Formal Verification of

Pipelined Microprocessors

Dissertation
zur Erlangung des Grades Doktor der
Ingenieurswissenschaften (Dr.-Ing.) der
Naturwissenschaftlich-Technischen Fakultat | der
Universitat des Saarlandes

Daniel Kroning

Saarbricken, 2001



Abstract

Subject of this thesis is the formal verification of pipelined micropro-
cessors. This includes processors with state of the art schedulers, such as
the Tomasulo scheduler and speculation. In contrast to most of the litera-
ture, we verify synthesizable design at gate level. Furthermore, we prove
both data consistency and liveness. We verify the proofs using the theorem
proving system PVS. We verify both in-order and out-of-order machines.
For verifying in-order machines, we extend the stall engine concept pre-
sented in [MP0O]. We describe and implement an algorithm that does the
transformation into a pipelined machine. We describe a generic machine
that supports speculating on arbitraty values. We formally verify proofs
for the Tomasulo scheduling algorithm with reorder buffer.

Kurzzusammenfassung

Gegenstand dieser Dissertation ist die formale Verifikation von Mikro-
prozessoren mit Pipeline. Dies beinhaltet auch Prozessoren mit aktuellen
Scheduling-Verfahren wie den Tomasulo Scheduler und spekulativer Aus-
fuhrung. Im Gegensatz zu weiten Teilen der bestehenden Litetdtrerf”
wir die Verifikation auf Gatter-Ebene durch. Des weitern beweisen wir
sowohl Datenkonsistenz als auch eine obere Schramkeli€” Austih-
rungszeit. Die Beweise werden mit dem Theorem Beweissystem PVS
verifiziert. Es werden sowohl in-order Maschinen als auch out-of-order
Maschinen verifiziert. Zur Verifikation der in-order Maschinen erweitern
wir die Stall Engine aus [MP0O0]. Wir beschreiben und Implementieren ein
Verfahren das die Transformation in die “pipelined machine” durcetf”

Wir beschreiben eine generische Maschine die Spekulation auf beliebige
Werte erlaubt. Wir verifizieren die Beweiserfden Tomasulo Scheduler
mit Reorder Buffer.



Extended Abstract

Microprocessors are in use in many safety-critical environments, such as
cars or planes. We therefore consider the correctness of such components
as a matter of vital importance. Testing microprocessors is limited by the
huge state space of modern microprocessors. We therefore think formal
verification is the sole way to obtain a guarantee.

This formal verification should be done such that any third party is able
to verify the correctness with low effort, i.e., we aim to provide a proof
of correctness that can be checked mechanically. In particular, we think
that all critical designs should be delivered in form of a four-tuple: 1)
the design itself, 2) a specification, 3) a human-readable proof, and 4) a
machine-verified proof.

In this thesis, we present proofs of correctness for complex micropro-
cessors. Designing microprocessors is considered an error-prone process.
A well known example for this is the Pentium FDIV bug [Coe95, Pra95].

In this thesis, we provide a rigorously formal approach to hardware veri-
fication. The designs presented in this thesis include state of the art sched-
ulers, such as the Tomasulo scheduler [Tom67] and speculation. In con-
trast to most of the literature, the designs we provide are very close to
gate level. In particular, we are synthesizing some of the designs for the
XILINX FPGA series.

These designs are of high complexity, and so are the proofs. In contrast
to [MP95, Lei99, MP0Q], the proofs are machine verified using the theorem
proving system PVS [CRSS94]. We do not present the original PVS proof
in this thesis but aim to provide comprehensible paper-and-pencil proofs.

In order to verify sequential machines, we extend the data consistency
invariant given in [MPO0O] by defining a “correct value” of an implementa-
tion register such adR.2. Given the correctness of functional components
such as the ALU, this allows for an almost fully automated proof of the
data consistency of the prepared sequential machine using PVS. We ar-
gue that the correct functional components provide correct results if given
correct inputs.

We extend the stall engine concept presented in [MP0OOQ] by providing



a fully generic stall engine design. In contrast to [MPOOQ], our stall en-
gine design supports an arbitrary number of stages and allows for stalling
(and therefore clocking) all stages independently. Furthermore, it supports
pipeline bubble removal.e., the stages are clocked whenether the in-order
property permits this. This includes that bubbles are removed from the
pipeline if necessary. We formally verify data consistency and liveness
properties for this stall engine.

Using this extended stall engine, we improve the process of transforming
the prepared sequential machine into the pipelined machine by providing
a tool that does this transformation automatically. This includes the gener-
ation for forwarding and interlock hardware.

We then prove the data consistency of the pipelined machine. We do
so by showing that the inputs of the pipeline stages are correct. Using this
fact, we argue the correctness of the output values as we do for the prepared
sequential machine, since the functional components of the machines are
identical.

We present a generic approach to speculative execution and propose a
data consistency criterion for such a machine. We then apply this method
in order to implement and prove DLX pipelines with branch prediction
and precise interrupts. It is a well-known fact that both techniques are im-
plemented using speculation [SP88]. However, to the best of our knowl-
edge, implementing both techniques as an instance of a generic speculation
mechanism is done for the first time.

Besides the in-order pipelines, we verify the correctness of the Tomasulo
scheduling algorithm with reorder buffer as described in [KMP99]. The re-
order buffer realizes in-order termination, which allows implementing pre-
cise interrupts. The proof of correctness covers the arguments neccessary
to show the uniqueness of the tags.

Furthermore, we rigorously prove the liveness of all machines we de-
sign, i.e., we prove that any given instruction sequence is executed within
a finite amount of time. Although critical, liveness issues are often not
covered in the open literature.



Zusammenfassung

Mikroprozessoren werden in vielen sicherheitskritischen Bereichen ein-
gesetzt, wie beispielsweise in Automobilen oder Flugzeugen. Wir erachten
daher die Korrektheit solcher Komponenten als lebenswichtig. Der Test
von Prozessoren ist durch den extrem groRen Zustandsraum moderner Pro-
zessoren nur eingesemkt noglich. Wir sind daher der Meinung, dal3
formale Verifikation die einzige Mglichkeit darstellt, eine Garantie zu er-
halten.

Diese formale Verifikation sollte so durchgéft werden, dafd Dritten
die Mdglichkeit offen steht, die Korrektheit mit geringen Aufwand nachzu-
vollziehen. Wir wollen daher einen Beweis zur Mggting stellen, der au-
tomatisiertuiberptift werden kann. Insbesondere sollten alle kritischen De-
signs in Form von vier-Tupeln ausgeliefert werden: 1) das Design selbst,
2) eine Spezifikation, 3) ein manuell nachvollziehbarer Beweis, und 4) ein
maschinell verifizierbarer Beweis.

Gegenstand dieser Dissertation sind Korrektheitsbeweiskoinplexe
Mikroprozessoren. Die Erstellung von Mirkoprozessordesigns gilt als feh-
leranfillig. Ein bekanntes Beispiel ist der Pentium FDIV bug [Coe95,
Pra9os].

In dieser Dissertation wird das Problem der Korrektheit von Hardware
streng formal behandelt. Die Designs beinhalten Prozessoren mit aktuellen
Scheduling Verfahren, wie beispielsweise dem Tomasulo Scheduler aus
[Tom67] und spekulativer Augfirung. Im Gegensatz zu weiten Teilen
der bestehenden Literatur sind die Designs auf Gatter-Ebene spezifiziert.
Insbesondere werden einige der Designgdié XILINX FPGA Serie syn-
thetisiert.

Die Designs haben hohe Kompleatit'was sich auf die Beweise aus-
wirkt. Im Gegensatz zu [MP95, Lei99, MP00] sind die Beweise mit dem
Theorem Beweissystem PVS verifiziert. Wir geben in dieser Dissertation
nicht den originalen PVS Beweis an, sondern versuchen einen nachvol-
Iziehbaren Beweis inblicher mathematischer Notation anzugeben.

Um sequentielle Maschinen zu verifizieren, erweitern wir die Datenkon-
sistenz-Invariante aus [MPOO] indem wir einen “korrekten Wert” eines Im-
plenentation Registers wie beispielswelge2 definieren. Gegeben die



Korrektheit der funktionalen Komponenten, wie beispielsweise der ALU,
erlaubt uns dies den Beweis der Datenkonsistenz deggapiert sequen-
tiellen Maschine in PVS fastollig zu automatisieren. Wir argumentieren,
daf die funktionellen Komponenten korrekte Ergebnisse liefern wenn sie
korrekte Eingaben erhalten.

Wir erweitern das Konzept der “stall engine” aus [MP0O0] indem wir eine
vollstandig generische stall engine angeben. Im Gegensatz zu der stall en-
gine aus [MPO0O], erlaubt unsere stall engine eine beliebige Anzahl von
Stufen und ermadlicht es, alle Stufen unabhgig voneinander anzuhalten.

Des weiteren unterstzt unsere stall engine das Entfernen von “pipeline
bubbles”. Das bedeutet, dal3 die Stufen immer dann in Betrieb sind, wenn
dies die in-order Eigenschaft at. Das beinhaltet, dafd “pipeline bub-
bles” wenn notwendig aus der Pipeline entfernt werden. Wir verifizieren
die Datenkonsistenz dieser stall engine und geben Eigenschaften an, die es
erlauben Laufzeitschanken zu beweisen.

Mit dieser erweiterten stall engine verbessern wir die Transformation
der pepariert sequentiellen Maschine in die Maschine mit Pipeline in-
dem wir ein Programm implementieren das diese Transformation automa-
tisiert. Dies beinhaltet die Generierung von Forwarding und Interlock
Schaltkreisen.

Anschlie3en beweisen wir die Datenkonsistenz der Maschine mit Pipe-
line. Dies wird dadurch erreicht, dal’® wir beweisen, dal3 die Eingaben der
Pipeline Stufen korrekt sind. Damiibkinen wir wie bei der @pariert
sequentiellen Maschine argumentieren, daf’ die Ausgaben korrekt sind, da
die funktionalen Einheiten identisch sind.

Wir geben einen generischen Ansatz zur Realisierung von spekulativer
Ausflihrung an und stellen ein Datenkonsistenzkriteriunudafif. Wir
wenden diese Methode dann an um DLX Pipelines mit Branch Predic-
tion und pazisen Interrupts zu implementieren und zu verifizieren. Es ist
allgemein bekannt, dal3 beide Techniken mit spekulativer ukuefig zu
implementieren sind [SP88]. Nach unserem Wissen ist dies jedoch das er-
ste Mal, daf? beide Techniken als Instanz eines generischen Mechanismus’
fur spekulative Ausffirung implementiert werden.

Neben den in-order Pipelines verifizieren wir die Korrektheit des Toma-
sulo Scheduling Algorithmus’ mit Reorder Buffer. Der Reorder Buffer
bewirkt in-order Terminierung, was es erlaubtazise Interrupts zu im-
plementieren. Der Korrektheitsbeweis beinhaltet die Argumente, die not-
wendig sind, um die Eindeutigkeit der Tags zu beweisen.

Des weiteren beweisen wir eine obere Schrankedfé Ausfihrungs-
zeit von Programmen auf allen Maschinen. Obwohl dies eine kritische



Eigenschaft darstellt, wird dieses Thema in oder offenen Literatureft--
gangen.






Ccontents

1 Introduction 1
1.1 Formal Verification of Microprocessors . . . . . .. .. 1
12 RelatedWork . . ... ... ... ... ... ... . 2
1.3 Contribution . . .. . . . ... 4
1.4 Organization. . . . . . . . . . . 5

2 Basic Concepts 7
2.1 SpecifyingMachines . . ... ... ... .. ....... 7

2.1.1 Mathematical Machines . .. .. ......... 7
212 Notation .. ... ... ... ... ... 8
2.1.3 BitsandBit\Vectors . . ... ... ........ 9
214 Gates . .. ... 11
2.1.5 Interpretations of BitVectors . . . . .. ... ... 13
2.2 BasicCircuits . . . . . .. .. ... 15
221 BinaryTrees . . . . . . ... 15
222 ZeroTester . .. . ... . ... .0 16

223 EqualityTester . . ... ............. 16



Table of contents

224 ParallelPrefix . . . ... ... ... ... 16
225 Adders . ... ... ... 19
2.2.6 \Vrification of a Carry Lookahead Adder . . . . . 21
2.3 \Verificationofan ALU . . . ... ... ... ... ..., 22
2.3.1 Specification . ... ... ... ... ..., 22
2.3.2 Implementation . . ... ... ........... 25
2.4 Specifying the Reference Machine . . . . . ... ... .. 27
241 DLXArchitecture . . ... ... ... ... ... 27
2.4.2 Configuration of an Integer DLX with Delayed PC 27
2.4.3 Initial Configuration . . . ... ... ... ... 28
2.4.4 Transition Function . . .. ... ... ... ... 29
25 Literature . . . ... ... 33
A Sequential Implementation Machine 35
3.1 The Prepared Sequential Machine . . ... ........ 35
3.2 How Hardware is Specified . . . . ... ... ... .... 36
3.2.1 A Simple Hardware Description Language . ... 36
3.2.2 The Register Set of the Implementation Machine . 37
3.2.3 Scheduling of the Prepared Sequential Machine . . 38
3.2.4 The Transition Function. . . . . ... ... ... 41
325 Inputs. . .. ... ... 43
3.2.6 Register FlesandMemory . . . . ... ... ... 47
3.2.7 Multiport Read Accesses. . . . ... ... ... 51
3.28 Notation . . ... .. ... ... ... ... 51
3.3 Precomputed Control . . . .. .. ... ... ....... 52
3.4 Implementing the Prepared Sequential DLX . . . . . . .. 53
3.4.1 Structure . . . ... 53
3.4.2 ThelInstruction FetchStage . ... ... ... .. 55
3.4.3 The Instruction Decode Stage . . . ... .. ... 55
3.44 TheExecuteStage ... .............. 58
345 TheMemoryStage . .. .. ............ 59



3.5

3.6

Table of contents

3.46 TheWriteBackStage. . . .. .......... 60
Data Consistency Proof . . . . . .. ... ... ...... 61
3.5.1 Propertiesofthe FullBits ............. 61
3.5.2 Scheduling Functions . . . .. .. ... ...... 63
3.5.3 Properties of the Scheduling Function . . . .. 65
3.5.4 Data Consistency Proof Strategy . . . . . ... .. 71
3.5.5 Correctness of the Transition Functions . . . . 78
Liveness . . . . . . . . .. 86
3.6.1 Introduction . . . ... ... ... ... .. ... 86
3.6.2 Liveness Criterion. . . . . ... ... ... ... 87

3.6.3 Liveness Properties of the Scheduling Lagic. . 87

3.6.4 Liveness Proof for the Sequential DLX . . . . . . 88
3.7 Literature . ... .. ... 89
Pipelined Machines 91
4.1 Scheduling the Pipelined Machine . . . ... ... .. .. 91
411 Introduction . .. ... ... ... ... ... 91
4.1.2 SchedulingLemmas . ... ............ 95
4.1.3 The Scheduling Invariants . . . ... ....... 98
42 Forwarding . .. ... .. ... 100
421 Introduction . .. ... ... ... ... ... 100
4.2.2 Forwarding from the Next Stage . . . . . . .. .. 101
423 ResultForwarding . ... ............. 107
43 Staling . . ... ... 118
4.4 ImplementingtheDLX . . .. ... ... .. ...... 120
45 DataConsistency . . . .. ... ... ... 121
46 LiVeness . . . . . ... 129
46.1 Introduction . .. ... ... ... ... ... . 129
4.6.2 Extended Liveness Calculus . . . ... ...... 130
4.6.3 LivenessProof .. ... .............. 138
47 Performance . . . . . . . ... oo 145
4.8 Literature . . . . .. ... 147 -

Xi



Table of contents

5 Speculative Execution 149
5.1 Introduction. . . .. ... ... .. ... ... ..., 149
5.2 Stall Engine with Speculation . . . . ... ... ... ... 151
5.3 Schedule with Speculation . . .. ... ... ....... 153
5.4 SchedulingInvariants . . . .. ... ............ 157
5.5 Speculativelnputs . .. . .. ... 159
5.6 Detecting Misspeculation . . . . . ... ... ....... 159
57 Rollback . . .. ... ... .. .. ... . 161
5.8 Extended Read Access Semantics. . . . . .. ... .. 163

5.8.1 Specification Registers . . . ... .. .. .. ... 163
5.8.2 ExternalSignals . ... .............. 165
5.9 BranchPrediction . . . .. ... ... ... ... ..... 166
5.9.1 The DLX without DelayedPC ... ... . ... 166
5.9.2 The Sequential DLX without Delayed PC . . . . . 167
5.9.3 The Pipelined DLX without Delayed PC . . . . . . 168
5.10 DataConsistency . . . . . . . . ... . 173
5.10.1 Data Consistency Criterion. . . . . . . ... .. 173
5.10.2 Properties of the Pipeline. . . . ... ... ... 180
5.10.3 Data Consistency Invariants . . . . ... ... .. 184
511 LiVeness . . . . . . . . 191
5.11.1 Liveness Proof Strategy . . . .. ... ... ... 191
5.11.2 Propertiesof M(T) . . ... .. ... ... ... 192
5.11.3 Rollback Properties . .... . .. ... ... ... 195
5.11.4 LivenessProof . .. ... ... ... ....... 209
5.12 PreciselInterrupts . . . . . . . . ... .. 211
5.12.1 Definition . .. . . .. ... ... ... ... 211
5.12.2 The DLX with Interrupts . . . . . . .. ... ... 211
5.12.3 Hardware for the DLX with Interrupts . . . . . .. 218
5.12.4 Configuration of the Pipelined DLX with Interrupts 220
5.12.5 Transition Functions of Stage 0. . . . . . . .. 220
- 5.12.6 Transition Functions of Stage 1. . . . ... .. 223

Xli



5.12.7 Transition Functions of Stage 2

5.12.8 Transition Functions of Stage 3. . . . . . . ..
5.12.9 Transition Functions of Stage 4. . . . . . . ..
5.12.10 Data Consistency and Liveness

5.13 Literature

Out-of-Order Execution
6.1
6.2
6.3

Introduction . . .. . .. ... ...
The Tomasulo Algorithm with Reorder Buffer... . . . .

Tomasulo Data Structures
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
Tomasulo Protocols
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5 Completion
6.4.6 Writeback

Data Consistency

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8

Reorder Buffer

Register File Extentions

Reservation Stations

Producers

Initial Configuration . . . . . .. ... .. ....
6.4
Formalization . . . . . . ... ... .. .....
Issue . . . ..

CDB Snooping

Dispatch . . ... ... ... .. ........
6.5 DataConsistency . ... ... ... ... .......
Scheduling Functions
Function Unit Axioms
ROB Flags

ROB Properties

Instruction Phases. . . . . .. ... ... ....
Tag Consistency
Data Consistency Criterion .... . . . . ... ..

Forwarding Tags Consistency

Table of contents

229
229
232

Xiii



Table of contents

6.5.9 TagUniqueness . .. .. .. ... ......... 283
6.5.10 Data Consistency Invariants . . . . . .. ... .. 287
6.6 Liveness . . . . . . . . ... 296
6.7 \Verifying the DLX Implementation . . . . . . ... ... 303
6.7.1 Implementation Differences . . . ... ... ... 303
6.7.2 \Verifying the Instruction Fetch . ... . . . .. .. 305
6.7.3 \VerifyingIEEEf . . . . . ... ... ....... 306
6.7.4 \Verifying Interrupts . . . . ... ... ... ... 308
6.8 Literature . . . .. ... ... 309
7 Perspective 311
7.1 FunctionalUnits. . . .. ... ... ... ......... 311
7.2 In-Order Scheduling and Forwarding . . . . . . ... ... 312
7.3 Speculation ... ... 313
7.4 Out-of-Order Execution . . . . ... ... ... ...... 313
7.5 SynthesizingHardware . . ... ... ........... 313
A Theorem Index 315
Al ThePVSProofTree. . . . ... .. ... ... ...... 315
A.2 BasicConcepts . .. ... ... ... .. .. ... 316
A.3 A Sequential Implementation Machine . . . . .. ... .. 317
A.4 Pipelined Machines . . . ... ... ... ......... 318
A.5 Speculative Execution. . . .. .. ... ... ..., 319
A.6 Out-of-Order Execution . . . . . ... .. ... ...... 321
B DLX Instruction Set 323
C Performance of the Pipelined DLX 331
D Liveness Verification using SMV 335
D.1 Introduction. . . . ... ... ... ... . ... ..., 335
D.2 UsingInduction . . .. ... .. ... ... .. ...... 337
Bibliography 341

Xiv



Introduction

1.1 Formal Verification of Microprocessors

TIOWADAYS, microprocessors are in use in many safety-critical envi-
ronments, such as cars or planes. We therefore consider the correct-
ness of such components as a matter of vital importance.

Verifying the correctness of microprocessors used to be done by exten-
sive tests. However, the state space of modern microprocessors is huge and
tests never attain full coverage, especially for 64-bit designs. We therefore
think formal verification is the sole way to obtain a guarantee.

This formal verification should be done such that any third party is able
to verify the correctness with low effort, i.e., we aim to provide a proof of
correctness that can be checked mechanically. In particular, we think that
all critical designs should be delivered in form of a four-tuple: 1) the design
itself, 2) a specification, 3) a human-readable proof, and 4) a machine-
verified proof. Moreover, we think that there will be a considerable market
for such four-tuples.

Let us motivate why we distinguish human-readable proofs and ma-
chine-readable proofs and why we demand for both. This is not a common
demand. In industrial environments, low-effort but automatized verifica-
tion is preferred.



Chapter 1

INTRODUCTION

However, proofs written for theorem proving systems tend to be hard to
read. This becomes worse the higher the grade of automatization of the
theorem proving system is. We think that this leads to two drawbacks:
Without a human-readable proof, one completely depends on the sound-
ness of the theorem proving system. This includes that one depends on the
clarity and accuracy of the specification language of the theorem proving
system.

The second drawback is that automatized design verification is of no
aid in understanding the designs. In contrast to that, we have experienced
that writing proofs, in particular the human-readable proofs, is producing
generic theories and design approaches previously unknown. We therefore
claim that providing human-readable proofs will aid automatizing the ac-
tual design process, since generic theories allow for the development of
non-specialized tools with diversified use.

In this thesis, we present proofs of correctness for complex micropro-
cessors. Designing microprocessors is considered an error-prone process.
Due to the complexity of the designs, errors often remain undiscovered
even in case extensive testing is done. A well known example for this is
the Pentium FDIV bug [Coe95, Pra95].

1.2 Related Work

There are many publications on the formal verification of sequential ma-
chines, e.g., Cohn verified the VIPER processor [Coh87], Joyce verified
the Tamarack [Joy88a, Joy88b], Hunt verified the FM8501 [Hun94], and
Windley verified the AVM-1 [Win95].

In [HP96, PH94], Hennessy and Patterson describe a 32-bit RISC ar-
chitecture, the DLX, which serves as basis for many microprocessor ver-
ification projects. In [MP95], Mueller and Paul describe sequential DLX
designs at gate level, including a machine with precise interrupts.

The formal verification of a pipelined processor is reported in [BS89]:
Bickford and Srivas verify a three stage DLX-like RISC processor. In
[LO96], Levitt and Olukotun verify a five-stage DLX pipeline by trans-
forming it back into a sequential machine by removing stalling and roll-
back logic.

In [Hos00], Hosabettu verifies both in-order and out-of-order DLX im-



Section 1.2

plementations that are not synthesizeable. The pipelined implementation
has a trivial stalling logic. The verification is done using the completioRELATED WORK
function approach and PVS.

Further literature on the verification of pipelined machines is [LO96],
which covers automatic verification of pipelined microprocessors, [BM96]
provides a manual proof of a DLX pipeline, Burch, Dill [BD94] verify a
very simple pipeline. Henzinger et.al. [HQR98] use refinement mappings
in order to model-check a RISC pipeline.

Besides PVS, there are more theorem proving systems that are applied
for hardware verification, such as HOL [CGM86] or ACL2 [KM96]. There
has been much success in verifying complete, complex systems using the-
orem provers [BS89, HGS99, SH99]. However, theorem proving systems
always involve much manual work.

Recent papers show the correctness of complex designs or schedulers
in theorem proving systems such as PVS. Hosabettu et al. [HGS99] prove
both safety and liveness of Tomasulo’s algorithm using PVS. Swada and
Hunt [SH99] provide an ACL2 proof of a complete design implementing
a Tomasulo scheduler with reorder buffer.

Henzinger et al. [HQR98] verify a simple pipelined processor using a
model checker. McMillan [McM98] partly automates the proof by refine-
ment of Tomasulo’s algorithm presented in [DP97] with the help of com-
positional model checking. This technique is improved in [McM99b] by
theorem proving methods to support an arbitrary register size and number
of function units.

In the literature cited above, the complex designs are verified at very
high levels of abstraction. In particular, there is even not much litera-
ture on details of actually implementing complex microprocessors. Gate-
level descriptions of microprocessors usually never go beyond simple ma-
chines, with the exception of [Lei99] and [MPO0O]: In [Lei99], Holger Leis-
ter presents out-of-order designs and evaluates the architectures regarding
hardware cost and performance. The correctness is argued using paper-
and-pencil proofs but not verified by means of machine.

In [MPOO], Silvia M. Mueller and Wolfgang J. Paul present gate-level
designs of pipelined DLX implementations including a machine with full
IEEE floating point arithmetic and interrupts. The correctness of the ma-
chines is argued as follows: The authors build a sequential machine but
with the structure of a pipelined machine. This machine is caltegared

sequential machineThe authors transform this prepared sequential ma- -



Chapter 1

INTRODUCTION

chine into a pipelined machine by adding interlock and forwarding hard-
ware. This is supported by introducing the concept sfadl engine The

stall engine encapsulates the logic required for generating clock enable
signals for the individual pipeline stages.

The correctness of the pipelined machine is argued as follows: given
the correctness of the prepared sequential machine, the authors prove the
pipeline to be correct by arguing that it simulates the prepared sequential
machine. This is done usingsgzheduling function This function maps
a configuration of the physical machine to a configuration of the abstract
reference machine.

1.3 Contribution

In this thesis, we provide a rigorously formal approach to hardware verifi-
cation. The designs presented in this thesis include state of the art sched-
ulers, such as the Tomasulo scheduler [Tom67] and speculation. In con-
trast to most of the literature, the designs we provide are very close to
gate level. In particular, we are synthesizing some of the designs for the
XILINX FPGA series.

These designs are of high complexity, and so are the proofs. In contrast
to [MP95, Lei99, MPO0Q], the proofs are machine verified using the theorem
proving system PVS [CRSS94]. However, we never present the original
PVS proof in this thesis. We aim to provide proofs that come close to
comprehensible paper-and-pencil proofs in the tradition of [KP95, MP95,
MPO0O0]. We aim to maintain the full formal reasoning of the PVS proofs,
to the extent that the proofs are reviewable on a line-per-line basis. This
resulted in several PVS proofs to be re-written due to better readability of
the paper version of the proof.

In order to verify sequential machines, we extend the data consistency
invariant given in [MPO0O] by defining a “correct value” of an implementa-
tion register such adk.2. Given the correctness of functional components
such as the ALU, this allows for an almost fully automated proof of the
data consistency of the prepared sequential machine using PVS. We ar-
gue that the correct functional components provide correct results if given
correct inputs.

We extend the stall engine concept presented in [MPOO] by providing
a fully generic stall engine design. In contrast to [MPOOQ], our stall en-



Section 1.4

gine design supports an arbitrary number of stages and allows for stalling
(and therefore clocking) all stages independently. We formally verify daf@RGANIZATION
consistency and liveness properties for this stall engine.

Using this extended stall engine, we can significantly improve the pro-
cess of transforming the prepared sequential machine into the pipelined
machine by providing a tool that does this transformation automatically.
This includes the generation for forwarding and interlock hardware. In
particular, the transformation of the PC environment of the DLX with De-
layed PC, i.e., removing tHePC register, turns out to be a special case of
adding forwarding.

We then prove the data consistency of the pipelined machine. We do so
by showing that the inputs of the pipeline stages are correct. Using this
fact, we argue the correctness of the output values as we do for the sequen-
tial prepared machine, since the functional components of the machines
are identical.

We present a generic approach to speculative execution and propose a
data consistency criterion for such a machine. We then apply this method
in order to implement and prove DLX pipelines with branch prediction
and precise interrupts. It is a well-known fact that both techniques are im-
plemented using speculation [SP88]. However, to the best of our knowl-
edge, implementing both techniques as an instance of a generic speculation
mechanism is done for the first time.

Besides the in-order pipelines, we verify the correctness of the Tomasulo
scheduling algorithm with reorder buffer as described in [KMP99]. The re-
order buffer realizes in-order termination which allows implementing pre-
cise interrupts. The proof of correctness covers the arguments neccessary
to show the uniqueness of the tags.

Furthermore, we rigorously prove the liveness of all machines we de-
sign, i.e., we prove that any given instruction sequence is executed within
a finite amount of time. Although critical, liveness issues are often not
covered in the open literature.

1.4 Organization

Chapter 2 describes basic concepts. We introduce the mathematical hard-

ware model, and describe the implementation and verification of basic cir- -



Chapter 1

INTRODUCTION

cuits, such as adders. We use these basic circuits in order to implement and
verify an ALU. We then provide a formal specification of a DLX RISC mi-
croprocessor without interrupts and floating point instructions.

In chapter 3, we describe how we model the hardware of a micropro-
cessor. We describe the extended stall engine for the prepared sequential
machine. We introduce the functions used in order to model the registers,
the circuits between the registers and the forwarding logic. We use this
formalism in order to implement and verify a prepared sequential DLX.
We also show the liveness of the prepared sequential machine.

In chapter 4, we describe how the stall engine is modified in order to
get a pipelined machine. We describe how to add the forwarding and in-
terlock hardware and prove the correctness of the pipelined machine. This
comprises of both data consistency and liveness.

In chapter 5, we describe a generic approach to speculative execution.
We prove its data consistency and liveness. We implement two machines as
examples: the first machine guesses whether branches are taken or not. The
second machine guesses whether we have an interrupt or not. We prove
that this realizes precise interrupts according to the specification given in
[MPO0O].

In chapter 6, we describe the results of verifying an out-of-order DLX
with Tomasulo scheduler as presented ind89@].



Basic Concepts

2.1 Specifying Machines
2.1.1 Mathematical Machines

HE SUBJECTOf this thesis is to present a provably correct micropro-
Tcessor. A microprocessor is said to be correct if it interprets a given
instruction set architecture (ISA). The instruction set architecture is usually
given as an informal list of registers and instructions, and a specification
of the impact of these instructions on the values of the registers. The im-
plementation of this ISA, the microprocessor, is a piece of hardware.

In order to make a formal proof of the correctness of such a processor,
it is necessary to formalize the specification, the implementation, and the
correctness criterion.

Mathematical machines are a common method to model the behavior of
arbitrary microprocessor systems. There are different definitions of math-
ematical machines. In this thesis, the mathematical machine is used to
specify both the microprocessor hardware and the instruction set architec-
ture. The correctness criterion and its proof then rely on arguments on
these two mathematical machines.

The model used in this thesis is similar to the synchronous transition



Chapter 2

BAasic CONCEPTS

Definition 2.1 »
Mathematical Machine

states (STS) model used in [KP96, DP97]. In contrast to [DP97], the math-
ematical machines here work fully deterministic to allow direct hardware
synthesis from the mathematical machine. A very similar approach is also
used in [Cyr93].

A mathematical machine, as used in this thesis, is a thple (C,c°,d)
that consists of the following components:

e Cis the set of all possible configurationsMf An element of C is
called configuration or state of the machine.

e The initial configuratiorc? is a configuration oM.

e The transition functiord : C — C maps one configuratioa’ to its
successoc’ 1,

The sequence®, ¢!, . .. of configurations is called computationMf The
configurationc’ is called configuration in cycl&. The configurations of
M in cyclesT > 1 are defined recursively as follows:

CT — B(CTfl)

In the literature, the transition function is often called next state function
[Cyro3].

2.1.2 Notation

Registers Both the specification and the implementation of a micropro-
cessor use registers. A register is a place where a value can be stored and
re-read in later cycles. In terms of mathematical machines, a value of a
register is part of the configuratian

Let R = {Ry,...,Ry} be a finite set of registers. Each regiskecan
have a value within a finite domaW (R), i.e.,R € W(R)).

In order to allow an easy identification of the value of a register in the
configuration of a mathematical machine, all valid configurations @me
expected to be a tuple of the values of all registers:

C = W(R)xW(Rp)x... xW(Rn)



Section 2.1

The value of a given registé®; can be extracted from a configuration

with a projection functionp;. Letc be (ag,ay, ..., an). SPECIFYING

MACHINES
or :C—W(R), dr(C) =4

Letc=c' be part of a computation of a mathematical machine. In this
case, leR" be a shorthand fapr(c').

Let c.R be a shorthand for the value of the projectipgiapplied toc:
c.R = ¢r(c)
In analogy to that, led.R be a shorthand for the restriction of a state

transition function to a register value:

3R:C5W(R), BR=0robd

Signals

A signalsis defined as a mapping from the set of configurations into<uDefinition 2.2
arbitrary domainWV (s): Signal
s:C—W(s)

Signals are therefore a shorthand for a calculation on a given configura-
tion.

2.1.3 Bits and Bit Vectors

In order to model gates and wiring between gates in a formal way, the
theorem proving system PVS [CRSS94] provides a bit vector library. Bits
are defined as a boolean value and bit strings are defined as a vector of
boolean values.

An n-dimensional vector on a domaihis a mapping from{i € Np |i <n} < Definition 2.3
into D. Vector



Chapter 2

BAasic CONCEPTS

Let a, denote the componentof the vectora:

a,:=a(n)

Definition 2.4 » A bit is a value in the domaiB = {0,1}. The value 0 is called FALSE

Bits and Bit Vectors

10

and the value 1 is called TRUE. Ambit bit vector is ann-dimensional
vector onB. The numben s called length of the bit vector. &is ann-bit
bit vector, this is denoted by:

a € bvedn|
There is a projection function to get a subpart ofndnit bit vector. Let

x < nandy < x. The functionalx : y] takes a bit vectoa and returns the
subvector fromay, downtoay:

[x:y] : bvedn] — bvedx—y+ 1]

ax:y|(i) = ali+y) VvOo<i<(x—y)

Dots Notation Leto be a binary operator on a Skt
o:TxT—=T
Letn, a, b be nonnegative integers with> a. LetX be am-dimensional

vector onT. The following definition is used for the common “dots nota-
tion™:

XqoXgp10...0Xp = rO,a,b(baX)

The functionr, 51, is defined recursively as follows: Lein] denote the
set ofn-dimensional vectors of.

ro,a,b:{a,...,b}xv[b—a_|_1] =T

_ B Xa Ci=a
loap(i,X) = {ro,a,b(i—l,X)ON . otherwise

In casea is omitted, zero is assumed:



Section 2.1

\T:O\T:l\T:Z\T:3\T:4
AT 0 1 0 1 1 SPECIFYING
BT 0 0 1 1 1 MACHINES

Table 2.1 The computation of the example machine

rob:{0,...,b} xvb+1 =T

rop(i—1,X)oX : otherwise

rop(i,X) = {XO - 1=0

2.1.4 Gates

Using the definition of bits above, the basic gates such as AND and OR are
defined in a obvious way: a gate like AND with two inputs and one output
is a mapping on two bits:

AND: BxB—B

As an example, consider the following mathematical machine (a two bit
saturating counter): It has two one bit registBrs= {A,B} with W (A) =
W (B) = B. The configuration sef therefore isB2. Let the transition
function d be defined as follows:

3.A(c) = cAvcB
0.B(c) = cAvcB

Let the initial configurationcy be {0,0}. This mathematical machine
models hardware: in order to illustrate the hardware modeled by mathe-
matical machines, the symbols from figure 2.1 are used.

The transition functiord models two OR-gates and one inverter. The
configuration set models two one-bit registers. In hardware, registers usu-
ally do not have defined initial values. In order to get the initial configu-
ration cg, an external signakesetis assumed. This signal is active during



Chapter 2

BAasic CONCEPTS

| L]
5

Tristate Driver| AND OR XOR Multiplexer

Jin
||
Y o

Inverter NAND NOR XNOR Flip-Flop

Figure 2.1 Symbols of the basic gates

Figure 2.2 A two bit saturating counter

12



Section 2.1

cycle —1. Using multiplexers, this allows calculating the initial configura-
tion. SPECIFYING

MACHINES
The hardware modeled by the mathematical machine described above is
illustrated by figure 2.2. Table 2.1 lists the values of the regigteand B
in the configurations? to c*.

2.1.5 Interpretations of Bit Vectors

The interpretation of a bit vect@ as a binary number is a mapping from
then-bit bit vectors into{0,....,2" — 1}. The mapping is denoted Hg).
If the length of the bit vector argument is obvious in the context, (asis
used.

()n: bvedn] — {0,...,2"—1}

n-1
@n = > a-2
i=0

The PVS bit vector library provides the functid@v2nat[n]  for this
purpose. The value of this function is defined by a recursive function that
takes an n-bit bit vector and an indexthe function sums up the first
addends of the sum above:

(L :{0,...,n} x bvedn] — {0,...,2"— 1}

i—1
@h = a2
j=0

In PVS, this is defined using a recursion:

@h = { ta st L ome

2-1.a 1+ (a)t : otherwise

It is easy to prove that both definitions are equivalent and(gydt= (a),
holds.

The interpretation of a bit vect@ as a two’s complement number is a
mapping from then-bit bit vectors into{ —2"1,... 21 1}

[]n: bvedn] — {0,...,2" -1}

13



Chapter 2

[@n:=—an 1- 2" 4+ (@n—2:0)n 1
BAasic CONCEPTS

The bita,_1 is calledsign bit

This allows defining several operations on bit vectors such as addition
and subtraction:

+,— : bvedn] x bvedn] — bvedn]
a+b:=c suchthat (c),=(a)+ (b) mod 2’
a—b:=c suchthat (c),=(a)— (b) mod 2’
A similar definition is used for operations on a bit vector and an integer:
+,— : bvedn] x Z — bvegn]
a+b:=c suchthat (c),=(a)+bmod 2
a—b:=c suchthat (c),=(a)—bmod 2
An unary minus on bit vectors is defined as follows:
— : bvedn] — bvedgn|

—a:=c suchthat (c),=—(a) mod 2’

The functionzeraextend extends a givem-bit bit vector tok > n bits
by adding zeros:

zeraextend : bvedn] — bvedk]

a : i<n

zeraextengd(a); = {0 . otherwise

The functionsign exteng extends a givem-bit bit vector tok > n bits
by adding the sign bit:

signexteng : bvegn] — bvegk]

a; i<n

signextend(a); = {anl . otherwise

14



Section 2.2

2.2 Basic Circuits
BAsic CIRCUITS

2.2.1 Binary Trees
Let n be a power of two, i.en =2 k€ Ny. Leto: T xT — T be a <« Definition 2.5

dyadic function that is associative. Let T denote a set andétdenote  Binary Tree Circuit
the set ofn-dimensional vectors om.

The binary tree is implemented as follows:

btree i : V[2<] — T

Xo . k=0
btree k(X) = btree, x_1(X(0),...,X (21 —1))o : otherwise
btree, x_1(X(2¢71),..., X(2¢~ 1))

The binary tree circuibtree,  : vin]| — T calculates the following func-< Lemma 2.1
tion:
btree k(X) = XgoXpo...0Xn 1
This is shown by induction ok. Fork = 0, the claim is obviously true. PROOF
Fork+1, the claim is:
btree k1 = X(0)o...0 X (21— 1)
By definition ofbtree this is equivalent to:
btree, k(X(0),...,X(2¢~ 1)) o btree k(X (2Y),..., X (2¢1 — 1)) =
X(0)o...oX (21 1)
By the induction premise for bothtreeinstances, this is equivalent to:
(X(0)o...0X(2=1)) o (X(2)0...0X(2F1 - 1))
=X(0)o...oX(2¢1—1)

This is shown by induction using thatis associative.
15



Chapter 2

2.2.2 Zero Tester
BAasic CONCEPTS

Letn be a power of two. The zero tester is implemented as follows:

zerotester bvedn] — B
zerotestefa) = btreepr(a)

Lemma 2.2 » The zero tester calculates the following function:

zerotestefa) = (Vi: &)

This is shown by induction on using lemma 2.1.

2.2.3 Equality Tester

Using the zero tester, an equality tester is constructed as follows:

equalitytester bvedn] x bvedn] — B
equalitytestefa,b) = zerotestefa®db)

Lemma 2.3 » The equality tester is correct:

equalitytestefa,b) = (a=bh)

The correctness is shown easily with lemma 2.2.

2.2.4 Parallel Prefix

Definition 2.6 » Let T denote a set and lefn] denote the set ofi-dimensional vectors
Parallel Prefix  onT. Leto: T x T — T be an associative dyadic function. Thdold
generic parallel prefix circulP, , : vin] — v[n] calculates the following
function:

PP n(X)i =XpoXio0...0X i€{0,...,n—1}
16



Section 2.2

n=1 n>1
BAsic CIRCUITS

Xo Xn-1 Xn—2 X2 X1 Xo

Xij2-1 X5

PPo.n/2
Yr4/271 Yo
O . O

Yo Yn-1 Yn_2 Y2 Y1 Yo

Figure 2.3 The recursive specification of awmfold parallel prefix circuit

The parallel prefix circuit is implemented by means of a recursive defi-
nition (figure 2.3). Len be a power of two, i.en = 2X with K € N, and
let X € v[2X] be the inputs of the circuit.

The functionppX; calculates the inputs; to X! , ; for the next recur-
sion step. The recursion depth is given by the first paranketer

ppX 1 Nx v[2K] — v[2€ 1]

PPX (K, X); == X(2-1) 0 X(2-i +1)

Given those inputs, the functigmpy, calculates the outpuig to Y,_1. As
above, the recursion depth is given by the first paraméter

Xo i=0
pPY; (K, X)i = ¢ PPY(K—1,ppX(K,X))is oddi
ppYO(K_lvpri(KaX)) 10Xi eveni

The outputs of the parallel prefix circuit are the val¥g$o Y,,_1:

pp.(X)i = ppY%(K,X);

L
2

The parallel prefix circuit is correct: <4 Theorem?24 _____
17



Chapter 2

PP-(X)i = XooXpo...0X
BAasic CONCEPTS

In order to prove theorem 2.4, the definitipplis used. The first pa-

rameter defines the number of inputs, the second parameter is the index of

the output, the third parameter is the input vector.
ppl:Nx {0,...,2¢ —1} xv[2] — T

_ . Xo . 1=0
PPUK,i,X) = {ppl(K’i_]_’X)oXi . otherwise

Lemma 2.5 » This definition is equivalent tBP, ,, which is an easy proof by induction:

ppLK,i,X) = PR n(X);

Lemma 2.6 » If iis odd, applyingpplto X; to X(’ifl)/2 is equivalent to applyingplto
Xo to X;:

ppl(K -1 (I - 1)/2v prI(K,X)) = ppl(KvivX)

If i is even and not zero, appendikgto the sequence above on the left
hand side produces the desired result:

ppUK —1,i/2—1,ppX(K,X))oX = pplK,i,X)

PROOF This is shown by induction on Fori = 0, the claim is obvious. For odd
i +1, the claim is:

PPUK —1,i/2,ppX (K,X)) = ppLK,i+1,X)
By definition ofpp1, this is equal to:
ppLUK —1,i/2—1,ppX (K, X))o ppX'(K,X)(i/2) = ppLK,i+1,X)
Unfolding ppX!, this results in:
PPUK —L,i/2—1,ppX (K, X))o (XioXis1) = pplK,i+1,X)

Sinceo is associative, this is equal to:

- (PPUK —1,i/2—1,ppX (K,X)) o X))o Xiy1 = ppLK,i+1,X)
18



Section 2.2

This is shown by unfolding the definition @l on the right-hand side

and by the induction hypothesis for evien BAsic CIRCUITS

For even + 1, the claim is shown by the definition ppland the induc-
tion premise for oddl.
The parallel prefix circuit computggpl < Lemma 2.7
VO<k<K,Xev2 0<i<2: ppY(kiX)=pplk,i,X)

This is shown by induction ok. Fork = 0, the claim is obvious. For PROOF
k+ 1, and after definition unfolding, the claim is:

pRY(K+1,i,X) = pplk+Li,X)
Fori = 0, the claim is shown by definition unfolding. ilfis odd, the
claim is:
ppY(k.(i—1)/2,ppX (k+1,X)) = ppl(k+1,i,X)
This is shown using the induction hypothesis and lemma 2.6.

If i is even, the claim is:
ppY(k.i/2—1,ppX (k+1,X))oX = ppl(k+1,i,X)

This is shown using the induction premise and lemma 2.6.

2.2.5 Adders

The definitions used in this section are taken from the PVS bit vector li-
brary. In order to define adders, the two functi@asit andsumare used.
Using both functions, one gets a fulladder.

The functions take three input bits b, andcin. The functioncout
calculates the carry-out bit of the adder, the functium calculates the
sum bit.

coutsum:BxBxB — B -

19



Chapter 2

The functions are defined using XOR, AND, and OR gates as follows:
BAsic CONCEPTS

cout(a,b,cin) = (aAb)V((a®b)Acin)
suna,b,cin) = a®bdcin

Definition 2.7 » Letxandy denote twan-bit bit vectors andtin a single bit. The carry bits
Carry Bits  ¢(0) to ¢(n— 1) are defined as follows:

o) = cout(Xo, Yo, Cin) : i=0
N cout(x;,yi,c(i—1)) : otherwise

Definition 2.8 » An n-bit adder implements the following functicerdd on two n-bit bit
Adder  vectorsx, y: The function is defined using the addition on bit vectors as
defined in section 2.1.5.

add: bvedn| x bvedn] — bvedn]
add(x,y) = x+y
Let c(i) denote the-th carry bit as in definition 2.7. An-bit adder with

carry-in and carry-out implements the following functiaddcon two n-
bit bit vectorsx, y and the carry-in bitin:

addc: bvedn] x bvedn] x B — bvedn] x B

adddgx,y,cin) := (result cout)
with result = (Xx+y+(cin)),
cout := c(n—1)

The carry chain adder is implemented as follows:

cc: bvedn| x bvedn] x B — bvedn| x B

cc(xy,cin) = (result cout)
. ] L sun(xo, Yo, Cin) i=0
ie€{0,...,n—1}: result(i) := sumx,yi,c(i—1)) : otherwise
cout = c(n—1)

Lemma 2.8 » The carry chain adder is correct according to definition 2.8.

- The proof for this lemma is already in the PVS bit vector library.

20



Section 2.2

2.2.6 Verification of a Carry Lookahead Adder
BAsic CIRCUITS

Thecarry lookahead addeprovides both low hardware cost and low depth
[KP95].

Let ¢(0) to c(n— 1) denote the carry bits as defined in definition 2.7
for the addition of twon-bit bit vectorsa andb and the carry-in bitin.
The idea is to use a parallel prefix calculation (definition 2.6) in order to
calculate the carry bits(i). Using these bits, the carry lookahead adder is
realized as follows:

cla(a, b, cin) = (result,cout)

cin D i=0

with result(i) = a(i) ® b(i) @{ ci—1) : otherwise

andcout=c(n—1)

The inputs(g;, pi) and the associative functionused for the parallel
prefix circuit are taken from [MPOO]:

pi = a(i)®b(i)

o (a(i)y@b(i)) Acin) v (a(0)Ab(0)) : i=0

9= {ai)/\b(i) . otherwise
(91,P1) 0 (G2, P2) = (Q2VOLAP2, PLAP2)

The proof thab is associative is trivial in PVS.

Let G(i) andP(i) denote the outputs of the parallel prefix circuit, i.e.,
according to theorem 2.4 (correctness of the parallel prefix circuit) this is:

G(i) = ((9,po)o---o(gi,pi))-9
P(i) = ((9o,Po)o-..o(gi,pi))-p

We will now show that we get the carry bits by calculati@g) as above.

The carry bitsc areG. <4 lLemma 2.9

21



Chapter 2

BAasic CONCEPTS PVS.

The proof for this claim is already given in [MP0Q]. We verify it using

PROOF The proof proceeds by induction @n Fori = 0, the claim follows by

definition unfolding.

Fori+ 1, the claim after applying theorem 2.4 (correctness of the parallel

prefix circuit) is:
c(i+1) = ((9o,Po)o...0(Yi+1,Pi+1))-9
By definition of o, this is equivalent to:
c(i+1) = gi+1V((9,po)o...o (G Pi))-9A Pis1
By the induction hypothesis, this is equivalent to:

ci+1)=gr1Vvel)Apise

By definition of the carry bits, this is equivalent to:

ali+1)Ab(i+1)Vv((ali+1)eb(i+1))Ac(i))
= GiraVe(i)Apita

QED This is shown by definition o, 1 andp; 1.

2.3 Verification of an ALU

2.3.1 Specification

An ALU (arithmetic logical unit) performs operations such as addition,
subtraction, comparisons, and bitwise operations such as AND, OR, and

XOR.

The ALU takes two 32-bit bit vector operandsand b and additional
five bits f. These bitsf control the operation performed by the ALU. The
ALU returns the result bit vector and an additional dif that is set iff an
- overflow occurred during an addition or subtraction.

22



fl4] | f[3] | f[2] | f[1] | f[O] | Function

Section 2.3

*

*

* |a<b4:Q

*

*

a>b[4:0Q

*

*

a>,b[4:0

a-+ b with overflow test

a-+ b without overflow test

a— b with overflow test

a— b without overflow test

anb

avb

asdb

b[0 : 150°

return zero

@ >[0?21:0

a=b?1:0

A >0 21:0

a<b?1:0

aZb?1:0

A <[b?21:0

RRR R R R R R PR R R R PP Roloo

RPIRPRFRPRPPRPRPRPRPPOIOO OO0 OO0

PP RPPOO OO R RFPEFPOOOO

R Rlololkr r olokrkrolokr ko olkrkro

R OROIRFROFRORFR ORI OIRFROFR OO

return one

Table 2.2 ALU functions

VERIFICATION OF

AN ALU

23



Chapter 2

BAasic CONCEPTS

24

| 1] |

sub N f[1:0
—=|sub addsub[32] 015 shifter[32] ~
ovf neg res |
0 1 0 1
flo]
fl2:0] comp ’e
T1 1]
03t

Figure 2.4 The ALU implementation

Table 2.2 lists the operations performed by the ALU. It is taken from
[MP95] with small modifications. The notatiom< b is used to denote
a left shift of a with shift distanceb, a > b denotes a logic right shift of
a with shift distanceb, a >, b denotes an arithmetic right shift afwith
shift distanceb.

Overflow Let o be an addition or subtraction, i.e.c {+,—}. An over-
flow indicates that the result dé&] o [b] is not in the range of the 32-bit
two’s complement numbers. Latc T, denote thaa is in the range of the
n-bit two’s complement numbers.

Table 2.2 does not provide overflow test and comparisons for unsigned
binary numbers in contrast to most microprocessors processors such as the
MIPS CPUs or the Intel Pentiums [KH92, Int95b]. We do so in order to
maintain the instruction set used in [MPOQ].



Section 2.3

2.3.2 Implementation
VERIFICATION OF

AN ALU
Figure 2.4 [MP95] gives an overview of the ALU implementation. De-
pending on the signalk, the result from the appropriate unit is taken.

The addsub unit takes the operardsndb and one extra input biuh
which indicates whether to do an addition or a subtractiorsulfis set,
the unit performs a subtraction. Thabbit is calculated as follows:

sub = fiATRAT AT

The unit returns the result bit vector, and the flag bitfandneg The
ovf bit is supposed to indicate the overflow condition described in the sec-
tion above. Theegbit is used for the comparison operations and indicates
that[a] o [b] is below zero.

The addsub unit is realized as follows: Lepl andop2 denote the
operands. The second operand is inverted in case of a subtraction.

opl.=a
op2 := b@ (sub*?)

This is justified by the following lemma:

For all bitvectorsa, inverting and incrementing implements the unary< Lemma 2.10
minus on bitvectors.

(a®(L,...,1))+1=-a

This is shown in the PVS bit vector library.

Using the operands and the sub bit the result is calculated by an adder.
In the following, the carry lookahead adder (section 2.2.6) is used. How-
ever, there is also an implementation and proof of a compound adder, as
described in [MPQQ], in the PVS tree in order to allow cycle time vs. hard-
ware cost tradeoffs. The implementation and the proof are omitted here.

Thesubbit is passed as carry-in bit to the adder. This realizes the incre-
mentation in case of a subtraction.

addsulga, b,sub) := (result ovf,neg -

25



Chapter 2

with result= cla(opl,op2, sub).result
BAsic CONCEPTS

The bitsov f andnegare calculated as follows:

neg = cla(opl,op2,sub.cout® opl{31]® op2[3]]
ovf = negd cla(opl,op2,sub.resul3]]

Lemma 2.11 » The calculation ofesultin the addsub unit is correct.

addsulfa, b,sub).result=aob

This is shown using lemma 2.10 and 2.9.

Lemma 2.12 » The calculation of thevfsignal in the addsub unit is correct.

addsulga, b,sub).ovf= ([a] o [b]) & Ty

Lemma 2.13 » The calculation of th@egsignal in the addsub unit is correct.

addsulga, b,sub.neg= ([a]o [b]) <O

A proof for the lemmas 2.12 and 2.13 can be found in [MPO0O]. The full

proof is also in the PVS tree.

An equality tester is realized by testinggifp b is zero. Using the output
signal eq of the zero tester and the signalgf and neg from the addsub

unit, the comp unit makes the comparisons as follows:
comp: bved5| x B xB — B

comp f,negeq) = (f2Aneg Vv (f1 Aeq) Vv (egAnegA fo)

Using the lemmas 2.2, 2.3, 2.12, and 2.13, the correctness of the comp

unit is shown.

Lemma 2.14 » The ALU is correct.

This is shown by a case-split on the operation cbdesing the lemmas
- above. The correctness of the shifter is assumed.

26



Section 2.4

2.4 Specifying the Reference Machine
SPECIFYING THE

REFERENCE
2.4.1 DLX Architecture MACHINE

The reference machine used for all designs in this thesis is the DLX [HP96,
SK96]. However, the DLX architecture serves as an example only. The
algorithms and proof method presented here does not depend on any prop-
erties of the DLX architecture.

The DLX architecture is a load/store architecture with support for integer
and floating point arithmetic. The DLX instruction set (appendix B) is a
RISC instruction set and is similar to the MIPS instruction set.

The DLX architecture provides three register files:

e Thegeneral purpose register filef(GPR) consists of 32 integer reg-
isters Ro,...,R31), each of which is 32 bits wide. The registgs is
defined to be always zero. The general purpose registers are used for
all integer operations and memory addressing purposes.

e Thefloating point register file (FPR) consists of 32 single precision
floating point registersHGRy,...FGRs1), each of which is 32 bits
wide. These registers can also be accessed as 16 double precision
floating point registersHPRy, FPRy,...FPRgp), each of which is 64
bits wide. The registeF PR, is mapped onto the single precision
registers=GR, andFGRy, and so on:

N FGRy(i) D 1<32
FPR(i) = { FGR(i—32) : i>32

The floating point registers are used by FPU (floating point unit)
instructions only.

e Thespecial purpose register fildSPR) consists of several registers
needed for special purposes such as flags and masks. An example is
the IEEE floating point flags register.

2.4.2 Configuration of an Integer DLX with Delayed PC

The configuration set of the DLX specification machine consists of the
visible registers (register files RF), the program counter (PC) registers, and

27



Chapter 2

BAasic CONCEPTS

28

the main memory (MEM) of the machine:

CoLx = W (RF) x W (RPC) x W (MEM)

The DLX implementation presented in chapter 3 implements integer op-
erations only and no interrupts. The floating point and special purpose
registers are not needed therefore. The machine is called;DLX

RF = {GPRO],...,GPR31]}
W (GPR]i]) = B*

In order to implement pipelining at a high performance level without
the need for a branch prediction mechanism, the DLX implemented in this
thesis uses the conceptdadlayed PC$MPKO00, MPOO]: all modifications
to the PC register are delayed by one instruction, not just taken branches.
This is realized by buffering the PC register in a register called DPC (“de-
layed PC”). The Delayed PC technique is provably equivalent to the de-
layed branch semantics. The delayed branch semantics is, for example,
used in the MIPS [KH92], the SPARC [SPA92] and the PA-RISC [Hew94]
instruction set.

In order to implement the Delayed PC technique, two PC registers are
required:DPC, the delayed PC, arfeC':

RPC= {DPC,PC'}
W (DPC) =W (PC) = B*?

The main memory of the DLX specification machine consists Yf 2
memory cells, each of which is 32 bits wide. That accounts for a total of
four gigabytes RAM:

MEM = {MEM][0},...,MEM[2*°— 1]}
W (MEM[i]) = B2

2.4.3 Initial Configuration

The GPR registers and the main memory of the RQUXachine are ini-
tialized with arbitrary but fixed values. The PC registBiRC andPC' are



initialized as follows [MPKOOQ]:

co.DPC
co.PC

2.4.4 Transition Function

Section 2.4

SPECIFYING THE

REFERENCE
MACHINE

The DLX; machine provides control instructions (conditional branch and
jump), ALU instructions such as add and compare, and the memory in-
structions load and store. The instruction that is to be executed is encoded
in a 32-bit instruction word. This instruction word is fetched from the in-
struction memoryM, which is assumed to be constant in this thesis. The
instruction memory is not part of the configuration therefore.

Let the signall denote the instruction word fetched. The address used
to fetchl is taken from the register DPC, as required by the Delayed PC
technique [MPKOO]:

I-type

R-type

J-type ‘ Opcode ‘

I(c) = IM(c.DPC)

6 5 5 16
Opcode| RS1 | RD Immediate
6 5 5 5 5 6
Opcode| RS1 | RS2 | RD SA | Function
6 26
PC Offset

Figure 2.5 Integer instruction formats of the DLX

The DLX architecture provides three instruction formats for integer in-
structions (figure 2.5): the I-type format provides a 16-bit immediate con-
stant and two register addresses, the R-type format provides three regis-
ter addresses, a 5-bit inmediate constant and an additional 6-bit function
code. The J-type format provides a 26-bit immediate constant, which is
used as PC offset.

29



Chapter 2

The coding of the instructions is given in appendix B. In order to decode
the instruction word, the following functions are used: The functions
I_rtype | _jtype |_itypeindicate an R-type, J-type, and I-type instruction,
respectively:

I_rtype(l) = (/|31/\/|30/\/|29/\/|28/\/|27/\/|25) V
(/131 A 130 [l2g A [lag A /127 A los)

BAasic CONCEPTS

I_jtype(l) = (/lIssA/I30A [l2gA [l2g Al27) V
(131 AlzoAl2g Al Al27)

litype(l) = 1_jtype(l) Al_rtypel)

The functionl _ID extracts the index of the destination register from the
instruction word:

1[20:149 : |.type(l)
I_RD(l) = { 1115:17 : I_rtypel)
o° . otherwise

The functiond _RSL andl _R extract the index of the first and second
operand from the instruction word, respectively:
I_.RSL(I) = 1]25,2]]
I_.RK(I) = 1]20,16]

The functionl_immediateextracts the immediate constant from the in-
struction word:

signextend,(1[15,0]) : l.itypel)

. . ) zeraextendy(1[10,6]) : I_rtype(l)
Limmediaté!) = signextend,(1[25,0]) : I_jtypel)
0 . otherwise

This allows defining the values of the source operands: the integer DLX
instructions can have up to two source operands.op&tandop2 denote
the values of these operands. If the address of the operand is zero, the value
of the operand is zero by convention:

B 0 : I_RSI(I)=0

opl(c) = {C,GPR[I_RSL(I)] . otherwise 1)
_Jo . ILR(1)=0

opc) = {C-GPRU-RQ(U] . otherwise (2:2)

30



Section 2.4

Branch Mechanism The DLX architecture provides two instructions to

modify thePC' register: the branch instructions test a given register for 8 EC/FYING THE

SHEFERENCE

condition and add the offset given as immediate constant if the conditi
MACHINE

holds; the jump instructions always set €' register to the given value.

In order to determine the instruction coded by an instruction woel
boolean function is defined for each instruction. The equations for these
functions are generated from the instruction set in appendix B and are in
the PVS tree. A list of the functions is also in appendix B.

The functiond _j(I) andl _jr (I) return true iff the instruction is a jump
instruction. In case of_j(l), the immediate constant is used as offset to
the PC, in case df_jr () the jump target is the value of the first operand.
The functionl _branchl) is used to detect a branch. If the instruction is
a branch,l _brancheq(l) indicates that the branch is to be taken if the
operand is zero. If_branch.eq(l) does not hold, the branch is to be taken
if the operand is not zero.

Let GPRabe the value of the operand. The functiojtaker(l, GPR3
is true iff the given instruction is a taken branch or jump:

bjtaken: bved32] x bved32] — B

bjtaker(l,GPRg = [_j(I)VI_jr(I)V (I_branchl) A
(I_brancheql) @ (GPRa=0)))

The functionnext pccalculates the new value BC' given the instruction
word |, the value of the first operar@PRaand the old value oPC':

nextp¢l, GPRaPC) =

GPRa . bjtaker(l, GPRa Al _jr(l)
PC +I_immediatél) : bjtaker(l, GPRa Al_jr(l)
PC +4 . otherwise
3.PC'(c) = nextpdl,opl(c),c.PC) (2.3)

According to the Delayed PC technique, the new valueDBC is the
old value ofPC'"

3.DPC(c) = c.PC (2.4)

In case of a jump and link instruction, which is indicated Ibynk(l),
the old value ofPC' plus four is stored in the destination register:

3.GPRI_RD(l)](c) = cPC+4

31



Chapter 2

BAasic CONCEPTS

32

ALU Instructions  The functionALUfunction(l) extracts the ALU func-
tion code from the instruction word. The ALU function codes are given in
table 2.2, page 23.

ALUfunctior(l) : B3 — B®

1 I3 1[28:26 o Litype(l)
ALUfunctior(l) = Is 1z (I2Als) 1[1:0] : l.rtype(l)
o . otherwise

The ALU performs the DLX ALU instructions such as addition and
compare operations, which are indicated b&LU (two register operands)
andl _ALUi (one register operand and one immediate constant operand).
Furthermore, the shift operations are performed by the ALU. The shift op-
erations are indicated dyshift (two register operands) aridshifti (one
register operand and one immediate constant operand).

In case of an ALU or shift operation with two register operands, the
transition function for the destination register is:

0.GPRI_RD(l)](c) = ALU(opl(c),op2(c), ALUfunctionl))

In case of an ALU or shift operation with one register operand and one
immediate constant operand, the transition function for the destination reg-
ister is:

0.GPRI_RD(l)](c) =

ALU(opl(c),l_.immediatél ), ALUfunctior(l))

Memory Instructions In order to access off-chip memory, the DLX ar-
chitecture provides load and store instructions. The load instructions copy
a value of a memory cell into a register. The store instructions copy the
value of a register into a memory cell.

As described in section 2.4.2, the DLX memory is organized in 32-bit
words. The address that is to be accessed is computed as follows: the
value of the first operand and the immediate constant provided in the in-
struction word are added. L&A (effective address) denote this address.

It is defined using the addition on bit vectors as defined in section 2.1.5:

EA = opl+Il.immeditatél)



Section 2.5

LITERATURE

Iw | EA[1:0] = 00

lh EA[1:0] = 00 EA[1:0] = 10

Ib [EA[1:0] = 00|EA[1:0] = 01|EA[1:0] = 10|EA[1:0] = 11

Figure 2.6 The possible alignments for memory instructions

The DLX architecture supports memory accesses with variable widths:
byte (8 bits), half word (16 bits), and word (32 bits) accesses are allowed.

The bitsEA[31 : 2 are used to select the word that is to be accessed.
The DLX architecture does not support non-aligned accesses, i.e., memory
accesses must not cross a memory cell boundary. In case of a word access,
this implies thatE A1 : 0] must be zero. In case of a byte or half word
accessEA[1: Q is used to specify the bytes in the memory cell. Figure
2.6 shows the allowed positions of the memory operand within a memory
cell.

In case of a load instruction, the 32 bits of the destination register are
always written. In case of a byte or half word load instruction, the memory
operand is stored in the register beginning with the least significant bits
and either a zero or a sign extension is performed. In case of the Ih and
Ib instructions, sign extension is performed, in case of the Ihu and Ibu
instructions, zero extension is performed.

In case of a store instruction, the machines presented in the following
chapters assume full word accesses. This restriction will be removed in
chapter 6.

