
New approaches to protein docking

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I
der Universität des Saarlandes

von

Oliver Kohlbacher

Saarbrücken
12. Januar 2001

Datum des Kolloquiums: 12. Januar 2000

Dekan der technischen Fakultät:
Professor Dr. Rainer Schulze-Pillot-Ziemen

Gutachter:
Professor Dr. Hans-Peter Lenhof, Universität des Saarlandes, Saarbrücken
Professor Dr. Kurt Mehlhorn, MPI für Informatik, Saarbrücken

2

\I think the most ex
iting
omputer resear
h now is partly in roboti
s, and partlyin appli
ations to bio
hemistry.. . .Biology is so digital, and in
redibly
ompli
ated, but in
redibly useful. The troublewith biology is that, if you have to work as a biologist, it's boring. Your experimentstake you three years and then, one night, the ele
tri
ity goes o� and all the thingsdie! You start over. In
omputers we
an
reate our own worlds. Biologists deservea lot of
redit for being able to slug it through." – Donald Knuth

Acknowledgements

The work on this thesis was carried out during the years 1996–2000 at the Max-Planck-
Institut für Informatik in the group of Prof. Dr. Kurt Mehlhorn under the supervision of
Prof. Dr. Hans-Peter Lenhof.

Prof. Dr. Hans-Peter Lenhof kindled my interest in Bioinformatics and gave me the freedom
to do research in those areas that fascinated me most. Our discussions, although sometimes
heated, were always fruitful and forced me to get to the very bottom of many problems.

The implementation of BALL is unthinkable without the help of all the people who con-
tributed code and ideas. Nicolas Boghossian had significantimpact on the design of the library
core and contributed lots of code for the kernel. Heiko Kleinimplemented the largest part of
the visualization. Dr. Peter Müller brought in his experience in the field of molecular dynamics
simulations. Andreas Burchardt implemented parts of the NMR code. Upon Andreas Moll fell
the ungrateful work of testing and debugging. Stefan Strobel implemented the difficult part
of molecular surface calculations. Andreas Hildebrandt implemented the NMR visualization.
The more sophisticated parts of the solvation code were implemented by Andreas Kerzmann,
who also set up the BALL web server. Last, but not least, Prof.Dr. Hans-Peter Lenhof not only
contributed code for structure mapping and force field calculations, but also initiated the whole
project and kept everyone motivated.

Ernst Althaus implemented the branch-&-cut-algorithm andwas coauthor of the paper on
flexible docking. He had the patience to explain to me some of the finer details of polyhedral
theory.

The Rechnerbetriebsgruppe had to suffer from this work as well. Jörg Herrmann, Wolfram
Wagner, Bernd Färber, Uwe Brahm, Thomas Hirtz, and Roland Berberich solved numerous of
my hardware- and software-related problems even at night and during weekends. Christoph
Clodo managed to track down and resolve several errors in theLATEX code of this thesis.

I am also grateful to my “WG” (Holger, Michael, Christian) for nearly six years of enjoy-
able coexistence and for the flat, the evenings, and quite some bottles of wine we shared. Last,
but certainly not least, I wish to thank Andreas for his patience, his understanding, and his
support while I wrote this thesis.

Abstract

In the first part of this work, we propose new methods for protein docking. First, we present two ap-
proaches to protein docking with flexible side chains. The first approach is a fast greedy heuristic, while
the second is a branch-&-cut algorithm that yields optimal solutions. For a test set of protease-inhibitor
complexes, both approaches correctly predict the true complex structure. Another problem in protein
docking is the prediction of the binding free energy, which is the the final step of many protein docking
algorithms. Therefore, we propose a new approach that avoids the expensive and difficult calculation of
the binding free energy and, instead, employs a scoring function that is based on the similarity of the
proton nuclear magnetic resonance spectra of the tentativecomplexes with the experimental spectrum.
Using this method, we could even predict the structure of a very difficult protein-peptide complex that
could not be solved using any energy-based scoring functions.

The second part of this work presents BALL (Biochemical ALgorithms Library), a framework for
Rapid Application Development in the field of Molecular Modeling. BALL provides an extensive set
of data structures as well as classes for Molecular Mechanics, advanced solvation methods, comparison
and analysis of protein structures, file import/export, NMRshift prediction, and visualization. BALL
has been carefully designed to be robust, easy to use, and open to extensions. Especially its extensibility,
which results from an object-oriented and generic programming approach, distinguishes it from other
software packages.

Kurzzusammenfassung

Der erste Teil dieser Arbeit beschäftigt sich mit neuen Ansätzen zum Proteindocking. Zunächst stellen
wir zwei Ansätze zum Proteindocking mit flexiblen Seitenketten vor. Der erste Ansatz beruht auf einer
schnellen, gierigen Heuristik, während der zweite Ansatzauf branch-&-cut-Techniken beruht und das
Problem optimal lösen kann. Beide Ansätze sind in der Lagedie korrekte Komplexstruktur für einen
Satz von Testbeispielen (bestehend aus Protease-Inhibitor-Komplexen) vorherzusagen. Ein weiteres,
grösstenteils ungelöstes, Problem ist der letzte Schritt vieler Protein-Docking-Algorithmen, die Vorher-
sage der freien Bindungsenthalpie. Daher schlagen wir eineneue Methode vor, die die schwierige und
aufwändige Berechnung der freien Bindungsenthalpie vermeidet. Statt dessen wird eine Bewertungs-
funktion eingesetzt, die auf derÄhnlichkeit der Protonen-Kernresonanzspektren der potentiellen Kom-
plexstrukturen mit dem experimentellen Spektrum beruht. Mit dieser Methode konnten wir sogar die
korrekte Struktur eines Protein-Peptid-Komplexes vorhersagen, an dessen Vorhersage energiebasierte
Bewertungsfunktionen scheitern.

Der zweite Teil der Arbeit stellt BALL (Biochemical ALgorithms Library) vor, ein Rahmenwerk
zur schnellen Anwendungsentwicklung im Bereich MolecularModeling. BALL stellt eine Vielzahl von
Datenstrukturen und Algorithmen für die Felder Molekülmechanik, Vergleich und Analyse von Protein-
strukturen, Datei-Import und -Export, NMR-Shiftvorhersage und Visualisierung zur Verfügung. Beim
Entwurf von BALL wurde auf Robustheit, einfache Benutzbarkeit und Erweiterbarkeit Wert gelegt.
Von existierenden Software-Paketen hebt es sich vor allem durch seine Erweiterbarkeit ab, die auf der
konsequenten Anwendung von objektorientierter und generischer Programmierung beruht.

Contents

Part I – Introduction 1

Part II – Protein Docking 7

1 Biochemistry – the Basics 9
1.1 Atoms and Molecules .9
1.2 Amino Acids . 10
1.3 Proteins . 10
1.4 Nucleic Acids . 13
1.5 Interatomic Forces .. 14

1.5.1 Nonbonded interactions .14
1.5.2 Molecular Mechanics . 16

2 Introduction 19
2.1 Rigid Body Docking . 19
2.2 Docking and Protein Flexibility 21
2.3 Combining NMR Data and Docking Algorithms 23

3 Semi-Flexible Docking 25
3.1 Introduction .25
3.2 The Docking Algorithm .. 28

3.2.1 Rigid Docking . 28
3.2.2 Side Chain Demangling . 28
3.2.3 The Multi-Greedy Method . 29
3.2.4 The Branch-&-Cut Algorithm .30
3.2.5 Energetic Evaluation .38

3.3 Experimental Results .. . 40

4 Protein Docking and NMR 45
4.1 Nuclear Magnetic Resonance Spectroscopy 45

4.1.1 The Nuclear Angular Momentum . 45
4.1.2 Electronic Shielding and the Chemical Shift 47
4.1.3 The Basic NMR Experiment . 48

4.2 Application to the Protein Docking Problem 50
4.2.1 Previous Work . 50
4.2.2 NMR Shift Prediction . 50
4.2.3 Spectrum Synthesis and Comparison 53

4.3 Experimental Results .. . 55
4.3.1 Methods . 55

4.3.1.1 Preparation of Structures and Rigid Body Docking 55
4.3.1.2 NMR Chemical Shift Calculation 55
4.3.1.3 Spectrum Synthesis and Comparison 56

4.3.2 Results . 57

5 Discussion 61

Part III – BALL 65

6 Design and Implementation 67
6.1 Introduction .67
6.2 Design Goals . 68

6.2.1 Ease of Use . 68
6.2.2 Functionality . 69
6.2.3 Openness . 69
6.2.4 Robustness . 69

6.3 Choice of Programming Language 70
6.4 Architecture .70
6.5 The Foundation Classes .. . 71

6.5.1 Global Definitions . 71
6.5.2 Composite Class . 72
6.5.3 Object Persistence . 73
6.5.4 Run-Time Type Identification .. 78
6.5.5 Iterators . 78
6.5.6 Processors . 79
6.5.7 Options . 80
6.5.8 Logging Facility . 81
6.5.9 Strings and Related Classes .. 82
6.5.10 Mathematics . 82
6.5.11 Miscellaneous . 82

6.6 The Kernel . 83
6.6.1 Molecular Data Structures .. 83
6.6.2 Iterators . 85
6.6.3 Selection . 85

6.7 The Basic Components .87
6.7.1 File Import/Export . 87
6.7.2 Molecular Mechanics . 87
6.7.3 Nuclear Magnetic Resonance Spectroscopy 95
6.7.4 Visualization . 96

6.8 Scripting Language Integration 101
6.8.1 Python . 101

ii

6.8.2 Extending . 102
6.8.3 Embedding . 104

7 Project Management 107
7.1 Revision Management .107
7.2 Coding Conventions and Software Metrics 107
7.3 Portability .108
7.4 Documentation . 108

7.4.1 Reference Manual and Tutorial .. . 108
7.4.2 FAQs . 109

7.5 Testing . 109
7.5.1 Fundamentals . 111
7.5.2 Testing in BALL . 111
7.5.3 Test macros . 112
7.5.4 Automatic Test Builds . 115

7.6 Installation and Configuration 116

8 Programming with BALL 119

9 Outlook 123

Part IV – Conclusion 125

A UML Notation 129

Appendix 129

B Curriculum Vitae 131

C Bibliography 134

Index 141

iii

Part I

Introduction

INTRODUCTION

Motivation

At the beginning of the 21st century, biology has emerged as the leading science. It is mainly
driven by the increasing economic impact of molecular genetics, biochemistry, medicine, and
pharmaceutics. These disciplines form the cornerstones ofa new scientific field for which the
termLife Sciencewas coined.

In the last few years, the most important discoveries in LifeScience were made in the field
of genomics. Starting with the first completely sequenced genome of a living organism (the
genome of bacteriumHaemophilus influenzae[35]) in 1995, genomics rapidly developed: the
world’s sequencing capacity has not yet stopped its exponential growth and complete genomes
of microbial organisms are currently being sequenced routinely. The complete sequence of the
human genome represents an important milestone for genomics – the data emerging from this
project will be the basis of molecular medicine for decades.The completion of this project will
also change the focus of genomics. Initially, genomics focused on the acquisition of genomes.
With the availability of this data, genomics will have to attack the next question: What is the
meaning of all this data?

The exploration of gene activity and regulation is one central issue in this context. The
second big issue is summarized with just another catchword:proteomics– the study of proteins,
their function and expression. Genomics and proteomics areobviously tightly interwoven and
a comprehensive understanding of the molecular basis of life is to be expected from their close
interaction.

The most important economic driving force behind these developments is the pharmaceu-
tical industry, which hopes to profit from a deeper understanding of molecular medicine for
the development of new drugs. Thus, the ultimate goal is truerational drug design, which
means designing a drug based on a thorough understanding of its molecular targets and their
interactions.

Protein Docking

The theoretical prediction of these interactions is of prime importance since it permits the verifi-
cation of hypotheses in the course of drug development without expensive and time-consuming
“wet” experiments. One of problems arising in drug design isthe so-calledprotein-protein
docking problem: Given the structures of the proteinsA andB that are known to form a com-
plexAB, predict the structure of this complex.

In 1894, German chemist Emil Fischer proposed the so-calledlock-and-key principle[34].
It states, that the selective binding of two proteins is caused by geometric complementarity.A
andB each possesses a characteristic shape (like a lock and its key). The two proteins can only
aggregate if they share complementary regions,i.e. if A “fits” into B.

The first algorithms for protein docking were strictly basedon geometric complementarity.
They also assumed that both proteins were rigid bodies and did not change their structures on
binding. For most standard examples, this assumption is reasonable, so there are a number
of protein docking algorithms that use rigid docking approaches. However, there are some
prominent examples where one or both proteins undergo structural changes upon binding and
thus for which these approaches fail. We will briefly illustrate the problem with the example of

2

INTRODUCTION

(a) (b)

Figure 1: (a) The enzyme trypsin (green) and its inhibitor BPTI (red) forma complex (right side).(b) Several
amino acids of BPTI change their structure on binding. This figure shows the structure of one of these amino acids
(LYS:15) in its native structure (red) and in the complex structure (blue). The structural change in this amino acid
impedes the prediction of the complex structure using rigiddocking approaches.

trypsin (an enzyme) and BPTI (the bovine pancreatic trypsininhibitor), one of the best studied
protein complexes.

The unbound structures (native structure) of trypsin and BPTI as well as the structure of
their complex have been known for a long time. The larger trypsin (see Fig. 1(a)) binds the
smaller BPTI tightly. When subjected to a rigid docking prediction, most algorithms fail in-
evitably. The reason can be seen in Fig. 1(b): the conformation of several amino acids at the
tip of BPTI in the native structure differs considerably from their conformation in the complex.
Hence, rigid-body docking algorithms have little chance ofpredicting the correct structure –
there is no geometric complementarity in the native structures. Thus, to solve that class of
protein docking problems, we have to consider at least the side chains to be flexible, while
the backbone still remains rigid. This is what we callsemi-flexible docking. We have devel-
oped two new approaches for semi-flexible protein docking. Both approaches are based on a
rigid-body docking algorithm, which produces a number of tentative complex structures. In
the next step, we optimize the side chains in the binding siteof the tentative complex. Finding
the optimal side chain conformation is a very difficult (in the order of 200–500 dimensional)
continuous optimization problem. By restricting the conformational space of the side chains
to a set of preferred conformations (so-called rotamers), we can reduce the problem to a com-
binatorial optimization problem. The optimization problem is still rather difficult: identify the
set of rotamers with minimal energy out of�1060 possible combinations. For this side chain
placement step, we propose two new algorithms. The first approach is a branch-&-cut algo-
rithm based on the ILP (integer linear programming) formulation of the problem. We are able
to identify some classes of facet-defining inequalities andwe devised a separation algorithm

3

INTRODUCTION

for a subclass of inequalities. The second approach is a fast, simple greedy approach. In con-
trast to the branch-&-cut algorithm, the greedy approach yields usually suboptimal solutions.
Nevertheless, both approaches were able to demangle the side chains of a test set of protease-
inhibitor complexes. A final energetic evaluation of the demangled conformations correctly
predicts the true complex structure. After a short introduction to protein docking in general
(Chapter 2), we describe these approaches for semi-flexibledocking in detail in Chapter 3.

Another major problem in protein docking is the accurate prediction of the binding free en-
ergy of tentative complex structures, which is usually the basis for the final ranking performed
by the docking algorithm. Although considerable progress has been made with the prediction
of the binding free energy, it remains largely an unsolved problem. We develop a novel scor-
ing function for protein-protein docking that is based on the integration of experimental data.
This scoring function ranks the tentative complex structures with respect to the deviation of the
predicted nuclear magnetic resonance spectrum (NMR spectrum) from the experimental spec-
trum. Since NMR spectra (especially the proton-NMR spectrawe use in this work) are easily
accessible for protein complexes, the use of experimental data can improve the quality of dock-
ing predictions significantly and can be used to assess the reliability of the results. We develop
techniques for the prediction of NMR chemical shifts, the reconstruction of NMR spectra from
the shift data, and for spectra comparison. This novel approach is the first docking approach
that permits the direct integration of experimental data into the docking algorithm. Its appli-
cation to a set of protein-protein and protein-peptide complexes gives very promising results.
Using this new technique, we can also solve a very difficult example of a protein-peptide com-
plex, where all energy-based scoring functions fail. The methods and techniques developed for
NMR-based docking are described in depth in Chapter 4 after ashort general introduction to
NMR spectroscopy.

Rapid Software Prototyping

While developing new methods in protein docking as well as inother areas of Computational
Molecular Biology, the most time-consuming step is the implementation. A major portion of
this time is spent on the implementation of fundamental datastructures and algorithms. The
data structures and algorithms are usually reimplemented again and again; code reuse is not
very common. We illustrate the main reasons for this with an example. In the course of our
protein docking project, we experimented with advanced methods for energetic evaluations.
One of these methods [54] consists of two major calculation steps: the calculation of the elec-
trostatic contributions and the calculation of the molecular surface. Both methods are standard
techniques that were developed about 15 years ago and several implementations exist. We then
bought a commercially available software package for the electrostatic calculations and chose
one of the freely available implementations for the molecular surface area calculation. Both
programs were written in FORTRAN 77, the most common language for this kind of software.
The integration of subroutines or major code portions from these two implementations into a
common program proved to be nearly impossible, since no thought was spent on reusability
when designing the software. Furthermore, the lack of documentation or even comments in
conjunction with FORTRAN-specific coding habits (e.g., one- or two-letter variable names)
tends to turn even minor changes into a nightmare.

4

INTRODUCTION

The only means of integration we found was to implement rather large amounts of so-
called “glue code”. This code had to convert the input data tothe specific file formats required
by the two different programs. Although both programs basically used the PDB format to read
atom coordinates, they required two different variants of the format which were incompatible
to each other. In the end, we implemented several hundred lines of code just to make both
programs read standard PDB files. The extraction of the results from the (text-based) output of
the programs again required rather complex code to gather all relevant numbers and ensure that
the code really had correctly terminated. The resulting collection of interacting C programs,
FORTRAN programs, and shell scripts was even less maintainable and less comprehensible
than the original FORTRAN code.

We then looked at several large molecular modeling packages. The producers of these
packages usually promise a good integration of several standard components. Often, there are
also software development kits (SDKs) available for the extension of existing methods and the
integration of new methods. But even these incredibly expensive packages have major draw-
backs. Some of these packages are just nice graphical front ends to the very same FORTRAN
packages mentioned above; they are basically glue code withwindows. The SDKs have ex-
clusively procedural interfaces. We could not find any object-oriented approaches, which were
preferable with respect to reusability and extensibility of the code. Besides SDKs, many pack-
ages also provide scripting languages that can be used to implement additional functionality.
However, each package defines its own cryptic language, which often enough lacks even basic
control structures, so these approaches are seldom satisfactory.

There are also some (academic) efforts to create class libraries and frameworks in the field
of Computational Molecular Modeling. Some prominent examples are PDBLib [18] (a library
for processing PDB files) and SCL [118]. These libraries havesome promising features, but
none of the existing libraries could provide us with sufficiently broad functionality.

Finally, there is is small number of scripting language extensions for Molecular Modeling
and Computational Molecular Biology.BioPerl [12] andBioPython[13] are two projects that
started rather recently and do not yet provide any functionality in the field of Molecular Mod-
eling. The software package that came closest to meeting ourneeds isMMTK, theMolecular
Modeling Toolkit. MMTK is an extension package for the object-oriented scripting language
Python [121] and provides some basic functionality for Molecular Modeling and visualization.
Due to its object-oriented concept, MMTK is open and extensible on the scripting language
level. The time-critical sections of the code are implemented in C, resulting in good perfor-
mance, but hindering reuse. Hence, the main drawbacks of MMTK are its limited functionality
and extensibility. Nevertheless, this package demonstrates the advantages of an object-oriented
scripting language.

Our experience with these software packages led us to recognize the need for an extensi-
ble, efficient, and object-oriented tool kit in the field of Molecular Modeling, which we then
started to implement. During the four years of its implementation, this tool set quickly evolved
into something larger: it became a framework for rapid application development in Molecular
Modeling – BALL, the Biochemical Algorithms Library.

BALL is a large and powerful framework for rapid software prototyping written in C++.
We use state-of-the-art software engineering techniques to ensure a thorough design and high
code quality. The resulting code is portable, robust, efficient, and extensible. Especially its

5

INTRODUCTION

extensibility, which results from an object-oriented and generic programming approach, distin-
guishes BALL from all other software packages.

BALL provides an extensive set of data structures as well as classes for molecular me-
chanics, advanced solvation methods, comparison and analysis of protein structures, file im-
port/export, and visualization. To reduce turn-around times while developing new methods, we
added Python bindings for the majority of the BALL classes. Using the scripting language, it is
easier to inspect the data structures interactively. Additionally, the code can be modified at run
time without time-consuming compile or link stages. Once the Python code works as expected,
it is very simple to port the Python code to C++. We have proven the rapid software prototyp-
ing capabilities of BALL for a number of example applications in the field of protein docking
and protein engineering. The new techniques for protein docking described in the first part of
this work have been implemented in BALL as well. Already the alpha release of BALL has
been successfully emplyed in about a dozen laboratories worldwide. The Max Planck Society
honored the development of BALL with the Heinz Billing Award2000 for the Advancement
of Scientific Computation.

Structure of the thesis

Following this introduction, Part II describes the new techniques for protein docking. First,
we will give a short introduction to the biochemical concepts used in this work in Chapter 1.
Chapter 2 gives an overview of protein docking and previous work in this field. We then present
two algorithms for semi-flexible docking in Chapter 3 and an algorithm for NMR-based protein
docking in Chapter 4. This part closes with a discussion of the presented docking algorithms
in Chapter 5.

The design and the implementation of BALL is then described in Part III. Chapter 6 de-
scribes the architecture, design, and implementation of BALL. The techniques we used to
manage the project and to ensure software quality are presented in Chapter 7. An example
application, which illustrates the rapid software prototyping capabilities of BALL and its ad-
vantages over existing software, is given in Chapter 8. Chapter 9 discusses the current status
of BALL and points out some developments planned for the future.

This work then concludes with a discussion in Part IV.

6

Part II

Protein Docking

8

Chapter 1

Biochemistry – the Basics

This section gives an introduction to the biochemical termsused in this work. Since a serious
introduction to this topic is beyond the scope of this work, we will just introduce the most im-
portant terms and refer to biochemistry textbooks for a morecomplete coverage of the subject
(e.g.[74, 114]).

1.1 Atoms and Molecules

One of the oldest scientific models was proposed about 2500 years ago byLeucippus of Miletus
and his discipleDemocritus of Abdera. They deduced from a thought experiment that all matter
should be composed of very small, undestructible entities.These fundamental particles were
called atoms(from the greek��o�o�, undivisible). Although the original model has been
heavily modified and expanded in the course of history, it is still the most important and most
useful concept in chemistry. According to this model, all matter – living or dead – is composed
of atoms. Another, albeit younger, model is thechemical bond. A bond may be seen as a
connection between atoms and the making and breaking of these bonds is what chemistry is
all about. Moleculesare groups of atoms with an exactly defined composition and topology.
There are some smaller groups of atoms that are frequently found in molecules. These groups
are usually called functional groups. Fig. 1.1 shows the structure of a well known molecule:
ethanol. It contains ahydroxyl group(OH) that is characteristic for alcohols and amethyl group
(CH3).

C C

HH

H

H H

O
hydroxyl group

methyl group

H

Figure 1.1: Functional groups in ethanol

Molecules can be grouped into families or classes of molecules according to their structure
and the occurring functional groups. There are several classes of molecules that are charac-
teristic for living beings – the so-calledbiomolecules. Among the most important classes of
biomolecules areproteinsandnucleic acids.

Proteins are the most important structural biomolecules – about half the dry mass of an
animal cell consists of proteins. Nucleic acids are important as the carrier of hereditary infor-
mation. Proteins as well as nucleic acids arebiopolymers, i.e. they possess a linear, chain-like

CHAPTER 1. BIOCHEMISTRY – THE BASICS

structure. These chains are built from similar building blocks, themonomers. For proteins,
these monomers are theamino acids.

1.2 Amino Acids

Amino acids (or more precisely�-amino carboxylic acids) are small biomolecules. There are
20 amino acids that are commonly found. They differ only in their side chain(noted asR
in Fig. 1.2). The common substructure they share contains two functional groups: the amino
group (NH2) and the carboxylic acid function (COOH). Both of these groups are bound to
a central carbon atom, theC� atom. In aquaeous medium, both groups tend to react with
water, yielding a so calledzwitterion. A zwitterion is an ion (a charged particle) that bears
both a positive and a negative charge. The positive charge iscaused by the amino group which
accepts a proton (H+) from the surrounding water, while the carboxylic acid function looses a
proton and thus bears a negative charge.

H O2C

H

R

H N COOH2 α C

H

R

H N COO3 α
+ -

amino acid zwitterion

Figure 1.2: Amino acids and their zwitterionic form

1.3 Proteins

The amino group and the carboxyl group may also react with each other. In this reaction, a
bond is formed between the nitrogen of the amino group and thecarbon of the carboxyl group
(Fig. 1.3) while a water molecule (H2O) is liberated. This bond is called apeptide bond, the
product is called a peptide. The product of the reaction possesses again an amino group and
a carboxylic group, so further amino acids may be attached toboth ends of the peptide. A
peptide formed by two amino acids is termeddipeptide, one formed by three amino acids is a
tripeptideand so forth.

While we use the term peptide for shorter chains, long chainsof amino acids are called
proteins. In this context, the amino acids are often referred to asresidues. The end of the
chain bearing the amino group is called theN-terminuswhile the carboxyl end is called theC-
terminus. Another important term is the proteinbackbone. The backbone of a protein consists
of a repeated sequence of three atoms of each residue:C�, N (the amide N), andC (the
carbonyl C).

Thesequenceof a protein is defined as the sequence of its amino acids from the N-terminus
to the C-terminus and is also called the protein’sprimary structure. Amino acid sequences are
usually denoted as strings. There exist two different schemes to encode the amino acids: the

10

1.3. PROTEINS

C

H

R

H N COO3 α
+ -

1

C

H

R

H N COO3 α
+ -

2

+ C

H

R

H N C3 α
+

1

O

C

H

R

COOα
-

2

N

H

amino acid A amino acid B dipeptide

-H O2

Figure 1.3: The formation of a peptide bond

three-letter codewhich denotes each amino acid with three letters and the shorter but less
comprehensibleone-letter code. In Fig. 1.5 an example for a protein sequence is shown.

Proteins also formsecondary structures. This term refers to certain spatially repeating
structures found in proteins. There are two types of secondary structures: the�-helix and the�-pleated sheet. �-sheets are formed by parallel (or antiparallel) polypeptide chains (Fig. 1.4)
that are bound to each other by hydrogen bonds between the backbone atoms.

Figure 1.4: A �-sheet is formed by two parallel polypeptide chains. They are often drawn as bands with arrow
heads. For clarity, only the backbone of the two chains is shown.

An �-helix is a tight and regular helix of a polypeptide chain (Fig. 1.6). As in the�-sheet,
this structure is stabilized by hydrogen bonds between backbone atoms. For a helix, these
hydrogen bonds are not between different chains but betweenresidues of the same chain. The
helices are usually right-handed, although a left-handed variant exists as well.

Different sections of a protein chain may assume different secondary structures. The overall
three-dimensional structure (fold) of a single protein chain (including all its secondary structure
elements) is termedtertiary structure.

Proteins often aggregate to larger structures. With multiple polypeptide chains,quarternary
structureis their interconnections and organization. The hierarchyof structures encountered in
a large protein is shown in Fig. 1.5 on page 12.

11

CHAPTER 1. BIOCHEMISTRY – THE BASICS

VAL LEU SER PRO ALA ASP LYS THR ASN TRP ... TYR ARG
primary structure

helix sheet
secondary structure

tertiary structure

quarternary structure

Figure 1.5: The hierarchy of protein structures. Theprimary structureis defined as the amino acid sequence of
the protein. Segments of a polypeptide chain may formsecondary structure elements: helices or sheets. The total
three-dimensional structure of a protein is termedtertiary structure. Finally, several proteins may aggregate to form
quarternary structures.

12

1.4. NUCLEIC ACIDS

Figure 1.6: In an�-helix, the backbone of a polypeptide chain (shown in green,surrounded by a transparent tube)
forms a right handed helix. In schematic illustrations of protein structure, helices are often represented by cylinders
or tubes.

1.4 Nucleic Acids

Figure 1.7: 2-Deoxyguanidine(G) is the nucleotide composed of the base guanine, the sugar2-deoxyribose, and
a phosphate group.

Nucleic acids are the carriers of hereditary information. Living organisms contain two
kinds of nucleic acids: ribonucleic acid (RNA) and deoxyribonucleic acid(DNA). The
monomeric building-blocks of DNA and RNA are thenucleotides.

13

CHAPTER 1. BIOCHEMISTRY – THE BASICS

A nucleotide consists of three subunits: asugar, a phosphate, and abase. Fig. 1.7 shows
this structure as well as the two occurring sugars:ribosewhich occurs in RNA anddeoxyribose
occurring in DNA.

There are five bases that can be found in nucleic acids (Fig. 1.8): adenine(A), guanine(G),
cytosine(C), thymine(T), anduracil (U). Adenine, guanine, cytosine, and thymine represent
the four letters of the DNA alphabet, while uracil occurs only in RNA.

N
H

N

N

N
 N
H

2

O

H

N

N

O

N
H

2

H

N

N

N

N

N
H

2

H
 N

N
H

O

O

C
H

3

H

Thymine
Adenine
 Cytosine
Guanine

N

N
H

O

O

H

Uracil

Figure 1.8: The five bases occurring in DNA and RNA

DNA molecules usually have a helical structure (Fig. 1.9). Unlike the�-helices of proteins,
the structure of DNA is adouble helixformed by two DNA strands. This famous structure was
discovered by Watson and Crick in 1953. The two strands of a chain are held together by
hydrogen bonds. These bonds are formed between pairs of bases of opposite strands. Each
base possesses a complementary base with which it may form abase pair(Fig. 1.9). Thus,
each A is paired by a T in the opposite strand while C is complemented by G.

In RNA, thymine is replaced by uracil which is complementary to adenine as well. Thus,
base pairing occurs in RNA as well. The sugar2-deoxyriboseof the DNA backbone is replaced
by another sugar:ribose. DNA and RNA differ also in their structure: RNA is usually single
stranded. Instead of forming base pairs between two different strands, RNA tends to form
intramolecular base pairs. This leads to very complex non-helical structures.

1.5 Interatomic Forces

The behaviour of molecules is ruled by a set of fundamental physical laws that describe the in-
teraction of atoms. These interactions can be coarsely categorized asbonded interactionsand
nonbonded interactions. Bonded interactions areintramolecular interactions, i.e. they occur
only between atoms of the same molecule, as they are mediatedby bonds. In contrast, non-
bonded interactions are not mediated by bonds and can thus occur between atoms of different
molecules as well.

1.5.1 Nonbonded interactions

The existence of intermolecular, hence nonbonded, interactions can be deduced by observing
a cup of tea. The fact that the tea stays in the cup is due to attractive intermolecular forces.
These attractive forces make the water molecules be attracted to each other and thus form a
liquid instead of a gas. Only those water molecules with a high energy evaporate as steam,

14

1.5. INTERATOMIC FORCES

3' 5'

5'3'

C G

A T

G C

T A

T A

A T

N

N

N

N

NH
2

H

ThymineAdenine

N

NH

O

CH
3

H

N

N

N

N NH
2

O

H

NN

O

NH
2

H

CytosineGuanine

H

Figure 1.9: Double-stranded DNA assumes the structure of a double helix. The structure is stabilized by pairs of
complementary bases. These pairs form two (A-T) or three (C-G) hydrogen bonds.

as they contain a sufficient amount of energy to overcome the attractive interactions. Not all
intermolecular forces are attractive. The fact that water has a well defined volume and is not
easily compressed is due to repulsive interactions that prevent the molecules from coming too
close to each other.

Electrostatic interactions

One of the most important nonbonded interactions are the electrostatic interactions, which
occur between electrostatic charges. Atoms consist of charged elementary particles (protons
and electrons). Protons bear a positive charge, while the electrons bear a negative charge of
equal magnitude. If atoms or molecules contain a different number of electrons and protons,
they are calledions and they bear a positive or negative net charge. But also molecules with
equal numbers of protons and electrons may still have a charge distribution that leads to so-
called partial charges, i.e. regions of positive or negative charge excess. The interaction of

15

CHAPTER 1. BIOCHEMISTRY – THE BASICS

these electrostatic charges can be described byCoulomb’s law:EES = 14�"0 q1q2r (1.1)

whereEES is the energy resulting from the electrostatic interactionof two chargesq1 andq2
with distancer between the charges."0 is the permittivity of the vacuum, a constant. Since the
forcebetween the charges can be derived from the energy as the negative gradient, we can also
calculate the forces between the two charges:~FES = �rEES (1.2)= � 14�"0 q1q2r3 ~r (1.3)

Depending on the sign of the chargesq1 andq2, electrostatic forces can be either attractive
(opposite signs of the charges) or repulsive (same sign).

Van der Waals interactions

The termvan der Waals interactionsdescribes nonbonded interactions that consist of an at-
tractive and a repulsive part. The attractive part stems form induced dipole–induced dipole
interactions,i.e. fluctuations of the charge distribution in one atom or molecule induce charge
fluctuations in a neighboring atom. These charge fluctuations lead to an attractive electrostatic
interaction. The repulsive part results form thepauli exclusion principle, a quantum mechan-
ical effect that results in unfavorable energies for interpenetrating electron coulds of two ap-
proaching atoms. The interplay of attractive and repulsiveinteractions leads to intermolecular
potential functions like that shown in Fig. 1.10. For large distances, the energy approaches
zero. At intermediate distances, the energy is negative, which leads to attractive forces. If
the distance between the atoms is further reduced, the repulsive forces grow rapidly and give
highly positive energies. There are different models to describe that kind of potential. The
most commonly used expression uses two parametersA andB that depend of the type of the
atoms involved to describe the van der Waals energy as a function of the atom distancer:EvdW = Ar12 � Br6 (1.4)

1.5.2 Molecular Mechanics

Molecular Mechanics is an approach based on simple physicalmodels of molecular and atomic
interactions. The parameters of these models are usually obtained by fitting to experimental
data. The resulting set of equations describing the interactions and the corresponding param-
eters are called aforce field. Besides the nonbonded interactions described in the previous
section, the force fields also include bonded interactions,which can be modeled in a number
of different ways.

16

1.5. INTERATOMIC FORCES

0E

r

Figure 1.10: The distance dependence of the van der Waals energy.

A typical force field like the AMBER force field defines the total energy of a set of
molecules as the sum of five different types of interactions:Etotal = EvdW +EES +Ebend +Estret
h +Etorsion=Xi<j Aijr12ij � Bijr6ij !+ 14�"0 Xi<j qiqjrij+ X(i;j)2bonds kstret
hij (rij � r0ij)2+ Xa2angles kbenda (�a � �0a)2+ Xb2torsions ktorsionb (1 +
os(nb�b � �0b))
The van der Waals energyEvdW and theelectrostatic energyEES are the nonbonded inter-

actions. Thestretch energyEstret
h describes the change in the energy as the bond distancerij varies. This energy is described by a harmonic potential (i.e. a quadratic function of the
deviation from the optimal bond distance, see Fig. 1.11). Similarly, the bend energyEbend
describes the variation of the energy with the bond angle� formed by two neighboring bonds.
This contribution is also described by a harmonic potential. The contributionEtorsion describes
thetorsion energy. Torsions describe the variation of the total energy on rotation about a bond.
The torsion energy depends on thetorsion angle�. It is defined as the angle that is enclosed
by the two planes defined by atoms(i; j; k) and(j; k; l) (see Fig. 1.11). The variation of the
energy with this angle can be described as a cosine function.

