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Abstract

This thesis studies decidable fragments of first-order logic which are relevant to the field of non-
classical logic and knowledge representation. We show that refinements of resolution based on
suitable liftable orderings provide decision procedures for the subclasses E+, K, and DK of first-
order logic. By the use of semantics-based translation methods we can embed the description
logic ALB and extensions of the basic modal logic K into fragments of first-order logic. We
describe various decision procedures based on ordering refinements and selection functions for
these fragments and show that a polynomial simulation of tableaux-based decision procedures for
these logics is possible. In the final part of the thesis we develop a benchmark suite and perform
an empirical analysis of various modal theorem provers.

Zusammenfassung

Diese Arbeit untersucht entscheidbare Fragmente der Logik erster Stufe, die mit nicht-klassischen
Logiken und Wissensrepräsentationsformalismen im Zusammenhang stehen. Wir zeigen, daß
Entscheidungsverfahren für die Teilklassen E+, K, und DK der Logik erster Stufe unter Ver-
wendung von Resolution eingeschränkt durch geeigneter liftbarer Ordnungen realisiert werden
können. Durch Anwendung von semantikbasierten Übersetzungsverfahren lassen sich die Be-
schreibungslogik ALB und Erweiterungen der Basismodallogik K in Teilklassen der Logik erster
Stufe einbetten. Wir stellen eine Reihe von Entscheidungsverfahren auf der Basis von Resolution
eingeschränkt durch liftbare Ordnungen und Selektionsfunktionen für diese Logiken vor und zei-
gen, daß eine polynomielle Simulation von tableaux-basierten Entscheidungsverfahren für diese
Logiken möglich ist. Im abschließenden Teil der Arbeit führen wir eine empirische Untersuchung
der Performanz verschiedener modallogischer Theorembeweiser durch.
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Extended abstract

This thesis investigates decision procedures for description logics, propositional modal logics and
fragments of first-order logic related to these non-classical logics. It is not the aim of this thesis
to develop novel calculi for these logics, but to exploit the possibilities of resolution refined
by orderings and selection functions to obtain decision procedures. To this end, we utilise the
framework of Bachmair and Ganzinger [8].

To demonstrate the various techniques which will be used throughout the thesis, we first
consider the class E+, a well-investigated solvable class of clauses. We show how to use renaming
to transform formulae and clauses into a suitable more “well-behaved” form; how to use ordering
refinements to restrict the application of resolution and factoring; how to prove termination of
an ordering refinement; and how to establish relationships between various decision procedures
by means of simulation.

The feature which makes the class E+ interesting is the presence of compound ground terms
in the clauses which has the consequence that no liftable ordering decides E+, when applied a
priori. We show that a satisfiability equivalence preserving transformation can be used to simplify
the structure of clauses and that applying this transformation during proof search maintains the
simpler structure. We prove that there exists a bound on the number of applications of the
transformation during proof search. Thus, the termination of the procedure is not affected by
dynamic applications of the transformation. Due to the simpler structure of the clauses all
ordering refinements proposed in the literature [27, 28, 130] now determine the same resolution-
based decision procedure for E+. In addition, we are able to show that despite the changes to the
structure of the clauses induced by the transformation it is possible to polynomially simulate a
decision procedure based on a non-liftable ordering by an ordering refinement based on a liftable
ordering.

We also consider the class K which is based on the class K introduced by Maslov [97]. The
class K not only covers many of the classical decidable fragments of first-order logic, but also
many modal logics and description logics. Until now only for a subclass of K a resolution-based
decision procedure was available, which is based on a non-liftable ordering refinement [39]. Like
for the class E+ we are able to devise a structural transformation for the clauses in KC the class
of clause sets corresponding to K, to obtain so-called strongly CDV-free clauses. We show that
with an appropriate liftable ordering refinement of resolution, the derived clauses remain strongly
CDV-free without further intervention. We prove that given a finite signature there exist only
finitely many strongly CDV-free clauses. It follows that the procedure terminates for any finite
set of clauses in KC.

From the field of knowledge representation we consider description logics focussing in partic-
ular on the satisfiability problem for knowledge bases of the logic ALB (“Attribute language over
Boolean algebras on concepts and roles”). ALB is an extension of the well-known description
logic ALC [123] by the operations complement, intersection, and union on binary relations. Using
a semantics-based translation we are able to map ALB knowledge bases into first-order formulae.
The clausal form of the first-order formulae we obtain from the class of so-called DL-clauses,
which is a subclass of KC. Due to the more stringent structure of the clauses every ordering
refinement compatible with the multiset extension of the strict subterm ordering will result in a
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resolution-based decision procedure for the satisfiability problem of a set of DL-clauses.
While for the logic ALB no alternative decision procedure is known, there exist a variety of

tableaux-based decision procedures for the description logic ALC and a range of its extensions.
It is therefore interesting to study the relative length of proofs of a resolution-based decision
procedure compared to those of a tableaux-based decision procedure. We consider a resolution-
based procedure which is based on a particular selection function of negative literals. We show
for every refutation of a standard tableaux-based procedure there exists a refutation of this
resolution-based procedure which is at most twice as long. Thus, the resolution-based procedure
is able to polynomially simulate the tableaux-based procedure.

Closely related to description logics are propositional modal logics. In particular, the multi-
modal logic K(m) is a notational variant of the description logic ALC. The major difference
between description logics and modal logics is the presence of additional axiom schemata in
extensions of K. We investigate extensions of K with the axiom schemata 4, 5, B, D, T, and
their combinations. We consider two semantics-based translation methods for modal logic into
first-order logic, the relational translation and the semi-functional translation [101]. As far as the
relational translation of modal formulae in the modal logic K and its extension by an arbitrary
combination of the axiom schemata B, D, and T is concerned, the clausal form of the first-order
formulae belong to the class of DL-clauses. The same holds for the semi-functional translation.
So, the decision procedure we devised for the class of DL-clauses can also be applied to modal
logics. Additionally, the resolution-based procedure based on a selection function we described
in the same context allows for a polynomial simulation of prefix tableaux calculi for these modal
logics. For extensions of the modal logic K4 a decision procedure based on the ordered chaining
calculus is described by Ganzinger, Hustadt, Meyer und Schmidt [46].

For extensions of K5 and K4 the semi-functional translation yields clause sets which do not
belong to one of the classes we have considered before. While for extensions of K5 by the axiom
schemata 4, D, and T there nevertheless exists a decision procedure based on an ordering refine-
ment, for extensions of K4 by the axiom schemata D and T only a combination of an ordering
refinement and a selection function provides the basis for a terminating resolution procedure.
This procedure is of particular interest since there is no obvious relation between inference by
this procedure and inference found in tableaux-based calculi for K4.

The final part of the thesis is concerned with the empirical performance analysis of modal
theorem provers. We compare the theorem provers Ksat, KRIS, the Logics Workbench, and a
decision procedure based on the optimised functional translation [107] and the first-order theorem
prover SPASS [134]. The aim of our comparison is not to show the superiority of a particular
theorem prover, but to determine which collections of benchmark formulae are suitable for an
empirical performance analysis and which techniques have positive or negative effects on the
performance of modal theorem provers. We present guidelines for the generation of suitable
collections of randomly generated benchmark formulae and show how the syntactical character-
istics of these formulae influence the behaviour of modal theorem provers. The analysis shows
that techniques for redundancy elimination, simplification, and search control have an important
impact on the performance of modal theorem provers.
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Ausführliche Zusammenfassung

Die vorliegende Arbeit untersucht Entscheidungsverfahren für Beschreibungslogiken, Modallogi-
ken und Fragmente der Logik erster Stufe, die mit diesen Logiken in Zusammenhang stehen.
Im Vordergrund steht dabei nicht die Entwicklung völlig neuartiger Verfahren, sondern die Ver-
wendung von Ordnungs- und Selektionseinschränkungen in resolutionsbasierten Beweisverfahren.
Wir bedienen uns dazu des Ansatzes von Bachmair und Ganzinger [8].

Wir betrachten zunächst die Klasse E+, um die in dieser Arbeit verwendeten Techniken an
Hand einer der am besten untersuchten Klasse von Klauseln zu demonstrieren. Insbesondere zei-
gen wir, wie strukturelle Transformation verwendet werden kann, um die Struktur von Klauseln zu
vereinfachen; wie Ordnungseinschränkungen verwendet werden können, um die Anwendung von
Resolution einzuschränken; wie man die Terminierung solcher Ordnungseinschränkungen beweist;
und wie man die relative Beweislänge unterschiedlicher Verfahren untersucht.

Die Klasse E+ hat dadurch Bedeutung erlangt, daß durch die Präsenz von komplexen Grund-
termen in den Klauseln die a priori Anwendung liftbarer Ordnung nicht zu einem Entscheidungs-
verfahren führt. In der Arbeit wird gezeigt, daß es mittels struktureller Transformation möglich
ist, die Struktur der Klauseln in den betrachteten Klauselmengen zu vereinfachen und diese einfa-
chere Struktur durch Anwendung der Transformation während der Beweissuche zu erhalten. Die
Terminierung des Verfahrens wird durch die dynamische Anwendung der Transformation nicht
beeinträchtigt. Durch die einfachere Form der Klauseln bedingt, führen nun alle bisher in der
Literatur zur Behandlung von E+ vorgeschlagenen Ordnungseinschränkungen [27, 28, 130] zu
dem gleichen Entscheidungsverfahren für die Klasse E+. Wir sind zudem in der Lage zu zeigen,
daß ein Entscheidungsverfahren für die Klasse E+ basierend auf einer liftbaren Ordnung in der
Lage ist Entscheidungsverfahren, die auf einer nicht-liftbare Ordnung basieren, polynomiell zu
simulieren.

Wir wenden uns dann der Klasse K zu. Diese Klasse beruht auf der von Maslov [97] defi-
nierten Klasse K. Die Klasse K umfaßt nicht nur viele der klassischen entscheidbaren Fragmente
der Logik erste Stufe, sondern auch viele der im Bereich der Wissensrepräsentation wichtigen
Beschreibungslogiken und Modallogiken. Bisher existierte nur für eine Teilklasse von K ein re-
solutionsbasiertes Entscheidungsverfahren unter Verwendung einer nicht-liftbaren Ordnung [39].
Wieder lassen sich die Klauseln in der zu K korrespondierenden Klauselklasse KC durch eine
strukturelle Transformation in eine geeignete Form bringen, die bei Verwendung einer geeigneten
liftbaren Ordnung unter Resolution erhalten bleibt. Wir zeigen, daß es über einer endlichen Signa-
tur nur endlich viele Klauseln dieser Form geben kann, woraus die Terminierung des Verfahrens
folgt.

Im Bereich der Beschreibungslogiken untersuchen wir das Erfüllbarkeitsproblem für Wissens-
basen über der Logik ALB (”Attribute language over Boolean algebras on concepts and roles“),
einer Erweiterung der bekannten Beschreibungslogik ALC [123] um die Operationen Komplement,
Durchschnitt, und Vereinigung auf binären Relationen. Unter Verwendung einer semantikbasier-
ten Übersetzung können wir Wissensbasen über ALB in Formeln der Logik erster Stufe abbilden.
Die Klauselform dieser Formeln bildet die Klasse der DL-Klauseln, einer Teilklasse von KC. Durch
die einfachere Struktur von DL-Klauseln bedingt, liefert jede Ordnungseinschränkung, die kom-
patibel zur Multimengenerweiterung der strikten Subtermordnung ist, ein resolutionsbasiertes
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Entscheidungsverfahren für das Erfüllbarkeitsproblem von Mengen von DL-Klauseln.
Während für die Logik ALB bisher kein anderes Entscheidungsverfahren bekannt ist, gibt es

für die Beschreibungslogik ALC und einige ihrer Erweiterungen eine Reihe von tableauxbasierten
Entscheidungsverfahren. Es ist deshalb interessant die relative Beweislänge von tableauxbasierten
und resolutionsbasierten Entscheidungsverfahren zu untersuchen. Für ein Resolutionsverfahren
welches auf einer reinen Selektionseinschränkung basiert können wir zeigen, daß es zu jeder Wi-
derlegung in einem tableauxbasierten Verfahren eine Widerlegung in diesem Resolutionsverfahren
gibt, die höchstens doppelt so lang ist. Daraus folgt, daß dieses Resolutionsverfahren ebenso ef-
fizient ist wie ein tableauxbasiertes Verfahren.

Nahe verwandt zu Beschreibungslogiken sind aussagenlogische Modallogiken. Insbesondere ist
die Multimodallogik K(m) eine notationelle Variante der Beschreibungslogik ALC. Der wesentliche
Unterschied zwischen diesen beiden Klassen von Logiken sind zusätzliche Axiomenschemata in Er-
weiterungen von K. Die hier untersuchten Schemata sind 4, 5, B, D, T, und deren Kombinationen.
Wir betrachten zwei verschiedene semantikbasierte Übersetzungsverfahren von Modallogiken in
die Logik erster Stufe, die relationale Übersetzung und die semi-funktionale Übersetzung [101].
Für die relationale Übersetzung gehören die Klauseln, die wir für die Modallogik K und deren
Erweiterung mit einer beliebigen Kombination der Schemata B, D, und T erhalten zur Klasse
der DL-Klauseln. Dasselbe gilt bei der semi-funktionalen Übersetzung. Die entsprechenden Ent-
scheidungsverfahren lassen sich deshalb auch auf diese Modallogiken anwenden. Insbesondere
liefert auch hier das auf einer Selektionseinschränkung basierende Entscheidungsverfahren eine
polynomielle Simulation von Präfixtableauxverfahren für die entsprechenden Modallogiken. Für
Erweiterungen der Modallogik K4 wurde ein Entscheidungsverfahren in der Arbeit von Ganzinger,
Hustadt, Meyer und Schmidt [46] vorgestellt.

Die Erweiterungen von K5 und K4 liefern unter der semi-funktionalen Übersetzung Klau-
selmengen, die nicht mehr zu einer der vorher behandelten Klassen gehören. Während für die
Erweiterungen von K5 mit den Axiomenschemata 4, D, und T noch eine reine Ordnungsein-
schränkung für eine Entscheidungsverfahren ausreichend ist, basiert das Entscheidungsverfahren
für Erweiterungen von K4 um die Axiomenschemata D und T auf einer Kombination von Ord-
nungseinschränkung und Selektionseinschränkung. Das für Erweiterungen von K4 vorgestellte
Verfahren ist insbesondere deshalb interessant, da es keinen unmittelbaren Zusammenhang zwi-
schen den Ableitungen dieses Verfahrens und Ableitungen von tableauxbasierten Verfahren gibt.

Im letzten Teil der Arbeit führen wir eine empirische Untersuchung von modallogischen
Theorembeweisern durch. Wir vergleichen dabei die Theorembeweiser Ksat, KRIS, die Lo-
gics Workbench, und ein Entscheidungsverfahren basierend auf der optimiert funktionalen Über-
setzung [107] und dem Theorembeweiser SPASS [134] für die Logik erster Stufe. Das Ziel die-
ser Untersuchung ist nicht, die Überlegenheit eines dieser Theorembeweiser zu zeigen, sondern
festzustellen, welche Sammlungen von Beispielformeln als Grundlage empirischer Untersuchun-
gen geeignet sind und welche Techniken positive oder negative Effekte auf die Performanz der
Theorembeweiser haben. Wir erarbeiten Richtlinien zur Erzeugung geeigneter Sammlungen von
zufällig erzeugten modallogischen Formeln und zeigen wie die Eigenschaften solcher Formeln das
Verhalten von Theorembeweisern beeinflußen können. Es zeigt sich, daß Techniken der Redun-
danzeliminiation, Simplifikation, und der Steuerung der Beweissuche wesentlichen Anteil an der
beobachtbaren Performanz haben.
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Introduction

Since the advent of automated theorem proving, research on decision procedures has been in the
focus of this field. In 1960 Wang implemented three decision procedures, that is, procedures that
were sound, complete, and terminating: a procedure for deciding validity in propositional logic,
a procedure for selecting (deriving) theorems in propositional logic, and a procedure based on
the sequent calculus for deciding validity in a fragment of the full first-order predicate calculus.
The decidable fragment Wang focused on, AE predicate logic, contains the first-order formulae
in prenex form with quantifier prefix ∀x1 . . . ∀xm ∃y1 . . . ∃yn .

At the beginning of the sixties, researchers started to build theorem provers for full first-
order logic. One of the most important steps in this effort was the work in 1965 of Robinson
on resolution [117]. Robinson showed that an automated theorem prover with resolution as
the only rule of inference was complete for first-order logic. This avoided the need for choices
between different inference rules, thus providing a basis for a straightforward implementation of
a first-order theorem prover.

Soon researchers started to investigate whether the resolution calculus can be restricted in
a way that preserves the completeness of the calculus for a given subclass of first-order logic
while also guaranteeing termination. Kallick [87] was first to show, in 1968, that this is in fact
possible. His decision procedure is for testing the satisfiability of formulae with quantifier prefix
∀x1 ∀x2 ∃y1 . However, the resolution procedure of Kallick is incomplete for full first-order logic.

In 1964, Maslov [96] independently invented the inverse method for automated theorem prov-
ing in first-order logic and applied this method to provide a decision procedure for a fragment of
first-order logic, today known as Maslov’s Class K. Based on his result it is possible to obtain
decision procedures for a variety of classical fragments of first-order logic including the initially
Ackermann class, the monadic class, the initially extended Skolem class, and the initially extended
Gödel class.

A major breakthrough was the work of Joyner [86] in 1976. Unlike Kallick who used a spe-
cialised theorem prover in his approach, Joyner aimed at the development of resolution strategies
which are complete in the general case and provide a decision procedure for various decidable
fragments of first-order logic. In this way, he also hoped to gain insight into the reasons for
the decidability of these fragments. He presents three decision procedures using a refinement of
resolution based on A-orderings for the Ackermann class, the Monadic class, and the initially
extended Skolem class. Notably, these classes are also covered by Maslov’s inverse method.

In the following decades the use of ordering refinements for the development of resolution-
based decision procedures for fragments of first-order logic has become standard. An overview
of the results obtained by the beginning of the nineties is given in a monograph by Fermüller,
Leitsch, Tammet and Zamov [39]. It contains resolution-based decision procedures for the classes
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2 Introduction

PVD, OCCI, E+, E1 , M+, One-Free, the Bernays-Schönfinkel class, and a subclass of the dual
of Maslov’s class K.

Decidability issues play a prominent role in most fields of computer science. We will study
solvable classes relevant for the field of knowledge representation, where decidability is commonly
regarded to be a minimum prerequisite. The initial motivation for the proposal of a new formalism
for knowledge representation, as opposed to using existing formalisms like first-order logic, has
been the restricted language thesis by Levesque and Brachman [92]: General-purpose knowledge
representation systems should restrict their languages by omitting constructs which require non-
polynomial worst-case response times for their inferential services. However, it became obvious
that there is no formalism which is at the same time tractable and reasonably expressive [32].
Consequently, research in the area of knowledge representation has shifted to more expressive
logics, which are intractable but still decidable. The description logic ALC and various extensions
have been of particular interest. ALC can be seen as the smallest extension of propositional logic
with additional quantificational operators which make the logic suitable for describing “structured
objects.”

The fact that ALC can be viewed as a notational variation of the basic multi-modal logic
K(m), links description logics to popular logics in the field of non-classical logics [118]. What
distinguishes description logics from modal logics, is the presence of knowledge bases in the first
and the presence of modal axiom schemata in the second. In the field of modal logic, a theme of
current research is the investigation and understanding of modal logics in the setting of first-order
logic [4]. It is well-known that the basic modal logic K can be translated into the two-variable
fragment of first-order logic (FO2). Although the satisfiability problem for FO2 is decidable and
every satisfiable formula has a model with finite domain, FO2 lacks many of the model theoretic
and proof theoretic properties of K. An alternative fragment of first-order logic, the guarded
fragment, which seems to be better suited, has been proposed by Andréka, van Benthem, and
Németi [4]. The definition of the guarded fragment is based on the observation that quantifiers in
the translations of modal formulae occur only in guarded form. The guarded fragment is decidable
and shares the finite model property and the tree model property with modal logic [4, 60].

However, if our main concern is to find fragments of first-order logic which generalise modal
logics and description logics, while preserving decidability, then there exists at least one alterna-
tive to the two-variable fragment of first-order logic and the guarded fragment. Maslov’s Class
K and its dual K, both distinct from the guarded fragment, although not intended to be a char-
acterisation or generalisation of the fragment of first-order logic corresponding to modal logics,
also cover the relational translation of a range of propositional modal logics. One of our aims is
to advance our knowledge in this direction.

The purpose of this thesis is the development of efficient inference procedures for important
subclasses of first-order logic. The context in which we conduct our investigation is that of
resolution, in particular, the resolution framework of Bachmair and Ganzinger [8]. Two factors
which lead to non-termination are: (i) the growth of the depth of clauses and (ii) the growth
of the number of literals in clauses during a theorem proving derivation. A sound and complete
refinement of resolution that prevents this expansion provides a decision procedure [86]. A class
of refinements of resolution which have successfully been applied to a variety of solvable classes
are ordering refinements.

Given a particular fragment of first-order logic one faces several problems in developing a
decision procedure based on a refinement of resolution. First, one has to devise a transformation
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from the fragment of first-order logic into a class of clauses. Second, one has to find instances
of the parameters of the resolution framework which are able to control the growth of the depth
and size of clauses during a theorem proving derivation. In our case this amounts to finding
an appropriate combination of ordering, selection function, and redundancy elimination criteria.
Third, we have to prove the termination of the ordering refinement. This amounts to a tedious
check that all cases that may occur during a theorem proving derivation have been taken into
account and are handled appropriately.

The difficulty lies in the interdependency between the three steps. With the use of structural
transformations the structure of clauses obtained from formulae in a fragment of first-order logic is
virtually arbitrary. If the clauses are not well-structured enough it might be difficult or impossible
to find suitable settings of the parameters of the resolution framework. Having found the right,
well-structured form the solution seems almost trivial. Whether or not the right transformation,
ordering, selection function, and redundancy elimination criteria have been chosen will only be
revealed during the proof of termination, by tedious case analysis. If the case analysis fails,
we have to revise our choice and recheck all the different cases. Once all three problems have
been solved the solution seems to be seamless and straightforward, leaving the development cycle
undocumented.

There is a fourth problem which deserves attention: For a given fragment of first-order logic
there may exist more than one refinement of resolution which can serve as a decision procedure
for this fragment. The task then is to determine suitable assessment criteria and to perform a
comparison of the various refinements. The primary criteria we are interested in are the generality
of the approach and performance. This led us to choose the resolution framework of Bachmair
and Ganzinger [8] in which special emphasis is put on simplification and redundancy elimination.
Through its range of parameters, including in particular liftable orderings and selection, it is
accepted to provide the basis for practical and efficient decision procedures. On the basis of
the results of this thesis we believe that it has the potential to cover a wide range of solvable
first-order classes.

This thesis addresses these four problems for a variety of decidable fragments of first-order
logic which are relevant to the field of non-classical logic and knowledge representation.

Chapter 1 provides the basic definitions for the following chapters. In particular, we describe
the resolution framework, structural transformations (renamings), and various solvable classes
mentioned throughout the thesis.

Chapter 2 investigates the class E+ introduced by Tammet [128]. E+ has become one of the
most well-studied classes with respect to resolution decision procedures. The aim in this chapter
is to give an overview of the basic techniques which we will use in the following chapters by
a working example. In particular, we will see (i) how to use renaming to transform formulae
and clauses into a suitable more “well-behaved” form, (ii) how to use ordering refinements to
restrict the application of resolution and factoring, (iii) how to prove termination of an ordering
refinement, and (iv) how to establish relationships between various decision procedures and logics
by means of simulation.

Chapter 3 studies the dual of Maslov’s class K, called K, and the class DK containing all
finite conjunctions of formulae in K. Although Maslov [97] described a decision procedure for the
validity problem in K based on the inverse method in the late sixties, only in the early nineties
a resolution-based decision procedure was described by Zamov [39, chap. 6] for a subclass of
K. Zamov’s techniques are based on non-liftable orderings which have limitations regarding the
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application of some standard simplification rules which are important to obtain efficient decision
procedures. We show that K and DK are solvable using a resolution refinement based on a liftable
ordering, thus improving the result of Zamov with respect to the fragment of first-order logic we
cover and with respect to the applicability of the procedure.

In Chapter 4 we turn our attention to description logics. First, we consider the satisfiability
problem for knowledge bases over an extension ALB of the description logic ALC. We characterise
two classes of clauses, namely the class of DL-clauses and the class of fluted DL-clauses. Both
classes are subclasses of K and contain all clauses we obtain from the translating ALB knowledge
bases into first-order logic. The satisfiability problem for DL-clauses and fluted DL-clauses can be
solved by a very general ordering refinement of resolution. For a logic ALBD in-between ALC and
ALB, we are able to provide a decision procedure using a refinement of resolution based solely
on a selection function. We show that this decision procedure is able to polynomially simulate
standard tableaux-based decision procedure for the satisfiability problem in ALC.

In Chapter 5 we address decidability issues of classes of first-order formulae which most closely
resemble translated modal formulae under the relational and the semi-functional translation. The
relational translation of formulae in the basic modal logic K and its extensions by the axiom
schemata D, B, and T results in clauses which belong to the class of DL-clauses. Therefore, the
ordering refinement developed for the class of DL-clauses provides a decision procedure for these
modal logics. It also follows from the considerations in Chapter 4 that the refinement of resolution
based on a selection function provides also a decision procedure for the satisfiability problem in
K and it simulates standard prefix tableaux calculi [42, 59, 98]. These results together with the
decision procedure described by Ganzinger, Hustadt, Meyer and Schmidt [46] for extensions of
K4 now cover the classical normal modal logics K, K4, KB, KD, KD4, KT, KT4, KTB, and their
multi-modal versions, as well as S5.

We also look at the semi-functional translation of modal logics developed by Nonnengart [101].
The semi-functional translation of formulae in the basic modal logic K and extensions by the
axiom schemata D, B, and T results in clauses which belong to the class K. Thus, the ordering
refinement of Chapter 3 provides a decision procedure for the satisfiability problem of these logics.
By contrast, the clauses we obtain from the semi-functional translation of formulae in the modal
logics K(D)4, K(D)5, and K(D)45 do not belong to the class K. We define two classes of clauses,
the class of SF-clauses and the class of small SF-clauses , to cover these logics. We describe a
resolution decision procedure based on an ordering refinement for the class of small SF-clauses
and a decision procedure based on an ordering refinement and a selection function for the class
of SF-clauses. The second decision procedure is similar to the one presented by Ganzinger,
Hustadt, Meyer, and Schmidt [46]. Interestingly, using the semi-functional translation none of
the extensions of K4 requires the additional inference rules of ordered chaining.

Besides the resolution-based decision procedures described in Chapter 5 there are various
other procedures for establishing the theoremhood and satisfiability of modal formulae, namely
procedures based on tableaux calculi, sequent calculi, and extensions of SAT procedures. The
simulation results of Chapter 4 and 5 shed some light on the relative performance we can ex-
pect of resolution-based algorithms compared to tableaux-based algorithms provided that the
resolution-based algorithm follows a particular strategy matching the one used by the tableaux-
based algorithm. However, if this is not the case, and the algorithms follow unrelated strategies,
the analytical results do not predict their relative performance. Chapter 6 considers issues related
to empirical evaluations of theorem provers for modal logic. It considers some of the problems re-
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lated to establishing an appropriate benchmark suite for modal logics and problems related to the
evaluation of theorem provers based on different calculi. We outline an approach called scientific
benchmarking . The aim of scientific benchmarking is not to find or declare the best-performing
system. Instead the focus is on different techniques, strategies, and heuristics, which are used in
the different theorem provers for improved performance on particular problem sets. Extensive
benchmarks are performed for the theorem provers KRIS, Ksat, the Logics Workbench, and the
translation approach using the optimised functional translation and the theorem prover SPASS.
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Chapter 1

Basic notions

This chapter defines the basic notions needed in this thesis. Of particular importance are Sec-
tion 1.2, 1.3, and 1.5. We start with preliminary definitions in Section 1.1. Section 1.2 describes
the resolution framework we will use as a basis for the decision procedures developed in this
thesis. Section 1.3 describes the technique of structural transformation which is a key element in
our decision procedures. In Section 1.4 we give a brief introduction into the simulation of proof
systems. Section 1.5 gives an overview of solvable classes which we will mention at various points
in the thesis. The presentation of the definitions in this chapter is restricted to the single-sorted
case. A generalisation to the many-sorted case (without subsort and operator overloading) is
straightforward [94].

1.1 Preliminary definitions

Terms, literals, and clauses

Let F, P, and V be three disjoint (countable) sets. The elements of F are called function symbols ,
the elements of P predicate symbols, and the elements of V variables. With each function symbol
and predicate symbol we associate a non-negative number, called its arity. A function symbol of
arity 0 is a constant symbol or constant , a predicate symbol of arity 0 is a propositional variable.
A tuple (F,P,V) defines a signature.

A term is either a variable or an expression f(t1, . . . , tn) where f is a function symbol of arity
n and t1, . . . , tn are terms. A term which is neither a variable nor a constant is called compound .
The set of all terms built from function symbols in F and variables in V is denoted by T(F,V) .
Terms containing no variables are called ground terms. The set of all ground terms is denoted by
GT(F). A term s is said to be a subterm of a term t if either s = t, or else t = f(t1, . . . , tn) and s
is a subterm of one of the terms ti, 1 ≤ i ≤ n. By a strict subterm of t we mean a subterm distinct
from t. The depth dp(t) of a term t is inductively defined as follows: (i) if t is a variable or a
constant then dp(t) = 1, and (ii) if t = f(t1, . . . , tn), then dp(t) = 1+ max({dp(ti) | 1 ≤ i ≤ n}).
The arity of a term t, denoted by arity(t), is defined as follows: (i) If t is a constant, then
arity(t) = 0, (ii) if t is compound term f(t1, . . . , tn), then arity(t) = n, and (iii) if t is a variable,
then arity(t) is undefined.

An atomic formula (or an atom) is an expression p(t1, . . . , tn), where t1, . . . , tn are terms in
T(F,V) and p is a n-ary predicate symbol in P. A literal is an expression A (a positive literal)

7
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or ¬A (a negative literal) where A is an atomic formula. ‘(¬)A’ denotes either A or ¬A. For
a literal L = (¬)p(t1, . . . , tn) the terms t1, . . . , tn are the arguments or argument terms of L.
By argset(L) we denote the set of arguments of L and by argmul(L) we denote the multiset of
arguments of L. We let L denote the complement of a literal L, that is, L denotes ¬L, if L is a
positive literal, and A, if L is a negative literal ¬A. Furthermore, we let |L | denote the norm of
a literal L , that is, |L | denotes L, if L is a positive literal, and A, if L is a negative literal of the
form ¬A. The depth of a literal L is defined by dp(L) = 1 + max({dp(t) | t ∈ argsetL}).

The set of first-order formulae over a signature (F,P) and a set of variables V is inductively
defined as follows: (i) every atom is a first-order formula, (ii) if ϕ and ψ are formulae and x is a
variable, then ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ → ψ, ϕ ↔ ψ, ∀x:ϕ, and ∃x:ϕ are first-order formulae. The
notions of scope of a universal quantifier ∀ and an existential ∃, and free and bound variables
are defined in the usual way. A subformula of a first-order formula ϕ is a subexpression of ϕ. A
formula ϕ is in prenex form if ϕ = Q1x1 . . . Qnxn ψ where Q1, . . . , Qn are quantifiers and the
formula ψ is quantifier free. The matrix of a formula ϕ is the formula ψ obtained from ϕ by
deleting all occurrences of quantifiers. A formula ϕ = ϕ1 ∨ . . .∨ϕn is a disjunction or disjunctive
formula and each ϕi is a disjunct of ϕ. A formula ϕ = ϕ1∧ . . .∧ϕn is a conjunction or conjunctive
formula and each ϕi is a conjunct of ϕ. A formula is in conjunctive normal form iff its matrix
is a conjunction of disjunctions of atoms and their negation. An occurrence of a subformula of
an equivalence has zero polarity . For subformulae not below an equivalence, an occurrence has
positive polarity if it is inside the scope of an even number of (explicit or implicit) negations, and
an occurrence has negative polarity if it is one inside the scope of an odd number of negations.
A formula ϕ without function symbols is rectified iff no variable occurs both bound and free in ϕ
and no variable is bound by two different quantifier occurrences. A schema is a formula without
function symbols that is rectified and closed.

A formula ϕ is in negation normal form if for every subformula ¬ψ of ϕ, ψ is an atomic
formula. For every formula ϕ there exists an equivalent formula nnf(ϕ) in negation normal form.
We assume that nnf(ϕ) is computed by two consequtive transformations. First, every occurrence
of ψ ↔ φ with positive polarity is replaced by (ψ → φ)∧ (φ→ ψ) and every occurrence of ψ ↔ φ
with negative polarity is replaced by (ψ ∧ φ) ∨ (¬ψ ∧ ¬φ). This form of linearisation avoids
a possible exponential explosion during the conversion to clausal form. Second, the following
transformation rules are applied exhaustively:

¬(φ ∨ ψ)⇒ ¬φ ∧ ¬ψ ¬¬φ⇒ φ ¬(φ ∧ ψ)⇒ ¬φ ∨ ¬ψ
¬∀x:φ⇒ ∃x:¬φ φ→ ψ ⇒ ¬φ ∨ ψ ¬∃x:φ⇒ ∀x:¬φ
¬⊥ ⇒ > ¬> ⇒ ⊥.

A multiset over a set S is a mapping C from S to the natural numbers N. A clause is a
multiset of literals. We use ⊥ to denote the empty clause. We write L ∈ C if C(L) ≥ 0 for a
literal L. A subclause D of a clause C, is a submultiset D of C. A clause D is a strict subclause
of C, denoted by D ⊂ C, if D ⊆ C and D 6= C. We use C \D to denote the multiset-difference
of a clause C and a subclause D of C. A Horn clause is a clause containing at most one positive
literal. The depth of a clause C is defined by dp(C) = max({dp(L) | L ∈ C}).

In the following, an expression will be a term, an atom, a literal, or a clause. The set of all
variables occurring in an expression E, or in a set of expressions S, is denoted by V(E), or V(S).
Two expressions E and E′ are variable-disjoint if V(E) ∩ V(E′) = ∅. Analogously, for sets of
expressions. |N | denotes the cardinality of a set.
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A substitution is a mapping from variables to terms which is the identity mapping almost
everywhere. A substitution σ can be represented as a finite set of pairs σ = {x1/t1, . . . , xn/tn},
where xi 6= ti for all i, 1 ≤ i ≤ n. The identity substitution is denoted by ι. The value of
a substitution σ for a variable x is denoted by xσ. A substitution can be homomorphically
extended to a mapping from terms to terms. Analogously, for atoms, literals, and clauses. The
result of the application of a substitution σ to an expression E is denoted by Eσ. The set
Dσ = {x ∈ V | xσ 6= x} is the domain of a substitution σ and the set Cσ = {xσ | x ∈ Dσ} is the
codomain of σ. If V ⊆ V is a set of variables, then the restriction σV of σ to V is defined by a
substitution θ such that Dθ = Dσ ∩ V and xσ = xθ for every x, x ∈ Dθ. The composition θσ of
the substitutions σ and θ is defined as xθσ = (xθ)σ for all variables x in V. A substitution σ is
idempotent if σσ = σ. A variable renaming is an injective substitution σ such that Cσ ⊆ V.

An expression E′ is an instance of an expression E if there exists a substitution σ such that
E′ = Eσ. An expression E′ is a variant of an expression E if there exists a variable renaming σ
such that E′ = Eσ. We say E and E′ are identical modulo variable renaming . We usually consider
clauses C and D to be identical if they are identical modulo variable renaming. A substitution
σ is a (syntactical) unifier of expressions E1, . . . , En if Eiσ = Ejσ for all i, j, 1 ≤ i, j ≤ n, and
E1, . . . , En are said to be unifiable. A unifier σ is a most general unifier of E1, . . . , En if for every
unifier θ of E1, . . . , En there exists a substitution ρ such that θV({E1,... ,En}) = (σρ)V({E1,... ,En}). If
E1, . . . , En are unifiable, then there exists a most general unifier of E1, . . . , En. For appropriate
algorithms for the computation of most general unifiers see [88, 95].

As usual, positions of an expression are denoted by sequences of natural numbers. The length
of a sequence λ is denoted by |λ|. The set of all positions of an expression E is denoted by
Pos(E). If λ is a position in E, then E|λ denotes the subexpression at position λ, and E[λ← E′]
is the result of replacing the subexpression of E at position λ by E′. We write E[E1] to indicate
that the expression E contains E1 as a subexpression. Then E[E2] denotes the result of replacing
the same occurrence of E1 in E by the expression E2. If E1 and E2 are expressions such that
E1 occurs at a position λ in E2, that is E2|λ = E1, then E1 occurs in E2 at depth |λ |. If E1

and E2 are expressions such that Λ is the set of all positions in E2 such that E2|λ = E1, then
max({|λ | | λ ∈ Λ}) is the maximal depth of an occurrence of E1 in E2.

Orderings

Let U be a set. A binary relation R on U is a subset of U × U . The inverse R−1 of R is the
set {(y, x) | (x, y) ∈ R}. A binary relation R is (i) reflexive if for every x ∈ U , (x, x) ∈ R,
(ii) symmetric if for every x, y ∈ U , (x, y) ∈ R implies (y, x) ∈ R, (iii) antisymmetric if for
every x, y ∈ U , (x, y) ∈ R and (y, x) ∈ R implies x = y, (iv) transitive if for every x, y, z ∈ U ,
(x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R, and (v) asymmetric if for every x, y ∈ U , (x, y) ∈ R
implies (y, x) 6∈ R. A binary relation R is an equivalence relation if R is reflexive, symmetric, and
transitive.

For a binary relation → we use ↔, →+, and →∗ to denote its symmetric, transitive, and
reflexive-transitive closure, respectively. A binary relation → over a set U is well-founded if there
is no infinite chain d1 → d2 → · · · of elements in U . An element d ∈ U is in normal form with
respect to → if there is no d′ ∈ U such that d → d′. If d →∗ d′ and d′ is in normal form with
respect to →, then d′ is a normal form of d.

We say a binary relation → on expressions is stable under contexts if E1 → E2 implies
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E[λ← E1]→ E[λ← E2] for all expressions E, E1, and E2 such that E[λ← E1] and E[λ← E2]
are well-formed. The relation → is stable under substitutions if E1 → E2 implies E1σ → E2σ for
all expressions E1, E2 and all substitutions σ. If → is stable under substitutions, we also say →
is liftable . A rewrite relation is a binary relation which is stable under context and stable under
substitutions.

A partial ordering � on a set U is a binary relation on U which is reflexive, antisymmetric, and
transitive. A strict partial ordering � on a set U is a binary relation on U which is asymmetric
and transitive. A strict partial ordering � on a set U is total if for every x, y ∈ U either x � y,
y � x, or x = y holds.

Given a strict partial ordering on U , a subset U ′ of U , and an element x of U , x is �-maximal
with respect to U ′ if there is no element y of U ′ such that y � x holds. The element x is strictly
�-maximal with respect to U ′ if there is no element y of U ′ such that y � x or y = x holds.

A quasi-ordering % is any reflexive and transitive binary relation. The associated equivalence
relation ∼ is the intersection of % with its inverse. To any quasi-ordering % we can associate a
strict partial ordering � which is the difference between % and its inverse. The resulting strict
partial ordering is also called the strict part of %. A quasi-ordering is well-founded if its strict
part is well-founded.

A partial ordering � on a set U can be extended to a partial ordering �set on (finite) sets
over U as follows: M �set N if for every element x of N there exists an element y of M such that
y � x. A strict partial ordering � on U can be extended to an ordering �mul on (finite) multisets
over U as follows: M �mul N if (i) M 6= N and (ii) whenever N(x) > M(x) then M(y) > N(y),
for some y � x.

An ordering �1 is a refinement of an ordering �2 if �2 ⊂ �1 holds. An ordering �1 on a
set U is a refinement with respect to a subset S of U of �2 if (�2 ∩S × S) ⊂ (�1 ∩S × S). An
ordering � is compatible with a binary relation R if R is a subset of �.

Let f be an n-ary function symbol with which we associate a mapping (called the status
of f) that assigns to each strict partial ordering � on terms an ordering �f on n-tuples of
terms. In particular, the function symbol f is said to have multiset status, if �f is defined by
(s1, . . . , sn) �f (t1, . . . , tn) if {s1, . . . , sn} �mul {t1, . . . , tn}. It is said to have lexicographic
status, if there exists a permutation π of {1, . . . , n}, such that (s1, . . . , sn) �f (t1, . . . , tn) if
(i) (sπ(1), . . . , sπ(n)) �lex (tπ(1), . . . , tπ(n)) and (ii) f(s1, . . . , sn) � ti for all i, 1 ≤ i ≤ n. (Here
�lex denotes the n-fold lexicographic combination of the ordering �.)

Let � be an ordering, called a precedence, on a given set of function symbols (and pred-
icate symbols), and suppose that each function (and predicate) symbol has either multiset or
lexicographic status. Then the corresponding recursive path ordering �rpo is recursively de-
fined by: s = f(s1, . . . , sm) �rpo g(t1, . . . , tn) = t if (i) si �rpo t, for some i with 1 ≤ i ≤ m, or
(ii) f � g and s �rpo tj, for all j with 1 ≤ j ≤ n, or (iii) f = g and (s1, . . . , sm) �f

rpo (t1, . . . , tm).
Any recursive path ordering is a well-founded strict partial ordering on terms which is stable with
respect to substitutions and total on ground terms [126].

An A-ordering � is an ordering on atoms which is stable under substitutions. An atom
ordering is a well-founded, total ordering on ground atoms. A literal ordering is a well-founded,
total ordering on ground literals.
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1.2 The resolution calculus

A condensation Cond(C) of a clause C is a minimal subclause of C which is also an instance
of it. A clause C is condensed if there exists no condensation of C which is a strict subclause
of C. The components in the variable partition of a clause are called split components. This
implies split components do not share variables. If C1, . . . , Cn are the split components of C,
then we say C can be decomposed into C1, . . . , Cn. A clause which is its own split component is
indecomposable.

Let C1 = {A1} ∪D1 and C2 = {¬A2} ∪D2 be variable-disjoint clauses such that the atoms
A1 and A2 are unifiable with most general unifier σ. Then (D1 ∪ D2)σ is a (binary) resolvent
of C1 and C2. C1 is called the positive premise and C2 is called the negative premise. Let
C1 = {L1, L2} ∪D1 be a clause such that the literals L1 and L2 are unifiable with most general
unifier σ. Then ({L1}∪D1)σ is a factor of C1. For a discussion of various refinements of resolution
confer [10, 91].

The refinements of resolution on which the decision procedures developed in the following
chapters are based, will be accommodated in the resolution calculus of Bachmair and Ganzinger [8,
10]. It makes use of a certain class of admissible orderings � and a selection function S of negative
literals.

An ordering � on literals is admissible, if (i) it is well-founded and total on ground literals,
and stable under substitutions, (ii) ¬A � A for all ground atoms A, and (iii) if B � A, then
B � ¬A for all ground atoms A and B. Any atom ordering � can be extended to a literal
ordering �′ by taking the multiset extension of � and by identifying any positive literal A with
the multiset {A} and any negative literal ¬A with the multiset {A,A}. The ordering �′ satisfies
Conditions (ii) and (iii). Any literal ordering � satisfying Conditions (ii) and (iii) can be extended
to an admissible ordering on literals by lifting it to non-ground literals L1 and L2 as follows:
L1 � L2 if and only if L1σ � L2σ, for all ground substitutions σ. We say a literal L is �-maximal
with respect to a clause C if for any L′ in C, L′ 6� L, and L is strictly �-maximal with respect to
C if for any L′ in C, L 6� L. Any ordering � on literals can be extended to clauses by taking the
multiset extension of �.

A selection function S assigns to each clause a possibly empty set of occurrences of negative
literals. If C is a clause, then the literal occurrences in S(C) are selected . No restrictions are
imposed on the selection function.

The calculus consists of general expansion rules of the form

N

N1 | · · · |Nn

each representing a finite derivation of the leaves N1, . . . , Nk from the root N . The following
rules describe how derivations can be expanded at leaves.

Deduce:
N

N ∪ {Cond(C)}
if C is either a resolvent or a factor of clauses in N .

Delete:
N ∪ {C}

N

if C is a tautology or N contains a clause which is a variant of C.
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Split:
N ∪ {C ∪D}

N ∪ {C} |N ∪ {D}
if C and D are variable-disjoint.

Resolvents and factors are derived by the following rules.

Ordered Resolution:
C ∪ {A1} D ∪ {¬A2}

(C ∪D)σ
where (i) σ is the most general unifier of A1 and A2, (ii) no literal is selected in C and A1σ is
strictly �-maximal with respect to Cσ, and (iii) ¬A2 is either selected, or ¬A2σ is �-maximal in
Dσ and no literal is selected in D.1

Ordered Factoring:
C ∪ {A1, A2}
(C ∪ {A1})σ

where (i) σ is the most general unifier of A1 and A2, and (ii) no literal is selected in C and A1σ
is �-maximal with respect to Cσ.

If C2 is derived from C1 by ordered factoring based on the ordering �, then C2 is a �-factor
of C1. Likewise, if C3 is derived from C1 and C2 by ordered resolution, then C3 is a �-resolvent
of C1 and C2.

The ordering � is used a posteriori in the inference rules, that is, �-maximality of a literal is
determined after instantiation of the premises by the most general unifier σ. If we determine the
�-maximality of literals with respect to the uninstantiated premises, then we say the ordering is
applied a priori . Note that due to the stability of any admissible ordering � under substitutions,
the maximality of a literal Lσ with respect to Cσ implies the maximality of L with respect to C.

The expansion rule “Delete” represents the weakest form of redundancy elimination which is
sufficient for the purpose of this thesis. However, the performance of resolution-based theorem
provers crucially depends on the use of more powerful techniques. Bachmair and Ganzinger [8]
define the following notion of redundancy. Let N be a set of clauses. A ground clause C is
redundant with respect to N if there are ground instances C1σ, . . . , Cnσ of clauses in N such that
C1σ, . . . , Cnσ |= C and for each i, C � Ciσ. A non-ground clauses C is redundant with respect
to N if every ground instance of C is redundant with respect to N . The notion of redundancy is
lifted to the non-ground case in the expected way. An inference is redundant if one of the premises
is redundant, or its conclusion is redundant or an element of N . A clause set N is saturated up
to redundancy if all inferences from non-redundant premises are redundant with respect to N .

If a clause C is not condensed then C is redundant with respect to Cond(C). It is therefore
admissible to replace any clause C by its condensation Cond(C). Note that whenever a clause C
is neither condensed nor indecomposable, an application of condensing should have precedence
over an application of splitting to avoid unnecessary paths in the theorem proving derivation.
Therefore, we have incorporated condensation into the “Deduce” expansion rule and assume
from now on that clauses are condensed.

A (theorem proving) derivation from a set N of clauses is a finitely branching tree T with
root N constructed by applications of the expansion rules. A derivation T is a refutation if for
every path N = N0,N1, . . . , the clause set

⋃
j Nj contains the empty clause.

1As usual we implicitly assume that the premises have no common variables.
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A derivation T from N is called fair if for any path N = N0,N1, . . . in the tree T , with limit
N∞ =

⋃
j

⋂
k≥j Nk, it is the case that each clause C that can be deduced from non-redundant

premises in N∞ is contained in some set Nj.

Theorem 1.1 (Bachmair, Ganzinger, Waldmann [8, 15]).
Let T be a fair theorem proving derivation from N . If N,N1, . . . is a path in T with limit N∞,
then N∞ is saturated up to redundancy. Furthermore, N is satisfiable if and only if there exists
a path in T with limit N∞ such that N∞ is satisfiable.

Theorem 1.2 (Bachmair, Ganzinger, Waldmann [8, 15]).
Let T be a fair theorem proving derivation from N . N is unsatisfiable if and only if for every
path N = N0,N1, . . . , the clause set

⋃
j Nj contains the empty clause.

We will restrict our attention to derivations which are generated by strategies in which
“Delete”, “Split”, and “Deduce” are applied in this order. In addition, no application of the
“Deduce” expansion rule with premises and consequence which are identical (modulo variable
renaming) may occur twice on the same path in the derivation. Furthermore, we require that
derivations are fair. In all the cases we consider this is not an additional restriction. It will be
straightforward to see that any theorem proving derivation generated according to the strategy
outlined above is fair.

1.3 Structural transformation

Structural transformation, also known as renaming, is a standard technique of many areas, besides
automated deduction, for transforming formulae into a more suitable normal form [7, 113]. In this
thesis we will use this technique for the conversion to clausal form, the embedding into suitable
classes of clauses, and for swapping signs of literals so that particular literals can be selected.

Let Pos(ϕ) be the set of positions of a first-order formula ϕ. If λ is a position in ϕ, then ϕ|λ
denotes the subformula of ϕ at position λ and ϕ[λ ← ψ] is the result of replacing ϕ at position
λ by ψ.

We associate with each element λ of Λ ⊆ Pos(ϕ) a new predicate symbol Qλ and a new literal
Qλ(x1, . . . , xn), where x1, . . . , xn are the free variables of ϕ|λ. Let

Def+λ (ϕ) = ∀x1 . . . xn (Qλ(x1, . . . , xn)→ ϕ|λ) and
Def−λ (ϕ) = ∀x1 . . . xn (ϕ|λ → Qλ(x1, . . . , xn)).

The definition of Qλ is the formula

Defλ(ϕ) =




Def+λ (ϕ) if ϕ|λ has positive polarity,
Def−λ (ϕ) if ϕ|λ has negative polarity,
Def+λ (ϕ) ∧Def−λ (ϕ) otherwise.

Now, define DefΛ(ϕ) inductively by:

Def∅(ϕ) = ϕ and
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DefΛ∪{λ}(ϕ) = DefΛ(Defλ(ϕ) ∧ ϕ[λ← Qλ(x1, . . . , xn)]),

where λ is maximal in Λ∪{λ} with respect to the prefix ordering on positions. The corresponding
clauses will be called definitional clauses. A definitional form of ϕ is DefΛ(ϕ), where Λ is a subset
of positions of subformulae (usually, non-atomic or non-literal subformulae).

Theorem 1.3.
Let ϕ be a first-order formula. For any Λ ⊆ Pos(ϕ), DefΛ(ϕ) can be computed in polynomial time
and ϕ is satisfiable iff DefΛ(ϕ) is satisfiable.

Structural transformation can be defined more generally so that for variant subformulae only
one new predicate symbol is introduced.

The use of structural transformation for the conversion to clausal from has two major advan-
tages.

1. If we translate a first-order formula ϕ directly to its clausal form Cls(ϕ), the size of Cls(ϕ)
can be exponential in the size of ϕ. If Λ is the set of all positions of ϕ, then the size of
Cls(DefΛ(ϕ)) is polynomial/linear in the size of ϕ.

2. For the fragments of first-logic we will consider, the application of structural transformation
considerably simplifies the form of clauses we obtain from ϕ. This eases our task to devise
suitable decision procedures for the fragments under consideration. In fact, only with the
help of an appropriate form of structural transformation are we able to solve this task for
some of the fragments of first-order logic we will consider, namely E+ and KC.

We assume in the following that the clausal form Cls(ϕ) of a first-order formula is computed
using, for example, the algorithm presented by Chang and Lee [21]. It is important that outer
Skolemisation is used and the scope of quantifiers is not reduced. Inner Skolemisation or strong
Skolemisation, considered advantageous in [103], can destroy the covering or regularity property
of terms. For further discussion see Section 3.2.

1.4 Simulation

The following definitions are adapted from Eder [34]. An excellent overview of simulation results
for proof systems of propositional logic is given in [131].

For a finite alphabet Σ, let Σ∗ denote the set of all finite strings over Σ. A language over an
alphabet Σ is a subset of Σ∗.

A proof system for L is a mapping S : Σ∗
1 → L for some alphabet Σ1, such that S is surjective

and S can be computed in polynomial time by a Turing machine. Every string ρ is said to be
a proof of S(ρ) in S. A crucial property of a proof system is that, given a string ρ, there is a
feasible method for checking whether or not ρ is a proof, and if so, of what it is a proof [131].

Let C be a calculus given by a set of axioms and a set of inference rules. We assume that
the set of axioms and inference rules is decidable in polynomial time. A derivation of ϕn in C
is a sequence of formulae ϕ1, . . . , ϕn such that each ϕi, 1 ≤ i ≤ n is either an axiom or derived
from formulae occurring in ϕ1, . . . , ϕi−1 by an inference rule. Alternatively, we may define that
a derivation in C is a tree labelled with formulae such that every formula labelling a leave node
is an axiom and every formula labelling an interior node is derived by a rule of inference from
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the formulae labelling its parent nodes. In both cases we can encode derivations as strings over
an appropriate alphabet. Then the calculus C induces a proof system S in the following way: if
a string ρ encodes a derivation of ϕ in C, then let S(ρ) = ϕ, otherwise let S(ρ) = τ where τ is a
standard theorem of C, for example, one of its axioms.

The resolution calculus of Section 1.2 is an example for a refutational calculus, that is, given
a finite, unsatisfiable set of clauses it derives a contradiction.

Let S1 : Σ∗
1 → L and S2 : Σ∗

2 → L be proof systems for L. Then S1 polynomially simulates
S2, if (*) there is a polynomial p such that for every natural number n and for every element τ
of L the following holds: If there is a proof of τ in S2 whose length is n, then there is a proof
of τ in S1 whose length is less than p(n). More generally, S1 : Σ∗

1 → L1 polynomially simulates
S2 : Σ∗

2 → L2 if L2 can be polynomially reduced to L1 and (*) is true.
If S1 is a proof system induced by calculus C1, then the length of a proof ρ in S1 is polynomially

bounded by the number of applications of inference rules in the derivation encoded by ρ. Let S1

and S2 be proof systems induced by calculi C1 and C2, respectively. To show that S1 p-simulates
S2 it is therefore sufficient to prove that for every formula ϕ and every derivation D2 of ϕ in S2,
there exists a derivation D1 of ϕ in S1 such that the number of applications of inference rules in
D1 is polynomially bounded by the number of applications of inference rules in D2.

All the simulation results in this thesis achieve this by showing that there exists a number
n such that each application of an inference rule in D1 corresponds to at most n applications of
inference rules in D2. It follows that the length of D2 is polynomially bounded by the length
of D1. We call this a step-wise simulation of S2 by S1. Note that a step-wise simulation is
independent of whether the considered derivations are proofs.

The notion of p-simulation was introduced by Cook and Reckhow [22] for the purpose of study-
ing the P =? NP problem. However, as far as analytical investigations of the relative efficiency
of calculi and theorem provers are concerned, it is only one measure which needs consideration.
Notice that for any derivation by the resolution calculus of Section 1.2 there exists a derivation
of the same length by the unrefined resolution calculus, while the opposite does not hold. Nev-
ertheless, for all practical applications refinements of resolution have considerable performance
advantages. This is due to the reduction in the size of the search space achieved by restricting
the applicability of the inference rules by ordering restrictions and selections functions and the
use of powerful redundancy criteria for removing superfluous clauses.

Informally, the search space of a given set N of formulae is the set S of all formulae that
can be derived from N in a calculus C. More formal definitions are given in [114, 18]. It is then
possible to consider the relative size of the search space of calculi and particular theorem proving
strategies. Again the consideration of a step-wise simulation can provide insights. If a proof
system S1 is able to step-wise simulate a proof system S2 and vice versa, then the relative size of
the search space of S1 and S2 can only differ by a constant factor.

1.5 Solvable classes

A class of (first-order) formulae is solvable if and only if there is a decision procedure for satisfi-
ability, that is, an effective procedure that determines for every formula in the class whether it
has a model.