2.5 Literature

Besides the basic ciruits presented here, there are more advanced circuits,
e.g., adders [LF80, Min95]. There are also HDL generators available for

33



Chapter 2

BAasic CONCEPTS

34

arithmetic circuits such as adders and multipliers [PA96]. Basic circuits
with proofs in PVS language are covered by [BJKO1].

Fully automated verification of combinational circuits such as adders has
been reported using BDDs (binary decision diagrams) [Bry86, FFK88].
The BDDs of some circuits, such as multipliers, grow exponentially in
the number of inputs bits. A lot of literature addresses this issue [Bur91,
JNFSV9I7].

Barrett et.al. [BDL98] extend an equivalence-checker by decision proce-
dures for bit vector arithmetic and verify components of a microprocessor
such as an instruction fetch unit automatically. The decision procedures
are similar to those used in PVS.

The specification of microprocessors as mathematical machine is a com-
mon technique [Gau95].



A Sequential
Implementation Machine

3.1 The Prepared Sequential Machine

N THIS CHAPTER, an implementation machine is built that works as fol-

lows: the calculation of a configuration of the specification machine is
split in n arbitrary phases, callestages In each phase, the values of a
subset of the registers of the configuration of the specification machine are
calculated. The implementation machine performs the phases round-robin
and needs one transition for each phase, i.e., the implementation machine
needsn times as many transitions to do the same calculation as the speci-
fication machine.

The calculation is still done in a sequential way, at no time two con-
figurations ofMg are calculated in parallel. However, the structure of the
machine will match the structure of the pipelined machine described in the
next chapter. The machine is callpeepared sequentigMP00] machine
or Mg therefore.

Let Ms and M, be mathematical machines. Lkts= (Cs, cg, Os) be
a specification machine and It = (C|,c|°,6|) be the implementation
machine. LeRs be the registers of the specification machine RnHe the
registers of the implementation machine. The following sections describe
how to build a prepared sequential machine that provably simulates the
specification machine.



Chapter 3

A SEQUENTIAL
IMPLEMENTATION

36

MACHINE

3.2 How Hardware is Specified
3.2.1 A Simple Hardware Description Language

The hardware of the implementation machine consists of the registers of
the machine and of the data paths, which calculate the values of the regis-
ters. The registers are modeled by the configuration set of the mathematical
machine, and the data paths are modeled by the transition furkctibime
configuration set and the transition functidrare defined using a simple
hardware description language that is similar to a register transfer language
(RTL).

For example, in a register transfer language the new value fdDE2
register is specified as follows:

DPC = PC

In this example, the value $fC' is used in order to specify the new value
of DPC. Formally, suppose the goal is to calculate the valRE has in
configurationcg with i > 0. In this case, the value used €' is the value
the registelPC’ has in configuratiorm'gl. Thus, the following is supposed
to hold for alli > O:

dsDPC = cstpPC
A very similar definition is in [KP95].

In the example above, two things happen:

e The old value ofPC is read.

e The new value oDPC is written.

The hardware description language used in this thesis makes use of the
following language elements:

1. The configuration set is defined using a list of registers and addi-
tional information on the registers such as their domain. This is
described in the next section.

2. The transition functio, i.e., the function computed by the gates
between the registers, is defined using a set of functions. This is
described in the sections 3.2.4 and 3.2.6.



Section 3.2

3.2.2 The Register Set of the Implementation Machine
How HARDWARE IS

SPECIFIED
For all registersR of the implementation machine, I&< out(k) denote
that the registeR is updated by stadgec {0,...,n—1}.

The registers of the implementation machine include all registers of4hBefinition 3.1
specification machine. These registers are callseification registers ~ Specification Register
The fact thaR € R, is a specification register is denoted R¥ spec

By convention, a specification registeie R can be updated by exactly
one stage only. Let the stage= stagéR) be the stage that updatBs In
this case, the regist& is also denoted bRR.(k+ 1). This convention and
the notation is taken from [MPO0O].

In order to store temporary values used for the calculation, further registeRefinition 3.2 _
are added to the machine. These registers are daliglémentation regis- mplementation Register
ters The fact thaR is an implementation register is denotedRy impl.

For example, if a processor fetches an instruction word from the instruc-
tion memory and stores it in the instruction word register, this instruction
word is an intermediate result of the computation of the next state of the
reference machine.

In contrast to specification registers, instanéeks of implementation
registersR can be present in multiple stages. The functabagéR) is
defined to be the first stage an instance of the implementation register is
present in:

VR e impl: stagéR) = min{ k| R.(k+ 1) € out(k) }

The property of a register whether it is an implementation or specifica-
tion register is calledlassof the register.

Thus, the configuration set is defined by listing the names of the reg-
isters, their types (i.e., domain), and their classes. Furthermore, for each
register the stage(s) are given. In case of a specification register, only one
stage is allowed. In case of an implementation register, multiple stages are
allowed.

In addition to that, the command used in order to define a register is also
used in order to specify the value the register has in the initial configura-
tion.

37



Chapter 3

‘TzO‘Tzl‘TzZ‘TzS‘T:4‘T:5‘T:6

A SEQUENTIAL ueg 1 0 0 0 1 0 0
IMPLEMENTATION ueI 0 1 0 0 0 1 0
MACHINE ue | 0 0 1 0 0 0 1

ue§ 0 0 0 1 0 0 0

Table 3.1 The sequential scheduling of a four stage pipeline

3.2.3 Scheduling of the Prepared Sequential Machine

The next step is to define the transition functidwf the machine. The
registers of the prepared sequential machine are updated round-robin. In
each transition, the registers of only one stage are updated. The update
of the registers irout(k) of a stage is controlled by a signaé (update
enable). Iffue is one, the registers iout(k) are updated. Table 3.1 gives

an example of the values o§, for a four stage pipeline. The same concept

is used by [MPO0O].

The stage that is updated before st&ge calculated by the function

prev(k):
prev: {0,...,n—1} — {0,...,n—1}

k—1 : k#0
prevk) = {n—l : kio

Stagek is said to be updated in cycleiff ueFT)reV(k) =1 holds.

In analogy to the functiomprey, the functionnext(k) calculates the stage
that is updated after stage

next: {0,...,n—1} — {0,...,n—1}

_ k+1 : k#n-1
nextk) = { 0 : otherwise

In order to allow the machin®, to keep track of the stage that is
currently processed, an 1-bit registiull. is added to each stagec

- {1,...,n}. If full.j is set, the calculation of the registdRg is finished.

38



Section 3.2

In the initial configuration, only the full bit of the last stage is set:
How HARDWARE IS

{1 Cj=n SPECIFIED

0 T =
LUl =90 . otherwise

In addition to that, @ignal fulk is defined for each stadec {0,...,n—1}
as follows:

fullg(c) = c.fuln @ k=0
k - c.fullk : otherwise

If full(cl) holds, it is said that stageis full during cycleT.

In general, the registers wut(k) are updated ifffully is active. How-
ever, some operations on the registers might take more than one cycle,
like an access to slow off-chip memory. This requires means to stall the
machine. This is realized by a sigrethllx for each stage. If active, the
stage is stalled. The signa# is active iff the stage is full and not stalled,
therefore:

ug, = fullgAstallg

By convention, the stall signal of a given stagmust not be active if the 4 Convention 3.1
stage is not full:

fullyk, = stallg

The transition functions of the full bits are defined as follows: a full bit
is set iff the stage was updated or the stage was full in the previous cycle
and the stage was stalled:

1<k<n: §(c).full.Lk = ue—_i(c)V(c full.kAstall(c))
k=n: 9(c).full.n = ue,—i(c)V (c.full.nAstally(c))

Sincestallc(c) implies full(c) (convention 3.1), this definition can be
simplified to:

1<k<n: d).fullLk = uec_i(c)Vstall(c)
k=n: 9(c).full.ln = ue_1(c)Vstallp(c)

A stage is full iff it is updated or stalled in the previous cycle. < Lemma 3.2
fully™ = uel ey Vstally

39



Chapter 3

A SEQUENTIAL
IMPLEMENTATION
MACHINE

 stall; uey 4[> R.1

— stall ue —[> R.2

stal |o

Figure 3.1 The prepared sequential machine

40



Section 3.2

This is shown by unfolding the definition of the full sign&lll, and of
prev(k). How HARDWARE IS

SPECIFIED
Figure 3.1 shows the registers of a prepared sequential machine and the
clock enable signals that are used for them. As described in chapter 2, the
circuits used in order to realize the calculation of the new values for the
initial statec® are omitted.

3.2.4 The Transition Function

As described above, a register value is supposed to be written only if the
update enable signal of its stage is active. The value of the register should
remain unchanged otherwise. The overall transition fundii&Tfor a reg-

ister R € out(k) therefore is generated as follows: if the update enable
signal is not active, the old value is taken. If the update enable signal is
active, the value provided by a functiosR(c) is taken, which is defined
later.

[ oxR() : ug(c)=1
OR(c) = {c.R - otherwise

The functionsuwR are mappings from the configuration of the imple-
mentation machine into the domain of the regifRefMhese functions are
generated from the hardware description language using the two simple
elements: write accesses and read accesses. The accesses are kept in a list.
In addition to the data of the read or write access, which is described below,
the list contains a flag for each access that specifies whether the access is a
read or write access.

A write access without write addressis a five-tuple R (k+ 1), fkR,
depgR k), fkRwe depweR K)) (write accesses with write address are
used in order to provide an address for memories or register files and will
be described in the next section).

The first element specifies the instance of the register that is written to.
We require that exactly one write access is given for each insRufke- 1)
of each register.

The second element, the functidgR, provides the value that is written
into the registeR.(k+ 1), i.e., the range of the function is the domain of
the register. The function is calleegister transition functionThe register -

41



Chapter 3

A SEQUENTIAL
IMPLEMENTATION

42

MACHINE

transition functions basically model the combinatorial circuits between the
pipeline stages. As an example, this includes the ALU, FPU and so on.

A register transition function takes the values of several registers as ar-
guments. These registers are listedlégR k). Let a registeR be in the
list of a registelR. In this case, it is said that the calculationRélepends
onR. LetdepR, k) denote the list of registers the calculatiorRddepends
on:

depRk) = (R,,...,R) withR eR

This allows defining the domain and range of the functifui®

fiR: W (R,) x ... x W(R) — W (R)

Furthermore, a functiorfixfRwemay be provided as element four. The
function fyRweis calledwrite enablesignal and can be used in order to re-
alize updates of the given register instance that are only performed under a
certain condition. As an example, consider that in case of a microprocessor
most registers are only changed by certain instructions. The write enable
function allows modeling this. This function may become non-trivial, for
example if writing the register is to be suppressed in case of an interrupt.

The range of the functiofRweis B. If it returns one, the write access
is to be done. If the value is zero, the write access is suppressed. The
domain of the function is defined in analogy to the domairf &t using a
list of input registers namede pwe(R, K):

depweRk) = (S,...,§) withSeR
ftRwe: W () x...xW(S,) — B

Let the functionsiR andykRwedenote thevaluesof the arguments of
the functionsfyR and fyRwe These functions are defined later using the
read accesses.

The effect offfRwedepends on wheth&is an implementation or speci-
fication register. In case of a specification register, the following behaviour
is used: If the function return§Rwetrue, the updating oR.(k+ 1) is
performed. If the function returns false, the updating is suppressed and the
value in the register does not change. ThuR i a specification register,
w¢Ris defined as:

[ BRWR©) ¢ fRWeYRWEC))
R(c) = {Cl.(R k ; oi;herwise



Section 3.2

Note that we have actually two signals that are used in order to determine
whether a specification register is to be clocked or not: both the updaf®"V HARDWARE IS
enable and the write enable signals must be active, i.e., the clock enaBi&C!FIED
signal of a specification regist& e out(k) is:

ue A fkRweycRwec))

This method is taken from [MPOQO]. It allows us to specify the stall
engine as a module as done in the previous section.

If the write enable signal is false aftis an implementation register, the
following behavior is used: the value from the register in the previous stage
is written into the register. If there is no instance of the implementation
register in the previous stage, a pre-defined default value, e.g., zero, is
taken. Thus, iRis a specification registesxR is:

fiR(WR(c)) : fkRweyRwec))
wR(c) = c.Rk . Reout(k—1)
0 . otherwise

This is illustrated in figure 3.2: As an example, consider a processor with
an ALU in stage 2. The results are stored in instances of implementation
registersC. In case of an ALU instructionf,Cweholds and we store the
output of the ALU in the registe€.3. If not so, the value i€.2 is taken.

The ALU is modeled by the functiof,C. The multiplexer selecting the
appropriate value is modeled by the functiogC.

If no function fyRweis provided, the constant value true is taken instead,
i.e., the updating is performed unconditionally.

3.2.5 Inputs

The functionsfyR and fyRweabove require certain inputs in order to pro-
vide a meaningful value, i.e., itis left to define the functiggR andyxRwe
Formalizing the inputs of a register transition function is the most impor-
tant concept of this thesis, since most of our arguments are used in order
to justify how to get those inputs. In particular, we will realize forward-
ing in pipelined machines and speculation by adjusting these functions ac-
cordingly, i.e., the functions model the forwarding logic and speculation
circuits.

43



Chapter 3

A SEQUENTIAL

IMPLEMENTATION

44

MACHINE

> C.2

I f,C
( 0 1 ; f-Cwe
""""""""""""""" w,C

Figure 3.2 Example forfyR, fifRwe andwR



Section 3.2

How HARDWARE IS

Stage 1 SPECIFIED
ba2] bB2| |
> R3
3 T
s
]| 3
: )
- zZ
: ®
> R5

Figure 3.3 Example for the input generation functions

This isillustrated in figure 3.3: it depicts a pipeline that reads two values
in stage 2 that require forwarding. The forwarding logic is modeled by the
functionsy; A andy; B.

The register transition functions depend on a set of input registers. The
functionsyxR andyxRweprovide the whole set. LejR be a function that
extract the value of aingleinput registerR’ from the configuration of the
implementation macine.

xR :C— W(R)

We will later on definegyR'. Using gkR', we definegk, which takes a
configuration and a list of registers. It returns the input values provided by
okR:

ok(c, (R,lv R’Zv see le)) = (glel(C)agkR,Z(C)a e agkR’j (c)

Let fxR be the register transition function adépR, k) be the list of

input registergRy, ..., R|), as above. Usingk, we defineyR:
WR:C—W(Ry) x... x W(R)) .
45



Chapter 3

Im

46

A SEQUENTIAL
PLEMENTATION
MACHINE

YR(c) = ak(c,depRK))

The functionsykRweandyiRreare defined in analogy to this definition.

It is left to define the functiongxR', which calculate the actual input
value. As described above, calculating such input values may be complex,
for example in machines with forwarding or speculation. In the sequential
prepared machine, we neither need forwarding nor speculation. Thus, we
define rather simple functiorgR' for this machine.

In the hardware description language, the definitiog®is done using
read accesses. kad access without read addresis a four-tuple R, k,
fkR're, depre(R,k)) (read accesses with read address will be described
in the next section). For each stage and for each register that is input of
the stage, exactly one read access must be defined. The first element is the
register (not an instance thereof), the second element is the stage that de-
pends on the register, the third element is a read enable function in analogy
to the write enable for write accesses. The functigRre also depends on
registers:

depre(R,k) = (Ug,...,Ug) withU/eR

fkRre: W (Uy) x ... x W(Ug) — B

As above)kR'reis used in order to denote the input argumentfBire.
In order to prevent this definition from becoming recursive, it is required
that the read accesses to those registede mre(R, k) or in depwe(R, k)
have no read enable sigral.

The read enable function has the following purpose: If the read enable
signal fyR're is not active, a default value, e.g., zero, is used as input.
This allows us to state whether we actually need an input or not. In case
of a microprocessor, not all instructions have an equal number of input
registers, some take one GPR operand, some two, and so on. The benefit of
knowing when we do not need an input becomes obvious if one considers a
machine with forwarding: in case forwarding fails because of data hazards,
we do not have to stall if the input is not used anyway.

If no function fyR're is provided, the constant value true is taken instead,
i.e., the read access is performed unconditionally.

11t is feasible to extend this definition in order to allow a recursion. However, no mi-
croprocessor design implemented for this thesis requires it.



Section 3.2

If the read enable signal is active, the value providedd® is the value
of the register. As described above, this simple definition only works in tHH&OW HARDWARE 1S
prepared sequential machine. We will re-defig®® for faster machines SPECIFIED
later on.

The formal definition ofgcR depends on whethd®' is an implementa-
tion or specification register. Let bestagéR').

If R is an implementation register, an instance oR' is expected to be
in the previous stage. If there is no instanc&of out(k— 1), instances of
the registeR’ are added tout(w+1),...,out(k— 1) if not already present.
These registers are called “buffer registers”. The transition function for
these additional registers is:

wpR(c)=cR.p forpe{w,....k—1}

After this is done, an instance & is in out(k —1). The value is read
directly from the registeR' .k.

B cR.k : fRre(yRre(c))
aR(0) = {O . otherwise

If R is a specification register there is only one instance B by def-
inition. In this case, the value in this register is taken. It is required that
w > k holds (this limitation is removed in chapter 5).

Thus,gkR is defined as follows:

B cR.(w+1) : fRre(wRre(c))
9R() = {O . otherwise

Figure 3.4 shows an example how the functidgR andgkR are used in
order to model hardware. It shows the hardware for an unconditional write
access to a regist® (k+ 1) that depends on two implementation registers
R, andR,. The read accesses®) andR; are both unconditional.

3.2.6 Register Files and Memory

In hardware implementations of microprocessors, on-chip memory is used
to realize register files. In addition to that, microprocessors provide an -

47



Chapter 3

A SEQUENTIAL
IMPLEMENTATION
MACHINE

w 1R} w_ 1R,

ug_ ug_

Blh Rk Belh Rrk } depRK)
xRy kRS

YiR=gk(c,depR Kk))

[

R.(k+1)

ue

Figure 3.4 The input and output functions for an unconditional write access to a
registerR.(k+ 1) that depends on two implementation regist®sandR,. The
read accesses B8 andR, are both unconditional.

48



Section 3.2

interface to off-chip memory in order to store larger amounts of data. The
microprocessor usually reads or writes only a small part of these memorid§W HARDWARE IS
in each cycle. SPECIFIED

In theory, accesses to these memories could be modeled as follows: the
complete contents are read, some parts are modified and re-written. How-
ever, in hardware the access to both memory and register files is limited.
For write accesses to register files or memory, the transition functions are
therefore expected to provide the value that is to be written, the address of
the register or memory cell that is to be modified, and a write enable signal.
For read accesses, the transition functions must provide the address and a
read signal. The functionaxR defined above model the behavior of the
hardware, but are not suited for synthesizing hardware as soon as memory
or register files are involved.

The definition of the functionR is therefore changed if a register file
or memory is accessed. This is done by extending the hardware description
language using read and write accesses with address. It is presumed that
implementation registers are never in a register file or part of a memory.

A write access with write address is defined like a write access without
write address but with additional elemerfiRwaanddepwa(R k), i.e.,
it is a seven-tuple. The write address functifpRwatakes the registers in
the listdepwa(R, k) as arguments, as done with the argument&Rf The
function returns the address that is to be used. The range of the function
therefore is the set of possible addresses of the acces¥V{(&) denote
this range.

depwa(Rk) = (Vi,...,V/) with\f eR
filRwa: W (V]) x ... x W (V/) — W,(R)

The range of the functioriyR has to be adjusted accordingly such that
it matches the range of a single memory cell or register of the register file;
e.g., if a 32x32 bit register file nam&PR5 is accessedy,GPRreturns a
32-bit vector. LetW, (R) denote this range. In the example, the function
f4aGPRwareturns a five-bit vector.

depgRk) = (R’l,...,R’j) with R € R
fikR: W(R)) x ... x W(R) — W, (R)
The value provided by the functiofhRweenables (return value one) or

disables the write access (return value zero) to the register or memory cell.
This value is taken as write enable signal.

49



Chapter 3

A SEQUENTIAL
IMPLEMENTATION
MACHINE

50

The behavior of the memory or register file is modeled by the function
uxR as follows: let the bracketfs] denote a projection used in order to
access a single memory cell or register of a register file and let the function
ykRwadenote the function that calculates the arguments of the function
vkR'wa as described in section 3.2.4.

VxeWy(R):
{ fiR(WR(c)) : fkRweyRwec))A
wR(c)[x] = x = frRwaykRwac))
c.R[X] . otherwise

Furthermore, a read address can be supplied for each read access to a
specification register that is a register file or memory. Such a read access
is called read access with read address. In analogy to the write address
functions fyRwa this index is supplied by an additional functidgR'ra,
called read address. The function takes arguments as described above for
fyR're. The list of registers is denoted lofepra(R k). The range of the
function isW,(R), as described above.

Let the functionyR'ra denote the function that calculates the arguments
of fyR'ra as described in section 3.2.4. The functgpR for a conditional
specification register read access with read address is:

xR :C— W, (R)

akR () {C'R[fkR’ra(Vera(C))] . fkRre(wR're(c))

0 . otherwise

The generation of the hardware of the implementation machine can now
be done automatically by a program that reads the following:

e The program reads the register list including the domain, type, class,
and initial value of the register.

e The program reads the list of read and write accesses.

In the following section, the hardware description language above will
be used in order to implement a sequential DLX. This is followed by a
proof that this implementation simulates the specification as given in chap-
ter 2.



Section 3.2

3.2.7 Multiport Read Accesses
How HARDWARE IS

SPECIFIED
In case of a microprocessor, we can have multiple read accesses to the same
register file in the same stage. For example, in a DLX implementation we
have two read accesses to the general purpose register file. We support
separate read enable and read address functions for these read access. Let
R be the register that is read.

By convention, we name these functions as follows: the read enable
function of the first access is namégRare, the read enable function of
the second access is nami@Rhre. In analogy to that, the read address
function of the first access is namégdRara, the read address function of
the second access is namig&hra. The list of inputs these functions de-
pend on is denoted lyepre(Ra k), depre(Rh k), and so on. In analogy
to that, the function that provides the inputsfiiRa.re is namedyRa.re,
and so on.

Since we have separate read enable and read address functions, we also
get different input values. We denote the value generated for the first read
access bgiRaand the value generated for the second read acceg&Riy

As an example, consider two read accesses in stage 1&RReegister
file. The read enable functions are nanfg@PRare and f;GPRhre. The
input generation functions are namgdsPRaandg; GPRhb

3.2.8 Notation

For sake of simplicity, we introduce the following shorthand for formulas
that will be used very often in the rest of this thesis: Consider two functions
fkQ andyQ. Letx be a tuple of arguments g£Q. In this thesis, we will
often need the valu§Q of yQ of x:

fiQ(WQ(x))

We will denote this byfykQ(X):

fwQ(X) = fKQ(KQ(x))

For example, the function compositions used in the previous section will -
51



Chapter 3

A SEQUENTIAL
IMPLEMENTATION

52

MACHINE

be shortened as follows:

TWR(E) = fRIKR(C) (3.1)
fywRre(c) = fkRre(ykRre(c)) (3.2)
fykRwegc) = frRwdyRre(c)) (3.3)
fwRra(c) = fkRra(yRra(c)) (3.4)
fwwRwac) = frRwayRwa(c)) (3.5)

3.3 Precomputed Control

In the sections above, the signdiRkwag fyRwe fRra, andfyRreare used

in order to specify which register is read or written. The functions that
calculate these signals can take an arbitrary number of registers as input
just as the function$cR.

Consider a write enable signal of stage 4 in a five stage pipeline. Let
this write enable signal depend on an instruction word that is calculated by
stage 0. In order to read this instruction word in stage 4, one has to add
buffer registers for the stages 1 to 4. These registers are quite expensive. In
order to save hardware cost, one can calculate the value of the write enable
signal already in stage 0 or 1, thus saving the buffer registers.

In order to get the value of the write enable signal, registers for the write
enable signal are added instead. However, this requires only a one-bit
register for each stage. This is less expensive than the registers for the
full instruction word. This can be also done for other signals such as the
read/write address.

This method is calleghrecomputed contrdPH94, MPQO0]. If the value
of a control signal is calculated as described above, it is said that the signal
is precomputed.

Naming Convention Letsbe the name of a precomputed control signal,
e.g.,f4GPRwe The registers added in order to store the value of the signal
will be nameds.k with k being the number of the stage the register is an
input of, i.e.,sk € out(k—1). All registers containing precomputed control
are summarized by the registek.

For example, the registers containing the precomputed versions of the
write enable signaf,GPRweare calledf;GPRwel, f,GPRwe2, and so



Section 3.4
on. Note that these registers are treated like implementation registers. Tn

particular, there are corresponding functidn®for each precomputed sig- | MPLEMENTING THE
nalR PREPARED

SEQUENTIAL DLX

3.4 Implementing the Prepared Sequential DLX

3.4.1 Structure

The prepared sequential machine D)X the first approach to implement
the DLX defined in chapter 2. The execution of an instruction in the PLX

is done in five stages. The organization of the stages is similar to the
pipeline of a MIPS R2000/R3000 [KH92] and also used in [HP96, MPOOQ]:

e In stage O (IF), the instruction fetch is done.

¢ In stage 1 (ID), the instruction word is decoded and the operands of
the instruction are fetched.

e In stage 2 (EX), the ALU calculation is done.

¢ In stage 3 (M), the memory access for load and store instructions is
done.

¢ In stage 4 (WB), the result of the instruction is written into the reg-
ister file.

Figure 3.5 shows all registers of the machine RlLahqd the stage they
belong to. As described above, the signals used for precomputed control
are summarized as registér Furthermore, the main components such as
ALU and memory are depicted. Table 3.2 lists the stages and summarizes
the registers that are written in and read in a given stage, respectively.

Initial Configuration and Transition Function  In the initial configura-

tion, the values of specification registers of the Ql¥achine are identical

to the values of the corresponding registers of the specification machine.
The implementation registers are initialized with zero.

The transition function of the DLX machine is defined using register
transition functions as described in section 3.2.4. -

53



Chapter 3

A SEQUENTIAL
IMPLEMENTATION
MACHINE

IM

o 1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, >,|R.l
ID /L" nextPC|< PC +4

q y |
,,,,,,, ~NAB [..NPC|.l.NDPC|.|..NC2[.N IR2 |. P2

| |
,,,,,,,,,,,,,,,, MAR3|.........N\MDRw3|..5y C.3|..N IR.3 |.. P3
N I
,,,,,,,,,,,,,,,, MARA4|.........N MDRr4 C4 IR.4 P4
WE ( shiftload )

GPR
- Aad, Bad
AdataBdata |

Figure 3.5 The prepared sequential DLX. The registekssummarize the regis-
ters used for precomputed control.

54



Section 3.4

Stage| Reads | Writes
0 DPC IR :DMPLEMENTING THE
1 IR, PC, DPC, PC, Aad, REPARED

GPRAad = GPRa | Bad, A, B,C SEQUENTIAL DLX

GPRBad = GPRb
2 |IRAB C, MAR MDRw

3 | IR, MAR MDRw,C, | C, MARh DM[MAR31 : 7],
DM[MAR31:2] | MDRr

4~ | MDRr, MAR IR GPR

Table 3.2 The registers the stages of the prepared sequential machine read and
write, without precomputed control

3.4.2 The Instruction Fetch Stage

The instruction fetch stage IF reads the delayed PC redig?€uncondi-
tionally and fetches the instruction memory cell tizdRC points to. This
value is stored in the only output register of the stage, the IR implemen-
tation register, unconditionally. The register transition function for IR.1
therefore is:

flR(DPC) = IM[DPC] (3.6)

3.4.3 The Instruction Decode Stage

The instruction decode stage ID reads the instruction word in the register
IR and decodes it.

The operand registers of the instruction are read and stored in two imple-
mentation registers A and B. This is realized by means of two conditional
read accesses with read addresSRR The naming conventions for such
multiport accesses is described in section 3.2.7.

The read enable functions for these read accesses depend on the instruc-
tion word and on the source address of the operand: we need to test the
instruction word in order to determine whether the instruction requires the
operand or not. This is determined by testing the instruction word read
from IR using the functions defined in chapter 2. -

55



Chapter 3

A SEQUENTIAL
IMPLEMENTATION

56

MACHINE

In addition to that, we test the address. If the address is zero, the read
access is not necessary, since @GRRregister with address zero has the
constant value zero, as required by the DLX specification. If the read en-
able function is not active, the value zero is passed to the register transition
function by convention. This is exactly the value required by the specifi-
cation. Thus, we omit an extra multiplexer in order to get zero in case of a
read access tGPRO].

The first operand is required by loads, stores, ALU instructions, branch
instructions, and the jump register instructions. Thus, the read access is
performed if the following condition holds:

fiGPRare(IR) = (I_load(IR)VI_storgIR)V
I_ALUI(IR) V I _branch(IR)V
I_jr (IR) V1 _shift(IR)v (3.7)
I_ALU(IR) VI shifti(IR))A
(I_LRSL(IR) # 0)

The second operand is required by ALU instructions that do not use the
immediate constant as second argument and by store instructions. In case
of store instructions, the address of the second operand is stored in the RS2
location of the instruction word and not in the RD location (appendix B).

f,GPRhre(IR) = (I_shift(IR)vI_ALU(IR)V I_storgIR))A
(I_storgIR)? _RD(IR) : |_R(IR)) # 0)
(3.8)

The indices of the read accesses are calculated from the instruction word
in IR: In case of the first operant,RSL provides the address. In case of
the second operand, it is necessary in order to distinguish store instructions
from ALU instructions:

f,GPRara(IR) = I|_RSI(IR)

B I_.RD(IR) : I_storgIR) (3.9)
fGPROra(IR) - = {I_RQ(IR) . otherwise

The result of the instruction is buffered in the implementation regter
In the decode stage, only the result of jump and link instructions is known
already, which i°C' + 4. This value is stored i@ therefore if the instruc-
tion is a jump and link instruction. This is realized using a conditional
write access t&.2.

f,C(PC) = PC+4 (3.10)
LCwegIR) = (I_jr(IR)VI_j(IR)) Allink(IR)  (3.11)



Section 3.4

4 limmediatélR) IMPLEMENTING THE
.0 1 — bjtakenimp : PREPARED
PC § SEQUENTIAL DLX

L_jr(IR)

nextpcimp(IR,GPRaPC')

Figure 3.6 The implementation ofiext pc

Furthermore, the decode stage calculates the new values for the PC reg-
istersDPC and PC' according to the Delayed PC technique. IGPRa
denote the value of the first operand, as calculateg,®PRa

f,DPC(PC) = PC (3.12)
fiPC(IR,GPRaPC) = nextpcimp(IR,GPRaPC) (3.13)

The functionnext pcimpis implements thaeext pccalculation as defined
in chapter 2. It is defined in the obvious way using a zero tester in order to
calculate thé jtakensignal, as defined in section 2.4.4:

bjtakenimp(IR, GPRa
= L jJ(IR)VI_jr(IR) Vv (I _branchIR) A (3.14)
(I _brancheqlw) & zerotesterimp(GPR3))

By using the correctness of the zero tester (lemma 2.2), one easily shows
the correctness of the circuit that calculabgsaken

The calculation of thd jtakensignal is correct: <Lemma3.3
bjtakenimp = bjtaken

Using theb jtakenimp signal and a carry lookahead adder as described
in section 2.2.6, we calculate the new PC (figure 3.6). In case of a jump -

57



Chapter 3

register instruction, we take the value of the GPR operand. In case of a
A SEQUENTIAL  {aken branch, we add the old PC and the PC offset from the instruction

IMPLEM;NTAT'ON word. In any other case, we take the old PC incremented by four.
ACHINE

Lemma 3.4 » The calculation of the new PC is correct:

nextpcimpl = nextpc

This is shown easily using the correctness of the adder circuit.

Precomputed Control In addition to that, the decode stage also does
the precomputation of several control signals. The following signals are
precomputed in the decode stage:

e The write enable signal and write address used in the write back
stage,

e the write enable signals of all registers.

The formulae for these signals are given in the sections of the stages the
registers belong to for sake of simplicity. Note that the circuits calculating
the signal values actually belong to the decode stage. In the later stages,
the signal is just taken from the register holding the precomputed signal
and no calculation is performed.

3.4.4 The Execute Stage

In the execute stage, the result of all ALU instructions is computed. This
includes the integer instructions such as addition and subtraction, the shift-
ing instructions, and the compare instructions. Furthermore, the address
computation for memory instructions is performed.

The stage reads the values of the operands from implementation regis-
tersA.2 andB.2. However, both the memory instructions and the ALU
instructions with immediate constant (e.g., addi) take the immediate con-
stant from the instruction word as second operand.aleb @2 denote the

58



Section 3.4

value of the second operand:
IMPLEMENTING THE

{ B . ILALU(IR)V PREPARED

aluo@(IR,B) = |_shift(IR) (3.15) SEQUENTIAL DLX

I_immediatéIR) : otherwise

The functionaluo is used as a shorthand for this text only; in the PVS
tree, the expanded form is always used.

In case of ALU instructions, the operation that is to be performed is
provided by the functio®LU function This function is defined in section
2.4.4. In case of memory instructions, as indicated byad and| _store
an addition is performed in order to compute the effective address.

B (1,0,0,0,0) . |_storgIR) V1_load(IR)
aluf(IR) - = {ALUfunctior{IR) : otherwise

The implementation regist€:.3 holds the result provided by the ALU.
It is only written on ALU instructions.

f,C(IR,A,B) = ALU(Aaluo(IR,B),aluf(IR)).result
f,CwglR) = [ ALU(IR) VI_ALUI(IR) Vv
[ _shifti(IR) v 1_shift(IR)

In case of a memory instruction, the result (i.e., the address of the mem-
ory operand) is stored in the registdAR 3.

f,MAR(IR,A,B) = ALU(A aluo(IR,B),aluf(IR)).result

In the registeMDRw3, the second operand is stored, which is the value
to be stored in memory in case of a store instruction.

f,MDRWB) = B

3.4.5 The Memory Stage

In the memory stage, the memory access for load and store instructions is
performed. In order to realize load instructions, a conditional read access

59



Chapter 3

A SEQUENTIAL

IMPLEMENTATION

60

MACHINE

with read address tBM is performed. The read access is performed iff
the instruction is a load instruction. The read address is the high-order 30
bits of the effective memory address storedViAR

fsDMre(IR) = |_load(IR)
f3DMra(MAR) = MAR31:72

This result is stored in the registstDRr. The result of the read access,
as provided bys;DM, is namedMemout

fsMDRr(DMemou) = DMemout

The registerC is passed to the next stage without modification. The
write enable function of the write access@a! is constant false therefore
(compare the definition of conditional write accesses on page 43).

faCweglR) = 0

In order to realize store instructions, a conditional write acce$3No
is performed. The value read from the regit#bRw is written iff the
instruction is a store instruction. The address of the write access is the
upper 30 bits of the effective memory address, as above.

fsDMwe(IR) = |_storgIR)
fsDMwa(MAR) = MAR31:72
fsDM(MDRwW) = MDRw

3.4.6 The Write Back Stage

In the write back stage, the result of the instruction is stored in the register
file. In case of a load instruction, the data word fetched from the data
memory present in MDRYr is shifted and masked prior to write back. This
is done using the functioshiftdload, which is defined in section 2.4.4.
In case of any other instruction, the result is read from the implementation
register C.

f4GPRC,IR,MAR MDRr) =

shift4dload( MAR MDRrIR) : |_load(IR)
C . otherwise



Section 3.5

The write access to the register file is conditional; the condition is that
the instruction has a GPR destination operand. This is true for ALU/shifATA

instructions, loads, and jump and link instructions. Thus, the write enaSg®NSISTENCY
signal is: PROOF

,GPRW¢IR) = |_ALU(IR)VI_ALUI(IR)VI_load(IR)V
|_shifti(IR) V1 _shift(IR) v
(ILj(IR) VI_jr (IR)) Al _link(IR))

Furthermore, the write access has a write address. As defined in chapter
2, the functionl _RD(IR) determines the address destination register.

f,GPRW4IR) = I_RD(IR)

Both the write enable and the write address signals are precomputed in
the decode stage as described in section 3.3, i.e., the calculation is done in
the decode stage and the result is buffered using additional registers. In the
write back stage, one just takes the values from the registers.

Note that the cost savings of precomputing these signals are low in the
prepared sequential machine. However, in the pipelined machine presented
in the next chapter, we will need the signals in multiple stages for forward-
ing. In this case, precomputing the signals saves a significant amount of
hardware since the computation has to be done only once. In order to pre-
vent that we need to make changes to the machine due to pipelining, we
already introduce the precomputed control in this chapter.

3.5 Data Consistency Proof
3.5.1 Properties of the Full Bits

Using the equations for the full bits and update enable signals, it is easy to
conclude the following properties:

If a stage is full, either the same or the previous stage was full in heemma 3.5
previous cycle.

fullg ™ = fullg v full Jo



Chapter 3

A SEQUENTIAL
IMPLEMENTATION

62

MACHINE

Lemma 3.6 »

PROOF

Lemma 3.7 »

PROOF

Lemma 3.8 »

PROOF

PROOF By lemma 3.2 (page 39), one can conclude froail] ** that
U eyk) OF Stally holds. Ifuef ., holds, full ], holds by definition of
theuesignals. Ifstall] holds, full} holds by convention 3.1.

If a stage is full, either the same or the next stage is full in the next cycle.

fully, = fullg ™V fulligg,

Assume neithefull] ™ nor fullggxt}k) holds. Using lemma 3.2 for stages
k andnext(k), one concludes that neith@Eyeyk), NOT U€yreynexik)), NOT

stallg, norstalll,,, holds.

By definition ofug] , it is concluded thatig] holds. An easy proof shows
thatprev(next(k)) = k. This allows concluding thattull 7, holds, which

is a contradiction to the assumption.

If a stagek becomes full in cyclél + 1, the previous stagprevk) was
full in the previous cycle and the output registers of the stage(k) were
updated.

Fullf Afully ™ = full Jo40 A UL

By lemma 3.2,uegrev(k) or stalll holds. By convention 3.1uegrev(k) is
concluded. The first clairﬁ,ullgre\(k), is concluded by definition afe

In every cycle, exactly one stage is full.

Ik:  full]

The proof proceeds by induction dn For T = 0, the claim obviously
holds. ForT + 1, one has to prove that at least one full bit is set and that
this full bit is unique.

It is easy to show that at least one full but is set by a case split on the
stall signal of the stage with the full bit set. Let stdgee this stage. If the
stage is stalled, in cycl& + 1 the full bit of the same stage is set. If the
stage is not stalled, the full bit of stagext(k) is set in cycleT + 1.

This full bit is unique, i.e..full{ ** A fully " implies thatx is equaly.
Assume thak # y holds. According to lemma 3.5, there are four cases:



Section 3.5

1. fullT A full?
X y DATA

2. fullgrev(x)/\fuIIJ CONSISTENCY
. . ProoOF

3. full] Afulll o
T T

A, fulll o AUl o

The cases one and four are disproved by the induction premise. Let case
2 hold (otherwise, swag andy). According to the induction premise,
y = prev(X) must hold. Using lemma 3.?1;3} is concluded, which is equal

to fully Astall] by definition.

Since prevy) # y, and because of the induction premis‘e;llgre\(y)

holds. This allows concluding tha.tegre\( holds. Sincefully *! is ac-

y)
tive, this is a contradiction tetal IJ according to lemma 3.2.

3.5.2 Scheduling Functions

Unless stalled, the implementation machine calculates parts of the con-
figurationsccs’, cé,... of the specification machine. #scheduling function
[MPO0O] specifies which configuration is being calculated by the machine
in a given stage and cycle. If stafgés full during cycleT, let

sl(k,T) = i

denote that the implementation machine is performing a part of the com-
putation of configuratiors* in stagek during cycleT .2

In case of a microprocessor, let
lo, 11, 12, ...

denote an instruction sequence. In this case, the configurt;@ibrmf the
specification machine provides the values of the registétes executing
instructionl;, i.e., instructionl; transforms configurations into cgrl:

I [ S PR
0 '0, .1 "1 i _MhoA4l
Q—=ct—=cd...c5— et

2The function is named! and notl, as in [MP0O], becauskis used as the identity in
PVS.

63



Chapter 3

A SEQUENTIAL

IMPLEMENTATION

64

MACHINE

This is different from the notation used in [MP00]. In [MPO@];?!
denotes a value before the execution; of.

If sl(k,T) =i holds and if stag is full during cycleT, it is said that
instructioni is in stagek during cycleT [MPOQ].

For this thesis, the domain of the function above is extended to cycles
in that the stagéd is not full in order to simplify some proofs. If the stage
k was never full before cycld@, sl(k,T) is supposed to be zero. If the
stagek was full before cycldl, the supposed value of the functistik, T)
is defined using the value the function had in the last c{¢lec T such
that full]" holds. In this casesl(k,T) is supposed to bsl(k,T') + 1 in
anticipation of the next instruction in the stage. In contrast to the definition
of the scheduling function in [MP0Q], such a scheduling funcsbis total.

A scheduling function of the prepared sequential machine is constructed
as follows: The following properties of the scheduling function should
hold obviously:

1. During cycle 0, all stages are in the initial configuration:

vk sl(k,0) =0

2. If the output registers of a stag@re not updated during cycle— 1
(i.e.,ugl ! = 0), the stage was either not full or stalled. The stage
was inactive; the value of the scheduling function should not change
either.

ug t=0 = sI(kT)=slkT-1)

3. If the output registers of a stadfeare updated during cyclé — 1
(i.e., ue{*1 = 1), the registers are updated with values of the same
configuration that is in the previous stage, i.e., stegel. The
scheduling function must reflect this.

k>1Augl *=1 = sIkT)=sl(k—1T-1)

In case of the first stagé & 0), the computation of the next config-
uration of the specification machine is started:

ugg *=1 = sI(O,T)=sl(0,T—-1)+1



Section 3.5

‘TzO‘Tzl‘T:2‘T:3‘T:4‘T:5‘T:6

SI0,T)| 0 1 1 1 1 2 2 DATA

sIL,T) | 0 0 1 1 1 1 2 SS(’)“;"FSTENCY
si(2T)| O 0 0 1 1 1 1

Si(3,T) | 0 0 0 0 1 1 1

Table 3.3 The values ol in a four stage sequential machine in the absence of
stalls

This allows for a recursive definition of the scheduling function of the
prepared sequential machine:

0 . T=0
sl(k, T —1) . T#0Aug ™

sI(0,T—1)+1 : T#0Aug *Ak=0
slk—1,T—1) : T#0Aug *Ak#0

sl(k,T) =

Table 3.3 illustrates the values sf(k, T) for the first seven cycles as-
suming four stages and that the stall signals are never active.

3.5.3 Properties of the Scheduling Function

If the update enable signal of a stage is active in cyicle 1, the value <« Invariant 3.1
of the scheduling function for that stage increases by one. If the update
enable signal of a stage is not active, the value does not changé.>*0r

[ sIkT -1 if
sl ) = {sl(k,T—l)Jrl if

Given a cycleT, the values of the scheduling functions of two adjacestinvariant 3.2
stages are either equal or the value of the scheduling function of the earlier
stage is greater by one.

The value of the scheduling function of the earlier stage is greater by #revariant 3.3
iff the full bit of the later stage is set. F&r> 0:

fulll =1 sl(k—1T)=sl(kT)+1

65



Chapter 3

A SEQUENTIAL
IMPLEMENTATION

66

MACHINE

PROOF

Negating both sides of the last equation and applying invariant 3.2 results
in:

fulll =0& sl(k—1,T) =sl(k,T)

The proof of the invariants proceeds by induction. B¢T) denote that
invarianti holds for cycleT. The claim is concluded as follows:

Invariant 3.1 for cycleT is shown using invariant 3.3 for cycle — 1.
Invariant 3.2 for cyclél is shown using invariant 3.1 in cycleand invari-
ant 3.3 in cyclelT — 1. Invariant 3.3 is shown using invariant 3.1 in cycle
T and invariant 3.2 in cycl@ — 1.

Py(T-1) =
P T)APYT —1)APy(T—1) =
APAT —1)APy(T—1) =

2Y
-

Proof of Invariant 3.1  The claim for the caseg] ~* = 0 holds by defini-
tion of sl. Letug] * = 1 hold. For the cask = 0, the claim follows from
the definition ofsl. Fork > 0, the claim is:

sl(k,T) =sl(k, T—1)+1
According to the definition ol(k, T), this is equivalent to:
sl(k—1,T—1)=sl(kT—1)+1

According to invariant 3.3 for cycl& — 1, this is equivalent tdull,] ~* = 1.
This is true because of the definition wd .

Proof of Invariant 3.2  For cycleT = 0, the claim holds by definition of
sl(k,0).

ForT > 0, let us consider the stagks- 1 andk with k > 0. There are

four cases regarding the update enable signgis* andug] = of these
stages:

1. Let both update enable signals be active. According to the definition

of the update enable signals, this is a contradiction to the fact that at

most one full bit is active in a given cycle (lemma 3.8).



Section 3.5

2. Let both update enable signals be not active. According to invariant
3.1, the values of the scheduling function do not change and tR&TA

claim follows from invariant 3.2 for cycl@ — 1 therefore. SONS'STENCY
ROOF

3. Let the update enable signal of stdgee active and the update en-
able signal of stagk — 1 be not active. Let the first case given by
invariant 3.2 for cyclelr — 1 hold:

sllk—1,T—-1) = slkT-1)
Using lemma 3.1 for stageon the right-hand side, one concludes:

sik—=1,T—-1) = sl(kT)-1

According to the definition ofl(k, T), this is equal to:
slk—1,T—1) = sl(k—-1,T—-1)—1

This is a contradiction. The case above therefore never happens.
Let the second case given by invariant 3.2 for cycle 1 hold, i.e.,

sik—1,T—1) = sl(kT—1)+1

holds. Using invariant 3.1 for both stageandk—1,sl(k—1,T) =
sl(k, T) is concluded.

4. Let the update enable signal of stagge not active and the update
enable signal of stagke— 1 be active. Let the first case given by
invariant 3.2 for cyclel —1 hold, i.e.,sl(k—1,T —1) is equal to
sl(k,T —1). Using invariant 3.1sl(k—1,T) =sl(k,T) + 1 is con-
cluded.

Let the second case given by invariant 3.2 for cytle 1 hold, i.e.,
sl(k—1,T —1) =sl(k,T —1)+1 holds. According to invariant 3.3,
fullT = holds. According to the definition of the update enable sig-
nals, full; ;" also holds. This is a contradiction to lemma 3.8.

Proof of Invariant 3.3 ForT =0, the claim is shown using the definition
of sl. ForT > 0, according to lemma 3.2, the claim is equivalent to:

Ul e VStaly t = sI(k—1T)=sl(kT)+1

Sinceprevk) = k—1 for allk > 0, this is equivalent to:

ug fvstall ' <= sl(k-1,T)=sl(kT)+1



Chapter 3

Im

68

A SEQUENTIAL
PLEMENTATION
MACHINE

The proof proceeds by a full case split on the values of the update enable
bits ugl ;- andug] %, as done in the proof of invariant 3.2. There are four
cases:

1. If both update enable signals are on, this is a contradiction to the fact

that at most one full bit is on (lemma 3.8).

. If ugl ;" is on andug] "t is off, the left side of the equivalence eval-

uates to true and the claim is equal to:

si(k—1,T) = sl(kT)+1

Invariant 3.1 for cyclel and stage& — 1 andk is used to show that
the claim is equal to:

sik—=1,T—-1)+1 = sl(kT-1)+1

Obviously, this claim is equal to:

sik—=1,T—-1) = sl(kT—-1)

Assume this claim does not hold. In this case, invariant 3.2 states
that

sik—=1,T—1) = sl(kT—1)+1

holds. According to invariant 3.3 for cycle — 1, this implies that

full T~ holds. Sincefull] ~! also holds because of the definition of

ugl ~, this is a contradiction to the fact that at most one full bit is on

(lemma 3.8).

. Ifug, " is off andug] ~*is on, it is left to show that

stalf 7' <= sl(k—1,T)=sl(k,T)+1

holds. Using invariant 3.1 for stagés- 1 andk and cycleT one
shows that this is equal to:

stalll * <= sl(k—1,T-1)=sl(kT-1)+2

According to the definition of the update enable signgl—, the
stall signalstall, ~* cannot be active. Invariant 3.2 shows thik—
1T —1) =sl(k, T —1)+ 2 never holds. Thus, both sides of the
equivalence are false.



Section 3.5

4. If both update enable signals are off, invariant 3.1 shows that the

claim is equal to: DATA
CONSISTENCY
stalll, * <= sl(k—1T-1)=sl(kT-1)+1 PROOF
Using invariant 3.3 for cycld — 1, one shows:
slk—=1,T-1) =sl(kT-1)+1 <= full] !
Thus, the claim is equivalent to:
stalf 7t = full] !
By definition ofue] 2, full] ~*impliesstall] ~* if ugl " is off. The
opposite direction is given by convention 3.1. QED

Invariant 3.3 can be extended to multiple stages inductively, which re-
sults in the following claim:

Letk andl be stage numbers ang- k. If the full bit of all stages between< Lemma 3.9
k andl (including stagd, not including stagé) is not set, the scheduling
functions for stagé& andl are equal:

(Vm|m>kAm<I: fulll) = sIkT)=sl(I,T)
The claim is shown by induction drusing invariant 3.3. PROOF

Let stagek be full in cycle T. In this case, stages after stageontain € Lemma 3.10
the values of the same configuration and stages prior to ktegetain the
values of the next configuration.

sk, T)+1  I<k

T>O0Afull] = SI(I’T):{ si(k,T) otherwise

This lemma is the central lemma for showing the correctness of the
operands read. The lemma is almost identical to the dateline lemma pre-
sented in [MPOO].

Lemma 3.10 is illustrated by figure 3.7: Létll] hold andsI(2,T) be
i. In this case, the output registers of the stages 0 and 1 already contain the

69



Chapter 3

A SEQUENTIAL
IMPLEMENTATION
MACHINE

Full-Bits Configuration

k=0

45 0 | - R1 ctl
k=1

41 ] - R2 ¢+l
k=2 I

- 0 | — R3 c
k=3

- 0 | - R4 c
k=4

- 0 | — R5 c

Figure 3.7 Calculation of the configurations in the sequential prepared machine.
In the current cycle, instructionis in stage 2.

70



Section 3.5

values of configuratiom:‘*l. The stages 2, 3, and so on still contain the

values of configuration'. DATA
CONSISTENCY
PROOF Forl =k, the claim is obvious. Fdr< k, the claim is PrOOF

sI(I,T) = sl(kT)+1

According to invariant 3.3sl(k—1,T) = sl(k, T) 4+ 1 holds, which shows
the claim forl = k— 1. Forl < k— 1, lemma 3.8 states that the full bits are
not set. Thus, lemma 3.9 can be used in order to show the claim.

Forl > k, lemma 3.8 states that the full bits of these stages are not set
either. Lemma 3.9 shows the claim. QED
Stagek is full at the earliest in cyclé. < lLemma 3.11
fulll] = T>k
The proof proceeds by induction over ForT =0, the claim is concluded PROOF
by the fact that during cycle 0, only full signélllg is active.

Assuming the lemma for cycl&, the claim forT + 1 is shown as fol-
lows: Fork = 0, the claim is obvious. Thus, the claim is shownkas 0.

If full] or fulll ; holds, one simply uses the induction premise. If
full] and full]_, do not hold, one shows thdull,] ** cannot hold using
lemma 3.2:

full ™ = ugl_, vstallf

Applying the definition ofquLl, this results in:

full ] ™ = (fulll_,Astall] ,)Vstallf
= stall]
According to convention 4.2talll cannot be active. QED

3.5.4 Data Consistency Proof Strategy

The correctness criterion for the machines presented in this thesis is based
on the scheduling function: the values of the specification registers of the



Chapter 3

A SEQUENTIAL
IMPLEMENTATION
MACHINE

Theorem 3.12 »

72

implementation machine must match the values of the corresponding reg-
isters in the specification machine. Given a stagand a cycleT, the
scheduling function provides the configuration of the specification ma-
chine to compare with.

Thus, the correctness of the complete machine is asserted in the follow-
ing theorem:

The value of a given specification registeie out(k) during cycleT in
the implementation machine must match the value of the same register in
the specification machine in the configuratywith i = sl(k,T).

This data consistency criterion is taken literally from [MP®0} with
index shift. This index shift arises from a notational difference: in [MP0Q],
R; denotes the value & afterthe execution of;. In this thesisR‘S denotes
c‘S. R, which is the value oR beforethe execution of;. This difference can
be adjusted by takinﬁz'grl. Thus, the correctness criterion of [MPOQ] in
the notation of this thesis is:

T+1 i+1
RI+ :RIS+

Furthermore, in [MP0O], the criterion is shown for cycl&swith ugl
only. Using invariant 3.1, one can conclude that for this cddeT + 1) =
i + 1 holds. Inserting this into the equation above results in:

I(kT+1
R,T“ _ Rsé( +1)

This is exactly the correctness criterion as given above despite that the
criterion in [MPO0O] does not cover the values of the registers during cycle
0 (initial configuration).

The proof of the correctness criterion proceeds by inductiofl ofor
the PVS tree, an automated tool developped by the autor generates this
proof. In the following, the generic algorithm used in order to generate the
proof is described.

Step 1 For all implementation register® of the implementation ma-
chine, a functionQyR(c) is defined. This function maps a configuration



Section 3.5

c of the specificationmachine on the domaiV (R) of the registeR and
provides the “correct” value dR. It is not necessary to define this function DATA

for specification registers, since the correct value of a specification registg?NSISTENCY
is defined by the specification machine. PROOF

For intuition, take the prepared sequential machine and remove all im-
plementation registers. The inputs of the registers are connected to the
outputs (figure 3.8). The remaining specification registers share a common
clock. This machine processes one configuration of the specification ma-
chine with each cycle unless stalled. The configuration set of this machine
exactly matches the configuration set of the specification machine.beet
such a configuration. In this machine, one can get the val@@ofR/(c)
right at the point where the registBt.k formerly was.

Formally, the function®QR are defined recursively: in analogy tp
andy (section 3.2.4), function& andl" are defined, which provide the
correct input values for a register transition functibnin analogy to the
function w, the functionQ is defined. The definition of2 is identical to
the definition ofw except for thaf is used instead of.

GkR: Cs — W (R)
LetGk(c, (R}, Ry, .-+, Rj)) denote g-tuple of values calculated as follows:

Gk(cv (Rllv R’27 SEER) R)) = (Glel(C)v GkR’Z(C)v e 7GkR',(C))

Let I be a function that maps a configuration of the specification ma-
chine to the correct input values of a register transition function. Let
depR k) be(R},...,R).

MN:Cs— W(R) x...x W(R)
NR(c) = Gk(c,depRk))
The functionsGxR can now be specified recursively: Rfis a specifica-
tion registerGgR is:
GkR(c) = cR
This allows a straightforward definition @R if Ris an implementation

register. Since an instance Bfmust be in the previous stage, the correct
value ofRk s used, i.e.Qy_1R(c):

GkR(C) = QkflR(C)

73



Chapter 3

A SEQUENTIAL

IMPLEMENTATION
MACHINE 1Ry We-1R
ue._ ue._
St R,k St R,k } der(R.K)
Ry R,

VR = ok(c,depgRK))

[

R.(k+1)

ue

Sequential prepared machine

Machine without implementation registers

Figure 3.8 Relationship betweenxR, gkR and QxR, GkR/, depicted for two
stagesk andk+ 1. LetR; andR, be implementation registers and Rte an
implementation register that depends®nandR,. The read accesses® and
R, are unconditional.

74



Section 3.5

Remember that " Rre(c) is just a shorthand for
DATA

fRre(T'kRre(c)) CONSISTENCY
PROOF
as described in section 3.2.8 (page 51).

For a conditional read access to a specification regi€igR,is defined
as follows:

B c.R : fIRre(c)
GR(e) = {0 . otherwise

For a read access with read address to a specification re@glis
defined as follows:

B c.R[flkRra(c)] : fIRrec)
GR(©) = {0 k . otherwise

Step 2 A set of lemmas is claimed and asserted later. For each specifica-
tion registerR € out(k), one lemma is used:

Using the correct input values, the register transition function
fkR provides the correct output value.

Let the inputs be calculated using values from c_onfigurat'g)rin this
case, the output values can be found in configura@hof the specifica-
tion machine.

These lemmas assert the correctness of the non-scheduled implementa-
tion described above, i.e., the sequential machine that performs the calcu-
lation of a configuration of the specification machine within one transition
without implementation registers. The lemmas are therefore caitgster
transition function correctness lemmas

If the write access to the register is neither conditional nor has a wsteemma 3.13
address, the claim is:

LR = fIR(cy)

If the write access to the register is conditional, the value of the transition
function is used only if the write enable signal is active. If the write enable



Chapter 3

Im

76

A SEQUENTIAL
PLEMENTATION
MACHINE

signal is not active, one takes the value from the previous configuration.
The claim therefore is:

dHp — frR(cy) : frRwecy)
S csR : otherwise

In case of a write access with write address, the claim is for all addresses
possible write addressas

_ frR(cg) : frRwecg)A
cLRX = _ frKRwa(cs) = X
cs-R[X] . otherwise

Step 3 LetT be acycle. Astage correctness predicat&(T) is defined
for each stage. It will be used later on in the proofs of all central claims.

The predicatePy(T) holds iff the values of the registers of stagare
correct cycleT. This comprises both the implementation and the specifi-
cation registers. LetP«(T) denote the stage correctness predicate for the
specification registers and i#¥(T) denote the stage correctness predicate
for the implementation registers:

P(T) <= sP(T)AIP(T)

The stage correctness predical®(T) for the specification registers is
given in analogy to the data consistency criterion in theorem 3.12: the val-
ues of the specification registers must match the values of the correspond-
ing registers in the configuration of the specification machine indicated by
the scheduling function. Thus, for all specification regisResout(k) the
following condition must hold:

The stage correctness predicate for the implementation registers is given
using the notion of a correct implementation register as defined in step 1.
For all implementation registelR € out(k) the following condition must
hold:

sl(k,T)=0

0
RI.(k+1) = _ :
i -(k+1) { KDL . otherwise

QkR(CS



Section 3.5

DATA

: CONSISTENCY
o — O+l
U8-1 Qk Q PROOF

Stagek l;

uec —» R(k+1) =R

Figure 3.9 lllustration of the values in the registers if instructiprs in stagek
(i.e.,sl(k,T) =i). Qis a specification register iout(k — 1), Ris a specification
register inout(k).

The stage correctness predicate for the implementation registers is mo-
tivated as follows: The stage correctness predicate for the implementation
registers is supposed to provide information about the value of an imple-
mentation registeR € out(k) during cycleT, i.e., aboutR[.(k+1). In
case ofsl(k,T) = 0O, the register has never been written before, i.e., it has
still the initial value, which is zero by definition:

RI.k+1) = 0
If i =sl(k,T) > 0, the last time the register was written was on calcu-
lating a part of configuration' (figure 3.9). Suppose this was done during

cycleT'. By definition of the transition function, the following value was
written:

wR(cl)
This value was not changed since cy€le thus, it is still in the register
during cycleT:
RI.(k+1) = oxR(c)

In case of correct calculations, the inputs useddi for the transition
function fyR during cycleT’ while calculating configuration' were taken



Chapter 3

A SEQUENTIAL
IMPLEMENTATION

78

MACHINE

Lemma 3.14 »

PROOF

QED

Lemma 3.15 »

PROOF

from configurationc —1. Thus, the right-hand side is:

RI.(k+1) = OQR(c5Y

This motivates the stage correctness predicate for implementation regis-
ters.

All stage correctness predicates hold for the initial cycle, Pg(Q) holds
for all stagek.

In the initial cycle, the value of all stage scheduling functions is zero.
One therefore has to show that the values of the specifications registers in
the implementation machine during cycle 0 match the values of the corre-
sponding registers in the specification. Since this is exactly the definition
of clo, the claim follows immediately.

3.5.5 Correctness of the Transition Functions

The register transition function lemmas, as defined in step 2, hold.

The stages IF and EX do not write any specification register, thus, there is
nothing to show.

Note that the following proofs are given here for illustration only. In
PVS, the proofs are much simpler, since PVS is able to expand the def-
initions of the functionsfyR, MNkR, and GyR automatically. Furthermore,
the lemmas that show the correctness of circuits such as the ALU can be
applied automatically. The proofs rely on definition expansion and trivial
use of lemmas only, thus, the proofs below have just a few lines in PVS
and require almost no manual interaction.

Stage ID Stage ID writes the specification regist&BC andPC'. The
claim of the register transition function lemma for regidC is:

f,DPC(r;DPC(cs)) = ci*.DPC

Expanding the functioff ;DPC on the left hand side, this is equal to:

f,DPC(Gy(cs,PC')) = cd1.DPC



Section 3.5

Expanding the functio; on the left hand side, this is equal to: b
ATA

i ! i CONSISTENCY
f,DPC(GPC/(ck)) = c+i.ppP
1DPC(G1PC/(cy)) Cs C PROOF

SincePC! is a specification register, by definition 6 PC this is equal
to:

f,DPC(csPC’) = cS.DPC

Sincef;DPCis just the identity (equation 3.12 page 57), this claim sim-
plifies to:

csPC = ditDPC
This holds because of the definitionagl.DPC (equation 2.3 page 31).
The claim of the register transition function lemma for regift€f is:

f,PC/(r,PC'(cs)) = c5tPC

The calculation oPC’ depends on the first GPR operand. The functions
for this operand us&PRaas register and not GPR in order to distinguish
them from the functions of the second GPR operand.

Repeatedly expanding definitions as above, the claim is equal to:

f1PC'(G1IR(ck), G1GPR4Cs),G1PC (ck)) = ddt.PC

By definition of f;PC' (equation 3.13 page 57), this is equal to:

nextpcimp(GyIR(cs), GiIGPR4Cs), GiPC'(cs) = c§*.PC

By lemma 3.4 (correctness oéxtpcimpl), this is equal to:

nextp¢G1IR(cs), GiGPRACS), GiPC(cy)) = ¢ *.PC

There are three cases:

79



Chapter 3

Im

80

A SEQUENTIAL
PLEMENTATION
MACHINE

e If the instruction is a jump register or branch instruction, the register

transition functionf;PC' readsIR, the first GPR operand, and the
old value of thePC' register. These values are passed to the function
nextpc

One easily shows the correctness of tReargument by expanding
definitions, sincdR is an implementation register:

GiIR(c5) = QulR(cy)
= folR(c5.DPC)
= IM[c5.DPC]

The correctness of tHeC' argument is shown easily:

GiPC'(c5) = cs.PC

The correctness of the GPR operand is assured as follows: the first
GPR operand is read using a conditional read access with address.
In case the read enable signal holds (equation 3.7), the GPR register
with addresd _RSL(IR) is read (equation 3.9):

GiGPR4cs) = c5.GPRI_RSI(IM[cs.DPC))]

This is exactlyopl, as required by the specification (equation 2.1
page 30).

If the condition does not hold, zero is returned by @&efunction:

GiGPR4cy) = 0

In case of a jump register or branch instruction this happens only
if I_.RSL(IR) is zero. In this case, regist&PR, is read, which is
always zero when read, as required by equation 2.1.

If the instruction is neither a jump nor branch instruction, the value
of IR, zero, and the old value d*C’ is passed tmextpc In this
case,nextpcignores the value of the second argument and returns
the correct result therefore.

If the instruction is a jump instructiomext pcdoes not use the sec-
ond argument, the GPR operand. The offset to the PC is provided
by the immediate constant.



Section 3.5

Stage M The memory stage writes a data word into the main memor
in case of a store instruction. The write access to the data memory i 4TA

conditional write access with write address. SONS'STENCY
ROOF

Most transition functions depend on the implementation regiReEx-
emplary, it is shown how to assert the correctness off@rguments. By
definition of GzIR, one shows thaQ,IR(ck) is the value read. Repeat-
edly expanding th& functions and proceeding as above, one shows the
correctness of the IR arguments:

GiR(cy) = QuIR(cy)
= QIR(c)
= QolR(c)
= folR(c5.DPC)
= IM[cs.DPC]

As described above, the write accessDivl is conditional and has a
write address. In case the write enable sigh@Mwe(GzIR(cs)) does
not hold, nothing has to be shown. In the case thatMwe(GslIR(ck))
holds, one has to show that the data value written is correct and that the
write address is correct.

The data value written is read from tMDRwregister from the previous
stage. By definition, the correct value of thEDRwregister is the correct
value of theB register written by the decode stage. The decode stage places
the second operand here. The correctness of this operand is asserted as
described in the section above.

