(Z2) and ({[k]E}, {N, b}) ∈
indeps(Z2). Therefore

k ∈ keys(Z) ∧ ({[k]E}, {N, b}) ∈ indeps(Z)

and by rule (4.18), ({[k]E}, {b}) ∈ indeps(Y′).
The inequality (4.24) gives us

{|(Sn([k]E), Sn(b)) : Sn ← Cterm[[Q]](D)|}n∈N ≈

{|(Sn([k]E), S ′
n(b)) : Sn, S ′

n ← Cterm[[Q]](D)|}n∈N . (4.43)

This contradicts the assumption k 6∈ keys(βKI

Var(Cterm[[P]](D))), i.e.

{|Sn([k]E) : Sn ← Cterm[[P]](D)|}n∈N 6≈ {|[[Enc]]n(k′, ·) : k′ ← [[Gen]]n|}n∈N, (4.44)

as we show below. Let A(·) be an algorithm distinguishing the distributions (4.44)
(the algorithm A accesses the encrypting black box through the oracle interface).
Let B(·) be an algorithm that takes as its inputs the security parameter 1n, a boolean
value bval and an encrypting black box (accessed through the oracle interface). Let
B(·) work as follows:

120 CHAPTER 4. ANALYSIS

1. Call A(·), giving it the same oracle as B(·) has. Let c be the returned value.

2. If
(
c = 1 and bval = true

)
or

(
c 6= 1 and bval = false

)
then return 1. Otherwise

return 2.

The algorithm B can distinguish the distributions in (4.43). Indeed, let DP

denote the distribution Cterm[[P]](D) and DQ denote the distribution Cterm[[Q]](D).
We have to show that the difference of

Pr
[
BE(1n,Sn(k),·)(1n, Sn(b)) = 1 : Sn ← DQ

n

]
(4.45)

and
Pr

[
BE(1n,Sn(k),·)(1n, S ′

n(b)) = 1 : Sn, S
′
n ← DQ

n

]
(4.46)

is not negligible. Here we let E be the algorithm implementing [[Enc]] and G be the
algorithm implementing [[Gen]]. Let us compute both (4.45) and (4.46).

First, the probability (4.46) is 1
2
. The encrypting black box E(1n, Sn(k), ·) is

picked independently of the bit S ′
n(b). Therefore for each possible value returned

by the algorithm A (either 1 or 2) the probability that B returns 1 is 1
2

and the
probability that B returns 2 is 1

2
.

The probability (4.45) is

Pr
[
BE(1n,Sn(k),·)(1n, Sn(b)) = 1 : Sn ← DQ

n

]
=

Pr
[
AE(1n,Sn(k),·)(1n) 6= 1 ∧ Sn(b) : Sn ← DQ

n

]
+

Pr
[
AE(1n,Sn(k),·)(1n) = 1 ∧ ¬Sn(b) : Sn ← DQ

n

]
=

1

2

(
Pr

[
AE(1n,Sn(k),·)(1n) = 1 : Sn ← DP

n

]
+

1− Pr
[
AE(1n,k′,·)(1n) = 1 : k′ ← G(1n)

])
=

1

2
+

1

2

(
Pr

[
AE(1n,Sn(k),·)(1n) = 1 : Sn ← DP

n

]
−

Pr
[
AE(1n,k′,·)(1n) = 1 : k′ ← G(1n)

])
.

Therefore the difference of (4.45) and (4.46) is half of the advantage of A in distin-
guishing the distributions in (4.44). It is therefore non-negligible.

Chapter 5

Implementation

The presented analysis has a rather large domain, therefore one may ask whether
the results given in the previous chapter are also usable in practice. In this chapter
we show that a suitable abstraction of the given analysis can be implemented and
it does not suffer from any loss of precision. Indeed, we have implemented the
analysis in the form described in this chapter; the implementation is available under
http://www.cs.uni-sb.de/~laud/csif/.

We start this chapter by presenting a traditional form of program analysis —
data flow analysis — in Sec. 5.1 and showing how our analysis can be represented
as a data flow analysis. There exist well-known generic algorithms for computing
the solution(s) of data flow analysis, we want to make use of them.

This representation as a data flow analysis is rather straightforward and uses
the same domain PF(Var) that we used for the analysis in Chapter 4. In Sec. 5.2

we show how to define a suitable subset of the domain, called P F̂(Var), such that
the elements of that domain may be efficiently represented. In our implementation
of the analysis, we only consider such elements of PF(Var) that are elements of

PF̂(Var). The cardinality of the set PF̂(Var) is small enough for an efficient
implementation. In Sec. 5.3 we give a detailed account on the transfer functions
of our data flow analysis, in the form that we have implemented them. Basically,
transfer functions are the abstract semantics of a single assignment statement or
merge. Transfer functions are all that one needs to use the generic algorithms for
computing the solutions of data flow analysis.

In Sec. 5.4 we give a small example of the analysis in action.

This chapter is also a suitable place to show how our earlier results [Lau01]
relate to this dissertation. There we gave another, weaker data flow analysis for
secure information flow. Sec. 5.5 restates these results in the terms used here.

5.1 Formulation as Data Flow Analysis

Data Flow Analysis (DFA) is the traditional form of program analysis (see for ex-
ample [Mar99], [NNH99, Sec. 1.3 and Chap. 2], [WM92, Sec. 9.4]). One of the

121

122 CHAPTER 5. IMPLEMENTATION

most typical applications of DFA is to compute for each point in the given pro-
gram, whether some particular properties hold there. DFA is therefore useful for
abstracting some operational semantics of the program language, but we can also
use it for our analysis (which is an abstraction of a denotational semantics). DFA
will still give us results for each program point, but we will only use the result for
the exit point. Our reason for using DFA is, that there exist well-known, generic
algorithms for doing the necessary computation.

The representation of the program, used by DFA, is the control flow graph
(CFG).

Definition 5.1. A Control Flow Graph (CFG) is a tuple (V, E, σ, τ, λV), where

• V is the finite set of nodes;

• E is the finite set of edges;

• σ : E → V] {♦} gives for each edge e its source node σ(e);

• τ : E → V] {�} gives for each edge e its target node τ(e);

• λV : V → LV gives to each node its label, LV is the set of possible node labels.

There must exist exactly one edge whose source is ♦ (we call this edge the start
edge), and exactly one edge whose target is � (this edge is called the end edge).

We will now explain, how we define the control flow graph GP of the program
P. During this explanation, we also introduce the set of possible node labels LV .
Table 5.1 gives an overview of the definition of GP.

• If P is skip then GP has no nodes at all. It also has a single edge. The source
of this edge must be ♦ and the target must be �.

• If P is x := o(x1, . . . , xk) then GP has a single node, this node is labelled with
x := o(x1, . . . , xk) (i.e. all such assignments are members of LV). The CFG
GP has two edges, connecting ♦ to the node and the node to �.

• If P is P1; P2 then GP is just the “composition” of graphs GP1 and GP2 . More
precisely, the set of nodes of GP is the (disjoint) union of the sets of nodes of
GP1 and GP2 (that retain their labels) and the set of edges of GP is the union
of the sets of edges of GP1 and GP2 , where the end edge of GP1 is identified
with the start edge of GP2 .

• If P is if b then P1 else P2 then GP contains the graphs GP1 and GP2 , two
extra nodes vif and vmerge and an additional start edge (whose target is vif)
and end edge (whose source is vmerge). The source of start edges of GP1 and
GP2 is vif and the target of their end edges is vmerge . The nodes vif and vmerge

have the following labels:

5.1. FORMULATION AS DATA FLOW ANALYSIS 123

P GP

skip

�

♦

x := o(x1, . . . , xk) x := o(x1, . . . , xk)

♦

�

if b then P1 else P2

�

♦

N := b

merge(N,Varasgn)

GP1 GP2

vmerge

vif

P GP

P1; P2

�

♦

GP1

GP2

while b do P′

merge(N,Varasgn)

�

♦

N := b

GP′

vmerge

vif

Table 5.1: CFG of the program P

124 CHAPTER 5. IMPLEMENTATION

– The label of vif is N := b, where N is a variable that does not occur in P.
Such labels are elements of LV , as already mentioned while explaining
the control flow graphs of programs consisting of a single assignment.

– Let Varasgn be defined as in Sec. 4.2.2. The label of the node vmerge is
merge(N,Varasgn). All such labels merge(N, Z), where N ∈ Var and
Z ⊆ Var, are members of LV .

The shape of the nodes vif and vmerge in Table 5.1 has no formal meaning.

• If P is while b do P′ then GP is almost the same as the CFG of the program
if b then P′ else skip. The difference is, that GP has one more edge, from the
node vmerge back to the node vif .

The definition of the control flow graph for while b do P′ is non-traditional. However,
it corresponds nicely to the concrete and abstract semantices of loops, as defined
in Sec. 3.1.3 and Sec. 4.2.2.

We now associate each node label (and, through λV , also each node of a CFG)
with a transfer function. Generally, the transfer function of a node describes, how
the operation that this node corresponds to, changes the properties, assigned to
program points (the program points are actually the edges of the CFG), that we
are interested in. In our case, the transfer function F (l) of l ∈ LV is a function
from PF(Var) to PF(Var). It is defined as follows:

• F (x := o(x1, . . . , xk)) = A(Var)[[x := o(x1, . . . , xk)]].

• F (merge(N, Z)), where Z ⊆ Var, applied to X ∈ PF(Var) returns Y ∈
PF(Var) that is the smallest element, such that

– Y satisfies the rules given in Fig. 4.5;

– indeps(Y) is symmetric and downwards closed.

Generally, the transfer functions can be over any complete lattice. In the fol-
lowing we always use PF(Var) as the domain and range of transfer functions, as
this is the domain that our analysis is using. The theory of DFA, however, works
for any complete lattice.

We now describe, how the transfer functions are used. Let G = (V, E, σ, τ, λV)
be a CFG and let Λ : E → PF(Var) be a labelling of the edges of G with the
elements of PF(Var). Let Λ′ and V(Λ) be the following labellings of the nodes and
L(Λ) be the following labelling of the edges with elements of PF(Var):

Λ′ $ v :=
∧
{Λ(e′) : e′ ∈ E, τ(e′) = v}

V(Λ) $ v := F (λV (v)) $ Λ′(v)

L(Λ) $ e := Λ(e) ∧
(
V(Λ) $ σ(e)

)
,

5.1. FORMULATION AS DATA FLOW ANALYSIS 125

where v ∈ V , e ∈ E and V(Λ) $ ♦ is defined to be > — the greatest element of
the lattice PF(Var). Basically, the task of DFA is computing fixed points (less or
equal to some given mapping Λ0) of the function L.

The label V(Λ) $ v describes the properties after the node v, if the properties
before the node v are given by Λ′(v). “Properties before a node” are defined as the
summarisation of the properties of all the edges going to that node. Finally, L is
defined so, that L(Λ) ≤ Λ. This guarantees the existence of fixed points of L.

Given Λ0 : E → PF(Var), the data flow analysis computes

∧
{Ln(Λ0) : n ∈ N} . (5.1)

There are algorithms for computing (5.1) that are in general more efficient than
successively computing L(Λ0), L

2(Λ0), etc. See [Mar99, NNH99]. For example, the
algorithm given in [NNH99, Sec. 2.4.1] computes exactly the quantity (5.1).

If all transfer functions are monotone (in our case, they are) then the function
L is monotone, too. Hence in this case, by Proposition 2.7, DFA computes gfpΛ0 L.
If additionally the mapping Λ0 has the property that for each edge e of the CFG
and v = σ(e),

F (λV (v)) $ Λ′
0(v) ≤ Λ0(e), (5.2)

then L(Λ0) also satisfies the same property and moreover, L(Λ0) = L′(Λ0), where

L′(Λ) $ e := V(Λ) $ σ(e) .

By induction, Ln(Λ0) = L′n(Λ0) for all n ∈ N and therefore gfpΛ0 L = gfpΛ0 L′.
Given X ∈ PF(Var), let ΛX

0 be the following labelling of edges:

ΛX
0 (e) =

{
X, if e is the start edge

>, otherwise.

ΛX
0 is a typical input to DFA. It expresses that we know that at the start of the

program, properties described by X hold. We do not yet know, what holds at
the other program points, but we optimistically assume, that everything may hold
there. DFA, applied to ΛX

0 , finds out what actually holds in each program point,
if properties described by X hold at the beginning. Let ΛX be the output (5.1) of
DFA for ΛX

0 . The quantity ΛX is called the solution of DFA for the initial value X.
Let DFG(X) ∈ PF(Var) be the value assigned to the end edge of G by ΛX. The

following theorem is the main result of this chapter.

Theorem 5.1. Let P be a program with the set of variables Var. Let GP be the
CFG on the program P. Then DFGP

= A(Var)[[P]].

Proof. The proof is by induction over program structure.
If P is skip, then DFGP

is the identity function on PF(Var), as the CFG for
P only has a single edge, this edge is both the start and end edge. Therefore
DFGP

= A(Var)[[P]].

126 CHAPTER 5. IMPLEMENTATION

If P is x := o(x1, . . . , xk) and X ∈ PF(Var), then the solution of DFA for X

assigns A(Var)[[P]](X) to the end edge of the CFG GP. Hence DFGP
= A(Var)[[P]].

If P is P1; P2 and X ∈ PF(Var), then the solution of DFA ΛX for the initial
value X is the following:

• ΛX assigns to the edges of GP1 the same values as the solution of DFA for the
CFG GP1 and the initial value X. Hence the value assigned to the end edge
of GP1 is DFGP1

(X).

• ΛX assigns to the start edge of GP2 the value DFGP1
(X), because the start

edge of GP2 and the end edge of GP1 are the same. ΛX therefore assigns to the
edges of GP2 the same values as the solution of DFA for the CFG GP2 and the
initial value DFGP1

(X). In particular, it assigns the value DFGP2
(DFGP1

(X))
to the end edge of GP2 . This edge is also the end edge of GP.

We have shown that DFGP
= DFGP2

◦DFGP1
. The claim of the theorem now follows

from the application of the induction hypothesis for programs P1 and P2.

Suppose that P is if b then P1 else P2. The solution of DFA ΛX for the initial
value X has the following properties:

• ΛX assigns to the end edge of GP1 (this is one of the two edges whose target
is vmerge) the value Z1 := DFGN:=b;P1

(X). By the induction assumption, this

value is equal to A(Var]{N})[[N := b; P1]](X).

• ΛX assigns to the end edge of GP2 the value Z2 := A(Var]{N})[[N := b; P2]](X).
Again, this follows from the induction assumption.

The initial value ΛX
0 has the property (5.2), therefore ΛX = gfpΛX

0 L′. By definition
of L′, the labelling ΛX assigns to the end edge of GP the value merge(N,Varasgn)(Z1∧
Z2). This equals A(Var)[[P]](X).

Suppose that P is while b do P′. By the construction of GP, the function DFGP

must satisfy

DFGP
(X) ≤ (DFGP

◦DFGif b then P′ else skip
)(X) .

By the induction assumption,

DFGP
(X) ≤ (DFGP

◦ A(Var)[[if b then P′ else skip]])(X) .

As DFA is computing the greatest fixed points, DFGP
= A(Var)[[P]].

The rest of this chapter (except Sec. 5.5) deals with implementing the data flow
analysis that we presented.

5.2. SIMPLIFIED ABSTRACT DOMAIN 127

5.1.1 Discussion

In most contemporary literature about data flow analysis, smaller abstract values
(where “smaller” is given by the order on the complete lattice, serving as the do-
main of DFA) are considered to be more optimistic and greater abstract values
are considered to be more conservative. I.e. the most optimistic value is ⊥, this
value is used to denote that we do not yet know what holds at a certain program
point. In the presentation that we just gave, smaller values are more conservative
and greater values are more optimistic. This is no significant difference, because
of duality (See the end of Sec. 2.1.1). We chose such presentation because of the
direction of the natural order on PF(Var). If we had let R(PF(Var)) be the do-
main of our data flow analysis, then our treatment would have been in line with
the usual conventions.

Computing (5.1) may in general case require quite a lot of effort. The worst-
case running time of algorithms computing (5.1) is proportional to the product of
the number of vertices on the control flow graph and the height of the underlying
lattice (in our case PF(Var), the height of which is exponential in the number of
variables occurring in the program). In practice, the computation of solutions of
data flow analyses converges much faster. Obviously, it is still linear to the size of
the CFG, but usually the computation does not have to step through all ”‘levels”’ of
the underlying lattice. In estimating the efficiency of a particular implementation,
experimental results may be much more interesting. Our implementation, which
is described below, can analyse small examples more or less instantly (i.e. in a
fraction of second) on a 500 MHz Pentium III.

5.2 Simplified Abstract Domain

The algorithms for computing solutions of DFA require one to keep in memory
a data structure that records the “current” label of each edge of the CFG. These
labels are updated during the computation.

The set PF(Var) = P(Var)× F(Var) is too large for assigning one element of
it to each edge of the control flow graph. We therefore must abstract PF(Var);

we do this by defining a certain subset F̂K(Var) ⊆ F(Var) for each K ⊆ Var and

consider only such elements X ∈ PF(Var), where indeps(X) ∈ F̂keys(X)(Var). The
transfer functions remain the same, they are still given by the figures 4.2, 4.3 and
4.5, except that indeps(X) [resp. indeps(Y)] on these figures is now considered to be

an element of F̂keys(X)(Var) [resp. F̂keys(Y)(Var)]. We denote

PF̂(Var) := {(K, I) : K ⊆ Var, I ∈ F̂K(Var)} .

Such change makes an analysis more conservative — we are simply not recording
the independence of certain pairs of sets of variables. Also, the modified analysis
cannot derive the independence of some pair of sets of variables that the original

128 CHAPTER 5. IMPLEMENTATION

analysis would not have derived. Hence the modified analysis, working on P F̂(Var),
is correct.

The set F̂K(Var) itself depends on the set of private input variables VarS ⊆
Var. After this set has been fixed, define

SVK(Var) = P([K]E)] {VarS}

F̂K(Var) = P(SVK(Var)× P(Ṽar)),

where [K]E denotes the set {[k]E : k ∈ K}. The elements of the set F̂K(Var) can
be represented as a pair of boolean functions. Indeed,

F̂K(Var) = P(SVK(Var)× P(Ṽar)) ∼= SVK(Var)→ P(P(Ṽar)) =

(P([K]E)] {VarS})→ P(P(Ṽar)) ∼=(
P([K]E)→ P(P(Ṽar))

)
×

(
{VarS} → P(P(Ṽar))

)
∼=

P(P([K]E] Ṽar))× P(P(Ṽar)) ∼= (B[K]E]Ṽar → B)× (BṼar → B) .

Elementwise, to each I ∈ F̂K(Var) corresponds a pair (Bkey, Bsec) of boolean func-
tions, such that

• If X ⊆ [K]E, then (X, Y) ∈ I iff Bkey(XX]Y) = true (here XX]Y : ([K]E]
Ṽar)→ B is the characteristic function of X] Y).