For an historical overview of the work on solvability problems see [33]. We will only consider
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classes without equality. Classical examples of solvable classes which we will mention in this thesis
are given below. Recall that schemata are first-order formulae without function symbols that are
rectified and closed. Whenever the quantified variable is not relevant for the characterisation of
the form of a formula, we write ∀ and ∃ instead of ∀x and ∃x , respectively.

The initially extended Ackermann class
The initially extended Ackermann class is the class of all schemata in prenex normal form with
a prefix of the form ∃ . . . ∃ ∀ ∃ . . . ∃ .

The Bernays-Schönfinkel class
The Bernays-Schönfinkel class is the class of all schemata in prenex normal form with a prefix of
the form ∃ . . . ∃ ∀ . . . ∀ .

The initially extended Gödel class
The initially extended Gödel class is the class of all schemata in prenex normal form with a prefix
of the form ∃ . . . ∃ ∀ ∀ ∃ . . . ∃ .

The monadic class (with equality)
The monadic class (with equality) is the class of all schemata (with equality) such that all pred-
icate symbols are monadic.

The solvability results for the Bernays-Schönfinkel and the initially extended Gödel class together
with the unsolvability results for the class of prenex formulae with prefix ∀ ∀ ∀ ∃ and the class
of prenex formulae with prefix ∀ ∃ ∀ settle the solvability problem for all fragments of first-order
logic defined in terms of the prefix of formulae in prenex form.

Examples of decidable fragments of first-order logic which are not solely defined in terms of
the prefix of formulae in prenex form are the following.

The initially extended Skolem class
The initially extended Skolem class is the class of all schemata in prenex normal form with a prefix
of the form ∃z1 . . . ∃zk ∀y1 . . . ∀ym ∃x1 . . . ∃xn such that each atom of the matrix has among its
arguments either (i) at least one of the xi, or (ii) at most one of the yi, or (iii) all of y1, . . . , ym.

The two-variable fragment of first-order logic (FO2)
The two-variable fragment of first-order logic is the class of formulae without function symbols
over a set of variables V with only two elements.

The guarded fragment GF [30, 29]
The guarded fragment GF is a subclass of first-order logic without non-constant function symbols
which is inductively defined as follows: (i) > and ⊥ are in GF, (ii) if A is an atom, then A is in
GF, (iii) if ϕ and ψ are in GF, then ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ → ψ, and ϕ ↔ ψ are in GF, (iv) if ϕ
is in GF, A is an atom, and x̄ is a sequence of variables, such that every free variable of ϕ is an
argument of A, then ∀x̄:A → ϕ and ∃x̄:A ∧ ϕ are in GF. The atom A in case (iv) is called a
guard. Note that free variables in a formula are implicitly existentially quantified.

The loosely guarded fragment LGF [29]
The loosely guarded fragment LGF is a subclass of first-order logic without function symbols
which is inductively defined as follows: (i) > and ⊥ are in LGF, (ii) if A is an atom, then A is
in LGF, (iii) if ϕ and ψ are in LGF, then ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ → ψ, and ϕ ↔ ψ are in LGF,
(iv) If ϕ is in LGF, A1, . . . , An are atoms, x̄ is a sequence of variables, such that every free
variable occurs together with every xi of x̄ in one of the Aj , then ∀x̄: (A1 ∧ . . . ∧ An) → ϕ and
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∃x̄: (A1 ∧ . . . ∧An) ∧ ϕ are in LGF. Again, free variables in a formula are implicitly existentially
quantified.

The class of fluted formulae (fluted logic) [115]
Let Xm be an ordered set {x1, . . . , xm} of variables. The class of fluted formulae over Xm is
inductively defined as follows: (i) if R is a n-ary predicate symbol with n ≤ m, then the atom
R(xm−n+1, . . . , xm) is a fluted formula over Xm, (ii) if ϕ and ψ are a fluted formulae over Xm,
then ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ → ψ, and ϕ ↔ ψ are fluted formulae over Xm, (iii) if ϕ is a fluted
formula over Xm+1, then ∃xm+1:ϕ and ∀xm+1:ϕ are fluted formulae over Xm.

The class One-Free [129]
A closed formula ϕ without non-constant function symbols belongs to the class One-Free if and
only if any subformula ψ of ϕ starting with a quantifier contains no more than one free variable.

Instead of characterising solvable classes as sets of first-order formulae, we can use a character-
isation as classes of clauses, or clauses of clause sets. The presence of Skolem functions potentially
allows for arbitrarily complex terms in clauses. In this case, the clauses no longer correspond to
the clausal form of some first-order formulae. The following classes are defined in [39].

The class OCCI
Let C+ and C− denote the subclause of all positive literals and the subclause of all negative
literals of a clause C, respectively. A set of clauses N belongs to OCCI iff for all clauses C in N
the following holds: (i) for every variable x in V(C+) there is exactly one occurrence of x in C+,
and (ii) for every x ∈ V(C+) ∩ V(C−), the maximal depth of occurrences of x in C+ is less than
or equal to the maximal depth of occurrences of x in C−.

The class M+

Two terms t1 and t2 are congruent iff both terms are compound and argmul(t1) = argmul(t2).
A literal L is uniform if either argset(L) ⊆ V ∪ F0 or L has a compound argument term t such
that each argument of L is either congruent to t, an argument of t or a constant. A clause set N
belongs to M+ iff for all clauses C in N the following holds: (i) every literal in C is uniform, (ii)
C contains no occurrence of nested, non-constant function symbols, and (iii) C contains at most
two literals.

The class PVD
Let C+ and C− denote the subclause of all positive literals and the subclause of all negative
literals of a clause C, respectively. A set of clauses N belongs to PVD+ iff for all clauses C in N
the following holds: (i) V(C+) ⊆ V(C−), and (ii) for every x ∈ V(C+), the maximal depth of an
occurrence of x in C+ is less than or equal to the maximal depth of an occurrence of x in C−.

A sign renaming is a mapping on clause sets consistently replacing occurrences of literals L by L
depending on the predicate symbol of L.

A set of clauses N belongs to PVD (positive variable dominated) if there exists a sign mapping
γ such that γ(N) is in PVD+.

The class S+

A set of clauses N belongs to S+ iff for all clauses C ∈ N and all literals L in C the following
holds: (i) if t is a compound term in C then V(t) = V(C), and (ii) either V(L) is a singleton set
or V(L) = V(C).
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Chapter 2

The class E+

The class E+ was introduced by Tammet [128] and has become one of the most well-studied
classes with respect to resolution decision procedures. Unlike classical solvable classes which are
fragments of first-order logic, the class E+ is a class of clauses. E+ has the pleasant property that
given a clause set N in E+ any clause C derivable by unrestricted resolution and unrestricted
factoring again belongs to (some clause set in) E+. Furthermore, C will not contain more variables
than the maximal number of variables occurring in a clause in N [28]. Consequently, the only
obstacle to decidability by unrestricted resolution is the fact that there is no upper bound on the
maximal depth of terms.

Tammet presents a refined calculus based on ordered resolution using a non-liftable ordering
�v and shows termination. On E+ ordered resolution with respect to �v has the important
property that the maximal depth of variables in a resolvent never exceeds the maximal depth
of variables in its parent clauses. This immediately establishes decidability of this refinement.
However, it was open whether the calculus is complete. De Nivelle [26] was able to establish the
completeness of the calculus using a new general technique for proving completeness of non-liftable
orderings.

More recently, de Nivelle [28] showed that E+ can be decided by ordered resolution using a
liftable ordering �d. In contrast to the ordering �v which is applied a priori, the ordering �d is
applied a posteriori. In this resolution refinement the maximal depth of variables in a resolvent
can exceed the maximal depth of variables in the parent clauses.

This chapter has mainly introductory character. We will use the class E+ to demonstrate
the basic techniques which we will use in the following chapters for more complicated and more
interesting first-order fragments. In particular, we will see (i) how to use renaming to transform
formulae and clauses into a suitable more “well-behaved” form, (ii) how to use ordering refine-
ments to restrict the application of resolution and factoring, (iii) how to prove termination of an
ordering refinement, and (iv) how to establish relationships between various decision procedures
by means of simulation. Along the way, a satisfiability equivalence preserving transformation of
clause sets in E+ will be presented which allows for the definition of a complete decision procedure
based on a variety of ordering refinements. We show how some general problems due to the use of
renaming techniques can be solved. This allows us to establish a relationship between resolution
decision procedures using ordering refinements based on liftable orderings to decision procedures
using ordering refinements based on non-liftable orderings.

19
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2.1 The class E+ and variable uniform clauses

This section defines the class E+ and gives some technical lemmata. As in Fermüller et al. [39,
p. 99] we define:
Definition 2.1 (Covering and weakly covering terms and literals).
A compound term t is covering if for every compound subterm s of t the sets of variables of
s and t are identical, that is, V(s) = V(t). A compound term t is weakly covering if for every
non-ground, compound subterm s of t V(s) = V(t) holds.

An atom or literal L is covering if each argument of L is either a constant, a variable, or a
covering term t with V(t) = V(L). An atom or literal L is weakly covering1 if each argument of
L is either a ground term, a variable, or a weakly covering term t with V(t) = V(L).

Definition 2.2 (Variable uniform clauses).
A clause C is variable uniform if

1. every literal in C is weakly covering, and

2. for each literal L1 and L2 in C either V(L1) = V(L2) or V(L1) ∩ V(L2) = ∅ holds.

Definition 2.3 (The class E+).
A clause set N belongs to the class E+ iff all clauses C in N are variable uniform.

Definition 2.4.
For any literal, L let GT(L) be the set of all ground subterms of L. Define dpx

max(L) to be the
maximal depth of occurrences of the variable x in L. If x does not occur in L, let dpx

max(L) = 0.
Let dpV

max(L) be the maximal depth of variable occurrences in L. If L is ground, let dpV
max(L) = 0.

Let dpGT
max(L) be the maximal depth of elements of GT(L).

LetN be a finite set of variable uniform clauses. Let ΓN be the set of all non-ground compound
terms in N . With every literal L we can associate a finite set L∗ of literals which can be obtained
from L by applying a substitution σ replacing variables in L by elements of ΓN with the restriction
that the maximal depth of a variable in Lσ does not the exceed dpV

max(N). By cardV
max(L) we

denote maximal number of different variables in elements of L∗. Note that for any ground literal
L cardV

max(L) is equal to zero.

For example, dpx
max(p(x, f(y), y)) = 1, dpy

max(p(x, f(y), y)) = 2, and dpV
max(p(x, f(y), y) = 2. If a

literal L does not contain any compound ground terms, then dp(L) = dpV
max(L) + 1.

Lemma 2.5 ([39, p. 102]). Let σ be a most general unifier of two weakly covering literals L1

and L2. Then the following properties hold for L1σ:

1. L1σ is weakly covering.

2. dpV
max(L1σ) ≤ max(dpV

max(L1),dpV
max(L2)).

3. dp(L1σ) ≤ max(dpV
max(L1),dpV

max(L2)) + max(dpGT
max(L1),dpGT

max(L2)).

4. GT(L1σ) ⊆ GT(L1) ∪GT(L2) or L1σ is ground.
1Note that Fermüller et al. [39] present two definitions of the notion of weakly covering literals. The definition

on page 81 of Fermüller et al. [39] is more restrictive. It does not allow variable arguments in weakly variable
uniform literals.
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5. |V(L1σ)| ≤ max(|V(L1)|, |V(L2)|).

Actually, Fermüller proves a stronger result than Lemma 2.5(2) for the case that L1σ is
non-ground.

Lemma 2.6 ([39, p. 102–104]). Let σ be a most general unifier of two weakly covering literals
L1 and L2 with L1σ non-ground. Then the following properties hold:

1. dpV
max(L1σ) = max(dpV

max(L1),dpV
max(L2)).

2. dpV
max(L1σ) = dpV

max(L1) or dpV
max(L2σ) = dpV

max(L2).

It is possible to give a more precise characterisation of the form of L1σ. Let G be a set of
ground terms. Then L1 ≥G L2 if either L1 = L2 or L2 can be obtained from L1 by substituting
some variables of L1 by variables or elements of G.

Lemma 2.7 ([39, p. 102–104]). Let σ be a most general unifier of two weakly covering literals
L1 and L2. Let Γ denote the set GT(L1) ∪GT(L2). Then

1. Either L1 ≥Γ L1σ or L2 ≥Γ L2σ.

2. Either the codomain of σV(L1) or σV(L2), or both, contain no non-ground, compound terms.

Lemma 2.8 ([39, p. 104]). Let L1 and L2 be weakly covering literals such that V(L1) = V(L2).
For every substitution σ if L1σ is weakly covering then L2σ is weakly covering.

In weakly covering atoms the maximal depth of occurrences is the same for every variable.
Since this property is important for our decision procedure, we present a formal proof.

Lemma 2.9. Let L be a weakly covering literal. Then for each variable x and y in V(L) the
following holds

dpx
max(L) = dpy

max(L) = dpV
max(L).(2.1)

Proof. For ground literals L (2.1) trivially holds.
Suppose L is a non-ground literal such that all compound arguments of L are ground. So

all occurrences of variables in L are arguments of L. They all occur at the same depth which
coincides with the maximal depth of occurrences of variables in L. Again equation (2.1) holds.

Suppose L is a non-ground literal containing at least one non-ground compound argument. Let
f(t1, . . . , tn) be a subterm of L at maximal depth d such that one of the argument terms t1, . . . , tn
is a variable. We show that all variables of L are among the argument terms t1, . . . , tn. Suppose
not. Since f(t1, . . . , tn) is a non-ground, compound, and weakly covering term, it contains all
variables of L. If there is a variable x of L which is not identical to one of t1, . . . , tn, then some
term ti has a strict subterm of the form g(s1, . . . , sm) such that x = sj for some term sj. This
contradicts our assumption that f(t1, . . . , tn) is a subterm at maximal depth having a variable
occurrence among its arguments. So, every variable L is identical to one of the argument terms
t1, . . . , tn. For any variable x in V(L) the maximal depth of occurrences of x in L is equal to
d+1. Thus (2.1) holds.
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Lemma 2.10. Let L1 and L2 be weakly covering literals such that V(L1) = V(L2).

1. For any substitution σ such that L1σ is non-ground, if dpV
max(L1) = dpV

max(L2)+k, for some
k, k ≥ 0, then dpV

max(L1σ) = dpV
max(L2σ) + k.

2. If dpV
max(L1) = dpV

max(L2), then for any substitution σ, dpV
max(L1σ) = dpV

max(L2σ).

Proof. Suppose dpV
max(L1) ≥ dpV

max(L1σ). Then σ instantiates the variables of L1 either with
variables or ground terms. Since L1 and L2 share the same variables, it is not possible that
L2σ is ground while L1σ is non-ground or vice versa. If L1σ is ground, then dpV

max(L1σ) = 0 =
dpV

max(L2σ). If L1σ is non-ground, then dpV
max(L1) = dpV

max(L1σ) and dpV
max(L2) = dpV

max(L2σ).
Thus, dpV

max(L1σ) = dpV
max(L2σ) + k.

Suppose dpV
max(L1) < dpV

max(L1σ). Then L1σ is non-ground, and some variable of L1 has
been instantiated by a compound term. Let x be a variable in V(L1) ∩ D(σ) such that xσ is a
non-ground, compound term of maximal depth in C(V(L1)∩D(σ)). Then xσ contains a variable
y such that dpy

max(L1σ) = dpV
max(L1σ). By Lemma 2.9, dpx

max(L1) = dpV
max(L1). Therefore,

dpV
max(L1σ) = dpy

max(xσ) + dpx
max(L1)− 1.

Since V(L1) = V(L2), the variable x also occurs in L2. Furthermore, V(L1)∩D(σ) = V(L2)∩
D(σ) and xσ is also a non-ground, compound term of maximal depth in C(V(L2)∩D(σ)). Again
by Lemma 2.9, dpx

max(L2) = dpV
max(L2). So,

dpV
max(L2σ) + k = dpy

max(xσ) + dpx
max(L2) + k

= dpy
max(xσ) + dpV

max(L2) + k

= dpy
max(xσ) + dpV

max(L1)
= dpy

max(xσ) + dpx
max(L1)

= dpV
max(L1σ).

Lemma 2.11. Let L1 and L2 be literals such that V(L1) = V(L2) and σ be an arbitrary substi-
tution. If dp(L1) > dp(L2) and for every x ∈ V(L1), dpx

max(L1) > dpx
max(L2), then dp(L1σ) >

dp(L2σ).

Proof. If dp(L2σ) ≤ dp(L1), then the lemma holds trivially. Suppose dp(L2σ) > dp(L1). Since
dp(L1) > dp(L2), some of the variables of L1 have been instantiated by compound terms. In
particular, there is a variable x ∈ V(L1) such that dpx

max(L1) + dp(xσ) = dp(L1σ). However,
dpx

max(L2) > dpx
max(L1) and therefore

dp(L2σ) ≥ dpx
max(L2) + dp(xσ)

> dpx
max(L1) + dp(xσ)

= dp(L1σ).

Lemma 2.12. Let L1 and L2 be literals such that V(L1) = V(L2) and for every x ∈ V(L1),
dpx

max(L1) ≥ dpx
max(L2). Let σ be a substitution such that dp(L2σ) > dp(L2). Then dp(L1σ) ≥

dp(L2σ).
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Proof. Without loss of generality we assume that the domain of σ is a subset of V(L2). Since
dp(L2σ) > dp(L2), the substitution σ instantiates at least one of the variables of L2 by a com-
pound term. In particular, there exists a a variable x in L2 such that dpx

max(L2) + dp(xσ) =
dp(L2σ). Since dpx

max(L1) ≥ dpx
max(L2), we obtain

dp(L1σ) ≥ dpx
max(L1) + dp(xσ)

≥ dpx
max(L2) + dp(xσ)

= dp(L2σ).

Lemma 2.13. Let {L1, L2}∪C be an indecomposable, variable uniform clause such that L1 and
L2 are unifiable with most general unifier σ. If dpV

max(L1) 6= dpV
max(L2), then L1σ is ground.

Proof. We assume that dpV
max(L1) > dpV

max(L2) holds and L1σ is non-ground. According to
Lemma 2.6(1),

dpV
max(L1σ) = max(dpV

max(L1),dpV
max(L2)) = dpV

max(L1).

Based on Lemma 2.9 we infer that no variable occurring in L1 is instantiated by a non-ground
compound term. On the other hand, we have

dpV
max(L2σ) = max(dpV

max(L1),dpV
max(L2)) = dpV

max(L1) > dpV
max(L2).

This is only possible, if one of the variables of L2 has been instantiated by a non-ground compound
term. However, L1 and L2 share the same variables which entails that one of the variables of L1

has been instantiated by a non-ground compound term. We have derived a contradiction.

2.2 Resolution and factoring on variable uniform clauses

In the literature on the class E+ the following four orderings play a vital role.
Definition 2.14.
Let L1 and L2 be literals. We define the orderings �′

v, �v, �n , and �d as follows.

L1 �′
v L2 iff dpV

max(L1) > dpV
max(L2).

L1 �v L2 iff (i) V(L1) = V(L2) 6= ∅,2 and
(ii) for every x in V(L1) we have dpx

max(L1) > dpx
max(L2).

L1 �n L2 iff (i) dp(L1) > dp(L2), and
(ii) either dpV

max(L1) > dpV
max(L2) or both L1 and L2 are ground.

L1 �d L2 iff (i) dp(L1) > dp(L2), and
(ii) for every x in V(L2) we have dpx

max(L1) > dpx
max(L2).

In contrast to the ordering �d, the orderings �v, �′
v, and �n are not stable under substitutions.

Note that �′
v is an extension of �v, but coincides with �v on indecomposable, variable uniform

clauses. Also, �n coincides with �d on variable uniform clauses.
2The definition of �v differs from the original definition in [130] in the additional requirement that L1 and L2

are non-ground. This is necessary to ensure that �v is irreflexive on ground literals.
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Tammet [39, p. 82] shows that resolution based on an a priori �v ordering refinement always
terminates. As mentioned before, completeness was an open problem, since �v is not stable under
substitutions. De Nivelle [27] shows that ordered inferences based on the ordering �′

v is complete
and terminating.

The motivation for using the orderings �v and �′
v can be illustrated by the following example.

Resolving

C1 = {¬p(f(g(h(a)), x)),¬p(f(g(x), x))}

and

C2 = {p(f(g(h(a)), h(y)))}

on the first literal of C1 results in the clause

C3 = {¬p(f(g(h(x)), h(x)))}.

The maximal depth of the variable x in C3 is greater than the maximal depth of x in C1 and
C2. It is not immediate how an upper bound on this growth of the maximal depth of variables
could be established. Resolving C1 with C2 on the second literal of C1 (which is both �v- and
�′

v-maximal) results in the ground clause

C4 = {¬p(f(g(h(a)), h(a)))}.

Clearly, the value of dpV
max(C4) is smaller than the maximum of dpV

max(C1) and dpV
max(C2).

Tammet shows that restricting resolution to the �v-maximal literals of a clause ensures that
the maximal variable depth of resolvents is less than or equal to the maximum of the maximal
variable depths of the parent clauses. This property is one of the prerequisites for termination.
Because the literals of C1 have a common (ground) instance ¬p(f(g(h(a)), h(a))), there is no
ordering � which is stable under substitutions such that the second literal of C1 is strictly �-
maximal in C1.

There are three important points to note concerning de Nivelle’s approach. First, it is vital
that the ordering �n is used a posteriori. De Nivelle illustrates this by the following example. If
the ordering �n is applied a priori to the clause

C5 = {¬p(x, s(s(s(0)))), p(s(x), s(s(s(0))))}

then both literals in C5 are �n-maximal, since their depths are equal. Given the clause

C6 = {p(0, s(s(s(0))))}

we are then able to derive the clauses {p(sn(0), s(s(s(0))))} for arbitrarily large n, n ≥ 1. Thus,
an a priori �n ordering refinement does not ensure termination. Note that the same example can
be used to demonstrate that an a posteriori �v ordering refinement does not provide a decision
procedure, since in ground instances of C5 both literals are �v-maximal which allows for the
derivation of an infinite set of clauses.
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Second, the maximal depth of variables in resolvents can be greater than the maximum of the
maximal depths of variables in the parent clauses. This can be illustrated by the resolvent of C5

with itself, which is

C7 = {¬p(x, s(s(s(0)))), p(s(s(x)), s(s(s(0))))}.

However, there is an upper bound on the maximal depth of variables. If dc is the maximal depth
of clauses in a clause set N in E+, then the maximal depth of variables in any clause derivable
from N with respect to the �n-refinement will not exceed dc. By contrast, if dv is the maximal
depth of variables in N , then the maximal depth of variables in any clause derivable from N
with respect to the �v-refinement will not exceed dv. Consequently, if dc is greater than dv, then
potentially more clauses are derivable using the �n-refinement as opposed to the �v-refinement.
For example, based on the �v-refinement the clause C7 is not derivable from C5. This could be
considered to be a disadvantage.

Using an ordering which is stable under substitutions has the advantage that more powerful
redundancy elimination techniques can be used compared to calculi based on non-liftable order-
ings. This can compensate the disadvantage of the �d-refinement over the �v-refinement noted
before.

The basic idea of our decision procedure for the class E+ is as follows. All the orderings
coincide with each other on non-ground variable uniform clauses if

dpV
max(L) = dp(L)(2.2)

holds for every literal L in a clause set. We will adopt the strategy of replacing occurrences
of non-ground literals L violating condition (2.2) in a set N of clauses by literals L′ for which
condition (2.2) holds in a satisfiability equivalence preserving way. Then, any of the orderings of
Definition 2.14 may be used to restrict the inference. It will also be irrelevant whether maximality
is determined a priori or a posteriori.

The notion of depth distorted clauses introduced next is an (easily computable) approximation
identifying potentially critical cases.
Definition 2.15.
A clause C is depth distorted if it contains literals L1 and L2 such that dpV

max(C) = dpV
max(L1) >

dpV
max(L2) and dp(L1) ≤ dp(L2). The literal L2 is called �d-distorting literal . A clause which

is not depth distorted is called depth undistorted . A non-ground literal L1 such that dp(L1) >
dpV

max(L1) is depth dominated .

Note that a �d-distorting literal L2 is depth dominated. The motivation for the notion of depth
distorted clauses is, that they contain a literal L2 such that L2 is not �v-maximal, but potentially
�d-maximal. It is possible, that with respect to any substitution σ used in an inference step with
a depth distorted clause, L2σ is not �d-maximal. The clauses C1, C5, and C7 are examples of
depth distorted clauses.

Let N be a set of clauses. For every n, 1 ≤ n, let vn be a new n-ary function symbol, and h
be a new unary function symbol3. Let L be a literal with variables x1, . . . , xn, 0 ≤ n. We define

3That is, neither vn nor h occur in N
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a function d↓ on literals as follows.

d↓(L) =



p if L is ground,
p(x1, . . . , xn) if dpV

max(L) = 1,
p(hk−2(vn(x1, . . . , xn))) if dpV

max(L) = k ≥ 2,

where p is a new predicate symbol of appropriate arity uniquely associated with L (up to renaming
of variables). It is straightforward to see that for every literal L, dpV

max(L) = dpV
max(d↓(L)).

We define the following renaming transformation:

N ⇒D N ′ ∪ EqvA
L iff (i) L is an occurrence of a �d-distorting literal

(ii) A = d↓(L) and EqvA
L is the set of clauses {{¬A,L}, {¬L,A}}

(iii) N ′ is obtained from N by replacing any occurrence of L by A.

In EqvA
L we denote {¬A,L} by DefA

L and {¬L,A} by DefL
A. These clauses are called definitions.

As far as replacing occurrences of L by A is concerned, we assume that for any occurrence of L
we have V(L) = {x1, . . . , xn}. This can be achieved by renaming the variables of clauses in N
appropriately.

Note that L is not �d-distorting in DefA
L and DefA

L (and neither is A). So, every transformation
step eliminates at least one occurrence of an �d-distorting literal. Therefore, any sequence of
applications of ⇒D to N terminates. We denote the resulting clause set by N↓D.

By EqvD(N↓D) we denote the union of all sets EqvA
L introduced in the process of transforming

N to N↓D. Similarly, Def→D (N↓D) and Def←D (N↓D) denote the union of all sets DefA
L and DefL

A,
respectively. We can show the following.

Theorem 2.16.
Let N be a finite set of clauses. Then N↓D can be computed in polynomial time and is satisfiable
if and only if N is satisfiable.

Proof. Since renaming is satisfiability equivalence preserving.

In fact, Def→D (N↓D) instead of EqvD(N↓D) would have sufficed, that is, N is satisfiable iff N↓D \
Def←D (N↓D) is satisfiable. The clauses in Def←D (N↓D) will be used later (in Section 2.3) to relate
our procedure to existing decision procedures.

The clauses in N↓D still contain depth dominated literals and literals with compound ground
terms. Consequently, inference may produce depth distorted clauses. For example, we can derive

{q(g(x), a), q(g(a), x)}
from

{q(g(x), a),¬p(g(g(x)))}
and

{q(g(a), x), p(g(g(x)))}.
This may seem odd. By Lemma 2.5(4) inference steps by resolution and factoring from clauses not
containing compound ground terms will never result in non-ground clauses containing such terms.
This raises the question why we do not rename all occurrences of literals containing compound
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ground terms. The problem is that even with this form of renaming there will be compound
literals in Def→D (N↓D), so inference steps with one of the clauses in Def→D (N↓D) will reintroduce
compound ground terms and depth dominated literals into derived clauses.

Consider the clause set consisting of the three clauses

(3) {p(g(g(x)))}
(4) {q(g(z), z),¬p(g(g(g(z)))),¬p(g(f(g(a), z)))}
(5) {q(x, y), p(g(f(x, y)))}.

The third literal in (4) is both �d-distorting and contains the only compound ground term. The
transformation ⇒D will replace clause (4) by

(6) {q(g(z), z),¬p(g(g(g(z)))), p1(h(v1(z)))}
and add the clauses

(7) {¬p1(h(v1(z))),¬p(g(f(g(a), z)))}
(8) {p1(h(v1(z))), p(g(f(g(a), z)))}.

The derivation continues as follows.

[(6)2,R,(3)1] (9) {q(g(z), z), p1(h(v1(z)))}
[(9)2,R,(7)1] (10) {q(g(z), z),¬p(g(f(g(a), z)))}
[(10)2,R,(5)2] (11) {q(g(z), z), q(g(a), z)}.
Here [(6)2,R,(3)1] denotes that the second literal of clause (6) is resolved with the first literal of
clause (3). Analogously, [(6)1,F,(6)2] denotes an inference by ordered factoring on the first and
second literal of clause (6).

Clause (11) is depth distorted. To avoid the generation of clause (11) we could try to prevent
resolution on the first literal of (7) by choosing an appropriate refinement of �d. Now, assume
that we are only allowed to resolve on the second literal of (7). Then we obtain the following
alternative derivation.

[(6)2,R,(3)1] (9′) {q(g(z), z), p1(h(v1(z)))}
[(7)2,R,(5)2] (10′) {q(g(a), y),¬p1(h(v1(y)))}
[(9’)2,R,(10’)2] (11′) {q(g(z), z), q(g(a), z)}.
Clause (11’) is depth distorted. This shows, even if all literals containing compound terms are
renamed, inferences by ordered resolution (with respect to �d or a refinement of it) may derive
new depth distorted clauses.

Instead of applying ⇒∗
D once before the theorem proving derivation, we augment the set of

expansion rules by dynamic renaming:

↓D-Renaming: N
N↓D

if N contains a depth distorted clause.

We require that “↓D-Renaming” is applied eagerly during a theorem proving derivation. The
addition of “↓D-Renaming” does not affect the completeness of the calculus. Note that adding the
clauses in EqvD(N↓D) to N without modifying N itself, preserves satisfiability equivalence. We
could assume without loss of generality that all possible definitions are added before commencing
the derivation. Now, given an appropriate refinement �′

d of �d, “↓D-Renaming” becomes a
simplification operation in the sense of Bachmair and Ganzinger [8].
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We define a precedence �P on predicate symbols such that the predicate symbol of d↓(L)
is smaller than the predicate symbol of L. Let pL denote the predicate symbol of a literal L.
On literals �P is defined by L1 �P L2 if (i) dp(L1) = dp(L2) (ii) for every x in V(L2) we have
dpx

max(L1) = dpx
max(L2), and (iii) pL1 �P pL2 . The ordering �P is stable under substitutions and

disjoint from �d. The union �′
d of �d and �P is a refinement of �d and again stable under

substitutions.

Theorem 2.17.
The expansion rule “↓D-Renaming” is a simplification.

Proof. Let C ∪ {L} be a clause with L �d-distorting. For any ground instance (C ∪ {L})σ, we
can use the definition {¬L,A} to derive (C ∪ {A})σ, that is, instead of applying ⇒D we simply
perform an inference step.

Using the definition {¬A,L} we could derive (C∪{L})σ from (C∪{A})σ, that is, (C∪{A})σ
and {¬A,L}σ logically imply (C ∪ {L})σ. It remains to show that the premises are smaller than
the conclusion with respect to �′

d. Note that dp(Lσ) ≥ dp(Aσ) holds. If dp(Lσ) > dp(Aσ), then
Lσ �d Aσ, since Lσ and Aσ are ground. If dp(Lσ) = dp(Aσ), then pLσ �P pAσ and therefore
Lσ �P Aσ. In both cases Lσ �′

d Aσ. Therefore, (C ∪ {A})σ is smaller than (C ∪ {L})σ with
respect to the multiset extension of �′

d. Now consider the clauses {¬A,L}σ and (C ∪{L})σ. The
literal L is �d-distorting in C ∪ {L}, that is, there is a literal L2 in C with

dpV
max(L2) = dpV

max(C) > dpV
max(L).

With respect to A we have

dp(L2) ≥ dpV
max(L2) > dpV

max(L) = dpV
max(¬A) = dp(¬A).

Consequently, dp(L2σ) > dp(¬Aσ) and L2σ �d ¬Aσ hold. Thus, {¬A,L}σ is smaller than
(C ∪ {L})σ with respect to the multiset extension of �′

d, since Cσ contains a literal L2σ with
L2σ �′

d ¬Aσ.

We will now show some basic properties of depth undistorted clauses.

Lemma 2.18. Let {L1} ∪ C be an indecomposable, depth undistorted, variable uniform clause.
If L1 is �n-maximal with respect to C, then dpV

max(L1) = dpV
max(C).

Proof. The lemma is obviously true if C is the empty clause. Suppose C is not the empty clause.
Since {L1} ∪ C is indecomposable and variable uniform, we have V(C) = V(L1) = V(L2) 6= ∅ for
all literals L2 in C.

Assume that there is a literal L2 6= L1 in C such that dpV
max(L2) = dpV

max(C) > dpV
max(L1).

Since L2 6�n L1, we must have dp(L2) ≤ dp(L1). This means, L1 is a �d-distorting literal and
{L1} ∪ C is not a depth undistorted clause.

To lay the grounds for an investigation of the relationship between �′
v and �n on depth undis-

torted clauses, we now prove that the orderings �v and �′
v as well as �n and �d coincide on

weakly covering literals sharing the same set of variables and the stability of all these orderings
under non-ground substitutions.

Lemma 2.19. Let L1 and L2 be weakly covering literals such that V(L1) = V(L2).
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1. If σ is a substitution such that L1σ is non-ground, and � is one of the orderings �′
v, �v,

�n, and �d, then L1 � L2 implies L1σ � L2σ.

2. L1 �v L2 if and only if L1 �′
v L2.

3. L1 �d L2 if and only if L1 �n L2.

Proof. Suppose L1σ and L2σ are non-ground and L1 �′
v L2 holds. Then there is a natural number

k, k ≥ 1, such that

dpV
max(L1) = dpV

max(L2) + k > dpV
max(L2).

By Lemma 2.10(1), it follows that

dpV
max(L1σ) = dpV

max(L2σ) + k > dpV
max(L2σ).

So, L1σ �′
v L2σ.

Let L1 and L2 be weakly covering literals such that V(L1) = V(L2) and L1 �v L2. By
Lemma 2.9, dpx

max(L1) = dpV
max(L1) and dpx

max(L2) = dpV
max(L2), for every variable x in V(L1) =

V(L2). Let x be an arbitrary variable in V(L1). Since L1 �v L2, we have

dpx
max(L1) = dpV

max(L1) > dpV
max(L2) = dpx

max(L2).

Thus, L1 �′
v L2. In the same way we can show that L1 �v L2 entails L1 �′

v L2. By the previous
case,

L1 �v L2 implies A �′
v L2 implies Aσ �′

v L2σ implies Aσ �v L2σ.

Suppose L1σ and L2σ are non-ground and L1 �n L2 holds. We have that dpV
max(L1) >

dpV
max(L2) by (ii) of the Definition of �n, and by Lemma 2.10(1) also dpV

max(L1σ) > dpV
max(L2σ).

By (i) of the Definition of �n and Lemma 2.11 it follows that dp(L1σ) > dp(L2σ). Thus,
L1σ �n L2σ.

Let L1 and L2 be weakly covering literals such that V(L1) = V(L2). If L1 and L2 are ground,
then the condition that for every x ∈ V(L1) we have dpx

max(L1) > dpx
max(L2) is true, while the

condition dpV
max(L1) > dpV

max(L2) is false. On the assumption that we only compare literals
sharing the same set of variables, we can rewrite the definitions of �n and �d as follows.

L1 �n L2 iff (i) dp(L1) > dp(L2), and
(ii) either L1 �′

v L2 or both L1 and L2 are ground.

L1 �d L2 iff (i) dp(L1) > dp(L2), and
(ii) either L1 �v L2 or both L1 and L2 are ground.

Hence, the difference between �n and �d is that between �′
v and �v. However, we have already

shown that �′
v and �v coincide on literals sharing the same set of variables. Thus, �n and �d

also coincide on these literals.
Finally, we have to show that L1 �d L2 implies L1σ �d L2σ. This follows immediately from

the fact that �n and �d coincide on literals sharing the same set of variables and the fact that
�n is stable under non-ground substitutions.
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The following lemma is concerned with the relationship between �′
v and �n on depth undistorted

clauses.

Lemma 2.20. Let {L} ∪ C be an indecomposable, depth undistorted, variable uniform clause.
The literal L is �n-maximal with respect to C if and only if L is �′

v-maximal with respect to C.

Proof. The lemma holds if C is the empty clause. If C is not the empty clause, then all literals
in C as well as L are non-ground. In this case, we have L1 �n L2 if and only if L1 �′

v L2 and
dp(L1) > dp(L2), that is, �′

v is a refinement of �n. Consequently, if L is �′
v-maximal with

respect C, then L is also �n-maximal with respect to C.
Suppose L is �n-maximal with respect to C. By Lemma 2.18 we have dpV

max(L) = dpV
max(C),

that is, there can be no literal L2 in C such that the maximal variable depth of L2 is greater than
the maximal variable depth of L. Thus, L is �′

v-maximal with respect to C.

Lemma 2.21. Let {L}∪C be an indecomposable, depth undistorted, variable uniform clause and
σ be a substitution such that Lσ is weakly covering. If Lσ is �n-maximal with respect to Cσ,
then L is �′

v-maximal with respect to C.

Proof. The orderings �n and �d coincide on {L}∪C and ({L}∪C)σ, so Lσ is also �d-maximal.
Since �d is stable under substitutions, L is �d-maximal and therefore �n-maximal with respect
to C. By Lemma 2.20, L is also �′

v-maximal with respect to C.

The Lemmata 2.20 and 2.21 show that it is not essential in our framework to apply �n a posteriori.
Reconsider the depth distorted clause C5

C5 = {¬p(x, s(s(s(0)))), p(s(x), s(s(s(0))))}.

The transformation ⇒D will replace clause C5 by C ′
5

C ′
5 = {p1(x), p(s(x), s(s(s(0))))}.

While in C5 both literals are �n-maximal, only p(s(x), s(s(s(0)))) is �n-maximal in C ′
5. There

exists no infinite derivation from C ′
5 using the a priori �n-refinement.

Theorem 2.22.
Let {L1, L2}∪C be an indecomposable, variable uniform clause such that L1 and L2 are unifiable
with most general unifier σ. Then

dpV
max(({L1} ∪ C)σ) ≤ dpV

max({L1, L2} ∪ C).(2.12)

Proof. Suppose L1σ is a ground literal. Since V(C) ⊆ V(L1), the factor ({L1} ∪ C)σ is ground
and (2.12) holds.

Suppose L1σ is a non-ground literal. By Lemma 2.13 we have dpV
max(L1) = dpV

max(L2)
and by Lemma 2.10(2) this implies dpV

max(L1σ) = dpV
max(L2σ). None of the variables in L1

and C is instantiated by a non-ground compound term. Consequently, dpV
max(({L1} ∪ C)σ) =

dpV
max({L1, L2} ∪ C).
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Theorem 2.23.
Let {A1} ∪D1 and {¬A2} ∪D2 be indecomposable, variable uniform clauses such that A1 is �n-
maximal with respect to D1, ¬A2 is �n-maximal with respect to D2, and A1 and A2 are unifiable
with most general unifier σ. Then

dpV
max((D1 ∪D2)σ) ≤ max(dpV

max({A1} ∪D1),dpV
max({¬A2} ∪D2)).(2.13)

Proof. The inequality (2.13) holds if (D1 ∪ D2)σ is ground. In the remainder of the proof we
assume that (D1 ∪D2)σ, and therefore its parent clauses, is non-ground. By Lemma 2.5(2) and
Lemma 2.18,

dpV
max(A1σ) = dpV

max(¬A2σ) ≤ max(dpV
max({A1} ∪D1),dpV

max({¬A2} ∪D2)))

= max(dpV
max(A1),dpV

max(¬A2)).

(2.14)

Let L3 and L4 be arbitrary literals in D1 and D2, respectively. Since {A1} ∪D1 and {¬A2} ∪D1

are indecomposable, variable uniform clause, we have V(L3) = V(A1) and V(L4) = V(¬A2).
Again by Lemma 2.18, dpV

max(L3) ≤ dpV
max(A1) and dpV

max(L4) ≤ dpV
max(¬A2). Since L3 and L4

are non-ground we obtain by Lemma 2.10,

dpV
max(L3σ) ≤ dpV

max(A1σ) = dpV
max(¬A2σ) ≥ dpV

max(L4σ).(2.15)

Taking (2.14) and (2.15) together we obtain

dpV
max(L3σ) ≤ max(dpV

max({A1} ∪D1),dpV
max({¬A2} ∪D2)))

and

dpV
max(L4σ) ≤ max(dpV

max({A1} ∪D1),dpV
max({¬A2} ∪D2))).

This proves (2.13).

By Lemma 2.21 and Theorem 2.23 it follows:

Corollary 2.24. Let {A1} ∪ D1 and {¬A2} ∪ D2 be indecomposable, variable uniform clauses
such that A1σ is (strictly) �n-maximal with respect to D1, ¬A2σ is �n-maximal with respect to
D2, and A1 and A2 are unifiable with most general unifier σ. Then

dpV
max((D1 ∪D2)σ) ≤ max(dpV

max({A1} ∪D1),dpV
max({¬A2} ∪D2)).(2.16)

It remains to show that there is not only a bound on the maximal depth of variables in derived
clauses, but also on the depth of the clauses.

Theorem 2.25.
Let N be a set of variable uniform clauses. Let maxdp

N the maximal depth of clauses in N and
maxV

N be the maximal depth of variables in clauses in N . Then, for any clause C derivable from
N

dpV
max(C) ≤ maxV

N(2.17)
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and

dp(C) ≤ maxV
N + maxdp

N .(2.18)

If C is non-ground, then

dp(t) ≤ maxdp
N ,(2.19)

for every ground term t in C. Otherwise,

dp(t) ≤ maxV
N + maxdp

N .(2.20)

Proof. The proof proceeds by induction on the length of the derivation of C. The inequali-
ties (2.17) to (2.20) hold for any clause C which is an element of N .

Suppose C is the result of applying the “Splitting” rule to a clause D. Since C is a subclause
of D and (2.17) to (2.20) hold for D by the induction hypothesis, they hold for the clause C as
well.

Suppose C has been added by an application of the “↓D-Renaming” rule. Then C is not
a ground clause. It is straightforward to check that literals in C have at most the depth and
maximal depth of variables of literals already occurring in the clause set and that this rule does
not introduce any new ground terms. Therefore, (2.17), (2.18) and (2.19) hold for C.

Let C be a factor of an indecomposable, variable uniform clause C1. By Theorem 2.22, (2.17)
is true for C. If C1 is ground, then C is a subclause of C1 and (2.18) and (2.20) hold. Let
C1 = {L1, L2} ∪ D1 and C = ({L1} ∪ D1)σ where σ is the most general unifier of L1 and L2.
Suppose C is non-ground. By Lemma 2.13, dpV

max(L1) = dpV
max(L2). By Lemma 2.5(2),

dpV
max(L1σ) ≤ max(dpV

max(L1),dpV
max(L2))

= dpV
max(L1)

≤ maxV
N .

(2.21)

Furthermore, for any literal L3 in C1 we have dpV
max(L3) = dpV

max(L3σ) and therefore, dpV
max(C) =

dpV
max(C1). By Lemma 2.5(4), any ground term in L1σ, and therefore in the codomain of σ,

already occurs in L1 or L2. Since C1 is variable uniform, none of the literals in C contains a
ground term which does not occur in L1 or L2. Therefore, inequality (2.19) holds for C1 and we
obtain

dp(C) ≤ dpV
max(C1) + max(dpGT

max(L1),dpGT
max(L2))(2.22)

≤ dpV
max(C1) + maxdp

N by inequality (2.19)

≤ maxdp
N + maxV

N by inequality (2.21).

Suppose C is ground. By Lemma 2.7 and the fact that V(L1) = V(L2), we know that the
codomain of σV(L1) contains only ground terms in GT(L1)∪GT(L2). Therefore, inequality (2.22)
also holds in this case which shows that C satisfies the inequalities (2.18) and (2.20).

Let C be a resolvent of two indecomposable, variable uniform clauses C1 and C2. If both C1

and C2 are ground, then dp(C) ≤ dp(C1) = dp(C2) and the inequalities (2.18) and (2.20) hold.
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Otherwise, let C1, C2, and C be of the form {A1} ∪ D1, {¬A2} ∪ D2, and (D1 ∪ D2)σ,
respectively, where A1 is �′

v-maximal with respect to D1, ¬A2 is �′
v-maximal with respect to D2,

and σ is the most general unifier of A1 and A2.
By Theorem 2.23, inequality (2.17) is satisfied by C. By Lemma 2.5(2), the depth of A1σ and

¬A2σ is bounded by

dp(¬A2σ) = dp(A1σ) ≤ max(dpV
max(A1),dpV

max(¬A2)) + max(dpGT
max(A1),dpGT

max(¬A2)).(2.23)

However, this fact alone does not provide a bound on the depth of literals in C. Let Lσ be a literal
of maximal depth in D1σ and D2σ. If dp(Lσ) ≤ dp(L), then dp(C) ≤ max(dp(C1),dp(C2)) and
inequality (2.18) holds for C. Suppose dp(Lσ) > dp(L). Since A1 and ¬A2 are �′

v-maximal
with respect to D1 and D2, respectively, and C1 and C2 are variable uniform, either dpx

max(A1) ≥
dpx

max(L) for every x ∈ V(A1), or dpx
max(¬A2) ≥ dpx

max(L) for every x ∈ V(¬A2). By Lemma 2.12
it follows that either dp(A1σ) ≥ dp(Lσ) or dp(¬A2σ) ≥ dp(Lσ). In both cases,

dp(Lσ) ≤ max(dp(A1σ),dp(¬A2σ)) = dp(A1σ).

By the induction hypothesis, the inequalities (2.17) and (2.19) hold for C1 and C2. Together with
(2.23) this is sufficient to show that inequality (2.18) holds for C.

It remains to consider (2.19) and (2.20). By (2.23) and the induction hypothesis,

dp(¬A2σ) = dp(A1σ) ≤ maxdp
N + maxV

N .

We have already proved that the depth of any literal Lσ in (D1 ∪ D2)σ is less or equal to the
depth of L or the depth of A1σ. Since the depth of L also does not exceed maxdp

N + maxV
N , we

conclude that (2.20) holds for any term in C.

Theorem 2.26.
Let N be a finite set of variable uniform clauses. Then any derivation from N by ordered resolution
and ordered factoring based on either �′

v, �v, �n, or �d augmented with an eager application of
the “↓D-Renaming” expansion rule terminates.

Proof. By Theorem 2.25 there is a bound on the depth of any clause derivable from N by a fair
theorem proving derivation based on one of the orderings in Definition 2.14.

Given a finite signature, there can only be finitely many such clauses and the derivation
eventually terminates. However, applications of the “↓D-Renaming” rule can extend the signature
by the introduction of new function and predicate symbols. The rule “↓D-Renaming” makes use of
one distinguished unary function symbol h and nar

N distinguished function symbols vk, 1 ≤ k ≤ n,
where nar

N is the maximal arity of function symbols in N . Thus, the number of new function
symbols introduced is bounded. It remains to show that the number of new predicate symbols is
bounded as well. This amounts to verifying that “↓D-Renaming” can only be applied a bounded
number of times.

Suppose for any depth distorted clause C occurring in the theorem proving derivation, the
predicate symbol of �d-distorting literals in C already occurs in N . Due to the depth bound
on any literal occurring in the theorem derivation, the number of different such �d-distorting
literals is bounded. Thus, also the number of applications of the “↓D-Renaming” rule extending
the signature is bounded.
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If there were an unbounded number of applications of the “↓D-Renaming” rule, then the
�d-distorting literals subject to the transformation ⇒D have themselves been introduced by “↓D-
Renaming”. Thus, there is an infinite sequence C1, C2, . . . of depth distorted clauses occurring in
the theorem proving derivation and a corresponding infinite sequence of literals L1, L2, . . . , such
that for every i ≥ 1, Li is a �d-distorting literal in Ci and Li+1 is an instance of d↓(Li). Note
that all the Li are non-ground and that dp(d↓(Li)) = dpV

max(d↓(Li)). Let σi be a substitution
such that Li+1 = d↓(Li)σi. We assume that the domain of σi is a subset of V(d↓(Li)).

Since Li+1 is �d-distorting, dp(Li+1) > dpV
max(Li+1), which implies that σi instantiates at

least one of the variables of d↓(Li) by a compound term. Let ti be a compound term with
maximal variable depth in the codomain of σi. If ti is non-ground, then

dpV
max(Li+1) > dpV

max(d↓(Li)) = dpV
max(Li).(2.24)

If ti is ground, then

|V(Li+1)| < |V(d↓(Li))| = |V(Li)|.(2.25)

With every literal L we can associate a complexity measure cL = 〈dpV
max(L), |V(L)|〉. We define

an ordering �c on complexity measures by the lexicographic combination of the orderings > and
< on the natural numbers. By (2.24) and (2.25), we have cLi+1 �c cLi for all i ≥ 1. However, by
Theorem 2.25, no literal occurring in a theorem proving derivation has a maximal variable depth
exceeding maxV

N . (Trivially, there is also a lower bound on the number of variables in the literals
Li.) Thus, there can be no infinite ascending chain cL1 ≺c cL2 ≺c · · · and no infinite chain of
literals L1, L2, . . . of the kind defined above.

Therefore, the number of applications of the “↓D-Renaming” rule extending the signature is
bounded. We eventually obtain a finite signature Σ which is stable for the remainder of the
theorem proving derivation. This derivation is terminating, since by Theorem 2.25, there exist
only finitely many distinct clauses (modulo variable renaming) over Σ.

2.3 On the relationship between the decision procedures for E+

In this section we will briefly discuss the differences between the refinement proposed in Section 2.2
and those used by de Nivelle [28] and Tammet [128]. In particular, we will consider the sizes of
the saturated clause sets.

First, let us consider the use of the a posteriori �d refinement without the additional “↓D-
Renaming” rule of our decision procedure. We have already observed, that in this case the
maximal depth of variables in resolvents can be strictly greater than the maximum of the maximal
depths of variables in the parent clauses. Theorem 2.22 and 2.23 show that this is not the case for
our decision procedure. Consequently, the saturated clause set is potentially smaller. Whether
this is actually the case depends on the particular clause set under consideration. For example,
on the set of clauses

(26) {p(f(x)), q(x, f(f(a)))}
(27) {¬p(f(a))}

no inference step by the posteriori �d-refinement is possible. However, on the transformed clause
set
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(28) {p(f(x)), q1(x)}
(29) {¬p(f(a))}
(30) {¬q1(x), q(x, f(f(a)))}
(31) {q1(x),¬q(x, f(f(a)))}

we will need two resolution inference steps to obtain a saturated clause set independently of the
particular ordering chosen, since the ordering no longer prevents an inference step on the first
literal of (28).

[(28)1,R,(29)1] (32) {q1(a)}
[(30)1,R,(32)1] (33) {q(a, f(f(a)))}.
So, there is no way to tell beforehand, which decision procedure will perform best on a particular
problem.

As intended by the construction of our decision procedure, there is a close relationship to
the decision procedure based on the a priori �v-refinement of resolution. However, the renaming
of literals by the transformation ⇒D might prevent particular inference steps by factoring and
resolution. We will now discuss this problem in more detail. Reconsider the clause C1

(34) {¬p(f(g(h(a)), x)),¬p(f(g(x), x))}
which has a ground factor

[(34)1,F,(34)2] (35) {¬p(f(g(h(a)), h(a)))}.
The literal ¬p(f(g(h(a)), x)) is �d-distorting in C1. Renaming will replace C1 by the set:

(36) {p1(v1(x)),¬p(f(g(x), x))∗}
(37) {¬p1(v1(x))+,¬p(f(g(h(a)), x))∗}
(38) {p1(v1(x)), p(f(g(h(a)), x))∗}.

We have marked the �′
d-maximal literals with ∗. In addition we will make use of a selection

function Sv which selects the literal ¬A in the clause DefA
L = {¬A,L}. The selected literal

is marked with + in clause (37). No factoring inference step is possible on clause (36). If
clause (35) is part of a refutation of the clause set containing clause (34), then a refutation
without (35), which is still possible, might be twice as long. In general, a refutation can be
exponentially longer in the number of eliminated factoring inference steps. Since the clause set
introduced by the transformation ⇒D not only contains DefAL , which is sufficient to preserve
satisfiability equivalence, but also DefL

A, we can simulate the factoring inference step by two
additional resolution inference steps:

[(36)2,R,(38)2] (39) {p1(v1(h(a))), p1(v1(h(a)))}
[(39)1,F,(39)2] (40) {p1(v1(h(a)))}
[(37)1,R,(40)1] (41) {¬p(f(g(h(a)), h(a)))}.

Similarly, resolution steps possible before the renaming transformation but which are no longer
possible after the transformation can be simulated. In our first example we had the clause C2

(42) {p(f(g(h(a)), h(y)))}
in addition to C1 and were able to construct a refutation using two resolution inference steps.

[(34)2,R,(42)1] (43) {¬p(f(g(h(a)), h(a)))}
[(43)1,R,(42)1] (44) ⊥.
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In the transformed clause set, after obtaining

[(36)2,R,(42)1] (45) {p1(v1(h(a)))}
by resolving (36) and (42), a resolution inference between (45) and (42) is not possible. However,
the literal introduced for the �d-distorting literal in (34) is now maximal in (45). We can now
use clause (37) to obtain (43) by one additional resolution inference step and then complete the
refutation as before.

Theorem 2.27.
The resolution decision procedure based on the ordering �d and the selection function Sv p-
simulates the resolution decision procedure of Tammet [128] based on the non-liftable ordering
�v.

2.4 Related work

Previous work on the class E+ is by Tammet [128], de Nivelle [28], and Fermüller [39].
Tammet was first to claim that the a priori �v-refinement of resolution provides a decision

procedure for the class E+. His argument contains a gap, though. He shows that if C is the
resolvent of two indecomposable, variable uniform clauses C1 and C2 with respect to the a priori
�v-refinement such that C contains a term deeper than the deepest term in C1 and C2, then for
all literal Lσ in C

cardV
max(Lσ) = 0 if cardV

max(L) = 0, and

cardV
max(Lσ) < cardV

max(L) if cardV
max(L) > 0.

He then argues that this implies the existence of a bound on the depth of terms such that all
literals of this depth have a cardV

max equal to zero, they do not contain variables, and their depth
cannot grow.

As we have already noted, there are infinitely many literals L with cardV
max(L) equal to zero.

There is no bound on the depth of these literals and so there are infinitely many ground clauses
we can construct using these literals. To give an example, reconsider the clauses

C5 = {¬p(x, s(s(s(0)))), p(s(x), s(s(s(0))))}
and

C6 = {p(0, s(s(s(0))))}.
Ignoring the ordering restriction by �v, we are able to derive an infinite sequence of clauses of
the form {p(sn(0), s(s(s(0))))}. While cardV

max(p(s
n(0), s(s(s(0))))) = 0, for the corresponding

literal in C5 we have cardV
max(p(s(x), s(s(s(0))))) = 1. Thus, the clauses satisfy the restriction on

cardV
max described above without ensuring termination.

Since the a priori �v-refinement of resolution is a decision procedure for E+, it is not possible
to construct a counterexample to the termination proof of Tammet which obeys the ordering
restriction.

De Nivelle’s exposition [28] of the termination proof for the a posteriori �n-refinement of
resolution on E+ establishes an upper bound on the maximal depth of variables in derived clauses.
A proof of the existence of an upper bound on the depth of derived clauses would proceed along
the lines of Theorem 2.25.
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Finally, the decision procedure of Fermüller [39] is also based on the a priori �v-refinement.
Like our procedure he uses an additional inference rule “Fill” to deal with depth distorted clauses.
Instead of renaming �d-distorting literals, he adds particular ground instances of depth distorted
clauses to the set of clauses to ensure the completeness of the procedure.4

2.5 Conclusion

It is interesting to compare the class E+ with its subclass E1 defined as follows. A clause C
belongs to E1 if (i) every literal in C is covering, and (ii) for each literal L1 and L2 in C either
V(L1) = V(L2) or V(L1) ∩ V(L2) = ∅ holds. In contrast to E+, the class E1 corresponds
to a fragment of first-order logic. Clauses in E1 contain no compound ground terms and by
Lemma 2.5(4) inference steps by resolution and factoring will never result in non-ground clauses
containing such terms. Therefore, we have dpV

max(L) = dp(L) for any literal occurring in a non-
ground, derived clause. From Lemmata 2.5 and 2.7 we easily infer that resolution and factoring
with respect to the �d-refinement of resolution will only derive clauses with at most the maximal
depth and maximal variable depth of their parent clauses. Termination of the �d-refinement of
resolution on E1 follows immediately.