The address used for the write accesDid is taken from the func-
tion f3DMwa. The function read®ARfrom the previous stage and strips
the two least significant bits. The correct value of AR register is by
definition the output of the ALU. The ALU performs an addition, which
is shown easily using thalsDMwe(GslIR(cs)) holds and using the cor-
rectness of the ALU (lemma 2.14). Furthermore, it is shown easily that the
second operand of the ALU is the immediate constant. The first operand of
the ALU is generated by the decode stage. The correctness of this operand
is shown as in the proof for the stage ID. Thus, exactly the effective ad-
dress, as required by the specification, is used as write address for the write
access.

Stage WB The write back stage writes the GPR destination operand of
the instruction. The proof is similar to the proof used for the memory stage.

81



Chapter 3

A SEQUENTIAL
IMPLEMENTATION
MACHINE

QED

Lemma 3.16 »

PROOF
82

A conditional write access with address to GPR is performed. In the case
that the write enable signal is active, one has to show that the data value
written is correct and that the write address is correct.

In case of a load instruction, the data value is taken fronshhé&4load
circuit, which takesMAR MDRYr, andIR as inputs. The correctness of the
value in theMARregister is asserted as described above. The correctness
of the value in theVMIDRr register is asserted as follows: the register is
written by the memory stage using a conditional read access with address
to DM. It is easy to show that the read enable signal of this read access
is active using that the write enable signal holds. The correctness of the
address of the memory access is shown as described above.

If the instruction is not a load instruction, the data value is taken from
the C register. TheC register is passed unmodified by the memory stage
from the execute stage. In case of an ALU/shift instruction, the correctness
of this value is asserted as follows: the correctness of the input operands
is asserted as described above; using the correctness of the ALU (lemma
2.14), the correctness of the result is shown.

In case of a jump and link instruction, the execute stage passes the value
of theC register from stage ID. This is the correct value of B@ register,
as required by the specification.

The correctness of the index used for the write access to GPR is shown
easily by definition unfolding. The index is written into an implementation
register by stage ID and not changed in any subsequent stage.

Correctness of the Functions grR In the proofs above, the correctness

of the inputs of each stage is assumed. In real hardware, the implementa-
tions of the functiongkR are used in order to generate the input operands.

It is therefore left to show that the values generated by the functigRs
actually match the correct values.

Letsl(k,T) =i andfull] hold. Assuming that the stage correctness pred-
icatesP; hold in all cycles up to cycld@, the inputs generated by the func-
tionsgkR during cycleT are correct:

aR(c[) = GyR(cs)

In case of an implementation register, the correct value on the right-hand



Section 3.5

side is defined by the functiaRyR:
DATA

! - CONSISTENCY
Rc) = QiR(C

aR(c ) k-1R(Cs) PROOF
In case of a specification register, the correct value is given in the config-

uration of the specification machine. If the read access is neither indexed

nor conditional:

*R(c]) = Rs

In case of a conditional read access, the correct value is zero if the read
enable signal is not active. If the signal is active, the correct value is the
same as in the case above.

v [ Ry frRre(ck)
aR(c) = {0 : otherwise

In case of an indexed read access, the correct value is defined using the
correct value of the address. betlenote this value:

x = fMRra(cy)
omd) {5 oo

The proof depends on the type of the register that is read and in which
stage the register is. The first thing is to show the correctness for the case
that neither a condition nor a read address is used.

1. Let the register that is to be read be an implementation register. By
the definition ofgkR, the register from the previous stage is taken:

aR(c) = ¢ .Rk (3.16)

An implementation register is never read in stdge 0, and one
therefore can use lemma 3.11 and the fact that the full sitund] is
active in order to conclude that> 1 holds. For this case, invariant
3.3 (page 65) states:

sik—=1,T)=i+1

83



Chapter 3

Im

84

A SEQUENTIAL
PLEMENTATION
MACHINE

The stage correctness predicateRar impl, cycleT, and stagé&—1
states:

RT k— 0 : sl(k—=1,T)=0
PR Qk_lR(cSS"(k_l’T)_l) © otherwise

Sincesl(k—1,T) =i+ 1is never zero, this simplifies to:
RI.k = Q 1R(c)

Remember thaR .k just denotes| .Rk. Thus, one can insert this
into equation 3.16. This changes equation 3.16 into:

aR(Cc) = Q 1R(c) (3.17)

This is exactly the claim.

. Let the register that is to be read be a specification register that is in

the same stage in which it is read. By definitiorgRR, the value of
Ris read:

aR(c) = ¢ .R(k+1) (3.18)

By using the stage correctness predicate for specification register
stagek, cycleT, this is transformed into:

o Rk+1) = RIKD (3.19)

Sincei = sl(k, T), this is the claim.

. Let the register that is to be read be a specification register that is

in a later stage than the stage it is read in. Wwdie stagéR). By
definition ofgkR, the value oRRis read:

aR(c) = ¢ .R(w+1) (3.20)

By applying the stage correctness predicate for stagad cycleT,
this transforms into:

aR(d) = R™D (3.21)

For cycleT = 0, bothsl(w,0) andsl(k,0) are zero by definition of
sl. Thus, the claim holds.



Section 3.6

For cyclesT > 0, one uses lemma 3.10 for cydleand stage& and

w. Because of ull] andw > k, lemma 3.10 shows that DATA
CONSISTENCY
slw,T) = sli(k,T) PROOF

holds. This concludes the claim.

This shows the claim for inputs without index and condition. The claim
for inputs with index or condition is shown as follows: Since the inputs
for the functionsfyRre and fyRra never use a condition or an index, the
correctness of the inputs of these functions can be shown as above. If the
condition does not hold, the claim obviously holds. If the condition holds,
the proof proceeds as above. In case of an indexed access, the claim is
shown using the arguments above and that the index is correct. QED

Let T’ be greater than zero. Assuming all stage correctness predicates farmma 3.17
the cycleT’ — 1, the predicate for stadgeholds for cycleT’.

(VI:R(T'-1) = R(T)

Let the update enable sigrnaé(r*1 be active. In this case, one uses in- PROOF
variant 3.1 in order to conclude thsi{k, T — 1) =i — 1. This allows using

lemma 3.16 for cycl@ — 1 and configuratiom— 1. The lemma shows that

the inputs of the stage transition functions are correct. In case of a speci-
fication register, lemma 3.15 is used to show that the output written in the
register is correct. In case of an implementation register, the output value

of the stage matches the correct value by definition of the correct value of

an implementation register.

If the update enable signab{[fl is not active, invariant 3.1 is used to
show that the value of the stage scheduling function does not change from
cycle T —1 to cycleT. Since the update enable signal is not active, the
values in the registers do not change from cyEle 1 to cycleT, which
shows the claim. QED

All stage predicates hold for all cycles. < Theorem 3.18

This is shown by induction oii. The casd = 0 is subsumed by lemma PROOF
3.14, the induction step is shown using lemma 3.17.

Theorem 3.18 obviously implies the data consistency criterion as pro-
posed in theorem 3.12.

85



Chapter 3

Im

86

A SEQUENTIAL
PLEMENTATION
MACHINE

Definition 3.3 »
Time Predicate

Lemma 3.19 »

PROOF

Definition 3.4 »
Finite False

3.6 Liveness
3.6.1 Introduction

The liveness criterion used in this thesis is that the implementation machine
actually calculates any desired configuration of the specification machine
within a finite amount of time. In order to prove the liveness criterion for
the prepared sequential machine, a formal notion of “will happen in finite
time” is required.

A time predicate is a mapping froi, to B.

The constant time predicatabvaysandneverare defined as follows:

alwaygT) = true (3.22)
nevefT) = false (3.23)

Let pred be a time predicate. The following notation is used:

dpred <= dT eNp: pred(T) (3.24)

The operatod=T' on a time predicate holds iff the predicate is true for
atimeT >T'.

FTpred <= 3ITeNy: (predT)AT >T) (3.25)

If there exists a tim&@ > T’ with pred(T), also a timeT” exists that is the
smallesfT” > T’ satisfying the predicate.

Let Sbe the set of natural numbers that are greater or effuahd satisfy
the predicate. The set is non-empty and has a lower bound. The minimum
min(S) exists therefore and iE".

Let pred be a time predicate. The predicate is caliimite falseiff for all

T 32T pred holds. This implies that ipred(T) does not hold for a given
T, there is a finiteT’ > T such thatpred(T’) holds. In analogy to that, a
predicate is callefinite trug iff predis finite false.



Section 3.6

3.6.2 Liveness Criterion
LIVENESS

Let c‘S be any desired configuration of the specification machine. The im-
plementation machine is said to be alive iff for all stagdhere exists a
timeT € No with sl(k,T) =i:

AT eNg sl T) =i

3.6.3 Liveness Properties of the Scheduling Logic

Let ug, denote the time predicate of the update enable signal of &age
Let stall, denote the time predicate of the stall signal of stage

Let fuII|I hold for a stagék and a cycleT. Let the stall signastall be < Lemma 3.20
finite true (thus, it becomes false within a finite amount of time). This
implies thatug, becomes true within a finite amount of time:

fulll] = 3F*Tue

Sincestally is finite true, there exists a cyclE > T such that the stall PROOF
signal is not active. LeT’ be the smallest value with this property. If
T/ =T, full]" holds by premise.

If T > T, assume thafulllf' does not hold. According to lemma 3.2,
this implies thatstall] ~* does not hold. This is a contradiction to the
assumption that’ is the smallest value.

Sincefull]’ = 1 andstalll' = 0, ug] holds by definition. QED
Assuming that all stall signals are finite true, and that the update ensblemma 3.21

signal of stage O will be active within finite time after cydle the update
enable signal of stagewill be active within finite time after cycl@.

FTug = FTug

This is shown by induction ok. Fork = 0, the claim is subsumed by the PROOF
premise.



Chapter 3

Fork+ 1, the induction premise states that there is a cy¢le T with
ugl . By the transition function of the full bitsfull[,}* holds. Lemma
3.20 concludes the claim.

A SEQUENTIAL
IMPLEMENTATION
MACHINE

Lemma 3.22 » Assuming that all stall signals are finite true, the update enable signals are
finite false.

PROOF The claim forue is that for allT there is aT’ > T such thalueg' holds.
This is shown by induction of. ForT = 0, one uses lemma 3.20 and the
fact thatfulld holds by definition.

ForT +1, lemma 3.21 is used to argue that there exigtsaT such that
uel’; holds. According to the transition function of the full bitgyll] +*
holds. Lemma 3.20 is used to show the claim.

The claim forug, with k > 1 is shown by induction ok. Fork = 0, the
QED claim is shown already. Fdt+ 1, the claim is shown as in lemma 3.21.

3.6.4 Liveness Proof for the Sequential DLX

Lemma 3.23 » Let the update enable signady of a stagek be off during the cycle3”
with T" > T” > T. The value of the scheduling function does not change
from cycleT to T'.

VI/IT' >T">T:ud" = slkT)=sl(kT')
PROOF The proof proceeds by induction dr and by definition unfolding.
Theorem 3.24 » Assuming that all stall singnals are finite true, the machine is alive.
PROOF This is shown by induction oh Fori = 0, the claim is that there is&

such thasl(k, T) = 0 holds. By definition okl, T = 0 satisfies this.

Fori+ 1, the induction premise states that there is a cyckuch that
sl(k,T) =i holds. According to lemma 3.22), the update enable sigaal
is finite false,

Thus, there is a cycl&’ > T such tha’uq'[' holds. LetT’ be the smallest
value that satisfies this. T is equal toT, the claim holds by invariant 3.1.

88



Section 3.7

If T"> T, lemma 3.23 states that(k, T) is equal tosl(k, T'). Invariant
3.1 shows thasl(k, T’ + 1) isi+ 1. LITERATURE

3.7 Literature

The concept of the prepared sequential machine and the DLX implementa-
tion is taken from [MPOO]. There are many publications on the verification
of sequential machines, e.g., Cohn verified the VIPER [Coh87], Joyce ver-
ified the Tamarack [Joy88a, Joy88b], Hunt verified the FM8501 [Hun94],
and Windley verified the AVM-1 [Win95].

There is not much literature on the verification of liveness properties
of microprocessors. However, liveness verification is critical. In [MP96],
deadlocks in the original version of the well known scoreboard scheduler
are described. Furthermore, a corrected version is presented and its live-
ness is proven.

89






Pipelined Machines

4.1 Scheduling the Pipelined Machine
4.1.1 Introduction

HE PREPARED SEQUENTIAL MACHINE as described in the previous
T chapter, calculates a configuration of the specification machine within
n transitions if no external stall condition arises, witlheing the number
of stages. In each transition of the prepared sequential machine, only one
stage is in use. The data paths of the remaining stages are left idle.

In this chapter, the prepared sequential macliies transformed into
a pipelined machindy;, which allows running all stages in parallel. This
concept is taken from [MPKOO, MPO0O]. In contrast to the cited literature,
an automated tool is used in order to do the transformation including the
generation of stalling and forwarding logic. Furthermore, the transforma-
tion is not limited to microprocessors. Any prepared sequential machine
as specified in the previous chapter can be transformed into a pipelined
design.

The goal of the transformation is to use the formerly idle data paths
in order to speed up the calculation of the desired configurations of the
specification machine. As before, the registers of all stages are initialized



Chapter 4

92

PIPELINED
MACHINES

I I I I
cycle 0 ! 1 ! 2 ! 3 !
I I I I
I I I I

I

I

1
stage O Cs | C%
I : I I
I I
1 I I
stage 1 Cs : |
| | ! |
I I
| 1 |
C

stage 2 ! S |
I I
I I

Figure 4.1 Scheduling of the prepared sequential machine with3 stages in
the absence of external stalls.

with the values ot2 and the first stage starts with the calculatiorc®fin

the next cycle, the second stage starts with the calculatich ak before.

In contrast to the prepared sequential machine, the first stage does not idle
but starts the calculation .

In particular, the calculation of the configuratiofstarts before the cal-
culation of configuratiores is finished since stage 0 calculates only some
parts of the configuration. Figure 4.1 shows how the prepared sequen-
tial machine calculates the configurations, and figure 4.2 shows how the
pipelined machine uses the formerly idle stages to speed up this calcula-
tion.

The calculation of configurations is finished in cycle 2, as in the se-
quential machine. In contrast to the sequential machine, the calculation is
of configurationc is finished already in cycle 3.

A stage "runs” if the corresponding update enable signal is active. A
stage is updated if it is full and not stalled. The first step of the transfor-
mation therefore is to modify the machine such that there are as many full
stages as possible.

In the new initial configuration, no full bit is set in contrast to the initial
configuration of the prepared sequential machine. The definition of the
signal fullp is changed: the first stage is defined to be always full, since
one can start with the calculation of the next configuration any time the



Section 4.1

I I I I
I I I I
cycle 0 | 1 | 2 | 3 | SCHEDULING THE
I I I I
| | | | PIPELINED
MACHINE
1 2 3 4
stage 0 Cs Cs Cs Cs
I I I I
1 2 3
stage 1 Cs Cs Cs
I I I I
I
| 1
C c2
stage 2 ! S S
I
I

Figure 4.2 Running all stages in parallel.

‘T:O‘Tzl‘T:2‘T:3‘T:4‘T:5‘T:6

ugg | 1 1 1 1 1 1 1
uegf | O 1 1 1 1 1 1
uel | O 0 1 1 1 1 1
uet | 0 0 0 1 1 1 1

Table 4.1 The update enable signals of a four stage pipeline in the absence of
stalls

stage would be empty otherwise.

fullo(c) = 1

This is the only change required in order to get a pipelined schedule.
This full bit is propagated to the next stage in each transition just as in the
machineMg. Thus, if there is no stall signal, the full bits are never cleared
after they are set. Table 4.1 illustrates the values of the update enable
signals for a four stage pipeline and after applying this modification and
assuming that no stall signal is active.

After n transitions, all stages work in parallel therefore. Every stage
calculates a part of a different configuration of the reference machine. For
example, let stage 2 calculate partsc'gf In this case, stage 1 calculates
parts ofcigrl and stage 3 calculates partsdgjl. This is depicted in figure
4.3.

93



Chapter 4

94

PIPELINED
MACHINES 1
fullg

1 o R1_| e

fully

LS i2] v R2 ] @

fully

1 op R3S | o

fulls

V
1 w1 —h R ]

Figure 4.3 The structure of the pipelined machine




‘TzO‘Tzl‘T:2‘T:3‘T:4‘T:5‘T:6

sIO,T)| O 1 2 3 4 5 6
SILT)| O 0 1 2 3 4 5
sSI2T)| o 0 0 1 2 3 4
sIBT)| O 0 0 0 1 2 3

Section 4.1

SCHEDULING THE
PIPELINED
MACHINE

Table 4.2 The values o8l in a four stage pipelined machine in the absence of

stalls

The new values of the update enable signals affect the values of the
scheduling function also since the scheduling function is defined using the

update enable signals. Table 4.2 illustrates the valued(kfT) for the

first seven cycles.

4.1.2 Scheduling Lemmas

The following simple lemmas are concluded from the new definition of the

full signals:

A stage is full iff it was updated or stalled in the previous cycle:

vk>1: full]*t=ugl ,Vvstalll

The signalfullg is always active:

full =1

All other signalsfully are not active during cycle O:

vk>1: fulll=0

<4 lLemmad4.l

This lemma is a counterpart of lemma 3.2 of the sequential machine.

This lemma is an implication of the transition function of the full bits andPROOF

of the definition of the full signals.

In analogy to convention 3.1, it is required that if a stage is not full, it mssConvention 4.2____

95



Chapter 4

96

PIPELINED
MACHINES

Lemma 4.3 »

PROOF

Lemma4.4 »

PROOF

not be stalled:
fulll = stall]

In addition to that, it is required that if a stage is stalled and the previous
stage is full, the previous stage must be stalled also:

vk>1: fulll ;Astalll = stall] ;

Using the lemma and the convention above, it is easy to show that the
pipeline has the same properties like a simple queue: no entry in the queue
is lost and no entry in the queue is duplicated. These properties are sub-
sumed by three trivial lemmas.

The equations for the stall signals of the prepared sequential machine
in chapter 3 also comply with this extended convention, which is shown
easily using lemma 3.8. Thus, all properties of the pipelined machine con-
cluded using this convention also hold in the sequential machine.

If a stage is full and is updated, the next stage is updated, too.

vk>1: full] Augl; = ud

This ensures that the contents of a stage are never overwritten without
moving into the next stage.

According to the definition of the update enable signals, it is sufficient to
show thatfull,] andstall] holds. According to the premise of the lemma,
full] holds. By the definition of the update enable sigmg]l ,, stall]_;

and fulll_, holds. The claim is concluded by convention 4.2.

If a stage is full and if its output registers are not updated, the full bit is
preserved. o
vk>1: full] Augl = full]™!

By the definition of the update enable signals, one concludesstahﬁ
holds. The claim is concluded using lemma 4.1.



Section 4.1

Lemma 4.3 and lemma 4.4 guarantee that no configuration in a given

SCHEDULING THE

stage is ever lost.
PIPELINED

MACHINE

If a configuration in a stage moves into the next stage (i.e., the oupliemma 4.5
registers of a stage are updated), and if the next configuration is not clocked
into the stage, the full bit is cleared:

vk>1: fulll Augl Augl, = full]™t
This lemma guarantees that no configuration is duplicated.

By the definition of the update enable signals, one conclatmﬁ{. The PROOF
claim is concluded by lemma 4.1.

The following lemma is the counterpart of lemma 3.11 in the sequential
machine.

Stagekis full at the earliest in cyclé. <4 Lemma 4.6

fulll, = T>k

The proof proceeds by induction over ForT =0, the claim is concluded PROOF
from lemma 4.1.

Assuming the lemma for cycl&, the claim forT + 1 is shown as fol-
lows: Fork = 0, the claim is obvious. Thus, the claim is shownKkas 0.

If full] or fulll ; holds, one simply uses the induction premise. If
full] and full] ; do not hold, one shows thdull,| ** cannot hold using
lemma 4.1:

full ™ = ugl_, vstallf

The rest of the proof proceeds as the proof of lemma 3.11 (page 71). QED

97



Chapter 4

98

PIPELINED
MACHINES

PROOF

4.1.3 The Scheduling Invariants

In order to prove the data consistency of the pipelined machine, the three
scheduling invariants presented for the prepared sequential machine in
chapter 3 (page 65) will be used. We will therefore show that they also
hold for the pipelined machine.

The proof of the invariants proceeds as in chapter 3:P(@t) denote that
invarianti holds for the pipelined machine for the cydle The claim is
concluded as in chapter 3:

P(T-1) =
PIT)AP(T-1)AP(T —1) =
P(T)AP(T—-1)AP}(T-1) =

The proof of invariant 3.1 is identical to the proof presented in chapter
3. The proof depends on the definitiongbfand invariant 3.3 only.

Proof of Invariant 3.2 The proof of invariant 3.2 presented in chapter 3
depends on lemma 3.8 (“exactly one stage full”), which no longer holds in
the pipelined machine.

Let us consider the stagks- 1 andk with k > 0. There are four cases
regarding the update enable signaés ' andug] ;" of these stages:

1. Let both update enable signals be active. According to invariant 3.2,
the values of the scheduling function of the stages in cyclel are
either equal or the value of the scheduling function of stagel
is greater by one. According to invariant 3.1, the values of both
scheduling functions increase by one within the step to clcléhe
claim therefore holds by invariant 3.2 for cycdle— 1.

2. Let both update enable signals be not active. According to invariant
3.1, the values of the scheduling function do not change and the
claim follows from invariant 3.2 for cycl@ — 1 therefore.

3. Let the update enable signal of stdgee active and the update en-
able signal of stagk — 1 be not active. This case is argued as in
chapter 3.



Section 4.1

4. Let the update enable signal of stagige not active and the update
enable signal of stagke— 1 be active. Let the first case given by
invariant 3.2 for cyclel —1 hold, i.e.,sl(k—1,T —1) is equal to
sl(k, T —1). Using invariant 3.1sl(k—1,T) =sl(k,T) + 1 is con-
cluded.

SCHEDULING THE
PIPELINED
MACHINE

Let the second case given by invariant 3.2 for cyEle 1 hold, i.e.,
sl(k—1,T —1) =sl(k,T —1)+1 holds. According to invariant 3.3,
full] ! holds. According to lemma 4.3, one can conclugg *

T-1 T-1 [ g el — 1
from full, ~> Aug ;. This is a contradiction sinceg ~~ was as-
sumed.

Proof of Invariant 3.3 The proof of invariant 3.3 presented in chapter
3 also depends on lemma 3.8, which no longer holds in the pipelined ma-
chine.

For T = 0, the claim can be shown by definition unfolding and using
lemma 4.6. Foll > 0, according to lemma 4.1, the claim is equivalent to:

ugl tvstall ' <= sl(k-1,T)=sl(kT)+1

The proof proceeds by a full case split on the values of the update enable
bits ug} ;- andug] 1, as done in the proof of invariant 3.2. There are four
cases:

1. If both update enable signals are on, it is left to show that
si(k—1,T) = sl(kT)+1
holds. According to invariant 3.1, this is equivalent to:

sik—=1,T—-1)+1 = sl(kT-1)+2

It is sufficient to show thafull] ~* holds because of invariant 3.3
for the previous cycle. This is done using the definitionuqfffl.

2. Ifugl }is on andug] ~*is off, one assumes the claim does not hold.
Using the same arguments as in the proof of invariant 3.3 in chapter
3, one can conclude thaull, ~* holds.

Using lemma 4.3u€] ~* is concluded. This is a contradiction to the

assumption above. -

99



Chapter 4

100

PIPELINED
MACHINES

QED

3. If ugl 7} is off andug! 1 is on, the rest of the argumentation is iden-
tical to the proof in chapter 3.

4. If both update enable signals are off, the arguments in chapter 3 can
be repeated using convention 4.2.

This concludes the claim.

4.2 Forwarding
4.2.1 Introduction

The new scheduling has impact on the calculation of the input values of
the stages. Let staderead an implementation register Read access to
implementation registers is not affected by the changes to the scheduler,
since according to the requirements of the hardware description language
(section 3.2.4), an instance of the regi®enust be imut(k—1). Thus, the
value of the implementation register has been calculated by the previous
stage. A formal proof for that claim uses the same arguments as given for
the sequential machine.

However, the access to specification registers is affected. For the se-
gquential machine, lemma 3.16 (page 82) shows that the value the register
has in the previous configuration of the specification machine (as given by
the scheduling function) is passed as input.

The goal is to modify the functiongcR such that the same proposition
can be made for the pipelined machine. This allows concluding that the
values the pipelined machine writes into the registers match those written
by the sequential machine. This proof method is taken from [MPKOO,
MPO0O].

Let stagek read specification regist& € out(w). There are two cases,
ask > w is not allowed so far (section 3.2.5, page 43):

1. If the read access is done in the stage that writes the register, i.e.,
k = w, it is sure that the register still contains the value from the
previous configuration as required. Nothing has to be changed in
this case. The formal proof for this proposition is identical to the
corresponding case in lemma 3.16.



Section 4.2

An example is the read accessR@ in the decode stage of the DLX
as implemented in chapter 3. FORWARDING

2. If the read access is done in a stage before the stage that writes the
register, i.e.k < w, the access cannot be done, since the desired
value is not in the register yet.

There are two methods to overcome the limitation in the last dase:
wardingand, if this fails,stalling. These methods will be described in the
next sections.

4.2.2 Forwarding from the Next Stage

Forwarding makes use of the parallelism of the calculations of the configu-
rations. In the literature, forwarding is often also called bypassing [Fly95].
Let R be the specification register to be read. The technique used here is
presented in [KPMOO]. LestagdR) = w=k-+ 1, i.e., the registeR is

an output register of the next stage and do not let the read access have an
address. There are two cases (figure 4.4):

e If full.wis set, the stage contains the configuration that the desired
value is part of. Since the full bit is set, the stage is still busy and the
desired value is not yet stored in the register. However, the register
transition function ofR provides the final value. Sinde € out(w),
wyRis this value.

e If full.w is not set, there is either no previous configuration (the
stage was never used after reset), or the previous configuration is
already in the next stage. In the first case, the stage still contains the
initial values, i.e., the values og. In the second case, the calculation
is already done and the result is stored in the register. In both cases,
R.(w+ 1) contains the desired value.

Thus, in order to realize forwarding from the next stage, it is sufficient
to select betweem,R andR.(w+ 1) depending on the signdull.w.

This is formalized as follows: The functiagkR is used in order to gen-
erate the input values for the register transition functions. The method
described above allows definiggR for the pipelined machine for the case

101



Chapter 4

102

PIPELINED
MACHINES

ue_—1 — Pk
li
Stagek
wQ
ue — Q.(k+1)

Stagek+ 1

uge1—>  R(k+2)

Stagek+ 1 is full

i+1
Cs

wQ

5 Qk+1)

\
X

i+1
Cs

i
Cs

Stagek+ 1 is not full

Figure 4.4 How forwarding is done from the next stage: the calculatioQ ¢k +
1) depends ofR.(k+ 2). If stagek + 1 is full, the output of stagk+ 1 is taken. If
not, the value from the register is taken.



Section 4.2

w=k+ 1 andR € spec If Ris an implementation register, no forwarding

is necessary and we uggR from the prepared sequential machine. FORWARDING

If Ris a specification register witw = k+ 1 and the read access does
not have an addresggRs:

R(w+1) : c.full.wA fyRre(c)
oR(c) = wwR(c) : c.full.wA fyRre(c)
0 : otherwise

The following lemma asserts that the input generation fundjdhde-
fined above provides the correct value. This lemma corresponds to lemma
3.16 (page 82) as used in the sequential machine.

Let sl(k,T) =i and fuII|I hold. LetR be a specification register an& Lemma 4.7
w = k+ 1. Assuming that the stage correctness predidatésld in all
cycles up to cycld, the inputs generated by the functigeR during cycle
T are correct:

oR(cl) = GkR(cy)

SinceRis a specification register, the correct valger on the right-hand PROOF
side of the claim is given in the configuration of the specification machine.
Since the read access does not have an address, this is:

v [ Ry frRre(ck)
aR(c) = {0 otherwise

The correctness of the read enable signal is asserted as in the proof of
lemma 3.16. After that, the claim is shown for the last stage, which is stage
n—1, then for stage— 2, and so on until the claim is shown for all stages.

In case of the last stage, there is nothing to show since there is no next
stage to forward from. Assuming the claim holds for stkgel, the claim
is shown for stagé as follows:

There are two cases regarding the full fitl .w':

1. The full bit full.w' is set. Thus, invariant 3.3 states:

sik+1,T) = i—1 -
103



Chapter 4

104

PIPELINED
MACHINES

ue 1 — Pk Cis+1
li
Stagek
wQ
ug — Q.(k+1) CiS
Ii—l/
Stagek+ 1 @
e B
uge1— R(k+2) Cs

Stagek+ 2

ugs2—p  S(k+3) cs

Figure 4.5 Forwarding multiple times: regist€) depends ofR, which depends

The next thing to show is that the inputs QR are correct:
WR(E) = TwRE™) (4.1)

This is done as follows: for implementation registers, one applies
lemma 3.16. For specification registers that are in the same stage,
one also uses lemma 3.16. For specification registers that are in
stagew+ 1, forwarding from the next stage is done. For this case,
the correctness is shown using the induction premise.

This situation is depicted in figure 4.5: regis@depends on register

R, which depends on regist& The proof covers this situation by
using induction as described. However, we do not recommend it
since it results in a bad cycle time.

The correctness of the inputs implies that the outputs of the stage



Section 4.2

given byw,R(c") are also correct. Formally, lemma 3.13 is used;
Let the write enable signdl,Rwebe active: FORWARDING

akR(c) = wwR(c) (by def. ofgkR)
= fywR(c) (by def. ofw)
= frWRE™)  (eq. 4.2)
= fruR(cg? (inv. 3.3)
= Ry (lemma 3.13)

If the write enable signal,,Rweis not active, the functiom,, R takes
the value from the register, i.€].R. According to the stage correct-
ness predicate for stader 1 and cycleT, this is equal td?Z'(W’T).
This is equalR‘gl because ofl(w,T) =i—1. This is equal td?"S
because the regist&is not changed since the write enable signal is
not active. Formally, one uses lemma 3.13.

aR(c[) = wwR(cl)  (bydef. ofgkR)
| .R (by def. ofw)

RS

= RI™T (stage correctness)
= Rfs—l (inv. 3.3)
= Ry (lemma 3.13)

This concludes the claim.
2. The full bit full.w" is not set. In this caseyR is by definition:

aR(c) = R 4.2)

Using the stage correctness for the value on the right-hand side, this
is transformed into:

gR(c) = R™D (4.3)

Invariant 3.2 shows thatl(w, T) is eitheri ori— 1. Invariant 3.3
shows that it is not — 1, thus,sl(w,T) isi. This concludes the
claim.

This concludes the correctness of the forwarding from the next stage. QED
105



Chapter 4

106

PIPELINED
MACHINES

Sequential machine Pipelined machine

Figure 4.6 Transformation of the PC environment

Example: Forwarding of DPC in the DLX The DLX implementation

in the previous chapter reads the register DPC in the instruction fetch stage
(section 3.4.2 page 55). The register DPC is an output register of the de-
code stage. Thus, the read access to DPC in stage 0 can be realized using
the functionggDPC as defined above.

According to the definition above, the value read depends on the full bit
of the stage that writes DPC, i.e., it dependsfati;. If fully is not set, the
value from the register DPC.2 is taken. fifill; is set, the value provided
by the transition function of DPC is taken. The transition function of DPC
reads PC’ and outputs this value unmodifiedf ufl; is set, one therefore
takes the value of PC’ as input in stage 0.

. PC.2 : fulli=1
%DPC = {DPC.Z © full; =0

The PC environment before and after the transformation is depicted in
figure 4.6.

However, this does not disprove the correctness of the implementation in
[MPOQ]: in the pipelined implementation in [MP0Q], the value@PC is
always taken from the regist®C'. This is correct since the stall engine in
[MPOOQ] ensures that the stages 0 and 1 are always clocked simultaneously.



Section 4.2

This implies that the full bitfull; is always active iff stage 0 read3C
except for the first time after reset. The calculation of the BC is
compensated using the sigmatet

FORWARDING

4.2.3 Result Forwarding

In the general case, i.e., W > k+ 1, gkR is still undefined. The method
used for the casev = k+ 1 cannot be used with reasonable effort since
this would require combining the transition functions of two or even more
stages. Besides the extra hardware cost, these combined transition func-
tions would be too deep and would lengthen the cycle time.

However, forwarding over multiple stages is reasonable in one special
case: Microprocessor instruction sets usually offer different kinds of in-
structions, such as ALU and memory instructions. The value that is to be
forwarded is the result of these operations. The different instructions are
processed by different stages, e.g., by an execute stage and by a memory
stage as described in the previous chapter. The result is available in an
early stage therefore. The later stages just pass this result unmodified. The
transition functions that are left to be applied are very simple in this case:
they are just the identity.

In a sequential machine, it is possible to write the result in the register
file as soon as it is calculated. However, as shown by the example in figure
4.7, it is not possible to do so in the pipelined machine. Consider two
instructionsl; andls:

l1:  R1:=DMIQ]

l,: RIL=R2+R3

If each instruction writes its result into the register file as soon as it is
available, the registeR; would contain the result of the memory instruc-
tion I; instead of the ALU instructior,. The result is written in the last
stage (WB) therefore and not as soon as available. This is shown in figure
4.8.

In a pipelined implementation, the result therefore must be buffered in
an implementation register. The value of this implementation register is
written into the register file in the last stage.

In order to realize forwarding of results that are available in an early -
107



Chapter 4

108

PIPELINED
MACHINES
l1: R1:= M[0] ‘IF‘ D ‘Ex‘ M
iwriti:ng Rl
Iz:Rl::R2+R3§ | IF‘ D | Ex | M
| | jwriting Ri
t

Figure 4.7 Write back as soon as possible.

l1: R1:= M[0] ‘IF D | Ex M wB
iwriti‘ng Rl
Iz:Rl::R2+R3§ R CEx v | we
:writing R1
t

Figure 4.8 Write back in program order.



Section 4.2

Stage | Alias
2 (EX) | C.3=2GPR
3(M) | C4=2GPR

FORWARDING

Table 4.3 Write aliases for the DLX

stage, it is necessary to specify which implementation register holds the
intermediate result of a specification register.

Let R denote a specification register aQdwith Q € out(k) denote an < Definition 4.1
implementation output register of stageln this case, leQ =2 Rdenote ~ Write Alias
thatQ is used in order to buffer the final valueRf The registeQ is called
awrite aliasfor R.

The list of write aliases is added to the hardware description file.

Example: Result Forwarding in the DLX Consider the prepared se-
guential DLX as defined in chapter 3. Consider an ALU instruction, e.g.,
addi. The final result written into GPR, i.e., the sum, is known already in
stage 2. The result of the ALU instruction is written into the regi€t&r
(figure 3.5, page 54). Thus, one can defhg =2 GPR

Table 4.3 shows the list of all write aliases defined for the DLX design.

As soon as a value is written into a write alias regi€erith Q =2 R, it <« Deﬁnition 4.2
is assumed that this value matches the final valuRinfthe configuration ~ Valid Values
that is being calculated. Such a value is callatid value.

A registerQ.(I + 1) is written iff the write enable signal of the register
is active. The write enable signal @f.(1 + 1) is fiQwe Thus, a value in
a registerQ.(k+ 1) is valid iff any write enable signafiQweof the alias
registerQ of stagel < kis active.

The hardware transformation program uses the list of write aliases in ordBefinition 4.3
to generate a set of additional sign@evalid(c) for eachQ =2 R. Valid Signals

In the following, it is assumed that precomputed versions of all write
enable signaldQweexist (see section 3.3, page 52). These precomputed

109



Chapter 4

values are stored in implementation registers. Remember that these regis-
ters are named just like the signal. We will use these registers in order to
calculate the valid signals in an obvious way:

PIPELINED
MACHINES

Qwvalid: ¢, — B

K
Qualid(c) := \/ c. fiQwek
|=stageQ)

This definition is slightly different from the definition of the valid signals
in [MPO0O]. The valid signals from [MPOQO] are on even if the instruction
does not writeé5PR e.g., in case of a store instruction, which writes to the
data memory only. However, this does not disprove the correctness of the
hardware in [MPO0O], since special care is taken for instructions that do not
write GPR

However, there is no guarantee that a value written into an alias register
matches the value finally written into the register that is to be forwarded.
Thus, this assumption must be proved for e@ch? R.

This is formalized as follows: Lets be a configuration of the specifi-
cation machine. In analogy to the valid signals above, we defomract
valid signal The predicate&Valid(cs) holds iff a correct write enable
signalsf Qweof the alias registe@ of stagel < k holds.

As described in section 3.3, the registers holding the precomputed ver-
sions of control signals are treated just like implementation registers. Thus,
the definition of a correct value of a register, as given in section 3.5.4 (page
71), also applies for these registers. Thus, one can use the correct value of
the registers holding precomputed signals in order to define the correct
value of the valid signals.

The register holding the precomputed version of a signal is named just
like the signal, i.e., if the name of the write enable signd|@we so is the
name of the register. The correct value of a regiBéris Qx_1R. Thus,
the predicate&)Valid is defined as follows:

Qvalid: Cs— B

k
Qualid(cs) = \/ Qe1fiQwelcs)
I=stageQ)

110



Section 4.2

Example: Result Forwarding in the DLX Consider the prepared se-

quential DLX as defined in chapter 3. Let FORWARDING

|07 |17 |27

denote an instruction sequence, as in section 3.5.2 (page 63). As described
above, iflj is an ALU instruction, the final result written into GPR is known
already in stage 2. The result of the ALU instruction is written into the
registerC.3. In this caseC,Valid(cs) holds because the write enable signal
f.Cweis active.

Let I; be a load instruction. In this cas€pValid(cs) does not hold
because neithel,Cwenor f;Cweare active.

Letw = stag€R) hold. The following statement is shown for ea@h-2 R: < Lemma 4.8
if the valid predicate of a registe® holds, the correct value written in

this implementation register has to match the final value generated by the

register transition function dR. The correct value written int@.(k+ 1)

is given bkaQ(ciS) (section 3.5.4 page 71).

If the write access t&® does not have an address:

Qualid(cs) = QQ(cs) =c5t.R

If the write access tR has an address, we assume that the control signals
for the write addresd,,Rwaare also precomputed. The correct value of
this address is just the correct value of implementation register holding the
precomputed write address.

Qualid(cs) = QQ(ck) = ' L.RIQx_1 fRwaCy)]

This is illustrated in figure 4.9 for stage= 2 (EX). In this stage, the
result, which is to be forwarded, is provided by the ALU. ThisC.
This result is calculated using the values in the registersuifil) as in-
puts. Thus, the address is also taken from a registeuifl), which is
fa,GPRwa2. The correct value of,GPRwaz2 is given byQ; f,GPRwa

The same method is used in [MPOQ] with a different notation: the re-
sult provided by the ALU is denoted /.2. The address is taken from
f4GPRwa2, which is a precomputed version of the write address used for
writing GPR In correspondence to lemma 4.8, [MP0OQ] provides a lemma
in order to argue that the value 6f.2 matches the final value assuming
the valid signal is active. -

111



Chapter 4

112

PIPELINED
MACHINES

PROOF

ID l l 0.C Q. f,GPRwa

AB L. PC|.§ DPCl.;, C.2 1.5 IR2 ;.5 fGPRwa2..

EX ( ALU =

ch Qz f4GPRwa

TAAADAS! T A AR A C Al « 1bn ' T APDO .
,,,,,,, ">I\/IA7RE3:,,:>7 1\/I7D7R7V\17?|o D C3 :"> IR.3 e f4GPRwaIB,

o A A

Figure 4.9 ALU results and the register address in the machine without imple-
mentation registers

Lemma 4.8 is shown for the write aliases for the pipelined DLX as defined
in table 4.3.

ForC.3 =2 GPR the claim is:
Cvalid(cs) = QuC(ck) = c5'L.GPRQ; f4GPRwdck)] (4.4)

The first step is to conclude that the write enable sigh@PRweis
active using thaCyValid(cy) holds, i.e., one shows that an instruction in
stage EX that is valid actually writes a GPR. Remember that the write
enable signal ofsPR4 is precomputed in the decode stage (section 3.3,
page 52), i.e.f4GPRwegjust takes the value from the registeiGPRwe4.

The correct value of this register @ f,GPRwéck):

f,GPRWEQ3f,GPRwéCs)) = Q3f,GPRwécy)

By repeatedly expanding the definition the function on the right-hand
side, one gets:
f,GPRwéQ3f,GPRwECs)) = Q3fyGPRwéck)
Q, f,GPRwéck)
Q; f,GPRwéck)
= f;f,GPRWEQuIR(CS))

One proves this by expanding the definition of the correct valid signal:
Cyvalid(cs) = QifiCwecs) v Qs f.Cwe(ck)
= f;F,CweQolR(cs)) V f1 f.CweQolR(ck))



Section 4.2

As defined in section 3.4.3 (page 5%),CweQolR(cy)) holds if the
instruction|; is a jump and link instruction. The write enable function
f1 F,Cwe(QolR(c5)) holds ifI; is an ALU/shift instruction (section 3.4.4).
This allows concluding thaf; f,GPRwéQolR(cs)) holds (section 3.4.6,
page 60). ThusQsf,GPRwécy) holds.

FORWARDING

This allows concluding that the write enable signal with correct input
f,GPRwéQ; f,GPRwécy)) is active, which is equivalent t6r ,GPRwe
We conclude the claim using lemma 3.15: Since the write enable signal
fF4GPRwe§ciS) is active, lemma 3.15 (page 78, the generic claim is in
lemma 3.13 page 75) states for all addresses

fraGPRcy) : x= fl4GPRwdck)

i+1 - .
cs .GPRX = {C'S.GPR[X] . otherwise (4:9)

By expanding definitions, one shows thbluGPRwe(c‘S) is equal to
the precomputed version, which@; f4GPRwdcg). Using that equality,
equation 4.5 withx = Q; f,GPRwdcyg) is:

cL.GPRQ; f4GPRwdcs)] = fr4,GPRcY) (4.6)

By inserting equation 4.6 into the claim (equation 4.4), the claim is trans-
formed into:

Q,C(dy) = fr4GPRCY) 4.7)

This new claim is shown as follows: the first step is to show that the in-
struction is not a load instruction, as indicatedlbipad(Q1IR(c)). This
is done using thaB,Valid(cs) holds. One shows that the instruction coded
by QllR(ciS) is either a jump and link or ALU/Shift instruction. Thus, it
cannot be a load instruction. One easily shows @R is equal toQsIR,
thus,| -load(QsIR(cy)) is also not active.

The proof proceeds by expanding the definitior g&PRon the right-
hand side of the claim (equation 4.7):

Q,C(ck) f4,GPRT 4GPR(CY))
= f4,GPRQsC(Cs), Q3lR(ck), (4.8)

Q3MAR(cs), Q3sMDRr(c))

One then expands the definition &fGPR (section 3.4.6). Since the
instruction is not a load instruction_{oad(Q3IR(cs)) does not hold), the -

113



Chapter 4

function f4,GPRreturns the value of th€ register. This transforms the

PIPELINED  ¢jaim into:
MACHINES
Q.C(ck) = QiC(cy) (4.9)
This is shown by expanding the definition @gC(ciS) on the right-hand
side.
Very similar arguments are used in order to show the clainCfdr=2
QED GPR

Implementing Result Forwarding Thus, if such aQkValid predicate
holds, it is possible to take the result written into g€k + 1) register as

the value for a read access. This is done only if the instruction in a given
stage actually writes the desired register. A signal is defined that is active
if this holds. This signal is calledit signal

Definition 4.4 » Let stagek depend on a specification regisRthat is an output register of
Hit Signals  stagewwith w> (k+1). In addition to the valid signals, a set of hit signals
is defined as follows: if the write accessRaloes not have an address:

Vje{k+1,...,w}:
R<hit[j](c) = fullj(c) A fuRwej

We use the precomputed version of the write enable sigrlimorder
to determine if the instruction in the given stage wrikedf the write ac-
cess has an address, it is necessary to check the address of the write access
in addition to the conditions above. As above, we use the precomputed
version of the write address.

Vie{k+1,...,.w—1}:

Rchit[j](c) = fullj(c) A fuRwej A
(fwRra(g) = fyRwaj)

In case of stagev, the address and write enable signals are taken from
the write access directly:
Rehitiw](c) = fully(c) A fywRwdc) A
(fwRra(g) = fywRwac))
114



Section 4.2

A very similar definition is in [MPOQ]. If any hit signal of a stagds
active, letop denote the smallest sughi.e., the topmost stage with active
hit signal:

top = min{je{k+1,...,w}|Rhit[j](c)}

This is undefined if no signdhit[j] is active. The signal
R¢hittop]
is calledtopmost hit signal

Using this definition, one can now define the forwarding functiR.
For sake of simplicity, let us assume that the read enable sfgrRre(c))
is active. If not,gkR returns zero and no forwarding is necessary.

If the topmost hit signal is in stage, i.e., the stage that actually outputs
R, one just takes the value written infp which is provided byf,R. If the
topmost hit signal is in a stage< w, one takes the value written into the
alias register, i.e.;Q(c). If no hit signal is active, one takes the value
from R.

If the write access t® does not have an addreggRis:
fywR(c) : Rghitjw](c) Aw=top
wjQ(c) : je{k+1,...,.w—-1}A

Rehit[j](c) A j =top
R.(w+1) : otherwise

aR(C) = (4.10)

If the read access has an addregR is defined using the read address.
Letx := fyRra(c) be the address.

fywR(c) : Rhitjw](c) Aw=top
wjQc) : je{k+1,...,w—1}A
Rehitj](c) A j = top
R(w+1)[x] : otherwise

aR(c) = (4.11)

The same forwarding method is used in [MP0O]. As in [MPQO], the
comparisonj = top is realized using a chain of multiplexers (in PVS, IF
... THEN ... ELSIF ... ENDIF is used). This is depicted exemplary in
figure 4.10.

1in larger pipelines, the delay of this circuit grows linear with the pipeline size. For
large pipelines, a find first one circuit is faster.

FORWARDING

115



Chapter 4

116

R.5 wR
PIPELINED
MACHINES hit[4 0 1
w3C
hit[3 < 0 1 )
wC
hit[2 0 1

Figure 4.10 Implementation of 3-stage forwarding

Observe that the forwarding from the next stage, as described in section
4.2.2, is just a special instantiation of the more general forwarding method
described in this section.

In case of a hitin a stage, lemma 4.8 will be used in order to argue about
the value read from the given stage. However, if the hit signal is not active,
one has to argue that one can safely ignore the contents of the stage in
order to do forwarding. This is asserted by the following lemma. In terms
of microprocessors, the lemma asserts that the instruction in a given stage
does not update the register that is to be forwarded if the hit signal is off.

Lemma4.9 » LetQ=2Rhold and letQ € out(j) andR € out(w) hold. Consider the
correct value of the precomputed write enable signd.of

If the write access t&® does not have an address, the regi&és not
modified if the write enable signal is not active:

Qj_1fy,Rwe = cyR=cs'R

Observe tha@j_; fyRweis just the correct version of the hit signal (def-
inition 4.4). Thus, it is calleaorrect hit signal(the full signal is ommited
because the configuratiary does not have full bits; it processes one in-
struction in one cycle).

If the write access t&® has an address, in analogy to definition 4.4, the
addresx is compared with the correct precomputed address, as defined by
Qj,]_ fWRWdCS).



Section 4.2

Thus, in terms of microprocessors, if the addresses are not equal or if
the write enable function returns false, the instruction in stadees not TORWARDING
update the desired register.

vxe Wa(R) : x# Qj_1fyRwa(cs) v Q1 fuRwe
— &.RX¥ =R

The lemmas 4.8 and 4.9 are calledte alias correctness lemmas

Lemma 4.2.3 is shown for the write aliases for the pipelined DLX as dePROOF
fined in table 4.3.

ForC.3 =2 GPR the claim is:

vx € WL(GPR) : x # Q1 f4GPRwdcy) v Q; fy,GPRwéck)
— c.GPRX =c5.GPRYX

There are two cases regarding the valuegf Bf{GPRwéck). If it is off,
the claim directly follows from lemma 3.15 (page 78).

Thus, Ieth4GPRweéc‘S) hold. From this, we easily show by expanding
definitions thaQ f4GPRwécs) holds:

fr,GPRwécs) = f,GPRwel ;GPRwéc))
= f,GPRw&Q;f;GPRwéCk))
= Q3f,GPRwéck)
= Q,f,GPRwéck)
= Q;f,GPRwéck)

This transforms the claim into:

¥x e Wa(GPR) : (x# Q1faGPRwACY))
—  cLGPRX = ¢ L.GPRX

Letind be a shorthand fof ;,GPRw4ck). Since the write enable signal
is active, lemma 3.15 states for all addresses

i f4GPRT4GPRcL)) : x=ind

i+1 _ 4 4 S

Cs -GPRY = {C'S.GPR[X] . otherwise (4.12) B
117



Chapter 4

By inserting this into the claim, the claim is transformed into:

PIPELINED _
MACHINES Vx € Wa(GPR) : (x# Q1 f4GPRwdcs))
! i _ J faGPRT4GPRcg)) @ x=ind
— CsGPRX = { 5. GPRX] . otherwise

We will now concludex # ind usingx # Qlf4GPRwa(c‘S):

ind = fr;GPRwdck)
f4,GPRwdl ;GPRwdc))
f4,GPRwdQ3f4,GPRwdck))
Q3 f,GPRw4CL)

Q, f,GPRwdck)

= Q3 f,GPRw4Ck)

# X

This concludes the claim. Very similar arguments are used in order to
QED  show the claim foC.4 =2 GPR

Consider a hit in stagmp and that the valid signal of that stage, as given
by definition 4.3, does not hold. In this case, one cannot use lemma 4.8 to
argue that the values in the stage are valid. Lemma 4.9 cannot be used,
either, in order to argue that the stage can be ignored, since there is a hit in
the stage. In this case, forwarding, as described above, fails completely.

4.3 Stalling

If forwarding fails, the calculation of the input values of the stage is not
possible. It is necessary to delay the calculation in a stage until the data
is available. Since the result of prior stages has to be stored somewhere,
these stages have to wait also. In contrast to that, later stages must not be
stalled since these stages calculate the desired inputs. The mechanism used
to realize this is calledtall engineand is introduced in [MPQO]. In con-

trast to the stall engine in [MPO0O], the stall engine presented here supports
independent stall signals for each stage.

The stall engine is implemented by re-defining the sigetddy. In the
prepared sequential machine the stall signals are only used in order to obey

118



Section 4.3

external stall conditions such as caused by slow memory. In the pipelined
machinejnternal stall conditionsare added. STALLING

In order to calculate the signadsally, a signal is required that indicates
whether a given stage has to wait for an input value. The sighal
(data hazard) is active iff stagi@s waiting for an input operand. The stage
k must be stalled ifihaz is active and if the stage is full. This is called a
data hazard stall

Furthermore, the stage must be stalled if the next stage (ktadg is
stalled because the necessary data paths and registers are not available in
this case. This case is callesgt@uctural hazard stall

Let exk denote the disjunction of the external stall signals of stage
e.g., used for memory. Létt, denote the disjunction of the internal stall
signals. Since the last stage (stage 1) has no next stage, the definition
of the signaliint, depends on the stage number:

k#n—1: intgy = dhazVstall1
inth_1 := dhaz_1 (4.13)

This allows defining the stall signatally:

stally = fullgA (exk Vinty) (4.14)

This definition of the stall signal obviously conforms to the stall signal
convention 4.2 (page 95)

As described above, forwarding fails if there is a hit in steggand the
valid signal of the stage does not hold. For each input that requires result
forwarding, a separate data hazard signal is definedRlsebut(w) be a
specification register that is read by stagd he data hazard signal for this
input is then calledr¢dhaz The data hazard signal of stagewhich is
dhag, is the disjunction of these data hazard signals.

In case of the DLX, we have two read accesses to the general purpose
register file. In analogy to the naming convention described in section 3.2.7
(page 51)GPRaandGPRbare used for the GPR operands:

dhaz := GPRadhazv GPRhdhaz

2In the PVS tree, this is shown in form of a TCC (type-correctness condition).

119



Chapter 4

120

PIPELINED
MACHINES

The data hazard signaidhazare defined as follows: if there is no hit
signal active, no data hazard is indicated. If there is a hit in any stage, the
stage given byopis examined. As in [MPO0O], a data hazard is indicated
if the stage is not valid. In case of stage= stag€R), there is no valid
signal. In stagew, the result is written into the register and the result is
therefore known in stage at the latest. Thus, there is no need for a valid
signal in stagev.

In addition to that, a data hazard is also indicated if the data hazard signal
of the stagdopis active:
dhazy(c) : Rhitjw](c)Aw=top
dhaz(c)v : je{k+1,...,w—1}A
Q;valid(c)) Rehit[j](c) A j=top
0 : otherwise

Rdhagc) =

This addition to [MPO0Q] is motivated as follows: If the valid signal of
the stage is active, one uses lemma 4.8 in order to show that the output
of the stage matches the value finally written in the register that is read.
However, the output value of the stage is only correct if the inputs of the
stage are correct. Assume the stage uses forwarding in order to get one or
more inputs. These inputs are only correct if the forwarding does not fail.

It will turn out that forwarding fails iff the data hazard signal is active.
Thus, the data hazard signal is checked.

This does not disprove the correctness of the implementation of the for-
warding logic in [MPOO]: in [MPOQ], data is forwarded from stages 2 to
4. For the calculation of GPR results, these stages never use forwarding in
order to get inputs.

This also applies to the pipelined DLX presented in this chapter: stages
2 to 4 never use result forwarding, the data hazard signals of stages 2 to 4
are always false therefore.

In hardware, the comparison of the stage humber tahis done with
multiplexers as described in section 4.2.3.

4.4 Implementing the DLX

The implementation of the DLXis completely identical to the implemen-
tation of the machine DLXas described in the previous chapter except for



Section 4.5

the following changes:
DATA

- . . NSISTENCY
1. The definition off ullg and the stall signals are changed as describe ONSISTENC

in sections 4.1.1 and 4.3.

2. Forwarding logic is added for the stages IF and ID as described in
section 4.2.

The complete process of introducing the new stalling and forwarding
logic is completely automated.

4.5 Data Consistency

The following lemmas assert the correctness of the result forwarding mech-
anism as presented in the previous sections. These lemmas correspond to
lemma 3.16 (page 82) of the sequential machine. They assert that the in-
puts generated during cycle— 1 are correct. They will be used in order

to show that the values of the registers during cyickre correct.

Letsl(k,T) =iandfull] hold. LetR € out(w) be a specification register« Lemma 4.10
with w > k and let the stage correctness predic&eisold in all cycles up
to cycleT. If there is no hit signal active, regist&is not modified from

configurationcg(W’T) to configurationck;
RO — R

If the read access has an address, the claim is that the register with the
given address is not modified. Letlenote the address.

x = frRra(cy)
R™I = R
The first step is to assert the correctness of an address value, if presentPROOF

fr Rra(ck) . fykRra(c])

Thus, one has to show:

rRra(cs) = wRra(d)

121



Chapter 4

122

PIPELINED
MACHINES

QED

Lemma 4.11 »

This is done as in the proof of lemma 3.16 (page 82). By definition, the
inputs required in order to calculate the address do not require forwarding.

The claim is then shown easily by a full case split on the full bits of
the stagek+ 1 tow. As soon as fixed values for the full bits are given,
the scheduling invariants can be used in order to determine the value of
sl(w, T) relative tosl(k,T) (T > 0 is shown easily using lemma 4.6).

For example, if all full bits are off, one easily shows tisfw, T) =
sl(k, T) =i holds. In this case, the claim above obviously holds.

If the full bit of one or more stages is set, let
diff = sl(k,T)—sl(w,T)

denote the difference between the values of the scheduling function. Using
the scheduling invariants 3.2 and 3.3, one easily shows that there are as
many active full bits as given bdgiff .

For each active full biff uIIIT, one argues that
I(1,T 1(1,T)+1
RZ T RZ( )

holds. If the read access has an address, it is argued that

Rg(I,T)[X] _ RZI(I,THI[X]

holds. This is done using the fact that the hit sigRgiit[l] is off and by
lemma 4.9 ifl #w and by lemma 3.13 if =w.

This can be dondiff -times and concludes the claim.

Letsl(k,T) =i andfull] hold. LetR € out(w) be a specification register
with w > k and let the stage correctness predic&esold in all cycles up
to cycleT. If there is an active hit signal, registBris not modified from

configurationc? ®P"* to configurationdy
Rssl(top,T)-s-l _ RiS

If the read access has an address:

x = fryRra(ck)
RPN = Ryx



Section 4.5

It is not surprising that one argues ab&3{"°*" ™. In case of an active
hit signal, the forwarding hardware takes thatputof the stageop. If
instruction I opT) IS in stagetop, the outputs of the stage are part o

configurationcy °*T*™ Let j = sl(top, T) hold:

DATA
fCONSISTENCY

This is shown with the same method as used in the proof of lemma 4.10PROOF

For example, itop=k+ 1, i.e., the hit is in the next stage, one easily
shows thasl(top, T) + 1 =i holds using invariant 3.3 and thz[u‘,llltTOIO is
active.

Lettopbek-+2 andfulll,, not hold. In this case, one uses invariants
3.2 and 3.3 in order to show thslk(top, T) + 1 =. If a full bit is active,
one uses lemma 4.9, as above. QED

Letsl(k,T) =iandfull] hold and let the data hazard sigadiaZ be not <« Lemma 4.12
active. LetR € out(w) be a specification register witli > k and let the

stage correctness predicatgshold in all cycles up to cycld. Let there

be no hit signal active.

The claim is that the inputs generated by the functigR during cycle
T are correct:

gR(cl) = GkR(cy)

SinceR s a specification register, the correct value on the right-hand sideROOF
of the claim is given in the configuration of the specification machine. If
the read access does not have an address, this transforms the claim into:

v+ [ Ry frRre(ck)
aR(G) = {0 . otherwise

In case of a read access with address, the correct value is defined using
the correct value of the address, as in lemma 3.16 (page 82):

x = fr¢Rra(ck)
! N 1 frRre(c
9R(cl) = { (I?S . : othker\r/\?i(gg) S

123



Chapter 4

The first step is to assert the correctness of an address value, if present,

PIPELINED 55 done in the proof of lemma 4.10:

MACHINES
frRra(cs) = fyRra(q)

By the same arguments, one shows the correctness of the inputs of the
read enable functiorixRre Let the read enable signdiRre be active.
Otherwise, the claim is trivial since zero is returned and no forwarding is
required. This transforms the claim into:

no address: gR(cl)
with address: gkR(c])

Rs

: (4.15)
R[X

Since no hit signal is active, by definition gfR (equation 4.10)R is
read:

wR(e[) = Rf
If the read access has an address, the correct address is used (equation
4.11):
*R(c) = RIY

Using the stage correctness predicate for cycsnd stagev, one easily
transforms the right-hand side of both equations into:

no address: gR(cT) = RI™D (4.16)
with address: gR(c]) = RI™T[g
This allows transforming the claim into:
no address: ~ RZ™T) % RS (4.17)
with address: RI™T[x = Ry

QED This is concluded using lemma 4.10.

Lemma 4.13 » Letsl(k, T)=iandfull] hold and let the data hazard sigudiaZ be not
- active. LetR € out(w) be a specification register witlu > k and let the

124



Section 4.5

stage correctness predicafgshold in all cycles up to cycld. Let there

be an active hit signal. DATA

CONSISTENCY

The claim is that the inputs generated by the functigR during cycle
T are correct:

R(e[) = GR(cy)

SinceR s a specification register, the correct value on the right-hand sideROOF
of the claim is given in the configuration of the specification machine. If
the read access does not have an address, this transforms the claim into:

T ' [ Ry fryRreck)
aR(c) = {0 . otherwise

In case of a read access with address, the correct value is defined using
the correct value of the address, as in lemma 3.16 (page 82):

x = frRra(cy)
aRe) £ {0 e

The claim is shown inductively beginning with the last stage and pro-
ceeding from stagk+ 1 to stagek. In case of the last stage, which is stage
n— 1, there is nothing to show since there is no stage below to forward
from. Assuming the claim holds for stag€swith k < k' < n, the claim is
shown for stag& as follows:

As in the proof of lemma 4.12, one asserts the correctness of the address
value and that the read enable signal is active.

As required in the premise, the data hazard siffaedhaZ is not active.
By definition of the data hazard signal, this implies that the valid bit of the
stagetopis active and that the data hazard signal of stagds not active.

As described above, one assumes the correctness of the inputs of the
stagesk’ > k in order to show the correctness of the inputs of stge
Sincetop > k, one can apply the induction premise for stage. This
shows the correctness of the inputs of the stage

YopR(ST) = TiopR(ca™™)) (4.18) o
125



Chapter 4

126

The claim is now shown by a case split on the valueogf (in PVS, a

PIPELINED  gaparate lemma is used for the possible values g

MACHINES
Lettop = w hold, i.e., the hitis in the stage that writBs Sincetop=w,
okRreturns the value written int®.(w+ 1). If the write access does not
have an address, this is (equation 4.10):

aR(c) = fyR(C) (4.19)

As described above, one uses that the inputs of stagere correct.
Formally, one uses equation 4.18, which transforms the last equation into:

gR(Q) = fryREcT™) (4.20)

Using this equation, the claim is transformed into:

no address: fI’WR(cSé'(W’T)) = Ry (4.21)
with address: fryR(E™T) L R{x] |

One easily shows thafﬂ'WRwe(cZ'(W’T))) holds by using that the hit sig-

nal R¢hit[w] is active (definition 4.4). If the read access does not have an
address, lemma 3.13 states:

RIWTH — ¢, R(cY™) (4.22)

This allows transforming the claim into:

RIMWIH L Ry (4.23)

This is concluded by lemma 4.11.

In case of a read access with address, the last thing is to show that the
address given by matches the address actually used for the final write
access tdr, as given by lemma 3.13:

fFWRwa(cSS"(""’T)) L X
= fyRra(c)
The value on the right-hand side is equalftg,Rwac) because the

signal R¢hit[w] is active (definition 4.4, page 114). This transforms the
claim into:

froRwacy™™) L fy,Rwad])



Section 4.5

Thus, it is sufficient to assert that the inputsfgRwaare correct: b
ATA

rwRwacd™™) £ yRwac) CONSISTENCY
This is done as described above for the input$,@.

Let top # w hold, i.e., the hit is not in the stage that writ® Since
top # w, there must be a write alias f&for the stage. Let the regist€y
be the alias register (i.6Q =2 R).

In this casegkR returns the value written intQ.(top+ 1) (by definition
of gkR, equation 4.11):

aR(Cc) = wopQ(c]) (4.24)

As above, one argues that the inputsfgf,Q are correct. Thus, the
output is correct.

WopQ(e]) = QropQ(c3 P (4.25)

This allows transforming the claim into:

no address: QiopQ(Cg ctonT)y L RS (4.26)
with address: QopQ(cs S' (OPThy L Ry

Using lemma 4.11, the claim is transformed into:

no address: QiopQ RSS"(tonT)H

( sl (topT )) I:
with address:  QiopQ(Ca S' (topT)) L glltopT)+1

(4.27)

Since there is a hit in stag®p, one concludes that the valid signal
Quopvalid(cl ) is active. Using this, one easily shows that the correct valid

bit Quopvalid(c3 P71 holds:
top
Qupvalidc’)) = \/ cl.fiQwetop
|=stageQ)

One transforms the right hand sind by applying the stage correctness
predicate for implementation registers, stdgp— 1 and cycleT:

top

Qopvalid(d)) = \/ Quop1fiQuecg" P+
|=stagéQ)
_ Qtopvalld( sl(top—lT) )
127



Chapter 4

128

Since stageéopis full, one can apply scheduling invariant 3.3 in order to

PIPELINED  onclude that

MACHINES
sl(top—1,T)—1 = sl(top,T)

holds. ThusQiepvalid(c2*T)) holds.

This allows using lemma 4.8 for stagep and configuratiorsl(top, T).
If the read access does not have an address, this concludes the claim.

In case of a read access with address, lemma 4.8 states:

QuopQ(cgPT) = RAOPTHQ 0, 1 fuRwec2PT))] (4.28)

This transforms the claim into:

RSSJ(topJ)Jrl[X] il Rsél(top’T)H[Qtop_lfWRWE(CSSI(tOp’T))] (4.29)

It is therefore left to show that the addresses match:
Qtopkl fWRWaCssl(topI)) =

= fwRra(cl)

The value on the right-hand side is equalfiggRwatop] because the
signaIRIhit[top] is active (definition 4.4). This transforms the claim into:

Quop_1 fuRWACEPT)) L £, Rwatop’ (4.30)

By using the stage correctness predicate for ciicknd stageop— 1,
the right-hand side is transformed into:

! |— —
QtOp—l fWRWdCZI(tOpyT)) = Qtop—l waWdCZI(top 1,T) 1)

As above, one can use invariant 3.3 in order to showshabp, T) is
QED  equaltosl(top—1,T)— 1. This concludes the claim.

