Self-Adaptation and Scalability
in Multi-Agent Societies

Christian Gerber

Dissertation

zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Technischen Fakultat
der Universitat des Saarlandes

Saarbriicken, Dezember 1999

Kurzzusammenfassung

Die vorliegende Dissertation prisentiert Selbstadaptierungsmechanismen zur
Effizienzoptimierung und Skalierbarkeit von Multiagentensystemen. Zur Um-
setzung der Mechanismen wird eine Agentenentwicklungsumgebung vorgestellt,
die den Entwurf von selbstadaptierenden Agentengesellschaften erleichtert.
Weiterhin wird gezeigt, wie es durch eine Modifikation der Autonomie der
Mitglieder eines Agentensystems moglich ist, den Adaptierungsansatz zu ver-
feinern, um so holonische Agentengesellschaften zu konfigurieren, bei denen
die Mitgliedsagenten Teile ihrer Autonomie aufgeben und eine Gesellschaft
nach aufen wie ein einzelner Agent auftritt. Sowohl fiir den allgemeineren Fall
als auch fiir den Fall einer holonischen Agentengesellschaft werden in dieser
Arbeit Industriefallstudien herangezogen, die die Anwendbarkeit des Ansatzes
untermauern.

Abstract

This thesis presents methods to allow multi-agent systems to configure
themselves to any application scale and nature. This self-adaptation is the key
to achieve and maintain efficiency and scalability in multi-agent societies. Theo-
retical foundations are elaborated and then realized in an agent development
environment that allows the convenient design of self-adapting agent societies.
If the autonomy of the members of a society can be changed significantly,
this society can be perceived as a single entity - a holon. The self-adaptation
approach is applied to configure a holonic agent society. A collection of very
different case studies is chosen to evaluate the presented approach, in both the
more general case, and the specialized holonic case.

Zusammenfassung

Skalierbarkeit ist ein wichtiger Aspekt fiir das Design von Software jeglicher Art:
Ein System, das in einer kleinen Umgebung effizient arbeitet, kann in einer grof-
dimensionierten Umgebung versagen, wenn beispielsweise das Laufzeitverhalten
der verwendeten Algorithmen exponential zur Grofe der Umgebung ist. Da-
her ist die sorgféltige Untersuchung des Laufzeitverhaltens und der auftretenden
Problemen beim Programmieren im Grofsen von besonderer Wichtigkeit.

Multiagentensysteme bieten diesbeziiglich mehrere Besonderheiten: Viele
Multiagentensysteme sind offen konzipiert, d.h., neue Komponenten (sowohl Soft-
wareteile, wie z.B. Agenten, als auch neue Hardware) konnen zur Laufzeit je-
derzeit in das System integriert werden. Weiterhin sind viele Multiagentensys-
teme nicht konzipiert, um zu einem bestimmten Zeitpunkt zu terminieren, so
etwa die permanente Kontrolle eines Echtzeitsystems rund um die Uhr. Durch
die Offenheit und die dadurch resultierende Verianderung der Systemumgebung
kann jedoch ein System, das urspriinglich sehr effizient kalibriert wurde, iiber die
Zeit seine Effizienz verlieren. Die Erhaltung von Effizienz ist daher ein wichtiges
Thema und eine Voraussetzung fiir den erfolgreichen Einsatz von Multiagenten-
systemen.

Der wissenschaftliche Beitrag der vorliegenden Dissertation liegt in der Ent-
wicklung von Mechanismen, die eine Selbstadaptierung von Multiagentensyste-
men ermoglichen. Diese Selbstadaptierung ist der Schliissel, um Skalierbarkeit
und Effizienzerhaltung von Multiagentensystemen zu gewéhrleisten.

Diese Arbeit konzentriert sich auf Gesellschaften von benevolenten Agen-
ten. Hierbei ist die Existenz von mindestens einem gemeinsamen Ziel aller
Agenten innerhalb der Gesellschaft Voraussetzung fiir den Einsatz des in der
Arbeit vorgestellten Selbstadaptierungsmechanismus GRAIL (Generic Resource
Allocation & Integration aLgorithm), der alle Mitgliedsagenten der Gesellschaft
integriert.

Der GRAIL-Mechanismus basiert auf der effizienten Allokation von
Ressourcen. In diesem Zusammenhang wird der Begriff der beschrinkt-rationalen
Agentengesellschaft als Erweiterung des beschrinkt-rationalen Agenten einge-
fiihrt: Es wird nicht nur das Verhalten aller Agenten nach ihren individu-

iv

ellen Ressourcen optimiert, sondern auch durch eine hohere Kontrollinstanz eine
moglichst effiziente Ressourcenverteilung auf der Gesellschaftsebene angestrebt.
In GRAIL werden eine oder mehrere solcher Instanzen durch spezielle Monitor-
agenten implementiert.

Auch der Ressourcenbegriff wird fiir den Multiagentenfall erweitert: eine
abstrakte Ressource beschreibt eine Entitdt der Umgebung einer Agentenge-
sellschaft, deren Benutzung fiir die Mitglieder der Gesellschaft einen Vorteil beim
Erreichen ihrer Ziele darstellt und dabei Abhéngigkeiten zwischen den Mitglieds-
agenten modelliert.

In der Arbeit werden Methoden zur Ressourcenallokation prisentiert und
diskutiert: hierbei wird diese Allokation als ein Optimierungsproblem angesehen,
dessen Zielfunktion durch die Performanz des Systems definiert wird, wihrend
der mehrdimensionale Suchraum die Menge aller moglichen Ressourcenkonfigu-
rationen darstellt. Dabei steht jede Ressource fiir eine Dimension im Suchraum.

Zur Umsetzung des GRAIL-Ansatzes wird eine Agentenentwicklungs-
umgebung SIF (Social Interaction Framework) zur einfachen Generierung von
Agentensystemen vorgestellt und zu einem Werkzeug SIFIRA (Social Interaction
Framework for Integrated Resource Adaptation) erweitert, das den Entwurf
von ressourcenadaptierenden Agentengesellschaften erleichtert. Auf diese Weise
wird das Paradigma des agenten-orientierten Programmierens in Richtung eines
ressourcen-orientierten Programmierens erweitert. Beide Umgebungen werden
ebenfalls in der Arbeit vorgestellt.

Zur Verwendung des Selbstadaptierungsmechanismus ist der Aspekt der Agen-
tenautonomie von hoher Relevanz: Durch eine Modifikation der Autonomie der
Mitgliedsagenten einer Gesellschaft ist es moglich, den GRAIL-Ansatz weiter zu
verfeinern und auf holonische Agentengesellschaften anzuwenden: in einer solchen
Gesellschaft geben Mitgliedsagenten Teile ihrer Autonomie auf und vereinigen
sich zu einem Holon, das - zumindest nach aufien - wie ein einzelner Agent auftritt.
Ein Holon ist selbstdhnlich strukturiert, da die Mitgliedsagenten ihrerseits selbst
Holonen sein konnen. In der vorliegenden Arbeit wird dieses Phianomen genauer
untersucht: Es werden Merkmale fiir holonische Agenten und Anwendungen her-
ausgearbeitet und mit Eigenschaften herkommlicher Agentensysteme verglichen.
Weiterhin wird gezeigt, wie Ressourcenverteilung im Allgemeinen und GRAIL im
Speziellen geeignet sind, holonische Agentensysteme zu konfigurieren.

Sowohl fiir den ersten, allgemeineren Fall einer kooperativen Agentenge-
sellschaft, als auch fiir den Fall einer holonischen Agentengesellschaft werden
in dieser Arbeit Industriefallstudien herangezogen, die die Anwendbarkeit des
GRAIL-Ansatzes untermauern: In der ersten Fallstudie wird das mobile agenten-
unterstiitzte Informationssystem MoTiV-PTA auf Verhalten im Grofeinsatz un-
tersucht und gezeigt, dass GRAIL auf dieses Szenario anwendbar ist und zu einer

Erhohung der Skalierbarkeit des Systems fiihrt. Weiterhin wird der GRAIL-
Ansatz an zwei Fallstudien fiir holonische Agentengesellschaften, dem Transport-
planungssystem TELETRUCK und dem Fertigungssystem IFMS demonstriert.
Fiir beide Systeme wird gezeigt, wie GRAIL eingesetzt werden kann, um eine
Selbstorganisation innerhalb eines Holons zu ermdglichen.

Preface

Scalability is a crucial aspect for the design of software of any kind: A system
that runs efficiently in a small environment may fail in a large size environment,
if for instance the run time behavior of the system is exponential to the size
of the environment. Therefore, the thorough examination of the problems of
programming in the large is inevitable.

Multi-agent systems exhibit several peculiarities: Many multi-agent systems
are designed to be open, in the sense that new components (software components,
for instance agents, as well as hardware components) may be added to the system
at any time during its run. Furthermore, many systems are not designed to
terminate at a particular time point, and a system which was originally adjusted
to work at a very high performance level has to react dynamically to new inputs
so that it might lose its performance over time as the environment changes.
Maintenance of high performance is therefore a vital issue for the design of large-
scale agent societies

The scope of this work focuses on scalability of multi-agent systems and on
the development of methods to allow multi-agent systems to configure themselves
to any application scale and nature. This self-adaptation is the key to achieve
and maintain efficiency in multi-agent societies.

The thesis presents the self-adaptation scheme GRAIL (Generic Resource
Allocation & Integration aLgorithm) for a society of benevolent agents. The
concept of a bounded-rational agent society is introduced as an extension of a
bounded-rational agent: in such a society, agents optimize their behavior to their
given individual resources, and in addition, higher-level control instances opti-
mize the allocation of societal resources. In GRAIL, such control instances are
implemented through special monitor agents.

The GRAIL mechanism bases on the efficient allocation of resources. For this
purpose, the resource concept is extended to the multi-agent case: an abstract
resource describes an entity of the environment of an agent society, which ex-
presses inter-dependencies among the society members and whose use is to the
advantage of the members.

viii

In this thesis, methods for resource allocation are presented and discussed.
Here, the task to organize such a society of artificial agents is perceived as an
optimization problem by characterizing a multi-dimensional search space and an
objective function to be optimized. The objective function has to denote the
system’s performance while the search space must describe the system’s set of
possible configurations.

These theoretical foundations are implemented in an agent development en-
vironment. The SIF (Social Interaction Framework) system supports rapid pro-
totyping of efficient multi-agent scenarios while its extension SIFIRA (Social
Interaction Framework for Integrated Resource Adaptation) is designed to al-
low a convenient design of self-adapting agent societies. Both frameworks are
described in this thesis.

One deliverable for the design of GRAIL has been generality: the GRAIL
approach makes only few assumptions on the nature of the agents in the society.
In particular, the autonomy of the member agents is modified as little as possible.
If however, the autonomy of members of a group, or of even all society members
can be changed more significantly, the GRAIL approach can be refined to a
holonic agent society: in such a society, members give up part of their autonomy
and unite to a holon, which appears to the outside as one single entity. A holon is
organized in a self-similar way, where member agents can be holons themselves.
This thesis examines this issue in detail; in particular, properties of holonic agents
are elaborated and compared to properties of regular agents. Furthermore, it is
demonstrated how resource allocation and in particular the GRAIL approach can
be used to configure holonic agent systems.

A collection of very different case studies is chosen to evaluate the GRAIL
approach, in both the more general case, and the specialized holonic case: In
the first case study, the mobile information system MoTiV-PTA is examined on
its behavior in large-scale applications and it is shown that GRAIL is suitable
for this scenario and that its use leads to an increased scalability. Furthermore,
the GRAIL approach is applied to two case studies for holonic agent societies,
the transportation scheduling system TELETRUCK, and the flexible manufac-
turing system IFMS. For both systems, the applicability of GRAIL for the self-
adaptation of a holon is demonstrated.

ix

Statement

Work on the general GRAIL scheme has been published in |Ger97, Ger98al. Some
aspects are the result of joint work with Christoph Jung |GJ97, GJ98|. Extensions
have been published in [LJG99.

The standard SIF system has been derived together with Michael Schillo,
Petra Funk and Jiirgen Lind [FGLS98|. A detailed system description and user’s
guide is given in [SLG199]. Extensions have been published in [JLGT99, JLGT00]
and [Ger98al.

The holon framework, elaborated in cooperation with Gero Vierke and Jorg
Siekmann, has been published in [GSV99a, GSV99b].

The work on the MoTiV-PTA case study has been published in |[GSB99,
Ger99|. Results in the TELETRUCK domain have been published in [FGCd*99,
GRV99|. As joint work with Thorsten Bohnenberger and Klaus Fischer, IFMS
has been presented in [BFG99a, BFGI9b).

Some future extensions to the GRAIL approach have already been discussed
in [GI98, Ger98b].

Acknowledgments

First of all I would like to thank my thesis adviser Prof. Jorg Siekmann, not
only for providing this research opportunity and environment to me, but also
for raising my interest in artificial intelligence and guiding my academic career
over more than eight years, ranging from term projects over Master’s thesis to
this dissertation, including two student and research exchanges in the United
Kingdom and the United States of America.

I am grateful to the responsible officers of the Fulbright exchange program,
in particular the staff of the German Fulbright commission who made my stay at
Rutgers University possible which not only served as a preparation for my dis-
sertation endeavor, but also enriched my understanding of the American culture.
Many thanks to Prof. Alex Borgida who was my adviser during this year.

I am also indebted to my cooperation partners from Siemens AG, not only
for funding this work, but also for their friendly support over the last three
years: The topic of this work was originally motivated by Dr. Kleinschmidt; I
am grateful to Dr. Donald Steiner for the advice and fruitful discussions, and to
Dr. Bernhard Bauer who implemented the MoTiV-PTA prototype and never got
tired of maintaining the tips and tricks-hotline from Munich.

I would like to thank all my colleagues at the multi-agent systems group at
DFKI for the very fruitful research environment; in particular I am grateful to
Dr. Klaus Fischer for his advice and support, and to Christoph Jung and Gero
Vierke for the great collaboration and for the friendly and productive office at-
mosphere. I am indebted to Dr. Hans-Jiirgen Biirkert for his very valuable advice
on this thesis and on organizational issues at DFKI. Furthermore, I would like
to thank Thorsten Bohnenberger, Andreas Gerber, Christian Ruf, and Michael
Schillo for their implementational support on various systems, Petra Funk and
Jiirgen Lind for experiences in the framework of social interaction, and of course
Walter Bieniossek for his commitment and system support, even on weekends.

Jorg Siekmann, Hans-Jiirgen Biirkert, Gero Vierke, Andreas Gerber, Alex
Borgida, and Jay League have read draft versions of this thesis. I am grateful for
their constructive suggestions.

The greatest debts of gratefulness I owe my parents, my brother, and my girl
friend Anja Weisbrodt who all have given me encouragement and support in
every life situation.

This thesis is dedicated to my father.

Contents

1 Introduction 1

2 Background 7
2.1 Distributed Artificial Intelligence and Multi-Agent Systems 7
2.1.1 Modelsof Agency L. 8
2.1.2 INTERRAPo 9
2.1.3 MECCA 12
2.2 Structures in Natural and Artificial Societies 16
2.2.1 Business Administration: Organization Theory 16
2.2.2 Social Sciences: Group Behavior L. 18
2.2.3 Biology: Sociology of Insect Societies 20
2.2.4 Models of Structured Artificial Agent Societies 23
2.2.5 Inspirations for a Self-Adaptation Scheme 26

3 A Generic Resource Allocation & Integration Algorithm
(GRAIL) 29
3.1 Definition of Scalability 0000 29
3.2 The Resource Concept 30
3.2.1 Economic Theories on Limited Goods 31
3.2.2 A Resource Definition by Jameson and Buchholz 32
3.2.3 A General Framework for the Use of Resources 33

3.2.4 Resource-sensitive Behavior 34

xii CONTENTS

3.2.5 A new Concept: Abstract Resources 35

3.3 The Bounded-Optimal Agent Society 39
3.3.1 Bounded Optimality and Anytime Algorithms in the

Single-Agent Case 39

3.3.2 Bounded Optimality in the Multi-Agent Case 42

3.4 Resource Allocation Algorithms (RALs) 46

3.4.1 A Greedy Resource Allocation Algorithm 47

3.4.2 Bottleneck Analysis for Heuristics Retrieval 54

3.4.3 Machine Learning for Heuristics Retrieval 56

3.4.4 Other Techniques 58

3.4.5 Discussiono 62

3.5 A Resource Implementation Algorithm (RIL). 63

3.5.1 Construction of a Hierarchy in the Agent Society 64
3.5.2 A Resource Implementation Scheme for a Hierarchical

Agent Society 68

3.5.3 Complexity Analysisof RIL. 69

3.5.4 Discussion Lo 71

4 A Framework for Agent-Based Simulation and Resource Adap-

tation 73
4.1 The Social Interaction Framework (SIF) 73
4.1.1 Multi-Agent Systems for Simulation Purposes 73

4.2

4.1.2 The Effector-Medium-Sensor Model of Interaction (EMS) . 76
4.1.3 The SIF Architecture 7
4.1.4 Extension of SIF to Virtual Worlds (SIF-VW) 83
An Extension of SIF for Integrated Resource Adaptation (SIFIRA) 84
4.2.1 Functionalities of Additional Agent Classes 86
4.2.2 Implementationof RALs 88
4.2.3 Implementationof RIL 89

CONTENTS

xiii

5 Structural Adaptation in Holonic Multi-Agent Systems

5.1 Background Lo
5.1.1 The Holonic Principle
5.1.2 Models of Autonomy oL

5.2 Holonic Domains Lo 0oL

5.3 Holonic Agents o o
5.3.1 Characteristics of Traditional Agents
5.3.2 Characteristics of Holonic Agents
5.3.3 The Perspective of Holonic Agents on their Environment .

5.4 A Scheme for Holon-Oriented Programming
5.4.1 Implementation of Holonic Structures

5.4.2 Resource Allocation in Holonic Systems

5.4.3 INTERRAP as a Basis for Holon-Oriented Programming

5.5 Four Sample Holonic Domains and Holonic Solutions

5.5.1 Transportation Scheduling as a Multi-Agent Domain

5.5.2 Flexible Manufacturing Systems

5.5.3 The Coordination of Business Processes in a Virtual En-
terprise e

554 RoboCup

6 Case Study: Applying GRAIL to the MoTiV-PTA Agent Sys-
127

tem

6.1 The Domaino oL
6.2 System Architecture of the MoTiV-PTA Prototype
6.2.1 Overview of the MoTiV-PTA Functionalities
6.2.2 Realization o o000
6.3 A SIF-Simulation Engine for MoTiV-PTA
6.3.1 Architecture of the Simulation Engine
6.3.2 Simulation Constructs in Detail

6.3.3 Functionally of the Extended Scenario Script Parser

xiv CONTENTS
6.3.4 User Interface of the Simulation Engine 139

6.4 Optimization of MoTiV-PTA with GRAIL 142
6.4.1 Overview 142
6.4.2 Implementing the Optimization Procedure 144
6.4.3 The Extended User Interface and Script Parser 150

6.5 Evaluation o oo 152
6.5.1 The Analyzed Problem Classes 152
6.5.2 Results. o 154
Case Studies: Two Holonic Agent Systems 159
7.1 The TELETRUCK System 159
71.1 The Domain oL 159
7.1.2 Overall System Architecture 160
7.1.3 Matching TELETRUCK to the GRAIL scheme 162
7.1.4 Extensions of the TELETRUCK System 166

7.2 Evaluation of the Extensions to TELETRUCK 169
7.2.1 Theoretical Analysis of Different Macro-Level RALs 169
7.2.2 Empirical Evaluation of Different Macro-Level RALSs 171
7.2.3 Evaluation of Different Geographical Structurizations . . . 177
724 Summary 180

7.3 The Intelligent Flexible Manufacturing System (IFMS) 181
7.3.1 The Domain 0. 181
7.3.2 Overall System Architecture 184
7.3.3 Optimization with GRAIL 187

7.4 Evaluation of the IFMS Approach 192
7.4.1 The Analyzed Problem Classes 192
742 Results. 193
7.4.3 Summary 194

CONTENTS

8 Conclusion and Outlook 197
81 Conclusiono 197
8.2 Outlook for Future Work 198

8.2.1 Application of Evolutionary Algorithms in GRAIL 199
8.2.2 Incorporation of a Socionic Theory into GRAIL 201

A Proofs of the Corollaries 205

B Results of the Evaluation of the Case Studies 211
B.1 Request Processing in MoTiV-PTA 211
B.2 Task Allocation Protocols in TELETRUCK 216
B.3 Geographical Structurizations in TELETRUCK 222

B.4 Topology Modules in IFMS 225

xvi CONTENTS

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4

The INTERRAP agent architecture 10
The MECCA agent architecture 12
Problem solving with MECCA 13
Single-line, multi-line, and staff-line systems 17
Divisional and matrix organizations 18
Four different organizational forms 19
Effects of pheromone transmission 21
Pheromones regulating the rearing of honey bee queens 22
Architecture for a bounded-optimal agent 43
Architecture for a bounded-optimal agent society 44
From local to global profiles 45
A simple example of a system performance relation 47
Bisection in Greedy-RAL 51
Work flow model of a technical system 54
Decision procedures in a hierarchical resource control 60
Replacing dependency cycleso 65
Recursively replacing dependency cycles 66
SIF screen shot 75
The EMS model and its realization 76
Specification of an agent and a multi-agent environment 7

Control and information low in SIF 78

xviii

LIST OF FIGURES

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

5.1
5.2
9.3

5.4
3.5
2.6
5.7
0.8
2.9
5.10
5.11
5.12
5.13
5.14
5.15

6.1
6.2

Anagentin SIF oo 79
Specification of utility and abstract resource 85
Utilities of different states 86
Agent hierarchy in SIFIRA 87
Control flow in SIFIRA 91

Splitting of agent and environment; defining relations between agents 92

Resources specifying relations among agents 93
Specification of information requests and resource assignment . . . 94
A resource assigned toatask L0000 94
Specification of the resource allocation scheme 95
Decomposition of aholon. 98
Specification of an isomorphy relationo . 106

(De-)composition of a multi-agent environment to a single-agent

environment Lo 106
Specification of a holonic merge 107
(De-)composition of several agents to a holon 107
A holon as a federation of agents 108
Several agents merge intoone 109
A holon as a moderated group 110
The holon objecto oo 111
Establishing holonic structures in TELETRUCK 115
The holonic solution in TELETRUCK 116
Establishing holonic structures in IFMS 118
The holonic solution in IFMS 119
Establishing holonic structures in the CosmOz team 124
The holonic solution in CosmQOz 125
The agent society in MoTiV-PTA 130

Screen shot of the system 132

LIST OF FIGURES

xXix

6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15

Representation of hardware servers 133
Architecture of the simulation engine 134
A sample scenario script oo Lo Lo 138
User interface of the simulation manager 140
Building up a hierarchyo 144
Server optimization in the MoTiV-PTA domain 145
Finding a position for a new server 148
Screen shot of the entire system 151
Temporal distribution of work load in the on-line case 153

Different macro-level optimization approaches in the off-line case . 154
Micro-level optimization and spatial distribution in the off-line case 155
Different macro-level optimization approaches in the on-line case . 156

Micro-level optimization and spatial distribution in the on-line case 157

The TELETRUCK architecture 161
Screen shot of the TELETRUCK system 162
Agent society structure in TELETRUCK 163
The hierarchical contract net protocol 165
Holonic agents in TELETRUCK 166
Extended holonic hierarchy in TELETRUCK 169
Number of granted vehicles 172
Run time of the different mechanisms 173
Overall cost perorder. 174
Overall cost per order for clustered and non-clustered settings . . 174
Overall surplus perorder 175
Overall surplus per order for non-clustered settings 175
Payment for 60 orders 176
Vehicle schedules of medium-distance orders 178
Run times 179

XX

LIST OF FIGURES

7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27

8.1
8.2

Travel times and distances 180
Idle times 181
Idealized topology of a production plant 183
A work piece and a work station 185
Screen shot of the IFMS system 186
Agents and entities Lo 187
Holonic agents in IFMS 188
Building up hierarchies 0000000 189
Extended agent hierarchy in IFMS 191
Four ways to integrate parallelism into a chain topology 192
Performance per employed work station 194
Performance per employed functionality 195
Four different generalized media of interaction 201

Effects of generalized media of interaction 202

Chapter 1

Introduction

Scalability is crucial for the design of software systems as it is well known that
programming in the large differs significantly from small or medium size pro-
gramming: the design and structure of a small system may not be appropriate
at all for a very large if for instance the run times of the employed algorithms
behave exponentially to environment size. Hence, an examination of the prob-
lems accompanying programming in the large is nowadays a core issue in software
engineering. Unfortunately, in many cases the control flow in a very large system
can become so complex that the system’s run time cannot be described in an
exact mathematical framework. Results from traditional complexity theory may
therefore not always be appropriate as the complexity classes are of a granularity
which is too coarse to be useful. So, other more empirically oriented approaches
are asked for.

Investigating large-scale multi-agent applications is not only of scientific, but
also of commercial interest: Multi-agent software is nowadays used for many
applications, such as telematics, transportation planning, electronic commerce,
manufacturing, etc. Even if a multi-agent system (MAS) runs perfectly in some
test suites, it is not a priori clear that it will perform well in every day practice
of very large scale applications. Many multi-agent systems have been designed
to be open, in the sense that new components can be incorporated or removed
from the system at any time. Components can either be new pieces of software,
such as agents or information sources, or hardware, such as new computers in
a network. Also, in many cases, multi-agent applications are intended to work
ad infinitum. A system which was originally adjusted to work well, might loose
its performance over time as the environment changes. Maintenance of high
performance is therefore a relevant issue for the successful use of multi-agent
technology in industrial applications.

Introduction

Contribution of the Thesis

The contribution of this dissertation is the development of mechanisms for the
self-adaptation of multi-agent systems, in particular, of applications with a very
large number of agents. This self-adaptation is the key to achieve scalability of
multi-agent systems.

In a multi-agent environment many kinds of societal settings can occur.
Among others, systems can be described according to the following criteria:

e Benevolence: Agents of a society share the same goals or their goals
conflict.

e Heterogeneity: All agents have the same architecture or there are agents
of different types.

e Openness: New agents may or may not be allowed to enter or leave the
system. New hardware components may or may not be added to the system
during run time.

e Autonomy: Agents are fully autonomous in their decision making and
action or they give up (some of) their autonomy.

This work focuses on a society of benevolent agents, where members do not betray
each other and where the existence of a common overall goal for all members of an
agent society allows for an adaptation scheme that integrates all members of the
society. This scheme bases on the distribution of abstract resources that model
representations of interdependencies between agents. The concept of a bounded-
optimal agent [RW91, RS95| is extended to the notion of a bounded-optimal agent
society.

Whereas heterogeneity and openness have only minor effects on the self-
adaptation scheme to be presented in this thesis, a second, further refined scheme
will be derived for agent societies in which member agents give up parts of their
autonomy and form a greater entity, a holon. We extend the paradigm of agent-
oriented programming (AOP) towards holon-oriented programming and resource-
oriented programming, by proposing a generic agent development kit for building
resource-adapting agent societies. Case studies from industrial projects demon-
strate our approach for both, the general case of a fully autonomous agent society,
and the refined case of a holonic agent society with members of restricted auton-
omy.

Overview of the Thesis

Chapter 2 places this dissertation within the field of distributed artificial in-
telligence (DAI). It gives an overview on existing agent definitions and describes
the INTERRAP [Miil96] and MECCA [Ste92, SMH90| agent architectures, since
they serve as underlying models of the agent systems of the case studies later in
this work.

The chapter also surveys approaches to structure societies of natural and
artificial agents, collected from organization theory, biology, social sciences and
from DAI. These approaches are discussed and used to derive a collection of
requirements for a generic self-adaptation scheme.

Chapter 3 presents a generalization of bounded rationality for multi-agent
systems in which autonomous, but benevolent agents try to achieve a common
goal. A Generic Resource Allocation and Implementation aLgorithm (GRAIL)
is developed which links the members of an agent society through resource dis-
tribution. The introduction of societal structures provides the key for breaking
the high complexity of a search for optimal solutions.

Chapter 3 also presents and discusses a variety of resource allocation mech-
anisms: Resource allocation is regarded as an optimization problem by charac-
terizing a search space and an objective function to be optimized. The objective
function has to denote the system’s performance while a multi-dimensional search
space must describe the set of possible resource configurations of the system: Each
modifiable resource of the system reflects one dimension of the search space.

Chapter 4 implements the theoretical concepts of Chapter 3. The agent-
oriented Social Interaction Framework (SIF) is presented whose key design as-
pects are rapid-prototyping, a broad implementation platform, the control of
avatar agents by human users and easy access to the internal data of every agent
in the simulation. A theoretical framework for the agent interaction is given as
well as a detailed description of the JAVATM-based realization.

The extension SIF with Integrated Resource Allocation (SIFIRA) provides all
facilities needed for constructing resource-aware agent societies: it allows for an
explicit representation of resources, built-in resource-adaptation mechanisms and
a clear separation of object-level agent tasks from meta-level issues that con-
cern the structural adaptation. Both the theoretical foundation for the resource
adaptation scheme, as well as the implementation are specified.

Introduction

Chapter 5 proposes the holonic agent paradigm, in which agents consent to
give up part of their autonomy and unite in order to form a “super-agent”, a
holon, that acts as a single agent when seen from the outside. A holonic agent
is structured in a self-similar fashion; sub-agents may again be decomposed into
holonic agents.

In this chapter, the entire spectrum of this new paradigm is explored, rang-
ing from classification of possible application domains over definitorial issues to
implementation aspects: Domains are examined on their suitability for holonic
agents and general criteria are elaborated for the distinction between holonic
and non-holonic domains. Requirements and characteristics of holonic agents
in comparison to traditional agents are investigated. GRAIL is applied to holon
management for holon formation and on-line re-configuration. Finally, the imple-
mentation of holonic agents in a collection of prototypical scenarios is sketched.

Chapter 6 presents a case study where the GRAIL approach is evaluated in
an industrial application supported by the German Federal Ministry of Educa-
tion and Research (Bundesministerium fiir Bildung und Forschung; BMBF). The
project MoTiV (Mobilitit und Transport im intermodalen Verkehr; Mobility and
Transportation in Inter-modal Traffic) [Sie95] is a united effort of major German
car companies (e.g., BMW, Daimler-Chrysler, and Volkswagen) and supplier com-
panies (Siemens, Bosch, etc.) to develop a travel planning support system where
agents are used to represent traffic participants and service suppliers. Scalability
is most important for the success of the project as the system is to be used (in
the best case) by every traffic participant.

Using SIF, a suitable environment is created to simulate large-scale processes
in a real-world environment, and then SIFIRA is applied to realize the GRAIL
approach for this domain.

Chapter 7 evaluates the work of Chapter 5 on the basis of two case studies for
holonic agent systems, the TELETRUCK system [BFV98a, BFV98b|, a fleet man-
agement system for the transportation domain and the Intelligent Flexible Manu-
facturing System (IFMS), an agent-based approach for a dynamic re-scheduling
of tasks on production units.

In the first study, a transportation company carries out transportation tasks
which are given to the company dynamically anytime during the run of the
TELETRUCK system. The company has a limited set of trucks and its goal
is to maximize its profit, i.e., to accept as many promising offers as possible given
its restricted capacity. Furthermore, the optimal distribution of the load as well
as optimal routes for each truck have to be found. The agent-oriented approach
provides not only plan generation, but also monitoring of plan execution: if a

step of the plan fails or if some new task is incorporated during the execution
phase, a decentralized re-planning procedure is started on-line to adjust current
plans to the new situation.

The IFMS approach has been developed in cooperation with experts from
Daimler-Chrysler to design an optimal production flow for the automobile pro-
duction business. IFMS employs two strategies to optimize production: an agent-
based technique is used to monitor the production process and to re-schedule it in
the case of failures. Furthermore, a high-level optimization of the plant topology
is performed with respect to machine failures.

Chapter 8 summarizes the results of this dissertation. It gives an outlook to
future work, based on the sociological concept of generalized media of interaction
in order to extend our approach to societies of non-benevolent agents. Finally,
the use of an evolution-based approach for resource allocation is discussed.

Introduction

Chapter 2

Background

In this chapter, we provide the scientific background for this work. In the first
part, we describe relevant aspects of results in distributed artificial intelligence,
including selected agent definitions and architectures. In the second part, we
refer to research results on building up structures and organizations. Here we
present results from other sciences that originally used to have only little impact
on artificial intelligence but which are of continuously growing relevance. We
also present existing work in the MAS area. All these issues are then used as
inspiration for a self-adaptation model for a society of artificial agents which we
present in Chapter 3.

2.1 Distributed Artificial Intelligence and Multi-
Agent Systems

Research on multi-agent systems has become an increasingly important area of
research in artificial intelligence. The rather young community of researchers in
distributed artificial intelligence (DAI) was founded in the early 1980’s. The first
international workshop was held in Boston in 1980, while the first larger journal
release was a special issue of IEEE Transaction on systems [IEE81] in 1981. It
was almost one decade later before the first workshop in DAI was held in Europe
(titled Modeling Autonomous Agents in a Multi-Agent World MAAMAW in 1989.)
It took another year before the first German workshop was organized.

In artificial intelligence, entities in a distributed environment are called agents.
Research in DAI follows two main directions:

e Multi-agent systems theory addresses how the core of “intelligent”
agents (e.g., their ability to interact with the environment and other agents,

Background

to represent and infer knowledge and to make decisions) has to be mod-
eled in order to construct universal agents which can be used in as many
domains as possible.

e Distributed problem solving theory focuses on the development of
decentralized problem solving approaches by using agents as local decision
making and executing units.

Although global optimality cannot be guaranteed, these methods have been
proven useful: Even during the execution of a previously computed plan it is
possible for the system to accept task changes and to adjust the current plan
accordingly. Another aspect is robustness: If one participating unit fails another
one may take its task, possibly with only small extra effort.

2.1.1 Models of Agency

There is a great variety of agent definitions in the literature, ranging from philo-
sophically and sociologically inspired concepts to logical definitions and to def-
initions that focus on implementational aspects such as software architecture,
efficiency, or tractability.

The sociologist Parsons [Par69| takes an actor to be an agent who has goals.
In his definition, an agent is an individual who shows behavior. Behavior is the
ability to change the state of the world. The world is differentiated into the agent
itself and its environment. The environment, as it is perceived by the agent,
defines the situation the agent is in. A goal is a certain state of the world. 7o
act means to behave in such a way as to achieve a goal. In general, an agent can
choose from a set of actions, on which he has certain expectations how they will
change the world. An actor selects a specific action from his options according
to his goals, the means at his disposal and his situation. Additionally, agents can
use a common language in order to communicate with other agents.

Bratman |Bra87| connects three mental categories belief, desire, and intention
by postulating certain requirements for mental capabilities of an intelligent agent
which base on his analysis of rational human behavior on these categories. Based
on this concept, Cohen and Levesque [CL90| and Rao and Georgeff [RG91] found
a logical theory of belief, desire and intention (nowadays often called BDI theory)
which ascribes these mentalistic notions to artificial agents as well.

Shoham [Sho91] characterizes the term agent as “an entity whose state is
viewed as consisting of mental components such as beliefs, capabilities, choices
and commitments”. He proposes a computational framework for agent oriented
programming (AOP) that extends the object oriented programming paradigm by
these “mentalistic” notions.

2.1 Distributed Artificial Intelligence and Multi-Agent Systems

Russell and Norvig [RN95| define an agent as “anything that can be viewed
as perceiving its environment through sensors and acting upon that environment
through effectors.”

Wooldridge and Jennings [WJ95] distinguish between weak and strong agency.
They characterize a weak agent by the following traits: autonomy (the state of
an agent is only influenced by its previous state and its perception), social ability
(the agent communicates with other agents via a common language), reactivity
(the agent responds to changes in their environment which it can perceive), and
pro-activeness (the agent displays a goal-directed behavior based on deliberation
in addition to their direct reaction to the environment).

Due to Wooldridge and Jennings, a stronger notion of agency includes mobil-
ity (the agent can move on a network), veracity (the agent does not communicate
information that contradicts to its knowledge), benevolence (the agent does ac-
cept guidelines) or rationality (the agent acts in a way that, to the best of his
knowledge, leads to one of its goals.)

Lange [Lan98| provides a more pragmatic definition that is oriented towards
industrial demands: He defines an agent as a software object that has the follow-
ing properties: situatedness, reactivity, autonomy with respect to its actions, and
pro-activity. Furthermore, an agent should be continuously executing. Option-
ally, an agent can be communicative, mobile, believable or able to learn.

Our Perspective

In this work, we use a rather general notion of an agent as we derive a mechanism
to be suitable for any agent architecture. For our purposes, we speak of an agent
if the requirements for weak agency are fulfilled. In Chapter 5 however, we
shall introduce the notion of a holonic agent which refines the traditional agent
concept. In that chapter we shall provide a set of requirements for traditional
agency which shall be extended to the holonic case.

There are many different agent architectures in the DAI literature that im-
plement the above models (see [JW98] for an overview). In this work, we focus
on two architectures: In Chapter 5, we shall use the INTERRAP agent archi-
tecture as a basis for holon-oriented programming. The case study of Chapter
6 employs agents of the MECCA architecture. So we briefly describe these two
architectures.

2.1.2 INTERRAP

INTERRAP (INTEgration of Reactivity and RAtional Planning) [Miil96] is an
agent architecture implemented in the programming language Oz [SSR95]. An

10

Background

Cooperative Planning mm
Layer (CPL) «-—-t> context) |

i Joint Goals / Plans |

1 P

. —— 5

t ——— g

- &

Local Planning Layer - _ J:>Piann|ntg;€novrleitgr &

(LPL) ! (mental context) >

L Local Goals /Plans | g

- =1

' 8

- i World Model 5
Behaviour-Based < - - - 1» (situational context)
Layer (BBL) | Patterns of Behaviour -

Acting Communication Perception ‘

v \ 2 U

control flow

ENVIRONMENT

-------- information access

Figure 2.1: The INTERRAP agent architecture

important feature of the INTERRAP agent architecture is the combination of
reactivity with goal-directed behavior. This is achieved by modeling the different
types of behavior in different layers.

In INTERRAP an agent (Figure 2.1) consists of its World Interface, where its
perception and action is modeled, a Knowledge Base (KB) and a three-layered
control unit. This unit consists of the Behavior-Based Layer (BBL), the Local
Planning Layer (LPL) and the Cooperative Planning Layer (CPL).

According to these three layers, the knowledge base of an agent is partitioned
into three units: a world model, a mental model and a social model. The BBL is
designed to give the agent the ability to react quickly to exceptional circumstances
and to cope with routine situations. Such reaction is triggered by processing
information from its world interface and world model. The purpose of the LPL
is to enable the agent to create long-term plans. This is achieved not only by
using the world model of the agent, but also by its mental models which reflect
its intentions and goals. The CPL is responsible for creating joint plans with
other agents. To do so, the CPL does not only use information on its world
model and its mental model; it also processes information about goals, skills and
commitments of other agents stored in its social model.

Mental states of an INTERRAP agent are described by the following com-
ponents: the current perception (P) of the agent, a set of beliefs (B) describing
its informational state, a set of goals (G) and a set of intentions () defining

2.1 Distributed Artificial Intelligence and Multi-Agent Systems

some target states of an agent: If such a state is reached, a given goal is fulfilled.
Furthermore, in INTERRAP intentions define which action is performed next.
Using these concepts, three basic functions for updating the mental states can be
defined:

e BR: P x B +— B is a belief revision and knowledge abstraction function,
deriving new beliefs from perception and old beliefs.

e SG: Bx G — G is a situation recognition and goal activation function,
mapping the goals and beliefs of an agent into a new set of goals.

e PS: Bx G xTw— Tis a planning and scheduling function, deriving new
intentions from current beliefs, goals and intentions.

In the above figure, the flow of control inside the model is shown. The func-
tions SG and PS, evaluated in a certain layer, influence activities on that layer as
well as on neighboring layers: The situation recognition and goal activation pro-
cess results in the creation of new goals. These goals may trigger planning and
scheduling processes on the same layer. Such a process generates new intentions
by planning the steps which have to be taken to achieve a focused goal. After
execution of these steps, the situation and goals relevant for the SG function of
the next upper layer may have changed. Hence, the SG function on that level has
to be executed. Applying these techniques leads to two basic flows of control:

e Upward activation requests: If a particular layer is not competent for
solving a task (i.e., it cannot find a plan or schedule to achieve a given goal)
it sends a request to the next upper layer. This layer may be able to solve
the task since it has more access to the knowledge base and has keener
planning facilities. The upper layer reports the result of its PS process to
the lower one.

e Downward commitment posting: Whereas activation of layers is per-
formed bottom-up, acting is organized in a top-down fashion: partial plans,
derived at a given layer are posted to the underlying layer which has to in-
tegrate them into its schedule.

This leads to several problem-solving strategies: In a reactive path the situation
is recognized in the BBL and directly addressed in that layer (example: avoiding
a collision of two agents). A local planning path denotes a situation where a
solution could not be found in the BBL, so that the LPL has to be activated in
order to find a solution executed in the LPL (example: planning a transportation
order). Finally, in a cooperative planning path, first the LPL had to be addressed
by the BBL and the CPL had to be activated by the LPL. Once a joint plan has

12

Background

_

Body

Figure 2.2: The MECCA agent architecture

been found it is processed in the LPL into a local plan which is then executed in
the BBL (example: negotiation on a joint plan solving a blocking conflict).

Jung [Jun99| refines the INTERRAP architecture even further; in particular
the control flow between the layers is now modeled in a much finer-grained way.
However, for our case studies, the original architecture is still used as these latest
developments are not of relevance there. Therefore we do not present them in
detail.

2.1.3 MECCA

MECCA (Multi-agent Environment for Constructing Cooperative Applications)
[Ste92, SMHI0] is a JAvAT™™_based agent development environment for the con-
struction of multi-agent systems using the FIPA (Foundation for Intelligent Phys-
ical Agents) |[FIP98| standard.

One major focus in the development of MECCA has been to create a system
which integrates human and artificial agents. Such an approach is classified
under the paradigm of Human Computer Cooperative Work (HCCW). A main
trait of the HCCW paradigm is to regard human and artificial agents as entities
of equal rights. Thus, a major requirement to such a unifying system is to provide
adequate user interfaces and powerful and flexible cooperation methods.

MECCA comes with a library of pre-defined agent types. It also provides an
Agent Management System (AMS) which allows the user to control the initial-
ization and termination of agents. Furthermore, MECCA incorporates a yellow
pages service called Directory Facilitator (DF): agents register automatically at
the directory facilitator upon creation which allows for retrieving agents with spe-
cial names or service descriptions. For system monitoring, a special environment
exists to view the performed communication between agents.

Furthermore, MECCA contains classes for describing interaction protocols
based on a plan description language, and has a library of pre-defined negotiation
protocols at its disposal.

2.1 Distributed Artificial Intelligence and Multi-Agent Systems

13

/‘\
ning

Distributed Plan

Shared Goal

Changes in World State /

Execution

Activation

Figure 2.3: Problem solving with MECCA

Technical Details
The MECCA agent architecture consists of three parts (see Figure 2.2):

e The body is used to model basic problem solving capabilities of an
agent. The body defines the application-specific functionality, for instance
a database. This capability can be pursued by the agent body without an
integration into any cooperation structure.

e The head enables an agent to participate in cooperative processes. It
maintains the goals and plans of an agent and controls the body via the
application interface. Moreover, the state of a negotiation is maintained.

e The communicator is responsible for the physical communication be-
tween agents via interaction protocols that employ local method invocation,
TCP/IP or GSM. The communicator provides channel communication and
information about other agents, (for instance their addresses), to the head
of the agent.

Based on this partitioning, different components can be exchanged without
major changes to the system, e.g., new protocols can be introduced without
changing the existing MECCA system. Plans and interaction protocols can be
constructed and executed by a plan interpreter in the MECCA system. In con-
trast to the INTERRAP model, where reactivity is a possible kind of behavior,
a MECCA agent behaves strictly goal-oriented; problem-solving is realized in a
four-step manner (visualized in Figure 2.3):

14

Background

e Initialization: During this step, a goal is established for one or several
agents. Negotiation between agents may be necessary to achieve this goal.

e Planning: During the planning phase, alternative action sequences are
developed and evaluated in order to determine the optimal one.

e Execution: While performing and monitoring the planned actions they
are monitored in order to recognize differences between the expected and
current outcomes.

e Evaluation: Evaluating the result of a plan execution helps to determine
weaknesses of current plans which may lead to new goals.

As mentioned above, one major focus of MECCA is to provide an integrating
system for both, human and artificial agents. Hence, a sophisticated cooperation
model is implemented as it is defined in the FIPA standard.

FIPA

FIPA is an international foundation whose goal is to develop standards for com-
munication among agents to ensure inter-operability in industrial applications.
Currently, about fifty industrial and academic institutions world-wide are mem-
bers of FIPA whose main goal is accomplished through an open international
co-operation, the incorporation of existing standards as well as through verifying
the usefulness of the specifications with concrete field trials.

The main focus of FIPA lies on the interface between the agents and the
units of their environment, e.g., human beings, physical surrounding and existing
software. Based on speech act theory |[Aus62|, the cooperation model of FIPA
consists of two levels: cooperation primitives and cooperation methods.

Cooperation primitives are structured messages which are sent from one agent
to another. A cooperation primitive consists of a keyword and a message contents
where the keyword defines how to interpret the contents. Examples of keywords
are propose, accept, reject or refine. The planning components of the agents
treat primitives as actions, i.e., their semantics can be described by preconditions
and effects. This may enable planners to reason about communication with other
agents.

Cooperation methods can be built up by composing cooperation primitives to
larger pieces. Methods then serve as well-defined communication protocols be-
tween agents. Using cooperation primitives allows to model cooperation methods
such as master-slave cooperation, contract net cooperation or negotiations.

!For further details see http://www.fipa.org

2.1 Distributed Artificial Intelligence and Multi-Agent Systems

|[FTP98| progresses the FIPA specification along two dimensions: The technical
specification and the field trial specifications. The technical parts address the
following issues:

e The agent management does not only specify the management and ad-
ministration of agents but also the entire agent system with agent name
services, yellow pages with service descriptions and communication through
firewalls.

e The agent communication language (FIPA ACL) defines the inter-
action between agents based on speech-act-based communicative acts and
interaction protocols for information exchange, task distribution and nego-
tiation.

e The agent software integration specifies how existing software can be
interfaced to the agent system (using agent wrappers) and how agents are
enabled to query an agent resource broker to locate, connect and use such
software systems.

e The agent management support for mobility handles the states of
mobile agents as well as their configuration and handling.

e The agent security management tackles security aspects concerning
the communication between agents, agent authentication and trusted agent
platforms based on existing standards.

e The ontology service support simplifies the specification of the seman-
tics of domain specific content in messages exchanged between agents.

e The human/agent interaction support provides interfaces of different
modalities to humans, as well as integration of user profiling and learning
services.