• (VarS, Y) ∈ I iff Bsec(XY) = true.

In our implementation of the analysis, we have used binary decision diagrams
(BDDs) to represent boolean functions. In the usual implementation of BDDs,
different BDDs may share common subterms. Therefore the memory requirements
of the representation of elements of PF̂(Var) are not prohibitively large.

5.3 Implementing Transfer Functions

Here we explain, how the transfer functions look like, if they are considered to work
over the set PF̂(Var). Moreover, the indeps-component of the elements of P F̂(Var)
is considered to be a pair of boolean functions. The main purpose of this section is
to give a detailed account, how the transfer functions change these pairs of boolean
functions.

More concretely, we are given the following:

• a node label l; it can be either x := o(x1, . . . , xk) or merge(N, Z);

• a set of variables K◦ ⊆ Var;

• a pair of boolean functions B◦ = (Bkey
◦ , Bsec

◦), where the arguments of the
function Bkey

◦ are named with the elements of [K◦]E] Ṽar and the arguments
of the function Bsec

◦ are named with the elements of Var.

5.3. IMPLEMENTING TRANSFER FUNCTIONS 129

Hence the pair X = (K◦, B◦) is a member of PF̂(Var). We are looking for

• a set of variables K• ⊆ Var;

• a pair of boolean functions B• = (Bkey
• , Bsec

•), where the arguments of the
function Bkey

• are named with the elements of [K•]E] Ṽar and the arguments
of the function Bsec

• are named with the elements of Var,

such that Y = (K•, B•) is equal to F (l) $ X.
The arguments of the functions Bkey

◦ and Bkey
• come from some set [K]E]Ṽar. In

the following we also have to spell out the names of the arguments of these functions.
To distinguish the elements [k]E belonging to the first component of [K]E]Ṽar from
the elements [k]E belonging to the second component of [K]E] Ṽar we rename the
elements belonging to the first component of [K]E] Ṽar. Let

[K]E] Ṽar := {(k)E : k ∈ K} ∪Var ∪ {[x]E : x ∈ Var},

i.e. (k)E belongs to the first component of [K]E]Ṽar and [k]E belongs to the second
component.

We make a simplifying assumption, which is really a very natural one and cer-
tainly cannot be considered to be a constraint. We assume that the variables in
VarS do not occur at the left hand sides of assignments. We did not need this
assumption before, that’s why we did not state it earlier.

The way of computing K• and B• from K◦ and B◦ obviously depends on the
label l.

5.3.1 Transfer Functions for Assignments

The transfer function depends on the operator o of the assignment. Four possi-
bilities are distinguished — whether the operator has no special properties, or the
assignment is a simple assignment, or the operator is Enc, or the operator is Gen.

We introduce the following notation. Let f : BṼar → B be a boolean function
whose arguments are labelled with the elements of Ṽar. Let x1, . . . , xk ∈ Ṽar

and let f1, . . . , fk : BṼar → B. Then f [x1/f1, . . . ,
xk/fk

], denoting the simultaneous
substitution of xi with fi for i ∈ {1, . . . , k} in f , is again a boolean function whose
arguments are labelled with the elements of Ṽar. Its definition is the following. Let

X ∈ BṼar. We now define

f [x1/f1 , . . . ,
xk/fk

](X) = f(X [x1 7→ f1(X), . . . , xk 7→ fk(X)]),

where X [x 7→ b] denotes a tuple that is obtained from X be setting its component
x to b ∈ B.

If x ∈ Ṽar, then x also denotes a boolean function with the type BṼar → B.
This value of this function is equal to the value of its argument named x.

We also use the notation introduced here if the domain of boolean functions
under consideration is B[K]E]Ṽar.

130 CHAPTER 5. IMPLEMENTATION

o is a “usual” operator

Let the label l be x := o(x1, . . . , xk). Obviously K• = K◦\{x} by rule (4.14).
The pair of functions B• is found from B◦ with the help of rules (4.9) and (4.10).

We have

Bkey
• = ¬(x)E ∧

(
(Bkey

◦ ∧ ¬(x ∨ [x]E)) ∨Bkey
◦ [x/false,

[x]E/false,
x1/true, . . . ,

xk/true]
)

Bsec
• = (Bsec

◦ ∧ ¬(x ∨ [x]E)) ∨ Bsec
◦ [x/false,

[x]E/false,
x1/true, . . . ,

xk/true] .

In both equations the first disjunct (for Bkey
• , the disjunction itself is under the

conjunction) comes from the rule (4.9) and the second disjunct from the rule (4.10).
Let us take a closer look at the second disjunct in the definition of Bsec

• (similar
things hold for the definition of Bkey

•). It says that for any Y ⊆ Ṽar the following
holds:

(VarS, Y) ∈ indeps(Y)⇐= (VarS, Y \{x, [x]E} ∪ {x1, . . . , xk}) ∈ indeps(X) . (5.3)

Indeed, applying Bsec
◦ [x/false,

[x]E/false,
x1/true, . . . ,

xk/true] to the characteristic function of
Y is the same as applying Bsec

◦ to the characteristic function of the set Y \{x, [x]E}∪
{x1, . . . , xk}.

The implication (5.3) is exactly rule (4.10).

The assignment is a simple assignment

Let the label l be x := y. Then K• is equal to K◦ ∪ {x}, if y ∈ K◦. If y 6∈ K◦, then
K• = K◦\{x}.

The pair of functions B• is found from B◦ with the help of rule (4.102). This
rule subsumes (i.e. is at least as optimistic as) both rules (4.9) and (4.10). We have

Bkey
• = Bkey

◦ [(y)E/(y)E∨(x)E
, y/y∨x,

[y]E/[y]E∨[x]E, (x)E/false,
x/false,

[x]E/false]

Bsec
• = Bsec

◦ [y/y∨x,
[y]E/[y]E∨[x]E, x/false,

[x]E/false] .

I.e. both the arguments x and y of Bsec
• [resp. Bkey

•] correspond to the argument y
of Bsec

◦ [resp. Bkey
◦]. The argument x of Bsec

◦ [resp. Bkey
◦] is irrelevant.

o is the operator Enc

Let the label l be x := Enc(k, y). Then K• = K◦\{x}.
The rules (4.9), (4.101) and, if k ∈ K◦, then also (4.11) have to be taken into

account when computing B• from B◦. We consider the following cases.

• If k 6∈ K◦, then

Bkey
• = ¬(x)E ∧

(
(Bkey

◦ ∧ ¬(x ∨ [x]E)) ∨Bkey[x/false,
[x]E/false,

[k]E/true,
y/true]

)

Bsec
• = (Bsec

◦ ∧ ¬(x ∨ [x]E)) ∨ Bsec[x/false,
[x]E/false,

[k]E/true,
y/true] .

This is similar to the case where o is a “usual” operator.

5.3. IMPLEMENTING TRANSFER FUNCTIONS 131

• If k ∈ K◦, then

Bkey
• = ¬(x)E ∧

(
(Bkey

◦ ∧ ¬(x ∨ [x]E)) ∨ Bkey[x/false,
[x]E/false,

[k]E/true,
y/true]∨

(
Bkey

◦ [x/false,
[x]E/false]∧

Bkey
◦ [(k)E/true,

[k]E/false, 〈
(k′)E/false,

[k′]E/(k′)E∨[k′]E〉k′∈K◦\{k},
x/false,

[x]E/false,
y/true]

))

Bsec
• = (Bsec

◦ ∧ ¬(x ∨ [x]E)) ∨Bsec[x/false,
[x]E/false,

[k]E/true,
y/true]∨(

Bsec
◦ [x/false,

[x]E/false]∧

Bkey
◦ [(k)E/true,

[k]E/false, 〈
(k′)E/false〉k′∈K◦\{k},

x/false,
[x]E/false, 〈

z/true〉z∈VarS
, y/true]

)
.

Here 〈x/fx
〉x∈X denotes that all elements x of X have to be substituted with

the corresponding fx. Note that substituting is simultaneous, therefore the
implicit order of components of the tuple 〈x/fx

〉x∈X is not important.

In the last case, the three disjuncts exactly correspond to the rules (4.9), (4.101)
and (4.11). For example, the last disjunct says that (if k ∈ K◦, then) for any
Y ⊆ Ṽar and X ∈ SVK◦(Var) the following holds:

(X, Y) ∈ indeps(Y)⇐= (X, Y \{x, [x]E}) ∈ indeps(X)∧

({[k]E}, Y ∪X ∪ {y}\{x, [x]E}) ∈ indeps(X) .

o is the operator Gen

Let the label l be x := Gen(). Then K• = K◦ ∪ {x}.
The pair of functions B• is found from B◦ with the help of rules (4.10) and

(4.12). Rule (4.9) is subsumed by rule (4.10), because the operator Gen takes no
arguments. We have

Bkey
• =

(
¬(x)E ∧ Bkey

◦ [x/false,
[x]E/false]

)
∨

(
¬x ∧ Bkey

◦ [(x)E/false,
[x]E/false]

)

Bsec
• = Bsec

◦ [x/false,
[x]E/false]

The first disjunct of Bkey
• and the entire Bsec

• comes from rule (4.10). The second
disjunct of Bkey

• comes from rule (4.12).

5.3.2 Transfer Function for merges

We start the definition of these transfer functions by restating the rules (4.17)
and (4.18) once more, this time in a form that is more convenient for the explanation
of the definitions of transfer functions. The rules are given in Fig. 5.1.

The sets Xo, Xc and Xk in Fig. 5.1 have the following meaning:

• Xo contains all those variables and black boxes that have not been changed
in any of the branches coming to that merge-statement.

132 CHAPTER 5. IMPLEMENTATION

Let X, Y ⊆ Ṽar. Define

Xk = X ∩ [keys(X)]E ∩ [Z]E

Xc = X ∩ ((Z ∪ [Z]E)\[keys(X)]E)

Xo = X\(Z ∪ [Z]E)

and define Yo, Yc, Yk similarly.

(Xo, Yo) ∈ indeps(X)
(Xk ∪ Yk, Xo ∪ Yo ∪ {N}) ∈ indeps(X)

Xc = Yc = ∅
let {x1, . . . , xm} = Xk ∪ Yk, then
∀i ∈ {1, . . . , m− 1} : ({[xi+1]E, . . . , [xm]E}, {[xi]E}) ∈ indeps(X)

∀k ∈ Yk : ({[k]E}, {[k]E}) ∈ indeps(X)
(X, Y) ∈ indeps(Y)

(5.4)

(X, Y ∪ {N}) ∈ indeps(X)
(Xo, Xk) ∈ indeps(X)

Xc = ∅
let {x1, . . . , xm} = Xk, then
∀i ∈ {1, . . . , m− 1} : ({[xi+1]E, . . . , [xm]E}, {[xi]E}) ∈ indeps(X)

(X, Y) ∈ indeps(Y)

(5.5)

Figure 5.1: Simplified rules for computing merge(N, Z)(X)

• Xk contains all black boxes [k]E, such that k may have been changed in one
of the branches coming to that merge-statement and k is distributed as a key.

• Xc contains all variables that may have been changed in one of the branches
coming to that merge-statement. Additionally, it also contains such black
boxes [x]E where x is not distributed as a key (and x may have been changed
in one of the branches).

Let the label l be merge(N, Z), where N is a variable and Z ⊆ Var. Then K• ⊆
K◦ contains by rule (4.19) all elements of K◦\Z and by rule (4.20) all k ∈ K◦ ∩ Z,
such that

Bkey
◦ (X{(k)E,N}) = true .

I.e. the arguments of Bkey
◦ are all false, except the arguments that are named (k)E

and N .
The pair of functions B• is found from B◦ with the help of rules (5.4) and

(5.5). At first we are going to define the functions Bkey
1 and Bsec

1 corresponding
to the application of rule (5.4) to Bkey

◦ and Bsec
◦ , and the functions Bkey

2 and Bsec
2

corresponding to the application of rule (5.5) to Bkey
◦ and Bsec

◦ . Their disjunction

5.3. IMPLEMENTING TRANSFER FUNCTIONS 133

then gives Bkey
• and Bsec

• . Let there be defined a total order on the set K◦ (this
corresponds to giving the variables of Xk∪Yk the names x1, . . . , xm). Let this order
be such, that all elements of Z are greater than all elements of K◦\Z.

When defining the function Bkey
1 we note that we are going to apply rule (5.4)

only for such pairs (X, Y) ∈ F(Var), where the set Xc is empty and the set Xo

contains only black boxes. We have

Bkey
1 = Bkey

◦ [〈(k)E/false,
[k]E/false〉k∈K◦∩Z]∧

Bkey
◦ [〈(k)E/(k)E∨[k]E, [k]E/false〉k∈K◦∩Z , 〈(k)E/false,

[k]E/(k)E∨[k]E〉k∈K◦\Z , N/true]∧∧

z∈Z

¬z ∧
∧

z∈Z\K◦

¬[z]E∧

∧

k∈K◦∩Z

Bkey
◦ [〈(k

′)E/false〉k′≤k, 〈
(k′)E/(k′)E∨[k′]E〉k′>k,

[k]E/(k)E∨[k]E, 〈x/false〉x∈Ṽar\{[k]E}
]∧

∧

k∈K◦∩Z

Bkey
◦ [(k)E/[k]E, 〈x/false〉x∈[K◦]E]Ṽar\{(k)E,[k]E}

],

where each row corresponds to one antecedent of rule (5.4). At the first row we
say that the black boxes [k]E, where k ∈ Xk or k ∈ Yk, do not matter. At the
second row we construct the union Xk ∪ Yk at the left side (where the black boxes
are named (k)E) and the union Xo ∪ Yo at the right side (where black boxes are
named [k]E). At the third row we demand that Yc = ∅. At the fourth row we check
whether the black boxes in Xk and Yk are all independent of each other. Here the
variable k′ is assumed to range over K◦. At the fifth row we check whether the
black boxes in Yk are all independent of themselves.

The definition of Bsec
1 is a bit simpler. Here the sets Xc and Xk are both empty,

because the variables in VarS are never assigned to. We have

Bsec
1 = Bsec

◦ [〈[k]E/false〉k∈K◦∩Z]∧

Bkey
◦ [〈(k)E/[k]E, [k]E/false〉k∈K◦∩Z , 〈(k)E/false〉k∈K◦\Z , 〈x/true〉x∈VarS

, N/true]∧∧

z∈Z

¬z ∧
∧

z∈Z\K◦

¬[z]E∧

∧

k∈K◦∩Z

Bkey
◦ [〈(k

′)E/false〉k′≤k, 〈
(k′)E/[k′]E〉k′>k, 〈

x/false〉x∈Ṽar\{[k]E}
]∧

∧

k∈K◦∩Z

Bkey
◦ [(k)E/[k]E, 〈x/false〉x∈[K◦]E]Ṽar\{(k)E,[k]E}

] .

Again, each row corresponds to one antecedent of rule (5.4).
The function Bkey

2 is the following:

Bkey
2 = Bkey

◦ [N/true]∧

Bkey
◦ [〈[k]E/false〉k∈K◦\Z , 〈(k)E/false,

[k]E/(k)E
〉k∈K◦∩Z , 〈x/false〉x∈Var, 〈

[x]E/false〉x∈Var\K◦]∧∧

k∈K◦∩Z

Bkey
◦ [〈(k

′)E/false〉k′≤k,
[k]E/(k)E

, 〈x/false〉x∈Ṽar\{[k]E}
] .

134 CHAPTER 5. IMPLEMENTATION

Here the rows correspond to the first, second and fourth antecedent of rule (5.5),
the third antecedent is trivially true. In the second antecedent, the only variables
that are not set to false are

• (k)E, where k ∈ K◦ and k 6∈ Z. They are left unchanged. These variables
correspond to the elements of Xo.

• [k]E, where k ∈ K◦∩Z. Their value is defined to be the original value of (k)E.
These variables (k)E correspond to the elements of Xk.

When defining Bsec
2 , the second and fourth antecedents of rule (5.5) are trivially

true because Xk = ∅. Therefore

Bsec
2 = Bsec

◦ [N/true] .

Finally, we define

Bkey
• = (Bkey

1 ∨ Bkey
2) ∧

∧

k∈K◦\K•

¬(k)E

Bsec
• = Bsec

1 ∨ Bsec
2 .

5.4 An Example

We continue with our running example presented in Fig. 4.9. We also showed
the same program in [Lau01], when we discussed the shortcomings of the analysis
presented there. This program allows us to show, how our analysis handles the
information flow through the interaction of control flow and encryption.

Let us assume that the variable b is private and the variables y1 and y2 are
public. Let us also assume that the value of the variable b is independent of the
values of the variables y1 and y2. The initial analysis information (K0, B0), where
B0 = (Bkey

0 , Bsec
0), being an abstraction of the initial probability distribution of the

program, is therefore the following:

• K0 = ∅;

• Bkey
0 = true, because there are no variables having the form (k)E;

• Bsec
0 = ¬b ∧ ¬[b]E.

The set of keys at the end of the program is obviously {k1, k2}. The values
of Bkey and Bsec at the end of the program are given in Fig. 5.2 and Fig. 5.3,
respectively. In these figures, (k)E denotes (k)E and [k]E denotes [k]E. Also, 1 and
0 denote true and false, respectively.

From Fig. 5.2 we see, that both keys may be dependent on both black boxes.
Indeed, a key k is never independent of [k]E and any [k′]E, where it is possible that
k = k′. At the end of the program in Fig. 4.9, k1 may be equal to k2.

The quantity Bsec is more interesting. We see that

5.4. AN EXAMPLE 135

k2

(k2)E

(k1)E1 0

1 0 (k2)E

k11 0 k11 0

1 0

1 0

0 1

Figure 5.2: BDD representing Bkey at the end of the program

• The variable k2 is considered to be potentially dependent of the secret input
(which was b). Indeed, the transfer function for merge-s considers, that there
is a potential flow of information from the guard of the corresponding if -
statement to all variables that have been assigned to at one of the branches.

In our case, the variable k2 is actually independent of b — no matter what
the value of b is, k2 is still distributed like a key. However, the value of k2
together with the value of x1 or with the value of [k1]E is dependent of b — if
we have the values of both x1 and k2, then we can check whether k2 is usable
for decrypting x1 or not. But this depends on the value of b. Similarly, we can
check whether the cryptotexts created by the black box [k1]E are decryptable
by k2 or not.

• Both k1 and [k2]E (separately) are independent of the secret input b, but
together they are not independent of it. We have already explained, why this
is the case. Our analysis correctly (and precisely) reflects this.

• Similarly, x2 alone is independent of the secret input, but x2 and k1 together
depend on it.

