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Short Abstract

We study two families of NP -hard orthogonal placement problems that arise in the area
of information visualization both from a theoretical and a practical point of view. This
thesis contains a common combinatorial framework for compaction problems in orthogo-
nal graph drawing and for point-feature labeling problems in computational cartography.
Compaction problems are concerned with performing the conversion from a dimension-
less description of the orthogonal shape of a graph to an area-efficient drawing in the
orthogonal grid with short edges. The second family of problems deals with the task of
attaching rectangular labels to point-features such as cities or mountain peaks on a map so
that the placement results in a legible map. We present new combinatorial formulations
for these problems employing a path- and cycle-based graph-theoretic property in an asso-
ciated problem-specific pair of constraint graphs. The reformulation allows us to develop
exact algorithms for the original problems. Extensive computational studies on real-world
benchmarks show that our linear programming–based algorithms are able to solve large in-
stances of the placement problems to provable optimality within short computation time.
Furthermore, we show how to combine the formulations for compaction and labeling
problems and present an exact algorithmic approach for a graph labeling problem. Often,
our new algorithms are the first exact algorithms for the respective problem variant.

Kurzzusammenfassung

Wir betrachten zwei Familien von NP–schwierigen orthogonalen Platzierungsproblemen
aus dem Bereich der Informationsvisualisierung von einem theoretischen und praktischen
Standpunkt aus. Diese Arbeit enthält ein gemeinsames kombinatorisches Gerüst für Kom-
paktierungsprobleme aus dem Bereich des orthogonalen Graphenzeichnens und Beschrif-
tungsprobleme von Punktmengen aus dem Gebiet der Computer–Kartografie. Bei den
Kompaktierungsproblemen geht es darum, eine gegebene dimensionslose Beschreibung
der orthogonalen Form eines Graphen in eine orthogonale Gitterzeichnung mit kurzen
Kanten und geringem Flächenverbrauch zu transformieren. Die Beschriftungsprobleme
haben zur Aufgabe, eine gegebene Menge von rechteckigen Labels so zu platzieren, dass
eine lesbare Karte entsteht. In einer klassischen Anwendung repräsentieren die Punkte bei-
spielsweise Städte einer Landkarte, und die Labels enthalten die Namen der Städte. Wir
präsentieren neue kombinatorische Formulierungen für diese Probleme und verwenden
dabei eine pfad- und kreisbasierte graphentheoretische Eigenschaft in einem zugehörigen
problemspezifischen Paar von Constraint–Graphen. Die Umformulierung ermöglicht es
uns, exakte Algorithmen für die Originalprobleme zu entwickeln. Umfassende experimen-
telle Studien mit Benchmark–Instanzen aus der Praxis zeigen, dass unsere Algorithmen,
die auf linearer Programmierung beruhen, in der Lage sind, große Instanzen der Platzie-
rungsprobleme beweisbar optimal und in kurzer Rechenzeit zu lösen. Ferner kombinieren
wir die Formulierungen für Kompaktierungs– und Beschriftungsprobleme und präsentie-
ren einen exakten algorithmischen Ansatz für ein Graphbeschriftungsproblem. Oftmals
sind unsere neuen Algorithmen die ersten exakten Algorithmen für die jeweilige Problem-
variante.



vi

Acknowledgments

Many people have taught, encouraged, supported, helped, and advised me during the time
in which I worked on this thesis. I wish to express my deepest gratitude to all of them.

First of all, I would like to thank my advisor, Prof. Petra Mutzel, for providing a per-
fect balance of scientific guidance and scientific freedom. Petra has been a great source of
motivation and I am grateful to her for having me introduced to the fascinating research
areas of graph drawing and map labeling, for teaching me many things about combinato-
rial optimization, and for guiding my research work that led to this thesis. Setting up our
private Doktorandenseminar at MPI Saarbrücken and its continuation in Vienna proved
to be a very good idea, and I am indebted to all of its participants, in particular to René
Weiskircher and Thomas Ziegler, for interesting discussions.

I also wish to thank Prof. Kurt Mehlhorn. Kurt is responsible for the highly enjoy-
able scientific and international atmosphere at the Max Planck Institute für Informatik in
Saarbrücken and an enthusiastic teacher. Much of what I know about algorithms and data
structures I learned in Saarbrücken and, in particular, at MPI. I consider it an honor and
privilege to have had the possibility to meet so many inspiring people in the algorithm and
complexity group of this institute and to do my first research steps in such conducive con-
ditions. In Saarbrücken I experienced how much fun teaching can be, and I owe much
of this discovery to the diploma students I had the pleasure to advise. In particular, I
am grateful to Karsten Klein, who is also a co-author on a paper in experimental graph
drawing and who contributed to the computational study on compaction algorithms.

Particular thanks to Prof. Matteo Fischetti for helpful and enlightening discussions
concerning the relation between the zero-one and the extended polytopes, to Prof. Gerhard
Woeginger for lessons in complexity theory, to Prof. Andrew V. Goldberg for his negative
cycle detection code, and to Alexander Wolff for the real-world labeling data and the
support in the conversion to our data format.

Moreover, I have appreciated the possibility of temporarily using the facilities of the
Discrete Optimization group at the University of Heidelberg, for which I would like to
thank Prof. Gerhard Reinelt and his group.

Further, I like to thank the German Federal Ministry of Research (BMBF) for finan-
cially supporting the project “Automatisiertes Zeichnen von Zustandsgraphen”, and Prof.
Ulrich Lauther, Siemens AG, for cooperation.

Thanks to my proof-readers René Weiskircher, Thomas Ziegler, Sebastian Leipert,
Karsten Klein, Marco Lübbecke, Birgit and Knut Reinert, Hedwig, Ragnar, and Arne
Klau, to Solofo Ramangalahy for sharing his TEX wisdom, and to Martin Gruber for
technical support.

Very special thanks to my family and to Stéphanie Dagron.



CONTENTS

. Introduction ����������������������������������������������������������������� 

. Graph Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. The Topology-Shape-Metrics Scheme . . . . . . . . . . . . . . 

.. The Compaction Phase . . . . . . . . . . . . . . . . . . . . . 

.. A New Approach to Two-Dimensional Compaction . . . . . . 

. Map Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. A New Approach to Map Labeling Problems . . . . . . . . . . 

. Combining Drawing and Labeling: Graph Labeling . . . . . . . . . . . 

. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Preliminaries ����������������������������������������������������������������� 

. Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Graph Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Combinatorial Optimization . . . . . . . . . . . . . . . . . . . . . . . 

. Constraint Graphs ����������������������������������������������������������� 

. Computing Minimal Assignments . . . . . . . . . . . . . . . . . . . . 

. Computing
�

-Minimal Assignments . . . . . . . . . . . . . . . . . . 

. Computing Minimax-Assignments . . . . . . . . . . . . . . . . . . . 

. Compaction in Graph Drawing ��������������������������������������������� 

. Compaction Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Combinatorial Characterization . . . . . . . . . . . . . . . . . . . . . 

.. Segments and Placement Graphs . . . . . . . . . . . . . . . . 

.. Shape Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Constructive Heuristics . . . . . . . . . . . . . . . . . . . . . 

.. Improvement Heuristics . . . . . . . . . . . . . . . . . . . . . 

.. Compaction Reformulated . . . . . . . . . . . . . . . . . . . 

. Exact Compaction Algorithms . . . . . . . . . . . . . . . . . . . . . . 

.. Compacting Uniquely Completable Representations . . . . . . 

.. Integer Linear Programming Formulation . . . . . . . . . . . . 

.. Branch-and-Bound and Branch-and-Cut Algorithm . . . . . . 

.. Related Work in  Design . . . . . . . . . . . . . . . . . . 



viii Contents

. Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Implementations . . . . . . . . . . . . . . . . . . . . . . . . 

.. Experimental Settings . . . . . . . . . . . . . . . . . . . . . . 

.. Computational Results . . . . . . . . . . . . . . . . . . . . . 

.. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Map Labeling ��������������������������������������������������������������� 

. Labeling Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Discrete Models . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Slider Models . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Combinatorial Characterization . . . . . . . . . . . . . . . . . . . . . 

.. Labeling Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Combinatorial Reformulations . . . . . . . . . . . . . . . . . 

. Integer Linear Programming Formulations . . . . . . . . . . . . . . . . 

.. The Labeling Polytope and the Labeling Problem . . . . . . . . 

.. Zero-One Formulation for  . . . . . . . . . . . . . . . . . 

.. Complexity of Finding Positive Cycles . . . . . . . . . . . . . 

.. Extended Formulation . . . . . . . . . . . . . . . . . . . . . . 

.. Label Number Maximization . . . . . . . . . . . . . . . . . . 

. Exact Labeling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 

.. Implementations . . . . . . . . . . . . . . . . . . . . . . . . 

. Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . 

. Application to a Graph Labeling Problem ����������������������������������� 

. Graph Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. The Combined Compaction and Labeling Problem . . . . . . . . . . . 

. An Exact Algorithm for the Combined Compaction and Labeling Problem 

.. Unifying the Combinatorial Formulations . . . . . . . . . . . 

.. Integer Linear Programming Formulation . . . . . . . . . . . 

.. Branch-and-Bound Algorithm . . . . . . . . . . . . . . . . . . 

. Discussion and Extensions ��������������������������������������������������� 

A. Deutsche Zusammenfassung (German Summary) ��������������������������� 

B. Curriculum Vitae ������������������������������������������������������������� 

Bibliography ��������������������������������������������������������������������� 

Index ����������������������������������������������������������������������������� 



C

 Introduction

Art, like morality, consists in draw-
ing the line somewhere.

G. K. Chesterton

This thesis analyzes two families of orthogonal placement problems that arise in the
area of information visualization. The first family, compaction of orthogonal grid draw-
ings, is concerned with performing the conversion from a dimensionless description of the
orthogonal shape of a graph to an area-efficient drawing in the orthogonal grid with short
edges. This two-dimensional compaction problem emerges in the last phase of a powerful
approach to high-quality orthogonal graph drawing, the topology-shape-metrics scheme.
The second family of problems plays an important role in the area of computational car-
tography and deals with the task of attaching rectangular labels to point-features such as
cities or mountain peaks on a map.

It is common to both drawings of graphs and cartographic maps that they convey com-
plex information about relations of objects as a geometric representation. Moreover, the
utility of this representation depends on the quality of the layout process. The overall aim
is to generate a drawing or a map of maximum readability that is intuitive to understand
and use and which effectively communicates the underlying information. As an example,
Figure . shows “good” and “poor” solutions of the orthogonal placement problems dealt
with in this thesis.

(a) (b)

Saarbrucken
NeckarelzHomburg Neustadt

Neunkirchen Heidelberg OsterburkenKaiserslautern
EberbachWeinheim

LaudaWorms Heppenheim

Bensheim

(c)

Bensheim

Eberbach
Heidelberg

Heppenheim

Homburg

Lauda

LudwigshafenMannheim

Neckarelz
Neunkirchen

Osterburken

Weinheim

Worms

(d)

Figure .: Good and poor solutions of orthogonal placement problems



 Chapter . Introduction

Why are the orthogonal placements in Figure .(a) and (c) better than those of Fig-
ure .(b) and (d)? The edges of the right orthogonal drawing are unnecessarily long,
confuse the reader, and increase the amount of drawing space needed. The compact draw-
ing on the left has been enlarged by % and is still more area-efficient. Due to the better
resolution and shorter edges it is superior to the right drawing. Even more obvious reasons
make the left labeling a better one than the right one: In Figure .(d), information is lost
since not all labels are placed. Furthermore, many of the labels overlap which makes it
difficult to extract the necessary information.

A further common characteristic to both areas is that most of the respective problems
are computationally hard to solve. Everybody who has tried to draw a graph with 

vertices by hand knows about the difficulties of finding an aesthetically pleasing draw-
ing. Even if this task can be accomplished, it remains a time-consuming process. The
same applies to the placement of labels on a map. Manual map lettering is a tedious and
complicated task that takes a lot of time.

In this thesis, we develop a common combinatorial framework for two-dimensional
compaction problems in graph drawing and point-feature map labeling problems. The
combinatorial formulations allow us to devise exact algorithms that solve large problem
instances in short computation time by exploiting the fact that these problems decompose
naturally into two largely separate horizontal and vertical problem components. Fur-
thermore, solutions of orthogonal placement problems can be determined by assigning

� - and � -coordinates to problem-specific objects (e.g., vertices and bends in orthogonal
compaction problems or boundaries of rectangular labels).

Our new approach to these types of orthogonal placement problems is based on a pair
of constraint graphs—one for each problem component. A constraint graph is a directed
graph that represents precedence relations between objects; its arc weights additionally
specify these relations. In orthogonal placement problems, the nodes of the horizontal and
vertical constraint graphs correspond to the � - and � -coordinates of the problem-specific
objects. Weighted directed edges in the graphs represent distance relations between these
objects. The idea of the constraint graph-based approach is to set the coordinates of the
underlying objects by assigning values to the nodes of the constraint graphs.

A related characterization is used by Bartusch, Möhring, and Radermacher () in
the area of scheduling. In scheduling, the nodes of a constraint graph correspond to the
jobs and the weighted edges characterize the temporal constraints between these jobs. The
authors consider optimization in the set of feasible schedules with resource constraints
and time windows. They characterize this set as extensions of a given partial order that
satisfy certain order-theoretic properties. Due to the one-dimensional nature of scheduling
problems they do not have to consider the relations and dependencies between different
constraint graphs. This is exaclty where we focus on in this thesis. The interaction of a pair
of constraint graphs will model the interplay of the dimensions in the two-dimensional
problems under consideration.

For both the compaction problems and the map labeling problems, we introduce spe-
cial constraint graphs: a pair of shape graphs and a pair of labeling graphs. We study
these pairs of directed graphs and identify a path- and cycle-based property, complete-
ness, that allows us to characterize the circumstances under which a separate computation
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of coordinates in each of the constraint graphs leads to feasible solutions. In this case,
which may arise for the compaction problems, we will present algorithms that solve the
original problems to provable optimality in polynomial time. Moreover, the property of
completeness enables us to formulate combinatorial problems that are equivalent to the
original orthogonal placement problems. In essence, the new combinatorial formulations
ask for an arc set which can be added to the shape or labeling graphs so that the resulting
pair of constraint graphs is complete. For some instances of the compaction problems
this arc set is unique, and we derive an exact polynomial-time algorithm for the original
problem in this case. In most cases, however, several possibilities exist to complete the con-
straint graphs; it is the combination of these choices that makes the orthogonal placement
problems difficult at the combinatorial level.

Yet, our combinatorial reformulations are well-suited to apply integer linear program-
ming techniques. We define problem-dependent polytopes, which correspond to the set
of complete extensions, and characterize integral points within these polytopes by integer
linear programming formulations. We provide branch-and-bound and branch-and-cut al-
gorithms and present extensive computational studies that show that our new algorithms
are able to solve large instances of the NP -hard two-dimensional compaction and labeling
problems to optimality in short computation time.

One advantage of our common combinatorial framework for compaction and labeling
problems is that we can combine them without too much effort in order to solve graph
labeling problems. Problems in this class combine elements of graph drawing and map
labeling problems and, until now, only little research work has been done in that area.
We introduce a new problem from this class which arises in the area of automation en-
gineering: drawing labeled state diagrams. We show how to combine our results for the
subproblems and provide an exact algorithm for this problem. To our knowledge, this is
the first exact algorithm especially designed for solving a graph labeling problem.

. Graph Drawing

In his book on graph theory, Diestel (, p.) writes:

The usual way to picture a graph is by drawing a dot for each vertex and joining two
of these dots by a line if the corresponding two vertices form an edge. Just how these
dots and lines are drawn is considered irrelevant: all that matters is the information
which pairs of vertices form an edge and which do not.

While this statement might apply to a certain extent to the world of a pure graph
theorist, it is altogether wrong in case graphs are used to convey information. Many
applications in almost all scientific disciplines make use of graphs with the exclusive aim
of visualizing the inherent structures of relational information. The following is a selection
of applications where graph visualization is especially important:

– Software engineering. Today, the developers of large software projects use diagrams
during the design, implementation, and documentation phases. The visualizations
used include -diagrams, class hierarchies, flow diagrams, and subroutine call
graphs.
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– Database design. Entity-relationship models are used to determine the structure
and implementation of large databases. The diagrams help to visualize the complex
interaction of data and influence the design decisions.

– Chip layout. In the area of  design, many problems that occur during the
fabrication of logical circuits find their equivalents in graph drawing problems. In
particular the two-dimensional compaction problem we are investigating in this
thesis plays a role in both areas.

– Automation engineering. State diagrams are used for the design and running of
control systems such as production controls or robot controls. In addition to the
drawing task, rectangular labels, which contain several lines of program code, have
to be placed close to the symbols that represent the states of the system. We consider
this problem in a separate chapter, where we combine our results for compaction
and labeling problems.

– Economic sciences. Business processes as well as macro-economic processes are
often modeled by graphs. Further, program evaluation and review technique ()
charts are important tools in project management, and most organization structures
are displayed as hierarchical diagrams.

– Biochemistry. Visualizations of biochemical pathways display underlying chrono-
logical and causal dependencies as well as hierarchic structures and symmetries.

The area of automatic graph drawing is devoted to the development of algorithms that
produce geometrical representations of graphs and to the problems that arise within this
context. An overview about the research in this area is provided by the books (Di Battista,
Eades, Tamassia, and Tollis, b) and (Kaufmann and Wagner, ) as well as by the
overview article (Eades and Mutzel, ) and by the annotated bibliography (Di Battista,
Eades, Tamassia, and Tollis, ). In this thesis, we focus on orthogonal drawings, that is,
drawings of graphs in which the edges are represented by sequences of alternating vertical
and horizontal line segments. For numerous applications, orthogonality is a convention
(e.g., -diagrams, circuit layouts, entity-relationship diagrams), and for many other
applications orthogonal drawing algorithms produce the best layouts.

Several criteria have been identified to measure the quality of orthogonal drawings:

– The number of edge crossings should be as low as possible. This criterion is often
considered as the most important, since crossing lines in a diagram confuse the
reader. The number of crossings also plays a crucial role in  design: Every
wire crossing must be replaced by a so-called via or contact to change the layer of
wires. This has a negative effect on the quality of fabricated chips. It degrades the
electrical stability properties, increases the delay, and decreases the percentage of
correctly-working chips.

– The same applies to the number of bends. Bends occur where horizontal and verti-
cal line segments of edges alternate and decrease the readability of diagrams, since a
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bended line is harder to follow. In , bends are called jogs and negatively affect
electrical characteristics and the signal delay of a chip.

– Edges should be drawn short to avoid that related objects are placed far away from
each other. The total edge length as well as the maximum edge length of a drawing
should be low.

– Saving drawing space is important in many applications and affects the resolution of
the drawing when scaling it to fit on a sheet of paper or on a computer screen. The
area of a drawing is usually defined as the area of the smallest iso-oriented rectangle
that encloses the drawing.

– Other criteria include the display of existing symmetries of a graph and of hierar-
chies in directed graphs.

Even the restriction to the optimization of only one of the above criteria results in most
cases in an NP -hard combinatorial optimization problem. Furthermore, optimality with
respect to one criterion may exclude optimality with respect to another, see Figure ..

(b)(a) (c)

Figure .: Drawing of a graph according to different optimization goals: (a) maximal symmetry,
(b) crossing-optimal on the orthogonal grid, (c) hierarchical

Due to the conflicting criteria, tradeoffs cannot be avoided. For orthogonal drawings,
the following ranking of aesthetic criteria is widely accepted: The primary goal is to mini-
mize the number of crossings; ideally a graph should be drawn without any crossing edges
at all. Secondly, the number of bends should be as low as possible. Finally, besides few
crossings and bends, the edges should be short in the drawing, which also leads to good
area bounds.

.. The Topology-Shape-Metrics Scheme

According to the above ranking of criteria, the topology-shape-metrics scheme, introduced
in (Batini, Nardelli, and Tamassia, ) and (Tamassia, Di Battista, and Batini, ),
leads to the best results in applications of orthogonal graph drawing. The algorithmic
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scheme divides the drawing task into three phases and exploits the fact that the class of
graphs which admit crossing-free drawings in the plane is well-studied. Graphs that belong
to this class are called planar graphs and have several useful properties of which specialized
drawing algorithms take advantage.

The first phase of the scheme aims at minimizing the number of crossings and is
also referred to as the planarization method . The method identifies a small set of edges
whose removal results in a planar subgraph. Finding a smallest of such sets is an NP -hard
problem as shown by Liu and Geldmacher (). However, for instances of graphs with
up to  vertices the maximum planar subgraph can be found with a branch-and-cut
algorithm that exploits the structure of an associated zero-one polytope (Mutzel, ;
Jünger and Mutzel, ). Besides, heuristics can identify large planar subgraphs.

In a second step, the planarization method computes a planar embedding for the
planar subgraph that fixes the topology of this graph. Note that a crossing-free drawing
of a graph divides the plane in regions, also referred to as the faces of the planar graph.
In essence, the topology determines the order of edges around these faces. Generally, the
set of different embeddings of a planar graph can be exponential in size, but linear time
algorithms exist to construct one planar embedding (Chiba, Nishizeki, Abe, and Ozawa,
; Mehlhorn and Mutzel, ). The next step of the planarization method consists
of reinserting the temporarily deleted edges at the combinatorial level into the existing
planar embedding so that the number of crossings is low. In order to maintain a planar
graph, every crossing is replaced by an artificial vertex. For one edge, the problem of
creating a minimum number of artificial vertices can be solved in linear time, even if the
embedding of the subgraph is allowed to change (Gutwenger, Mutzel, and Weiskircher,
). In the more general case, in which more edges have to be reinserted, shortest-path
based heuristics manage to introduce a low number of crossings. Ziegler () reports
on recent progress concerning the crossing minimization problem and the planarization
method.

At this stage of the topology-shape-metrics scheme, a non-planar input graph is rep-
resented by a planar auxiliary graph. The second phase of the scheme, orthogonalization ,
deals with determining the orthogonal shape of the resulting drawing. The optimization
goal of this phase is to minimize the number of bends that occur along the edges of the
drawing. While it is NP -hard to minimize this number over all embeddings of a planar
graph (Garg and Tamassia, ), the problem can be elegantly solved for a fixed embed-
ding by reducing it to a minimum-cost flow problem as shown by Tamassia (). Berto-
lazzi, Di Battista, and Didimo () present a branch-and-bound algorithm to solve the
problem over all embeddings and obtain optimal solutions in reasonable time for small
to medium-sized graphs. Weiskircher () investigates the same problem with methods
from polyhedral combinatorics and reports similar results.

.. The Compaction Phase

The output of the orthogonalization phase is a so-called orthogonal representation that
contains the necessary information about the topology and the orthogonal shape of the
drawing. Nevertheless, the description is dimensionless and coordinates still have to be
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assigned to the vertices and bends of the drawing. The compaction phase of the topology-
shape-metrics scheme deals with the transformation of an orthogonal representation into
an orthogonal drawing with small total edge length or little area. Again, this is an NP -hard
problem as shown by Patrignani (). Previous algorithmic research for this problem can
be divided into constructive and improvement heuristics: In the context of  design,
Vijayan and Wigderson () present a first constructive heuristics that can be used for
the compaction problem in graph drawing and has quadratic running time. Indepen-
dently, Tamassia () and Hoffmann and Kriegel () improve this result and present
linear-time methods which are based on rectangular dissection of the original orthogonal
representation. Bridgeman, Di Battista, Didimo, Liotta, Tamassia, and Vismara ()
extend these techniques by introducing the concept of turn-regularity. However, the re-
sults produced by the constructive heuristics still admit room for considerable improve-
ment. The compression-ridge method (Akers, Geyer, and Roberts, ; Dai and Kuh,
) and graph-based compaction techniques (e.g., Hsueh, ) originate in  and
constitute improvement heuristics for the compaction problem. They consider the one-
dimensional subproblems of reducing the horizontal or vertical edge lengths. In many
cases, iterative usage of these heuristics with alternating direction in a one-dimensional
compaction scheme yields considerable improvement. Schlag, Liao, and Wong () and
Kedem and Watanabe () present the only exact algorithms for two-dimensional area
minimization in the area of  design.

.. A New Approach to Two-Dimensional Compaction

The key idea of our new approach to the two-dimensional compaction problem as it
appears within the topology-shape-metrics scheme is to translate it into an equivalent
combinatorial problem involving a pair of constraint graphs. Investigating combinatorial
properties of these graphs leads to new algorithms that can solve large instances of the
compaction problems to optimality in short computation time. Based on the observation
that we can treat the horizontal and vertical direction to a great extent separately, each
directed graph corresponds to one such direction. We introduce a generic concept, the
placement graphs, a pair of constraint graphs that is able to determine the layout of a
drawing for a given instance of the compaction problem through an assignment of values
to its nodes. The placement graphs generalize, among others, the layout graphs, that have
already been used in graph-based one-dimensional compaction heuristics.

We investigate how the placement graphs must interact in order to develop a combi-
natorial characterization of the compaction problem. Thereby, we exploit the fact that,
due to the given shape, many relative positions of vertices, edges, and bends are already de-
termined. We introduce a specialization of placement graphs, the so-called shape graphs,
that reflect the orthogonal shape of the input. Moreover, we identify a central property
of placement graphs, completeness, that is based on paths and cycles in the two directed
graphs and forms the link between the otherwise unconnected horizontal and vertical con-
straint graph. Substantially, a pair of complete placement graphs consists of two acyclic
constraint graphs in which each pair of objects is separated by one of four paths. Each of
these paths corresponds to one of the four possible relative placements of a pair of objects
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in two dimensions. We show that, for complete placement graphs, the compaction prob-
lem reduces to two separate one-dimensional problems for which optimal solutions lead
to an optimal solution of the problem in two dimensions.

The shape graphs are uniquely determined by the given orthogonal representation. In
case of complete shape graphs, we can solve the two-dimensional compaction problem to
optimality in polynomial time. We also consider known compaction heuristics in view of
the new combinatorial formulation and relate the respective placement graphs to the con-
cept of completeness. We show that shape graphs corresponding to auxiliary orthogonal
representations, as produced by rectangular dissection methods, are complete. Further-
more, we introduce the visibility graphs that are used within graph-based improvement
heuristics, and demonstrate that they are close to completeness: A feasible assignment
of values to the nodes in one of the visibility graphs results in a feasible solution of the
compaction problem.

We also investigate a popular one-dimensional compaction scheme and demonstrate
that instances exist for which a linear number of alternating one-dimensional compaction
steps is necessary. Moreover, we show that algorithms within the scheme do not approxi-
mate the compaction problem by a constant factor.

Every orthogonal drawing uniquely determines a pair of visibility graphs. The ob-
servation that every such pair contains the pair of shape graphs of the appropriate or-
thogonal representation leads to the combinatorial reformulation of the two-dimensional
compaction problem. In a way, we are looking for the perfect pair of visibility graphs that
results from adding arcs to the shape graphs. We identify a set of potential additional arcs
and show that the set of complete extensions that results from adding certain subsets of
potential arcs to the shape graphs is in one-to-one correspondence to the feasible solu-
tions of the original problem. It is the choice of potential arcs that makes the compaction
problem difficult at the combinatorial level.

However, we can characterize those shape graphs which admit a unique extension
and solve the compaction problem in polynomial time for these instances. For general
instances, our combinatorial reformulation allows a translation into an integer linear pro-
gram. We characterize the integral points within the compaction polytope by different
classes of inequalities and integrality constraints. Then we show that feasible solutions of
the resulting integer linear program correspond to feasible solutions of the combinatorial
equivalent and vice versa, thus providing orthogonal drawings for the given orthogonal
representation. This enables us to optimize over the set of feasible orthogonal drawings
for a given instance, and we present both a branch-and-bound and a branch-and-cut al-
gorithm to solve the two-dimensional compaction problem to optimality.

We test our implementations on a large set of widely used benchmark-graphs from dif-
ferent test-suites, including a set of , graphs arising from real-world applications. Our
extensive computational study shows that we can solve all real-world problem instances in
short computation time.
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. Map Labeling

Map labeling problems attract many researchers in computer science. On the one hand,
this is due to its numerous applications, e.g., in cartography, geographic information sys-
tems, point pattern analysis, spatial statistics, and graphical interfaces. On the other hand,
many combinatorial optimization problems with beautiful mathematical properties ap-
pear in this area.

The growing amount of data for which informational graphics have to be produced
leads to an increasing need for automatic labeling procedures. Due to the complexity of
the underlying problems, manual map labeling is a tedious and time-consuming task. In
addition to the classical problem of labeling a two-dimensional cartographic map, labeling
problems arise in geographic information systems, navigation systems and fully automati-
cally generated technical maps where manual labeling is impossible.

A major problem in map labeling is the point-feature label placement in which the
task is to place labels adjacent to point features so that only a few or no labels overlap.
These features may be cities, mountain peaks or points in a plot which represent statistical
data. Besides point-features, also area features, like countries and seas, or line features, like
streets and rivers, have to be labeled. In this thesis, we focus on point-feature labeling and
restrict the labels to be iso-oriented axis-parallel rectangles. We provide a detailed overview
of previous work on rectangular point-feature labeling; the bibliography (Wolff and Strijk,
) is a good starting point for literature on other models.

Several criteria have been developed that distinguish a high-quality labeling from a
poor one:

– On a good map the placement of labels is as unambiguous as possible. It is intu-
itively apparent to the reader of the map which label belongs to which point-feature.
This implies that labels are close to the point-features they belong to.

– The information of the labels is legible. Unambiguity alone does not help if the
user cannot read the text in the labels.

– No or only a few labels overlap. Obviously, overlaps decrease the legibility of a map.

The cartographic literature contains more rules, see, e.g., (Imhof, ) and (Yoeli, ).
Yet, the overall aim in automatic map labeling is to devise algorithms that produce label-
ings of maximum legibility. To be consistent with our notation in graph drawing, we also
refer to the above principles as aesthetic criteria .

We concentrate on the six different labeling models in Figure .. The discrete models
or fixed-position models displayed in Figure .(a)-(c) allow only a finite number of posi-
tions per label. Among the most popular discrete models in practice is the four-position
model; the two- and one-position models exist rather for theoretical purposes. More nat-
ural than the discrete models are slider models which allow a continuous movement of a
label around its point-feature, see Figure .(d)-(f ).

 This thesis concentrates on the models displayed in Figure . since they are common in the computer
science literature. In practice, cartographers often use eight-position or other discrete models.
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Clearly, different bounds hold for the maximum number of non-overlapping labels
that can be placed close to each point-feature in the different models: At maximum four
labels per point-feature are possible in the four-slider, two-slider and four-position model,
maximally two in the one-slider and two-position, and at most one in the one-position
model.

(d) Four-slider (e) Two-slider (f ) One-slider

(a) Four-position (b) Two-position (c) One-position

Figure .: Axis-parallel rectangular labeling models. A label can be placed in any of the positions
indicated by the rectangles and can slide in the directions of the arcs

An instance of a labeling problem consists of a set of point-features, information about
the label sizes, and a mapping from labels to point-features. In general it is not possible to
place all the given labels in their original size without any overlap. The literature suggests
several possibilities to deal with this problem; among these are decreasing the size of the
labels to allow a placement of all labels without any overlap, and keeping the sizes of the
labels fix while looking for the maximum number of labels that can be placed. The first
possibility is referred to as the label size maximization problem, the second one as the label
number maximization problem. A third variant is to tolerate overlaps but to aim at a low
number of mutually overlapping labels: the label overlap minimization problem asks for
a labeling in which the number of overlaps is minimum. In this thesis, the main focus is
on the label number maximization problem; the underlying concepts, however, result also
in powerful approaches to the other two problems.

.. A New Approach to Map Labeling Problems

Rectangular map labeling problems share the same characteristics of orthogonal placement
problems as the two-dimensional compaction problems. This motivates us to use a similar
approach as for the problems in graph drawing. We reuse our idea of developing com-
binatorial translations of the original problems, and demonstrate that this leads to new
powerful algorithms for a variety of labeling problems.

Again, we associate a pair of constraint graphs with problem instances; in the case of
point-feature labeling problems these are the labeling graphs. The key idea is the same as
for the two-dimensional compaction problems: If these graphs satisfy certain path- and
cycle-based properties, we can produce a solution for the original problem by separately
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assigning values to the nodes of the constraint graphs. These values correspond to � - and
� -coordinates of the solution and determine the placement of labels.

For a given instance of a labeling problem we construct a special pair of labeling graphs.
We introduce different kinds of arcs whose presence satisfy necessary properties of feasible
placements of labels: The fixed distance arcs ensure that the relative position between the
point-features remains fix. Label size arcs perform a similar task and guarantee that every
label is represented by a rectangle of width and height as described in the input. By in-
troducing the proximity arcs we determine the rectangular region around the appropriate
point-feature in which a label can be placed. In order to exclude that a label covers the
point-feature it belongs to, we define the boundary arcs which are inverse to the prox-
imity arcs. Unlike the previously introduced types of arcs, the boundary arcs belong to
the class of potential arcs and influence the labeling model. Each discrete or slider model
corresponds to requirements on subsets of boundary arcs which have to be present in the
labeling graphs. We define a second type of potential arcs in order to control the overlaps
between labels. The label separation arcs make sure that pairs of labels do not overlap in a
placement.

The potential additional arcs fulfill the same task as for the compaction problems. We
can restate the pure labeling problem in which all labels have to be placed without scaling
and overlaps as the identification of a subset of potential arcs that satisfies the following
two properties. First, the set of chosen boundary arcs must comply with the appropriate
labeling model. The second property extends the notion of completeness as defined for
the compaction problems: At least one label separation arc has to be chosen for each label
pair, and adding the entire set of chosen potential arcs to the labeling graphs must not
induce directed cycles of positive weight. We show that the combinatorial reformulation
is equivalent to the pure labeling problem by establishing a one-to-one correspondence
between feasible solutions. Furthermore, we demonstrate how to adapt the new combi-
natorial problem to result in equivalent formulations of the label number maximization
problem and the label overlap minimization problem. We find it remarkable that our new
approach is independent of the labeling model and results in discrete formulations even if
the problems are of continuous nature as in the slider models.

The combinatorial formulation for the pure labeling problem admits a straightfor-
ward characterization as a zero-one polytope through an incidence vector for the set of
potential arcs. We provide an integer linear programming formulation for this polytope
by describing feasible solutions of the combinatorial version of the pure labeling problem
with classes of inequalities and integrality constraints. One class of inequalities are the
so-called positive cycle inequalities. We investigate the corresponding separation problem
and show that it is NP -complete by a reduction from the shortest weight-constrained di-
rected path problem. We present an extended formulation that evades the class of positive
cycle inequalities. However, the prize for omitting the cycle inequalities are additional
continuous variables that are linked to the binary variables with a “big � ” approach.

Our integer linear programs for the label number maximization problem are not as
straightforward as for the pure labeling problem. We present a first formulation with an
additional binary variable vector that represents the decision to place or not to place a
label. We integrate the new variables in the existing inequalities and show that feasible
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solutions of the resulting formulations correspond to an overlap-free labeling for a set of
labels of appropriate size. This integration works for both the zero-one and the extended
formulation. In a second formulation we manage to eliminate the newly introduced de-
cision variables by a substitution step. However, we have to add additional inequalities to
adjust the objective function.

The integer linear programming formulations give rise to new algorithms for the la-
beling problems. We present branch-and-bound and branch-and-cut algorithms and an
iterative branch-and-bound scheme for the zero-one and extended formulations. The al-
gorithms work in all labeling models and are the first exact algorithms for the continuous
slider models. Preliminary evaluation identifies the iterative branch-and-bound scheme
for the zero-one formulation as the most suitable method to solve practical instances of
the label number maximization problem. We provide extensive computational experi-
ments in which we test our new algorithm on a large set of benchmark data. The results
show that the exact algorithms are competitive and produce optimal solutions for large
instances in reasonable computation time.

. Combining Drawing and Labeling: Graph Labeling

Combining graph drawing and map labeling problems results in an interesting new prob-
lem class. We define graph labeling problems as problems from the area of graph drawing
in which subsets of vertices and edges have to be labeled. Unlike in map labeling where the
position of the objects is specified in the input, the coordinates of vertices and edges in an
instance of a graph drawing problem have yet to be determined and thus create additional
degrees of freedom. Little research work exists on this subject.

We consider a special graph labeling problem that occurs in the area of automation
engineering: drawing labeled state diagrams. State diagrams represent control systems
such as production or robot controls. They are used in the design and documentation
phase of these systems and consist of state nodes, transition nodes, transition edges, and
rectangular labels. A label contains several lines of program code and belongs to a state or
transition node. The task is to provide an area-efficient drawing of the underlying graph
and to place all labels according to the criteria in map labeling.

We propose an approach that combines the compaction problem of the topology-
shape-metrics scheme for orthogonal graph drawing with a map labeling problem. This
enables us to merge the combinatorial frameworks for the subproblems. We introduce the
shape and labeling graphs that combine the features of the respective pairs of constraint
graphs for the compaction and labeling problems. We proceed as for the subproblems
and extend the concept of complete extensions to the shape and labeling graphs. Again,
we manage to develop a combinatorial reformulation for which we present an equivalent
integer linear programming formulation. We present a branch-and-bound algorithm to
solve this formulation, and, to our knowledge, provide the first exact algorithm especially
designed for graph labeling problems.
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. Overview

Chapter  provides basic definitions and notations from the areas of graph theory, graph
drawing, linear programming, and combinatorial optimization. Moreover, we present the
generic branch-and-bound and branch-and-cut algorithms to solve combinatorial opti-
mization problems.

We formally introduce constraint graphs and several of their properties in Chapter .
In particular, we investigate the circumstances under which feasible and optimal values
can be assigned to the nodes and present algorithms which accomplish this task. We
consider various special cases that give rise to more efficient algorithms. This chapter
contains the necessary tools to solve the orthogonal placement problems in case only one
constraint graph is involved and thus provides the basis for the algorithms developed in
the following chapters.

We study the two-dimensional compaction problem in Chapter . Section . for-
mally introduces the problem and contains complexity results. In Section ., we develop
the new combinatorial characterization by introducing the placement graphs, the shape
graphs, and the property of completeness. We present a central theorem that relates com-
plete placement graphs to feasible and, in particular, optimal solutions of the compaction
problem in orthogonal graph drawing. A large part of the section is dedicated to the
review of constructive and improvement heuristics in the light of the newly introduced
combinatorial characterization. Moreover, we study a widely used one-dimensional com-
paction scheme: We demonstrate that instances exist for which the scheme takes a linear
number of steps and show that iterative one-dimensional compaction does not lead to
approximation algorithms for the two-dimensional compaction problem. We conclude
the section by presenting our combinatorial reformulation and by proving its equivalence
to the original problem. Section . describes exact algorithms for the combinatorial ver-
sion. We introduce the concept of uniquely completable representations and present an
exact polynomial-time compaction algorithm for this case. The algorithm is also useful
in the general case, since it identifies the potential arcs among which we must choose in
order to construct a complete extension of the shape graphs. We provide integer linear
programming formulations for this task and present a branch-and-bound algorithm that
solves the two-dimensional compaction problem for general orthogonal representations to
provable optimality. Moreover, we study the class of cycle inequalities, show how to solve
the corresponding separation problem, and extend the algorithm by adding cutting planes.
Finally, we discuss related work in the area of  design. We conclude the chapter with
Section . where we present an extensive computational study of orthogonal compaction
algorithms.

The subject of Chapter  is map labeling. We present a new combinatorial characteri-
zation of various labeling problems in six different labeling models. Our combinatorial ap-
proach leads to new algorithms that can solve large instances of the problems to optimality
within short computation time. Section . contains mathematically precise definitions of
different labeling problems and presents a comprehensive overview of previous work and
complexity results. In Section ., we introduce the labeling graphs and demonstrate how
to create this pair of constraint graphs depending on the input data. Further, we state the
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combinatorial problem equivalents of the labeling problems. We introduce the labeling
polytope in Section . and characterize its integral points with a zero-one integer linear
programming formulation. We study the separation problem for the class of positive cycle
inequalities and show that it is NP -complete to decide whether a solution of the linear
programming relaxation contains a violated inequality from this class or not. We present
an extended formulation that avoids the cycle inequalities at the prize of new variables. In
this section we also develop our integer linear programs for the label number maximiza-
tion problem and show the equivalence to the original formulations. In Section ., we
derive exact algorithms for different labeling problems. Based on the combinatorial equiv-
alents we present both pure branch-and-bound and branch-and-cut algorithms as well as
an iterative branch-and-bound scheme. We provide an implementation of the scheme and
test it on a large number of instances of benchmark labeling problems. We describe our
experimental results for the label number maximization problem in Section ..

In Chapter , we apply the results of the two preceding chapters in order to develop an
algorithm for a problem from the class of graph labeling problems. We discuss properties
of this new problem class in Section . and focus on a special graph labeling problem,
drawing labeled state diagrams, which we introduce in Section .. In Section . we de-
rive an algorithm for this problem that results from combining the combinatorial frame-
works which we have developed in the chapters on compaction and map labeling. Our
detailed studies of the subproblems results in an exact branch-and-bound algorithm for the
combined compaction and labeling problem, to our knowledge the first exact algorithmic
approach to the class of graph labeling problems.

We conclude with Chapter  where we discuss our results and mention possible ex-
tensions of the new techniques presented in this thesis. We believe that our combinatorial
characterizations are expansible and suitable to apply them to related problems like, e.g.,
packing or location problems.
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 Preliminaries

This chapter introduces the mathematical and combinatorial structures, properties and
techniques that are used in this thesis and provides notational conventions. The first two
sections are dedicated to graphs and their representation in the plane: While Section .
presents fundamental graph-theoretical concepts, Section . introduces terminology from
planarity theory and the area of graph drawing. Many algorithms in the following chapters
are of combinatorial nature and involve methods from linear programming and polyhe-
dral combinatorics: Section . introduces the basics of linear programming theory, and
Section . presents generic methods that use these concepts to solve linear combinatorial
optimization problems.

First, we define some notation in linear algebra: We denote the set of real, non-negative
real, rational, non-negative rational, and integer numbers by the symbols � , ��� , � , ��� ,
and � , respectively. Let ���
	���
�������� � � � ������� be a finite ground set whose order is
reflected by the indices, and let � be an arbitrary set. Then ��� denotes the vector
space in which the components of each vector are indexed by the members of � . In case
����	���� � � � ��� � , we also write � � . We always consider vectors as column vectors and
write row vectors as transposed column vectors �"! . The symbol � # denotes the vector in
which all components are equal to one.

The power set of a set $ is the set of subsets of $ , and we write %�&'$)( . The subset of
%*&+$,( whose members have exactly - elements will be denoted as .'/ 021 .

. Graph Theory

A graph is a pair of two disjunct finite sets &'34���5( . The first set is non-empty, and its
elements are the vertices , the second set contains the edges . An edge �768� is a pair of
two vertices 9:6;3 and <�6=3 . Both 9 and < are incident to � and adjacent to each
other. In this case, we also refer to 9 and < as neighbors.

We distinguish between directed and undirected graphs. In undirected graphs edges
are unordered pairs �?>@.+A � 1 , and we write �B�C&D9E��<F(G6�� .

The edges in directed graphs or digraphs are ordered pairs of vertices, thus �H>I37J�3 .
As for undirected graphs we write �K�C&D9"��<K( for a member of this set. To avoid confusion,
we refer to the vertices of a digraph LM��&'NO�QPF( as nodes and to its edges as arcs . We
allow parallel arcs, i.e., the directed edges of a digraph form a multiset; these graphs are
also called multigraphs. Graphs without multiple edges are simple graphs. We call R the
source of an arc &DR��+S�( and S its target . If the source of an arc T is identical to its target,
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we say that T is a loop. Weighted digraphs &'LO�QP ��<F( have a weight vector <?6 � � or a
weight function <�� P�� � associated with their arcs, we refer to the weight of an arc
T 6 P by <�� or by < & T�( .

Let
� � &'34�Q� ( and

�
	 � &'3 	 �Q� 	 ( be two undirected or two directed graphs. We
define

���
� 	 �H&+3 � 3 	 ��� � � 	 ( and
���
� 	 �H&'3 � 3 	 �Q� � � 	 ( . If 3 � 3 	 ��� ,

then
�

and
� 	

are disjoint. If 3 >;3 	 and �@>;� 	 , then
�

is a subgraph of
� 	

, and
� 	

is a supergraph of
�

, we also write
� > � 	 . Let 3 � be the vertices incident to the edges

in � . If 3 � 3 � , we say that
�

is induced by � .
A directed path of length � is a non-empty digraph � � &'N�� ��P�� ( with ���O� distinct

nodes N � � 	 ����� � � � ����� � and � arcs

P��7� 	�&D� � ��� 
 (Q� &D� 
 ��� � (Q� � � � & � ���"
 ��� � (��=�
the definition for undirected graphs is analogous. The path � links its endnodes � � and
��� . We also write ��� �! � ��� or refer to � by the sequence of its arcs.