The field trial specifications define the following applications based upon the
technical specifications:

e Personal travel assistance (PTA) specifies a multi-agent system that
provides individualized automated assistance in trip planning and on-route
guidance. The MoTiV-PTA system addresses this issue as an application
of the MECCA architecture. This system will be described in Chapter 6.

e Personal assistant (PA) specifies an electronic secretary agent that per-
forms standard operations automatically for its user. The aim of the field
trial is to provide a distributed appointment scheduling across different
organizations using different personal schedulers.

16

Background

e Audio/video entertainment and broadcasting bases on the increas-
ing demand for efficient means of information filtering and retrieval, specif-
ically for digital broadcasting networks such as the individual selection of
programs.

e Network management and provisioning defines a framework for sup-
porting dynamic virtual private networks, where a user can set up a multi-
media connection with several other users. A dynamic market for telecom-
munication is assumed, so that contracts have to be negotiated at the time
the service is delivered.

2.2 Structures in Natural and Artificial Societies

We shall now present different types of structures in industrial companies, human
and animal societies. We also sketch work on structuring of groups of artificial
agents. All these results are then used to point out relevant issues to a self-
adaptation scheme for an agent society.

2.2.1 Business Administration: Organization Theory

Organization theory has developed basic organizational forms for companies (a
survey is provided by Wohe [W6h81]). These forms provide a collection of “pat-
terns”, so organization managers have to decide which form to choose for a certain
division of the company in question. Organizational forms developed in business
administration may be used to model suitable substructures in a complex agent
society. Wohe defines a collection of possible organizational forms:

Single-line system: In a classic straight-line organization (as shown in the
left side of Figure 2.4) every unit is only subordinated to one higher unit, as it is
typical for example in military or in plan-based economies. Thus, tasks can be
distributed vertically over the hierarchy.

The advantages of such a structure are a clear order of authority, transparency
of the line of command and clear delineation of powers. Disadvantages lie in the
length of that line of command, its inflexibility and in the danger of communica-
tion overload of intermediate and higher units.

Multi-line system: In this functional organization (displayed in middle part
of Figure 2.4) a unit is subordinated to several higher units.

2.2 Structures in Natural and Artificial Societies

Figure 2.4: Single-line, multi-line, and staff-line systems

The pros of this approach lie in a fast and short information flow between
the units and the possibility of specialization since this structure can be used to
subordinate units to several specialists, each of whom, however, is only entitled
to give directives restricted to his sphere of authority. The cons lie mainly in the
unclarity of lines of authority and responsibility separation.

Staff-line system: This system is a modification of the single-line system:
decision making units are augmented with a panel of experts who have consulting
functionality but no decision making competence. The right part of Figure 2.4
models this system.

On the one hand, competence areas and the order of authority are clearly de-
fined, on the other hand, problems may occur since the panel has strong influence
on decisions it is not responsible for.

Divisional organization: In this type of organization a company is organized
according to two criteria: business lines and subdivisions. Two single-line systems
are combined: On the highest level the company is split according the business
line criterion, on the lower levels according to the subdivision criteria. The left
part of Figure 2.5 displays this approach.

Technically speaking, this model is a single-line system. Hence, it inherits
all properties of such a system. In practice, however, for each product almost
a whole independent enterprise has to be built up. This leads to decentraliza-
tion, accompanied by the effect that subdivisions have to be constructed multiple
times: e.g., in the left part of Figure 2.5 a sales department has to be built up
twice. On the other hand, a company is represented in a clear fashion as no in-
terweavings occur. This model is mainly realized in very large enterprises which
can plan over a great product variety.

Matrix organization: This organizational form is also designed for integrating
two organization criteria, business lines and subdivisions. In contrast to the model

18

Background

Management Management

Business Control Business
Line A Divisions Line B

Obtaining Obtaining

o
£
£
©
)
s}
o

Product A

Product B

O—0—0— Production—
Sales

Product Cj

noe

Figure 2.5: Divisional and matrix organizations

above, this organizational form is a variation of a multi-line system: every unit is
subordinated into two hierarchies, one for each criterion. The right side of Figure
2.5 shows the correlations.

As an instance of a multi-line system, it inherits all its properties. In contrast
to a divisional organization, no subdivision has to be built up twice which
reduces structural overhead but may lead to competence confusion. After being
en vogue in the 1980’s as a favorite organizational form for very large enterprises,
currently it is rejected since a clear order of authority is not visible to employees.

These organizational forms provide a collection of possible structure elements
an enterprise consultant has at his disposal in order to form a company. Pi-
cot [Pic93] describes four additional organizational forms and characterizes their
usage according to two properties of the task to be performed: Specificy and
changeability of the task: in a market, unspecific tasks are processed in a stan-
dardized way. If the tasks processing varies quite often, a strategic network (where
smaller units are clustered and communication between clusters is restricted) may
be better used since it efficiently supports cooperation with internal or external
suppliers or customers. Specific tasks are usually coordinated in a hierarchical
way; if tasks vary frequently, clans (where each entity can communicate to any
other) have shown useful. Figure 2.6 shows the classification.

2.2.2 Social Sciences: Group Behavior

The formation and development of human groups is one issue that social psy-
chologists work on, inter alia trying to find the optimal size of a certain group.
Furthermore, researchers in social psychology are interested in reasons why peo-
ple form or join certain groups. Group theorists have been studying behavior

2.2 Structures in Natural and Artificial Societies

19

Strategic Network Clan
|

high % &
Task §|:|

changeability Market Hierarchy

low

low high

Task
specificy

Figure 2.6: Four different organizational forms

of human groups that have to solve a given task. In particular, scientists are
interested in determining for a certain task the size and degree of diversity by
which a group performs best.

According to Moreland [Mor96| there are several paradigms that provide use-
ful information about the best group size. First, observations of social interaction
in public places have shown that the average group is quite small, containing just
two or three people, and only few groups contain more than five or six people.
Another popular paradigm involves artificially creating groups of different sizes
and then noting which group experiences the fewest problems. Some researchers
simply ask people to describe the ideal sizes for various types of groups. Exper-
iments have shown that the optimal size of a cooperating group varies from five
up to a dozen members (see [Nas88|, [Sch89| or [CML93| for details), depending
on the task and on properties of the test group.

These results are rather vague and they show that there is no simple way
to determine the perfect size of a human group. Hence, a better approach is to
study some of the correlates of group size: Moreland compares characteristics of
larger groups to those of smaller ones: Generally speaking, larger groups enjoy
several advantages: They have access to more resources, including time, money,
and expertise, they tend to be more diverse. On the other hand, larger groups
suffer from disadvantages: they often experience coordination difficulties which
may decrease problem solving performance. Furthermore, there is more conflict
among members of larger groups. In general, they are less willing to cooperate.

20

Background

A great diversity of a group can improve its problem solving performance as
specialists might be available to perform a certain task. The main risk of a great
diversity is that it can produce conflicts among members. Moreland concludes
that all these factors make it difficult to specify the optimal size or degree of
diversity of a human group for pursuing a certain task. He suggests rather than
worrying about the best group size and degree of diversity, it might be wiser to
maximize the advantages and minimize the disadvantages of a group, whatever
size that group has reached.

Tuckman and Jenson [TJ77] examine the formation of groups. They regard
group formation as a continuous process moving through a five-stage life cycle:
In the forming stage, members seek to orient themselves to the group. In the
storming stage, members try to alter the group to satisfy their personal needs. In
the norming stage, members endeavor to resolve the disagreements and tensions
which threaten group success. In the performing stage, members attempt to
maximize group performance and productivity. Finally, in the adjourning stage,
members disengage from the group emotionally and behaviorally which leads to
the end of the group life cycle.

2.2.3 Biology: Sociology of Insect Societies

Insect behavior and intelligence is structured rather differently from those of
mammals: Insects seem to act much more socially in the sense that the prosperity
of an individual appears to carry much less weight than the society as a whole.
A single insect has a neglectable intelligence; however, the whole colony shows
remarkable traits of intelligence. Understanding its cause has been and still is a
major goal for scientists working in this field.

The examination of the sociology of animal societies, in particular of phe-
nomena such as emerging functionality in insect societies, has lead to interesting
insights into how a goal for such a society is split into subgoals and how they are
achieved. Insect species can be classified by the degree of their social behavior:
Wilson [Wil71] distinguishes between six different types of social behavior:

e Solitary: Adults do not care about their breed, do not live in a common
hive and do not share labor.

e Sub-social: Adults care for their own nymphs or larvae for some period of
time.

e Communal: Members of the same generation use the same common nest
without cooperating in brood care.

2.2 Structures in Natural and Artificial Societies

21

Cell preparation

Stimulatory

Brood rearin
effects 9

fl]

Foraging & Food hoarding

Queen
pheromones

Queen rearing

I

Inhibitory

Drone production
effects

/

Worker ovary development

Figure 2.7: Effects of pheromone transmission

e Quasi-social: Members of the same generation use the same common nest
and also cooperate in brood care.

e Semi-social: Members behave as in the quasi-social case, additionally
there is also a reproductive division of labor, i.e., a worker caste cares for
the young of the reproductive caste.

e Eusocial: Members behave as in the semi-social case, but there is also an
overlap in generations so that offspring assist parents.

Of course, insects of the latter type are of the most interest for this work. The
insect probably most investigated is the Apis mellifera, the honey bee (a survey
can be found in [See85|.) Typically, a honey bee colony consists of one queen,
several thousand workers (between 5000 and sometimes more than 10 000) and
drones whose population varies over the seasons, in summertime roughly 1500).

Starr [Sta79] explains bee behavior as a result of their genetic relationship:
individuals prefer cooperating with close relatives rather than cooperating with
other colony members.

In the past, some insect researchers (e.g., Wheeler [Whel1]) created the notion
of a super organism: A colony is compared to a real body. Analogies which have
caused this analogy are replication, import and export of materials, control of the
inner environment, such as temperature, and finally, response and orientation to
the external environment. Although the super organism concept failed in biology,
mainly for the reason that in a metazoan body all cells are genetically identical
which is not true for members of an insect colony, we will use it as an inspiration
for the holonic agent society in Chapter 5.

22

Background

Distribution of Old queen
queen pheromone departs
less efficient with swarm
Queen Insufficient queen Queen New queen Old queen
dies inhibiting pheromone [rearin —Prheads superseded
per worker bee 9 colony and dies
Queen’s Sufficient queen
pheromone inhibtory pheromone
output diminishes per worker bee

Figure 2.8: Pheromones regulating the rearing of honey bee queens

Furthermore, it has been found that colony members have individual goals
which partly contradict to those of other members. Neither pursuing only one
of these goals, nor adding them together would lead to a strategy allowing the
colony to survive; the successful survival strategy is a result of a very complex
communication and action behavior: Communication between queen and other
colony members is realized via pheromones, i.e., chemicals that secreted by the
queen and spread by workers as liquids or gas. Using pheromones, the queen
influences the behavior of workers who might have goals inhibiting the queen’s
goals. Figure 2.7 gives an overview; a detailed description can be found in [Fre87|.
This method allows the colony as a whole to react on changes of the internal and
external environment, such as death of the queen, critical size of the colony, etc.

Feedback loops regulating the size and structure of insect societies have been
developed to represent such phenomena. For instance, Free |Fre87| describes
the cyclic influence of queen rearing on pheromone availability: in a colony that
originally had a queen pheromone deficiency (due to the death or weakness of the
queen) more queen larvae are being raised; the additional pheromones of these
larvae re-establish the balance and an lead to the destruction of additional queen
cells (Figure 2.8).

Such a feedback loop system has been proven very robust for achieving the
prime goal of the colony, to survive. This approach, where centralized control
meets decentral decision finding in a fashion that turns out to be very satisfying
for all colony members, influences the design of an adaptation scheme for artificial
agent societies in Chapter 3.

2.2 Structures in Natural and Artificial Societies

23

2.2.4 Models of Structured Artificial Agent Societies

By definition, multi agent system theory is concerned with effects of the interac-
tion of a collection of autonomous agents. If the society of agents is very large,
it is inevitable to introduce structures in order to keep the system feasible. In
this section, we present structuring approaches that exist in the literature. Some
of them focus on the pure description of structures while others concentrate on
methods to introduce or optimize structures. A main distinguishing feature is the
type of representation: structures in agent societies can be modeled implicitly or
represented explicitly in the knowledge or belief of member agents.

In this context, the term emergent behavior is often used. Nagel [Nag61]
defines a property of an object as emergent, if it is impossible to deduce this
property from even a complete knowledge of the components.

Implicit Models of Agent Societies

Gasser et al. [GRHLS89] view an agent organization as a set of questions on beliefs
and actions of member agents. The authors believe that a structure should not be
explicitly represented as a structural relationship between a set of agents. They
argue that if agents experience “organization” they do not see global structures
or fixed constraints. Rather, the agents’ expectations concerning other agents
define the organization.

Castelfranchi [Cas90] introduces implicit structures among agents by defining
power relations. He defines the following relations which can then be used to
derive a social structure for a set of agents:

e Power of: An agent a; has the power of a goal g if he somehow can reach
that goal.

e Dependence: Agent a; depends on agent s if oy does not have the power
of a goal g while oy does.

e Power over: Agent a; has power over ay if iy can help ay to reach its
goal or prevent ay from reaching the goal.

Chaib-draa [Cd96] introduces different structure degrees of agent collectivities.
He classifies social collectivities into roles, groups and organizations. In this
context, Chaib-draa identifies a role with the expected behavior of an agent.
A group refers to a set of agents that consider themselves as a unit. In an
organization, members are tied much closer to another; however they need not
necessarily have to do something in common. In order to run a collectivity,

24

Background

norms and rules are needed. Norms are expectations of the group members
on the appropriateness of certain actions. Rules have been derived in order to
coordinate the activities of the members.

Doran and Palmer [DP95| describe an agent’s social model of a society as its
beliefs about the existence of agent groups, their structures, and the identities of
their leaders and sub-leaders. According to Doran and Palmer, the social model
of the entire society is not explicitly available; group membership is an emergent
property of the behavior of the agents.

Explicit Models of Agent Societies

Werner [Wer89| develops an integrated view of agent states, communication, and
social structure in a multi-agent society in order to describe the complex rela-
tionship between these issues in a uniform fashion. Among others, he defines a
social structure as a set of social roles {ry,...,7,}. A social role r; characterizes
an agent which is defined as the tuple < I, S,,V, > of the state information,
permissions and responsibilities, and values of that agent according to that role.
Werner extends this definition by a temporal index which allows to express dy-
namics in such a structure.

Ferber and Gutknecht [FG98]| also use roles in their framework. For them, a
role is an abstract representation of an agent function within a group. A group
structure is then defined as a tuple S =< R, G, L > where R denotes a set of role
identifiers. G is an interaction graph specifying valid interactions between two
roles and the interaction language L is a formalization of the individual interaction
definitions. Furthermore, Ferber and Gutknecht define a organizational structure
as the set of group structures expressing the overall design O =< S, Rep > where
Rep is a representative graph where each edge points for one group structure to
another one.

Tambe [Tam98| describes a formal model for joint intentions of members of
an agent group by extending BDI theory. He defines that a joint persistent goal
to achieve the completion of a team action p holds if and only if

e all team members mutually believe that p is currently false,

e all team members mutually know that they want p to become true eventu-
ally, and

e all team members mutually believe that until p is mutually known to be
achieved, unachievable or irrelevant, they mutually hold p as a goal.

Tambe uses this framework to model groups in which all member agent share a
joint intention. The system designer can hence model hierarchical or interleaving
structures by introducing suitable joint intentions.

2.2 Structures in Natural and Artificial Societies

25

Group Formation Procedures

Numaoka [Num92| proposes communication between autonomous agents as an
instrument for group configuration. In his model, an agent group is a mapping
from a group name to a set of agents. If an agent wants to join a group, the
current members run a simple voting procedure. Similarly, if an agent intends to
leave a group the same voting mechanism is applied.

Ketchpel [Ket93| proposes a market-oriented approach for group formation.
In this approach, originally single agents iteratively cluster to larger groups. Each
iteration consists of four steps:

1. Communication phase: All agents (or agent groups) collect information
in order to estimate the usefulness of possible partners.

2. Calculation phase: Each agent ranks the possible partners.

3. Offer phase: Based on that ranking, agents contact others and offer them
to join together.

4. Unification phase: Agents commit the group formation.

Ketchpel evaluates the quality of a derived solution according to the criteria of
stability (agents assign a high utility to a certain configuration) and efficiency (the
coalition forming process is efficient in terms of computational cost and number
of communication acts between agents).

Aeken and Demazeau [AD98| provide an approach to (re-) balance a hierarchy
of agents. In their framework, atomic agents are always clustered in groups of
two by the introduction of a new composite agent on an upper level. Such higher-
level agents are recursively structured in the same way. However, not all atomic
agents necessarily have to be positioned at the same depth of the graph, which
may possibly lead to imbalanced tree structures. Aeken and Demazeau introduce
a balance measure which bases on the entropy E = > p;loga(p;) of the system
where p; represents the probability of accessing an atomic agent when descending
from the root of the tree, given a probability of 0.5 to descend in one of the two
agents in each composite agent. The authors show for certain applications that
a balanced agent society (i.e., one with a small entropy) performs better that an
imbalanced one.

Goldman and Rosenschein |GR97| examine the evolving of organizational
agent structures by mapping the problem domain to the well-known Game of
Life |Gar83] domain. After the application of the Game of Life algorithm, the
resulting pattern is mapped back to the original domain in order to describe a
structure of the agent society.

Background

2.2.5 Inspirations for a Self-Adaptation Scheme

For the development of a self-adaptation scheme, we put special emphasis on the
following requirements:

e The environment and the agent system itself are open: new agents may
enter the system, new constraints on the optimality of a configuration may
be imposed by the environment, etc.

e Both the environment and the system are dynamic: Changes may occur at
any time.

e The environment is unpredictable: in general, no probabilities of occur-
rences of certain phenomena can be assumed.

e The system is inherently complex.
e The setting consists solely of benevolent agents.

e The scheme shall be used in a universal way, in particular it shall not depend
on one application domain or agent architecture.

The study of insect societies, in particular the topic of the super-organism
and the pheromon transmission mechanism have inspired the holonic model of
regarding a whole society as one entity from an outside perspective (Chapter 5).
This area has also motivated the use of a feedback-loop as it will be presented in
the next chapter: A central entity (such as the bee queen) sends guidelines that
constrain the otherwise autonomous behavior of society members who may have
partially conflicting goals.

Theories from organization theory provide structural basic components to
be incorporated into our approach and exemplified in a case study in Chapter
7: A possible organization can be regarded as a point in a search space of all
possible configurations. Using pre-defined larger modules (consisting of several
atomic units) as basic entities for the topology design can dramatically reduce
the search complexity.

Most approaches to structurize societies of artificial agents define some sort
of roles or power relation between agents. This of course is inevitable, but such
a role or relation needs to be more flexible than just an a priori tuple-based
definition. There must be some sort of meaning behind a role definition. We
consider a power relation to hold if one agent is able to constrain the behavior of
another one. In the next chapter, we present our approach where such a power
relationship is instantiated through the distribution of resources.

2.2 Structures in Natural and Artificial Societies

27

With respect to the above requirements, it is necessary to explicitly represent
structures, since an implicit model puts requirements to the knowledge base of an
agent, which contradicts to our aim to derive a universal approach. In contrast
to some of the presented approaches, we do not restrict the structure to a tree
where each node has only a limited number of children nodes.

Regarding our requirements, a societal structure needs to be flexible and mod-
ifiable due to changes in the environment. Therefore, we unify the group forma-
tion process with the re-configuration process. Whereas some of the presented
group formation procedures are only able to form an initial society of agents, our
approach also re-configures a society during the run of the system if needed. In
contrast to some other approaches, we use a de-centralized technique, where sev-
eral special agents are assigned to control the performance of different sub-sets of
the agent society. These special agents can then re-configurate these sub-groups
in a more local fashion which leads to the desired flexibility.

Bottom Line

In this chapter we have surveyed some scientific background for this thesis and
presented a range of definitions for agency. We will call entity an agent if it fulfills
Wooldridge and Jennings’ requirements for weak agency. We have also sketched
two agent architectures, INTERRAP and MECCA, which we will use later on.

We have collected approaches to structurize natural and artificial societies.
We have derived a list of requirements for a society configuration scheme which
we have used to compare existing approaches and to extract vital elements for
our approach.

28

Background

Chapter 3

A Generic Resource Allocation &
Integration Algorithm (GRAIL)

This chapter presents the theoretical foundation for the self-adaption of agent
societies. The chapter is structured as follows: First, we will characterize “scal-
ability” and its correlation to resource adaptation. In the following section we
will discuss different resource concepts and present an abstraction of that no-
tion. The second part of the chapter shows the realization of a Generic Resource
Allocation & Implementation aLgorithm (GRAIL)'. We present a collection of
Resource Allocation aLgorithms (RALs) to decide how to assign resources, and
we specify a Resource Implementation aLgorithm (RIL) to distribute resources
in an agent society.

3.1 Definition of Scalability

Bamberg and Baur [BB89] define scale as a classification curve to assign numbers
to certain entities; three different types of scales can be distinguished:

e A nominal scale is used to simply distinguish between entities by assigning
different numbers to them.

e An ordinal scale is a nominal scale where an order is introduced between
the numbers representing entities. This order is used to sort entities with
respect to a certain property.

e A cardinal scale is an ordinal scale where additionally a metric is intro-
duced which allows to determine how far two entities differ according to the
property in question.

!The word grail is from the old French greal meaning a kind of dish.

30

A Generic Resource Allocation & Integration Algorithm (GRAIL)

Furthermore, we can distinguish between discrete and continuous scaling dimen-
sions: In a discrete dimension an entity can only be assigned to a value out of
a discrete set of numbers whereas in a continuous dimension all possible values
between two extreme points may be assigned.

The following definition of a scale has been taken from Meyers Konversation-
slexikon [Mey90|, a German lexicon of the 19" century. This definition views the
term “scale” from its historical perspective.

Auf physikalisch-mathematischen Instrumenten wie z.B. Barome-
tern, Thermometern etc. angebrachter Mafistab, bestehend aus einer
in gleiche Teile geteilten geraden Linie, deren einzelnen Teile Grade
genannt werden.?

Although this definition focuses on a physical environment, the main property of
a scale can be seen from a more general perspective: the object in question can be
divided into equal parts, hence, exact up- and down-sizing is possible. Thus, the
concept scalability denotes the possibility to exactly up- and down-size an object.

In the field of software systems, the degree of scalability of a system architec-
ture can be used to describe how its problem solving behavior reacts to resource
modifications. This behavior can be measured by the introduction of a perfor-
mance function. One may achieve optimal scalability if performance is directly
proportional to the use of resources. However, optimal scalability can hardly be
achieved in complex applications: in general, scaling up one or several resource
quantities by some factor n does not imply a performance improvement by the
factor ¢ * n for some constant c.

However, there may be an optimal resource distribution which can be viewed
as the optimum of the performance function in a multi-dimensional search space
where each scalable quantity denotes one of these dimensions. We shall now look
at the concept of a “resource” more closely.

3.2 The Resource Concept

During the 1970’s and 1980’s, various theories on resources have been developed
in psychology, mainly to explain performance decrease in human behavior due to
cognitive resource restrictions. Overviews can be found in [Neu92| and [Rum96).
In the late 1980’s research in Al stipulated that a cognitively adequate behavior

2Translated into English: A range put on physical-mathematical instruments, such as barom-
eters or thermometers; consisting of a straight line separated into equal parts which are called
degrees.

3.2 The Resource Concept

31

of artificial agents can only be achieved if their currently available resources are
taken into consideration. Hence, models of resources have been derived in Al and
cognitive science, but also in business sciences where the theory of the economic
principle is the underlying foundation of economic theory.

In Section 3.2.1 we introduce the term goods from the area of economics.
which nicely correlates to the resource concept and is hence used as one of the
foundations for our definition of abstract resources. The subsequent sections give
an overview of resource concepts in Al and cognitive science. In Section 3.2.5,
we define our resource concept and illustrate it with a collection of examples.

3.2.1 Economic Theories on Limited Goods

According to Wohe [W6h81], rational behavior (in the economic sense) is due to
the fact that humans usually have a large number of desires or needs while they
have only a limited supply of means to satisfy the desires. In economic terms,
these means are called goods.

Miiller and Peters [MP82| state that from the perspective of an economical
rational (human) agent, three criteria must be fulfilled, in order to perceive an
entity as a good:

e The agent must have a desire.
e The agent must regard the entity to be useful to satisfy his desire.

e The entity must be under the agent’s right of disposal.

In economy theory, goods are distinguished into private and public goods. Free
goods are not subject to any quantitative limitations (e.g., the air to breathe).
Private goods are available only in limited supply; the degree of satisfaction
depends on every unit of the stock. Hence such goods are subject to trading
between agents.

Depending on its nature, a good might be consumed (i.e., it vanishes after
being used, such as fuel) or it might allow for repeated use (e.g., a hammer).
Economic theory calls goods for single use consumables while multiply usable
goods are called consumer durables. Special regeneratable consumables can be
consumed, but they may regenerate (e.g., wood).

The economist Menger has set up an order of goods according to the criterion
whether a good satisfies an agent’s needs directly or indirectly. Consumables
(e.g., food) are first-order goods, since they satisfy the need directly. Production
goods are second-order goods if they are needed to produce first order goods (e.g.,

32

A Generic Resource Allocation & Integration Algorithm (GRAIL)

fertilizer). Inductively, production goods are n'-order goods if they are needed
to produce goods of order n — 1.

In general, human desires are not satisfied by using one single good, but by
a variety of different goods. Economy theory distinguishes between complements
and substitutes. Two or more goods are complements if they have to be used
together in order to satisfy the need of an agent (e.g., hammer and nails). Goods
are substitutes, if one good can be replaced by another one in order to meet the
same desire (for instance potatoes and rice).

If an agent has a limited stock of goods available for satisfying a number of
desires, he has two options to follow the economic principle: he can either try to
satisfy a maximum number of needs with the given resources or he can pursue
a certain goal by minimizing the amount of used goods, weighted by a wutility
function that denotes the agent’s preference structure for each quantity of each
good.

3.2.2 A Resource Definition by Jameson and Buchholz

Jameson and Buchholz [JB98| characterize the term “resource” in a first step
simply as tools and sources for such tools that help an agent to reach its goals.
Typical types of resources are physical items, human capabilities, information,
energy, and time. Jameson and Buchholz distinguish resources among three cat-
egories:

e Consumable vs. usable resource: Some resources may be consumed,
i.e., each use of that resource decreases the amount of stock available. Other
resources may be used, in principle arbitrarily often.

e Purpose of use: Resources may be used on purpose under certain con-
siderations or they may be used unreflected and automatically (see also

[Sch87]).

e Decomposability: Some resources can be subdivided into smaller portions
(e.g., time) while other resources can only the used as a whole (e.g., the
information about a phone number).

Jameson and Buchholz state that often some restrictions for the use of a resource
apply, e.g., a maximum quantity of the resource per use. Furthermore, often the
cost of using a resource has to be taken into consideration, i.e., the utility of
using a resource not only depends positively on the success of an agent’s action,
but also negatively on the success of an agent’s action if he had chosen another
resource. This in fact is the exact definition of economic costs (see [Var87]). In
order to measure success, success metrics and success profiles can be introduced:

3.2 The Resource Concept

e A success metric for a task is a measure for determining to what extent the
execution of that task has been successful.

e A success profile for a task is a function denoting the dependency of the
execution success of a task from the use of resources.

Often, the success of using a resource is not a priori clear; if it can be estimated,
success profiles can express the expected success of the task execution.

3.2.3 A General Framework for the Use of Resources

Jameson [Jam97| sketches a very universal framework for resource allocation for
a single agent: An agent has to perform a number of tasks T; € 7. To do so,
the agent has a set of resources R; € R at its disposal. The success of an action
depends, among other things, on the allocation of resources to the tasks. Hence,
a resource allocation A;; € R x 7T 1is a relation between tasks and resources.
For all resources, a set of possible allocation expressions must be specified. An
allocation expression may have different meanings, for instance

e a boolean value, denoting whether an R; has been allocated to Tj, or

e a nonnegative real number, denoting a certain amount of R; allocated
to T, or

e a subset S; of R; denoting that some elements of the resource have been
allocated, provided that each R; can be viewed as a set.

Hence, for a complete scenario, the meaning of all allocation expressions must be
specified. Furthermore, restrictions or constraints of the resource allocation have
to be defined: For boolean-valued allocation expressions there might be upper
and lower thresholds for the overall number of tasks to be allocated. For real-
valued allocation expressions the overall sum or product might be limited. For
specifications of subsets of R; there might be a restriction that no overlapping
among these subsets should occur, etc.

For the specification of performance profiles a success metric M; has to be
defined: In the simplest case, a boolean value denotes the success or failure of an
allocation. A value in [0; 1] may stand for a success probability of the allocation
or for a quality value, etc.

According to Jameson this framework rests upon the following assumptions:

1. The success and the performance of a task allocation are completely inde-
pendent from the success or performance of other task allocations.

34 A Generic Resource Allocation & Integration Algorithm (GRAIL)

2. There is no temporal order in the allocation of several resources.

3. This framework does not specify meanings of allocations, constraints or per-
formance profiles. Since the framework is that general, these specifications
are due to the “user” of the framework.

4. There are no mechanisms provided, how to actually do the allocation deci-
sions. The “user” of the framework has to derive a solution on his own.

In particular the first assumption restricts the applicability of the framework,
especially for the multi-agent case. In Section 3.5, we will show how to guarantee
independence. We will also present a number of allocation procedures of our
settings that implement solutions for the fourth issue.

3.2.4 Resource-sensitive Behavior

Once resources and their relations to the various tasks of an intelligent agent have
been identified, it has to be specified or examined how these definitions influence
the behavior of an agent. Wahlster and Tack [WT97] distinguish between three
different types of resource-sensitive behavior, i.e., behavior of an agent that takes
resource limitations under consideration.

e Resource-adapted behavior: The resource allocation of an agent has
been optimized prior to the actual run of the system. If the environment
changes in an unexpected way, the agent cannot modify its resource alloca-
tion.

e Resource-adaptive behavior: An agent pursues a given goal accord-
ing to a pre-defined strategy, which is however, parameterized by resource
allocation that can be dynamically adjusted to the current situation.

e Resource-adapting behavior: For a given problem setting, an agent
has different problem solving techniques at its disposal. These techniques
differ in the quality of the produced results and in the degree of resource
consumption. During the run of the system, the agent reasons on how much
of its resources to be spent by each problem solver.

The first type of resource-sensitive behavior is not desirable in large and open
systems we assume in this work, since it is not flexible enough. Depending on
the task an agent has to perform, resource-adaptive behavior might already be
sufficient, but in many cases we need to ensure resource-adapting behavior.

3.2 The Resource Concept

35

3.2.5 A new Concept: Abstract Resources

We need a resource concept that subsumes different aspects of the above re-
source and generalizes the traditional resource notion in computer science, where
resources are mainly computational time and memory space.

Russell et al. [RW91, RS95| distinguish between internal and external re-
sources, between environmental and architectural constraints. Internal resources
only affect the application of the agent program, while external ones are the sub-
ject of the agent’s reasoning capabilities. This distinction between architectural
and environmental constraints does not seem to be reasonable in the multi-agent
case: interdependencies among agents affect a group or society of agents, regard-
less if these dependencies are of internal nature, (e.g., agents running on the same
hardware compete for computational resources) or of external nature (e.g., agents
compete for items that are part of their perceived and represented environment).

For achieving resource-adapting agent societies, our resource concept has to
consider macro-level aspects of an agent society, i.e., interdependencies among
agents. We model resources as parts of an abstracted environment; we call an
environmental entity an abstract resource if the following criteria hold:

e Usefulness: The expected success/performance of the agent’s action must
depend on the use of a resource.

e Inter-agent or intra-agent dependency: The entity must either cause
a dependency of an agent on another agent or agent group, or a dependency
of a sub-module of an agent to another sub-module.

e Local perspective: The entity can be regarded as a resource by one agent
while this may not hold for another agent.

e Limited availability: The entity must be available to the agent, but not
in unbounded capacity.

e Restricted use: For our purposes we require that the entity can only be
used by one agent at a time.

A resource can enhance, or by its absence, constrain the agent’s (or agent
group’s) choice of action (information, perception, capabilities are good examples)
or it can constrain the effects of the agent’s (or agent group’s) action execution in
a quantitative or qualitative fashion, for instance, computational time assigned to
an agent in a pseudo-concurrent environment, such as JAVA™ Virtual Machine.

The construct of a semaphore is a classical control mechanism to handle re-
sources: only one of the agents is able to allocate a resource and is therefore

36

A Generic Resource Allocation & Integration Algorithm (GRAIL)

allowed to reason (internal use) or act (external use). Assigning an abstract
resource thus amounts to putting indirect “guidelines” or constraints on the be-
havior of the affected agents.

Categories of Abstract Resources

In order to illustrate the concept, we present some examples of abstract resources
which can be classified into societal and individual resources. In this work, we
focus on the former category. In general, societal abstract resources express
certain rights that some agents have while others have not. Individual resources
denote capabilities of an agent.

Examples of Societal Abstract Resources

The following examples are adjustable macro-level traits of an agent society. Due
to our definition, they are abstract resources for the whole agent society since
they induce interdependencies between member agents in the society and the
society itself.> The examples are always perceived from the perspective of the
agent society. Similarly, the criteria usefulness, limited availability and restricted
use hold straight-forwardly, so we will explain only the dependency property for
each resource.

In accordance with [Jam97]|, we also specify the meaning and the constraints
of the allocation of each resource. Furthermore, we point out whether the scale
of such an allocation is discrete or continuous, nominal, ordinal, or cardinal. For
the use of a resource allocation mechanism (Section 3.4), we need at least an
ordinal scale; hence for nominal cases we introduce an artificial order.

Right to decide on the number of member agents in a society: Obvi-
ously, the more agents are added to the system, to more tasks can be performed.
However, introducing too many agents may lead to communication overheads
which may actually decrease the overall performance. For an agent society, the
control of this parameter can be taken as an abstract resource since member
agents are integrated into the society inducing a dependency of the member
agents to the group as a whole (implemented by the representative agent). The
allocation of that resource ranges from 1 to infinity on a discrete and cardinal
scale.

3In Section 3.5 we introduce a special agent to represent an agent society; this agent then
operates on the macro-level resources.

3.2 The Resource Concept

37

Right to define organizational forms: Similar to organizational forms built
up in business or nature, agent societies need some organizational structure. This
structure can be used to determine communication and cooperation partners, it
may define a command hierarchy, etc. Several different models are available by
applying organizational forms presented in Section 2.2 to the MAS domain. In the
big picture, the organizational structure of a multi-agent application determines
a degree of centralization. The more centrally the society is organized, the more
the members depend on the higher institution; hence the authority to decide
on a organizational form can be seen as an abstract resource. Each possible
organizational form may be represented as one point on a discrete and nominal
scale.

Right to determine agent specialization: Heterogeneous societies (i.e., so-
cieties with agents of different architectures or with different capacities) may have
wider ranges of expertise at their disposal which may enable them to perform bet-
ter; on the other hand, such a society may tend to be susceptible to failure since
a specialist may not be replaced easily. In a heterogeneous society, members may
depend on the special capabilities of other agents; therefore these capabilities are
abstract resources. The allocation of that resource ranges from 0 (a totally het-
erogeneous group) to 1 (a group where all members are equal) on a (in principle)
continuous and cardinal scale.

Right to assign migration: In a traditional approach, communication among
geographically distributed agents is performed long-distance over the network.
This procedure can be rather time consuming in case the network is heavily
loaded and the communication process consists of some complex negotiation pro-
cedures. In a migration approach, an agent is transmitted over the net in order
to communicate with its partner on the local server. This technique can be fast
if the receiving server has an accurate model of the traveling agent. In this case,
only data describing the agent’s internal states have to be transmitted; a copy of
the agent can be generated locally.

The decision power to force members of a group to migrate can be imple-
mented as follows: A threshold is specified that determines a certain spatial
distance between two agents. If the current spatial distance between communica-
tion partners is greater than the threshold, one of the agents is forced to migrate.
Since the actions of this agent depend on the assigned threshold value, the right
to specify the threshold value is an abstract resource. This realization leads to a
continuous and cardinal scale ranging from 0 to possibly infinity.

Right to select communication channels: Depending on the organizational
form, communication and cooperation within a certain group may be restricted

38

A Generic Resource Allocation & Integration Algorithm (GRAIL)

strongly or weakly: For instance, in a hierarchical structure members of a group
may only communicate with the head of the group; in other organizational forms
communication among group members may also be allowed. Furthermore, com-
munication and cooperation between groups has to be specified: It has to be
determined whether all group members may communicate with neighbor group
members or only selected agents (e.g., the heads of the groups) may do so. Since
communication restrictions clearly lead to dependencies of the agents in question,
the right to assign such restrictions amounts to an abstract resource.

Communication may be interpreted on a discrete, nominal scale, where each
possible communication type denotes one point in that scale. However, it may be
possible to introduce an order which leads to a ordinal scale. This order may for
instance reflect the degree of decision making autonomy of lower-ranked agents.

Choice of the communication protocol: Communication among artificial
agents is usually performed in a structured form, e.g., by using speech act proto-
cols. However, several protocol types are possible, ranging from fast master-slave
communication over various types of auctions to complex negotiation protocols
which may be quite time consuming if applied widely. Similar to the previous
point, this issue induces dependencies and is hence an abstract resource. The
allocation of this resource can be modeled on a discrete, ordinal scale where each
communication type is represented by one point.

Examples of Individual Abstract Resources

Whereas the previous quantities express macro-level resources that lead to de-
pendencies among agents or agent groups, the following resources concern the
individual agent on the micro-level. These issues are of minor relevance for this
work since we do not focus on a certain agent architecture; they are just listed
to give a better feeling for the term “abstract resource”.

Capability to model the complexity of knowledge representation and
inference capabilities of an agent: Efficient integration of these capabilities
is a crucial aspect of an agent design. A powerful inference mechanism enables
an agent to draw complex conclusions. However, complexity theory has shown
that powerful reasoning algorithms easily become intractable. The capability to
find an efficient trade-off between tractability and expressiveness can be modeled
as an abstract resource on a continuous and cardinal scale ranging from 0 (a very
simple mechanism is used) to 1 (a most complex procedure is applied).

3.3 The Bounded-Optimal Agent Society

39

Capability to model the complexity of an agent’s perception function-
ality: If an agent has a perception module at its disposal, its performance can
be influenced by introducing sophisticated methods which enable the agent not
only to perceive passively its environment, but also to focus actively on certain
circumstances. If such a functionality is given, the question has to be addressed
on how extensively it should be used. Similar to the case above, the capability to
adjust this functionality can be modeled as an abstract resource on a continuous
and cardinal scale ranging from 0 (a very simple mechanism is used) to 1 (a very
complex procedure is applied).

Capability to model the complexity of communication among agent
modules: As the various modules of an agent have to cooperate to achieve
an agent’s goals, communication among internal modules can be scaled leading
to an abstract resource on a cardinal and continuous range between 0 for a low
complexity and 1 for high complexity.

This enumeration is not complete; on the contrary, the examples have rather
been chosen to illustrate the abstract resource concept. In Chapters 6 and 7, we
present concrete instances of the resource adaptation in industrial applications.
As mentioned above, abstract resources are used to calibrate a society of artificial
agents, which is discussed in the next section.

3.3 The Bounded-Optimal Agent Society

After having defined our resource concept, we now return to our original goal,
the specification of a self-adaptation scheme for agent societies. We lean on ideas
and concepts derived in the fields of bounded optimality and anytime algorithms.
However, we cannot directly adopt these concepts, since they have been designed
for the single-agent case. In the following we shortly summarize the most relevant
work in these areas, before we extend the concept to the multi-agent case in
Section 3.3.2.

3.3.1 Bounded Optimality and Anytime Algorithms in the
Single-Agent Case

The research areas of bounded rationality and anytime algorithms are rather new
topics, derived in the late 1980’s and the 90’s. The key idea of bounded rationality
is to regard problem solving itself as a (meta-level) action to be performed by

40

A Generic Resource Allocation & Integration Algorithm (GRAIL)

an agent. Hence, it has to be incorporated into the deliberation process to de-
termine the next action of an agent. Anytime algorithms are mechanisms whose
application can be interrupted at arbitrary time (in the ideal case) and feasible,
but not necessarily optimal solution can be returned.

Bounded Rationality

For optimization purposes it is desirable that in a given situation, an agent be-
haves “optimally”, i.e, it performs the best action. Good [GooT71] calls the be-
havior rationality of Type I. Rationality of Type II additionally considers the
deliberation cost: after the deliberation and performance of an action of an agent
of that type, its utility is maximized in comparison to all possible deliberate/act
combinations.

Russell and Subramanian [RS95| define a whole range of different measures
for optimal behavior:

e Perfect rationality: In this case, the agent always “does the right thing”,
i.e., it performs the action that maximizes the expected quality of the result
of the action. This expectation bases on the current knowledge of the agent.

e Calculative rationality: In contrast to the previous notion, this form
of rationality regards the continuously passing time: a calculative-rational
agent incorporates the temporal situation in the beginning of the delibera-
tion into the state definition, but the determination of the next step is not
timely bounded. Therefore, an agent of this type returns after a while a
solution which would have been optimal in the beginning of the reflection,
but not at the time of the output of the answer.

e Meta-level rationality: In order to overcome the above problem, a meta-
level-rational agent performs a two-leveled optimization: on the lower object
level the given problem is solved, i.e., the next action is determined, while
on the higher meta-level the computation sequence to derive that action
is optimized. Since the meta-level reasoner also needs computational re-
sources, approximations to meta-level rationality have been applied and
have shown successful in practice. Russell and Wefald [RW89]| distinguish
between uniform and non-uniform meta-level architectures of agents. In
the former case, the meta-level reasoner employs the same mechanisms as
the object-level reasoner, which is not true in the latter case.

e Bounded Optimality: Whereas in the previous approach, the meta-level
component optimizes the sequence of object-level computation steps, a
bounded-optimal agent optimizes the entire agent program; thus a bounded-
optimal agent behaves as well as possible given its computational resources.

3.3 The Bounded-Optimal Agent Society

41

Zilberstein [Zil93| introduces the more technical term of operational rational-
ity, by distinguishing between problem solver and control instance: The control
instance of an agent optimizes the distribution of computational resources to sub-
modules of the problem solver. The resource distribution is not subject of the
actual problem to be solved.

Anytime Algorithms

Horvitz [Hor87b| introduces a first approach called flezible computation in which
he proposed to apply different problem solving strategies depending on the re-
sources at hand. Considering the ratio between the solution utility and the costs
for computational time, a sequence of feasible results is produced where the qual-
ity of these results increases monotonically. Horvitz calls this a refinement of
the solution. In particular, he poses the following requirements for a refinement
scheme:

e Continuity of utility and quality: The utility and quality of the results
that are derived during the refinement, are continuous functions.

e Monotony of quality: The quality increases monotonically according to
the use of resources.

e Convergence of quality: The quality converges against the optimal result
which would have been computed if unlimited resources had been available.

e Dominance of utility: During the run of such an algorithm, there have
to be time intervals in which the utility increases monotonically according
to an increasing use of resources.

Based on this work, Dean and Boddy [DB88| introduce the concept anytime
algorithm with the following properties:

e Anytime algorithms may be interrupted and continued at any time with
very little administrative overhead.

e At any time, such an algorithm provides a solution whose quality increases
monotonically according to the invested computational time.

e Performance profiles log information about the trade-off between the in-
vested time and the achieved quality of the solution. This information
may be used for an optimized distribution of computational time to several
different anytime algorithms.

42

A Generic Resource Allocation & Integration Algorithm (GRAIL)

Zilberstein |Zi193] uses off-line compilation to realize a composition of several
anytime algorithms to one system. He introduces conditional performance pro-
files which are used to describe the quality of a result of an anytime algorithm
under consideration of a certain input quality. This is needed as Zilberstein em-
ploys multiple anytime algorithms in a sequential fashion where each anytime
component uses the results of its predecessor. During run time of the system, the
resource allocation can be modified; however, the total computation time must be
determined prior to the start of the system making a flexible reaction to changes
of the resource limitations impossible.

Zilberstein and Russell [ZR96] propose the use of the following metrics for
quality measures to validate performance profiles:

e Certainty: This metric expresses the probability that a result is correct.

e Accuracy: This metric reflects the accuracy of the return value, i.e., it
indicates the quality difference between the found solution and the optimal
one.

e Specificy: This metric denotes the level of detail in the result for cases
where results are always correct but differ in granularity.

Zilberstein distinguishes between contract anytime algorithms and interrupt-
wble anytime algorithms. The latter return at once a feasible solution at any break
of the system, while algorithms of the former type need after an interruption some
more time to return a feasible result. The approach proposed by Dean and Boddy
can then be classified under the more general latter case. Although an algorithm
of the former type is less desirable, in practice it is much easier to be built.

3.3.2 Bounded Optimality in the Multi-Agent Case

We now extend the concept of bounded optimality to a society of agents. A simple
adaptation of the presented mechanisms is hardly possible, not only since these
mechanisms are designed for the single agent case, but also because they focus
mainly on time as the only resource to be distributed which is too narrow-minded
for our purposes. Zilberstein’s concept of compiling several anytime algorithms
to one main system cannot be applied since he orders them in a chain which is
too static for our purposes. Although we cannot apply the derived mechanisms,
we use the proposed methodologies and concepts which we will extend for our
needs.

Russell and Subramanian define bounded optimality as a property that speci-
fies the optimal agent program rather than the optimal action of an agent. The

3.3 The Bounded-Optimal Agent Society

43

Environment

1 v

[Complex Object-Level]

: ,P)
Input Output

Figure 3.1: Architecture for a bounded-optimal agent

bounded-optimal agent solves the combined optimization problem of simulta-
neously finding the optimal agent architecture and the optimal agent action.
Transferring this specification to the multi-agent case, we characterize a bounded-
optimal agent society as a collection of agents that solves best the complex op-
timization problem of simultaneously finding the optimal architecture and the
optimal action for each agent in correlation with all other agents, for a given
amount of (abstract) resources.

The most important assumption we make is benevolence of the member agents:
All agents of a society must have a common goal and they must accept to fol-
low guidelines to reach that goal. Not all agents in a MAS must obey the two
requirements, agents can also exist outside such a society. These are the only
restrictions we have for our resource allocation scheme. In Chapter 5 however,
we pose stricter requirements onto a society of agents. Such a special case is then
called a holonic agent system.

