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Zusammenfassung

Will man ein wissensbasiertes System entwickeln, das mit probabilistischer Information umge-
hen kann, wird man bald mit der Tatsache konfrontiert, dafl es zwei grundlegend unterschied-
liche Formen von Wahrscheinlichkeiten gibt, die beide ihren Platz in einem ausdrucksstarken
System haben miissen: Zunéchst gibt es die Erscheinungsform von Wahrscheinlichkeit als eine
statistische Grofle, die die relative Haufigkeit eines gewissen Merkmales in einer bestimmten
Klasse von Objekten quantifiziert. Diesem statistischen Wahrscheinlichkeitsbegriff gegeniiber
steht der Begriff der subjektiven Wahrscheinlichkeit. Dieser wesentlich schwieriger zu prézisie-
rende Begriff bezeichnet einen Grad der Uberzeugung von der Wahrheit bestimmter Aussagen.

Ein Beispiel fiir eine statistische Wahrscheinlichkeit ist die Aussage “80% aller amerika-
nischen Kriminalfilme haben ein Happy End”. Eine subjektive Wahrscheinlichkeit ist in der
Aussage enthalten “Mit einer Wahrscheinlichkeit von mindestens 0.7 ist dieser Film der gerade
im Fernsehen lduft eine amerikanische Produktion”.

In der vorliegenden Arbeit wird ein ausdrucksstarker logischer Formalismus basierend auf
der Pradikatenlogik erster Stufe definiert, welcher es erlaubt, Aussagen iiber beide Typen von
Wahrscheinlichkeiten zu représentieren. Zentrales Anliegen bei der Definition der Semantik fiir
die verwendete formale Sprache ist es, in ihr nicht nur das Ziehen wahrscheinlichkeitstheoretisch
korrekter Schliisse aus einer gegebenen Wissensbasis zu formalisieren, sondern auch plausible
Inferenzen zu modellieren, mit denen ein Mensch subjektive Wahrscheinlichkeiten auf Grund
von statistischer Information zuweist. In dem oben angegebenen Beispiel wiirde man etwa in
aller Regel schlieflen, dafl die Wahrscheinlichkeit fiir den gerade zu sehenden Film ein Happy
End zu haben, mindestens 0.7 - 0.8 = 0.56 betrdgt — obwohl kein Gesetz der Wahrscheinlich-
keitstheorie diesen Schluf} als korrekt legitimiert. Diesen Inferenzmechanismus haben wir hier
“default reasoning about probabilities” genannt.

Kapitel 1 stellt zunéchst einige grundlegende Begriffe bereit, die bei der Definition der Se-
mantik fiir die zu entwickelnde Logik eine tragende Rolle spielen werden. Bemerkenswert ist hier
vor allem, dafl von dem in der Wahrscheinlichkeitstheorie {iblichen Begriff eines Wahrschein-
lichkeitsmafles etwas abgegangen wird: Ein Wahrscheinlichkeitsmaf ist fiir uns eine Funktion
die Werte in einem beliebigen reell abgeschlossenen Koérper annehmen kann, nicht nur in den
reellen Zahlen. Hierdurch werden wir spéter ein Vollstdndigkeitsresultat erzielen. Als notwendi-
ge Folge dieser Verallgemeinerung kénnen Wahrscheinlichkeitsmafie dann nur noch das Axiom
der endlichen Additivitat erfiillen, nicht das der o—Additivitat.



Bevor wir uns der Handhabung von subjektiven Wahrscheinlichkeiten zuwenden, ist Kapitel
2 zunéchst ganz den statistischen Wahrscheinlichkeiten gewidmet. Es baut weitgehend auf einer
Logik zur Reprisentation von statistischer Wahrscheinlichkeit auf, die von Bacchus [1990a]
entwickelt wurde. Insbesondere iibernehmen wir hier unverdndert die Syntax von Bacchus.
Die Reprisentationssprache, hier L7 genannt, entsteht aus der Sprache der Pradikatenlogik
erster Stufe durch Hinzunahme statistischer Quantifizierung, die es erlaubt, aus einer Formel
¢(v,w,x) mit Tupeln v, w, x von freien Variablen (wobei v und w fiir Variable stehen, die
als Elemente aus der zu beschreibenden Menge von Objekten interpretiert werden, wahrend
x iiber Elemente eines reell abgeschlossenen Korpers, also iitber Wahrscheinlichkeiten, variiert)
einen neuen Term

[¢(v’w7w )]'w

zu bilden.

Ein solcher Wahrscheinlichkeitsterm reprisentiert die statistische Wahrscheinlichkeit fiir ein
zuféllig gewihltes Tupel a von Objekten die Eigenschaft ¢(v, a, ) aufzuweisen. Eine semanti-
sche Struktur, die es erlaubt diese anschauliche Bedeutung zu formalisieren, hat die Form

M = (M,I,S, (Q[nalln)n)7

wobei M der Tréger und I die Interpretationsfunktion einer gewthnlichen modelltheoretischen
Struktur fiir die zugrunde liegende Symbolmenge und § ein reell abgeschlossener Koérper ist.
Fir jedes n > 1 ist 2, eine Algebra auf M™ und u, ein Wahrscheinlichkeitsmafl mit Werten
in § auf 2A,. Um als Interpretation fiir die Sprache L? zu dienen, muf} eine Struktur dieser
allgemeinen Form noch eine Reihe von Bedingungen erfiillen. Zunichst werden fiir die Folge
(A, ftn ), drei Konsistenzbedingungen verlangt, welche die wesentlichen Eigenschaften einer
Folge von Produktmafen verkérpern und somit sicherstellen, dal jedes Maf ., als die stati-
stische Verteilung von n unabhingigen Stichproben aus dem Tréger verstanden werden kann.
Weiterhin miissen die Algebren 2, eine Abschluflbedingung erfiillen, die sicherstellt, dafl jede
in der Sprache definierbare Teilmenge auch mefibar ist. Eine Struktur, die diese Bedingungen
erfiillt, nennen wir eine statistische Struktur. In ihr wird ein Wahrscheinlichkeitsterm dann (in-
nerhalb einer gewohnlichen induktiven Definition der semantischen Modellbeziehung |=) durch
das Element
tw/({a | M= p(v,wz)[w/a]}) € F

interpretiert. Die Logik, die aus der Sprache L. und der Modellbeziehung zwischen statistischen
Strukturen und L?-Formeln besteht, nennen wir .Z7.

Aufgrund des komplexen Aufbaus einer statistischen Struktur, insbesondere wegen der
durch die Abschlu$bedingung gegebenen Wechselwirkung zwischen der notwendigen algebrai-
schen Struktur von 20, und der Ausdrucksstirke der zu interpretierenden Sprache, ist es rela-
tiv schwierig, konkrete Beispiele fiir statistische Strukturen (abgesehen von einigen besonders
einfachen Formen) anzugeben. In Abschnitt 2.4 wird deshalb eine allgemeine Konstruktion
durchgefiihrt, die fiir den Spezialfall von monadischen Symbolmengen eine breite Klasse von
statistischen Strukturen erschliefit.

In Abschnitt 2.5 wird gezeigt, dal wir mit £ die Logik erster Stufe nicht wirklich verlassen
haben. Es wird gezeigt, wie sich die Sprache L in eine reine erststufige Sprache iibersetzen
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148t, indem statistische Quantoren in einem der Skolemisierung &hnlichen Verfahren durch neue
Funktionssymbole ersetzt werden. Weiterhin 148t sich die Semantik der statistischen Quanto-
ren in einem Axiomensystem fiir die neuen Funktionssymbole nachbilden. Dies wird durch die
Tatsache erméglicht, dafl Wahrscheinlichkeiten in beliebigen reell abgeschlossenen Korpern an-
genommen werden kénnen, also in einer in der Logik erster Stufe axiomatisierbaren Klasse von
Strukturen. Die logische Folgerungsbeziehung beziiglich .#° kann dann zuriickgefithrt werden
auf die logische Folgerungsbeziehung in der Logik erster Stufe. Insbesondere iibertrigt sich die
Vollstandigkeit von Inferenzkalkiilen fiir die Logik erster Stufe auf Inferenzen in 2.

In Kapitel 3 verlassen wir zundchst den Rahmen formaler Logik und wenden uns der Ana-
lyse der Begriffe der subjektiven Wahrscheinlichkeit und des “default reasoning about proba-
bilities” zu. Eine inhaltliche Kldrung dieser Begriffe ist Voraussetzung fiir ihre Einbindung in
ein formales logisches System.

Die Bedeutung einer subjektiven Wahrscheinlichkeit ist wesentlich schwieriger zu prézi-
sieren als die einer statistischen Wahrscheinlichkeit. Klassische Interpretationen verwendeten
meistens den Begriff einer fairen Gewinnquote bei einer Wette auf den Wahrheitsgehalt der in
Frage stehenden Aussage. Wir schlagen hier einen anderen Weg ein. Es wird vorgeschlagen, die
Angabe einer subjektiven Wahrscheinlichkeit aufzufassen als eine Voraussage iiber den Aus-
gang eines Gedankenexperimentes: Ordnen wir der Aussage, daf} ein bestimmtes Ereignis e eine
Eigenschaft ¢ besitzt, die Wahrscheinlichkeit r zu, bedeutet dies, dafl wir vermuten, in einer
langen Folge von (imaginéren) zufilligen Ereignissen die e hinreichend &hnlich sind, trete die
FEigenschaft ¢ mit einer relativen Héufigkeit r auf.

Auf der Basis dieser Interpretation von subjektiver Wahrscheinlichkeit 148t sich nunmehr
erkldren, auf welche Weise statistische Information zur Definition subjektiver Wahrscheinlich-
keiten verwendet wird.

Die Grundvoraussetzung fiir die Benutzung statistischen Wissens zur Abschétzung einer
relativen Hiufigkeit in einer imagindren Folge von Ereignissen ist die Annahme, dafl die Ereig-
nisse in dieser Folge durch einen Zufallsprozef zustande kommen, dessen statistische Verteilung
durch die gegebene statistische Information beschrieben wird. Ein Beispiel mag dies erldutern:
Gemif unserer Interpretation bedeutet die oben angefiihrte subjektive Wahrscheinlichkeit von
mindestens 0.7 dafiir, dafl ein gerade im Fernsehen laufender Film amerikanischen Ursprungs
ist, daf} wir erwarten, in einer langen Folge von Filmen, die wir zuféllig im Fernsehen zu se-
hen bekommen und welche uns alle dieselben relevanten Indizien fiir ihre Herkunft liefern wie
der tatséchlich beobachtete Film, mindestens einen Anteil von 70% amerikanischen Filmen zu
finden. Wollen wir nun zusétzlich aus der Tatsache, dal 80% aller amerikanischen Kriminal-
filme ein Happy End besitzen, folgern, dafl in unserem Gedankenexperiment auch mindestens
56% Filme mit einem Happy End vorkommen miissen, setzt dies die Annahme voraus, dafl die
zuféllige Beobachtung des Filmes im Fernsehen als zufillige Stichprobe gemé&fl der statistischen
Verteilung gesehen werden kann — in diesem Beispiel also, daf} jeder amerikanische Kriminalfilm
mit gleicher Wahrscheinlichkeit der gerade gezeigte sein kann. Sollten wir etwa wissen, dafl der
Sender, welcher den Film ausstrahlt, gegenwirtig eine Sendereihe mit Filmen aus der “schwarz-
en Serie” zeigt, so werden wir die allgemeine statistische Information iiber alle amerikanischen
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Kriminalfilme nicht zur Ermittlung von subjektiven Wahrscheinlichkeiten iiber den gerade zu
sehenden heranziehen.

Auf Grund dieser und einiger weiterer Detailiiberlegungen gelangen wir zu einem prizisen
epistemischen Modell fiir “default reasoning about probabilities”. Dieses epistemische Modell
hinwiederum ist formalisierbar in Form eines statistischen Modells, in welchem die relativen
Héufigkeiten von gewissen Eigenschaften in einer Folge von Ereignissen durch die empirischen
Verteilungen in einer Folge von Zufallsvariablen représentiert werden. Fiir uns wichtige Aspekte
des Verhaltens dieser empirischen Verteilungen sind in der Statistik in der Theorie der grofien
Abweichungen (large deviation) vom Erwartungswert untersucht worden. Die Resultate die-
ser Theorie erlauben uns zu zeigen, dafl unser epistemisches Modell fiir die Kombination von
statistischen mit subjektiven Wahrscheinlichkeiten das Prinzip der Cross-Entropy (Kullback-
Leibler Abstand) Minimierung impliziert: Die subjektiven Wahrscheinlichkeiten, die wir auf
Grund von a priori gegebenen subjektiven Wahrscheinlichkeiten und statistischen Wahrschein-
lichkeiten ermitteln, werden durch das Wahrscheinlichkeitsmaf3 gegeben, welches innerhalb all
jener Wahrscheinlichkeitsmafle, die mit der partiellen a priori Beschreibung des subjektiven
MafBes konsistent sind, den minimalen Cross-Entropy Abstand zum statistischen Mafl besitzt.

Nach dieser Herleitung des Cross-Entropy Minimierungs Prinzips auf Grund einer episte-
mischen Analyse, kénnen wir daran gehen, das Schlieflen mit subjektiven Wahrscheinlichkeiten
in unsere Logik zu integrieren. Zunéchst muf} hierfiir noch ein Problem aus dem Wege gerdumt
werden: Wir haben Cross-Entropy Minimierung als den zentralen Prozef fiir “default reasoning
about probabilities” identifiziert. Die Cross-Entropy Funktion ist aber zunichst nur als Funk-
tion auf reellwertigen Wahrscheinlichkeitsmaflen erklirt. In unsere Logik arbeiten wir jedoch
mit Wahrscheinlichkeiten in reell abgeschlossenen Koérpern. Wir miissen also untersuchen, ob
sich Cross-Entropy in sinnvoller Weise auf solcherart verallgemeinerte Mafle ausdehnen 148t.

In Kapitel 4 erweitern wir deshalb reell abgeschlossene Korper um eine Logarithmusfunk-
tion, mit deren Hilfe dann eine verallgemeinerte Cross-Entropy Funktion definierbar wird. Es
zeigt sich, daf sich die zentralen Eigenschaften des Cross-Entropy Minimierungsprozesses (ins-
besondere die von Shore und Johnson [1980] gezeigten Eigenschaften) allein auf der Basis der
fiir die allgemeine Logarithmusfunktion gegebenen Axiome beweisen lassen, was die Verwen-
dung der verallgemeinerten Cross-Entropy Funktion fiir “default reasoning about probabilities”
mit Wahrscheinlichkeiten in reell abgeschlossenen Korpern rechtfertigt.

Der Ausbau der Logik .#° zu einer Logik .#” zur kombinierten Reprisentation von sta-
tistischen und subjektiven Wahrscheinlichkeiten erfolgt in Kapitel 5. Wahrend wir bei £°
weitgehend den Definitionen von Bacchus [1990a) folgten, beschreiten wir hier andere Wege,
als in vorangehenden Ansitzen ([Bacchus, 1990b], [Halpern, 1990]) gewiihlt wurden.

Die Syntax von L7 erweitern wir um eine Konstruktionsmoglichkeit fiir Terme zur Re-
présentation von subjektiven Wahrscheinlichkeiten. Wir gehen von der Annahme aus, daf die
zu repréisentierenden subjektiven Wahrscheinlichkeiten eine Menge von Ereignissen e betref-
fen, iiber deren Wahrscheinlichkeit gewisse Eigenschaften ¢ zu besitzen, etwas ausgesagt werden
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soll. Ein subjektiver Wahrscheinlichkeitsterm hat dann die Form

prob(¢le]),

wobei ¢ eine Formel aus L7 ist.

Interpretiert wird die um dieses Konstrukt erweiterte Sprache, die wir mit L? bezeichnen,
durch Strukturen, die wir aus einer statistischen Struktur 991 gewinnen durch Hinzunahme
eines weiteren Wahrscheinlichkeitsmafles ve auf der Algebra 2,,, wobei n der Anzahl der Er-
eignissymbole in e bezeichnet. Die Interpretation eines subjektiven Wahrscheinlichkeitstermes
prob(¢[e]) in einer solchen Struktur (91,ve) wird nunmehr gegeben durch

ve({a | (M,ve) = ¢lal}).

Im Gegensatz zu den o.g. fritheren Ansitzen werden subjektive Wahrscheinlichkeiten also nicht
iiber einer Menge von méoglichen Welten interpretiert und somit iiber einem ganz anderen Wahr-
scheinlichkeitsraum als die statistischen Wahrscheinlichkeiten, sondern gleichfalls vermoge ei-
nes Wahrscheinlichkeitsmafles auf dem Trager. Auf diese Weise wird es moglich, Cross-Entropy
Minimierung zwischen dem statistischen Maf u,, und dem subjektiven Maf} ve durchzufithren.
Dies dient als Grundlage, um fiir LA den Begriff eines préferenziellen (oder default) Modells
einzufithren: Eine Struktur (9M,ve) ist ein Default Modell von ¢ € L?, wenn kein v/, existiert,
derart daf§ die Struktur (90, v}) gleichfalls ein Modell von ¢ ist und v, geringere Cross-Entropy
7U e hat als ve. Indem wir uns auf Default Modelle beschréinken, erhalten wir eine verschérfte
Semantik fiir I’, deren Folgerungsbeziehung f~ “default reasoning about probabilities” for-
malisiert.

Abschliefilend (in Abschnitt 5.6) zeigen wir, daf} sich die Eigenschaft, Default Modell zu sein,
in L axiomatisieren l:8t. Die Konsequenz hieraus ist, da sich die Inferenzrelation k= auf L°
wiederum vollstdndig im Rahmen der Priadikatenlogik erster Stufe darstellen 148t. Insbesondere
gibt es einen vollstdndigen logischen Kalkiil fiir diese Inferenzrelation.
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Introduction

“[The subject of probability theory] is the domain of mass phenomena and repetitive
events, as the totality of spatial phenomena is the subject of geometry.” ([von Mises,
1951])

“With the usage just recommended, the term ‘frequency theory of probability’ is a
pure incongruity; just as much so as ‘theory of square circles’.” ([Jaynes, 1978])

Like no other fundamental mathematical concept, the notion of probability has given rise to
philosophical argument about its true meaning. While almost any two geometers will be in
agreement to what real world phenomena their concept of “point” and “line” can rightfully be
applied, and number theorists rarely engage in serious dispute about the meaning of a natural
number, a similar understanding does not prevail among probability theorists.

The interpretation of probability that causes the dissent expressed in the two citations
above is the frequentistic (also called objectivistic or empirical) interpretation. According to
this view, probabilities can only be assigned to some property with reference to a large class of
objects or events, each of which may or may not exhibit that property. Von Mises [1951] cites
as examples the property of having flowers of a specific colour in a group of plants grown from
a certain supply of seeds, the property of turning up heads in a long sequence of tosses of a
coin, and the property of dying at a certain age in the group of all holders of a life insurance
policy. In each of these examples, according to the frequentistic school of thought, we may
speak of the probability of the given property (in the specified class). Whereas “Not only can
we not say anything about the probability of death for a specific individual, however much may
be known about him, but the expression itself does not have any meaning for us” ([von Mises,
1951]).

To speak of probabilities of individual events, in contrast, is what the subjectivistic (per-
sonal, Bayesian) interpretation deems to be the only usage that accords with the true meaning
of probability: “we recognize that a probability assignment is a means of describing a state of
knowledge.” ([Jaynes, 1978]). In [Savage, 1954], probably the most influential work promulgat-
ing the subjectivistic point of view, we find as examples of events to which probabilities may
be assigned the event that a republican president will be elected in 1996, the event that it did
snow in Chicago sometime in the month of May, 1995, or the event that a particular egg used
for making an omelette is rotten.



2 INTRODUCTION

When it is our aim to design knowledge based systems that incorporate a broad section of a
human reasoner’s handling of uncertain and quantitative information, we are not in a position
to take an extreme stance and declare one or another notion of probability as invalid or useless.
Rather, we must acknowledge that in the real world we do encounter two distinguishable usages
of the word probability.

“The probability of being dealt a full house or better in a game of poker is less than
0.01.” and
“The probability that my opponent now has a full house or better is at least 0.2.”

are two sentences that we would like a knowledge based system both to cope with, instead of
rejecting the one or the other as a “syntax error”, being a frequentistic or subjectivistic system,
as the case may be. It is advisable, therefore, to adopt a pragmatic point of view, and just
admit that probabilities come in two flavours: as the expression of a relative frequency in a
large class of objects or events, and as a number expressing an uncertainty about an individual
event.

Carnap was the first who admitted and studied both concepts of probability in their own
right. In [1950] he denotes the two types of probability by probability; and probabilitys,
representing, respectively, a “degree of confirmation” and a “relative frequency in the long
run”.

This begs the question: should we not do away with the controversial term probability
completely, and replace it by the expressions confirmation and frequency, or similar ones; thus
avoiding the philosophical dispute and precluding possible misunderstandings? Two reasons
stand against this: first, probability, after all, is the word that is commonly employed. The
problem that this happens in several incongruous ways it is better to resolve by analyzing
all usages, rather than to brush it aside by substituting new expressions. Secondly, different
though their semantical content may be, all notions of probability give rise to essentially the
same mathematical theory. Whether probabilities are seen as degrees of confirmation, or as
relative frequencies, the rules that govern their manipulation are given by the same calculus,
the authoritative axiomatization of which was given by Kolmogorov [1950].

It is not true, however, that all concepts of probability necessarily have identical math-
ematical properties. Kolmogorov actually provided two versions of his axiomatization, one
in which probabilities are required to be only finitely additive, and one in which the axiom of
countable additivity is added. The two versions of the additivity axiom have an unequal appeal
to proponents of the different probability concepts. Von Mises [1951] proves that his frequency
interpretation entails countable additivity, while Savage only assumes finite additivity: “I know
of no argument leading to the requirement of countable additivity, and many of us have a strong
intuitive tendency to regard as natural probability problems about the necessarily only finitely
additive uniform densities on the integers,|[...]” ([1954]).

That basically equivalent mathematical theories emanate from different concepts of proba-
bility, most likely is the reason that even after Carnap the study of various types of probability



in parallel did not gain much impetus. It seems that only the emergence of human reason-
ing under uncertainty as a research topic in artificial intelligence caused a revival of interest
in a (more or less) impartial investigation of the semantics of different kinds of probability
statements.

The most comprehensive study in this field is the combined work of Halpern [1990] and
Bacchus [1990b]. Here a twofold extension of first-order predicate logic is developed that inte-
grates two types of probabilistic statements into a formal logical syntax, and provides semantics
for the resulting language. Bacchus calls probabilities of one kind statistical, these correspond
to relative frequencies, and those of the second kind propositional, because these are assigned
to propositions in the language. Bacchus eschews the use of the term subjective probability
for the latter ones. He does, however, view probabilities on propositions as an expression of a
degree of belief. Since, as yet, the case has not convincingly been made that a degree of belief
in a proposition — even for the most ideal rational agent — can be understood as resulting from
an objective logical relationship between the available evidence and the proposition (as envis-
aged by Keynes [1921] and Carnap [1950]), it may be more to the point to make the seemingly
inevitable subjectivity in such probability assignments transparent in our terminology. For this
reason, we follow Bacchus only half the way, and, in the future, speak of statistical probabilities
and subjective probabilities.

Once it is realized that we have to deal with two separate kinds of probability when reasoning
under uncertainty is to be formalized, we are faced with the question of how statistical and
subjective probabilities are connected. It appears to be obvious that there is some interaction
between the two concepts: when we meet a poker player who makes the two statements cited
above, we immediately know that he must have made some observation that indicated his
opponent to have a fairly good hand. Certainly, if the cards had just been dealt, previous to
any reaction of the other player, a rational agent would not assign a probability as high as
0.2 to an event that belongs to a class with a much lower statistical probability. Rather, the
statistical probability < 0.01 for being dealt as good a hand as a full house would have served
as an initial value for the subjective probability that the other player in the present situation
is in possession of such a hand.

This is the principle of direct (inductive) inference that has been proposed both by Carnap
[1950] and Reichenbach [1949]: if the relative frequency of a specific property (here: being a
full house or better) in a reference class (here: the class of dealings of five cards from a shuffled
deck) is 7, and the evidence obtained about a specific object or event implies that it belongs
to that reference class, then r is the subjective probability that should rationally be assigned
to the proposition that the specific object or event has the given property. In most situations,
of course, the problem will arise that the evidence establishes membership in more than one
reference class. To find rules for choosing the most appropriate reference class is the main
difficulty that has to be conquered in order to make systematic use of direct inference.

An assignment of a subjective probability by direct inference is subject to revision when
further evidence is obtained, because such evidence may persuade us to consider a new refer-
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ence class as being the most appropriate one. This makes the direct inference principle share a
key formal aspect with default or nonmonotonic logic as pioneered, among others, by McCarthy
[1980] and Reiter [1980]: like these, it is nonmonotonic, i.e. additional information can inval-
idate previous inferences. The analogy between a direct inference system and nonmonotonic
logic, however, is not limited to this one formal property. They also are similar in that they
are designed to formalize quite similar forms of commonsense reasoning. Nonmonotonic logic
formalizes inferences which lead us to assume that a specific object has a specific property,
when this property typically holds for objects from the domain under consideration, and the
given object is not known to be exceptional by not possessing that property. “Typically” here
has to be understood in such a strong sense, that the set of objects that are exceptional with
respect to the property in question is negligible compared to the set of objects that are normal
with respect to the property. Deriving subjective probabilities by direct inference can be seen
as a quantitative analogue to this kind of qualitative default reasoning. Where in the latter
knowledge of typicality of a property is used as input to derive (defeasible, but for the time
being 0,1-valued) default conclusions, in the former specific quantitative information is used to
derive probabilistic default conclusions. Because of this analogy, we use the expression default
reasoning about probabilities for inferences that use statistical information to derive subjective
probabilities.

4.

Direct inference only is applicable when evidence has been obtained that definitely estab-
lishes membership of the object or event under consideration in a reference class for which
statistical data is available. This ideal situation will not always be encountered in reality.

Consider, for instance, a mechanic who wants to repair a car whose engine will not start.
On turning the key the starter does turn, but gives off a somewhat weaker sound than the
mechanic would expect from a properly functioning starter. This indicates that the problem
might be caused by the battery being low. In this case it can perhaps be fixed simply by
recharging the battery. It is also possible that the battery must be replaced. It is likely that
the mechanic has some reliable statistics about the percentage of cases of low batteries in which
it is sufficient to charge the battery. On the other hand, it is not very likely that she would
feel able to immediately state a statistical probability for a charging of the battery being a
sufficient remedy for the start up problem, given the specific sound made by the starter. In
order to estimate the probability that in the case at hand recharging will do, the mechanic
will therefore employ a two stage process: first she will use the evidence of the starter’s sound
to assign a subjective probability for the trouble being caused by a low battery, then the
statistical information is employed to derive the specific probability that the old battery need
not be replaced.

For the mechanic to first transform the actual evidence into subjective probabilities for
some propositions, before statistical knowledge can be brought to bear on the deduction of
further subjective probabilities, becomes inevitable when she uses an electronic decision support
system for assisting her diagnoses. Such a system, for the foreseeable future, will only be able
to process information encoded in a certain more or less restricted formal language. In that



language it will be possible to express that battery power is low, or that this is true with a
certain probability — it will probably not be possible to directly feed the sound made by the
starter into the system. The system then has to be able to make use of statistical information
in its data base and subjective probabilities supplied by the user in order to attach probabilities
to various possible diagnoses.

We conclude that default reasoning about probabilities can not be limited to combining
deterministic evidence with statistical knowledge by some scheme of direct inference. Default
reasoning about probabilities more often takes the form of combining statistical data with some
given subjective probabilities to obtain a more complete set of subjective probabilities. This
is true for a human reasoner because he or she needs to structure the inference of a subjective
probability using other subjective probabilities as intermediate results; for an implementation
of default reasoning about probabilities in a knowledge based system such a combination is
furthermore mandated by the restrictiveness of the representation language used by the system,
which will not permit the user to directly enter every piece of deterministic, observed evidence.

To define default reasoning about probabilities as a combination of statistical data with the par-
tial description of a subjective probability distribution makes this process formally equivalent
to the process of updating.

Inference problems that ask for an update of a probability distribution on the basis of newly
obtained evidence occur in fairly diverse contexts. For example we may want to update an es-
timate for the parameters of a (statistical) probability distribution governing a physical system
when new measurements have been made of the system. A subjective probability distribution
describing an agent’s state of knowledge may have to be updated when new information is
given to the agent.

When we view a statistical probability measure as the prior subjective probability measure
before any evidence about an object or event has been obtained, we can view default reasoning
about probabilities as a special case of updating. It is therefore not surprising that methods that
have been proposed for updating probability measures are interesting candidates for solving
problems of default reasoning about probability that are beyond the scope of direct inference.

The probably most widely accepted rule for updating has originally been proposed by
Jeffrey [1965] for the context of subjective probabilities. It applies in the situation where
the evidence provides the posterior probability values ¢q(A;) for a finite number of mutually
disjoint and exhaustive subsets A1, ..., A, of the domain of possible events. Jeffrey’s rule then
states that the complete posterior distribution ¢ should be defined by retaining the conditional
probabilities of the prior distribution p on each of the A;, i.e. for each set of events A:

n

q(A) = q(A)p(A | Ay).
=1

Interpreting p as a statistical measure and ¢ as a subjective probability measure, this can be
read as a rule for default reasoning about probabilities.
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In our previous example, supposing the statistical probability of fixing a start-up problem
by recharging the battery is 0.3 when the problem is caused by a low battery, and 0 otherwise,
furthermore assuming that the mechanic, on the basis of the sound made by the starter, assigns
a subjective probability of 0.6 to A;: “the problem is caused by a low battery”, we can apply
Jeffrey’s rule to A1, As: “not A1”, and A: “the problem can be fixed by recharging the battery”,
to obtain a subjective probability ¢(A) = 0.6 -0.3 +0.4-0 = 0.18.

Jeffrey’s rule is very intuitive, but, unfortunately, still rather limited in its applicability.
More general rules for updating therefore have been sought, rules that can also be applied when
the sets A; to which the given information on the posterior distribution refers are not assumed
to be mutually disjoint, and the information does not necessarily prescribe exact probability
values for these sets. In cases where Jeffrey’s rule is applicable such a more general rule, of
course, should yield the same result as Jeffrey’s rule.

Among rules that satisfy these desiderata, updating according to the minimum cross-
entropy principle has received the greatest amount of attention. By this rule, from the set
of probability measures that are consistent with the given information, that measure is chosen
as the posterior ¢ that minimizes the cross-entropy function

> a(e)In(q(e)/p(e))

with e ranging over the (at most countable) set of possible events. Again, this rule can just as
well be read as a rule for default reasoning about probabilities.

Lacking the immediate, intuitive appeal of Jeffrey’s rule, the use of the minimum cross-
entropy principle has to be justified by somewhat more sophisticated arguments than had to
be advanced in favour of the former. Shore and Johnson [1980] present such an argument,
showing that cross-entropy minimization is the only updating procedure that satisfies a certain

set of intuitive axioms.

Overview

In the present work a logical formalism based on first-order predicate logic is developed for
reasoning both about statistical and subjective probabilities.

We begin with an examination of a logic for reasoning with statistical probabilities only.
This logic is defined very similarly as the one given by Bacchus [1990a]. Particularly, probability
values will not be required to always be real numbers, but may be taken from any real-closed
field. As in [Bacchus, 1990a], this permits us to derive a completeness result for that logic.
The derivation of that result given here, however, is of a somewhat different nature than the
one presented by Bacchus: it will be shown that the given probabilistic extension of first-order
logic can be encoded in first-order logic itself (and therefore is not really a true extension). The
completeness of first-order logic then entails the completeness of the probabilistic logic.

A central part of this work consists of the derivation of the minimum cross-entropy principle
for default reasoning about probabilities in chapter 3. Here a new interpretation of the meaning
of subjective probabilities is introduced from which an epistemic model is derived for how



default reasoning about probabilities is actually performed. The epistemic model then, in
turn, is formalized in a statistical model in which the minimum cross-entropy principle can be
derived.

Having thus established cross-entropy minimization as the adequate analytical tool for mod-
eling default reasoning about probabilities, we extend the representation language for statistical
probabilities by introducing expressions representing subjective probabilities. Deviating from
previous approaches ([Halpern, 1990],[Bacchus, 1990b]), where subjective probability expres-
sions are interpreted by a probability distribution over possible worlds, we shall use a probability
measure on the domain for that purpose. Interpreting statistical and subjective probabilities
by measures on the same probability space enables us to define a preferred model semantics for
the language that implements the minimum cross-entropy principle, so that entailment with
respect to this semantics is a formal model for default reasoning about probabilities. The re-
sulting logic is shown to be completely representable within first-order predicate logic, so that
we receive a system in which probabilistic default inferences are conducted on the level of the
representation language itself, where in previous approaches ([Bacchus et al., 1992], [Paris and
Vencovska, 1992]) always an extra-logical inference mechanism has been used. Particularly,
in this manner, we obtain a completeness result for our system for default reasoning about
probabilities.

To conclude, it might be helpful to state explicitly two topics that this work is not about.

First, we are here not concerned with making default assumptions about statistical distribu-
tions. In many cases the available statistical information will not specify a unique probability
distribution. One may be tempted in these cases to also subject the statistical information
to some inference process that selects one of the probability measures consistent with the
given data as the most reasonable guess for the true statistical distribution. However, it is
much harder to justify such an inference process for statistical probabilities than for subjec-
tive probabilities: for the latter ones we know that a human reasoner actually employs some
kinds of (default) reasoning processes to define his or her subjective probabilities. Statistical
probabilities, on the other hand, describe objective properties of the world. To substitute de-
fault assumptions for missing information about the true statistical distribution requires that
we have some meta-level knowledge about which statistical distributions are more likely than
others on the domain under consideration (knowledge as might be obtained, for example, by
drawing a random sample of elements from the domain, an analysis of which can lead to an
estimate for the true distribution). Since such meta-level knowledge can not be represented
in the formal language we use, and there is no reason to believe that relative likelihoods of
statistical distributions are determined by the same rule for every domain of objects or events
that might be described in our language, we here refrain from doing any default inferencing of
statistical probabilities.

The second topic that we will not be concerned with is probabilistic semantics for logical
default reasoning. The close analogy between the statement of a logical default “typically
an A is a B”, and a probabilistic statement “with a high probability an A is a B” has led
to several proposals to interpret logical default reasoning by probabilistic semantics ([Pearl,
1989], [Bacchus et al., 1993]). However, it seems that somewhat different questions arise when
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probabilistic reasoning is examined as a basis for logical default reasoning, in which case the
main concern lies with extreme, i.e. “almost” 0,1-valued probabilities, than when it is examined
in view of application to non-extreme probability values, which is the subject of the present
work.

To forestall a possible confusion between default reasoning about probabilities as treated
here, and logical default reasoning on the basis of a probabilistic interpretation, has been the
reason for choosing the somewhat clumsy expression to designate the former. The term “prob-
abilistic default reasoning” would have made for smoother reading, but might be considered a
little ambiguous.

As a further measure to mark the distinctness of our subject from nonmonotonic logic, all
references to ornithological questions, specifically the flying abilities of members of the order
sphenisciformes, have been purged from this work.



Chapter 1

Preliminaries

1.1 Notation

Most of the mathematical notation used in this work is standard and requires no special
introduction. A few conventions used should be pointed out explicitly, however.

The sets of natural, rational, and real numbers are respectively designated by N, Q, and
R.

The symbol C is used for the subset relation, while C is reserved to denote the strict subset
relation. Analogously for O and D. Disjointness of a union is represented by U. A€ stands for
the complement of the set A. The restriction of a function f or relation R to a subset A of its
domain is denoted by f[ A (R] A).

An indexed family (especially: a sequence) {A; | 7 € I} of mathematical objects A; of some
kind is denoted by (A;)ier. This notation is particularly useful when either I, or both ¢ and I
are clear in a given context, in which cases we simply write (4;); or (4;), respectively.

Some special attention we have to devote to notation dealing with tuples, which we here
introduce in some detail. For I a finite subset of N, and A; (i € I) a family of sets,

XierAi ={f : T = Ujer A | f(i) € A;}

is the cartesian product of the A;. Its elements we denote by boldface characters a, b,...If
A; = A for all i € I, then we write A’ for x;crA;. Elements of Al are called I-tuples of
elements of A. When I = {1,...,n}, then A’ is the set of n-tuples of elements of A and also
denoted by A™. An n-tuple a with a(i)=a; may be written in the form (a1,...,a,). We use
|a| for the length of the tuple a € A!, i.e. the cardinality of I.

By a slight abuse of notation, we occasionally identify a tuple @ € Al with the set of its
components {a(i) | i € I}, and use expressions like a € @ or aUb. For f: A - B, a € Al and
b € B! we write f(a) = b when f(a(i)) = b(i) for all i € I.

When I NI' = 0, we may identify A’ x A" with A’ For a € A!, b € A" then (a,b)
denotes the element ¢ of A’V with ¢|I = a and ¢|I' = b.

For a permutation 7 of I (i.e., a bijection of I), and a € A!, we write 7a for the element
aorm e Al: (ra)(i) = a(n(3)).
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Model theoretic structures are denoted by old German capital letters 2, §, 9, ... The
domain of such a structure is designated by the corresponding Roman letter (for the special
case of structures that are fields of numbers: boldface Roman letter), and the interpretation of
some function or relation symbol in that structure by the symbol with an adequate superscript.
The structure of the real numbers as an ordered field, for instance, is represented as R =
(117 _|_R7 _R, OR7 1R, SR)

In addition to the usual convention in logic to denote by ¢(v) an expression whose free
variables are among the variables v, we use the denotation ¢(v) for an expression with exactly
the free variables v. Writing ¢(v,w) or ¢(v,w) always is meant to imply that v N w = 0.

Finally, to designate identity between syntactic objects (i.e. terms and formulas), we use
the symbol = in order to avoid any confusion with the identity symbol = used on the level of
formal syntax.

1.2 Algebras and Measures

We give a concise review of the basic theory of finitely additive measures, which is an indis-
pensable prerequisite for the entire work to follow.

Standard texts on measure theory (e.g. [Halmos, 1950], [Cohn, 1993]) being usually almost
completely preoccupied with countably additive measures, systematic accounts of finitely addi-
tive measures are hard to come by. This obliges us to also give proofs for a couple of elementary
statements that one might have expected to be easily retrievable from the literature.

Definition 1.2.1 Let M be a set, A C 2M. 2 is an algebra over M, iff M € 2, and 2 is
closed under finite unions and complements. If 2 also is closed under countable unions, then
2 is called a o—algebra.

Thus, an algebra is just a boolean algebra of sets. Borrowing some terminology from the
theory of boolean algebras, we call an algebra 2 atomic iff for every A € 2 there exists an
A’ C A so that B C A’ with B € 2 only holds for B = (). Elements A’ of 2 with this property
are called the atoms of 2. Observe that every finite algebra is atomic.

A’ is a subalgebra of 2, if A’ is a subset of A with M € ', and is itself an algebra.

If 2 is an algebra, A € 2, then {BN A | B € A} is an algebra over A: the relative algebra
of A with respect to A.

For & C 2M (&) denotes the smallest algebra containing &: the algebra generated by €.
If € = {F),..., E,}, then (&) is finite with atoms the nonempty elements of {E; N...NE,, |
E; € {E;, ES}).

Example 1.2.2 Let M be infinite. Define
A/t := {4 C M | A finite or A° finite}.

Then 2! is an algebra: the algebra of finite and co-finite subsets of M. A/f is atomic with
the singleton sets {a} (a € M) as atoms. The set of singletons also is a generating system for
A/t Y/t is a standard example in measure theory of an algebra that is not a c—algebra, and

a useful provider of counterexamples.
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In standard measure theory, measures on a (0—)algebra are defined to take values in the
real numbers. Since we will later want to deal with measures in the formal framework of first-
order predicate logic where the reals are not axiomatizable, we will here relax this definition
somewhat, and allow measures to take values in arbitrary real closed fields.

Definition 1.2.3 Let Sor = {0,1,+,-,<} be the vocabulary of ordered fields. An Sop-
structure §={F,0", 1F +F .F <F1 is a real closed field (rc-field for short), if it satisfies the
axioms RCF consisting of

e The field axioms.

Axioms stating that < is a total order.
e Two axioms for the compatibility of < with the algebraic operations:

Veyz(x <yAN0<z)—=x-2<y-z),
Veyz(z <y—xz+z<y+2).

e An axiom for the existence of square roots

VzIy(0 < z — y* = z).

A schema demanding that every polynomial of uneven degree has a root

VYo yno13z(yo+y1 T+ F Yuor 2" L 2" =0). n=1,3,5,...

Example 1.2.4 (a) The field F, of algebraic numbers is an rc-field. §, is a very special
model of RCF: every rc-field § contains a substructure § such that § is isomorphic to
Fa1, and the elements of F/ satisfy the same first-order formulas when considered inside
&' and when considered inside §. In short, every rc-field is an elementary extension of
Fal, or §a is the prime model of RCF.

(b) The field of real numbers %R is an rc-field.

(c) Let R* be an elementary extension of R. By definition, R* and R then are elementarily
equivalent, so that R* is an rc-field. If R* is a proper extension, then R* contains
nfinitesimals, i.e. elements r* € R* with 0 < 7* < r for all r € R.

From the existence of a prime model postulated in part (a) of this example it follows that the
theory of real closed fields is complete. R being an rc-field, RCF thereby provides a recursively
enumerable axiomatization of the Sgp-theory of R (see [Rabin, 1977] for details).