The weight of a path in a weighted digraph is the sum of its arc weights, i.e.,

< &"� ()� ���"
# $ % � < . &D�
$
���
$
� 
 ( 1 �

A positive path is a path � � �&�'�! � ��� with weight < &(� (*),+ ; in this case we also

write ��� �! � ��� .
A cycle - is a graph that consists of a directed path � � � �.�! � � � of length �
/ �

and an additional arc &D�&��������( . Its weight is < &(- (5��< &"� (0�=< & T�( , and its length is�1� � . In case < &(- (2)3+ , we say that - is a positive cycle . A graph is acyclic if none of
its subgraphs is a cycle.

The transitive closure L � � &'N ��P � ( of a directed graph L@� &'NO�QPF( contains an arc
for each path in L , i.e.,

P � � 	�& R �+S�(�6 N J N54 R �! � S >;L � �
We also call the arc set P � the transitive closure of P .

A graph is connected if a path between every pair of vertices exists. A connected
subgraph is also called a connected component ; a maximally connected component is a
connected component of maximum size.

In an undirected graph
� � &'34���5( , the degree of a vertex 9 is the number of its

incident edges, i.e., 6
&D9 ()�,4 	�<�4�&D9"��<F(*67� �74 �

A four-graph is a graph in which the maximum vertex degree does not exceed four. The
number of edges in connected four-graphs

� � &+34���5( is bounded from two sides, it
holds 4 384 ! �
9�4 �:4;9�<74 3=4 �
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For directed graphs L@� &'NO�QPF( , we distinguish between the indegree , the outdegree
and the net degree of a node S , more precisely6

in & S�(4�,4 	 R�4�&DR �+S�(G6 P �746
out & S�(4�,4 	 � 4�& S � �"( 6�P �746
net & S�(4�

6
in & S�( ! 6 out & S�( �

. Graph Drawing

A drawing of a graph
� � &+34���5( is a function

�
which maps the vertices 3 to distinct

points of a surface $ and the edges � to simple open curves in $ that link the images
of their incident vertices. Note that according to this general definition edges are allowed
to cross and overlap. In the following, we assume that the surface is the two-dimensional
Euclidean plane � � and that

�
is connected. A drawing of a directed graph is upward , if

the images of arcs are monotonically non-decreasing in one common direction.
A graph

� � &'34���5( is embeddable in the plane, if a drawing for
�

exists in which
the images of the edges � are non-intersecting. We call such a drawing an embedding
and a graph which is embeddable a planar graph. In the case that a planar graph is also
a four-graph, we call it four-planar . If a graph admits an upward embedding, then it is
upward planar . We refer to an embedded graph in the plane as a plane graph.

In this thesis, we restrict our focus to embeddings of planar graphs. However, the
techniques we are going to present are also suitable for non-planar graphs by employing
the planarization method . Every graph can be represented by a planar auxiliary graph in
which artificial vertices correspond to crossing edges. In this way, an embedding for the
auxiliary graph gives rise to a drawing for the original graph.

Note that a plane graph induces a partition of the plane into a set of topologically
connected regions, also referred to as the faces of the plane graph. Exactly one of the faces
is unbounded and is called the external face � � . The numbers of vertices, edges, and faces�

of a plane graph are related by

4 3=4 ! 4 �:4�� 4 � 4�� < �
With each edge in � � & 9"��<F( 6C� we associate two directed half-edges ���
 � &D9E��<F(
and ����5� &D< ��9�( . We refer by �� to the half-edges corresponding to � . Observe that a
plane graph determines a circular ordering of half-edges in each face. This gives rise to a
topological description of plane graphs by specifying the order of half-edges for each face.
A planar representation � of a planar graph

�
is a set of circularly ordered sets � &��

$
(

for R � +�� � � � � 4 � 4 ! � . Each set � &��
$
( contains the cycle of half-edges that define the

boundary of face �
$

and have the face to their left. The size 4 � 4 of a face � is the number
of half-edges in � &�� ( . If the two half-edges that correspond to the same edge � bound the
same face, the edge � is called a bridge.

Planar representations are equivalence classes of plane graphs and describe the topology
of crossing-free drawings of a planar graph.
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Orthogonal grid embeddings play an important role in this thesis. Therefore, we
provide a separate definition.

Definition . (Orthogonal grid embedding). An orthogonal grid embedding
�

of a
four-planar graph

� � &+34���5( is an embedding with the following additional properties

. The embedding
�

maps each vertex 9 6�3 to a grid point, i.e.,
� &D9 (G6 � � .

. The embedding
�

maps edges to paths in the grid, i.e.,

� & � ( > 	�& � � � (�6 � � 4 � 6 � or � 6 � � �

Note that, according to Definition ., edges are drawn as sequences of horizontal and
vertical line segments; bends occur where the path changes its direction in the grid. The
number of bends of an edge is the number of these changes, the number of bends of an
orthogonal grid embedding is the sum of the bends of the edges.

Definition . (Simple orthogonal grid embedding). An orthogonal grid embedding
�

is simple if its number of bends is zero.

Observe that by replacing each bend by an artificial vertex of degree two we can trans-
form every orthogonal grid embedding of a four-planar graph into a simple orthogonal
grid embedding of an auxiliary graph. Figure . shows the relation.

(a) (b)

Figure .: An orthogonal grid embedding (a) and its simple counterpart (b)

Unless otherwise stated, we assume that orthogonal grid embeddings are simple. We
will often write

���
and

�
� for the horizontal and vertical coordinates of a simple orthogo-

nal grid drawing. Furthermore, if the context is clear, we will also refer to orthogonal grid
embeddings as grid drawings or just drawings.

Note that for simple orthogonal grid drawings we can omit the second property of
Definition .. Since no bends occur along the edges, the drawing

�
maps an edge � �

&D9"��<F( to the straight line segment from
� &D9�( to

� & <K( . Hence, it suffices to specify the
coordinates of the vertices to characterize a simple drawing.

Let
� � & ��� � � � ( be a simple orthogonal grid embedding of a four-planar graph� � &'34���5( . The embedding induces a direction on the underlying half-edges �� and
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partitions them into the sets ���� , ���� , ���� , and �� 0 that contain the half-edges pointing
right, left, up, and down, respectively. It also partitions the edge set into a set of horizontal
edges ��� and a set of vertical edges ��� .

The length of an edge � 6 � is

� &'� (,� � � � &D<F( ! � � &D9 ( �F� & 9"��<F( 6�� � ��&D9"��<K(G6 �����
� &D<F( ! �

� &D9 ( �F� & 9"��<F( 6�������& 9"��<F( 6 �� � �
The total edge length of the embedding is	 & � (4� # 
��

�
� & � ( �

and its maximum edge length is �
max & � (,� max



�
�
� & � ( �

The width and height of the embedding are� & � (,� max � � A ��� &D9�( ! min � � A ��� & 9 (� & � (,� max � � A �
� &D9 ( ! min � � A �

� &D9 ( �
and its area is the area of the smallest iso-oriented covering rectangle

P & � (4� � & � (�� � & � ( �
The concept of orthogonal shape of a drawing will play an important part in this

thesis. Different notions exist in the literature which is due to the variety of areas in which
orthogonal shapes occur, e.g.,  design, graph theory, and graph drawing.

We define the term as an equivalence class of simple orthogonal grid embeddings,
refining the notion of topology: Two drawings have the same shape if one can be trans-
formed to the other by translation, rotation, and modifying the lengths of the edges. In
the area of graph drawing, and in particular within the topology-shape-metrics scheme,
the most common way to characterize the shape of an orthogonal embedding is by means
of an orthogonal representation . Orthogonal representations extend the planar represen-
tations by additionally specifying for each half-edge �� the type and order of bends that
occur along �� and the angle it forms with the following half-edge inside the appropriate
face. Again, the implicit assumption of a mapping from bends to artificial vertices allows
us to focus on simple orthogonal representations.

Definition . (Simple orthogonal representation). A simple orthogonal representation
extends the planar representation � &��

$
(���R�� +�� � � � 4 � 4 ! � of a four-planar graph

� �
&'34���5( by an additional function T � �� � 	�� +�� ��� +���<�� +������ + � . Let �� be a half-edge on
the boundary of a face � , and let �R be the following half-edge on the cycle � &�� ( . The
value TE& �� ( defines the angle that occurs between �� and � R in � .
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       

       

       

       

     

     

   

   

 

 

 

 

Figure .: A simple orthogonal representation

Figure . illustrates the definition. Note that already the orthogonal shape defines the
partitions of the edges � into horizontal and vertical edges and of the half-edges �� into
those pointing right, left, up, and down, respectively.

We treat planar and orthogonal representations as extensions of the underlying four-
graphs and will often abuse the notation by speaking of objects like, e.g., faces, drawings,
or even dual graphs of orthogonal representations.

In addition to the description in the orthogonal representation, we will also charac-
terize the shape of faces by means of a bit string in order to perform pattern replacing
operations on the shape. Let � be a face, and let � &�� ( � & ���
�� � � � � ��98 . 8 ( the set of bound-
ing half-edges, with indices reflecting the circular order of the entries. We define

<
$
�

:;;;< ;;;=
+ T & ��

$
(,� � +> T & ��
$
(,�C��� +

� T & ��
$
(,�3<�� +

��� T & ��
$
(,� ��� + for all R �C��� � � � � 4 �04 �

Then the following circular bit string describes the shape of face � :

$*&�� (4�=<B
 <*� � � � < 8 . 8 �
An alternative definition of orthogonal shape is by means of a rectilinear graph as

introduced in (Vijayan and Wigderson, ) and used in (Hoffmann and Kriegel, ).
We adapt the definition to the notion of half-edges:

Definition . (Rectilinear graph). A rectilinear graph is a triple
� � &'34�Q� �@?E( , where

&'34���5( is a four-planar graph, and

? � 3HJ 3 � 	 	 �*A5�QLO�CB��*DQ�
is a vertex ordering relation with the properties:
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(a) ?).Q&D9"��<F( 1F� > � & 9"��<F( �6 �� ;

(b) ?).Q&D9"��<F( 1F� 	 � ?).�& 9"��<F( 1F� A ;

(c) ?).Q&D9"��<F( 1F� L � ?).�& 9"��<F( 1K� B ;

(d) ?).Q&D9"��<F( 1F�=� � ?�.�&�� ��<K( 1���;� for all ����;9 , �M6�	 	 �@A �QL �@B � .
Clearly, rectilinear graphs provide a description of orthogonal shape that is equivalent

to orthogonal representations, and one notion can be changed to the other in linear time.
To construct the rectilinear graph that corresponds to the orthogonal representation

�
,

we just set the labels according to the partition of half-edges. For the other direction, we
set the angles by looking at the labels of consecutive half-edges.

. Linear Programming

Mathematical optimization deals with finding optimal solutions subject to a set of con-
straints and with respect to an evaluation function. Without loss of generality, we will
present the definitions for maximization problems that can be easily transformed into
minimization problems in order to obtain the corresponding definitions.

Let P 6 �	��
 � be a matrix and let �76 �
� and ��6 � � be two vectors. A linear
program consists of a system P � 9�� of linear inequalities and a linear objective function
� ! � . A vector �� 67� � with P��� 9�� is a feasible solution of the problem. If no such vector
exists, we say that the linear program is infeasible . The task in the linear programming
problem is to find an optimal feasible solution with respect to the objective function, i.e.,
a vector � � with

� ! � � � max 	�� ! � 4�P � 9���� �
We also write a linear program as

max � ! � ()

subject to P � 9�� �
Duality theory relates to each linear program () another linear program

min � ! � ()

subject to P ! � ���
�=/�+ �

The first one is called the primal problem, the second one is dual to the first one or simply
its dual. The relation is symmetric, i.e., the dual of () is again (). The following theorem
states a fundamental result in duality theory which has many algorithmic implications.

Theorem . (Duality theorem of linear programming, e.g., (Schrijver, )). Let ()
and () be linear programs which are dual to each other.
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(a) If () and () have feasible solutions, then they have optimal solutions of identical
objective function values.

(b) If () is infeasible, then () is either infeasible or unbounded.

(c) If () is unbounded, then () is infeasible.

General linear programs can be solved with an efficient method, the simplex algo-
rithm, and are solvable in polynomial time. For numerous practical applications elegant
linear programming formulations exist of which feasible solutions correspond to feasible
solutions of the original problem. Yet, many natural formulations impose integrality con-
straints on the set of feasible solutions. Such a formulation is called an integer linear
program or an  formulation, and has the form

max � ! � (.)

subject to P � 9�� (..)
�

$
67� � R�6�� � (..)

where ��> 	���� � � � � � is a subset of variable indices. In the case that all variables have to
take integer values, we also call (.) a pure integer linear program. If the possible integer
values are restricted to the set 	 +�� � � , we refer to (.) as a zero-one formulation. Solving
a general integer linear program to optimality is an NP -complete problem as shown by
Garey and Johnson ().

Many strategies that compute approximate or exact solutions for an  formula-
tion (.) rely on the linear programming relaxation of (.) which results from dropping
the integrality constraints (..).

At this point, we list some special cases of linear programs that correspond to impor-
tant and well-studied optimization problems in weighted directed graphs and for which
polynomial-time algorithms exist.

Definition . (Minimum-cost flow problem). Let L@� &'34��PF( be a directed graph with
capacities �76 � � � and costs � 67� � , and let �F67��� be a supply vector with# $ �

�
�
$
� + �

Such a digraph with additional information is also referred to as a network . The task is to
find a minimum-cost flow in L , i.e., an optimal solution of the following linear program

min � ! � (.)

subject to
#
� %��
$
� �
	

� � ! #� %�� ��� � 	 � �B� � � ��S 6�N

+ 9 � �19 � � � T 6 P
The following two problems are special cases of the minimum-cost flow problem:
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Definition . (Maximum � - � flow problem). Let L �?&'34��PF( be a directed graph with
capacities � 6 � � � and let � and

�
be two nodes in N . Find a maximum flow from � to

�
in L , i.e., an optimal solution of the following linear program

min � # ! � (.)

subject to
#
� %��
$
� �
	

� � ! #� %�� � � � 	 � �K� + ��S 6�N���	���� � �
+*9 � �
9�� � � T 6 P

Definition . (Shortest � - � path problem). Given a directed graph L � &'N ��PF( with
arc weights

�
and two nodes ��� � 6 N , find a shortest path (with respect to

�
) from � to

�
.

An equivalent linear program is:

min
� ! � (.)

subject to
#
� %��
$
� �
	

� � ! #� %�� ��� � 	 � � � � � ��S 6�N

+ 9 � � � T 6 P �
where ���4�C� , ��� � ! � and �

$
�3+ for all R�6 N	��	
��� � � .

The dual linear program of (.) states the shortest path optimality conditions, see,
e.g., (Cook, Cunningham, Pulleyblank, and Schrijver, ),

min � � ! � � (.)

subject to � � 9 �

$
� � � � T �C&DR �+S�(G67P

. Combinatorial Optimization

In general, a combinatorial optimization problem asks for a best solution from a finite set�
of feasible solutions with respect to an objective function � � � ��� , i.e., an element

� � 6 � with � & � � ()� max 	 � & � ( 4 � 6 � � .
In this thesis, we will only consider linear objective functions and feasible solutions

that correspond to subsets of a finite ground set. The following is a precise definition of
this special case.

Definition . (Linear combinatorial optimization problem). Given a finite ground set
� , a set

� > %�& �5( of feasible solutions and a vector �I6�� � of objective function
coefficients, find a set � � 6 � with

#
�� ��
 �


� max

� # 
�� � �


4 � 6 ��� �

The relation between linear combinatorial optimization problems and (integer) linear
programming is as follows. We can characterize the feasible solutions by means of an



 Chapter . Preliminaries

incidence vector � . Every feasible solution
� >?� defines an element ��� 6 � � in the

following manner:

� �



�

�
� � 6 �

+ � �6 �
�

Every linear combinatorial optimization problem then corresponds to a polytope

���4� conv 	 � � 4 � 6 � �
that is defined by the convex hull of the incidence vectors of feasible solutions. Now the
combinatorial optimization problem can be written as

max 	�� ! � 4 � 6 ����� � (.)

The linear description is an equivalent description of the polytope ��� in terms of a linear
program, see, e.g., (Schrijver, ):

max 	�� ! � 4�P � 9��2� � (.)

Let T�6 � � �F	 + � be a vector. An inequality T ! � 9 T � , where T � 6 � is a scalar, is
valid with respect to the polytope ��� if ����> 	 � 6 � � 4 T ! � 9=T � � . We can optimize a
linear objective function over a polytope in polynomial time if and only if we can solve the
separation problem in polynomial time (Grötschel, Lovász, and Schrijver, ; Padberg
and Rao, ; Karp and Papadimitriou, ). The separation problem can be stated as
follows: Given a vector �� 6 � � , find a vector TC6H� � and a scalar T �:6H� so that
T ! �� 9=T � is a violated valid inequality with respect to ��� , that is T ! �� ) T � , or prove that
no such pair &'T"��T �Q( exists.

Unfortunately, for most of the interesting combinatorial optimization problems, only
a small fraction of the linear description is known. For NP -hard optimization problems,
the full linear description cannot be found, unless NP is equal to co-NP (Karp and Pa-
padimitriou, ). However, in many cases it is practicable to find a linear program with
additional integrality constraints, i.e., an integer linear program, to give a characterization
of the integral points within the polytope.

In the following, we present generic algorithmic approaches to solve linear combina-
torial optimization problems that exploit the equivalence of the original problem and an
appropriate integer linear program. In this thesis, we will develop several zero-one integer
linear programs, and we will explain the generic algorithms within the context of zero-one
problems.

Linear programming-based branch-and-bound is a divide-and-conquer technique that
solves the original problem by splitting it recursively into smaller subproblems, resulting
in a tree of subproblems. For every subproblem, a branch-and-bound algorithm computes
local upper bounds and tries to improve a global lower bound . Initially, the global lower
bound is usually initialized by a heuristics.

The root of the enumeration tree corresponds to the original problem, and nodes that
are not leaves of the tree have exactly two children. One of these children corresponds to

 Note that in a minimization problem, the lower bounds are local, and the upper bound is global.
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the subproblem in which one binary variable (the branching variable) is set to zero, and
the other one represents the problem in which the branching variable is equal to one. In
many cases, a branch-and-bound algorithm is as successful as the computation of upper
bounds at the inner nodes of the enumeration tree. At each node, a local upper bound
� loc can be computed by solving the -relaxation for the corresponding subproblem.

Three cases arise regarding the relation of the upper bound and lower bounds.

. If the solution of the relaxation happens to be feasible for the original problem
and its objective function value exceeds the current global lower bound

�
glob, the

algorithm updates the lower bound and memorizes the solution. Additionally, the
current node is fathomed, since no optimal solution of subproblems corresponding
to descendants of that node can be better than the current solution.

. In case the local upper bound is lower than, or equal to the global lower bound, the
algorithm fathoms the current node of the tree for the same reasons as above.

. A third case arises if the local upper bound exceeds the global lower bound and the
optimal solution of the -relaxation is not feasible for the original problem. In
this case, the algorithm performs a branching step by selecting a binary branching
variable and adds the resulting two problems in which the chosen variable is fixed
to zero and one, respectively, to the list of subproblems.

In addition to determining the local upper bounds, the fractional solutions of -
relaxations can also be used to improve the global lower bound. Problem-specific heuristics
may exploit the information given in the fractional solution for the relaxation, e.g. by
rounding or by setting variables according to a certain threshold.

At the beginning of the computation the list of subproblems contains only the original
problem. The algorithm repeatedly selects an open subproblem from this list, computes
the lower and upper bounds and, depending on the bounds, performs one of the above
three operations. If the list of subproblems is empty, the memorized solution that corre-
sponds to the global lower bound is the optimal solution.

Algorithm . summarizes the steps of the generic branch-and-bound algorithm.
Branch-and-cut algorithms extend -based branch-and-bound techniques by com-

bining them with the cutting plane approach . We will only give a sketch of the algorithm,
a detailed description can be found, e.g., in (Jünger, Reinelt, and Thienel, ).

We start with a description of the cutting plane approach. Suppose the description of
a combinatorial optimization problem as a zero-one integer linear programming problem
contains a potentially exponential number of inequalities. A cutting plane approach starts
with an -relaxation that arises from considering only a small subset of the inequalities
and computes an optimal solution for the corresponding linear program. In a following
step, the algorithm tries to find violated inequalities, e.g., by considering the separation
problem for certain classes of inequalities. If no violated constraint exists, the solution is
also optimal for the original problem. Otherwise, the new inequalities cut off the solution
for the relaxation. Algorithm . illustrates a simple cutting plane approach.

Depending on the hardness of the separation problem, either exact or heuristic al-
gorithms may identify violated inequalities. Note that in the case of a heuristic strategy
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Algorithm . Generic branch-and-bound algorithm

Input: Integer linear program
 = max 	�� ! � 4�P � 9�� � � 67� � � �

$
6�	 +���� � for all R�6 � �

Output: Optimal solution for 

yes

no

yes

yes

no

no

stop

output

list empty

initialize

start

�
glob ��� loc feasible

branch

select

fathom

compute
global lower
bound

�
glob

and local
upper bound
� loc

violated constraints may exist that are not found by the separation algorithm. However,
Gomory () shows that a general cutting plane based on rounding can always be found.
Hence, Algorithm . terminates after a finite number of steps.

Algorithm . Generic cutting plane algorithm

Input: Integer linear program
 = max 	�� ! � 4�P � 9�� � � 67� � � �

$
6�	 +���� � for all R�6 � �

Output: Optimal solution for 

: & P 	 � � 	 ( = small subset of & P � ��( ;
: repeat
: solve the linear program � ! �� � max 	�� ! � 4�P 	 � 9�� 	 � � 6 � � � ;
: if �� not feasible for  then
: generate cutting plane & TE��T ��(���T�6 � � �QT � 6 � with T ! �� ) T � and T ! � 9 T �

for all �O6�	 � 4�P � 9���� �

$
6 	 +�� � � for all R)6 � � ;

: add T ! � 9IT � to &'P 	 � � 	 ( ;
: until �� is feasible solution of 

Branch-and-cut algorithms search for cutting planes at every node of the branch-
and-bound enumeration tree, thus improving the bound of the -relaxation. For many
linear optimization problems extending the branch-and-bound framework by additional
problem-specific and tight cutting planes decreases the number of nodes needed in the
enumeration tree significantly and leads to highly successful algorithms in practice.
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Throughout this thesis constraint graphs play an important role. This chapter de-
fines basic concepts and introduces several properties that are important for this work.
Informally, directed edges of a constraint graph represent precedence constraints between
objects corresponding to their source and target nodes. Weights on the arcs may addi-
tionally specify these relations. Constraint graphs occur in many areas; among them are
artificial intelligence (constraint satisfaction problems, temporal and spatial reasoning),
operations research (scheduling, systems of difference constraints), and  design. In
scheduling, for example, the nodes of a constraint graph correspond to the jobs and the
weighted edges characterize the temporal constraints between these jobs. In the area of
 design, automatic design tools use constraint graphs to represent the placement con-
straints between the components that make up a chip layout. In this thesis, we will use
pairs of constraint graphs with a similar meaning as in symbolic chip layout. All of these
areas use different notations and identical or similar results have been developed in dif-
ferent contexts. This chapter summarizes these results and presents constraint graphs in a
way suitable for further usage in orthogonal placement problems.

It turns out to be a crucial problem to compute so-called assignments for constraint
graphs, i.e., values for the nodes of a constraint graph that respect the precedence con-
straints coded in the arcs. In the following chapters on compaction and map labeling
these assignments will play an important part in setting the coordinates of the orthog-
onal objects: in two-dimensional compaction problems in graph drawing, assignments
determine the coordinates of vertices and bends, in map labeling problems, they fix the
positions of the labels.

Two-dimensional compaction problems in orthogonal graph drawing and map label-
ing problems have several interesting characteristics in common: First, both problem types
ask for a placement of iso-oriented objects, i.e., their solutions are fully characterized by a
set of line segments that are parallel to the axes of the Cartesian coordinate system. There-
fore, it suffices to specify the coordinates of these line segments. Second, we already know
some placement relations in advance—in a compaction problem this information stems
from the shape of the drawing, whereas in a labeling problem the labels have to be placed
in certain, predefined regions. A third common feature of both problems types is that they
decompose naturally into two largely independent subproblems: Since the underlying ob-
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jects are iso-oriented, this results in a horizontal and a vertical problem component.
Our new approach to these types of orthogonal placement problems is based on a

pair of constraint graphs—one for each problem component. Nodes in the horizontal
constraint graph L � correspond to � -coordinates of problem-specific objects. Weighted
directed edges represent horizontal distance relations between the objects that correspond
to the respective endpoints. Similarly, the directed graph L � codes the vertical relation-
ships. The key idea is to treat both components separately to the greatest possible extent
and to link them with additional constraints at their points of contact. In this work, con-
straint graphs serve the purpose to transfer the originally geometric problem formulations
into a combinatorial environment: Both the compaction and the map labeling problems
will be reformulated as combinatorial problems in a pair of constraint graphs.

Definition . (Constraint graph). A constraint graph is a weighted directed graph L@�
&'NO�QP ��<F( with arc weights < ��P � � . The graph is associated with an assignment
��� N � � . An arc T5�C&DR � S (G6 P corresponds to the inequality

� & S ( ! � &DR ( /I< &'T ( � (.)

Definition . (Types of assignments). An assignment ��� N � � is feasible for a
constraint graph L@� &+NO��P ��<K( if it satisfies all constraints encoded in the weighted arcs
set P . The span of an assignment � is its maximal minus its minimal value, i.e.,

sp & ��()� max �
�
� � &D� ( ! min �

�
� � &D� ( �

The distance of an arc T5�C&DR��+S (G6 P is
� &'T (,��� & S�( ! � &DR+( �

and the distance of an assignment is the sum of the distances of its arcs, i.e.,
� & �2(,� #

� %��
$
� �
	

� � � & T (,� #� $ � �
	 � � � & S�( ! � &DR+( �
A feasible assignment � is:;< ;= minimal if its span sp & �2( is minimal

minimax if the largest distance max �
� � � & T�( is minimal

�
-minimal if its distance

� & �2( is minimal

among all feasible assignments. An assignment respects an arc set � if it is feasible for the
subgraph induced by � .

Observation .. A feasible assignment � for a constraint graph L is feasible for every
subgraph of L .

Proof. Assume � is not feasible for a subgraph L � of L . Then there exists an arc T �C&DR �+S�(
in L � with � � ! �

$
� <�� . Since all arcs of L � are also contained in the arc set of the

supergraph, the same situation occurs in L , resulting in the contradiction that � is not
feasible for L . Informally speaking, a solution which respects a set of constraints will also
satisfy each subset of this constraint set.
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Constraint graphs have a strong connection to minimum-cost flow problems and in
particular to shortest path problems. The assignment function � of Definition . is closely
related to the node potentials in network flow theory (see, e.g., Ahuja, Magnanti, and
Orlin, ): Substituting -"&DR ( � ! � &DR+( for all RG6 N and

� &'T (�� ! < & T ( in (.) results
in

-"& S�(�9=-"&DR+( � � &'T (��
the optimality condition for shortest path distances - . This equivalence will be exploited
in the computation of feasible assignments in Sections .- ..

It is easy to see that a minimal assignment may not be
�

-minimal. But also
�

-
minimality, although seemingly the stronger criterion, does not imply minimality:

Lemma .. A
�

-minimal assignment is not necessarily minimal.

Proof. Consider the constraint graph in Figure . and the two assignments in (a) and
(b). The distance � �

$
� �
	

� � � & S�( ! � & R+( is  in the
�

-minimal assignment (left) and 

in the minimal assignment (right), so the assignment in Figure .(b) is not
�

-minimal.
The span, however, is  in the left assignment and only  in the right assignment, so the
assignment in Figure .(a) cannot be minimal.

(a) � -minimal assignment (b) Minimal assignment

�

�

�

�

�

�

�

�

�

�

�

�

Figure .: Two assignments, ���
	���
�� for all arcs 	

We will often deal with paths in constraint graphs. Summing up the individual in-
equalities for each arc in a path leads to the following observation.

Observation .. Let L
� &'N ��P ��<F( be a constraint graph, let � be a feasible assign-
ment for L , and let � � . &D� 
���� ��(���&D� ��������(Q� � � � ��&D��� �"
Q������( 1 be a path in P . Then the
following inequality holds.

� & � � ( ! � &D� 
 ( / ���"
# $ % 
 < .�& �
$
���
$
� 
 ( 1 �

Computing feasible, minimal, minimax, or
�

-minimal assignments for constraint
graphs is the core of our new approaches to compaction and map labeling problems which
we will present in Chapters  and . The following well-known theorem characterizes
circumstances under which a constraint graph admits a feasible assignment.

 Often, even � is referred to as a potential in the literature. We stick to the term assignment, however,
to avoid confusion with the potentials in the related shortest path problems.
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Theorem . (e.g., Cook et al. ()). Given a constraint graph L
� &'N ��P ��<F( . A
feasible assignment � � N � � exists if and only if P does not contain a directed cycle of
positive weight.

Theorem . characterizes in which cases feasible assignments exist but does not state
how to generate them. The following sections contain algorithms that compute minimal,
�

-minimal, and minimax assignments. We consider various special cases that allow for
more efficient algorithmic solutions.

. Computing Minimal Assignments

Let L � &'N ��P ��<F( be a constraint graph. In this section we demonstrate that finding
a minimal assignment � in L corresponds to solving a shortest path problem in a related
graph. The interpretation of � in the original graph corresponds to longest paths . Whereas
the problem of computing longest paths in a directed graph with general arc weights is
NP -complete, (see, e.g., Garey and Johnson, ), it can be solved efficiently in the
absence of positive cycles. The resulting methods which we will present in the following
are also referred to as longest path methods . In operations research, the relation between
assignments and longest paths in the constraint graphs is known as the min-potential
max-work theorem, see, e.g., (Grötschel et al., ).

In order to access the minimal and maximal values in � we introduce two new nodes
in N ; a super source � and a super sink

�
. We require

� & � ( 9�� &DR ( 9�� & � ( for all R)6�N �

The corresponding arcs that have to be added to P are

P � � 	 & ����R ( 4 R�6�N � and P � � 	�& R � � ( 4 R�6 N �
of weight

< &'T (,��+ for all T 6 P � � P � �
The computation of a minimal assignment � then corresponds to solving the following

linear program:

min � & � ( ! � & � ( (.)

subject to � & S�( ! � &DR+( / < & T�( � T �C&DR � S (G6 P
� &DR+( ! � & � ( /�+ � R)6�N
� & � ( ! � & R+( / + � R)6�N

We substitute
� & T ( � ! < & T ( for all TI6 P � P � � P � and -"&DR+( � ! � &DR ( for all R 6

N � 	
��� � � and rewrite problem (.) as

max -"& � ( ! -"& � ( (.)

subject to -"& S ( 9I-"&DR ( � � & T ( � T � & R �+S�(�6�P � P � � P �
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Problem (.) is dual to a shortest path problem (see Definition . on page ) and
can be solved with the Bellman-Ford algorithm. Algorithm . on page  summarizes the
steps to compute a minimal assignment, and Figure . shows the sequence of steps with
an example. The first two pictures show the constraint graph in which the assignment
should be computed before and after insertion of P � and P � . Figure .(c) shows the
shortest path tree, Figure .(d) displays the initial constraint graph together with the
minimal assignment.

Algorithm . Bellman-Ford assignment

Input: Constraint graph LH�C&'N ��P ��<F(
Output: Minimal assignment for L or detect positive cycle

: introduce super source � and super sink
�
;

: add the arcs in P � and P � ;
: for all T 6 P � P � � P � do

� & T (,� ! < & T�( ;
: compute shortest � - � path in L with lengths

�
using the Bellman-Ford algorithm,

store the distances in - ;
: if Bellman-Ford detects negative cycle then
: output “positive cycle”;
: else
: delete � , � and the incident arcs P � and P � ;
: for all R�6�N do � &DR+()� ! -E&DR+( ;

Theorem .. Algorithm Bellman-Ford assignment computes a minimal assignment for a
constraint graph L@� &+NO��P ��<K( or reports a positive cycle in time � & 4 N 4 � 4 P 4 ( .
Proof. For the proof of correctness note that the constraints that correspond to the addi-
tional arcs in P � and P � do not interfere with the original constraints. Furthermore, the
corresponding arcs do not induce cycles in the graph since P � � P � is a set of disjunct� - R - � -paths for all nodes R,6 N .

The above transformation from (.) to (.) shows the correspondence between the
negative distance values in the shortest path problem and the values for the assignment.
The correctness of Theorem . follows from the correctness of the Bellman-Ford algo-
rithm for computing shortest paths (Bellman, ; Ford and Fulkerson, ; Moore,
).

The running time is clearly dominated by the time needed for the shortest path com-
putation that is � &�4 N 4 � 4 P 4 ( . Steps (), () and () take time � & 4 P 4 ( , step () takes time

� & 4 N 4 ( and the other steps can be done in constant time.

The following remarks consider two special cases that lead to more efficient algorithms
for the computation of a minimal assignment.

Remark .. In case a feasible assignment is known in advance, an observation by Ma-
ley () allows us to use Dijkstra’s shortest path algorithm in line () of Algorithm .
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(a) Constraint graph � ; arcs labeled
with weights

(b) After execution of line ; arcs labeled with
lengths, unlabeled arcs have length zero

(c) Shortest path tree after execu-
tion of line ; nodes labeled with �

(d) After execution of line ; constraint graph � ,
nodes labeled with assignment �
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Figure .: Computing a minimal assignment by solving a shortest path problem from super source
� to super sink �
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(Dijkstra, ). Changing the weight to

< 	 & T�(4�;< & T�(�� � & S�( ! � &DR+( � T5�C&DR �+S�(G6 P (.)

results in a constraint graph LH� &'N ��P ��< 	 ( with non-positive weights. The transforma-
tion (.) preserves the shortest paths. Since the lengths in the shortest path computation
are equal to the negative weights, we can use Dijkstra’s algorithm; the running time of
Algorithm . is then � & 4 P 4 � 4 N 4 #�����4 N 4 ( .
Remark .. Lengauer and Mehlhorn () present a linear time algorithm in case the
constraint graph is a so-called chain-dag, i.e., if it consists of disjoint chains of antiparallel
arcs.

We now consider the important special case in which all arc weights are non-negative.
If a constraint graph L satisfies this property, then each cycle in L has positive weight.
The absence of arcs with negative weight enables us to use a more efficient algorithm to
compute a minimal assignment—we exploit the fact that shortest paths can be computed
considerably faster in acyclic graphs. In operations research, the longest path in an acyclic
constraint graph is also known as the critical path , since its length determines the span
of the assignment. In project scheduling, for example, the span corresponds to the min-
imum project duration. Algorithms for this problems are also referred to as critical-path
methods .

Algorithm . Topological Order assignment

Input: Constraint graph LH�C&'N ��P ��<F( with < & T�(�/�+ for all T 6 P
Output: Minimal assignment for L or detect positive cycle

: introduce super source � and super sink
�
;

: add the arcs in P � and P � ;
: for all T 67P � P � � P � do

� & T (4� ! < & T�( ;
: compute shortest � - � path in L with lengths

�
using topological order, store the dis-

tances in - ;
: if the topological order algorithm detects cycle then
: output “positive cycle”;
: else
: delete � , � and the incident arcs P � and P � ;
: for all R�6�N do � &DR+()� ! -E&DR+( ;

Theorem .. Algorithm Topological Order assignment computes a minimal assignment
for a constraint graph L �@&'N ��P ��<F( with < &'T (�/ + for all T 6 P or reports a positive
cycle in time � &�4 N 4 � 4 P 4 ( .
Proof. The correctness follows by similar considerations as demonstrated in the proof of
Theorem . and by the correctness of topological sort (Knuth, ). As for Algorithm .,
the running time is dominated by the time needed to compute the shortest paths or to
detect a cycle. In the case of non-negative arc weights the time is � & 4 N 4 � 4 P 4 ( .
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. Computing
�

-Minimal Assignments

The previous section demonstrates the computation of minimal assignments by solving
a shortest path problem. In this section, we consider the computation of

�
-minimal

assignments. We will present an algorithm that constructs such an assignment by solving
a dual network flow problem and by obtaining the primal solution through a computation
of shortest paths in the residual network.

Like in the case of minimal assignments we take a closer look at the linear program
that corresponds to the problem of finding a

�
-minimal assignment:

min
#
�

$
� �
	

� � � & S ( ! � &DR ( (.)

subject to � & S�( ! � &DR+( / < & T ( � T5� & R �+S�( 6�P �

We rewrite (.) by rearranging the objective function by means of the net degree as
defined on page :

min
#
�
�
�

6
net &D� (�� � & � ( (.)

subject to � & S�( ! � &DR+( / < & T ( � T5� & R �+S�( 6�P �

The dual of (.) is

max
#
�
� � < & T�( � � & T ( (.)

subject to
#
� � �

$
	

� � � .�& S���R ( 1 ! #
�

$
� �
	

� � � .�& R �+S�( 1K�
6

net &DR+( � R�6�N

� & T ( /�+ � T 67P �

By rearranging (.) to

min
#
�
� � ! < &'T (�� � & T�( (.)

subject to
#
�

$
� � 	

� � � . &DR � S ( 1 ! #
� � �

$
	

� � � . & S ��R+( 1 � ! 6 net &DR ( � R�6�N

� &'T ( /�+ � T 6 P �

it is in the standard form of a minimum-cost flow problem, see Definition . on page .
Note that supplies and demands sum up to zero, i.e., � �

�
�
! 6

net & � (K� + , and that we
may choose global capacities that are equal to the sum of all supplies, see, e.g., (Ahuja et al.,
). Moreover, the underlying network of (.) is the original constraint graph L , the
costs of the arcs are their negative weights—similar as in the previous section—and the
supplies and demands of the nodes are equal to their negative net degree.

Solving this minimum-cost flow problem leads to a dual solution that consists of values
� & T�( for each arc T in L . Employing duality theory for minimum-cost flow problems
allows to reduce this problem again to a shortest path problem; to get a primal solution,
we have to compute shortest paths in the residual network (see, e.g., Ahuja et al., ).
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Algorithm . Dual minimum-cost flow assignment

Input: Constraint graph LH�C&'N ��P ��<F(
Output:

�
-minimal assignment for L or detect positive cycle

: for all � 6�N do � & � ()� ! 6 net &D� ( ;
: for all T 67P do � & T (,� ! < &'T ( ;
: compute minimum-cost flow � in L with supply vector � and costs � ;
: if the minimum-cost flow algorithm detects a negative-cost cycle then
: output “positive cycle”;
: else
: construct residual network A w.r.t. the flow � ; // the node set of A is N
: � = arbitrary node in N ;
: compute shortest paths from � in A w.r.t. lengths that are equal to the costs in N � ,

store the distances in - ;
: for all R�6�N do � &DR+()� ! -E&DR+( ;

Theorem .. Algorithm Dual Minimum-Cost Flow assignment computes a
�

-minimal
assignment in a constraint graph &'N ��P ��<F( or reports a positive cycle in time

� . &�4 P 4 #�����4 N 4 (�&�4 P 4 �34 N 4 # ��� 4 N 4 ( 1 �
Proof. The correctness follows by the transformation from (.) to (.), by the cor-
rectness of the minimum cost flow algorithms, and by the shortest path optimality con-
ditions, see, e.g. (Ahuja et al., ). The running time of Algorithm . is dominated
by the the computation of a minimum cost flow in line (). The capacity scaling algo-
rithm due to Edmonds and Karp () accomplishes this task in time � . & 4 P 4 # ����B (
& 4 P 4 � 4 N 4 # ��� 4 N 4 ( 1 , where B is an upper bound for the largest supply or demand.
In Algorithm ., the supplies and demands depend on the net degree, and it holdsB � � & 4 N 4 ( .
Remark .. In case the cost of an optimal solution of the minimum-cost flow problem
is low, the algorithm by (Garg and Tamassia, ) results in a better running time. Let
� be the cost of a minimum-cost flow. Line () in Algorithm . can be executed in time
� & � ����� 4 P 4 � # ����4 N 4 ( .

Figure . illustrates the computation of a
�

-minimal assignment with Algorithm ..
The constraint graph in the figure is the one from Figure .(a). The first picture, Fig-
ure .(a), shows the network of the dual problem. Since this network has negative costs,
we transform it into an equivalent network, displayed in Figure .(b). All capacities can
be set to the total supply of the nodes. The next two pictures show the minimum cost flow
in the transformed and the original network, respectively. Based on the latter we construct
the residual network displayed in Figure .(e). Negative shortest path distance values in
this network constitute the

�
-minimal assignment. For a more detailed explanation of

the transformations and the concept of residual networks, see (Ahuja et al., ).
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(a) Dual network of constraint graph � in
Figure .(a); arcs labeled with costs, nodes
labeled with supply/demand

(b) The transformed network. All capac-
ities are equal to five, arcs labeled with
costs

(c) Minimum-cost flow in transformed
network

(d) Minimum-cost flow in the network displayed in (a).
Arcs with non-zero flow labeled with flow values

(e) Residual network with respect to
the flow. Arcs labeled with (capac-
ity/cost)

(f ) Original constraint graph with � -minimal
assignment that is equal to the negative shortest
path distances in the residual network
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Figure .: Computing a � -minimal assignment by solving a dual minimum-cost flow problem
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Theorem .. Let L��@&+NO��P ��<K( be a constraint graph. If all weights are integral, then
minimal and

�
-minimal assignments with integral values exist.

Proof. The result follows from the integrality property of minimum-cost flow problems,
see, e.g. (Ahuja et al., , Theorem .). The same holds for shortest paths problems
since they are special flow problems. Furthermore, algorithms exist that compute integral
assignments. Throughout this thesis, we will assume that Algorithms . and . compute
integral assignments for integral input data.

Remark .. In the next two chapters we introduce a new approach to solve orthogonal
placement problems by using a pair of constraint graphs. Assignments for such a pair of
graphs will determine the coordinates of a graph drawing or the placement of labels.

There is, however, another application of constraint graphs in the field of graph draw-
ing, the algorithm by Sugiyama, Tagawa, and Toda (). This method for drawing
hierarchical graphs works in three phases. The first phase of the algorithm, also referred
to as rank assignment, partitions the vertex set into subsets called layers. The layers de-
termine the � -coordinate of the vertices in a drawing. Similar as in orthogonal graph
drawing, one optimization goal of this phase is to keep the edges short—the problem in
the rank assignment phase is equal to a one-dimensional compaction problem.

Gansner, Koutsofios, North, and Vo () mention that an optimal rank assignment
(which corresponds to a

�
-minimal assignment in the corresponding constraint graph)

can be computed via minimum-cost flow but describe a rather complicated network-
simplex method to solve the problem. The rank assignment problem in hierarchical graph
drawing can be solved optimally by applying Algorithm ..

. Computing Minimax-Assignments

Let � max be a variable that corresponds to largest distance of an arc in a constraint graph
L@�?&+NO��P ��<K( . We express the problem to find a minimax assignment by the following
linear program.

min � max (.)

subject to � & S�( ! � &DR+( / < & T�( � T �C&DR � S (G6 P
� & S ( ! � &DR (�9�� max � &DR��+S�( 6�P

The linear program (.) can be solved in polynomial time and determines a minimax
assignment for the constraint graph L .





C

 Compaction in Graph Drawing

kompakt [lat.-fr.]: . (ugs.) mas-
sig, gedrungen. . undurchdring-
lich, dicht, fest. . gedrängt, kurzge-
fasst, das Wesentliche zusammenfü-
gend.

Duden. Fremdwörterbuch.

In the area of graph drawing, the term compaction denotes the process of transforming
a given orthogonal representation into an actual drawing, i.e., the last phase within the
topology-shape-metrics scheme. The goal is to produce an orthogonal grid embedding
with short edges that does not require too much area; the most common optimization
criteria are width, height, half-perimeter, area, and total and maximum edge length of
the resulting drawing. In the final phase of the topology-shape-metrics scheme in graph
drawing, minimizing total edge length and area are the primary goals. Figure . shows
that different drawings of the same orthogonal representation do not necessarily have to
be very similar.

Figure .: Three different drawings of the same orthogonal representation

Traditionally, due to its origin in the area of  design, compaction also refers to
changing an existing layout in order to improve one or more of the above criteria. 

circuits can contain more than a million elements which are organized into subcircuits,
the so-called components. Layout problems emerging in chip design deal with positioning
components and their interconnecting wires according to a set of design rules and mostly
ask for a placement of minimum area.

This chapter contains a common formal framework for compaction problems that is
based on a pair of constraint graphs. First, in Section ., we formally introduce the two-
dimensional compaction problems we deal with in this chapter and present corresponding
complexity results.

The core of this chapter is Section . where we develop a combinatorial characteri-
zation of the compaction problems: We introduce two special constraint graphs—one for
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each direction of the compaction—and show that if this pair of graphs satisfies the path-
and cycle-based combinatorial property of completeness we are able to solve the two-
dimensional compaction problems in polynomial time. We present previously known
compaction heuristics that are based on polynomial-time compactible classes of orthog-
onal representations in the light of the new characterization. We distinguish between
constructive heuristics that produce a feasible drawing for a given orthogonal represen-
tation and improvement heuristics that transform existing solutions in order to achieve
better solutions. In particular, we take a closer look at the one-dimensional compaction
scheme and study properties of algorithms within that scheme. We conclude the section
by deriving combinatorial reformulations of the two-dimensional compaction problems.