136 CHAPTER 5. IMPLEMENTATION

x2

k2

k1

b

[b]E1 0

1 0

1 0

1 0

[x2]E

k2

[k2]E1 0

1 0

1 0

1 0

0 1

Figure 5.3: BDD representing Bsec at the end of the program

5.5. PUTTING [Lau01] TO CONTEXT 137

5.5 Putting [Lau01] to Context

In [Lau01] we gave a data flow analysis for secure information flow. Compared with
the analysis in this thesis, it had a much simpler structure. This was achieved by
putting several constraints on the program. Particularly, the usage of encryption
keys was constrained in the following way:

• Each variable had to have one of the types “key” and “non-key”. Each oper-
ator had fixed types for its arguments and value and it was not allowed to
substitute one type for another (particularly, one could not use a “key” in
place of a “non-key”). The types of arguments and results of operations were
the following:

– The output of Gen had the type “key”.

– The first argument of Enc had the type “key” and the second argument
had the type “non-key”. The output of Enc had the type “non-key”.

– Simple assignments were polymorphic — at the statement x := y, the
variables x and y merely had to have equal types — either “key” or
“non-key”.

– The arguments and outputs of other operations all had the type “non-
key”.

• At each program point, and for each two variables of type “key”, it had to
be known beforehand, whether the values of these two variables are equal
or not at this program point. The option “sometimes equal and sometimes
not” (where both cases have non-negligible probability) was not allowed at
all. Note that this is also a constraint on the distribution of inputs of the
program.

The knowledge about “keys” and ”non-keys” and about the equality of keys
has to be available to the analysis presented in [Lau01]. If the program satisfies
the constraints, then this knowledge can be obtained with simple and well-known
methods. Particularly,

• determining the types of variables is a simple matter of type inference;

• the equality of keys can be determined using the methods of alias analysis,
see, for example [Lan92, Sec. 4.2.1 and 4.2.2].

The analysis in [Lau01] was a DFA, this meant that an abstract value was
assigned to each program point. Because of all the constraints put on the programs,
much of the information that the implementation of the analysis presented in this
chapter has to keep track of, was statically known. Namely, let (K, (Bkey, Bsec)) be
an abstract value of the data flow analysis given in this chapter. If the program
satisfies all the constraints presented here, then

138 CHAPTER 5. IMPLEMENTATION

• The set K is already known before the analysis.

• The boolean function Bkey is known, too. Namely, for each k ∈ K let E(k) ⊆
K denote the set of keys that are known to be equal to the key k. Then

Bkey =
∧

k∈K

¬
(
(k)E ∧

∨

k′∈E(k)

k′
)

.

I.e. an encrypting black box (k)E is independent of everything, except the
keys that are known to be equal to k.

• The encrypting black boxes are independent of VarS. In particular, the
boolean function

Bsec → Bsec[〈[k]E/true〉k∈K],

where→ denotes the implication in the propositional calculus, is the constant
function true, at least when the set VarS is assumed to not contain keys. This
assumption is not essential, but it makes the presentation easier.

The abstract values of the analysis in [Lau01] did not include K or Bkey. Also,
there was no concept of encrypting black boxes in [Lau01]. The abstract values of
this analysis were sets of subsets of Var — these are isomorphic to the boolean
functions of type BVar → B.

The transfer functions of the analysis in [Lau01] were special cases of transfer
functions presented in Sec. 5.3. Let us present them. We still denote the abstract
value of the analysis by Bsec and assume that it is a boolean function of type
BVar → B.

Assignments — usual operators

The transfer function of a node labelled with x := o(x1, . . . , xk), where o is not Enc,
is the following:

Bsec
• = (Bsec

◦ ∧ ¬x) ∨ Bsec
◦ [x/false,

x1/true, . . . ,
xk/true] .

We see that there is almost no difference with the transfer function presented in
Sec. 5.3.

The transfer functions for simple assignments x := y and the key generation
operations x := Gen() also had the same shape. In the analysis given in this thesis,
simple assignments and key generation operations are special cases because they
handle encrypting black boxes more optimistically than the general case.

Assignments — encryptions

The transfer function of a node labelled with x := Enc(k, y) is the following:

Bsec
• = (Bsec

◦ ∧ ¬x) ∨Bsec
◦ [x/false,

k/true,
y/true] ∨

(
Bsec

◦ [x/false] ∧ ¬
∨

k′∈E(k)

k′
)

.

5.5. PUTTING [Lau01] TO CONTEXT 139

Here the three disjuncts correspond to the three disjuncts in the definition of Bsec
•

for encryptions in Sec. 5.3. Note that we have substituted the value of Bkey
◦ to the

formula.

merge-s

The transfer function of a node labelled with merge(N, Z) is the following:

Bsec
• = (Bsec

◦ ∧
∧

z∈Z

¬z) ∨ Bsec
◦ [N/true] .

Here the two disjuncts correspond to Bsec
1 and Bsec

2 in Sec. 5.3. Two conjuncts of
the first disjunct here correspond to the conjuncts in the first and third row of the
definition of Bsec

1 in Sec. 5.3. Other conjuncts in the definition of Bsec
1 are trivially

true.

140 CHAPTER 5. IMPLEMENTATION

Chapter 6

Pseudorandom Permutations

In the preceding chapters, we have given a secure information flow analysis for
programs containing encryption as the primitive operation. The semantics of the
encryption operation had to be a repetition-concealing and which-key concealing
encryption system.

We would also like to have results for the case, where the encryption primitive
is only a pseudorandom permutation, i.e. we do not require any stronger security
properties of it. Our interest is motivated by the following considerations:

• A PRP is easier to implement: it is believed that block ciphers like DES
[DES99], AES [AES01], etc. are PRPs. Especially, one probably does not
need a random number generator to implement a PRP, while random numbers
are necessary for achieving repetition-concealedness.

• PRPs are more “primitive” than the primitives satisfying stronger security
properties. Indeed, PRPs are usually used as a building block in constructing
stronger primitives. For example, the modes of operation of block ciphers (see
[Sch96, Chapter 9] for definitions and [BDJR97] for proofs of security) aim at
achieving repetition-concealedness or even stronger properties.

We would like to have a program analysis similar to the one presented before.
This analysis should be correct whenever the semantics of the encryption operator
is a PRP. It also should precisely model the security offered by a PRP.

However, we are unable to give such an analysis. A PRP does not hide the
identity of plaintexts, thus the analysis should model the possible (in)equality of
each pair of values that may be encrypted with the same key. The number of such
values may be unbounded, though. Also, it is not clear how to name them, not
much precision can be achieved when talking about the (in)equality of anonymous
values. However, the number of values would be finite and they all would have
well-defined names, if we left the loops out of the programming language.

A programming language without loops has the computation power equal to
that of formal expressions that are used, for example, to model the messages in
the analysis of cryptographic protocols. Formal expressions are the object of our

141

142 CHAPTER 6. PSEUDORANDOM PERMUTATIONS

research in this chapter, we prefer to use an existing formalism, rather than to
define a new programming language. This makes it easier to compare our results
with those of other authors.

In this chapter we start by defining the language of formal expressions in Sec. 6.1
and giving a semantics for them — the computational interpretation in Sec. 6.2.
The definition of formal expressions given here has similar expressiveness as the
corresponding definition in [AR00]. It contains only the most basic means — tu-
pling and encryption — to construct more complex expressions from simpler ones1.
Similarly to [AR00, AJ01], we look for sufficient conditions on formal expressions
for the indistinguishability of their interpretations. We concentrate on the indistin-
guishability of the interpretations of expressions, rather than on the independence
of subexpressions of an expression, to make the comparison of results easier.

To compare the strength of PRPs to that of which-key and repetition concealing
encryption, we prove a very similar result to [AR00] in Sec. 6.3. Similarly to them,
we define an equivalence relation on formal expressions, such that two formal ex-
pressions have indistinguishable interpretations whenever they are equivalent. The
only visible difference between our result and the result of [AR00] is the power of
encryption (and our equivalence relation is a bit finer-grained).

There are some important less-visible differences, though. They become ap-
parent if we try to increase the expressiveness of formal expressions, as we do in
Sec. 6.4. Before this change, the computational interpretation given in Sec. 6.2 was
injective — each bit-string could be the interpretation of at most one formal ex-
pression. When the interpretation is no longer injective, but the encryption system
is which-key and encryption concealing, then the results of [AR00] are still useful
— they would be rather easy to generalise for a richer language of formal expres-
sions. If the encryption system is a pseudorandom permutation then these results
do not generalise. We have to put more work to tracking the possible equality of
the interpretations of subexpressions.

In Sec. 6.5 we give our analysis for checking, whether the interpretations of two
formal expressions are indistinguishable. We also give its proof of correctness in this
section. It is much easier to prove correct than the analysis in Chapter 4, because
we have no loops here and therefore no fixed points that need approximation. The
main idea in the proof of correctness of the analysis (or at least the part of analysis
that deals with encryption) is to assume, that instead of an encryption operation
we have an application of a random function. This assumption is obviously justified
by us requiring, that the encryption operation is a pseudorandom permutation and
therefore also a pseudorandom function. This idea first appears in [BR93a].

We demonstrate the power of our analysis in Sec. 6.6 where we use it to derive
the security for the modes of operation of block ciphers. Basically, we are going to
automatically derive the results of Bellare et al. [BKR94, BDJR97] (only for the
asymptotic case, though).

1However, these means are sufficient to express many cryptographic protocols

6.1. FORMAL EXPRESSIONS 143

6.1 Formal Expressions

The formal expressions are members of a certain formal language. One can com-
pare them to programs, which are also just members of a certain language. Later
we are going to give a computational interpretation for formal expressions; this
interpretation might be compared to the semantics of programs.

Let Keys be a fixed, nonempty set. Formally, its elements do not have any
further structure. Informally, they represent encryption keys (this informal inter-
pretation is later formalised by the computational interpretation).

Definition 6.1. The set of formal expressions, denoted by Exp, is the set defined
by the following grammar:

E ::= K key (for K ∈ Keys)
| (E1, E2) pair (for E1, E2 ∈ Exp)
| {E ′}K encryption (for E ′ ∈ Exp, K ∈ Keys)

When a formal expression describes a message that a party in a cryptographic
protocol sends to another one, then a pair (E1, E2) denotes the pairing of messages
that are described by formal expressions E1 and E2. It could be implemented
by concatenation plus markers, one possible implementation is given in Sec. 6.2.
Similarly, {E}K denotes the encryption of the message described by E with a key
described by K.

These meanings are all informal, though. Formal meaning is given by the com-
putational interpretation in Sec. 6.2.

Someone having received a message, may attempt to analyse it. The following
defines, how a message, described by the formal expression E, may be analysed:

Definition 6.2. Let E, E ′ ∈ Exp. Expression E ′ can be obtained from E, if
E ` E ′, where the relation ` is given by the following inductive definition:

1. E ` E;

2. if E ` E1 and E ` E2 then E ` (E1, E2);

3. if E ` (E1, E2) then E ` E1 and E ` E2;

4. if E ` E ′ and E ` K then E ` {E ′}K;

5. if E ` {E ′}K and E ` K then E ` E ′.

(here E, E ′, E1, E2 ∈ Exp and K ∈ Keys)
The definition is a claim, that the only “useful” messages that can be derived

from a message described by E, are described by formal expressions E ′, such that
E ` E ′. This claim must be a consequence of the properties of the interpretation of
formal expressions. There exists no satisfactory proof for that claim, though. The

144 CHAPTER 6. PSEUDORANDOM PERMUTATIONS

rest of this chapter could be seen to be a partial justification for it. We use the
relation ` in Sec. 6.3.

Let us define some more useful notions, concerning the structure of formal ex-
pressions. Let E1 v E2 denote that E1 is a subexpression of E2. Here we do not
consider a key K to be a subexpression of {E}K. The exact definition of v is given
by the following:

• E v E;

• if E v E ′ then E v (E ′, E ′′) and E v (E ′′, E ′);

• if E v E ′ then E v {E ′}K .

In this definition we do not attempt to reflect the fact that the encryption is sup-
posed to hide the structure of the encrypted text. The definition of v is also usable,
if the key K is known.

Let E be an expression and let K, K ′ be two keys that occur in E. We say
that K encrypts K ′ in E, if there exists an expression E ′, such that K ′ v E ′ and
{E ′}K v E. We say that E has an encryption cycle, if there exist keys K1, . . . , Kl,
such that Ki encrypts Ki+1 in E for all i ∈ {1, . . . , l − 1} and Kl encrypts K1 in
E. The results in this chapter only apply for expressions that have no encryption
cycles. The security definitions of encryption systems do not cover the case, where
E has encryption cycles (see [AR00, Sec. 4.2]).

6.2 Interpretation of Expressions

The interpretation of formal expressions that we are going to define here is more
or less the same as the interpretation given by Abadi and Rogaway [AR00].

Let (G, E, D) be an encryption system that is a pseudorandom permutation
(Def. 2.8). Let the length of keys, corresponding to the security parameter n, be

`(n). Let KeyValn denote the set {0, 1}`(n) and let Valn denote the entire set of
bit-strings {0, 1}∗. We have defined Valn to be able to talk about the family of
sets Val = {Valn}n∈N and about families of probability distributions over it. If
E is a formal expression, then the interpretation of E, denoted [[E]], is a family of
probability distributions over the (family of) set(s) of bit-strings Val.

The interpretation of formal expressions first assigns a value to each atomic
expression and then computes a value for all other expressions. For the expressions
defined in Sec. 6.1, the atomic expressions are keys. Let Initn = Keys → Valn
and let Init be the set of countable tuples

∏
n∈N

Initn. The mapping init that
assigns the values to keys has the type Init. Later we fix the family of probability
distributions over Init, according to which init is picked.

Let τ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a fixed polynomial-time computable
injective function. Moreover, for x, y ∈ {0, 1}∗, let |τ(x, y)| depend only on |x| and
|y|. The function τ is used to define the interpretation of messages whose outermost
constructor is a pairing. Although we do not require that τ is efficiently invertible,
it is more intuitive to assume that (consider the item 3 in Def. 6.2).

6.3. EXPLICIT INTERPRETATION OF CONSTRUCTORS 145

Such τ could be defined as follows. Let f : N × N → N be defined as f(i, j) =
(i+j)(i+j+1)

2
+ i. Then f is (a rather well-known example of) an injective function

from N × N to N. Let x, y ∈ {0, 1}∗. Let ix, iy ∈ N be such, that their binary
representations are 1x and 1y, respectively. Let j = f(ix, iy). Let τ(x, y) be
defined so, that it is the binary representation of j that has been padded from left
with bits 0 to be as long as the binary representation of f(2|x|+2 − 1, 2|y|+2 − 1).
Then τ is injective, because the construction of ix (and iy) is an injective operation
from {0, 1}∗ to N. The padding ensures that the length of τ(x, y) only depends on
the lengths of x and y.

For a given mapping init , the mapping conv gives for each formal expression
the corresponding bit-string.

convn(init , K) = initn(K)

convn(init , (E1, E2)) = τ(convn(init , E1), convn(init , E2))

convn(init , {E}K) = E(1n, initn(K), convn(init , E)) .

(6.1)

For defining the computational interpretation [[E]] ∈ DN(Val) of the formal
expression E, we have to bind init . Define

[[E]] = {|convn(init , E) :
〈
initn(K)← G(1n)

〉
K∈Keys

|}n∈N .

We have fixed the distribution of init by defining that each single key has the
distribution given by G and the distributions of different keys are completely inde-
pendent.

In this chapter, we are looking for sufficient conditions, expressible in terms of
formal expressions E, E ′ ∈ Exp, for [[E]] ≈ [[E ′]].

6.3 Explicit Interpretation of Constructors

The interpretation given in the previous section does not in general allow to deter-
mine, whether a bit-string has been created by pairing or by encryption. Whether
this is desirable or not, depends on the application.

If the application is a cryptographic protocol where the expressions play the role
of messages exchanged between participants, and the honest participants analyse
the structure of the messages that they have received, then each expression has to
be tagged with the identity of its outermost constructor. Basically, everything that
is defined to be obtainable from an expression in the formal setting (Def. 6.2) must
remain obtainable in the computational setting.

Adding tags is straightforward. Let key, pair and ciphertext be three fixed bit-
strings (they have to be different from everything else) and redefine the mapping
conv by

convn(init , K) = τ(initn(K), key)

convn(init , (E1, E2)) = τ(τ(convn(init , E1), convn(init , E2)), pair)

convn(init , {E}K) = τ(E(1n, initn(K), convn(init , E)), ciphertext) .

146 CHAPTER 6. PSEUDORANDOM PERMUTATIONS

The definition of [[E]] remains literally the same.

Instead of introducing tags, we could have introduced constants to the language
defining Exp. In this case we could already have tagged the formal expressions.
Not tagging the computational interpretations of messages can thus be considered
more general and in most of this chapter, onward from Sec. 6.4, we are going to
present the results about this case. In this section, however, we are going to use
tagged interpretations to give an analogue to the result of [AR00] — in Sec. 6.3.1
we are going to define an equivalence relation ∼= on Exp, such that E ∼= E ′ is
sufficient for [[E]] ≈ [[E ′]], as we prove in Sec. 6.3.2. Introducing tags has made the
function conv(init , ·) injective and we need this property here.

6.3.1 The Equivalence Relation ∼=

For the purposes of defining the relation ∼=, we define the language Pat of patterns
as an extension of the language of expressions as follows:

P ::= E an expression
| �E

K undecryptable with identity (K, E) ∈ Keys× Exp

Intuitively, �E
K denotes the same expression as {E}K for someone who cannot

obtain the key K. For someone who knows the keys in K ⊆ Keys we now define,
how he sees the expression E. It is given by the pattern pat(E,K) that is defined
by

pat(K,K) := K

pat((E1, E2),K) := (pat(E1,K), pat(E2,K))

pat({E}K,K) :=

{
{pat(E,K)}K if K ∈ K

�E
K if K 6∈ K .

For each expression E, there is an obvious choice for the set of known keys
K. This is the set of those keys that can be obtained from the expression E itself
(see Def. 6.2). Let us define pattern(E) := pat(E, {K ∈ Keys : E ` K}). This
describes, how an expression looks like for someone that has no prior knowledge
about the keys, but obtains the keys from the expression E itself.

Let us see examples of pattern(E). In the following, K and Ki, where i ∈ N,
denote keys.

• pattern(K) = K

• pattern(({K2}K1, {K3}K1)) = (�K2
K1

,�K3
K1

)

• pattern(({{K1}K2}K3, K3)) = ({�K1
K2
}K3, K3)

• pattern(({{(K1, K1)}K2}K3, K3)) = ({�
(K1,K1)
K2

}K3, K3)

6.3. EXPLICIT INTERPRETATION OF CONSTRUCTORS 147

Before defining the relation ∼=, let us define the meaning of applying certain
bijections to patterns. Recall that S(X) denoted the set of permutations of the set
X.

For P ∈ Pat and σK ∈ S(Keys) let PσK be a pattern where each K ∈ Keys
that occurs as a subpattern (i.e. subexpression) of P or as an encryption key, is
replaced with σK(K). However, the indices of undecryptables are not permuted by
σK. Formally

KσK = σK(K)

(P1, P2)σK = (P1σK, P2σK)

{P}KσK = {PσK}σK(K)

�E
KσK = �E

K .