The following lemma corresponds to lemma 3.17 (page 85) in the se-
guential machine:

Lemma 4.14 » LetT' be greater than zero. Assuming all stage correctness predicates for
the cycleT’ — 1, the predicate for stadeholds for cycleT’.

VI:R(T'-1) = PR(T"



Section 4.6

PROOF The proof proceeds as the proof of lemma 3.17. However, for
the caseé > 0 andue’ 1, one uses lemmas 4.12 and 4.13 for operands thit
require forwarding. This lemma requires that the data hazard signal is not
active. This is shown easily by definition of the stall and data hazard signal
and using that the update enable signal is active. QED

VENESS

4.6 Liveness
4.6.1 Introduction

The liveness criterion of the pipelined machine is identical to the liveness
criterion of the prepared sequential machine as presented in chapter 3:

Let C‘S be any desired configuration of the specification machine. The
implementation machine is said to be alive iff for all stagéisere exists a
timeT € No with sl(k,T) =i:

AT eNg sl T) =i

As in chapter 3, this is shown by arguing that the update enable signal
is alive, as done in lemma 3.22. This lemma has the premise that all stall
signals are finite true. In the prepared sequential machine, only external
stall signals exist and this property was assumed. This is no longer true for
the pipelined machine since internal stall conditions were added (section
4.3).

Thus, a proof that the stall signals are finite true has to be given for the
pipelined machine. According to equation 4.14 (page 119), there are three
possible reasons for an active stall signal, given that the stage is full:

1. one of the external stall signals is active,
2. the data hazard signal is active,
3. the stall signal of the next stage is active.
Consider the following proof strategy: Beginning with the last stage,
which has no next stage, we will argue that the stall signals are finite true.

The external stall signals are still assumed to have this property. Further-
more, one shows that the data hazard signal is finite true, which can be

129



Chapter 4

130

PIPELINED
MACHINES

Definition 4.5 »
Stays Until

SignalA :—E| ...........

SignalAVB

Figure 4.11 Two alternating, finite true signals andB. The disjunction is not
finite true but constant true.

done easily. It is now tempting to conclude that the disjunction of finite
true signals is also finite true.

However, this is wrong. A finite true signal is guaranteed to eventually
become false. The problem is that there is no guarantee that a signal that
is finite true stays false for more than one cycle once it becomes false. In
particular, one can think of two alternating signals that are both finite true
(figure 4.11). The disjunction never becomes false and therefore cannot be
finite true.

“Finite true” therefore is too weak. For the three signals above, one
needs a stronger property such that one can conclude that the disjunction
is finite true. In case of stall conditions, one needs that the signal actually
stays false once it became false until all conditions are false. As soon as all
conditions are false, the update enable signal becomes active and the stage
therefore proceeds calculating.

4.6.2 Extended Liveness Calculus

The property of a signal that it “stays until” a given event (i.e., signal) is
formalized as follows:

Let pred and pred, be time predicates antl be a cycle. The predicate
predis said tostay until pred from cycleT, iff the following holds: Given
an arbitrary cyclél’ > T such thatpred, does not hold for cycle” with
T <T" < T/, the predicatgred holds for all cyclesT” with T <T" <T'.

staysuntil(pred, T, pred,) : <=



Section 4.6

¢T ¢T’ LIVENESS

Figure 4.12 Two signals satisfyingtaysuntil(pred, T, pred,). A signal shown
as a hatched box means that the value of the signal during this cycle does not
matter.

VT | T'>T: (VT"|T<T"<T':pred,(T"))
— (VT"|T<T"<T": predT"))

This is illustrated in figure 4.12. If a signal is shown as a hatched box
this means that the value of the signal during this cycle does not matter.

Note that it is not required that signaited, ever becomes true after cycle
T. In particular, ifpred, never becomes true after cydle predis required
to hold for all cyclesT’ > T (one easily shows this using induction).

Let pred and pred, be time predicates anfdbe a cycle. LeT’ be a cycle 4« Lemma 4.15

with T’ > T. Let pred stay until pred, after cycleT. If pred, is off during
cyclesT" with T < T” < T’, predalso stays untipred, from cycleT’:

staysuntil(pred, T, pred,) A
VT | T <T"<T": pred,(T") (4.31)
— staysuntil(pred, T', pred,)

By definition 4.5,staysuntil(pred, T, pred,) is equivalent to: PROOF

Wit >T: " T <t"<t': pred,(t"))

= (V" |T' <t"<t':predt")) (4.32)

By definition of staysuntil, staysuntil(pred, T, pred,) is equivalent to:

Wit >T: (W |T<t"<t': pred,(t"))

= (" T <t"<t':predt")) (4.33)

131



Chapter 4

SinceT’ > T, one can instantiate formula 4.33 wittirom formula 4.32.

PIPELINED This results in:

MACHINES

(V" | T <t" <t': pred,(t")) (4.34)
= (Wt"|T <t"<t':pred(t")) '
Obviously, the implication of equation 4.34 will conclude the claim as

given by the implication of equation 4.32. However, it is left to show that
the premise of the implication of equation 4.34 holds:

Wt T <t <t': pred,(t”) (4.35)

This is done as follows: if’ > T', one takes the premise in equation 4.32

in order to showpred,(t”). If t” < T, pred,(t”) holds according to the
QED premise in equation 4.31.

Lemma 4.16 » Let predl, pred2, andpred, be time predicates. Lek be a cycle. If
pred2 implies predl for all cyclesT” with T > T, and pred2 stays until
pred, after cycleT, predl also stays untipred, after cycleT.

(VT"|T" > T : pred2(T") = predl(T")) A
staysuntil(pred2, T, pred,)
— staysuntil(predl, T, pred,)

PROOF This lemma is shown easily by expanding the definitiostafysuntil.

Lemma 4.17 » Let predl, pred2, andpred, be time predicates. L&t be a cycle. If both
predl andpred2 stay until pred, after cycleT, the conjunctionpredl A
pred2 also stays untipred, after cycleT.

staysuntil(predl, T, pred,) A staysuntil (pred2, T, pred,))
— staysuntil(predl A pred2, T, pred,)

PROOF This lemma is shown easily by expanding the definitiostafysuntil. An
example for the lemma is given in figure 4.13.

Definition 4.6 » Let pred and pred, be two time predicates. In analogy to the definition
3> (pred,preds)  of 3=T' (equation 3.25, page 86), one defines an operator that holds iff
- the predicategred eventually becomes true in a cydie> T’ beforepred,

132



Section 4.6

T T
¢ ¢ LIVENESS
signalpreat [ L
l l l l l l l l l JRU R T
Signalpred2 UL SO U SOt WO RO TR U NS (O
SignalpredLapred ' ' | ' 11 L

Figure 4.13 Three signalgredl, pred2, and pred, satisfying the premise of
lemma 4.17: sincstaysuntil(predl, T, pred,) andstaysuntil(predl, T, pred,)
hold, alsostaysuntil(predl A pred2, T, pred,) holds.

does. Furthermore, itis required that it stays true préid, becomes true,
as defined in definition 4.5:

32T (pred, pred,) @<= 3IT|T'>T:predT')A
VT'T <T" <T": pred,(T") A
staysuntil (pred, T', pred,)

This definition is illustrated in figure 4.14.

One easily shows that for any time predicatesd,, 377 (pred, pred,) < Lemma 4.18
implies that3=T pred holds:

3=T

32T (pred, pred,) = pred

A time predicatepred is said to befinite false and stays untd given < Definition 4.7
predicatepred,, iff 32T (pred, pred,) holds for allT. In analogy to that, ~Finite False
predis said to bdinite true and stays until predff predis finite false and ~ and Stays Until
stays untilpred,.

133



Chapter 4

PIPELINED w— ¢TI

MACHINES
Signalpred \:\NN

Signalpred, =SS

t

Figure 4.14 Two signals satisfyin@=" (pred, pred,)

The following lemmas are shown easily using lemma 4.18:

Lemma 4.19 » Let pred and pred, be time predicates. lpred is finite false and stays
until pred,, it is also finite false as defined in definition 3.4 (page 86).

Lemma 4.20 » Let predandpred, be time predicates. lredis finite true and stays until
pred,, it is also finite true.

Lemma 4.21 » Given two time predicatepredl andpred2 with 3= (predi, pred,) and
32T (pred2, pred,), the conjunction eventually holds aft@&r and before
pred,, and stays untipred,.

32T (predi, pred,) A 3= (pred2, pred,)
— 3>T(predlA pred2, T, pred,)

PROOF By expanding the definition ai~T (predl A pred2, T, pred,), one gets:

IT|T' > T : predl(T') A pred2(T’) A
VT'T <T" <T': pred,(T”) A (4.36)
staysuntil (predl A pred2, T', pred,)

Since3=T (predi, pred,) and3=T (pred2, pred,) hold, there are cycles
t; > T andt), > T such thatpredl(t]) and pred2(t}) hold. Lett] >t} hold
(otherwise, swapredl andpred2®). An example for this situation is given
in figure 4.15.

3In PVS, one actually shows the ca$e< t, by replaying the proof.
134



Section 4.6

T t! t!
¢ ¢ 2 ¢ L LIVENESS

Signalpredinpre2 1 [TroTT]
Signalpred, N Y

t

Figure 4.15 lllustration of the proof of lemma 4.21

We will now show that; satisfies equation 4.36, i.e.:

predl(t]) A pred2(t]) A
VT'T <T" <t]: pred,(T") A (4.37)
staysuntil(predl A pred2,t;, pred,)

This conjunction consists of four parts, which are now shown separately:

1. As described aboveredl(t;) holds by definition of;.

2. The second parpred2(t}), is shown using=" (pred2, pred,): As
described abovepred2(t) holds witht, <t;. Furthermore pred2
stays active untilpred, holds, which is aftett;. Thus, pred2(t;)
holds.

3. One easily showsT"|T < T” <t;: pred,(T”) by expanding the
definition of 3>T (predd, pred,).

4. Using lemma 4.15 witlpred2 and pred, and cyclesT andt;, one
concludes:

staysuntil(pred2,t;, pred,) (4.38)

This allows using lemma 4.17 fgredl andpred2 and cycle;:

staysuntil(predl A pred2,t;, pred,) (4.39)
135



Chapter 4

136

PIPELINED
MACHINES

Lemma 4.22

Lemma 4.23

PROOF

QED

Lemma 4.24

Lemma 4.25

Lemma 4.26

This concludes the claim.

Using lemma 4.21, one easily shows:

Given two time predicatepredl andpred?2 that are both finite false and
stay untilpred,, the conjunctiorpredl A pred? is also finite false and stays
until pred,.

Given two time predicatepredl and pred?2 that are both finite true and
stay until pred,, the disjunctionpredl V pred? is also finite true and stays
until pred,.

Lemma 4.23 is shown easily using lemma 4.22 and the fact that

predlV pred2 = predlA pred2 (4.40)
holds.

The following two lemmas obviously hold (PVS shows them automati-
cally):

The predicatalways(equation 3.22 page 86) is finite false and stays until
any predicate.

The preciatenever(equation 3.23 page 86) is finite true and stays until
any predicate.

The following lemma is shown easily (PVS shows it automatically):

Let predl andpred2 be two time predicates. Ifredl holds eventually
after cycleT, the disjunctionpredl Vv pred2 also holds eventually after
cycleT:

FTpredl — 3°T(predlV pred?)



Section 4.6

LIVENESS

Signalpredl _|_|_|

Signalpred2

SignalpredlV pred2 ...

Signalpred,

Figure 4.16 lllustration of lemma 4.29

Using lemma 4.26, one easily concludes:

Let predl andpred2 be two time predicates. liredl is finite false, the « Lemma 4.27
disjunctionpredlV pred? is also finite false.

Using lemma 4.27 and the definition of finite true, one easily concludes:

Let predl andpred2 be two time predicates. Ipredl is finite true, the 4« Lemma 4.28
conjunctionpredl A pred2 is also finite true.

Assume one has the disjunction of two signals. One signal is finite true
and stays untilpred,, the other one is just finite true but impligsed,.
In this case one can conclude that the disjunction is finite true. This is
illustrated in figure 4.16.

Let predl, pred2, andpred, be time predicates. lpredl is finite true € Lemma 4.29
andpred? is true false and stays unfired,, andpredl impliespred,, the
disjunctionpredlV pred? is finite true.

The claim is equivalent to: PROOF

vT32T predi(T) V pred2(T) (4.41) _
137



Chapter 4

138

PIPELINED
MACHINES

QED

Lemma 4.30 »

By definition of3=T, this is equivalent to:
VTIT' >T: pred(T’)V pred2(T’) (4.42)

Obviously, this is equivalent to:
VTIT >T: (predl(T’) A pred2(T')) (4.43)

According to the premise of the lemma, there is a cyiGle> T' such
that pred2 holds and stays untpred,. Furthermore, there is also a cycle
T, > T/ such thatpredl holds. LefT; be the smallest such cycle.

We will now show that cycld satisfies the claim (equation 4.43), i.e.,
it is left to show thatpred2(T;) holds. This holds sincpred? is finite true
and stays untipred,. The signalpred, cannot have been active yet, since
predl is impliespred, andT, is the smallest cycle aftdl such thaipredl
holds.

4.6.3 Liveness Proof

In order to prove the liveness of the machine, we have to show that the stalll
signal of stage is finite true. Assuming stadeis full, the stall signal is

a disjunction of the external stall signadgi and the internal stall signals
inty (equation 4.14). We will need to argue that the internal stall sigmal

is finite true and stays untile.

This will be done by induction. The following lemma will be used in
order to do the induction step. It states that if one stalls an arbitrary stage
for a time that is long enough, eventually all stages below become empty,
i.e., the pipeline drains. Let the time predicheowempty(T) hold iff
all stages below stadeare empty during cyclé:

belowempty(T) = Vj|k<j<n:fulll (4.44)

Let k be a stage number, i.&k,€ {0,...,n—1}. Let the stall signals of
all stages below stagebe finite true and leT be a cycle. This implies
that there is a cycl&’ > T such that if the update enable signal is off from
cycleT to T’ — 1, the full bits of the stages below stagare off during
cycleT’.

=1 e
(VT"|T <T"<T':uq’) = belowempty(T’)



Section 4.6

PROOF As before, this is shown by induction &beginning withn— 1
and proceeding frork+ 1 tok. Fork = n-—1, there is nothing to show
since there are no stages below. Concluding fioml to k is done as
follows:

LIVENESS

Since the stall signals of stages below stigage assumed to be finite
true, stall signabtallc1 is also finite true. Thus, there is a cydg> T
such that the stall signstallljil is not active. Lefl; be the smallest such
cycle. According to the premise of the lemma, we hané. Accoring to
lemma 4.1, this implies

EonTAL
full 7

Thus, stagé+ 1 is empty during cycld’ + 1.

We now apply the induction premise in order to show that the stages be-
low stagek + 1 eventually also become empty. According to the induction
premise, there is a cyclg} > T| + 1 such that if the update enable signal
ue1 is off from cycleT] +1 to T; — 1, all full signals below stagk+ 1
are off.

We will now show that during cycld; all stages below stagk are
empty. The first step is to show that the full signal of sthgel actu-
ally stays empty until cycld;:

VT [ T{+1<T < T fullly (4.45)

This is done easily by induction of”. For T” =T; + 1, we already
showed the claim above. For cycl¢ + 1, one uses the fact that the full
signal is not active in cycl@”. Thus, the stall signal cannot be active. The
update enable signal is not active by the premise of the lemma. Thus, the
claim can be concluded using lemma 4.1.

It is left to show that the the update enable signal of stagel is not
active from cycleT; + 1 to cycleT; — 1. This is easily argued since the
stage is not full. This concludes the claim. QED

Let k be a stage number but not the last stage. If all stages belowlstageemma 4.31
are empty during cyclé, this stays so until the output registers of stige
are updated.

belowempty(T) = staysuntil(belowempty, T,ue)
139



Chapter 4

PROOF By definition of staysuntil (definition 4.5, page 130), we have

PIPELINED to show:

MACHINES

VT T'>T: (VT | T<T"<T :1ua(T")) (4.46)
— (T[T <T"<T':belowempty(T")) (4.47)

This is done by induction of’. For T’ =T, the claim holds according
to the premise of the lemma. The claim for cydle+ 1 is concluded as
follows: The claim is:

VT | T<T" < (T'+1): belowempty(T") (4.48)

ForT <T" < T/, this holds according to the induction premise. Thus,
it is left to show this forT” = T’ + 1. By definition ofbelowempty, the
claim is equal to:

Vj|lk<j<n: funT+l (4.49)

Case onellf j is equal tk+ 1, we showfull,{* as follows: according
to lemma 4.1, a stage becomes full if it was elther stalled or if the output
registers of the previous stage were updated. The update enable signal of
the previous stage, which is stads not active according to the premise
of the lemma.

fulll 1t = ug \/staIIkJrl by lemma 4.1
= stall],, because ofig]’

The stall S|gnalstall 1 cannot be active since stage- 1 is not full during

cycle T’ according to the induction premise. Thliﬂ,llgjll is not active.

Case two:|f j is not equal tdk+ 1, we showfull ["** as follows:

full[** = ud’, vstalll by lemma 4.1

= (fuIIT (Astalll’y) vstalll"  because of def. afe

The stall signaktal IjT' cannot be active since stagas not full during

cycleT’ according to the induction premise. The full sigrfmIIjTi1 is also
QED not active because of the induction premise. This concludes the claim.

Lemma 4.32 » Assuming that the external stall signals are finite true and stay watil
the disjunction of the external stall signas is finite true.

140



Section 4.6

PROOF Using lemma 4.23 one concludes that the disjunction is finite
true and stays untile,. Using lemma 4.20, one concludes thead is  -'VENESS
finite true.

Let k be a stage number but not the last stage. If the stages belowkstageemma 4.33
are empty, the internal stall signaty is off.

belowemptyk, T) = int]

By definition, inty is: PROOF

inty, = dhaz vstalll,,

If the stages below stadeare emptyd ha{ cannot be active by defini-
tion (empty stages never generate a data hazard). If the stages below stage
k are empty, so is stade+ 1. Thus,stall{, ; cannot be active according to
the stall signal convention (convention 4.2). QED

In the following, we will conclude thadtally is finite true from the same
claim for stall; with | > k. The signaktally includes the internal signal as
defined in equation 4.13. Thus, one has to show that the internal stall signal
eventually gets deactivated and stays so until the update enable signal is
activated. This is done as follows:

The internal stall signal of stadeis deactivated if the stages
below stag&k are emptyat the latest

The term “at the latest”, as used in the last sentence, will be formalized
by the next lemma. In the last sentences, three time predicates are used:

1. “The internal stall signal.. is deactivated” will be referred to by
time predicatepredl,

2. “the update enable signal is activated” will be referred to by time
predicatepred,,

3. “the stages below stageare empty” will be referred to by time
predicatepred?. -

141



Chapter 4

PIPELINED w— W—I

MACHINES
Signalpredi S

] L1 L
Signalprece SRy 1| RISEESSS

Signalpred, \\

Figure 4.17 lllustration of lemma 4.34: Sincpred2 implies predl and pred2
becomes activegredl also becomes active.

According to lemma 4.33red2 obviously impliespredl (empty stages
never generate a hazard or stall signal). Furthermore, one easily shows that
pred, also impliespredl (the update enable signal is not active as long as
the stage is stalled). The notion “at the latest” will now be formalized
as follows: predl holds if pred2 holds “at the latest” means that assuming
predl does not hold for a time that is long enoughed?2 holds eventually.

Now there are two cases:

a) The predicat@red2 becomes true. Singared? impliespredl, one
can conclude thagbredl will hold eventually. This case is illustrated
in figure 4.17.

b) The predicatgredl becomes true beforgred2. However, this does
not imply thatpred2 will hold eventually. This case is illustrated in
figure 4.18.

The following lemma formalizes this claim:

Lemma 4.34 » LetT be a cyclepredl, pred2, andpred, time predicates. Furthermore,
let the following conditions hold:

1. Let bothpred, andpred2 imply predl after cycleT.
VT"|T" >T: pred,(T") = pred(T")
VT" |T" > T : pred2(T") = predl(T")
142



Section 4.6

¢T ¢T’ LIVENESS
signaipred, S 1 [ISSSS

t

Figure 4.18 lllustration of lemma 4.34predl becomes active befopged?.

2. Letthere be a cycl€& > T such that ifpred, holds for all cyclesr”
with T <T" < T/ thenpred2(T,) holds.

AT T >T VT | T<T"<T/: pred,(T") = pred2(T/)

3. If pred2 holds in any given cycl&’ > T, it is supposed to stay until
pred, afterT’.

VT'|T' > T: pred2(T') = staysuntil (pred2, T', pred,)
The claim is that this implieS=T (predL, pred,).

By expanding the definition ai~T (pred, pred,), one gets: PROOF
AT|T' > T : predl(T') A
VT/|IT <T"<T': predy(T") A
staysuntil (predl, T, pred,)

Let 327 pred, hold. In this case, there is a cyclé > T such thatpred,
is active. Let this be the smallest cycle with this property, which exists
according to lemma 3.19. We will now show that this cycle satisfies the
claim. According to the first condition abovpredl(T’) holds. SinceT’
is the smallest cycle such thated, is active,

VT/|IT <T" <T': pred,(T")
obviously holds. One easily shows

staysuntil (predl, T, pred,)

143



Chapter 4

144

PIPELINED
MACHINES

QED

Lemma 4.35 »

PROOF

by using the fact thapred,(T') holds. If3=T pred, holds, this concludes
the claim.

Assume3~T pred, does not hold. In this casered, never holds in any
cycle T’ > T. This allows using the second condition above in order to
conclude that there is a cycl > T such thatpred2(T/) holds. We will
now show that this cycle satisfies the claim.

According to the first condition abovgredl(T,) holds. As3=T pred,
does not hold, one can conclude that

VT/|IT <T" < T : pred,(T")

holds. Using the third condition above, one easily concludes that
staysuntil(pred2, T/, pred,)

holds. Using the first condition and lemma 4.16, one shows that
staysuntil(predl, T/, pred,)

holds. This concludes the claim.

Assuming that the external stall signals are finite true and stay wentil
the stall signal is finite true.

The proof proceeds by induction én We begin with the last stage. The
induction step is done by concluding the claim for stdeom the claim
for staged > k.

For stagk=n—1 (i.e., for the last stage), the claim is shown as follows:
in case of the last stage, no forwarding is done,dkaz 1 is always false.
Thus, the stall signal of the last stage is:

stalll ; = fulll jAext | (4.50)
According to lemma 4.32, this is finite true.

The induction claim for stagk < (n— 1) is shown as follows: The stall
signal of stage is:

stalll] = full] A(ex{ vint)) (4.51)
Using lemma 4.28, one concludes that it is sufficient to show that

exy vint, (4.52)



Section 4.7

is finite true. This is concluded by lemma 4.29 using the prediatis
int,, andue. In order to apply lemma 4.29, one has to show that thBERFORMANCE
premises of the lemma hold. These premises are:

e The predicat@xi must be finite true,
e the predicatenty must be finite true and stay untib,

¢ the predicatexi must implyue.

The first premise holds according to lemma 4.32. The third premise
holds according to the definition af andstally. It is left to show that the
second premise holds, i.e., that is finite true and stay untile. This is
done by using lemma 4.34 as described above.

One now easily concludes the liveness criterion for the pipelined ma-
chine:

Assuming that the external stall signals of stkgee finite true and stay< Theorem 4.36
until ue for all stages, the pipelined machine is alive.

Using lemma 4.35, one concludes that the stall signals are finite true. AROOF
in theorem 3.24 (page 88), one concludes that the machine is alive.

4.7 Performance

The machine presented in this chapter almost matches the pipelined DLX
presented in [MP0O]. One major difference is the stall engine. The stall
engine in [MPO0O] uses only two different clock enable signals. The first
clock enable signal controls stages 0 and 1 and the second clock enable
signal controls the rest of the pipeline. Thus, stages 0 and 1 are always
clocked simultaneously. The same holds for stages 2, 3, and 4.

In contrast to that, the stall engine used in this thesis supports stalling
all stages independently. This improves performance. Consider the fol-
lowing example in a five stage integer DLX: The first instruction is a load
instruction (W. Let the destination register of this instruction®R&. The
second instruction is an ALU instruction that calculates the disjunction of -

145



Chapter 4

146

PIPELINED
MACHINES

Cycle| 1 2 3 4 5 .. 10 11 ...
IF LW ORI ADD ADD ADD SUB  XOR
ID LW ORI ORI ORI ADD SUB
EX LW Bubb. Bubb. ... ORI ADD

MEM LW LW Bubb. ORI
WB LW  Bubb.

Figure 4.19 Scheduling in [MPOO]: The cache miss in the MEM stage stalls the
pipeline completely.

Cycle | 1 2 3 4 5 ... 10 11 ...
IF LW ORI ADD ADD SUB XOR SW
ID LW ORI ORI AND SUB XOR
EX LW Bubb. ORI ... ADD SUB

MEM Lw LW ORI ADD
WB LW ORI

Figure 4.20 Scheduling in this thesis: the bubble introduced because of the data
hazard is removed. The execution differs from [MP0O] beginning with cycle 5.

a register value and an immediate const@R(). Let registerR1 be the
source register. In stage ID, the machine is supposed to read the operand
register. However, this register is not yet available in this stage because the
load has not yet completed. Thus, in both machines a pipeline bubble is
inserted (figure 4.19, cycle 4).

Assume that load instruction causes a data cache miss in stage MEM.
The machine in [MPOQ] stalls the execution completely. In contrast to that,
the machine presented in this thesis keeps stages 0 to 2 running for one
cycle more by removing the pipeline bubble in stage 2 (figure 4.20, cycle
5). Assume that the data word required for the load instruction is available
by cycle 10 in both machines. In the machine presented in [MPO0O], the
bubble proceeds until it reaches the end of the pipeline.

In order to quantify the performance impact of the new stall engine, we
performed simulations using the SPEC92 benchmarks as a workload. In
case of integer-only workload, the new stall engine speeds up execution
on the five stage DLX pipeline by approximately 1.1%. The speedup in-
creases the more long latency instructions, in particular floating point in-
structions, are involved. Appendix C gives more details on the simulation
environment and the results.



Section 4.8

4.8 Literature
LITERATURE

The concept of the transformation of a prepared sequential machine into a
pipelined machine is taken from [MPKO0O, MPOQO]. In addition to that, the
design of the pipelined DLX used as example is taken from [MPQO].

Flynn’'s classic textbook [Fly95] on pipelined processors states the fol-
lowing on interlock hardware:

“As any pipelined processor designer knows, a great deal of
engineering effort is required to efficiently realize a fully func-
tional set of interlocks.”

However, to best of our knowledge, in most of the literature the details
of implementing forwarding and interlock hardware are skipped over, in-
cluding [Fly95]. An exception is [MP0O0], which presents the interlock and
forwarding logic at gate level. The stalling mechanisms described in the
literature including those in [MPO0O] usually assume that a pipeline bubble
floats through the complete pipeline [Fly95, HP96]. In contrast to that, the
stall engine presented in this thesis supports removal of pipeline bubbles,
which speeds up the execution.

In [LO96], Levitt and Olukotun verify a five-stage DLX pipeline by
transforming it back into a sequential machine by removing stalling and
rollback logic. Liveness is not argued.

In [Hos00], Hosabettu verifies a simple five stage DLX that is not syn-
thesizeable. It has a trivial stalling logic. Stalls caused by slow memory
are not covered. The verification is done using the completion function
approach and PVS. Liveness is not argued.

Further literature on the verification of pipelined machines is [BM96],
which provides a manual proof of a DLX pipeline, Burch, Dill [BD94]
verify a very simple pipeline. Henzinger et.al. [HQR98] use refinement
mappings in order to model-check a RISC pipeline. Liveness is not argued.

147






Speculative Execution

5.1 Introduction

PECULATIVE EXECUTION s a technique to avoid stalling the pipeline

because of data dependencies in situations that do not permit forward-
ing. Thus, instead of stalling, the calculation is continued with a value that
is guessed. As soon as the correct value is available, the correct value and
the guessed value are compared. If both are equal, the calculations made
with the guessed value are also correct.

If the guessed value and the correct value are different, all calculations
made with the guessed value are usually false. This is catlisdpec-
ulation. In this case, the calculation has to be restarted at the stage the
guessing is made. This process is calteliback (in the literature, the
term squashings often used [LO96]). It includes that all changes made
to the state of the machine based on false data have to be reverted. The
extra cycles required for the rollback and the wrong calculation are called
misspeculation penalty

In this chapter, we will describe a generic method that allows to specu-
late on arbitrary values. The method includes automatic generation of the
circuits necessary to detect a misspeculation and to do the rollback in case
of a misspeculation. We will then use the method in order to implement
branch prediction and precise interrupts.



Chapter 5

150

SPECULATIVE
EXECUTION

k=0k=1g 11 I> 11 I> I3
— R1 — R1 — R1 — R1 — R1 — R1
k=1 lo L7 H I
- R2 - R2 - R2 - R2 - R2 - R2
k=2 lo I
— R3 — R3 — R3 — R3 — R3 — R3
k=3 lo
- R4 — R4 - R4 - R4 — R4 - R4
k=4 lo
R5 = R5 — R5 — R5 — R5 — R5

T=0 T=1 T=2 T=3 T=4 T=5

Figure 5.1 Execution of the instructionk to I3 in a pipelined machine with
speculation. Let th@C of 11 be misspeculated. This is detected in stage 2 during
cycleT = 3, as illustrated by the flash symbol. Stages that are full are hatched.

Example Consider a pipelined machine with five stages. Let us guess
(i.e., speculate on) the correct value of the memory address used for the
instruction fetch (denoted HYC) in stage 0. Assume that the correct value

is available in stagk = 1 (decode).

Figure 5.1 gives an example what can happen in such a machine: let the
mechanism guess the value PE of the instructionly correctly but not
of instructionl;. The machine runs as usual until cydle= 2. In cycle
T = 2, instructionl; is in stage 1 and the misspeculation is detected. Thus,
instructionl, has to be restarted completely. Assume that this takes one
cycle.

In cycle T = 3, instructionl, therefore is in stage 0 again. The cal-
culation re-starts using the correct valueRg that is now known. The
instructionl, is completely evicted from the pipeline. Note that, however,
instructionlg proceeds (and terminates) as before. This is justified by the
fact that instructioriy does not depend on any data that was misspeculated.
Table 5.1 shows the schedule of this example.

However, the instructioty, might have made changes to the registers in
out(0). Instructionl; usually relies on the original values, i.e., the values
written by lg. Thus, one has to ensure that instructigrcalculates its



Section 5.2

‘TzO‘Tzl‘TzZ‘T:3‘T:4‘T:5

sl(0,T) 0 1 2 1 2 3 STALL ENGINE
sl(]_ T) 0 0 1 1 1 2 WITH SPECULATION
sl2T)| © 0 0 1 1 1

sIBT)| © 0 0 0 1 1

sl(4T)| O 0 0 0 0 1

Table 5.1 The values o8l in a five stage pipelined machine with speculation

inputs using the values written thyand notl;. We will now describe how
such a mechanism is implemented.

5.2 Stall Engine with Speculation

In this section, we will describe a simple generic speculation mechanism
that allows speculating on values of arbitrary implementation registers.
The first step is to modify the stall engine such that we can evict instruc-
tions from the pipeline in case of misspeculation. For this purpose, we
introduce signalsollback with k € {0,...,n—1}. The signalrollback

is to be activated if misspeculation is detected in stagé/e will later on
describe how we detect misspeculation.

Using these signals, a set of signatdlback, is defined. The signal
rollback is active if the instruction in stagehas to be squashed because
of misspeculation. Assume a sigmallback is active. In this case, one
has to evict all instructions in the stages ktd hus,rollback is active if
a rollback signal of any later stage is active:

n—-1
rollback = \/ rollback (5.1)
i=k

One easily speeds up this computation using the parallel prefix circuit
as described in section 2.2.4. Using the sigmalthack’, we make the
following changes to the stall engine:

e The update enable signal of a stdgis deactivated if the rollback
signal is active. Letig denote the old update enable signal as used -

151



Chapter 5

152

in the previous chapters. Lag denote the new update enable sig-

SPECULATIVE nal. The new update enable signal is:

EXECUTION
ug = ug Arollback (5.2)

e The transition function for the full bits is changed as follows: Let
0. full .k denote the old transition function and Rtfull .k denote
the new one. The new transition function foe {1,...,n—1} is:

d.full.k := &.full.kArollback (5.3)

The following simple lemmas are concluded from the new definition of
the signals and the new transition functions:

Lemma 5.1 » Astage is full iff it was updated or stalled in the previous cycle and if there
was no rollback:
Vk>1: fulll*t = (ug_, vstally) Arollback}
The signalfullg is always active:
full] =1
All other signalsfully are not active during cycle 0:
vk>1: fulll=0

This lemma is a counterpart of lemma 4.1 of the pipelined machine with-
out speculation.

Lemmab5.2 » |If astage is full and is updated, the next stage is updated, too.
vk>1: full] Augl; = ud

This lemma is a counterpart of lemma 4.3 of the pipelined machine with-
out speculation.

PROOF According to the definition of the update enable signals, we have to show
1) fulll, 2) stalll, and 3)ro||back’I.




Section 5.3

According to the premise of the lemmgyll,” holds. We shovetall] as

in the proof of lemma 4.3. SCHEDULE WITH

SPECULATION

We showrollback} as follows: assumeollbackK; holds. In this case,
roIIback’[_l also holds. Thua,uei{_1 cannot be active. This is a contradic-
tion to the premise of the lemma.

If a stage is full and if its output registers are not updated and if no rollbackemma 5.3
is made, the full bit is preserved.

vk>1: full] Augl Arollback] = full[*?

By the definition of the update enable signals, one concludestht} PROOF
holds. The claim is concluded using lemma 5.1.

If a configuration in a stage moves into the next stage (i.e., the oupliemma 5.4
registers of a stage are updated), and if the next configuration is not clocked
into the stage, the full bit is cleared:

vk>1: full] Augl Aug, = full]*!

By the definition of the update enable signals, one conclstﬂi{ and PROOF
rollback . The claim is concluded by lemma 5.1.

The following lemma is the counterpart of lemma 4.6 in the pipelined
machine without speculation. The proof is proceeds as in chapter 4.
Stagek is full at the earliest in cyclé. <4 lLemmab.5

fulll] = T>k

5.3 Schedule with Speculation

Using the signalsollback,, it is possible to give a recursive specification
of a scheduling functiosl(k,T) for the pipelined machine with specula-
tion that reflects the changes caused by a rollback. -

153



Chapter 5

154

SPECULATIVE
EXECUTION

Itis constructed as follows: In “normal operation”, i.e., if no speculation
is made, the scheduling function should match the scheduling function of
the pipelined machine without speculation. However, in case of a rollback,
the scheduling function must provide values such that the instructions that
are evicted never entered the pipeline.

This allows for a recursive definition of the scheduling function of the
prepared sequential machine: For sake of simplicity, we split the definition
of the function into three cases: 1) T=0, 2) a rollback is made, and 3) no
rollback is made.

If T =0 holds,sl(k,T) is zero, just as before:

sl(k,0) == 0 (5.4)

If T # 0 holds and if no rollback is made, i.@qgllback; * does not
hold, we use the definition from chapter 3:

sl(k, T —1) . ugl
sl(O,T—1)+1 : ug *Ak=0
slk—=1,T—1) : ug

sl(k,T) :=

If T # 0 holds and a rollback is made, i.eojIback; * holds, we aim
to provide values as if the instructions that are evicted never were put into
the pipeline.

Assume the following example: Instructiog does not use speculation
and proceeds through the pipeline as usual. Instru¢tioses speculation
and we misspeculate. This is detected in cykle 3 and stag&k = 2. In
table 5.2, we depict a standard pipelined schedule sucH tl&tot put
into the pipeline before cycl& = 4. In table 5.3, we depict a schedule
such thatl; uses speculation instead. Note that the schedules match after
the rollback in cyclel = 4.

In this example, during cycl& = 3, the following signals are active:
because of the misspeculati(myjlbackg is active. This implies that the
signalsrollbacK to rollback’; are active by definition of these signals.

We construct the scheduling function for this case as follows: for all
stages with rollback, we take the value of the scheduling function from cy-
cleT —1 from the last stage in that we detect a rollbackolfback ,_1 is
active, this is staga— 1. If not so, this is stagk such thatollback, holds



Section 5.3

SCHEDULE WITH
SPECULATION

T|0|1]2]3]|4|5|6]|7]8
sIOTy[O0[1[1[1][1[2]3[4]5
siLTy[ofo[1[1[1[1[2]3]4
sigTy[o(ofo[1[1[1[1[2]3
siBT)[o(0[o0(O0[1[1[1[1]2
sigT)y[o(o0[O0[O0[O0[1[1[1]1

Table 5.2 The values o8l in a five stage pipelined machine without speculation.
Instructionly is delayed until cycle 5.

T|0]1|2|3]4|5]6]|7]|8
sl(0,T)[o]1]2]3[1]2]3]4]5
sia,T)[o]o|1]2[1]1|2]3]|4
siT)|o]ofol1[1]1]1]2]3
siBT)[o|lofofo|1]1]1]1]2
siagT)|o|lofofo]of1]|1]1]1

Table 5.3 The values ol in a five stage pipelined machine with speculation. We
misspeculate on instructidp and detect this in cycle 4. In cycle 5, the execution
proceeds as if instruction was delayed until cycle 5.

155



Chapter 5

156

SPECULATIVE

EXECUTION sI0, )| O 1 2 3 /1 2
sI(1,T) 0 0 1 2 1 1
sI(2,T)]| O 0 0 t—1_—-1>1 1
sI3,T)] O 0 0 0 11 1
sI(4,T)| O 0 0 0——0 1

Table 5.4 lllustration of the recursion made fst(k,4) in case of a rollback.

butrollback'y,; does not. We use the predicatgk, T) as a shorthand:

p(k,T) :<= rollbacky A (k=n—1vrollback], )
We assert the claim above in the following lemma:

Lemma 5.6 » The construction described above provides the last stage with active roll-
back signal.

p(kT) = k=maxje{0,...,n—1}|rollback }

PROOF One easily shows this inductively using the fact thatoifibacKy, 1 is
active, this implies that the signaidllbacK is also active.

Thus, ifp(k, T — 1) holds, we takesl(k, T — 1) as value fosl(k, T). Ifit
does not hold, we use recursion in order to get the desired value: we walk
down the pipeline fronk to k+ 1 until p(k, T — 1) holds:

[ sk T=-1) : pkT-1)
sl(k,T) = {Sl(k-l-laT) . otherwise

Obviously, this simplifies to:

sikT) = { SlkT=1) k=n— 1V rollbacky
sl(k+1,T) : otherwise

This recursion is illustrated in table 5.4. It is no longer obvious that this
recursion terminates for all valudsand T. One argues as follows: the
recursion terminates as soonTfas- 0 is reached. In case of no rollbadk,
decreases by one. In case of a rollback, eithelecreases dt decreases.
However, T decreases if the end of the pipeline is reached at the latest, i.e.,
if k=n—1 holds.



Section 5.4

5.4 Scheduling Invariants
SCHEDULING

INVARIANTS
In this section, we will show that the scheduling invariants presented in
chapter 3 still hold for the stall engine of the pipelined machine with in-
terrupts. We have to make a small change to invariant one for the rollback
case. Invariants two and three still hold without any change.

Assume that the rollback signmllback’L:ll is not active or thak is the <« Invariant 5.1
last stage. If the update enable signal of stge active in cycleT — 1,

the value of the scheduling function for that stage increases by one. If the

update enable signal of the stage is not active, the value does not change.

ForT > 0:

[ sI(k,T—-1) if ugl
sk ™) = {sl(k,T—l)Jrl if ugl ! =

Given a cycleT, the values of the scheduling functions of two adjacesmtinvariant 5.2
stages are either equal or the value of the scheduling function of the earlier
stage is greater by one. This also holds in case of a rollback.

The value of the scheduling function of the earlier stage is greater by %rmvariant 5.3
iff the full bit of the later stage is set. F&r> O:

fulll =1 sl(k—1T)=sl(kT)+1

Negating both sides of the last equation and applying invariant 5.2 results
in:

fulll =0e sl(k—1,T)=sl(k,T)

This also holds in case of a rollback.

The proof of the invariants proceeds as in chapter 3:F(dt) denote that PROOF
invarianti holds for the pipelined machine with speculation for the cycle
T. The claim is concluded as in chapter 3:

P(T-1) =
P T)AR(T-1)AP(T-1) =
P T)AR(T-1)AP(T-1) =

L PP
-

157



Chapter 5

158

SPECULATIVE
EXECUTION

QED

Proof of Invariant 5.1 We make a case split on the value of the rollback
signalrollbacky *:

1. Let the rollback signabllback; * be active. SinceollbacK, ;" is
not active ork is the last stage, stadeis the last stage with active
rollback signal. The update enable siguq]f1 is not active in this
case by definition. Thus, the claim is:

sl(k,T) = sl(k,T—1)
This holds by definition o$l(k, T).

2. Let the rollback signatollback| ~* be not active. As we exclude
the case of a rollback, the proof proceeds as the proof of invariant
3.1 presented in chapter 3.

Proof of Invariant 5.2  Let us consider the stagks- 1 andk with k > 0.
Let roIIback’I_1 be active. We start with the induction claim:

si(k—1,T) = sl(kT)+1

v osik—1T) = si(kT) (5.5)

The second equation holds because of the definiticsi(&f— 1, T) and
because the rollback signal is active.

Let roIIback’I*1 be not active. In this casé is either the last stage
or roIIback’L‘ll is not active. Thus, no rollback is involved and the proof
proceeds as the proof of invariant 3.2 in chapter 4.

Proof of Invariant 5.3 ForT = 0, the claim can be shown by definition
unfolding and using lemma 5.5. Faor> 0, according to lemma 5.1, the
claim is equivalent to:

(ugl tvstalll Y Arollback [t = sl(k—1,T)=sl(kT)+1

As before, the proof in chapter 4 can be repeated if the rollback signal
rollback; * is not active. Thus, letollback * hold. This implies that
sl(k—1,T) isequal tesl(k, T). Thus, the right hand side of the equivalence
in the claim cannot hold. The left hand side of the equivalence also does
not hold becauseollbacK | ~* holds. This concludes the claim.



Section 5.6

5.5 Speculative Inputs
SPECULATIVE

INPUTS
For sake of simplicity, we restrict ourselves to the case that the speculation
is done in the first stage. L& be a denominator for a value we want to
guess. LeR € o denote this fact. The speculation mechanism is added in
three steps:

1. Thefirst stepisto add functions that do the guessing of the value. We
name those functionfyRsby convention. These functions are called
speculation functionand can take arbitrary specification registers as
arguments as described in section 3.2.4 (page 41). In analogy to the
notation used in the previous chapters, this set of registers is denoted
by deps(R,0). All other notation used for register transition func-
tions also applies for the speculation functions.

2. We add registers that record whether we still have to speculate or
whether the real value is already known. We denote this register by
cR The domain of this register is one bit. If it is set, the correct
value ofRis known. If not, we have to speculate. We initialize these
registers with zero.

We furthermore add registers that save the real value in case of a
rollback. The registers are nam&dand have the same domain as
the value we are guessing. These registers are initialized with an
arbitrary value, e.qg., zero.

3. We make the guessed value providedfgigsavailable as input for
the register transition functions of stage 0. We do not allow a re-
cursion here, i.e., the input of a speculation function must not be a
speculative value.

The input generation functioggR for such a speculative value is
defined as follows: in case the bit@fRis set, we return the value in
c.R. If not so, we guess the value usifigRs

¢ .R : ¢f.cR=1

QwR(c]) = {fyoRs(clT) . otherwise (5.6)

5.6 Detecting Misspeculation

The mechanism above allows guessing a register value. The guessed value
can be used as normal input to register transition functions. However, we -

159



Chapter 5

160

SPECULATIVE
EXECUTION

Figure 5.2 The speculative valuR is guessed by stage 0 and then stored in
registerR.1,R.2, and so on.

have to detect and handle the case that the speculation fails. In order to
detect that we misspeculated, it is necessary to store the value guessed to
have it available later on. F& € o, we do so by adding instances of an
implementation register namé&ji.e.,R.1,R.2, and so on.

If ug is active and such a registBrl with R € o is updated, one simply
writes the value provided bggR into the register, i.e., the guessed value.
In case of registerR .k with R € o andk > 1, we just take the value from
the previous stage, i.e., froR(k—1). This is depicted in figure 5.2.

In addition to the check for misspeculation, the value in these registers
can be used in order to read the speculative value in stages other than the
first stage. This is handled just like a normal read access to an implemen-
tation register.

A misspeculation is detected as follows: IR€ out(k) be an instance of
such a register. If a value is written into the register by write accesses as
used in the previous chapters, this value is compared with the value that is
in the instance of the register in the previous stage. If they do not match, a
misspeculation is detected and a rollback is signaled.

For this purpose, we define a misspeculation sigalisspedor each
such registeR.(k+1). Itis active if the value provided by the write access
and the value in the register do not match and if the stage is full but not

stalled.
Remisspecc)) = (fwR(c) #c.RK)A

fullg A stall, (5.7)

This is depicted in figure 5.3. The test for the stall signal is motivated as



Section 5.7

RoLLBACK

Figure 5.3 The speculative valuR is compared with the value provided by the
register transition function. If they do not match, a misspeculation is signaled.

follows: the functionfyR takes inputs. These inputs might be forwarded.
Thus, they are only guaranteed to be valid if the stall signal is not active.
Furthermore, we require that the functiofilk do not depend on values
that are guessed.

We use these signals in order to calculate the rollback signal of &tage
It is just the disjunction of th&miss pecsignals:

rollbackc(c;) = \/ Rimisspetc) (5.8)

Rkeo

5.7 Rollback

During rollback, we have to revert changes to the machine made by the
instructions that used misspeculated data. Thus, the state of the machine
has to be changed as if the instructions that used misspeculated data never
entered the machine.

The rollback is realized as follows: the original values of the registers
that are changed during the speculation are saved in temporary registers.
All calculations store their results in the original place as before. If the

161



Chapter 5

162

SPECULATIVE
EXECUTION

~-p PC [ -|--poPC.2f---
—

EX

ffffffffff oPC.3| - -~

M

ffffffffff OPC .4} ---

WB

Figure 5.4 Saving the original value d?C'.2 in oPC for reading or rollback by
stages 2, 3, and 4.

speculation fails, the original values are restored from the temporary regis-
ters. If the speculation turns out to be correct, the values in the temporary
registers are just ignored. By convention, we name the temporary register
oQ if the name of the original register .

In order to save hardware coste restore specification registers only
In particular, we do not restore the implementation registers in case of a
rollback. The only justification for this is saving the gates and latches
required for the rollback in case of implementation registers. The price
paid for this is extra proof effort, since we have to argue that not restoring
implementation registers does not affect data consistency.

Example Consider a pipelined machine and a specification regi¥@er

that is written by stage 1 (decode). In the same cycle in that one clocks a
new value intdPC'.2, the old value of the register is saved iniaaplemen-
tation register calledPC .2 (figure 5.4).

If this value is required in any later stage for rollback or any other pur-
pose, extra instances can be added to the stages in between. This is the
usual method to add instances of implementation registers, as already de-
scribed in chapter 3. Note that duplicati@dnto oQis expensive regarding
hardware cost. We therefore assume tQas neither a register file nor a
memory.

Remember thatoQ denotes the value clocked into regis@r In or-
der to realize rollback, we change the functiogQ as follows: in case no



Section 5.8

rollback is made, the function returns the same value as before. In case a

rollback is made, we have to select the appropriate instance of the regi&&f ENDED READ
0Q. Note that actually more than one rollback signal can be active simdtCCESS
taneously. In this case, we have to take the original values from the late§MANTICS
stage with active rollback signal. Remember that we yggdT ) in order

to denote that stagg has this property. We now change the new value

clocked intoQ.(k+ 1) as follows:

fka(clT) D ouec=1
@wQ(cl) = ¢ oQ"j : (i) (5.9)
Q"L (k+1) : otherwise

We implement this using multiplexers (figure 5.5). This implementa-
tion is similar to the circuit in figure 4.10 (page 116) we use in order to
implement the minimum required for forwarding in chapter 4.

The implementation described here takes one cycle in order to detect
misspeculation and handle the rollback. The calculation of the next con-
figuration begins in the next cycle. In some designs, in particular in case
of branch prediction, the calculation of the next configuration begins in the
same cycle the misspeculation is detected. This saves one cycle but may
increase cycle time. Thus, this is a CPI vs. cycle time tradeoff. However,
we do not further evaluate this.

5.8 Extended Read Access Semantics
5.8.1 Specification Registers

In chapter 3, we did not allow read accesses to specification redgisters
stagek > stagéR). We now define semantics for such read accesses. This
is not related to speculation. In fact, one can define the same semantics for
the prepared sequential and pipelined machine without speculation. The
only reason why we did not introduce it in one of the previous chapters is
that we did not need such read accesses.

We aim to define read accesses to specification regiRterstagek >
stag€R) such that the claim of the input correctness lemmas still holds:

gR(c) = RS —
163



Chapter 5

SPECULATIVE
EXECUTION

f1 0Q?2
rollbac 0 1
0Q.3
rollbacks (o 1
N— 0Q.4
rollbac
K (o 1)
1D ﬂ
ffffffffffffffff Q2r-Pp 0oQ2 [---
[
EX
************************ 0Q3 -~
M
,,,,,,,,,,,,,,,,,,,,,,,, -4 L - - —
WB 0Q

Figure 5.5 Selecting the correct value for restoriQ in case of a rollback.

164



Section 5.8

We realize this by reading the implementation registBik, as intro-

duced above. However, we do not define such read accesses with addr§§§.ENDED READ
CCESS

We have to prove the claim above: in order to do so, we extend the SteMANTICS
correctness predicates as introduced in chapter 3. The claim for registers
oR (k+ 1) € out(k) is:

IkT)-1 .
kel — o RS : sl(k,T) >0
OR".(k+1) { 0 . otherwise

Assuming this stage correctness predicate, we easily show that inputs cal-

culated according to the rules above are correct:

Let full] hold and letR be a specification register arkd> stagéR). < Lemma 5.7
Assuming that the stage correctness predi€kte holds in cycleT, the
inputs generated by the functioggR during cycleT are correct:

gR(c) = RY*D

By definition of gkR, the value obRk is read: PROOF
aR(c]) = ¢l.0Rk (5.10)
By using the stage correctness predicate for regietetagek — 1, cycle
T, we transform the right hand side:
aR() = RSO (5.11)

According to invariant 5.3, we hav@(k—1,T) =sl(k,T) + 1. Thus,
we get:

gR() = RV (5.12)

This is the claim. QED

5.8.2 External Signals

We further extend the read access semantics by defexitegnal signals
We allow accessing external signals by adding the name of the signal to

165



Chapter 5

166

SPECULATIVE
EXECUTION

the list of registers a register transition function depends on.RUst an
external signal that is read by stakeThe signal has an arbitrary domain
W (R). We assume a mapping from the instruction numbers W)
that defines the value of the signal in the specification machine:

Rs: N— W(R)

Thus, the correct value of an external injpuin stagek is:

GkR(cs) = Rs(Cs)

We have to assume that we get exactly the correct value if an instruction
in stagek readsR. This is done if stag& is full and not stalled.

fullf Astalll = oR(c]) = GR(sI(k,T))

Obviously, this is inconsistent if the same signal is read in multiple
stages. We therefore assume that a signal is read in exactly one stage.

5.9 Branch Prediction
5.9.1 The DLX without Delayed PC

Many microprocessors do not use delayed branch semantics because of
binary compatibility with earlier, sequential versions. One well-known ex-
ample is the Intel x86 family [Yeu84, Int95b]. Removing the delayed PC
from the specification significantly complicates a pipelined implementa-
tion.

In this section, we will give a specification of a DLX without Delayed
PC. We will then use speculation as described above in order to build a
pipelined DLX that provably implements this specification.

The first step is to remove the regist®6' andDPC from the specifica-
tion. We add a single regist&C instead. The other registers (GPR, DM)
remain unchanged. As in chapter 2, let the signd¢note the instruction
word fetched. The address used to fdtéhtaken from the registd?C and
no longer fromDPC:

I(c) = IM(c.PC) (5.13)



Section 5.9

BRANCH
PREDICTION

********** IR1r-~""1"~

Figure 5.6 Instruction fetch and next PC calculation in a prepared sequential
DLX without Delayed PC

The transition function for the regist®C is the same as fdPC':

0.PC(c) = nextpgl,opl(c),c.PC) (5.14)

The transition functions dbM andGPRremain unchanged. In case of
a jump and link instruction, we takeC+ 4 and no longePC' + 4.

5.9.2 The Sequential DLX without Delayed PC

Implementing and verifying a prepared sequential machine without de-
layed PC is trivial. One takes the prepared sequential machine from chapter
3 with minimal modifications. One just renam€’ into PC and removes

the DPC register. The instruction fetch is made usiPG as register (fig-

ure 5.6). No speculation is necessary. The proof of correctness follows the
proof given in chapter 3.

167



Chapter 5

168

SPECULATIVE
EXECUTION

********** IR1r-~"""""""1~~

Figure 5.7 Instruction fetch and next PC calculation in a pipelined DLX without
Delayed PC and without speculation

5.9.3 The Pipelined DLX without Delayed PC

In chapter 4, we transformed the prepared sequential machine with De-
layed PC into a pipelined machine. This is still feasible for the machine
without Delayed PC. However, we have to forward regi§€r2 into the
instruction fetch stage (figure 5.7). According to the forwarding mecha-
nism as given in the previous chapter, we have to select between the value
in the registePC.2 and the value written intBC.2 depending on the value

of the full bit full.1.

If the decode stage is full, which is the common case, we have to use the
value provided by thaextpccircuit as address for the instruction fetch.
In particular, thenext pccircuit uses the first GPR operand as input. This
operand might be forwarded, too. We therefore get a data path that passes
the ALU and thenextpccircuit and the instruction memory. We consider
such a path to be too long.

A common approach to this problem is usibganch prediction The
problem is the GPR operand. The GPR operand is used in order to decide



Section 5.9

whether the branch is taken or not in case of a branch instruction. In case

of a jump register instruction, the operand value is used as target addreB&ANCH
PREDICTION

The idea of branch prediction is to guess whether a branch is taken or
not. There are various methods to realize this. Implementing branch pre-
dictors lies beyond the scope of this thesis. There is a vast amount of
literature on sophisticated branch predictors, e.g. [Smi81, LS84, YP92,
CHYP94, PS94].

However, branch prediction is of no use regarding jump register in-
structions. Since jump register instructions are much less common than
branch instructions, a feasible solution is to stall the execution until the
GPR operand is available. Another solution is to guess the branch target,
too. This is what we implement. As for the branch predictor, we do not
elaborate how to implement the target predictor.

We implement branch prediction as follows: the first step is to move
registerPC from stage 1 (decode) to stage O (fetch). This allows reading
the PC register in stage 1 without any forwarding. The next PC is now
calculated as follows: if the instruction fetched is neither a branch or jump,
we just take the old value and increment it by four. If it is a branch, we
guess whether itis taken or not. Ifitis a jump register instruction, we guess
the branch target. We denominate these guessed valugsbghtaken
andbranchtarget We pass the address of the instruction to the predictor
(figure 5.8). Figure 5.9 shows how the new PC is calculated using the
guessed values.

We instantiate the rollback mechanism as described in section 5.7 (page
161). The old PC value is stored in a regist®C.1. This allows restoring
the PC in case of a rollback (figure 5.10). Thus, the regi¥tet is clocked
if ue is active or if the rollback signadollback; is active. The update
enable signal is used in order to select the appropriate source.

The registeoPC.1 is also used for reading tiRC register in stage 1 (de-
code stage): we read tiRC register for jump and link instructions. Since
1> stagéPC) = 0, we have to use the extended read access semantics as
introduced above.

As described in section 5.6 (page 159), the guessed values are stored
in instances of implementation registers. In case of the DLX with branch
registers these registers dm@anchtakenl andbranchtargetl. In stage 1
(decode), we can calculate the correct values. We add a write access to the
registerbranchtaken2. The value written is judh jtakenimp as defined

169



Chapter 5

SPECULATIVE
EXECUTION

170

PC.1 PC.1
[ IM j spec
IR bt btarget

fffff - IR.1 bt, btarget ------

ID

Figure 5.8 Instruction fetch and next PC calculation in a pipelined DLX without
Delayed PC and with speculation. Lt be a shorthand fobranchtakenand
btargetbe a shorthand fdsranchtarget. The prediction unit is denoted Ispec
The circuits for providing the old PC value in case of a rollback are omitted.

| _branch(IR)

branchtaken

Figure 5.9 Calculating the next PC using speculation



Section 5.9

BRANCH
PREDICTION

Figure 5.10 Restoring thePC register in case of a rollback: The regisRE is
clocked ifuey or rollback 1 is active or in case of a reset.uf, is active, the next
PC is clocked intd’C.1 and the old PC is clocked inPC.1. If ug is not active,
the old PC fromoPC.1 is clocked intoPC.1. The multiplexer used in order to
handle the reset case is omitted.

in the previous chapter:

fibranchtaker(IR,GPRg = bjtakenimp(IR,GPR3g

Given correct inputs, the function above calculates the correct valu& demma 5.8
branchtaken We denote this correct value 8branchtaker{cs):

Qbranchtaker(cs) := bjtaker(l(cs),opl(cs))

The functionsb jtaken I, andopl are defined in chapter 2.

The claim is thatf;branchtakenreturns this value given correct inputs:

fI;branchtaker(cs) = Qbranchtaker(ck)

By expandingfl” ;branchtaken we get the following claim: PROOF

bjtakenimp(QolR(cy), GiGPR4Cs)) = Qbranchtaker(cs)

Using lemma 3.3 (page 57), we transform this into:

bjtaker{QolR(cs),GiGPReCs)) = Qbranchtaker(ck)

171



Chapter 5

By definition of Qbranchtaken the claim is equal to:
SPECULATIVE

EXECUTION bjtaker(QolR(ch), GiGPRACs)) = bijtaker(l(cy),0pl(ck))

This is concluded as in lemma 3.15 (correctness of the transition func-
tions of the DLX without branch prediction): The first step is to assert that
QolR(c) is equal td (ck). In case the instruction coded bick) is a jump
instruction, the claim immediately follows from the definitiontojtaken
In case of a branch instruction, one asserts @@BPR&cL) is equal to

QED  opl(cy).

Furthermore, we add a write access to the registanchtarget The
value written isGPRa(the first GPR operand) if we have a jump register
instruction and zero otherwise:

fibranchtarget(IR,GPRg = {GPRa: I_jr(IR)

0 . otherwise

As above, we define a correct value fmanchtarget This is the GPR
operand in case of a jump register instruction. In case of any other instruc-
tion, we use zero.

o [oplcy : 1.jr(I(cy))
Qbranchtarget(cs) = {0 - otherwise

Lemma 5.9 » Given correct inputsf;branchtarget calculates this value:

fI;branchtarget(cs) = Qbranchtarget(ck)

PROOF By expandingfl;branchtarget and swapping left hand side and right
hand side for readability, we get the following claim:

GiGPRACL) : I_jr(QolR(cy))

iy L
Qbranchtarget(cs) = {0 . otherwise

One easily asserts th&lIR(ck) is equal tol (cs). This transforms the
claim into:

GiGPRdcs) I jr(I(cs))

Qbranchtarget(cs) = {O . otherwice

172



Section 5.10

In casel_jr(I(cs)) does not hold, one easily concludes the claim b%
expanding the definition d®branchtarget In case _jr (I(c)) holds, one 2ATA

expandQbranchtargetand gets the following claim: CONSISTENCY

opl(dy) = G;GPR4C))

One asserts this easily using that we have a jump register instruction. QED

5.10 Data Consistency
5.10.1 Data Consistency Criterion

The data consistency criterion for both sequential and pipelined machines
is that we match values of the registers in the implementation machine
with values taken from the specification machine. This no longer works
in a machine with speculation. As an example, considePBeegister

in the pipelined machine without Delayed PC. If the speculation fails, we
actually write wrong values into this register. This wrong value might
never occur in the specification machine.

This gets even worse if one considers a machine that detects the mis-
speculation in even later stages, e.g., in stage 3 or 4. In such a machine,
subsequent instructions are fetched using a wrong PC. This might lead to
completely undefined results. This is illustrated in figure 5.11: assume in-
structionly does not require speculation and that we misspeculated while
instructionl; was in stage 0. If1 is in stage 3, we have the following
situation: in register® k with k > 3, there is still correct data. In registers
R.3, we have the misspeculated data. In regisRkswith k < 3, we have
data calculated using misspeculated data.

The last stage that contains misspeculated data is caffedulation
stage In the example above, this is stage 3. If no misspeculation is done,
this is stage 0. In analogy to the scheduling funcli@nT), let (T) de-
note the number of this stage during cy@le

2. No—{0,...,n—-1}

We now adjust our data consistency criterion as follows: we no longer
claim anything for register® k with k < Z(T). For registersR.k with -

173



Chapter 5

174

SPECULATIVE
EXECUTION

Stage 0 l4

— R1

| contains data calculated

Stege 1 3 using misspeculated data

— R.2
Stage 2 P

— R.3 -

contains misspecul ated

Stage 3 I data

— R.4 )
Stage 4 lo

R contains correct

o 5 data
Stage 5

— R.6 )

Figure 5.11 lllustration of the data consistency criterion for machines with spec-
ulation: let stage 3 be the latest stage with misspeculated data. Stages 4 and 5
contain correct data, stages 1 and 2 contain data that were calculated using mis-
speculated data.



Section 5.10

k> >(T), we use the very same criterion as before. For the regiBt&rs

with k = Z(T), we need to distinguish the registers. DATA

CONSISTENCY

Obviously, there are some regist&%k that contain wrong data, in par-
ticular the implementation registers that hold the misspeculated data, i.e.,
the registerfk k with R € 0. But there may be more registers with wrong
data, namely those that have been calculated using the misspeculated data
as input. We denote the set of regist®¢k+ 1) that is calculated using
speculated data bg(k). Note that if one uses a speculative infu€ o
in a stage later or equal than the misspeculation is detected, it is no longer
considered a speculative input. This is motivated as follows: if the input
value is used for subsequent calculations, we know it is correct. Otherwise,
we make a rollback and the value is not used.

For all registerR k that are not element af(k— 1), we maintain the
original correctness criterion. Formally, we redefine the stage correctness
predicates introduced in chapter 3 as follows: the stage correctness pred-
icate P no longer contains a claim about registers that are involved in
speculation, i.e., those that are element(¥).

As before, lesPx(T) denote the stage correctness predicate for the spec-
ification registers and 1eéB(T) denote the stage correctness predicate for
the implementation registers. The new stage correctness preBictie
the output registers of stageholds if bothsPy andiPy hold, as before:

P«(T) <= sP(T)AiP(T)

The stage correctness predicak®(T) for the specification registers is
the same as before but without the registers involved in speculation: Thus,
for all specification register® € out(k) andR ¢ a(k) the following condi-
tion must hold:

Furthermore, we modify the claim for implementation registers. We
have to do so because we do not restore implementation registers in case
of a rollback. As described in section 5.7 (page 161), this is motivated by
saving hardware cost. L& (k+ 1) be an implementation register. The
claim depends on the full bitull[, ;. If it is active, the claim foiR stays
the same as before. If it is not active, we just do not claim anything for
R[. Thus, for all implementation registeRc out(k) andR ¢ a(k) the

175



Chapter 5

176

SPECULATIVE
EXECUTION

following condition must hold:

sl(k,T)=0

0
fullg,; = RIT'(k+1):{ 2D . otherwise

QkR(CS

If fulll,,, we havesl(k,T) = sl(k,T) + 1 according to invariant 5.3.
Thus, sl(k, T) = 0 cannot happen ifull, ; holds. The condition above
therefore simplifies to:

fulll,, = R .(k+1) = QR(®D™h

In case of arollback, the full bits of the affected stages are cleared. Thus,
we no longer have to show anything for the implementation registers in
those stages until new values are stored there. However, this new induc-
tion premise is weaker than the old one. We have to verify that it is still
sufficient for showing that the inputs of the transition functions are correct.