Architectural Aspects

Russell and Subramanian propose a two-fold architecture to approximate the
optimal behavior of a single agent (Figure 3.1). They argue that a rational
behavior cannot be reached in a domain-independent manner without solving
the higher-order problem of additionally approximating the optimal agent pro-
gram. This justifies the use of meta-reasoning in the single-agent case. Since the
meta-reasoning component also consumes resources, it should be of neglectable
complexity. Fast and simple resource assignment is therefore only locally opti-
mal, i.e., for a single time step. Thus it does not necessarily lead to the global
optimum, but hopefully to a satisfying solution.

44

A Generic Resource Allocation & Integration Algorithm (GRAIL)

uluoseay [oAaT-BI8N

Abstraction & Monitoring
________________>

lj |ﬁ|J IilAgent J |ﬁ|Jvco
J %

Input Output

Figure 3.2: Architecture for a bounded-optimal agent society

A first idea to build a system that approximates the bounded-optimal agent
society is to adopt this technique to the multi-agent case by equipping every agent
with such a two-fold architecture. We argue that for the case of an agent society
such an architecture for every member agent is insufficient. An architecture
to approximate the bounded-optimal society does not only have to elaborate
micro-level aspects of the individual agent to ensure optimality. It also has to
incorporate macro-level aspects of the society:

e Even, if every single agent behaves bounded-optimally, it cannot be guar-
anteed that the whole agent society behaves globally bounded-optimally,
since every agent has only a local perspective and knowledge.

e Interactions among agents have to be taken into consideration for an op-
timization procedure. Hence, for our purposes, reasoning over resources in
the traditional sense is not enough; we require to also reason about inter-
dependencies between agents, i.e., abstract resources.

In order to express that some states are more desirable for a situated agent
society than others, we assign a value to each state of the environment. As this
utility value has to be computed by the society, it depends on its local perspective
and therefore, can be subjective, and can possibly include errors.

3.3 The Bounded-Optimal Agent Society

45

Monitor Global
A 9 ent Curent Profile

Configuration

Membe
Agent Member

Agent

Profile

Detailed resource allocation Detailed resource allocation

Figure 3.3: From local to global profiles

In order to monitor the utility of a state of the whole society, we introduce
a centralized unit, representing the whole society. This top-most decision stage
has to measure the utility or performance of the whole society at a current or
future state. In large societies, this measuring is an infeasible task for only one
control unit. Hence, we introduce a flexible hierarchy of decision stages, such
as the individual agents, groups, and the society (Figure 3.2). At each of these
stages resource assignment to members of the subordinate stages is performed,
based on their performances/utilities in the current situation.

Implementation of the Architecture

There is a wide range of possibilities to implement this resource assignment pro-
cedure at a given stage: In a de-centralized realization, resource allocation is
performed solely through negotiation among stage members. In a centralized set-
ting, the autonomy of the member agents is heavily restricted or even further,
the former individual agents are replaced by a new agent. We choose a hybrid
setting, where for each stage a new, representative agent (or monitor agent) is
introduced. The only task of that new agent is to perform resource allocation
on a meta-level; the original object-level tasks still have to be performed by the
members of the group. We prefer this hybrid approach over the other possibilities
because it avoids the communication overhead of a fully distributed setting, and
is also much more suitable for a dynamic reconfiguration of the agent society than
a centralized setting.

46

A Generic Resource Allocation & Integration Algorithm (GRAIL)

On every stage, the representative agent achieves a current profile of its social
stage through frequent performance monitoring. By setting guidelines for the
behavior of the lower stages an adaptation to changes in the environment is
achieved. Guidelines are spread through the allocation of abstract resources.

In order to assign resources efficiently, the dependency between resource al-
location and performance has to be determined. In most cases, this dependency
cannot be computed, but has to be observed: subordinate representative agents
therefore monitor local profiles and report them to the next higher representa-
tive agent which in turn uses this information to build a more global profile (see
Figure 3.3). An example is the knowledge whether a semaphore which has been
previously allocated to a member agent has already been released and is now free
for further use by one of member agents.

In the following, we propose a Generic Resource Allocation & Implementation
aLgorithm (GRAIL) which consists of two nested parts: a hierarchical Resource
Implementation aLgorithm (RIL) for resources defining resource-based interac-
tion among agents and, embedded, a Resource Allocation aLgorithm (RAL),
defining a resource configuration in the space of possible configurations. In the
next two sections, we will present the two parts in detail.

3.4 Resource Allocation Algorithms (RALs)

The task of a resource allocation algorithm is to discover an optimal abstract
resource distribution which can be viewed as the optimum of the performance
function in an m-dimensional search space where m denotes the number of scal-
able resources and each point in that search space corresponds to one particular
system configuration: Each resource is represented by a dimension in the search
space, whose domain ranges from one extreme point of that quantity to the other.

Following the methodology of operations research (OR), the problem can be
characterized as follows:

max Overall Performance
subject to Distribution of abstract resources
Minimal and maximal boundaries for the use of each resource
Maximal boundary for the overall use of resources

Figure 3.4 shows a simple, two-dimensional example: here performance de-
pends only on the number of agents and the usage of a sophisticated knowledge
representation (KR) component. For the sake of simplicity, this quantity is scaled
equally for all agents, i.e., a modification of this parameter affects all agents in
the same way. Whereas the agent number is represented by a discrete dimension

3.4 Resource Allocation Algorithms (RALSs)

47

Performance

State x5 State x?2

State x4

Number
of agents

Figure 3.4: A simple example of a system performance relation

(whose domain ranges from 0 to possibly infinity)* the other dimension is mod-
eled as a continuous one, its domain ranging from 0 to 1; a number between those
extremes indicates how much percentage of the agents’ computational time can
be used in their KR components.

If no information about the problem characteristics is available, finding a
global optimum is a hard problem whose solution can barely (if at all) be found
in reasonable time. Furthermore, in many cases, a high enough local optimum
will do, considering that the list of tasks the system has to perform may change
rapidly: current configurations may lose high performance and hence, have to be
discarded quite frequently.

3.4.1 A Greedy Resource Allocation Algorithm

The steepest descent method [Zou76] for finding local optima is in principle well
suited for a RAL strategy since it is able to react fast to situation changes in
order to maintain high, but not necessarily optimal performance during the com-
plete run of the application. For our purposes, we slightly modify the approach;
differences are discussed in Section 3.4.4.

An efficient configuration (i.e., a (locally) optimal point in the search space)
can be found by moving from some arbitrary starting point in the search space
iteratively to the optimal point.

4The figure shows also performance values for value fractions on that scale which are actually
not defined. This is done only for a more intuitive display.

A Generic Resource Allocation & Integration Algorithm (GRAIL)

Algorithm 1 Greedy-RAL (Agent @, SearchSpace ss)

1: previousPerformance := currentPerformance

2: currentPerformance := getCurrentPerformance()

3: if currentPerformance > previousPerformance

4: currentStepDirection := previousStepDirection /* step direction remains */
5: else

6: undoStep()

7: currentStepDirection := findNewStepDirection() /*that has not been tested yet */
8: endif

9: if currentStepDirection = void /*no untested direction left*/
10: boolean solutionFound := true
11: else
12: performStep(ss, currentStepDirection) /*modify resource allocation */
13: boolean solutionFound := false
14: endif

15: SubSearchSpaceVector sssv := computeSubSearchSpaceVector(ss)
16: return (sssv, solutionFound)

In every step, first the direction is determined on which to move. In case
the relation of performance towards resources can be expressed by some differen-
tiable function, the best direction can be determined using partial differentials.
Otherwise the direction has to be determined empirically. One way to do so is
to traverse the search space in a depth-first search strategy: A marginal step®
in a certain direction of the search space is performed. If the performance has
increased, a further step in this direction is made; otherwise the step is undone
and a step into a new direction made. This procedure is repeated until a point is
reached where all steps towards promising directions have resulted in performance
decrease, and hence an optimum has been reached.

In the previous example of Figure 3.4, a starting point may be x;. A maximal
performance gain is achieved by adding more resources to the KR components:
9 may be achieved. By increasing the number of agents to eight, the optimal
configuration (represented by z3) is found.

Algorithm 1 describes this technique in a rather abstract and general way in
order to provide a widely applicable technique. A RAL is embedded into the
hierarchical RIL scheme (see Algorithm 6 in Section 3.5); on the higher societal
stages of the agent hierarchy, the RIL calls a RAL to perform only one step in
its search space. A RAL has to return a list of search spaces for the sub-ordinate
resource-adapting agents and a flag which denotes whether a local optimum has

5Tf the search space is not convez (i.e., not all possible intermediate points between two
arbitrary points in the search space do also belong to the search space), a “marginal step”
denotes the smallest step possible to reach again a point in the search space. For instance,
in the above example the discrete dimension “Number of Agents” induces non-convexity. A
marginal step along that dimension can be achieved by increasing or decreasing the number of
agents by one.

3.4 Resource Allocation Algorithms (RALSs)

49

been found. In the Greedy-RAL algorithm this flag is set to true, if all possible
step directions have been tested (the procedure findNewStepDirection returns
void in Line 9 of Algorithm 1) and no improvement could have been found. The
list of sub-search spaces is generated in dependence from the current position in
the search space ss (Line 15).

The procedure getCurrentPerformance() always returns the current perfor-
mance of the agent group the monitor agent is heading. The scenario designer
has to actually implement this domain-dependent procedure. In Line 7, the com-
putation of a new direction in the search space always returns a choice that has
not been tested before for a certain position, if there exists one. At the mo-
ment we always assume a marginal step size. Later, we will refine the scheme by
introducing a variable larger step size.

We assume that all data relevant for the RAL (in particular, the previous
position in the search space) is stored locally for each agent that performs a RAL.
Initially, the value of currentPerformance is set to 0, and previousStepDirection
is set to an arbitrary direction, leading to a random move as an initial step.

In Sections 3.4.2 and 3.4.3 we will further elaborate the direction finding
strategy of this procedure. In Chapter 4 we will show some modifications of
the implemented systems from the theoretic framework that make the system
more applicable. In Chapter 6 we will instantiate this RAL concretely to the
MoTiV-PTA application where we refine the scheme in greater detail.

Properties of Greedy-RAL

Some assumptions have to be made in order to effectively use that simple al-
gorithm: If all of the following assumptions hold, we can can show that the
proposed Greedy-RAL in combination with a RIL scheme will find an optimal
solution. However, we argue that some small violation of these requirements does
not reduce the quality of the achieved solution too much. For our purposes we
will relax them.

1. The performance function P is concave, i.e., for arbitrary points z and y in
the search space and for 0 < A <1 holds: If an intermediate point z = Az +
(1—X)y is an element of the search space, then P(z) > AP(z)+(1—\)P(y).
If this assumption is violated, the algorithm may run into a local optimum,
or even worse, a plateau: for instance in the previous example, moving from
x5 to any other direction does not lead to a performance gain; by beginning
from some other starting point, the algorithm might return z, as a result.
However, we are not interested in finding a global optimum in the search
space; a relatively high local optimum will do as well, in particular under
the consideration of a continuously changing environment.

A Generic Resource Allocation & Integration Algorithm (GRAIL)

2. During the search for optimization neither the search space changes, nor
does the definition of the performance function. This assumption cannot
hold in general, as e.g., new tasks may be incorporated anytime which may
change for instance the optimal number of agents. However, due to the
hierarchical RIL scheme, the system can adapt to minor changes in the
search space or the utility function by redefining subparts of the search
space and then running a RAL locally on that sub-space.

3. Performance impacts of the resource quantities are independent from each
other. Again, this is an assumption which does not hold in the general case.
However, due to the choice of abstract resources and the resulting design of
the agent hierarchy, we can assume such an independence for our case (see
Section 3.5).

4. All dimensions are scaled cardinally or at least ordinally, i.e., a partial order
can be introduced. This assumption is crucial for the algorithm above to
decide in which direction to move next. However, it also cannot hold in
general; In such cases an order has to be introduced artificially (e.g., by
using some heuristics).

5. All dimensions are scaled discretely. Of course, this requirement does not
hold in general, but we we discretize any continuous dimension on a suitable
level of granularity.

A setting for which all five requirements hold is called admissable.

Corollary 3.4.1 For an admissable setting, Greedy-RAL embedded in a RIL that
keeps calling a RAL step until a solution is found, will eventually find an optimal
position in the local search space.

A proof of this corollary can be found in Appendix A. For our purpose, we
cannot guarantee all assumptions to hold; however, as already discussed above,
some small violation to the one or other requirement will only lead to minor
disturbances.

Extensions of Greedy-RAL

Two issues of Algorithm 1 have not been clarified yet: how to find an efficient
direction to move (Step 7) and how to determine an efficient step size (in Step
12), since moving only a marginal step per iteration is too inefficient. For the
specification of the step size we employ a bisection technique: The system designer
has to specify a reqular step size which is usually taken for steps in the search

3.4 Resource Allocation Algorithms (RALSs)

51

State x5

State x1
State xO
W

State x4

State x2

Figure 3.5: Bisection in Greedy-RAL

space, except for two cases: a boundary of the search space is reached, or a
performance decrease is measured, which means that the last step (or even the
step before that) has been too large and the maximum in the search space has
been exceeded.

Consider the example of Figure 3.5 after having moved from z; to z5. There
must be a point in the interval between the current point (here z,) and the
previous one (z1), or between the point x; and its predecessor xy which has
a higher performance value than both, zy and x5. Stepping to the mid-point
x3 = 0.5 % 2y + 0.5 % o splits the search interval, which then ranges in the
example from zy to x3. The search for the optimal point is repeated on the new
interval, until the size of the interval has become significantly small (z4 is found).
Then a new step direction is determined and the best point is searched among
this direction (z5).

Algorithm 2 shows the technique in more detail. This technique basically
cuts down a multi-dimensional search space into a sequence of one-dimensional
searches. Of course we have to take into consideration that after having opti-
mized among some dimension, the position according to a previously optimized
dimension may no longer be optimal and has to be re-optimized again. For this
algorithm we ussume that the variables oldPosition and previousPosition have
initially been set to the start value of currentPosition.

In Lines 5 and 10, the step size is computed by taking the minimum of the
regular step size and the distance to the boundary of the search space. The
procedure bisection is applied whenever an optimum has been exceeded (Line 8).
During the recursive run of that procedure, a step is taken to the middle point of
the interval (Line 25), until the interval has become small enough. Afterwards,

52

A Generic Resource Allocation & Integration Algorithm (GRAIL)

Algorithm 2 Bisection-Greedy-RAL (Agent a, SearchSpace ss)
1: previousPerformance := currentPerformance

2: currentPerformance := getCurrentPerformance()

3: if currentPerformance > previousPerformance

4: currentStepDirection := previousStepDirection

5: stepSize := computeStepSize() /* are boundaries reached? */
6: else

7: undoStep()

8: bisection (oldPosition, currentPosition) /* moves to optimal intermed. point */

9: currentStepDirection := findNewStepDirection()

10: stepSize := computeStepSize()

11: endif

12: if currentStepDirection = void

13: boolean solutionFound := true

14: else

15: performStep(ss, currentStepDirection)

16: boolean solutionFound := false

17: oldPosition := previousPosition

18: previousPosition := currentPosition

19: currentPosition := computeNewPosition()

20: endif

21: SubSearchSpaceVector sssv := computeSubSearchSpaceVector(ss)
22: return (sssv, solutionFound)

23:

24: Procedure bisection (firstPoint, secondPoint)

25: stepTo(firstPoint + secondPoint) / 2

26: if performance(firstPoint) > performance(secondPoint)

27: secondPoint := getAverage(firstPoint, secondPoint)
28: else

29: firstPoint := getAverage(firstPoint + secondPoint)
30: endif

31: if |(firstPoint - secondPoint)| > threshhold2

32: bisection(firstPoint, secondPoint)

33: endif

34: endprocedure

a new step direction and size are determined (Lines 9 and 10), and the step
is executed (Line 15). For the sake of orientation, In this and the following
algorithms only new modifications are labels with comments.

In the model above a local step has to be applied in the search space described
previously. Obviously, pure uninformed search will lead in Step 9 to a random
choice of direction in case a new step is not taken in the same direction as the
previous one. However, in such cases, heuristics can be incorporated to determine
the next step (see Lines 10-12 of Algorithm 3) converting Greedy-RAL from a
blind depth-first search strategy to a best-first search strategy. If there is no
other indication to decide between several choices, relying on a heuristic keeps
Greedy-RAL from making a random choice.

3.4 Resource Allocation Algorithms (RALSs)

53

Algorithm 3 Heuristic-based-Greedy-RAL (Agent a, SearchSpace ss)

1: previousPerformance := currentPerformance

2: currentPerformance := getCurrentPerformance()

3: previousStepSize := currentStepSize

4: if currentPerformance > previousPerformance

5: currentStepDirection := previousStepDirection

6: stepSize := computeStepSize()

7: else

8: undoStep()

9: bisection (oldPosition, currentPosition)
10: (currentStep Direction,currentStepSize) := applyHeuristics(currentPosition,
11: (previousStep Direction, previousStepSize),
12: currentPerformance - previousPerformance)
13: if currentStepDirection = void /* if no heuristic could be applied: */
14: currentStepDirection := findRandomStepDirection() /* random move */
15: endif
16: endif

17: if currentStepDirection = void

18: boolean solutionFound := true

19: else

20: performStep(ss, currentStepDirection)

21: boolean solutionFound := false

22: oldPosition := previousPosition

23: previousPosition := currentPosition

24: currentPosition := computeNewPosition()
25: endif

26: SubSearchSpaceVector sssv := computeSubSearchSpaceVector(ss)
27: return (sssv, solutionFound)

It is the nature of a heuristic to give a rough guideline or indication to find
faster a better solution. Depending on the application, such a guideline needs not,
to be exact or correct for all cases. Additionally, an indication may be interpreted
in different ways leading to possibly different suggestions what step to perform
next.

Among others, heuristics can be gained from observations made in related sci-
ences presented in Section 2.2, such as social psychology or management theory.
In the next section, we focus on heuristics that can be gained from data collected
from the members of the agent society, while Section 3.4.3 presents an the inte-
gration of a machine learning approach to draw conclusions from the usefulness
of previous modifications. Note that these heuristics are kept generic on purpose,
since our approach is designed to be integrated into a framework of heterogeneous
agents. They will be instantiated in detail in the case study of Section 6.

54

A Generic Resource Allocation & Integration Algorithm (GRAIL)

y—_Workload)
N
Component Component
(“Work Load)

__ ==

outgoing

incoming [Capacity g
NOde Work Loads Source Work Loads
_____ _— Work Load
Component “Work Load

————==

Figure 3.6: Work flow model of a technical system

3.4.2 Bottleneck Analysis for Heuristics Retrieval

Bottleneck analysis is becoming an increasingly important means for optimization
of very complex technical systems (see for instance [KE96]). Bottlenecks, i.e.,
unbalanced structures occur if the system was configured under false behavior
estimations. Both, over- and underloaded entities in the system reduce overall
performance since overloaded units cause delays, while underloaded units could
have been used elsewhere.

Bottleneck analysis provides an assessment method for units in technical sys-
tems: a unit is characterized on a rather high level of abstraction by only regard-
ing its input/output behavior. The system is represented as a directed graph
(left-hand side of Figure 3.6); its nodes coincide with system components, arcs
represent the work flow. In general, two additional nodes are introduced: a start
node and an end node, representing the beginning and the end of the work flow.

Arcs are labeled with work load values. Such a value represents the pass-
through of load per time unit on this connection. Each component is labeled
with a capacity value, a source work load and a transition function (right-hand
side of Figure 3.6). The capacity is a measure of pass-through on this working
unit, limiting the processing of incoming work loads. It has to be regarded as an
upper threshold of work load to be processed without leading to delays. A unit’s
source work load constitutes work load that originates from that particular unit,
i.e., that did not emerge from other factors. The effect of work load (incoming as
well as new source load) on a component results in a reduction of capacity and
of new work load leaving the unit, determined by the transition function.

The transition function has to compute the contribution of the various incom-
ing loads to capacity consumption, the contribution of the new produced work
load to capacity consumption, the total capacity consumption and the throttling
of incoming work load (i.e., the overload), should the situation arise, and the
outgoing work load depending on the above quantities.

In a traditional approach, a bottleneck is regarded as a location of overload
within a system structure. Real bottlenecks are usually distinguished from hidden

3.4 Resource Allocation Algorithms (RALSs)

55

ones: Real bottlenecks occur if the capacity of a unit is smaller than the work
load it has to cope with. A hidden bottleneck is an imbalance that is currently
not effecting the system’s overall performance, but will do so if other, real bot-
tlenecks are removed. Goal of bottleneck analysis is the detection and removal
of bottlenecks: a mathematical model of the system is put up by characterizing
the work flow in a fashion described above. Network flow algorithms developed
in Operations Research can then be applied to that model in order to detect
bottlenecks (see [AMO93] for an overview).

Such an approach can be adapted to detect sub-optimalities within a society
of artificial agents. However, it has some severe drawbacks:

e Only overloaded units can be found. Underloaded components cannot be
detected; their unused work power is lost.

e Work load and capacities have to be estimated for the mathematical model
of the system. If these estimations are incorrect, no mechanism can find
real bottlenecks.

e In traditional bottleneck analysis, work load and capacity are not considered
variable over time. In such cases of variations, average values are taken or
the procedure has to be rerun for each variation.

e Similarly, the analysis has to be repeated after each system modification
due to detection of real bottlenecks in order to find hidden ones.

An Alternative Approach

We propose a different approach to bottleneck analysis in societies of artificial
agents: in a mathematical model of an agent society, each agent would be repre-
sented by a node and each communication channel by an arc. As an alternative,
we do not estimate work load and capacities for building up a mathematical
model, but make direct use of the architecture of the multi-agent society which
provides us with information about agents’ work load. The following conclusions
derived from action and communication behavior can be drawn in order to derive
heuristics in a local search. This information can be derived for instance, by
inspecting goal queues and communication queues of the agents (if existing), or
by the number of actions and communication acts per time unit.

e The size of a member agent’s goal queue and the number of tasks per time
unit performed by the agent indicate their work load: A very large goal
queue may be a sign that more agents are needed that are specialized on
achieving that type of goals. On the other hand, if only very few tasks

56 A Generic Resource Allocation & Integration Algorithm (GRAIL)

have been performed by an agent, this agent might be better removed from
the system and the tasks of this agent may be done more efficiently by
another agent of the same type, considering the fact that an idle agent still
consumes time and space resources. This may therefore be an indication to
delete that particular agent.

e The size of agent communication queues (if they exist) and the number
of performed communication acts per time unit can be used to validate
the usefulness of the chosen type of communication protocol: a too large
queue reveals that the currently applied communication protocols are too
complex. An almost empty communication queue or a extremely small
number of communication acts per time unit is a sign for an underload:
a more complex communication protocol that might lead to better results
could be used probably without reducing overall performance.

e Furthermore, an analysis of agent communication behavior in terms of the
distance of communication partners in a network and of communication
complexity can be used to decide when to employ agent migration: If com-
plex protocols are often pursued over a long distance, it may become more
efficient to send the agent over the net and let it perform communication
locally.

e Depending on the communication language used among agents, the type
of performed communication acts gives also hints about the optimal struc-
ture: well-defined social structures of a group may speed up cooperation as
cooperation roles are already pre-defined. For instance, if an agent emits
many directive communication acts such as request and often refuses re-
quests from other agents, a more hierarchical structure may be introduced,
giving this agent a relatively high position.

All these observations can be used as heuristics in a higher staged RAL, i.e.,
the RAL performed by a monitor agent to approximate optimal structure and
communication patterns in an agent group. In Chapter 6, we will instantiate the
rather general technique to the environment of the MoTiV-PTA domain.

3.4.3 Machine Learning for Heuristics Retrieval

The presented Greedy-RAL can be extended by integrating a machine learning
technique. Assuming a dynamically changing environment, we are faced with an
arbitrarily high number of possible situations. To cope with such a scenario, we
apply an approach derived from memory-based reasoning [SW86], which is based
on on the observation that only few of all possible situations really occur. In

3.4 Resource Allocation Algorithms (RALSs)

57

Algorithm 4 applyHeuristics (Situation sit, Action act, double perfChg)

newAct = void
: for i € memoryBase do
select i with max; match(memoryBase, sit) /* get most similar situation */
endfor
if ¢ # void /* if there exists such a situation */
if perfChg(i) > 0
newAct = generateSimilar Action(memoryBase, i) /* behave accordingly */
else
9: newAct = generateOppositeAction(memoryBase, i) /* behave differently */
10: endif
11: endif

13: if |perfChg| > threshold3

14: insert(memoryBase, [sit, act, perfChg]) /* store significant situation */
15: endif

16: computeDecay(memoryBase) /* blur older memories */
17: return newAct

contrast to case-based reasoning, (see e.g., [GS98]), no generalization of previ-
ous situations is performed, but experiences of the agent are directly stored as
prototypical situations.

If performance significantly increases or decreases during a run, we store a
tuple consisting of the occurred situation, (i.e., the resource allocation), the per-
formed action (i.e., resource shift). Such experience can be used in a new decision
situation of the RAL: if the decision making agent has no other information (such
as from bottleneck analysis, etc.), it can make use of previous experience in order
to avoid performing a random step (Step 13 in Algorithm 3).

To derive a heuristic, the current situation is matched against all prototypical
situations; whenever a similar situation is found (according to a match-making
function), the effect of the action chosen in that particular situation is taken as
advice for the current situation: if previously performance had increased, the
resources are shifted accordingly. On the other hand, a performance decrease
in a prototypical situation can be regarded as an indication to move towards
the opposite direction. If no similar situation can be found (i.e., the similarity
measure is beyond a certain threshold), either another heuristic is applied or a
random step has to be taken.

In Algorithm 4, the applyHeuristics procedure shown the integration of a
maschine learning technique: Initially, memoryBase is empty. The procedure
takes as input a situation (i.e., a position in the search space), an action (i.e., a
step direction and size) and the difference of the current performance from the
previous one. For the current situation, the match procedure in Line 3 returns
the most similar situation stored in the memory base, if there exists one that is
similar enough. If this is the case, a new action is generated (Line 7 or 9).

58

A Generic Resource Allocation & Integration Algorithm (GRAIL)

Completely independent from the outcome of the search for similar situations,
the current situation is inserted into the memory base (Line 14), if its performance
change has been significantly good or bad.

Another effect of the dynamically changing environment is the decreasing rel-
evance of older experiences. For this reason, we annotate each experience with a
time stamp: the similarity to older experiences is decreased according to a penalty
function. Experiences that are older than a certain age are completely removed
from the memory base. Furthermore, the memory base can be completely erased
if certain specified triggering events occur. This is done in procedure computeDe-
cay (Line 15). This technique will also be used and refined in the integration of
GRAIL into MoTiV-PTA (Chapter 6). For instance, the learning procedure does
not only consider single allocation changes, but whole sequences of modifications
as actions to be learned.

3.4.4 Other Techniques

In the previous section, we have derived Greedy-RAL and its extensions for the
given setting requirements. In this section, we present alternative RALs for
different settings. However, we will not use them in the case study of Chapter
6. These techniques can be employed for other applications, some of which are
used in the case study of Chapter 7. After having presented these approaches,
we discuss their usefulness for different settings.

Traditional Search Strategies

A whole range of search strategies have been derived, which may be incorpo-
rated as RALs if supported by the application domain. Besides the well-known
depth-first search (where Greedy-RAL is an instance of) and breadth-first search
strategies, more specialistic strategies have been developed: Ilterative deepening
combines the former two strategies by running a series of depth-first searches with
increasing depths. Bi-directional search pre-assumes a well-defined start and goal
states and performs concurrently breadth-first searches from start and goal states.
In order to overcome the problem of local optima, simulated annealing introduces
the idea to perform from time to time random jumps in the search space whose
frequency and step size decrease over time.

Complex Decision Making

A different RAL approach is to employ decision-theoretic planning if the perfor-
mance of agents is not purely measured in terms of a real-valued function, but

3.4 Resource Allocation Algorithms (RALSs)

59

can be expressed through a combination of symbolic characterizations of desired
system states (goals) and numeric priorities between them (utilities).

Decision-theoretic planning can be used as a means to pro-actively assign
resources. Such behavior is inevitable if a certain desired societal configuration
can be specified as a goal. Positions in the search space must be represented as
states, e.g., the initial and goal states; resource shifts are considered as actions
which have to be composed into plans. To reach the goal, steps have to be planned
from the current configuration to the goal configuration.

Each action is annotated with preconditions, i.e., applicability conditions,
and effects, i.e., configuration changes arising from the execution of that action.
Planning procedures (e.g., the event calculus; see |[Esh98|) can now be applied
to create a plan that is applicable in the current situation. Such an approach is
suitable for achieving (at least in principle) a global optimum in the search space:
the plan corresponds to a path from the current situation to the global optimum.

Finding such optimal solutions results in high computational complexity: the
planning of a sequence of system reconfigurations consumes also computational
resources. Therefore the time and space consumption of the planner’s computa-
tion have to be mapped to the abstract resources available to the planner. Jung
[Jun98, Jun99| shows how they can be used in modeling resource-adapting agents
for the RoboCup [KAK*97| domain.

Combining Complex and Simple Decision Making

Based on the allocation of abstract resources we can combine the complex de-
cision making procedure with Greedy-RAL by developing a two-fold allocation
procedure to be integrated on every stage in an agent society. This procedure
follows Russell and Wefald’s proposed meta-level reasoning architecture in every
agent of the hierarchy, including the monitor agents (Figure 3.7).

In our case the object level task for a monitor agent is the resource assignment
for the lower stages. At each social stage, the complex decision making procedure
is directed by the simple decision making mechanism as its meta-level: all possible
object-level actions for the complex decision making unit cover resource allocation
for lower stages while the simple decision making unit on the meta-level reasons
about the optimal adjustment of the complex decision maker.

De-centralized Allocation Strategies

A RAL can either be performed by a single device (see Greedy-RAL which is
performed by each agent on its own) or it can be performed in a de-central fashion

60

A Generic Resource Allocation & Integration Algorithm (GRAIL)

‘® Representative Agent
Upper
Stage L ®
Lo % v
Monitoring, % Guidelines
/7 K

/ i
. Bepresentatwe quﬂ

basis é:} Meta- |

Social
Stage

' for Simple | gyel|
Local Profile - v. Dgcision

| £3: o
} l basis |, g3 Object

. Lével
Global Profie | for Complex
A ¥

SOy
Decision ’

1 N

| P
1 Monitoring "~ ", Guidelines
| g

8 <)
1 r's RO |
Lower | ®Agent

@ Agent
= B JJ i @ JJ

J J

Stage

Figure 3.7: Decision procedures in a hierarchical resource control

through negotiation of the members of the hierarchy. We now discuss various
options of the latter case and comment on their suitability for different settings.
In particular, we distinguish between cooperative and non-cooperative settings: In
a cooperative setting, the participants have no local utility valuation. They are
eager to maximize the utility of the group, and, hence, a utility measure is needed
that enables the agents to decide locally whether a trade is globally beneficial.
In a non-cooperative setting, each agent tries to maximize its local utility. In this
case, we must ensure the possibility for utility transfer via side-payments.®

Market mechanisms Market-based mechanisms can be used to distribute and
re-distribute tasks or resources among a group of agents. The general idea of these
mechanisms (see [FRV98| for an overview) is that a manager agent “advertises”
a task or resource; the other agents bid for the resource or for the execution of
the task which is then allocated such that the quality of the overall distribution
increases.

We distinguish between coordinated and uncoordinated market mechanisms:
in an uncoordinated market, agents negotiate and decide locally whether or not
to agree on a deal. Sandholm [San96] proposed a trading mechanism to exchange
tasks between agents; he showed that an optimal allocation is possible under
certain circumstances.

6Tt might seem contradictory to consider self-interested society members since we require a
common overall goal. However, such a common goal does not prevent conflicting goals of minor
priority.

3.4 Resource Allocation Algorithms (RALSs)

61

In a coordinated market the monitor agent moderates the trading process and
provides the global utility function. Simulated trading [BHM92| is a randomized
algorithm that realizes such a market mechanism. A central instance (the monitor
agent in our case) collects the trading offers and evaluates them such that the
global quality increases. The trading proceeds over several rounds, each of which
consists of a number of decision cycles: in every cycle each agent submits one
offer to sell or to buy a task. At the end of a round the monitor agent tries
to match the sell and buy offers of the agents in oder to increase the quality of
the global solution. As in simulated annealing, a relaxation value that decreases
from round to round can be specified: in early rounds the central instance might
accept a worsening of the global solution which is helpful to leave local maxima
in the solution space. Nevertheless, those maxima are saved. If the algorithm
terminates before a better solution is found, the best solution hitherto is returned,
hence simulated trading is an anytime algorithm.

Game theoretic allocation mechanisms For these classes of mechanisms,
the central instance, the monitor agent in our case has to mediate between agents
and to allocate the resources or tasks to the group members on the basis of
reported valuations. Again, we can distinguish between the cooperative case
where truthful behavior is guaranteed, and the non-cooperative case where the
agents may try to increase their own benefit at the expense of others. In the
latter case, for the sake of global performance, it might be useful to apply truth
revealing mechanisms. Some sort of currency is needed that allows an explicit
utility transfer.

One of the classic protocols for cooperative settings is the contract net protocol
[Smi80]. It assigns a task or resource to a single agent competing with a number
of other possible contractors (the member agents, in our case). The manager (the
monitor agent) announces the resource or task to be allocated to the contractors
which then submit a bid and state their cost of the bid. The manager grants the
item to the bidder that stated the best offer and all other bids are rejected.

For a non-cooperative setting, auction-based protocols are better suited for
the distribution of tasks and resources. In the sealed-bid-first-price auction, all
bidders submit a sealed bid and the bidder who has offered to pay the highest
price makes the deal and pays the price he has actually bid for. In the sealed-bid-
second-price auction (also called Vickrey auction) the bidder that has submitted
the highest bid wins the competition but will only be charged the price the next
bidder was willing to pay. The English auction starts with the minimal price the
auctioneer would accept and the bidders successively out-bid each other until a
single bidder is left. In the Dutch auction the auctioneer initially starts with a
very high price which he lowers stepwise until one of the bidders accepts to buy
the item at the current price. The Vickrey auction is an incentive compatible

62

A Generic Resource Allocation & Integration Algorithm (GRAIL)

mechanism: A bidder’s dominant strategy is to reveal his real valuations to the
auctioneer, i.e., it is well suited for a non-cooperative setting. The Vickrey auction
is logically equivalent to the English auction, assuming a small step size in price
increase.

Techniques from Operations Research

Operations research is concerned with minimizing or maximizing a function of
certain variables (i.e., the objective function) which may be subject to equality
or inequality constraints on other functions of the same variables (constraint
functions). Several important cases are distinguished: Either the solution values
can take only whole number values for some or all of the variables (discrete
programming or integer programming) or the solution values can take any real
values (continuous programming).

The latter case can be divided into three sub-cases: In non-linear program-
ming, the functions involved are arbitrary. If all functions are convex, more
efficient conver programming techniques can be applied. Efficient approaches
are for instance the quasi-Newton method, steepest descent, line search, or the
Davidson-Fletcher-Powell method; some of them require knowledge on the first
and second derivative of the target function (for an overview see [Hor87a]). If
all functions involved can be modeled as linear functions, linear programming
approaches can be used. Besides the classic simpler method and its derivatives,
the ellipsoid algorithm, interior point iterations and others have been developed
(|Sch86| provides an overview).

If a RAL can be modeled as a linear or non-linear problem, the various ap-
proaches can easily be applied to let a resource-adapting agent perform RAL
steps, since we have already specified a RAL problem as a (very general) non-
linear problem in the beginning of this section.

3.4.5 Discussion

All the presented techniques can be used for resource assignment. They differ
with respect to the degree of central control. Market mechanisms require no cen-
tral control unit, except for the representation of the group to higher instances.
The other approaches presuppose such a control unit whose competence, however,
varies. In a non-cooperative setting, the representative agent has only adminis-
trative competence and therefore mechanisms that enforce cooperative behavior
have to be applied. In a cooperative case, decision power is split: the represen-
tative agent decides on the basis of the local calculations of the member agents.
In the central Greedy-RAL approach, in traditional search approaches, OR tech-
niques, and in the decision-theoretic approach, the monitor agent has the full

3.5 A Resource Implementation Algorithm (RIL)

63

resource allocation competence. Local information is provided by the members
and is only used as a heuristic.

As stated above, Greedy-RAL can be seen as an instance of depth-first search,
its heuristic-based extension as an instance of best-first search. These types of
search approaches can cope better with changes in the environment than ap-
proaches that base on breadth-first strategies, such as iterative deepening or
bi-directional search. Since there is no well-defined end of the search, simulated
annealing can hardly be used.

Techniques from operations research are highly efficient and proven ap-
proaches that can be used if some vital pre-conditions, (e.g., linearity or convexity
of all functions) hold. The Greedy-RAL approach roots in the steepest descent
method, a convex programming technique. However, as we have shown, Greedy-
RAL can also cope with some violations of assumptions required for steepest
descent; it subsumes that approach.

The decision-theoretic approach is only tractable, if actions can be modeled
as transitions form one explicitly represented state to another. By modeling a
global optimum as a goal state, the global optimum can be targeted; however
running such a strategy leads to high computational costs. Therefore we will not
use this technique in any of our case studies.

More decentral approaches are better suited to cope with highly complex
allocation problems, as they can often be reduced to a set of problems with less
complexity (divide-and-conquer). On the other hand, the use of these methods
may lead to sub-optimal results. Hence, the choice of the appropriate mechanism
depends on the nature of the application, inducing a trade-off between optimality
and complexity. For the MoTiV-PTA case study (Chapter 6) we will employ
Greedy-RAL with its presented extensions, while in the TELETRUCK and IFMS
case studies (Chapter 7) we will use de-centralized RALs.

3.5 A Resource Implementation Algorithm (RIL)

In the previous section we have presented different techniques to allocate abstract
resources. In this section, we present a hierarchical framework RIL that allows us
to implement the resource allocation in an agent society. First, we elaborate how
to build up a hierarchical agent society, then we present a scheme to distribute
abstract resources in this hierarchy. We show the correctness of the approach
and analyze its complexity.

64

A Generic Resource Allocation & Integration Algorithm (GRAIL)

3.5.1 Construction of a Hierarchy in the Agent Society

In Section 3.2, we have characterized abstract resources as environmental entities
that impose interdependencies between agents. In GRAIL, these interdependen-
cies have to be explicitly specified by a system designer, just as he has to specify
the interactions among agents in a regular MAS. The resulting constraints can
then be used to model automatically the desired hierarchy of the agent society.
Finally, it is again the designer’s job to correctly model the constraints between
the various resource allocations. This task cannot be solved in an automated
fashion since the designer has a wide range of possibilities how to model the
resources and their meanings (see Section 3.2.3).

Basic Principle

After the specification of the abstract resources, we can describe and model the
agent society by a directed graph, where agents are represented by nodes and
resource dependencies by arcs: an agent «; is a successor of ¢, if the resource
allocation of o; can influence directly the behavior of agent «;, (for instance,
«; has permanent control over a fuel supply that o, needs for further work.)
Since communication among agents is a crucial property of a multi-agent system,
often an agent’s behavior depends on results of communications with other agents
(e.g., in auctions). In such cases, information has to be modeled as an abstract
resource.

For our purposes, we need one or more hierarchies: We will apply a top-
down resource allocation which would end up in an infinite loop if applied to a
cyclic graph. We do not require a tree-like structure: there may be more than
one agent whose behavior does not depend directly or indirectly on the resource
allocation of another agent (node with in-degree 0). This may lead to disjoint
hierarchies, in which case the overall system performance depends only on the
cumulated quality of the performances but not on direct interaction between
agents of different hierarchies. Also, agents may depend on several other agents,
possibly in different hierarchies (nodes with in-degree greater than 1).

Since resources are modeled by arcs, our focus on this graph is arc-centered,
not node-centered; therefore, as a special property, we allow more than one arc
pointing from one node to another one, representing dependencies imposed by
different abstract resources. We call such a graph a directed acyclic multi-graph
(DAMG), since the collection of arcs is actually a multi-set. As a side-effect, when
replacing cycles, we cannot consider nodes in a cycle as members of an equivalence
class since they might have different numbers of incoming and outgoing arcs.

3.5 A Resource Implementation Algorithm (RIL)

65

@ dat daq

d d
o0 LAY % g~ A
daz

Figure 3.8: Replacing dependency cycles

Replacing Dependency Cycles

The following procedure transforms a directed graph into a DAMG which is
suitable for RIL. The key idea is that for an optimal cooperative society with bene-
volent agents, resource allocation power can be given to a higher-ranked instance
(the monitor agent in our case) without loosing system functionality. Hence, a
dependency between two agents can be also be represented as dependencies of
agents from the higher instance. Therefore, cyclic resource dependencies d among
agents aq,...,q, can be managed by introducing a new monitor agent oy and
replacing each dependency arc from o; to a; with new dependency arcs from o
to o; and from g to a; where the monitor agent o has to control boundaries of
the new dependencies.

For instance, consider two agents a; and «y in the left-hand side of Figure
3.8. While «a; controls a supply of fuel, which is needed by both (displayed
by dependency arc d;), oy controls the resource water, also essential for both
agents (displayed by dependency arc dy). For the sake of clarity we introduce
different gray scales or shapes of arcs to express different dependencies. Assuming
a cooperative agent society, we can introduce o that now controls both resources
in a way that the amount allocated to «; plus that the amount allocated to cy may
not exceed the overall supply of each resource: The dependency d; is converted
to two dependencies di; and di5 of a; and ay from «g which represent the need
of a; and ay of the fuel resource which is now controlled by «g. Similarly, dy is
converted to do; and dso.

In order to assign efficiently resources, the new monitor agent needs infor-
mation on further dependencies of its sub-ordinated agents from other agents.
Therfore, we re-direct each of these dependencies to the monitor agent and intro-
duce new dependencies from the monitor agents to “its” member agents to further
pass control: All additional dependencies of the agents «; from some other agents
O & {01, ...,0,} are removed and replaced by appropriate dependencies of the
monitor agent o from «,,, and by additional dependencies of o; from the monitor
agent ayp.

66

A Generic Resource Allocation & Integration Algorithm (GRAIL)

® @

|

7
/ \"\‘:\\,‘ \
O J N @, — é% \@

@
/
k‘\ / @ —> @
N ®

Figure 3.9: Recursively replacing dependency cycles

The right-hand side of Figure 3.8 illustrates such a case: given the previous
example, further suppose that a;; depends on some agent a3 in terms of electricity
(dependency d3) and ay depends on agent 4 in terms of coal (ds). For an
appropriate resource allocation to a; and «y, the new agent oy must consider
constraints on electricity and coal allocation imposed by a3 and a4. So we convert
electricity dependency to ds; of ap from a3 and coal dependency to d4; of g from
ay. Resource guidelines from a3 and a4 must be delegated to a; and «s. Hence
we introduce electricity and coal dependencies d3 and dyo of a7 and ay from ay.

Recursively Replacing Cycles

In order to transform the whole graph, this replacement strategy is performed in
a top-down and depth-first manner. Algorithm 5 describes the exact approach
while Figure 3.9 visualizes the strategy: regular agents are represented by nodes
v; while monitor agents are symbolized by nodes w;. Dashed arcs of a cycle
denote that this cycle is going to be replaced in the next step. Figure 3.9 shows
the major steps of the development of the graph G,., in Algorithm 5, where
the symbol € expresses the joining of an item to a multi-set. The symbol \
expresses the removal of only one occurrence of an item from the multi-set. In
the initial graph (on the left-hand side of Figure 3.9), we have two cycles to be
replaced, namely (vg,v3,v4) and (vg, vs, v5,v4). We decide arbitrarily to replace
the former cycle first by wg. (middle graph of the figure). Therefore the second
cycle transforms to (wy, v3, vs) which is replaced by w; (right-hand side of Figure
3.9).

The right multi-graph appears to be rather condense. Note however, that
the original graph contains a relatively high number or cycles. Furthermore, this
approach is more a guideline for the system designer how to generate a DAMG;

3.5 A Resource Implementation Algorithm (RIL)

67

Algorithm 5 transform-graph (Graph G)

1: Graph Grest = (V;'est; Erest) =G
2: Graph Gpey =G
3: for v € V,es: do computelndegree(v) endfor
4: while V,ost # 0
5: if exists v € Vs with indegree(v) # 0
6: Viest = Vrest \ {U}
7 for w € V,es with (v,w) € E,cs; do
8: Erest = Erest \ {(an)}
9: endfor
10: else /* there is a cycle*/
11: Graph Geye =find-cycle(Grest) /*traditional BFS*/
12: Viest = Viest U {vg} /*for a new node vo*/
13: View = View U {UO}
14: for (v,w) € Gy do /*replace arcs of cycle with new arcs of same grey scale*/
15: Enew = Enew \ {(v,w)}
16: Erest = Erest \ {(Ua UJ)}
17: Enew = Enew @{(’U07 U)}
18: Erest = Erest @{(U07 ’U)}
19: for u € View \ Veye with (u,v) € G do /*process arcs directing towards the cycle*/
20: Enew = Enew \ {(ua U)}
21: Erest = Erest \ {(U; 'U)}
22: Enew = Enew @{(U; 'UO)}
23: Erest = Erest GB{(U,UO)}
24: endfor
25: endfor
26: endif

27: endwhile

this guideline cannot consider the semantics of resource dependencies which may
lead to a reduced complexity of the graph, if modeled manually. The presented
strategy in facts leads to a directed acyclic multi-graph, as the following corollary
shows which is proven in Appendix A.

Corollary 3.5.1 The proposed cycle replacement technique of Algorithm 5 ter-
minates and the resulting multi-graph does not contain any cycles.

Furthermore, the next corollary (which is also proven in Appendix A) shows
that the resulting graph displays the interdependencies correctly: If a new agent
oy is introduced to model resource dependencies among a group of other agents
Qi, ..., new arcs from aqg to aq,...,q, are introduced. The creation of a
new agent into the society can be done recursively, hence we show that if there
has been an arc between v; and v; in the original graph G, then there will be
an undirected path of the same gray scale’ from v; to v; over only new nodes

"We assume that new arcs are introduced in the same grey scale as the arc currently to
removed from the cycle.

68

A Generic Resource Allocation & Integration Algorithm (GRAIL)

(for the arc (vq,v9) the path {vy,wi, wp,vo} in the example of Figure 3.9); the
arc (vs,vs) is transformed to the path {vs,w;,vs}). This property states that
resource allocation constraints are taken into accent in the new structure.

Corollary 3.5.2 If an original dependency graph contains an arc (v, w), then the
resulting multi-graph after an application of Algorithm & contains an undirected
path (v,vg, ..., v, w) of the same grey scale where the v; are new nodes.