The class E+ differs from E1 only in that it allows for compound ground terms where E1 allows
only constants. The adjustments to the resolution decision procedure and its termination proof
necessary to accommodate this slight extension are surprisingly complicated. This observation
sheds some light on the difficulty we may encounter when we turn our attention from traditional
fragments of first-order logic without free function symbols to classes of formulae with free function
symbols. Such classes would naturally arise from (program) verification problems and could also
constitute an application area where assuring the termination of any derivation could level some
scepticism with respect to the use of theorem proving techniques.

Among the techniques used in this chapter, the following two are of particular interest. First,
the use of renaming as an expansion rule applied during a theorem proving derivation instead of
a preprocessing step [7, 19, 104, 113]. This technique may have applications to other decidable
fragments for which no resolution decision procedure exists as yet. I conjecture that dynamic
renaming is necessary to decide fluted logic [115] by resolution. Second, the simulation of a
resolution decision procedure based on a non-liftable ordering by a resolution decision procedure
based on a liftable ordering. This provides some additional insight into the relationship between
these two classes of resolution refinements. For further discussions see [27]. In general, simulation
results provide useful insights into the relative proof and search complexity of calculi and theorem
proving strategies [34, 114]. For the classes under consideration in the following chapters they
will allow us to relate resolution decision procedures to tableaux decision procedures found in the
literature.

4Since the completeness of the �v-refinement was unknown at this time.
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Chapter 3

The classes K and K

Since the early work of Kallick [87] decision procedures based on resolution have been in the focus
of research in automated theorem proving. Two parameters of resolution must be controlled to
assure a resolution-type decision procedure: the nesting of compound terms in resolvents and the
size of clauses. For most of the solvable classes known in the literature, unrestricted resolution is
only a semi-decision procedure, since one or both of these parameters grow unboundedly.

One possible solution to the problem of keeping the two parameters within a finite bound is
the use of ordering refinements of resolution (in Section 4.5 we will give an example of the use of
a selection refinement). Most of the results on decision procedures based on ordered resolution
consider classes where all literals in the clausal form of the formulae under consideration share
the same variables. This property is preserved by unrestricted resolution (and factoring). Then
an ordering is utilised to ensure that for all clauses in a derivation the maximal depth of variable
occurrences does not increase. Consequently, there exists a bound on the nesting of compound
terms in the derivation and decidability follows.

The class K is an example of a class where such an approach is not sufficient. The class K
is based on Maslov’s class K [97]. More precisely, it is intended to be the dual of K, that is,
for every formula ϕ in K the formula nnf(¬ϕ) is in K. While Maslov is interested in validity of
formulae in the class K, we will consider the dual problem, namely, the satisfiability of formulae
in the class K. The class K contains a variety of the classical decidable fragments of first-order
logic such as the monadic class, the initially extended Skolem class and the Gödel class.

According to Maslov [97] the inverse method provides a means to decide the validity of dis-
junctions of formulae in the class K. He provides only a proof sketch. Although Kuehner noted
in 1971 that there is a one-to-one correspondence between derivations in the inverse method and
resolution, only in 1993 a decision procedure for a subclass of the class K based on lock resolution
is described by Zamov. Section 3.6 discusses his results.

In this chapter we describe a resolution-based decision procedure for K as well as for the
class DK consisting of conjunctions of formulae in K, thereby extending the result of Zamov. An
additional renaming transformation of certain problematic clauses allows for the embedding of
the classes under consideration into a class for which standard liftable orderings ensure closure
under resolution and factoring as well as termination. Sections 3.1 and 3.2 define the class K and
a corresponding class of clause sets, called KC. The basic lemmata in Section 3.2 are similar to
those of Zamov [39, chap. 6]. For this reason we present the proofs in Appendix A. It should
be noted, however, that our definitions of similarity and k-regularity in Section 3.2 are different
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to Zamov’s, in particular, our notions allow for the presence of constants. Section 3.4 describes
the renaming transformation and presents the termination proof. Section 3.5 extends the results
to the class DK. Section 3.6 as well as the conclusion discuss related work and related decidable
fragments of first-order logic. A short version of this chapter is [83].

3.1 The class K

Definition 3.1 (ϕ-prefix).
Let ϕ be a schema in negation normal form and ψ a subformula of ϕ. The ϕ-prefix of the formula
ψ is a sequence of quantifiers of the schema ϕ which bind the free variables of ψ.

If a ϕ-prefix is of the form

∃y1 . . . ∃ym ∀x1Q1z1 . . . Qnzn,

where m ≥ 0, n ≥ 0, Qi ∈ {∃,∀} for all i, 1 ≤ i ≤ n, then

∀x1Q1z1 . . . Qnzn

is the terminal ϕ-prefix. For a ϕ-prefix

∃y1 . . . ∃ym

the terminal ϕ-prefix is the empty sequence of quantifiers.

Definition 3.2 (The class K).
The schema ϕ in negation normal form belongs to the class K if there are k quantifiers ∀x1 ,
. . . , ∀xk , k≥0, in ϕ not interspersed with existential quantifiers, such that for every atomic
subformula ψ of ϕ the terminal ϕ-prefix of ψ

1. either is of length less than or equal to 1, or

2. ends with an existential quantifier, or

3. is of the form ∀x1 ∀x2 . . . ∀xk

We say the variables x1, . . . , xk, k ≥ 0, are the fixed universally quantified variables of ϕ and ϕ
is of grade k, indicating the number of fixed universally quantified variables.

Example 3.3:
The formula ϕ1

∃a1 ∃a2 ∀x1 ∀x2 ∃y1 ∀z1 ∃y2: p(a1, a2) ∧ p(a2, y1) ∧ (q(x1, a1, x2) ∨ r(x1, y2, z1))

is an element of class K of grade 2: The variables x1 and x2 are the fixed universally quantified
variables of ϕ1. Every atomic subformula ψ satisfies the restrictions on the quantifier prefix of ϕ1

binding the variables in ψ. The terminal ϕ1-prefix of the literal p(a1, a2) is empty, so property (1)
of Definition 3.2 is satisfied. The ϕ1-prefix of the literal p(a2, y1) is ∃a2 ∀y1 , its terminal ϕ1-prefix
is ∀y1 . It is of length 1 and satisfies property (1) of Definition 3.2. The terminal ϕ1-prefix of
q(x1, a1, x2) is ∀x1 ∀x2 . Due to our choice of the fixed universally quantified variables, the literal
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satisfies property (3). Finally, the terminal ϕ1-prefix of r(x1, y2, z1) is ∀x1 ∀z1 ∃y2 . It ends in an
existentially quantified variable. So, property (2) holds.

The formula ϕ2

∀x1 ∀x2 ∃x3 ∀x4: q(x4, x4) ∧
(r(x1, x3) ∨ p(x1, x2)) ∧
(p(x1, x2) ∨ r(x1, x3)) ∧ q(x4)

belongs to the class K, because there exist universally quantified variables x1 and x2 such that
the ϕ2-prefix of q(x4, x4), which has the form ∀x4 , is of length 1, the ϕ2-prefix of r(x1, x3), which
has the form ∀x1 ∃x3 , ends in an existential quantifier, and the ϕ2-prefix of p(x1, x2) is of the
form ∀x1 ∀x2 .

The formula ϕ3

∃y1 ∀x1 p(y1, x1)

belongs to the class K, since the terminal ϕ3-prefix of the unique atomic subformula p(y1, x1) of
ϕ3 is of length 1.

The following two formulae do not belong to the class K. Consider the formula ϕ4

∀x1 ∀x2 ∀x3: p(x1, x2, x3) ∧ q(x1, x2).

ϕ4 has two atomic subformulae p(x1, x2, x3) and q(x1, x2) with corresponding (terminal) ϕ4-
prefixes ∀x1 ∀x2 ∀x3 and ∀x1 ∀x2 . Neither of the ϕ4-prefixes is of length 1 nor ends in an exis-
tential quantifier. In addition, we are not able to choose variables y1, . . . , yk from {x1, x2, x3}
such that both ϕ4-prefixes are equal to ∀y1 . . . ∀yk , because the ϕ4-prefixes are not equal to each
other.

The formula ϕ5

∀x1 ∃x2 ∀x3:¬p(x1, x2, x3) ∨ p(x1, x2, x3)

does not belong to K, since the ϕ5-prefix ∀x1 ∃x2 ∀x3 of the two occurrences of p(x1, x2, x3) is not
of length 1, does not end in an existential quantifier, nor does it consist of universal quantifiers
only. Note that ϕ5 is obviously satisfiable.

It is also important to see some important classes of formulae which do not belong to K. For
example, formulae like

∀x1 ∀x2 ∀x3:¬r(x1, x2) ∨ ¬r(x2, x3) ∨ r(x1, x3)(Transitivity)

are not in K, since no subset of {x1, x2, x3} will suffice as fixed universally quantified variables.
For the same reason, connectivity formulae

∀x1 ∀x2 ∀x3:¬r(x1, x2) ∨ ¬r(x1, x3) ∨ r(x2, x3)(Euclideanness)
∀x1 ∀x2 ∀x3 ∃x4:¬r(x1, x2) ∨ ¬r(x1, x3) ∨ (r(x2, x4) ∧ r(x3, x4))(Confluence)

are not in K. Important properties (of binary relations) which do belong to K are the following.

∀x1: r(x1, x1)(Reflexivity)
∀x1:¬r(x1, x1)(Irreflexivity)
∀x1 ∀x2:¬r(x1, x2) ∨ r(x2, x1)(Symmetry)
∀x1 ∃x2: r(x1, x2)(Seriality)
∀x1 ∀x2:¬r(x1, x2) ∨ ∃y1: (r(x1, y1) ∧ r(y1, x2))(Density)
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3.2 The class KC and quasi-regular clauses

Since our intention is a resolution-based decision procedure for the class K we are interested in
the clause sets corresponding to formulae in K.
Definition 3.4 (The class KC).
Without loss of generality we can restrict ourselves to formulae in prenex form whose matrix is
in conjunctive normal form, that is, schemas in K have the form

∃y1 . . . ∃ym ∀x1 . . . ∀xkQ1z1 . . . Qzl
∧

i=1,... ,n

∨
j=1,... ,mi

Li,j(3.1)

where m ≥ 0, k ≥ 0, l ≥ 0, n > 0, mi > 0, and Li,j are literals. We assume that outer
Skolemisation is used in the process of transforming (3.1) to clausal form, that is, if ∀z1 . . . ∀zp
is the subsequence of all universal quantifiers of the ϕ-prefix of subformula ∃z:ϕ of ϕ, then
ϕ[z/f(z1, . . . , zp)] is the outer Skolemisation of ∃z:ϕ. The class of clause sets obtained from
formulae of the form (3.1) in the class K is denoted by KC.

The remainder of this Section is devoted to the definition of a syntactic characterisation of the
clauses in KC.
Definition 3.5 (Dominating term).
The term t dominates the term s, denoted by t %Z s, if at least one of the following conditions
is satisfied:

1. t = s

2. t = f(t1, . . . , tn), s is a variable and s = ti for some i, 1 ≤ i ≤ n.

3. t = f(t1, . . . , tn), s = g(t1, . . . , tm), n ≥ m ≥ 0.

Lemma 3.6. The relation %Z is a quasi-ordering on terms.

Proof. See Lemma A.1 and Corollary A.2 in Appendix A.

Lemma 3.7. Let s and t be compound terms. Let σ be a substitution. If s %Z t, then sσ %Z tσ.

Proof. See Lemma A.3 in Appendix A.

We can extend the relation %Z to sets of terms and literals in the following way. The set T1 of
terms dominates the set T2 of terms if for every term t2 in T2 there exists a term t1 in T1 such
that t1 dominates t2. Two terms s and t are similar if s dominates t and t dominates s.
Definition 3.8 (Dominating literal).
The literal L1 dominates the literal L2, denoted by L1 %Z L2, if the set of non-constant arguments
of L1 dominates the set of non-constant arguments of L2.

Note that %Z is a quasi-ordering on literals. We define ∼Z as %Z ∩ %−1
Z and �Z as %Z \ ∼Z .

Example 3.9:
The literal p(x, y) dominates q(a, x, y), but not q(f(a), x, y).
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Definition 3.10 (Similar literals).
Two literals L1 and L2 are similar if the set of non-constant arguments of L1 dominates the set
of non-constant arguments of L2, and vice versa.

Example 3.11:
The literals p(x, y), q(a, x, y), and q(y, x) are similar. So are p(f(a), x) and q(g(a), x). Note that
p(f(a), x) is not similar to q(g(b), x), nor does one dominate the other one.

Definition 3.12 (Regular literal).
Let F be a set of function symbols and let V be a set of variables. Based on the quasi-ordering %Z

we are able to characterise a subset of the set T(F,V) of all terms in the following way: A term
is called regular if it dominates all its arguments. We denote the set of all regular terms built
from F and V by Treg(F,V). We extend this notion to sets of terms and literals as follows. A set
of terms is called regular if it contains no compound term or it contains some regular compound
term which dominates all terms of this set. A literal is called regular if the set of its arguments
is regular.

The extension of regularity to sets of literals is less straightforward. We need two more
definitions: A literal L is singular if it contains no compound term and V(L) is a singleton,
otherwise it is non-singular. A regular literal containing a compound term is deep, otherwise it
is shallow.
Definition 3.13 (Regular clause).
A clause C of literals is k-regular if the following conditions hold:

1. C contains regular literals only.

2. k is a non-negative integer not greater than the minimal arity of the non-constant function
symbols occurring in C. If C does not contain compound terms, then k is arbitrary.

3. C contains some literal which dominates every literal in the set C.

4. If L1 and L2 are non-singular, shallow literals in C, then L1 and L2 are similar.

5. If L1 is a non-singular, shallow literal in C, then for all compound terms t occurring in any
literal in C,

argset(L1) \ F0 ∼Z arg1...k
set (t) \ F0

holds.

A clause is regular if it is k-regular for some k ≥ 0. A clause is again called quasi-regular if all of
its indecomposable components are regular.

Example 3.14:
The clause C1

C1 = {p(a, y, z), q(f(a, y, z))}
is 3-regular. The set of non-constant arguments of the non-singular literal p(a, y, z), that is,
{y, z}, is similar to the subset of non-constant terms of the set of the first three arguments of
f(a, y, z), that is, {y, z}.

Note that {p(x1, x2, x3)} can be considered a 2-regular clause, although the corresponding
first-order formula ∀x1 ∀x2 ∀x3: p(x1, x2, x3) is of grade 3.
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3.3 Resolution and factoring on quasi-regular clauses

Next we investigate the closure of quasi-regular clauses under resolution and factoring. We show
in Theorem 3.15 that every split component D of a clause corresponding to a formula ϕ of the
form (3.1) is k-regular. Theorem 3.19 shows that the resolvent of two indecomposable k-regular
clauses is again k-regular if we restrict ourselves to resolution on maximal literals with respect
to %Z . Theorem 3.20 shows that the factor of an indecomposable k-regular clause is k-regular.
The proofs of these theorems are based on the Lemmata 3.16 to 3.18. Then in Theorem 3.25
we show that the number of k-regular clauses over a finite signature is bounded modulo variable
renaming.

Lemma 3.15. Every split component D of a clause C in the clausal form of a formula ϕ of the
form (3.1) is k-regular.

Proof. We first show that C consists of regular literals only. Let L1 be a literal in C and let L2

be the corresponding literal in ϕ. We consider the following cases:

1. The ϕ-prefix of L2 is empty. The set of arguments of L1 is empty and L1 is trivially regular.

2. The ϕ-prefix of L2 is non-empty and its terminal ϕ-prefix is either empty or consists only
of universal quantifiers. Each argument of L1 is either a constant or a variable. Thus, L1

is regular.

3. The terminal ϕ-prefix of L2 ends with ∃y . Then L1 contains a term t1 = f1(x1, . . . , xn)
(replacing the variable y after Skolemisation) where x1, . . . , xn are the universally quantified
variables in the terminal ϕ-prefix of L2. Let t2 be an argument of L1. If t2 is a constant,
then t1 trivially dominates t2. If t2 is a variable, then it is among the universally quantified
variables of L2. So, t2 is a variable argument of t1 and therefore dominated by t1. Suppose
t2 is a compound term f2(y1, . . . , ym). We have V(t2) ⊆ V(t1) and therefore m ≤ n.
Furthermore, we can assume that the order of variables in the Skolem terms t1 and t2 is
determined by the order of variables in the ϕ-prefix of L2. So, xi = yi for every i, 1 ≤ i ≤ m,
and t1 dominates t2. Thus, t1 dominates all arguments of L1.

Now we show that D is k-regular. Some simple cases are:

1. D is a singleton set {L}. Conditions (1) and (3) of Definition 3.13 are satisfied, since D
contains only one regular literal L. If L contains a compound term, then Conditions (4) and
(5) are fulfilled, since D contains no shallow, non-singular literals. Otherwise, Condition
(4) is fulfilled, since any literal is similar to itself; and Condition (5) is vacuous.

2. D contains only ground literals. Then D is a singleton set, because ground literals are
variable disjoint to any other literal. Thus, D is regular by the previous case.

It is important to note that in all further cases, D does not contain ground literals. In all
remaining cases we assume that D contains at least two literals.

1. Let L1 be a deep literal in D such that its dominating term t1 has maximal arity of all
terms occurring in D. Let L2 be an arbitrary literal in D.

Suppose L2 is deep. Since L2 is regular it contains a dominating compound term t2. The
arity n1 of t1 is greater than or equal to the arity n2 of t2. By the assumptions we have
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made about Skolemisation, t1 = f1(x1, . . . , xn1) and t2 = f2(x1, . . . , xn2). So, t1 dominates
t2. Since L2 is regular, t2 dominates every argument of L2. Due to the transitivity of %Z ,
t1 dominates every argument of L2. It follows that L1 dominates L2.

If the literal L2 does not contain compound terms and L2 is not singular, then the terminal
ϕ-prefix of L2 is ∀x1 . . . ∀xk . The set of its non-constant arguments is equal to the set of
the first k arguments of the term t1. All constant arguments of L2 are trivially dominated
by t1. Therefore L1 dominates L2.

Furthermore, if L3 is a non-singular, shallow literal in D, then its terminal prefix is
∀x1 . . . ∀xk . Thus the sets of non-constant arguments of L2 and L3 are equal.

Finally, if L2 is a singular literal and does not contain function symbols then its only variable
argument is an argument of t1, since D is indecomposable. Therefore, L1 dominates L2.

2. Suppose D does not contain literals with compound terms. Then every literal occurring in
D is obtained from some literal with terminal ϕ-prefix ∀x1 . . . ∀xk or ∀z . Let L1 and L2

be literals in D where L1 is obtained from a literal with terminal ϕ-prefix ∀x1 . . . ∀xk .

If L2 is obtained from a literal with the same ϕ-prefix, then the sets of non-constant argu-
ments of L1 and L2 are equal. Thus L1 and L2 are similar.

If L2 is obtained from a literal with terminal ϕ-prefix ∀z , then the only variable of L2 is
among the arguments of L1, since D is indecomposable.

So, in both cases L1 dominates L2.

3. All literals in D are obtained from literals with terminal ϕ-prefix of length 1. Since D is
indecomposable, all literals in D contain the same variable. It follows that all literals in D
are similar.

So we have shown that in any case D contains some literal which dominates all literals from D,
that is, D is a regular component. Furthermore, the minimal arity of each compound term (if
there is any) is k. We have also shown that Conditions (3)–(5) of Definition 3.13 are satisfied in
all the cases we have to consider. Thus D is k-regular.

Lemma 3.15 no longer holds if we make use of strong Skolemisation or techniques reducing the
scope of quantifiers. Consider the following examples from [103]. Outer Skolemisation of the
formula ∀x, y ∃z: p(x, z) ∨ p(x, y) results in ∀x, y: p(x, f(x, y)) ∨ p(x, y) and the clausal form is
2-regular. If we reduce the scope of the ∀y quantifier to ∀x (∃z: p(x, z)) ∨ (∀y: p(x, y)) before
Skolemisation, then the clausal form of ∀x, y: p(x, f(x)) ∨ p(x, y) is not regular. Similarly, outer
Skolemisation of ∀x, y: p(x, y)∨ (∃z: q(y, z)∧ r(x, z)) yields the clauses {p(x, y), q(y, f(x, y))} and
{p(x, y), r(x, f(x, y))} which are both 2-regular. In contrast, strong Skolemisation yields the
clauses {p(x, y), q(y, f(z, y))} and {p(x, y), r(x, f(x, y))} or the clauses {p(x, y), q(y, f(x, y))} and
{p(x, y), r(x, f(x, z))}. In both cases one of the clauses is not regular.

Lemma 3.16 (Properties of regular terms).

1. Let t be a compound regular term f(t1, . . . , tn). Then all variables occurring in t are argu-
ments of t. Furthermore, if ti is a compound term, then all variables occurring in ti occur
in {t1 . . . , ti−1}.

2. If t is a regular term and t dominates a term s, then s is regular too.
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3. If a regular term t dominates the term s and σ is a substitution such that tσ is regular, then
tσ dominates sσ.

4. If t is a regular term and σ is a substitution such that the codomain of σ contains only
constants and variables, then tσ is a regular term.

Proof. See [39, pages 136–137] or Appendix A.

Lemma 3.17 (Properties of regular literals).

1. Let L1 = (¬)p(s1, . . . , sn) and L2 = (¬)p(t1, . . . , tn) be unifiable deep literals. If si is a
dominating term of L1, then also ti must be a dominating term of L2.

2. Assume that L1 and L2 are regular literals and σ is a most general unifier of L1 and L2.
Then L1σ is regular.

3. Let C be a regular clause, L a dominating literal of C and t a dominating term of L. Then
t dominates each argument of each literal in C.

Proof. See [39, pages 140–144] or Appendix A.

Lemma 3.18. Let {L1}∪D be an indecomposable, k-regular clause such that L1 dominates each
literal in D and σ is a substitution such that L1σ is regular. Suppose that k is not greater than
the minimal arity of function symbols occurring in L1σ. Then L1σ dominates each literal in Dσ
and the clause ({L1} ∪D)σ is k-regular.

Proof. Let L2 be some arbitrary literal in D. First, we will show that L1σ dominates L2σ and
L2σ is regular. To this end we consider the following cases:

1. L1 is a deep literal. Since L1 dominates L2, the dominating term t1 of the literal L1

dominates each argument of the literal L2 by Lemma 3.17(3). Since the literal L1σ is regular,
the term t1σ is regular and dominates each argument of the literal L2σ by Lemma 3.16(3).
It follows that L1σ dominates L2σ.

It remains to prove that L2σ is a regular literal.

(a) L2 is a deep literal. The term t1 dominates the dominating term t2 of literal L2 by
Lemma 3.17(3), therefore t1σ dominates t2σ by Lemma 3.16(3). By Lemma 3.16(2),
t2σ is regular since t1σ is regular. Furthermore, the term t2σ dominates each argument
of literal L2σ by Lemma 3.16(3). It follows that L2σ is regular.

(b) L2 is a shallow literal and L2σ is deep. Then there exists a function symbol g of arity
m, terms s1, . . . , sm, and a variable x in L2 such that xσ = g(s1, . . . , sm) and g has
maximal arity among all the function symbols in the codomain of σFV(L2). Note that
g has to be the function symbol of some term in the codomain of σFV(L2), because the
arity of a subterm of a regular term is smaller than the arity of the term itself. We
show that xσ dominates every argument of L2σ. Let t be some argument of L2σ. Then
t is either a term of the form h(u1, . . . , ul) for l > 0, a constant c, or a variable z. In
the first case, t is in the codomain of σFV(L2). Thus, l ≤ m holds. Since t1σ dominates
g(s1, . . . , sm) and h(u1, . . . , ul), we have s1 = u1, . . . , sl = ul. So, g(s1, . . . , sm)
dominates t. In the second case, xσ trivially dominates the constant argument c. In
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the third case, we have to show that the variable z is an argument of g(s1, . . . , sm).
Since, g(s1, . . . , sm) and z are arguments of L2σ, L2 has at least two arguments. Let
y be the variable argument of L2 such that yσ = z (y may be identical to z). We know
that

argset(L2) \ F0 ∼Z arg1...k
set (t1) \ F0

holds. Thus, the variable y, which belongs to argset(L2) \ F0, is one of the first k
arguments of t1. We conclude that z has to be one of the first k arguments of t1σ.
Because of the assumption that the minimal arity of a function symbol in L1σ is not
smaller than k, we know that m is greater than or equal to k. Since t1σ dominates
g(s1, . . . , sm), the first k arguments of these terms are identical. Thus, z occurs among
the first k arguments of g(s1, . . . , sm).

(c) L2σ is shallow. Since the set of argument terms of L2σ does not contain a compound
term, L2σ is trivially regular.

So we have shown that L1σ dominates L2σ and both literals are regular.

2. Both L1 and L2 are non-singular, shallow literals. Since {L1} ∪ D is regular, L1 and L2

are similar and their sets of arguments differ in constants only. Since L1σ is regular, L2σ is
regular too. The literals L1σ and L2σ are similar.

3. L1 is a non-singular, shallow literal, and L2 is a singular literal. In this case the variable
x, occurring in L2, occurs in L1 too, since {L1} ∪D is indecomposable. The literal L1σ is
regular, hence xσ is regular too. It follows that L2σ is regular. It is also obvious that L1σ
dominates L2σ.

4. Both L1 and L2 are singular literals. Similar to the previous case.

Next, we have to show that any two non-singular, shallow literals L2σ and L3σ in ({L1}∪D)σ are
similar. Since L2σ and L3σ are non-singular, shallow literals, L2 and L3 are non-singular, shallow
literals as well. Since {L1} ∪D is k-regular, L2 and L3 are similar, that is, L2 and L3 have the
same set of non-constant arguments. After applying the substitution σ, the set of non-constant
arguments will still be the same for L2σ and L3σ. Thus, they are similar.

Finally, we show that the set of non-constant arguments of a non-singular, shallow literal L2σ
is similar to the subset of non-constant terms of the set of the first k arguments of any compound
term occurring in any literal in ({L1}∪D)σ. If ({L1}∪D)σ contains no compound term, then the
property trivially holds. Otherwise, L1σ contains a compound term t1σ such that t1σ dominates
every compound term t2σ in ({L1} ∪ D)σ. Since L2σ is a non-singular, shallow literal, L2 is
a non-singular, shallow literal as well and σFV(L2) = {x1/w1, . . . , xn/wn} where wi is either a
constant or a variable for all i, 1 ≤ i ≤ n.

Suppose t1 is compound term. Since {L1} ∪D is regular, all the variables x1, . . . , xn occur
in the set of the first k arguments of t1. This implies that w1, . . . , wn also occur in the first k
arguments of t1σ. Since t1σ dominates t2σ and the arity of t2σ is greater or equal to k, w1, . . . , wn

occur in the set of the first k arguments of t2σ as well.
Suppose t1 is not a compound term. Then L1 contains no compound term at all. Assume the

opposite, that is, there exists a compound term t2 in L1. Since L1 is regular, t1 is an argument
of t2. Therefore, t1σ is an argument of t2σ. Thus t1σ does not dominate t2σ. This contradicts
our assumption that t1 is a dominating term for ({L1} ∪D)σ. Nevertheless, L1 dominates L2. It
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follows that L1 is a non-singular, shallow literal. Since L1σ dominates ({L1} ∪D)σ, there are no
compound terms in ({L1} ∪D)σ.

Lemma 3.19. Let C1 = {A1} ∪D1 and C2 = {¬A2} ∪D2 be variable-disjoint, indecomposable,
k-regular clauses such that A1 and A2 are unifiable with most general unifier σ, and let A1 and
¬A2 be dominating literals in C1 and C2, respectively. Then every split component of (D1∪ D2)σ
is a k-regular clause.

Proof. According to Lemma 3.17(2) the literals A1σ and ¬A2σ are regular. Since the clause
(C1 ∪ C2)σ does not contain any function symbol which does not occur in C1 ∪ C2, k is not
greater than the minimal arity of function symbols occurring in (C1 ∪ C2)σ. By Lemma 3.18,
C1σ and C2σ are quasi-regular and every split component of these clauses is k-regular.

Let D be a split component of (D1 ∪D2)σ. To prove that D is k-regular, we distinguish the
following cases:

1. D contains a deep literal. Let L1 be a deep literal in D such that L1 contains a compound
term t1 = f(u1, . . . , um) with maximal arity among all compound terms in D. Let L2 be an
arbitrary literal inD. We show that L1 dominates L2. Let t2 be an argument of L2. Suppose
t2 is a compound term g(v1, . . . , vn). A1σ contains a compound term t = h(w1, . . . , wl)
such that t dominates t1 and t2, that is, u1 = w1 = v1, . . . , un = wn = vn and n ≤ m ≤ l
hold. So, t1 dominates t2. If t2 is a constant, then t1 trivially dominates t2. If t2 is a
variable, then t2 is an argument of t. If t2 is one of the first m arguments of t, then t2 is
also an argument of t1 and t1 dominates t2. It remains to show that t2 is one of the first
m arguments of t. Suppose not. If L2 is a deep literal, then it contains some compound
term t3 dominating t2, that is, t2 is an argument of t3. But t3 is also dominated by t1 as
shown above. Therefore, t2 has to be an argument of t1 which contradicts the assumption.
Let L2 be a shallow, non-singular literal. L2 either occurs in D1σ or D2σ. Since C1σ and
C2σ are k-regular clauses, the set of non-constant arguments of L2 is similar to the subset
of non-constant arguments of the set of the first k ≤ m arguments of any compound term
in these clause sets. Thus, t2 occurs in the set of the first k arguments of t. Finally, let
L2 be a singular literal. Then t2 must occur in some literal L3 which is not singular, since
otherwise D would be decomposable. But we have just shown that in this case, L3 will be
dominated by L1. Thus, L1 will dominate L2 as well.

2. D contains no deep literal, but a non-singular literal. Let L1 be an arbitrary non-singular
literal. Without loss of generality we can assume that L1 belongs to D1. Let L2 be some
non-singular literal in D. We need to show that L1 and L2 are similar. If L2 belongs to
D1σ, then L1 and L2 are similar, because C1σ is k-regular. Suppose L2 belongs to D2σ.
Since A1σ and A2σ are equal, A1σ dominates L2. If A1 is a deep literal, then the subset
of non-constant arguments of the set of the first k arguments of a dominating compound
term in A1 is similar to the set of non-constant arguments of L2. The set of non-constant
arguments of L2 is similar to the set of non-constant arguments of L1. If A1 is itself a
non-singular, shallow literal, then its set of non-constant arguments is similar to the set of
non-constant arguments of L1 and L2. Again, the set of non-constant arguments of L1 and
L2 have to be similar.

Let L2 be a singular literal. The non-constant argument of L2 is an argument of L1, because
D is indecomposable. Thus, L1 dominates L2.
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3. D contains only singular literals. Therefore D is trivially k-regular.

Lemma 3.20. Let C = {L1, L2}∪D be a k-regular clause such that L1 and L2 are unifiable with
most general unifier σ. Then every split component of ({L1} ∪D)σ is a k-regular clause.

Proof. Suppose L1 (or L2) is a dominating literal in C. By Lemma 3.17(2), L1σ is regular.
Furthermore, k is not greater than the minimal arity of function symbols in L1σ. By Lemma 3.18
Cσ is k-regular. So, ({L1} ∪D)σ is k-regular.

Suppose neither L1 nor L2 is a dominating literal in C. Since σ does not introduce new function
symbols, the minimal arity of function symbols remains unchanged. Let L3 be a dominating literal
in C. We distinguish the following cases:

1. L1 and L2 are deep literals. By Lemma 3.17(1), if t1 = f(u1, . . . , un) is the dominating
term of L1, then t2 = f(v1, . . . , vn) is the dominating term of L2. Let t3 = g(s1, . . . , sm)
be the dominating term of L3. Since t3 dominates t1 and t2, we have m ≥ n and for all i,
1 ≤ i ≤ n, ui = si = vi. Thus, t1 and t2 are identical, σ is the identity substitution and
({L1} ∪D)σ is obviously k-regular.

2. L1 is a deep literal and L2 is a shallow literal. Then L1 contains a compound term t1
such that every variable argument of L2 is a strict subterm of t1. Thus, L1 and L2 are not
unifiable.

3. L1 and L2 are shallow literals. The codomain of σ contains only variables and constants. Let
t3 be the dominating term of L3. By Lemma 3.16(4) t3σ is regular. Let s3 be an arbitrary
argument of L3. By Lemma 3.16(3) and Lemma 3.16(2), s3σ is regular and t3σ dominates
s3σ. Thus, L3σ is regular. By Lemma 3.18 L3σ dominates each literal in ({L1} ∪D)σ and
({L1} ∪D)σ is k-regular.

Thus, the split components of the conclusion of an arbitrary factoring inference step on a k-regular
clause are k-regular clauses.

Lemma 3.19 and Lemma 3.20 are already sufficient to obtain an upper bound on the number
of variables in clauses derivable from a set N of indecomposable, k-regular clauses. Let arpred and
arfun be the maximal arity of predicate symbols and function symbols in N , respectively. Then
no clause in N contains more than max(arpred , arfun ) variables, neither does any clause derivable
by ordered resolution on dominating literals and factoring. However, it is possible to prove the
following stronger result.

Lemma 3.21. Let C be a k-regular clause and let D be a factor of C. Then |V(D)| ≤ |V(C)|.

Proof. Through factoring the number of different variables in the resulting clauses cannot increase,
and hence the number of variables in D does not exceed the number of variables in C.

Lemma 3.22. Let C1 = {A1} ∪D1 and C2 = {¬A2} ∪D2 be variable-disjoint, indecomposable,
k-regular clauses such that A1 and A2 are unifiable with most general unifier σ, and let A1 and
¬A2 be dominating literals in {A1} ∪ C1 and {¬A2} ∪ C2, respectively. Then |V(D1 ∪D2)σ| ≤
max(|V(C1)|, |V(C2)|).
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Proof. By Lemma 3.17(2) the literals A1σ and ¬A2σ are regular. Since the clause (C1 ∪ C2)σ
does not contain any function symbol which does not occur in C1 ∪ C2, k is not greater than
the minimal arity of function symbols occurring in (C1 ∪ C2)σ. By Lemma 3.18 C1σ and C2σ
are k-regular, and A1σ and ¬A2σ are dominating literals in C1σ and C2σ, respectively. Since
A1σ = A2σ, A1σ is a dominating literal in both C1σ and C2σ.

We distinguish the following cases:

1. A1σ is a singular literal with variable x1. Then all literals in D1σ and D2σ are singular,
with variable x1. Since neither A1 nor ¬A2 can be ground, also {A1}∪D1 and {¬A2}∪D2

contain at least one variable. Thus, the lemma holds.

2. A1σ is a shallow, non-singular literal. Then A1 and A2 are also shallow, non-singular literals.
The substitution σ instantiates variables by variables or constants. So, |V(A1σ)| ≤ |V(A1)|
and also |V(A1σ)| = |V(¬A2)σ| ≤ |V(A1)|. We obtain

|V(A1σ)| ≤ min(|V(A1)|, |V(¬A2)|)
≤ max(|V(A1)|, |V(¬A2)|).

Since A1 and ¬A2 contain all the variables of C1 and C2, respectively, and A1σ contains all
the variables of C1σ and C2σ the desired result follows.

3. A1σ is a deep literal. Then either A1 or ¬A2 contains a compound term. Without loss
of generality we assume A1 contains a dominating compound term t = f(t1, . . . , tn). Let
V1 = {t1, . . . , tn} ∩ V. By Lemma 3.16(1) if ti is a compound term, then all variables
occurring in ti occur in {t1, . . . , ti−1}. So, V(t) ⊆ V1. Since t is a dominating term in A1

and therefore a dominating term in C1, all variables of C1 occur in V1. Recall that A1σ is a
dominating literal in C1σ and C2σ. It follows from Lemma 3.17(3) that tσ is a dominating
term in C1σ and C2σ. Let V2 = {t1σ, . . . , tnσ} ∩ V. Again, by Lemma 3.16(1) if tiσ is
a compound term, then all variables occurring in tiσ occur in V2, that is, V(tσ) ⊆ V2.
Furthermore, all variables in (C1 ∪ C2)σ occur in tσ. Since instantiation of t by σ will not
turn a compound term argument into a variable, we have |V2| ≤ |V1|. It follows that

|V(D1σ ∪D2σ)| ≤ |V(A1σ)|
≤ |V(A1)|
≤ max(|V(C1),V(C2)|).

Corollary 3.23. Let N be a set of indecomposable, k-regular clauses. Let nvar be the maximum
number of distinct variables in any clause in N . Then for any clause C derivable by resolution
on %Z-maximal literals or factoring, the number of variables in C is less than or equal to nvar.

The next lemma forms the basis for approximating the maximal number of k-regular clauses over
a given finite signature.

Lemma 3.24. Let F be a finite set of function symbols and V be a set of variables. Let T be the
set of words over F ∪ V defined by:

T := {w ∈ (F ∪ V)∗ | |w| ≤ (arfun + 1)}
where arfun is the maximal arity of function symbols in F. Then there is a subset Tr of T such
that there is an isomorphism i between Tr and the set of regular terms Treg(F,V).
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Proof. Let C be the set of constants in F. A straightforward morphism will not do due to the length
restriction on words in T . For example, if f and g are function symbols of arity arfun and arfun−1,
then mapping the term f(x1, . . . , xarfun−1, g(x1, . . . , xarfun−1)) to fx1 . . . xarfun−1gx1 . . . xarfun−1

results in a word of length 2arfun .
Define i as follows.

i(t) =

{
t, if t ∈ V ∪ C,
f · it(t1) · · · · · it(tn), if t = f(t1, . . . , tn), n ≥ 1,

where · denotes the concatenation of two strings and

it(t) =

{
t, if t ∈ V ∪ C,
f, if t = f(t1, . . . , tn), n ≥ 1.

Note that it(f(t1, . . . , tn)) “forgets” the argument terms t1, . . . , tn. So, i is certainly not a
isomorphism for arbitrary terms. For example, it maps the terms f(g(x, a)) and f(g(a, x)) to the
same word fg. We have to prove that i is injective on regular terms. Suppose it is not. Then
there are terms s and t such that i(s) = i(t) although s 6= t. By case analysis, we can show that
s and t have the following form:

t = f(t1, . . . , tl, g(u1, . . . , uk), tl+2, . . . , tn)
s = f(t1, . . . , tl, g(v1, . . . , vk), t′l+2, . . . , t

′
n)

where for some i, 1 ≤ i ≤ k, ui 6= vi. But t and s are regular, that is, t dominates g(u1, . . . , uk)
which implies that u1 = t1, . . . , uk = tk, and k ≤ l. In the same way, s dominates g(v1, . . . , vk)
and thus v1 = t1, . . . , vk = tk. Therefore, uj = vj for every j, 1 ≤ j ≤ k which contradicts our
assumption.

Furthermore, i is surjective on

Tr := i(Treg(F,V)).(3.2)

Theorem 3.25.
Let N be a set of k-regular clauses. Let arfun be the maximal arity of function symbols in N , let
nvar be the maximal number of variables in clauses in N , and let nfun be the number of function
symbols in N , respectively. The number of different terms in N cannot exceed

nterms = (nfun + nvar)arfun+1.

Furthermore, the number of clauses in N modulo variable renaming cannot exceed

nclauses = 2(2×npred×nterms
arpred )

where npred be the number of predicate symbols in N and arpred the maximal arity of a predicate
symbol.

Proof. It is easy to see that the number of words in the set Tr defined by (3.2) using nfun function
symbols of maximal arity arfun and at most nvar variables is less than or equal to nterms.
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There are at most natoms = npred ×nterms
arpred different regular atoms and 2×natoms different

literals. Finally, we have to estimate an upper bound for the number of regular clauses. A clause
is just a subset of the set of all regular literals. Thus the maximal number of clauses is 2(2×natoms).
The number of non-tautological clauses is 3natoms , since every atom either does not occur in a
clause, or it occurs positively, or negatively.

Note that these upper bounds on the number of terms and clauses are not tight. For example,
if we have only a unary function symbol f and one variable x, then the number of terms will
not exceed (1 + 1)2 = 4 according to the previous theorem. Actually, there are only two terms,
namely x and f(x).

3.4 A decision procedure for KC

The acyclical relation constructed from the ‘dominates’-relation is not stable under substitutions,
that is, we cannot construct an admissible ordering on literals based on �Z . The first problem
with �Z occurs on the term-level. Consider the terms f(x, y) and y. Obviously, f(x, y) �Z y
holds. However, for the substitution σ replacing y by g(z), f(x, y)σ 6�Z yσ holds. Note that
f(x, y)σ is no longer regular. According to Lemma 3.16(3) t �Z s implies tσ �Z sσ for any
substitution σ such that t and tσ are regular. This problem is mainly caused by the dual use of
�Z : On the one hand it is used to define the structure of regular terms, literals and clauses and
on the other hand it is used to determine the literals of a clause to resolve upon. The problem can
be solved by using an ordering which is compatible with �Z on regular terms and is still stable
under substitutions. The second problem with �Z occurs on the atom-level. As a simple example
consider the atoms p(x, y, x) and p(x, x, a). We have p(x, y, x) �Z p(x, x, a). But since the atoms
have a common instance p(a, a, a), there exists no ordering � stable under substitutions such that
p(x, y, x) � p(x, x, a) holds.

It is important to remember that we have to restrict resolution inference steps in a clause
{p(x, y, x), p(x, x, a)} to the first literal. For otherwise, we can no longer guarantee that resolvents
of k-regular clauses are still k-regular. For example, resolution with {p(z, x, z),¬p(x, x, a)} (on
the second literal in each clause) results in {p(z, x, z), p(x, y, x)} which is not k-regular.

As far as the selection of suitable literals to resolve upon is concerned, clauses meeting the
following two conditions cause problems.

1. The clause C contains a singular literal which has constant arguments or duplicate variable
arguments.

Suppose the opposite. Then all singular literals are monadic. All predicate symbols of
shallow, non-singular literals have arity greater than one. Thus, there are no common
instances of singular literals and non-singular literals. It is straightforward to define an
ordering � stable under substitutions such that the singular literals are not �-maximal in
the clause C.

2. The clause C contains a shallow, non-singular literal or there is a compound term t in C
such that

|V(arg1...k
set (t))| ≥ 2.

If C contains no shallow, non-singular literals and for all compound terms t in C we have
|V(arg1...k

set (t))| ≤ 1, then all shallow literals in C contain exactly one variable.
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At first glance this condition seems to be too general. In a 2-regular clause like

{q(f(x, y, z)), p(x, a)}

the literals q(f(x, y, z)) and p(x, a) have no common instances and it is straightforward
to define a liftable ordering � such that q(f(x, y, z)) is strictly �-maximal. However, a
resolution inference step with

{¬q(f(x, y, z)), p(x, y)}

results in
{p(x, a), p(x, y)}

which is the prototypical example of a problematic clause.

This analysis motivates the following definition.
Definition 3.26.
A literal L is CDV (containing constants or duplicate variables) if L is singular, and there is an
argument which is a constant or there are duplicate (variable) arguments. Otherwise a literal is
CDV-free.

A clause C is CDV if it contains a CDV literal and a shallow, non-singular literal, but no
deep literal. Otherwise C is CDV-free. The intuition of CDV-free clauses is that �-maximal
literals are also �Z -maximal for suitable admissible orderings � on literals. Note that there are
CDV-free clauses which contain CDV literals. Any CDV clause contains at least two literals.

An indecomposable, k-regular clause C is strongly CDV-free if it satisfies at least one of the
following conditions.

1. C contains no CDV literal, or

2. C contains no shallow, non-singular literal and for all compound terms t occurring in any
literal in C,

|V(arg1...k
set (t))| = 1.

Note that the second condition is satisfied if C contains no non-singular literals.
A set of clauses N is CDV-free if every clause in N is CDV-free.

Example 3.27:
The clause

{p(f(x, y)), q(x, y), r(x, a)}
is CDV-free, but not strongly CDV-free. It contains the literal r(x, a) which is CDV and a shallow,
non-singular literal q(x, y). Also the 2-regular clause

{p(f(x, y)), r(x, a)}

is not strongly CDV-free: Apart from the CDV literal r(x, a) it contains a deep, non-singular
literal p(f(x, y)) such that the term f(x, y) contains more than one variable. There is a subtle
point to note. If we consider {p(f(x, y), r(x, a))} as a 1-regular clause, then it is strongly CDV-
free.
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The clause
{p(x, x, a), q(x, b), p(c, x, c)}

is strongly CDV-free, since it contains no non-singular literal. The clause

{p(x, y, c), q(x, y), p(x, a, y)}

is strongly CDV-free, since it contains no singular literal.

Note that CDV-freeness of a clause is not preserved under resolution. A simple example is
a resolution inference step between C1 = {p(f(x, y)), r(x, y), q(x, a)} and C2 = {¬p(z)} with
conclusion {r(x, y), q(x, a)}. This is due to the fact that the CDV literal in C1 is shielded by the
term f(x, y). Since this term is no longer present in the conclusion, the CDV literal becomes
unshielded.

However, C1 is not strongly CDV-free. We will now show that ordered factoring and ordered
resolution preserve strong CDV-freeness.

Lemma 3.28. Let C = {L1, L2} ∪D be an indecomposable, strongly CDV-free, k-regular clause
such that L1 and L2 are unifiable with most general unifier σ and L1 is a dominating literal in
C. Then ({L1} ∪D)σ is strongly CDV-free.

Proof. For every literal Lσ in ({L1}∪D)σ the set V(Lσ) is a subset of V(L) and the depth of Lσ
is equal to the depth of L. Thus, no singular literal L in C will become a non-singular literal Lσ
in ({L1} ∪D)σ nor will any deep literal L satisfying the third condition of strong CDV-freeness
turn into a deep literal Lσ violating this condition.

If C is strongly CDV-free, since it contains no non-singular literal, then the factoring inference
step will not introduce such a literal in C and ({L1} ∪D)σ is still strongly CDV-free.

If C is strongly CDV-free, since it contains no CDV literal, then we can argue as follows.
Suppose ({L1}∪D)σ contains a literal Lσ which is CDV. Then L is not singular, since any singular
CDV-free literal has the form (¬)p(x) for some predicate symbol p and variable x. Instantiation
with σ cannot introduce additional constants or duplicate variables into such a literal. Since
deep literals also remain deep after instantiation, L can only be a shallow, non-singular literal.
However, all shallow, non-singular literals in a k-regular clause contain the same set of variables
and for any shallow, non-singular literal L and for all compound terms t occurring in the clause,
the set of non-constant arguments of L are similar to the subset of non-constant arguments of
the first k arguments of t. If instantiation with σ turns L into a singular literal with variable x,
then it does so with every shallow, non-singular literal in the clause. Furthermore, the subset of
non-constant terms of the first k arguments of any term t will contain only one variable, namely
x. Thus, ({L1} ∪D)σ is strongly CDV-free due to the definition of strong CDV-freeness.

Lemma 3.29. Let L be a singular, CDV-free literal and σ be a substitution such that C(σ)
contains only variables and constants. Then Lσ is either ground or CDV-free.

Proof. Let V(L) be the singleton set {x}. If x is not an element of D(σ), then Lσ = L is still
CDV-free. If xσ is a constant, then Lσ is ground and therefore not singular. If xσ is a variable,
then L and Lσ are identical up to the renaming of variables. So, Lσ is CDV-free.
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Lemma 3.30. Let C1 = {A1} ∪D1 and C2 = {¬A2} ∪D2 be variable-disjoint, indecomposable,
strongly CDV-free, k-regular clauses such that A1 and A2 are unifiable with most general unifier σ,
and let A1 and ¬A2 be dominating literals in C1 and C2, respectively. Then every split component
of (D1 ∪D2)σ is strongly CDV-free.

Proof. The general observation that no singular or deep literal L in one of the premises will
become a shallow, non-singular literal Lσ in the conclusion (D1 ∪D2)σ remains true.

We distinguish the following cases:

1. Both A1 and ¬A2 are singular literals. Then neither C1 and C2, nor (D1 ∪D2)σ contain a
non-singular or deep literal. So, the conclusion of the resolution inference step is strongly
CDV-free.

2. A1 is a singular literal and ¬A2 is a shallow, non-singular literal. D1 and D1σ contain no
non-singular or deep literal and D2 contains no deep literal. The literal ¬A2σ is singular.
Since all shallow, non-singular literals in D2 are similar to ¬A2, D2σ contains no non-
singular or deep literal.

3. A1 and ¬A2 are shallow, non-singular literals. Neither D1 nor D2 contains a deep literal.
If A1σ = A2σ is singular, then (D1 ∪ D2)σ contains no non-singular literals. Suppose
A1σ = A2σ is again a shallow, non-singular literal. Let L be a CDV-free, singular literal in
either D1 or D2. Since C(σ) contains only variables and constants, Lσ is either ground or
CDV-free by Lemma 3.29.

4. A1 is a deep literal and ¬A2 is singular. Note that C2 contains only singular literals and that
V(C2) is a singleton set. So, ¬A2 is not necessarily CDV-free. Without loss of generality
we can assume that σ maps the only variable occurring in ¬A2 to some compound term
t. That means, ¬A2σ, and likewise any literal in D2σ, is a deep literal. The elements of
C(σV(A1)) are either variables or constants. So, if L is a CDV-free literal in D1, then Lσ is
still CDV-free or ground.

Suppose D1 contains a CDV literal. Then D1 satisfies the second condition of strong CDV-
freeness. Instantiation with σ will not introduce additional variables into compound terms
and the term t also satisfies the requirements of the second condition. So, (D1 ∪ D2)σ is
strongly CDV-free.

Suppose D1 contains a shallow, non-singular literal L. Note that D1 does not contain a
CDV literal. If Lσ is still CDV-free, then D1σ contains no CDV literal and (D1 ∪D2)σ is
strongly CDV-free. If Lσ is a CDV literal, then we argue as in the proof of Lemma 3.28
that (D1 ∪D2)σ satisfies the second condition of strong CDV-freeness.

5. A1 is a deep literal and ¬A2 is a shallow, non-singular literal. Note that C2 contains no
CDV literal. The unifier σ maps some of the variables of ¬A2 to compound terms. Thus,
D2σ contains only deep literals and, possibly, CDV-free literals. We can follow the lines of
the previous case to show that (D1 ∪D2)σ is strongly CDV-free.

6. Both A1 and ¬A2 are deep literals. The important point to note in this case is the following.
Let s and t be compound terms in C1σ or C2σ. Let L be a shallow, non-singular literal in
C1 or C2. Then

arg1...k
set (s) = arg1...k

set (t)
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and
argset(L) \ F0 ∼Z arg1...k

set (s) \ F0.

Consequently, if L1 is a shallow, non-singular literal in D1 and L2 is a shallow, non-singular
literal in D2, either both L1σ and L2σ are singular literals and V(arg1...k

set (t)) is a singleton
set for any compound term t in (D1∪D2)σ or neither L1σ and L2σ is a shallow, non-singular
literal.

It follows that (D1 ∪D2)σ is strongly CDV-free.

We have shown that the property of strong CDV-freeness is preserved under inferences by ordered
factoring and ordered resolution. Since clause sets in KC are not necessarily strongly CDV-free,
we define a satisfiability equivalence preserving transformation which transform any clause set N
in KC into a strongly CDV-free clause set N ′.

N ⇒M N ′ ∪DefA
L iff (i) L is an occurrence of a CDV literal in a clause C ∈ N which

is not strongly CDV-free,
(ii) A is an atom of the form p(x) where p is a new predicate

symbol with respect to N and x is the variable occurring in
L,

(iii) DefAL is a clause of the form {¬A,L}, and
(iv) N ′ is obtained from N by replacing any occurrence of L by A.

Again, the clauses DefAL added by the transformation ⇒M are called definitions. Note that A is
CDV-free and that the clause {¬A,L} is strongly CDV-free. As each transformation step removes
at least one CDV literal in one of the clauses which are not strongly CDV-free, we eventually
obtain a strongly CDV-free set of clauses by a sequence of transformation steps. We denote the
resulting clause set by N↓M and the set of all definitions by Def→D (N↓M).

Lemma 3.31. Let N be a set of clauses. Then N↓M can be computed in polynomial time and is
satisfiable if and only if N is satisfiable.

Proof. Since renaming is satisfiability equivalence preserving.

An admissible ordering � on literals suitable for our purpose has to satisfy one condition:

If a literal L is �-maximal in a clause C ∈ C, then there is no literal L′ in C
with L′ �Z L.

(3.3)

Note that it is not relevant whether � is applied a priori like �Z or a posteriori: Since � is stable
under substitutions, if Lσ is �-maximal in Cσ then L is �-maximal in C.

We have seen that no ordering stable under substitutions satisfying this condition can exist if
C is the class of all (indecomposable) k-regular clauses. We will now show that if C is the class of
all (indecomposable) strongly CDV-free, k-regular clauses, we are able to define such an ordering.

Let �Σ be a total precedence on the predicate symbols and functions symbols such that

• f �Σ g if f is a n-ary function symbol, g is a m-ary function symbol, and n > m holds;

• f �Σ p if f is a n-ary function symbol, n ≥ 1, and p is a predicate symbol;

• p �Σ q if p is a n-ary predicate symbol, n ≥ 2, and q is a unary predicate symbol;
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• p �Σ c if p is a predicate symbol and c a constant symbol.

Every predicate symbol and function symbol has multiset status. Let �S be the recursive path
ordering based on the precedence �Σ. The ordering �S is extended to literals in the usual way.
The resulting ordering on literals is again denoted by �S . It is an admissible ordering according
to the definition in Section 1.2.

Lemma 3.32. Let C be an indecomposable, strongly CDV-free, k-regular clause. If L1 �Z L2

for literals L1 and L2 in C, then L1 �S L2.

Proof. We distinguish the following cases according to the type of L1:

1. L1 is non-singular and shallow. Then L2 is singular. Therefore, L2 contains exactly one
variable x and x is an argument of L2 and L1. If x is the only argument of L2, then
the multiset of arguments of L1 is obviously greater than the multiset of arguments of L2

and the predicate symbol of L1 has precedence over the predicate symbol of L2 by �Σ.
So, L1 �S L2 holds. If L2 contains more than one argument, then L2 is not CDV-free,
contradicting our assumption that C is strongly CDV-free.

2. L1 is deep. L1 contains a compound term t1 dominating all the arguments of L1. Since
L1 �Z L2 and �Z is transitive, for every argument of t2 of L2, t1 �Z t2 holds. The term
t2 is either a variable or a compound term. In the first case, according to the definition
of �Z , t2 is an argument of t1, that is, t2 is a subterm of t1. In the second case, t1 has
the form f(u1, . . . , um) and t2 has the form g(u1, . . . , un) such that m > n holds. Due to
the definition of the precedence on function symbols, f �Σ g holds. Therefore, we need to
verify that f(u1, . . . , um) �S uj holds, for all j with 1 ≤ j ≤ n, but this is clear.

We are now ready to present a decision procedure for the class KC. Our calculus consists
of the expansion rules “Delete”, “Split”, and “Deduce” described in Section 1.2. Recall that we
restrict our attention to theorem proving derivations which are generated by strategies in which
“Delete”, “Split”, and “Deduce” are applied in this order of (descending) priorities. In addition,
no application of the “Deduce” expansion rule with identical premises and identical consequence
may occur twice on the same path in the derivation. For any finite set N of k-regular clauses,
any theorem proving derivation from N is fair.