Definition 1.2.5 Let 2 be an algebra over M, § a real closed field. Let
Ft:={z €F|0<z}. A function
p: A = FF
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is a measure iff u(0) = 0, and u(AU B) = pu(A) + u(B) for all A,B € A with ANB=0. u
is a probability measure iff (M) = 1. A pair (A, u) with 2 an algebra and u a (probability)
measure on 2 is called a (probability) measure algebra.

If A is a o—algebra, F=R, and p is o-additive, i.e. p(U;>14;) = > ;51 p(Ai) for {Aq, A, ...}
a countable family of mutually disjoint sets, then y is called a (probagility) o-measure.

Definition 1.2.6 The set of all probability measures with values in § on the algebra 2 is
denoted by
Ap2l.

We write simply A%l for Ag%(.
When 2 is a finite algebra with atoms Ai,..., Ay, we can identify Ap2 with
AY = {(r1,...,rn) € FN | r; > 0, Zn =1}.

For AY we simply write AN. For r,s € AX the Euclidean distance

7= slim (S0) - s()?)*

is defined, which induces a topology on Ajl}f. When standard topological concepts like openness
of a set, the closure cl A, interior int A, or boundary bd A of a set A are employed for subsets
of A%[ , 1t is always with respect to this topology.

The i-th component of a measure u € AY¥ usually is denoted by w;, i.e. u= (p1,-..,4N).
Unfortunately, this provokes a certain shortage of denotation, since we will also have to use
41, 42, - - . for members of an indexed family of probability measures. Hence, p; can either be
a probability measure itself, or the i-th component of the probability measure p (it does not
help to use superscripts p* in one of the two cases, because this denotation will be used for
product measure, see below). In context, however, it should always be sufficiently clear, which
of the two readings of y; is the intended one.

One remark on the terminology here should be added: in measure theory in general, and
probability theory in particular, one is predominantly concerned with o-measures, which there-
fore are usually simply called (probability-) measures. A finitely additive measure sometimes is
called a content. Since we, on the other hand, will almost exclusively deal with finitely additive
measures, we reserve the most simple and intuitive term for these. Also, we sometimes will be
using the term probability distribution as a synonym for probability measure.

Example 1.2.7 Let M be a set, a1,as,... € M, p1,p2,... € R with p; > 0 and > p; = 1. For
AC M let
p(A) =3 pi
a;€A

Then p is a probability o-measure on the c-algebra 2. Measures defined in this way we
call real discrete measures. Note that in arbitrary rc-fields the infinite sum ) p; need not be
defined, so that we really have to assume real-valued probabilities, unless all but finitely many
of the p; are zero.
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Example 1.2.8 Let F be an re-field, A%/f as in example 1.2.2. For A € AT define

0F A finite
/t(A) .=
e (4) { 1F  Ac finite.

Then p¢/f is a probability measure on 2/t Measures that, like /T, assign zero probability to
every singleton set we call continuous (because for the special case of probability measures on
R, these are just the measures that have a continuous distribution function).

Generating systems € for an algebra 2 are of particular interest, when a given additive
function
po: & — FT

already uniquely determines a measure g on 2. This is the case when & disjointly generates
2A(€) in the sense of the following definition.

Definition 1.2.9 €& disjointly generates 2 iff every A € 2 is the disjoint finite union of elements
of &.

Theorem 1.2.10 Let 2 be disjointly generated by &, pg: & — F1 be finitely additive. The
unique measure g on 2 extending pg is defined by

u(A) = 3" o(E) (1)
1=1

A € 2 the disjoint union of Ey,..., E, € &.

Proof: Obviously, every measure on 2 extending 119 must satisfy (1.1), so there can be at most
one such measure. To show that (1.1) defines a measure, we only have to show that the definition
of u(A) is independent of the particular representation Uizl,___ynEi for A. For this purpose, let
Uj—1,.mFj be an alternative representation of A. For each pair (¢,5) € {1,...,n} x{1,...,m}

there exist H,(:’j) ec¢k=1,... ,l(i,j)) with E; N Fj = L:szl,__,,l(iﬂ.)H,(:’]). Then

n n o m o m
SuoE) =" 3 moHM) =3 3 po(H) =Y uo(Fy).
i=1 =1 j=1 . j=1
71=1,....m 1=1,...,n
k:l,,l(l,J) k:l,,l(lﬂ)

Definition 1.2.11 Let 2,8 be algebras over sets M and N respectively. The product algebra
A x B is the algebra over M x N generated by the system of measurable rectangles

¢ .={AxB|Acq, BeB)
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It is well known that €* disjointly generates 2 x 9, and that for measures p and v on 2
and B respectively the function

AMA x B) := pu(A)v(B)

is additive (see [Halmos, 1950] for instance). The unique measure extending A\ to 2 x B is
called the product measure of u and v, denoted by y ® v.

These definitions extend to the product of n algebras in a natural way. The product
A x ... x 2 (n factors) is denoted A™. For the measure y ® ... ® u we write ™.

Definition 1.2.12 Let p be a measure on the product algebra A x B over M x N. The
marginal distribution p |1 2 of p on 2 as the first component is defined by

(b L 2)(4) = u(Ax N) (A e).

The notation introduced in this definition at a first glance may seem somewhat redundant.
However, we can not dispense with either the explicit reference to the algebra 2 on which the
marginal distribution is defined, nor the place it has in the original product: only writing p | 2%
would be ambiguous in the case where B = ; just writing x |; is ambiguous when the product
in fact has more than two components, for example A x B = A; x Az x B. Here p |; might
refer to the marginal distribution on 2;, or on 2; x 2As.

We conclude this section by proving one rather specialized theorem that will only be needed
at a particular point in section 2.4. Being of a purely algebraic nature, it nevertheless is best
placed in the present context.

Theorem 1.2.13 Let 2 be an algebra disjointly generated by €. Let 8 be a finite algebra
over the same set M as 2, By,..., B, the atoms of 8. The algebra A(AUSB) generated by A
and B is disjointly generated by

&:={ENB;|E€¢ i=1,...,n}
Proof: Let " denote the set of disjoint finite unions of elements of &. Clearly then
AUB C &° C ARAUB).

To prove the theorem, we therefore have to show that &Y is an algebra over M.
To show that & is closed under unions, let

Gi= |J (EInBy), Go= |J(EINB;,) €6".
j=1,...m k=1,...,l

To show that G1 UG € ®Y it suffices in fact to only consider the case [ = 1, so that we may
let Go = E? N B2 for some E? € & B?¢€ {By,...,B,}. Then

UE*nB*) = |J (EBinB)U|( |J EjuE )nB’
{i|Bi;#B%} {i|Bi;=B?}

! U (E} N B;,)

J



1.2 ALGEBRAS AND MEASURES 15

The union Uy p, —p23E} U E? is in 2 and hence the disjoint union of suitable F}, € € (h =
J
1,...,p). Thus,

( U EluE>)nB>= ( |J F))nB* =] (F,nB?,
{j|Bi; =B} h=1,...p h

and we have obtained a representation showing that G; U Gs is in ®Y. Tt remains to show that
& is closed under complements. Let G = Uj—1 __m(E; N B;;) € &7, Since

G = U (G N By),
i=1,....,n

it suffices to show that G°N B € &" for fixed B € {B, ..., B,}. We have

[L.J(EjnB nB—[U (E; N B;,)|°NB,

7j=1,...m
7j=1,....m

B;.=B
J

so that the problem reduces to showing that sets of the form

[ U (E;NnB)I°NB
7j=1,....m

belong to &Y.

[ U (B nB)*nB =[( OEj)CUBC]r‘lB

j:l,...,m j:l,...,m
[

U Ej)nB

7j=1,...m
L]

U F)nB

h=1,....p
= U (FhﬂB) € @O
:17"'7p

h
with Up=1,_,F} a representation of (Uj=1__mE;) as the disjoint union of elements F}, € €. O



Chapter 2

The Logic of Statistical Probabilities

2.1 Statistical Probabilities

Consider the statements

“The probability of rolling a one with a throw of a die is 1/6”
“Mystery films have a happy end with probability 0.7”
“The probability that the child of an actor will become an actor is at least 0.1”

In each of these examples an assertion is made about the relative frequency with which a certain
property occurs in a large class of objects or events. In the first example this is the property
of yielding a one in the class of all throws of (fair) dice. In the second example the relative
frequency of happy endings in the class of mystery films is observed; and in the last example a
statement is made about the relative frequency with which the property of becoming an actor
occurs in the class of actor’s children.

The term “relative frequency” here used requires some closer examination. What exactly
is the relative frequency of happy endings in mystery films? We may be tempted to give a
very simple answer: of all the n mystery films ever produced, a certain number m does have
a happy end. The relative frequency of happy endings then is m/n. However, this approach
of defining the relative frequency of a property just as the fraction of elements that have the
property must fail when the class of all objects or events under consideration is infinite. This
might already be the case in the first example: that statement may very well be understood as
making an assertion about all throws of a die, including those that will take place in the future.
In this (potentially) infinite set we can not speak of the fraction of throws that result in a one.
What is meant by the statement that the relative frequency of ones is 1/6, is that in a large
finite random sample of throws of a die the fraction of ones will be 1/6. The canonical way of
obtaining a random sample here being to take a die and throw it a large number of times.

But even if the class of all objects or events considered is finite, as in the second example,
a stated relative frequency usually will have been obtained not by an examination of every
individual object, but by drawing random samples from the domain. To say that mystery films
end happily with a probability 0.7 may mean that we have systematically worked through a
comprehensive film guide, and for each mystery film that we have found noted whether it has a

16



2.2 SYNTAX 17

happy or unhappy ending. It may also mean that we have watched a great number of mystery
films on television and used this random sample as a basis for our assertion. The relative
frequency of a specific property that we are going to observe then obviously depends on the
way in which the random sample is obtained. Mystery films with a happy end will perhaps
generally be more popular than those with tragic endings, and for that reason be more likely
to be shown on TV. Thus, the relative frequency observed in an examination of a film guide
and by watching television will differ to some extent.

We see that a statistical probability can not be taken to be an intrinsic property of the
domain of objects or events to which it refers. It always, though often only implicitly, also
refers to a specific sampling method according to which elements of the domain are observed.

While it is generally sufficient to imagine a statistical probability to refer to the relative
frequency in a “large” sample drawn according to the given sampling method, this, of course,
is not yet quite precise. To really obtain a working definition, we have to identify a statistical
probability with the limit that the relative frequency is going to approach as the sample size
tends towards infinity.

As yet, we always have been speaking of either objects or events to which probabilities refer,
a class of objects or events in the case of statistical probabilities, and a single object or event in
the case of subjective probabilities. However, it becomes rather tedious to always make explicit
in our terminology the fact that probability statements can have such concrete subjects as the
eggs used for making an omelette, or such abstract ones as the amount of precipitation on
Sundays. Since we have seen that even a statement that, on the face of it, refers to a class of
concrete objects (e.g. mystery films), in fact must be understood as referring to observations
of these objects according to a specific rule, i.e. to events, in the sequel we adopt the term
event to generally designate elements of the domain considered.

To summarize: a statistical probability for a certain property in a class of events is the
limiting relative frequency with which this property is going to occur in large random samples
of increasing size drawn from that class. It depends on the class of events under consideration
as well as the specific sampling method used.

2.2 Syntax

We adopt the extension of first-order predicate logic for expressing statistical probabilities as
given by Halpern[1990] and Bacchus[1990b]. The new basic construct of their language is a
statistical quantifier [-] that allows us to construct from a given formula ¢(v) a term

[¢(0)].

representing the statistical probability that an event in the domain of discourse has property
¢. More generally, we will not only be interested in the probabilities of properties of single
events, but also in the frequency with which different events are related in a certain way, as for
example in the statement “The probability that two actors working for the same studio have
appeared in a film together is greater than 0.3”. To provide for representations of statements
of this sort, the statistical quantifier may also be used to quantify over more than one variable.
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Furthermore, allowing for variables to remain free, we arrive at more general probability terms
like
[¢(uvv7w>](u,v)-

Allowing terms that represent probabilities in the language (which is not the only feasible
way: Keisler’s probability quantifiers [Keisler, 1985] represent a different approach) in ad-
dition to terms standing for objects of the actual domain of discourse, makes the resulting
language two-sorted. Thus, we will use two distinct sets of variables {vg,v1,...wg,ws,...} and
{zo,1,..-Y0,Y1,--.}, the first one ranging over elements of the domain, the second over the
elements of an rc-field used to measure probabilities.

Apart from the usual logical connectives and quantifiers of first-order logic we also consider
the vocabulary Sor of ordered fields a fixed part of our language.

With these symbols and a (finite) vocabulary S containing symbols R,Q,. .. for relations on
the domain, f,t,... for functions mapping domain elements to domain elements, and c,d,... for
domain constants, we define domain-terms, field-terms, and formulas as in first-order logic to
which is added one new syntax rule that allows to generate a field-term from a formula by
means of the statistical quantifier:

e A domain-term is constructed from domain-variables {vg,v1, ...}, constant and function
symbols from S according to the syntax rules of first-order logic.

e Atomic domain formulas are formulas of the form
Rty...ty or t1=to,
where R is a k-ary relation symbol from S, and the t; are domain-terms.
e Boolean operations: If ¢ and 1 are formulas, then so are (¢ A ) and —¢.

e Quantification: If ¢ is a formula and v (z) is a domain-variable (field-variable), then
Jveg (Fz¢) is a formula.

o Field-terms:

(a) Every field-variable is a field-term.
(b) 0 and 1 are field-terms
(c) If t; and ty are field-terms, then so are (t1 - t2) and (t1 + t2).

(d) If ¢p(v,w,x) is a formula with free domain variables v and w, and free field variables
x, then

[${v,w,2) ]

is a field-term in the variables v and .

o Atomic field formulas: If t1,to are field-terms, then t1 < to is an atomic field formula.
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We denote by FTg and DT, respectively the sets of field-terms and domain-terms in the
vocabulary S. Lg stands for the set of formulas in the vocabulary S.

Several abbreviations will be freely used to obtain more readable formulas. The usual
conventions are used to eliminate superfluous parentheses. We write t; < t2 as an abbreviation
for t1 <tg A -ty <ty,and t; =to for t1 <to Aty < tq. t1 € [tz,tg] stands for t1 > tg9 A t1 < t3.
Similarly for half-open and open intervals.

Any representation of a rational number (e.g. 0.55, 1/9,...) may be used as a constant
symbol.

Notation for conditional probabilities is introduced as follows. Let t be a field-term con-
taining the subterm

Y- [d)(v,w,w) A w(vla w, wl)]w

(subterms of t are the terms from which t is constructed by multiplication and addition symbols;
if t contains a subterm [¢(...)].., and s is a term appearing in v, then this does not make s a
subterm of t). The formula

Vy(y - [V, w, @' )]w =1 = t <s)

then is abbreviated by
t' <s

where t' is t with the term y - [¢p(v,w,z) A (v, w, x')] replaced by the expression

[¢(v’wam) | w(vla w, '/BI)]’U’

Thus, the intended meaning (not having defined semantics, we can not yet speak of the
meaning proper) of the term [¢ | ¢] is that of the quotient [¢p A ¢]/[¢)] when [¢)] > 0. In cases
where [¢)] = 0, an atomic field formula containing the term [¢ | ¥] expands to a formula that
becomes vacuously true.

The examples of probabilistic statements mentioned so far in this section can now be for-
mulated as L?-formulas in the following manner:

[Onew | Die_throw w],, = 1/6

[Happy_end w | Mystery_film w],, = 0.

[Actor w | Jv(Actor v A father(w) = v)]

[Fu(Filmov A lnuv A Inwv) | Actor u A Actor w A studio(u

IV\I

) = tudlo( W)](u,w) > 0.3

2.2.1 Induction on Lg

Sometimes we will want to prove assertions of the form “Every formula ¢ has property P”. In
first-order logic these proofs are often conducted by an induction on the structure of ¢, i.e. it
is first shown that property P holds when ¢ is atomic, and then it is proven that P holds when
¢ has been formed by a conjunction, negation, or quantification under the assumption that P
holds for the subformulas of ¢. The proof of the base case sometimes relies on an auxiliary
statement of the form “Every term t has property P’.”, which itself may have been proven by
an induction on the structure of t.



20 CHAPTER 2. THE LOGIC OF STATISTICAL PROBABILITIES

An analogous proof method can be used for Lg. However, since here terms can, in turn, be
constructed from formulas, the schema of the induction is a bit different. In order to prove a
pair of assertions

(+)  Every term t € FTg has property P’.
(++) Every formula ¢ € Lg has property P.

we proceed as follows:

(a): Show that P’ holds for t and P holds for ¢ when t and ¢ are first-order, i.e. do not contain
the statistical quantifier [-]. This step may in turn be accomplished by standard inductions on
the structures of t and ¢.

(b): By an induction on the structure of t show that P’ holds for every field-term t. For the
case t = [¢(v,w,x)]w assume that P holds for ¢.

(c): By an induction on the structure of ¢ show that P holds for every formula ¢. For the case
¢ = t1 < tg assume that P’ holds for t; and to.

Steps (a)-(c) together provide a valid proof for (+) and (++): by (b) and (c) the validity of
P’ and P for t and ¢ is reduced to the validity of the same properties for syntactically simpler
terms or formulas. Specifically, the maximal depth to which nestings of the statistical quantifier
occur in these terms and formulas is reduced by one. After finitely many recursion steps the
problem is therefore reduced to first-order terms and formulas, which case is covered by (a).

2.3 Statistical Structures

The semantics for L is defined in a similar way as in [Bacchus, 1990a). The few points where
the definitions given here vary from those supplied by Bacchus are listed at the end of this
section.

The intuitive meaning of a term [¢(w)], is that of the probability that a randomly selected
element of the domain (selected by the specific sampling method considered) has property ¢,
or, equivalently, belongs to the subset of the domain defined by ¢. A term of the form [¢(w)]w
with |w |= n > 1 represents the probability that n randomly chosen elements of the domain
are related by ¢, or, equivalently, belong to the subset of n-tuples defined by ¢. Thus, it is our
intention to assign probability values to subsets of the domain and products of the domain.
The semantics for the language Lg will therefore be given by augmenting standard S-structures
M=(M,I) consisting of a domain M and an interpretation function I for the symbols in S,
with an additional component for defining measures on subsets of (products of) the domain.

The general form of a structure 9 for the interpretation of Lg then is

M= (M,I,&, (Q[nvun)nEN)v (21)

with § an rc-field and (2,,, 4,) a measure algebra over M™ with probability values taken in §
(n € N).
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Since for each n, the measure y,, (A) is supposed to quantify the probability that a randomly
chosen tuple of n elements belongs to the set A € 2A,,, we will certainly have to demand that
the sequence (U, pn)n satisfies certain consistency conditions entailed by this interpretation
of p,. Furthermore, a closure condition must be imposed on the 2, that ensures that every
subset of M™ definable in Lg belongs to 2,,.

The closure condition can not be properly stated before the semantical relation between
S-structures and formulas of Lg has been defined, because this relation specifies the set of
definable subsets.

The consistency conditions, on the other hand, are purely measure theoretic conditions that
are defined for (U, pn)n without reference to L. All of the consistency conditions we now
introduce are automatically satisfied if the sequence (2, un)n is in fact a sequence of product
algebras and product measures, i.e. %, = A", u, = p" for n > 1.

The first condition states that u, is invariant under permutations.

Homogeneity: For all n, A € 2, and permutations 7 of {1,...,n}:
m(A):={ma|a € A} €U,, and pu,(w(A)) = un(A4).

Homogeneity states that it does not matter in which order we arrange the elements of our
random sample: if, for instance, we consider two randomly chosen mystery films f; and f, then
the probability that f; is a more famous film than f5 is the same as the probability that fs is
more famous than fj.

The second condition concerns measurable rectangles.

Product property: For all k,] € N, A €2, B € ;:
Ax B €Uy and ppii(A x B) = pg(A)p(B).

The product property basically reflects the independence of the elements in the random
sample: the probability that of two randomly selected mystery films the first one will have a
happy end and the second one is, say, black and white is equal to the product of the probabilities
that a single sample film will have a happy end, or be black and white.

For the formulation of the third consistency condition we first introduce some notation for
sections of sets: Let I C {1,...,n} with I # @ and I’ := {1,...,n} \ I. Let A C M" and
a € M!. Then the section of A in the coordinates I along a is defined as

ol(A):={be M" | (a,b) € A}.

Since the validity of the following property for products of o-measures (precisely: o-finite o-
measures) is the core of the proof of Fubini’s theorem, we call it the Fubini property. (Fubini’s
theorem is a central theorem in measure- and integration theory about the interchangeability
of the order of integration: [ f(z,y)dzdy = [ f(x,y)dydz.)
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Fubini property: Foralln € N, I C {1,...,n} with 1 < k:=|T|, A€ A,, and a € M':

Ta(A) € An s, (2.2)
for all r € [0, 1]:
Ar,yi={a € M" | pin_i(ch(A)) >r} € A, (2.3)
and
pn(A) > rias(Ar). (24)

Figure 2.1 illustrates the Fubini property. The Fubini property, too, can be illustrated in
the film example. Consider the property ¢(f1,fs): “an actor of film f; has at some time in his or
her career appeared in a film together with an actor of f3”. If we know that with a probability
0.1 a randomly selected film will have actors in it who have worked with such a large number
of people so as to guarantee that in a second randomly selected film with a probability > 0.2
one of these actors will appear, then the probability that a random pair of films has property
¢ must at least be 0.1-0.2.

o

M

M! a

AI,r

Figure 2.1: The Fubini property

It is easy to see that the Fubini property in fact makes the second provision of the product
property redundant. Once it is assumed that A x B € Ay, the Fubini property can be used to
derive that u(A x B) = u(A)u(B). The converse is not true: (2.4) can not be derived from the
product property — even when the measurability conditions (2.2) and (2.3) are satisfied. An
example where the product property holds, but (2.4) is violated will be given in section 2.4.4.

The Fubini property has been the last of the consistency conditions that we are going to
impose on (A, tin)n- This begs the question: are these three conditions sufficient to guarantee
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that the measures (u,) behave according to their interpretation as representing the statistical
probabilities governing the results of a sequence of n independent draws of events from the
domain? It is hard to provide a conclusive affirmative answer to this question. In standard
probability theory, product o-measures are the canonical models for sequences of independent
random draws. When we work only with algebras and (finitely additive) probability-measures,
the sequence of product algebras and product measures (2", u™) is not quite rich enough for
describing interesting outcomes of multiple draws, or, indeed, to satisfy the closure conditions
below (if M is infinite, then the set {(a1,as) € M? | a1 = az} does not belong to A2, for
instance). We therefore have to use an augmented sequence (U, tin)n 2 (A", u™)y, in which
additional sets become measurable. By demanding that the newly introduced sets A € 2, \ A"
and their measures satisfy the consistency conditions, it is ensured that they retain the central
properties of a sequence of product (o-) measures. This justifies some confidence that the
sequence (2, ) can not display any properties that are contrary to its intended meaning.

With the formulation of the consistency conditions, the semantical structures used to in-
terpret Lg are almost fully specified: they are going to be structures of the form 2.1 where
(A, pin)n satisfies the consistency conditions. As mentioned above, however, this is not yet
quite sufficient: we will also have to demand that every subset of M™ that can be defined in
Lg belongs to 2, — otherwise the interpretation of certain formulas in the language would be
undefined in 9.

The problem we face is that in order to avoid a certain circularity, we must not at this point
simply declare that every definable set is measurable, because definability is explained in terms
of the semantical |= - relation, which has yet to be explained. The problem is circumvented
by defining the satisfaction relation I |= ¢ between structures 9 and formulas ¢ € Lg for a
wider class of structures than later will be used to define the semantics of ¢.

Definition 2.3.1 Let S be a vocabulary, M = (M, I,F, (An,pn)n) with (M, I) a standard
model theoretic S-structure, § = (F,0F, 1, <¥ .F +F) a real closed field, and (2, i,) an -
measure algebra over M" (n € N). Let v be a variable assignment that maps domain-variables
v into M and field-variables = into F. We inductively define a mapping from the set of domain-
terms into M, a partial mapping from the set of field-terms into F, and a satisfaction relation
o . We use the notation y[v/a,x/r] for the variable assignment that maps v to a, x to r,
and for all other variables is the same as ~.

Domain-terms: For a domain-term t, the interpretation (90, )(t) is defined just as in first-order
logic. Note that t can not contain any field-terms as subterms.

Atomic domain formulas: Let ¢(v) = Rt1(v)...t,(v) with R € S and domain-terms t;. Then,
(M, 7) o ¢(v) i ((M,7)(t1) ... (M, 7)(tn)) € I(R).

Similarly for ¢(v) = t1(v) = t2(v) with domain terms t1, to.

Boolean operators: Let ¢(v,x) = (v, x) A x(v,x), then
(9M,7) o (v, @) iff (M,7) o ¢(v, ) and (M, ) o x(v, ).
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Similarly for ¢(v, x) = (v, z).
Quantification: Let ¢(v,x) = Jwip(v, w, ). Then

M, 7) o d(v, ) iff Ja e M (M,y[w/d]) o (v, w, ).
For ¢(v,x) = Jyy(v, z,y):

M, 7) Eo (v, ) iff IreF (M, v[y/r]) Eo (v, z,y).

Field-terms: Let t be a field-term.
(a) t =xz. Then (9N, 7)(t) = v(z).
(b) t=0 (1). Then (9,7)(t) = 0F (1F).

(c) t = t1 +to. Then (M, )(t) = (M, 7)(t1) +F (M, ) (t2) if (M, ~)(t1) and (I, 7)(t2) are
defined. (9,+)(t) is undefined otherwise. Analogously for t = t; - to.

(d) t = [¢p(v,w,x)]w. Then

N, 7)(t) = pw ({a | (M, ~[w/a)) =y ¢(v,w,z)}),

if {a | (M, y[w/a]) Fs d(u,w,x)} € Appyp; (I, 7)(t) is undefined otherwise.

Atomic field formulas: Let ¢(v,x) = t1(v, ) < to(v,x). Then (M, ) =, ¢(v,x) iff (M, ~)(t1)
and (9M,7)(t2) are defined, and (IM,~)(t1) < (I, ) (t2).

In this definition, the validity of (9,7) |=s ¢(v,x) only depends on the values of v for
variables belonging to v or . For this reason, when v(v) = @ and () = 7, we may also write
(O, v/a,x/r) o ¢(v,x) for (M,7) =0 (v,z).

The interpretation of certain field-terms is undefined in 9t when there exist definable subsets
of M™ that are not measurable. The next definition introduces a more compact notation for
subsets defined by a formula ¢ € Lg in a structure 9.

Definition 2.3.2 Let 91 be as in definition 2.3.1, ¢(v,w,z,y) € LE, a € M7 r e F=. The
subset of M/"l x F¥! defined in 9 by ¢ with parameters a,r then is

(M, v/a,x/r)(lv.wa,y) = {(b,s) | (M, v/a,w/ba/ry/s) s dvway).  (25)

Note that the set defined by ¢(v,w,x,y) depends on the order implicitly given to the
variables of ¢ by the notation ¢{v,w,z,y). Writing ¢(v, 7w, x, 7'y), with 7 (7') a permutation
of {1,...,]w|} ({1,...,] y|}), results in a set (M,v/a,z/r)(¢(v, 7w, z,7'y)) that is the
permutation 7(A) x #'(R) of A x R = (M, v/a,z/r)(¢{(v,w,x,y)).
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Example 2.3.3 Let R be a binary relation symbol, ¢ = Ruv. Then
M(¢p(u,v)) = I(R) € M?,

while
M(p(v,u)) = {(a,b) | (b,a) € I(R)} € M>.

Definition 2.3.2 has been stated in such a way (by writing ¢(v,w,z,y), not ¢(v,w,z,y))
that a formula with exactly k free domain variables that are not used as parameters, and [ free
field variables not used as parameters, always defines a subset of M* x F!. However, by (2.5)
just as well a subset of M!®| x Fl¥l is defined when it is not presumed that ¢ actually contains
all the variables in w and y. Hence, for any given ¢(v,w,z,y) that may or may not actually
contain all the variables in w and y, we may also loosely speak of the set

(M, v/a,z/r)(p(vwa,y)) €M™ x FY
defined by ¢(v,w,x,y), which, strictly according to definition 2.3.2, is the set defined by
§£<Ula w, 33/7 Y) = ¢(v,w,z,y) A /\ w=wA /\ Y=y,
wew\w' yey\y'

where v C v, w' C w, ' C x, and y’ C y are the variables that actually appear in ¢.

For 9 as in definition 2.3.1 it is clearly equivalent that (901,+)(t) is defined for every variable
assignment v and every t € FTZ, and that every subset of M™ definable with parameters from
M and F by some ¢ € Lg belongs to 2,,. Any of these two statements would make a suitable
formulation of the closure condition that, in addition to the consistency conditions, is required
to make 9 a structure for the interpretation of Lg. The following definition makes use of the
second one.

Definition 2.3.4 Let M=(M,I,F, (Ap, pin)n) as in definition 2.3.1. I is a statistical S-
structure iff

o (A, 1n)n satisfies homogeneity, the product-, and the Fubini-property,
e For each n, A C M": if A is definable with parameters in Lg, then A € 2,,.

If § = R, then M is called a real-valued statistical structure.

Example 2.3.5 Let 9 be a statistical S-structure, v = (v1,...,v,), w = (v1,...,wy). Let

n

P(v,w) = /\ v = w;.
Let a € M™. Then
(M, v/a)(¢(v,w)) = {a} C M™.

Hence, in a statistical S-structure, 2(,, contains all singleton sets, and, consequently, all finite
and co-finite sets.
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Example 2.3.6 Let 9 be a statistical S-structure, v = (v1,...,v,), 5,k € {1,...,n}, j # k.
Let

Then M(4 (v)) is the “hyperplane”
H={aecM"|a(j) = a(k)},
which therefore must belong to A,,.

Example 2.3.7 Let (M,I) be a standard S-structure, a1, a2,... € M, p1,p2,... € R with
pi > 0 and > p; = 1. For each n > 1 a real-discrete measure (cf. example 1.2.7) is defined on
A, == 2M") via

(A= D piyce-opi, (ACMD).
(ail,...,ain)EA

It is easy to see that (A, pr ), satisfies the consistency conditions, so that (M, I,§, (UAn, tin)n)
is a statistical S-structure. We refer to structures of this form as real-discrete structures.

Example 2.3.8 Let 91 be a statistical S-structure with
M=, Volv = w)y =0 =: ¢«

Then p1({a}) = 0 for all a € M, and, by the product property, also u,({a}) = 0 for all
a € M™. In other words, i, is a continuous measure for all n (cf. example 1.2.8). Models of
¢°°™ therefore are called continuous structures.

From definitions 2.3.1 and 2.3.4 in the usual way we arrive at the definitions for the semantic
entailment relation between L7-formulas, which is defined in two versions.

Definition 2.3.9 Let ® C L, ¢ € L. ¢ is o-entailed by ®, written ® =, ¢, if every statistical
S-structure that is a model of ®, also is a model of ¢. Also, we use the notation ® =R ¢ if
every real-valued model of @ is a model of ¢.

Definition 2.3.10 We write .Z7 for the logic defined by the language L and the entailment
relation =, .

Example 2.3.11 Let 9 be a continuous statistical structure. Let ¢ and H as in exam-
ple 2.3.6. Let I = {1,...,n}\ {k}, a € M!. Then

o (H®) = M\ {a(j)} € 2.
By the continuity of p1:
pi(og(H)) = (M) — m({a(j)}) = 1.

Since a was arbitrary, we obtain

(H)pp=M"
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(recall how (H€)r, is defined by (2.3)), and by the Fubini-property
pn(H®) = 1.
Thus, the continuity of ;i entails that “hyperplanes” have zero probability:
¢ o (97 (v)]w = 0. (2.6)
Example 2.3.12 Let R,S be unary relation symbols, » € Q. Then
[Rw]y =0 o [Sw | Rw]y <7 A[Sw | Rw]y, > 7.

This is immediate from the definition of the conditional probability expression. [Sw | Rw],< 7,
for example, being an abbreviation for

Vy(y - [Rw]y =1 — y - [Sw A Rwl], < 71),

is entailed by [Rw],, = 0 for any r because the antecedent y - [Rw],, = 1 is not satisfiable for
any y.

The same is true for any more complicated field-term t containing a conditional probability
expression [¢ | ¢]: from the premise [¢)] = 0 any inequality t < s can be inferred. Thus,
when the conditioning set 1) has probability zero, the conditional probability [¢ | ¢)] behaves
like an undefined term that makes any inequality valid in which it appears. This does not lead
to any unwanted contradictions because the expression [¢ | 1] does not directly abbreviate a
field-term, so that from [¢ | ¢)] < r A[¢ | ¢] > r we can not infer Jy(y <r Ay > 7).

The following lemma states that the semantics for L7 is an extension of the semantics of
standard first-order logic.

Lemma 2.3.13 Let @, ¢ be first-order. Then
Ol=,¢ iff @=o.

Proof: For the right to left direction it is sufficient to observe that for first-order formulas
¢ only the standard part (M, I) of a statistical S-structure is used for defining the relation
(M, ~) =5 ¢ in the same manner as in first-order logic. For the converse direction, it must
be noted that every standard structure (M,I) can be extended to a real-discrete statistical
S-structure 9 (just assign probability 1 to an arbitrary element of M), and that for such 9
and first-order formulas ¢

M, y) Ee ¢ iff (M, I),7) E ¢

a

Within the present work we are essentially concerned with the standard notion of probability
as a real number. Defining semantics for L? that allows for probabilities taken in arbitrary
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rc-fields therefore must be seen as an approximation only of the intended meaning of L7-
sentences, and the entailment relation =, only is an approximation of the relation |:(1;t which
characterizes the inferences we would really like to draw from L-formulas. This approximation
is correct in the sense that @ =, ¢ implies ® )=C,R ¢, but not complete because the converse does
not hold. The reason for nonetheless working with the weaker semantics based on rc-fields is
that for this case we can find a complete proof-system (see [Bacchus, 1990a] and section 2.5
below). For the entailment relation =, on the other hand, Abadi and Halpern [1989] have
shown that no complete proof system exists.

Besides obtaining completeness results, there exist other reasons that can motivate the
study of probabilities other than expressed by real numbers. Particularly, as a model for
subjective probabilities, simpler structures than the reals can support the notion of a qualitative
probability (e.g. [Aleliunas, 1990]). Probabilities in elementary extensions of R, on the other
hand, might be helpful for developing a uniform theory of probabilistic and default reasoning
([Weydert, 1995]).

Giving up real-valued probabilities makes it also necessary to give up o-additivity. This
is not too big a sacrifice, however, because in the context of the finitary language L7, where
definability is preserved under finite, but not under countable unions, finite additivity seems
to be the more natural concept anyway.

The only concrete examples of statistical S-structures that we have met so far are the real-
discrete structures of example 2.3.7. For continuous structures (example 2.3.8), on the other
hand, no explicit description has been given so far, so that at this point it is not even clear
that such structures exist.

A very interesting and natural type of continuous structures for reasoning about geometric
objects might be given by taking an interval in R, say [0,1], as the domain. On n-dimensional
products of this interval the g-algebra %[0, 1]" of Lebesgue measurable sets with the Lebesgue
measure \" is defined. (The o-algebra of Lebesgue measurable sets is the completion of the
o-algebra of Borel sets, i.e. the o-algebra generated by the Borel sets and all subsets of Borel
sets with Lebesgue measure 0. The Borel sets, in turn, are the elements of the o-algebra
generated by all n-dimensional intervals. The Lebesgue measure is the measure that assigns
to each n-dimensional interval its volume.) Letting (A, ) = ($B[0,1]”, A") would then yield
a suitable structure in which we can describe geometric objects of various dimensions, whose
“probability” is given by their “volume”.

Unfortunately, we encounter very deep problems when we try to construct structures in this
way. The system of measurable sets not being closed under projections (as is very easy to see:
for any nonmeasurable A C R, the set {0} x A C R? is measurable with projection A on the
second component), the closure condition would be violated if we attempted to interpret some
relation symbol by a measurable set with a nonmeasurable projection, because the projection
of a definable set is definable via quantification.

But what if we interpret the symbols in S by sufficiently simple measurable sets, specifi-
cally Borel sets (for function symbols f this means: the graph of f is a Borel set)? Even for
pure first-order logic it is unknown whether, starting from Borel sets, it is possible to define
nonmeasurable sets. This to be the case, however, is considered to be extremely unlikely, so
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that projective determinacy (PD), an axiom for set theory that implies the measurability of
definable subsets of R™, is widely considered an acceptable extension of ZFC (see [Martin,
1977] for a survey).

In spite of this being a fascinating subject, it is impossible at this place to explore the situ-
ation that is created by considering definability in L7 rather than first-order logic, specifically
with regard to the question whether PD will still guarantee measurability for sets definable in
L7 starting from Borel sets.

There is a special case, however, for which it is very easy to construct continuous statistical
S-structures over a domain M equipped with a measure algebra (2, ) with continuous pu:
when S is monadic, i.e. only contains constant- and unary relation symbols, then the class of
definable subsets in M™ only contains sets of a very simple form that can be assigned a measure
in a canonical way. The next section gives the details of this construction.

To conclude this section, some differences between the material presented here and that con-
tained in [Bacchus, 1990a] should be pointed out: first, unlike Bacchus, we make no restrictions
to structures with countable domains. On the other hand, rather than allowing probabilities
to take values in any totally ordered field, we only consider real closed fields, which provide the
best first-order definable approximation of the real numbers. Bacchus explicitly demands ho-
mogeneity and the product property for his semantical structures, but not the Fubini property.
This seems to be an involuntary rather than an intentional omission: in his proof theory he
uses an axiom that is validated only by the Fubini- but not by the product property. Bacchus
introduces the conditional probability expression as a field-term that is defined to be zero,
when the probability of the conditioning set is zero. Finally, in order to slightly simplify our
exposition, we here have made no provisions for “measuring functions” — functions that take
elements of the domain as arguments and return field-values.

2.4 Structures for Monadic Languages

In this section a constructive description of a class of continuous S-structures for monadic
vocabularies S is given. It is shown that for such vocabularies a “l-dimensional” struc-
ture (M, 1,5, (A, n)), with (2, 1) a continuous measure algebra over M that contains the
interpretations I(R) of the relation symbols in S, always can be extended to a statistical S-
structure (M, I,§, (A, ui),,) with (A7, pi*) = (A, u). Particularly, it will be the case that for
(A, 1) = (B, A) the o-algebra of Borel-sets, each (', uy') is a subalgebra of (8™, \"™).

The main reason why we here will spend some effort on the construction of these statistical
structures is the necessity of showing that there exist other types of statistical S-structures
than the simple real-discrete structures. If these latter type of structures were the only ones
that existed, then the whole complicated definition of statistical structures in terms of the
consistency and closure conditions could be dispensed with, and we could define a statistical
structure as real-discrete structure right away.

Intuitively it should be very easy to find suitable (', ui*) for building our statistical struc-
tures: sets definable in the monadic language will basically have to be boolean combinations
of measurable rectangles A; x ... x A, (4; € A), i.e. belong to the product algebra A™. It
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turns out, that this is essentially true, only that the situation is somewhat complicated by
the necessity to also accommodate subsets definable by the equality predicate in 2}, so that
letting ;" := A" is not quite sufficient.

While the structures defined in this section really are of a very simple nature, the proofs
that they have the properties we need are somewhat tedious, and the reader may wish to skip
them at a first reading.

2.4.1 Defining A’ and ;'

Apart from the product algebra 21", each 2} must contain the subsets definable via the equality
predicate. The most basic sets of this kind are of the form

Eij:={acM"|a(i)=a(j)} ije{l,... n}

The algebra X,, generated by the system {E;; | i,j € {1,...,n}} then must also be contained
in ;. X, is finite. The atoms of X,, are the nonempty sets of the form

NEij Eij € {Eij (Bij)}-

i,
It is easy to see that an intersection of this form is nonempty, iff

Jij & E;;=E;j
is an equivalence relation, so that the atoms of X,, are the sets
X(J) :={a e M" | a(i) = a(j) & (i,j) € J}
defined by equivalence relations .J on {1,...,n}. By theorem 1.2.13 we know that the algebra
A0 = AA", X)) (2.7)
is disjointly generated by the system
€= {ANX(J)| A= x",A4;, A; €, J an equivalence relation on {1,...,n}}.

Example 2.4.1 On {1,2} there are only two equivalence relations: .J; defined by (1,2) € J,
and J, defined by (1,2) ¢ Jo. Figure 2.2 shows two sets (A1 X A2)NX (J1) and (By X Bo)NX (J2)
belonging to &,.