17

CHAPTER 1. BIOCHEMISTRY – THE BASICS

stretch bend torsion

ri jij

i j

k

θ

φ

i

j
k

l

Figure 1.11: The bonded interactions in a typical Molecular Mechanics force field.

This form of the force field describes the energy as a functionof the coordinates. For many
applications it is also necessary to know the forces caused by these interactions. The force~Fi
acting upon atomi may be derived as the negative gradient of the energy:~Fi = �rE = �rEvdW �rEES �rEstret
h �rEbend �rEtorsion (1.5)

The force field permits the calculation of the static and dynamic properties of molecules or
sets of molecules. There are numerous applications for force fields. Among the most impor-
tant ones are energy minimization and Molecular Dynamics simulations. Energy minimization
means to search for the molecular geometry with the lowest energy, a very difficult multi-
dimensional optimization problem that is usually tackled using gradient-based optimization
techniques. Molecular Dynamics is based on the fact that theforce field gives a full description
of the forces acting upon the atoms. If these forces can be calculated for arbitrary geome-
tries, one can apply Newton’s equations of motion and thus simulate the dynamic behaviour of
molecules.

18

Chapter 2

Introduction

Since the protein docking problem was already introduced inPart I, we will only briefly repeat
the problem definition here: We are given the three-dimensional structure of two proteinsA
andB, that are known to form a complexAB. The protein docking problem is then to predict
the structure of the complexAB.

The protein docking problem has numerous interesting applications. Besides the standard
problem (how does the complex structure look like?), it may also speed up the time-consuming
process of structure elucidation (see Chapter 4). The results of docking predictions are also
useful for the analysis and the understanding of the bindingmodes of proteins and numerous
new applications will arise with the coming advent of Proteomics. The following sections will
briefly discuss existing approaches for protein docking, their limitations, and some possibilities
for improvement.

2.1 Rigid Body Docking

Rigid protein protein docking is based on a rather old analogy by German chemist Emil Fischer,
the so-calledlock-and-key principlehe proposed in 1894:\Invertin und Emulsin haben bekanntli
h man
he Aehnli
hkeit mit denProte��nsto�en und besitzen wie jene unzweifelhaft ein asymmetris
h gebautesMolek�ul. Ihre bes
hr�ankte Wirkung auf die Glu
oside liesse si
h also au
h dur
hdie Annahme erkl�aren, dass nur bei �ahnli
hem geometris
hem Bau diejenigeAnn�aherung der Molek�ule statt�nden kann, wel
he zur Ausl�osung des
hemis
henVorganges erforderli
h ist. Um ein Bild zu gebrauchen, will ich sagen, dass Enzym

und Glucosid wie Schloss und Schlüssel zu einander passen müssen, um eine
hemi-s
he Wirkung aufeinander aus�uben zu k�onnen. 1" [34], p. 2992

This model implies that enzyme and substrate (or in our case:the two proteins) are rigid bodies
that possess regions of geometric complementarity. A contemporary view of this model is
shown in Fig. 2.1. In the mean time, the lock-and-key model has been superceded by a number
of various other models,e.g.the induced fithypothesis by David Koshland [64]. However, it
is still of fundamental importance and for many protein-protein interactions it remains a valid
assumption, as has been shown in a recent study by Betts and Sternberg [11].

The first docking algorithms were based on the assumptions ofrigidity and complementar-
ity (thus the namerigid-body docking, RBD). They tried to identify geometrically complemen-
tary sections of the proteinsA andB. These regions should define the binding site of the com-

1English translation: “Invertin and emulsin are known to share some similarities with protein compounds and,
like those, possess an asymmetric molecular structure. Their limited effect on glycosides could thus be explained
by the hypothesis that the approachment that is necessary toinitiate the chemical process is only possible if the
molecules are geometrically similar to each other.To use an image, I would say that enzyme and glycoside have
to fit into each other like a lock and a key, in order to exert a chemical effect on each other.”

CHAPTER 2. INTRODUCTION

Figure 2.1: Paul Ehrlich applied Fischer’s lock-and-key principle to immunoreactions. He illustrated his notion
of the concept in this drawing from 1900 [29].

plex. For example, the correlation-based techniques introduced by Katchalski-Katziret al.[60]
estimate the contact area ofA andB and assign those structures with the largest contact area
the best scores. These purely geometric algorithms (e.g.[20, 125, 33, 32]) were successful for
a large number of examples.

It was soon recognized, that geometric complementarity alone is not sufficient to identify
the binding site. The next generation of algorithms thus employed simple energy functions
to estimate the binding free energy of the resulting complexes. These energy functions usu-
ally consider only a part of the physics involved in the binding process,e.g.only electrostatic
interactions [40, 119] or hydrogen bonds [80].

Today, most RBD algorithms share a similar overall structure (Fig. 2.2, page 22). In a first
step, a large number of potential complex structures is created from the two protein structuresA andB. This generation step is usually based on geometric complementarity. For example,
in the algorithm by Lenhof [70], this structure generation is based on the matching of triangles
of surface points ofA and triangles formed by atom centers ofB. A pair of triangles fromA
andB matches, if the side lengths of the triangles coincide within a certain tolerance. Each of

20

2.2. DOCKING AND PROTEIN FLEXIBILITY

these triangle pairs defines a rigid transformation that bringsB into close contact withA. This
structure generation step can be implemented very efficiently using geometric hashing tech-
niques and can produce huge amounts of tentative complex structures in a short time (usually
several thousands). In the vast majority of cases, this set of candidates contains a number of
good approximations of the true complex structure (where “good” means that the RMSD2 of
all atoms is below3 Å).

The next (and clearly the most difficult) task is the identification of these good approxi-
mations among the candidates. We will refer to them astrue positives, while the remaining
structures (those that do not resemble the true complex structure) will be calledfalse positives.
Numerous methods have been proposed to distinguish true positives from false positives. In
principle, it were sufficient to calculate the binding free energy of each of the tentative complex
structures, as the true positives should possess the lowestbinding free energy. However, this is
a non-trivial task, since only very rough approximations are known to estimate the free energy
on binding.

A large number of other scoring functions have been tested for the protein docking problem,
but the correct prediction of binding free energies is stillone of the most difficult problems in
this field. We cannot enumerate all these methods, so we referto the comprehensive review by
Sternberget al. [113].

In all algorithms, one or more of these scoring functions areapplied to the initial set of
candidates. The output of each docking algorithm is thus a ranked list of structures, where the
good approximations should be at the top of the list (bottom of Fig. 2.2). If the generation step
produced good approximations of the true complex structures and the scoring function were
ideal, one should expect that the candidate with the best score were a good approximation of
the true complex structure. One measure of the algorithm’s quality is thus the rank assigned to
the first true positive in the list.

2.2 Docking and Protein Flexibility

RBD algorithms perform rather well as long as the structure of the two proteins does not change
significantly upon complex formation. Unfortunately, there are numerous examples where this
assumption does not hold. They are explained with Koshland’s induced fithypothesis, which
basically states that the two partners change their shape upon binding and form a complex
structure where they possess geometric complementarity. In contrast to the lock-and-key prin-
ciple, the induced fit hypothesis does not require the unbound structures ofA andB to display
geometric complementarity. Clearly, this leads to a more difficult docking problem. Those
examples that show structural changes on binding fall essentially into two categories:� domain movements� side chain movements

2root mean square deviation

21

CHAPTER 2. INTRODUCTION

Filtering

Final Energetic Evaluation

Structure Generation

A B

< <

Figure 2.2: The overall structure of a rigid-body docking algorithm.

22

2.3. COMBINING NMR DATA AND DOCKING ALGORITHMS

Domain movements

In the first case, large rigid sections of the protein (domains) move around “hinges”, flexible
joints tethering the domains and restricting their movement. The hinges are formed by small
regions of high backbone flexibility, while the backbone remains essentially rigid inside the
domains. In the case of domain movements, one of the major difficulties is to distinguish
between rigid and flexible parts of the protein. Also the total number of hinges that can be
considered is usually very limited due to the number of degrees of freedom associated with
each hinge. One way to handle domain movements was proposed by Sandaket al. [105, 106].
Their algorithms performs a search of the full three-dimensional rotational space of a hinge
between two domains. To identify the best structure, a number of potential hinge locations is
tested and a geometric docking is carried out. Finally, all structures resulting from all possible
hinge positions are ranked with respect to geometric complementarity.

Side chain flexibility

In the second and more frequent case, the protein backbone remains essentially rigid, but
side chains undergo conformational changes on binding. An example for this category is the
complex of trypsin and BPTI, as we have already discussed in Part I (page 2). Norelet al. [89]
studied the bound and unbound structures of 26 protein complexes and could show that
the protein backbones remain rigid upon binding and only theside chains show significant
conformational changes for the majority of all examples.

RBD approaches have little hope for success if domain or sidechain movements occur.
This is mainly due to the fact that the two unbound structures(which represent the input of the
docking algorithm) do not possess the geometric complementarity the bound structures have.
Even though the initial candidate set often contains a largenumber of true positives, they are
usually not ranked correctly. The failure of the scoring functions stems from the fact that side
chains ofA andB overlap for many true positives. The resulting structures cannot occur in
nature, they are physically meaningless. Hence, the scoring functions are not able to give a
reasonable estimate of the true binding energy.

Several approaches have been proposed to overcome these difficulties. Common to these
approaches is an intermediate stage, where the side chain conformations of the initial candi-
dates are demangled to produce physically meaningful structures. In Chapter 3 we present two
new approaches to protein docking with flexible side chains.The first technique uses a greedy
heuristic to place the side chains, while the second approach is a branch-&-cut algorithm that
yields optimal solutions to the side chain placement problem.

2.3 Combining NMR Data and Docking Algorithms

Since it is not yet possible to predict the free energies on binding with sufficient accuracy, other
ways have to be found to increase the reliability of the docking results. This can be done by
counterchecking the results against experimental data. This experimental data should be easily
accessible and should allow a ranking of the docking resultsor at least some way of validation.

23

CHAPTER 2. INTRODUCTION

Nuclear Magnetic Resonance (NMR) spectroscopy is one of thetwo important methods
of protein structure elucidation. It provides data that contains a large amount of structural in-
formation. This information has been used in ligand dockingfor quite some time to predict
the structure of protein-ligand complexes [127, 44, 98]. With the fundamentals of NMR spec-
troscopy being discussed in depth in Chapter 4, we will only briefly explain these methods
here. There are different kinds of structural information available from NMR data. The eas-
iest to obtain are simpleNMR spectra. These spectra measure the so-calledchemical shift,
an intrinsic property of each atom of the protein. This shiftdepends on the structural envi-
ronment (electronic surrounding, geometry, neighboring atoms,etc.) of the atom, hence the
value of the chemical shift contains structural information. However, due to the large number
of atoms showing in such a spectrum (typically several hundreds), it is a non-trivial task to
decide which of the peaks in the spectrum belongs to which atom. This task is also calledshift
assignmentand is the most time-consuming task in NMR-based structure elucidation, which
can often take several months. All of the above mentioned protein-ligand docking methods are
based on fully assigned spectra. From these spectra, geometric constraints (NOE3 constraints)
are derived. The methods are then based upon the integrationof these distance constraints into
existing docking techniques and the resulting structures have to satisfy as many of these con-
straints as possible. A similar methodology was recently proposed by Morelliet al. [82] for
protein-protein docking. They used NOE constraints in a soft docking algorithm to predict the
structure of the complex of cytochrome
553 and ferredoxin.

In contrast to these constraint-based docking methods, ouralgorithm does not require a
shift assignment. This extends the applicability of the method to use structures where no NMR
shift assignment is known (e.g.structures determined by X-ray methods). Furthermore, we
only need an unassigned1H-NMR spectrum of the complex, which is the simplest kind of
spectrum and thus easy and cheap to obtain. Instead of processing the spectra (which has yet
to be done manually) and extracting geometric information from the experimental data, we
chose the opposite approach. We process the candidates generated from a RBD algorithm and
predict their spectra. These spectra are then compared to the experimental spectrum and ranked
according to their similarity. Hence, no prior processing and evaluation of the experimental
data is required. Chapter 4 gives a short introduction to thebasics of NMR spectroscopy and
then explains our new approach in more detail.

3NOE – nuclear Overhauser effect. This effect permits the estimation of the distance betweenneighboring
atoms.

24

Chapter 3

Semi-Flexible Docking

3.1 Introduction

The previous chapter introduced the basic techniques for rigid body protein docking and their
limitations. Since completely flexible protein docking is computationally very expensive,
the use of flexible side chains is a reasonable compromise. Wecall the docking with rigid
backbones and flexible side chainssemi-flexible docking. Algorithms for semi-flexible docking
are similar to the algorithms for rigid-body docking. They introduce an additional step, the
side chain demangling. In this step, the side chain orientations in the binding site of each
tentative complex structure are optimized and occurring overlaps are thus removed. This
demangling step ensures physically meaningful structuresthat are then subjected to a final
energetic evaluation and ranking. The next sections will first discuss existing techniques
for side chain placement and then we will describe our new approaches and some results
obtained with these techniques. Parts of this chapter have been previously published in [2, 3, 4].

Figure 3.1: This figure illustrates torsion angles in an amino acid side chain. The torsion angles determine the
rotation about single bonds in the side chain. The first two torsion angles in a side chain are usually denoted�1
and�2.

First, we have to define what side chain flexibility means. In principle, theN atoms of
a side chain have3N translational degrees of freedom. In protein structures, we usually ob-
serve that bond lengths and bond angles deviate only slightly from the ideal values observed
in structures of minimal energy. The reason is that the energy needed to stretch a bond or
deform a bond angle is much larger than the energy required toperform rotations around the

CHAPTER 3. SEMI-FLEXIBLE DOCKING

bond. Therefore, the side chain’s main source of flexibilityare torsions around single bonds
(see Fig. 3.1). A side chain has a small number of these torsional degrees of freedom (between
zero and five torsion angles depending on the amino acid). Restricting side chain flexibility to
torsional flexibility drastically cuts down the complexityof the side chain placement problem.

In 1987, Ponder and Richards [99] observed that the side chain conformations occurring
in proteins can be adequately described by a rather small setof so-calledrotamersfor each
amino acid. Fig. 3.2 shows a so calledRamachandran plot. It was obtained by examining
a set of known protein structures. For each lysine side chainoccurring in the structure, the
first two side chain torsion angles�1 and�2 were determined. The plot shows the observed
frequency of these angles. Obviously, not all possible angle combinations are assumed with
equal probability. In fact, there are only three small and well-defined regions whose angle
combinations occur frequently in proteins. These regions are small enough to assume that
the conformations in a region are energetically equivalent. Therefore, Ponder and Richards
argued that it is sufficient to describe the conformational space of a side chain through a set of
conformations, the so-called rotamers. In our example, therotamers would correspond to the
conformation obtained by picking the three maxima in the Ramachandran plot. All rotamers
of the amino acid side chains form a so-calledrotamer library.

The use of the rotamer representation for the side chain conformations reduces the initial
continuous optimization problem to a discrete combinatorial optimization problem: we have to
identify the set of rotamers with the minimum energy,i.e. theglobal minimum energy confor-
mation(GMEC).

In principle, each side chain can assume any of its rotamers,hence the total number of
combinations is the product of the number of rotamers for each side chain. With the typical
number of side chains in a binding site ranging from 40 to 60, the total number of possible
rotamer combinations can become as high as1060 combinations. Thus, efficient algorithms are
required to identify the GMEC or suboptimal solutions sufficiently close to the GMEC.

Side chain placement has been discussed in depth not only forthe ab initio prediction of
protein structures and homology modeling. There is a wide range of techniques available for
side chain placement. Due to the high dimensionality of the conformational space of all side
chains, exhaustive search is only tractable for a very smallnumber of side chains [16, 128].
Other approaches use Monte Carlo methods [1, 50], local homology modeling [65], or self-
consistent field theory [62] to place the side chains.

Methods for side chain demangling were also successfully applied to protein docking.
Totrov and Abagyan [117] used a Monte Carlo approach to predict the structure of a lysozyme-
antibody complex. Wenget al. [128] optimized the side chains in the binding site of three
protease-inhibitor complexes using exhaustive search. Jacksonet al. [53] employed a self-
consistent mean field approach and a Langevin dipole model for the side chain placement in
several protein complexes.

However, no algorithm has been yet presented that employs anoptimal side chain place-
ment for the interface refinement in protein-protein docking except for the exhaustive search of
Wenget al. [128], which is severely limited in the number of side chainsand thus not tractable
for larger protein interfaces.

The only algorithm that is able to solve the side chain placement problem to optimality for a
related problem (protein-ligand docking) was proposed by Leach [67, 69]. Leach first employs

26

3.1. INTRODUCTION

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

Frequency [a.u.]

χ
1
 [deg]

χ 2 [d
eg

]

1.000

1.583

2.167

2.750

3.333

3.917

4.500

5.083

5.667

6.250

6.833

7.417

8.000

Figure 3.2: Ramachandran plot for the�1 and�2 torsion angles of LYS. The color coding represents the frequency
of occurrence in a protein test set in arbitrary units.

the Dead End Elimination theorem to reduce the complexity ofthe placement problem and
then the A* algorithm to determine an optimal placement of the side chains of the receptor
with respect to a Molecular Mechanics force field.

We present two new techniques for protein interface refinement and their application to
the docking of unbound protein structures. First, we present a fast heuristic that usually yields
suboptimal solutions to the side chain placement problem. Nevertheless, the solution is close
enough to the optimal solution to allow the correct prediction of the true complex structures for
a test set of unbound protein structures. Second, we proposethe first algorithm that allows the
optimal, albeit slower, demangling of side chains of large protein interfaces. This method is
based on the formulation of the side chain placement problemas an integer linear program and
its solution using a branch-&-cut algorithm. The results ofexperiments with three protease-
inhibitor complexes are presented in Section 3.3.

27

CHAPTER 3. SEMI-FLEXIBLE DOCKING

3.2 The Docking Algorithm

The input of the docking algorithm consists of two proteinsA andB in their unbound confor-
mation. These proteins are subjected to a rigid docking, yielding a set of candidate conforma-
tions. For the 60 best candidates out of this set, we perform aside chain demangling. Finally,
the candidates are scored according to their binding free energy.

3.2.1 Rigid Docking

A rigid docking is performed for the proteinsA andB, using an improved version of the algo-
rithm described in [70] and [71]. The algorithm uses geometric complementarity and simple
chemical fitness functions to create a large set of potentialcomplex structures. Out of this set,
the 60 best candidates with respect to geometric complementarity are selected. An experiment
with a test set of docking structures (35 complexes) always produced several good approxima-
tions of the true complex structure among the 60 best candidates.

3.2.2 Side Chain Demangling

The rigid docking algorithm, which generates a set of promising candidates, neglects the side
chain flexibility. Therefore, many of the candidates have strong overlaps and incorrectly placed
side chains. In order to obtain physically meaningful conformations, we have to demangle the
side chains of the protein interface (the binding site).

Determination of the binding site

First, we have to identify all residues ofA andB that belong to the binding site. We consider
a residue to be part of the binding site if any of its atoms is within 6 Å of any atom of the other
protein. All residues that fulfill this condition are markedand kept in a listBS. Side chains
without rotamers (CYS engaged in disulfide bonds, ALA, and GLY) are excluded from this
list. For each residue in this list, we determine its set of possible rotamers from the rotamer
library of Dunbracket al. [28], assuming that the side chain can occur only in one of these
conformations. We have now decomposed the protein residuesinto two disjoint sets: one set
comprises all residues that have rotamers and belong to the binding site as defined by our cut
off criterion, and the other set comprises all remaining residues (= the template).

Decomposition of the total energy

The GMEC is now defined as the combination of rotamers yielding the lowest total energy. This
entails a combinatorial optimization problem where we mustsearch a huge conformational
space for the GMEC. In order to demangle the side chains of thebinding site, we have to
identify the GMEC or a good approximation thereof. By the following decomposition we can
express the total energy of the system as a function of the selected rotamers:Etotal = Etpl +Xi Etplir +Xi Xj<i Epwir ;js (3.1)

28

3.2. THE DOCKING ALGORITHM

whereEtpl is the potential energy of the template (= system without residues of the binding
site) andEtplir is the potential energy of side chaini in rotameric stater (short: rotamerir)
interacting with the atoms of the template (including the internal energy ofir). Epwir ;js is the
pairwise potential energy between side chaini in rotameric stater and side chainj in ro-
tameric states. This decomposition is exact, as the AMBER force field contains only pairwise
nonbonded interactions. Since rotamers that heavily overlap with the rigid template cannot be
part of the GMEC, we remove all rotamers whose interaction energy with the template is larger
than100 kJ=mol.

For a given set of rotamers, the single energy components of eq 3.1 can be easily calculated
via the Molecular Mechanics force field. The computational effort required for the evaluation
scales at most quadratically with the number of atoms (thereare at mostN2 nonbonded atom
pairs forN atoms). The difficulty arises in finding the global minimum asthis means picking
the optimal combination of rotamers for the side chains. Fortunately, the search space can be
significantly reduced by the so-calleddead-end elimination theorem(DEE)[25], which can be
stated as follows: if for a pair of rotamers(ir; it),Etplir +Xj 6=i mins Epwir ;js > Etplit +Xj 6=i maxs Epwit ;js (3.2)

holds, then the rotamerir can be safely ignored in the search for the global minimum. Itera-
tively applying the DEE theorem reduces the number of combinations of rotamers by several
orders of magnitude (see also the table in Section 3.3 on page40).

Search of minimum energy conformation

In order to find an optimal combination of rotamers, we have developed two alternative ap-
proaches: a tree-based multi-greedy (MG) method and abranch-&-cut algorithmbased on
an ILP (Integer Linear Programming) formulation of our problem. We will first describe the
greedy method and then explain the more technical branch-&-cut algorithm.

3.2.3 The Multi-Greedy Method

In this approach, an enumeration tree representing all possible rotamer combinations is built.
The tree consists ofk = jBSj layers, each representing one side chain. Each path from the
root to a leaf represents a possible combination of rotamers. The label of the node in layeri
determines which rotamer is selected for side chaini. Every node also possesses an energy
label. For the construction, we start out with an artificial root nodev, which is given an energy
labelE(v) = Etpl and a rotamer labelr(v) = null. For each side chaini, we add a new
layer to the tree. This layer is constructed by adding a node for each rotamer ofi to each leaf
of the previous layer (see Figure 3.3). Each new nodex for a rotameris is labeled with the
corresponding rotamer (r(x) = is) and its energy label is set toE(x) = Etplis +E(parent (x)) + Xy2pred(x)Epwis ;r(y);

29

CHAPTER 3. SEMI-FLEXIBLE DOCKING

...
...

layer 1: rotamers of

side chain 1

layer 2: rotamers of

side chain 2

layer 3: rotamers of

side chain 3

artificial root node

Figure 3.3: The tree for three side chains, each having three rotamers.

wherepred(x) denotes the set of nodes that lie on the path fromx to v (x excluding) in the
tree. Thus, each node is labeled with the sum of the interaction energies of all rotamers on the
path from the node to the root.

When the construction of a layer is completed, we sort the list of current leaves accord-
ing to their energy labels. If the number of leaf nodes exceeds a certain boundMAXNODES,
we keep only the bestMAXNODESleaves and remove all others. As we keep always at most
MAXNODESnodes on each layer, we can be sure that the data structure does not grow expo-
nentially.

Carrying out these steps for allk side chains in the listBS creates a layered tree of heightk, with layeri containing only rotamers of side chaini (see Figure 3.3). The energy label of a
leaf gives the potential energy resulting from interactions among the side chains and between
the side chains and the template for the specific combinationof rotamers defined by the rotamer
labels on the path. We thus just have to pick the path from the leaf with the lowest energy label
to the root in order to obtain the minimum energy conformation of all remaining conformations
in the tree.

3.2.4 The Branch-&-Cut Algorithm

The GMEC problem can be formulated as follows: Given a listBS of residue side chains and
setsVi = fi1 : : : inig of possible rotameric states for alli 2 BS, determine for each side chaini the rotamerir, such that the potential energyEtotal = Etpl +Xi Etplir +Xi Xj<i Epwir ;js
of the selected conformation is minimized. We assume that all potential energiesEtplir andEpwir ;js have already been computed. LetEmax be the largest energy value among these potential
energies.

We reformulate the problem as a minimization problem on an undirected graphG =(V;E). For each rotamerir, we create a nodev with weightE(v) = Etplir �Emax and for each
pair (ir; js) of rotamers withi 6= j, we create an edgeuv with weightE(uv) = Epwir ;js �Emax.
The resulting graph isk-partite with partitionsVi, i = 1 : : : k where all the nodes and edges

30

3.2. THE DOCKING ALGORITHM

have negative weights. The partitionVi is called thei-th column of the graph. For a nodev of
the graph, we define
(v) to be the column of this node. The possible rotamer sets correspond
to the subgraphs ofG with the following property: Every subgraph consists of exactly k nodes,
one node out of each column, and the induced edges. We call these subgraphsrotamer graphs.
The weight of a rotamer graph is the sum of the weights of its nodes and edges. Note that
the weight of a rotamer graph and the energy of its corresponding rotamer combination differ
exactly byEtpl + (k + �k2�) � Emax. Thus, the GMEC problem can be solved by determining
the rotamer graph ofG with minimal weight.

The Integer Linear Program

We now transform this graph-theoretic description into an integer linear program by introduc-
ing a binary decision variablexv for each nodev andxuv for each edgeuv. If a node (edge)
belongs to the rotamer graph, the value of the variablexv (xuv) is 1 and otherwise it is0. For
brevity, we say that a node or an edge is selected if the corresponding binary decision variable
is 1. The basic constraint system of the GMEC problem is the following:min Xv2V E(v)xv + Xuv2EE(uv)xuv!s:t: Xv2Vi xv = 1 for all i 2 f1 : : : kg (3.3)xuv � xv for all uv 2 E (3.4)xuv � xu for all uv 2 E (3.5)xv 2 f0; 1g for all v 2 V (3.6)xuv 2 f0; 1g for all uv 2 E (3.7)

The constraints (3.3) enforce that exactly one node of each partition, i.e. exactly one ro-
tamer for each side chain, is selected. The constraints (3.4) and (3.5) guarantee that an edge can
only be selected if both endpoints are selected,i.e. we include the pairwise interaction energy
between two rotamers only if both rotamers are selected as well. Since only one edge from a
certain columni to a nodev can be selected, we can tighten these inequalities toXu2Vi xuv � xv for all v 2 V , i 6=
(v): (3.8)

Note that the above integer linear program has subgraphs of rotamer graphs as feasible solu-
tions. Of course, the weight of a complete rotamer graph is smaller than the weight of any of
its subgraphs, so that the optimal solution of the integer linear program is a rotamer graph.

Branch-&-Cut

Branch-&-cut is the most common technique to handle hard combinatorial optimization prob-
lems. It works as follows: We relax the integer linear program by dropping the integrality
condition and solve the resulting linear program. If the solution �x is integral we have the opti-
mal solution. Otherwise, we search for a valid inequalityfx � f0 that cuts off the solution�x,

31

CHAPTER 3. SEMI-FLEXIBLE DOCKING

i.e. fy � f0 for all feasible solutionsy andf �x > f0; the setfx j fx = f0g is called a cutting
plane. The search for the cutting plane is called the separation problem. Any cutting plane
found is added to the linear program and the linear program isresolved. The generation of cut-
ting planes is repeated until either an optimal solution is found or the search for a cutting plane
fails. In the second case a branch step follows: We generate two subproblems by setting one
fractional variablexv (xuv) to 0 in the first subproblem and to1 in the second subproblem and
solve these subproblems recursively. This gives rise to an enumeration tree of subproblems.

For details about branch-&-cut, integer programming, and adiscussion of improvements
on this method, see the book of Wolsey [131].

The GMEC polyhedron

We call the convex hullP of all feasible solutions theGMEC polyhedron. Since its facets are
the most promising cutting planes, we studied the structureof the GMEC polyhedron. Before
we can prove that an inequality defines a facet, we have to determine the dimension of the
polyhedron. We assume that the reader is familiar with polyhedral theory; for an introduction,
see [87, 131].
Definition: A polyhedronP � Rn is the set of points that satisfies a finite number of linear
inequalities. Every polyhedronP can be written asP = fx 2 Rn j Ax � dg for somem�n-
matrixA and somem-vectord. Note that this description of a polyhedron is not unique. For i,1 � i � m letAi be thei-th row ofA. If Aix = di for somex 2 Rn the constraintAix � di
is calledactive for x. Let M be the set of indices, so thati 2 M if and only if Aix � di is
active for allx 2 P . Furthermore, let(A=; d=) be the corresponding rows of(A; d). In other
words,A=x � d= are the constraints ofAx � d which hold with equality for all points of the
polyhedron.

Lemma 1. dim(P) = jV j � k + jEj
Proof. A fundamental lemma about polyhedral theory (see, for example, [87], page 87) states
that dim(P) + rank(A=; d=) = jV j+ jEj;
where rank(A=; d=) is the number of linearly independent rows of(A=; d=). Note thatrank(A=; d=) is independent of the particular description ofP .

Hence,dim(P) � jV j � k+ jEj, because we havek linearly independent equalities in our
partial description of the polyhedron. In order to show thatdim(P) � jV j � k + jEj, we have
to show that there arejV j � k + jEj + 1 affinely independent feasible solutions.

A basic solutionb is a feasible solution withbuv = 0 for all uv 2 E. For i, 1 � i � k
we defineb(i) to be the nodev of Vi with bv = 1. For any nodev let ev be the unit vector of
this node,i.e. the vector with entry1 at the position ofv and with entry0 at all other positions.
Analogously for any edgeuv, let euv be the unit vector of this edge. For an0=1-vectorx we
do not distinguish between the vector and the correspondingsubgraph.

Let b be a basic solution. We then construct all solutions where exactly one node ofb is
replaced by another one in the same column. Additionally, weconstruct one solution for every

32

3.2. THE DOCKING ALGORITHM

edge by including the edge, both its endpoints. For the remaining columns, we take the nodes
of the basic solutionb. More formally, we look at the following setS of feasible solutions:S = fbg [fb+ ev � eb(
(v)) j v 2 V with bv = 0g[fb+ euv + eu � eb(
(u)) + ev � eb(
(v)) j uv 2 Eg
The size of the set is1 + jV j � k + jEj. LetM be the matrix with rows corresponding to the
solutions ofS. We have to show that the solutions are affinely independent,i.e. if one subtracts
one row ofM from the others, the remaining rows are linear independent.In this case, the
matrix has to have full row rank. We denote then � n identity matrix byIn. We subtractb
from all other solutions and get the matrixM 0 with rowsev�eb(
(v)) for all v 2 V with bv = 0
and rowseuv + eu � eb(
(u)) + ev � eb(
(v)) for all uv 2 E. Since dropping columns cannot
increase the row rank of the matrix, we are allowed to drop allcolumnsi of M 0 with bi = 1, i.e.
all columns that have an entry�1. This results in a matrix with the following block-structure� IjV j�k 0B IjEj �
for some suitable matrixB. This matrix has full rank since it is triangular. Thus, the matrixM 0 has full row rank and all solutions ofS are affinely independent.

Lemma 2. The non-negativity constraintsxuv � 0 define facets for alluv 2 E. The one-
node-aggregation constraints (3.8) define facets forP .

Proof. A feasible constraint defines a facet, if it is active forjV j�k+ jEj affinely independent
solutions.

For the first part, we have to show thatxuv = 0 for jV j � k + jEj affinely independent
solutions. This is obvious, because all but one of the solutions in the proof of Lemma 1 satisfy
this equality. The second part follows if we choose a basic solution b with bv = 0. ThenPu2Vi xuv = xv for all but one selected solutions.

Definition: Leth; i; j be pairwise distinct column indices,(S1; S2) be a partition ofVi, (T1; T2)
be a partition ofVj and(R1; R2) be a partition ofVh. Furthermore, all sets are assumed to be
non-empty. We define the edge-incompatibility constraint for S1; S2; T1; T2; R1; R2 asXu2S2;v2T1 xuv+ Xv2T2;w2R1 xvw+ Xw2R2;u2S1 xuw � 1 (3.9)

Lemma 3. The edge-incompatibility constraints are feasible forP and define facets.

Proof. We first show the feasibility of the constraint. If any edge ofthe constraint is selected,
no other edge of the constraint can be selected, because at least one of its endpoints cannot be
selected (see Fig. 3.4).

In order to prove that the constraints are facet-defining, weuse an indirect way to show that
there arejV j � k + jEj affinely independent solutions for which the constraint is active.

33

CHAPTER 3. SEMI-FLEXIBLE DOCKING

S

S

T

T

R

R

2

1

1

2

 2

 1

Figure 3.4: Only one of these edges can be selected.

LetF = fp1; : : : ptg be the set of feasible solutions for which the constraint (3.9) is active.
The constraint defines a facet if all solutions(�; �0) of the set of equalitiesXv2V �vpiv + Xuv2E �uvpiuv = �0 for all pi 2 F (3.10)

are linear combinations of the coefficients of the constraint (3.9) and the feasible equationsA=x = b= of the problem (see Theorem 3.6. in Chapter I of [87]),i.e.(�; �0) = (�pj + �A=; �+ �b=) for all pj 2 F
The set of feasible equations consists ofk equations of the formXv2Vi xv = 1 (3.11)

i.e., one equation for each partitionVi. The scalar factor for the equation of columnVi in the
linear combination is denoted by�i, the scalar factor of the constraint (3.9) is denoted by�.
The above cited theorem implies that constraint (3.9) is facet-defining if� �v = �i for each nodev 2 Vi (becausepjv = 0 for all pj 2 F; v 2 V)� �uv = � for each edgeuv in constraint (3.9)� �uv = 0 for all other edges� �0 = �+Pki=1 �i.
Let b be a basic solution. We call a constraintXv2V �vxv + Xuv2E �uvxuv = �0 (3.12)

34

3.2. THE DOCKING ALGORITHM

in normal form with respect tob if �v = 0 for all v with bv = 1. By subtracting the equations
(3.11) multiplied with suitable factors, it is possible to transform each constraint into (at least)
one equivalent constraint in normal form with respect tob.

Thus, a constraint of type (3.9) defines a facet ofP if all solutions of the equation systemXv2V �vpiv + Xuv2E �uvpiuv = �0 for all pi 2 F�v = 0 for all v with bv = 1 (3.13)

are of the form� �v = �i for each nodev 2 Vi� �uv = � for each edgeuv in constraint (3.9)� �uv = 0 for all other edges� �0 = �+Pki=1 �i.
Since every columnVi contains one nodev with �v = 0 (normal form), the above equations
can only be fulfilled if all�i are zero. Therefore, we have to show that�v = 0 for each nodev 2 Vi, �uv = � for each edgeuv in constraint (3.9),�uv = 0 for all other edges, and�0 = �.

Choose any basic solutionb, such that at least one edgexy of the constraint is selectable,
i.e. bx = 1 andby = 1. Let F be the set of all feasible solutions where exactly one edge of
the constraint is chosen. We first argue that�v = 0 for all nodesv 2 V . By definition of the
normal form, this is true for all nodes of the basic solution.Let v =2 Vh [Vi [Vj. Look at
the following two solutions: the nodes of the basic solutiontogether with the edgexy and the
solution wherev andb(
(v)) are exchanged and the same edge is selected. More formally, we
look at the solutionsb + exy andb+ exy + ev � eb(
(v)). Since�b(
(v)) = 0, the difference of
the two resulting constraints is�v = 0. Now let v 2 Vh [Vi [Vj. Letwr be an edge of the
constraint that has neither endpoint in the same row asv. Take any solution where this edge
andb(
(v)) are selected and the solution whereb(
(v)) is replaced byv. Again the difference
between the two constraints is�v = 0.

