New approaches to protein docking

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultat |
der Universitat des Saarlandes

von

Oliver Kohlbacher

Saarbriicken
12. Januar 2001

Datum des Kolloquiums: 12. Januar 2000

Dekan der technischen Fakultat:
Professor Dr. Rainer Schulze-Pillot-Ziemen

Gutachter:
Professor Dr. Hans-Peter Lenhof, Universitat des SagelsrSaarbriicken
Professor Dr. Kurt Mehlhorn, MPI fur Informatik, Saarbki&n

“I think the most exciting computer research now is partly in robotics, and partly
in applications to biochemistry.

Biology is so digital, and incredibly complicated, but incredibly useful. The trouble
with biology is that, if you have to work as a biologist, it’s boring. Your experiments
take you three years and then, one night, the electricity goes off and all the things
die! You start over. In computers we can create our own worlds. Biologists deserve
a lot of credit for being able to slug it through.” — Donald Knuth

Acknowledgements

The work on this thesis was carried out during the years 12989 at the Max-Planck-
Institut fur Informatik in the group of Prof. Dr. Kurt Mehtlin under the supervision of
Prof. Dr. Hans-Peter Lenhof.

Prof. Dr. Hans-Peter Lenhof kindled my interest in Bioimf@tics and gave me the freedom
to do research in those areas that fascinated me most. Qusdisns, although sometimes
heated, were always fruitful and forced me to get to the vetyoln of many problems.

The implementation of BALL is unthinkable without the helpall the people who con-
tributed code and ideas. Nicolas Boghossian had signifiogrdact on the design of the library
core and contributed lots of code for the kernel. Heiko Kienplemented the largest part of
the visualization. Dr. Peter Miller brought in his expade in the field of molecular dynamics
simulations. Andreas Burchardt implemented parts of theR\ddde. Upon Andreas Moll fell
the ungrateful work of testing and debugging. Stefan Strawbplemented the difficult part
of molecular surface calculations. Andreas Hildebrangilémented the NMR visualization.
The more sophisticated parts of the solvation code wereemehted by Andreas Kerzmann,
who also set up the BALL web server. Last, but not least, ®ofHans-Peter Lenhof not only
contributed code for structure mapping and force field datmns, but also initiated the whole
project and kept everyone motivated.

Ernst Althaus implemented the branch-&-cut-algorithm ara coauthor of the paper on
flexible docking. He had the patience to explain to me soméefiner details of polyhedral
theory.

The Rechnerbetriebsgruppe had to suffer from this work dis Wigg Herrmann, Wolfram
Wagner, Bernd Farber, Uwe Brahm, Thomas Hirtz, and Rolarth&ich solved numerous of
my hardware- and software-related problems even at nightdaning weekends. Christoph
Clodo managed to track down and resolve several errors AT code of this thesis.

| am also grateful to my “WG” (Holger, Michael, Christian)rfoearly six years of enjoy-
able coexistence and for the flat, the evenings, and quite dorttles of wine we shared. Last,
but certainly not least, | wish to thank Andreas for his pat& his understanding, and his
support while | wrote this thesis.

Abstract

In the first part of this work, we propose new methods for protiocking. First, we present two ap-
proaches to protein docking with flexible side chains. Thst fipproach is a fast greedy heuristic, while
the second is a branch-&-cut algorithm that yields optinohlitions. For a test set of protease-inhibitor
complexes, both approaches correctly predict the true oagbructure. Another problem in protein
docking is the prediction of the binding free energy, whiglthie the final step of many protein docking
algorithms. Therefore, we propose a new approach that ateédexpensive and difficult calculation of
the binding free energy and, instead, employs a scoringifumthat is based on the similarity of the
proton nuclear magnetic resonance spectra of the tentaiimplexes with the experimental spectrum.
Using this method, we could even predict the structure ofrg géficult protein-peptide complex that
could not be solved using any energy-based scoring furgtion

The second part of this work presents BALL (Biochemical Atifons Library), a framework for
Rapid Application Development in the field of Molecular Mdidg. BALL provides an extensive set
of data structures as well as classes for Molecular Meckaaébvanced solvation methods, comparison
and analysis of protein structures, file import/export, Nt prediction, and visualization. BALL
has been carefully designed to be robust, easy to use, andmpgtensions. Especially its extensibility,
which results from an object-oriented and generic progrargrapproach, distinguishes it from other
software packages.

Kurzzusammenfassung

Der erste Teil dieser Arbeit beschaftigt sich mit neuenadtrsn zum Proteindocking. Zunachst stellen
wir zwei Ansatze zum Proteindocking mit flexiblen Seitettée vor. Der erste Ansatz beruht auf einer
schnellen, gierigen Heuristik, wahrend der zweite Ansaizbranch-&-cut-Techniken beruht und das
Problem optimal 16sen kann. Beide Ansatze sind in der Ldigekorrekte Komplexstruktur fur einen
Satz von Testbeispielen (bestehend aus Protease-Inkitaitoplexen) vorherzusagen. Ein weiteres,
grosstenteils ungelostes, Problem ist der letzte Schieier Protein-Docking-Algorithmen, die Vorher-
sage der freien Bindungsenthalpie. Daher schlagen wirrene Methode vor, die die schwierige und
aufwandige Berechnung der freien Bindungsenthalpie e&tet. Statt dessen wird eine Bewertungs-
funktion eingesetzt, die auf déhnlichkeit der Protonen-Kernresonanzspektren der piegiéen Kom-
plexstrukturen mit dem experimentellen Spektrum beruhit. diéser Methode konnten wir sogar die
korrekte Struktur eines Protein-Peptid-Komplexes vasagen, an dessen Vorhersage energiebasierte
Bewertungsfunktionen scheitern.

Der zweite Teil der Arbeit stellt BALL (Biochemical ALgotims Library) vor, ein Rahmenwerk
zur schnellen Anwendungsentwicklung im Bereich MolecMadeling. BALL stellt eine Vielzahl von
Datenstrukturen und Algorithmen fiir die Felder Molekélrhanik, Vergleich und Analyse von Protein-
strukturen, Datei-Import und -Export, NMR-Shiftvorhegsaund Visualisierung zur Verfugung. Beim
Entwurf von BALL wurde auf Robustheit, einfache Benutzletrkind Erweiterbarkeit Wert gelegt.
Von existierenden Software-Paketen hebt es sich vor allerthdseine Erweiterbarkeit ab, die auf der
konsequenten Anwendung von objektorientierter und gedleer Programmierung beruht.

Contents

Part | — Introduction 1
Part Il — Protein Docking 7
1 Biochemistry — the Basics 9
1.1 AtomsandMolecules 9
1.2 Amino Acids e 10
1.3 Proteins e 10
1.4 NucleicAcids e 31
1.5 Interatomic Forces 14
1.5.1 Nonbondedinteractions 14
1.5.2 MolecularMechanics 61
2 Introduction 19
2.1 RigidBody Docking 91
2.2 Docking and Protein Flexibility, 21
2.3 Combining NMR Data and Docking Algorithms 23
3 Semi-Flexible Docking 25
3.1 Introduction 25
3.2 TheDocking Algorithm 28
3.21 RigidDocking e 28
3.2.2 SideChainDemangling, 28
3.2.3 The Multi-Greedy Method 92
3.2.4 The Branch-&-Cut Algorithm 30
3.2.5 Energetic Evaluation 38
3.3 ExperimentalResults e 40
4 Protein Docking and NMR 45
4.1 Nuclear Magnetic Resonance Spectroscopy 45
4.1.1 The Nuclear Angular Momentum 54
4.1.2 Electronic Shielding and the Chemical Shift 47
4.1.3 TheBasic NMR Experiment 48
4.2 Application to the Protein Docking Problem 50
421 PreviousWork 50
4.2.2 NMR Shift Prediction 50

4.2.3 Spectrum Synthesis and Comparison 53

4.3 ExperimentalResults e 55
43.1 Methods 55

4.3.1.1 Preparation of Structures and Rigid Body Docking..... . 55
4.3.1.2 NMR Chemical Shift Calculation 55
4.3.1.3 Spectrum Synthesis and Comparison| 6. 5
432 Results e 57

5 Discussion 61

Part 1l — BALL 65

6 Design and Implementation 67

6.1 Introduction 67
6.2 DesignGoals e e 68
6.2.1 EaseofUse e 68
6.2.2 Functionality 69
6.2.3 OPEeNnnessS e e 69
6.2.4 RobuUStNness 69

6.3 Choice of Programming Language 70

6.4 Architecture e 70

6.5 TheFoundationClasses 71
6.5.1 Global Definitions 71
6.5.2 CompositeClass e 72
6.5.3 ObjectPersistence 3 7

6.5.4 Run-Time Type Identification 78
6.5.5 lterators 78
6.5.6 Processors e 79
6.5.7 Options e 80
6.5.8 Logging Facility 81

6.5.9 StringsandRelatedClasses 82
6.5.10 Mathematics 82
6.5.11 Miscellaneous 82
6.6 TheKernel e 83

6.6.1 Molecular Data Structures 83
6.6.2 lterators L 85
6.6.3 Selection 85

6.7 TheBasicComponents i 87

6.7.1 Filelmport/Export 78
6.7.2 MolecularMechanics.718

6.7.3 Nuclear Magnetic Resonance Spectroscopy 95
6.7.4 Visualization 96

6.8 Scripting Language Integration L e 101
6.8.1 Python 101

6.8.2 Extending
6.8.3 Embedding

7 Project Management

7.1
7.2
7.3
7.4

7.5

7.6

Revision Management
Coding Conventions and Software Metrics
Portability
Documentation
7.4.1 Reference Manual and Tutorial
742 FAQS e
Testing. e
751 Fundamentals.
752 TestinginBALL
753 Testmacros
7.5.4 Automatic TestBuilds
Installation and Configuration

8 Programming with BALL

9 Outlook

Part

IV — Conclusion

A UML Notation

Appendix

B Curriculum Vitae

C Bibliography

Index

125

129

129
131
134

141

Part |

Introduction

INTRODUCTION

Motivation

At the beginning of the 21st century, biology has emergedhasdading science. It is mainly
driven by the increasing economic impact of molecular gesgbiochemistry, medicine, and
pharmaceutics. These disciplines form the cornerstonasmefv scientific field for which the
termLife Sciencevas coined.

In the last few years, the most important discoveries in Bié&ence were made in the field
of genomics Starting with the first completely sequenced genome ofiagiwrganism (the
genome of bacteriurrlaemophilus influenzg@5]) in 1995, genomics rapidly developed: the
world’s sequencing capacity has not yet stopped its expg@migmowth and complete genomes
of microbial organisms are currently being sequencedmelyti The complete sequence of the
human genome represents an important milestone for gesenlte data emerging from this
project will be the basis of molecular medicine for decaddse completion of this project will
also change the focus of genomics. Initially, genomics $eduon the acquisition of genomes.
With the availability of this data, genomics will have toaatk the next question: What is the
meaning of all this data?

The exploration of gene activity and regulation is one @drigsue in this context. The
second big issue is summarized with just another catchwmodeomics- the study of proteins,
their function and expression. Genomics and proteomicslarmusly tightly interwoven and
a comprehensive understanding of the molecular basisealio be expected from their close
interaction.

The most important economic driving force behind these ldgveents is the pharmaceu-
tical industry, which hopes to profit from a deeper undexitasn of molecular medicine for
the development of new drugs. Thus, the ultimate goal is tatienal drug design, which
means designing a drug based on a thorough understanditgyrobiecular targets and their
interactions.

Protein Docking

The theoretical prediction of these interactions is of grimportance since it permits the verifi-
cation of hypotheses in the course of drug development witbxpensive and time-consuming
“wet” experiments. One of problems arising in drug desigithis so-calledorotein-protein
docking problemGiven the structures of the proteirisand B that are known to form a com-
plex AB, predict the structure of this complex.

In 1894, German chemist Emil Fischer proposed the so-chdtddand-key principl¢34].

It states, that the selective binding of two proteins is edusy geometric complementarity
andB each possesses a characteristic shape (like a lock ang)itsTke two proteins can only
aggregate if they share complementary regiassif A “fits” into B.

The first algorithms for protein docking were strictly basgtgeometric complementarity.
They also assumed that both proteins were rigid bodies ahdatichange their structures on
binding. For most standard examples, this assumption Soredle, so there are a number
of protein docking algorithms that use rigid docking appfes. However, there are some
prominent examples where one or both proteins undergotstalchanges upon binding and
thus for which these approaches fail. We will briefly illt the problem with the example of

INTRODUCTION

(@) (b)

Figure 1: (a) The enzyme trypsin (green) and its inhibitor BPTI (red) famomplex (right side).(b) Several
amino acids of BPTI change their structure on binding. Thyark shows the structure of one of these amino acids
(LYS:15) in its native structure (red) and in the complexisture (blue). The structural change in this amino acid
impedes the prediction of the complex structure using rilgicking approaches.

trypsin (an enzyme) and BPTI (the bovine pancreatic trypsiibitor), one of the best studied
protein complexes.

The unbound structuresidtive structurg of trypsin and BPTI as well as the structure of
their complex have been known for a long time. The largerdirygsee Fig. 1(a)) binds the
smaller BPTI tightly. When subjected to a rigid docking pe#idn, most algorithms fail in-
evitably. The reason can be seen in Fig. 1(b): the confoomaif several amino acids at the
tip of BPTI in the native structure differs considerablyrfreheir conformation in the complex.
Hence, rigid-body docking algorithms have little chancerddicting the correct structure —
there is no geometric complementarity in the native stmestu Thus, to solve that class of
protein docking problems, we have to consider at least e ciains to be flexible, while
the backbone still remains rigid. This is what we cadmi-flexible dockingWe have devel-
oped two new approaches for semi-flexible protein dockingthEapproaches are based on a
rigid-body docking algorithm, which produces a number oftdéive complex structures. In
the next step, we optimize the side chains in the bindingaditee tentative complex. Finding
the optimal side chain conformation is a very difficult (iretbrder of 200-500 dimensional)
continuous optimization problem. By restricting the confational space of the side chains
to a set of preferred conformations (so-called rotamers)can reduce the problem to a com-
binatorial optimization problem. The optimization pratlés still rather difficult: identify the
set of rotamers with minimal energy out &fL0°° possible combinations. For this side chain
placement step, we propose two new algorithms. The firstoagpris a branch-&-cut algo-
rithm based on the ILP (integer linear programming) forrtiafaof the problem. We are able
to identify some classes of facet-defining inequalities weddevised a separation algorithm

INTRODUCTION

for a subclass of inequalities. The second approach is asiagple greedy approach. In con-
trast to the branch-&-cut algorithm, the greedy approaeidgi usually suboptimal solutions.
Nevertheless, both approaches were able to demangle thelsdhs of a test set of protease-
inhibitor complexes. A final energetic evaluation of the @agled conformations correctly
predicts the true complex structure. After a short intraducto protein docking in general
(Chapter 2), we describe these approaches for semi-fleddaking in detail in Chapter 3.

Another major problem in protein docking is the accurataljotéon of the binding free en-
ergy of tentative complex structures, which is usually tasi®for the final ranking performed
by the docking algorithm. Although considerable progress leen made with the prediction
of the binding free energy, it remains largely an unsolvezbfam. We develop a novel scor-
ing function for protein-protein docking that is based oe thtegration of experimental data.
This scoring function ranks the tentative complex strugguwith respect to the deviation of the
predicted nuclear magnetic resonance spectrum (NMR spekfrom the experimental spec-
trum. Since NMR spectra (especially the proton-NMR spegsiause in this work) are easily
accessible for protein complexes, the use of experimeatalahn improve the quality of dock-
ing predictions significantly and can be used to assess liabili¢y of the results. We develop
techniques for the prediction of NMR chemical shifts, theorestruction of NMR spectra from
the shift data, and for spectra comparison. This novel ambrds the first docking approach
that permits the direct integration of experimental data the docking algorithm. Its appli-
cation to a set of protein-protein and protein-peptide demgs gives very promising results.
Using this new technique, we can also solve a very difficudinegle of a protein-peptide com-
plex, where all energy-based scoring functions fail. Thé¢hwes and techniques developed for
NMR-based docking are described in depth in Chapter 4 afstiog general introduction to
NMR spectroscopy.

Rapid Software Prototyping

While developing new methods in protein docking as well astiver areas of Computational
Molecular Biology, the most time-consuming step is the enpéntation. A major portion of
this time is spent on the implementation of fundamental daactures and algorithms. The
data structures and algorithms are usually reimplemergathand again; code reuse is not
very common. We illustrate the main reasons for this with xem#ple. In the course of our
protein docking project, we experimented with advancedhous for energetic evaluations.
One of these methods [54] consists of two major calculatiepss the calculation of the elec-
trostatic contributions and the calculation of the molacsurface. Both methods are standard
techniques that were developed about 15 years ago and ldevglementations exist. We then
bought a commercially available software package for thetmstatic calculations and chose
one of the freely available implementations for the molacslurface area calculation. Both
programs were written in FORTRAN 77, the most common langudagthis kind of software.
The integration of subroutines or major code portions frbeseé two implementations into a
common program proved to be nearly impossible, since nogtiitowas spent on reusability
when designing the software. Furthermore, the lack of derdation or even comments in
conjunction with FORTRAN-specific coding habits.g, one- or two-letter variable names)
tends to turn even minor changes into a nightmare.

INTRODUCTION

The only means of integration we found was to implement ralluge amounts of so-
called “glue code”. This code had to convert the input dath¢ospecific file formats required
by the two different programs. Although both programs kaliaused the PDB format to read
atom coordinates, they required two different variantshefformat which were incompatible
to each other. In the end, we implemented several hundred bif code just to make both
programs read standard PDB files. The extraction of thetsesalm the (text-based) output of
the programs again required rather complex code to gathrlalant numbers and ensure that
the code really had correctly terminated. The resultindgectibn of interacting C programs,
FORTRAN programs, and shell scripts was even less mairtigrend less comprehensible
than the original FORTRAN code.

We then looked at several large molecular modeling packadé® producers of these
packages usually promise a good integration of severatlatdrcomponents. Often, there are
also software development kits (SDKs) available for theesion of existing methods and the
integration of new methods. But even these incredibly egwerpackages have major draw-
backs. Some of these packages are just nice graphical fndstte the very same FORTRAN
packages mentioned above; they are basically glue codewiritiows. The SDKs have ex-
clusively procedural interfaces. We could not find any obf@eEnted approaches, which were
preferable with respect to reusability and extensibilityhe code. Besides SDKs, many pack-
ages also provide scripting languages that can be used terimapt additional functionality.
However, each package defines its own cryptic language hwdften enough lacks even basic
control structures, so these approaches are seldom stiisfa

There are also some (academic) efforts to create classidibrand frameworks in the field
of Computational Molecular Modeling. Some prominent exies@are PDBLIib [18] (a library
for processing PDB files) and SCL [118]. These libraries rew@e promising features, but
none of the existing libraries could provide us with sufiitig broad functionality.

Finally, there is is small number of scripting language estens for Molecular Modeling
and Computational Molecular BiologioPerl[12] andBioPython[13] are two projects that
started rather recently and do not yet provide any funclitynia the field of Molecular Mod-
eling. The software package that came closest to meetingemds isMMTK, the Molecular
Modeling Toolkit MMTK is an extension package for the object-oriented sitriplanguage
Python [121] and provides some basic functionality for Malar Modeling and visualization.
Due to its object-oriented concept, MMTK is open and extaiason the scripting language
level. The time-critical sections of the code are impleradrih C, resulting in good perfor-
mance, but hindering reuse. Hence, the main drawbacks of KIBf€ its limited functionality
and extensibility. Nevertheless, this package demomstthe advantages of an object-oriented
scripting language.

Our experience with these software packages led us to remotre need for an extensi-
ble, efficient, and object-oriented tool kit in the field of Moular Modeling, which we then
started to implement. During the four years of its impleraéon, this tool set quickly evolved
into something larger: it became a framework for rapid aggpion development in Molecular
Modeling — BALL, the Biochemical Algorithms Library.

BALL is a large and powerful framework for rapid software fatyping written in G+.
We use state-of-the-art software engineering techniquesgure a thorough design and high
code quality. The resulting code is portable, robust, effitiand extensible. Especially its

INTRODUCTION

extensibility, which results from an object-oriented artheric programming approach, distin-
guishes BALL from all other software packages.

BALL provides an extensive set of data structures as welllasses for molecular me-
chanics, advanced solvation methods, comparison andsimalfyprotein structures, file im-
port/export, and visualization. To reduce turn-arounce8mwhile developing new methods, we
added Python bindings for the majority of the BALL classesing the scripting language, it is
easier to inspect the data structures interactively. Aafthlly, the code can be modified at run
time without time-consuming compile or link stages. OneaeRlython code works as expected,
it is very simple to port the Python code ta-€. We have proven the rapid software prototyp-
ing capabilities of BALL for a number of example applicatsoim the field of protein docking
and protein engineering. The new techniques for proteikidgadescribed in the first part of
this work have been implemented in BALL as well. Already thgha release of BALL has
been successfully emplyed in about a dozen laboratorieklwiole. The Max Planck Society
honored the development of BALL with the Heinz Billing Awa2@00 for the Advancement
of Scientific Computation.

Structure of the thesis

Following this introduction, Part Il describes the new tagies for protein docking. First,
we will give a short introduction to the biochemical coneepsed in this work in Chapter 1.
Chapter 2 gives an overview of protein docking and previoosin this field. We then present
two algorithms for semi-flexible docking in Chapter 3 and Eyodathm for NMR-based protein
docking in Chapter 4. This part closes with a discussion efgtesented docking algorithms
in Chapter 5.

The design and the implementation of BALL is then describe@art Ill. Chapter 6 de-
scribes the architecture, design, and implementation ofIBA'he techniques we used to
manage the project and to ensure software quality are gesbém Chapter 7. An example
application, which illustrates the rapid software progitg capabilities of BALL and its ad-
vantages over existing software, is given in Chapter 8. @hnapdiscusses the current status
of BALL and points out some developments planned for theréutu

This work then concludes with a discussion in Part IV.

Part Il

Protein Docking

Chapter 1

Biochemistry — the Basics

This section gives an introduction to the biochemical teased in this work. Since a serious
introduction to this topic is beyond the scope of this worle, will just introduce the most im-
portant terms and refer to biochemistry textbooks for a ncoraplete coverage of the subject
(e.q.[74, 114]).

1.1 Atoms and Molecules

One of the oldest scientific models was proposed about 2508 g o by eucippus of Miletus
and his disciplddemocritus of AbderaT hey deduced from a thought experiment that all matter
should be composed of very small, undestructible entifldgese fundamental particles were
called atoms(from the greekarouoo, undivisible). Although the original model has been
heavily modified and expanded in the course of history, itilstee most important and most
useful concept in chemistry. According to this model, alttexa— living or dead — is composed
of atoms. Another, albeit younger, model is ttieemical bond A bond may be seen as a
connection between atoms and the making and breaking a# thsds is what chemistry is
all about. Moleculesare groups of atoms with an exactly defined composition apdlogy.
There are some smaller groups of atoms that are frequenthdf;m molecules. These groups
are usually called functional groups. Fig. 1.1 shows thecsitire of a well known molecule:
ethanol It contains éhydroxyl group(OH) that is characteristic for alcohols anchathyl group
(CHa).

H—C—C—O0—H

hydroxyl group

I—O—I
I—O—I

Figure 1.1: Functional groups in ethanol

Molecules can be grouped into families or classes of moéscatcording to their structure
and the occurring functional groups. There are severasetasf molecules that are charac-
teristic for living beings — the so-calldosiomolecules Among the most important classes of
biomolecules arproteinsandnucleic acids

Proteins are the most important structural biomoleculebouthalf the dry mass of an
animal cell consists of proteins. Nucleic acids are impurses the carrier of hereditary infor-
mation. Proteins as well as nucleic acids bimpolymersi.e. they possess a linear, chain-like

CHAPTER 1. BIOCHEMISTRY — THE BASICS

structure. These chains are built from similar buildingdi® themonomers For proteins,
these monomers are thenino acids

1.2 Amino Acids

Amino acids (or more precisely-amino carboxylic acids) are small biomolecules. There are
20 amino acids that are commonly found. They differ only igittside chain(noted asR

in Fig. 1.2). The common substructure they share containgfwctional groups: the amino
group (NHy) and the carboxylic acid functionrC(OOH). Both of these groups are bound to
a central carbon atom, the, atom. In aguaeous medium, both groups tend to react with
water, yielding a so calledwitterion A zwitterion is an ion (a charged particle) that bears
both a positive and a negative charge. The positive charggused by the amino group which
accepts a protori{™) from the surrounding water, while the carboxylic acid ftioic looses a
proton and thus bears a negative charge.

R R
| H,0 + | i
H2N—CO(—COOH S H3N—CO(—COO
| |
H H
amino acid zwitterion

Figure 1.2: Amino acids and their zwitterionic form

1.3 Proteins

The amino group and the carboxyl group may also react with e#leer. In this reaction, a
bond is formed between the nitrogen of the amino group andahwmon of the carboxyl group
(Fig. 1.3) while a water moleculdd,0) is liberated. This bond is calledgeptide bondthe
product is called a peptide. The product of the reaction ggses again an amino group and
a carboxylic group, so further amino acids may be attachdabtbh ends of the peptide. A
peptide formed by two amino acids is termgigeptide one formed by three amino acids is a
tripeptideand so forth.

While we use the term peptide for shorter chains, long chaireamino acids are called
proteins In this context, the amino acids are often referred toestdues The end of the
chain bearing the amino group is called ti¢erminuswhile the carboxyl end is called th@-
terminus Another important term is the protebrackbone The backbone of a protein consists
of a repeated sequence of three atoms of each resi@ye:N (the amide N), and” (the
carbonyl C).

Thesequencef a protein is defined as the sequence of its amino acids fieriitterminus
to the C-terminus and is also called the protemrBnary structure Amino acid sequences are
usually denoted as strings. There exist two different s@®etm encode the amino acids: the

10

1.3. PROTEINS

Rl R2 Rl T R2
+ - + - + -
H3N—CG—COO + H3N—CG—COO —_— H3N—Ca—(”3—N —CG—COO
| | HLO o r]
H H H H
amino acid A amino acid B dipeptide

Figure 1.3: The formation of a peptide bond

three-letter codevhich denotes each amino acid with three letters and thaeshbut less
comprehensiblene-letter codeln Fig. 1.5 an example for a protein sequence is shown.

Proteins also formsecondary structures This term refers to certain spatially repeating
structures found in proteins. There are two types of seagrateuctures: thex-helix and the
[B-pleated sheets-sheets are formed by parallel (or antiparallel) polypptihains (Fig. 1.4)
that are bound to each other by hydrogen bonds between tkbdyaeatoms.

Figure 1.4: A g-sheet is formed by two parallel polypeptide chains. Theyaiten drawn as bands with arrow
heads. For clarity, only the backbone of the two chains issho

An a-helix is a tight and regular helix of a polypeptide chaing(FL.6). As in the3-sheet,
this structure is stabilized by hydrogen bonds between limaek atoms. For a helix, these
hydrogen bonds are not between different chains but betvwestthues of the same chain. The
helices are usually right-handed, although a left-handeint exists as well.

Different sections of a protein chain may assume differenbrdary structures. The overall
three-dimensional structure (fold) of a single proteiniclfgacluding all its secondary structure
elements) is termetdrtiary structure

Proteins often aggregate to larger structures. With malpplypeptide chaingjuarternary
structureis their interconnections and organization. The hieraaftstructures encountered in
a large protein is shown in Fig. 1.5 on page 12.

11

CHAPTER 1. BIOCHEMISTRY — THE BASICS

VAL LEU SER PRO ALA ASP LYS THR ASN TRP ... TYR ARG

primary structure

helix sheet
secondary structure

quarternary structure

Figure 1.5: The hierarchy of protein structures. Tipeimary structurds defined as the amino acid sequence of
the protein. Segments of a polypeptide chain may fgoondary structure elementglices or sheets. The total
three-dimensional structure of a protein is terntediary structureFinally, several proteins may aggregate to form

quarternary structures

12

1.4. NUCLEIC ACIDS

Figure 1.6: In ana-helix, the backbone of a polypeptide chain (shown in greempunded by a transparent tube)
forms a right handed helix. In schematic illustrations aftgin structure, helices are often represented by cylimder

or tubes.

1.4 Nucleic Acids

HO
OH
o
OH
2-Deoxyribose
HO
OH
(0]
OH OH
Ribose

Phosphate Sugar Base

? Nj\)J\

5 y NH
OZFID*O<| <N | N/)\NH

|- 0 2

2-Deoxyguanidine

Figure 1.7: 2-DeoxyguanidindG) is the nucleotide composed of the base guanine, the Qudaoxyribose, and

a phosphate group.

Nucleic acids are the carriers of hereditary informationivirlg organisms contain two
kinds of nucleic acids:ribonucleic acid (RNA) and deoxyribonucleic acidDNA). The
monomeric building-blocks of DNA and RNA are thecleotides

13

CHAPTER 1. BIOCHEMISTRY — THE BASICS

A nucleotide consists of three subunitsswgar, a phosphateand abase Fig. 1.7 shows
this structure as well as the two occurring sugaitssewhich occurs in RNA andeoxyribose
occurring in DNA.

There are five bases that can be found in nucleic acids (Ey.ddening(A), guanine(G),
cytosine(C), thymine(T), anduracil (U). Adenine, guanine, cytosine, and thymine represent
the four letters of the DNA alphabet, while uracil occursyonl RNA.

ool el O

Adenine Guanlne Cytosme Thymine Uracil

Figure 1.8: The five bases occurring in DNA and RNA

DNA molecules usually have a helical structure (Fig. 1.9). kénthea-helices of proteins,
the structure of DNA is @ouble heliormed by two DNA strands. This famous structure was
discovered by Watson and Crick in 1953. The two strands ofanchre held together by
hydrogen bonds. These bonds are formed between pairs of baspposite strands. Each
base possesses a complementary base with which it may fdxaseapair(Fig. 1.9). Thus,
each Ais paired by a T in the opposite strand while C is complard by G.

In RNA, thymine is replaced by uracil which is complementary toréake as well. Thus,
base pairing occurs in RNA as well. The sugasteoxyribosef the DNA backbone is replaced
by another sugaribose DNA and RNA differ also in their structure: RNA is usuallyngie
stranded. Instead of forming base pairs between two diffesrands, RNA tends to form
intramolecular base pairs. This leads to very complex raditdd structures.

1.5 Interatomic Forces

The behaviour of molecules is ruled by a set of fundamentgsiphl laws that describe the in-
teraction of atoms. These interactions can be coarselgaated adonded interactionand
nonbonded interactionsBonded interactions atiatramolecular interactionsi.e. they occur
only between atoms of the same molecule, as they are medigtbdnds. In contrast, non-
bonded interactions are not mediated by bonds and can tlous between atoms of different
molecules as well.

1.5.1 Nonbonded interactions

The existence of intermolecular, hence nonbonded, iniereccan be deduced by observing
a cup of tea. The fact that the tea stays in the cup is due tactte intermolecular forces.

These attractive forces make the water molecules be a&tidoteach other and thus form a
liquid instead of a gas. Only those water molecules with # l@gergy evaporate as steam,

14

1.5. INTERATOMIC FORCES

Adenine Thymine

Guanine Cytosine

Figure 1.9: Double-stranded DNA assumes the structure of a double.hBfig structure is stabilized by pairs of
complementary bases. These pairs form two (A-T) or thre&)8ydrogen bonds.

as they contain a sufficient amount of energy to overcome tth@ctive interactions. Not all
intermolecular forces are attractive. The fact that waser & well defined volume and is not
easily compressed is due to repulsive interactions thaeptehe molecules from coming too
close to each other.

Electrostatic interactions

One of the most important nonbonded interactions are thetrefgatic interactions, which
occur between electrostatic charges. Atoms consist ofjedaglementary particles (protons
and electrons). Protons bear a positive charge, while #rehs bear a negative charge of
equal magnitude. If atoms or molecules contain a differemblver of electrons and protons,
they are calledons and they bear a positive or negative net charge. But alsoauleke with
equal numbers of protons and electrons may still have a eldiggribution that leads to so-
called partial charges i.e. regions of positive or negative charge excess. The inieracf

15

CHAPTER 1. BIOCHEMISTRY — THE BASICS

these electrostatic charges can be describedduyjomb’s law

1
Bps = — 1182 (1.1)

where Egg is the energy resulting from the electrostatic interactbtwo chargesy; andgs
with distancer between the charges; is the permittivity of the vacuum, a constant. Since the
forcebetween the charges can be derived from the energy as thiiveegradient, we can also
calculate the forces between the two charges:

Fgs = —VEgs (1.2)
I qigo

= — —_— 1.3

dmeg 13 ’ (1.3)

Depending on the sign of the charg@gsand g2, electrostatic forces can be either attractive
(opposite signs of the charges) or repulsive (same sign).

Van der Waals interactions

The termvan der Waals interactiondescribes nonbonded interactions that consist of an at-
tractive and a repulsive part. The attractive part stems fimduced dipole—induced dipole
interactionsj.e. fluctuations of the charge distribution in one atom or mdeduduce charge
fluctuations in a neighboring atom. These charge fluctugtiead to an attractive electrostatic
interaction. The repulsive part results form teuli exclusion principlea quantum mechan-
ical effect that results in unfavorable energies for intaigtrating electron coulds of two ap-
proaching atoms. The interplay of attractive and repulsiteractions leads to intermolecular
potential functions like that shown in Fig. 1.10. For largstahces, the energy approaches
zero. At intermediate distances, the energy is negativéichiMieads to attractive forces. If
the distance between the atoms is further reduced, thesrepudbrces grow rapidly and give
highly positive energies. There are different models tacdes that kind of potential. The
most commonly used expression uses two parametensd B that depend of the type of the
atoms involved to describe the van der Waals energy as adanat the atom distance:

A B

Buw = 55~ 5 (1.4)

1.5.2 Molecular Mechanics

Molecular Mechanics is an approach based on simple physiadéls of molecular and atomic
interactions. The parameters of these models are usuathynebl by fitting to experimental
data. The resulting set of equations describing the intieres and the corresponding param-
eters are called #orce field Besides the nonbonded interactions described in thequgvi
section, the force fields also include bonded interactiamgch can be modeled in a number
of different ways.

16

1.5. INTERATOMIC FORCES

\\\//

r

Figure 1.10: The distance dependence of the van der Waals energy.

A typical force field like the AMBER force field defines the tbenergy of a set of
molecules as the sum of five different types of interactions:

Etotal = EvdW + EES + Ebend + Estretch + Etorsion

qiq;

. Tz]

stretch 02
+ E ki (rig — rij)
(4,j)€bonds

©Y e, - gy

acangles

> kSO A+ cos(npgdy — 47))

betorsions

471'80

Thevan der Waals energy, qw and theelectrostatic energyrgg are the nonbonded inter-
actions. Thestretch energyF:.:cn describes the change in the energy as the bond distance
ri; varies. This energy is described by a harmonic potential § quadratic function of the
deviation from the optimal bond distance, see Fig. 1.11)nil8ily, the bend energyFpenda
describes the variation of the energy with the bond afidemed by two neighboring bonds.
This contribution is also described by a harmonic potenfiake contributionF s describes
thetorsion energy Torsions describe the variation of the total energy ontiamiaabout a bond.

The torsion energy depends on tioesion angleg. It is defined as the angle that is enclosed

by the two planes defined by atorfysj, k) and(j, k., 1) (see Fig. 1.11). The variation of the
energy with this angle can be described as a cosine function.

17

CHAPTER 1. BIOCHEMISTRY — THE BASICS

Figure 1.11: The bonded interactions in a typical Molecular Mechaniasédield.

This form of the force field describes the energy as a funaifdhe coordinates. For many
applications it is also necessary to know the forces caugehldse interactions. The forde
acting upon atom may be derived as the negative gradient of the energy:

ﬁz’ =-VE = _VEvdW - vEES - vEstretch - vaend - vE’torsion (15)

The force field permits the calculation of the static and dyicgoroperties of molecules or
sets of molecules. There are numerous applications foe fiietds. Among the most impor-
tant ones are energy minimization and Molecular Dynamitaiitions. Energy minimization
means to search for the molecular geometry with the lowestggna very difficult multi-
dimensional optimization problem that is usually tacklesing gradient-based optimization
techniques. Molecular Dynamics is based on the fact th&btige field gives a full description
of the forces acting upon the atoms. If these forces can lmuleééd for arbitrary geome-
tries, one can apply Newton’s equations of motion and thusilsite the dynamic behaviour of
molecules.