The generating system &, provides the simplest and most intuitive description of the al-
gebra 2. To facilitate some of the proofs to come, it is advisable, however, to work with
generating systems &, C ¢, that only contain sets with some specific properties. To define
these properties, and at the same time to show that the subsystem of &, containing the sets
with these properties still generates 2A™, we take an arbitrary element E = x4; N X(J) € &,,
E # 0, and show how it can be divided into a finite collection of disjoint E; € &, of a simpler
structure.
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Figure 2.2: Generating sets of A5

First, for each i € 1,...,n let

Al = ﬂ A;
{ilG.9)el}

Then clearly x? ;AL N X(J) is an alternative representation of E for which
(i,7) € J = A; = Aj. (2.8)

Now let I7(E) be the set of indices i € {1,...,n} with finite A/ (the notation I/(E) is jus-
tified, because I (E) is indeed independent of the representation chosen for F, provided this
representation satisfies (2.8)). For each @ € X;c s (g)A; let

E(a) = X?:lAg N X(J>v

where
A — {a(i)} if i € I7(E)
" A\ {a()) | j e I/(B)} else.
Then
E= |J Ea).
AEX,; 1 f (mAi

Each nonempty E(a) is an element of &, of the form xA” N X (J) such that (2.8) holds (this
property is preserved when A! is replaced by A7 !), and furthermore

Vi |AY|=1or |AY|= o0 (2.9)

Vi,j |A|=o0cand |[AY|=1 = Al g Al (2.10)
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Calling a set E € &, simple if it admits a representation by A;’s that satisfy (2.8)-(2.10), we
obtain that
¢, := {E € &, | E simple} (2.11)

disjointly generates 2[;'.
Example 2.4.2 Let M = N, 2 = 2N Define

A = {n|n divisible by 3}
As = {n|n divisible by 5}

Az = {15}
Ay = {17,19}
As = {n|n prime}

Let J be given by the equivalence classes {1,2},{3}, and {4,5}. Let E = x?_;4; N X(J).
Taking the intersections of the A;’s belonging to the same equivalence class, we obtain

Al = A, = {n|n divisible by 15}
Ay = {15}
Al = AL = {17,19}

and I/(E) = {3,4,5}. The only elements a € Xicrs(p)A; for which E(a) is nonempty, are
a=(15,17,17) and o' = (15,19,19) with

B(a) = [A}\ {15} x AL\ {15} x {15} x {17} x {17}] N X(J),
E(a’) = [A}\ {15} x A%\ {15} x {15} x {19} x {19}] N X(.J),

so that F = F(a)U E(a’).

Lemma 2.4.3 For E € &, \ {0} there exists only one representation xA; N X (J) that satisfies
(2.8)-(2.10).

Proof: Let xB; N X(J') be an alternative representation of E. Clearly, then J' = J and
B; = A; for all A; with |A4;|= 1. From (2.8) and (2.10) it follows easily that for every element
a from an infinite A; there exists a € xA; N X(J) such that a(i) = a, so that a € B; follows.
In the same manner we obtain B; C A;, proving the lemma. O

In the sequel, when we consider sets E = xA; N X(J) € &,, it will always be assumed that
the given representation of E is the one that satisfies (2.8)-(2.10).

According to theorem 1.2.10, to define a probability measure p)' on A}, we only have to
define an FT- valued additive function 2 on &, such that po(M™) := 3, ud(M"NX(J)) = 1.
In view of example 2.3.11, and the fact that the resulting measures are supposed to have the

product property, it turns out that there can only be one way to define u.
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Ceneralizing the definition of X (.J3) in example 2.4.1, we let J7 be the minimal equivalence
relation on {1,...,n}, ie.
JZ ={(i,i) |i=1,...,n},

so that

X(J7) = {a € M" | a(i) # a(j) Vi # j}.
Define on &, \ {0}
(A) if J=J7

2.12
0 else ( )

Wo(ANX () = { W

with u"(A) = p™(x?_1 4;) = [T, p(A;) the product measure on A", and let u (@) := 0.
To improve readability, in the sequel the subscript n will be dropped from JZ, pu0, A™, ...
when in the given context an explicit reference to the dimension is unnecessary.

Lemma 2.4.4 0 is additive.

Proof: Let E=ANX(J), By =BnX(J'), Ba=CnNX(J") € &,\0 with E = E;UE).

It immediately follows that J = J' = J”, and that ul(E) = pl(E;y) + ud(E>) holds if
J # J7.

Suppose, then, that J = J#. If any of the factors A; of A is finite, then so are the
corresponding factors B; and C;, and, by the continuity of y, we have u(E) = pu°(E;) =
O (Bz) = 0.

The case in which all the A; are infinite requires a little work. We are going to show that
then there exists an ig € {1,...,n} such that

(i) Vi #ip C; C B;

(ii) B;y N Cyy =0

(iii) Vi £ io B;\ Ci is finite
(iv) Vi # iy C; is infinite

(modulo interchanging the roles of B and C throughout (i)-(iv)). Using (i)-(iv) it is then shown
that
Xi;ﬁio CZ X (BiOL'JCZ'O) C A - Xi;éioBi X (BiOUCiO)- (2.13)

Using u(B;) = p(C;) for all i # 4g (by (iii) and the continuity of x) we then get

p(E) = p"(A)
> p(Ci) (1(Big) + p(Ciy))
iio
p(B) + u(C)
= 1(E) + 1(Ey)

Similarly, by the right inequality of (2.13), it is shown that u®(E) < u®(E;) + p°(Es), and
hence the additivity of u°.
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We now turn to the proof of (i)-(iv). We have that
(xB;NX(J)) N (xC;NnX(J)) = x(BiNnCi)NnX(J) =0.

Thus, it must be true that for at least one ig € {1,...,n} the intersection B;, N C;, is finite.
A;, being infinite, one of B;, and C;, must be infinite too, meaning that at least one of B;, \ Cj,
and Cj, \ Bj, is infinite. Without loss of generality, assume that this is B;, \ Cj,.

To prove (i), let 7 # ig and ¢ € C; be given. Let c€ xC; N X (J) with ¢(i) = ¢. There
exists be xB; N X(J) with b(ig) € Bi, \ (Ci, Uc). Since both b and ¢ are in AN X(J), the
tuple ¢’ defined by /(i) = ¢(7) for i # ip and €' (ig) = b(ig) must also belong to AN X(J). ¢
can not be in Ey, thus ¢’ € Ey, and ¢ € B;. This proves C; C B; for all 7 # .

But now B;, N C;, = 0 must hold. Otherwise, for ¢ € Ey with ¢(ip) € B;, N C;, we would
have c € F4, a contradiction.

To see (iii), let ¢ € Ey. If B; \ C; is infinite for some i # ig, then there exists b € B; \ C;
with b # ¢(j) for j = 1,...,n. Using the same argument as above, we obtain that the tuple ¢’
with ¢/(j) = ¢(j) for j # i and /(i) = b belongs to Ei, a contradiction because c(ig) & Bi,.

(iv) directly follows from (i),(iii), and the fact that not both B; and C; can be finite.

It remains to show (2.13). We only show the left inequality, the right one being proven by
analogous arguments. According to our premise

ANX(J) =(BUC)nX(J).

By
xB; UxC; D Xi;éig(Bi N Cz) X (Bio U Cig) = xi;ﬂo(}'i X (Bio U C’io)

it follows that
AﬂX(J) D) Xi;,,gioci X (BZ'OUCZ‘O)HX(J). (2.14.)

To show that this inequality remains valid without the relativization to X (J), let i € {1,...,n}
and ¢ € C; if ¢ # 19, otherwise ¢ € B;, U C;,. By the infinity of the C; and B;, U C;,, there
exists ¢ € X;2;,C; X (B, U Cjy) N X(J) with (i) = ¢. (2.14) then yields ¢ € A, so that
C; C A; (i #14p), Biy UCj, C Ay, and we obtain the left inequality of (2.13). O

Theorem 1.2.10 now justifies the following definition.

Definition 2.4.5 Let A™, &,, 1Y be as defined by (2.7), (2.11), and (2.12) respectively. The
unique probability measure extending pd to A™ is denoted p™.

2.4.2 Consistency Properties of u}

Lemma 2.4.6 Homogeneity holds for p* (n > 1).
Proof: Let AN X(J) € &,, m be a permutation of {1,...,n}. Then

pr(r(A)) if m(X(J)) = X (J7)

p (m(AN X(J))) = p(w(A) N7 (X (]))) = { 0 clse.
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Since pu™(w(A)) = p"(A), and 7(X(J)) = X(J?) iff J = J7#, this is equal to ud(4 N X(J)).
Thus, 10 is invariant under permutations on &,.
With 7(Ey U Ey) = w(F1) Un(E>), this implies homogeneity of u)' on ;. O

Lemma 2.4.7 (A}'), is closed under products.

Proof: Because of the distributivity of unions over products, i.e.

UAiXUBj: U A/41'><BZ'7
i€l JjeJ el jed
it suffices to show that the product of £y € € and E; € € is in 2},;.
With By = x{_, A4, N X(J), By = x5_B; N X(J') we get

By x By = |J[(xk4i x xi_yBj) n X(79)] € 2y, (2.15)

J*
with J* ranging over all equivalence relations on {1,...,k+1} that satisfy (i,j) € J* < (i,7) €
Jfori,j€{1,...,k},and (i,j) € J* < (i—k,j—k)e J fori,je{k+1,....k+1} O

We now turn to the Fubini-property. For a motivation of how the proof that (A}, u), has
this property will proceed, consider the simpler case of the sequence of product algebras and
product measures (A", u"),.

Let A = xA; € € be one of the measurable rectangles that generate 2". To show that the
Fubini-property holds for A, let I C {1,...,n} with 1 < k:=|I|<nand I' :=={1,...,n}\ I
For every a € M we have o (A) = x e A; if a is in the projection p’(A) = X;c1A; of A onto
M, and ¢l (A) = 0 else (cf. figure 2.3). Thus, for 7 € [0,1], A7, = p’(A) if r < pp_r(Xjer4;),
and Ar, = 0 else. With y"(A) = pu*(xierAs)u™ *(xjerAj), this immediately establishes the
Fubini-property for A.

This result for A € €* must then be generalized to arbitrary A € A".

For (20!, u),, we will repeat essentially the same argument: first considering only elements
E € &, it is shown that the measure of sections o, (F) of E is independent of a, provided a is
in the projection of E onto M'. To this end, lemma 2.4.8 provides an explicit representation of
projections and sections of F, which enables us to prove in lemma 2.4.9 that E € &, behaves
just like a rectangle A € €* with respect to measures of sections and projections. It will then

be easy to prove the Fubini-property for (', ©i*),, in lemma 2.4.10.

Lemma 2.4.8 Let E = xA,NX(J) €&, E#0, I C{1,...,n} with1 <k :=|T|<mn, and
I' :={1,...,n}\ I. Then

(i) pl(B) = x4erA; N X(JT ).

(ii) For a € p!(E) : ok(E) = xcpAj(a) N X(J] I') with

e {a(i)} if3 el (i,j)ed
Aj(a) = { Aj\{a(i)|ieI} else.
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M 3a
MI —_——
pl(A) = Xier 4

Figure 2.3: The Fubini property for measurable rectangles

Proof: Denote xic;4; N X(J[I) by E®, and x jepA%(a) N X(J]I') by E@(a). To prove
the two parts of the lemma, we show that for all @ € M!:

ac EO = E)(a) £ 0, (2.16)
and that for a € M', be M":
(a,b) € E iff ae€ EY and b e E¢)(a). (2.17)
With (2.16) and (2.17) part (i) of the lemma follows by the equivalences for a € M:

acpl(E) ©3beM" (a,b)c E
o ac€ EW and E®(a) #0 (by (2.17))
& acEY (by (2.16)).

By definition, oL (F) = {b| (a,b) € E}. For a € p!(E), i.e., by part (i), a € E®), this set is
equal to E()(a) by (2.17), proving the second part of the lemma. It remains to show (2.16)
and (2.17).
For the proof of (2.16), let @ € E®. To define an element b € E®)(a)let I' = {j1, ..., jn_k},
and define
a ifA; ={a}
a(i) ifJiel(i,j)ed
b(jn) it 3Ih <l (Gp,51) € J
b(l) else
with b(l) an arbitrary element of the infinite set A7 (a) \ {b(j1),-..,b(ji-1)}.
By an induction on ! (1 <1 < n—k), we show that b(j;) is well-defined, i.e. when more than

b(ji) =

one of the first three cases distinguished in its definition holds, each of them defines the same
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element, that b(j;) € A} (a), and that (a, (b(j1),...,b())) € X(JT (TU{j1,...,5})) (this last
assertion is a little stronger than needed to show that be E((a), but is more convenient for
the induction step).

The base case [ =1 of the induction is just a simpler variation of the induction step and is
here omitted. Therefore, let 1 <1 <n — k.

Suppose that A;, = {a} and (i,5;) € J for some i € I. Then, by the definition of &,,
A; = {a}, and, because a € E(), a(i) = a. Similarly in the case A;, = {a} and (ju,5;) € J
for some h <I: again we then have that A;, = {a} = A} (using (2.10) for this last identity).
With the induction hypothesis b(jn) € A}, we get b(jn) = a. The final case we have to consider
when looking for a potential inconsistency in the definition of b(j;) is when both (7, j;) € J and
(in,4;) € J. But in that case we also have (i,j,) € J, and by the induction hypothesis b(jp)
has been (well-) defined as a(i). Again, the two definitions of b(j;) coincide. This completes
the first part of the induction step: the definition of b(j;) is consistent.

The second assertion that we have made is that b(j;) € A;fl(a). This is immediately seen
to be true if Aj; = {a}(= A} (a)), or there exists i € I with (7, ;) € J. The third case, b(j;)=
b(jn), is covered by A% (a) = Aj (a) and the induction hypothesis b(jn) € A}, (a). When b(j)
is defined by the “else”-case, b(ji) € A (a) trivially holds.

Finally, it must be ascertained that for all h < I: b(jn) = b(ji) & (Jjn,j1) € J, and that for
all i € I a(i) = b(j;) & (4,51) € J. The direction from right to left is trivial because of the
definition of b(j;). For the converse direction of the first equivalence assume that (ja,j;) € J.
In the case Aj = {a} this implies A, N Aj;, = 0 and thus b(js) # b(j;). In case that b(j;) is
defined as a(i) for (i, ;) € J, we get (7, jn) € J, and by induction hypothesis b(j,) # a(i). The
last case, b(j;) = b(l) is trivial. For the left to right direction of the second equivalence assume
that (i,7;) ¢ J. By analogous arguments as before, it is to shown that by whatever case b(j;)
has been defined, a(i) # b(j;) holds. This concludes the proof of (2.16).

The proof of (2.17) we begin with the left to right direction. Let (a,b)e E. Clearly,
a € X(JII) and be X(J|I'). Tt is immediate, too, that for all i € I, j € I': a(i) € A,
b(j) € A3(a), from which a € E®), be E(")(a) follows.

Conversely, let @ € E®), be E®(a). Obviously, then (a,b)e x?_1A;. To show that
(a,b)e X (J) it is sufficient to remark that for i € I, j € I' we have a(i) = b(j) iff (i,5) € J
by the definition of A%(a). O

With lemma 2.4.8 we can prove the next lemma, which essentially states that the Fubini-
property holds for EF € &, in very much the same way as it is given for measurable rectangles
(figure 2.3).

Lemma 2.4.9 Let E,I,I' as in lemma 2.4.8. Then p/(E) € A, and for every ac M?’:
oL(F) €A, For aal € pl(E): i (oh(F)) = ui_ (ol (E)), and

a'

i (B) = (" (B)) ' 1 (04(E))- (2.18)
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Proof: The measurability of p!(E) and oL (E) is established by the representations given in
lemma 2.4.8. Also, for a € p!(E) this lemma yields

0 ifdiel,jel (i,j) €l
! #
p (0 (E)) = or JIT # Jny (2.19)
HN(A]‘) else.

jer

Here it is used that when A¥(a) is defined as A; \ {a(i) | i € I'}, p(Aj(a)) = u(A;) because
p is continuous. Particularly, (2.19) shows that p, (0L (E)) is independent of the particular
choice of @ € p! (E). To prove (2.18), first assume that J # J7. Then J| I # J,Zé, JI I # ink,
or there exists i € I, j € I' with (4,5) € J. In the first case we get that u*(p’(E)) = 0, in the
latter two cases that pi,,_i(0L(E)) = 0.

Now let J = J7. Then p*(p!(E)) = [L;cs(4:). Together with (2.19) this yields

n

b (B) =[] w(4i) = wi (0" (B)) i 1 (04(E)).
i=1

Lemma 2.4.10 (2}, u),, has the Fubini-property.

Proof: Let A € A, I as in lemma 2.4.8. A has a representation F1U...UE,, with E; €

¢, (i=1,...,m). For a € M! define
K(a):={i€{l,....,m}|a€p/(E)}

(cf. figure 2.4(a)). Let Ki,...,K; denote the elements of the set {K(a) | @ € M!}. For
Je{l,... 1} let
M= {ae M'| K@) = K;} = () o'(E).
€K
By lemma 2.4.8, the sets M, are measurable. Since ol (UE;) = 001 (E;), we have for all
a
je{l,...,l} and a € M;
pnk(06(A) = D pn i (04 (E)),
iEKj

where, by lemma 2.4.9, this sum is independent of the particular choice of a € M;.
Let a; denote an arbitrary element of M;. For r € [0, 1] define

J(r) = {J’ e{l,... ] Y wnrlog)(Ei) > T}-

1€K;
(cf. figure 2.4(b)). Then

AI,T‘: U M]a
jed(r)
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r
Py i — _a i s B o
M1 MS M2 Ml
K(a)={2,3,4} =: K; Jr =1{1,2,3}
(a) (b)
Figure 2.4: Proof of the Fubini-property
and
ruf(Ary) = r Y uR(M;)
jeJ(r)
< Y[ pntk(og, (Ba)lu(M;). (2:20)
jeJ(r) €K

Using

pnk(0a, (B)) = pnt i (o (Eq)),
with a! an arbitrary element in p!(E;), the double sum in (2.20) can be rewritten as

m

Yo nlog (B) Y (M)

=1 {ied(r)lieK;}

N

IA
[ANgE
=
fE
ol
Q
Q\N
5
T
=5
<
T~
o

= Zﬂg(Ez) (by lemma 2.4.9)
i=1

= fin (4).
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2.4.3 The Closure Property for (2™,u™)

n

After the purely measure-theoretic considerations of the previous section, it now has to be
shown that the measure algebras (2,)',u;') are adequate for the language Lg when S is monadic,
i.e. satisfy the closure condition for such vocabularies.

The following lemma shows that this is the case, provided that the interpretations I(R) of
relation symbols R € S are in . The lemma will be proven by an induction on the structure
of ¢, and therefore also contains a suitable auxiliary statement for field terms t.

Lemma 2.4.11 Let S be a monadic vocabulary, (2, 1) a continuous measure algebra over M,
and I an interpretation function with I(R) € 2 for R € S. Then

(+) For every t(v,x) € FTg there exists a finite partition {A; | i =
1,...,k} QQ% of M"l such that for all 7 € FIT' j {1,...,k}, a,a’ €

A (M, v/a,x/r)(t) = (O, v/, 2/r)(1).
(++) For all p(v,x) € Lg there exist Ry,..., Ry, C FZl and mutually disjoint
Ar,..., Ay € UD with
M(p(v,x)) = UL, (Ai X R;).

Proof: We first note that it is sufficient to prove (++) without the condition of the A; being
disjoint, because for any Aj,..., Ap, a representation with disjoint A} can be obtained via

s

i=1 JC{1,..m} | i€J igJ icJ

The proof now follows the induction schema as described in 2.2.

(a): Let te FT¢ be first-order. Then t = t(x) only contains field variables, and (+) trivially
holds.
For first-order ¢(v,xz) € Lg we prove (++) by induction on the structure of ¢.
(aa): ¢ atomic: If ¢ is an atomic field formula, then ¢ does not contain any domain variables,
and
M(¢(x)) = R

for some R C F Izl Atomic domain formulas ¢ can be either of the form Rt, or t; = to with
domain terms t,t1,t2. S being monadic, these terms are either constant or variable symbols.

Under the condition that ¢ has at least one free variable, this leaves us with three cases to
be distinguished:

é(v) =Rv — M(é(v)) = I(R) € AP
plvy=v=a — M(P(v)) = {la} e A"
plv,w)y=v=w — M(P(v,w)) ={(a,a) | a € M} € AF
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(ab): Boolean operations: Let ¢(v,x) = ¢(v', ") Ax(v", 2"). We may assume that v = v/ = v”
and = &’ = z” because if not, we can replace (v’ ') by

(v, z) = P, z') A /\ v=0vA /\ T = x;

veEv\v' zex\z'

similarly for x. By induction hypothesis
M(¢(v, ) = U1 A; X Ri, M(x(v,2)) = Uj_1B; x S;.

Then
M(p(o,z)) = (UP,A; x R) 0 (UL, B; x )
= Uijj(Ai X Ri) N (Bj X Sj)
= Ui7j(Az' N B]') X (RZ N S])

For ¢(v,x) = —p(v, ) with M(P(v,x)) = U™, A; X R;, we get
M(¢(v,x)) = (Uidi X Ri)

ﬂi(Ai X Ri)c
= A(AS x F=l) U (MY x Re))

This set is as in (++) because each factor in the intersection has the prescribed form, and, as
shown in the previous step, this form is preserved under finite intersections.

(ac): Quantification: Let ¢(v,x) = Jup(v', x), where |v' |=|v| +1, v'(j) = u for some j <|v'|,
V(i) =wv(i) for i < j, v'(i) =v(i — 1) for ¢ > j. By induction hypothesis M(Y(v',x)) =
Ui(4; x R;) with A; € A 1. M(A(v,z)) is the projection of M()(v', z)) onto the coordinates
distinct from the j-th domain coordinate. Denote this projection by p. Then

p(Ui(A; X R;)) = U; p(A; X R;)

m
[v]’

form. The argument for the quantification of field variables is analogous.

By lemma 2.4.8, the given projection of A; is in A", so that the result again is of the specified

(b): Let t(v,x) € FT3. Fort = 2, t = 0 and t = 1 (+) has been shown in (a). Let
t =ty - to, {A; | i =1,...,k } the partition of M/?l associated with t;, and {B; | j = 1,...,k2}
the partition associated with ty. Then, for all » € FIZl, i € {1,...,k},j € {1,...,ks},
(M, v/a,x/r)(t - t2) is constant for all @ € A; N B;j. The system {A;NB; |i=1,...,k,j =
1,...,ko} therefore is a partition of AUy for which (4+) holds for t. Analogously for t1 + to.

Let t(v,x) = [¢p(v,w,x)]w- By (++), M(p(v,w,x)) has a representation U”, (A; x R;) with
mutually disjoint A; € Q%I +w]> R, CF 1zl We may assume that each A; is in fact an element
of &€y|4w|: otherwise replace A; by its representation as the disjoint finite union of elements
from the generating system. Let r € FI*I a € MV, and 04 (M(p(v,w,x))) the section of
M(p(v,w,x)) along a and r at the coordinates of v and x. Then
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M, v/a,z/r)(t) = ufy (M, v/a,z/r)($(v,w,z)))
= Mﬁu|(aa,r(mt(¢(vawaw)))
= i (U 0ar(4i x Ry)) (2.21)
=1
For each i, we have oqr(4; X R;) =0 it » € R;, and 0qr(A4; X R;) = 04q(A;) (the section
of A; along a at the coordinates of v) else. Hence, the expression (2.21) is equal to

i U oal) = Y uy(oa(40).
er, rer,

The last equality is due to the fact that with the A; being disjoint, so are the section oq(A4;).
By lemma 2.4.9 the measure of 04(A;) only depends on whether a is in the projection p(A4;)
of A; onto the coordinates of v. Hence, (M, v/a,z/r)(t) = (M,v/a’, x/r)(t), if

Viel,...,m CI,Ep(Ai)@CI,IEP(Az’)

This condition defines a finite partition of M'?l, thus proving (+).

(c): Let ¢(v,z) = ty(v,x) < to(v,x), {A; | i = 1,...,k} the partition of MI? associated
with ti, and {B; | j = 1,...,ks} the partition associated with to. For i € {1,...,k1}, j €
{1,...,ko}, @,a’ € A; N Bj, r € FI®| then

(M, v/a,z/r) = p(v,x) & (M,v/d,z/r) | ¢(v,z),
so that we can define
Rij:={re F® | (M v/a,z/r) |= p(v,x) for a € A; N B;},

and obtain
M(¢(v,x)) = J(4i N B;) X Ry ;.

4J
All other induction steps for ¢ are as in (a). O

Theorem 2.4.12 Let (2, 1) be a continuous §-measure algebra over M. Let S be a monadic
vocabulary, and I : S — 2. Then (M, I,F, (A, u™),) is a statistical S-structure.

Proof: Homogeneity, product-, and Fubini-property have been proven in section 2.4.2. It
remains to show that (M, v/a,z/r)(¢(v,w,x)) € Ay, for all p(v,w,x) € Lg, a€ M”, r€ F™.
This, however, is immediate from (++) of lemma 2.4.11. By that lemma we have

mt(d)(vawam)) = G Az X Rl
=1
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with A; € AR, - (M, v/a,z/r)(¢(v,w,x)) thus is the union of sections gq(A;), which by
lemma, 2.4.8 are in Q(ﬁlﬂ. O

With the class of real-discrete structures (example 2.3.7) and the class of continuous struc-
tures for monadic languages, as given by theorem 2.4.12, we now have provided constructive
descriptions of two distinct types of statistical S-structures. The lengthiness of the discussion
that has been necessary to establish that a sequence of measure algebras of as simple a form
as (AN, u™),, satisfies the consistency and closure conditions is an indication for how difficult
it might be, in general, to construct statistical S-structures. Future enquiries into the model
theory of .Z7, therefore, should be directed at obtaining further results on the existence of
statistical S-structures.

Of particular interest would be a general theorem stating under what conditions a measure
algebra (2, 1) over M can be embedded into the one-dimensional algebra (201, ¢1) of a statistical
S-structure.

To illustrate the need for such a theorem, consider the following L?-sentence:

Pt :EEIu([w:u]w>0/\E|v(v7éu/\[w:v]w: A

1
2
Vo(v #u — F' W #un[w=1"), = %[w = v]w))) .

This sentence (in a similar fashion as Abadi and Halpern’s [1989] encoding of arithmetic
in (real-valued) probability logic) postulates the existence of a sequence of domain elements
ai,as, ... with statistical probabilities y1({a;}) = 1/2°. Furthermore, there is one element b # a;
(¢ > 1) that also has a positive probability. Clearly, this sentence is not satisfiable by real-valued
probabilities. Taking § = R* (cf. example 1.2.4), however, we can construct a measure algebra
(A, 1) over M = {b,a1,as, ...} that is consistent with ¢™f by letting A = A/f the algebra of
finite and co-finite subsets of M, and y on A/f be defined by u({a;}) = 1/2%, u({b}) = ¢, with
€ an infinitesimal.

To prove that ¢'™ is satisfiable in .#7 (as seems save to conjecture it is), it now has to be
shown that there exists a statistical S-structure in which (A/f, 1) C (24, 1) Such a structure
can neither be real-discrete nor continuous, and hence must be obtained by other methods
than have yet been supplied. A general theorem on the embeddability of an algebra (2, i) in
a statistical S-structure might be a powerful tool to prove, in cases like this, the consistency of
L7-formulas.

2.4.4 An Example

By a slight modification of the construction of u;', we can now give an example of a sequence
(A, pin)n that satisfies Homogeneity and the product property, but fails to have the Fubini
property. This failure will be of a nontrivial sort in that the measurability conditions (2.2) and
(2.3) are satisfied, but (2.4) is violated.
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Example 2.4.13 Let M =N, 2 = Af 1 = ¢/ (cf. example 1.2.2 and 1.2.8). Let A®, &,
be defined as in section 2.4.1. Let J be the universal equivalence relation on {1,...,n}, i.e.
Jo=A{(,7) | 4,7 € {1,...,n}}, so that

X(Jy) ={a e M" | a(i) = a(j) Vi, j}.

Define on &, \ {0}

ANy =4 A BT 222
0 else,
and let gQ(0) = 0. We now show that we can obtain measures fi,, from i that satisfy

homogeneity and the product property.

As for 0, it must first be confirmed that 0 is additive: let E = AN X(J), Ey = BN
X(J), By =CnX(J") €€¢,\0. E= FUFE,. Again we have J = J' = J” and additivity
trivially holds if J # J; .

In the case J = J, by the definition of &,, we have that A; = A;, B; = B;, C; = C} for
all 7,5. A is either a singleton, or a cofinite set. In the first case F itself is a singleton, and
can in fact not be the union of two nonempty sets. Thus, Ay is cofinite, and either By or Cy
is cofinite also. Assume this is B1. By the disjointness of F; and E5 this implies that C; is a
singleton, so that il (E) = gl (E1) =1, % (E,) = 0. This proves the additivity of 0.

Let i, be the extension of 10 to a probability measure on A2.

X (J) being invariant under permutations, homogeneity is shown for fi,, as in the proof of
lemma 2.4.6.

The product property only has to be shown for elements of the generating systems: let
E,=AnX(J) € &, E;=BnX(J) € &. The product E; X Fs, is again given by (2.15).
If J# J, or J' # J, then J* # J, for all J*, so that fig1(Ey X Ea) = figx(E1)fi(E2) = 0,
which is also true when J = J-, J' = J~, but A; or By is a singleton. When J = J-, J' = J,
and both A; and B; are cofinite, then so is C' := A; N By, and from

Ei1 x By C xMlen X (J7)

it follows that fix;(E1 X E2) = fix(E1)m(E2) = 1.

That (A}, fi,,) satisfies the measurability condition (2.2) is immediate from lemma 2.4.8
(ii), which is independent of the definition of a measure on 2;'. The measurability conditions
(2.3
(

2.3) also can be proven as in lemma 2.4.10. However, from example 2.3.11 we know that
A, fin,) does not have the Fubini property because i, concentrates all probability mass on

“hyperplanes”.

2.5 #° Is First-Order Logic

By lemma 2.3.13, the logic .£7 is an extension of first-order logic. Since the syntax rules of
L7 strictly extend the syntax rules of first-order logic, this extension, in a sense, is strict. In
this section it will be shown that the additional syntactic construct of statistical quantifiers
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can be represented in standard first-order syntax, and that .7, in fact, can be understood as
a special formalism within first-order logic. A completeness result for .Z“then follows.

To reduce Z7 to first-order logic, first a translation from Lg to the first-order language
Ls., in a vocabulary Sec D S is defined. Then it is shown that the statistical S-structures
correspond to the class of standard model theoretic Soo- structures satisfying a certain set of
axioms, such that

Me, ¢ if M = ¢,
where 91 is a statistical S-structure, ¢ € Lg, 9" is the S- structure corresponding to M, and
¢* is the translation of ¢.

The method that will be used to achieve this result is related to the technique of skolemiza-
tion. Just as quantifiers are replaced by function symbols in skolemization, we will use function
symbols to eliminate the statistical quantifier [ ]q.

2.5.1 Substitution

The translations that we will be defining require that we first touch upon one of the most dull
of technicalities: substitution. Our treatment of this subject here is very much the same as the
one given in [Bacchus, 1990a).

In order to handle substitution properly, a set of rules must be given that for a formula
¢(v,x), domain terms t, and field terms s defines the formula ¢(v,x)[v/t, x/s] in which the
variables v and x are replaced by t and s respectively, and the bound variables of ¢ are
appropriately renamed.

Substitution in ¢ € Lg is defined by induction on the construction of ¢ just as in standard
first-order logic, with the following additional rule for substituting into a probability term.

Definition 2.5.1 Let ¢(v,w,x) € L, t(v') a tuple of domain-terms, and s(v', 2') a tuple of
field-terms with |t |=|v| and |s|=|x|. Assume that substitution in ¢ has been defined. Let
wnew be the |w| - tuple of domain variables that in its i-th place has w(7) if w(i) € v/, and a
new variable, not occuring in either ¢ or v/, else. Then

[p(v,w,2)]w [v/t, /5] := [p(v,w,2)[w/whnew][v/t, 2/]|wpe,-

Example 2.5.2 To make the substitution [v3/g(v2)] in ¢(v3) = [Fvaf(va,v3,v2) = v1](

v1,v2)9
define wpew = (v1,v5). Then

Plvs/g(v2)] = [p(v1,v2)/(v1,v5)][v3/8(v2)]] 0y 0s)

= [Fua f(va, g(v2), v5) = V1)(0y,05)-

The following lemma concerns the associativity of two substitutions. It will be needed in
the proof of some technical lemmas below.

Lemma 2.5.3 Let t(v,x) € FTg, ¢(v,z) € LE,

t(v') == (t1(2'), ..., tjy (v)) € DTE, and
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Then
(+)

Eotlo/t(0), x/s(,2")][v' V", &' [2"] = tjv/t[v' /v"], x/s[v [V, 2’ [2"]].

0 L b/t afsw, 2l o2 fa] ¢+ oloftl /o], /s o a f]

Proof: The proof is by induction on the structure of t and ¢, the details of which are omitted.
Note, though, that for the base cases of the induction it is essential that for each of the variables
of t (each of the variables of ¢) a substituting term is explicitly specified — even though it may
be the variable itself: consider the term t = x as an example. Then

tly/z][z/1] = t[z/1] =1
while
tly/xlz/1]] = tly/1] = =,

clearly non-equivalent terms. On the other hand

tlz/z,y/x][z/1] = t[z/1] =1
as before, but now
tlz/ale /1], y/x[z/1]] = tlz/1,y/1] =1

as well. 0O

2.5.2 The Translation

For a vocabulary S we define a vocabulary Soc D S, a translation (-)* : L§ — Lg_, and a
translation (-)7%: Ls_ — L.

For the sake of convenience, we shall work with a sorted first-order logic, i.e. just as in Lg

oo ?

we will use in the target language Lg_ variables v and = designating objects of two different
sorts (called D for domain and F for field). With each n-ary function symbol f € Sy a
tuple (s1,...,s,,1) (si € {D,F}) is associated, meaning that in a well formed formula the i-th
argument of f must be of sort s; (i < n), and the resulting f-term itself is of sort s, 1. Similarly,
an n-ary relation symbol R is said to be of sort (si,...,s, ) iff the i-th argument of R is of sort
S;.

Using variables of different sorts is not a true extension of first-order logic. The increase in
expressive power obtained in this way could also be gained within the framework of standard
first-order logic by introducing two new unary relation symbols D and F, and relativizing each
quantification of a variable to the appropriate one.

The basic principle of our translation is best demonstrated by an example first. Consider
the probability term

t{u,v) = [Ruvw A T’ Sv'w),,.
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In L9 this term behaves like a binary function symbol with the two arguments v and v. We
may therefore try to replace t by a standard first-order term

! (u, v)

where f! is a new function symbol with / a name or label encoding the fact that f!(-,-) represents
[R--w A 3 Sv'w]y,.
This label will be of the form

I = Rajoow A F' Sv'w, w

with a1, ap auxiliary variables standing for the place where the first and second argument of f
are to be substituted. The term f!(u,v) then contains all the information necessary to regain
t.

The translation of t to fl(u,v), however, is not yet uniquely determined: apart from the
given function symbol f!, we might also use the label

I' = Rapajw A I Sv'w, w

where the two auxiliary variables a; and ap have been interchanged, and translate t by f* (v, u).

To avoid this ambiguity, we assume that there exists an order on the set of all domain
variables we use. The field variables, too, are supposed to be taken from an ordered set. Then
there will be only one translation of t where u and v appear sorted as arguments of f!. If, for
instance, u < v in the given order, then t will be translated by f'(u,v).

To prepare a formal treatment of the translation outlined here, we first fix the necessary ad-
ditional conventions regarding the use of variable symbols. To obtain an order on the variables
used, we simply restrict the translation to formulas only containing domain variables from the
ordered set {v1,v,...}, and field variables from {x1,z2,...}.

If v is any tuple of domain variables, then ocv denotes the permutation of v with sorted
components. Analogously for tuples of field variables. For two tuples v,w, o(vUw) is the
sorted tuple whose components are the variables occuring either in v or in w. Example:
o((vs,v1), (v1,v5)) = (v1,v3,v5).

In addition to these variables we will also use sets of auxiliary domain variables {a1, as, ...}
and field variables {(1, (2, ...}. The only tuples of auxiliary domain variables that we are going
to encounter will be of the special form (aq, @, . .., o) for some k. For this reason we introduce
the additional convention that o * denotes this specific tuple. The parameter k, i.e. the length
of a, will usually be apparent from the context, in which case we simply write a. Similarly,
by convention, ¢ = ¢* = ((1,..., () for the appropriate k.

The new vocabulary S, is defined inductively. In each step new function and constant
symbols are derived from the language obtained by the previous step. All the new function
symbols will be of sort D*F! for some k > 0, [ > 1. To begin, define

Sp:=SuU {0, 1,4, S}

Each n-ary function and relation symbol of S is of sort D"*! and D™ respectively, while + and
- are of sort F3, < is of sort F2, and 0,1 are of sort F.
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Now assume that S,, has been defined. For a formula ¢(v,w,z) € Lg , the pattern of ¢ with
respect to v, written p(¢;v), is the formula obtained by substituting the auxiliary variables o
for ow, and ¢ for oz in ¢:

p(¢;v) :== Plov/a,0z/C].

Note that p(¢;v) only depends on v as a set, not on their order in v.
For each pattern p(¢;v) of a formula ¢(v,w,x) € Lg, \ Lg, , with w # 0 (define Lg_, =0
for the first step of the induction), and each permutation 7w of w let

fP(¢;0),mw

be a new function symbol of sort DI?l FIZI+1 1f 4 = 2 = (), then fP> is a constant symbol of
sort F.
Let S,,+1 denote the union of S,, and the set of these new symbols. Finally, define

Seo := |J Sn and Sy :=S \ So.
neN

Example 2.5.4 The pattern of
¢ = Rugvouavy € LSO

with respect to v9 and v3 is

Po = p(¢; (v3,v2)) = Ragarvav;
Thus, the two new function symbols

fpo,(v4,1)3) and fpo,(’Ua,U4)
are contained in S.

Next, a translation from terms and formulas t,¢ of Lg to terms and formulas t*, ¢* of Lg__
is defined:

Domain-terms: If t is a domain term, then t* :=t.
Atomic domain formulas: If ¢ is an atomic domain formula, then ¢* := ¢.
Boolean operators: (¢ A)* := ¢* Ap* and (—¢@)* := —¢*.
Quantification: (Jve)* := Jvg* and (Fxp)* := Jzo*.
Field-terms: (a) z* := x.
(b)0*:=0 1*:=1
(C) (t1 + tg)* = t’{ + t;, (tl . tQ)* = tT . t;.
(d) ([p(v,w,x)]w)* = P2 gy, o).
Atomic field formulas: (t1 < t2)* :=t] < t5.

Observe that the translations t* and ¢* have the same free variables as t and ¢, respectively.
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Example 2.5.5 Let S contain a three-placed relation symbol R, let
¢ = Vauy ([Rvgvlvg](vhvs) > x - [[Rugvivg]y, > x]v3) .

¢ states that the Fubini-property holds for certain sets definable via R and is therefore a
tautology of L?. From the formula

$o(v1,v2,v3) := Rugviva € Lg,

the two patterns
po := p(¢o; (v2,v3)) = Ragviay and
p1 := p(¢o;v2) = Ruzviag

are derived, which give rise to function symbols fPo:*1, fP1:(v1,%3) ¢ S, Since &6 = Po, we get

([Rvgvivaly, )* = PO (vg,v3) and

([Ruzv1va)(v; 0s))" = FP1(v108) (y).
The pattern of
¢1(v2,v3, ) := ([Rvgviva]y, > x)* = PO (v9,v3) > € Lg,

with respect to vs is
p2 = p(¢1;v2) = PO (an,v3) > (1,

so that fP2:¥3 is an element of Sy of sort DF2. Then
([[Rvgviva]e, = @fuy)* = 72" (02, @),

and finally
¢ = Vv (fpl’(vl’”"‘)(vz) > x - P23 (1)2,33)) .

We will also be needing an inverse mapping (-)~! that translates Soo- terms and formulas
back into LE. Like (-)*, the inverse will be preserving free variables. For the definition of
(\)~! an order on the variables is not needed. Therefore 1)~! will also be defined for ¢ € Lg__
containing auxiliary variables «;, (j,...; specifically the inverse p~! of a pattern p becomes an
Lg-formula containing auxiliary variables a;,(j, .. ..

We proceed by combining an induction on the number n for which t,7 € Lg, with an
induction on the structure of t and .

The base case n = 0 is trivial. For t an So-term, ¢ an Sy-formula, simply define t~! := t,
=1 := 1. Now assume that t ! and ¢/~ have been defined for S,,_1- terms and formulas, and
that this translation preserves free variables.

Specifically, if f = P € S,,, then the pattern p = p{a,w, ) is a formula in Lg,_, contain-
ing auxiliary variables & and ¢. By induction hypothesis, p~! € Lg is defined and contains
just the free variables a,w, and (.

Now let t be an S,-term. The only nontrivial step in the inductive definition of t~' is the
case

t =t(v,x) = P (t1,...,tg,51,...,8)
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with fP% € S,, of sort D*F!*! t;(v), ..., tx(v) € Lg, terms of sort D, and s (v, ), . .., s;(v, ) €
Ls,, terms of sort F. The t;(v) are in fact in Lg,, and (t;(v))~! = t;(v). By induction hypothesis
(of the syntactic induction in Lg,), (s;(v,2))~! € FTg is defined for i = 1,...,1. Let

th = (61 (0) e (B (0) ),
s7l:= ((sy(v, )7 1,..., (ss(v, )~ L).
Define
(FP¥(ty, .ty s1,-e,8y)) L= [p Hwla /t 71, ¢ /571
Once the inverse t~! is defined for S,-terms, the inductive definition of 1)~! for ¢ € Lg,, is
trivial, and effectively consists of replacing all field-terms in ¢ by their inverse.
Example 2.5.6 Let
lﬁ(vl, ’1)2) = fpout (’Ul, 0.5, fpo.v1 (Uz, 0.3, 1)) <1
with
po = (1 < G2 ARvia € Lg,.
Then pal = po, and
(fP1 (02,0.3,1)) " = [poluy [1 /02, €1/0.3, (2/1] = [0.3 < 1 ARwiwo]y,-
Thus
Pt = [polu [a1/v1, €1/0.5, (2/[0.3 < 1A Ruvjva]y,] < 1
= [0.5 < [0.3 <1 ARvjva]y, A Ruzvi]y, < 1.
When ¢~ is translated back into Lg__, the result obviously can not again be 1, because (-)*
never produces f-terms (f € S;) with arguments other than variables.