One easily asserts this. The lemmas used to argue the correctness of
input registers have the premise that the full bit is active (e.g., lemma 3.16,
page 82, lemma 4.7, page 103).

For the registers that are calculated using speculative values, we define
a separate predicat¥(T). The predicate holds iff the values in the reg-
isters that are iro(k) are correct. In case of specification registers, the
correctness criterion is as before: we use the value provided by the spec-
ification machine. In case of implementation registers, we used to define
the correct value using a definition for correct inputs. However, the imple-
mentation registerR.(k+ 1) € a(k) depend on speculative values.

We therefore need a notion of a correct speculative value. As described
above,the functio®R(cs) denotes the correct value of a speculative value
R € o given a configuration of the specification machine. Using that func-
tion, we define the correctness predicate for speculative implementation
registers as before.

This also allows defining a predicat ;(T), which holds iff we specu-
late correctly during cycld. The predicate is used for the speculation in
done stage 0 only. Formally, this is done using the func®{cs). We
speculate correctly iff the input generation circuit provides this value for
all registersR € o:

Sy(T) < VReo: gR(() =R



Section 5.10

As described above, the guessed values are stored in implementation
registers and are propagated by adding instances of these implement or
registers. We therefore define a correctness pred®4i®) for those reg-  CONSISTENCY
istersRwith Re o andR € out(k). The predicate is defined in analogy to
the predicatePy for implementation registers. As for the implementation
registers, we only claim anything if the full bit is active:

X(T) = (fuIILl — Rl .(k+1) = QR(Cssl(k,T)—1)>

Examples The use of the stage correctness predicates is illustrated in
figures 5.12, 5.13, and 5.14: In all figures, we summarize four classes of
registers:

By Sk, we summarize the non-speculative specification registers,

by S .k, we summarize the speculative specification registers,

e byl.k, we summarize the implementation registers that are not spec-
ulative, i.e., they are not elementofk — 1),

by I’ k, we summarize the implementation registers that are specu-
lative, i.e., they are element of k—1).

If the box of the register is drawn using stronger lines, this denotes that the
correctness of the value in the register is claimed.

In figure 5.12, we show the transition from cycleto cycle T + 1 if
instruction lg moves from stage 0 to 1 and does not misspeculate. The
speculation functioix is zero in both cycles. In cyclg, we claim the cor-
rectness of the specification registers only, i.e., of the regiStkandS .k.
Since no full bit is set, we do not claim anything for implementation regis-
ters. As soon ak is in stage 1, the full bif ully is set. Thus, we claim the
correctness of the implementation registefsduring cycleT + 1. Since
(T +1) is zero, we did not misspeculate. We therefore also claim the
correctness of the speculative implementation regidtetsduring cycle
T 4 1. Since we always claim the correctness of the regiSé&rsve omit
those registers in later figures.

In figure 5.13, we show the case that we misspeculate. The speculation
functionX therefore is 1 in cycld + 1. We therefore no longer claim that
the values ir8.1 orl’.1 are correct. However, we still claim that the values
in 1.1 are correct: these values do not depend on the guessed values. -

177



Chapter 5

178

SPECULATIVE -
EXECUTION k=0 lo 2(T) Iy
si)sa] ] ra si] s1] 12 i1
k=1 lo
s2] si] 12] 12 s2] s2] 12] 12
k=2
s3] si] 13] I3 s3] s3] 13] I3
k=3
sal sa] 14a]ra sal sa] 14| ra
k=4
ss] si] 15]1'5 ss] ss5] 15] 15

cycleT

cycleT +1

X(T+1)

Figure 5.12 Claim of correctness in case we do not misspeculatd.) points
to the speculation stage. We claim correctness for registers drawn with stronger

lines.

k=0
k=1
k=2
k=3
k=4

lo
si] 11 [ ra
g2 12 12
s3] 13 ] i3
sS4 14| 14
ss5] 15[ I'5
cycleT

l1
s1] 11 ] 1
lo
g2 12 12
s3] 13] 13
sS4 14 ] 14
ss5] 15[ I'5
cycleT +1

Z(T+1)

Figure 5.13 Claim of correctness in case we misspeculate



- Section 5.10

k=0 lits l; >T+D DATA
-+ sa| 12 [ ra si| 2] ra CONSISTENCY
k=1 lit2
S g2l 2] v2|l=—-Pb s2] 2] r2
Z(T)
k=2 i 4
s3] 13] I'3 s3] 13] '3
k=3 li1
sal 14 14 sal 14 14
k=4 li 2 li 1
ss5] 15] 1I'5 ss5] 15] 1I'5
cycleT cycleT +1

Figure 5.14 Claim of correctness in case we do a rollback. After a rollbadk,
zero.

In figure 5.14, we show the rollback case. The speculation fun&tisn
2 in cycleT and we detect the misspeculation in that cycle, as indicated by
the flash symbol. Thus, the speculation function is again 0 in Clyefel.
As before, for cyclel and stage(T) = 2, we only claim the correctness
of the values in.2. For all later stages, we claim the correctness of the
values inS .k, andl .k/I’ kiff the stage is full. In the example, stages 3 and
4 are full, we therefore claim the correctness of the valués3in’.3, 1.4,
andl’.4.

Registers of the DLX without Delayed PC As an example, consider
the pipelined DLX without Delayed PC described above. We have three
specification registers, which aRC, GPR andDM. Of these registers,
only the registelPC depends on speculative inputs since we detect any
misspeculation in stage 1. Thus, we have:

PCe a(0)

Thus, we remove the claim f&C from sPy and add it tesP, instead:

P'o(T) = PC1T=pcg®V

179



Chapter 5

180

SPECULATIVE
EXECUTION

Lemma 5.10 »

PROOF

We have speculative valuésanchtakenandbranchtarget The pred-
icateS_1(T) therefore is:

S4(T) :<= gobranchtaker(cl) = Qbranchtaker(c®™)) A

gobranchtarget(c| ) = Qbranchtarget(cd®"))

In out(0), we have instances of the speculative valoesichtakenand
branchtarget The claim for those registers is in the predicS€T):

S(T) =
(fulll,;, = branchtaker .1 = Qbranchtaker(c2®") %) A

branchtarget’.1 = Qbranchtarget(c3®") 1))

5.10.2 Properties of the Pipeline

In this section, we conclude basic data consistency properties. We start
with a lemma that asserts that the machine is initialized properly:

The predicate®(T), P,(T), and&(T) hold for cycleT =0 andk > 0.
One easily asserts this lemma using tiék,0) = 0 holds.

For the following data consistency properties, we define a shorthand for
the term “the inputs of stage are correct”. In analogy to the stage cor-
rectness predicates, we use two predicates: one for inputs not affected by
misspeculation, and one for inputs affected by misspeculation.

Let 1(T) denote that the inputs of stagehat are not affected by mis-
speculation are correct during cycle One shows this using the input
correctness lemmas. These lemmas in turn depend on certain stage cor-
rectness predicates. In order to argue the correctness of the inputs of stage
k, we need the stage correctness predicBtes the stagek — 1 and later
stages. In addition to that, we can use the stage correctness prefitates
for stagek and later ones:



Section 5.10

In analogy to that, let(T) denote that the inputs of stagethat are
affected by misspeculation are correct during cyiclel'he inputs affected
by misspeculation depend on the stage. In case of &tage, we have the
guessed data, i.e., we use the predi&tgT). In case of stagds> 0, we
use the predicate&_1(T) andP,_,(T):

DATA
CONSISTENCY

! . S (T) . k=0
() = {Ski(T)/\Plil(T) :  otherwise

Let the non-speculative inputs of stagbe correct during cyclé& and let « Lemma5.11
the output registers of stadebe not affected by a rollback. In this case,
the stage correctness predicBteholds during cyclel + 1.

(k=n—1vrollbacky ) Alk(T) = P(T+1)

Let all inputs of stagé be correct during cyclé and let the output regis-« Lemma 5.12
ters of stagé be not affected by a rollback. In this case, the stage correct-
ness predicat®, holds during cyclel + 1.

(k=n—1vrollbacky ) Al(T)ATYT) = PW(T+1)

One easily asserts lemmas 5.11 and 5.12 as done in the pipelined ma-
chine without speculation.

Obviously, if one combines the lemmas 5.11 and 5.12, one gets that
correctness of all inputs implies the correctness of all outputs unless there
is a rollback.

If the update enable signak is off and if the output registers of stage « Lemma 5.13
are not affected by a rollback, all predicates that hold in cycéso hold
incycleT + 1.

P(T) = P(T+1)
Po(T) = PI(T+1)
X(T) = &(T+1))

The proof is trivial and uses the fact that neither the values in the registePRROOF
nor the predicates change from cydléo T + 1. -

181



Chapter 5

For all machines with speculation, we assume that there is a stage in that
we detect any misspeculation at the latest. For example, in the DLX with-
out Delayed PC, we detect the branch missprediction in stage 1 (decode)
at the latest. We denote the number of this stagg.by

SPECULATIVE
EXECUTION

Lemma 5.14 » If the update enable of stageis active, and if the non-speculative inputs
of the stage are correct, we did not misspeculate, i.e., the regRers
holding the propagated speculative values have correct values.

ugl AK(T) = S a(T)

PROOF Remember thaB,_1(T) is defined as follows:

fulll = RTA=QRCM T

Sinceug] holds, fully also holds. Thus, we have to show:

! IA-1T)-1
RIA = QR(cIMETh
According to invariant 5.3, we hawd(A,T) =sl(A—1,T) — 1. Thus,
the claim is transformed into:
RTA = QREE™M)
This lemma is shown easily using the fact tt@f implies that the roll-
back signalollback! cannot be active. Furthermorgtall) is not active

and fuIIAT is active. Thus, the signaRymisspe¢ are also not active for
speculative registelR. Thus, by definition of thenisspecsignal, we have:

fyR(E) = RIA
Since the inputs are correct, we have:

frREE™) = RMA

This allows transforming the claim into:
fryRE™M)) = REE™)
For the pipelined machine with branch prediction, we have two specula-
tive registersR, which arebranchtakenandbranchtarget

The claim above fobranchtakenis concluded by lemma 5.8, and the
- claim for the registebranchtargetis concluded by lemma 5.9.

182



Section 5.10

The following lemma asserts that the guessed data is passed correctly
from one stage to the next if the update enable signal is active. Note thRT™A
this includes the case that the guessed data is wrong. CONSISTENCY

If the update enable signal of stalgés active and if the non-speculativet Lemma 5.15
inputs of stagd are correct, the predicat&(T + 1) holds iff the predicate
S 1(T) holds.

ug Al(T) = S(T+1) =S 1(T)
One easily asserts this lemma by expanding the prediGates

Let there be a rollback in stadggee> 1 and cycleT . If the values in the non-<4 Lemma 5.16
speculative output registers of stalge 1 are correct, we do the rollback

correctly, i.e., the correctness predicates for the output registers of stages

| < khold during cycleT + 1.

P(k, T) APca(T)
= YVO<I<k:R(T+)AP(T+1)AS(T+1)

One easily asserts this by expanding the predicates. For implementatiBROOF
registers, we do not have to show anything, because the rollback clears the
full bits. For specification registers, we use the predi¢te (T).

Let stagek be full during cyclesl andT + 1. If the update enable signal o Lemma 5.17
the stage is not active and if the output registers of skeaye not affected
by a rollback, the predicat&(T) is equal toS(T + 1).

ugl A (k=N —1Vrollbacky, ) A fulll,; A full L
= X(T)=X(T+1)

One easily shows this by arguing as follows: Since the update enabRROOF
signal is off and there is no rollback, the values of the registers do not
change. The claims of the predicates do not change either, since the full
bit is active in both cycles.

If a rollbacK signal is active, there is a stagesuch that this is the last« Lemma 5.18
stage with activeollback' signal.

rollbacky = 3j>k:p(j,T)
183



Chapter 5

PROOF One easily shows this lemma using induction. One starts with
SPECULATIVE  gragek and proceeds frorkto k- 1 until one either reaches the end of the
EXECUTION ' pineline or a stage without activellback signal.

5.10.3 Data Consistency Invariants

We introduced the speculation stage functifT) above without giving

a definition. In analogy tesl(k, T), we now give a recursive definition
of Z(T). The recursive definition is constructed as follows: During cycle
T =0, we obviously hav&(T) =0, i.e., no instruction with misspeculated
data is in the pipeline.

The definition ofZ(T) for T > 0 is constructed as follows: we consider
the stage thaX(T — 1) points to. There are three cases:

1. Ifthe update enable signal of the stage is not active and if the stage is
not affected by a rollback, the value of the speculation stage function
must stay the same, i.&(T) = Z(T —1).

2. If the update enable signal of the stage is active, the instruction in
the stage moves into the next stage. In case of sféfie- 1) = 0,
we need to distinguish whether we misspeculated or not. We mis-
speculated iffS_1(T — 1) does not hold. If we misspeculatex{,T)
must be one. If not s&(T) remains zero.

In case of stag&(T — 1) > 0, we already know that we misspecu-
lated, i.e.2(T)=2(T —1) + 1.

In addition to that, we define an upper bound XgiT) that isA. In
caseX(T —1) is greater or equal thak, we definex(T) to be zero.

3. Incase of arollback, as indicated mnylbacK;(}{l), the speculation
stage function becomes zero.

Thus, we defin&(T) for T > 0 as follows: Ifue'zr(}l_l) holds,>(T) is:

1 : S(T—1)=0AS((T-1)
X(T) := Z(T-1)+1 @ 0<Z(T-1) <A
- 0 . otherwise

184



Section 5.10

If uel -1 .. does not holdx(T) is:
&1 2(T) DATA

. T-1 CONSISTENCY
S(T) = 0 ; roIIbac!(z(Tfl)
>(T—-1) : otherwise

Using this recursive definition faX(T), we conclude several properties.

The latest stage we detect misspeculation in, i.e., skage an upper €« Lemma 5.19
bound for the speculation stage function.

(M) < A

One easily shows this using the definition of the speculation stage functiddROOF
above.

The stagex(T) is full during cycleT, i.e., there is an instruction in the« Lemma 5.20
last stage containing misspeculated data.

fullfr)

The claim is shown using induction dn ForT = 0, one easily asserts PROOF
the claim using thak(T) is zero and thafullp is always active.

ForT + 1, we show the claim by a case split on the vaIua@{T).

o If uel 7, holds, we have to show eithéull {77, or fullg**. The

(T)
later claim holds becaudilly is always active. We shoﬁvull&%+1

by applying lemma 4.1:

fullj’5,, = (uefr Vstallyr),,) Arollbacks ), 4

Sinceue}m holds, therollback signal cannot be active and we get

that fullJ 43, holds.

o If ue'zrm does not hold and we have a rollback, we have to show that
full§ 1, which one easily asserts as above.
If ue;(T) does not hold and we do not have a rollback, we have to
show thatfull] I holds. This follows directly form lemma 4.4 for

(T)
cycleT and stage(T). QED

185



Chapter 5

The following lemma is easily concluded from lemma 5.13 and lemma
SPECULATIVE g 5.

EXECUTION

Lemma5.21 » If we have correct inputs (both speculative and non-speculative) during
cycle T, and the values in the speculative output registers of dtaaye
correct during cycld’, the values are also correct during cy€le- 1.

(k=n-1vrollbacky, ) AIUT) AT AK(T) = S(T+1)

We now claim two speculation invariants. We will later on show these
invariants using induction.

Invariant 5.4 » If Z(T) is not zero, at least one speculative register of the output registers
of stage>(T) — 1 has wrong values:

3(T)>1 = S,

We will later on use this invariant in order to claim that we actually are
able to detect misspeculation. The following invariant is the data consis-
tency claim as introduced above:

Invariant 5.5 » The data consistency predicates of all registers that are outputs of stages
k > %(T) hold during cycleT. In addition to that, the predicate for the
non-speculative registers that are output registers of &gge— 1 holds.

k>Z(T)—1 = P(T)
k>2(T) = B(T)
k>2(T) = S&(T)

One easily asserts the following two claims by expanding the predicates:

Lemma5.22 » Let invariant 5.5 hold for cyclel. For all stagek > %(T), the non-
speculative inputs of stadeare correct.

k>Z(T) = I(T)
Lemma 5.23 » Let invariant 5.5 hold for cycl@. For stagek > Z(T), the speculative
inputs of stagé are correct.
k>3(T) = 1YT)
186



Section 5.10

The following lemma will be used as the induction step for showin%
invariant 5.4: ATA

CONSISTENCY

Let both speculation invariants hold during cydle This implies that 4« Lemma 5.24

invariant 5.4 holds during cycl€ + 1.

We do a case split on the values of the update enable sugéal) and PROOF

rollback g ).

If ue}m holds, there are three cases K4iT ).

1. LetX(T) be zero. 1fS4(T) holds,Z(T + 1) is also zero and we
have nothing to show.
Thus, 1etS 1(T) not hold. In this case, we havgT + 1) = 1 and
we therefore have to dispro®(T + 1). This is easily done using
lemma 5.15 and lemma 5.22.

2. LetX(T) >Ahold. Inthis caseX(T + 1) is zero and we have nothing
to show.

3. Let 0< Z(T) < A hold. In this case, we hax&T + 1) = 2(T) + 1.
We have to disprové‘{(T)H(T +1). As before, this is done using
lemma 5.15 and lemma 5.22.

Let ue;m not hold and Ietollback’;(T) hold. In this casez(T + 1) is
zero and we have nothing to show.

Let bothuegm androllback’;(T) not hold. In this case (T +1) is equal

to 2(T). We have to disprov&; 1) 1(T +1). According to lemma 5.17
for stagex(T) — 1, we have:

ST+ = Sr)-a(T)

The right hand side does not hold because of the induction premise.
However, we have to prove the premises of lemma 5.17: We disprove
ue;(T)f1 as follows: according to lemma 5.20, stagel) is full during
cycleT. Sinceue'zrm is not active, we would overwrite the contents of
stage>(T). This is not possible, as asserted by lemma 4.3.

In addition to that, we have to show that bdthil ] and full ] hold,

which is easily done using lemma 5.20. QED

187



Chapter 5

The following lemma will be used as induction step for the caseugat

SPECULATIVE does not hold

EXECUTION

Lemma 5.25 » Letthe speculation invariants hold in cyde Let the update enable signal
ue; be not active. This implies th&(T + 1) andPy(T + 1) hold if k >
2(T) and thatP(T + 1) holds ifk > (T) — 1:

k>5(T)—1 = PR(T+1)
k>5(T) = PYT+1)
k>Z(T) = S(T+1)

Note that the claim of this lemma is not identical with speculation invari-
ant 5.5. On the left hand side, we ha@ ) and on the right hand side, we
have the predicates for cycle+ 1.

PROOF If the output registers of stadeare affected by a rollback, we conclude
that there is a last stage> k+ 1 with active rollback signal (lemma 5.18).
We then use lemma 5.16 in order to conclude the claim.

If the output registers of stageare not affected by a rollback, we use
QED lemma 5.12 in order to conclude the claim.

Lemma5.26 » Letthe speculation invariants hold in cydle This implies tha§(T + 1)
andP/(T + 1) hold if k > Z(T) 4+ 1 and that(T + 1) if k> Z(T):

k>%(T) = P«(T+1)
k>3(T)+1 = P(T+1)
k>Z(T)+1 = X(T+1)

PROOF If ugl does not hold, we use lemma 5.25 in order to conclude the claim.

Thus, Ietuq'<r hold. This implies that the output registers of stkgmre
not affected by a rollback. We conclu@®(T + 1) using the lemma 5.22
(non-speculative inputs correct) and lemma 5.11. We condRj¢€ + 1)
using lemma 5.22 and lemma 5.23 (speculative inputs correct), and lemma
QED  5.12. We conclud&(T + 1) using lemma 5.15.

The following lemmas are the induction step for showing invariant 5.5.
For sake of simplicity, we case-split using the values of the update enable

188



Section 5.10

and rollback signals. Lemma 5.27 shows the cIaimeE‘(T), lemma 5.28

. T . . . DaAT
_shov_vs the _clalm_lfollb_acldz(T) is active, and lemma 5.29 shows the claim-,\ < «rency
if neither signal is active.

Let both speculation invariants hold during cydleand let the update< Lemma 5.27
enable signaheE(T) be active. This implies that invariant 5.5 holds during
cycleT + 1.

We do a case split oB(T) and onZ(T + 1). PROOF

1. If bothZ(T) and (T + 1) are zero, we conclude the claim as fol-
lows: we concludeP(T + 1) for k > 0 using lemma 5.22 (inputs
correct) and lemma 5.11.

We concludeP(T + 1) for k > 0 using lemma 5.23, 5.22 (inputs
correct) and lemma 5.12. Fkr= 0, we concludeS_; using the fact
thatZ(T + 1) is zero. We can then apply lemma 5.12.

We concludeX(T + 1) for k > 0 using lemma 5.21. The premises
of this lemma are shown as before.

2. LetX(T) beA andX(T + 1) be zero. In this case, we conclude the
claim using lemma 5.22 (inputs correct) and lemma 5.14.

3. LetX(T) > A hold. This is disproved using lemma 5.19.

4. The case & Z(T) <A andZ(T + 1) = 0 is a contradiction to the
definition of Z.

5. LetX(T +1) be not zero. In this cas&(T +1) = Z(T) + 1 must hold
because of the active update enable signal. Becau®€Tof 1) =
2(T)+1, we can conclude the claim using lemma 5.26.

This concludes the claim. QED

Let both speculation invariants hold during cydleand let the update< Lemma 5.28
enable signaﬂegm be not active and let the rollback sigrrallback’g(T)
be active. This implies that invariant 5.5 holds during cytle 1.

Sincerollback’;(T) holds, we hav& (T + 1) = 0. Thus, we have to show PROOF
all three predicates for ad > 0. -

189



Chapter 5

Since we have an active rollback signal, there is a sfjagex(T) that
signaled the rollback, as asserted by lemma 5.18. There are three cases
regarding the value of:

SPECULATIVE
EXECUTION

1. Letk = j hold. In this case, we have the stage in which the rollback
is detected. The output registers of this stage are not updated, i.e.,
ue} does not hold. We therefore are able to apply lemma 5.13, which
shows the claim.

2. Letk > j hold. In this case, we conclude the claim using lemma
5.26. This is feasible because jof >(T).

3. Letk < j hold. In this case, the output registers of sthgae af-
QED fected by the rollback and claim follows from lemma 5.16.

Lemma 5.29 » Let both speculation invariants hold during cydieand let the update
enable signaUeE(T) and the rollback signaiollbacl(;(T) be not active.
This implies that invariant 5.5 holds during cydier 1.

PROOF Since the update enable sigm@m and the rollback signabllbach(T)
are not active, we have(T +1) = Z(T).

If uq'(r does not hold, we conclude the claim using lemma 5.25.

If ugl holds, we obviously havk # %(T). Fork > Z(T), we conclude
the claim using lemma 5.26. Far< X(T) — 1, there is nothing to show.
Fork=ZX(T)—1, we argue thaule;(T)_1 cannot hold. According to lemma

QED  5.20, fullgm holds. This is a contradiction to lemma 5.2.
Lemma 5.30 » Both speculation invariants hold.

Note that speculation invariant 5.2 implies the data consistency of the
specification registers.

PROOF We show this by induction ofi. For cycleT = 0, one easily concludes
the claim using thak(0) = 0 and using lemma 5.10. The claim for+ 1
is concluded from the claim for cycle using the lemmas 5.24, 5.27, 5.28,
- and 5.29.

190



Section 5.11

5.11 Liveness
LIVENESS

5.11.1 Liveness Proof Strategy

As for the pipelined machine without speculation, we desire to prove that
the pipelined machine with speculation is alive. We maintain the very same
liveness criterion as we used for the prepared sequential and pipelined ma-
chine without speculation.

Unfortunately, we cannot repeat the liveness arguments of the pipelined
machine without speculation. This arises from the fact that the machine
with speculation restarts instructions in case of misspeculation. We will
therefore have to argue that this does not cause an infinite loop of rollbacks.

Informally, we argue as follows: in case there is no rollback, the exe-
cution proceeds as in the machine without speculation. In case there is
a rollback, we argue that we will not misspeculate on the same instruc-
tion twice. However, this only holds for rollbacks in the speculation stage
(lemma 5.16). For rollbacks in earlier stages, we cannot make any claim.
We therefore only consider the latest stage that is full. In case there is a
rollback in the latest stage that is full, we can claim that this must be the
speculation stagg in case of a rollback.

Formally, we define a functioM(T) that maps a cycl& to the number
of the latest full stage:

M(T) := maxk] full]}

In order to show liveness, we have to show that for all instructicarsd
stagesk there is a cyclel' such thatsl(k,T) =i holds. We consider the
instruction in stageM(T). Let this be instructiori. We will show that
this instruction will eventually arrive in the last stage using the arguments
above. We will then conclude that instructiomust have been in all stages
below at least once, which satisfies our claim.

After that, we argue that the instruction in the last stage will eventually
leave the pipeline. After that, there must be a stage such that instruction
i + 1 is the last stage in the pipeline. This is the first stage in the worst case.
We can now repeat the arguments made for instruc¢fioninstructioni + 1
and so on.

This proof strategy is illustrated in figure 5.15: in cydlg we have
instructionl; in stagek = 2. This is also the latest full stage, i.M1(T;) = 2.

191



Chapter 5

192

SPECULATIVE
EXECUTION

Lemma5.31 »

PROOF

Lemma 5.32 »

k: O |i_|_2
— R1 — R1 — R1
k=1R lj;1 lis2
— R2 M(T) — R2 — R2
k=203 <— Y RNl e
— R3 — R3 — R3
M(T:
k:3 |i_|_1 e( 3)
= R4 — R4 — R4
M(T:
k=4 N M(T2)
R5 - R5 - R5
T T

Figure 5.15 lllustration of the liveness proof strategy for machines with specula-
tion. M(T) points to the latest full stage.

This instruction will eventually arrive in the last stage. Let this be true in
cycleT,. The instruction will eventually leave the pipeline. Let this be true
in cycle Ts. Then there is a stage such that instructign is in the last full
stage. In the example, this is stdge 3.

We will now formalize this proof.

5.11.2 Properties of M(T)
We conclude a set of trivial lemmas from the definitiorfT ):
This maximum exists for all .

One easily concludes this using th‘aﬂlg is active for allT by definition
of the signal.

ForT =0, M(T) is zero:



Section 5.11

One easily asserts this by the definition of the initial values of the full
bits. LIVENESS

StageM(T) is full during cycleT, which one concludes by definition o Lemma 5.33
max:

fullyr,
All stages below stagkl(T) are not full. < lLemma5.34
k>M(T) = full]
The predicatdelowempty(T) (page 138) wittk = M(T) holds for all <« Lemma 5.35
cyclesT.
VT : belowempty,)(T)

One easily concludes this by using lemma 5.34 and the definition of
belowempty

A stage is the latest full stage iff the stage is full and all stages below<ileemma 5.36
empty.

M(T)=k <= full] Abelowempty(T)

In caserollback’IA(T) holds, M(T + 1) is zero. Ifuey(r) is active and <« Lemma 5.37
M(T) is the last stage, we do not claim anything.ué,r) is active and

M(T) is not the last stage, we claim thslt(T + 1) is M(T) + 1. In any
other case, we claim thM (T + 1) is equal toM(T).

uely i) AM(T) =n—1

0 : rollbacK
— M(T+1)={ M(T)+1 : uq&m
M(T) . otherwise
We do a case split on the valuesroflbacl(IA(T) andue,TA(T). PROOF B

193



Chapter 5

194

SPECULATIVE
EXECUTION

1. Letue{A(T) hold. Thus, we only have to considel(T) #n—1. In

this case, we claim that

M(T+1) £ M(T)

holds.

We instantiate lemma 5.36 with cycle+ 1 and stageM(T) + 1.
This is:

M(T +1) = M(T) + 1
— fuII,\T,|(+T1)Jrl A belowemptyyr),1(T +1)
Thus, the claim holds iff the right hand side of the equivalence above
holds. We showf uIIle)Jrl using lemma 4.1 (full bit transition func-
tion):

fullyitys = (uelyr) Vstallyr),q) Arollback gy
As un,l(T) holds, this simplifies to:
fullyiry,, = rollback .4

We conclude that this rollback signal cannot be active sin;'ERT)
is active.

Itis left to show thatbelowemptyyt),1(T +1) holds, i.e., that all
stages below stagd(T) + 1 are empty during cycl& + 1:

Vili>M(T)+1: full]

We apply lemma 4.1, which replacésll | **:

Vilj>M(T)+1: ue_,vstalll) Arollback]
This simplifies to:
Vili>M(T)+1: (uejT_l/\staIIjT)\/roIIback’JT

We disproveuej[1 using that stage — 1 is not full during cycleT.

We disprovestalljT using that stagg is not full during cycleT. This
concludes the claim.



Section 5.11

2. Letrollback’I,l(T) hold. In this case, we claim that

M(T+1) = 0

holds, i.e., we have to show that stage 0 is full and all stages below
are empty. One easily asserts this by using the fact that the rollback
clears all full bitsfull [ " with 0 < j < M(T) and thatfullj ** holds

by definition.

3. tl;]ettbothrollbacldIA(T) and un,l(T) not hold. In this case, we claim
a

M(T+1) = M(T)

holds, i.e., that the number of the last full stage does not change
from cycleT to cycleT + 1. We use lemma 5.36 with cycle+ 1
and stageM(T). This is:

M(T +1) = M(T)

< full7) Abelowempty,r)(T +1)

Thus, the claim holds iff the right hand side of this equivalence
holds. FoM(T) =0, this claim holds by definition of the full signal.
For M(T) > 0, we showfull 7, using lemma 5.3 (full bits do not
get lost) for stagé(T) and cycleT:

(fullfyr) Auelyr Arollback ) = fullf

One easily concludes thzﬁull,\TA(T) holds by lemma 5.33.

It is left to show thatbelowempty, ) (T + 1) holds, i.e., that all
stages below stagd (T) are empty during cycl& + 1:

Vili>M(T): full]*t

One asserts this using the transition function as above. QED

5.11.3 Rollback Properties

The last stage with activellback signal is full and not stalled. Remem<« Lemma 5.38

ber that we use@(k, T) as a shorthand for the fact that stdges the last
stage with active rollback signal.

p(k,T) = full] Astall]

LIVENESS

195



Chapter 5

196

SPECULATIVE
EXECUTION

PROOF One easily concludes this from the definition of tlutlback
signals. Themisspecsignals are only active if the stage is full and not

below that causes a rollback.

Lemma 5.39 » If we do arollback in stag® (T) during cycleT, this is the last stage with

activerollback signal.
rollbacky(ry = p(M(T),T)

One easily concludes this using the fact that all stages below ktage
are empty.

We have to argue that we only do a rollback in case of a misspeculation.

Furthermore, we have to argue that the correct value is saved in case of a

misspeculation. We do this using the following two lemmas:

Lemma 5.40 » LetT > 0 be a cycle and let stagebe the last stage with activellback

signal during cyclelT — 1. This implies that the values of the scheduling
function for stages < k during cycleT match the number of the instruction
in stagek during cycleT — 1.

T>0ApK T—DAI<k = sI(,T)=sl(kT—-1)

PROOF We prove this claim using induction dn The induction starts with= k

and proceeds fromto | — 1.
Forl =k, we conclude the claim by expanding the definitiorskgk, T ).
Forl — 1, we have the following claim:

sl —1,T) = sl(kT—1)
According to the induction premise, we have:
si(,LT) = sl(kT-1)
This allows transforming the claim into:
sl —1,T) = sI(,T)

One easily asserts thadllback| * holds using the definition of the
signal. After that, one expands the definitiongdfl — 1,T) on the left
QED hand side. This concludes the claim.

stalled. Since we have the last full stage, there cannot be an instruction



Section 5.11

The following lemma argues about the correctness of the rollback mech-
anism. Given correct non-speculative inputs, we claim that we only roft/VENESS
back in case of misspeculation. Furthermore, we claim that we correctly
restore the registers destroyed by the misspeculation.

If stagek is the last stage with activellback signal during cycld and if <« Lemma 5.41
the non-speculative inputs of this stage are correct, we have two claims: a)

we misspeculated, and b) the correct values are in the speculative registers
incycleT + 1.

PkTIAIKT) = Sa(T)AS(TH+1)

We show that we misspeculated as follows: because of rollback inlstagePROOF
at least onamisspeg signal must be active. L&misspede that signal.
Thus, we have:

fWR() # RK

Since fxR does not depend on inputs that are speculative by definition,
we can argue thafgR gets correct inputs. For example, in the DLX with
branch prediction, these functions useandGPRaas inputs. These reg-
isters are not calculated using the guessed values. Thus, we have:

frREa™ ™) % RKT

Using the correctness diR (lemmas 5.8 and 5.9 for the DLX with
branch prediction), we get that the correct valudra$ different from the
value inR.k during cycleT:

QR(A®T) % RK

Since we have a rollback, we can conclude that stagefull using
lemma 5.38. This allows applying invariant 3.3, which transforms this
into:

QR DY) 2 RKT

Becausefull] holds, this implies tha% 1(T) does not hold (compare
the definition ofS as given in section 5.10.1). This concludes the first
claim. -

197



Chapter 5

198

We show that we store the correct values in the speculative registers as
follows: By definition ofS_1(T + 1), we have to show for the speculative
valuesR:

SPECULATIVE
EXECUTION

QR L QRO

One easily shows that in case of a rollbapR returns the values iR:

LR £ QR(QOTH)

These registers hold the value provided fRR in case of a rollback by
definition. Thus, the claim is transformed into:

fWR(C) = QR(EOTH)

As above, we argue that the inputsf®RR are correct, which transforms
the claim into:

frRE ) £ QR(EEOTH)

As above, we apply the lemma that shows the correctneggrpfvhich
transforms the claim into:

QR(c2® ™) QR(cZ@TH)

It is left to show thasl(k, T) is equal tosl(0, T 4 1). This is easily done
QED using lemma 5.40.

Consider the following situation: Let us have a rollback in cytleJs-
ing the lemma above, we can conclude that we have the correct data in
the registers;.R during cycleT + 1. Now let stage 0 be stalled during
cycleT + 1 for any reason. We now have to argue that the correct data is
preserved for subsequent cycles until another rollback happens or the up-
date enable signal gets activated. If not so, we could get an infinite loop of
rollbacks if we “forget” the correct data because of stalls.

Lemma 5.42 » Given that bothug) androllback are not active and we have no mis-
speculation, we also have no misspeculation in cyclel.

ue] Arollback{ AST, — ST/?



Section 5.11

PROOF By definition of S_1, the claim is:
LIVENESS

0oR(N) =OR(EG") =5 goR(G ) = QR OTY)

One easily concludes this claim as follows: Using invariant 5.1, one
argues thasl(0,T) = sl(0, T + 1) holds. This transforms the claim into:

QWR(E) = goR(c Y

One easily asserts this using the fact that the regigigRsddepends on
do not change from cycl€ to T + 1 because of the disabled rollback and
update enable signals. QED

We now define a predicatdc(T) that holds if we have a guarantee that
the instruction in stag® (T) will not rollback. We argue that once an
instruction causes a rollback, we have a guarantee that it will not do so
a second time. Thus, we will later on prove tih&t(T) implies that the
rollback signal of stag®1(T) is not active during cycl@.

We provide a recursive definition fdic(T) in analogy to the scheduling
functionsl(k,T). In cycleT = 0, we have no guarantee that instructlgn
will not cause a rollback. Thus, we defic(0) to be false.

ForT > 0, we defineMc(T) using the rollback and update enable sig-
nals. IfroIIbacI(I,llefl) holds, we have a rollback and we argue that the
instruction in stag® (T — 1) during cycleT — 1 will not rollback a second
time. Because of the rollback, that instruction is in stage 0 during cycle
T. Because the rollback happened in the latest full stage, all stages later
than stage 0 are empty during cydle Thus, the instruction that caused
the rollback is still in the latest full stage. Thus, we defiie(T) to be
true for this case.

rollback 1 5, = Mc(T)=1

In case the update enable of stag¢T — 1) is active, the instruction
proceeds into the next stage. We claim that the guarantee is maintained,
i.e., thatMc(T) = Mc(T — 1) holds. In case there is no next stage, i.e.,
in case of stag(T —1) = n— 1, the instruction we have a guarantee
for leaves the pipeline. In this case, we no longer have a guarantee and
therefore defindc(T) to be false.

ueh 7 g AM(T =1 #n-1 = Mc(T)=Mc(T -1
unw;Tl_l)/\M(T—l):n—l — Mc(T)=0

199



Chapter 5

200

SPECULATIVE
EXECUTION

Lemma 5.43 »

PROOF

QED

Lemma 5.44 »

PROOF

In case neither rollback nor update enable is active, we clainMb@r )
is Mc(T —1). In order to summarize, the complete definitiorMdé(T) is:

0 . T=0
1 : rollback \, +
- (T-1)
Mc(T) 0 ; ugl iy AM(T—-1)=n-1

Mc(T —1) : otherwise

LetT andT’ be cycles withT’ > T. Given that both the update enable and
rollback signals of stag®1(T) are not active during cycleB < T" < T,
M(T') is equal toM(T) andMc(T') is equal taMc(T).

(VT <T" <T':uel, Arollback )
= M(T)=M(T') AMc(T) = Mc(T')

We show this claim using induction off. For T’ = 0, we havel = T’
and the claim obviously holds. F@t + 1, we easily conclude the claim as
follows:

1. We concludeM (T’ + 1) = M(T’) by using lemma 5.37 and the fact
that the update enable amullback’ signals are not active. We then
use the induction premise in oder to conclMET’) = M(T).

2. We concludeMc(T’ + 1) = Mc(T’) by expanding the definition of
Mc(T’ +1) and the fact that the update enable avitback signals
are not active. We then use the induction premise in oder to conclude
Mc(T') = Mc(T).

For all stage, let the external stall signals of stafgde finite true and
stay untilue.. For all cyclesT, the stall signal of staghl(T) eventually
gets deactivated after cycle

HZTSta”M(T)
Remember that the stall signal is calculated using internal and external
stall signals:
stallfy, = full] A(ex{ vint))

The internal stall signals handle data hazards and pipeline stalls, the ex-
ternal stall signals are used for caches, for example. According to lemma



Section 5.11

4.32 (page 140), the disjunction of the external stall sigeatsis finite
true. Thus, there is a cyclé > T such tha’exﬂ,l'(T) is not active. LeT’ be
the earliest such cycle.

LIVENESS

Observe that both lemma 4.33 (page 141) and lemma 4.31 (page 139)
hold also in the pipelined machine with speculation (the proof uses the
same arguments).

According to lemma 5.35, we havgelowemptyM(T),T). Accord-
ing to lemma 4.31, the stages below stdeT ) stay empty at least until
uey(t) becomes active. One easily concludes that this does not happen
before cycleT’ because before cyclF, the external stall signal is active.
Thus, we havdelowemptyM(T),T’).

Lemma 4.33 states that empty stages do not cause internal stall signals.
According to this lemma, the internal stall signals of st&tfd ) cannot be
active during cyclel’ because the stages below stdyl) are empty.

Thus, bothexi; andinty are not active during cycl&’. This implies that
the stall signal is not active and the claim holds. QED

Informally, consider an instruction in a stage. Assuming the stall signal
of the stage will eventually be deactivated, the instruction in the stage either
moves into the next stage or gets evicted because of a rollback.

Formally, let stagék be full during cycleT. Let there be a cycld’ > T <« Lemma5.45
such that the stall signatall, is not active. This implies that either the
update enable signal of stalygT) or therollback signal of stageM(T)
eventually gets activated.
fulll A 32Tstallk = 3=T(ueVrollbacKy)

The proof is done in analogy to the proof of the counterpart lemma of thBEROOF
machine without speculation, lemma 3.20 (page 87).

For all cyclesT, either the update enable signal of stadd€T) or the <« Lemma 5.46
rollback signal of stageM(T) eventually gets activated.

HZT(UQ\A(T) V roIIbaCI(M(T))

201



Chapter 5

202

SPECULATIVE
EXECUTION

Lemma 5.47 »

PROOF

Lemma 5.48 »

PROOF

QED

Lemma 5.49 »

PROOF

PROOF This claim is shown by instantiating lemma 3.20 with stage
M(T). We showfull, - using lemma 5.33. We show that the stall signal
will eventually be deactivated by using lemma 5.44.

The speculation stage(T) is always above or equal to the last full stage.

(T) < M(T)

According to lemma 5.20, stagg(T) is full during cycleT. Thus, this
cannot be below the last full stage.

The non-speculative inputs of stalygT) are always correct.

Iy (T)

By definition of (1 (T), we have to show:

M:1>M(T)-1 = B(T)) A
(VI =M(T) = F(T))

Remember thd® (T) denoted non-speculative output registers of stage
andP/(T) denoted the output registers of stgieat depend on speculative
registers. We easily conclude both claims using the data consistency of the
machine (invariant 5.5, page 186) an(l) < M(T) (lemma 5.47).

If Mc(T) holds, the speculation registers that are output of Jt&ge) — 1
hold correct values.

Mc(T) = Sum)-1(T)
We show this claim by induction om. ForT = 0, we have nothing to
show sinceMc(0) does not hold.
ForT + 1, we show the claim as follows:

In case we have arollback, i.e.rﬁllbacl({,lm is active, we havé/ (T +
1) = 0 and we have to sho@_; (T + 1), which is easily done using lemma
5.41.



Section 5.11

In case we do not have a rollback but an active update enable signal
uelyr) We haveMc(T + 1) = Mc(T). In caseMc(T + 1) does not hold, LIVENESS
there is nothing to show. Thudc(T) holds, and we therefore have
Su(r)-1(T). Using lemma 5.15, we concludsgy (T +1). According to
lemma 5.37, we havel (T + 1) = M(T) + 1, and therefor&yr1)1(T +
1), which concludes the claim.

In case both signals are not active, we have to do a case split on the
value ofM(T): In caseM(T) is zero, we conclude the claim using lemma
5.42. If not so, we argue tha’qTA(T)fl cannot be active using lemma 4.3.
According to lemma 5.37, we haw(T + 1) = M(T), thus, we have to
showSy ) (T +1), which is easily done using lemma 5.13 for stage ).

QED

The following lemma shows that the “intended meaning™u(T) is
achieved, i.e., thatic(T) implies that we do not have a rollback in stage
M(T).

If Mc(T) holds, theollback’ signal of stagé/(T) cannot be active during« Lemma 5.50
cycleT.

Mc(T) = rollback )

According to lemma 5.49, we hadgyt)_1(T). PROOF

Assumerollback’IA(T) is active. Using lemma 5.39, we can conclude that
p(M(T),T) holds, i.e., stag®!(T) is the last stage with activellback
signal. Using lemma 5.48, we concludig)(T). This allows applying
lemma 5.41 for stag®!(T).

Lemma 5.41 states th&,t)—1(T) cannot hold, which is a contradic-
tion. QED

We now proceed in the liveness proof as follows: we show that an in-
struction in the last full stage is live, i.e., eventually moves into the next
stage. The first step is to show this assuming we have a guarantee that the
instruction will not cause a rollback. One easily shows this. -

203



Chapter 5

204

SPECULATIVE
EXECUTION

Lemma 5.51 »

PROOF

QED

Lemma 5.52 »

Lemma 5.53 »

The next step is to conclude that this also happens in case we do not have
that guarantee. We do this by arguing that the instruction will rollback at
most once in the worst case.

Assume we have a guarantee that the instruction in $#&@de will not
rollback. In this case, we claim that there is a cyEle> T such that the
update enable signal is active and no rollback is signaled during cycles
toT'.

!

Mc(T) == IT'>T: gy AYT <T" < T': rollback

According to lemma 5.46, we have a cydié > T such that either the
rollback signalrollbacky(ry or the update enable signady ) is active.
Let T’ be the smallest such cycle.

We will disprove thatrollback’M(T) can be active. Using lemma 5.43,
we conclude thaMc(T’) holds. Using lemma 5.50, we conclude that
rollback ) cannot be active.

Thus,uey ) must be active during cycle’. We will show that cycleT”
satisfies the claim. It is left to show thaillback vty is not active from
the cyclesT to T'. For cycleT’, we conclude this from the definition of
the update enable signal (the update enable signal is not active in case of
a rollback). For cycle§” with T < T” < T, we conclude this from the
fact thatT' is the smallest cycle such that eitelback vty or ueyr) is
active.

The following lemma is the counterpart of lemma 3.23 (page 88) for the
machine without speculation. The proof is done in analogy to the proof of
lemma 3.23.

Let T andT' > T be cycles. Let the update enable signel and the
rollbacKk signal of a stagk be off during the cycle$” with T’ >T" > T.
The value of the scheduling function does not change from dyc¢teT’.

VT/|T'>T" >T :ug" Arollback}” = sl(k,T) =sl(k,T')

Given thatMc(T) holds, there is a cycl&’ > T such that the next instruc-
tion is in stageM(T).

Mc(T) = 3IT'>T: sI(M(T),T') =sI(M(T),T)+1



Section 5.11

PROOF Let T” be the earliest cycle with active update enable signali
according to lemma 5.51, i.e., we hawe], ). Using lemma 5.52, we LIVENESS

conclude that the value of the scheduling function for stdg€) does not
change from cycl§ to T":

sI(M(T),T) = sI(M(T),T")

We then use invariant 5.1 in order to conclude that the value of the
scheduling function for stag®(T) increases by one from cycl&” to
cycleT” +1:

sIM(T),T"+1) = sI(M(T), T")+1

Thus, cycleT” + 1 satisfies our claim. QED

Let Mc(T) hold, i.e., we have a guarantee that the instruction in stageemma 5.54
M(T) will not rollback. Furthermore, let this stage not be the last stage,
i.e.,M(T) < n—1. In this case, there is a cyclé such that the instruction
in stageM(T) during cycleT is now in stageM(T) + 1. Furthermore, the
last full stage during cycl&’ is stageM(T) + 1 and the instruction in that
stage is guaranteed not to rollback.

= JT'>T: sIM(T)+1,T)=sI(M(T),T)A
M(T) =M(T)+1A
Mc(T')

Let T” be the earliest cycle with active update enable signal according 8ROOF
lemma 5.51, i.e., we havuaqym. We will show thatT” + 1 satisfies the
claim above. We show the three parts of the claim separately.

1. We showsl(M(T)+1,T"+1) =sI(M(T), T) as follows: Using the
same arguments as in the proof of lemma 5.53, we conclude:
sIM(T),T"+1) = sI(M(T),T)+1

One easily shows that the full signﬂhll&'ﬁ){rl is active using that

the update enable signal is active. We then apply invariant 5.3, which
states:
sIM(T),T"+1) = sIM(T)+1T"+1)+1

Thus, the first part of the claim is satisfied BY + 1.

205



Chapter 5

2. We showM(T"” 4+ 1) = M(T) + 1 as follows: Using lemma 5.43, we
SPECULATIVE conclude thaM does not change from cycleto T”. Using lemma

EXECUTION 5.37, we conclud®(T” 4+ 1) = M(T") + 1. Thus, T + 1 satisfies
the claim.

3. We showMc(T” +1) as follows: Using lemma 5.43, we conclude
thatM does not change from cycleto T”. By definition ofMc(T" +
1), we concludeMc(T” +1) = Mc(T"). Thus,T” + 1 satisfies the
QED claim.

We can extend the claim of lemma 5.54 to multiple stages using induc-
tion:

Lemma 5.55 » Let Mc(T) hold, i.e., we have a guarantee that the instruction in stage
M(T) will not rollback. Consider a stage> M(T). The claim is that
there is a cycld’ > T such that the instruction in sta@(T) during cycle
T is in stagek during cycleT’. Furthermore, we claim that stages the
last full stage during cycl&’ and that the instruction will not rollback.

k>M(T)= 3JT'>T: slkT)=slI(M(T),T)A
M(T') = kA
Mc(T')

PROOF We show the claim by induction da Fork = M(T), the claim obviously
holds. For the step frorkto k+ 1, we apply lemma 5.54.

The following lemma has the very same claim as lemma 5.53. However,
we no longer premise that the instruction in stdg€T ) is guaranteed not
to rollback.

Lemma 5.56 » For all cyclesT, there is a cyclel’ > T such that the next instruction
moves into stag®1(T).

AT > T sI(M(T),T') =sI(M(T), T) +1

PROOF We use lemma 5.46 in order to conclude that there is a dytle T such
that either the update enable rtiback signal is active. LeT"” be the
earliest such cycle. In case the update enable signal is active, we conclude
the claim as done in the proof of lemma 5.53.

206



Section 5.11

In case the rollback signal is active, we conclude the claim as follows:
Using lemma 5.52, we conclude that the value of the scheduling functibiYENESS
for stageM (T) does not change from cycleto T":

sI(M(T),T) = sI(M(T),T")

We then use lemma 5.43 in order to conclude M&t"”) = M(T). This
allows applying lemma 5.39. Lemma 5.39 states that SKMgE) is the
last stage with active rollback signal during cy@lé This allows applying
lemma 5.40 with = 0. Lemma 5.40 states that(0, T” + 1) is equal to
sI(M(T),T").

Because of the rollback, we had®T"” + 1) = 0 by lemma 5.37. Thus,
we have:

sIM(T),T) = sIM(T"+1),T"+1)

Since we have arollback, we now have a guarantee that the instruction in
stageM(T” + 1) during cycleT” 4 1 will not rollback. Thus, we can apply
lemma 5.55 in order to conclude that this instruction eventually moves into
stageM(T). Lett be that cycle.

sIM(T),T) = sI(M(T),t)
We will then use lemma 5.53 in order to conclude that the value of the
scheduling function will eventually increase by one. t'dte that cycle.
SIM(T),T)+1 = sI(M(T),t)

Thus, cycle’ satisfies the claim. QED

The following lemma has a similar claim as lemma 5.54. However, we
do not premise that we have a guarantee that the instruction inlgt@ige
will not rollback.

Let M(T) not be the last stage. There is a cy@le> T such that the « Lemma 5.57
instruction in stag®(T) during cycleT is in stageM(T) + 1 during cycle
T'. Furthermore, stagel(T) + 1 is the last full stage during cyclE.
MT)<n—1= 3IT'>T: sIM(T)+LT)=sI(M(T),T)A
M(T") =M(T)+1

207



Chapter 5

SPECULATIVE
EXECUTION

PROOF

Lemma 5.58 »

PROOF

QED

Lemma 5.59 »

208

k| fullg | si(k,T)

0] 1 4

1] 1 3

2] 0 3

3] 1 2

41 1

5 1 0 «— M(T)
6| O 0

7] 0 0 «—n-1

Table 5.5 lllustration of lemma 5.59: In a pipeline with= 8 stages, we have
M(T) =5 and thereforsl(5,T) =sl(7,T).

The proof follows the same pattern as the proof of the lemma 5.56: in case
the update enable signal becomes active, we argue as in lemma 5.54. If not
so, we have a rollback and continue as in lemma 5.56.

The following lemma is an inductive extention of lemma 5.57.

Consider an instruction in the last full stage during cyEleThere is a
cycle T’ such that this instruction is in the last stage and such that the last
stage is the last full stage.

IT': slin—1,T') =sI(M(T),T) A
M(T') =n—1

Let k be the number of the last full stage. One easily concludes this claim
by induction onk. One starts with the last stage and proceeds inductively
from stagek to stagek — 1 until the desired stage is reached. The induction
step is argued using lemma 5.57.

The value of the scheduling functiah(M(T), T) is equal to the value of
the scheduling function in the last stagj¢gn—1,T).

sI(M(T), T) = sl(in—1,T)

This lemma is illustrated exemplary in table 5.5.



Section 5.11

PROOF Letk be the number of the last full stage. One easily concludes
this claim by induction ork. One starts with the last stage and proceeds'VENESS
inductively from stagek to stagek — 1 until the desired stage is reached.

The induction step fronk to k— 1 is argued as follows: sinctully does

not hold, one can use the scheduling invariants 5.2 and 5.3 in order to argue

that

sl(k,T) = sl(k—1,T)

holds. QED

For all instructiond;, there is a cycl@ such that the value of the scheduk Lemma 5.60
ing function for the last stage and cydi@si.

aT:  sl(n—=1,T) =i

One shows this claim using induction anFori =0, T = O satisfies the PROOF
claim.

Fori+ 1, we show the claim as follows: According to the induction
premise, there is a cycl& such thatsl(n—1,T) =i holds. Accord-
ing to lemma 5.59, we have instructidnalso in the last full stage, i.e.,
sI(M(T),T) =i.

We use lemma 5.58 in order to argue that instructiereventually in the
last stage, i.e., we have a cydliésuch thasl(n—1,T') =i andM(T') =
n—1. We then use lemma 5.56 in order to conclude that there is a cycle
T" such thasl(n—1,T") =i+ 1. Thus, cyclel” satisfies the claim. QED

5.11.4 Liveness Proof

Using lemma 5.60, we show that for all instructidnsthere is a cycle

such that this instruction is in the last stage of the pipeline. However, our
liveness criterion as proposed in chapter 3 is stronger: it requires that we
can provide such a cycle for each stage and not just for the last stage.

209



Chapter 5

210

SPECULATIVE
EXECUTION

Lemma 5.61 »

PROOF

QED

Lemma 5.62 »

We will now argue as follows: given that an instruction is in the last
stage, there must be cycl&ssuch that; was in all stagek < n— 1 before.
For intuition, this means that instructions never skip over a stage.

Letk > O be a stage. Ldt be the instruction given bgl(k, T). In this
case, there is a cycl&’ such thatsl(k—1,T') isi. For intuition, if you
have an instruction in a stadge> 0, there must be an earlier cycle such
that this instruction is in the previous stage.

k>0ASslkT)=i = 3T :slk—1T) =i

We show this claim using induction oh. ForT =0, T’ = 0 satisfies the
claim since we havsl(k,0) = sl(k—1,0) = 0.

ForT + 1, we have the following claim:

k>0ASIkT+1) =i = 3IT:sl(k-1T)=]i

We show the claim as follows: Assume we h&we n— 1 and an active
rollbacK ;1 signal during cyclél'. We will show that cycleT + 1 satisfies
sl(k—1,T +1) =i. By definition of therollback signals,rollbacky must
be active during cycld. This implies thatsl(k—1,T + 1) is equal to
sl(k, T + 1) by definition ofsl(k—1,T + 1).

Letk=n—-1or roIIback’I+l hold. If the update enable signa§] is
active, the desired instruction was in stagel during cycleT, which sat-
isfies the claim. If the update enable sigag] is not active, the instruction
was in stagd during cycleT . In this case, we apply the induction premise,
which provides a cycl@’ that satisfies the claim.

We extend the argument of the previous lemma inductively for multiple
stages: Lek andl < k be stages and ldt be the instruction given by
sl(k, T). In this case, there is a cyclé such thasl(l,T') isi.

sk, T)=iAl<k = 3JT":sl(I,T) =i



Section 5.12

PROOF We show the claim using induction énWe start withl = k and
proceed from to| — 1. Forl =k, the claim obviously holds. For the step
from stagd to| — 1 we apply lemma 5.61.

PRECISE
INTERRUPTS

For all instructiond; and stageg, there is a cycld such thassl(k,T) is < Theorem 5.63
equal tai. This is the liveness criterion proposed in chapter 3.

T sk T) =i

Using lemma 5.60, we conclude that there is a cyiclsuch thaisl(n— PROOF
1,T') =i holds. Foik = n— 1, this satisfies the claim.

Thus, letk 2 n—1 hold. In this case, we apply lemma 5.62, which
provides us with a cycl&” that satisfies the claim. QED

5.12 Precise Interrupts

5.12.1 Definition

Interrupts are events that change the flow of control of a program by means
other than a branch instruction [MPQO]. They are used in order to realize
virtual memory, fast I/0, and arithmetic error handling.

In case of an interrupt, the state of the machine is saved and the execution
proceeds with an interrupt service routine (ISR). After the interrupt service
routine is done, the state of the machine is restored and the execution of
the program proceeds.

An interrupt between instructioh_1 andl; is precise if instructionsg
to l;_1 are completed before starting the ISR and later instructibns.j
did not change the state of the machine [SP88I9V].

5.12.2 The DLX with Interrupts

The specification of a DLX with interrupts used in the following section is
taken from [MPOQ]. Interrupts are events other than branches that modify -

211



Chapter 5

212

SPECULATIVE
EXECUTION

Table 5.6 Special purpose registers used for exception handling

| address| name | meaning \

0 SR status register

ESR exception status register
ECA exception cause register
EPC the exception PC

EDPC | the exception delayed PC
EDATA| exception data register

a b wN P

the flow of control. Each such event is assigned a numbgoim,...}.

If such an event occurs, the next instruction fetched and executed is taken
from a special interrupt service routine. The address of this interrupt ser-
vice routine is denoted b8ISR After the interrupt service routine is done,
there are three ways to resume the execution:

1. The interrupted instruction is repeated.

2. The execution is continued with the instruction that follows the in-
terrupted instruction.

3. The program execution is aborted.

In order to support interrupt handling, the instruction set architecture of
the machine is extended. A set of registers is added to the configuration
of the machine: the registers are callgukcial purpose registersnd are
listed in table 5.6. Each register is 32 bits wide.

In order to access these new registers, two instructions are added: the
instructionmov<®i reads a special purpose register and stores the value in
a GPR register. The instructionov2s reads a GPR register and stores the
value in a given special purpose register. The transition funé&iGPRis
changed accordingly. Given an instruction waordhese instructions are
indicated byl_movs(l) andl _movi(l).

The special purpose regist8Ris used in order to mask interrupts. If
bit j in the registeiSRIis set, the interrupt numbgris handled. If bitj is
not set, the interrupt is suppressed. However, not all interrupts can be sup-
pressed usingR Interrupts that can be suppressed are cafiadkable

Table 5.7 lists the interrupts supported by the DLX without floating point
instructions. This list is taken from [MPQO]. The reset interrupt occurs



Section 5.12

\ Interrupt | Symbol || Priority | Resume| Maskable]
reset reset 0 PRECISE
illegal instruction ill 1 abort INTERRUPTS
misaligned access mal 2
page fault IM ipf 3 repeat no
page fault DM dpf 4
trap trap 5
FXU overflow ovf 6 continue yes
external 1/0 exXj] 7+]

Table 5.7 The Interrupts and their priority

directly in the initial configuration of the machine. Thus, we start the ex-
ecution after reset at the interrupt service routine and no longer at address
zero.

The illegal instruction interrupt occurs iff the instruction word fetched
does not encode a valid instruction. The misaligned access interrupt occurs
iff the instruction fetch or if the data memory access is not well-aligned.
The page fault IM/DM interrupts occur iff the memory system signals a
page fault during an instruction fetch or data memory access, respectively.
The trap interrupt is caused by a special instructi@amp. It can be used for
system calls, for example. The trap instruction allows passing an immedi-
ate constant as parameter.

The FXU overflow interrupt occurs if an unmasked overflow occurs dur-
ing an ALU instruction. The external I/O interrupts occur if an external
signalexg|j] with j > 0 is active. These external interrupts can be used in
order to realize fast I/O such as access to hard disks or networks.

Let CAdenote a 32-bit signal that is defined as follows: iff an interrupt
with numberj occurs, bitj of this signal is active. Lat be a configuration
of the specification machine. Usi@A, the 32-bit signaMCA is defined
as follows:

_—_— CA(c)[]] . ifinterrupt j is not maskable
MCAEILI = {CA(C)[]]/\SF{]] . ifinterrupt j is maskable

Thus, an interrupt is handled if there is at least one bMDA(c) set.
This is indicated by the one bit signdlSR

JISRc) = 3je{0,...,31} : MCA(c)]] _
213



Chapter 5

214

SPECULATIVE
EXECUTION

If multiple interrupts occur, the interrupt with the lowest number is han-
dled with priority. The interrupt that is handled is indicated by a 32-bit
signalil (interrupt level). If no interrupt is to be handled, all bitsibfre
zero. If there is an interrugitto handle, exactly bif is set.

1 : JISRc)A
il(c)[j] := j=min{i €{0,...,31} IMCA(c)[i]}
0 : otherwise

The same interrupt service routine is used in order to handle all inter-
rupts. Thus, in order to enable this interrupt service routine to distinguish
the events that cause interrupts, a new special purpose regiS#is
added to the configuration set of the machine. In case of an interrupt,
the value oMCA(c) is stored inECA The interrupt service routine is ex-
pected to handle the interrupt event with the smallest numiseich that
the bitECA[j] is set.

Instruction Fetch We support two interrupts that affect the instruction
fetch. We check whether the instruction word address is misaligned. Given
an effective addres=a, the functionimal(ea) holds if we have a misaligned
instruction word:

imal(ea) = ed0]Vvedl] (5.15)

Furthermore, we support page faults for the instruction memory access.
Page faults are indicated by an external sigpd(c).

If no page fault happens and if the instruction word is not misaligned,
the instruction word (c) is defined as in chapter 2. In particular, we are
back to using Delayed PC and no longer use branch prediction. In case of
a misaligned instruction word or a page fault, we use zero as instruction
word. The instruction encoded by zero actually turns out to be a NOP.

Q) = {0 : imal(c.DPC) vipfs(c)

IM[c.DPC] : otherwise (5.16)

The transition functions oPC' and DPC are changed in order to real-
ize the jump to the interrupt service routine and tiie instruction. This
instruction is used in order to return from the interrupt service routine. In
case of amfe instruction, the registeiSR PC', andDPC are restored from
the corresponding special purpose registers.



Section 5.12

In case of an interrupt, the new valueR&' is the address of the interrupt
service routine (SISR) plus four, i.e., the second instruction of the interru
service routine. In case of arfe instruction, the value i PC is taken.
Otherwise, the next PC is calculated as in the machine without interrupts.
We define a functiomextp¢(l,opl, PC,EPC) as follows: in case of an
rfe instruction, it return€EPC. Otherwise, the value provided mext pc
as defined in chapter 2 is returned:

EPC : lrfe(l)
nextpgl,opl,PC) : otherwise

E{ECISE
NTERRUPTS

nextpé(l,opl,PC,EPC) := {

As before,opl is the first GPR operand. We use this nsext pé func-
tion in order to define the new transition function for €' register:

o SISRt+4 : JISRc)
8PC(e) := { nextp¢(l,opl,c.PC,c.EPC) : otherwise
The transition function oDPC is no longer the identity. In case of an
interrupt, the new value dPC is the address of the interrupt service rou-
tine (SISR), i.e., the first instruction of the interrupt service routine. In case
of anrfe instruction, the value ilEDPCis restored. Otherwise, the new
value of DPC is calculated as in the machine without interrupts.

SISR : JISRc)
0.DPC(c) = c.EDPC : JISRc)Al.rfe(c)
c.PC . otherwise

Data Memory Exceptions We have two exceptions that are caused by
data memory accesses: data memory page faults are used in order to im-
plement virtual memory, data memory misalignment interrupts indicate a
misaligned memory access.

Data memory page faults are indicated by an external sigpdl A
misaligned memory access is detected using the the effective address of
the memory access and the instruction word.

The functionsmemWand memH hold if the memory operand of the
given instruction is of word or half-word size, respectively. In case of
stores, we only support word size accesses.

memW1) = (I_load(lw)Al_Iw(lw)) V| _storglw)
memHl) = (I_load(lw) A (I_h(lw) V l;hu(lw)))

215



Chapter 5

Given an effective addre&sA, we have a misaligned address, if we have
a word access with actiieA(0) or activeEA(1) or if we have a half-word
access with activE A(0). This is indicated bynalAc

SPECULATIVE
EXECUTION

malAdl,EA) = (memWI)A(EAO)VEA(L1))V
(memH1) A (EA(0))

We have a data memory misalignment exception in case of a load or
store instruction with misaligned address:

dmal(lw,EA) = (I_load(l) Vv I_storgl)) AmalAdl,EA)

Transition Function of the SPRs Let Sj be a special purpose register.
In case there is no interrupt, we define the register transition fundtign
as follows: we take the first GPR operand in case we havee?s in-
struction with appropriate address and the old value otherwise:

JISRc) =
opl(c) : I_-movi2s(l)A
85i(c) = (ILimmediatél )[4 : 0) =
C.§ . otherwise

The transition function in case there is an interrupt depends on the reg-
ister.