18

Chapter 2

Introduction

Since the protein docking problem was already introduceekgir |, we will only briefly repeat
the problem definition here: We are given the three-dimemwadistructure of two proteing
andB, that are known to form a complexB. The protein docking problem is then to predict
the structure of the compleAB.

The protein docking problem has numerous interesting egijitins. Besides the standard
problem (how does the complex structure look like?), it miag apeed up the time-consuming
process of structure elucidation (see Chapter 4). Thetsestidocking predictions are also
useful for the analysis and the understanding of the bindindes of proteins and numerous
new applications will arise with the coming advent of Protéss. The following sections will
briefly discuss existing approaches for protein dockingirtimitations, and some possibilities
for improvement.

2.1 Rigid Body Docking

Rigid protein protein docking is based on a rather old analygGerman chemist Emil Fischer,
the so-calledock-and-key principldie proposed in 1894:

“Invertin und Emulsin haben bekanntlich manche Aehnlichkeit mit den
Proteinstoffen und besitzen wie jene unzweifelhaft ein asymmetrisch gebautes
Molekiil. Ihre beschrénkte Wirkung auf die Glucoside liesse sich also auch durch
die Annahme erkliren, dass nur bei &hnlichem geometrischem Bau diejenige
Ann&herung der Molekiile stattfinden kann, welche zur Auslosung des chemischen
Vorganges erforderlich ist. Um ein Bild zu gebrauchen, will ich sagen, dass Enzym
und Glucosid wie Schloss und Schliissel zu einander passetigsen um eine chemi-
sche Wirkung aufeinander ausiiben zu konnen. 1” [34], p. 2992

This model implies that enzyme and substrate (or in our dasgwo proteins) are rigid bodies
that possess regions of geometric complementarity. A ogmoeary view of this model is
shown in Fig. 2.1. In the mean time, the lock-and-key modslbdeen superceded by a number
of various other model%.g.theinduced fithypothesis by David Koshland [64]. However, it
is still of fundamental importance and for many proteintpio interactions it remains a valid
assumption, as has been shown in a recent study by Betts eamdb&ig [11].

The first docking algorithms were based on the assumptiorigidity and complementar-
ity (thus the nameigid-body dockingRBD). They tried to identify geometrically complemen-
tary sections of the proteing and B. These regions should define the binding site of the com-

'English translation: “Invertin and emulsin are known torshsome similarities with protein compounds and,
like those, possess an asymmetric molecular structurer Tinéed effect on glycosides could thus be explained
by the hypothesis that the approachment that is necessanititde the chemical process is only possible if the
molecules are geometrically similar to each otfferuse an image, | would say that enzyme and glycoside have
to fit into each other like a lock and a key, in order to exert a chemical effect on each other.”

CHAPTER 2. INTRODUCTION

Figure 2.1: Paul Ehrlich applied Fischer’s lock-and-key principle tminunoreactions. He illustrated his notion
of the concept in this drawing from 1900 [29].

plex. For example, the correlation-based techniquesdoted by Katchalski-Katziet al.[60]

estimate the contact area dfand B and assign those structures with the largest contact area

the best scores. These purely geometric algorithens[R0, 125, 33, 32]) were successful for
a large number of examples.

It was soon recognized, that geometric complementaritgeals not sufficient to identify
the binding site. The next generation of algorithms thus leyga simple energy functions
to estimate the binding free energy of the resulting comgdexThese energy functions usu-
ally consider only a part of the physics involved in the birgdprocesse.g.only electrostatic
interactions [40, 119] or hydrogen bonds [80].

Today, most RBD algorithms share a similar overall strie(lrig. 2.2, page 22). In a first
step, a large number of potential complex structures ig@defaom the two protein structures
A and B. This generation step is usually based on geometric conguitarity. For example,
in the algorithm by Lenhof [70], this structure generatisibased on the matching of triangles
of surface points ofd and triangles formed by atom centers®f A pair of triangles fromA
and B matches, if the side lengths of the triangles coincide withcertain tolerance. Each of

20

2.2. DOCKING AND PROTEIN FLEXIBILITY

these triangle pairs defines a rigid transformation thaigsB into close contact withd. This
structure generation step can be implemented very effigieising geometric hashing tech-
nigues and can produce huge amounts of tentative complastistes in a short time (usually
several thousands). In the vast majority of cases, thisfsstralidates contains a number of
good approximations of the true complex structure (whewotfj means that the RMSDof

all atoms is belov A).

The next (and clearly the most difficult) task is the iderdifion of these good approxi-
mations among the candidates. We will refer to thentras positives while the remaining
structures (those that do not resemble the true compleststa) will be calledfalse positives
Numerous methods have been proposed to distinguish trugvpsedrom false positives. In
principle, it were sufficient to calculate the binding freeeggy of each of the tentative complex
structures, as the true positives should possess the |bineling free energy. However, this is
a non-trivial task, since only very rough approximations lamown to estimate the free energy
on binding.

A large number of other scoring functions have been testettiégrotein docking problem,
but the correct prediction of binding free energies is stile of the most difficult problems in
this field. We cannot enumerate all these methods, so wetmefee comprehensive review by
Sternberget al. [113].

In all algorithms, one or more of these scoring functions appglied to the initial set of
candidates. The output of each docking algorithm is thusikedlist of structures, where the
good approximations should be at the top of the list (bottéfrig. 2.2). If the generation step
produced good approximations of the true complex strustarel the scoring function were
ideal, one should expect that the candidate with the besé seere a good approximation of
the true complex structure. One measure of the algorithoedity is thus the rank assigned to
the first true positive in the list.

2.2 Docking and Protein Flexibility

RBD algorithms perform rather well as long as the structfith@two proteins does not change
significantly upon complex formation. Unfortunately, ta@re numerous examples where this
assumption does not hold. They are explained with Koshénduced fithypothesis, which
basically states that the two partners change their shape bipding and form a complex
structure where they possess geometric complementarigoritrast to the lock-and-key prin-
ciple, the induced fit hypothesis does not require the untbstructures ofA and B to display
geometric complementarity. Clearly, this leads to a moffcdit docking problem. Those
examples that show structural changes on binding fall ¢éisdlgrinto two categories:

e domain movements

e side chain movements

2root mean square deviation

21

CHAPTER 2. INTRODUCTION

¥ .
!

|

Structure Generation

y

v

Filtering

v

!

Final Energetic Evaluation

Figure 2.2: The overall structure of a rigid-body docking algorithm.

22

2.3. COMBINING NMR DATA AND DOCKING ALGORITHMS

Domain movements

In the first case, large rigid sections of the protein (dosiainove around “hinges”, flexible
joints tethering the domains and restricting their moveim@ine hinges are formed by small
regions of high backbone flexibility, while the backbone aéms essentially rigid inside the
domains. In the case of domain movements, one of the majficutifes is to distinguish
between rigid and flexible parts of the protein. Also theltatamber of hinges that can be
considered is usually very limited due to the number of degref freedom associated with
each hinge. One way to handle domain movements was propgsganlalet al. [105, 106].
Their algorithms performs a search of the full three-din@amal rotational space of a hinge
between two domains. To identify the best structure, a nurabpotential hinge locations is
tested and a geometric docking is carried out. Finally,talictures resulting from all possible
hinge positions are ranked with respect to geometric comgitearity.

Side chain flexibility

In the second and more frequent case, the protein backbon&ing essentially rigid, but
side chains undergo conformational changes on binding. xamele for this category is the
complex of trypsin and BPTI, as we have already discussedrinl Bpage 2). Noreét al. [89]
studied the bound and unbound structures of 26 protein @apland could show that
the protein backbones remain rigid upon binding and onlyside chains show significant
conformational changes for the majority of all examples.

RBD approaches have little hope for success if domain or cidén movements occur.
This is mainly due to the fact that the two unbound struct(mdsch represent the input of the
docking algorithm) do not possess the geometric complesmignthe bound structures have.
Even though the initial candidate set often contains a largaeber of true positives, they are
usually not ranked correctly. The failure of the scoringdiions stems from the fact that side
chains ofA and B overlap for many true positives. The resulting structurasnot occur in
nature, they are physically meaningless. Hence, the ggduimctions are not able to give a
reasonable estimate of the true binding energy.

Several approaches have been proposed to overcome thigsdtaiE. Common to these
approaches is an intermediate stage, where the side chaiore@tions of the initial candi-
dates are demangled to produce physically meaningfultanes: In Chapter 3 we present two
new approaches to protein docking with flexible side chalie first technique uses a greedy
heuristic to place the side chains, while the second apprizaa branch-&-cut algorithm that
yields optimal solutions to the side chain placement piroble

2.3 Combining NMR Data and Docking Algorithms

Since itis not yet possible to predict the free energies ndibg with sufficient accuracy, other
ways have to be found to increase the reliability of the doghkiesults. This can be done by
counterchecking the results against experimental datia.ekperimental data should be easily
accessible and should allow a ranking of the docking resulég least some way of validation.

23

CHAPTER 2. INTRODUCTION

Nuclear Magnetic Resonance (NMR) spectroscopy is one ofwbeimportant methods
of protein structure elucidation. It provides data thatteors a large amount of structural in-
formation. This information has been used in ligand docKimgquite some time to predict
the structure of protein-ligand complexes [127, 44, 98]ththe fundamentals of NMR spec-
troscopy being discussed in depth in Chapter 4, we will omigfly explain these methods
here. There are different kinds of structural informatimaikable from NMR data. The eas-
iest to obtain are simpl&lIMR spectra These spectra measure the so-cattbdmical shift
an intrinsic property of each atom of the protein. This st#pends on the structural envi-
ronment (electronic surrounding, geometry, neighboritayns, etc) of the atom, hence the
value of the chemical shift contains structural informatiétlowever, due to the large number
of atoms showing in such a spectrum (typically several heagly, it is a non-trivial task to
decide which of the peaks in the spectrum belongs to whiam.aldhis task is also calleshift
assignmenand is the most time-consuming task in NMR-based structiumadation, which
can often take several months. All of the above mentioneteprdigand docking methods are
based on fully assigned spectra. From these spectra, géosaistraints (NOE constraints)
are derived. The methods are then based upon the integadtibase distance constraints into
existing docking techniques and the resulting structuea® o satisfy as many of these con-
straints as possible. A similar methodology was recentbppsed by Morelliet al. [82] for
protein-protein docking. They used NOE constraints in adotking algorithm to predict the
structure of the complex of cytochromg;; and ferredoxin.

In contrast to these constraint-based docking methodsalgorithm does not require a
shift assignment. This extends the applicability of thehmdtto use structures where no NMR
shift assignment is knowre(g. structures determined by X-ray methods). Furthermore, we
only need an unassignédi-NMR spectrum of the complex, which is the simplest kind of
spectrum and thus easy and cheap to obtain. Instead of pilngdake spectra (which has yet
to be done manually) and extracting geometric informatimmf the experimental data, we
chose the opposite approach. We process the candidatasigenitom a RBD algorithm and
predict their spectra. These spectra are then compared éxgerimental spectrum and ranked
according to their similarity. Hence, no prior processimgl @valuation of the experimental
data is required. Chapter 4 gives a short introduction td#scs of NMR spectroscopy and
then explains our new approach in more detail.

®NOE —nuclear Overhauser effectThis effect permits the estimation of the distance betwegighboring
atoms.

Chapter 3

Semi-Flexible Docking

3.1 Introduction

The previous chapter introduced the basic techniquesdat biody protein docking and their
limitations. Since completely flexible protein docking iengputationally very expensive,
the use of flexible side chains is a reasonable compromise.call/¢he docking with rigid

backbones and flexible side chagemi-flexible dockingAlgorithms for semi-flexible docking

are similar to the algorithms for rigid-body docking. Theyroduce an additional step, the
side chain demanglingIn this step, the side chain orientations in the binding sit each

tentative complex structure are optimized and occurringrlaps are thus removed. This
demangling step ensures physically meaningful structtivasare then subjected to a final
energetic evaluation and ranking. The next sections wak fitiscuss existing techniques
for side chain placement and then we will describe our newagmhes and some results
obtained with these techniques. Parts of this chapter hase jreviously published in [2, 3, 4].

Figure 3.1: This figure illustrates torsion angles in an amino acid sithain. The torsion angles determine the
rotation about single bonds in the side chain. The first twsitm angles in a side chain are usually denoted
andyo.

First, we have to define what side chain flexibility means. ringiple, the N atoms of
a side chain hav8N translational degrees of freedom. In protein structuresugually ob-
serve that bond lengths and bond angles deviate only gliffiatin the ideal values observed
in structures of minimal energy. The reason is that the gneegded to stretch a bond or
deform a bond angle is much larger than the energy requirgérform rotations around the

CHAPTER 3. SEMI-FLEXIBLE DOCKING

bond. Therefore, the side chain’s main source of flexibgitg torsions around single bonds
(see Fig. 3.1). A side chain has a small number of these t@kitegrees of freedom (between
zero and five torsion angles depending on the amino acid)ri&tesy side chain flexibility to

torsional flexibility drastically cuts down the complexity the side chain placement problem.

In 1987, Ponder and Richards [99] observed that the siden cmaiformations occurring
in proteins can be adequately described by a rather smatif set-calledrotamersfor each
amino acid. Fig. 3.2 shows a so callB&machandran plotIt was obtained by examining
a set of known protein structures. For each lysine side cbadurring in the structure, the
first two side chain torsion angleg andy, were determined. The plot shows the observed
frequency of these angles. Obviously, not all possible @egimbinations are assumed with
equal probability. In fact, there are only three small andl-defined regions whose angle
combinations occur frequently in proteins. These regiaessanall enough to assume that
the conformations in a region are energetically equivaldritierefore, Ponder and Richards
argued that it is sufficient to describe the conformatiopalce of a side chain through a set of
conformations, the so-called rotamers. In our examplerdtemers would correspond to the
conformation obtained by picking the three maxima in the Remandran plot. All rotamers
of the amino acid side chains form a so-caltethmer library.

The use of the rotamer representation for the side chairoomattions reduces the initial
continuous optimization problem to a discrete combinataptimization problem: we have to
identify the set of rotamers with the minimum energg, the global minimum energy confor-
mation(GMEC).

In principle, each side chain can assume any of its rotanmersce the total number of
combinations is the product of the number of rotamers foheside chain. With the typical
number of side chains in a binding site ranging from 40 to 66, tbtal number of possible
rotamer combinations can become as high(48 combinations. Thus, efficient algorithms are
required to identify the GMEC or suboptimal solutions suintly close to the GMEC.

Side chain placement has been discussed in depth not ontlgefab initio prediction of
protein structures and homology modeling. There is a widge&af techniques available for
side chain placement. Due to the high dimensionality of thr&farmational space of all side
chains, exhaustive search is only tractable for a very smatiber of side chains [16, 128].
Other approaches use Monte Carlo methods [1, 50], local lagypanodeling [65], or self-
consistent field theory [62] to place the side chains.

Methods for side chain demangling were also successfulpliegto protein docking.
Totrov and Abagyan [117] used a Monte Carlo approach to gréu structure of a lysozyme-
antibody complex. Wenet al. [128] optimized the side chains in the binding site of three
protease-inhibitor complexes using exhaustive searcbhksdaet al. [53] employed a self-
consistent mean field approach and a Langevin dipole mod¢héoside chain placement in
several protein complexes.

However, no algorithm has been yet presented that emplogptimal side chain place-
ment for the interface refinement in protein-protein doglkéscept for the exhaustive search of
Wenget al.[128], which is severely limited in the number of side chaansl thus not tractable
for larger protein interfaces.

The only algorithm that is able to solve the side chain plagm@trproblem to optimality for a
related problem (protein-ligand docking) was proposed &gdh [67, 69]. Leach first employs

26

3.1. INTRODUCTION

350

300 — Frequency [a.u.]

8.000
250 7.417
6.833
6.250
5.667

200 —
— 5.083
D - 4.500
S p. 3.917
& 150 : 3.333
® 2.750
i ’ 2.167
100 . \ 1.583
. 1.000
¥
O L) I L) I L) I L) I L) I L) I L} I
0 50 100 150 200 250 300 350
X, [deg]

Figure 3.2: Ramachandran plot for thg; and torsion angles of LYS. The color coding represents the &aqy
of occurrence in a protein test set in arbitrary units.

the Dead End Elimination theorem to reduce the complexityhefplacement problem and
then the A* algorithm to determine an optimal placement & side chains of the receptor
with respect to a Molecular Mechanics force field.

We present two new techniques for protein interface refimtraed their application to
the docking of unbound protein structures. First, we preadast heuristic that usually yields
suboptimal solutions to the side chain placement probleevelheless, the solution is close
enough to the optimal solution to allow the correct preditinf the true complex structures for
a test set of unbound protein structures. Second, we prdapedest algorithm that allows the
optimal, albeit slower, demangling of side chains of largetgin interfaces. This method is
based on the formulation of the side chain placement probkean integer linear program and
its solution using a branch-&-cut algorithm. The resulterperiments with three protease-
inhibitor complexes are presented in Section 3.3.

27

CHAPTER 3. SEMI-FLEXIBLE DOCKING

3.2 The Docking Algorithm

The input of the docking algorithm consists of two proteihand B in their unbound confor-
mation. These proteins are subjected to a rigid dockindglivig a set of candidate conforma-
tions. For the 60 best candidates out of this set, we perfosideachain demangling. Finally,
the candidates are scored according to their binding freeggn

3.2.1 Rigid Docking

A rigid docking is performed for the protein$ and B, using an improved version of the algo-
rithm described in [70] and [71]. The algorithm uses geometnmplementarity and simple

chemical fitness functions to create a large set of potettialplex structures. Out of this set,
the 60 best candidates with respect to geometric complemignare selected. An experiment
with a test set of docking structures (35 complexes) alwagdyced several good approxima-
tions of the true complex structure among the 60 best catedida

3.2.2 Side Chain Demangling

The rigid docking algorithm, which generates a set of primgi€andidates, neglects the side
chain flexibility. Therefore, many of the candidates haversy overlaps and incorrectly placed
side chains. In order to obtain physically meaningful comfations, we have to demangle the
side chains of the protein interface (the binding site).

Determination of the binding site

First, we have to identify all residues df and B that belong to the binding site. We consider
a residue to be part of the binding site if any of its atoms thimi6 A of any atom of the other
protein. All residues that fulfill this condition are markadd kept in a listBS. Side chains
without rotamers (CYS engaged in disulfide bonds, ALA, andr{5are excluded from this
list. For each residue in this list, we determine its set afgildle rotamers from the rotamer
library of Dunbracket al. [28], assuming that the side chain can occur only in one afehe
conformations. We have now decomposed the protein residtesvo disjoint sets: one set
comprises all residues that have rotamers and belong taridang site as defined by our cut
off criterion, and the other set comprises all remainingdiess (= the template).

Decomposition of the total energy

The GMEC is now defined as the combination of rotamers yigltlie lowest total energy. This
entails a combinatorial optimization problem where we maestirch a huge conformational
space for the GMEC. In order to demangle the side chains obitnding site, we have to

identify the GMEC or a good approximation thereof. By thddaing decomposition we can

express the total energy of the system as a function of tleetsel rotamers:

IryJs

ptotal — pipl | ZEZZ X Z EPv (3.2)
i i j<i

28

3.2. THE DOCKING ALGORITHM

where E'P! is the potential energy of the template (= system withoutltes of the binding
site) andEff’l is the potential energy of side chairin rotameric state: (short: rotameti,.)
interacting with the atoms of the template (including theetinal energy ot,.). Ef“’] is the
pairwise potential energy between side chain rotameric state- and side chairy in ro-
tameric state. This decomposition is exact, as the AMBER force field cargainly pairwise
nonbonded interactions. Since rotamers that heavily agesiith the rigid template cannot be
part of the GMEC, we remove all rotamers whose interacti@rgnwith the template is larger
than100 kJ/mol.

For a given set of rotamers, the single energy components ®flecan be easily calculated
via the Molecular Mechanics force field. The computatiorfdrerequired for the evaluation
scales at most quadratically with the number of atoms (thezeat mostV> nonbonded atom
pairs for N atoms). The difficulty arises in finding the global minimumtlis means picking
the optimal combination of rotamers for the side chainstufately, the search space can be
significantly reduced by the so-calleéad-end elimination theore(®EE)[25], which can be
stated as follows: if for a pair of rotamefs., i),

B+ min B > B+) max B} (3.2)

ir,Js it,Js
J#i J#i
holds, then the rotamey can be safely ignored in the search for the global minimumra

tively applying the DEE theorem reduces the number of coatlins of rotamers by several
orders of magnitude (see also the table in Section 3.3 on4ige

Search of minimum energy conformation

In order to find an optimal combination of rotamers, we haveetiped two alternative ap-
proaches: a tree-based multi-greedy (MG) method abdaach-&-cut algorithmbased on
an ILP (Integer Linear Programming) formulation of our gesh. We will first describe the
greedy method and then explain the more technical branckt&igorithm.

3.2.3 The Multi-Greedy Method

In this approach, an enumeration tree representing aliljes®tamer combinations is built.
The tree consists df = |BS| layers, each representing one side chain. Each path from the
root to a leaf represents a possible combination of rotanigne label of the node in layer
determines which rotamer is selected for side chiaiEvery node also possesses an energy
label. For the construction, we start out with an artific@trnodev, which is given an energy
label E(v) = E™ and a rotamer label(v) = null. For each side chaify we add a new
layer to the tree. This layer is constructed by adding a nodedch rotamer afto each leaf

of the previous layer (see Figure 3.3). Each new neder a rotameri, is labeled with the
corresponding rotamer (z) = i,) and its energy label is set to

E(x) = Eipl + E(parent(z)) + Z Ef:)r(y):
yEpred(z)

29

CHAPTER 3. SEMI-FLEXIBLE DOCKING

artificial root node

layer 1: rotamers of
side chain 1

layer 2: rotamers of
side chain 2

layer 3: rotamers of
side chain 3

Figure 3.3: The tree for three side chains, each having three rotamers.

wherepred(z) denotes the set of nodes that lie on the path fioto v (x excluding) in the
tree. Thus, each node is labeled with the sum of the interaethergies of all rotamers on the
path from the node to the root.

When the construction of a layer is completed, we sort theoficurrent leaves accord-
ing to their energy labels. If the number of leaf nodes exseedertain bountMAXNODES
we keep only the bedtlAXNODESeaves and remove all others. As we keep always at most
MAXNODESodes on each layer, we can be sure that the data structusendbgrow expo-
nentially.

Carrying out these steps for &llside chains in the lisB .S creates a layered tree of height
k, with layer containing only rotamers of side chailfsee Figure 3.3). The energy label of a
leaf gives the potential energy resulting from interactiamong the side chains and between
the side chains and the template for the specific combinaficstamers defined by the rotamer
labels on the path. We thus just have to pick the path frometliiawith the lowest energy label
to the root in order to obtain the minimum energy conformatball remaining conformations
in the tree.

3.2.4 The Branch-&-Cut Algorithm

The GMEC problem can be formulated as follows: Given aHist of residue side chains and
setsV; = {i1 ...1,, } Of possible rotameric states for ale BS, determine for each side chain
1 the rotameli,., such that the potential energy

Ftotal — pipl 4 Z Eff)l + Z Z Eisz
i

1 <t

of the selected conformation is minimized. We assume thHgiaaéntial energiesEff” and
Ef’“’] have already been computed. &1, be the largest energy value among these potential
energies.

We reformulate the problem as a minimization problem on adiranted graphG =
(V, E). For each rotamer., we create a nodewith weight E(v) = Eff’l — E,,.2 and for each

pair (i,, j5) of rotamers withi # j, we create an edgev with weight F(uv) = Ef“”] — Fras.-
The resulting graph ig-partite with partitionsV;, i« = 1...k where all the nodes and edges

30

3.2. THE DOCKING ALGORITHM

have negative weights. The partitidfis called thei-th column of the graph. For a noaeof

the graph, we defing(v) to be the column of this node. The possible rotamer sets syl

to the subgraphs @ with the following property: Every subgraph consists ofakak nodes,
one node out of each column, and the induced edges. We csdl fubgraphsotamer graphs
The weight of a rotamer graph is the sum of the weights of idescand edges. Note that
the weight of a rotamer graph and the energy of its correspgntamer combination differ
exactly byE*" + (k + (%)) - Ejas. Thus, the GMEC problem can be solved by determining
the rotamer graph aff with minimal weight.

The Integer Linear Program

We now transform this graph-theoretic description intoraager linear program by introduc-
ing a binary decision variable, for each node» andzx,, for each edgew. If a node (edge)
belongs to the rotamer graph, the value of the variabléz,,,) is 1 and otherwise it i$). For
brevity, we say that a node or an edge is selected if the gmnekng binary decision variable
is 1. The basic constraint system of the GMEC problem is the\iofig:

min (Z E()z, + Z E(uv)azuv>

veV uvel
st. Y wy=1 forallie{l...k} (3.3)
veV;
Typ <z, foralluv e F (3.4)
Typ <z, foraluv e F (3.5)
z, € {0,1} forallveV (3.6)
ZTyy € {0,1} foraluv € E (3.7)

The constraints (3.3) enforce that exactly one node of eadtitipn, i.e. exactly one ro-
tamer for each side chain, is selected. The constraints48ad}4(3.5) guarantee that an edge can
only be selected if both endpoints are selecie&dwe include the pairwise interaction energy
between two rotamers only if both rotamers are selected #s Siace only one edge from a
certain column to a nodev can be selected, we can tighten these inequalities to

> wyw <z forallveV,i#cv). (3.8)
ueV;

Note that the above integer linear program has subgraphstarher graphs as feasible solu-
tions. Of course, the weight of a complete rotamer graph @llemthan the weight of any of
its subgraphs, so that the optimal solution of the integezdi program is a rotamer graph.

Branch-&-Cut

Branch-&-cut is the most common technigue to handle hardbiaatorial optimization prob-
lems. It works as follows: We relax the integer linear progriy dropping the integrality
condition and solve the resulting linear program. If thausoh z is integral we have the opti-
mal solution. Otherwise, we search for a valid inequafity < f, that cuts off the solutios,

31

CHAPTER 3. SEMI-FLEXIBLE DOCKING

l.e. fy < fo for all feasible solutiong and fz > fy; the se{z | fx = fy} is called a cutting
plane. The search for the cutting plane is called the séparatoblem. Any cutting plane
found is added to the linear program and the linear prograesisved. The generation of cut-
ting planes is repeated until either an optimal solutiomisitl or the search for a cutting plane
fails. In the second case a branch step follows: We genesatsubproblems by setting one
fractional variabler,, (x,,) to 0 in the first subproblem and tbin the second subproblem and
solve these subproblems recursively. This gives rise taxameration tree of subproblems.

For details about branch-&-cut, integer programming, amtisaussion of improvements
on this method, see the book of Wolsey [131].

The GMEC polyhedron

We call the convex hulP of all feasible solutions th&MEC polyhedron Since its facets are
the most promising cutting planes, we studied the struafitke GMEC polyhedron. Before
we can prove that an inequality defines a facet, we have tondete the dimension of the
polyhedron. We assume that the reader is familiar with pedyal theory; for an introduction,
see [87, 131].

Definition: A polyhedronP C R" is the set of points that satisfies a finite number of linear
inequalities. Every polyhedroR can be written a® = {z € R" | Az < d} for somem x n-
matrix A and somen-vectord. Note that this description of a polyhedron is not uniquer. 70
1 <1 < mlet A; be thei-th row of A. If A,z = d; for somez € R" the constraintd;z < d;
is calledactivefor x. Let M be the set of indices, so thate M if and only if A;x < d; is
active for allz € P. Furthermore, lefA=, d~) be the corresponding rows @i, d). In other
words, A=z < d= are the constraints Az < d which hold with equality for all points of the
polyhedron.

Lemmal. dim(P) = |V| — k + |E]

Proof. A fundamental lemma about polyhedral theory (see, for exani®7], page 87) states
that

dim(P) + rank(A=,d") = |V| + |E|,

whererank(A=,d~) is the number of linearly independent rows (f=,d=). Note that
rank(A=,d~) is independent of the particular descriptionZaf

Hencedim(P) < |V| -k + |E|, because we havelinearly independent equalities in our
partial description of the polyhedron. In order to show that(P) > |V| — k + | E|, we have
to show that there and’| — £ + | E| + 1 affinely independent feasible solutions.

A basic solutiond is a feasible solution with,, = 0 for all uv € E. Fori, 1 < i < k
we defineh(i) to be the node of V; with b, = 1. For any node let e,, be the unit vector of
this nodej.e. the vector with entryl at the position ofy and with entry0 at all other positions.
Analogously for any edgev, lete,, be the unit vector of this edge. For ajl-vectorz we
do not distinguish between the vector and the corresporgiibgraph.

Let b be a basic solution. We then construct all solutions wheeetéxone node ob is
replaced by another one in the same column. Additionallyc@vestruct one solution for every

32

3.2. THE DOCKING ALGORITHM

edge by including the edge, both its endpoints. For the neimgicolumns, we take the nodes
of the basic solutioh. More formally, we look at the following se&f of feasible solutions:

S = {b} U {b-l— €y — Cp(c(v)) | v € V with b, = 0}
U{b+ eyy + €y — €b(c(u)) T €v — Ep(e(v)) | uwv € B}

The size of the setis+ |V| — k£ + | E|. Let M be the matrix with rows corresponding to the
solutions ofS. We have to show that the solutions are affinely independenif, one subtracts
one row of M from the others, the remaining rows are linear independbmthis case, the
matrix has to have full row rank. We denote thex n identity matrix byl,,. We subtrach
from all other solutions and get the matrix’ with rowse, — ey (.(»)) forallv € V- with b, = 0
and rowsey, + ey — €p(c(u)) + v — €p(c(v)) for all uv € E. Since dropping columns cannot
increase the row rank of the matrix, we are allowed to dropaiimns: of M’ with b, = 1, i.e.

all columns that have an entryl. This results in a matrix with the following block-structur

(Iy O)
B I‘E‘

for some suitable matri¥3. This matrix has full rank since it is triangular. Thus, thatrix
M’ has full row rank and all solutions ¢ are affinely independent.
O

Lemma 2. The non-negativity constraints,, > 0 define facets for alllv € E. The one-
node-aggregation constraints (3.8) define facetsifor

Proof. A feasible constraint defines a facet, if it is active ffof — k& + | E| affinely independent
solutions.

For the first part, we have to show that, = 0 for |V| — k + |E| affinely independent
solutions. This is obvious, because all but one of the smisgtin the proof of Lemma 1 satisfy
this equality. The second part follows if we choose a basiatiem b with b, = 0. Then
Zue% Tuw = T, fOr all but one selected solutions.

O

Definition: Leth, i, j be pairwise distinct column indicesS;, S2) be a partition oV;, (T4, Ts)
be a partition ofl; and (R, R2) be a partition ofl,. Furthermore, all sets are assumed to be
non-empty. We define the edge-incompatibility constraints; , Sy, 71, To, R, R as

Z Typ+ Z Tyw+ Z Tyw <1 (39)

u€S2,veT] veETH,wERy wWER2,u€ES

Lemma 3. The edge-incompatibility constraints are feasible foand define facets.

Proof. We first show the feasibility of the constraint. If any edgetad constraint is selected,
no other edge of the constraint can be selected, becausestblee of its endpoints cannot be
selected (see Fig. 3.4).

In order to prove that the constraints are facet-defininguseean indirect way to show that
there ardV'| — k + | E| affinely independent solutions for which the constraintcsve.

33

CHAPTER 3. SEMI-FLEXIBLE DOCKING

Figure 3.4: Only one of these edges can be selected.

Let F = {p',...p'} be the set of feasible solutions for which the constrair@)(& active.
The constraint defines a facet if all solutiafps o) of the set of equalities

> pph+ Y punply, = po forallpl € F (3.10)
veV uvelE

are linear combinations of the coefficients of the constré8r0) and the feasible equations
A=z = b= of the problem (see Theorem 3.6. in Chapter | of [8i§),

(11, p10) = (ap” + pA~, 4 pb~) forall p/ € F

The set of feasible equations consistg aquations of the form

Y ay=1 (3.11)

veV;

i.e,, one equation for each partitidry. The scalar factor for the equation of colufipin the
linear combination is denoted by, the scalar factor of the constraint (3.9) is denotedxby
The above cited theorem implies that constraint (3.9) istfaefining if

e 1, = A; for each node € V; (because;{, =0forallp’ € F,v €V)

e 1,y = a for each edgew in constraint (3.9)

tuy = 0 for all other edges
® lip = (& + Z?:l)\Z

Let b be a basic solution. We call a constraint

Z HoZy + Z MHuvTyv = HO (3.12)

veV uveE

34

3.2. THE DOCKING ALGORITHM

in normal form with respect té if 1, = 0 for all v with b, = 1. By subtracting the equations
(3.11) multiplied with suitable factors, it is possible tarisform each constraint into (at least)
one equivalent constraint in normal form with respedt.to

Thus, a constraint of type (3.9) defines a facePdf all solutions of the equation system

Z Mvpf) + Z Muvpgv =poforallp’ € F
veV uwveEE

iy = 0 forall v with b, =1 (3.13)
are of the form
e 1, =); for each node € V;
e /1., = a for each edgew in constraint (3.9)

e /1., = 0 for all other edges
® [lig = a+ Zf:l >‘Z

Since every columiy; contains one node with i, = 0 (normal form), the above equations
can only be fulfilled if all\; are zero. Therefore, we have to show that= 0 for each node
v € V;, uyy = o for each edgeww in constraint (3.9)4.,, = 0 for all other edges, andy = a.

Choose any basic solutidn such that at least one edge of the constraint is selectable,
i.e.b, = 1 andb, = 1. Let F' be the set of all feasible solutions where exactly one edge of
the constraint is chosen. We first argue that= 0 for all nodesv € V. By definition of the
normal form, this is true for all nodes of the basic solutitret v ¢ V3, U V; U V;. Look at
the following two solutions: the nodes of the basic solutiogether with the edgey and the
solution wherey andb(c(v)) are exchanged and the same edge is selected. More formally, w
look at the solution$ + e, andb + ey + €y — €p(c(v))- SiNCeLy((v)) = 0, the difference of
the two resulting constraints jg, = 0. Now letv € V}, U V; UV;. Letwr be an edge of the
constraint that has neither endpoint in the same row. akake any solution where this edge
andb(c(v)) are selected and the solution whéfe(v)) is replaced by. Again the difference
between the two constraintsis = 0.

Now we conclude that,,, = o for all edgeswr in the constraint (look at any solution
where only this edge is selected), and thgt = 0 for all edges not in the constraint (look at
any solution where this edge and one edge of the constragetésted and the solution where
only the edge of the constraint is selected). This provesathsolutions of the equation system
(3.13) have the required form and we are done.

O

Definition: Let h,1,j be pairwise distinct column indices, C V;, T C V; with S, T # 0,
and letR;, Ry be a partition oft}, with R; # 0 for : = 1,2. We define the node-aggregation
constraints foS, T', Ry, Ry as

Z Tyy + Z Tyw + Z Tyw < Z Ty + Z Ly (314)

ueS,weT ueS,weR veT,weR> u€eS veT

35

CHAPTER 3. SEMI-FLEXIBLE DOCKING

Figure 3.5: One can select only as many edges as nodes in the shaded sets.

Lemma 4. The node-aggregation constraints (3.14) are feasiblef@nd define facets.

Proof. Again we start with the feasibility proof. If a node By a node inT’, and a node irR?;

are selected we can select exactly one edge going faa1l" and one edge going froifi to

R, but no edges frorfl" to R,. If a node inS is selected but no node i we cannot select an
edge fromS to T or fromT' to R,. Furthermore, we can select at most one edge ffamR; .

If neither a node fromt nor a node fronl" is selected, we cannot select any of the edges of
the constraint. The other cases are analogous (comparg.5)g.

As in the proof of Lemma 3, we use Theorem 3.6. in Chapter | @f {8 show that the
constraints are facet-defining. LEt= {p',...p'} be the set of feasible solutions that satisfy
the constraint with equality. A constraint of type (3.14fides a facet of if all solutions of
the equation system

> b+ > punPly, = po forallpt € F
veV wek

iy = 0 for all v with b, = 1 (3.15)

are linear combinations of the coefficients of the node-eggfion constraints and the feasible
solutions with scalar factors and;. Thus,(x, mug) has to be of the form

e iy, =X —aforeachnode € V;,v € SUT(becaUS@% = —1forallv € SUT,p’ € F)
e u, = \;foreachnode € V;,v ¢ SUT

e /4, = o for each edgew in constraint (3.14)

e /1, = 0 for all other edges

o p=oa+ Zle i

Choose any basic solutidnwith b, = 0 for all w € S U T. The constraint (3.14) is in
normal form with respect tb. In a solution of this equation system, = 0 for all v € V with
by, = 1.