To compute (p71)*, let
p1=0.3 < 1ARva.

Then
(0.5 < [0.3 <1A vavg]m A RUgUl)* =0.5 < fP1¥1 (UQ) A Rugvq.
With
p2 = 0.5 < P11 (012) A Ruza
we get

(zp*l)* = fP2Y3 (py,v9) < 1.

What about ((¢p~1)*)~!? To find this formula, first the inverse of ps has to be computed. With
pfl = pi, this is
Pyt =05 < [pr]y[e1/ag] ARvza
= 0.5 < [0.3 <1 ARviag]y, ARusas.
Thus,

3 'Jos o /v1, a2 /va] < 1
= [0-5 < [0-3 <1A vavg]vl A Rvgvl]% <1
1

=y

(=)~
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1

This example shows that (-)~! is not one-one. The two different formulas 1 and (¢»~1)* are

mapped to the same Lg- formula. When applied to a formula of the form ¢* with ¢ € Lg it
gave the original formula ¢ as a result. Lemma 2.5.8 shows that this always is the case, thereby
giving a justification for calling (-) ! the inverse (of (-)*).

The following technical lemma will be needed for the proof of lemma 2.5.10.

Lemma 2.5.7 Let ¢(v,xz) € Lg_, v/, &’ be tuples of domain and field variables. Then
Fo (9lv/v, x/2')) ™ < o7 v/, x /] (2.23)
Proof: The proof is by induction on the structure of ¢. The key step is to show that

Eo (P (t1(v),...,te(v),s81(v,2),...,s5(v, ) [v/v, x/z'])~"
= (fPY(ty(v),...,tx(V),51(v,2),...,51(v,2))) /v, /x| (2.24)

for fP* € S, . Using the notation
t(v) = (t1(v),..., te(v)), s(v,z) = (s1(v,2),...,s51(v, T))

the first term in 2.24 is
[P~ wle /t[v/v'], ¢ [s[v/v', z/2]).

By lemma 2.5.3 this is logically equivalent to

P wla /t(v), ¢/s(v, ®)][v/v, z/],

which is just the second term in (2.24). This proves (2.24). We omit the remaining steps of
the induction. O

Lemma 2.5.8 For all ¢ € L: (¢*)7! = ¢.

Proof: The proof of the lemma basically relies on the fact that when ¢ € Lg__ is of the form
Y = ¢*, all the substitutions performed in the definition of 1)~! are trivial, i.e. do not require
any renaming of bound variables.

For a formal proof, it is useful to prove a slightly stronger statement for ¢ together with an
analogous statement about field terms t € FTg.

(+) For all t(v,x) € FTg, tuples of domain variables vpeyw, and field variables

'Tnew

(t*[ov/Vnew, rfalz/acnew])_1 = t[ov/Vnew, 0L [ Tnew]-

(++) For all ¢(v,x) € LE, tuples of domain variables vnew, and field variables
Tpew, for which either vyew (i) = ov(i), Or Vhew (i) is @ new variable not

appearing in ¢ (analogously for Tpew):

(¢*[ov/Vnew, ‘733/53116W])71 = ¢[ov/Vnew, 0T [ Tnew]-
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The proof is by induction on the structure of t and ¢. The expression [0V/VUnew, 02/ Tnew]
henceforward is abbreviated by |[...].
(a): Let t, ¢ be first-order. Since both (-)* and (-)~! are the identity in this case, (+) and
(++) trivially hold.
(b): Let t e FTE. If t = x then (+) is clearly true. For t = t; + to we have

LD =+l D

GRS N

(G PP e = PO

=ty[..] + taf-- ] (by induction hypothesis)
(t1 +t2)[- -]

=t[...]

The case t = t - t2 is treated analogously. Now let t be of the form [¢(v,w,x)]w. Then
...~ = (PO )Y (gp, ox)]...]) "
= (fPE" Y (e, Tnew)) !
= [p(¢*;0) " Jw [ /Vnews € /@new]
= [(¢*lov/a, 02 /¢]) N [ [Vnews € /Tnew]

= [plov/a, 02 /¢ ]]w [0 /Vnew; € /Tnew] (ind.hypoth. for ¢)
= [¢lw [ov/a, 02 /(][ [Vnew, € [ Tnew] (wNa =0)
=t[...] (by lemma 2.5.3)

(c): Let ¢ € LE. If ¢ is an atomic domain formula, then (++) trivially holds. When ¢ = t; <t
is an atomic field formula, we get

(@[ D7 =t <83l

. (ind.hypoth. for tq,t2)

The induction steps for ¢ = ¢1 A ¢o and ¢ = =) are trivial. For ¢ = Jup(v, u, z) we get

@ [-D7 = (Cuw).)7
= (Qu@ -] (4 & vnew)

= Ju(y*[...]) 7t
= Ju(y]...]) (ind.hypoth. for 1)
= (Juy)[...] (u & Vnew)

Identically for quantification over field variables.
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2.5.3 Corresponding Structures

After the purely syntactical considerations of the previous section, we now consider the corre-
spondence of statistical S-structures and a certain class of Syc-structures.
First we give a canonical construction of a two sorted Seo-structure

m* — (M*,F*,I*)

from a statistical S-structure M= (M, I, T, (™An, tin)n)-

The basic idea is very simple: we leave the standard parts (M, I) and § of 9t unchanged,
and substitute suitable interpretations of the new symbols S; for the measure component
(A o )n Of M.

Thus, let (M*,1*S) := (M,I) and (F*,I*[ {0,1,+,-,<}) == §.

It remains to define the interpretations of function symbols in S;. If f =P is of sort
DFFHL then p~! is an Lg-formula with free variables o, w, and ¢. Thus, we may define for
a € Mk, r e F:

r'(f): (a,r) » M a/a,¢/r)([p" w)-
The following lemma demonstrates the close correspondence between 90t and 9*.
Lemma 2.5.9 Let 9 be a statistical S-structure, 9* the corresponding Seo-structure. Then
(i) for each Soo-term t(v,x):

(M, v/a,x/r)(t) = (M,v/a,z/r)(E"),

(ii) for each Sy-formula ¢(v,x):
M*($(v,x)) = M(¢~ (v, @),

(iii) for each S.o- sentence ¢:
M=y 0 iff MEo L

Proof: (i): By induction on the structure of t. The only nontrivial step is
t= fp’w<t1(v)7 s 7tk(v)7 Sl(vv m)7 s 7Sl(v7 .’If))
Assume that (i) holds for the t;,s;. Abbreviating (M) v/a,a/r) by (M) ...), then

.. )() = (P2 (.. ) (k1) ..., (V.. )(s1))

(
D)), () (s )
= (M e/ )Y, /@) ) (P w)
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(ii) and (iii) immediately follow from (i) by induction on the structure of ¢. O

Lemma 2.5.9 (iii) is the first important building block for the reduction of L?. The sec-
ond one will be a first-order axiomatization of the class of S..-structures that correspond to
statistical S-structures. More precisely, we shall define a recursively enumerable set of axioms
AX C Lg__, such that for every Soo-structure 91: if 9 = AX then a statistical S-structure 9~*
can be defined so that an analogy of lemma 2.5.9 holds for 9t and 9 ~1.

The axioms in AX are divided into four groups. In the first group are the axioms of real
closed fields:

e Let RCF be as in definition 1.2.3.

The second group of axioms make sure that the interpretations of the f € Sy can be used
to induce a function on definable subsets of the domain. We call this collection of axioms SF
for “Set Function”.

e For all p(v,w,x), (v, w', x’') € Lg_ with |w| = |w’| let SF contain the axiom

Vov'zx' (Yu(plw/u] < Y[w'/u]) —
PO (g, o) = FPE)W (o O—w')) (2.25)

where u is a tuple of variables with u Nv =unNv' = 0.

That the f €S define not only a set function, but a probability measure is ensured by the
axioms PM:

e Let PM contain

— For all f € S the axiom
Yoz f(v,z) > 0. (2.26)

— For each n and 7, := (w1 = w1 A ... Awy, = w,) the axiom
fP(ni0)w — 7. (2.27)
— For all ¢(v,w,x), (v, w,x’') € Lg_ the axiom
Vou'za' (—EIw(d) A1p) — FREEVERUW (54 o), o(z U ')

= P W (g, o) + FPHIY)W (5o, aw')) (2.28)
The next set of axioms, HOM, provides for the homogeneity of the probability measure:

e For every pattern p and every pair of function symbols fP-™W_{P.m® HOM contains the

axiom
Yoz (fPMY (v, &) = fPm2% (v, x)). (2.29)
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Finally, the Fubini-property must be axiomatized.
e For ¢(v,w' w' x) € Lg_, let
¢ (v, W', z,y) = POV Gy Uw'),ox) > .
where y € . FUB then contains all the axioms of the form

Yoy (PO W) (gy, 02) < y - PEOY (v, 0(z Uy))). (2.30)

Finally, let AX := RCF U SF UPM UHOM U FUB. Clearly, AX is a recursively enumerable
set of axioms.

Lemma 2.5.10 Let 9 be a statistical S-structure. Then 9" = AX.

Proof: For the proof compute the inverses of the given axioms and check that they are
tautologies in L?. The assertion then follows by lemma 2.5.9. We only give the details for the
axioms of FUB.

Let ¢ be an instance of the FUB-schema given by the formula ¢(v, w’, w”, ). To simplify

notation, assume that v = (Uo, ce ;Uk—l), w = (Uk, .. ,vk_H_l), w' = (Uk—l—la .. 7Uk:+l+'m—1)7
and @ = (zg,...,Tp—1). Then
(fP(&), (W W) (g )71 = [p(d);v)*l](wziwu)[ak/v,C"/w]
(P (v, 2,9) 7" = [(p(¢;0) Huwla®/v,¢" (2, y)]
p(@iv) = (PEEEY (o ) >y [v/a, (@,y)/¢" )

(65 (v, W) g [(@y - - -, r1—1) /W] > Crpr-

Putting things together,

vt = Yomy ([(0(650) Yo ) >
y - [[p(es (v, w") e [(@ks - - -, Qhyi—1) /'] > y]w,) (@t /v, ¢ ).

By lemma 2.5.7
Fop(d50) ™ & 67 v/ak, z/¢m)
o p(; (v,w)) ™ & ¢~ (v, W) Ja kT /¢,

so that ¢~ is logically equivalent to
vozy (([6 1 [v/a*, /¢ w wr) >
y- 07 [(v,w) /a1 @/ (s - i) /0] > Yl ) [0F/0,¢7 /)

= Vozxy ([d)‘l](wf,wu) >y [[o7 > y]’w’)

The last formula clearly is a tautology of L. O
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Now assume that 9 = (M, F,I) is an S-structure with 9 = AX. We construct a
corresponding statistical S-structure M~ = (M1, 171 F, (Un, fin)n)-
The standard part of 9M~! is straightforward:

(M1 Y :=(M,I1S) and §:= (F,I11{0,1,+,-,<}).

The measure component (2, 4, ), must, of course, be gained from the interpretations of S
in M.

Let %A, consist of all subsets of M™ that are first-order definable by an S..-formula with
parameters:

A, = {(M,v/a,z/r)(¢{v,w,x)) | plvw,z) € Ls_,a € M re F2}.

It is easy to see that 2, is an algebra, because of the correspondence between set theoretic
intersection and complementation on the one hand, and syntactic conjunction and negation on
the other.

For A= (M, v/a,xz/r)(¢{v,w,x)) € A, define

pin(A) == (M, v/a,z/r)(fPEVY (g, ox)). (2.31)

Since M = SF, u, is well defined, i.e. p,(A) does not depend on the particular choice of ¢.
From 9 |= PM it follows easily that u,, is a probability measure on 2,,. Also, it is immediate
from M = HOM that u, satisfies homogeneity.

(,)n is closed under products because the product of

A= M v/a,x/r)(p(v,w,x)) and
B =M, v'/ad, &' [v")(¢' (v, w', x'))

where, without loss of generality, (v U w) N (v Uw') = z Na’ = 0, can be defined by (¢ A
(v, v, w, W'z, x').

It remains to show that (i), has the Fubini property, which we shall do in a little more
detail.

Let A=(Mv/a,x/s) (p(v,w,x))€ Up, I C{1,...,n} with1 < k:=|I|<n and a’ € ML.
It must be shown that 0{1, (A) e A, g, A1, €Uy for all v € [0,1], and pn(A) > 7 pug(Ary).

Since the 2A,, are closed under permutations, and p,, is homogeneous for every n, it suffices
to consider the case I = {1,...,k}. With

w = (w(l),...,w(k)) and w" := (w(k+1),...,w(n))

we then have
U(IZ,’(A) = (Sﬁa U/a’ wl/ala iL‘/S)<¢(’U, wla w”a iE)) € Wp—g-

As in the definition of FUB define

¢ (0,0, @, y) = POV (5(p, ), o) > y.
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Then
Ay ={a' € M"| pn_i(0g(4) > 1}
={a' e M| (M, v/a,w'/ad,x/s) (fp(¢5(”’w'))’w"(a(v U w'),aa:)) >r}
={a' e M| (M, v/a,w'/a’,x/s,y/T) (fp(¢?(”’w’))’w”(a(v Uw'),ox) > y)}
= (M, v/a,z/s,y/r)(¢'(v,w',z,y))
€ Ay.

By definition
ue(Ary) = (M v/a,@/s,y/r) (fPE0Y (0v,0(2,y))) and
Ha(4) = (M, v/a,2/s)(PE (00, 02))
Since M = FUB, we have
(M, v/a,z/s,y/r) | PE0(ov,0z) > y - PO (gv,0( U y)),

and thus
pn(A) 21 pe(Arr).

We now have shown that (2, n)n is a sequence of algebras and measures that satisfies the
consistency conditions. This is not quite enough to prove that

Sﬁ_l = (M_laI_la’Sa (mnaﬂn)n)

is a statistical S-structure: it remains to be shown that for any variable assignment + and every
field term t € FTZ, (M, ~)(t) is defined. Part (i) of the following lemma asserts that this is the

case.

Lemma 2.5.11 Let 9 be an Soo-structure with 9 = AX.

(i) For all t(v,x)e FTE, a € MY, » ¢ Fi&l. (91 v/a,z/r)(t) is defined and equal to
(M, v/a,z/r)(t").

(if) For all (v.a) € Lg: M~ (9(v.a)) = M6 (v, 2)).

(iii) For all sentences ¢ in Lg: M =, ¢ iff M = ¢*.

Proof: (i) and (ii) are proved simultaneously by induction on the structure of t and ¢.
(a): For first-order t and ¢ (i) and (ii) are trivially true.

(b): Let t=[¢(v,w,x)]. Then, by induction hypothesis, (M1, v/a,z/r)(¢(v,w,x)) is defin-
able in M via ¢* and therefore in A 4, . Also, by definition

(gﬁila v/a’a :B/’I‘) (t) = N\’w\((milv v/a, w/r)(¢<vvw7w>))
= pw (M, v/a,z/r)(¢" (v, w, z)))
= (M, v/a,x/r)(fPE V)Y gy, ox))
= (M, v/a,xz/r)(t*)
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(c): Let ¢(v,z) € Lg and assume that (i) holds for every probability term appearing in ¢.
Then (ii) holds for every atomic subexpression of ¢. The remaining induction steps on
the structure of ¢ are trivial, so we conclude that (ii) holds for ¢.

Part (iii) of the lemma is immediate from (ii). |

With the preceding lemma we are finally ready to formulate the reduction of .£° to first-
order logic in the following theorem.

Theorem 2.5.12 For all ® C Lg, ¢ € Lg:
Sl=,0 iff &*UAX | ¢".

Proof: “=:" Let ® =, ¢, M be an S-structure with M = &* U AX. Since M = AX,
there is a corresponding statistical S-structure M~ with MM~ =, & by lemma 2.5.11. Then,
M~ =, ¢, and, again by lemma 2.5.11, M = ¢*.

“e" Let ®*UAX = ¢*, M a statistical S-structure with M =, . By lemma 2.5.8 & = (®*) L,
so that with lemma 2.5.9 9" = &*. With 9" = AX we conclude that 9" = ¢*, and once
more by lemmas 2.5.8 and 2.5.9, M =, ¢. O

What consequence does theorem 2.5.12 have for our understanding of #°7 Putting it
severely, it may be said that L7 basically is nothing but a shorthand notation for a certain
class of first-order theories — a notation that certainly provides a tremendous improvement in
the readability of formulas.

The main benefit we gain from the reduction of £ is its inheritance of many nice properties
of first-order logic. First of all, we get a completeness result for .Z7: A complete formal proof-
system for first-order logic, together with the translation rules for (-)* and (-)~!, and the new
set of axioms AX, provides a complete formal proof-system for .£°. Furthermore, the two
most important consequences of the completeness proof for first-order logic — compactness and
the Lowenheim - Skolem - theorem — are seen to also hold for £°. (For the Lowenheim-
Skolem-theorem observe that the transformation 9t — 9M* preserves the domain and hence
the cardinality.)

The proof-system for £ that has been outlined above, which includes translating back and
forth between L and Ls__, would certainly be very awkward to work with. However, we can do
without these translations by using a proof-system for .Z? that consists of a proof-system for
first-order logic handling probability terms [¢] just like ordinary terms (except for the extra
explanation for how to perform substitution into such a term), and the translated set of axioms
AX !, The resulting proof system will then look the same as the system given in [Bacchus,
1990a). Bacchus proved completeness for his system directly. In the light of the results of this
section it is not surprising that his completeness proof is essentially a standard completeness
proof for first-order logic, with the necessary extra considerations added for probability terms.

Note that none of the material contained in this section depends on the fact that we assume
probabilities to take values in real closed fields. The only important point here is that they
take values in a definable class of structures, and that they are only required to be finitely
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additive. Therefore, the same completeness result obtains if we were to use probabilities in a
simpler type of structures than rc-fields, which can be interesting either for the reason that a
simpler “qualitative” notion of probability is intended to be formalized, or in order to obtain
simpler inference procedures for automated deduction.



Chapter 3

Default Reasoning About Probabilities:
An Analysis

3.1 Subjective Probabilities and Degrees of Belief

For statistical probabilities it has been fairly easy to give a precise definition of their meaning.
The semantics of probabilistic statements that refer to what we have decided to call subjective
probabilities is much more difficult to define.

The following three examples certainly fall into the category of subjective probability state-

ments.

“The probability that a one, two, or three has turned up at this throw of the die is
0.3”

“The probability that this film is an American production is < 0.5.”

“With a high probability his father was an actor.”

The manifest difference between these statements and the statistical probability statements
considered in section 2.1 is that here there is no mentioning of a general class of events in which
a relative frequency of a specific property could be observed. Rather, the subject of each of
our new statements is one specific event — a specific toss of a certain die, an individual film we
are currently watching, a certain person (we continue to use the more abstract term “event”
to designate any kind of subject in a subjective probability statement, be it an event like the
toss of a die, or an object like a mystery film). For each of these events it is either true or false
that it has the property under consideration. The probabilities stated describe the uncertainty
of our knowledge, or our degree of belief, about which of these two alternatives holds in reality.

Different people will usually have different information pertaining to a given event, so that
their judgment of the likelihood that it possesses a certain property may be quite different. This
is in clear contrast to the statistical probabilities: they are understood to describe objective
features of the world, and any two people who make a statement of their value should, in
principle, agree as to their magnitude.

This alone does not completely justify the use of the term subjective probability because
one may argue that a personal degree of belief — at least by a perfect rational agent — can

60
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be derived as a necessary consequence from the given partial knowledge according to some
objective principles of inductive reasoning (as sought by Carnap [1950], for instance). However,
since experience tells us that even two sufficiently rational people sharing the same evidence
may arrive at substantially different probability evaluations, and, furthermore, generally neither
of the two persons will be able to “prove” to the other one that his or her probability evaluation
is the “true” one, it seems inevitable to acknowledge a certain amount of subjectivity when a
non-0,1 truth value is attached to a proposition.

All this brings us only marginally closer to a definition of the meaning of the term probability
as used in the examples above. As yet, we only have argued that it is descriptive of some
subjective degree of belief in the truth of a proposition. It is apparent, though, that attempting
to define subjective probability simply by reducing it to terms like degree of belief, degree of
confirmation, or judgment of likelihood is inadequate, because such a definition of subjective
probability would use terms our intuitive understanding of which is no better than of the one
we started with, and in whose definitions, in turn, the term probability is likely to be used.
Before we approach a non-circular definition of the two terms “degree of belief” and “ subjective
probability”, it is useful to first have a closer look at how these are related.

Comparing the two expressions “degree of belief” and “subjective probability”, a trivial, yet
important, difference is observed: the latter certainly designates a probability, i.e. an additive
function with values in [0,1]; it is not immediately clear, however, that this must also be true
for the former.

An argument in favour of assuming degrees of belief to also be probabilities, and in fact to
treat the terms degree of belief and subjective probability as synonyms, can be derived from
subjectivistic interpretations of probability pioneered by Ramsey (e.g.[1931]) and de Finetti
(e..[1937]). De Finetti is most closely associated with the interpretation of (subjective) prob-
abilities in terms of betting odds: If an individual is offered two bets, one of which offers a gain
of G for a stake p- G (0 < p <1) in case of an event E coming true, the other one offering the
same gain G for a stake (1 —p) - G for the case that E does not occur, then clearly the first bet
is preferable for p = 0, and the second for p = 1. For exactly one p € [0, 1] the person offered
the bet will be indifferent towards choosing the one or the other bet. That value of p then is
defined as his degree of belief in E.

The first conclusion we can draw from this betting odds scenario is that there is a way to
always associate a precise numerical value with a degree of belief. No matter how great an
individual’s uncertainty about the event E is, there is a way to extort from him a statement
about his beliefs that allows us to describe it by a single numerical value.

Furthermore, it can be shown (see [de Finetti, 1937]) that when the individual’s beliefs are
coherent, i.e. do not make him accept a series of bets in which he is certain to lose, then his
degrees of belief must obey the rules of probability calculus (this has come to be known as the
“Dutch Book Theorem”).

With such an operational definition of degrees of belief as outlined here, i.e. a definition in
terms of a procedure for how to measure beliefs, there is the danger that the numbers obtained
do not only represent a person’s epistemic state, but also depend on the method by which
they are determined. This is quite obvious in the betting odds - paradigm: the preference for
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a bet on E or not E may not only depend on our assessment of the likelihood of E, but also
on our willingness to risk the larger of the two stakes p- G and (1 — p) - G. Ramsey writes
that a degree of belief “has no precise meaning unless we specify more exactly how it is to be
measured” ([Ramsey, 1931]). He then proceeds to develop an alternative system for measuring
beliefs that avoids the betting odds method’s problem of unequal utilities.

From the classical subjectivistic interpretations of probability we may therefore conclude:
there are ways to equate a person’s degrees of belief with a unique subjective probability mea-
sure, and thus to view the two terms as synonymous. However, such identifications require
specific methods by which degrees of belief are measured, and the resulting subjective proba-
bility measure is not guaranteed to only depend on an agent’s epistemic state, but may also be
influenced by the method employed.

An important criticism brought against attempts to identify degrees of belief with a sin-
gle (subjective) probability measure is that these must necessarily fail to distinguish between
degrees of belief founded on knowledge, and degrees of belief based on ignorance (e.g.[Shafer,
1976]).

For an example of a degree of belief based on knowledge, suppose that a person is asked
about the likelihood that a coin we just flipped did turn up heads. We may expect a rather
confident and matter-of-fact answer that this probability is 0.5. Also, if we had not put an
outright question for the assessment of this likelihood, but had extracted this degree of belief
by one or another of the methods mentioned above, then we may expect to always receive the
same result.

Compare this scenario to the following: a person with none but the most rudimentary
knowledge of botany is presented with the facts that every angiosperm is either a monocotyle-
don, or a dicotyledon, and that bellis perennis is an angiosperm. Asked about the likelihood
for bellis perennis being a monocotyledon, that person would probably feel incapable of making
any statement. Resorting to one of the methods for forcing our subject to make a statement
that we can translate into a numerical value for his degree of belief for bellis perennis being an
angiosperm, we may again obtain the value 0.5 (but not necessarily so). This degree of belief,
being only a product of the complete ignorance of the concepts involved, clearly has a rather
different nature than the one assigned to the outcome of the coin-flip.

The level of ignorance that accompanies a person’s evaluation for the likelihood of an event
to have a certain property is not reflected in a model of degrees of belief as a single probabil-
ity measure. This problem is one of the motivations for the development of Dempster-Shafer
theory ([Shafer, 1976]): here an epistemic state is represented by a belief function Bel which is
interpreted to measure the amount of positive confirmation obtained for a proposition. Missing
confirmation for a proposition ¢ is not assumed to be confirmation for its negation, so that usu-
ally Bel(¢)+Bel(—~¢)<1. With this formalism, the agent’s beliefs in the first of the two examples
above may be modeled by a belief function with Bel(Heads)=Bel(Tails)=1/2, while the epis-
temic state of the agent in the second example is best represented by Bel(Monoc)=Bel(Dic)=0.

It has been observed early on ([Dempster, 1967],[Fagin and Halpern, 1991]) that such belief
functions correspond to certain sets of probability measures: the value of Bel(¢) can be seen as
the lower bound of {v(¢) | v € P} with P a set of probability measures. Thus, in Dempster-
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Shafer theory, degrees of belief are essentially modeled by certain sets of probability measures.

This leaves us with already two different explanations for the relationship between degrees
of belief and subjective probability: either the two terms can be treated as synonymous, or a
degree of belief can be understood as being comprised of several subjective probability measures.
Formalizations in which degrees of belief are no longer represented by numerical values (e.g.
[Darwiche and Ginsberg, 1992]) draw up an even more tenuous connection between the two
terms.

3.2 Interpreting Degrees of Belief by Thought Experiments

We will now proceed to develop an interpretation of subjective probabilities and degrees of
belief rather different from the traditional ones mentioned above. Instead of concentrating on
the manifestations of degrees of belief as preferences between choices, we put at the core of this
interpretation a process by which an agent may arrive at a degree of belief in the first place.

Also, our interpretation will be more cautious than the classical ones in that degrees of belief
will not be identified with single probability values. Instead, similarly as in Dempster-Shafer
theory, the picture of degrees of belief as defined by a set of subjective probability measures
will emerge from the interpretation here presented. With this understanding of the relationship
between degrees of belief and subjective probability, the second example statement (p. 60) is
seen to express a degree of belief of [0,0.5] for the film under consideration being American,
while the subjective probability for this being true only is partially specified to lie in [0,0.5].

It might be added, that the proposed view of subjective probabilities has a rather frequentis-
tic flavour, and by that token alone, follows an intuition differing from classical subjectivism.
For us, introducing the concept of relative frequencies into our understanding of subjective
probabilities is instrumental for linking the formation of an individual’s degrees of belief to his
or her statistical knowledge.

The following two examples will serve as a guide towards an epistemological interpretation
of degrees of belief and default reasoning about probabilities.

Example 3.2.1 I'm playing a game of dice with a friend who just has made the roll of the
die that will decide the game: if she rolls a four or better, she wins; if a three or less turns up,
I win. The die has come to rest out of my sight, but the outcome has been observed by my
friend. By the somewhat satisfied expression on her face I gather that I will less likely have
won than lost this game. “Less likely” I'm here willing to quantify by a probability of 0.3, so
that my degree of belief in the current toss t having the property p := “ Either a one, a two,
or a three has turned up” is expressed by stating for it the probability 0.3.

Example 3.2.2 Scanning channels on TV we tune in to a mystery film. We just catch the last
part of a spectacular car chase, apparently taking place in a European city. These observations
induce us to state that the film has been an expensive production with probability > 0.7, and
is of American origin only with probability < 0.5.

The two uncertain events described in these examples are of a somewhat different nature:
the first one is a product of a what can only be understood as a random process. The uncertain
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event in the second example, however, is not random in the classical sense that a toss of a die
or the drawing of a card from a shuffled deck is random. The film, a fragment of which we have
happened to see on TV, is not broadcast at that time as a result of being drawn from a gigantic
urn containing all mystery films. Given that we are partially ignorant of the deterministic chain
of events that led to the screening of that particular film at that particular time, however, for
us endows this events with all the features of randomness. Some partial knowledge we may
possess of the actual chain of events causing the given observation, and the ignorance about
some other of its parts, combines to the imperfect perception of that chain of events as a
random mechanism.

Thus, both the tossing of a die and the selection of a film for screening by an anonymous
producer according to rules unknown to us are instances of random mechanisms. The random
mechanism associated with a certain event is determined by what information we have about
the actual chain of events, particularly information that is relevant for predicting the chain of
event’s likely results. Our model of the random mechanism resulting in the broadcast of the
observed mystery film would be altered, for instance, if we knew that the network screening the
film was known for its close ties to Hollywood, or else that it had a reputation for showing lesser
known European productions. In the die example, on the other hand, there does not seem to
be any additional relevant information we might obtain about the toss of the die that would
help us to construct a more accurate model of a random mechanism than that of an arbitrary
die-toss; even complete knowledge about the initial parameters (position, speed, spin) of the
particular toss observed will hardly enable us to devise an improved model.

An assignment of degrees of belief as given in our two examples now can be understood as
being based on two elements: the model of a random mechanism associated with the observed
event, and the specific evidence provided by the observation.

Figure 3.1 depicts the complete evidence presented to us in the scenario of example 3.2.1:
the state of the game and the expression on our opponents face who knows the outcome of
the roll of the die. Our assessment of the likelihood for that outcome to be three or less does
not only depend on this evidence, but also on the assumption that the toss of the die was fair,
i.e. on our concept of the underlying random mechanism. If we suspected that the die was
heavily loaded in favour of turning up sixes, or that our opponent was able (and willing) to
manipulate the outcome of the toss by throwing the die in a particular skilful way, then our
model of the random mechanism would be altered, and our estimate for the likelihood of p(t)
somewhat smaller.

Analogously, besides the evaluation of the evidence provided by the glimpse we caught of
one scene in the film, a model of a certain random mechanism underlies the assignment of
degrees of belief in the film-example: a model basically determined by our complete ignorance
of what the actual reasons were for broadcasting that particular film at that particular time.
Clearly, the same evidence would induce us to assign different degrees of belief if we knew that
the network screening the film currently was running a series “Low budget: how the Europeans
make the best of it” — information that would change the model of the random mechanism.

The random mechanisms that have been described in the discussion of examples 3.2.1
and 3.2.2 were supposed to be perfectly well-defined in the sense that the unknown chain of
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Figure 3.1: The evidence in example 3.2.1

events was reduced to the random draw from a set of well-defined alternatives (here the six
possible outcomes of a die-toss and the set of all mystery films) according to well defined
chances (here equal chances for all numbers on the die, and a chance for any film to be drawn
determined by its likelihood to be shown on TV at an arbitrary time). It is not claimed,
though, that this will always be the case. Our image of the random mechanism may well
contain unknown parameters.

For an illustration of this, consider a variation of example 3.2.1: suppose that I have a vague
suspicion that my friend has a loaded die up her sleeve that she occasionally will use instead
of the fair one, and which enables her to roll a six in 90% of throws, a five, four, three, or two
each in 2.2% of throws, and a one in 1.2% of throws. Finding myself in the same situation as
described previously, I will now have to incorporate into my model of the random mechanism
that produced the crucial toss of the die the possibility that in that toss the loaded die was in
fact supplanted for the fair one. The result might be a model of a random mechanism consisting
of first a random draw of one of either a fair or a loaded die, and a subsequent toss of that
die. However, feeling unable to evaluate the likelihood for my friend to have cheated at the
observed toss, I am unable to specify the respective chances for the two dice to be drawn. This
makes my thought experiment depend on an unknown parameter ranging from 0 (the loaded
die is certain to be drawn) to 1 (the fair die is certain to be drawn).

Another possibility to cope with the uncertainty of what kind of die has been used in the
actual toss, is to stay with the model of a single draw from the six possible outcomes of die-
tosses, but to leave unspecified according to which two different sets of chances outcomes are
drawn: either according to a chance of 1/6 for each outcome, or according to a chance of 0.9
for a six, of 0.022 for five, four, three, and two, and 0.012 for one.

As yet, it has only been tried to isolate two components that the formation of degrees
of belief about an individual event e depends on: the model of a random mechanism which
produced e, and the observed properties of e. Putting the two parts together, gives rise to an
interpretation of the meaning of degrees of belief.

Based on our model of a random mechanism, we can consider a long (hypothetical) sequence
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of events that are independent realizations of the same random mechanism. Moreover, we can
imagine all the elements of the sequence to provide us with the same evidence as e. Such an
imaginary sequence of events we call a thought experiment.

A property ¢ that e may or may not possess will occur with a certain relative frequency
in this sequence. This relative frequency we call the subjective probability for e having ¢. An
agent’s degree of belief for e having ¢ is the most specific prediction the agent is willing to
make for the relative frequency of ¢ in the sequence.

Figure 3.2 illustrates a thought experiment for the specification of degrees of belief in
example 3.2.1. In a long sequence of situations similar to the present one in that they are
brought about by a toss of a fair die in the same state of the game and inspiring the same
expression on the face of our opponent, we expect that in three out of ten situations the number
cast will actually turn out to be one, two, or three, while in seven out of ten situations, four
or more turns up.

Figure 3.2: The thought experiment in example 3.2.1

For the film example, the thought experiment may consist of an imaginary sequence of film
scenes accidentally seen on TV and showing a spectacular car chase in a rather European-
looking environment. The degrees of belief then are defined by the bounds [0,0.5] and [0.7,1]
we predict for the proportion of, respectively, American and expensive productions in this
sequence.

Note that there is no inherent difference in these two examples that would cause degrees of
belief to be point-valued in the first example, and interval-valued in the second. This distinction
is merely brought about by the gratuitous assumptions that the agent in the first example for
some reason feels confident on the basis of the available evidence to state an exact degree of
belief, i.e. to make a very specific prediction for the outcome of the thought experiment, while
the agent in the second example only feels able to give a partial description of that outcome.

Multi-valued degrees of belief will usually result when the parameters of the random mech-
anism are not fully known. Reconsider the modification of example 3.2.1 introduced above.
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Suppose that under the assumption that a loaded die has been tossed, I would assign a prob-
ability of only 0.01 to the current toss having property p. In other words: if for the random
mechanism associated with the current toss a random draw from the six possible outcomes
according to the chances 0.9, 0.022, ..., 0.022, 0.012 is used, then the predicted frequency of
one, two, or three in a series of realizations of this random process providing the described
evidence is 0.01. Now consider the first of the two random mechanisms described for incorpo-
rating the uncertainty about which die has been used. Assuming that the unknown parameter
in this random mechanism actually has the value 0 (i.e. the loaded die is assumed to have
been cast) makes it equivalent to the fully determined random mechanism just described, and
thus would entail a predicted frequency of 0.01 for p in the thought experiment. The comple-
mentary assumption of the value 1 for this parameter results in the old prediction 0.3 for this
frequency. Values of the parameter in between 0 and 1 will continuously change the predicted
frequency from 0.01 to 0.3, so that, in the absence of any assumptions for the parameter, the
frequency can only be predicted to have some value in [0.01,0.3], which then is the degree of
belief assigned to e having property p.

The result is somewhat different when the second model of a partially defined random
mechanism mentioned above is used. Here there are only two distinct values for the sets of
parameters that determine the random mechanism. One of the two values entails a predicted
frequency of 0.01, the other of 0.3. Hence, from this model of a random mechanism we derive
a degree of belief of {0.01,0.3} for e having p.

While at first it seems somewhat unusual to allow a degree of belief consisting of two isolated
values, this is really quite desirable when it is our aim to supply semantics for a wide range of
subjective belief statements. The statement “the probability that by this toss of the die I have
won the game is either 0.01 or 0.3”, for example, makes perfect sense in the given context. The
speaker here just distinguishes two different hypothesis about how the given event has been
produced, entailing two different probabilities.

The thought experiment interpretation of degrees of belief here developed is summarized
in the following postulate.

Postulate 1: The degree of belief that an uncertain event e has property ¢ is the predicted
bound on the relative frequency of ¢ in a long (imaginary) sequence of events, each of which is
an independent realization of the random mechanism modeling the chain of events that produced
e, and each of which has the same properties that have been observed in e.

In the formulation of this postulate, as in the discussion above, the somewhat imprecise,
but intuitive, concept of a “long” sequence of events has been used. For a really strict definition
of a degree of belief we would rather have to speak about the limiting behaviour of the relative
frequency when the thought experiment is imagined to continue indefinitely. We will continue
to speak somewhat sloppily of the relative frequency, or the proportion, of some property in a
long sequence, when, what in fact is meant is the limit this frequency attains as the sequence
length tends towards infinity.

Postulate 1 defines the meaning of a degree of belief. Alternatively, we might have chosen
to define the meaning of subjective probability by the following modification of postulate 1.
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Postulate 1b: The subjective probability for an uncertain event e to have property ¢ s the
relative frequency of ¢ in a long (imaginary) sequence of events, each of which is an indepen-
dent realization of the random mechanism modeling the chain of events that produced e, and
each of which has the same properties that have been observed in e.

Observe the delicate distinction: on the one hand, by the agent there is perceived to
be a unique subjective probability distribution determined by the outcome of the thought
experiment. But even though the random mechanism that sets up the thought experiment is
a creation of the agent’s mind, and the thought experiment is performed mentally, it is not
assumed that he or she will be able to make a precise prediction of its outcome! In other words:
the thought experiment, despite of being an artefact of an agent’s reasoning process, by the
agent is perceived to have objective properties not completely known to the agent.

The thought experiment interpretation of the meaning of degrees of belief may be argued to
be more versatile than a betting-odds interpretation in that it allows us to provide consistent
semantics for a wider range of statements about degrees of belief. For an illustration of this,
reconsider the statement ¢ := “the probability that by this toss of the die I have won the game
is either 0.01 or 0.3”. With the betting-odds interpretation, this statement, taken at its face
value, will be understood to mean that I would consider either 0.01 or 0.3 as fair odds for a bet
on my having won the game. However, on further interrogation, it would probably turn out
that the odds o for which I will be indifferent towards betting on either the win or the loss of
the current game are somewhere in between 0.01 and 03, so that the original statement would
appear to have been patently false, a correct statement being ¢' := “the probability that by
this toss of the die I have won the game is 0”.

With the thought experiment interpretation, in contrast, both ¢ and ¢’ are equally coherent
belief statements that can be understood as being inspired by different conceptions of the
random mechanism.

Interpreting subjective probabilities in terms of relative frequencies, naturally, is an idea
that appeals to holders of the frequency view of probability (provided they are willing to credit
a subjective probability statement with any meaning at all). Reichenbach [1949], when he
introduces the direct inference principle (cf. p.3), in fact, does not only propose it as a means to
derive subjective probabilities, but as an explication of the meaning of (subjective) probability:
the subjective probability that e has property ¢ is the statistical probability of ¢ in a (suitably
chosen) reference class for e. By this interpretation, a statement of a subjective probability
presupposes some well-defined statistical knowledge. Carnap [1950] basically supports this
point of view, but demands that the subjective probability only is an estimate for the actual
statistical probability, which may be unknown.

This interpretation obviously is closely related to the one given here. When the evidence
provided by an uncertain event just establishes its belonging to a certain reference class, and
the circumstances under which the event has been observed do not suggest anything different
than a random draw from that reference class, then the thought experiment will just consist of
an imagined actual drawing of samples from that reference class. A thought experiment of this
kind is an instance of what Shafer and Tversky [1985] have called a “mental experiment”: the
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mental performing of an experiment that, in principle, could be carried out in practice, and
the use of its anticipated result for obtaining probability judgments.

Thought experiments, as developed here as a general explanation for subjective probabil-
ities, also extend to cases where a subjective probability can no longer be interpreted as an
(estimated) objective statistical probability. As an example consider an observation of a film
f in which actors A and B appear together. Suppose that we know that 80% of the films in
which A appears are American productions, but that this is only true for 20% of the films
with actor B. Suppose, too, that we know that f actually is the only film in which A and B
appear together. With this information we would probably assign to the film f being American
a subjective probability somewhere in between 0.2 and 0.8, say 0.5. This can not be understood
as the statistical probability in any existing reference class. However, in a thought experiment
we are free to resort to considering a sequence of merely hypothetical films that all have actors
A and B in them, but may differ with regard to their origin.

When applied to situations as this, the thought experiment - model certainly can only serve
as a semantic interpretation of the meaning of a degree of belief, but will hardly provide a rule
for their (numerical) computation. Particularly, the question of how to construct a random
mechanism for the thought experiment, and how to translate the evidence into a predicted
bias for the outcome of realizations of the random mechanism, are outside the scope of the
interpretation given in postulate 1. On the other hand, while from that postulate little can be
learned about how exactly evidence should be evaluated to determine subjective probabilities,
it will turn out that from this interpretation of degrees of belief an explicit rule can be derived
for how to utilize statistical background information in this task.