Based on these new combinatorial problem versions, we develop exact polynomial-
time compaction algorithms in Section .. We present both branch-and-bound and
branch-and-cut algorithms that are based on integer linear programming formulations
for the new combinatorial problems. We also discuss related exact techniques from the
area of  design and compare the approaches.

Section . contains a comprehensive computational study and comparison of differ-
ent compaction algorithms. The chapter ends with the conclusions we draw from our
experimental results.

. Compaction Problems

The compaction problems we consider in this chapter emerge in the area of graph draw-
ing and are similar, but not equal, to compaction problems in  design. This section
provides formal definitions of the compaction problems as they occur within the topology-
shape-metrics approach to orthogonal graph drawing. As described in the previous chap-
ter, algorithms that fit in this scheme produce in their second phase a simple orthogonal
representation

�
that fixes the shape of an orthogonal drawing of a given four-planar

graph
�

. The last step within the scheme is the compaction phase. It is concerned with
assigning coordinates to the vertices in

�
which may correspond to vertices in

�
or to

bends along the edges of
�

. At this point the topology as well as the orthogonal shape of
the drawing are fixed.

This is one of the issues distinguishing the compaction problems of this chapter from
those in  design. The fabrication of a  chip is often modeled in two phases: A first
step deals with the placement of the components; here two of the most common goals
are to minimize the estimated area or total wire length. The second step is concerned
with finding the paths for the wires. Each wire connects two specified positions of the
components. The two steps are usually referred to as the placement phase and the routing
phase. Compaction is a post-processing step in  design. Often, a more detailed speci-
fication divides the layout problem into the phases component placement, global routing,
topological compaction, detailed routing, and geometrical compaction.

The compaction problems in  are more difficult than in graph drawing: Although
 compaction also denotes the process of transforming a topological description, known
as symbolic layout , into an actual placement, the physical mask layout , it is at the same
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time closely related to the fabrication technology. Many of the technological aspects, e.g.,
electrical stability properties or interaction between the circuit elements do not translate
easily into a combinatorial description.

A symbolic layout consists of graphic symbols that represent circuit elements com-
monly known as features , e.g., transistors, contacts, and capacitators. Design rules model
the relative placement of these features. The rules include shape and minimum size rules
that describe the shape of components which in turn consist of several features. Additional
separation rules between different components require minimum distances that have to be
respected during the fabrication process.

The major difference between compaction problems in  and in graph drawing is
that a topological description given by the design rules needs not fully specify the embed-
ding of the underlying graph. A symbolic layout may still allow the permutation of wires
along the boundary of a component, whereas in an instance of the compaction problem
within the topology-shape-metrics scheme the topology is fixed. A second difference be-
tween problems in the two research areas is that research in  design concentrates on
fast compaction strategies due to the large sizes of instances.

Common to both  and graph drawing is that the compaction process has an in-
fluence on a variety of optimization goals. In the area of graph drawing, the compaction
phase affects several of the aesthetic criteria that measure the quality of a drawing

�
:

– The area P & � ( of the smallest surrounding iso-oriented rectangle should be as small
as possible. The more area a drawing uses, the more it has to be scaled down in
order to fit on a computer screen or a sheet of paper (here, the aspect ratio TE& � (
plays a role, too). Similar criteria are the width

� & � ( and height
� & � ( of the

drawing, and their sum, the half-perimeter � & � ( . Area minimization is the most
important goal in  design, since the area used by a chip has a large effect on its
delay, i.e., the time the electrical signals need to pass through the wires of the chip.
Furthermore and more importantly, the area has a direct impact on the percentage
of correctly working chips. This parameter is also called the chip yield and often
depends exponentially on the area of the layout.

– Short edges allow a better understanding of a drawing, since they keep related ob-
jects close to each other. In , short wires improve the electrical qualities; their
length affects signal delay. In many applications the minimization of total edge
length

	 & � ( is the most desirable criterion. For certain problems it is more impor-
tant that every single edge is not too long, which results in the problem of minimiz-
ing the maximum edge length

�
max & � ( . E.g., in models of wire delay, the dependence

on the maximum edge length ranges from logarithmic to quadratic influence on the
cost function. In certain applications, some edges are more important than others
and should be kept short: This gives rise to a weighted total edge length minimiza-
tion problem. Even a request for uniform edge lengths is conceivable; this would
lead to the minimization of the deviations in edge length.

Unfortunately, these criteria cannot be optimized simultaneously. Figure . shows
three different drawings of the same representation, each optimizing a different criterion.
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None of these drawings is optimal with respect to one of the other criteria. However, in the
general case, the aesthetic criteria are not independent: In most cases, a drawing with short
edges will not cover a large amount of the drawing area and the maximum edge length will
also be reasonably small. We will also show in our experimental study (Section .) that
minimizing the total edge length has a positive influence on the other two optimization
goals. For area and maximum edge length, the situation is different. Since minimizing
the area affects mainly the boundary of a drawing

�
, edges in the middle of

�
may be

drawn unnecessarily long without any influence on the measure. Also exclusively aiming
at drawing the longest edge of a drawing short admits much freedom for the lengths of
the other edges that may result in a waste of drawing area.

� ��� ��� � �
� ��� ��� ���
�
max
��� ��� �

(a)

� ��� � � ���
� ��� � � �	�
�
max
��� � � �

� ��� � � ��

� ��� � � ���
�
max
��� � � �

(b) (c)

Figure .: Three drawings of the same representation. (a) Minimum area. (b) Minimum total
edge length. (c) Minimum maximum edge length

The following definition formalizes the most important optimization problems that
occur during the compaction phase in orthogonal graph drawing:

Definition . (Two-dimensional compaction problems in orthogonal graph drawing).
Given a simple orthogonal representation

�
, find an orthogonal grid drawing

�
of

�
of

minimum
(a) width

� & � ( (
�

-)
(b) height

� & � ( (
�

-)
(c) half-perimeter � & � ( ( � -)
(d) total edge length

	 & � ( (
	

-)
(e) maximum edge length

�
max & � ( (

�
max-)

(f ) area P & � ( ( P -) .

The differences between compaction problems in  and in orthogonal graph draw-
ing take effect in particular in complexity considerations. Almost all two-dimensional
compaction problems in  and graph drawing are NP -hard optimization problems
including those stated in Definition .. The techniques in the proofs, however, differ
considerably. Most complexity proofs for the problems exploit the fact that wires may be
swapped, or equivalently, the topology of the underlying graph may be changed (Dolev,
Leighton, and Trickey, ; Storer, ; Bhatt and Cosmadakis, ; Brandenburg,
; Gregori, ). This technique cannot be employed in a proof of complexity for the
problems in Definition ., since the topology of the input is fixed.



.. Combinatorial Characterization 

Dolev and Trickey () prove NP -hardness for P - in the case that the input
graph is allowed to be disconnected. Vijayan and Wigderson () mention the classifica-
tion for connected graphs as an open problem. Patrignani () shows that the decision
version of P - is NP -complete by a conceptionally elegant reduction from the satisfi-
ability problem . The  problem asks for a satisfying truth assignment for a collection
of clauses over a set of Boolean variables, i.e., an assignment of truth values so that at least
one literal in each clause is true. See (Cook, ) for an NP -completeness proof of .

In order to transform one instance to the other, Patrignani introduces a powerful
device, the so-called sliding-rectangles gadget. Given a formula � with � variables and �
clauses, he shows how to construct the gadget

� � &��4( which admits an orthogonal drawing
of area � � &��,( � & ��� ��� (�& ��� � ��( if and only if � is satisfiable. The proofs of NP -
completeness for the decision versions of

�
max- and

	
- are similar reductions

from .
Motivated by compaction strategies in  design, the following one-dimensional

problems appear in the context of improvement heuristics for the problems in Defini-
tion ..

Definition . (One-dimensional compaction problems in orthogonal graph drawing).
Given a drawing

� �?& � � � � � ( of a simple orthogonal representation
�

, find an orthog-
onal grid drawing

� 	 �
�
& � 	� � � � ( (horizontal one-dimensional compaction)

& ��� � � 	� ( (vertical one-dimensional compaction)

of
�

of minimum
(a) width

� & � ( (
�

-, horizontal compaction)
(b) height

� & � ( (
�

-, vertical compaction)
(c) total edge length

	 & � ( (
	

-)
(d) maximum edge length

�
max & � ( (

�
max-)

According to the above definition, only either � - or � -coordinates can change at a time;
clearly, minimizing width makes only sense during horizontal compaction and minimizing
height during vertical compaction. Furthermore, since the definition affects only one
dimension, minimizing half-perimeter or area is identical—from a one-dimensional point
of view—to minimizing width or height, depending on the direction of the compaction.
It is important to notice that the problem of minimizing one-dimensional width, height
and edge length is different from the related two-dimensional problems. The restricted
problems of Definition . are solvable in polynomial time; we will also show this in
Section .. where we present a generic improvement heuristics for the two-dimensional
compaction problems. We will describe algorithms in this scheme that repeatedly solve
one-dimensional subproblems to optimality.

. Combinatorial Characterization

In our combinatorial approach to the compaction problems of the previous section, con-
straint graphs play the central role. In this section, we define the placement graphs as a
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pair of special constraint graphs that are closely connected to the two-dimensional com-
paction problems in orthogonal graph drawing through the notion of segments. Segments
correspond to maximal sets of equally-oriented consecutive edges and are represented by
nodes in the placement graphs. We show that placement graphs with certain arc sets—the
shape graphs—correspond exactly to orthogonal representations and thus define a differ-
ent notion of orthogonal shape. We introduce the important concept of completeness—a
combinatorial property based on paths and cycles in a pair of placement graphs; a central
theorem shows that every pair of feasible assignments for a pair of complete placement
graphs which are defined on an orthogonal representation

�
leads to an orthogonal grid

drawing for
�

. Corollaries of this theorem yield exact polynomial-time algorithms for the
compaction problems in the special case that the shape graphs are complete. We review
previously known constructive and improvement heuristics for the compaction problems
and study the one-dimensional compaction scheme. Our observations motivate the refor-
mulations of the originally geometric problems as combinatorial problems: Given a pair
of shape graphs, the new task consists of optimizing over the complete extensions of these
constraint graphs.

.. Segments and Placement Graphs

As seen in Section ., the shape of a simple orthogonal drawing
�

of a four-planar graph� � &'34�Q� ( induces a partition of half-edges into the sets ���� , �� � , ���� , and �� 0 which
contain the half-edges pointing right, left, up, and down, respectively. This defines also a
partition of the edge set � into a set of horizontal edges � � and a set of vertical edges � � .
Definition . (Segment). Let

�
be a simple orthogonal representation of a four-planar

graph
� � &'34���5( . We call the vertex sets $ 6 < A of the maximally connected compo-

nents in &'34� �����( the horizontal segments � � of
�

. Similarly, we define the set of vertical
segments � � as the vertex sets of the maximally connected components in &'34� �� � ( . We
refer by � ��� � � � � to the set of all segments.

Since each vertex belongs to a unique maximally connected component, both the
horizontal and the vertical segments are a partition of the vertex set. We denote by hor &D9 (
and vert &D9 ( the unique horizontal and vertical segment a vertex 9 belongs to. We assume
as a convention that the sequence of vertices in the segments reflects their left-to-right and
bottom-to-top order.

Figure . shows an orthogonal grid drawing and the corresponding segments.
Observe that assigning a � -coordinate to each horizontal segment and an � -coordinate

to each vertical segment determines the coordinates of all the vertices in
�

. Whether the
coordinates satisfy the criteria of a drawing or not, however, depends on the values we
assign to � � and � � . We will investigate this relationship in the rest of this section.

The following lemma implies that the total number of segments is <74 3=4 ! 4 �:4 :
Lemma .. The number of horizontal and vertical segments is

4 � � 4�� 4 3 4 ! 4 � � 4 and 4 � � 4��,4 3=4 ! 4 � � 4 �
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Figure .: Horizontal and vertical segments of a simple orthogonal grid drawing

Proof. Induction on the number of edges 4 �:4��,4 � �;4 �34 ��� 4 .
Induction basis ( 4 �:4 � + ): The maximally connected components consist of single

vertices. Thus, 4 � �;4��,4 � � 4�� 4 384 .
Induction step ( 4 �:4 � 4 � 	 4 �,4 �:4 �;� ): Without loss of generality, let the additional

edge be horizontal; it causes a union of two horizontal segments. Then 4 3 	 4K�.4 384 ,4 � 	� 4 �,4 ��� 4 �;� and 4 � 	� 4�� 4 ��� 4 . It follows

4 � 	� 4��,4 � � 4�� 4 384 ! 4 ��� 4��,4 3 	 4 ! 4 � 	� 44 � 	� 4��,4 � � 4 ! �B� 4 3 4 ! 4 � � 4 ! �B� 4 3 	 4 ! 4 � 	� 4 �
The total number of segments is 4 3=4 ! 4 � � 4 � 4 3 4 ! 4 � � 4�� <74 384 ! 4 �:4 .

In the rest of this chapter, segments and relations between segments play a key role.
Therefore, we introduce the pair of placement graphs as a generic structure that is able
to express these relationships. In the following we will study several kinds of placement
graphs that are closely related to the compaction problems as described in Section ..

Definition . (Placement graphs, coordinate assignment). A pair of placement graphs
consists of two constraint graphs L � and L � and corresponds to a simple orthogonal
representation

�
. The node set of L � is the set of vertical segments � � , the node set of

L � consists of the horizontal segments � � . Let � � and � � be feasible assignments for L �
and L � , respectively. We call the pair & � � � � � ( a coordinate assignment for the pair of
placement graphs &'L � �QL � ( .

.. Shape Graphs

In this section we will define the shape graphs that provide a different notion of orthogonal
shape. Shape graphs are a special pair of placement graphs and correspond to a given
simple orthogonal representation. We will show that there is a unique pair of shape graphs
for each representation

�
and that this pair can be constructed in linear time.
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Definition . (Shape graphs). Let ���� , �� � , ���� and �� 0 be the partition of half-edges
induced by a simple orthogonal representation

�
. A pair of shape graphs L � �C&'N � , P � ,

< � ( and L � �H&+N � , P � , < � ( is a pair of placement graphs, i.e., N � � � � , N � � � � . Its
arc sets are

P � � 	�& vert &D9 (Q� vert &D<F( (�4�&D9"��<K(G6 ����Q�
P � � 	�& hor & 9 (Q� hor &D<F( (�4�&D9"��<F(G6 ���� � �

All arc weights are equal to one, i.e.,

<�� & T (,� � for all T 6�P �
< � & T (,� � for all T 6�P � �

Remark .. The unit arc weights express the minimum edge length if the aim is to com-
pute an orthogonal grid drawing. In a more general definition, the weights correspond to
arbitrary minimum distance requirements. Unless otherwise stated, we will assume unit
weights as in the above definition throughout this chapter.

Figure . shows a pair of shape graphs, continuing the example of Figure .. Note
that shape graphs are multigraphs.

� �
� $

���

� )
��� ���

���

Figure .: Shape graphs for the example in Figure .

The following lemma shows that shape graphs are an equivalent way of describing the
shape of an orthogonal representation and can be built in linear time.

Lemma .. Given a simple orthogonal representation
�

with � vertices, the correspond-
ing shape graphs are unique and can be computed in time � &D� ( .
Proof. Constructing the pair of shape graphs of

�
is straightforward. Using the partition

of half-edges, we can build the graphs as described by Definitions ., . and .: First,
we determine the segments by computing maximally connected components which takes
linear time. Then, for each half-edge �� in ���� � ���� , we link the corresponding nodes ac-
cording to the direction of the original edges. This takes also time � &D� ( since

�
represents

a planar graph.

In the following we will refer by �4& � ( to the unique pair of shape graphs L � and
L � that corresponds to the orthogonal representation

�
. The following lemma shows an

important property of shape graphs and implies that shape graphs are acyclic:
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Lemma .. Shape graphs are upward planar.

Proof. The upward planar embedding is defined by construction: Clearly, all arcs in L �
and L � point in the same direction since they correspond to half-edges of either rightward
or upward direction. We can imagine the arcs running along the half-edges which defines
the upward planar embedding (see Figure .).

.. Completeness

Consider a pair of placement graphs ( L � �QL � ( . We establish a relationship between the
nodes in the two constraint graphs by observing that each horizontal segment is bounded
by two (not necessarily different) vertical segments and vice versa. We express this fact by
the following definition.

Definition . (Limits). Let $ � 	 9 
Q� � � � ��9 � � be a segment and assume the indices
reflect the left-to-right and bottom-to-top order induced by the shape. We define four
vectors

� 6 � �� , � 6�� �� , � 6 � �� , and
� 6 � �� , the left, right, bottom, and top limit, as

follows: �
/ � vert &D9 
�( � / � vert &D9 ��(
� / � hor &D9 
�( �

/ � hor &D9 ��( �
Table . shows the limits of the segments in the example of Figures . and .. A

general property of the limits can be observed: A vertical segment is bounded from the left
and the right by itself, as well as a horizontal segment is bounded from below and from
top by itself, i.e., �

/ ��� / � $ for all $86 � �
� / �

�
/ � $ for all $86 � � �

� �
/�� � /��

�
/�� � /��

 	�
�	�
 	E

	E

 	 
 	�� 	 � 	 �
 	 
 	�� 	 � 	 �
 	���	�� 	 � 	 �
 	 
 	 
 	 
 	 �
 	 � 	 � 	 � 	 �
 	���	�� 	 � 	 �

Table .: Limits of the segments of Figure .

Definition . (Completeness). A pair of placement graphs is complete if and only if

(a) Both graphs are acyclic;
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(b) For all pairs of segments & � ��� ( with �
� ���� � the constraint graphs contain one of

the four following paths:

� � �! � ���
�
� �! � � �� � �! � � � � � �! � � � �

If one of the upper two paths exists, we call & �"��� ( horizontally separated, if one of the
lower two paths exists, we call the pair vertically separated. The pair is separated if it is
horizontally or vertically separated.

Remark .. The definition of completeness relies on the assumption that the arc weights
are non-negative. A more general definition that also holds for general arc weights requires
the absence of positive cycles instead of acyclicity in Definition .(a) and demands one
of the four paths in Definition .(b) to be of positive weight. We will need this extended
notion of completeness for the labeling graphs and for the shape and labeling graphs in
Chapters  and , see also Remark . and Definition . on pages  and .

Lemma .. A pair of placement graphs is complete if and only if it is acyclic and all
segment pairs of opposite direction are separated.

Proof. The forward direction of the proof is trivial. For the backward direction, assume
that there is a pair & �"��� (�6 �:J � which is not separated and every pair of opposite
directions is separated. Consider the following cases:

Case : & � ��� ( 6 � ��J � � or & � ��� ( 6 � �GJ � � . This is a contradiction to the assumption.

Case : & � ��� ( 6 � � J � � . Let
	 �H	 � � � � � � � � � � � � be the horizontal limits of � and � .

For each vertical segment �56 	
, we define

� &���( as the segment which is limited
by � and � &���( as the other horizontal segment. More precisely:

� � &���( � &���(� � � �
� � � ���� � �
�
� � �

Now consider the four segment pairs of opposite direction in �	
�

 	 &�� � � &��2(�(�� .

Note that � � � 	 	 � � &���( � � � � 	 	 and ��� �! � � &���( �! � � 	 for all �I6 	
. It

follows that none of the pairs is vertically separated, since��� � 	 	 �! � � 	 � � 	 �! � � � � 	 	
� � &��2( �! � � 	 � � 	 �! � � &���(
� � &��2( �! � � &���( � � &���( �! � � &���(
� � �! �
� � � �! � � �
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which is a contradiction to the separation of � and � .

For the horizontal part, note that
� 	 � � 	 � � for all � 6 	

. The horizontal
separation of the segment pairs &�� � � &��2(�( for � 6 	

is expressed by

� 	 �! � � � � 	 	 � � � � 	 	 �! � � 	
� � �! � � � � 	 	 � � � � 	 	 �! � � �

For each � , one of the two terms implies the separation of � and � and can be
eliminated. The remaining four terms induce two cycles in the graph, which is
again a contradiction to the assumption.

Case : & � ��� ( 6 � � J � � . This case is similar to the previous one.

Complete placement graphs have useful properties. The following central theorem
shows that feasible assignments for complete placement graphs result in grid drawings for
the corresponding orthogonal representation. We will show that the property of com-
pleteness characterizes exactly those placement graphs for which all feasible coordinate
assignments result in a valid placement of vertices and bends of the underlying represen-
tation. We will exploit this characterization in particular to compute minimal and

�
-

minimal assignments for complete shape graphs. Two corollaries of the following theorem
state that this leads to exact polynomial-time algorithms for most of the two-dimensional
compaction problems of Definition . in the case of complete shape graphs. Although
the general case, in which the shape graphs are not complete, is far more frequent, these
results build the fundament of new exact algorithms in the next section where we will
exploit Theorem . and its corollaries algorithmically.

Theorem .. Given a simple orthogonal representation
�

of a four-planar graph
� �

&'3 , � ( and a pair of complete placement graphs L � � &+N � , P � , < � ( and L � = &+N � , P � ,
< � ( for

�
. Every coordinate assignment & � � � � � ( for L � and L � results in an orthogonal

grid drawing for
�

.

Proof. Since both L � and L � are acyclic, Theorem . guarantees the existence of feasible
assignments; let & � � � � � ( be such a coordinate assignment. We construct an orthogonal
grid drawing

�
as follows. For all 9 6 3 we set

� &D9�(4� . � � & vert & 9 ( (Q� � � & hor &D9 ( 1
and draw each edge �F� & 9"��<F( 6�� as a line segment from

� &D9 ( to
� & <K( .

We show that
�

is indeed an orthogonal grid embedding by verifying the following
three criteria, see also Definition .:

. For 9 ��=<C6 3 it holds
� & 9 ( �� � & <K( .

Assume otherwise, i.e., 9���H< but both vertices occupy the same grid point. Let
��� hor & 9 ( , �I� vert &D9 ( , � � hor & <K( and

	 � vert & <K( as in Figure .. Note

 Note that
�

is simple.
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that the drawing does not reflect the actual coordinates � � & � (4��� � & 	 ( and � � & � (,�
� � &�� ( . Since the pair of placement graphs is complete, all pairs of segments must
be separated, in particular the segments � and

	
. We have the following cases (see

Definition .):

Case : �
� � � �! � 	 � � 
 .

Because of Observation . and feasibility of � � for L � we must have

� � & 	 ( ! � � & � (�) +;�
a contradiction to the horizontal alignment of 9 and < .

Case : � 
 � 	 �! � � � � �
. This case is symmetric to Case  and also leads to a

contradiction.

Case :
� 
 �! � � � .
The path requires that � � & � � (�) � � & � 
 ( . The definition of limits implies
� � & � � ( � � � & � ( and � � & 	 ( � � � & � 
 ( . Note that the limits reflect the left-
to-right and bottom-to-top order. Combining the inequalities results in
the contradiction

� � & � � ( � � � & � (4��� � & 	 ( � � � & � 
 ( � � � & � � ( �
Case :

� � �! � � 
 . This case is symmetric to Case  and also leads to a contradic-
tion.

Since all four possible cases lead to contradictions, a coordinate assignment for com-
plete placement graphs maps different vertices to different grid points.

	 �

�

�

�

�

Figure .: Placement of vertices in the proof of Theorem .

.
�

maps each edge &D9"��<F(G6 � to a path on the grid with endpoints
� &D9�( and

� & <K( .
By construction,

�
maps each edge � � &D9"��<K( to a line segment from

� &D9 ( to� &D<F( . For a horizontal edge &D9E��<F(F6 � � we have hor &D9 (�� hor &D<F( , hence 9 and
< have the same � -coordinate. Similar reasoning shows that endpoints of vertical
edges have the same � -coordinates.

. The line segments for edges overlap only at common endpoints.
Assume otherwise, i.e., there are two edges � 
 ��&D9 
 ��< 
 ( and � � � &D9 � ��< � ( that
cross in

�
. Lemma . allows us to assume without loss of generality that ��
 is

horizontal and � � vertical as depicted in Figure ..
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(a) Situation in
�

(b) Situation in placement graphs

���

�

� �

���

�

� �	@� � �
	*$

� $
� �
� $

Figure .: Crossing edges

Similar to the part of the proof for the vertex placement, we consider a segment pair
& �"��� ( . Since � 
 and � � cross, we must have

� � & � � ( � � � & � ( � � � & � � ( (.)

� � & � � ( � � � & � ( � � � & � � ( (.)

Separation of � and � requires at least one of the four cases:

Case : � � �! � � � � � .
Feasibility of � � and Observation . yield � � & � (�)�� � & � � ( , a contradiction
to (.).

Case : �
� � � �! � � � .

We get � � & � � (�)�� � & � ( , a contradiction to (.).

Case :
� � � � �! � � � .
We get � � & � � ( ) � � & � ( , a contradiction to (.).

Case :
� � �! � � ��� � .
We get � � & � ( ) � � & � � ( , a contradiction to (.).

Since all cases lead to contradictions, no edges share the same paths on the grid
unless they have common endpoints.

An interesting class of orthogonal representations are those having complete shape
graphs. Two corollaries of Theorem . demonstrate how to solve the compaction prob-
lems to optimality for this class of representations. A third corollary justifies to concentrate
on local completeness in order to obtain feasible solutions of the compaction problems.

Definition . (Complete orthogonal representation). An orthogonal representation
�

is complete if the corresponding shape graphs �4& � ( are complete.

Corollary .. Let
�

be an orthogonal representation of a four-planar graph
� � &+3 �Q� ( .

If
�

is complete, an orthogonal grid drawing
�

of minimum width
� & � ( , height

� & � (
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and area P & � ( for
�

can be computed in time � & 4 3=4 ( . The following bounds hold:

(a)
� & � ( 9 4 3=4 ! 4 � � 4

(b)
� & � ( 9�4 3 4 ! 4 ���;4

(c) � & � ( 9�<74 384 ! 4 �:4
(d) P & � ( � � & 4 3 4 � (

Proof. Let L � � &+N � �QP � ��< � ( and L � � &'N � ��P � ��< � ( be the corresponding pair of
shape graphs � & � ( and let � � and ��� be the horizontal and vertical edges induced by

�
.

Theorem . suggests an algorithm for computing optimal orthogonal grid drawings for
representations with complete shape graphs: For each of the graphs L � and L � we use
Algorithm . to determine a minimal assignment � � and � � . Since both L � and L � are
planar (Lemma .), we have P � � � &'N � ( and P � � � &'N � ( . Furthermore, we know
that 4 N � 4 �54 3 4 ! 4 � � 4 � � & 4 384 ( and 4 N � 4 �54 3=4 ! 4 � � 4 � � &�4 3 4 ( by Lemma ..
It follows P � � � & 4 3=4 ( and P � � � &�4 3=4 ( , hence Algorithm . takes linear time by
Theorem ..

Since the assignments are minimal and all arcs have unit weight, the span in � � and � �
is bounded, more precisely:

sp & � � ( 9�4 N � 4 �,4 3=4 ! 4 ��� 4
sp & � � ( 9�4 N � 4 �,4 3=4 ! 4 � � 4 �

In the corresponding grid drawing
�

, these spans are equal to the width
� & � ( and the

height
� & � ( . This proves statements (a), (b), and (c). The minimality of the spans

implies the minimality of width, height and half-perimeter. Since both width and height
are minimal, also the area P & � ( must be minimal; the bound for the area follows by
(a) and (b).

Corollary .. Given an orthogonal representation
�

of a four-planar graph
� � &+34���5( .

If
�

is complete, an orthogonal grid drawing
�

of minimum total edge length
	 & � ( can

be computed in time � & 4 3=4 � & #����24 3 4 ( � ( . The bounds for
� & � ( , � & � ( , � & � ( and P & � (

are the same as in Corollary ..

Proof. The proof is similar to the proof of Corollary .. Instead of minimal assignments,
we use Algorithm . to compute

�
-minimal assignments using a minimum-cost flow

algorithm. Each arc in L � corresponds to a half-edge in �� � and each arc in L � corresponds
to a half-edge in �� � ; the distances of the arcs in the assignment for the shape graphs
correspond to the lengths of the respective edges. Thus, the two

�
-minimal assignments

result in a drawing
�

of minimum total edge length
	 & � ( . Since shape graphs are planar

(Lemma .), the number of arcs in L � and L � is linear in the size of
�

and Algorithm .
has running time � .�& 4 3=4 # ��� 4 3 4 (�& 4 3 4 � 4 3=4 # ��� 4 3=4 ( 1B� � & 4 3 4 � &D# ��� 4 3 4 ( � ( .

Placement graphs describe segments and their relative positioning relations for a given
orthogonal shape with the goal to characterize properties of planar orthogonal drawings
with that shape. We exploit the structure of these drawings and show that local com-
pleteness suffices to construct drawings which simplifies some of the proofs in the next
sections.
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Corollary .. Let &'L � �QL � ( be a pair of placement graphs for a simple orthogonal repre-
sentation

�
. For a face � in

�
, let � &�� ( denote the set of segments containing the edges

on the boundary of � . If the pair of placement graphs does not contain cycles and if for
every face � the segments pairs & � ��� ( 6 � &�� ( J � &�� ( are separated, then every coordinate
assignment for &'L � �QL � ( results in an orthogonal grid drawing for

�
.

Proof. The absence of cycles guarantees a feasible coordinate assignment & � � � � � ( as in the
proof of Theorem .. Observation . states that & � � � � � ( is feasible for the constraint
subgraphs that correspond to the single faces of

�
. Since the subgraphs are complete,

Theorem . ensures a feasible subdrawing for every face. Consider the dual graph of
�

in which every face is represented by a vertex and linked by an edge to the vertices cor-
responding to neighboring faces. Let the distance of two faces � and � be the length of
the shortest path between the corresponding vertices in the dual graph, and let � be an
arbitrary face in

�
. Clearly, all distances are finite. We continue the proof by induction

on the neighboring faces of � and consider the subdrawings for faces of distance at most� from � . In case �:� + the set of faces consists only of � and the local completeness
ensures that the coordinate assignment results in a drawing for � . Assume that the assign-
ment yields drawings for distances up to � and consider the faces of distance �1� � . The
subdrawings of these faces share common edges with the other faces. These edges must
be drawn identical due to the common assignment & � � � � � ( . Informally speaking, & � � � � � (
pastes the subdrawings together at their points of contact. The result is a drawing for faces
of distance up to � �;� .

.. Constructive Heuristics

In this section we present constructive heuristics for the two-dimensional compaction
problems. Algorithms in this category aim at producing a first feasible solution for a given
orthogonal shape.

In the area of  design, Vijayan and Wigderson () consider the problem of find-
ing an orthogonal drawing for a rectilinear graph &'34��P �@?E( which describes the shape of
a four-graph

� � &'34���5( by means of a vertex ordering relation, see Definition .. This
concept is equivalent to the notion of orthogonal representation as seen in Section ..
The authors present an � & 4 3 4 � ( algorithm that constructs orthogonal grid drawings for
rectilinear graphs. Their algorithm constitutes a first constructive heuristics for the com-
paction problems of Section ..

Tamassia () and Hoffmann and Kriegel () independently improve this result:
both papers describe a linear time strategy which is based on dissecting the faces of the
graph. The common idea is to transform the given orthogonal representation

�
into

an auxiliary representation
� 	

for which it is easier to find solutions to the compaction
problems. The transformation step consists of adding artificial vertices and edges to

�
without changing the shape of the original representation. This property ensures that a
drawing

� 	
for

� 	
contains a drawing

�
for

�
: The drawing for the original graph results

from deleting the artificial vertices and edges in
� 	

.
While the above methods dissect the internal faces into subfaces of rectangular shape,

Bridgeman et al. () describe two similar constructive heuristics based on the concept
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of turn-regularity. Informally, the shape of a face � is turn-regular if there are no opposite
corners in � . The heuristics dissect non-turn-regular faces in rectangular or turn-regular
subfaces.

In the following, we summarize the two general types of constructive heuristics for
the compaction problems in orthogonal graph drawing: First, we describe the traditional
method of Tamassia () and some of its variants. These strategies construct the auxil-
iary representation

� 	
by dissecting each internal face of

�
into a set of rectangle-shaped

subfaces. We show that the shape graphs that correspond to
� 	

are complete and there-
fore the corresponding compaction problems are solvable to optimality in polynomial
time. We continue by describing the turn-regularity-based approach that also leads to a
polynomial-time compaction algorithm in case all faces of

�
are turn-regular.

We want to emphasize that the papers (Vijayan and Wigderson, ), (Tamassia,
), (Hoffmann and Kriegel, ) and (Bridgeman et al., ) already contain results
leading to polynomial time compaction algorithms for the respective classes of orthogonal
representations. Yet, the techniques and proofs presented in this section are based on the
combinatorial properties of constraint graphs and contribute to the construction of the
hierarchy of orthogonal representations as it is introduced at the end of Section ... We
will develop exact algorithms for the different classes of orthogonal representations in the
hierarchy. Our new algorithms solve the compaction problems to provable optimality in
polynomial time for instances in all but the last layer of the hierarchy.

Rectangle-Based Dissection

Due to their simplicity, rectangle-based dissection methods are the most common con-
structive heuristics for orthogonal compaction in graph drawing. They produce the aux-
iliary representation

� 	
by dissecting each internal face of the given simple orthogonal

representation
�

into a set of faces each of which has rectangular shape and by transform-
ing the shape of the external face so that it corresponds to the complement of a rectangle.

Let $G&�� ( be the circular bit string that describes the orthogonal shape of face � , see
the definition on page . Algorithm . repeatedly cuts off rectangle-shaped subfaces
from each face and updates the bit string accordingly until none of the faces contains the
pattern � + + . We refer to this operation as Operation , see Figure .(a). This process
transforms the shape of internal faces into rectangles. The shape of the external face � � ,
however, may still not correspond to the complement of a rectangle, but has the form
$G&�� �Q(�� ��&"+ ��( � ��&(+ ��( � ��&"+ ��( � ��&"+ ��( � . Note that bit strings may be shifted circularly. The
shape characterized by $G&�� � ( corresponds to the complementary shape of a convex face as
defined in Hoffmann and Kriegel (). Similar to the above process, a second operation
replaces the substring � + � by � and yields the complementary shape, see Figure .(b).
Both sequences of operations can be realized in time � &�4 �04 ( for each face � by stacking
the one-bits during the search process; this observation shows that Algorithm . needs

� &D� ( time to dissect a simple representation with � vertices. A proof of correctness for
this rectangular dissection method can be found in (Di Battista et al., b); Figure .

 Our description of the rectangular dissection methods in this section is based on the article (Tamassia,
). In addition, we mention some improvements and variants.
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illustrates the result of Algorithm . for an example.

Algorithm . Rectangular dissection

Input: Simple orthogonal representation
�

with face set
�

Output: Simple orthogonal representation
� 	

with

$G&�� (,�
� + + + + � internal

������� � external

: for all � 6 �
do

: while $*&�� ( contains � + + do
: search for pattern � + + in $*&�� ( ;
: perform Operation  and update shape (see Figure .(a));
: replace � + + by + ;
: while $G&�� �Q( contains � + � do
: search for pattern � + � in $G&�� ��( ;
: perform Operation  and update shape (see Figure .(b));
: replace � + � by � ;

(a) Operation 

(b) Operation 

	 4 �
�� 4

�






 


�

Figure .: Two dissection operations

Several variants of Algorithm . exist:

– As Lemma . will show, the special treatment for the external face � � is not neces-
sary. It is safe to perform only Operation  on � � .

– Operation  may be extended by looking at more complex patterns. In addition to
� + + , one may also look for � + + � and replace it by > or for � + + + � and replace it by+ and so on.

 The drawings may be misleading: The method works at the level of the representation; it should not
be overseen that the coordinates have not yet been assigned.
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– Similar to (..), the number of artificial vertices can be reduced by connecting
artificial edges to ordinary vertices if this is possible. If, e.g., in Figure .(a) the
edge �
$
�C&D9
$
��<
$
( after the pattern forms an angle T

$
6 	 ��� +���<�� +������ + � , the vertex

<
$

may play the role of an artificial vertex.

– Mühlenbacher () describes a still linear-time variant in which the direction of
all artificial edges is either exclusively horizontal or exclusively vertical.

(a) (b)

Figure .: The rectangle-based dissection method (standard variant). (a) Original representation
�

, (b) Transformed representation
� 	

. Dashed lines and empty squares represent
artificial edges and vertices

The following definition characterizes orthogonal representations in which each in-
ternal face has rectangular shape. The rectangle-based dissection methods transform the
original representation

�
into an auxiliary representation

� 	
which satisfies this criterion

and includes the shape of
�

. Removing the artificial vertices and edges while adapting the
shape accordingly results in the original representation.

Definition . (Rectangular orthogonal representation). An orthogonal representation
is rectangular if for every face � in

�
the circular bit string $*&�� ( does not contain the

pattern � + + .
An equivalent characterization is that the shape of each internal face � must be rect-

angular, i.e., $*&�� (,� + + + + , and the shape of � � must correspond to the circular bit string
��&"+ ��( � &"+ ��( � &"+ ��( � &"+ ��( � . The following lemma shows that rectangular representations are
easy instances for the compaction problems:

Lemma .. Rectangular representations are complete.

Proof. A staircase � / is a directed path of half-edges in �� � � ��



or �� � � ���� . Drawings of
staircases must be monotone in � - and � -direction. Let

�
be an orthogonal representation

with corresponding shape graphs � & � ( . Note that segments that are linked by a staircase
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in
�

are separated in � & � ( . Consider Figure . which shows a rectangular representation
and observe that, due to the special shape, every pair of segments � and � is linked by a
staircase.

�(- �

�

Figure .: Drawing of a rectangular orthogonal representation

The completeness of rectangular representations and the fact we can use two separate
assignments for complete pairs of placement graphs in order to compute a coordinate as-
signment yields a polynomial-time exact algorithm for the compaction problems in the
case of rectangular representations, see Theorem . and its Corollaries . and .. To-
gether with a rectangle-based dissection strategy this leads to two constructive heuristics
for general representations. Algorithm . summarizes the rectangle-based heuristics for
the compaction problems in graph drawing.

Algorithm . Rectangle-based constructive heuristics

Input: Simple orthogonal representation
�

Output: Orthogonal grid drawing for
�

: construct auxiliary representation
� 	

with a rectangle-based dissection method;
: compute minimal or

�
-minimal coordinate assignment for �4& � 	 ( ;

: compute coordinates for
� 	

;
: remove artificial vertices and edges;

Theorem .. Algorithm . constructs an orthogonal grid drawing
�

for a simple repre-
sentation

�
with � vertices

in time

�
� &D� ( when using minimal assignments in line .

� &D� � &D# ���4� ( � ( when using
�

-minimal assignments in line  .

In both cases, the bounds
� & � (K� � & � ( , � & � (K� � &D� ( , � & � ( � � & � ( and P & � (B�

� &D� � ( hold.

Proof. The rectangular dissection methods run in linear time and result in an auxiliary
representation

� 	
by introducing only a linear number of artificial vertices (Tamassia,
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; Hoffmann and Kriegel, ). Let � 	 � � &D� ( be the number of vertices in
� 	

.
According to Lemma ., the shape graphs �4& � 	 ( are complete, and by Corollaries .
and . we can construct optimal orthogonal grid drawings for

� 	
in time � &D� 	 ( or

� .�&D� 	 ( � &D#����,� 	 ( � 1 , respectively. Removing the artificial objects takes linear time, the
above running times for Algorithm . follow. The bounds follow from � 	 � � &D� (
and the bounds in Corollaries . and ..

Obviously, the artificial vertices and edges impose additional constraints on the ge-
ometry which leads, in general, to suboptimal total edge length and area in the resulting
drawing. Figure . shows this behavior by means of a larger example and demonstrates
that rectangle-based dissection heuristics alone are not suitable for practical purposes.

(a) (b) (c)

Figure .: The two rectangle-based dissection methods, illustrated with a larger example. As-
signment by (a) topological order assignment and (b) minimum-cost flow assignment,
compared to optimal drawing w.r.t. total edge length (c)

Remark .. As Figure . shows, the drawings produced by computing
�

-minimal as-
signments in Algorithm . need not be better than the corresponding drawings resulting
from minimal assignments. They can even be worse—this is possible if artificial edges
are short at the cost of real edges. In general, using

�
-minimal assignments does not pay

off for rectangular orthogonal representations: The special structure of the corresponding
shape graphs does not leave much freedom for the values in a coordinate assignment.

Turn-Regularity-Based Dissection

Bridgeman et al. () present another, more sophisticated, approach to produce an aux-
iliary representation

� 	
for which polynomial-time compaction algorithms exist. Using

the concept of turn-regularity, the authors manage to introduce a significantly lower num-
ber of artificial vertices and edges which leads to better drawings than the rectangle-based

 See also the experimental comparison on the numbers of inserted artificial edges in Table . on
page .
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techniques. Let � be a face in
�

. With every occurrence of a vertex 9 on the boundary
of � , zero, one, or two corners are associated with 9 , depending on the angle internal to
� between the edges preceding and following 9 . An angle of  � corresponds to no cor-
ner, angles of  � and  � correspond to one corner, and a  � angle corresponds to two
corners. For every ordered pair of corners & �

$
� � � ( associated with vertices of � , let � & �

$
� � � (

be the difference of the left and right turns along the boundary of � between �
$
(included)

and � � (excluded). The value � & �
$
� � � ( defines the net angle between the edges preceding

the vertices associated with �
$
and � � . Two corners at angles of at least  degrees are kitty

corners if � & �
$
� � � (G� < or � & � � � �

$
(G� < . Figure . shows the  different kinds of kitty

corners.

	

�

	 	

			

	 	 	

� �

���

� � �	 �

	

	 	

	

	 	

	

	

�

� �

�

�
�

�

�

Figure .: Possible configurations of kitty corners

A face of an orthogonal representation is turn-regular if it has no kitty corners. Clearly,
rectangular faces have this property. A representation is called turn-regular, if all its faces
are turn-regular. The turn-regularity of a representation

�
can be tested by relating it to

the theory of upward planar graphs: Let
� � be the directed graph that results from remov-

ing the half-edges �� � and �� � from
�

and let
� � be the graph resulting from the removal

of �� � and �� � . Let the embedding of
� � and

� � be determined by the embedding of
the underlying four-planar graph. By definition, these oriented versions of

�
are upward

planar. A central theorem in (Bridgeman et al., ) states that
�

is turn-regular if and
only if both

� � and
� � admit a unique complete saturator, i.e., a set of directed edges that

can be added to the directed graphs without destroying their upward planarity so that the
resulting graph is a planar � - � digraph. This property can be tested in linear time.

Similar to the rectangular case, optimal orthogonal grid drawings for turn-regular rep-
resentations can be found in linear time (width-, height- and area-minimization) and in
time needed for a minimum-cost flow computation (total edge length minimization).
This fact is the fundament of the turn-regularity-based constructive heuristics for the two-
dimensional compaction problems. The overall strategy is similar to Algorithm .. It is,
however, not as easy to compute feasible assignments for turn-regular representations as in
the rectangular case, see (Bridgeman et al., ) for details.

The authors present two methods to transform a general representation
�

into a turn-
regular auxiliary representation

� 	
: The first heuristics uses the rectangular dissection
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method described above, but only for non-turn-regular faces in
�

, see Figure .(a). The
second heuristics recursively adds an artificial edge between each pair of kitty corners until
the face has been decomposed into smaller turn-regular, but not necessarily rectangular,
faces. The direction of the inserted edge (vertical or horizontal) is chosen randomly. See
Figure .(b).

(a) (b)

Figure .: The two turn-regularity-based dissection methods (same example as in Figure .).
Dissection in (a) rectangular and (b) turn-regular subfaces. Dashed lines and empty
squares represent artificial edges and vertices.

Theorem . (Bridgeman et al. ()). The two turn-regularity-based heuristics con-
struct an orthogonal grid drawing

�
for a simple orthogonal representation

�
with �

vertices in time � &D� ( or time � & � � � ��� # ��� � ( , depending on the type of assignment for
the auxiliary representation

� 	
.

Figure . shows the drawings that result from the turn-regularity-based heuristics for
the example in Figure .. It illustrates in particular that a lower number of artificial edges
does not necessarily lead to better drawings: Artificial edge express local decisions and even
a few unfortunate local decisions can destroy the proximity to an optimal drawing.