3.2. THE DOCKING ALGORITHM

Furthermoreyu, = X; for all v € V with b, = 1 by the choice of the basic solution and
thus); =0forall1 <i <k.

Therefore, we have to show tha = —« for each nodey € SU T, i, = 0 for each node
v ¢ SUT, uy = « for each edge:w in constraint (3.14)u,, = 0 for all other edges, and
Mo = .

Let w be the node iV}, with b,, = 1 and w.l.0.g. assume € R, andr is any node ofR;.
Since the constraint is active fowe conclude that,, = 0. Furthermore, we obtain:

1. u, = Oforall v € V that are not in the constraint (look at the difference betwibe
constraints for the solutiortsandb + e, — ep(c(v)))-

2. uyy = 0for all wv € E that are not in the constraint (look at the difference betwtbe
constraint of any active solutignwith p,,, = 1 andp — eyy).

3. uy = —puy foralu € S, v € Ry (look at the difference between the constraints of
b+ ey — ep(e(v)) ANAD + ey — epie(n)) + €u — Eh(c(u)) T Cuv)-

4. p1y = —pyy forallu € T, v € Ry (The same argument).

5. uy = —pyy forallu € S, v € T (look at the difference between the constraints for the
solutionsb + e, — €b(c(u)) T Cuw andb + e, — €b(c(v)) T Euw T €y — Eh(c(v)) T Euy)-

6. by = —py for all uw € S, v € T (look at the difference between
the constraints for the solution$ + e, — eyew)) + & — ew + e and
b—l—ey—eb(c(v))—{—er—ew—i—ew—i—eu—eb(c(u))—|—euv).

Thus, for allu € SUT andv € V such that the edgev is in the constraint, we have shown
thatpu, = —uyy. Since the subgraph induced by the constraint is conneated, have the
same value. Choose = —p,, for a nodev of the constraint. Theny,, = —u, = «a for each
edgeuw of the constraint. Hence, all solutions of the equationeaps{3.13) have the required
form and we are done.

O

We have implemented a branch-&-cut algorithm for the GMEGbpm using the C++
class library LEDA [78], ABACUS [59] for the administratioof the branch-&-cut tree, and
CPLEX [52] to solve the linear programs.

We use the node-summation equations (3.3) and the oneaggiegation constraints (3.8)
as the initial constraint system. The only constraints @natseparated are the node-aggregation
constraints (3.14) withS| = |T'| = 1.

We use a simple, brute force algorithm. We iterate overialets (u, v, h), whereu,v € V,

h is a column of the grapliy andc¢(u), ¢(v), h are pairwise distinct. The optimal partition is
obtained by iterating over the nodesigf and putting a node into Ry if 2., > 2., andinto
R5 otherwise.

37

CHAPTER 3. SEMI-FLEXIBLE DOCKING

The running time is
E k k

O D > (Willv;Iva) = o(V).

i=1 j=1 h=1

3.2.5 Energetic Evaluation

A
AAGioly ’ wﬂ;

1)

MG?&)]V \

B-A
m

Figure 3.6: Calculation of the electrostatic contributions to the himgifree energy.

After determining an optimal rotamer set for each candidageassign the rotamers of the
minimum energy conformation to the respective side chaiastlhen optimize the side chains
of the binding-site using the AMBER force field. The free gyeof binding is determined
using the method proposed by Jackson and Sternberg [54].

We decompose the binding free enety¥ . as follows:

AGass — AGES —|—AGcav —|—AGconf —|—AGvdW (316)

AGPS represents the electrostatic contributiahG** the cavitation free energy in water,
AG®" the change in conformational entropy of the proteins, A@¢" the change in the
van der Waals free energy.

Electrostatic contribution

The electrostatic contributions to the binding free enargy be estimated using a so-called
continuum modelThis type of model considers solvent molecules not explidout implicit

as a spatial dependency of the dielectric constant. Theesisluepresented by a region of low
dielectric constant immersed in a high dielectric constatent (water). The boundary be-
tween these two regions is formed by the molecular surfatieeo$olute (the solvent excluded
surface).

38

3.2. THE DOCKING ALGORITHM

Within this continuum model, thBoisson-Boltzmann equatidi’BE) describes the elec-
trostatic potentiaf () at pointas a function of the charge distributip) and the (spatially
varying) dielectric constant(r):

0 —
V(e(F)V (7)) — &%(7) sinh (M> = _p) (3.17)
kT £0
The symbolV represents the gradient of a function,. is the vacuum permittivity ane’ the
proton charge. For our purpos&sy) (a modified Debye-Hiickel parameter) may be set to zero
without loss of accuracy:

VETe) = -2 (3.18)

A common method to solve this equation is the finite diffeeeneethod. After converting
the linear PBE into its finite difference form, the resultiegt of linear equations on a three-
dimensional grid is usually solved using over-relaxatiechniques [88]. The solution of the
Poisson-Boltzmann equation yields the electrostatic miatefor each grid point. The total
electrostatic energy of the system may then be calculatéieasum of energies of each point
chargey; in the electrostatic field:

AGUt = Z gi¢ (3.19)

In the Jackson-Sternberg model, the electrostatic canimio AGF® to the binding free
energy is composed as follows:

AGPS = AAGY, + AAGE, + AGLD (3.20)

solv solv int

To evaluate the electrostatic contribution, we use thersehia Fig. 3.6. First, we calculate
the total electrostatic energy of in water (dielectric constant of watey, = 80, dielectric
constant of the protein, = 2). Then, we create a complex-shaped low dielectric constant
cavity and charge onlyl. B remains uncharged. The change in solvation free energy on
binding AAGZ, for A is given by the difference between these two energies. Tesiction
energy ofB in the field of A AGAB | which equals the interaction energy 4fin the field of

int ?

B AG%‘, is then determined as the energy of the point charges of the field caused by
A. The same process is finally repeated for profeim the same manner. In our experiments,
we used cubic grids with a spacing@b A and the Poisson-Boltzmann code implemented in

BALL.

Cavitation free energy

The change in cavitation free energy is calculated as arlifveection in the change of the
molecular surface area

AG gy = Y (AAB —Ap - AB)7 (321)

39

CHAPTER 3. SEMI-FLEXIBLE DOCKING

where A, 5, A4, and Ag are the molecular surface areas of the complex, pratgimnd
protein B, respectively, and is a constant(.289 kJmol‘lA*Q). We use the algorithm by
Connolly [20] (as implemented in BALL) to calculate the moléar surface areas with a probe
radius of1.4 A. For the electrostatic calculations, we use the PARSE &atam radii and
charges by Sitkofét al. [109] and the FDPB implementation of BALL.

3.3 Experimental Results

We applied our technigues to three protease-inhibitor ¢exes. The structures of three pro-
teasesA and the corresponding protein inhibitadBswere taken from the PDB: subtilisin carls-
berg (1SBC) with chymotrypsin inhibitor 2 (2CI2p-trypsin (1TPO) with trypsin inhibitor
(4PTI), anda-chymotrypsin A (5CHA, chain A) with ovomucoid (20VO). Waigas removed
from each of these complexes, hydrogens were added angts#ions were optimized using
the AMBER [22] force field.

Combinatorial complexity

The iterative application of the DEE theorem reduced thehinatorial complexity usually
by about ten orders of magnitude, thus greatly simplifyimg $olution of the GMEC problem.
Numbers for the three examples are given in the followinggtab

complex no. of side # rotamer combinations
chains before DEE after DEE
1TPO/APTI 51 6 - 1060 8- 10%
1SBC/2CI2 50 1-10% 2.10%
5CHA/20VO 54 1-10% 2.10%8

Ranking of the structures

In the case of 17TPO/4PTI, the AMBER energy already gave a sigaal; the best four can-
didates (those with lowest energy) were good approximatiminthe complex structure (see
Fig. 3.7: structures are good approximations of the trueptexnstructure if their RMSBis
low). When ranking this example with respect to the estich&iading free energy (calculated
with the Jackson-Sternberg model as described in Sect®)n @ approximation of the true
complex structure was ranked as number one as well (see.Big. 3

For the example 1SBC/2CI2, the AMBER energy was not sufficierpredict the true
complex structure correctly. However, when ranked acogrdd the binding free energy, the
best candidate was a good approximation of the true complestsre for all examples (see
Fig. 3.9, 3.8, and 3.10).

We also tried to predict the structure of these examplegubkm binding free energy alone
(i.e. without a prior side chain demangling). None of the compdex@s correctly predicted.

root mean square deviation of all atom position

40

3.3. EXPERIMENTAL RESULTS

50 r
m

40

30

20 r O

RMSD [Angstrom]

10 r

B g

g O

0
-20000 -18000 -16000 -14000 -12000 -10000 -8000 -6000

binding energy [kJ/mol]

Figure 3.7: 1TPO/4PTI - AMBER energy of the candidates (MG).

60 T T T T T T

50

40 r

30

20 r 0 0O [b

RMSD [Angstrom]

10 | O

L9 o g%
-300 -200 -100 0 100 200 300 400

binding energy [kJ/mol]

Figure 3.8: 1TPO/4PTI - ranking of the candidates according to theirdiny free energy (MG).

Hence, side chain demangling as well as an advanced scoeitigpchare both needed to predict
the correct complex structure in these cases.

CHAPTER 3. SEMI-FLEXIBLE DOCKING

70 T T T T T
60 r O O i
. o o u
O O

— 50 | 0 55 o .
g O oo
= o Og H O
s 07 D T Loy 0F 1
< . oo
8 30 r i
> -
20+ o o T

10 | E

O
O d Il Il - Il Il - D@
-300 -200 -100 0 100 200 300

binding energy [kJ/mol]

Figure 3.9: 1SBC/4CI2 - ranking of the candidates according to theidiig free energy (MG).

60 T T T T T T

m o0 ogg o U
50 r O O 0 7

D
o
T

1

DD 0o D

RMSD [Angstrom]
w
o

20 | :
g O
O
10 | :
ol Bm 0dRopn & oo g .

-200 -100 0 100 200 300 400 500
binding energy [kJ/mol]

Figure 3.10: 5CHA/20VO - ranking of the candidates according to theirding free energy (MG).

Quiality of the heuristic

For the case of 1.TPO/4PTI, we checked the quality of thetesbtained from the MG method
by calculating the optimal solution using the branch-&-algorithm. We performed this cal-

42

3.3. EXPERIMENTAL RESULTS

culation for 34 out of the 60 candidates. In most cases, theiso found by the heuristic
was close to the optimal solutione. for the majority of the side chains the selected rotamers
were identical to those of the optimal solution. The totadrgy differed only slightly from
that of the optimal solution, hence the ranking was very sinto that of the optimal solution
(see Figs. 3.7 and 3.11). The average error in the AMBER @®ewas abou8000 kJ/mol.
However, the quality of the solutions was better for goodragimations of the true complex
structure. Among the 34 candidates considered, 7 were guumximations (RMSD< 4 A).
Only one of these seven candidates was further 1686 k.J/mol away from the optimum.

Side chain placement

For the protein docking problem, not all side chains are efaéimportance. However, the
placement of a single side chain may determine the succei®e alocking. A prominent

example is LYS:15 of 4PTIl. When compared to the bound stractihis side chain has to
turn towards the core of 1TPO to fit properly. Fig. 3.12 sholes hound and the unbound
conformation of this side chain. However, it is not neceg$ar LYS:15 to assume the fully

extended position as in the complex structure, it just hasrfodown a bit further than it does
in the unbound structure to avoid clashes with the backbdrierBO. Although the correct

placement of the side chain is not achieved, the selectachmatis sufficient to allow a reliable
prediction of the binding free energy.

Running times

We compared the running times of the different parts of owkam algorithm on a SUN
Enterprise 10000 (333 MHz UltraSparc Il processors, 12 GB/R8olaris 7, g++-2.95.2 with
-O2). We averaged the running times for each stage of theitdgoover all 60 candidates
considered. Obviously, running time is dominated by thel fameergetic evaluation and the
initial calculation of the energetic contributions, whasehe side chain placement itself only
accounts for a minor portion of the total running time.

stage avg. time [min]
energies and DEE 30

ILP 14
multi-greedy 3

side chain optimization 5

final energetic evaluation (FDPB) 70

43

CHAPTER 3. SEMI-FLEXIBLE DOCKING

60 : : : : : :
50 f .
40 t i
30 f .

& DDQEDD mt O o o
20 r O g

RMSD [Angstrom]

oo
O

10 r .

O D o 1 O i Dl) Il L 1 Il
-20000 -18000 -16000 -14000 -12000 -10000 -8000 -6000

binding energy [kJ/mol]

Figure 3.11: 1TPO/4PTI - AMBER energy of the candidates (ILP).

Figure 3.12: Placement of LYS15 of 4PTI (red: complex conformation fr&fi@, blue: conformation from 4PT],
yellow: optimal rotamer).

Chapter 4

Protein Docking and NMR

4.1 Nuclear Magnetic Resonance Spectroscopy

One of the most important tasks in structural biology is tleedmination of the three-
dimensional structure of biomolecules. Currently, thamethree methods that are frequently
employed in structure determinatiorX-ray crystallography Nuclear Magnetic Resonance
(NMR) spectroscopy, andlectron microscopy While the latter of the three methods is of
minor importance and only yields low-resolution structr¥-ray crystallography and NMR
spectroscopy are powerful tools to explore the structut@arholecules at the atomic scale.

In X-ray crystallography, X-rays are focussed onto a protaiystal and the resulting
diffraction patterns are recorded. From these patteressttiucture of the protein can be recon-
structed through &ourier transform This technique is applicable to proteins of all sizes, the
only prerequisite being the ability to grow crystals of thietpin in question.

The second technique, which we will discuss in more depttheddNuclear Magnetic Res-
onance spectroscopy. The development of NMR spectroscagyinitiated by the pioneering
work of F. Bloch and E. M. Purcell in 1945 [14, 101]. During flelowing decades, it became
the method of choice for structure elucidation in organierofstry. Due to new techniques and
instruments, the size of the molecules accessible to NMRtssEopy grew constantly until
structure determination became feasible for small to mediized proteins.

There is a whole range of textbooks covering the fundameraatl advanced topics of
NMR spectroscopyd.g.[48, 42, 120, 39, 45]), so we will just mention the fundaméplgysics
and discuss the details only insofar as they are essentla tanderstanding of the subsequent
sections.

4.1.1 The Nuclear Angular Momentum

NMR is based on the fact that the nuclei of most atoms possesgslear angular momentum
P, which, according to the classical picture, corresponds rimtation of the nucleus about an
axis. From quantum mechanical considerations, one carcdetat the angular momentum of
such an isolated particle cannot assume arbitrary maggsthdt is quantized.é. it may only
take certain discrete values). For the angular momentugsethialues can be specified in terms
of aquantum numbef:

1P| =+/I(I + 1), (4.1)

whereh = 2rh is the Planck constant. Thangular momentum quantum number spin

guantum numbér] is determined by the nucleuse. it is determined by the isotope of the
element fuclidg in question. Nuclides with a spin quantum number ¢t 0 do not possess
an angular momentum and are thus not accessible through klrescopy (see Table 4.1).

CHAPTER 4. PROTEIN DOCKING AND NMR

Nuclide Natural abundance Spin quantum number Gyromagrato

[%)] I v [107radT~1s7']

'H 99.985 : 26.75
’H 0.015 1 4.11
12¢ 98.9 0 -

13C 1.108 : 6.73
1N 99.63 1 1.93
N 0.37 : —-2.711
160 99.96 0 -

70 0.037 2 —3.63

Table 4.1: Magnetic properties of the most important nuclides (vafues [39]).

Associated with the angular momentufis themagnetic momeni:
i =~P 4.2)

The gyromagnetic ratioy is a constant specific to each nuclide. Bgttand P are vectorial
properties, so their full description requires a directémnwell. When placed in a static mag-
netic field B, along the z-axis, the spins of the nuclei orient themseNesgathe field in a
way that their z-component is quantized as well;

P,=mh with m=IT—-1,1-2,...—1 (4.3)

wherem is themagnetic quantum numheBincem can assume all values given in eq 473,
(andji) can assumel + 1 possibles values (see Fig. 4.1). Hence, the energy of tHeusim
the magnetic field3, is quantized as well:

E = —p,|By| = —m~h|By| (4.4)

From here on, we will consider only nuclei wifh= % (e.g.'H) for the sake of simplicity.
Similar considerations apply to the other nuclei as will.nuclei (protong, can assume two
different energy levels in accordance with the two possilieies of the magnetic quantum
numberm = +%, —%. If 1, is positive,ji is parallel to the external magnetic field, which is
the preferred orientation. Transitions between these tates can be caused by the transfer of
an appropriate amount of energyly. This energy has to correspond to the difference of the
two energy levelsi.e.

44 . 3
AE=E,, —E_ = 3B By|. (4.5)

1
2
The energies required for this transition are comparatiseiall. For typical NMR instruments,

they correspond to electromagnetic radiation with fregiesnin the range of several MHz to
several hundreds of MHz. This frequency is calledrésonance frequenayf the nuclide.

46

4.1. NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Figure 4.1: Left: The nuclear angular momentum vectBrof a proton (H) can assume two different states
defined by its magnetic quantum number The z-component of the spin is either parallel or antipkelaio the
external fieldB,. Right: Since this quantization condition holds only for the z-comgnt, the spins may have
arbitrary x- and z-components, i.e. they lie on cones defiyettie total angular momentuf and its z-component.

According to the quantization condition (4.3), only theavponent is quantized. Classical
physics require a magnetic moment in a field to perform aiostat movement around the
z-axis which describes a cone (see Fig. 4.1). Such a movemgenerally referred to as
precession(analogous to the motion of a gyroscope). In the case of NNIE, known as
Larmor precession The angular velocity of the precession and the correspondiragmor
frequencyy = o are proportional to the external fielgl:

AE] _ Al 5
_ — B 4.6
Y [Bol (4.6)
= s, (@.7)
s
w = |y|[B (4.8)

4.1.2 Electronic Shielding and the Chemical Shift

From the equations stated above, one should expect allimi@ecertain nuclide to show the
same energy differenc& ' for a given magnetic field. However, atoms also contain edest
and these cause a local magnetic field which is superposéxd texternal field. As a result,
the nucleus is shielded from the external field and expeeoaly areffective fieldB.;. The
shielding is proportional to the external field and is therefwritten in terms of thehielding
constanto,g:

Beg = By + AB = By — 0,3B0 (4.9)

The shielding constant depends on the local environmeanttfars on the molecular structure)
of the nucleus in question. Sineg,s is a tensor quantity, the effective field depends on the
orientation of the molecule relative to the magnetic fieldtwe B,. Hence, the random dis-
tribution of this orientation in liquid samples causes tl@-sotropic contributions aof s to
vanish. The experiment only reveals the isotropic shigldionstant- which is the trace of the

47

CHAPTER 4. PROTEIN DOCKING AND NMR

»
>
N
>

C

Figure 4.2: Basic components of an NMR spectrometer: The sample (Apeteglin a strong homogeneous
magnetic fieldB, caused by a magnet (B). The field can be modified using the swésfC). Radio pulses are
transmitted using the transmitter coils (D) and receivealthie receiver coils (E).

shielding tensor:

1
o = g(Umm + oYy + 02z) (4.10)

More practical than the shielding constants the chemical shifts scale (éfscale). This
scale describes the difference between the resonancesfreigs of a given nucleus relative to
the resonance frequency of a reference compound:

V — Vyef

§ = (4.11)

Vref

§ is named thehemical shifind is usually given in units of ppm (parts per millide, ¢). The
chemical shift of the reference compound is zero by defimitdlthough the chemical shift is
also a tensor quantity, we will regard it as a scalar quafaitghe reasons stated above for the
shielding tensor.

4.1.3 The Basic NMR Experiment

Fig. 4.2 shows the schematic construction of an NMR spedterm It consists of a strong
(usually superconducting) magnet whose primary figldis modified by an additional field
B, created by a set adweep coils The sample is placed in this homogeneous field in a
cylindric sample tube. A radio frequency of varying freqogtis emitted by thdéransmitter
coil and the resulting signal is picked up by thezeiver coilssurrounding the sample. A
spectrum is acquired either byfiald sweegthe current through the sweep coils is modified

48

4.1. NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Intensity [a.u.]

10 8 6 4 2 0
chemical shift [ppm]

Figure 4.3: The experimental H-NMR spectrum of the protein parvulin [7]. The large peal§ at 4.7 is caused
by the solvent, the other peaks are caused by the proteif itse

and the emitted radio frequency is kept constant), or gequency sweefthe field stays
constant and the frequency varies). The intensity of theived signal is modulated by the
varying absorption of the sample, which is at a maximum ferréseonance frequency of each
species in the sample. Thus, the spectrum shows a numberak$ perresponding to the
chemical shifts of the different nuclei in the sample. Thakparea is roughly proportional
to the concentration of the species. In the case of protéiesnumber of chemically distinct
protons is very high and the spectra become very complex 4F3).

There is a multitude of different experimental techniguesailable to perform an NMR
experiment. Even a cursory overview of all available tegbes is clearly beyond the scope
of this work, so we refer to appropriate textbooks [48, 44),139, 45]. For our purposes, it
is sufficient to know that the chemical shifts of the nuclen ¢ determined experimentally
and that these shifts contain important structural infdrmma Through different kinds of NMR
experiments, itis possible to assign each of the peaks twotiesponding atom of the protein.
This difficult task is calledshift assignmentlt requires a large number of different spectra, a
lot of experience, and usually several weeks or even moritfize.

A huge amount of structural data can be derived from a fukbygeeed spectrum. Depending
on the kind of experiment that lead to the spectrum, thisrmédion consists of interatomic
distances or secondary structure information. This infdrom then allows the reconstruction
of the 3D-structure of the protein.

49

CHAPTER 4. PROTEIN DOCKING AND NMR

4.2 Application to the Protein Docking Problem

As NMR spectra contain a huge amount of structural data am@asily accessible, it seems
obvious to use this information in protein docking. The gn&gion of experimental data into
docking algorithms can improve the quality and reliabibfydocking results. Furthermore, the
results of the docking predictions can be used to acceldratstructure elucidation process.

421 Previous Work

The inclusion of NMR data is a well known technique in ligaratking €.9.[98]), but up to
now, there is just one paper describing the use of NMR in prgieotein docking [82]. In that
paper, Morelliet al. determine the changes in a two-dimensior#l-(°?N-HSQC) spectrum
upon the binding of ferredoxin to cytochromgs. From a set of (fully assigned) spectra, they
determine a set of nuclei whose chemical shift changes adifgnand thus obtain a set of
distance constraints. An initial set of tentative complExdures is generated using a simple
rigid-body docking algorithm. The best candidates are ednkith respect to the number of
distance constraints they violate. Hence, the algorithmhm seen as a kind of local rigid-
body docking, where the binding site and the coarse orientaf the two proteins is defined
by the distance constraints. However, the NMR data is netctir exploited but only distance
information derived from the fully assigned spectrum. Ttagbthis distance information, it is
necessary to assign the majority of the shifts in the spgetgpheteronucleatH-'>N-HSQC
spectra).

Since the shift assignment is the most time-consuming peodering the NMR-based
structure elucidation, a more favorable approach wouldleynihe unassigned spectra. In
principle, it should be feasible to acquire an one- or mdiltitensional NMR spectrum of the
complex and compare it to predicted spectra of the compledidates. The simulated spectra
of those candidates that are closest to the true complegtsteushould show the smallest
deviation from the experimental spectrum. That leaves penajuestions: (a) how to simulate
a spectrum?, and (b) how to compare two spectra? The neidrseare dedicated to these two
problems.

4.2.2 NMR Shift Prediction

If we set aside spin coupling (an effect that splits peakstdgpin-spin interactions of neigh-

boring nuclei), we can assign a chemical shift to each distincleus of a protein. The chem-
ical shift of a nucleus is influenced by numerous physicaaff. Basically, all influences that
lead to a change in the electronic structure of an aia@mwhich influence the electron density)

affect the chemical shift. Over the years, a number of inltial effects have been described
that are known to have an influence on the chemical shift, th&t prominent ones being

e ring currents: in a simple classical model, theelectrons of aromatic rings form current
loops causing a magnetic field that superimposes the ekfezlth

e electric field: polar groups close to the nucleus can influence the shelafim nucleus
through electrostatic interactions

50

4.2. APPLICATION TO THE PROTEIN DOCKING PROBLEM

e magnetic anisotropy the magnetic anisotropy of double bonds, especially thptige
group of proteins, can cause significant changes in the da¢rsiift of neighboring
nuclei

e protein secondary structure especially the heavier nuclei®(N, 'C) display a strong
dependency on the protein secondary structure

A number of common models have been proposed for theseeff;t130, 129]. One of
these models was proposed by Williamson and Asakura [128]f\Wwdel). They decompose
the total chemical shift of a nucleus into the following faantributions:

0= 5local + 6rc + 5aniso + 6es (412)

whered,. is the contribution of ring currents,,;s, is the contribution caused by the magnetic
anisotropy of the peptide bond, ang is the electrostatic contributiorn,,.,; is the so-called
local orrandom coil shiftand equals the shift this nucleus had, if it were in a shortigep
without secondary structure (random coil). For each ofdheffects, models were developed
to estimate their contribution. The next paragraphs wiladibe these models in more detail.

Ring Currents

The circularr-electron system of aromatic rings induces a magnetic fittds field changes
the effective magnetic field at the nucleus and thus leadgliffesient chemical shift.

There are two widely used approaches to calculate the ringmushift: the approach
by Haigh and Mallion [46] and the one by Johnson and Bovey.[F8)r both models, the
secondary shift can be written as

e =Y ix BG(Ry) (4.13)

kerings

where B is a constantj, gives the ring current intensity of theth aromatic ring (relative to
the intensity of a benzene ring), aﬁZJ(R'k) is a geometric factor which depends on the shift
model in use as well as on the positiﬁ;f;g of the k-th ring center relative to the proton.

In the Haigh-Mallion model the geometric factor is writte) a

Gun(R) =Y Sy (Tig + %3) (4.14)

i<j (J

wherer; andr; are the distances of the nucleus from two neighboring atoargl j of the
aromatic ring, where the sum runs over all bonds of the rifig.is the area of the triangle
spanned by the two ring atoms and the projection of the na@atthe aromatic ring plane.
The Johnson-Bovey model is more complicated, but in gemgvab better accuracy. Itis
based on Pauling’s model of the aromatic ring current [97] famdamental ideas of Waugh
and Fessenden [126]. Using Pauling’s model, they estineeing current intensity in the

51

CHAPTER 4. PROTEIN DOCKING AND NMR

loop and calculate the magnetic field caused by the ring a®thao classical current-loops,
one below and one above the aromatic ring plane. The reg@gometric factor is

G (R’)_ 1 K+ME (4.15)
B @21 22 (a—p)? + 22 '

whereq is the ring radiusp andz give the positionﬁ of the nucleus relative to the ring center
in cylindrical coordinates, an and E are complete elliptic integrals of the first and second
kind [110].

Magnetic Anisotropy

The magnetic anisotropy is usually modeled by the approddic€onnell [76], which de-
scribes the contribution to the chemical shifts via the negigrsusceptibility tensoy,, s of the
anisotropic group:

1

m Z X“(3 COS2 91 — 1) (416)
A

i:I7y7Z

(Saniso =

Here, R is the distance vector from the nucleus to the anisotropieigrN 4 is the Avo-
gadro constant, ar} is the angle between thieaxis and the vectoR.

Electric Field

Electrostatic fields caused by polar groups can influencelbenical shift by deforming the
nucleus’ electron hull und thus changing the shielding. Khwgham [17] was the first to pro-
pose a formal treatment of the influence of an electrostald fi on a C-H single bond by
expanding the shielding tensey,s as a power series:

1

0 1 2
Cas =Oug+ D OByt D 0bg BB (4.17)
T=T,Y,2 ’Yi(s:myy’z

This series is usually aborted after the quadratic term.sBinee expansion holds for the chem-
ical shift tensord,g as well:

0 1 1 2
bag =003+ D g Bty Y. OudsBnEs (4.18)
T=T:Y,2 Waézmayzz

Instead of the shielding tensor, we are usually interestethe isotropic chemical shifi.
According to eq 4.10j is the trace of the chemical shift tengy and thus the above equation
simplifies to

§=0g+ei B, +eg|E]? (4.19)

52

4.2. APPLICATION TO THE PROTEIN DOCKING PROBLEM

wherez; ande, are constants anf is the electric field at the bond with z-componént (the
z-axis coincides with the bond axis), is the chemical shift without an external electric field.
We thus obtain for the electric field contribution alone:

bes = 1B, + e9|E|? (4.20)

Similar models have been proposed by a large number of aufingr[92, 130, 129]). They
usually differ only in the parameterization. These paramseare either derived from quantum
mechanical calculations or they were fitted to experimenteite.

amino acid atom name

all N-terminal NH; protons
HIS Hs1, Heo

TYR H,

SER H,

THR Hyy

cYs H,

ASN Hs2,1, Hso,2

GLN Heo,1, He o

LYS Hei, Hea, Hes

ARG He, Hy1,1, Hyp2, Hiz,1, Hiz2

Table 4.2: The protons that were assumed to be rapidly exchanging amlitivisible in the NMR spectra.

4.2.3 Spectrum Synthesis and Comparison

After predicting the chemical shifts of all protons in a malk, we have to reconstruct the
NMR spectrum from this data. First, not all of these protores seen in the spectrum. For
example, hydroxyl, thiole, and some amine protons are lysnat present. This is due to
intermolecular exchange.e. the amino acid’s protons are rapidly exchanged for protdns o
the solvent (water). This exchange happens on a faster tiale han the NMR experiment,
so only a single average shift is seen for these protons ansidlivent. Whether the proton is
rapidly exchanged depends on the structure of the proteirebhas on experimental conditions
(e.g.pH of the sample) and is thus difficult to predict. Hence, weidkd to use a list of
protons that are known to exchange in the majority of all saserotons on this list were
simply excluded from the shift list of the candidate and dbowzur in the simulated spectrum.
The list of excluded protons for our experiments is givenabl€ 4.2.

The refined shift list was then used to synthesize the spactfine peaks in an ideal NMR
spectrum havé.orentzianline shapej.e. the absorption intensityd depends on the chemical
shift via a function of the form

A(5) = (4.21)

14 el

53

CHAPTER 4. PROTEIN DOCKING AND NMR

T
reconstructed

intensity [a.u.]

J A /v\
/") Uv;\ ,,/JJ

10 8 6 4 2 0
chemical shift [ppm]

Figure 4.4: Experimental and constructédH-NMR spectrum of the protein parvulin [7]. The solvent peais
removed.

whered, is the chemical shift of the proton ail describes the width of the peak. The line
width is very difficult to predict, since it depends on a widmge of effects, ranging from
the inhomogenity of the magnetic field to molecular motiombkerefore, we used a constant
average line width for all protons in the spectrum. Then, a&e write the spectrun$ as a
linear combination of Lorentzians centered at the predisteft positions);:

1
S0) =2 ey

(4.22)
e

For the case of parvulin, Figure 4.4 shows the experimemattsum and the synthesized

spectrum for comparison. Although there are significarfedifices between the two spectra,

the overall structure is very similar. The differences amnty caused by the differing line

width in the experimental spectrum.

To compare two spectra, we calculated the unsigned differ&etween the two spectra.
The integral of the resulting difference spectrum was estiith as the sum of 5000 equally
spaced samples of the difference spectrum (in the shifterarig2 to 12 ppm). The abso-
lute difference area of the two spectsa and Sp was calculated as the sum of all unsigned
differences:

A(Sa—Se)= > [Sa(0) — SB(9)]
0€[—2,12]

(4.23)

54

4.3. EXPERIMENTAL RESULTS

The resulting difference ared was used as a measure of similarity between the two spectra
and for ranking the docking results.

4.3 Experimental Results

In order to find a suitable test set for our approach we sedrtie contents of the BMRB
(BioMagResBank [108]) for suitable protein complexes ofkn three-dimensional structure
and available'H-NMR spectra. Unfortunately, the number of candidateseiy wmall. We
identified four candidates where the BMRB contained rathermete shift data of the complex
and a corresponding structure was deposited in the ProtisnBank (PDB, [9]): the complex
of calmodulin with the C&f-calmodulin-dependent protein kinase kinase [94], theerof
calmodulin with a binding peptide of the €apump [30], the complex of S100BG) with a
peptide derived from p53 [104], and the two identical sutsuof the homodimer S100B().

4.3.1 Methods
4.3.1.1 Preparation of Structures and Rigid Body Docking

All complex structures were retrieved from the PDB (PDB IDSTY, 1CFF, and 1CKK). From
each structure containing several models, we selectedshetdodel in the file. Missing hydro-
gens were added and all hydrogen positions were optimizeéekinomplex using the AMBER
94 force field [22]. The complex structures were then sepdrato two files each containing
one of the complexed proteins or peptides, which were usedridlocking algorithm.

For each example, we carried out a rigid-body docking udiegtgorithm described in [70,
71]. The algorithm generates a list of tentative complexcétres which are ranked with
respect to geometric and energetic scoring functions.

4.3.1.2 NMR Chemical Shift Calculation

Out shift model decomposes the total chemical shdt a proton into four components
0= 6local + 6JB + 6aniso + 5es (4-24)

whered . is the so-called random coil shiff,,is, is the secondary shift caused by the mag-
netic anisotropy of the peptide bonf}g is the ring current effect as calculated by the Johnson-
Bovey theory [47], and,; is the effect of the electric field.

Electric field effect The electrostatic contribution was approximated using.2q with
the parameters proposed by Williamson and Asakura [129dtn C-H and N-H bonds. The
electric field was calculated via Coulomb’s law with atomiamyes taken from the AMBER
94 force field [22]. In contrast to our model, the WA model usharges on the N, H, £
C, and O atoms only. It has been reported in literaterg.(93]) that the use of force field
charges yields slightly worse results than the use of clsavgehe backbone when predicting
the spectra of proteins. A likely reason for this result isfidct that the charged side chains are
often immersed in the solvent and the field arising from tlobseges is shielded by the solvent.

55

CHAPTER 4. PROTEIN DOCKING AND NMR

Since this shielding is not accounted for by the simple Cmtlanodel, the field caused by the
side chain charges is overestimated.

In the case of protein docking however, we are not interdstdte the spectrum alone, but
in the differences of spectra. Since the main features ckthifference spectra are governed
by side chain—side chain contacts in the binding site, waldddo include charges for the side
chains as well. As could have been expected, the use of the ERI®4 charges gave better
rankings than the use of backbone charges alone.

Magnetic anisotropy The magnetic anisotropy of the peptide group was modeletjusi
McConnell's equation (eq 4.16). Again, we used the paramsgi®posed by Williamson and
Asakura for the C=0 and C-N bond of the peptide group.

Ring current We used the Johnson-Bovey model [58] which proved to giegsii bet-
ter results than the Haigh-Mallion model. We used radii df82.A for the five-membered
rings (HIS, TRP) and 1.38 for the six-membered rings (PHE, TYR, TRP).

Random coil shift Using a training set of 14 proteins with known structure asslgned
'H chemical shifts (obtained from the PDB [9] and the BMRB [J)0&e fitted the random coil
shifts to reproduce the experimental shifts as closely asiple. We used a test set of seven
fully assigned protein structures as a test set to verifyiniprovement of the shift model. In
fact, the standard deviation of alH chemical shifts in the test set was reduced from the initial
0.52 ppm obtained with random coil shifts from the BMRB toDppm.

4.3.1.3 Spectrum Synthesis and Comparison

Spectrum synthesis from experimental data The assigned chemical shifts were read
from the BMRB files (BMRB IDs 4099, 4284, and 4270). The spgutwas then simulated
by assuming a Lorentzian line shape of equal width for eaotopr(eq 4.21). We chose an
average value of = 0.0032 ppn?.

Spectrum synthesis from candidate structures For each proton of the tentative com-
plex structures, the chemical shift was calculated acogrth eq 4.24. Then, we removed the
most exchangeable protons (see Table 4.2). We thus obtaitietof “observable” protons,
which was used to create a spectrum as described above.

Comparison For comparison, we sampled the “experimental” spect$un, and the
spectrum of each tentative complex structsgg, in the range between -2 and +12 ppm at a
total of 5000 regularly distributed positions (see eq 4.ZBhe resulting difference areds
were normalized by subtracting the smallest occurring i all other areas. These values
were then used to rank the structures.