For P ∈ Pat and σ� ∈ S(Keys×Exp) let Pσ� be a pattern where each subpattern
�E

K is replaced by �E′

K′, where (K ′, E ′) = σ�(K, E).
We now define E1

∼= E2 iff there exist σK ∈ S(Keys) and σ� ∈ S(Keys×Exp),
such that pattern(E1) = pattern(E2)σKσ� and σ� preserves the lengths of the
interpretations of expressions, i.e. for each K ∈ Keys, E ∈ Exp and (K ′, E ′) =
σ�(K, E), the equality |[[E]]| = |[[E ′]]| holds. We have defined the interpretation of
expressions in such a way, that it is easy to compute the length of the interpretation
of a formal expression from the structure of this expression.

Some examples of ∼=:

• K ∼= K ′ for all K, K ′ ∈ Keys. We can choose the permutation σK so, that
σK(K ′) = K.

• ({K2}K1, {K3}K1)
∼= ({K2}K1, {K3}K4). Indeed, the corresponding patterns

are (�K2
K1

,�K3
K1

) and (�K2
K1

,�K3
K4

), the permutation σ� therefore has to map
(K4, K3) to (K1, K3) and (K1, K2) to (K1, K2). Such mapping preserves the
lengths of the interpretations of expressions.

• ({K2}K1, {K3}K1)
∼= ({K2}K1, {K2}K4). The corresponding patterns are

(�K2
K1

,�K3
K1

) and (�K2
K1

,�K2
K4

) and the permutation σ� can be defined. Its
length-preservingness follows from the obvious equality |[[K2]]| = |[[K3]]|.

• ({K2}K1, {K2}K1) 6
∼= ({K2}K1, {K3}K1). The corresponding patterns are

(�K2
K1

,�K2
K1

) and (�K2
K1

,�K3
K1

) and σ� would have to map both (K1, K2) and
(K1, K3) to (K1, K2). But in this case σ� would not be a permutation.

• ({{K1}K2}K3, K3) 6∼= ({{(K1, K1)}K2}K3, K3). The corresponding patterns

(already given before) are ({�K1
K2
}K3, K3) and ({�

(K1,K1)
K2

}K3, K3). Here the
permutation σK must map K3 to K3 and the permutation σ� must map
(K2, (K1, K1)) to (K2, K1). But such permutation σ� would not be length-
preserving.

We have the following result:

148 CHAPTER 6. PSEUDORANDOM PERMUTATIONS

Theorem 6.1. Let E1 and E2 be formal expressions. If E1 and E2 contain no
encryption cycles and E1

∼= E2, then [[E1]] ≈ [[E2]].

6.3.2 Proof of Indistinguishability

This subsection deals with proving the theorem 6.1. It follows the proof by Abadi
and Rogaway [AR00, Sec. 5.2].

Extending the interpretation to �E
K

We start by defining the computational interpretation for all patterns, not only
expressions. We have to extend the mappings init and conv to undecryptables and
fix the distribution of such an extended init .

The mapping init now assigns the values not only to keys but also to undecrypt-
ables. We change the definition of Initn to the type (Keys]Keys×Exp)→ Valn.
As before, Init =

∏
n∈N

Initn and init ∈ Init. We extend the function conv by

convn(i,�E
K) = τ(initn(K, E), ciphertext) .

The interpretation [[P]] ∈ DN(Val) is defined by

[[P]] = {|convn(init , P) : init ← DInit
n |}n∈N

where the distribution DInit
n is such, that

• different arguments of init are independent of each other;

• initn(K) is distributed according to G(1n);

• initn(K, E) is uniformly distributed over the bit-strings of length |[[E]]n|.

Key renaming

Another step (independent of the previous one) is to topologically sort the keys in
E1 and E2. Let Keys(E) ⊆ Keys be the set of all keys that occur in the expression
E (either as a subexpression of E or as an encryption key). We divide this set into
two parts — the keys that an adversary can recover and the keys that it cannot
find out:

recoverable(E) = {K : K ∈ Keys, E ` K}

hidden(E) = Keys(E)\recoverable(E)

Let the cardinality of the set hidden(Ej) be lj, where j ∈ {1, 2}. Let the

elements of the set hidden(Ej) be called K
(1)
j , . . . , K

(lj)
j , where the indexes 1, . . . , lj

are assigned to the keys in such a way that if K
(s)
j encrypts K

(t)
j in Ej, then

s > t. The keys can be ordered in such a way, because Ej has no encryption cycles.

Intuitively, the order on hidden(Ej) is such that the key K
(1)
j is “the deepest” —

there is no subexpression {E ′}
K

(1)
j

of Ej, such that any of the hidden keys of Ej are

subexpressions of E ′.

6.3. EXPLICIT INTERPRETATION OF CONSTRUCTORS 149

Constructing and comparing hybrids

We use the hybrid argument to show that [[E1]] ≈ [[E2]]. We start by defining the
“steps” between [[E1]] and [[E2]].

For j ∈ {1, 2} and s ∈ {0, . . . , lj} define the pattern E
(s)
j by

E
(s)
j = pat(Ej, recoverable(Ej) ∪ {K

(1)
j , . . . , K

(s)
j }) .

These patterns satisfy the following properties:

• E
(lj)
j = Ej. Indeed, all keys are known when defining E

(lj)
j . Hence no subex-

pressions Ej are replaced with undecryptables.

• E
(s)
j does not contain the keys K

(s+1)
j , . . . , K

(lj)
j (except in the indexes of

undecryptables). This follows from the acyclicity of the “encrypts”-relation in
Ej.

Consider the following sequence of distributions:

[[E
(l1)
1]], [[E

(l1−1)
1]], . . . , [[E

(0)
1]], [[E

(0)
2 σKσ�]], [[E

(0)
2]], [[E

(1)
2]], . . . , [[E

(l2)
2]] (6.2)

Our task is to show that the two outermost distributions ([[E
(l1)
1]] and [[E

(l2)
2]]) are

indistinguishable. We do it by showing that any two neighbouring distributions in
the sequence (6.2) are indistinguishable. The rest follows then from the transitivity
of indistinguishability (lemma 2.9).

The assumption gives us E
(0)
1 = E

(0)
2 σKσ� and thus also [[E

(0)
1]] = [[E

(0)
2 σKσ�]].

By the properties of σK and σ� and the interpretation of keys and undecrypta-
bles, [[E

(0)
2 σKσ�]] = [[E

(0)
2]]. Indeed, the interpretations of all keys are equal (as

distributions) and the interpretations of undecryptables of the same length are also
equal.

Breaking the encryption

Assume that there exists a j ∈ {1, 2} and s ∈ N, 0 ≤ s < lj, such that [[E
(s)
j]] 6≈

[[E
(s+1)
j]]. Denote the algorithm distinguishing those two distributions by B. In

this case the algorithm A
(·)
Ej ,s given in Fig. 6.1 shows that the encryption system

(G, E, D) that we are using in computationally interpreting formal expressions, is
not a pseudorandom function. Indeed, the following lemma holds:

Lemma 6.2. If the oracle given to A
(·)
Ej ,s(1

n) is a random function, then the output

of CONV(Ej) has a distribution that is indistinguishable from [[E
(s)
j]].

Proof. It is sufficient to show that after fixing init in the algorithm A
(·)
E,s, E1 6=

E2 almost always implies2 CONV(E1) 6= CONV(E2) for all E1, E2 v E, where

2the opposite case has negligible probability

150 CHAPTER 6. PSEUDORANDOM PERMUTATIONS

Let E have the hidden keys K(1), . . . , K(l), sorted by the “encrypts”-relation.
Let PRFs+2, . . . , PRFl be different instances of the stateful oracle PRF (see
Fig. 2.4), i.e. they have separate internal states.

The algorithm A
f(·)
E,s(1

n):

1: for all K ∈ Keys, K v E do
2: init(K)← G(1n)
3: end for
4: Initialise the internal states of PRFs+2, . . . , PRFl

5: Initialise encode (see below; may be done by tabulating its values)
6: x← CONV(E)
7: result ← B(1n, x)
8: return result

The algorithm CONV(E):

1: if E = K, K ∈ Keys then
2: result := τ(init(K), key)
3: else if E = (E1, E2) then
4: x1 ← CONV(E1)
5: x2 ← CONV(E2)
6: result := τ(τ(x1, x2), pair)
7: else if E = {E ′}K then
8: x′ ← CONV(E ′)
9: if K ∈ recoverable(E) ∪ {K (1), . . . , K(s)} then

10: x = E(1n, init(K), x′)
11: else if K = K(s+1) then
12: x← f(x′)
13: else if K = K(t), s + 2 ≤ t ≤ l then
14: x← PRFt(encode(E ′))
15: end if
16: result := τ(x, ciphertext)
17: end if
18: return result

encode : {E ′ ∈ Exp : E ′ v E} → {0, 1}∗ is an injective function, such that for all
E ′ v E, the length of encode(E ′) is equal to the length of [[E ′]]n.

Figure 6.1: The Adversary A
(·)
E,s

6.3. EXPLICIT INTERPRETATION OF CONSTRUCTORS 151

the probability is taken over the distribution of init and over the choices of the
oracles PRFt. Indeed, the only reason why we cannot say that the output of
CONV(Ej) is distributed identically to [[E

(s)
j]], is the following: assume that the

expression E has subexpressions {E1}K(s+1) and {E2}K(s+1), where E1 6= E2. In

[[E
(s)
j]], these subexpressions have been converted to �E1

K(s+1) and �E2

K(s+1) , respec-
tively, and their interpretations are two independent random bit-strings. The results
of CONV({E1}K(s+1)) and CONV({E2}K(s+1)) are random bit-strings, too (gener-
ated at the 12th line of the algorithm CONV by invoking the random function f),
but there is a small chance that they are equal, not independent. This happens iff
CONV(E1) = CONV(E2) (see the 8th line of the algorithm CONV). Hence it is
sufficient to show that this case occurs only negligibly often.

Let E1, E2 v E such that E1 6= E2. The proof that CONV(E1) = CONV(E2)
only has negligible probability, is by induction on the structure of E1 and E2.

Base: E1 or E2 is a key. if the other one is not a key, then CONV(E1) and
CONV(E2) are different by the injectivity of τ . If both E1 and E2 are keys then
they must be different. But in this case the probability of init(E1) = init(E2) is
negligible, otherwise the encryption system would not be secure (it would be too
easy to guess the keys).

Step: neither E1 nor E2 is a key. If one of E1 or E2 is a subexpression of
the other then CONV(E1) and CONV(E2) have different lengths and are therefore
unequal. Assume that E1 6v E2 and E2 6v E1.

• If E1 is a pair and E2 an encryption, then CONV(E1) = τ(. . . , pair) and
CONV(E2) = τ(. . . , ciphertext); they are thus different (because τ is injec-
tive).

• The argument is the same when E1 is an encryption and E2 is a pair.

• If E1 = (E ′
1, E

′′
1) and E2 = (E ′

2, E
′′
2) then either E ′

1 6= E ′
2 or E ′′

1 6= E ′′
2 .

Assume w.l.o.g. that E ′
1 6= E ′

2. From the induction assumption follows that
the probability for CONV(E ′

1) = CONV(E ′
2) is negligible. The rest follows

from the injectivity of τ .

• If E1 = {E ′
1}K1 and E2 = {E ′

2}K2, then

– if K1 = K2 then E ′
1 6= E ′

2 and thus the probability that CONV(E ′
1) =

CONV(E ′
2) is negligible. If K1 ∈ recoverable(E)∪{K (1), . . . , K(s)}, then

CONV(Ei) is computed from CONV(E ′
i) by applying an injective func-

tion to it. If K1 ∈ {K
(s+1), . . . , K(l)}, then CONV(E1) and CONV(E2)

are two random numbers (tagged with ciphertext) that are almost always
independent and therefore almost always different.

– if K1 6= K2 then assume w.l.o.g. that K1 does not encrypt K2 in E.
Consider all subexpressions of E1 that have the form {E ′}K2. E2 6v E1,
hence E ′

2 6= E ′. From the induction assumption we derive that almost
always CONV(E ′

2) 6= CONV(E ′). Similarly, for all subexpressions of E ′
2

with the form {E ′}K2 we almost always have CONV(E ′
2) 6= CONV(E ′).

152 CHAPTER 6. PSEUDORANDOM PERMUTATIONS

Suppose that K2 ∈ recoverable(E) ∪ {K (1), . . . , K(s)}. The key K2 only
occurs in E1 and E2 as the key in encryption operations (because of
the nonexistence of encryption cycles). This means that for computing
CONV(E1) and CONV(E2) we do not need the value of init(K2), it is
sufficient to have an oracle that encrypts with init(K2). This oracle may
be replaced by a random function without changing the distribution of
CONV(E1) and CONV(E2) in a distinguishable way.

If K2 ∈ {K
(s+1), . . . , K(l)}, then the algorithm CONV already uses a

random function for implementing the encryption with K2.

Consider the process of computing CONV(E1) and CONV(E2) (in that
order), where the encryption with K2 has been implemented by a ran-
dom function. The last step of the computation is invoking that random
function on CONV(E ′

2). But CONV(E ′
2) is almost always different from

anything else that has been given as the argument of this random func-
tion before. The result of this invocation is thus a random number that
is almost always independent from anything else, and therefore almost
always different from anything else.

Also, if the oracle given to A
(·)
Ej ,s(1

n) is E(1n, k, ·), where k is distributed accord-

ing to G(1n), then the output of CONV(Ej) is distributed identically to [[E
(s+1)
j]].

But we have now contradicted our assumption that the used encryption system was
a PRP.

6.4 More Operators

The set Exp as defined above is not very expressive, as the only ways to combine
expressions are pairing and encryption. Here we extend Exp, such that we can
express general computations (that do not require loops) in it. We do it by in-
troducing more constructors of expressions. Let Op be the set of operators, the
elements of these set are the names of constructors. Each element o of Op has an
associated arity ar(o) ∈ N.

We also extend the set Exp by introducing inputs to expressions, similar to the
inputs to a program. Let Inps be the set of inputs. Formally, Inps is just a set.
We can now extend the set of expressions by

E ::= . . .
| o(E1, . . . , Ear(o)) computation (for o ∈ Op, E1, . . . , Ear(o) ∈ Exp)
| V input parameter (V ∈ Inps).

For giving the computational interpretation we first need the semantics of op-
erators. The semantics of an operator o is a family of polynomial-time computable

6.5. ANALYSIS 153

functions [[o]] : Valar(o)
N
→ Val. This time, we require that the semantics of op-

erators is deterministic, this is helpful for tracking the equality of interpretations
of messages. In the absence of loops, a deterministic semantics is as general as a
probabilistic semantics. If we would like to have an operator o to have probabilistic
semantics, then we could replace o by another operator o′ with arity ar(o)+ 1. The
algorithm computing [[o′]] works in the same way as the algorithm computing [[o]],
but instead of getting random bits by throwing coins, it uses the bits of its extra
argument.

We will now extend the function conv. The mapping init must give values to
keys and inputs. We therefore change the definition of Initn, letting it be (Keys]
Inps) → Valn. As before, Init =

∏
n∈N

Initn and init ∈ Init. The function conv
(the tagless version, as defined in (6.1)) is extended by

convn(init , o(E1, . . . , Ear(o)) := [[o]]n(convn(init , E1), . . . , convn(init , Ear(o)))

convn(init , V) := initn(V) .

[[E]] is defined again as conv(init , E), where init is distributed according to
the distribution DInit ∈ DN(init). The distribution DInit must be such that the
values init(K), where K ∈ Keys, are distributed as keys and are independent of
everything else. There are no further constraints on the distribution — different
inputs to the expression do not have to be independent of each other, for example.
The distribution DInit corresponds to the distribution of inputs to a program.

As before, we are interested in sufficient conditions for the indistinguishability of
interpretations of formal expressions. We could try to define an equivalence relation
on formal messages, similar to the previous section, but this equivalence would no
longer be sufficient for the indistinguishability of interpretations. The lemma 6.2
would no longer hold as the algorithm CONV on Fig. 6.1 no longer necessarily maps
different expressions to different bit-strings.

6.5 Analysis

Our approach is to define a suitable formal language PC of claims to express the
properties of the interpretation [[·]]. One of the properties that this language can
express is, that the interpretations of two expressions are indistinguishable.

We will define, when a claim C ∈ PC holds for the interpretation [[·]]. For
example, the claim “expressions E1 and E2 have indistinguishable interpretations”
holds iff [[E1]] ≈ [[E2]]. We denote “claim C holds for the interpretation [[·]]” by
[[·]] � C.

We also give a number of “rules” in the form of C1, . . . , Ck ⇒ Ck+1, where
C1, . . . , Ck+1 ∈ PC. For each of these rules we prove that if [[·]] � Ci for all
i ∈ {1, . . . , k}, then also [[·]] � Ck+1.

We can use the following method to determine whether [[E1]] ≈ [[E2]]:

154 CHAPTER 6. PSEUDORANDOM PERMUTATIONS

• Start with a set C0 ⊂ PC that describes the properties of interpretations of
formal keys and input parameters. The set C0 corresponds to the abstraction
of initial program state in chapter 4. Let C := C0.

• Using given rules derive from the elements of C new claims that also hold for
interpretations of formal expressions. Add them to C.

• Try to derive the claim that has the meaning [[E1]] ≈ [[E2]].

6.5.1 The Language of Claims

The language PC is given by the following formal grammar:

C ::= Uniform(E)
| Constant(E)
| Random(E)
| Uneq(E1, E2)
| Indep({E1, . . . , Ek}, {E

′
1, . . . , E

′
l})

| SameDist({(E1, E
′
1), . . . , (Ek, E

′
k)})

that intuitively have the following meaning:

• Uniform(E) means that the interpretation of the formal expression E is indis-
tinguishable from the uniform distribution of bit-strings of the same length.

• Constant(E) means that the interpretation of E is a distribution that puts all
its weight onto a single bit-string.

• Random(E) means that the interpretation of E is a distribution that only lays
negligible weight onto each bit-string.

• Uneq(E1, E2) means that when we choose init once (according to the initial
probability distribution) and compute conv(init , E1) and conv(init , E2), then
the probability that they are equal is negligible.

• Indep({E1, . . . , Ek}, {E
′
1, . . . , E

′
l}) denotes the independence of sets of expres-

sions, similarly to Sec. 4.1.

• SameDist({(E1, E
′
1), . . . , (Ek, E

′
k)}) means that the expressions (E1, . . . , Ek)

and (E ′
1, . . . , E

′
k) have indistinguishable interpretations. We could have de-

fined that the argument of SameDist is a pair of expressions, not a set of
pairs of expressions, but the definition that we have given seems to be more
intuitive.

Also, there are restrictions on encryption cycles: in the following we only handle
such elements C of PC, where the restrictions given in Table 6.1 hold.