Now we conclude that�wr = �0 for all edgeswr in the constraint (look at any solution
where only this edge is selected), and that�wr = 0 for all edges not in the constraint (look at
any solution where this edge and one edge of the constraint isselected and the solution where
only the edge of the constraint is selected). This proves that all solutions of the equation system
(3.13) have the required form and we are done.

Definition: Let h; i; j be pairwise distinct column indices,S � Vi, T � Vj with S; T 6= ;,
and letR1; R2 be a partition ofVh with Ri 6= ; for i = 1; 2. We define the node-aggregation
constraints forS; T;R1; R2 asXu2S;v2T xuv + Xu2S;w2R1 xuw + Xv2T;w2R2 xvw �Xu2S xu +Xv2T xv (3.14)

35

CHAPTER 3. SEMI-FLEXIBLE DOCKING

 2

S T

R

R 1

Figure 3.5: One can select only as many edges as nodes in the shaded sets.

Lemma 4. The node-aggregation constraints (3.14) are feasible forP and define facets.

Proof. Again we start with the feasibility proof. If a node inS, a node inT , and a node inR1
are selected we can select exactly one edge going fromS to T and one edge going fromS toR1 but no edges fromT toR2. If a node inS is selected but no node inT we cannot select an
edge fromS to T or fromT toR2. Furthermore, we can select at most one edge fromS toR1.
If neither a node fromS nor a node fromT is selected, we cannot select any of the edges of
the constraint. The other cases are analogous (compare Fig.3.5).

As in the proof of Lemma 3, we use Theorem 3.6. in Chapter I of [87] to show that the
constraints are facet-defining. LetF = fp1; : : : ptg be the set of feasible solutions that satisfy
the constraint with equality. A constraint of type (3.14) defines a facet ofP if all solutions of
the equation systemXv2V �vpiv + Xuv2E �uvpiuv = �0 for all pi 2 F�v = 0 for all v with bv = 1 (3.15)

are linear combinations of the coefficients of the node-aggregation constraints and the feasible
solutions with scalar factors� and�i. Thus,(�;mu0) has to be of the form� �v = �i�� for each nodev 2 Vi; v 2 S[T (becausepjv = �1 for all v 2 S[T; pj 2 F)� �v = �i for each nodev 2 Vi; v =2 S [T� �uv = � for each edgeuv in constraint (3.14)� �uv = 0 for all other edges� �0 = �+Pki=1 �i.

Choose any basic solutionb with bu = 0 for all u 2 S [T . The constraint (3.14) is in
normal form with respect tob. In a solution of this equation system,�v = 0 for all v 2 V withbv = 1.

36

3.2. THE DOCKING ALGORITHM

Furthermore,�v = �i for all v 2 V with bv = 1 by the choice of the basic solution and
thus�i = 0 for all 1 � i � k.

Therefore, we have to show that�v = �� for each nodev 2 S [T , �v = 0 for each nodev =2 S [T , �uv = � for each edgeuv in constraint (3.14),�uv = 0 for all other edges, and�0 = �.
Letw be the node inVh with bw = 1 and w.l.o.g. assumew 2 R1 andr is any node ofR2.

Since the constraint is active forb we conclude that�0 = 0. Furthermore, we obtain:

1. �v = 0 for all v 2 V that are not in the constraint (look at the difference between the
constraints for the solutionsb andb+ ev � eb(
(v))).

2. �uv = 0 for all uv 2 E that are not in the constraint (look at the difference between the
constraint of any active solutionp with puv = 1 andp� euv).

3. �u = ��uv for all u 2 S, v 2 R1 (look at the difference between the constraints ofb+ ev � eb(
(v)) andb+ ev � eb(
(v)) + eu � eb(
(u)) + euv).
4. �u = ��uv for all u 2 T , v 2 R2 (The same argument).

5. �v = ��uv for all u 2 S, v 2 T (look at the difference between the constraints for the
solutionsb+ eu � eb(
(u)) + euw andb+ eu � eb(
(v)) + euw + ev � eb(
(v)) + euv).

6. �u = ��uv for all u 2 S, v 2 T (look at the difference between
the constraints for the solutionsb + ev � eb(
(v)) + er � ew + erv andb+ ev � eb(
(v)) + er � ew + erv + eu � eb(
(u)) + euv).

Thus, for allu 2 S[T andv 2 V such that the edgeuv is in the constraint, we have shown
that�u = ��uv. Since the subgraph induced by the constraint is connected,all �v have the
same value. Choose� = ��v for a nodev of the constraint. Then,�uv = ��v = � for each
edgeuv of the constraint. Hence, all solutions of the equation system (3.13) have the required
form and we are done.

We have implemented a branch-&-cut algorithm for the GMEC problem using the C++
class library LEDA [78], ABACUS [59] for the administrationof the branch-&-cut tree, and
CPLEX [52] to solve the linear programs.

We use the node-summation equations (3.3) and the one-node-aggregation constraints (3.8)
as the initial constraint system. The only constraints thatare separated are the node-aggregation
constraints (3.14) withjSj = jT j = 1.

We use a simple, brute force algorithm. We iterate over all triples(u; v; h), whereu; v 2 V ,h is a column of the graphG and
(u);
(v); h are pairwise distinct. The optimal partition is
obtained by iterating over the nodes ofVh and putting a nodew intoR1 if xuw > xvw and intoR2 otherwise.

37

CHAPTER 3. SEMI-FLEXIBLE DOCKING

The running time is O(kXi=1 kXj=1 kXh=1(jVijjVj jjVhj)) = O(jV j3):
3.2.5 Energetic Evaluation

∆ int
B-A

G

A-B

solute

∆∆Gsolv
A

∆∆Gsolv
B

int∆G

+

 -

A

 -

+

+

+

 - -

+

+

 -

 -
B

+

 -

 -
B

+
+

+
 -

 -

+
 - -

+

+

 -
B

A

+
+

 - -

++

A

+

solvent

a b

c d

e

Figure 3.6: Calculation of the electrostatic contributions to the binding free energy.

After determining an optimal rotamer set for each candidate, we assign the rotamers of the
minimum energy conformation to the respective side chains and then optimize the side chains
of the binding-site using the AMBER force field. The free energy of binding is determined
using the method proposed by Jackson and Sternberg [54].

We decompose the binding free energy�Gass as follows:�Gass = �GES +�G
av +�G
onf +�GvdW (3.16)�GES represents the electrostatic contribution,�G
av the cavitation free energy in water,�G
onf the change in conformational entropy of the proteins, and�GvdW the change in the
van der Waals free energy.

Electrostatic contribution

The electrostatic contributions to the binding free energycan be estimated using a so-called
continuum model. This type of model considers solvent molecules not explicitly, but implicit
as a spatial dependency of the dielectric constant. The solute is represented by a region of low
dielectric constant immersed in a high dielectric constantsolvent (water). The boundary be-
tween these two regions is formed by the molecular surface ofthe solute (the solvent excluded
surface).

38

3.2. THE DOCKING ALGORITHM

Within this continuum model, thePoisson-Boltzmann equation(PBE) describes the elec-
trostatic potential�(~r) at point~r as a function of the charge distribution�(~r) and the (spatially
varying) dielectric constant"(~r):r("(~r)r�(~r))� ��2(~r) sinh�e0�(~r)kT � = ��(~r)"0 (3.17)

The symbolr represents the gradient of a function."0 is the vacuum permittivity ande0 the
proton charge. For our purposes,��(~r) (a modified Debye-Hückel parameter) may be set to zero
without loss of accuracy: r("(~r)r�(~r)) = ��(~r)"0 (3.18)

A common method to solve this equation is the finite difference method. After converting
the linear PBE into its finite difference form, the resultingset of linear equations on a three-
dimensional grid is usually solved using over-relaxation techniques [88]. The solution of the
Poisson-Boltzmann equation yields the electrostatic potential for each grid point. The total
electrostatic energy of the system may then be calculated asthe sum of energies of each point
chargeqi in the electrostatic field:�Gtotalele = 12Xi qi�(~ri) (3.19)

In the Jackson-Sternberg model, the electrostatic contribution �GES to the binding free
energy is composed as follows:�GES = ��GAsolv +��GBsolv +�GABint (3.20)

To evaluate the electrostatic contribution, we use the scheme in Fig. 3.6. First, we calculate
the total electrostatic energy ofA in water (dielectric constant of water"w = 80, dielectric
constant of the protein"p = 2). Then, we create a complex-shaped low dielectric constant
cavity and charge onlyA. B remains uncharged. The change in solvation free energy on
binding��GAsolv for A is given by the difference between these two energies. The interaction
energy ofB in the field ofA �GABint , which equals the interaction energy ofA in the field ofB �GBAint , is then determined as the energy of the point charges ofB in the field caused byA. The same process is finally repeated for proteinB in the same manner. In our experiments,
we used cubic grids with a spacing of0:5 Å and the Poisson-Boltzmann code implemented in
BALL.

Cavitation free energy

The change in cavitation free energy is calculated as a linear function in the change of the
molecular surface area �G
av =
 (AAB �AA �AB); (3.21)

39

CHAPTER 3. SEMI-FLEXIBLE DOCKING

whereAAB , AA, andAB are the molecular surface areas of the complex, proteinA, and
proteinB, respectively, and
 is a constant (0:289 kJmol�1Å�2

). We use the algorithm by
Connolly [20] (as implemented in BALL) to calculate the molecular surface areas with a probe
radius of1:4 Å. For the electrostatic calculations, we use the PARSE set of atom radii and
charges by Sitkoffet al. [109] and the FDPB implementation of BALL.

3.3 Experimental Results

We applied our techniques to three protease-inhibitor complexes. The structures of three pro-
teasesA and the corresponding protein inhibitorsB were taken from the PDB: subtilisin carls-
berg (1SBC) with chymotrypsin inhibitor 2 (2CI2),�-trypsin (1TPO) with trypsin inhibitor
(4PTI), and�-chymotrypsin A (5CHA, chain A) with ovomucoid (2OVO). Water was removed
from each of these complexes, hydrogens were added and theirpositions were optimized using
the AMBER [22] force field.

Combinatorial complexity

The iterative application of the DEE theorem reduced the combinatorial complexity usually
by about ten orders of magnitude, thus greatly simplifying the solution of the GMEC problem.
Numbers for the three examples are given in the following table:

complex no. of side # rotamer combinations
chains before DEE after DEE

1TPO/4PTI 51 6 � 1060 8 � 1045
1SBC/2CI2 50 1 � 1055 2 � 1046

5CHA/2OVO 54 1 � 1056 2 � 1048
Ranking of the structures

In the case of 1TPO/4PTI, the AMBER energy already gave a clear signal; the best four can-
didates (those with lowest energy) were good approximations of the complex structure (see
Fig. 3.7: structures are good approximations of the true complex structure if their RMSD1 is
low). When ranking this example with respect to the estimated binding free energy (calculated
with the Jackson-Sternberg model as described in Section 3.2), an approximation of the true
complex structure was ranked as number one as well (see Fig. 3.8).

For the example 1SBC/2CI2, the AMBER energy was not sufficient to predict the true
complex structure correctly. However, when ranked according to the binding free energy, the
best candidate was a good approximation of the true complex structure for all examples (see
Fig. 3.9, 3.8, and 3.10).

We also tried to predict the structure of these examples using the binding free energy alone
(i.e. without a prior side chain demangling). None of the complexes was correctly predicted.

1root mean square deviation of all atom position

40

3.3. EXPERIMENTAL RESULTS

0

10

20

30

40

50

60

-20000 -18000 -16000 -14000 -12000 -10000 -8000 -6000

R
M

S
D

 [A
ng

st
ro

m
]

binding energy [kJ/mol]

Figure 3.7: 1TPO/4PTI - AMBER energy of the candidates (MG).

0

10

20

30

40

50

60

-300 -200 -100 0 100 200 300 400

R
M

S
D

 [A
ng

st
ro

m
]

binding energy [kJ/mol]

Figure 3.8: 1TPO/4PTI - ranking of the candidates according to their binding free energy (MG).

Hence, side chain demangling as well as an advanced scoring method are both needed to predict
the correct complex structure in these cases.

41

CHAPTER 3. SEMI-FLEXIBLE DOCKING

0

10

20

30

40

50

60

70

-300 -200 -100 0 100 200 300

R
M

S
D

 [A
ng

st
ro

m
]

binding energy [kJ/mol]

Figure 3.9: 1SBC/4CI2 - ranking of the candidates according to their binding free energy (MG).

0

10

20

30

40

50

60

-200 -100 0 100 200 300 400 500

R
M

S
D

 [A
ng

st
ro

m
]

binding energy [kJ/mol]

Figure 3.10: 5CHA/2OVO - ranking of the candidates according to their binding free energy (MG).

Quality of the heuristic

For the case of 1TPO/4PTI, we checked the quality of the results obtained from the MG method
by calculating the optimal solution using the branch-&-cutalgorithm. We performed this cal-

42

3.3. EXPERIMENTAL RESULTS

culation for 34 out of the 60 candidates. In most cases, the solution found by the heuristic
was close to the optimal solution,i.e. for the majority of the side chains the selected rotamers
were identical to those of the optimal solution. The total energy differed only slightly from
that of the optimal solution, hence the ranking was very similar to that of the optimal solution
(see Figs. 3.7 and 3.11). The average error in the AMBER energies was about8000 kJ=mol.
However, the quality of the solutions was better for good approximations of the true complex
structure. Among the 34 candidates considered, 7 were good approximations (RMSD� 4 Å).
Only one of these seven candidates was further than1000 kJ=mol away from the optimum.

Side chain placement

For the protein docking problem, not all side chains are of equal importance. However, the
placement of a single side chain may determine the success ofthe docking. A prominent
example is LYS:15 of 4PTI. When compared to the bound structure, this side chain has to
turn towards the core of 1TPO to fit properly. Fig. 3.12 shows the bound and the unbound
conformation of this side chain. However, it is not necessary for LYS:15 to assume the fully
extended position as in the complex structure, it just has toturn down a bit further than it does
in the unbound structure to avoid clashes with the backbone of 1TPO. Although the correct
placement of the side chain is not achieved, the selected rotamer is sufficient to allow a reliable
prediction of the binding free energy.

Running times

We compared the running times of the different parts of our docking algorithm on a SUN
Enterprise 10000 (333 MHz UltraSparc II processors, 12 GB RAM, Solaris 7, g++-2.95.2 with
-O2). We averaged the running times for each stage of the algorithm over all 60 candidates
considered. Obviously, running time is dominated by the final energetic evaluation and the
initial calculation of the energetic contributions, whereas the side chain placement itself only
accounts for a minor portion of the total running time.

stage avg. time [min]

energies and DEE 30
ILP 14
multi-greedy 3
side chain optimization 5
final energetic evaluation (FDPB) 70

43

CHAPTER 3. SEMI-FLEXIBLE DOCKING

0

10

20

30

40

50

60

-20000 -18000 -16000 -14000 -12000 -10000 -8000 -6000

R
M

S
D

 [A
ng

st
ro

m
]

binding energy [kJ/mol]

Figure 3.11: 1TPO/4PTI - AMBER energy of the candidates (ILP).

Figure 3.12: Placement of LYS15 of 4PTI (red: complex conformation from 2PTC, blue: conformation from 4PTI,
yellow: optimal rotamer).

44

Chapter 4

Protein Docking and NMR

4.1 Nuclear Magnetic Resonance Spectroscopy

One of the most important tasks in structural biology is the determination of the three-
dimensional structure of biomolecules. Currently, there are three methods that are frequently
employed in structure determination:X-ray crystallography, Nuclear Magnetic Resonance
(NMR) spectroscopy, andelectron microscopy. While the latter of the three methods is of
minor importance and only yields low-resolution structures, X-ray crystallography and NMR
spectroscopy are powerful tools to explore the structure ofbiomolecules at the atomic scale.

In X-ray crystallography, X-rays are focussed onto a protein crystal and the resulting
diffraction patterns are recorded. From these patterns, the structure of the protein can be recon-
structed through aFourier transform. This technique is applicable to proteins of all sizes, the
only prerequisite being the ability to grow crystals of the protein in question.

The second technique, which we will discuss in more depth, isthe Nuclear Magnetic Res-
onance spectroscopy. The development of NMR spectroscopy was initiated by the pioneering
work of F. Bloch and E. M. Purcell in 1945 [14, 101]. During thefollowing decades, it became
the method of choice for structure elucidation in organic chemistry. Due to new techniques and
instruments, the size of the molecules accessible to NMR spectroscopy grew constantly until
structure determination became feasible for small to medium sized proteins.

There is a whole range of textbooks covering the fundamentals and advanced topics of
NMR spectroscopy (e.g.[48, 42, 120, 39, 45]), so we will just mention the fundamental physics
and discuss the details only insofar as they are essential tothe understanding of the subsequent
sections.

4.1.1 The Nuclear Angular Momentum

NMR is based on the fact that the nuclei of most atoms possess anuclear angular momentumP , which, according to the classical picture, corresponds toa rotation of the nucleus about an
axis. From quantum mechanical considerations, one can deduce that the angular momentum of
such an isolated particle cannot assume arbitrary magnitudes but is quantized (i.e. it may only
take certain discrete values). For the angular momentum, these values can be specified in terms
of aquantum numberI: j~P j =pI(I + 1) ~; (4.1)

whereh = 2�~ is the Planck constant. Theangular momentum quantum number(or spin
quantum number) I is determined by the nucleus,i.e. it is determined by the isotope of the
element (nuclide) in question. Nuclides with a spin quantum number ofI = 0 do not possess
an angular momentum and are thus not accessible through NMR spectroscopy (see Table 4.1).

CHAPTER 4. PROTEIN DOCKING AND NMR

Nuclide Natural abundance Spin quantum number Gyromagnetic ratio
[%] I
 [107radT�1s�1]1H 99:985 12 26:752H 0:015 1 4:1112C 98:9 0 �13C 1:108 12 6:7314N 99:63 1 1:9315N 0:37 12 �2:7116O 99:96 0 �17O 0:037 52 �3:63

Table 4.1: Magnetic properties of the most important nuclides (valuesfrom [39]).

Associated with the angular momentumP is themagnetic moment�:~� =
 ~P (4.2)

The gyromagnetic ratio
 is a constant specific to each nuclide. Both~� and ~P are vectorial
properties, so their full description requires a directionas well. When placed in a static mag-
netic field ~B0 along the z-axis, the spins of the nuclei orient themselves along the field in a
way that their z-component is quantized as well:Pz = m~ with m = I; I � 1; I � 2; : : : � I (4.3)

wherem is themagnetic quantum number. Sincem can assume all values given in eq 4.3,Pz
(and~�) can assume2I + 1 possibles values (see Fig. 4.1). Hence, the energy of the nucleus in
the magnetic field~B0 is quantized as well:E = ��zj ~B0 j = �m
~j ~B0 j (4.4)

From here on, we will consider only nuclei withI = 12 (e.g.1H) for the sake of simplicity.
Similar considerations apply to the other nuclei as well.1H nuclei (protons), can assume two
different energy levels in accordance with the two possiblevalues of the magnetic quantum
numberm = +12 ;�12 . If �z is positive,~� is parallel to the external magnetic field, which is
the preferred orientation. Transitions between these two states can be caused by the transfer of
an appropriate amount of energy�E. This energy has to correspond to the difference of the
two energy levels,i.e. �E = E+ 12 �E� 12 (4.4)=
~j ~B0 j: (4.5)

The energies required for this transition are comparatively small. For typical NMR instruments,
they correspond to electromagnetic radiation with frequencies in the range of several MHz to
several hundreds of MHz. This frequency is called theresonance frequencyof the nuclide.

46

4.1. NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

h
2

-

B
0

m = + 1
2

h
2

+

1
2

m = -

z

x

y

Figure 4.1: Left: The nuclear angular momentum vector~P of a proton (1H) can assume two different states
defined by its magnetic quantum numberm. The z-component of the spin is either parallel or antiparallel to the
external field~B0 . Right: Since this quantization condition holds only for the z-component, the spins may have
arbitrary x- and z-components, i.e. they lie on cones definedby the total angular momentumP and its z-component.

According to the quantization condition (4.3), only the z-component is quantized. Classical
physics require a magnetic moment in a field to perform a rotational movement around the
z-axis which describes a cone (see Fig. 4.1). Such a movementis generally referred to as
precession(analogous to the motion of a gyroscope). In the case of NMR, it is known as
Larmor precession. The angular velocity! of the precession and the correspondingLarmor
frequency� = !2� are proportional to the external field~B0 :� = j�Ejh = j
~jh j ~B0 j (4.6)= j
j2� j ~B0 j (4.7)! = j
jj ~B0 j (4.8)

4.1.2 Electronic Shielding and the Chemical Shift

From the equations stated above, one should expect all nuclei of a certain nuclide to show the
same energy difference�E for a given magnetic field. However, atoms also contain electrons
and these cause a local magnetic field which is superposed to the external field. As a result,
the nucleus is shielded from the external field and experiences only aneffective field~Be� . The
shielding is proportional to the external field and is therefore written in terms of theshielding
constant���: ~Be� = ~B0 +� ~B = ~B0 � ��� ~B0 (4.9)

The shielding constant depends on the local environment (and thus on the molecular structure)
of the nucleus in question. Since��� is a tensor quantity, the effective field depends on the
orientation of the molecule relative to the magnetic field vector ~B0 . Hence, the random dis-
tribution of this orientation in liquid samples causes the non-isotropic contributions of��� to
vanish. The experiment only reveals the isotropic shielding constant� which is the trace of the

47

CHAPTER 4. PROTEIN DOCKING AND NMR

AB

C

x

y

z

CC
D

E

B0

Figure 4.2: Basic components of an NMR spectrometer: The sample (A) is placed in a strong homogeneous
magnetic field~B0 caused by a magnet (B). The field can be modified using the sweepcoils (C). Radio pulses are
transmitted using the transmitter coils (D) and received via the receiver coils (E).

shielding tensor: � = 13(�xx + �yy + �zz) (4.10)

More practical than the shielding constant� is the chemical shifts scale (orÆ-scale). This
scale describes the difference between the resonance frequencies of a given nucleus relative to
the resonance frequency of a reference compound:Æ = � � �ref�ref (4.11)Æ is named thechemical shiftand is usually given in units of ppm (parts per million,10�6). The
chemical shift of the reference compound is zero by definition. Although the chemical shift is
also a tensor quantity, we will regard it as a scalar quantityfor the reasons stated above for the
shielding tensor.

4.1.3 The Basic NMR Experiment

Fig. 4.2 shows the schematic construction of an NMR spectrometer. It consists of a strong
(usually superconducting) magnet whose primary field~B0 is modified by an additional field~B1 created by a set ofsweep coils. The sample is placed in this homogeneous field in a
cylindric sample tube. A radio frequency of varying frequency is emitted by thetransmitter
coil and the resulting signal is picked up by thereceiver coilssurrounding the sample. A
spectrum is acquired either by afield sweep(the current through the sweep coils is modified

48

4.1. NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

0246810

In
te

ns
ity

 [a
.u

.]

chemical shift [ppm]

Figure 4.3: The experimental1H-NMR spectrum of the protein parvulin [7]. The large peak atÆ = 4:7 is caused
by the solvent, the other peaks are caused by the protein itself.

and the emitted radio frequency is kept constant), or by afrequency sweep(the field stays
constant and the frequency varies). The intensity of the received signal is modulated by the
varying absorption of the sample, which is at a maximum for the resonance frequency of each
species in the sample. Thus, the spectrum shows a number of peaks corresponding to the
chemical shifts of the different nuclei in the sample. The peak area is roughly proportional
to the concentration of the species. In the case of proteins,the number of chemically distinct
protons is very high and the spectra become very complex (Fig. 4.3).

There is a multitude of different experimental techniques available to perform an NMR
experiment. Even a cursory overview of all available techniques is clearly beyond the scope
of this work, so we refer to appropriate textbooks [48, 42, 120, 39, 45]. For our purposes, it
is sufficient to know that the chemical shifts of the nuclei can be determined experimentally
and that these shifts contain important structural information. Through different kinds of NMR
experiments, it is possible to assign each of the peaks to thecorresponding atom of the protein.
This difficult task is calledshift assignment. It requires a large number of different spectra, a
lot of experience, and usually several weeks or even months of time.

A huge amount of structural data can be derived from a fully assigned spectrum. Depending
on the kind of experiment that lead to the spectrum, this information consists of interatomic
distances or secondary structure information. This information then allows the reconstruction
of the 3D-structure of the protein.

49

CHAPTER 4. PROTEIN DOCKING AND NMR

4.2 Application to the Protein Docking Problem

As NMR spectra contain a huge amount of structural data and are easily accessible, it seems
obvious to use this information in protein docking. The integration of experimental data into
docking algorithms can improve the quality and reliabilityof docking results. Furthermore, the
results of the docking predictions can be used to acceleratethe structure elucidation process.

4.2.1 Previous Work

The inclusion of NMR data is a well known technique in ligand docking (e.g.[98]), but up to
now, there is just one paper describing the use of NMR in protein-protein docking [82]. In that
paper, Morelliet al. determine the changes in a two-dimensional (1H-15N-HSQC) spectrum
upon the binding of ferredoxin to cytochrome
553. From a set of (fully assigned) spectra, they
determine a set of nuclei whose chemical shift changes on binding and thus obtain a set of
distance constraints. An initial set of tentative complex structures is generated using a simple
rigid-body docking algorithm. The best candidates are ranked with respect to the number of
distance constraints they violate. Hence, the algorithm can be seen as a kind of local rigid-
body docking, where the binding site and the coarse orientation of the two proteins is defined
by the distance constraints. However, the NMR data is not directly exploited but only distance
information derived from the fully assigned spectrum. To obtain this distance information, it is
necessary to assign the majority of the shifts in the spectra(e.g.heteronuclear1H-15N-HSQC
spectra).

Since the shift assignment is the most time-consuming process during the NMR-based
structure elucidation, a more favorable approach would employ the unassigned spectra. In
principle, it should be feasible to acquire an one- or multi-dimensional NMR spectrum of the
complex and compare it to predicted spectra of the complex candidates. The simulated spectra
of those candidates that are closest to the true complex structure should show the smallest
deviation from the experimental spectrum. That leaves two open questions: (a) how to simulate
a spectrum?, and (b) how to compare two spectra? The next sections are dedicated to these two
problems.

4.2.2 NMR Shift Prediction

If we set aside spin coupling (an effect that splits peaks dueto spin-spin interactions of neigh-
boring nuclei), we can assign a chemical shift to each distinct nucleus of a protein. The chem-
ical shift of a nucleus is influenced by numerous physical effects. Basically, all influences that
lead to a change in the electronic structure of an atom (i.e.which influence the electron density)
affect the chemical shift. Over the years, a number of individual effects have been described
that are known to have an influence on the chemical shift, the most prominent ones being� ring currents : in a simple classical model, the�-electrons of aromatic rings form current

loops causing a magnetic field that superimposes the external field� electric field: polar groups close to the nucleus can influence the shielding of a nucleus
through electrostatic interactions

50

4.2. APPLICATION TO THE PROTEIN DOCKING PROBLEM� magnetic anisotropy: the magnetic anisotropy of double bonds, especially the peptide
group of proteins, can cause significant changes in the chemical shift of neighboring
nuclei� protein secondary structure: especially the heavier nuclei (15N, 13C) display a strong
dependency on the protein secondary structure

A number of common models have been proposed for these effects [92, 130, 129]. One of
these models was proposed by Williamson and Asakura [129] (WA model). They decompose
the total chemical shift of a nucleus into the following fourcontributions:Æ = Ælo
al + Ær
 + Æaniso + Æes (4.12)

whereÆr
 is the contribution of ring currents,Æaniso is the contribution caused by the magnetic
anisotropy of the peptide bond, andÆes is the electrostatic contribution.Ælo
al is the so-called
local or random coil shiftand equals the shift this nucleus had, if it were in a short peptide
without secondary structure (random coil). For each of these effects, models were developed
to estimate their contribution. The next paragraphs will describe these models in more detail.

Ring Currents

The circular�-electron system of aromatic rings induces a magnetic field.This field changes
the effective magnetic field at the nucleus and thus leads to adifferent chemical shift.

There are two widely used approaches to calculate the ring current shift: the approach
by Haigh and Mallion [46] and the one by Johnson and Bovey [58]. For both models, the
secondary shift can be written asÆr
 = Xk2rings ik BG(~Rk) (4.13)

whereB is a constant,ik gives the ring current intensity of thek-th aromatic ring (relative to
the intensity of a benzene ring), andG(~Rk) is a geometric factor which depends on the shift
model in use as well as on the position~Rk of thek-th ring center relative to the proton.

In the Haigh-Mallion model the geometric factor is written asGHM(~R) =Xi<j Sij 1r3i + 1r3j ! (4.14)

whereri andrj are the distances of the nucleus from two neighboring atomsi andj of the
aromatic ring, where the sum runs over all bonds of the ring.Sij is the area of the triangle
spanned by the two ring atoms and the projection of the nucleus on the aromatic ring plane.

The Johnson-Bovey model is more complicated, but in generalgives better accuracy. It is
based on Pauling’s model of the aromatic ring current [97] and fundamental ideas of Waugh
and Fessenden [126]. Using Pauling’s model, they estimate the ring current intensity in the

51

CHAPTER 4. PROTEIN DOCKING AND NMR

loop and calculate the magnetic field caused by the ring as that of two classical current-loops,
one below and one above the aromatic ring plane. The resulting geometric factor isGJB(~R) = 1p(a2 + �)2 + z2 ��K + a2 � �2 � z2(a� �)2 + z2E� (4.15)

wherea is the ring radius,� andz give the position~R of the nucleus relative to the ring center
in cylindrical coordinates, andK andE are complete elliptic integrals of the first and second
kind [110].

Magnetic Anisotropy

The magnetic anisotropy is usually modeled by the approach of McConnell [76], which de-
scribes the contribution to the chemical shifts via the magnetic susceptibility tensor��� of the
anisotropic group: Æaniso = 13NAj~Rj3 Xi=x;y;z�ii(3
os2 �i � 1) (4.16)

Here, ~R is the distance vector from the nucleus to the anisotropic group,NA is the Avo-
gadro constant, and�i is the angle between thei-axis and the vector~R.

Electric Field

Electrostatic fields caused by polar groups can influence thechemical shift by deforming the
nucleus’ electron hull und thus changing the shielding. Buckingham [17] was the first to pro-
pose a formal treatment of the influence of an electrostatic field ~E on a C-H single bond by
expanding the shielding tensor��� as a power series:��� = �(0)�� + X
=x;y;z �(1)��
E
 + 12 X
;Æ=x;y;z �(2)��
ÆE
EÆ + : : : (4.17)

This series is usually aborted after the quadratic term. Thesame expansion holds for the chem-
ical shift tensorÆ�� as well:Æ�� = Æ(0)�� + X
=x;y;z Æ(1)��
E
 + 12 X
;Æ=x;y;z Æ(2)��
ÆE
EÆ (4.18)

Instead of the shielding tensor, we are usually interested in the isotropic chemical shiftÆ.
According to eq 4.10,Æ is the trace of the chemical shift tensorÆ�� and thus the above equation
simplifies to Æ = Æ0 + "1Ez + "2 j ~Ej2 (4.19)

52

4.2. APPLICATION TO THE PROTEIN DOCKING PROBLEM

where"1 and"2 are constants and~E is the electric field at the bond with z-componentEz (the
z-axis coincides with the bond axis).Æ0 is the chemical shift without an external electric field.
We thus obtain for the electric field contribution alone:Æes = "1Ez + "2 j ~Ej2 (4.20)

Similar models have been proposed by a large number of authors (e.g.[92, 130, 129]). They
usually differ only in the parameterization. These parameters are either derived from quantum
mechanical calculations or they were fitted to experimentaldata.

amino acid atom name

all N-terminal NH+3 protons
HIS HÆ1, H"2
TYR H�
SER H

THR H
1
CYS H

ASN HÆ2;1, HÆ2;2
GLN H"2;1, H"2;2
LYS H�1, H�2, H�3
ARG H", H�1;1, H�1;2, H�2;1, H�2;2

Table 4.2: The protons that were assumed to be rapidly exchanging and thus invisible in the NMR spectra.

4.2.3 Spectrum Synthesis and Comparison

After predicting the chemical shifts of all protons in a molecule, we have to reconstruct the
NMR spectrum from this data. First, not all of these protons are seen in the spectrum. For
example, hydroxyl, thiole, and some amine protons are usually not present. This is due to
intermolecular exchange, i.e. the amino acid’s protons are rapidly exchanged for protons of
the solvent (water). This exchange happens on a faster time scale than the NMR experiment,
so only a single average shift is seen for these protons and the solvent. Whether the proton is
rapidly exchanged depends on the structure of the protein aswell as on experimental conditions
(e.g. pH of the sample) and is thus difficult to predict. Hence, we decided to use a list of
protons that are known to exchange in the majority of all cases. Protons on this list were
simply excluded from the shift list of the candidate and do not occur in the simulated spectrum.
The list of excluded protons for our experiments is given in Table 4.2.

The refined shift list was then used to synthesize the spectrum. The peaks in an ideal NMR
spectrum haveLorentzianline shape,i.e. the absorption intensityA depends on the chemical
shift via a function of the form A(Æ) = 11 + (Æ�Æ0)2W (4.21)

53

CHAPTER 4. PROTEIN DOCKING AND NMR

0246810

in
te

ns
ity

 [a
.u

.]

chemical shift [ppm]

reconstructed
experimental

Figure 4.4: Experimental and constructed1H-NMR spectrum of the protein parvulin [7]. The solvent peakwas
removed.

whereÆ0 is the chemical shift of the proton andW describes the width of the peak. The line
width is very difficult to predict, since it depends on a wide range of effects, ranging from
the inhomogenity of the magnetic field to molecular motions.Therefore, we used a constant
average line width for all protons in the spectrum. Then, we can write the spectrumS as a
linear combination of Lorentzians centered at the predicted shift positionsÆi:S(Æ) =Xi 11 + (Æ�Æi)2W (4.22)

For the case of parvulin, Figure 4.4 shows the experimental spectrum and the synthesized
spectrum for comparison. Although there are significant differences between the two spectra,
the overall structure is very similar. The differences are mainly caused by the differing line
width in the experimental spectrum.

To compare two spectra, we calculated the unsigned difference between the two spectra.
The integral of the resulting difference spectrum was estimated as the sum of 5000 equally
spaced samples of the difference spectrum (in the shift range of -2 to 12 ppm). The abso-
lute difference area of the two spectraSA andSB was calculated as the sum of all unsigned
differences: �(SA � SB) = XÆ2[�2;12℄ jSA(Æ)� SB(Æ)j (4.23)

54

4.3. EXPERIMENTAL RESULTS

The resulting difference area� was used as a measure of similarity between the two spectra
and for ranking the docking results.

4.3 Experimental Results

In order to find a suitable test set for our approach we searched the contents of the BMRB
(BioMagResBank [108]) for suitable protein complexes of known three-dimensional structure
and available1H-NMR spectra. Unfortunately, the number of candidates is very small. We
identified four candidates where the BMRB contained rather complete shift data of the complex
and a corresponding structure was deposited in the Protein Data Bank (PDB, [9]): the complex
of calmodulin with the Ca2+-calmodulin-dependent protein kinase kinase [94], the complex of
calmodulin with a binding peptide of the Ca2+-pump [30], the complex of S100B(��) with a
peptide derived from p53 [104], and the two identical subunits of the homodimer S100B(��).