As described above, we store the valuetT A in the registelECAIn
case of an interrupt:

JISRc) = Od.ECA(c) = MCA(c)

The EDAT Aspecial purpose register is used in order to store additional
information about the exception. In case of a trap instruction, the immedi-
ate constant provided with the instruction is storeE DATA This allows
passing of an argument to the interrupt service routine. In case of a page
fault or misaligned memory access, the memory address accessed is stored
in EDATA In case of any other interrupt, we store zer&iDATA

Let menfc) indicate that we execute a load or store instruction:

- menic) := I_load(l)VI_storgl) (5.17)
216



Section 5.12

Let dmemeé&c) denote the effective address of a data memory access. 1n

case of an interrupt, the transition function BDAT Ais: PRECISE
INTERRUPTS
JISR¢c) =
c.DPC :imal(c.DPC) vipfs(c)
B dmemeé) . dpfs(c) Amenic)
OEDATAc) = |_immediatéc) : |_trap(l)
0 . otherwise

Furthermore, the values of the registBiBC andPC' are saved in special
purpose registers DPCandEPCin order to support resuming the instruc-
tion after the execution of the interrupt service routine. This depends on
whether the interrupt is of type repeat or continue. This is indicated by a
one bit signalepeat

repeafc) = (il(c)=3)V(il(c)=4)

If the interrupt is of type repeat, the valueszPC andPC' in the current
configuration are taken. If the interrupt is of type continue or abort, the
values are taken that point to the following instruction, as calculated by
nextp¢. In case of an interrupt, the transition functionsECandEDPC
are:

JISRc) =
[ cPC . repea(c)
OEPC) = {nextpé(l,opl,c.PC’,c.EPC) . otherwise
c.DPC : repea(c)
0.EDPC(c) = c.EDPC : repeafc)Al_rfe(l)
c.PC . otherwise

In case of an interrupt, the regist8Ris set to zero. This masks all
interrupts, which prevents that the interrupt service routine is interrupted:

In order to restore the regist8Rbefore resuming the program, the value
of SRis saved in the special purpose regi€&R In case of an interrupt
of type repeat, the value from the current configuration is taken. In case
of an interrupt of type continue or abort, the value calculated for the next

217



Chapter 5

218

configuration is taken:
SPECULATIVE

EXECUTION JISRc) =
opl(c) : repeafc) Al_-movs(l)A
0.ESRc) = { (I.immediatél)[4:0]) =0
c.SR : otherwise

Furthermore, in case of an interrupt of type repeat, the write access to
GPR and to the memory has to be suppressed. This is realized by modify-
ing the transition function for GPR accordingly.

A complete description how the interrupt service routine is to be imple-
mented such that it behaves like a procedure is given in [MPQO].

5.12.3 Hardware for the DLX with Interrupts

In this section, we describe small circuits that are used for interrupt han-
dling.

MCA The circuit MCA(CA SR calculates the masked cause register
givenCA and the status regist&R

MCA.Impl(CA SRIi] = {gﬁ[[HASF{i] : 2t§elrv<w§§

Lemma 5.64 » The circuitMCA s correct:

MCA.impl(cs) = MCA(CA(cs),cs.SR

PROOF One easily asserts this claim by expanding the definitions of the functions
MCA.impl andMCA.

JISR We calculate thdISRsignal using a zero tester aMCA:

JISRIimpI(MCA) := zerotestefMCA)

Lemma 5.65 » The calculation oflISRis correct:

JISRIMpl(MCA(cs)) = JISRcs)



Section 5.12

One easily asserts this claim by expanding the definition of both func-

tions and by applying lemma 2.2 (correctness of the zero tester, page 1BRECISE
INTERRUPTS
repeat We calculate the repeat signal as done in [MPOO]:
repeatimpl(MCA) := (MCA[0]VMCA[1]VvMCA2))
A(MCA[3] vV MCA[4])
The circuitrepeatimpl is correct: < Lemma 5.66

repeatimpl(MCA(cs)) = repealcs)

Let MCA(cs) be zero. In this case, one easily asserts that the bit prd?ROOF
vided byrepeatimpl is not active. Furthermore, one asserts tH&R cs)
does not hold. This implies thdit(cs) is also zero by definition. Thus,
repeafcs) does not hold, which concludes the claim MEA(cs) = 0.

Let MCA(cs) be not zero. In this case, one easily assertstHaR cs)
is active. Furthermore, there is a small¢such thatMCA(cs)[]j] holds.
If this j is smaller than 3 or greater than 4, we do not have an interrupt of
type repeat. One easily asserts tleggteatimpl(MCA(ss)) does not hold
in this case.

If it is equal to 3 or 4, we have an interrupt of type repeat. One easily
asserts thate peatimpl(MCA(ss)) holds in this case. QED

Decoder In order to realize the special purpose register file, we need a
decoder:

Let k be an integer and be X. A decoder is a circuit with inputa € < Definition 5.1
bvedk] and outputd € bvedn] such that for all Decoder

b=1 < (a=i.

An implementation can be found in [MP95]. A PVS proof is covered by
[BJKO1].

219



Chapter 5

220

SPECULATIVE
EXECUTION

5.12.4 Configuration of the Pipelined DLX with Interrupts

We implement the pipelined DLX with interrupts using speculation. Us-
ing the generic speculation mechanism from this chapter, and the generic
forwarding mechanism from chapter 4, implementing the pipelined DLX
with interrupts is quite easy. We do this in three steps:

1. We start with the pipelined machine without interrupts as presented
in chapter 4. We add the special purpose registers, as described
above, to the configuration set.

2. We add two speculative values: the first valdESR is a one bit
register that indicates an interrupt. The second valepeat is a
one bit register that is set iff the interrupt is of typepeat Given
those two speculative inputs, we can almost copy the specification
above in order to get an implementation.

3. We add write accesses #dSRandrepeatin order to detect any
misspeculation.

Figure 5.16 gives an overview of the DLX pipeline with precise inter-
rupts. We now describe the changes to the pipelined machine in detail.

Configuration Set We extend the configuration set of the pipelined ma-
chine without interrupts by the special purpose registers as given by the
specification of the DLX with interrupts. We furthermore add a set of im-
plementation registers that we will describe later on.

Initial Configuration  As before, the initial values d6PRandDM are
arbitrary but fixed. The registédPC is initialized with SISR the register
PC' with SISR+ 4. This will cause the ISR to be executed. All special
purpose registers except f&ICA are initialized with zero. The register
ECAis initialized with one in order to indicate the reset.

5.12.5 Transition Functions of Stage 0

In stage 0, we do the instruction fetch. This is done by a write access to
the IR register. The write access dependsDi?C and onipf. We follow



Section 5.12

PRECISE
INTERRUPTS

PC environment
DPC
EX buffers:
ALU
( )e CAX |
IR.j
,,,,,,,,,,,,,,,,, MAR3|......... N\MDRw3|..5 C.3|.. Pj 1.3 ..
oDPC.j
Cepcj
v ——={_om
DM@ Cedpcj
,,,,,,,,,,,,,,,,, MARA4|.........N MDRr4| N C4 | . NA
WB ( shift4load =
T
GPR I SPR il
I =
Adata Bdata

Figure 5.16 Overview of the DLX pipeline with precise interrupts. The registers
I” are a shorthand for the speculative vallESRandrepeat Thespecenviron-
ment does the speculation.

221



Chapter 5

the definition ofl (c) as given in the specification:

0 : imal(DPC) vipf
IM[DPC] : otherwise

SPECULATIVE
EXECUTION folR(DPC,ipf) = {

Lemma 5.67 » The calculation of the instruction word is correct:

QolR(cy) = I(ck)
PROOF If one expands the left hand side of the claim, one gets:
folR(C5.DPC,ipf(cy)) = 1(c)

One easily asserts this claim by expandfgtR on the left hand side and
QED | on the right hand side.

Exceptions We collect the interrupt cause bits CA in separate implemen-
tation registers. In the regist€Aimal, we store whether we have an in-
struction word misalignment. The same applies@éipf andCAex We
assume an external signe that is a bitvector. The bits of the bitvector
indicate the individual external interrupts. In contrast to [MPQO], we detect
the external interrupts in stage O.

fCAimal(DPC) = imal(DPC) (5.18)
foCAipf(ipf) = ipf (5.19)
foCAeXex = ex (5.20)

In addition to that, we speculate two valulSRandrepeat We spec-
ulate that we have an interrupt if we have an instruction memory page
fault, a trap instruction, a misaligned instruction word, or an external in-
terrupt. We detect external interrupts using a zero tester. Remember that
the function used for speculatirigis called fyRs Thus, the function for
speculatinglISRis:

foJISR$ipf,DPC,ex = ipfVi_trap(folR(DPC,ipf))V
imal(DPC) V zerotestefex)

We speculate that we have an interrupt of type repeat if an instruction
memory page fault is signaled and if there is no instruction word misalign-
ment:

forepeatgipf,DPC) = ipfVvimal(DPC)
222



Section 5.12

This implementation differs from the implementation given in [MPOO]:
in [MP0O], the execution is started always assuming that no interrupt hdpREC'SE
pens. This includes the interrupts that can be detected in early stages. | NTERRUPTS

As an example, considertep instruction. The machine in [MP0OO] ex-
ecutes the instructions followed by thep instruction as if no interrupt
happens. In stage 3, the misspeculation is detected and the instructions fol-
lowing trap are evicted from the pipeline. In contrast to that, the machine
presented here never misspeculatesrap instructions. Thus, no rollback
is necessary. Following thieap instruction, the instructions of the inter-
rupt service routine are executed. We therefore waste no cycles in case of
the interrupts given above.

Obviously, this speeds up execution. The price paid for this is extra
complexity. In particular, we have to forward the effect of interrupts. This
includes that interrupts modify all special purpose registers. In [MP00], the
authors remark that “forwarding the effect of this looks like a nightmare”.
We will later on describe the forwarding hardware we use for this.

5.12.6 Transition Functions of Stage 1

In stage 1, we do the operand fetching, the calculation of the new PC regis-
ters, and the calculation of the precomputed control signals. As in chapter
3, let us define the precomputed control signals in the stages that use them.

PC’ Inorder to calculate the new value of tRE’ register, we implement
the functionnext p¢ as given by the specification as follows:
e In case of amfeinstruction, we take the value of tlEePCinput.
¢ In case of any other instruction, we use the value provided by the old
next pcimpl circuit, as defined in chapter 3.
Thus,nextpé_impl is:
nextp¢_impl(IR, GPRaoldPC EPC) :=

EPC : lrfe(lR)
nextpcimpl(IR,GPRaoldPC EPC) : otherwise

223



Chapter 5

224

SPECULATIVE
EXECUTION

Lemma 5.68 »

PROOF

Lemma 5.69 »

PROOF

Lemma5.70 »

PROOF

The following lemma asserts that the circuéixt pé_im pl complies with
the specificatiomext p¢.
The calculation of the new PC is correct:
nextpéiimpl = nextp¢

If 1_rfe(l) holds, the claim obviously holds. If not so, one asserts the
claim using lemma 3.4.

In the specification, we passpl(c‘s) as parameter taextpc In the im-
plementation, we pagssPRaas input. Given that this input is correct, the
next pcfunction returns the same value in both cases.

nextpél (cs), GiGPR4ck),cs.PC') = nextpdl(cs),opl(cs),cs.PC)

One asserts this claim in analogy to the proof of lemma 3.15 (correctness
of the transition functions of the sequential DLX).

For nextpé_impl, we need the value dPCin case of arrfe instruc-
tion. We realize this by a conditional read accesE RC. The read enable
function returns true iff we have arfe instruction:

fLEPCrIR) = I.rfe(IR) (5.21)

This allows defining the register transition function &€’ in analogy
to the specification:

f,PC'(IR,JISRPC,EPC,GPR3 =
SISR+-4 . JISR
nextptimpl(IR,GPRaPC ,EPC) : otherwise

Assuming correct inputs, the calculation of the new valuedfis correct:

clPC = friPC(ck)

By expanding the definition ofgrl on the left hand side, we get:

5.PC(cy) = fryPC(cy)



Section 5.12

The functionf;PC’ usesJISRas input. The correct value of th#SR

. . , SN PRECISE
input given configuratiomy is:

INTERRUPTS
G1JISRC) = JISRCY)

Let JISRcS) hold. In this case, botliyPC' and8.PC’ return SISR+ 4
and the claim holds.

Let JISRcs) not hold. In this case, we assert the correctness of the GPR
operand as in the proof of lemma 3.15, which is the corresponding lemma
for the machine without interrupts. We then apply lemma 5.68, which
concludes the claim. QED

DPC For defining the register transition function fDPC, we need the
registerEDPCfor rfe instructions. As above, we realize this by a condi-
tional read access #DPC. The read enable function returns true iff we
have arr fe instruction:

f,EDPCrgIR) = I.rfe(IR) (5.22)

This allows defining the register transition function @PC in analogy
to the specification:

f,DPC(IR,JISRPC,EDPC) = { EDPC : I.rfe(IR)

SISR : JISR
PC . otherwise

The following lemma asserts the correctness of this circuit.

Assuming correct inputs, the calculation of the new valuBBC is cor- €« Lemma 5.71
rect:

c.DPC = fI;DPC(cy)
By expanding the definition of'gl.DPC on the left hand side, we get: PROOF
5.DPC(cy) = fryDPC(c)

By expanding the definition of"1DPC on the right hand side, we get:

8.DPC(c5) = f;DPC(QoIR(ck),JISRCY),cs.PC,cs.EDPC) _
225



Chapter 5

226

SPECULATIVE
EXECUTION

QED

By applying lemma 5.67, we get:

8DPC(cy) = f,DPC(I(ck),JISRCy),cs.PC,cs.EDPC)

One easily asserts this by expanding the functtbd?C and fDPC.

We precompute the values to be written into the special purpose regis-
tersePC andEDPC. This saves hardware cost, since this computation
depends on many registers. Furthermore, it allows forwarding these regis-
ters. This includes the effect of interrupts. As the regi€tés responsible
for forwarding GPRregisters, the registe@epcandCed pcare responsi-
ble for forwardinge PCandEDPC. The new values are already available
in the decodel/issue stage. Thus, the write condition is always true.

The new value oEPCis precomputed as follows: In case of an interrupt
of type repeat, we writ€C'. In case of any other interrupt, we write the
new value ofPC' without interrupt, which is given bpextp¢mpl. In case
there is no interrupt, we retu@PRain order to handlenovs with EPC
as destination.

f,.CepdIR,JISRrepeat GPRaPC',EPC) =

PC . JISRATrepeat
nextp¢mpl(IR,GPRaPC ,EPC) : JISRATepeat
GPRa . otherwise

fiCepcwélR,JISR = 1

The write enable signal dPCis precomputed as follows: we write to
EPCin case of anovis with appropriate destination and in case of an
interrupt.

f, ;s EPCWEIR,JISR = JISRV (I_mov2s(IR) A (I_immediatéIR)[4 : 0) = 3)



Section 5.12

The new value oEDPCis precomputed as follows: in case of an inter-
rupt of type repeat, we writbPC. In case of any other interrupt andigie ~ PRECISE
instruction, we writeEDPC. In case of any other interrupt and any othef NTERRUPTS
instruction, we writePC'. In case there is no interrupt, we retu@PRain
order to handlenovls with EDPC as destination.

f;Cedp¢IR,JISRrepeat GPRaDPC,EDPC,PC') =

DPC : JISRArepeat

EDPC : JISRATepeath | rfe(IR)
PC : JISRATepeath | rfe(IR)
GPRa : otherwise

The write enable signal & DPCis precomputed as follows:

f, ;AEDPCWEIR,JISR = JISRV (I_mov2s(IR) A (I_immediatélR)[4 : 0]) = 4)

We will show the correctness of these values when we describe the tran-
sition functions of stage 4.

Forwarding Logic for EPC/EDPC Using these precomputed values,
we get the following forwarding hardware for readied®C and EDPC

in stagek = 1: We show this exemplary fd PC. The circuits forE DPC
are identical. As before, we calculate hit sigridisit[j]. Thus, the signals
are namedeE PG hit[j]. The hit signal is active iff the full bit of stagpand
the precomputed write enable signalEPCin stagej are active:

EPClhit[j](Q) = fU”j(C|)/\f4EPCW9j

Using the hit signals, we calculate the forwarded value. This is done us-
ing multiplexers, as illustrated in figure 5.17. The proof correctness of this
logic is similar to the proof of correctness for forwardi@P R registers.
However, we do not have to argue about an address.

Note that we need only very little effort in order to realize an instruction
fetch with interrupts. In particular, we only need a few arguments in or-
der to show correctness as we only instantiate the generic forwarding and
speculation mechanisms.

In stage 1, we fetch the operands. This is done exactly as in chapter 3
with the exception that we need the first GPR operand also in case of a
moves instruction.

227



Chapter 5

228

SPECULATIVE
EXECUTION

EPCS5 wEPC
EPChit[4 0 1
w3Cepc
EPChit[3] ( 0 1
wpCepc

Figure 5.17 Implementation oE PCforwarding

Note that we do not fetch the source operandnoiv®i instructions in
stage 1 in contrast to the machine presented in [MP0O]. We do so in order
to illustrate read accesses to registers other than in the decode stage. This
has both advantages and disadvantages: obviously, we save the forwarding
logic. The disadvantage is that an instruction that followsnttow®i and
uses the destination of thmov®i as source has to be stalled. However,
we do not see a severe performance impact of doing so. Furthermore,
if one desires forwarding, our generic forwarding approach will generate
appropriate forwarding hardware.

Exceptions In stage 1, we decode the instruction word and signal an il-
legal instruction word exception if necessary. Given an instruction word
IR, the functionill (IR) indicates that it is illegal. Let be the set of in-
structions. The functioiil is defined using the predicatex as defined in
chapter 2:

iRy = \/1x (5.23)

We store this bit in an implementation regis@Aill :
fiCAIll(IR) = ill(IR) (5.24)

We do not do this in stage 0 because the calculatioitl 0fR) might get

slow in case that there are many instructions. Furthermore, we consider
illegal instruction exceptions to be rare. Thus, the price for misspeculation
is not often paid.



Section 5.12

5.12.7 Transition Functions of Stage 2
PRECISE

INTERRUPTS

In this stage, we do the ALU calculation. The transition functions from
chapter 3 are taken without modification. We store a bit indicating an ALU
overflow in a registeCAov f.

f,CAovf(IR,A,B) = ALU(Aaluo@(IR,B),aluf(IR)).ovf

The functionsaluop andaluf are taken from chapter 3.

5.12.8 Transition Functions of Stage 3

In this stage, we do the data memory access. Most transition functions
from chapter 3 are taken without modification. We store a bit indicating a
data memory page fault in a regis@Ad pf.

fCAdpf(IR,dpf) = dpfA(l_load(IR)VI_storgIR))

We store a bit indicating a data memory misalignment exception:

fsCAdmallR,MAR) = dmal(IR,MAR)

Furthermore, we do not enable the data memory write enable signal in
case we have one of these exceptions.

Cause Collection In stage 3, all exceptions are now known. This allows
us to calculate thICAregister: we do this by reading &lAregisters and
calculatingCA. As a shorthand, le€Aargsdenote the list of arguments
used in order to calculateA (in the PVS tree, we always use the expanded
form). This is:

CAargs:= (IR,CAill,CAimal MAR CAipf,dpf,CAtrap CAovf CAex

229



Chapter 5

The functionCA_impl takes these inputs and providea:
SPECULATIVE

EXECUTION CAimpl(CAargg[i] :=

(0 » =0
CAill D=1
CAimalv dmal(IR,MAR) =2
CAipf ©1=3
(I-load(IR) VI_storgIR)) Adpf : i=4
CAtrap :i=5
CAovf ©1=6

[ CAeXi—7) . otherwise

Using the CA bits, we calculatélCA using theMCALimpl circuit:

fsMCA(SRCAargg = MCA.impl(CA.impl(CAargs,SR

Forwarding Logic for SR The register transition functiofgMCA de-
pends orSR i.e., we have a read access3B4 in stage 3. This requires
forwarding. The forwarding mechanism described in the previous chapter
(forwarding from the next stage, page 101) generates the following hard-
ware (the definition of the functiot,SRis expanded):

{fy4SRc|) . fulls(g) A fysSRweéc))

gs(cr) ¢.SR4  : otherwise

Thus, in case stage 4 is full and the write enable sign&R4 is active,
we use the value written intSR4. This holds in particular if there is an
instruction in stage 4 that causes an interrupt or lm@vR2s instruction
writing SR

In any other case, we use the value in the regiSie4. The proof that
this is the correct input is given in chapter 4 (lemma 4.7).

The following lemma asserts that the implementation regld@A con-
tains the correct value, as defined using the configuration of the specifica-
tion machine.

Lemma5.72 » The calculation of the next value of MCA is correct:

Q3MCA(Cy) = MCA(C)
230



Section 5.12

PROOF By expanding the functiomgMCA(c‘S) on the left hand side, we

get (we omit the parameter list): PRECISE

INTERRUPTS
fsMCA(...) = MCA(cy)
By definition of f3MCA, we get:

MCAmpl(CAimpl(Gs(cs, CAargs),cs.SR = MCA(CY)

By applying lemma 5.64, we get:
MCA.mpl(CAimpl(...),c5.SR = MCAImpl(CA(cy),cs.SR
Thus, the claim is shown EAimpl(...) is equal taCA(cs). We show
this by a case split on the number of the exception, i.e., we show
CAimpl(Gs(cs,CAargs)[i] = CA(c)]i]

foralli € {0,...,31}. We show the claim exemplary for the external inter-
rupts. The proofs for the other exceptions follow the same pattern.

Fori > 7 (external interrupts), we have the following claim:
Q.CAeXcy)[i] = exs(ck)

By expanding the functions on the left hand side, we get:

Q1CAeXCh)[i] = exs(l ()
QoCAeXch)fi] = exs(l(ch))
foCAexexs(cs)li] = ex(l(cH))
This is concluded by expandinigCAex QED

Detecting Misspeculation UsingMCA, we can also calculate the correct
value ofJISRandrepeat thus, we can detect any misspeculation in stage
3. In case oflISR we use thedISRimpl circuit as defined above.

The new value oI SRis correct. <4 Lemmab5.73
fr3JISRc) = JISRCY)
231



Chapter 5

232

SPECULATIVE
EXECUTION

One asserts this lemma using lemma 5.72 (correctne$dCA) and
lemma 5.65.

In case of thaepeatregister, we calculate the correct value using the
circuit repeatimpl.

Lemma 5.74 » The new value ofepeatis correct.

Lemma5.75 »

flarepea(cs) = repeafck)

We assert this lemma using lemma 5.72, which shows the correctness of
MCA, and lemma 5.66.

5.12.9 Transition Functions of Stage 4

In analogy to lemma 5.67, one easily shows tiitead in stage 4 is the
instruction word:

The calculation of the instruction word is correct:

QiIR(cy) = (k)

Write Access to GPR In this stage, the result of the instructions is writ-
ten into the destination register. In case of ALU instructions or load in-
structions, we do this as in chapter 3. However, we have to change the
transition function oflGPRin order to realizenovsi.

As described above, we read the source operand in stage 4. We just pass
the values of the special purpose registers as parameters to the transition
function. After that, we use a decoder (definition 5.1) in order to generate
select signals for multiplexers. Ldecoderimpl be an implementation of
a decoder according to the definition.

SAde¢lR) = decoderimpl(l_immediatélR)[4: Q)



Section 5.12

We define a shorthan8PRsr¢ which denotes the value of the SPR
source operand: PRECISE

SPRsr¢IR,SR...,EDATA = INTERRUPTS

EDPC : SAde¢IR)[4]
EDATA : SAde¢IR)[5]
L 0 . otherwise

( SR . SAde¢IR)[0]
ESR : SAde¢IR)[1]
ECA : SAde¢R)[2]

{ EPC : SAde¢IR)[3]

[
[

This allows defining the register transition function ®PR

f4,GPRC,IR,MAR MDRI,SR...,EDATA =

shiftdload(MAR MDRyIR) : |_load(IR)
SPRsr¢IR,SR...,EDATA : I-mov2i(IR)
C . otherwise

In addition to that, we modify the precomputed version of the write en-
able signalf4GPRwesuch that it is active in case ofraov®i instruction.
Furthermore, we disable it in case of an interrupt of type repeat, as indi-
cated byrepeat

f1f4GPRwéIR,repea) = (I_ALU(IR)VI_ALUI(IR)V I_load(IR)V
I _shifti(IR) v 1_shift(IR) V I_movgi(IR)
V((I-J(IR) VI_jr (IR)) Al _link(IR)))
Arepeat

One easily asserts the correctness of ff@PRfunction in analogy to
the proof of lemma 3.15.

In addition to the write access t8PR we also have the write accesses
to the special purpose registers in stage 4.

Write Access to SR We perform a conditional write access $R in
case of an interrupt, as indicated BhSR we write zero. In case of arfe

233



Chapter 5

instruction, we writeESR Otherwise, we have movP2s instruction and

SPECULATIVE  \rite the value in the register, which is th&PRoperand:

EXECUTION

0 . JISR
f4,SRC,IR,JISRESR = ESR : I.rfe(lR)
C . otherwise

f4SRwWe¢IR,JISR = JISRVIrfe(lR)V
(I_-mov2s(IR) A SAde¢IR)[0])

Lemma 5.76 » The correct value o€ matches the GPR operand in case ahavis
instruction.
I_movi2s(l(cs)) == Q3C(ck) = opl(cy)
PROOF Because we haveraov2s instruction, we havé&;C(cs) = G;GPR4cY).
This transforms the claim into:
I_movs(l(c5)) = G1GPR4cs) = opl(ck)

One concludes this claim by expanding the definitiog&EPRaon the
QED right hand side.

Lemma 5.77 » The value written byf4SRis correct.

ISR — {fF4SRciS) . fr4SRweéck)

cs.SR . otherwise
PROOF Let us expand the definition of the write enable sighalSRwe
fr4sSRwéc) = cs.JISRVIrfe(QslR(c))V
(I_mov2s(Q3IR(ck)) A SAde¢QsIR(ck))[0])
By applying lemma 5.75, this is transformed into:

fr,SRwécs) = cLJISRVIrfe(l(cs))V
_ (I_movi2s(I (c5)) A SAde¢l (c))[0])
234



Section 5.12

Using the correctness of the decoder circuit, this is transformed into:
PRECISE

frsSRwécs) = c5JISRVIrfe(l(cs))V INTERRUPTS
(I_movs(I (c5)) A (I_immediatél (c5))[4: ) =0

By expanding the definition ofé*l on the left hand side of the claim (as
given in lemma 5.77), we get:
i fr4SRcy) @ friSRweécy)
OSRes) = { cs.SR . otherwise

Let the write enable signdilr ;SRwéck) be not active. In this case, one
easily asserts the claim by expanding the definitiod.BR

Let the write enable signa‘IF4SRwéc‘S) be active. By expanding the
definition of fI ;SR we get:

5.SRCy) = f4SRQaC(ch), QsIR(cy),JISRCy),c5.ESR

Using lemma 5.75, we get:

8.SRCy) = f4SRQIC(Cy),l(cs),JISRC),cs.ESR

By expanding the definition of4SR we get:

0 : JISRcY)
5.SRcy) = {ciS.ESR : 1rfe(l(c))
QsC(cg) : otherwise

In case oflISRcy) or | _rfe(l(ck)) the claim holds by definition &&.SR
In any other case, we can conclude that we hawes2s instruction be-
cause the write enable signal is active. This allows applying lemma 5.76
and we get:

3.SRcs) = opl(ck)

This is concluded by expanding the definitiondobR QED

235



Chapter 5

Write Access to ESR We perform a conditional write accessE®R in
case of an interrupt of type repeat, as indicatedliyRandrepeat we
write SR In case of any other interrupt, we wri@if we have amovi2zs
instruction that useSRas destination, an8Rotherwise. In case there is
no interrupt, we retur@ in order to handlenov2s with E SRas destination.

C : sel
SR : otherwise

SPECULATIVE
EXECUTION

f,ESRC,IR,JISRSRrepea) = {

with a signalselin analogy to [MPOO]:

sel = JISRV (repeatA | _movRs(IR) A SAde¢IR)[0])

The write enable signal is active in case of an interrupt oroas in-
struction with destinatioft SR
f,ESRWEIR,JISR = JISRv
(I_-movRs(IR) A SAde¢IR)[1])

Lemma 5.78 » The value written byfyE SRis correct.

i fr4ESRCy) @ fr4ESRwécy)
i+1 _ 14 S 4 S,
¢sESR = { csESR . otherwise
PROOF The proof proceeds in analogy to the proof of lemma 5.77.

Write Accessto ECA  We perform a conditional write accessB€A in
case of an interrupt, we writdCA. In case there is no interrupt, we return
C in order to handlenov2s with ECAas destination.

{MCA - JISR

fRESRC, IR, JISRMCA) = 3 - : otherwise

f,ECAWEIR,JISR = JISRv
(I-movRs(IR) A SAde¢IR)[2])

Lemma 5.79 » The value written byf4ECAIis correct.

i fr4ECACY) : fIr4ECAwdC)
i+1 _ 4 S 4 S,
Cs-ECA = {C'S.ECA . otherwise

PROOF The proof proceeds in analogy to the proof of lemma 5.77. However, we
need the correctness of tMECAinput, which we assert using lemma 5.72.

236



Section 5.12

Write Access to EPC We perform a conditional write access EPC.

We already precomputed the value to be written and the write enable sigﬁBFC'SE
in stage 1. INTERRUPTS

The value written byf,EPCis correct. < Lemma 5.80
GHLEPC — fiI'4E PC(c)) 5 fIr4E P_Cwqu)
cs.EPC . otherwise

As in the proof of lemma 5.77, let us expand the definition of the writetPROOF
enable signaf I' ;£ PCwe(including the functions used to pass the precom-
puted signals):
fr4sEPCwédcy) = cgJISRV
(I_mov2s(Q1IR(c)) A
(IimmediatéQ1IR(cs))[4 : 0)) = 3)

One easily asser@;1R(cs) = 1(ck), which transforms the last equation
into:
fr,EPCwédcs) = csJISRV
(I-movs(I (c)) A (I .immediatél (c5))[4 : 0]) = 3)

Using the correctness of the decoder circuit, this is transformed into:
fr,EPCwécs) = c5JISRV
(I_-movi2s(I (c5)) A (I immediatél (c5))[4 : 0)) = 3)

By expanding the definition ofgrl on the left hand side of the claim (as
given in lemma 5.80), we get:
i fr4EPC(Cy) : fIr4EPCwéck)
i _ S S
SEPC(cs) { c..EPC . otherwise

Let the write enable signall JE PCweck) be not active. In this case,
one easily asserts the claim by expanding the definitiach©PC.

Let the write enable signdllr 4E PCWG(CiS) be active. By expanding the
definition of f4EPC (including the functions that pass the precomputed
value), we get:

S.EPC(Cy) = fCepdQIR(cy),JISRCY),repealcs),
G1GPRéck),cs.PC, G1EPC(c)) _
237



Chapter 5

238

SPECULATIVE
EXECUTION

QED

By expanding the definition of{Cepg we get:

cs.PC . JISRcs) Arepeafc)

. | h _—

O.EPC(cg) = newpcimpl(...) : JISRcg) Arepealcs)
G1GPRécy) :  otherwise

We handle the three cases above separately:

1. In case of an interrupt of type repeat, one concludes the claim by
expanding the definition al.SR

2. In case of any other interrupt, the claim is transformed into (we omit
the parameter list):

5.EPC(cy) = newpéimpl(...)

By expanding the definition &.EPC(cs) on the left hand side and
by applying lemma 5.68, one gets:

next pé(1 (ck), opl(ck), cs.PC, cs. EPC)
< nextpé(l(cy), G1GPR4Cy), c.PC', G,EPC(cy))

In case we have arfe instruction, one asserts th@iE PC(ck) (cor-

rect value if readindz PC) is equal tociS.EPC because the read en-
able function holds. The claim is then easily concluded by expand-
ing the definition ofnext p¢.

In case we do not have afie instruction, we conclude the claim by
expanding the definition afextp¢ and by applying lemma 5.69.

3. In case we do not have an interrupt, we can conclude that we have a
movis instruction because the write enable signal is active. In this
case, the claim is easily concluded by expandi@GPRa

Write Access to EDPC  We perform a conditional write accessE®PC:
We already precomputed the value to be written and the write enable signal
in stage 1.

Lemma 5.81 » The value written byf4,EDPCis correct.

fr4EDPC(cy) : fIr4EDPCwécy)

i+1 _ :
csEDPC = {c‘S.EDPC . otherwise

The proof proceeds as the proof of lemma 5.80.



Section 5.13

Write Access to EDATA In stage 4, we perform a conditional write ac-
cess toEDATA in case of a data memory page fault interrupt, we writE RECISE
MAR In case of a trap instruction, we write the immediate constant. WTERRUPTS
case of any other interrupt, we write zero. In case there is no interrupt, we

returnC in order to handlenov2s with EDAT Aas destination.

f,EDATAC,IR,JISRCAdpf,CAtrap MAR) =

MAR . JISRACAdpf
[.immediat¢IR) : JISRACAdpfACAtrap
0 . JISRACAdpfACAtrap
C . otherwise

f,EDATAWEIR,JISR = JISRV (I_movRs(IR) A SAde¢IR)[5))

The following lemma asserts the correctness of the transition function
for EDATA

The value written byf,E DAT Ais correct. <4 Lemma5.82

fr4,EDPC(cy) : fI4EDATAweCk)

i+1 — .
Cs-EDATA = {C'S.EDATA . otherwise

The proof proceeds as the proof of lemma 5.77. However, wdise
as input in case of a data memory page fault.

5.12.10 Data Consistency and Liveness

One concludes the data consistency and liveness of the pipelined machine
with interrupts just as we concluded the data consistency of the pipelined
machine with branch prediction.

Note that in particular PVS almost fully automates the proofs for the
lemmas given above in order to show the pipelined machine with specula-
tion. -

239



Chapter 5

240

SPECULATIVE
EXECUTION

5.13 Literature

In the open literature, speculation is a common approach for implementing
processors without delay slot: Levitt et.al. use a predict-not-taken scheme
[LO96] in a DLX implementation. Boerger and Mazzanti provide two
DLX implementations [BM96]: the first assumes an empty instruction af-
ter jumps/branches. The second implementation stalls the instruction fetch
for one cycle. Saxe et.al. [SGGH94] also use speculation.

In [VBO0O], Velev and Bryant extend Burch and Dill's pipeline flushing
technique in order to automatically verify a dual-instruction issue, in-order
DLX with five stages and branch prediction. Misspedicted branches are
detected late, A generic speculation approach or a stall engine is not used.



Out-of-Order Execution

6.1 Introduction

N THE PREVIOUS SECTIONSWe presented various implementations of
Ipipelined RISC processors. These implementations strictly processed
the instructions in program order. However, the performance of these de-
signs drops as soon as long latency instructions such as memory accesses
are involved. For example, consider a load instruction with cache miss in
the memory stage. Thus, the stall signal of the stage is activated and the
instructions above the memory stage are stalled.

Furthermore, consider an ALU instruction that follows the load in the
execute stage:

EX: R3:=R1+R2
M: R4:=Mem[R5]

If there is no data dependency, the result of the ALU instruction is al-
ready known in the execute stage and could be written into the register file.
However, the in-order execution rule prohibits this and the ALU instruction
has to wait for the load.

Thus, dropping this rule can result in better performance. This technique
is calledout-of-order executionThe most popular out-of-order execution



Chapter 6

OuT-OF-ORDER

242

EXECUTION

|  CDB

mH
(o2

|_

|+

+
%[FU?;]% = : I
- : :
—— -~ O~ ——
Reservation ProducerROB Register-
Stations File

Figure 6.1 Basic structure of a microprocessor with Tomasulo Scheduler and
reorder buffer

algorithms is the Tomasulo scheduling algorithm [Tom67]. It is one of the
most competitive scheduling algorithms and provides CPI rates down to
1.1 on a single-instruction issue machine [Ger98, Del98, M2g). The
algorithm is widely used, e.g., by IBM PowerPC, Intel Pentium-Pro or
AMD K5 [Mot97, CS95]. The original Tomasulo scheduler uses out-of-
order termination and therefore does not support precise interrupts with-
out extra hardware. We support precise interrupts by addingpaler
buffe[SP88]. The reorder buffer sorts the instructions in program order
before termination.

In this chapter, we describe the results of implementing and verifying a
DLX with Tomasulo scheduler, precise interrupts and floating point unit
using PVS. The designs, the scheduling protocols, and most proofs are
taken from [KMP99, Ko099].

6.2 The Tomasulo Algorithm with Reorder Buffer

Figure 6.1 depicts the basic structure of a microprocessor with Tomasulo
scheduler and reorder buffer. The execution begins with the instruction
fetch, as in the in-order machine. The Tomasulo scheduling algorithm
does not cover this phase; it is assumed that the instruction fetch is done in
program order. We will use the very same instruction fetch mechanism as
in the pipelined in-order machines described in the previous chapters.



Section 6.3

In the next stage, the instruction is decoded. This includes fetching the
operands if available. The instruction and the operands are then passegQ§/ASULO DATA
a reservation statior(RS). This is calledssue The reservation stations STRUCTURES
are the central data structure of the Tomasulo scheduling algorithm. The
reservation stations act as queue for the instructions and are between the
decode/issue stage and the functional units. Note that the instruction is
passed to the reservation station even if forwarding fails. This is in contrast
to the in-order machine, which stalls in this case.

As soon as all operands are available, the instruction is passed from the
reservation station to the functional unit. This is caldidpatch This
is done without obeying the program order of the instructions, i.e., the
instructions can overtake each other at this point. After the function unit
has finished the execution, the result of the instruction is passed to a special
register, callegoroducer

In case the producer holds an instruction, it requests a result bus, called
common data bu@CDB). As soon as the request is acknowledged, the re-
sult is put on this bus. This is calledmpletion In contrast to commerical
designs such as the IBM's PowerPC, we support only one CDB. The bus
is used for two purposes: 1) The instruction is passed to the reservation
stations that wait for the result because of a data dependency, and 2) the
result is passed to the reorder buffer.

The reorder buffer re-sorts the instructions back in program order. The
benefit of this is that we can write the results into the register file in pro-
gram order (in-order termination). This allows precise interruptions of the
instruction stream.

In the following sections, we will describe the data structures and proto-
cols used to realize this in detalil.

6.3 Tomasulo Data Structures
6.3.1 Reorder Buffer

The reorder buffer [SP88] is a ring-buffer that serves two purposes in a
machine with Tomasulo scheduler. The main purpose is to re-sort the in-
structions such that the instructions terminate in program order. For that
purpose, each reorder buffer entry provides space to store the result of an

243



Chapter 6

0
OuT-OF-ORDER

EXECUTION 1 %
2 D
3 ROBhead
4 %
5
6 D
7 ROB:tall

Figure 6.2 lllustration of the reorder buffer pointers

instruction. We support instructions that write multiple registers. This is
useful for supporting double precision floating point instructions.

Furthermore, each reorder buffer entry hashkd bit. The bit indicates
that the result of the instruction is in the reorder buffer entry. A reorder
buffer entry with active valid bit is called valid reorder buffer entry.

The second purpose of the reorder buffer is to provide means to assign
atagto each instruction. The tag is assigned during instruction issue and
stays unique until the instruction terminates. The tag is the address of the
reorder buffer entry of the instruction. L&tdenote the number of tag (i.e.,
ROB address) bits. Thus, the reorder buffer has

0 = 2°

entries. We denote the value of the ROB entry with addtagluring
cycleT with ROBtag]".

The reorder buffer is accessed using to pointers, the head and tail point-
ers. These pointers are storeddirbit registers. We denote the value of
the head pointer during cycle by ROBhead, and the value of the tail
pointer byROBtail" . Instructions are put in the ROB entROBtail points
to, and removed from the entBOBheadoints to. After an instruction is
put in the ROB, theROBtail pointer is increased. After an instruction is
removed from the ROB, thROBheadpointer is increased. The pointers
wrap-around if they reach the end of the ROB. This is illustrated in figure
6.2.

Let issuéT) denote that we issue an instruction during cyEle This
- allows defining the values d®OBtail recursively. We initialize the ROB

244



Section 6.3

pointers with zero. Th&OBtail pointer is increased iff we issue an in-
struction.

0 . T=0
ROBtaill := ROBtail' 1+1 : issudT —1)
ROBtail 1 : otherwise

Note that the incrementation for the cassudT — 1) holds is a bitvec-
tor operation as described in chapter 2. Thus,RBtail pointer wraps
around.

In analogy to that, letvriteback T) denote that we terminate an instruc-
tion during cycleT. This allows defining the values &&OBheadrecur-
sively.

0 . T=0
ROBhead := ROBhead~1+1 : writebackT —1)
ROBhead 1 . otherwise

As above, the incrementation for the cagdtebackKT — 1) holds is a
bitvector operation as described in chapter 2. ThusR@8headpointer
wraps around.

6.3.2 Register File Extentions

As before, the register file holds the values of the specification registers of

the machine. We still denote the set of registersRbyin PVS, we just
number the registers). We denote the value of the registeR during
cycleT by Rr]".data We assume that all registers have a common width.
We denote the set of possible values of a registe\biR).

The register file is extended withpgoducer table The producer table

records which instruction in the machine writes a given register. For that

purpose, the producer table contains two data items for each register.

The first is a valid bit. We denote the value of the valid bit of register
during cycleT with Rr]".valid. If itis set, there is no instruction currently

executing with the register as destination. If it is not set, there is such an
instruction. In this case, the second item, a reorder buffer tag, points to the
last instruction with the register as destination. We denote the value of this

tag byR[r]" .tag.

TOMASULO DATA
STRUCTURES

245



Chapter 6

6.3.3 Reservation Stations
OuT-OF-ORDER

EXECUTION
The reservation stations act as queue for the instructions and their source
operands. We give each reservation station a number. We denote the values
in reservation station numbes during cycleT by RSrs|". Each reserva-
tion has a full bitRSrs]. full. It indicates that the reservation station is in
use. In addition to that, we store the tag of the instruction in the reservation
station inRSrs].tag.

We support instructions with an arbitrary number of source operands.
Let x denote the number of a source operand. For each source operand,
we store a valid biRSrs|.op[x.valid. If the bit is set, the value of the
operand is stored iRSrs].op[x].data If it is not set, we store the tag of
the instruction producing the value RSrs|.op[x].tag.

6.3.4 Producers

The producers buffer the results from the function units until the CDB
is available. We have a separate producer for each function unit. Each
producer consists of a full bit, a tag, and the result. We denote these items
of producerfu by P[fu].full, P[fu].tag, andP[fu].result

6.3.5 Initial Configuration

We make the following assumptions about the initial values of those regis-
ters.

e The valid bits of the registers must be set in the initial configuration.
We do not make an assumption on the values of the registers or the
tags.

e The full bits of the reservation stations must not be set. We do not
make any assumptions about the other values in the reservation sta-
tions.

e The full bits of the producers must not be set. We do not make any
- assumptions about the other values in the producers.

246



Section 6.4

It is important that we do not make to many assumptions on initial val-
ues, since realizing fixed initial values in hardware is expensive regardiﬁ&MASULo
hardware cost. In particular, assuming initial values of a register usualiOTOCOLS
prohibits implementing the register as RAM. In particular, note that we do
not make any assumption about the initial values of the ROB entries.

6.4 Tomasulo Protocols
6.4.1 Formalization

In this section, we describe the protocols of the Tomasulo Scheduling al-
gorithm. These protocols form the transition function of a generic and
abstract microprocessor with Tomasulo scheduler. The configuration set
of this machine comprises of the reservation stations, the reorder buffer
including the pointers, the register files, the producers, and the producer
tables.

We denote the configuration of this machine during cycley c;, (ab-
stract implementation).

The transition function of the machine is denoteddyy. It maps the
configuration of the machine during cycleto the next configuration of
the machine during cycld + 1. We will compose this function using
functional specifications of the Tomasulo protocols, which are issue, CDB
snooping, dispatch, completion, and writeback. We name the functions for
these protocolgssue snoop dispatch completion andwriteback These
functions are called protocol functions.

Oy = issue»snoopo dispatche completior writeback

Thus, the issue protocol has priority over CDB snooping and so on. This
is important if two protocols change the same register value in the same
cycle. The final value in the register is the value provided by the proto-
col with the higher priority. We omit the transition function for the ROB
pointers, since we already specified the values of those pointers above.

Notation We specify the protocols using a notation similar to the nota-
tion used in [KMP99]. The notation is also very similar to the notation -

247



Chapter 6

OuT-OF-ORDER

248

EXECUTION

used in PVS. Consider the following example:
R{4].data := R[3].data

This is a shorthand faR[4]"+!.data= R[3]".data

As before, we consider a stream of instructidgid4, .... Each instruc-
tion has source and destination registers.S8yx), we denote the number
of register that is the source operaxdBy D(i,x), we denote the number
of register that is the destination operand

By dest{i,r), we denote the fact that instructidnhasr as destination
register, i.e., that there isxawith D(i,x) =r.

Embedding Convention In a machine with Tomasulo Scheduler and re-
order buffer, there are different places where results are stored or propa-
gated before writing the results into the register file. These are the pro-
ducers, the CDB, and the ROB. We support multiple destination registers
for a single instruction. By convention, each destination register is on a
well-defined part of the result bus or registers. For example, consider the
DLX with floating point instructions. That machine has a maximum of
three results for each instruction. Thus, the result busses and registers have
space for three 32-bit registergsult0], resultf1], andresult2].

In case of the DLX, we embed the results as follows: By convention, all
floating point registers with odd numbers areresulf1], all other “nor-
mal” registers are oresult0]. In order to handle exceptions, we define a
dummy registeCA, which is onresult2]. This allows handling the IEEE
flags register and exceptions.

For example, the result of a double precision floating point instruction
with destination registeFPR, is embedded as follows: The lower part
of the result, i.e., the part that is written inEdGRy, is onresulf0]. The
higher part, i.e., the part that is written inE6GRy, is onresulfl]. The
exceptions/IEEE flags are sesul{2].

Formally, we define an embedding function. dedenote the maximum
number of destination operands. The embedding funetimaps a register
to a numberifO0,...,d—1}. Thus, destination registeis onresulfe(r)].



Section 6.4

6.4.2 Issue
TOMASULO

PrROTOCOLS
Let I; be the instruction to be issued during cy@ldfigure 6.3). The first
step is to invalidate the destination registers of instrud§iohhus, we clear
the valid bit of all register&]r] with des(i,r) and set the tag of register
to ROBtail' .

In contrast to the issue protocols given in [MPKO0O], we cover two differ-
ent ways to issue an instruction: the first way is as described in [MPKOQO]
and as done by the original Tomasulo scheduling algorithm. During is-
sue, the instruction is stored in a reservation station along with the source
operands that are available.

The second way is to skip the reservation stations and to store the result
of the instruction in the reorder buffer directly. This speeds up the execu-
tion of simple instructions. Examples for this are branches, jumps, and the
trap instruction.

The result of these instructions is already known in the issue stage. We
indicate these instructions by the predicasiewith_result(i). In case of
such an instruction, the reservation stations are not modified by the issue
protocol. However, we set the valid bit of the ROB enR@Btail points
to and store the result in thesult data item. We denote this result by
issueresult(i). For example, this could be tHeC address in case of a
jump-and-link instruction.

Machines that support instructions that are directly issued into the ROB
are usually not covered in the open literature. The Tomasulo implementa-
tion in [Kr699] uses this feature. However, the proof does not cover it.

In caseissuewith_result(T ) does not hold, we clear the valid bit of the
ROB entryROBtail". Let issuers(T,rs) hold iff reservation statioms
is used for issue during cycle. We initialize this reservation station as
follows: we set the full bit of the reservation station and storeR@&Btail
pointer in the tag data item. Besides the full bit and tag, the reservation
station holds the source operands.

The Tomasulo scheduling algorithm with reorder buffer supports differ-
ent places to forward the source operands from. For each operand of the
instruction three sources have to be checked:

1. The operand might be in the register file. In this case, the valid bit
of the register is set. If it is not in the register file, the producer table -

249



Chapter 6

OuT-OF-ORDER

250

EXECUTION

provides the tag of the last instruction writing it.

2. The operand might be on the CDB. In order to determine which
instruction is on the CDB, the result on the CDB comes with a valid
bit and a tag. If the valid bit is set, the tag indicates the instruction
on the CDB. Thus, we check the valid bit and compare the tag on the
CDB with the tag from the producer table. If they match, we take
the result on the CDB as source operand according to the embedding
convention.

3. The operand might be in the reorder buffer. This is indicated by the
valid bit of the reorder buffer entry that the tag in the producer table
points to. If the bit is set, we take the result from the ROB according
to the embedding convention.

If none of the three cases above applies, the source register is the desti-
nation of a preceding, incomplete instruction. The tag of this instruction is
in the producer table, and instead of the operand, the tag of this instruction
is stored in the reservation station.

6.4.3 CDB Snooping

During issue, the operands in the reservation station that are not available
are marked as not valid. On completion, the result of an operation is put
on the CDB. Instructions in the reservation stations, which depend on this
result, read the operand data from the CDB (figure 6.4). The reservation
stations identify the results by comparing the tag on the CDB with the tag

in the reservation station.

6.4.4 Dispatch

During instruction dispatch (figure 6.5), an instruction moves from a reser-
vation station entry into the actual function unit. We denote this fact by the
predicatedispatch{T,rs). If the predicate holds, the instruction in reserva-
tion stationrs is dispatched during cyclE.

The reservation stations that are dispatched are determined by the hard-
ware using a fair arbiter, which selects only full reservations with valid



Section 6.4

TOMASULO

if issudT) then PrROTOCOLS

RYrs].full :=1;
RYrs|.tag:= ROBtail,

For all source operands x of I, let r be $(ix):
if Rr].valid then
RSrs].op[x] :=R[r];
elsif CDB.tag= R[r].tagACDB.valid then
RSop[x.valid := 1;
RSop[x].data:= CDB.resulte(r)];
elsif ~ROBR[r].tag].valid then
RSop[x].valid:= 1;
RSop[x].data:= ROBR]r].tag].resulfe(r)];
else
RSop[x].valid := 0;
RSop[X].tag:= R[r].tag;
endif

For all registers r with desti,r):
R[r].tag:= ROBtail,
R[r].valid := 0;

Figure 6.3 Issue protocol for issuing instructionduring cycleT.

YV operands x of instruction l;
if  RSrs].full A /RYrs].op[x].validA
(RSrs|.op[x].tag = CDB.tag)
{

RSrs|.opx].valid := 1;

RSrs].op[x].data:= CDB.resule(S(i, x))];
}

Figure 6.4 CDB snooping protocol for instructiolf in reservation statiors

251



Chapter 6

OuT-OF-ORDER

252

EXECUTION

if dispatcHT,rs) then
{

Pass instruction, operands,
and tag to FU

RSfull :=0;
}

Figure 6.5 Dispatch protocol

operands. Thus, we can assume that the reservation stagiohat are
dispatched are full and have valid operands:

dispatch{T,rs) = RSrg]".full A
vx: RSrs]".op[x].valid

In addition to passing the instruction to the function unit, the reservation
station is freed during dispatch. Note that clearing the full bit may conflict
with setting the full bit as done by the issue protocol. Since the issue
protocol has priority, the full bit is set in this case.

6.4.5 Completion

During completion (figure 6.6), the result and the ROB tag in a producer
P[fu] are put on the CDB. Let the predicatempletioriT) hold iff the
machine completes an instruction. Lfet=complLp(T) denote the num-

ber of the producer that holds that instruction. That number is determined
by the hardware among the full producers using a fair arbiter. Thus, we
can assume that the producer is full:

completiofT) = P[compLp(T)]".full

During completion, the according reorder buffer entry is filled with the
result and the valid bit is set. L&U[fu]".valid denote that the func-
tion unit provides a result. LeEU[fu].result denote that result. Let
FU[fu]".tag denote the tag that accompanies the result.

If the function unit provides a new result, this result is stored in the
producer. If not so, the full bit of the producer is cleared.



if completiofT) then
{
CDB' .valid = 1;
CDB' .result= P[complp(T)].result;
CDB' tag= P[complp(T)].tag;

ROBCDB' .tag].valid := 1;
ROBCDB! .tag].result:= CDBT .result,
}

Vv function units fu:
if FU[fu]".valid then
{
P[fu].full :=1;

P[fu].result:= FU[fu]" .result
P[fu].tag:= FU[fu]" .tag;

}
elsif ~ completiofT) AcomplLp(T) = fu then
Plfu].full :=0;
endif

Figure 6.6 Completion protocol

Section 6.4

TOMASULO
ProTOCOLS

253



Chapter 6

OuT-OF-ORDER

254

EXECUTION

if  writebackT)
for all registers r with desti,r):
{
R[r].data:= ROBROBheadlresulte(r)];
if ROBhead= R[r].tag then
R[r].valid := 1;

Figure 6.7 Retirement / writeback protocol for instructidin

6.4.6 Writeback

During writeback (figure 6.7), a result of the instruction in the ROB en-
try that ROBheadpoints to is written into the register file. As introduced
above, we denote this fact by the predicarebackT). We assume that
writeback is done iff the ROB entry is valid and the ROB is not empty. Let
ROBemptyT) denote that the ROB is empty during cydle We will later

on define it.

writebackT) <= ROBempt§T) AROBROBheadT)]" .valid

During writeback, we store the result in the ROB in the registers. Fur-
thermore, we set the valid bit of the register if the tag of the instruction
matches the tag in the producer table.

Note that setting the valid bit may conflict with clearing the valid bit
during issue. As described above, the issue protocol has priority over the
writeback protocol, i.e., the setting of the valid bit is suppressed.

6.5 Data Consistency
6.5.1 Scheduling Functions

We need a formal way to state that “instructibris being issued during
cycleT” or “instruction |; is being dispatched during cycle. We do this

in analogy to the previous chapters usingcheduling functionWhile this
concept was introduced for in-order machines by [MP0OQ], we extend it to
out-of-order machines in the obvious way.



Section 6.5

Issue We recursively define a functioslissuethat maps a cycld to
the number of the instruction that is in the issue stage. Since we issue i

program order, that number increases by one in casestizéT) holds CONSISTENCY
and stays unmodified otherwise. We start with instruction

0 : T=0
slissugT) = slissu¢T —1)+1 : issudT —1)
slissu¢T — 1) . otherwise

Reservation Stations We also desire a way to define the instruction in a
given reservation statiors during a given cycld . We do this by defining

a schedule functiosIRSrs, T) for reservation stations. Instructions are
put in a reservation station during issue. In case an instruction is issued
into reservation statiors, we take the value cflissu¢T — 1). Otherwise,

the value ofsIRSrs, T) remains unchanged.

0 : T=0
sIRSrs, T) = slissuéT —1) : issudT —1)
sIRSrs,T—1) : otherwise

Note that the only point we put an instruction into a reservation station
is during issue. This is in contrast to the implementation givero§l;
which moves the instructions from one reservation station into the next.

Reorder Buffer In analogy to the schedule of the reservation stations,
we can provide a schedule for the ROB. The funcbROBtag, T) de-

notes the instruction that is in the ROB entry with tag during cycleT.

We start with—1, which denotes that no instruction is in the ROB entry.
We need this special value because the ROB entries have no such thing like
a full bit.

-1 : T=0

slissuéT — 1) : issuéT —1)A
tag = ROBtail’ ~1

sIROBtag, T —1) : otherwise

sIROBtag, T) :=

Function Units Letdispatch fu(T, fu) denote the number of the reser-
vation station that is used for dispatching an instruction to function unit
fu during cycleT. In hardware, this number is represented unary using
dispatch{T,rs). -
255



Chapter 6

OuT-OF-ORDER

256

EXECUTION

Let sldispatciifu, T) denote the number of the instruction passed to
function unit fu during cycleT. This is defined using the schedule of the
reservation station.

sldispatctifu, T) := sIRSdispatchfu(T, fu),T)

We also define schedules for the functional units.dlét( fu, T) denote
the number of the instruction th#avesfunction unit fu during cycle
T. The most simple functional unit is a combinatorial functional unit that
calculates its result within the same cycle the arguments are passed. The
32-bit ALU presented in chapter 2 is an example. For such a function unit,
slfu(fu,T) justis:

slfu(fu,T) := sldispatclifu,T)

In case of more complex function units such as floating point dividers,
one has to construct a scheduling function. There are two ways to do so:
1) one constructs the function such that it matches the pipeline structure
of the functional unit, and 2) one defines the schedule using the tags the
function unit provides.

As an example for the first method, consider a function unit with four
stages and a cycle that allows iterating the instruction in stage 2 (figure
6.8). We denote the instruction in stag®f the function unitfu during
cycleT by slsy(k, T). The instruction in stage 0 of the function unit is the
instruction that is dispatched:

slfy(0,T) := sldispatchifu,T)

This instruction proceeds into stage 1 iff the update enable sigagab
is active. This update enable signal is local to the function funit

0 . T=0
sley(1,T) = sley(0,T—1) ueIujg =1
slfy(1,T—1) : otherwise

This must be changed for stage 2, the stage with the back-cycle.

0 . T=0
sly(L,T—1) : uef,;=1Ase
sly(2T—1) : uef ;r=1Ase
slfy(2,T—1) : otherwise

T—1
-0
slu(2,T) = Er_l: X



Section 6.5

DATA
CONSISTENCY

from reservation station

)
=

)
-

------- Ueruo? o
Slfu(lvT)
1 0 seh
S uer R s
81‘9 sliu(2,T)
““““ Uefu2—p F-----------
é Slfu(37T)
to producer

Figure 6.8 Construction of the scheduling function for a function unit with cycles

257



Chapter 6

For stage 3 of the function unit, the scheduling function is defined in

OUT-OF-ORDER  gnaiogy to the scheduling function of stage 1:

EXECUTION

0 . T=0
sley(3,T) = sley(2,T—1) ueIujZl =1
slfu(3,T—1) : otherwise

Since this is also the last stage of the function dmitwe have

stfu(fu,T) = sly(3,T)

Producers In analogy to the scheduling function of the reservation sta-
tions, we define the scheduling function of the producer registers. We
denote the number of the instruction in producer numfaeduring cycle

T by sIP(fu,T). In case the function unit provides a result, we take the
value from the schedule of the function unit as defined above. If not so, the
value ofsIP(fu,T) does not change.

0 : T=0
sIP(fu,T) = sifu(fu,T—1) : FU[fu"lvalid=1
sIP(fu,T—1) : otherwise

As described above, the instruction in producer with the number given
by compLp(T) is put on the CDB during completion. We therefore define
the following shorthand for the instruction on the CDB during cycle

SICDB(T) := sIP(complLp(T),T)

Writeback In analogy toslissue we recursively define a scheduling
function slwritebackthat maps a cycld to the number of the instruc-
tion that is in the writeback stage. Since we writeback in program order,
that number increases by one in case thiatebackT) holds and stays
unmodified otherwise. We start with instructign

0 : T=0
slwritebackKT) := slwritebacKT —1)+1 : writebackT —1)
slwritebackKT — 1) . otherwise

258



Section 6.5

6.5.2 Function Unit Axioms
DATA

CONSISTENCY

In this section, we describe the assumptions we make regarding data con-
sistency properties of the functional units. We consider the functional units
as a “black box”. In particular, we do not provide implementations for data
memory or floating point function units. The design and verification of a
data memory function unit including virtual memory is subject of the thesis
of Sven Beyer [Bey01]. The design and verification of an IEEE compliant
floating unit including a divider is subject of the thesis of Christian Jacobi
[Jac01].

Inputs and Outputs As described aboveésU[fu]".valid indicates that
function unit fu provides a result during cycl€. FU[fu]" .tag denotes
the tag the function unit provides, ardJ[fu]".result denotes the result
the function unit provides.

Let fuing fu, T) denote the inputs of function unftu during cycleT.
This is a defined as follows: Les be a shorthand fadispatchrs(T, fu).
This is the reservation station that is used for dispatching to function unit
fu.

fuing fu,T).valid := dispatchrs(T,rs)
fuing fu,T).tag := RSrg] .tag
fuing(fu,T).sourcéx := R9rs|".opx].data

Tag Consistency Given that the function unit gets correct tags as inputs
upto cycleT, we assume that the function unit provides the correct tag of
the instruction as output during cycle

We formalize “gets correct tags as inputs upto cyiclas follows:
VT' <T: fuing fu,T').valid
— fuingfu,T’).tag= | tag(sldispatclifu,T’))
We formalize “provides the correct tag of the instruction” as follows:

FU[fu]".valid — FU[fu]" tag=I_tag(sl fu(fu,T))

259



Chapter 6

OuT-OF-ORDER

260

EXECUTION

Operand Consistency Given that the function unit gets correct source
operands as inputs upto cydlewe assume that the function unit provides
the correct results of the instruction as output during cycle

We formalize “gets correct source operand as inputs upto dytlas
follows:

VT' < T: fuing fu, T').valid
— fuing(fu, T').source= sourcdsldispatciifu, T'))

We formalize “provides the correct results of the instruction” as follows:

FU[fuT.valid = FU[fu]" .result=result(sl fu(fu,T))

Phase Consistency In order to show data consistency, we have to argue
that the function units does not generate “garbage output”. We assume two
things: 1) If an instruction leaves the function unit, it entered it before,
and 2) if instructions upto cycl& enter the function unit at most one, the
instructions leave the function unit at most once.

We formalize this as follows: Len(i, T, fu) denote that instructiol
enters the function unitu during cycleT.

in(i,T,fu) :<= fuingfu,T).valid A sldispatcifu, T) =i

In analogy to that, lebut(i, T, fu) denote that instructiofy leaves the

function unit fu during cycleT.
out(i,T,fu) :«<= FU[fu .validAslfu(fu,T) =i

If instruction |; leaves function unif u during cycleT, there must be a

cycleT’ < T such that it entered the function unit:
out(i,T,fu) = 3IT' <T:in(i,T',fu)
If the cycleT’ < T such that instructiofy enters the function unit during

cycleT'is unique, then the cyclé” < T such that instructiofy leaves the
function unit during cyclel” is unique.

{T'<Tlin(i,T fu} =1 = |{T"<T]out(i,T" fu}| =1



Section 6.5

We do not make further assumptions regarding data consistency. In par-
ticular, this allows that the latency of the function unit is variable and th&dATA
the instructions leave the dispatch order within the function unit. CONSISTENCY

We make further assumptions on the function units in order to show
liveness. We will later on describe these assumptions.

6.5.3 ROB Flags

We need means to determine wether the reorder buffer is full or not. For
this purpose, we take the circuit from [Lei99]. It use8 & 1 bit counter
register. The counter is incremented if we issue and instruction and do not
writeback one simulataneously. This is indicatedRYBIngT).

ROBIN€T) = issuéT)AwritebackT)

In analogy to thatROBde¢T ) indicates that we decrement the counter.
This is done if we writeback an instruction but do not issue one simultane-
ously.

ROBde¢T) = issudT)AwritebackT)

Thus, the value of the counter register during cyktles defined as fol-
lows:

0% . T=0
ROBcounfT —1)+1 : ROBIngT —1)
ROBcounfT —1)—1 : ROBde€T —1)
ROBcounfT —1) . otherwise

ROBcounfT) :=

The ROB is empty iff the counter is zero:
ROBemptyT) = (ROBcounfT)=0°+1)
The ROB is full iff the counter is the number of ROB entr@sWe use
the binary encoding a®.
ROBemptyT) = (ROBcounfT) = 10)

We make the following assumptions:
261



Chapter 6

OuT-OF-ORDER

262

EXECUTION

Definition 6.1 »
tag®i

Lemma 6.1 »

Lemma 6.2 »

Lemma 6.3 »

e If we issue an instruction without simultaneous writeback, the ROB
must not be full.

ROBIN¢T) = ROBFUI(T)

¢ If we writeback an instruction, the ROB must not be empty.

writebacKT) = ROBempt{T)

6.5.4 ROB Properties

Lettagdi be a shorthand for a tag that is incremeritéiches. Formally,
this is defined using a recursion and the bit-vector incrementation as de-
fined in chapter 2:

tag . i=0

tagd1l = {(tag@(i_l))+l . otherwise

Note that we increment a bit vector with limited range. Thus, it will
wrap-around. One easily verifies the following properties of the ROB
pointers:

Leti be the number of the instruction in the issue stage. The ROB tail
pointer has been increasetimes.

ROBtail' = 0% @slissuéT)
Leti be the number of the instruction in the writeback stage. The ROB
head pointer has been increaseignes.

ROBhead = 0°@slwritebacKT)
The proof for both lemmas is easily done using inductiorfon

The value in thd(ROBcountregister is smaller or equal than the number of
ROB entries.

(ROBcoun(T)) < ©



Section 6.5

PROOF One verifies this claim by induction oh. ForT =0, we have b
ATA

(ROBcountT)) = O. CONSISTENCY

For T + 1, we show the claim by a full case split on the values of
ROBIngT) andROBde¢T).

e If neither ROBIngT) or ROBde€T) holds, the value oROBcount
does not change and the claim is concluded using the induction
premise.