56

4.3. EXPERIMENTAL RESULTS

40 T T T T T T T T T

35 1

30 1

25 B

20 . o o

RMSD [A]

hd LJ I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
difference area [a.u.]

Figure 4.5: Results of the docking of the S100B] dimer.

55 T T T T T T T T

50 | ° ° E

45 + o -

35 B
30 1

25 B

RMSD [A]

20 B

15 b

10 b

0 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800
difference area [a.u.]

Figure 4.6: Results of the docking of calmodulin with the binding peptitithe C4*-pump.

4.3.2 Results

The rigid docking of the four test cases resulted in four sétientative complex structures
(each set with 24 to 121 different structures). For each@fpibtential complex structures, we

57

CHAPTER 4. PROTEIN DOCKING AND NMR

30 T T T T O T T

25 e o e o ° B

RMSD [A]
=
ol
T
1

.
0 1 ‘ 1 d 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500

difference area [a.u.]

Figure 4.7: Results of the docking of calmodulin with the?Cacalmodulin-dependent protein kinase kinase.

60 T T T T T
L]
50 |- E
° ()
..’ ° -. (Y
) o © o °
40 ° ° ° -
° o o ° d
_ °
<
3 30t ey 4
E L4 .. .: . o ® .
° ° o,
°
°
.
20 ..) 7
° °
° °
°
10 B
oo o o © «®
ol :?.'. .‘...én‘! A.’. .|.. L L
0
0 500 1000 1500 2000 2500 3000

difference area [a.u.]

Figure 4.8: Results of the docking of the S106B} dimer with a peptide derived from p53.

calculated thé H-NMR spectra and determined the difference area betwégsictrum and
the experimental complex spectrum. In the case of S180B(the BMRB did not contain
the complete shift data of the peptide in complex with the®26) homodimer, but only the
shifts of the homodimer itself.

58

4.3. EXPERIMENTAL RESULTS

50

45 N

40 | - . g
[]
L]
35 o* . ® e -
(L) --.
@ ° °

30 | . oo ® . °8 oee i
—_ . . F)
< o o..”l: ..:‘; Ceeoee
3 251° e ©° oTe w o o E
s ° L] ° L) °
o o o

20 «® g

15 1

10 + g

ACE [kcal/mol]

Figure 4.9: Results of the conventional docking of the S1@0B(dimer with a peptide derived from p53. No
NMR data was used. Instead, we employed the Atomic Contac¥E(ACE) by Zhang et al. [132] as a scoring
function.

Initial experiments showed that the ranking of structuress wignificantly improved, if
the contributions stemming from the magnetic anisotropyhef peptide group were not in-
cluded. This result seems surprising at first sight, but aildet analysis of the shifts lead to
the conclusion, that the effect is caused by structurallaper Slightly overlapping structures
are a typical result of rigid-body docking algorithms. Esmall deviations of the true com-
plex structure can bring individual protons into a closeaitigh vicinity to anisotropic groups
than could be expected from the atoms’ van-der-Waals r&diice the effect of the magnetic
anisotropy grows with the third power of the inverse distgribese collisions lead to enormous
changes in the chemical shift. Furthermore, the effect efnttagnetic anisotropy is basically
a local effect; it depends strongly on the backbone torsiwies (.e.the secondary structure)
and has a much more limited range than ring current and iEldetld effects. Therefore, the
magnetic anisotropy of the backbone of one of the proteinsildhnot influence the shifts of
its docking partner significantly. Hence, we excluded tHeatfof the magnetic anisotropy
between the two docking partners, but included it withinheaicthe partners.

The results of the docking experiments are shown in Figs.46& 4.7, and 4.8. In these
figures, every point represents a single tentative comphextsre. It shows the root mean
square deviation (RMSD, y-axis) of the structure from the tcomplex structure and the nor-
malized difference area of the candidate’s spectrum (}axdood approximations of the true
complex structure should thus be expected in the lower tefier of the graph.

Except for the complex of calmodulin with the binding peptiof the C&*-pump, scoring
according to the difference area always identified a goodoxpation of the true complex
structure. The separation between true and false positiessggyood for the S100B() dimer

59

CHAPTER 4. PROTEIN DOCKING AND NMR

and for the complex of calmodulin and kinase, and excellenttfe complex of S100Bi5)
and the p53-peptide.

The latter fact is very surprising, since the docking of theal p53-derived peptide (22
amino acids) was impossible using conventional methods.téated different energy-based
scoring functions but we were not able to obtain a corredtiran Fig. 4.9 shows the result of
the docking using the Atomic Contact Energy (ACE) developgdhanget al.[132]. The first
approximation of the true complex structure is ranked asbreri8. Other scoring functions,
e.g.the use of geometric methods [60] or the inclusion of eletatics, gave very similar
results. The problems with this docking example stem bhgifram the small binding site of
the peptide. Most docking algorithms favor structures whbe peptide has a larger contact
area with the protein. In this case, the use of NMR data wastihepossibility to correctly
predict the complex structure.

For the complex of calmodulin with the binding peptide of @&+ -pump, a false positive
structure was ranked number one, followed by the major dattteotrue positive structures.
The reasons for this failure are not yet clear.

60

Chapter 5

Discussion

Semi-flexible docking

We proposed two new approaches for semi-flexible proteikidgc In a first step, a rigid-body
docking algorithm generates a set of tentative complexstras. In a second step, a side chain
demangling step, we resolve problems arising from sidenab@rlaps in the binding site. This
demangling results in physically meaningful complex comfations that can be ranked with
standard energetic functions.

The side chain demangling is based upon a reduction of teehigin placement problem to
a combinatorial optimization problem by discretizing tideschain conformations to rotamers.
The first approach is based on a simple greedy heuristicaftkes for minimal solutions in
the enumeration tree spanned by the rotamers of all side<irathe binding site and avoids
combinatorial explosion by limiting the number of leaveseech tree layer. This approach
is very fast, although it usually yields suboptimal soloto The quality of these solutions is
nevertheless sufficient to solve the side chain placemeivigm in protein docking.

The second approach is a branch-&-cut technique that isllmasan ILP formulation of the
side chain placement problem. After identifying severabksks of facet-defining inequalities
for the side chain placement polytope and devising a saparatgorithms for a subclass of
these inequalities, we were able to solve the side chairepiant problem to optimality.

Both approaches correctly predict the structure of thriiedit test cases for protein dock-
ing that cannot be solved using rigid-body docking appreachRunning times are moderate
and mainly governed by the energetic evaluation of the finatgires and not by the side chain
placement step.

There is still room for significant improvements of the methd®he fact that we can solve
the problem optimally unfortunately does not imply that vea Golve thebiological problem
optimally. Instead, we solve an abstract representatigraiflem. There are two main differ-
ences between the two problems. First, we find an optimatisnlwith respect to an energetic
function (the force field). This function is only a coarse @pjimation of the true energies
occurring in the protein. Second, the restriction of the silain conformational space to the
rotamer conformations possibly exclude some rare confiiomethat may occur in nature.
Both points leave much room for improvements. For example AMBER force field does
not account for solvation effects. In contrast, the regeddveloped CHARMM EEF1 force
field [66] introduces an additional force field term for thdvation energy. Since the solvation
energy is expressed as a pairwise interaction, our enerdetiomposition still holds for this
force field and it might significantly improve the results. eTtotamer library we used could
also be replaced by a more detailed library, thus reprewpriso less frequently occurring
conformations.

Besides these improvements of the fundamental model,itdgoc and implementation
improvements are possible as well. An interesting approaek be the use of branch-&-

CHAPTER 5. DISCUSSION

price technigues. Also the most time-consuming step forsiie chain placement problem
(the calculation of the interaction energies) could be spedy integrating the calculation
into the greedy algorithm and thus calculating only thosergias that are required, instead of
precomputing all interactions in an initial step.

The key component of the algorithm, the side chain placemgotithm, can be applied to
related problems like protein structure prediction ortigalocking as well.

NMR-based docking

We also presented a new approach to protein docking thattlfii@acorporates experimental
structural data of the protein complex into the docking atgm. It is the first algorithm that
permits the use of NMR spectra for the validation and ranlohglocking results. NMR-
derived distance constraints have been widely used indigirtking to improve the results,
but these constraints have to be determined manually frdgndasigned NMR spectra. Our
method avoids this difficult and time-consuming manual pepssing of the experimental
data. Instead, we use the structures proposed by the doakjogthm to simulate the NMR
spectrum of the complex and compare this spectrum direztllyet experimental spectrum.

We implemented and tested several empirical models for NMR@rediction. The model
we used in our final experiments was based on existing matialsywere combined and repa-
rameterized. We also had to adapt the contributions arfsimg the magnetic anisotropy of the
peptide bond and the electric field effect to the specialirements of the docking problem.
The scoring function used for the docking is based on thediffce area between the predicted
and the experimental spectrum.

We chose a test set of four protein complexes: the complerlofadulin with the C&*-
calmodulin-dependent protein kinase kinase, the comglealmodulin with a binding peptide
of the C&*+-pump, the complex of S100B) with a peptide derived from p53, and the two
identical subunits of the homodimer S1008B). For three of these complexes, our algorithm
could clearly identify the true complex structure. in theeaf the fourth complex (calmodulin
with the binding peptide of the G&a-pump) one false positive structure was ranked slightly
better than the first true positive structure. The usefglrafsthe method has been proven
for the complex of S100B{3) and the p53-peptide. We tried to predict the structure ef th
complex using several energy-based scoring functionswbtg unable to predict the correct
structure. When using our NMR-based scoring function, wtaiobd an excellent separation
of true positives and false positives: there was no falséipesamong the first 20 candidates.
Obviously, the method is a useful tool even in those casesremnergy-based methods fail.

One major problem when testing the algorithm was clearlyatm@unt of data available.
Since experimental spectra are not available from publia Hanks, we were forced to recon-
struct the spectra from the deposited shift assignmenteaethen, there were only four test
cases available. The main reason for the scarcity of dakeifact that X-ray crystallography
is still the more common methaod for structure elucidatiopratein-protein complexes. So the
approach has still to be validated with direct data, whicthmge to obtain from a collaboration
with NMR spectroscopists.

We are also positive that the shift model proposed here dahessignificantly improved.
We carried out a series of quantum mechanical calculatmrsrify and reparameterize some

62

of the shift contributions. In the course of these experitsiewe found that most models are
quite coarse approximations. This observation is in a@mmre with recent developments in
the field of NMR shift modeling, since many researchers is tigld are currently working on
guantum mechanical calculation of so-called shieldingeinsprfaces. The current model also
considers only a subset of all known effects. A detailedyasigbof those shifts that showed the
largest deviations between predicted and experimentilgiiues lead to the conclusion that
hydrogen bonds and solvent effects play an important roledé¥ for both effects still have
to be developed.

Further improvements should also address the predictitiieqfeak widths. The line width
is caused (at least in parts) by the molecular motion of tbeepr. Therefore, it seems plausible
to obtain better results by calculating the spectra as a éiveeage over trajectories obtained
from Molecular Dynamics Simulations. An interesting qimsis also whether this approach
can be extended to ligand docking as well or whether the d@wamgthe spectrum caused by
small ligands are too insignificant in comparison with thetgin spectrum.

Finally, and perhaps the most interesting applicatiomhesuse of the new scoring function
in protein structure prediction. In protein structure peédn, the three-dimensional struc-
ture of a protein is predicted from its sequence alone. 8mtil docking algorithms, protein
structure prediction methods generate a set of potentiatares, which are then ranked with
respect to some energy function. The fact that the speesaebscoring function gave very
promising results for protein docking raises hopes thatlaimesults can be obtained for pro-
tein structure prediction as well. These hopes are baseleofatt that structural differences
between the candidates obtained from structure prediatagorithms are larger than the differ-
ences between the candidates generated for protein dodkivegcombination of protein struc-
ture prediction and NMR spectra prediction could then spgethe process of structure eluci-
dation for proteins significantly by generating good idisaucture models and initial guesses
for the shift assignment. Eventually, such methods coulek ghe way to high-throughput
methods for protein structure elucidation, one of the farsingoals of proteomics.

63

Part Il

BALL

66

Chapter 6

Design and Implementation

6.1 Introduction

Implementation is often the biggest hurdle when testing mas and approaches. This is
especially true for the field of Molecular Modeling, where ttmplementation of standard
techniques€.g.Molecular Mechanics) often requires several man yearsrof lWwark to imple-
ment. Obviously, this problem can be tackled using softviha¢ was specially designed for
Rapid Application Developme(RAD, also calledRapid Software Prototyping

The need for appropriate RAD tools becomes even more obwbes looking at the soft-
ware that is currently used. The majority of software paesagurrently in use in Molecular
Modeling is not only written in FORTRAN, but often lacks a thagh documentation as well.
The language FORTRAN itself is not very suitable for Rapift8are Prototyping, as the pro-
cedural programming paradigm is clearly inferior to the&abjOriented approach with respect
to reusability. Nevertheless, FORTRAN packages are stithénsely successful, because peo-
ple got used to their, often awkward, interfaces and peomfepthe time a reimplementation
would require preferably for other tasks.

We already discussed a number of software packages thaegreshtly used for Molecular
Modeling in the introduction (Part I). To summarize thisalission, one can say that these
packages provide the required functionality, but they arelly reusable and (apart from some
exceptions) not object-oriented. There is no softwarel@via that is specifically designed for
Rapid Application Development. For this reason, we deslgaad implemented BALL — the
Biochemical Algorithms Library.

When we started the BALL project (under the tentative prdjile BioLEDA at that time),
we did not spend much time on design. In fact, we started ie 1996 with just one page de-
scribing the attributes of nine class&yétem , Molecule , Fragment , Atom, Sequence ,
BioMolecule , RNA DNA andProtein). Based on this kernel of primitive classes, we
wanted to implement algorithms for protein-protein dogkin

A vast amount of code was implemented at the beginning ofrtbjeqt. It was not until we
first wanted to use the code in real applications, that wezezhit was completely unusable,
although it fulfilled all our “specifications”. Thus, we leed the need for a thorough design
the hard way. The current version of BALL was designed morefadly and we also made use
of some more advanced software engineering techniques.

BALL was first designed to be@ass library, but it soon turned out that instead we needed
aframework Contrary to a typical class library, the classes of a franr&wlso provide abstract
or empty methods. The framework defines the cooperationsaflitsses and the developer
usually just fills in the required functionality by definingw subclasses. These subclasses
redefine the abstract or empty methods of their respectise tlasses. Due to inheritance, the
cooperation of the subclasses is still defined by the framewo

CHAPTER 6. DESIGN AND IMPLEMENTATION

Another important technique generic programming Generic programming means “the
definition of algorithms and data structures at an abstragéperic level, thereby accomplish-
ing many related programming tasks simultaneously” [84}en&ic programming became
an important technique in the development of BALL. Espégitile kernel strongly relies on
generic data structures.).geometric objects, lists, hash data structueds). Furthermore,
careful generic implementations of algorithms are vergiffit as they avoid the overhead that
is often implied by inheritance (which can replace generagpamming in many cases).

Finally, we tried to usedesign patterng41] as often as possible. Design patterns are
intended to improve the object-oriented design througlseeat a very high level: the reuse
of design solutions. It is often very hard to come to the rigasign decisions and to find
the right balance between generality and specificity in #mgh of a class hierarchy. Design
patterns are standard solutions to recurring design prabighich have shown their usefulness
in various applications. Hence, we tried to use design petterherever applicable to obtain a
high quality design.

We will describe the design and the implementation of BALLOhapter 6 and will then
give a cursory overview of the techniques employed to enswwéficient code quality and to
manage the project in Chapter 7.

BALL is intended as a framework for Rapid Software Protatgpin Molecular Modeling.
With this goal in mind, we rethought our earlier approaches gerformed a thorough analysis
of existing software packages in this field (see also theudsion of existing packages in Part |
on Page 5). This analysis led to the formulation of four md@sign goals. The next section
will briefly discuss these goals. Our approaches to achleeset goals will then be discussed
in the following sections and in Chapter 7.

6.2 Design Goals

6.2.1 Ease of Use

Ease of use is crucial for the acceptance of a new tool, edpeifithis tool claims to be de-
signed for Rapid Software Prototyping. First of all, thenstgould be able to use the software
rather intuitively — as far as this is possible for a framedwof this size. It should therefore
employ a standardized and widely uggdgramming languageFurthermore, it should pro-
vide an intuitive, well documented, and consistent intfaHere, consistency means that the
user can generalize anything he learned to all parts of #madwork. For example, naming
conventions should be globally applicable and functionth wie same name should have the
same or comparable effects.

Ease of use also implies a simple and smooth installatiorll sa@ported platforms, espe-
cially as most of our intended users are chemists or bid®gfigt are usually not too familiar
with the problems and pitfalls of installation on differguiatforms. Hence, this goal also
implies a high portability.

In this context, we formulated what we called fhieree Line Ruleit should be possible to
code the majority of frequently occurring operations in matre than three lines of code.

68

6.2. DESIGN GOALS

6.2.2 Functionality

Functionality is of obvious importance. We can only expeitternacceptance of our software,
if it is able to save the potential user a major amount of tifieus, it should provide most of
the standard functionality and leave only the implemeatatif specialized or new techniques
to the user. And even there the user should be able to taket@adyeaof existing data structures
to speed up the development.

This is a very ambitious aim, because Molecular Modeling @ochputational Molecular
Biology are rather large and diverse fields and it seems igiplesto provide all function-
ality anybody might require. So we had to put a focus on theensbementary things that
are required by the majority of applications and we restddhe functionality to the field of
Molecular Modeling and especially protein docking.

We identified four key areas of functionality that are usedniost applications. First of
all, we need sommolecular data structuret represent molecules, atoms and the like. These
data structures typically hold structural or experimemtala that is read from disk, so we
need support formport and export in various file formatdn many applications, this data is
then manipulated usinglolecular Mechanicsnethods. These are empirical models describing
properties and dynamic behavior of matter at the atomid.l&irally, thevisualizationof the
resulting structures is usually desirable.

6.2.3 Openness

Since we cannot provide all functionality and we also do nahtimo reimplement existing
algorithms, it was also an important aim to provide a sufficennessmeaning compatibil-
ity with other class libraries. For example, from the vergrstve planned the integration of
LEDA [78], ABACUS [59], and CGAL [31].

Furthermore, openness includegensibilityandmodularity, i.e. it should be simple to add
new functionality and data structures without changingetkisting code.

6.2.4 Robustness

The term robustness describes the code’s ability to cogreumigéxpected or faulty data. A good
example of such faulty data is the PDB file format [9] for caj&tgraphic structures. This
format is the most common format for structural data and i stendardized. Nevertheless,
only very few files circulating among scientists adhere ie ftandard for historical as well
as for practical reasons. Strange as it may seem, but therngpitation of a robust code for
reading these files is a very demanding task. Implementinge agfader accepting standard
compliant files is simple enough, but is not sufficient as ordyy few files could be read.
Reliable reading of non-compliant files requires quite sdmoehemical knowledge and non-
trivial heuristics to extract as much of the data as possible

According to the 80-20 rule [81], which states that a typisadgram spends 80 percent
of its time executing 20 percent of the code, we decided torape only the computationally
demanding code sections and sacrifice a bit of performanea twverall robust and reliable
code. Since robustness also implies correctness, we ajseeechniques for software testing.

69

CHAPTER 6. DESIGN AND IMPLEMENTATION

6.3 Choice of Programming Language

One of the first decisions was the choice of the programminguage. As discussed in the
last section, we need a widely used programming languagest Bfaplications in Molecular
Modeling are written in FORTRAN, mainly for historical reas and because most chemists,
physicists, and biologists only know this language.

Although FORTRAN, especially High-Performance FORTRANP(H, is very well suited
for numerically demanding tasks and often outperforms cmdien in any other high-level
language, we decided against FORTRAN. Among our desigrsgasle extensibility and mod-
ularity. Both are very hard to achieve in a procedural lagguabject-oriented (OO) languages
are clearly superior to achieve both goals, as for exampidabge [23] and Meyer [79] point
out in detail. So we were basically left with the choice ofalav C++. The advantages of Java
are the higher portability and the increased robustreegsn pointers). @+ on the other hand
was the better known and more widely spread language. €@de also generally outperforms
Java code, and €+ allows generic programming as well as operator overloadkigally, at
the time we made our decision, all class libraries we waredse along with BALL were
implemented in @+.

With the ANSI C++ standard [5] still under development, only a small subsdsdéatures
was available to us while developing BALL. For example, tee af member templates and the
integration of the standard template library (STL [83]) vimtsoduced at a rather late stage of
the development. Even with the final ANSI standard passedntiegration of these language
features was delayed due to lacking standard compliancestf @+ compilers.

6.4 Architecture

The overall structure of BALL may be seen as consisting oéssvayers (Fig. 6.1). The low-
est layer contains the so-call€dundation ClassesThese classes implement a set of general
data structures like an extended string class, hash magssign patterns. The implementation
of this layer is based on the standard template library.

The second layer consists of tkernel classesThey implement the fundamental molecular
data structuress.g.atoms, molecules, bondstc. The kernel classes depend on the foundation
classes and are required for the implementation of the kyret.

The third layer consists of sevetahsic componentsEach of these components provides
functionality for a clearly defined field of Molecular Modegdj and is not physically dependent
on any of the other basic components. The basic componenismplemented using the kernel
classes and the foundation classes. Besides the key foalityowe identified in Section 6.2.2,
we also provide support for the search for structural siritides, for the calculation of nuclear
magnetic resonance (NMR) spectra, and some solvation aetfitie visualization component
relies on OpenGL [86] for platform independent 3D graphied an QT [102] for a portable
graphical user interface (GUI).

BALL classes can also be used as extensions in an objecti@diescripting language
(Python [121]) and support is also provided to embed thigtiog language into BALL appli-
cations (see Section 6.8).

70

6.5. THE FOUNDATION CLASSES

OO Scripting Language (Python)
Application
Embedded
Visualization File Molecular Imizirgreier
Import/ ; Solvation Structure NMR
BallVIEW Export Mechanics Python

Extensions
or | KERNEL |
‘ Foundation Classes ‘
OpenGL ’ STL ‘

Figure 6.1: Overview of the structure of BALL. The basic componentsranehite, the scripting language support
in yellow and external libraries that are not part of BALL dregray.

The architecture and the high-level design of the threertayeéll be described in more
detail in the next three sections. Due to the large numbelasies in BALL, we had to restrict
this overview to some of the more interesting examples.

6.5 The Foundation Classes

This section describes a selection of the most importamidation classes as well as some
common definitions and functions required for the impleragan of the kernel and the foun-
dation classes.

6.5.1 Global Definitions

BALL defines a number of global type definitions and constaiinitions. The types that are
used in BALL are declared ifOMMON/global.h . These definitions are typedefs to primi-
tive types as determined by configure. For example, BALL tisesypePointerSizelnt
to describe an integer type with the same bit width as thetgron the respective platform.
configure determines the correct type for this definition and includeésto config.h
which is included byCOMMON/global.h . By defining these types we achieve a better porta-
bility. Especially the compatibility between 32 bit syste@ind 64 bit systems relies heavily
upon the use of these types (see also the implementationesftgersistence in Section 6.5.3).
The namespac€onstants holds a large number of constant definitions. These are
mainly physical and chemical constanesg. speed of light, electron mass, etc.) and math-
ematical constante(g.n,). The BALL kernel uses only these constants, thus redutia
possibility of errors due to wrong constants. This also cedunumerical inconsistencies be-
tween different code parts.

71

CHAPTER 6. DESIGN AND IMPLEMENTATION

parent X parent
Composite
parent
first child last child
. previous next X previous next .
Composite Composite Composite
parent
first child last child
Composite

Figure 6.2: The tree structure formed by multiple instance€ofrposi t e

6.5.2 Composite Class

The Composite class implements theomposite design pattefd1]. Each composite con-
tains a pointer to its parent composite, a pointer to the éigtl, a pointer to the last child,
a pointer to the previous composite, and a pointer to the caxiposite. Thus, the children
of each composite form a doubly linked list that can be aamk$om both ends (pointer to
the first child and to the last child). The doubly linked listusture is required to iterate ef-
ficiently forward as well as backward. Both cases occur rdtieguently in our applications.
The structure of the resulting tree can be seen in Fig. 6.2.

The Composite class is essential to the kernel, because it representsatieedbass of
most kernel classes (see Section 6.6). Due to the flexilaliy functionality required from
the kernel, thecomposite class implements a lot of functionality; in fact, it is onetbé
most complex foundation classes. It provides a large nuroberethods to manipulate tree
structures €.g.insertion and deletion of children or splicing of subtrees)

Selection

TheComposite class is also derived froi@electable , so each node of a tree may be ei-
ther selected or deselected. We use this selection meam#misughout the whole kernel. Be-
cause one of the most frequent operations is a test wheth@oae in a subtree is selected, this
operation had to be implemented very efficiently. The cgoasing methoadontainsSe-

lection answers the question in constant time by simply returniegvttiue of the attribute
contains _selection _of Composite . By reimplementing the virtual methodslect
anddeselect (inherited fromSelectable), the selection or deselection is propagated up-

72

6.5. THE FOUNDATION CLASSES

wards in the composite tree and efintains _selection _flags are consistently updated.
Since the depth of our trees is small (usually below 5), thidate operation can be done rather
efficiently.

Time stamps

SinceComposite is the base class for most kernel classes, we had to conceumber of
techniques to combine efficiency and robustness in the ke@ree of these techniques is the
use oftime stampsFor example, when performing an MD simulation or an energyinza-
tion, we have to construct temporary internal data strestdirom the kernel data structure to
increase the efficiency. These minimization or simulatiaresusually not performed in a sin-
gle step, but the user might choose to inspect the system fisimalating after defined time
intervals. If he decides to change either the selectionetdhology of the system, the internal
data structures of the simulation become inconsistent thighsystem and have to be rebuilt.
There are basically two ways to solve this problem: Firstpvight choose a robust implemen-
tation that rebuilds its internal data structures each timegains control of the system, which
is very inefficient. The second strategy is a “don’t care” rapgh. We assume the user did
not change the data structures, and if did, he should be meipe for the consequences. This
strategy clearly reduces the robustness of the code.

Using time stamps, we can achieve a robust and efficient mgi¢ation. EactCom-
posite object contains two time stamps (claBgeStamp): the selection time stamp and
the modification time stamp. AimeStamp object simply stores a point in time. Using the
methodstamp this point in time can be updated to the current time. All meththat update
the selection in a composite change the selection time stardp@ll methods that change the
topology of the composite tree update the modification titaenp. Similar to the selection
flags, time stamps are propagated upwards in the compasie Tihus, changing an atom in
a system updates the time stamp of the system as well. Theasiomuclasses now simply
have to store the time of creation of all internal data stmed in a time stamp. If this time
stamp is older than the selection or the modification timmptaf the system, the internal data
structures are rebuilt.

6.5.3 Object Persistence

Object persistence is an important concept in object agtbptogramming. It allows the stor-
age of object instances beyond the life time of the appboatihat created these objects and an
exchange of these objects between independent applisafithe process of storing persistent
objects is also callederialization The format employed for object storage should be portable
to allow the exchange of objects between different platiri@erialization of objects should
be easy to use and easy to implement for user defined objestsllas

Problems with serializationin C ++

While several OO languages provide support for the seadin of objects €.g. Java or
Python), it is a tiresome subject inHE. There are mainly two problems related to this subject:
multiple inheritance and static class attributes. Fig.$h8ws the so-calledeadly diamond

73

CHAPTER 6. DESIGN AND IMPLEMENTATION

Common Base

AN

Class A Class B

NS

Class C

Figure 6.3: Multiple inheritance: the “deadly diamond”

inheritance. In this example, clagsis derived fromA as well as fronB. A andB are both
specializations of a common base cl@snmonBase This cause£to contain two instances
of CommonBase one inherited fromA and one inherited fronB. This causes fundamental
confusion in clas€, since it is unknown which of these instancesCafmmonBaseis meant
when accessing methods or attributes. ktCthis ambiguity can be resolved usingtual
inheritance Nevertheless, virtual inheritance leads to another prblit is not possible to
cast down from the virtual base class to the derived class.

To avoid these problems, each persistent BALL class is requio be derived from a
common base clas$érsistentObject) exactly once. Multiple or virtual inheritance
from this base class is not allowed.

The second problem are static class attributes. For exati@eclasObject defines a
unique handle for each object (application widepject contains a membdrandle _and a
static membeglobal _handle _. global _handle _isincremented each time a constructor
of Object is called and its current value is stored in the objebtimdle _. These handles
serve as a unique identification for an object instance. Witering these objects, it is ob-
viously not desirable to stomglobal _handle _, because its retrieval would reset the global
handle counter and could result in duplicate handles. Tisare general solution for the prob-
lems caused by static object attributes, the best rule isdam @ahem wherever possible and
decide on a case-by-case basis where it is unavoidable.

Detailed design

We will now sketch the mechanisms provided for persistenéeatbstorage in BALL. An
overview of the participating classes and their relatigrsis given in Fig. 6.4.

The base class for all persistent objectBésistentObject . It provides three virtual
methods:persistentRead , persistentWrite , andfinalize

Storing and retrieving a persistent object is controlledh®y classPersistenceMan-
ager . This class constructs a persistent representation of getodnd writes it to aros-
tream or may, vice versa, retrieve a serialized object from a sirddencePersistence-
Manager implements théuilder design pattern and thfactory methodlesign pattern [41].

The builder pattern is intended to separate the construdica complex object from its

74

6.5. THE FOUNDATION CLASSES

———— -
- ~ - -

W Factory Method \) " Builder \)
~ —_—~ -
~e - -<_ creator builder - /"/‘/' -

I N -
product -
[~ - - iy
|- —dngtanciate» _ _ _ {f persistenceManager /
v product / /
1
. AN N
S R . y
! I ! ostream || istream /]
v _ecalb ! ;
1 1 1 T
! I 1 1 1 /I\ / /
! 1 1 Vi !
nrpeerey ' persistent I
i i «interface» .
PersistentObject Storable representation / /
+persistentWrite()
+persistentRead() +write() - /
+finalize() +read() TextPersistenceManager
| concrete builder

XDRPersistenceManager

Figure 6.4: Object persistence in BALL: an overview

representation. Thus, the same construction process eatedifferent representations for the
object. The builder pattern describes the persistentgadianctionality ofPersistenceM-
anager rather accurately. ThRersistenceManager (thebuilder in terms of the design
pattern) defines an interface for the construction of a pensi and portable representation of
objects. There are two derived classes availabexiPersistenceManager and XDR-
PersistenceManager) that implement a&oncrete builderi.e. an object that constructs a
representation of the persistent object. The persistpnésentation is called thoduct The
fourth participant of the design pattern, tthieector is represented by the application.

The second pattern involved is the factory method pattdso faown asirtual construc-
tor). This pattern defines an interface for object creation. ddwsion which class to instantiate
is deferred to subclasses. The participants in this pattesraproduct a concrete produgta
creator, and aconcrete creatar The product defines the interface for the instantiatedatbje
(here: PersistentObject), while the concrete product represents the construciasscl
itself (here: any class derived froRersistentObject). Similarly, the creator declares
the factory method returning an object of type product, evttile concrete creator implements
this factory method. The creator is representedPbysistenceManager and the concrete
creator is represented by any of its derived classes.

As we use multiple inheritance rather frequently in the kérit was difficult to avoid mul-
tiple inheritance fronPersistentObject . For example, th€omposite class is derived
from Selectable . This class basically provides an additional boolean flafjsmme acces-
sors to select and deselect an object. For the reasons ataded, it is not possible to derive
Selectable from PersistentObject as well. However, it should be possible to store

75

CHAPTER 6. DESIGN AND IMPLEMENTATION

«interface»
Storable
+write()
+read()
T " 4 _______ !
PersistentObject Selectable PropertyManager

+persistentWrite() +write() +write()
+persistentRead() +read() +read()

JAY JAN

Composite

+persistentWrite()
+persistentRead()

|
Atom

+persistentWrite()
+persistentRead()

Figure 6.5: TheAt omclass and its base classes.

the contents of an instance 8tlectable in a convenient way. This can be achieved by
defining an interface that contains the two methegsl andwrite . These two methods can
be used in the implementation pérsistentRead andpersistentWrite for storing
and retrieving the contents of the base class. Furtherritasgyossible to derive from several
Storable classes without running into problems due to multiple iithace. The cooper-
ation betweerPersistentObject and theStorable interface is illustrated in the class
graph of theAtom class (Fig. 6.5).

Implementation

TextPersistenceManager provides three different layers of methods. Layer O pravide
fundamental methods to store and retrieve primitive dgtagye.g.int, float, pointer, string).
For each primitive type, there ismut method and get method. The layer 0 methods im-
plement the format of the persistent representation thaiduced. They are implemented by
subclasses d?ersistenceManager . These methods determine the format of the persistent
representationg(g.text or binary).

The layer 1 commands are needed to implemenp#rsistentWrite andpersis-
tentRead methods. They are implementedRPersistenceManager using the layer O
commands. Knowledge of these methods is only required tteimmgnt new persistent classes.

To store and retrieve existing objects, the user has to kheweavel 2 commands alone.
They provide methods to assign the input and output stredthe persistence manager and to
store and retrieve objects.

76

6.5. THE FOUNDATION CLASSES

Portability

BALL has been ported to a variety of different platforms. Thain differences between these
platforms are

e word width (32 bit vs. 64 bit machines)
e byte order (big endian vs. little endian)
¢ floating point formats

A portable implementation of object persistence has to filatfgrm independent represen-
tations for all data types to overcome these differencesst,Fall pointers are represented
internally (in thePersistenceManager class) using 64 bit types and are also stored this
way. Byte order and floating point formats affect the poeadibrage of primitive data types.
Therefore, the implementation of the layer 0 commands incamgrete persistence manager
has to ensure portability. One way to achieve this is the fisext-based formats. This ap-
proach is implemented imextPersistenceManager . This class stores an object in a
human readable text format. It uses ASCII representatibmsimbers to achieve portability.
However, the resulting representation is large and slovateg This class is mainly intended
for debugging.

The clasXDRPersistenceManager produces a much more compact binary format. It
is based upon thEDRformat External Data RepresentatipnXDR is a standard for portable
data exchange, introduced by SUN Microsystems [115, 111§ dvailable on all platforms
and was introduced to allow data exchange via the network.ekample, remote procedure
calls (RPC) use XDR as their data exchange format. XDR pesvidethods for packing prim-
itive data types€.g.int, float, string) into four byte packets. These packetstiea written
to a stream. The resulting representation is not human béadaut has little overhead and
can be processed rapidl{DRPersistenceManager translates the layer 0 commands of
TextPersistenceManager to the corresponding XDR function calls and converts the
XDR buffers to a G+ stream and back.

User interface

Using persistence in BALL is rather simple. It requires thetantiation of a persistence
manager, assignment of an input or output stream, and fitrelpersistent reading or writing
of the object.

1| Protein p = ..; Il the object to serialize

2 ofstream outstream("test.pers”, ios::out); /I open outpu t stream

3 ‘ TextPersistenceManager pm(outstream); /I create persist ence manager
4 pm << p; /I serialization

5 ‘ outstream.close(); /I close the output stream. Done.

Deserializing a persistent object is equally simple:

1 | ifstream instream("test.pers"); /I open input stream
2 TextPersistenceManager pm(instream); /I create persiste nce manager
3 PersistentObject* po; /I define a pointer to a PO

77

CHAPTER 6. DESIGN AND IMPLEMENTATION

pm >> po; /I deserialization
instream.close(); /I close the input stream
if (po !'=0) /I identify the object

cout << "Read _object _of _type _" << typei d(*po).name() << endl;

O OWoO~NO O DN

)

Instead of using file streams (as in the two examples abavie)possible to use any fully
transparent stream derived frastream or ostream . For example, BALL uses th8ock-
etStream class to exchange persistent objects between differericappns using TCP
sockets. This feature is also used iplview to exchange objects between a client appli-
cation and the visualization server (see Section 6.7.4).

6.5.4 Run-Time Type Identification

ANSI C++ provides two operators for the Run-Time Type Identificatia@lynamic _cast
andtypeid . With the aid of these two operators it is possible to idgrtife type of any
object at run time. A typical application dfynamic _cast may look like this:

| Molecule* molecule = ...;
i f (dynam c_cast <Protein*>(molecule) != 0)

{
)

Here, dynamic cast is used as a predicate. It identifies whathointer to a given instance
of Molecule is in fact an instance of clag¥otein , a derived class. If this is true, some
code, which is only applicable to proteins, is executed.il&imode fragments are encountered
throughout the BALL kernel. However, the function of the ead not obvious at the first
look. Therefore, we decided to implement a set of templasgpper functions to simplify the
Run-Time Type Identification. They allow us to write codetwat better readability, like

/I cast to protein and perform some protein specific operati ons

abwNE

1 | Molecule molecule = ...;
2 i f (isKindOf<Protein>(molecule))
3 {

4
)
Theses functions have been collected in a common namesRddd) The most com-

monly used functions angKindOf<T> andisinstanceOf<T> . isKindOf<T> s pa-
rameterized with a clask and returngrue for instances ol and instances of classes derived
from T. Similarly, isinstanceOf<T> returnstrue for instances of, butfalsefor instances
of classes derived from.