As Figure 3.9 shows, an arc in the original graph can be converted to a chain of
arcs with different numbers of intermediate nodes (that stand for monitor agents).
Corollary 3.5.2 proves that all arcs in this chain are of the same color, i.e., they
represent the same dependency as the original arc. Intermediate monitor agents
delegate the dependency correctly; hence the wvarying number of intermediate
monitor agents is of no concern.

3.5.2 A Resource Implementation Scheme for a Hierarchi-
cal Agent Society

In the previous section we have demonstrated how to use the concept of abstract
resources in order to derive a hierarchy in a benevolent agent society. We now
use this hierarchy to install a flexible resource adaptation scheme.

We can use the resulting acyclic structure to build a hierarchical resource
control:®* This DAMG induces the order of the sub-computations. We employ a
depth-first allocation scheme The top-most agents «y; perform one step to opti-
mize their resource allocation. Then the children of «;; re-allocate their resource
allocation in their subspaces recursively until optimization has been performed
on the lowest stage.

Once agents of the lowest stage have found a locally optimal resource allo-
cation, backtracking is performed: Agents on the stage above perform another
optimization step which induces a re-organization of the bottom-most agents.
This backtracking procedure is propagated up to the highest societal stage. The
recursive call of lower-ranked RILs can be performed in parallel since we can
assume the independence between the searches in the sub-spaces.

The procedure is described in pseudo-code in Algorithm 6. For this recursive
depth-first search algorithm, we assume a hierarchy of benevolent agents and an
operational characterization of the abstract resources as dimensions in a search
space. Furthermore, we require a resource allocation algorithm RAL that takes

8This is an idealized procedure, which has to be slightly modified for practical use. We will
discuss these modifications later.

3.5 A Resource Implementation Algorithm (RIL)

69

Algorithm 6 RIL (Agent a, SearchSpace ss)

1: Boolean solutionFound := false

2: SubSearchSpaceVector sssv

3: while (not solutionFound) do

4: (sssv, solutionFound) := RAL(SS) /* perform one step in RAL */
5: for each successor agents a; do /* for all dependent agents */
6: RIL(a;, sssv;) /* perform RIL recursively */
7: endfor

8: endwhile

a (sub-) search space as an input parameter and returns a flag indicating the
success of the search and a new search space for each agent that is sub-located to
the current agent. We require that all data necessary for the RAL in use is stored
locally there (e.g., the number of sub-ordinated agents, the current position in
the search space, a performance history if needed, etc).

Initially, the RIL is started for any top-level monitor agent and then propa-
gated through the hierarchy. The algorithm terminates if a (local) optimum has
been found for the whole agent society.® It does not produce any output since
modifications of the agent society occur as side-effects. The variables ss and sssv
are local parameters or instance variables that express the search space and the
vector of sub-search spaces for each agent in the hierarchy. These sub-search
spaces are computed in the RAL (see for instance Line 15 of Algorithm 1 in
Section 3.4).

In the case of backtracking, the new sub-branch in the search space often
shows similarities to the previous one. We can use this fact as a heuristic for the
definition of the starting point in the new search space by mapping the current
position in the old sub-search space to a position in the new one.

3.5.3 Complexity Analysis of RIL

In this section, we analyze the complexity of the hierarchical RIL scheme. Since
a variety of different RALs can be plugged into this control scheme, we treat the
complexity of the RAL as a function d;,) of the number of resources and the
(discretized) number of possible values of a resource. We define the following
quantities:

e Let r be the total number of abstract resources modeled in a multi-agent
society, n; be the number of possible values of the i-th resource and n =
max;(n;) be the largest number of possible values.

9In Chapter 4 we will modify the approach to run ad infinitum to cope with changes in the
environment.

A Generic Resource Allocation & Integration Algorithm (GRAIL)

e Let G be a DAMG, where a node stands for an agent «; and an arc denotes
an abstract resource R;; describing a resource dependency of ¢; from «;.
Let 7; = outdeg(c;) the number of agents (or children) depending on «;
and 7 = min;(7;) the smallest number of such dependencies. | = log, (r)
denotes an upper threshold of the depth of G.

e The function d,j(n,7) denotes the number of search steps that have to
be taken in order to find the optimal resource configuration for a certain
sub-search space of r resources and at most n possible values per resource.

In this definition we make some assumptions, which however do not lead to a loss
of generality but to a gain of tractability and readability: In principle, depending
on the type of a resource (see Section 3.2), there may by infinitely many possible
values of a continuous resource. By choosing n; appropriately high, but finite,
we still can assume tractability. In the following worst case analysis, we assume
all resources to have n values. Also, we now assume all agents to have only
depending agents in no more than 7 relations, which is again the worst case.

Obviously, the complexity of a centralistic approach to find the optimal re-
source allocation depends on the chosen RAL, the number resources and the
number of possible values of the resources, as the following corollary shows (a
proof is given in Appendix A):

Corollary 3.5.3 The worst case run-time complexity of a centralized resource
integration approach is O(d,,/(n,7))) .

The following corollary (also shown in Appendix A) denotes the complexity
of a decentralized and recursive approach. The key factor is that the run time is
no longer primarily dependent on the number of resources r (and the number n
of possible resource values), but on the branching factor 7 of the hierarchy (and

Corollary 3.5.4 The worst case complexity of a recursive decentralized resource
integration approach of Algorithm 6 is O(d,.q,(n, T)togrr) .

The corollary shows that, if 7 can be restricted, the exponent of the complexity
function is reduced from linear to logarithmic in r by switching from a centralized
to the decentralized approach. Hence, the extra effort for performing backtracking
(and discarding already found efficient configurations on lower stages) is more
than compensated by the parallel configuration searches on independent sub-
search spaces by lower-ranked agents.

Still, depending to the performance of the employed RAL, the overall per-
formance can be beyond tractability for large-scale systems with many agents

3.5 A Resource Implementation Algorithm (RIL)

71

and therefore many inter-dependencies among them. However, we have only ob-
served the extreme worst case: in average, not all resources have n values, not all
agents have children in 7 dependency relations. Furthermore, efficient positions
in a sub-search space can be mapped to promising starting positions in a new
sub-search space in case of backtracking and search space modification.

3.5.4 Discussion

We are not necessarily interested in the globally optimal resource configuration for
the whole society; a relatively high local optimum will often do as well. Hence we
might not need to solve the search space completely. In the case study, the various
search spaces are not traversed completely; instead heuristics are employed to
determine promising resource allocations. These issues are presented in detail in
the section on RALs (Section 3.4).

This hierarchical approach has major advantages over a centralistic one:

e We can split the search space of resource allocations in order to derive par-
tition that do not depend on each other. So we can break down complexity.

e We can employ agents to do the resource allocation of sub partitions in
parallel. This can really be a performance benefit, if for instance, the agents
run on different machines which are idle.

e If the environment changes, usually only a restricted set of agents are ef-
fected by this change, and hence have to re-optimize their resources. The
proposed RIL supports this local re-configuration. In a centralized proce-
dure however, it would be very difficult to estimate which part of the search
space can be pruned.

The presented RIL approach shows some similarities to branch and bound
algorithms, used in operations research for e.g., integer linear programming (An
overview is given in [NW88]). The key idea of such a technique is to cut the search
space into partitions and to exclude some partitions from being traversed by
solving selected sub-problems (possibly in parallel) with some standard problem
solver (e.g., a simplex algorithm) and by drawing conclusions on the position of
the global optimum. However, the main difference lies in the dynamics of the
system: In RIL, if there has been a change in the environment, a RAL can be
reset in order to cope with changes. A branch-and bound approach cannot offer
such a flexibility; in the case of an environmental change, the drawn conclusions
on which part of the search space be neglected have be undone and the search
has to be restarted.

72

A Generic Resource Allocation & Integration Algorithm (GRAIL)

Bottom Line

Our approach to achieve a scalable society of artificial agents is based on an
efficient distribution of resources within the agent society. We do not treat re-
source distribution as a first class action but as meta-level action which interferes
indirectly with the object-level behavior of the agent society.

We have extended resource concepts to the notion of abstract resources and
have derived the term bounded-optimal agent society from the concept of the
single bounded-optimal agent.

Our multi-folded resource adaptation scheme can be mapped on the structure
of the agent society: a hierarchical resource implementation scheme (RIL) embeds
on every stage in the hierarchy a resource allocation algorithm (RAL). Due to this
generic design, different RALs may be applied. We have discussed and classified
a wide range of RALs and have argued for Greedy-RAL to be the algorithm on
focus.

Chapter 4

A Framework for Agent-Based
Simulation and Resource
Adaptation

In this chapter, we present the generic agent framework SIF for agent-based
simulation and its extension SIFIRA for the construction of resource-adapting
agent societies. As a complete JAVAT™ package, the SIF development kit can be

downloaded from http://www.dfki.de/"sif under the GNU license agreement.

4.1 The Social Interaction Framework (SIF)

4.1.1 Multi-Agent Systems for Simulation Purposes

There are many different approaches to realize a computer-driven simulation,
ranging from using an off-the-shelf simulation tool to implementing a simulation
from scratch. Recently, decentralized approaches are becoming more popular to
simulate complex phenomena.

According to Troitsch [DGMT95], simulation tools are used mainly for two
rather conflicting purposes: On the one hand, for the better understanding of
observed real-world phenomena and on the other hand, for advice and decision
support. In order to satisfy these diverging demands, a whole variety of simulation
approaches has been developed since the early 1960’s.

Pre-built products such as the classic flow diagram system GPSS (General
Purpose Simulation System) |Gor69| or more recent graphic-oriented visual in-
teractive modeling systems (VIMS) provide built-in functionalities leading to little
modeling effort. These systems require only little programming skills. However,

74

A Framework for Agent-Based Simulation and Resource Adaptation

limitations of such tools are the rather low execution speed, the restricted expres-
sivity which often lead to insufficient scalability as only few entities can be mod-
eled. On the other extreme, the most flexible approach is do-it-yourself-coding,
since the developer has all freedom to model entities. But such an approach
requires detailed programming skills and rather time consuming implementation
and debugging.

Specialized simulation programming languages and pre-written simulation li-
braries for general-purpose languages are located somewhere between the ex-
tremes. The simulation designer still has a high degree of flexibility and can
make use of features pre-specified in the system. Such systems allow easy ac-
cess to simulation modeling for novice users as well as more complex simulation
experiments for experts.

Since Shoham introduced the agent-oriented programming (AOP) paradigm,
agent-oriented simulation tools offer new alternatives for simulation: Simulations
based on multi-agent systems can be used to model a broad variety of domains
because multi-agent systems support simulations of any granularity:

e Micro-level simulations use agents to represent individuals. The decision
making procedure of an agent can be defined in a primitive way, depending
only on a certain state of the agent and on states of neighbor agents. In
such a case, an agent-based simulation tool basically works as a cellular
automaton [Axe84|. However, more complex cognitive processes, such as
logic-based inference capabilities or even “illogical” emotions can be modeled
leading to a much more realistic simulation of human behavior.

e Macro-level simulations let agents represent whole individual groups
or societies. Hence, macro-level properties can be modeled effectively.
Through combination of micro- and macro-agents the behavior of individ-
uals in societies can be simulated easily leading to a natural bridge of the
micro-macro-gap.

A very recent trend is derived from the field of Virtual Reality (VR): In co-habited
virtual worlds (CHVW), autonomous agents and avatar agents (i.e., agents that
represent a human user and that may be controlled by the user) interact in a dis-
tributed network. This movement puts requirements the virtual world simulation
engine, and the agent architecture:

e Transparent networking: Open multi-agent platforms have to support
the transparent migration of agents and other system components within a
distributed environment.

4.1 The Social Interaction Framework (SIF)

75

B Social Interaction Framework Tl E3
File Agent Logging Debug Help

Reload Step ‘ ‘ Continua

=
- §

15) 5)
15 | e e e e

=1 T e T
{50 5 [[[[1 [
15150) e] s = =
1) e e

1 1) I s e e T S
1 15 e e e e

15 1 e) e I

1 L5 £ e e e

1 1) e = e e e

1 1 1 s e e
110) e

1 | o e e

g1 1 o e L
& 1 1 1 e o
“ 15) 1 e e e e

00:01:32

Figure 4.1: SIF screen shot

e Fine-grained action and perception facilities: Quasi-continuous act-
ing and perceiving is a vital prerequisite for a realistic simulation environ-
ment. Agent perceptions have to be generated for a local perspective of
the agent. Furthermore, the duration and the outcome of actions must not
be deterministic in advance, but have to be modeled by considering the
current environment.

e Broad platform: CHVW requires common, open platforms, such as those
based on JAVA™ VRML’97, and CORBA in order to reach as many users
as possible.

e Multiple Users: Co-habited virtual worlds require a sophisticated visu-
alization and user interfaces which should reflect the perceiving and acting
of avatar agents.

These new trends in simulation have influenced DAI as new demands have come
up. The multi-agent framework SIF has been designed to meet these new de-
mands. SIF is a JAVA™ library which enables agent-oriented programming for
quick and platform-independent simulation modeling (Figure 4.1 shows a screen
shot of a simple scenario). SIF provides a multi-threaded framework where basic
agent functionalities (such as sensing, performing actions, communication, etc.)

76

A Framework for Agent-Based Simulation and Resource Adaptation

medium

’{acﬁon_i% jﬁefcept}l
senser

ffe
[" ‘activates —— ¢ < Trotity T J

; . MEdium s

Figure 4.2: The EMS model and its realization

are already provided. Due to the generic layout, any type of agent can be con-
nected to the framework. Next, we present the SIF system in detail; in Section
4.2 we extend the framework by a toolbox for implementing resource-adapting
agent societies.

4.1.2 The Effector-Medium-Sensor Model of Interaction
(EMS)

SIF’s underlying basic mechanism is the Effector-Medium-Sensor (EMS) model
based on Russell and Norwig’s definition of an agent in [RN95]:

An agent is anything that can be viewed as perceiving its envi-
ronment through sensors and acting upon that environment through
effectors.

EMS provides an appropriate abstraction of an agent acting and interacting
with its environment and other agents. The central component of the architec-
ture is the medium. Effectors emit actions to the medium, which in turn sends
the effect of the actions as percepts to effected sensors. According to the EMS
paradigm, an agent is equipped with a number of effectors through which it can
act in its virtual environment, and with a number of sensors through which it
can perceive the state of the environment (see Figure 4.2).

Formalization of EMS

We define agents and multi-agent environments in a uniform state based mathe-
matical model. For this framework, we assume a discrete time scale and define a
time step as the transition from one point of the time scale to the next. During
each step, each agent receives its local perception through its sensors. The agent’s

4.1 The Social Interaction Framework (SIF)

7

An agent «; is a tuple (S;, P;, A;, ¢;) of the set of possible states S;, the sets of perceptions
P; and actions A;, and its agent function ¢; : S; X P; = S; x A;.

A multi-agent environment is a tuple (A, &, 11, A) of the set of all agents A = {ay,...,a,},
the set of environmental states £, a perception function I : £ — (P x --- X P,) and an

environment function A : & x (A; X --- x A,) = &.

Figure 4.3: Specification of an agent and a multi-agent environment

action and its new state are determined from its current state and from this
perception; the action is performed by the agent’s effectors (as specified in the
first part of Figure 4.3).

The surrounding of an agent is explicitly represented in the environment.
In SIF, the world server manages the environment and is responsible for the
computation of the environmental transition function (as specified in the second
part of Figure 4.3). Of course, we could have combined the perception function
IT with the environment function A in analogy to the definition of ¢. However,
we often refer to II and A separately, as this choice supports readability.

According to the specification, the state of the world changes with the actions
of the agents:

e =Ale,ar,...,a,)
describes the successor environmental state, therefore
s; = ¢i (s, IT'(e))

describes the successor states! of the agents for all 7 in dependence of the current
state and the new perception of the agent. The state transition function A :
EX S x-- xS, = xS x---x S, which is defined as A(e, s1,...,8,) =

(¢/,8},...,s) unifies the states of the agents and the states of the environment

’r¥n
into universe states. Hence, the perception function, the agent function, and
the environment function are parts of the universe transition function A. We
will extend this formalization framework in Section 4.2 to a characterization of

abstract resources and the RIL scheme.

4.1.3 The SIF Architecture

We now describe the SIF components in greater detail and characterize the ker-
nel components; Section 4.1.4 illustrates the extension of SIF for virtual world
application.

th

L An upper index n denotes the n' projection of the given function.

78

A Framework for Agent-Based Simulation and Resource Adaptation

{ percept)

£
% T

epre
k\é'ﬂf j;36/71‘

§O

Figure 4.4: Control and information flow in SIF

The World Server updates the world representation and organizes the infor-
mation flow during the simulation. It computes the effects of actions and the
new perspectives of perceiving agents, and sends these perspectives as percepts
to the sensors of the agents. The world server does not return any feedback on
the success of some action to the emitting agent. For example, the activation
of a “move” effector in general will not lead to a feedback on the success of the
action, but on a new percept on which the performing agent (and any other agent
perceiving this scene) has to calculate the possible success of the action. As the
activation of a “move” effector in front of a wall will not lead to a position change,
the agent perceives the same perception as prior to the activation of the action.

Furthermore, the world server starts and stops the simulation and provides
debugging and data collection facilities. Besides pre-defined methods, the world
server also allows the scenario designer to specify the agent perception of cer-
tain actions in the sub-component sensor manager, and to specify the change of
the environmental state to these actions in the sub-component action manager.
Furthermore, perception ranges can be installed: a percept is only received by a
sensor if the emitter is located in the perception range of that sensor. In addition,
the sensor manager can be adjusted to blur certain agent perceptions.

The world server also defines the world representation, a data structure which
carries information on position, appearance and capabilities of objects in the
environment, the specification of the environment itself and the services needed
or connected to these objects. The interaction between these parts is displayed
in Figure 4.4.

Agents are equipped with a number of sensors and effectors; they perceive
other agents’ actions filtered by the world server. Due to the generic design, any
type of agent can be connected to the world server ranging from simple objects
to sophisticated agents, such as for instance, INTERRAP agents.

4.1 The Social Interaction Framework (SIF)

79

! 2
act () method |

effector E1
effector E2
effector E3

J

Figure 4.5: An agent in SIF

Figure 4.5 shows an example agent with effectors and sensors. The effectors
of an agent could be for instance, moving, communicating, turning a robotic arm,
etc. Sensors could be for example virtual vision and communication.

The Graphical User Interface (GUI) is linked to the core of SIF just like a
regular agent, i.e., it communicates with the core via sensors and effectors. The
received percepts tell the GUI to update certain parts of the visualization or to
display agent information, etc. The GUI offers a control pad which is capable of
forcing agents to perform certain actions. It also provides information windows
for a convenient display of the internal states of agents.

Control and Information Flow in SIF

The agents, the GUI and the SIF kernel run independently from each other
in their own JAVA™™ threads. To explain the control and information flow we
assume that the simulation has already been started. We further assume that it
is the turn of some agent to decide on its next action. As soon as the agent has
committed to perform some action, it activates the corresponding effector.

The world server stores all incoming actions in an event queue that usually
works on a first-in-first-out basis. Exceptions are made for user-driven action,
agent communication and for the case that measurement of action duration is
introduced. These exceptions will be described later.

In each step of the simulation, the action manager takes the next action from
the queue and accesses the world representation to check the applicability of an
intended action. If applicability is given, the action manager updates the world
representation. Furthermore, a percept is sent to the GUI, specifying which part
of the world has to be updated in the graphical representation before control
is passed to the sensor manager. If the action is not applicable in a particular
situation, the action manager will directly pass control to the sensor manager.

80

A Framework for Agent-Based Simulation and Resource Adaptation

In either case, the sensor manager computes the input for all sensors that are
affected by the change of the world. The input is sent as a number of percepts
(representing the local perspective of the agents) to the sensors in question. As
a side effect of the asynchronous implementation of SIF, the agent does not have
to wait for this feedback from the world. The agent can emit new actions of
any kind; however it has to take into account that these actions might not be
applicable by the time they are being executed and therefore dumped by the
action manager.

A special kind of action is triggered if the experimenter wants to start or stop
the experiment or if he uses a control pad (which is part of the GUI) to force
an agent to execute a particular action. In the former case a directive action is
sent to the action manager to start or stop the control flow in the simulation. In
the latter case, a directive action containing the command is posted to the queue
driving the agent to execute the respective action. Here, the agent works as an
avatar, controlled by the user.

Assigning Duration Values to Actions

SIF is equipped with a mechanism that simulates the duration of actions: To
every action, a certain amount of simulated time can be assigned that the agent
needs in order to complete the action.

If an action is emitted by an effector, the world server inserts the action to
the event queue. For a correct ordering, the estimated completion time of the
action is taken as the key for the insertion. For this reason, the event queue is
implemented as a priority queue. Certain actions (for instance control actions to
the GUI) have higher priority and are therefore inserted in the beginning of the
event queue.

As stated above, the world server always processes the first action in the queue.
So it executes the action with the earliest completion time first. However, this
does not mean that an agent can be blocked from performing long-term actions,
because eventually the current time will be greater than the completion time of
the long-term actions and the action will be executed. Hence, a fair processing
strategy is guaranteed.

For the realization of this concept, an internal “clock agent” is employed that
sends a synchronizing action to the world server after a well-defined time interval.
Modeling the clock agent as part of the simulation guarantees that the processing
speed of a sequence of actions will always be constant in terms of simulated time:
if the system runs faster because the JAVA™ Virtual Machine (JVM) can allocate
more computational resources to the simulation engine, the timer agent will also
get more resources which leads to an independence from hardware or virtual
machine circumstances.

4.1 The Social Interaction Framework (SIF)

81

Whenever the world server has processed an action, it controls the feasibility
of the remaining actions in the queue. Only if all feasibility preconditions for an
action hold for the whole time the action was in the queue, it will be executed. For
instance, suppose that agent «; intends to jump over agent oy which is located
close to «a;. Further suppose that a jump action takes five time units while
moving lasts only three time units. o can only jump over the other agent, if ay
remains close to «;. If however, a, moves away while the jump action of «; is in
the event queue, this action gets removed from the queue. In a sense, the world
server works as an interpreter of the event calculus as it computes preconditions
and effects of events. This technique is related to the scheduling process of the
umpire of the MyWorld system [Wo094|, which however, does not only compute
the effects of agent actions, but is also responsible for deriving new beliefs and
intentions of the agents — a feature we do not address on purpose since we are
interested in a framework for agents of arbitrary architectures.

Communication as a Special Case of Action

For modeling communication and action, different principles can be applied:

e Action and communication are not treated in a common framework. Often,
agent architectures that focus on a single agent or that are concerned with
interaction among only very few agents (such as the INTERRAP architec-
ture) use such a model.

e Action is regarded as a special case of communication. Many agent archi-
tectures do not have the integrated view of agents embedded in the envi-
ronment. Often, the environment is simply modeled by some “environment
agent” which simulates the surrounding. In such an architecture, an action
is performed by communicating to the environment agent.

o Communication is reqarded as a special case of action. Systems that ex-
plicitly model the environment and interactions between agents and the
environment can easier support the treatment of communication like any
other action.

For SIF, we have chosen the latter option, since it allows the most canonical map-
ping of natural environments to artificial agent societies: all agents communicate
only via media, not directly with each other. Therefore, we can view communi-
cation as a special case of action, transmitted according to the EMS paradigm:
For instance, consider the agent «; sending a message (a communication action)
to agent as. To do so, a; activates its communication effector, which sends this
action over the medium. The the world server evaluates this action, identifies the

82

A Framework for Agent-Based Simulation and Resource Adaptation

receiver and sends the message as a communication percept to the communication
sensor of oy.

The recipient has to check explicitly the reception of an effector activation.
This feature prevents s from actions it does not intend to perform. It still
can decide what to do with the perceived information. This feature establishes
agent autonomy. For performance reasons, communication percepts are treated
with higher priority. Hence, they are inserted at the beginning of the queue by
assigning a duration of 0 to each communication act.

Blocking of Effectors

After an agent has emitted an action via one of its effectors there may may be
a time delay until the action is executed by the action manager (in particular, if
a duration has been specified for the action). There are different options how to
define the state of the agent and of the used effector during this delay time:

The whole agent is not supposed to perform anything.

The agent is blocked from emitting new actions, but can perform internal
reasoning.

Only certain effectors are blocked (possibly including the used effector).

There is no lock at all: the agent can trigger any action.

We prefer the third option, which is used in SIF by default; all other possibilities
can be selected manually. This option does not only help to keep the number
of actions in the event queue small, but also leads to a more natural simulation
of the behavior of the agents: For instance, an agent cannot pick up an item
while already picking up something else; it needs to wait until the first action is
complete. Furthermore, by setting a flag, the user can inhibit agents to use some
combination of different effectors concurrently, for instance turning while moving
forward.

Scripts

For easier testing and varying of experiments in the simulated world, SIF provides
a simple script language to specify experiments. Scripts can be loaded, modified
and reloaded without necessarily shutting down the SIF system. Any text editor
can be used to modify scripts.

4.1 The Social Interaction Framework (SIF)

83

4.1.4 Extension of SIF to Virtual Worlds (SIF-VW)

In this section, we extend SIF to virtual world applications. Therefore we first
extend the EMS model and then elaborate on the SIF architecture accordingly.
As this extension is not of relevance for the case study in Chapter 6, we sketch
only briefly the additional features of SIF-VW for completeness reasons.

New developments in Virtual Reality (VR) have led to a new dimension in
human-computer interaction, in the form of co-habited virtual worlds. In such
worlds, human users communicate with other users or artificial agents in a global
network setting. Applications of CHVW are, for example, virtual conferences
where lifelikeness and interaction of avatars are key issues, but also virtual mar-
ketplaces where electronic salesmen agents and customer avatars trade over goods.

Extension of the EMS Model

In order to extend SIF to the requirements of CHVW, we apply three modifi-
cations to the underlying EMS model which are also implemented in the SIF
architecture.

In general, a natural environment offers several independent media corre-
sponding to different types of sensors and effectors: For instance, agents in na-
ture have mouth effectors and ear sensors for verbal communication which is
transmitted through the air which is done independently from, e.g., emitting and
detecting infra-red light and outpouring odors that stimulate a smelling sense. For
a realistic virtual world simulation, an agent must be equipped with a particular
set of sensors and effectors in order to interface to multiple media.

In this case, natural effectors and sensors do not process pure information,
but interpret the data: they comprise the view of an agent. For instance, aural
percepts by which an agent is notified normally become more and more noisy
with increasing distance from sender to receiver. The degree of noisiness depends
on characteristics, e.g., the quality of the agent’s ear. For this purpose, we split
EMS sensors and effectors into virtual and a logical parts. The virtual part of
a sensor or effector interfaces the engine and serves as a preprocessing function.
The logical part is tied to the agent and establishes a connection to its virtual
complement.

EMS also matches very well the special role of human users in CHVW. A
user interface can be seen as the view of a human in which a 2D/3D-browser
serves as a virtual sensor (the display) and at the same time as an effector, e.g.,
by translating a mouse-click into a command for the user’s avatar in the virtual
world.

84

A Framework for Agent-Based Simulation and Resource Adaptation

Extension of the SIF Architecture

The additional functionality of EMS requires to extend the SIF architecture. The
world server has to process different media concurrently, which is realized by the
introduction of several priority queues.

Agent and avatar views are facilities to create and discard particular virtual
effectors and sensors on request of the agent. Virtual sensors can be regarded as
interpretation functions which convert method calls by the sensor manager into
method calls for the agent’s logical sensors. Complementary, virtual effectors
inter-operate with logical effectors and the medium’s action manager.

The world server receives data from the different media and delivers them
to avatar user view for visualization and interaction purposes. Actions of the
human user, on the other hand, are not object-level actions, but guidelines for
their avatars or even commands for controlling the overall simulation. The world
server processes these commands and transmits behavior guidelines to the avatars
through meta-sensors. Agents and avatars also own a meta-effector to transmit
their appearances, i.e., visualization data, to the meta-medium at startup.

SIF is equipped with two optional user views in 2D and 3D. Both interface the
meta-medium via RMI. The 2D version is JAVA™ Abstract Window Toolkit-based
and is suitable for grid-like worlds. The 3D version runs in standard WWW-
browsers using VRML’97 technology.

4.2 An Extension of SIF for Integrated Resource
Adaptation (SIFIRA)

In this section, we present the SIFIRA framework, a tool for resource-oriented
programming which extends the standard SIF system by built-in functionalities
for the construction of resource-adapting agent societies. These features imple-
ment the RIL and some RAL schemes of Chapter 3.

SIFIRA is a JAVA™ library that can be added to the original SIF system. It
contains abstract classes for the inheritance of resource allocation, monitor agent
and member agent functionalities, pre-defined monitoring and guidelining effec-
tors, sensors, actions and percepts. The package also contains extensions of the
action manger and sensor manager to cope with these new features, an expanded
script parser that supports the definition of group member and representative
relations, and a library of RALs which can be integrated into the functionality
of a resource-adapting agent.

4.2 An Extension of SIF for Integrated Resource Adaptation (SIFIRA)

85

A utility function is a mapping u : &€ x S — R where u(e,s) denotes the value of the
environmental situation e for an agent in state s.

Let e = (e1,---,€iy.--,€n,8) € & X --- X &, x S be a universe state, and u a utility
function for the agent in question. A dimension &; is an abstract resource for the agent with
respect to u if

e thereis a U € Rwith U > u(e),

e there is sequence of actions ay,...,a, € A* that transforms e into a state g with
u(g) > U, and
o for some other e} € &, the state e’ = (e1,...,€},...,ey,s) cannot be transformed into

a state g’ with u(g') > U by the same sequence of actions.

Figure 4.6: Specification of utility and abstract resource

Formal Characterization of the Behavior of a Resource-adapting Agent

We now extend the formal agent specification of Section 4.1.2 by a resource
adaptation functionality. As stated above, we assign utility values to the states
of the abstracted, discretized environment. This utility value expresses the local
utility estimation of the individual agent. For the sake of simplicity, we assume
a single-agent (multi-dimensional) environment £ = (£; x - - - x &,) for the agent
a=(S,PA,¢).

Taking abstract resources to be part of the environment, we identify certain
sub-sets of sub-states as resources. In accordance with our definition of Section
3.2.5, we model abstract resources as that part of the environment that enables
the agent to reach a state of the world that has a higher utility than the current
one.

In particular, we are interested in sequences of actions that serve to leave the
current universe state e that has a utility lower than a certain threshold U € R
and to reach a state g with a utility greater than U. We define those dimensions of
the current environment &; as abstract resources that are essential for the success
of these action sequences, i.e, there is an instance e; of &; that is available to the
agent and after the action sequence state g will be reached while otherwise (e;
is not available) only a state ¢’ will be reached which has a utility less then U.
Figure 4.6 formalizes this scenario which is displayed in Figure 4.7.

As an example, consider an environment in which the agent needs fuel to get
from its current geographical position a to some other position. Let £ denote
the dimension of the environment that describes the fuel supply assigned to the
agent. Currently the agent has e5 = 5 fuel units available. The agent considers
the current universe state to have a utility of 50. States in which the agent is
located at some other geographical position b are assigned to utility 70 and states

86

A Framework for Agent-Based Simulation and Resource Adaptation

State g
Utility Profile T

Current
state

U’rili’ry Alternative
state

SToTes

Figure 4.7: Utilities of different states

with some location ¢ are valued to 100. To reach b takes 3 fuel units while to
reach c takes 5 units.

According to the previous definition, &5 is a resource, since the current state
can be transformed to a state with a utility greater than a threshold U of, say,
90, while a similar initial state that differs to the current state only by having 4
units of fuel can only lead to a state of utility 70 which is less than U. This of
course implies that fuel is sometime a resource for an agent and sometimes it is
not, which fits our definition of an abstract resource as a subjectively perceived
entity.

4.2.1 Functionalities of Additional Agent Classes

For the design of agent hierarchies that implement the RIL scheme, we need
different types of agents: those that perform RALs, those that send directives
and those that receive and obey these directives. In a resource-adapting hierarchy,
all agents need the first functionality, the top-most agents need the second one
and the bottom-most agents need the third one, while intermediate agents need
all functionalities.

In the original SIF system, the scenario designer can define new agents by
inheritance from the abstract class Agent. For SIFIRA, we offer four addi-
tional abstract classes ResourceAdaptingAgent, MonitorAgent, MemberAgent
and MonitorMemberAgent?, all of which extend the class Agent and have addi-
tional methods at their disposal. By extending one of these classes, the scenario

21f Java™ allowed multiple inheritance, we would abstain from this abstract class in which
both, monitor agent and member agent functionalities are provided.

4.2 An Extension of SIF for Integrated Resource Adaptation (SIFIRA)

87

Sensor Agent Effector
{abstract} {abstract} {abstract}

currentPercept <has hash

getPercept () 1 " |Activate ()

e ResourceManager

S8: AbstractSrchSpe

CS: ConcreteSrchSpc

[| I

runRAL (SS)

lefineCi
lexecuteStep(CS) [SocietyObserver

SocietySensor

odifier-Sensor
Sensor Effector

frameOfSociely guideline \

quideline profile

1| [requestinfor)
modifySoc()

answerinfoReq) | !
obeyModifcation()

Figure 4.8: Agent hierarchy in SIFIRA

designer can create agents that inherit meta-level resource-allocation functional-
ities, but that can also perform object-level tasks that have to be defined by the
scenario designer. Each time, an agent thread that extends one of these classes
receives computational time from the JAVA™ Virtual Machine, first the func-
tionalities of the base class are executed, and then the designer-defined individual
functionalities of the agent can be performed. In the following, we simply call an
agent that extends the MonitorAgent class or MonitorMemberAgent class a mon-
itor agent and in analogy we use the terms member agent and resource-adapting
agent.

Just like any other agent in the SIF framework, these agents interact with
their environment (including other agents) via sensors and effectors: their sensors
receive percepts from the world server; their effectors emit actions whose effects on
the environment are computed by the world server. In addition to the sensors and
effectors that are defined by the scenario designer, these agents have predefined
sensors and effectors.

A resource-adapting agent inherits the functionality to run a RAL
which is explained in the section on RAL implementation below. The
classes MonitorAgent, MemberAgent and MonitorMemberAgent extend the class
ResourceAdaptingAgent as displayed in Figure 4.8 according to the UML stan-
dard [BRJ97|. (For the sake of clarity we have not displayed the aggregations of
the class MonitorMemberAgent to all subclasses of Sensor and Effector.)

A monitor agent provides additional functionalities: A monitoring scheme
of this abstract class contains a time management routine, which triggers the
agent to monitor the structure of the agent group it is responsible for (method

s
1 ! 1 Activate () Activate (guideline) Activate (profile)
MonitorAgent w
- - {abstract} {abstract} {abstract} - -
len hash

88

A Framework for Agent-Based Simulation and Resource Adaptation

requestInfo()) after a user-defined time interval is passed. This time management
routine also contains a time-out mechanism that prevents the monitor agent from
running in a deadlock if some of the member agents do no longer reply to one
of its requests. Furthermore, guidelining functionality enables such an agent to
send directives to member agents (method modifySociety()).

A member agent inherits the functionality to receive and answer requests
on the current status (method answerInfoReq()), and also to receive and obey
guidelines (method obeyModification()).

As in standard SIF, besides the definition of new agents, the system designer
has to specify the effect of actions on other agents in the action manger and sen-
sor manager. In SIFIRA, both classes already contain consequences for actions
of the monitoring and guidelining scheme. However, the scenario designer can
add further features. Similarly, the scenario script parser contains already func-
tionalities to cluster agents to groups and to assign monitor agent roles. This
parser can still be extended to additional scenario features. In Chapter 6 we will
exemplify this in detail.

4.2.2 Implementation of RALSs

The RAL library currently contains the standard Greedy-RAL algorithm and its
extensions for the retrieval of heuristics from bottleneck analysis and machine
learning.

The class ResourceAdaptingAgent allows to incorporate any RAL from the
library. Therefore, this class has an instance variable of the abstract type
AbstractSrchSpc at its disposal, that represents the search space. Furthermore,
the method runRAL(SS) is provided in order to take one step in the abstract
search space.

The class ResourceManager is aggregated to ResourceAdaptingAgent. This
class has an instance variable of the abstract type ConcreteSrchSpc at its dis-
posal, where abstract resources, their interpretation, boundaries, step size etc.
have to be specified by the scenario designer using the method defineCncrtSrch-
Spc(). The resource manager translates abstract RAL steps of the resource-
adapting agent into actions, i.e., the concrete society modifying actions are de-
rived and executed using the method ezecuteStep(CS).

The separation into resource-adapting agent and resource manager follows the
information hiding paradigm, also applied to the partition of the world server into
domain-independent and domain-dependant parts (action manager and sensor
manager): the resource-adapting agent performs a RAL on some abstract domain-
independent search space while information on the scenario-dependent resources
are stored only in the resource manager, which interprets an abstract move into
concrete steps.

4.2 An Extension of SIF for Integrated Resource Adaptation (SIFIRA) 89

4.2.3 Implementation of RIL
Modification of the RIL Scheme

For the persistent use in multi-agent societies, we have to modify the abstract
RIL scheme presented in Chapter 3. In a hierarchical approach to find an efficient
position in a multi-dimensional search space of configurations we did not specify
how to measure the performance of a certain configuration.

We shall now address this issue. An agent of any stage in the society that
performs a RAL needs to measure “its” performance (which is the joint perfor-
mance of a sub-group in the case of a representative agent) A performance metric
must be a priori provided by the scenario designer: The performance of a (sub-)
system can be measured in many quantitative ways (for instance the number
of answered requests to the agent society per time units, see the case study of
Chapter 6), as well as qualitative ways, such as for instance the quality of a tour
(i.e., its length) in a traveling salesman problem (see the case study of Chapter
7). Due to the unpredictability of the environment, the quality of a solution may
vary, even if the agent society has not been modified. For more valid performance
values SIFIRA offers facilities to collect a performance profile by averaging the
performance over a period of time.

In the following, we recall the terms global profile and local profile from Chap-
ter 3 to denote the profiles of monitor agents or member agents, respectively.
Often, a global performance profile is based not only on the overall performance
value of a group of agents, but also on parts of the local profiles (for instance,
the workload of the member agents). Therefore, SIFIRA does not only offer a
gutdelining scheme for spreading directives from monitor agent to member agents,
but also a pre-defined monitoring scheme for retrieving information of local pro-
files of the group members. The use of this scheme is in particular important as
the monitor agent cannot be sure that its directives are obeyed completely by
the members. Applying the monitoring scheme helps to update the global profile
and hence to determine the actual current state in the search space.

The abstract RIL of Chapter 3 performs backtracking in the sense that a new
step in a search space of a certain stage is only performed when all agents of
the stages below have completed their RALs and have found a locally optimal
solution. Employing this scheme for realistic applications is not tractable since
it may not always be clear when a “solution” has been found; furthermore due
to external environment changes, the search space might have changed or the
execution of a RAL of one of the sub-agents simply takes too long. Therfore
SIFIRA incorporates a time management system which triggers in well-defined
time intervals agents to perform a new RAL step, no matter if all lower-ranked
agents have succeeded in their optimization. Obviously, higher-ranked agents

90

A Framework for Agent-Based Simulation and Resource Adaptation

perform RAL steps much less frequently than lower-ranked agents since their
sub-ordinated agents need time to re-configure.

Determination of the next time point to perform a RAL step Hansen
and Zilberstein [HZ96| propose the use of anytime algorithms for finding an effi-
cient trade-off between solution quality and computation time for certain appli-
cations. We can make use of their techniques in the following way: During the
run of GRAIL, we are interested in finding for a given stage the optimal time
point for collecting a new performance profile and performing a modification in
the resource allocation. Until this point is reached, the lower-ranked agents can
continously perform their RALs.

To do so, we need an estimation of the solution quality after a certain period of
time: P(q'|q, At) denotes the probability that from a current state in the resource
allocation space with quality ¢ a new position of quality ¢ is found after At steps.

However, the usefulness of a state is not only determined by its quality, but
also by the duration of the search procedure to achieve this quality. We therefore
define U(q, t) as the utility of the approach at time ¢ and quality g.

The marginal utility of continuing for one single time step is the difference
between the expected utility (EU) a time ¢t + At and the utility at the current
time ¢:

EU(t,q) =Y _ P(q|q, AYU(q',t + At) — U(q,)

This value can be used to decide whether to immediately perform a RAL
step (EU(t,q) < 0) or to wait another time period At and then decide again
(EU(t,q) > 0). According to [HZ96], this strategy is optimal, if the following
holds:

Vi, g, At,Aqg > 0: EU(t,q) <0= EU(t + At,q+ Agq) <0

A decision rule can hence be found by optimizing the following value function,
where d represents the decision to wait another time period At and then collect
a new performance profile or to perform a step in the own RAL now.

B Ulg,t) if d = perform RAL,
Vig,t) = mf‘x{ >y Pdlg, AV (¢, t + At), if d = wait

The resulting strategy 7 can hence be derived as

(q.1) = U(g,t) if d = perform RAL,
MY =GP S, P(dla, AV (¢, t + Ab), if d = wait

The computation of this recursive strategy is computationally expensive, but can
be performed prior to the run of the system, if the probabilities P(q'|q, At) can be
estimated with significant accuracy. For such a case SIFIRA allows the scenario
designer to specify individual delay times in the time management system.

4.2 An Extension of SIF for Integrated Resource Adaptation (SIFIRA)

91

Wond Server World Server Wond Server &
answer —~ (VENTT modifi- lemberl
socnety—obs& Mergg?r soqely request Agent Sf?:?r‘r%%cr%g "\ caons AR

{formatlon
ving a?a percept a
¥

Monltor Monitor
Membe Member — Ember
— Agent J

Agent ent

Figure 4.9: Control flow in SIFTRA

Implementation of the RIL Control Scheme

During the run of GRAIL, the time management routine of a monitor agent deter-
mines a time point for the next society observation. If this time point is reached,
the monitor agent automatically emits a society-observing action through its so-
cietyObserver effector, triggering the extended action manger of the world server
to determine the current society status (i.e., number of agents, their structure
etc.) and the average group performance since the last RAL step (i.e., system
re-configuration). After having emitted this action, the monitor agent performs
the actions defined by the scenario designer.

All member agents of the monitor agent’s group receive via their infoRequest
sensors some information-request percepts that ask for information on their local
profiles. By defining the perception range of these sensors appropriately, it is
guaranteed that only agents receive that request which are members of the group
the monitor agent represents.

Once a member agent has perceived such an information request, an answer-
ing action is performed by its AnswerRequest effector, prior to all actions specified
by the scenario designer. A member agent emits the requested pieces of informa-
tion through performing an AnswerRequest action. Once all answers have been
collected (or timed out) by the extended action manager, the extended sensor
manager sends that data as a Society percept to the Society sensor of the monitor
agent.

The monitor agent in turn, automatically uses the collected data to perform
the next RAL step (i.e., the modifications in the society configuration). Once the
new position in the search space has been determined, the SocietyModifier effector
of the monitor agent emits a society-modifying action (containing instructions how
to modify the group) to the world server which commits the modifications (or
computes impacts on the society respectively, as it cannot be guaranteed that all
actions are committed successfully).

A monitor agent can never assume that all of its directives have been followed
to all extend by the group members. In order to get correct information on the

92

A Framework for Agent-Based Simulation and Resource Adaptation

An agent o; is a tuple (S;, P;, Ai, ¢;) of the set of possible states S; = S x S™° x S¢, the
sets of perceptions P; = P} x P/™° x P™¢ and actions 4; = A} x AT’ x A*¢, and its agent
function ¢; : S; x P; = S; x A;.

Let £ = & x &™. We define II" : & — (P x --- x Pr) and II™ : &™ —
(P x P"€ x - - - x PI™° x P™¢) as perception functions and A" : E" x (A7 x---x AT) = &7
and A™ : E™ x (A x A" x --- x AM° x A™€) — £™ as environment functions.

A monitor-member-relation between an abstract resource, a monitor agent «; and a
member agent «; is a relation MMR C ARx A x A. A local profile agent function of member
agent a; is a function ¢§* : (87, F) — S*P.

Figure 4.10: Splitting of agent and environment; defining relations between agents

society situation, the monitor agent needs to perform a new society-observing
action the next time that group has to be controlled.

This modified RIL scheme is repeated until the application is terminated.
Figure 4.9 visualizes this control flow. The scheme shows similarities to the
contract net protocol. In both cases, a central unit (here the monitor agent) has
to solve a problem and announces it to a set of agents (here the members of the
group). However, instead of collecting the members’ evaluations of the problem
based on their local profiles (i.e., their bids for organizing the society according
to their local preferences), the monitor agent collects these profiles in order to
get a more global profile which enables it to find a better solution.

Formal Specification of the Scheme

Interaction among agents can be defined best by an automaton-oriented descrip-
tion of agents, since the internal states of an agent are hidden and only its actions

and perceptions are examined. We use this technique to specify the control flow
in SIFIRA.

For our purposes, we distinguish three agent functionalities: the object-
level regular functionalities, and meta-level monitor agent functionalities, and
member agent functionalities. For these different functionalities, we extend the
agent formalization of Section 4.1.2 by introducing three-fold partitions for agent
states, percepts, actions and transitions which are marked by upper indices r,
mo, and me for regular functionalities, monitor agent functionalities and member
agent functionalities (first part of Figure 4.10).

We also distinguish between regular object-level facts in the environment de-
scription (€") and those that are concerned with meta-information (£7). Here,

4.2 An Extension of SIF for Integrated Resource Adaptation (SIFIRA)

93

// MMR |G e

Figure 4.11: Resources specifying relations among agents

we do not distinguish between monitor and member agent issues (second part of
Figure 4.10).

The definition of abstract resources induces structural relations of the society,
i.e., relations between monitor agents and the members of the groups (see Section
3.2). Therefore, we define a relation MMR between the set of abstract resources
and the cross product (monitor agent; member agent) of the set of agents (third
part of Figure 4.10 and Figure 4.11). As specified above, we consider the set of
abstract resources AR as a part of the environment, in particular, part of the
meta-level partition £™ = £™ x AR.? For instance, if a monitor agent cy controls
the resource fuel needed by a member of the society «y, while g controls fuel of
a3, then (fuel, (g, 1)) € MMR and (fuel, (a2, a3)) € MMR.

A local profile of a member agent o is represented as a sub-state LP; of
Sie = S;”e x LP; of the agent. A local profile is generated by the agent function
applied on the regular part of the state of o; and some external feedback F; which
is part of the regular perception of an agent P; = 15]7 x Fj.