¢ If ROBIndT) holds, we assert the claim as follows: in case
(ROBcounT)) < ©
holds, the claim is easily concluded. Assume
(ROBcounfT)) = ©

holds. In this case, we have a contradiction to the assumption above
sinceROBINGT) holds and the ROB is full.

¢ If ROBde€T) holds, we assert the claim as follows: in case

(ROBcounfT)) # O

holds, the claim is easily concluded. Assume
(ROBcounfT)) = 0

holds. In this case, we have a contradiction to the assumption above

sinceROBde¢T) holds and the ROB is empty. QED

Let <4Lemma6.4
instr_in_rob(T ) = slissuéT ) — slwritebacKT)

denote the difference between the number of issued and terminated instruc-
tions, i.e., the number of instructions in the reorder buffer. We claim that
this number is equal to the binary number interpretation of the value of
ROBcoun(T):

instr_in_rob(T) = (ROBcoun(T))

263



Chapter 6

PROOF This claim is asserted by induction dn ForT = 0 we have
OuT-OF-ORDER

EXECUTION instr_iin_rob(T) = (ROBcoun(T))
slissuéT) — slwritebacKT) = (0%+1)
0—-0 = (0o,

ForT + 1, we do a full case split on the values of the sigrssi€T)
andwritebackKT).

e If neitherissudT) nor writebackT) holds, both the values of the
scheduling functions and the ROB counter do not change from cycle
T to T + 1. Thus, the claim is concluded by the induction premise.

e If both issuéT) andwritebackT) hold, both scheduling functions
are incremented by one. Thus, the difference stays the same. The
ROB counter does not change from cy€léo T + 1. Thus, the claim
is concluded by the induction premise.

e In caseissuéT) holds andwritebacKT) does not hold, the differ-
ence is increased by one. The ROB couter is also increased by one.
One asserts that the ROB counter does not wrap around by lemma
6.3.

e In caseissuéT) doe not hold andvritebacKT) holds, the differ-
ence is decreased by one. The ROB couter is also decreased by one.
One asserts that the ROB counter does not wrap around using the
QED assumption that we do not writeback in case of an empty ROB. 6.3.

Lemma 6.5 » The number of instructions in the ROB is greater or equal than zero.

instr_in_rob(T) >0
One easily asserts this using lemma 6.4.

Lemma 6.6 » The number of instructions in the ROB is smaller or equal than the number
of ROB entries.

instr_in_rob(T) < ©

This is easily shown using lemma 6.4 and lemma 6.3.
264



Section 6.5

The following lemma is easily concluded using lemma 6.5: b
ATA

CONSISTENCY

The number of issued instructions is greater or equal than the number lofmma 6.7
terminated instructions.

slissugT) > slwritebacKT)
If we terminate an instruction using cycle the number of issued instruc< Lemma 6.8
tions is greater than the number of terminated instructions.
writebacKT) = slissuéT) > slwritebacKT)

One easily shows this using lemma 6.7, and lemma 6.4, and the fact that
we only writeback if the ROB is not empty.

The number of issued instructions upto cytles greater or equal than the« Lemma 6.9
number of terminated instructions upto cy@le- 1.
slissuéT) > slwritebacKT + 1)

One easily verifies this claim using lemma 6.8 for the aagtebackT)
and using lemma 6.7 otherwise.

As described above, we assign a tag to each instruction during issue. € Rigfinition 6.2
is the value of the ROB tail pointer. This pointer is increased by one eadhtad(i)

time we issue an instruction. Thus, we define a functidag(i), which

denotes the tag of instructidp as follows:

| tag(i) = O°@i

| tag(i) is the value of the ROB tail pointer during issue of instruction <4 Lemma 6.10

ROBtaill = | _tag(slissuéT))

265



Chapter 6

This claim is easily concluded using lemma 6.1 and the definition of

OuT-OF-ORDER | tag.

EXECUTION

Lemma 6.11 » If aninstruction is in ROB entryag, then the tag of that instruction tiag.

sIROBtag T) =i = tag=I_tag(i)

PROOF One shows this claim by induction dn For T = 0, there is nothing to
show since there is no instruction in the ROB (formadiyfROBtag,0) is
—1, and there is no instructidn ).

ForT + 1, the claim is concluded by expanding the definitiorsldifOB
If
issudT) Atag= ROBtail’

holds, we havesIROBtag, T + 1) = slissu¢T). The claim is then con-
cluded using lemma 6.10.

If not so, we havasIROBtag, T + 1) = sIROBtag, T). The claim is then
QED  concluded using the induction premise.

We will now show that this tag is unique beginning with the cycle the
instruction is issued until the instruction terminates. Formally, this means
that we can assign a single, unigue instruction to each such tag.

Letissuedi, T) hold iff instruction|; is already issued during cycle.
We define this predicate using the scheduling functibssue

issuedi,T) :<= slissugT) >i
However, it is not obvious that instructidnwas issued before cycle

if slissuéT) > i and vice-versa. It is an implication of in-order issue. The
following lemma asserts one direction.

Lemma 6.12 » If issuedi,T) holds, there is a cycl&’ < T such that; is issued during
cycleT’.

issuedi,T) = 3IT' < T :slissuéT')=iAissudT’)
266



Section 6.5

PROOF The claim is shown by induction of. ForT = 0, we have

slissu€0) = 0. Thus,slissué0) > i cannot hold and there is nothing to DATA
show. CONSISTENCY

ForT + 1, we show the claim using a case splitissudT).

e If issuéT) holds, we have
slissugT + 1) = slissugT) + 1

and thereforeslissu¢T) +1 > i. Letslissu¢T) > i hold. In this
case, we can apply the induction premise and the claim holds. Thus,
let slissuéT ) =i hold. In this case, cycl& satisfies the claim.

e If issu€T) does not hold, we havdissuéT + 1) = slissuéT) and
we can apply the induction premise to show the claim. QED
In analogy toissuedi,T), we define a predicateerminatedi, T) that
holds iff instructionl; already terminated before cycle
terminatedi,T) :<= slwritebacKT) > i

Let the predicate(i, T) be a shorthand for the fact that instructiris
already issued during cycle but has not yet terminated.

1(i,T) :<= issuedi,T)Aterminatedi,T)

The following lemma will be used in order to show that issue is done in
program order.

Consider the instruction in the issue stage during cycléuring cycle € Lemma 6.13
T + 1, there is the same or a later instruction in the issue stage.
slissug¢T +1) > slissugT)

The proof of lemma 6.13 is easily done by expanding the definition of
the scheduling functioslissuéT +1).

The instructions are issued in order, i.e., during cyicle< T there is the €« Lemma 6.14
same or an earlier instruction in the issue stage.

VT' < T :slissuéT’) < slissugT)

267



Chapter 6

OuT-OF-ORDER
EXECUTION

Lemma 6.15 »

Lemma 6.16 »

PROOF

QED

Lemma 6.17 »

Lemma 6.18 »

268

This lemma is easily shown using induction dnand lemma 6.13 as
induction step.

Leti > 0 andj > 0 hold. If one increments a tagimes and after thag
times, this is equivalent to incrementing the tagj times.
(tagdi)®] = tag® (i+j)
This is easily shown by induction on
LetT andT’ > T be cyclesROBtail" is equal toROBtail" incremented
slissugT’) —slissuéT) times.

VT'>T: ROBtail =ROBtail' @ (slissuéT’)— slissuéT))

By applying lemma 6.1 twice, the claim is transformed into:
0° @slissuéT’) = (0° @slissuéT)) @ (slissugT’) — slissuéT))
One showsslissuéT’) — slissuéT ) > 0 using lemma 6.14. This allows

concluding the claim using lemma 6.15.

One easily verifies the following property of tag arithmetic (i.e., bit-
vector arithmetic). It applies for incrementing tags as doneRloBhead
andROBtail.

If one increments a taigtimes, the value of this tag is the value of the old
tag plusi modulo® (number of ROB entries).
(tag®i) = (tag)+imod®

The following lemma will be used in order to argue that certain entries
in the ROB are not overwritten.

If one increments atag at least once and less@ames, the incremented
tag is different from the old tag.

0<j<© = (tag®]) #tag



Section 6.5

PROOF According to lemma 6.17, we have
DATA

(tag® j) = (tag)+jmodO CONSISTENCY

Assume(tag® j) = tag holds. In this case, the equation above trans-
forms into:

(tag) = (tag)+j mod®©

This only holds ifj is a multiple of® (this property of mod is shown in
the PVS libraries). This is a contradiction to the premise of the lemma and
we therefore havétag® j) # tag. QED

Entries in the ROB are overwritten if the ROB tail pointer wraps around.
This happens eadh (number of ROB entries) instructions. The following
lemma asserts the fact that instructipim the ROB is overwritten only in
this case.

Let instructionl; be issued during cycl&’. Consider cycle§ > T'. As <« Lemma 6.19
long as no more tha® instructions are issued from cycE to T, the

instruction in the ROB entry during cycl& that ROBtail" points to is

instructioni.

issudT’) AslissugT’) =i AslissugT) < (i +O)
— sIROBROBtail" ,T) =i

The proof proceeds by induction @n ForT = 0, there is nothing to show PROOF
since there is no cycl&’ > 0 with T > T'.

ForT + 1, let us consider the ca3e= T'. In this case, the claim holds
by definition ofsSIROB

The claim for the cas& > T’ is (we swap left hand side and right and
side):
i = SIRORROBtail",T)
. slissugT) . iSSUET)A
= ROBtail" = ROBtail’
SIROBROBtail",T) : otherwise

We argue the two cases above separately. Assume

issuéT) A ROBtaill = ROBtail"

269



Chapter 6

OuT-OF-ORDER

270

EXECUTION

QED

Lemma 6.20 »

Theorem 6.21 »

PROOF

holds. This implies thaslissu¢T + 1) = slissu¢T ) + 1 holds because
issuéT) holds. This allows concluding that

slissuéT)+1<i+0©

holds. This allows applying lemma 6.18 wifjh= slissuéT) —i, which
states:

ROBtail # ROBtail(T') @ (slissuéT) —i)

According to lemma 6.16 for cycleE' andT, we have

ROBtaill = ROBtail" @ (slissuéT)—i).

Thus, this is a contradiction ROBtail’ = ROBtail"'. Thus,
issuéT) A ROBtail" = ROBtail’
cannot hold. We therefore only have to shellROBROBtail", T) = i.
This is done using the induction premise.
If instruction|; has been issued but has not not yet terminated, lesscthan

(number of ROB entries) instructions have been issued sinweas issued.

1(i,T) = slissuéT) <i+0©

This claim is easily concluded using lemma 6.6.

The following theorem provides the unique mapping from tags to in-
structions: we just use the ROB schedule. The tag of an instruction is
unique, if the instruction in the ROB.

If instruction|l; has been issued but has not not yet terminated, the instruc-
tion in ROB entryl _tag(i) is instructioni.

1(i,T) = sIRORItag(i),T) =i
According to lemma 6.12, there is a cydlé < T such that instructiom;

is issued during cycl&’. According to lemma 6.19 for cycl&’ andT and
instructioni, we have;:

slissuéT) <i+© — sIROBROBtail' ,T) =i



Section 6.5

We assert the left hand side of the implication using lemma 6.20. Thds,

we have: DATA
CONSISTENCY

SIROBROBtail’ ,T) = i

It is therefore left to show thaROBtail™ is equal tol tag(i). This is
done using lemma 6.10. QED

From lemma 6.21, one easily concludes the following claim:

Let l; andl; be instructions. If the tags of the instructions are equal add.emma 6.22
both unique, instructionis instructionj.

| tag(i) =1tag(j) At(i,T)AT(],T) = i=]
In analogy to lemma 6.10, we show:
The ROBheadpointer during cycl€l is the tag of the instruction in write-« Lemma 6.23

back stage.

ROBheadT) = |I_tag(slwritebackT))
One easily concludes this claim using lemma 6.2
If we writeback an instruction during cyclE, that instruction is in the « Lemma 6.24

ROB entry thaROBheadpoints to.

writebacKT) = slwritebacKT) = sIROBROBheadT ), T)

Using lemma 6.23, we transform the claim into: PROOF
writebacKT) = slwritebacKT) = sIROBI _tag(slwritebacKT)), T)
The claim is concluded using lemma 6.21. It is left to show that the
premise of lemma 6.21 holds, i.e., we have to show that
1(slwritebacKT), T)

holds. We show that the instruction is already issued using lemma 6.8.
Furthermore, the instruction is obviously not terminated yet. QED

271



Chapter 6

6.5.5 Instruction Phases
OuT-OF-ORDER

EXECUTION
We distinguish the following phases of executing instruction

e Not issued: Before an instruction is issued, the instruction is in the
"not issued” phase. Formally, this holdsssuedi, T) holds.

¢ In RS: During issue, the instruction is stored in a reservation sta-
tion unlessssuewith_result(i) holds. Formally, instructiof is in a
reservation station during cycleiff

Irs: RYrs]".full ASIRSrS, T) =i
holds.

¢ In FU: During dispatch, the instruction is passed from the reserva-
tion station to a function unit. Formally, we say an instruction is
dispatched during cycl€ iff there is a cycleT’ < T and a reserva-
tion stationrs such that instructiom is in reservation statiors and
the instruction in that reservation station is dispatched.

dispatchedi, T)
1< 3IT' < T,rs: dispatchrs(T',rs) AsIRSrs, T') =i
The instruction leaves the function unit if it is passed to a producer.
Formally, an instruction is executed iff there is a cy€le< T and
a producerfu such that instructioy is in the produceirfu and that
producer is full.
executedi, T)
= 3T < T, fu: FU[fu" valid Aslfu(fu,T') =i

Formally, instructiorl; is in a function unit during cycld iff
dispatchedi, T) A executedi, T)

holds. Note that there are function units (ALU, for example), that re-
turn the result in the same cycle they getit. In this case, the condition
above never holds, although the function unit is not bypassed.

e In producer: After leaving the function unit, the result of the in-
struction is stored in a producer. Formally, an instruction is in a
producer iff there is a producdiu such that instructiot is in the
producerfu and the producer is full.

Ifu: P[fu]".full ASIP(fu,T) =i

272



Section 6.5

DATA
CONSISTENCY

issuewith_result(i)

Figure 6.9 Instruction phase state diagram

e In ROB: As soon as the producer gets the CDB, the result in the
producer is stored in the ROB. Formally, an instruction is in the ROB
during cycleT iff there is a ROB entryag such that the instruction
in that entry isl; and the entry is valid and the instruction has not
terminated yet.

Jtag: ROBtag'.valid AsIROBtag,T) =i Aterminatedi, T)

The phases of “normal” instructions, i.e., instructidnghat are not
issued with result, are processed in the order above. Instructions with
issuewith_result(i) skip the phases “in RS”, “in FU”, and “in producer”.

This is illustrated in figure 6.9. The figure shows the different phases and
the transitions between the phases. However, one has to assert this property
of the machine. This is done by the following lemmas.

Let p(i, T) denote that instructioh is in phasep during cycleT.

Let pred(p) denote the set of predecessor phases of ppaseording
to figure 6.9. For example, the “not issued” phase only has itself as prede-
cessor. The “in ROB” phase has three predecessor phases: “in ROB”, “not
issued”, and “in producer”.

In analogy topred(p), let sucq p) denote the set of successor phases of
phasep according to figure 6.9. For example, the “not issued” phase has
two successor phases: “in RS” and “in ROB”.

If instruction |; is in a given phase during cyclg, and not in any other< Lemma 6.25
phase, we show that the instruction is in at most one successor phase during
cycleT +1, i.e., the sucessor phases mutually exclude each other.

For most phases, the claim is trivial, because they only thave themselvBROOF

273



Chapter 6

and another state as successors. The only exception is the “not issued”
OUT-OF-ORDER  phase; which has three successors. We therefore show the claim exemplary
EXECUTION  fqr the “not issued” phase.

e If issuéT) andslissu€T) =i does not hold, one easily concludes
that instructionl; stays in “not issued” phase during cycle+ 1.
Thus, we have to show that it is not in a reservation station or in the
ROB. According to the premise of the lemma, the phasels affe
unique during cycld. Thus,l; is not in the ROB or in a reservation
station during cycld. Sincel; is also not issued, one easily verifies
that it does not move into the ROB or into a reservation station.

e If issudT) andslissuéT) =i holds, one easily concludes that in-
structionl; either enteres the ROB or a reservation station, depending
on issuewith_result(i). If issuewith_result(i) holds, one verifies
that the instruction cannot be in a reservation station. If not so, one

QED verifies that the instruction cannot be in the ROB.

Lemma 6.26 » If instruction | is in a given phase during cycle+ 1, we show that it
must have been in one of the predecessor phases as given in figure 6.9
during cycleT:

pi,T+1) = \/ P30T
p'epred(p)

For example, if instructioty is in phase “not issued” during cycle+ 1,
this implies that it must be in phase “not issued” during cytle

PROOF In PVS, we split this claim into 6 lemmas, one for each phase. We show
the claim for the “not issued” phase and the “in RS” phase here exemplary.

e The claim for the “not issued” phase is easily asserted by expanding
the definition of “not issued” and by applying lemma 6.13.

e The claim for the “in RS” phase is asserted as follows: according to
the premise, there is a reservation statigsuch that

RSrs]T L. full A sIRSrs, T+1) =i
holds. Letissuers(T,rs) hold. In this case, we have

SIRSrs, T+1) = slissugT)
274



Section 6.5

Thus, the instructiom is in issue stage during cycle Thus, itisin

“not issued” phase during cycl, which concludes the claim. DATA

, _ _ CONSISTENCY
Letissuers(T,rs) not hold. In this case, one easily asserts that the

full bit RSrs]". full is active andsIRSrs, T) =i holds. Thus, the
instruction is in “in RS” phase during cyclg, which concludes the
claim. QED

The phase of instructioh during cycleT is unique, i.e., the phases above Lemma 6.27
exclude each other mutually.

One easily shows this claim by induction ®nForT = 0, one asserts that PROOF
all instructions are in “not issued” phase only.

For T + 1, one shows the claim as follows: according to the induction
premise, instructiot; is in at most one phase during cydle One applies
lemma 6.25, which shows that the successor states mutually exclude each
other.

Furthermore, the instructidncannot be in a phase that is not a successor
phase during cycl& + 1, which is asserted by lemma 6.26. QED

6.5.6 Tag Consistency

We will now show that the tags transported in the machine are consistent
with the scheduling functions, i.e., we will show that the tag stored together
with instructionl; is | tag(i).

If a reservation station is full, the tag in that reservation station is the ¥abemma 6.28
of the instruction in the reservation station.

RSrs]T.full = RSrs]".tag=1_tag(sIRSrs,T))

The claim is shown using induction dn For T = 0 there is nothing to PROOF
show because the reservation stations are not full in the initial configura-
tion.

For T + 1, we show the claim as follows: If an instructidnis issued
into reservation statiors during cycleT, the value of the tag in reservation -

275



Chapter 6

station is defined by the issue protocol:
OuT-OF-ORDER

EXECUTION RYrs]"tltag = ROBtail'

According to lemma 6.1, this is equivalent t8 @ slissugT). This is
the definition ofl _tag(i).

If no instruction is issued into reservation statiaduring cycleT, we
QED apply the induction premise.

Lemma 6.29 » If there is an instruction in a producer, the tag in the producer matches the
tag of the instruction.

P[fu.full = P[fu]".tag=_tag(sIP(fu,T))

PROOF We show this claim by induction oh. ForT = 0, there is nothing to show
because the producer is not full in the initial configuration.

For T + 1, we show the claim as follows: For the case that the instruc-
tion in the producer did not change from cydieto T + 1, we apply the
induction premise.

If a new instruction moved into the producer, we conclude the claim by
making the following assumption: if the function unit gets correct tags as
inputs for cyclesT’ with T’ < T, this implies that the function unit passes
the correct tag during cyclgé. We will later on describe how to verify that
property of the function units. We show that the function units get correct

QED tags forT’' with T' < T using lemma 6.28.

Lemma 6.30 » The tag on the CDB matches the tag of the instruction on the CDB.

CDB'.valid — CDB'.tag=_tag(sICDB(T))

PROOF We assume that we only complete instructions from producers that are
full. Thus, we can apply lemma 6.29. The tag on the CDB matches the tag
from the producer. Furthermore, the instruction on the CDB matches the

QED instruction in the producer, by definition sfCDB.

276



Section 6.5

6.5.7 Data Consistency Criterion
DATA

CONSISTENCY
In this section we describe our data consistency criterion for the Toma-
sulo protocols. We define a formal notion for the correct input and output
values of an instruction. We do this by defining an abstract machine that
processes an instruction with each transition. We call this machine abstract
specification machine (aS). The configuration set of this machine consists
of the registers.

Given an instruction (configuration of this machine), we define the cor-
rect value of a source registeto be the value of the registeif r £ 0 and
to be zero ifr = 0:
sourcdi,r) = 0 + =0
T c,sR : otherwise

The functionsourc€i) maps an instruction to the values of all source
operands. Remember th&ti,x) denotes the number of the register of
source operang. Letsdenote the number of source registers.

source: N — W(R)®
sourcdi)(x) = sourcéi,S(i,x))

Let f; be the function that maps the values of the source operands of
instruction I; to the values of the destination operands unless we have
issuewith_result(i). Letd denote the number of destination registers.

fi: W(R)S— W(R)
Thus, the result of instructioh is:

result(i,r) := {

issueresult(i) : issuewith_result(i)
fi(sourcéi)) : otherwise

This allows defining the configurations of the abstract specification ma-
chine. We start with an initial configuratiorr?1S and proceed using. If
instructioni — 1 has register as destination register, then we take the the
new value ofR[r] from the result of;_;. If not so, we take the value from
the old configuration.

_ Q5 RIr] L i=0
c,sRr] = result(i —1)[e(r)] : i#0Adesti—1r)
o otherwise

277



Chapter 6

Proof Strategy We will show the correctness of a DLX implementation

OUT-OF-ORDER  \yith Tomasulo scheduler as follows:

EXECUTION

¢ We will show that a machine implementing the Tomasulo protocols
given in the previous sections simulates the abstract macftine
This is the hardest part of the proof.

¢ We will show that the DLX implementation with Tomasulo sched-
uler implements the Tomasulo protocols.

We will now conclude several trivial properties of the abstract specifica-
tion machineaS

Lemma 6.31 » If instruction |; has no destination regist&r], thenR[r] is not changed
by instructionl;.

desti,r) — R =Rirlis
The proof is done by expanding the definitionR@f]iz;gl.
Definition 6.3 » Let the predicatd_(i,r) hold iff there is an instructionj < i such that

L(i,r)  instructionlj has destination register

L(i,r) < 3Jj<i:des(j,r)

Lemma 6.32 » Letiandj <i be instructions. IL (j,r) holds, so doek (i,r).

j<inL(j,r) = L(r)
This holds by definition of the predicates.

Definition 6.4 » LetL(i,r) hold. Letlast(i,r) denote the number of the last instruction
last(i,r) with destination registar prior to instructionl;. Formally, this is the max-
imum of the set of instruction with j < i anddes(j,r).

last(i,r) = maxXj|]j<iAdes(j,r)}

This set is always non-empty becauseldf,r). Furthermore, the set
is finite and has an upper bound. Thus, the maximum is definle¢i if )
- holds.

278



Section 6.5

The following property is easily shown using the definitionlas$t and

the definition of max. DATA

CONSISTENCY
If L (i,r) holds, the instructioty,si ;) has destination register < Lemma 6.33
L(i,r) = des{last(i,r),r)
LetL (i,r) andi > 1 hold. If instructionl;_; does not have a destinatiom Lemma 6.34
registerr, L (i— 1,r) holds.
i>1AL(i,r)Ades(i—1r) = L(i—1r)
Becausel (i,r) holds, there must be an instructiopwith j <i and PROOF

dest{j,r). Since this is not instruction— 1, it must be an instruction with
j <i—1. Thus,L (i—1,r) holds.

Leti >1 andL (i,r) hold. If instructionl;_; does not have a destinatio® Lemma 6.35
registerr, thenlast(i,r) is equal tdast(i — 1,r).
i>1AL(i,r)Ades(i—1,r) = last(i,r) =last(i—1,r)
Because ot (i,r), last(i,r) is defined. According to lemma 6.34,(i —  PROOF
1,r) holds. Thus|ast(i —1,r) is defined.

Let j belast(i,r). By definition of max, this number is element of
{0,...,i—1}. Because ofles{i — 1,r), j cannot be — 1. Thus,] is equal
to last(i —1,r). QED

Leti > 1 hold. If instructionl;_1 has destination register last(i,r) is < Lemma 6.36
equal toi — 1.

i >1Ades(i—1,r) = last(i,r)=i—-1
This is easily shown by using the definition of max.

Letl; andl; with j <i be instructions. If all instructionyr with j < j' <i < Lemma 6.37
do not have a destination registethe value oR[r] does not change from
configurationchg to clq.

j<in(vj<j <i:des(j,r) = Rirlhs=Rirls

279



Chapter 6

OuT-OF-ORDER
EXECUTION

Lemma 6.38 »

PROOF

QED

Lemma 6.39 »

PROOF

QED

280

One easily concludes this using inductioni@md the transition function
of R[r].

Let Rr] with r # O be a register and Ildt (i,r) hold. In this case, the
correct source register gfis the result of the last instruction writirfgr].
r#0AL(i,r) = sourcdi,r) =result(last(i,r))[e(r)]

By definition oflast(i,r), the instructiond; with last(i,r) < j <i do not
have destination register According to lemma 6.37, we have

Rilss = Rias'™

The left hand side isourcéi, r) by definition, and the right hand side is

result(last(i, r))[e(r)] by definition of R[]+,

Let there not be an instruction that is issued during cylcheith desti-
nationR[r]. This implies that the value of source registesf instruction
lissugT) Matches the value of source registaf instructionlissygr-1)-

issudT ) A des(slissuéT),r)
= sourcéslissuéT ),r) = sourcéslissuéT +1),r)

If issuéT) does not hold, we havelissué¢T) = slissuéT + 1) and the
claim obviously holds.

If issudT) holds, we apply lemma 6.37 and expand the definition of
source

6.5.8 Forwarding Tags Consistency

The Tomasulo scheduling algorithm does forwarding at two places: 1) dur-
ing issue, we forward from the CDB and from the ROB, 2) while in a
reservation station, we forward from the CDB.



Section 6.5

Both forwarding from the ROB and from the CDB is done using the tag.

We will now show that the tags used for forwarding are correct. ATA

CONSISTENCY

Let I; be the instruction in issue stage during cy€le If a registerR[r] < Lemma 6.40
is marked as “not valid” during cycl& in the producer table, there is an

instruction prior to instruction; that writesR[r] and the tag of the regis-

ter in the producer table is the tag of the last instruction prior instruction

IinssuaéT) writing R[r]-
slissu€T) =i AR[r].valid
— L (i,r) AR[r]" .tag = | tag(last(i,r))

We verify that claim by induction of. ForT = 0, there is nothing to PROOF
show because we make the valid bits of the registers active in the initial
configuration.

ForT +1, we conclude the claim as follows: In céRfe]"+*.valid holds,
there is nothing to show. Thus, IBfr]"+1.valid not hold. We distinguish
three cases:

e If an instruction with destination regist&r] is issued during cycle
T, we easily assellt (i,r), since instructiorslissuéT) satisfies the
claim.

We asserR[r]".tag = | tag(last(i,r)) as follows: we apply lemma
6.36, which states:

last(i,r) = i—1
Thus, we have to show:
Rr"tag = |tag(i—1)

During issue, the ROB tail pointer is stored Rir].tag. Thus, the
claim is equivalent to:

ROBtaill = |_tag(i—1)
According to the definition of_tagand lemma 6.1, this is equivalent
to:
P oslissuéT) = %@ (i—1)
slissuéT) = i-1 -

281



Chapter 6

OuT-OF-ORDER

282

EXECUTION

QED

Lemma 6.41 »

This is concluded using the fact that issuéT + 1) holds, and by
expanding the definition absudT + 1), and the fact thaissudT)
holds.

e If an instruction with no destination regist&r] is issued during
cycleT, considerR[r]".valid. If R[r]".valid holds, this implies that
R[r]"*+1.valid, which is a contradiction.

Thus,R[r]".valid does not hold. This allows applying the induction
premise for instructiorn; 1 and we get:

L(i—1,r) AR[r]".tag=I_tag(last(i — 1,r))

We concludd_ (i,r) from L (i — 1,r) using lemma 6.32.

As the instruction that is issued during cydledoes not have a des-
tination registeiR[r], we haveR[r]" +1.tag = R[r]" .tag, which trans-
forms the claim into:

Rir"tag = |_tag(last(i,r))

Thus, it is left to show thatast(i — 1,r) = last(i,r) holds. This is
concluded using lemma 6.35.

e If no instruction is issued during cycle, we assert thaR[r] .valid
does not hold as in the case above. This allows applying the induc-
tion premise, which concludes the claim.

The following lemma will be used for the induction step for the proof of
lemma 6.42.

Let reservation statiors be full during cycleT + 1 and let the operanxl

be not valid. There are two possible reasons for this: 1) this was already
true during cycleT, and 2) an instruction was issued into the reservation
station during cycld.

RSrs]" ™. full ARSrs]T+L.0p[x].valid
— (RYrs]". full ARSrs]T.op[.valid) v
(issuéT) Aissuers(T,rs))

One easily asserts this claim by applying the definition of the issue pro-
tocol. Full bits of reservation stations are only set by the issue protocol,
the valid bit of the operand is only cleared by the issue protocol.



Section 6.5

The following lemma will be used to argue the correctness of data that

is forwarded into a reservation station. DATA
CONSISTENCY

Let reservation statiors be full and let instructior; be in this reservation< Lemma 6.42
station. Let operand be not valid, and let be §i,x). This implies that

r is not zero, and that there is an instruction prior to instructjowith

destinationR[r] and the tag of operamxis the tag of the last instruction

prior tol; with destinationR[r].

RSrs]™. full AsIRSrs, T) =i ARSrs|T.op[x].valid
— r#0AL(i,r) ARSrs]".opx.tag= | tag(last(i,r)))

One asserts this claim by induction @n For T = 0, there is nothing to PROOF
show since the full bits of the reservation stations are not set in the initial
configuration.

ForT + 1, we show the claim by applying lemma 6.41. Consider the case
that an instruction is issued into the reservation station during dycle
this case, the claim is easily concluded using lemma 6.40 (correctness of
the tags in the producer tables).

If no instruction is issued into the reservation station during cycléne
tag in the reservation station does not change and we have

RSrs]". full ARSrs]T.op[x].valid

according to lemma 6.41. This allows applying the induction premise,
which concludes the claim. QED

6.5.9 Tag Uniqueness

We will now show the tag uniqueness properties for the different places
tags are used in the Tomasulo machine.

Recall that this property was shown in lemma 6.21. This lemma uses
1(i, T) as premise. Thus, we use “tag is unique” afidT ) synonymously.

Let|; be the instruction in issue stage and let the valid bit of regRjigr <« Lemma 6.43
be not set. This implies that there is an instruction priok; toriting R[r]
and the tag of the last such instruction is unique.

slissuéT) =i AR[r]T.valid = L(i,r)At(last(i,r),T)
283



Chapter 6

OuT-OF-ORDER

284

EXECUTION

PROOF This claim is concluded by induction oh. ForT = 0, there
is nothing to show since we make the valid bits of all registers set in the
initial configuration.

ForT + 1, we apply lemma 6.40, which states that there is an instruction
prior to I; writing R[r] and that the tag in the producer table is the tag of
instruction j := last(i,r). In order to show the uniqueness of the tag, we
have to assert that instructiopis already issued but not yet terminated.

One easily asserts that instructignis already issued by definition of
last(i,r).

We show that instructiom; is not yet terminated by distinguishing two
cases:

1. If an instruction with destinatioR[r] is issued during cycl&, we

show thatj =i — 1 holds using lemma 6.36. This instruction cannot
be terminated in cycl& + 1, because this is a contradiction to lemma
6.9.

2. If no instruction with destinatiof[r] is issued during cycl&, we
assert that the valid bit of registB¥r] is not set during cycl@:

R[r]T.valid

This allows applying the induction premise for the instruction issued
during cycleT (instructionslissué€T)). Thus, we have:

1(last(slissuéT),r), T)

If issuéT) does not hold, we havelissuéT) =i and the claim is
concluded. Thus, lassudT) hold. We already showed the claim
for the case that instructioslissu¢T) has destination registér].

For the case it does not have such a destination register, we apply
lemma 6.35, which states that

last(i,r) = last(slissuéT),r)

holds. Thus, we have:
T(j,T)

We therefore know that instructidi did not terminate before cycle
T. ltis left show show that it does not terminate during cy€le
Assume it does terminate during cydle One easily asserts that the



Section 6.5

tag in the producer table of registBir] is the tag of instruction;

since it is unique according to the induction premise. DATA

) ) S ) CONSISTENCY
Thus, according to the writeback protocol, the valid biRff] is set

during cycleT. This is a contradiction to the fact thfr]"+*.valid
does not hold. QED

Let |; be in reservation statiors and let that reservation station be fullt Lemma 6.44
This implies that the tag of instructidpis unique.

RSrg".full = 1(sIRSrs, T),T)

One easily concludes that instructigris in phase “in RS”, as formally PROOF
defined above. According to lemma 6.27, the instruction cannot be in two
different phases during cycle. Thus, it cannot be in “not issued” phase,

which allows concluding that it is already issued.

Furthermore, it cannot be in “terminated” phase. Thys,T) holds. QED

Let I; be an instruction in a full reservation station. bebe a source « Lemma 6.45
operand that is not valid, amd:= S(i,x) be the source register. There is

an instruction prior td; writing R[r]. Letl; be the last instruction prior to

instructionl; that writesRr].

We claim that instruction; is in one of the following phases: 1) itis in
a reservation station, 2) it is in a function unit, or 3) it is in a producer.

This claim is shown by induction of. ForT = 0, there is nothing to PROOF
show since the reservation stations are not full in the initial configuration.

ForT + 1, we conclude the clain as follows: According to lemma 6.41,
there are two cases: an instruction is issued into reservation statitom-
ing cycleT or the instruction already was in the reservation station during
cycleT.

e If an instruction is issued into the reservation station during cycle
T, one easily asserts that the valid bit of the source register cannot
be active (otherwise, the valid bit of the reservation station source
operand is set and we have nothing to show). This allows applying
lemma 6.40, which states that the tag of the last instruction writ-
ing the register is in the producer table. According to lemma 6.43, -

285



Chapter 6

OuT-OF-ORDER

286

EXECUTION

QED

Lemma 6.46 »

PROOF

QED

Lemma 6.47 »

the tag is unique, i.e., instructidn is already issued and has not
yet terminated. Futhermore, the instruction is not in the “in ROB”
phase during cycl@ and not on the CDB (otherwise, the valid bit

of the reservation station source operand is set and we have nothing
to show). Thus, it must be in a reservation station, function unit or
producer during cycld.

We conclude the claim as follows: if the instruction is in a reser-
vation station, we use lemma 6.59 in order to conclude that it ei-
ther stays in that phase or enters a function unit. This concludes the
claim.

If the instruction is in a function unit, we use lemma 6.59 in order to
conclude that it either stays in that phase or enters a producer. This
concludes the claim.

If the instruction is in a producer, we use 6.59 in order to conclude
that it either stays in that phase or moves into the ROB. The last case
cannot happen, since this is a contradiction to the fact that the valid
bit of the operand is not active. This is easily concluded since the tag
of I is valid because the instruction is in the “in producer” phase.

e If no instruction is issued into the reservation station during cycle
T, one applies the induction premise. The induction premise states
that instructionl; is in a reservation station, a function unit, or in a
producer. After that, the claim is concluded as in the case above.

Let I; be an instruction in a full reservation station. bebe a source
operand that is not valid, amd:= S(i, x) be the source register. There is
an instruction prior td; writing R[r]. Letl; be the last instruction prior to
instructionl; that writesR[r]. The tag of that instruction is unique.

RSrs]". full AsIRSrs, T) =i ARSrs|T.op[x].valid
= L(i,r)AT(j,T)

One easily asserts this lemma by applying lemma 6.45. According to
lemma 6.27, the phases exclude each other. Thusannot be in “not
issued” or “terminated” phase, which concludes the claim.

Letl; be in producerfu and let that producer be full. This implies that the
tag of instructionl; is unique.

P[ful".full = t(sIP(fu,T),T)



Section 6.5

PROOF The instruction in the producer is in the “in producer” phase. Ac-
cording to lemma 6.27, the phases exclude each other. Thus, the inst/ge!A

tion cannot be in “not issued” or “terminated” phase, which concludes ttfg®NSISTENCY
claim.

The tag of the instruction on the CDB is unique. < Lemma 6.48

CDB'.valid = T1(SICDB(T),T)

One easily asserts this lemma by expanding the definitici@DB(T)
and by applying lemma 6.47.

6.5.10 Data Consistency Invariants

In order to show data consistency, we claim a set of invariants. As done
in the previous chapters, we will show that all these invariants hold by
induction onT. The invariants are taken from [MPKOO].

Let instructionl; be in the issue stage. Let~ 0 be a register. Let the valide Invariant 6.1
bit of registerR[r] be set. In this case, the register data is correct.

slissuéT) =iAr #0AR[r]".valid — R[r]".data= sourcdi,r)

Let reservation stations be full and let instruction; be in reservation < Invariant 6.2
stationrs. If an input operand of the reservation station is valid, the value
in the operand registers is the correct source operand of instrdgction

sIRSrs, T) =i ARSrs|". full ARSrs]".op[x].valid
— RSrs]".op[x].data= sourcdi)(x)

After all operands are valid, the instruction is passed to the function
unit. Once the instruction leaves the function unit, the result is stored in
a producer. The following invariant asserts that the producer holds the
correct result.

Let producerp be full and let instruction; be in producerfu. The result < Invariant 6.3
in this producer is the result of instructidin

sIP(fu,T) =iAP[fu]".full = P[fu".result=result(i)

287



Chapter 6

Once there is an instruction in a producer, the producer requests the

OUT-OF-ORDER DB, After the request is acknowledged, the result is put on the CDB.

EXECUTION

Invariant 6.4 » Letl; be on the CDB. The result on the CDB is the resulk of
SICDB(T) =i ACDB'.valid = CDBT .result=result(i)

While on the CDB, the results are written into the ROB. The following
invariant asserts that the results in the ROB are correct.

Invariant 6.5 » Letl; be in ROB entrytag and let that entry be valid. This implies that the
result in the ROB entry is the result of instructign
sIROBtag, T) = i AROBtag".valid
— ROBtag]" .result= result(i)

We now show lemmas that form the induction step of the invariant proof.

Lemma 6.49 » Let invariant 6.3 (producer data consistency) hold during cycleThis
implies that invariant 6.4 (CDB data consistency) holds during cycle

PROOF By definition,CDB' .valid only holds iff we complete an instruction, i.e.,
iff completioriT) holds. The producer the instruction we complete is in, is
denoted bycompLp(T). We assume that we only complete an instruction
in a producer, if that producer is full. Thus,

P[compLp(T)]". full

holds. This allows applying invariant 6.3, which states that the result in the
producer is correct:

P[compLp(T)]").result= result(sIP(compLp(T),T))

The term on the left hand side is the result on the CDB by definition.

CDB' .result= result(sIP(T))

288



Section 6.5

By definition of SICDB(T), we havesICDB(T) = sIP(compLp(T),T).

This concludes the claim. DATA

CONSISTENCY

Let invariant 6.5 (ROB data consistency) and invariant 6.4 (CDB deathemma 6.50
consistency) hold during cycl€. This implies that invariant 6.5 (ROB
data consistency) holds during cydiet 1.

In order to show the claim, we distinguish three cases: PROOF

1. Consider the case that an instruction is issued into ROB ¢adry
during cycleT, i.e., we have:

issugT) A ROBtail' =tag

In this case, the ROB entiag is valid iff we have the result of the
instruction available during issue, i.e.jssuewith_result(T) holds.
Thus, there is nothing to show unleissuewith_result(T) holds.
We easily conclude thatlROBRtag, T + 1) is equal toslissugT ).
Thus, the result in the ROB is correct by definition.

2. Consider the case that we do not issue an instruction into ROB entry
tagduring cycleT and that we receive a result from the CDB during
cycleT, i.e.:

CDB .valid ACDB' .tag=tag

In this case, the result on the CDB is stored in the ROB and we have
to argue its correctness:

ROBtag " **.result
CDB result

result(siROBtag, T + 1))

According to invariant 6.4 (CDB data consistency), we have:

CDB'.result = result(sICDB(T))

Thus, the claim holds if we shoalROBtag, T + 1) = sICDB(T),
i.e., it is left to show that the tag maps to the correct instruction.
These arguments are weak in [MPKOQ].

We show this formally using lemma 6.48. Lemma 6.48 states that

1(sICDB(T),T) o
289



Chapter 6

OuT-OF-ORDER
EXECUTION

QED

holds. This allows applying theorem 6.21, which states:

sIROBR| tag(sICDB(T)),T) = sICDB(T)

Thus, it is left to show:

sIROBtag T +1) = sIRORI tag(sICDB(T)),T)

According to lemma 6.30, we hateg = | tag(sICDB(T)). This
transforms the claim into:

sIRORtag T+1) = sIROBtagT)

This is concluded by expanding the definitionsbROBtag, T + 1).

. Consider the case that no instruction is issued in ROB ¢agrand

that no result for ROB entryag is on the CDB. We assert this case
using invariant 6.5 for cyclé .

Lemma 6.51 » Let invariant 6.5 (ROB data consistency) and invariant 6.1 (register file

PROOF

290

data consistency) hold during cycle This implies that invariant 6.1 (reg-
ister file data consistency) holds during cy@le- 1.

We distinguish three cases:

1. Consider the case that we issue an instruction with destinatan

ing cycleT. In this case, the valid bR[r]"**.valid cannot hold and
there is nothing to show.

. Consider the case that we writeback an instruction with destination

during cycleT and let the valid bit oR[r] be not active during cycle
T. We only do this writeback if the ROB entry that the ROB head
pointer points to is valid. According to invariant 6.5, this implies
that the result in the rob entry is the result of the instruction. This
transforms the claim into:

result(slROBROBhead, T))[e(r)] - sourcéi,r)

The tag ofR[r] matches the the ROB head pointer, since otherwise
R[r]"*+1.valid cannot hold and there is nothing to show.



Section 6.5

According to lemma 6.40, that tag is equal to the tag of the last
instruction prior to instructiorissugT) that writesR(r]. This trans- DATA
forms the claim into: CONSISTENCY

result(sIROB _tag(last(slissuéT ),r),T))[e(r)] = sourcéi,r)

According to lemma 6.43, that tag is unique. This allows applying
lemma 6.21, which transforms the claim into:

result(last(slissuéT ),r))[e(r)] - sourcéi,r)

According to lemma 6.39, we have:

sourcéslissuéT),r) = sourcéslissuéT +1),r)

This transforms the claim into:

result(last(slissu€T ),r))[e(r)] - sourcéslissuéT ),r)

This is concluded using lemma 6.38.

3. If we neither issue an instruction with destinatiBfr] nor write-
back an instruction with destinatioR[r] with R[r]T.valid, assume
R[r]".valid does not hold. In this case, valid r]"+1.valid can-
not hold and there is nothing to show.

Thus,R[r]"*1.valid holds. The claim is:
Rr|".data = sourcdi,r)
After applying the induction premise, this is transformed into:
sourcéslissuéT ),r) = sourcéi,r)

We assert this using lemma 6.39. QED

Let invariant 6.3 (producer data consistency) hold during cjiclend < Lemma 6.52
invariant 6.2 (reservation station data consistency) hold during cyi¢les
with T < T. This implies that invariant 6.3 (producer data consistency)

holds during cyclel + 1. -

291



Chapter 6

OuT-OF-ORDER

292

EXECUTION

QED

Lemma 6.53 »

Lemma 6.54 »

PROOF One concludes this claim as follows: if an instruction moves
into the producer during cycl€, we make the assumption that the func-
tion unit delivers a correct result given that it got correct inputs during all
cyclesT' < T. This is easily asserted using invariant 6.2 (reservation sta-
tion data consistency). For this, we have to assume that we only dispatch
instructions with valid operands.

If no instruction moves into the producer during cy€lewe conclude

sIP(fu,T) = sIP(fu,T+1).

Furthermore, we conclude thBffu]™. full holds and that the value in
P[fu].result does not change from cycle to cycleT + 1. This allows
concluding the claim from invariant 6.3 (producer data consistency) for
cycleT.

If the tag on the CDB matches the tag of an instructioand the tag of
that instruction is unique, then the instruction on the CDB is instrudfion

CDB'.valid A\CDB' tag= | tag(i) AT(i,T) = SICDB(T) =i

This is easily shown using lemma 6.30 (uniqueness of CDB tag) and
6.22.

The following two lemmas are used to argue the data consistency of the
reservation stations (invariant 6.2). Since this is where all forwarding is
done, this is the most complicated part of the proof. We therefore split the
proof of invariant 6.2 into two lemmas.

The first lemma shows the claim for the case the operand reading is
done in the issue stage. The second lemma shows the claim for the case
the operand reading is done in the reservation station. The same case split
is also done in [MPKO0O].

Let invariant 6.2 (reservation station data consistency) and invariant 6.1
(register file data consistency) and invariant 6.4 (CDB data consistency)
and invariant 6.5 (ROB data consistency) hold during cycle

If an instruction is issued into reservation stati® invariant 6.2 for
reservation statiors holds during cyclel + 1.



Section 6.5

PROOF We show this claim by a case split on the location the operand
is read from. Let; be the instruction in the issue stage and let i, x)
be a shorthand for the number of the register we read.

DATA
CONSISTENCY

e If r =0 holds, we read zero and the claim holds by definition of
sourcéi,0).

e Reading from the register file: This is done only iffR[r]".valid
holds. This allows applying invariant 6.1. This concludes the claim.

¢ Reading from the CDB: This is done only iffR[r]".valid does not
hold. This allows applying lemma 6.40, which states that the tag
in the producer table is the tag of the last instruction writiRg].
According to lemma 6.43, that tag is unique. This allows applying
lemma 6.53, which states that the last instruction wriRiig is on
the CDB. According to lemma 6.4, the result on the ROB is the result
of that instruction.

Thus, it is left to show:
result(last(i,r))[e(r)] = sourcéi)(X)

We assert this using lemma 6.38.

e Reading from the ROB: We repeat the arguments from the case
above in order to show that the tag in the producer table is the tag
of the last instruction writindR[r]. Lettag denote the tag. This tag
is unique, and we therefore know that the instruction in ROB entry
tag is the last instruction writind[r] (lemma 6.21). According to
invariant 6.5, the result in the ROB is the result of this instruction.
As before, we conclude the claim using lemma 6.38. QED

Let invariant 6.2 (reservation station data consistency) and invariant€6ldemma 6.55
(CDB data consistency) hold during cydle

If no instruction is issued into reservation stati®) invariant 6.2 for
reservation statiors holds during cyclél + 1.

Let x be a source operand number. If the valid bit of operarnwlds PROOF
during cycleT, one just applies invariant 6.2 for cycle

If not so, we snoop an operand from the CDB or we have nothing to
show. The argue the correctness of CDB snooping as follows: thesthe

293



Chapter 6

number of the instruction in reservation statisrduring cycleT + 1. The

OUT-OF-ORDER  (|aim of invariant 6.2 is:

EXECUTION

RSrs] " l.opx.data = sourcdi)(x)

By expanding the definition oRSrs|"+1.0px].data on the left hand
side, this is transformed into:

CDB'.resulfe(S(i,x))] = sourcdi)(x)

Invariant 6.4 states:

CDB'result = result(sICDB(T))

Thus, the claim is transformed into:

result(sICDB(T))[e(S(i, X))] = sourcéi)(X)

Thus, itis left to show that the result of the instruction on the CDB is the
source operand of the instruction in the reservation station. This is argued
as follows: According to lemma 6.38 with instructioh@ndlgcpg), the
claim above holds if we show the premises of the lemma. These premises
are:

S(i,x) #O0AL(i,S(i,x)) Alast(i,S(i,x)) = sSICDB(T))

Thus, we have to show that the source register is not register 0 and that
there is an instruction befoigthat writes the register. One easily argues
this using invariant 6.42.

Furthermore, one has to show that the last instruction befaweiting
the register is the instruction on the CDB. We argue this using the fact
that the tag on the CDB matches the tag stored in the reservation station
for the operand. According to invariant 6.42, that tag is the tag of the last
instruction writing the register.

Lemma 6.44 states that the tags in the reservation stations are unique.
QED  This allows applying lemma 6.53, which concludes the claim.

294



Section 6.5

The following lemma combines the claims of lemma 6.54 and lemma

6.55. DATA
CONSISTENCY

Let invariant 6.2 (reservation station data consistency) and invariant€6llemma 6.56
(register file data consistency) and invariant 6.4 (CDB data consistency)

and invariant 6.5 (ROB data consistency) hold during cyclé&his implies

that invariant 6.2 for reservation statiomholds during cyclel + 1.

This claim is shown using lemma 6.54 and lemma 6.55.
The invariants 6.1 to 6.5 hold. < Theorem 6.57

We show this claim by induction of. We omit the simple arguments for PROOF
cycleT =0.

The claim forT + 1 is shown by applying lemma 6.50, 6.51, 6.52, and
6.56 for cycleT and lemma 6.49 for cycl€& + 1. QED

A machine implementing the Tomasulo protocols above, satisfies the4o-heorem 6.58
lowing data consistency criterion:

R, data = RrjSaritebackT)

Since all speculation registers are output of the writeback stage, this
criterion exactly matches the data consistency criterion as proposed for
the in-order pipelined machine.

Given the data consistency invariants above, one easily shows this claPROOF
by induction onT. ForT = 0, we haveslwritebackT) = 0 and we there-

fore have the claim that the registers are in the initial configuration. We
assume this.

ForT + 1, we show the claim as follows: In casgitebackT) does not
hold, one easily asserts that

slwritebacKT) = slwritebacKT + 1)

holds and that the registers do not change from cydie T + 1. Thus, the
claim is concluded using the induction premise. Lee a shorthand for
slwritebacKT). -

295



Chapter 6

In casewritebackT) holds, we do a case split ares(i,r). If desti,r)

OUT-OF-ORDER (565 not hold, we easily assert the claim using the induction premise.

EXECUTION
If desti,r) andwritebacKT) hold, we have the following claim:

ROB' [ROBheadT)].resulte(r)] = RrJii!

The register on the right hand side expands to the result of instrugtion

ROB' [ROBheadT)].resulfe(r)] = result(i)[e(r)]

We assert this using invariant 6.5 for instructipand tagROBheadT ),
which holds according to theorem 6.57.

The claim of invariant 6.5 concludes the claim above. It is left to show
the premises of invariant 6.5, which are:

sIROBROBheadT), T) = i AROBROBheadT)]" .valid

We assert the first part of this claim using lemma 6.24. The valid bit of
the ROB entry holds since we assume that we only writeback if the valid
QED bit holds.

6.6 Liveness

We propose the following liveness criterion for the Tomasulo machine with
reorder buffer: we will show that all instructions will eventually be in the
terminated phase.

We use a similar liveness proof strategy as employed in chapter 4. We
show our claim by induction off. Thus, the induction step is: given
all instructions up to instructioh_; terminated, instructiot; eventually
terminates.

Informally, we show this as follows: We will show that instructign
must be in a phase. According to lemma 6.27, that phase is unique. We
do a case split on the phase of instructipn If instruction [ is in “in
ROB” phase, we easily assert that it eventually terminates. If instruction
- li is in a producer, we assert that it will move into “in ROB” phase. We

296



Section 6.6

then conclude the claim as before. These arguments are continued untilrail
phases are covered. LIVENESS

We will now formalize this proof.

If instruction |; is in phasep during cycleT, this implies that it is in one 4« Lemma 6.59
of the successor phases of phasturing cycleT + 1.

p'esucgp)

We show this claim exemplary for phase “not issued”. Thus, we have tBROOF
show that instructior; is still not issued, in a reservation station, or in the
ROB during cycleT + 1.

e If issudT) andslissu¢T) =i does not hold, one easily concludes
that instructionl; stays in “not issued” phase.

e If issuéT) andslissuéT) =i holds andssuewith_result(i) holds,
one easily shows that instructidnis in the reorder buffer during
cycleT + 1.

o Otherwise, we assume that there is a reservation stegisach that
issuers(T,rs) holds. One easily verifies that instructignis in that
reservation station during cycle+ 1. QED

Instructionl; is in at least one phase during cydle < Lemma 6.60

The claim is concluded by induction dn For cycleT =0, we conclude PROOF
the claim easily since all instructions are in the “not issued” phase.

ForT + 1, we conclude as follows: According to the induction premise,
instructionl; is in at least one phase during cydle This allows apply-
ing lemma 6.59, which states that instructigiis in one of the successor
phases of that phase. This concludes the claim. QED

The following lemmas form the induction step for the liveness proof.

If there is a cycle such that instruction ; either not exists or terminatedd Lemma 6.61
and instruction; is in “in ROB” phase, instructioy will eventually termi-
nate.

297



Chapter 6

OuT-OF-ORDER

298

EXECUTION

QED

Lemma 6.62 »

PROOF

PROOF Let T be the cycle given by the premise. According to the
premise, instruction; is in “in ROB” phase during cycld. This implies
that it is not terminated yet. Since we either have 0 or the previous
instruction is terminated, we have

i = slwritebacKT)

We show that instructiom, terminates during cyclé, i.e., it is left to
show thatwritebacKT) holds. As described above, we assume that we
always terminate if the ROB is not empty and the ROB entryR@Bhead
points to is valid. One easily asserts that the ROB is not empty during cycle
T using that instructio; is in “in ROB” phase during cycld .

According to the premise, there is a ROB entig that is valid and such
that

sIROBtag, T) = i

holds. Using lemma 6.11, we assert thag is the tag of instruction;.
Using lemma 6.23, we assert that ertarg is the entryROBheadT ) points
to. Thus, the ROB entriROBheadT ) points to is valid and we writeback.

If producerfuis full during cycleT, then there is a cycl&’ > T such that
the instruction is put on the CDB.

Pful".full = 3T'>T :completiofT’) A
complp(T') = fuA
SIP(fu,T") = sIP(fu,T)

In order to show this claim, we make the assumption that the CDB requests
are served using a fair arbiter. One has to show that instruttistays

in the producerfu until the request is served using induction. For this
purpose, we have to assume that the function unit does not overwrite an
instruction in its producer. This is illustrated in figure 6.10. Formally, the
function unit fu provides a result during cyclg iff FU[fu]".valid holds.

The producer generates a stall signal if it is full and does not get the
CDB. Let fuing fu, T).stall denote the value of this signal during cycle
T.

fuing(fu,T).stall := P[fu]".full A
(completiofT) AcomplLp(T) = fu)




from reservation station Section 6.6

LIVENESS

function
unit

result, tag, flags|  valid
stall

producer

CDB

Figure 6.10 Interface between function unit and producer

We assume that the function unit does not provide a result if it gets a
stall signal.

fuing fu,T).stall = FU[fu] .valid

Since the CDB is assigned using a fair arbiter, there is a cjtkuch
that the request is acknownledged. Using the assumption on the function
unit above, one easily shows by induction that the instruction stays in the
producer until this happens and is not overwritten. QED

If there is a cycle such that instruction ; either not exists or terminatedd Lemma 6.63
and instructionl; is in “in producer” phase, instructioh will eventually
terminate.

Let T be the cycle from the premise of the lemma. Thus, instrudfion PROOF
is in a producer during cycl&. Let this be producefu. We will show
that this instruction eventually moves into the reorder buffer. Although we
assume that all instructions prior to instructipalready terminated, this is

not obvious. In particular, there might be instructidetgr than instruction

l; that block the CDB.

According to lemma 6.62, there is a cydlé> T such that the request
is served and the instruction is still in the producer. Formally, we have:

completiofT') A complLp(T') = fu A sIP(fu,T') =sIP(fu,T)

One easily concludes that instructidnis in ROB entryl _tag(i) dur-
ing cycleT 4+ 1. This allows applying lemma 6.61, which shows that the
instruction eventually terminates. QED

299



Chapter 6

OuT-OF-ORDER

300

EXECUTION

Lemma 6.64 »

PROOF

QED

Lemma 6.65 »

Note that assuming that the CDB is allocated using a fair arbiter is not
necessary for liveness, we do it for sake of simplicity only. If the CDB
is not allocated using a fair arbiter, we can argue as follows: Informally,
assume instructioh) is blocked in a producer by instructions later than
Since we terminate in-order, there is an upper bound for the number of
these instructions, which is the number of ROB entries. Thus, instruction
l; will eventually get the CDB.

If there is a cycle such that instructidi ; either not exists or terminated
and instructionl; is in “in FU” phase, instruction; will eventually termi-
nate.

Let T be the cycle from the premise of the lemma. Thus, instrudti
in a function unit during cycld . Let this be function unitfu. We will
show that this instruction eventually moves into the prodieklthough
we assume that all instructions prior to instructipmlready terminated,
this is not obvious. In particular, there might be instructidei®er than
instructionl; that block the function unit or the producer.

In order to show this claim, we have to make the following assumption
on the functional units: Given that the signaling fu, T).stall is finite
true and that instructioh entered the function, there is a later cycle such
that the instruction leaves the unit.

— g > TOU'[(i,TI”, fu)

One easily asserts that the sigrfaling fu, T ).stall is finite true using
the fact that the CDB is allocated using a fair arbiter. Thus, we have a cycle
T"" such that the instruction leaves the function unit. One easily asserts that
this instruction moves into the producer during that cycle. We then apply
lemma 6.63 in order to conclude the claim.

In analogy to lemma 6.62, we show:

If a reservation station is full during cyclg, there is a cycld’ < T such
that this reservation station is dispatched during cy¢léFurthermore, the
instruction in the RS during cycl&’ is the same as during cycle

Rgrs]".full = 3T'>T :dispatchrs(T’,rs) A
sIRSrs,T') =sIRSrs, T)



Section 6.6

PROOF As described above, dispatching is done using a fair arbiter. The

arbiter selects among the reservation stations that are full and valid. THYENESS
first thing to assert is that the reservation station is valid. Assume it is

not. In this case, one can apply lemma 6.45, which states that there is

an instructionl; with j = last(i,r) that is in a reservation station, in a

function unit, or in a producer. This is a contradition to the premise that all
instructionsl; with j <i are already terminated.

The function unit provides a stall singal. We denote this stall signal by
FU[fu]".stall. Dispatching is only done if the function unit is not stalled.
We assert this using the following assumption on function units: If the stall
singal that is input of the function unit is finite true, then the stall signal
that is output of the function unit is finite true.

(VT'aT” >T': fuins(fu,T”).staII)

= <VT’EIT” >T': fuins(fu,T”).staII)

One shows that the stall singal that is input of the function unit is finite
true using that the CDB is assigned using a fair arbiter, as above. This
concludes the claim. QED

If there is a cycle such that instructidin; either not exists or terminatedd Lemma 6.66

and instruction; is in “in RS” phase, instructiom will eventually termi-
nate.

Let T be the cycle from the premise of the lemma. We conclude this clailrPROOF
easily using lemma 6.65. According to this lemma, there is a ci/cle T
such that the instruction is dispatched. There are two cases:

e The funcition unit returns the result of instructirin the same cy-
cle. In this case, one shows that the instruction moves into the “in
producer” phase and uses lemma 6.63 in order to conclude the claim.

e The funcition unit does not return the result of instructlpm the
same cycle. In this case, one shows that the instruction is in “in FU”
phase during cycl& + 1 and uses lemma 6.64 in order to conclude
the claim. QED

If there is a cycle such that instruction ; either not exists or terminatedd Lemma 6.67

and instructionl; is in “not issued” phase, instructiol will eventually
terminate.

301



Chapter 6

PROOF We will show that the instruction eventually either moves into
the ROB or into a reservation station, dependingssuewith_result(i).

This happens if the instruction is issued. We then conclude the claim using
lemma 6.61 or 6.66, respectively.

OuT-OF-ORDER
EXECUTION

Thus, it is left to show that the instruction is eventually issued. The
issue stage belongs to the in-order part of the machine. As done in the
previous chapters, one easily concludes that this happens if the stall signal
of the stage is finite true. The issue stage is stalled if one of the following
conditions hold [Ko99]:

e The ROB is full. One argues that this cannot be the case since all
instructionsl; prior tol; terminated. Thus, we have

slissugT ) = slwritebacKT),
which implies that the ROB is empty (lemma 6.4).

e There is no reservation station available. One easily concludes that
all reservation stations are empty because all instructions are either
in “not issued” or “terminated” phase during cycle Thus, they
cannot be in “in RS” phase according to lemma 6.27.

¢ In case of the DLX, there are some instructions that require stalling
issue because they depend on registers that the Tomasulo scheduler
cannot forward. In case of a conditional branches or jump register
instruction, one has to wait until the source register is valid. Assume
it is not. In this case, we can apply lemma 6.43, which states that
there is an instructiol; with j = last(i,r) that is already issued but
not yet terminated. This is a contradiction.

e In case the instruction ismovi and the source registerliEEE f,
we have to stall issue until the ROB is empty. This arises from the
fact that the Tomasulo scheduling algorithm is not able to forward
this register. As above, one easily concludes that the ROB is empty.

e The desings we verify are based on the designs presenteda@qKr”
The machine stalls issue until the ROB is empty in case the instruc-
tion is anrfe instruction. This arises from the hardware cost con-
straints. We do not have enough read ports for the SPR producer
table to forwarde SR EPC, andEDPC. As above, one easily con-
cludes that the ROB is empty.

- QED Thus, the instruction is issued eventually, which concludes the claim.
302



Section 6.7

Note that in contrast to the machine given in §RE], we do not have to
stall issue because of busy instruction memory. This arises from the f%()c:':t_;'FY'NG THE

that our stall engine allows stalling stages indepandantly.
IMPLEMENTATION

The following lemma forms both the induction step and induction base
for the main liveness claim.

If there is a cycle such that instructidn ; either not exists or terminated® Lemma 6.68
instructionl; will eventually terminate.

LetT be the cycle from the premise. According to lemma 6.60, instructio®PROOF
li is in a phase. If this is “not issued”, we conclude the claim using lemma

6.67. Ifitis “in RS”, we conclude the claim using lemma 6.66. If it is “in

FU”, we conclude the claim using lemma 6.64. If it is “in producer”, we
conclude the claim using lemma 6.63. Ifitis “in ROB”, , we conclude the

claim using lemma 6.61. If it is “terminated”, the claim obviously holds. QED

Instructionl; eventually terminates. < Lemma 6.69

We show this claim by induction on Fori =0, we apply lemma 6.68. PROOF
This is also done for the induction step.

6.7 Verifying the DLX Implementation

In this section, we show that the implementation machimgth configu-
rationsc?, ... complies with the specification.

6.7.1 Implementation Differences

We do not describe the implementation of the DLX with Tomasulo sched-
uler and reorder buffer, since this design is already presented a9gin
detail including cost and cycle time analysis.

In this section, we describe the differences between the implementation
given in [Kr699] and the implementation used for this thesis. Figure 6.11
shows an overview of the hardware. -

303



Chapter 6

OuT-OF-ORDER
EXECUTION

1

IM

F I

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, >-IR1 ...

Reservation Stations

PC environment
PC DPC||...]....

> T

ALU FPU1 FPU2 FPU3 MEM

Producers
C CDB
ROB
WB : :
GPR . FPR | SPR
I I

Figure 6.11 Overview of the Tomasulo Hardware

304



Section 6.7

Instruction Fetch  In [Kr699], the PC environment from [Lei99] is used.

In order to prevent the destruction of the PC registers, stage 0 and 1 ¥feR!FYING THE

always clocked simultaneously. We remove this limitation by using the

environment and the stall engine described in chapter 5 (in-order machlf&"LEMENTATION

with Delayed PC and speculation) instead.

Issue As described above, we no longer need an issue stall because of
instruction memory stalls. This is a feature of the new stall engine.

Dispatch In contrast to [KD99], the instructions do not move from one
RS into another. This implementation in [$99] is motivated by the live-
ness proof, which uses the fact that one selects the oldest instruction for
dispatch. We use a fair arbiter instead.

Function Units In contrast to [KD99], we do not implement out-of-
order dispatch for the memory unit. This simplifies implementing paging.
As an example, consider two store instructions. The first one modifies the
page table and the second one modifies a memory cell in a page that is
affected. Passing the instructions in program order to the memory function
unit significantly simplifies the task of building such a functional unit.