Theorem 3.33.
Let � be an admissible ordering on literals satisfying Condition (3.3). Let N be a finite set
of k-regular clauses in KC. Then any derivation from N↓M by ordered resolution and ordered
factoring based on � terminates.

Proof. By Lemma 3.31 N↓M is satisfiable if and only if N is satisfiable and N↓M contains only
strongly CDV-free, k-regular clauses.

We can construct a fair theorem proving derivation from N↓M based on an ordering � satis-
fying Condition (3.3) on indecomposable, strongly CDV-free, k-regular clauses. The ordering �S

is an example of such an ordering.
Lemma 3.19 states that if we apply resolution to �Z-maximal literals and split the resulting

clauses, then the split components of any resolvent of two indecomposable, k-regular clauses
are k-regular again. Lemma 3.20 states the same for factoring. Lemma 3.30 and Lemma 3.28
state that resolution and factoring on �Z-maximal literals preserves strong CDV-freeness for the
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split components of the resulting clauses. Since �-maximal literals in indecomposable, strongly
CDV-free, k-regular clauses are also �Z -maximal literals according to Condition (3.3), these
results remain valid for ordered resolution and ordered factoring based on �. Therefore, any split
component of a clause derivable from N will be k-regular.

Since the “Split” expansion rule has priority over the “Deduce” expansion rule, we are sure
that whenever we derive a decomposable resolvent or factor, it will be decomposed into its split
components before further applications of “Deduce”.

By Lemma 3.21 and Lemma 3.22 the number of variables in derived clauses will not exceed
the maximal number of variables in clauses in N↓M. By Theorem 3.25 there exists an upper
bound for the number of clauses in a set of k-regular clauses. That means any theorem proving
derivation T from N↓M will be finite.

If N↓M is unsatisfiable, then every leave N ′′ of T will contain the empty clause and if N is
satisfiable, then some leave will not contain the empty clause due to Theorem 1.2.

Corollary 3.34. The class KC is decidable.

Consider the following set N of clauses

(4) {p(a, a, x), r(a, x, y)}
(5) {¬r(a, a, x), p(a, x, y)}
(6) {r(a, a, x),¬p(a, x, y)}
(7) {¬p(a, a, x),¬r(a, x, y)}

We show how our decision procedure constructs an expansion from N . First, we note that none of
the clause in N is strongly CDV-free. The result of transforming N into a satisfiability equivalent
set N1 of strongly CDV-free clauses is

(8) {p+
1 (x), r(a, x, y)}

(9) {r−1 (x), p(a, x, y)}
(10) {r+1 (x),¬p(a, x, y)}
(11) {p−1 (x),¬r(a, x, y)}
(12) {¬p+

1 (x), p(a, a, x)}
(13) {¬r−1 (x),¬r(a, a, x)}
(14) {¬r+1 (x), r(a, a, x)}
(15) {¬p−1 (x),¬r(a, a, x)}

We will present only one branch of the theorem proving derivation from N1.

[ (8)2, R, (11)2] (16) {p+
1 (x), p−1 (x)}

[(16)1, R, (12)1] (17) {p(a, a, x), p−1 (x)}
[(17)1, R, (10)2] (18) {r+1 (a), p−1 (x)}
[(18)1, Spt ] (19) {r+1 (a)}
[(19)1, R, (14)1] (20) {r(a, a, a)}
[(20)1, R, (11)2] (21) {p−1 (a)}
[(21)1, R, (15)2] (22) {¬p(a, a, a)}
[(22)1, R, (9)2] (23) {r−1 (a)}
[(23)1, R, (13)2] (24) {¬r(a, a, a)}
[(24)1, R, (20)1] (25) ⊥
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Here [(18)1, Spt] denotes an application of the “Split” expansion rule on the first literal in clause
(18). It is straightforward to check that we are able to derive the empty clause in all remaining
branches by similar sequences of inference steps. Hence, the initial set N is unsatisfiable.

A particularly interesting variant of our decision procedure can by obtained by the utilisation
of a selection function. The selection function SKC selects the monadic literal ¬A in a clause
DefAL introduced by the transformation ⇒M. Note that positive occurrences of A in N↓M are
not �-maximal in their clauses. Thus, inferences with clauses in DefA

L are prohibited. Only
when a clause C with a �-maximal literal A and with selected counterpart ¬A in Def→D (N↓M) is
produced by ordered resolution will an inference step with DefA

L be performed. Effectively, such
an inference step reintroduces (an instance of) the original literal occurrence L into C. Now,
leaving these inference steps aside, a theorem proving derivation performed by ordered resolution
with selection corresponds one-to-one to a theorem proving derivation based on the non-liftable
ordering �Z . To be able to simulate inference steps by ordered factoring we have use the approach
described in Section 2.3.

The picture changes if we take the different notions of redundancy underlying these calculi
into account. Note that the inference step leading to the clause {p+

1 (x), p−1 (x)} corresponds to
the inference step

[ (4)2, R, (7)2] (16′) {p(a, a, x),¬p(a, a, x)}
on the original clause set N which results in a tautological clause. In a decision procedure based on
the non-liftable ordering �Z such tautological clauses are not redundant and, in general, cannot
be eliminated without loosing completeness of the procedure. This is already evident in our
example, since the only alternative inference step possible on N is the derivation of the tautological
clause {r(a, a, x),¬r(a, a, x)} from clauses (2) and (3). Thus, the only clauses derivable from the
unsatisfiable clause set N based on the �Z-refinement of resolution are tautological.

In contrast, we can make use of the notion of redundancy introduced by Bachmair and
Ganzinger [10]. For example, given the clause set N2 containing the clauses

(26) {p(a, x, y), r(b, x, y)}
(27) {¬p(a, a, z),¬r(b, a, z)}

which are strongly CDV-free, the tautological conclusion

[(26)2, R, (27)2] (28) {p(a, a, x),¬p(a, a, x)}
is redundant and can be eliminated.

3.5 The class DK

In this section we consider the class DK containing all possible (finite) conjunctions of formulae
of the class K. Note that the grade of the formulae in such a conjunction can vary. The class of
clause sets obtained from formulae of the class DK is denoted by DKC.

We will prove that the satisfiability problem for formulae in DK is decidable using the proce-
dure of the previous section.
Definition 3.35 (k-originated Skolem function).
Let ϕ be a formula of the class K and let ϕ be of grade k. LetN be the corresponding set of clauses.
Then we call a non-constant Skolem function f occurring in some clause in N k-originated .
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Definition 3.36 (Strongly k-regular clause).
Let C be a k-regular clause such that all non-constant Skolem functions occurring in C are
k-originated. Then C is strongly k-regular.

There is a rather subtle point to note about the definition of k-regular and strongly k-regular
clauses. The value of k can be chosen almost arbitrarily if the clause does not contain compound
terms. For example, if we talk about 3-regular clauses in the following, this includes clauses like

{p1(x1, b, x2, x3), p1(x1, x2, a, x3), p3(x3)}

and
{p4(x1, x2), p4(x2, x1)}

as well as
{p5(x3, c, x2, x1, x4)}.

To distinguish clauses like these from clauses actually containing k-originated function symbols,
we introduce the notion of inhabited clauses.
Definition 3.37.
A clause containing at least one non-constant Skolem function symbol is called inhabited clause.

Lemma 3.38. Let ϕ be a formula of class K and let ϕ be of grade k. Let N be the corresponding
set of clauses. Then every clause in N is strongly k-regular.

Proof. Every clause in N is k-regular according to Lemma 3.15. Following Definition 3.35, all
Skolem functions in N are k-originated. Thus, N contains strongly k-regular clauses only.

Corollary 3.39. Let ϕ be a formula of class DK. Let N be the corresponding set of clauses.
Then every clause in N is strongly k-regular for some k ∈ N.

Lemma 3.40. Let C1 = {A1} ∪D1 and C2 = {¬A2} ∪D2 be variable-disjoint, indecomposable,
strongly k-regular clauses such that A1 and A2 are unifiable with most general unifier σ, and let
A1 and ¬A2 be dominating literals in C1 and C2, respectively. Then the split components of the
resolvent (D1 ∪D2)σ are strongly k-regular.

Proof. According to Lemma 3.20 the split components of (D1 ∪D2)σ are k-regular. Since all the
Skolem functions of (D1 ∪ D2)σ already occur in one of the parent clauses C1 and C2, all the
non-constant Skolem functions in (D1 ∪ D2)σ are k-originated. Thus, the split components of
(D1 ∪D2)σ are strongly k-regular.

Lemma 3.41. Let C be a strongly k-regular clause. Let D be a factor of C. Then the split
components of D are strongly k-regular.

Proof. By Lemma 3.20 the split components of clause D are k-regular. Since all the Skolem
functions of D already occur in C, all the non-constant Skolem functions in D are k-originated.
Thus, the split components of D are strongly k-regular.
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Lemma 3.42. Let C1 = {A1} ∪ D1 be a k1-regular clause and C2 = {¬A2} ∪ D2 be a k2-
regular clause such that A1 and A2 are unifiable with most general unifier σ and A1 and ¬A2

are dominating literals in C1 and C2, respectively. Let all the non-constant Skolem functions in
C1 and C2 be k′1-originated and k′2-originated, respectively. Then k′1 is equal to k′2 and all the
non-constant Skolem functions in (D1 ∪D2)σ are k′1-originated.

Proof. If neither C1 nor C2 contain function symbols, the lemma is trivially true. Without loss of
generality we assume that at least one function symbol occurs in C1. So, the clause C1 contains a
deep literal. As a consequence, the literal A1 is deep as well. Therefore, there exists a compound
term t1 in A1 such that t1 dominates every argument of every literal in C1.

According to the form of ¬A2, we distinguish the following cases.

1. ¬A2 is a singular literal. Let x be the variable of ¬A2. Then xσ is a compound term.
The resolvent (D1 ∪D2)σ will contain only non-constant Skolem functions of C1. Since all
non-constant Skolem functions in C1 are k′1-originated, this will be the case for (D1 ∪D2)σ
as well.

2. ¬A2 is a non-singular and shallow literal. Similar to the previous case, we can assume
without loss of generality that the domain of σ contains all the variables of ¬A2 and therefore
all the variables in C2. Again (D1 ∪ D2)σ contains only non-constant function symbols
occurring in C1.

3. ¬A2 is a deep literal. Then there is a term t2 in ¬A2 dominating every argument of every
literal in C2. According to Lemma 3.17(1) the terms t1 and t2 occur at the same argument
position in A1 and ¬A2, respectively. Since A1 and A2 are unifiable, t1 and t2 are unifiable
too. To this end, the top function symbol of t1 and t2 is equal. Let us denote this function
symbol by g. The function symbol g is k′1-originated and k′2-originated according to our
assumptions. Thus k′1 and k′2 have to be equal. The conclusion that all Skolem functions
in (D1 ∪D2)σ are k′1-originated is now a straightforward consequence of the equality of k′1
and k′2.

Corollary 3.43. Let C1 be an inhabited, strongly k1-regular clause and C2 be an inhabited,
strongly k2-regular clause such that k1 6= k2. Then C1 and C2 have no ordered resolvent with
respect to �Z.

By Lemma 3.42 and Corollary 3.43:
Lemma 3.44. Let C1 be an indecomposable, strongly k1-regular clause and C2 an indecompos-
able, strongly k2-regular clause such that C1 and C2 are variable-disjoint. Let C be a resolvent
of C1 and C2, such that the literals resolved up on are maximal with respect to �Z. Every split
component of C is strongly k-regular for some k.

Theorem 3.45.
Let � be an admissible ordering on literals satisfying Condition (3.3). Let N be a finite set of
k-regular clauses in DKC. Then any derivation from N↓M by ordered resolution and ordered
factoring based on � terminates.

Proof. The procedure described in Section 3.4 provides also a decision procedure for DKC. The
proof follows the lines of the proof of Theorem 3.33.

Corollary 3.46. The class DKC is decidable.
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3.6 Related Work

Maslov [97, p. 69] defines the class K in the following way.

Definition (The Class K). Let us denote by K the following class of formulae of the
predicate calculus (without function symbols and equality): the formula ϕ in negation
normal form (which may be non-closed) belongs to K if and only if there exist variables
x1, x2, . . . , xk which do not lie within the scope of any universal quantifier such that
all the non-empty ϕ-prefixes of atomic subformulae of ϕ are of length 1, or end in a
universal quantifier, or are of the form ∃x1 . . . ∃xk .

Formulae can be non-closed and free variables are implicitly universally quantified. He then states
the following theorem [97, p. 70].

Theorem 2. The class of arbitrary disjunctions of formulae from K is decidable with
respect to deducibility in the calculus Π.

The calculus Π is the inverse method [97]. The inverse method can be regarded to be dual
to resolution which has been introduced independently by Robinson [117]. Given a set N of
clauses, resolution attempts to show the unsatisfiability of N by deriving the empty clause. In
contrast, the inverse method attempts to compute the logical consequences of N . Bachmair and
Ganzinger [10] establish a one-to-one correspondence between the inverse method and positive
hyper-resolution.

Maslov’s argument of termination is limited to the following [97, p. 75]:

Applying Lemma 5, we obtain a branched process for constructing single-member
favourable collections which yields an empty collection for every deducible sequence
(7)1. Let the number of all single-member F -collections be finite, and let this process
terminate (before attainment of an empty collection) at some branch even if sequent
(7) is non-deducible. Theorem 2 has been proved.

Our proof presented in Sections 3.2 to 3.4 reworks and improves the results of Zamov [39,
chapter 6], who uses a refinement of resolution to provide a decision procedure for the class K.
Thus, Zamov’s approach fits better to our framework. However, there are several problems with
the presentation in [39]. First, the definition of K, simply called K, does not coincide with the
class of complementary K-formulae. We will denote Zamov’s class by KZ . It is defined as follows.

Definition (Class KZ). The formula F belongs to the class KZ if there exist variables
x1, . . . , xk, k ≥ 0, which are not in the scope of any existential quantifier, such that
each non-empty F -prefix of an atomic subformula of F

• either is of length 1,

• ends with an existential quantifier,

• is of the form ∀x1 ∀x2 . . . ∀xk .

1That is, a disjunction of formulae from K.
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Zamov also uses a slightly different definition of F -prefix, which does not require that the formula
F is in negation normal form nor that is is closed. It is not mentioned whether it is a prerequisite
that the formula F satisfies either of these properties. Nevertheless it is easy to see that negation
normal form is a prerequisite for the formulae under consideration. For example, the formula ϕ

¬∃x1 ∃x2 ∃x3:¬(r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)),

which is logically equivalent to the transitivity formula for the binary relation r, literally satisfies
the conditions in the definition of the class KZ : The ϕ6-prefixes of r(x1, x2), r(x2, x3), r(x1, x3) are
∃x1 ∃x2 , ∃x2 ∃x3 , and ∃x1 ∃x3 , respectively, which all end in an existential quantifier. However,
transitivity formulae are out of the scope of Maslov’s, Zamov’s, and our method. Alternatively,
in addition to the assumption that all formulae are in negation normal form, we could redefine
the meaning of ‘universal’ and ‘existential quantifier’ to take into account the polarity of their
occurrence.

Likewise, free non-constant function symbols can be used to circumvent the restrictions on
admissible formulae intended by the definition of KZ . Therefore, it is not in Zamov’s intention
to allow such function symbols. The question whether free constant symbols are allowed is
closely related to the question whether free variables are admissible. Note that the definition of
Maslov explicitly allows non-closed formulae. One possible interpretation of the definition of KZ

is that formulae in KZ can be non-closed as well, but the free variables are implicitly existentially
quantified. Consequently, a formula like ϕ7

∀x1 ∀x2: p(y, x1, x2)

is an element of class KZ of grade 2: The universally quantified variables of ϕ7 are x1 and x2, the
ϕ7-prefix of the atomic subformula p(y, x1, x2) is ∀x1 ∀x2 and satisfies the third condition of the
definition above. But contrary to the standard interpretation of free variables, y is existentially
quantified. The formula ϕ8

∃y ∀x1 ∀x2: p(y, x1, x2)

is certainly not in the class KZ : The universally quantified variables of ϕ7 are x1 and x2 again,
the ϕ7-prefix of the atomic subformula p(y, x1, x2) is ∃y ∀x1 ∀x2 . Obviously, it is neither of length
1, nor does it not end in an existential quantifier, and is not of the form ∀x1 ∀x2 .

Restricting ourselves to schemata in negation normal form instead of arbitrary formulae and
using terminal ϕ-prefixes instead of ϕ-prefixes we can avoid this problem and obtain Definition 3.2
as presented in Section 3.1.

Second, there are problems with the notion of dominating literal and regular set of literals as
defined by Zamov when constant symbols are present. His definitions are as follows. The literal
L1 dominates the literal L2, if the set of arguments of L1 dominates the set of arguments of L2.
A set of terms T1 is similar to a set of terms T2 if T1 dominates T2 and T2 dominates T1. A set
M of literals is called k-regular if the following conditions hold: (i) M contains regular literals
only, (ii) the non-negative integer k is not greater than the minimal arity of function symbols
occurring in literals of the set M , (iii) M contains some literal which dominates every literal in
the set M , and (iv) all shallow, non-singular literals of M are similar and the set of non-constant
arguments of any such literal is similar to the set of the first k arguments of any compound term
occurring in any literal from M . A set M of literals is called regular if it is k-regular for some k,
k ≥ 0.



64 Chapter 3. The classes K and K-bar

According to these definitions, the literals q(x, y) and p(a, x, y) are not similar. So, the
clause {q(x, y), p(a, x, y)} is not regular. Neither is {q(a, x, y), p(f(a, x, y))}. (But, according to
our definitions, q(x, y) and p(a, x, y) are similar literals and the clauses {q(x, y), p(a, x, y)} and
{q(a, x, y), p(f(a, x, y))} are regular.)

Even if we start with regular clauses, resolution eventually generates clauses which are not
regular. Consider the 3-regular clauses

{p(x, y, z), q(f(x, y, z)), r(f(x, y, z))} and {¬r(f(a, y′, z′))}.

There is exactly one resolvent which is

{p(a, y, z), q(f(a, y, z))}.

This clause is not regular, since the set of non-constant arguments of the non-singular literal
p(a, y, z), that is, {y, z}, is not similar to the set of the first three arguments of f(a, y, z), that is,
{a, y, z} (nor to one of the sets {a, y} or {a}).

Third, one of the fundamental steps in Zamov’s proof is the following lemma (see [39, page
147]) which does not hold in general.

Lemma Assume that C1 ∪ {A} and C2 ∪ {B} are indecomposable regular clauses
and the clause (C1 ∪ C2)σ is a resolvent of these clauses by resolution upon A and
B. Then if the literals A and B are dominating for their clauses, then (C1 ∪ C2)σ is
quasi-regular.

Here is a counter example. The clauses

{¬p(f(x, y, z), z), q(x, y), r(f(x, y, z))}(3.29)

and

{p(f(x′, y′, z′), g(x′))}(3.30)

are both indecomposable and regular clauses. The clause (3.29) is 2-regular and clause (3.30) is
1-regular. But the resolvent

{q(x, y), r(f(x, y, g(x)))}(3.31)

is not quasi-regular. The minimal arity of a function symbol in clause (3.31) is one. There is one
non-singular literal q(x, y) in the clause with non-constant arguments x and y. These arguments
have to be similar to the first argument of any compound term in clause (3.31). This is of course
impossible.

Lemma 3.19 requires that both clauses are k-regular and we show in Section 3.5 that clauses
like (3.31) cannot occur in derivations from a clause set in KC or DKC.

Finally, the completeness proof is not without problems. Zamov considers the set N ′ of all
ground instances of clauses in a clause set N . He defines an ordering > on ground terms and
occurrences of ground literals in N ′ which is then lifted to the non-ground case. He claims that
> is a π-ordering and that due to the completeness of π-orderings a refutation of N ′ with respect
to the ordering refinement > exists if N ′ is unsatisfiable.
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However, > is not a π-ordering according to the definition in [39, chapter 4], which is a
reformulation of Maslov’s original definition imposing stricter conditions on an ordering, but only
according to Maslov’s original definition. Orderings satisfying Maslov’s original definition do not
guarantee completeness in general as Weidenbach [132, pp. 8-10] shows. Since it is essential for
Zamov’s argument that a ground instance of a non-singular, shallow literal is strictly greater than
a ground instance of a singular, shallow literal, it is not possible to define a liftable ordering >′

which coincides with >.
As discussed in Section 3.4 it is possible to define a decision procedure based on the non-

liftable ordering �Z . A completeness proof for this procedure could be obtained by the method
of de Nivelle [27].

3.7 Conclusion

The classes KC and DKC discussed in this chapter are among the most interesting decidable
classes of clause sets. It covers a variety of the classical decidable fragments of first-order logic
such as the initially extended Ackermann class, the Monadic class, the initially extended Skolem
class, the initially extended Gödel class, and the two-variable fragment of first-order logic (using
an appropriate structural transformation). We will also see that many of the logics discusses in
Chapter 4 and 5 are contained in KC.

Although neither KC nor DKC include some of the more recently introduced classes of clause
sets, like S+ and E+, they have a property which is unique among these classes. Unlike the
initially extended Skolem class, S+, E+, the class One-Free, or the loosely guarded fragment, not
all compound terms in k-regular clauses contain all the variables of the clause. This leads to the
possibility that the clause depth of a resolvent is greater than the maximal clause depth of its
parent clauses even if we use a non-liftable ordering to restrict permissible inference steps. Unlike
the loosely guarded fragment we also have no restriction on the polarity of particular literals,
that is, there is no notion of guards in k-regular clauses.

This leads to the interesting question whether extensions of KC and DKC can be obtained
by the introduction of this notion. Note that the requirement in the definition of k-regular
clauses that all shallow, non-singular literals have to be similar is rather restrictive compared
to the requirement in the definition of guarded clauses. It excludes for example clauses like
{p(x, y, z),¬r(x, y)}, {¬p(x, y, z),¬r(y, z), q(x, y, z)}, and {¬q(x, y, z), r(x, z)}. (The first clause
is not guarded because the only literal with all three variables is positive.) Each clause contains a
literal containing all variables of the clauses. If we restrict resolution inferences to these literals,
then no resolvent will contain more variables than its parents. However, with two inference steps
we derive the transitivity clause {¬r(x, y),¬r(y, z), r(x, z)} and inferences with this clause will
no longer obey a bound on the number of variables. This observation motivates the restriction
embodied in the definition of k-regular clauses. It also explains why the restriction on the polarity
of guards cannot be easily dispensed with. A way leading to an extension of DKC is to consider
whether the requirement that (shallow) clauses have a negative literal containing all the variables
of the clause is sufficient to retain decidability.

One further direction of future research concerns the relationship of DKC and the classes E+

and One-Free. These classes are more liberal concerning the structure of terms occurring in one
of the classes. For example, non-regular terms like f(f(x)) or f(g(a), h(x)) are admissible in E+.
This leads to the question whether it is possible to (slightly) generalise the notion of regular terms
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to extend the class DKC.



Chapter 4

Description logics

Two research areas where decidability issues play a particularly prominent role are: extended
modal logics and description logics. Although it is not difficult to see that most of the logics under
consideration can be translated to first-order logic, it is not obvious what the characteristics of the
corresponding classes of first-order formulae are which makes these logics decidable. Furthermore,
the fact that the class of first-order formulae resulting from the translation of modal formulae or
expressions in a description logic is decidable, does not indicate how a resolution-based decision
procedure for this class can be obtained. Recent important results describe resolution decision
procedures for the guarded fragment [29, 30] and the class One-Free [30, 129]. Both use non-
liftable ordering restrictions. The most popular description logic is ALC. It can be embedded
by the optimised functional translation into a subclass of the Bernays-Schönfinkel class. The
subclass, the basic path logic, can be decided by resolution and condensing using any compatible
ordering or selection strategy [121].

In this chapter we consider both the satisfiability problem of concepts in a description logic
and the satisfiability of knowledge bases. We describe a characterisation of clause sets obtained
from the relational translation of terminological knowledge bases. We show that there are two
fundamentally different approaches for obtaining resolution-based decision procedures: one is
based on ordered resolution and one on selection. While the first approach covers a wider range
of terminological logics, the latter approach is closely linked to tableaux-based decision procedures
for description logic. We formally confirm this link by showing that the resolution-based decision
procedure based on selection is able to polynomially simulate tableaux-based decision procedures
for extensions of ALC.

4.1 Syntax and semantics of description logics

We describe the language of the universal terminological logic U [111], largely adopting the modern
notation introduced by Schmidt-Schauß and Smolka [123].

The signature is given by a tuple Σ = (O,C,R) of three disjoint alphabets, the set C of concept
symbols, the set R of role symbols, and the set O of object symbols. Concept symbols and role
symbols are also called atomic concepts and atomic roles .

The set of concept terms (or just concepts) and role terms (or just roles) is inductively defined
as follows. Every concept symbol is a concept term and every role symbol is a role term. Now

67
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assume that C and D are concepts, R and S are roles, and U and V are bindings. Then

• > (top concept), ⊥ (bottom concept), C uD (concept intersection), C tD (concept union),
¬C (concept complement), ∀R.C (universal restriction), ∃R.C (existential restriction),
∃≥nR, ∃≤nR (number restrictions), ∃≥nR.C, ∃≤nR.C (qualified number restrictions), (R=S)
(role value maps), and ∃BU :C are concept terms,

• 5 (top role), 4 (bottom role), id (identity role), RuS (role intersection), RtS (role union),
R ◦ S (role composition), ¬R (role complement), R−1 (role converse), R+ (role closure),
R�C (domain restriction), and R�C (range restriction) are role terms, and

• (⊆ RS), (⊇ RS), U u V are bindings.

Let CE be the set of all concepts, RE the set of all roles, and BE the set of all bindings. The
tuple 〈CE,RE,BE〉 forms the term language of the universal terminological language. An element
of either CE, RE, and BE is a (terminological) term or (terminological) expression .

The definition differs from the original presentation in the addition of the qualified number
restrictions ∃≥nR.C and ∃≤nR.C. In the presence of the role restriction operator, ∃≥nR.C and
∃≤nR.C can be expressed by ∃≥nR�C and ∃≤nR�C, respectively. Bindings are special role terms,
namely (⊆ RS), (⊇ RS) and their conjunctions.

The set of sentences S over the term language 〈C,B,R〉 is divided into terminological sentences
and assertional sentences. If C and D are concepts, and R and S are roles, then C v̇ D, C =̇ D,
R v̇ S, and R =̇ S are terminological sentences. If C is a concept, R is a role, and a, b are
individual objects then a ∈ C and (a, b) ∈ R are assertional sentences. A knowledge base is
a finite set of terminological and assertional sentences. The set of assertional sentences of a
knowledge base is usually called the ABox . The set of terminological sentences of a knowledge
base is called the TBox . We say, a symbol S0 uses a symbol S1 in a TBox T directly if and only
if T contains a sentence of the form S0 =̇ E or S0 v̇ E such that S1 occurs in E. A symbol S0

uses Sn if and only if there is a chain of symbols S0, . . . , Sn such that Si uses Si+1 directly, for
every i, 1 ≤ i ≤ n−1. A knowledge base Γ contains a terminological cycle if and only if some
symbol uses itself in the TBox of Γ. Commonly, the following restrictions are imposed on the set
of admissible terminological sentences in knowledge bases [123]:

• The concepts on the left-hand sides of terminological sentences have to be concept symbols,

• a concept symbol may occur at most once on the left-hand side of a terminological sentence,
and

• there are no terminological cycles.

A knowledge base obeying these restrictions will be called a descriptive knowledge base. In a
descriptive knowledge base terminological sentences A v̇ C and P v̇ R are called concept and
role specialisations, respectively. A =̇ C is a concept definition and A is a defined concept .
Similarly, P =̇ R is a role definition and P is a defined role.

The semantics of the terminological logic U is defined by a terminological interpretation which
is a pair (D, v) consisting of a domain D and an interpretation function v. It maps the object
symbols to elements of D, concept symbols to subsets of D and the role symbols to subsets of
D×D. It is a standard requirement that v obeys the unique name assumption, that is, v(a) 6= v(b)
holds for every pair of object symbols a 6= b ∈ O.
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The interpretation function v extends in a natural way to complex concepts and roles:

v(>) = D
v(⊥) = ∅

v(C uD) = v(C) ∩ v(D)
v(C tD) = v(C) ∪ v(D)

v(¬C) = D \ v(C)
v(∀R.C) = {d ∈ D | e ∈ v(C) for all e with (d, e) ∈ v(R)}
v(∃R.C) = {d ∈ D | e ∈ v(C) for some e with (d, e) ∈ v(R)}
v(∃≥nR) = {d ∈ D | |{e | (d, e) ∈ v(R)}| ≥ n}
v(∃≤nR) = {d ∈ D | |{e | (d, e) ∈ v(R)}| ≤ n}

v(∃≥nR.C) = {d ∈ D | |{e | (d, e) ∈ v(R) ∧ e ∈ v(C)}| ≥ n}
v(∃≤nR.C) = {d ∈ D | |{e | (d, e) ∈ v(R) ∧ e ∈ v(C)}| ≤ n}
v(R=S) = {d ∈ D | ∀e: (d, e) ∈ v(R)↔ (d, e) ∈ v(S)}
v(∃BU :C) = {d ∈ D | e ∈ v(C) for some e with (d, e) ∈ v(U)}

v(5) = D ×D
v(4) = ∅
v(id) = {(d, d) ∈ D ×D | d ∈ D}

v(R u S) = v(R) ∩ v(S)
v(R t S) = v(R) ∪ v(S)
v(R ◦ S) = {(d, e) ∈ D ×D | ∃c: (d, c) ∈ v(R) ∧ (c, e) ∈ v(S)}
v(¬R) = (D ×D) \R
v(R−1) = {(d, e) ∈ D ×D | (e, d) ∈ v(R)}
v(R+) = v(R)+

v(R�C) = {(d, e) ∈ v(R) | d ∈ v(C)}
v(R�C) = {(d, e) ∈ v(R) | e ∈ v(C)}

v(⊆ RS) = {(d, e) ∈ D ×D | ∀c: (d, c) ∈ v(R)→ (e, c) ∈ v(S)}
v(⊇ RS) = {(d, e) ∈ D ×D | ∀c: (e, c) ∈ v(S)→ (d, c) ∈ v(S)}
v(U u V ) = v(U) ∩ v(V )

Let (D, v) be a terminological interpretation. The satisfiability relation |= is defined by:

(D, v) |= a ∈ C iff v(a) ∈ v(C)
(D, v) |= (a, b) ∈ R iff (v(a), v(b)) ∈ v(R)
(D, v) |= C v̇ D iff v(C) ⊆ v(D)
(D, v) |= C =̇ D iff v(C) = v(D)
(D, v) |= R v̇ S iff v(R) ⊆ v(S)
(D, v) |= R =̇ S iff v(R) = v(S)

Let Γ be a knowledge base. We say (D, v) satisfies Γ, written (D, v) |= Γ, if (D, v) satisfies every
sentence in Γ. In this case, (D, v) is a (terminological) model of Γ. We say a knowledge base Γ
entails a sentence α, written Γ |= α, if every model of Γ satisfies α.
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An occurrence of a subexpression is a positive occurrence if it is one inside the scope of an
even number of (explicit or implicit) negations (complements), and an occurrence is a negative
occurrence if it is one inside the scope of an odd number of negations. For example, both
occurrences of the subformula ¬C u D in (∃R−1.(¬C uD)) u (∀R t S.(¬C uD)) have positive
polarity, R−1 has positive polarity, and R t S has negative polarity.

A concept C is coherent or satisfiable if there exists a terminological interpretation (D, v) such
that v(C) is non-empty. Otherwise, C is incoherent or unsatisfiable . A concept C is coherent
with respect to Γ if there exists a terminological model (D, v) of Γ such that v(C) is non-empty.

The basic inference services provided by terminological systems can be classified as follows: (i)
subsumption of concepts: decide whether ∅ |= C v̇ D holds for concepts C and D in which case D
subsumes C; (ii) subsumption of concepts with respect to a TBox T : decide whether T |= C v̇ D
holds; (iii) equivalence of concepts (with respect to a TBox T ): decide whether C subsumes D
and D subsumes C at the same time for two concepts C and D (with respect to a TBox T ); (iv)
classification of a TBox T : decide for all concept symbols A and B occurring in T whether A
subsumes B or B subsumes A with respect to T ; (v) satisfiability of a concept (with respect to a
TBox T ): decide for a concept C whether it is satisfiable (with respect to T ); (vi) consistency of
an ABox A with respect to a TBox T : decide whether the knowledge base A ∪ T is satisfiable;
(vii) instance checking : decide whether a given a knowledge base Γ entails a given assertional
sentence of the form a ∈ C; (viii) realization: compute for an object symbol a in a knowledge
base Γ the set of most specific (with respect to the subsumption relation) concept symbols C
such that Γ |= a ∈ C. (ix) retrieval : compute for a given concept C in a knowledge base Γ
those object symbols a such that Γ entails a ∈ C. All these inferential services can be realized
by satisfiability tests for a knowledge base. For example, to determine whether T |= C v D
holds, we test the satisfiability of T ∪ {a ∈ C, a ∈ ¬D} where a is some arbitrary object symbol.
Note that all these inferential services are restricted to the consideration of concepts and objects.
Although it is straightforward to define inferential services for roles in analogy to (i)–(ix), there
are computational problems with their realization in terminological systems.

Schild [119] has shown that the subsumption problem for a sublanguage of U containing
only role intersection, role complement, role composition, and the identity role, is undecidable.
Schmidt-Schauß [122] has shown that the subsumption problem for a sublanguage of U containing
only concept intersection, universal and existential restrictions, role composition, and role value
maps is undecidable. From the literature on extended modal logics and algebraic logic it is
known that role composition and role complement together with role intersection or union lead
to undecidability [2]. Since decidability of the inferential services is one of the major design
goals of terminological systems, the negative results by Schild and Schmidt-Schauß led to most of
the role-forming operators, terminological sentences concerning roles, and all inferential services
concerning roles to be abandoned.

The description logic ALC is the sublanguage of U containing the top and bottom concept,
concept complement, concept intersection, concept union), universal restriction, and existential
restriction. In the subsequent sections we focus on a language which we call ALB (short for
‘attribute language with Boolean algebras on concepts and roles’). It extends ALC with the
top role, role complement, role intersection, role union, role converse, role value maps, domain
restriction, and range restriction. For ease of presentation we consider only the consistency test
operation for knowledge bases. As mentioned above this does no restrict the generality of the
results.
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4.2 ALB and DL-clauses

Before we define the translation of knowledge bases over ALB to first-order logic, we will first
show that all concepts can be transformed into negation normal form. We let the negation normal
form nnf(E) of an ALB expression E be obtained by the following rewrite rules:

¬> ⇒ ⊥ ¬¬E ⇒ E ¬∀R.C ⇒ ∃R.¬C
¬5 ⇒ 4 ¬(E u F )⇒ ¬E t ¬F ¬∃R.C ⇒ ∀R.¬C
¬⊥ ⇒ > ¬(E t F )⇒ ¬E u ¬F ¬(R�C)⇒ ¬R t (5�¬C)

¬4 ⇒ 5 ¬(R−1)⇒ (¬R)−1 ¬(R�C)⇒ ¬R t (5�¬C).

By a basic concept we mean a concept symbol, >, ⊥, or its negation and by a basic role we mean
a role symbol, 5, 4, its negation or its converse. The following rewrite rules can be used to
ensure that the role converse operator is only applied to basic roles.

(R u S)−1 ⇒ R−1 u S−1 (R u S)�C ⇒ R�C u S�C (R u S)�C ⇒ R�C u S�C
(R t S)−1 ⇒ R−1 t S−1 (R t S)�C ⇒ R�C t S�C (R t S)�C ⇒ R�C t S�C

(¬R)−1 ⇒ ¬(R−1) (R�C)−1 ⇒ R−1�C (R�C)−1 ⇒ R−1�C.

ALB expressions can be further simplified according to the following rewrite rules.

C u > ⇒ C R u5 ⇒ R ∀R.> ⇒ > R�> ⇒ R

C t > ⇒ > R t5 ⇒ 5 ∃R.⊥ ⇒ ⊥ R�⊥ ⇒ 4
C u ⊥ ⇒ ⊥ R u4 ⇒ 4 ∀4.C ⇒ > R�> ⇒ R

C t ⊥ ⇒ C R t4 ⇒ R ∃4.C ⇒ ⊥ R�⊥ ⇒ 4
4�C ⇒4 4�C ⇒4 5−1 ⇒ 5 4−1 ⇒4

R−1−1 ⇒ R.

The simplification of an expression E is denoted by smp(E). Although the decision procedure
we present does not require that ALB expressions are in simplified form, the application of
simplification does have an impact on the performance of the procedure as is shown in Chapter 6.

Lemma 4.1. Let (D, v) be a terminological interpretation and E be an ALB expression. Then
v(E) = v(nnf(E)) and v(E) = v(smp(E)).

The definition of the translation mapping π of concepts and roles of ALB to first-order for-
mulae follows the definition of the semantics. With every concept symbol A ∈ C and every role
symbol P ∈ R we uniquely associate a unary predicate symbol pA and a binary predicate symbol
pP , respectively. Then π is defined as follows:

π(A,X) = pA(X) π(P,X, Y ) = pP (X,Y )

π(>,X) = > π(5,X, Y ) = >
π(⊥,X) = ⊥ π(4,X, Y ) = ⊥

π(¬C,X) = ¬π(C,X) π(¬R,X, Y ) = ¬π(R,X, Y )
π(C uD,X) = π(C,X) ∧ π(D,X) π(R u S,X, Y ) = π(R,X, Y ) ∧ π(S,X, Y )
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π(C tD,X) = π(C,X) ∨ π(D,X) π(R t S,X, Y ) = π(R,X, Y ) ∨ π(S,X, Y )
π(∀R.C,X) = ∀y:π(R,X, y)→ π(C, y) π(R�C,X, Y ) = π(R,X, Y ) ∧ π(C,X)
π(∃R.C,X) = ∃y:π(R,X, y) ∧ π(C, y) π(R�C,X, Y ) = π(R,X, Y ) ∧ π(C, Y )

π((R = S),X) = ∀y:π(R,X, y)↔ π(R,X, y) π(R−1,X, Y ) = π(R,Y,X).

X and Y are meta-variables for variables and constants. The translation morphism Π maps ALB
sentences to first-order logic.

Π(C v̇ D) = ∀x:π(C, x)→ π(D,x) Π(R v̇ S) = ∀x, y:π(R,x, y)→ π(S, x, y)
Π(C =̇ D) = ∀x:π(C, x)↔ π(D,x) Π(R =̇ S) = ∀x, y:π(R,x, y)↔ π(S, x, y)
Π(a ∈ C) = π(C, a) Π((a, b) ∈ R) = π(R, a, b).

For all sentences α, Π(α) is a closed first-order formula. Finally, the extension of Π to (finite)
sets of sentences maps knowledge bases to a conjunction of first-order formulae. Note that in the
absence of id and number restrictions, the unique name assumption does not affect the satisfiability
of a knowledge base. Therefore, it is not necessary to incorporate formulae resulting from the
translation of the unique name assumption into Π.

Lemma 4.2. Let Γ be a knowledge base and α a sentence. Then Γ entails α if and only if Π(Γ)
entails Π(α) (in first-order logic).

Proof. Straightforward.

To transform the first-order formulae resulting from the translation of ALB knowledge bases to
clausal form, we make use of a structural transformation. Note that the translation Π preserves
the structure of sentences, concepts, and roles. Thus, every occurrence of a concept or role in
a knowledge base Γ is associated with a position in Π(Γ). Let Posr(ϕ) be the set of positions
of subformulae of ϕ corresponding to positions of non-atomic concepts and non-atomic roles in
the knowledge base Γ. By Ξ we denote the transformation taking Π(Γ) to the definitional form
DefPosr(Π(Γ))(Π(Γ)) of Π(Γ). We assume that the variable ordering in a literal Qλ(x, y) introduced
by Ξ follows the convention we have used in the definition of π, that is, for a subformula like
R(x, y) ? S(x, y) associated with R ? S and a subformula like R(y, x) associated with R−1 we
introduce Qλ(x, y) (not Qλ(y, x)).

Note that it is not necessary for the following considerations that Defλ(ϕ) depends on the
polarity of ϕ. It is admissable to use Defλ(ϕ) = Def+λ (ϕ) ∧Def−λ (ϕ) in all cases. Recall that for
identical subformulae only one new predicate symbol needs to be introduced. The decidability
result we present would still apply.

We now characterise the class of clauses which are the result of translating ALB knowledge
bases to clausal form. These clauses are DL-clauses. We will show that ordered resolution
and ordered factoring with respect to any ordering �COV compatible with a particular complexity
measure will result in clauses which are again DL-clauses. Furthermore, for a finite set of predicate
and function symbols, the set of (non-variant) clauses is finitely bounded. So, saturation (up to
redundancy) of a set of DL-clauses is guaranteed to terminate, producing either the empty clause,
or a finite saturated set not containing the empty clause.

Let C be a clause and t be compound term in C. t is called (variable) embracing if for every
L′ in C, V(L′) ∩ V(t) 6= ∅ implies V(L) ⊆ V(t). A literal L in C is called (variable) embracing if
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(i) for every L′ in C, V(L′) ∩ V(L) 6= ∅ implies V(L′) ⊆ V(L) (that is, embracing literals contain
all variables occurring in their split component of the clause), and (ii) if L contains a compound
term t, then t is embracing.

Recall, that a literal L is singular if it contains no compound term and V(L) is a singleton,
otherwise it is non-singular. A literal is clean if it is either a ground literal or there are no
occurrences of constant symbols in it. A literal is flat if it is non-ground and contains no compound
term.

Let Γ be a knowledge base. The first column of Table 4.1 lists all possible forms of subformulae
in ΞΠ(Γ) and the second column list the corresponding clausal form. Recall the definition of a
regular literal from Definition 3.12. In the context of this chapter a regular literal has either no
compound term arguments, or if it does, then there is a compound term argument which contains
all the variables of the literal and does not itself have a compound term argument. We will show
that all clauses in Table 4.1 are DL-clauses.
Definition 4.3 (DL-literals).
A literal L is a DL-literal iff

1. L is regular,

2. L is either monadic or dyadic and contains at most 2 variables,

3. L is ground whenever L contains a constant symbol, and

4. the maximal arity of function symbols in L is 1.

Definition 4.4 (DL-clause).
A clause C is a DL-clause iff

1. if C contains a compound term t, then t is embracing,

2. C is ground whenever C contains a constant symbol,

3. all literals in C are DL-literals, and

4. the argument multisets of all flat, dyadic literals coincide.

Property (1) is actually a restriction of property (3): the literals r(x, y) and r(x, f(x)) are DL-
literals, but in the clause

{r(x, y), r(x, f(x))}
the term f(x) is not embracing.

Property (2) further refines property (3) in the presence of ground literals: the literals p(x)
and q(a) are both DL-literals, but the clause

{p(x), q(a)}
is not a DL-clause, since the first literal is not ground although the clause contains a constant
symbol.

Property (4) excludes clauses like {p(x, x), q(x, y)} which do not occur in Table 4.1. The
problem is that both literals are maximal with respect to any ordering which is stable under
substitutions. Nevertheless, in order to avoid possibly unbounded chains of variables across
literals we need to restrict resolution inferences to the literal q(x, y). By contrast, clauses like

{p(x, x), q(x, x)} and {p(x, y), q(x, y)},
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TBox concept definitions/restrictions and additional definitions
∀x: p0(x)↔ ¬p1(x) {{¬p0(x)

∗,¬p1(x)
∗}, {p0(x)

∗, p1(x)
∗}}

∀x: p0(x)↔ (p1(x) ∧ p2(x)) {{¬p0(x)
∗, p1(x)

∗}, {¬p0(x)
∗, p2(x)

∗},
{¬p1(x)

∗,¬p2(x)
∗, p0(x)

∗}}
∀x: p0(x)↔ (p1(x) ∨ p2(x)) {{¬p0(x)

∗, p1(x)
∗, p2(x)

∗}, {¬p1(x)
∗, p0(x)

∗},
{¬p2(x)

∗, p0(x)
∗}}

∀x: p0(x)↔ (∀ y: p1(x, y)) {{¬p0(x), p1(x, y)
∗}, {¬p1(x, f(x))∗, p0(x)}}

∀x: p0(x)↔ (∃ y: p1(x, y)) {{¬p0(x), p1(x, f(x))∗}, {¬p1(x, y)
∗, p0(x)}}

∀x: p0(x)↔ (∀ y: p1(x, y)↔ p2(x, y)) {{¬p0(x),¬p1(x, y)∗, p2(x, y)∗},
{¬p0(x),¬p2(x, y)∗, p1(x, y)∗},
{¬p1(x, f(x))∗,¬p2(x, f(x))∗, p0(x)},
{p1(x, f(x))∗, p2(x, f(x))∗, p0(x)}}

∀x: p0(x)→ p1(x) {{¬p0(x)
∗, p1(x)

∗}}
∀x: (¬)p0(x) {{(¬)p0(x)∗}}
TBox role definitions/restrictions and additional definitions
∀x, y: p0(x, y)↔ ¬p1(x, y) {{¬p0(x, y)

∗,¬p1(x, y)
∗}, {p0(x, y)

∗, p1(x, y)
∗}}

∀x, y: p0(x, y)↔ (p1(x, y) ∧ p2(x, y)) {{¬p0(x, y)∗, p1(x, y)∗}, {¬p0(x, y)∗, p2(x, y)∗},
{¬p1(x, y)

∗,¬p2(x, y)
∗, p0(x, y)

∗}}
∀x, y: p0(x, y)↔ (p1(x, y) ∨ p2(x, y)) {{¬p0(x, y)

∗, p1(x, y)
∗, p2(x, y)

∗},
{¬p1(x, y)

∗, p0(x, y)
∗}{¬p2(x, y)

∗, p0(x, y)
∗}}

∀x, y: p0(x, y)↔ p1(y, x) {{¬p0(x, y)
∗, p1(y, x)

∗}, {¬p1(y, x)
∗, p0(x, y)

∗}}
∀x, y: p0(x, y)↔ (p1(x, y) ∧ p2(x)) {{¬p0(x, y)

∗, p1(x, y)
∗}, {¬p0(x, y)

∗, p2(x)
∗},

{¬p1(x, y)
∗,¬p2(x)

∗, p0(x, y)
∗}}

∀x, y: p0(x, y)↔ (p1(x, y) ∧ p2(y)) {{¬p0(x, y)
∗, p1(x, y)

∗}, {¬p0(x, y)
∗, p2(y)

∗},
{¬p1(x, y)

∗,¬p2(y)
∗, p0(x, y)

∗}}
∀x, y: p0(x, y)↔ p2(x) {{¬p0(x, y)

∗, p2(x)}, {¬p2(x), p0(x, y)
∗}}

∀x, y: p0(x, y)↔ p2(y) {{¬p0(x, y)
∗, p2(y)}, {¬p2(y), p0(x, y)

∗}}
∀x, y: p0(x, y)↔ (p1(x, y)→ p2(y)) {{¬p0(x, y)∗,¬p1(x, y)∗, p2(y)}, {p0(x, y)∗, p1(x, y)∗},

{¬p2(y), p0(x, y)
∗}}

∀x, y: p0(x, y)→ p1(x, y) {{¬p0(x, y)
∗, p1(x, y)

∗}}
∀x: (¬)p0(x, y) {{(¬)p0(x, y)∗}}
ABox
(¬)A(a) {{(¬)A(a)∗}}
(¬)P (a, b) {{(¬)P (a, b)∗}}

Table 4.1: Clausal form of formulas in definitional form
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are DL-clauses. Note that the clause {p(x, x), q(x, y)} belongs to the class One-Free (which is used
by Tammet to describe a decidable subclass of first-order logic into which ALC can be translated).
It is the absence of such clauses that allows us to rely on an ordering which is stable with respect
to substitution to obtain a decision procedure via ordered resolution. The major advantage is
that the full power of redundancy techniques can be used in the framework we adopt.

It follows that every DL-clause is a strongly 1-regular clause. All indecomposable, non-ground
DL-clauses are strongly CDV-free. Thus, we will restrict ourselves to indecomposable DL-clauses
by applying the “Split” expansion rule eagerly during any derivation.

Table 4.1 contains a list of all possible subformulae of ΞΠ(Γ) and the corresponding sets of
clauses.

Lemma 4.5. Let Γ be a knowledge base. Every clause in the clausal form of ΞΠ(Γ) is a DL-
clause.

Proof. Straightforward.

Lemma 4.6. Let t = f(t1, . . . , tn) be a regular term. For any function symbol g occurring in
{t1, . . . , tn}, the arity of g is smaller than the arity of f .

Proof. The cases ‘t is a constant’ and ‘t is not a constant but g is’, are easy. Suppose g is not a
constant symbol, that is, there exists a strict subterm s of t of the form s = g(s1, . . . , sm) with
m > 0. Since t is regular, t dominates s. That means s1 = t1, . . . , sm = tm and m ≤ n holds.
Suppose m = n holds. Since s is a subterm of some ti, 1 ≤ i ≤ n, and ti is a strict subterm of
s, we have to conclude that ti is a strict subterm of itself. Of course, this is impossible. Hence
m < n.

Lemma 4.7. Let L be a regular literal and σ a substitution such that

• Lσ is regular and

• the maximal arity of all function symbols in Lσ is 1.

Then the depth of Lσ is less than or equal to 3.

Proof. All argument terms of regular literals are regular terms. According to Lemma 4.6, if a term
g(s1, . . . , sm) is a strict subterm of some regular term t = f(t1, . . . , tn), then arity(g) < arity(f).
But as any function symbol has either arity 0 or 1, the arguments of any compound term t are
either constants or variables. This implies dp(Lσ) ≤ 3.

This lemma includes the case that σ is the identity substitution.

Lemma 4.8. The depth of an indecomposable DL-clause C is less than or equal to 3 and the
number of variables in C is less than or equal to 2.

Proof. By Lemma 4.7 the depth of a DL-clause is less than or equal to 3. It remains to exhibit
the bound on the number of variables in C. If C is ground, then the lemma holds trivially. If
C is non-ground, then it does not contain any constant symbol. Therefore, every literal in C
is non-ground. If C contains a compound term t, then by t = f(x) and x is the only variable
in C, since t is embracing. Suppose C does not contain a compound term. If C contains only
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monadic literals, then these literals are flat and contain exactly one variable. So, C contains one
variable. Finally, if C contains dyadic literals, then these literals are flat and the multiset of
arguments coincide. That is, there are variables x and y and for all dyadic literals L in C we
have V(L) = {x, y}. Any monadic literal L′ in C either has the argument x or the argument y.
Thus, C contains two variables.

Lemma 4.8 also holds if we consider condensed clauses instead of indecomposable clauses.

Corollary 4.9. Over a finite signature there are only a finitely bounded number of indecompos-
able DL-clauses (modulo variable renaming).

4.3 Resolution and factoring on DL-clauses

Next we investigate the closure of DL-clauses under resolution and factoring. It is obvious that
using unrefined resolution the resolvent of two DL-clauses is not a DL-clause in general. The size
and depths of derived clauses is not bounded. Since the class of DL-clauses is a subclass of KC,
we could make use of the results obtained in Chapter 3. However, the additional properties of
DL-clauses enable us to show that a more general class of ordering refinements provide a decision
procedure for the class of DL-clauses.

For every literal L, let the complexity measure cL be the multiset of arguments of L. We
define the strict subterm ordering �s on terms by s �s t if and only if t is a strict subterm
of s. The relation �s is a partial ordering on terms. In addition, �s is stable with respect to
substitutions. We compare complexity measures by the multiset extension of the strict subterm
ordering �s

mul. The ordering �COV is any admissible ordering compatible with the ordering �s
mul

on the complexity measure cL. In Table 4.1 all literals marked by ∗ are potentially maximal.

Lemma 4.10. Let C = {L1} ∪D be an indecomposable DL-clause. If L1 is �COV-maximal with
respect to D and contains no compound term, then no literal in D contains a compound term.

Proof. Since L1 does not contain a compound term, the arguments of L1 are either constants or
variables. If L1 is ground, then the set D is empty and the lemma is trivially true. Otherwise
all the arguments of L1 are variables. Now suppose there is some literal L2 ∈ D containing a
compound term t2 = f(x2). Since C is a DL-clause, f(x2) is embracing, that is, all variables of
L1 are subterms of t2. Consequently, L2 �COV L1, contradicting the maximality of L1.

Lemma 4.11. Let C = {L1}∪D be an indecomposable DL-clause. If L1 is a flat, monadic literal
which is �COV-maximal with respect to D, then there is no (flat) dyadic literal in D.

Proof. The literal L1 has the form p(x) where x is a variable. By the previous lemma, D contains
no compound term. Suppose there is a flat, dyadic literal in D, that is, there is a literal L2 of the
form q(x1, x2) where at least one of the xi is a variable. Since C is an indecomposable DL-clause,
at least one of x1 and x2 is identical to x, that is, argmul(L1) ⊂ argmul(L2) holds. Consequently,
we have L2 �COV L1, contradicting the assumption that L1 is maximal.

Lemma 4.12. Let C = {L1} ∪D be an indecomposable DL-clause. If L1 is �COV-maximal with
respect D, then L1 is �Z-maximal with respect to D.
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Proof. In essence by the definition of �COV . If L1 is a ground literal, then C is a singleton set and
the lemma is obviously true. In the following we assume that C contains no constants. Suppose
there is a literal L2 in D. It is straightforward to check that the only possibilities for L2 �Z L1

to hold are:

1. argset(L2) = {x, y} and argset(L1) = {x} for variables x and y. We have to distinguish
two cases: Either L1 has the form p(x) or the form p(x, x) for some predicate symbol
p. In the first case L2 �COV L1 holds, contradicting our assumption that L1 is maximal
with respect to �COV . In the second case L1 and L2 are both flat, dyadic literals, but
argmul(L2) 6= argmul(L1) contradicting that C is a DL-clause.

2. argset(L2) ⊃ {f(x)} and argset(L1) = {x} for some function symbol f and variable x. So,
L2 contains an argument which is greater than any argument of L1 with respect to the
strict subterm ordering. This contradicts that L1 is maximal with respect to �COV .

Note that �COV is a strict refinement of �Z . For example, in the clause

{p(x, f(x)), q(f(x))}
both literals are maximal with respect to �Z , but only the first literal is maximal with respect
to �COV .

Lemma 4.12 shows that �COV satisfies Condition 3.3. By Theorem 3.33 this is already sufficient
to show that ordered resolution and ordered factoring based on �COV provides a decision procedure
for the class of DL-clause. However, Theorem 3.33 does not ensure that the conclusion of an
inference step by ordered resolution of two DL-clauses is again a DL-clause. This will be our
concern in the remainder of this section.

We know that every indecomposable, 1-regular clause C contains a literal L which dominates
(with respect to �Z) all the literals in C. In particular, L contains all the variables of C. It
follows by Lemma 4.12, that all �COV-maximal literals in an indecomposable DL-clause C contain
all the variables occurring in C.

Corollary 4.13. Let C = {L} ∪ D be an indecomposable DL-clause such that L is maximal in
C with respect to �COV. Then V(L) = V(C).

Lemma 4.14. Let C = {L1, L2} ∪D be an indecomposable DL-clause such that L1 and L2 are
unifiable with most general unifier σ. The split components of ({L1} ∪D)σ are DL-clauses.

Proof. Since C is not a unit clause, it contains at least two literals and it contains no constant
symbols. Let E be a split component of ({L1} ∪ D)σ. We show that E satisfies the properties
(1)–(4) of Definition 4.4:

1. By Lemma 3.20 a factor of a 1-regular clause is again 1-regular. By Lemma 3.17(3) and the
fact that the arity of function symbols is at most 1, we obtain that any compound term is
embracing in E.

2. Since C contains no constant symbols, σ will not introduce any constant symbols. Thus, E
does not contain any constant symbols.