Remark .. The motivation behind using turn-regular instead of rectangular auxiliary
representations is to add a smaller number of artificial edges and thus to make fewer lo-
cal decisions. Another strategy which operates within the orthogonalization phase has a
similar goal: It aims at reducing the number of segments of the resulting orthogonal rep-
resentations while preserving bend-minimality. The algorithm described in (Klau, )
results in a bend-minimal orthogonal representation with a minimum number of segments
and is a variant of the algorithm by Tamassia (). The idea is to adapt the network in
order to maximize the number of  � angles that occur at vertices as a secondary opti-
mization goal. Previous work that addresses this problem (partly among others) consists of
heuristic post-processing techniques in order to straighten the orthogonal drawings (Six,
Kakoulis, and Tollis, ; Fößmeier, Heß, and Kaufmann, ; Fanto, ). Our ex-
periments show that the dissection strategies have to insert a significantly lower number of
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(a) (b) (c)

Figure .: The two turn-regularity-based heuristics applied to the example of Figure .. Non-
turn-regular faces are dissected in rectangular subfaces (a) or turn-regular subfaces (b),
(c) shows the optimal drawing w.r.t. total edge length

artificial vertices and edges with the new variant of Tamassia’s algorithm, see also Table .
on page .

.. Improvement Heuristics

Typically, the initial drawings produced by the constructive heuristics admit considerable
improvement. In this section we describe heuristics for the two-dimensional compaction
problems in orthogonal graph drawing that start with a feasible solution and aim at im-
proving the original drawing with respect to one of the aesthetic principles mentioned in
Section .. We refer to these heuristics as improvement heuristics.

This section concentrates on the most important criteria in the last phase of the
topology-shape-metrics scheme: edge length and area. We will present a generic algo-
rithmic scheme; heuristics that fit in this scheme originate in the area of  design where
they are known as one-dimensional compaction methods. As discussed in Section ., the
main focus of research concerning compaction in  design is on fast methods which
allow for interactive usage in a symbolic layout tool: Mostly, these tools include one-
dimensional compaction algorithms.

Since the two-dimensional problems are computationally intractable for very large
instances as they occur in chip layout, the idea is to treat each compaction direction sep-
arately, one at a time. During a horizontal compaction step, only � -coordinates may be
changed, whereas they have to remain fixed during vertical compaction. Improvement in
one dimension may allow further improvement in the other direction; an improvement
heuristics solves a sequence of one-dimensional compaction problems until both com-
paction directions are blocked. At each step, however, the decisions are purely local, and
improvement in one direction may prevent greater progress in the other direction. Fur-
thermore, the layout may be blocked in both dimensions, but still be far away from an
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optimal solution. An overview of one-dimensional compaction techniques for  can be
found in (Lengauer, ) and (LaPaugh, ).

Algorithm . shows a generic improvement heuristics in orthogonal graph drawing
which is similar to the one-dimensional compaction schemes known from . It re-
peatedly performs one-dimensional compaction steps until no further improvement is
possible. The compaction steps in lines  and  refer to the one-dimensional problems
in Section ., and the improvement heuristics presented in this section differ in how
they perform these steps. We will present heuristics that solve in particular problems�

-,
�

-, and
	

- to optimality and describe two different approaches:
First, we introduce the compression ridge-based algorithms. These heuristics look for cuts
through the drawing that represent unnecessarily long edges. The second approach makes
use of special constraint graphs and is known as graph-based compaction in  design.
We show how to exploit the visibility properties of an existing drawing in order to create
a pair of so-called visibility graphs which can be used to produce a better drawing,

Algorithm . One-dimensional compaction scheme

Input: Orthogonal grid drawing
�

for orthogonal representation
�

Output: Orthogonal grid drawing
� 	

for
�

:
� 	 � �

;
: repeat
:

	
old � 	 & � 	 ( ;

: perform one-dimensional compaction step in � -direction on
� 	

;
: perform one-dimensional compaction step in � -direction on

� 	
;

:
	

new � 	 & � 	 ( ;
: until

	
old �

	
new; // no further improvement

Remark .. Before presenting the different improvement heuristics, we want to make
a general statement about the above one-dimensional compaction scheme: Even if area
minimization is the ultimate goal, it is in general better—but also more difficult—to
solve one-dimensional subproblems of type

	
- instead of

�
- or

�
-

in lines  and . Reducing width and height mainly affects the boundary of the drawing,
whereas improving the edge length additionally yields several local improvements inside
the drawing which may unblock parts of the opposite direction and may allow a greater
progress in the succeeding step. Figure . illustrates this behavior with the example of
Figures . and ..

Compression Ridge-Based Heuristics

In , a compression ridge refers to a cut that divides the layout into two parts and passes
through regions of empty space. If such a cut is found, the parts can be pushed together
as much as possible without violating any of the spacing constraints. Depending on the

 Lines  and  may be swapped, of course, algorithms will then start with a vertical compaction step.
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(a) (b)

Figure .: Optimization goal in each iteration: (a) One-dimensional width and height. (b) One-
dimensional total edge length

direction of the compression ridge (top-to-bottom or right-to-left), this corresponds to a
horizontal or vertical compaction step. Akers et al. () first mention this method in
the context of virtual grid compaction.

We present the method of Dai and Kuh () and adapt it to fit into the one-
dimensional compaction scheme for orthogonal grid drawings (Algorithm .). The re-
gions of empty space in a  symbolic layout correspond to edges that are longer than
the minimum length of one unit. After identifying a compression ridge in a drawing for
an orthogonal representation

�
, the algorithm decreases the lengths of the edges that are

cut by the ridge by the maximum possible amount: The shortest edge � s on the ridge
determines this value; the length of every edge on the cut can decrease by the length of � s

minus one. The result is again an orthogonal grid drawing for
�

with reduced horizontal
or vertical edge length. In some cases it is advantageous to increase the lengths of a few
edges in order to allow more improvement for other edges. In these cases, the ridge runs
temporarily in the opposite direction. Figure . illustrates the method; the middle ridge
in Figure .(b) indicates that the length of one edge must increase by one unit so that
two other edge lengths can decrease.

As Figure . indicates, several ridges in one direction can exist simultaneously. Dis-
junct ridges can be combined and the resulting compaction step corresponds to line  or
line  in the one-dimensional compaction scheme. To find the best ridges in terms of one-
dimensional compaction progress, Dai and Kuh () introduce the tile graph , a network
that administrates the regions of empty space. In graph drawing the tile graph corresponds
to a dual graph that depends on the initial drawing. Each flow in the network corresponds
to a set of ridges, its value is equal to the possible decrease in edge length. An interpretation
of a maximum flow in the network corresponds to the best cuts. Thus, the compression
ridge method solves the one-dimensional compaction

	
- to optimality.

Figure . illustrates the construction of the horizontal network N � , analogous rules
apply for the vertical tile graph. As a first step, a compression ridge-based algorithm dis-
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(a)  (b) Orthogonal graph drawing

Figure .: Compression ridges in (a)  and (b) orthogonal graph drawing. In (a), the ridge is
the darker part, in (b) three ridges correspond to the three arrows

sects the initial drawing into horizontal stripes, see Figure .(a); the process divides the
faces in the drawing into rectangles. Each rectangular face � in the drawing corresponds
to a node � &�� ( in network N � . In addition, there are two nodes, � and

�
for the external

face; � at the top of the drawing and
�

at the bottom, see Figure .(b). Arcs are directed
downwards: For each horizontal edge � separating an upper face � from a lower face � ,
there is an arc T �



� &D� &�� (Q��� & ��(�( and an arc T �



�@& � & ��(���� &�� ( ( . The capacity of T �



is

the length of � minus one and corresponds to the maximal possible decrease of the length
of � . The opposite arc T �



has infinite capacity, accounting for possible elongations of � .

Figure .(b) shows the network for the example.
The maximum flow from � to

�
in this network corresponds to an optimal solution

of problem
�

- which asks for minimum one-dimensional width, see also Defini-
tion . on page . Figure .(c) and (d) illustrates these steps in the example. Each
compaction step has running time � &D� #����,� ( for an initial drawing with � vertices. The
bottleneck is the computation of a maximum flow problem in N � . Since network N � is
the dual of the underlying orthogonal representation it is planar and linear in size of the
input. The maximum � - � flow in a planar network can be computed in time � &D�F# ���,� ( ,
see, e.g., (Ahuja et al., ).

This gives rise to two compression ridge-based improvement heuristics for the two-
dimensional compaction problems in graph drawing that fit into the one-dimensional
compaction scheme. As the above discussion shows, computing a maximum flow in the
network solves problem

�
- to optimality; the same holds, of course, for

�
-

during the vertical compaction step. A second heuristics is faster, but does not result
in optimal solutions for

�
- or

�
-: A linear time depth-first search in the

network without upward arcs will also identify a ridge—though not necessarily a good one.
Adapting the network and repeating the search results in a set of cuts for each direction.

In graph drawing, the M-algorithm by Fößmeier et al. () uses the compression
ridge method as one of its post-processing steps. See also Chapter  for a discussion of the
interaction of compaction and post-processing.

 There is a close relationship to the rectangular dissection method of Section ... In (Mühlenbacher,
), the dissection in horizontal or vertical stripes takes place at the level of the orthogonal representation,
resulting in a compaction algorithm which combines elements of constructive and improvement heuristics.
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Constraint Graph-Based Heuristics

In logical circuit design, the compression ridge-based techniques have the disadvantage
that the initial layout must be legal to apply them. More importantly, their running time
is not acceptable for a repeated use in Algorithm . in the case of very large instances as
they occur in chip design. Faster and closer to the design rules are the constraint graph-
based algorithms, that appear first in (Williams, ) and (Dunlop, ) and in the area

(a) Horizontal stripes (shown as dashed
lines) dissect the initial drawing

(b) Network ��� with capacities; the grey
upward arcs have infinite capacity

(c) Maximal � -
�
-flow in ��� ; only arcs with

flow are shown
(d) Resulting drawing after changing the
edge lengths

�

�




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
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

Figure .: The compression-ridge method in graph drawing: horizontal compaction step
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of symbolic layout in (Hsueh, ). In this section, we present two constraint graph-
based improvement heuristics for orthogonal graph drawing that fit into the scheme of
Algorithm .. Consider the one-dimensional compaction problems which appear within
the scheme. We will prove that the first heuristics solves subproblems

�
- and�

- to optimality and that the second heuristics provides optimal solutions for
	

-
.

In order to model the relative placements of segments in an orthogonal grid drawing,
we define the visibility graphs as a special pair of placement graphs. In a drawing

�
,

the placement of vertices and bends is fixed. Informally, the visibility graphs reflect the
positioning relations of all pairs of segments that are intersected by a common horizontal
or vertical line, possibly via the transitivity of the arc sets.

Two vertical segments � and � are left-right-visible in
�

if � is to the left of � and
there is a virtual horizontal line segment from � to � that does not intersect another
vertical segment. Likewise, we define bottom-top-visibility for horizontal segments. The
following is a precise definition of visibility graphs:

Definition . (Visibility graphs). Let
� � & � � � � � ( be a grid drawing of an orthogonal

representation
�

of a four-planar graph
� � &'34���5( . A pair of visibility graphs L � �

&'N � ��P � ��< � ( and L � � &'N � ��P � ��< � ( is a pair of placement graphs, i.e., N � � � � ,
N � ��� � . All arcs have unit weight and result from visibility properties of the drawing:

P � � 	�& �"��� ( 6�N � J N � 4 � and � left-right-visible �
P � � 	�& �"��� ( 6�N � J�N � 4 � and � bottom-top-visible � �

Figure . shows a pair of visibility graphs. As for the level of the shape, on which
an orthogonal representation

�
gives rise to a unique pair of shape graphs � & � ( , every

drawing of
�

gives rise to a unique pair of visibility graphs that we will refer to by � & � ( .

� � ���

Figure .: Visibility graphs � � � � 
 ��� ��� � � � for an orthogonal drawing
�

Visibility graphs have a close relationship to the layout graphs used in symbolic circuit
layout. The layout graphs result from the design rules and contain the necessary arcs to
separate the components. A crucial issue in  design is to construct the arc sets in the

 As for the shape graphs, more complex variants of visibility graphs exist by allowing general weights on
the edges. For the sake of simplicity we assume unit weights, see also Remark . on page .
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layout graphs so that their transitive closures guarantee a feasible feature placement. On
the one hand, it is desirable to create the smallest arc sets with this property—these are
the transitive reductions—in order to speed up the computation of assignments. On the
other hand, the construction itself should be efficient. In  design, the latter issue is
even more important than in orthogonal graph drawing due to the large sizes of instances,
while the first issue is more difficult because of the different kinds of constraints. Schlag,
Luccio, Maestrini, Lee, and Wong () study the complexity of this problem and con-
sider various special cases. Doenhardt and Lengauer () present algorithms to compute
the transitive reductions efficiently.

The following observation shows that visibility graphs can be seen as extensions of
shape graphs. This also motivates the approach in the next section where we will char-
acterize the space of complete extensions of shape graphs—in a way this is the space of
possible visibility graphs for a given representation.

Observation .. Let
�

be a drawing of a simple orthogonal representation
�

. The arc
sets of the visibility graphs � & � ( contain the arc sets of shape graphs �4& � ( .
Proof. In the horizontal shape graph there exists an arc T=� &�� ��� ( for each horizon-
tal half-edge &D9"��<F( 6 �� � . Clearly, in any drawing

�
for

�
the segments � and � are

left-right-visible, since
� . & 9"��<F( 1 is a line segment between � and � that obviously does

not intersect any other segment. Hence T belongs also to the horizontal visibility graph.
Analogous considerations apply to the vertical arc set.

Observation . allows us to use visibility graphs in order to compute feasible assign-
ments for shape graphs.

Lemma .. Let
�

be a drawing for a simple orthogonal representation
�

. A feasible
assignment for the pair of visibility graphs � & � ( is also feasible for the underlying shape
graphs �4& � ( .
Proof. Removing arcs from a constraint graph for which a feasible assignment exists does
not destroy the feasibility of the assignment. According to Observation ., we can obtain
the shape graphs by removing a set of arcs from the visibility graphs.

Lemma . encourages us to use visibility graphs inside the one-dimensional com-
paction scheme (Algorithm . on page ). We replace line  in the scheme by

a: construct visibility graph L � ;
b: compute minimal or

�
-minimal assignment for L � ;

c: assign new � -coordinates;

and replace line  by

a: construct visibility graph L � ;
b: compute minimal or

�
-minimal assignment for L � ;

c: assign new � -coordinates; .

It remains to be proven, however, that this replacement results in a correct algorithm.
Furthermore, we have to specify how to construct the visibility graphs in lines a and a.
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We will first show that a feasible assignment for one of the two visibility graphs results in
a feasible solution of the two-dimensional compaction problems and will then present an
efficient algorithm to build the visibility graphs.

As a first step towards a correctness proof for the constraint graph-based improvement
heuristics, we prove that visibility graphs, like shape graphs, are upward planar.

Lemma .. Visibility graphs are upward planar.

Proof. By construction, the graphs are upward and Definition . provides an upward
planar embedding (see also Figure .): Visibility expresses the fact that a virtual hor-
izontal or vertical line from one segment to the other exists that does not cross a third
segment. Imagine that the arcs run along these virtual lines—by definition they do not
cross—which results in an upward planar embedding.

Lemma .. Let
� ��& ��� � � � ( be a drawing of an orthogonal representation

�
and let

� & � ( � &+L � �QL � ( be the corresponding visibility graphs. A feasible assignment for L �
results in an orthogonal grid drawing & � 	� � � � ( for

�
, a feasible assignment for L � results

in an orthogonal grid drawing & � � � � 	� ( for
�

.

Proof. Two segments � and � in
�

overlap horizontally if the intervals formed by their � -
coordinates intersect. Similarly, � and � overlap vertically if the intersection of � -intervals
is non-empty.

We consider the process of changing the � -coordinates via a computation of a fea-
sible assignment for the horizontal visibility graph L � . Assume the resulting placement
violates Definition ., i.e., it does not result in a correct orthogonal grid drawing. The
violation must be due to vertically overlapping segments, since the � -coordinates do not
change during the process. By definition, the horizontal visibility graph protects the rela-
tive positioning constraints between any pair of vertically overlapping segments. This is a
contradiction to the feasibility of the assignment.

Furthermore, the resulting drawing respects the shape of the orthogonal representation�
: By Lemma . the assignment is also feasible for the underlying shape graphs.

Remark .. Visibility graphs are not necessarily complete, but in some sense almost
complete. For complete pairs of placement graphs, any coordinate assignment & � � � � � (
leads to feasible solutions for the compaction problems, whereas visibility graphs allow the
recomputation of only one of the assignments: either � � and � � may be changed, but not
both.

Depending on the usage of minimal or
�

-minimal assignments in lines a and a,
this strategy results in two constraint graph-based improvement heuristics for the two-
dimensional compaction problems. Computing minimal assignments leads to optimal
solutions of the one-dimensional compaction problems

�
- and

�
- in each

step. Using the flow-based methods that yield
�

-minimal assignments results in optimal
solutions for problem

	
-.

We use an efficient scan line algorithm that is similar to the one presented in (Schlag et al.,
) to compute the arc sets of the visibility graphs. We restrict our description to the
construction of the arc set P � , the algorithm for the vertical arc set is similar.
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We represent each vertical segment $ by a triple & � �Q� ���Q� � � ( where � � is the � -coordinate
of $ , � � its bottom � -coordinate, and

� � its top � -coordinate. Then we scan the segments
from top to bottom. During the scan, a height-balanced tree holds the segments that cross
the horizontal scan line in their left-to-right order. Once the scan line encounters a top
end

� � of a segment $ the algorithm inserts $ into the height-balanced tree according to
its � -coordinate � � and looks for the left and right neighbors of $ in the tree. Let

	
and A

denote the left and right neighbors of a segment $ , respectively. If there is a left neighbor	
of $ , the algorithm adds the arc & 	 �Q$)( to P � , if there is a right neighbor A , it adds

the arc &'$ �*A ( . If the scan line encounters a bottom end � � of a segment $ , the algorithm
deletes $ from the tree and adds an arc from

	
to A if both neighbors are present.

This method constructs the visibility graphs efficiently:

Lemma .. Let
�

be a drawing of an orthogonal representation
�

with � vertices. The
algorithm constructs the pair of visibility graphs � & � ( in time � &D�F# ���4� ( .

Proof. By Lemma ., the number of segments is � &D� ( . The algorithm inserts and deletes
each segment once from the height-balanced tree; both operations can be done in time

� &D# ���,� ( . The algorithm is correct since the scan line is exactly the virtual line between
the segments from the definition of left-right- and bottom-top-visibility: During the con-
struction of the horizontal arc set, the height-balanced tree contains at each point of time
only vertically overlapping segments. Since the segments are sorted according to their � -
coordinates, the algorithm inserts only arcs between visible segments. The proof for the
vertical direction is similar.

We analyze the running time of an iteration in Algorithm . using visibility graphs
and the above algorithm to construct them.

Lemma .. Let
�

be a drawing of an orthogonal representation
�

with � vertices. An
iteration in the one-dimensional compaction scheme (Algorithm .) takes time

(a) � &D�F# ���,� ( when computing minimal assignments.
(b) � &D� � &D# ���4� ( � ( when computing

�
-minimal assignments.

Proof. The running time of one iteration is determined by the time needed for lines 

and . Using constraint graph-based heuristics with visibility graphs we have to consider
lines a-c and a-c. Lemma . shows that lines a and a take time � &D�F# ���4� ( each.
Lines c and c clearly can be done in linear time. Since the visibility graphs are upward
planar, the number of nodes in both graphs is � &D� ( and all arc weights are non-negative,
lines b and b take time � & � ( when computing a minimal assignment with Algorithm .
and time � & � � &D# ���4� ( � ( when computing a

�
-minimal assignment with Algorithm ..

 Schlag et al. () remark that a theoretical speed-up to � ���������	� �
����� is possible by using the data
structure defined in (van Emde Boas, )
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Analysis of the One-Dimensional Compaction Scheme

It is an interesting question how many iterations the one-dimensional compaction scheme
performs until both directions are blocked and no further one-dimensional improvement
is possible. The next lemma shows that instances exist for which a linear number of steps
is necessary.

Lemma .. There is an orthogonal grid drawing
�

of a graph with � vertices for which
the one-dimensional compaction scheme needs � &D� ( steps.

Proof. Consider the drawing of the graph in Figure .(a). It consists of an even number
of U-shaped components each of which contains four vertices and may be turned by
 or  degrees; the example shows eight components. The first component is not
turned and shown in grey color. The only one-dimensional improvement consists of
shrinking the longer vertical segment in the first component, resulting in Figure .(b).
Figures .(c) and .(d) show the drawing after steps two and three. In each step only
one component shrinks and unblocks the next component that is of opposite direction.
Clearly, the number of iterations � until the process stops with Figure .(f ) is half the
number of U-shaped components, more precisely:

�5� �
�
� <

� � &D� ( �
Thus, for certain instances � &D� ( one-dimensional steps are needed until both directions
are blocked and the one-dimensional compaction scheme terminates.

In examples occurring in practice, however, this bound is almost never met. Our com-
putational experiments in Section . also contain the numbers of iterations the different
strategies need for each graph in three test-suites in experimental graph drawing; see Ta-
ble . on page . The maximal number of iterations measured is seven among more
than , graphs of up to , vertices.

To conclude the section on heuristic methods for compaction problems, we show that
algorithms within the one-dimensional compaction scheme . do not constitute constant
factor approximation algorithms for the two-dimensional compaction problems.

Lemma .. Algorithms in the one-dimensional compaction scheme . do not approx-
imate

	
- and

�
max- within a constant factor.

Proof. Consider the constructions in Figure .. They consist of � consecutive horizontal
edges and � L-shaped components that each contain two edges. Figure .(a) shows such
a construction for �5� < . The total edge length of the drawing is < ����� and cannot be
improved by the one-dimensional compaction scheme, since both directions are blocked.
The drawing in Figure .(b) is optimal with respect to total edge length that amounts to�
� � . Figures .(a) and (b) show the construction for ����� . Here the edge lengths are
� �
� < + and � � � + , respectively.

We make similar observations concerning the maximum edge length in the drawings:
In Figures .(a) and (c), the maximum edge length is �1� � and �1� � , respectively. In
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(a) Initial drawing (b) After first step (c) After second step

(d) After third step (e) After last but one step (f ) After last step

Figure .: Grid drawing requiring many one-dimensional iterations

the optimal drawings in Figures .(b) and (d), the lengths of the longest edges are < and
� .

(a) � � � � � � ����� 
 � �
max

� ��� �
(b) � � � � � � ����� � � max

� �

(c) � � 
 � � � 
���� � � � �
max

� ���
	
(d) � � 
 � � � ��� � � � �

max
� 


� ��
 �� edges

� ��
 �� edges

Figure .: A drawing generated with (a), (c) an iterative one-dimensional and (b), (d) an optimal
compaction method.
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For general � the following two formulas for the total edge lengths in the initial draw-
ings (which do not allow one-dimensional improvement) and the optimal drawings are
easily proved by induction:

� � � ��& � ! ��( and �1�
	#

 < R �

The maximum edge lengths are

�1����� � <�� and �8�
respectively.

We choose ��� � � . Let � 
 be the approximation factor for
	

- and let � max be
the approximation factor for

�
max-. The choice of � results in the factors

� 
 � � � � ��&�� ! ��(
� � � < � & � ! ��( � �� � ! <� � � 
� � ! �� � � ! < �

� max � � � ��� 	 � �
� ) � � � 	

� ! �
� � �0� �< ! �� �

Increasing � also increases � 
 and � max, i.e.,

#���		�

� � 
 ��� and #���		�

� � max ��� �
which demonstrates that no constant approximation factor exists.

The examples in Figure . show that the one-dimensional compaction methods fail
if both directions are blocked. If a blocking situation occurs early in the compaction
process, the one-dimensional methods perform poorly.

.. Compaction Reformulated

In this section we present a combinatorial formulation of the two-dimensional compaction
problems that is based on the underlying shape graphs of an instance

�
. We define

extensions of shape graphs and show that the space of complete extensions is in one-to-
one correspondence to the space of orthogonal grid drawings of

�
.

The previous section already uses extensions of shape graphs: the visibility graphs.
However, as shown in the analysis of the one-dimensional compaction scheme, these ex-
tensions are often too strict, since they reflect the one-dimensional visibility properties
between the segments in an already existing drawing of the graphs. Visibility is a prop-
erty of the drawing and not of the underlying instance of the appropriate compaction
problem—if the drawing is bad, a compaction algorithm must adhere to the unfortunate
initial placement decisions. To obtain an optimal drawing it is often necessary to ignore
certain of the visibility properties and to replace them by separation constraints in the
opposite direction.
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On the other hand, shape graphs are generally not strict enough. Clearly, the infor-
mation coded in the shape graphs must be respected in any drawing with the appropriate
shape. But simply computing a coordinate assignment for the shape graphs is in general
not successful: In most cases, this strategy does not result in an orthogonal drawing but
in an infeasible placement with crossing edges and vertices placed on top of other vertices
as, for instance, in Figure .. Though not feasible, the values for area as well as for total
and maximum edge length constitute lower bounds for the respective values in feasible
drawings.

Figure .: Information about the shape is not enough: Infeasible placement of vertices (same
shape as drawings in Figures ., . and .). Coordinates result from � -minimal
assignment for the shape graphs

The reason for the infeasibility of the resulting placement lies in the fact that the
underlying shape graphs L � and L � are in general not complete. In order to solve the
two-dimensional compaction problems, our idea is to look for an extension of L � and L � ;
in some sense we want to find a perfect pair of visibility graphs for which the shape graphs
are subgraphs. In this section we reformulate the compaction problems of Section . as
combinatorial problems in so-called extensions of L � and L � .
Definition . (Extension). Let

�
be an orthogonal representation and let L � � &'N � ,

P � , < � ( and L � � &+N � , P � , < � ( be the corresponding pair of shape graphs � & � ( . An
extension of L � and L � is a pair of placement graphs �L � �C&'N � ���P � � �< � ( and �L � �C&'N � ,
�P � , �< � ( with

P � > �P � � P � > �P �
and weights �< � & T (,�=< � & T�( for all T 6 P � and �< � &'T ()�=< � & T ( for all T 6 P � .

Among the extensions of �4& � ( we are especially interested in those satisfying the
property of completeness, i.e., the complete extensions of the shape graphs. We know
by Theorem . that we can use a complete pair of placement graphs to produce an or-
thogonal drawing for the underlying graph by computing a feasible assignment for each
constraint graph. By Definition . and with the same argument as for visibility graphs
(Lemma .), a feasible assignment for an extension is also feasible for the shape graphs.
Hence, a drawing obtained via computing a coordinate assignment for complete exten-
sions of �4& � ( is a drawing of

�
.

Definition . (Compaction problems: combinatorial formulation). Given an orthog-
onal representation

�
, find a complete extension &��L � ���L � ( of the shape graphs � & � ( =

&'L � , L � ( and a coordinate assignment for this extension that minimizes
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(a) the minimum total edge length
	 & � (

(b) the maximum edge length
�
max & � (

(c) the area P & � (
of a corresponding drawing

�
.

The following theorem characterizes the set of feasible solutions for the compaction
problems and shows the equivalence between the combinatorial formulations of Defini-
tion . and the original formulations of Definition ..

Theorem .. Let
�

be an orthogonal representation and let L � � &'N � ��P � ��< � ( and
L � �C&'N � ��P � ��< � ( be the corresponding shape graphs � & � ( .

Every simple orthogonal grid drawing of
�

corresponds to a coordinate assignment
& � � � � � ( for a complete extension & �L � � �L � ( of �4& � ( and vice versa: every coordinate
assignment & � � � � � ( for a complete extension & �L � � �L � ( of the shape graphs results in a
simple orthogonal grid drawing of

�
.

Proof. To prove the first part of the theorem, we consider an orthogonal grid drawing� � & � � � � � ( of
�

. We construct a pair of placement graphs �L � ��&+N � � �P � � �< � ( and
�L � �C&'N � � �P � � �< � ( and two assignments � � and � � as follows.

First, we define the assignments using the coordinates in
�

:

� � & � ()� ��� &D9�( for some 9 6 � for all � 6�N �
� � & � (4� �

� &D9 ( for some 9 6 � for all � 6�N �
and then the arcs and their weights through the assignments:

�P � � 	�& �"��� ( 6�N � J N � 4�� � & � ( � � � & � (��
�P � � 	�& �"��� ( 6�N � J�N � 4�� � & � ( � � � & � (��

< � & T (,� � for all T5� &�� ��� (G6 �P �
< � & T (,� � for all T5� &�� ��� (G6 �P � �

Note that the construction of the arc sets is similar as in the definition of visibility graphs
as given on page . We verify the following properties and thus conclude the proof of
the first part of Theorem ..

(a) The pair of placement graphs & �L � � �L � ( is an extension of the shape graphs.
The argument is similar as for visibility graphs: Consider an arc T �H& � ��� (�6�P � . It
corresponds to a horizontal half-edge &D9"��<F(G6 ���� that is represented by a line segment
from

� & 9 ( to
� &D<F( . The construction of the assignments ensures � � & � ( ) � � & � ( , it

follows that T 6 �P � . Analogous considerations hold for vertical arcs.

(b) The extension & �L � � �L � ( is complete.
We show first that the extension does not contain cycles: Assume there is a cycle

 Observe that
� � � 	 � � � � � � �

for all
	2� � � � � ��� and

� � � 	 � � � � � � �
for all

	2� � � � � � � .
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-H� .Q&'$ 
 �Q$ � ( , &'$ � �Q$ � (Q� � � � , &'$ ���"
 �Q$ � ( , &'$ � �Q$ 
 ( 1 in one of the arc sets �P � or �P � .
The constraints coded in - express the contradiction that $ 
 is either to the left of
itself, if - > �P � , or below itself, if - > �P � .
Assume now that two segments � and � are not separated, i.e., none of the four paths
� � �! � � �

, �
� �! � � � , � � �! � � � , and

� � �! � � � exists.

For the transitive closures of the arc sets this means

. � � � ��� 1 �6 �P �� . � � � � � 1 �6 �P �� (.)

. � � � � � 1 �6 �P �� . � � � � � 1 �6 �P �� � (.)

By (.) and by definition of the arc sets we get � &D9 ()� � &D<F( for all 9 6 � and < 6 � .
Similarly, (.) requires � & 9 (B� � &D<F( for all 9 6 � and < 6 � . It follows � � � , a
contradiction, since a segment is separated from itself by definition.

(c) The pair of assignments & � � � � � ( is a coordinate assignment for & �L � � �L � ( .
Both assignments are feasible by construction. We show that � � is feasible for �L � , the
proof for � � and L � is similar. For each arc T �C& � ��� ( 6 �P � the following inequality
must be valid.

� � & � ( ! � � & � ( / < & T (,�C�
which trivially holds since

�
is a grid drawing.

The backward direction follows directly by Theorem . and the fact that feasible
assignments for extensions are also feasible for subgraphs of extensions (Observation .).

Definition . provides a graph-theoretical translation of the originally geometric
compaction problems of Section .. The new task is to find a complete extension of
the given shape graphs and an assignment for the extension that optimizes one of the aes-
thetic criteria. An interesting class of shape graphs are those for which the extension is
uniquely determined. This situation occurs when all pairs of segments are either separated
or only one possibility of separating them without creating a cycle exists. We provide a
general definition for placement graphs:

Definition . (Uniquely completable). A pair of placement graphs is uniquely com-
pletable if and only if

(a) Both graphs are acyclic;

(b) All pairs of segments & �"��� ( are either separated or three of the four paths � � �! � ���
,

�
� �! � � � , � � �! � � � and

� � �! � � � induce a cycle.

An orthogonal representation
�

is uniquely completable if and only if the corresponding
shape graphs �4& � ( are uniquely completable.
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Clearly, a complete pair of placement graphs is also uniquely completable according
to this definition. Figure . shows four different kinds of representations with their
shape graphs. The representation in Figure .(c) is uniquely completable since its only
unseparated segment pairs of opposite direction are & � � � ( and & � � 	 ( . Evaluating the four
possible paths in the definition of completeness shows that in each case only one of the
paths does not induce a cycle: For the segments � and � , this is � � �! � ���

, and for the
segments � and

	
, the path is � � �! � � 
 . The situation is different in Figure .(d): Here,

none of the four paths introduces a cycle for several pairs of unseparated segments and it
is not clear how to extend the shape graphs since there are many different possibilities;
it is the combination of these choices that makes the compaction problems hard at the
combinatorial level.

The definition of unique completability refines the hierarchy of orthogonal represen-
tations. Figure . illustrates the inclusion relations between classes of representations.

(c) Uniquely completable (d) General

(b) Complete(a) Rectangular

� �

�

�

Figure .: Orthogonal representations and their shape graphs. Each example is a member of the
respective class but not of its preceding classes

Unfortunately, the most frequent type of representation in practice is the general type.
We can use the concept of unique completability, however, to insert as many arcs as possi-
ble into the shape graphs. This will be exploited in the next section. In general, only a few
segment pairs are the reason that a representation is not uniquely completable, and many
relations can be established according to Definition .: If only one of the four possible
paths does not induce a cycle, we can add the corresponding arc to the shape graphs that
uniquely separates the segments.
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rectangular

complete

general

uniquely completable

Figure .: Inclusion hierarchy of classes of orthogonal representations

. Exact Compaction Algorithms

In this section we present exact algorithms for the compaction problems, i.e., methods
that always compute an optimal solution. We exploit combinatorial properties of the
different classes of orthogonal representations presented in the hierarchy in Figure ..
Section .. contains an exact polynomial-time algorithm for representations in all but the
last layer of Figure .. For general orthogonal representations we develop integer linear
programming formulations in Section .. that correspond to the combinatorial equiv-
alents of the compaction problems. The  formulations enable us to use the generic
branch-and-bound and branch-and-cut algorithms presented in Chapter . We describe
algorithms that solve the compaction problems that ask for minimum total edge length,
width, height, half-perimeter, and maximum edge length to optimality. The  formu-
lations give rise to exact -based algorithms: Section .. describes a branch-and-bound
algorithm. An extension of this algorithm by adding cutting planes results in a branch-
and-cut algorithm.

Although these branch-and-bound and branch-and-cut algorithms need exponential
time in the worst case, our experimental study in Section . shows that they are suitable
for practical applications: an implementation of the branch-and-bound algorithm solves
all graphs in a large test-suite of practical graphs in short computation time.

.. Compacting Uniquely Completable Representations

We present an algorithm that computes a maximal unique completion of a given pair
of placement graphs, i.e., an extension that cannot be completed further according to
Definition .. In particular, the algorithm outputs the pairs of segments that have to be
separated in order to obtain a pair of complete placement graphs. In the cases of complete
or uniquely completable placement graphs, this set is empty and the extension is complete;
in this case we are able to apply polynomial-time algorithms to solve the two-dimensional
compaction problems to optimality.

Again, we exploit Lemma . and Corollary . in the algorithm: we only need to
ensure local completeness in each face and restrict the focus to segments of opposite di-
rection. But simply checking for each pair of opposite segments in each face whether they
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satisfy the property in Definition .(b) does not suffice. A unique separation for one
pair could have further consequences for other pairs. Inserting a new arc may separate
previously non-separated pairs or may cause other pairs to be uniquely separable.

We will therefore maintain the transitive closure of the arc set in each face and update
it appropriately. Let

�
be an orthogonal representation and let L � �@&'N � ��P � ��< � ( and

L � � &'N � ��P � ��< � ( be a pair of placement graphs for
�

. Let 3 &�� ( be the vertices on the
boundary of a face � of

�
and let

P &�� (,� 	�& � ��� (�6�P � � P � 4 � 9 6 �
� 3 &�� ( and

� 9 6 � � 3 &�� (��
be the local arc set of the face. Roughly speaking, a local arc set contains those arcs of the
placement graphs for which both endpoints belong to the same face. We will represent
the transitive closure P � &�� ( of a local arc set P &�� ( by a bit array that enables us to test for
the presence of edges and paths in constant time.

We will need the following procedure as a subroutine and refer to it as separated( � ��� ( .
It checks for two segments � and � in the same face whether the appropriate arc is con-
tained in the transitive closure of the local arc set. If this is the case, the two segments are
separated, since an arc in the transitive closure corresponds to a path in the local arc set.

Input: Two segments � and � in the same face �
Output: True if � and � are separated, false otherwise

: if . � � � ��� 1 6 P � &�� ( then return true;
: if . � � � � � 1 6 P � &�� ( then return true;
: if . � � � � � 1 6�P � &�� ( then return true;
: if . � � � � � 1 6�P � &�� ( then return true;
: return false;

We use the above procedure to check whether a pair of shape graphs is complete:
Algorithm . returns true if and only if all pairs of opposite segments in each face of the
corresponding orthogonal representation are separated.

Algorithm . Completeness test

Input: Pair of placement graphs &'L � �QL � ( for orthogonal representation
�

with face
set

�

Output: True if the pair is complete, false otherwise

: for all faces � in
�

do
: compute P � &�� ( ;
: for all pairs � 6 � � &�� (Q��� 6 � � &�� ( do
: if not separated & � ��� ( return false;
: return true;

Lemma .. Let
�

be an orthogonal representation with � vertices. Algorithm . tests�
for completeness in time � &D� � ( .
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Proof. The construction of the shape graphs � & � ( takes linear time. For each face � ,
the transitive closure of the arc sets can be built in time � &�4 3 &�� ( 4 � ( , see (Mehlhorn,
). Note that the shape graphs are planar and thus the cardinality of the transitive
reduction—that influences the running time of the transitive closure computation—is
linear in the number of vertices on the boundary of � . The running time of lines  and 

is � &�4 � � &�� ( 4 � 4 � � &�� ( 4 ( since the separation test takes constant time for each segment pair.
The total running time of the algorithm is

� . #. � � .�4 3 &�� ( 4 � � 4 � � &�� ( 4 � 4 � � &�� ( 4 1�1F�
� . . #. � � 4 3 &�� ( 4 � 4 � &�� ( 4 1 � 1 � � . &(< �*� <74 � 4 ( � 1 � � &D� � (��

which completes the proof of Lemma ..

Our algorithm for maximal unique completion (Algorithm .) is an extension of
Algorithm .. For each pair of segments � and � we do not only check for completeness
but construct a list P sep & � ��� ( that contains the maximally four arcs in the transitive closure
that would separate � and � . If this set contains just one arc, we add it to the arc sets of
the extension—it is the only possibility to separate � and � and must certainly be part of
any complete extension. As discussed above, we have to update the transitive closure after
adding the arcs; we repeat the process until each set P sep & � ��� ( is either empty or contains
at least two arcs.

For an arc & �"��� ( , we define ��& T ( as the arc & � � � ( . Line  in Algorithm . checks
whether an additional arc & � ��� ( induces a cycle. A cycle emerges if the path � �! � � is
present, i.e., if the transitive closure of the arc set contains � & �"��� ( .
Lemma .. Let

�
be an orthogonal representation with � vertices. Algorithm . max-

imally completes the pair of shape graphs �4& � ( . It runs in time � &D� � ( in general and in
time � &D� � ( in case � & � ( is complete. After termination, the lists P sep & � ��� ( contain the
pairs of segments whose separation results in a complete extension of �4& � ( . The lists are
empty if and only if

�
is uniquely completable.

Proof. The running time of the inner loop (lines -) is quadratic in the number of
vertices that bound face � since it is an extension of the completeness test and domi-
nated by the time to compute the transitive closure. In the worst case, only one of the
lists P sep & � ��� ( has cardinality one. Since uniquely completable extensions are subgraphs
of some visibility graphs, and thus planar (Lemma .), this may happen at maximum

� & 4 3 &�� ( 4 ( times. Summing up the running times for all faces in a similar manner as in
the proof of Lemma . results in an overall cubic running time.

It is easy to see that the lists P sep are empty if and only if all pairs of segments are
separated at the end of the computation. Otherwise, a list P sep & � ��� ( contains those arcs
that are able to separate � and � (line ) and cannot be further reduced since no other
uniquely separable segment pair exists.

We can use Algorithm . to devise an exact polynomial-time algorithm for the com-
paction problems in the special case of uniquely completable orthogonal representations.
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Algorithm . Maximum unique placement graph completion

Input: Pair of placement graphs &'L � �QL � ( for orthogonal representation
�

with face
set

�

Output: Maximally uniquely completed placement graphs & �L � � �L � (
: �P � � P � ; �P � �;P � ;
: for all faces � in

�
do

: repeat
: compute �P � &�� ( ;
: finished = true;
: for all pairs � 6 � � &�� (Q��� 6 � ��&�� ( do
: if not separated & � ��� ( then
:

	
sep ��� . � � � � � 1�� . � � � ��� 1 � . � � � � � 1 � . � � � � � 1�� ;

: P sep & � ��� (,� � ;
: for all T 6 	

sep do

: if ��& T�( �6 �P � &�� ( then P sep & � ��� (,�=P sep &�� ��� ( � 	�T�� ;
: for all P sep &�� ��� ( with 4 P sep & �"��� ( 4 � � do

: add T 6 P sep & � ��� ( to �P � or �P � ; 	 & �"��� (,�3� ;
: finished = false;
: until finished;

Theorem .. Let
�

be an orthogonal representation with � vertices. If
�

is uniquely
completable, an orthogonal drawing

�
of minimum width

� & � ( , height
� & � ( and area

P & � ( or of minimum total edge length
	 & � ( can be computed in time � &D� � ( .

Proof. The proof follows from Theorem . and its Corollaries . and ..

.. Integer Linear Programming Formulation

The polynomial-time algorithm in the previous section computes optimal drawings for in-
stances of the compaction problem in which the corresponding shape graphs are uniquely
completable. In general, this is not the case. This section presents integer linear program-
ming () formulations for the general case—they are the fundament of algorithms for
solving the problems that ask for minimum total or minimum maximum edge length to
optimality; we also derive formulations for the less important problems of minimizing
width, height and half-perimeter. Since the optimization goal in the area minimization
variant is the product of width and height and thus non-linear, we cannot provide a di-
rect  formulation for this problem. However, optimizing either width or height or
half-perimeter of a drawing leads to good area bounds.

Our  formulations are based on the following idea: Even in the general case, in
which a pair of shape graphs &'L � �QL � ( is neither complete nor uniquely completable,
Algorithm . is very useful: At least some pairs of segments may be uniquely separated and
in the cases in which the separation is not unique, the test for acyclicity may rule out one
or two impossible completions. In the end, the lists P sep & � ��� ( keep for each segment pair
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of opposite direction two to four arcs one of which must be part of a complete extension of
&'L � �QL � ( . Corollary . and Lemma . state that completeness follows by the separation
of all segment pairs of opposite direction within each face. The task is now to choose
among the arcs in the lists P sep &�� ��� ( for all such pairs � , � so that two conditions are
satisfied:

– The resulting extension must be complete, i.e., an algorithm must choose at least
one arc from each set. Nevertheless, the choice of the arcs is non-trivial: The result-
ing arc set must not introduce a cycle.

– The extension must admit a coordinate assignment which leads to an optimal
drawing—in terms of total or maximum edge length, width, height or half-perimeter.

These requirements further restrict the combinatorial formulation of the compaction
problems. For a fixed extension of the shape graphs, computing coordinate assignments,
which lead to drawings of minimum width, height, total or maximum edge length, reduces
to solving linear programs as shown in Chapter . In the first three cases, an algorithm
must compute minimal or

�
-minimal assignments and the linear programs correspond

to shortest path problems or duals of minimum cost flow problems. The fact that 

formulations exist for the fixed case makes it easy to integrate the optimization of the
respective aesthetic criterion into a general  formulation.

The Compaction Polytope

We will now specify our integer linear programming formulations for the two-dimensional
compaction problems. First, we describe how we model the space of extensions, i.e., the
set of feasible solutions. The resulting inequalities are part of all following  formulations
for two-dimensional compaction problems. In a second step, we show how to integrate the
different optimization goals, resulting in different formulations. We focus on total edge
length minimization, but mention for the other optimization goals where the formulations
and the corresponding proofs differ.

To model the space of extensions, we introduce binary variables to decide whether or
not the additional arcs are present. We consider only additional arcs which are contained
in the lists P sep & � ��� ( . Since each arc in these lists may or may not be present in a complete
extension of the shape graphs, we call these arcs potential arcs and refer to them by P pot,
i.e.,

P pot � �� � � � ����� ��� P sep & � ��� ( �

Let
�

be an instance for the compaction problems and let &'L � �QL � ( be the corre-
sponding shape graphs � & � ( . By Theorem . we can write the set of feasible solutions
of the combinatorial formulation of the compaction problems as

� &+L � �QL � ()� 	�& �L � � �L � ( 4�& �L � � �L � ( complete extension of &+L � �QL � (�� �
Let � � pot be the vector space whose elements are indexed with numbers corresponding

to the members of P pot. Each complete extension & �L � � �L � ( defines an element � �	�
�� � �
�
 	 6
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� � pot of this vector space in the following manner:

� � �
 � � �
�
 	� �
�
� T 6 �P � � �P �+ otherwise

We use these incidence vectors to characterize the compaction polytope

�  � conv 	 � � �
 � � �
�
 	 67� � pot 4�& �L � ���L � (G6 � &'L � �QL � (�� �
In order to model the different coordinate assignments & � � � � � ( we introduce an addi-

tional variable � in the vector space � / . Again, the vector space is indexed with numbers
corresponding to horizontal or vertical segments with the following interpretation:

� / �
�
� � &'$)( $86 $ �
� � &+$,( $86 $ � �

We call � the coordinate vector.
In our formulations, we describe the polytope �  by the following classes of in-

equalities. Note that we do not require integrality of the coordinate vector; we will show
in Observation . that this is not necessary in order to obtain a grid drawing.