The RIL scheme employs a monitoring sequence prior to the actual (re)-
assignment of resources in order to build a global profile. In our scheme, such a
monitoring action induces automatic local profile reporting actions of all member
agents in question. These reporting actions are derived from the perception
of the request and from the local profiles of the member agents. We enable
only those agents to send profile requests that stand in an appropriate monitor-
member-relation to the affected agents. A global profile of a monitor agent «;
is represented as a sub-state GP; of S™ = S x GP; of the agent. In order
to describe a temporal development, in Figure 4.12 we annotate future values of
variables with ticks (’).

We assume that an agent has to perform a set of tasks. We do not care how
such tasks are represented in the concrete agent architecture. For instance, they
could be represented as goals in a BDI-oriented architecture or they could be

3We denote the complement set of a set by a bar.

94

A Framework for Agent-Based Simulation and Resource Adaptation

An agent a; requests a local profile Ip; from agent o if there exist a society-observing-action
a;, a feedback f;, local profile Ip; and a answer-request-action ag-, with

ar,a;;a;) € MMR for an appropriate abstract resource ar,
y Qg5 Q5 PP

e ¢ =A(e,a1,...a4,...ap), (the next state of the environment)
. (p_;l,f]'-) = IIj(e"), (feedback as part of the perception)
o Ipf = oiF (5, f}) (local profile derived from state and feedback)
o aj=¢3(s}, f}) (answer request action derived from state and feedback)
o " =A(e,ai,...aj,...a;), (the next state of the environment)
o (s1",smo" gpl) = gl (s}, ITE(e")) (the next state of the monitor agent)

The resource assignment of an agent ¢; is a function ra; : AR — T; from the set of abstract

resources to the set of tasks of «;.

Figure 4.12: Specification of information requests and resource assignment

Figure 4.13: A resource assigned to a task

directly implemented into the agent source code. In our framework, tasks 7; are
represented in the regular part of the agent state S7 =S x T; of the agent ;.

Similar to Jameson [Jam97| (see Section 3.2.3), we define in the second part
of Figure 4.12 a resource assignment function ra; ranging from the regular state
of an agent «; to a task that agent has to perform, as a part of the regular part
of the state of an agent.* Figure 4.13 visualizes the assignment. The previous
definition reflects the local perspective of agent o; on the assignment of a resource
to one of its own tasks. Now we treat the case where one agent restricts or enables
the access of other agents to a resource. We call this case resource allocation.

An agent allocates an abstract resource ar from agent o to agent ay, if prior to
that allocation there was an assignment ra; from ar to one of o;’s tasks and after
that allocation there is an assignment raj, from ar to one of oy’s tasks. We enable
only those agents to shift resources that stand in an appropriate monitor-member-
relation to the affected agents. A monitor agent «; can allocate a resources ar
to/from itself, if (ar, (c;; o)) € MMR (see Figure 4.14).

4This of course induces that every agent is aware of its resources.

4.2 An Extension of SIF for Integrated Resource Adaptation (SIFIRA)

95

An agent q; allocates the resource ar from agent a; to oy if there exists an allocation-action
a;, with
o (ar,a;;a;) € MMR and (ar, a;;ar) € MMR
o ¢ =Ale,a1,...ai,...ay) (the next state of the environment)
o s = ¢i(s;, I (e")) (the next state of member agent o)
o sl = ¢k (sk, IIF(e")) (the next state of member agent ay,)
e raj(ar) =t; for some t; € Tj (o holds currently resource)
o Aaq :rai(ar) = t; for some task t; of oy (no other agent cur. holds res.)
e raj(ar) =t} for some t}, € T}, (a then holds resource)
o A :raj(ar) = t; for some task t; of oy (no other agent then holds res.)

Figure 4.14: Specification of the resource allocation scheme
Bottom Line

In this chapter we have presented the SIF system, a toolkit for agent-based simu-
lation, and its extension SIFIRA that supports conveniently the setup of resource-
adapting agent societies.

This general framework is the basis for all resource allocation mechanisms
implemented and presented in this work. This framework does neither specify the
actual resource to be modified, nor the amount to be shifted, nor the donator and
recipient of resources, nor the time intervals between monitoring and allocation
actions. These items depend on the strategy selected and on the application
domain. We will instantiate this framework to each of the case studies in Chapters
6 and 7.

96

A Framework for Agent-Based Simulation and Resource Adaptation

Chapter 5

Structural Adaptation in Holonic
Multi-Agent Systems

In Chapter 3 we have introduced a generic hierarchical self-adaptation scheme
which bases on the distribution of abstract resources. We have identified criti-
cal properties of the application, such as openness, dynamics, unpredictability,
complexity and benevolence. We have also derived GRAIL, an optimization ap-
proach that is suitable for domains of such properties. Now we further restrict
application characteristics, mainly in terms of autonomy of the agent, inherent
structures and decomposability of the domain. In such holonic cases, we can refine
the resource-adaptation scheme.

In this chapter, we identify traits of domains that are suitable for the holonic
paradigm and derive an agent definition and use it as a basis for a definition of
holonic agents; furthermore, we propose a general implementation framework for
holonic agent systems and apply GRAIL in the central issue of resource man-
agement for building and maintaining holonic systems. We also present four
prototypical holonic domains and corresponding holonic solutions.

5.1 Background

Many distributed problems exhibit a recursive structure: an agent that works
on a macro-level of a decomposable problem may have a similar structure as
the agents for the micro-level sub-problems, thus the agent society should be
structured recursively. More generally, an agent that appears as a single entity
to the outside world may in fact be composed of many sub-agents and conversely,
many sub-agents may join into the coherent structure of a super-agent and thus
act as single entity. We call agents consisting of sub-agents with the same inherent
structure holonic agents.

98

Structural Adaptation in Holonic Multi-Agent Systems

Figure 5.1: Decomposition of a holon

5.1.1 The Holonic Principle

The term holon, a combination of the Greek holos (whole) and the suffix -on
(part), was originally introduced in 1967 by the Hungarian philosopher Arthur
Koestler [Koe67] in order to name recursive and self-similar structures in bio-
logical and sociological entities. According to Koestler a holon is a biological or
sociological structure that consists of further holons that function similarly. No
natural structure is either “whole” or “part” in an absolute sense, instead every
holon is a composition of subordinate parts as well as part of a larger entity (see
Figure 5.1). For example, a human individual is on the one hand a composition of
organs consisting of cells that can be further decomposed, and on the other hand
the person may be part of a group which in turn is part of the human society.

Koestler’s concept has been applied in the area of flexible manufacturing sys-
tems (see for instance [Dee94|), where the advantages of Koestler’s holonic soci-
eties (or holarchies), namely stability, adaptability, flexibility and efficiency have
motivated a similar design for sufficiently redundant manufacturing processes.!

Holons in holonic manufacturing systems (HMS) are characterized by holonic
attributes, namely autonomy and cooperativeness. In this context, autonomy
means the ability to create and control the execution of plans and strategies. Co-
operativeness allows for joint planning and coordination of joint plan execution.
In a holonic manufacturing system, holons consist of an information process-
ing part and sometimes a physical part, which is responsible for transforming,
transporting, storing and validating information as well as physical objects. Man-
ufacturing holons can be build recursively from of other holons.

For the characterization of the term holonic multi-agent system we use the
terms holon and holonic agent synonymously. By super-holon we denote a com-
position of subordinate agents, which we shall call sub-holons or sub-agents. As
these sub-holons may be further decomposable into sub-sub-holons we shall use
the term immediate sub-holons to distinguish it from its transitive closure.

!For details see http://hms.ifw.uni-hannover.de/public/hms_tech.html.

5.1 Background

99

5.1.2 Models of Autonomy

Autonomy is not only a vital property of traditional agent systems, but also
a critical issue for holonic systems where agents joining a super-agent have to
surrender (some of) their autonomy. In this section, we present a collection
of existing definitions for autonomy starting with popular definitions and then
looking at more research based technical definitions and implementations. We use
these definitions as a starting point for our characterization of agent autonomy.

Basic Definitions

Autonomy literally means “self-governing”, and is derived from the Greek words
autos (self) and nomos (law, rule). Generally, it has implications of independence
and seperatedness. The American Heritage Dictionary of the English Language
describes the term autonomous as 1. not being controlled by others or by outside
forces; independent: 2. independent in mind or judgment,; self-directed.

Usually, autonomy has become is associated with the self-regulation of smaller
systems, such as agents. Russell and Norwig [RN95] define an agent’s behavior
autonomous to the extent that its behavior is determined by its own experience.

According to Castelfranchi [Cas95], agent autonomy means that agents con-
trol their actions and internal states to enable them to operate without the direct
intervention of humans or others. He defines autonomy as the amount of sepa-
ration between external influences and an agent’s goals.

Falcone and Castelfranchi [FC99] treat autonomy equal to self-sufficiency, not
being dependent on others for private goals: the less dependent agent oy is on
agent «y regarding the resources for that task, the more autonomous «; is of ay
regarding that task.

Luck and d‘Inverno [Ld95] define an autonomous agent to anything that has
motivations, where motivation is defined to be any desire or preference that can
lead to the generation and adoption of goals.

Operationalizations

Barber and Martin [BM99] interpret autonomy with respect to an agent’s degree
of freedom from intervention of others. They distinguish between three discrete
categories: A command-driven agent does not plan and must obey orders given
by another (master) agent. A consensus agent works as a team member, sharing
planning decisions equally with other agents while a locally autonomous/master
agent plans alone and may or may not give orders to other agents.

100

Structural Adaptation in Holonic Multi-Agent Systems

Cesta et al. [CDC99] examine agent autonomy in terms of human interaction.
They distinguish between low-interactive agents that perform complex tasks that
require very few interaction with human users, and highly-interactive agents that
carry out expert tasks along with the users. For Cesta et al., agents of the former
type are more autonomous than agents of the latter type. A degree of autonomy
could then be measured by counting the number of user interactions.

Hexmoor et al. [HLT99| see autonomy as self-governance over output. They
classify three types of autonomous agents: the fully autonomous agent makes
decisions and reacts to the environment without much input from an outside
source. A boss is an agent that has control over other agents as well as over itself.
Finally, cooperative agents communicate with others and as a whole, they come
up with a course of actions.

Huhns and Singh [HS98| define a collection of different autonomy concepts:
they distinguish between absolute autonomy (an agent completely ignores other
agents and does whatever it wants to do), design autonomy (describing the free-
dom an agent designer has for the setup of an agent), and ezecution autonomy
(capturing how much freedom an agent has in making decisions while executing
a plan).

Huber [Hub99] considers autonomy with regard to BDI theory by speaking
of belief, goal and intension autonomy where an agent is autonomous in terms of
its beliefs (goals, intentions, respectively) if it is free to modify its beliefs (goals,
intentions) without the inference of others.

Dorais et al. [DBK'98| characterize autonomy of a system to depend on
the complexity of commands to control the system, the number of autonomously
controlled subsystems, the circumstances that allow the system to override user
commands, and the duration of the autonomous operation.

Our Perspective

For the purpose of partially restricting autonomy in holonic agent societies, the
basic definitions provided in [Cas95] and [FC99| reflect also our perspective of
autonomy. We do not rely on a certain agent architecture, and hence we do not
base on a special underlying theory, such as the BDI theory. For our purpose, we
decompose autonomy into three aspects:

e State autonomy: An agent’s state is determined only by its previous
states and its perception, as supported by e.g., the SIF framework (see
Section 4.1).

e Action autonomy: Like in Castelfranchi’s definition, the action of an
agent is determined solely by its current state.

5.2 Holonic Domains

101

e Computational autonomy: The agent either has computational means
of its own or is supplied with computation time (and space) in a fair manner.

5.2 Holonic Domains

In this section we examine how domains can be characterized and delimited from
those that are better suited for traditional multi-agent system. Obviously it is
not possible to give an absolute classification: the boundaries between domains
that are suitable for holonic agents and those that are not, are blurred. So we
will present a collection of criteria as a guide for the classification.

Actions of different scopes: Holonic systems are well suited for domains with
actions of different granularity. Macro-level actions are carried out by the holon’s
super-agent and decomposed onto the sub-holons. This could be realized in a
traditional MAS too; however, the relationship between the individual agents
and the group would have to be represented explicitly; a holonic system provides
a priori the relevant features.

Hierarchical structure: An application domain that exhibits a hierarchical
structure is usually an excellent candidate for a holonic system, since hierarchies
of sub-holons can be modeled canonically. The structure of the domain induces
abstraction levels, which can be modeled naturally in a holonic system.

Decomposability: One of the main pre-requisites for a traditional agent-based
system is a decentralized or decomposable problem setting, where each agent is
assigned to one of the sub-problems. Pro-activeness and autonomy of the agents
are the major features.

Often however, problems are neither completely decomposable nor completely
non-decomposable; in many hybrid cases, some aspects of the problem can be
decomposed, while others cannot. Holonic agents are structured hierarchically,
they can easily realize actions of different granularity, hence holonic agent systems
can naturally deal with problems of that type. Still, completely decomposable
as well as completely non-decomposable problems can be attacked with holonic
agents leading to overheads imposed by components not needed for these special
cases.

Communication: If the overall problem is decomposed into sub-problems that
are not partitions of the original one, but some overlapping exists in the sense

102

Structural Adaptation in Holonic Multi-Agent Systems

that logical interdependencies occur, communication between the problem solvers
is needed. A domain often induces an unsymmetrical communication behavior
between problem solvers in the sense that each unit does not communicate to
all other units equally often, i.e., patterns in the communication behavior can be
observed. These patterns indicate possible structures for holonic agents: Holons
provide facilities for efficient communication inside the holon (intra-holonic com-
munication), which occurs more frequently than communication among different
holons (inter-holonic communication).

Cooperativeness: In Section 3.4 we have already distinguished between coop-
erative and non-cooperative settings. A cooperative setting does not constrain
the use of holons in any way. However, in non-cooperative settings (e.g., virtual
market places), things are different. If there is no cooperation among agents in
the domain, the use of holonic agents is not very reasonable. If there are coopera-
tive elements in the domain, holonic agents can be used to model the cooperative
sub-domain.

Situatedness and real time requirement: For many applications real-time
behavior is a vital issue: The problem solver has to find a solution within limited
computation time. As for some traditional agent architectures, bounded ratio-
nality for all members of sub-holons is a way to cope with these challenges by
explicitly reason about time and other resources in order to find the best possible
action within a given resource allocation.

Summary

The most important requirements for a holonic domain are structure and coop-
eration: Similarly to structured agent groups as discussed in Chapter 3, central-
istic aspects of a domain can also be modeled. However, in contrast to domains
of benevolent agent societies described in Chapter 3, the domain should have a
holonic structure, i.e., it should be recursively decomposable. The holonic system
can then be mapped canonically onto that structure. Furthermore, there must
be sufficient cooperative elements between the distinguished problem solvers.

5.3 Holonic Agents

In this section, we first determine relevant properties for regular agents which we
then extend for a definition of a holonic agent with respect to the characteristics of
holonic domains of the previous section. Finally, we give a formal characterization
of a holonic agent and its perspective on the environment.

5.3 Holonic Agents

103

5.3.1 Characteristics of Traditional Agents

In the DAI literature exists a wide range of agent definitions. In Section 2.1
we have already compiled definitions that are relevant for this context. For our
purpose, we focus on the following agent characteristics:

Autonomy: Autonomy is one of the vital requirements for agents, while an
appropriate restriction is one of the crucial traits of holonic agents. Therefore we
have discussed this issue already in Section 5.1.2.

Goal-directed behavior: An agent has explicitly or implicitly represented
goals and desires, where desires are defined as in BDI theory.

Action: Due to Wooldridge and Jennings [WJ95|, an agent is able to behave
reactively to changes in the environment and/or it can behave pro-actively in
order to reach some goal. For the scope of this work, we do not have to go into
this distinction but we do require the general capability to act.

Belief: Agents have implicit and/or explicit representations of their environ-
ment.

Bounded rationality: In analogy to Russell and Wefald [RW91|, we require
a rational agent to behave optimally with respect to its limited resources and its
goals.

Communication: Similar to Wooldridge and Jennings’ requirement of social
ability in [WJ95], the agents have to share a communication language.

5.3.2 Characteristics of Holonic Agents

We now extend these requirements to a definition of holonic agents. According
to Koestler’s original framework, arbitrary structures can be viewed as holons;
the sub-structures do not necessarily have to be of the same kind. In contrast to
his picture we restrict all entities to agents as defined above, and furthermore,
we require that sub-holons always have the same structure as the super-holon.

104

Structural Adaptation in Holonic Multi-Agent Systems

Autonomy: Several agents that form a holon, act as a single entity. The holon
interacts with the environment as an autonomous agent in the sense of the criteria
presented in Section 5.1.2 (state autonomy, action autonomy and computational
autonomy). By joining a holon, agents accept some restrictions to their auton-
omy: they commit to the goals of the holon and they accept restrictions of their
abilities to act and to communicate. Still, they may keep their autonomy to some
extend; in particular, they are free to leave the holon or enter a second holon.

Common goal-directed behavior: Sub-agents of a holon still pursue their
private goals and by doing so, they have to pursue at least one common goal of
the super-holon which may be represented explicitly or implicitly.? Hence, the
super-holon’s overall goals are consistent with the goals of the sub-agents. We
do not require that the super-holon’s goals are also the goals of its sub-agents,
but the goals of the super-holon and those of its sub-agents must not contradict.
Consequently, an agent can only be a member of several holons with conflicting
goals if the agent is indifferent to these goals. This requirement corresponds well
to the cooperation feature of an HMS holon.

Increased group capabilities: An agent’s capabilities to act are extended in
the holonic case at the group stage to Macro-level actions which are composed
of the actions of the sub-holons. Hence, a super-holon may have actions at its
disposal that none of its sub-agents can perform on its own.

Belief: The requirements for an agent’s belief remain unchanged: holons have
some representation of their environment, i.e., they hold beliefs about their sur-
roundings. This belief might be represented explicitly within the super-holon, or
it may be distributed and implicitly provided by the local belief of the individual
sub-holons. Inconsistency between the holon’s beliefs and the beliefs of some of
its members is of course an issue.

Bounded rationality: A holon has to control its resources in order to exhibit
a bounded rational behavior. Resource management of the sub-holons is moni-
tored by the super-holon, which distributes guidelines to its sub-holons for local
resource management. This is an essential issue of our holon definition and will
be discussed further in Section 5.4.2.

2For example, BDI architectures provide an explicit representation of goals. Implicit goals
can be ascribed to any agent that exhibits some kind of pro-activeness.

5.3 Holonic Agents

105

Communication: The ability to communicate is an essential part of an agent’s
autonomy. We distinguish between communication inside the super-holon and
communication between super-holons: In our framework, we regard that the right
to communicate with other agents is an exclusive macro-level abstract resource of
the holon and not of its sub-holons. This right corresponds to a communication
channel between two equally ranked holons. Such channels are managed solely
by the super-holon.

Internal communication among the sub-holons is of course allowed, but is
controlled by the super-holon. Since problem solving inside a holon is cooperative,
internal communication load can be high, hence, an efficient data structure for
internal communication should be provided.

5.3.3 The Perspective of Holonic Agents on their Environ-
ment

We show that from a theoretical perspective, an agent’s view on an environment,
containing multiple agents can be isomorphically mapped onto an environment
of that agent in which only this agent is represented explicitly, while the others
are perceived to be integrated into the environment. Furthermore, we show how
to construct for a multi-agent environment that contains a holonic agent an an-
other one where (from the holon’s view) the holon is split into a group of agents
(holonic decomposition). Vice versa, we speak of a holonic composition if a holon
is composed from a group of holonic agents.

This theoretical perspective covers only an agent’s local perspective of the
environment and society. It does not consider internal configuration mechanisms
inside a holon such as resource allocation, etc. As an extension of the object-
oriented paradigm, the holonic paradigm hides these mechanisms to the outside
world. Therefore the following scheme is not intended to express the merge
procedure in a globally adequate way.

For the following definition, recall the agent and multi-agent environment def-
initions of Section 4.1 where an agent a; has been defined as a tuple (S;, P;, A;, ¢;)
of the set of possible states S;, the sets of perceptions P; and actions A;, and its
agent function ¢; : S; X P; — S; X A;. A multi-agent environment has been defined
as a tuple (A, &,II, A) of the set of all agents A, the set of environmental states
&, a percept function II and an environment function A.

Integrating the state of the environment and agents to universe states enables
an agent to observe the same multi-agent setting from different perspectives: It
can represent any other entity in the universe explicitly as an agent or implicitly
as a part of the environment. The isomorphy specification of Figure 5.2 allows to
perceive a multi-agent environment containing several agents to the single agent

106

Structural Adaptation in Holonic Multi-Agent Systems

Two multi-agent environments (A, &, I, A) and (A', &', II', A’) are isomorphic if there exists
a bijection function ¥ : £ x Sy X -+-x S, = &' x S| x---x 8! such that for all (e, s1,...,8,) €
E xSy x---x8, holds: A'(¥(e,sy,...,5,)) = U(A(e,s1,--.,5,))

Figure 5.2: Specification of an isomorphy relation

(I

a N\

o
GH
.

\ /

Figure 5.3: (De-)composition of a multi-agent environment to a single-agent en-
vironment

case by representing all agents but one as entities of the environment. Figure
5.3 shows the intuition behind this construction, which is explicitly stated in the
following corollary. (A proof can be found in Appendix A.)

Corollary 5.3.1 If E = ({aq,...,0,}, &I, A) is a multi-agent environment

then for each © < n there exists an isomorphic multi-agent environment
({ai}, &1, AY).

Notice that for any multi-agent environment there exist two special cases: first,
an environment without any agents where all state transitions are encoded into
the environment function A and second, an environment containing only one
constant environmental state and one agent where all state transition is encoded
into the agent function ¢. We now introduce the notions of a holonic merge
(Figure 5.4) and decomposition and show how to merge a set of agents into a
holon, as shown in Figure 5.5.

Corollary 5.3.2 For every multi-agent environment ({aq,...,a,},E, I A)
and k < n we can construct an isomorphic multi-agent environment
o, apsry - ant, E, T, A"), where o is a holonic merge of aq,...,ax in the
sense of Figure 5.4.

Corollary 5.3.1 and Corollary 5.3.2, (which is also proven in Appendix A)
enable a view of a collection of agents as one super-holon and to reduce the state
transition of the super-holon to the single-agent case.

5.4 A Scheme for Holon-Oriented Programming

107

Consider the two isomorphic multi-agent environment ({oa,...,a,},&,II,A) and
{oa,. ., aim1, 040,y Qimy @iy, -0}, E I AY). We call o; the holonic merge of
(ai,l,...,ai,m).

Figure 5.4: Specification of a holonic merge

~

@%

©

—e®

Figure 5.5: (De-)composition of several agents to a holon

5.4 A Scheme for Holon-Oriented Programming

Now that we have distinguished between regular and holonic agents, we provide
a basis for an actual implementation of a holonic multi-agent system. A holonic
agent of a well-defined software architecture shall be able to join several other
holonic agents to form a super-holon; this group of agents then can act as if it
were a single holonic agent with the same software architecture.

The nature of the merge of several separate entities into one entity is the
subject of this section, where we first present and discuss several approaches
how to realize holonic structures; second, we show how GRAIL can be used to
implement the dynamic holon (re-)formation procedure. This framework can used
for a scheme for holon-oriented programming which can be seen as an extension
of Shoham’s agent-oriented programming paradigm.

5.4.1 Implementation of Holonic Structures

We now present a generic framework for the implementation of holonic agent
systems, where the holonic structure of the agent society is explicitly represented.
First we examine general possibilities for modeling holonic structures and evaluate
whether they are suitable for the design of a holonic system. Major emphasis
lies on the aspect of autonomy. The following approaches differ in the degree
of autonomy the sub-holons have and cover the spectrum from full sub-holon
autonomy to a complete lack of autonomy.

108

Structural Adaptation in Holonic Multi-Agent Systems

Figure 5.6: A holon as a federation of agents

A holon as a federation of autonomous agents: At one end of the spec-
trum is a model which assumes that the sub-holons are fully autonomous agents
with their predefined architectures and the super-holon is just a new conceptual
instantiation of the same generic agent architecture. Figure 5.6 displays this
constellation.

In this case, no agent has to give up its autonomy, and the super-holon is
realized exclusively through cooperation among the sub-holons. The most trans-
parent way of cooperation for this way is an explicit coordination by commaitment
via communication, i.e., agents negotiate over joint plans, task distribution or
resource allocation. If commitments cannot be established through communica-
tion, implicit coordination can be achieved in two ways: either, the holons are
designed such that a goal directed common behavior emerges from the behavior
of the sub-agents, or some sub-holons are able to represent goals and intentions
of others and to reason about them; thus, they coordinate their actions without
or at least with only little communication.

The representation of a holon as a group of autonomous agents is in a sense
just another way of looking at a traditional multi-agent system. The holon entity
itself is not represented explicitly. In this case, holonic structures are only a
design aid for structured agent-oriented programming.

Several agents merge into one: The other extreme of the design spectrum
requires to terminate the participating sub-agents and to create a new agent as
the union of the sub-agents with capabilities that subsume the functionalities of
the sub-agents (Figure 5.7). In this case the merging agents completely give up
their autonomy and their existence but they may be re-invoked into an existence
of their own when the super-holon is terminated.

The realization of this approach assumes procedures for splitting and merging
holons that lead to the creation of new agents. For agents of the same kind with

5.4 A Scheme for Holon-Oriented Programming

109

®e o
®e N

Figure 5.7: Several agents merge into one

an explicit representation of goals and beliefs (e.g., BDI agents) merging may
be achieved by creating an agent with the union of the sub-agents’ beliefs and
goals provided a guaranteed consistency. Especially for a heterogeneous group of
agents merging can be intractable and in either case may not be very desirable.
A universally applicable merging procedure is hence not available. According to
this model, agents cannot participate in more than one holon, unless they are
copied.

A holon as a moderated group: The two solutions above may be useful only
under very specific circumstances. We propose a hybrid approach that subsumes
the extreme architectures above: agents give up only part of their autonomy
to the super-holon which could be achieved by designation of one agent as a
representative agent or head of the holon. Figure 5.8 visualizes this approach.

This head represents the super-holon to the outside world, i.e., it provides the
interface to the rest of the agent society. Its competence may range from purely
administrative tasks to the authority to emit directives to the other sub-holons.
Furthermore, the head has the authority to plan and negotiate for the holon on
the basis of its sub-agents’ plans and goals, and even to remove some sub-holons
or to incorporate new sub-holons. Additionally, it also serves as the interface and
contact of the holon to the rest of the agent society.

There are at least two methods to determine the head. Either, a new agent
is created for the lifetime of the holon, or one of the members of the holon takes
the role of the head and gains the additional functionality. In the second case
either one member of the holon is a priori pre-destinated for the leadership or an
election procedure is needed to promote one of the agents to leadership. In this
model, the autonomy of the member agents is partially traded for control by the
head. Depending on the application domain, the competence of the representative
agent may vary: the resulting structure can range from a loosely moderated group

110

Structural Adaptation in Holonic Multi-Agent Systems

‘ v,
N Z
Oy — €Y
e
v

Figure 5.8: A holon as a moderated group

to a hierarchical structure. However, the members of the super-holon are always
represented as agents, and, hence, we do not loose the capability to solve problems
in a distributed fashion.

Conclusion

Considering the strengths and limitations of these three approaches, we prefer
the hybrid one: It allows for an explicit modeling of holons, a flexible formation
of holonic groups, and a scalable degree of autonomy of the participating agents.
The most challenging problem raising from this definition is the control of the
individual and overall computation of the holonic multi-agent system. We propose
that control is established by resource bounded computation, i.e., computational
resources are allocated within the holonic structures. This will be addressed in
the following section.

5.4.2 Resource Allocation in Holonic Systems

The holonic system is given a certain amount of computational resources and the
computation within that system is determined by the way these resources are
distributed onto the sub-holons. Hence, the whole problem of distributed com-
putation boils down to the problem of how the resources of the super-holon are
distributed to its immediate sub-holons. Since a holonic agent system is a special
case of a resource-adapting agent society, we can directly employ the approach
for building up a hierarchical resource-adapting agent society, and the GRAIL
approach of Chapter 3. The RIL can be mapped canonically onto the holon’s
internal structure, while super- and sub-holons run RALs for their resource ma-
nagement.

5.4 A Scheme for Holon-Oriented Programming

111

Holon
{abstract}

HolonHead: Agent
holonParts: List [Agent]
superHolons: List[Agent]
authorityList: List[authority]
init ()

close ()

addParts()
removeParts()
requestStatus()
requestStructure()
requestAuthorities()
changeAuthorities()

Figure 5.9: The holon object

All RAL mechanisms presented in Section 3.4 are based on the distribution
of abstract resources (i.e., parts of the environment that can enhance, or by its
absence, constrain the agent’s action). From the point of view of the super-holon,
the capabilities of its sub-holons can be treated as abstract resources as well.
Resources allocated to a super-holon are re-distributed at a finer granularity to
its sub-holons, and this allocation can be viewed as a guideline of the computation
for the lower ones.

5.4.3 INTERRAP as a Basis for Holon-Oriented Program-
ming

In our framework, the INTERRAP architecture (see Section 2.1) is the basis
for every member agent of a holon: every holon and sub-holon consists of a
private cooperative planning layer, local planning layer, behavior-based layer,
world interface, and knowledge base.

Holon Management

INTERRAP is well suited as a basic architecture, since the cooperative planning
layer already provides facilities that are extended for holon management.

Each holon is represented by one holon object (see Figure 5.9) that is main-
tained by the cooperative planning layer of the holon’s head. The functionality
of the holon object is to store the structure of the holon in reference-lists with

112

Structural Adaptation in Holonic Multi-Agent Systems

links to the holon’s parts and head. Furthermore, the head administers a list of
authorities which maintains the access rights to the methods of the holon object,
and, optionally the rights to use communication channels. The holon object also
stores incompatibility lists that maintain information about the holon’s parts and
other agents, for example, the ability of two agents to merge or not to merge to
the same holon. The holon object additionally provides a number of methods
for the incorporation, removal or modification of sub-holons. These methods are
exclusively accessible to the holon’s head.

The sub-holons may request information about the holon’s structure, and
about their own status and authorities from the holon object. Every agent main-
tains the references to the holon objects of the holons in which it participates
and has methods for its incorporation into a holon and its removal from a holon.
The incorporation has to be acknowledged by the agent that is to be integrated
while the removal needs not to be acknowledged.

Extensions of the Cooperative Planning Layer

The holon object is maintained in the extended cooperative planning layer of the
holon’s head. Furthermore, cooperative planning layers of all holon members are
extended: The holonic structure of the agent society is represented as a directed
graph of pointers that is maintained in a distributed fashion by the cooperative
planning layer of the member agents.

The extended cooperative planning layer provides functionalities for commu-
nication, negotiation and the administration of holonic structures. We distin-
guish between inter-holonic and intra-holonic communication: The former type
is treated by INTERRAP just like regular inter-agent communication: Commu-
nication between agents that are not part of the same holon is organized via
communication protocols according to KQML (Knowledge Query and Manipula-
tion Language) [FF94].

Efficient intra-holonic communication is realized through method invoking.
Additionally, shared logic variables between the sub-holons are introduced. Con-
ceptually, this amounts to overlapping internal states of the agents, which is an
intended violation of the autonomy requirement: The use of a shared memory
and method invocation can be seen as a partial and reversible merge of the agents
involved. If the overlapping is not total, which is usually the case, agents can
participate and communicate in more than one holon.

5.5 Four Sample Holonic Domains and Holonic Solutions

113

5.5 Four Sample Holonic Domains and Holonic
Solutions

We now discuss the suitability of the holonic scheme for a variety of applications.
The following four example domains serve for an evaluation of the postulated
criteria for a holonic approach. For each of these examples we shall first discuss
the domain and then present a holonic solution which bases on the extended
INTERRAP architecture described in the previous section.

5.5.1 Transportation Scheduling as a Multi-Agent Domain
The Domain

The fleet scheduling problem is a two-staged planning problem: (1) Transportation
tasks that express customer requirements have to be assigned to the vehicles of
a shipping company. (2) Vehicle tour plans for the assigned tasks have to be
generated. Both sub-problems are known to be NP-hard and even constrain each
other leading to a further increase in complexity.

The haulage company has a limited number of transportation units like drivers,
trucks, trailers or tractors at its disposal that must be combined to appropriate
means of transportation, i.e., vehicles. Transportation tasks are planned and
executed with a limited amount of transportation resources.

The transportation units are not uniform but differ in many ways: The work-
ing time of a driver has legal constraints and also the type of cargo he is allowed
to transport depends on his legal status. The trucks can be classified into trucks
with or without loading space and in truck tractors. The type of the loading
space constrains the type of cargo that can be transported, etc. This domain
meets the characteristics of a holonic domain as follows:

e Actions of different scopes: Object-level actions to be performed in
this domain are the execution of transportation tasks. Actions can however
be defined at different levels of abstraction: On the most general level
it is specified which transportation task a vehicle has to perform. These
actions are recursively decomposed into actions of lesser abstraction, such as
loading, driving or vehicle maintenance, which again consist of sub-actions
such as docking to a terminal, using traffic information systems, refueling,
etc.

e Hierarchical structure: Transportation units must be combined to form
vehicles.

114

Structural Adaptation in Holonic Multi-Agent Systems

e Decomposability: The fleet scheduling problem can be naturally divided
into the subproblems of assigning a set of tasks to the vehicles and secondly
of route planning for the vehicle fleet.

e Communication: Coordination among units that form a common vehicle
requires a high amount of communication; cooperation among units of the
same company that do not participate in the same vehicle needs less; units
belonging to different companies do not communicate in this scenario.

e Cooperativeness: The setting is cooperative within a company and com-
petitive between companies.

e Situatedness and real time requirement: Although in general there
is plenty of time for tour planning (since the planning of a tour is done
much faster than its execution), some situations require a fast and real-
time answer, e.g., in case of re-planning during execution time or when
urgent orders are coming in and have to be scheduled immediately.

The Solution

A canonical way to implement an agent-based solution for this domain is to model
vehicles as autonomous agents that compute local plans from which the global
solution is derived (see for instance [FMP96, Fal95]). The holon-based system
TELETRUCK [BFV98a, BFV98b] refines this scheme: In its holonic modeling the
basic transportation units (trucks, trailers, drivers, chassis, and containers) are
modeled as component agents of the INTERRAP architecture.

In order to apply GRAIL to this system, we identify four abstract resources
concerning the basic transportation units, all of which are necessary to actually
execute a transportation task. In our framework, abstract resources implement
dimensions of the search space of a RAL; therefore we present for each resource
the range of the dimension and its type (i.e., whether the dimension is continuous
or discrete, nominal or cardinal).

e The daily driving time of the driver, ranging on a cardinal and quasi-
continuous scale from 0 to 9h and arbitrarily small step size,

e The loading space (in load meters®) of trucks and containers on a cardinal
and discrete scale ranging from 0 to 700 cm (for a regular container) or
1400 cm (for a double-sized container) on a step size of 1 cm,

3The reduction from a two- or three-dimensional representation to a one-dimensional repre-
sentation is often used in logistics and helps in this case to cut down complexity.

5.5 Four Sample Holonic Domains and Holonic Solutions

115

\ \
-«—

/ /

Figure 5.10: Establishing holonic structures in TELETRUCK

e The chassis that is supplied by components that can carry containers or
swap bodies on a discrete nominal scale containing four elements [one large
chassis; one small chassis; two small chassis; no chassis|, and

e The motor resource on a discrete nominal scale with two elements [motor;
no motor].

Since the allocation of any of these resources constrains the behavior of any
component of a complete vehicle, cyclic dependencies among the component
agents occur. Furthermore, the vehicle as a unit imposes additional constraints on
the behavior of the component agents during the planning process by announcing
the customer task it may finally be assigned to.

The route plans of various vehicles have to be set up by regarding the con-
straint structure of the plans. Hence, there is a cyclic dependency among the
vehicles. Finally, the company as the highest entity in this domain constrains the
behavior of the vehicle entities by granting or rejecting tasks to vehicles.

Applying the topology construction scheme of Section 3.5, the representation
of the company and complete vehicles as agents is recommended, leading to an
initial dependency graph as shown in the left side of Figure 5.10. (For the sake
of simplicity we display only three different component agents and two vehicles.)
Applying the graph transformation algorithm (Algorithm 5 in Section 3.5) and
pruning redundant middle agents and arcs lead to an agent hierarchy as shown
in the right part of Figure 5.10.

Although originally not modeled according to this structuring scheme, the
TELETRUCK realization implements the above topology: In TELETRUCK, com-
ponent agents are part of a holon that represents the vehicle for the transportation
task. The vehicle holons are headed by a Planning ‘n‘ Ezecution Unit (PnEU), a
special agent that is equipped with planning capabilities. The vehicle holons and
the agents representing currently idle transportation units form a super-holon

116

Structural Adaptation in Holonic Multi-Agent Systems

Company
Agent

Figure 5.11: The holonic solution in TELETRUCK

that stands for the whole transportation company. The head of the company
holon, called the company agent coordinates the interaction with the user and
communicates with other companies that employ the TELETRUCK system. This
modeling is in accordance with the methodology of a holon as a moderated group
as discussed in Section 5.4.1. Figure 5.11 displays the hierarchy.

The TELETRUCK system allocates transportation tasks to the available trans-
portation units such that the resource consumption is minimized. In this system,
the contract net protocol and the simulated trading procedure (see Section 3.4.4)
are used for resource and task allocation. All agents in the TELETRUCK realiza-
tion follow our requirements for holonic agents of Section 5.3.2:

Autonomy: Agents representing transportation units are autonomous in
their decision to participate in a vehicle holon. Participating in the holon
however restricts the autonomy of the sub-holons for the time span they
are members, since they have to execute the sub-tasks allocated to them.

Common goal-directed behavior: The agents forming a vehicle holon
cooperate in order to pursue the goal of executing a set of transportation
tasks. Different vehicle holons may also cooperate for a more complex task.

Increased group capabilities: A vehicle holon is able to transport the
cargo, which none of its components could do on its own.

Belief: Agents in TELETRUCK have an explicit representation of the en-
vironment and the agent society.

Bounded rationality: Because of the dynamics and the real-time require-
ments in this domain, an anytime algorithm is used for task allocation: the

5.5 Four Sample Holonic Domains and Holonic Solutions

117

run of the simulated trading procedure can be interrupted at any time and
the current solution can be taken as a tour plan. Hence, the overall per-
formance increases monotonically over time (if the environment does not
change meanwhile).

e Communication: In TELETRUCK, communication is structured in a hier-
archical fashion. The company agent communicates with those agents that
represent other companies, but also with the PnEUs, which in turn interact
with the basic agents representing the components. Furthermore, in order
to optimize the task and resource allocation, PnEUs communicate with each
other to exchange tasks. Communication among companies is exclusively
performed by company agents.

We shall present further details of the domain and the solution in a case study
where we shall extend the original TELETRUCK architecture (Section 7.1).

5.5.2 Flexible Manufacturing Systems
The Domain

In a manufacturing process, job-shop scheduling of work in a production plant
must be optimized. A vital issue is the dynamical scheduling of a production
plan, as it cannot be guaranteed in general that a schedule will be fulfilled: work
stations may fail, supply parts may be out of stock, etc. Applying the criteria
for holonic domains leads to the following results:

e Actions of different scopes: Obviously, there are plenty of actions at
different levels of abstraction: At the very bottom level, actions are e.g.,
screwing and welding, higher level actions are the integration of modules to
the work piece or at the highest level of abstraction, assembling a product.

e Hierarchical structure: This scenario exhibits basically two types of
entities: work stations (with human workers and automated cells) and work
pieces (consisting of smaller modules), each of which imposing a two-staged
hierarchy.

e Decomposability: The overall problem of controlling a manufacturing
plant can be canonically decomposed into subproblems: If a work station
fails, only the schedules of the affected work pieces have to be modified.

e Communication: The domain imposes no restrictions on communication
among entities. Communication between work station representatives and
work piece representatives will be necessary if the work piece must be de-
toured from a broken work station to one in function.

118

Structural Adaptation in Holonic Multi-Agent Systems

2.5

NN

Figure 5.12: Establishing holonic structures in IFMS

e Cooperativeness: Clearly, this domain is strictly cooperative.

e Situatedness and real time requirement: A centralized re-planning of
the whole schedule is often impossible, however, local re-scheduling may be
feasible since this is a question of seconds while the system runs in terms
of minutes and hours. Hence, bounded rationality is not really an issue if
the replanning procedure is decentralized.

In summary, most criteria are fulfilled in the setting, in particular the two most
important ones, namely hierarchical structure and cooperation. Depending on
the degree of detail of the model, it may be reasonable not to model all entities
in that domain by (holonic) agents as we shall discuss next.

The Solution

The Intelligent Flexible Manufacturing System (IFMS) has been developed in
cooperation with experts from Daimler-Chrysler. The key idea of IFMS is to
represent each work station and each work piece by an INTERRAP agent that
plans and monitors the local schedule of its station or piece. If for some reason
the current schedule cannot be executed anymore, agents re-plan the schedule in
a decentralized manner.

In IFMS, work station agents control two types of abstract resource: station
functionalities (on a discrete scale where each position on that scale is a combi-
nation of possible functionalities) and idle time slots (on a discrete scale). These
resources induce interdependencies between work stations, in particular of those
that are involved in the production of the very same work piece.

For a work piece agent, production tasks are viewed as abstract resources to
be allocated to the holon members, inducing a dependency on the schedule of
the involved stations. Figure 5.12 shows the initial dependency graph and the
resulting holonic structure where for simplicity reasons only two work pieces with
only three associated work stations each are shown.

5.5 Four Sample Holonic Domains and Holonic Solutions

119

2

Figure 5.13: The holonic solution in IFMS

We consider a work piece as a holon that exists as long as the processing
of that work piece lasts. After an initial schedule has been computed (prior to
the actual assembly), a work piece is assigned to the set of work stations, which
are involved in this particular manufacturing process. The holon consists of the
work piece agent as its head, which controls the assembly of the product, while
the work station agents are the sub-holons. A more detailed representation (e.g.,
the agentification of the automated parts or the human workers) is not necessary
in this case, leading to a rather flat hierarchy (Figure 5.13). Note, that a work
station agent can be a member in quite a number of holons at a time.

If during the assembly process one of the work stations fails, its corresponding
agent has to leave the holon (since it can no longer provide the required resource),
and the head has to find a substitute by announcing its need to all work station
agents. These agents evaluate their extra effort on a local basis and send a
proposal to the head which selects the best offer and invites that work station
agent to join the holon. We now discuss the criteria for a holonic solution:

e Autonomy: All agents are autonomous, except that work station agents
may not join a second holon, if that would clash with the schedules of the
holon it is currently member of.

¢ Common goal-directed behavior: All agents have the common goal to
finish the assembly of the work piece the head is assigned to.

e Increased group capabilities: In general, the construction of a work
piece cannot be completed by a single work station as every work station
assembles only those parts it is specialized for.

120 Structural Adaptation in Holonic Multi-Agent Systems

e Belief: The internal knowledge of the member agents is left untouched by
the head. The reasoning of the head is at a higher level of abstraction,
namely on facilities of a set of work stations.

e Bounded rationality: This domain does not really require bounded ra-
tionality for the agents involved.

e Communication: Member and candidate member agents communicate
only with the head, not with other work station agents.

To summarize, as most of the requirements are fulfilled, we can model this flexible
manufacturing system as a holonic agent system in a holonic domain. Similar to
the first example, we will present a detailed case study on IFMS in Section 7.3,
where the re-scheduling mechanism is described in detail, and furthermore, the
issue of topology optimization is targeted.

5.5.3 The Coordination of Business Processes in a Virtual
Enterprise

The Domain

Arnold et al. [AFHS95| define wvirtual enterprise as a temporary federation of
otherwise legally independent companies. Usually companies form such a con-
struct if they identify a short-term market opportunity that none of the partners
could exploit alone. The above transportation scheduling and flexible manufac-
turing domains can be seen as special instances of business process management,
in general virtual enterprises.

A virtual enterprise is not institutionalized, it has neither employees nor offices
of its own. Nevertheless, the partner companies of a virtual enterprise act as one
single corporation when seen externally. The partners of a virtual enterprise
contribute their core competences to the common business processes, hence the
enterprise is usually able to provide services or products of high quality within a
rather short respond time.

The coordination of the business processes within a virtual enterprise, espe-
cially the coordination of manufacturing processes or the supply chain manage-
ment, is a more challenging task than the management of a classical firm. Since
there is no hierarchy in a virtual enterprise, decision competence is often un-
resolved among the partners with clashing economic interests. This domain is
naturally holonic:

e Actions of different scopes: Any business process can be modeled as an
agent action, ranging from very elementary tasks to complex procedures.

5.5 Four Sample Holonic Domains and Holonic Solutions

121

e Hierarchical structure: Virtual enterprises have no overall institutional
hierarchy. However, the member companies a virtual enterprise consists of
usually do so, which leads to the effect that this domain shows structures
only on its lower levels.

e Decomposability: The tasks of the virtual enterprise are the planning,
distribution, and execution of business processes. These processes can be
decomposed in elementary actions.

e Communication: There is a high degree of interaction required in order
to coordinate the work of organizational units in companies and virtual
enterprises.

e Cooperativeness: The setting has cooperative elements as well as com-
petitive ones. In principle, the partners within a virtual enterprise aim at
a common goal which has been the original reason for their partnership.
Nevertheless, the allocation of tasks and the distribution of profit is com-
petitive. Even in a single company, there are competitive situations when
sub-units have to compete for limited resources.

e Situatedness and real time requirement: By their definition and pur-
pose, virtual enterprises have to react instantly to dynamic changes in the
market.

Outline of a Solution

A software solution represents the knowledge of the virtual enterprise at sev-
eral levels of abstraction, it has to plan and supervise business processes among
several companies, and the precise allocation of tasks and resources has to be
administered.

A virtual enterprise can be modeled holonically as follows: the organizational
structure of the virtual enterprise is modeled as a holon, whose sub-holons are
the individual companies that in turn are decomposable into sub-sub-holons that
represent the different departments or subsidiaries. Companies without a hier-
archy can be represented as holons in which the head has only a rather limited,
moderating competence.

The exhaustive modeling of all processes in a virtual enterprise with a holonic
multi-agent system is a large and visionary task. But this task becomes more
tractable if a larger structure can be formed from different holons that represent
sub-companies at different positions in the business process. For example, a
multi-agent manufacturing system and a system for supply chain management
implemented in the same holonic framework could be linked at a higher stage into

122

Structural Adaptation in Holonic Multi-Agent Systems

a system that is able to coordinate the supply with the manufacturing process.
First steps to derive a software solution are described in [RV98].

5.5.4 RoboCup
The Domain

The RoboCup initiative [KAK*97] defines and coordinates the “official Soccer
world championships for physical robots and software agents”.* In the simulation
league for software agents, each player is represented by a separate program that
is connected via TCP/IP to a central simulation server.