4.3.1 Methods

4.3.1.1 Preparation of Structures and Rigid Body Docking

All complex structures were retrieved from the PDB (PDB IDs 1DT7, 1CFF, and 1CKK). From
each structure containing several models, we selected the first model in the file. Missing hydro-
gens were added and all hydrogen positions were optimized inthe complex using the AMBER
94 force field [22]. The complex structures were then separated into two files each containing
one of the complexed proteins or peptides, which were used inour docking algorithm.

For each example, we carried out a rigid-body docking using the algorithm described in [70,
71]. The algorithm generates a list of tentative complex structures which are ranked with
respect to geometric and energetic scoring functions.

4.3.1.2 NMR Chemical Shift Calculation

Out shift model decomposes the total chemical shiftÆ of a proton into four componentsÆ = Ælo
al + ÆJB + Æaniso + Æes (4.24)

whereÆlo
al is the so-called random coil shift,Æaniso is the secondary shift caused by the mag-
netic anisotropy of the peptide bond,ÆJB is the ring current effect as calculated by the Johnson-
Bovey theory [47], andÆes is the effect of the electric field.

Electric field effect The electrostatic contribution was approximated using eq 4.20 with
the parameters proposed by Williamson and Asakura [129] forboth C-H and N-H bonds. The
electric field was calculated via Coulomb’s law with atomic charges taken from the AMBER
94 force field [22]. In contrast to our model, the WA model usescharges on the N, H, C�,
C, and O atoms only. It has been reported in literature (e.g. [93]) that the use of force field
charges yields slightly worse results than the use of charges on the backbone when predicting
the spectra of proteins. A likely reason for this result is the fact that the charged side chains are
often immersed in the solvent and the field arising from thesecharges is shielded by the solvent.

55

CHAPTER 4. PROTEIN DOCKING AND NMR

Since this shielding is not accounted for by the simple Coulomb model, the field caused by the
side chain charges is overestimated.

In the case of protein docking however, we are not interestedin the the spectrum alone, but
in the differences of spectra. Since the main features of these difference spectra are governed
by side chain–side chain contacts in the binding site, we decided to include charges for the side
chains as well. As could have been expected, the use of the AMBER 94 charges gave better
rankings than the use of backbone charges alone.

Magnetic anisotropy The magnetic anisotropy of the peptide group was modeled using
McConnell’s equation (eq 4.16). Again, we used the parameters proposed by Williamson and
Asakura for the C=O and C-N bond of the peptide group.

Ring current We used the Johnson-Bovey model [58] which proved to give slightly bet-
ter results than the Haigh-Mallion model. We used radii of 1.182 Å for the five-membered
rings (HIS, TRP) and 1.39̊A for the six-membered rings (PHE, TYR, TRP).

Random coil shift Using a training set of 14 proteins with known structure and assigned1H chemical shifts (obtained from the PDB [9] and the BMRB [108]), we fitted the random coil
shifts to reproduce the experimental shifts as closely as possible. We used a test set of seven
fully assigned protein structures as a test set to verify theimprovement of the shift model. In
fact, the standard deviation of all1H chemical shifts in the test set was reduced from the initial
0.52 ppm obtained with random coil shifts from the BMRB to 0.44 ppm.

4.3.1.3 Spectrum Synthesis and Comparison

Spectrum synthesis from experimental data The assigned chemical shifts were read
from the BMRB files (BMRB IDs 4099, 4284, and 4270). The spectrum was then simulated
by assuming a Lorentzian line shape of equal width for each proton (eq 4.21). We chose an
average value ofW = 0:0032 ppm2.

Spectrum synthesis from candidate structures For each proton of the tentative com-
plex structures, the chemical shift was calculated according to eq 4.24. Then, we removed the
most exchangeable protons (see Table 4.2). We thus obtaineda list of “observable” protons,
which was used to create a spectrum as described above.

Comparison For comparison, we sampled the “experimental” spectrumSexp and the
spectrum of each tentative complex structureS
px in the range between -2 and +12 ppm at a
total of 5000 regularly distributed positions (see eq 4.23). The resulting difference areas�
were normalized by subtracting the smallest occurring areafrom all other areas. These values
were then used to rank the structures.

56

4.3. EXPERIMENTAL RESULTS

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
M

S
D

 [A
]

difference area [a.u.]

Figure 4.5: Results of the docking of the S100B(��) dimer.

0

5

10

15

20

25

30

35

40

45

50

55

0 200 400 600 800 1000 1200 1400 1600 1800

R
M

S
D

 [A
]

difference area [a.u.]

Figure 4.6: Results of the docking of calmodulin with the binding peptide of the Ca2+-pump.

4.3.2 Results

The rigid docking of the four test cases resulted in four setsof tentative complex structures
(each set with 24 to 121 different structures). For each of the potential complex structures, we

57

CHAPTER 4. PROTEIN DOCKING AND NMR

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500

R
M

S
D

 [A
]

difference area [a.u.]

Figure 4.7: Results of the docking of calmodulin with the Ca2+-calmodulin-dependent protein kinase kinase.

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000

R
M

S
D

 [A
]

difference area [a.u.]

Figure 4.8: Results of the docking of the S100B(��) dimer with a peptide derived from p53.

calculated the1H-NMR spectra and determined the difference area between this spectrum and
the experimental complex spectrum. In the case of S100B(��), the BMRB did not contain
the complete shift data of the peptide in complex with the S100(��) homodimer, but only the
shifts of the homodimer itself.

58

4.3. EXPERIMENTAL RESULTS

0

5

10

15

20

25

30

35

40

45

50

-8 -6 -4 -2 0 2 4 6 8

R
M

S
D

 [A
]

ACE [kcal/mol]

Figure 4.9: Results of the conventional docking of the S100B(��) dimer with a peptide derived from p53. No
NMR data was used. Instead, we employed the Atomic Contact Energy (ACE) by Zhang et al. [132] as a scoring
function.

Initial experiments showed that the ranking of structures was significantly improved, if
the contributions stemming from the magnetic anisotropy ofthe peptide group were not in-
cluded. This result seems surprising at first sight, but a detailed analysis of the shifts lead to
the conclusion, that the effect is caused by structural overlaps. Slightly overlapping structures
are a typical result of rigid-body docking algorithms. Evensmall deviations of the true com-
plex structure can bring individual protons into a closer spatial vicinity to anisotropic groups
than could be expected from the atoms’ van-der-Waals radii.Since the effect of the magnetic
anisotropy grows with the third power of the inverse distance, these collisions lead to enormous
changes in the chemical shift. Furthermore, the effect of the magnetic anisotropy is basically
a local effect; it depends strongly on the backbone torsion angles (i.e. the secondary structure)
and has a much more limited range than ring current and electric field effects. Therefore, the
magnetic anisotropy of the backbone of one of the proteins should not influence the shifts of
its docking partner significantly. Hence, we excluded the effect of the magnetic anisotropy
between the two docking partners, but included it within each of the partners.

The results of the docking experiments are shown in Figs. 4.5, 4.6, 4.7, and 4.8. In these
figures, every point represents a single tentative complex structure. It shows the root mean
square deviation (RMSD, y-axis) of the structure from the true complex structure and the nor-
malized difference area of the candidate’s spectrum (x-axis). Good approximations of the true
complex structure should thus be expected in the lower left corner of the graph.

Except for the complex of calmodulin with the binding peptide of the Ca2+-pump, scoring
according to the difference area always identified a good approximation of the true complex
structure. The separation between true and false positiveswas good for the S100B(��) dimer

59

CHAPTER 4. PROTEIN DOCKING AND NMR

and for the complex of calmodulin and kinase, and excellent for the complex of S100B(��)
and the p53-peptide.

The latter fact is very surprising, since the docking of the small p53-derived peptide (22
amino acids) was impossible using conventional methods. Wetested different energy-based
scoring functions but we were not able to obtain a correct ranking. Fig. 4.9 shows the result of
the docking using the Atomic Contact Energy (ACE) developedby Zhanget al.[132]. The first
approximation of the true complex structure is ranked as number 48. Other scoring functions,
e.g. the use of geometric methods [60] or the inclusion of electrostatics, gave very similar
results. The problems with this docking example stem basically from the small binding site of
the peptide. Most docking algorithms favor structures where the peptide has a larger contact
area with the protein. In this case, the use of NMR data was theonly possibility to correctly
predict the complex structure.

For the complex of calmodulin with the binding peptide of theCa2+-pump, a false positive
structure was ranked number one, followed by the major part of the true positive structures.
The reasons for this failure are not yet clear.

60

Chapter 5

Discussion

Semi-flexible docking

We proposed two new approaches for semi-flexible protein docking. In a first step, a rigid-body
docking algorithm generates a set of tentative complex structures. In a second step, a side chain
demangling step, we resolve problems arising from side chain overlaps in the binding site. This
demangling results in physically meaningful complex conformations that can be ranked with
standard energetic functions.

The side chain demangling is based upon a reduction of the side chain placement problem to
a combinatorial optimization problem by discretizing the side chain conformations to rotamers.
The first approach is based on a simple greedy heuristic. It searches for minimal solutions in
the enumeration tree spanned by the rotamers of all side chains in the binding site and avoids
combinatorial explosion by limiting the number of leaves ineach tree layer. This approach
is very fast, although it usually yields suboptimal solutions. The quality of these solutions is
nevertheless sufficient to solve the side chain placement problem in protein docking.

The second approach is a branch-&-cut technique that is based on an ILP formulation of the
side chain placement problem. After identifying several classes of facet-defining inequalities
for the side chain placement polytope and devising a separation algorithms for a subclass of
these inequalities, we were able to solve the side chain placement problem to optimality.

Both approaches correctly predict the structure of three difficult test cases for protein dock-
ing that cannot be solved using rigid-body docking approaches. Running times are moderate
and mainly governed by the energetic evaluation of the final structures and not by the side chain
placement step.

There is still room for significant improvements of the method. The fact that we can solve
the problem optimally unfortunately does not imply that we can solve thebiological problem
optimally. Instead, we solve an abstract representation ofproblem. There are two main differ-
ences between the two problems. First, we find an optimal solution with respect to an energetic
function (the force field). This function is only a coarse approximation of the true energies
occurring in the protein. Second, the restriction of the side chain conformational space to the
rotamer conformations possibly exclude some rare conformations that may occur in nature.
Both points leave much room for improvements. For example, the AMBER force field does
not account for solvation effects. In contrast, the recently developed CHARMM EEF1 force
field [66] introduces an additional force field term for the solvation energy. Since the solvation
energy is expressed as a pairwise interaction, our energetic decomposition still holds for this
force field and it might significantly improve the results. The rotamer library we used could
also be replaced by a more detailed library, thus representing also less frequently occurring
conformations.

Besides these improvements of the fundamental model, algorithmic and implementation
improvements are possible as well. An interesting approachmay be the use of branch-&-

CHAPTER 5. DISCUSSION

price techniques. Also the most time-consuming step for theside chain placement problem
(the calculation of the interaction energies) could be spedup by integrating the calculation
into the greedy algorithm and thus calculating only those energies that are required, instead of
precomputing all interactions in an initial step.

The key component of the algorithm, the side chain placementalgorithm, can be applied to
related problems like protein structure prediction or ligand docking as well.

NMR-based docking

We also presented a new approach to protein docking that directly incorporates experimental
structural data of the protein complex into the docking algorithm. It is the first algorithm that
permits the use of NMR spectra for the validation and rankingof docking results. NMR-
derived distance constraints have been widely used in ligand docking to improve the results,
but these constraints have to be determined manually from fully assigned NMR spectra. Our
method avoids this difficult and time-consuming manual preprocessing of the experimental
data. Instead, we use the structures proposed by the dockingalgorithm to simulate the NMR
spectrum of the complex and compare this spectrum directly to the experimental spectrum.

We implemented and tested several empirical models for NMR shift prediction. The model
we used in our final experiments was based on existing models,that were combined and repa-
rameterized. We also had to adapt the contributions arisingfrom the magnetic anisotropy of the
peptide bond and the electric field effect to the special requirements of the docking problem.
The scoring function used for the docking is based on the difference area between the predicted
and the experimental spectrum.

We chose a test set of four protein complexes: the complex of calmodulin with the Ca2+-
calmodulin-dependent protein kinase kinase, the complex of calmodulin with a binding peptide
of the Ca2+-pump, the complex of S100B(��) with a peptide derived from p53, and the two
identical subunits of the homodimer S100B(��). For three of these complexes, our algorithm
could clearly identify the true complex structure. in the case of the fourth complex (calmodulin
with the binding peptide of the Ca2+-pump) one false positive structure was ranked slightly
better than the first true positive structure. The usefulness of the method has been proven
for the complex of S100B(��) and the p53-peptide. We tried to predict the structure of the
complex using several energy-based scoring functions, butwere unable to predict the correct
structure. When using our NMR-based scoring function, we obtained an excellent separation
of true positives and false positives: there was no false positive among the first 20 candidates.
Obviously, the method is a useful tool even in those cases, where energy-based methods fail.

One major problem when testing the algorithm was clearly theamount of data available.
Since experimental spectra are not available from public data banks, we were forced to recon-
struct the spectra from the deposited shift assignments andeven then, there were only four test
cases available. The main reason for the scarcity of data is the fact that X-ray crystallography
is still the more common method for structure elucidation ofprotein-protein complexes. So the
approach has still to be validated with direct data, which wehope to obtain from a collaboration
with NMR spectroscopists.

We are also positive that the shift model proposed here can still be significantly improved.
We carried out a series of quantum mechanical calculations to verify and reparameterize some

62

of the shift contributions. In the course of these experiments, we found that most models are
quite coarse approximations. This observation is in accordance with recent developments in
the field of NMR shift modeling, since many researchers in this field are currently working on
quantum mechanical calculation of so-called shielding hypersurfaces. The current model also
considers only a subset of all known effects. A detailed analysis of those shifts that showed the
largest deviations between predicted and experimental shift values lead to the conclusion that
hydrogen bonds and solvent effects play an important role. Models for both effects still have
to be developed.

Further improvements should also address the prediction ofthe peak widths. The line width
is caused (at least in parts) by the molecular motion of the protein. Therefore, it seems plausible
to obtain better results by calculating the spectra as a timeaverage over trajectories obtained
from Molecular Dynamics Simulations. An interesting question is also whether this approach
can be extended to ligand docking as well or whether the changes in the spectrum caused by
small ligands are too insignificant in comparison with the protein spectrum.

Finally, and perhaps the most interesting application, is the use of the new scoring function
in protein structure prediction. In protein structure prediction, the three-dimensional struc-
ture of a protein is predicted from its sequence alone. Similar to docking algorithms, protein
structure prediction methods generate a set of potential structures, which are then ranked with
respect to some energy function. The fact that the spectra-based scoring function gave very
promising results for protein docking raises hopes that similar results can be obtained for pro-
tein structure prediction as well. These hopes are based on the fact that structural differences
between the candidates obtained from structure predictionalgorithms are larger than the differ-
ences between the candidates generated for protein docking. The combination of protein struc-
ture prediction and NMR spectra prediction could then speedup the process of structure eluci-
dation for proteins significantly by generating good initial structure models and initial guesses
for the shift assignment. Eventually, such methods could pave the way to high-throughput
methods for protein structure elucidation, one of the foremost goals of proteomics.

63

Part III

BALL

66

Chapter 6

Design and Implementation

6.1 Introduction

Implementation is often the biggest hurdle when testing newideas and approaches. This is
especially true for the field of Molecular Modeling, where the implementation of standard
techniques (e.g.Molecular Mechanics) often requires several man years of hard work to imple-
ment. Obviously, this problem can be tackled using softwarethat was specially designed for
Rapid Application Development(RAD, also calledRapid Software Prototyping).

The need for appropriate RAD tools becomes even more obviouswhen looking at the soft-
ware that is currently used. The majority of software packages currently in use in Molecular
Modeling is not only written in FORTRAN, but often lacks a thorough documentation as well.
The language FORTRAN itself is not very suitable for Rapid Software Prototyping, as the pro-
cedural programming paradigm is clearly inferior to the Object-Oriented approach with respect
to reusability. Nevertheless, FORTRAN packages are still immensely successful, because peo-
ple got used to their, often awkward, interfaces and people prefer the time a reimplementation
would require preferably for other tasks.

We already discussed a number of software packages that are frequently used for Molecular
Modeling in the introduction (Part I). To summarize this discussion, one can say that these
packages provide the required functionality, but they are hardly reusable and (apart from some
exceptions) not object-oriented. There is no software available that is specifically designed for
Rapid Application Development. For this reason, we designed and implemented BALL – the
Biochemical Algorithms Library.

When we started the BALL project (under the tentative project title BioLEDA at that time),
we did not spend much time on design. In fact, we started in June 1996 with just one page de-
scribing the attributes of nine classes (System , Molecule , Fragment , Atom, Sequence ,
BioMolecule , RNA, DNA, andProtein). Based on this kernel of primitive classes, we
wanted to implement algorithms for protein-protein docking.

A vast amount of code was implemented at the beginning of the project. It was not until we
first wanted to use the code in real applications, that we realized it was completely unusable,
although it fulfilled all our “specifications”. Thus, we learned the need for a thorough design
the hard way. The current version of BALL was designed more carefully and we also made use
of some more advanced software engineering techniques.

BALL was first designed to be aclass library, but it soon turned out that instead we needed
aframework. Contrary to a typical class library, the classes of a framework also provide abstract
or empty methods. The framework defines the cooperation of its classes and the developer
usually just fills in the required functionality by defining new subclasses. These subclasses
redefine the abstract or empty methods of their respective base classes. Due to inheritance, the
cooperation of the subclasses is still defined by the framework.

CHAPTER 6. DESIGN AND IMPLEMENTATION

Another important technique isgeneric programming. Generic programming means “the
definition of algorithms and data structures at an abstract or generic level, thereby accomplish-
ing many related programming tasks simultaneously” [84]. Generic programming became
an important technique in the development of BALL. Especially the kernel strongly relies on
generic data structures (e.g.geometric objects, lists, hash data structures,etc.). Furthermore,
careful generic implementations of algorithms are very efficient as they avoid the overhead that
is often implied by inheritance (which can replace generic programming in many cases).

Finally, we tried to usedesign patterns[41] as often as possible. Design patterns are
intended to improve the object-oriented design through reuse at a very high level: the reuse
of design solutions. It is often very hard to come to the rightdesign decisions and to find
the right balance between generality and specificity in the design of a class hierarchy. Design
patterns are standard solutions to recurring design problems which have shown their usefulness
in various applications. Hence, we tried to use design patterns wherever applicable to obtain a
high quality design.

We will describe the design and the implementation of BALL inChapter 6 and will then
give a cursory overview of the techniques employed to ensurea sufficient code quality and to
manage the project in Chapter 7.

BALL is intended as a framework for Rapid Software Prototyping in Molecular Modeling.
With this goal in mind, we rethought our earlier approaches and performed a thorough analysis
of existing software packages in this field (see also the discussion of existing packages in Part I
on Page 5). This analysis led to the formulation of four majordesign goals. The next section
will briefly discuss these goals. Our approaches to achieve these goals will then be discussed
in the following sections and in Chapter 7.

6.2 Design Goals

6.2.1 Ease of Use

Ease of use is crucial for the acceptance of a new tool, especially if this tool claims to be de-
signed for Rapid Software Prototyping. First of all, the user should be able to use the software
rather intuitively – as far as this is possible for a framework of this size. It should therefore
employ a standardized and widely usedprogramming language. Furthermore, it should pro-
vide an intuitive, well documented, and consistent interface. Here, consistency means that the
user can generalize anything he learned to all parts of the framework. For example, naming
conventions should be globally applicable and functions with the same name should have the
same or comparable effects.

Ease of use also implies a simple and smooth installation on all supported platforms, espe-
cially as most of our intended users are chemists or biologists that are usually not too familiar
with the problems and pitfalls of installation on differentplatforms. Hence, this goal also
implies a high portability.

In this context, we formulated what we called theThree Line Rule: it should be possible to
code the majority of frequently occurring operations in notmore than three lines of code.

68

6.2. DESIGN GOALS

6.2.2 Functionality

Functionality is of obvious importance. We can only expect wide acceptance of our software,
if it is able to save the potential user a major amount of time.Thus, it should provide most of
the standard functionality and leave only the implementation of specialized or new techniques
to the user. And even there the user should be able to take advantage of existing data structures
to speed up the development.

This is a very ambitious aim, because Molecular Modeling andComputational Molecular
Biology are rather large and diverse fields and it seems impossible to provide all function-
ality anybody might require. So we had to put a focus on the more elementary things that
are required by the majority of applications and we restricted the functionality to the field of
Molecular Modeling and especially protein docking.

We identified four key areas of functionality that are used inmost applications. First of
all, we need somemolecular data structuresto represent molecules, atoms and the like. These
data structures typically hold structural or experimentaldata that is read from disk, so we
need support forimport and export in various file formats. In many applications, this data is
then manipulated usingMolecular Mechanicsmethods. These are empirical models describing
properties and dynamic behavior of matter at the atomic level. Finally, thevisualizationof the
resulting structures is usually desirable.

6.2.3 Openness

Since we cannot provide all functionality and we also do not want to reimplement existing
algorithms, it was also an important aim to provide a sufficient openness, meaning compatibil-
ity with other class libraries. For example, from the very start we planned the integration of
LEDA [78], ABACUS [59], and CGAL [31].

Furthermore, openness includesextensibilityandmodularity, i.e. it should be simple to add
new functionality and data structures without changing theexisting code.

6.2.4 Robustness

The term robustness describes the code’s ability to cope with unexpected or faulty data. A good
example of such faulty data is the PDB file format [9] for crystallographic structures. This
format is the most common format for structural data and is well standardized. Nevertheless,
only very few files circulating among scientists adhere to this standard for historical as well
as for practical reasons. Strange as it may seem, but the implementation of a robust code for
reading these files is a very demanding task. Implementing a file reader accepting standard
compliant files is simple enough, but is not sufficient as onlyvery few files could be read.
Reliable reading of non-compliant files requires quite somebiochemical knowledge and non-
trivial heuristics to extract as much of the data as possible.

According to the 80-20 rule [81], which states that a typicalprogram spends 80 percent
of its time executing 20 percent of the code, we decided to optimize only the computationally
demanding code sections and sacrifice a bit of performance toan overall robust and reliable
code. Since robustness also implies correctness, we also require techniques for software testing.

69

CHAPTER 6. DESIGN AND IMPLEMENTATION

6.3 Choice of Programming Language

One of the first decisions was the choice of the programming language. As discussed in the
last section, we need a widely used programming language. Most applications in Molecular
Modeling are written in FORTRAN, mainly for historical reasons and because most chemists,
physicists, and biologists only know this language.

Although FORTRAN, especially High-Performance FORTRAN (HPF), is very well suited
for numerically demanding tasks and often outperforms codewritten in any other high-level
language, we decided against FORTRAN. Among our design goals were extensibility and mod-
ularity. Both are very hard to achieve in a procedural language; object-oriented (OO) languages
are clearly superior to achieve both goals, as for example Coulange [23] and Meyer [79] point
out in detail. So we were basically left with the choice of Java or C++. The advantages of Java
are the higher portability and the increased robustness (e.g.no pointers). C++ on the other hand
was the better known and more widely spread language. C++ code also generally outperforms
Java code, and C++ allows generic programming as well as operator overloading. Finally, at
the time we made our decision, all class libraries we wanted to use along with BALL were
implemented in C++.

With the ANSI C++ standard [5] still under development, only a small subset ofits features
was available to us while developing BALL. For example, the use of member templates and the
integration of the standard template library (STL [83]) wasintroduced at a rather late stage of
the development. Even with the final ANSI standard passed, the integration of these language
features was delayed due to lacking standard compliance of most C++ compilers.

6.4 Architecture

The overall structure of BALL may be seen as consisting of several layers (Fig. 6.1). The low-
est layer contains the so-calledFoundation Classes. These classes implement a set of general
data structures like an extended string class, hash maps, ordesign patterns. The implementation
of this layer is based on the standard template library.

The second layer consists of thekernel classes. They implement the fundamental molecular
data structures,e.g.atoms, molecules, bonds,etc.The kernel classes depend on the foundation
classes and are required for the implementation of the thirdlayer.

The third layer consists of severalbasic components. Each of these components provides
functionality for a clearly defined field of Molecular Modeling and is not physically dependent
on any of the other basic components. The basic components are implemented using the kernel
classes and the foundation classes. Besides the key functionality we identified in Section 6.2.2,
we also provide support for the search for structural similarities, for the calculation of nuclear
magnetic resonance (NMR) spectra, and some solvation methods. The visualization component
relies on OpenGL [86] for platform independent 3D graphics and on QT [102] for a portable
graphical user interface (GUI).

BALL classes can also be used as extensions in an object-oriented scripting language
(Python [121]) and support is also provided to embed this scripting language into BALL appli-
cations (see Section 6.8).

70

6.5. THE FOUNDATION CLASSES

Solvation StructureMolecular NMRMechanics Python
Extensions

Export

InterpreterFile
Import/Visualization

BallVIEW

Embedded

QT

OpenGL STL

KERNEL

Foundation Classes

Application

OO Scripting Language (Python)

Figure 6.1: Overview of the structure of BALL. The basic components are in white, the scripting language support
in yellow and external libraries that are not part of BALL arein gray.

The architecture and the high-level design of the three layers will be described in more
detail in the next three sections. Due to the large number of classes in BALL, we had to restrict
this overview to some of the more interesting examples.

6.5 The Foundation Classes

This section describes a selection of the most important foundation classes as well as some
common definitions and functions required for the implementation of the kernel and the foun-
dation classes.

6.5.1 Global Definitions

BALL defines a number of global type definitions and constant definitions. The types that are
used in BALL are declared inCOMMON/global.h . These definitions are typedefs to primi-
tive types as determined by configure. For example, BALL usesthe typePointerSizeInt
to describe an integer type with the same bit width as the pointers on the respective platform.
configure determines the correct type for this definition and includesit into config.h
which is included byCOMMON/global.h . By defining these types we achieve a better porta-
bility. Especially the compatibility between 32 bit systems and 64 bit systems relies heavily
upon the use of these types (see also the implementation of object persistence in Section 6.5.3).

The namespaceConstants holds a large number of constant definitions. These are
mainly physical and chemical constants (e.g.speed of light, electron mass, etc.) and math-
ematical constants (e.g.�, e). The BALL kernel uses only these constants, thus reducing the
possibility of errors due to wrong constants. This also reduces numerical inconsistencies be-
tween different code parts.

71

CHAPTER 6. DESIGN AND IMPLEMENTATION

Composite

Composite CompositeComposite

Composite

first child last child

previous next previous next

parent

parent

parent

parent

first child last child

Figure 6.2: The tree structure formed by multiple instances ofComposite

6.5.2 Composite Class

TheComposite class implements thecomposite design pattern[41]. Each composite con-
tains a pointer to its parent composite, a pointer to the firstchild, a pointer to the last child,
a pointer to the previous composite, and a pointer to the nextcomposite. Thus, the children
of each composite form a doubly linked list that can be accessed from both ends (pointer to
the first child and to the last child). The doubly linked list structure is required to iterate ef-
ficiently forward as well as backward. Both cases occur rather frequently in our applications.
The structure of the resulting tree can be seen in Fig. 6.2.

The Composite class is essential to the kernel, because it represents the base class of
most kernel classes (see Section 6.6). Due to the flexibilityand functionality required from
the kernel, thecomposite class implements a lot of functionality; in fact, it is one ofthe
most complex foundation classes. It provides a large numberof methods to manipulate tree
structures (e.g.insertion and deletion of children or splicing of subtrees).

Selection

TheComposite class is also derived fromSelectable , so each node of a tree may be ei-
ther selected or deselected. We use this selection mechanism throughout the whole kernel. Be-
cause one of the most frequent operations is a test whether any node in a subtree is selected, this
operation had to be implemented very efficiently. The corresponding methodcontainsSe-
lection answers the question in constant time by simply returning the value of the attribute
contains selection of Composite . By reimplementing the virtual methodsselect
anddeselect (inherited fromSelectable), the selection or deselection is propagated up-

72

6.5. THE FOUNDATION CLASSES

wards in the composite tree and allcontains selection flags are consistently updated.
Since the depth of our trees is small (usually below 5), this update operation can be done rather
efficiently.

Time stamps

SinceComposite is the base class for most kernel classes, we had to conceive anumber of
techniques to combine efficiency and robustness in the kernel. One of these techniques is the
use oftime stamps. For example, when performing an MD simulation or an energy minimiza-
tion, we have to construct temporary internal data structures from the kernel data structure to
increase the efficiency. These minimization or simulationsare usually not performed in a sin-
gle step, but the user might choose to inspect the system he was simulating after defined time
intervals. If he decides to change either the selection or the topology of the system, the internal
data structures of the simulation become inconsistent withthe system and have to be rebuilt.
There are basically two ways to solve this problem: First, wemight choose a robust implemen-
tation that rebuilds its internal data structures each timeit regains control of the system, which
is very inefficient. The second strategy is a “don’t care” approach. We assume the user did
not change the data structures, and if did, he should be responsible for the consequences. This
strategy clearly reduces the robustness of the code.

Using time stamps, we can achieve a robust and efficient implementation. EachCom-
posite object contains two time stamps (classTimeStamp): the selection time stamp and
the modification time stamp. ATimeStamp object simply stores a point in time. Using the
methodstamp this point in time can be updated to the current time. All methods that update
the selection in a composite change the selection time stampand all methods that change the
topology of the composite tree update the modification time stamp. Similar to the selection
flags, time stamps are propagated upwards in the composite tree. Thus, changing an atom in
a system updates the time stamp of the system as well. The simulation classes now simply
have to store the time of creation of all internal data structures in a time stamp. If this time
stamp is older than the selection or the modification time stamp of the system, the internal data
structures are rebuilt.

6.5.3 Object Persistence

Object persistence is an important concept in object oriented programming. It allows the stor-
age of object instances beyond the life time of the applications that created these objects and an
exchange of these objects between independent applications. The process of storing persistent
objects is also calledserialization. The format employed for object storage should be portable
to allow the exchange of objects between different platforms. Serialization of objects should
be easy to use and easy to implement for user defined objects aswell.

Problems with serialization in C ++

While several OO languages provide support for the serialization of objects (e.g. Java or
Python), it is a tiresome subject in C++. There are mainly two problems related to this subject:
multiple inheritance and static class attributes. Fig. 6.3shows the so-calleddeadly diamond

73

CHAPTER 6. DESIGN AND IMPLEMENTATION

Common Base

Class C

Class A Class B

Figure 6.3: Multiple inheritance: the “deadly diamond”

inheritance. In this example, classC is derived fromA as well as fromB. A andB are both
specializations of a common base classCommonBase. This causesC to contain two instances
of CommonBase: one inherited fromA and one inherited fromB. This causes fundamental
confusion in classC, since it is unknown which of these instances ofCommonBaseis meant
when accessing methods or attributes. In C++, this ambiguity can be resolved usingvirtual
inheritance. Nevertheless, virtual inheritance leads to another problem: it is not possible to
cast down from the virtual base class to the derived class.

To avoid these problems, each persistent BALL class is required to be derived from a
common base class (PersistentObject) exactly once. Multiple or virtual inheritance
from this base class is not allowed.

The second problem are static class attributes. For example, the classObject defines a
unique handle for each object (application wide).Object contains a memberhandle and a
static memberglobal handle . global handle is incremented each time a constructor
of Object is called and its current value is stored in the object’shandle . These handles
serve as a unique identification for an object instance. Whenstoring these objects, it is ob-
viously not desirable to storeglobal handle , because its retrieval would reset the global
handle counter and could result in duplicate handles. Thereis no general solution for the prob-
lems caused by static object attributes, the best rule is to avoid them wherever possible and
decide on a case-by-case basis where it is unavoidable.

Detailed design

We will now sketch the mechanisms provided for persistent object storage in BALL. An
overview of the participating classes and their relationships is given in Fig. 6.4.

The base class for all persistent objects isPersistentObject . It provides three virtual
methods:persistentRead , persistentWrite , andfinalize .

Storing and retrieving a persistent object is controlled bythe classPersistenceMan-
ager . This class constructs a persistent representation of an object and writes it to anos-
tream or may, vice versa, retrieve a serialized object from a stream. Hence,Persistence-
Manager implements thebuilder design pattern and thefactory methoddesign pattern [41].

The builder pattern is intended to separate the construction of a complex object from its

74

6.5. THE FOUNDATION CLASSES

PersistentObject

+persistentWrite()
+persistentRead()
+finalize()

PersistenceManager

istreamostream

«interface»
Storable

+write()
+read()

«instanciate»

«call»

«call»

BuilderFactory Method
creator

product

XDRPersistenceManager

TextPersistenceManager

concrete builder

builder

persistent
representation

product

Figure 6.4: Object persistence in BALL: an overview

representation. Thus, the same construction process can create different representations for the
object. The builder pattern describes the persistent storage functionality ofPersistenceM-
anager rather accurately. ThePersistenceManager (thebuilder in terms of the design
pattern) defines an interface for the construction of a persistent and portable representation of
objects. There are two derived classes available (TextPersistenceManager andXDR-
PersistenceManager) that implement aconcrete builder, i.e. an object that constructs a
representation of the persistent object. The persistent representation is called theproduct. The
fourth participant of the design pattern, thedirector is represented by the application.

The second pattern involved is the factory method pattern (also known asvirtual construc-
tor). This pattern defines an interface for object creation. Thedecision which class to instantiate
is deferred to subclasses. The participants in this patternare aproduct, a concrete product, a
creator, and aconcrete creator. The product defines the interface for the instantiated objects
(here: PersistentObject), while the concrete product represents the constructed class
itself (here: any class derived fromPersistentObject). Similarly, the creator declares
the factory method returning an object of type product, while the concrete creator implements
this factory method. The creator is represented byPersistenceManager and the concrete
creator is represented by any of its derived classes.

As we use multiple inheritance rather frequently in the kernel, it was difficult to avoid mul-
tiple inheritance fromPersistentObject . For example, theComposite class is derived
from Selectable . This class basically provides an additional boolean flag and some acces-
sors to select and deselect an object. For the reasons statedabove, it is not possible to derive
Selectable from PersistentObject as well. However, it should be possible to store

75

CHAPTER 6. DESIGN AND IMPLEMENTATION

Atom

+persistentWrite()
+persistentRead()

Composite

+persistentWrite()
+persistentRead()

PersistentObject

+persistentWrite()
+persistentRead()

«interface»
Storable

+write()
+read()

PropertyManager

+write()
+read()

Selectable

+write()
+read()

Figure 6.5: TheAtom class and its base classes.

the contents of an instance ofSelectable in a convenient way. This can be achieved by
defining an interface that contains the two methodsread andwrite . These two methods can
be used in the implementation ofpersistentRead andpersistentWrite for storing
and retrieving the contents of the base class. Furthermore,it is possible to derive from several
Storable classes without running into problems due to multiple inheritance. The cooper-
ation betweenPersistentObject and theStorable interface is illustrated in the class
graph of theAtom class (Fig. 6.5).

Implementation

TextPersistenceManager provides three different layers of methods. Layer 0 provides
fundamental methods to store and retrieve primitive data types (e.g.int, float, pointer, string).
For each primitive type, there is aput method and aget method. The layer 0 methods im-
plement the format of the persistent representation that isproduced. They are implemented by
subclasses ofPersistenceManager . These methods determine the format of the persistent
representation (e.g.text or binary).

The layer 1 commands are needed to implement thepersistentWrite andpersis-
tentRead methods. They are implemented inPersistenceManager using the layer 0
commands. Knowledge of these methods is only required to implement new persistent classes.