3.3 The Role of Statistical Information

Example 3.2.1 (continued): What, in the situation described previously, will be my degree
of belief in the proposition p;(t) := “/ has turned up in the current toss t” (i = 1,2,3)? The
observation I have made only provides evidence that bears on the probability of p(t), but does
not give me any reason to think one of the three alternatives pi(t), p2(t), p3(t) more likely than
another. However, I do have the information that the statistical probability of each of the p;
in tosses of a fair die is 1/6. Specifically, this means that each of the p; has an equal statistical
probability. This statistical knowledge determines my prediction of the outcome of the thought
experiment associated with the present event: I will expect that here, too, each of the three
alternatives p1, p2, p3 will appear with equal frequency 0.3/3 = 0.1. Similarly, for i = 4,5,6, a
degree of belief 0.7/3 will be assigned to p;(t).

Example 3.2.2 (continued): While a commercial break has stopped the flow of useful
information, we have time to make up our mind whether we want to continue watching that
mystery film. Having a preference for films with a happy end, we first attempt to estimate
the likelihood for this film to have one. None of the evidence provided in the short scene we
have seen directly suggests either a happy or an unhappy ending. Fortunately, however, we
do have recourse to statistical information with what relative frequency happy endings have
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occurred in the great number of mystery films (distinguished by their having combinations of
the properties A (= American) and E (= expensive)) shown on television in the last few years.
Using our syntax for the representation of statistical probabilities, let this information consist
of

[HEv | =Av A =Ev], = 0.5 [HEv | =Av A Ev], = 0.7

3.1
[HEv | Av A =Ev], = 0.7 [HEv | Av A Ev], = 0.9. (3:1)

Here it is no longer obvious what prediction for the relative frequency of happy endings in
the thought experiment we should derive from these statistics and our prior predictions of the
frequencies of A and E. It is easy, though, to obtain some bounds for the plausible values of
this frequency.

For an upper bound we may suppose that in the hypothetical sequence of mystery films
the relative frequency of those of the four properties —A A —E,...,AAE is maximal (within
the given bounds that the relative frequency of property A is at most 0.5, and that of E at
least 0.7) for which the conditional statistical probability [HEv | ...], has the greatest values.
This is achieved by assuming an outcome of the thought experiment in which both the relative
frequency of AAE and -A AE are 0.5, i.e. every film in fact turns out to be expensive, and
the number of American films is maximal. For such a sequence then a relative frequency

[HEv | Av A Ev]y - 0.5 4+ [HEv | =Av A Ev], - 0.5 = 0.45 4+ 0.35 = 0.8 (3.2)

of happy endings should be predicted.

Similarly, by considering an outcome of the thought experiment in which the number of
expensive or American films is minimal, i.e. in which the relative frequency of —A A E is 0.7,
and that of =A A —E is 0.3, a lower bound of

[HEv | =Av A Ev), - 0.7 + [HEv | =Av A =Ev], - 0.3 = 0.49 + 0.15 = 0.64 (3.3)

is obtained for the expected frequency of HE.

A plausible degree of belief for the film to have a happy end therefore is the interval
[0.64,0.8].

None of the two extreme outcomes of the thought experiment here considered can be identi-
fied as unrealistic on the basis of the given statistical data; after all (3.1) allows us to consistently
assume that both AAE and -A A E have a statistical probability of 0.5 (making (3.2) a very
reasonable estimate), or that =A A E and —A A —E have statistical probabilities of 0.7 and 0.3,
respectively (making (3.3) a very reasonable estimate). Thus, the statistical data will not be
seen to warrant the specification of a degree of belief for HEf more specific than [0.64,0.8].

If, on the other hand, further statistical information enables us to predict an outcome of the
thought experiment in which the relative frequencies of ~A A —E, ..., A A E are more precisely
specified, then a tighter bounded degree of belief for HEf will be obtained. Assume, for instance,
that it is also known that

[Av | Ev], =09 [Av], =0.7 [Ev], =0.2. (3.4)
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(3.1) and (3.4) together define a unique statistical probability distribution on the properties
HE, A, and E given by

~HEA-AA—-E —-HEA-AAE —-HEAAA-E —HEAAAE
0.14 0.006 0.156 0.018
(3.5)
HEA-AA—-E HEA-AAE HEAAA-E HEAAAE
0.14 0.014 0.364 0.162.

With this additional information, it will certainly not be expected that in the thought ex-
periment either no inexpensive or no American films will show up. Rather, this information
suggests that the relative frequency of expensive films will not much exceed the assumed min-
imal value 0.7, since expensive films are rather rare, and that the number of American films
will not be far below the assumed maximal value 0.5, since American films are very common,
particularly among expensive productions.

A tentative prediction for the frequencies of combinations of the properties A and E might

thus be given by
-AAN-E -AAE AA-E AAE

(3.6)
0.195 04 0.05 0.4,

which yields a prediction of
0.195-0.54+0.4-0.74+0.05- 0.7+ 0.4- 0.9 = 0.7725

for the relative frequency of HE, and with that a subjective probability 0.7725 for HEf. Since
the relative frequencies (3.6) can hardly be predicted with full confidence, we will probably still
only be willing to assign to HEf a degree of belief consisting of an interval containing the value
0.7725, but with somewhat tighter bounds than [0.64,0.8]. Rather arbitrarily, we may argue
that [0.72,0.79] is a reasonable degree of belief for HEf.

What is the rationale for using statistical information in the way described by these ex-
amples for the prediction of the outcome of a thought experiment? Recall that the thought
experiment consists of a series of realizations of some random mechanism that is our imperfect
model of the chain of events leading to the observed event. Our understanding of the random
mechanism producing the toss of the die in example 3.2.1 is characterized by the assumption
that a fair die has been tossed in a non-manipulative manner.

In the film-example the screening of that particular film at that particular time is perceived
to be a random draw from the set of all screenings of mystery films by arbitrary networks at
arbitrary times.

Thus, in both examples the random mechanism used as an explanation of the chain of
events producing the observed event is equivalent to the sampling rule (cf. section 2.1) to
which the statistical data refers — equivalent in the sense that when we consider an arbitrary
series of realizations of the random mechanism, i.e. one in which it is not supposed that each
realization supplies us with a specific sort of evidence, then we would predict that the relative
frequencies in this series agree with the statistical data. This assumed equivalence of the
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random mechanism associated with the individual observed event on the one hand, and the
sampling rule associated with the statistical data on the other, is the key (default-) assumption
made in default reasoning about probabilities. This observation is formally codified in a second
postulate.

Postulate 2: Default reasoning about probabilities rests on the assumption that the observed
event e is a realization of a random mechanism equivalent to the sampling rule on which the
statistical information is based.

The assumption described in this postulate usually will be an idealization that we are ready
to make, but which we know is unlikely to be strictly true. In example 3.2.2 for instance, our
statistical information about mystery films may not have been obtained by considering actual
broadcasts of mystery films, but by compiling this information from a film guide — resulting in
data that does not reflect the different likelihood of different films to be shown on TV. For this
data, the assumption in postulate 2 obviously is not literally true, but we will perhaps be still
willing to make it as an idealization in order to use the statistical information for estimating
the likelihood of HE for the current film.

Postulate 2 only describes a precondition that must be fulfilled in order to combine degrees
of belief derived from evidence with statistical information. It gives no hint whatsoever by what
operational rule this combination will actually be performed. In the die example the available
data was of such a simple form that the way to combine it (by Jeffrey’s rule) seems perfectly
obvious. In the film example the best prediction for the frequency of happy ends is not as
easily obtained. With the information (3.1) it has only been possible to argue for some upper
and lower bounds, but there is no compelling argument for more specific values derivable from
the data. With the additional statistical information (3.4) we can find arguments to improve
our previous bounds; however, there appears to be no elementary argument by which these
improved bounds can be derived in a principled manner.

A key observation that will be instrumental for a derivation of a specific analytical rule to
perform the combination of prior degrees of belief with statistical background knowledge can
be made by reconsidering the arguments used above in deriving bounds for the probabilities
of p1(t) and HEf: in both cases, the predictions for the relative frequencies of these properties
in the thought experiments as, respectively, 0.1 and [0.64,0.8] (or [0.72,0.79]) were obtained by
only arguing from the prior beliefs derived from the evidence, and from the statistical data, but
were completely independent of the evidence itself. When from a prior subjective probability
of 0.3 for p(t) and the statistical data available for tosses of fair dice, a degree of belief of
0.1 is derived for p1(t), this is done by simply considering a random sample (obtained by the
sampling rule of the statistical data!) of tosses of a die, in which the relative frequency of the
property p happens to be 0.3. For this imaginary sample it is no longer necessary to assume
that each of its elements occurs in a setting analogous to the one of the original toss.

Similarly in the film example: assume that the scene we have seen does not provide any
more relevant information with respect to the actual film f having any of the properties A,
E or HE. Then, in order to predict the relative frequency of HE in the thought experiment
associated with f, an arbitrary sample of mystery films with less than one half American and
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more than 70% expensive productions will be considered. If the original film happens to be
black and white, and we have no statistical information referring to the property of being black
and white, then we will not assume that every film in the random sample is black and white
too, this property being recognized as irrelevant.

To obtain a more precise notion of what it means that the given evidence does not provide
any more relevant information with respect to properties for which statistical information is
available, let ¢, ¢s,. .. be the (finite or infinite) set of properties to which our statistical infor-
mation refers. Let ® be a (finite or infinite) set of degrees of belief referring to the ¢;, i.e. ® isa
set of constraints on the subjective probability measure on ¢1, ¢2,.... We say that ® erhausts
the evidence if, based on the evidence alone, and without any statistical information, we are
unable to assign degrees of belief to the ¢; any more specific than the ones in ®. The way in
which statistical data is used to define degrees of belief is now described in a third postulate.

Postulate 3: If the default assumption of postulate 2 has been made, and @ is a set of degrees of
belief exhausting the evidence obtained about an event e with regard to the properties ¢1,¢a, - - .
for which statistical information is available, then the predicted frequency of a property ¢; in
the thought experiment associated with e is calculated as the expected relative frequency of the
property ¢; in a large random sample of events (obtained by the sampling rule underlying the
statistics), given that the relative frequencies of the properties ¢1, ¢o, ... in that sample is within
the bounds prescribed by ®.

Again, this postulate, in order to make it more intuitively intelligible, has been formulated
somewhat sloppily by only speaking of a large random sample, where, in fact, we are looking
at the expected limiting frequency of the property ¢; as the sample size tends towards infinity.
Moreover, the condition that the relative frequencies of properties ¢1, ¢2,... in any specific
sample is within the bounds prescribed by @ is slightly too strong: since the precise meaning
of prior degrees of belief, too, only is a constraint on the limits these frequencies attain, for
any fixed sample size the constraints in ® are only assumed to be approximately satisfied.

Figure 3.3 is an illustration by means of the die-example of the result of the analysis here
given of the meaning of degrees of belief and the process of their formation using statistical
knowledge, an analysis summarized in our three postulates.

Postulate 3 still is descriptive rather than prescriptive: it remains open what relative fre-
quencies we should expect in the random samples here described.

To solve this problem, in the next section the scenario described by postulate 3 is formal-
ized in a statistical model. From this statistical model very strong results about the relative
frequencies to be expected can be derived.
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3.4 The Statistical Model

3.4.1 Modeling Random Samples

In this section the results of the epistemic analysis contained in section 3.3 is implemented in
a statistical model. The formalization will be carried out for the special case that events only
are distinguished with regard to a finite set

.= {¢17---7¢N}

of properties, and that statistical probabilities and prior degrees of belief refer to these prop-
erties only. It will later be shown that results obtained for this case are sufficient for our
subsequent project of developing a logical framework extending Lg incorporating formulation
of, and reasoning with, subjective probabilities.

Without loss of generality, we may assume that the ¢; are mutually exclusive and exhaustive,
i.e. each event possesses exactly one of the properties ¢;. If this is not the case, we can transform
our statistical data to the 2V mutually exclusive and exhaustive properties

N ~
N\ ¢i
i=1

with ¢; € {¢,=¢}.

Since within this framework events e and €' are essentially indistinguishable iff ¢;(e) and
¢i(€e') for some i € {1,..., N}, we may actually regard T as the domain of possible events. The
elements of I are the atoms of a boolean algebra with the operations of disjunction, conjunction,
and negation (boolean algebras of this kind, of course, are known as Lindenbaum algebras). It
does not present any difficulties to apply the definitions of a measure, which in section 1.2 has
only been introduced for algebras of sets, to these more abstract boolean algebras. The set of
measures on the Lindenbaum algebra generated by T', again, may be identified with AV.

Statistical background information we possess then formulates constraints on a probability
measure u € AV, the probability measure belonging to the statistical sampling rule.

The subset of AN containing the measures satisfying a set ® of prior degrees of belief we
denote by A(®).

The mathematical model of a random sample of size n obtained by the statistical sampling
rule now is given by a sequence X1, Xo, ..., X, of independent random variables that are defined
on some probability space Q with probability o-measure P, and take values in I' according to
the distribution pu, i.e.

ik PYi(¢x) == P({w € Q| X;(w) = ¢k }) = p(dw)-

To model the limiting behaviour when larger and larger samples are drawn, we use an
infinite sequence X1, Xo, ... of independent random variables with distribution PXi = p.
For each ¢y, the relative frequency of ¢, in the sample of size n is the random variable

1 n
P§(¢k> = n Z Ly, (Xj)a
i=1



76 CHAPTER 3. DEFAULT REASONING ABOUT PROBABILITIES: AN ANALYSIS

with 14, the indicator variable of ¢y, i.e. 14, (X;(w)) =1 if X;(w) = ¢x, and 0 else. The tuple
Pg = (sz(((z’l)v cee 7P§(¢N)) €AY

then is a random variable on €: the empirical distribution of X1,...,X,.

What now has to be investigated, in order to calculate the degree of belief in ¢; as described
in postulate 3, is the expected value of P:X (¢;) for large n, under the condition that PX is within
the bounds defined by the prior beliefs ®. Recall, though, that postulate 3 has been formulated
in a somewhat imprecise way in only referring to relative frequencies in large samples, rather
than their limit as n — oco. Because of this, our last statement has to be refined: what must be
examined is the limit for n — oo of the expected value of P;X, given that P\ is close to A(®).

3.4.2 Cross-Entropy

The fundamental tool for the characterization of the limiting behaviour of PX turns out to be
the cross-entropy of probability measures, which already has been mentioned in the introduc-
tion. Cross-entropy was first introduced by Kullback and Leibler ([1951]), and is also referred
to as the Kullback-Leibler distance.

Cross-entropy (CE) is a function that maps pairs (v, u) of probability o-measures into the
extended set of positive reals:

CE: A2AxAA — R U{oo}

with 2 a g-algebra over some set M and A 2 the set of probability o-measures on 2.
For the definition of C'E the probability-theoretic concept of absolute continuity is needed:
for v, p € A, it is said that v is absolutely continuous with respect to u, written v < p, if

VAed u(A)=0 = v(4)=0.

By the Radon-Nikodym theorem, v < u is equivalent to the existence of a density function
f for v with respect to p (written v = fu), i.e. to the existence of a measurable function
f: M — R such that

VAEA v(A) :/Afdu.

Cross-entropy now can be defined by

00 ifv&€u
CE = 3.7
(w,p) { [ finfdp ifv=fpu. (37)
When v and p are probability measures on a finite space, i.e. v = (v1,...,unN),u =
(11, -- -, un) € AN for some N (and there is no difference between finite and o-additivity), we
may write
00 ifJie{l,..., N} pi=0Av;>0

»
CE(v, ) := Z yilnj else. ) (3.8)

(2

ie{l,...,N}
ni>0
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By a standard convention, terms 0ln0 that may appear in the given sum are defined to equal
0.

Cross entropy often is referred to as a “measure of the distance between two probability
measures” [Diaconis and Zabell, 1982], or a “measure of information dissimilarity for two
probability measures” [Shore, 1986]. These interpretations have to be taken with a grain of
salt, however. Note in particular that neither is CE symmetric nor does it satisfy the triangle
inequality. All that CFE has in common with a metric is positivity:

CE(v,p) > 0, (3.9)

where equality holds iff v = y ([Kullback and Leibler, 1951]).
A generalization of cross-entropy to a function on 22-% x A, is commonly found in the
statistical literature: for J C A 2, u € Ay define

CE(J,u) :=1inf {CE(v,pu) |v € J}. (3.10)

Of greatest interest usually are elements v € J that minimize CE(-, u) within J, i.e. that
satisfy CE(v, u) = CE(J, u). The interpretation of CE as a distance function gives rise to the
conception of such v as the projections of y into J, which motivates the notation introduced
by the following definition.

Definition 3.4.1 Let 2 be a c-algebra, u € Ay, J C A 2. Define

0 if CE(J,p) = 0o

{ve J|CE(v,u) = CE(J,u)} else. (3.11)

Iy (p) = {

In the special case that II;(u) contains exactly one element, this element is denoted 7y (u).

Many elementary properties of the mapping (.J,u) — II;(u) are derivable from the fact
that for fixed u, CE(-, p) is a strictly convex function on {v € A, | CE(v, u) < oo}, i.e. for
any two different measures v,/ in this set and any A €]0, 1[:

CEMv+ (1 =MV, u) < ACE(v,p) + (1 = N)CEW/, p).

Some of these properties are collected in the following examples. Since in the sequel we will
exclusively employ cross-entropy on finite spaces, the examples are formulated for this case
only, even though analogous results hold in general.

Example 3.4.2 Let J C AN, y € AN, If y € J, then clearly I1;(u) = {u} because of the
positivity property (3.9) of CE.

Suppose that y & J, and let v € int J with CE(v,u) < oco. For some A > 0 then
A+ (1= XNv € J. Since CE(u,p) < CE(v, ), by the strict convexity of CE(-, u), CE(Au +
(1 =XNv,u) < CE(v,pu). Hence v ¢ T1 (i), which shows that I1;(u) C bd.J.

Example 3.4.3 Let J C A" be open, 1 € J. By the previous example it follows that IT;(u) =
0.
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Example 3.4.4 Let J C A" be closed, p € AN with CE(J,u) < co. Let vi,vs,... be a
sequence in J with
CE(vi,p) — CE(J, ).

Since J, as a subset of the bounded set AV, is bounded, this sequence may be assumed to
converge to some v € AV, which by the closedness of J belongs to .J. By the continuity of
CE(-, 1), we have lim CE(v;,u) = CE(v,u) = CE(J, ), so that v € Ty (u) # 0.

Example 3.4.5 Let J C AN be closed and convex, u € AN with CE(J,1) < co. By the
previous example, I1;(u) here is nonempty. By the convexity of CE(-,u), II;(1) contains a
unique element, because if v,v' € ;(u), v # V/, then V" := 1/2v +1/2V € J, and

CEW", 1) < 1/2CE(v, ) +1/2CEW', 1) = CE(v, p),
a contradiction.

Many interesting properties of cross-entropy minimization of a somewhat more sophisticated
nature than exhibited in these four examples can be found in [Csiszdr, 1975] and [Shore and
Johnson, 1981].

3.4.3 The Limiting Behaviour of P;

After these preparations, a very strong statement can be made about the limiting behaviour
of PX in the theorem below. For the statement of the theorem, some additional notation must
be introduced.

For § > 0 and v € A let

Us(v) .= {v € AN | |v =V |< 6}
denote the closed §-ball around v. Let

J(6) = (H{Us(v) | v € T}

be the §-hull around J.

For sequences (0, )n, (01,)r of real numbers we use the intuitive notation (d,) > 0 to signify
that 6, > 0 for all n, (§,) > (4,,) for the fact that §, > ¢/, for all n, and (§,,) \, 0 to say that
On < 0m for n > m, and lim ,_o00n = 0.

Theorem 3.4.6 Let X1, Xs,... be a sequence of independent random variables taking values
in {¢1,...,¢n} with distribution y € AV. Let J C AN be closed with CE(J, ) < co. Then
there exists a sequence (d,,) N\, 0, such that for all (&/,) > (d,) with (d/,) N\ 0, there exists
(en) \¢ 0, such that

limn 0o P(PX € T (1) (en) | PX € J(0))) = 1. (3.12)
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Before we turn to the proof of this theorem, which will then engage us for the rest of this
section, we give some illustration of its meaning and discuss its relevance in the framework of
our thought-experiment interpretation for degrees of belief.

Figure 3.4 illustrates the probability distribution of PX in AV for three different values of
n. Darker shading in the picture represents greater probability for PX to lie in the part of AV
thus marked. By the law of large numbers, the probability density for P;X gets more and more
concentrated around its expected value p.

n small n large n LARGE
Figure 3.4: Distribution of PX

Now consider Figure 3.5. Here attention has been restricted to values of P,X that lie in or
near J. In figure 3.5 the special situation for a convex set J is depicted, so that II;(u) here
is a unique element (i), and Iy (u)(en) = Ue, (77(1)). With increasing n the distance &), to
J of points in AN that are considered decreases. Theorem 3.4.6 now states that when we let
0/, decrease sufficiently slowly, we can find for each n some ¢, > 0 with ¢, — 0, so that the
probability density of P,X in J(4!) gets, in the limit, completely concentrated in U, (ms(u)).

A few comments may be useful to better understand the role that in theorem 3.4.6 is played
by the sequence (d,,). When J has interior points, then the theorem actually is true for (6,,) = 0,
i.e. the whole process of approximating J by the sequence J(],) can be done without.

On the other hand, consider .J, := {(v1,...,vy) € AN | vy = r} where r is some irrational
number. Then PX can never take a value in .J, each component of P being of the form ¢/n
for some ¢ € N. Hence, conditioning on P;X € J, in (3.12) would mean to condition on the
empty set, and the conditional probability in (3.12) would be undefined for every n. Moreover,
for each n, PX can only take on finitely many values, so that for sufficiently fast decreasing
sequences (6,) > 0, even {PX € .J,(6,)} will be empty for all n. Thus, the condition of (¢/,)
“slowly” tending to 0 in theorem 3.4.6 makes sure that “sufficiently many” possible values of
P are in J(&!,).

How does theorem 3.4.6 resolve the question about what relative frequencies should be
expected in a random sample as described by postulate 3 and formalized in section 3.4.17

First consider the case that the set A(®) of belief measures consistent with the prior de-
grees of belief ® is closed, and that TIae) (1) = {Ta(s) (1)} is a unique element of A(®).
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5/
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Figure 3.5: Distribution of P;X on J(6,)

Theorem 3.4.6, in this situation, makes as strong a statement as one might wish for: when in-
creasingly large random samples of events are considered that are assumed to satisfy the prior
degrees of belief with (sufficiently slowly) increasing accuracy, then, in the limit, it is almost
certain that the relative frequencies in the random sample drawn are defined by ma(e)(1)-

In the case that A(®) is closed, but ITx(g) (1) contains more than one element, theorem 3.4.6
still is immediately applicable to the situation described by postulate 3. The only difference
now is that the relative frequencies in the random sample can only be predicted to be close to
some member of ITx(g)(p2). Theorem 3.4.6 does not provide any indication for some elements
of IIx(g) () to define the relative frequencies in the random sample with greater probability
than another.

The case of non-closed A(®P) gives rise to far less satisfactory results than the previous
cases. This is not at all surprising, because even for very simple examples it is clear that
default reasoning about probabilities runs into difficulties when the set of prior belief measures
A(®) is not closed: suppose, for instance, from the evidence observed a constraint v(¢) > 0.8
has been derived for the belief measure v of the property ¢. Suppose, too, that the statistical
probability of ¢ is u(¢) = 0.1. Then the statistical information suggests to choose as small
a value for v(¢) as permissible within the given constraint. Unfortunately, such a value does
not exist. The probably most sensible way, in cases like this, to combine prior beliefs with
statistical information would be to allow for a minor revision of prior beliefs, and, in the given
example, to allow the value v(¢) = 0.8 as the posterior subjective probability for ¢.

How, then, do our epistemic model and its statistical formalization fare with non-closed
prior belief sets ®? By a closer look at postulate 3 — in its precise version with the impre-
cise statements about large samples substituted by the proper statements about the limiting
behaviour as the sample size tends towards infinity — it is found that the method there de-
scribed for combining prior degrees of belief with statistical knowledge does not really permit
to distinguish between prior beliefs ® and prior beliefs ¥ with A(¥) = ¢/ A(®) at all: for both
prior belief sets, for any fixed sample size, the same samples will be recognized as being in
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accordance with the prior beliefs, because any relative frequencies observed are close to A(®)
iff they are close to cl A(®).

Thus, the rules described in postulate 3 according to which random samples are drawn and
evaluated turn out to be the same for ® and ¥. Necessarily, then, the conclusions will also
have to be the same that are derived for prior beliefs ® and V.

It is easy to show that this is actually what happens when (3.12) is generalized for non-closed
A(®): first, by letting J := clA(®),

lim oo P(P € T () (1) (€n) | P € clA(D)(67,)) =1 (3.13)
is obtained. Since for all n with §/, > 0
Mg aga) (1) C IA®) € A®)(3),
in (3.13) the cl-operator can be dropped in the conditioning sets:
lim oo P(Py € T (0 (1) (€n) | P € A(D)(8,)) =1 (3.14)

(for sufficiently slowly decreasing (47,) > 0).

Thus, neither the epistemic, not the statistical model effectively distinguish between prior
beliefs given by A(®), and those given by cl/A(®).

One might wonder whether statements of the form (3.12) really are statistical results of
the best possible form one might hope to obtain in order to compute expected frequencies
according to postulate 3. A statement like

P(limy_s0oPX €T1 | lim p_y0oPX € A(®)) =1 (3.15)

for some II C A(®), might be viewed as a more immediate formal statement about expected
frequencies. Unfortunately, though, (3.15) does not make any sense because (unless p € A(®))
the conditioning event {lim, P € A(®)} has probability 0.

The conclusion we shall draw from this discussion is that for closed A(®) theorem 3.4.6
permits the prediction that the relative frequencies in the random samples described by pos-
tulate 3 will approach a limit in TI5(g) (@) which therefore will define the result of combining
prior beliefs ® with statistical information g. When A(®) is non-closed there are essentially
two possibilities: either we are willing to slightly revise prior beliefs, and adopt II A(®) (u) as
the set of posterior belief measures, or we insist on the satisfaction of the prior beliefs, in which
case only 1oy 5 (q) (1) N A(®) will be admissible posterior belief measures. Should this last set
be empty, then ® can not consistently be combined with the statistical information u.

We end this discussion of theorem 3.4.6 by looking at the results we obtain when applying
this result to the examples of section 3.3. In the discussion of these examples we shall make use
of the well-known fact that cross-entropy minimization is equivalent to Jeffrey’s rule in those
special cases where this rule is applicable (cf. [Diaconis and Zabell, 1982] for instance, and
corollary 4.0.20 below).

In example 3.2.1, we have I' = {p1,..., ps},

p=(1/6,...,1/6), A®={(v1,...,u5) € A® | vy + 1o + 13 = 0.3}.
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By application of Jeffrey’s rule:
mas(p) = (0.1,0.1,0.1,0.7/3,0.7/3,0.7/3).

Hence, the predicted frequencies of properties p;, and thus the degrees of belief assigned to
pit are 0.1 for i = 1,2,3 and 0.7/3 for i = 4,5,6 in accordance with the intuitive reasoning in
example 3.2.1.

For example 3.2.2 let

I':={-HEA-AA-E,...,HEAAAE}

Then
A(®) ={re AT | v(A) <0.5,v(E) > 0.7}

is closed and convex. The statistical distribution on I' only is partially determined by the
constraints (3.1). In fact, every distribution on ~AA=E, ... AAE, extended to I" by the given
conditional probabilities of HE, is consistent with (3.1).

First consider a statistical distribution p with

u(E) =1 and p(A) =0.5.

Since cross-entropy minimizing measures v € A(®) must satisfy v < pu, this implies that for
such a v certainly v(—=E) = 0 must also hold, so the whole minimization problem is reduced
to the four element probability space I C T containing the elements with an unnegated
conjunct E. A(®) then reduces to the condition v(A) < 0.5. Then we have p € A(®), and thus
ma@) () = i, so that, as computed in (3.2),

Ta(@)(w)(HE) = 0.8.
Now let ' be defined by (3.1) and
@' (A)=0 and p'(E) =0.7.

With this g/ the minimization problem again is reduced to a four-element probability space,
and the single remaining constraint v(E) > 0.7 is satisfied by p'. Hence, ma()(u') = g/, and
as in (3.3)

Ta(@) (') (HE) = 0.64.

Thus, the lower and upper bound derived by intuitive reasoning in section 3.3 correspond
to the precise result theorem 3.4.6 applied under two different assumptions for the underlying
statistical measure. For any other statistical measure p” on ' that is consistent with (3.1), the
value of 7 (g (1")(HE) also will belong to the interval [0.64,0.8]. Hence, the statistical model
yields the same result as the informal arguments in section 3.3.

When (3.4) is added to our statistical data, and a unique statistical distribution fi not be-
longing to A(®) is given by (3.5), the projection 7 (g)(/2) no longer is computable by elementary
arguments from positivity. Instead, as in all general cross-entropy minimization problems, a
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non-linear optimization algorithm will have to be used, which only yields an approximation of
@) (i) (see [Wen, 1988] for one example of such an algorithm). Here we obtain

Unlike in the first two cases, here by utilizing (3.12) for the prediction of the relative frequency
of HE, we are able to derive a very specific result, where our intuitive reasoning only led to
bounds [0.72,0.79] with an uncertain justification.

We now turn to the proof of theorem 3.4.6, which we break up into a series of separate
theorems and lemmas.

The proof essentially rests on a result in the theory of large deviations from the sample
mean. An important type of theorem obtained in this theory, the first instance of which
was proved by Sanov [1957], provides a precise quantification of the exponential decay of the
probability for the empirical distribution of a sequence of random variables to lie in certain
subsets of probability measures: let X1, Xo,... be a sequence of independent random variables
taking values in {¢1,...,¢n} with distribution p € AN. Let J C AN. We say that the
Sanov-theorem holds for J, if CE(J,u) < oo and

1
limy_s0o—INP(PX € J) = —CE(J, ). (3.17)
n

Of course, (3.17) really makes a statement about X1, Xo,..., u, and J, rather than J alone
as implied by the diction here introduced. In fact, different assumptions made about the space
the X; take their values in, their distribution, and the subsets J of probability measures on that
space account for the great diversity of Sanov-theorems encountered in the literature. Being
here solely concerned with random variables X; taking values in {¢1,...,¢n} according to a
specified measure pu, however, for us (3.17) becomes essentially a statement about .J.

In the sequel, it is always assumed that Xi, Xo,... are as in theorem 3.4.6.

Statements of the form (3.17) are not yet quite what we need to prove theorem 3.4.6,
because in that theorem limits of probabilities are considered that are defined by subsets of
AN dependent on n. We will therefore have to consider generalizations of (3.17): let (J5)se[o,o0
be a monotone family of subsets of AN ie. J; C Jg for § < § (the prime example of such a
monotone family naturally being the set of §-hulls J(§) of some J = Jy). Let (d,) \ 0. We
say that the Sanov-theorem holds for (Js, ), if CE(Jy, p) < 0o, and

1
lz’mn_mﬁlnP(Pff € Js,) = —CE(Jo, ). (3.18)

For a monotone family (J5)s in AN define

c: [0,00] — [0,00]
0 '—)—OE(JJ,/,L).

Lemma 3.4.7 Let (Js); be a monotone family of subsets of AY. Assume that the Sanov-
theorem holds for every Js with § > 0, and that ¢ is continuous at § = 0. Then there exists
(6n) > 0 such that the Sanov-theorem holds for all (Js ), with (0;,) > (6n), (67,) \( 0.
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Proof: Let (69) \, 0. Since the Sanov-theorem holds for every Jyo, there exists for every i an
index k(i) such that for all m > k(i):

1
ElnP(PTXTL € Js) € Uyi(c(87)).
For each n let
On = min{6Y | n > maz {i, k(i)}} > 62.

For some initial n the set {6 | n > maz{i,k(i)}} may be empty. For that case, define
min{) := co. The condition that n > i, in the definition of §, makes sure that (5,) > (82),
which we shall use below.
By the definition, (d,,) N\, 0, and because ¢(d,,) — ¢(0), the Sanov-theorem holds for (.J;,).
Now let (87) > (6,) with (6],) \, 0. Then P(P; € Jg ) > P(PX € J5,), and thus

lim inf %lnP(Pff € Js ) > c(0). (3.19)

As for (6Y) above, we can construct from (d,) a sequence (8/) > (},) such that the Sanov-
theorem holds for (Js»). Thus

1 1
lim sup ~InP(PX € Jy ) < lim sup Eln P(PX € Js) = ¢(0). (3.20)
n

(3.19) and (3.20) together mean that the Sanov theorem holds for (Js ), thus proving the
lemma. O

Next, a condition for ensuring continuity of ¢ is formulated.
Lemma 3.4.8 Let Js C J(¢) for all §. Then c is continuous at § = 0.
Proof: Let (d,) \, 0. Since ¢(d) < ¢(0) for all § > 0, it is clear that

lim sup c(d,,) < ¢(0).

For each n let v, € cl Js5, with CE (v, 1) = ¢(d,). Such v, always exist due to the boundedness
of Js,, and the continuity of CE(-, u). Consider a convergent subsequence (vp;); C (v)n. From
the condition that Js, C J(d,) it follows that the limit v of (v,) lies in ¢/ J. Then (again
utilizing the continuity of CE(-,-))

lim inf,, ¢(6n) = lim inf; c¢(on;)
= CE(v,p)
> ¢(0).
O

After the very general statements made in the preceding two lemmas, we can now approach
the concrete situation dealt with in theorem 3.4.6. The following theorem is the basis for its
proof.
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Theorem 3.4.9 Let J C AN with
J C cl(int J). (3.21)

Then the Sanov-theorem holds for J.

Proof: See [Bahadur, 1971], example 5.4 and lemma 5.2. O

The applicability of theorem 3.4.9 to our situation is established by the following lemma.

Lemma 3.4.10 (a): Let J C AN, § > 0, then (3.21) holds for .J(6).
(b): Let (3.21) hold for J C AN. Let A C AV be open. Then (3.21) holds for J' := J N A.

Proof: (a): For J(J) it is even trivially true that J(§) C int J(6). (b): The assertion is
trivially true when J' = (. Let ¢ € J'. For ¢ > 0 let U%(¢) be the interior of Uc(¢). It
must be shown that for e > 0: U%(¢) Nint J' # 0. From the openness of A it follows that
int J' = int J N A, so that it must be shown that

U Nint JNA#D

Since ¢ € J, and (3.21) holds for .J, we have that U9(¢) N int J # 0.

Now assume that U%(¢) Nint J C A°. Using ENclF C cl(E N F) for open sets E, we get
U%(¢) Nel(int J) C A€, and hence U2(¢) NJ C A°. This last inclusion, however, contradicts
U%(¢)NJnN A # 0, which must hold because ¢ € J'. Therefore § # U2(¢) Nint J € A, and
thus U2(¢) N int JN A # 0. O

This concludes the preparations for the proof of theorem 3.4.6, which now it is not hard to
obtain.

Proof of theorem 3.4.6: Fix € > 0, and let 6 > 0. Abbreviate I1;(u)(e) by II. Then the
sets J(d) and J(d) \ IT are as in lemma 3.4.10 (a) and (b) respectively. Thus, by theorem 3.4.9,
the Sanov-theorem holds for J(§) and J(4) \ II.

Both the two families (J(§))s and (J(&)\II); satisfy the condition of lemma 3.4.8, so that by
lemma, 3.4.7 there exists (55) \, 0 and (65*) \, 0 such that for every (8,) \, 0 with (6,) > (7;)
the Sanov-theorem holds for (J(8,)), and for every (6,) N\, 0 with (6,) > (6%*) the Sanov-
theorem holds for (J(8,) \ IT). Define 6, := maz{6},6:*}. Clearly (6,) \ 0, and for every
(61,) > (6,) with (8],) \( 0 the Sanov-theorem holds for (J(d.,)), and (J(d,,) \ IT). For such (4},)
then

i llpmferm\H)
Min—eo, WP (PX € J(01))

1
= lim soe - PP € J(E,) \T1) ~ WP(PY € J(5,)]
Consider v € cl (J\ II) with CE(v,pu) = CE(J \ II, ). Since J was assumed to be closed,

we have v € J. All points in J \ II having at least a Euclidean distance € to points in IT;(u),
furthermore v ¢ I1;(u). Therefore CE(J \II, u) > CE(J, u), so that

1. P(PX e J()\ 1)

My 00 — 1 .
ool =X e o)) <
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It follows that
P(PX € J(é;,) \TI)

) n <>o1 - — 00,
R (2 (073) I
and hence ( X ((5' J\m
) P(P; € J(0y,) \TI)
e X e I
Thus

P(PX € J(6)NT)
PPy € J(47,))

limy oo P(PX €T | PX € J(6.)) = lim, oo

. PPX e J(s)\ )
= n—oo | 1 — = -~
e ( P(PY € (7))
=1.
Since € was arbitrary, we can find a sequence (e,) N\ 0 satisfying (3.12). O

Results related to theorem 3.4.6 are contained in [van Campenhout and Cover, 1981]. Here,
too, results from large deviation theory are employed to characterize the limiting behaviour of
certain conditional probabilities by means of cross-entropy — the conditioning sets, however,
being defined somewhat differently from constraining the empirical distribution as we did here.
In [Groeneboom et al., 1979] several results can be found that are related to our lemma 3.4.7.

Also it should be noted that Sanov-theorems are a generalization of the well-known combi-
natorial concentration phenomenon at the maximum entropy distribution ([Jaynes, 1983],[Paris
and Vencovska, 1989],[Grove et al., 1992b]).



Chapter 4

Cross-Entropy in Real Closed Fields

The analysis of default reasoning about probabilities conducted in the previous chapter iden-
tified cross-entropy minimization as its central tool. This tool, so far, only is available for
real-valued probabilities. In order to incorporate cross-entropy minimization into a logical
framework based on probabilities in rc-fields, a cross-entropy function must be explained for
general F-valued probability measures. This amounts to defining a logarithmic function on a
real closed field §, cross-entropy then being given by a combination of the logarithm, addition,
and multiplication.

The study of extensions of (ordered or real closed) fields by an exponential function is an
active research area in model theory, mainly aiming at resolving a conjecture by Tarski that
the theory of (R, exp) is decidable (e.g. [Wolter, 1986], [Ressayre, 1993]).

While, generally, it is more practical to work with exponential functions than logarithmic
functions — the former being total on R, and therefore not requiring any considerations for
elements outside the domain of the function — for our particular purpose a direct axiomatization
of the logarithmic function seems to be more convenient.

Definition 4.0.11 Let Spor := {0,1,+,-,<,In}. LRCF is the set of axioms comprising the
axioms RCF for real-closed fields and the following axioms.

Vz,y >0 In(z-y)=In(z) + In(y) (FUN)
Ve>0 z#1—In(z) <z -1 (BD)

These two axioms implicitly define the standard logarithm in R, i.e. (R,...,In?) = FUN ABD
iff In® restricted to arguments = > 0 is the standard natural logarithm In. (This somewhat
tortured distinction between the natural logarithm In on R, and the interpretation In® in
an Spor-extension of R that models LRCF only is necessary because of In not being a total
function; it would be redundant if we worked with the exponential function.)

An Siop- structure that is a model of LRCF we call a logarithmic real closed field, or lrc-
field for short. As in (R, In®), in such an Irc-field the interpretation of In(x) will also have to be
defined for arguments < 0. Since the axioms do not make any prescriptions for such arguments,
these interpretations may be completely arbitrary.

87
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Lemma 4.0.12 The following sentences are derivable from LRCEF.

In(1) =0
Ve >0 In(1/z) = —In(x)
Vz € (0,1) In(z) <0
Ve >1 In(z) >0
Ve,y >0 z <y — In(z) < In(y)

1)
2)
-3)
4)
-5)
0-1n(0) =0 6)

A~ N N AN N~
e
S LA W N R

Proof: (4.1) is immediate from FUN; (4.2) follows from FUN and (4.1). (4.3) follows from
BD; (4.4) is obtained from from (4.2) and (4.3).
To prove (4.5), write y = A\ - z for some A > 1. Then In(y) = In(z) + In(A) > In(z) by (4.4).
(4.6) is trivial, because Yz 0 -z = 0 is given by RCF. O

We now turn to the generalized cross-entropy function defined in an Irc-field §. With the
logarithm function In" at our disposal, the definition of cross-entropy in R. by (3.8) can basically
be copied for defining cross-entropy in J.

In order to later be able to axiomatize the general cross-entropy definition in first-order
logic, however, a small modification has to be made. We may not use a special ideal element oo
assumed to be greater than every field element as the value for CE(v, u) when v £« p, because
such an element is not contained in § itself. For this reason, the definition of C'E has to be

restricted to pairs of measures (v, ) € AX x A¥ with v < p. For such v = (v1,...,vn),p =
(:ula"'a:uN) let »
CEY(v,p) := Z l/ilnF—Z.. (4.7)
ie{l,..,N} '
wi>0

Note that CEY only is a function defined “from outside” for the semantical structure §. There
is no new function symbol CE introduced, that then is interpreted inside § by an extension
CEY. Proceeding by such a course would in fact require to introduce function symbols CE y for
all N > 1 with arities 2V, only to be applied to probability measures of the appropriate size,
and interpreted for all possible arguments, not only for v, u with v < p.

The following lemma states a key analytical property of the logarithmic function that
is instrumental for the proof of important characteristics of cross-entropy and cross-entropy
minimization.

Lemma 4.0.13 It is derivable from LRCF that

T1 +$2)

I i)
Vo1, y1,22,y2 > 0 w1ln ( ) + z2ln ( ) > (z1 + z2)In <
Y1 Y2 Y1+ Y2

where equality holds iff
i S )

T +T2 Y1 +ys
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Proof: We make the substitutions

x = x1+ 29,
Y=y +y2.