Every 100 milli-seconds, a player program can perform an action (dashing,
turning, kicking, catching, communication with other players) by sending an
appropriate string to the server which in turn computes the effect of that action.
Every 150 milli-seconds such effects are transformed into the local perception of
the agents and sent to them as percepts. Perception is more blurred the farther
away entities are from the receiver. The server treats communication just like
any other action; hence, long-distance communication is disturbed or not possible
at all. Although the RoboCup domain has not been developed for the design of
holonic agent systems, its design supports holonic architectures for the following
reasons:

e Actions of different scopes: In the RoboCup simulation engine, atomic
actions can be performed by any player program. However, there are also
complex, strategic actions which involve several players (e.g., a double-
pass). The simulation engine also contains a “coach” program for each
team. This program has a more global perspective of the scene and it can
communicate with all agents of its team. Such a strategic communication
action is more abstract than the other actions.

e Hierarchical structure: A priori, all players have equal status. How-
ever, it turns out to be of advantage that some players are designated to
manage the offense block, the defense block, or the mid-field. At the next
hierarchical stage, the coach agent gives guidelines to these regional leaders.

e Decomposability: The overall task to win a game can be decomposed
into offense goals (to score many goals) and defense goals (to avoid scores
of the opponent team).

e Communication: Players can communicate with only those players that
are not too far away (in general, players of the same region). The coach
can communicate with all members of the team.

“For details see http://www.robocup.v.kinotrope.co.jp/02.html

5.5 Four Sample Holonic Domains and Holonic Solutions

123

e Cooperativeness: Within one team, the setting is cooperative, between
teams it is of course competitive.

e Situatedness and real time requirement: This scenario poses strong
real-time requirements, where a player program has to cope with rapidly
changing percepts within 150 milli-seconds in order to determine the next
action. Hence bounded rationality is an issue.

The Solution

Each player of the CosmOz team [Jun98| system is implemented as an INTER-
RAP agent and is assigned to a region (offense, mid-field or defense). Each player
controls a set of individual resources; we present some selected examples (a much
more detailed description can be found in [Jun99]):

e Stamina (on a integer-valued scale from 0 to 2500) simulates the “physical
condition” of a player and this is controlled by the central simulation server
of the RoboCup initiative. Every action of a player results in a decrease
of stamina; a low stamina reduces the speed of an agent on the grid, i.e.,
the player gets more and more exhausted. Performing no action for a while
increases the stamina (the player recovers).

Several threads inside a CosmOz agent (representing e.g. the actions move,
kick and turn) apply for the stamina resource and based on expected utilities
of these actions, a fast and greedy mechanism allocates this resource.

e Aim (on a nominal and discrete scale [aim; no aim|): Again, several threads
inside an agent (for example aimSelf, aimPlayer and aimGoal) apply for this
resource. It is assigned on the basis of local utility measures and the winning
thread performs the envisaged action, for instance to pass to a colleague or
to shoot at the goal.

These micro-level resources do not lead to an interdependency between differ-
ent player agents. However, the original CosmOz architecture can be extended
in order to further structurize the agent society by introducing roles of members
in a block, tactic, or line-up as macro-level abstract resources (all on discrete and
nominal scales, where each configuration denotes one option) These resources can
be controlled by the coach agent and the regional leaders. For instance, if the
team is only closely leading and the game is almost over, all player agents should
be assigned to the defense.

An initial resource dependency is shown on the left of Figure 5.14; the final
holon structure after applying Algorithm 5 and removing redundancies is shown

124

Structural Adaptation in Holonic Multi-Agent Systems

\
/@

PN

oalkeepe) Qefense Qffense Refens

\ \ \
< /'é& ~ '/

Figure 5.14: Establishing holonic structures in the CosmOz team

on the right. Only for clarity reasons we have left out the mid-fielders. The
resulting agent society is viewed as a holon in the paradigm holon as a moderated
group where the coach takes the role of the head. Each player joins into the super-
holon of the regional players whose head is the regional leader. This super-holon
in turn is a sub-holon of the holon team, whose head is the coach (See Figure
5.15).

Since for resource allocation some heuristics are applied, it implements the
coordination approach based on heuristics of Section 3.4. We now check the
requirements for a holonic solution:

e Autonomy: The coach and all players are independent programs that
communicate over TCP /IP, hence agent autonomy is predefined. However,
as players are commanded by the coach and the regional leaders, their auto-
nomy is restricted in the sense of our holon definition.

e Common goal-directed behavior: Obviously, the team members have
a goal they all strive for: to win the next game (and to become world
champion eventually).

e Increased group capabilities: At the highest stage, the team stage, the
execution of strategies (e.g., playing in an offensive or defensive style) is
realized by the whole team. Cooperative actions such as double-pass are
defined at the next lower stage, but still no single agent could execute them
alone.

e Belief: Every player agent has to maintain its own world representation
(for instance, its own position and stamina, the relative position of the
ball). At the group stage, the coach agent represents the state of the whole
team and of the opponent team (e.g., score, tactic, time to play, average
stamina).

¢ Bounded rationality: CosmOz agents show bounded rationality since the
abstract resources define limits for the individual computation.

5.5 Four Sample Holonic Domains and Holonic Solutions

125

Plgyer a

. Head of
Offense
d ON

Offensd

Defense
).
Player
Rlayer
Defense
Player

Figure 5.15: The holonic solution in CosmOz

e Communication: In the RoboCup setting, communication is restricted to
agents within a certain geographical distance. However, communication to
the head of the holon, i.e., the coach, is always possible. Communication to
agents outside of the holon (the players of the other team) is not provided.

In summary, all requirements for a holonic multi-agent approach are fulfilled
and this domain supports a holonic modeling. In particular dynamic strategies
to form a group (such as double-pass, offside trap) can be realized easily by a
dynamic configuration and reconfiguration of holons.

Bottom Line

Inspired by biological systems in the sense of Koestler and Minsky, we have
defined the concept of holonic agent systems as an extension of resource-adapting
multi-agent societies. The main advantage of the holonic approach is the chance
to recursively map an application domain directly and naturally onto a holonic
multi-agent system where the agents are again composed of agents.

We have explored the whole spectrum of this new paradigm, ranging from
definitorial issues over classification of possible application domains to implemen-
tational aspects: Based on general criteria for the distinction between holonic and
non-holonic domains, we have examined domains suitable for holonic agents. The
criteria have also been employed as a design aid for modeling and implementing
holonic agents in several settings. We have employed the GRAIL approach of
Chapter 3 for holon formation and on-line re-configuration and we have shown
how to extend the INTERRAP agent architecture to work as a basis for holon-
oriented programming which has been used in three sample applications.

126 Structural Adaptation in Holonic Multi-Agent Systems

Chapter 6

Case Study: Applying GRAIL to
the MoTiV-PTA Agent System

The theoretical foundations for self-adaptation in agent societies have been pre-
sented in Chapter 3 and a tool set that supports a canonical realization of societies
has been proposed in Chapter 4, so we shall now turn to our first case study, the
MoTiV-PTA system. First, we give a brief overview of the system and then
we present a SIF-based simulation engine that allow to run sufficiently realistic
simulations. Finally, we use SIFIRA to integrate a resource adaptation scheme
into the scenario and show the results of a number of test runs to validate our
approach.

6.1 The Domain

Individual mobility has increased significantly over the last years: a growing num-
ber of people travel over more and expansive distances, so the demand for trans-
portation increases enormously. In part, this demand is met by the construction
of new roads and the expansion of railway and airway systems. However, such
extensions cannot catch up with the increase in demand. Hence, new approaches
must be introduced to enable more efficient use of existing transportation means.

A second phenomenon of the 1990’s is the tremendous increase in electroni-
cally available information, mainly because of the increased performance of com-
puter hardware, the massive use of wireless communication facilities and the
broad acceptance of the Internet. These new media allow the use of integrated
information systems in telematics applications of dimensions not conceivable a
couple of years ago.

128

Case Study: Applying GRAIL to the MoTiV-PTA Agent System

The MoTiV-PTA! project has been initiated by the German Ministry for
Education, Science, Research and Technology (BMBF) to develop a unified dis-
tributed telematics system for planning and supporting individual inter-modal
travel. Industrial partners are BMW, Bosch, Daimler-Chrysler, IBM, Opel,
Siemens, VDO, and Volkswagen. During a trip, the MoTiV-PTA system does not
only assist a user for car navigation, it also accompanies him while using basically
any transportation system. The user of such a system shall be able to get on-line
information on different means of transportation, and accommodation, obtain a
detailed proposal of a complete itinerary with the best expected user satisfaction
(including time schedule and route plan, hotel suggestion etc), and conveniently
book the chosen means of transportation and accommodation.

6.2 System Architecture of the MoTiV-PTA Pro-
totype

6.2.1 Overview of the MoTiV-PTA Functionalities

There are three types of user interface devices: first, a notebook-like tool, called
mini-Personal Travel Manager (PTM) or Personal Intelligent Communicator
(PIC) where the user accesses the system via Windows™™ CE-based devices run-
ning a dedicated graphical user interface, second, a system to be integrated in the
user’s car dashboard and third, a piece of software which is run on the user’s PC.
The system running on a PC is intended to have all necessary capabilities for off-
line performing the travel managing tasks. The capacities of PICs and dashboard
tools, on the other hand, are much too small to perform complex planning and
negotiation processes. These tools are designed for mobile on-line usage: they
communicate with more powerful mirror modules over GSM or ISDN.

The integrated information providing services are distributed on different
servers, accessible via Internet. The key idea here is to provide an interface
to already existing information sites in order to allow for automated information
retrieval. The MoTiV-PTA specification contains the following travel services:

e inter-modal route planning combining different transportation modalities
such as railroad, automotive and airways in a route from a given starting
point to a specified destination,

e combination of automobile route planning with car park scheduling, for
instance to obtain an optimal car park for the destination (based on avail-
ability of parking spaces) and to calculate the route to the car park,

!German acronym for Mobility and Transport in Inter-modal Traffic - Personal Travel As-
sistance

6.2 System Architecture of the MoTiV-PTA Prototype

129

e traffic monitoring on e.g., traffic jams or car park information,
e hotel information and reservation, and

e tourism information.

6.2.2 Realization

An agent-based approach has been selected for developing this system, since the
following requirements can be dealt naturally by a multi-agent system:

e Distribution: Timely and geographical distribution of users and services
have to be taken into account.

e Heterogeneity: User support, services, devices and networks are provided
by different sources.

e Co-ordination and communication: Optimal user satisfaction can only
be achieved if co-ordination and communication between users and service
providers is provided.

e Mobility: Users and user devices may change their physical and logical
position over time.

The MoTiV-PTA system is implemented in JAVA™ using agents of the
MECCA architecture. The use of JAVA™ leads to platform independence while
the employment of the MECCA agent architecture is advantageous since its sup-
ports the use of the FIPA agent communication standard. A MoTiV-PTA proto-
type has been realized in compliance to part 4 (Personal Travel Assistance) of the
FIPA 98 specification which defines an Agent Communication Language (ACL)
and specifies agent services such as the Directory Facilitator (DF) and the Agent
Management System (AMS), and interfaces to pre-existing information providers.

The user accesses the system via a user device agent (UDA) running on his
local device. The UDA communicates via ISDN or GSM with a MoTiV-PTA
server. Here a dispatch agent distributes the incoming messages to the corre-
sponding user agent (UA) of the UDA. The UA manages the user preferences
and sends requests taking the preferences into account to a broker agent to plan
a complete journey.

The broker agent decomposes the request into requests for individual service
agents, such as a car park manager for finding a parking lot or an inter-modal
route planner (IMRP) for calculating the route. For achieving up-to-date infor-
mation, this agent contacts information providers, for instance agentified railway

130

Case Study: Applying GRAIL to the MoTiV-PTA Agent System

User Device User Device
Agent Agent Queries / Results

GSM /ISDN
Comm. Platform

v

Dispatch
Agent

User Agent User Agent
ser Agent) e g)

Tourift Info / Car Park Monitor Info
en
U\ Broker Agent

Address

E\:esol. Agegv

Car Park

Agent Service

IMRP-RP
v

IMRP Agen
LI Route Monitor Servi
/ Agent ervice

Address
resolving

Figure 6.1: The agent society in MoTiV-PTA

or airline information systems. The broker agent combines the results and passes
the alternative itineraries to the user agent. This agent sends the results to the
user device agent which presents them to the user.

The user chooses among the prepared alternatives, the chosen itinerary can
then be monitored for unforeseen events, such as traffic jams on the scheduled
route or over-booking of the chosen parking lot. If the current itinerary is no
longer feasible, re-planning is automatically initiated, and the user is informed of
the consequences. Figure 6.1 visualizes the MoTiV-PTA agent society where DF
and AMS are left out for simplicity reasons.

Before a system such as MoTiV-PTA can be introduced into the market place,
a series of test runs and simulations have to be performed. We use the generic
simulation framework SIF proposed in Chapter 4 to build a simulation engine to
achieve a successful application.

The extension SIFIRA is employed in off-line simulations to determine opti-
mal system configuration for a given environment profile. SIFIRA can also be
used in on-line simulations (and later, in realistic runs) to adapt the system to
dynamically changing environments and to achieve scalability. The overall opti-
mization task is thus to minimize the communication effort and run-times of the
various services such as information retrieval, bookings, etc., in the MoTiV-PTA
system. Since the types of services may vary and the setting of the network

6.3 A SIF-Simulation Engine for MoTiV-PTA

131

may also diverge greatly, we focus on optimizing the average duration of services
during the daily run of the system. In Section 6.4, we present the optimiza-
tion procedure in detail. Section 6.5 shows empirical results that underline the
applicability of the approach.

6.3 A SIF-Simulation Engine for MoTiV-PTA

In the following we describe all extensions of the MoTiV-PTA system to a suffi-
ciently realistic simulation testbed. First, we give an overview of the implemented
simulation engine; in Section 6.3.1 we show implementation details. The key idea
for the simulation is to introduce SIF agents for an explicit representation of
hardware servers. In Section 6.4 we use SIFIRA agents for this task in order to
additionally optimize the overall performance of the system.

6.3.1 Architecture of the Simulation Engine

For a realistic simulation we represent explicitly the hardware servers and com-
munication duration. Additionally, we simulate the services provided by the
MoTiV-PTA prototype that runs on these servers, because the overall perfor-
mance of a MoTiV-PTA system does not only depend on the efficiency of the
agent architecture but is also heavily influenced by the following factors:

e The user behavior may vary over location and time: Certain types of re-
quests may be initialized more often from one part of the domain than
others. Additionally, there may be a work load distribution on a temporal
basis.

e Servers might be overloaded or might break down; usually they vary in
terms of equipment and are geographically dispersed.

e Depending on the type of the communication medium, e.g., Internet, GSM-
bearer, or ISDN, the medium throughput is different.

e The duration of services may also differ. This depends on the used server,
but also on the work load of the service providers induced from other non-
PTA based sources (e.g., a railway information provider may also be ac-
cessed by a vast number of travel agencies).

The above factors lead to different service run times dependent on the work
load and the configuration of the servers the MoTiV-PTA agents are logged on. In
order to integrate these factors into a simulation engine, we apply modifications

132

Case Study: Applying GRAIL to the MoTiV-PTA Agent System

© Flle Object Debug

MECCA v3225ets
Agent Management System
© SIEMENS AG, Corporate Technology, 1997
IV-PTA Partrers

Info

Type: serverAgent serverd
Properties:

Fallure Probabilty: 0.2
max, Speed: 280

Nurtber of Channels: 13

Agents on server: broker

Show these elements:

| Staus [everasceoed 0

B Queue

Figure 6.2: Screen shot of the system

to the MoTiV-PTA prototype. However we want to interfere with the original
MoTiV-PTA system as little as possible in order to avoid side effects between the
simulation engine and the system to be evaluated.

Figure 6.2 shows a screen shot of the integrated simulation system: On the
left, the original MECCA agents are shown while the right-hand side displays the
console simulation engine (indicating the locations of the servers on a rough map
of Germany) and an information window that indicates the state of a server. The
following extensions of the original MoTiV-PTA architecture are made:

Explicit representation of servers: In a first step we extend the origi-
nal MoTiV-PTA architecture by aggregating each MoTiV-PTA agent with a
SIF agent representing a hardware server that implements the communication
platform of a MoTiV-PTA agent (see Figure 6.3). We do not use simple
JAVA™objects, but autonomous agents for representing servers in the simu-
lation in order to model more accurately server failure behavior: an agent can
autonomously determine and change its state according to the simulation pa-
rameters. The use of MECCA agents would spoil the accuracy of the simulation
since such agents have to register at DF and AMS that are part of the system to
be simulated. We use the SIF framework for this purpose since SIF is especially
designed for simulation purposes and also written in JAVA™
integration.

allowing an easy

6.3 A SIF-Simulation Engine for MoTiV-PTA

133

i Service

Duration

1S:

Transmission

Maintains:

_ Duration . *Failure Probability
«Failure Probability < 7" «Maximal Speed
*Maximal Speed *Number of Channels

*Number of Channels

Figure 6.3: Representation of hardware servers

In MoTiV-PTA, all agents are derived from the abstract base class MECCA-
Agent. In order to generically model the link from a MoTiV-PTA agent to a SIF
server agent, we introduce a new abstract class MECCASimAgent that extends
MECCAAgent and provides a reference to a SIF server agent. All MoTiV-PTA
agents now extend MECCASimAgent. Figure 6.4 shows the correlations, where
original MECCA components are marked darker, while original SIF components
are lightened.

Integrated long-term simulation: Since there are many factors that influ-
ence run times in MoTiV-PTA, we provide an integrated long-term simulation
environment, where user requests are posed according to a frequency distribu-
tion in terms of geographical distribution of the user, temporal distribution of
the number of requests, and a distribution of the type of requests the user can
submit. The process duration for these requests can be measured and used for
statistical evaluations. SIF offers constructs for simulating these distributions:
The SIF world server can easily be extended to control the timely emission of
appropriate requests.

Simulation of delay of communication among agents: Each SIF server
agent is assigned to a certain simulated position in the network. Whenever two
MoTiV-PTA agents communicate, a logical distance between their two servers
in the simulation is determined which needs not to correspond exactly to the
geographical distance. Due to the structure of the Internet, transmission between
very close sites is not necessary faster than between far sites. Communication
duration has to be simulated depending on the logical distance of the server. We
employ the SIF world server to control the durations of communication acts.

134

Case Study: Applying GRAIL to the MoTiV-PTA Agent System

[PToti T S 5
MECCAAgent r: 'oc; SimulationManager WorldServer SIFAgent
{abstract} {abstract} {abstract}
Gui: GUI EQ: EventQueue <has Name
Name hasp- 4has
com: Communicator <>] _%)
1 1| sendo nodifySimF 11 lobalPefform() | 1 " Act()
FomputeNextRequest| ocalPerform() PR
2 quest() controlCommDelay(EQ) initialize_sensors ()
— controlServiceDelay(EQ) initiialze_effectors()
MECCASimAgent|
_{ML SimProtocol ServerAgent
position
has p has p numberOfChannels
failureProb
setServer() 1 send() n state
OML has p maxSpeed
n n 1 |PTAAgentList
T [Connect(MeccaSimAgent;
b)
1 Discon(MeccaSimAgent)
MECCASimService IComputeTransmDuration(]
Agent {abstract}
avgServiceProvSpeed
avgNumberOfReq has p
simServProvSpeed() n
countNumberOfReq()

Figure 6.4: Architecture of the simulation engine

Migration: We extend the scenario by enabling user agents to migrate: In a
traditional approach, communication between geographically distributed agents
is performed over the network. This can be rather time consuming in case the
network is heavily loaded and the communication process consists of some com-
plex negotiation procedures. In the migration approach, an agent is transmitted
over the net in order to communicate with its partner on the local server. A user
agent, for example, might travel from home to a ticketing place to obtain theater
tickets. Later the agent might travel back home to describe to its user the tickets
it has obtained.

This approach is fast if the receiving server has an accurate model of the
traveling agent. In this case, only data describing the agent’s state (i.e., the
instance variables) have to be transmitted; a copy of the agent can be generated
locally. In this simulation migration can be realized even more simply: An agent
has to modify only its server agent link.

It may make sense to let only those agents migrate that are expected to do
a lot of long-distance communication. Such a setting is given if, e.g., the user
(and his UDA) have moved temporarily far from the location of the UA. For the
communication between UDA and UA, distance is irrelevant, since it is done over
GSM or ISDN; however since many of the tasks the system performs are used for
information retrieval (i.e., communication with service agents) of the new logical
neighborhood of the user, it is reasonable to allow the UAs to migrate to a server
closer to the service agents and to integrate this feature into the simulation.

6.3 A SIF-Simulation Engine for MoTiV-PTA

135

Registration of UDAs: The logging processes of UDAs to servers are also
simulated: whenever the user emits a new request, the corresponding UDA which
is located on the PIC or any other local system has to connect to the server of
the user’s UA which may be its home server or some other server if the user agent
has migrated previously.

If for some reason logging to that server is not possible, the UDA must log
onto another server in the simulation; the choice is made on the distances and on
the expected current speeds of the new candidate servers.

Simulation of services: All services in the simulation scenario are replaced by
dummy procedures that do not actually provide the real service, but do determine
a simulated service duration time on which the answer is delayed.

6.3.2 Simulation Constructs in Detail

The following details of the simulation have been established in cooperation with
experts from Siemens. The resulting values for service and transmission dura-
tion do in principle represent real-world circumstances. The achieved accuracy
suffices for the realized prototype which has been developed to demonstrate the
applicability of the approach.

A SIF server agent maintains the following instance variables, as shown in
Figure 6.4.

e position = [z Pos;yPos|, xPos,yPos € [0;20], the location of a server,

failureProbability € [0; 1], the reliability of a server,

e state € {down, up}, indicating whether the server is down at the moment
(depending on the failure probability),

e PTAAgentList, a list of all MoTiV-PTA agents running on that server at a
time,

e numberOfChannels € [0; 50], determining how many channels can be opened
at most for connecting user device agents,

e UDAList, a list of all user device agents that are currently connected (up
to the maximum number of channels),

e mazSpeed € [0;400], the maximum speed of the machine in some abstract
measure,

136 Case Study: Applying GRAIL to the MoTiV-PTA Agent System

e currentSpeed € [0;400], the current processing speed depending on the num-
ber of agents running on that server and maximal speed of the server:

5
numberOfChannels

currentSpeed = mazSpeed * min(1,

For simulation of communication delays, a new communication protocol SIM-
Protocol is introduced to MoTiV-PTA. This protocol bases on the method invok-
ing MECCA protocol localProtocol, but enables the simulation of communication
duration: For each performed communication act in MECCA, a new instance of a
protocol is activated (see Section 2.1). If a SIMProtocol is used, the duration (in
milliseconds) of a transmission from server s; to server s, is computed according
the formula

5 5 1000 currentSpeed(s;) currentSpeed(ss)
\/(A:I;POS) + (AyPos)? * * (2 100)(00)

In case of communication between UDA and UA, a constant time of 2000
msec is used for GSM communication which includes the establishment of the
connection and the transmission of the message. In the simulation, the SIF world
server controls the simulation time; only if the computed transmission time has
passed, the communication act is sent to the receiver’s communicator.

We enable those UAs to migrate whose current distance to the corresponding
service agent is greater than a certain minimum distance. A user agent can only
migrate if the server in question is currently not down (which is determined by the
corresponding SIF server agent). If the server is down, another server is selected
for the attempt to migrate. The one server is selected that maximizes a tradeoff
between speed and distance to the broken server:

currentSpeed
v/ (AzPos)? + (AyPos)?

In the simulation, a MoTiV-PTA agent migrates from one server to another
by simply exchanging the aggregated server agent and by modifying the PTA-
AgentList vectors of both server agents. The duration of a migration attempt is
computed according to the following formula:

10000
currentSpeed (target)

V/ (AzPos)? + (AyPos)? * 500 +

[msec]

Logging of an UDA on a server is simulated similarly by changing the aggre-
gated server agent from PIC to the selected server and by adjusting UDA Lists
accordingly, if that server is active and has unused communication channels at

6.3 A SIF-Simulation Engine for MoTiV-PTA

137

its disposal. Otherwise, another server has to be found, just like in the migra-
tion case. The duration of that procedure is computed similarly to migration
duration:

10000
currentSpeed (target)

V/ (AzPos)? 4 (AyPos)? * 2000 + [msec]

UDAs are modified to directly aggregate to the SIF system: Each UDA holds
a reference to the world server which forces the UDA to emit a request from time
to time. Furthermore, the UDA has to report on the reception of an answer to
that request.

The answer of a dummy service is delayed according to an abstract servi-
ceProviderSpeed € [0;500] and the current numberOfRequests € [1;00[which
indicates the number of requests a service source is currently processing. These
requests need not necessarily all be imposed by the MoTiV-PTA system, but can
also be posed through other media, such as call centers. To realize the delay
in a generic fashion, we introduce yet another abstract MECCA agent MEC-
CASimServiceAgent which extends MECCASimAgent by these two variables and
by a reference to the world server. All MECCA dummy service agents in the
simulation extend MECCASimServiceAgent (See Figure 6.4).

The world server can modify the number of requests during the simulation
run. The world server simulates the process delay for a service according to the
formula

500
serviceProviderSpeed

* log1o(numberOfRequests) * 1000 [msec]

6.3.3 Functionally of the Extended Scenario Script Parser

The MoTiV-PTA system has been enriched with the SIF script parser in order
to allow the specification of scenario parameters that do not vary during a run
of the simulation. This way we need not always modify and re-compile the main
source code for scenario changes. We now briefly describe the elements of the
simple script language. Figure 6.5 shows an example script.

Relevant Entities for the SIF Simulation Environment

e Country <country> A script line beginning with the key word Country
determines the general type of the scenario. The user can specify a country,
an abstracted map of that country will be then be loaded and displayed
in the main simulation window (see Figure 6.2 which displays a map of
Germany).

138

Case Study: Applying GRAIL to the MoTiV-PTA Agent System

Country Germany

Migration 22

ServerAgent serverl 14 24 0.1 100 25
ServerAgent server2 11 10 0.2 80 15
ServerAgent server3 11 22 0.15 150 20
ServerAgent server4 17 9 0.05 200 10

Target serverl

DF df serveril

AMSAgent ams df serverl

IMRPAgentWrapper imrpWrapper ams df server3 300 200
BrokerAgent broker ams df server9

CarParkAgent carPark ams df serverl 250 150
UserDeviceAgent johnUDA ams df

UserAgent john johnUDA ams df serverl
UserDeviceAgent maryUDA ams df

UserAgent mary maryUDA ams df serverl

Figure 6.5: A sample scenario script

e ServerAgent <serverName>, <tPos>, <yPos>, <failureProb>,
<mazxSpeed>, <numberOfChannels> A script entry beginning with
the keyword ServerAgent leads to the creation of a SIF server agent
named <serverName>, located in the map at position [<zPos>;<yPos>|
and equipped with the specified failure probability, number of channels and
maximum speed.

e Migration <number> This parameter defines the initial value of mini-
mum migration distance: Only user agents that are located farther to the
target than this value are allowed to migrate.

e Target <serverName> For the sake of visibility and simplicity we focus
on the simulation of requests stemming from UDAs located on different
servers which ask for information concerning only one location in the web.
This can be specified by naming a target server. Requests to other locations
could be simulated as well; however results are rather independent from the
simulation of requests aiming to other locations. Hence, we focus on only
one target server.

Original MECCA Entities

e DF <DFName>, <serverName> The user can specify a directory fa-
cilitator which is simulated to run on a server named <serverName>.

6.3 A SIF-Simulation Engine for MoTiV-PTA

139

e AMSAgent <AMSName>, <DFName>, <serverName> Similarly, a

named AMS is created which runs on the specified server and registers at
the named DF.

e UserDeviceAgent <UDAName>, <AMSName>, <DFName> A
user device agent is created that is registered at <DFName> and <AMS-
Name>. This user agent is initially not associated to a certain server since
it is simulated to run on the user’s individual device (e.g., a PIC).

e UserAgent <UAName>, <AMSName>, <DFName>, <UDA-
Name>, <serverName> A user agent is created which corresponds to
<UDAName> and registers at the specified DF and AMS and runs on the
given server.

e BrokerAgent <BAName>, <AMSName>, <DFName>, <server-
Name> A broker agent is created which registers at the specified DF and
AMS and runs on the given server. In analogy, agents of the type Re-
solveAddressAgent can be specified.

e IMRPAgentWrapper <IAName>, <AMSName>, <DFName>,
<serverName>, <avgServiceProvSpeed>, <avgNumberOfRe-
quests> A dummy agent for inter-modal route planning is created. The
last two parameters express the speed and work load of the service provider.
Similarly, agent wrappers of the type CarParkAgent, CarAgent, Air-
waysAgent and RailroadAgent can be specified that agentify different types
of information services for uni-modal travel.

6.3.4 User Interface of the Simulation Engine

Whereas scripts are used to load scenario parameters that do not change during
the run of a simulation, SIF offers functionalities which can be modified to control
an experiment during the actual run of the system. Additionally, a new graphical
user interface, the simulation manager helps to modify parameters during the
actual run of the system. As already displayed in Figure 6.4, this module is
aggregated to the world server.

Control Features of SIF

Buttons: The SIF console provides a number of buttons for user interaction.
All buttons are active if their functionality is currently available. Pressing the
start button activates the world server and the agents while pushing the stop but-
ton halts the computation. Using the reload button deletes all agents and resets

140

Case Study: Applying GRAIL to the MoTiV-PTA Agent System

B Simulation Manager

P —
Start reguests o further ragusts

(5

Figure 6.6: User interface of the simulation manager

the world representation of the simulation engine. Furthermore, the previously
selected script is reloaded. Pressing the information button opens an object info
window (see below) which contains information on a selected agent.

Menus: The file menu offers general functions such as to load a new script or
save the current state of the simulation as a script. By clicking on edit, scripts
can also be modified. The object menu offers functionalities to kill previously
specified agents and display information of the internal state of an agent.

Object Info Window: For every server agent, this window displays static
information like its name, position, failure probability, number of channels, max-
imum speed, but also dynamic information such as current speed, currently logged
MoTiV-PTA agents and used communication channels. (Figure 6.2 shows shows
such a window at the bottom of the right side.)

Control Features of the Simulation Manager

The simulation manager (Figure 6.6 shows its GUI) has been created for the
convenient on-line modification of simulation parameters that are specific for
MoTiV-PTA. In particular, the request frequency distribution can be modified
during the run of a simulation. Furthermore, the simulation speed can be changed
for demonstration purposes.

6.3 A SIF-Simulation Engine for MoTiV-PTA

141

Temporal distribution (1) - (4): The simulation manager allows to specify a
periodic request frequency in order to simulate times of different work load. The
experimenter can define a sinus curve by specifying the values of the maxima (1)
and the minima (2) of the curve (in number of requests per minute) and its period
(3) (in hours): Whenever a request has been posted by one of the UDAs, the
world server computes the next time point for posing a new request according to
the above specified temporal distribution by computing a value which expresses
how long to suppress the emission of a new request. A normal distribution is
additionally laid on top of the periodic distribution in order to blur the sinus
curve: The previously computed delay time is taken as the expected value, while
a user-defined factor (4) of that value is taken as the variance.

Spatial distribution (5): A spatial distribution of requests can be realized
by defining several UDAs to run on differently located servers. The simulation
manager allows to specify on-line a number between 0 and 1 for each of the
created servers. This value denotes how frequently requests are launched from
this server. The actual likelihood for each server is computed by dividing this
number by the sum of specified numbers.

Type of requests (6): In the MoTiV-PTA demonstrator the user can choose
from a variety of different services, such as inter-modal route planning, car park
reservation, etc. In this field the experimenter can specify the likelihood of each
type of request to occur. This is done by using the slider to assign a number
between 0 and 1 to each service. The actual likelihood of this service is then
computed as the ratio between the specified number and the sum of all inserted
numbers.

Simulation speed-up (7): Using this slider the experimenter can speed up
the simulation: When put in the middle value, communication delay is reduced
to one third while service duration is reduced to 40%. Requests are emitted
three times more often. When put on the right value, communication delay is
even reduced to one tenth while service duration is reduced to one fifth. New
requests are then emitted five times faster.

Starting and Stopping the MECCA part of the simulation (8): By
pressing the bottom Start Requests, the UDAs are forced to emit requests ac-
cording to the above frequency distribution. If the bottom No further Requests is
pushed, the UDA will no longer pose requests; already emitted requests are still
being answered by the system.

142

Case Study: Applying GRAIL to the MoTiV-PTA Agent System

Result Box (9): This box displays the process duration of previously answered
requests. This information is then passed to the world server which determines
the processing time and stores it for statistical analysis.

6.4 Optimization of MoTiV-PTA with GRAIL

6.4.1 Overview

Scalability and stability of the complete MoTiV-PTA system depend on the ac-
curacy of the server configuration. In order to meet these goals, we propose to
integrate an optimization scheme for the server society for the off-line case as well
as for the on-line case.

In the following, we exemplify such an optimization by using the simulation
environment of the previous section. As stated before, this simulation engine
bases on a demonstrator of MoTiV-PTA and hence simplifies circumstances in
order to show in-principle applicability. The optimization presented in this sec-
tion bases on this system; its purpose is to show in-principle feasibility of the
GRAIL approach.

As specified in Section 6.3, in the simulation scenario each server can be
configured according to failure probability, number of channels and maximum
speed. Goal of the optimization scheme is to find optimal configurations for
all servers, i.e., optimal trade-offs between the three quantities: In the on-line
case, these optimal trade-offs have to be modified if the environment changes
(for instance, the frequency distributions of the type of requests or their origin
varies.)

In order to model such a trade-off, we introduce the notion of an abstract
currency. In the off-line simulation abstract currency can be used to simulate
the payment of fixed hardware costs; in the on-line case, credits of abstract
currency can additionally be used to simulate costs of running the system (such
as personnel or hardware replacement costs). A fast machine is more expensive
than a slower one; a machine with smaller failure probability or one with more
UDAs channels is more expensive than a less reliable one or one with only few
channels.

Besides the optimization of each server configuration, there are macro-level
issues to be regarded, such as the number of servers, their geographical dispersion
or topology, the distribution of abstract currency credits to the various servers
given a fixed overall maximum, etc.

6.4 Optimization of MoTiV-PTA with GRAIL

143

The Approach

Clearly, for the relatively independent tasks of server optimization, a decentral-
wzed problem solving approach is suitable. However, there are also arguments
promoting a centralized approach:

e The above mentioned macro-level issues favor a centralized decision making
procedure.

e The system has to be optimized according to the global task to minimize
the average run of a MoTiV-PTA service, as stated above. In addition,
feedback is also returned in a global fashion: the actual duration of the
runs.

Since both, centralized and decentralized approaches have their pros and cons,
we employ a hybrid approach that unites both perspectives: GRAIL. It is in-
stantiated on two stages: a global stage and an underlying local stage. Running
GRAIL on the server agent society allows dynamic adaptation of each single
server and the entire server topology to the current demands posed by the envi-
ronment. This technique is related to agent-based optimization of ATM networks
(see e.g., [Hay98]); the main difference is that our optimization operates on the
servers (i.e., the nodes in the network) while ATM optimization considers the
connections (i.e., the arcs in the net). Optimizing connections is not applicable
in our case, since the MoTiV-PTA system runs on the Internet which cannot be
manipulated in such a fashion.

For each server, we can run a RAL to optimize its configuration: failure
probability, maximal speed and number of channels are now considered as ab-
stract resources; it is the aim to find an optimal resource configuration given a
fixed amount of abstract currency. Therefore, we now use SIFIRA agents with
resource-adapting functionalities to represent servers and to perform local opti-
mizations for these abstract resources. These agents control an instance variable
abstractCurrency which stores the amount of assigned credits.

We also introduce a higher level SIFIRA monitor agent for the global opti-
mization view. This agent adapts the system due to the current state on the
societal level: It tries to optimize the allocation of macro-level abstract resources,
such as the overall number of server agents, their (logical) positions, the mini-
mum distance of UA migration, but also the distribution of abstract currency to
the server agents.

144

Case Study: Applying GRAIL to the MoTiV-PTA Agent System

/\
-
\ / — —)>

' '

Figure 6.7: Building up a hierarchy

6.4.2 Implementing the Optimization Procedure
Construction of the Hierarchy

In the very beginning, we introduce a server agent sa; for the local optimization of
each server. Additionally, there is an agent ga for global optimization. According
to the methodology of Section 3.5, the management of abstract currency for the
various servers constrains the behavior of all server agents sa;, inducing a cyclic
dependency between the server agents. The left-hand side of Figure 6.7 depicts
the initial situation.

According to Algorithm 5, the cycles can be replaced by the introduction of a
new monitor agent and the creation of new dependencies from this agent to the
server agents (middle part of Figure 6.7). In Section 3.5 we have presented this
algorithm as a guideline for the design of a hierarchical agent society. The scenario
designer then can use his knowledge of the domain to simplify the graph, which
in our rather simple case leads to a merge of the various arcs from the monitor
agent to each server agent. Furthermore, the functionality of the ga agent can
be performed by the monitor agent, making ga redundant (right part of Figure
6.7).

The RIL Scheme

According to the GRAIL paradigm, each server agent receives guidelines from
the monitor agent and reports on its current state as a local profile. In this
scenario, guidelines are implemented through the abstract currency distributed
by the monitor agent to the members. A local profile of a member agent contains
the number of communication acts of MoTiV-PTA agents logged on that server,
the number of connections of MoTiV-PTA agents to that server, and the number

6.4 Optimization of MoTiV-PTA with GRAIL

145

Guidelines: Value of
individual resources

User Devicecoeenees,
ent
GSM /ISDN Monitor
Server Comm. Platform Report; Agent
Agent 4,_,\: T _/
. Performance
i Dispatch Target function :
e - S— 4 Server
H Agent Minimize Duration of

Service

User wevemeememni Target function :

S Agent / ’
Optimize Current Speed

Macro-Level Resources :

Tourist Info

Number of Agents
" _Agent)

........ Individual Resources : Position

Broker Agent
Failure Probability Migration (UA)
Server Maximal Speed Value of Individual
Agent Agent
S 9et Number of Channels Resources
IMRP Agent ---------
/ t Server
Agent
Railroad™ g Alrways Wik, Car Park Service
Agent Agent
Service Server Service Server Serer
Agent Agent [Agent

Figure 6.8: Server optimization in the MoTiV-PTA domain

of services running on that server. A server agent optimizes its configuration
according to the average run time per service performed on this server. All these
optimization processes run in parallel in order to provide a coherent adaptation
of the whole system to changes in the user behavior.

Each SIFIRA server agent maintains the same properties as a SIF server agent.
Now however, agents take actively part in the optimization process. Figure 6.8
shows the scenario which extends the one of Figure 6.1. Hence, server agents
extend SIFIRA member agents by the simulation functionalities, as shown in
Figure 4.8 in Section 4.2. In this scenario, the monitor agent has no additional
domain oriented functionalities; hence it can be taken directly from the SIFIRA
library.

The RIL scheme is performed using the SIFIRA constructs presented in Sec-
tion 4.2: societyObserverActions, AnswerRequestActions and SocietyModifierAc-
tions are emitted and perceived.

The Micro-Level RAL

At the micro-level of each server, the abstract currency assigned by the monitor
agent has to be spent for the following abstract resources:

146 Case Study: Applying GRAIL to the MoTiV-PTA Agent System

e Maximum speed: We define an abstract speed measure with a range
between 0 and 400 on an integer-valued and cardinal scale.

e Number of channels (Range between 0 and 50 on an integer-valued and
cardinal scale)

e Failure probability (Range between 0 and 1 on a continuous and cardinal
scale).

The amount of abstract currency (AC) is computed according to the following
formula:

maxSpeed n number OfChannels

AC =
C=I 200 a0

+ (1 — 4 % failureProbability)] * 100

The standard step size for shifting AC credits form one micro-level resource to
another is 5 AC units. The objective function is derived from the throughput of
the server: it is desired to achieve per time unit a high number of communication
acts of MoTiV-PTA agents that are located on the servers. A low number may
have two reasons: either the server is too idle in the sense that there are too few
MoTiV-PTA agents logged on, hence hardware resources are wasted; or the server
is too overloaded in the sense that the communication activity of the MoTiV-PTA
agents logged on the server is delayed. Both cases are disadvantageous. Therfore
we measure a server’s performance by number of communication acts of logged-on
MoTiV-PTA agents per minute. On this problem, Greedy-RAL is executed.

The Macro-Level RAL

The following resources are implemented for the macro-level:

e Number of servers (Range between 1 and 100 on an integer-valued and
cardinal scale and a standard step size of 1),

e Right to change the minimum migration distance: The distance
between to servers on the grid can be at most 30 units (on an integer-valued
and cardinal scale and a standard step size of 30),

e Abstract currency: Servers may have between 30 and 300 credits at
their disposal. We model a modification of that resource as an allocation
shift from one server to another. This is based on the assumption, that it
is always reasonable for a server agent as well as for the entire society to
spend all of its abstract currency and hence an increase of spent resources
must be compensated by an appropriate decrease elsewhere.

6.4 Optimization of MoTiV-PTA with GRAIL

147

The overall system performance is measured by averaging the duration time of
a representative variety of MoTiV-PTA services over a time period. Changing the
number of servers of course influences the server topology on a map. Modifying
these resources hence amounts to changing the server structure. We use the
following heuristics to decide where to place an additional server or which server
to shut down.

Putting up a new server: Whenever the monitor agent decides to increase the
number of servers during the run of a macro-level RAL, it has to be determined
where exactly to place this server. There are two sometimes conflicting criteria:

e Distance between servers: In order to minimize communication delay, the
server topology should provide a uniform density, i.e., servers should be
spread with almost equal distances over the map, considering the shaping
of the boundaries of the map.

o Work load of servers: Overloaded workstations need support, hence it is
reasonable to place new workstations closer to stations that are bottlenecks
in the sense of Section 3.4.

Strategies for finding optimal solutions to this problem have been proposed in the
field of OR (see for instance [JL85] or [DD96| for an overview). However, they run
usually in an iterative way at rather high computational costs. For the purpose
of demonstrating applicability of the optimization approach, we use a heuristic-
based technique to find a position for a new server. It is not required to find the
perfect position but a satisfying one without spending too much computational
time and space.

The monitor agent maintains eight points for each server agents: Fach point
candPoint is the exact intermediate point between the position of a server and the
boundary of the map according to the four chief points of the heavens and their
intermediate directions NW, SW, SE, and NE. If bottlenecks are not considered,
the position of a new server will be assigned to that point which maximizes the
maximum distance to all existing servers. (This strategy is intended to meet
the requirement of a relatively equally distributed topology.) In the example of
Figure 6.9, a new server is placed in the Northeast of server 2. Finding such a
server is performed in the background when a new server is introduced or a server
is deleted.

In order to address the second requirement, the current status of each server
has to be regarded. Hence, whenever a new RAL step is performed, the work
load of the each server «; is taken as a factor a; by which the candidate position
is narrowed to the server: servers with more than average MoTiV-PTA agents

148

Case Study: Applying GRAIL to the MoTiV-PTA Agent System

}l'

New server

Figure 6.9: Finding a position for a new server

and less than average performance favor a closer position of the new server. The
factor a; is calculated according to the following function:

performance(s;) . | PTA AgentList;|
" performanceqyg | PTAAgentListgygl

a; = min(1

The new candidate position is assigned to a * pos(s;) + (1 — a) * pos(candPoint).
Since the performance of a server changes during the run of the system, these
factors are computed for all servers during at each RAL step; so is the determi-
nation of the one point that maximizes the maximum distance to a server in the
system.

The new server agent of course needs abstract currency units for its local
optimization. Since the overall number of abstract currency credits is limited,
the new server agent earns 30 units that are removed from other agents in equal
parts.

Shutting down a server: If the monitor agent decides during a RAL step
to decrease the number of agents, a server to be closed down has to be found.
As a simple heuristic we select the one server with minimal abstract currency
credits, since this server is supposed to have only little contribution to the overall
performance. Its abstract currency units are distributed equally to the other
agents.

6.4 Optimization of MoTiV-PTA with GRAIL

149

Before a server agent is terminated, all MoTiV-PTA agents that are currently
logged on that server are forced to migrate. New servers are selected according
to the previously stated trade-off between distance and server speed.

Integrating Heuristics from Bottleneck Analysis

As already described in Section 3.4, we can integrate knowledge about the internal
state of a server agent into the RAL decision making process. Besides finding
a location for a new server, server work load is also used to specify the shift
of abstract currency: low performing servers (i.e., servers with relatively few
communication acts of logged MoTiV-PTA agents) but with many logged MoTiV-
PTA agents and services are most likely overloaded; hence shifting resources to
such an agent is expected to increase not only its local performance, abut also
global performance.

On the other hand, servers with few communication acts of logged MoTiV-
PTA agents and few logged MoTiV-PTA agents and services are assumed to
be too much idle: hence resources are taken from such an agent and assigned
elsewhere. In this case, the performance of the agent will clearly further drop,
but global performance can be expected to increase.?

In the heuristic-based Greedy-RAL for the MoTiV-PTA application the above
observations are incorporated as follows: If the number of connected MoTiV-PTA
agents that are connected to a certain server exceeds the doubled average number
of MoTiV-PTA agents or services, then this server is kept in memory. In case
several servers fulfill this requirement, the one with the highest resources is taken.
If there exists another server which a) is less than half loaded than an average
server and b) has minimal performance (if there exist several ones) then the
former server receives credits from the latter. The amount of transferred credits
is not determined by this heuristic, but by the main RAL procedure.

Similarly, if the number of connected MoTiV-PTA agents connected to a
server is less than half of the average number of MoTiV-PTA agents or services,
then this server looses credits from a server with a) a more than double of the
average work load and b) has minimal performance (if there exist more than one).

If the amount of assigned credits of a certain server has dropped to the min-
imum value (which is set to 30 in this case) while the overall performance kept
on increasing, that particular server is deleted and its remaining resources is
distributed to other servers.

2This resource shift is possible since GRAIL member agents are benevolent to their monitor
agent and accept guidelines, even if this reduces their local performance.

150

Case Study: Applying GRAIL to the MoTiV-PTA Agent System

Integrating Heuristics from Machine Learning

In this scenario, machine learning techniques are integrated to find a promising
direction and size for a step in the search space: a memory base module stores
situations and actions which have lead to significant performance decreases or
improvements. The key idea is to remember such a situation later in a new
situation and to take the previously performed significant action as a suggestion
for a future action.

We store situation-action tuples in hash table. To cut down the complexity
of finding appropriately similar situations later on, we introduce profiles that are
similarity classes of the situations. Since the number of possible profiles is still
greater than the number of possible actions in this scenario, it is more efficient to
store profile-action tuples by using the action as the key. Two profiles are merged
to one, if an action has proven efficient in both situation classes.