To store and retrieve existing objects, the user has to know the level 2 commands alone.
They provide methods to assign the input and output streams of the persistence manager and to
store and retrieve objects.

76

6.5. THE FOUNDATION CLASSES

Portability

BALL has been ported to a variety of different platforms. Themain differences between these
platforms are� word width (32 bit vs. 64 bit machines)� byte order (big endian vs. little endian)� floating point formats

A portable implementation of object persistence has to find platform independent represen-
tations for all data types to overcome these differences. First, all pointers are represented
internally (in thePersistenceManager class) using 64 bit types and are also stored this
way. Byte order and floating point formats affect the portable storage of primitive data types.
Therefore, the implementation of the layer 0 commands in anyconcrete persistence manager
has to ensure portability. One way to achieve this is the use of text-based formats. This ap-
proach is implemented inTextPersistenceManager . This class stores an object in a
human readable text format. It uses ASCII representations of numbers to achieve portability.
However, the resulting representation is large and slow to parse. This class is mainly intended
for debugging.

The classXDRPersistenceManager produces a much more compact binary format. It
is based upon theXDRformat (External Data Representation). XDR is a standard for portable
data exchange, introduced by SUN Microsystems [115, 111]. It is available on all platforms
and was introduced to allow data exchange via the network. For example, remote procedure
calls (RPC) use XDR as their data exchange format. XDR provides methods for packing prim-
itive data types (e.g. int, float, string) into four byte packets. These packets arethen written
to a stream. The resulting representation is not human readable, but has little overhead and
can be processed rapidly.XDRPersistenceManager translates the layer 0 commands of
TextPersistenceManager to the corresponding XDR function calls and converts the
XDR buffers to a C++ stream and back.

User interface

Using persistence in BALL is rather simple. It requires the instantiation of a persistence
manager, assignment of an input or output stream, and finallythe persistent reading or writing
of the object.

1 Protein p =; // the object to serialize
2 ofstream outstream("test.pers", ios::out); // open outpu t stream
3 TextPersistenceManager pm(outstream); // create persist ence manager
4 pm << p; // serialization
5 outstream.close(); // close the output stream. Done.

Deserializing a persistent object is equally simple:

1 ifstream instream("test.pers"); // open input stream
2 TextPersistenceManager pm(instream); // create persiste nce manager
3 PersistentObject* po; // define a pointer to a PO

77

CHAPTER 6. DESIGN AND IMPLEMENTATION

4 pm >> po; // deserialization
5 instream.close(); // close the input stream
6
7 if (po != 0) // identify the object
8 {
9 cout << "Read object of type " << typeid(*po).name() << endl;

10 }

Instead of using file streams (as in the two examples above), it is possible to use any fully
transparent stream derived fromistream or ostream . For example, BALL uses theSock-
etStream class to exchange persistent objects between different applications using TCP
sockets. This feature is also used bymolview to exchange objects between a client appli-
cation and the visualization server (see Section 6.7.4).

6.5.4 Run-Time Type Identification

ANSI C++ provides two operators for the Run-Time Type Identification: dynamic cast
and typeid . With the aid of these two operators it is possible to identify the type of any
object at run time. A typical application ofdynamic cast may look like this:

1 Molecule* molecule =;
2 if (dynamic_cast<Protein*>(molecule) != 0)
3 {
4 // cast to protein and perform some protein specific operati ons
5 }

Here, dynamic cast is used as a predicate. It identifies whether a pointer to a given instance
of Molecule is in fact an instance of classProtein , a derived class. If this is true, some
code, which is only applicable to proteins, is executed. Similar code fragments are encountered
throughout the BALL kernel. However, the function of the code is not obvious at the first
look. Therefore, we decided to implement a set of template wrapper functions to simplify the
Run-Time Type Identification. They allow us to write code with a better readability, like

1 Molecule molecule =;
2 if (isKindOf<Protein>(molecule))
3 {
4 // cast to protein and perform some protein specific operati ons
5 }

Theses functions have been collected in a common namespace (RTTI). The most com-
monly used functions areisKindOf<T> andisInstanceOf<T> . isKindOf<T> is pa-
rameterized with a classT and returnstrue for instances ofT and instances of classes derived
from T. Similarly, isInstanceOf<T> returnstrue for instances ofT, but falsefor instances
of classes derived fromT.

Other functions in theRTTI namespace provide unique IDs for each class, a unique name,
and static default instances of arbitrary objects.

6.5.5 Iterators

Several of the BALL classes are container classes,i.e. they contain multiple instances of ob-
jects. It is often necessary to iterate over all elements of acontainer object. In the Standard

78

6.5. THE FOUNDATION CLASSES

Template Library, this is done viaiterators. We use the same approach and a syntax similar
to that of the STL for the iterators in BALL. The implementation of iterators is simplified by
a common template base class for all iterators and the use of the iterator traits technique [85].
We give examples of the use of iterators in the BALL kernel in Section 6.6.2.

6.5.6 Processors

A recurring problem in OO design is the separation of algorithms and data structures, es-
pecially in an extensible framework like BALL. The need for functionality often entails the
danger ofinterface pollution(seee.g.[73] for a discussion),i.e. fat interfaces that are cluttered
with methods required by a number of client classes, but not necessaryly by the class itself.
Also the extensibility of the framework is seriously hampered if adding a new algorithm re-
quires changes in the interface of the kernel classes. A classical solution to these problems is,
for example, thevisitor pattern[41]. This pattern is designed to add new operations without
changing the interface of the classes it operates on.

In the BALL kernel data structures, the problem becomes evenmore troublesome: the ker-
nel data structures are container that may contain polymorphous objects (e.g.atoms, residues,
and molecules). Most of the algorithms in BALL that operate on kernel data structures should
be applicable to all kernel classes (e.g.an algorithm should operate on molecules as well as
on a single atom). Furthermore, most of the algorithms in BALL require an iteration over all
elements (e.g.atoms) of a kernel object. Hence, we combined the advantagesof the visitor
pattern and the iteration capabilities of the kernel to a common concept: theprocessorconcept.

Processors are objects that implement an algorithm and can be applied to any kernel data
structure. All processors are derived from the template classUnaryProcessor<T> . They
are parameterized with the type they operate on. For example, a processor to calculate the ge-
ometric center of any kernel object just has to know the atom coordinates, so the processor is
derived fromUnaryProcessor<Atom> . The kernel data structures implement an interface
to arbitrary processors through the template member functionapply<T> . Thus, arbitrary pro-
cessors can beappliedto arbitrary kernel classes. Implementing a processor is a rather trivial
task. Generally, a processor provides three methods:start , finish , andoperator () .

Theapply<T> method of a kernel container class first callsstart , then it iterates over
all objects of typeT it contains. For each of these objects, it callsoperator () of the
processor. Thus, the processor “sees” just the objects it isinterested in. At the end of the
iterations, finish is called to inform the processor that he cannot expect further objects.
While start usually performs some initialization steps,finish can be used for final actions
(freeing allocated memory, calculating results).

We will now illustrate the processor concept by means of a simple example: theCen-
terOfMassProcessor which calculates the center of mass for any given kernel object.
The center of mass~R of N particles (atoms) of massmi and position~ri is defined as fol-
lows: [43] ~R = 1M NXi mi~ri withM = NXi mi (6.1)

79

CHAPTER 6. DESIGN AND IMPLEMENTATION

So we have to calculate the sum over all atom masses and the products of mass and position
for all atoms. Since we operate on atoms only, we deriveCenterOfMassProcessor
from UnaryProcessor<Atom> . The start method is trivial. It just initializes the member
variablesmass andcenter to zero:

1 bool CenterOfMassProcessor::start()
2 {
3 mass = 0.0;
4 center = Vector3(0.0, 0.0, 0.0);
5
6 return true;
7 }

Theoperator () does the true work: for each atom it is called with, it determines the mass
and the position and calculates the two sums:

1 Processor::Result CenterOfMassProcessor:: operator () (Atom& atom)
2 {
3 float atom_mass = atom.getElement().getAtomicWeight();
4 center += atom.getPosition() * atom_mass;
5 mass += atom_mass;
6
7 return Processor::CONTINUE;
8 }

Finally, we implementfinish as follows:

1 bool CenterOfMassProcessor::finish()
2 {
3 center /= mass;
4
5 return true;
6 }

We may now apply our processor to calculate the center of massof a moleculem:

1 Molecule m = ...;
2 ...
3 // create an instance of the processor
4 CenterOfMassProcessor center_proc;
5
6 // apply it to the molecule
7 m.apply(center_proc);
8
9 // print the center of mass

10 cout << "Center of mass is at " << center_proc.center << endl;

6.5.7 Options

Algorithms in Computational Molecular Biology tend to require huge numbers (sometimes sev-
eral dozens) of arguments and parameters. This usually leads to bulky interfaces and reduces
the modularity, because related methods have different interfaces and cannot be exchanged
easily. A solution to this problem is theOptions class. Instead of passing dozens of param-
eters or polluting the class interface with dozens of memberfunctions, the class contains an
Options object. EachOptions object may hold an arbitrary number of key/value pairs.

80

6.5. THE FOUNDATION CLASSES

An example from the solvation component (the Finite Difference Poisson-Boltzmann class
– FDPB) will illustrate its use. TheFDPBclass performs a number of non-trivial calculations.
There are currently 22 different parameters used to adopt the behavior of the class to specific
problems. This would require 44 member functions to set or get the parameters (if data
encapsulation is taken seriously). Using theOptions class, FDPB gets just one more
member calledoptions and onestruct containing symbolic names for the options.
Setting one of these parameters (e.g.the grid spacing) looks as follows:

1 FDPB fdpb = ...;
2 fdpb.options[FDPB::Option::SPACING] = 0.5;

Again, operator overloading provides a clean and comprehensible interface.
Another advantage of theOptions class is their ability to store options to a file and

retrieve them from a file. This has proven especially useful to document the parameters used
in a specific experiment during large-scale parameter optimizations.

6.5.8 Logging Facility

Printing error messages, warnings, or progress information are very simple ways to communi-
cate with the user. Problems arise if this information has tobe stored, if the application has a
graphical user interface, or if the application runs distributed on a network. In each of these
cases a standardized logging facility is required to allow redirection of the output to the users’
terminal or a log file.

The class that implements this logging facility is calledLogStream . This class is derived
from ostream , so it can be used in the same way as the C++ streamscout or cerr . There
is one global instance ofLogStream which is globally defined and is used throughout the
BALL kernel to log error messages. Each message is stored along with a time stamp and an
error level (ranging from information to error). The user can also attach arbitrary stream objects
(e.g.files) to store the information or can retrieve stores error messages. It is even possible to
trigger certain actions as soon as messages with a specific error level occur. In applications like
molview (the stand-alone visualization tool) theLogStream class allows the convenient
redirection and central administration of debugging, error, or progress messages.

The following code section gives an impression of the usage of the LogStream class:

1 // initialize the global LogStream
2 Log.setPrefix(cout, "[%T] ");
3 Log.setPrefix(cerr, "[%T] ERROR: ");
4
5
6 // print some informational message
7 // (level INFORMATION is associated with cout by default)
8 Log.info() << "starting calculation..." << endl;
9

10
11
12 // print an error message
13 // (level ERROR is associated with cout by default)
14 Log.level(LogStream::ERROR) << "error -- execution aborted!" << endl;

The two streamscout and cerr are associated with the global instance ofLogStream ,

81

CHAPTER 6. DESIGN AND IMPLEMENTATION

Log , by default and catch all messages with information level (cout) and all error messages
(cerr). In lines two and three, we assign a prefix to each of thestreams via thesetPrefix
method. The string"%T" is expanded to the current time, similar expressions exist for the
date, the error level, the line number, and so on. The global log stream can be used as any C++
stream, as can be seen in lines 8 and 14. In line 8 we print a message with informational level
(via the methodinfo , which returns an object of typeostream). The resulting message is
hence prefixed by the current time and redirected tocout . The error message printed in line
14 is prefixed by the time and the string error (as specified in line 3) and redirected tocerr ,
the stream associated with error messages. The output of theabove code thus looks like this:

1 [11:19:02] starting calculation...
2 [11:19:05] ERROR: error -- execution aborted!

6.5.9 Strings and Related Classes

Since many applications require extensive string operations (often to read or transform text-
based input files), BALL provides a powerfulString class and regular expressions. The
string class is derived from the STL string class to give an identical interface and to take advan-
tage of the efficient and flexible implementation. We added a lot of functionality to simplify the
usage of the string class. TheString class enables the user to access whitespace-separated
fields of the string (similar to the definition used by the unixprogramawk) and simplifies the
parsing of field based file formats.

The String class is complemented by theSubstring class that allows an efficient
manipulation of substrings and theRegularExpression class that allows matching and
manipulation of strings through regular expressions.

6.5.10 Mathematics

BALL provides a number of classes and functions related to mathematics. The classes fall
into two categories: fundamental data structures and geometric objects. The first category
includes simple vectors, matrices, quaternions, angles,etc. The geometric objects are used to
represent three-dimensional geometric primitives (e.g.boxes, spheres,etc.) and serve as a basis
for the implementation of the visualization component. Allthese classes are parameterized
with a number type (i.e. they are template classes). The generic implementation allows us to
use different numerical types for different problems. For most applications, single precision
floating point numbers are completely sufficient, but we can also use LEDA big floats if that
precision is required.

6.5.11 Miscellaneous

It would be tiresome and not very instructive to enumerate all remaining foundation classes,
consequently we will just mention some of the more importantcategories of classes. First, there
are exceptions. The BALL error handling is based on a class hierarchy of exceptions that are all
derived fromGeneralException . BALL also implements its own handling of uncaught

82

6.6. THE KERNEL

System

MoleculeProtein DNA/RNA

Nucleotide

Chain

Sec. Structure

Residue

Atom

Functional Group

Atom Atom

Figure 6.6: Hierarchical structures in biochemistry: the problem domain

exceptions to give the user as much information about the error as possible. Therefore, all
exceptions document the line and the file where they are thrown and provide a short error
description. This information is printed whenever an uncaught exception occurs.

Additionally, BALL provides a whole range of generic basic data structures. There are sev-
eral flavors of trees, hash associative containers, or grid data structures. Then, there are classes
related to the operating system. They are used to implement aportable, abstract interface to
files, directories, system time, or network sockets.

6.6 The Kernel

6.6.1 Molecular Data Structures

The second layer is the so-called kernel and implements the molecular data structures. Since
one of our design goals was intuitive usability, we spent a lot of effort on the design of these
classes. Our first step was an analysis of the objects we wanted to describe. We found that
the biochemical domain is well described by a hierarchical model. All the objects we want
to represent consist ofatoms. In chemistry, several atoms often formfunctional groupsfrom
whichmoleculesare built. A set of molecules is then called asystem. This hierarchy of entities
is what we call the molecular domain (Fig. 6.6).

One of our main concerns was an intuitive usability of the kernel class hierarchy especially
for users with solid biochemical knowledge. Therefore, ourkernel classes should directly
reflect the hierarchical relationships found in biochemistry. The molecular domain is quite
simple. Obviously, there is a strong hierarchical ”has-a” relationship between these entities.

83

CHAPTER 6. DESIGN AND IMPLEMENTATION

System

Molecule

Composite

Protein

Atom

SecondaryStructure

Residue FragmentNucleotide

DNA / RNA

Chain

framework

nucleic acid general molecular

framework

protein

framework

AtomContainer

Figure 6.7: The kernel class hierarchy

This hierarchical structure is best described by a tree structure. A system may thus contain
molecules, consisting of functional groups containing atoms. The class names are chosen
accordingly asSystem , Molecule , Fragment , andAtom. We chose the term fragment
instead of functional group as this term is more general and more accurate when transferred to
the protein and nucleic acids domain. Similar relationships also exist in the protein domain and
the nucleic acid domain: a protein contains several chains,each of these chains may consist
of secondary structures built from residues consisting of atoms. In the nucleic acid domain
everything is quite neat and simple: there are two kinds of nucleic acids – DNA and RNA –
each consisting of nucleotides.

In Fig. 6.6 one can also identify a ”horizontal” relationship between the entities of the
different domains: a protein is by definition also a molecule, as is a nucleic acid. Similarly,
residues and nucleotides can be seen as fragments of proteins or nucleic acids. These frag-
ments in the biopolymers correspond to the functional groups in a general molecule – thus the
class nameFragment instead ofFunctionalGroup . This ”is-kind-of” relationship can
be modeled by inheritance.

The ”has-a” relationships, which led to the tree structure,may be modeled using thecom-
positedesign pattern [41]. Its intent is described as follows:\Compose obje
ts into tree stru
tures to represent part-whole hierar
hies. Com-posite lets
lients treat individual obje
ts and
ompositions of obje
ts uniformly."

[41], p. 163

The pattern is thus well suited to represent the hierarchical tree structures required for the
kernel and nevertheless defines a uniform access to all classes. This uniform access is required
for most algorithms, since they should be able to operate on molecules as well as on any other
kernel data structure.

84

6.6. THE KERNEL

The molecular domain thus results in themolecular framework(see Fig. 6.7). The entities
of the protein domain are represented by the classesProtein , Chain , SecondaryStruc-
ture , andResidue in the protein framework. Finally, the nucleic acid framework consists
of the classesNucleicAcid , DNA, RNA, andNucleotide .

All these classes have a common base class:Composite which implements the compos-
ite design pattern (see Section 6.5.2). All fragment-like classes are derived from a common
base class (AtomContainer) that implements most methods that are common to classes
containing atoms.

6.6.2 Iterators

Iteration over kernel data structures should be as simple asiterating over any STL container
type. However, there is a fundamental difference: the BALL kernel classes are not simple
containers, but they can contain a variety of different objects. For example, a user should be
able to iterate over all molecules of a system as well as over all atoms of the system. Since
in C++ overloaded methods cannot be distinguished from their return type alone, the use of
the typical STLend() andbegin() methods is not possible. Instead, we had to implement
specialized methods for each class. Similarly, we cannot simply defineone iterator type for
a kernel class, but we have a set of iterator classes that are defined independently. Iterating
over all atoms of any kernel data structure requires an iterator of typeAtomIterator . An
iterator pointing to the first atom of aSystem is returned by the methodbeginAtom , a
past-the-end iterator is returned byendAtom . Apart from these restrictions, the use of kernel
iterators is very similar to that of STL iterators:

1 System S = ... // define a system
2
3 AtomIterator ai;
4 for (ai = S.beginAtom(); ai != S.endAtom(); ai++)
5 {
6 // print the position of the atom
7 cout << ai->getPosition() << endl;
8 }

The kernel classes define forward and reverse iterators andconstvariants of these iterators.

6.6.3 Selection

A recurring task in many applications is the definition of subsets of molecular data structures.
For example, it should be possible to identify all atoms belonging to a certain chain, all
amino acids of a certain type, or all side chain atoms of a protein. Problems of this kind are
solved via the selection mechanism of kernel objects. As allkernel classes are subclasses
of Composite , they inherit the selection capabilities of this class. BALL now provides a
simple language to specify predicates for the selection of objects. The following example shall
illustrate the usage of this language:

1 // a system containing a protein
2 System S =
3

85

CHAPTER 6. DESIGN AND IMPLEMENTATION

Selector
#expression: String
+operator () (atom:Atom): bool

UnaryProcessor

+operator () (atom:Atom): bool

Atom

ExpressionPredicate
#argument: String
+setArgument(arg:String)
+operator () (atom:Atom): bool

Expression

+setExpression(expr:String)
+operator () (atom:Atom): bool

 *

ResiduePredicate

+operator () (atom:Atom): bool

AtomNamePredicate

+operator () (atom:Atom): bool

Figure 6.8: The classes involved in the kernel selection mechanism.

4 // create a selector that selects the Calpha atoms of
5 // all arginine (ARG) residues
6 Selector ARG_CA_select("residue(ARG) AND name(CA)");
7
8 S.apply(ARG_CA_select);

In Line 6, we create an instance ofSelector . This class is a subclass ofUnaryPro-
cessor<Atom> , so we can apply it to arbitrary kernel objects. It is initialized with a string
describing the desired selection. In our case, the selection of the C� atoms in all arginine
residues is required. Hence, we initialize the selector with a string describing this prop-
erty. This string may consist of an arbitrary number ofpredicates, brackets, and the opera-
tors ’AND’ and ’OR’. To determine all C� atoms of all arginines, we have to combine the
predicates’residue(ARG)’ (which is true for all atoms inside residues of name ’ARG’)
and ’name(CA)’ (which is true for all C� atoms) using the ’AND’ operator. Each of these
predicates corresponds to a class derived fromExpressionPredicate (see Fig. 6.8). An
instance ofExpressionPredicate and its subclasses can decide whether the predicate
they represent is true or false for a given atom. Each instance of Selector contains an
Expression object that translates the string to a syntax tree containing the corresponding
instances of subclasses ofExpressionPredicate . BALL provides a comprehensive set
of predicates, the so-calledstandard predicates. These classes are known to theExpression
class by default. The user may also create new predicates andregister them with instances
of the Expression . The implementation of new predicates is very trivial, because it just
requires the implementation of a modifiedoperator () .

86

6.7. THE BASIC COMPONENTS

6.7 The Basic Components

A full description of the design of the basic components is beyond the scope of this work.
Therefore, we will again describe only the most important and interesting classes of each basic
component and give just a short overview of the remaining classes.

6.7.1 File Import/Export

When using experimental data (e.g.protein structures), the need for a standardized file format
for data deposition and exchange is obvious. Unfortunately, the number of file formats used in
Molecular Modeling alone is annoyingly high: the software package BABEL [124] currently
reads 41 different molecule file formats! Not all of these formats are equally important, so we
decided to implement only the most important ones. The information content of the file format
varies widely. For example, the PDB format contains literature references, crystallographic
data, and experimental conditions, while the XYZ format contains only coordinates. But all of
these formats contain data on molecular structures. Therefore, we defined a uniform interface
to all these file formats to be able to extract the structural data independent of the file format.
This interface is derived from a common base classMolecularStructureFile . This
interface is very simple to use and defines a minimal set of fileoperations: reading and writing
of structural data from aSystem .

The subclasses ofMolecularStructureFile inherit this interface and implement
the reading and writing of structural data along with some file-format-specific data. We imple-
mented classes for PDB files (PDBFile), HyperChem HIN files (HINFile), Sybyl MOL2
files (MOL2File), and XYZ files (XYZFile).

Through the use of operator overloading the interface became quite simple. Reading a
PDB file can be done in just two lines of code:

1 ...
2 String filename =;
3 System S;
4 ...
5 // create a PDB file object and open for reading
6 PDBFile infile(filename);
7
8 // read the contents of the file
9 infile >> S;

Besides the molecular structure file formats, there is a variety of other file formats sup-
ported to store data of different kinds. For example, we use an XML-based format to represent
hierarchical data (ResourceFile) or Windows INI files to store application settings and
table-like data.

6.7.2 Molecular Mechanics

The fundamentals of Molecular Mechanics force fields have been described in detail in Sec-
tion 1.5.2. Our prime interest in force fields is their capability to predict energies of proteins.
Numerous different force fields have been developed over theyears; we decided to implement

87

CHAPTER 6. DESIGN AND IMPLEMENTATION

two of the more important representatives: the AMBER force field [22] and the CHARMM
force field [15].

Both force fields were originally implemented in FORTRAN. The resulting applications are
monolithic and difficult to maintain. We designed a modular approach to the implementation
of force fields. The input of a force field is usually a set of atoms and bonds (a system) and a
set of parameters. The force field defines a set of equations describing the energy of the system
as a function of the atom coordinates.

An implementation of a force field has to provide two main parts: aforce generatorand an
energy generator. The force generator calculates for each atom the forces caused by its inter-
actions, while the energy generator calculates the total energy. Often overlooked – but in fact
one of the hardest parts in the implementation of the force field – is the assignment of the force
field parameters. For example, the AMBER force field defines about 900 different parameters.
These parameters have to be assigned according to the atom types involved in a certain interac-
tion. Hence, we also had to design a way to store these parameters and mechanisms to assign
them automatically.

ForceField
+options: Options
#atoms: AtomVector
+setup(): bool
+updateEnergy(): double
+updateForces()

System

Atom
#position: Vector3
#force: Vector3

ForceFieldComponent
+setup(): bool
+updateEnergy(): double
+updateForces()

ParameterFile

*
*

«use»

Figure 6.9: TheForceField class and related classes

The overall structure of the force field-related classes canbe seen in Fig. 6.9. The most im-
portant class is theForceField . It defines an interface to the force field without performing
any calculations itself. Instead, it contains a list ofForceFieldComponent s. This class
defines the interface for the calculation of a single interaction type (e.g.stretches or torsions).
ForceField contains some attributes (and the corresponding accessors) that are needed for
every force field. The attributeoptions holds options that are globally applicable to the
whole force field. It also has a pointer to the system which contains the atoms. To achieve a
better performance, these atoms are extracted and pointersto the atoms are stored in anAtom-
Vector object.

The three most important methods defined inForceField are setup , updateEn-
ergy , andupdateForces . Thesetup method performs some basic initializations for the
force field, like extracting the atoms from the system, reading the parameters from a file, as-
signing these parameters, and setting up the force field components (by calling thesetup
method for each component).

88

6.7. THE BASIC COMPONENTS

The interface to the energy generator is defined byupdateEnergy . This method cal-
culates the total energy of the system as the sum of the energies contributed by each force
field component. The component contributions are calculated by calling theupdateEnergy
method of each force field component. Similarly,updateForces calculates the forces by
adding up the forces from each component.

ForceField
+setup(): bool
+updateEnergy(): double
+updateForces()
+specificSetup(): bool

AmberFF
+specificSetup(): bool

ForceFieldComponent
+setup(): bool
+updateEnergy(): double
+updateForces()

AmberNonBonded
+updateEnergy(): double
+updateForces()
+setup(): bool

AmberBend
+updateEnergy(): double
+updateForces()
+setup(): bool

AmberStretch
+updateEnergy(): double
+updateForces()
+setup(): bool

AmberTorsion
+updateEnergy(): double
+updateForces()
+setup(): bool

*

Figure 6.10: The different energetic contributions (bond stretches, angle bends, torsions, and non-bonded inter-
actions) are implemented in separate classes derived fromForceFieldComponent.

A concrete forcefield is obtained by deriving a class fromForceField and one concrete
force field component for each type of interaction. Fig. 6.10shows the classes that imple-
ment the AMBER force field. The classAmberFF is responsible for instantiating the required
force field components. In the case of the AMBER force field, there are four classes derived
from ForceFieldComponent : AmberNonBonded (which implements the nonbonded
interactions),AmberStretch (the bond stretch contribution),AmberBend (the angle bend
contribution), andAmberTorsion (the torsion angle contribution). An instance of each of
these classes in created byAmberFF. Whensetup , updateEnergy , or updateForces
of AmberFF is called, the corresponding method is also called in each component. The imple-
mentation of a concrete force field is thus rather simple. Keeping the energetic contributions in
separate classes leads to a better maintainability and reusability.

In contrast to our implementation, a number of existing force field implementations do not
separate the force generator and the energy generator. The calculation of the forces and the
energy is then performed in a single loop. This increases theperformance for applications
that require the simultaneous evaluation of both energy andforces (e.g.molecular dynamics
simulations). We decided against this approach for two reasons. First, a separation leads to
a better comprehensibility and maintainability of the code. Second, many of our applications
(e.g. protein docking) only require the energetic evaluation, sothe time spent on the force
calculation can be saved.

89

CHAPTER 6. DESIGN AND IMPLEMENTATION

Parameters

+init(): bool
+setFilename(name:String)
+getFilename(): String

INIFile

ParameterSection
+options: Options
+extractSection(parameters:Parameters,section_name:String): bool
+has(key:String,variable:String): bool
+hasVariable(variable:String): bool
+getValue(key:String,variable:String): String
+getValue(key:Position,variable:Position): String
+getNumberOfVariables(): Size
+getNumberOfKeys(): Size

LennardJones

+extractSection(parameters:Parameters,section_name:String): bool
+hasParameters(I:Atom::Type,J:Atom::Type): bool
+getParameters(I:Atom::Type,J:Atom::Type): Values

Figure 6.11: The classes related to the reading of parameter files.Parameters contains an instance ofINI-
File which reads the parameter file. An instance ofParameterSection (or one of its derived classes) inter-
prets the contents of one of the sections of the file as table-like data. The derived classes ofParameterSection
are able to interpret this data and offer a comfortable interface to access it.

Parameter Assignment

A very tiresome and difficult process is the correct parameter assignment and the conversion
of existing parameter files. The original implementors of the force fields usually provide a
multitude of different versions of parameter sets that evolved over time. The formats used to
store the parameters are text based and column oriented (FORTRAN style). We decided to
use a common file format for all parameter files. This allows usto implement the input/output
routines for these files independent from the force field. Furthermore, our file format has a
much better readability, the related class automatically creates efficient hash data structures to
access the data, and allows the storage of different parameter versions in a single file.

Parameter files typically consist of one or more sections of (rather independent) parameter
tables. For example, a force field defines a set of atom types, of Lennard Jones parameters for
each of these types, of stretch, bend, and torsion parameters. All these data sets are stored in
different sections of a single file.

We represent the whole parameter file as an object of classParameters (see Fig. 6.11).
This class uses theINIFile class to read the contents of the parameter file, parses the file, and
builds internal data structures (several hash maps) to access the contents of the file efficiently.
At this level, the data is still stored as tables of strings. The interpretation of the data is carried
out by ParameterSection and its subclasses. The data a certain section should hold is
specified in each class and the user may access this data in a convenient format (usually structs).

For the AMBER force field, this parameter file may look as follows:

1 [...]
2 [QuadraticBondStretch]
3 ver:version key:I key:J value:k value:r0 value:comment
4 @unit_k=kcal/mol
5 @unit_r0=Angstrom
6 ;
7 ;
8 ; Rev I J k r0 comment
9 ; --- --- --- ---------- ---------- --------------------- --

10 1.0 OW HW 553.000 0.95720 "! TIP3P water"

90

6.7. THE BASIC COMPONENTS

11 1.0 HW HW 553.000 1.50000 "TIP3P water"
12 1.1 HW HW 553.000 1.51360 "TIP3P water / corrected"
13 1.0 C CA 469.000 1.40900 "JCC,7,(1986),230; TYR"
14 [...]
15
16 [LennardJones]
17 ver:version key:I value:R value:epsilon
18 @unit_R=Angstrom
19 @unit_epsilon=kcal/mol
20 @format=RE
21 ;
22 ;
23 ; Rev I R epsilon comment
24 ; --- --- ---------- ---------- ------------------------ -
25 1.0 C0 1.600000 0.100000 " calcium from parm91.dat"
26 1.0 MG 1.170000 0.100000 " magnesium from parm91.dat"
27 [...]

In this example, we see two different sections of the file (marked ”[QuadraticBondStretch]”
and ”[LennardJones]”). Comment lines start with ”;” and areignored by the parser. Lines
starting with ”@” are options lines and are automatically parsed into an options object (which
is a member ofParameterSection). These options are used to store specific properties of
the section (e.g.the units of the columns or additional format information).

The data format of each section is defined in the first line of a section (lines 3 and 17) and
defines the columns of the table. In our case, the Lennard Jones section (used to store van der
Waals parameters of the AMBER force field) contains five columns: a version number (column
version), an atom type (columnI), the minimum distance (columnR), the minimum energy
(columnepsilon), and a comment. TheParameters class parses all subsequent lines of
the section according to this format specification (lines 25–27) and builds a table of strings.
The atom type columnI is marked as akey in this table, thus theParameters object
also creates a hash map allowing fast access through this column. The first column is a special
column: it contains a revision number for each of the lines. Lines with greater revision numbers
automatically supercede lines with a lower revision numberand identical keys. However, the
older revisions of a certain parameter set can be accessed explicitly by specifying an explicit
version number. This is an important feature to document theevolution of a parameter set and
to access older parameters sets (e.g.for the purpose of comparison).

The order of the columns is irrelevant, the subclasses ofParameterSection only check
whether the parameters they require are available. For example, theLennardJones class is
satisfied with any table offering a key namedtype and two columns namedRandepsilon .
This gives the user the freedom to extend or change the formatto suit his purposes. In con-
trast to column based FORTRAN-style formats, which are usedby the majority of software
packages, our format is very flexible, readable, and robust.

The Parameters class hierarchy gives a very convenient access to arbitraryparameter
files and thus simplifies the implementation of the parameterassignment tremendously. Using
these classes, parameter assignment becomes nearly trivial, as the following code excerpts
from the AMBER force field prove:

1 // an instance of LennardJones is used to parse
2 // the corresponding section of the parameter file
3 LennardJones LJ_parameters;

91

CHAPTER 6. DESIGN AND IMPLEMENTATION

4 ...
5 // parse the Lennard Jones parameter section
6 bool result = LJ_parameters.extractSection
7 (getForceField()->getParameters(), "LennardJones");
8
9 // check whether we could parse the section correctly

10 if (result == false)
11 {
12 ... // some error message
13 }
14 else
15 {
16 // iterate over all atoms pairs...
17 for (...)
18 {
19 // ...and determine their type
20 ...
21 Atom::Type I = atom1->getType();
22 Atom::Type J = atom2->getType();
23
24 // retrieve parameters for the atom pair
25 if (LJ_parameters.hasParameters(I, J))
26 {
27 // retrieve the parameters for atom types I and J
28 ...
29 values = LJ_parameters.getParameters(I, J);
30 }
31 else
32 {
33 // we didn’t find parameters - error message
34
35 }
36 }
37 }

Energy Minimization

Energy minimization(or geometry optimization) is one of the two main applications of Molec-
ular Mechanics. The problem is as follows: given a set of molecules withN atoms, determine
the set of coordinates~ri (x, y, z) for each atom such that the total energyE(~ri) is minimal.
Typically, we are not looking for a global optimum but for a local optimum.

The input sizes range from very few atoms (small molecules, ligands) to large proteins with
several thousand atoms. This optimization problem is typically attacked using gradient based
techniques like� steepest descent� conjugate gradient� Newton-Raphson� Quasi-Newton

and a multitude of variants of these methods. The method to bechosen heavily depends on
the exact problem case. In some cases (e.g. initial relaxation of a constructed structure) the
simple steepest descent method is the most efficient one, whereas Newton-Raphson is most

92

6.7. THE BASIC COMPONENTS

ForceField

EnergyMinimizer

+minimize(iterations:Size): bool

SteepestDescentMinimizer

ConjugateGradientMinimizer

LineSearch
MolecularDynamicsSimulation

+simulate(iterations:Size)

CanonicalMD MicroCanonicalMD

System
Atom

#position: Vector3
#force: Vector3

*

SnapShotManager

+takeSnapShot()

Figure 6.12: All energy minimization algorithms are derived fromEnergyMinimizer. They make use of the
basic line search algorithm implemented inLineSearch. Similarly, theMolecularDynamicsSimulation
class is the base class of the two implemented ensembles classes (CanonicalMD andMicroCanonicalMD).

efficient for very stringent optimizations, but may lead to memory problems for large problem
instances. For a discussion of the different methods and thetheoretical background, we refer
to [68, 57, 122].

All these algorithms and their variants share large code sections and are based on similar
basic algorithms. Hence, we could define a common base class for all energy minimization
algorithms (EnergyMinimizer). We implemented a steepest descent minimizer and three
variants of conjugate gradient minimizers. The design of these classes is shown in Fig. 6.12.