3. We have to show that all literals in E are DL-literals. Because E is a split component of a
factor of C, we have |V(E)| ≤ |V(C)| ≤ 2, and E contains no predicate symbols or function
symbols which do not already occur in C. Since E is 1-regular, all literals in E are regular.
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4. Finally, we must show that all flat, dyadic literals in E contain the same multiset of argu-
ments. Suppose L3σ and L4σ are flat, dyadic literals in E. We know that the multiset of
arguments of L3 and L4 are equal. Thus, the multisets of arguments of L3σ and L4σ are
equal as well.

Lemma 4.15. Let C1 = {A1}∪D1 and C2 = {¬A2}∪D2 be two variable-disjoint, indecomposable
DL-clauses such that A1 and A2 are unifiable with most general unifier σ, and let A1σ and ¬A2σ
be �COV-maximal with respect to D1σ and D2σ, respectively. The split components of (D1 ∪D2)σ
are DL-clauses.

Proof. Let E be a split component of (D1∪D2)σ. We show that E satisfies the properties (1)–(4)
of Definition 4.4:

1. By Lemma 4.12, A1 and ¬A2 are �Z-maximal in C1 and C2, respectively. By Lemma 3.17(3)
and the fact that the arity of function symbols is at most 1, we obtain that any compound
term is embracing in E.

2. By Lemma 4.13, A1 and ¬A2 contain all variables occurring in C1 and C2, respectively.
Suppose one of A1 or ¬A2 is a ground literal. Then A1σ and ¬A2σ as well as D1σ and D2σ
are ground. The split component E contains a single ground literal. Otherwise, neither C1

and C2 contains a constant. Consequently, E will not contain a constant.

3. The proof that E satisfies property (3) is analogous to case 3 of Lemma 4.14.

4. Finally, we have to show that all flat, dyadic literals in E contain the same multiset of
arguments. If either A1 or ¬A2 is a ground literal, then E is a ground clause and the
condition is trivially satisfied. Depending on whether A1 or ¬A2 contain a compound term
we distinguish the following cases:

(a) Suppose neither A1 nor ¬A2 contains a compound term, that is, all the arguments of
A1 and ¬A2 are variables. Without loss of generality we can assume that |V(A1)| ≥
|V(¬A2)| holds. It is straightforward to check that we can also assume for σ that
D(σ) = V(A1) and C(σ) = V(¬A2) holds. Thus, A1σ is identical to A2.
Suppose A1σ = A2 is a flat, dyadic literal. Then A1 is a flat, dyadic literal as well.
Let L3 be a flat, dyadic literal in D1. L3 contains the same arguments as A1, so L3σ
contains the same arguments as A1σ, ¬A2σ, and any flat dyadic literal in D2σ = D2.
Suppose ¬A2 and A1 are both monadic literals. According to Lemma 4.11, there can
be no flat, dyadic literals in D1 and D2. So, there are no flat, dyadic literals in E.

(b) Suppose only one of A1 or ¬A2 contains a compound term. Without loss of generality
we assume that A1 contains a compound term, that is, A1 contains a functional term
of the form f(x) where x is a variable. x is the only variable occurring in C1. Again,
it is not difficult to verify that V(C(σ)) = {x} holds. Hence, x is the only variable
occurring in E and the multiset of arguments of any flat, dyadic literal in E is {x, x}.

(c) Suppose A1 and ¬A2 each contain a compound term, that is, A1 = p(s1, . . . , sn),
n ≤ 2, and there is some i, 1 ≤ i ≤ n, such that si = f(xi), A2 = p(t1, . . . , tn), n ≤ 2,
and there is some j, 1 ≤ j ≤ n, such that tj = g(yj). Since A1 and A2 are unifiable,
regular literals, we know that i = j and f = g holds. Assume that σ has the form
{yi/xi}. Since xi is also the only variable occurring in (D1 ∪ D2)σ, the multiset of
arguments of any flat, dyadic literal in E is {xi, xi}.
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Theorem 4.16.
Let Γ be an ALB knowledge base and N be the clausal form of ΞΠ(Γ). Then any derivation from
N by ordered resolution and (ordered) factoring based on �COV terminates.

Proof. Lemma 4.15 states that if we apply resolution to �COV-maximal literals only and split the
resulting clauses, then the components of any resolvent of two indecomposable, DL-clauses are
DL-clauses also. Lemma 4.14 states the same for factorisation. Therefore, any split component of
a clause derivable from N will be a DL-clause. Since the “Split” expansion rule is applied eagerly
before any further application of “Deduce”, any decomposable conclusion of an inference step will
be decomposed into its split components before further application of inference rules. Therefore,
before an application of “Deduce” any set N ′ of clauses in the theorem proving derivation consists
only of DL-clauses.

By Corollary 4.9 there is only a finitely bounded number of indecomposable DL-clauses modulo
variable renaming. Since “Delete” is applied to the clause set to eliminate variant clauses, this
means any derivation is finitely bounded.

4.4 Variations of ALB
The notion of DL-literals is quite liberal compared to which kind of literals actually occur in
Table 4.1. For example, p(x, x) and q(f(x), g(x)) are DL-literals. But in none of the literals in
Table 4.1 does a variable occur twice in a flat literal nor do two compound terms occur in one
literal. If such literals occur in a �COV-derivation, they are generated by inference steps. For
example, a �COV-factor of the clause

{p(x, y), p(y, x), q(x, y)}
is

{p(x, x), q(x, x)}.
To determine the cases in which such clauses are generated, we take a closer look at part (4) of
the proof of Lemma 4.14.

Lemma 4.17. In the absence of the role converse operator in a knowledge base, the factoring
substitution will always be the identity substitution and flat, singular, dyadic literals do not occur.
Factoring can be reduced to detecting and (eagerly) deleting duplicate occurrences of literals in
clauses.

Proof. We analyse the relationship between the most general unifier σ and the literals L1 and L2

in a factoring inference step. The cases are:

1. Suppose neither L1 nor L2 contains a compound term, that is, all the arguments of L1 and
L2 are variables. We split this case into three further cases:

(a) Suppose L1 is a non-singular, flat, dyadic literal, that is, L1 has the form p(x, y) for
some predicate symbol p and variables x, y. Since all flat, dyadic literals contain the
same multiset of arguments, L2 has either the form p(x, y) or p(y, x). In the first case,
σ is the identity substitution and E is identical to {L1} ∪D. In the second case, we
can assume that σ has the form {y/x}. All the flat, dyadic literals in E have the form
q(x, x) where q is some predicate symbol.
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(b) Suppose L1 is a singular, flat, dyadic literal, that is, both L1 and L2 have the form
p(x, x) for some predicate symbol p and variable x. Then σ is the identity substitution.

(c) Finally, suppose L1 is a monadic literal. Again L2 has to be a monadic literal. Since
L1 and L2 are maximal in C, there is no dyadic literal in C (due to Lemma 4.11). So
L1 and L2 share the same variable and σ is the identity substitution.

2. Suppose only one of L1 or L2 contains a compound term. We show that this assumption
leads to a contradiction. Without loss of generality assume that L1 contains a compound
term. The literal L1 contains a functional term of the form f(x) where x is a variable.
The variable x is the only variable occurring in C. Since xσ can neither be a compound
term (due to Lemma 4.7), a constant (due to the absence of constants in C), nor a variable
different to x, σ is the identity substitution. As a consequence L2σ = L2 does not contain
a compound term and is not identical to L1σ = L1.

3. Suppose L1 and L2 each contain a compound term. Again it is straightforward to check
that σ has to be the identity substitution.

So, in all but one case the substitution σ is the identity substitution. Suppose a clause C does
not contain literals of the form q(x, x). A �COV-factor of C will contain such a literal if and only
if C contains literals of the form p(x, y) and p(y, x) for some predicate symbol p and variables x,
y. For all but two clauses in Table 4.1, the flat, dyadic literals of a clause do not only contain
the same multiset of argument, but identical terms occur at the same argument position in all
literals. It straightforward to check that the only two clauses violating this principle are the result
of the translation of a role term of the form R−1.

This motivates the introduction of the notion of fluted DL-literals and clauses. The next defini-
tions differ from Definitions 4.3 and 4.4 in (5), and (3) and (4), respectively.
Definition 4.18 (Fluted DL-literal).
A literal L is a fluted DL-literal iff

1. L is regular,

2. L is either monadic or dyadic and contains at most 2 variables,

3. L is ground whenever L contains a constant symbol,

4. the maximal arity of functions symbols in L is 1, and

5. there is at most one compound term t in L and t can only occur in the last argument
position of L.

Definition 4.19 (Fluted DL-clause).
A clause C is a fluted DL-clause iff

1. C is a 1-regular clause of grade k where k ≤ 2 holds,

2. C is ground whenever C contains a constant symbol,

3. all literals in C are fluted DL-literals, and

4. there exist distinct variables x and y such that all flat, dyadic literals in C are of the form
p(x, y) for some predicate symbol p.
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Except for the clauses which originate from the translation of converse role expressions the clauses
in Table 4.1 are fluted DL-clauses.

Preservation results similar to Lemma 4.14 and Lemma 4.15 can be shown for fluted DL-
clauses.

Lemma 4.20. Let C = {L1, L2} ∪D be an indecomposable, fluted DL-clause such that L1 and
L2 are unifiable with most general unifier σ, and let L1σ be �COV-maximal with respect to Dσ.
Then ({L1} ∪D)σ is a strict subclause of C and again a fluted DL-clause.

Proof. The first three items of the proof of Lemma 4.14 are still valid. Two additional items
need to be shown: (i) there are distinct variables x and y such that all flat, dyadic literals in D
have the form r(x, y) for some predicate symbol r, and (ii) compound terms occur only in the
last argument position of a literal. Depending on whether L1 or L2 contain a compound term we
distinguish the following cases:

1. Suppose neither L1 nor L2 contains a compound term, that is, all the arguments of L1 and
L2 are variables.

Suppose L1 is a non-singular, flat, dyadic literal, that is, L1 has the form p(x, y) for some
predicate symbol p and variables x, y. So, L2 is identical to L1, σ is the identity substitution,
E is identical to {L1} ∪D.

Suppose L1 and L2 are monadic literals. Since L1 and L2 are maximal in C, there is no
dyadic literal in C (due to Lemma 4.11). L1 and L2 share the same variable and σ is the
identity substitution.

2. Suppose only one of L1 or L2 contains a compound term. As before, this leads to a
contradiction.

3. Suppose L1 and L2 each contain a compound term. Again it is straightforward to check
that σ has to be the identity substitution.

Note that it is essential that we use ordered factoring in Lemma 4.20. For example, the clause
{p(x), r(x, x)} derived from {p(x), r(x, y), p(y)} by a factoring inference step on the atoms p(x)
and p(y) whose common instance is not �COV-maximal is not fluted.

Corollary 4.21. Let C2 be an ordered factor of an indecomposable, fluted DL-clause C1. Then
there exists a condensation of C1 that subsumes C2.

Lemma 4.22. Let C1 = {A1} ∪D1 and C2 = {¬A2} ∪D2 be variable-disjoint, indecomposable,
fluted DL-clauses such that A1 and A2 are unifiable with most general unifier σ, and let A1σ and
¬A2σ be �COV-maximal with respect to D1σ and D2σ, respectively. Then the split components of
(D1 ∪D2)σ are fluted DL-clauses.

Proof. The first three items of the proof of Lemma 4.15 remain valid. As for the previous lemma,
we still have to prove: (i) there are distinct variables x and y such that all flat, dyadic literals in
D have the form r(x, y) for some predicate symbol r, and (ii) compound terms occur only at the
final argument position of a literal. Depending on whether A1 or A2 contain a compound term
we distinguish the following cases:
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1. Suppose all the arguments of A1 and A2 are variables. Without loss of generality assume
that |V(A1)| ≥ |V(¬A2)| and A1σ = A2σ = A2.

Suppose A2σ = A2 is a flat, dyadic literal. So is A1. Let L3 be a flat, dyadic literal in D1.
L3 differs from A1 only in the predicate symbol, so the same holds for L3σ and A1σ.

Suppose A2σ = A2 is not a dyadic literal. So, both A1 and ¬A2 are monadic literals. By
Lemma 4.11, D1 and D2 do not contain flat, dyadic literals in D1 and D2. Hence, neither
does D.

2. Suppose only one of A1 or ¬A2 contains a compound term. Assume that A1 contains a
compound term of the form f(x). The variable x is the only variable occurring in C1. Again
it is straightforward to verify that x is the only variable occurring in D.

Suppose A2 is a monadic literal. By Lemma 4.11, there are no flat, dyadic literals in D2.
So there are no flat, dyadic literals in D2σ. Hence the flat, dyadic literals in D1σ remain
unchanged.

Suppose A2 is a dyadic literal and A2 has the form p(y, z) for distinct variables y and z.
Then A1 has the form p(x, f(x)). Thus, σ = {y/x, z/f(x)} and all instances L3σ of flat,
dyadic literals L3 are identical to A1. Thus, there are no flat, dyadic literals in D2σ, while
the flat, dyadic literals in D1σ remain unchanged.

3. Suppose A1 and A2 each contain a compound term, that is, A1 has the form p(x, f(x))
and A2 has the form p(y, f(y)). x is the only variable occurring in C1 and y is the only
variable occurring in C2. This implies there are no flat, dyadic literals in C1 and C2. As a
consequence there are no flat, dyadic literals in D.

Theorem 4.23.
Let Γ be a ALB knowledge base such that no role converse operator occurs in Γ and let N be the
clausal form of ΞΠ(Γ). Then any derivation from N by ordered resolution based on �COV (without
factoring) terminates.

Proof. If Γ contains no role converse operator, then all clauses in the clausal form N of Γ are
fluted DL-clauses. Lemma 4.20 and Lemma 4.22 show that all �COV-factors and �COV-resolvents
derived from N are again fluted DL-clauses. Corollary 4.21 shows we can replace the inference
rule of ordered factoring by condensation. However, condensation is already an integral part of
the “Deduce” expansion rule. The rest of the proof is as for Theorem 4.16.

We now take a closer look at those concept and role forming operators of U that have been
excluded from ALB. All concepts, roles, and bindings formed using operators of U not included
in ALB except for role closure can be translated to first-order logic as follows.

π(∃≥nR,X) = ∃y1, . . . yn :y1 6≈ y2 ∧ . . . ∧ yn−1 6≈ yn ∧R(X, y1) ∧ . . . ∧R(X, yn)
π(∃≤nR,X) = ∀y1, . . . , yn+1 :R(X, y1) ∧ . . . ∧R(X, yn+1)→ y1 ≈ y2 ∨ . . . ∨ yn ≈ yn+1

π(∃≥nR.C,X) = π(∃≥n(R�C),X)
π(∃≤nR.C,X) = π(∃≤n(R�C),X)
π(∃BU :C,X) = ∃y :π(U,X, y) ∧ π(C, y)
π(id,X, Y ) = (X ≈ Y )
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Positive occurrences
of R ◦ S

{{¬p0(x, y), pR(x, f(x, y))}, {¬p0(x, y), pS(f(x, y), y)}}

Negative occurrences
of R ◦ S

{{¬pR(x, z),¬pS(z, y), p0(x, y)}}

Positive occurrences
of (⊆ U V )

{{¬p0(x, y),¬pU (x, z), pV (y, z)}}

Negative occurrences
of (⊆ U V )

{{pU (x, f(x, y)), p0(x, y)}, {¬pV (y, f(x, y)), p0(x, y)}}

Positive occurrences
of (⊇ U V )

{{¬p0(x, y),¬pU (y, z), pV (x, z)}}

Negative occurrences
of (⊇ U V )

{{pV (y, f(x, y)), p0(x, y)}, {¬pU (x, f(x, y)), p0(x, y)}}

Table 4.2: Clausal form role composition and binding forming operators

π(R ◦ S,X, Y ) = ∃z :π(R,X, z) ∧ π(S, z, Y )
π(⊆ RS,X, Y ) = ∀z :π(R,X, z)→ π(S, Y, z)
π(⊇ RS,X, Y ) = ∀z :π(S, Y, z)→ π(R,X, z)

In the presence of id or number restrictions, we have to modify the translation Π to reflect the
unique name assumption. For a knowledge base Γ, the translation Π maps Γ to∧

a6≈b∈O

a 6≈ b ∧
∧
α∈Γ

Π(α).

The introduction of equality reasoning into our calculus goes beyond the techniques developed in
the previous chapters and sections.

However, it is possible to deal with knowledge bases containing negative occurrences of id
only. Bachmair, Ganzinger, and Voronkov [14] present a modification method for the elimination
of equality by the transformation of clauses. It follows from their results that, in our particular
case, the reflexivity of ‘≈’ is the only property of equality we need to obtain a complete calculus,
since (i) terms in the clausal form of ΞΠ(Γ) are flat, (ii) there are only negative occurrences
of equality atoms, (iii) the right-hand side of an equality atom is always a variable. Therefore,
transformations of the clauses to accommodate for monotonicity, symmetry, and transitivity
of equality are not required. Thus, it is sufficient to modify the translation Π to incorporate
∀x :x ≈ x without adding further inference rules like superposition to the calculus. The clauses
in the clausal form of ΞΠ(Γ) are again DL-clauses. For example,

{¬pi(x), x 6≈ y,¬r(x, y), q(y)}

reduces to
{¬pi(x),¬r(x, x), q(y)}

by an ordinary resolution inference step.
As far as role composition is concerned, we see in Table 4.2 that negative occurrences of R ◦S

lead to the introduction of clauses that do not contain an embracing literal. Similarly, for positive
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occurrences of (⊆ U V ) and (⊇ U V ). Such clauses do not belong to any of the decidable classes
we have considered thus far. We will reconsider these cases in Section 4.5.

Positive occurrences of R ◦ S, and negative occurrences of (⊆ U V ), and (⊇ U V ) introduce
clauses which are 2-regular with at most two variables. It is straightforward to modify Defini-
tion 4.3 to allow for function symbols of arity 2 and to modify property (1) of Definition 4.4 to
allow for 2-regular clauses with at most two variables. All the lemmata of Section 4.3 still hold for
this extended class of DL-clauses. For 2-regular clauses with more than one variable, a resolution
inference step between clauses of depth 3, like

{¬p(f(x1, x2), x2), q(f(x1, x2), x2)} and {p(f(y1, y2), g(y1))}
may produce a clause

{q(f(x1, g(x1)), g(x1))}
of depth greater than 3. Such a case cannot occur for the extended class of DL-clauses. Since
unary and binary function symbols never occur together in a clause of the clausal form of ΞΠ(Γ),
we can consider all clauses containing a unary function symbol as 1-regular and all clauses con-
taining a binary function symbol as 2-regular. Based on Corollary 3.43 we conclude that no
resolution inference steps between 1-regular and 2-regular clauses are possible. Consequently, we
are not able to derive clauses which contain a unary as well as a binary function symbol which
would be necessary for the generation of a 2-regular clause of depth greater than 3.

Let U− be the reduct of U without number restrictions, qualified number restrictions, and
role closure.

Theorem 4.24.
Let Γ be a knowledge base over U− such that id and expressions of the form (⊇ U V ) and (⊆ U V )
occur only negatively, and expressions of the form (R ◦ S) occur only positively. Let N be the
clausal form of ΞΠ(Γ). Then any derivation from N by ordered resolution and ordered factoring
based on �COV terminates.

4.5 A decision procedure for ALBD based on selection

In this section we describe an alternative decision procedure for a reduct of ALB. The procedure
is based on a particular selection function while there is no restriction on the ordering we use.
The derivations are in essence exactly as for tableaux-based approaches. However, compared to
tableaux-based approaches the procedure has the advantage that (i) it provides more flexibility
concerning the theorem proving strategy, and (ii) it allows the application of general redundancy
criteria.

We focus on descriptive knowledge bases Γ over the reduct of ALB without role complement,
role value maps, and top role. We call this reduct ALBD. An extension of this approach to
general knowledge bases is described in [84].

We assume, all expressions occurring in a knowledge base Γ are in negation normal form.
As only negative literals can be selected, it is necessary to transform the given knowledge base.

Formally, let D=̇(Γ) denote the set of symbols S0 ∈ C ∪ R such that Γ contains a terminological
sentence S0 =̇ E. We obtain the knowledge base Γ over (O,C,R) in the following way. Extend C
to C by adding a concept symbol A for every concept symbol A in D=̇(Γ) and role symbols P u
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and P d for every role symbol P in D=̇(Γ). We obtain Γ from Γ by the following transformation
steps:

1. Replace concept definitions A =̇ C, by A v̇ C and ¬A v̇ ¬C, and replace role definitions
P =̇ R, by P d v̇ R and R v̇ P u.

2. Replace every occurrence of a concept ¬A, for A in D=̇(Γ), by A.

3. Replace every positive occurrence of a role symbol P ∈ D=̇(Γ) by P d, and every negative
occurrence of P by P u.

4. For every concept symbol A in D=̇(Γ), add the terminological sentence A v̇ ¬A and add
for every role symbol P in D=̇(Γ), the terminological sentence P d v̇ P u.

5. Turn all concepts and roles in the resulting knowledge base into negation normal form.

Lemma 4.25. The knowledge base Γ is satisfiable if and only if Γ is satisfiable.

Proof. The proof is in two steps, twice exploiting the preservation of satisfiability and unsatisfi-
ability by structural renaming.

For any sentence S0 =̇ E we have v(S0) = v(E) for every interpretation (D, v). Therefore,
we can replace S0 on the right hand side of a terminological or assertional sentence in Γ by
E without affecting its satisfiability or unsatisfiability. The acyclicity of descriptive knowledge
bases ensures that by performing these replacements for all symbols in D=̇(Γ) we eventually
obtain a transformed knowledge base Γ1. No symbol in D=̇(Γ) occurs on the right hand side
of any terminological or assertional sentence of Γ1. Let S0 =̇ E be in Γ1 with S is in D=̇(Γ).
Suppose Γ′

2 = Γ1 \{S0 =̇ D} where D is the expression resulting from unfolding concept and role
definitions is satisfiable by (D, v′2). As Γ′

2 contains no occurrence of the concept symbol S, v(S)
is either undefined or has no effect on the satisfiability of Γ′

2. Define an interpretation (D, v1) for
Γ1 by v1(S1) = v′2(S1) for all symbols S1 6= S0 and v1(S0) = v′2(E). Thus, Γ is satisfiable if the
knowledge base Γ2 obtained from Γ1 by eliminating all terminological axioms S =̇ E such that S
is in D=̇(Γ) are satisfiable.

In the transformation of Γ1 to Γ2 we may have eliminated two terminological sentences S0 v̇ E
and S1 v̇ E with the same symbol on the right hand side. In the following we distinguish
between occurrences of E introduced by unfolding with respect to S0 v̇ E and those introduced
by unfolding with respect to S1 v̇ E.

Consider a concept D introduced into the knowledge base by unfolding a terminological sen-
tence A =̇ C (D need not be identical to C). Using the same renaming techniques used for
first-order formulae, we can replace all positive occurrences of D in the knowledge base by A and
add a concept restriction A v̇ D to the knowledge base. Occurrences of ¬D in Γ2 introduced by
unfolding A =̇ C are replaced by a new concept symbol A. We add a concept restriction A v̇ ¬D
to the knowledge base. We proceed until all (sub)concept introduced by the transformation of
Γ1 into Γ2 have been replaced. In the case of role definitions P =̇ R the procedure is slightly
different. Consider a role S introduced into the knowledge base by unfolding a sentence P =̇ R.
We replace all positive occurrences of S by P d and add a sentence P d v̇ R to the knowledge
base. We replace all negative occurrences of S by P u and add a sentence R v̇ P u. The resulting
knowledge base is Γ3. Again it is obvious that Γ3 is satisfiable if and only if Γ2 is satisfiable.
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No element d of the domain of a potential interpretation (D, v3) of Γ3 can be both in v3(A)
and v3(A), since d ∈ v3(A) implies d ∈ v3(D) and d ∈ v3(A) implies d ∈ v3(¬D) = D \ v3(D).
Thus, we may add the terminological sentence A v̇ ¬A stating the disjointness of A and A to our
knowledge base without affecting its satisfiability. Likewise, any pair (d, e) which is an element of
v3(P d) in a potential interpretation (D, v3) of Γ3 is also an element of v3(R) due to P d v̇ R, and
therefore an element of v3(P u) due to R v̇ P u. Thus, we may add the terminological sentence
P d v̇ P u without affecting its satisfiability.

Finally, we can transform any concept and role occurring in the knowledge base to its negation
normal form. The resulting knowledge base Γ4 obtained coincides with Γ.

The translation of a knowledge base into first-order logic is as described in Section 4.2. The
definitional form is produced by a variant Ξ of the transformation Ξ described in Section 4.2. First,
Ξ uses definitions Def+λ (ϕ) and Def−λ (ϕ) depending on whether ϕ|λ occurs positively or negatively
in ϕ. Second, only subformulae χ associated with non-atomic terms in Γ, with the exception of
non-atomic terms in terminological sentences introduced by step 4 of the transformation, are
renamed. Third, the predicate symbol Qλ used in Def+λ (ϕ) and Def−λ (ϕ) is uniquely associated
with concepts and roles, not with occurrences of concepts and roles. Consequently, every newly
introduced symbol Qλ is associated with an expression E of the original language, and hence, we
will denote Qλ by pE. Again, we assume that the variable ordering in a literal Qλ(x, y) introduced
by Ξ follows the convention we have used in the definition of π.

Lemma 4.26. ΞΠ(Γ) is satisfiable if and only if Γ is satisfiable if and only if Γ is satisfiable.

Define a dependency relation �1
c on the predicate symbols by: pA �1

c pB, if there is a definition
φ → ψ in ΞΠ(Γ) such that pA occurs in φ and pB occurs in ψ. Let �S be an ordering on the
predicate symbols in ΞΠ(Γ) which is compatible with the transitive closure �+

c of �1
c . Due to the

acyclicity of the terminology and due to fact that we split role definitions, it is possible to find
such an ordering.

While an ordering �TAB is optional, our selection function STAB selects the literal ¬pA(x) in
C if C is the clause {¬pA(x),¬pA(x)} originating from A v̇ ¬A. For all other clauses, let ¬L
be an occurrence of a negative literal in C with predicate symbol pP . Then ¬L is selected in C
if and only if either pP is the �S-maximal predicate symbol in C, or ¬L is a literal of the form
¬pP (s, y), where s is a ground term and y is a variable.

Table 4.3 lists all possible forms of subformulae of ΞΠ(Γ) in the first column and the corre-
sponding clauses in the second column. The selected literals are marked by a +. Observe that
in all clauses containing a negative literal, one of the negative literals is selected. In particular,
all clauses obtained from a terminological sentence or from a definition introduced by Ξ contain
a negative literal. Consequently, none of these clauses can be used as premise in a factoring
inference step or as positive premise in a resolution inference step.

Lemma 4.27. Let Γ be a descriptive knowledge base without any assertional sentences. Then Γ
is satisfiable. Furthermore, no inference steps are necessary to establish the satisfiability of the
clausal form of ΞΠ(Γ) and therefore of Γ.

All clauses originating from the translation of the assertional sentences of the knowledge base
are ground unit clauses. In all clauses except those of the form

{¬p0(x)+, (¬)p1(x, y)∗, p2(y)}(4.1)
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TBox concept definitions/restrictions and additional definitions
∀x: p0(x)→ (∀ y: p1(x, y)→ p2(y)) {{¬p0(x)+,¬p1(x, y), p2(y)}}
∀x: p0(x)→ (∃ y: p1(x, y) ∧ p2(y)) {{¬p0(x)+, p1(x, f(x))}, {¬p0(x)+, p2(f(x))}}
∀x: p0(x)→ (p1(x) ∧ p2(x)) {{¬p0(x)+, p1(x)}, {¬p0(x)+, p2(x)}}
∀x: p0(x)→ (p1(x) ∨ p2(x)) {{¬p0(x)+, p1(x), p2(x)}}
∀x: p0(x)→ ¬p1(x) {{¬p0(x)+,¬p1(x)}}
∀x: p0(x)→ p1(x) {{¬p0(x)+, p1(x)}}
∀x: p0(x)→ ⊥ {{¬p0(x)+}}
∀x: pA(x)→ ¬pA(x) {{¬pA(x)+,¬pA(x)}}
TBox role definitions/restrictions and additional definitions
∀x, y: p0(x, y)→ (p1(x, y) ∧ p2(y)) {{¬p0(x, y)+, p1(x, y)}, {¬p0(x, y)+, p2(y)}}
∀x, y: (p1(x, y) ∧ p2(y))→ p0(x, y) {{¬p1(x, y)+,¬p2(y)+, p0(x, y)}}
∀x, y: p0(x, y)→ p1(y, x) {{¬p0(x, y)+, p1(y, x)}}
∀x, y: p0(x, y)→ (p1(x, y) ∨ p2(x, y)) {{¬p0(x, y)+, p1(x, y), p2(x, y)

∗}}
∀x, y: (p1(x, y) ∨ p2(x, y))→ p0(x, y) {{¬p1(x, y)+, p0(x, y)}, {¬p2(x, y)+, p0(x, y)}}
∀x, y: p0(x, y)→ (p1(x, y) ∧ p2(x, y)) {{¬p0(x, y)+, p1(x, y)}, {¬p0(x, y)+, p2(x, y)}}
∀x, y: (p1(x, y) ∧ p2(x, y))→ p0(x, y) {{¬p1(x, y)+,¬p2(x, y)+, p0(x, y)}}
∀x, y : p0(x, y)→ p1(x, y) {{¬p0(x, y)+, p1(x, y)}}
∀x: p0(x, y)→ ⊥ {{¬p0(x, y)+}}
ABox
A(a) {{A(a)}}
P (a, b) {{P (a, b)}}

Table 4.3: Clausal form of formulas in definitional form

the selected literal contains all variables of the clause, and with exception of

{¬p0(x)+, p1(x, f(x))∗}(4.2)

and

{¬p0(x)+, p2(f(x))∗}.(4.3)

no variables occur as arguments of compound terms.

Lemma 4.28. Let Γ be a descriptive knowledge base and N the clausal form of ΞΠ(Γ). If N
does not contain clauses of the form (4.1), (4.2), and (4.3) then any derivation by (ordered)
resolution with selection and positive (ordered) factoring followed by condensing in which the
“Delete” operation is applied eagerly terminates.

Proof. All ground clauses in N have depth 2. Only (positive) ground (unit) clauses can be the
positive premise in a resolution inference. As observed, the resolvent will be a ground clause
with the same depth as the positive premise. Likewise only a ground clause can be the premise
of a factoring inference, and again the factor will be a ground clause with the same depth as its
premise. Since “Delete” is applied eagerly, all clauses are kept in condensed form. There are only
finitely many condensed ground clauses over the given signature with depth 2. Therefore, the
procedure will eventually terminate.
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Lemma 4.29. Let Γ be a descriptive knowledge base and N the clausal form of ΞΠ(Γ). If N
does not contain clauses of the form (4.1), then any conclusion of an inference step by (ordered)
resolution with selection and (ordered) factoring will result in a ground clause.

Proof. In the proof of Lemma 4.28 we have already established that when N contains no clauses
of the form (4.1), (4.2), and (4.3), any conclusion of an inference step will be a ground clause.
We have also observed that the selected literals in (4.2) and (4.3) contain the only variable of the
respective clauses. Therefore, any inference step with a ground clause as positive premise results
in a ground clause.

Inferences with negative premise of the form (4.1) are problematic, since the resolvent may contain
more free variables than the positive premise of the inference step. Suppose we have derived a
clause of the form

{p1(a), p2(a), p3(a)}
and ΞΠ(Γ) contains the clauses {¬pi(x)+,¬ri(x, y), qi(y)}, for 1 ≤ i ≤ 3. Without taking further
restrictions into account we can derive the clause

{¬r1(a, x), q1(x),¬r2(a, y), q2(y),¬r3(a, z), q3(z)}.
It contains more variables than any clause in ΞΠ(Γ).

In general, the positive premise of a resolution inference step with a clause (4.1) is a ground
clause {p0(s)∗}∪D1 such that no literals in D1 are selected. The conclusion of the inference step
is a clause

C1 = {¬p1(s, y)+, p2(y)} ∪D1(4.4)

containing one free variable. However, the literal ¬p1(s, y) is selected by STAB and no inference
steps are possible onD1 (which still contains no selected literals). As a consequence of Lemma 4.29
the only clauses we can derive containing a positive literal with predicate symbol p1 will be ground
clauses, that is, clauses of the form C2 = {p1(s, t)∗} ∪ D2. The conclusion of an inference step
between C1 and C2 is the ground clause {p2(t)} ∪D1 ∪D2. Consequently, all clauses occurring
in a derivation from the clausal form of ΞΠ(Γ) contain at most two variables.

The problem with inferences involving negative premises of the form (4.2) and (4.3) is that
resolvents may contain terms of greater depth than the positive premise of the inference. Nev-
ertheless, we can still show that there is an upper bound on the depth of terms. We define a
complexity measure µN on clauses occurring in a derivation from the clausal form N of ΞΠ(Γ)
by

µN (C) =




(p1, p1), if C = {p1(t)}
(p1, p2), if C = {p2(s, t)} or C = {¬p2(s, t)}∪C1 and C has a positive parent

clause D with µN (D) = (p1, p3)
(p2, p2), if C = {p2(s, t)} and C is in N

That is, the complexity measure associated with a clause is a pair of predicate symbols. Com-
plexity measures are compared by the lexicographic combination �2

S= (�S,�S). Since �S is
well-founded, also �2

S is well-founded.
It is straightforward to check that any inference step from a positive premise C by ordered

resolution or ordered factoring will result in a clause D such that µN (C) is greater than µN (D)
with respect to �2

S.
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Theorem 4.30.
Let Γ be a descriptive knowledge base and N the clausal form of ΞΠ(Γ). Then any derivation
from N by (ordered) resolution with selection and (ordered) factoring based on (the ordering �TAB
and) the selection function STAB terminates.

Proof. We have shown that in any derivation only ground clauses will be used as positive premises
of an inference step. We have shown that there is a bound on the depth of terms occurring in
the clauses of the derivation. We have also shown that the clauses contain not more than two
variables. Since clauses are always kept in condensed form, the number of distinct clauses with
these properties is bounded. Thus, any derivation will eventually terminate.

In tableaux-based decision procedures the satisfiability test for a descriptive knowledge base
Γ for ALC is traditionally performed in four steps [65]:

1. Elimination of concept specialisations: Concept specialisations A v̇ > are eliminated from
Γ. Any remaining concept specialisation A v̇ C is replaced by A =̇ C u A∗ where A∗ is a
new concept symbol.

2. Elimination of concept definitions: If A =̇ C is a concept definition, then any occurrence of
A on the right hand side of a concept definition is replaced by C. This process is iterated
until no defined concepts occurs on the right hand side of a definition. Since Γ contains no
terminological cycle, this process terminates and the resulting set of terminological sentences
is an expanded TBox . The expanded TBox may have exponential size with respect to the
original TBox.

3. Elimination of the TBox: Every occurrence of a defined concept in an assertional sentence
of Γ is replaced by its definition in the expanded TBox.

4. Satisfiability test of the ABox: After performing the first three steps, the ABox ∆ consists
of a set of expressions a ∈ C and (a, b) ∈ R. Testing the satisfiability is done by applying
the following completion rules:

(a) ∆⇒u ∆ ∪ {a ∈ C, a ∈ D}
if a ∈ (C uD) is in ∆, a ∈ C and a ∈ D are not both in ∆.

(b) ∆⇒t ∆ ∪ {a ∈ E}
if a ∈ (C tD) is in ∆, neither a ∈ C nor a ∈ D is in ∆ and E = C or E = D.

(c) ∆⇒∃ ∆ ∪ {(a, b) ∈ R, b ∈ C}
if a ∈ ∃R.C is in ∆, there is no d such that both (a, d) ∈ R and d ∈ C are in ∆, and
b is a new object symbol with respect to ∆.

(d) ∆⇒∀ ∆ ∪ {b ∈ C}
if a ∈ ∀R.C and (a, b) ∈ R are in ∆ and b ∈ C is not in ∆.

(e) ∆⇒⊥ ∆ ∪ {a ∈ ⊥}, if a ∈ A and a ∈ ¬A are in ∆, where A is a concept symbol.

Let ⇒TAB be the transitive closure of the union of the transformation rules given above. An
ABox ∆ contains a clash if a ∈ ⊥ is in ∆. An ABox ∆ is satisfiable if there exists an ABox
∆′ such that (i) ∆⇒TAB ∆′, (ii) no further applications of ⇒TAB to ∆′ are possible, and (iii)
∆′ is clash-free.
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The reduction which eliminates the TBox before testing for satisfiability can be extended to
reduce the satisfiability test for a knowledge base to a series of tests of the coherence of concepts.
This is done by exhaustively applying the rules ⇒∀, ⇒u, and ⇒t to an ABox ∆. The resulting
knowledge base is called the pre-completion of ∆. Let C(∆, a) denote the set {C | a ∈ C is in ∆}
and let

d
C(∆, a) denote the concept intersection of the concepts in C(∆, a). Then ∆ is satisfiable

if and only if for every object symbol a in the pre-completion ∆′ of ∆ the concept
d

C(∆′, a) is
coherent. Since the approach as described above has serious drawbacks concerning its efficiency,
implementations usually realize some interleaved form of the four steps.

The correspondence between the tableaux-based decision procedure and the selection-based
decision procedure is not difficult to see. First, note that for every concept C and every role
R which may possibly occur in an ABox during a satisfiability test there exist corresponding
predicate symbols pC and pR in the clausal form of ΞΠ(Γ).

1. An application of the ⇒u rule corresponds to a resolution inference step between a ground
unit clause {pCuD(a)} and clauses {¬pCuD(x), pC(x)} and {¬pCuD(x), pD(x)}, generating
the resolvents {pC(a)} and {pD(a)}.

2. An application of the ⇒t rule corresponds to a resolution inference step between a ground
unit clause {pCtD(a)} and the clause {¬pCtD(x), pC(x), pD(x)}. We then apply the “Split”
expansion rule to the conclusion {pC(a), pD(a)} which will generate two branches, one on
which our set of clauses contains {pC(a)} and one on which it contains {pD(a)}.

3. An application of the ⇒∃ rule corresponds to a resolution inference step between a ground
unit clause {p∃R.C(a)} and the clauses {¬p∃R.C(x), pR(x, f(x))} and {¬p∃R.C(x), pC(f(x))}.
This will add {pR(a, f(a))} and {pC(f(a))} to the clause set. The term f(a) corresponds
to the new object symbol b introduced by the ⇒∃ rule.

4. An application of the ⇒∀ rule corresponds to two consecutive inference steps. Here, the
set of clauses contains {p∀R.C(a)} and {pu

R(a, b)} (to obtain {pu
R(a, b)} an inference step

with a clause {¬P d
R(x, y), P u

R(x, y)} may be necessary). First, {p∀R.C(a)} is resolved with
{¬p∀R.C(x),¬pu

R(x, y), pC(y)} to obtain {¬pu
R(a, y), pC(y)}. Then the conclusion of the

previous inference step is resolved with {pu
R(a, b)} to obtain {pC(b)}.

5. For applications of the ⇒⊥ rule we distinguish two cases. If A is not in D=̇(Γ), then
the set of clauses contains {pA(ta)} and {p¬A(ta)}. Two consecutive inference steps using
these two clauses and {¬p¬A(x)+,¬pA(x)}, the definition of ¬A, produce the empty clause.
Otherwise, A is in D=̇(Γ) and the set of clauses contains {pA(ta)} and {pA(ta)}. In this
case the empty clause can be derived with {¬pA(x)+,¬pA(x)}.

Note that all these resolution inference steps strictly obey the restrictions enforced by the selection
function STAB. This proves:

Theorem 4.31.
Selection-based decision procedures can p-simulate tableaux-based decision procedures (for ALC).

If we exclude factoring inference steps and redundancy elimination techniques from the con-
sideration then the simulation result also holds in the reverse direction.
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Theorem 4.32.
Tableaux-based decision procedures (for ALC) can p-simulate selection-based decision procedures
without factoring and redundancy elimination.

Theorem 4.31 also holds in the presence of role operators. However, tableaux-based procedures
hide some of the inferential effort in the side-conditions of the completion rules which is explicit
in our selection-based decision procedure. Consider the following assertional sentences involving
an application of role intersection and its translation (in clausal form):

a ∈ ∀P uQ.B {q1(a)}
{¬q1(x)+,¬q2(x, y), pB(y)}
{¬pP (x, y)+,¬pQ(x, y)+, q2(x, y)}

(a, b) ∈ P {pP (a, b)}
(a, b) ∈ Q {pQ(a, b)}

The tableaux-based procedure makes use of the following modified version of ⇒∀:

∆⇒∀ ∆ ∪ {b ∈ C} if a ∈ ∀R.C is in ∆ and (a, b) ∈ R holds in ∆ and b ∈ C is not in
∆, where (a, b) ∈ R1 u . . . u Rn holds in ∆ if and only if (a, b) ∈ Ri is in ∆ for all i,
1 ≤ i ≤ n.

Given the ABox above, the tableaux-based procedure needs only one inference step to conclude
that b ∈ B holds. The inferential effort to determine that (a, b) ∈ (P uQ) is a consequence of ∆
is hidden in the side condition of ⇒∀.

By contrast, the selection-based decision procedure will first perform two resolution inference
steps to derive {q2(a, b)} before two further inference steps lead to {pB(b)}. Obviously, the
inferential steps necessary to deduce that (a, b) ∈ R holds in ∆ for complex roles R have to be
taken into account in the simulation. Then any tableaux inference step can be simulated by at
most two inference steps in the selection-based decision procedure.

Why have we excluded role complement, role value maps, and the top role from consideration?
Role complement, role value maps, and the top role share the common characteristic that they
introduce non-ground clauses containing only positive literals. Negative occurrences of ¬R, as in
∀¬R.C, introduce clauses of the form {p0(x, y), pR(x, y)}. Then, we can no longer assume that
the positive premises of inferences are ground clauses. Negative occurrences of the top role and
role value maps resulting in clauses {¬p0(x), p1(y)} and {pR(x, f(x)), pS(x, f(x)), p0(x)}, cause
the same problem.

However, positive occurrences of these operators will result in clauses containing at least one
negative, embracing literal. The selection function STAB will restrict inferences from these clauses
in the same way as for clauses (4.1) and (4.4). The decidability result still holds.

According to Table 4.2, negative occurrences of bindings (⊆ U V ) and (⊇ U V ) also introduce
non-ground clauses containing only positive literals into our clause set. As Table 4.4 shows,
positive occurrences of bindings (⊆ U V ), (⊇ U V ), and arbitrary occurrences of role composition,
result in clauses containing negative literals. Although only for the clause obtained from positive
occurrences of role composition the negative literal is embracing, all the variables of a clause
occur in at least one of the negative literals of a clause. It is important to remember that the
predicate symbols in Table 4.4 are not arbitrary. The symbol p0 is always different from pR, pS,
pU and pV , and there are no cyclic (inferential) dependencies. So, neither the clause we obtain
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Positive occurrences
of R ◦ S

{{¬p0(x, y)+, pR(x, f(x, y))}, {¬p0(x, y)+, pS(f(x, y), y)}}

Negative occurrences
of R ◦ S

{{¬pR(x, z)+,¬pS(z, y)+, p0(x, y)}}

Positive occurrences
of (⊆ U V )

{{¬p0(x, y)+,¬pU (x, z)+, pV (y, z)}}

Positive occurrences
of (⊇ U V )

{{¬p0(x, y)+,¬pV (y, z)+, pU (x, z)}}

Table 4.4: Clausal form role composition and binding forming operators

for negative occurrences of R ◦ S nor the clause we obtain for positive occurrences of (⊇ U V )
and (⊆ U V ) has the transitivity clause as an instance or logical consequence. This is sufficient
to establish termination. Let U−

D be the extension of ALBD by role value maps, role complement,
role composition, and bindings. We assume that the selection STAB as indicated in Table 4.4.

Theorem 4.33.
Let Γ be a descriptive knowledge base over U−

D such that expressions of the form ¬R and (R=S)
occur only positively, and expressions of the form (⊇ U V ) and (⊆ U V ) occur only negatively.
Let N be the clausal form of ΞΠ(Γ). Then any derivation from N by (ordered) resolution with
selection and (ordered) factoring based on (the ordering �TAB and) the selection function STAB
terminates.

4.6 Conclusion

Finally, we discuss how the classes of clauses described in this chapter relate to other solvable
classes. The class of DL-clauses is not comparable with the guarded fragment or the loosely
guarded fragment. In the guarded fragments the conditional quantifiers may not include negations
or disjunctions. On the other hand, the guarded fragments allow predicates of arbitrary arity.
Recently it has been shown that the extension of the guarded fragment with two transitive
relations and equality is undecidable [60]. However, basic modal logic plus transitivity is known
to be decidable. Therefore, looking at more restricted classes than the guarded fragment may
lead to better characterisations of the connection between modal logics and decidable subclasses
of first-order logic [46].

The class of DL-clauses is more restrictive than the class One-Free, which stipulates that
quantified subformulae have at most one free variable. But as noted in Section 4.4, it is possible
to extend ALB by certain restricted forms of role composition (e.g., positive occurrences), for
which the procedure described in Section 4.2 remains a decision procedure. The corresponding
clausal class is distinct from the One-Free class. It is known from the literature on algebraic logic
that arbitrary occurrences of composition in the presence of role negation leads to undecidability.

The resolution framework used here has a general notion of redundancy which does not have
the drawback of [127], where certain standard deletion rules, e.g. tautology deletion, have to be
restricted for completeness. Real world knowledge bases typically contain hundreds of concept
definitions. The corresponding clauses can be used to derive an extensive number of tautologies.
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In Chapter 6 we describe experiments with resolution theorem provers which show there are
theorem provers which can serve as reasonable and efficient inference procedures for description
logics.
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Chapter 5

Modal logics

As in the research area of description logics, decidability issues and the development of decision
procedures play a prominent role in the research area of extended modal logics. Although it is
not difficult to see most logics under consideration can be translated to first-order logic, the exact
relation to decidable subclasses of first-order logic and in particular to subclasses decidable by
resolution is still under investigation. Andréka, van Benthem and Németi [3, 4] introduced the
guarded fragment as an attempt to characterise a class of first-order formulae sharing properties
like decidability, the finite model property, and the tree model property, with modal logics.
Essentially, the guarded fragment is obtained by restricting quantifications to the form

∀y: r(x,y)→ ϕ(y) and ∃y: r(x,y) ∧ ϕ(y),

where x and y are (disjoint) sequences of variables and r(x,y) is an atomic formula. Ganzinger
and de Nivelle [45] show that ordered resolution with paramodulation is a decision procedure for
the guarded fragment and restricted extensions with equality.

However, while the standard relational translation embeds modal logics like the basic modal
logic K and its extensions with the axiom schemata B, D, and T into the guarded fragment,
it does not cover extensions of K with the axiom schema 4, which characterises Kripke frames
with a transitive accessibility relation. Grädel [60] shows that the extension of the guarded
fragment with three variables and transitive relations is undecidable. Recently, Ganzinger, Meyer
and Veanes [47] have considered the class GF2 consisting of all formulae in the intersection of
the guarded fragment and the two-variable fragment of first-order logic and monadic GF2 with
transitive relations consisting of the formulae in GF2 where all binary relations are assumed to
be transitive.1 They show that GF2 and monadic GF2 with transitive relations are undecidable.

Although the class K presented in Chapter 3 is not intended to be a characterisation or
generalisation of the fragment of first-order logic corresponding to modal logics, it covers the
relational translation of modal formulae of basic modal logic as well as the translation of many
axiom schemata, in particular, B, D, and T. Like the guarded fragment it also covers some of
the relational operations of extended modal logics shown in Table 5.1. While both the class K
and the guarded fragment are able to accommodate (the translation of) modal formulae [R∩S]ϕ
and [R ∪ S]ϕ but exclude modal formulae [R ◦ S]ϕ and [R∗]ϕ, only the class K allows for the

1Transitivity of a binary relation can not be expressed in the guarded fragment itself, but has to be expressed
on the meta level.
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ψ πr(ψ, x) ψ πr(ψ, x)
[¬R]ϕ ∀y:¬r(x, y)→ πr(ϕ, y)
[R ∩ S]ϕ ∀y: (r(x, y) ∧ s(x, y))→ πr(ϕ, y) [R ◦ S]ϕ ∀y: (∃z: r(x, z) ∧ s(z, y))→ πr(ϕ, y)
[R ∪ S]ϕ ∀y: (r(x, y) ∨ s(x, y))→ πr(ϕ, y) [R∗]ϕ no first-order equivalent formula

Table 5.1: Relational operations in extended modal logics

embedding of [¬R]ϕ. So, the class K actually allows to express more of the relational operations
than the guarded fragment does.

It is interesting to note that the undecidability result of Ganzinger, Meyer and Veanes also
applies to the class K, that is, the satisfiability problem for the restriction of K to formulae with
at most two variables with transitive relations is undecidable.

From the perspective of first-order logic, both fragments are incomparable. Consider the
formulae

∀x, y, z:¬p(x, y, z) ∨ q(y, z)(5.1)
∀x, y: p(x, y) ∨ q(x, y).(5.2)

Formula (5.1) belongs to the guarded fragment, but not to the class K, while formula (5.2) belongs
to the class K, but not to the guarded fragment.

Therefore, the exact relation of modal logics to decidable subclasses of first-order logic is still
an open problem. In this chapter we will take the following approach. Instead of starting from a
generalisation of the class of formulae obtained by translating modal formulae to first-order logic,
we will study decidability issues on classes of first-order formulae which most closely resemble
translated modal formulae. We will consider various extensions of the basic modal logic K with
axiom schemata like 4, 5, B, T, and D, and we will also consider variations of the translation
morphism for mapping modal formulae to first-order logic. Using this approach we will not only
present resolution-based decision procedures for modal logics already covered by the guarded
fragment or the class K, but also for extensions of K4.

5.1 Syntax and semantics of modal logics

The language of the propositional modal logic KΣ is that of propositional logic plus additional
modal operators 2 and 3. By definition, a formula of KΣ is a Boolean combination of propo-
sitional and modal atoms. A modal atom is an expression of the form 2ψ or 3ψ where ψ is a
formula of KΣ. A literal is a propositional atom or its negation. In the following we assume that
modal formulae are in negation normal form, containing no occurrences of the Boolean connec-
tives → and ↔. In general, Σ is a (possibly empty) set of additional axiom schemata. We will
also consider frame properties given by first-order formulae which need not be definable by modal
schemata.

There are two major approaches to providing a semantics for modal logic: an algebraic one
and a model theoretic one. Although the algebraic approach has a long-standing tradition and
has shown off many important results (confer Goldblatt [56, 57]), we restrict our attention to
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the model theoretic approach. Here we consider the Kripke semantics [89] and the functional
semantics [105] for modal logics. To emphasise the main difference between these two definitions,
that is, the relational description versus the functional description of accessibility in the models,
we also use the term relational semantics for Kripke semantics. The relational semantics is given
in terms of frames. A frame is pair F = (W,R) where W is a non-empty set of worlds and R is a
binary relation on W , called the accessibility relation. A relational model2 is a pair M = (F, v)
consisting of a frame and a valuation v mapping propositional variables to subsets of W . M is
said to be based on the frame F . Validity in a relational model M and a world w ∈W is defined
by:

M,w |= p iff w ∈ v(p)
M,w |= >
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ1 ∧ . . . ∧ ϕn iff M,w |= ϕi, for every i, 1 ≤ i ≤ n
M,w |= ϕ1 ∨ . . . ∨ ϕn iff M,w |= ϕi, for some i, 1 ≤ i ≤ n
M,w |= 2ϕ iff for every v ∈W , (w, v) ∈ R implies M,v |= ϕ
M,w |= 3ϕ iff for some v ∈W , (w, v) ∈ R and M,v |= ϕ.

A modal formula is valid in a frame F iff it is valid in all models based on F .
A sound and complete axiom system for KΣ with respect to the relational semantics consists

of the standard axioms for propositional logic, the axiom schema (K), all instances of the axiom
schemata in Σ, the modus ponens inference rule (MP), and the necessitation inference rule (N).

2(ϕ→ ψ)→ (2ϕ→ 2ψ)(K)

ϕ ϕ→ ψ

ψ
(MP)

ϕ

2ϕ
(N)

A modal formula derivable in this axiom system is a theorem of KΣ. A model M is a (relational)
KΣ-model if every theorem of KΣ is valid in M . A modal formula ϕ is satisfiable in KΣ if there
is a KΣ-model M and a world w in M such that M,w |= ϕ. A modal logic KΣ is sound with
respect to a class of frames F iff every modal formula ϕ which is a theorem in KΣ is valid in every
frame in F . A modal logic KΣ is complete with respect to a class of frames F iff every modal
formula ϕ which is valid in every frame in F is a theorem in KΣ. A modal logic is determined
by a class of frames F iff it is sound and complete with respect to F . A modal logic is complete
if it is complete with respect to some class of frames.

The functional semantics of modal logic is based on the insight that any binary relation can be
expressed as the union of a family of partial functions. To obtain a closer correspondence between
the functional semantics and the optimised functional translation we use a presentation based on
total functions. A functional frame F is a tuple (W, def, AF , [ ]) where W is a non-empty set
of worlds, def is a subset of W , AF is a non-empty set of total accessibility functions on W , and
[ ] : W ×AF →W is the application function. A world x ∈W such that x 6∈ def is a dead-end .
Now, in a functional model M functional frames replace relational frames and validity is defined

2From the viewpoint of first-order logic it would be more appropriate to speak of (relational) interpretations.
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4 Transitivity 2p→ 22p ∀x, y, z: (r(x, y) ∧ r(y, z))→ r(x, z)
5 Euclideanness 3p→ 23p ∀x, y, z: (r(x, y) ∧ r(x, z))→ r(y, z)
B Symmetry p→ 23p ∀x, y: r(x, y)→ r(y, x)
D Seriality 2p→ 3p ∀x∃y: r(x, y)
G Confluence 32p→ 23p ∀x, y, z: (r(x, y) ∧ r(x, z))→ (∃u: r(y, u) ∧ r(z, u))
M McKinsey’s axiom 23p→ 32p
T Reflexivity 2p→ p ∀x: r(x, x)

Weak density 22p→ 2p ∀x, y: r(x, y)→ (∃z: r(x, z) ∧ r(z, y))
Irreflexivity ∀x:¬r(x, y)
Universality ∀x, y: r(x, y)

Table 5.2: Axiom schemata and relational frame properties

as follows.

M,w |= p iff w ∈ v(p)
M,w |= >
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ1 ∧ . . . ∧ ϕn iff M,w |= ϕi, for every i, 1 ≤ i ≤ n
M,w |= ϕ1 ∨ . . . ∨ ϕn iff M,w |= ϕi, for some i, 1 ≤ i ≤ n
M,w |= 2ϕ iff w ∈ def implies that for every α ∈ AF , M, [wα] |= ϕ
M,w |= 3ϕ iff w ∈ def and for some α ∈ AF , M, [wα] |= ϕ.

Saul Kripke [89] observed that certain axiom schemata correspond to certain properties of
the accessibility relation in the relational semantics. That is, for certain axiom schemata and
combinations Σ of axiom schemata we can characterise the class of frames F such that KΣ is
determined by F by characterising properties of the accessibility relation in frames of F by
means of first-order and second-order formulae. These formulae are called the relational frame
properties of the modal logic under consideration. Table 5.2 presents some axiom schemata and
their corresponding relational frame properties. A class of frames comprising all frames satisfying
a set of first-order formulae is said to be an elementary class. A modal logic KΣ is first-order
definable if it is sound and complete with respect to an elementary class. Table 5.2 shows that
the standard modal logics considered in the literature, that is, extensions of K by 4, 5, B, D,
T are first-order definable. However, the extension of K by McKinsey’s axiom is not first-order
definable. Such modal logics are called essentially second-order . The correspondence results of
Table 5.2 are also helpful to determine which modal logics are identical, that is, have the same
set of theorems. For example, KB4 and KB5 are identical since in the presence of symmetry,
transitivity, and euclideanness are equivalent properties of a binary relation. Similarly, KT5,
which is also called S5, is identical to KT45, KTB4, KDB4, KDB5, and the extension of K by
universality. The modal logic KT4 is also called S4.