Whenever a new step direction has to be determined, the current situation
is matched against the memory base by parsing through all situation profiles:
If a stored profile is found which includes the current situation, a corresponding
action is performed if the former action had lead to a performance increase. If the
stored action had decreased the performance, an action in the opposite direction
is done.

For long-term applications it is important to keep the memory base at a size
that allows a fast situation matching. Since we assume a continuously changing
environment, older experiences may be outdated and hence have to be removed
from the memory base to keep it small enough. Hence we annotate each entry
with a weight which is decreased over time. Whenever a profile has lead to some
good advice, its weight is increased, otherwise it is even further decreased. Once
the weight has reached 0, the corresponding profile is removed from the memory
base.

One of the major advantages of this approach is that there is no explicit need
for a training phase. However, this mechanism can only provide good advice if
the memory base is adequately filled. Therefore, the system must have run for a
while before good results can be expected.

6.4.3 The Extended User Interface and Script Parser
The SIF Object Info Window
This window displays the most recent actions and perceptions of an agent. For

the monitor agent, the windows shows the perception of the society and the steps
performed on the macro-level RAL; in case of a server agent, the object info

6.4 Optimization of MoTiV-PTA with GRAIL

151

[Social Interaction Framework

B MECCA - AMS

Range of Migration: 33

-) e [=] B3
MECCA zzone m G
Agent Management System [l i S 4
e nology, 1997 [l s _ u
f APl IType: monitorAgent bigbrother Nuonaglomsooitinam

e J 10: 268
Position: 12 % 12
I3
o 1 frame: square darkGray Setting
)
n X
2 Ik = Jrasa | Frequency .
e = = Ind Res: 110
T Guewe Amews [-l] (EE
max. Speed: 150
perception: Start requests o further requsts Mumber of Channels: 22
10 avg, Duration: 15263]

@ i3
Results | tess slements:
Duration of requests: f- Id (=8 Frame
117
21z Queue 0 awersa
2 avg. Duration: 24430 perception:
i = T

6 Status requested =

£}
action

10 Society observed
9 Modf: Rand: Resource Shiftfrom serverd to: serverS by 10 new Values: 5 36
8 Society observed
7 Modf; Undlo: Creation of new serverd (17,9, resources: 31)
reduced from; server3 (new Resources: 41)
6 Soclety observed
Shou F= | stop| 5 Modf: Cont: Retroval of server2 (17,

) [—
resources added to; server3 (new Resources: 72) . [servera selected ! o
4 Society observed
i 9 perf: 20 Rand: Shiftfrom FailProbability to: No of Channels by 5 new Values: 35 ||
= i & answer info-request: perf: @ No of agents: 0 No of Services: 1
T 7 perf: 16 Undo: Shiftfrom No of Ghannels to: MaxSpeed by 5 new Values: 40 30

& perf: 18 Rand: Shiftfrom hax.Speed to: No of Channels by 5 new Values: 25 45
5 answer info-request: perf:3 No of agents: 0 No of Services: 1

4 perf: 4 Undo: Shift from Fall Probability to: Mex.Speed by 5 new Values: 40 30
3 perf: 17 Rand: Shiftfrom hax Speed to: Fail Probability by 5 new Values: 25 45
2 Modif; Rand: Shift from Max.Speed to; FallProbabllity by 5 new Values: 25 45

1 was born.

Figure 6.10: Screen shot of the entire system

window shows perceived information requests, as well as performed steps in the
micro-level RALs, the answering of info requests and the realization of directives
from the monitor agent.

Figure 6.10 shows a screen shot of the complete system: The MECCA agents
DF and AMS are depicted on the very left; the figure also displays the scenario
GUI and the simulation manager as well as the object info windows of the monitor
agent (third window on the left) and one server agent (the very right window).

Additional Control Features of the Simulation Manager

For optimization purposes the simulation manager offers facilities to modify the
type of RAL while running the optimization. For macro-level optimization, the
experimenter can select between no optimization, Greedy-RAL, Greedy-RAL
with bottleneck analysis optimization, Greedy-RAL with integrated bottleneck
analysis, and Greedy-RAL with both machine learning and bottleneck analysis
optimizations. On the micro-level he can choose between Greedy-RAL and no
optimization.

152

Case Study: Applying GRAIL to the MoTiV-PTA Agent System

Extensions of the SIF Script Parser

For running the optimization, the simulation script parser needs only to be ex-
tended to allow the introduction of a monitor agent (Server agents are auto-
matically equipped with server agent facilities, since they now extend the class
MemberAgent):

MonitorAgent <name>, <zPos>, <yPos> A script entry beginning with the
keyword MonitorAgent leads to the creation of a SIFIRA monitor agent named
<name>, located in the map at position [<zPos>;<yPos>|. Although this agent
does not correspond to any real-world entity, we place it on an unused point of
the map for visibility reasons.

6.5 Evaluation

In the following we present an empirical evaluation of the GRAIL approach in the
MoTiV-PTA domain. Our focus lies on the demonstration of the feasibility and
usefulness of GRAIL: we compare the throughput of the system when running
the different GRAIL optimizations in various environmental constellations. The
overall throughput of the system is well described by the average duration of query
processing; thus we use this duration as the target function to be minimized in the
optimization problem. Of course, these values depend heavily on the simulation
parameters and therefore can hardly be use to draw direct conclusions to a real-
world scenario. However, the relative performance differences of the optimization
procedures can be transfered to make optimality statements.

6.5.1 The Analyzed Problem Classes

We compare the system’s behavior for the ten combinations of implemented opti-
mization procedures on the macro- and micro-level. In terms of spatial distribu-
tion of the servers, we employ a setting of UDAs located on five servers roughly
equally spread over Germany. We distinguish between two distribution forms:
First, requests are emitted equally often from each of these servers and second,
requests are emitted from one server in 40% of the cases, and in 15% of the cases
from another server, leading to a more irregular spatial distribution.

We also vary the types of requests: For one form of experiments we assume
an equal distribution of all three type of requests, while for another form we take
60% travel information requests and 20% for the other two type of requests.

6.5 Evaluation

153

Requests per minute
»
L~
N
rd
NN
~

1 31 61 91 121 151 181 211 241 271

Run time (min)

Figure 6.11: Temporal distribution of work load in the on-line case

We distinguish between two different situations: In the off-line scenario,
GRALIL is used to configure a society of servers prior to the actual use of the
system. During the run of the system, GRAIL is turned off. This situation can
be classified as resource-adapted behavior (see Section 3.2). For our experiments
we adjust the system work load to three requests per minute with a 3% vari-
ance. As stated above, for each of the ten combinations of optimization, we run
two variations concerning spatial distributions and two variations for the type of
requests, leading to 40 experiments, all of which are run for 60 minutes.

In the on-line case, GRAIL is applied while the system is actually running to
allow an adaptation to changes in the environment. This case is called resource-
adapting behavior. Since the macro-level optimization procedure continuously
modifies the environment of the lower-ranked optimization procedure, the micro-
level optimization can always be classified as resource-adapting. In this case we
run a a setting where maximum work load is set to six requests per minute,
minimum work load to 0.5 requests per minute, the period duration to two hours
at a 3% variance. Figure 6.11 shows the temporal variation in the work load of
the system. Considering all combinations, we again run 40 experiments, which
however ran for five hours.

For the application of the machine learning approach, we have run all scenarios
five times in order to collect training data. The exact data of the results can be
found in Appendix B.1.

154

Case Study: Applying GRAIL to the MoTiV-PTA Agent System

105

100

AA A
A l v V\/\/-\/
95 7 —— Greedy
= NoOpt
90 —— Heuristics
S V § ;:‘\ Q
/\
\ \ VvV

Duration (sec)

AV AV A /ﬁiﬁ\c /\1 Learning

85 —— Heuristics-Learning

80

75 T
1 " 21 31 4 51

Run time (min)

Figure 6.12: Different macro-level optimization approaches in the off-line case

6.5.2 Results
Off-line Optimization
For the off-line comparison mainly two aspects are of concern:

e Which combination of optimization mechanisms behaves best, i.e., leads
eventually to the highest overall performance?

e Which combination of adapts fastest, i.e., reaches a sufficiently high value
in reasonable time?

Figure 6.12 compares the different macro-level optimization approaches, while
all other parameters are kept fixed: the micro-level optimization is turned on,
the spatial origins and the type of the requests are distributed equally. In this
situation, the processing of a request initially takes about 100 seconds and reduces
to 95 seconds, if no macro-level optimization is applied. Using an optimization
scheme reduces the duration by 10-15 %. Obviously, the simple Greedy-RAL
performs not as well as the more complex RALs: The machine learning extension
takes some time, but then shows a very steep descend in duration. The heuristic-
based approach reduces the processing duration slower, but reaches roughly the
same level. A combination of both extensions performs best in both, convergence
speed, and performance level.

Applying the micro-level optimization reduces the average duration of answer-
ing a request by 5%, independent from the choice of the macro-level optimization
at a rather slow convergence rate. As an example, the left side of Figure 6.13
compares the combinations of using Greedy-RAL on macro-and micro-level.

6.5 Evaluation

155

105 115

ol ANMAM L Aa A
QSEC WWMA/”\

90 3 95 \/\/\ A
N A
85 90

80

Duration (sec)

Duration (sec)
8
ﬁ«‘b |
;
|
|
|
|
|
|
|
\
\
\
I

1 1 21 31 41 51

Run time (min) 1 1 21 31 4 51

Run time (min)
Ma: dy-McroGreedy —— M dy-McroNoOpt

—— MacroNoOpt-MicroGreedy MacroNoOpt-MicroNoOpt

—— Greedy-Equal Greedy-Dist —— NoOpt-Equa NoOpt-Dist

Figure 6.13: Micro-level optimization and spatial distribution in the off-line case

Modifications on the type of requests does not lead to significant performance
changes, hence we do not provide a chart; a variation of the spatial distribution
influences the absolute value and mainly, the variance of the result (see the right-
hand side of Figure 6.13); however the above rankings on the performance quality
remain valid.

On-line Optimization
In the on-line case we are interested in similar issues:

e Which combination of optimization mechanisms leads over the total running
time to the best average performance?

e Which combination adapts fastest to environmental changes? This is in
particular relevant when the environment changes rapidly.

The experiments show that in this simulation environment the duration of query
processing depends heavily on the work load of the system: in heavy-duty times,
the processing may take up to two minutes while in rather idle situations the
process takes only about 50 seconds.

Figure 6.14 shows for cases of equal distributions of spatial original and type
of requests and turned-on micro-level RAL, the quality ranking of the mecha-
nisms is the same as in the off-line case, however, there is almost no performance
difference recognizable for lower-duty times, while the performance difference is
rather striking in heavy-duty cases.

In these cases, approaches that include a learning component, show a flatter
rise to the peak and a steeper decrease after the peak. However there is a notable

156

Case Study: Applying GRAIL to the MoTiV-PTA Agent System

7 M, A N, \
o Ty o RN /W R

Duration (sec)
=
=
£
=l
=

") \\3\ /

° LY /

50 \/ _/
v e/

40

1 31 61 91 121 151 181 211 241 271

Run time (min)

—— Greedy === NoOpt —— Heuristics Learning —— Heuristics-Learning

Figure 6.14: Different macro-level optimization approaches in the on-line case

point in the period (in this case after about 70 and again after 195 seconds)
where the processing duration suddenly jumps up before it decreases again. This
phenomenon may be due to the fact that the environment changes rather rapidly
at this time so that the learning component cannot make use of the learned
strategies.

Just as in the off-line case, the use of a micro-level optimization reduces the
processing duration independent from the chosen macro-level optimization. The
left part of Figure 6.15 shows a comparison of the combinations of using Greedy-
RAL at the macro- and micro-level. Running these experiments on different
distribution of spatial origin and type of requests, does not change the principle
results (as the right part of Figure 6.15 shows for different spatial distributions).

Bottom Line

In this chapter we have implemented the theoretical resource adaptation in agent
societies of Chapter 3 by employing the SIFIRA tool set for resource-oriented
agent programming of Chapter 4: the MoTiV-PTA case study employs the pre-
viously presented techniques: GRAIL runs in an integrated way on both, the
macro- and the micro-level. On the individual level, every server is optimized
according to its private resources, while on the societal level the entire server
topology is optimized. GRAIL makes use of the presented SIFIRA development
kit by employing the provided functionalities, such as the different RAL mecha-
nisms and the RIL scheme.

We have evaluated our approach. Results underline the applicability and
usefulness of the approach: especially for heavy-duty situations the total per-
formance can be improved by running the GRAIL approach. The results show

6.5 Evaluation

157

120 +— g

.

Y d
110 W % "
100 7 4

130

120 | N
110 3%\ W}%\ m
100 i A

- L 1

. A
L A W 7 Y7
I b A 7/ L
T \ " .
0 J \ \] \W
50 \ / \('/ ® \ J/ /
v \/ 50 \V/ \Y};
40
1 31 61 91 121 151 181 211 241 271 40
Run time (min) 1 31 61 91 121 151 181 21 241 271
Run time (min)
_ —
‘ —— MacroNoOpt-McroGreedy MacroNoOpt-MicroNoOpt —— Greedy-Equal —— Greedy-Dist —— NoOpt-Equa NoOpt-Dist

Figure 6.15: Micro-level optimization and spatial distribution in the on-line case

that for the RALs available in this case study, a combination of a heuristic-based
approach and a machine learning approach performs best. However, the GRAIL
architecture is designed so generically that new RALs can be integrated easily.
Results also show that the combination of macro- and micro-level optimization
leads to an additional performance gain, as it is supported by GRAIL.

158 Case Study: Applying GRAIL to the MoTiV-PTA Agent System

Chapter 7

Case Studies: Two Holonic Agent
Systems

In this chapter we present two industrial applications of holonic agent systems,
the transport planning system TELETRUCK and the job shop scheduling system
IFMS. For both, we describe the domain, the design of the holonic agent structure,
and the implementation of GRAIL. Furthermore, we evaluate both approaches.

7.1 The TELETRUCK System

In contrast to the MoTiV-PTA and IFMS case studies, TELETRUCK |[BFV98a,
BFVO8b] is a pre-existing system which we extend in several ways to evaluate our
resource adaptation scheme in a holonic domain. In the course of this section, we
first describe the domain and the main components of the original system, then
we show how existing problem solving strategies can be mapped onto the GRAIL
scheme, and finally, we present and evaluate our own extensions.

7.1.1 The Domain

The increasing freight transport on European roads, partially caused by the Eu-
ropean integration and the release of the iron curtain is leading to continously
worsening traffic conditions. Many interstate routes are overloaded while addi-
tional delays such as accidents and road constructions result in more and more
unpredictable transportation times. On the other hand, just in time delivery of
goods is becoming more popular than ever in modern supply chain management,
making a dynamic and flexible delivery inevitable.

160

Case Studies: Two Holonic Agent Systems

In order to survive on the market, haulage companies must be able to offer
a very flexible shipment, but they also must make as full use of their capacities
as possible in order to cut down costs. Two recent trends are recognizable: first,
nowadays small companies can hardly exist on the market, so they are forced
to cooperate by forming networks of similarly interested forwarders that share a
common infrastructure that helps to reduce costs. Second, there is also a tendency
for larger enterprises to further grow by integrating out-sourced capacities.

All these effects lead to a grow in the complexity of freight allocation and tour
planning making a manual processing almost impossible if high quality schedules
have to be derived with short planning time. TELETRUCK is an agent-based fleet
scheduling system designed to meet these challenges: It supports the dispatch
officer of a shipping company or a network of independent forwarders in the
scheduling of transportation tasks which may come in at any time.

Details of the Domain

Basically we can distinguish between different settings: In a competitive scenario,
companies of small and medium size operate locally. In order to survive on
the market, they are often forced to form temporary inter-regional cooperative
networks by uniting their resources. Usually, such partners are self-interested,
i.e. they prefer optimizing their private profit over increasing the overall profit of
the network. So, in this scenario the free-rider problem occurs where participants
might try to take advantage by betraying each other. Such an untruthful behavior
would reduce the market opportunities of the network. In cooperative scenarios
e.g., where the participating forwarders are subsidiaries of one company, the
problem of selfishness is less dramatic. In this case mechanisms that allow global
cost minimization can be applied.

In either case, the company or network has a limited set of vehicles at its
disposal. The overall goal of the company or network is to gain as much profit as
possible, i.e., to accept as many promising offers as possible due to the restriction
of capacity. Furthermore, an efficient distribution of the load as well as efficient
routes for each vehicle have to be found. The original TELETRUCK system has
been developed only for the latter case. In this chapter however, we extend the
scenario by considering both situations.

7.1.2 Overall System Architecture

The TELETRUCK system consists the following basic components:

7.1 The TELETRUCK System

161

Windows NT Server

Trucks P . Windows 95
(GPS, mobile Online Traffic Clients
! Information
phone) | L oo
v
Distance
o Computation

B Truck I‘ﬁ User
Interface Holonic MAS < .o,

Trucks, Orders,
Customers, Cities

Figure 7.1: The TELETRUCK architecture

Configuration and tour planner: The central component of TELETRUCK is
a holonic multi-agent system that manages the planning and optimization of the
vehicle configuration and of the tour plans.

User interface: The user can interact with the planning system in several
ways: he can insert new customer orders to the system, he can manually generate
tour plans or trigger an automated planning of the multi-agent system. The
user can also modify the generated plans or initiate an automated optimization
procedure of the previously found solution. Furthermore, he can insert additional
constraints, for example to book an order to a vehicle or a time slot.

Data base: Both, user and the central planning component have direct access
to all data stored in a common SQL-database. Electronic maps and routing
software are added to supply the tour planning system with geographical data.

Figure 7.1 shows the system architecture of TELETRUCK while Figure 7.2
displays a screen shot of the system. A detailed system description can be found
in [Vie00]. So far, we have described the architecture of the original TELETRUCK
system. In the next section, we show how TELETRUCK can canonically be
mapped onto the GRAIL scheme, although TELETRUCK has initially not been
designed using the scheme. Furthermore, we show how different resource allo-
cation algorithms can be integrated into the system, which is a clear extension
of the system as it is described in [BFV98a, BFV98b|. As a second extension
we introduce a further structurization in the task allocation procedure by taking
geographical dispersion of the fleet and the tasks into account. Both extensions
are evaluated in Section 7.2.

162 Case Studies: Two Holonic Agent Systems

o B
BasicData Orders Schedules Actions System (Undsplayed| Displayed I Active [3.31338 2341
SBIK 1
58K 3

Real Time/Sim Time Relation
0.0001

Roadmap - Shipping Company V416 M= [T
~ Clock Signal Interval (min)
. - 12

= ~

St Wendel
Schmelz \ R SBJK 3
. AN planstep | | capaciy load/Urloadtime| | eatiestanival | [latestdepattue | | oderid
® [Saabricken 200 cm / 27344 kg 331998330 [3319%821:29 [11328163

Wam%‘lhchmuh‘b&,ﬁﬁ Saarbrucken 100 cm / 25922 kg 3.3.1998 4:00 3.3.1998 21:59 11328164
¥4 — -\ |saabiicken 0cm/25717kg 331998430 (3319982223 [11328170

Welnkichen < \ [Newskichen 100 cm / 2597 kg 331998630 [232000420 [11328161

¢ Hm\b\@\\ \ [Homburg 200 cm / 26357 kg : 331998713 [232000503 11328159

N Hombug 300 cm /27773 kg 33198743 [232000533 (11328164
Sulzbach”
A ult “ oo \ Kirschbachethof 400 cm / 28225 kg 331998831 [2320006:21 11328163
S < \ . [Pimasens 500 cm / 28703 kg 331998918 l23z2000708 l13zeiee
N W \ Pimasens 600 cm / 23088 kg Order Manager
Sambricmnn AR en - BruchmilbibachMiesau |70 cm /23233 kg

Kirschbacherhof F‘uma&\ens
Number of Decision Levels
3
Schedule overview =[] . |

SBJK 1 | | SBJK 3 | Nun:e'dlleﬂmm
1

Deivation
2
I™ Non-stop Trading
Iniial Random Vakue [481 4058
Start | Cancel

Figure 7.2: Screen shot of the TELETRUCK system

7.1.3 Matching TELETRUCK to the GRAIL scheme

Traditional fleet scheduling approaches use techniques developed in operations
research, such as minimum cost flow algorithms (A survey can be found in
[AMO93]), where a central decision making unit plans the entire schedule. How-
ever, such centralized techniques have some severe drawbacks: Once a plan has
been generated, the algorithm is finished. The plan execution is usually not mon-
itored by the planning approach. Hence, if a step of the plan fails due breakdowns
of vehicles or traffic jams, or if some new task is incorporated during the execu-
tion phase, the planning procedure has to be started again in order to perform a
re-calculation.

An agent oriented approach to model this scenario does not only provide plan
generation, but also monitoring of plan execution: The execution of all partial
plans is monitored a decentralized way by agents. If a step of the plan fails or
if some new task is incorporated during the execution phase, a decentralized re-
planning procedure is started on-line to adjust current plans to the new situation.
In such a case, only a minor part of the plan is modified by the corresponding
agents while the execution of remaining parts still goes on.

7.1 The TELETRUCK System

163

ompany
Agent

N

o |

\/

Figure 7.3: Agent society structure in TELETRUCK

Construction of the Holonic Society

We show now the accordance of the design of the TELETRUCK agent society with
our GRAIL scheme. First, we present the structure as a result of the hierarchy
construction scheme of Section 3.5, then we compare the result with the solution
implemented in TELETRUCK.

As already stated in Section 5.5, the following abstract resources express in-
terdependencies among components of a vehicle: the daily driving time of the
driver, the loading space of vehicles, the chassis and the motor. Therefore, we
model each component by a component agent. The allocation of these resources
constrains the behavior of any component leading to cyclic dependencies among
the component agents.

According to our terminology, a representative agent is used to manage these
dependencies, to represent the whole vehicle and to set up route plans. Trans-
portation tasks as macro-level resources induce cyclic dependencies among the
various vehicles. The company (in a cooperative setting) or the network (in a
competitive setting) as the highest entity in this domain constrains the behavior
of the vehicle entities by granting or rejecting tasks to vehicles. Hence, to our
theory, a new representative agent is used to model the company or network.

Applying the graph transformation algorithm (Algorithm 5 of Section 3.5)
on this situation and pruning away redundancies lead to the holon topology as
displayed in Figure 7.3. (The initial dependency graph has already been shown
in Section 5.5.)

164

Case Studies: Two Holonic Agent Systems

Comparison to the TELETRUCK implementation In TELETRUCK, each
transportation unit of the forwarding company is represented by a component
agent that has private plans, goals, and communication facilities in order to
actively contribute to the overall solution for the transportation plans and to
administer its resources. The agents can merge with a Planning’n’Execution Unit
(PnEU) and form a holon that represents a complete vehicle.

A PnEU plans routes, loading stops and driving times of the associated ve-
hicle. Being the head of the vehicle holon, it represents the holon to the outside
world, and is authorized to reconfigure it. A PnEU is equipped with planning,
coordination, and communication abilities, but does not have physical resources
on its own.

The original TELETRUCK system has been designed for only a cooperative
setting, where benevolence of the vehicle representatives can be assumed and
hence, they can be integrated into an overall structure. Here, the vehicles are
sub-holons of the super-holon that represents the entire transportation company.
This holon is headed by a company agent, which announces and distributes the
incoming orders, accepts the tenders, controls global optimization, and handles
all communication with the user, i.e. the dispatch officer. It also coordinates the
internal cooperation and interaction among the PnEUs. Thus, the implementa-
tion design of TELETRUCK is in exact accordance to our scheme.

The RIL Scheme

This scenario requires a two-fold optimization scheme: on the macro-level the al-
location of tasks to vehicles and on the micro-level the concrete vehicle formation.
In contrast to the cases of the MoTiV-PTA and IFMS scenarios, these two aspects
interact significantly: a vehicle holon is built during the macro-level negotiation;
the constraints of this order impose guidelines to the holon formation.

Whenever a new customer order is entered, a task allocation procedure is
triggered in order to determine which vehicle performs the additional task, which
is to our understanding a macro-level RAL. In the original TELETRUCK system,
the contract net protocol and the simulated trading procedures are run for this
task since a cooperative setting has been assumed. In this allocation procedure,
vehicle agents give bids that base on possible vehicle configurations which have to
be determined during the current run of a macro-level RAL. This configuration
determination scheme can be classified as a micro-level RAL.

Micro-level RAL for Dynamic Holon Formation and Reconfiguration

For the scope of this thesis we do not extend the allocation scheme on the micro-
level; therefore we briefly describe its functionality and show its corelation to

7.1 The TELETRUCK System

165

Company Agent PnEU Trailer Agent Truck Agent Driver Agent
cn_announce

cn_announce

cn_announce
cn .

A §

cn_reply cn_reply

cn_reply

cn_reply

cn_reply

cn_answer
cn_answer

cn_answer

cn_answer

cn_answer >

< tell ,acknowledgement' tell ,acknowledgement*

<
tell ,acknowledgement'

tell ,acknowledgement'
<

tell acknowledgement'

Figure 7.4: The hierarchical contract net protocol

the GRAIL scheme. During the task allocation to the various vehicles (i.e., the
macro-level RAL, see below), resource allocation algorithms are performed at
the stages of the vehicle components in order to decide on the allocation of the
above resources and hence the configuration of the vehicles. In TELETRUCK,
a recursive version of the contract net protocol is used to generate the detailed
holon configuration and to allocate tasks to these holons (Figure 7.4). According
to our scheme this contract net protocol implements the micro-level RAL.

If a task is proposed to a vehicle holon, its PnEU checks whether the resources
of its current components are sufficient for the execution of the task. If so,
it computes the cost of the execution and submits an appropriate bid to the
company or the network representative. Consider the example of Figure 7.5: a
company agent announces a new transportation task to two vehicle holons and the
idle PnEU on the right. The already completed holon on the left hand side cannot
incorporate further sub-holons, hence this PnEU does not perform a micro-level
RAL, but sends an offer to the company agent with its valuation based on its
current state.

If the resources of the PnEU are not sufficient, a configuration procedure of
that sub-holon is initiated by running a contract net protocol, requesting for
missing parts: a trailer has to supply loading space and the chassis. To do so,
its corresponding agent needs a motor resource and hence announces the task to
the set of idle vehicles. Vehicle agents may receive different announcements for

166

Case Studies: Two Holonic Agent Systems

Company
Agent

PnEU

&&=

/

\‘Resource Allocation Protocol Driver
\Ex’rended Contract Net Protocol

N\

Figure 7.5: Holonic agents in TELETRUCK

the same task. In such a case, a vehicle agent can bid in any protocol since it can
be sure that only one of the protocols will be successful. Therefore, the vehicle
agent seeks for a driver, computes the cost for the different announcements, and
returns a bid (in the example to both the PnEU and the trailer). Whenever the
plan of a holon is finalized and executed, the components separate and the PnEU
terminates.

The second vehicle holon in the middle of Figure 7.5 can additionally integrate
a trailer. Hence, if its own resources are not sufficient for the new task, the head
tries to collect the missing resources by performing a new contract net protocol
with the idle trailers that supply the resources in need. The idle PnEU on the
right first has to perform a protocol with those idle components that offer loading
space; in the example a vehicle and a trailer.

7.1.4 Extensions of the TELETRUCK System

Whereas in the previous paragraph we have only described the functionality of
the existing TELETRUCK system, we now extend the original system.

A First Extension: New Macro-level RALs for Task Allocation

As already stated above, in the original TELETRUCK system contract net and
simulated trading are run in order to assign tasks to the concurrently forming
vehicles. In our view these mechanisms are macro-level RALs. In this work,

7.1 The TELETRUCK System

167

we extend the original TELETRUCK design by employing the market-based RAL
mechanisms Vickrey auction and matriz auction. (An overview of different RAL
approaches has already been given in Section 3.4, a detailed classification of the
different applied approaches can be found in [FRV98|.) In the evaluation, we
compare them to the simulated trading scheme.

Vickrey Auction: In the sealed-bid second-price or Vickrey auction every bid-
der submits a sealed bid for a single item in question. The bidder with the highest
bid is assigned to the item, but in contrast to the sealed-bid first-price auction,
the bidder who submitted the best bid receives the item for the price of the second
highest bid.

This technique leads to the fact that a bidder whose bid exceeds his true
valuation risks to be granted for this item at a price that exceeds the valuation
as well. On the other hand, stating a bid lower than the true valuation might
cause a rejection. In both cases a bidder cannot influence the price he has to pay.
Hence, in order to get only grants that correspond to the own valuation, a rational

bidder will submit accurate bids. This property is called incentive-compatible (see
[MMT88|).

Matrix Auctions: This type of auctions has been designed for the simultane-
ous assignment of multiple items or tasks to bidders (see [GSW98|). Using these
auctions promises to deliver more accurate results since the valuation of a set of
items can differ significantly from the sum of the valuations of each single item
if there exists some interdependency.

In a matriz-k-auction (MA-k) the auctioneer announces k items to the bidders
that, in turn, calculate their valuations for each potential combination of items
(hence, the bidders have to compute 2¥ — 1 valuations) and report them to the
auctioneer. Using the reported valuations of the bidders the auctioneer sets up
a matrix where the cells represent the bids for each combination of items. The
auctioneer identifies the optimal allocation of all k£ items in the matrix; the price
for each assigned subset of items equals the second-highest bid in the matrix
column for that set of items. This Vickrey pricing assures again that the bidders
reveal their true valuations.

The Vickrey auction and the matrix auction mechanisms base on the Vickrey
principle: they are incentive-compatible allocation mechanisms, hence they are
well-suited to generate cost-efficient allocations in competitive settings where the
interacting forwarders are self-interested, nevertheless they can also be used in
cooperative scenarios.

For an application of these approaches in the TELETRUCK domain, the com-
pany agent (or network agent) takes over the role of the auctioneer while the
vehicle agents work as bidders.

168

Case Studies: Two Holonic Agent Systems

Simulated Trading: In contrast to the previous mechanisms, the simulated
trading algorithm is not a pure allocation mechanism but combines the allocation
of new items with the optimization of the existing allocation (which initially
can be empty). It is a market mechanism where the participating contractors
optimize a task allocation by successively “selling” and “buying” tasks. Trading is
performed in a sequence of rounds, each of which consists of a number of decision
cycles. In each cycle, the participants submit one offer to sell or buy a task. At
the end of each round the central coordinating instance matches the incoming
sell and buy offers of the contractors.

Simulated trading is only suited for cooperative settings, in which complete
information about the participants’ valuations is available. Originally, simulated
trading was designed to improve an initial allocation. For our purpose we have
extended the simulated trading algorithm such that an existing allocation is not
required but can be generated during the trading process.

In the TELETRUCK scenario, the central coordination instance is the
company agent, the participants are of course the vehicle agents.

During the run of a RAL step (i.e., the announcement of a new task) at this
stage, RALs at lower ranked stages of the holon hierarchy are initiated in order
to determine in detail which components will be used by the vehicle (see the
previous subsection).

A Second Extension: Geographical Structurization

As a further extension of the original TELETRUCK system and as an additional
way to map inherent structures of the domain onto the holonic solution, we
also regard the geographical dispersion of the orders: If there is a clustering
recognizable, a heuristic to achieve a reduction in complexity of the planning
procedure can be applied by partitioning the vehicle fleet according to the current
location of the vehicles. In such a case, not all vehicle holons participate in the
macro-level RAL, but only those that are situated in the same region as the
sender and receiver of the order.

Hence the holonic structure is extended by one additional stage on top of
the PnEU stage (see Figure 7.6). A subsidiary agent matches the geographical
location of the incoming tasks with the ones of the fleet and announces tasks only
to possibly suitable PnEUs, i.e., those that are located closely enough.

7.2 Evaluation of the Extensions to TELETRUCK

169

ompany’
Agent
.. \ __
__ /

= =
- | |

e/

Figure 7.6: Extended holonic hierarchy in TELETRUCK
7.2 Evaluation of the Extensions to TELETRUCK

In this section, we evaluate our extensions of the TELETRUCK system: First we
compare several macro-level RALs in different settings on a theoretical and an
empirical basis. Then we examine the effects of the introduction of the above
described subsidiary agent.

7.2.1 Theoretical Analysis of Different Macro-Level RALSs

We investigate the communication complexities of the introduced market mecha-
nisms. We examine how the complexity of agent communication depends on the
number n of agents and the number k of tasks to be allocated in the system.

Estimating only computational complexity would be insufficient because the
complexity of a computation an agent has to perform does not always have to
effect the performance of another agent and the overall performance in a dis-
tributed system. Agent communication turns out to be a good performance in-
dicator because in physically distributed domains, such as the transport domain,
establishing and using communication channels can be very important limiting
factors. As a measurement, we do not simply use the number of communication
acts but the overall number of communication primitives an act consists of, since
communication acts may vary in complexity.

We now discuss communication complexity of the Vickrey auction, matriz
auctions and stmulated trading protocols. For the sake of independence from the
underlying computational model we assume that agent communication is only
possible in a point-to-point fashion. Hence, in this model, broadcast communi-
cation can only be realized by sequentially sending messages to communication

170

Case Studies: Two Holonic Agent Systems

partners. Assuming that the effort for sending messages equals the effort for re-
ceiving them, the possibility of broadcasting messages reduces the total effort for
communication at most with the constant factor 2, since the effort for receiving
broadcasts remains.

The Vickrey Auction: During a Vickrey auction the following communication
acts are sent: an auctioneer sends bid requests for a certain good or order to all
bidders who reply with their bids. Then, the manager selects an appropriate
partner, confirms the assignment of the order to this partner and sends rejects
to all other bidders. Let n be the number of communicating agents. According
to the point-to-point communication assumption, (n-1) requests (each of which
consisting of one communication primitive) are made, followed by (n-1) bids, one
confirmation and (n-2) rejects, all consisting of one communication primitive.
Hence, the Vickrey auction has communication complexity of O(n) in terms of
the number of participating agents.

The Matrix Auctions: In the matrix auction the auctioneer announces k
items to n — 1 agents (O(k - n)). The bidders submit one offer for each of the
2% — 1 subsets of the item set which corresponds to one communication act, con-
sisting of 28 — 1 primitives (O(2% - n)). After computing the optimal allocation,
the auctioneer informs the bidders about the final allocation (O(n)). This leads
to an overall communication complexity of O(2F - n). The exponential compu-
tational complexity enforces a small k. After having fixed a sufficiently small
k, a communication complexity of O(n) remains with a possibly high constant
depending on k.

Simulated Trading: A trading round within the simulated trading process
consists of [decision levels. At each level, every contractor may announce a sell-
ing request or place a buying bid to the central instance. The central instance
has to inform n — 1 contractors of received selling requests. In the buying/selling
announcement phase of each level, O(n) communication acts are performed. In
the information phase, the stock manager has to send at most O(n) messages.
Such a message may contain at most O(n) offers, all of which are communication
primitives. Hence, the complexity of one trading round is O(l - n?). Since [is
fixed in advance, and, hence, can be treated as constant, the communication com-
plexity for simulated trading is O(n?). The central instance’s task to process the
trading graph (which is known to be NP-hard) does not influence communication
complexity.

7.2 Evaluation of the Extensions to TELETRUCK

171

Summary

From a theoretical point of view, all protocols have linear or squared complexity
in terms of communication primitives. Speaking in practical terms, if only few
agents take part in one of the market-based mechanisms described above, no
communication bottlenecks should arise.

However, if further processing is dependent on the final result of the negotia-
tion, the measure of communication primitives is insufficient. For these reasons,
we next provide an empirical scalability evaluation of the mechanisms where we
examine the processing time and the overall allocative efficiency of the market-
based mechanisms.

7.2.2 Empirical Evaluation of Different Macro-Level RALSs

We analyze the performance of the matrix auctions (MA-k) where £ € {1,...,5}
orders are assigned simultaneously in comparison with the Vickrey auction and
the simulated trading algorithm. Three major aspects are of concern:

Number of vehicles: Since the size of the vehicle fleet is an important cost
factor for a shipping company, we investigate how many vehicles are needed, using
the different market-based mechanisms.

Tractability: We have shown in the previous section that the complexity of
the protocols in use is at the most squared in terms of number of communica-
tion primitives. However, the actual computing time is for some of the agents
exponential. If other agents have to delay their actions until the task alloca-
tion process has been completed, processing time can be a critical issue for the
usefulness of a mechanism.

Efficiency: Obviously, this issue depends on the chosen setting:

e A cooperative company: In this setting, the auctioneer agent represents
the company and tries to minimize the overall cost per order. The bidders
represented by vehicle agents have no interest in optimizing their individual
profits.

e A competitive situation: The auctioneer (the network agent) does not
optimize his profit and vehicle agents represent independent forwarders and
optimize their surplus per order.

172

Case Studies: Two Holonic Agent Systems

60+
50+ Order
Size
401 =120
30+ W90
060
20+ 030
101 |15
@6
0,
T O 2 X &
£ ¥ ® ® & B
£ S = s s =
n

Figure 7.7: Number of granted vehicles

e A hybrid scenario: All, auctioneer and vehicle agents are rewarded. In
such a case, the auctioneer tries to minimize the overall payments per order
which is the sum of the costs and the forwarders’ surplus, while the vehicle
agents try to maximize their individual surplus.

The Analyzed Problem Classes

For our evaluation we use the benchmarks, Solomon [Sol87| generated for the
vehicle routing problem with time windows. Those data build up on a set of
problems that Christofides [CMT79| developed for the vehicle routing problem
without time constraints.

Solomon’s benchmarks include six different data sets of transportation orders
that have distinct characteristics concerning geometry, number of destinations,
and time constraints. In particular, we distinguish between clustered (several
groups of clients lie closely together) and non-clustered settings. For our test
runs we have averaged over six single problems!. We have chosen to analyze the
system outcomes for maximally clustered test data (test set = {c 101, ¢ 102, c
103}) and completely non-clustered test data (test set = {r 101, r 102, r 103}).
In contrast to the original setting where the subordinate vehicles are initially
located at a central depot, we have distributed the initial position of the vehicles
over the map, since we take also into account the setting where the vehicles are
independent forwarders.?

!The use of only three problems was sufficient since tests with more problems showed that
the variation of the results were considerably small.

2Due to historical reasons these tests were actually run on the MAS-MARS [FMP96| system,
the predecessor of TELETRUCK which has restricted capabilities but behaves equally concerning
this issue.

7.2 Evaluation of the Extensions to TELETRUCK

173

Seconds

120

100

80

@ Vickrey
W Matrix2
60 OMatrix3
O Matrix4
40 W Matrix5
@ Sim.Trad.

Sim.Trad.

Matrix5

Matrix4 .
Matrix3 Mechanism
Matrix2

6 15 Vickrey

30
Number of orders

60
%0 420

Figure 7.8: Run time of the different mechanisms

In order to examine scalability, we have run every combination of test sets
for 6, 15, 30, 60, 90, and 120 orders®, leading to a total number of 422 test runs.
The experiments have been performed on a 233 MHz Dual Pentium II PC with
256 MB RAM under Linux. The results of the following experiments are listed
in Appendix B.2.

Results

Number of vehicles: The number of vehicle agents, being the base for our
theoretical complexity analysis, depends on the size of the order set: It is in-
creased dynamically whenever the present number of vehicles is not sufficient for
the planning of the task at hand.

As stated above, the number of used vehicles can also influence the choice of
the mechanism, since the vehicle fleet produces also maintenance costs a shipping
company has to minimize. However, the use of different protocols leads to roughly
the same number of vehicles in action (Figure 7.7). MA-3 uses slightly fewer
vehicles than the other mechanisms.

Tractability: We have measured the running time of the various protocols for
different number of orders. Here (and in the following) we average over quantities
that are out of focus: For this examination, we have averaged over twelve results
from clustered and non-clustered data sets.

3For the latter order set we enlarged Solomon’s original benchmarks.

174

Case Studies: Two Holonic Agent Systems

Cost
200

180
160
140
120
100
80
60
40
20

Mechanism

@ Sim.Trad.
W Vickrey
OMatrix2
OMatrix3
W Matrix4
@ Matrix5

6 15 30 60 90 120
Number of orders

Figure 7.9: Overall cost per order

Cost Cost
350 180
300 - 160 1
@ Sim.Trad. 140 A @ Sim.Trad.
250 1 B Vickrey 120 B Vickrey
200 1 O Matrix2 100 1 O Matrix2
150 O Matrix3 80 0O Matrix3
100 1 W Matrix4 60 - B Matrix4
@ Matrix5 40 A O Matrix5
50 1 20 1
0 0
6 15 30 60 90 120 6 15 30 60 90 120
Number of orders Number of orders

Figure 7.10: Overall cost per order for clustered and non-clustered settings

The Vickrey auction performs quite well, while the matrix auctions’ running
time is growing very fast with an increasing number of orders. (While the Vickrey
mechanism could allocate 120 orders in 3.4 seconds, the test runs of MA-4 with
120 orders took about 15 minutes and MA-5 with 120 orders took more than 6
hours each.) Tractability is no longer fulfilled in such cases. Figure 7.8 shows the
results, up to a maximum running time of 2 minutes. The figure does not contain
all results from MA-4 and MA-5, since this would reduce the expressiveness of
the figure.

Performance differences between clustered and non-clustered data sets were
significant only for MA-4 and MA-5 with high numbers of orders. In extreme
cases, processing non-clustered orders took up to 50 times longer than clustered
ones. Similarly, starting with two initial vehicles only outperformed starting with
m initial vehicles at MA-4 and MA-5 with high numbers of orders in a significant
fashion. In all other cases, no significant difference could be found.

As the theoretical analysis has already indicated, the runtime of the MA-4
and MA-5 are intractable for large sets of orders while the others can be rated as
tractable.

7.2 Evaluation of the Extensions to TELETRUCK

175

Surplus
350 ~
300
250 @Vickrey
200 1 W Matrix2
OMatrix3
150 1 O Matrix4
100 + W Matrix5
50 A
0 a
6 15 30 60 90 120
Number of orders

Figure 7.11: Overall surplus per order

Syrplus Surplus
% 500 -
350 A 250 1
3007 @ Vickrey
2001 B Vickre
2501 B Matrix2 rey
200 A O Matrix3 150 1 B Matrix2
0O Matrix4 O Matrix3
o e 1997 O Matrix4
100 A B Matrix5 i
50 1 B Matrix5
50 1
0 - 0
6 15 30 60) 120
6 15 30 60 920 120 50 A
Number of orders Number of orders

Figure 7.12: Overall surplus per order for non-clustered settings

Efficiency for the cooperative setting: As stated above, for such a setting,
cost per order is the crucial issue. Generally speaking, all protocols show rather
similar results. However, the simulated trading procedure is proved to be most
efficient for large order sets where much optimization can be done. MA-3 and
MA-4 perform slightly better than the remaining protocols. Hence, simulated
trading would be the protocol of choice for the company agent. Figure 7.9 shows
the results.

Interesting though, is the discrepancy between clustered and non-clustered
settings (Figure 7.10). Generally speaking, the costs for the performance of clus-
tered task sets are lower than in the non-clustered setting, since vehicles mostly
act within one cluster. This effect vanishes for large order sets.

In the case of clustered orders simulated trading looses its advantages over the
matrix auctions, in such settings MA-3 and MA-4 outperform the other mecha-
nisms mainly for tasks of 60 and more orders. This matches the intuition that it
is cost efficient to allocate bundled tasks in clusters.

176

Case Studies: Two Holonic Agent Systems

Payment
30000
25000
20000
15000
10000 W Surplus
5000+ @ Cost
0
> N ™ < v
o x X x x
i~ = = b= =
&) © © © ©
s = = = =
Auction

Figure 7.13: Payment for 60 orders

Efficiency for the competitive setting: In a setting, where only vehicle
agents optimize their benefit, their individual surplus has to be compared (Figure
7.11). In this setting simulated trading is not applicable.

MA-2 outperforms dominantly all other mechanisms, followed by the Vickrey
auction. Figure 7.12 shows differences between non-clustered and clustered cases:
for clustered cases, the Vickrey auction performs almost as well as MA-2, which
is not the case in the non-clustered case. In general, surplus in the non-clustered
case is roughly independent of the number of vehicles, which again is not true for
the clustered case.

Efficiency for the hybrid setting: In a setting where all, auctioneer and
bidder agents compete for profit, both surplus and cost have to be taken into
account, since vehicle agents strive to maximize surplus, while the auctioneer
tries to minimize the overall payments, i.e., the sum of cost and surplus. The
goals of auctioneer and bidders conflict; hence, the protocol to be chosen then
depends on the influence or power of the auction participants.

However, costs do not vary significantly, as Figure 7.13 shows for a repre-
sentative example, where 60 orders were processed (starting with m = 10 initial
vehicles). Hence, the expected surplus will determine the common choice (which
is MA-4 in the case that the auctioneer is dominant and MA-2 if the vehicle
agents are dominant).

7.2 Evaluation of the Extensions to TELETRUCK

177

7.2.3 Evaluation of Different Geographical Structuriza-
tions

Now we evaluate a second extension of the original TELETRUCK system in which
we empirically examine the usefulness of the introduction of a subsidiary agent in
the hierarchy, as already shown in Figure 7.6. This subsidiary agent pre-classifies
incoming tasks according to their geographical location into disjoint subsets of the
fleet.* By applying the original TELETRUCK approach on these subsets of orders
and suitable partitions of the sets of drivers, trailers, and chassis, a cut-down of
computational complexity is desired.

We now validate the approach by comparing de-centralized settings where the
subsidiary agent pre-classifies the order set (into five partitions in our case) and
centralized settings, where the task allocation is performed on the entire sets of
orders, vehicles, drivers, and trailers. In particular, we focus on the following
issues:

Tractability: We examine the run times of the system in the centralized and
the de-centralized configurations. Due to technical reasons, we only apply the
contract net protocol as a RAL. However, we can use results of the examination
from the previous section in order to estimate the applicability of other RALs,
such as the simulated trading or the matrix action mechanisms, in particular with
respect to very large order sets.

Efficiency: We compare the efficiency of the different configurations according
to three criteria: the degree of used vehicle capacity, and the duration and dis-
tance of the scheduled vehicle routes which we measure per vehicle, and not in
total over the entire fleet.

The Analyzed Problem Classes

We use a collection of orders sets that have been generated automatically accord-
ing to a number of statistical parameters: In a first step, five German metropoli-
tan areas have been picked as centers: Hamburg, Hanover, Berlin, Saarbriicken,
and Munich. Based on an equal distribution, we have chosen 180 towns that
are located no further away than a certain distance from each center. For short-
distance orders, towns may only be located 20 km away from a center, while for
middle-distance and long-distance orders, towns may be situated at most 50 or
100 km resp. away from a center.