The meaning of claims is formalised by defining the relation [[·]] � C for C ∈ PC.
The definition is given in Fig. 6.2. This definition also explains the restrictions on

6.5. ANALYSIS 155

C ∈ PC is no encryption cycles in
Uniform(E) E
Constant(E) E
Random(E) E
Uneq(E1, E2) (E1, E2)
Indep({E1, . . . , Ek}, {E

′
1, . . . , E

′
l}) (E1, . . . , Ek, E

′
1, . . . , E

′
l)

SameDist({(E1, E
′
1), . . . , (Ek, E

′
k)}) (E1, . . . , Ek) and (E ′

1, . . . , E
′
k)

Table 6.1: Prohibited encryption cycles for claims

[[·]] � Uniform(E) iff

[[E]] ≈ U({0, 1}|[[E]]|) .

[[·]] � Constant(E) iff there exists a polynomial-time algorithm A, such that

Pr
[
x 6= y : x← [[E]]n, y ← A(1n)

]

is negligible.
[[·]] � Random(E) iff for all PPT algorithms A the probability

Pr
[
x = y : x← [[E]]n, y ← A(1n)

]

is negligible.
[[·]] � Uneq(E1, E2) iff the probability

Pr
[
x = y : τ(x, y)← [[(E1, E2)]]n

]

is negligible.
[[·]] � Indep({E1, . . . , Ek}, {E

′
1, . . . , E

′
l}) iff

[[((E1, . . . , Ek), (E
′
1, . . . , E

′
l))]] ≈ τ([[(E1, . . . , Ek)]], [[(E

′
1, . . . , E

′
l)]]) .

[[·]] � SameDist({(E1, E
′
1), . . . , (Ek, E

′
k)}) iff

[[(E1, . . . , Ek)]] ≈ [[(E ′
1, . . . , E

′
k)]] .

Figure 6.2: The relation �

156 CHAPTER 6. PSEUDORANDOM PERMUTATIONS

encryption cycles in formal expressions — expressions E, for which [[E]] is computed,
must have no encryption cycles.

We are going to state a number of rules in the form of implications between
different claims. These implications are correct for every possible interpretation.
We prove each rule immediately after stating it.

6.5.2 General Rules

Here we give the rules whose correctness does not depend on any extra assumptions
about the properties of the semantics of operators.

Analysis Rule G.1. If K1, K2 ∈ Keys then SameDist({(K1, K2)}).

Proof. By the distribution of init .

Analysis Rule G.2. If K1, K2 ∈ Keys and K1 6= K2 then Indep({K1}, {K2}).

Proof. By the distribution of init .

Analysis Rule G.3. The predicates SameDist, Indep and Uneq are all symmetric.
Also, the predicate Indep is monotone — if Indep(X, Y) holds and X ′ ⊆ X and
Y ′ ⊆ Y , then also Indep(X ′, Y ′) holds. The predicate SameDist is monotone, too
— if X ⊆ Exp×Exp, X ′ ⊆ X and SameDist(X) holds, then SameDist(X ′) holds,
too.

Proof. Symmetry follows directly from the definition of �. The monotonicity of
Indep has been explained in Sec. 4.1. The monotonicity of SameDist is similar, if

[[(E1, . . . , Ek)]] ≈ [[(E ′
1, . . . , E

′
k)]]

and 1 ≤ i1 < i2 < · · · < il ≤ k, then also

[[(Ei1 , . . . , Eil)]] ≈ [[(E ′
i1
, . . . , E ′

il
)]] .

Indeed, an algorithm that could distinguish the latter two distributions could also
distinguish the former two.

Analysis Rule G.4. For all X ⊆ Exp the claim Indep(∅, X) holds.

Proof. Follows directly from the definition of �.

Analysis Rule G.5. For all E1, . . . , Ek ∈ Exp the claim
SameDist({(E1, E1), . . . , (Ek, Ek)}) holds.

Proof. Follows directly from the definition of �.

Analysis Rule G.6. If E, E ′ ∈ Exp, where |[[E]]| = |[[E ′]]| (recall that the equal-
ity of lengths of interpretations of expressions should be checkable directly from
these expressions) and the claims Uniform(E) and Uniform(E ′) hold, then the claim
SameDist({(E, E ′)}) also holds.

6.5. ANALYSIS 157

Proof. Follows directly from the definition of �.

Analysis Rule G.7. Let X, Y ⊂ Exp and let E1, . . . , Ek ∈ X. If the claim
Indep(X, Y) holds, then the claim Indep(X ∪ {o(E1, . . . , Ek)}, Y) also holds, where
o ∈ Op is any k-ary operator.

Proof. This is a restatement of rule (4.10).
Indeed, if we have an algorithm A that can distinguish the distributions

[[((〈E〉E∈X , o(E1, . . . , Ek)), (〈E〉E∈Y))]]

and
τ([[(〈E〉E∈X , o(E1, . . . , Ek))]], [[(〈E〉E∈Y)]]),

then an algorithm that first computes o(E1, . . . , Ek) and then invokes A can distin-
guish the distributions

[[((〈E〉E∈X), (〈E〉E∈Y))]]

and
τ([[(〈E〉E∈X)]], [[(〈E〉E∈Y)]]) .

We have shown that [[·]] 6� Indep(X ∪ {o(E1, . . . , Ek)}, Y) implies [[·]] 6� Indep(X, Y).

Analysis Rule G.8. Let E1, . . . , Ek, E
′
1, . . . , E

′
k ∈ Exp. Let o be an l-ary operator

and let i1, . . . , il ∈ {1, . . . , k}. If the claim

SameDist({(E1, E
′
1), . . . , (Ek, E

′
k)}) (6.3)

holds, then the claim

SameDist({(E1, E
′
1), . . . , (Ek, E

′
k), (o(Ei1, . . . , Eil), o(E

′
i1
, . . . , E ′

il
))}) (6.4)

also holds.

Proof. This rule is similar to the previous rule. If we have an algorithm A that can
distinguish the two distributions associated with claim (6.4) (see Fig. 6.2), then
the algorithm that first computes the value of the operation o on expressions in
the i1-th,. . . ,il-th position in the tuple and then invokes A can distinguish the two
distributions associated with claim (6.3).

Analysis Rule G.9. Let E ∈ Exp and X, Y ⊆ Exp. If the claims Constant(E)
and Indep(X, Y) hold, then the claim Indep(X ∪ {E}, Y ∪ {E})also holds.

Proof. This is a restatement of rule (4.13). The interpretation of the expression
E puts almost all of its weight onto a single value, therefore it does not matter,
whether [[E]] has been sampled once or twice.

Analysis Rule G.10. Let K ∈ Keys. The claim Random(K) holds.

158 CHAPTER 6. PSEUDORANDOM PERMUTATIONS

Proof. By the distribution of init .

Analysis Rule G.11. Let E ∈ Exp. If the claim Uniform(E) holds, then the claim
Random(E) also holds.

Proof. The distribution [[E]] puts only negligible weight onto each bit-string of
length |[[E]]|, otherwise it would be distinguishable from an uniform distribution.
I.e. Random(E) holds.

Analysis Rule G.12. Let E, E ′ ∈ Exp. If the claims Random(E) and
Indep({E}, {E ′}) hold, then the claim Uneq(E, E ′) also holds.

Proof. We have to show that Pr
[
x = y : τ(x, y) ← [[(E, E ′)]]n

]
is negligible in n.

By the independence of E and E ′ we have

Pr
[
x = y : τ(x, y)← [[(E, E ′)]]n

]
= Pr

[
x = y : x← [[E]]n, y ← [[E ′]]n

]
+ α(n),

where α is some negligible function. But, by the definition of �, the probability
Pr

[
x = y : x ← [[E]]n, y ← [[E ′]]n

]
is negligible as well, because E is random and

[[E ′]] is polynomial-time constructible.

Analysis Rule G.13. Let E1, . . . , Ek, E
′
1, . . . , E

′
k, F1, . . . , Fl, F

′
1, . . . , F

′
l ∈ Exp.

Then the following implication between claims holds:

Indep({E1, . . . , Ek}, {F1, . . . , Fl}) ∧ SameDist({(E1, E
′
1), . . . , (Ek, E

′
k)})∧

SameDist({(F1, F
′
1), . . . , (Fl, F

′
l)}) ∧ Indep({E ′

1, . . . , E
′
k}, {F

′
1, . . . , F

′
l })⇒

SameDist({(E1, E
′
1), . . . , (Ek, E

′
k), (F1, F

′
1), . . . , (Fl, F

′
l)}) .

This rule is used to derive bigger claims SameDist(. . .) from smaller ones.

Proof. We have to show that the two distributions in Fig. 6.2, associated with the
claim on the right hand side of the implication, are indistinguishable. We have

[[((E1, . . . , Ek), (F1, . . . , Fl))]] ≈
Indep({E1,...,Ek},{F1,...,Fl})

τ([[(E1, . . . , Ek)]], [[(F1, . . . , Fl)]]) ≈
SameDist({(E1 ,E′

1),...,(Ek,E′
k
)})

τ([[(E ′
1, . . . , E

′
k)]], [[(F1, . . . , Fl)]]) ≈

SameDist({(F1 ,F ′
1),...,(Fl,F

′
l
)})

τ([[(E ′
1, . . . , E

′
k)]], [[(F

′
1, . . . , F

′
l)]]) ≈

Indep({E′
1,...,E′

k
},{F ′

1,...,F ′
l
})

[[((E ′
1, . . . , E

′
k), (F

′
1, . . . , F

′
l))]],

where at each ≈ we have marked the claim that gives the indistinguishability of
these two distributions.

6.5. ANALYSIS 159

6.5.3 Rules for Encryption

Let NewEnc(K, E, E ′), where K ∈ Keys and E, E ′ ∈ Exp, be synonymous to
the following statements about the structure of E ′ and the claims holding for the
subexpressions of E, E ′:

• K 6v E ′

• For all such E ′′ ∈ Exp that {E ′′}K v E ′ the claim Uneq(E, E ′′) holds.

We use the assumptions NewEnc(K, E, E ′) when we want to introduce a claim
that includes {E}K. From the condition K 6v E ′ follows that for computing [[E ′]]
we do not need the value of the key K, we may only need an oracle that encrypts
with (the value of) K. Same holds for computing [[E]], because otherwise we would
have an encryption cycle. In the following, we may replace the oracle encrypting
with K by the oracle PRF.

Consider now computing the interpretation of E ′, followed by computing the
interpretation of {E}K. Because of the claims Uneq(E, E ′′) for every subexpression
E ′′ of E ′ that is encrypted with K, when we submit the value of E to the oracle
to obtain the value of {E}K, then we are submitting to it a value that is different
from all values that may have been submitted to the oracle while computing the
value of E ′. Therefore the value of {E}K will look just like a random bit-string to
an observer that only has the value of E ′.

Analysis Rule E.1. Let E ∈ Exp and K ∈ Keys. If K 6v E, then the claim
Random({E}K) holds.

Proof. We do not need the value of K for computing the value of {E}K, we only
need an oracle that encrypts with its value. Therefore convn(init , {E}K) is a value
returned by the oracle PRF, therefore it is a random bit-string.

Analysis Rule E.2. Let E ∈ Exp and K ∈ Keys. If all the claims given by
NewEnc(K, E, E) hold, then the claim Uniform({E}K) also holds.

Proof. Additionally to the previous rule, convn(init , {E}K) is a value returned by
PRF for a query that has not been made before while computing convn(init , E).
Therefore it is uniformly distributed.

Analysis Rule E.3. Let E, E ′ ∈ Exp and K ∈ Keys. If all the claims given by
NewEnc(K, E, E ′) hold, then the claim Uneq({E}K, E ′) also holds.

Proof. Follows from the arguments made to describe NewEnc. The value of {E}K

is a random number that has not been used when computing the value of E ′.

Analysis Rule E.4. Let E ∈ Exp, X, Y ⊆ Exp and K ∈ Keys. If the
claim Indep(X, Y) holds and if for all E ′ ∈ X ∪ Y ∪ {E} the claims given by
NewEnc(K, E, E ′) hold, then the claim Indep(X ∪ {{E}K}, Y) also holds.

160 CHAPTER 6. PSEUDORANDOM PERMUTATIONS

Proof. Consider the procedure that computes the values of all expressions in X∪Y ,
then computes the value of the expression E and as the last step encrypts it under
K. This procedure does not need the key K, it only needs an oracle encrypting
with K; we may assume this oracle is PRF. When the procedure submits the value
of E to the oracle for encryption, then the same value has not been submitted to
the oracle before (this follows from all the claims NewEnc(K, E, E ′)). Therefore
the value returned by the oracle is a newly generated random number, it is not
dependent of anything. Therefore Indep({{E}K}, X ∪ Y) holds. By Lemma 4.1,
the claim Indep(X ∪ {{E}K}, Y) also holds.

6.5.4 Rules for Group Operations

In the following we give some rules for dealing with binary operators ⊕ ∈ Op whose
semantics is such, that for each n ∈ N, ({0, 1}∗, [[⊕]]n) is a group. The operator ⊕
might denote exclusive or, or addition modulo some suitable power of 2.

When constructing formal expressions with ⊕, we use infix notation. Thus
E1 ⊕ E2 really means ⊕(E1, E2).

Being a group operation is even a too strong requirement for⊕. For the following
rules to hold, it is sufficient when for each n ∈ N and y ∈ {0, 1}∗ the mapping
x 7→ x [[⊕]]n y is a bijective function on {0, 1}∗.

If [[⊕]] is commutative, then we can swap the arguments of ⊕ in expressions in
the statements of the following rules.

Analysis Rule X.1. Let E, E1, E2 ∈ Exp. If the claim Uneq(E1, E2) holds, then
the claim Uneq(E1 ⊕ E, E2 ⊕ E) also holds.

Proof. Follows directly from the semantics of ⊕.

Analysis Rule X.2. Let E, E ′ ∈ Exp. If the claims Uniform(E) and
Indep({E}, {E ′}) hold, then the claim Uniform(E ⊕ E ′) also holds.

Proof. By the claim Indep({E}, {E ′}), the distribution [[E ⊕ E ′]] is indistinguishable
from the distribution

{|x [[⊕]]n y : x← [[E]]n, y ← [[E ′]]n|}n∈N .

In this distribution, for each possible value of y, the value of x is uniformly dis-
tributed and therefore the value of x [[⊕]]n y is uniformly distributed as well.

Analysis Rule X.3. Let E, E ′ ∈ Exp and X, Y ⊆ Exp. If the claims

• Uniform(E)

• Indep(X, Y)

• Indep({E}, X ∪ Y ∪ {E ′})

hold, then the claim Indep(X ∪ {E ⊕ E ′}, Y) holds as well.

6.5. ANALYSIS 161

Proof. We are going to show that the claim Indep({E ⊕ E ′}, X ∪ Y) holds. The
correctness of this rule follows then from Lemma 4.1.

By the claim Indep({E}, X ∪Y ∪{E ′}), for each fixed value of the expression E ′

and the expressions E ′′ ∈ X∪Y , the value of the expression E is still uniformly dis-
tributed. Therefore the value of the expression E⊕E ′ is still uniformly distributed
for each fixed value of the expressions E ′′ ∈ X ∪ Y , i.e. the value of E ⊕ E ′ does
not depend on the values of the expressions E ′′ ∈ X ∪ Y .

6.5.5 Special Rules

For completeness of the presentation, we state some rules for other operators that we
have mentioned before, namely pairing and the choice operator ? :. The correctness
of these rules depends again on the properties of the semantics of these operators.

Analysis Rule P.1. Let E1, E2 ∈ Exp. If the claim Uneq(E1, E2) holds, then the
claim Uneq((E1, E

′
1), (E2, E

′
2)) also holds for all E ′

1, E
′
2 ∈ Exp. Similar rule holds

for the right component.

Proof. Follows directly from the semantics of the pairing constructor.

The semantics of the ternary choice operator ? : is assumed to be the following:

[[? :]]n(b, x, y) =

{
x, if b denotes the value true

y, if b denotes the value false

for each b, x, y ∈ Valn. When constructing formal expressions with ? :, we use infix
notation. Thus Eb ?Ex :Ey really means ? :(Eb, Ex, Ey).

Analysis Rule C.1. Let X, Y ⊆ Exp and let Eb, Ex, Ey ∈ Exp. If the claims

• Indep(X ∪ {Eb, Ex}, Y)

• Indep(X ∪ {Eb, Ey}, Y)

hold, then the claim Indep(X ∪ {Eb, Eb ?Ex :Ey}, Y) also holds.

Proof. This is actually a special case of rule (4.29). Let X = {E1, . . . , Ek} and
Y = {F1, . . . , Fl}. We have to show that distributions

[[((E1, . . . , Ek, Eb, Eb ?Ex :Ey), (F1, . . . , Fl))]] (6.5)

and
τ([[(E1, . . . , Ek, Eb, Eb ?Ex :Ey)]], [[(F1, . . . , Fl)]]) (6.6)

are indistinguishable. Assume that they are not indistinguishable, i.e. there exists
an algorithm A that distinguishes them. We will now construct an algorithm Ax

that attempts to distinguish the distributions

[[((E1, . . . , Ek, Eb, Ex), (F1, . . . , Fl))]] (6.7)

162 CHAPTER 6. PSEUDORANDOM PERMUTATIONS

and

τ([[(E1, . . . , Ek, Eb, Ex)]], [[(F1, . . . , Fl)]]), (6.8)

i.e. it attempts to show that the antecedent Indep(X ∪ {Eb, Ex}, Y) does not hold.
Given a sample of either (6.7) or (6.8), the algorithm Ax first checks the value

of Eb. If it is true, then Ax calls A with the same inputs and returns, whatever A

returns. If the value of Eb is false, then Ax returns “failure”.
Similarly, we construct an algorithm Ay attempting to distinguish

[[((E1, . . . , Ek, Eb, Ey), (F1, . . . , Fl))]]

and

τ([[(E1, . . . , Ek, Eb, Ey)]], [[(F1, . . . , Fl)]]),

i.e. to show that the antecedent Indep(X ∪ {Eb, Ey}, Y) does not hold. Similarly
to Ax, the algorithm Ay first checks the value of Eb. If the value is true, it returns
“failure”. If the value if false, it calls the algorithm A.

The sum of the advantages of Ax and Ay is equal to the advantage of A. There-
fore at least one of these advantages is non-negligible and at least one of the an-
tecedents of the rule does not hold.

Our language of expressions Exp does not contain expressions of the form
{E}B ?K :K′, where E, B ∈ Exp and K, K ′ ∈ Keys. We only allow to encrypt
with keys, not with arbitrary “key-valued” expressions, although we could also de-
fine the computational interpretation for such kind of formal expressions. However,
such an expression could be transformed to B ?{E}K :{E}K′; this expression has
the same computational interpretation and it is a member of Exp. One could say
that this transformation has only restricted utility because it can lead to expo-
nential growth of the size of the formal expression. However, this depends on the
definition of “size”. The size of a formal expression E should reflect the amount
of memory necessary to store it; this amount obviously depends on the encoding.
If we define the size of a formal expression simply as the length of the string that
represents it, then the described transformation indeed changes the expression

{· · · {{E}B1 ?K1 :K′
1
}B2 ?K2 :K′

2
· · · }Bm ?Km :K′

m
(6.9)

(with size proportional to m) to an expression with size proportional to 2m. How-
ever, if the common subexpressions are only stored once, then the expression (6.9)
is transformed to the expression shown on Fig. 6.3 that still has size proportional
to m.