CDB In [Kr99], we allocated the CDB round-robin. We use a fair ar-
biter instead (this is weaker than round-robin).

6.7.2 \Verifying the Instruction Fetch

In the proofs above, we assumed that the instruction fetch is correctly done.
The instruction fetch mechanism in the stages 0 and 1 operates like the in-
order pipelined machine as described in section 5. The verification of the
forwarding of DPC for the instruction fetch uses the very same arguments
as before.

One combines the two machines as follows: we define that we issue an
instruction if the output registers of the decode/issue stages are clocked.
This happens ierI is active, as described in the previous chapters.

issuéT) = uel

305



Chapter 6

OuT-OF-ORDER

306

EXECUTION

For the correctness proof, we argue on the schedules of both parts of the
machine. We argue that the schedule of the issue stage of the Tomasulo
part matches the schedule of the issue stage of the in-order pipeline.

issuéT) = sI(L,T)

We show this claim by inducition ofi. ForT =0, we havassudT) =0
andsl(1,T) =0.

For T + 1, we show the claim by a case-split ag]. If ue] does not
hold, the value of both scheduling functions does not change from cycle
T to T + 1 by definition. Thus, the claim is concluded using the induction
premise.

If uel holds, we have
sl(1,T+1) = sI(1,T)+1
according to invariant 5.1.

By definition,issugT) holds ifue] holds. Thus, we have
issudT +1) = issudT)+1

by definition ofissuéT + 1). This allows concluding the claim using the
induction premise.

6.7.3 Verifying IEEEf

ThelEEE f (IEEE flags) register is a special case for the correctness proof
of the machine, since the IEEE standard [IEE85] requires that the bits in
this register are sticky. Thus, if a floating point instruction generates a
masked IEEE exception, the bit of this exception is set inEEE f reg-

ister. The bits that were set previously are maintained. However, in case of
amovsinstruction with destinatiohE EE f, all bits are overwritten.

One argues the data consistency of the register by induction. As induc-
tion claim we show the data consistency of the complete machine. For
T = 0, we show the correctness of the initialization. Fot 1, we have
the data consistency upto cydleas premise. The first thing is to argue the
correctness of the interrupt mask®# . This holds according to the in-
duction premise. Letbe a shorthand foslwritebacKT). We distinguish
three cases:



Section 6.7

e |f we do not writeback an instruction, we have
VERIFYING THE

slwritebacKT) = slwritebacKT +1). DLX

_ _ IMPLEMENTATION
The registers also do not change. Thus, the claim holds.

¢ If we writeback an instruction that movs with destination register
IEEE f, the correctness is shown as above.

¢ |f we writeback an instruction which sets IEEE flags, we have:

slwritebackT +1) = i+1

We assert the correctness of the flags as above using invariant 6.5.
Letieeeflagsi) denote the IEEE flags generated by instructjon

ROBROBheadl .resulf2] = ieeeflag$i)

We assert the correctness of the old value in the IEEE flags register
using the induction premise:

IEEEf = IEEEf}

The new value written into the IEEE flags register is the old value
ORthe masked new one.

IEEEf ™! = IEEEf’ Vv (ROBROBheadl .resulf2) A SR)

The claim is that this the correct value:

IEEEf™*! < |EEEf*!

One expands the transition function of the specification machine on
the right hand side:

IEEEfT! £ IEEEf v (ieeeflagéi+ 1) ACAL)

This is easily concluded using the the equations above.

One cannot forward thi= EE f register using the mechanisms described
above. We therefore stall the issue stage if we read this register until the
ROB is empty. As soon as the ROB is empty, we have

slissu¢T) = slwritebacKT).

In this case, one easily concludes the correctness of the value in the
register using the data consistency criterion above.

307



Chapter 6

OuT-OF-ORDER

308

EXECUTION

6.7.4 Verifying Interrupts

In this section, we describe how to verify a machine that generates inter-
rupts. The proof method is taken from [MP0Q]. We show the data consis-
tency by induction ofT. ForT = 0, we have the correctness of the ini-
tialization of the machine. Note that we do not process an interrupt during
cycleT. We realize theesetinterrupt by adjusing the initial configuration
accordingly, as done in chapter 5.

Let lastint(T) denote the number of the last cycle before cyElén
which we processed an interrupltus one (i.e., the maximum value of
lastint(T) is T). In case no such cycle exists, we defiastint(T) to be

In order to show the claim foF + 1, we distinguish two cases:

¢ If we have an interrupt during cyclg, we argue as follows: accord-

ing to the induction premise, the data consistency for cydmlds.
The modifications made by an interrupt on the configuration are easy
to verify using this fact.

If we do not have an interrupt during cycle we argue as follows:

We claim that the machine works as the abstract implementation ma-
chine without interrupts above from cydkstint(T) to cycleT + 1.

We initialize the abstract machine without interrupts using the con-

figurationc/2*™™):

o . lastint(T)
Cy = C

We then show that the transitions made by both machines are equal
from cyclelastint(T) to cycle T + 1 using induction on the cycle
number. For this one uses the fact that there are no interrupts from
cyclelastint(T) to cycleT + 1 by definition oflastint(T).

Liveness Note that the liveness of the machine with interrupts does not
require extra arguments as required in chapter 5. This arises from the fact
that the instruction that generates the interrupt retires as usual and is not
executed a second time. This is in contrast to the implementation of inter-
rupts given in chapter 5.



Section 6.8

6.8 Literature
LITERATURE

In this chapter, we formally verify the Tomasulo scheduling algorithm with
reorder buffer as presented in [MPKOQ]. In contrast to [MPKOO], we verify
the correctness using PVS and argue the uniqueness of the tags.

The parts of the hardware are based on machines described in [Lei99].
The correctness of the designs presented in [Lei99] is not verified by means
of machine.

Hosabettu et.al. verify implementations using a Tomasulo scheduler both
with and without reorder buffer [HGS99, HGS00, Hos00] using the com-
pletion functions approach. The verification is done using PVS at a very
high level of abstraction. Gate-level designs are not verified. The func-
tional units are very simple and do not contain cycles. Despite that, the
size of the PVS proofs in [Hos00] is four times the size of the proofs for
this chapter of this thesis. However, [Hos00] makes extensive use of proof
strategies, which enlarges the PVS proofs significantly.

In [BBCZ98], Clarke et.al. verify out-of-order processors by combin-
ing symbolic model-checking with uninterpreded functions. In [BCRZ99],
Clarke et.al. verify safety properties of a PowerPC, which implements out-
of-order execution and precise interrupts.

Sawada and Hunt [SH99] verify the FM9801, which also features a re-
order buffer, using the theorem proving system ACL2. The number of
lemmas is enormous (nearly 4000).

Henzinger et al. [HQR98] verify a simple out-of-order processor us-
ing a model checker. McMillan [McM98] partly automates the proof by
refinement of Tomasulo’s algorithm presented in [DP97] with the help of
compositional model checking. This technique is improved in [McM99b]
by theorem proving methods to support an arbitrary register size and num-
ber of function units. In [McM99a], McMillan verifies the liveness of a
machine with Tomasulo scheduler using SMV.

Arvind and Shen [AS99] describe how to apply term rewriting systems
in order to model microprocessors. The authors give a simple out-of-order
RISC machine with reorder buffer as an example. The authors suggest the
use of tools such as PVS for verifying large, realistic machines.

309






Perspective

This thesis covers the verification of in-order and out-of-order micropro-
cessor designs. We develop generic theories for forwarding and specula-
tion and demonstrate how they can be applied to DLX-like RISC proces-
sors. However, several aspects are not covered by this thesis.

7.1 Functional Units

Despite of a simple ALU, the correctness of the functional units is not cov-
ered by this thesis. This ALU needs further enhancements. For example,
the ALU verified in this thesis lacks an integer multiplier. Furthermore, all
ALU instructions assume signed operands. Commercial microprocessors,
such as the MIPS series or the i860 support unsigned operantions, too.

For example, this affects overflow detection. The 29K has three variants
for addition/subtraction operations:

1. Suppress interrupts,

2. signed (interrupt if the result is not in the range of the two’s comple-
ment numbers),



Chapter 7

312

PERSPECTIVE

3. unsigned (interrupt if the result is not in the range of the binary num-
bers).

This also affects test/set operations. The design presented here offers
both < and > tests, which is superflous since one can get the desired op-
erations by implementing one and swapping operands if necessary. The
test/set instructions implemented in this tesis assume that the operands are
two’s complement numbers. Processors such as the MIPS RISC series
also implement ALU test/set instructions that assume that the operands are
unsigned binaries.

Furthermore, modern microprocessors implement instructions with satu-
ration, i.e., if an overflow occurs, the result is set to the edge of the number
range.

Floating point units are not covered at all by this thesis. The formal veri-
fication of a complete floating unit is subject of the PhD thesis of Christian
Jacobi [Jac01]. The adder is verified by Christoph Berg [Ber0O1l]. The
proofs and designs are taken from [MP0O] and verified using the theorem
system PVS. This includes a formalization of the IEEE standard and a
proof that the designs comply with this standard.

The architecture used in this thesis lacks SIMD (single instruction mul-
tiple data) instructions. For example, one can process two single precision
floating point operands within a 64-bit word simultaneously with litte extra
hardware cost.

Furthermore, we do not cover how to build and verify memory inter-
faces. The verification of a memory interface including first level on-chip
cache is subject of the PhD thesis of Sven Beyer [Bey01]. This includes
support for virtual memory, which is implemented using a TLB. The cor-
rectness is verified formally using PVS.

7.2 In-Order Scheduling and Forwarding

Besides the schedulers covered by this thesis, there are more scheduling
methods in use in commercial microprocessors. As for in-order machines,
this includes multiple instruction issue machines, i.e., pipelined in-order
machines with two or more parallel pipelines. These machines are able to
issue multiple instructions within the same cycle. Furthermore, we did not



Section 7.5

verify in-order schedulers for functional units with variable latency, such
as result shift registers, as used in [MPOO]. SPECULATION

7.3 Speculation

The generic speculation mechanism presented in chapter 5 assumes that
we have a guarantee that an instruction never rollbacks twice. However,
one might want to build machines that require this feature. Note that the
hardware presented in chapter 5 supports it; it is left to show its correctness
for this case.

7.4 Out-of-Order Execution

The out-of-order machine we present uses a reorder buffer and therefore
in-order termination. Machines without reorder buffer and out-of-order
termination are not verified. Furthermore, multiple instruction issue ma-
chines with Tomasulo scheduler are not covered. Furthermore, commercial
designs feature two or more CDBs, which is also not covered. A machine
with Tomasulo scheduler, multiple instruction issue and reorder buffer is
described in [Hil0O]. However, the designs are not verified by machine.

7.5 Synthesizing Hardware

Subject of the master’s thesis of Dirk Leinenbach is converting the PVS
hardware specification into synthesizable Verilog HDL. This allows build-
ing hardware implementations of the designs using ASICs or FPGAs. This
allows realistic cost and performance measuring. In particular, it allows
evaluating the real hardware cost in chip area rather than gate count. This
includes that one can take the hardware cost of wiring in account.

The Tomasulo scheduler uses several large bus structures. It is of interest
whether these bus structures have significant impact on the hardware cost
and cycle time of the design. The evaluation in §88] does not cover
this, since the hardware model presented in [MP95] is used. This hardware
model does not take wiring in account. -

313



Chapter 7

314

PERSPECTIVE

Another approach of interest is automated conversion from Verilog or
other hardware description langues into PVS for formal verification. This
approach is used by Russinov in order to verify AMD’s floating point units,
for example. He converts an in-house, synthesizable HDL into ACL2 lan-
guage and verifies the correctness using ACL2. The benefit of this ap-
proach is that it permits verifying existing desings in HDL.



Theorem Index

A.1 The PVS Proof Tree

In this chapter, we provide a mapping from the theorems in this thesis to
the theorems in the PVS proof tree. This mapping is limited, however.
For sake of simplicity, we sometimes present multiple lemmas of the PVS
proof tree as single one in this thesis. For example, we have a single lemma
that states that the initialization of the machine is correct. In the PVS proof
tree, we use a separate lemma for each stage.

The following tables provide the number of the lemma or theorem, the
page number, the file name of the file the lemma is to be found in, and the
lemma name.



Appendix A

THEOREM INDEX

316

A.2 Basic Concepts

Th. | Page| File | Name

21 | 15 | btree btreelem

2.2 | 16 | zerotester | zerotestercorrect

2.3 | 16 | tester equality testercorrect
24 | 17 | pp pp-correct2

25| 18 | pp pp-specequivlem
26 | 18 | pp pp-Xp-lem

27 | 19 | pp pp_correctllem

2.8 | 20 | bvhelp bv_addercin_is_add
29 | 21 |cla cla_coutlemma

2.10| 25 | aluaddsub| alu_bv_unaryminus
2.11| 26 | aluaddsub| aluaddsubresultcorrect
2.12| 26 | aluaddsub| aluaddsubovf_correct
2.13| 26 | aluaddsub| aluaddsubnegcorrect
2.14| 26 | dixaluimp | alucorrect



A.3 A Seguential Implementation Machine

Appendix A

A SEQUENTIAL
IMPLEMENTATION

Th. | Page| File | Name MACHINE
Conv. 3.1| 39 | pipetheory | pipestall_correct
3.2 39 | pipetheory | pipesequentialfull
3.3 57 | bjtakenimpl | bjtakenimp_correct
3.4 58 | nextpcimpl | nextpcimp_correct
3.5 61 | pipetheory | schedsequentialemmal
3.6 62 | pipetheory | schedsequentialemma?2
3.7 62 | pipetheory | schedsequentialemma3
3.8 62 | pipetheory | schedsequentialemma4
Inv. 3.1 65 | pipetheory | schedlemmal
Inv. 3.2 65 | pipetheory | schedlemma?2
Inv. 3.3 | 65 | pipetheory | schedlemma3
3.9 69 | pipetheory | full_bit_lemma
3.10 69 | pipetheory | schedsequentialemma
3.11 71 | pipetheory | schedpipe start
3.18 85 | dixslemmas| dIxs correct
3.19 86 | live_calculus| weakEafteris_strongEafter
3.20 87 | pipetheory | uelis_live_IS_lem
3.21 87 | pipetheory | uelis.live_IS2
3.22 88 | pipetheory | uelis_live_seq
3.23 88 | pipetheory | uesllemma
3.24 88 | pipetheory | Machineis_live

317



Appendix A

THEOREM INDEX

318

A.4 Pipelined Machines

Th. | Page| File | Name

4.1 | 95 | pipetheory pipefull _def

4.3 | 96 | pipetheory schedoverwrite

4.4 | 96 | pipetheory schedfull _bits_save

45 | 97 | pipetheory schedclear full _bits

4.6 | 97 | pipetheory schedpipe start

4.15| 131 | live_calculus2| staysuntil_gt

4.16| 132 | live_calculus2| staysuntil_impl_lem

4.17| 132 | live_calculus2| AND _staysuntil

4,18 | 133 | live_calculus2| weakEafterand staysuntil_
IMPLIES weakEafter

4.19| 134 | live_calculus2| finite_false. and staysuntil_
IMPLIES finite_false

4.20| 134 | live_calculus2| finite_true.andstaysuntil_
IMPLIES finite_true

4.21| 134 | live_calculus2| AND weakEafterand.staysuntil

4.22| 136 | live_calculus2| AND inite_false andstaysuntil

4.23| 136 | live_calculus2| ORfinite_true.andstaysuntil

4.25| 136 | live_calculus2| neveris_finite_true.andstaysuntil

4.24| 136 | live_calculus2| alwaysis_finite_false.and.staysuntil

4.27| 137 | live_calculus | OR finite_false

4.28 | 137 | live_calculus | AND finite_true

4.29| 137 | live_calculus2| finite_true OR finite_true
and.staysuntil_lem

4.30| 138 | pipetheory pipe.drainlem

4.35| 144 | pipetheory pipe stallLis_finite_true




A.5 Speculative Execution

Appendix A

SPECULATIVE

EXECUTION
Th. | Page| File Name
5.1 | 152 | pipetheoryspec| pipefull _def
5.2 | 152 | pipetheoryspec| schedoverwrite
5.3 | 153 | pipetheoryspec| schedfull _bits_save
5.4 | 153 | pipetheoryspec| schedclearfull _bits
5.5 | 153 | pipetheoryspec| schedpipe start
5.11| 181 | spectheory specpremisel
5.12| 181 | spectheory specpremise2
5.13| 181 | spectheory specpremise3
5.14 | 182 | spectheory specpremise4
5.15| 183 | spectheory specpremiseb
5.16 | 183 | spectheory specpremise6
5.17| 183 | spectheory specpremise?
5.18| 183 | spectheory rollback stageexists
5.19| 185 | spectheory specmaxlemma
5.20| 185 | spectheory specfull_lemma
5.21| 186 | spectheory stagespeccorrectlem
5.22| 186 | spectheory speccorrectinputslemma
5.23| 186 | spectheory speccorrectspecinputslemma
5.24| 187 | spectheory specmisspecstep
5.25| 188 | spectheory specdataconsistencylemma?2
5.26| 188 | spectheory specdataconsistencylemmal
5.27| 189 | spectheory specdataconsistencyl
5.28| 189 | spectheory specdataconsistency?2
5.29| 190 | spectheory specdataconsistency3
5.30| 190 | spectheory specinv_hold
5.31| 192 | spectheory M_max_exists
5.32| 192 | spectheory live_MO_lem
5.33| 193 | spectheory M _is_full
5.34| 193 | spectheory g-M_notfull
5.35| 193 | spectheory M _implies below empty
5.36| 193 | spectheory M_lemmaO
5.37 | 193 | spectheory M_lemmal
5.38| 195 | spectheory rollback correct
5.39| 196 | spectheory M _rollback
5.40| 196 | spectheory schedrollback lem4
5.41| 197 | spectheory specpremise8
5.42| 198 | spectheory specpremise9

319



Appendix A

THEOREM INDEX

320

Th. | Page| File

| Name

5.43| 200 | spectheory ue M _lemma

5.44 | 200 | spectheory M _stalLis_finite_true_lem
5.45| 201 | spectheory specueis_live_IS_lem
5.46| 201 | spectheory stageM_is_live_lem
5.47| 202 | spectheory specle_M_lem

5.48| 202 | spectheory M_correctinputslemma
5.49| 202 | spectheory mc_premisespec

5.50| 203 | spectheory mc_premise

5.51| 204 | spectheory live_Mc_lem1

5.52| 204 | spectheory specuesl_lemma
5.53| 204 | spectheory live_Mc_lem2

5.54| 205 | spectheory live_Mc_lem3

5.55| 206 | spectheory live_Mc_lem4

5.56| 206 | spectheory live_no_Mc_lem2

5.57| 207 | spectheory live_no_Mc_lem3

5.58| 208 | spectheory live_is_.M_lem2

5.59| 208 | spectheory live_sl_M _is_laststagdem
5.60| 209 | spectheory live_is_M _lem1

5.61| 210 | spectheory live_sl_existsIS

5.62 | 210 | spectheory live_sl_existslem

5.64| 218 | interrupts dIx_.MCA _correct
5.65| 218 | interrupts dix_JISRcorrect

5.66| 219 | interrupts dix_repeatcorrect
5.67| 222 | dIxP_f_correct| dIxP_cO.IR_correct
5.68 | 224 | nextpcimpl nextpcLimp_correct
5.69| 224 | dIxP-f_correct| dIxP_cl nextpccorrect
5.70 | 224 | dIxP-f_correct| dIxP_f1_PCpcorrect
5.71| 225 | dIxP-f_correct| dIxP_f1_DPC correct
5.72| 230 | dIxP-f_correct| dIxP_.c3.MCA _correct
5.73| 231 | dIxP_-f_correct| dIxP_f3_JISR correct
5.74| 232 | dIxP_f_correct| dIxP_f3_repeatcorrect
5.75| 232 | dIxP_f_correct| dIxP_c3.IR_correct
5.76 | 234 | dIxP_-f_correct| dIxP_c3.C_correct
5.77| 234 | dIxP-f_correct| dIxP_f4_SR correct
5.78 | 236 | dIxPf_correct| dixP_f4_ESR correct
5.79| 236 | dIxP-f_correct| dIxP_f4_ECA correct
5.80| 237 | dIxP-f_correct| dixP_f4_EPCcorrect
5.81| 238 | dIxP-f_correct| dixP_f4_EDPCcorrect
5.82| 239 | dIxP-f_correct| dixP_f4_EDATA correct



A.6 Out-of-Order Execution

Th. | Page| File | Name

6.1 | 262 | robtheory | ROBtailinv

6.2 | 262 | robtheory | ROBheadinv

6.3 | 262 | robtheory | ROBcountinv

6.4 | 263 | robtheory | instr.in_rob_lemma

6.5 | 264 | robtheory | min_ROB

6.6 | 264 | robtheory | maxROB

6.7 | 265 | robtheory | slissuege sl writeback
6.8 | 265 | robtheory | sl issuegt sl writeback
6.9 | 265 | robtheory | slissuege sl writeback2
6.10| 265 | robtheory | | _tagissuelemma

6.11| 266 | robtheory | ROB.lemma

6.12 | 266 | robtheory | issuedcorrect

6.13 | 267 | robtheory | in_orderissueaux0
6.14 | 267 | robtheory | in_orderissue

6.15| 268 | robtheory | taginc_sum

6.16 | 268 | robtheory | ROBtailLdiff_lemma
6.17| 268 | robtheory | taginc_lemmaaux

6.18| 268 | robtheory | taginc_lemma

6.19| 269 | robtheory | ROB.invariant

6.20| 270 | robtheory | ROB_countlemma
6.21| 270 | robtheory | taguniguelemma

6.22 | 271 | robtheory | taguniquelemma?2
6.23| 271 | robtheory | I_tagwritebacklemma
6.24| 271 | robtheory | sl_writebacklem

6.27 | 275 | tomistate | stateunique

6.28| 275 | tomcorrect| tag RS correct

6.29| 276 | tomcorrect| tag P_correct

6.30| 276 | tomcorrect| tag CDB_correct

6.31| 278 | tomspec | notinstrhasdestlemma
6.32| 278 | tomspec | ldef_before

6.33| 279 | tomspec | lasthasdestlemma
6.34 | 279 | tomspec | lasthasnot.destlemmaaux
6.35| 279 | tomspec | lastprevhasnotdestlemma
6.36| 279 | tomspec | lastprevhasdestlemma
6.37| 279 | tomspec | lastlemmaaux

6.38| 280 | tomspec | lastlemma

Appendix A

OuT-OF-ORDER
EXECUTION

321



Appendix A

THEOREM INDEX

322

Th. | Page| File Name

6.39| 280 | tomcorrect| issuelemmal

6.40 | 281 | tomcorrect| prod.tag.inv

6.41| 282 | tomcorrect| rs_taginv_auxl

6.42 | 283 | tomcorrect| rs_tag.inv

6.43 | 283 | tomcorrect| tag.uniqgueR

6.44 | 285 | tomcorrect| tag.unigueRS

6.45| 285 | tomcorrect| RS op_lemma

6.46 | 286 | tomcorrect| tag uniqueRS op

6.47 | 286 | tomcorrect| tag uniqueP

6.48| 287 | tomcorrect| tag uniqueCDB

6.49| 288 | tomcorrect| inv_P_datalMPL _inv_.CDB_data
6.50 | 289 | tomcorrect| inv_CDB_datalMPL _inv_ROB valid
6.51| 290 | tomcorrect| inv_ROB.valid_IMPL _inv_R_valid
6.52| 291 | tomcorrect| inv_RSvalid IMPL _inv_P_valid
6.53| 292 | tomcorrect| CDB_taglemma

6.54 | 292 | tomcorrect| inv_RS.valid_proof_readissue
6.55| 293 | tomcorrect| inv_RS valid_proof read snoop
6.56 | 295 | tomcorrect| inv_RS.valid_proof

6.57 | 295 | tomcorrect| tom.inv

6.58 | 295 | tomcorrect| dataconsistency

6.60 | 297 | tomlive hasstate

6.61| 297 | tomlive livenessstepin_ROB

6.62 | 298 | tomlive staysin_P

6.63 | 299 | tomlive livenessstepin_P

6.64 | 300 | tomlive livenessstepin_FU

6.65| 300 | tomlive staysin_.RS

6.66 | 301 | tomlive livenessstepin_.RS

6.67 | 301 | tomlive livenessstepnot.issued

6.68| 303 | tomlive livenessstep

6.69| 303 | tomlive liveness




DLX Instruction Set

This instruction set is taken from [MP95, MP0O] with minimal modifica-
tions. The architecture was defined in [HP96]. A reference for the instruc-
tion formats and mnemonics is also [SK96].



Appendix B

DLX INSTRUCTION
SET

I-type

R-type

J-type

Fl-type

FR-type

324

6 5 5 16
Opcode| RS1 | RD Immediate
6 5 5 5 5 6
Opcode| RS1 | RS2 | RD SA | Function
6 26
Opcode PC Offset
6 5 5 16
Opcode| RS1 FD Immediate
6 5 5 5 3 6
Opcode| FS1| FS2/RS2 FD|00|Fmt Function

Figure B.1 Instruction formats of the DLX




Appendix B

DLX INSTRUCTION

SET

| IR[31:26 | Mnem.|d | Effect |

Data Transfer, mem = M[RS1 + imm]

100000| 0x20 b 1 | RD=Sext(mem)

100001 | Ox21 Ih 2 | RD=Sext(mem)

100011 | Ox23 Iw 4 | RD=mem

100100| 0x24 || Ibu | 1 | RD=0**mem

100101| 0x25 || lhu | 2 | RD=0"mem

101000| Ox28 sb 1| mem=R0O7:(

101001 | 0x29 sh 2 | mem=R0O15:0

101011 | Ox2b sSwW 4 | mem=RD

Arithmetic, Logical Operation

001000| Ox08 || addi RD=RS1 +imm

001001| 0x09 || addiu RD=RS1 + imm (no overflow)

001010| 0x10 || subi RD=RS1 - imm

001011| Ox11 || subiu RD=RSL1 - imm (no overflow)

001100| 0x12 || andi RD=RS1A imm

001101| 0x13 ori RD=RS1vV imm

001110| Ox14 | xori RD=RS1® imm

001111| Ox15 || Ihgi RD=imm 0'6

Test Set Operation

011000| 0x18 clri RD=(false ? 1:0)

011001| Ox19 || sgri RD=(RS1>imm ? 1:0)

011010| Oxla || seqi RD=(RS1=imm ? 1:0)

011011| Ox1b || sgei RD=(RS1>imm ? 1:0)

011100 Ox1c slsi RD=(RS1<imm ? 1:0)

011101| Ox1d || snei RD=(RS1# imm ? 1:0)

011110]| Oxle slei RD=(RS1<imm ? 1:0)

011111| Ox1f seti RD=(true ? 1:0

Control Operation

000100| 0x04 || beqgz PC=PC+4+(RSE0 ? imm: 0)

000101| Ox05 || bnez PC=PC+4+(RS# 0 ? imm: 0)

000110| Ox16 ir PC=RS1

000111| Ox17 || jalr R31=PC+4; PC=RS1

Table B.1 I-type instruction layout

325



Appendix B

DLX INSTRUCTION

326

SET

| IR[B1:26 | IR5:0] [ Mnem.]| Effect

Shift Operation

000000| 0x00 | 000000| 0x00 slli RD=RSk<SA

000000| 0x00 | 000001 | Ox01 slai | RD=RSXk<SA (arith.)
000000| 0x00 | 000010| Ox02 srli RD=RSI>SA

000000| 0x00 | 000011 | Ox03 srai | RD=RSI>>SA (arith.)
000000| 0x00 | 000100| Ox04 sli RD=RSk<RS2[4:0]
000000| 0x00 | 000101| Ox05 sla RD=RSk<RS2[4:0] (ar.)
000000| 0x00 | 000110| Ox06 sl RD=RSI>RS2[4:0]
000000| 0x00 | 000111 | OxO7 sra | RD=RSI>»>RS2[4:0] (ar.)
Data Transfer

000000| 0x00 | 010000 0x10 || movs2i | RD=SA

000000| 0x00 | 010001 | Ox11 || movi2s | SA=RS1

Arithmetic, Logical Operation

000000| 0x00 | 100000| 0x20 add | RD=RS1+RS2

000000| 0x00 | 100001 | Ox21 | addu | RD=RS1+RS2 (no overfl.
000000| 0x00 | 100010| Ox22 sub | RD=RS1-RS2

000000| 0x00 | 100011 | Ox23 || subu | RD=RS1-RS2 (no overfl.)
000000| 0x00 | 100100| 0x24 and | RD=RS1A RS2

000000| 0x00 | 100101| 0x25 or RD=RS1v RS2

000000| 0x00 | 100110| Ox26 Xor RD=RS1® RS2

000000| 0x00 | 100111| 0x27| Ihg | RD=RS2[15:0] @°

Test Set Operation

000000| 0x00 | 101000| 0x28 clr RD=(false ? 1:0)
000000| 0x00 | 101001 | Ox29 sgr | RD=(RS1>RS2 ? 1:0)
000000| 0x00 | 101010| Ox2a seq | RD=(RS1=RS2 ? 1:0)
000000| 0x00 | 101011| Ox2b sge | RD=(RS1>RS2 ? 1:0)
000000| 0x00 | 101100| Ox2c sls RD=(RS1< RS2 ? 1:0)
000000| 0x00 | 101101 Ox2d sne | RD=(RS1#RS2 ? 1:0)
000000| Ox00 | 101110| Ox2e sle RD=(RS1< RS2 ? 1:0)
000000| Ox00 | 101111 Ox2f set | RD=(true ? 1:0)

Table B.2 R-type instruction layout




IR[31

: 2§

H Mnem. \

Effect \

Control Operation

000010 0x02 i PC=PC+4+imm
000011 | Ox03 jal R31=PC+4;PC=PC+4+imm
111110| Ox3e trap trap = 1; EDATA = imm;
1111211 Ox3f rfe SR =ESR; PC'=EPC;
DPC = EDPC
Table B.3 J-type instruction layout
| IR[31:26 | Mnem.|d | Effect
Load, Store
110001| Ox31 || load.s | 4 | FD[31:0 = mem
110101| 0x35 || load.d | 8 | FD[63: 0 = mem
111001| 0x39 || store.s| 4 | m=FD[31:0
111101| Ox3d || store.d| 8 | m=FD[63:0
Control Operation
000110| Ox06 || fbeqgz PC=PC+4+(FCG=0 ? imm: 0)
000111| 0x07 || fbnez PC=PC+4+(FCG£ 0 ? imm: 0)
Table B.4 Fl-type instruction layout

Appendix B

DLX INSTRUCTION
SET

327



Appendix B

DLX INSTRUCTION
SET

328

IR[31

: 29

IR[5

g

| Fmt || Mnem. |

Effect

Arithmetic and Compare Operations

010001 | 0x11 | 000000| Ox00 fadd | FD =FS1+FS2
010001 | 0x11 | 000001| Ox01 fsub | FD=FS1-FS2
010001 | 0Ox11 | 000010| 0Ox02 fmul | FD=FS1*FS2
010001 | 0x11 | 000011| Ox03 fdiv FD=FS1/FS2
010001 | 0x11 | 000100| Ox04 fneg | FD=-FS1

010001 | Ox11 | 000101| Ox05 fabs | FD = abs(FS1)
010001 | 0x11 | 000110| Ox06 fsqt | FD = sqrt(FS1)
010001| Ox11 | 000111 | Ox07 frem | FD =rem(FS1, FS2
010001 Ox11 11czcociCo fc.cond | FCC=(FS1coFS2)
Data Transfer

010001| Ox11 | 001000| 0x08 | 000 || fmov.s | FD[31:0]=FS1[31:0]
010001| Ox11 | 001000| Ox08 | 001 || fmov.d | FD[63:0]=FS1[63:0]
010001 | Ox11 | 001001| Ox09 mf2i | RS = FS1[31:0]
010001 | 0x11 | 001010| Ox0a mi2f | FD[31:0] = RS
Conversion

010001| Ox11 | 100000| 0x20 | 001 || cvt.s.d | FD =cvt(FS1, s, d)
010001| Ox11 | 100000| 0x20 | 100 || cvts.i | FD =cvt(FS1, s, i)
010001| Ox11 | 100001| Ox21 | 000 || cvt.d.s | FD =cvt(FS1, d, s)
010001| Ox11 | 100001 | Ox21 | 100 || cvt.d.i | FD =cvt(FS1, d, i)
010001| Ox11 | 100100| Ox24 | 000 || cvti.s | FD =cvt(FS1,1i, s)
010001| Ox11 | 100100| Ox24 | 001 || cvtid | FD =cvt(FS1, i, d)

Table B.5 FR-type instruction layout. Fmt=IR[8:6]

| RM | Symbol| Rounding |

00 Rz toward zero
01 RNE | to next even
10 RPI | toward+o
11 RMI toward —oo

| Bit | Symbol | Purpose |
0 OVF | overflow
1 UNF | underflow
2 INX inexact result
3 DBz | divide by zero
4 INV invalid operation

Table B.6 Coding of the rounding mode RM and the interrupt flags IEEEf




| IR[B1:26 | IR[5:0 Predicate | Effect
100*** | 0x04 | _load load instructions
***000 | 0x00 I_Ib byte signed
***001 | 0x00 [_lh halfword signed
***011 | 0x00 I_lw full word
***100 | 0x00 [_lbu byte unsigned
***101 | 0x00 I_lhu halfword unsigned
1010** | Ox0a | _store store instructions
0*1*** | 0x00 I_ALUI i-type ALU instr.
0001** | Ox01 | _branch conditional branch
*xxek]* | 0x00 |_branch.fcc | test FCC instead of RS
*xxkkQ | 000 |_brancheq | branch if equal
01011* | Ox0b I_jr jump register instr.
*ekkx] 1 0x00 I _link iliris a link instr.
00001* | Ox01 I_] jump instructions
111110| Ox3e | _trap trap instruction
111111 Ox3f I_rfe return from exception
000000| 0Ox00 | 0000** | Ox00 | I_shifti shift instr. with SA
000000| 0x00 | 0001** | Ox01 | I_shift shift instr.
000000| Ox00 | 010000| Ox10 | I_mov&i move sp. reg. to GPR
000000| Ox00 | 010001| Ox11 | I_movies move GPR to sp. reg.
000000| Ox00 | 10**** | Ox02 | I_ALU ALU instructions

Appendix B

DLX INSTRUCTION
SET

Table B.7 The monomials of the predicates used to decode the instruction word

329






Performance of the
Pipelined DLX

Short Pipeline

The first implementation uses a standard five stage pipeline as described
above. All simulations were made using a Pentium-like memory system,
i.e., a 16kb split, two-way level one write-back cache with 32 bytes line
size and 4-1-1-1 bus bursts [Int95a, Int95b]. The cache uses LRU replace-
ment and read/write allocation.

As a workload, we used several benchmarks of the SPEC92 benchmark
suite [SPE91]. Table C.2 shows the benchmarks and performance result.

Instruction Latency Pipelined
addition, subtraction 5 full
conversion 3 full
multiplication 5 full
single precision division 17 five stages
double precision division 21 five stages

Table C.1 Latency of floating point instructions in cycles. Most floating point in-
structions can be executed fully pipelined; divisions and square root iterate except
for five stages.



Appendix C

Dhaz Dhaz CPI s
PERFORMANCE OF before after before after “F
THE PIPELINED 008 espresso  int92 0.0% 2.71% 1.84% 1.3567 1.3516 0.4%
DLX 013 spice2g6 fp92  1.6% 2.92% 2.07% 1.8678 1.8496 1.0%
015 doduc int92 87% 2.78% 2.11% 2.1027 2.0700 1.6%
0221i int92 0.0% 3.11% 2.64% 1.9056 1.8841 1.1%
023 egntott int92 0.0% 4.09% 3.49% 1.6930 1.6769 1.0%
026 compress int92  0.0% 2.77% 2.20% 1.6212 1.6052 1.0%
034 mdljdp2 fp92 13.0% 1.83% 1.55% 1.6782 1.6654 0.8%
039 waveb fp92 18.5% 3.21% 2.93% 1.8741 1.8414 1.8%
047 tomcatv fp92 31.1% 0.19% 0.16% 2.1999 2.1924 0.4%

Benchmark  Type FPIn.

048 ora fp92 27.6% 4.59% 3.45% 2.8024 2.7836 0.7%
052 alvinn int92  0.7% 3.58% 1.83% 2.3961 2.3520 1.9%
056 ear fp92 17.3% 2.02% 1.61% 2.1931 2.1804 0.6%
072 sc int92  0.0% 2.05% 1.55% 1.4530 1.4437 0.6%

077 mdljsp2  fp92 15.7% 1.26% 1.05% 1.6801 1.6709 0.6%
078 swm256  1p92 44.6% 1.61% 1.63% 2.1808 2.1445 1.7%
085 gcc int92  0.0% 4.74% 3.21% 2.3306 2.3042 1.1%
089suZcor 92 18.9% 2.20% 1.80% 2.9223 2.8949 0.9%
090 hydro2d  fp92 14.6% 4.18% 4.00% 2.4236 2.3931 1.3%
093 nasa? fp92 285% 0.23% 0.04% 2.0788 2.0786 0.0%
094 fpppp fp92 255% 2.58% 2.07% 3.1935 3.1269 2.1%

AVERAGE - - - - 2.0976 2.0755 1.6%

Table C.2 Experimental results gained using simulations on the short pipeline.
In the first column, the benchmark is given, the second column gives the type of
the program, the third column shows the percentage of floating point instructions.
The columns four and five show the percentage of cycles with data hazard stalls
before and after applying bubble removal. The last columns show the CPI values
and the total speedup.

In general, the performance depends on the number of multi-cycle instruc-
tions, in particular floating point instructions. The table therefore gives the
percentage of floating point instructions in the execution stream simulated.
On floating point loads, one can observe a speedup up to two percent. Most
of the speedup results from reduced data hazards. The table therefore gives
the number of cycles spent idle in the decode stage because of data hazards
before and after adding bubble removal.

This performance gain might seem neglectable. However, consider that
- the hardware effort for this gain is just a couple of gates.

332



Appendix C

CPl  CPI

Benchmark before  after Speedup PERFORMANCE OF
008 espresso  2.0853 2.0499  1.7% ;H&P'PE“NED
013 spice2g6  2.3885 2.2735  5.1%

015doduc  2.7613 2.5809  7.0%

022 1i 26438 25121 5.2%

023 eqntott 2.2981 22024 4.3%
026 compress 2.0625 2.0061 2.8%
034 mdljdp2  2.0084 1.9108 5.1%
039 wave5 2.1896 1.9956 9.7%
047 tomcatv  2.6826 2.4668 8.7%

048 ora 3.2551 3.0940 5.2%
052 alvinn 29042 2.7288 6.4%
056 ear 28320 2.7181 4.2%
072 sc 2.2510 2.1875 2.9%

077 mdljsp2  2.0336 1.9429  4.7%
078 swm256  2.5566 2.4074  6.2%
085 gce 2.8373 2.6987 5.1%
089 su2cor  3.4189 3.1873 7.3%
090 hydro2d  2.5153 2.3582  6.7%
093 nasa’ 2.1982 2.1567 1.9%
094 fpppp 3.4060 3.0965 10.0%

AVERAGE 2.0976 2.0755 5.5%

Table C.3 Experimental results gained using simulations on the long pipeline

Long Pipeline

In order to achieve high clock frequencies, modern microprocessors fea-
ture very long pipelines with up to twenty stages. However, longer pipe-
lines are also more sensitive to data hazards because of load instructions.
We therefore simulated a RISC pipeline with nine stages total in order to
evaluate the effect of pipeline bubble removal. We expected the benefit of
pipeline bubble removal increase with pipeline complexity.

All other parameters and the workload remain the same. Table C.3
shows the results. Not surprisingly, the CPI rates raise. As expected, the
percental speedup gained by the stall engine also increases. With individ-
ual benchmarks we see speedups up to ten percent and an average of five

333



Appendix C

percent. However, the programs used for the nine stage pipeline are the

PERFORMANCE OF  game a5 for the five stage pipeline, i.e., they are compiled (and therefore
THE PIPELINED  ohtimized) for the five stage pipeline. Thus, we expect less CPI and less
DLX speedup with code compiled with optimizations for the nine stage pipeline.

334



Liveness Verification using
SMV

D.1 Introduction

The idea of Model-checking [CE81b, CES86] is to check the complete set
of reachable states of a state transition system for a desired property, e.g.,
an invariant. However, this approach suffers from the state explosion prob-
lem since the state space grows exponentially with the number of variables.

However, one easily encapsulates the stall engine as a module with well-
defined interface. In this module, the full bits are the only registers. All
other registers of the machine are not required for the stall engine. The
number of full bits is exactly the number of stages. Thus, there are five
one-bit registers in the stall engine for the DLX design discussed in the
previous chapters. Thus, there arefssible states. It therefore seems
feasible to verify properties of the stall engine for fixed size pipelines.

In the following, we will apply a well-known symbolic model-checking
system calledSMV by Kenneth McMillan [McM93]. Symbolic model-
checking systems represent the state space as boolean formula. All opera-
tions (property checking) are done on this formula, which usually is much
faster than just enumerating the reachable states.

An introduction of the hardware specification language used by SMV
is beyond the scope of this thesis. Thus, the specification of the stall en-



Appendix D

336

LIVENESS
VERIFICATION
USING SMV

gine hardware in SMV language and a small introduction can be found in
appendix D. The specification of the liveness criterion in SMV is done us-
ing temporal operators that are similar to those used in CTL (Computation
Tree Logic) [CE81b].

Let p be a time predicate. For the specification of the liveness property,
the following two temporal operators are used:

e The operatofF p holds iff there is a cycld in the future such that
the predicatep holds. The definition of the operataf T in chapter
3 is identical to this definition.

e The operatoGp holds iff the predicate holds for all future cycles.

Applying a CTL operator on a time predicate results in a time predicate.
Thus, the operators can be combined: For example, in $3RH denotes
a predicatep that is finite true according to definition 3.4.

Thus, the assumption that the external stall signals are finite true is de-
noted as follows in SMV language:

G F —exk (D.1)

We furthermore assume that if all stages below stagee empty (i.e.,
not full), the data hazard hazard signal of stage off (below fully holds
iff at least one stage below stafgés full):

G (—below fully = —~dhax) (D.2)

Using these assumptions, SMV verifies the following property of the
stall engine logic for a fixed number of stages:

GF ug (D.3)

However, the verification time grows exponentially in the number of
stages. Table D.1 shows experimental results on an AMD machine with
350 MHZ. The liveness of the stall engine of the DLX pipeline with five
stages is verified within a second; however, the run time becomes critical
with 10 stages and beyond. Commercial designs feature up to 30 stages,
which would result in an estimated run time of about 10,000 years. How-
ever, the author's machine ran out of memory while model-checking the
stall engine with eleven stages or beyond.

1CTL is a subset of a more general temporal logic described in [CE81a], using the
syntax of [BMP81].



Appendix D

Stages| BDD nodes| Time [s]

1 14 0.04 USING INDUCTION
2 850 0.07

3 4387 0.10

4 10027 0.34

5 25764 1.15

6 101598 6.12

7 265952 14.68

8 643058 46.97

9 1294767, 242.43
10 5008999 833.76

Table D.1 Experimental results for verifying the liveness criterion of the stall
engine using SMV on an AMD machine with 350 MHZ

D.2 Using Induction

In this section, we try to speed up the verification manually. The first step
is to split the proof goal intm subgoals, one subgoal for the correctness
criterion for each stage. This makes the verification both faster and reduces
the memory consumption.

SMV supports a simple form of induction. This can be applied in anal-
ogy to the proof presented in the previous section. By assuming the live-
ness property for stade+ 1, one simplifies the proof of the liveness prop-
erty for stagek. This makes the verification both faster and reduces the
memory consumption dramatically. The price for this is dropping the full
automatization of the proof.

Table D.2 and figure D.1 show the run time for verifying the liveness
criterion for a stall engine with up to 18 stages using no induction and
using one stage induction.

Model-checking was initiated by Clarke and Emerson in [CE81b] and
[CES86]. Various authors improved the idea in order to handle larger state
spaces. In order to handle the state explosion problem, BDDs (binary de-
cision diagrams) were applied for model-checking [McM93]. A big con-
tribution to model-checking is from Bryant by his research on BDD tech-
niques [Bry86]. Recently, McMillan applied classical theorem proving
techniques for model-checking, e.g., in [McM98, McM99b].

337



Appendix D

LIVENESS
VERIFICATION
USING SMV

Stages no induction 1 stage induction
BDD nodes| Time [s] | BDD nodes| Time [s]

1 14 0.04 14 0.04
2 237 0.07 237 0.08
3 701 0.16 701 0.16
4 1147 0.25 1147 0.24
5 2154 0.65 2154 0.38
6 10035 1.62 3842 0.63
7 14274 4.91 6747 1.32
8 27142 12.98 10046 2.78
9 36096 26.83 12413 4.25
10 51856 46.26 29375 7.36
11 70591 | 133.67 49935 15.93
12 98800 212.42 98857 22.70
13 139882 581.36 139945 102.35
14 213847| 3096.31 213916| 184.58
15 308379 10163.90 308454| 386.58
16 444037 | 37322.40 444118, 763.36
17 - - 662026 1729.37
18 - - 1044414| 5416.22

Table D.2 Experimental results for verifying the liveness criterion of the stall
engine using SMV. The columns two and three contain the BDD node count and
the runtime in seconds for verifying the liveness criterion for all stages separately
using no induction. The columns four and five contain the BDD node count and
time for verifying using induction.

338



Appendix D

USING INDUCTION

1000
100
10

Time [s]

no induction +
one stage induction x

I T N NN NN I I M AN N N O M|
12 3 45 6 7 8 910111213141516
Number of Stages

0.1
0.01

Figure D.1 Visualization of the experimental results for verifying the stall engine
using SMV in table D.2

339



Appendix D

LIVENESS
VERIFICATION
USING SMV

340



Bibliography

[AS99]

[BBCZ98]

[BCRZ99]

[BD94]

[BDLOS]

Arvind and Xiaowei Shen. Using term rewriting systems to design
and verify processorslEEE Micro Special Issue on Modeling and
Validation of Microprocessorsl9(3):36—46, May/June 1999.

S. Berezin, A. Biere, E. Clarke, and Y. Zhu. Combining symbolic
model checking with uninterpreted functions for out-of-order pro-
cessor verification. In G. Gopalakrishnan and P. Windley, editors,
Formal Methods in Computer-Aided Design (FMCA®Iume 1522

of Lecture Notes in Computer Sciengemges 369-386. Springer-
Verlag, 1998.

A. Biere, E. Clarke, E. Raimi, and Y. Zhu. Verifying safety prop-
erties of a PowerPC microprocessor using symbolic model checking
without BDDs. In Nicolas Halbwachs and Doron Peled, editers;
ceedings of the 11th International Conference on Computer Aided
Verification (CAV’99) volume 1633 ofLecture Notes in Computer
Sciencepages 60-71. Springer-Verlag, 1999.

Jerry R. Burch and David L. Dill. Automatic verification of pipelined
microprocessors control. In David L. Dill, editoProceedings of
the sixth International Conference on Computer-Aided Verification
(CAV’'94), volume 818 olecture Notes in Computer Scienpages
68-80. Springer-Verlag, 1994.

Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A decision
procedure for bit-vector arithmetic. IAroceedings of ACM/IEEE

Design Automation Conference (DAC'98)ages 522-527. ACM

Press, 1998.



Bibliography

342

[Ber01]

[Bey01]

[BJKO1]

[BM96]

[BMP81]

[Bry86]

[BS89]

[Bur91]

[CES81a]

[CES81b]

[CESS86]

[CGM86]

Christoph Berg. Verification of an IEEE floating point adder (draft).
Master’s thesis, Univergit des Saarlandes, FB. Informatik, 2001.

Sven Beyer. Verification of a microprocessor's memory interface
(Draft). PhD thesis, University of Saarland, Computer Science De-
partment, 2001.

Christoph Berg, Christian Jacobi, and Daniel Kroening. Formal ver-
ification of a basic circuits library. IfProc. 19th IASTED Inter-
national Conference on Applied Informatics, Innsbruck (AI'2Q01)
pages 252-255. ACTA Press, 2001.

E. Boerger and S. Mazzanti. A practical method for rigorously con-
trollable hardware design. In J.P Bowen, M.B. Hinchey, and D. Till,
editors ZUM'97: The Z Formal Specification Notatipmolume 1212

of Lecture Notes in Computer Sciengeges 151-187. Springer-
Verlag, 1996.

M. Ben-Ari, Z. Manna, and A. Pneuli. The temporal logic of branch-
ing time. InConference Record of the Eighth Annual ACM Sympo-
sium on Principles of Programming Languages (POPL ,§89ges
164-176. ACM Press, Jan 1981.

Randal E. Bryant. Graph-based algorithms for boolean function ma-
nipulation.IEEE Transactions on Computers-35(8):677-691, Au-
gust 1986.

M. Bickford and M. Srivas. Verification of a pipelined microproces-
sor using CLIO. InProceedings of Workshop on Hardware Speci-
fication, Verification and Synthesis: Mathematical Aspeatéume
408 ofLecture Notes in Computer Scien&pringer-Verlag, 1989.

Jerry R. Burch. Using BDDs to verify multipliers. Proceedings
of the 28th ACM/IEEE Design Automation Conference (DAG'91)
pages 408-412, New York, 1991. ACM Press.

Edmund Clarke and Allen Emerson. Characterizing properties of
parallel programs as fixpoints. Ifth International Colloquium

on Automata, Languages and Programmirmglume 85 ofLecture
Notes in Computer Scienc@pringer-Verlag, 1981.

Edmund Clarke and Allen Emerson. Synthesis of synchronization
skeletons for branching time temporal logic. Iim Logic of Pro-
grams: Workshop, Yorktown Heightolume 131 ofLecture Notes

in Computer Sciencépringer-Verlag, 1981.

Edmund Clarke, Allen Emerson, and A. P. Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifica-
tions. ACM Transactions on Programming Languages and Systems
8(2):244-263, 1986.

A. Camilleri, M. Gordon, and T. Melham. Hardware verification
using higher order logic. Ikrom HDL Descriptions to Guaranteed
Correct Circuit Designspages 41-66. North-Holland, 1986.



[CHYP94]

[Coe95]

[Coh87]

[CRSS94]

[CS95]

[Cyr93]

[Del9s]

[DP97]

[FFK88]

[Fly95]

[Gau95]

[Ger98]

[Hew94]

Bibliography

Po-Yung Chang, Eric Hao, Tse-Yu Yeh, and Yale N. Patt. Branch
classification: a new mechanism for improving branch predictor per-
formance”. InProc. of the 27th Annual International Symposium on
Microarchitecture pages 22—-31, 1994.

Tim Coe. Inside the Pentium FDIV buddr. Dobb’s Journal of
Software Tools20(4), Apr 1995.

Avra J. Cohn. A proof of correctness of the VIPER microproces-
sor: The first level. In Graham Birtwistle and P.A. Subrahmanyam,
editors,VLSI Specification, Verification and Synthepages 27-71.
Kluwer Academic Publishers, 1987.

D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. Effective theorem
proving for hardware verification. I8nd International Conference

on Theorem Provers in Circuit Designolume 901 of_ecture Notes

in Computer Sciencpages 203—222. Springer-Verlag, 1994.

Robert P. Colwell and Randy L. Steck. A 0.6um bicmos proces-
sor employing dynamic execution. International Solid State Circuits
Conference (ISSCC), 1995.

David Cyrluk. Microprocessor verification in PVS: A methodology
and simple example. Technical Report SRI-CSL-93-12, SRI Com-
puter Science Laboratory, 1993.

Peter Dell. Die Auswirkung von Mechanismen zur out-of-order
Ausfliihrung auf den Cyclecount von RISC-Architekturen. Master’s
thesis, Universit des Saarlandes, FB. Informatik, 1998.

W. Damm and A. Pnueli. Verifying out-of-order executions. In H.F.
Li and D.K. Probst, editordddvances in Hardware Design and Veri-
fication: IFIP WG 10.5 Internatinal Conference on Correct Hard-
ware Design and Verification Methods (CHARMIppges 23-47.
Chapmann & Hall., 1997.

M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and improve-
ments of boolean comparison method based on binary decision di-
agrams. Ininternational Conference on Computer-Aided Design
pages 2-5. IEEE Computer Society Press, 1988.

Michael Flynn.Computer Architecture: Pipelined and Parallel Pro-
cessor DesignJones & Bartlett, 1995.

Thilo Gaul. An abstract state machine specification of the DEC-
Alpha processor family. Technical Report [Verifix/UKA/4], Univer-
sity of Karlsruhe, 1995.

N. Gerteis. The performance impact of precise interrupt handling on
a RISC processor (German). Master’s thesis, University of Saarland,
Computer Science Department, Germany, 1998.

Hewlett Packard. PA-RISC 1.1 Architecture Reference Manual
1994.

343



Bibliography

344

[HGS99]

[HGS00]

[Hil00]

[Hos00]

[HP96]

[HQR98]

[Hun94]

[IEE85]

[Int95a]

[Int95b]

[Jac01]

Ravi Hosabettu, Ganesh Gopalakrishnan, and Mandayam Srivas. A
proof of correctness of a processor implementing Tomasulo’s al-
gorithm without a reorder buffer. In Laurence Pierre and Thomas
Kropf, editors,Correct Hardware Design and Verification Methods:
IFIP WG 10.5 Advanced Research Working Conference, CHARME
'99, pages 8-316. Springer-Verlag, 1999.

Ravi Hosabettu, Ganesh Gopalakrishnan, and Mandayam Srivas.
Verifying advanced microarchitectures that support speculation and
exceptions. In Allen Emerson and A. P. Sistla, editer®ceedings

of the 12th International Conference on Computer Aided Verification
(CAV 2000) volume 1855 ofLecture Notes in Computer Science
Springer-Verlag, 2000.

Mark Hillebrand. Design and evaluation of a superscalar RISC pro-
cessor. Master’s thesis, Univedities Saarlandes, FB. Informatik,
Saarbucken, 2000.

Ravi HosabettuSystematic Verification of Pipelined Microproces-
sors PhD thesis, University of Utah, Department of Computer Sci-
ence, 2000.

John L. Hennessy and David A. Patters@umputer Architecture:
A Quantitative ApproachMorgan Kaufmann Publishers, INC., San
Mateo, CA, 2nd edition, 1996.

Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. You
assume, we guarantee: Methodology and case studid2roteed-
ings of the 10th International Conference on Computer-aided Veri-
fication (CAV) volume 1427 ot ecture Notes in Computer Science
pages 440-451. Springer-Verlag, 1998.

Warren A. Hunt. FM8501, a verified microprocessovolume 795
of Lecture Notes in Atrtificial Intelligence and Lecture Notes in Com-
puter ScienceSpringer-Verlag, 1994.

Institute of Electrical and Electronics Enginee®NSI/IEEE stan-
dard 754-1985, IEEE Standard for Binary Floating-Point Arith-
metig 1985.

Intel Corporation2430FX PClset Datasheet 82437FX System Con-
troller (TSC) and 82438FX Data Path Unit (TDP)995.

Intel Corporation.Pentium Processor Family Developer’'s Manual,
Vol. 1-3 1995.

Christian Jacobi.Formal Verification of a fully IEEE compliant
Floating Point Unit (Drafty PhD thesis, University of Saarland,
Computer Science Department, 2001.



Bibliography

[JNFSV97] Jawahar Jain, Amit Narayan, M. Fujita, and A. Sangiovanni-
Vincentelli. A survey of techniques for formal verification of com-
binational circuits. Ininternational Conference on Computer De-
sign: VLSI in Computers and Processors (ICCD '9@ages 445—
454, |EEE Society Press, 1997.

[Joy88a] Jeffrey J. Joyce. Formal specification and verification of micro-
processor systemsMicroprocessing & Microprogramming24(1-
5):371-8, 1988.

[Joy88b]  Jeffrey J. Joyce. Formal verification and implementation of a micro-
processor. In G. Birtwistle and P.A. Subrahmanyam, editétS|
Specification, Verification and Synthesfmges 129-158. Kluwer
Academic Publishers, 1988.

[KH92] Gerry Kane and Joe HeinrichMIPS RISC Architecture Prentice
Hall, 1992.

[KM96] Matt Kaufmann and J. S. Moore. ACL2: An industrial strength ver-
sion of ngthm. InProc. of the Eleventh Annual Conference on Com-
puter Assurancgpages 23-34. IEEE Computer Society Press, 1996.

[KMP99] Daniel Kroening, Silvia M. Mueller, and Wolfgang Paul. A rigorous
correctness proof of the Tomasulo scheduling algorithm with precise
interrupts. InProc. of the SCI'99/ISAS’99 International Conference
1999.

[KP95] Jorg Keller and Wolfgang J. Pautardware Design — Formaler En-
twurf Digitaler SchaltungenTEUBNER, Stuttgart, Leipzig, 1995.

[KP96] Y. Kesten and A. Pnueli. AaSTS-based common semantics for
SIGNAL, STATECHART, DC+, and C. Technical report, Dept. of
Computer Science, Weizmann Institute, March 1996.

[KPMO0O] Daniel Kroening, Wolfgang J. Paul, and Silvia M. Mueller. Prov-
ing the correctness of pipelined micro-architectures. In Klaus Wald-
schmidt and Christoph Grimm, editofBroc. of the ITG/GI/GMM-
Workshop Methoden und Beschreibungssprachen zur Modellierung
und Verifikation von Schaltungen und Systenpages 89-98. VDE
Verlag, 2000.

[Kro99] Daniel Kioning. Design and evaluation of a RISC processor with a
Tomasulo scheduler. Master’s thesis, University of Saarland, Com-
puter Science Department, Germany, 1999.

[Lei99] Holger Leister. Quantitative Analysis of Precise Interrupt Mecha-
nism for Processors with Out-Of-Order Executidg?hD thesis, Uni-
versity of Saarland, Computer Science Department, 1999.

[LF80] Richard E. Ladner and Michael J. Fischer. Parallel prefix computa-
tion. Journal of the ACM27(4):831-838, 1980. -

345



Bibliography

346

[LO96]

[LS84]

[McM93]
[McM98]

[McM99a]

[McM99b]

[Ming5]

[MLD *99]

[Mot97]
[MP95]

IMP96]

[MPOO]

Jeremy Levitt and Kunle Olukotun. A scalable formal verification
methodology for pipelined microprocessors. 38rd Design Au-
tomation Conference (DAC’96pages 558-563, New York, 1996.
Association for Computing Machinery.

Jonny K. F. Lee and Alan J. Smith. Branch prediction strategies and
branch target buffer desigiomputey 17(1):6—22, January 1984.

Kenneth L. McMillan. Symbolic Model Checkindluwer, 1993.

Kenneth L. McMillan. Verification of an implementation of Toma-
sulo’s algorithm by composition model checking. Rroc. 10th In-
ternational Conference on Computer Aided Verificatjpages 110—
121, 1998.

Kenneth L. McMillan. Circular compositional reasoning about
liveness. In Laurence Pierre and Thomas Kropf, edit@arect
Hardware Design and Verification Methods: IFIP WG 10.5 Ad-
vanced Research Working Conference, CHARME [$8yes 342—
345. Springer-Verlag, 1999.

Kenneth L. McMillan. Verification of infinite state systems by com-
positional model checking. I€orrect Hardware Design and Ver-
ification Methods: IFIP WG 10.5 Internatinal Conference on Cor-
rect Hardware Design and Verification Methods (CHARM®&)I-
ume 1703 ofLecture Notes in Computer Sciengages 219-233.
Springer-Verlag, 1999.

Manfred Minimair. Design, analysis and implementation of an adder
by Ladner and Fisher. Technical Report 95-15, RISC-Linz, Johannes
Kepler University, Linz, Austria, 1995.

Silvia M. Mueller, Holger Leister, Peter Dell, Nikolaus Gerteis,
and Daniel Kroening. The impact of hardware scheduling mecha-
nisms on the performance and cost of processor designBroln

of the 15th GI/ITG Conference 'Architektur von Rechensystemen’
ARCS’'99 pages 65—73. VDE Verlag, 1999.

PowerPC 750 RISC Microprocessor Technical Summary, 1997.

Silvia M. Miller and Wolfgang J. PaulThe Complexity of Simple
Computer ArchitecturesLecture Notes in Computer Science 995.
Springer-Verlag, 1995.

S. Miller and W. Paul. Making the original scoreboard mechanism
deadlock free. IrProc. 4th Israeli Symposium on Theory of Com-
puting and Systems (ISTCPages 92—-99. IEEE Computer Society
Press, 1996.

Silvia M. Miiller and Wolfgang J. Paul.Computer Architecture:
Complexity and CorrectnesSpringer-Verlag, 2000.



[MPKOO]

[M1l97]

[PA96]

[PH94]

[Pra9s5]

[PS94]

[SGGH94]

[SHO9]

[SK96]

[Smi81]

[SP88]

[SPA92]

Bibliography

Silvia M. Muller, Wolfgang Paul, and Daniel Kning. Proving
the correctness of processors with delayed branch using delayed
PC. In I. Althoefer, N. Cai, G. Dueck, L. Khachatrian, M. Pinsker,
A. Sarkozy, |. Wegener, and Zhang Z., editoPspc. Symposium

on Numbers, Information and Complexity, Bielef@dges 579-588.
Kluwer, 2000.

Silvia M. Muller. Complexity and correctness of computer architec-
tures. InProc. 4th Workshop on Parallel Systems and Algorithms
(PASA'96) pages 125-146. World Scientific Publishing, 1997.

J. Pihl and E. J. Aas. A multiplier and squarer generator for high
performance dsp applications. Rroceedings of the 39th Midwest
Symposium on Circuits and Systehosva, 1996.

David A. Patterson and John L. Hennessiie Hardware/Software
Interface  Morgan Kaufmann Publishers, INC., San Mateo, CA,
1994,

Vaughan R. Pratt. Anatomy of the Pentium bug. In Peter D.
Mosses, Mogens Nielsen, and Michael I. Schwartzbach, editors,
TAPSOFT '95: Theory and Practice of Software Developmesit

ume 915 ofLecture Notes in Computer Sciengeages 97-107.
Springer-Verlag, 1995.

Dionisios N. Pnevmatikatos and Gurinadar S. Sohi. Guarded execu-
tion and branch prediction in dynamic ILP processor$1oc. of the

21th Annual Symposium on Computer Architectpegges 120-129,
1994.

James B. Saxe, Stephen J. Garland, John V. Guttag, and James J.
Horning. Using transformations and verification in circuit design.
Formal Methods in System Desigh(1):181-210, 1994.

Jun Sawada and Warren A. Hunt. Results of the verification of a
complex pipelined machine model. In Laurence Pierre and Thomas
Kropf, editors,Correct Hardware Design and Verification Methods:
IFIP WG 10.5 Advanced Research Working Conference, CHARME
'99, pages 313-316. Springer-Verlag, 1999.

Philip M. Sailer and David R. KaeliThe DLX Instruction Set Archi-
tecture HandbookMorgan Kaufmann, San Francisco, 1996.

James E. Smith. A study of branch prediction strategieRrdoeed-
ings of the 8th Annual Symposium on Computer Architechages
135-148, 1981.

James E. Smith and Andrew R. Pleszkun. Implementing precise in-
terrupts in pipelined processordE=EE Transactions on Computers
37(5):562-573, 1988.

SPARC International InG:he SPARC Architecture Manudrentice
Hall, 1992. -

347



Bibliography

348

[SPE91]
[Tom67]

[VBOO]

[Wing5]

[Yeus4]

[YP92]

SPEC Newsletter, Vol. 3, No. 4, 1991.

R.M. Tomasulo. An efficient algorithm for exploiting multiple arith-
metic units. IBM Journal of Research and Developmeht (1):25—

33, 1967.

Miroslav N. Velev and Randal E. Bryant. Formal verification of su-
perscalar microprocessors with multicycle functional units, excep-
tions, and branch prediction. IRroceedings of ACM/IEEE De-
sign Automation Conference (DAC'Q@rages 112-117. ACM Press,
2000.

Phillip J. Windley. Formal modeling and verification of micropro-
cessorslEEE Transactions on Compute#4(1):54—72, 1995.

Bik Chung Yeung.8086/8088 Assembly Language Programming
Wiley & Sons, 1984.

Tse-Yu Yeh and Yale N. Patt. Alternative implementations of two-
level adaptive branch prediction. Rroc. of 19th Int. Sym. on Com-
puter Architecturepages 124-134, 1992.