Then, for suitable Az, A\, €]0,1]:
r1 = /\;cxa T2 = (1 - /\av)xa Y1 = )\yya Y2 = (1 - )\)ya

and the left hand side of (4.8) may be rewritten as
e (1 — Az)l‘
Azzin | — | + (1 = A\p)zln | ————
</\yy> ( ) ((1 - /\y)y>
T Az 1— X
= - zn | — 1—A)l . 4.1
:Uln(y)—i-x(/\ n(/\y>+( A)n(l_)\y>> (4.10)

The equality condition (4.9) is equivalent to A; = Ay, in which case the second term of
(4.10) vanishes by (4.1), so that (4.8) holds with equality.

Now suppose that Ay # Ay. Then ;—: # 1 and }:iz # 1. Since —In(z) > 1 —z for x # 1 by
BD, we obtain

Azln (i—i) +(1=X)In (1 — ii)
(o (3)) 00 (0 (1)
Aw(l—i—i)“l—m(l—i:ii) = 0.

Since & > 0, this means that the second term of (4.10) is strictly greater than 0. This proves

V

the lemma.
Od

The first important application of lemma 4.0.13 is the following.

Lemma 4.0.14 (Positivity) Let § be an Irc-field, N > 2, v,u € AX with v < p. Then
CE* (v, ) > 0 with equality iff v = p.

Proof: By inductionon N. Let N =2, v = (v1,10), pu = (u1, o) € Ak, v < p. If one of the p;
equals 0, then so does the corresponding v;, in which case v = u and CEF (v, u) = 1In(1) = 0.
Suppose, then, that y; > 0 (: = 1,2). If v, = 0 for one i, say i« = 1, then v # p and
CEF(v,u) = In (;—2) > 0 by (4.4).

For the case that v;, u; > 0 (i = 1,2), we have

CE (1) = wnInf () + mninf(22)
M1 H2
e %)

H1+ po
= 1nf(1) =0

> (i + I/Q)InF(
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by lemma 4.0.13 and (4.2), with equality iff v1 /(11 + v2) = p1 /(1 + p2), ie. v =p.

Now let N > 2, and assume that the lemma has been shown for N — 1. For v = u we
again obtain CEF (v, ) = 1Inf (1) = 0. Suppose, then, that v # u. Without loss of generality,
v1 # p1. Define 7, i € AR™! by

=y = t=1,...,N =2,

and

UN_1'=VN-1+VN [N-1:=HUN-1+ UN.

Then 7 < i, U # i, so that by induction hypothesis CE® (7, i) > 0. By lemma 4.0.13 we have
CE" (v, ) > CE" (v, 1), which proves the lemma. |

Lemma 4.0.15 (Convexity) Let § be an Irc-field, N > 2, v,v/, u € AN, v # v/ with v,/ < p.
Let 0F < XA < 1¥. Then

CE¥(\v + (1 = ANV, u) < ACE¥ (v, 1) + (1 = \)CEY (V' p).
Proof: For the proof of the lemma it is sufficient to show that for fixed y € F, y > 0, the

function
Flx
Cy: T+ xln (—)
Y

defined for x > 0 is strictly convex, because then

CE (v +(1=Nop) = 3 et (1= A\
wi>0
< Z /\Cﬂi(’/i) + (1 - /\)C#i(yz{)
pi>0

— ACEF(v,) + (1= NCE*(/, ),

where the strict inequality holds because v; # v, for at least one i € {1,..., N} with u; > 0.
For the proof of the convexity of ¢, let y > oF, 1,20 > OF, 21 # z9, OF < X < 1F.
Abbreviate Az1 + (1 — A)z2 by Z.
We distinguish two cases: first assume that one of the z; is equal to 0F, e.g. 1 = 0F. Then

(1—- )\)332>

¢,(&) = (1—/\)332InF( -

< (1= N)zln® <%)
= Deylan) +(1— Ney(wa),

where the inequality is due to (4.5), and the final equality holds because ¢, (0) = 0 by (4.6).
Now suppose that z1,z9 > 0. By lemma 4.0.13 we obtain

cy(Z) < AzqlInf (%) + (1 = \)aglnf (%) (4.11)
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with equality iff Az1/Z = 1/2, i.e.
/\.1‘1 = (1 - )\).CIJ'Q (4.12)

The right side of (4.11) may be rewritten as

Az InF (%) + Az1InF(20) + (1 — \)aolnF (%) F (1= NzainF(2(1 = A).

Without loss of generality, assume that Az; > (1 — A)x2, so that we obtain
cy(2) < Acy(z1) 4+ (1 — N)ey(22) + AzgInF (4A(1 — N)), (4.13)

still with equality iff (4.12) holds.
First consider the case that (4.12) in fact is true. Then, because z1 # 3, we have that
A # 1/2. By the completeness of the theory of RCF, and the fact that

1 1
REVAC(0,1) A# o —A-(1-X) <,

we may infer that 4\(1 — \) < 1, which (with (4.3)) entails that Az1Inf (4XA(1 — X)) < 0, thus
proving that
cy(Z) < Aey(z1) + (1 — N)ey(z2). (4.14)

In almost the same manner (4.14) is derived for the case that (4.12) does not hold: the last
term in (4.13) then is known to be < 0, which suffices to prove (4.14) because we have strict
inequality in (4.13). O

The next lemma states a very useful property of cross-entropy that plays the key role in
the proof of the subset independence property of cross-entropy minimization shown by Shore
and Johnson [1980] (cf. theorem 4.0.19 below). It has not been given a name by Shore and
Johnson, or, apparently, elsewhere, so that we are free to call it the decomposition property.

Lemma 4.0.16 (Decomposition) Let § be an lIrc-field, N > 2, v,u € AJI\?[ with v < u. Let
P ={Py,..., P} be a partition of {1,..., N} with P, = {ih,17"'7ih,n(h)} C{1,...,N} (h=
1,...,L).

Let v, it € Ak be the restrictions of v and p to P, i.e.

n(h) n(h)
Dh =9 Ving  Bh= D Hings (h=1,...,L).
9=1 g=1

Also, for h =1,..., L with &, > 0 let v/, u" € Ag(h) be the conditional distributions of v, u on

P,, ie.
h Vih, h uih,
Vg = —Dhg, g = —'ahg, (g=1,....n(h)).

Then
L

CE* (v,u) = CE¥ (v, i) + Z o CEF (VP ). (4.15)

h=1
Up, > O
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Proof: First observe that v < u implies 7 < [i, so that 7, > 0 only when fi, > 0, hence p" is
well-defined. Furthermore, v* < p”. (4.15) now is obtained by a straightforward computation.

L n(h) ”
CE"(vp) = 3. 32 wa,hn" <—Zh’g>
h=1 'uih,g
g=1
,Uih,g>0

n(h - _
= i (Z) Uy, Vih’g In® (Vi"'-"/yh ﬁ)

Un, Hip o [ B Eon

9=1
vy > 0 'uih,g>0

L n(h) h _
— Z Z Dhyg (InF (%) + Inf (:—Z))
g

L L n(h) h
-3 ﬂhInF(—h)+ DS uglnF<—%)
"
h=1 h=1 g=1 g
o, >0 o, >0 Hip g >0
L
= CE"(v,m)+ >, wCEF(ut)
h=1
l7h>0

O

In section 3.4.2 the definition of CE(v, u) was followed by the definition of CE(J, u) for
J C AN, For arbitrary Irc-fields § this definition can not be repeated because inf{CE" (v, ) |
v € J} may not exist in F. This means that for the projection II;(x) we here have to use a
slightly less economical definition than provided by (3.11).

Definition 4.0.17 Let 2 be a finite algebra, u € Apd, J C A2l Define
Oy(u):={veld|lv<pu YW e€JCEY(V u) >CE"(v,n)}. (4.16)
In the special case that II;(u) contains exactly one element, this element is denoted s (u).

Definition 4.0.17 coincides with definition 3.4.1, when applied to real-valued measures.

Of the four examples 3.4.2 - 3.4.5 only the first two remain to be valid in the context of
Irc-fields, because in these only the positivity and convexity property of CE have been used.
For examples 3.4.4 and 3.4.5, on the other hand, a convergence argument has been employed
that makes use of the completeness of the real numbers and therefore fails in arbitrary real
closed fields.
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The following two theorems contain two key analytical properties of cross-entropy mini-
mization. They have been called system independence and subset independence in [Shore and
Johnson, 1980] where proofs are given for real-valued probability o-measures (discrete or given
by densities). The second of these properties, in particular, is of great practical importance, it
being the most important tool for effectively computing 7 () in special cases, without needing
to employ an iterative optimization algorithm.

Theorem 4.0.18 (System Independence) Let 2, 2’ be finite algebras with atoms {A1, ..., 4y}
and {41, ..., Ay} respectively. Let § be an Irc-field, u € AL, p' € AL, J C AR, J' C Af. Define

A =AxA p:=pxu,

and let JX C A* be defined as the set of measures with marginal distribution on 2 in J and
marginal distribution on " in J, i.e.

JX:{I/XEAFlexl v |1Q[€J A ¥ |2Q[I€JI}.

Then
Iyx () =y (p) @My (i) = {v@v' |vell,(u),v € Wy(u)} (4.17)

Proof: The proof is very similar to the one in [Shore and Johnson, 1980]. The fact that we
are here dealing with F-valued probabilities makes little difference.

To prove the theorem, by direct computations it is shown that for v* € AA* with marginal
distribution v on A and v’ on A’

CEY (v, u*) > CE¥(v @, u*) (4.18)
with equality only for v* = v ® v/, and that
CEF(v @, u*) = CE¥(v,u) + CEF(V, i). (4.19)
From (4.18), (4.19) and the trivial observation
JeoJ ={ve/|velJv eJ} CJ* (4.20)
the theorem then follows because for v* € J* with marginals v and v/

v elljx(u*) & v =vv Avev ellx(u*) by (4.18) and (4.20)
S vi=vevAvell;(u) Av ellp(p) by (4.19) and (4.20)
& v elly(u) @ My ()

For the proof of (4.18) use the denotations

)

q
vis = v (Ai x AY), vi:=v(A;) = ZVX- vh=1(A) = ‘ZVX-.
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Then
Zl/xln pily) = ZUZIn i) —{—Zuln 1)
= Zl/zuln 1) —|—Zl/ﬂ/|n ,u])
= vajln (pipt),

1,J

and analogously

Zuxln vi) =Y vt (viv}).
i,j
Therefore

CE" (v, ™)

X
><| Y
ZV " (Nz/«%)
= Zuxln Zuxln [ift;)
= Zl/xln Zuxln [hift;) ZV In*™ Zuxln
= Zyxln Zuxln ZUW In¥ (viv) ZV@U In® (miy))
i

= CEF(V ,V®V)+CEF(V®V,N )-

By lemma 4.0.14, CE¥ (vX,v @ V') > 0, with equality only for v* = v ® V/".
(4.19) is verified as follows:

CEF(vav,u*) = viv; Hnf | —L
Z /‘L’Ll’l’]

/

= E yiV;-InF (—1> + E yiV;-InF (—3)
— Wi — o
irj ! irj J

= CE"(v,u) + CEV(V', ).

Theorem 4.0.19 (Subset Independence) Let 2 be a finite algebra on M, A = {A;,..., A} C
2 a partition of M, and § an Irc-field. Let u € Ap2l.

Denote by 2l the subalgebra of 2 generated by A, and by A" the relative algebra of 2 with
respect to A, (h=1,...,L). For v € Ap let 7 denote the restricted distribution v |2, and
V" the conditional of v on A" (h =1,...,L; v(A,) > 0).

Let J C Ar2l be of the form

J=JnJin...nJg.
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with J a set of constraints on 7, and Jj, a set of constraints on vl Precisely:

J={ve A |v e J*} for some J* C Ap%,
Jn={v € ApA | v(4) =0Vt € Ji} for some J; C ApAh.

Let v € II;(u). For all h € {1,..., L} with v(Ap) > 0 then
vt e Ty (). (4.21)

Proof: The proof, again, is very similar to the one contained in [Shore and Johnson, 1980,
consisting basically of an invocation of lemma 4.0.16.

Let v € II;(p) and h € {1,...,L} with v(Ap) > 0. From v < p it follows that u(Ap) > 0,
so that both the conditional probability distributions in (4.21) exist.

Now suppose that there exists v/ € J; with

CEF(V/,u") < CEF (", uh). (4.22)

Then 7 € Ap2l defined by

&
I

R

Il
R X

kofor ke {1,...,L}\ {h}, v(4;) >0

/

A
>

Il

<

satisfies the constraints in J. By (4.15) and (4.22)
CE* (v, 1) — CEF (9, 1) = v(A4)(CEF (%, u) — CEF (v, i) > 0,

a contradiction. O

Corollary 4.0.20 (Jeffrey’s Rule) Let 2 be a finite algebra on M, u € Ap2A, {A1,..., A} C U
a partition of M, such that u(A,) >0 for h=1,...,L, and (r1,...,r) € Ak. For

then

L
mr(p)(A) =Y ru(A | Ap) (A e). (4.23)
h=1

Proof: J is as in theorem 4.0.19 with J; = ApA" for h=1,...,L. By (4.21) then

= b

for all v € I (). Since v is completely determined on 2 by J, this yields the unique solution
(4.23) for v € I (p). O

The foregoing lemmas and theorems show that what may be considered the fundamental
properties of cross-entropy and cross-entropy minimization for probability measures on finite
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sets can be derived from the elementary properties FUN and BD of the logarithmic function. In
addition to providing encouragement for considering cross-entropy minimization in the general
context of Irc-fields, these results are also of some interest for the classical case of real-valued
probabilities by showing how to derive properties like positivity and the reduction of cross-
entropy minimization to Jeffrey’s rule in a most elementary way from FUN and BD. Previous
proofs of these properties (positivity (for measures with densities) in [Kullback and Leibler,
1951], Jeffrey’s rule in [Diaconis and Zabell, 1982] (as part of a more general result) and
[Lemmer and Barth, 1982] (for the finite case)) employed fairly powerful tools from analysis,
and provided less insight into the basic analytic roots from which the behaviour of cross-entropy

minimization derives.



Chapter 5

The Logic of Subjective Probabilities

5.1 Syntax

We define an extension of Lg for expressing subjective probabilities. The outward appearance
of the extended syntax we define is again borrowed from [Bacchus, 1990b]. Since we are aiming
at semantics for our language quite different from that supplied by Bacchus, the details of the
definition are different, though.

In section 3.1 it has been observed that a subjective probability typically is a a number
assigned to some uncertain event e and a property ¢. A new term

prob(¢[e]) (5.1)

representing this number, therefore will be the basic building block for the extension of Lg.
Generally, we will want to make statements of degrees of belief not only for one single event
e, but about several events eq,...,e,. Such statements may also refer to the probability that
two or more events are related in a certain way. The statement “with a probability greater
than 0.6, this film is better than the one running on the other channel”, for example, quantifies
the relationship “better” between two uncertain objects.
This leads to the following precise definition for terms (5.1).

Definition 5.1.1 Let S be a vocabulary, e a tuple of event symbols not belonging to S, and
¢(v) € Lg with |v|=|e|. Then
prob(g[v/e]) (5.2)

is called a subjective probability S-term for e. Usually, we simply write prob(¢[e]) for (5.2).

Note that in definition 5.1.1 it is required that for each free variable v in ¢(v) an event
symbol e is substituted, so that a subjective probability term does not contain free variables.

Apart from adding subjective probability terms, L will also be extended by introducing the
new function symbol In. However, the use of In will be more restricted than that of the function
symbols - and +. This is already apparent from the definition of the subjective probability
terms, where the condition ¢(v) € Lg implies that ¢ may contain - and +, but not In. An
analogous restriction will be imposed on statistical probability terms in the new language.

97
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Thus, we define the language Lg’e (simply designated L# when the reference to the specific
sets of symbols can be dispensed with) by adopting the vocabulary Sy or of logarithmic ordered
fields as a fixed part of the language, and inductively define the sets of terms and formulas
of the language precisely as for L7 (cf. p. 18), except that for field-terms rule (d) is slightly
modified, and two further rules are added

(d") If ¢(v,w,x) is a formula not containing In, then

[¢<’U,w,$>]w
is a field-term in the variables v and z.
(e) If fis a field-terms, then In(f) is a field-term.

(f) Every subjective probability S-term for e is a field-term.

The set of field-terms definable via (a)-(c),(d’),(e),and (f) is denoted FTg,e-

Usually, we will have little use for the function symbol In when expressing probabilistic
information in LA. Making it part of the language primarily serves the purpose to later be
able to axiomatize default reasoning about probabilities within the language. Until that will
be done in section 5.6, the symbol In has to be taken into account when properties of L? are
shown, or definitions relating to L? are given, but will not serve any practical purpose.

As for statistical probability terms, we introduce notation for conditional subjective prob-
abilities: when t is a field-term containing the subterm

y - prob((¢ A )le]),

then the formula
Vy(y - prob(ye]) =1 — t <)

is abbreviated by
t' <s

7

where t' is t with the term y - prob((¢ A v)[e]) replaced by the expression

prob(¢le] | ¢[e]).

The examples from section 3.1 in this formal syntax are represented by

prob(th A Rot A Rgt) =0.3
prob(Af) < 0.5
prob(Actor father(p)) > 0.8.

The first two of these representations are straightforward, using event symbols t (toss),
f (film) and predicates R; (result is i) and A (American). In the third example, the given
representation is only one of several distinct possibilities. The least essential choice that has
been made in this representation is to let > 0.8 stand for “high probability”. More fundamental
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is the decision to represent the given informal statement by a relation symbol Actor, a function
symbol father, and an event symbol p (for the person referred to by “his”), and thereby to
interpret the sentence as referring to an object with the uncertain property of having an actor
as a father. Alternatively, one might have seen that father himself as an uncertain object f,
leading to the representation

prob(Actor f) > 0.8.

Also, the statement can be understood as referring to two persons p; and pe, and an uncertain
relation between them:
prob(father(p;) = p2 A Actorpe) > 0.8.

Similarly,
prob(father(h) = p2 A Actor p2) > 0.8,

but here the unnamed subject referred to by “his” is represented by a standard constant symbol
h, and only his father considered to be an uncertain object.

By this example it can be seen that in addition to the usual array of choices for how
to encode a natural language sentence in formal logic, here we also have to decide which of
the objects referred to in a statement are meant to account for the uncertainty expressed,
and therefore should be represented by event symbols, and which can be understood as fully
determined objects best represented by constant symbols.

Some further examples of L?-formulas are:

“This film has less than average probability of being American”:
prob(Af) < [Av],.

“The probability that this film has a happy end is the probability that it is American multiplied
by the statistical probability for happy endings in American films, plus the probability that it
is not American multiplied by the statistical probability for happy endings in non-American
films.” (Jeffrey’s rule):

prob(HEf) = prob(Af) - [HEv | Av], + prob(—Af) - [HEv | =Av],.
“This film is an American production, and it is very likely to have a happy end”
prob(Af) =1 A prob(HEf) > 0.8.

LA does not allow any free use of the event symbols outside a prob()-operator, so that
definite statements about these events can only be approximated by stating a probability of 1.

L? has an appearance very similar to the languages defined by Halpern [1990] and Bacchus
[1990b], both of which, following Halpern, we refer to as .%; . The most basic distinguishing
feature of the two languages, of course, is the use of a special set e of new symbols in Lg,e that
are treated differently from the standard constant symbols in S. In %5, formulas inside the
probability operator prob() are allowed to contain free variables, as well as the operator prob()
again. Neither is possible in L”.
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The second of these two limitations appears to be rather less serious because “meta-degrees
of belief” | i.e. degrees of belief about one’s own degrees of belief are a fairly unnatural concept.
Free variables within prob(), on the other hand, are a useful tool to represent more complex
statements about subjective probabilities: “Only few films (< 10%) are very likely to be better
than f”, for instance, can be represented in .5, but not in LA, by

[prob(Better vf) > 0.9], <0.1

using a free variable v inside prob(). Compare this statement to “It is very likely that only few
films are better than f”, which is representable in L? by

prob([Better vf], < 0.1) > 0.9.

One reason for imposing the restriction of applying prob() only to closed L°-formulas in L?
is that this will simplify the semantical definitions in the following section. While it would be
possible to use the general semantic principle there introduced also for interpreting a language
permitting arbitrary LA-formulas inside prob(), we will not follow such a general approach here.

The reason for this is that more than in sound semantics for a very expressive language —
as is aptly supplied by Bacchus and Halpern — we are here interested in strengthening such
a semantics to incorporate default reasoning about probabilities. It will turn out, that the
definition of this strengthened semantics in section 5.4 makes essential use of the fact that
subjective probability terms do not contain free variables.

5.2 Semantics: Feasible Models

Viewing statements of subjective probabilities as statements about a particular set of uncer-
tain objects or events is the key to using a semantic construction for the interpretation of
these statements that is instrumental for our approach to combining statistical knowledge with
subjective beliefs.

A statement of a subjective probability r that an event e has some property ¢ is equivalent
to saying that with probability r, e belongs to the set of all events that have property ¢.
Note that this equivalence, obvious though it may appear, is not completely trivial, because it
reduces the quantified relation between e and the abstract syntactic construct ¢ to a relation
between e and the extension of ¢ on the object level. By virtue of this equivalence it is then
straightforward to view uncertain events as random elements of the domain of discourse, about
which some partial knowledge has been obtained. They are then naturally interpreted by a
probability measure on the domain of a statistical S-structure. This approach to interpreting
subjective probabilities we call random event semantics.

With the syntax introduced in section 5.1, subjective probabilities are expressible only for
subsets of M/l that are definable in L7 without parameters — a consequence of not allowing
free variables inside prob(-). For the interpretation of subjective probability terms therefore a
probability measure on the subalgebra of 2 e| consisting of such sets will be sufficient.

Definition 5.2.1 Let S be a vocabulary, e a tuple of event symbols. (I, ve) is a belief S-
structure for e, if
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e M= (M,I,3F,(UAn, tin)n), where § is an Irc-field, and M| Sor = (M, I,F| Sor, An, tin)n)
is a statistical S-structure.

e v is an F-valued probability measure on

e := {M(p(v)) | [v|=[e], ¢ € 1§} C Ajey.

M is called the statistical base structure (of the belief structure (IM,ve)). When § = R, (IM,ve)
is called a real-valued belief structure

It is a little bit unfortunate that we here have to distinguish between statistical structures, as
introduced in definition 2.3.4, on the one hand, and statistical base structures on the other. The
only difference being that the real closed field in the latter must be equipped with a logarithmic
function, which was not required for the former. This terminological awkwardness might have
been avoided, if Irc-fields had been required as the range for probability values right from the
beginning. Since this would have served no discernible purpose for the interpretation of L7,
however, it is perhaps preferable to here suffer the distinction between statistical structures
and statistical base structures.

The satisfaction relation for statistical S-structures 9 and Lg-formulas is easily extended to

a satisfaction relation between belief S-structures (9,ve) and Lg,e—formulas: let v be a variable
assignment. For ((9M, ve),7), terms and formulas in Lg o> arelation =g is defined precisely as
the relation |=, in definition 2.3.1 by replacing (90,~) with ((90,ve),7), and =, with =3

throughout, and adding the new conditions

(e) t =In(t'). Then (M, ve),7)(t) = InF(((M, ve),7) ().

(f) t = prob(¢fv/e]). Then ((M,ve),7)(t)= rve({a | (M,ve), [v/a]) s p(v)}).

Since ¢(v) here is a formula in L7, 9| Sor was assumed to be a statistical S-structure, and
for ¢ € L7

(M, ve),7) Fpd(v) & (MISor,7) Fo ¢(v), (5.3)

it is assured that the set
{a | (M, ve),v[v/a]) s o(v)}

belongs to e (to match the formal definition of e, write this set as M(P(v)), where ¢(v)
is the conjunction of ¢(v) and the atomic formulas v = v for all v € v that do not actually
appear in ¢(v) (cf. p. 25)).

Furthermore, by the restriction of applying the prob()-operator only to closed formulas, the
subjective probability terms can not be used to define subsets of M™ not definable in Lg alone.
Hence, also for every statistical probability term t = [¢(v,w,x)]w € FTg’e, the interpretation
(M, ve),v)(t) is defined. This is formally stated in the following lemma.

Lemma 5.2.2 Let (9,ve) be a belief S-structure, 7y a variable assignment. Then ((9, ve),v)(t)
is defined for every t € FTg}e.
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Proof: It must be shown that for all ¢(v,w,x) € Lg,e not containing In, a € M?l, and
r € M®, the set (M, ve),v/a,x/r)(¢p(v,w,z)) is measurable. The interpretation

si = (M, ve),v/a,xz/r)(t;)

of every subjective probability term t; = prob(t;[e]) appearing in ¢ is a constant not depending
on the variable assignment v(v) = a,y(x) = 7. Define ¢/ (v,w,x,y) € Lg by replacing the t;
with new field variables y;. Then

((gﬁ’ Ve)v v/a, cc/r)(gb(v,w,ac)) =
(O] Sor,v/a,z/r,y/s)(¢'(v,w,z,y)) € Ajp)-

O

The interpretation of prob(¢[v/e]) depends on the order imposed on the event symbols by
writing them as a tuple e because without this order the set whose measure is the interpretation
of prob(¢[v/e]) would only be determined up to permutations. Since ve is not assumed to be
homogeneous, this is not sufficient.

The ability to obtain structures for the interpretation of Lg}e simply by adding to some
existing statistical S-structure the definition of a logarithmic function (when this is possible
in §) and a measure e on e is one reason for restricting the syntax of probability terms.
If subjective probability terms were allowed to contain free variables, then definability in Lg}e
would be more powerful than in L, making the algebraic structure (2,,) in 9% insufficient for
interpreting Lg’e. The same would be true if the symbol In was allowed inside [-] or prob(-).

Definition 5.2.3 A belief S-structure (IM,ve) for e is called a feasible model of a set ® of
Lg,e—sentences (written (M, ve) =g @), if (M, ve) =5 ¢ for every ¢ € .

Definition 5.2.4 Let ® C Lg’e, ¢ € Lg’e. ¢ is B-entailed by ®, written ® =3 ¢, if every belief
S-structure that is a feasible model of @, also is a feasible model of ¢. Also, we use the notation
03 ):? ¢ if every real-valued feasible model of @ is a feasible model of ¢.

Definition 5.2.5 We write .#” for the logic defined by the language L? and the entailment
relation |=3.

Similarly as for |=,, we have that =g coincides with standard first-order entailment for
first-order formulas ®, ):

sy & PEY (@, first-order)

(cf. lemma 2.3.13). By the given definitions it is not assured, however, that =3 coincides with
=o on Lo-formulas. Since the relation |=4 is based on the more restrictive concept of a model
in which measures are taken in an Irc-field, not merely an rc-field, we immediately only obtain
that for & C Lo, ¢ € L9

P90 = D30 (5.4)
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For the =R and IZ? - relations, on the other hand, we clearly have
Y & DERY

for ® C L7,9 € L?. An incompleteness result immediately follows for |:? from the incom-
pleteness of =R .

A sufficient condition for the converse of (5.4) to be true would be that for every statistical
structure MM = (M,...,5,...) there exists a statistical structure IM* = (M,...,F*,...) where
F* is an rc-field that can be extended by a logarithmic function, and

VoeL? ME,¢ & M =, o (5.5)

While it may be conjectured that such 91* indeed always exist, and hence an equivalence in
(5.4) actually holds, this issue shall not be pursued here further, so that, for the time being,
we have to distinguish the two entailment relations =, and = on L.

5.3 #° Is First-Order Logic

For .## we have essentially the same reduction to first-order logic as for .#7. We here sketch
out the derivation of this result without spelling out all the details, which are the same as in
the corresponding results from section 2.5.

Let S be a vocabulary and e a tuple of event symbols. The translation of Lg into a first-order
language Lg_ defined in section 2.5.2 can be extended to a translation of Lge into a first-order
language Lgr_ with S{; D Soo. The additional rules needed for translating subjective probability
terms prob(¢[v/e]) are much simpler than what was needed for statistical probability terms
[¢(v,w,x)]w because the former do not contain free variables, and therefore behave as constants,
not as functions.

The vocabulary S/ is defined similarly as S, introducing additional constant symbols
to be used as the translation of subjective probability terms. We will here make the same
assumptions about the set of domain- and field variables used being {v1,ve, ...} and {z1,x2,...}
respectively. Besides {a1, s, ...} and {C1,(2,. ..}, we use a further (finite) set {e1,...,€e/} of
auxiliary variables. The tuple (e1, ..., €e|) is denoted by €.

Let Sg, S1, - - -, Seo be defined as in section 2.5.2. For each n a vocabulary S/, D S,, is defined.
For n =0 let

b:=SU{0,1,+,-,<,In} D Sy.
Now let n > 0, and assume that S/, D S,, has been defined. The pattern p(¢;v) of ¢{v,w,x) €

Lg with respect to v is defined as in section 2.5.2. For each formula

¢(v,w,x) € Ly \(in} \ Ls;

n—1

and permutation mw of w let
fp(¢3v),mw

be a new function symbol of sort DIY FI®+1  For each

¢(€) (S Lsn
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let
#(€)

be a new constant symbol of sort F. Observe that these constant symbols are only generated
from ¢ € Lg,, not from ¢ € Ly . Let S/, denote the union of S, and these two sets of new
symbols. Clearly S/, D S,41, because S,y1 D S, consists just of those symbols fP(¢iv),mw
with ¢ € Ls,, C Lg; \ fjn}- Define

— U S=sLsh
nelN
The translations
t—=t" and ¢ ¢

for Lg,e' terms and formulas is defined as for L7 (p. 48), with the additional rules for field terms

(e) (In(t))* == In(t*)
(f) (prob(s[v/e]))* := q?"lV/el.

Note that the augmented set of translation rules will always yield ¢* € Lg_ when ¢ € L?
(as required within the operator prob()), so that the symbol q?"[%/€] actually exists. Similarly,
for the old rule

([p(v,w,x)])* = PP gy, o)

it must be observed that the translation ¢* does not contain the symbol In when ¢ does not,
so that the symbol fP(#"0)W exigts.

An inverse mapping Lg,_ — L'g,e can not be defined as a total function as was done for the
mapping Ls_ — Lg: since in Lg’e statistical probability terms [¢(v,w,x)]w are not allowed to
contain the symbol In, the inverse can not be (easily) explained for Lg_-terms of the form

PO (.., (PPes).

Hence we restrict the definition of (-)~! to the fragment flsfco of Lg_ defined by the restriction
that in a term of the form fP®(ty, ..., t;,s1,...,s;) none of the field-terms sq, . .., s; may contain
a subterm of the form In(s).

For t,¢ € isfm then t ! and ¢! are defined as in section 2.5.2, with the additional rules

e (In(s))~! :=In(s7h).
o Let q?(¢) € S!,. Assume that (¢(e))~! € Lg has been defined. Then

(a™€))" := prob((¢(e)) " [e /e]).-

Clearly t~! then does not contain In when t does not contain In, so that by the definition of
(fP¥(...)) ! (cf. p. 50) In will not be introduced into a statistical probability term [...].
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Lemmas 2.5.7 and 2.5.8 remain valid for the generalized translations (-)* and (-)~!. The
proofs are as before; for lemma 2.5.8 it must now also be noted that ¢* € flsgx’ for ¢ € Lg,e, SO
that (¢*)~! is defined.

An Lg_-structure corresponding to a belief structure (9,ve) is defined as in section 2.5.3.
The interpretation of a constant symbol q#(€) € S’ is given by

I*(q™)) = (M, ve) (prob(g[e]))-

Lemma 2.5.9 then holds for I:S{,o - terms, formulas and sentences.

An axiomatization AX(e) of the class of S/ -structures corresponding to belief S-structures
for e is given by a modification of the axiom set AX (p. 54). First, in AX(e), the axioms LRCF
take the place of RCF. The schemas (2.25),(2.28), and (2.30) that in AX are instantiated for
all Lg_- formulas, in AX(e) are instantiated by all f‘S’m -formulas. The definition of AX(e)
is completed by adding axioms that make sure that the interpretations of the q®(€¢) encode a

probability measure on the Lg_-definable subsets of MI€l:

e Let PM(e) contain
— For all constant symbols q?(¢) € S'_ the axiom

q%€) > 0.

— With 7(€) := (e1 = €1 A... A €je| = €je|) the axiom

qT(e) =1.

— For all ¢(e),9(€) € Lg__ the axiom
—Je (d(e) Ap(e)) — ql@VPIE) = gol€) 4 qvle),

The analogue of lemma 2.5.10 now holds for belief structures (9,ve) and AX(e).

The last step in reducing #? to first-order logic now is the definition of a belief structure
(M1, ve) from an S’ _-structure M = AX(e). This is done similarly as for Sy.-structures
in section 2.5.3. The algebras 2, in M~ are the sets of all fJSfDO -definable subsets of M€l
(As a matter of fact, these are just the same as the Lg_-definable sets, because for every
formula ¢(v) € Lg/_ there exists an equivalent “term-reduced” formula ¢o(v) € Lg_ in which
function terms only have variables as arguments (see e.g. [Ebbinghaus et al., 1984]). Such ¢y,
in particular, belong to the fragment fJSIOO )

The statistical measures (u,) are defined as before by (2.31). The belief measure ve is
obtained from the interpretations of the constant symbols q in 9 via

ve(IM ' (¢(v)) := I(q*"1"/€]) (¢(v) € Lg).

From PM(e) it follows that this defines a probability measure on Ue.

The analogue of lemma 2.5.11 then can be formulated for S/_-structures 9t and the inverse
(ML, ve). To part (b) of the original proof of lemma 2.5.11 a trivial induction step for field-
terms of the form prob(¢[e]) has to be added.

Piecing things together, we obtain the generalization of theorem 2.5.12.
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Theorem 5.3.1 For all & C Lg,e, ¢ € Lg’e:

D=y iff D*UAX(e) =g

5.4 Semantics: Default Models

The concept of a feasible model for an LA-formula is just as far as probability theory alone will
take us. That is to say: semantics that allows any feasible model as a model for an Lg,e—theory
® will permit just those inferences that are validated by probability calculus alone. From the
perspective of probability theory, the information on the statistical measures (u,) contained
in @, and the constraints on the belief measure ve, can be satisfied independently; any set of
measures {(in)n, Ve} that satisfies the respective constraints is as good as any other set.

In order to also incorporate some of the mechanisms of default reasoning about probabilities
in our semantics, by which a rational agent will select from the multitude of feasible models
those that appear more plausible than others, we will have to require something more of a belief
structure for being a model of a theory, than mere feasibility in the sense of definition 5.2.3.

This strengthening of the notion of a feasible model for ® C LA for formalizing default
reasoning about probabilities will only be defined for finite theories @, or, equivalently (by
identifying a finite set ® with ¢ := A®), single sentences ¢ € LA.

Generally speaking, what will be proposed here, is a preferred model semantics for Lg,é
a certain subclass of feasible models of ¢ € Lg,e will be regarded as capturing the default
meaning of ¢, while others are rejected for this purpose. This makes the formalization of default
reasoning about probabilities here developed similar to logical default reasoning systems based
on preferred model semantics, notably circumscription ([McCarthy, 1980]).

Intuitively speaking, the criterion for either accepting or rejecting (I, ve) as a preferred
model of ¢, or, as we shall say, a default model of ¢, should be a restriction formulated for
Ve, rather than 91. Our intention of not making any default inferences of objective statements
implies that a feasible model (9M,ve) will not be discarded for the reason of the structure of
I alone, because all models for the objective information are considered equally valid. The
criterion we look for, then will have to be of the form: (91,ve) is a default model, if ve is the
preferred belief measure, given 91 as the interpretation of objective sentences. More formally,
let

Ar (¢, M) C Aple

designate the set of belief measures ve for which (9,ve) is a feasible model of ¢. We will specify
a rule

¢, M — pref C Ap(¢, M)

that assigns to the statistical structure 991, and the Lge—formula ¢ a subset pref of preferred
belief measures, so that (9,ve) will be regarded a default model iff ve € pref.

From our analysis of default reasoning about probabilities in section 3.3 and 3.4, it is
clear that cross-entropy minimization will have to be the central tool to define preferred belief
measures. There are still some questions to be answered, however, about how the minimum
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cross-entropy principle as there derived can be adjusted to the situation at hand: in our
epistemic analysis we were only concerned with a single event e; how do we generalize these
considerations to LA-theories about tuples e of events, perhaps expressing degrees of belief
about how the elements of e are related? Secondly, our derivation of the minimum cross-
entropy principle in section 3.4 assumed a finitary context, i.e. events were modeled by random
variables with a finite range; is this model sufficient to derive semantics for L? where there are
infinitely many properties definable for e?

The problem of how to extend the model developed in chapter 3 for dealing with multiple
events e rather than a single event e, is not difficult to resolve. There is no inherent difference
between a set e of events, possibly related in certain ways, and a single event e with various
properties: e can just be seen as a single composite event for which properties may be defined
in terms of relations among its components. Thus, everything that has been said in section 3.2
about a single event e, without modifications, carries over to a tuple e.

The formalization of subjective probability statements by LA- sentences which are inter-
preted by belief structures, however, entails certain restrictions for what kinds of composite
events can be modeled. Since in this formal framework, the domain of possible (composite)
events is of the form M€l every component of e is assumed to stem from the same set M of
possible (simple) events. Furthermore, in a belief structure, the algebra e always is equipped
with a statistical measure

pe = ie|l e
that has the product property. Thus, making the assumption of postulate 2, here also nec-
essarily entails an independence assumption for the components of e: assuming the random
mechanism that produced e to be equivalent to pe, particularly means that, without any evi-
dence, one would for each pair e(i), e(j) of components of e, and possible properties ¢, for
these components, assign subjective probabilities according to the rule

prob(¢le(i)] A ¥le(j)]) = prob(¢[e(i)]) - prob(y[e(5)])- (5.6)

Subjective probabilities that postulate dependencies between e(i) and e(j) by violating (5.6)
then always have to be inferred from evidence.

The second question posed above is a bit more difficult to answer. While our epistemic
analysis in section 3.3 has been very general — not making restrictive assumptions about the
domain of possible events of which the observed event is an instance, or the number of properties
by which these events can be distinguished, and for which statistical information and prior
degrees of belief are available — the statistical model of section 3.4 only has been developed
for the simplified situation where events are only distinguished with respect to finitely many
properties.

It is not immediately clear that this model is adequate for situations described by LA-
sentences, because in Lg,e (for sufficiently rich S) infinitely many non-equivalent properties are
definable for e.

We might attempt to generalize the statistical model by using random variables whose
range is the (infinite) set of possible events. This can be done when we presume that this
set of possible events is equipped with a suitable o-algebra, and the statistical measure p is a
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o-measure on that g-algebra. More sophisticated Sanov-theorems than 3.4.9 can then be used
to obtain results analogous to 3.4.6, using the general definition (3.7) of cross-entropy.

However, when the set of possible events M only is equipped with an algebra and a finitely
additive statistical measure pu, as is the case in a belief S-structure, we no longer even have the
concept of a random variable with distribution p in M at our disposal.

Rather than generalizing the statistical model of section 3.4, we shall therefore argue that
it is in fact sufficient for the interpretation of ¢ € L?.

For this purpose, consider again the situation described in postulate 3 for the special case
that the set ® of prior degrees of belief is encoded in a sentence ¢ € Lg,e. We are then
dealing with a situation in which prior degrees of belief only concern finitely many of the
definable properties of e: suppose that ¢ contains n subjective probability terms prob(i;[e])
(¢ = 1,...,n). The relative frequencies of properties ((v) € Lg,e then are (approximately)
within the bounds prescribed by ¢, iff the relative frequencies of the properties ¢ (v), ..., ¥n(v)
are (approximately) within the prescribed bounds. In other words, only the frequencies of
finitely many attributes of the elements in the random sample must be checked in order to
verify that the sample is consistent with our prior beliefs.

Observe that this is another consequence of not permitting free variables inside the prob()-
operator. With free variables, by a single sentence, constraints for infinitely many properties
can be formulated. In order to verify that a random sample satisfies the constraint

Vw prob(Rwe) > 0.2 (€ &, ¢ L),

for instance, it must be checked for each of the (usually infinitely many) possible events e’ that
the relative frequency of elements x in the random sample that satisfy R e’z exceeds 0.2.

Now suppose we want to determine the subjective probability for some other property
x(v) € LP. Ultimately, we are then only interested in the expected relative frequency of x
in our random samples. Thus, for the assessment of prob(x[e]), elements of the sample need
only be distinguished by the finitely many properties v, ..., 1, (for identifying the sample as
accordant with our prior beliefs) and x (for defining the new belief). Other properties ¢ that
elements in the sample may or may not possess, for the task at hand, are regarded as irrelevant.

For an illustration, once again, consider the film-example 3.2.2: suppose there is also a
predicate CS in our language designating a film’s property of having been a commercial success.
We may also assume that ¢ contains the statistical information

[HEv | CSv], = 0.85.

We have obtained no evidence bearing on the film’s likelihood of having been a commercial
success, i.e. the evidence of the scene we saw on television is exhausted with regard to the
property CS by the trivial bound prob(CSf) € [0,1]. In spite of the availability of statistical
data relating the property HE to CS, it will then be unnecessary to distinguish elements in the
random sample with respect to their having been a commercial success. This property, for the
inference about prob(HE f) is irrelevant.