6.6 Examples

In this section we show that some rather interesting/relevant things can be made
with the analysis given in the previous section. Namely, we derive from our analysis

6.6. EXAMPLES 163

Bm B2 B1

? :

::tttt
//

$$JJJJ {·}·
%%KKKK

$$ %% ? :

::uuuu
//

$$IIII {·}·
$$II

II
�� ? :

::uuuu
//

$$IIII {·}·
$$II

II
!! E

{·}·
$$II

II
I

::uuuuuuuuu Km

DD
						 {·}·

##GGGG

??~~~~~~~ K2 {·}·
##GGGG

=={{{{{{{{ K1

K ′
m K ′

2 K ′
1

Figure 6.3: Storing the transformed expression

that certain block-cipher’s modes of operation satisfy quite strong security prop-
erties. In Sec. 6.6.1 we give the specification of two modes of operation, namely
Cipher Block Chaining (CBC) mode and Counter (CTR) mode alias XOR-mode.
In Sec. 6.6.2 we give the derivation for the CBC-mode and in Sec. 6.6.3 for the
CTR-mode.

6.6.1 Block-Ciphers’ Modes of Operation

A block cipher is an encryption system, where the plaintext must have a certain,
fixed length. Let q(n) denote the length of the plaintext (and also the length of the
ciphertext) for the security parameter n, we may assume q ∈ Pol(Z). If one wants
to encrypt a bit-string x of arbitrary length (however, we may assume that |x| is
a multiple of q(n), by suitably padding the bit-string x), then one first divides x
to q(n)-bit blocks x1, . . . , xm and then combines these blocks and the encryption
operation according to the chosen mode of operation.

Therefore, let x1x2 · · ·xm, where x1, . . . , xm ∈ {0, 1}q(n), be the plaintext and
let K be the key.

CBC-mode. The ciphertext is y0y1y2 · · ·ym, where y0, . . . , ym ∈ {0, 1}q(n) are
created as follows:

• y0 picked according to the uniform distribution over {0, 1}q(n);

• yi = {xi ⊕ yi−1}K for all i ∈ {1, . . . , m}. Here ⊕ denotes bitwise exclusive or.

CTR-mode. The ciphertext is y0y1y2 · · · ym, where y0, . . . , ym ∈ {0, 1}q(n) are
created as follows:

• y0 picked according to the uniform distribution over {0, 1}q(n);

• yi = {y0 + i}K ⊕ xi for all i ∈ {1, . . . , m}. Here + denotes addition modulo
2q(n) and ⊕ denotes bitwise exclusive or.

For both modes we show

SameDist({(x1, x1), . . . , (xm, xm), (y0, r0), . . . , (ym, rm)}),

164 CHAPTER 6. PSEUDORANDOM PERMUTATIONS

name claim

Ci SameDist({(x1, x1), . . . , (xm, xm), (y0, r0), . . . , (yi, ri)})
Di

1 SameDist({(yi, ri)})
Di

2 Indep({x1, . . . , xm, y0, . . . , yi−1}, {yi})
Di

3 Indep({x1, . . . , xm, r0, . . . , ri−1}, {ri})
Di

4 Uniform(yi)

Di,j
5 Uneq(xi ⊕ yi−1, xj ⊕ yj−1)

Di
6 Uniform(xi ⊕ yi−1)

D̃i
6 Random(xi ⊕ yi−1)

Di,j
7 Indep({xi ⊕ yi−1}, {xj ⊕ yj−1})

Di,j
8 Indep({yi−1}, {xi, xj ⊕ yj−1})

Di
9 Indep({x1, . . . , xm, y0, . . . , yi−1}, ∅)

Ci, Di
1, Di

2, Di
3 and Di

4 are also defined for i = 0.

Table 6.2: Claims for showing the security of the CBC-mode

where (the interpretations of) r0, . . . , rm are uniformly distributed, mutually inde-
pendent bit-strings of length q(n). This is already a rather strong secrecy property.
Abadi and Rogaway [AR00, Sec. 4.4] claim that this is sufficient for being a which-
key and repetition concealing encryption.

Here the set Inps of inputs consists of x1, . . . , xm, y0, r0, . . . , rm. The following
claims hold about their distribution (i.e. the set C0 has the following elements):

S-1. Uniform(y0), Uniform(ri) for all i ∈ {0, . . . , m}

S-2. Indep(X, Y) for all X ⊆ {y0, r0, . . . , rm} and Y ⊆ {x1, . . . , xm, y0, r0, . . . , rm},
such that X ∩ Y = ∅.

6.6.2 Security of the CBC-Mode

For each i ∈ {1, . . . , m} and each j ∈ {1, . . . , i− 1}, table 6.2 gives certain names
to certain claims. We thus have to derive Cm.

It is easy to derive C0, D0
1, D0

2, D0
3 and D0

4. Indeed,

1. D0
4 is given in S-1;

2. the rule G.5 gives SameDist({(x1, x1), . . . , (xm, xm)});

3. S-1 and the rule G.6 give D0
1;

4. S-2 gives D0
2, by taking X = {y0} and Y = {x1, . . . , xm};

5. S-2 also gives D0
3, by taking X = {r0} and Y = {x1, . . . , xm};

6. the rule G.13, applied to SameDist({(x1, x1), . . . , (xm, xm)}) and D0
1, D0

2, D0
3,

gives C0.

6.6. EXAMPLES 165

The rest of the derivation proceeds in m stages, where the i-th stage (depicted
in Fig. 6.4; 1 ≤ i ≤ m) culminates with deriving Ci:

1. Di
9 is given by the rule G.4;

2. for each j ∈ {1, . . . , i−1}, Di,j
8 is derived from Di−1

2 by applying the rules G.7
and G.3;

3. for each j ∈ {1, . . . , i− 1}, Di,j
7 is derived from Di−1

4 and Di,j
8 by applying the

rule X.3, by taking X = ∅, E = yi−1, E ′ = xi and Y = {xj ⊕ yj−1};

4. Di
6 is derived from Di−1

4 and Di−1
2 (after applying the rule G.3) by applying

the rule X.2;

5. D̃i
6 follows from Di

6 and the rule G.11;

6. for each j ∈ {1, . . . , i − 1}, Di,j
5 is derived from D̃i

6 and Di,j
7 by applying the

rule G.12;

7. Di
4 follows from the rule E.2; the claims

Uneq(xi ⊕ yi−1, xj ⊕ yj−1), where 1 ≤ j ≤ i− 1

must hold for applying this rule, but these are exactly the claims Di,j
5 ;

8. Di
3 is given by S-2, by taking X = {ri} and Y = {x1, . . . , xm, r0, . . . , ri−1};

9. Di
2 follows from the claims Di

9 and Di,j
5 (1 ≤ j < i) by applying the rule E.4

(the instances of NewEnc expand exactly to the claims Di,j
5);

10. Di
1 is derived from Di

4 and S-1 by applying the rule G.6;

11. Ci is derived from Di
2, Ci−1, Di

1 and Di
3 by applying the rule G.13.

6.6.3 Security of the CTR-Mode

Additionally, the set Inps of inputs also includes 1, 2, . . . , m whose computational
interpretations are defined to be the representations of natural numbers 1, 2, . . . , m.
The following claims additionally hold about their distribution:

S-3. Constant(i) for 1 ≤ i ≤ m

S-4. Uneq(i, j) for 1 ≤ i, j ≤ m and i 6= j.

Also, addition is a group operation, thus the rules X.1–X.3 apply for expressions
constructed with the help of the operator +.

For each i ∈ {1, . . . , m} and each j ∈ {1, . . . , i − 1}, table 6.3 gives certain
names to certain claims. We thus have to derive Cm.

The claim C0 is derived identically to the previous case. The rest of the deriva-
tion proceeds in m stages where the i-th stage (depicted in Fig. 6.5; 1 ≤ i ≤ m)
culminates with deriving Ci:

166 CHAPTER 6. PSEUDORANDOM PERMUTATIONS

Di,1
8

Ci−1

Di,1
5

G.12

Di,1
7

X.3

Di,i−1
8

G.12

Di,i−1
5

X.3

Di,i−1
7

Di
2

E.4

X.2

S-2

E.2

Di
4

G.6

Di
1

Di
3

Ci

G.13

Di−1
4Di−1

2S-1

Di
6

G.11

D̃i
6

G.4

Di
9

G.7G.7 . . .

. . .

. . .

. . .

. . .

. . .

Figure 6.4: Deriving the security of CBC mode

6.6. EXAMPLES 167

Di,1
8

Ci−1

Di,i−1
8

Di
2

X.3

S-2

G.6

Di
1

Di
3

Ci

G.13

S-1

X.1X.1

S-4

E.4

G.4

Di
9

Di
7

G.3

Di
6 Di

5

E.2

X.2

Di
4

. . .

. . .

Figure 6.5: Deriving the security of CTR mode

168 CHAPTER 6. PSEUDORANDOM PERMUTATIONS

name claim

Ci SameDist({(x1, x1), . . . , (xm, xm), (y0, r0), . . . , (yi, ri)})
Di

1 SameDist({(yi, ri)})
Di

2 Indep({x1, . . . , xm, y0, . . . , yi−1}, {yi})
Di

3 Indep({x1, . . . , xm, r0, . . . , ri−1}, {ri})
Di

4 Uniform(yi)
Di

5 Uniform({y0 + i}K)
Di

6 Indep({{y0 + i}K}, {xi})
Di

7 Indep({x1, . . . , xm, y0, . . . , yi−1}, {{y0 + i}K})

Di,j
8 Uneq(y0 + i, y0 + j)

Di
9 Indep({x1, . . . , xm, y0, . . . , yi−1}, ∅)

Ci is also defined for i = 0.

Table 6.3: Claims for showing the security of the CTR-mode

1. Di
9 is given by the rule G.4;

2. for each j ∈ {1, . . . , i− 1}, Di,j
8 is derived from S-4 by the rule X.1;

3. Di
7 is derived from Di

9 and Di,j
8 (1 ≤ j ≤ i− 1) by applying the rule E.4 (the

instances of NewEnc expand exactly to the claims Di,j
8);

4. Di
6 follows from Di

7 by applying the rule G.3;

5. Di
5 is given by the rule E.2;

6. Di
4 is derived from Di

5 and Di
6 by applying the rule X.2;

7. Di
3 is given by S-2;

8. Di
2 follows from Di

5 and Di
7 by applying the rule X.3, where we instantiate

X = ∅, E = {y0 + i}K, E ′ = xi and Y = {x1, . . . , xm, y0, . . . , yi−1};

9. Di
1 is derived from Di

4 and S-1 by applying the rule G.6;

10. Ci is derived from Di
2, Ci−1, Di

1 and Di
3 by applying the rule G.13.

6.7 Discussion

We have given a set of rules that allows us to derive new facts about the distribution
of interpretations of formal messages from the facts that we already know. This
set of rules does not attempt to be a “complete” set — i.e. a set that is powerful
enough for making all “interesting” derivations. If necessary, one can add new rules
to this set. When adding a new rule, one only has to prove the correctness of this
new rule, one does not have to consider, how this rule interacts with other rules.

6.7. DISCUSSION 169

It seems to be possible to implement the analysis presented here. When we are
trying to show that a claim SameDist({(E, E ′)}) holds, then we should record all
the claims about the subexpressions of E and E ′ that we can derive. Recording the
claims Constant, Random, Uniform and Uneq does not require too much memory, it
is proportional to square of the size of formal expressions. The claims Indep could
be recorded similarly to Chapter 5, using boolean functions (represented as BDDs)
to represent them. We will cover the claims SameDist later; for now note that there
is no rule, where some claim SameDist is one of the antecedents and the consequent
is not some claim SameDist.

An analysis step would consist of two parts:

1. Trying to derive new Constant-, Uniform-, Random- and Uneq-claims. The
analysis could go through all possible such claims (or we could also try to
devise a mechanism that only considers claims for which the antecedents have
changed) and verify, whether it can be derived by any of the rules G.10, G.11,
G.12, E.1, E.2, E.3, X.1, X.2, P.1.

2. Trying to derive new Indep-claims. This has to happen similarly to the transfer
functions presented in Sec. 5.3. Given the boolean function that records all
the claims that we have already derived, we have to construct a new boolean
function that records all claims that we can derive in one step (using the rules
G.2, G.4, G.7, G.9, E.4, X.3, C.1).

We also have to record some SameDist-claims about the subexpressions, but
not all of them. First, we only need claims in the form SameDist(E1, E2), i.e.
the set of pairs of expressions that is the argument of SameDist only has to
contain a single pair. Second, as the only non-trivial way to derive the claim
SameDist(o(E1, . . . , Ek), o(E

′
1, . . . , E

′
k)) is by rule G.8, we only need to possibly

record the following claims SameDist(E1, E2):

• SameDist(E, E ′), where E and E ′ are these expressions, the indistinguishabil-
ity of whose interpretations we are trying to show.

• If we need to record SameDist(o(E1, . . . , Ek), o(E
′
1, . . . , E

′
k)), then we also need

to record SameDist(Ei, E
′
i) for all i ∈ {1, . . . , k}.

Having thus modified the claims SameDist, we also have to modify some analysis
rules to make use of them. Namely, the rules G.8 and G.13 should be replaced by
the following rule:

Let E = o(E1, . . . , Ek) and E ′ = o(E ′
1, . . . , E

′
k). If the following claims hold:

SameDist(E1, E
′
1), . . . , SameDist(Ek, E

′
k),



Indep({E1}, {E2, . . . , Ek, E
′
1, . . . , E

′
k}),

Indep({E2}, {E3, . . . , Ek, E
′
1, . . . , E

′
k}),

. .
Indep({E ′

k−1}, {E
′
k})




170 CHAPTER 6. PSEUDORANDOM PERMUTATIONS

then the claim SameDist(E, E ′) also holds.
The proof of this rule is similar to the proof of rule G.13. Recalling the expla-

nation of rule (4.18), we see that we require here that the expressions E1, . . . , Ek

and E ′
1, . . . , E

′
k are all independent of each other.

Chapter 7

Related Work

In this chapter we overview some related work. Sec. 7.1 and Sec. 7.2 are devoted
to earlier works about secure information flow, that have had relevance to the
definitions given in this thesis. Sec. 7.1 surveys results about secure information
flow in general, while Sec. 7.2 pays attention to aspects of handling probabilism in
the programming language. In Sec. 7.3 we give an overview of the earlier results
bringing two aspects of cryptography closer to each other. Finally, Sec. 7.4 reviews
some work in the area of protocol analysis, attempting to not do unfounded (by
security definitions) abstractions of cryptographic primitives.

7.1 Secure Information Flow

The use of program analysis to determine information flows was pioneered by Den-
ning [Den76, DD77]. She instrumented the semantics of programs with annotations
that expressed, the values of which program variables flow into which other pro-
gram variables. The definition of secure information flow was given in terms of
these instrumentations [DD77] — a program was defined secure if there were no
flows from one variable to another, unless the security level of the first variable was
lower than the security level of the second.

Denning and Denning [DD77] also gave a verification procedure to check for this
condition. The programmer had to specify the security level of each variable. The
procedure checked whether at each assignment x := o(x1, . . . , xk) the security level
of x was at least as high as the least upper bound of the security levels of x1, . . . , xk

and all variables b that are the guards of if -statements and loops containing that
assignment.

Definitions based on instrumentations should be avoided, as it is not clear, how
these instrumentations relate to the actual semantics of the program. Of course,
it is quite easy to move from these instrumentations to the information-theoretic
independence of of high-security inputs and low-security outputs.

Volpano et al. [VSI96] have defined a program secure if there exists a simulation
of the program that operates only on public variables and delivers the same public
outputs for given public inputs as the original program. They also gave a type

171

172 CHAPTER 7. RELATED WORK

system for certifying programs for secure information flow. This existence of a
low-security simulation is a certain kind of non-interference [GM82] property. In
general, one part of a system does not interfere with another part, if the second
part’s view of the entire system does not depend on the first part’s actions. In
[VSI96] one requires that the variables of higher security levels do not interfere
with the variables in lower security levels.

Later, Volpano and Smith [VS00, Vol00] have attempted to weaken the security
definition a little to be able to accommodate one-way functions in the programming
language and in the analysis. In [VS00] they assume that there is a certain high
security variable h and an unary operator match, such that match(x) returns either
true or false, depending whether the value of the variable x is equal to the value
of the variable h or not. The security definition is such, that if x is a low security
variable, then the result of match(x) still can be considered to be a low security
value. In [Vol00] a secure program is allowed to treat as a low security value the
result of comparing the value of an one-way function applied to a low security
variable with the result of applying this one-way function to a certain high-security
variable h.

The security definition in [VS00, Vol00] is such, that a secure program cannot
copy the value of h to a low security variable. Note, however, that the definition
does not say anything about letting a low security variable contain partial informa-
tion about h. Also, the allowed use (without having to consider the result of the
operation to be a high security value) of operations violating the non-interference
property (i.e. match-operations or one-way functions) is rather limited.

Leino and Joshi [LJ98] have given the definition of secure information flow for
programs directly in terms of programs’ input and output states. A program is
defined secure if its denotational semantics is a function from input states to output
states, such that the public part of the output state does not depend on the private
part of the input states. The meaning of “does not depend” is left unspecified. It
is meant to be initiated according to the desired security properties.

7.2 Probabilistic Noninterference

A system may have probabilistic behaviour, i.e. if the system is in a certain state
then its next state is not uniquely determined, but is picked according to a certain
probability distribution from a set of states. An example of such system is a multi-
threaded program, where the scheduler picks the next thread to make a step from
the set of all existing threads.

Such a system may be modelled by a non-deterministic semantics, where the
next state of a system is not uniquely determined, but is non-deterministically
chosen from a set of states. An analysis for multithreaded programs with such
non-deterministic semantics has been given by Smith and Volpano [SV98].

However, such “possibilistic” semantics cannot take into account that different
states may have different probabilities of being the next state. These different

7.3. TWO ASPECTS OF CRYPTOGRAPHY 173

probabilities may be used to leak information. For example, let b be a high security
boolean variable and consider the expression FlipCoin ? b : FlipCoin, where FlipCoin

returns either true or false with probability 1
2
. No matter what the value of b is, the

value of this expression can be both true or false, so possibilistically the value of b
does not affect the value of the expression. However, the probability distribution
of the value of that expression depends on the value of b.

Volpano and Smith [VS98] have given a security definition and a corresponding
type system for programs with probabilistic semantics. The semantics is a sequence
of probability distributions over states; going from one element to the next in the
sequence corresponds to making one program step. The program states also contain
these parts of the threads that still have to be executed. The type system is such,
that if a program P is well typed, then the executions of this program on two
input states s and s′ that agree on low security variables proceed in lock-step. This
means, that the distribution over states dn, that is the n-th element in the sequence
starting with ηD(s), and the distribution over states d′

n, that is the n-th element in
the sequence starting with ηD(s′), agree on low security variables — if one projects
the high security variables out from the dn and d′

n, then these two distributions are
equal.