– Trivial inequalities. Since � is a characteristic vector, we have the following trivial
bounds: + 9 � �19 � � T 6�P pot (.)

– Integrality constraints. Additionally, we require � to be integral:

� � 6 	 +���� � � T 6�P pot (.)

– Separation inequalities. This class of inequalities guarantees completeness of the
extension. For each non-separated segment pair of opposite direction within a com-
mon face at least one of the paths must be contained in the arc sets, i.e., the sum of
the corresponding entries in the characteristic vector must be at least one.#

�
� �

sep
� � � � 	 � � / � � P sep &�� ��� ( ��3� (.)

– Shape inequalities. The resulting assignment must be feasible for the extension. For
the arcs that are already contained in the shape graphs we have the same inequalities
as in the linear programs in Chapter :

� � ! � � / � � & �"��� (G6 P � � P � (.)
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– Consistency inequalities. If a potential arc T5� &�� ��� ( is part of the extension, then
the corresponding constraint must be respected. In this case, the inequality must
guarantee the feasibility of the assignment, i.e., it must be a shape inequality. If the
arc does not belong to the extension, the corresponding constraint must not restrict
the set of feasible solutions. With each potential arc T 6:P pot we associate a large
number � � which enables us to switch between trivially satisfied inequalities and
shape inequalities.

� � ! � � ! & � � �;��( � � / ! � � � T5� & � ��� (G67P pot (.)

First, let � � �C� : Then inequality (.) changes to

� � ! � � / ! � � � � � �;��� � (.a)

and is of type (.). In case � � � + , we get

� � ! � � / ! � � � (.b)

This inequality is satisfied if � � is large enough. In other words, � � must be an
upper bound on the distance � � ! � � . The following lemma defines the choice of
the constant � � .

Lemma .. The value max 	74 $ �;4 � 4 $ � 4 � is an upper bound on the distance � � ! � � and
thus a sufficient choice for the constants � � in the consistency inequalities.

Proof. Note that any optimally compacted drawing
�

has width
� & � ( 9�4 $ � 4 and height� & � ( 9 4 $ � 4 , otherwise a one-dimensional compaction step could be applied. The dis-

tance � � ! � � corresponds to the distance of either two � - or two � -coordinates in
�

.
Clearly, no such distance can be greater than the maximum of width and height.

Having introduced the different classes of inequalities, we present the  formulations
for the combinatorial equivalents of the two-dimensional compaction problems. We begin
with the formulation for

	
-, which corresponds to minimizing the total edge length,

and prove that an optimal solution of the  indeed results in an optimal drawing of the
original orthogonal representation.

Minimizing Total Edge Length

Let
�

be an instance of
	

- and let L � � &'N � �QP � ��< � ( and L � � &'N � ��P � ��< � ( be
the shape graphs �4& � ( . We construct the following integer linear programming formu-
lation for

	
-. The set of inequalities is exactly as described above, we optimize over

the space of complete extensions of the shape graphs. The objective function requires that
both assignments are

�
-minimal, notice the similarity to the linear program (.) for the

fixed case on page .

 In the literature on  modeling, this approach is also known as the “big
�

approach”.
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min
#

� � � � 	 � � � � � 
 � � ! � � (.)

subject to
#
�
� �

sep
� � � � 	 � � / � � P sep & �"��� ( �� � (..)

� � ! � � / � � & � ��� ( 6�P � � P � (..)

� � ! � � ! & � � �;��( � � / ! � � � T �C& � ��� ( 6�P pot (..)+ 9 � � 9 � � T 6�P pot (..)
� � 6�	 +�� � � � T 6�P pot (..)

The following observation shows that we do not need to require integrality of the
coordinate vector � . For a fixed characteristic vector � , the problem is identical to two
static problems which can be solved by the algorithms in Chapter .

Observation .. Let & � � � . ( with � 6�� � pot and � . 67� / be a feasible solution of ( .)
and let � . be the value of the objective function. Then there is also a feasible solution
& � � �2( with �F6�� / � � / � and objective function value �*9�� . .
Proof. Since � is part of a feasible solution, its components must be either zero or one.
Then the integer linear program reduces to computing two separate

�
-minimal assign-

ments; the consistency constraints can be either eliminated (if the corresponding variable
� ���3+ ) or turn to shape constraints (if � ��� ��( . The result follows with Theorem ..

In our characterization of integral points within the compaction polytope �  by
inequalities (.)-(.) we do not explicitly exclude cycles in the extension. The following
lemma shows that the consistency inequalities suffice to ensure the absence of cycles in the
solution, so no additional inequalities are necessary. In the description of the branch-and-
cut algorithm in Section .. we will see, however, that adding a class of cycle inequalities
results in a tighter description of the compaction polytope � .

Lemma .. Let & � � ��( be a feasible solution of ( .) and let �L � and �L � be the extension
corresponding to � . Then �L � and �L � are acyclic.

Proof. Assume that there is a cycle - � .�&'$ 
Q�Q$ ��(���&'$ ���Q$ �Q(�� � � � ��&'$����"
��Q$���(Q��&'$�� �Q$ 
 ( 1
of length � in the extension. Note that each arc T ��& � ��� ( in - belongs either to
P � � P � or to P pot. Observe that if T�6 P � � P � , then the  contains an appropriate
constraint � � ! � � /
� . For the potential arcs on - , we must have � �8� � for all
T �C& �"��� (G6
- � P pot, and the corresponding consistency constraint turns to

� � ! � � ! & � � �;��( / ! � �
� � � ! � � / � �
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For the arcs on the cycle, this means

� / � ! � / � / �
� / � ! � / � / �

...

� / � ! � / � / �
The left sides of the inequalities sum up to zero, the right side sums up to � ) + which
results in the contradiction +*) � ) + .

To construct the integer linear program, we start with the input of the compaction
problem

	
-, an orthogonal representation

�
. We construct the shape graphs � & � (

and determine the maximally unique completion of �4& � ( . This process results in a set
of potential arcs in the lists P & � ��� ( for which we can build the above . We have to
find a complete extension of the shape graphs for which we can compute the best pair
of
�

-minimal assignments—this is the combinatorial equivalent of
	

- as given in
Definition .(a). It remains to show that there is a one-to-one correspondence between
feasible solutions of the combinatorial problem and feasible solutions of the integer linear
program.

Theorem .. Let
�

be an orthogonal representation. A feasible solution & � � �2( of ( .)
for

�
corresponds to a feasible solution of the combinatorial version of problem

	
-

and thus to a drawing
�

of
�

and vice versa. The total edge length
	 & � ( in the drawing

is equal to the value of the objective function.

Proof. For the first part of the proof, let � and � be the solution vectors of (.). Accord-
ing to Observation . we can assume that both vectors are integer. Vector � describes
a complete extension & �L � � �L � ( of �4& � ( ; inequalities (.) guarantee the separation of
segments, the absence of cycles follows by Lemma ., hence the extension is complete.
The consistency inequalities (.) require � to correspond to a coordinate assignment for
& �L � � �L � ( . The result follows with Theorems . and ..

To prove the other direction we construct a solution of the combinatorial problem
version by choosing the arcs according to the visibility graphs � & � ( and setting the binary
variables � accordingly. Likewise, we set the entries of the coordinate vector � to the
actual coordinates in

�
. It is easy to verify that the pair & � � �2( does not violate any of the

constraints in (.).
Each arc in the arc sets of the shape graphs P � � P � corresponds to a horizontal or

vertical edge in the orthogonal representation
�

. Since � corresponds to a coordinate
assignment for the extension, it also corresponds to a coordinate assignment for the shape
graphs �4& � ( . The distance of an arc in the constraint graphs is equal to the length of the
appropriate edge. Hence, the value of the objective function is equal to the sum of the
edge lengths.

Corollary .. An optimal solution & � � � � � ( of ( .) corresponds to an optimal drawing
for

�
with respect to total edge length.
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Minimizing Width, Height, and Half-Perimeter

In order to compute drawings of minimal width or height, we have to find a complete
extension of the given shape graphs �4& � ( and a coordinate vector � which corresponds to
a minimal assignment for the respective constraint graph. We use the same technique as
in the static case in Section . and add a super source � and a super sink

�
.

Let � � � � � and � � � � � be the additional nodes in the horizontal and vertical shape graphs
L � and L � , respectively. Like in the static case, we add the arc sets

P � � � 	�& � � � � (�4 � 6 N � � P � � � 	�& � � � � (�4 � 6�N � �
P � 
 � 	�& � � � � ( 4 � 6 N � � P � 
 � 	�& � � � � (�4 � 6�N � �

and set the weight < & T ( of each T 67P � � � P � � � P � 
 � P � 
 to zero.
We get the following objective functions � � �
� � , depending on the optimization

goal:

�"& ��(,�
:;< ;= ��� � ! ��� � when minimizing the width

� & � (
� � 
 ! � � 
 when minimizing the height

� & � (
��� � ! ��� � � ��� 
 ! � � 
 when minimizing the half-perimeter � & � (

The integer linear programs look as follows:

min �E& �2( (.)

subject to
#
�
� �

sep
� � � � 	 � �1/ � � P sep & � ��� ( �� � (..)

� � ! � � / � � T �C& �"��� (G6 P � � P � (..a)

� � ! � � /�+ � T5�C& � ��� ( 6�P � � � P � � (..b)

� � ! � � /�+ � T5� & �"��� (G67P � 
 � P � 
 (..c)

� � ! � � ! & � � �;��( � �
/ ! � � � T � &�� ��� (G6 P pot (..)+ 9 � � 9 � � T 6 P pot (..)
� � 6 	 +�� � � � T 6 P pot (..)

Of course, we can omit the additional arcs in one of the constraint graphs and the
corresponding shape inequalities if the aim is a drawing of minimal width or height. A
similar theorem as for (.) states that solutions of the above integer linear programs
correspond to feasible drawings.

Theorem .. Let
�

be an orthogonal representation. A feasible solution & � � �2( of ( .)
for

�
corresponds to a feasible solution of the combinatorial versions of problems

�
-

,
�

- and � - and thus to a drawing
�

of
�

and vice versa. The width� & � ( , height
� & � ( or half-perimeter � & � ( of the drawing are equal to the value of the

objective function � .

Proof. The proof is analogous to the proof of Theorem ..

Corollary .. An optimal solution & � � � � � ( of ( .) corresponds to an optimal drawing
for

�
with respect to width, height or half-perimeter, depending on the choice of the

objective function.
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Minimizing Maximum Edge Length

As for the other criteria, the integer linear program whose optimal solutions correspond to
drawings with minimum maximum edge length is inspired by the static case. In Section .
we show how to compute minimax assignments by introducing a new variable whose value
is an upper bound for each arc distance. We do the same here and add

�
max 67� to the set

of variables. Like in Section ., we have an additional set of inequalities that forces the
value of

�
max to be at least as big as the longest horizontal and vertical edge. Minimizing�

max then corresponds to minimizing the length of the longest edge in a drawing
�

for
�

.

min
�
max (.)

subject to
#
�
� �

sep
� � � � 	 � � / � � P sep & � ��� ( ��3� (..)

� � ! � � / � � & � ��� ( 6�P � � P � (..)

� � ! � � ! � max 9�+ � & � ��� ( 6�P � � P � (..)

� � ! � � ! & � � �;��( � � / ! � � � T �C& � ��� (G6 P pot (..)+*9 � � 9 � � T 6 P pot (..)
� � 6�	 +���� � � T 6 P pot (..)

Theorem .. Let
�

be an orthogonal representation. A feasible solution & � � ��( of ( .)
for

�
corresponds to a feasible solution of the combinatorial version of problem

�
max-

 and thus to a drawing
�

of
�

and vice versa. The maximum edge length
�
max & � ( is

equal to the value of the objective function.

Proof. The proof is analogous to the proof of Theorem ..

Corollary .. An optimal solution & � � � � � ( of ( .) corresponds to an optimal drawing
for

�
with respect to maximum edge length.

We conclude the section on integer linear programming formulations for the two-
dimensional compaction problems by two remarks on minimizing the longest edge.

Remark .. An optimal solution of (.) corresponds to a drawing with minimum
maximum edge length among all drawings for the given simple orthogonal representation�

. However, the total edge length in this drawing may be quite high. For practical pur-
poses, it makes sense to optimize the total edge length as a secondary goal. We model
this by changing the objective function according to the new optimization goal. Inequali-
ties (..) ensure that each edge is shorter than the maximum edge length, this implies
that the total length of edges in � is lower than, or equal to

�
max times the number of edges4 �:4 . The objective function is now

min 4 �:4 � � max � #
� � � � 	 � � � � � 
 � � ! � � �
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Remark .. Our formulation in (.) is correct if the input is truly a simple representa-
tion. In general, however, the input represents a non-simple representation with artificial
vertices instead of the original bends. In this case, (.) only minimizes the length of the
longest edge segment and not of the longest edge in the drawing. In the following, we
present a generalization of (.) which also works for non-simple representations.

The two-dimensional nature of our problem formulation enables us to consider all
segments of a bent edge: Let � be an edge in

�
and let P & � ( be the arcs in the shape

graphs which correspond to the edge segments of � . Changing (..) to#
� � � � 	 � � � 
 	 & � � ! � � ( ! � max 9 + � � 6 �

(..b)

takes into account that an edge may be composed of several edge segments in the original
graph.

.. Branch-and-Bound and Branch-and-Cut Algorithm

The integer linear programs in the preceding section enable us to use the generic branch-
and-bound and branch-and-cut algorithms of Chapter  to find optimal solutions of the
two-dimensional compaction problems.

Common to both algorithms is the following preprocessing phase: Let
�

be an in-
stance of a compaction problem. In a first step, we determine the corresponding shape
graphs � & � ( and compute their maximal unique completion with Algorithm .. This
phase has two objectives:

. It detects if the shape graphs are complete or uniquely completable. In this case, we
can solve the compaction problems in polynomial time by Theorem ..

. In the general case, Algorithm . makes the compaction problems easier since it
separates segments for which the relative placement is determined in advance. Fur-
thermore, it constructs the sets P sep for the unseparated segments. After execution,
the lists P sep & � ��� ( contain for each unseparated pair of segments � and � those arcs
which may be added in order to separate them. The maximally completed shape
graphs together with the potential arcs in the sets P sep determine the integer linear
program for the respective compaction problem.

We will first describe the linear programming-based branch-and-bound algorithm. At
each node of the branch-and-bound tree we compute a local lower bound and try to
improve the global upper bound (see the generic algorithm on page  in Chapter  and
note that the compaction problems are minimization problems).

In the initialization phase we try to compute a good initial global upper bound. We
apply one of the constructive heuristics in Section .. and improve the first feasible
solution with an improvement heuristics described in Section ... According to the
generic scheme we initialize the list of subproblems with the original problem.

At each node of the branch-and-bound tree we obtain local lower bounds by solving
the -relaxations of the appropriate subproblem, i.e., the linear programs resulting from
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dropping the integrality constraints. If the objective value of the  exceeds the global
upper bound, we know that the feasible solutions contained in the subtree rooted at the
current node are worse than the currently best solution, and we fathom the subproblem.
If this is not the case, we may have found a better solution: If the -solution is feasible for
the original problem, we can update the global upper bound. Otherwise we add two new
subproblems to the list by choosing a zero-one variable and fixing it to zero in the first
subproblem and to one in the second. The branching step corresponds to the decision
of adding or not adding a certain potential arc to the extension. By Observation . we
do not have to branch on the coordinate variables, since their integrality follows from the
integrality of the potential arc variables.

The algorithm then selects an open problem from the list of subproblems according to
a certain enumeration strategy, like, e.g., depth-first-search, breadth-first-search or best-
first-search. We comment on our choice for the branching and selection strategy in the
description of the realization of our algorithm in Section ... If the list of subproblems
is empty, the global upper bound is an optimal solution.

Cutting Planes

We extend the integer linear programming formulation by adding an additional class of
constraints that do not eliminate feasible solutions and improve the bound of the  re-
laxation by cutting off some of the fractional solutions.

Although Lemma . shows that explicitly excluding cycles is not necessary in the
formulation, we will show that the cycle inequalities are tighter than the corresponding
sets of consistency inequalities.

– Cycle inequalities. All cycles in extensions of shape graphs have positive weight
since all arcs have unit weight. We know that the initial shape graphs are upward
planar and thus acyclic. Therefore, we explicitly exclude cycles that are induced by
the additional potential arcs. For each cycle - in the extension we require that not
all of the potential arcs on - may be present at once.#

��� �
pot

� �19�4 - � P pot 4 ! � � cycles - in extension (.)

The disadvantage of the cycle inequalities is their possibly exponential number that
prevents us from adding them in advance to the  formulation. Instead, we sep-
arate violated inequalities of this class at each node of the branch-and-bound tree
which results in a branch-and-cut algorithm.

We first show that the new class of inequalities cuts off fractional infeasible solutions
that are valid for the consistency constraints and then investigate the corresponding sepa-
ration problem.

We consider the relation of cycle inequalities and consistency inequalities using a
global constant � with � � � � for all T 6 P pot as in our choice in Lemma .
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on page . Summing up the consistency inequalities of a cycle results in

! & � �;��( #�
�
��� �

pot

� � / 4 - � P pot 4 � & ! � (�� 4 - 4 ! 4 - � P pot 4
� #

�
�
��� �

pot

� � 9 � � 4 - � P pot 4 � 4 - � P pot 4 ! 4 -84
� �;�

� & � �;��( 4 - � P pot 4 ! 4 - 4
� �;�

� 4 - � P pot 4 ! 4 -84� �=�� ��
 �
� 

) 4 - � P pot 4 ! �8�

a weaker inequality than the corresponding cycle inequality.
This calculation also shows that the constants � � determine the difference in the

strength of the inequalities. A good bound for � � will weaken the disadvantage of the
consistency constraints. Their advantage is, however, that we only need 4 P pot 4 constraints
as compared to the possibly exponential number of cycle constraints. Figure . shows
the relation between the classes of inequalities with an example.

�

�

�

�

�

� � � � � 	 � � � � � 
 	 � � , < & T�(4�C� for all arcs

consistency inequalities:

� � ! � � ! � + � � � � � 	 / ! � (.)

� � ! � � / � (.)

� 
 ! � � ! � + � � � � 
 	 / ! � (.)

��� ! � 
 / � (.)

� � ! ��� / � (.)

! � + & � � � � � 	 � � � � � 
 	 ( / ! � �
� � � � � � 	 � � � � � 
 	 9 � � �

� � � � � 	 � � � � � 
 	 9 �

Summing up (.)-(.) results in

cycle inequality:

Figure .: Example showing that cycle inequalities are tighter than consistency inequalities. Po-
tential arcs are dashed

Cycle inequalities play a more important role in the next chapter on labeling in which
we develop a pure zero-one formulation for point-feature map labeling problems. Un-
fortunately, the separation problem becomes difficult in our formulations for the labeling
problems since not every cycle has positive weight. We will show in Section .. that it is
NP -hard to separate violated positive cycle inequalities in the case of general arc weights.
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This task is easier in our formulations for the compaction problems. For the sake of sim-
plicity, we assume that additional zero-one variables are associated with each arc in the
shape graphs and that these variables are fixed to one during the computation. Since ev-
ery cycle in the extension has positive weight, the separation problem is equivalent to the
following problem.

Definition . (Separation problem for cycle inequalities).
Given a digraph L�� &'N ��PF( and an -solution � 6 � � , + 9 � �*9?� � T�6 P , find a
directed cycle - > P with #

�
�
�

� � ) 4 - 4 ! � �
We substitute

� � � � ! � � for all T 67P . We then have to find a directed cycle with#
�
�
�

& � ! � � ( ) 4 - 4 ! �
� #

�
�
�

� � � � �

We propose the following, straight-forward shortest path-based technique to solve the
separation problem: Let the length of an arc be its

�
-value. We temporarily remove each

arc T � &DR � S ( from the graph and check whether the length
� &"� ( of the shortest path� from S to R plus the length of the arc T is smaller than one. In this case, the cycle

formed by � � 	�T � gives rise to a violated cycle inequality. Of course, we only have
to consider the potential arcs since no cycles without potential arcs exist. Furthermore,
we can use Dijkstra’s algorithm to compute shortest paths since all arc weights are non-
negative. Algorithm . summarizes the steps of the cycle separation.

Algorithm . Cycle separation

Input: Directed graph LH�C&'N ��PF( , -solution � 6 � � , +*9 � �
9 � � T 67P
Output: Directed cycle - >IP with � �

�
� � � ) 4 - 4 ! � if one exists

: for all T � & R �+S�( 6 P do
: P;�;P �K	�T � ;
: compute shortest path � from S to R with Dijkstra;
: if

� &"� ( � � &'T ( � � then
: return � � 	�T�� ;
: P;�;P � 	�T�� ;

Although we can separate violated cycle inequalities quite efficiently by using Algo-
rithm ., we still have to keep the consistency constraints in order to link the coordinates
to the potential arcs. Practical experiments with the above branch-and-cut algorithm show
that the number of violated inequalities that can be found decreases quickly as the compu-
tation proceeds. After a few iterations in the branch-and-cut scheme no further violating
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cycles exist, but the algorithm still spends a considerable part of the computation time
in the separation procedure. At each node in the tree this amounts to an unsuccessful
shortest path computation for every arc in P pot.

We conclude that the pure branch-and-bound algorithm is more suited to solve the 

formulations presented in this chapter. We believe that a more promising way to increase
the performance of the algorithm consists of finding better bounds for the differences
� � ! � � for each potential arc T � &�� ��� ( . This would enable us to compute individ-
ual constants � � that improve the tightness of the consistency constraints. We want to
remark, however, that the implementation of the branch-and-bound algorithm with the
choice of a global constant � according to Lemma . is sufficiently fast for practical in-
stances. Our experimental study in Section . shows that all practical problem instances
can be solved in short computation time; the longest running time for a practical instance
is ten seconds.

.. Related Work in  Design

The algorithms by Kedem and Watanabe () and by Schlag et al. () are exact algo-
rithms for a two-dimensional compaction problem in  design which is closely related
to P -. In both cases, the authors propose a branch-and-bound approach to solve the
problems.

Kedem and Watanabe () propose a translation of the two-dimensional compaction
problem into a nonlinear mixed integer programming formulation, Watanabe () pro-
vides a detailed description of the algorithm. The authors express the problem as mini-
mizing the nonlinear area function under a set of linear and nonlinear constraints. Their
formulation, however, sacrifices the general statement of P - as defined in Section .
and considers only a subset of the feasible solutions in order to achieve a better running
time. In the following we sketch the branch-and-bound algorithm.

A vector of decision variables - determines the interaction of components. In the given
formulation, only two positions are possible for a pair of components, coded as an entry
in a zero-one-vector - . Each combination corresponds to a different relative placement of
the components in this pair—either a horizontal or a vertical constraint is active. An entry
in - can be interpreted as two potential arcs in the constraint graphs, i.e., a fixed - specifies
two (possibly infeasible) one-dimensional compaction problems. This formulation has the
drawback of being able to handle only two-way choices instead of four possible relative
placements. Though the area of the computed layout is optimal for a given partial order, it
may not be optimal for an instance of P - as formulated in Section .. The authors
propose a post-processing step to determine where the partial order of elements has to be
swapped, but they do not present a method that guarantees an overall optimal solution.

At each node in the branch-and-bound tree, the two one-dimensional compaction
problems are solved by computing a minimal coordinate assignment with the longest-
path method given in Algorithm .. If the subproblem is infeasible, i.e., Algorithm .
reports a positive cycle, the tree of problems can be cut at this node. If the node is a leaf
and a feasible solution is found that is better than the previous global upper bound, the
bound is updated. Otherwise, a solution may cause an update of the local lower bound.
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If the latter becomes greater than the global upper bound, an optimal solution cannot be
found below the current node, and again the tree is cut at this point.

In general, an optimal solution of the restricted problem can be found in short time
by using this method. However, the proof of optimality may be very time-consuming.

Schlag et al. () propose a different branch-and-bound approach: They present a
characterization of feasible layouts in terms of satisfiability of a special Boolean expression.

If the distance constraints between two components R and S in the layout process are
not satisfied, the pair is called a violation . Four logical constraints � 


$
� � � �
$
� � � �
$
� , and � �

$
�

define the relative placement of elements R and S . A violation can be seen as the non-
emptiness of the intersection between the two rectangles A

$
� and S , shown in Figure ..

The rectangle A
$
� contains element R ; at each of the four sides it is enlarged by the appro-

priate minimum distance to element S .

/

�
)4 �

�
�4 �

�
� 4 �

�
$4 �

�
� 4 �

Figure .: A violation formed by elements
�

and �
With each logical constraint

�K6 �

��
$
� � � � 	��



$
� � � �
$
� � � �
$
� � � �
$
� �

and each layout � , the authors associate a logical variable. The variable is true if the logical
constraint is satisfied in � and false otherwise. Then the following properties characterize
a legal layout:

– Layout � satisfies the base constraints which determine the sizes of the elements.

– For every � the formula
�

is true, where

� ��� $
� �
. � 

$
� � � �
$
� � � �
$
� � � �
$
� 1 �

For a practical application, the size of set
�

is too big. The basic idea of the approach
by Schlag et al. is to start with

� � � , and to obtain a so-called smashing by solving
the system of inequalities with the longest path method in the corresponding constraint
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graphs. A smashing is a possibly illegal layout that respects only the set of constraints
in the current set

�
. Transferred to the area of graph drawing, this corresponds to a

drawing obtained from a minimal assignment for the shape graphs of an orthogonal rep-
resentation, similar to Figure .. Then the algorithm determines a violation & R �+S�( in
the smashing with a rectangle intersection algorithm, searching for situations like in Fig-
ure .. Once such a pair &DR �+S�( is found, the algorithm performs a branching step: in
each of the four subproblems, it adds a different logical constraint � �

$
� ( � 6 	���� � � � � � � ) to

the set of active constraints
�

. It then proceeds recursively with each of the four different
sets

� � 	 � 

$
� ��� � � � � � � 	�� �

$
� � .

An optimal solution is obtained like in the algorithm by Kedem and Watanabe ().
If the subproblem is a leaf, the generated logical constraints are either inconsistent, or the
layout is legal and may constitute the new upper bound. Computations at inner nodes in
the branch-and-bound tree have the following effects: illegal subproblems and problems
exceeding the global upper bound cause the algorithm to cut the tree at the current node;
otherwise, the area of the smashing becomes the new local lower bound.

Unlike our algorithms, the exact branch-and-bound algorithms from the area of 

design aim at area minimization for related, but different, problems and rest upon non-
linear formulations and objective functions. The -based relaxations, which are the core
of our new techniques, cannot be used in a non-linear environment. Furthermore, we take
advantage of the particular properties of the compaction problems as they occur in orthog-
onal graph drawing. We characterize the set of feasible solutions as integral points within
a problem-specific polytope and exploit the properties of our combinatorial reformulation
to optimize over this polytope. The running time behavior of our algorithms benefits
in particular from the small number of potential arcs which give rise to binary variables
in our formulations. We are able to identify a small set of potential arcs by maximally
completing the shape graphs.

. Experimental Study

In this section we report on our experimental results for the two-dimensional compaction
problems in orthogonal graph drawing. We describe the implementation of the algorithms
under evaluation and specify the experimental settings. We apply two variants of the
 algorithm to a large number of graphs from three different test suites to create
the instances of the compaction problems. We discuss the experimental results with a
special focus on edge length and running time—we demonstrate, however, that the other
criteria result in a similar behavior. Moreover, we dedicate a paragraph to turn-regularity-
related issues. At the end of this section, we summarize the main conclusions from this
experimental study.

.. Implementations

All compaction strategies introduced in the preceding sections are available as modules
inside the  library (see , ).  is an object-oriented C ��� class library of algo-
rithms and data structures which aims at bridging the gap between theory and practice in
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the field of automatic graph drawing. Gutwenger () and Alberts, Gutwenger, Mutzel,
and Näher () present the design of the library, and Gutwenger, Jünger, Klau, Leipert,
and Mutzel () describe its usage as a tool for algorithm engineering.  is built on
top of , a library of efficient data types and algorithms in the area of combinatoric and
geometric computing. The book (Mehlhorn and Näher, ) contains a comprehensive
and detailed description of the library.

The design of algorithms within  is very modular. The compaction phase in or-
thogonal graph drawing is strictly separated from the computation of the orthogonal shape
and provides a large number of different strategies: The user can choose among a construc-
tive heuristics and optionally combine it with an improvement heuristics. Alternatively the
user can use one of the exact algorithms. The following modules exist in the library:

– Constructive heuristics. A different choice of dissection method and assignment
leads to different constructive heuristics as described in Section ... We provide a
variant of the original rectangle-based and the two turn-regularity based dissection
methods. We can assign coordinates to the auxiliary representations by either mini-
mal or

�
-minimal assignments which results in six different constructive heuristics.

In this section, we test four of them: rectangular dissection with minimal and
�

-
minimal assignment, and the two turn-regularity-based dissection methods with
�

-minimal assignments. We refer to the implementations by  (longest paths), 

(flow),  (turn-regularity ) and  (turn-regularity ), respectively.

– Improvement heuristics. Two constraint-graph based improvement heuristics are
available; they differ in computing either minimal or

�
-minimal assignments for

the visibility graphs (see Section ..). If we apply an improvement heuristics, we
append either  or  to the name of the constructive heuristics.

– Exact algorithms. Our implementations of the exact branch-and-bound algorithms
in Section .. use , a library of C routines that solves (integer) linear pro-
gramming problems (, ). An implementation of the branch-and-cut al-
gorithm described in the same section is available which uses the -library.
 supports the development of linear-programming based branch-and-bound
and branch-and-cut algorithms and provides an interface to . For the design
of the library see (Jünger and Thienel, ) and (Thienel, ). We use the pure
-version for the experiments in this section since it proves to be faster due
to the reasons mentioned at the end of Section ... We refer to the exact algo-
rithms which minimize total and maximum edge length by

	
- and

�
max-,

respectively. The objective function in the implementation
�
max- corresponds to

minimizing total edge length as a secondary optimization goal as discussed at the
end of Section ...

We test the implementations of the constructive heuristics both stand-alone and in
combination with implementations of the two constraint graph-based improvement heur-
istics which results in twelve different heuristics for the two-dimensional compaction prob-
lems of Section .. Additionally, we test the implementation of the exact integer linear
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programming-based algorithms for
	

- and
�
max-. Table . summarizes the

naming scheme for the  resulting algorithms under evaluation.
For the exact branch-and-bound algorithms, we set a limit of  minutes CPU-time.

If the computation exceeds this limit without finding an optimal solution, we return the
best solution together with its quality guarantee.

Improvement heuristics
Constructive heuristics none minimal ass.

�
-minimal ass.

rectangular dissection, minimal
assignment

  

rectangular dissection,
�

-minimal assignment
  

turn-regular dissection (var. ),
�

-minimal assignment
  

turn-regular dissection (var. ),
�

-minimal assignment
  

Exact algorithms
optimal w.r.t. total edge length

	
-

optimal w.r.t. max. edge length
�
max-

Table .: Naming scheme for implementations

.. Experimental Settings

For our experiments, we use three different groups of graphs which can roughly be di-
vided in easy instances, practical instances and hard instances. All instances are publically
available at ���������	�
���
�
��
	������
����
��������
�����
	������������� �������!�"� .

The first group of graphs are a set of relatively easy to compact four-planar biconnected
graphs. We use a set of  graphs with  to  vertices. Bridgeman et al. ()
exclusively use four-planar biconnected graphs for their experiments.

In the experimental comparison paper (Di Battista, Garg, Liotta, Tamassia, Tassinari,
and Vargiu, ), the authors introduce , practical graphs which we use as the second
group of test instances. The graphs are variations from a core set of  graphs used in real-
world applications from software engineering and database design. In experimental graph
drawing, these graphs are a widely-used test-suite and appear in many computational
studies.

Finally, we want to test the algorithms on hard instances. We produce  instances for
the compaction problems with a graph generator in : To create a planar graph with �
vertices, the generator chooses � line segments whose endpoints have random coordinates
of the form � � � , where � is the smallest power of two with � /H� , and � is a random
integer in 	 +�� � � � � � ! � � . It then constructs the arrangement defined by the segments
and keeps the vertices with the � smallest � -coordinates. Finally, the generator adds edges
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to make the graph connected while maintaining its planarity. We call this test-suite quasi-
trees since large subgraphs of the resulting graphs are trees. Quasi-trees are hard instances
of the compaction problem due to their large number of fundamentally different drawings
that make the compaction task difficult. The suite consists of a set of  smaller quasi-trees
with  to  vertices on which all algorithms are tested and a set of  graphs with 

to , vertices to challenge the heuristic algorithms.
In order to get instances for the two-dimensional compaction problems of Section .

we compute a simple orthogonal representation for each of the graphs in the test-suites
following a transformation that is part of many orthogonal drawing techniques used in
practice:

. For each graph
�

in the test-suites we compute a planarized graph
� 	

using the
planarization method in the  library. The number of vertices in

� 	
is equal

to the number of vertices in
�

plus the number of crossings. We then compute a
planar embedding of

�
	
.

. We run the transformation phase of the  algorithm as described in (Tamas-
sia et al., ). The phase creates an auxiliary four-planar graph

� 	
� by replacing

vertices of degree greater than four by artificial faces.

. We use both the original algorithm by Tamassia () and a variant of this method
(Klau, ) to create instances of two-dimensional compaction problems. In the
variant, the underlying network differs from the original one due to a different
interpretation of flow—see also the remark on page  in Section ..: in the new
network a minimum cost flow corresponds to a bend-minimum shape in which,
satisfying a second optimization goal, the number of -degree angles between
edges is maximal. This avoids unnecessary staircase-like structures in the shape and
thus reduces the number of segments. We refer to the algorithm in (Tamassia, )
as the traditional method and to its variant as the segment-saving method. We
present the experimental results for the segment-saving method and report the cases
for which the traditional method shows a different behavior.

We replace bends by artificial vertices in the resulting orthogonal representation
and get a simple orthogonal representation

� 	
� that we use as the input for the

compaction algorithms. The number of vertices in
� 	

� is the number of vertices in
the original graph plus the number of artificial vertices, which represent crossings,
plus the number of artificial vertices, which represent bends.

We choose these strategies, since they are among the orthogonal methods which yield
the best layouts in practice, see (Di Battista et al., ) for an evaluation. Figures .(a),
(b) and (c) show the distribution of instance sizes for the different test-suites. The data
is not equally distributed since not only the number of vertices determines the size of an
instance for the compaction problem, but also the number of crossings and bends which

 For the four-planar biconnected graphs, the quasi-trees and the planar graphs in the test-suite there is
nothing to do in this step; we just set ��� � � .
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are introduced during the conversion from the original graph
�

to the simple orthogonal
representation

� 	
� . The peak in Figure .(c) results from the larger number of smaller

quasi-trees. Figure .(d) shows the number of crossings that the method described above
inserts into the real-world graphs; the other test-suites contain planar graphs.
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(a) Biconnected four-planar graphs: size

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350
N

um
be

r 
of

 g
ra

ph
s

Number of vertices

(b) Real-world graphs: size
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(c) Quasi-trees: size
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(d) Real-world graphs: crossings

Figure .: Distribution of graphs in the test-suites. The size refers to the number of vertices in
the simple orthogonal representation

� 	
� , i.e., after planarization, orthogonalization

and replacement of bends

We run the implementations of the  compaction techniques under evaluation on
the two simple orthogonal representations of each graph in the test-suite resulting from
applying the traditional and the segment-saving method. We use a Sun Enterprise 

with  GB of main memory and two  MHz-CPUs for the experiments.

.. Computational Results

Prefacing the data evaluation of all graphs, we present in Table . and Figures .

and . detailed results for the selected example �!�������"�����
� 
���� 
�� 
��	�
� from the collec-
tion of small quasi-trees for both the traditional  method and the segment-saving
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strategy. The instance illustrates many of the characteristics we observe when running
the  compaction algorithms on the set of more than , graphs from all test-suites,
and the pictures support a better understanding of many of the phenomena that can be
observed in the computational results.

Method �M&���(�� &���(�� &���(���&���(�	�&���(�
 max &���(�� comp
�
s

traditional
       .

       .

       .

       .

       .
       .

       .
       .

       .
       .

       .
       .	
-       .�

max-       .

segment-saving
       .

       .

       .

       .

       .

       .

       .

       .
       .
       .

       .
       .	
-       .�

max-       .

Table .: Detailed results for ���������"�
�
�
� 
��
� 
�� 
�� ��� , see also Figures . and .. The last
column contains the CPU-time � comp

We provide a detailed discussion of the results for the important aesthetic criteria total
edge length and running time. As we will see, the data for the other criteria look similar,
and good values for total edge length also lead to good values with regard to the other
criteria.
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(a)  (b)  (c)  (d) 

(e)  (f )  (g)  (h) 

(i)  (j)  (k)  (l) 

(m)
�

- (n)
�
max-

Figure .: Orthogonal drawings of the instance �!��������������� 
���� 
 � 
��	�
� resulting from the
 evaluated compaction techniques, shape computed with the traditional -
algorithm. See also Table . and Figure .
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(a)  (b)  (c)  (d) 

(e)  (f )  (g)  (h) 

(i)  (j)  (k)  (l) 

(m)
�

- (n)
�
max-

Figure .: Orthogonal drawings of the instance �����������
�
�
� 
��
� 
�� 
�� ��� resulting from the 

evaluated compaction techniques, shape computed with the segment-saving -
algorithm. See also Table . and Figure .
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Total Edge Length

First we consider the set of biconnected four-planar graphs. We divide the instances in
subgroups according to their sizes with steps of  vertices. For each group we compute
the average total edge length: first for the four constructive heuristics (see Figure .),
then for the four methods with longest path-based improvement (undisplayed) and last
for the methods with flow-based improvement (Figure .). We show the results relative
to the optimum total edge length which we compute with

	
-. Longest path-based

post-compaction does not lead to significant improvements in terms of total edge length
and sometimes changes the drawings for the worse, thus it hardly justifies its categorization
as improvement heuristics. This behavior, identifiable also in Figures .(e)-(h) and espe-
cially .(e)-(h), is due to the fact that the method places all vertices to the leftmost and
bottommost possible position and can also be observed with the practical graphs and the
quasi-trees. We therefore will not display the data for post-compaction with the longest
path method.

It is obvious that the biconnected graphs are easy to compact: Already the worst con-
structive method in terms of edge length, , achieves quite good results. Improving the
drawings with the flow method often results in an optimal drawing. The plot also indi-
cates that the methods ,  and  produce quite similar-looking drawings—this
is also true for the other test-suites. Here, the reason is that the dissections are equal or
similar and the computation of the assignment is very constrained.
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Figure .: Four-planar biconnected graphs: total edge length relative to optimal value. Con-
structive heuristics
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Figure .: Four-planar biconnected graphs: total edge length relative to optimal value. Improve-
ment with flow

We partition the , graphs corresponding to practical data in the same way as the
biconnected graphs. Figure . shows the resulting total edge length for different meth-
ods relative to the optimum value computed by

	
-. On the one hand, the practical

graphs behave like the biconnected graphs: The heuristics are close to the optimum value
and almost reach it when using improvement with flow. On the other hand, larger in-
stances are easier to compact, whereas the biconnected graphs indicate the opposite. This
is due to the high number of crossings resulting from the prior planarization step (see
Figure .(d) for the distribution of crossings). The higher this number, the simpler the
shapes of the faces. For the larger graphs, we often observe that almost all faces have a
rectangular shape; this explains the good performance of all methods for big planarized
graphs.

A different view of the improvement by computing
�

-minimal assignments shows the
influence of the flow method on the quality more drastically. In Figure ., we group the
graphs according to their size using a step size of  vertices and show for each constructive
heuristics its value before and after the improvement step. Again, it can be observed that
the big planarized graphs are almost optimally compacted by the heuristics. Additionally,
the plot illustrates that the choice of the constructive heuristics in the first step does not
have a big impact on the final quality: what matters is the improvement with the flow
method.

The most challenging instances for the compaction problem are the quasi-trees. We
first consider the smaller instances where

	
- can find the optimal solution or at least

a very good bound within the time limit. These are  graphs with  to  vertices in
the original graph, resulting in  to  vertices in the simple orthogonal representation.
Figure . illustrates the quality of the heuristics with respect to the optimum value.
Again, the best heuristics perform very well: Even for these hard instances, four of them
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Figure .: Practical graphs: total edge length relative to optimal value
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(, , , and ) are never more than % off the optimum value, alternating
at the top position among the heuristic methods. In the plot, we only show  and
, the other two are very close to . A further observation is that the quality of the
methods is relatively independent of the graph size.
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Figure .: Small quasi-trees: total edge length relative to optimal value

As Figures .-. indicate, the combined constructive and improvement heuristics
compute almost optimal solutions for instances of all graph classes. However, the plots
show average values in each subgroup. What the figures hide is that some instances exist
for which the quality difference between the heuristics and the exact algorithm is quite
remarkable. Therefore, we take a more careful look at the comparison with the exact algo-
rithm

	
-opt and compare its solution of each instance to the value of the best heuristics

for that instance. We display the data for the practical graphs and the quasi-trees in Fig-
ure .; no anomalies exist for the biconnected graphs. The plots show the number of
graphs that fall in certain quality categories. For most of the practical graphs, the quality
difference between optimally compacted drawings and those obtained by the best heuris-
tics is less than ten percent. But Figure .(a) demonstrates that this is not the case for all
graphs: many instances exist for which the usage of an exact algorithm really pays off. The
biggest difference is %. Figure .(b) shows the deviations for the small quasi-trees.
Here, for most of the graphs the heuristics come close to the optimum, nevertheless, for
more than one third of the instances the difference is greater than five percent.

Finally, we look at the trend when the sizes of the quasi-trees grow and investigate
the quality of the methods for  larger instances in the range of  to , original
vertices. Here, we choose  as the comparison method, see Figure .. Again, ,



 Chapter . Compaction in Graph Drawing

0

20

40

60

80

100

120

140

160

10 15 20 25 30

N
um

be
r 

of
 g

ra
ph

s

%

(a) Practical graphs

0

5

10

15

20

25

30

35

40

5 10 15 20
N

um
be

r 
of

 g
ra

ph
s

%

(b) Small quasi-trees

Figure .: Deviation of optimal total edge length in quality categories

 and  are very close together and manage in some cases to beat the comparison
method. In the plot, we display  and the four constructive heuristics whose quality
decreases as the instance sizes grow. It can be seen that the methods based on rectangular
dissection perform similarly, as a stand-alone heuristics  is the best. But using flow
compaction as an improvement almost nullifies this advantage.

Running Time

All implementations run very fast on the biconnected and practical instances. For the bi-
connected graphs all heuristics stay below . seconds and

	
- stays below . seconds.

Figure . displays the running times for the practical test-suite. The constructive heuris-
tics take at most half a second and the improvement heuristics take at most . seconds
for all instances. Even

	
-, which computes a provable optimal solution, stays below

 seconds on all instances but the big quasi-trees—note that the values in the plot are again
average values of graphs within one subgroup of similar size. A more detailed look at the
running time behavior of the exact algorithm provides Figure .. The longest running
time needed for a real-world example is . seconds. We find it remarkable that the exact
algorithm solves almost all instances to optimality within short computation time.

Figure . illustrates the time the heuristics need for the hard compaction instances.
Here, most methods stay inside a  second time limit for graphs up to , vertices. On
the large instances, the running time increases to up to  seconds for the flow improve-
ment heuristics. Generally, there is a typical pattern for the performance of the methods
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Figure .: Big quasi-trees: total edge length relative to 
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Figure .: Running time behavior of � -

which can be observed in all graph sets: Heuristics  beats every other implementation in
terms of running time. For the flow-based methods,  has an advantage over  and ,
which are the slowest among the constructive methods due to a more complex dissection
process. This order remains the same when applying an improvement heuristics.
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Figure .: Quasi-trees: running time

Other Criteria

The maximal edge lengths and the area in the computed drawings behave very similar
to the total edge lengths for the given graph sets and we do not present the detailed
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data here. For the biconnected and practical graphs, the average maximal edge lengths
per subgroup lie close together. Among the constructive methods,  and  again
have a slight advantage over the other heuristics. As for the total edge length, the flow
improvement equalizes the results. The results for the quasi-trees, however, show a bigger
variation. Heuristics  performs best among the constructive methods, but combination
with the flow improvement can drastically reduce the lengths for all constructive methods.
Here, too, the flow improvement dominates the quality of the result, the differences in the
results of the initial methods vanish. The area and half-perimeter results show the same
behavior: In case of hard instances, flow improvement can help to enhance the quality
and to close the gap created by the initial methods, otherwise the constructive heuristics
lie close together and show only a slight improvement when flow is applied on their initial
layout.

In the following, we refer to the different test-suites as , , and  and
also refer to the small and large instances of  as  and , respectively. We
count the number of iterations in the one-dimensional compaction scheme depending
on the variant of the algorithm and the improvement heuristics. Table . shows the
respective maximum and average values. It is surprising that even the maximum numbers
are low.