The definition of a common interface to all energy minimizer classes was only possible,
because the whole parameter handling (and minimization algorithms require quite some
parameters!) could be handled via theOptions class. We also tried to keep the interface
for standard applications as simple as possible. In fact, a typical application (the energy
minimization of a small molecule) can be done with just threelines:

1 System S = ...; // the structure to optimize
2
3 AmberFF FF(S); // create and setup the forcefield
4
5 ConjugateGradientMinimizer cgm(FF);
6 cgm.minimize(); // create a minimizer and perform the minim ization

Nevertheless, it is possible to customize the minimizer to suit most needs. The following
example is a bit more demanding and will serve to explain the use of the selection mechanism
with the minimizer. A recurring application is the fast relaxation of parts of structures,
for example, the optimization of side chains or protein hydrogens. The algorithms used to
construct these structures are rather crude and do not checkfor collisions in the constructed
structure, so the next step is the removal of these collisions. Hence, we have to define a subset
of atoms that has to be optimized while the remainder should be kept rigid. Furthermore,

93

CHAPTER 6. DESIGN AND IMPLEMENTATION

we only want to remove the overlaps, so we abort the optimization at a rather large gradient
(20 kJ/(molÅ)):

1 // a protein with unoptimized hydrogen atoms
2 System p = ...;
3
4 // setup the force field
5 AmberFF FF(p);
6
7 // select the hydrogen atoms only
8 Selector H_select("element(H)");
9 p.apply(H_select);

10
11 // create a minimizer
12 StepestDescentMinimizer sdm(FF);
13
14 // we abort the minimization if the RMS gradient
15 // falls below 20 kJ/(mol A)
16 sdm.options[EnergyMinimizer::MAX_GRADIENT] = 20.0;
17 sdm.minimize();

Molecular Dynamics

The second important application of force fields is theMolecular Dynamics Simulation(MD
simulation, MDS). In an MDS we apply the rules of Newtionian mechanics to the system
described by a Molecular Mechanics force field. By integrating the equations of motion, suc-
cessive configurations of the system are generated. Thus, weobtain atrajectory that describes
how the positions of the atoms vary with the time. Again, we have to refer to textbooks for the
fundamental theory behind the MDS [38, 68].

MDS trajectories contain a huge amount of interesting information that is closely related to
experimentally accessible data (e.g.diffusion coefficients, radial distribution functions,etc.).
So by performing an MD simulation and evaluating the obtained trajectory, we may predict
numerous properties of the system we are investigating.

Depending on the specific problem, we have to decide whichensembleto choose. The term
ensemble stems from Statistical Thermodynamics and basically describes a collection of a very
large number of copies of the system whose properties we are investigating. These “copies”
differ in their microscopic states, but share the same thermodynamic state (e.g.they share the
same temperatureT , volumeV , and contain the same numberN of particles).

There exists a number of different ensembles that differ by the “experimental conditions” of
the simulations. In thecanonical ensemble, the number of particles, temperature, and volume
are constant. This corresponds to a set of systems immersed into an infinite bath of temperatureT . While the numberN of particles, volumeV , and temperatureT of each system of the
ensemble are identical, their energiesE may differ. In contrast to the canonical ensemble, the
microcanonical ensemblerepresents an isolated system whereN , V , andE are constant andT
varies. These two ensembles are the most common ones, so we implemented two classes that
perform MD simulations in a canonical and in a microcanonical ensemble.

The two classesCanonicalMD and MicroCanonicalMD are both derived from
MolecularDynamics and only implement the ensemble dependent part of the code. The

94

6.7. THE BASIC COMPONENTS

handling of the force field and the trajectories (via theSnapShotManager class) is imple-
mented inMolecularDynamicsSimulation (see Fig. 6.12).

The interface for standard applications is very similar to that of the energy minimizer
classes:

1 System S =; // create a system...
2 AmberFF FF(S); // ...and a force field.
3
4 CanonicalMD(FF); // Setup the MD simulation...
5 FF.simulate(500); // and simulate 500 time steps.

6.7.3 Nuclear Magnetic Resonance Spectroscopy

BALL provides a set of classes for NMR shift prediction. The fundamentals of NMR spec-
troscopy as well as the models for shift prediction, have been explained in depth in Chapter 4.
We implemented the shift prediction as a set of shift processors that are responsible for the dif-
ferent contributions to the chemical shift (see Fig. 6.13).Each shift processor class is derived
from a common base class (ShiftModule). An arbitrary number of these shift modules can
be combined into a shift model (classShiftModel). The modules of a shift model can be
exchanged and reparameterized at runtime through theParameters class. This class stores
the information on the modules to be included and all parameters for these modules in a pa-
rameter file (classINIFile). Through this mechanism, experiments and reparameterizations
of the model are very simple and do not require a recompilation of the code.

ShiftModule

RandomCoilShiftProcessor

ElectricFieldShiftProcessor

JohnsonBoveyShiftProcessor

AnisotropyShiftProcessor

HaighMallionShiftProcessor

ShiftModel

 1..*

Parameters

 1

 1

AtomContainer

NMRSpectrum

CreateSpectrumProcessor

set properties (shift)

extract shiftts

combine shifts

Figure 6.13: The design of the NMR-related classes in BALL.

By applying aShiftModel to anAtomContainer , the chemical shift of each nucleus
is determined by a sequential application of each shift module in the model. The shift is stored
as a named property (which can be assigned to any kernel object).

95

CHAPTER 6. DESIGN AND IMPLEMENTATION

To obtain an NMR spectrum from the assigned chemical shift, we use theCreateSpec-
trumProcessor . This class extracts all nuclei with an assigned chemical shift from an
AtomContainer object. Then, it discards those atoms that are usually not observable in an
NMR spectrum (rapidly exchanging protons), and calculatesthe spectrum as the linear com-
bination of Lorentzians (one for each proton). This spectrum is then stored in an instance of
NMRSpectrum. Instances ofNMRSpectrum can be subtracted to give difference spectra,
whose areas were used to rank the docking structures in Chapter 4.

6.7.4 Visualization

Introduction

Three-dimensional visualization of molecular structuresis a very important task in Molecular
Modeling – and a very demanding one as well. In fact, the visualization code is roughly
one sixth of the total BALL code, so a description of this component has to be even more
perfunctory than that of the other components.

Building a framework that allows visualization is very difficult and time-consuming, be-
cause it always implies the creation of a graphical user interface (GUI). Writing code that is
embedded in a GUI is much more complicated than writing command line applications. One
way to circumvent this additional labour is the use of an external viewer. This means, we im-
plement a typical command line-based program. This programthen either writes its output to a
file or directly connects to an external application that visualizes the results. There is a number
of visualization tools available that can be used for this purpose, for example VMD [51] or
RasMol [107]. The lack of flexibility is obvious for this approach.

For BALL, we decided to implement a twofold approach:� a comprehensive and powerful framework for the implementation of GUI based applica-
tions� a stand-alone viewer used as an external visualization tool, which is based on this frame-
work.

The visualization framework is calledBALLVIEW and the external viewer is called
molview. Since we did not want to implement our own GUI toolkit, we hadto choose one of the
existing packages as a basis for the implementation of BALLVIEW. This GUI toolkit should
be portable, object-oriented, written in C++, easy to use, and it should provide the means to
visualize 3D geometric objects. So QT [102] was the only choice. QT is a portable GUI frame-
work in C++. It implements all the functionality required to write GUI based applications and
also provides support for the integration of the OpenGL library [86] for 3D rendering.

BALLVIEW itself consists of two distinct frameworks: VIEW and MOLVIEW. While the
VIEW framework implements general visualization of arbitrary objects and data, MOLVIEW
provides the specialized models and representations required for the visualization of molecular
data structures. The overall architecture of BALLVIEW is illustrated in Fig. 6.14.

96

6.7. THE BASIC COMPONENTS

QT (GUI tool kit)

OpenGL (3D rendering)

BALLVIEW

MOLVIEW

VIEW

Data Structures Widgets

Renderer/Management

Widgets Processors

Kernel

Foundation Classes

Mathematical DS

Figure 6.14: The overall architecture of the visualization component BALLVIEW (see text).

The VIEW framework

The VIEW framework provides a number of important basic datastructures. First, it defines
geometric primitives, like spheres, tubes, meshes,etc., that are required to describe arbitrary
geometric objects. Second, it defines data types to handle colors and color tables (e.g.to dis-
play color-coded gradients or the like). Besides these datastructures, it defines a set of classes
to access the OpenGL library. These classes build and managethe display lists required for
the OpenGL renderer. Finally, there is a number ofwidgetsdefined that can be used in appli-
cations. Widgets in general are graphical elements (e.g.buttons, text labels,etc.). From the
widget classes of the VIEW framework, we will just introducefour important members: the
most important widget is theMainControl widget. It provides the main window for all ap-
plications, including a status bar and a menu bar. This widget is usually the central widget that
holds all other widgets. All other widgets are derived from the base classModularWidget .
A modular widget can be inserted into the main control and integrates itself automatically. The
mechanisms involved are rather complicated, but the effects are simple. The classModular-
Widget provides a methodinitializeWidget which is called byMainControl just
before the widget is to be displayed for the first time. In thismethod, the widget can construct
the menu entries it requires, insert icons or labels into thestatus bar, read its preferences from
a global preferences file, or create its own preferences dialog. Each modular widget is thus a
complete prefabricated component and these components canbe combined like building blocks
to form an application. The Rapid Application Development capabilities of this approach will
be illustrated by means of an example below.

The third class we will introduce is theScene class. The scene provides three-dimensional
interactive visualization of geometric objects. The user can rotate, translate, or zoom into
the scene or pick objects by mouse click. This is the key component for three-dimensional

97

CHAPTER 6. DESIGN AND IMPLEMENTATION

visualization of molecular data structures (see Fig. 6.15).
The fourth class is theControl , which is used to display the structures contained in a

Scene in a tree-like structure and allows the manipulation and inspection of the contents of a
scene (see Fig. 6.15).

The MOLVIEW framework

While the VIEW framework is designed for arbitrary geometric objects, the MOLVIEW frame-
work implements the visualization of molecular data structures. This is achieved through a set
of processors. These processors can be applied to arbitrarykernel classes and construct a geo-
metric representation from it. For example, theAddBallAndStickModel class constructs
a ball-and-stick representation from a molecule,i.e. each atom is represented by a sphere and
each bond by a cylinder connecting the two atoms. MOLVIEW provides a number of simi-
lar processors for other commonly used models, like the van der Waals models (all atoms as
spheres), the line model (all bonds as lines), or molecular surfaces. Similar processors are
also provided to color the resulting representation according to certain properties,e.g.the atom
type, the residue name, the charge,etc.

The MOLVIEW framework also implements specialized variants of several VIEW widgets
that are aware of molecular data structures and several new modular widgets. For example,
there are widgets to read molecular data structures from diverse file formats, widgets that im-
plement energy minimizations based on Molecular Mechanicsforce fields, or a widget that can
be applied to add hydrogens to arbitrary structures.

One of the widgets that requires further notice is theServer widget.Server establishes
a network socket in the visualization application. Any client application can now create a
Client object and connect to that socket. Through the use of object persistence, it is possible
to transmit any kernel data structure to the visualization application. TheServer object
receives and deserializes the kernel object and displays itdirectly if a Scene is available. We
use this mechanism for our stand-alone visualization toolmolview , which is explained in
more detail below.

Rapid Application Development using the ModularWidget class

As has been mentioned above, theModularWidget class was developed to simplify the
rapid construction of applications from some basic building blocks, the modular widgets. Only
through the use of the concept of modular widgets, we were able to implement powerful appli-
cations with just a few lines of code. The main feature of theModularWidget class is the
fact, that each modular widget is self contained and automatically constructs all required con-
nections to other widgets. The internal implementation of these features is quite complicated,
so we will just discuss the user interface. When developing applications using QT, one usually
assembles a number of widgets and then implements the behavior of these widgets. For this
purpose, QT uses thesignal-slot mechanism. Signals, as well as slots, are functions (usually
members). The signal part is called if a certain action occurs, e.g. if a button is pressed. By
connecting a certain slot to a signal, the slot is called as soon as the signal isemitted. For exam-
ple, pressing the button also calls all connected slots. These slots then implement the required

98

6.7. THE BASIC COMPONENTS

behavior of the interface. These connections are required for menu entries, to connect slide
bars to a scrollable view,etc.– the “wiring” of the widgets is usually a very time-consuming
and error-prone process.

Modular widgets usually perform this “wiring” automatically. This is achieved by a com-
mon, well-defined interface and some internal mechanisms implemented in theMainCon-
trol class. Each modular widget defines its own menu entries and the related actions. It may
also access the application’s status bar via methods ofMainControl . For example, when
instantiating aOpenPDBFileDialog widget (a widget that reads PDB files), this widget
automatically creates an entry in File—Import—PDB in the applications menu bar. Clicking
on this menu entry allows the selection of a file, which is thenread and a system is created.
Now, all relevant widgets have to be informed, that a new system has been read. Using the
signal-slot mechanism for this purpose would be very complicated, so we implemented a sim-
ple message passing interface. TheOpenPDBFileDialog widget creates a message stating
that a new system has been read andMainControl distributes this message (along with a
pointer to the system) to all widgets. Certain modular widgets, like theScene class, interpret
that type of message: the scene displays the system. Other classes simply ignore the message.

These two mechanisms, automatic signal-slot connections and message passing, create an
extensible method for widget communication. Combining modular widgets to an application
thus becomes very simple, as the following code example illustrates. We will implement a
simple PDB viewer,i.e.an application that is able to open and to visualize PDB files (as usual,
the include directives have been omitted).

1 int main(int argc, char **argv)
2 {
3 // creating mainframe and application
4 QApplication application(argc, argv);
5 MainControl mainframe;
6 application.setMainWidget(&mainframe);

The main program first creates a QT application, which manages the GUI control flow. Then,
we create an instance of theMainControl class and assign it to the main widget of the
application,i.e. the main control is now the widget that will be displayed in the application
window.

7 QSplitter* splitter = new QSplitter(&mainframe);
8 mainframe.setCentralWidget(splitter);
9

10 new MolecularControl(splitter);
11 new Scene(splitter);
12
13 new OpenPDBFile(&mainframe);
14 new DisplayProperties(&mainframe);
15 new MolecularProperties(&mainframe);

Next, we create a splitter, a widget which lets the user control the size of child widgets by
dragging the boundary between the children (the vertical bar in Fig. 6.15). We then create
the two child widgets of the splitter: theMolecularControl , which displays kernel data
structures in a tree-like fashion, and theScene , which renders the molecular structures.

In lines 13–15 we create three additional modular widgets:OpenPDBFile is able to
read PDB files,DisplayProperties creates the dialog that is used to select one of the

99

CHAPTER 6. DESIGN AND IMPLEMENTATION

different representations for the molecular data structures, andMolecularProperties
is an (invisible) widget that preprocesses all new kernel data structures, normalizes the atom
names and constructs the bonds between the atoms.

16 // start the application
17 mainframe.show();
18 return application.exec();
19 }

Finally, in lines 17–18 we just start the application. A screenshot of this program in action is
given in Fig. 6.15.

Figure 6.15: The example code for the MOLVIEW framework in action. There are three widgets visible: the
MolecularControl on the left of the splitter, theScene on the right side, and theDisplayProperties
dialog, which creates the non-modal dialog on the right. TheMolecularControlwidget permits the inspection,
selection, and manipulation of kernel data structures. TheScene widget displays these data structures according
to the representation selected in theDisplayProperties dialog.

The stand-alone viewer molview

Even though the implementation of GUI-based visualizations is rather simple, it is often more
convenient to write conventional command-line based programs. With the external viewer
molview , these applications can then visualize arbitrary molecular data structures with just
two lines of code:

1 // some system...
2 System S =;
3
4 // create a client for molview running on host "habakuk"
5 Client c("habakuk");
6
7 // send the system and display it on habakuk
8 c << S;

100

6.8. SCRIPTING LANGUAGE INTEGRATION

This code creates a client object for the external viewermolview , which is implemented
using the VIEW and the MOLVIEW framework). This client connects to a pre-defined port
on a given host (in this case the machinehabakuk). In the last line of the above example,
the client creates a persistent representation of the system, which is then sent to the server (the
molview application) using the network streams of BALL. As soon as the server has received
the system, it is displayed on the screen. This approach permits the immediate integration of
visualization capabilities into existing applications. Furthermore, it can be used to separate
the visualization and the calculations. For example, it is possible to execute a computationally
expensive simulation on a powerful computer server and thenvisualize the result on a graphics
workstation.

molview also contains functionality to perform energy minimizations using the
CHARMM and AMBER force fields, it allows the verification of the structures, the adding
of hydrogens, and also an embedded Python interpreter. Thisembedded interpreter provides
additional control over the application, allows the inspection of the data structures, and pro-
vides scripting capabilities formolview . The design and implementation of the scripting
language integration is described in detail in the next section.

6.8 Scripting Language Integration

One possibility to speed up Rapid Software Prototpying evenfurther is the integration of script-
ing languages. Being interpreted languages, scripting languages obviate the time-consuming
compile and link stages, thus shortening development timesfor software prototypes drastically.
Interpreted languages are an useful alternative if new applications can be constructed from ex-
isting building blocks and do not require the implementation of complex or computationally
expensive algorithms. This assumption is valid for the majority of all applications in the field
of Molecular Modeling. Especially while optimizing parameters of new methods or adapting
existing methods to specific application cases, the shorterturn-around times are very helpful.

Furthermore, it should be possible to port code very easily from C++ to the scripting lan-
guage and vice versa, thus allowing the prototyping in the scripting language and an easy
porting of the final variant to C++ to achieve superior performance.

6.8.1 Python

A vast amount of scripting languages has been developed overthe time for these specific pur-
poses. The unix world is currently dominated by three scripting languages: Tcl [95], Perl [123],
and Python [121]. Each of these languages has been employed as a scripting language in the
field of Computational Molecular Biology. For example, there are currently two Open Source
projects in progress, namely BioPython [13] and BioPerl [12]. Both projects develop code for
applications in the life sciences. However, the focus of these projects is currently on sequence-
related algorithms and not on Molecular Modeling.

A detailed discussion of the pros and cons of the three scripting languages would just
reiterate well-known arguments. Since all these argumentshave been published, we refer to
the respective publications [112, 96, 100]. We will just mention a few points that made me
favor Python over TCL and Perl. First, Python is the only language that is truly object-oriented

101

CHAPTER 6. DESIGN AND IMPLEMENTATION

(in the sense that it was developed to be object-oriented, incontrast to the half-hearted support
for objects in Perl). Additionally, its readability and intuitive comprehensibility is much better
than that of the other two languages. Especially the latter two reasons make it much easier for
the average user to learn Python than TCL or Perl. First, we will briefly illustrate some key
concepts of Python.

Python1 has been developed by Guido van Rossum since 1990. It is an object-oriented
dynamic language that was designed to be extensible and modular. One reason for its
readability is the fact that Python uses indentation to group statements instead of curly braces
as many other languages do. To illustrate some of the basic language concepts of Python
consider the following example:

1 for n in range(2, 10):
2 for x in range(2, n):
3 if n % x == 0:
4 break
5 else:
6 print n, ’is a prime number’

This simple Python program calculates the prime numbers below 10. The first and obvious
point to notice is the block indentation. The compulsory indentation of blocks leaves the pro-
grammer no choice – he has to indent the program correctly andthe block structure is always
obvious. The control structures seem rather familiar to C programmers:if conditions,for
loops – there’s just one striking difference: in Python, loop statements may haveelse clauses
as well. They are executed if the loop is not aborted via thebreak statement. Thefor loop
of Python is quite different from C or Pascal. Whilefor loops in C (or C++) can be forced

to perform a whole range of tricks, the Pythonfor loop has a single purpose: it iterates over
all items in asequence object. In the above example, the functionrange creates a sequence
of numbers. Thefor loop then iterates over all elements of this sequence. Sequences are
of fundamental importance in Python. They come in several flavors, the most important ones
being lists (asrange produces), tuples, and strings. All sequence types may contain objects
of arbitrary type since Python is aweakly typedlanguage. Python also provides all standard
control statements and several other useful data structures (e.g.dictionaries).

6.8.2 Extending

Python was designed to be easily extensible. This can be donevia so-calledextension modules
that are written in either C or C++. These extension modules can implement new object types
and functions through an API (Application Programmer’s Interface). The API provides nearly
complete access to the Python interpreter and provides comfortable functions to integrate C or
C++ code into the interpreter.

A BALL extension module should provide access to the major part of BALL’s functionality
from the Python interpreter and a seamless integration of the BALL objects. The syntax of
the extension module should be as similar to the C++ syntax as possible. This allows a fast

1Python’s not named after some reptile but afterMonty Python’s Flying Circus– the BBC comedy series Guido
van Rossum obviously enjoyed.

102

6.8. SCRIPTING LANGUAGE INTEGRATION

development of a new method and its refinement in Python and finally – with minor changes
only – the implementation of this code in C++ for extensive experiments and production use.

Although both languages are object-oriented, there are some fundamental differences and
concepts that make these goals rather difficult to meet. The most important topic is generic
programming using templates. Since the creation of template code always requires a run of
the C++ compiler, it is not possible to create new instances of templates from the inside of the
Python runtime system. Another problem concerns operator overloading: the current release
of Python does not yet support compound assignment operators (+=, -= , etc.).

The fact that Python functions may not modify the arguments of a called function if they
are immutable(as strings are in Python), is problematic as well. Since BALL often passes
references of objects to retrieve partial results of a calculation, there are some cases where the
interface had to be changed. In these cases, all return values are passed as a Pythontuple .
However, these changes have to be documented and the code cannot be generated automat-
ically, so future versions of BALL will avoid passing non-const object references wherever
possible.

The integration of BALL classes into a Python interpreter requires the implementation of
so-calledwrapper classes. Wrapper classes are Python classes that replicate the interface of the
C++ class. The methods of these classes call their C++ counterparts and pass the C++ return
values back to the Python code. In addition, they have to convert the arguments and return
values from C++ objects and types to Python objects and types. Due to the large number of
classes in BALL, it is obvious that the generation of the wrapper classes has to be automated.
There is actually a number of tools available for this purpose. We had a look atSWIG[8],
CXX[27], andSIP [116]. Out of these three,SIP was best suited for our purpose. It creates
the wrapper classes from slightly modified BALL header files.

Nevertheless,SIP did not fulfill all requirements. Therefore, we had to modifyit to suit
our needs. We added support for C++ operators, meaning that all operators that are supported
by Python are automatically converted to equivalent Pythonmethods. Similarly, exceptions
are translated to Python exceptions. The latter feature requires all C++ methods to declare the
exceptions thrown using thethrow keyword.

It was also necessary to find replacements for some concepts used in BALL. For example,
iterators are not easily ported to Python. The corresponding concept in Python is the iteration
over a sequence (via afor loop). Hence, I created so-calledextractors. Extractors are
functions that iterate over C++ container objects and assemble a Python sequence containing
these objects (or more precisely: reference to these objects). There exists an extractor for each
kernel iterator type. For example, the C++ code

1 System S = ...;
2
3 AtomIterator ai = S.beginAtom();
4 for (; ai != S.endAtom(); ++ai)
5 cout << ai->getName() << endl;

translates to the following Python code which uses the extractor atoms :

1 S =
2
3 for atom in atoms(S):

103

CHAPTER 6. DESIGN AND IMPLEMENTATION

4 print atom.getName()

Using these techniques we obtained Python extensions that map the BALL functionality and
interface as closely as possible to the corresponding BALL classes and functions. Although
there are still some problems to solve (passing of non-constreferences, several unimplemented
operators), the Python extensions have proven to be very helpful when prototyping or debug-
ging small to medium scale applications.

6.8.3 Embedding

Embeddingis quite similar to extending Python. The main difference lies in the main program.
When using Python extensions, the main application is the Python interpreter that calls BALL
code. When embedding Python, the main application is a BALL program that calls the Python
interpreter to execute short code segments. Embedding is required if Python shall be used
as a scripting language inside BALL applications (e.g. for the molecule viewermolview).
A further advantage of an embedded interpreter is the ability to inspect and modify the data
interactively.

There are two design problems related to Python embedding. The first one is the integration
of the interpreter main loop which that to be called as soon asa new code fragment should be
executed. Since the C API of Python is rather complicated, this should be well hidden behind
a more comfortable C++ interface.

The second issue is somehow more difficult. The interpreter has to have access to the appli-
cation’s data structures. So we need a way to define which object instances of the application
may be accessed from the interpreter and vice versa. This is done via theEmbeddable class.
All instances of classes derived fromEmbeddable inherit the membersregisterThis
andunregisterThis . By callingregisterThis , a class instance registers with a global
objects repository (static members ofEmbeddable). Through the Python bindings of each
class, the Python interpreter has access to all registered instances.

The following example shall illustrate the interaction of the classes a bit further (along
with Fig. 6.16).

1 class MyClass
2 : public Embeddable
3 {
4 public:
5 BALL_EMBEDDABLE(MyClass)
6
7 MyClass(const String& identifier)
8 : Embeddable(identifier)
9 {

10 }
11
12 void print()
13 {
14 cout << getIdentifier() << endl;
15 }
16 };

This simple class defines just one trivial method (print) to print its identifier (which is de-
fined byEmbeddable). The macroBALL EMBEDDABLEdefines the virtual methodreg-

104

6.8. SCRIPTING LANGUAGE INTEGRATION

Embeddable
-identifier: String
+Embeddable(identifier:String)
+~Embeddable()
+registerThis()
+unregisterThis()
+setIdentifier(identifier:String)
+getIdentifier(): String

MyClass

+countInstances(): int
+getInstance(identifier:String): MyClass*
+print()

sipEmbeddable

MyClass [Python]

+countInstances(): int
+getInstance(identifier:string): MyClass
+print()

Embeddable [Python]

+Embeddable(identifier:String)
+~Embeddable()
+registerThis()
+unregisterThis()
+setIdentifier(identifier:String)
+getIdentifier(): String

sipMyClass

Figure 6.16: The classEmbeddable is the base class of our classMyClass. For both classes, wrapper classes
(sipEmbeddable andsipMyClass) are automatically created for the Python bindings. Through these inter-
mediate classes, Python classesEmbeddable andMyClass have access to the members of the respective BALL
classes.

isterThis that is used to register class instances with the global object repository and the
static methodsgetInstance andcountInstances . The latter methods can be used to
access the global instances from Python. The constructor requires a string that is used as a
global identifier to access this instance (see below).

Now we create an instance of this class in an application (which should contain an
embedded Python interpreter) and register it:

1 MyClass my_instance("TESTINSTANCE");
2 my_instance.registerThis();

If a Python wrapper was defined for our class and the corresponding module was imported, we
can access our instance from the embedded interpreter via its identifier:

1 >>> MyClass.countInstances()
2 1
3 >>> instance = MyClass.getInstance("TESTINSTANCE")
4 >>> instance
5 <BALL.MyClass instance at 107cd8>
6 >>> instance. print()
7 TESTINSTANCE
8 >>>

The Embeddable class defines a very simple but very general interface. Special care has
to be taken which methods of these objects can be safely called and who is responsible for
the destruction of a certain instance to avoid memory leaks.Obviously, this interface leaves

105

CHAPTER 6. DESIGN AND IMPLEMENTATION

much room for improvement, but it allows us to embed Python interpreters in applications like
molview in shortest time and with little overhead.

106

Chapter 7

Project Management

This section briefly describes some techniques that were employed to manage the development
of BALL and to ensure a high quality of the software. In Section 7.1, we will give a description
of the methods to keep track of source code changes, revisionmanagement, and portability
issues. Section 7.4 describes the integrated documentation, Section 7.5 describes the methods
we use for software testing. Finally, in Section 7.6, we willdescribe the mechanisms required
for an automated, portable installation of BALL.

7.1 Revision Management

We used theConcurrent Revision System(CVS, [24]) to keep track of source code changes.
This was especially important in the beginning, when several people were simultaneously
working on the core library. CVS keeps all files in a central repository and stores the changes
between different versions as context diffs. Even if two or more people are working on a single
file in parallel, CVS is usually able to merge the changes intoone version of the file – conflicts
arise only if the same code lines were changed by different authors. In this case, the respective
author is notified of the conflict and has to resolve it manually.

7.2 Coding Conventions and Software Metrics

The programming style affects the readability of a program.Hence, to ensure a high code qual-
ity and a uniform look of the code, we drafted a set of coding conventions. Coding style is a
very personal matter and many different styles exist even among the programmers who worked
on BALL. An even larger amount of coding styles has been proposed by various authors (e.g.
[91, 77, 6]). We drafted a minimal set of non-controversial rules that guarantee a good read-
ability without restricting the individual programmer toomuch. They are part of a document
describing coding conventions for BALL [63]. Part of these rules is also anorthodox canonical
class interface[21] that ensures that all BALL classes can be assigned, compared, and copy
constructed. This common interface ensures that all BALL classes can be used in the same way
as typical builtin data types.

However, adhering to these rules is rather inconvenient andcompliance with these rules
could not be reached without enforcement. Several of the rules in the coding conventions can
be verified usingsoftware metrics(or style metrics). Different approaches for style metrics
have been proposed in the literature (e.g.[10, 49, 19]) for procedural programming languages
as well as for OO languages.

The open source software packageCCCC (C and C++ Code Counter) [72] provides a
reasonable choice of different metrics and a WWW-based interface that was easily adoptable

CHAPTER 7. PROJECT MANAGEMENT

to suit our needs. The metrics we used wereLOC (lines of code), COM (comment lines), their
quotient (L C= COMLOC), and McCabe’scyclomatic complexity[75].

As with the test builds, an overview of the metrics is createdautomatically. Its main purpose
is to point out design and implementation flaws in the code. The regular inspection of the
metrics helps to identify undocumented code portions and too complex (often poorly designed)
classes.

7.3 Portability

The current ANSI standard for C++ was passed in September 1998 as the ISO/IEC standard
14882 [5]. However, even today lots of C++ compilers are not fully compliant to this stan-
dard. This caused a lot of trouble in the earlier stages of thedevelopment. Nevertheless, this
trouble paid off in the last few months, when more and more compilers were released that are
sufficiently close to the ANSI standard to accept our code without major modifications.

7.4 Documentation

7.4.1 Reference Manual and Tutorial

As has been claimed in Section 6.2, documentation is very important for the user. Our goal
was a detailed documentation consistent with the implementation. Therefore, we decided to
integrate the documentation into the BALL source code files and use DOC++ [133] to create
printed and hypertext manuals from the header files. In this way, the documentation always
reflects the current state of the implementation. Unlike other approaches, such asCWEB[61],
sources documented with DOC++ are ready to be compiled without need of any preprocessing
(like tangle). DOC++ uses a (high-level) C++ parser to extract the documentation from
the header files. Since this parser reads the class declarations as well, DOC++ is able to create
information on class hierarchies, member protection, parameters, or return types automatically.
The documentation is embedded into special C++ comments starting with ‘/** ’ or ‘ /// ’,
hence the code may be compiled directly without modification.

A typical class documentation might look as follows:
1 /** Example class.
2 This class is meant as an example.\\
3 Embedding of LaTeX: $aˆ2 = bˆ2 + cˆ2$\\
4 {\bf Definition:}\URL{BALL/test.h}
5 \\
6 */
7 class A
8 : public B
9 {

10 public:
11 /** @name Constructors and Destructor
12 */
13 //@{
14 /** Default constructor
15 */
16 A();
17 //@}
18

108

7.5. TESTING

19 /** @name Accessors
20 */
21 //@{
22
23 /** Example member.
24 This method is useless.
25 @param x some number
26 @return int the value of the internal attribute divided by {\ tt x}
27 @exception DivisionByZero if {\tt x == 0}
28 */
29 int member(float x) const;
30 //@}
31
32 protected:
33 int attribute1;
34 };

From this class definition, DOC++ extracts the full documentation in either HTML or LATEX
format. It allows the embedding of LATEX commands as well as the use of several HTML tags.
Even mathematical formulas are rendered using LATEX and embedded as GIF images into the
HTML page (similar to LaTeX2HTML [26]).

Using the special commands ‘//@ f’ and ‘//@ g’, the members of a class or sections of
the documentation can be arranged hierarchically. The class hierarchy is represented as class
graphs in the LATEX documentation and as a Java applet in the HTML documentation. A screen-
shot of the resulting HTML documentation, including the class graph, is given in Fig. 7.1 on
page 110.

The document resulting from this integrated documentationis the BALL reference manual.
It contains detailed descriptions of all classes, their methods and attributes, and references on
the algorithms and models used in the implementation. The reference manual is complemented
by a tutorial, which introduces the most important conceptsand classes by means of selected
example applications.

7.4.2 FAQs

Another part of the documentation is aFAQ list (frequently asked questions). A FAQ list helps
the user to resolve common problems. Uwe Brahm implemented the BALL FAQ list similarly
to the LEDA FAQ as a Lotus Notes database. We also included theFAQs into the BALL
tutorial, because they are most helpful when a user does his first steps with BALL. To keep
both versions consistent, the Notes database is exported regularly in ASCII format, converted
to LATEX, and integrated into the LATEX source code of the tutorial directly.

7.5 Testing

Testing is an important step to ensure the correctness of theimplemented code and is usually
the last step before releasing the code. Since BALL is a quitelarge project and was already
in use while being implemented, we conceived a concept for continuous automatic testing.
After introducing some basic terms and definitions in software testing, we will describe this
approach. For a further discussion of testing and testing techniques, we refer to [56].

109

CHAPTER 7. PROJECT MANAGEMENT

Figure 7.1: HTML page created by DOC++ from the example on page 109

110

7.5. TESTING

oracle
test

component
in test

test
cases comparator test

results

Figure 7.2: General software testing scheme

7.5.1 Fundamentals

The testing of a software component verifies that its behavior complies with a given specifica-
tion. For this purpose, a set oftest casesis created and used as an input to the unit in test (see
Fig. 7.2). The output of the component is then compared to theoutput of atest oracle. The
test oracle predicts the outcome for each test case based on the specifications. The component
complies to the specification if the results of oracle and thecomponent in test are considered
equal by the comparator for each test case.

Except for some special cases where formal specifications are created during the design
phase (e.g.[55]), the generation of the test oracle cannot be automated. Hence, most oracles
are simply humans, usually the ones creating the test cases:while creating a set of test cases,
the output for each test case is specified as well. The selection of the test cases depends on
which approach to testing is used.

There are basically two approaches to testing:black box testing(or functional testingand
white box testing(or structural testing).

In functional testing, test cases are selected solely on thebasis of the specifications of
the component. Internals and structure of the component arenot considered. Therefore, it is
often called black box testing. In contrast to black box testing, white box testing considers the
internal structure of the components as well.

7.5.2 Testing in BALL

We decided to use simple black box testing for BALL. The introduction of a testing scheme
stems from bad experience with the integration of code into the library. Most programmers
contributing code to the project tested their code by writing a small number of short programs
they chose without much thought. As soon as these test programs performed as the programmer
expected (often only on a single platform), the code was submitted to the code repository. Much
later, sometimes after the programmer had left the project,serious bugs were detected in the
code. Either it did not compile on all platforms due to non portable instructions or header
files, or it showed strange behavior for input differing fromthe original test input, or there were

111

CHAPTER 7. PROJECT MANAGEMENT

even syntactically wrong code portions (as might happen forpreviously uninstantiated template
code).

The testing methods we developed for BALL are rather simple,but proved to be rather
effective. For each class submitted to the code repository,a test program is required. This test
program has to fulfill the following requirements� it has to test each member of the class� it has to provide a well-defined interface for automatical testing

The first point is especially important for template classes, where code sections are not com-
piled if they are not instantiated. Nevertheless, testing of template classes cannot be done
satisfactorily: it is not possible to write tests for each possible template parameter. Further-
more, not each method has to be applicable for each template parameter. In these cases, all
members are tested; each with a single suitable parameter. This method at least ensures that
all code sections are syntactically correct. Then, the methods usually behave correctly for all
other suitable template parameters as well.