/I cast to protein and perform some protein specific operati ons

Other functions in th&@TTIl namespace provide unique IDs for each class, a unique name,

and static default instances of arbitrary objects.

6.5.5 lterators

Several of the BALL classes are container classesthey contain multiple instances of ob-
jects. It is often necessary to iterate over all elements afrdainer object. In the Standard

78

6.5. THE FOUNDATION CLASSES

Template Library, this is done vigerators We use the same approach and a syntax similar
to that of the STL for the iterators in BALL. The implementatiof iterators is simplified by

a common template base class for all iterators and the u$e tétator traits technique [85].

We give examples of the use of iterators in the BALL kernel éctin 6.6.2.

6.5.6 Processors

A recurring problem in OO design is the separation of alpang and data structures, es-
pecially in an extensible framework like BALL. The need fanttionality often entails the
danger ofinterface pollution(seee.qg.[73] for a discussion)i.e. fat interfaces that are cluttered
with methods required by a number of client classes, but aoessaryly by the class itself.
Also the extensibility of the framework is seriously hanmgzkif adding a new algorithm re-
quires changes in the interface of the kernel classes. Aicklssolution to these problems is,
for example, thevisitor pattern[41]. This pattern is designed to add new operations without
changing the interface of the classes it operates on.

In the BALL kernel data structures, the problem becomes avare troublesome: the ker-
nel data structures are container that may contain polyhoap objects€.g.atoms, residues,
and molecules). Most of the algorithms in BALL that operatekernel data structures should
be applicable to all kernel classes.d.an algorithm should operate on molecules as well as
on a single atom). Furthermore, most of the algorithms in BA&quire an iteration over all
elements €.9. atoms) of a kernel object. Hence, we combined the advantaigée visitor
pattern and the iteration capabilities of the kernel to ama@m concept: therocessorconcept.

Processors are objects that implement an algorithm andeapdiedto any kernel data
structure. All processors are derived from the templatestlmaryProcessor<T> . They
are parameterized with the type they operate on. For examlmcessor to calculate the ge-
ometric center of any kernel object just has to know the atoordinates, so the processor is
derived fromUnaryProcessor<Atom> . The kernel data structures implement an interface
to arbitrary processors through the template member fomefpply<T> . Thus, arbitrary pro-
cessors can bappliedto arbitrary kernel classes. Implementing a processor dteer trivial
task. Generally, a processor provides three methatdst |, finish , andoperator ()

Theapply<T> method of a kernel container class first callart , then it iterates over
all objects of typeT it contains. For each of these objects, it calfgerator () of the
processor. Thus, the processor “sees” just the objectsiritasested in. At the end of the
iterations, finish is called to inform the processor that he cannot expect durtibjects.
While start usually performs some initialization stefisjsh can be used for final actions
(freeing allocated memory, calculating results).

We will now illustrate the processor concept by means of gplEnexample: theCen-
terOfMassProcessor which calculates the center of mass for any given kernelabbje
The center of mas# of N particles (atoms) of mass,; and positionr; is defined as fol-
lows: [43]

N N

3 1 S .

R = i g m;r; withM = E m; (6.1)
7

1

79

CHAPTER 6. DESIGN AND IMPLEMENTATION

So we have to calculate the sum over all atom masses and thegsaof mass and position
for all atoms. Since we operate on atoms only, we de@emnterOfMassProcessor

from UnaryProcessor<Atom> . The start method is trivial. It just initializes the member
variablesmass andcenter to zero:

bool CenterOfMassProcessor::start()

{

|
‘ mass = 0.0;

‘ center = Vector3(0.0, 0.0, 0.0);
|

return true;

~NOoO U~ WN PR

}

Theoperator () does the true work: for each atom it is called with, it deter@sithe mass
and the position and calculates the two sums:

Processor::Result CenterOfMassProcessor:: operator () (Atom& atom)

{
fl oat atom_mass = atom.getElement().getAtomicWeight();
center += atom.getPosition() * atom_mass;
mass += atom_mass;

return Processor::CONTINUE;
}

Finally, we implemenfinish as follows:

CO~NO U WNPE

bool CenterOfMassProcessor::finish()

{

‘ center /= mass;

return true;

OO WNBRE

|}
We may now apply our processor to calculate the center of ofassnoleculem

1 Molecule m = ...;

2

3 /I create an instance of the processor
4 CenterOfMassProcessor center_proc;

5

6 /I apply it to the molecule

7 m.apply(center_proc);

8

9 /I print the center of mass

10 cout << "Center _of _hmass_is _at_" << center_proc.center << endl;
6.5.7 Options

Algorithms in Computational Molecular Biology tend to réguhuge numbers (sometimes sev-

eral dozens) of arguments and parameters. This usuallg tedollky interfaces and reduces

the modularity, because related methods have differeatfattes and cannot be exchanged
easily. A solution to this problem is ti@ptions class. Instead of passing dozens of param-
eters or polluting the class interface with dozens of menfilnections, the class contains an

Options object. EaclOptions object may hold an arbitrary number of key/value pairs.

80

6.5. THE FOUNDATION CLASSES

An example from the solvation component (the Finite Differe Poisson-Boltzmann class
— FDPB will illustrate its use. Théd-DPBclass performs a number of non-trivial calculations.
There are currently 22 different parameters used to adepbehavior of the class to specific
problems. This would require 44 member functions to set drtige parameters (if data
encapsulation is taken seriously). Using tBgtions class, FDPB gets just one more
member calledoptions and onestruct containing symbolic names for the options.
Setting one of these parameteesythe grid spacing) looks as follows:

1 FDPB fdpb = ..;
2 fdpb.options[FDPB::Option::SPACING] = 0.5;
Again, operator overloading provides a clean and comphieninterface.
Another advantage of th®ptions class is their ability to store options to a file and
retrieve them from a file. This has proven especially usefuldcument the parameters used
in a specific experiment during large-scale parameter dgaiions.

6.5.8 Logging Facility

Printing error messages, warnings, or progress informatie very simple ways to communi-
cate with the user. Problems arise if this information hasdstored, if the application has a
graphical user interface, or if the application runs distied on a network. In each of these
cases a standardized logging facility is required to alledirection of the output to the users’
terminal or a log file.

The class that implements this logging facility is callamyStream . This class is derived
from ostream , so it can be used in the same way as the Gtreamscout or cerr . There
is one global instance dfogStream which is globally defined and is used throughout the
BALL kernel to log error messages. Each message is stored alith a time stamp and an
error level (ranging from information to error). The usenedso attach arbitrary stream objects
(e.g.files) to store the information or can retrieve stores erressages. It is even possible to
trigger certain actions as soon as messages with a specdiderel occur. In applications like
molview (the stand-alone visualization tool) th®gStream class allows the convenient
redirection and central administration of debugging, Rwoprogress messages.

The following code section gives an impression of the usddieed_ogStream class:

1 /I initialize the global LogStream

2 Log.setPrefix(cout, "[%T] 2

3 Log.setPrefix(cerr, "[%T] _ERROR.");

4

5

6 /I print some informational message

7 /I (level INFORMATION is associated with cout by default)
8 Log.info() << "starting _calculation..." << endl;

9

10

11

12 /I print an error message

13 /I (level ERROR is associated with cout by default)

14 Log.level(LogStream::ERROR) << "error _- _execution _aborted!" << endl;

The two streamgout andcerr are associated with the global instanceLofyStream |,

81

CHAPTER 6. DESIGN AND IMPLEMENTATION

Log, by default and catch all messages with information leveutcand all error messages
(cerr). In lines two and three, we assign a prefix to each obtreams via theetPrefix
method. The string%T" is expanded to the current time, similar expressions egisthe
date, the error level, the line number, and so on. The glagesiream can be used as anC
stream, as can be seen in lines 8 and 14. In line 8 we print sagessth informational level
(via the methodnfo , which returns an object of typastream). The resulting message is
hence prefixed by the current time and redirectedaist . The error message printed in line
14 is prefixed by the time and the string error (as specifiethin3) and redirected toerr |,
the stream associated with error messages. The output abtwe code thus looks like this:

1 [11:19:02] starting calculation...
2 [11:19:05] ERROR: error -- execution aborted!

6.5.9 Strings and Related Classes

Since many applications require extensive string operat{often to read or transform text-
based input files), BALL provides a powerf@tring class and regular expressions. The
string class is derived from the STL string class to give amiital interface and to take advan-
tage of the efficient and flexible implementation. We addeat aflfunctionality to simplify the

usage of the string class. TI®tring class enables the user to access whitespace-separated

fields of the string (similar to the definition used by the upiegramawk) and simplifies the
parsing of field based file formats.

The String class is complemented by tl&ubstring class that allows an efficient
manipulation of substrings and th&egularExpression class that allows matching and
manipulation of strings through regular expressions.

6.5.10 Mathematics

BALL provides a number of classes and functions related tthemaatics. The classes fall
into two categories: fundamental data structures and geimnabjects. The first category
includes simple vectors, matrices, quaternions, angkes,The geometric objects are used to
represent three-dimensional geometric primitivieg.poxes, spheregic) and serve as a basis
for the implementation of the visualization component. #ise classes are parameterized
with a number typeile. they are template classes). The generic implementatiowsilus to
use different numerical types for different problems. Fastmapplications, single precision
floating point numbers are completely sufficient, but we dan ase LEDA big floats if that
precision is required.

6.5.11 Miscellaneous

It would be tiresome and not very instructive to enumerateeahaining foundation classes,
consequently we will just mention some of the more importatégories of classes. First, there
are exceptions. The BALL error handling is based on a classitghy of exceptions that are all
derived fromGeneralException . BALL also implements its own handling of uncaught

82

6.6. THE KERNEL

| Molecule | DNA/RNA

]

[Sec. Structure |

!

Residue [Functional Group | Nucleotide

Figure 6.6: Hierarchical structures in biochemistry: the problem dama

exceptions to give the user as much information about ther @s possible. Therefore, all
exceptions document the line and the file where they are thramd provide a short error
description. This information is printed whenever an umgtawexception occurs.

Additionally, BALL provides a whole range of generic basata structures. There are sev-
eral flavors of trees, hash associative containers, or gl structures. Then, there are classes
related to the operating system. They are used to implempattable, abstract interface to
files, directories, system time, or network sockets.

6.6 The Kernel

6.6.1 Molecular Data Structures

The second layer is the so-called kernel and implements tlecular data structures. Since
one of our design goals was intuitive usability, we spenttataffort on the design of these
classes. Our first step was an analysis of the objects we @vémtéescribe. We found that
the biochemical domain is well described by a hierarchicatleh. All the objects we want
to represent consist @toms In chemistry, several atoms often fofumctional groupsrom
which moleculesare built. A set of molecules is then calledystem This hierarchy of entities
is what we call the molecular domain (Fig. 6.6).

One of our main concerns was an intuitive usability of thenkéclass hierarchy especially
for users with solid biochemical knowledge. Therefore, kemel classes should directly
reflect the hierarchical relationships found in biochergistThe molecular domain is quite
simple. Obviously, there is a strong hierarchical "has-@ationship between these entities.

83

CHAPTER 6. DESIGN AND IMPLEMENTATION

ECT—
7
DNA/RNA Moece ||
SecondaryStructure J7
Composite
V4
Fragment | |
_— ——
-
nucleic acid protein general molecular
framework framework framework

Figure 6.7: The kernel class hierarchy

This hierarchical structure is best described by a treectstre. A system may thus contain
molecules, consisting of functional groups containingneo The class hames are chosen
accordingly asSystem , Molecule , Fragment , andAtom. We chose the term fragment
instead of functional group as this term is more general aokraccurate when transferred to
the protein and nucleic acids domain. Similar relationslalso exist in the protein domain and
the nucleic acid domain: a protein contains several chaiash of these chains may consist
of secondary structures built from residues consistingtama. In the nucleic acid domain
everything is quite neat and simple: there are two kinds ofeici acids — DNA and RNA —
each consisting of nucleotides.

In Fig. 6.6 one can also identify a "horizontal” relationstbetween the entities of the
different domains: a protein is by definition also a molecale is a nucleic acid. Similarly,
residues and nucleotides can be seen as fragments of groteitucleic acids. These frag-
ments in the biopolymers correspond to the functional ggan@ general molecule — thus the
class namd-ragment instead ofFunctionalGroup . This "is-kind-of” relationship can

be modeled by inheritance.
The "has-a” relationships, which led to the tree structuray be modeled using thmm-
positedesign pattern [41]. Its intent is described as follows:

“Compose objects into tree structures to represent part-whole hierarchies. Com-
posite lets clients treat individual objects and compositions of objects uniformly.”
[41], p. 163

The pattern is thus well suited to represent the hierarthiea structures required for the
kernel and nevertheless defines a uniform access to aleslaghis uniform access is required
for most algorithms, since they should be able to operate aleaules as well as on any other
kernel data structure.

84

6.6. THE KERNEL

The molecular domain thus results in timelecular frameworksee Fig. 6.7). The entities
of the protein domain are represented by the claBsetein , Chain , SecondaryStruc-
ture , andResidue in the protein framework. Finally, the nucleic acid framekoonsists
of the classedlucleicAcid ,DNA RNA andNucleotide

All these classes have a common base cl@ssnposite which implements the compos-
ite design pattern (see Section 6.5.2). All fragment-likeesses are derived from a common
base classAtomContainer) that implements most methods that are common to classes
containing atoms.

6.6.2 Iterators

Iteration over kernel data structures should be as simpleerding over any STL container
type. However, there is a fundamental difference: the BAleel classes are not simple
containers, but they can contain a variety of different olsje For example, a user should be
able to iterate over all molecules of a system as well as dvatanms of the system. Since
in C++ overloaded methods cannot be distinguished from theirmefpe alone, the use of
the typical STLend() andbegin() methods is not possible. Instead, we had to implement
specialized methods for each class. Similarly, we canmoplsi defineone iterator type for

a kernel class, but we have a set of iterator classes thatefireed independently. Iterating
over all atoms of any kernel data structure requires antdef type Atomlterator . An
iterator pointing to the first atom of System is returned by the methodeginAtom , a
past-the-end iterator is returned bgdAtom . Apart from these restrictions, the use of kernel
iterators is very similar to that of STL iterators:

System S = ... [/ define a system

Atomlterator ai;
for (ai = S.beginAtom(); ai != S.endAtom(); ai++)

/I print the position of the atom
cout << ai->getPosition() << endl;

}

The kernel classes define forward and reverse iterators@mstvariants of these iterators.

O~NO O~ WN P

6.6.3 Selection

A recurring task in many applications is the definition of sets of molecular data structures.
For example, it should be possible to identify all atoms bging to a certain chain, all
amino acids of a certain type, or all side chain atoms of agpmotProblems of this kind are
solved via the selection mechanism of kernel objects. Akeahel classes are subclasses
of Composite , they inherit the selection capabilities of this class. BAhow provides a
simple language to specify predicates for the selectiorbfats. The following example shall
illustrate the usage of this language:

1 /I a system containing a protein
2 System S = ...
3

85

CHAPTER 6. DESIGN AND IMPLEMENTATION

Selector
#expression: String J7

+operator () (atom:Atom): bool

UnaryProcessor

+operator () (atom:Atom): bool

Expression

+setExpression(expr:String)
+operator () (atom:Atom): bool
*

f

ExpressionPredicate
#argument: String

+setArgument(arg:String)
+operator () (atom:Atom): bool

ResiduePredicate AtomNamePredicate

+operator () (atom:Atom): bool +operator () (atom:Atom): bool

Figure 6.8: The classes involved in the kernel selection mechanism.

/I create a selector that selects the Calpha atoms of
/I all arginine (ARG) residues
‘ Selector ARG_CA_select("residue(ARG) _AND name(CA)");

o~NOO O A

| S.apply(ARG_CA_select);

In Line 6, we create an instance 8€lector . This class is a subclass OharyPro-
cessor<Atom> , so we can apply it to arbitrary kernel objects. It is initiald with a string
describing the desired selection. In our case, the setedficghe G, atoms in all arginine
residues is required. Hence, we initialize the selectohwitstring describing this prop-
erty. This string may consist of an arbitrary numbemaeoédicates brackets, and the opera-
tors 'AND’ and 'OR’. To determine all ¢ atoms of all arginines, we have to combine the
predicatesresidue(ARG)’ (which is true for all atoms inside residues of name 'ARG’)
and’name(CA)’ (which is true for all G, atoms) using the 'AND’ operator. Each of these
predicates corresponds to a class derived fEoqpressionPredicate (see Fig. 6.8). An
instance ofExpressionPredicate and its subclasses can decide whether the predicate
they represent is true or false for a given atom. Each instaicSelector contains an
Expression object that translates the string to a syntax tree contgithie corresponding
instances of subclasses BxXpressionPredicate . BALL provides a comprehensive set
of predicates, the so-calletandard predicatesThese classes are known to Ewpression
class by default. The user may also create new predicatesegigier them with instances
of the Expression . The implementation of new predicates is very trivial, hesgit just
requires the implementation of a modifiederator ()

86

6.7. THE BASIC COMPONENTS

6.7 The Basic Components

A full description of the design of the basic components igonel the scope of this work.
Therefore, we will again describe only the most importamt iweresting classes of each basic
component and give just a short overview of the remainingsea.

6.7.1 File Import/Export

When using experimental date.§.protein structures), the need for a standardized file format
for data deposition and exchange is obvious. Unfortunatiedynumber of file formats used in
Molecular Modeling alone is annoyingly high: the softwasckage BABEL [124] currently
reads 41 different molecule file formats! Not all of thesaats are equally important, so we
decided to implement only the most important ones. The inédion content of the file format
varies widely. For example, the PDB format contains litemtreferences, crystallographic
data, and experimental conditions, while the XYZ formatteors only coordinates. But all of
these formats contain data on molecular structures. Torerefve defined a uniform interface
to all these file formats to be able to extract the structuash éhdependent of the file format.
This interface is derived from a common base clsksecularStructureFile . This
interface is very simple to use and defines a minimal set obfikrations: reading and writing
of structural data from 8ystem .

The subclasses d¥lolecularStructureFile inherit this interface and implement
the reading and writing of structural data along with soneefiirmat-specific data. We imple-
mented classes for PDB fileBDBFile), HyperChem HIN fileslINFile), Sybyl MOL2
files MOLZ2File), and XYZ files XYZFile).

Through the use of operator overloading the interface becanite simple. Reading a
PDB file can be done in just two lines of code:

String filename =;
System S;

/I create a PDB file object and open for reading
PDBFile infile(filename);

/I read the contents of the file
infile >> S;

©CoOoO~NOOr~WNPE

Besides the molecular structure file formats, there is aetyof other file formats sup-
ported to store data of different kinds. For example, we ns¥ML-based format to represent
hierarchical dataResourceFile) or Windows INI files to store application settings and
table-like data.

6.7.2 Molecular Mechanics

The fundamentals of Molecular Mechanics force fields havenhiescribed in detail in Sec-
tion 1.5.2. Our prime interest in force fields is their cafigbto predict energies of proteins.
Numerous different force fields have been developed oveydhes; we decided to implement

87

CHAPTER 6. DESIGN AND IMPLEMENTATION

two of the more important representatives: the AMBER fore&df{22] and the CHARMM
force field [15].

Both force fields were originally implemented in FORTRAN €Tiiesulting applications are
monolithic and difficult to maintain. We designed a modulapmach to the implementation
of force fields. The input of a force field is usually a set ofrascand bonds (a system) and a
set of parameters. The force field defines a set of equatiasidimg the energy of the system
as a function of the atom coordinates.

An implementation of a force field has to provide two main gastforce generatoand an
energy generatorThe force generator calculates for each atom the forcesedaoy its inter-
actions, while the energy generator calculates the totiggn Often overlooked — but in fact
one of the hardest parts in the implementation of the forde fiés the assignment of the force
field parameters. For example, the AMBER force field definesia®00 different parameters.
These parameters have to be assigned according to the giemityolved in a certain interac-
tion. Hence, we also had to design a way to store these paFesvaid mechanisms to assign
them automatically.

ForceField System
+options: Options
#atoms: AtomVector
+setup(): bool

+updateEnergy(): double
+updateForces()

L

ParameterFile |

ForceFieldComponent X L
+setup(): bool . «use» — fom
+updat eEnergy(): double | = = === = >#position: Vector3
+updat eFor ces() #force: Vector3

Figure 6.9: TheFor ceFi el d class and related classes

The overall structure of the force field-related classesbeageen in Fig. 6.9. The most im-
portant class is thEorceField . It defines an interface to the force field without performing
any calculations itself. Instead, it contains a listrafrceFieldComponent s. This class
defines the interface for the calculation of a single intéoactype €.g.stretches or torsions).
ForceField contains some attributes (and the corresponding accg¢s$batsre needed for
every force field. The attributeptions holds options that are globally applicable to the
whole force field. It also has a pointer to the system whichaios the atoms. To achieve a
better performance, these atoms are extracted and pdiotires atoms are stored in &tom-
Vector object.

The three most important methods defined=orceField aresetup , updateEn-
ergy , andupdateForces . Thesetup method performs some basic initializations for the
force field, like extracting the atoms from the system, negdhe parameters from a file, as-
signing these parameters, and setting up the force field coemis (by calling thesetup
method for each component).

88

6.7. THE BASIC COMPONENTS

The interface to the energy generator is definedipgiateEnergy . This method cal-
culates the total energy of the system as the sum of the esecgntributed by each force
field component. The component contributions are caladilayecalling theupdateEnergy
method of each force field component. SimiladypdateForces calculates the forces by
adding up the forces from each component.

ForceField - -{ ForceFieldComponent
+setup(): bool +setup(): bool
+updateEnergy(): double +updat eEnergy(): doubl e
+updateForces() +updat eFor ces()
+speci ficSetup(): bool FAN

AmberFF

+specificSetup(): bool

AmberNonBonded AmberStretch AmberBend AmberTorsion
+updateEnergy(): double +updateEnergy(): double +updateEnergy(): double +updateEnergy(): double
+updateForces() +updateForces() +updateForces() +updateForces()
+setup(): bool +setup(): bool +setup(): bool +setup(): bool

Figure 6.10: The different energetic contributions (bond stretcheglamends, torsions, and non-bonded inter-
actions) are implemented in separate classes derived fionteFi el dConponent .

A concrete forcefield is obtained by deriving a class fiéonceField and one concrete
force field component for each type of interaction. Fig. 6sh@ws the classes that imple-
ment the AMBER force field. The clagenberFF is responsible for instantiating the required
force field components. In the case of the AMBER force fieldy¢hare four classes derived
from ForceFieldComponent : AmberNonBonded (which implements the nonbonded
interactions) AmberStretch (the bond stretch contributionAmberBend (the angle bend
contribution), andAmberTorsion (the torsion angle contribution). An instance of each of
these classes in created AynberFF. Whensetup , updateEnergy , or updateForces
of AmberFF is called, the corresponding method is also called in eaaipoment. The imple-
mentation of a concrete force field is thus rather simple.pifeethe energetic contributions in
separate classes leads to a better maintainability andbiitys

In contrast to our implementation, a number of existing édield implementations do not
separate the force generator and the energy generator. althéation of the forces and the
energy is then performed in a single loop. This increasegpénormance for applications
that require the simultaneous evaluation of both energyfarws €.g. molecular dynamics
simulations). We decided against this approach for twoarss First, a separation leads to
a better comprehensibility and maintainability of the co8econd, many of our applications
(e.g. protein docking) only require the energetic evaluationtrs® time spent on the force
calculation can be saved.

89

CHAPTER 6. DESIGN AND IMPLEMENTATION

ParameterSecton 00 b e--mmmmmm - |
+options: Options 1
+extractSection(parameters:Parameters,section_name:String): bool Y
+has(key:String,variable:String): bool
+hasVariable(variable:String): bool Parameters
+getValue(key:String,variable:String): String +init(): bool
+getValue(key:Position,variable:Position): String +setFilename(name:String)
+getNumberOfVariables(): Size +getFilename(): String
+getNumberOfKeys(): Size 0

LennardJones

+extractSection(parameters:Parameters,section_name:String): bool -
+hasParameters(l:Atom::Type,J:Atom:: Type): bool INIFile
+getParameters(l:Atom::Type,J:Atom::Type): Values

Figure 6.11: The classes related to the reading of parameter fiRes. anet er s contains an instance dfNI -

Fi | e which reads the parameter file. An instancePaf anet er Sect i on (or one of its derived classes) inter-
prets the contents of one of the sections of the file as tétdethta. The derived classesRdr anet er Secti on
are able to interpret this data and offer a comfortable ifiéee to access it.

Parameter Assignment

A very tiresome and difficult process is the correct parama&ssignment and the conversion
of existing parameter files. The original implementors & force fields usually provide a
multitude of different versions of parameter sets thatwwalover time. The formats used to
store the parameters are text based and column orientedTRAR style). We decided to
use a common file format for all parameter files. This allowsolismplement the input/output
routines for these files independent from the force field.tHeumore, our file format has a
much better readability, the related class automaticathates efficient hash data structures to
access the data, and allows the storage of different pagawetsions in a single file.

Parameter files typically consist of one or more sectionsathér independent) parameter
tables. For example, a force field defines a set of atom typégrmard Jones parameters for
each of these types, of stretch, bend, and torsion parasneiéirthese data sets are stored in
different sections of a single file.

We represent the whole parameter file as an object of Elasameters (see Fig. 6.11).
This class uses tHéllIFile class to read the contents of the parameter file, parseseharfi
builds internal data structures (several hash maps) tesadhe contents of the file efficiently.
At this level, the data is still stored as tables of stringse Thterpretation of the data is carried
out by ParameterSection and its subclasses. The data a certain section should hold is
specified in each class and the user may access this datarimennt format (usually structs).

For the AMBER force field, this parameter file may look as fako

1 (L]

2 | [QuadraticBondStretch]

3 |ver:version key:l key:J value:k value:r0 value:comment

4 | @unit_k=kcal/mol

5 | @unit_rO=Angstrom

6 |;

70

8 |; Rev | J k ro comment

9 |: - e -
10 1.0 OW HW 553.000 0.95720 "l _TIP3P _water"

90

6.7. THE BASIC COMPONENTS

11 1.0 HW HW 553.000 1.50000 "TIP3P _water"
12 11 HW HW 553.000 1.51360 "TIP3P _water _/ _corrected"
13 10 C CA 469.000 1.40900 "JCC,7,(1986)230; _TYR"
14 |[..]

15

16 |[LennardJones]

17 |ver:version key:l value:R value:epsilon
18 | @unit_R=Angstrom

19 | @unit_epsilon=kcal/mol

20 | @format=RE

21

22 |;

23 |; Rev | R epsilon comment

24 |, - - -
25 1.0 CO 1.600000 0.100000 " _calcium _from _parm91l.dat"
26 1.0 MG 1.170000 0.100000 " _magnesium _from _parm91l.dat"

27 |[..1]

In this example, we see two different sections of the file iedr’[QuadraticBondStretch]”
and "[LennardJones]”). Comment lines start with ”;” and &rored by the parser. Lines
starting with "@” are options lines and are automaticallysgal into an options object (which

is a member oParameterSection). These options are used to store specific properties of

the section€.g.the units of the columns or additional format information).

The data format of each section is defined in the first line afaien (lines 3 and 17) and
defines the columns of the table. In our case, the Lennards J@ation (used to store van der
Waals parameters of the AMBER force field) contains five calsra version number (column
version), an atom type (columh), the minimum distance (colunf), the minimum energy
(columnepsilon), and a comment. Thearameters class parses all subsequent lines of
the section according to this format specification (linesZ8 and builds a table of strings.
The atom type column is marked as &ey in this table, thus thd®arameters object
also creates a hash map allowing fast access through thisynolThe first column is a special
column: it contains a revision number for each of the linégaek with greater revision numbers
automatically supercede lines with a lower revision nundret identical keys. However, the
older revisions of a certain parameter set can be accespéditix by specifying an explicit
version number. This is an important feature to documenetiéution of a parameter set and
to access older parameters setg)for the purpose of comparison).

The order of the columns is irrelevant, the subclass&aohmeterSection only check
whether the parameters they require are available. For@eathelLennardJones class is
satisfied with any table offering a key namgge and two columns naméddandepsilon
This gives the user the freedom to extend or change the fdr&tit his purposes. In con-
trast to column based FORTRAN-style formats, which are usethe majority of software
packages, our format is very flexible, readable, and robust.

The Parameters class hierarchy gives a very convenient access to arbipargmeter
files and thus simplifies the implementation of the paramateignment tremendously. Using
these classes, parameter assignment becomes nearly; @vithe following code excerpts
from the AMBER force field prove:

1 /I an instance of LennardJones is used to parse
2 /I the corresponding section of the parameter file
3 LennardJones LJ_parameters;

91

CHAPTER 6. DESIGN AND IMPLEMENTATION

4

5 /I parse the Lennard Jones parameter section

6 bool result = LJ_parameters.extractSection

7 (getForceField()->getParameters(), "LennardJones");
8

9

/I check whether we could parse the section correctly
10 if (result == fal se)

11 {

12 ... 1l some error message

13 }

14 el se

16 /I iterate over all atoms pairs...
17 for (..)

18 {

19 /I ...and determine their type

21 Atom::Type | = atoml->getType();
22 Atom::Type J = atom2->getType();

24 Il retrieve parameters for the atom pair

25 i f (LJ_parameters.hasParameters(l, J))

26 {

27 /I retrieve the parameters for atom types | and J

29 values = LJ_parameters.getParameters(l, J);
30 }
31 el se

33 /I we didn’t find parameters - error message

Energy Minimization

Energy minimizatiorfor geometry optimizatigns one of the two main applications of Molec-
ular Mechanics. The problem is as follows: given a set of mdks with/V atoms, determine
the set of coordinateg; (x, y, z) for each atom such that the total enefggr;) is minimal.
Typically, we are not looking for a global optimum but for @& optimum.

The input sizes range from very few atoms (small molecuigantls) to large proteins with
several thousand atoms. This optimization problem is dffyiattacked using gradient based
techniques like

e steepest descent
e conjugate gradient
¢ Newton-Raphson
¢ Quasi-Newton

and a multitude of variants of these methods. The method thbseen heavily depends on
the exact problem case. In some caseg.(nitial relaxation of a constructed structure) the
simple steepest descent method is the most efficient onegadmdlewton-Raphson is most

92

6.7. THE BASIC COMPONENTS

SnapShotManager
+takeSnapShot()
. Atom
ForceField System (e #position: Vector3
#force: Vector3
— - — LineSearch
MolecularDynamicsSimulation EnergyMinimizer
+simulate(iterations:Size) +minimize(iterations:Size): bool
_| - | - SteepestDescentMinimizer
CanonicalMD MicroCanonicalMD

—1 ConjugateGradientMinimizer

Figure 6.12: All energy minimization algorithms are derived frdtner gyM ni m zer . They make use of the
basic line search algorithm implementedlinneSear ch. Similarly, theMol ecul ar Dynani ¢sSi nul ati on
class is the base class of the two implemented ensembleg€l@anoni cal MDandM cr oCanoni cal VD).

efficient for very stringent optimizations, but may lead termory problems for large problem
instances. For a discussion of the different methods anthtrwretical background, we refer
to [68, 57, 122].

All these algorithms and their variants share large codéasecand are based on similar
basic algorithms. Hence, we could define a common base @asdl energy minimization
algorithms EnergyMinimizer). We implemented a steepest descent minimizer and three
variants of conjugate gradient minimizers. The design e$éhclasses is shown in Fig. 6.12.

The definition of a common interface to all energy minimizkrsses was only possible,
because the whole parameter handling (and minimizatioorighgns require quite some
parameters!) could be handled via tBgtions class. We also tried to keep the interface
for standard applications as simple as possible. In facypedl application (the energy
minimization of a small molecule) can be done with just tHiees:

System S = ..; /I the structure to optimize

ConjugateGradientMinimizer cgm(FF);
cgm.minimize(); /I create a minimizer and perform the minim ization

OO~ WNE

|
‘ AmberFF FF(S); /I create and setup the forcefield
|

Nevertheless, it is possible to customize the minimizeruid si0ost needs. The following
example is a bit more demanding and will serve to explain geeaf the selection mechanism
with the minimizer. A recurring application is the fast reddéion of parts of structures,
for example, the optimization of side chains or protein log#gms. The algorithms used to
construct these structures are rather crude and do not ébeckllisions in the constructed
structure, so the next step is the removal of these colbsiblence, we have to define a subset
of atoms that has to be optimized while the remainder shoalddpt rigid. Furthermore,

93

CHAPTER 6. DESIGN AND IMPLEMENTATION

we only want to remove the overlaps, so we abort the optimoizadt a rather large gradient
(20 kJ/(molA)):

1 /I a protein with unoptimized hydrogen atoms

2 System p = ..

3

4 /I setup the force field

5 AmberFF FF(p);

6

7 /I select the hydrogen atoms only

8 Selector H_select("element(H)");

9 p.apply(H_select);

10

11 /I create a minimizer

12 StepestDescentMinimizer sdm(FF);

13

14 /Il we abort the minimization if the RMS gradient
15 /I falls below 20 kJ/(mol A)

16 sdm.options[EnergyMinimizer::MAX_GRADIENT] = 20.0;
17 sdm.minimize();

Molecular Dynamics

The second important application of force fields is Melecular Dynamics SimulatiofMD
simulation, MDS). In an MDS we apply the rules of Newtioniarchanics to the system
described by a Molecular Mechanics force field. By integgathe equations of motion, suc-
cessive configurations of the system are generated. Thushtai atrajectory that describes
how the positions of the atoms vary with the time. Again, weeh® refer to textbooks for the
fundamental theory behind the MDS [38, 68].

MDS trajectories contain a huge amount of interesting mfation that is closely related to
experimentally accessible data.d.diffusion coefficients, radial distribution functionstc).

So by performing an MD simulation and evaluating the obtitrajectory, we may predict
numerous properties of the system we are investigating.

Depending on the specific problem, we have to decide wénsembléo choose. The term
ensemble stems from Statistical Thermodynamics and bigsiteescribes a collection of a very
large number of copies of the system whose properties wenaestigating. These “copies”
differ in their microscopic states, but share the same thdymamic stategg.they share the
same temperaturg, volumeV/, and contain the same numh¥rof particles).

There exists a number of different ensembles that diffehbyéxperimental conditions” of
the simulations. In theanonical ensemb]eéhe number of particles, temperature, and volume
are constant. This corresponds to a set of systems immeteeah infinite bath of temperature
T. While the numberN of particles, volumée/, and temperaturd” of each system of the
ensemble are identical, their energiésnay differ. In contrast to the canonical ensemble, the
microcanonical ensemblepresents an isolated system whatgl”, andF are constant and
varies. These two ensembles are the most common ones, soplegriemted two classes that
perform MD simulations in a canonical and in a microcandnécesemble.

The two classe<CanonicalMD and MicroCanonicalMD are both derived from
MolecularDynamics and only implement the ensemble dependent part of the code. T

94

6.7. THE BASIC COMPONENTS

handling of the force field and the trajectories (via BreapShotManager class) is imple-
mented inMolecularDynamicsSimulation (see Fig. 6.12).

The interface for standard applications is very similar lattof the energy minimizer
classes:

1| System S = ..; Il create a system...

2 ‘ AmberFF FF(S); /I ...and a force field.

3

4 CanonicalMD(FF); /I Setup the MD simulation...
5 FF.simulate(500); /Il and simulate 500 time steps.

6.7.3 Nuclear Magnetic Resonance Spectroscopy

BALL provides a set of classes for NMR shift prediction. Thedamentals of NMR spec-
troscopy as well as the models for shift prediction, havenleelained in depth in Chapter 4.
We implemented the shift prediction as a set of shift promesthat are responsible for the dif-
ferent contributions to the chemical shift (see Fig. 6. E3ch shift processor class is derived
from a common base clasSlH{iftModule). An arbitrary number of these shift modules can
be combined into a shift model (claShiftModel). The modules of a shift model can be
exchanged and reparameterized at runtime througP#nameters class. This class stores
the information on the modules to be included and all pararadbr these modules in a pa-
rameter file (clasiNIFile). Through this mechanism, experiments and reparametienza
of the model are very simple and do not require a recompilatiche code.