   

segment-saving 

  (.)  (.)  (.)  (.)
  (.)  (.)  (.)  (.)
  (.)  (.)  (.)  (.)

  (.)  (.)  (.)  (.)
traditional 

  (.)  (.)  (.)  (.)
  (.)  (.)  (.)  (.)
  (.)  (.)  (.)  (.)

  (.)  (.)  (.)  (.)

Table .: Maximum number of iterations in the one-dimensional compaction scheme, average
values in parentheses (see also Algorithm . on page )

Turn-Regularity

One of the motivations to use the concept of turn-regularity within a constructive heuris-
tics for compaction problems is to decrease the number of artificial vertices and edges
which are inserted during that process. We count the numbers of inserted edges for the
rectangular dissection method () as well as for the two turn-regularity-based dissection
techniques ( and ) and present the results in Table .. The number of artificial

 The full data of the experimental study is available at ���������	����
�
�
�
�������
�����
�������
�����
������
������� ����� ���!� .
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edges is significantly lower in the dissection strategies which use the concept of turn-
regularity. For the biconnected graphs, the rectangle-based method  inserts up to 

and  times more edges as compared to  and , respectively. In the case of harder
instances the factors decrease, but still roughly up to two and ten times as many edges are
needed to fully dissect the faces in rectangle-shaped subfaces.

Our experimental results, however, show that the influence of the number of artificial
vertices and edges is not as dramatic as Table . suggests. Even when inserting a small
number of artificial edges, local decisions have to be made which may have a strong impact
on the overall drawing.

   

segment-saving 

 .% .% .% .%
 .% .% .% .%
 .% .% .% .%

traditional 

 .% .% .% .%
 .% .% .% .%
 .% .% .% .%

Table .: Percentage of inserted artificial vertices in the dissection process related to the total num-
ber of edges

Bridgeman et al. () report a ratio of turn-regular faces of about % in their test-
suite of four-planar biconnected graphs. We have the same results with exception of the
small quasi-trees, where only about % of the faces are regular. In general, however, the
irregular faces are the larger ones which count as much in that measure as small faces which
are likely to have rectangular shape. Furthermore, in many cases one of the irregular faces
is the external face which can have a high impact on the complexity of the compaction
problems.

Another indicator that orthogonal representations of biconnected graphs and the prac-
tical graphs in the test-suite are easy to compact is that many of the graphs are turn-regular,
that is, all of their faces are turn-regular. Table . shows how many representations have
this property within a test-suite, depending on the variant of . It can be observed
that about twice as much biconnected representations are turn-regular than representa-
tions from the practical test-suite; none of the quasi-trees is turn-regular. The segment-
saving strategy more than doubles the percentage of turn-regular instances.

Figure . shows a more suitable measure of turn-regularity: the number of edges in
turn-regular faces as compared to the total number of edges.

 Note that the smallest possible irregular faces are bounded by eight edges and look like Figure .(e)
on page .



.. Experimental Study 

  

traditional  .% .% %
segment-saving  .% .% %

Table .: Percentage of turn-regular representations in the test-suite
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Figure .: Percentage of edges in turn-regular faces, compared to total number of edges

.. Conclusions

The experimental study presented in Sections .. to .. evaluates the state-of-the-art
compaction techniques for orthogonal graph drawing in terms of quality and run time
performance by running  implementations on three fundamentally different test-suites.
At this point, we summarize the conclusions we draw from the extensive experimental
results.

Heuristics perform very well on most instances of the compaction problem. Especially
for the data from the easy and practical instances we can observe an excellent behavior,
both in terms of quality and running time. We want to emphasize, however, that in some
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cases it is desirable to get an optimal drawing, e.g., when quality is more important than
running time. There are cases in which it is worth spending an extra amount of running
time in order to produce a high-quality drawing. The test-suites contain many examples
(especially real-world graphs) for which the quality difference between the optimal solu-
tion and the best heuristics is more than  percent. Moreover, the implementation of
the integer linear programming-based algorithm is necessary to measure the quality of the
heuristics.

Graphs with many crossings are easy to compact. The topology-shape-metrics scheme
treats crossings as artificial vertices. The more crossings a drawing contains, the simpler
are the shapes of its faces. For the big planarized graphs in the practical test-suite we
observe that in many cases almost all faces have rectangular shape. Such graphs provide
easy instances of the compaction problem as shown in Section ...

Longest-path assignment suffices for constructive heuristics. Computing minimal as-
signments is much faster than

�
-minimal assignments (see Chapter ). The structure of

the auxiliary representations used in the constructive heuristics is very special which leads
to the fact that minimal and

�
-minimal assignments are almost identical—see also Re-

mark . on page . We recommend to use the faster longest-path methods within the
constructive heuristics. More important, however, is the following issue.

The choice of the constructive heuristics does not matter as long as flow compaction
is used as post-processing. Although the results for the constructive methods differ sig-
nificantly, the differences vanish when using the flow-based improvement heuristics based
on
�

-minimal assignments. Therefore, we propose to use a simple constructive method,
e.g., rectangular dissection and minimal coordinate assignment, followed by a flow-based
post-processing step, which yields also the best running time among the good heuristics.
The implementational effort for this variant is low as compared to the relatively complex
turn-regularity-based techniques.
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 Map Labeling

Then came in all the king’s wise
men: but they could not read the
writing, nor make known to the
king the interpretation thereof.

Daniel :

In this chapter, we will present algorithms for the different labeling problems that work
in any of the six labeling models displayed in Figure . on page  of the introduction. We
allow several labels per point-feature and labels of different sizes. Figure . shows prov-
ably optimal labelings of a part of a practical instance for the label number maximization
problem under the different rectangular labeling models.

Saarbrucken
NeckarelzHomburg NeustadtNeunkirchen
Heidelberg OsterburkenKaiserslautern

EberbachMannheim
Ludwigshafen Weinheim Lauda

Worms Heppenheim

Bensheim

(a) Four-slider,  labels
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(b) Two-slider,  labels
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(f ) One-position,  labels

Figure .: Provably optimal solutions for the label number maximization problem in the six differ-
ent axis-parallel rectangular labeling models for a part of the German railway instance

Section . contains precise mathematical definitions of the labeling problems and
mentions previous work that aims at solving these problems in the different models. In
particular, we will provide a comprehensive complexity overview of labeling problems;
most of them are NP -hard optimization problems, but some restricted cases can be solved
in polynomial time.
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In Section . we present our new combinatorial approach to the problems. We pro-
ceed in a similar fashion as for the compaction problems in the previous chapter. We
define two constraint graphs, the labeling graphs for an instance of a labeling problem,
and require several graph-theoretic properties to be satisfied in order to use this pair of
graphs to compute a solution of the labeling instance. As for compaction, we determine
the placement by computing assignments in the underlying constraint graphs. Again, we
reformulate the original problems as combinatorial versions and prove equivalence.

We describe translations of the equivalent combinatorial problems into integer linear
programming formulations in Section . and show how to characterize the set of feasi-
ble solutions of the pure labeling problem as the convex hull of a zero-one polytope. We
present classes of inequalities and integrality constraints that describe the integral points
in this labeling polytope. As it will turn out, violated inequalities in one of these classes,
the positive cycle inequalities, are difficult to find, since the decision version of the cor-
responding separation problem is NP -complete. We derive an alternative formulation
without the positive cycle inequalities but at the cost of additional variables. The charac-
terization by inequalities enables us to develop integer linear programming formulations
for many of the labeling problems. Our main focus is on the label number maximization
problem, but we also demonstrate how to model the other problem types with integer
linear programs.

In Section ., we describe new exact algorithms for the labeling problems in the six
axis-parallel rectilinear labeling models. We present an iterative branch-and-bound based
technique and a branch-and-cut algorithm which solve instances of the labeling problems
to optimality.

Of course, our algorithms need exponential time in the worst case. Nevertheless,
Section . shows that they are competitive for practical examples. We evaluate our imple-
mentation for the label number maximization problem using a large number of real-world
instances and a widely used generator for benchmark instances.

. Labeling Problems

This section contains precise characterizations of different point-feature map labeling
problems in the six different axis-parallel labeling models. We provide a general defini-
tion for instances of labeling problems which allows an unbounded number of labels per
point-feature and labels of different size. We introduce five kinds of labeling problems
which differ in whether they allow omitting labels, scaling, or overlaps. The labeling deci-
sion problem asks whether an unscaled labeling without overlaps exists. A solution of the
labeling problem consists of such a labeling, if one exists. Since in practice it is quite unsat-
isfactory, in case the answer to the first two problems is “no”, three optimization problems
arise: The label number maximization problem asks for an overlap-free, unscaled labeling
for a largest subset of the labels. All labels must be placed in the label size maximization
problem, in which the task is to determine the maximum scale factor and a corresponding
labeling without overlaps. The label overlap minimization problem tolerates overlaps but
asks for an unscaled labeling for all labels with the minimum number of overlaps.
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All of the above problems are NP -complete or NP -hard for many of the labeling
models. At the end of this section we provide a complexity overview of the most popular
problems in the different labeling models.

We start by defining some notation about rectangles in the plane: Let � be a point
in the plane; we also refer to � by its two coordinates & � � � � � ( 6;� � . Let � be the set
of axis-parallel iso-oriented rectangles in the plane. A rectangle A 6�� is characterized
by two points: the lower left corner

� � &'A ( and the upper right corner � � &'A ( . If
� � &'A (

and � ��&'A ( differ in both, � - and � -coordinate, we call A non-trivial . Since A is iso-
oriented, the upper left corner � � &'A ( � . � � &'A ( � � � � &'A ( � 1 and the lower right corner�
� & A ( � . � � &'A ( � � � � &'A ( � 1 are uniquely defined. The boundary of A is given by the four

line segments � &'A (4� . � � & A (Q� � � &'A ( 1 (left boundary)

� &'A (,� . � � &'A (Q� � ��&'A ( 1 (top boundary)

��&'A (,� . � ��&'A (Q� � � & A ( 1 (right boundary)

� &'A (,� . � ��&'A (�� � � &'A ( 1 (bottom boundary) �

Figure . illustrates these definitions. The open intersection $ ��� � A of two rectangles
� and A is non-empty if and only if $ is a non-trivial rectangle, i.e., both width and
height of $ must be strictly greater than zero. Hence, two rectangles may touch and do
not intersect.

�
� � � ���"��� � � � ��� � � � � � � � ���

� �
� � � ���

� �
� � � � � � � � � � ����

� � � �"��� � � � � � � � � � � � � �	�

� � � � � ��� � � � ��� � � � � � ��� ���
Figure .: Rectangle 
���


We present a formal definition of an instance of a labeling problem which is quite
general: We allow different labels to have different sizes and impose no restriction on
the number of labels per point. An instance is then just a set of objects, the labels, and
three functions < � � , and T . The first two functions describe the width and height of the
rectangle that represents the appropriate label, the third function denotes the point in the
plane which receives the label.

Definition . (Instance of a labeling problem). An instance of a labeling problem is a
four-tuple

.�����< � � ��T 1
where �C� 	 ? 
2� � � � �*? � � is a set of

�
labels, and < ,

�
, and T are functions from the set

of labels to positive numbers or points, respectively. More precisely, < ���,� �F� and� ��� � � � are the widths and heights of the labels, and T8��� � � � denotes the points
that receive the labels.
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The common aim of all labeling problems is to find a placement of all or many labels.
We define a labeling as a placement that respects the three functions given by the labeling
instance. The requirement how the rectangles have to be placed with respect to the points
receiving the labels influences the labeling model.

Definition . (Labeling). Given an instance of a labeling problem & ����< � � �QT ( . A label-
ing according to a labeling-model is a function of labels to rectangles � ��� � � , so that
the following conditions hold:

(L) Rectangle � & ?E( has width < &'? ( and height
� &'?E( for every ?76 � .

(L) Function � places all rectangles according to the labeling model, that is,

TE&'?E(*6

:;;;;;;;;< ;;;;;;;;=

� & � &'?E( ( � � & � &'?E( ( � � & � &'?E( ( � � & � &'?E( ( in the four-slider model� & � &'? ( ( � � & � &'? ( ( in the two-slider model

� & � &'? ( ( in the one-slider model

	 � � & � &'?E(�(Q� � � & � &'?E( (Q� � � & � &'?E( (Q� � � & � &'?E( (�� in the four-position model

	 � � & � &'?E(�(Q� � ��& � &'? ( (�� in the two-position model

	 � � & � &'?E(�(�� in the one-position model

Definition . does not state anything about the overlaps that might occur among the
rectangles. In all labeling problems, overlaps are either forbidden or determine the quality
of a solution. We provide a separate definition of the set of overlapping labels:

Definition . (Overlaps of a labeling). Let � be a labeling for an instance & ����< � � ��T�( .
Two distinct labels ? � � 6 � overlap if the open intersection � &'? ( � � & � ( is not empty.
The overlaps of a labeling is the set

� & � ()�
�
	 ? � � � 6�� � <�� 4 � &'?E( � � & � ( �� ��� �

A first question is whether a labeling without overlaps exists. This gives rise to the
following decision problem.

Definition . (Labeling decision problem, -). Given an instance � � & ����< � � �QT (
of a labeling problem, does a labeling � for � exist with � & � ( � � , i.e., a labeling in
which the number of overlaps is zero?

Closely related to the decision problem is the labeling problem which asks for an actual
labeling, if one exists.

Definition . (Labeling problem, ). Given an instance �5� & ����< � � ��T�( of a labeling
problem, find a labeling � for � with � & � ()�3� , if one exists.

For practical instances, the labeling problem is often infeasible. This gives rise to the
following three optimization problems. The label number maximization problem asks for
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a labeling for a largest subset of labels. In certain applications it is necessary to place all
the labels; in this case, scaling may be allowed, and we want to find the maximum scale
factor which allows a labeling for all labels—this is the label size maximization problem.
If scaling is not allowed and all labels have to be placed, overlaps cannot be avoided. In
this scenario, the number of overlaps must be as small as possible in order to optimize the
aesthetic criteria at the beginning of this section. We will refer to this variant as the label
overlap minimization problem.

Definition . (Label number maximization problem, ).
Given an instance � � & � , < ,

�
, T ( of a labeling problem, find a largest subset � � > �

and a labeling � for the instance

�
	 � . � � ��< 4 ��� � � 4 ��� �QT�4 ��� 1

with � & � (4� � . Here, < 4 ��� � � 4 ��� ��T&4 ��� are the restrictions of the functions to � � .
Definition . (Label size maximization problem, ).
Given an instance �5� & � , < ,

�
, T ( of a labeling problem, find a maximum factor � 6 �

and a labeling � for the instance

�
	 � .�����< 	 � � 	 ��T 1

with � & � (4� � . Here,

< 	 & ?E(4��� ��< &'?E(� 	 & ?E(4��� � � & ?E( �
Definition . (Label overlap minimization problem, ).
Given an instance � �H& � , < ,

�
, T ( of a labeling problem, find a labeling � for � so that

the number of overlaps 4 � & � ( 4 is minimal.

In the rest of this section, we give an overview of previous work done in the area of
point-feature labeling, both for the discrete and the slider models. We refer by � to the
number of labels of an instance.

.. Discrete Models

Most previous work on map labeling concentrates on the discrete models which allow only
a finite number of positions per label. While the decision problem - is NP -complete
in the four- and the � -position model (for fixed � / � ) (see Kato and Imai, ; Formann
and Wagner, ; Marks and Shieber, ), the labeling problem can be solved in time
� &D�F# ��� � ( via a -satisfiability formulation in the two-position model (Formann and
Wagner, ), and via a simple sweep line algorithm in the one-position model. Iturriaga
and Lubiw (b) study an interesting variant of the pure labeling problem in the discrete
model, the elastic labeling problem. They define the rectangles which represent the labels
only through their area and allow changing the individual aspect ratios.
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The results for the pure labeling problem can directly be extended to the label size
maximization problem:  is polynomially solvable in the one- and two-position model,
and NP -hard in the � -position model for fixed � / � . For the restricted variant of 

in the four-position model with labels of unit width and height, Formann and Wagner
() present a 
� -approximation algorithm which runs in � &D�F# ���4� ( time. Moreover,
they demonstrate that no better approximation factor is possible unless P is equal to NP .
Kučera, Mehlhorn, Preis, and Schwarzenecker () suggest an � & ��� � ( time algorithm
which is able to solve instances with up to  labels to provable optimality. The authors
exploit the observation that only up to

# ��� � � � � � < � � � � &D# ���,� (

different scale factors are candidates for an optimal solution in the discrete models: In an
optimal labeling, either two labels touch, or a label touches another point-feature (other-
wise the scale factor could be increased). The observation shows that it suffices to solve

� &D# ���,� ( decision problems and one labeling problem to solve an instance of the label size
maximization problem in the discrete models.

In contrast to the label size maximization problem, the label number maximization
problem  is also NP -hard in the one- and two-position model. Woeginger ()
shows NP -hardness of the two problems by a reduction from the maximum independent
set problem in planar cubic graphs which is a known NP -hard problem (Garey, Johnson,
and Stockmeyer, ). NP -hardness for  in the � -position models follows directly
from the NP -completeness result for the corresponding decision problems.

Agarwal, van Kreveld, and Suri () study the label number maximization prob-
lem  in the � -position model for fixed � . They present a 
� -approximation algorithm
for labels of unit height. The

� & �F#����,� ( -time algorithm divides the problem into one-
dimensional subproblems for which it computes the largest non-overlapping set of inter-
vals by using a greedy strategy. The authors also suggest a polynomial-time approximation
scheme in the � -position model when the rectangles have unit height. The algorithm finds
a solution of size at least 4 � �04 � & � � 
� ( for � / � in time � & �F#����,�8�:� � ���"
 ( , where � �
is the optimal solution. In case the rectangles differ in their height, the authors suggest
a factor � &D# ���,� ( -approximation algorithm running in time

� &D�F# ���4� ( . So far, for this
problem no constant factor approximation algorithm is known.

The first exact algorithms for  in the � -position model are suggested by Crom-
ley () and Zoraster (). Both authors experiment with a zero-one integer linear
programming formulation for the maximization problem which they solve approximately
using Lagrangian relaxation, subgradient optimization techniques, and several problem-
specific heuristics. However, they cannot solve practically relevant instances to provable
optimality with their approach.

Verweij and Aardal () suggest the only practically efficient algorithm for comput-
ing provably optimal solutions for  in the discrete models. They treat the problem
as an independent set problem and solve it using a branch-and-cut algorithm. The algo-
rithm is able to optimally label up to  point-features using the benchmark generator
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from (Christensen, Marks, and Shieber, ) within moderate computation time (about
 minutes) and up to  point-features within two hours, as reported in (Verweij, ).

Many articles exist on heuristic algorithms for the label number maximization problem
and the label size maximization problem (see Wolff and Strijk, ). Here, we only
mention the paper by Christensen et al. (). The authors present a comprehensive
treatment of the label number maximization problem () in the four-position model
including a comparison of heuristic methods and an extensive computational study. Their
procedure for randomly creating labeling instances has become a widely used benchmark
generator in the map labeling literature, and we will also use it for our computational
experiments in Section ..

.. Slider Models

Only a few papers exist that focus on continuous models. Hirsch () develops a first
algorithmic approach to map labeling problems in the four-slider model. He describes
a force-directed method that aims at minimizing the number of label overlaps. Doddi,
Marathe, Mirzaian, Moret, and Zhu () consider, among other problems, label size
maximization in a continuous model which allows labels to rotate around the point-
features. Christensen et al. () mention a variant of a continuous model in which
circles around a point-feature define the region the appropriate label must touch without
intersecting.

We stick to the classification of slider models provided in (van Kreveld, Strijk, and
Wolff, ), namely into the one-, two-, and four-slider model as illustrated in Figure ..
NP -completeness of the decision problem - in the four-slider model is shown inde-
pendently by van Kreveld et al. () and Marks and Shieber (), and in the two-slider
model by Iturriaga and Lubiw (a). The labeling problem in the one-slider model
can be solved using a simple greedy sweep line algorithm whereas the corresponding label
number maximization problem is NP -hard (Woeginger, ).

We give an overview of the complexity for the decision problem and the label number
maximization problem in Table .. In the cases in which the decision problem -
 is NP -complete, both the label size and the label number maximization problem are
obviously NP -hard. It is interesting that all number maximization versions—even in the
seemingly simple one-position model—are computationally hard.

Van Kreveld et al. () present a 
� -approximation algorithm which is able to find
a solution of  in any of the slider-models with unit height rectangles. The algorithm
is a

� &D�F# ���4� ( greedy sweep line algorithm. The sweep line proceeds while repeatedly
choosing the label whose right edge is leftmost among all remaining label candidates, if
possible. For the same models, the authors suggest a polynomial time approximation
scheme. The respective algorithms label at least & � ! > ( times the optimum number in
overall running time � &D� ����� � ( .

Strijk and van Kreveld () extend the above mentioned 
� -approximation algorithm
for the slider models to labels with different heights. For � different label heights, the
running time of the algorithm is � & � � #����,� ( .

 He uses a similar construction as in his proofs for the discrete models.
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Model Decision/Labeling Size Maximization Number Maximization
Discrete Models

One-position
� ���������	� �
Simple plane sweep

� ��� �
������� � � �
binary search on� ��� � � decision
problems

NP -hard
(Woeginger, )

Two-Position
� ���������	� �
(Formann and Wagner,
)

� ��� �
������� � � �
binary search on� ��� � � decision
problems

NP -hard
(Woeginger, )

Four-Position NP -complete
(Kato and Imai, ;
Marks and Shieber,
; Formann and
Wagner, )

NP -hard NP -hard

Slider Models
One-Slider

� ���������	� �
Greedy sweep line,
(Woeginger, )

unknown NP -hard
(Woeginger, )

Two-Slider NP -complete
(Iturriaga and Lubiw,
a)

NP -hard NP -hard

Four-Slider NP -complete
(van Kreveld et al.,
; Marks and
Shieber, )

NP -hard NP -hard

Table .: Complexity overview of the decision problem and the size and number maximization
problem for point-feature labeling in different models ( � is the number of labels)

An interesting point in (van Kreveld et al., ) is the investigation of the relationship
between the six axis-parallel rectangular labeling models displayed in Figure .. Given unit
square label candidates in a model �8
 and another model � � , the factor � � � � � � denotes
how many more points can receive labels in model � 
 than in model � � , more precisely,

� � � � � � � #�� 	� 

� max 8 � 8 % � size(optimal labeling for � in � 
 )
size(optimal labeling for � in � � ) �

The authors show that � � � � � � is equal to two for many of the relationships. It is worth
noting that the factor of the four-slider model compared to the four-position model is
between two and four, whereas the factor of the four-slider model compared to the one-
slider model is between two and three. Also their computational results on the six models
confirm the theoretical result that the slider models allow a placement of a significantly
larger number of labels than the discrete models. The four-slider model allows to place up
to % more labels in real-world instances and up to % more labels in pseudo-random
instances as compared to the four-position model.
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. Combinatorial Characterization

In this section we show how to use constraint graphs in order to solve labeling problems.
Like for the compaction problems in graph drawing, we present a reformulation of the
original problems in terms of combinatorial properties in the constraint graphs. We will
introduce the labeling graphs, a pair of constraint graphs which arises from an instance of
a labeling problem. The key idea is similar as for the two-dimensional compaction prob-
lems: If these graphs satisfy certain properties, we can produce a solution for the original
problem by computing two separate feasible assignments. The values in the assignments
correspond to � - and � -coordinates of the solution. First, we will show how to guarantee
a labeling in the respective labeling model. We achieve this by introducing the fixed dis-
tance arcs, the label size arcs, the proximity arcs, and the boundary arcs. Then we add the
label separation arcs for each pair of labels that may possibly overlap. Boundary and label
separation arcs belong to the class of potential arcs , i.e., we do not add them in advance
but have to choose among them to satisfy certain requirements. For each of the problems
in Section ., we present a reformulation in terms of requirements to these choices and
show that the appropriate combinatorial version is equivalent.

.. Labeling Graphs

The concept of labeling graphs is similar to that of placement graphs in the previous chap-
ter. The labeling graphs are a generic pair of constraint graphs for a map labeling instance.
Nodes in the horizontal labeling graph L � correspond to � -coordinates of points and left
and right label boundaries, nodes in the vertical labeling graph represent � -coordinates of
points and bottom and top label boundaries.

Definition . (Labeling graphs). A pair of labeling graphs consists of two constraint
graphs L � � &+N � ��P � ��< � ( and L � � &'N � ��P � ��< � ( and corresponds to an instance
� �@& ����< � � ��T�( of a labeling problem. Let � � 	�T &'?E(
4 ? 6 �G� be the set of points to
be labeled. The node sets of L � and L � are

N � � 	 � � 4 � 6�� � � 	 ��� 4 ? 6 �G� � 	 � � 49?76 �G�
N � � 	 �

� 4 ��6�� � � 	 � � 4 ? 6 �G� � 	 � � 4 ? 6 �G� �
Here, � � and �

�
are the nodes which represent the � - and � -coordinate of a point-

feature,
���

, �
�
, � � and

� �
represent the appropriate coordinates of the left, right, bottom,

and top boundary of a label ? . In the style of Chapter , we refer to these nodes as the
left, right, bottom, and top limit of a label. See Figure ..

As for placement graphs, we call a pair of feasible assignments & � � � � � ( for the labeling
graphs L � and L � a coordinate assignment .

The key idea is the same as for the two-dimensional compaction problems: The ac-
tual placement of labels will be performed through computing feasible assignments for
the labeling graphs. Each feasible labeling can be produced by assigning values to the
nodes of the labeling graphs. The rest of this section deals with identifying properties of
labeling graphs which guarantee that feasible assignments for the constraint graphs lead
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Figure .: Nodes in the labeling graphs corresponding to a label � and its point-feature 	 ��� �

to labelings for the given instance. Furthermore, we show how to control the criteria
which must be satisfied by a labeling or influence the quality of a feasible solution in a
combinatorial way: Depending on the different labeling problems, this is a combination
of number of overlaps, number of placed labels and scale factor. Describing these require-
ments in a combinatorial manner will build the fundament of integer linear programming
formulations for the problems in Section ..

In contrast to the placement graphs introduced in the previous section, labeling graphs
have arcs with negative weights as well. For placement graphs, the property of complete-
ness excludes the presence of directed cycles; since the arc weights are non-negative in
the constraint graphs for the compaction problems, each cycle corresponds to a cycle of
positive weight. This is different for the labeling graphs. Here, many cycles of zero or neg-
ative weight occur naturally: A cycle of zero weight corresponds to an equality constraint
between two � - or � -coordinates, e.g., the fixed distance between two point-features. Neg-
ative weighted cycles represent a relative placement within a certain interval, we will use
them to ensure proximity of a label to its point-feature.

In the following, we describe certain arc sets which model parts of the labeling prob-
lems. First, we fix the coordinates of the point-features with the fixed distance arcs. Then,
we model the labels: Label size arcs describe the corresponding rectangle of a label, and
proximity arcs make sure that a label will be placed close to its point-feature. Inverse to
the proximity arcs are the boundary arcs which prevent that a label ? will be placed so that
its point-feature TE&'? ( lies in the interior of the corresponding rectangle. Finally, we intro-
duce the label separation arcs which control mutual overlaps between possibly overlapping
labels.

Modeling Point-Features

Again, let �@�@	�T &'?E( 4 ?86 �G� be the set of point-features in an instance of a labeling
problem �:�M& ����< � � ��T ( , and let � � 4 �*4 be their number. Clearly, the positions of
the � point-features are specified in the input set � . In a pair of labeling graphs L � �
&'N � ��P � ��< � ( and L � � &'N � ��P � ��< � ( for � , let �

$
6 N � and �

$
6 N � be the nodes for

each �
$
6�� . We fix the positions of the point-features by inserting four directed paths

� � �C& � 
Q� � � � � � ��( �0� � �C& � ��� � � � � � 
 (� � �C& � 
Q� � � � � � ��( � � � �C& � ��� � � � � � 
�(
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with weights
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for RG6 	���� � � � ��� ! � � . We call the directed edges on these paths fixed distance arcs and
refer to them as P � . Figure . shows a set of point-features and its representation in the
constraint graphs.

� � and
� � �

� � and
� � �
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Figure .: Modeling the placement of point-features with fixed distance arcs � �

Lemma .. Let L � �C&'N � ��P � ��< � ( and L � � &+N � ��P � ��< � ( be a pair of labeling graphs
for an instance � of a labeling problem which contain the fixed distance arcs, i.e., P � >
P � � P � . A coordinate assignment � that respects P � results in a correct placement of
point-features (up to translation).

Proof. We have � & �

$
� 
 ( ! � & �

$
( / & �
$
� 
 ( � ! & �

$
( � and � & �

$
( ! � & �

$
� 
�( / & �

$
( � ! & �
$
� 
 ( � ,

thus � & �

$
� 
�( ! � & �

$
(4�C& �
$
� 
�( � ! & �

$
( � for every R�6 	���� � � � � � ! � � . The same holds for

the � -coordinates. Since each node is linked to each other node by two inverse subpaths of
each � � and � � � and � � and �0� � , the fixed relative position of the point-features follows
with Observation ..

Remark .. As the proof of Lemma . shows, any arc set which corresponds to the
equality constraints arising from the fixed distances of the point-features can be taken
here, e.g., also a simple directed cycle which links all point-features. We will discuss our
choice in the implementation of our exact algorithms on page  in Section ...

Modeling Labels

Each label ?I6 � has to be represented by a rectangle A5&'? ( of width < &'?E( and height� &'?E( . Additionally, we have to ensure that ? will be placed correctly with respect to its
point-feature TE& ?E( , i.e., T &'?E( must lie on the boundary of � & ?E( and must satisfy additional
properties depending on the labeling model.

To model the sizes of the rectangle A &'?E( corresponding to the label ? we straightfor-
wardly introduce four label size arcs

P 
 &'?E()� 	�& � � � � � (Q��& � � � � � (Q��& � � � � � (Q��& � � � � � (��
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for each label ? . The weights of these arcs are

< � � � � ��� 	 �I< &'? ( < � ��� � � � 	 � ! < &'? (
< � � � � ��� 	 � � &'?E( < � ��� � � � 	 � ! � &'?E( �

see Figure ..
Similar to the fixed distance arcs, the two pairs of label size arcs result in two equality

constraints which fix the distances between the boundaries of a label.

� � 02���3�

���

� �

� �� �

� �

� �
� � � � � � � � �

� � � �
� � � � �

Figure .: Modeling the size of a label � with label size arcs � 
 ��� �
In addition to coding the size constraints we have to make sure that the rectangle A5& ?E(

of a label ? is placed close to the appropriate point-feature T &'?E( . Let � � and � � be the
nodes representing point TE&'?E( in the constraint graphs. We add four proximity arcs

P�� &'? (,� 	�& � � � � � (���& � � � � � (Q� & � � � � � (Q��& � � � � � (��
as illustrated in Figure .. These arcs have zero weight and exclude placements of a label? so that its point-feature T &'?E( lies outside the rectangle A5&'? ( . To see this, we write down
the corresponding constraints for the associated assignments � � and � � :

� � & � � ( ! � � & � � ( /�+ � � & � � ( ! � � & � � ( /�+ (.)

� � & � � ( ! � � & � � ( /�+ � � & � � ( ! � � & � � ( /�+ � (.)

By rewriting the pairs of inequalities (.) and (.) as

� � & � � ( 9�� � & � � ( 9�� � & � � ( (.)

� � & � � ( 9�� � & � � ( 9�� � & � � ( (.)

we get a more apparent characterization of the placement restriction modeled by the prox-
imity arcs.

Nevertheless, the point-feature T &'?E( may still lie inside the rectangle A5&'?E( and may
not be conform to the labeling model. Depending on the model, we define a constant

-5�
�
� in slider models< in discrete models



.. Combinatorial Characterization 

� � 02� � �
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Figure .: Modeling the proximity of a label � and its point-feature 	 ��� � with proximity arcs

� � ��� �
and disallow this kind of placement by requiring at least - of the maximally four boundary
arcs, see also Figure ..

P��)&'?E()�

:;;;;;;< ;;;;;;=

	�& � � � � � (Q� & � � � ��� (Q��& � � � � � (���& � � � � � (�� in the four-slider or four-pos. model

	�& � � � � � (Q� & � � � � � (Q��& � � � � � (�� in the two-position model

	�& � � � � � (���& � � � � � (�� in the two-slider model

	�& � � � � � (Q��& � � � � � (�� in the one-position model

	�& � � � � � (�� in the one-slider model

� � 02� � �

���

� �

� �� �

� �

� �

�
�

� �
Figure .: Determining the labeling model. Label � will be placed according to the model due to

at least
�

of the boundary arcs � � ��� �
Note that the boundary arcs are inverse to the proximity arcs for label ? . If, e.g.,

& � � � � � ( is present in L � , it forces—together with its inverse proximity arc & � � � � � ( —the
coordinate of the right side of � & ?E( to be equal to the coordinate of � ; the label has to
be placed at its leftmost position. Note the similarity to property (L) in Definition .
on page . Each arc in 	�& � � � � � (Q��& � � � ��� (���& � � � � � (Q��& � � � � � (�� corresponds to a boundary
of ? . Clearly, in slider models only one of the arcs must be present; it can be chosen
arbitrarily in the four-slider model, it must be a vertical arc in the two-slider model, and
it must be & � � � � � ( in the one-slider model. In the discrete models we must choose two of
four arcs in the four-position model and two of three in the two-position model. In the
one-position model, the corner of the point-feature is fixed and characterized through the

 Allowing � to be zero leads to a different continuous model in which a label may also overlap its point-
feature. In map labeling applications, however, this model is not relevant.
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arcs & � � � � � ( and & � � � � � ( . Note that we can express all six axis-parallel rectangular labeling
models in Figure . on page  as additional requirements on the constraint graphs.

Having introduced the fixed distance arcs, the label size arcs and the boundary arcs, we
can provide a combinatorial formulation of a labeling as defined in Section .. Note that
this definition ignores overlaps; according to Definition ., a labeling is just a placement
of labels which satisfies the appropriate labeling model.

Lemma .. Let L � �C&'N � ��P � ��< � ( and L � � &+N � ��P � ��< � ( be a pair of labeling graphs
for an instance � � & ����< � � ��T�( of a labeling problem, and let ��� > � be a subset of
labels. Let P � and P � contain the fixed distance arcs P � , and for each label in � � the
proximity arcs P2� &'? ( and at least - boundary arcs � &'?E(*6=. ��� � � 	0 1 , i.e.,

P 
 �;P � � �� �
� �

P��4&'?E( � �� �
� �

� &'?E( �
Then a coordinate assignment � that respects P 
 results in a labeling for � � 6 � , that is,
in a placement in which each label is represented by a rectangle A5&'?E( of width < &'?E( and
height

� &'? ( . Each label is placed so that point-feature TE&'?E( lies on the boundary of A &'?E(
if -5�C� and on a corner of � &'? ( if - � < according to the appropriate model.

Proof. We construct a labeling � and show for each label ?�6 � � that the two properties
of a labeling hold, see Definition .. The coordinate assignment � determines the lower
left corner and upper right corner of rectangle � & ?E( :� � & � & ?E( (,�@. � & � � (Q� � & � � ( 1

� ��& � &'? ( ()�@. � & � � (Q� � & � � ( 1 �
Let � and � be the coordinates of point-feature T &'?E( and let A be the rectangle � &'?E( .

Since � respects P 
 &'? ( , we have � ��&'A ( � ! � � &'A ( � �M< & ?E( and � ��&'A ( � ! � � & A ( � �� &'?E( . Theorem . and the fact that the two assignments in � are feasible imply that
� & ?E( contains at most one vertical and one horizontal arc—otherwise it would induce a
positive cycle together with a proximity arc. We get � � & A ( � ! � /�+ , � ! � � & A ( � / + ,
� � &'A ( � ! �:/�+ and � ! � � &'A ( � /�+ , since � respects P2�,&'?E( . If -5� � , then at least one
inequality becomes an equality, if -5�3< one horizontal and one vertical inequality become
equalities. It follows that T &'?E( lies on a boundary of A and on a corner if -5�3< .
Controlling Overlaps

Lemma . guarantees that the placement satisfies the requirements of a labeling. In all
labeling problems we have to control the number of overlaps between the labels—it must
be zero in the label number and label size maximization problems, and small in the label
overlap minimization problem. It is easy to see that it suffices to consider only the pairs
of labels that can possibly interact. This set is in general much smaller than the potential4 � � 4 & 4 � �04 ! ��( overlaps.

Consider two different labels ? and � and the corresponding rectangles A � � &'?E(
and �?� � & � ( . We call the pair vertically separated if A is placed either above or below
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� . Similarly, ? and � are horizontally separated if one rectangle is placed to the left of
the other. As for the segments in the chapter on compaction, a label pair is separated if it
is either horizontally or vertically separated. Obviously, two labels overlap if they are not
separated. In our combinatorial formulation, we model separation by the label separation
arcs

P / & ? � � ( 6�% . 	�& � � � � � (Q��& � � � � � (Q��& � � � � � (Q� & � � � � � (�� 1 �
Label separation arcs have weight zero.

Similar as for the boundary arcs, which are determined by the labeling model, the
separation arcs depend on the relative position of the two point-features which belong
to the labels ? and � . If these are far away, we do not need any separation arcs at all.
Generally, the position of the regions in which the labels can be placed determines the set
P / &'? � � ( .

Let
� �

be the boundary of the region in which label ? can be placed. Note that the
size of

� �
depends on the labeling model. In the four-position or four-slider model the

region is defined by lower left corner &'TE&'?E( � ! < & ?E(Q��T &'?E( � ! � &'?E( ( and upper right corner
& TE&'? ( � ��< &'? (Q��TE& ?E( � � � &'? ( ( . Likewise, we determine

� � for label � . If the intersection
of

� �
and

� � is empty, ? and � can never overlap, and we do not have to add any label
separation arcs for this pair. In this case we set P / &'? � � ()�3� .

Consider now the case that the intersection of
� �

and
� � is not empty, as depicted

in Figure .. Depending on the position of the corresponding point-features T &'?E( and
TE& � ( , the set P / &'? � � ( contains the following label separation arcs:

. If T & � ( � /=TE&'?E( � we have & � � � � � (G6 P / &'? � � ( .
. If T &'?E( � /IT & � ( � we have & � � � � � (G6 P / &'? � � ( .
. If T & � ( � / TE& ?E( � we have & � � � � � (G6 P / & ? � � ( .
. If T &'?E( � /ITE& � ( � we have & � � � � � (G6 P / & ? � � ( .

� �

���

� �� �
� �

� �
02���3�

02��� �

�

�

Figure .: Label separation arcs between two labels � and � . In the example, the regions � �
and � � are built according to the four-position or four-slider model, and we have
	 �	��� ��
 	 ��� � � and 	 ��� � � 
 	 ����� �

Note that the only case in which P / &'? � � ( contains all four possible label separation
arcs occurs if ? and � label the same point-feature, i.e., TE&'?E(,� TE& � ( .
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Lemma .. Let L � �C&'N � ��P � ��< � ( and L � �C&'N � �QP � ��< � ( be a pair of labeling graphs
for an instance � � & ����< � � �QT ( of a labeling problem, let � � > � be a subset of labels,
and let ? and � be two different labels in � � . Let P � and P � contain the arc set P 
 as
defined in Lemma ..

Let � be a coordinate assignment which respects the arcs in P 
 . If the set P / &'? � � ( is
empty or � respects at least one of the arcs in P / &'? � � ( , then ? and � do not overlap in
the labeling.

Proof. By Lemma . we know that the placement is a labeling. We distinguish the fol-
lowing two cases:

Case : The set P / & ? � � ( is empty.
By construction of the set of label separation arcs for ? and � the pair cannot
overlap in a labeling, since the regions

� �
and

� � are disjunct.

Case : The set P / & ? � � ( is not empty.
In this case, the coordinate assignment respects one of the label separation arcs.
Depending on the arc, ? is either left of, right of, below, or above � in the corre-
sponding labeling.

.. Combinatorial Reformulations

At this point, we can reformulate the labeling problems in Section . as combinatorial
problems in the labeling graphs. As for the compaction problems in the previous chapter,
we model the space of feasible solutions for instances of the appropriate labeling problem
in terms of properties of the corresponding labeling graphs. Like for compaction we start
with fixed horizontal and vertical arc sets—in this case the fixed distance arcs, the label size
arcs and the proximity arcs—for which we want to find an extension by adding additional
arcs—in the labeling graphs these are the boundary arcs and separation arcs.

Following the notation of the preceding chapter, we refer to the boundary and label
separation arcs as potential arcs

P pot � �� �
�

P � &'?E( � �
� � � ���

�
&�� � ( � P / & ? �

� ( �
We will now present combinatorial equivalents of the different problems which will

be the bases of  formulations in the next section. One of the main tasks will be to
choose additional arcs from the set of potential arcs without creating positive directed
cycles. In the following, we will assume - ��� for the slider models and - ��< for the
discrete models, as defined on page . We begin with the pure labeling problem  in
which all labels must be placed in their original size without any overlaps and state the
corresponding combinatorial problem:

Definition . (Labeling Graph Satisfaction problem, ). Let �7��& ����< � � ��T�( be an
instance of a labeling problem, and let L � ��&'N � ��P � ��< � ( and L � ��&+N � ��P � ��< � ( be
the pair of labeling graphs which contain the fixed distance arcs, the label size arcs and the
proximity arcs. Find a subset of potential arcs P >IP pot with the properties:
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(S) 4 P � P��)&'?E( 4 /=- for all ? 6 � .

(S) 4 P � P / &'? � � ( 4 / � for all 	 ? � � �56 . � � 1 , � � � � � ��3� .

(S) P � P � � P � does not contain a positive cycle.

Remark .. Properties (S) and (S) extend the notion of completeness as introduced for
the placement graphs in Definition . on page .

Theorem .. Problems  and  are polynomially equivalent.

Proof. Let P be a solution of . We extend &'L � �QL � ( by adding P to the arc sets. Because
of (S) and Theorem ., a coordinate assignment exists that respects both the horizontal
and vertical arc set. We place the labels as in the proof of Lemma . where we show that
the placement is a labeling. By Lemma . we know that the number of overlaps in the
labeling is zero, since for each pair of labels the set of label separation arcs is either empty
or the coordinate assignment respects at least one of its arcs. These properties characterize
a solution for the labeling problem .

For the other direction, we start with the given coordinate assignment � resulting from
the placement of labels. We create the set P of additional arcs as follows: For each label? we add one or two boundary arcs, depending on how the rectangle A5& ?E( is placed with
respect to point-feature TE&'?E( . Similarly, we add appropriate arcs from P &'? � � ( for pairs of
labels ? and � , depending on the relative position of A5&'?E( and A5& � ( in the labeling. Note
that we choose the additional arcs so that they are respected by � . Properties (S) and (S)
follow by construction, property (S) follows by Theorem ..

In the next section, we will propose an algorithm for the label size maximization prob-
lem which is based on repeatedly solving the combinatorial problem  in a binary search
manner. We exploit the observation in (Kučera et al., ) that it is sufficient to solve a
quadratic number of labeling problems to determine the optimal scale factor.

In the label number maximization problem, we have to compute a largest subset of
labels for which a labeling without overlaps exists. The combinatorial equivalent is as
follows:

Definition . (Maximum Labeling Graph Satisfaction problem, ).
Let � � & � , < ,

�
, T�( be an instance of a labeling problem, and let L � � &'N � ��P � ��< � (

and L � � &'N � �QP � ��< � ( be the pair of labeling graphs which contain the fixed distance
arcs, the label size arcs and the proximity arcs. Find a set of labels ��� > � of greatest
cardinality and a subset of potential arcs P >IP pot with the properties:

(M) 4 P � P � &'?E( 4 /I- for all ? 6 � � .
(M) 4 P � P / &'? � � ( 4 / � for all 	 ? � � � 6 . ���� 1 , � � � � � �� � .

(M) P � P � � P � does not contain a positive cycle.

Theorem .. Problems  and  are polynomially equivalent.
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Proof. Let � � and P be a solution of the combinatorial problem. The arc set P corre-
sponds to a feasible solution of the instance & � � ��< 4 ��� � � 4 ��� ��T�4 ��� ( by Theorem ..

For the backward direction let � � be the set of placed labels. We construct the arc
set as in the equivalence proof for the pure labeling problem. With the same argument
as above this results in a solution of , since the pair & ���4��PF( satisfies properties (M)-
(M).

Definition . (Minimum Labeling Graph Overlap Satisfaction problem, ).
Let � � & ����< � � ��T ( be an instance of a labeling problem, and let L � � &'N � ��P � ��< � (
and L � � &'N � �QP � ��< � ( be the pair of labeling graphs which contain the fixed distance
arcs, the label size arcs, and the proximity arcs. Find a set of label pairs

	
sep > . � � 1 of

maximum size and a subset of potential arcs P > P pot with the properties:

(O) 4 P � P���&'?E( 4 /=- for all ? 6 � .

(O) 4 P � P / &'? � � ( 4 / � for all 	 ? � � � 6 	
sep.

(O) P � P � � P � does not contain a positive cycle.