This definition by Volpano and Smith (which was indeed quite clumsy, with
program states also containing the part of the program that is still left to execute,
and with the equality of program states requiring the syntactic equality of these
parts of the program) has been refined by Sabelfeld and Sands [SS00], making it an
instance of the P-restrictiveness property of Gray [Gra90]. It defined a system se-
cure, if its outputs, observable to low security user, do not depend on the behaviour
of high security users. Sabelfeld and Sands still demand that the executions of a
secure program on two input states that agree in low security variables proceed in
lock step, but in this case, the probabilism is not in the program states, but in the
transitions between the states.

The security definition in this thesis, Def. 3.2 is an instance of the definition
of Leino and Joshi [LJ98] and it can be seen as the computational analogue to
the (information-theoretical) description of security by Sabelfeld and Sands [SS99,
Sec. 5.2].

7.3 Two Aspects of Cryptography

As we already have mentioned in the introduction of this thesis, there are two
different approaches to arguing about the properties of cryptographic operations —
formal and computational. In this thesis, the computational approach corresponds
to the semantics of programs given in Chapter 3 and to the interpretation of formal
expressions given in Sec. 6.2. The formal approach corresponds to the analyses in
Chapter 4 and Sec. 6.5. We have shown how the results in the formal framework
translate to results in the computational framework. We are aware of two papers
that have aimed to give similar results.

174 CHAPTER 7. RELATED WORK

for i = 1 to n() do
spend time. . .

end for
output 1

for i = 1 to n() do
spend time. . .

end for
output h

Figure 7.1: Two equivalent programs for [AJ01]

Abadi and Rogaway [AR00] define a computational interpretation of formal ex-
pressions and give an equivalence relation over the set of formal expressions, similar
to the one defined in Chapter 6. They show that if two formal expressions are equiv-
alent then their computational interpretations are indistinguishable. Recently, Mic-
ciancio and Warinschi [MW02] have shown that for certain stronger cryptographic
properties of the encryption operation, the opposite (indistinguishability implies
equivalence) also holds.

Abadi and Jürjens [AJ01] generalise these results from formal expressions to
an entire process algebra. They consider (formal) systems consisting of programs
and channels between them, where at each execution step, each program reads the
values on its inputs, does the computation, and places the results on its outputs.
For a system, they define two execution traces — a formal trace and a computa-
tional trace. A trace is a sequence (indexed by execution steps) of tuples (indexed
by channels) of values in the channels. In formal trace, these values are formal
expressions; in computational trace, they are bit-strings (and the computational
trace is actually a family of probability distributions over such sequences of tuples
of bit-strings).

Some of the channels are considered to be public, others are private. Two formal
traces are considered to be equivalent if the messages appearing at the same public
channel at the same execution step are equivalent for someone that knows all keys
that appear on public channels. Two computational traces are considered to be
equivalent if all their equal-length prefixes are indistinguishable. Abadi and Jürjens
show that the equivalence of formal traces of two systems implies the equivalence
of their computational traces.

The language for specifying programs in [AJ01] does not contain a looping
construct. However, as the programs are executed over and over (each execution
step of the system corresponds to executing the programs), the language is really
Turing-complete. The difference between [AJ01] and the work presented in this
thesis in Chapters 3 and 4 is in the security definition. The security definition in
[AJ01] (the definition of equivalence for computational traces) does not require the
analysis (the equivalence of formal traces) to abstract least fixed points.

One can argue that a security definition that considers only prefixes (of constant
length in the security parameter) of computational traces is less intuitive than
Def. 3.2. Indeed, assume that h is a high security variable and n() is a nullary
operation that returns the security parameter n. Consider two programs (in sense
of this thesis) in Fig. 7.1. These programs have the following computational traces:

7.4. FAITHFULLY HANDLING CRYPTOGRAPHIC PRIMITIVES 175

• The trace of the left program is (restricted to the output channel)

{〈ε, . . . , ε︸ ︷︷ ︸
n

, 1, ε, ε, . . .〉}n∈N . (7.1)

• The trace of the right program is (restricted to the output channel)

{〈ε, . . . , ε︸ ︷︷ ︸
n

, h, ε, ε, . . .〉}n∈N . (7.2)

At the m-th position of the sequence stands the value on the output channel at the
m-th time moment. ε means that no value is outputted to the channel at this time.

Let m ∈ N be fixed and consider the prefixes of traces (7.1) and (7.2) of length
m. They are

n = 0
n = 1
.
n = m− 1
n = m
n = m + 1
.

m︷ ︸︸ ︷
〈1 ε . . . ε〉
〈ε 1 . . . ε〉
.
〈ε ε . . . 1〉
〈ε ε . . . ε〉
〈ε ε . . . ε〉
.

and

m︷ ︸︸ ︷
〈h ε . . . ε〉
〈ε h . . . ε〉
.
〈ε ε . . . h〉
〈ε ε . . . ε〉
〈ε ε . . . ε〉
.

.

Asymptotically, when n tends to infinity, the prefixes of both (7.1) and (7.2) are
sequences (of length m) of ε-s only. Hence the prefixes of traces (7.1) and (7.2) are
asymptotically equal and therefore indistinguishable.

We have shown that according to the security definition of [AJ01], the two
programs in Fig. 7.1 are equivalent. They are not equivalent according to Def. 3.2.

Obviously, the security definition of [AJ01] could be extended to consider
polynomial-length (in n) prefixes of computational traces. Their proofs of equiva-
lence, however, work only for constant-length prefixes.

7.4 Faithfully Handling Cryptographic Primitives

There are also other results attempting to precisely formalise and analyse cryp-
tographic protocols, taking into account that the security properties satisfied by
cryptographic primitives give only complexity-theoretical, not absolute guarantees.
One may either try to directly operate with these complexity-theoretical security
properties, or to abstract away from these properties and prove the abstraction
correct (like we have done in this thesis).

This approach has extensively been used for secure multiparty function evalu-
ation [CDG87, MR91], where a number of participants each input one argument
of the function, and in return they all get the value of the function on these argu-
ments, but they get no further information about the arguments inputted by other

176 CHAPTER 7. RELATED WORK

participants. A protocol realising the computation of that function to be secure, if
everything that a subset of participants can see during an execution of the protocol
could be computed from the inputs of these participants and from the value of the
computed function. The abstraction of a protocol for secure multiparty function
evaluation is a black box that privately recieves each participant’s input and returns
the value of the function to everyone.

Mitchell et al. [LMMS98, LMMS99, Mit01] have defined a non-standard seman-
tics for a process algebra — the π-calculus. The semantics is computational — the
messages are bit-strings and nondeterminism in standard semantics is replaced by a
probabilistic choice between the possibilities (the semantics fixes the probabilities).
In standard semantics, the nondeterminism arises from the parallel composition of
processes, where the next process to make a step is chosen nondeterministically.

In these papers, some protocols have been specified in the π-calculus and shown
to be correct with respect to this computational semantics. There is no abstraction,
though. The proofs of correctness directly work with the computational semantics
of protocols. As such, their derivation probably cannot be automated.

Pfitzmann et al. [Pfi96, PSW00, PW00, PW01, Bac02] have devised a generic
framework for defining and proving, when a concrete system (for example, a set of
protocols) satisfies an abstract specification. In this framework, one considers the
interaction of the system with a honest user and an adversary. A concrete system
is defined to be at least as secure as an abstract system, if for each honest user and
each adversary, interacting with the user and the concrete system, there exists an
adversary, interacting with the same user and the abstract system, such that the
views of the honest user in these two interactions are indistinguishable from each
other. This definition is called simulatability.

Pfitzmann et al. had the aim, that the specification of the abstract system
should be simpler than the specification of the concrete system. Ideally, the ab-
stract system is completely deterministic and non-cryptographic, such that formal
methods could be used to argue about its behaviour.

Chapter 8

Conclusions and Future Work

In this thesis we have given a definition for computationally (as opposed to informa-
tion-theoretically) secure information flow and an analysis to check programs for
such kind of secureness of information flow. We have shown that programs can be
efficiently analysed for computationally secure information flow, if the encryption
operation is repetition and which-key concealing. Hopefully, we have also shown
that it is realistic to automatically analyse systems containing encryption, where
the encryption operation is just a pseudorandom permutation/function.

Let us present here some thoughts about the achieved results and also about
the results that have not (yet) materialised.

8.1 Using the Program Structure

The analysis in Chapter 4 abstracted the denotational semantics of the program.
The analysis did not have to consider how the program computes; it only kept
track of the abstractions of distributions over program states, i.e. what had been
computed. This is really quite surprising, as the paper by Abadi and Rogaway
[AR00], which in some sense served as the starting point for the research in thesis,
and which had the same security requirements on the encryption operation as we
did in Chapter 4, made use of information that is equivalent to how a program
computes. Namely, they required that the formal expressions over which the equiv-
alence relation ∼= was defined (similar to the relation ∼= in Sec. 6.3 of this thesis),
did not contain encryption cycles. The structure of formal expressions is the ana-
logue to how the program computes, and restricting this structure is analogous to
restricting, how the computation of the program may proceed.

The paper by Abadi and Jürjens [AJ01] still contained the same requirement
about the absence of encryption cycles. In our analysis we introduced the encrypting
black boxes [k]E and their independence from other variables seems to also carry
information about potential encryption cycles. For example, if k1 and k2 are keys,
l1 := Enc(k1, k2) and l2 := Enc(k2, k1), then it is impossible to derive from the
analysis in Chapter 4, that {[k1]E} is independent of {l1, l2}.

177

178 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Of course, when the encryption operation is only a pseudorandom permutation,
then we no longer can ignore, how the program computes or what the structure
of formal expressions is. We need to keep track, which plaintexts are equal and
which are not. So we have again introduced the requirement about the absence of
encryption cycles. Maybe we could somehow do without this requirement, if we
managed to introduce the encrypting black boxes again. But as long as we cannot
handle loops, checking for the encryption cycles does not seem to be a big burden.

Another reflection of the structure of formal expressions in the analysis presented
in Chapter 6 is the predicate NewEnc(K, E, E ′). This predicate makes use of the
structures of both E and E ′. Considering its use, there seems to be no way to
remove it; if in future we manage to extend the analysis presented in Chapter 6
to a full programming language, then we still have to keep track of the equality of
encrypted bit-strings and still have to have an analogue to NewEnc.

8.2 Future Work

The are several directions in which the work presented here could be enhanced.
Some of these enhancements seem to be rather simple to do, but most of them
require significant new ideas.

8.2.1 Other Cryptographic Primitives

In our thesis we only considered passive adversaries. Therefore it made no sense
for us to consider digital signatures or message authentication codes (or most other
cryptographic primitives) as parts of our programming language, because these
primitives are meant to repeal active attacks. A natural question would be to
ask, are there any other cryptographic primitives that are aimed to preserve the
confidentiality, and how would we analyse these primitives.

There are some such primitives. One of them is the public-key encryption.
Integrating it to the programming language and to the analysis seems to be rather
easy. We would need two extra operators in the programming language — one
for generating the public/private key pair (this pair is also used as the private key
when decrypting) and another for separating the public key from the key pair. In
the analysis, the public key would behave rather similarly to the encrypting black
boxes we had in the analysis. Namely, one can encrypt with a public key, but not
decrypt.

Another cryptographic primitive that is used to preserve confidentiality are one-
way functions. One-way functions have been treated before in the context of secure
information flow [VS00, Vol00], but this treatment has been rather lacking. The
main issue here is the security definition, there seems to be no good way for giving
it. One-way functions do not provide semantic security, as they do not have any
secret parts. However, in the definition of secure information flow, anything less
than semantic security does not seem to be right.

8.2. FUTURE WORK 179

We could sidestep these issues by assuming the one-way function to be a random
oracle [BR93b]. A random oracle is basically the oracle PRF in Fig. 2.4. It provides
semantic security. We can analyse it in the same way as we analysed pseudorandom
permutations in Chapter 6. A one-way function would be like an encryption with
some fixed key K; this key K itself would not be available. But making such
assumptions about the one-way functions seems to dodge the real issues with them.

8.2.2 Approximating Fixed Points

Both the concrete and abstract semantics of a program were defined through a
least/greatest fixed-point operation (at least if the program contained loops). Our
main difficulties in proving the abstract semantics correct stemmed from relating
these fixed points. If we had had no specifications through fixed points (i.e. if we
had had no loops in our programming language), then we could just have given a
correctness proof for each of the rules in Figures 4.2, 4.3 and 4.5 separately and the
correctness of the entire analysis would have directly followed from the correctness
of each of these rules.

If we are going to extend our analysis (to more primitives and/or to more pow-
erful adversaries), then one possibility to prove the extended analysis correct might
involve extending also the configurations (Sec. 4.4.3) respectively. However, a more
pleasant result would abstract away from these configurations somehow. We would
have to find these parts of the correctness proof of the analysis that are not too inti-
mately related with the structure of the analysis. Unfortunately, it seems to us that
there are not many such parts. The configurations are pretty much designed for
the analysis at hand; the structure of the configurations and the ways of changing
them make up the bulk of the correctness proof.

8.2.3 Active Adversaries

The main future research direction is obviously going to be the handling of more
powerful adversaries. An active adversary is not limited to the listening of the
outputs of the system under consideration, it can also influence its inputs.

As long as we do not have theorems for the approximation of fixed points, ob-
taining the results for the general case (for example, relating the computational
semantics of π-calculus given in [LMMS99] with some traditional semantics) will
be hard. However, we could try to relate the computational and non-computational
semantices of some simpler languages/formalisms, namely those that do not contain
a looping construct. There are simple, intuitive formalisms (without a looping con-
struct) for expressing cryptographic protocols, for example strand spaces [THG99]
or cord spaces [DMP01]. Some results already exist in this area — Guttman et al.
[GTZ01] have related the traditional semantics of strand spaces (where the mes-
sages are formal expressions) with a semantics, where the messages are bit-strings.
For a special class of protocols they have shown that if some attack does not succeed
in the formal semantics, then it has at most a very small probability of success in

180 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

the semantics where the messages are bit-strings. Therefore a proof of security for
a protocol in the formal semantics translates to a proof of security for that proto-
col in the semantics based on bit-strings. The security guarantee is stronger than
computational — it is statistical1, comparable to (although not the same as) the
security guarantees of the one-time pad. Obviously, such a strong security guaran-
tee comes with a correspondingly high price, here the price is measured in bits of
the necessary length of shared secrets.

It seems to us that obtaining an analogue (for the computational case) of the
results in [GTZ01] is not very hard. In a certain sense, this would amount to
generalising the results by Abadi and Jürjens [AJ01] to include active adversaries.

1This is the reason, why we avoided calling the semantics, operating on bit-strings, “computa-
tional”.

Bibliography

[ABHR99] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke.
A Core Calculus of Dependency. In POPL ’99, Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 147–160, San Antonio, Texas, January 1999. ACM
Press.

[AES01] Advanced Encryption Standard. Federal Information Processing Stan-
dards Publication 197 (FIPS PUB 197), 26 November 2001.

[AG99] Mart́ın Abadi and Andrew D. Gordon. A Calculus for Cryptographic
Protocols: The Spi Calculus. Information and Computation, 148(1):1–
70, January 1999.

[AJ01] Mart́ın Abadi and Jan Jürjens. Formal Eavesdropping and Its Compu-
tational Interpretation. In Naoki Kobayashi and Benjamin C. Pierce,
editors, Theoretical Aspects of Computer Software, 4th International
Symposium, TACS 2001, volume 2215 of LNCS, pages 82–94, Sendai,
Japan, September 2001. Springer-Verlag.

[AR00] Mart́ın Abadi and Phillip Rogaway. Reconciling Two Views of Cryptog-
raphy (The Computational Soundness of Formal Encryption). In Jan
van Leeuwen, Osamu Watanabe, Masami Hagiya, Peter D. Mosses, and
Takayasu Ito, editors, International Conference IFIP TCS 2000, vol-
ume 1872 of LNCS, pages 3–22, Sendai, Japan, August 2000. Springer-
Verlag.

[Bac02] Michael Backes. Cryptographically Sound Analysis of Security Protocols.
PhD thesis, Universität des Saarlandes, 2002.

[BAN90] Michael Burrows, Mart́ın Abadi, and Roger M. Needham. A Logic of
Authentication. ACM Transactions on Computer Systems, 8(1):18–36,
February 1990.

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David
Pointcheval. Key-Privacy in Public-Key Encryption. In Colin Boyd,
editor, Advances in Cryptology - ASIACRYPT 2001, 7th International

181

182 BIBLIOGRAPHY

Conference on the Theory and Application of Cryptology and Infor-
mation Security, volume 2248 of LNCS, pages 566–582, Gold Coast,
Australia, December 2001. Springer-Verlag.

[BDJR97] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A
Concrete Security Treatment of Symmetric Encryption. In 38th An-
nual Symposium on Foundations of Computer Science, pages 394–403,
Miami Beach, Florida, October 1997. IEEE Computer Society Press.

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of Ci-
pher Block Chaining. In Yvo Desmedt, editor, Advances in Cryptology
- CRYPTO ’94, 14th Annual International Cryptology Conference, vol-
ume 839 of LNCS, pages 341–358, Santa Barbara, California, August
1994. Springer-Verlag.

[BR93a] Mihir Bellare and Phillip Rogaway. Entity Authentication and Key
Distribution. In Douglas R. Stintson, editor, Advances in Cryptology -
CRYPTO ’93, 13th Annual International Cryptology Conference, vol-
ume 773 of LNCS, pages 232–249, Santa Barbara, California, August
1993. Springer-Verlag.

[BR93b] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols. In CCS ’93, Proceedings of
the 1st ACM Conference on Computer and Communications Security,
pages 62–73, Fairfax, Virginia, November 1993. ACM Press.

[CDG87] David Chaum, Ivan Damg̊ard, and Jeroen van de Graaf. Multiparty
Computations Ensuring Privacy of Each Party’s Input and Correct-
ness of the Result. In Carl Pomerance, editor, Advances in Cryptology -
CRYPTO ’87, A Conference on the Theory and Applications of Crypto-
graphic Techniques, volume 293 of LNCS, pages 87–119, Santa Barbara,
California, August 1987. Springer-Verlag.

[Cou00] Patrick Cousot. Constructive Design of a Hierarchy of Semantics of a
Transition System by Abstract Interpretation. Theoretical Computer
Science, 2000.

[CSF00] Proceedings of the 13th IEEE Computer Security Foundations Workshop
(CSFW’00), Cambridge, England, July 2000. IEEE Computer Society
Press.

[DD77] Dorothy E. Denning and Peter J. Denning. Certification of Programs for
Secure Information Flow. Communications of the ACM, 20(7):504–513,
1977.

[Den76] Dorothy E. Denning. A Lattice Model of Secure Information Flow.
Communications of the ACM, 19(5):236–243, 1976.