, - selproperties (shif)

\'/ 1
AtomContainer Shiftl\}lodel
T
1 g 01..*
extract sh:ftts ShiftModule
v L2 yaN
CreateSpectrumProcessor Parameters

RandomCaoilShiftProcessor

AnisotropyShiftProcessor

combine phifts
1

v ElectricFieldShiftProcessor
NMRSpectrum

HaighMallionShiftProcessor

JohnsonBoveyShiftProcessor

Figure 6.13: The design of the NMR-related classes in BALL.

By applying aShiftModel to anAtomContainer ,the chemical shift of each nucleus
is determined by a sequential application of each shift resiLthe model. The shift is stored
as a named property (which can be assigned to any kerneltpbjec

95

CHAPTER 6. DESIGN AND IMPLEMENTATION

To obtain an NMR spectrum from the assigned chemical shdtuse theCreateSpec-
trumProcessor . This class extracts all nuclei with an assigned chemicéi 8bm an
AtomContainer object. Then, it discards those atoms that are usually rexrebble in an
NMR spectrum (rapidly exchanging protons), and calcul#tesspectrum as the linear com-
bination of Lorentzians (one for each proton). This speutisi then stored in an instance of
NMRSpectrum. Instances oNMRSpectrum can be subtracted to give difference spectra,
whose areas were used to rank the docking structures in &hapt

6.7.4 Visualization
Introduction

Three-dimensional visualization of molecular structlieea very important task in Molecular
Modeling — and a very demanding one as well. In fact, the \izat@on code is roughly
one sixth of the total BALL code, so a description of this cam@nt has to be even more
perfunctory than that of the other components.

Building a framework that allows visualization is very diffit and time-consuming, be-
cause it always implies the creation of a graphical userfaite (GUI). Writing code that is
embedded in a GUI is much more complicated than writing condrime applications. One
way to circumvent this additional labour is the use of anmdkviewer. This means, we im-
plement a typical command line-based program. This proghem either writes its output to a
file or directly connects to an external application thatglizes the results. There is a number
of visualization tools available that can be used for thigpee, for example VMD [51] or
RasMol [107]. The lack of flexibility is obvious for this apgch.

For BALL, we decided to implement a twofold approach:

e acomprehensive and powerful framework for the implemeémaif GUI based applica-
tions

¢ a stand-alone viewer used as an external visualizationuwdath is based on this frame-
work.

The visualization framework is calleBALLVIEW and the external viewer is called
molview Since we did not want to implement our own GUI toolkit, we badhoose one of the
existing packages as a basis for the implementation of BAEMW. This GUI toolkit should
be portable, object-oriented, written int€, easy to use, and it should provide the means to
visualize 3D geometric objects. So QT [102] was the only choQT is a portable GUI frame-
work in C++. It implements all the functionality required to write GUaded applications and
also provides support for the integration of the OpenGLalifp{86] for 3D rendering.

BALLVIEW itself consists of two distinct frameworks: VIEWna MOLVIEW. While the
VIEW framework implements general visualization of ardiyr objects and data, MOLVIEW
provides the specialized models and representationsreetyjiair the visualization of molecular
data structures. The overall architecture of BALLVIEW lgditrated in Fig. 6.14.

96

6.7. THE BASIC COMPONENTS

BALLVIEW
Foundation Classes

| OpenGL (3D rendering) |

) [ew] R

i 1]
Mathematical DS]

! QT (GUI tool kit)

| | Data Structures | | Widgets | |

| o e e e - - =] e e [|

1

| Renderer/Management | :

Kernel :

A 1

I 1

1

) MOLVIEu : '

. |

! 1

1
1 | Widgets | | Processors | fF-=-=-=—=-=--=-=-=-=-=-=---- !

Figure 6.14: The overall architecture of the visualization component BAIEW (see text).

The VIEW framework

The VIEW framework provides a number of important basic ddtactures. First, it defines
geometric primitives, like spheres, tubes, meskess, that are required to describe arbitrary
geometric objects. Second, it defines data types to hanttiescand color tablese(g.to dis-
play color-coded gradients or the like). Besides these statatures, it defines a set of classes
to access the OpenGL library. These classes build and mahag#splay lists required for
the OpenGL renderer. Finally, there is a numbewafgetsdefined that can be used in appli-
cations. Widgets in general are graphical elemeatsg. buttons, text labelsetc). From the
widget classes of the VIEW framework, we will just introduiceir important members: the
most important widget is thelainControl widget. It provides the main window for all ap-
plications, including a status bar and a menu bar. This wiggesually the central widget that
holds all other widgets. All other widgets are derived frdra base classlodularWidget

A modular widget can be inserted into the main control anelgrdtes itself automatically. The
mechanisms involved are rather complicated, but the sffeet simple. The clasdodular-
Widget provides a methodhitializeWidget which is called byMainControl just
before the widget is to be displayed for the first time. In thisthod, the widget can construct
the menu entries it requires, insert icons or labels intcstatus bar, read its preferences from
a global preferences file, or create its own preferencesglidtach modular widget is thus a
complete prefabricated component and these componenkeeambined like building blocks
to form an application. The Rapid Application Developmeagpa&bilities of this approach will
be illustrated by means of an example below.

The third class we will introduce is ti&cene class. The scene provides three-dimensional
interactive visualization of geometric objects. The usam cotate, translate, or zoom into
the scene or pick objects by mouse click. This is the key carapbfor three-dimensional

97

CHAPTER 6. DESIGN AND IMPLEMENTATION

visualization of molecular data structures (see Fig. 6.15)

The fourth class is th€ontrol , which is used to display the structures contained in a
Scene in a tree-like structure and allows the manipulation angdasion of the contents of a
scene (see Fig. 6.15).

The MOLVIEW framework

While the VIEW framework is designed for arbitrary geometbjects, the MOLVIEW frame-
work implements the visualization of molecular data suites. This is achieved through a set
of processors. These processors can be applied to arbiamgl classes and construct a geo-
metric representation from it. For example, theédBallAndStickModel class constructs

a ball-and-stick representation from a moleciike,each atom is represented by a sphere and
each bond by a cylinder connecting the two atoms. MOLVIEWjates a number of simi-
lar processors for other commonly used models, like the eanAhals models (all atoms as
spheres), the line model (all bonds as lines), or moleculdiases. Similar processors are
also provided to color the resulting representation adongrth certain propertie®.g.the atom
type, the residue name, the chargt,

The MOLVIEW framework also implements specialized varsanitseveral VIEW widgets
that are aware of molecular data structures and several reular widgets. For example,
there are widgets to read molecular data structures frosrsivfile formats, widgets that im-
plement energy minimizations based on Molecular Mechdoic® fields, or a widget that can
be applied to add hydrogens to arbitrary structures.

One of the widgets that requires further notice isSleever widget. Server establishes
a network socket in the visualization application. Any wti@pplication can now create a
Client object and connect to that socket. Through the use of obgstgpence, it is possible
to transmit any kernel data structure to the visualizatippliaation. TheServer object
receives and deserializes the kernel object and displayeeittly if aScene is available. We
use this mechanism for our stand-alone visualization toolview , which is explained in
more detail below.

Rapid Application Development using the Modul ar W dget class

As has been mentioned above, thedularWidget class was developed to simplify the
rapid construction of applications from some basic bugdiocks, the modular widgets. Only
through the use of the concept of modular widgets, we weretaimplement powerful appli-
cations with just a few lines of code. The main feature of MedularWidget class is the
fact, that each modular widget is self contained and auticallyt constructs all required con-
nections to other widgets. The internal implementatiorheke features is quite complicated,
so we will just discuss the user interface. When developpmiieations using QT, one usually
assembles a number of widgets and then implements the belwhese widgets. For this
purpose, QT uses tha&gnal-slot mechanismSignals, as well as slots, are functions (usually
members). The signal part is called if a certain action agaig.if a button is pressed. By
connecting a certain slot to a signal, the slot is called aa ss the signal ismitted For exam-
ple, pressing the button also calls all connected slotss& kiots then implement the required

6.7. THE BASIC COMPONENTS

behavior of the interface. These connections are requoedenu entries, to connect slide
bars to a scrollable vievetc— the “wiring” of the widgets is usually a very time-consumin
and error-prone process.

Modular widgets usually perform this “wiring” automatital This is achieved by a com-
mon, well-defined interface and some internal mechanisnmeimented in thévlainCon-
trol class. Each modular widget defines its own menu entries anctthted actions. It may
also access the application’s status bar via methoddaihControl . For example, when
instantiating aOpenPDBFileDialog widget (a widget that reads PDB files), this widget
automatically creates an entry in File—Import—PDB in th@lagations menu bar. Clicking
on this menu entry allows the selection of a file, which is thesd and a system is created.
Now, all relevant widgets have to be informed, that a newesyshas been read. Using the
signal-slot mechanism for this purpose would be very corapdid, so we implemented a sim-
ple message passing interface. ThgenPDBFileDialog widget creates a message stating
that a new system has been read dMainControl distributes this message (along with a
pointer to the system) to all widgets. Certain modular widgkke theScene class, interpret
that type of message: the scene displays the system. O#tssesl simply ignore the message.

These two mechanisms, automatic signal-slot connectiodsreessage passing, create an
extensible method for widget communication. Combining nladwidgets to an application
thus becomes very simple, as the following code exampletifites. We will implement a
simple PDB vieweri.e. an application that is able to open and to visualize PDB fasausual,
the include directives have been omitted).

1 |int main(int argc, char **argv)

2

3 /I creating mainframe and application
4 QApplication application(argc, argv);

5 MainControl mainframe;

6 application.setMainWidget(&mainframe);

The main program first creates a QT application, which man#ge GUI control flow. Then,
we create an instance of tiMainControl class and assign it to the main widget of the
application,i.e. the main control is now the widget that will be displayed ie tpplication
window.

7 QSplitter* splitter = new QSplitter(&mainframe);
8 mainframe.setCentralWidget(splitter);

9

10 new MolecularControl(splitter);

11 new Scene(splitter);

13 new OpenPDBFile(&mainframe);
14 new DisplayProperties(&mainframe);
15 new MolecularProperties(&mainframe);

Next, we create a splitter, a widget which lets the user obrlre size of child widgets by
dragging the boundary between the children (the verticalilbdig. 6.15). We then create
the two child widgets of the splitter: thdolecularControl , which displays kernel data
structures in a tree-like fashion, and theene, which renders the molecular structures.

In lines 13-15 we create three additional modular widg&@genPDBFile is able to
read PDB filesDisplayProperties creates the dialog that is used to select one of the

99

CHAPTER 6. DESIGN AND IMPLEMENTATION

different representations for the molecular data strestuandMolecularProperties
is an (invisible) widget that preprocesses all new kernéh déructures, normalizes the atom
names and constructs the bonds between the atoms.

16 | /I start the application

17 mainframe.show();
18 ret urn application.exec();
19 |}

Finally, in lines 17-18 we just start the application. A sgrghot of this program in action is
given in Fig. 6.15.

— -+ [test -0 X
Eile Edit Display

Mame

TR 10
*-THR 11
-HGLY 12
-FRO 13

— Display Settings

madel

type ball and stick A
resalution ultra A

color

custam jl

custom color

" ’7 Edit

Figure 6.15: The example code for the MOLVIEW framework in action. Theeetlaree widgets visible: the
Mol ecul ar Cont r ol on the left of the splitter, th8cene on the right side, and thBi spl ayProperti es
dialog, which creates the non-modal dialog on the right. Whéecul ar Cont r ol widget permits the inspection,
selection, and manipulation of kernel data structures. $bene widget displays these data structures according
to the representation selected in tbespl ayPr operti es dialog.

The stand-alone viewer nol vi ew

Even though the implementation of GUI-based visualizatisrather simple, it is often more
convenient to write conventional command-line based piogt With the external viewer
molview , these applications can then visualize arbitrary moleaddda structures with just
two lines of code:

/I some system...
System S = ...

/I create a client for molview running on host "habakuk"
Client c("habakuk");

/I send the system and display it on habakuk
c << §;

O~NO U WNPE

100

6.8. SCRIPTING LANGUAGE INTEGRATION

This code creates a client object for the external viemetview , which is implemented
using the VIEW and the MOLVIEW framework). This client comteto a pre-defined port
on a given host (in this case the machhebakuk). In the last line of the above example,
the client creates a persistent representation of theraysthich is then sent to the server (the
molview application) using the network streams of BALL. As soon &sd#rver has received
the system, it is displayed on the screen. This approachiisetime immediate integration of
visualization capabilities into existing applicationsurthermore, it can be used to separate
the visualization and the calculations. For example, ibissible to execute a computationally
expensive simulation on a powerful computer server andifseralize the result on a graphics
workstation.

molview also contains functionality to perform energy minimizaso using the
CHARMM and AMBER force fields, it allows the verification oferstructures, the adding
of hydrogens, and also an embedded Python interpreter. eftliedded interpreter provides
additional control over the application, allows the ingpmt of the data structures, and pro-
vides scripting capabilities fomolview . The design and implementation of the scripting
language integration is described in detail in the nexticect

6.8 Scripting Language Integration

One possibility to speed up Rapid Software Prototpying éweher is the integration of script-
ing languages. Being interpreted languages, scriptinguages obviate the time-consuming
compile and link stages, thus shortening development tioresftware prototypes drastically.
Interpreted languages are an useful alternative if newiegifuins can be constructed from ex-
isting building blocks and do not require the implementatid complex or computationally
expensive algorithms. This assumption is valid for the migj@f all applications in the field
of Molecular Modeling. Especially while optimizing paratees of new methods or adapting
existing methods to specific application cases, the shnteraround times are very helpful.

Furthermore, it should be possible to port code very easilifC++ to the scripting lan-
guage and vice versa, thus allowing the prototyping in théticg language and an easy
porting of the final variant to €+ to achieve superior performance.

6.8.1 Python

A vast amount of scripting languages has been developedlwweime for these specific pur-
poses. The unix world is currently dominated by three sicrgpianguages: Tcl [95], Perl [123],
and Python [121]. Each of these languages has been empleyedaipting language in the
field of Computational Molecular Biology. For example, thare currently two Open Source
projects in progress, hamely BioPython [13] and BioPer].[Bdbth projects develop code for
applications in the life sciences. However, the focus of¢hgrojects is currently on sequence-
related algorithms and not on Molecular Modeling.

A detailed discussion of the pros and cons of the three smgiphnguages would just
reiterate well-known arguments. Since all these argumieate been published, we refer to
the respective publications [112, 96, 100]. We will just mi@m a few points that made me
favor Python over TCL and Perl. First, Python is the only lzange that is truly object-oriented

101

CHAPTER 6. DESIGN AND IMPLEMENTATION

(in the sense that it was developed to be object-orientechnitrast to the half-hearted support
for objects in Perl). Additionally, its readability and iritive comprehensibility is much better
than that of the other two languages. Especially the latterreasons make it much easier for
the average user to learn Python than TCL or Perl. First, vilebvigfly illustrate some key
concepts of Python.

Pythort has been developed by Guido van Rossum since 1990. It is aotabjented
dynamic language that was designed to be extensible and lanod®ne reason for its
readability is the fact that Python uses indentation to gretatements instead of curly braces
as many other languages do. To illustrate some of the basguéme concepts of Python
consider the following example:

for n in range(2, 10):
‘ for x in range(2, n):
if n%x==0:
br eak
el se:
‘ print n,’is _a_prime _number

OO WNBE

This simple Python program calculates the prime numberab&D. The first and obvious
point to notice is the block indentation. The compulsoryeinigtion of blocks leaves the pro-
grammer no choice — he has to indent the program correcthttentlock structure is always
obvious. The control structures seem rather familiar to @mmmersif conditions,for
loops — there’s just one striking difference: in Python gatatements may haedse clauses
as well. They are executed if the loop is not aborted vichiteak statement. Théor loop

of Python is quite different from C or Pascal. Whiter loops in C (or G-+) can be forced
to perform a whole range of tricks, the Pythfmm loop has a single purpose: it iterates over
all items in asequence objectn the above example, the functioange creates a sequence
of numbers. Thdor loop then iterates over all elements of this sequence. ®egsaeare
of fundamental importance in Python. They come in severabifta the most important ones
being lists (agange produces), tuples, and strings. All sequence types mayitoabjects

of arbitrary type since Python isvaeakly typedanguage. Python also provides all standard
control statements and several other useful data strsceug dictionaries).

6.8.2 Extending

Python was designed to be easily extensible. This can bewase-calledextension modules
that are written in either C or-€+. These extension modules can implement new object types
and functions through an API (Application Programmer'&tfdace). The API provides nearly
complete access to the Python interpreter and providesortabfe functions to integrate C or
C++ code into the interpreter.

A BALL extension module should provide access to the majorgf2BALL's functionality
from the Python interpreter and a seamless integrationeoB#iLL objects. The syntax of
the extension module should be as similar to thetGyntax as possible. This allows a fast

!python’s not named after some reptile but aftemty Python’s Flying Circus- the BBC comedy series Guido
van Rossum obviously enjoyed.

102

6.8. SCRIPTING LANGUAGE INTEGRATION

development of a new method and its refinement in Python aatlyfin with minor changes
only — the implementation of this code int& for extensive experiments and production use.

Although both languages are object-oriented, there areegarmdamental differences and
concepts that make these goals rather difficult to meet. T mimportant topic is generic
programming using templates. Since the creation of temmatle always requires a run of
the C++ compiler, it is not possible to create new instances of tateplfrom the inside of the
Python runtime system. Another problem concerns operateraading: the current release
of Python does not yet support compound assignment opsr@ter-=, etc).

The fact that Python functions may not modify the argumehts called function if they
areimmutable(as strings are in Python), is problematic as well. Since BAften passes
references of objects to retrieve partial results of a dafimn, there are some cases where the
interface had to be changed. In these cases, all returnsvahgepassed as a Pythuple
However, these changes have to be documented and the cau® bengenerated automat-
ically, so future versions of BALL will avoid passing non#si object references wherever
possible.

The integration of BALL classes into a Python interpretaquiees the implementation of
so-calledwrapper classesWrapper classes are Python classes that replicate thfaoeef the
C++ class. The methods of these classes call theit Counterparts and pass the-€return
values back to the Python code. In addition, they have toarrke arguments and return
values from G+ objects and types to Python objects and types. Due to the tarmber of
classes in BALL, it is obvious that the generation of the vpclasses has to be automated.
There is actually a number of tools available for this pugrogve had a look aBWIG]8],
CXX[27], andSIP [116]. Out of these thre&5IP was best suited for our purpose. It creates
the wrapper classes from slightly modified BALL header files.

NeverthelessSIP did not fulfill all requirements. Therefore, we had to modifyo suit
our needs. We added support for€operators, meaning that all operators that are supported
by Python are automatically converted to equivalent Pytmathods. Similarly, exceptions
are translated to Python exceptions. The latter featungnesjall C++ methods to declare the
exceptions thrown using titrow keyword.

It was also necessary to find replacements for some concepdtsimi BALL. For example,
iterators are not easily ported to Python. The correspgndamcept in Python is the iteration
over a sequence (via f@r loop). Hence, | created so-callexktractors Extractors are
functions that iterate over+3 container objects and assemble a Python sequence cogtainin
these objects (or more precisely: reference to these gpjediere exists an extractor for each
kernel iterator type. For example, the-€code

System S = ..

1

2

3 Atomlterator ai = S.beginAtom();
4 ‘ for (; ai != S.endAtom(); ++ai)
5 | cout << ai->getName() << endl;

translates to the following Python code which uses the etdratoms :
1| S=..
2
3 ‘ for atom in atoms(S):

103

CHAPTER 6. DESIGN AND IMPLEMENTATION

4 | print atom.getName()

Using these techniques we obtained Python extensions tatime BALL functionality and
interface as closely as possible to the corresponding BAbBEses and functions. Although
there are still some problems to solve (passing of non-aefistences, several unimplemented
operators), the Python extensions have proven to be vepjuhelhen prototyping or debug-
ging small to medium scale applications.

6.8.3 Embedding

Embeddings quite similar to extending Python. The main differenes in the main program.
When using Python extensions, the main application is thledPyinterpreter that calls BALL
code. When embedding Python, the main application is a BAldgmam that calls the Python
interpreter to execute short code segments. Embeddingjisred if Python shall be used
as a scripting language inside BALL applicatioresg(for the molecule viewemolview).

A further advantage of an embedded interpreter is the wahdiinspect and modify the data
interactively.

There are two design problems related to Python embeddimgfiist one is the integration
of the interpreter main loop which that to be called as soom @aw code fragment should be
executed. Since the C API of Python is rather complicatad,sfould be well hidden behind
a more comfortable €+ interface.

The second issue is somehow more difficult. The interpretstihave access to the appli-
cation’s data structures. So we need a way to define whiclcbinjgtances of the application
may be accessed from the interpreter and vice versa. Thisesda theEmbeddable class.
All instances of classes derived froBmbeddable inherit the membersegisterThis
andunregisterThis . By callingregisterThis , a class instance registers with a global
objects repository (static members®Bibeddable). Through the Python bindings of each
class, the Python interpreter has access to all registestahices.

The following example shall illustrate the interaction betclasses a bit further (along
with Fig. 6.16).

1 cl ass MyClass

2 : public Embeddable

3 {

4 public:

5 BALL_EMBEDDABLE(MyClass)

6

7 MyClass(const String& identifier)
8 . Embeddable(identifier)

9 {

10 }

11

12 void print()

13

14 cout << getldentifier() << endl;
15 }

16 h

This simple class defines just one trivial methpdirit) to print its identifier (which is de-
fined byEmbeddable). The macroBALL_.EMBEDDABLHefines the virtual methogkg-

104

6.8. SCRIPTING LANGUAGE INTEGRATION

Embeddable Embeddable [Python]

-identifier: String___ TEmbeddable(identifier:String)

+Embeddable(identifier:String) +~Embeddable()

+~Embeddable() +registerThis()

+registerThis() +unregisterThis()

+unreg|st_e.rTh'|s() o . +setldentifier(identifier:String)

+setldentifier(identifier:String) +getldentifier(): String

+getldentifier(): String

sipEmbeddable
MyClass MyClass [Python]

+countinstances(): int +countlnstances(): int
+getinstance(identifier:String): MyClass* +getlnstance(identifier:string): MyClass
+print() +print()

Zf sipMyClass

Figure 6.16: The clas€Enbeddabl e is the base class of our claby Tl ass. For both classes, wrapper classes
(sipEmbeddable andsipMyClass) are automatically created for the Python bindings. Thiotlgese inter-
mediate classes, Python clasgégseddabl e andMyClass have access to the members of the respective BALL
classes.

isterThis that is used to register class instances with the globakbbgpository and the
static methodgietinstance andcountinstances . The latter methods can be used to
access the global instances from Python. The constructpires a string that is used as a
global identifier to access this instance (see below).

Now we create an instance of this class in an application qlwlshould contain an
embedded Python interpreter) and register it:

1 | MyClass my_instance("TESTINSTANCE");
2 | my_instance.registerThis();

If a Python wrapper was defined for our class and the correipgmodule was imported, we
can access our instance from the embedded interpretesvieittifier:

>>> MyClass.countlnstances()

1

>>> jnstance = MyClass.getinstance("TESTINSTANCE")
>>> nstance

<BALL.MyClass instance at 107cd8>

>>> instance. print()

TESTINSTANCE

>>>

O~NO O~ WNPEP

The Embeddable class defines a very simple but very general interface. 8peare has
to be taken which methods of these objects can be safelydcalid who is responsible for
the destruction of a certain instance to avoid memory le@Xsviously, this interface leaves

105

CHAPTER 6. DESIGN AND IMPLEMENTATION

much room for improvement, but it allows us to embed Pythoerpreters in applications like
molview in shortest time and with little overhead.

106

Chapter 7

Project Management

This section briefly describes some techniques that werdogaghto manage the development
of BALL and to ensure a high quality of the software. In Sefiol, we will give a description
of the methods to keep track of source code changes, revis@ragement, and portability
issues. Section 7.4 describes the integrated documant&taction 7.5 describes the methods
we use for software testing. Finally, in Section 7.6, we dékcribe the mechanisms required
for an automated, portable installation of BALL.

7.1 Revision Management

We used theConcurrent Revision Systef@VS, [24]) to keep track of source code changes.
This was especially important in the beginning, when sdveeaple were simultaneously
working on the core library. CVS keeps all files in a centrplasitory and stores the changes
between different versions as context diffs. Even if two arepeople are working on a single
file in parallel, CVS is usually able to merge the changes amt version of the file — conflicts
arise only if the same code lines were changed by differetioas. In this case, the respective
author is notified of the conflict and has to resolve it maryuall

7.2 Coding Conventions and Software Metrics

The programming style affects the readability of a prograi®nce, to ensure a high code qual-
ity and a uniform look of the code, we drafted a set of codingveations. Coding style is a
very personal matter and many different styles exist evesngnthe programmers who worked
on BALL. An even larger amount of coding styles has been pegddy various authorg.@.
[91, 77, 6]). We drafted a minimal set of non-controversides that guarantee a good read-
ability without restricting the individual programmer toouch. They are part of a document
describing coding conventions for BALL [63]. Part of thestes is also anwrthodox canonical
class interfacg21] that ensures that all BALL classes can be assigned, aoedp and copy
constructed. This common interface ensures that all BABs®s can be used in the same way
as typical builtin data types.

However, adhering to these rules is rather inconvenientcantpliance with these rules
could not be reached without enforcement. Several of thesriul the coding conventions can
be verified usingsoftware metricqor style metrick Different approaches for style metrics
have been proposed in the literatueeg([10, 49, 19]) for procedural programming languages
as well as for OO languages.

The open source software packa@€CC (C and G+ Code Counter) [72] provides a
reasonable choice of different metrics and a WWW-basedfate that was easily adoptable

CHAPTER 7. PROJECT MANAGEMENT

to suit our needs. The metrics we used we@C (lines of codg COM (comment lings their
quotient (-C = 9%, and McCabe’syclomatic complexit{75].

As with the test builds, an overview of the metrics is creaetmatically. Its main purpose
is to point out design and implementation flaws in the codee fidgular inspection of the
metrics helps to identify undocumented code portions and¢omplex (often poorly designed)

classes.

7.3 Portability

The current ANSI standard for#3 was passed in September 1998 as the ISO/IEC standard
14882 [5]. However, even today lots oftf€ compilers are not fully compliant to this stan-
dard. This caused a lot of trouble in the earlier stages otléwelopment. Nevertheless, this
trouble paid off in the last few months, when more and morepitars were released that are
sufficiently close to the ANSI standard to accept our coddauit major modifications.

7.4 Documentation

7.4.1 Reference Manual and Tutorial

As has been claimed in Section 6.2, documentation is verpitapt for the user. Our goal
was a detailed documentation consistent with the impleatient Therefore, we decided to
integrate the documentation into the BALL source code files @asse DOC++ [133] to create
printed and hypertext manuals from the header files. In tlaig, Wwhe documentation always
reflects the current state of the implementation. Unlikeeo#pproaches, such @WEB[61],
sources documented with DOC++ are ready to be compiled utitheed of any preprocessing
(like tangle). DOC++ uses a (high-level) €3 parser to extract the documentation from
the header files. Since this parser reads the class deaterats well, DOC++ is able to create
information on class hierarchies, member protection,mpatars, or return types automatically.
The documentation is embedded into speciak@omments starting with/** " or *//[",
hence the code may be compiled directly without modification

A typical class documentation might look as follows:

1 [** Example class.

2 This class is meant as an example.\\
3 Embedding of LaTeX: $a’2 = b"2 + c"2%\
4 {\bf Definition:N\URL{BALL/test.h}

5 \\

6 */

7 class A

8 : public B

9 {

10 public:

11 [** @name Constructors and Destructor
12 */

13 lHa{

14 /** Default constructor

15 */

16 AQ);

17 @}

108

7.5. TESTING

19 /** @name Accessors

20 *

21 la{

22

23 /** Example member.

24 This method is useless.

25 @param X some number

26 @return int the value of the internal attribute divided by {\ t x}
27 @exception DivisionByZero if {\tt x == 0}
28 */

29 int member(float x) const;

30 @}

31

32 pr ot ect ed:

33 i nt attributel;

34 5

From this class definition, DOC++ extracts the full docuraéioh in either HTML or ATEX
format. It allows the embedding ofTgX commands as well as the use of several HTML tags.
Even mathematical formulas are rendered usiiigdLand embedded as GIF images into the
HTML page (similar to LaTeX2HTML [26]).

Using the special command8@ {’ and ‘//@ }’, the members of a class or sections of
the documentation can be arranged hierarchically. The ¢lesarchy is represented as class
graphs in theATpX documentation and as a Java applet in the HTML documentaficscreen-
shot of the resulting HTML documentation, including thesslgraph, is given in Fig. 7.1 on
page 110.

The document resulting from this integrated documentatidine BALL reference manual.

It contains detailed descriptions of all classes, theirm@s$ and attributes, and references on
the algorithms and models used in the implementation. Tieeerece manual is complemented
by a tutorial, which introduces the most important conceypid classes by means of selected
example applications.

7.42 FAQs

Another part of the documentation i$AQ list (frequently asked questions). A FAQ list helps
the user to resolve common problems. Uwe Brahm implemehe&ALL FAQ list similarly

to the LEDA FAQ as a Lotus Notes database. We also included-At@@s into the BALL
tutorial, because they are most helpful when a user doesrkissteps with BALL. To keep
both versions consistent, the Notes database is expodethrly in ASCII format, converted
to IATEX, and integrated into théIeX source code of the tutorial directly.

7.5 Testing

Testing is an important step to ensure the correctness dfripiemented code and is usually
the last step before releasing the code. Since BALL is a daitge project and was already
in use while being implemented, we conceived a concept fatimaous automatic testing.
After introducing some basic terms and definitions in sofeMsting, we will describe this
approach. For a further discussion of testing and testiclonigues, we refer to [56].

109

CHAPTER 7. PROJECT MANAGEMENT

Figure 7.1: HTML page created by DOC++ from the example on page 109

110

7.5. TESTING

. component
- in test
test g test
- comparator
cases . P results
— | test
oracle

Figure 7.2: General software testing scheme

7.5.1 Fundamentals

The testing of a software component verifies that its bemagdmplies with a given specifica-
tion. For this purpose, a set tdst casess created and used as an input to the unit in test (see
Fig. 7.2). The output of the component is then compared tathput of atest oracle The
test oracle predicts the outcome for each test case basée@ spécifications. The component
complies to the specification if the results of oracle andctraponent in test are considered
equal by the comparator for each test case.

Except for some special cases where formal specificatiangraated during the design
phase €.9.[55]), the generation of the test oracle cannot be automatiesthce, most oracles
are simply humans, usually the ones creating the test cadsle creating a set of test cases,
the output for each test case is specified as well. The saheofithe test cases depends on
which approach to testing is used.

There are basically two approaches to testinigck box testindor functional testingand
white box testindor structural testing.

In functional testing, test cases are selected solely orb#sés of the specifications of
the component. Internals and structure of the componemareonsidered. Therefore, it is
often called black box testing. In contrast to black boxitgstwhite box testing considers the
internal structure of the components as well.

7.5.2 Testing in BALL

We decided to use simple black box testing for BALL. The idtrction of a testing scheme
stems from bad experience with the integration of code in®library. Most programmers
contributing code to the project tested their code by wgitinsmall number of short programs
they chose without much thought. As soon as these test pnegrarformed as the programmer
expected (often only on a single platform), the code was ditdfrto the code repository. Much
later, sometimes after the programmer had left the progeripus bugs were detected in the
code. Either it did not compile on all platforms due to nontgble instructions or header
files, or it showed strange behavior for input differing frtime original test input, or there were

111

CHAPTER 7. PROJECT MANAGEMENT

even syntactically wrong code portions (as might happepr@riously uninstantiated template
code).

The testing methods we developed for BALL are rather simiplet,proved to be rather
effective. For each class submitted to the code reposiéaigst program is required. This test
program has to fulfill the following requirements

e it has to test each member of the class
e it has to provide a well-defined interface for automaticatitey

The first point is especially important for template classésere code sections are not com-
piled if they are not instantiated. Nevertheless, testiitemplate classes cannot be done
satisfactorily: it is not possible to write tests for eactsgible template parameter. Further-
more, not each method has to be applicable for each tempdasengter. In these cases, all
members are tested; each with a single suitable parametés.niethod at least ensures that
all code sections are syntactically correct. Then, the ousgthusually behave correctly for all
other suitable template parameters as well.

To ensure a constant software quality, it is not sufficieat #n class test once passes on
all platforms, but these tests have to be performed on aaetalsis on all platforms. This
may be illustrated by an example. A test for the BALL cl@isect passed on all platforms.
The implementation oDbject relies on the runtime type identification functions (RTTI),
for which no test did exist. When the tests for RTTI were impésted, one of these functions
(isinstanceOf)was shown to work incorrectly. Instead of returninge if the given object
was an instance of a certain class, it returtrad if this object was "a kind of” this class. Thus,
it replicated the behavior of the functiagsKindOf . The error was corrected and the test for
the RTTI then passed on all platforms. However, a subsedashof theObject class failed.
Obviously, in the implementation @bject the functionisinstanceOf was used, where
isKindOf was meant. So the removal of an error in one component udvaileerror in a
completely different component.

This example illustrates two important facts. First, itwldhe limits of functional testing:
theObjects class behaved as specified, although there was an obviolenimptation error
that could have been found by reviewing the code. Seconlipits the importance of repeated
automatic testing of all classes, since changes in one oftss affect other classes as well.

7.5.3 Test macros

The testing of 460 classes on a dozen platforms has clealdg sutomated. This requires a
well defined external interface for all test programs. Weidkxmt to implement this as a set
of macros. The macros implement a program frame for the ¢ésts. The test of a class
or component is broken down into several subtests. Eabkestverifies the behavior of one
method or function and itself consists of sevgpamitive tests In terms of Fig. 7.2, each
macro represents a primitive test.

What a typical test program might look like is shown in thddaling listing:

112

7.5. TESTING

1 |#incl ude <BALL/CONCEPT/classTest.h>
2 | #incl ude <BALL/DATATYPE/string.h>

3 |using namespace BALL,;

4

5 |/l start the class test for class String

6 | START_TEST(String,"$ld: _implementation.tex,v _1.53 _2000/11/13 _16:02:22 oliver _Exp_$")
7

8 String* s;

9

10 /I start the first subtest: test the default constructor
11 CHECK(String::String())

12 S = new String;

13

14 /I test whether we did get a non zero pointer
15 /I this should always pass

16 TEST_NOT_EQUAL(s, 0)

17

18 if (s!=0)

19

20 /I test whether the string is empty
21 TEST_EQUAL(strlen(s->c_str()), 0)
22 }

23

24 /I done with this subtest

25 RESULT

26

27 /I further subtests

28 [...]

29

30 |// done with all subtests - print the result
31 |END_TEST

First, the test program includetassTest.h which contains the test macro definitions (line
1). Then, it includes the header of the class to be tested drirexample the string class.
The first macro to be called is alwa$3 ARTTEST. This macro contains the program’s main
function and performs some initialization steps. Then, doitrary number of subtests may
follow. Each subtest starts with the madE#ECKits argument is the name of the method
or function to be tested. Then an arbitrary humber of priragimay follow, terminated by
the macrdRESUL Twhich terminates the subtest. Finally, the test prograrerisinated by the
macroENDTEST. When run without arguments, each test program executestdland prints
OK:if all test passed, dFAILED if any primitive test failed. The test result is also retudnga
the program'’s exit code (O if all test passed, 1 otherwise).

If a test program fails, it may be rerun in verbose mode and fhrnts information on
the test that failed in a standardized format. Further Betdithe verbose mode will be given
below. First, we will give a description of the primitive tasacros.

Each of the primitive macros may either pass or fail. If itfaan internal variable is set to
signal a failure of the whole subtest and also the whole tegram. The macros usually take
two arguments: the result of the “test oracle” (which is Ulguan expression defined by the
human implementing the test) and the result of the compdneast. The choice of the macro
determines the type of “comparator” used (to speak in thmgdesf the scheme in Fig. 7.2).
There exists a set of macros for different comparison p@wgRo¥he most important macro is
TEST_EQUAL This macro implements an equality comparison based oopgheator ==
For exampleTEST_EQUAL(a, 5) is expanded to something like

113

CHAPTER 7. PROJECT MANAGEMENT

bool passed = ((a) == (5));
This macro assumes that the two expressions given are goc@athparablej.e. the opera-
tor == has to be defined for the two types.