Theorem .. Problems  and  are polynomially equivalent.

Proof. Let P and
	

sep be a solution for the combinatorial problem. By Lemma . we
construct a labeling for � . By Lemma . 4 	 sep 4 pairs of labels are overlap-free.

For the other direction we construct
	

sep and P from a given labeling with � pairs of
overlapping labels. The construction of the arc set P is as in the proof of Theorem ..
For each pair of labels that do not overlap we add at least one appropriate label separation
arc as in the equivalence proof for the pure labeling problem. Similar arguments as in the
above proofs show that the resulting arc set satisfies properties (O)-(O).

. Integer Linear Programming Formulations

The previous section shows how to transform the labeling problems , , and 

which ask for a labeling without overlaps, an overlap-free labeling for a maximal num-
ber of labels, and a labeling with the minimum number of overlaps, respectively, into the
combinatorial problems , , and  involving the labeling graphs. We will now
provide integer linear programs for the combinatorial equivalents and focus on the pure
labeling problem, the label number maximization problem, and the label size maximiza-
tion problem. The  formulations will enable us to devise exact -based algorithms for
the labeling problems of Section ., including the label number maximization problem in
all models and the label size maximization problem in the discrete models.

We propose two different zero-one  formulations for the problems and show that
the emerging separation problem for the class of positive cycle inequalities is unfortunately
NP -hard. We present an extended formulation with additional continuous variables in
which we can omit the positive cycle inequalities. The prize for evading the difficult sep-
aration problem is the additional variables and the formulation as a “big � approach”.
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We show that feasible solutions of the integer linear programs correspond to feasible la-
belings and vice versa. In particular, we will exploit this one-to-one correspondence for
developing exact algorithms for the different labeling problems.

In Section .., we describe the labeling polytope and introduce three non-trivial
classes of inequalities for the pure labeling problem . We use these inequalities to
present a zero-one  for  in Section ... We prove in Section .. that the problem
of finding violated positive cycle inequalities is NP -complete and provide an equivalent 

formulation without these inequalities in Section ... Finally, Section .. demonstrates
how to modify the formulations in order to optimize over the set of feasible solutions for
the label number maximization problem.

.. The Labeling Polytope and the Labeling Problem

Similar to the compaction problems we characterize the space of feasible solutions of the
pure labeling problem as a zero-one polytope. We want to describe extensions of the
labeling graphs that can be obtained by adding a subset of the potential arcs so that certain
properties are satisfied. Because of the similarity to the compaction problems, we use the
term extension with the same meaning for labeling graphs—that is, for a pair of graphs
that results from adding potential arcs to the original graphs. We refer by �P to the set of
potential arcs which are part of the extension.

Let L � and L � be a pair of labeling graphs which contain only the fixed distance arcs
P � , the label size arcs

� � �
� P / & ?E( , and the proximity arcs

� � �
� P � & ?E( . By Theorem .,

the set of feasible solutions for the pure labeling problem is
� &'L � �QL � (,� 	 �P 6�P pot 4 �P satisfies (S), (S), and (S) in Definition . �

Like in compaction, we use an incidence vector for the set of potential arcs to charac-
terize the labeling polytope. Each set �P 6 � &'L � �QL � ( defines an element � ��

of the vector
space � � pot with the interpretation

� ��� �
�
� T 6 �P+ otherwise �

The incidence vectors enable us to characterize the labeling polytope for an instance � �
& ����< � � ��T�( of the pure labeling problem. Let &'L � �QL � ( be the labeling graphs that only
contain the fixed distance arcs, the label size arcs and the proximity arcs. The labeling
polytope is then

�  � conv 	 � �� 67� � pot 4 �P 6 � &'L � �QL � (�� �
We will show that the following four classes of inequalities together with integrality

constraints for the solution vectors result in a description of the integral points in the
labeling polytope.

– Trivial inequalities. As for the compaction problems, � is a characteristic vector:

+ 9 � � 9 � � T 6�P pot (.)
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– Integrality constraints.. In addition, � must be integral:

� � 6 	 +���� � � T 6�P pot (.)

– Boundary inequalities. These inequalities ensure that the resulting labeling is in the
correct model: Depending on the constant - , at least one or two of the boundary
arcs have to be present in the extension. Note that the inequality can be strength-
ened to an equality (we will exploit this in one of the forthcoming  formulations).

#
�
� � � � � 	 � �
/I- � ? 6 � (.)

– Label separation inequalities. This class of inequalities prevents overlaps between
pairs of labels. At least one of the arcs of the non-empty sets of label separation
arcs must be present in a solution of , the combinatorial equivalent of the labeling
problem. #

�
� ��� � � � � 	 � � / � � 	 ? � � � 6 � � < � � � � � � � �� � (.)

– Positive cycle inequalities. A considerable advantage of our  formulations for
labeling problems over the formulations for compaction problems is that we do
not need an additional coordinate vector and can concentrate on a pure zero-one
polytope. We have to exclude positive cycles, however, in order to guarantee the
feasibility of the underlying assignments. We explicitly prevent positive cycles by a
potentially exponential number of positive cycle inequalities:

#
�
�
��� �

pot

� �19 4 - � P pot 4 ! � � positive cycles - in extension (.)

.. Zero-One Formulation for 

Let �O� & ����< � � �QT ( be an instance of the pure labeling problem, and let L � and L � be
the corresponding labeling graphs with fixed distance arcs, label size arcs, and proximity
arcs. Again, the constant - is equal to one for the slider models and equal to two for the
discrete models.

We use inequalities (.)-(.) to formulate the integer linear program for the labeling
problem . Since Theorem . will show that inequalities (.)-(.) indeed characterize
the integral points within the labeling polytope, and the task in the labeling problem is to
find just one feasible solution, we can use an arbitrary objective function. Let �76:� � pot

be an arbitrary coefficient vector; we will propose a convenient choice for � in a following
remark. The integer linear program for the labeling problems is as follows:
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max �
! � (.)

subject to
#
�
� � � � � 	 � � /I- � ? 6 � (..)

#
�
� � � � � � � 	 � � / � � 	 ? � � � 6 � � < � � � � � � � �� � (..)

#
�
�
��� �

pot

� � 9�4 - � P pot 4 ! � � positive cycles - (..)

� � 6�	 +���� � � T 6�P pot (..)

Theorem .. Let �5� & ����< � � ��T ( be an instance of the labeling problem . A feasible
solution � of ( .) for the combinatorial version of  corresponds to a feasible solution
of  and vice versa.

Proof. A feasible solution of (.) is an incidence vector for the set of potential addi-
tional arcs. The inequalities model exactly the requirements (S)-(S) in the combinatorial
equivalent of . By Theorem . we know that the solutions of the combinatorial prob-
lem are in one-to-one correspondence with the solutions of the pure labeling problem.

Remark .. As we will show in the next section, the most difficult part in the above
integer linear programming formulation is to find violated positive cycle inequalities. We
therefore propose to minimize the number of additional arcs in order to create as few
cycles as possible. This corresponds to � � ! � # in (.).

.. Complexity of Finding Positive Cycles

Unfortunately, the number of potential positive cycles in the extension is exponential,
distinguishing the class of positive cycle inequalities from the other classes. We have a
linear number of trivial and boundary inequalities and a possibly quadratic number of
label separation inequalities. A crucial issue in solving our integer linear programming
formulations for the labeling problems concerns finding violated positive cycle inequalities
in an  solution of the relaxed . The decision version of the corresponding separation
problem is the following problem:

Definition . (Separation problem for positive cycle inequalities, decision version).
Given a digraph L � &'N ��PF( , a weight vector - 6 � � and an -solution � 6C� � ,+ 9 � � 9 � � T 6 P . Does a directed cycle - > P with#

�
�
�

� � ) 4 - 4 ! � and

#
�
�
�

- � ) + exist?

 For the sake of simplicity, we assume that additional variables ���
� �

for each fixed arc
0 � �

exist
and that all arc weights are integral.
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We proceed as in the easier case with non-negative arc weights (see Definition .
on page ) and substitute

� � �M� ! � � for all T86 P . The substitution results in the
following equivalent version of the above separation problem.

Definition . (Positive Weight-Constrained Cycle problem, ). Given a digraph
LH� &'34��PF( , a weight vector - 6�� � , and a vector

� 6�� � , +89 � � 9 � � T 6�P . Does a
directed cycle - > P with #

�
�
�

� � � � and

#
�
�
�

- � ) + exist?

The following problem is NP -complete (see Garey and Johnson, , []):

Definition . (Shortest Weight-Constrained Directed Path problem, ). Given a
directed graph LH� &+NO��PF( , a length function

� � P�� �
, a weight function < � P�� �

,
two specified vertices ��� � 6�N , and integers

�
and � . Does a simple directed path in L

from � to
�

with total weight
�

or less and total length � or less exist?

We prove that the decision variant of the separation problem for positive cycle in-
equalities is NP -complete by reducing the positive weight-constrained cycle problem to
the shortest weight-constrained directed path problem.

Theorem .. The positive weight-constrained cycle problem is NP-complete.

Proof. The problem is in NP since a nondeterministic algorithm needs only guess a di-
rected cycle - in L and check in polynomial time whether its weight is positive and
whether

� & - ( � � . Let � SWCP � .�&'NO�QPF( , � , < , � , � , � , ��1 be an instance for the
shortest weight-constrained directed path problem. We transform it in polynomial time
into an instance � PWCC � &'L 	 ��-"� � ( of the positive weight-constrained cycle problem.

Let
	 � max 	 � & T (=4 T 6 P � be the length of the longest arc in P . We set L 	 �

&'NO�QP 	 ( with P 	 � P � 	�& � � ��(�� and define the two vectors as follows:

- � �
� ! < &'T ( T 6 P� �=� T �C& � � � ( � � �

� � � � 	
 � � � 
 T 6 P
� ! � � 

 � � � 
 T5�C& � � ��( �

Obviously, we have - 67� ��� and +89 � � 9 � for T 6�P 	 .
We claim that there is a simple path from � to

�
in L with length at most � and

weight at most
�

if and only if there is a directed cycle -H> P 	 with � �
�
� - � )�+ and

� & - ( � � .
Let � be such a path in L , and let - be the cycle which results from appending the

arc & � � ��( to � . Cycle - in L 	 has weight#
�
�
�

- � � #�
�
� ! < & T�(&�8- � � � � 	 � ! #� � � < & T ( � � �;�

/ ! � � � �;���C�) +
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and
�
-value

#
�
�
�

� � � #�
�
� �

� &'T (	 � � �;� � �=� ! � �;�	 � ���;�
� �	 � ���;�

#
�
�
�
� & T�(

� ��
 �� �
� 		 � � �=�

9 �	 � ���;� �
		 � � �;� �

	 � �	 � ���;�� � �
For the backward direction of the proof let - be a cycle in L 	 with positive weight and
� & - ( � � . Note that the arc & � � � ( must lie on - , since it is the only arc with positive
weight - . It follows that the remaining arcs of - form a path � from � to

�
in L . The

< -weight of � is #
�
�
� < &'T ( � #�

�
� ! - �B� � �;� ! #�

�
� - � !

� ! �
� � �=� ! #�

�
�

- �
� ��
 �

� 
9 �
�

The length of � is#
�
�
�
� & T�( � #�

�
� & 	 � � �;��( � �

� & 	 � � �;��( #�
�
�

� �0�;& 	 � � �=��(�&�� ! � �;�	 � � �;� (

! & 	 � � �;��(�& � ! � �;�	 � � �;� (
� & 	 � � �;��( #�

�
�

� �
� ��
 �

� 


! & 	 � ���;��( � ���;�

� 	 � � �;� ! & 	 � � �;��(&� � �;�
� � �;� �

Since all lengths are integral, we have
� &"� ( 9�� .

.. Extended Formulation

We introduce an alternative  formulation without positive cycle inequalities which is
similar to the formulations in the chapter on compaction. In this extended formulation we
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introduce additional continuous variables corresponding to the coordinates of the nodes
in the constraint graphs. Let L � �C&'N � ��P � ��< � ( and L � �C&'N � ��P � ��< � ( be the labeling
graphs like in the construction of the zero-one  in Section ... As in the previous
chapter, we call these variables the coordinate vector �K6�� � � � � 
 . We keep the boundary
and label separation inequalities from the zero-one formulation, but we replace the positive
cycle inequalities by two classes of inequalities which link the zero-one variables for the
potential arcs � with the continuous variables � for the coordinates. Again, we can choose
an arbitrary coefficient vector in the objective function.

– Distance inequalities. As for compaction, the coordinate vector represents the two
assignments for the underlying constraint graphs. The class of distance inequalities
corresponds to the shape inequalities and ensures the feasibility of the assignments
for the fixed arcs in the labeling graphs.

� � ! � � / < � � T5� &DR � S ( 6 P � � P � (.)

– Consistency inequalities. The class of consistency inequalities performs the same
task as in the formulation for the compaction problems: Depending on their � -
value, they activate or deactivate the constraints which correspond to potential arcs.
The consistency inequalities form the link between the zero-one vector � and the
coordinate vector � . As for compaction, we will show that this class of constraints
indeed prohibits positive cycles in the extensions of the labeling graphs. Again, we
use a “big � approach” and discuss the choice of the individual constants � � in a
following lemma. As in the previous chapter we must choose � � as an upper bound
on the distance �

$ ! � � . In the case of map labeling problems we can determine
tighter bounds as for the compaction problems.

� � ! �
$ ! � � � � / ! � � � T5�C&DR � S (G6 P pot (.)

Note that we omit the weights < � and < � : Potential arcs have zero weight in the
labeling problems.

Lemma .. The following values are upper bounds on the distance �
$ ! � � and thus

sufficient choices for � � in the consistency inequality for potential arc T :

� �K�
:;;;< ;;;=
< &'?E( T � & R �+S�( 6 P��,& ?E(Q��	 R��+S � >=N �� &'? ( T � & R �+S�( 6 P � & ?E(Q��	 R��+S � >=N �
< &'?E( �:< & � ( ! & TE& � ( � ! T &'?E( � ( T � & R �+S�( 6 P / &'? � � (Q��	�R �+S � >=N �� &'? (&� � & � ( ! &'TE& � ( � ! T &'?E( � ( T � & R �+S�( 6 P / &'? � � (Q��	�R �+S � >=N � �

Proof. We distinguish between the types of arcs:

Case : Arc T is a boundary arc.
Assume without loss of generality that T 6 P � &'?E( is a horizontal arc. One
endnode of T corresponds to the left or right label boundary, the other one to
the � -coordinate of the point-feature TE&'? ( . Due to the existence of the proxim-
ity arcs, the horizontal distance between a point-feature and the horizontal label
boundaries is bounded by the width of the label.
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Case : Arc T is a separation arc.
Again, we assume without loss of generality that T is horizontal, and, furthermore,
that T is as in Figure .; the other cases are symmetric. In the figure we illustrate
the worst case: � is at its leftmost and ? at its rightmost position.

�

�

02� � �

02��� �

� �

� �

� � � �
� ����� 02����� � � 02� � � �

0

Figure .: Label separation arc in the proof of Lemma .

The extended formulation is:

max �
! � �

� � (.)

subject to
#
�
� � � � � 	 � � /I- � ? 6 � (..)

#
�
� ��� � � � � 	 � � / � � 	 ? � � � 6 � � < � � � � � � � ��3� (..)

� � ! �
$
/I<�� � T5� & R �+S�( 6�P � � P � (..)

� � ! �
$ ! � � � � / ! � � � T �C&DR �+S�(G67P pot (..)

�
� 6�	 +���� � � ? 6 � (..)

� � 6 	 +���� � � T 67P pot (..)

As in the preceding chapter, the big � approach enables us to drop the positive cycle
inequalities:

Lemma .. Let & � � �2( be a feasible solution of (.), and let & �L � � �L � ( be the extensions
corresponding to � . Then �L � and �L � do not contain positive cycles.

Proof. The proof is like the proof of Lemma . on page  in Chapter .
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Theorem .. Let � �C& ����< � � ��T ( be an instance of the labeling problem . A feasible
solution & � � ��( of (.) for the combinatorial version of  corresponds to a feasible
solution of  and vice versa.

Proof. The proof exploits Lemma . and is similar to the proof of Theorem . for the
related formulation in the chapter on compaction.

Although we manage to avoid positive cycle inequalities in the extended formulation
we do this at the price of introducing more variables and constants � � in order to link
the decision variables with the continuous variables.

In Chapter  we exploit the similarity of the extended formulation to the integer linear
programming formulations in the chapter on compaction in order to provide an algorithm
for a combined compaction and labeling problem.

.. Label Number Maximization

The label number maximization problem differs from the pure labeling problem in the set
of labels for which a labeling has to be found. Whereas an algorithm for the first problem
must place all the labels or output that this is not possible, a feasible solution of the label
number maximization problem  always exists, e.g., by placing none of the labels. In
order to develop a formulation for , we must model the choice of the subset � � that
contains those labels from � that are placed. This choice affects the inequalities: We only
have to ensure the correct labeling model and separation from other labels for the labels
contained in � � .

We present a first  formulation for the label number maximization problem which
uses an additional incidence vector � to model the choice of � � . The formulation extends
the zero-one formulation for the pure labeling problem (.) by adapting the classes of
inequalities so that they are only valid for labels in ��� . Later, we show how to modify
this first formulation by a substitution of the newly introduced variables. The result is a
zero-one integer linear program for  in which the only variables are the potential arc
variables.

The additional incidence vector � 6 � � has the interpretation

�
� �

�
� ? 6 � �+ ? 6 � � � � �

Our first formulation for  looks as follows:
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max
#
�
�
�

�
�

(.)

subject to
#
�
� � � � � 	 � �
/I- � �

� � ? 6 � (..)

#
�
� ��� � � � � 	 � � ! �

� ! � � / ! � � 	 ? � � � 6 � � < � � � � � � � �� � (..)

#
�
�
��� �

pot

� � 9�4 - � P pot 4 ! � � positive cycles - (..)

�
� 6 	 +���� � � ? 6 � (..)

� � 6 	 +���� � � T 67P pot (..)

Theorem .. Let �=�
& ����< � � �QT ( be an instance of the label number maximization
problem . A feasible solution & �E� � ( of ( .) for , the combinatorial version of
, corresponds to a feasible solution of the label number maximization problem and
vice versa. The value of the objective function is equal to the cardinality of ��� .
Proof. The proof is similar as for the pure labeling problem: Each entry in & � � � ( is zero
or one because of the integrality conditions. We set � � � 	 ? 6 � 4 �

� � � � and
P �?	�T�6 P pot 4 � � � � � . Clearly, 4 � � 4 � � �

�
� �
�
. For each ? 6�� � , the boundary

inequality turns to � �
� � � � � 	 � � / - , it follows (M). Likewise, the appropriate sepa-

ration inequality yields � �
� ��� � � � � 	 � � /�� if both ? and � are in � � , satisfying (M).

Obviously, the positive cycle inequalities ensure property (M).
For the other direction, we set �

�
to one if ?;6�� � , and to zero otherwise. In the

same manner, we set � � to one if T 6 P , otherwise to zero. Similar arguments as above
show that & �E� � ( does not violate any of the inequalities, thus it is a feasible solution
of (.).

Corollary .. An optimal solution of ( .) corresponds to an optimal solution of the
label number maximization problem.

At this point we use the observation that the boundary inequalities (.), introduced
on page , can be changed to boundary equalities#

�
� � � � � 	 � � � - � ? 6 � (.b)

without affecting the proof of Theorem .. In (.) for the label number maximization
problem, we can make the same change and replace (..) by#

�
� ��� � � 	 � �B�;- � �

� � ? 6 � � (..b)
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This enables us to substitute

�
�

by
#
�
� � � � � 	 � �

- for all ?76 � � (.)

Nevertheless, we have to be careful: the new formulation transfers the decision whether
a label is placed or not to the boundary arcs. Two problems concerning the objective func-
tion occur:

– In the slider models, more than one boundary arc may be included in the extensions;
placing a label according to a discrete model—which is then also feasible in a slider
model—counts twice as much in the objective function. We therefore bound the
number of inequalities depending on the labeling model and require#

�
� � � � � 	 � �19I- � ? 6 � � (.)

In a discrete model, we can drop this class of inequalities. In an extension, at most
two boundary arcs may be present, otherwise they induce a cycle of positive weight
and the corresponding values of � violate the positive cycle inequalities. See also the
discussion on local cycles on page .

– In the discrete models, we must exclude that only one boundary arc is present.
Consider a label ?;6 � and its limits

� �
, �
�
, � � , and

� �
in the constraint graphs.

Again, let � � and � � be the nodes which represent the point-feature � � TE& ?E(
in the labeling graphs. For each label ? we add the following equality constraint
which ensures that the number of horizontal boundary arcs is equal to the number
of vertical boundary arcs. For simplicity, assume that the variable � � is equal to zero
if T does not belong to the boundary arcs.

� � ��� � � � 	 � � � � � � � � 	 � � � � 
 � � 
 	 � � � � 
 � � 
 	 � ?76 � � (.)

Remark .. Equalities (.) are according to the four-position model. Since & � � � � � ( �6
P��,& ?E( in the two-position model, (.) changes to

� � ��� � � � 	 � � � � � � � � 	 � � � � 
 � � 
 	 � ? 6 � � (.b)

For similar reasons, we have

� � � � � � � 	 � � � � 
 � � 
 	 � ? 6 � � (.c)

in the one-position model.

The new  formulation is:
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max
#
�
�
�

#
�
� � � � � 	 � �

- (.)

subject to
#
�
� � � � � � � 	 � � ! #�

� � � � � 	 � �
- ! #�

� � � � � 	 � �
- / ! �

� 	9? � � �56�� � <�� � � � � � � �� � (..)#
�
� ��� � � 	 � �19 - � ? 6 � (..)

#
�
�
��� �

pot

� � 9 4 - � P pot 4 ! � � positive cycles - (..)

� � ��� � � � 	 � � � � � � � � 	 � � � � 
 � � 
 	 � � � � 
 � � 
 	 � ? 6 � if -5�3< (..)
� � 6 	 +���� � � T 6 P pot (..)

Theorem .. Let � � & ����< � � ��T�( be an instance of the label number maximization
problem . A feasible solution � of ( .) for , the combinatorial version of ,
corresponds to a feasible solution of the label number maximization problem and vice
versa. The value of the objective function is equal to the cardinality of � � .
Proof. We show that a solution of (.) corresponds to a solution of (.), and that
both objective functions take the same value.

Let � be a solution of (.). We define �
�

as in the substitution (.) and verify
that & � � � ( violates none of the inequalities of (.). Due to the additional inequali-
ties (..) and (..), the values of the objective functions are equal. The positive
cycle inequalities and the integrality constraints for the potential arc variables remain the
same. Inequalities (..) and (..) hold because of the substitution.

Now consider a solution & � � ��( of (.). The observation that the boundary inequal-
ities can be changed to equalities without affecting the space of feasible solutions shows
that � is also a solution of (.).

Corollary .. An optimal solution of ( .) corresponds to an optimal solution of the
label number maximization problem.

Remark .. We can modify the zero-one formulations for the label number maximization
problem in the same way as described in Section .. in order to evade the positive cycle
inequalities. Since the modification only consists of adding an additional coordinate vector
and replacing the positive cycle inequalities by the distance and consistency inequalities,
it does not affect the changes that enable us to optimize over the set of feasible solutions
for the label number maximization problem.

. Exact Labeling Algorithms

In this section, we develop exact algorithms for the map labeling problems that are based
on integer linear programming formulations for the combinatorial problem equivalents.
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We present different algorithms for both the zero-one and the extended formulation: these
are branch-and-bound and branch-and-cut algorithms and an iterative branch-and-bound
approach. The basic structure of the algorithms for the different labeling problems is
very similar. We explain the algorithms for the label number maximization problem and
demonstrate how to adapt the techniques to solve the pure labeling problem and the label
size maximization problem.

The idea of the algorithms is based on the equivalence of the integer linear program-
ming formulations and the original labeling problems in Section .. Theorems .-. as
well as Corollaries . and . and the respective proofs already suggest an algorithmic idea
for attacking practical instances of the labeling problems: A solution of the integer linear
programming formulations tells us which boundary and label separation arcs should be
added to the arc sets of the labeling graphs &'L � ��L � ( . We use this information in a second
step for computing the corresponding coordinate assignment with two separate feasible
assignments, e.g., with Algorithm ..

We now provide a detailed description of the algorithms for the label number maxi-
mization problem:

A common pre-processing phase partitions a given instance of the problem in several
components. Let

�
� be the graph which contains a vertex for each label and an edge for

each pair of labels ? and � with non-empty intersection A � � A � , i.e., for pairs of labels
which possibly overlap. It is easy to see that we can process the connected components of�
� separately.

A second phase of all exact algorithms deals with constructing the problem-dependent
pair of constraint graphs for each component of the labeling problem. In the worst case,
this takes quadratic time, which is due to the possibly quadratic number of label pairs that
can overlap each other. This step consists of building the labeling graphs that contain the
nodes for coordinates of point-features and label boundaries as well as the fixed distance,
label size, and proximity arcs. In addition, the algorithm generates the set of potential
additional arcs that contain the model-dependent boundary arcs and the label separation
arcs.

The initial zero-one integer linear program for the label number maximization prob-
lem contains the boundary and separation inequalities. Due to the possibly large number
of positive cycle inequalities, we only add a set of local positive cycle inequalities. We are
able to determine these inequalities in advance by looking at positive cycles involving up
to two labels:

Figure . illustrates the local cycles in the vertical case: The first type of cycles consists
of two boundary arcs and a label size arc—in Figure ., these are . & �

$
� � � ( , & � � � � � ( ,

& � � � �

$
( 1 , and . & � � � � � (Q��& � � � � � (���& � � � � � ( 1 . We exclude these cycles by adding the two

inequalities

� � �
� � � � 	 � � � ��� � � � 	 9 �� � ��� � ��� 	 � � � � � � ��� 	 9 � �

Depending on the arc weights, a second type of positive cycle may appear which involves
two labels linked by a label separation arc. If, like in Figure ., the height of ? is greater
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than the vertical distance between �
$

and � � , the cycle .�& � � � � � ( , & � � � � � ( , & � � � � � ( , & � � � �

$
( ,

& �

$
� � � ( 1 has positive weight. In this case, we add the inequality

� � � � � ��� 	 � � � �
� �
� � 	 9 � �

A similar situation,
� & � ( ) & � � ( � ! & � $ ( � , results in the inequality

� � ��� � ��� 	 � � � � � � ��� 	 9 � �
If the sum of both heights exceeds the vertical distance between the point-features, i.e.,� &'?E( � � & � (�) & � � ( � ! & � $ ( � , we add the inequality

� � ��� � ��� 	 � � � � � � � � 	 � � � �
� �
� � 	 9 < �

� � � �

� ��� �

� �34 � �

� � � � ����

� �

� �

� �

� �

Figure .: Local positive cycles in the vertical labeling graph � � arising from the interaction of
labels. Potential arcs are dashed, � 
���� � � ��� ���

$
� �

Our branch-and-cut algorithm combines a standard branch-and-bound scheme for
solving the integer linear program with the following heuristic cutting plane algorithm: In
order to find violated positive cycle inequalities we first disregard the weight of the cycles
and identify violated cycle inequalities with Algorithm . on page . We add them
to our formulation if the corresponding cycles have positive weight. A second strategy
temporarily adds the potential arcs whose corresponding -value in the relaxation is above
a certain threshold and finds positive cycles with Algorithm .. We follow the advice
of Cherkassky and Goldberg () and use a fast version of the Bellman-Ford algorithm
(subtree disassembly with update) in our heuristics. For every positive cycle we check if
the corresponding -values constitute a violated inequality. If this is the case, we add the
inequality to our  formulation.

Due to the hardness of the separation problem, finding violated positive cycle inequal-
ities is quite difficult and often, the two heuristics fail. Therefore, we propose a second
strategy that rests upon the fact that we can provide exact algorithms for the separation
problem in the case that every component of the variable vector for the potential arcs is
either equal to zero or to one. In that case, setting the threshold to one in the second
of the above mentioned separation strategies always detects existing violated positive cycle
inequalities.
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We start with the initial integer linear programming formulation and proceed with the
following iterative scheme, see also Algorithm .. The core of our algorithm is a classical
branch-and-bound framework for the current . However, the aim in the first iterations
is not to find optimal, but feasible solutions of the . As discussed above, we can solve
the separation problem in the case of integral -solutions exactly and add the resulting
inequalities to the current . If no violated inequalities exist, we double the value of� and iterate. When � reaches a threshold—experimental evaluation shows that  is a
good choice for most problems—we do not interrupt the branch-and-bound algorithm
and compute an optimal solution for the current . In case the following step (line 

of Algorithm .) does not find a violated inequality, we know that the current solution
is optimal for the entire  formulation for the label number maximization problem and
that it results in an overlap-free labeling for a largest subset of labels.

Algorithm . Iterative branch-and-bound scheme for the label number maximization
problem

Input: Initial  for the label number maximization problem 

Output: Optimal solution of entire  for 

: current  = initial ;
: � � � ;
: repeat
: if � ) ��� then � ��� ;
: solve current  with branch-and-bound, stop when � th feasible solution found;
: $ � separated positive cycle inequalities;
: if $ � � then
: � �3< � ;
: else

: add $ to current ;
: until $ � � and � � �

The branch-and-bound scheme for the pure labeling problem is an easy special case
of Algorithm .. Note that the objective function is arbitrary and the optimization task
consists of finding just a feasible solution. We can omit the parameter � and interrupt the
optimization as soon as the branch-and-bound algorithm finds the first feasible solution.

In order to solve the label size maximization problem in the discrete models, we can
use Algorithm . in a binary search manner. As illustrated in Section ., the number
of different scale factors that can lead to optimal solutions is at maximum quadratic, and
we are able to identify these factors in advance. Performing a binary search over the set of
candidate factors results in an exact algorithm for the label number maximization problem
in the discrete models. The algorithm identifies the largest of these factors for which the
pure labeling problem is not infeasible and provides an appropriate labeling.

Our algorithms for the extended formulation are similar to the branch-and-bound and
branch-and-cut algorithms for the compaction problems. The advantage of the extended
formulation is that already the initial  characterizes all feasible solutions, and we do
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not have to iterate or to add cutting planes. Nevertheless, the formulations contain more
variables, and the characterization with shape and consistency inequalities is less tight than
the one obtained by the zero-one formulation.

.. Implementations

We provide implementations of the new algorithms for the label number maximization
problem . All algorithms, the visualization component, and the constraint graph
data structure are implemented with , a library of efficient data types and algorithms
(Mehlhorn and Näher, ). As described in Section ., we determine the labeling model
by changing the rules for constructing the set of boundary arcs. Our implementation of
the constraint graphs provides this functionality so that we can easily choose among the
six different labeling models in our algorithms. For the pure -based branch-and-bound
algorithms we use the  library (, ), our branch-and-cut algorithms are built
with the -framework (Jünger and Thienel, ). For the heuristic separation of
positive cycles, we use the publically available code that is also used in the experimental
comparison of shortest path algorithms (Cherkassky and Goldberg, ).

A preliminary computational evaluation shows that the best of the presented strategies
is the iterative branch-and-bound scheme that rests upon the pure zero-one formulation.
It avoids the hardness of the separation problem as well as the additional variables and
constraints. For these reasons, we perform our experiments with Algorithm ., and report
on the results in the next section. We identify the following important parameters by
experimenting with different settings.

Surprisingly, the choice how to model the fixed distance arcs is crucial for the running
time of our algorithms. We proceed as illustrated in Figure . on page  and insert
many small cycles, see also Remark . on page . Experiments with other possibilities,
e.g., one large cycle with all but one negative arc or all but one positive arc, result in
increased running time due to a harder separation task. Furthermore, experiments with the
branching order show that it is better to prefer the label separation arcs over the boundary
arcs as candidates for branching variables.

Algorithm . Iterative branch-and-bound scheme for the pure labeling problem

Input: Initial  for the pure labeling problem 

Output: Solution for  or detect infeasibility

: current  = initial ;
: repeat
: solve current  with branch-and-bound, stop when feasible solution found;
: $ � separated positive cycle inequalities;
: if $ �� � then add $ to current ;
: until $ � � or current  infeasible
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. Computational Experiments

In this section we report on our computational results for the label number maximiza-
tion problem. All results in this section are computed by the iterative branch-and-bound
approach. We use a Sun Enterprise  with . Gigabyte main memory and two 

MHz-CPUs for the experiments.
We test our integer linear programming-based approach on different types of instances

in all six axis-parallel rectangular labeling models as defined in Figure . of the introduc-
tion.

Our first source of test data is publically available on the web page ���������	�
���
�
��

� ���!����� � � 
 ��� ����������� � �"���
����
������ � ����� ������� ��� � ��� �
����� ��� ��� . The site is maintained by
Alexander Wolff and contains practical instances as well as randomly generated data.
We test our implementation on several maps, e.g., the German railway stations, see Fig-
ures .-., or maps of the United States of America, see Figure .. The map of
German railway stations ( ��� ��� �����	��� � �!����	
���
��� 
�
�	�� ) contains  cities that have to be
labeled with their names. We use a text font size of  pt. An optimal solution in the one-
position model contains only  labels, see Figure .. Already the two-position model
(Figure .) allows a placement of  more labels (). The implementation places  la-
bels in the one-slider model (Figure .),  in the four-position model (Figure .), and
 in the two-slider model (Figure .). Only  labels cannot be placed in an optimal
solution for the four-slider model ( labels, Figure .).

The running times show a remarkable difference of the performance of our implemen-
tation in the different labeling models. Whereas it is very fast in the one-position, two-
position, and one-slider models (below  seconds), the computation takes about seven
and a half minutes in the two-slider model and half an hour in the four-slider model. In
the four-position model, it takes the implementation more than two and a half days to
find an optimal solution and prove its optimality. We defer a discussion of the reasons for
the different running times to the end of this section.

For the example � ��������� ��������� ����� 
�
�	�� , i.e., the map of a major part of the United
States of America, we scale the coordinates by a factor of  and use a text font size of
 pt. Of the  cities we can label  in the four-position model (see Figure .).

Additionally, we run our implementation on a set of practical data, the Munich drill
hole instances from the above mentioned web page. The instances correspond to rectan-
gular submaps of a map with , ground-water drill holes in the city of Munich with
sizes � in the range 	 < � +�� � + +�� � � +�� � � � ��<�� � +���� + + + � . There are  instances of each size.
The label sizes of these benchmark instances arise from heuristically scaling the labels to a
large size for which still all the labels can be placed in the four-position model. Figure .
shows such an instance with  drill holes. For these instances, we only compare the
four-position and the four-slider model.

The plot in Figure . shows how long our implementation needs to place all the
labels. It can be observed that the algorithm runs three to five times faster in the four-
position model and is quite fast in both models. The good results indicate that our ap-
proach is suited to compute optimal solutions for large instances of the label size maxi-
mization problem. In addition, an implementation for  would benefit from the easier
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Figure .: Optimal solution of a map with German railway stations in the one-position model.
 of  cities have labels with text font size pt, running time . s

algorithm for the pure labeling problem.

We also test our implementation on a widely used benchmark generator for ran-
domly creating instances of labeling problems, according to the rules described in (Chris-
tensen et al., ): First, we construct a set of � points with random coordinates in the
range 	 +�� � � � � ��� < � for the � - and 	 +�� � � � ��� � < � for the � -coordinates. Each point-feature
has a label of width  and height . Figure . shows a provable optimal solution with
 labels in the four-slider model for such an instance with �7� � + + .

Following the scheme in (Verweij and Aardal, ) and (Verweij, ) we randomly
generate  maps of size � with � 6;	�� + +���� � +�� � � � ��� � +���� + + + � . We limit the running
time to  minutes of CPU-time for each component. Typically, only one or two difficult
components exist, depending on the density of the instance. Table . shows for how
many of the larger instances the computation of all components terminates within the
time limit. Up to a size of  labels the implementation provides an optimal solution in
all models in short computation time.
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Figure .: Optimal solution of a map with German railway stations in the two-position model.
 of  cities have labels with text font size pt, running time . s

Number of solved instances/size
Model         

         

         -
    - - - - - -
         

       - - -
       - - -

Table .: Number of optimally solved instances for the randomly generated data. The first row
describes the size of the instances, the following rows show how many instances our im-
plementation solves to optimality within  minutes CPU-time in the respective model

The one-position model is the only model for which our implementation produces
optimal solutions for all  instances within the time limit. Looking at discrete and slider
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Figure .: Optimal solution of a map with German railway stations in the one-slider model. 

of  cities have labels with text font size pt, running time . s

models independently, we observe that the more restricted a model is, the easier is the
computation. In general, the discrete models are easier to solve with the exception of
the four-position model: Instances of the four-position model seem to be hardest for our
implementation as already indicated by the railway station examples.

Figure . shows the percentage of labels that can be placed in each model for the
“poor” models (one-position, two-position, and one-slider). We observe a linear decrease
in the number of placed labels in relation to the total number of labels.

The same plot for the “good” models (four-position, two-slider, and four-slider) in
Figure . shows a different behavior. In all models, the optimal solutions are quite
close to the total number of labels, and their order reflects the freedom a label has in
the respective model. However, the percentage of placed labels decreases quickly after an
initial plateau which is close to %. Surprisingly, the trend of decreasing percentage
seems to change for the larger instances. These anomalies in the four-slider and four-
position model have the following reason: Only a few easy instances can be solved of that
size, i.e., instances which allow a relatively large number of placed labels.
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Figure .: Optimal solution of a map with German railway stations in the four-position model.
 of  cities have labels with text font size pt, running time  h,  min,  s

We compare the four-slider model with all other models in Figure . which shows
how many more labels can be placed in the four slider model as compared to the five other
models. The plots indicate that the advantage of the slider models over the discrete models
is considerable.

Figure . shows the running times for the randomly generated instances in the dis-
crete models with a logarithmic scale. After a certain instance size, the running times
increase rapidly. For the one-position model, the threshold of the “exponential explosion”
is at about , labels and is not reached by the sizes of the test data. Again, the anomalies
in the plots are due to the fact that easy instances are also faster to solve.

For the slider models, the data look similar, see Figure .. The bends in the plots
exist for the same reason as for the discrete models. It can be seen that for the randomly
generated data the four-slider and four-position model have about the same running time
behavior.

We conclude the chapter on map labeling by looking at the reasons why the perfor-
mance of our approach depends such heavily on the labeling model. We can determine
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Figure .: Optimal solution of a map with German railway stations in the two-slider model. 

of  cities have labels with text font size pt, running time . s

two main factors which influence the running time of our algorithm: On the one hand,
this is the number of labels that cannot be placed in an optimal solution, i.e., the differ-
ence 4 � 4 ! 4 � � 4 . In general, an optimal solution that allows a large number of placed
labels is faster to compute since the number of possibilities for the set of removed labels is
much smaller than in a solution in which many labels cannot be placed.

On the other hand, the tightness of the inequalities has an impact on the running
time; the more restrictions on the variables, the faster the algorithms. Figures . and .

reflect this order of tightness; the faster models are the more restricted ones.
Both factors, however, interrelate: In the more restricted models we can also place

a smaller number of labels. This explains also the data in Table .: in general, the in-
equalities are tighter for the discrete model, but in large instances the growing difference4 � 4 ! 4 � � 4 becomes more influential.
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Figure .: Optimal solution of a map with German railway stations in the four-slider model. 

of  cities have labels with text font size pt, running time . s
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Figure .: Optimal labeling for a map of the United States of America without Alaska and
Hawaii,  of  cities have labels. Instance � ��������� �
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Figure .:  labeled ground-water drill holes in Munich
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Figure .: Running times for the Munich drillholes instances (logarithmic scale)
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Figure .: A provable optimal solution of an instance with  point-features generated accord-
ing to the rules in (Christensen et al., ).  points receive labels in the four-slider
model,  minutes running time
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
Application to a Graph
Labeling Problem

This chapter combines our results from the two previous chapters in order to provide
an algorithm for a combined drawing and labeling problem. We define graph labeling
problems in Section . as graph drawing problems in which subsets of vertices and edges
have to be labeled. Little research work exists on this subject.

In Section . we focus on a special graph labeling problem that arises in the area of
automation engineering: drawing labeled state diagrams. We propose an approach that
combines the last phase within the topology-shape-metrics scheme in orthogonal graph
drawing with a labeling strategy and introduce the combined compaction and labeling
problem. In Section . we merge the results of the previous chapters and obtain an
equivalent combinatorial formulation of the problem. We present an integer linear pro-
gramming formulation for the combinatorial version and conclude by presenting an exact
algorithm for the combined compaction and labeling problem. To our knowledge this is
the first exact algorithm especially designed to solve graph labeling problems.

. Graph Labeling

Combinations of graph drawing and map labeling problems yield challenging mathemat-
ical problems and have direct applications, e.g., the drawing of schematic maps such as
subway maps or the automatic layout of state diagrams in automation engineering. We
will provide a more detailed description of the latter problem in the next section. Unlike
in map labeling where the position of the objects is specified in the input, the coordinates
of vertices and edges in an instance of a graph drawing problem have yet to be determined
and thus create additional degrees of freedom.

We call the class of graph drawing problems where subsets of vertices and edges have
to be labeled graph labeling problems . Clearly, these combined problems are computa-
tionally at least hard as the included subproblems. Two straightforward approaches exist:

– First draw, then label. One way to attack a graph labeling problem is to divide
it into the two subproblems drawing and labeling. Algorithms in this category
first produce a graph drawing for the underlying graph, disregarding the labeling
information. As a second step they solve a classical map labeling problem, i.e., they
treat vertices and edges of the drawing as point- and line-features which have to
receive labels. Kakoulis and Tollis (a) present such an approach and consider,
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in particular, edge labeling, see also (Kakoulis and Tollis, b). Yet, the techniques
assume an existing graph drawing as input.

The drawback of this approach is that, in general, the empty space of the drawing
does but suffice to admit a feasible labeling for all labels. In this case and provided
that all labels have to be placed, a strategy must choose among four unattractive
possibilities:

. It places the labels so that they overlap other labels or vertices and edges of the
drawing. The last-placed labels may cover important parts of the drawing or
crucial information in formerly placed labels.

. It places some labels far away from the corresponding vertices or edges which
makes it difficult for the reader of the drawing to associate the information in
the labels with the appropriate objects.

. It scales the drawing so that all labels can be placed. This decreases the quality
of the graph drawing due to longer edges and larger drawing area.

. It solves the label size maximization problem for the instance. The legibility
of the labeling suffers from decreasing the scale factor too much.

Since the aesthetic criteria for graph labeling problems combine those for graph
drawing and map labeling, the four possibilities can lead to a dramatic decrease in
the solution quality.

– Treat labels as vertices. A second idea is to treat the whole problem as a graph
drawing problem. Labels are modeled as vertices of prescribed size and attached
to their corresponding vertices or edges by additional artificial edges and vertices.
Then, a graph drawing algorithm which can handle vertices of fixed, prescribed size
produces a drawing which results in a solution of the graph labeling problem by
removing the artificial vertices and edges.

Approaching a graph labeling problem in this manner may cause several problems.
First, modeling the labels as vertices increases the vertex degrees of the underlying
graph. The quality of many graph drawing algorithms depends heavily on the vertex
degrees. Furthermore, only a few algorithms exist which can cope with vertices of
prescribed size (see also Chapter  for this issue). A second disadvantage is that the
additional artificial vertices and edges destroy structural properties of the underlying
graph.

For certain applications, these approaches are successful, but in most cases the quality of
the solutions is too bad to apply the above presented techniques in practice.

. The Combined Compaction and Labeling Problem

In this section, we present a graph labeling problem which occurs in the area of automation
engineering. After an informal description of the problem we show that the strategies
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described in the last section do not produce satisfactory solutions. Our new approach
combines the compaction problem of the topology-shape-metrics scheme for orthogonal
graph drawing with the pure labeling problem. This enables us to apply the results from
Chapter  (compaction) and Chapter  (labeling).

State diagrams are used for designing and running control systems like, e.g., produc-
tion controls or robot controls in the area of automation engineering. Figure . illustrates
a typical hand-drawn state diagram of a control system.
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Figure .: A hand-drawn state diagram, courtesy Siemens AG

A state diagram describes all possible states of a control system and the state transitions.
A state can be, e.g., the initial state, an error state or states like “motor is running” and
is represented by a state node in the diagram. A transition from a state P to state � is
displayed as an arc from state node P to state node � via a transition node. Rectangular
labels which are attached to the state and transition nodes contain further information—in
many cases several lines of program code.

The information in the drawing of Figure . is very hard to extract, as many lines
cross each other, labels often overlap with transition lines and many labels are placed far
away from their associated nodes.

The usage of scaling is restricted in this special problem since the size of the labels
is fix and the labeled drawing must fit on a sheet of paper. The first approach in the
previous section fails due to the large number of labels in state diagrams. The space in
the drawing suffices only for a small fraction of the labels making it impossible to avoid
overlaps. Also the second approach is not suitable for the layout of labeled state diagrams.
Due to the bounded degree of the underlying graph in instances of this graph labeling
problem, orthogonal graph drawing techniques yield layouts of particularly good quality.
Modeling the labels as vertices leads to a loss of these underlying orthogonal structures
and, as a consequence, to an increase in the drawing area.