Correspondence results can also be established for the functional semantics. However, there
are cases where a modal logic which is essentially second-order with respect to the relational
semantics, is first-order definable with respect to the functional semantics, for example, McKin-
sey’s axiom whose first-order equivalent formula is given in Table 5.3 together with the functional
frame properties of the other axiom schemata of Table 5.2.
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4 Transitivity ∀x∀α, β ∃γ: (x ∈ def ∧ [xα] ∈ def)→ [xαβ] = [xγ]
5 Euclideanness ∀x∀α, β ∃γ: (x ∈ def → [xβ] ∈ def) ∧ (x ∈ def → [xα] = [xβγ])
B Symmetry ∀x∀α∃β: (x ∈ def → [xα] ∈ def) ∧ (x ∈ def → x = [xαβ])
D Seriality ∀x:x ∈ def
G Confluence ∀x∀α, β ∃γ, δ: x ∈ def → ([xα] ∈ def ∧ [xβ] ∈ def ∧ [xαγ] = [xβδ])
M McKinsey’s axiom ∀x∀β ∃α∀δ ∃γ: [xαβ] = [xγδ]
T Reflexivity ∀x∃α:x ∈ def ∧ x = [xα]

Weak density ∀x∀α∃β, γ: x ∈ def → ([xβ] ∈ def ∧ [xα] = [xβγ])
Irreflexivity ∀x∀α:x ∈ def → x 6= [xα]

Table 5.3: Axiom schemata and functional frame properties

The relational and functional semantics allows for the definition of semantics-based translation
of modal logics into first-order logic. The three approaches we will consider are the relational
translation, based on the relational semantics, the optimised functional translation, based on
the functional semantics, and the semi-functional translation, based on a combination of the
relational and functional semantics.

By definition, the relational translation operator, ΠΣ
r maps ϕ to

AxΣ
r → ∀x:πr(ϕ, x),

where AxΣ
r is the conjunction of formulae of the relational frame properties corresponding to Σ.

The morphism πr is defined by

πr(p, x) = P (x)
πr(¬ϕ, x) = ¬πr(ϕ, x)

πr(ϕ1 ∧ . . . ∧ ϕn, x) = πr(ϕ1, x) ∧ . . . ∧ πr(ϕn, x)
πr(ϕ1 ∨ . . . ∨ ϕn, x) = πr(ϕ1, x) ∨ . . . ∨ πr(ϕn, x)

πr(2ϕ, x) = ∀y: r(x, y)→ πr(ϕ, y)
πr(3ϕ, x) = ∃y: r(x, y) ∧ πr(ϕ, y).

p is a propositional variable and P is a unary predicate uniquely associated with p. The symbol r is
a special binary predicate denoting the accessibility relation in the underlying Kripke semantics.
As πr(ϕ, x) is in negation normal form, all non-atomic subformulae of πr(ϕ, x) have positive
polarity. The relational translation is sound and complete for complete modal logics.

Theorem 5.1.
Let KΣ be a complete modal logic such that AxΣ

r is a first-order (second-order) formula. Then

1. ϕ is a theorem in KΣ if and only if ΠΣ
r (ϕ) is a first-order (second-order) theorem, and

2. ϕ is satisfiable in KΣ if and only if ΠΣ
r (ϕ) = ¬ΠΣ

r (¬ϕ) is satisfiable.

The optimised functional translation maps modal formulae into a logic, called basic path logic,
which is a monadic fragment of sorted first-order logic with one binary function symbol [ ]. The
sorts W and AF distinguish between worlds and accessibility functions. The unary predicate
symbols uniquely associated with the propositional variables have sort W . Also the special unary
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predicate def representing the subset def of W in functional frames is of sort W . The binary
function [ ] has sort W × AF → W . In the following we use the convention that x, y, z, x1,
y1, . . . are variables of sort W , s, t, s1, t1, . . . are terms of sort W , ε is a constant of sort W ,
and α, β, α1, β1, . . . are variables of sort AF . We abbreviate [[[xα1] . . . ]αn] by [xα1 . . . αn].

The optimised functional translation [107] does a sequence of transformations. The first
transformation ΠΣ

f maps a modal formula ϕ to its so-called functional translation defined by

AxΣ
f → ∀x:πf (ϕ, x).

For the propositional connective πf is a homomorphism analogous to πr. For the remaining cases,
πf is defined by

πf (p, s) = P (s)
πf (2ϕ, s) = def(s)→ ∀α:πf (ϕ, [sα])
πf (3ϕ, s) = def(s) ∧ ∃α:πf (ϕ, [sα]).

The second transformation applies the so-called quantifier exchange operator Υ to ∀x:πf (ϕ, x),
which moves existential quantifiers inwards over universal quantifiers using the rule ‘∃α∀β ψ
becomes ∀β∃αψ’. The transformation by ΥΠf is sound and complete for complete modal logics.

Theorem 5.2 (Ohlbach and Schmidt [107]).
Let KΣ be a complete modal logic such that AxΣ

f is a first-order (second-order) formula. Then

1. ϕ is a theorem in KΣ if and only if ΥΠΣ
f (ϕ) is a first-order (second-order) theorem, and

2. ϕ is satisfiable in KΣ if and only if ΠΣ
f (ϕ) = ¬ΥΠΣ

f (¬ϕ) is satisfiable.

The semi-functional translation approach [78, 102] tries to combine the advantages of the re-
lational and functional translation approach and to avoid their disadvantages. For an elaboration
of the considerations leading to the development of the semi-functional translation approach refer
to Nonnengart [101].

The semi-functional translation maps modal formulae to many-sorted first-order formulae.
Like in the case of the optimised functional translation we distinguish between the sorts W
and AF for worlds and accessibility functions. Unary predicate symbols have sort W , the binary
predicate symbol r associated with the accessibility relation has sort W×W , the constant symbol
ε has sort W , and the binary function [ ] has sort W ×AF →W . We use the same convention as
for the optimised functional translation to name variables. In addition, u, u1, and u2 will denote
either a variable with sort W or the constant ε. ΠΣ

sf maps a modal formula ϕ in negation normal
form to

(AxΣ
r ∧Axdef

sf )→ ∀x:πsf (ϕ, x),

where πsf is a homomorphism on the propositional connectives and is defined by

πsf (p, s) = P (s)
πsf (2ϕ, s) = ∀y: r(s, y)→ πsf (ϕ, y)
πsf (3ϕ, s) = def(s) ∧ ∃α:πf (ϕ, [sα])

in the remaining cases. Note that ∀y quantifies over a variable of sort W while ∃α quantifies over
a variable of sort AF . The expression [sα] is of sort W . Since the semi-functional translation
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K4 ∀x, y ∀α: def(x)→ r(x, [xα])
∧ (def(x) ∧ r(x, y))→ r(x, [yα])

K45 ∀x, y ∀α: def(x)→ def(y)
∧ def(y)→ r(x, [yα])

KB ∀x, y ∀α: def(x)→ def(y)
∧ def(x)→ r(x, [xα])
∧ def(x)→ r([xα], x)

KD4 ∀x, y ∀α: def(x)
∧ r(x, [xα])
∧ r(x, y)→ r(x, [yα])

S4 ∀x, y ∀α: def(x)
∧ r(x, x)
∧ r(x, y)→ r(x, [yα])

K5 ∀x, y ∀α, β: def(x)→ def(y)
∧ def(ε)→ r(ε, [εα])
∧ (def(x) ∧ def(y))→ r([xα], [yβ])

KD ∀x∀α: def(x)
∧ r(x, [xα])

KD45 ∀x, y ∀α: def(x)
∧ r(x, [yα])

KDB ∀x∀α: def(x)
∧ r(x, [xα])
∧ r([xα], x)

KT ∀x∀α: def(x)
∧ r(x, x)
∧ r(x, [xα])

S5 ∀x, y: def(x)
∧ r(x, y)

KD5 ∀x, y ∀α, β: def(x)
∧ r(ε, [εα])
∧ r([xα], [yβ])

Table 5.4: Axiom schemata and semi-functional frame properties

incorporates both the relational representation and the functional representation of the accessi-
bility relation, it is necessary to relate the two representations by means of the following formula
Axdef

sf

∀x, y ∀α: (def(x)→ r(x, [xα])) ∧ (r(x, y)→ def(x)).

The following theorem shows that the translation preserves the satisfiability of modal formulae.

Theorem 5.3 (Nonnengart [101, p. 34]).
Let KΓ be a complete modal logic with first-order definable frame properties AxΣ

sf . A modal formula
ϕ in negation normal form is satisfiable if and only if ΠΣ

sf = ¬ΠΣ
sf (¬ϕ) is satisfiable.

The formulae AxΣ
r and Axdef

sf do not depend on the formula ϕ under consideration, but only on
the modal logic KΣ. Therefore, it makes sense to (partially) saturate AxΣ

r ∧Axdef
sf independently

of the formula πsf (ϕ). Table 5.4 list the resulting formulae, which we will denote by AxΣ
sf , for

some combinations of axiom schemata.

5.2 The relational and optimised functional translation

In the following we consider decision procedures for the satisfiablity problem in modal logics based
on the translation of modal formulae into decidable fragments of first-order logic.

First, we consider the relational translation of modal formulae. According to Theorem 5.1 a
modal formula ϕ is satisfiable if and only if ΠΣ

r (ϕ) = AxΣ
r ∧ ∃x:πr(¬ϕ, x) is satisfiable.

It is straightforward to see that modal formulae are a notational variant of concept terms
introduced in Section 4.2, and vice versa. Also, the relational translation πr of modal formulae
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is identical to the translation π of concept terms. Using the one-to-one correspondence between
subformulae of a modal formula and subexpressions of a concept, we can define the structural
transformation Ξ on πr and Πr in analogy to Ξ on π. Consequently, the results described in
Sections 4.2 to 4.5 apply. In particular, the clausal form of ∃x:πr(¬ϕ, x) consists only of static
DL-clauses. Furthermore, the relational frame properties corresponding to the axiom schemata
D, T, Irreflexivity, and Universality are static DL-clauses and the frame properties corresponding
to B and Weak density are DL-clauses. As a consequence of Theorem 4.16 we obtain

Corollary 5.4. Let Σ be any combination of the axiom schemata D, T, B, and the first-order
formulae Irreflexivity, Weak density, and Universality. Let ϕ be a modal formula and N be
the clausal form of ΞΠr(ϕ). Then any derivation from N by ordered resolution and (ordered)
factoring based on �COV terminates.

The tableaux-based decision procedure described in Section 4.5 is a notational variant of a
prefix tableaux calculus [42, 59, 98] for the satisfiability problem in the modal logic K: To test
the satisfiability of a modal formula ϕ, we apply the transformation ⇒TAB to ∆ = {ε ∈ ϕ} where
ε is an arbitrary (object) symbol. If we are able to derive a clash-free set ∆′ from ∆, then ϕ is
satisfiable and ∆′ is a representation of a relational model for ϕ.

It follows from the considerations in Section 4.5 that the refinement of resolution based on
the selection function STAB provides a decision procedure for the satisfiability problem in K and
it simulates the prefix tableaux calculus. The termination and simulation result also holds for
extensions of K by a combination of the axiom schemata D, T, and B. The clausal forms of
these axiom schemata are CD = {r(x, f(x))}, CT = {r(x, x)}, and CB = {¬r(x, y), r(y, x)},
respectively. In the presence of CB we extend the selection function STAB to select the negative
literal in CB.

As a corollary of Theorem 4.30 we obtain:

Corollary 5.5. Let Σ be any combination of the axiom schemata D, T, B. Let ϕ be a modal
formula and N be the clausal form of ΞΠr(ϕ). Then any derivation from N by (ordered) resolution
with selection and (ordered) factoring based on (the ordering �TAB and) the selection function STAB
terminates.

Proof. CD and CT can only be used to derive {p(f(s))} and {p(s)}, respectively, using a negative
premise of the form C2 = {¬r(s, y)+, p(y)}. According to the complexity measure established in
Section 4.5, the conclusion we obtain in each case is smaller than the premises, which ensures
termination of the derivation.

To accommodate the termination proof for the clause CB, we have to extend the complexity
measure cL by a third component dL which is 1 if L is a monadic literal or a dyadic literal
r(s, t) such that t �s s and 0 otherwise. We compare complexity measures on ground literals
by the ordering �lit

c given by the lexicographic combination of the ordering �S, the multiset
extension �s

mul of the strict subterm ordering �s, and the ordering > on natural numbers. It is
straightforward to check the only inference possible with CB is the derivation of {r(t, s)} using
the positive premise {r(s, t)} with t �s s or t = s. If s and t are equal, then this inference step
does not add a new clause to the clause set. If s is a strict subterm of t, then {r(s, t)} is greater
than {r(t, s)} with respect to �lit

c .

The simulation of tableaux calculi by a refinement of resolution based on STAB also holds in
the presence of the axiom schemata 4 and 5. Here we assume that in the clausal form C4 =
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{¬r(x, y),¬r(y, z), r(x, z)} and C5 = {¬r(x, y),¬r(x, z), r(y, z)} of the axiom schemata and any
clause derivable from C4 and C5 by a single resolution inference step, one of the negative r literals
is selected by STAB. As a corollary of Theorem 4.31, the simulation result for tableaux-based
procedures for the satisfiability problem in ALC, we obtain:

Corollary 5.6. Let Σ be any combination of the axiom schemata D, T, B, 4, and 5. The re-
finement of resolution based on the selection function STAB p-simulates prefix tableaux calculi for
KΣ.

However, in the presence of 4 or 5 termination by the selection-based refinement is no longer
guaranteed. For example, consider the formula 3q ∧23p in K4. The clausal form of ΞΠ4

r(3q ∧
23p) is

(3) {p0(ε)}
(4) {¬p0(x)+, r(x, f(x))}
(5) {¬p0(x)+, q(f(x))}
(6) {¬p0(x)+,¬r(x, y), p1(y)}
(7) {¬p1(x)+, r(x, g(x))}
(8) {¬p1(x)+, p(g(x))}
(9) {¬r(x, y)+,¬r(y, z)+, r(x, y)}

In the selection-based refinement we obtain the following unbounded derivation:

[(3)1,R,(4)1] (10) {r(ε, f(ε))}
[(3)1,R,(6)1] (11) {¬r(ε, y)+, p1(y)}
[(10)1,R,(11)1] (12) {p1(f(ε))}
[(7)1,R,(12)1] (13) {r(f(ε), g(f(ε)))}
[(10)1,(13)1,R,(9)1,2] (14) {r(ε, g(f(ε)))}
[(11)1,R,(14)1] (15) {p1(g(f(ε)))}
[(7)1,R,(15)1] (16) {r(g(f(ε)), g(g(f(ε))))}
[(14)1,(16)1,R,(9)1,2] (17) {r(ε, g(g(f(ε))))}

...

As any fair theorem proving derivation terminates on unsatisfiable clause sets, these considerations
are only relevant for non-theorems. Note that without additional techniques like loop-checking
also tableaux calculi do not terminate in general for extensions of K by the axiom schemata 4
or 5 [61, 64, 90]. Thus, neither the refinement of resolution based on the ordering �COV nor the
refinement based on the selection function STAB provides a decision procedure for extensions of K
by 4 or 5. However, it is possible to obtain a decision procedure based on the ordered chaining
calculus [9], a general resolution calculus designed for binary relations satisfying the general
scheme ri ◦ rj ⊆ rk (including equality) combining ideas from rewrite systems and resolution.
Ganzinger, Hustadt, Meyer and Schmidt [46] show that this calculus may be used to obtain
resolution decision procedures for the relational translation of a range of propositional modal
logics including K4, KD4, and S4.

Second, we consider the optimised functional translation. According to Theorem 5.2, a modal
formula ϕ is KΣ-satisfiable if and only if ΠΣ

f (ϕ) = AxΣ
f ∧ ∃x:¬Υπf (¬ϕ, x) is satisfiable. Remem-

ber, Υ moves existential quantifiers inwards over universal quantifiers. Taking into account that
the resulting formula is negated, we obtain a ∃∗∀∗ formula. Consequently, all Skolem functions in
the clausal form of ∃x:¬Υπf (¬ϕ, x) are constants. Furthermore, the variables in the terms occur-
ring in ∃x:¬Υπf(¬ϕ, x) are prefix stable, that is, for any variable αi+1 there exists a unique prefix
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Regular clauses Non-regular clauses
{p0(ε)}
{¬p0(x), (¬)p1(x), . . . , (¬)pn(x)}
{¬p0(x),¬r(x, y), p1(y)}
{¬p0(x), p1([xf(x)])}

{def(x)}
{¬def(x), def(y)}
{r(x, x)}
{¬r(x, x)}
{r(x, y)}
{¬def(x), r(x, [xα])}
{¬def(x), r([xα], x)}
{¬def(ε), r(ε, [εα])}

{r(x, [yα])}
{¬def(y), r(x, [yα])}
{r([xα], [yβ])}
{¬def(x),¬def(y), r([xα], [yβ])}
{¬r(x, y), r(x, [yα])}
{¬def(x),¬r(x, y), r(x, [yα])}

Table 5.5: Clausal form of formulae in definitional form

[xα1 . . . αi] such that every term containing αi+1 has the form [xα1 . . . αiαi+1 . . . αn]. Prefix stabil-
ity holds independently of the transformation Υ. Note that none of the terms in ∃x:¬Υπf (¬ϕ, x)
contains a variable of sort W . These properties allow for a restrictive, syntactical characterisa-
tion of the clausal form of ΠΣ

f (ϕ), in so-called path logics [120, 121]. As in general the functional
frame properties contain equations, theory resolution with normalisation has been proposed as a
decision procedure for certain extensions of K. Schmidt [120, 121] proves that theory resolution
with normalisation and condensing is a decision procedure for the satisfiability of finite sets of
clauses in the basic path logic, if (i) a bound on the depth of derived clauses exists, (ii) unification
with respect to the functional frame properties is decidable, and (iii) an effective normalisation
function exists which returns basic path clauses. For the modal logics K, KD, KT, and S5 it can
be shown that the maximal term depth in the conclusion of an inference steps by theory factoring
or theory resolution will not exceed the maximal term depth in the premises. Termination of
unrefined theory resolution and decidability immediately follows. For the modal logics KD4 and
S4 it is possible to compute an a priori depth bound based on the number of occurrences of the
modal operators 2 and 3 in ϕ. Prohibiting the generation of clauses exceeding this a priori
depth bound, we obtain a decision procedure for KD4 and S4 by unrefined resolution. Note that
enforcing a bound on the depth of derived clauses will not guarantee termination for the relational
translation approach using unrefined resolution, since the number of variables in derived clauses
would still grow unboundedly, but it would for the refinement of resolution based on the selection
function STAB.

5.3 The semi-functional translation

Now, we turn to the semi-functional translation. According to Theorem 5.3, a modal formula ϕ is
KΣ-satisfiable if and only if ΠΣ

sf (ϕ) = AxΣ
sf ∧∃x:πsf (nnf(¬ϕ)) is satisfiable. Table 5.5 lists the form

of clauses in the clausal form of ΞΠΣ
sf (ϕ). The left column lists clauses from ∃x:πsf (nnf(¬ϕ)).

The clauses in the middle column stem from the semi-functional frame properties for K and
its extension by B, D, T, Irreflexivity, and Universality. Note that the semi-functional frame
property for the modal logic S5 is identical to Universality. Every clause in the first two columns
is regular, and in addition, strongly CDV-free. Consequently, it is not necessary to apply the
transformation ⇒M to these clauses. As a corollary of Theorem 3.33 we obtain:
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Theorem 5.7.
Let Σ be any combination of the axiom schemata D, T, B, and the first-order formulae Irreflexivity
and Universality. Let ϕ be a modal formula and N be the clausal form of ΞΠΣ

sf (ϕ). Let � be
an atom ordering satisfying Condition (3.3) defined on page 56. Then any derivation from N by
ordered resolution and (ordered) factoring based on � terminates.

For the remainder of this section we consider clause sets containing one of the clauses in the
right column of Table 5.5. These originate from the semi-functional frame properties of 4 and 5.
Since these clauses are non-regular, the results of Chapter 3 do not apply.

The clause set ClsΞΠΣ
sf (ϕ) contains only predicate symbols of maximal arity 2 such that all

arguments have to be of sort W , one constant symbol ε of sort W , unary function symbols of sort
W → AF , and one binary function symbol of sort [ ] : W × AF → W . This signature is called
an SF-signature. It is important to note that:

Lemma 5.8. For any syntactical most general unifier σ of two well-sorted terms t1 and t2,
t1σ = t2σ is again well-sorted.

The same holds for atoms and literals. Consequently, sorts will play no role in the following
considerations.

We proceed by defining a class of condensed clauses generalising the clauses present in
ClsΞΠΣ

sf (ϕ), which is finitely bounded whenever the signature is finite. To this end, we in-
troduce some more notation to abbreviate certain more general forms of clauses. Subsequently
we assume that:

¬r(ūn, t) expands to
⋃

1≤i≤n

{¬r(ui, t)},

¬r(t, ūn) expands to
⋃

1≤i≤n

{¬r(t, ui)},

P(ūn) expands to
⋃

1≤i≤n

{P(ui)}, and

P(t) expands to (¬)p1(t) ∨ . . . ∨ (¬)pm(t),

where t is a term and ūn denotes a vector of distinct variables. If the number of variables is
not important we write ū instead of ūn. Any of the disjunctions may be empty. The pi in P(t)
are pairwise distinct monadic predicates applied to the same term t. Different occurrences of
P within a clause may involve different sets of predicates. For example, let x̄2 be the vector
of two variables, x1 and x2, and assume that there are two monadic predicates p and q. Then
P(x̄2)∪P(a) may expand to a clause {p(x1),¬p(x2), q(x1), q(a)}, but not to {p(x1), p(x1), q(a)}.
Definition 5.9 (SF-regular term).
A well-sorted, regular term over an SF-signature is called an SF-regular term.

Note that well-sortedness does not restrict the maximal depth of literals and clauses. However,
a term like [xα1α2] = [[xα1]α2] is not regular, since [[xα1]α2] does not dominate [xα1]. It is
straightforward to see, that every well-sorted, regular term is of the form u, [uα], or [uf(u)]
where u is either a variable of sort W or the constant ε, and α is a variable of sort AF .

Lemma 5.10. Let t1 and t2 be SF-regular terms and let σ be the most general unifier of t1 and
t2. Then t1σ = t2σ is a SF-regular term and dp(t1σ) = max(dp(t1),dp(t2)).
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Proof. By a straightforward case analysis of all possible forms of t1 and t2.

Definition 5.11 (SF-regular clause).
A clause C is an SF-regular clause if C is a well-sorted, strongly CDV-free, regular clause over
an SF-signature such that (i) there are no occurrences of negative, dyadic literals, (ii) there is at
most one occurrence of a positive, dyadic literal L, (iii) the first argument of a dyadic literal L
in C is a subterm of the second argument of L, and (iv) if C contains a compound term t and a
dyadic literal L, then t is identical to the second argument of L.

Definition 5.12 (Small SF-clause).
A clause C is a small SF-clause if one of the following is true.

1. C is a SF-regular clause,

2. C is in one of the following forms

P(x̄2) ∪ {¬r(x1, x2)},(C2)
P(x̄2) ∪ {r([x1α1], [x2α2])},(C5)
P(x̄2) ∪ {r(x1, [x2α2])},(C45)

where x1 and x2 are variables of sort W , and α1 and α2 are variables of sort AF .

By Theorem 3.25 there are only finitely many SF-regular clauses modulo variable renaming.
Obviously, there are only finitely many condensed clauses of the form C5 and C45.
Theorem 5.13.
Let Σ be the axiom schema 5, or its combination with 4, D, and T. Let ϕ be a modal formula in
negation normal form. Every clause in ClsΞΠΣ

sf (ϕ) is a small SF-clause.

Proof. Except for {¬p0(x),¬r(x, y), p1(y)} the clausal form of ∃x:πsf (nnf(¬ϕ)) contains no dyadic
literals and the clauses are well-sorted, strongly CDV-free, and regular. Clauses of the form
{¬p0(x),¬r(x, y), p1(y)} are instances of C2.

The clauses {def(x)}, {r(x, [xα])}, and {r(x, x)} associated with D and T are SF-regular
clauses. The clauses corresponding to 5, and the combination 45 are instances of C4 and C45,
respectively.

It remains to show that the class of small SF-clauses is closed under ordered resolution and ordered
factoring given an appropriate ordering. Recall the definition of the ordering �COV in Chapter 4:
�COV is any atom ordering compatible with cL where cL is the complexity measure given by the
multiset of arguments of L and the multiset extension �s

mul of the strict subterm ordering �s.
To make use of the results of Chapter 3 we have to prove that the atom ordering �COV satisfies
Condition (3.3) on page 56, that is, �COV-maximality of a literal implies �Z-maximality.

Lemma 5.14. The atom ordering �COV satisfies Condition (3.3) on indecomposable, SF-regular
clauses.

Proof. Let C be an indecomposable, SF-regular clause. Let L1 be a �COV-maximal literal in C.
Suppose L1 = r(s1, t1) is a dyadic literal. By Condition (ii), L1 is the only dyadic literal in

C. So, let L2 be a monadic literal in C with argument t2. If t2 is a variable, then t2 has to occur
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in L1, otherwise C would be decomposable. However, if t2 occurs in L2, then it will be a subterm
of s1 or t1. Thus, L1 %Z L2. Note also, that L1 �COV L2, that is, L2 is not �COV-maximal. If t1
is a compound term, then by Condition (iv), it is equal to t2. Again, L1 %Z L2 and L2 is not
�COV-maximal. Hence, L1 is �Z-maximal.

Suppose L1 is a monadic literal with argument t1. This implies all literals in C are monadic.
Since C is regular, it contains a dominating literal. If L1 itself is a dominating literal, then L1 is
�Z-maximal. Otherwise, there is a literal L3 6= L1 with L3 %Z L1 and L1 6%Z L3. That means,
t3 %Z t1 and t1 6%Z t3. By a case analysis of the syntactical form of t1 and t3 it follows that t1 is
a strict subterm of t3. However, this contradicts the assumption that L1 is �COV-maximal in C.
So, L1 is a dominating literal in C and therefore �Z-maximal.

Corollary 5.15. Let {L} ∪C be an indecomposable, SF-regular clause with dyadic literal L and
let σ be a substitution such that Lσ is well-sorted and regular. Then L and Lσ are �COV-maximal
with respect to C and Cσ, respectively.

Recall that the results of Chapter 3 allow term depth growth during a theorem proving derivation
on regular clauses. We will now show that this is not the case for SF-regular clauses.
Lemma 5.16. Let C1 = {A1} ∪D1 and C2 = {¬A2} ∪D2 be variable-disjoint, indecomposable,
SF-regular clauses such that A1 and A2 are unifiable with most general unifier σ, and let A1σ and
¬A2σ be �COV-maximal with respect to D1σ and D2σ, respectively. Then every split component
E of (D1 ∪D2)σ is an SF-regular clause and dp(E) ≤ max(dp(C1),dp(C2)).

Proof. The clause E is regular due to Lemma 3.19 and strongly CDV-free due to Lemma 3.30.
It remains to show that E has properties (i) to (iv) of Definition 5.22. E does not contain a
negative, dyadic literal, since neither C1 nor C2 contains one. This also implies that ¬A2 is not a
dyadic literal. Therefore, both A1 and ¬A2 are monadic literal. By Corollary 5.15, we can only
resolve on a monadic literal in an SF-clause if it does not contain a dyadic literal. So, E contains
no dyadic literal, since neither C1 nor C2 contains one.

It remains to show that the depth of E will be less than or equal to the maximal depth of its
parent clauses. The argument ti, 1≤i≤2, of Ai is an SF-regular term and the argument of any
literal in Di is a subterm of ti. By Lemma 5.10, dp(t1σ) = dp(t2σ) = max(dp(t1),dp(t2)). Thus,
dp(E) ≤ max(dp(C1),dp(C2)).

Lemma 5.17. Let C1 = {L1, L2}∪D1 be an indecomposable, SF-regular clause such that L1 and
L2 are unifiable with most general unifier σ and L1σ is �COV-maximal with respect to D1σ. Then
σ is the identity substitution, the factor ({L1} ∪D1)σ is an indecomposable, SF-regular clause of
the same depth as C1.

Proof. Since there is at most one dyadic literal in C1, neither L1 nor L2 are dyadic. The argument
t1 of L1 is of the form u1, [u1α1] or [u1f(u1)] where u1 is a either a variable or the constant ε.
Now consider the argument t2 of L2. If t2 is a variable distinct from u1 or the constant ε, then
C1 is not indecomposable. If t2 is identical to u1, but t1 is a compound term, then t1 and t2 are
not unifiable. Similarly, if t2 is a compound term and t1 is a variable or constant.

Suppose t2 is of the form [u2α2]. If t1 is of the form [u1f(u1)], then C1 is not regular. Similarly,
if t1 is of the form [u1α1], but either u2 is distinct from u1 or α2 is distinct from α1.

In the remaining cases the argument is similar. Thus, t1 and t2 are identical and their
most general unifier is the identity substitution. Since ({L1} ∪D1)σ is a subset of C1, the rest
follows.
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Consequently, condensation is the only form of factoring that is possible on indecomposable,
SF-regular clauses.

Lemma 5.18. Let C1 = {L1}∪D1 be clauses of the form C2, C5, or C45. Let σ be a substitution
such that C1σ is well-sorted and contains no non-regular term. If L1σ is �COV-maximal with
respect to D1σ, then L1 is a dyadic literal.

Proof. Straightforward.

As a consequence of Lemma 5.15 and Lemma 5.18 we obtain:

Lemma 5.19. Let C1 be a clause of the form C5 or C45. Let C2 be an SF-regular clause, a clause
of the form C5, or a clause of the form C45.

1. No inference step by ordered resolution based on �COV is possible with premises C1 and C2.

2. No inference step by ordered factoring based on �COV is possible with premise C1.

Proof. A resolution inference step on the monadic literals in C1 and C2, or a factoring inference
step on the monadic literals in C1, violates the ordering constraints. Since C1 and C2 contain
exactly one positive, dyadic literal no other inference steps are possible.

Similarly, resolution inference steps or factoring inference steps with premises of the form C2 are
not possible. It remains to consider resolution inference steps with a negative premise of the form
C2.

Lemma 5.20. Let C1 = {A1} ∪ D1 be an SF-regular clause, a clause of the form C5, or of the
form C45. Let C2 = {¬A2}∪D2 be a clause of the form C2. Let σ be the most general unifier of A1

and A2, and let A1σ and ¬A2σ be �COV-maximal with respect to D1σ and D2σ. Then (D1 ∪D2)σ
is an SF-regular clause.

Proof. By Lemma 5.18, ¬A2 is the dyadic literal of the form in C2, that is, ¬A2 = ¬r(x1, x2) and
D1 = P(x1) ∪ P(x2). So, A1 is a dyadic literal as well. Without loss of generality, we assume
that the most general unifier maps x1 and x2 to the arguments t1 and t2 of A1.

If C1 is a clause of the form C5 or C45, t1 and t2 are well-sorted regular terms which share
no variables. Let y1 and y2 be the variables of sort W in t1 and t2, respectively. The conclusion
(D1 ∪D2)σ of the inference step has the form P(y1)∪P(t1)∪P(y2)∪P(t2) where P(y1)∪P(t1)
and P(y2)∪P(t2) are the split components of (D1∪D2)σ. Obviously, they are SF-regular clauses.

If C1 is a SF-regular clause, then D2σ = P(t1) ∪ P(t2). It is straightforward to see that
(D1 ∪D2)σ is SF-regular.

Theorem 5.21.
Let Σ be a combination of the axiom schema 4, D, and T plus the axiom schema 5. Let ϕ be
a modal formula in negation normal form and let N be the set of clauses obtained by applying
ClsΞΠΣ

sf to ϕ. Any derivation from N by ordered resolution and ordered factoring based on the
ordering �COV terminates.

Proof. By Theorem 5.13 every clause in N is a small SF-clause. By the Lemmata 5.16 5.17,
5.19, and 5.20 the class of small SF-regular clauses is closed under inference steps by ordered
resolution and ordered factoring based on �COV . Since the number of small SF-regular clauses is
finitely bounded modulo variable renaming, any derivation from N terminates.
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Finally, we consider extensions of K4 by the axiom schemata D and T. We start by characterising
an appropriate class of clauses.
Definition 5.22 (SF-clause).
A clause C is an SF-clause if one of the following is true.

1. C is an SF-regular clause,

2. C is a clause of the form

P(ū) ∪ ¬r(ū, v) ∪ P(v) ∪ P(w̄) ∪ ¬r(w̄, t) ∪ P(t).(Cinv )

where v is either a variable of sort W or the constant ε, ū and w̄ are vectors of variables and
constants of sort W , t = [vα] for some variable α of sort AF or t = [vf(v)] for some unary
function symbol f , such that, additionally, if u and w are variables occurring in a monadic
atom in C, then there is at most one negative r literal in which this variable occurs.

3. C is of the form

P(x̄2) ∪ {¬r(x1, x2), r(x1, [x2α])},(C4)
where x1 and x2 are variables of sort W , and α is a variable of sort AF .

For clauses of the form (Cinv ) we shall also write C = C[v] to emphasise the special role of v as
the only variable or constant of sort W that may occur on the right side of r literals in C, if there
are any such literals. In that case, C[v′] will denote the clause in which v is replaced by v′. We
will write C = C[t] to emphasise the term t occurring in C.

Note that if a variable x in ū or w̄ occurs in a monadic literal of a clause C in the form (Cinv ),
but not in a dyadic literal in C, then C is either decomposable or it can be condensed. We will
therefore assume in the following that these variables occur in exactly one r-literal in C or that
C does not contain any r-literals at all.

Theorem 5.23.
Let Σ be any combination of the axiom schemata 4, D, and T. Let ϕ be a modal formula. Every
clause in ClsΞΠΣ

sf (ϕ) is an SF-clause.

Proof. Except for {¬p0(x),¬r(x, y), p1(y)} the clausal form of ∃x:πsf (nnf(¬ϕ)) contains no dyadic
literals and the clauses are well-sorted, strongly CDV-free, and regular. Clauses of the form
{¬p0(x),¬r(x, y), p1(y)} are instances of Cinv . The clauses {def(x)}, {r(x, [xα])}, and {r(x, x)}
associated with D and T are also well-sorted, strongly CDV-free, regular clauses. The clause
corresponding to 4 is an instance of C4.
Lemma 5.24. Over a finite signature there are only a finitely bounded number of condensed
SF-clauses (modulo variable renaming).

Proof. Obviously, there are only finitely many condensed clauses of the form C4 and by Theo-
rem 3.25 there are only finitely many SF-regular clauses modulo variable renaming.

It remains to consider clauses of the form Cinv . Here we may view the terms t and v as a global
parameter. Then the dyadic literals of the form ¬r(u, v) and ¬r(w, t) can be viewed as monadic
literals ¬rv(u) and ¬rt(w). A condensed clause consisting of monadic literals only, can contain at
most exponentially many variable-disjoint subclauses, each containing at most exponentially many
literals. It follows that there are only finitely many SF-clauses modulo variable renaming.



110 Chapter 5. Modal logics

Next we define an ordering and a selection function with respect to which the class of SF-clauses
is closed under ordered resolution and ordered factoring.

Let � be any total reduction ordering on ground terms in which the constant ε is the minimal
term. For every ground literal L, let

c′L = (maxL, arL,polL, sL)

where (i) maxL is the maximal argument of L with respect to �, (ii) arL is the arity of L, (iii) polL
is 1, if L is negative, and 0 otherwise, and (iv) sL is 1, if L is a dyadic literal ¬r(s, t) and s � t, and
0 otherwise, The ordering �c over the complexity measure is then the lexicographic combination
of �, >N, >N, and >N.

For example, if s � t, then the complexity of r(s, t) is (s, 2, 0, 1), whereas the complexity of
¬r(t, s) is (s, 2, 1, 0). Observe that the maximal term is the main criterion, and a negative literal
is considered more complex than a positive literal with the same maximal term.

Note that �c represents a strict partial and well-founded ordering on ground literals. Any
total and well-founded extension (again denoted by �) of �c is an admissible ordering in the sense
of [9]. Let us assume for the remainder of this section that �ML denotes one specific but arbitrary
such ordering. The ordering �MLis lifted to non-ground expression in a standard manner.

The selection function SML is defined as follows. If a ground clause C contains a negative
dyadic literal of the form ¬r(s, t) such that s is an occurrence of a �-maximal term in C, then
S selects one such literal. No other literals are selected by SML. A literal L is selected in a
non-ground clause C, Lσ is selected in Cσ, for all ground instances, by a substitution σ, of an
inference with Cσ by ordered resolution or ordered factoring such that the ordering constraints
are satisfied.

Lemma 5.25. Let C1 = {A1}∪D1 and C2 = {¬A2}∪D2 be variable-disjoint clauses of the form
Cinv . Let σ be the most general unifier of A1 and A2. Let E = (D1 ∪D2)σ be the conclusion of
ordered resolution with premises C1 and C2 on the literal A1 and ¬A2. Then E is of the form
Cinv .

Proof. Since there are no positive occurrences of dyadic literals in clauses of the form Cinv , neither
A1 nor A2 is a dyadic literal. If one of the negative, dyadic literals in either C1 or C2 is selected,
then no inference step is possible on a monadic literal. Hence we may subsequently assume that
no literal is selected in C1 and C2.

1. Suppose that A1 is of the form p(u1). Consequently, u1 represents the maximal term in
C1[v1]. In this case no compound term t[u1] can occur in C1. The term u1 cannot occur as
the first argument of an r literal as otherwise this literal would be selected. Therefore u1

occurs as the right argument of an r atom, that is, u1 = v1, if there are r literals in C.

Let ¬A2 in C2[v2] be of the form ¬p(u2). By a similar reasoning we infer that no compound
terms occur in C2 and u2 = v2, if there are r literals in C2. The substitution σ unifies v1
and v2 and the conclusion E of the inference step is a clause of the form Cinv .

If ¬A2 is of the form ¬p(t2) for a compound term t2, then v1 is a variable and the most
general unifier σ is of the form {v1/t2}. Thus, D2σ = D2 and every occurrence of the
variable v1 in D1 is replaced by t2. The conclusion E is again a clause of the form Cinv .

2. Suppose that A1 is of the form p(t1) for a compound term t1. The term t1 is the maximal
term in C1[t1].
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If ¬A2 is of the form ¬p(u2), then this case is symmetrical to the previous case with
A1 = p(u1) and ¬A2 = ¬p(t2). Suppose ¬A2 is of the form ¬p(t2) for a compound term
t2. If both terms contain unary function symbols, these function symbols are identical. So,
the term t1 is either of the form [v1α1] or [v1f(v1)], while t2 is either of the form [v2α2] or
[v2f(v2)]. Obviously, t1σ = t2σ is again a term of this form. Consequently, the conclusion
E of the inference step is again of the form Cinv and its depth does not exceed the maximal
depth of its premises.

Lemma 5.26. Let C1 = {L1, L2} ∪D1 be a condensed clause of the form Cinv such that L1 and
L2 are unifiable with most general unifier σ. Let E = ({L1} ∪D1)σ be the ordered factor of C1.
Then E is of the form Cinv .

Proof. We distinguish the following cases:

1. Suppose that L1 is of the form ¬r(w1, t) where t is a compound term with strict subterm
v. Then L2 is neither a monadic literal, nor a literal of the form ¬r(u2, v), since v and t
are not unifiable. So, L2 is of the form ¬r(w2, t) and then E is obviously of the form Cinv .
The case that L1 is of the form ¬r(u1, v) is symmetrical.

2. Suppose L1 is of the form (¬)p(t). The literal L2 is neither identical to L2, since C is
condensed, nor of the form (¬)p(v), since v and t are not unifiable. So, L2 is either of the
form (¬)p(u2) or of the form (¬)p(w2) where u2 and w2 are variables and the unifier σ
maps u2, respectively w2, to the term t. If C contains an r literal, then it contains a literal
¬r(u2, v) and ¬r(w2, t), respectively. The complexity measure associated with ¬r(u2, v)σ =
¬r(t, v) is (t, 2, 1, 1) and the complexity measure associated with ¬r(w2, t)σ = ¬r(t, t) is
(t, 2, 1, 0). In both cases, these complexity measures are greater than the complexity measure
c′L1σ = c′L2σ = (t, 1,polL1

, 0), that is, L1σ is not �ML-maximal in C and an inference step
by ordered factoring is not possible. Thus, C contains no r literals and E is again of the
form Cinv .

3. Suppose L1 is of the form (¬)p(v). The case that L2 is of the form (¬)p(t) is symmetrical
to the previous one, so it remains to consider that L2 is either of the form (¬)p(w2) or
(¬)p(u2). Without loss of generality, we assume that L1σ = L2σ = L1. Obviously, in the
presence of a monadic or dyadic literal in C with argument t, L1σ is not �ML-maximal.
Thus, we can assume C contains no such literals. In the case of L2 = (¬)p(w2) this excludes
the presence of an r literal with w2 (and t) as argument. So, E is of the form Cinv again. If
L2 = (¬)p(u2), then the complexity measure associated with L1σ = L2σ is (v, 1,polL1

, 0).
In the presence of r literals in C, there is one of the form ¬r(u2, v). So, the complexity
measure associated with ¬r(u2, v)σ = ¬r(v, v) is (v, 2, 1, 0) and L1σ is not �ML-maximal.
Therefore, C does not contain r literals and E is of the form Cinv .

4. Suppose L1 is of the form (¬)p(u1). We have already considered the case where L2 is of
the form (¬)p(t) and (¬)p(v). It remains to consider that L2 is of the form (¬)p(u2) or
(¬)p(w2). In the first case, the result trivially holds. In the second case, we observe that
C does not contain the compound term t and no r literal ¬r(w2, t). It follows that E is of
the form Cinv .
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To make use of the results we obtained for extensions of K5 we show that �ML-maximality implies
�COV-maximality on indecomposable, SF-regular clauses. Since �ML and �COV are based on the
orderings �c and �s

mul on the complexity measures cL and c′L, respectively, we show the following.

Lemma 5.27. Let C1 = {L1} ∪ D1 be an indecomposable, SF-regular clause, and let σ be a
substitution such that C1σ is well-sorted and SF-regular. If L1σ is �c-maximal with respect to
D1σ, then L1σ is �s

mul-maximal with respect to D1σ.

Proof. Suppose C1 contains a dyadic literal L2 = r(s2, t2) and let L3 be a monadic literal in C
with argument term t3. We know that t3 is a subterm of t2, so t3σ is a subterm of t2σ. Hence,
c′L2σ �c c

′
L3σ. Consequently, L1 = L2 and by Corollary 5.15, L2σ is also �s

mul-maximal with
respect to C1σ.

Suppose C1 contains no dyadic literal. So, L1 is a monadic literal with argument term t1. Let
L3 6= L1 be a literal in C1 with argument term t3. Since C1 is indecomposable, neither t1 nor t3
is a ground term. In the proof of Lemma 5.14 we saw that L1 is a dominating literal in C1, that
is, t1 %Z t3. If t3 is a strict subterm of t1, then it is straightforward to see that c′L1σ �c c

′
L3σ and

cL1σ �s
mul cL3σ holds. Suppose t3 is not a strict subterm of t1. A case analysis of the syntactical

form of t1 and t3 reveals that either t1 = t3, or t1 = [xf(x)] and t3 = [xg(x)] for a variable x and
distinct function symbols f and g. In both cases L1 and L3 are �s

mul-maximal. Hence, the result
holds trivially.

Corollary 5.28. Let {L} ∪C be an indecomposable, SF-regular clause with dyadic literal L and
let σ be a substitution such that Lσ is well-sorted and regular. Then L and Lσ are �ML-maximal
with respect to C and Cσ, respectively.

As corollary of Lemma 5.16 and Lemma 5.17 we obtain:

Corollary 5.29. Let C1 and C2 be indecomposable, SF-regular clauses. Then:

1. Every split component of the conclusion of an inference step by ordered resolution based on
�ML is an SF-regular clause.

2. The conclusion of an inference step by ordered factoring based on �ML is an SF-regular
clause.

Lemma 5.30. Let C1 be an SF-regular clause and C2 be a clause of the form C4. No inference
step by ordered resolution based on �ML is possible with premises C1 and C2.

Proof. An inference step with positive premise C2 and negative premise C1 is not possible, since
C1 contains only monadic literals which are negative and no monadic literal in C2 is �ML-maximal
or selected.

Similarly, an inference step with negative premise C2 and positive premise C1 using the most
general unifier σ can only be performed on dyadic literals. To this end, the negative literal
¬r(x1, x2) either has to be selected in C2, or the instance ¬r(x1, x2)σ has to be maximal in C2.
Consider the positive, dyadic literal r(t1, t2) in C1. Without loss of generality we can assume
that σ = {x1/t1, x2/t2}. By Condition (iii), t1 is a subterm of t2. Consequently, r(x1, [x2α])σ =
r(t1, [t2α]) �ML ¬r(t1, t2) and in no ground instance C2θ of C2 will t1θ be the maximal term of
C2θ. Thus, neither is ¬r(x1, x2) selected nor is ¬r(x1, x2)σ maximal, which renders the inference
step impossible.
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Lemma 5.31. Let C1 and C2 be clauses of the form C4.

1. No inference step by ordered resolution based on �ML is possible with premises C1 and C2.

2. No inference step by ordered factoring based on �ML is possible with premise C1.

Proof. A resolution inference step on the monadic literals in C1 and C2 violates the order-
ing constraints. The only remaining possibility is a resolution inference step upon the literal
¬r(x1, x2) in the negative premise C1. Consider the positive premise C2 = P(x3) ∪ P(x4) ∪
{¬r(x3, x4), r(x3, [x4α2])}. Without loss of generality we assume that the most general unifier
σ maps x1 to x3 and x2 to x4α2. The inference step is only admissible if the ordering con-
straints are satisfied. That is, r(x3, [x4α2]) has to be strictly �ML-maximal with respect to
P(x3) ∪ P(x4) ∪ {¬r(x3, x4)}. Consequently, [x4α2] represents the �-maximal term in C2σ.
However, this means, [x4α2α1] represents the �-maximal term in C1σ = P(x3) ∪ P([x4α2]) ∪
{¬r(x3, [x4α2]), r(x3, [x4α2α1])}. Thus, neither is ¬r(x1, x3) selected in C1 nor is ¬r(x3, [x4α2])
maximal with respect to P(x3) ∪ P([x4α2]) ∪ {r(x3, [x4α2α1])}.

Because the clause C1 does not contain two positive or two negative dyadic literals, factoring
steps are only possible on the monadic literals. However, since C1 contains a dyadic literal, such
an inference step violates the ordering constraints.

Lemma 5.32. Let C1 be an indecomposable, SF-regular clause and C2 be an indecomposable,
condensed clause of form Cinv . The conclusion of any inference by ordered resolution with selection
based on �ML and SML from C1 and C2 will be an SF-clause.

Proof. Suppose C1 = {¬A1} ∪ D1 is the negative premise in an inference step by ordered res-
olution. Since C1 contains no negative, dyadic literal, A1 is monadic and C1 does not contain
any dyadic literals. Consider the positive premise C2 = {A2} ∪D2 of the form Cinv . Suppose A2

is an atom p(u2) in P(ū). Then u2 represents the maximal term in C2 and the literal ¬r(u2, v)
in C2 is selected. This prevents an inference step on p(u2). Similarly, it prevents an inference
step on literals in P(w̄). Suppose A2 is an atom p(v) in P(v). Then C2 does not contain any
compound term t and no negative, dyadic literals. Consequently, C2 is also a SF-regular clause
and by Lemma 5.16, the conclusion of an inference step by ordered resolution will be SF-regular.
Finally, suppose A2 is an atom p(t2) where t2 is either identical to [vα2] or to [vf(v)]. A1 is an
atom p(t1) where t1 is an SF-regular term different from ε, since t1 and t2 are unifiable. Any
term occurring in C1 is a subterm of t1. Thus, the conclusion of the inference step is a clause
C = C[t1σ] of the form Cinv where C1σ is a subclause of P(t1σ).

Suppose C1 = {A1}∪D1 is the positive premise in an inference step by ordered resolution. If
A1 is a monadic atom, then we proceed as in the previous case. Suppose that A1 is a dyadic literal
r(s1, t1). The terms s1 and t1 are SF-regular, and s1 is a subterm of t1. Assume C2 = {¬A2}∪D2.
¬A2 is either a dyadic literal ¬r(u2, v2) or a dyadic literal ¬r(w2, t2) where v2 is a strict subterm
of t2.

Suppose ¬A2 = ¬r(u2, v2). If t1 is a compound term and C2 contains a compound term t2
where v2 is a strict subterm of t2, then the conclusion of the resolution inference step is no longer
of the form Cinv . So, we have to show that C2 does not contain such a compound term. Assume
the opposite. Then, v2 is not a �-maximal term in C2. To be able to resolve upon ¬A2, u2 has to
represent a maximal term in C2, that is, u2 � t2 � v2. However, we have t1 � s1, which renders
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the resolution step impossible. We conclude that C2 does not contain a compound term. It is
straightforward to check that the conclusion of the inference step is a clause of the form Cinv .

Suppose ¬A2 = ¬r(w2, t2). By Condition (iv) all compound terms in C1 are equal to t2. By
Lemma 5.8 we know that t2σ is well-sorted and by Lemma 5.10, dp(t2σ) = max(dp(t1),dp(t2)).
So, t1σ = t2σ is a term of the appropriate form. Furthermore w2σ = s1σ is either identical to ε,
w2, v2, or t2. In the first two case, (P(w2)∪P(s1))σ is a split component of the conclusion while
the rest of the conclusion is of the form Cinv . In the remaining cases, we obtain a conclusion of
the form Cinv .

Lemma 5.33. Let C1 be a clause of the form C4 and let C2 be a clause of the form Cinv . The
conclusion of any inference by ordered resolution based on �ML from C1 and C2 will be an SF-
clause.

Proof. In a clause of the form C4 the dyadic literal r(x, [yα]) is the only literal on which resolution
steps may be performed. Thus, C1 will be the positive premise of the inference step and C2 the
negative premise.

Assume C2 = {¬A2}∪D2. ¬A2 is either a dyadic literal ¬r(u2, v2) or a dyadic literal ¬r(w2, t2)
where v2 is a strict subterm of t2. In the first case, a resolution inference step on ¬r(u2, v2) is
only permissible if no compound terms occur in D2. If C2 contains non-empty subclauses P(u2)
and P(w2), then the dyadic literals ¬r(u2, v2) and ¬r(w2, t2), respectively, are the only literals in
which u2 and w2 occur together with some other term and prevent the application of condensation
or splitting.

Suppose we resolve with a clause of form C4. We can assume that u2σ = x, and v2σ = [x2α].
If D2 = P(ū) ∪ {¬r(ū, v)} ∪ P(v), then we obtain the conclusion:

C = P(u2) ∪ {¬r(u2, x2)} ∪ P(x2) ∪D2σ

= P(u2) ∪ {¬r(u2, x2)} ∪ P(x2) ∪ P(ū) ∪ ¬r(ū, [x2α]) ∪ P([x2, α]).

The term [x2α] is the only compound term in the conclusion and the �ML-maximal literal will be
among those literals containing [x2α]. So, we have derived a clause of the form Cinv . Note that
if the term v2 only occurs in the dyadic literal ¬r(u2, v2), then the derived clause C is (a variant
of) a subclause of C2.

If we resolve upon ¬r(w2, t2) in C2 and a clause of the form C4, then we can assume that
x1σ = w2, x2σ = v2, and [x2α]σ = t2 (note that v2 may be a constant and t2 may be of the form
[v2f(v2)]). The conclusion of the inference step is:

C = P(w2) ∪ {¬r(w2, v2)} ∪ P(v2) ∪D2.

Obviously, C is of the form Cinv .

Theorem 5.34.
Let Σ be any combination of the axiom schemata 4, D, and T. Let ϕ be a modal formula in
negation normal form and let N be the set of clauses obtained by applying ClsΞΠΣ

sf to ϕ. Any
derivation from N by ordered resolution and ordered factoring with selection based on the ordering
�ML and the selection function SML, terminates.
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Proof. By Theorem 5.23 every clause in N is an SF-clause. By Corollary 5.29 and Lemmata 5.30,
5.31, 5.32, and 5.33 the class of SF-clauses is closed under inference steps by ordered resolution
and ordered factoring based on �ML and SML. By Theorem 5.24 the class of SF-clauses is finitely
bounded.

Let us consider an example. The formula

ϕ1 = 2(p1 ∨ p2) ∧3(2(¬p1 ∨ p2) ∧33¬p2)

is unsatisfiable in K4. The clausal form of ΞΠ4
sf (ϕ1) includes among others the following clauses.

(18) {¬def(x), r(x, [xα])}
(19) {¬def(x),¬r(x, y), r(x, [yα])}
(20) {¬q1(x), def(x)}
(21) {¬q1(x),¬p2([xf1(x)])}
(22) {¬q2(x), def(x)}
(23) {¬q2(x), q1([xf2(x)])}
(24) {¬q3(x),¬p1(x), p2(x)}
(25) {¬q4(x),¬r(x, y), q3(y)}
(26) {¬q5(x), q2(x)}
(27) {¬q5(x), q4(x)}
(28) {¬q6(x), def(x)}
(29) {¬q6(x), q5([xf3(x)])}
(30) {¬q7(x), p1(x), p2(x)}
(31) {¬q8(x),¬r(x, y), q7(y)}
(32) {¬q9(x), q6(x)}
(33) {¬q9(x), q8(x)}
(34) { q9(ε)}.

Note that q8(x) can be interpreted as ‘2(p1 ∨ p2) holds at world x’. The literals q4(x), q2(x), and
q1(x) have an analogous meaning for the subformulae 2(¬p1∨p2), 33¬p2, and 3¬p2, respectively.
Recall that condensation is performed implicitly in the “Deduce” expansion rule.

[(24)2,R,(30)2] (35) {¬q3(x),¬q7(x), p2(x)}
[(35)3,R,(21)2] (36) {¬q3([yf1(y)]),¬q7([yf1(y)]),¬q1(y)}
[(25)2,R,(19)3] (37) {¬def(x),¬q4(x),¬r(x, y), q3([yα])}
[(31)2,R,(19)3] (38) {¬def(x),¬q8(x),¬r(x, y), q7([yα])}
[(37)4,R,(36)1] (39) {¬def(x),¬q4(x),¬q1(y),¬r(x, y),¬q7([yf1(y)])}
[(39)5,R,(38)4] (40) {¬def(x),¬q4(x),¬r(x, y),¬def(z),¬q8(z),¬r(z, y),¬q1(y)}.

Clause (40) expresses that if 2(¬p1∨p2) holds at a world x, 2(p1∨p2) holds at world z, the worlds
x and z are not dead-ends, and there is a world y which is accessible from both x and z, then
¬3¬p2, that is 2p2, holds in y. No assumptions are made as to whether x is accessible from z,
or vice versa. This property cannot be expressed without the object language containing explicit
representations of (universally quantified) worlds and the accessibility relation. This is one of the
main factors which enables us to maintain all the information which needs to be derived in the
restricted form of Cinv . The remainder of the refutation is as follows.
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[(40)3,R,(18)2] (41) {¬def(x),¬q4(x),¬def(z),¬q8(z),¬r(z, [xα]),¬q1([xα])}
[(41)6,R,(23)2] (42) {¬def(x),¬q4(x),¬q2(x),¬def(z),¬q8(z),¬r(z, [xf2(x)])}
[(42)4,R,(19)3] (43) {¬def(x),¬q4(x),¬q2(x),¬def(z),¬q8(z),¬r(z, x)}
[(43)6,R,(18)2] (44) {¬def([zα]),¬q4([zα]),¬q2([zα]),¬def(z),¬q8(z)}
[(44)1,R,(22)2] (45) {¬q4([zα]),¬q2([zα]),¬def(z),¬q8(z)}
[(45)2,R,(28)2] (46) {¬q4([zα]),¬q5([zα]),¬def(z),¬q8(z)}
[(46)2,R,(29)2] (47) {¬q4([zf3(z)]),¬q6(z),¬def(z),¬q8(z)}
[(47)1,R,(27)2] (48) {¬q5([zf3(z)]),¬q6(z),¬def(z),¬q8(z)}
[(48)1,R,(29)2] (49) {¬q6(z),¬def(z),¬q8(z)}
[(49)2,R,(28)2] (50) {¬q6(z),¬q8(z)}
[(50)1,R,(32)2] (51) {¬q9(z),¬q8(z)}
[(51)2,R,(33)2] (52) {¬q9(z)}
[(52)1,R,(34)1] (53) ⊥.
It is interesting to note the close corresponds to the example derivation in [46].