Note that this is a notion of irrelevance complementary to the one introduced in section 3.3.
There (p. 73) a property that has been observed in an event was called irrelevant, when there is
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no statistical information available relating to this property. Here we argued that a property for
which there is statistical information is irrelevant, when no observation inducing some degree
of belief for this property has been made.

By ignoring all L?-definable properties except i1,...,%n,x, we can adopt the statistical
model of section 3.4 to derive prob(x[e]) according to postulate 3.

From modeling the random sample by a sequence of random variables with values in

n
L= {/\ i N X | (S {wia_'wi}ax € {Xv_'X}}
=1
distributed according to the restriction to I' of the statistical measure u, by theorem 3.4.6
then we obtain as a condition for the subjective probability v(x|[e]) for e to have property x:

v(xlel) € a1l D)) (5.7)

where A(¢)[T is {v|T | v € A(¢)}.

From (5.7) a partial description of a default model for ¢ is obtained. Transferring (5.7)
from the abstract syntactical level to a statement about probability distributions on the domain
of possible events in the framework of a belief structure (9,ve), we obtain a condition for a
preferred belief measure ve:

ve(M(x(v))) € I, (g om e (el L) (M (x(v))) (5.8)

where X is the finite subalgebra of e generated by the interpretations {M(a(v)) | a« € T'}.

(5.8) states a condition for a preferred belief measure ve that should be true for any x(v) €
Lge, and the corresponding algebra X defined by 1, ...,%, and ¥.

The question therefore is: does there exist in Ap(¢p, M) a measure ve, such that (5.8) holds
for all x(v)? If so, how can it be defined explicitly?

By theorem 5.4.2 below it will be shown that such ve are obtainable by the canonical
construction given in the following definition.

Definition 5.4.1 Let 2 be an algebra, u € Ap2l. Let 2’ C 2 a finite subalgebra with atoms
{A1,...,A,} and v € Apl’ such that v < p|2’. The extension v* of v to 2 defined by

P
A=Y w(Au(A ] A) (Ae)
i=1
w(A) >0
is called the Jeffrey-extension of v to A by p, denoted by J (v, u, ).

By the next theorem, Jeffrey-extensions are adequate generalizations of C E-projections
IT;(u) for measures on infinite algebras, provided that J is sufficiently simple.

Theorem 5.4.2 Let 2 be an algebra, u € Ap2A. Let J C Ap® be defined by constraints on a
finite subalgebra ' C 2, i.e.

WweApl: veld & vid e . (5.9)
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Then for all finite A" D A’
g (A7) = (A" v =T p,2A), vV €I o (ulA)}. (5.10)

Conversely, for v € Ap%, if

VA" € T pgpr (1] A”) (5.11)
for all finite A" 2 A, then v = J(v/, p, ) for some v € IL; o ([ A').
Proof: Let {Aj,...,A,} be the set of atoms of A'. Let v € ApA”, V' <« ulA". By

lemma 4.0.16 then
CE* (V" ul A"y > CEX ("1, u1 )

with equality iff
(V") = (i) (h=1,....p) (5.12)

where (-)" is the conditional distribution on Aj. Equivalent to (5.12) is
V” — j(l/” l~ 9’[17 ,Lt rQ[II’ Q[II)‘

Since by (5.9)
j(VI,/,L[Q[”,Q[”> € Jrg[ll

for all v/ € J] A, we obtain
T 0 (U1 27) = (T, a1 2, 2) | o € T (1 2)). (5.13)
With
Tl AU = T, p,A) 1A

this proves (5.10).
Now assume that (5.11) holds for v € Ap2A and all finite 2" D A". Specifically, then

VI =1 € T g (] ).

Let A € 2 be arbitrary and 2" the algebra generated by 21" and A. According to (5.11) and
(5.13)
v(4) =T, ut 2", A"),

and hence v = J(V/, u, ). O

The cross-entropy minimization properties of Jeffrey-extensions J(v,pu,?Ad) for
vell I (u]2') suggest to extend our previous notation, and to write

Ly (1, ) = {7 (v 1, 20) | v € TL g (1 2)}. (5.14)

However, the analogy between the set designated by (5.14), and our older concept of the
CE-projection of p into J as introduced in 3.4.1, appears to be somewhat unsatisfactory,
because of the former’s dependence on the algebra 2’ used to represent .J, which certainly will



5.4 SEMANTICS: DEFAULT MODELS 111

not be the unique algebra with the property (5.9): for every 2" D 2, for instance, (5.9) also
holds with 2” in place of 2A'.
To see that the set II;(u, ") really extends the concept of the C E-projection of p into J,
we will therefore have to show that it is in fact independent of the particular choice of .
When " D 2, it is not difficult to see that TI;(u, ") = IT;(u,A"), because

I (p,A") = {T %) | v €y pgn(ul A")}
= {T(ITW, pl 0" 2A"), 1, %) |V €T jpgp (I A)} by (5.13)
= (T ) |V €T (a1 2))

(1, )

What if J can be defined by constraints on 21’ and 21", but neither 2’ C 2", nor 2" C 2A'?
Does I, (u,2A") = I (u, 2A") still hold? A positive answer to this question is provided by the

following lemma, which states that in this situation J also is determined by constraints on
A=A NA’. By A" C A, A" C A", and our considerations above, this implies that

HJ(/jﬁ Q’[I) = HJ(M? le) = HJ(M? Q[”)'

Lemma 5.4.3 Let 2 be an algebra, 21, 2l" finite subalgebras of A, and J C A2 such that

YWweArd: veld & viAeiA & vA" eqd. (5.15)
With
AT = A NA”
then
WweApd: veld & vA" e A (5.16)

Proof: Let 2" be the subalgebra of 2 generated by 2’ and ”. Since (5.15) then implies that
VveEARA: veJ & viAY e iU,
for (5.16) it suffices to show that
viAY e J1AY & wA" e grAn. (5.17)

To obtain a more economical notation, we may therefore work within a completely finitary
context, and assume that 2 = 2“ and J C Ap2A".

With {4} |i=1,...,p} the atoms of A’, and {A” | j =1,...,¢} the atoms of A", atoms of
A" then are the nonempty intersections

Bij:=AiNAY (i=1,...,p; j=1,...,q).

Elements of A" are just the unions of atoms of 2 that simultaneously can be represented as a
union of atoms of A", i.e
A=JAje
il
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with 7 C {1,...,p} belongs to 2" iff there exists J C {1,...,q}, such that
A= 4]
jeJ

A is an atom of A" iff the sets I,.J defining A are minimal, i.e. there are no I' C I, J' C J

such that

U4i=U 47

iel’ JjeJ’
Figure 5.1 depicts the four algebras A7, 2, 21", 2. In this picture, atoms of 2’ are represented
by fields delimited by dotted lines, atoms of 2" by fields delimited by dashed lines. Solid lines
mark the boundaries of atoms of 2, and each field defined by lines of any kind represents an

atom of AY.

Figure 5.1: Algebras in the proof of lemma 5.4.3

Figure 5.1 also may be used to explain the basic idea for the proof of (5.17).

A measure v € Ap2” is given by an assignment of probabilities to the atoms of 2.
Consider a measure v/ on A" obtained from v € Ap2" by shifting part of the probability
v(B;;) of some atom B;; to another atom B;;; which is a subset of the same Al e A as B;;.
More precisely: let r < v(B;;), and define

VI(BZ']') =v(Byj) —r, VI(B,L']'I) =v(Byj) +,

and v/(B) := v(B) for all other atoms B of 2“. Then the restricted distribution of v/ on 2’
has not changed from the one of v, so that by (5.15) we have that

VeJ e veld

This process can be iterated: the probability weight r can be shifted from B;j to another
atom of A", which is either of the form B;jn, i.e. belonging to the same atom of A" as B;j, or
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of the form By, i.e. belonging to the same atom of 2" as B;;. In both cases a new measure
V" is obtained that has the same restricted distribution as ¢/ on either A’ or 2A”. Thus,

Vel & Vel

To prove the lemma, we will show that in this manner the weight r can in fact be shifted
from B;; to any atom By of 2Y belonging to the same atom of A" as B;;. The result then
follows easily, for assume that v € ApAY with v[2A" € J[2A", so that there exists 7 € J with
A" = v A", Clearly, v can be transformed into 7 by a finite series of weight shifts inside
atoms of A". Each of these shifts preserving membership in J, we obtain that v € J, which
proves (5.16).

It remains to be shown that it is indeed possible to shift probability weights among arbitrary
atoms of 2" inside atoms of A" while preserving membership of .J.

Intuitively, this is fairly obvious by a look at figure 5.1: inside atoms of A", each pair of
atoms of A" can be connected by a “path” which only crosses boundaries of either atoms of
A’ or of 2", but not simultaneously boundaries of both kinds. To formalize this argument, we
introduce a binary relation ~ on atoms of A“ by

Bi]' ~ Bz‘ljl iff 1= il or ] == jl.

Let ~ be the transitive closure of ~. Clearly, = is an equivalence relation on the atoms of A".
Let [B;;] denote the equivalence class of B;; with respect to . It then must be shown that
U[B;;] contains the atom of 2" that B;; is a subset of. For this we only need to show that
U[B;;] is an element of A"

For B;; define

I([Byj]) = {i'e{l,...,p} |35 €{1,...,q} By € [Byl}
J([BZ]]) = {]I € {1,. .. ,q} | 3 e {1,. .. ,p} Biljl € [Bz]]}

For all ¢/ € I([B;;]) then
A4, CUBy) (5.15)

because Afi’ = Uj’e{l,...,q}Bi’jla By C U[Bij] for some j’, and Birju ~ By for all other
j" €{1,...,q}. On the other hand, obviously,

U [BZJ] C U{A{L-/ | i’ e I}. (5.19)
Together with the analogous statements about atoms A of 2", (5.18) and (5.19) yield

U 4, = | 4y = uB;lea.
' €I([Bs;]) J'€J([Bij])

Lemma 5.4.3 justifies the following definition.
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Definition 5.4.4 Let 2, p, J, and 2’ as in theorem 5.4.2. We write
HJ(:U‘) = {\7(7/7/1*’2[) | Ve HJ[’QL’(,U‘[Q[I)}'

With theorem 5.4.2 and definition 5.4.4 it becomes clear how to define a set of preferred
belief measures satisfying (5.8) for every set 9 (x(v)).

Letting A = e, 4 = pe, and J = Ap(¢, M), theorem 5.4.2 is applicable, because
Ap(¢, M) is defined by constraints on the finite subalgebra of 2e generated by the exten-
sions of ¢1(v),...,¢¥n(v). By theorem 5.4.2, (5.8) is satisfied for every ve € IIa;(gom)(ke)-
Conversely, every measure ve that satisfies (5.8) for all x(v) belongs to IIa (g o) (ke)-

Definition 5.4.5 Let ¢ € Lg’e, (M, ve) a feasible model of ¢. (M, ve) is called a default model
of ¢, written (MM, ve) | ¢, iff ve € IIA (4 n)(He)-
B

S,e’
such @ define sets Ap(®, M) of feasible belief measures not definable by constraints on a finite

Observe that this definition can not be extended easily to infinite theories ® C Lg ., because

subalgebra of e, so that we do not have a useful definition of a set ITx (s 9n)(1te) of preferred
belief measures.

Example 5.4.6 Suppose that ¢ € Lg and M =5 ¢ for a statistical base structure M. Then
(M, ve) is a feasible model of ¢ for all ve € Aple:

Ap(¢, M) = Aple.
Therefore IIa(g.9m)(tte) = {1e}, so that
(m’t, Ve) |¢3¢ iﬁ Ve = l,lze. (5.20)

Definition 5.4.7 Let ¢,v € LP. ¢ is default entailed by ¢ (written ¢ ko) iff (9, ve) Ep v
for all default models (90,ve) of ¢. The relativized operator R is used for default entailment
with respect to real-valued probabilities, i.e. ¢ B iff (9, ve) =51 for every real-valued
default model (9M,ve) of ¢.

Definition 5.4.8 We write ,%fef for the logic defined by the language L and the entailment
relation .

When analogous statements can be made for both = and sz, we use the denotation
~®)  which means that the statement in which R®) occurs is true when r®) is either
replaced by R, or by kR throughout.

Example 5.4.9 Let ¢, x(v) € L7, (M, ve) R ¢. By example 5.4.6 then ve = pe, so that
M =5 prob(x[e]) = [x(v)]v. Hence

¢ ® prob(x[e]) = [x(v)]o-
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Clearly, lz(R) is a nonmonotonic inference relation: adding new constraints for prior de-
grees of belief usually invalidates former default inferences. This, however, is the only way in
which lz(R) is nonmonotonic. As the following lemma points out, lﬁw(R) behaves monotoni-
cally for deterministic formulas from L°.

Lemma 5.4.10 Let ¢,¢ € L? with ¢ ®) 4. Let xy € L?. Then ¢ A x k®) 4.

Proof: Let (9, ve) be a default model of ¢ A y. Since for all v, € Ap2le, (9N, v}) is a feasible
model of ¢ A x iff (9, v]) is a feasible model of ¢ (cf. example 5.4.6), we have that

Hence
Ve € I ap(g,9m) (pe) = HAp (gny, o) (“\e\)’
and (M, ve) R R) ¢. Thus, (M, ve) =51 H

For kR it is once more easy to show incompleteness by reducing Izg to R,

Lemma 5.4.11 Let ¢,9 € L?. Then

PERY & oRRy.

Proof: The left to right direction is immediate from the definitions. For the right to left direc-
tion let (M,ve) be a real-valued feasible model of ¢. Then (9, pe) is a real-valued default model
of ¢ (cf. example 5.4.6), and therefore (M, pe) =5 1. Since ¥ € L7, then also (M, ve) =g 1p. O

It is perhaps worthwhile to recapitulate the various assumptions that had to be made in
order to arrive at the default semantics of definition 5.4.5. These assumptions should always
be borne in mind, when default inferences are computed from a formula ¢ € LP.

First, there is the fundamental assumption of postulate 2: the uncertain events are taken
to have been produced by a random mechanism equivalent to the statistical sampling rule. As
we have seen, this entails the assumption of two or more different uncertain events to be inde-
pendent realizations of equivalent random mechanisms. Furthermore, there is the assumption
of postulate 3: the stated prior beliefs have to be complete in the sense that they exhaust
the evidence. This is a typical assumption that always has to be made when a nonmonotonic
inference rule is applied to a knowledge base representing the knowledge of an intelligent agent:
such an inference can necessarily only be argued to correspond to the agent’s own reasoning,
when it is taken for granted that the agent does not possess any additional knowledge which
might invalidate the default inference.

The remainder of this section is dedicated to a partial exploration of the properties of
default entailment lz(R) by means of several examples.

In the first example we pick up the discussion of section 3.4.3 about how to deal with
degrees of belief that define non-closed sets of belief measures A(®). By definition 5.4.5 the
conservative approach is taken towards interpreting sentences ¢ that give rise to non-closed
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Ar(¢p,9M): a default belief measure ve must belong to Ap(¢, M), not merely to cl Ap(p,IMN).
The more adventurous approach of letting ve € II Ar(6,M) (1e) obviously would have led to
a logic with rather bizarre properties, even defying what Kraus et al. [1990] have named the
reflexivity property, i.e. ¢ ¢ for all ¢.

Example 5.4.12 Let R € S be a unary predicate symbol, e an event symbol. Consider
¢ :=[Rv], = 0.1 A prob(Re) > 0.8. (5.21)

Let M = (M,I,F, (A, in)n) be a statistical base S-structure. If pi(I(R)) # 0.1, then
Ap(¢,9M) = (. Otherwise, Ap(4, M) is defined by constraints on the finite subalgebra A’ =
{0,I(R),I(R)¢, M} of 2A; by Ap(¢, M)A = {(v1,12) € AZ | 11 > 0.8}. Since this is an
open set that does not contain el 2, we have that TIx (s o) (tte) = 0 (cf. example 3.4.3).
Consequently, ¢ does not have a default model, and ¢ }:E(R) r for every k € LP.
Compare this to
¢’ := [Rv], > 0.9 A prob(Re) > 0.8.

Here Ap(¢,9M) = 0 if p1(I(R)) < 0.9, and pe € Ap(¢, M) else, so that pe = Tay(p9m)(He)-
Hence, default models of ¢’ are just the feasible models of ¢’ with v, = p., and

¢ =®) prob(Re) > 0.9. (5.22)
Finally consider
#* = [Rv], = 0.5 Aprob(Re) < 0.2V prob(Re) > 0.8
#* = [Rv], = 0.5 Aprob(Re) < 0.2V prob(Re) > 0.8
¢* = [Rv], = 0.5 Aprob(Re) < 0.19 V prob(Re) > 0.8

Here, for 9 with p;1(I(R)) = 0.5,

A (02, 9m) (te) = AL (ga.9m) (te) = {(0.8,0.2)}  TIa, (g3 9) (11e) = {(0.8,0.2),(0.2,0.8)},
so that
#* ® prob(Re) = 0.8, ¢* ~®) prob(Re) = 0.8,

2
¢* =®) prob(Re) = 0.8 V prob(Re) = 0.2. (5:23)

This example demonstrates that one must be very careful when default inferences are drawn
from sentences ¢ for which Agr(¢, ) may be non-closed. (5.22), on the other hand, shows that
sentences ¢ with A(¢,91) an open set, do not necessarily give rise only to inconsistent or useless
default inferences.

The following three examples contain a treatment of our two ubiquitous examples 3.2.1
and 3.2.2 within the default semantics for L?.

Example 5.4.13 The situation described in example 3.2.1 may be encoded by the conjunction
¢ of the LA-sentences

VU(Rlv\/VRﬁ) (524.)
/6\ [Riv], = 1/6 (5.25)
=1

pI‘Ob(Rl tVRatVR3 t) =0.3. (5.26)
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Suppose that (I, 14) is a feasible model for ¢. The interpretations I(R;) (i = 1,...,6) then
form a partition of M with pq(I(R;)) = 1/6. The set A(¢, M) is determined by constraints on
the finite subalgebra 2" of 2 given by the six atoms I(R;). Writing v; for v(I(R;)) (v € A2Ly),
we obtain

A(¢, EDT) [2[' = {(Vl, ceey 1/6) | V1 +vy+v3 = 03}

Then
Tagam ()12 = (0.1,0.1,0.1,0.7/3,0.7/3,0.7/3),
and (9, 1) is a default model of ¢ only if 1] A = (0.1,...,0.7/3). Hence

o R®) prob(R;t) =0.1 (i =1,2,3)

¢ ®) prob(R;t) = 0.7/3 (i = 4,5,6). (5.27)

Example 5.4.14 To formalize the modified die-example incorporating the possibility that a
loaded die has been cast (cf. p. 65), let

6

op = J[Rw],=1/6 (5.28)
i=1
5
o2 = [Riv], =0.012A A [Riv]y, = 0.022 A [Rev], = 0.9. (5.29)
=2

Then the situation described in the example may be represented by (5.24) and the following
three formulas.

o1V o2 (5.30)
o1 — pI‘Ob(Rl tVRytVR; t) =0.3 (5.31)
o9 — prob(R1 tVRyt VR3 t) = 0.01. (5.32)

Let ¢ be the conjunction of (5.24) and (5.30)-(5.32). For statistical base S-structures 9t with
1 according to the constraints in o; we have

Tap(gm) (k) (I(R1)) = 0.1
(as before, by Jeffrey’s rule), while

0.012
I(R{)) = 0.01 ~ 0.0021
T aw(e,mm) (1) (1(R1)) 0.012 + 2 - 0.022

when p; is according to o9. Hence
¢ R (o7 — prob(Rit) = 0.1) A (03 — prob(Rit) € [0.00205,0.00215)). (5.33)

It has been our intention in the development of the default semantics for LA, that default
inferences are restricted to statements of subjective beliefs, while objective statements only
should be inferred when logically implied. Ideally, this would mean that for ¢ € LA and
objective sentences 1 € L

o it pl=p. (5.34)

A modification of example 5.4.14 shows that this, in general, can not be guaranteed.
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Example 5.4.15 Let 01,02 as in example 5.4.14. Modify (5.31) by replacing equality with
inequality:

o] — pl"Ob(Rl tVRat VR3 t) < 0.3. (5.35)
Let ¢ be the conjunction of (5.24), (5.30), (5.35), and (5.32). For a statistical base structure

9N with p; according to o1 we now have I (4 o) (it) = 0, so that in every default model of
¢ the statistical measure p1 is described by o2. Hence

gf)k@‘a’g, but (;5 [#ﬁ g9.

The failure of (5.34) in this example is caused by the fact that for ¢ there exist feasible
models with a statistical base structure that is not the statistical base structure of any default
model. For any given ¢, for which it is ensured that for every statistical base structure 2t we
have that

AF((;Z),DJT) 7é 0 = HAp((b,ﬂﬁ) ;é (D,

(5.34) becomes true.

Example 5.4.16 Let ¢ contain the L7-sentences (3.1) and the sentences
prob(Ef) > 0.7 prob(Af) < 0.5.

Feasible models of ¢ may differ both with respect to basic properties of the algebra 2’ generated
by the extensions of the predicates HE, A, and E — there are feasible models with I(A) = @ and
others with I(A) # ) for instance — as well as with regard to the statistical measure on 2’. For
each statistical base S-structure M, Ap(¢, M)[ A’ is a closed and convex subset of AV, where
N < 8 is the number of atoms of 2’ in 9. As discussed in section 3.4 (p. 82), depending on
pes Ta(po) (ue) (I(HE)) can have any value in [0.64,0.8]. Hence

¢ =®) prob(HE) € [0.64,0.8].

Adding the formulas (3.4) to ¢, we obtain ¢’ with feasible models 9 in which 1 is given
by (3.5). If 9 is a real-valued structure we know that

(cf. (3.16)), so that
¢ R prob(HEf) € [0.7385, 0.7395]. (5.36)

The last example gives rise to the question whether in fact (5.36) also holds without the
restriction to real-valued probabilities, i.e.

¢ e prob(HEf) € [0.7385,0.7395]. (5.37)

Previous numerical results (5.23),(5.27), and (5.33) were true both with respect to & and R
because their derivation only relied on Jeffrey’s rule, which has been seen (when applicable) to
perform cross-entropy minimization in any Irc-field. (5.36), on the other hand, being derived
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by a numerical optimization process, depends on properties of the numerical behaviour of
cross-entropy in R that might not be shared by cross-entropy in other lrc-fields.

In fact, it is rather doubtful that (5.36) can be derived on the basis of the axioms LRCF as
given in chapter 4. However, it is possible to enforce a far-reaching agreement of the numerical
behaviour of general logarithmic functions with that of the logarithm in the reals by adding
the axiom schema

Vz € (0,1] gn(z) <In(z) <pn(z) (n=12,...) (TAY)
with
@) = @-n- T O gD e DT
x —1)2 z—1)3 x—1)"
po(z) = (:v—l)—( 21) +( 31) —...+(—1)”_17( nl) )

obtained from the Taylor-expansion of the logarithm, to the axiom system LRCF. From TAY
it can then be proven that approximate information about the numerical behaviour of In ex-
pressible with rational parameters holds in every model of LRCF U TAY, precisely:

Vri,79,81,92 € Q R EVxe[r,re s1<In(z) < sy
= LRCFUTAY =V € [r1,r2]  s1 <In(z) < so.
Similar statements can then be made about cross-entropy and cross-entropy minimization, lead-
ing to the result that (5.37) holds when we base the semantics of L” on models of LRCF U TAY.
A general equivalence between ¢ =1 and ¢ sz 1, however, will be limited to formulas ¢, 1
that satisfy very strict syntactic restrictions. We do not pursue this issue in detail here.

As yet, all the examples presented used a single event symbol only. In the next example
information about two event symbols is represented.

Example 5.4.17 Let Better be an antisymmetric relation on the set of mystery films:
Yvou1 (U() # v — (Better vou1 > —Better Ul’l)())), (5.38)

and assume that the following formula describes a statistical dependence of the Better predicate
on the origin of its arguments

[Better VU1 | =Awvg A Avl](ﬂo,m) =0.7. (5.39)
Assume that for two films fy and f; we have made observations bearing on their likely origin:
prob(Afy) = 0.8 prob(Af;) =0.4. (5.40)

Let ¢ be the conjunction of (5.38)-(5.40), and e := (fp,f;). From (5.38) and (5.39), by the
homogeneity of the statistical measure po, we can derive

[Better VU1 ‘ Avg A —-A Ul](vo,m) =0.3
[Better VU1 | vy #Z v1 AAvyg A Avl](vo,vl) =0.5 (5.41)
[Better vovy | vo # v1 A A vy A A v1](yg,0y) = 0.5.
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For 9 a statistical base S-structure, the set Ap(¢, M) C ApRle is defined by constraints on
the subalgebra 2’ generated by I(A) x M and M x I(A).
The restriction Ap(¢,9)[2" can be represented as the set of measures of the form

I(A) x I(A)° T(A) x I(A) I(A)x I(A) I(A)x I(A)

(5.42)
r—0.2 04—r 0.8 —r T

with r € [0.2,0.4]. Since Ap (¢, 9M)[2A’ is convex, there is at most one ry € [0.2,0.4] that defines
Ve 1= Taq(gm) (e[ A'). Then ve(IM(Better vov1)(vo, v1)) is given by Jeffrey’s rule as

0.5(rg — 0.2) 4 0.7(0.4 — 1) + 0.3(0.8 — 79) + 0.5r¢
=05-02+0.7-0.4+0.3-0.8 = 0.62.

As this turns out to be independent from ry, we can derive
¢ R®) prob(Better fyf;) = 0.62

without knowing the exact subjective probabilities entailed by ¢ for —Afy A—-Af, ..., AfgAAT]
(see also example 5.5.5 below).

One of the most serious shortcomings of entropy mazimization as a rule of probabilistic infer-
ence from information about a single probability distribution (as opposed to default reasoning
about probabilities where information about two distributions of different type is combined) is
its representation dependency.

One of the best known examples illustrating this effect is the question of the probability for
life on mars: if probabilities are assigned according to the maximum entropy principle (which
here is just reduced to the classical principle of indifference) to the two propositions “there is
life on mars”, and “there is no life on mars”, then each of the two alternatives will be assigned
probability 0.5. By the same principle, to the three propositions “there is animal life on mars”,
“there is only plant life on mars”, and “there is no life on mars” will be assigned probability
1/3 each, yielding a different probability evaluation as before for the proposition “there is no
life on mars”. The following example illustrates that a similar effect is avoided in minimum
cross-entropy reasoning.

Example 5.4.18 Consider the knowledge base ¢; consisting of the conjunction of the following
three statements in the vocabulary S = {A, B} with an event symbol e

prob(Ae) > 0.4 [Bv|Av], =0.3 [Bv | -Av], =0.1. (5.43)

The statistical distribution pe on the algebra 2, generated by the four atoms I(A)¢UI(B),...,
I(A) U I(B) in a feasible model of ¢; here is only partially specified by the two constraints on
the conditional distribution of B. Particularly, the statistical probability ue(I(A)) is completely
undetermined. Depending on its value we will obtain

Taponm () (T(A) =04 if p(I(A)) < 0.4
Tapor ) (1e) (T(A)) = 1o(T(A)) i pe(T(A)) > 0.4,
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and correspondingly

Tap(én. o) (fte) (1(B)) = 0.4 0.3 + 0.6 - 0.1 = 0.18 if pe(I(A)) < 0.4

Tap(or,m0) (te) (I(B)) = pre(I(A)) - 0.3 + pe(I(A)) - 0.1 € [0.18,0.3] if pe(I(A)) > 0.4.

Hence
#1 =B prob(Be) € [0.18,0.3].

Now consider an encoding ¢o of essentially the same information as in ¢1, but using the
vocabulary S’ = {A;, Az, B}:

prob(AjeVAse) >04 [Bv|AjvVAw],=03 [Bov|-(AjvVAyv)],=01. (5.44)

The algebra 2 in a belief S’-structure for e here is generated by the eight atoms I(A;)°N
I(A2)c N I(B)S,...,I(A1) N I(A2) N I(B). The statistical distribution g now is even “more
underspecified” than before, as it can not be completely determined by eliminating a single
“degree of freedom”, i.e. by way of fixing u.(I(A1) N I(Az)) for instance.

However, whatever statistical distribution pe is used in a particular feasible model of ¢,
cross-entropy minimization with respect to this measure and the single constraint
prob(Aj eV Age) > 0.4 only has to be performed on the subalgebra consisting of the two atoms
I(A1) UI(A2), (I(A1) UI(A2))¢, by constraints on which Ap(¢g, M) is determined. Depending
on the statistical measure of these sets we again obtain

T ar (2,9 (He) (I(A1) U I(Ag)) €[04, 1],

and consequently
Tap(ge,0m) (He) (I(B)) €[0.18,0.3], e

¢o ®) prob(Be) € [0.18,0.3].

This invariance of the default entailment }Q:(R) when the underlying algebra 2, is replaced
by a more fine-grained algebra 2I. essentially depends on our not making any default assump-
tions about the statistical measures u,. If, prior to the cross-entropy minimization process,
the statistical information was subjected to entropy maximization, for instance, then in the
above example we would end up with two different statistical measures on the subalgebras
{I(A),I(A)¢} and {I(A1)UI(A2),(I(A1)UI(A2))¢}, when, respectively, interpreting ¢; and ¢o,
and, consequently, with two different subjective probabilities for Be.

5.5 Logical Properties of [

In this section it is shown how the analytical properties of system- and subset independence
(theorem 4.0.18 and 4.0.19) translate into logical properties of the entailment relation k.

Logical properties that emanate from system independence essentially reflect independence
assumptions for events when prior beliefs are given by distinct bodies of information for each
event. This is most clearly displayed in corollaries 5.5.3 and 5.5.4 below.
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Theorem 5.5.1 (Independence) Let S be a vocabulary, € and e” disjoint tuples of event
symbols. e := (e/,e"). Let ¢” € Lg, #P) ¢ L’g o #PE") e Lg o Let

¢ =7 AP AP e T .

Let 9 be a statistical base S-structure, A’ C e the finite subalgebra generated by the sets
IM(x(v)) for terms prob(x[e']) occurring in ¢#(®"), and A" C Aer the finite subalgebra generated
by the sets M(x(v)) for terms prob(x[e”]) occurring in ¢%(€"). We have e X Aer C e, 0
that for v € Ap2le we can define

VI = (V[ (Q[el X Qlen)) |1 Q[el7
V= (I/r(%e/ X Q[eu)) |2 Q[el/.

Then (9, ve) i ¢ iff the following four conditions are satisfied:

i) Mrve)=po

(i) (M) ¢ A )

(i) (M, vg) p o7 A PP

(iv) ve=JTWelA @ vl A", pe, Ue)-

Proof: Let (9M,ve) be a belief structure. By the definition of =3 then

(M, ve) |:ﬁ ¢ & (M, ve) ‘:ﬁ @ A ¢ﬁ(e') and (MM, ve) ’:ﬁ 67 A ¢ﬁ(e”)

/ " 5.45
& (M, v8) =5 67 A ) and (M, ) =g 67 A ). (5.45)

From (5.45) we obtain a representation of A(¢,9):

Ap(p,M) = {ve Ape |V € Ap(¢” AP 9M) and " € Ap(¢” A $P€) o)}
= {veApe | VU € Ap(¢” A P5E) M)A and
I/”[Q[” € AF(¢U A ¢,6(e”)’9ﬁ)r91//}‘

By theorem 4.0.18 then
Mapommrarxay (el (A x A7) = (5.46)
! "
HAF(¢°A¢B<9’>,9JI) [ (per 12) @ HAF(¢°A¢B(e">,ivt) r (per A7)

To now prove the left to right direction of the equivalence stated in the theorem, assume that
(M, ve) R ¢. This immediately implies (i), and by (5.45) the feasibility assertions contained in
(ii) and (iii). Since Ap(¢p,9M) is defined by constraints on 2’ x 2", we have

Ver(g[l % Q[II) c HAF(¢,9ﬁ)rQLIXQ[” (Mel‘(m/ X Q[II))’

and hence with (5.46)

Vel = (vl (W X A")) [t A €T, o ooty o tier 1),

5.47
VgrQ[” = (Ve[ (Q[I X Q[”)) |2 Q[” S HAF(¢”A¢B(eII),9)T)rQl” (/Leu [Q[”), ( )
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and ve| (A x A") = v 1A @ V2 A", which proves (iv).

To also prove (ii), it must be shown that
ve = Tl per, Aer), (5.48)
because then, with (5.47), it follows that

/
Ve € HA(¢0A¢ﬂ(el),9ﬂ)(uel)'

For the proof of (5.48) let {A7,..., A}, {A7,..., A7} be the atoms of 2" and 2" respectively.
The set of atoms of A’ x A’ then is

{AZ’]‘ = Ag X A;-’ lie{l,...,p}, j€{1,...,q}}.
Let A’ € er. First note that, due to the product-property of pe, for all A” € Aen
pel(4' x A") 1 (4 x A1)
ho (AL A7)
pe' (A’ N Aj)pen (A" N A7)

e (A]) e (A7)
= e’ AI AI 7y A” AI-I . 5.49
? J

,ue(A' X A” | A,]) =

Thus
VLA = ve(A x M€
= Vi vel A @ viIA")(Aij)ue(A' x MIEL| Ayj) by (iv)
= Nij Vel WAV A" (AT ) per (A | Af) by (5.49)
= Yivel W (A pe (A" | AY)
= JWel U, prer, Aer) (A').

This proves (5.48), and hence (ii). The proof of (iii) is identical.
That conversely (i)-(iv) implies (M, ve) ke ¢ follows easily with (5.46): from (ii) and (iii) we
immediately obtain (5.47), which with (5.46) implies that
T el A @ vl A", e, Ae) € HA(¢,EUI) (te)-

(i) and (iv) together then just state that (I, ve) kK ¢. O

Corollary 5.5.2 Let ¢ be as in theorem 5.5.1; (90, ve) | ¢. Then ve is an extension of v,@vY €
AF<Q[e’ X Q[eu)_

Proof: Let A{, A}, A (i =1,...,p; j =1,...,q) be as in the proof of theorem 5.5.1. Let



124 CHAPTER 5. THE LOGIC OF SUBJECTIVE PROBABILITIES

A € e X Aen. It suffices to consider the case A = A’ x A” with A’ € Aer, A” € Aer. Then
ve(A' x A") = JWLI A @ v A" e, Ue) (A" x A”) by (iv)
= Z [ @ vg A) (Aij)pe (A" x A" | Aij)
_ Z VAT (AT (At (A' | A (A" | AT) by (5.49)
= J( [, prer, Uer ) (A') T (vl A", per, Aer ) (A”)

= (VL @ ") (A" x A") by (5.48).

Corollary 5.5.3 Let ¢ be as in theorem 5.5.1, x/(v'),x"(v") € L? with | v/ |=| € | and
|v"|=|€"|. Then

¢ R®) prob(x'[e'] A x"[€"]) = prob(x'[e]) prob(x"[e"]).

Proof: Immediate from corollary 5.5.2. O

Corollary 5.5.4 Let ¢, X', X" be as in the preceding corollary, ', € Q. Then, with ~ any
relation from {<,<,>,> =}

97 A @) ) prob(x/[e]) ~ 7' A ¢7 A ") ) prob(x”[e"]) ~ 1"
= ¢ |z(R) prob(X'[e'] A X//[e//]) ~ P!

Proof: Suppose that (9M,ve)R¢. By theorem 5.5.1 then (9, L)k ¢” A ¢*€) and
(M, ) e ¢7 A 7€), Hence

ve(M(X'(v')) ~r" and  vg(M(x"(v"))) ~r".
By corollary 5.5.2 therefore

Ve(O((x' A X") (', 0"))) ~ r'r".

Example 5.5.5 Reconsider ¢ given in example 5.4.17. ¢ is of the form dealt with in theo-
rem 5.5.1. From corollary 5.5.2 it therefore follows that for a statistical base S-structure 9,

and ve = Tag(g,9m) (He):
ve(I(A) x I(A)) = v, (I(A)VA(I(A)) = 0.8 -0.4 = 0.32.
Hence ve is defined by the parameter o = 0.32 in (5.42), and

¢ ) prob(Afy A Afy) = 0.32.
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The next theorem translates the subset independence property (theorem 4.0.19) into a
property of def- The logical character of this property is displayed by corollary 5.5.7 below.

Theorem 5.5.6 (Reasoning by Cases) Let S be a vocabulary, e a tuple of event symbols. Let
¢7,x1(v), ..., xr(v) € L with |v|=|e| such that

7 EpVo(xi(v)V...Vxr(v)).

Let ¢ € Lg’e only contain subjective probability terms of the form prob(yle]) (h € {1,...,L}).
For h=1,...,Llet ¢" € L’g’e only contain subjective probability terms of the form

prob(¢le] | (xn A)[e]) (1(v),¢'(v) € LY)

(more precisely: ¢" can be abbreviated in such a way as to only contain terms of this form, cf.
p. 98).
Let
P:=d" ANGAP AL AP

Let 9 be a statistical base S-structure. For v € Ap2le with v(9M(xx(v))) > 0 let v denote
the conditional distribution of v on M (x4 (v)).
If (M, ve) ¢ then for all h € {1,...,L} with ve(M(xn(v)) > 0 there exists ve € Ap2e
with
ol =l and (M, D) R 7 A @™ A prob(xile]) = 1.

Proof: Let (M, ve) |k ¢. Let A C Ae be the finite subalgebra generated by the sets MM (xx(v)),
M((v)), and M(' (v)) with prob([e] | (xn A')[e]) a term in ¢" (h=1,...,L). Let A C A
be the algebra generated by the sets M (xx(v)) alone, and A" the relative algebra of 2 with
respect to M(xp(v)) (cf. theorem 4.0.19).

Then
L

AF(¢7 EDT) = AF(d_)’ m) N ﬂ AF(QShamt)
h=1
with Ap(¢,9M) a set of constraints on the distribution on 2, and Ap(¢”, M) a set of constraints
on the conditional distribution on 24" (h =1,...,L).
Making restrictions to the finite algebras 2,2, A", we are in the situation described in
theorem 4.0.19 with

J={veAr(p, M)A |veJ*} with J*={v € Ap2l |v € Ap(p, M)}
Jp = {v € Ap(¢n, M)A | v(M(xn(v)) =0 VvV " € J;} with
T ={v" € Ap" | v(M(xn(v))) >0 A v € Ap(sh, M)}

Now let h € {1,...,L} with ve(M(xn(v))) > 0 (and consequently pe(M(xrn(v))) > 0). By
theorem 4.0.19 then

oA € Ty (ul2AM). (5.50)
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Now define 7e € Ap2le by

Ve(M(xn(v))) =1, (5.51)
ph = b, (5.52)

We have to show that with v := ¢ A ¢" A prob(xsle]) =1,

Ve € HAF(%SJT)(,UG)' (5.53)

Clearly, 7e € Arp(y,9M), so that it remains to be shown that e minimizes CE¥ (-, ye) within
this set.
By lemma 4.0.16, for all v € Ap(v,90)

CE" (v %, pel %) = I (1/pe(M(xn(v)))) + CEF (V" [ A", & AP). (5.54)

Since

Ap(y,9M) C {v [ 124" € i},
(5.54) will certainly be minimal when v [ 2" € T« (u&] 2*). This, by (5.50) and (5.52), is true

for 7, so that

Finally, the restriction to 2 can be dropped, because from ve = J(vel 2, e, Ue) it follows
from the definition of Ve that ve = J (Ve [, tte, Ae)- O

Corollary 5.5.7 Let ¢ be as in theorem 5.5.6. Let h € {1,..., L} such that

¢° A ¢ =g prob(xsle]) > 0.

Let ¢ € Lg,e only contains subjective probability terms or the form prob(¢[e] | (xn A ¥')[e]).
If

¢7 A ¢ A prob(xsle]) = 1B ¢,

then
o RBI¢.

Proof: Let (M, ve) R ¢. Then ve(M(x(v))) > 0, and with Je as given by theorem 5.5.6,
(M, ) ke ¢° A ¢ A prob(xnle]) = 1. Then (9, Pe) =45 ¢, and because v = D2, (M, ve) Ep .
O

From this corollary it becomes clear why theorem 5.5.6 is understood to be essentially a
result concerning the possibility to use reasoning by cases for the inference relation kx(R).
When our knowledge base is of such a structure that it distinguishes several mutually exclusive
hypotheses for the events e, and, apart from making general statements about the relative
likelihoods for the individual hypotheses to be true, only contains a collection of belief state-
ments each of which is conditioned on one of the hypothesis, then we may make valid default
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inferences about subjective probabilities conditioned on one of the hypothesis by ignoring all
the beliefs pertaining to other hypotheses.

Note, though, that the converse of the corollary by no means is true: from qﬁlz(R)C it
does not follow that ¢” A ¢" A prob(ysle]) = 1 ~®) ¢ because a default model of ¢7 A ¢ A
prob(xn[e]) = 1 usually will not even be a feasible model of ¢.

Example 5.5.8 Consider the properties of a mystery film to be American (A) or French (F),
to have a happy end (HE), and to have a gangster as the hero (G). Some deterministic and
statistical information about these properties is encoded in the following sentences.

Vo(=(Av A Fo)) (5.55)
[Guv | Av], = 0.1 (5.56)
[Gv | Fv], = 0.6 (5.57)
[Gv | Fv AHEv], = 0.3 (5.58)
[Gu | Fu A =HEv], = 0.8 (5.59)

prob(Af) > 0.01 (5.60)
prob(Ff) > 0.01 (5.61)
prob(Gf | Af) > 0.4 (5.62)
prob(HEf | Af) > 0.8 (5.63)

The conjunction ¢ of these sentences is of the form described in theorem 5.5.6 with y1(v) = Awv,
x2(v) = Fv, x3(v) = =(FvVAw), ¢° the conjunction of (5.55)-(5.59), ¢ the conjunction of (5.60)
and (5.61), and ¢! the conjunction of (5.62) and (5.63).