As mentioned above, state diagrams are very well suited to apply orthogonal drawing
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techniques. We propose to use the topology-shape-metrics scheme for the graph drawing
part of the problems since it leads to the best orthogonal layouts in practice (Di Bat-
tista et al., ). Yet we are aware that the appropriate space for the labels should already
be reserved when determining the coordinates. This observation suggests a union of the
compaction phase with a labeling technique. The overall approach is as follows: We de-
termine a simple orthogonal representation for the underlying graph of a labeled state
diagram with the planarization method described in Section ... The task is now to find
coordinates for the vertices and bends of the state diagram, and to assign positions to the
labels so that the output is an orthogonal grid drawing for the underlying graph combined
with an overlap-free, unscaled labeling. We choose the most unrestricted labeling model,
the four-slider model, in order to have the maximum freedom for the labeling subtask.

We formally define a feasible solution of the problems as follows:

Definition . (Labeled orthogonal grid drawing). Let
�

be an orthogonal representation
of a four-planar graph

� �C&'34�Q� ( , let � be a set of labels of width and height < � � ��� �
�G� , and let T
� � ��3 denote the vertices that receive the labels. A labeled orthogonal
drawing

� 
 satisfies the following properties.

(a)
� 
 is an orthogonal grid drawing of

�
.

(b) Each label is represented by a rectangle of width < &'?E( and height
� &'?E( which contains� 
 & TE&'? ( ( on its boundary.

(c) A label ? 6 � does neither overlap nor include other labels or parts of the drawing.

Among the labeled orthogonal drawings we prefer those that have short edges due to
the same reasons as for pure drawings. This leads to the following problem formulation:

Definition . (Combined Compaction and Labeling Problem, ). Let
�

be a sim-
ple orthogonal representation

�
of a four-planar graph

� �C&'34�Q� ( with additional label
information � , < ,

�
, and T . We refer to the five-tuple & � �*? ��< � � �QT ( as an instance of

the combined compaction and labeling problem. Given such an instance, find a labeled
orthogonal grid drawing

� 
 of
�

of minimum total edge length.

From a computational-theoretic point of view, the combined compaction and labeling
problem is a difficult problem. Already the two subproblems, compaction and labeling are
NP -hard (see Sections . and .). subproblems.

. An Exact Algorithm for the Combined Compaction
and Labeling Problem

In this section we develop an exact algorithm for the  problem and proceed as in the
previous chapters. An equivalent combinatorial formulation involving a pair of constraint
graphs, the shape and labeling graphs, enables us to present an integer linear program-
ming formulation. We propose to solve the  formulation with a branch-and-bound
algorithm.

 Most of the underlying graphs of state diagrams are planar.
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.. Unifying the Combinatorial Formulations

In order to combinatorially characterize the combined problem, we merge our combinato-
rial formulations for the two-dimensional compaction problem and the labeling problem.
We will define the shape and labeling graphs which combine the elements of the respec-
tive pairs of constraint graphs for the subproblems. We adapt the notion of completeness
and establish a one-to-one correspondence between solutions of a combinatorial problem
version and labeled orthogonal drawings.

Definition . (Shape and labeling graphs). A pair of shape and labeling graphs consists
of two constraint graphs L � �C&'N � �QP � ��< � ( and L � �C&'N � ��P � ��< � ( and corresponds to
an instance �O�@& � ������< � � ��T�( of the combined compaction and labeling problem. Let� � &+34���5( be the underlying four-planar graph. The node sets of L � and L � are

N � � � � � 	 ��� 4 ? 6 �G� � 	 � � 4 ? 6 �G�
N � � � � � 	 � � 4 ? 6 �G� � 	 � � 4 ? 6 �G� �

The arc sets of the constraint graphs are

P � � 	�& vert &D9�(Q� vert &D<F( ( 4�& 9"��<F( 6 ����Q� � �� �
�

	�& � � � � � (Q��& � � � � � (Q��& � � � � � � � 	 (���& � � � � 	 � � � (��
P � � 	�& hor &D9 (Q� hor & <K(�( 4�&D9E��<F( 6 ������ � �� �

�

	 & � � � � � (Q� & � � � � � (Q��& � � � � � � � 	 (Q��& � � � � 	 � � � (�� �
Arcs between segments have unit weight, and arcs between segments and limits of labels
have zero weight. The arcs between limits of labels are equal to the label size arcs and have
also the same weights which depend on the width and height of the corresponding label.

Basically, the new pair of constraint graphs is a pair of shape graphs for the underlying
orthogonal representation with additional nodes and arcs. Each label gives rise to four
nodes which correspond to its limits. Furthermore, the arcs sets of the shape and labeling
graphs include the label size arcs and a variant of the proximity arcs. The difference to the
proximity arcs in map labeling problems is that the labels are linked to the segments of
the corresponding vertices instead of fixed points in the plane. By definition, an instance
� of the combined compaction and labeling problem gives rise to a unique pair of shape
and labeling graphs which we will refer to by � & � ( .

Note that the notion of limits builds the link between the two different problems
compaction and labeling. Substantially, a segment of the compaction problem and a
label are modeled in the same way. Both are bounded by four limits for which nodes in
the shape and labeling graphs exist. In principle, we can construct each solution of the
combined compaction and labeling problem by assigning values to these nodes. Again,
the rest of this section is dedicated to identifying properties of the pair of constraint graphs
L � and L � so that feasible assignments for L � and L � lead to solutions of the combined
compaction and labeling problem.

As for the shape graphs, we define an extension of the pair of constraint graphs � & � (
as supergraphs which result from adding arcs. We know by the previous chapters that
feasible assignments for these supergraphs are also feasible for each of their subgraphs.
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As a first step, we extend the notion of completeness. Due to the additional label size
arcs we must exclude positive cycles in the constraint graphs explicitly, since half of these
arcs have a negative weight.

Definition . (Completeness of extensions of shape and labeling graphs). An extension
of a pair of shape and labeling graphs is complete if and only if

(a) Both graphs do not contain positive cycles;

(b) For all pairs of nodes & R �+S�( one of the four following positive paths is contained in the
arc sets:

�

$
�! � �

� � �
�! � � $� $ �! � � � � � �! � �
$
�

In the next section we show the one-to-one correspondence between complete exten-
sions of shape and labeling graphs and labeled orthogonal grid drawings by relating feasible
solutions of an integer linear program to feasible solutions of the combined compaction
and labeling problem.

.. Integer Linear Programming Formulation

The similarity to the combinatorial formulations of the subproblems motivates the search
for a complete extension of the shape and labeling graphs as in our approach to the two-
dimensional compaction problem in Chapter . In order to separate unseparated labels
and segments we consider potential additional arcs between the limits of these objects.
Let � � � � � contain the objects which have to be separated. We can separate each
unseparated pair of objects 	�� � � � 6;. � � 1 by adding one of the arcs

P sep &�� � � ()� 	�& ���2� � � (Q��& � � � � ��(Q� & � �2� � � (Q��& � � � ����(�� �
Yet, for the combined problem it is difficult to bound the size of the potential arcs as
successful as for the subproblems. Since the coordinates of the vertices are not fixed, we
cannot determine the label separation arcs according to the overlapping regions as in the
static case. However, two labels which must be placed in different faces of the drawing can
never overlap and we do not have to ensure their separation. Even if this is not the case
we can in many cases restrict the number of possible label separation arcs for a label pair ?
and � , e.g., if the appropriate vertices TE& ?E( and TE& � ( share the same segment. To avoid the
interaction between two segments � and � we proceed as in Chapter  and compute the
sets P sep &�� ��� ( by computing the maximal unique completion of the shape graphs � & � ( .

The following is a general integer linear programming formulation for the combined
compaction and labeling problem. Let P /� and P /� be the arc sets in the pure shape graphs,
and let

P pot � �
� � � � �

�
& � � ( P sep &�� � � (
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be the set of potential arcs. We distinguish between the horizontal and vertical potential
arcs and refer to them by P xpot and P ypot, respectively. We combine the formulation for
total edge length minimization with the extended version for the pure labeling problem.

min
#

� � � � 	 � � �� � � �
 � � ! � � (.)

subject to
#
�
� �

sep
� � � � 	

� � / � � P sep & � � � ( ��3� (..)

� � ! �
$
/ < � & T�( � T5�C&DR��+S (G6 P � (..)

� � ! �
$
/ < � & T ( � T5� & R �+S�( 6�P � (..)

� � ! �
$ ! & � � �:< � & T�( ( � �1/ ! � � � T �C&DR � S (G67P xpot (..)

� � ! �
$ ! & � � �:< � & T (�( � � / ! � � � T5� &DR � S ( 6 P ypot (..)+ 9 � �
9 � � T 6�P pot (..)

� � 6 	 +���� � � T 6�P pot (..)

We convert a solution of (.) into a labeled orthogonal grid drawing in a similar
manner as for the subproblems and let the coordinate vector determine the assignments
in the two constraint graphs. Let the constants � � be defined as in the respective sub-
problems. Lemmas . and . state that the choices of potential arcs that correspond to
feasible solutions of the  do not induce positive cycles in the shape and labeling graphs.

Theorem .. Let � � & � � ����< � � �QT ( be an instance of the  problem. A feasible
solution & � � �2( of ( .) for � corresponds to a solution

� 
 of the  problem and vice
versa. The value of the objective function is equal to the total edge length in

� 
 .

Proof. We perform the proof in two parts. First, we demonstrate that
� 
 is an orthogonal

grid drawing for
�

. In a second step, we show that the resulting labeling is feasible for the
drawing of

�
.

To prove the first part, it suffices to observe that (.) contains the integer linear
programming formulation for the two-dimensional compaction problem. Hence, by The-
orem ., every feasible solution of the above  gives rise to an orthogonal grid drawing
for

�
.

The above integer linear program also includes the extended  formulation for the
pure labeling problem with the exception of the boundary arcs. However, due to the exis-
tence of separation arcs between label boundaries and segments, we can omit the boundary
arcs. The placement of label ? that includes vertex T &'?E( is not possible, since it implies an
intersection of a boundary of ? with an incident segment to TE& ?E( . The second step of the
proof follows by Theorem ..

.. Branch-and-Bound Algorithm

We use the  formulation of the previous section in order to devise a branch-and-bound
algorithm for the combined compaction and labeling problem. The algorithm is similar as
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for the pure compaction task. Let �5� & � � ����< � � ��T ( be an instance of the graph labeling
problem. We start by constructing the combined shape and labeling graphs � & � ( . By
definition, the shape graphs �4& � ( are subgraphs of � &�� ( . We consider the pair � & � ( and
compute its maximal unique completion with Algorithm .. As for the pure compaction
problems this results in the sets P sep containing the potential arcs for those segment pairs
that are not uniquely separable. In a following step, we determine the sets P sep for pairs
of labels and label-segment pairs.

With this information, we build the integer linear program (.) that can be solved
with a similar -based branch-and-bound strategy as described in Section ...

Unlike its subproblems, it seems that the combined compaction and labeling problem
is not only difficult from a theoretical but also from a practical point of view. It turns
out that instances of the combined compaction and labeling problem are quite difficult
to solve with our technique. A prototype of our algorithm is able to solve medium-sized
instances (about  vertices and  labels) in reasonable computation time (about half a
minute). However, the results are superior to applying map labeling algorithms to graph
drawings.

Moreover, to our knowledge, the approach is the first algorithm especially designed to
solve a graph labeling problem. A first step to improve the running time of the branch-
and-bound algorithm could be to reduce the number of potential arcs and thus the num-
ber of variables in the  formulation. Furthermore, we are confident that the newly
introduced concept of shape and labeling graphs is suited for further research that could
lead to heuristic algorithms for the combined compaction and labeling problem.
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 Discussion and Extensions

In this thesis we develop a constraint-graph based approach to orthogonal placement prob-
lems that leads to first exact algorithms for many of the problem variants under consid-
eration. Our new techniques are based on integer linear programming formulations for
combinatorial formulations that are equivalent to the original problems. We suggest a
decomposition of the orthogonal placement problems into a horizontal and vertical prob-
lem component and introduce a constraint graph for each component. We investigate
combinatorial properties of these pairs of constraint graphs and prove that separate as-
signments of values to the nodes of these graphs lead to feasible solutions of the original
problem if and only if the pair of graphs satisfies a certain path- and cycle-based prop-
erty which we refer to as completeness. The separate computation of feasible values for
constraint graphs is computationally easy and strongly related to minimum cost-flow and
shortest path problems. Our combinatorial problem versions consist of finding the best
set of certain arcs to add to a problem-specific initial pair of constraint graphs so that the
resulting pair of graphs is complete and admits optimal separate assignments of values to
the nodes. Given such an assignment it is straightforward to construct a solution of the
original problem.

Compaction For the two-dimensional compaction problem in orthogonal graph draw-
ing which appears in the third phase of the important topology-shape-metrics scheme, we
are able to derive a new exact algorithm based on our constraint graph-based framework.
The input of the compaction problem is an orthogonal representation that fixes the shape
of the final drawing. We introduce a pair of constraint graphs, the shape graphs, which
are in one-to-one correspondence to orthogonal representations. Based on the combina-
torial properties of shape graphs we define a hierarchy of orthogonal representations: If
already the shape graphs are complete, we can solve the compaction problem to provable
optimality in polynomial time. We show that shape graphs of rectangular representations,
which appear within constructive heuristics for the compaction problem, belong to this
class. Furthermore, we provide a polynomial-time algorithm that checks for completeness
and determines the maximal unique completion of the shape graphs. If the resulting pair
of constraint graphs is complete—in this case we say that the corresponding orthogonal
representation is uniquely completable—we also can solve the compaction problems to
optimality in polynomial time. Otherwise, we identify the set of potential arcs which
may lead to complete extensions. We provide several integer linear programming formu-
lations for different variants of the compaction problems that model the choice of which
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potential arcs to add to the maximally completed shape graphs and propose an -based
branch-and-bound algorithm to determine optimal solutions of the corresponding two-
dimensional compaction problem.

We also investigate a one-dimensional compaction scheme which is similar to com-
paction techniques known from  design. We demonstrate that instances exist for
which a linear number of alternating one-dimensional compaction steps is necessary.
Moreover, we show that algorithms within the scheme do not approximate the compaction
problem by a constant factor.

Our extensive computational study shows that the new exact algorithms can solve large
instances of the compaction problems in short computation time. The longest running
time of our implementation for instances of a widely used benchmark set of , graphs
arising from real-world applications is ten seconds. We also provide the first experimen-
tal comparison of the state-of-the-art compaction heuristics in graph drawing and gain
new and surprising insights by our computational results. Our experiments indicate that
good compaction heuristics perform well on most instances of the compaction problem
and that the high quality is not due to the constructive but to the improvement heuris-
tics. Therefore, we propose the combination of a simple initial heuristics followed by
a minimum-cost flow-based improvement step in a practical application. Moreover, we
have learned that the implementation of algorithms can benefit considerably from exper-
imental studies on a large number of instances from different sources. During the more
than , compaction runs we still found a remarkable number of errors in our im-
plementations which we considered stable in the beginning. In particular the pathological
instances made us understand the two-dimensional compaction problems in depth and
we are convinced that extensive experiments strongly contribute to the provision of good
implementations.

Map Labeling We also apply the constraint graph-based technique to point-feature map
labeling problems and obtain new exact algorithms in a similar manner as for the com-
paction problems. We consider six different axis-parallel rectangular labeling models and
various optimization versions of the labeling problem with a special focus on the label
number maximization problem. For the slider models, our algorithms are the first ex-
act algorithms, and we find it remarkable that although the underlying problems are of
continuous nature in this case, we can successfully attack large problem instances with a
discrete approach.

Unlike the polytope that corresponds to our combinatorial versions of the compaction
problems, we define the labeling polytope as a pure zero-one polytope. However, one of
the inequality classes we use to describe integral points within that polytope, the positive
cycle inequalities, can be exponential in size. Unfortunately, it turns out that the corre-
sponding separation problem is NP -hard. Our proof shows that the equivalent weight-
constrained shortest cycle problem is an NP -complete problem by reducing it to the short-
est weight constrained path problem. Due to the hardness of the separation problem we
present an extended integer linear programming formulation for labeling problems which
evades the positive cycle inequalities at the cost of additional variables. The alternative for-
mulation has the additional advantage of being very similar to the  formulation for the
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compaction problem which facilitates the combination of the two approaches. Yet, our ex-
periments show that the pure zero-one formulation is better suited to apply integer linear
programming techniques. We evaluate an -based branch-and-bound algorithm for the
extended formulation, a branch-and-cut algorithm, and an iterative branch-and-bound
scheme for the label number maximization problem, and our experiments demonstrate
that the iterative scheme is the best of the three approaches. Theoretically, this is due to
the fact that the iterative scheme avoids the heuristic separation of the branch-and-cut
algorithm and the additional variables of the pure branch-and-bound algorithm. Further-
more, the algorithm exploits the fact that we can solve the separation problem exactly in
case of non-fractional -solutions. We provide extensive computational experiments in
which we test our new algorithm for all six labeling models on a large set of benchmark
data. The results show that the exact algorithms are competitive and solve large instances
to provable optimality in reasonable computation time.

Graph Labeling Finally, we combine our approaches for two-dimensional compaction
problems and labeling problems in order to provide a first exact algorithm for a problem
in the class of graph labeling problems. As indicated above, the extended  formulation
for the labeling problem is similar to the formulation for the compaction problem and we
exploit the similarity of the approaches to create a common combinatorial framework for
compaction and labeling problems.

Extensions

Already the fact that our exact algorithms for the three different problems compaction,
map labeling, and graph labeling rest upon a common combinatorial framework demon-
strates that our constraint graph-based techniques are very flexible. In the following we list
several extensions of our approach that might prove useful in the realization of algorithms
for problems as they occur in practice.

Compaction of Drawings in Other Orthogonal Models In the chapter on compaction
we have assumed that the input is a simple orthogonal representation for a four-planar
graph. Most of the graphs that occur in practice, however, do not have this property.
Therefore, a variety of extensions have been proposed in order to extend the orthogonal
drawing model for planar graphs with arbitrary vertex degree.

Fößmeier and Kaufmann () introduce the  model in which vertices are
mapped to a coarse grid and edges are mapped to paths in a finer grid. Several edges may
leave a vertex at the same side resulting in parallel edges and  � degrees.

In the case that there is only one common grid, drawing a vertex 9 as an orthogonal
box cannot be avoided if the degree of 9 exceeds four. Many algorithms in the topology-
shape-metrics scheme produce orthogonal drawings according to this standard with vary-
ing restrictions to the sizes of the boxes (Tamassia et al., ; Fößmeier and Kaufmann,
, ; Klau and Mutzel, ; Bertolazzi et al., ).

All orthogonal drawing models for high-degree graphs constrain the dissection process
for constructive heuristics remarkably, leading to many different cases that have to be
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considered in an dissection algorithm for these models. Our exact techniques have the
advantage of not transforming the underlying shape into an auxiliary structure and they
can be applied to any of the above models.

Among the most important models in practice are those which are able to cope with
vertices of prescribed size. In many applications such as drawing entity-relationship dia-
grams or  diagrams the sizes of the individual rectangles that represent the vertices is
fixed in the input. Eiglsperger, Fößmeier, and Kaufmann () and Di Battista, Didimo,
Patrignani, and Pizzonia (a) use variations of the  model to handle this
restriction, however, the number of bends in the drawings is comparatively high. Klein
() provides a heuristic integer linear programming-based method and compares dif-
ferent approaches to this problem.

We can use the constraint graph-based approach in the following manner to produce
drawings with prescribed vertex sizes: First, we create an auxiliary drawing in which the
sizes of the rectangles that represent vertices might differ from the values given in the in-
put. However, it is easy to ensure that the width and height of each rectangle are large
enough so that the “real” rectangle can be placed inside. The next step consists of routing
the edges from border of the real rectangle to the border of the auxiliary rectangle. This
process might create a large number of bends and we propose to use the underlying con-
straint graphs to remove many of these bends. Since this technique is applicable to general
orthogonal drawings, we defer its explanation to the next paragraph.

An interesting further application of our constraint graph-based compaction tech-
niques is to non-orthogonal grid drawings. We treat general grid drawings like orthog-
onal drawings and consider the two directions of the compaction separately: a sloped
edge gives rise to both a horizontal and a vertical constraint. The application of our ap-
proach is particularly promising in case the number of sloped edges is low like, e.g., in the
quasi-orthogonal drawing model introduced in (Klau and Mutzel, ). In this drawing
standard, sloped edges occur only locally around vertices of high degree.

Furthermore, it is possible to give each edge an individual weight in the objective
function. In this manner, edges with higher values are considered more important and
will preferably be assigned a shorter length. In -design, the weight factor is usually
chosen according to the electric resistivity of the corresponding wire. Wires with high
resistivity should be short in the resulting layout.

Removing Bends by Compaction A variety of heuristic post-processing techniques exist
that aim at improving the quality of an orthogonal grid drawing not only with respect to
area or edge length but also to the number of bends in the drawing (Tamassia and Tollis,
; Fößmeier et al., ; Six et al., ). We present a new technique to reduce the
number of bends in an orthogonal grid drawing which uses our constraint graph-based
framework.

A crucial observation is that we can delete every pair of consecutive bends on the same
edge if the resulting shape still admits an orthogonal grid embedding, see Figure .. Our
constraint-graph base approach is well suited to detect these situations. Let �� � be the set
of half-edges with both endpoints corresponding to artificial vertices that represent bends.
When constructing the shape graphs, we can set the weights of the arcs that correspond to
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Figure .: Removing bends with the constraint-graph based approach. Empty squares represent
bends

half-edges in �� � to zero.
We can reduce the number of bends at the same time as minimizing the total edge

length. In case minimizing the total number of bends is more important than short edges,
we can assign higher objective function coefficients to the zero weighted arcs in the shape
graphs.

If the reduction of total edge length and area is more important, we propose to tem-
porarily insert virtual bends, thus adding more flexibility to the compaction process. With
the above described technique we are able to remove many of the virtual bends. The re-
maining additional bends help to decrease the total edge length and area of the drawing.

The post-processing techniques are particularly powerful when applied in combina-
tion with our exact algorithms since many situations involve the interaction of the two
dimensions. Yet, the techniques are not restricted to exact algorithms and can be ap-
plied in the same manner within the one-dimensional constraint graph-based improve-
ment heuristics.

More General Labeling Models Practical map labeling applications use even more gen-
eral labeling models as, e.g., the four-slider or the four-position model. Furthermore,
other models such as the three-position model are interesting from a theoretical point of
view.

We can simulate general � -position models by introducing parallel proximity arcs with
different weights according to � and further restricting the boundary arcs in case the �
positions are not symmetric. E.g., for the three-position model, we take the four-position
model as a basis and prevent one of the possible placements by adding an appropriate
inequality to the integer linear programming formulation.

Moreover, we can easily model different labeling models for different labels. The re-
strictions on the boundary arcs are local and the constant - that switches between discrete
and slider models would be replaced by a vector - 6�	���� < � � .

Preferred Label Positions and Labels of Different Importance In many practical appli-
cations of the label number maximization problem, some labels are more important than
others. It is easy to integrate this into our approach: The objective function of the integer
linear program changes to #

�
�
�

�
�

�
�
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and accordingly in the  in which the variables for labels have been substituted. The
value �

�
denotes the importance of label ? . The algorithm will then prefer more important

labels and remove less important ones more easily.
Another practically motivated extension is to model preferable positions of labels: Of-

ten, a label should be placed rather at its rightmost and upmost position than at other
possible positions. We suggest to define a weight vector for the boundary arcs and incor-
porate it into the objective function.

Non-Touching labels The labeling model we use in Chapter  allows labels to touch. In
most practical applications this is not desirable since touching labels decrease the legibility
of a map. We suggest two strategies to ensure a minimum distance between two labels:

– Either all or only touching labels can be scaled down by a factor � ! > .
– In our constraint graph-based approach, label separation arcs ensure that pairs of

labels do not overlap. Nevertheless, they may touch, since the weights of these arcs
is zero. This value can be changed to the desired minimum distance between labels
which is the approach we have taken to produce Figure .(c) on page , the example
in the introductory chapter.

Further Work and Open Problems

It is certainly promising to deeper investigate the problem-specific polytopes in order to
obtain a tighter characterization of the appropriate problems. In particular, the identifica-
tion of facet-defining inequalities leads in many cases to considerably better bounds.

Our approach to compaction problems is located within the last phase of the topology-
shape-metrics scheme and thus operates in a fixed embedding and fixed shape setting. An
interesting question is how the optimal drawings with respect to the aesthetic criteria
change if the embedding or the shape or both may be changed.

Another generalization of orthogonal placement problems is to see them as constrained
two-dimensional packing problems. A remarkable amount of research work exists for
multi-dimensional packing problems including graph-theoretic approaches that exploit
the relation to interval and comparability graphs. We would like both to learn from
the formulations for packing problems and to investigate the possible application of our
approach to multi-dimensional packing problems.

To date, no approximation algorithms exist for the compaction problems, and we show
in Chapter  that heuristics based on one-dimensional compaction do not approximate the
problems within a constant factor. It would be very interesting to have efficient heuris-
tics with a good performance guarantee. Moreover, we believe that good heuristics for
orthogonal placement and related problems can be build upon our constraint graph-based
framework. These constraint graph-based heuristics might be candidates for approxima-
tion algorithms. In addition they could be applied at each node in the branch-and-bound
or branch-and-cut trees in order to improve the global upper bounds.

 Note however, that the shape may be changed to a certain extent if we apply our compaction techniques
to remove the number of bends.
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Future work could explore the possibilities of our approach to related problem families.
Promising areas are line and area feature labeling, edge labeling, labeling with obstacles,
scheduling, two- and three-dimensional packing, and facility location. We are confident
that our new combinatorial framework for orthogonal placement problems is flexible and
powerful enough to build the basis of further successful and competitive combinatorial
algorithms for orthogonal placement problems and related problem families.
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A Deutsche Zusammenfassung

Diese Arbeit analysiert zwei Problemfamilien aus dem Bereich der Informationsvisualisie-
rung: Kompaktierung orthogonaler Gitterzeichnungen und Beschriftung von Punktmen-
gen. Die betrachteten Kompaktierungsprobleme entstehen in der letzten Phase des soge-
nannten Topology-Shape-Metrics-Ansatzes, einer der wichtigsten Methoden im Bereich
des orthogonalen Graphenzeichnens. Die Aufgabe besteht darin, eine gegebene dimen-
sionslose Beschreibung der orthogonalen Form eines Graphen in eine orthogonale Git-
terzeichnung mit kurzen Kanten und geringem Flächenverbrauch zu transformieren. Die
zweite Problemfamilie, die in dieser Arbeit untersucht wird, ist dem Bereich Computer-
Kartografie zuzuordnen. Hier ist die Aufgabe, eine gegebene Menge von rechteckigen
Labels so zu platzieren, dass jedes Label einen zugehörigen Punkt berührt und gewisse
Kriterien erfüllt werden, z. B. dass sich keine Labels überlappen. In einer klassischen An-
wendung repräsentieren die Punkte beispielsweise Städte einer Landkarte, und die Labels
enthalten die Namen der Städte.

Die oben genannten Platzierungsprobleme haben viele Gemeinsamkeiten: Sowohl
Zeichnungen von Graphen als auch Landkarten übermitteln komplexe Information über
Relationen zwischen Objekten in Form einer geometrischen Repräsentation. Darüberhin-
aus hängt der Nutzen dieser Repräsentation stark von der Qualität des Layoutprozesses ab.
Das übergeordnete Ziel ist es in beiden Fällen, eine Zeichnung oder Beschriftung maxima-
ler Lesbarkeit zu erstellen; das Resultat muss die unterliegende Information auf intuitive
Art und Weise effektiv übermitteln. Abbildung A. zeigt “gute” und “schlechte” Lösungen
für je ein Beispiel von orthogonalen Platzierungsproblemen.

Warum sind die beiden linken Platzierungen in Abbildung A. besser als die beiden
rechten? Viele Kanten in der rechten Zeichnung des Graphen sind sehr lang, ohne dass ein
Grund dafür erkennbar ist. Für den Benutzer der Zeichnung ist dies verwirrend. Zudem
konnte die linke Zeichnung um % vergrößert werden und benötigt immer noch weniger
Zeichenfläche als die rechte. Aufgrund der daraus resultierenden besseren Auflösung und
der kürzeren Kanten ist sie der rechten überlegen. Beim Beschriftungsproblem sind die
Kriterien noch offensichtlicher: In der rechten Karte fehlt Information, weil einige Label
nicht platziert wurden. Zudem überlappen sich viele Label, und man kann den Text nicht
lesen.

Eine weitere Gemeinsamkeit der hier betrachteten Probleme ist, dass sie, komplexitäts-
theoretisch gesehen, schwere Probleme sind. Eine ansprechende Zeichnung eines Graphen
mit  Knoten von Hand zu erstellen ist schwierig und zeitaufwändig. Das gleiche gilt für
das Beschriften von Landkarten mit vielen Labels. Sämtliche Probleme, die wir in dieser
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Abbildung A.: Gute und schlechte Lösungen orthogonaler Platzierungsprobleme

Arbeit betrachten, gehören zur Klasse der NP–schwierigen Problemen.
In dieser Arbeit präsentieren wir ein gemeinsames theoretisches Gerüst für zweidi-

mensionale Kompaktierungsprobleme und Beschriftungsprobleme. Die kombinatorische
Formulierung ermöglicht es uns, exakte Algorithmen für die Probleme zu entwickeln, die
große Probleminstanzen in kurzer Rechenzeit lösen können. Wir nutzen die Tatsache aus,
dass orthogonale Platzierungsprobleme auf natürliche Art und Weise in zwei weitestge-
hend separate Problemkomponenten zerfallen, eine horizontale und eine vertikale Kom-
ponente. Zudem können wir jede Lösung durch Zuweisung von � – und � –Koordinaten
an problemspezifische Objekte generieren; im Fall der Kompaktierungsprobleme sind dies
die Knoten und Knicke des Graphen, im Fall der Beschriftungsprobleme sind es die Be-
grenzungen der rechteckigen Labels.

Unser neuer Ansatz für orthogonale Platzierungsprobleme basiert auf einem Paar von
horizontalen und vertikalen Constraint–Graphen. Constraint–Graphen sind gerichtete
Graphen, die Reihenfolgebeziehungen zwischen Objekten kodieren. Jedes Objekt ist im
Graph durch einen Knoten repräsentiert. Zusätzliche Kantengewichte können diese Be-
ziehungen noch spezifizieren. In orthogonalen Platzierungsproblemen korrespondieren
die Objekte zu � – und � –Koordinaten der Knoten, Knicke oder Labelbegrenzungen;
die gewichteten Kanten drücken Lagebeziehungen zwischen den Objekten aus. Die Idee
des Constraint–Graph–Ansatzes besteht darin, die Koordinaten für die Originalprobleme
durch Zuweisung von Werten an die Knoten der Constraint–Graphen zu bestimmen.

Constraint–Graphen wurden bereits in den Bereichen –Design und Scheduling
benutzt. Insbesondere die Arbeit von Bartusch et al. () weist einige Ähnlichkeiten mit
unserem Ansatz auf. In Scheduling–Problemen repräsentieren die Knoten eines Constraint–
Graphen Aufgaben und die gewichteten Kanten zeitliche Reihenfolge–Constraints zwi-
schen den Aufgaben. Die Autoren betrachten die Optimierung über einer Menge von
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zulässigen Schedules mit Zeit– und Ressourcen–Constraints. Sie charakterisieren diese
Menge als Erweiterung einer partiellen Ordnung, die gewisse ordnungstheoretische Ei-
genschaften erfüllt. Aufgrund der eindimensionalen Struktur des Scheduling–Problems
müssen keine Beziehungen zwischen verschiedenen Constraint–Graphen berücksichtigt
werden. Diese stehen in unserem Ansatz im Mittelpunkt, da sie die Interaktion der Di-
mensionen in unseren zweidimensionalen Problemen modellieren.

Sowohl für die Kompaktierungs– als auch für die Beschriftungsprobleme führen wir
spezielle, problemabhängige Paare von Constraint–Graphen ein: Im ersten Fall sind das
die Shape–Graphen, im zweiten Fall die Labeling–Graphen. Wir studieren Eigenschaf-
ten dieser Paare und identifizieren eine pfad– und kreisbasierte kombinatorische Eigen-
schaft, die wir Vollständigkeit nennen. Diese Eigenschaft erlaubt es uns, die Umstände
zu charakterisieren, unter denen jede zulässige separate Zuweisung von Werten an die
Knoten jedes einzelnen Constraint–Graphs einer zulässigen Lösung des Originalproblems
entspricht. Mit Hilfe des Konzepts der Vollständigkeit können wir äquivalente kombi-
natorische Umformulierungen der Originalprobleme aufstellen, das heißt, wir betrachten
die ursprünglich geometrischen Probleme als graphentheoretische Probleme in einem Paar
von Constraint–Graphen. Im Wesentlichen besteht die neue Aufgabe darin, eine Menge
von zusätzlichen Kanten auszuwählen, die zu den Shape– oder Labeling–Graphen hinzu-
gefügt werden kann, so dass das resultierende Paar von Constraint–Graphen vollständig
ist. Falls die hinzuzufügende Menge für eine Instanz leer oder eindeutig ist (was wir in
polynomieller Zeit ermitteln können), können wir die zugehörigen Originalprobleme in
polynomieller Zeit beweisbar optimal lösen. In den meisten Fällen gibt es jedoch meh-
rere Möglichkeiten, und die Komplexität der kombinatorischen Probleme liegt darin, die
richtige Teilmenge von zusätzlichen Kanten auszuwählen.

Nichtsdestotrotz sind die kombinatorischen Formulierungen sehr gut geeignet, um
Methoden der ganzzahligen linearen Programmierung anzuwenden. Wir definieren pro-
blemspezifische Polytope, die der Menge der vollständigen Erweiterungen der Shape–
oder Labeling–Graphen entsprechen und charakterisieren ganzzahlige Punkte in diesen
Polytopen durch ganzzahlige lineare Programme. Wir entwickeln Branch–and–Bound–
und Branch–and–Cut–Algorithmen und präsentieren umfassende experimentelle Studi-
en. Unsere Resultate zeigen, dass wir große Instanzen der Platzierungsprobleme in kurzer
Rechenzeit beweisbar optimal lösen können.

Ein Vorteil unseres gemeinsamen theoretischen Gerüstes für Kompaktierungs– und
Beschriftungsprobleme ist, das wir sie relativ einfach kombinieren können, um Graphbe-
schriftungsprobleme zu lösen. Diese Klasse von Problemen vereint Charakteristiken der
Gebiete Graph Drawing und Map Labeling, und nur wenige Forschungsarbeiten exis-
tieren in dieser Schnittmenge. Wir präsentieren ein neues Graphbeschriftungsproblem,
das im Bereich der Automatisierungstechnik entsteht: das automatisierte Zeichnen und
Beschriften von Zustandsdiagrammen. Wir kombinieren unsere Resultate für die beiden
Teilprobleme, Kompaktierung und Beschriftung, und entwickeln einen exakten Algorith-
mus für das neue Problem. Unser Verfahren ist der erste exakte Algorithmus im Gebiet
Graphbeschriftung.
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Übersicht über die Arbeit

Kapitel  enthält eine Einführung in die Gebiete Graph Drawing und Map Labeling unter
besonderer Berücksichtigung von orthogonalen Zeichenverfahren im Topology–Shape–
Metrics–Ansatz und Beschriftungsverfahren für Punktmengen.

Das zweite Kapitel fasst die benötigten mathematischen Grundlagen zusammen: Wir
beginnen mit Eigenschaften und Strukturen aus der Graphentheorie und gehen dann über
die Theorie der planaren Graphen zum Bereich Graph Drawing. Viele der in dieser Ar-
beit entwickelten Verfahren sind kombinatorischer Natur und basieren auf Methoden der
linearen Programmierung. Nach einer kurzen Einführung in kombinatorische Optimie-
rung präsentieren wir generische Verfahren, die Optimallösungen für ganzzahlige lineare
Programme berechnen.

Kapitel  ist den Constraint–Graphen gewidmet. Nach eine formalen Definition un-
tersuchen wir, unter welchen Umständen eine zulässige Zuweisung von Werten an die
Knoten eines Constraint–Graphen möglich ist. Die Verfahren in diesem Kapitel hängen
stark mit minimalen Kostenflussproblemen zusammen und stellen in einer gewissen Weise
den eindimensionalen und statischen Fall der Platzierungsprobleme dar. Wir präsentieren
Verfahren, die für diese Teilprobleme optimale Zuweisungen in Bezug auf verschiedene
Kriterien berechnen. Diese Methoden stellen die Basis unseres Ansatzes für die zweidi-
mensionalen Probleme dar.

In Kapitel  betrachten wir Kompaktierungsprobleme im orthogonalen Graphenzeich-
nen. Nach einer formalen Einführung und der Präsentation von komplexitätstheoreti-
schen Resultaten in Abschnitt ., entwickeln wir das neue kombinatorisches Gerüst in
Abschnitt .. Wir führen die sogenannten Placement–Graphen als ein generisches Paar
von Constraint–Graphen ein und definieren die Shape–Graphen, die in eineindeutiger
Beziehung zu den Instanzen der Kompaktierungsprobleme stehen. Nach einer Definition
des Konzepts der Vollständigkeit präsentieren wir ein zentrales Theorem, das vollständige
Placement–Graphen mit zulässigen, und insbesondere optimalen, Lösungen der ortho-
gonalen Kompaktierungsprobleme in Beziehung setzt. Wir besprechen detailliert existie-
rende Konstruktions– und Verbesserungsheuristiken im Bereich Kompaktierung und de-
ren Beziehungen zur neuen kombinatorischen Charakterisierung. Wir untersuchen insbe-
sondere ein eindimensionales Kompaktierungsschema, das auch im Bereich –Design
Anwendung findet und zeigen, dass Instanzen existieren, für die Algorithmen in diesem
Schema eine lineare Anzahl von Iterationen benötigen. Ferner beweisen wir, dass Algorith-
men in diesem Schema keine Kandidaten für Approximationsalgorithmen sind. Am Ende
des Abschnitts präsentieren wir unsere kombinatorische Reformulierung des Kompaktie-
rungsproblems und beweisen dessen Äquivalenz zum ursprünglichen Problem. Basierend
auf der neuen Formulierung entwickeln wir in Abschnitt . exakte Algorithmen. Wir
führen das Konzept von eindeutig vervollständigbaren Shape–Graphen ein und präsentie-
ren einen exakten Polynomialzeitalgorithmus für diese Klasse. Der Algorithmus dient als
Preprocessing–Schritt für den allgemeinen Fall, da er die Menge von zusätzlichen Kanten
ermittelt, die Teil einer vollständigen Erweiterung sein können. Wir benutzen ein ganz-
zahliges lineares Programm, um aus dieser Menge von Kanten die besten auszuwählen, das
heißt jene, deren Hinzufügen die Shape–Graphen so vervollständigt, dass eine optimale
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Zuweisung von Werten an die Knoten in den Constraint–Graphen möglich ist. Wir geben
einen Branch–and–Bound–Algorithmus an, der optimale Lösungen für das zweidimen-
sionale Kompaktierungsproblem berechnet. Zudem identifizieren wir die Klasse von Krei-
sungleichungen, die eine bessere Beschreibung des problemspezifischen Polytops ermög-
licht und zeigen, wie man das zugehörige Separierungsproblem in polynomieller Zeit lö-
sen kann. Mit Hilfe der Separierung erweitern wir den Branch–and–Bound–Algorithmus
zu einem Branch–and–Cut–Algorithmus, indem wir Schnittebenen an jedem Knoten im
Branch–and–Bound–Baum berechnen. Das Ende des Kapitels enthält eine ausführliche
experimentelle Studie, in der wir die state–of–the–art Kompaktierungstechniken verglei-
chen. Die Studie zeigt, dass wir das zweidimensionale Kompaktierungsproblem für Instan-
zen, wie sie in praktischen Anwendungen vorkommen, in kurzer Rechenzeit lösen können:
Die längste Laufzeit unserer Implementierung für eine Instanz aus einer Menge von ,

aus der Praxis stammenden Benchmark–Graphen ist zehn Sekunden. Darüberhinaus zeigt
unser Vergleich der Heuristiken, dass diese im Allgemeinen gute Lösungen für das Kom-
paktierungsproblem produzieren. Überraschenderweise ist die Qualität der Heuristiken
nicht das Verdienst der Konstruktionsheuristiken, sondern der Verbesserungsheuristiken.

Das Thema des fünften Kapitels sind Beschriftungsprobleme. Wir entwickeln einen
ähnlichen Ansatz wie für die Kompaktierungsprobleme und stellen kombinatorische Cha-
rakterisierungen verschiedener Beschriftungsprobleme unter sechs verschiedenen achsen-
parallelen Beschriftungsmodellen vor. Wir konzentrieren uns dabei hauptsächlich auf das
Problem, die Anzahl der Labels in einer Beschriftung zu maximieren. Nichtsdestotrotz
können wir unsere kombinatorische Formulierung auch für verwandte Probleme benut-
zen, z. B. die Ermittlung des maximalen Skalierungsfaktors, so dass eine überlappungsfreie
Platzierung aller Labels möglich ist. Unsere Formulierung führt zu neuen Algorithmen, die
große Instanzen der Probleme in kurzer Rechenzeit optimal lösen können. Abschnitt .
enthält präzise Definitionen der Beschriftungsprobleme, präsentiert den Stand der For-
schung auf diesem Gebiet und gibt einen umfassenden Überblick über die komplexitäts-
theoretischen Eigenschaften der Optimierungsprobleme, die beim Beschriften von Punkt-
mengen entstehen. Wir definieren die Labeling–Graphen in Abschnitt .. Diese Paare von
Constraint–Graphen stehen in eineindeutiger Beziehung zu Instanzen der Beschriftungs-
probleme, und wir benutzen sie, um äquivalente kombinatorische Formulierungen für
die verschiedenen Optimierungsprobleme anzugeben. Basierend auf den neuen Formulie-
rungen definieren wir das problemspezifische Polytop in Abschnitt . und präsentieren
ganzzahlige lineare Programme, um die ganzzahligen Punkte des Polytops zu beschrei-
ben. Wir untersuchen die Klasse der positiven Kreisungleichungen und zeigen, dass das
zugehörige Separierungsproblem NP–schwierig ist. Um das Problem zu umgehen, ge-
ben wir auf Kosten einer erhöhten Anzahl von Variablen eine alternative Formulierung
an. Abschnitt . enthält exakte Algorithmen für verschiedene Beschriftungsprobleme:
Wir entwickeln Branch–and–Bound– und Branch–and–Cut–Algorithmen, sowie ein ite-
ratives Branch–and–Bound–Schema. Für die kontinuierlichen Beschriftungsmodelle sind
dies die ersten exakten Algorithmen, und wir finden es bemerkenswert, dass unser dis-
kreter Ansatz optimale Lösungen für ein kontinuierliches Problem produziert. Es stellt
sich heraus, dass der iterative Ansatz am besten geeignet ist, große Instanzen zu lösen, da
er zum einen die zusätzlichen Variablen und zum anderen das NP–schwierige Separie-
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rungsproblem vermeidet. Wir nutzen aus, dass die Separierung von verletzten positiven
Kreisungleichungen in polynomieller Zeit möglich ist, wenn die zugehörige –Lösung
nicht fraktional ist. Das Ende des Kapitels enthält umfassende experimentelle Resultate
für eine große Zahl von Benchmark–Instanzen. Die Resultate zeigen, dass unser neuer
Ansatz auch für große Instanzen in zumutbarer Rechenzeit beweisbar optimale Lösungen
produziert.

In Kapitel  wenden wir die Resultate von den beiden vorangehenden Kapiteln auf ein
neues Problem aus der Klasse der Graphbeschriftungsprobleme an. Wir diskutieren Eigen-
schaften dieser Problemklasse in Abschnitt . und konzentrieren uns in Abschnitt . auf
ein spezielles Graphbeschriftungsproblem, das automatische Zeichnen und Beschriften
von Zustandsdiagrammen. In Abschnitt . entwickeln wir einen exakten Algorithmus
für dieses Problem, der auf einer Kombination der theoretischen Gerüste für die Teilpro-
bleme Kompaktierung und Beschriftung basiert. Unser Algorithmus ist der erste exakte
Algorithmus für Graphbeschriftungsprobleme.

Das siebte und letzte Kapitel enthält abschließende Bemerkungen und gibt einige
mögliche Erweiterungen des neuen kombinatorischen Ansatzes an. Wir zeigen, dass der
Ansatz geeignet ist, eine Reihe von praktischen Anforderungen an Kompaktierungs– und
Beschriftungsprobleme elegant miteinzubeziehen und führen verwandte Gebiete wie z. B.
Packing, Scheduling oder Facility–Location an, die möglicherweise eine Anwendung der
neuen Techniken erlauben. Ferner geben wir interessante offene Probleme an, die im Kon-
text dieser Arbeit auftreten.
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