5.4 Conclusion

In this chapter we have considered various embeddings of modal logics into fragments of first-
order logic. We have been able to derive decidability results for the relational translation and
semi-functional translation method. Our results for the latter include also extensions with the
axiom schema 4 which are of particular interest. For the relational translation, a decision pro-
cedure based on ordered chaining is presented in Ganzinger et al. [46]. Derivations by these
decision procedures do not resemble derivations by tableaux-based decision procedures for K4, as
is illustrated by the example at the end of Section 5.3.

Based on the consideration in Section 4.5 we have been able to describe a decision procedure
using a refinement of resolution based solely on a particular selection function which is able to
simulate tableaux-based decision procedures for extension of K.

All the results in Section 5.2 extend to multi-modal logics with one important exception:
The independent join of S5 with other modal logics. In this case it is no longer sound to use
Universality as the relational or semi-functional frame property corresponding to the combination
of the axiom schemata T and 5. A resolution-based decision procedure for the independent join
of S5 with other modal logics is not only interesting to close a final gap in the range of modal
logics the approach presented in the chapter is able to cover. It is also closely related to the
problem of obtaining resolution-based decision procedures for temporal logics of knowledge and
belief. Currently, a resolution-based decision procedure for the combination of propositional linear
temporal logic with a single S5 modality exists [31]. This procedure does not use an embedding
into first-order logic. It is open how to obtain a decision procedure in the presence of multiple S5
modalities.

As stated in the introduction, the class K and the guarded fragment can be considered to be
generalisations of a range of modal logics not including K4. A topic for future research is to look
at generalisations of K4 by relational operations or by allowing for predicates of arbitrary arity.
First results in this directions have been obtained by Ganzinger, Meyer and Veanes [47].



Chapter 6

Performance evaluation

Besides the resolution-based decision procedures described in Chapter 5 there are various other
procedures for establishing the theoremhood and satisfiability of modal formulae. To name just
a few: Basin, Matthews, and Viganò [17] present an approach based on natural deduction, Fit-
ting [42] and Baader and Hollunder [5] make use of tableaux calculi, Giunchiglia and Sebas-
tiani [51] extend the DPLL algorithm [25, 24] to multi-modal logic K(m).

The simulation results of chapter 4 and 5 use an analytical approach to shed some light on the
relative performance of resolution-based decision procedures compared to tableaux-based decision
procedures, In this chapter we compare various implementations of the approaches mentioned
above on an empirical bases. Shorter versions of this chapter are [79, 80, 82]. Related work by
Hustadt, Schmidt and Weidenbach also appears in [81, 85]. Other related experiments have been
done by Baader, Hollunder, Nebel, Profitlich, and Franconi [6], E. Giunchiglia, F. Giunchiglia,
Sebastiani and Tachella [51, 52, 50], Heuerding and Schwendimann [63], Horrocks and Patel-
Schneider [70, 71], and Paramasivam and Plaisted [110].

6.1 Analytical versus empirical performance studies

There are two basic approaches for studying the performance of algorithms and their implemen-
tations: An analytical one and an empirical one. The following discussion of the pros and cons
of the two approaches elaborates considerations by Hooker [67, 68].

During the last decades the analytical approach has matured into a well-developed science.
One of the major contributions is the insight that there exist a wide range of problem classes
which have an inherent difficulty that we cannot overcome by any clever algorithm. For example,
the satisfiability problem of boolean formulae is NP-complete and the satisfiability problem of
modal logic formulae in the modal logic K is PSPACE-complete. Besides the rather fine grained
hierarchy of complexity classes, there is the coarse division into tractable and intractable class: A
class is said to be tractable if it can be solved in polynomial time, otherwise it is intractable. So, in
general problems from the classes NP and PSPACE are intractable. However, underlying these
characterisations are reflections on the worst-case behaviour of algorithms on a given problem
class.

It is natural to consider the average-case behaviour of an algorithm on a given problem
class instead. The average-case analysis considers random instances of a problem class, that is, it
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considers a problem class together with a probability density function µ which assigns probabilities
to instances of the problem class. The first problem that arises is caused by the sensitivity of an
average-case analysis to the choice of µ. If the density function µ decreases faster than 2−|x| where
|x| is the length of the instance x, then all NP-complete problems are solvable in polynomial time
on µ-average [124]. Even if this is not the case, there are a wide range of density functions which
are unreasonable. The most famous example is the density function underlying the result of
Goldberg [53, 54, 55]. Goldberg has shown that the satisfiability problem of boolean formulae
can be solved by the DPLL procedure in polynomial time in the average-case. Subsequently,
Franco and Paull [43] proved that based on the density function of Goldberg even a fixed number
of guesses will reveal the satisfiability of a boolean formula with probability 1. So the good result
obtained by Goldberg is due to the density function he assumed and not a feature of the DPLL
algorithm. In addition, Franco and Paull have shown that for a more reasonable density function
on the class of boolean formulae, a variant of the DPLL procedure needs exponential time in the
average case. However, the paper of Franco and Paull also shows the limitations of the analytical
approach: The variant of the DPLL algorithm they have analysed utilises a rather simple heuristic
for the application of the splitting rule and does not use the pure literal rule. So, they had to
simplify the DPLL algorithm to provide grounds for an analytical study. In this light, it seems
to be rather unlikely that resolution-based decision procedures for subclasses of first-order logic
are a suitable subject for an analytical study on the basis of the techniques currently available
for such an enterprise.

At first sight, an empirical analysis sidesteps these problems. Commonly, such an analysis
requires collecting a set of benchmark problems and comparing the performances of algorithms
on them. This task seems straightforward. Taking a closer look we identify several difficulties.

First, an empirical analysis based on a set of benchmark problems is of comparative and
competitive nature. It does not make much sense to report the performance of a single algorithm
or its implementation on some set of benchmark problems, since this kind of report does not
provide an evaluation of the quality of the algorithm. Instead we need empirical results for more
than one algorithm.

Second, we cannot obtain empirical results for the algorithm directly, but we need some
implementation of it. This raises the question to which level of sophistication we have to drive
the coding of the algorithms. The problem is worse since we have to compare several algorithms.
So we need implementations for every algorithm under examination. It seems hardly possible to
afford implementing all the algorithms on our own. On the other hand, if the implementations are
contributed by several researchers one cannot expect that they follow the same design principles
and design goals. It is likely that different programming languages have been used, that the
software design is vastly different, and we cannot even assume that providing the best performance
possible has been the major design goal. It goes without saying that this divergence has serious
effects on the performance provided by the implementations.

Third, selecting a set of benchmark problems is a non-trivial task. By definition a set of
benchmark problems should be representative for the problems occurring in the ‘real world’.
Imagine that many ‘real world problems’ exist. Although this seems to be an ideal situation
for selecting an appropriate set of benchmark problems there is almost certainly a catch to it.
There already exist well-developed (commercial) products solving these problems. An empirical
analysis has to be comparative. We have to compare our new algorithm (more specifically its
implementation) with existing ones. Such a comparison is often discouraging. For example,
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Lustig, Marsten, and Shanno [93] note that in the field of linear programming “CPLEX and
IBM’s OSL Release 2 simplex code, represent such a major improvement in simplex technology
that if the original interior point implementations had been tested against these codes, it might
well have discouraged further development of interior point technology.” In such a situation the
existing code is tuned for the benchmark problems. A quick implementation of a new algorithm
will not be competitive.

We are not much better off if not enough ‘real world problems’ exist to set up a benchmark
suite. In this situation one usually seeks and acquires problems which have been used by other
researchers for benchmark purposes. Besides the obvious drawback that these problems need
not resemble ‘real world problems’, there is an additional disadvantage. Since somebody has
reported the performance of an algorithm on a collection of problems, the result must have
been encouraging, that is the algorithm performed very well on the majority of the problems.
Furthermore, it is common habit to omit results for those problems where an algorithm has failed
to perform well enough. If we construct a benchmark suite from publications, the suite will be
tuned for the existing algorithms. Again it will be hard to outperform the existing code. This
kind of ‘tuning’ can become even worse, if we are working in an area where the specific formulation
of a problem can drastically influence the performance of an algorithm. So we have to decide
whether we change the formulation of the benchmark problem to make them better suited for
the new algorithm.

An alternative way to set up a benchmark suite is to randomly generate test problems. One
of the first examples of this approach is Hooker’s empirical comparison of a resolution-based
method and a cutting plane inference algorithm for propositional logic [66]. The test problems
were generated randomly according to a density function similar to the one chosen by Goldberg
for his analysis of the average-case complexity of the DPLL algorithm. The problems with this
approach are apparent. Again we cannot expect that the randomly generated test problems
resemble ‘real world problems’. Furthermore, not every density function µ gives rise to a suitable
benchmark suite. In particular, the result by Franco and Paull [43] indicates that the instance
distribution used in Hooker’s comparison [66] might not be appropriate.

Last but not least, benchmarking rarely improves our comprehension of the algorithms we
develop. Benchmarking may tell us that a particular algorithm performs better than other ones,
but it does not reveal why.

6.2 Scientific testing and scientific benchmarking

Hooker [68] proposes the following experimental design to overcome the problems of empirical
analysis: We should start by setting up a list of hypotheses about factors that could affect the
performance of the algorithm. Some of these factors can be related to features of the problems
we like to deal with, e.g. size of the problems, a specific structure of the problems, etc. Other
factors can be related to the algorithm itself, e.g. its inference rules, its heuristics, its redundancy
checks, etc. When formulating a hypothesis we should use some abstract measure to describe the
effect of a factor, for example, the number of nodes in a tableau or the length of a refutation using
resolution, instead of simply relying on running time. For each factor we set up a benchmark suite
suitable for verifying our hypothesis about the influence of the factor on the performance of the
algorithm. The benchmark problems can be purely artificial and need not be related to any ‘real
world’ problems. So randomly generated problems are well suited for this purpose. Of course, we
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still have to be careful that the generated problems possesses the problem characteristics needed
for the test. Since we do not intend to perform a competitive test, it is not necessary to have an
efficient implementation of our algorithm at hand. The only necessary prerequisite is that we are
able to alter the implementation to test our hypotheses about the algorithm itself, for example,
we need to be able to turn off specific inference rules and adjust specific heuristics.

Hooker calls this kind of experimental design scientific testing. He claims that scientific testing
solves or alleviates all the problems of empirical algorithm analysis described above. However,
the scope of the scientific testing methodology is rather limited: It is not suitable for testing
hypotheses concerning fundamentally different algorithms. It is an implicit assumption of the
scientific testing methodology that we restrict ourselves to variations of one basic algorithm.
For example, we might test the effect of various heuristics for choosing the next variable for
extending the partial truth assignment on the performance of a DPLL algorithm or we might
test the influence of the KE-rule on propositional tableaux calculi. For an elaborated example of
scientific testing see Gent and Walsh [49].

In contrast, consider that we want to compare a tableaux-based algorithm to a resolution-
based algorithm. The simulation results of chapter 4 and 5 shed some light on the relative per-
formance we can expect of resolution-based algorithms compared to tableaux-based algorithms
provided that the resolution-based algorithm follows a particular strategy matching the one used
by the tableaux-based algorithm. If this is not the case, and the algorithms follow unrelated
strategies, the analytical results do not predict the relative performance we will measure in an ex-
periment. Furthermore, for full-fledged algorithms including redundancy elimination techniques
it becomes difficult to establish a common abstract measure of the performance. The compu-
tational effort for an inference step by the tableaux-based algorithm does no longer correspond
to the computational effort for an inference step by the resolution-based algorithm. However,
without an abstract performance measure, the actual implementation is getting important again.

Since it is our main objective in this chapter to compare decision procedures for modal logic
based on a variety of different calculi and the procedures make use of various optimisation tech-
niques, the approach of scientific testing is not directly applicable. To compare fundamentally
different algorithms we have to use the methods involved in classical benchmarking, that is, we
have to compare the performance of implementations of the algorithms we are interested in. How-
ever, the aim of benchmarking should not be to implicate the superiority of a specific approach.
Instead benchmarking should improve our understanding of the influence various elements of a
decision procedure and their interdependencies have on the overall performance of the procedure.
The benchmark suite has to be designed in a way that enables us to form and to test hypotheses
about the design factors influencing the performance of an algorithm. An empirical comparison
of algorithms following this approach will be called scientific benchmarking. The next section
presents such a comparison and shows some of the pitfalls one might encounter.

6.3 Theorem provers for the modal logic K(m)

The language of the multi-modal logic K(m) is that of propositional logic plus m additional modal
operators 2i, 1≤i≤m. A formula of K(m) is a boolean combination of propositional and modal
atoms. A modal atom is an expression of the form 2iψ, 1≤i≤m, and ψ is a formula of K(m). In
contrast to Section 5.1, we will consider 3iψ to be an abbreviation for ¬2i¬ψ.

This section describes the inference mechanisms of Ksat, KRIS, the Logics Workbench and
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a variant of the optimised functional translation approach.
Ksat [51] extends the DPLL algorithm for testing the satisfiability of propositional formulae

to K(m). Its basic algorithm, called Ksat0, is based on the following two procedures:

KDP: Given a modal formula φ, this procedure generates a partial truth assignment µ for the
propositional and modal atoms in φ which renders φ true propositionally. This is done
using a decision procedure for propositional logic.

KM: Given a modal formula φ and an assignment µ computed by KDP, let 2iψij denote any
modal atom in φ which is assigned false by µ, that is, µ(2iψij) = ⊥ and 2iφik any modal
atom that is assigned true by µ, that is, µ(2iφik) = >. The procedure checks for each
index i, 1≤i≤m, and each j whether the formula

ϕij =
∧

k φik ∧ ¬ψij

is satisfiable. This is done with KDP. If at least one of the formulae ϕij is not satisfiable,
then KM fails on µ, otherwise it succeeds.

Ksat0 starts by generating a truth assignment µ for φ using KDP. If KM succeeds on µ, then
φ is K(m)-satisfiable. If KM fails on µ, we have to generate a new truth assignment for φ using
KDP. If no further truth assignment is found, then φ is K(m)-unsatisfiable.

The decision procedure KDP for propositional logic can be described by a set of transition
rules on ordered pairs P . S where P is a sequence of pairs 〈φ, µ〉 of a modal formula φ and a
partial truth assignment µ, and S is a set of satisfying truth assignments.

dp sol:
〈>, µ〉 |P . S

P . S ∪ {µ}

dp clash:
〈⊥, µ〉 |P . S

P . S

dp unit:
〈φ[c], µ〉 |P . S

〈φ′, µ ∪ {c = >}〉 |P . S

if c is a unit clause in φ and φ′ is the result of replacing all occurrences
of c and c by > and ⊥, respectively, followed by boolean simplification.

dp split:
〈φ[ψ], µ〉 |P . S

〈φ[ψ] ∧ p, µ〉 | 〈φ[ψ] ∧ ¬p, µ〉 |P . S

if dp unit cannot be applied to 〈φ[ψ], µ〉, ψ is a propositional or modal
atom.

The symbol | denotes concatenation of sequences. φ denotes the complementary formula of φ,
for example ¬p = p and 2ip = 3i¬p.

Starting with 〈φ, ∅〉 . ∅, applying the inference rules exhaustively will result in ∅ . S where
S is a complete set of partial truth assignments making φ true. The crucial nondeterminism of
the procedure is the selection of the splitting ‘variable’ ψ in the transition rule dp split. Ksat

employs the heuristic that selects an atom with a maximal number of occurrences in φ.
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At any point of time the computation in KDP can be interrupted and KM can be called with
the partial truth assignment µ constructed so far. If KM fails on µ, then is not necessary to
continue the completion of µ by KDP. Ksat0 calls KM before every application of the dp split
rule.

It is important to note that not every propositional theorem prover can be the basis for Ksat0.
Quite the contrary, completeness of Ksat0 can be lost easily, even if the underlying propositional
theorem prover is complete. Suppose that we add the pure literal rule to the DPLL procedure
described above. That is, whenever an atom ψ occurs only positively (respectively negatively) in
φ, we can add {ψ = >} (respectively {ψ = ⊥}) to the truth assignment and replace all occurrences
of ψ by > (respectively ⊥). The application of the pure literal rule preserves satisfiability and
can be applied eagerly to φ. Now consider the formula

φ1 = (p ∨ q ∨ ¬21(p ∨ ¬p))∧
(¬p ∨ ¬q ∨ ¬21(p ∨ ¬p)).

There is one pure literal in φ1, namely 21(p∨¬p), which occurs only negatively in φ1. So we assign
⊥ to 21(p ∨ ¬p) and replace all occurrences of 21(p ∨ ¬p) by ⊥. After simplifying the resulting
formula we get the formula >. We have arrived at a truth assignment rendering φ true. Due
to the eager application of the pure literal rule, this is the only truth assignment our procedure
computes. In a second step we have to check using KM that ¬(p ∨ ¬p) is satisfiable. This is
obviously not the case. Since KDP with the pure literal rule does not produce any additional
truth assignments for φ, Ksat concludes that φ is unsatisfiable. However, φ is satisfiable with
the truth assignment {p = >, q = ⊥}. For similar reasons, ordered resolution (with selection)
or particular refinements of semantic tableaux [1] are not suitable for combination with KM.
So, legitimate optimisations of the decision procedure for propositional logic can render Ksat0
incomplete. That is, not every technique developed for such decision procedure carries over to
modal logic.

We will illustrate the four approaches to satisfiability testing under consideration by way of
one satisfiable formula, namely

ψ = ¬21(p ∨ r) ∧ (21p ∨21q).

Example 6.1:
Figure 6.1 depicts the derivation tree of Ksat for the formula ψ. In the first step the procedure
KDP applies the dp unit rule to the unit clause ¬21(p ∨ r). All occurrences of ¬21(p ∨ r)
are replaced by > while all occurrences of 21(p ∨ r) are replaced by ⊥. The resulting formula
>∧ (21p∨21q) is simplified to 21p∨21q to which only the dp split rule of KDP is applicable.
Before any application of the dp split rule, Ksat calls the procedure KM with the current truth
assignment. Here, KM is used to prove that µ0 = {21(p ∨ r) = ⊥} is K(m)-satisfiable. To this end,
KM shows that ¬(p∨ r) is satisfiable. This is done by KDP with two applications of the dp unit
rule to ¬(p ∨ r). Only now, the dp split rule is actually applied to 21p ∨21q. We assume that
21p is the split variable. So, we have to show that either 21p∧ (21p∨21q) or ¬21p∧ (21p∨21q)
is satisfiable. KDP will first consider the formula 21p∧ (21p∨21q). Obviously, we can apply the
dp unit rule to propagate the unit clause 21p. This step immediately reveals that the formula
is satisfiable. That is, one satisfying truth assignment is µ1 = {21(p ∨ r) = ⊥,21p = >}. Ksat

proceeds with KM to show that ¬21(p ∨ r) ∧ 21p is K(m)-satisfiable. This is done by showing
that ¬(p ∨ r) ∧ p is satisfiable. But KDP will reveal with an application of the dp unit rule to
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¬21(p ∨ r) ∧ (21p ∨21q)

21p ∨21q

21p ∧ (21p ∨21q) ¬21p ∧ (21p ∨21q)

> 21q

µ1 = {21(p ∨ r) = ⊥,
21p = >}

>

¬(p ∨ r) ∧ p µ2 = {21(p ∨ r) = ⊥,
21p = ⊥, 21q = >}

⊥ ¬(p ∨ r) ∧ q ¬p ∧ q

> >

KDP: dp unit

KDP: dp split

KDP: dp unit KDP: dp unit

KDP: dp sol KDP: dp unit

KM
KDP: dp sol

KDP: dp unit

KM

Figure 6.1: Sample derivation of Ksat

the unit clause p in ¬(p ∨ r) ∧ p that the formula is unsatisfiable. Thus, ¬21(p ∨ r) ∧21p is not
K(m)-satisfiable. Consequently, KDP will continue with the second formula ¬21p ∧ (21p ∨ 21q)
generated by the dp split rule. Here two applications of the dp unit rule to the unit clauses
¬21p and 21q yield a second truth assignment µ2 = {21(p ∨ r) = ⊥,21p = ⊥,21q = >}. Again
Ksat continues with KM. Note that µ2 assigns ⊥ to two modal atoms, namely 21(p ∨ r) and
21p. Therefore, KM checks the satisfiability of two propositional formulae, that is, ¬(p ∨ r) ∧ q
and ¬p ∧ q. For both formulae KDP immediately verifies their satisfiability. So, KM succeeds on
µ2 which completes the computation by Ksat. We conclude that ¬21(p ∨ r) ∧ (21p ∨ 21q) is
satisfiable.

While Ksat abstracts from the modal part of formulae to employ decision procedures for
propositional logic, KRIS manipulates modal formulae directly. More precisely, the inference
rules of KRIS are relations on sequences of sets of labelled modal formulae of the form w:ψ
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where w is a label chosen from a countably infinite set of labels Γ and ψ is modal formula. The
set of inference rule contains an elimination rule for each of the operators >, ∧, ∨, and 3i. In
addition, there are two elimination rules ⊥ C and ∧ C which remove obviously unsatisfiable sets
of labelled formulae. For improved readability we write w:ψ,C instead of {w:ψ} ∪ C.

⊥ C:
w:⊥, C | S

S

∧ C: w:φ,w:φ,C | S
S

> E:
w:>, C | S
C | S

∧ E: w:φ ∧ ψ,C | S
w:φ,w:ψ,C | S

∨ E: w:φ ∨ ψ,C | S
w:φ,C | w:ψ,C | S
if w:φ ∨ ψ,C has been simplified by ∨ S0 and ∨ S1

3i E:
w:3iφ,D,C | S

v:φ ∧ ψ1 ∧ . . . ∧ ψn,D,C | S
if D = w:2iψ1, . . . , w:2iψn, C does not contain any w:2iψ, and none
of the other rules can be applied to C, and v is a new label from Γ.

Given a modal formula φ, the input sequence for KRIS is the singleton set w0:φ′, where w0 is a
label chosen from a countably infinite set of labels Γ and φ′ is the modal negation normal form
of φ. If KRIS arrives at a sequence C | S such that no transformation rule can be applied to
C, then the original formula φ is satisfiable. Otherwise the transformation rules will eventually
reduce w0:φ′ to the empty sequence and φ is unsatisfiable. The rules ⊥ C, ∧ C, > E, ∧ E, are applied
exhaustively before any application of one of the elimination rules for ∨ and 3i. The > E rule is
not necessary for the completeness of the set of rules. It is straightforward to see that KRIS is
a variant of the tableaux-based decision procedure described in Section 4.5.

In addition to the inference rules, KRIS has two simplification rules, namely

w:φ ∨ ψ,w:φ,C → w:φ,C∨ S0:

w:φ ∨ ψ,w:φ,C → w:ψ,w:φ,C∨ S1:

These are applied only immediately before an application of the ∨ E rule and then they are applied
only to the labelled formula w:φ ∨ ψ to which we want to apply the ∨ E rule.

As far as the application of the ∨ E rule is concerned, KRIS actually considers the sets of
labelled formulae as sequences and chooses the first disjunction in this sequence. To give a simple
example, consider the formula φ2 given by (p ∧¬p)∨>. Since φ2 is in negation normal form, we
start with the initial sequence

w0:(p ∧ ¬p) ∨ >.
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The only rule applicable is ∨ E which generates the structure

w0:(p ∧ ¬p) | w0:>.
For the reason that sequences are always processed from left to right, w0:(p∧¬p) will be considered
first. Only ∧ E is applicable transforming the sequence to

w0:p,w0:¬p | w0:>.
Now we can apply the ∧ C rule to eliminate the first set of labelled formulae and get

w0:>.
A final application of the > E rule reveals the sequence containing the empty set. No further rule
can be applied. Since we have not arrived at the empty sequence, φ is satisfiable.

As the formula (p ∧ ¬p) ∨ > is logically equivalent to >, its satisfiability can be shown by a
single application of the >-elimination rule. However, KRIS has no simplification rules beside
∨ S0 and ∨ S1. In particular, KRIS does not simplify boolean expressions using the simplification
rules of the preprocessing procedure that Giunchiglia and Sebastiani use in conjunction with Ksat

which we discuss later (see Table 6.2 on page 132).
The condition that the 3i E rule can be applied only if none of the other rules can be applied

to the set of labelled formulae under consideration is necessary for the completeness of the system.
To illustrate the reason, consider the formula φ3 = ¬q ∧31¬p ∧ (21p ∨ q). Starting with

w0:¬q ∧31¬p ∧ (21p ∨ q)
a sequence of applications of the ∧-elimination rule will derive

w0:¬q, w0:31¬p,w0:21p ∨ q.
Suppose we apply the 31-elimination rule before eliminating the occurrence of the ∨-operator in
w0:21p ∨ q. The resulting system is

w0:¬q, w1:¬p,w0:21p ∨ q.
The application of ∨-elimination rule is still possible and we get

w0:¬q, w1:¬p,w0:21p | w0:¬q, w1:¬p,w0:q.

Now, no further application of any inference rule is possible. Since, we have not derived the empty
sequence, we would conclude that φ3 is satisfiable. But, it is not. If we apply the ∨-elimination
rule to

w0:¬q, w0:31¬p,w0:21p ∨ q
the resulting sequence contains two sets of labelled formulae

w0:¬q, w0:31¬p,w0:21p | w0:¬q, w0:31¬p,w0:q.

The only rule applicable to the first system is the 31-elimination rule. The rule will replace the
occurrence of w0:31¬p with w1:¬p ∧ p. We have now derived the sequence

w0:¬q, w1:¬p ∧ p,w0:21p | w0:¬q, w0:31¬p,w0:q.



126 Chapter 6. Performance evaluation

After an application of the ∧-elimination rule we arrive at

w0:¬q, w1:¬p,w1:p,w0:21p | w0:¬q, w0:31¬p,w0:q.

It is straightforward to see that we can apply the ∧ C rule to both sets of labelled formulae. We
end up with the empty sequence. Thus, φ3 is unsatisfiable.

However, delaying the application of 31-elimination to the end can also be a disadvantage.
Consider, the structure

w0:31¬p,w0:21p,w0:p ∨21q.

Adding w1:¬p ∧ p to the set of labelled formulae followed by an application of the ∧-elimination
and ∧ C rule allows the derivation of the empty sequence although we have not eliminated the
disjunction in p ∨ 21q first. This test makes a difference computationally if the set of labelled
formulae contains a large number of disjunctive formulae which are irrelevant with regards its
satisfiability. It is possible to add the following 3i T inference rule to the system without loosing
completeness.

3i T:
w:3iφ,D,C | S

v:φ ∧ ψ1 ∧ . . . ∧ ψn, w:3iφ,D,C | S
if D = w:2iψ1, . . . , w:2iψn, and v is a new label chosen from Γ.

Furthermore, if we ensure that the rule is applied only finitely many times before we eventually
eliminate w:3iφ by the 3i-elimination rule, the inference system remains terminating. Note that
the application of the 3i T rule closely resembles the intermediate calls of the KM procedure
during a computation of KDP by Ksat.

We end our description of the system KRIS with a sample derivation.

Example 6.2:
Again, we consider the satisfiable modal formula ψ = ¬21(p∨r)∧(21p∨21q). First, it transforms
the formula ψ to its negation normal form ψ′ which is ψ′ = 31(¬p∧¬r)∧ (21p∨21q). Figure 6.2
shows how KRIS proceeds to prove the satisfiability of ψ′. First, KRIS eliminates the occurrence
of the ∧-operator in ψ′. Then it uses the ∨ E rule to split the disjunctive formula (21p ∨ 21q).
Now we have to deal with two sets of labelled formulae. KRIS continues with the left set
w0:31(¬p∧¬r), w0:21p. The only rule applicable to this set is 31 E. The application of the 31 E

w0:31(¬p ∧ ¬r) ∧ (21p ∨21q)

w0:31(¬p ∧ ¬r), w0:21p ∨21q
∧ E

w0:31(¬p ∧ ¬r), w0:21p | w0:31(¬p ∧ ¬r), w0:21q
∨ E

w1:(¬p ∧ ¬r) ∧ p,w0:21p | w0:31(¬p ∧ ¬r), w0:21q
3 E

w1:¬p,w1:¬r,w1:p,w0:21p | w0:31(¬p ∧ ¬r), w0:21q
∧ E

w0:31(¬p ∧ ¬r), w0:21q
∧ C

w1:(¬p ∧ ¬r) ∧ q, w0:21q
3 E

w1:¬p,w1:¬r,w1:q, w0:21q
∧ E

Figure 6.2: Sample derivation of KRIS
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Axioms: φ,Γ⇒ φ,∆ Γ⇒ >,∆ ⊥,Γ⇒ ∆

Rules: φ,ψ,Γ⇒ ∆
φ ∧ ψ,Γ⇒ ∆

(l∧)
Γ⇒ φ,∆ Γ⇒ ψ,∆

Γ⇒ φ ∧ ψ,∆ (r∧)

φ,Γ⇒ ∆ ψ,Γ⇒ ∆
φ ∨ ψ,Γ⇒ ∆

(l∨)
Γ⇒ φ,ψ,∆

Γ⇒ φ ∨ ψ,∆ (r∨)

Γ⇒ φ,∆
¬φ,Γ⇒ ∆

(l¬)
φ,Γ⇒ ∆
Γ⇒ ¬φ,∆ (r¬)

φ,Γ⇒ ∆
3iφ,2iΓ,Σ⇒ 3i∆,Π

(l3i)
Γ⇒ φ,∆

2iΓ,Σ⇒ 2iφ,3i∆,Π
(r2i)

Figure 6.3: Axioms and rules of the Logics Workbench

rule eliminates the labelled formula w0:31(¬p∧¬r) from our set and adds w1:¬p∧¬r∧p. Applying
the ∧ E rule to this labelled formula reveals that our set of labelled formulae contains both w1:¬p
and w1:p. This is a contradiction and the ∧ C rule eliminates this set of labelled formula from the
sequence. The remaining set of labelled formulae, namely w0:31(¬p ∧ ¬r), w0:21q, is the second
set generated by the ∨ E rule. Again, the only applicable rule is 31 E. This adds the formula
w1:¬p ∧ ¬r ∧ q to the set while removing w0:31(¬p ∧ ¬r). A sequence of applications of the ∧ E
rule results in a set of labelled formulae to which no further rule applies. Thus, KRIS has shown
that ψ′ and ψ are satisfiable.

The Logics Workbench (LWB) is an interactive system providing inference mechanisms for
a variety of logical formalisms including basic modal logic. The decision procedure for K(m)

is based on the sequent calculus presented in Figure 6.3 (of which some axioms and rules are
eliminable) [61, 62]. A modal formula φ is derivable using the axioms and rules of the sequent
calculus if and only if φ is true in all Kripke models. Since we are interested in satisfiability not
provability, we exploit that a given formula φ is unsatisfiable if and only if ¬φ is provable.

Unlike KRIS, the Logics Workbench has no simplification rules. For example, a sequent
proof of the satisfiability of the formula ¬p ∧ (p ∨ q) is:

p⇒ p
Failure
q ⇒ p

(p ∨ q)⇒ p
(l∨)

¬p, (p ∨ q)⇒ (l¬)

¬p ∧ (p ∨ q)⇒ (l∧)

⇒ ¬(¬p ∧ (p ∨ q)) (r¬)

Starting with the sequent ⇒ ¬(¬p ∧ (p ∨ q)), the Logics Workbench conducts a backwards proof
search. That is, the inference rules presented in Figure 6.3 are applied bottom up. The (r¬)-rule
moves the formula ¬p ∧ (p ∨ q) to the left side of the sequent. Then we eliminate the occurrence
of the conjunctive operator using the (l∧)-rule. The left hand side of the sequent now consist of
two formulae, namely ¬p and (p ∨ q). It uses the (l¬)-rule to move ¬p to the right-hand side of
the sequent. Now the (l∨)-rule is the only rule applicable to the sequent (p ∨ q) ⇒ p we have
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p⇒ p, r

p⇒ p ∨ r (r∨)

21p⇒ 21(p ∨ r)
(r21)

Failure
q ⇒ p, r

q ⇒ p ∨ r (r∨)

21q ⇒ 21(p ∨ r)
(r21)

21p ∨21q ⇒ 21(p ∨ r)
(l∨)

¬21(p ∨ r),21p ∨21q ⇒
(l¬)

¬21(p ∨ r) ∧ (21p ∨21q)⇒
(l∧)

⇒ ¬(¬21(p ∨ r) ∧ (21p ∨21q))
(r¬)

Figure 6.4: Sample derivation of the Logics Workbench

arrived at. We get two sequents, namely p⇒ p and q ⇒ p. Only the first one is an axiom. The
sequent q ⇒ p is neither an axiom nor can we apply any further rules of the calculus. We have
failed to construct a proof of ⇒ ¬(¬p ∧ (p ∨ q)). Therefore ¬p ∧ (p ∨ q) is satisfiable.

There are two points worth noting. An application of the (l∨)-rule creates two branches into
our backwards proof search. If one of the branches fails, the whole proof attempt fails. We could
directly derive the sequent ¬p, q ⇒ from ¬p, (p ∨ q) ⇒ using the equivalent of the ∨ S1 rule for
sequents. This would eliminate the need to apply the (l∨)-rule in the example. But, as mentioned
before, the Logics Workbench has no equivalents of the ∨-simplification rules.

However, the Logics Workbench uses the following form of branch pruning. Provided in a
backwards application of the (l∨)-rule the formula φ is not used in the proof of φ,Γ ⇒ ∆, that
is, Γ ⇒ ∆ holds, then it is not necessary to consider the branch ψ,Γ ⇒ ∆. Similarly, branch
pruning is applied to the (r∧)-rule.

The Logics Workbench applies the (l∧)-rule, (l¬)-rule, (r¬)-rule and (r¬)-rule exhaustively
before any application of the remaining rules. The selection of the disjunctive and conjunctive
formulae for applications of the (l∨)-rule and (r∧)-rule, respectively, is determined by the order
of formulae in the left-hand side and right-hand side of the sequent, respectively. The (l3i)-rule
and (r2i)-rule are applied only after no application of the other rules is possible.

Example 6.3:
Figure 6.4 gives the derivation produced by the Logics Workbench of the satisfiability of ψ =
¬21(p∨r)∧(21p∨21q). Starting from⇒ ¬(¬21(p∨r)∧(21p∨21q)) the backwards applications
of the (r∨)-rule, (l∧)-rule and (l¬)-rule lead to the sequent 21p∨21q ⇒ 21(p∨r). The backwards
application of the (l∨)-rule generates two sequents 21p⇒ 21(p ∨ r) and 21q ⇒ 21(p ∨ r). The
Logics Workbench first considers the sequent 21p⇒ 21(p∨ r). Here we have to apply the (r21)-
rule, for which we have to select a formula of the form 2φ on the right-hand side of the sequent.
Since in the sequent under consideration only one 2-formula occurs on the right-hand side of
the sequent, the choice is deterministic. The application of the (r21)-rule yields the sequent
p ⇒ p ∨ r. With a final application of the (r∨)-rule we arrive at the axiom p ⇒ p, r. Now the
Logics Workbench turns to the second alternative 21q ⇒ 21(p ∨ r). Here the application of the
(r21)-rule produces q ⇒ p ∨ r. An application of the (r∨)-rule renders q ⇒ p, r. Since no more
rules apply and q ⇒ p, r is not an axiom, our attempt to construct a proof fails. No other proof
attempts are possible. So ψ is satisfiable.

Observe the near correspondence between the proof search of KRIS and that of the Logics
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Workbench. As a procedure for testing the satisfiability of a modal formulae, the inference rules
of the Logics Workbench can be seen to be a notational variant of the inference rules of KRIS.
We can directly translate the deduction steps in the tableaux-calculus of KRIS into the sequent
calculus of the Logics Workbench. The differences between the two system are the absence
of simplification rules in the Logics Workbench, the presence of branch pruning in the Logics
Workbench, and the conversion to negation normal form by KRIS.

The fourth system we will include in the comparison is based on the optimised functional
translation described in Section 5.1. For a modal formula φ in K(m) additional transformations of
the clause set we obtain from ΞΠf (φ) are possible. First, we replace all occurrences of literals P (s)
where s is a path of the form [xα1

i1
α2

i2
. . . αn

in ] with length n+1 where αj
ij

is a variable or constant
of sort AF ij , for 1 ≤ j ≤ n, by Pn+1(x, α1

i1
, . . . , αn

in
) where Pn+1 is an (n+1)-ary predicate

symbol uniquely associated with P and n. Second, the sort information associated with the
variables and constants occurring in the literals in the clause set can be encoded in the predicate
symbols of the literals. So, we can replace all occurrences of literals Pn+1(x, α1

i1
, . . . , αn

in) by
Pi1...in(x, α1, . . . , αn) where Pi1...in is a predicate symbol uniquely associated with the predicate
symbol Pn+1 and the sorts AF i1 , . . . , AF in . The variables and constants α1, . . . , αn no longer
carry any sort information. Finally, we observe that all literals in the transformed clause set share
the first argument x, which we can eliminate safely. This sequence of three transformations can
be combined in one:

P ([xα1
i1α

2
i2 . . . α

n
in ]) becomes Pi1...in(α1, . . . , αn).

Example 6.4:
We consider our example formula ψ given by ¬21(p∨ r)∧ (21p∨21q). The result of ClsΞΠf (ψ)
is a set of four clauses:

def1(6.1)
¬P1(a)(6.2)
¬R1(a)(6.3)
¬def1 ∨ ¬def1 ∨ P1(x) ∨Q1(y)(6.4)

Two resolution steps are possible: Resolving clauses (6.1) and (6.4) yields P1(x) ∨ Q1(y). The
derived clause subsumes the clause (6.4). Resolving P1(x) ∨ Q1(y) with clause (6.2) yields the
unit clause Q1(y), that subsumes the clause P1(x) ∨ Q1(y). Subsumption leaves the following
clause set on which no further inference steps are possible.

def1

¬P1(a)
¬R1(a)
Q1(y)

Since the final clause set does not contain the empty clause, the original clause set, and conse-
quently, the modal formula φ is satisfiable.

For theorem proving we use FLOTTER and SPASS Version 0.55 developed by Weidenbach
et al. [134]. FLOTTER is a system that computes the clausal normal form of a given first-order
formula. It performs the following steps.
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1. Rename subformulae of the input formula in order to obtain a clause set containing a
minimal number of clauses. Here an improved variant of the technique developed by Boy
de la Tour [19] is used.

2. Remove implications and equivalences using the appropriate transformation rules.

3. Compute the negation normal form.

4. Eliminate existential quantifiers by Skolemisation.

5. Compute the clausal normal form.

6. Test the resulting clause set for redundancy by subsumption, tautology removal and con-
densing.

The theorem prover SPASS is based on the superposition calculus of Bachmair and Ganzinger [8]
extended with the sort techniques of Weidenbach [133].

We opted to use SPASS and not other well-known theorem provers (like OTTER) for the
following reasons:

1. SPASS uses ordered resolution and ordered factoring based on an extended Knuth-Bendix
ordering [112].

2. It supports splitting and branch condensing. Splitting amounts to case analysis while branch
condensing resembles branch pruning in the Logics Workbench. The splitting rule of SPASS
is not identical to the “Split” expansion rule described in Section 1.2.

3. It has an elaborated set of reduction rules including tautology deletion, subsumption, and
condensing.

4. It supports dynamic sort theories by additional inference rules including sort generation and
sort resolution and additional reduction rules like sort simplification and clause deletion.

Ordered inference rules and splitting are of particular importance when treating satisfiable for-
mulae. Also, SPASS supports dynamic sort theories by additional inference rules including sort
generation and sort resolution and additional reduction rules like sort simplification and clause
deletion. It considers every unary predicate symbol as a sort (not to be confused with the sorts
of the translation morphism). The translation of random 3CNF formulae will result in first-order
formulae which contain a great number of such symbols.

6.4 A benchmark suite for scientific benchmarking

A good starting point for setting up a suitable benchmark suite for the system described in Sec-
tion 6.3 is the recent work by Giunchiglia and Sebastiani [51, 52]. The evaluation method adopted
by Giunchiglia and Sebastiani follows the approach of Mitchell, Selman, and Levesque [100].
Mitchell et al. have used propositional formulae generated using the fixed clause-length model
to set up a benchmark suite for theorem provers for propositional logic. Giunchiglia and Sebas-
tiani [52] provide an modification of this approach suitable for the modal logic K(m).
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N M K D P N M K D P

PS0 5 1 3 2 0.5 PS5 4 1 3 2 0.5
PS1 3 1 3 5 0.5 PS6 4 2 3 2 0.5
PS2 3 1 3 4 0.5 PS7 4 5 3 2 0.5
PS3 3 1 3 3 0.5 PS8 4 10 3 2 0.5
PS4 3 1 3 2 0.5 PS9 4 20 3 2 0.5

Table 6.1: Parameter settings

There are five parameters: the number of propositional variables N , the number of modalities
M , the number of modal subformulae per disjunction K, the number of modal subformulae per
conjunction L, the modal degree D, and the probability P . Based on a given choice of parameters
random modal KCNF formulae are defined inductively as follows. A random (modal) atom of
degree 0 is a variable randomly chosen from the set of N propositional variables. A random modal
atom of degree D, D>0, is with probability P a random modal atom of degree 0 or an expression
of the form 2iφ, otherwise, where 2i is a modality randomly chosen form the set of M modalities
and φ is a random modal KCNF clause of modal degree D− 1 (defined below). A random modal
literal (of degree D) is with probability 0.5 a random modal atom (of degree D) or its negation,
otherwise. A random modal KCNF clause (of degree D) is a disjunction of K random modal
literals (of degree D). Now, a random modal KCNF formula (of degree D) is a conjunction of L
random modal KCNF clauses (of degree D).

Like Giunchiglia and Sebastiani we proceed as follows to compare the performance of two
theorem provers for modal logic. We fix all parameters except L, the number of clauses in a
formula. For example, we choose N=3, M=1, K=3, D=5, and P=0.5. The parameter L ranges
from N to 40N . For each value of the ratio L/N a set of 100 random modal KCNF formulae of
degree D is generated. We will see that for small L the generated formulae are most likely to be
satisfiable and for larger L the generated formulae are most likely to be unsatisfiable. For each
generated formula φ we measure the time needed by one of the decision procedures to determine
the satisfiability of φ. Since checking a single formula can take arbitrarily long in the worst case,
there is an upper limit for the CPU time consumed. As soon as the upper limit is reached, the
computation for φ is stopped. The median CPU runtime over the ratio L/N is the measure on
which the relative performance of the systems is compared.

Selecting good test instances is crucial when evaluating and comparing the performances of
algorithms empirically. For the random formula generator described above this means, we have to
determine sets of parameter settings which are suitable for generating appropriate test instances
for the systems under consideration. One step in this process is to determine the characteristics
of the test instances before starting a performance comparison. This is particularly important
when we set up a completely new collection of test instances. Giunchiglia and Sebastiani [52]
have chosen the parameter settings of Table 6.1 for their comparison of Ksat and KRIS.

We address the question which characteristics the formulae produced by the random generator
and the parameter settings chosen by Giunchiglia and Sebastiani have and how they influence
the theorem provers under consideration.

It is important to note that for D=0 and K=3 random modal KCNF formulae do not coincide
with random 3SAT formulae. Generating a clause of a random 3SAT formula means randomly
generating a set of three propositional variables and then negating each member of the set with
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¬φ ∨ φ→ > φ ∨ > → > φ ∨ ⊥ → φ φ ∨ φ→ φ

¬φ ∧ φ→ ⊥ φ ∧ > → φ φ ∧ ⊥ → ⊥ φ ∧ φ→ φ

¬⊥ → > ¬> → ⊥ 2i> → >

Table 6.2: Simplification rules for modal formulae
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Figure 6.5: The quality of the test sets

probability 0.5. In contrast, generating a random modal 3CNF clause of degree 0 means randomly
generating a multiset of three propositional variables and negating each member of the multiset
with probability 0.5. For example, p ∨ q ∨ ¬r is a 3SAT clause and also a modal 3CNF clause
of degree 0. The clauses p ∨ ¬p ∨ p and p ∨ p ∨ q are not random 3SAT clauses, but both are
random modal 3CNF clauses of degree 0. In random modal 3CNF formulae of higher degree,
such clauses occur within the scope of a modal operator. For example, contradictory expressions
like ¬21(p ∨ ¬p ∨ p) may occur.

Thus, random modal KCNF formulae contain tautological and contradictory subformulae. It
is easy to remove these subformulae without affecting satisfiability, for example, by use of the
simplification rules of Table 6.2. The graphs of Figure 6.5(a) reflect the average ratio of the
size of the simplified random modal 3CNF formulae over the size of the original formulae for the
parameter settings PS0 and PS1. For the random modal 3CNF formulae generated using three
propositional variables, on average, the size of a simplified formula is only 1/4 of the size of the
original formula. For the second parameter setting we observe a reduction to 1/2 of the original
size. In other words, one half to three quarters of the random modal 3CNF formulae is “logical
garbage” that can be eliminated at little cost.

A second criterion for the quality of the formulae under consideration is whether there are
computationally inexpensive tests, that is, tests which can be performed in polynomial time,
which can determine the satisfiability or unsatisfiability of a formulae. Suppose that we want to
test a random modal 3CNF formula φ with N propositional variables for satisfiability in a Kripke
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Figure 6.6: The performance of KRIS and Ksat for PS0 and PS1

model with only one world. We have to test at most 2N truth assignments to the propositional
variables. Since N ≤ 5 for the modal formulae under consideration, this is a trivial task, even by
the truth table method. We say a random modal 3CNF formula φ is trivially satisfiable if φ is
satisfiable in a Kripke model with only one world. We also say a random modal 3CNF formula φ
is trivially unsatisfiable if the conjunction of the purely propositional clauses of φ is unsatisfiable.
Again, testing whether φ is trivially unsatisfiable requires only the consideration of 2N truth
assignments.

The graphs of Figure 6.5(b) show the percentage of satisfiable, trivially satisfiable, unsatisfi-
able, trivially unsatisfiable, and unsatisfiable formulae in the samples detected by KRIS* of the
set of test formulae generated for PS0. We see that almost all unsatisfiable test formulae are
trivially unsatisfiable. This holds also for all the other parameter settings used by Giunchiglia
and Sebastiani. This indicates, none of the parameter settings is suited to generate challenging
unsatisfiable modal formulae. Only for ratios L/N between 7 and 20 can we expect that the
benchmark suite contains a sufficient number of non-trivial formulae.

6.5 Evaluation of theorem provers and a benchmark suite

Based on our findings in the previous section one might expect that there is little deviation
between the performance of the theorem provers described in Section 6.3 on the parameter set-
tings PS0 to PS9. The opposite is true.

Figure 6.6 shows the median CPU time consumption of KRIS and Ksat on the parameter
settings PS0 and PS1 which have been produced on a Sun Ultra 1/170E with 196MB main
memory using a time-limit of 1000 CPU seconds. The gaps in the graphs (for example for KRIS
above L/N = 5) indicate that more than 50 out of 100 formulae of given ratio L/N had to be
abandoned. While the performance of Ksat coincides with our expectations, that is, only for
ratios L/N between 7 and 20 for the parameter setting PS0 the benchmark suite contains a
sufficient number of problems which are able to challenge Ksat, KRIS fails to solve more than
50% of the sample formulae for any ratio L/N greater than 5.

Our observations concerning the amount of tautological and contradictory subformulae in the
random formulae provides the key for understanding this phenomenon. Ksat utilises a form of
preprocessing that removes duplicate and contradictory subformulae of an input formula, by ap-
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Figure 6.8: The performance of Ksat and
KRIS* for PS0 and PS1

plying the simplification rules presented in Table 6.2. Neither KRIS nor the Logics Workbench,
on the other hand, perform a similar form of preprocessing. Simplification of the random modal
formulae is reasonable, so we added the preprocessing function of Ksat also to the other theo-
rem provers that we consider. The modified versions of KRIS, the Logics Workbench and the
translation approach with preprocessing will be denoted by KRIS*, LWB* and TA*, respectively.

While the simplification rules of Table 6.2 replace p∨ q∨ p by p∨ q and 21(p∨ q)∧¬21(p∨ q)
by ⊥, they will not reduce 21(p∨q)∧¬21(q∨p) to >, since 21(p∨q) is not syntactically equal to
21(q ∨ p). Ksat also sorts disjunctions lexicographically, for example, 21(q ∨ p) will be replaced
by 21(p∨q). This allows for additional applications of the simplification rules. However, in all our
experiments we have chosen to disable the reordering inside Ksat. For the median CPU runtime
considerations of this section, reordering has no significant effect as Figure 6.7 shows. Likewise
the other approaches take no advantage of reordering as performed in Ksat. But reordering
is an interesting technique that deserves further investigation, for all procedures. In particular,
generalising the notion of reordering as implemented inside Ksat to a notion of reordering of
conjunctions of clauses, will have a positive effect on the Logics Workbench and KRIS.

The graphs in Figure 6.8 show the performances of Ksat and KRIS*. Although the perfor-
mance of Ksat is still better than that of KRIS*, the picture is completely different than that of
Figure 6.6. To explain the remaining difference we study the quality of the random modal 3CNF
formulae. If we consider Figure 6.5(b) and 6.8 together, for ratios L/N between 19 and 21 and
N=5 we observe the graph of KRIS* (in Figure 6.8) deviates a lot (by a factor of more than
100) from the graph of Ksat. This is the area near the crossover point where the percentage of
trivially unsatisfiable formulae rises above 50%, however, the percentage of unsatisfiable formulae
detected by KRIS* is still below 50% in this area. KRIS* does not detect all trivially unsatisfi-
able formulae within the time-limit which explains the deviation in performance from Ksat. The
reason for KRIS* not detecting all trivially unsatisfiable formulae within the time limit, can be
illustrated by the following example.
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Example 6.5:
Let φ4 be a simplified modal 3CNF formula

p ∧ q ∧ (ψ11 ∨ ψ12 ∨ ψ13)
. . .
∧ (ψk1 ∨ ψk2 ∨ ψk3) ∧ (¬p ∨ ¬q)

where the ψij, with 1≤i≤k, 1≤j≤3, are modal literals different from p, q, ¬p, and ¬q. Evidently,
φ4 is trivially unsatisfiable. Ksat does the following: Since p and q are unit clauses in φ4, it applies
the rule dp unit twice to φ. The rule replaces the occurrences of p and q by >, it replaces the
occurrences of ¬p and ¬q by ⊥, and it simplifies the formula. The resulting formula is ⊥. At this
point only the rule dp clash is applicable and Ksat detects that φ4 is unsatisfiable. In contrast,
KRIS* proceeds as follows. First it applies the ∧ E rule k+2 times, eliminating all occurrences
of the ∧ operator. Then it applies the ∨ E rule to all disjunctions, starting with ψ11 ∨ ψ12 ∨ ψ13

and ending with ψk1 ∨ ψk2 ∨ ψk3. This generates 3k subproblems. Each of these subproblems
contains the literals p and q and the disjunction ¬p ∨ ¬q. The simplification rule ∨ S1 eliminates
the disjunction ¬p∨¬q and a final application of the ∧ C rule exhibits the unsatisfiability of each
subproblem. Obviously, for k large enough, KRIS* will not be able to finish this computation
within the time-limit.

In the Logics Workbench branch pruning avoids this kind of computation. Starting from
the sequent ⇒ ¬φ4 it first applies the (r¬)-rule followed by applications of the (l∧)-rule until
all outer conjunction operators are eliminated. A sequence of k+1 applications of the (l∨)-rule
follows generating 2k+1 (potential) branches. On the first and second branch the sequents

p, q, ψ11, . . . , ψk1,¬p⇒ and p, q, ψ11, . . . , ψk1,¬q ⇒
are considered which are both provable. As neither proof requires the use of one of the literals
ψ11, . . . ,ψk1, the Logics Workbench prunes all remaining branches and detects the unsatisfiability
of φ4.

Giunchiglia and Sebastiani [52] come to a different conclusion concerning the cause for the fact
that Ksat outperforms KRIS. Their analysis is based on a result by D’Agostino [23], who shows
that in the worst case, algorithms using the ∨ E rule cannot simulate truth tables in polynomial
time. Instead one has to use the following modified form of ∨ E:

∨ E’: w:φ ∨ ψ,C | S
w:φ,C | w:ψ,w:φ,C | S

This rule ensures that the two subproblems w:φ,C and w:ψ,w:φ,C generated by the elimination
of the disjunction φ ∨ ψ are mutually exclusive.

While the use of ∨ E instead of ∨ E’ is an obvious advantage for propositional formulae in
conjunctive normal form, this is not evident for modal formulae. In the propositional case, φ is a
literal which will not be subject to any of the other elimination rules. However, in the modal case,
φ can be a complex formula to which the elimination rules have to be applied, causing additional
computational effort compared to an application of the ∨ E rule which does not introduce φ on
one of the branches. In particular, in combination with the 3i-elimination rule, the introduction
of φ can increase the size of the search space considerably.

Note that this is the kind of question for which scientific testing is the ideal approach. For the
purpose of performing the test we implemented two tableaux-based procedures A and B which use
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Figure 6.9: Impact of ∨ E versus ∨ E’
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Figure 6.10: The performance of Ksat and KRIS*

the rules ∨ E and ∨ E’, respectively, but are identical in all other aspects. Figures 6.9(a) and 6.9(b)
show the median CPU time graphs of the two procedures for PS0 and PS1, respectively.

We see that there is virtually no difference between them. This result can be reproduced for
all the other parameter settings under consideration. Thus, it seems unlikely that the use of ∨ E
instead of ∨ E’ is a major factor concerning the performance of tableaux-based procedure on PS0
to PS9.

We can gain further evidence by turning to parameter settings using values of N greater than
5. Figure 6.10(a) shows the performance of Ksat and KRIS* on the parameter setting PS10
(N=8, M=1, K=3, D=2, P=0.5), while Figure 6.10(b) shows the performance on the parameter
setting PS11 (N=10, M=1, K=3, D=2, P=0.5). We see that the performance of KRIS* for a
ratio L/N between 4 and 11 on PS10 and for a ratio L/N between 3 and 9 on PS11 is better
than the performance of Ksat. For increased numbers of propositional variables, the dp unit rule
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Figure 6.11: The performance of Ksat and TA*

and exhaustive boolean simplification of Ksat is of no particular importance for modal formulae
which are likely satisfiable. And, the intermediate calls to KM before each application of the
dp split have a deteriorating effect on the performance.
KRIS* applies the ∨-elimination rule to every disjunction in the modal formula and continues

on the first branch. As the number of propositional variables and modal atoms is large, the ∧ C
rule is less likely to close a branch and the second branch need not be treated. After all occurrences
of the ∨-operator are eliminated, KRIS* performs all possible applications of the 3i E rule. Each
application is likely to succeed.

By contrast, Ksat uses dp split to generate two possible extensions of the current truth
assignment. Like KRIS*, it rarely has to consider the second extension at all. However,
before every application of the dp split rule the procedure KM is called. This has the fol-
lowing effect: The dp split rule needs to be applied more often before reaching a satisfying
truth assignment, since the number of different propositional variables and modal atoms has
become larger. This also holds for the recursive calls of KDP by KM. There is an increased
number of intermediate calls to the procedure KM and each call is more expensive than for
simpler formulae. The effect is strengthened by the following inefficiency of the intermedi-
ate calls to KM. Suppose we have just checked the K(m)-satisfiability of the truth assignment
µ1 = {21ψ1 = ⊥,21φ11 = >, . . . ,21φ1n = >} and extend µ1 by {21ψ2 = ⊥}. By the next call
to KM, Ksat will not only test whether ¬ψ2 ∧ φ11 ∧ . . . ∧ φ1n is satisfiable, but it will repeat the
test whether ¬ψ1 ∧ φ11 ∧ . . . ∧ φ1n is satisfiable. So, Ksat performs the same tests over and over
again without need.