Since by Jeffrey’s rule

¢7 A prob(Ff) = 1 ®) prob(Gf) = prob(Gf | Ff) = 0.6,

from corollary 5.5.7 we then know that the same result follows from the complete knowledge

base:
o R®B) prob(Gf | Ff) = 0.6.

With the additional prior belief
#* := prob(HEf | Ff) = 0.7
we obtain
¢ A ¢? Aprob(Ff) =1 =®) prob(Gf | Ff) = 0.7-0.3 +0.3- 0.8 = 0.45,

and hence
o A ¢* B prob(Gf | Ff) = 0.45.
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Shore and Johnson ([1980],[1983]) have postulated the subset- and system independence
properties as two axioms that should be satisfied by a procedure for updating an estimate for a
probability distribution (in Shore and Johnson’s context thought of as characterizing a physical
system, rather than an epistemic state) when new information about the actual distribution
is obtained. Information they always assumed to consist of a closed and convex subset of
probability distributions the actual distribution is known to belong to. Conversely, every such
closed and convex set constitutes possible information in the sense of Shore and Johnson.

Assuming closed and convex constraint sets, it is reasonable to require an updating pro-
cedure to always yield a unique solution as the new estimated probability distribution. This
uniqueness property is a further axiom that Shore and Johnson postulate. Also they require
that the updating procedure is invariant, which for the case of distributions on finite spaces just
means that it is independent from the order imposed on the atoms of the space, and that the
procedure does not change the prior estimate when the new information is trivial, i.e. consists
of the set of all probability measures.

From these five axioms Shore and Johnson derive the minimum cross-entropy principle: they
show that if an updating procedure is given by minimizing a differentiable function of pairs
of probability measures, and satisfies the axioms, then it must be equivalent to cross-entropy
minimization.

Using this result, one may obtain an axiomatic derivation of the minimum cross-entropy
principle for the default semantics of L? with respect to real-valued probabilities: if the default
entailment relation ¢ k:R ... by a suitable set of axioms is prescribed to behave in a certain
way for ¢ € L? of specific structures, then it follows that the selection of a default measure
ve € A(¢, M) (assuming it is performed by minimizing some smooth “distance”-function) has
to follow the minimum cross-entropy principle.

The axioms one would lay down for FzR , of course, would closely correspond to the original
axioms of Shore and Johnson, with corollary 5.5.4 and corollary 5.5.7 the two key axioms
corresponding to system- and subset independence.

From the axioms for R then a collection of rules for the selection

2 A(d)a Sﬁ) = HA((Z),,‘JJT) (:u)

for specific instances of y and A(¢, ) can be obtained. These rules will then have to be shown
to capture as much of the contents of the original axioms of Shore and Johnson as is actually
needed for deriving the minimum cross-entropy principle. The original axioms, in this way,
will not be recovered in full, mainly because these contain a quantification over all closed and
convex sets of probability measures as admissible constraint sets, while the rules obtained from
axioms for R will only refer to sets A(¢,90) definable by some ¢ € LA.

However, the proof of Shore and Johnson makes no use of the existence of constraint sets
other than can also be defined in L?, so that the proof may be carried out on the basis of the
rules obtained from axioms for R

A result closely related to the Shore and Johnson derivation of the minimum cross-entropy
principle has been shown by Paris and Vencovsk4 ([1990]). From a set of seven axioms they
derive the maximum entropy principle for the selection of a default measure from a set of
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possible belief measures — without the taking into account of some given prior measure. The
result of Paris and Vencovska is more general than that of Shore and Johnson in that they do not
assume at the outset that the default selection is performed by minimizing some differentiable
function (on the other hand, the scope of the Shore and Johnson result is wider than that of
Paris and Vencovska because the latter one only refers to measures on finite spaces).

Not being concerned with updating a prior estimate of a distribution, the axioms of Paris
and Vencovskd cannot be brought into correspondence with rules for the logical behaviour of
|zR as readily as the Shore and Johnson axioms. Hence, one would rather choose the latter
work as a basis for an axiomatic derivation of the minimum cross-entropy principle for default
reasoning about probabilities.

Such a derivation of the minimum cross-entropy principle is of a completely different nature
than the derivation by epistemic and statistical arguments given in sections 3.3 and 3.4. An ar-
gument based on an axiomatization of the default entailment relation can only be used to show
that cross-entropy minimization is the adequate formalism for default reasoning about proba-
bilities when it is taken for granted that at least one such formal process exists — an assumption
that in itself is not corroborated by an axiomatic derivation. It might very well be that there
are other axioms that are intuitively reasonable for default reasoning about probabilities, but
are not satisfied by the minimum cross-entropy principle. In that case we would have to con-
clude that no completely adequate formal process exists. Deriving the minimum cross-entropy
principle from a semantic model for the process of default reasoning about probabilities, on the
other hand, provides valuable evidence that it does, in fact, not have counterintuitive logical
properties, since these would have to correspond to flaws in the semantic model.

5.6 Axiomatizing Default Models

We show that the class of default models of ¢ € L? is axiomatizable: there exists a theory

MinCE(¢) C L” in the vocabulary S of ¢ such that (9, ve) R ¢ iff (M, ve) =g {¢} UMInCE(4).
Formally, this is a very similar technique as used in logical default reasoning by circum-

scription (e.g. [McCarthy, 1980],[Lifschitz, 1986]). This approach to default reasoning is based

on the concept of P-minimal models, i.e. models in which a specific predicate P expressing the

property of being abnormal in a certain way has the smallest possible extension. A P-minimal

model thereby captures the intuition that by default objects are assumed not to be abnormal.
The class of P-minimal models can be axiomatized by a second-order formula

6 AVX (4[P/X] — X D P) (5.64)

with X a predicate variable of the arity of P, and ¢[P/X] the formula obtained by replacing
the predicate symbol P by the variable X. A first-order axiomatization of P-minimal models
usually is not possible. Replacing the second-order formula (5.64) by a first-order schema

A (¢[P/U] = T 2D P), (5.65)

where U ranges over first-order formulas, only yields an axiomatization of models that are
minimal with respect to first-order definable extensions of P.
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The class of default models of ¢ € L? is characterized by a formula whose outward appear-
ance has much in common with (5.64):

¢ ANYv € Ape(Pprob/v] — CE(v, pe) > CE(prob, ue)), (5.66)

where ¢[prob/v] is the formula obtained by replacing occurrences of prob([e]) by v(i[e]).
Since C'E(v, pe) is not defined when v € pe, and (IM,ve) is not a default model when ve £ e,
we actually also have to add conditions of absolute continuity explicitly in (5.66):

¢ Aprob < pe AVv € Ape((v < pe A ¢lprob/v]) — CE(v, ue) > CE(prob, ue)). (5.67)

The formula (5.67), however, is not yet in the syntax of L? or predicate logic, and may only
serve as an intuitive mould for the construction of such a formula. As it turns out, a sentence
schema can be defined as an adequate formal counterpart of (5.67).

The reduction of (5.67) to an LA- sentence schema is based on the fact that the quantifier
“Yv € Ape” can be replaced by an infinite collection of quantifications “Vv € ApA” with A
a finite algebra. Also, the condition prob < e can be replaced by the conditions prob[ 2 <«
el A with 2 ranging over finite subalgebras of 2.

As in section 5.4, assume that ¢ contains n distinct subjective probability terms

prob(i1[e]), ..., prob(¢y[e]).

For a belief structure (9M,ve) let AX be the subalgebra of e generated by the extensions of
the 1); and one further formula y(v).

Recall (cf. p. 114) that II5 (s 9m (1e) then consists just of those ve € Ap(¢, M) that satisty
(5.8) for all x(v) € L?. Also, ve[AX < pelAX for all y clearly implies ve < pe. Hence, the
conjuncts following ¢ in (5.67) may be replaced by the schema

prob | X < pel WX AVY € ApAX((v < pel AX A plprob/v]) —

CE(v, el AX) > CE(prob| 22X, ue | AX)) (x{(v) € LI). (5.68)

To represent instantiations of (5.68) in L”, let

L= {/\ hi(0) A () | di(v) € {¥i(v), ~i(v)}, X (v) € {X<U);_‘X<U)}} . (5.69)
=1

I thus is a set of NV := 2™ expressions a1 (v), ..., ay(v) defining the atoms of AX (or the empty
set). It is assumed that we have some fixed schema according to which, given some ¢ € L” with
subjective probability terms prob(¢;[e]) and x(v) € L7, the elements «;(v) of I' are numbered,
so that there is a uniform and effective way to compute for a given term prob(¢;[e]) in ¢ the
set of indices j for which v;(v) occurs unnegated in a;(v), i.e. the set

(o) = (G € (Lo N} | oj0) = ts(@) A A (o) A o).
k=1
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We can now formulate the L”-building blocks for the formalization of (5.68). Let & =
(z1,...,zn) be a tuple of field variables. Beginning with a translation for the continuity
conditions, let

N
Co (@ z/\ v)]y =0 — z; =0).

Next, the relativized quantification “Vv € ApAX” must be encoded by a formula expressing
the property of @ to be a probability measure on 2X:

N

N N
dpx () := /\ xzj >0A ij =1A /\(—Elvozj(v) —x; =0).

=1 i=1 =1

The formula CE(v, ue[ AX) > CE(prob| AX, ue [ AX) in proper syntax reads
N
Ko (@) = Vy1.yn | (A (e ()] = 0Vy; - [a;()] = 1)) =
j:

N N
Z n(z; - y;) Z rob(a;[e]) - In(prob(a;[e]) - yj)> .

In this formula kg, , for the first time, we make use of having the symbol In in our language.
It has been introduced into L? specifically for this use. With

X,L':E Z X4 (221,,7’),)

JEI($,i)

we can now encode the instance of (5.68) defined by x(v) as the L’-sentence

Cox(prob(aqfe]), ..., prob(an[e]))A
Va((0g,x(®) A Cox () A [prob(rle]) /X1, ..., prob(yyle])/ Xn]) = kg y ().

Let MinCE(¢) consist of all instantiations of this schema by formulas y(v) € L.

By our assumption of a fixed algorithm that for every pair ¢ and y produces the list
ai,...,an of atoms of AX and the corresponding index sets I(¢,1);), there exists an algorithm
that for any given ¢ enumerates all the instantiations of MinCE(¢).

Theorem 5.6.1 Let ¢ € LS e (M,ve) a belief S-structure for e. Then
(M, ve) o it (M, ve) =g {d} UMInCE(¢). (5.70)

Proof: The proof really is rather obvious, because MinCE(¢) is a straightforward encoding of
the condition ve € A (g9 (pe)- For completeness’ sake we still go through the details of the
proof, starting with the left to right direction.

Let (9M,ve) R ¢. By definition (9M,ve) =5 ¢. Now let x(v) € L7 be given. It must be
shown that (9,ve) is a feasible model of the instantiation of MinCE(¢) by x.
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In the sequel we denote the tuple (prob(ay[e]), ..., prob(ay[e])) by prob, and (X1,..., Xy)
by X. From ve < pie it is immediate that

(M, ve) [=p Cs,x (Prob).

Now assume that

(M, ve) F=p Iz ((d9,x (®) A (o, x (®) A Slprob/X]) — kg (),
i.e. there exists r1,...,ry € F such that

(M, ve), /1) =5 5,5 (&) A Co x () A Plprob/X]) A =rig x ().
From the first two conjuncts it follows that

M(a;(v)) = 7
induces a probability measure v on X with v < pe[AX. From
(M, ve), z/7) =5 ¢lprob/ X]

it follows that v € Ap(¢, ) [AX. Finally, for suitable s1,...,sy € F, we have

(M, ve), /T, y/s) =p /\ (loj(v)]o =0V y; - [o(v)]o = 1)) A
ij n(z; - y;) < meb ajle]) - In(prob(ajle]) - y;)).

7=1

Consider the two sums in this expression. Since we have both

(M, ve) Fp Cpx(prob) and (M, x/r) Ep sy (),
for all indices j with M = [a;(v)]y = 0 we get (M, ve)(prob(a,e])) = 0 and r; = 0. Hence,
for all such indices
(M, ve), :c/r,y/s)(xj ’ In(xj ) y])) =0-In(0) =0,
(M, ve), /7, y/s)(prob(aj[e]) - In(prob(ajle]) - y;)) = 0 - In(0) = 0.
For all other j € {1,...,N}, s; is 1/9MM([aj(v)]»), hence

N

(M, ve), /7, y/s) Z n(zj-y;) = CE"(v,pel Y,
N
(M, ve), /7, y/s)(D_ prob(ayle]) - In(prob(ayle]) - y;)) = CE" (velAX, pel AX),
j=1

and therefore CEY (v, e[ AX) < CEY (ve] AX, ie| AX). As Ap(¢p, M) is defined by constraints
on AX, it follows that ve & IIa (4 9m)(te), a contradiction. Since x(v) has been arbitrary, we
conclude that (9, ve) =3 MinCE(¢).
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The converse direction is similar: from (9, ve) E ¢ it follows that either (M, ve) s ¢,
in which case the right side of (5.70) is immediately seen to be false, or (9, ve) =5 ¢ and
Ve & IIn . (¢m)(ke)- In the second case we either have ve & pie, yielding (9, ve) [~ (4 (Prob)
for some y, or ve < pe and there exists v* € Ap(p,M), v* <K e, with CEF (v*, pe) <
CE* (Ve, pte)- In the last case there exists some x(v) € L7 such that CEY (v*[ 22X, pe| AX) <
CE* (Ve X, e[ AX). The variable assignment

then falsifies
(6px(x) A Cp x () A B[prob/X]) — kg ().
|

With theorem 5.6.1 a completeness result for = now follows: From (5.70) and theorem 5.3.1
we get for ¢, 1) € LA:

$Rew iff {¢"} UMInCE(9)* UAX(e) | 4.

Thus, the default inference relation | is captured completely within a first-order formalism.
A complete proof system for k¢ therefore is given by the algorithm that for every ¢ € L”
enumerates all instantiations of MinCE(¢), the translation rules for (-)* and (-)~!, and a
proof system for first-order logic. As was the case for the reduction of =, and 4 to first-

~1 can be eliminated from this proof system by

order inferences, the translations (-)* and (-)
extending a first-order system by substitution rules for probability terms, adding the axiom

system AX(e)™', and then work directly within the language L”.



Chapter 6

Comparisons

6.1 The Work of Bacchus et al.

Under this heading three distinct formalisms have to be distinguished: Bacchus’s logic LP, the
logic .Z5~ due to Bacchus and Halpern, and the random worlds formalism by Bacchus, Grove,
Halpern, and Koller.

LP is the logic for statistical probabilities described in [Bacchus, 1990a] that has already
been discussed in section 2.3, and is essentially the same as .Z°. The more substantial dif-
ferences between previous formalisms and the one introduced in the present work lie in the
handling of subjective probabilities.

6.1.1 The Logic %5

The language %5 ([Bacchus, 1990b],[Halpern, 1990]) has already been mentioned in section 5.1.
It differs from the language L? by not having the special function symbol In as a fixed part
of the language, and, more importantly, by not basing the formation of subjective probability
terms on a special set of event symbols e. Rather, for every formula ¢(v) € %5,

prob(¢(v))

is a subjective probability term in .#5. Specifically, ¢ is allowed to contain any type of nestings
of the subjective probability operator prob() and the statistical quantifier [-]. The resulting
term prob(¢(v)) depends on the free variables of ¢.

One example for a representation that makes use of the more flexible syntax of .£5~ compared
to L# already has been given in section 5.1:

[prob(Betterfv) > 0.9], <0.1.

The language .Z5 is interpreted by combining the notion of first-order structures with
possible worlds semantics. A “type-3 probability structure” for the interpretation of Z5 then
has the form

M= (D757777/1’D7/j’5)

134
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with D a domain, S a set of possible worlds (each with domain D), 7 a mapping that assigns
to every s € S an interpretation of the symbols in the given vocabulary, yp a probability
measure on D, and pg a probability measure on S. The two probability measures are assumed
to be real-discrete, so that the issue of measurability does not arise, and the one-dimensional
measure (p can be extended to n dimensions in the canonical way by the product measure p7,.
Formulas ¢(v) € %5 then are given a truth value in 91 at a specific world s € S with respect to
a variable assignment 7 (which is independent of s) by a straightforward inductive definition.
The key elements of this definition are the interpretations of the two types of probability terms,
given by

(0, 5,7) ([B(v.w.2)]u) = " ({d € D | (N, 5, 7w /d]) = 6}),

(9, s,7)(prob(¢(v,x))) = us({s' € S| (M, s',7) = d(v,x)}).
By this definition, only the interpretation of statistical probability terms depends on the current
world. Subjective probability terms, on the other hand, have the same interpretation in every
world s.

The main source from which the ease springs with which complex combinations of prob-
abilistic statements can be interpreted in this framework is the restriction to real-discrete
probabilities, which makes every subset of the domain and every set of possible worlds mea-
surable. This relieves us of the need to always take care for there to be an adequate algebraic
structure on which probabilities are defined.

If for L? we only had been interested in defining the semantics of feasible models, i.e. the
logic #7, then we might also have used the unrestricted syntax of .%; . Assuming an extended
closure condition for belief structures (which becomes trivially satisfied if the restriction to real-
discrete structures is being made), then generalized probability terms prob(¢(v,w,x)[v/e]) that
may contain free variables and nested occurrences of prob() also define measurable subsets of
M€l and can thus be interpreted by a measure ve on M€l

Only for the definition of default models do the restrictions of the syntax of L? become
really essential, because they ensure that Agr(¢, M) is defined by constraints on a finite algebra.

On the level of strict logical inference, random event semantics therefore is not inherently
different from possible worlds semantics with respect to the scope of probabilistic statements
that meaning can be given to. The two semantic concepts, however, lead to a somewhat
different behaviour of the logics that use them as their basis.

For want of a better name (Halpern does not supply one), in the sequel we extend the
denotation .Z5- also to the logic defined by the language .#5~ and its possible worlds semantics.

As a first example illustrating the distinct logical properties of .#” and .5, consider the
formula

prob(Vv(Pv — Qu)) =r, (6.1)

which is both in L? and in Z5". In Z5 the probability term prob(Vv(Pv — Qu)) designates
the probability of the set of worlds in which Yu(Pv — Qo) is true. In suitable type-3 structures
this probability can have any value, so that in %5 (6.1) is satisfiable for every r € [0,1]. In £7,
on the other hand, prob(Yv(Pv — Quw)) is interpreted either as 0 or as 1: there not occurring

any event symbols in Yo(Pv — Qu), this formula in M€l defines either the empty set or the
full set M€l — depending on whether Yo(Pv — Q) holds in (M, I) or not.
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Generally, a formula like Vo(Pv — Qo) not containing any event symbols can only have
probability 0 or 1 in ##, but (unless it is a tautology or unsatisfiable) any probability in 5.

(6.1) illustrates the possible worlds semantics’ greater versatility, compared to random event
semantics, in assigning nontrivial subjective probabilities to formulas of any syntactic form. A
second respect in which possible worlds semantics is more flexible is the independence from
any given (definite or statistical) domain information with which subjective probabilities can
be assigned. An example for how this can be put to use is

3=!v(ActorAv A ActorBv) [Av | ActorAv], = 0.8 [Av | ActorBv], = 0.2

6.2
prob(ActorAf A ActorBf) = 1. (6.2)

where 3=! abbreviates “there exists exactly one”. Let ¢ be the conjunction of the formulas
(6.2) and the formula prob(Af) = 0.5. ¢ formalizes the example given at the end of section 3.2
(p. 69 ). Tt is satisfiable in %5, but not in #”: in any feasible model M of (6.2) the
set M (ActorAv A ActorBv) consists of just one element a, with v¢({a}) = 1. Depending on
whether a € I(A), then either v4(A) =1 or = 0, so that prob(Af) = 0.5 can not be true in 9.

While sometimes it may be useful, as in this example, to express degrees of belief that
are somewhat at odds with the given domain information, the semantics of .Z5 interprets de-
grees of belief in such a completely detached manner that even subjective probabilities become
admissible that should be regarded as inconsistent with the given facts:

-JuPwv A prob(Pe) =1,

according to Z5, is satisfiable at a world in a type-3 structure that has zero probability, and at
which —=3wP v holds, whereas P e is true at all worlds with positive probability. This example
highlights the fact that %5 does not support any inferences of degrees of belief from the given
objective information, particularly default reasoning about probabilities.

Halpern [1990] also considers the particular class of type-3 structures in which predicate
and function symbols are rigid, i.e. have the same interpretation in every possible world (which
then differ only with respect to the interpretation of constant symbols).

With this restriction, the possible worlds semantics becomes equivalent to random event
semantics (with every constant symbol e in .25 considered an event symbol), because then
formulas ¢(v) not containing any constant symbols define the same set M(p(v)) in every
possible world of a type-3 structure 9, so that via

ve(M(¢(v))) = ps({s' € S| (M, s',7[v/e]) = ¢(v)})

a correspondence is defined between probability measures ve on the algebra of these sets, and
probability measures g over possible worlds.

6.1.2 The Random Worlds Method

The random worlds method developed by Bacchus, Grove, Halpern, and Koller ([Bacchus et al.,
1992],[Grove et al., 1992a),[Grove et al., 1992b], [Bacchus et al., 1993],[Bacchus et al., 1994a]) is
a formalism for deriving degrees of belief from statistical information. The general framework
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has been brought to bear on two separate issues: the main thrust of [Bacchus et al., 1993] is to
use the random worlds method as a probabilistic formalization of (logical) default reasoning,
while in the other sources cited it is investigated primarily as a system for deriving degrees
of belief within the whole scope [0,1] of values. This second application being much closer to
what we have called default reasoning about probabilities, we will concentrate on that second
perspective on the random worlds method.

In brief outline, the random worlds method works as follows. For some given vocabulary
S and for every N > 1 let 9y be the particular type-3 structure with the set of possible
worlds being the set Wy of all possible S-structures over the domain D = {1, ..., N} equipped
with the uniform probability measure, i.e. up({i}) = 1/N for i € D, and uyy, the uniform
distribution on Wy, i.e. puw,y ({s}) =1/ |Wn| for all s € Wy. Possible S-structures here are
defined by treating the elements of D as distinguishable individuals, so that when S contains
a single constant symbol a, for instance, the structure in which a is interpreted by the domain
element 7 is distinguished from the structure in which a is interpreted by the domain element
j # 1, and Wy contains exactly N possible worlds (even though they are all isomorphic).

For two sentences ¢, 0 € %5 not containing the prob()- operator (equivalently: ¢,6 € L7)

define
_ My (prob(¢ A 6))

P f) :=
0= T (prob (@)
which, by the definition of My is just the number of worlds in which ¢ A @ is true divided
by the number of worlds in which # is true (we here gloss over the problem that in order

to avoid unwanted dependencies of the satisfiability of atomic field formulas on the precise
domain size N, the conditions for the validity of an atomic field formula at a given world in
Wy must be somewhat relaxed by only demanding an approximate satisfaction of the (in-)
equality statement made by the formula. The details are given in [Grove et al., 1992b].).

Arguing that the actual domain that is described by ¢ and # has some unknown, large, but
finite size, the random worlds method proposes the limit

Proo := lim nocPry (¢ | 0) (6.3)

(provided this limit exists) as the degree of belief in ¢ that should be derived from 6.
As a first example, consider

0:=[Pv|Qu], >08AQa
¢ :=Pa.

As shown in [Grove et al., 1992b], when S is a monadic vocabulary, for large N, the subset of
Wy that satisfies a given set of statistical constraints gets dominated by those worlds where the
statistical distribution on the algebra generated by the interpretation of the predicate symbols
is close to the maximum entropy solution of the given constraints. For the given example this
means that for large N eventually almost all worlds in Wy that satisfy 6 will actually satisfy

¢ :=[Pv|Qu], =08AQa

because 0.8 is the conditional probability of P given Q according to the maximum entropy
distribution on the four-element algebra generated by the interpretations of P and Q under
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the constraint 6 (again, note that #’ must be seen to be satisfied at a world of size N if the
equation [Pv | Qu], = 0.8 actually only is true within a small admissible tolerance). Hence,
by the random worlds method we derive

Proo(6' | 6) = 1.
Also, since for any N the fraction of models of #' in which P a holds is 0.8, we obtain
Proo(¢| ) =0.8.

As explained so far, the random worlds method only allows to derive degrees of belief in
certain statements on the basis of some given objective information. It thus does not address
the main issue that motivated the development of ffef, namely the combination of two types
of probabilistic information. In [Bacchus et al., 1994a] it has been shown, however, how the
random worlds method can be extended to also use prior degrees of belief as input. Before we
here discuss this extension, it is still useful to first explore some of the basic characteristics of
the simple form of random worlds reasoning, all of which are shared by the refined version.

A substantial difference between the derivations of degrees of belief by the random worlds
method and in ffef becomes clear from the simple example above: random worlds inherently
makes default assumptions about statistical probabilities, which to a large extent is avoided
in .fdﬁef. Also, whenever degrees of belief are derived by the random worlds method, these
are point-valued, while in .Zdﬁef usually only interval-valued degrees of belief are found, their
vagueness typically reflecting the incompleteness of the given statistical information.

Another relevant distinguishing feature between random worlds and zfef is the commitment
of the former to finite domains. Clearly, this is a technical necessity, because on the set of all
possible S-structures over an infinite domain there exists no uniform probability distribution
which then might have been argued to be the most natural probability measure for assigning
degrees of belief. Bacchus et al. also stipulate that this restriction to finite domains and the
limiting process in (6.3) is epistemologically adequate because “In our context, we can assume
that the ‘true world’ has a finite domain, say size N”, and “Typically, we know [N not] exactly.
All we know is that N is ‘large’ [...]” [Bacchus et al., 1994b].

While it may be correct that the “true world” is finite, this does not necessarily justify
the limitation of abstract models of the true world to finite domain models: an imperfect and
somewhat idealized description of the real world that we are likely to find as a knowledge base
may very well only possess infinite models, even though it actually is meant to describe a finite
set of objects.

Consider the following self-explanatory example.

Vuw((mother(u) = w V father(u) = w) — Ancestor wu)
Vuvw((Ancestor uv A Ancestor vw) — Ancestor uw)
Vuv(Ancestor uv — —Ancestor vu)

Vu([Female w | Ancestor wu)],, = 0.5)

e R e N )
R A
0 ~J O Ot =
NN NS N N

Ancestor ba
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Let 6 be the conjunction of (6.4)-(6.8). Clearly, # will be seen as a perfectly valid description
of certain relationships among human beings, even though the number of people that have
ever lived is (large but) finite, yet 6 only has infinite models. An intuitive inference one might
want to derive from 6 is that Female b has a probability of 0.5. This result is easily obtained in
Zdﬂef when b (and, optionally, a as well) is interpreted as an event symbol. The random worlds
method, on the other hand, can not generate any degrees of belief from 6.

Non-satisfiability over finite domains is only one problem that can prevent the random
worlds method from producing the inferences one would like to expect. The complementary
problem is that from a knowledge base § that is satisfiable over all sufficiently large finite
domains, the random worlds method will produce certain belief in every formula ¢ for which
6 — ¢ is a tautology over finite domains. If ¢, for example is defined as the conjunction of
(6.4), (6.5), (6.7), and (6.8), then 6’ does have finite models, and, in fact, we can derive

Pr..(Femaleb | ') = 0.5.

But also
Proo (3uv(Ancestor uv A Ancestorvu) | ') = 1,

which is not really what we would like to infer.

The extension of random worlds that also incorporates reasoning from prior subjective
beliefs works with the full language Z5". Let My be defined as above and consider § € Z5".
Usually, § will not be satisfied in every world s € Wy, so that 9ty (prob()) < 1. For some other
probability measure fiyy, on Wy, and the corresponding type-3 structure ﬂth, defined just
like My with gy, replaced by fiyyy, it can be true that 9y (prob(6)) = 1. Using somewhat
familiar notation, let

A0, N) = {jiwy € AWy | Ty (prob(6)) = 1}.

If A(f, N) contains a unique element “?/VN that maximizes entropy within A(f, N) (and hence
minimizes cross-entropy with respect to the uniform measure pyy, ), for ¢ € Z5 define

Pry (¢ | 6) := MY (prob(¢)),

where MY, is My with tw, replaced by :“?/VN' Provided the limit exists, define

Proo(¢ | 0) := lim nocPra (o | ).

The properties of this inference rule have not yet been explored at any detail. We will here
examine a few examples that may shed some light on the behaviour of this generalized random
worlds method, and how it compares to ffef.

The first example discusses a knowledge base that illustrates the main advantage of random
worlds over fdﬁef: the ability to assign nontrivial probabilities to propositions not featuring any
constant (=event) symbols.

Example 6.1.1 Let
0 := prob(Vv(Pv — Qu)) > 0.6 APa.
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What can be inferred about the probability of Qa? In jfdﬂef the answer is quick and decisive:
the objective statement Yuo(Pv — Qw) in a belief structure can only be assigned probability 0
or 1 (cf. p. 136). The first possibility being ruled out by #, we derive prob(Vo(Pv — Qu))=1,
and consequently prob(Qa)=1.

Now consider the type-3 structures My for the vocabulary {P,Q,a}. The proportion of
worlds that satisfy Yo(Pv — Qu) becomes negligible as N grows large, so that the maximum
entropy measure on Wy that is consistent with 6 assigns the minimal possible probability 0.6
to worlds satisfying this sentence, and distributes the remaining probability 0.4 evenly among
worlds in which Pa A =(Yo(Pv — Qu)) is true. This latter set of worlds becomes dominated
by worlds in which approximately half the elements of P also belong to Q, so that here in
approximately half the number of worlds Qa will be true. Hence

Proo(Qa| ) = 0.6 +0.4-0.5 = 0.8.

Next it is shown how random worlds handles example 5.4.18. As can be expected from a
formalism that makes default assumptions about the statistical distribution, and is related to
entropy maximization, it proves to be representation dependent.

Example 6.1.2 Let ¢; be given as in example 5.4.18 by the conjunction of the sentences
(5.43). The maximum entropy distribution on the algebra generated by the relation symbols
A and B under the given constraints for the conditional probability of B, is computed to assign
a probability ~ 0.57 to the predicate A.

For large IV, therefore, in the subset of Wy that satisfies the statistical constraints, ap-
proximately a proportion of 57% of worlds are a model of Ae. Since this is consistent with the
constraint prob(Ae) > 0.4, the maximum entropy distribution on Wy that assigns probability
1 to ¢ is given by the uniform distribution concentrated on the subset of Wy containing the
worlds that satisfy the statistical constraints, and consequently

Proo(Ae| ¢1) = 0.57.

Also, the statistical probability of B in the maximum entropy distribution on the algebra of A
and B under the constraints is approximately 0.21, so that

Pro(Be| ¢1) = 0.21.

Now consider ¢9, the conjunction of the formulas (5.44). Here the maximum entropy
distribution on the algebra generated by A;, Az, and B under the two statistical constraints on
the conditional probability of B assigns a probability of 0.8 to the union of A; and As, and a
probability of 0.26 to B. Hence

Proo(A1eVAze| ¢2) =08, Pro(Be| ¢2) =0.26.

The last example we here present once more illustrates the consequences of the random
worlds method’s preference for models with particular statistical distributions.
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Example 6.1.3 Let ¢ be defined as in example 5.4.14. It is readily verified that for large N
the measure with maximal entropy on Wy that assigns probability to models of ¢ is given
by assigning probability 1 to models of o1, and probability 0.3 to models of Rt V Ryt V R3t.
Hence,

Proo(o1 | ¢) =1,

and also
Proo(R1t | ¢) =0.1.

Hence, where in Z(’fef two different degrees of belief are derived, conditioned on the two different
statistical hypotheses o1 and o3, the random worlds method decides that oy is the better
statistical hypothesis, and assigns degrees of belief accordingly.

A really comprehensive study of the relationship between possible worlds semantics and
the random worlds method on the one hand, and random event semantics and the default
inference relation f= on the other, is far beyond what here can be undertaken. As a preliminary
conclusion we can summarize the main distinguishing features of the two approaches as follows:
the great advantage of random worlds semantics is their ability to interpret (by non-trivial
probability values) any kind of probabilistic first-order statement, without the need to associate
a distinguished set of event symbols with subjective probabilities. In general, possible worlds
semantics do not support a connection of objective statements (statistical or deterministic)
with degrees of belief. The random worlds method is a technique to nonetheless achieve such
a connection. There are two main sources for the differences between results obtained by the
random worlds method and by ffef: first, by always implicitly performing a “completion” of
partial statistical information, the random worlds method will always produce point-valued
degrees of belief (if any), whereas in éffef usually only interval-valued degrees of belief are
derivable. The two systems thereby represent two different preferences with regard to the
tradeoff between inferential strength on the one hand, and epistemological justifiability on the
other. The second source for the qualitative difference of the two systems is the random worlds
method’s dependence on finite models, which must be seen as a serious limitation.

All these considerations address the semantical differences only. There also is a very sub-
stantial difference with respect to proof theory: while for .,%dﬁef there exists a complete proof
system, for the random worlds method it is only known for some special cases how to actually
derive degrees of belief (monadic languages: [Grove et al., 1992b], knowledge bases of some spe-
cific structures: [Bacchus et al., 1992]). The general inference problem for the random worlds
method is incomplete ([Grove et al., 1992a]). Using generalize field-valued probabilities here
offers no solution, because (6.3) necessarily can only define a real number.

6.2 The Work of Paris and Vencovska

Paris and Vencovska ([1989] ,[1992]) propose a framework for probabilistic reasoning from
knowledge bases that can be viewed as the propositional version of L?: they consider statements
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that, adjusted to our notation, have the form

k
dailgi] = (6.9)
=1
prob(¢(e)) = s. (6.10)

where ¢;,1 are propositional formulas over propositional variables Aq,..., A,, e is an event
symbol, and a;,r, s € R.

Paris and Vencovska propose an interpretation of these formulas that is diametrically op-
posed to the possible worlds semantics (and much closer in spirit to random event semantics)
in that a very strong link is established between the two types (6.9) and (6.10) of probabilistic
statements. In fact, (6.10) is seen as a special case of (6.9): a degree of belief that a spe-
cific event (object) e has property v, by Paris and Vencovska is interpreted as the statistical
probability of v in an ideal reference class S, of events “similar to” e. This interpretation of
subjective probability, which we shall call reference class semantics, clearly is very much in line
with the frequentistic point of view mentioned in section 3.2 (p. 68).

By translating a statement (6.10) into the form

[ ] Se] = s, (6.11)

the problem of default reasoning about probabilities is integrated into the general problem of
probabilistic inferences from information about a single type of probabilities.
Since the set of events “similar to” e can be supposed to be very small, Paris and Vencovska
also propose to add a constraint
[Se] =€ (6.12)

to the knowledge base, where € > 0 is assumed to be small. A knowledge base containing state-
ments of the form (6.9) and (6.10) thus is finally transformed into a knowledge base containing
the statements (6.9), the transformations (6.11) of (6.10), and the additional constraint (6.12).

In [1992] Paris and Vencovské consider different inference processes that can be applied
to this knowledge base, most eminently the maximum entropy inference process. Particularly,
they show that when pime ¢ is the maximum entropy solution for the constraints in the knowledge
base (with € as in (6.12)), and u;ffe’e iS ftme, conditioned on S, then, in the limit for € — 0,
u;%e’e is just the minimum cross-entropy solution of the constraints (6.10) with respect to the
maximum entropy solution of the statistical constraints (6.9).

Since in [1990] Paris and Vencovskd gave an axiomatic derivation of the maximum entropy
inference principle (cf. p. 128), this is seen as a justification for the minimum cross-entropy
principle (for default reasoning about probabilities).

It has already been remarked in section 5.5 that a derivation of the minimum cross-entropy
principle of this kind has a distinctly different quality from the one presented in chapter 3.

As compared to Shore and Johnson’s [1980] derivation of the minimum cross-entropy prin-
ciple, the justification given by Paris and Vencovskd is somewhat flawed, because it depends
on the application of the maximum entropy principle to statistical information. It here has
been argued before (cf. p. 7) that it is much harder to justify the application of an inference
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process to (objective) statistical probabilities than it is to justify such an application to sub-
jective probabilities. Indeed, Paris and Vencovskd seem to share this point of view to some
extent, because in [1990] they expressly state that the axiomatization of an inference process
they present is meant to deal with “some kind of subjective probabilities or degrees of belief”,
not with statistical probability measures. Thus, in [Paris and Vencovskd, 1990] the maximum
entropy principle has been derived for an intended scope of application not covering the use
made of it in [Paris and Vencovska, 1992].

The use of reference class semantics certainly is not limited to a propositional context. In
fact, it is immediately clear, how to extend this semantics for interpreting the language L#:
subjective probability terms prob(¢y(e)) (¢ € L?) here, too, can be understood as conditional
statistical probability terms of the form [¢)(v) | Se vy, With Se the reference class for e.

Such reference class semantics for L would establish an even greater link between domain
information and degrees of belief than random event semantics is doing. For example, using
reference class semantics, prob(¢)(e)) > 0 implies [¢)(v)], > 0, whereas with random event
semantics we can only derive Jvi)(v). Only in default models of prob(¢)(e)) > 0 will [th(v)], > 0
also have to be true (because cross-entropy minimizing measures, in particular, have to be
absolutely continuous with respect to the statistical measure).

Another noteworthy phenomenon is that reference class semantics require a sufficiently
large domain if subjective probabilities for e are to differ from the general statistics. For an
illustration, consider the following example which is an alternative representation of the die-toss
example (cf. example 5.4.13).

Yo(v =rV...Vrg) (6.13)

S ilv=rilo=3 (6.14)

prob(t=rVt=ryVt=r3) =0.3. (6.15)

In this encoding the domain of discourse is just the six element set {ri,...,rg} of possible

outcomes of a toss of a die (whereas in example 5.4.13 the domain has been thought of as
consisting of all throws of arbitrary (fair) dice). The conjunction of (6.13)-(6.15) is satisfiable
in random event semantics, but not in reference class semantics because in the set {ry,...,rg},
equipped with the uniform probability distribution, there does not exist any subset in which
{r1,ra,r3} has a conditional probability of 0.3. The encoding used in example 5.4.13, in contrast,
is satisfiable in reference class semantics.

On the other hand, every LA-formula ¢ that is satisfiable with respect to reference class
semantics also is satisfiable in .Z?: the conditional distribution on S, in a reference class model
of ¢ can be used as the belief measure in a feasible model of ¢.

Reference class semantics, like the random worlds method, do not support default reasoning
about probabilities in a way that is independent from making default assumptions about the
statistical distribution.

Since this is not the place to conduct an in-depth investigation of a complete first-order ver-
sion of Paris and Vencovskd’ s reference class semantics and the logical properties of maximum
entropy inference when used in conjunction with this semantics, we here have to leave with

a preliminary resumé: in reference class semantics admissible degrees of belief, more than in
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random event semantics, depend on the structure of the domain and the given statistical infor-
mation. This makes fewer L?-formulas satisfiable in reference class semantics than in random
event semantics, the latter being in turn more restrictive than possible worlds semantics.

As a basis for performing probabilistic default inferences, the reference class semantics
combined with the maximum entropy inference process have more in common with the random
worlds method than with ffef, because in both these methods the derivation of degrees of belief
is compounded with making default assumptions about the statistical distribution, which ff of
has been designed to avoid.

6.3 Conclusion

In this study of default reasoning about probabilities we have been following two main objec-
tives: first, it has been our aim to clarify the epistemic foundations of this form of commonsense
reasoning, and to define a general analytical rule by which it should be performed. Secondly,
we wanted to devise a logical system in which this reasoning method is formalized.

The first of these two goals has been achieved by analyzing the process of default reasoning
about probabilities in terms of thought experiments. For a large class of inference problems
concerning the combination of statistical and subjective probabilities — those that are describ-
able in terms of an uncertain event belonging to the domain of possible events described by
the statistical information — we have found a suitable epistemic model from which it has been
possible to derive the minimum cross-entropy principle as the analytic rule for default reasoning
about probabilities.

It then has been shown that the minimum cross-entropy principle can be implemented in
the semantics of an extension of full first-order logic for representing statistical and subjective
probabilities. Furthermore, we were able to show that both syntax and semantics of the
resulting logic Zfef can be reduced to standard first-order logic.

Thus, we have described a formalism for representing, reasoning, and default reasoning
about probabilities that is completely contained within first-order predicate logic. Particularly,
the given formalism inherits the completeness of first-order logic. The price we have to pay for
this completeness is that probabilities must be allowed to take values in arbitrary real closed
fields, not just the real numbers.

The full logic ,Zdﬁef is a very rich reference system in which a wide range of default reasoning
about probabilities can be performed and analyzed — arguably covering all those cases where
default reasoning about probabilities can be understood as a principled application of inference
rules with a sound epistemic basis. Inferences in that logic being just as complex as in full first-
order logic, one will probably not attempt to implement the unrestricted logic in an automated
inference system. Rather, one will look for suitable fragments of Zdﬁef in which reasoning
becomes somewhat more tractable. First important applications of this kind, which have been
investigated in [Jaeger, 1994], are probabilistic extensions of terminological logics. These are
particularly well-behaved fragments of .i”fef in which we can obtain decidability results even
with respect to real-valued probabilities.
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