The opposite behavior is implemented by (REST.NOTEQUALmacro. This primitive
test passes, if the two expressions given as arguments aegjumal. This is useful to verify
that a method does not return a null pointer and similar casese only the return value of a
failed test may be anticipated.

If the result of a test is a floating point number and deviaifrom the exact value are to
be expected due to different floating point implementationgifferent platforms, the macro
TEST_.REALEQUALshould be used. It verifies whether the absolute value of ifferehce
between the two arguments is below a user-defined upper bound

It is also possible to test whether the class’ exception lagpdbehaves as expected. If a
certain method should throw an exception, this can be vanfgng theTEST EXCEPTION
macro. For example, normalizing a vector of length zerowsr@ DivisionByZero
exception. A primitive test to verify this behavior mighblkolike this:

1 Vector3 null(0, 0, 0);
2 TEST_EXCEPTION(Exception::DivisionByZero, null.norma lize())

This test passes, ifiull.normalize() really throws the exception, which is then
caught by the test macro. Unexpected exceptions are caugiratically by the try/catch
block implemented irCHECKand RESULTIf they occur inside a subtest or by the try/catch
block implemented S TARTTEST andENDTEST if they are thrown outside a subtest. In
any case, the test program fails and a diagnostic messag#yspe the kind of exception
thrown is printed in verbose mode.

Finally, the TESTFILE macro is suitable to compare the output written to a file. For
example, this macro is used to verify the PDB file class wh&clided to import or export
molecular structures in the PDB format. In principle, thisld be rather simple: read a
System from disk, write it to a temporary file in PDB format, and comgpahis file with
the original file. Unfortunately, this approach fails foetkery first line of the PDB format:
this line contains the date the file was created. This probgesolved by allowing regular
expressions for the files to be compared. The two files are apgdpline-wise. If a line in
the template file (the “oracle output”) starts with/a , the rest of the line is interpreted
as a regular expression and the corresponding line in thedeary file has to match this
expression. In our example of the PDB class test, the firstlifese of the test output might

look like this:
1 HEADER BPTI 6-DEC-99
2 SEQRES 1 58 ARG PRO ASP PHE CYS LEU GLU PRO PRO TYR THR GLY PRO
3 SEQRES 2 58 CYS LYS ALA ARG ILE ILE ARG TYR PHE TYR ASN ALA LYS
4 SEQRES 3 58 ALA GLY LEU CYS GLN THR PHE VAL TYR GLY GLY CYS ARG
5 SEQRES 4 58 ALA LYS ARG ASN ASN PHE LYS SER ALA GLU ASP CYS MET
6 SEQRES 5 58 ARG THR CYS GLY GLY ALA

The corresponding lines in the template file are:

1 |/HEADER BPTI [1-3]{0-9]-[A-Z][A-Z][A-Z]-{ 0-9][0-9]
2 |SEQRES 1 58 ARG PRO ASP PHE CYS LEU GLU PRO PRO TYR THR GLY PRO
3 |SEQRES 2 58 CYS LYS ALA ARG ILE ILE ARG TYR PHE TYR ASN ALA LYS

4 | SEQRES 3 58 ALA GLY LEU CYS GLN THR PHE VAL TYR GLY GLY CYS ARG

114

7.5. TESTING

BALL test build: RESULTS

Host BINFMT confipnre | build | warnings test lib size
lore Solaris—5.7 —sparc—CC & V8 passed passed 0] passed : 151 MB
lore Solaris—5.7—sparc-CC_& V9 passed passed 0] 28/30 172 MB
habakuk : IRIH-65-CC 7.3.11m_ N32 passed passed o passed | 221 MB
habakuk [RI-65-CC_7.311m &4 passed passed 0 passed | 237 MB
io Linux—i386—g++ 2952 passed passed 1 passed : 9.9 MB

ghis page was created anfomationdly Wed Feb 2 21:45:5] MET 2000

Figure 7.3: Web interface for automatic testing: Overview page

5 | SEQRES 4 58 ALA LYS ARG ASN ASN PHE LYS SER ALA GLU ASP CYS MET
6 | SEQRES 5 58 ARG THR CYS GLY GLY ALA

The regular expression in the first line matches all posgibkes as defined in the PDB
format.

7.5.4 Automatic Test Builds

Using these macros simplifies the implementation of tegjnams and creates a well defined
interface. Using this interface, a suite of shell scripts waveloped that performs a automated
test build on all available platforms. These platforms grectied in a configuration file. The
script then extracts the current version of BALL from the CMpository, rungonfigure
builds the shared library, and executes all class testalliinveb pages are created that show
the results of the test builds for all platforms.

The overview page might look like the one in Fig. 7.3. It shdkesresult for the execution
of configure, the build of the library, the build of the testdathe execution of all tests for
five different platforms. Yellow table entries indicate pkems, green ones indicate that the
corresponding step was successful. In the above exampdgeshfailed and the compilation
of the library caused a compiler warning. Compiler warniagd errors are extracted from the
log files and are shown by following the link in the correspiagdable entry:

1 warnings occured during the build:

: filename i line rmmber | reason
ipoissonBeltzmann.C 530 icomparison between signed and unsigned
wview full log file

115

CHAPTER 7. PROJECT MANAGEMENT

By following the links for each error, the source code cagishre warning can be directly
inspected. The line causing the error is highlighted in red:

SOLVATION/poisson Boltzmann.C:530:

comparison between signed and unsigned

responsible for this file: oliver

520 eps_grid = new PointGrid<float>(lower_, upper_, spacing);
521

522 /¢ now assign the correct dielectric constant to each grid point in eps_grid
523 long inside_points;

524 long cutside_points;

525 inside points =0;

526 outside _points = 0;

527

528 £ loop variable

529 Index i;

&30 for (i = 0; 1 < eps_grid-=getBize(); i++)

531 i

532 if ((*8ES_grid)[i] == 0}

533 i

534 outside points++;

535 (*eps_grid)[i] = solvent_dielectric_constant;
538 I else |

R37 inside_points++;

538 (*eps_grid)[i] = solute_dielectric constant;
539 t

540 ¥

This web interface greatly simplifies the maintenance ofctiae on all platforms since it
immediately reveals any problems with new code. Since abtgkt is performed every night
on all platforms, committing faulty code to the repositogcbmes obvious the latest by the
next day. Using the revision control system, a controlldtlyack of the software to the last
version that ran on all platforms can be obtained at any time.

7.6 Installation and Configuration

An important aspect of our design gosdse of usés a simple and smooth installation on
all required platforms. When we examined existing softwzaekages before we started the
implementation of BALL, installation was a continuous smiof frustration. So our goal was
to make the installation of BALL as simple as possible. Thia truly demanding task. First,
all platforms are different, all compilers take differemgtions, different versions of software
or operating system require special workarounds, headsrdiffer from platform to platform,
and finally every local installation has its own peculiasti

116

7.6. INSTALLATION AND CONFIGURATION

GNU autocon{37] is a portable and extensible tool for the installatidisaftware packets.
It uses a very limited set of standard unix toddé (ar , sed, etc) to gather all information
on the system that is required to automatically build anthlhthe libraries. So if everything
works as expected, a typical installation would only reguiv run the configuration script
configure and the build the library with the commantake. configure is a rather com-
plex shell script (about 7500 lines long) that identifies dperating system and the compiler
and then searches for the required additional softwael{praries and header files).

Contrary to installation routines that only provide platfodependent configuration files
(i.e. a set of files for each combination of operating system andpdemthat is supported),
configure is based on tests to identify the platforms capabilitiest é@ample, instead of
stating that the GNU compiler does not provide the ANSI classerical _limits |, the
configure script runs a test program that determines whethemtimerical _limits
class is available. This approach is clearly superior, ejitires very little effort when porting
the library to a new platform. Most of the porting is done bg tonfigure script when
testing for required features.

Writing these tests in a portable and general way is nevegbeather tricky and requires
a good knowledge of unix systems and their differences. lstdffort usually leads to a very
convenient installation, as has been shown in our alph&xgstriences. Even if the installation
fails, configure provides mechanisms to solve these prabfesm a distance. For example, the
results of all tests are written to a log file. Usually, by rimgjithe output of theconfigure
script and this log file, most installation problems can lsoheed.

117

Chapter 8

Programming with BALL

In this chapter, we will illustrate the use of BALL for RapidfBvare Prototyping by means of
a simple example: the minimization of a protein in vacuumisxample is originally taken
from the tutorial of the Molecular Modeling package AMBER]2To illustrate the differences
between a conventional package (AMBER) and BALL, we will trast the original AMBER
code directly with the BALL code.

The tutorial example performs a conjugate gradient miratnin of the protein BPTI in
vacuum after adding the required hydrogen atoms. Since ARIBEa mere collection of
FORTRAN programs, the code shown here is mainly shell codergout files for the different
FORTRAN programs.

Preparation of the structures

In a first step, we have to add the hydrogen atoms to the BPuittate, since they are
usually not contained in a PDB file. Using AMBER, this is acqgiished by theprotonate
program:

1 i protonate -d amber41/dat/PROTON_INFO < pti.pdb > ptiH.pdb '

The call toprotonate reads the PDB file, adds all missing hydrogens, and stores the
information to the fileptiH.pdb . In BALL, the same task is accomplished by the
add _hydrogens member of the fragment database after reading the PDB file:

PDBFile infile("pti.pdb");
System S;

FragmentDB frag_db;

1

: |

3

4 ‘ infile >> S;
5

: |

7 | S.apply(frag_db.add_hydrogens);

Setting Up the Force Field

Using AMBER, the next step is to establish the topology offthree field. To achieve this,
the programlink is called which reads information on the bonds from adig#/db4 in
the AMBER data directory (set in the environment varigdddVIBERHOMZPBrior to the call to
link , aninput file has to be constructed that contains the seguafarmation of the protein
and the necessary information on sulfur bridges:

1 |cat <<eof >Inkin (
2 bpti
3

CHAPTER 8. PROGRAMMING WITH BALL

4
5 |DU

6 0 0 0 0 0

7 bpti

8 |P 1 0 1 3 1

9 |[ARG 2PRO ASP PHE CYX LEU GLU PRO PRO TYR THR GLY

10 |PRO CYX LYS ALA ARG ILE ILE ARG TYR PHE TYR ASN
11 |ALA LYS ALA GLY LEU CYX GLN THR PHE VAL TYR GLY
12 |GLY CYX ARG ALA LYS ARG ASN ASN PHE LYS SER ALA
13 |[GLU ASP CYX MET ARG THR CYX GLY GLY ALA

15 5 558G SG 0
16 14 38SG SG 0
17 30 51SG SG 0

19 |QUIT
20 |eof

21 |#

22 |link -i Inkin -0 Inkout -p $AMBERHOME/dat/db4.dat
23 | /bin/rm Inkin

The first seven lines contain various configuration flagst #ma usually not changed. If
changes are done here, one has to be very careful, as thefammat is strictly column-
oriented (as the input formats of most AMBER input files asleb the number of blanks
before each number is crucial and blanks and empty lines ttabe counted carefully to
avoid unwanted behavior. The next five lines contain the esacgl information that has to be
extracted from the PDB file manually. Lines 15-17 contaiminfation on the three sulfur
bridges of the structure. Again, this information can beaoted from the PDB file. The last
two lines finally call link and create the topology informatiin file Inkout and in the file
linkbin , which is used in the next step by thdit program.

The same code in BALL looks as follows:

8 | S.apply(frag_db.build_bonds);

This code constructs all bonds, including the sulfur bridffem the topological information
contained in the fragment database.

In the next step, AMBER checks the structure of the PDB filecfmisistency and writes a
set of starting coordinates. This step is carried out ugieg@dit program:

1 |cat <<eof > edtin

2 | bpti

3 0 0 0 0

4 | XYZ

5 |OMIT

6 | XRAY

7 0 0 0 0 0
8 [QUIT

9 |eof

10 |#

11 |edit -i edtin -0 edtout -pi ptiH.pdb
12 |/bin/rm edtin

This script reads the PDB file froptiH.pdb , checks it for consistency, and writes starting
coordinates for all atoms tedtout . It also creates an additional filedtbin) that contains

120

information on the coordinates and is used in the next stgpabm .

A similar functionality (although much more sophisticgtasl contained in the residue
checker class of BALL. This class exploits the topologicald ageometric information
contained in the fragment database to verify the residussjtplied to. Upon failure, it emits
detailed warning messages.

9 ResidueChecker checker(frag_db);

10 S.apply(checker);
In the next step, AMBER reads the information fradtbin and the force field parameter
file parm91.dat . From these files, it extracts all relevant information om ¢bordinates, the
atom types, and the parameters required for the force fidtdilation .g.force constants,
bond lengthsetc).

cat <<eof >prmin
name of system
BIN FOR STDA

0

eof

#

parm -i prmin -0 prmout -f $SAMBERHOME/dat/parm91.dat
/bin/rm prmin

QWO ~NOOA~WNPE

[Eny

Running the Minimization

The minimiztion itself is accomplished by the prograender , which reads the input from
prmtop andprmcrd created in the last step:

cat << eof > minin
200 steps of minimization:
&cntrl
maxcyc=200, imin=1, cut=12.0, nsnb=20, idiel=0, scee=2.0 , ntpr=10,
&end
eof
sander -i minin -0 pti_min.log -c prmcrd -r pti_min.xyz
/bin/rm minin

O~NO A WN P

This script performs a conjugate gradient minimization domaximum of 200 steps (given
as the value fomaxcyc). The fact that a full minimization is performed, is spedfigia
the value ofimin : a value of 1 means a minimization, while a value of 0 startsade®ular
Dynamics simulation. The remaining parameters in the foline set the parameters for the
nonbonded cutoffqut) to 12 A, and choose a distance-dependent dielectric constartdor
simulation {diel=0). The current energy during the minimization will be pruhtevery ten
steps (ptr=10) and the pair list will be updated every 20 stepsr(b=20). The parameter
scee specifies a scaling factor for the electrostatic contrdubf the force field. The resulting
structure is written to the filpti _min.xyz

In BALL, the code of the last two steps corresponds to thetimeaf a force field object
and a conjugate gradient minimizer object:

121

CHAPTER 8. PROGRAMMING WITH BALL

11 AmberFF force_field,;

12 force_field.options[AmberFF::Option::FILENAME] = "Amb er/amber9ZL.ini";
13 force_field.options[AmberFF::Option::NONBONDED_CUTO FF] = 12.0;
14 force_field.options[AmberFF::Option::DISTANCE_DEPEN DENT_DIELECTRIC] = true;

15 force_field.setUpdateFrequency(20);
16 force_field.setup(S);

17

18 ConjugateGradientMinimizer minimizer(force_field);

19 minimizer.options[EnergyMinimizer::Option::ENERGY_O UTPUT_FREQUENCY] = 10;
20

21 minimizer.minimize(200);

22

23 PDBFile outfile("pti_min.pdb", File::OUT);
24 outfile << S;

The above code creates a force field object, assigns thectoptgons (for the filename, the
nonbonded cutoff, and the distance-dependent electicsstaind sets the pair list update fre-
guency to the desired value. A callgetup then sets up all force field parameters and internal
data structures. We then create a conjugate gradient nzigirim line 18, set its energy out-
put frequency to the desired value, and finally perform a marn of 200 minimization steps
(line 21). The resulting structure is then written to a PDB fil the last two lines.

As can be seen from this example, BALL can significantly redilhe amount of code and
time required in the field of Molecular Modeling. When comgzato conventional software
packages, BALL excels especially in the readability of thdecand the robustness. Especially
the preparation of the input files for FORTRAN programs igoftery error-prone due to the
column-based style they require and the diversity of fordeftnitions. BALL, in contrast,
provides a much more convenient and comprehensible ioterfa

122

Chapter 9

Outlook

With BALL, we implemented the first object-oriented framewdor Rapid Software Proto-
typing in the field of Molecular Modeling. It differs from fationally related packages in
its careful design, the use of modern software engineedolgniques, and the comprehensive
functionality. In this section, we will briefly point out saof the current problems and future
directions for improvement and development.

Most of the current problems are related to the sheer sizkeoptoject: BALL contains
about 460 different classes implemented with 270,000 liiesde. An additional 30,000 lines
of code implement the class tests. Keeping this amount of codsistent is currently one of
the major challenges in the development of BALL.

Also the testing of the classes is not yet complete. Thereeats implemented for roughly
one third of the classes, so a large number of bugs still aw&tovery. Similarly, there is still
a number of classes with lacking or incomplete documentafifnese gaps have to be filled in
the near future as well.

During the alpha test phase, we received extensive feedtzaokhe users. The majority of
these mails was concerned with requests for additionatifumality. It is certainly impossible
to satisfy all the wishes, but there are some key areas that@iously of general interest. The
first field is Molecular Mechanics. Besides the wishes fortamtthl force fields, there is also
need for harmonic constraints, and superior optimizatia@thads (quasi-Newton methods,
internal coordinate optimization). Second, the visudiimacomponent still requires a number
of improvements. Besides additional visualization teghas €.g.backbone and secondary
structure representations of proteins or mapping of ptagseonto molecular surfaces), we also
have to speed up the the visualization component. The Pgktemsions/embedding, although
already very useful, does not yet cover all BALL classes avé®l technical problems related
to the automatic generation of the wrapper classes reméia solved.

Since we intend BALL to become a widely used tool, licensesfege of charge for re-
search and teaching, although commercial licenses anedugme available as well (through
our partner Algorithmic Solutions Software GmbH). In thaywe hope to resolve some of
the topics mentioned above in cooperation with other grahpsare working in the field of
Molecular Modeling.

Part IV

Conclusion

CONCLUSION

In this thesis, we have presented new approaches for theipridcking problem as well
as a comprehensive framework ir-€for rapid software prototyping in the field of Molecular
Modeling.

Semi-flexible docking

First, we presented two new techniques for semi-flexiblegimeprotein docking. Based on a
rigid-body docking algorithm, we developed methods to degiethe amino acid side chains
in the protein-protein interface. This side chain placenpeablem can be reduced to a com-
binatorial optimization problem: identify the set of sideain conformations that yields the
lowest energy. The first technique is a so-called multi gyesaproachj.e. we search the enu-
meration tree of all possible side chain conformations amidacombinatorial explosion by
limiting the number of nodes in each layer of the tree to a @misnumber. The second ap-
proach is a branch-&-cut algorithm based on the ILP formaoredf the problem. We identified
several classes of facet-defining inequalities and devdasszparation algorithm for a subclass
of these inequalities. With the algorithm implemented gdBALL, LEDA, and CPLEX, we
could efficiently solve the side chain placement probleninagity. The suboptimal solutions
produced by the greedy algorithm were sufficiently closénéodptimal solutions to give very
similar results in protein docking: in a test set of threet@ase-inhibitor complexes, both
methods were able to correctly demangle the side chains.rdhating complex structures
were physically meaningful and therefore gave a good rankirthe final energetic evalua-
tion step, so both approaches were able to predict the tmmplea structure for each of the
test cases. Future improvements of the methods could erbpdmch-&-price techniques on
the algorithmic side or improved energy models and moreilddtaotamer libraries on the
physicochemical side.

Use of NMR data for protein docking

Since the energetic evaluation of the docking is a demanaimunsolved problem, we also
tried to identify other possibilities to separate true aaldd positive complex structures. We
developed an approach that performs this separation baseaperimental data. This ap-
proach exploits the structural information contained irtlaar magnetic resonance spectra
of the complex. Although there have been previous appraaichgrotein-ligand docking and
protein-protein docking that incorporate NMR data in therf@f NOE constraints, our method
is the first method to integratenmodifiedexperimental data into the docking algorithm. We
developed models and methods to predict'tHeNMR spectra of all tentative complex struc-
tures generated by a rigid-body docking algorithm. Thesetsa were then directly compared
with the experimental NMR spectrum and the difference aetavéen the two spectra was
used to rank the docking candidates. This approach workid epell for a set of test cases
and was even able to identify the correct complex structore fvery difficult protein-peptide
docking example, where energy-based scoring functions e@mnpletely unable to predict the
true complex structure. This new technique should be appliea larger set of test cases. The
relevant data is usually not publicly available, but we htpeget access to that data through
cooperations with NMR research groups. The prediction amdparison of the spectra still

126

CONCLUSION

has lots of room for improvements,g.to model hydrogen bonding effects. The technique is
applicable to related problems as well, and thus we hope tbleeto speed up NMR-based
structure elucidation and to transfer our method to thelprolof protein structure prediction.

BALL

The above mentioned methods were developed using the BAdrhdwork. BALL is the first
object-oriented framework for rapid software prototypingnolecular modeling. It has been
carefully designed to be robust, portable, efficient, andresible. Besides fundamental data
structures, BALL provides functionality for a number of kayeas in Molecular Modeling.
We implemented several molecular mechanics force fieldsiggnminimization algorithms,
molecular dynamics simulations, solvation methods, jmoteotif search and mapping, three-
dimensional visualization, file import/export, and NMR fslgirediction. BALL consists of
approximately 460 different classes and 270,000 lines décdo improve the library’s rapid
prototyping capabilities, we embedded the BALL classee the object-oriented scripting
language Python. After an application has been develop®gtimon, it is very simple to port
it to C++ for production purposes. The BALL library is available fonamber of operating
systems and compilers and should be easily portable, dasiplemented in ANSI @+. BALL
has been used in several labs in Europe and North Americeeiuirent alpha test phase
and we hope to release the first beta release to a larger aadseon. There still remain a
number of problems to be addressed, namely the documentattich needs improvements
and the test suite, which does not yet cover all BALL clasgessoon as these problems have
been resolved, we will extend the functionality of BALL, espally in the fields of Molecular
Modeling and Protein Engineering. We intend for BALL to bema public repository for
reliable data structures and algorithms in the field of MolecModeling.

127

Appendix A

UML Notation

This work uses the Unified Modeling Language (UML) to represtesign details of BALL.
The class diagrams were drawn according to the UML 1.3 stdr{88]. A short introduction
to this notation can be found in the book by Martin Fowler [3@) rather comprehensive
reference is the book by Rumbaugh, Jacobson, and Booch\#@84re the original designers
of the UML. This appendix gives a short overview of the natatused in Part lll. The most
important concepts of the UML are also explained in the gloss

Classes and Objects

A central concept in UML is thelass A class may contaimttributesand operations The
notation for a class is a rectangle with the class name onTthp.lower part of the rectangle
usually contains two sections with the attributes and theratjons. Public attributes and
operations are prefixed by “+”, protected ones by “#", andlgid ones by a “-” sign. Abstract
operations are typeset in italics. Template classes arkemhdry an additional box at their
upper right corner that contains the template parametejed®bf.e. instances of classes) are
distinguished from classes by the underlined object nardeckass name.

+public attribute: typ(t-ajl—a ;?tli:ﬁ/r:fe '_5_5{5_rﬁ_é£é_r'_"l
#protected attribute: type TemplateCIass

-private attribute: type +attribute:
+operation(parameter:type): return type +operation()

+abstract operation()

class template class

ClassName name:class name

attributes and operations :
suppressed object

Relationships

Relationships between objects and classes are represepntditferent kinds of lines and
arrows.Associationsare represented as solid lines and may be adorned with roles)asso-
ciation names, and multiplicities (just to name the mostartgnt decorations). Associations
without arrows are bidirectional, whereas associatiorik &am arrow are unidirectional. They

Appendix A: UML Notation

are onlynavigablein the direction of the arronGeneralizationis expressed as solid line from
the specialized class to the base class with a hollow treaatthe end of the base class. Lines
with hollow or filled diamonds are used to expreggyregationand composition They are
usually decorated with multiplicities and rolenamesteAlizationis the relationship between
a specification and its implementation. It is representea dashed line with a hollow triangle
at the end of the specification. A dashed line with an arrowasgnts alependencpetween
two elements. It is usually adorned with the name of the depecy.

---------- I> realization bidirectional association
> generalization navigable association
----------3> dependency <> aggregation

< composition

Design Patterns

Design patterns are usually modeled asoHlaboration They are shown as dashed ellipes
containing the name of the pattern and dashed lines fromlithsesto each participating class.

- Visitor N
_ - - /\ -
Node — Element Visitor Visitor

+accept(visitor:Visitor) +visitNode(node:Node)

The above example shows part of the visitor design pattedrivan of its participants: the
Visitor class and th&lodeclass. The dashed ellipse is labeled with the name of therpaahd
the bindings of the collaboration are labeled with the nafrteerole in the pattern.

Packages

UML allows the grouping of model elements and diagrams watitalledpackagesPackages
may be nested within other packages, thus creating hiecataroupings. Packages are drawn
as a rectangle with a tab attached on the upper left corngs. t@b contains the name of the
package, if its contents are shown. If the contents of a gpckae not shown, the tab usually
remains empty and the package name is put inside the packatpngle. Relationships
between packages are drawn in the usual manner. Depensldmtigeen packages indicate
that dependencies exist at least between some elemente&cmof the packages.

Larger Package

1 1

Package 1 I Package 2 I. - - L xuse»_ _ _ _ _

1
nested packages | somePackage

130

Appendix B
Curriculum Vitae

Oliver Kohlbacher
Johann-StrauR-Strafle 13
66793 Saarwellingen

Date of Birth
Citizenship

Education

Work and
Teaching
Experience

29.08.1971.
German.

MAX-PLANCK-INSTITUT FUR INFORMATIK SAARBRUCKEN
1996-2000

PhD student.

UNIVERSITAT DES SAARLANDES SAARBRUCKEN
1990-1996

Diplom (= Master’s degree) in Physical Chemistry in 1996. Thealisinitio
calculations of silicate clusters: contributions to thensilation of adsorption
processes 08i02, advisor: Prof. Dr. Hans Dieter Breuer.

MAX-PLANCK-GYMNASIUM SAARLOUIS
1990

Abitur (= Highschool Diploma).

I-TRONIX KG SAARBRUCKEN
1999 — present

Geschaftsfiuhrer (CEO).

UNIVERSITAT DES SAARLANDES SAARBRUCKEN
1992-1998
Teaching assistant for the following lectures:

— Organic Analytics,

— Computer Science |V,

— Computational Molecular Biology.

Appendix B: Curriculum Vitae

MAX-PLANCK-INSTITUT FUR INFORMATIK SAARBRUCKEN
1992-1996

System administration in the computer service group.

Awards 2000

Heinz Billing Award 2000 for the Advancement of Scientifici@putation
(for the development of BALL)

Publications

Journal

Publications 1. KOHLBACHER, O.,AND LENHOF, H.-P. BALL - Rapid Software Proto-
typing in Computational Molecular BiologyBioinformatics(2000). (in
press).

N

Book Chapters 2. KOHLBACHER, O. BALL — A Framework for Rapid Application De-
velopment in Molecular Modeling. IBeitrage zum Heinz-Billing-Preis
200Q no. 55 in Forschung und wissenschaftliches Rechnen - GWDG
Berichte. Gesellschaft fur wissenschaftliche Datemmitung mbH,

Gaottingen, 2000. in press.

Conference

Publications 3. NEUMANN, D., HALTNER, E., LEHR, C.-M., KOHLBACHER, O., AND
LENHOF, H.-P. Investigating the sugar-lectin interaction by comap
tional chemistry: Tunneling the epithelial barrier. Abbstracts of the 18th
Interlec Meeting(1998), p. 549.

4. BOGHOSSIAN N., KOHLBACHER, O.,AND LENHOF, H.-P. BALL: Bio-
chemical Algorithms Library. InAlgorithm Engineering, 3rd Interna-
tional Workshop, WAE'99, Proceedin99), J. Vitter and C. Zaroliagis,
Eds., vol. 1668 of_ecture Notes in Computer Science (LNCR)ringer,
pp. 330-344.

5. KOHLBACHER, O., AND LENHOF, H.-P. Rapid software prototyping in
computational molecular biology. Rroceedings of the German Confer-
ence on Bioinformatics (GCB’991999).

6. ALTHAUS, E., KOHLBACHER, O., LENHOF, H.-P., AND MULLER, P.
A combinatorial approach to protein docking with flexibldesichains. In
RECOMB 2000 - Proceedings of the Fourth Annual Internati@unfer-
ence on Computational Molecular Biolo¢®000), R. Shamir, S. Miyano,
S. Istrail, P. Pevzner, and M. Waterman, Eds., ACM press]1pp24.

7. NEUMANN, D., KOHLBACHER, O., HALTNER, E., LENHOF, H.-P.,
AND LEHR, C.-M. Modeling the sugar lectin interaction by computa-
tional chemistry relevant to drug design. Pmoc. 3rd World Meeting on
Pharmaceutics, Biopharmaceutics and Pharmaceutical fielcyy (Apr
2000), p. 233.

132

8. KOHLBACHER, O., BURCHARDT, A., MOLL, A., HILDEBRANDT, A.,
BAYER, P.,AND LENHOF, H.-P. A NMR-spectra-based scoring function
for protein docking. IRECOMB 2001 — Proceedings of the Fifth Annual
International Conference on Computational Molecular By (2001),

D. Sankoff and T. Lengauer, Eds., ACM press. (in press).

Technical

Reports 9. BoGHOSSIAN N., KOHLBACHER, O.,AND LENHOF, H.-P. BALL: Bio-
chemical Algorithms Library. Tech. Rep. MPI-1-99-1-002 ak4Planck-
Institut fir Informatik, Saarbriicken, 1999.

10. ALTHAUS, E., KOHLBACHER, O., LENHOF, H.-P.,AND MULLER, P. A
branch-and-cut algorithm for the optimal solution of theeschain place-
ment problem. Tech. Rep. MPI-I-2000-1-001, Max-Plancttat fur
Informatik, Saarbriicken, 2000.

Work in

Progress 11. ALTHAUS, E., KOHLBACHER, O., LENHOF, H.-P., AND MULLER, P.
A combinatorial approach to protein docking with flexibl@esichains.
submitted to J. Comput. Biol, 2000.

12. BoGHOSSIAN N., KOHLBACHER, O.,AND LENHOF, H.-P. Rapid Soft-
ware Prototyping in Molecular Modeling using the Biocheatiélgo-
rithms Library (BALL). submitted to J. Exptl. Algorithmi¢2000.

13. KOHLBACHER, O., BURCHARDT, A., MOLL, A., HILDEBRANDT, A.,
BAYER, P., AND LENHOF, H.-P. Structure prediction of protein com-
plexes by a NMR-based protein docking algorithm. submitied].
Biomol. NMR, 2000.

14. NEUMANN, D., KOHLBACHER, O., LENHOF, H.-P.,AND LEHR, C.-M.
Protein-sugar interactions: Calculated versus expetiah&@mding ener-
gies. submitted to J. Biol. Chem., 2000.

Theses 15. KOHLBACHER, O. ab-initio-Rechnungen an Silikat-Clustern: Unter-
suchungen zur Simulation der Adsorption$i@,. Universitat des Saar-
landes. Diplomarbeit, advisor: Prof. Dr. H. D. Breuer, J86.

133

Appendix C: Bibliography

134

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]
(7]
(8]

El

(10]

(11]

(12]
(13]
(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

R. Abagyan and M. Totrov. Biased probability Monte Cadonformational searches and electrostatic calculations f
peptides and proteing. Mol. Biol,, 235:983-1002, 1994.

E. Althaus, O. Kohlbacher, H.-P. Lenhof, and P. MulleA branch and cut algorithm for the optimal solution of the
side—chain placement problem. Technical Report MPI-IE20@01, Max-Planck-Institut fur Informatik, Saarbkién,
2000.

E. Althaus, O. Kohlbacher, H.-P. Lenhof, and P. Mullércombinatorial approach to protein docking with flexibldes:
chains. In R. Shamir, S. Miyano, S. Istrail, P. Pevzner, and\fdterman, editors(RECOMB 2000 — Proceedings of the
Fourth Annual International Conference on Computationallétular Biology pages 15-24. ACM press, 2000.

E. Althaus, O. Kohlbacher, H.-P. Lenhof, and P. Mulllércombinatorial approach to protein docking with flexibldest
chains.J. Comput. Biol.2000. (submitted).

Programming Languages — C++. International Standardedcan National Standards Institute, New York, July 1998.
Ref. No. ISO/IEC 14882:1998(E).

H. Balzert. Lehrbuch der Software-Techniolume 2. Spektrum Akakemischer Verlag, 1996.
P. Bayer. personal communication, 2000.

D. M. Beazley. SWIG: An easy to use tool for integratingigting languages with C and C++. Iroceedings of the
Fourth Annual Tcl/Tk Workshopages 129—-140. Usenix, 1996.

F. Bernstein, T. Koetzle, G. Williams, E. Meyer Jr, M. Bei J. Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi.
The protein data bank: a computer-based archival file foramaglecular structuresl. Mol. Biol,, 112:535, 1977.

R. E. Berry and B. A. E. Meekings. A style analysis of Cgnams.Comm. ACM28(1):80-88, 1985.

M. J. Betts and M. J. E. Sternberg. An analysis of conftional changes on protein-protein association: impéoatfor
predictive docking Protein Engineering12(4):271-283, 1999.

Bioperl. http://bioperl.org
Biopython. http://biopython.org
F. Bloch, W. W. Hansen, and M. E. Packard. Nuclear inductPhys. Rey.69:127, 1946.

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. S&t8. Swaminathan, and M. Karplus. CHARMM: A program for
macromolecular energy, minimization, and dynamics cataus. J. Comput. Chem4(2):187-217, 1983.

R. E. Bruccoleri and J. Novotny. Antibody modeling ugithe conformational search program CONGHMmunometh-
ods 1:96-106, 1992.

A. D. Buckingham. Chemical shifts in the nuclear magnetsonance spectra of molecules containing polar graDas.
J. Chem, 38:300-307, 1960.

W. Chang, I. Shindyalov, C. Pu, and P. Bourne. Designapplication of PDBLIib, a C++ macromolecular class library.
CABIOS 10(6):575-586, 1994.

S. Chidamber and C. Kemerer. Towards a metrics suiteliggct oriented designSIGPLAN Notices26(11):197-211,
1991.

M. L. Connolly. Shape complementarity at the hemogiabi 51 subunit interfaceBiopolymers 25:1229-1247, 1986.

J. O. Coplien.Advanced @+ programming styles and idiom#ddison-Wesley, 1992.

Appendix C: Bibliography

[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]
[39]

[40]

[41]

[42]
[43]

[44]

[45]

W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. &z Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W.
Caldwell, and P. A. Kollman. A second generation force figldthe simulation of proteins, nucleic acids and organic
molecules.J. Am. Chem. Soc117:5179-5197, 1995.
B. Coulange.Software reuseSpringer, London, 1997.

The concurrent versions systefttp://www.sourcegear.com/CVS

J. Desmet, M. D. Maeyer, B. Hazes, and |. Lasters. The-gea elimination theorem and its use in the protein sidgrch
positioning. Nature 356:539-542, April 1992.

N. Drakos. TheATpX to HTML translator. Technical report, Computer Based Ingag Unit, University of Leeds, Jan.
1994,

P. Dubois. CXX version 4.2http://CXX.sourceforge.net/ ,2000.

R. L. Dunbrack and F. E. Cohen. Bayesian statisticalyaigof protein side-chain rotamer preferencBsotein Science
6:1661-1681, 1997.

P. Ehrlich. On immunity with special reference to céltl Proceedings of the Royal Society of Lond66:424—48, 1900.

B. Elshorst, M. Hennig, H. Foersterling, A. Diener, MaMrer, S. P., H. Schwalbe, C. Griesinger, J. Krebs, H. Schmid
T. Vorherr, and E. Carafoli. NMR solution structure of a cdexmof calmodulin with a binding peptide of the €a-pump.
Biochemistry 38:12320-12332, 1999.

A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, an@&aonherr. On the design of CGAL, the Computational Gepmet
Algorithms Library. Technical Report MPI-1-98-1-007, M#&{anck-Institut fur Informatik, Saarbriicken, Feb. 899

D. Fischer, S. L. Lin, H. J. Wolfson, and R. Nussinov. Aogeetry-based suite of molecular docking processed/ol.
Biol., 248:459-477, 1995.

D. Fischer, R. Norel, R. Nussinov, and H. J. Wolfson. 2arking of protein molecules. Ibecture Notes in Computer
Science 684pages 20-34. Springer Verlag, New York, 1993.

E. Fischer. Einfluss der Konfiguration auf die Wirkung @zyme. Berichte der deutschen chemische Gesellschaft
27:2985-2993, 1894.

R. Fleischmann, M. Adams, O. White, E. Kirkness, A. léedge, C. Bult, J. Tomb, B. Dougherty, and J. Merrick. Whole-
genome random sequencing and assembly of Haemophilusrinfladrd.Science269(5223):496-512, 1995.