There is no intrinsic reason that a tableaux-based system cannot outperform Ksat and the
tableaux-based system A which uses the ∨ E elimination rule is evidence for this (Figure 6.9(a)).
Although the difference between the rules ∨ E and ∨ E’ is fundamental from a theoretical point
of view, it is irrelevant on the randomly generated modal formulae under consideration. The
reason for KRIS* having worse performance than Ksat is that ∨ S0 and ∨ S1 are not applied
exhaustively before any applications of the branching rule ∨ E.

According to Giunchiglia and Sebastiani [52] there is partial evidence of an easy-hard-easy
pattern on randomly generated modal formulae independent of all the parameters of evaluation
considered. This claim is supported by Figure 6.6 where the median CPU time consumption
of Ksat decreases drastically at the ratio L/N = 17.5 for the second sample. This is almost
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the point, where 50% of the sample formulae are satisfiable. This decline seems to resemble the
behaviour of propositional SAT decision procedures on randomly generated 3SAT problems.

There is no doubt that there exist classes of randomly generated modal formulae on which
we will observe an easy-hard-easy pattern independent of the theorem prover we use, since these
patterns exist for random propositional 3CNF formulae. However, concerning the parameter
settings PS0 to PS9 we can exclude the existence of such an intrinsic easy-hard-easy pattern.
Figure 6.11 compares the performance of Ksat with the performance of the translation approach
on two parameter settings, where the easy-hard-easy pattern is most visible for Ksat. The
translation approach does not show the peaking behaviour of Ksat. The median CPU time
grows monotonically with the size of modal formulae. Also the two tableaux-based procedures
in Figure 6.9(a) do not exhibit an easy-hard-easy pattern. Thus, the phase transition visible in
Figure 6.6 is a phenomenon of Ksat (and KRIS), and not an intrinsic property of the generated
modal formulae.

Observe that the peaking behaviour occurs in the area where the number of trivially satisfiable
sample formulae approaches zero. The following example tries to explain this.

Example 6.6:
Let φ5 be a simplified modal 3CNF formula of the form

¬21s ∧21(p ∨ r) ∧ (21¬r ∨21q)
∧ (¬21p ∨21r)
∧ (ψ11 ∨ ψ12 ∨ ψ13)
. . .
∧ (ψn1 ∨ ψn2 ∨ ψn3)

where the ψij , with 1≤i≤n, 1≤j≤3, are modal literals different from the modal literals in the
first three conjunctions of φ5. Let us assume that φ5 is satisfiable. Observe:

1. 21¬r is false in any model of φ5, since 21¬r and ¬21s ∧ (¬21p ∨ 21r) imply ¬21p, and
21(p ∨ r) ∧21¬r ∧ ¬21p is not K(m)-satisfiable.

2. As a consequence, any truth assignment µ such that µ(21¬r) = > is not K(m)-satisfiable.

3. A unit propagation step by KDP, replacing 21¬r by >, does not affect the literal 21r.

Ksat starts by assigning > to ¬21s and 21(p∨r). Then it will apply a sequence of applications of
the dp split and dp unit rules to φ5. Let us assume that the first split variable is 21¬r, followed
by k modal literals ψ1, . . . , ψk chosen from ψ11, . . . , ψn3, and finally ¬21p. Before any further
applications of the dp split rule, Ksat calls the procedure KM to test the K(m)-satisfiability of
the current truth assignment µ. Since µ assigns > to 21¬r, KM will fail. However, Ksat has no
means to detect the primary cause of the failure. Ksat continues by considering all other cases
generated by the application of dp split to ¬21p, ψk, ψk−1, . . . , ψ1. It will fail to generate a
satisfying truth assignment in all these cases. Finally, it considers the case that 21¬r is false.
Eventually, Ksat finds a satisfying truth assignment to φ5. However, Ksat has considered at
least 2k+1 cases unnecessarily without finding a satisfying truth assignment. This explains the
bad behaviour of Ksat on those sample formulae where satisfiability tests in the non-propositional
context are essential. KRIS* behaves even worse since it delays the application of the 3i E until
no other rule can be applied.
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By contrast, the Logics Workbench takes advantage of its branch pruning. Starting from the
sequent⇒ ¬φ5 it first applies the (r¬)-rule followed by applications of the (l∧)-rule until all outer
conjunction operators are eliminated. A sequence of applications of the (l∨)-rule follows. Let us
assume the disjunctions are considered in this order: (21¬r∨21q), (ψ11 ∨ψ12 ∨ψ13), . . . , (ψn1 ∨
ψn2 ∨ ψn3), and finally (¬21p ∨ 21r). Like for Ksat and KRIS this generates 2n+2 (possible)
branches. On the first branch the sequent Γ1

21(p ∨ r),21¬r, ψ11, . . . , ψn1 ⇒ 21p,21s

is considered. This sequent is provable. So, the Logics Workbench considers the second branch
generated by the application of the (l∨)-rule to (¬21p ∨21r). Again, the sequent Γ2

21(p ∨ r),21¬r, ψ11, . . . , ψn1,21r⇒ 21s

is provable. As neither the proof of Γ1 nor of Γ2 makes use of any of the literals ψ11, . . . , ψn1, the
Logics Workbench does branch pruning. It will jump back directly to the point where the (l∨)-
rule is applied to (21¬r ∨21q) and considers the branch in which 21q is added to the left-hand
side of the sequent. Thus, the search space is reduced considerably.

The translation approach proceeds as follows. It generates a clause set for φ5 containing the
five clauses

def1
¬S(a)
¬def1 ∨ P1(x) ∨R1(x),
¬def1 ∨ ¬R1(x) ∨ ¬def1 ∨Q1(y),
¬P1(b) ∨ ¬def1 ∨R1(x)

where a and b denote Skolem constants associated with the two occurrences of ¬21 and x and y
are variables. Unit propagation of the first clause followed by subsumption replaces the original
clause set by the following one:

def1
¬S1(a)
P1(x) ∨R1(x),
¬R1(x) ∨Q1(y),
¬P1(b) ∨R1(x)

Three resolvents can be derived from these clauses: P1(x) ∨Q1(y), ¬P1(b) ∨Q1(y), and R1(b) ∨
R1(x). Factoring on the last resolvent yields the unit clause R(b). At this point, the translation
approach has detected that 21¬r is not satisfiable in any model of φ5. An additional inference
step computes the unit clause Q1(y). No further inference is possible on this subset.

Using the splitting rule of SPASS it is also possible to construct a derivation which resembles
closely the one of the Logics Workbench. Instead of computing the three resolvents we can start
by splitting the clause ¬R1(x) ∨ Q1(y) into its variable-disjoint subclauses, ¬R1(x) and Q1(y).
Let us first consider the branch on which we add the clause ¬R1(x) to the clause set. This
corresponds to assigning true to 21¬r. Let us assume that the translation of the disjunctions
(ψ11 ∨ψ12 ∨ψ13) to (ψn1 ∨ψn2 ∨ψn3) (indicated by a ∗ below) generates clauses to which we can
apply the splitting rule as well. Finally, apply the splitting rule to ¬P1(b) ∨ R1(x). On the first
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Figure 6.12: The performance of the Logics Workbench

branch we consider the clause set S1

def1
¬S1(a)
P1(x) ∨R1(x),
¬R1(x),
ψ∗

11,
· · · ,
ψ∗

n1,
¬P1(b).

The clauses ¬P1(b), P1(x)∨R1(x), and ¬R1(x) yield a contradiction. Since the clause introduced
by the last application of the splitting rule is involved in the derivation of the empty clause, we
have to consider the clause set S2

def1
¬S1(a)
P1(x) ∨R1(x),
¬R1(x),
ψ∗

11,
· · · ,
ψ∗

n1,
R1(x).

Here, ¬R1(x) and R1(x) produce a contradiction. Since none of the clauses ψ∗
11, . . . , ψ∗

n1 have
been used in the refutation of S1 and S2, branch condensing will prevent the consideration of any
of the alternative branches that exist for these clauses. SPASS proceeds directly by considering
the branch where the clause Q1(y) belongs to the set of clauses.

Examples 6.5 and 6.6 illustrate how the branch pruning technique of the Logics Workbench
can avoid two pitfalls in which KRIS* and Ksat can be caught. Figure 6.12 shows however
that brunch pruning alone does not lead to an improved median CPU time consumption for all
formulae. The following example illustrates what happens.
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Example 6.7:
Consider the formula φ6

p ∨21q
∧ ¬21(p ∨ r ∨ q) ∨ p
∧21(p ∨ q) ∨21(q ∨ p)
∧21p ∨21q ∨ p.

KRIS* will easily detect the satisfiability of φ6. After exhaustive application of the conjunction
elimination rule, it applies ∨ E to the first disjunction p∨21q, ∨ S0 to the second disjunction, ∨ E
to the third disjunction and ∨ S0 to the fourth disjunction. KRIS* obtains the set of labelled
formulae {w0:p,w0:21(p ∨ q)} to which no further rules can be applied.

The Logics Workbench has no equivalent to ∨ S0 and deals with the second and fourth dis-
junction by means of the (l∨)-rule. Furthermore, it will consider the left branch introduced by
an (backwards) application of the (l∨)-rule, first. So, it considers the sequent Γ1

p,¬21(p ∨ r ∨ q),21(p ∨ q) ∨21(q ∨ p),21p ∨21q ∨ p⇒

before Γ2

p, p,21(p ∨ q) ∨21(q ∨ p),21p ∨21q ∨ p⇒
which are both obtained from ⇒ ¬φ6, by applications of the (r¬)-, (l∧)−, and (l∨)-rules. After
further applications of the (l∨)- and (r2i)-rule, the Logics Workbench discovers that Γ1 is provable
and turns to Γ2. Only then it detects that φ6 is satisfiable.

So, the Logics Workbench spends a serious amount of computational effort considering ob-
viously useless branches introduced by the (l∨)-rule. Figure 6.12 seems to indicate that this
overwhelms the gain of branch pruning. It is worth noting that the behaviour of the Logics
Workbench on KCNF formulae can be improved either by adding simplification rules or by em-
ploying better criteria for selecting the branches introduced by the (l∨)-rule.

Example 6.7 also illustrates that is important to first assign a truth value to the propositional
variables in a random formula since this allows to reduce the number of further assignments.

6.6 Broadening the evaluation

The graphs of the previous sections and of the papers of Giunchiglia and Sebastiani are 50%
percentile graphs as each point presents the median CPU time consumption for 100 formulae
with ratio L/N . This means that the graphs merely reflect the performance for the easier half of
the formulae set. More informative are the collections of 50%, 60%, . . . , 100% percentile graphs
we present in Figures 6.13(a), 6.13(b), 6.13(c) and 6.13(d). Formally, the Q%-percentile of a
set of data is the value V such that Q% of the data is smaller or equal to V and (100 − Q)%
of the data is greater than V . The median of a set coincided with its 50%-percentile. The
Figures 6.13(a), 6.13(b), 6.13(c) and 6.13(d) respectively show the percentile graphs for Ksat,
KRIS*, LWB* and the translation approach on the parameter setting PS0 (N=5, M=1, K=3,
D=2). The difference in shape for Ksat, KRIS*, and the Logics Workbench as opposed to that
for the translation approach is striking.

For the translation approach the difference between the 50%-percentile and the 90%-percentile
of the CPU time consumption is marginal. We see the same monotonic increase of the CPU time



142 Chapter 6. Performance evaluation

5 10 15 20 25 30 35 40

Ratio L/N
50

60

70

80

90

100

0.10

1

10

100

1000

Time

(a) Ksat

5 10 15 20 25 30 35 40

Ratio L/N
50

60

70

80

90

100

0.10

1

10

100

1000

Time

(b) KRIS*

5 10 15 20 25 30 35 40

Ratio L/N
50

60

70

80

90

100
0.01

0.10

1

10

100

1000

Time

(c) LWB*

5 10 15 20 25 30 35 40

Ratio L/N50

60

70

80

90

100

0.02

0.10

1

10

100

1000

Time

(d) Translation approach

Figure 6.13: The percentile graphs on PS0

consumption with increasing ratio L/N for all percentiles. Only the 100%-percentile reaches the
time-limit of 1000 CPU seconds at some points. This means, there are some hard random 3CNF
formulae in the collection, but for each ratio L/N their number does not exceed 10. This again
supports our view that the problems generated using the parameter settings PS0 are easier than
the computational behaviour of Ksat and the other methods except the translation approach
indicates.

The contrast to KRIS and the Logics Workbench is most extreme. While the Logics Work-
bench shows a good uniform behaviour where the ratio L/N is smaller than 10, we see a dramatic
breakdown for ratios L/N greater than 10. As the percentage of trivially satisfiable samples
reaches zero, the Logics Workbench can hardly complete 60% of the sample formulae within the
time-limit. Even at ratios L/N above 30 where the percentage of trivially unsatisfiable formulae
is greater than 90%, the Logics Workbench fails on 10% of the formulae. Similarly, for KRIS.
The absence of simplification rules in the Logics Workbench explains the less prominent ‘valley’
for ratios L/N above 30.

The percentage of sample formulae on which a decision procedure fails to complete its com-
putation within a given time-limit (of reasonable size) may be regarded as a kind of risk for the
user of that decision procedure. We call this the failure risk. The failure risk for each procedure
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Figure 6.14: Varying the parameter N

is reflected in Figures 6.13(a) to 6.13(d) by the size of the plateau at the time-limit of 1000 CPU
seconds. The risk of failure for the parameter setting under examination is highest for the Logics
Workbench and KRIS*, and lowest for the translation approach.

We call the percentage of sample formulae on which a decision procedure terminates its
computation within a given time-limit the success chance of a decision procedure. The notions
of success chance and failure risk are complementary. The success chance will be regarded as
an additional measure of the quality of a decision procedure. The weighting of the two quality
measures, the success chance and median CPU time consumption, depends on the preferences of
the user.

The percentile graphs are more informative and provide a better framework for comparison
than the median curves. We can say Ksat performs better than KRIS* and has a higher chance
of success on the entire range of ratios L/N for the parameter setting PS0. The Logics Workbench
is unbeatable for ratios L/N below 7.

We believe the graphs indicate a qualitative difference in the performance of the translation
approach as opposed to the other three approaches.

6.7 Where are the hard problems?

This section considers the question of how the parameter settings and random formula generator
can be modified to provide better (more difficult) test samples.

The parameter setting PS0 provides the most challenging collection of random 3CNF formu-
lae among all the parameter settings used by Giunchiglia and Sebastiani. The Figures 6.14(a)
and 6.14(b) show the influence of the parameter N , that is, the number of propositional vari-
ables, on the median CPU time consumption of Ksat and the translation approach. We see an
increasing median CPU time consumption over the range of the ratio L/N with increasing value
N . Thus increasing the number of propositional variables involved in the random generation of
modal 3CNF formula provides more challenging test samples.
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Figure 6.15: Varying the parameter M
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Figure 6.16: Varying the parameter D

The Figures 6.15(a) and 6.15(b) provide an indication of the influence of the parameter M ,
that is, the number of modalities, on the median CPU time consumption of Ksat and the trans-
lation approach. The influence on the translation approach can be considered as being insignif-
icant. Likewise we see that for a ratio L/N greater than 20, the median CPU time consumption
of Ksat on the two parameter settings are identical. This can be explained by our observation
that almost all unsatisfiable formulae are trivially unsatisfiable. The modal subformulae in triv-
ially unsatisfiable formulae are irrelevant. Therefore, increasing the number of modalities is also
irrelevant for unsatisfiable formulae. Below a ratio L/N of 20, the modal formulae generated
using only one modality seem to be slightly more challenging than the modal formulae generated
using twenty different modalities. This is due to the fact that the procedure KM is less likely to
fail for twenty modalities than for just one modality [52]. The small divergence in the behaviour
of Ksat on PS5 (N=4, M=1, D=2, P=0.5) and PS9 (N=4, M=20, D=2, P=0.5) is due to a
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smaller number of contradictions between modal literals for PS9. We illustrate this observation
by the following example.

Example 6.8:
The formula φ7 given by

(21(p ∨ q) ∨21(r ∨ q)) ∧ ¬21(q ∨ p ∨ s)

is satisfiable. Ksat will first apply the dp unit rule replacing 21(q ∨ p ∨ s) by ⊥. The first
conjunct of φ7 is left unchanged and Ksat has to apply the dp split rule. Suppose it chooses
21(p∨q) as split ‘variable’. Replacing 21(p∨q) by > renders φ7 true propositionally, but checking
the satisfiability of ¬(q ∨ p∨ s)∧ (p∨ q) reveals that this truth assignment is not K(m)-satisfiable.
So we have to continue with 21(r∨q), the second case generated by the dp split rule. Replacing
the last remaining modal atom by > again renders the formula true propositionally. Finally, we
have to check the satisfiability of ¬(q ∨ p ∨ s) ∧ (r ∨ q) which succeeds.

In contrast consider the formula φ8 given by

(22(p ∨ q) ∨21(r ∨ q)) ∧ ¬21(q ∨ p ∨ s),

which is like φ7 except the first occurrence of a 21 is replaced by 22. Ksat proceeds in the same
way as for φ7. It replaces 21(q ∨ p ∨ s) by ⊥ and chooses 22(p ∨ q) as split ‘variable’. Replacing
22(p ∨ q) by > renders φ true propositionally. But now instead of checking the satisfiability of
¬(q ∨ p ∨ s) ∧ (p ∨ q) we just have to check that ¬(q ∨ p ∨ s) is satisfiable, because p ∨ q occurs
below a different modality. Since this check succeeds φ8 is satisfiable. Evidently, the computation
for φ8 is easier than for φ7.

Now we vary the parameter D, the modal depth of the randomly generated modal 3CNF
formulae. The situation for the parameter D is slightly more complicated than for the parameters
N and M . By the definition of modal 3CNF formulae, increasing the modal depth increases the
size of the formulae. The size, however, is an important factor influencing the performances of
the procedures under consideration. Although the graphs in Figures 6.16(b) and 6.16(a) seem to
indicate that increasing the modal depth of the sample formulae also increases the median CPU
time consumption of the decision procedures, the increase parallels the increase of the median size
of the modal formulae shown in Figure 6.17. A closer look at the graphs reveals that increasing the
modal depth of the randomly generated modal 3CNF formulae actually makes the satisfiability
problem easier. While the median formula size increases by a factor of five between modal depth
2 and modal depth 5, the median CPU time consumption of Ksat only increases by a factor of
three.

Based on these observations we identify three guidelines for generating more challenging prob-
lems.

1. We have to avoid generating trivially unsatisfiable modal formulae. A straightforward
solution is to require that all literals of a 3CNF clause of modal degree 1 are expressions of
the form 21φ or ¬21φ where φ is a random modal 3CNF clause of propositional variables.
This amounts to setting the parameter P to zero.

2. For all occurrences of 21φ in a random modal 3CNF formula of degree 1, φ has to be a
non-tautologous clause containing exactly three differing literals.
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Figure 6.17: The influence of the parameter D on the formula size

3. Parameters that have no significant influence on the “difficulty” of the randomly generated
formulae should be set to the smallest possible value. This applies to the parameter M . As
far as the parameter settings PS0 to PS9 are concerned it applies also to the parameter
D. However, for formulae generated according to the first two guidelines increasing the
parameter D leads to test formulae which are considerably more difficult1. In fact, they are
too difficult to be suitable for an empirical comparison of existing modal theorem provers.
Therefore, we restrict our attention to random modal 3CNF formulae of degree one using
only one modality.

In line with the first guideline one may consider excluding also trivially satisfiable modal formulae.
However, this amounts to doing preliminary satisfiability checks of the generated modal formulae
in order to identify and reject the trivially satisfiable ones. For the moment, we do not perform
these checks. Note that according to the second guideline, the generation of 21(p∨¬p∨q) should
be avoided. However, the generation of 21ϕ ∨ ¬21ϕ

′ ∨ 21ψ, where ϕ and ϕ′ are either equal or
identical modulo the associativity and commutativity of ∨, is permissible.

The restriction to random modal 3CNF formulae of degree one is somewhat surprising if one
takes into account that if we bound D then the worst-case complexity of the satisfiability problem
in basic modal logic is no longer PSPACE-complete, but NP-complete. This is a point that
deserves further investigation. How can difficult modal formulae with increased modal degree be
generated automatically? Some difficult examples of higher degree which have been constructed
by hand can be found in the benchmark collection of the Logics Workbench [63].

The parameters not fixed by the three guidelines are the number N of propositional variables
and the numberK of literals in any clause. We choose to fixK=3 in two parameter settings PS12
(N=4, M=1, K=3, D=1, P=0) and PS13 (N=6, M=1, K=3, D=1, P=0). Figures 6.18(a)
and 6.18(b) reflect the quality of the parameter settings PS12 and PS13 by the percentage
of satisfiable, unsatisfiable, trivially satisfiable, and trivially unsatisfiable modal formulae in the
sample sets we generated. Compared to Figure 6.5(b) (on page 132) for the parameter setting
PS0, the percentage of trivially satisfiable formulae has decreased significantly. As expected,
the percentage of trivially unsatisfiable formulae is zero. Furthermore, the region in which the
transition from almost always satisfiable formulae to almost always unsatisfiable formulae occurs
is smaller. Already for a ratio L/N of 25 for PS12 and a ration L/N of 30 for PS13 there are

1Thanks to Ian Horrocks for pointing this out.
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(a) PS12 (N=4, M=1, K=3, D=1, P=0.0)
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Figure 6.18: The quality of the test sets
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Figure 6.19: The median performances

almost no satisfiable formulae. For this reason, the experiments consider only the sample sets
with ratio L/N between 1 and 30.

The percentile graphs of Ksat, KRIS*, LWB* and the translation approach on the settings
PS12 and PS13 are given in Figures 6.19(a) and 6.19(b). Figures 6.20(a) to 6.21(d) present
the corresponding percentile graphs. Again, we observe that Ksat outperforms KRIS* and
the Logics Workbench, while the translation approach does best. More important, the formulae
generated by the new parameter settings and the modified random generator are much harder
than any of the formula samples generated for the settings PS0 to PS9 by the original generator.
Figures 6.21(a) to 6.21(b) show the percentile graphs on PS13. We see that even the translation
approach fails to decide within the given time-limit the satisfiability of half of the input formulae
for ratios L/N greater than 13.
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Figure 6.20: The percentile graphs on PS12

6.8 Conclusion

It should be stressed that it is not the aim of scientific benchmarking to find or declare the best-
performing system. Instead the focus is on different techniques, strategies, and heuristics used in
different theorem prover for improved performance on particular problem sets.

We have pointed out a number of problems with evaluating the performance of different algo-
rithms for modal reasoning. A crucial factor is the quality of the randomly generated formulae.
Even for propositional theorem proving defining adequate random formula generators for per-
formance evaluation is hard [20]. We have shown that the random generator and parameter
settings used in [51, 52] produce formulae with particular characteristics (like redundant subfor-
mulae and almost no non-trivially unsatisfiable formulae within the test sets) which have to be
carefully taken into account in an empirical study. We have proposed guidelines for modifying
the generator.

The basic algorithm of Ksat is an instance of a KE-tableaux algorithm augmented by simpli-
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Figure 6.21: The percentile graphs on PS13

fication rules [99]. On modal KCNF formulae it is an instance of a KE-tableaux algorithm. Thus,
the only fundamental difference between Ksat, KRIS, and the Logics Workbench on formulae
in conjunctive normal form is the inference rule for disjunction elimination.

The differences essential for the improved performance of Ksat as compared to KRIS and
the Logics Workbench are:

1. Ksat utilises an elaborated set of simplification rules for boolean and modal formulae. These
are the dp unit inference rule of the procedure KDP and the rules in Table 6.2. These rules
are applied whenever possible throughout the computation. By contrast, KRIS has only a
very limited set of simplification rules, namely ∨ S0 and ∨ S1, which are applied occasionally.
The Logics Workbench uses no simplification rules at all.

2. Ksat utilises a heuristic for selecting the particular disjunction for the application of dis-
junction elimination (namely, applying dp split to a modal atom with maximal number
of occurrences). By contrast, KRIS and the Logics Workbench process disjunctions in a
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fixed order determined by the ordering of the disjunctions in the input formula.

3. Ksat performs intermediate checks of K(m)-satisfiability of the current truth assignment
before every application of the dp split rule. This corresponds to an application of our
proposed 3i T inference rule for tableaux-based systems. KRIS has no equivalent of the
3i T rule.

The Logics Workbench has a similar strategy as KRIS. It delays the application of the
(l3i)- and the (r2i)-rules until no further applications of the other rules are possible.

4. The Logics Workbench utilises branch pruning which the other systems do not.

Based on our performance evaluation and the insights we have gained by inspecting the code
of the various systems under examination, our assessment of the relevance of these differences
between the theorem provers concerning their performance is the following:

1. The presence of simplification rules and their exhaustive application is vital for any theorem
prover, particularly for the class of formulae we have been considering. It is surprising that
there are theorem provers like KRIS and the Logics Workbench making very little use of
simplification.

2. Further investigations will have to answer whether elaborated heuristics for the selection of
split ‘variables’ in the application of the dp split rule or disjunctions in the application
of the ∨-elimination rule lead to improved performance of Ksat for the entire range of
generated sample sets.

3. The introduction of intermediate calls to the KM procedure to check the K(m)-satisfiability
of the current truth assignment is valuable. It makes a difference to the performance of
Ksat. However, in its present form Ksat cannot make optimal use of the information
provided by a failure of an intermediate call to KM (Example 6.6).

We envisage that more redundancy can be eliminated by delaying the application of rules
dealing with modal operators and using branch pruning to backtrack to an appropriate
state of the search space, like the Logics Workbench does.

Further improvements of the SAT-based procedure Ksat are possible and further investigations
are needed to evaluate the usefulness of the various techniques. A first step in this direction is
[50] with a new implementation of Ksat which is able to outperform the translation approach on
PS12 and PS13. Another example is the FaCT system delevoped by Horrocks [69, 70, 72] which
combines techniques from Ksat with the branch pruning technique of the Logics Workbench.

All the techniques can be transferred to tableaux-based systems like KRIS and sequent
calculus-based systems like the Logics Workbench. Likewise the techniques employed in KRIS
and the Logics Workbench can be transferred to Ksat.

Our experiments show the suitability of the translation approach in combination with the
theorem prover SPASS for modal theorem proving on all samples of randomly generated modal
3CNF formulae we have considered, except for the samples of very small or easily solvable formu-
lae. This is due to the initial overhead of the transformation to clausal form. Hustadt, Schmidt,
and Weidenbach [85] shows that this also extends to the carefully constructed benchmarking for-
mulae of the Logics Workbench. It is open which resolution inference rules and search strategies
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perform best for basic modal logic and its extensions. We emphasise the positive results obtained
for the combination of the translation approach and SPASS can most probably not be obtained
with less sophisticated theorem provers (without splitting and branch condensing).
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Conclusion

In this thesis we have considered various closely related solvable subclasses of first-order logic
and have provided decision procedures for each of them in the resolution framework of Bachmair
and Ganzinger [8]. We have shown that ordering refinements of resolution are able to decide the
classes E+, K, DK, the class of DL-clauses which is related to description logics, and the class of
SF-clauses which is related to modal logics.

In the case of description logics and modal logics we have given alternative decision procedures
using a selection refinement of resolution and we have shown that these decision procedures are
able to polynomially simulate standard tableaux-based decision procedures for these logics. In
fact, the relation between the two approaches is so close that one can consider them as notational
variants as long as we do not take the more powerful redundancy elimination techniques of the
resolution-based approach into account.

There are closely related results which are worth mentioning. Ganzinger and de Nivelle [45]
show that the guarded fragment with equality is solvable using a decision procedure based on
resolution with superposition. Here a refinement based on an ordering and a selection function
is used.

Fermüller and Salzer [40] show that ordered paramodulation and resolution provide a decision
procedure for an extension of the Ackermann class with equality. They use a modified version of
paramodulation as defined by Hsiang and Rusinowitch [73]. Fermüller and Leitsch [41] present a
decision procedure for an extension PVD=

g of the class PVD+ by ground equations based on a
version of the derivations rules of [73] which removes the ordering restrictions on factoring and
resolution and internalises factoring into the other rules. The decidability of PVD and PVD+ by
hyperresolution is shown in [38]. These results can be reformulated in the framework described
in this thesis.

There are two interesting solvable classes for which no resolution-based decision procedure has
been found as yet. The first one is the fragment of first-order logic related to the independent joint
of the modal logic S5 with other modal logics. It is possible to use the refinement of resolution
based on the selection function STAB together with a term depth bound to provide a decision
procedure for this class. However, we do not regard this as a practical and compelling solution.

The second interesting logic is fluted logic [115, 116]. Fluted logic can be regarded as yet
another alternative generalisation of the fragment of first-order logic corresponding to modal
logics. It is defined in terms of a fixed ordering of quantifiers and variable occurrences in atomic
subformulae. Fluted logic includes formulae of the form

∀x1, x2: p(x1, x2) ∨ (∀x3: q(x1, x2, x3) ∧ ∃x4: p(x2, x4))

which are neither in the class K nor in the guarded fragment. We conjecture that fluted logic can
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be decided by a resolution refinement making use of the dynamic renaming technique exemplified
in Chapter 2.



Appendix A

Properties of regular terms and
literals

To provide a self-contained presentation of the completeness proof, this section presents those
lemmata and proofs by Zamov [39, chapter 6, pages 130–150] which remain mostly unchanged by
the modifications in Section 3.3.

Lemma A.1. The relation %Z is transitive.

Proof. Let s, t, and u be terms such that s %Z t %Z u. To show that s %Z u holds, we consider
the following cases:

1. s = t or t = u holds. Then we have s %Z u trivially.

2. Let s = f(s1, . . . , sk), for some k ≥ 0. If t is a variable and t = si for some 1 ≤ i ≤ k, then
u is equal to t, since a variable can only dominate itself. Thus we have a reduction to the
previous case.

Let t = g(t1, . . . , tm), for some k ≥ m ≥ 0. We have to distinguish two cases: Either u is a
variable and u = ti for some 1 ≤ i ≤ m. Since s %Z t holds, we have si = ti = u. Therefore,
s %Z u holds.

Finally, consider u = h(u1, . . . , un), for some m ≥ n ≥ 0. Since k ≥ m ≥ n, and si = ti for
1 ≤ i ≤ m and ti = ui for 1 ≤ i ≤ n holds, we have s %Z u.

Corollary A.2. The relation %Z is a quasi-ordering on terms.

Lemma A.3. Let s and t be compound terms. Let σ be a substitution. If s %Z t, then sσ %Z tσ.

Proof. We distinguish two cases:

1. The relation s %Z t holds, because s = t holds. Then sσ = tσ and therefore, sσ %Z tσ.

2. The relation s %Z t holds, because s = f(s1, . . . , sm), t = g(t1, . . . , tn), m ≥ n ≥ 0, and
si = ti, for all 1 ≤ i ≤ n.

Then si = ti, for all 1 ≤ i ≤ n, implies siσ = tiσ, for all 1 ≤ i ≤ n. Since sσ =
f(s1σ, . . . , snσ) and tσ = g(t1σ, . . . , tmσ), we have sσ %Z tσ.
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Lemma A.4. Let t be a compound, regular term f(t1, . . . , tn). Then all variables occurring in
t are arguments of t as well. Furthermore, if ti is a compound term, then all variables occurring
in ti occur in {t1 . . . , ti−1}.

Proof. The proof is by contradiction. Let t be of the form f(t1, . . . , tn). Let i, 1 ≤ i ≤ n, be the
smallest number such that ti is a compound term g(s1, . . . , sm) containing a variable x which is
not equal to an argument tj of t for some j, 1 ≤ j ≤ n. Since t dominates ti, we have m ≤ n,
m < i, and sk = ti for all k, 1 ≤ k ≤ m. Because ti contains x, one of its arguments sl, 1 ≤ l ≤ m,
contains x. But sl = tl, which implies that sl contains x, and l < m < i. Thus, i is not the
smallest such index which is a contradiction.

Lemma A.5. A term t is regular iff it dominates each of its compound arguments.

Proof. The “if” part follows from the fact that every compound term dominates every constant
and every variable argument. The “only if” part is evident.

Lemma A.6. If t is a regular term and t dominates a term s then s is regular too.

Proof. If the term s is not compound, then s is trivially regular. Let s be a compound term of
the form g(s1, . . . , sm). Since t dominates s, it follows that t is a compound term of the kind
f(s1, . . . , sm, . . . , sn), where f and g are function symbols, s1, . . . , sn are terms, n ≥ m > 0.
By Lemma A.5 it is sufficient to prove that s dominates each of its compound arguments. Let
si = h(t1, . . . , tk) be some argument of the term s, i ≤ m. Since t is regular, t dominates si and
it follows that t1 = s1, . . . , tk = sk. Moreover we have k < i, since otherwise ti and si would be
equal, that is, si is equal to one of its proper subterms. Since k < i and i ≤ m we have k < m
and each argument of the term si is equal to a corresponding argument of the term s. Therefore
s dominates si.

Lemma A.7. Let t be a regular term and σ a substitution such that the codomain of σ contains
only constants and variables. Then tσ is a regular term.

Proof. The substitution σ preserves the dominating relation for terms occurring in t as well as
the depth of terms.

Lemma A.8. Let the regular term t = f(t1, . . . , tn) dominate the term s = g(t1, . . . , tm), n ≥
m ≥ 1, and let σ be a substitution such that all variables in the domain of σ occur in s or do not
occur in t. If sσ is regular, then tσ is regular too.

Proof. It is sufficient to prove that tσ dominates each of its compound arguments (by Lemma A.5).
Let tjσ be a compund term, 1 ≤ j ≤ n. tj cannot be a constant, because no instance of a constant
can be a compound term. The remaining two cases are:

1. tj is a variable. Then tj is a variable in the domain of the substitution σ, since otherwise
tjσ = tj which is impossible, because tjσ is a compound term. By the assumption of
the lemma, tj occurs in s. The term tjσ is an argument of the term sσ. Therefore, sσ
dominates tjσ, since sσ is regular. Due to Lemma 3.7 tσ dominates sσ. Because the
dominating relation is transitive, tσ dominates tjσ.
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2. tj is a compound term. It follows that t dominates tj, since t is regular. Since the dominating
relation is preserved under substitution in compound terms, the term tσ dominates tjσ.

So we have shown that tσ dominates each of its compound arguments and thus is regular.

Lemma A.9. Let t = f(t1, . . . , tn) be a regular term which dominates the term s = g(t1, . . . , tm),
z be a variable which does not occur in s and let σ be the substitution {z/s}. Then tσ is regular.

Proof. Let u be an argument of t and let uσ be a compound term. There are the following cases:

1. u is a variable different from z. Then uσ = u which is impossible, since uσ is a compound
term.

2. u is equal to z. Since s does not contain z, the terms t1, . . . , tm do not contain z as well.
Therefore

tσ = f(t1, . . . , tm, tm+1, . . . , tn)σ
= f(t1σ, . . . , tmσ, tm+1σ, . . . , tnσ)
= f(t1, . . . , tm, tm+1σ, . . . , tnσ).

Thus u = tj for some j, m+ 1 ≤ j ≤ n. So, uσ = zσ = s = tjσ.

tσ = f(t1, . . . , tm, . . . , tjσ, . . . )
= f(t1, . . . , tm, . . . , s, . . . ).

It follows that tσ dominates uσ.

3. u is a compound term or a constant. Since t is regular, it dominates the term u, therefore
tσ dominates uσ.

Lemma A.10. If s and t are regular terms and σ is a most general unifier of {t, s} then tσ is
regular.

Proof. If s and t are syntactically equal, then the most general unifier is the identity substitution
and tσ is regular. This includes the case where s and t are constants. Otherwise, we consider the
following cases:

1. One of the terms (s, for example) is a variable. Then t does not contain s, σ = {s/t} and
tσ = t which is regular.

2. Both s and t are compound terms of the kind f(s1, . . . , sn) and f(t1, . . . , tn), respectively.
We will prove the regularity of tσ by induction on n − i, where i satisfies the following
conditions:

t1 = s1, . . . , ti = si, (1 ≤ i ≤ n)(A.1)
ti+1 6= si+1.(A.2)

Since s and t are unifiable, the terms si+1 and ti+1 are unifiable.

The induction base is trivial.

Let n − i > 0. Let us first demonstrate that in this case one of the terms ti+1, si+1 is a
variable. Assume the contrary and consider the following subcases:
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(a) Neither term is compound. In this case terms ti+1 and si+1 are constants. They are
different by Condition (A.2). But then they are not unifiable which contradicts the
unifiability of t and s.

(b) The ti+1 is a compound term and si+1 is a constant. Again, these terms are not
unifiable.

(c) Both terms are compound. Assume ti+1 = g(v1, . . . , vm), si+1 = g(u1, . . . , um). Since
t is regular, it dominates the term ti+1, therefore

t1 = v1, . . . , tm = vm(A.3)

Since no term contains itself as argument, it follows that ti+1 6= vk for each k, 1 ≤ k ≤
m. Therefore i+ 1 > m. Similarly, we can show that

s1 = u1, . . . , sm = um(A.4)

We conclude from (A.1), (A.3), and (A.4) that

vk = tk = sk = uk

for every k, 1 ≤ k ≤ m. It follows that ti+1 = si+1 which contradicts Condition (A.2).

We have proved that at least one of the terms ti+1 or si+1 is a variable. Without loss of
generality, we can assume that ti+1 is a variable. Let σi+1 be the substitution {ti+1/si+1}.
If si+1 is a variable or a constant, then both tσ and sσ are regular by Lemma A.7.

Let si+1 be a compound term. Since s is regular, it dominates the term si+1. Since the
first i arguments of terms s and t are equal by Condition (A.1), t dominates si+1. By
Lemma A.9 the terms tσi+1 and sσi+1 are regular. Consequently, the following equations
for the arguments of tσi+1 and sσi+1 are valid:

t1σi+1 = s1σi+1

...
tiσi+1 = siσi+1

ti+1σi+1 = si+1σi+1

...

By the induction hypothesis tσi+1θ and sσi+1θ are regular terms, where θ is a most general
unifier for tσi+1 and sσi+1.

Lemma A.11. Let L be a deep, regular literal, let the term t be a dominating term of A and let
σ be a substitution such that tσ is regular. Then Lσ is a regular literal.

Proof. Let us show that tσ dominates each argument of Lσ. Assume that s is some argument of
L. There are the following cases:

1. s is a variable. In this case s is an argument of the dominating term t since L is a regular
literal. It follows that sσ is an argument of tσ. Since tσ is a regular term, it dominates
each of its arguments, particularly the term sσ.
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2. s is a constant or a compound term. Then t dominates s. In both cases the %Z is preserved
under substitution. Therefore tσ dominates the term sσ.

Lemma A.12. Let L1 = (¬)p(s1, . . . , sn) and L2 = (¬)p(t1, . . . , tn) be unifiable, deep, regular
literals. If si is a dominating term of A1, then also ti must be a dominating term of A2.

Proof. Since L1 is a deep literal, its dominating term si has maximal arity among all arguments
of this literal and is a compound term. Let tj be a dominating term of the literal L2, that is, tj
is a compound term whose arity is maximal among arities of all arguments of L2. Let σ be the
most general unifier of L1 and L2. We distinguish the following cases:

1. The terms ti and sj are variables. Since L1 is a deep literal, the variable sj is an argument of
the dominating term si. For the same reason ti is an argument of the term tj. The relation
“to be an argument of” is preserved under substitution, therefore the following property
holds:

sjσ is an argument of siσ and tiσ is an argument of tjσ(A.5)

From the unifiability of L1 and L2 we conclude that

siσ = tiσ and sjσ = tjσ(A.6)

It follows from (A.5) and (A.6) that sjσ is an argument of sjσ (and thus a proper subterm
of itself), which is impossible.

2. One of the terms sj or ti (say, sj) is a variable and the other one is a constant or a compound
term. Then sj is an argument si and tj dominates the term ti, therefore arity(ti) ≤ arity(tj).
Since for non-variable terms the dominating relation is preserved under substitution, the
following statements hold:

sjσ is an argument of siσ and tjσ dominates tiσ(A.7)

From (A.6) and (A.7) we conclude that sjσ is an argument of some term which is dominated
by tjσ. Therefore, sjσ is an argument of tjσ which is impossible.

3. Neither ti nor sj is a variable. Then the following inequalities hold for the arities of the
terms under consideration:

arity(si) ≥ arity(sj) since si is a dominating term for L1,
arity(tj) ≥ arity(ti) since tj is a dominating term for L2,
arity(si) = arity(ti) since si and ti are unifiable,
arity(sj) = arity(tj) since sj and tj are unifiable.

These inequalities imply that arity(si) = arity(sj) = arity(ti) = arity(tj). It follows that ti
is a dominating term for L2 as well.

To illustrate the previous lemma, take a look at the following examples:

L1 = p(f(x, y), y) L2 = p(f(x, y), g(x, y, z))(A.8)
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The dominating term of L1 is the first argument of L1, that is, f(x, y). The dominating term of
L2 is the second argument of L2, that is, g(x, y, z). Thus the dominating terms do not occur at
the same argument position. It is straightforward to check, that these literals are not unifiable.
So, one of the preconditions of Lemma A.7 is not satisfied.

L1 = p(f(x, y), y) L2 = p(f(x′, y′), g(x′)).(A.9)

These literals are unifiable with most general unifier {x′/x, y/g(x), y′/g(x)}. The dominating
term of L1 is the first argument of L1, that is, f(x, y). The dominating term of L2 is the first
argument of L2, that is, f(x′, y′). The dominating terms are at the same argument position in
L1 and L2, respectively. Finally, we consider

L1 = p(f(x, y), y) L2 = p(f(x′, y′), g(u, v,w)).(A.10)

These literals are unifiable with most general unifier {x′/x, y/g(u, v,w), y′/g(u, v,w)}. The dom-
inating term of L1 is the first argument, that is, f(x, y). The term with the maximal arity in L2

is the second argument, that is, g(u, v,w). But g(u, v,w) does not dominate f(x′, y′). Nor does
f(x′, y′) dominate g(u, v,w). L2 is not a regular literal.

Lemma A.13. Let L1 = (¬)p(s1, . . . , sn) and L2 = (¬)p(t1, . . . , tn) be regular literals and let σ
be the most general unifier of L1 and L2. Then L1σ is regular.

Proof. We consider the following cases:

1. L1 and L2 are both deep literals. Assume that si is a dominating term for L1. By
Lemma A.12 the dominating term for L2 is the term ti. Let θ be the most general unifier
of si and ti. By Lemma A.10 the terms siθ and tiθ are regular. By Lemma A.11 the literals
L1θ and L2θ are regular and their dominating terms siθ and tiθ are equal.

We use induction on the number of non-equal arguments in L1θ and L2θ to prove the lemma.

The induction base is trivial. Let sjθ differ from tjθ for some j, 1 ≤ j ≤ n, and let θj

be a most general unifier of these terms. Since siθ is regular and dominates the term sjθ,
this last term is regular by Lemma A.6. For the same reason tjθ is regular. Therefore, the
literal (L1θ)θj is regular by Lemma A.11. Similarly, we can prove that the literal (L2θ)θj is
regular. By the induction hypothesis the lemma holds for the literals (L1θ)θj and (L2θ)θj.

2. One of the literals, L2 for example, contains no compound terms and the other one is a
deep literal with a dominating term si. In this case we can prove the lemma by induction
on the number of pairs of terms (sk, sl) such that sk 6= sl and tk = tl, for 1 ≤ k < l ≤ n.

In the base case, the number of such pairs is zero. That means tk = tl if and only if sk = sl

for all k, l, 1 ≤ k < l ≤ n. For all variables x in the domain of σ which occur in L1, xσ is
either a variable or a constant. By Lemma A.7 siσ is regular and by Lemma A.11 L1σ is
regular.

In the induction step, we consider some arbitrary pair (sk, sl) such that tk = tl and sk 6= sl.
Since L1 and L2 are unifiable, sk and sl are unifiable too. Let θ be a most general unifier
of sk and sl. Since sk and sl are regular terms, skθ = slθ is a regular term according to
Lemma A.10. The term si dominates sk and sl and all variables in the domain of θ occur
in either sk or sl. By Lemma A.8 the term siθ is regular. By Lemma A.11 the literal L1θ
is regular. For the literals L1θ and L2θ the lemma holds by the induction hypothesis.
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3. The literals L1 and L2 are both shallow. The proof is evident since L1σ and L2σ do not
contain compound terms and therefore are regular.

The proof presented here differs from Zamov’s proof in the following aspect. In the base case
Zamov assumes that the most general unifier is a match, that is, L2σ = L1 = L1σ. However, in
the presence of constants this need not be true. Consider L1 = p(y, f(x, y)) and L2 = p(a, z).
The most general unifier {y/a, z/f(x, a)} is not a match.

Lemma A.14. Let C be a regular clause, L1 be a dominating literal for C and t1 be a dominating
term for L1. Then t1 dominates each argument of each literal in C.

Proof. Let t2 be some non-constant argument of some literal L2 from C. Since A1 is a dominating
literal, it dominates L2, that is, there exists some term in L1 which dominates t2. Since L1 is
regular, t1 dominates each argument of L1, therefore it dominates t2.

Suppose t2 is a constant, then t1 trivially dominates t2.

Lemma A.15. If a regular term t dominates the term s and σ is a substitution such that tσ is
regular, then tσ dominates sσ.

Proof. According to Lemma 3.7 we only have to consider the case where at least one of the terms
is not compound. In addition, the cases where s = t holds and where s is a constant are trivial.

Suppose s is a variable. Since s 6= t, t is a compound term such that s is an argument of
t. Then sσ is again an argument of tσ. Since tσ is regular, it dominates each of its arguments.
Therefore, tσ dominates sσ.

Corollary A.16. If a regular term t dominates the term s and σ is a substitution such that tσ
is regular, then sσ is regular.

Proof. By Lemma A.15 and A.6.

Lemma A.17. Let C be a k-regular clause and t be a regular term in some literal in C. Neither
of the first k arguments of the term t are compound.

Proof. Let t = f(t1, . . . , tn), n ≥ k. Assume that ti is compound for some i, 1 ≤ i ≤ k, that is,
ti = g(u1, . . . , um) for some m, k ≤ m ≤ n. Since the term t is regular, it dominates ti, therefore
uj = tj for every j, 1 ≤ j ≤ m. It follows that ti = g(t1, . . . , tm) for some i, 1 ≤ i ≤ k ≤ m,
which is impossible.
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Appendix B

Glossary of solvable classes

The following sections contain a brief summary of the definitions of the classes which have been
introduced and for which terminating resolution procedures are presented in this thesis.

B.1 The classes E+ and E1

A compound term t is covering if for every compound subterm s of t the sets of variables of
s and t are identical, that is, V(s) = V(t). A compound term t is weakly covering if for every
non-ground, compound subterm s of t V(s) = V(t) holds.

An atom or literal L is covering if each argument of L is either a constant, a variable, or a
covering term t with V(t) = V(L). An atom or literal L is weakly covering if each argument of L
is either a ground term, a variable, or a weakly covering term t with V(t) = V(L). A clause C is
variable uniform if (i) every literal in C is weakly covering, and (ii) for each literal L1 and L2 in
C either V(L1) = V(L2) or V(L1) ∩ V(L2) = ∅ holds.
Definition B.1 (The class E+).
A clause set N belongs to the class E+ iff all clauses C in N are variable uniform.

Definition B.2 (The class E1).
A clause C belongs to E1 if (i) every literal in C is covering, and (ii) for each literal L1 and L2

in C either V(L1) = V(L2) or V(L1) ∩ V(L2) = ∅ holds.

B.2 The classes K, DK, KC, and DKC

Let ϕ be a schema in negation normal form and ψ a subformula of ϕ. The ϕ-prefix of the formula
ψ is a sequence of quantifiers of the schema ϕ which bind the free variables of ψ.

If a ϕ-prefix is of the form ∃y1 . . . ∃ym ∀x1Q1z1 . . . Qnzn, where m ≥ 0, n ≥ 0, Qi ∈ {∃,∀} for
all i, 1 ≤ i ≤ n, then ∀x1Q1z1 . . . Qnzn is the terminal ϕ-prefix. For a ϕ-prefix ∃y1 . . . ∃ym the
terminal ϕ-prefix is the empty sequence of quantifiers.
Definition B.3 (The class K).
The schema ϕ in negation normal form belongs to the class K if there are k quantifiers ∀x1 ,
. . . , ∀xk , k≥0, in ϕ not interspersed with existential quantifiers, such that for every atomic
subformula ψ of ϕ the terminal ϕ-prefix of ψ, (i) either is of length less than or equal to 1, or (ii)
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ends with an existential quantifier, or (iii) is of the form ∀x1 ∀x2 . . . ∀xk .
We say the variables x1, . . . , xk, k ≥ 0, are the fixed universally quantified variables of ϕ and

ϕ is of grade k, indicating the number of fixed universally quantified variables.

Definition B.4 (The class DK).
Let ϕ1, . . . , ϕn be formulae in the class K. Then ϕ1 ∧ . . . ∧ ϕn is a formula in the class DK.

Definition B.5 (The class KC).
Without loss of generality we can restrict ourselves to formulae in prenex form whose matrix is
in conjunctive normal form, that is, schemas in K have the form

∃y1 . . . ∃ym ∀x1 . . . ∀xkQ1z1 . . . Qzl
∧

i=1,... ,n

∨
j=1,... ,mi

Li,j(B.1)

where m ≥ 0, k ≥ 0, l ≥ 0, n > 0, mi > 0, and Li,j are literals. We assume that outer
Skolemisation is used in the process of transforming (B.1) to clausal form.

Definition B.6 (The class DKC).
If ϕ is a formula in KC, then the clausal form of ϕ (using outer Skolemisation) is in the class
DKC.

The term t dominates the term s, denoted by t %Z s, if (i) t = s, or (ii) t = f(t1, . . . , tn), s is a
variable and s = ti for some i, 1 ≤ i ≤ n, or (iii) t = f(t1, . . . , tn), s = g(t1, . . . , tm), n ≥ m ≥ 0.
The set T1 of terms dominates the set T2 of terms if for every term t2 in T2 there exists a term t1
in T1 such that t1 dominates t2. Two terms s and t are similar if s dominates t and t dominates
s. The literal L1 dominates the literal L2, denoted by L1 %Z L2, if the set of non-constant
arguments of L1 dominates the set of non-constant arguments of L2. Two literals L1 and L2 are
similar if the set of non-constant arguments of L1 dominates the set of non-constant arguments
of L2, and vice versa.

A term is called regular if it dominates all its arguments A set of terms is called regular if
it contains no compound term or it contains some regular compound term which dominates all
terms of this set. A literal is called regular if the set of its arguments is regular.

A literal L is singular if it contains no compound term and V(L) is a singleton, otherwise it
is non-singular. A regular literal containing a compound term is deep, otherwise it is shallow.
Definition B.7 (Regular clause).
A clause C of literals is k-regular if (i) C contains regular literals only, (ii) k is a non-negative
integer not greater than the minimal arity of the non-constant function symbols occurring in C
(if C does not contain compound terms, then k is arbitrary), (iii) C contains some literal which
dominates every literal in the set C, (iv) iff L1 and L2 are non-singular, shallow literals in C,
then L1 and L2 are similar, (v) if L1 is a non-singular, shallow literal in C, then for all compound
terms t occurring in any literal in C, argset(L1) \ F0 ∼Z arg1...k

set (t) \ F0 holds.
A clause is regular if it is k-regular for some k ≥ 0. A clause is again called quasi-regular if

all of its indecomposable components are regular.

B.3 DL-clauses and fluted DL-clauses

Let C be a clause and t be compound term in C. The term t is (variable) embracing if for every
L′ in C, V(L′) ∩ V(t) 6= ∅ implies V(L) ⊆ V(t). A literal L in C is (variable) embracing if (i)
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for every L′ in C, V(L′) ∩ V(L) 6= ∅ implies V(L′) ⊆ V(L) (that is, embracing literals contain
all variables occurring in their split component of the clause), and (ii) if L contains a compound
term t, then t is embracing.

A literal L is a DL-literal iff (i) L is regular, (ii) L is either monadic or dyadic and contains at
most 2 variables, (iii) L is ground whenever L contains a constant symbol, and (iv) the maximal
arity of function symbols in L is 1.
Definition B.8 (DL-clause).
A clause C is a DL-clause iff (i) if C contains a compound term t, then t is embracing, (ii) C is
ground whenever C contains a constant symbol, (iii) all literals in C are DL-literals, and (iv) the
argument multisets of all flat, dyadic literals coincide.

A literal L is a fluted DL-literal iff (i) L is regular, (ii) L is either monadic or dyadic and contains
at most 2 variables, (iii) L is ground whenever L contains a constant symbol, (iv) the maximal
arity of functions symbols in L is 1, and (v) there is at most one compound term t in L and t can
only occur in the last argument position of L.
Definition B.9 (Fluted DL-clause).
A clause C is a fluted DL-clause iff (i) C is a 1-regular clause of grade k where k ≤ 2 holds, (ii)
C is ground whenever C contains a constant symbol, (iii) all literals in C are fluted DL-literals,
and (iv) there exist distinct variables x and y such that all flat, dyadic literals in C are of the
form p(x, y) for some predicate symbol p.

B.4 Small SF-clauses and SF-clauses

A signature containing only predicate symbols of maximal arity 2 such that all arguments have
to be of sort W , one constant symbol ε of sort W , unary function symbols of sort W → AF , and
one binary function symbol of sort [ ] : W ×AF →W is called an SF-signature. A well-sorted,
regular term over an SF-signature is called an SF-regular term.

A clause C is an SF-regular clause iff C is a well-sorted, strongly CDV-free, regular clause
over an SF-signature such that (i) there are no occurrences of negative, dyadic literals, (ii) there
is at most one occurrence of a positive, dyadic literal L, (iii) the first argument of a dyadic literal
L in C is a subterm of the second argument of L, and (iv) if C contains a compound term t and
a dyadic literal L, then t is identical to the second argument of L.
Definition B.10 (Small SF-clause).
A clause C is a small SF-clause if (i) C is a SF-regular clause, or (ii) C is in one of the following
forms

P(x̄2) ∪ {¬r(x1, x2)},(C2)
P(x̄2) ∪ {r([x1α1], [x2α2])},(C5)
P(x̄2) ∪ {r(x1, [x2α2])},(C45)

where x1 and x2 are variables of sort W , and α1 and α2 are variables of sort AF .

Definition B.11 (SF-clause).
A clause C is an SF-clause iff (i) C is an SF-regular clause, or (ii) C is a clause of the form

P(ū) ∪ ¬r(ū, v) ∪ P(v) ∪ P(w̄) ∪ ¬r(w̄, t) ∪ P(t).(Cinv )
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where v is either a variable of sort W or the constant ε, ū and w̄ are vectors of variables and
constants of sort W , t = [vα] for some variable α of sort AF or t = [vf(v)] for some unary
function symbol f , such that, additionally, if u and w are variables occurring in a monadic atom
in C, then there is at most one negative r literal in which this variable occurs, or (iii) C is of the
form

P(x̄2) ∪ {¬r(x1, x2), r(x1, [x2α])},(C4)

where x1 and x2 are variables of sort W , and α is a variable of sort AF .
For clauses of the form (Cinv ) we shall also write C = C[v] to emphasise the special role of v

as the only variable or constant of sort W that may occur on the right side of r literals in C, if
there are any such literals. In that case, C[v′] will denote the clause in which v is replaced by v′.
We will write C = C[t] to emphasise the term t occurring in C.
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