To ensure a constant software quality, it is not sufficient that a class test once passes on
all platforms, but these tests have to be performed on a regular basis on all platforms. This
may be illustrated by an example. A test for the BALL classObject passed on all platforms.
The implementation ofObject relies on the runtime type identification functions (RTTI),
for which no test did exist. When the tests for RTTI were implemented, one of these functions
(isInstanceOf) was shown to work incorrectly. Instead of returningtrue if the given object
was an instance of a certain class, it returnedtrue if this object was ”a kind of” this class. Thus,
it replicated the behavior of the functionisKindOf . The error was corrected and the test for
the RTTI then passed on all platforms. However, a subsequenttest of theObject class failed.
Obviously, in the implementation ofObject the functionisInstanceOf was used, where
isKindOf was meant. So the removal of an error in one component unveiled an error in a
completely different component.

This example illustrates two important facts. First, it shows the limits of functional testing:
theObjects class behaved as specified, although there was an obvious implementation error
that could have been found by reviewing the code. Second, it shows the importance of repeated
automatic testing of all classes, since changes in one classoften affect other classes as well.

7.5.3 Test macros

The testing of 460 classes on a dozen platforms has clearly tobe automated. This requires a
well defined external interface for all test programs. We decided to implement this as a set
of macros. The macros implement a program frame for the classtests. The test of a class
or component is broken down into several subtests. Eachsubtestverifies the behavior of one
method or function and itself consists of severalprimitive tests. In terms of Fig. 7.2, each
macro represents a primitive test.

What a typical test program might look like is shown in the following listing:

112

7.5. TESTING

1 #include <BALL/CONCEPT/classTest.h>
2 #include <BALL/DATATYPE/string.h>
3 using namespace BALL;
4
5 // start the class test for class String
6 START_TEST(String,"$Id: implementation.tex,v 1.53 2000/11/13 16:02:22 oliver Exp $")
7
8 String* s;
9

10 // start the first subtest: test the default constructor
11 CHECK(String::String())
12 s = new String;
13
14 // test whether we did get a non zero pointer
15 // this should always pass
16 TEST_NOT_EQUAL(s, 0)
17
18 if (s != 0)
19 {
20 // test whether the string is empty
21 TEST_EQUAL(strlen(s->c_str()), 0)
22 }
23
24 // done with this subtest
25 RESULT
26
27 // further subtests
28 [....]
29
30 // done with all subtests - print the result
31 END_TEST

First, the test program includesclassTest.h which contains the test macro definitions (line
1). Then, it includes the header of the class to be tested – in our example the string class.
The first macro to be called is alwaysSTARTTEST. This macro contains the program’s main
function and performs some initialization steps. Then, an arbitrary number of subtests may
follow. Each subtest starts with the macroCHECK; its argument is the name of the method
or function to be tested. Then an arbitrary number of primitives may follow, terminated by
the macroRESULTwhich terminates the subtest. Finally, the test program is terminated by the
macroENDTEST. When run without arguments, each test program executes alltests and prints
OKif all test passed, orFAILED if any primitive test failed. The test result is also returned via
the program’s exit code (0 if all test passed, 1 otherwise).

If a test program fails, it may be rerun in verbose mode and then prints information on
the test that failed in a standardized format. Further details of the verbose mode will be given
below. First, we will give a description of the primitive test macros.

Each of the primitive macros may either pass or fail. If it fails, an internal variable is set to
signal a failure of the whole subtest and also the whole test program. The macros usually take
two arguments: the result of the “test oracle” (which is usually an expression defined by the
human implementing the test) and the result of the componentin test. The choice of the macro
determines the type of “comparator” used (to speak in the terms of the scheme in Fig. 7.2).
There exists a set of macros for different comparison purposes. The most important macro is
TEST EQUAL. This macro implements an equality comparison based on theoperator == .
For example,TEST_EQUAL(a, 5) is expanded to something like

113

CHAPTER 7. PROJECT MANAGEMENT

bool passed = ((a) == (5));

This macro assumes that the two expressions given are equality comparable,i.e. theopera-
tor == has to be defined for the two types.

The opposite behavior is implemented by theTEST NOTEQUALmacro. This primitive
test passes, if the two expressions given as arguments are not equal. This is useful to verify
that a method does not return a null pointer and similar caseswhere only the return value of a
failed test may be anticipated.

If the result of a test is a floating point number and deviations from the exact value are to
be expected due to different floating point implementationson different platforms, the macro
TEST REALEQUALshould be used. It verifies whether the absolute value of the difference
between the two arguments is below a user-defined upper bound.

It is also possible to test whether the class’ exception handling behaves as expected. If a
certain method should throw an exception, this can be verified using theTEST EXCEPTION
macro. For example, normalizing a vector of length zero throws a DivisionByZero
exception. A primitive test to verify this behavior might look like this:

1 Vector3 null(0, 0, 0);
2 TEST_EXCEPTION(Exception::DivisionByZero, null.norma lize())

This test passes, ifnull.normalize() really throws the exception, which is then
caught by the test macro. Unexpected exceptions are caught automatically by the try/catch
block implemented inCHECKandRESULTif they occur inside a subtest or by the try/catch
block implemented inSTARTTESTandENDTEST if they are thrown outside a subtest. In
any case, the test program fails and a diagnostic message specifying the kind of exception
thrown is printed in verbose mode.

Finally, theTEST FILE macro is suitable to compare the output written to a file. For
example, this macro is used to verify the PDB file class which is used to import or export
molecular structures in the PDB format. In principle, this should be rather simple: read a
System from disk, write it to a temporary file in PDB format, and compare this file with
the original file. Unfortunately, this approach fails for the very first line of the PDB format:
this line contains the date the file was created. This problemis solved by allowing regular
expressions for the files to be compared. The two files are compared line-wise. If a line in
the template file (the “oracle output”) starts with a’/’ , the rest of the line is interpreted
as a regular expression and the corresponding line in the temporary file has to match this
expression. In our example of the PDB class test, the first fewlines of the test output might
look like this:

1 HEADER BPTI 6-DEC-99
2 SEQRES 1 58 ARG PRO ASP PHE CYS LEU GLU PRO PRO TYR THR GLY PRO
3 SEQRES 2 58 CYS LYS ALA ARG ILE ILE ARG TYR PHE TYR ASN ALA LYS
4 SEQRES 3 58 ALA GLY LEU CYS GLN THR PHE VAL TYR GLY GLY CYS ARG
5 SEQRES 4 58 ALA LYS ARG ASN ASN PHE LYS SER ALA GLU ASP CYS MET
6 SEQRES 5 58 ARG THR CYS GLY GLY ALA

The corresponding lines in the template file are:

1 /HEADER BPTI [1-3][0-9]-[A-Z][A-Z][A-Z]-[0-9][0-9]
2 SEQRES 1 58 ARG PRO ASP PHE CYS LEU GLU PRO PRO TYR THR GLY PRO
3 SEQRES 2 58 CYS LYS ALA ARG ILE ILE ARG TYR PHE TYR ASN ALA LYS
4 SEQRES 3 58 ALA GLY LEU CYS GLN THR PHE VAL TYR GLY GLY CYS ARG

114

7.5. TESTING

Figure 7.3: Web interface for automatic testing: Overview page

5 SEQRES 4 58 ALA LYS ARG ASN ASN PHE LYS SER ALA GLU ASP CYS MET
6 SEQRES 5 58 ARG THR CYS GLY GLY ALA

The regular expression in the first line matches all possibledates as defined in the PDB
format.

7.5.4 Automatic Test Builds

Using these macros simplifies the implementation of test programs and creates a well defined
interface. Using this interface, a suite of shell scripts was developed that performs a automated
test build on all available platforms. These platforms are specified in a configuration file. The
script then extracts the current version of BALL from the CVSrepository, runsconfigure ,
builds the shared library, and executes all class tests. Finally, web pages are created that show
the results of the test builds for all platforms.

The overview page might look like the one in Fig. 7.3. It showsthe result for the execution
of configure, the build of the library, the build of the test, and the execution of all tests for
five different platforms. Yellow table entries indicate problems, green ones indicate that the
corresponding step was successful. In the above example, one test failed and the compilation
of the library caused a compiler warning. Compiler warningsand errors are extracted from the
log files and are shown by following the link in the corresponding table entry:

115

CHAPTER 7. PROJECT MANAGEMENT

By following the links for each error, the source code causing the warning can be directly
inspected. The line causing the error is highlighted in red:

This web interface greatly simplifies the maintenance of thecode on all platforms since it
immediately reveals any problems with new code. Since a testbuild is performed every night
on all platforms, committing faulty code to the repository becomes obvious the latest by the
next day. Using the revision control system, a controlled roll back of the software to the last
version that ran on all platforms can be obtained at any time.

7.6 Installation and Configuration

An important aspect of our design goalease of useis a simple and smooth installation on
all required platforms. When we examined existing softwarepackages before we started the
implementation of BALL, installation was a continuous source of frustration. So our goal was
to make the installation of BALL as simple as possible. This is a truly demanding task. First,
all platforms are different, all compilers take different options, different versions of software
or operating system require special workarounds, header files differ from platform to platform,
and finally every local installation has its own peculiarities.

116

7.6. INSTALLATION AND CONFIGURATION

GNU autoconf[37] is a portable and extensible tool for the installation of software packets.
It uses a very limited set of standard unix tools (sh , ar , sed , etc.) to gather all information
on the system that is required to automatically build and install the libraries. So if everything
works as expected, a typical installation would only require to run the configuration script
configure and the build the library with the commandmake. configure is a rather com-
plex shell script (about 7500 lines long) that identifies theoperating system and the compiler
and then searches for the required additional software (e.g.libraries and header files).

Contrary to installation routines that only provide platform dependent configuration files
(i.e. a set of files for each combination of operating system and compiler that is supported),
configure is based on tests to identify the platforms capabilities. For example, instead of
stating that the GNU compiler does not provide the ANSI classnumerical limits , the
configure script runs a test program that determines whether thenumerical limits
class is available. This approach is clearly superior, as itrequires very little effort when porting
the library to a new platform. Most of the porting is done by the configure script when
testing for required features.

Writing these tests in a portable and general way is nevertheless rather tricky and requires
a good knowledge of unix systems and their differences. But this effort usually leads to a very
convenient installation, as has been shown in our alpha testexperiences. Even if the installation
fails, configure provides mechanisms to solve these problems from a distance. For example, the
results of all tests are written to a log file. Usually, by mailing the output of theconfigure
script and this log file, most installation problems can be resolved.

117

Chapter 8

Programming with BALL

In this chapter, we will illustrate the use of BALL for Rapid Software Prototyping by means of
a simple example: the minimization of a protein in vacuum. This example is originally taken
from the tutorial of the Molecular Modeling package AMBER [22]. To illustrate the differences
between a conventional package (AMBER) and BALL, we will contrast the original AMBER
code directly with the BALL code.

The tutorial example performs a conjugate gradient minimization of the protein BPTI in
vacuum after adding the required hydrogen atoms. Since AMBER is a mere collection of
FORTRAN programs, the code shown here is mainly shell code and input files for the different
FORTRAN programs.

Preparation of the structures

In a first step, we have to add the hydrogen atoms to the BPTI structure, since they are
usually not contained in a PDB file. Using AMBER, this is accomplished by theprotonate
program:

1 protonate -d amber41/dat/PROTON_INFO < pti.pdb > ptiH.pdb

The call to protonate reads the PDB file, adds all missing hydrogens, and stores the
information to the fileptiH.pdb . In BALL, the same task is accomplished by the
add hydrogens member of the fragment database after reading the PDB file:

1 PDBFile infile("pti.pdb");
2 System S;
3
4 infile >> S;
5
6 FragmentDB frag_db;
7 S.apply(frag_db.add_hydrogens);

Setting Up the Force Field

Using AMBER, the next step is to establish the topology of theforce field. To achieve this,
the programlink is called which reads information on the bonds from a filedat/db4 in
the AMBER data directory (set in the environment variable$AMBERHOME. Prior to the call to
link , an input file has to be constructed that contains the sequence information of the protein
and the necessary information on sulfur bridges:

1 cat <<eof >lnkin
2 bpti
3

CHAPTER 8. PROGRAMMING WITH BALL

4
5 DU
6 0 0 0 0 0
7 bpti
8 P 1 0 1 3 1
9 ARG 2PRO ASP PHE CYX LEU GLU PRO PRO TYR THR GLY

10 PRO CYX LYS ALA ARG ILE ILE ARG TYR PHE TYR ASN
11 ALA LYS ALA GLY LEU CYX GLN THR PHE VAL TYR GLY
12 GLY CYX ARG ALA LYS ARG ASN ASN PHE LYS SER ALA
13 GLU ASP CYX MET ARG THR CYX GLY GLY ALA
14
15 5 55SG SG 0
16 14 38SG SG 0
17 30 51SG SG 0
18
19 QUIT
20 eof
21 #
22 link -i lnkin -o lnkout -p $AMBERHOME/dat/db4.dat
23 /bin/rm lnkin

The first seven lines contain various configuration flags, that are usually not changed. If
changes are done here, one has to be very careful, as the inputformat is strictly column-
oriented (as the input formats of most AMBER input files as well), so the number of blanks
before each number is crucial and blanks and empty lines haveto be counted carefully to
avoid unwanted behavior. The next five lines contain the sequence information that has to be
extracted from the PDB file manually. Lines 15–17 contain information on the three sulfur
bridges of the structure. Again, this information can be extracted from the PDB file. The last
two lines finally call link and create the topology information in file lnkout and in the file
linkbin , which is used in the next step by theedit program.

The same code in BALL looks as follows:

8 S.apply(frag_db.build_bonds);

This code constructs all bonds, including the sulfur bridges from the topological information
contained in the fragment database.

In the next step, AMBER checks the structure of the PDB file forconsistency and writes a
set of starting coordinates. This step is carried out using theedit program:

1 cat <<eof > edtin
2 bpti
3 0 0 0 0
4 XYZ
5 OMIT
6 XRAY
7 0 0 0 0 0
8 QUIT
9 eof

10 #
11 edit -i edtin -o edtout -pi ptiH.pdb
12 /bin/rm edtin

This script reads the PDB file fromptiH.pdb , checks it for consistency, and writes starting
coordinates for all atoms toedtout . It also creates an additional file (edtbin) that contains

120

information on the coordinates and is used in the next step byparm .
A similar functionality (although much more sophisticated) is contained in the residue

checker class of BALL. This class exploits the topological and geometric information
contained in the fragment database to verify the residues itis applied to. Upon failure, it emits
detailed warning messages.

9 ResidueChecker checker(frag_db);
10 S.apply(checker);

In the next step, AMBER reads the information fromedtbin and the force field parameter
file parm91.dat . From these files, it extracts all relevant information on the coordinates, the
atom types, and the parameters required for the force field calculation (e.g. force constants,
bond lengths,etc.).

1 cat <<eof >prmin
2 name of system
3 BIN FOR STDA
4
5 0
6
7 eof
8 #
9 parm -i prmin -o prmout -f $AMBERHOME/dat/parm91.dat

10 /bin/rm prmin

Running the Minimization

The minimiztion itself is accomplished by the programsander , which reads the input from
prmtop andprmcrd created in the last step:

1 cat << eof > minin
2 # 200 steps of minimization:
3 &cntrl
4 maxcyc=200, imin=1, cut=12.0, nsnb=20, idiel=0, scee=2.0 , ntpr=10,
5 &end
6 eof
7 sander -i minin -o pti_min.log -c prmcrd -r pti_min.xyz
8 /bin/rm minin

This script performs a conjugate gradient minimization fora maximum of 200 steps (given
as the value formaxcyc). The fact that a full minimization is performed, is specified via
the value ofimin : a value of 1 means a minimization, while a value of 0 starts a Molecular
Dynamics simulation. The remaining parameters in the fourth line set the parameters for the
nonbonded cutoff (cut) to 12 Å, and choose a distance-dependent dielectric constant forthe
simulation (idiel=0). The current energy during the minimization will be printed every ten
steps (nptr=10) and the pair list will be updated every 20 steps (nsnb=20). The parameter
scee specifies a scaling factor for the electrostatic contribution of the force field. The resulting
structure is written to the filepti min.xyz .

In BALL, the code of the last two steps corresponds to the creation of a force field object
and a conjugate gradient minimizer object:

121

CHAPTER 8. PROGRAMMING WITH BALL

11 AmberFF force_field;
12 force_field.options[AmberFF::Option::FILENAME] = "Amb er/amber91.ini";
13 force_field.options[AmberFF::Option::NONBONDED_CUTO FF] = 12.0;
14 force_field.options[AmberFF::Option::DISTANCE_DEPEN DENT_DIELECTRIC] = true;
15 force_field.setUpdateFrequency(20);
16 force_field.setup(S);
17
18 ConjugateGradientMinimizer minimizer(force_field);
19 minimizer.options[EnergyMinimizer::Option::ENERGY_O UTPUT_FREQUENCY] = 10;
20
21 minimizer.minimize(200);
22
23 PDBFile outfile("pti_min.pdb", File::OUT);
24 outfile << S;

The above code creates a force field object, assigns the correct options (for the filename, the
nonbonded cutoff, and the distance-dependent electrostatics) and sets the pair list update fre-
quency to the desired value. A call tosetup then sets up all force field parameters and internal
data structures. We then create a conjugate gradient minimizer in line 18, set its energy out-
put frequency to the desired value, and finally perform a maximum of 200 minimization steps
(line 21). The resulting structure is then written to a PDB file in the last two lines.

As can be seen from this example, BALL can significantly reduce the amount of code and
time required in the field of Molecular Modeling. When compared to conventional software
packages, BALL excels especially in the readability of the code and the robustness. Especially
the preparation of the input files for FORTRAN programs is often very error-prone due to the
column-based style they require and the diversity of formatdefinitions. BALL, in contrast,
provides a much more convenient and comprehensible interface.

122

Chapter 9

Outlook

With BALL, we implemented the first object-oriented framework for Rapid Software Proto-
typing in the field of Molecular Modeling. It differs from functionally related packages in
its careful design, the use of modern software engineering techniques, and the comprehensive
functionality. In this section, we will briefly point out some of the current problems and future
directions for improvement and development.

Most of the current problems are related to the sheer size of the project: BALL contains
about 460 different classes implemented with 270,000 linesof code. An additional 30,000 lines
of code implement the class tests. Keeping this amount of code consistent is currently one of
the major challenges in the development of BALL.

Also the testing of the classes is not yet complete. There aretests implemented for roughly
one third of the classes, so a large number of bugs still awaits discovery. Similarly, there is still
a number of classes with lacking or incomplete documentation. These gaps have to be filled in
the near future as well.

During the alpha test phase, we received extensive feedbackfrom the users. The majority of
these mails was concerned with requests for additional functionality. It is certainly impossible
to satisfy all the wishes, but there are some key areas that are obviously of general interest. The
first field is Molecular Mechanics. Besides the wishes for additional force fields, there is also
need for harmonic constraints, and superior optimization methods (quasi-Newton methods,
internal coordinate optimization). Second, the visualization component still requires a number
of improvements. Besides additional visualization techniques (e.g.backbone and secondary
structure representations of proteins or mapping of properties onto molecular surfaces), we also
have to speed up the the visualization component. The Pythonextensions/embedding, although
already very useful, does not yet cover all BALL classes and several technical problems related
to the automatic generation of the wrapper classes remain tobe solved.

Since we intend BALL to become a widely used tool, licenses are free of charge for re-
search and teaching, although commercial licenses and support are available as well (through
our partner Algorithmic Solutions Software GmbH). In that way, we hope to resolve some of
the topics mentioned above in cooperation with other groupsthat are working in the field of
Molecular Modeling.

Part IV

Conclusion

CONCLUSION

In this thesis, we have presented new approaches for the protein docking problem as well
as a comprehensive framework in C++ for rapid software prototyping in the field of Molecular
Modeling.

Semi-flexible docking

First, we presented two new techniques for semi-flexible protein-protein docking. Based on a
rigid-body docking algorithm, we developed methods to demangle the amino acid side chains
in the protein-protein interface. This side chain placement problem can be reduced to a com-
binatorial optimization problem: identify the set of side chain conformations that yields the
lowest energy. The first technique is a so-called multi greedy approach,i.e.we search the enu-
meration tree of all possible side chain conformations and avoid combinatorial explosion by
limiting the number of nodes in each layer of the tree to a constant number. The second ap-
proach is a branch-&-cut algorithm based on the ILP formulation of the problem. We identified
several classes of facet-defining inequalities and deviseda separation algorithm for a subclass
of these inequalities. With the algorithm implemented using BALL, LEDA, and CPLEX, we
could efficiently solve the side chain placement problem optimally. The suboptimal solutions
produced by the greedy algorithm were sufficiently close to the optimal solutions to give very
similar results in protein docking: in a test set of three protease-inhibitor complexes, both
methods were able to correctly demangle the side chains. Theresulting complex structures
were physically meaningful and therefore gave a good ranking in the final energetic evalua-
tion step, so both approaches were able to predict the true complex structure for each of the
test cases. Future improvements of the methods could employbranch-&-price techniques on
the algorithmic side or improved energy models and more detailed rotamer libraries on the
physicochemical side.

Use of NMR data for protein docking

Since the energetic evaluation of the docking is a demandingand unsolved problem, we also
tried to identify other possibilities to separate true and false positive complex structures. We
developed an approach that performs this separation based on experimental data. This ap-
proach exploits the structural information contained in nuclear magnetic resonance spectra
of the complex. Although there have been previous approaches in protein-ligand docking and
protein-protein docking that incorporate NMR data in the form of NOE constraints, our method
is the first method to integrateunmodifiedexperimental data into the docking algorithm. We
developed models and methods to predict the1H-NMR spectra of all tentative complex struc-
tures generated by a rigid-body docking algorithm. These spectra were then directly compared
with the experimental NMR spectrum and the difference area between the two spectra was
used to rank the docking candidates. This approach worked quite well for a set of test cases
and was even able to identify the correct complex structure for a very difficult protein-peptide
docking example, where energy-based scoring functions were completely unable to predict the
true complex structure. This new technique should be applied to a larger set of test cases. The
relevant data is usually not publicly available, but we hopeto get access to that data through
cooperations with NMR research groups. The prediction and comparison of the spectra still

126

CONCLUSION

has lots of room for improvements,e.g.to model hydrogen bonding effects. The technique is
applicable to related problems as well, and thus we hope to beable to speed up NMR-based
structure elucidation and to transfer our method to the problem of protein structure prediction.

BALL

The above mentioned methods were developed using the BALL framework. BALL is the first
object-oriented framework for rapid software prototypingin molecular modeling. It has been
carefully designed to be robust, portable, efficient, and extensible. Besides fundamental data
structures, BALL provides functionality for a number of keyareas in Molecular Modeling.
We implemented several molecular mechanics force fields, energy minimization algorithms,
molecular dynamics simulations, solvation methods, protein motif search and mapping, three-
dimensional visualization, file import/export, and NMR shift prediction. BALL consists of
approximately 460 different classes and 270,000 lines of code. To improve the library’s rapid
prototyping capabilities, we embedded the BALL classes into the object-oriented scripting
language Python. After an application has been developed inPython, it is very simple to port
it to C++ for production purposes. The BALL library is available for anumber of operating
systems and compilers and should be easily portable, as it isimplemented in ANSI C++. BALL
has been used in several labs in Europe and North America in the current alpha test phase
and we hope to release the first beta release to a larger audience soon. There still remain a
number of problems to be addressed, namely the documentation, which needs improvements
and the test suite, which does not yet cover all BALL classes.As soon as these problems have
been resolved, we will extend the functionality of BALL, especially in the fields of Molecular
Modeling and Protein Engineering. We intend for BALL to become a public repository for
reliable data structures and algorithms in the field of Molecular Modeling.

127

Appendix A

UML Notation

This work uses the Unified Modeling Language (UML) to represent design details of BALL.
The class diagrams were drawn according to the UML 1.3 standard [90]. A short introduction
to this notation can be found in the book by Martin Fowler [36]. A rather comprehensive
reference is the book by Rumbaugh, Jacobson, and Booch [103]who are the original designers
of the UML. This appendix gives a short overview of the notation used in Part III. The most
important concepts of the UML are also explained in the glossary.

Classes and Objects

A central concept in UML is theclass. A class may containattributesandoperations. The
notation for a class is a rectangle with the class name on top.The lower part of the rectangle
usually contains two sections with the attributes and the operations. Public attributes and
operations are prefixed by “+”, protected ones by “#”, and private ones by a “-” sign. Abstract
operations are typeset in italics. Template classes are marked by an additional box at their
upper right corner that contains the template parameter. Objects (i.e. instances of classes) are
distinguished from classes by the underlined object name and class name.

ClassName
+public attribute: type = initial value
#protected attribute: type
-private attribute: type
+operation(parameter:type): return type
+abstract operation()

class

TemplateClass
+attribute:
+operation()

parameter

template class

ClassName

attributes and operations
suppressed

name:class name

object

Relationships

Relationships between objects and classes are representedby different kinds of lines and
arrows.Associationsare represented as solid lines and may be adorned with role names, asso-
ciation names, and multiplicities (just to name the most important decorations). Associations
without arrows are bidirectional, whereas associations with an arrow are unidirectional. They

Appendix A: UML Notation

are onlynavigablein the direction of the arrow.Generalizationis expressed as solid line from
the specialized class to the base class with a hollow triangle at the end of the base class. Lines
with hollow or filled diamonds are used to expressaggregationand composition. They are
usually decorated with multiplicities and rolenames. Arealization is the relationship between
a specification and its implementation. It is represented asa dashed line with a hollow triangle
at the end of the specification. A dashed line with an arrow represents adependencybetween
two elements. It is usually adorned with the name of the dependency.

realization

generalization

dependency

bidirectional association

navigable association

aggregation

composition

Design Patterns

Design patterns are usually modeled as acollaboration. They are shown as dashed ellipes
containing the name of the pattern and dashed lines from the ellipse to each participating class.

Visitor

VisitorElementNode

+accept(visitor:Visitor)

Visitor

+visitNode(node:Node)

The above example shows part of the visitor design pattern and two of its participants: the
Visitor class and theNodeclass. The dashed ellipse is labeled with the name of the pattern and
the bindings of the collaboration are labeled with the name of the role in the pattern.

Packages

UML allows the grouping of model elements and diagrams with so-calledpackages. Packages
may be nested within other packages, thus creating hierarchical groupings. Packages are drawn
as a rectangle with a tab attached on the upper left corner. This tab contains the name of the
package, if its contents are shown. If the contents of a package are not shown, the tab usually
remains empty and the package name is put inside the package rectangle. Relationships
between packages are drawn in the usual manner. Dependencies between packages indicate
that dependencies exist at least between some elements fromeach of the packages.

Larger Package

Package 2Package 1

SomePackage

«use»

nested packages

package dependency

130

Appendix B

Curriculum Vitae

Oliver Kohlbacher
Johann-Strauß-Straße 13
66793 Saarwellingen

Date of Birth 29.08.1971.

Citizenship German.

Education MAX -PLANCK -INSTITUT FÜR INFORMATIK SAARBRÜCKEN

1996–2000

PhD student.

UNIVERSITÄT DES SAARLANDES SAARBRÜCKEN

1990–1996

Diplom (�Master’s degree) in Physical Chemistry in 1996. Thesis:ab-initio
calculations of silicate clusters: contributions to the simulation of adsorption
processes onSiO2 , advisor: Prof. Dr. Hans Dieter Breuer.

MAX -PLANCK -GYMNASIUM SAARLOUIS

1990

Abitur (� Highschool Diploma).

Work and
Teaching
Experience I-TRONIX KG SAARBRÜCKEN

1999 – present

Geschäftsführer (CEO).

UNIVERSITÄT DES SAARLANDES SAARBRÜCKEN

1992–1998

Teaching assistant for the following lectures:
– Organic Analytics,
– Computer Science IV,
– Computational Molecular Biology.

Appendix B: Curriculum Vitae

MAX -PLANCK -INSTITUT FÜR INFORMATIK SAARBRÜCKEN

1992–1996

System administration in the computer service group.

Awards 2000

Heinz Billing Award 2000 for the Advancement of Scientific Computation
(for the development of BALL)

Publications

Journal
Publications 1. KOHLBACHER, O., AND LENHOF, H.-P. BALL - Rapid Software Proto-

typing in Computational Molecular Biology.Bioinformatics(2000). (in
press).

Book Chapters 2. KOHLBACHER, O. BALL – A Framework for Rapid Application De-
velopment in Molecular Modeling. InBeiträge zum Heinz-Billing-Preis
2000, no. 55 in Forschung und wissenschaftliches Rechnen - GWDG
Berichte. Gesellschaft für wissenschaftliche Datenverarbeitung mbH,
Göttingen, 2000. in press.

Conference
Publications 3. NEUMANN , D., HALTNER, E., LEHR, C.-M., KOHLBACHER, O., AND

LENHOF, H.-P. Investigating the sugar-lectin interaction by computa-
tional chemistry: Tunneling the epithelial barrier. InAbstracts of the 18th
Interlec Meeting(1998), p. 549.

4. BOGHOSSIAN, N., KOHLBACHER, O.,AND LENHOF, H.-P. BALL: Bio-
chemical Algorithms Library. InAlgorithm Engineering, 3rd Interna-
tional Workshop, WAE’99, Proceedings(1999), J. Vitter and C. Zaroliagis,
Eds., vol. 1668 ofLecture Notes in Computer Science (LNCS), Springer,
pp. 330–344.

5. KOHLBACHER, O., AND LENHOF, H.-P. Rapid software prototyping in
computational molecular biology. InProceedings of the German Confer-
ence on Bioinformatics (GCB’99)(1999).

6. ALTHAUS, E., KOHLBACHER, O., LENHOF, H.-P., AND M ÜLLER, P.
A combinatorial approach to protein docking with flexible side-chains. In
RECOMB 2000 – Proceedings of the Fourth Annual International Confer-
ence on Computational Molecular Biology(2000), R. Shamir, S. Miyano,
S. Istrail, P. Pevzner, and M. Waterman, Eds., ACM press, pp.15–24.

7. NEUMANN , D., KOHLBACHER, O., HALTNER, E., LENHOF, H.-P.,
AND LEHR, C.-M. Modeling the sugar lectin interaction by computa-
tional chemistry relevant to drug design. InProc. 3rd World Meeting on
Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology(Apr
2000), p. 233.

132

8. KOHLBACHER, O., BURCHARDT, A., MOLL, A., HILDEBRANDT, A.,
BAYER, P.,AND LENHOF, H.-P. A NMR-spectra-based scoring function
for protein docking. InRECOMB 2001 – Proceedings of the Fifth Annual
International Conference on Computational Molecular Biology (2001),
D. Sankoff and T. Lengauer, Eds., ACM press. (in press).

Technical
Reports 9. BOGHOSSIAN, N., KOHLBACHER, O.,AND LENHOF, H.-P. BALL: Bio-

chemical Algorithms Library. Tech. Rep. MPI-I-99-1-002, Max-Planck-
Institut für Informatik, Saarbrücken, 1999.

10. ALTHAUS, E., KOHLBACHER, O., LENHOF, H.-P.,AND M ÜLLER, P. A
branch-and-cut algorithm for the optimal solution of the side-chain place-
ment problem. Tech. Rep. MPI-I-2000-1-001, Max-Planck-Institut für
Informatik, Saarbrücken, 2000.

Work in
Progress 11. ALTHAUS, E., KOHLBACHER, O., LENHOF, H.-P., AND M ÜLLER, P.

A combinatorial approach to protein docking with flexible side-chains.
submitted to J. Comput. Biol, 2000.

12. BOGHOSSIAN, N., KOHLBACHER, O., AND LENHOF, H.-P. Rapid Soft-
ware Prototyping in Molecular Modeling using the Biochemical Algo-
rithms Library (BALL). submitted to J. Exptl. Algorithmics, 2000.

13. KOHLBACHER, O., BURCHARDT, A., MOLL, A., HILDEBRANDT, A.,
BAYER, P., AND LENHOF, H.-P. Structure prediction of protein com-
plexes by a NMR-based protein docking algorithm. submittedto J.
Biomol. NMR, 2000.

14. NEUMANN , D., KOHLBACHER, O., LENHOF, H.-P.,AND LEHR, C.-M.
Protein-sugar interactions: Calculated versus experimental binding ener-
gies. submitted to J. Biol. Chem., 2000.

Theses 15. KOHLBACHER, O. ab-initio-Rechnungen an Silikat-Clustern: Unter-
suchungen zur Simulation der Adsorption anSiO2. Universität des Saar-
landes. Diplomarbeit, advisor: Prof. Dr. H. D. Breuer, Jan 1996.

133

Appendix C: Bibliography

134

Bibliography

[1] R. Abagyan and M. Totrov. Biased probability Monte Carloconformational searches and electrostatic calculations for
peptides and proteins.J. Mol. Biol., 235:983–1002, 1994.

[2] E. Althaus, O. Kohlbacher, H.-P. Lenhof, and P. Müller.A branch and cut algorithm for the optimal solution of the
side–chain placement problem. Technical Report MPI-I-2000-1-001, Max-Planck-Institut für Informatik, Saarbrücken,
2000.

[3] E. Althaus, O. Kohlbacher, H.-P. Lenhof, and P. Müller.A combinatorial approach to protein docking with flexible side–
chains. In R. Shamir, S. Miyano, S. Istrail, P. Pevzner, and M. Waterman, editors,RECOMB 2000 – Proceedings of the
Fourth Annual International Conference on Computational Molecular Biology, pages 15–24. ACM press, 2000.

[4] E. Althaus, O. Kohlbacher, H.-P. Lenhof, and P. Müller.A combinatorial approach to protein docking with flexible side–
chains.J. Comput. Biol., 2000. (submitted).

[5] Programming Languages – C++. International Standard, American National Standards Institute, New York, July 1998.
Ref. No. ISO/IEC 14882:1998(E).

[6] H. Balzert. Lehrbuch der Software-Technik, volume 2. Spektrum Akakemischer Verlag, 1996.

[7] P. Bayer. personal communication, 2000.

[8] D. M. Beazley. SWIG: An easy to use tool for integrating scripting languages with C and C++. InProceedings of the
Fourth Annual Tcl/Tk Workshop, pages 129–140. Usenix, 1996.

[9] F. Bernstein, T. Koetzle, G. Williams, E. Meyer Jr, M. Brice, J. Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi.
The protein data bank: a computer-based archival file for macromolecular structures.J. Mol. Biol., 112:535, 1977.

[10] R. E. Berry and B. A. E. Meekings. A style analysis of C programs.Comm. ACM, 28(1):80–88, 1985.

[11] M. J. Betts and M. J. E. Sternberg. An analysis of conformational changes on protein-protein association: implications for
predictive docking.Protein Engineering, 12(4):271–283, 1999.

[12] Bioperl. http://bioperl.org .

[13] Biopython. http://biopython.org .

[14] F. Bloch, W. W. Hansen, and M. E. Packard. Nuclear induction. Phys. Rev., 69:127, 1946.

[15] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus. CHARMM: A program for
macromolecular energy, minimization, and dynamics calculations.J. Comput. Chem., 4(2):187–217, 1983.

[16] R. E. Bruccoleri and J. Novotny. Antibody modeling using the conformational search program CONGEN.Immunometh-
ods, 1:96–106, 1992.

[17] A. D. Buckingham. Chemical shifts in the nuclear magnetic resonance spectra of molecules containing polar groups.Can.
J. Chem., 38:300–307, 1960.