BIBLIOGRAPHY 183

[DES99] Data Encryption Standard. Federal Information Processing Standards
Publication 46-3 (FIPS PUB 46-3), 25 October 1999.

[DMP01] Nancy Durgin, John Mitchell, and Dusko Pavlovic. A compositional
logic for protocol correctness. In Proceedings of the 14th IEEE Com-
puter Security Foundations Workshop (CSFW’01), Cape Breton, Nova
Scotia, June 2001. IEEE Computer Society Press.

[DP90] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key pro-
tocols. IEEE Transactions on Information Theory, IT-29(12):198–208,
March 1983.

[GM82] Joseph A. Goguen and José Meseguer. Security Policies and Security
Models. In Proceedings of the 1982 IEEE Symposium on Security and
Privacy, pages 11–20, Oakland, California, April 1982. IEEE Computer
Society Press.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. Journal
of Computer and System Sciences, 28(2):270–299, April 1984.

[Gol95] Oded Goldreich. Foundations of Cryptography (Fragments of a Book).
Department of Computer Science and Applied Mathematics, Weizmann
Institute of Science, Rehovot, Israel, 23 February 1995. available with
updates at http://www.wisdom.weizmann.ac.il/~oded/frag.html.

[Gol99] Dieter Gollmann. Computer Security. Wiley, 1999.

[Gra90] James W. Gray III. Probabilistic Noninterference. In Proceedings of
the 1990 IEEE Symposium on Security and Privacy, pages 170–179,
Oakland, California, May 1990. IEEE Computer Society Press.

[GTZ01] Joshua D. Guttman, F. Javier Thayer, and Lenore D. Zuck. The faith-
fulness of abstract protocol analysis: message authentication. In Pro-
ceedings of the 8th ACM conference on Computer and Communications
Security, pages 186–195, Philadelphia, PA, November 2001. ACM Press.

[Lan92] William Landi. Interprocedural Aliasing in the Presence of Pointers.
PhD thesis, Rutgers University, 1992.

[Lau01] Peeter Laud. Semantics and Program Analysis of Computationally Se-
cure Information Flow. In Sands [San01], pages 77–91.

[LJ98] K. Rustan M. Leino and Rajeev Joshi. A Semantic Approach to Se-
cure Information Flow. In Johan Jeuring, editor, Mathematics of Pro-
gram Construction, MPC ’98, volume 1422 of LNCS, pages 254–271,
Marstrand, Sweden, June 1998. Springer-Verlag.

184 BIBLIOGRAPHY

[LM90] Xuejia Lai and James L. Massey. A Proposal for a New Block En-
cryption Standard. In Ivan Damg̊ard, editor, Advances in Cryptology -
EUROCRYPT ’90, Workshop on the Theory and Application of Cryp-
tographic Techniques, volume 473 of LNCS, pages 389–404, Århus, Den-
mark, May 1990. Springer-Verlag.

[LMMS98] Patrick Lincoln, John C. Mitchell, Mark Mitchell, and Andre Scedrov.
A Probabilistic Poly-Time Framework for Protocol Analysis. In CCS
’98, Proceedings of the 5th ACM Conference on Computer and Commu-
nications Security, pages 112–121, San Francisco, California, November
1998. ACM Press.

[LMMS99] Patrick Lincoln, John C. Mitchell, Mark Mitchell, and Andre Scedrov.
Probabilistic Polynomial-Time Equivalence and Security Analysis. In
Jeanette M. Wing, Jim Woodcock, and Jim Davies, editors, FM’99 -
Formal Methods, World Congress on Formal Methods in the Develop-
ment of Computing Systems, volume 1708 of LNCS, pages 776–793,
Toulouse, France, September 1999. Springer-Verlag.

[LR85] Michael Luby and Charles Rackoff. How to Construct Pseudo-Random
Permutations from Pseudo-Random Functions (Abstract). In Hugh C.
Williams, editor, Advances in Cryptology - CRYPTO ’85, volume 218
of LNCS, page 447, Santa Barbara, California, August 1985. Springer-
Verlag.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specifica-
tion. Addison-Wesley, 1999.

[Mar99] Florian Martin. Generating Program Analyzers. PhD thesis, Universität
des Saarlandes, June 1999.

[Mit01] John C. Mitchell. Probabilistic Polynomial-Time Process Calculus and
Security Protocol Analysis. In Sands [San01], pages 23–29.

[MR91] Silvio Micali and Phillip Rogaway. Secure Computation (Abstract).
In Joan Feigenbaum, editor, Advances in Cryptology - CRYPTO ’91,
11th Annual International Cryptology Conference, volume 576 of LNCS,
pages 392–404, Santa Barbara, California, August 1991. Springer-
Verlag.

[MRS86] Silvio Micali, Charles Rackoff, and Bob Sloan. The Notion of Secu-
rity for Probabilistic Cryptosystems. In Andrew M. Odlyzko, editor,
Advances in Cryptology - CRYPTO ’86, volume 263 of LNCS, pages
381–392, Santa Barbara, California, August 1986. Springer-Verlag.

BIBLIOGRAPHY 185

[MW02] Daniele Micciancio and Bogdan Warinschi. Completeness theorems for
the Abadi-Rogaway logic of encrypted expressions. In Workshop on Is-
sues in the Theory of Security - WITS 2002, Portland, Oregon, January
2002.

[NN92] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications:
A Formal Introduction. Wiley, 1992.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles
of Program Analysis. Springer-Verlag, 1999.

[Pfi96] Birgit Pfitzmann. Digital Signature Schemes: General Framework and
Fail-Stop Signatures, volume 1100 of LNCS. Springer-Verlag, 1996.

[PSW00] Birgit Pfitzmann, Matthias Schunter, and Michael Waidner. Crypto-
graphic Security of Reactive Systems. In Steve Schneider and Peter
Ryan, editors, Workshop on Secure Architectures and Information Flow,
volume 32 of Electronic Notes in Theoretical Computer Science, Royal
Holloway, University of London, 2000. Elsevier Science.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity
preservation of secure reactive systems. In CCS 2000, Proceedings of
the 7th ACM Conference on Computer and Communications Security,
pages 245–254, Athens, Greece, November 2000. ACM Press.

[PW01] Birgit Pfitzmann and Michael Waidner. A Model for Asynchronous Re-
active Systems and its Application to Secure Message Transmission. In
2001 IEEE Symposium on Security and Privacy, pages 184–200, Oak-
land, California, May 2001. IEEE Computer Society Press.

[San01] David Sands, editor. Programming Languages and Systems, 10th Euro-
pean Symposium on Programming, ESOP 2001, volume 2028 of LNCS,
Genova, Italy, April 2001. Springer-Verlag.

[Sch96] Bruce Schneier. Applied Cryptography; Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, 1996.

[Sch00] Fred B. Schneider. Enforceable Security Policies. ACM Transactions
on Information and System Security, 3(1):30–50, February 2000.

[SS99] Andrei Sabelfeld and David Sands. A Per Model of Secure Information
Flow in Sequential Programs. In S. Doaitse Swierstra, editor, Program-
ming Languages and Systems, 8th European Symposium on Program-
ming, ESOP’99, volume 1576 of LNCS, pages 40–58, Amsterdam, The
Netherlands, March 1999. Springer-Verlag.

186 BIBLIOGRAPHY

[SS00] Andrei Sabelfeld and David Sands. Probabilistic Noninterference for
Multi-threaded Programs. In Proceedings of the 13th IEEE Computer
Security Foundations Workshop (CSFW’00) [CSF00], pages 200–214.

[SV98] Geoffrey Smith and Dennis M. Volpano. Secure Information Flow in a
Multi-threaded Imperative Language. In POPL ’98, Proceedings of the
25th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 355–364, San Diego, California, January 1998.
ACM Press.

[THG99] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand
Spaces: Proving Security Protocols Correct. Journal of Computer Se-
curity, 7(2/3):191–230, 1999.

[Vol99] Dennis Volpano. Safety Versus Secrecy. In Agostino Cortesi and
Gilberto Filé, editors, Static Analysis, 6th International Symposium,
SAS ’99, volume 1694 of LNCS, pages 303–311, Venice, Italy, Septem-
ber 1999. Springer-Verlag.

[Vol00] Dennis M. Volpano. Secure Introduction of One-way Functions. In Pro-
ceedings of the 13th IEEE Computer Security Foundations Workshop
(CSFW’00) [CSF00], pages 246–254.

[VS98] Dennis M. Volpano and Geoffrey Smith. Probabilistic Noninterference
in a Concurrent Language. In Proceedings of the 11th IEEE Computer
Security Foundations Workshop, pages 34–43, Rockport, Massachusetts,
June 1998. IEEE Computer Society.

[VS00] Dennis M. Volpano and Geoffrey Smith. Verifying Secrets and Rela-
tive Secrecy. In POPL 2000, Proceedings of the 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
268–276, Boston, Massachusetts, January 2000. ACM Press.

[VSI96] Dennis M. Volpano, Geoffrey Smith, and Cynthia Irvine. A Sound
Type System for Secure Flow Analysis. Journal of Computer Security,
4(2,3):167–187, 1996.

[WM92] Reinhard Wilhelm and Dieter Maurer. Übersetzerbau: Theorie, Kon-
struktion, Generierung. Springer-Verlag, 1992.

[Yao82] Andrew C. Yao. Theory and applications of trapdoor functions (ex-
tended abstract). In 23rd Annual Symposium on Foundations of Com-
puter Science, pages 80–91, Chicago, Illinois, November 1982. IEEE
Computer Society Press.

Index of Notation

Nonalphabetic

Symbol Description page

] Disjoint union 8

+ The sum of probability distributions 12

X⊥
Partially ordered set X with the additional smallest el-
ement ⊥

8

⊥u The unknown value on an edge 82

$
Function application operator (also on sets of argu-
ments)

13

? : Vectorised choice 59

? :
The label of these nodes of the flowchart that choose
between two values

67

? : The choice operator 161

≈ Indistinguishable families of distributions 15

↔ Changing configurations in one step 95
∗
↔ Changing configurations in several steps 95

x← D Variable x is distributed according to D 12

X
N
→ Y The set of families of functions from Xn to Yn 13

X Y The set of probabilistic functions from X to Y 13

X
N
 Y

The set of families of probabilistic functions from Xn to
Yn

13

〈〈b ? x : y〉〉 If b is true, then x, else y 31

[k]E
A pseudovariable, whose value is a black box encrypting
with the value of the variable k

44

(k)E
Renamed second copy of [k]E for the data flow analysis
for secure information flow

129

[? :]E
The label of these nodes of the flowchart that choose
between two encrypting black boxes

67

〈f(x)〉x∈X
Tuple of values f(x) for x ∈ X in some predetermined
order

13

{E}K Formally encrypting E with K 143

187

188 INDEX OF NOTATION

Symbol Description page

{|E : C|} Distribution of E under the conditions C 12

[[o]] The semantics of the arithmetic operator o 30

[[G, C]]
The interpretations of the flowchart G together with the
configuration C

74

[[E]] The interpretation of the formal expression E 144

v Finer-grainedness of configurations 96

v Subexpression 144

E ` E ′ The formal expression E ′ is obtainable from the formal
expression E

143

[[·]] � C
The claim C holds for the interpretation of expressions
[[·]]

155

Alphabetic

Latin

Symbol Description page

2ChartP;X,Y The union of ChartP;X and ChartP;Y 73

A(Var)[[P]] The abstract semantics of the program P 47

AdvD,D′

A

The advantage of the algorithm A over a coin-flip in
distinguishing D and D′ 15

B The set of booleans 8

Bkey A component of the abstract values for data flow anal-
ysis

128

BoxNull(C) A component of the configuration C 77

Bsec A component of the abstract values for data flow anal-
ysis

128

bb use
The function mapping black-box-carrying input edges of
flowcharts to the place where this black box is used

68

ChartP;X The flowchart of program P with outputs X ⊆ Ṽar 67

Clen[[P]] The concrete semantics of the program P 31

ConfL
P;X,Y

The set of configurations corresponding to generating
the outputs X and Y of P together

81

ConfR
P;X,Y

The set of configurations corresponding to generating
the outputs X and Y of P separately

82

Constant Elements of the language of claims PC 154

constEdge(C) A component of the configuration C 88

conv
A family of mappings from formal expressions to their
values

145

ALPHABETIC 189

Symbol Description page

Cterm[[P]]
The concrete semantics of the program P for input dis-
tributions, where P runs in expected polynomial time

37

D(X) The set of probability distributions over the set X 12

DFG(X)
The output of data flow analysis on the control flow
graph G for the input X

125

Distr
The set of families of probability distributions over the
sets Staten

29

Distr⊥
The set of families of probability distributions over the
sets Staten⊥

29

Distrpol
The set of polynomial-time constructible families of
probability distributions over the sets Staten

29

Distr⊥pol
The set of polynomial-time constructible families of
probability distributions over the sets Staten⊥

29

DN(X)
The set of families of probability distributions over the
sets Xn

13

E
The function mapping each key to the set of keys that
are equal to it

138

edgeNull(C) A component of the configuration C 79

edgeParts(C) A component of the configuration C 77

Enc The encryption operator 28

EncNull(C) A component of the configuration C 78

Exp The set of formal expressions 143

F(Var) The set of pairs of subsets of Ṽar 44

F̂K(Var)
The set of pairs of subsets of Ṽar that interest the data
flow analysis for secure information flow

128

fX;i
The function mapping known variables after Ai to known
variables before Ai for an assignment Ai

83

f false
X;i

The function mapping known variables after Ai to known
variables before Ai for the false-branch of the vectorised
choice Ai

83

f true
X;i

The function mapping known variables after Ai to known
variables before Ai for the true-branch of the vectorised
choice Ai

83

fictitious(C) A component of the configuration C 88

fictUse(C) A component of the configuration C 88

FlipCoin The coin flipping operator 119

GP The control flow graph of the program P 122

Gen The key generation operator 28

Gen
The label of these nodes of the flowchart that create
encrypting black boxes

67

190 INDEX OF NOTATION

Symbol Description page

Genval
The label of these nodes of the flowchart that create new
encryption keys

67

gfp f The greatest fixed point of the function f 10

gfpy f
The greatest fixed point of f that is less than or equal
to y

10

h(X) The height of the partially ordered set X 9

IfNewKeys(C) A component of the configuration C 79

Indep Elements of the language of claims PC 154

indeps The projection onto the second component of PF(Var) 45

Initn
The set of mappings from atomic expressions to their
possible values, for the security parameter n

144

init
A family of mappings from atomic expressions to their
values

144

InpKeys(C) A component of the configuration C 77

InpParts(C) A component of the configuration C 75

Inps The set of formal inputs to expressions 152

Keys The set of formal keys 143

keys The projection onto the first component of PF(Var) 45

KeyValn
The set of possible values for formal keys for security
parameter n

144

KnownInps(C) A component of the configuration C 81

KVX
i The set of sets of possibly known variables after Ai 80

lfp f The least fixed point of the function f 10

lfpy f
The least fixed point of f that is greater than or equal
to y

10

matters(C)
The set of known non-fictitious inputs of the flowchart
with the configuration C

95

merge(N, Z)

The operation of merging together the control flow of
branches, where N is the variable carrying control-flow
information and Z is the set of variables that have been
potetntially changed at the branches

51

MkE
The label of these nodes of the flowchart that wrap val-
ues into encrypting black boxes

67

MkESeti
The set of nodes of the flowchart that are labeled with
MkE and correspond to the assignment Ai

75

N The set of non-negative integers 8

NewEnc Synonyms for subsets of the language of claims PC 159

Op The set of arithmetic operators in a program 28

OpPartsi(C) A component of the configuration C 75

ALPHABETIC 191

Symbol Description page

origins
Function mapping an input edge e of ChartP;X to the set
of input edges of ChartA;P;X that define the value on e

73

P(X) The set of all subsets of the set X 9

Parts(X) The set of all partitions of the set X 9

PC
The language of claims about interpretations of formal
expressions

154

PF(Var) The domain of the static program analysis 45

PF̂(Var)
The domain of the data flow analysis for secure infor-
mation flow

127

PL(X)
The set of all downwards closed subsets of the partially
ordered set X

9

Plaintext The set of bit-strings that can be encrypted 20

Pol(Z) The set of polynomials with integer coefficients 8

PU(X)
The set of all upwards closed subsets of the partially
ordered set X

9

R(X) Partially ordered set X with reversed order 8

Random Elements of the language of claims PC 154

S(X) The set of all permutations over the set X 21

SameDist Elements of the language of claims PC 154

SameIf(C) A component of the configuration C 88

STn
The set of pairs 〈program state, running time〉 for the
security parameter n

30

state Projection onto the first, “state” component of STn 30

Staten The set of program state for the security parameter n 29

StrOutX;Y
n The set of outputs of the flowchart 2ChartP;X,Y 57

SVK(Var)
The set of such subsets of Ṽar, whose independence of
other subsets of Ṽar interests the data flow analysis for
secure information flow

128

T The set of possible lengths of computations. Equals N 30

TerD[P]
The set of all such initial probability distributions, for
which P runs in expected polynomial time

36

time Projection onto the second, “time” component of STn 30

Transn The type of the n-th component of the semantics Clen[[P]] 30

U(X) The uniform probability distribution over the set X 21

Uneq Elements of the language of claims PC 154

Uniform Elements of the language of claims PC 154

Valn
The set of values of variables for the security parameter
n

29

Ṽaln
The set of values of variables and probabilistic functions
over values of variables for the security parameter n

44

192 INDEX OF NOTATION

Symbol Description page

Var The set of program variables 28

Ṽar
The set of variables x and pseudovariables [x]E of the
program

44

Varall The set of variables of if b then P1 else P2 after unrolling 59

Varasgn
The set of variables that have been assigned to in a
branch or in the loop body

51

Varfalse
asgn

The set of variables in Varasgn, having been renamed for
the false-branch of the if -statement

59

Vartrue
asgn

The set of variables in Varasgn, having been renamed for
the true-branch of the if -statement

59

VarP The set of public variables of the program 36

VarS The set of private variables of the program 36

VCP

The set of all i ∈ N, such that the i-th element in the
sequence of assignments and vectorised choices P is a
vectorised choice

84

Z The set of integers 8

Greek

Symbol Description page

βI

Var

The function abstracting distributions over program
states by pairs of mutually independent sets of variables

44

βK

Var

The function abstracting distributions over program
states by variables that are distributed like keys

45

βKI

Var
The abstraction function applying βK

Var and βI

Var in par-
allel

45

ηD The natural injection from X to D(X) 12

λI
The labelling of the inputs of the flowchart with the
elements of Ṽar

67

λN
The labelling of the nodes of the flowchart with the op-
erators

67

λO
The labelling of the outputs of the flowchart with the
elements of Ṽar

67
∏

n∈N
Xn Cartesian product of the sets Xn 8

−→ρ (v) The sequence of input edges of the node v 67
←−ρ (v) The output edge of the node v 67

τ
Function, injectively mapping pairs of bit-strings to bit-
strings

144