M. Fowler and K. ScottUML distilled. Addison Wesley, 1997.

Free Software Foundation. GNU autocorittp://www.gnu.org/software/autoconf/autoconf.html ,
2000.

D. Frenkel and B. SmitUnderstanding Molecular Simulation®\cademic Press, San Diego, CA, 1996.
H. Friebolin. Basic one- and two-dimensional NMR spectroscop@H, Weinheim, 1993.

H. A. Gabb, R. M. Jackson, and M. J. E. Sternberg. Modglpirotein docking using shape complementarity, elecitiost
and biochemical informationl. Mol. Biol,, 272:106-120, 1997.

E. Gamma, R. Helm, R. Johnson, and J. Vlissid&esign patterns : elements of reusable object-orientetiveoé
Addison-Wesley, Reading, MA, 1995.

M. Goldman.Quantum Description of High-Resolution NMR in Liqui@xford University Press, London, 1988.
H. Goldstein.Classical MechanicsAddison Wesley, 2nd edition, 1980.

M. Gradwell and J. Feeney. Validation of the use of imtelecular NOE constraints for obtaining docked structuries
protein-ligand complexesl. Biomol. NMR 7(1):48-58, 1996.

H. Gunther.NMR-SpektroskopieThieme, Stuttgart, 1992.

136

[46] C. W. Haigh and R. B. Mallion. New tables of ring currefiiedding in proton magnetic resonanc@rg. Mag. Res.
4(2):203-228, 1972.

[47] C. W. Haigh and R. B. Mallion. Ring current theories inclear magnetic resonanc&€rog. NMR. Spe¢.13:303-344,
1980.

[48] R.K. Harris. Nuclear Magnetic Resonance Spectroscdmngman, London, 1994.
[49] W. Harrison and C. Cook. A note on the Berry-Meekingdestyetric. Comm. ACM29(2):123-125, 1986.

[50] L. Holm and C. Sander. Fast and simple monte carlo alyworifor side-chain optimization in proteins: applicatian t
model building by homologyProteing 14:213-223, 1992.

[51] W. Humphrey, A. Dalke, and K. Schulten. VMD - Visual Moldar Dynamics.J. Molecular Graphics14:33-38, 1996.
[52] ILOG. ILOG CPLEX 6.5 : user’s manualLOG, Bad Homburg, march 1999 edition, 1999.

[53] R. M. Jackson, H. A. Gabb, and M. J. E. Sternberg. Rapith@ment of protein interfaces incorporating solvation:
Application to the protein docking problend. Mol. Biol., 276:265-285, 1998.

[54] R. M. Jackson and M. J. E. Sternberg. A continuum modepfotein-protein interactions: Application to the protei
docking problem.J. Mol. Biol,, 250:258-275, 1995.

[55] P. Jalote. Synthesizing implementations of abstratt dypes from axiomatic specificationsSoftware Practice and
Experience17(11):847-858, 1987.

[56] P. Jalote.An integrated approach to software engineeringndergraduate texts in computer science. Springer, 2nd ed
edition, 1997.

[57] F.Jensenintroduction to Computational Chemistryohn Wiley & Sons, 1998.
[58] C.E.Johnson and F. A. Boveghem. Phys29(5):1012, 1958.

[59] M.Jungerand S. Thienel. Introduction to ABACUS - A Bch-And-CUt System. Technical report, Informatik, Unisiéit
zu Koln, 1997.

[60] E. Katchalski-Katzir, I. Shariv, M. Eisenstein, A. Ariesem, C. Afalo, and I. A. Vakser. Molecular surface redtign:
Determination of geometric fit between proteins and thgards by correlation techniqueBroc. Natl. Acad. Sci. USA
89:2195-2199, 1992.

[61] D.E.Knuth and S. LevyThe CWEB System of Structured Documentation, Version/Ai@ison-Wesley, Reading, MA,
USA, 1993.

[62] P. Koehl and M. Delarue. Application of a self-consigtenean field theory to predict protein side-chains confaiona
and estimate their conformational entrogyMol. Biol, 239:249-275, 1994.

[63] O. Kohlbacher. BALL Coding Conventions, version 1.http://www.mpi-sb.mpg.de/BALL/DOWNLOAD/-
coding _1.1.ps ,2000.

[64] D. E. J. Koshland. Application of a theory of enzyme sfieity to protein synthesis.Proc. Natl. Acad. Sci. (USA)
44:98-104, 1958.

[65] C. A. Laughton. Prediction of protein side-chain canfations from local three-dimensional homology relatfops. J.
Mol. Biol., 235:1088-1097, 1994.

[66] T.Lazaridis and M. Karplus. Effective energy functifor proteins in solutionProteinsg 35(2):133-152, 1999.
[67] A.R. Leach. Ligand docking to proteins with discretdesichain flexibility. J. Mol. Biol,, 235:345-356, 1994.
[68] A.R. Leach.Molecular Modeling: Principles and Application#\ddison Wesley Longman, Essex, 1996.

[69] A.R. Leach and A. P. Lemon. Exploring the conformatiosace of protein side chains using dead-end eliminatiah an
the A* algorithm. Proteins: Struct., Function, and Gene33:227-239, 1998.

137

Appendix C: Bibliography

[70] H.-P. Lenhof. An algorithm for the protein docking ptetm. In D. Schomburg and U. Lessel, editoBspinformatics:
From nucleic acids and proteins to cell metabolism. GBF Mpaphs Volume 18ages 125-139, 1995.

[71] H.-P.Lenhof. New contact measures for the protein darkroblem. InProc. of the First Annual International Conference
on Computational Molecular Biology RECOMB,3¥ages 182-191, 1997.

[72] T. Littlefair. C and G-+ Code Counterhttp://cccc.netpedia.net/ , version 3pre6b, 2000.

[73] R.C. Martin. The interface segregation princip@t+ report, (7), Aug. 1996.

[74] C. K. Mathews and K. van HoldeBiochemistry The Benjamin/Cummings Publishing Company, 1990.
[75] T.J. McCabe. A complexity measurEEE Transactions on Softwarg(4):308-320, 1976.

[76] H. M. McConnell.J. Chem. Phys27:227-229, 1957.

[77] S. McConnell.Code Complete: A Practical Handbook of Software ConstonctMicrosoft Press, 1993.

[78] K. Mehlhorn, S. Naher, M. Seel, and C. Uhrighe LEDA user manual: version 3.8ax-Planck-Institut fur Informatik,
Saarbriicken, 1999.

[79] B. Meyer. Object-Oriented Software ConstructioRrentice Hall PTR, New Jersey, 2nd edition, 1997.

[80] M. Meyer, P. Wilson, and D. Schomburg. Hydrogen bondiang molecular surface shape complementarity as a basis for
protein docking.J. Mol. Biol,, 264(1):199-210, 1996.

[81] S. Meyers.Effective G+. Addison-Wesley, Reading, MA, 1998.

[82] X. Morelli, A. Dolla, M. Czjzek, P. N. Palma, F. Blasco, Krippahl, J. J. G. Moura, and F. Guerlesquin. Heteronuclea
NMR and soft docking: An experimental approach for a stmattmodel of the cytochromesss-ferredoxin complex.
Biochemistry 39:2530-2537, 2000.

[83] D. R. Musser and A. SainiSTL tutorial and reference guide : 43 programming with the standard template library
Addison-Wesley professional computing ser. Addison-\&gdReading, MA, 1996.

[84] D.R.Musserand A. A. Stepanov. Generic programming?. i@ianni, editorProceedings of the International Symposium
on Symbolic and Algebraic Computatjorolume 358 oLLNCS pages 13-25. Springer, 1989.

[85] N.C. Myers. Traits: a new and useful template technidtiet Reporf June 1995.
[86] J. Neider, T. Davis, and M. Wo®penGL Programming GuideAddison—Wesley, Reading, MA, 1993.

[87] G. L. Nemhauser and L. A. Wolseylnteger and Combinatorial OptimizationWiley-Interscience Series in Discrete
Mathematics and Optimization. Wiley, New York; Chichestfisbane, 1988.

[88] A. Nicholls and B. Honig. A rapid finite difference algdmm, utilizing successive over-relaxation to solve thésBon-
Boltzmann equationJ. Comput. Chem12(4):435-445, 1991.

[89] R. Norel, S. L. Lin, D. Xu, H. J. Wolfson, and R. NussinoMolecular surface variability and induced conformational
changes upon protein-protein association. In R. H. SarrdavarH. Sarma, editorsStructure, Motion, Interaction and
Expression of Biological Macromolecules. Proceedingshef Tenth Conversation. State University of New Ypdges
33-51. Adenine Press, 1998.

[90] Object Management Group. Unified modeling languageiipation, 1998.http://www.omg.org

[91] P.W.Oman and C. R. Cook. A programming style taxonodournal of Systems and Softwaié(3):287-301, 1991.

[92] K. Osapay and D. Case. Analysis of proton chemical shifts inleegsecondary structure of proteind. Biomol. NMR
4:215-230, 1994.

[93] K. Osapay and D. A. Case. A new analysis of proton chemicakshifiroteins.J. Am. Chem. Sacl13:9436-9444, 1991.
[94] M. Osawa, H. Tokumitsu, M. B. Swindells, H. Kurihara, W@rita, T. Shibanuma, T. Furuya, and M. lkura. A novel

calmodulin target recognition revealed by its NMR struetim complex with a peptide derived from £&a-calmodulin-
dependent protein kinase kinaséat. Struct. Biol. 6:819, 1999.

138

[95]
[96]
[97]

(98]

[99]

[100]

[101]

[102]
[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

J. K. OusterhoutTcl and the Tk ToolkitAddison Wesley Publishing Company, 1994.
J. K. Ousterhout. Scripting: Higher level programmifngthe 21st centuryComputey 31(3), 1998.
L. Pauling. Chem. Phys4:673, 1936.

V. I. Polshakov, W. D. Morgan, B. Birdsall, and J. Feenéyalidation of a new restraint docking method for solution
structure determination of protein-ligand complexgésBiomol. NMR 14:115-122, 1999.

J. Ponder and F. Richards. Tertiary templates for prete use of packing criteria in the enumeration of alloweglisaces
for different structural classes. Mol. Biol,, 193:775-791, 1987.

L. Prechelt. An empirical comparison of C+€, Java, Perl, Python, rexx, and Tcl for a search/stringgssiaig program.
Technical Report 2000-5, Universitat Karlsruhe, Fatitir Informatik, Karlsruhe, Germany, 2000.

E. M. Purcell, H. C. Torrey, and R. V. Pound. Resonarzsogtion by nuclear magnetic moments in a soitlys. Rey.
69:37-38, 1946.

QT release 2.0Attp://www.troll.no/products/qt.html
J. Rumbaugh, I. Jacobson, and G. Boothe unified modeling language reference manéaldison Wesley, 1999.

R. R. Rustandi, A. C. Drohat, D. M. Baldisseri, P. T. Wf, and D. J. Weber. The &h-dependent interaction of
S100B@3) with a peptide derived from p53Biochemistry 37:1951-1960, 1998.

B. Sandak, R. Nussinov, and H. J. Wolfson. A Method fasrBolecular Structural Recognition and Docking Allowing
Conformational Flexibility.J. Comp. Biol. 5(4):631-654, 1998.

B. Sandak, H. J. Wolfson, and R. Nussinov. Flexible kg Allowing Induced Fit in Proteins: Insights From an Ogen
Closed Conformational IsomerBroteins 32:159-174, 1998.

R. Sayle and E. Milner-White. RASMOL.: biomoleculamghics for all. Trends Biochem. S¢20(9):374, 1995.

B. R. Seavey, E. A. Farr, W. M. Westler, and J. Markleytefational database for sequence-specific protein NMR data
Biomol. NMR 1:217-236, 1991.

D. Sitkoff, K. A. Sharp, and B. Honig. Accurate caldite of hydration free energies using macroscopic solvenders.
J. Phys. Chem98(7):1978-1988, 1994.

E. D. Solometsev. Elliptic integral. In M. Hazewinkelditor, Encyclopedia of Mathematicsolume 3, pages 372-373.
Kluwer Academic Publishers, Dordrecht, 1987.

R. Srinivasan XDR: External Data Representation Standatdternet Engineering Task Force, 1995. Request for Com-
ments 1832.

F. Stajano. Implementing the SMS server, or why | sheétt from tcl to python. IfProceedings of the 7th International
Python ConferenceNov. 1998.

M. J. E. Sternberg, H. A. Gabb, and R. M. Jackson. Ptiedicdocking of protein-protein and protein-DNA complexes
Curr. Opin. Struct. Biol. 8:250-256, 1998.

L. Stryer. Biochemie Spektrum Akademischer Verlag, 1991.

SUN MicrosystemsXDR: External Data Representation Standalnternet Engineering Task Force, Networking Working
Group, 1987. Request for Comments 1014.

P. Thompson. Sip version 0.18ttp://www.thekompany.com/projects/pykde/ ,2000.

M. Totrov and R. Abagyan. Detailed ab initio predictiof lysozyme-antibody complex with 1f6accuracy.Nat. Struct.
Biol., 1:259-263, 1994.

W. Vahrson, K. Hermann, J. Kleffe, and B. Wittig. Oljeriented sequence analysis: SCL —a C++ class lib@ABIOS
12(2):119-127, 1996.

139

Appendix C: Bibliography

[119] 1. A. Vakser and C. Aflalo. Hydrophobic docking: a prged enhancement to molecular recognition technigeesteins
20:320-32, 1994.

[120] F. J. M. van de VenMultidimensional NMR in liquids: basic principles and expgental methods Wiley-VCH, New
York, 1995.

[121] G.van Rossum. Python version 1.5http://www.python.org

[122] P.von Rague Schleyer, edit@ncyclopedia of Computational Chemistdohn Wiley & Sons, 1998.

[123] L. Wall, T. Christiansen, and R. L. Schwarrogramming Perl O'Reilly & Associates Inc., 2nd edition, 1996.
[124] P. Walters and M. Stahl. BABEL version 1.6. UniversifyArizona.

[125] H.Wang. Grid-search molecular accessible surfegerthm for solving the docking problend. Comput. Chem12:746—
750, 1991.

[126] J.S. Waugh and R. W. FessenddnAm. Chem. Soc79:846, 1959.

[127] D. J. Weber, A. M. Libson, A. G. Gittis, M. Lebowitz, asfd S. Mildvan. NMR docking of a substrate into the X-ray
structure of the ASP-21-GLU mutant of staphylococcal reséeBiochemistry 33(26):8017-8028, 1994.

[128] Z.Weng, S. Vajda, and C. Delisi. Prediction of proteemplexes using empirical free energy functioRsotein Science
5:614-626, 1996.

[129] M. P. Williamson and T. Asakura. Empirical comparisaf models for chemical-shift calculation in proteink. Mag.
Res. B101:63—71, 1993.

[130] M. P. Williamson, T. Asakura, E. Nakamura, and M. DemuA method for the calculation of protei-CH chemical
shifts. J. Biomol. NMR 2:83-98, 1992.

[131] L. A. Wolsey. Integer programming Wiley-interscience series in discrete mathematics atidngation. Wiley & Sons,
New York, 1998.

[132] C. Zhang, J. L. Cornette, and C. DeLisi. Consistencgtinctural energetics of protein folding and peptide redtbon.
Prot. Sci, 6:1059-1064, 1997.

[133] M. Zockler and R. Wunderling. DOC++ version 3l&tp://www.zib.de/Visual/software/doc++/

140

Index

‘ Symbols
a-heliX. ..o 11
B-pleated sheet........... ..o 1.1
2-deoxyribose. 14.
80-20rUle .\ 96
| A
add -hydrogens (FragmentDB method) 119
AddBallAndStickModel (BALLclass)........... 98
adenine. 14.
aggregation 301
AMBER 17, 88
AmberBend (BALLclass)................cooovinnn. 89
AmberFF (BALLClasS) ..o 89
AmberNonBonded (BALLclass)................... 89
AmberStretch (BALLclass)...................... 89
AmberTorsion (BALLclass)...................... 89
amiNO aCidSo e 0.1
angular momentum gquantum number
definition 45
ANSI CH+ 70
APl 210
apply<T> (Composite method).................. 79
2 117
ASSOCIALIONottt 129
Atom (BALLClasS)........ccovviiiinannn.. 67,76, 84
AtomContainer (BALLclass)............. 85, 95, 96
Atomlterator (BALLcClass).......covvvevennn... 85
ALOMS . oo 9.
atoms (PyBALL function) 103
AtomVector (BALLclass)........................ 88
attributes 129
AWK L o s 82
B
backbone 0.1
BALL ..ot 65-124
AmberFF
SEIUD o 122
CenterOfMassProcessor
finish ... 80
operator () ... 80
classes
AddBallAndStickModel 98
AmberBend ... 89
AmberFF 89
AmberNonBonded 89
AmberStretch ... 89
AmberTorsion ... 89
AOM L 67,76, 84
AtomContainer 85, 95, 96
Atomlterator ... 85

AtomVector ... 88
CanonicalMD 93,94
CenterOfMassProcessor 79, 80
Chain ... 85
Client ... 98
Composite ... 72,73,75, 85
COMPOSItE ..ttt 72
Control ... 98
CreateSpectrumProcessor 96
DisplayProperties ~ 99, 100
DNA . 67,85
Embeddable 104, 105
EnergyMinimizer 93
Expression ... 86
ExpressionPredicate 86
FDPB. . o 81
ForceField 88, 89
ForceFieldComponent 88, 89
Fragment 67, 84
GeneralException 82
HINFile ... 87
INIFile ..o 90
INIFile ... 90, 95
LennardJones 91
LineSearch i 93
LogStream 81
MainControl 97,99
MicroCanonicalMD 93, 94
ModularWidget 97, 98
MOL2File ... 87
MolecularControl ~ 99, 100
MolecularDynamics 94
MolecularDynamicsSimulation .. 93,95
MolecularProperties 100
MolecularStructureFile ~ 87
Moleculeol 67,78, 84
MyClassoooiii 105
NMRSpectrum ...t 96
NucleicAcid ... 85
Nucleotide ..., 85
Object ... 74,112
ObjectS ... 112
OpenPDBFile ...t 99
OpenPDBFileDialog 99
OptioNS .o e 80, 81, 93
Parameters 90, 91, 95
ParameterSection 90, 91
PDBFilecoiiiiiiiiiii i 87
PersistenceManager 74-77
PersistentObject ~ 74-76
Protein 67,78, 85
RegularExpression 82
Residue ... 85
ResourceFile l 87

INDEX

SCeNE ..ot 97-100
SecondaryStructure 85
Selectable ...l 72,75,76
Selector ... 86
SeIVElN e 98
ShiftModel 95
ShiftModule ... 95
SnapShotManager 95
SocketStream ... 78
SNG o 82
Substring ... 82
System ...l 67, 84, 85,87, 114
TextPersistenceManager — 75-77
TimeStamp ... 73
UnaryProcessor<Atom> 79, 80, 86
UnaryProcessor<T> 79
XDRPersistenceManager 75,77
XYZFile ..o 87
Composite
apply<T> .. 79
contains _selection _.............. 72,73
containsSelection ~l 72
Embeddable
countinstances o 105
getinstance ... 105
registerThis 104, 105
unregisterThis — 104
exceptions
DivisionByZero 114
FDPB
OptioNS ..o 81
files
classTesth il 113
COMMON/global.h 71
configh 71
ForceField
OPtIONS .o 88
SEMUP o 88, 89
updateEnergy ... 88, 89
updateForces ... 88, 89
FragmentDB
add_hydrogensoiienn. 119
functions
islnstanceOf 112
isnstanceOf<T> 78
isKindOf 112
isKindOf<T> oot 78
LogStream
iNnfo .. 82
setPrefix ... 82
macros
BALL.LEMBEDDABLE.................... 104
CHECK.....coi 113, 114
ENDTEST.......coviiiiin 113, 114
RESULT. ... 113, 114
STARTTEST. ..ot 113, 114
TESTEQUAL ...t 113
TESTEXCEPTION.........coovvininnn. 114
TESTFILEo 114
TESTNOTEQUALcoiiin... 114
TEST.REALEQUALc.coovinnt. 114
ModularWidget

initializeWidget ...l 97
namespaces
Constants ... 71
Rl o 78
Object
global _handle _........................ 74
handle _...... ... i 74
PersistenceManager
OBt o 76
PUL 76
PersistentObject
finalize ... 74
persistentRead 74,76
persistentWrite 74,76
read ... 76
WG e 76
Selectable
deselect ... 72
select ... 72
System
beginAtom ... 85
endAtOM ... 85
TimeStamp
SEAMP oo 73
types
PointerSizelnto 71
UnaryOperator
operator () .. 86
UnaryProcessoriT,,
finish 79
operator () .. 79
Start 79
BALL.EMBEDDABLBBALL macro)................ 104
BALLVIEW
definition 96
base. ... 14.
basepair.......... 14.
basic components. i 0..7
beginAtom (System method)..................... 85
bendenergy...........oo i 7.1
bigendian 7.7
bindingsite........... ..o 28
biomolecules. 9.
BioPerl. BN
BioPython. ... i 5110
black boxtesting.................co i 111
bonded interactions.o 14.
bovine pancreatic trypsin inhibitor. 3
2] 3.
branch-&-cut algorithmo 92
builder. oo A
Cc
CHABMINUS . ..ot e i i 10.
canonical ensemble
definition 94
CanonicalMD (BALLclass).................... 93, 94
CCCC . ittt 107
CenterOfMassProcessor (BALL class)...... 79, 80
(7= o 81
Chain (BALLCIASS)covviiiiiiiiii e 85

142

INDEX

chain placement problem............................ 26
CHARMM e 88
CHECKBALLMACIO)ovvevieiaieenn 113,114
chemicalbond...........o i 9..
chemical shift.............. ...l 24

definition 48
ClaSS ..o 291
classlibrary..........co i 67
classTest.h (BALLSTile) ... 113
Client (BALLCIaSS).........oovviiiiiiiiinnnn. 98
collaboration. ... 130
COM

definition 108
comment lines

definitiono 108
COMMON/global.h (BALLfile)................... 71
Composite (BALLclass) 72,73,75,85
composite (BALLclass).............cooiiiiiin 72
composite designpattern. ... 2.7
COMPOSItION . ..o 013
concrete builder o 75.
CONCrete Creatorvve it 75.
concrete product. ... 0D
Concurrent Revision System........................ 107
config.h (BALLAile)........ ..., 71
configure. 115711
conjugate gradient 92.
Constants (BALL namespace).................... 71
CONSHraNtSot 31
contains _selection _(Composite attribute) 72, 73
containsSelection (Composite method)...... 72
continuummodel............. .. . o 38
Control (BALLclass)coovvvvininiinn.. 98
Coulomb'slaw 16
countinstances (Embeddable method)........ 105
COUL 81
CreateSpectrumProcessor (BALL class)....... 96
[0 (== 5
cuttingplane 32
CV S 107, 115
CWEB .. 108
XK et 103
cyclomatic complexity 8.0
CYLOSINE ..t e 14

D |

dead-end elimination theorem..................... 9.2
deadly diamond

definitiono 73
DEE ..t 29
Democritus of Abdera. ... 9
deoxyribonucleic acid. ol 13.
deoxyribose. ... 14.
dependency Q13
deselect (Selectable method)................. 72
design pattern

COMPOSItE . . oot 72
designpatterns 301

builder....... ... 74

definition 68

factory method 74

diffusion coefficients. oo 94
director.o 75
DisplayProperties (BALLclass).......... 99, 100
DivisionByZero (BALLclass).................. 114
DN A 13
DNA(BALLCIASS) ..o ooviieiii i 67, 85
DOCH, ottt 108
Docking

protein-protein. ... 25

semi-flexible 25
docking. ..o 19-64, 6

flexible.............o 25-45
double helix...............ooooii 14.
drug design ..o 2..
dynamiCCast.t 78

E

edit 120
effective field A7
€lectron MICrOSCOPY . ..o vvv e i eas 5.4
electrostatic €energyocoviiiiiiiii 17
Embeddable (BALLclass)................... 104, 105
Embeddable (PyBALLclass)..................... 105
Embedding ... 104
EmilFischero i 2.
ENDTEST(BALLMACro).ccvvvnn.. 113, 11
endAtom (System method)................ 85
energy generator.oviiiiiiiin i 88..
Energy minimization. ol 2.9
EnergyMinimizer (BALLclass) 93
ensemble 4.9
ethanolo i 9.
exhaustive search.................... ..ol 26..
Expression (BALLclass)..............c..covunt. 86
ExpressionPredicate (BALLclass)............ 86
extensionmodules. ... i 210
External Data Representation..................... 7.7
extractors

definition 103
| F
factorymethodo 4.7
false positives

definition 21
FAQIISt . .o a0
FDPB(BALLCIASS) ...\ ieiii i 81
fieldsweep. ... 8.4
finalize (PersistentObject method). 74
finish (CenterOfMassProcessor method)..... 80
finish ~ (UnaryProcessor<T> attribute) 79
finish (UnaryProcessor<T> method).......... 79
for loop (Python) ...t 102
force . ..o 16
forcefield..............co i 16, 1
forcegenerator. 88.
ForceField (BALLclass)..................... 88, 89
ForceFieldComponent (BALL class)......... 88, 89
Foundation Classescooviiiennn.. 0.7
Fouriertransform.......... ...t 45,
Fragment (BALLclass).............c.coovuunn.. 67,84

143

INDEX

framework. ... 7.6
frequency SWeep.oev i 9.4
functional testing 111
G |
GeneralException (BALLclass)................ 82
generalization.c i 130
generic programming
definition o 68
OENOMICS . . vttt e et e e e 2..
geometry optimization, 2.9
get (PersistenceManager method)............. 76
getinstance (Embeddable method)............ 105
global minimum energy conformation................ 26
global _handle _(Object attribute) 74
GMEC .. 26
GMEC polyhedron
definition 32
GNUautoconf ... 117
graphical userinterface. 96
QUANINE. ..ottt e e e e e 14.
GUL 69
Guidovan ROSSUM ... 102
gyromagnetic ratio. ...t 46.
| H |
Haemophilusinfluenzae.......................coo.e. 2
handle _(Object attribute) 74
HINFile (BALLCIaSS)covvviiiiiiannn. 87
humangenome.........o i 2
hydroxyl group . ..o 9.
|
] 92
immutable o 310
induced fit............ ... 19, 2
info (LogStream method)........................ 82
INIFile (BALLclass)c.cooviiiiiinnnnn.. 90
INIFile (BALLclass).........ccovviiinannn.. 90, 95
initializeWidget (ModularWidget method). .97
integer linear program. ..., 31.
Integer Linear Programmingc.ccovviuv... 29
interface pollution............................... 79
intermolecular exchange 3.5
intramolecular interactions 14
ions
definitiono 15
isinstanceOf (BALL function) 112
isInstanceOf<T> (BALL function) 78
isKindOf (BALL function)....................... 112
isKindOf<T> (BALL function).................... 78
isolated system 94.
iterator traits 79
1] 2= (0] £~ 79
K |
kernel
Erators.ooviei 85

kernelclassescoviiea.. . 10,
| L
L.C

definition 108
Larmorfrequencyot 47
Larmor precession

definition 47
LennardJones (BALLclass)...................... 91
Leucippus of Miletus. 9..
Life Science. ... 2.
lines of code

definition 108
LineSearch (BALLClasS)coovvvvinvnn.. 93
K 119
litleendian.............oo i T
LOC

definition 108
lock-and-key principleo 2

definition 19
LogStream (BALLclass)............covvivvnvinn.. 81
Lorentzian 53
LOtUSNOtES 910
| M
magnetic MOMENt.t 46
magnetic quantum number

definition 46
MainControl (BALLclass).................... 97,99
mMethyl groupo 9..
microcanonical ensemble

definition 94
MicroCanonicalMD (BALLclass)............. 93, 94
MMTK 5
ModularWidget (BALLclass)................. 97, 98
MOL2File (BALLCIaSS).........coovvvuiiieninann.. 87
Molecular Dynamics Simulation..................... 94
Molecular Modeling Toolkit 5
molecular surface.o 38.
MolecularControl (BALLclass)............ 99, 100
MolecularDynamics (BALLclass)............... 94
MolecularDynamicsSimulation (BALL class).93,

95

MolecularProperties (BALLclass)........... 100
MolecularStructureFile (BALLclass)........ 87
Molecule (BALLclass).................... 67,78, 84
molecule. 9.
MOLVIEW . ..o 96
molview

definition 96
molviewl 78, 81, 98, 100, 101, 104
MONOMEIS . . ettt 10
multi-greedy 29
multiple inheritance. oo 73
MyClass (BALLCIASS)coovvvviiinninnann.. 105
| N
N-terminus. 10.

native structure

144

INDEX

definition. 3
navigable.......... .. 301
Newton-Raphson. i, 92
NMR . 24
NMR SPeCtra.ovviiii e 24
NMRSpectrum (BALLclass)c.c.ovvivnnnn 96
NOE . . 24
nonbonded interactions. 14..
nuclear angular momentum................. ...l 45
Nuclear Magnetic Resonance. 24, 45
nuclear Overhausereffect 4.2
nucleicacids. ... 19,
NucleicAcid (BALLCclass)..........c.coovvvuvvnnn 85
Nucleotide (BALLcClasS)ccovvvvinnnn.. 85
nucleotide 13
NUCHAE . ..o 45
| 0
Object (BALLCIasS).........cccvvviuvinnnnnn. 74,112
Objects (BALLCIasS)ccoviiiinnannn.. 112
one-lettercodeo i 11.
OpenPDBFile (BALLcClasS)..........c.cvvvvuvnn.. 99
OpenPDBFileDialog (BALLclass)............... 99
OPEratioNSttt 291
operator () (CenterOfMassProcessor method)

80
operator () (UnaryOperator method)......... 86
operator () (UnaryProcessor<T> method) ... 79
Options (BALLclass).............c...o..ut. 80, 81, 93
options (FDPBattribute).coiian. 81
options (ForceField attribute) 88
orthodox canonical class interface................ 07.1
OSIrBAM . ..ttt e 74.
{1511 {=T=T o o 81
P |
packages

definitiono 130
Parameters (BALLclass) 90, 91, 95
ParameterSection (BALLclass)............. 90, 91
AN 121
partial charges. ... 15
pauli exclusion principle 16
PDBFile (BALLCIaSS)ovvviiiiiiiiiiieanns 87
PDBLID ..o 5
peptidebond i 0.1
Perl . 011
PErsISteNCe.t X3
PersistenceManager (BALLclass).......... 74-77
PersistentObject (BALLclass)............. 74-76
persistentRead (PersistentObject method) 74,

76
persistentWrite (PersistentObject method)
74,76
phosphate.o 14.
PointerSizelnt (BALLtype) ... 71
Poisson-Boltzmann equation. 9..3
polyhedron

definition 32

PrECESSION . .. v ettt A7 .

predicates. 86
primary structure 10.
primitive tests 112
PrOCESSON . . v ettt et et 79.
ProducCt 75.
Protein (BALLclass)...................... 67,78, 85
ProteiN ..o 10
protein-protein docking problem
definition. 2
ProteiNS . ..ot e e 9
proteomics
definition. 2
protonate ... 119
ProtONS . ..o e 46.
put (PersistenceManager method)............. 76
PyBALL
classes
Embeddablel 105
functions
atOMS ... 103
Python ... 110
for 100P ..o 102
functions
FANOE ..ttt 102
types
tuple 103
| Q
quantum number ... 45
quarternary structure. ..., 11
Quasi-Newton.ot 2.9
| R
RAD ..o 67
radial distribution functions....................... 94
Ramachandranplot............ ...t 26
random coil shift 15
range (Python function).......................... 102
Rapid Application Development 67
Rapid Software Prototypingcccooviu... 67
RasMol.o 6.9
read (PersistentObject method) 76
realization 130
receiver Coils. ... 48
referencemanual oo 910
registerThis (Embeddable method)...... 104, 105
regular eXpression 141
RegularExpression (BALLclass)............... 82
L= 0101531 (0] /28 115
Residue (BALLClasS)coviiiiiiiinnn, 85
FESIAUES .. ottt 10.
resonance frequency, 6..4
ResourceFile (BALLclass)...................... 87
RESULT(BALL macro).............coevvvnnn. 113, 114
ribonucleicacid i 13
Mboseo 14
rigiddocking. ... 2
rigid-body docking
definition 19
RMSD ..o 21

145

INDEX

RN A 13,14
RNA(BALLCIaSS)ovvviiiiiiiiieene 67, 85
rotamergraphs 1.3
rotamer library 26
FOLAMEIS i 26.
RPC . 7.
RTTI (BALL namespace)c..ouveneennennnn.. 78
| s |
SANOEr ... 121
Scene (BALLclass)...........c.ccoovviniiint. 97-100
SO ittt 5..
scripting languages 011
SDK i 5
secondary Structuresoiiiiii i 11.
SecondaryStructure (BALLclass) 85
SBA L 117
select (Selectable method).................... 72
Selectable (BALLclass) 72,75,76
selection ... 93,
Selector (BALLcClasS)..........covvviiiiiina.. 86
semi-flexible docking

definition 3,25
SEOUENCE. . ..ttt ettt e 10..
sequenceobject i 210
serialization. ... 73
Server (BALLCIaSS)........covviiiiiiiiiiannn.. 98
setPrefix ~ (LogStream method)................. 82
setup (AmberFF method)........................ 122
setup (ForceField method).................. 88, 89
Sh 117
shieldingconstant ..., 47.
shiftassignment.o i 49.

definition 24
ShiftModel (BALLclass) 95
ShiftModule (BALLclass)................couint. 95
sidechain..............ooi i 10.
side chaindemanglingcooiaia... 25
side chain flexibility i 25
signal-slot mechanismt 8.9
SIP 103
SnapShotManager (BALLclass) 95
SocketStream (BALLclass)...................... 78
software metrics.o i 071
solvent excluded surfacel 8.3
spin quantum number

definition 45
stamp (TimeStamp method) 73
standard predicateso 86..
Standard Template Library 70
start (UnaryProcessor<T> method) 79
STARTTEST(BALL Macro).................. 113, 114
static class attributes 73
steepestdescent ... 92..
ST ettt 0.7

Erators.oovii i 85
stretchenergy ... 17.
String (BALLCIaSS)........covviiiiiiiiiiee. 82
structural testing. 111
Stylemetrics 071
Substring (BALLclass)..........ccooviiiiiian.. 82

subtest 121
SUGAN .« v ettt e e e 14.
SWEEP COIIS . .. e it e 8.4
SWIG. . 103
System (BALLclass)............... 67, 84, 85,87, 114
| T
Tl on
tertiary structure. ... e 11
testcases ... 111
testoracle ... 111
TEST-EQUALBALL MACro)c.ocvvvunnn.. 113
TEST.EXCEPTION(BALL macro)................. 114
TEST.FILE (BALLMACIO) ...\ ovviieiivaenens 114
TEST.NOTEQUALBALL Macro).................. 114
TEST.REALEQUAL(BALLmacro) 114
testing

blackbox oo 111

functional. 111

structural ... 111

white box. ... 111
TextPersistenceManager (BALL class). 75-77
Three Line Rule

definition 68
three-lettercode, 11
thymine ... AL
time StampPs . ..o 3.7
TimeStamp (BALLclass)...........ccoivvivinannn 73
torsionangle. 17.
tOrSION €NEergY . ..o ovv it 17.
torsional flexibility.o i 26
TOrSIONS. .ot 26
Tr@JECTONY . .ot 94
transmitter coil 48
true positives

definition 21
Y PSIN . 3
tuple (Pythontype)............ccoiiiiiiiii... 103
TUPIES © o 021
tutorial 109
typeid 78

]
UML . 129
UnaryProcessor<Atom> (BALL class)....79, 80, 86
UnaryProcessor<T> (BALLclass)............... 79
Unified Modeling Language 129
unregisterThis (Embeddable method)........ 104
updateEnergy (ForceField method)........ 88, 89
updateForces (ForceField method)........ 88, 89
UraCil. .o s 14
\Y

vanderWaalsenergyccoiiiiiiiiiiien.. 17
van der Waals interactions. 6.1
VIEW 96
virtual constructor i 75
virtual inheritance o 74
Visitor patterno s 79

146

INDEX

VMDD . o 96

| w

weakly typed. ... 210

white boxtesting 111

WIAQELS . .t 97.

WIAPPEr ClaSSES . ..ottt 310

write (PersistentObject method)............. 76

| X

X-ray crystallography 45.

XDR 77

XDRPersistenceManager (BALLclass)...... 75,77

XYZFile (BALLClasS)covviviiiinnnnnnn.. 87
Z

ZWILEEIION . ..o .10

147