[18] W. Chang, I. Shindyalov, C. Pu, and P. Bourne. Design andapplication of PDBLib, a C++ macromolecular class library.
CABIOS, 10(6):575–586, 1994.

[19] S. Chidamber and C. Kemerer. Towards a metrics suite forobject oriented design.SIGPLAN Notices, 26(11):197–211,
1991.

[20] M. L. Connolly. Shape complementarity at the hemoglobin �1�1 subunit interface.Biopolymers, 25:1229–1247, 1986.

[21] J. O. Coplien.Advanced C++ programming styles and idioms. Addison-Wesley, 1992.

Appendix C: Bibliography

[22] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W.
Caldwell, and P. A. Kollman. A second generation force field for the simulation of proteins, nucleic acids and organic
molecules.J. Am. Chem. Soc., 117:5179–5197, 1995.

[23] B. Coulange.Software reuse. Springer, London, 1997.

[24] The concurrent versions system.http://www.sourcegear.com/CVS .

[25] J. Desmet, M. D. Maeyer, B. Hazes, and I. Lasters. The dead-end elimination theorem and its use in the protein side-chain
positioning.Nature, 356:539–542, April 1992.

[26] N. Drakos. The LATEX to HTML translator. Technical report, Computer Based Learning Unit, University of Leeds, Jan.
1994.

[27] P. Dubois. CXX version 4.2.http://CXX.sourceforge.net/ , 2000.

[28] R. L. Dunbrack and F. E. Cohen. Bayesian statistical analysis of protein side-chain rotamer preferences.Protein Science,
6:1661–1681, 1997.

[29] P. Ehrlich. On immunity with special reference to cell life. Proceedings of the Royal Society of London, 66:424–48, 1900.

[30] B. Elshorst, M. Hennig, H. Foersterling, A. Diener, M. Maurer, S. P., H. Schwalbe, C. Griesinger, J. Krebs, H. Schmid,
T. Vorherr, and E. Carafoli. NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+-pump.
Biochemistry, 38:12320–12332, 1999.

[31] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S.Schönherr. On the design of CGAL, the Computational Geometry
Algorithms Library. Technical Report MPI-I-98-1-007, Max-Planck-Institut für Informatik, Saarbrücken, Feb. 1998.

[32] D. Fischer, S. L. Lin, H. J. Wolfson, and R. Nussinov. A geometry-based suite of molecular docking processes.J. Mol.
Biol., 248:459–477, 1995.

[33] D. Fischer, R. Norel, R. Nussinov, and H. J. Wolfson. 3-Ddocking of protein molecules. InLecture Notes in Computer
Science 684, pages 20–34. Springer Verlag, New York, 1993.

[34] E. Fischer. Einfluss der Konfiguration auf die Wirkung der Enzyme. Berichte der deutschen chemische Gesellschaft,
27:2985–2993, 1894.

[35] R. Fleischmann, M. Adams, O. White, E. Kirkness, A. Kerlavage, C. Bult, J. Tomb, B. Dougherty, and J. Merrick. Whole-
genome random sequencing and assembly of Haemophilus influenzae Rd.Science, 269(5223):496–512, 1995.

[36] M. Fowler and K. Scott.UML distilled. Addison Wesley, 1997.

[37] Free Software Foundation. GNU autoconf.http://www.gnu.org/software/autoconf/autoconf.html ,
2000.

[38] D. Frenkel and B. Smit.Understanding Molecular Simulations. Academic Press, San Diego, CA, 1996.

[39] H. Friebolin. Basic one- and two-dimensional NMR spectroscopy. VCH, Weinheim, 1993.

[40] H. A. Gabb, R. M. Jackson, and M. J. E. Sternberg. Modelling protein docking using shape complementarity, electrostatics
and biochemical information.J. Mol. Biol., 272:106–120, 1997.

[41] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design patterns : elements of reusable object-oriented software.
Addison-Wesley, Reading, MA, 1995.

[42] M. Goldman.Quantum Description of High-Resolution NMR in Liquids. Oxford University Press, London, 1988.

[43] H. Goldstein.Classical Mechanics. Addison Wesley, 2nd edition, 1980.

[44] M. Gradwell and J. Feeney. Validation of the use of intermolecular NOE constraints for obtaining docked structuresof
protein-ligand complexes.J. Biomol. NMR, 7(1):48–58, 1996.

[45] H. Günther.NMR-Spektroskopie. Thieme, Stuttgart, 1992.

136

[46] C. W. Haigh and R. B. Mallion. New tables of ring current shielding in proton magnetic resonance.Org. Mag. Res.,
4(2):203–228, 1972.

[47] C. W. Haigh and R. B. Mallion. Ring current theories in nuclear magnetic resonance.Prog. NMR. Spec., 13:303–344,
1980.

[48] R. K. Harris.Nuclear Magnetic Resonance Spectroscopy. Longman, London, 1994.

[49] W. Harrison and C. Cook. A note on the Berry-Meekings style metric.Comm. ACM, 29(2):123–125, 1986.

[50] L. Holm and C. Sander. Fast and simple monte carlo algorithm for side-chain optimization in proteins: application to
model building by homology.Proteins, 14:213–223, 1992.

[51] W. Humphrey, A. Dalke, and K. Schulten. VMD – Visual Molecular Dynamics.J. Molecular Graphics, 14:33–38, 1996.

[52] ILOG. ILOG CPLEX 6.5 : user’s manual. ILOG, Bad Homburg, march 1999 edition, 1999.

[53] R. M. Jackson, H. A. Gabb, and M. J. E. Sternberg. Rapid refinement of protein interfaces incorporating solvation:
Application to the protein docking problem.J. Mol. Biol., 276:265–285, 1998.

[54] R. M. Jackson and M. J. E. Sternberg. A continuum model for protein-protein interactions: Application to the protein
docking problem.J. Mol. Biol., 250:258–275, 1995.

[55] P. Jalote. Synthesizing implementations of abstract data types from axiomatic specifications.Software Practice and
Experience, 17(11):847–858, 1987.

[56] P. Jalote.An integrated approach to software engineering. Undergraduate texts in computer science. Springer, 2nd ed.
edition, 1997.

[57] F. Jensen.Introduction to Computational Chemistry. John Wiley & Sons, 1998.

[58] C. E. Johnson and F. A. Bovey.Chem. Phys., 29(5):1012, 1958.

[59] M. Jünger and S. Thienel. Introduction to ABACUS - A Branch-And-CUt System. Technical report, Informatik, Universität
zu Köln, 1997.

[60] E. Katchalski-Katzir, I. Shariv, M. Eisenstein, A. A. Friesem, C. Afalo, and I. A. Vakser. Molecular surface recognition:
Determination of geometric fit between proteins and their ligands by correlation techniques.Proc. Natl. Acad. Sci. USA,
89:2195–2199, 1992.

[61] D. E. Knuth and S. Levy.The CWEB System of Structured Documentation, Version 3.0. Addison-Wesley, Reading, MA,
USA, 1993.

[62] P. Koehl and M. Delarue. Application of a self-consistent mean field theory to predict protein side-chains conformation
and estimate their conformational entropy.J. Mol. Biol, 239:249–275, 1994.

[63] O. Kohlbacher. BALL Coding Conventions, version 1.1.http://www.mpi-sb.mpg.de/BALL/DOWNLOAD/-
coding 1.1.ps , 2000.

[64] D. E. J. Koshland. Application of a theory of enzyme specificity to protein synthesis.Proc. Natl. Acad. Sci. (USA),
44:98–104, 1958.

[65] C. A. Laughton. Prediction of protein side-chain conformations from local three-dimensional homology relationships. J.
Mol. Biol., 235:1088–1097, 1994.

[66] T. Lazaridis and M. Karplus. Effective energy functionfor proteins in solution.Proteins, 35(2):133–152, 1999.

[67] A. R. Leach. Ligand docking to proteins with discrete side-chain flexibility.J. Mol. Biol., 235:345–356, 1994.

[68] A. R. Leach.Molecular Modeling: Principles and Applications. Addison Wesley Longman, Essex, 1996.

[69] A. R. Leach and A. P. Lemon. Exploring the conformational space of protein side chains using dead-end elimination and
the A* algorithm. Proteins: Struct., Function, and Genet., 33:227–239, 1998.

137

Appendix C: Bibliography

[70] H.-P. Lenhof. An algorithm for the protein docking problem. In D. Schomburg and U. Lessel, editors,Bioinformatics:
From nucleic acids and proteins to cell metabolism. GBF Monographs Volume 18, pages 125–139, 1995.

[71] H.-P. Lenhof. New contact measures for the protein docking problem. InProc. of the First Annual International Conference
on Computational Molecular Biology RECOMB 97, pages 182–191, 1997.

[72] T. Littlefair. C and C++ Code Counter.http://cccc.netpedia.net/ , version 3pre6b, 2000.

[73] R. C. Martin. The interface segregation principle.C++ report, (7), Aug. 1996.

[74] C. K. Mathews and K. van Holde.Biochemistry. The Benjamin/Cummings Publishing Company, 1990.

[75] T. J. McCabe. A complexity measure.IEEE Transactions on Software, 2(4):308–320, 1976.

[76] H. M. McConnell. J. Chem. Phys., 27:227–229, 1957.

[77] S. McConnell.Code Complete: A Practical Handbook of Software Construction. Microsoft Press, 1993.

[78] K. Mehlhorn, S. Näher, M. Seel, and C. Uhrig.The LEDA user manual: version 3.8. Max-Planck-Institut für Informatik,
Saarbrücken, 1999.

[79] B. Meyer. Object-Oriented Software Construction. Prentice Hall PTR, New Jersey, 2nd edition, 1997.

[80] M. Meyer, P. Wilson, and D. Schomburg. Hydrogen bondingand molecular surface shape complementarity as a basis for
protein docking.J. Mol. Biol., 264(1):199–210, 1996.

[81] S. Meyers.Effective C++. Addison-Wesley, Reading, MA, 1998.

[82] X. Morelli, A. Dolla, M. Czjzek, P. N. Palma, F. Blasco, L. Krippahl, J. J. G. Moura, and F. Guerlesquin. Heteronuclear
NMR and soft docking: An experimental approach for a structural model of the cytochrome
553-ferredoxin complex.
Biochemistry, 39:2530–2537, 2000.

[83] D. R. Musser and A. Saini.STL tutorial and reference guide : C++ programming with the standard template library.
Addison-Wesley professional computing ser. Addison-Wesley, Reading, MA, 1996.

[84] D. R. Musser and A. A. Stepanov. Generic programming. InP. Gianni, editor,Proceedings of the International Symposium
on Symbolic and Algebraic Computation, volume 358 ofLNCS, pages 13–25. Springer, 1989.

[85] N. C. Myers. Traits: a new and useful template technique. C++ Report, June 1995.

[86] J. Neider, T. Davis, and M. Woo.OpenGL Programming Guide. Addison–Wesley, Reading, MA, 1993.

[87] G. L. Nemhauser and L. A. Wolsey.Integer and Combinatorial Optimization. Wiley-Interscience Series in Discrete
Mathematics and Optimization. Wiley, New York; Chichester; Brisbane, 1988.

[88] A. Nicholls and B. Honig. A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-
Boltzmann equation.J. Comput. Chem., 12(4):435–445, 1991.

[89] R. Norel, S. L. Lin, D. Xu, H. J. Wolfson, and R. Nussinov.Molecular surface variability and induced conformational
changes upon protein-protein association. In R. H. Sarma and M. H. Sarma, editors,Structure, Motion, Interaction and
Expression of Biological Macromolecules. Proceedings of the Tenth Conversation. State University of New York, pages
33–51. Adenine Press, 1998.

[90] Object Management Group. Unified modeling language specification, 1998.http://www.omg.org .

[91] P. W. Oman and C. R. Cook. A programming style taxonomy.Journal of Systems and Software, 15(3):287–301, 1991.

[92] K. Ösapay and D. Case. Analysis of proton chemical shifts in regular secondary structure of proteins.J. Biomol. NMR,
4:215–230, 1994.

[93] K. Ösapay and D. A. Case. A new analysis of proton chemical shifts in proteins.J. Am. Chem. Soc., 113:9436–9444, 1991.

[94] M. Osawa, H. Tokumitsu, M. B. Swindells, H. Kurihara, M.Orita, T. Shibanuma, T. Furuya, and M. Ikura. A novel
calmodulin target recognition revealed by its NMR structure in complex with a peptide derived from Ca2+-calmodulin-
dependent protein kinase kinase.Nat. Struct. Biol., 6:819, 1999.

138

[95] J. K. Ousterhout.Tcl and the Tk Toolkit. Addison Wesley Publishing Company, 1994.

[96] J. K. Ousterhout. Scripting: Higher level programmingfor the 21st century.Computer, 31(3), 1998.

[97] L. Pauling.Chem. Phys., 4:673, 1936.

[98] V. I. Polshakov, W. D. Morgan, B. Birdsall, and J. Feeney. Validation of a new restraint docking method for solution
structure determination of protein-ligand complexes.J. Biomol. NMR, 14:115–122, 1999.

[99] J. Ponder and F. Richards. Tertiary templates for proteins – use of packing criteria in the enumeration of allowed sequences
for different structural classes.J. Mol. Biol., 193:775–791, 1987.

[100] L. Prechelt. An empirical comparison of C, C++, Java, Perl, Python, rexx, and Tcl for a search/string-processing program.
Technical Report 2000-5, Universität Karlsruhe, Fakult¨at für Informatik, Karlsruhe, Germany, 2000.

[101] E. M. Purcell, H. C. Torrey, and R. V. Pound. Resonance absorption by nuclear magnetic moments in a solid.Phys. Rev.,
69:37–38, 1946.

[102] QT release 2.02.http://www.troll.no/products/qt.html .

[103] J. Rumbaugh, I. Jacobson, and G. Booch.The unified modeling language reference manual. Addison Wesley, 1999.

[104] R. R. Rustandi, A. C. Drohat, D. M. Baldisseri, P. T. Wilder, and D. J. Weber. The Ca2+-dependent interaction of
S100B(��) with a peptide derived from p53.Biochemistry, 37:1951–1960, 1998.

[105] B. Sandak, R. Nussinov, and H. J. Wolfson. A Method for Biomolecular Structural Recognition and Docking Allowing
Conformational Flexibility.J. Comp. Biol., 5(4):631–654, 1998.

[106] B. Sandak, H. J. Wolfson, and R. Nussinov. Flexible Docking Allowing Induced Fit in Proteins: Insights From an Opento
Closed Conformational Isomers.Proteins, 32:159–174, 1998.

[107] R. Sayle and E. Milner-White. RASMOL: biomolecular graphics for all.Trends Biochem. Sci., 20(9):374, 1995.

[108] B. R. Seavey, E. A. Farr, W. M. Westler, and J. Markley. Arelational database for sequence-specific protein NMR data. J.
Biomol. NMR, 1:217–236, 1991.

[109] D. Sitkoff, K. A. Sharp, and B. Honig. Accurate calculation of hydration free energies using macroscopic solvent models.
J. Phys. Chem., 98(7):1978–1988, 1994.

[110] E. D. Solometsev. Elliptic integral. In M. Hazewinkel, editor,Encyclopedia of Mathematics, volume 3, pages 372–373.
Kluwer Academic Publishers, Dordrecht, 1987.

[111] R. Srinivasan.XDR: External Data Representation Standard. Internet Engineering Task Force, 1995. Request for Com-
ments 1832.

[112] F. Stajano. Implementing the SMS server, or why I switched from tcl to python. InProceedings of the 7th International
Python Conference, Nov. 1998.

[113] M. J. E. Sternberg, H. A. Gabb, and R. M. Jackson. Predictive docking of protein-protein and protein-DNA complexes.
Curr. Opin. Struct. Biol., 8:250–256, 1998.

[114] L. Stryer.Biochemie. Spektrum Akademischer Verlag, 1991.

[115] SUN Microsystems.XDR: External Data Representation Standard. Internet Engineering Task Force, Networking Working
Group, 1987. Request for Comments 1014.

[116] P. Thompson. Sip version 0.12.http://www.thekompany.com/projects/pykde/ , 2000.

[117] M. Totrov and R. Abagyan. Detailed ab initio prediction of lysozyme-antibody complex with 1.6̊A accuracy.Nat. Struct.
Biol., 1:259–263, 1994.

[118] W. Vahrson, K. Hermann, J. Kleffe, and B. Wittig. Object-oriented sequence analysis: SCL – a C++ class library.CABIOS,
12(2):119–127, 1996.

139

Appendix C: Bibliography

[119] I. A. Vakser and C. Aflalo. Hydrophobic docking: a proposed enhancement to molecular recognition techniques.Proteins,
20:320–32, 1994.

[120] F. J. M. van de Ven.Multidimensional NMR in liquids: basic principles and experimental methods. Wiley-VCH, New
York, 1995.

[121] G. van Rossum. Python version 1.5.1.http://www.python.org .

[122] P. von Rague Schleyer, editor.Encyclopedia of Computational Chemistry. John Wiley & Sons, 1998.

[123] L. Wall, T. Christiansen, and R. L. Schwartz.Programming Perl. O’Reilly & Associates Inc., 2nd edition, 1996.

[124] P. Walters and M. Stahl. BABEL version 1.6. Universityof Arizona.

[125] H. Wang. Grid-search molecular accessible surface algorithm for solving the docking problem.J. Comput. Chem., 12:746–
750, 1991.

[126] J. S. Waugh and R. W. Fessenden.J. Am. Chem. Soc., 79:846, 1959.

[127] D. J. Weber, A. M. Libson, A. G. Gittis, M. Lebowitz, andA. S. Mildvan. NMR docking of a substrate into the X-ray
structure of the ASP-21-GLU mutant of staphylococcal nuclease.Biochemistry, 33(26):8017–8028, 1994.

[128] Z. Weng, S. Vajda, and C. Delisi. Prediction of proteincomplexes using empirical free energy functions.Protein Science,
5:614–626, 1996.

[129] M. P. Williamson and T. Asakura. Empirical comparisons of models for chemical-shift calculation in proteins.J. Mag.
Res. B, 101:63–71, 1993.

[130] M. P. Williamson, T. Asakura, E. Nakamura, and M. Demura. A method for the calculation of protein�-CH chemical
shifts. J. Biomol. NMR, 2:83–98, 1992.

[131] L. A. Wolsey. Integer programming. Wiley-interscience series in discrete mathematics and optimization. Wiley & Sons,
New York, 1998.

[132] C. Zhang, J. L. Cornette, and C. DeLisi. Consistency instructural energetics of protein folding and peptide recognition.
Prot. Sci., 6:1059–1064, 1997.

[133] M. Zöckler and R. Wunderling. DOC++ version 3.2.http://www.zib.de/Visual/software/doc++/ .

140

Index

Symbols�-helix . 11�-pleated sheet . 11
2-deoxyribose .14
80-20 rule . 69

A

add hydrogens (FragmentDB method) 119
AddBallAndStickModel (BALL class) 98
adenine .14
aggregation . 130
AMBER . 17, 88
AmberBend (BALL class) . 89
AmberFF (BALL class) . 89
AmberNonBonded (BALL class) 89
AmberStretch (BALL class). .89
AmberTorsion (BALL class). .89
amino acids . 10
angular momentum quantum number

definition . 45
ANSI C++ . 70
API . 102
apply<T> (Composite method) 79
ar . 117
association .129
Atom (BALL class) . 67, 76, 84
AtomContainer (BALL class) 85, 95, 96
AtomIterator (BALL class). .85
atoms. ..9
atoms (PyBALL function) . 103
AtomVector (BALL class) . 88
attributes .129
awk . 82

B

backbone . 10
BALL . 65–124

AmberFF
setup . 122

CenterOfMassProcessor
finish . 80
operator () . 80

classes
AddBallAndStickModel 98
AmberBend . 89
AmberFF . 89
AmberNonBonded . 89
AmberStretch . 89
AmberTorsion . 89
Atom . 67, 76, 84
AtomContainer 85, 95, 96
AtomIterator . 85

AtomVector . 88
CanonicalMD . 93, 94
CenterOfMassProcessor 79, 80
Chain .85
Client . 98
Composite . 72, 73, 75, 85
composite . 72
Control . 98
CreateSpectrumProcessor 96
DisplayProperties 99, 100
DNA. 67, 85
Embeddable . 104, 105
EnergyMinimizer . 93
Expression . 86
ExpressionPredicate 86
FDPB. 81
ForceField . 88, 89
ForceFieldComponent 88, 89
Fragment . 67, 84
GeneralException .82
HINFile . 87
INIFile . 90
INIFile . 90, 95
LennardJones . 91
LineSearch . 93
LogStream . 81
MainControl . 97, 99
MicroCanonicalMD 93, 94
ModularWidget . 97, 98
MOL2File . 87
MolecularControl 99, 100
MolecularDynamics 94
MolecularDynamicsSimulation . . 93, 95
MolecularProperties 100
MolecularStructureFile 87
Molecule . 67, 78, 84
MyClass . 105
NMRSpectrum . 96
NucleicAcid . 85
Nucleotide . 85
Object . 74, 112
Objects . 112
OpenPDBFile . 99
OpenPDBFileDialog 99
Options . 80, 81, 93
Parameters . 90, 91, 95
ParameterSection 90, 91
PDBFile . 87
PersistenceManager 74–77
PersistentObject 74–76
Protein . 67, 78, 85
RegularExpression 82
Residue . 85
ResourceFile . 87
RNA. 67, 85

INDEX

Scene . 97–100
SecondaryStructure 85
Selectable . 72, 75, 76
Selector . 86
Server . 98
ShiftModel . 95
ShiftModule . 95
SnapShotManager . 95
SocketStream . 78
String . 82
Substring . 82
System 67, 84, 85, 87, 114
TextPersistenceManager 75–77
TimeStamp . 73
UnaryProcessor<Atom> 79, 80, 86
UnaryProcessor<T> 79
XDRPersistenceManager 75, 77
XYZFile . 87

Composite
apply<T> . 79
contains selection 72, 73
containsSelection 72

Embeddable
countInstances . 105
getInstance . 105
registerThis . 104, 105
unregisterThis . 104

exceptions
DivisionByZero . 114

FDPB
options . 81

files
classTest.h . 113
COMMON/global.h . 71
config.h . 71

ForceField
options . 88
setup . 88, 89
updateEnergy . 88, 89
updateForces . 88, 89

FragmentDB
add hydrogens . 119

functions
isInstanceOf . 112
isInstanceOf<T> . 78
isKindOf . 112
isKindOf<T> . 78

LogStream
info . 82
setPrefix . 82

macros
BALL EMBEDDABLE. 104
CHECK. 113, 114
ENDTEST . 113, 114
RESULT. 113, 114
STARTTEST. .113, 114
TEST EQUAL. 113
TEST EXCEPTION. 114
TEST FILE . 114
TEST NOTEQUAL. 114
TEST REALEQUAL. 114

ModularWidget

initializeWidget .97
namespaces

Constants . 71
RTTI . 78

Object
global handle . 74
handle . 74

PersistenceManager
get . 76
put . 76

PersistentObject
finalize . 74
persistentRead . 74, 76
persistentWrite 74, 76
read . 76
write .76

Selectable
deselect . 72
select . 72

System
beginAtom . 85
endAtom . 85

TimeStamp
stamp .73

types
PointerSizeInt . 71

UnaryOperator
operator () . 86

UnaryProcessor¡T¿
finish . 79
operator () . 79
start .79

BALL EMBEDDABLE(BALL macro) 104
BALLVIEW

definition . 96
base .14
base pair .14
basic components . 70
beginAtom (System method) . 85
bend energy . 17
big endian . 77
binding site .28
biomolecules .. 9
BioPerl. .5, 101
BioPython . 5, 101
black box testing . 111
bonded interactions .14
bovine pancreatic trypsin inhibitor 3
BPTI .3
branch-&-cut algorithm . 29
builder . 74,75

C

C-terminus .10
canonical ensemble

definition . 94
CanonicalMD (BALL class).93, 94
CCCC. 107
CenterOfMassProcessor (BALL class) 79, 80
cerr . 81
Chain (BALL class) . 85

142

INDEX

chain placement problem . 26
CHARMM. .88
CHECK(BALL macro) . 113, 114
chemical bond .9
chemical shift .24

definition . 48
class . 129
class library .. 67
classTest.h (BALL file) . 113
Client (BALL class) . 98
collaboration .130
COM

definition . 108
comment lines

definition . 108
COMMON/global.h (BALL file) 71
Composite (BALL class) 72, 73, 75, 85
composite (BALL class) . 72
composite design pattern . 72
composition . 130
concrete builder .75
concrete creator .75
concrete product .75
Concurrent Revision System. 107
config.h (BALL file) .71
configure. 115, 117
conjugate gradient .92
Constants (BALL namespace) . 71
constraints .. 31
contains selection (Composite attribute) 72, 73
containsSelection (Composite method) 72
continuum model . 38
Control (BALL class) . 98
Coulomb’s law . 16
countInstances (Embeddable method).105
cout . 81
CreateSpectrumProcessor (BALL class).96
creator ..75
cutting plane .32
CVS . 107, 115
CWEB . 108
CXX. 103
cyclomatic complexity . 108
cytosine .14

D

dead-end elimination theorem. .29
deadly diamond

definition . 73
DEE . 29
Democritus of Abdera . 9
deoxyribonucleic acid .13
deoxyribose .14
dependency . 130
deselect (Selectable method) 72
design pattern

composite . 72
design patterns . 130

builder . 74
definition . 68
factory method . 74

diffusion coefficients .. 94
director .. 75
DisplayProperties (BALL class) 99, 100
DivisionByZero (BALL class) 114
DNA . 13
DNA(BALL class) . 67, 85
DOC++ . 108
Docking

protein-protein. .25
semi-flexible . 25

docking . 19–61, 64
flexible . 25–45

double helix .14
drug design .2
dynamiccast . 78

E

edit . 120
effective field .47
electron microscopy . 45
electrostatic energy .. 17
Embeddable (BALL class) 104, 105
Embeddable (PyBALL class) . 105
Embedding . 104
Emil Fischer .2
ENDTEST(BALL macro) . 113, 114
endAtom (System method) . 85
energy generator .88
Energy minimization . 92
EnergyMinimizer (BALL class) 93
ensemble . 94
ethanol .. 9
exhaustive search .26
Expression (BALL class) . 86
ExpressionPredicate (BALL class) 86
extension modules . 102
External Data Representation . 77
extractors

definition . 103

F

factory method . 74
false positives

definition . 21
FAQ list . 109
FDPB(BALL class) . 81
field sweep. .48
finalize (PersistentObject method) 74
finish (CenterOfMassProcessor method).80
finish (UnaryProcessor<T> attribute) 79
finish (UnaryProcessor<T> method) 79
for loop (Python) . 102
force .16
force field . 16, 17
force generator .88
ForceField (BALL class) . 88, 89
ForceFieldComponent (BALL class) 88, 89
Foundation Classes . 70
Fourier transform .45
Fragment (BALL class) . 67, 84

143

INDEX

framework . 67
frequency sweep. .49
functional testing .111

G

GeneralException (BALL class) 82
generalization .130
generic programming

definition . 68
genomics .2
geometry optimization . 92
get (PersistenceManager method) 76
getInstance (Embeddable method) 105
global minimum energy conformation 26
global handle (Object attribute) 74
GMEC . 26
GMEC polyhedron

definition . 32
GNU autoconf . 117
graphical user interface. ..96
guanine. .14
GUI . 96
Guido van Rossum . 102
gyromagnetic ratio .46

H

Haemophilus influenzae . 2
handle (Object attribute) . 74
HINFile (BALL class) . 87
human genome . 2
hydroxyl group .9

I

ILP . 29
immutable . 103
induced fit . 19, 21
info (LogStream method) . 82
INIFile (BALL class) . 90
INIFile (BALL class) . 90, 95
initializeWidget (ModularWidget method) . . 97
integer linear program. .31
Integer Linear Programming . 29
interface pollution .. 79
intermolecular exchange . 53
intramolecular interactions .. 14
ions

definition . 15
isInstanceOf (BALL function) 112
isInstanceOf<T> (BALL function) 78
isKindOf (BALL function) . 112
isKindOf<T> (BALL function) . 78
isolated system .94
iterator traits .. . 79
iterators .. 79

K

kernel
iterators . 85

kernel classes .70

L

L C
definition . 108

Larmor frequency . 47
Larmor precession

definition . 47
LennardJones (BALL class). .91
Leucippus of Miletus. .9
Life Science. ..2
lines of code

definition . 108
LineSearch (BALL class) . 93
link . 119
little endian .. 77
LOC

definition . 108
lock-and-key principle .. 2

definition . 19
LogStream (BALL class) . 81
Lorentzian .53
Lotus Notes . 109

M

magnetic moment. .46
magnetic quantum number

definition . 46
MainControl (BALL class).97, 99
methyl group .9
microcanonical ensemble

definition . 94
MicroCanonicalMD (BALL class) 93, 94
MMTK . 5
ModularWidget (BALL class) 97, 98
MOL2File (BALL class) . 87
Molecular Dynamics Simulation . 94
Molecular Modeling Toolkit . 5
molecular surface. .38
MolecularControl (BALL class).99, 100
MolecularDynamics (BALL class) 94
MolecularDynamicsSimulation (BALL class).93,

95
MolecularProperties (BALL class) 100
MolecularStructureFile (BALL class) 87
Molecule (BALL class) . 67, 78, 84
molecule .. 9
MOLVIEW . 96
molview

definition . 96
molview . 78, 81, 98, 100, 101, 104
monomers . 10
multi-greedy .29
multiple inheritance. .. 73
MyClass (BALL class) . 105

N

N-terminus. .10
native structure

144

INDEX

definition. .3
navigable . 130
Newton-Raphson . 92
NMR. 24
NMR spectra . 24
NMRSpectrum (BALL class) . 96
NOE . 24
nonbonded interactions. .14
nuclear angular momentum . 45
Nuclear Magnetic Resonance . 24, 45
nuclear Overhauser effect . 24
nucleic acids . 9,13
NucleicAcid (BALL class) . 85
Nucleotide (BALL class) . 85
nucleotide .13
nuclide .45

O

Object (BALL class) . 74, 112
Objects (BALL class) . 112
one-letter code .11
OpenPDBFile (BALL class) . 99
OpenPDBFileDialog (BALL class) 99
operations . 129
operator () (CenterOfMassProcessor method)

80
operator () (UnaryOperator method) 86
operator () (UnaryProcessor<T> method) . . . 79
Options (BALL class). .80, 81, 93
options (FDPBattribute) . 81
options (ForceField attribute) 88
orthodox canonical class interface 107
ostream. .74
ostream . 81

P

packages
definition . 130

Parameters (BALL class) 90, 91, 95
ParameterSection (BALL class) 90, 91
parm . 121
partial charges. ..15
pauli exclusion principle .16
PDBFile (BALL class) . 87
PDBLib . 5
peptide bond . 10
Perl . 101
persistence .. 73
PersistenceManager (BALL class) 74–77
PersistentObject (BALL class) 74–76
persistentRead (PersistentObject method) 74,

76
persistentWrite (PersistentObject method)

74, 76
phosphate. .14
PointerSizeInt (BALL type) 71
Poisson-Boltzmann equation . 39
polyhedron

definition . 32
precession .47

predicates .. 86
primary structure .10
primitive tests .112
processor .79
product .75
Protein (BALL class). 67, 78, 85
protein .10
protein-protein docking problem

definition. .2
proteins .. . 9
proteomics

definition. .2
protonate . 119
protons .46
put (PersistenceManager method) 76
PyBALL

classes
Embeddable .105

functions
atoms . 103

Python . 101
for loop . 102
functions

range . 102
types

tuple . 103

Q

quantum number . 45
quarternary structure .. 11
Quasi-Newton. 92

R

RAD . 67
radial distribution functions .. . 94
Ramachandran plot . 26
random coil shift . 51
range (Python function) . 102
Rapid Application Development . 67
Rapid Software Prototyping . 67
RasMol . 96
read (PersistentObject method) 76
realization .130
receiver coils .. 48
reference manual . 109
registerThis (Embeddable method) 104, 105
regular expression . 114
RegularExpression (BALL class) 82
repository. .115
Residue (BALL class) . 85
residues .10
resonance frequency . 46
ResourceFile (BALL class). .87
RESULT(BALL macro) . 113, 114
ribonucleic acid .13
ribose .14
rigid docking .. 2
rigid-body docking

definition . 19
RMSD . 21

145

INDEX

RNA. 13, 14
RNA(BALL class) . 67, 85
rotamer graphs . 31
rotamer library .26
rotamers .26
RPC. .77
RTTI (BALL namespace) . 78

S

sander .121
Scene (BALL class). .97–100
SCL .5
scripting languages . 101
SDK . 5
secondary structures .11
SecondaryStructure (BALL class) 85
sed . 117
select (Selectable method).72
Selectable (BALL class) 72, 75, 76
selection . 72,93
Selector (BALL class) . 86
semi-flexible docking

definition . 3, 25
sequence. .10
sequence object . 102
serialization .. . 73
Server (BALL class) . 98
setPrefix (LogStream method) 82
setup (AmberFF method) . 122
setup (ForceField method).88, 89
sh . 117
shielding constant .47
shift assignment .49

definition . 24
ShiftModel (BALL class) . 95
ShiftModule (BALL class) . 95
side chain .10
side chain demangling . 25
side chain flexibility .25
signal-slot mechanism . 98
SIP . 103
SnapShotManager (BALL class) 95
SocketStream (BALL class). .78
software metrics . 107
solvent excluded surface . 38
spin quantum number

definition . 45
stamp (TimeStamp method) . 73
standard predicates .86
Standard Template Library . 70
start (UnaryProcessor<T> method) 79
STARTTEST(BALL macro) 113, 114
static class attributes .. . 73
steepest descent .92
STL . 70

iterators . 85
stretch energy .17
String (BALL class) . 82
structural testing. ..111
style metrics . 107
Substring (BALL class) . 82

subtest . 112
sugar .14
sweep coils . 48
SWIG. 103
System (BALL class) 67, 84, 85, 87, 114

T

Tcl . 101
tertiary structure .. . 11
test cases . 111
test oracle . 111
TEST EQUAL(BALL macro) . 113
TEST EXCEPTION(BALL macro) 114
TEST FILE (BALL macro) . 114
TEST NOTEQUAL(BALL macro).114
TEST REAL EQUAL(BALL macro) 114
testing

black box . 111
functional . 111
structural . 111
white box . 111

TextPersistenceManager (BALL class).75–77
Three Line Rule

definition . 68
three-letter code .. 11
thymine . 14
time stamps . 73
TimeStamp (BALL class) . 73
torsion angle .17
torsion energy .17
torsional flexibility. .. .26
torsions .. 26
trajectory .. 94
transmitter coil .. 48
true positives

definition . 21
trypsin .. . 3
tuple (Python type) . 103
tuples . 102
tutorial .109
typeid .78

U

UML . 129
UnaryProcessor<Atom> (BALL class) 79, 80, 86
UnaryProcessor<T> (BALL class) 79
Unified Modeling Language . 129
unregisterThis (Embeddable method).104
updateEnergy (ForceField method) 88, 89
updateForces (ForceField method) 88, 89
uracil .. 14

V

van der Waals energy . 17
van der Waals interactions . 16
VIEW . 96
virtual constructor .. 75
virtual inheritance .. 74
visitor pattern .. 79

146

INDEX

VMD. .96

W

weakly typed. .102
white box testing . 111
widgets .97
wrapper classes . 103
write (PersistentObject method) 76

X

X-ray crystallography .45
XDR . 77
XDRPersistenceManager (BALL class) 75, 77
XYZFile (BALL class) . 87

Z

zwitterion .. 10

147