“Due to implementation reasons, the pre-classification is actually not performed automati-
cally so far; we have simulated this classification by running separate TELETRUCK engines on
subsets of orders.

178

Case Studies: Two Holonic Agent Systems

Fuabiap - Shipping Cuanpany

3 o
»ﬁ% S
’g‘% .dg‘éﬁ""

A

| =

Figure 7.14: Vehicle schedules of medium-distance orders

For each of the 15 distance-center combinations we have generated 30 orders
where the customer, sender and recipient are located in one of the previously se-
lected towns. The earliest departure time and the latest arrival time of the freight
as well as the load capacities of the vehicles have also been determined according
to pre-specified probability distributions. For instance, Figure 7.14 shows a run
of a middle-distance scenario without pre-classification by a subsidiary agent.

To compare the settings with and without a subsidiary agent in terms of an
increase of orders, we perform test with 5, 10, 15, 20, 25, and 30 orders per
center, i.e., the test sets contain between 25 and 150 orders. Hence, in total we
have performed 150 test runs where we have used a 450 MHz Dual Pentium II PC
with 512 MB RAM under Windows™ NT. All values of the experiment results
are listed in Appendix B.3.

Results

Tractability: For each of the test runs we have measured the run time of
the TELETRUCK system. As Figure 7.15 shows, there is a significant run time
difference between centralized and de-centralized settings: In the latter case,
the run time is worse by more than one magnitude, which can be explained
by the increased computation complexity and the fact that the processing of
long-distance queries to the distance data base takes significantly longer than for
shorter-distance queries.

7.2 Evaluation of the Extensions to TELETRUCK

179

45 250 1
) / /
3.5 / 200
3
/ 150
25
5 ,!//'/ &
o, — »
1.5 / = /
A 50 —x
== . —
= 2
05— /
0 T T T T T | 0 T T T -
25 50 75 100 125 150 25 50 75 100 125 150
Number of orders Number of orders
—e— short - decentral —#— medium - decentral —— long - decentral ‘ ‘ —e— short - central —#— medium - central —a— long - central

Figure 7.15: Run times

The left hand-side of the figure shows the results for the de-centralized cases.
The run times do not differ severely for short-, medium-, or long-distance orders.
In any case, the performance increases more than linearly. The right hand side
shows the performance for the centralized cases. Surprisingly, orders of medium
length need significantly more time to be scheduled than short-distance or long-
distance orders.

Efficiency in terms of duration and distance of the scheduled routes:
Figure 7.16 shows the quality of the solutions for both, travel duration and route
distance which all lie in the same magnitude. For short-distance orders, the de-
centralized approach clearly outperforms the centralized one, while for medium-
distance orders no significant difference could be measured. In large long-distance
cases however, the centralized approach (in which the tour duration and length
per vehicle almost remain constant), behaves better than a de-centralized ap-
proach since in these cases, the order set and the fleet cannot always be parti-
tioned optimally anymore: under certain circumstances, a vehicle that has orig-
inally been assigned to a different partition may perform an additional tour at
smallest costs. In the decentralized case, this vehicle is not allowed to participate
in the task allocation procedure, leading to a sub-optimal solution.

Efficiency in terms of use of vehicle capacity: This criterion describes the
idle time of the vehicles during the execution of a schedule. Figure 7.17 shows the
results of this examination, where again we distinguish between short-, middle-,
and long-distance orders. In the first case, the decentralized approach behaves
extremely badly, not only in comparison with the corresponding centralized case,
but also with any other scenario. For middle-distance orders, the decentralized
approach still behaves worse than the corresponding centralized approach. Both

180

Case Studies: Two Holonic Agent Systems

3500 2500 1
3000
2000
2500
® 2000 |-| 1500 |-|
3 E
2 1500 1 =
1000
1000
500 500 1
0 0
25 50 75 100 125 150 25 50 75 100 125 150
Number of orders Number of orders
Eshort - decentral W short - central Omedium - decentral @ short - decentral M short - central O medium - decentral
Omedium - central ~ Mlong - decentral ~ Elong - central Omedium - central M long - decentral @ long - central

Figure 7.16: Travel times and distances

phenomena may be due to the fact, that in this case, often additional vehicles
have to be employed for small tasks, leading to very large idle times in their
schedules. Only for long-distance orders, a both approaches perform roughly
equally well.

7.2.4 Summary

Empirical evaluations in the TELETRUCK domain have shown that the usefulness
of different RAL schemes, and also the usefulness of a partitioning of the system,
(for instance through the introduction of a subsidiary agent) depend on two is-
sues: the nature of the target function to be optimized and the size of the task.
In Section 7.2.2, for instance, we could show that an optimization towards a cost
reduction favors the MA-3 auction while an optimization according to surplus
maximization leads to the MA-2 auction as the RAL of choice. In the experi-
ments of Section 7.2.3 an optimization towards distance minimization supports
the partitioning of the order sets an vehicle fleet while an optimization towards
a high use of capacity supports the opposite approach.

Another important factor is the size of the application: In Section 7.2.2,
we showed that matrix auctions with a high number of orders to be proposed
at time are not feasible for large-scale tasks. Section 7.2.3 revealed that even
for the contract net protocol, a high number of orders lead to infeasibility for a
centralized approach. Combining these two results leads to the realization that for
the employment of more complex RALs (such as the simulated trading or matrix
auctions) a decomposition of the order set (e.g., according to a geographical
dispersion) is inevitable to achieve and keep scalability.

7.3 The Intelligent Flexible Manufacturing System (IFMS)

181

12000 ~
10000 = B M B
8000 +
£
3 6000
=
4000 -
O 4
25 50 75 100 125 150
Number of orders
@ short - decentral W short - central O medium - decentral
O medium - central M long - decentral Elong - central

Figure 7.17: Idle times

7.3 The Intelligent Flexible Manufacturing Sys-
tem (IFMS)

This section focuses on holonic agents in the manufacturing domain. As in the
previous sections, we first describe the domain, then present the holonic agent
architecture and the GRAIL-based optimization scheme.

7.3.1 The Domain

Since the very beginning of research into the design and implementation of an
intelligent manufacturing systems (IMS), information technology has played an
important part in this development. About twenty years ago the idea of computer-
integrated manufacturing (CIM) was proposed by [Har93| (reprint). Over the
years its original approach changed from a mainly centralized model to a more
decentralized one for a number of reasons: faults in individual components can
bring a centralized system to a halt, often expert knowledge is needed to run
such a monolithic system, the introduction of a centralized system can hardly be
performed step by step, etc.

During recent years, first attempts to incorporate multi-agent techniques to
CIM have been formulated (e.g. [VDP87, Fis94, RCA98]). New developments in
manufacturing do not only make use of improvements in computer science; they
also impose new challenges to computer-based control systems. Two aspects are
of great importance:

182

Case Studies: Two Holonic Agent Systems

Dynamic rescheduling: Even if an efficient schedule has been determined for
a set of production tasks prior to the actual manufacturing process, it is not
guaranteed that this schedule will be fulfilled: work stations may fail, supply
parts may be out of stock, workers might not show up for work or may be injured
during their work time, etc. All these problems may lead to delays in the schedule
execution which cannot be seen in advance. Techniques for local re-scheduling
have to be developed and incorporated.

Plant configuration: In state-of-the-art production plants, an increasing ef-
fort is put on the optimization of the topological layout of work stations and
robots. Often however, the configuration of a factory is determined in its plan-
ning phase and then remains fixed during the whole use of the factory. Today,
manufacturers seek for more flexible structures to cope with frequent changes in
production. Future generation work stations are supposed to become more mo-
bile, leading to higher flexibility in terms of a configuration re-arrangement for
a new product. In the 21%¢ century, re-configurating will be a question of hours
and days, but not weeks and months as it is currently.

Solutions for both aspects have been proposed, however not in an integrated
fashion: most systems focus on either one of the two issues. The holonic-based
approach IFMS (Intelligent Flexible Manufacturing System) integrates both as-
pects.

Details of the Domain

IFMS has been developed in cooperation with manufacturing experts from
Daimler-Chrysler and bases on their estimations of the development of work
stations in the next ten or twenty years in the automobile production business.
Although the original scenario is placed in automotive industry, our approach is
designed in a generic manner allowing an easy adaptation to other production
scenarios. Therefore we generally speak of work pieces instead of car components.

During the assembly procedure in a envisaged next generation manufacturing
plant, seven processing operations have to be performed at seven work stations.
Each of these work stations consists of one automated processing step and several
(up to five) manual processing steps, depending on the functionality of the work
station. A topology (Figure 7.18) specifies the concrete geometrical position and
orientation for each work station and defines the directed paths which work pieces
can take to pass from one production unit to the next one.

Overall goal of the system is to maximize the production, in particular to guar-
antee a minimum amount of produced units, independent from possible break-
downs of some work stations. Schedules are computed for the scope of one day.

7.3 The Intelligent Flexible Manufacturing System (IFMS)

183

Figure 7.18: Idealized topology of a production plant

The production is organized in a Just in Sequence (JIS) fashion: we can assume
that components are delivered to the work stations in time and in sufficient stock.

The space of the factory building is limited; each work station requires some
square meters of space. The production process may be disturbed due to the
failure of the automated parts of the work stations. Failures of the manual
processing steps can be neglected since additional workers are assumed to be
always available to stand in if an accident occurs. Each work station can perform
one or more functionalities; multi-functional work stations have higher fixed costs.
Each automated or manual processing step at a work station lasts for a certain
time period (in the magnitude of a minute). The repair time of a work station
takes time in the magnitude of half an hour. In addition to work stations, one
or several buffers can be placed into a topology. A buffer can temporarily store
a work piece if no work station is idle that could allow for a further assembly
on that piece. In this visionary scenario, buffers are assumed to have infinite
capacity.

Work pieces may be produced in a number of different variants. The trans-
portation speed of work pieces between work stations is 1m/sec. The distances
between work stations are not uniform in general which leads to asynchronous
processing. It takes some seconds for a work piece to enter or to leave a work
station or buffer. We assume mobility of work pieces at any time; by allowing
the work pieces to move from one work station to another on the direct way. We
do not consider collisions.

Although this scenario may generalize some aspects of a real-world production
plant it is detailed enough to model realistically the two problems IFMS addresses:
(1) to find a suitable topology that makes best use of its capacities given a certain
failure probability of the work stations, and (2) to provide a technique for on-line
re-scheduling in order to compensate the breakdown of a work station by other
machines that have suitable time slots in their schedule.

184

Case Studies: Two Holonic Agent Systems

7.3.2 Overall System Architecture

To cope with these two complex and interacting challenges, IFMS has the follow-
ing system architecture:

Simulator: The central component of the system is the simulator where the
schedules are executed on a sufficiently realistic simulation of the plant. In this
simulation, machine breakdowns may occur based on a specified probability dis-
tribution.

Editor: With this component, the system designer can enter an initial topology.
The designer can incorporate expert knowledge into this layout (by inserting a
topology which is assumed to be efficient) or he can generate new topologies from
scratch.

Off-line Scheduler: IFMS uses a simple scheduler based on the constraint-
solving facilities of Oz to compute an initial schedule for a given set of tasks and
topology.

Micro-Level Optimizer: Simulated faults induce an on-line re-scheduling.
We employ an agent-based technique since this problem can be tackled in a
distributed fashion. If for some reason a part of the schedule cannot be executed
anymore, agents re-plan the schedule in a decentralized manner.

Macro-Level Optimizer: This component interprets the quality of the result
of a simulation (i.e., the number of produced work pieces per time unit) and
modifies the topology for another run of the simulation. Hence, in order to
optimize the agent society, the simulation is often repeated with the same failure
probability distributions of the work stations, but with different topologies. This
iteration is performed until a topology configuration is found that satisfies the
user’s performance requirements, i.e., the amount of units to be produced per
day.?

The first three components are now characterized, while Section 7.3.3 de-
scribes the GRAIL-based optimization scheme.

5The macro-level optimizer is only part of this architecture that has not been implemented
yet; however we describe its design since it is an essential part of the architecture.

7.3 The Intelligent Flexible Manufacturing System (IFMS)

185

||
X

Figure 7.19: A work piece and a work station

The Simulator

If the simulator is provided with a topology and an initial schedule (which can be
empty), a simulation run can be started. One of the most important features of
the simulation is the simulation of failures of work stations. We employ agents to
represent work stations: each agent controls autonomously the current status of
its associated station: In our simulation, failures occur according to a predefined
probability distribution. The agent modifies the state of the station accordingly.

In such a case, a work piece that is currently located within the automated
segment of a broken work station has to linger until the failure is resolved. Work
pieces which are processed manually, are further processed without any restric-
tions. A piece cannot access a broken work station. If it is heading towards such
a work station, it will be detoured to a buffer.

Work pieces are visualized by seven small squares combined to the shape of
an ‘H’. Each square stands for one of the seven functionalities and a symbol in
the square indicates if this functionality has been added successfully to the work
piece. If an icon shows all seven symbols, all steps to generate the complete
product have been established. The left part of Figure 7.19 shows such an icon
with two tasks processed. The right part of this figure shows the visualization
of a sample work station, which consists of an automated head and three spaces
for workers that perform manual processing steps at the work pieces. If a station
is currently down, the color of the automated segment of the work station turns
from green to red. Figure 7.20 shows a screen shot of the simulator.

The Topology Editor

The topology editor provides graphical facilities to define a factory floor. The
user can define up to seven different functionalities for a work station. These
functionalities differ in the number of required human workers. Hence the layout
of a work station is determined by the maximum worker number of all provided
functionalities.

186

Case Studies: Two Holonic Agent Systems

B simulator Module H[=] E3
ion Clock Magni isti

Topology S S

glglglgl

=

Station-1D: 2

jj@@\\@

P a017a7

Figure 7.20: Screen shot of the IFMS system

The work flow can be specified by installing paths form one work station
to another. To guarantee flexibility of the re-scheduling process, each specified
buffer is automatically connected to all work stations. The editor additionally
provides means to save and to load topologies. For convenience reasons we have
chosen the same graphical representation in both the editor and the simulator.
By mouse-click, work stations can be placed on the factory floor.

The Scheduler

Scheduling of processes on a factory floor is in general of great computational
effort. For a given number of tasks and a given topology, the schedule specifies
the date the corresponding work piece enters certain work stations.

We use constraint solving techniques provided by the Oz programming lan-
guage. Using constraint solving techniques does not guarantee to produce an
optimal schedule for a given topology. However, feasibility of a schedule is given,
while the schedule quality can be improved by the use of agent techniques.

7.3 The Intelligent Flexible Manufacturing System (IFMS)

187

()

buffer agent

Agent level !
|
|
|
1
|
.
4 L
L control
B T
; i
i v
i =
work station
Entity level work piece

Figure 7.21: Agents and entities

7.3.3 Optimization with GRAIL
Construction of the Holonic Society

As stated before, there are two optimization strategies: on the macro-level, the
topology of the work station society has to be optimized, while on the micro-level
schedules have to be re-arranged due to system failures. Similar to the MoTiV-
PTA scenario, the former optimization problem favors a centralized scheme, while
the latter supports a decentralized procedure. We employ GRAIL, since it can
naturally be mapped onto the holonic situation.

In the previous section, we have already introduced agents to simulate and
represent work stations. For on-line re-scheduling on the micro-level, we also
agentify buffers and work pieces (see Figure 7.21). For our purposes, this proves
to be the right level of abstraction, because these are the entities that perform
the decision making. A more detailed agentification such as agents for workers,
does not make sense, since according to the problem specification, the allocation
of workers does not influence the scheduling. The goal of agents that represent
pieces or stations is to control the processing of the corresponding work piece or
station and to initiate and perform a re-optimization in case of a failure.

On the lowest stage, we regard idle time windows and special functionalities
as abstract resources of the work stations: During a re-planning process, they
induce restrictions on the planning behavior of other work stations, which leads
to cyclic dependencies. Furthermore, the partially fulfilled work plan of a work
piece imposes additional constraints on the behavior of the work station agents
and is hence regarded as abstract resources.

188

Case Studies: Two Holonic Agent Systems

Work
g piece

Figure 7.22: Holonic agents in IFMS

Following the arguments of Section 5.3, we consider the set of one work piece
agent and seven work station agents that are needed for the construction of the
work piece as a holon (Figure 7.22), headed by the work piece agent, while the
work station agents are the sub-holons. Thus, exchanging a work station in the
construction schedule of the work piece amounts to a holon reconfiguration. Note
that a work station agent is usually a member of several holons at a time. In
Section 5.5 we have already discussed the holonic properties of this architecture.

On the macro-level we install a central configuration instance to optimize the
topology of the station society. Similar to the MoTiV-PTA domain, a centralized
monitor agent optimizes the agent topology on the basis of status reports of the
work stations according to the number of produced work pieces. Work station
agents have to obey the guidelines of the monitor agent. Hence they depend from
that agent. The left part of Figure 7.23 shows the resulting initial dependency
graph, which is transformed to the one of the right part of the figure after the
application of Algorithm 5 of Section 3.5.

The RIL Scheme

According to the GRAIL scheme, the monitor agent spreads guidelines to the
members of the society, the work station agents. In IFMS, these guidelines are
always sent after a complete simulation run. They contain modifications on posi-
tion and functionality of the work stations. During the course of the simulation,
work station agents log their profiles (i.e., the number of processed work pieces,
etc). They have to obey guidelines and pass their local profiles to the monitor
agent.

7.3 The Intelligent Flexible Manufacturing System (IFMS)

189

N \ TN
—
G G

N

Caess)

Figure 7.23: Building up hierarchies

.\
/ /

Micro-level RAL: Dynamic Rescheduling and Holon Reconfiguration

After the simulator is provided with an off-line computed global schedule, the
local schedules for all work pieces are extracted and provided to the associated
agents. Such a schedule comprises information on processing steps of the work
piece, in particular their assignment to a time slot on a certain work station. Work
station agents are also equipped with their local sub-schedules. These schedules
contain information on free time slots of work stations.

As stated in Section 5.5, work stations control station functionalities as an
abstract resource (on a discrete scale where each position on that scale is a com-
bination of possible functionalities) and idle time slots (on a discrete scale). For a
work piece agent, production tasks are viewed as abstract resources to be allocated
to the holon members.

Once the simulation is started, the global schedule is executed. In the course
of the execution, work station failures may occur according to the previously
defined probability distribution. If a work station fails, the information about
the failure is propagated to its representative. The agent sends this information
to the heads of all holons it is member of. The work piece of such a holon is now
no longer expected to be processed according to the original schedule. Hence the
head releases this work station agent off the holon society and unlocks the time
slots that had been assigned to this station.

In the next step, agents start to negotiate about the vacant holon membership
according to a predefined protocol. For this task we employ a the contract net
protocol. Due to the modularity of our system, other protocol-based RALs could
also be employed. As a first step the head of the holon sends a call for bids for
the needed functionalities to adequate work station agents.

190

Case Studies: Two Holonic Agent Systems

The work station agents determine possible time slots to provide the required
functionalities. Multi-functional work station agents give bids for each providable
functionality. If a work station is currently broken, its agent can bid for tasks,
which start after the estimated repair time. If no estimation is possible, the agent
cannot send a bid.

Once all bids have been received by the holon’s head (or timed out), they are
evaluated. The head has to take into account the start times of the slots and
the distances to the stations. It tries to find efficient slot sequences to achieve a
fluent processing. Finally, the head confirms the selected agent to join the holon
and rejects all other applications. The agent of the selected work station has to
update its time slot.

Macro-level RAL: Production Plant Configuration

For macro-level optimization, we plan to use the different variations of Greedy-
RAL (see Section 3.4). The monitor agent has to reason over the configuration
of the following abstract resources:

e Number of work stations (Range between 1 and 20 on an integer-valued
and cardinal scale and a standard step size of 1),

e Geographical position of the stations: Work stations are placed on a
two-dimensional grid. For the sake of simplicity, we split position into two
quantities z-coord and y-coord (both on an integer-valued and cardinal scale
between 1 and 100 and a standard step size of 5),

e Functionalities of the stations: In comparison to the MoTiV-PTA sce-
nario, we use a more centralized approach: In the former case we had
introduced abstract currency which has been spread centrally, but has been
locally converted to server functionalities by each member agent. In this
case, we assign the work station functionalities directly by the monitor
agent, since there are a number of constraints that are obeyed best in a
central way (e.g., certain mandatory sequences of functionalities in the
manufacturing chain). We split this issue into seven sub-resources, each
of which on a discrete an nominal scale, modeling the functionality of one
work station.

The target function is expressed by the overall number of produced work pieces.

Integrating Heuristics

To break down the complexity of the search, certain efficient substructures have
been identified by the experts from Daimler-Chrysler. The search space then

7.3 The Intelligent Flexible Manufacturing System (IFMS) 191

Monitor

Agent
Module Module
Agent Agent

\ S

/

&D

Figure 7.24: Extended agent hierarchy in IFMS

reduces to find an efficient the configuration of these modules. The following
modules have been identified:

e Chain: The most widely-used module in current topologies is a linear
sequence of work stations, each of which provides exactly one processing
operation. The advantages of such a simple substructure are few require-
ments to logistics, high productivity, and high use of capacity. However,
it does not provide flexibility to disturbances in the production process;
delays are propagated throughout the entire sequence.

e Scope model: In the scope model, every work station in a module is
additionally equipped with the functionality of its direct predecessor in the
work flow. If a station fails, work pieces can be directly forwarded to the
next station where two production steps are performed. This approach is
expected to show a rather high use to capacity and productivity at relatively
low additional cost in comparison to the simple chain model. Additional
requirements to logistics should be rather small.

e Parallelism: This module places several work stations in parallel in order
to achieve a higher flexibility in case of station failures. However, not using
all work stations for most of the time is expected to a decrease of the average
plant productivity.

e Multi-functional stations: Such a station can perform all necessary tasks
to produce a complete work piece. Employing such a station requires only
little additional space in the factory hall. Finding an efficient Schedule
for such a work station is hard due to the bottleneck of having only one
automated head.

192

Case Studies: Two Holonic Agent Systems

-

X

T

Figure 7.25: Four ways to integrate parallelism into a chain topology

These pre-defined modules implicate the need for more structure in the holonic
society. We install module agents that are placed between the top-level monitor
agent and the work station agents (see Figure 7.24). A module agent optimizes
the internal structure of a sub-module of one of the above kinds. The dimensions
of the corresponding RAL search space are type of module, its position and func-
tionalities of the members. The dimensions of top-level search space (run by the
monitor agent) reduce to number of modules and their positions.

7.4 Evaluation of the IFMS Approach

7.4.1 The Analyzed Problem Classes

As the macro-level RAL has not been implemented yet, we only evaluate different
sub-modules. We compare the following topologies:

e Chain: All stations are ordered in a line; each on which has only one
functionality.

e Scope: All stations are ordered in a line; each on which can perform two
functionalities.

e Parallelism: We examine four different ways of parallelism: in a (8;4)-
parallelism, two work stations are placed in parallel, each of which contains
the third and fourth functionalities as shown on the very left of Figure 7.25;
similarly, we test a (8;4;5) parallelism, (1;2 - 5;6) parallelism, and a (2;3;4
- 5;6;7) parallelism.

7.4 Evaluation of the IFMS Approach

193

e Multi-functional workstations: We test the use of one, two, and three
parallel stations that can perform all seven functionalities.

e Chain with one additional multi-functional workstation: The ad-
ditional workstation is able to perform all seven production steps. It is
connected to any station in the chain.

e Scope with one additional multi-functional workstation: We com-
bine a scope module with a multi-functional workstation.

During execution of a simulation run, a sequence of machine faults occurs at
predefined points in time and with a predefined duration. We apply test runs on
four different patterns, in which stations are broken in 0%, 6%, 12%, and 18%
of the working time. All topologies are additionally equipped with one buffer,
since station failures would otherwise lead to a work-flow jam that inhibits any
reasonable performance examination.

We must also consider the costs of a topology, since using a topology with
more work stations obviously leads to a higher absolute production amount than
using a topology with fewer stations. For these reasons we regard the ratio
between the number of produced work pieces and the number of work stations in
the topology. However, even the complexities of work stations vary since stations
may provide different combinations of the seven possible functionalities. Hence,
if a cost measure bases on the number of functionalities, not on work stations,
we must examine the ratio between production performance and the number of
involved functionalities. In the following we examine both cases.

We also consider the degree of capacity utilization of the various works stations
as a performance indicator. Here we also distinguish between a course-grained
measure that indicates the capacity utilization of the entire station, and a finer
grained model that measures the utilization of the different functionalities of each
work station.

7.4.2 Results

If we consider the coarse-grained case, the number of produced work pieces does
not vary significantly for the various topologies (see the left part of Figure 7.26).
Depending on the failure rate of the stations, different topology modules perform
efficiently. Only the single multi-functional work station shows very little perfor-
mance, whereas a combination of several multi-functional work stations promises
robustness in cases with a high failure rate. In such cases, the traditional chain

performs rather weak; the exact performance values can be found in Appendix
B.4.

194

Case Studies: Two Holonic Agent Systems

127 120 1
10 [l]| 100 4 @ Chain
E Chain B Scope
SR i (T e ————" 5 o0 L DParleism (4)
2 OParallelism (3;4) H arallefism (3:4:5)
3 OParallelism (3:4:5) g WParalielism (12 - 5:6)
2 87 W Parallglism (1;2 - 5:6) ;. 60 7 M mParallelism (2:3:4 - 5:6:7)
= = . .
s M Parallelism (2;3;4 - 5:6;7) F] I Multi-station
4 @ Multi-station 8 40 | H ODouble multi-station
o . N ’
O Double multi-station M Triple multi-station
2 M Triple multi-station 20 W Chain + multi-station
W Chain + multi-station O Scope + multi-station
O Scope + multi-station
0 T 0+ T
0 6 12 18 0 6 12 18
Failure probability Failure probability

Figure 7.26: Performance per employed work station

In terms of capacity utilization, a combination of the scope model and a multi-
functional station performs best (see the right-hand side of Figure 7.26). This
combination outperforms other topologies, in particular in scenarios with a high
failure rate. Hence it guarantees robustness. Multi-functional work stations show
a relatively low capacity utilization which is caused by the bottleneck of only one
automated head in the entire topology.

In the finer-grained case, the chain model outperforms all other topologies,
in both the number of produced work pieces as well as the capacity utilization
(Figure 7.27). However, the performance difference vanishes if the failure proba-
bility increases. In such cases, parallel settings efficient, in particular in terms of
capacity utilization. Multi-functional workstations show only little performance,
since they have a very high number of functionalities per work station.

7.4.3 Summary

All the above mentioned approaches have their advantages and shortcomings.
More complex topologies (with more work stations or with multi-functional work
stations) provide redundancies that can be used in cases of machine faults. This
however, induces sub-optimal capacity utilization of the work stations.

In practice we must take into account the significant costs which are produced
by a work station with multiple functionalities. Therefore, one has to carefully
evaluate whether an increase in the capacity utilization will actually pay off. If
the costs of an additional functionality is rather small, a combination of the scope
model and a multi-functional station can reach the efficiency of the chain model,
in particular, if the failure probability is high or unknown. Thus, similar to the
TELETRUCK case study, the problem of finding an optimal topology boils down
to the choice of the target function (in this case the question whether to optimize
the use of capacity or the number of produced work pieces).

7.4 Evaluation of the IFMS Approach

195

120 1

10 4 EChain 100 @ Chain
H Scope H Scope
5] O Parallelfsm (3:4) < O Parallelism (3;4)
p [m] Parallelfsm (3:4;5) % 80 1 OParallelism (3;4;5)
$ H mParalelism (1:2 -56) 5 mParalielism (1:2 - 5:6)
;. 6 il mParallelism (2;3;4 - 5:6;7) ‘:; 60 m Parallelism (2;3:4 - 5:6;7)
;° |'| W Multi-station b @ Multi-station
o 8
44 [} Dc.JubIe mlflll-sktillon g 404 O Double multi-station
M Triple multi-station o M Triple multi-station
5 B Chain + multi-station B Chain + multi-station
O Scope + multi-station 20 ¢ O Scope + muli-station
0 0
0 6 12 18 0 6 12 18
Failure probability Failure probability

Figure 7.27: Performance per employed functionality

Bottom Line

In this chapter, we have presented and evaluated two case studies that implement
the holonic paradigm of Chapter 5. First, we have demonstrated the TELETRUCK
system. We have examined the theoretical complexity analysis of several market-
based mechanisms for resource allocation. These mechanisms have also been
empirically evaluated. Furthermore we have demonstrated how to further struc-
turize the holonic agent society and have examined in which cases a further
structurization is advisable.

In the second part of this chapter, we have presented a holon-based approach
for job-shop (re)-scheduling embedded into the context of an optimization of
plant topologies. Here we have compared several topology modules. As a result,
interesting alternatives to the classical chain model could be found which are
efficient in particular in scenarios with high work station failure rates. Such
efficient modules can be used by a higher-level topology optimization for the
layout of a more complex plant topology.

In summary, these case studies underline the applicability of the GRAIL ap-
proach in holonic agent structures. The evaluations show that in general a parti-
tioning of the search space and more de-centralized agent structures might lead
to results of a lower quality, but at a reduced run time of the system, which how-
ever might guarantee scalability in cases where more centralized architectures run
out of feasibility. Using GRAIL, the structure of a holonic agent system can be
adapted with respect to a target function specified by the user.

196 Case Studies: Two Holonic Agent Systems

Chapter 8

Conclusion and Outlook

8.1 Conclusion

The topic of this dissertation is the development of techniques that allow the
design of large, but scalable and efficient agent societies. To do so we have
derived mechanisms for a flexible self-adaptation of these societies to dynamic
environmental changes.

We have presented an extended concept of resources which not only incorpo-
rates computational time and space, but focuses mainly on mutual constraints
on the interaction among agents. Using the concept of an abstract resource, we
have derived a universally applicable hierarchical resource allocation scheme for
the entire agent society. This scheme treats resource distribution as a meta-level
action which interferes only indirectly with the object-level behavior of the agent
society. Different search algorithms can be integrated into this scheme as resource
allocation algorithms. We have derived and discussed a variety of approaches.

We have presented the SIF system, a toolkit for agent-based simulation. In
contrast to other agent-based toolkits, this system provides a modular design
through explicit representation of agent sensors and effectors, and the environ-
ment the agents act in. These features make SIF very suitable for modeling social
interactions among agents. We have developed an extension that supports con-
veniently the setup of resource-adapting agent societies by providing adequate
sensors, effectors and pre-defined resource allocation mechanisms as methods in
an abstract base class.

We have defined the concept of holonic agent systems as an extension of
resource-adapting multi-agent societies. By restricting the autonomy of the mem-
ber agents in a suitable way, an efficient trade-off between central optimality and
decentral flexibility can be achieved. We have elaborated this paradigm in terms

198

Conclusion and Outlook

of definitional issues concerning suitable domains and characteristic traits for
holonic agents; furthermore we have shown how to integrate GRAIL into the
holonic paradigm and have presented prototypical domains and solutions.

We have presented and evaluated three case studies that realize the paradigms
of resource aware agent societies. We have shown how GRAIL can be used to
optimize a collection of hardware servers in the distributed information system
MoTiV-PTA. We have demonstrated resource- and task allocation methods in the
TELETRUCK system where we have also demonstrated how to further structurize
the holonic agent society in order to increase efficiency. We have presented IFMS,
a holon-based approach for job-shop (re)-scheduling embedded in the context
of an optimization of plant topologies. In this case study we could also show
the usefulness of our approach that integrates the macro-level plant topology
optimization with micro-level rescheduling of production plans.

In summary, this thesis has provided a self-adaptation approach for multi-
agent societies that unites recent developments in artificial intelligence and dis-
tributed artificial intelligence, such as bounded optimality, resource-oriented pro-
gramming, agent-based simulation, and holonic agency.

8.2 Outlook for Future Work

GRAIL can be extended to be even more universally applicable. Two trains of
thoughts have been identified and first ideas have already been derived: The
incorporation of an evolution-based RAL mechanism and a relaxation of the
benevolence requirement. This could be achieved by incorporating a concept
from socionics, as we will briefly sketch later.

SIF can be extended to run several media at a time in order to achieve a higher
flexibility, especially for the use in virtual reality applications. Such multiple
media can be used to canonically simulate different communication channels,
and can also be used to model effectively distributed virtual worlds such as multi-
user dungeons (MUDs) since the wold representation will then be computed in a
distributed fashion.

The holonic picture can be extended with a formal characterization of the
agent merge process: Sub-holons can merge to one super-holon that displays the
same structure to the outside world as the sub-holons. It is desirable to use
the tuple-oriented formal agent model to formally define a merge function with
Abelian Monoid properties.

The simulation of the MoTiV-PTA case study can be further refined and cali-
brated to realistic conditions. For instance the service and transmission duration
can be simulated in a finer grained way. The task and resource allocation in

8.2 Outlook for Future Work

199

the TELETRUCK domain can be extended to incorporate an optimization of a
network of cooperating shipping companies. Progress towards this direction will
be derived in [Vie00]. The macro-level plant topology optimization approach in
the IFMS scenario can be further developed and evaluated.

We now sketch two preliminary thoughts on the extension of the GRAIL
approach in some more detail:

8.2.1 Application of Evolutionary Algorithms in GRAIL

The principle of genetic algorithms (GA) is based on the technique of natural
selection and inheritance. An initial population of “individuals” consists of ran-
domly generated solutions in the search space. Each solution (or individual) is
measured through its performance or fitness. This initial population becomes im-
proved during the run of the algorithm: GAs combine the survival of the fittest
individuals of a population with the information exchange among individuals. In
this process, individuals are selected according to a likelihood corresponding to
their personal fitness’.

To model a problem with GAs, a relation has to be defined which maps a
solution of the search problem to a bit string, the genotype of that solution. New
solutions are generated through the use of pre-defined operators. Other, less fit
solutions are removed from the system. Usually, the following operators are used:

e Selection: According to their fitness, a subgroup of individuals is selected
to generate new individuals, their “offspring”.

e Cross-over: Pairs of previously selected individuals are randomly taken
as “parents”: their genotypes are mixed according to a pre-defined rule and
then used as their offsprings’ genotypes.

e Mutation: During the run of the algorithm, the genotypes of existing
individuals are slightly modified from time to time in order to avoid to run
into local optima.

After having generated a new breed of individuals, the fitness of each individual
is measured (which may decline for in-principle efficient, but elderly individuals),
the least fit individuals are removed from the population, and the selection op-
eration is activated again. This procedure is iterated until a solution of a certain
quality has been found or a specified number of iterations has been performed.

200

Conclusion and Outlook

Application to Multi-agent Resource Allocation

To apply this search technique to the GRAIL scheme, one could view a given
agent society configuration as one “individual” and encode the society structure
and relevant internal states of all agents into a genotype. However, traditional
GAs are well suited for off-line search, where search time is not relevant. Unfor-
tunately, the domains we are interested in are usually highly dynamic, since the
environment may change over time. This imposes the need for a fast reaction to
such changes. Furthermore, a traditional genetic algorithm needs to process at
least some dozens of individuals. This would mean to store the configuration of
many complete agent societies which is intractable. Therefore the search method
has to be modified.

Due to these restrictions of the situation, it is only feasible to consider one
possible solution at a time which must be optimized taking dynamic changes of
the environment into account. Hence, the specification of what is considered to
be an individual has to be re-defined. A straight-forward solution is to regard
agents as the basic units in the system. The genotype of an agent can be used
to represent a suitable excerpt of its internal state, while its fitness may denote
how well an agent performs its task. The fitness can be used to express the
solution quality of the given task, but also processing time. Information on
internal states of an agent (e.g., communication queues or action queues) can be
used as heuristics for such fitness estimations.

The three evolutionary operations selection, cross-over and mutation can be
performed on the genotypes of the member agents. This is performed by a rep-
resentative of an agent group. The genotypes can then be regarded as abstract
resources the representative has to reason on. By applying the evolutionary op-
erations, the search space of the RAL is trespassed.

Global feedback can be based on the overall performance of the agent society.
If the global fitness decreases, the configuration of the system might be changed
rather massively. This can be achieved by speeding up the age-based fitness decay
of all society members. If, on the other hand, the global fitness increases over
time, the decline of personal fitness due to age is kept low, leading to only small
changes in the search space. The genotypes of the representative agents then
reflect the macro-level state of a agent group they represent.

A further exploitation of this idea may not only lead to a better resource
allocation procedure, but may also reveal interesting results in terms of macro-
level simulation of a society in a virtual world.

8.2 Outlook for Future Work

201

Control Channel Situation Intention
Type of Sanction
Positive money influence
Negative decision-power activation of commitments

Figure 8.1: Four different generalized media of interaction

8.2.2 Incorporation of a Socionic Theory into GRAIL

The concept of generalized media of interaction (GMI) is part of a theory of
human society provided by the sociologist Parsons [Par69]. The crucial issue of
this concept is: How can an agent oy control the actions of an agent ag so that
the latter agent acts according to the intentions of the former? Solutions to this
problem setting may be transfered to the GRAIL approach in order to relax the
requirements for benevolence where member agents have to obey guidelines put
by the monitor agent.

Parsons introduced the problem of how two (human) agents, completely un-
known to each other, manage to interact with one another so that they eventually
act in a coordinated manner. This problem is often referred to as the problem of
double contingency. Since these agents usually have some knowledge about the
historically evolved world they live in, this problem never actually occurs: Even
if a human agent meets a complete stranger in the streets he can still assume
many features of that person to hold true. Still, the general problem remains
how interaction partners establish expectations about one another’s future ac-
tions. Generalized media of interaction propose a solution to this problem by
providing agents with applicable strategies.

Parsons identifies four strategies that can be used in the interaction to control
the actions of another person, namely money, influence, power and commitments.
Parsons calls these strategies generalized media of interaction. They all are based
on the possibility to sanction the actions of another agent. Parsons distinguishes
between positive and negative sanctions (i.e., rewards and punishments). The
different media of interaction can be distinguished according to their channels
of control. An agent has the following social interaction abilities: he can give
money, influence, take a collectively binding decision or commit itself to some
value. Figure 8.1 displays the resulting matrix.

202

Conclusion and Outlook

Social Interpre-

Social Interpretation of the Action

tation of its Use

Money Give a; money if reject then <nil> If a, rejects, a; and a, do nothing
if accept then If a; accepts, a4 gives a, money
= a;:use(medium) and a:
= ay perform(action) |= decides towards the goals of a;
= produces support for a,
= commits to the goals of a,
Power offer collective if reject then If a; rejects, a; worsens the situation
decision -power to) of a;
a, (punish) = ay: use(medium)
if accept then If a, accepts, he
= ay perform(action) |[= gives a; money produces support
for a,
= commits to the legitimization of a4
Influence |support a,; if reject then <nil> If a, rejects, a; and a, do nothing
if accept then If a, accepts, he
=,y use(medium) = decides towards the goals of a;
= a,: perform(action) |= commits to the reputation of a,
and a,
= supports a, by approving to his
wisdom
Commit- | offer value-commit- | if reject then If a, rejects, a disapproves to the
ment ment to a, « a,: use(medium) actions of a,
if accept then If a, accepts, he
= a, perform(action) |= decides towards the goals of a;
= supports the commitments of a,

Figure 8.2: Effects of generalized media of interaction

Application to Multi-agent Resource Allocation

The use of generalized media of interaction is a promising concept for an extension
of the GRAIL scheme to optimize a society of self-interested artificial agents. To
do so, this concept needs to be formalized. Figure 8.2 shows a first sketch how
to implement the effects of the interaction media: The notion of a currency has
already been introduced to the system in the case study of Chapter 6; it can also
be seen as a generalized medium of interaction: If a member agent is not willing
to accept limiting guidelines, the representative can transfer additional money
to compensate profit loss. This phenomenon also occurs in human interaction
and is known as subsidizing or side-payment. Similar to the attribute money
the attributes power, influence, and commitment can be associated with society
members. A powerful representative can force members to behave in a desired
fashion by threatening with negative sanctions or supporting members.

8.2 Outlook for Future Work 203

Adding other media than just money to control an agent society may allow
for a more flexible self-adaptation in more competitive scenarios and may also be
of interest to sociologists in the sense that the extended GRAIL scheme might
be used to empirically validate theories derived in sociology.

204 Conclusion and Outlook

Appendix A

Proofs of the Corollaries

Corollary 3.4.1 If the five requirements stated in Section 3.4.1 hold, Greedy-
RAL (Algorithm 1), embedded in a RIL (Algorithm 6) that keeps calling a RAL
step until a solution is found, will eventually find an optimal position in the local
search space.

Proof: Since the performance function is concave, there exists only one global
maximum and no local maxima. Hence, a step in the search space which leads
to a performance increase, always strictly decreases the distance of the current
position to the global optimum (Step 4 of Algorithm 1).

Due to the concavity of the performance function there must be at least one
such direction which leads to a performance increase, if the optimum has not been
reached yet. Assuming only discrete dimensions, there is only a finite number of
possible search directions. Steps 6 and 7 assure that if a step has been taken that
has led to a performance decrease, this step is undone immediately and a step in
a new direction is taken.

We never select a direction that has been tested previously; therefore, even-
tually a direction will be picked that leads to a performance increase, and hence
to a reduced distance to the optimum.

The search space is discrete; so there exists only a finite number of points
that have a smaller distance to the optimum than the current position. In each
iteration one of these points is selected as the new current position. Hence, the
number of points with smaller distance to the optimum than the current position
strictly decreases and after a finite number of iterations the optimum is reached.
([l

Corollary 3.5.1 The cycle replacement technique of Algorithm 5 proposed in
Section 8.5.1 terminates and the resulting multi-graph does not contain any cycle.

206

Proofs of the Corollaries

Proof: In each transformation (lines 14-24 of Algorithm 5) one cycle is removed
(lines 15-16), while new arcs are only introduced from u to vy and from vy to
v for a new node v, if there had been an arc from u to v previously that was
not member of the cycle. Hence, no new cycles can be introduced. A graph can
contain only a finite number of cycles, so the algorithm terminates.

We show that Gpey \ Gres: is acyclic by induction over the number of loop
iterations n.

n=0: G°

0w \ G, = 0. The empty graph contains no cycles.

res

n-1—n: We distinguish between two cases:

e There exists a v in V.5 with no incoming arcs (Line 5): In this case, v
and all its outgoing arcs (v, wz) are removed from G rest While Gyepy Temains
unchanged. Hence V, = yrl\vrtu {v} and E", \ E

new \ Test new

rest -
Encl\ EM P U {(us,v)} for nodes u; in G2l \ GT.

new rest new 'rest ACCOI‘dlIlg to the

induction assumption Gn-I\ G, is acyclic. Furthermore, v is not member

of Gy, , \ GT@St ’ hence GZew \ Grest 15 a‘CyCIiC-

new

e all v in V.5 have at least one incoming arc (Line 10): In this case, Gyest
and G, are modified equally. Hence Hence G*,, \ G™ ., = G} \Grest

new
Due to the induction assumption, G, \ GI.,; is acyclic.

After termination, Ges is empty, S0 Grew = Gnew \ Grest, therefore, Gie, is
acyclic. O

Corollary 3.5.2 If an original dependency graph contains an arc (v, w), then
the resulting multi-graph after an application of Algorithm 5 contains an undi-
rected path (v, v, ..., v,,u) of the same grey scale where v; are freshly integrated
nodes.

Proof: We show that if an arc (v,w) € FE,.q is processed in n or less loop
iterations, Epey \ Frest contains an undirected path (v,vg,...,v,,u), where v;
are freshly integrated nodes.

n=0: The assumption holds for the empty graph.
n-1—n: We distinguish between two cases:

e There exists a v in V5 with no incoming arcs: In this case, all (v, w) of
iteration level n are removed from FE,es. Hence Eyey \ Eres; contains (v, w).
Arcs of levels < n are left untouched in both, E,.,, and F,.;.

207

e All v in V.5 have at least one incoming arc: In this case, arcs (v, w) of
level n are removed from both, ., and E,.g, but arcs (v, u) and (vg, w)
of the same grey scale are introduced in E,,. Hence Eyeyp \ Erest contains
an undirected path (v,vg,u), where vg is a freshly integrated node.

Due to the assumption, for arcs (v, w) of level < n exists an undirected
path (v,vg,...,v,,u) of the same grey scale in Fjep \ Frest. If an arc
(vs, vi41) is processed at level n, arcs (v, v;) and (v;,v;41) are introduced in
Epew for a new node v;. Hence, Epey \ Erest contains an undirected path
V, V0, - - -, Ui, Uiy Vit 1, - - - , Un, u) Of the same grey scale, where all intermediate
nodes are freshly integrated.

After termination, G,es; is empty, 80 Gpew = Grew \ Grest, therefore, the corollary
holds. O

Corollary 3.5.3 The run-time complexity of a centralized resource integration
approach of Section 3.5.3 is O(d,.,;(n,7))) which could be in the worst case O(n"),
being r the total number of abstract resources and n the mazrimum number of
different values a resource can have.

Proof: The centralized resource integration scheme runs only one resource allo-
cation algorithm RAL, leading to a total run time of O(d,,j(n,7))) In the worst
case no assumptions about d,,j(n,7) (e.g., on convexity, etc.) can be made.
Hence an algorithm might test every single position in the search space, before
the optimal one could be found. Hence, the corollary holds. O

Corollary 3.5.4 The complexity of the recursive decentralized resource inte-
gration approach of Algorithm 6 is O(d,.,(n, 7)9:m) which could be in the worst
case O(n™°977) being T the minimal number of children a node can have in a
dependency graph and n the mazimum number of different values a resource can
have.

Proof: Let k denote the number of the currently observed stage of an agent in
the hierarchy: agents with no successors are placed on stage k£ = 0, while the
top-most agents are placed at stage £ = [. The complexity of a RAL of agent «;
at stage k = 1 takes only O(d,,j(n,7)). In the worst case, this computation is
undone in case of backtracking during the RAL of agent «; at the level above.
Backtracking happens, whenever «; performs a step in its RAL (O(n") times).
Since backtracking affects all 7 children of «;, the complexity C} at any stage k
is

Cr =0((1+ Ck_1%7) % dral(n, 7)),

208

Proofs of the Corollaries

if optimization of different branches at the same stage is performed sequentially.
For the top-staged k = [, this can be re-written as

l

Cr=00) (7" #dpy(n, 7))

i=1

We show this by induction over k& where we set d := d,1(n,7) for the sake of
readability:

k=2:Co=0((1+d*7)xd) =0(d+7*d?*) =

=0 *d' + 7' xd?) = O(z:(Ti_1 xd'))

=1

k-1—-k: C, =0((1+Cy_1x7) % d) :O(d‘*’T*d*Z;:f(Ti_l*di)) =

k

_ 0(7_0 *dl + Z(Tifl * dz)) _ O(Z(Tifl " dz))

i=1

According to the induction proof the transformation hold for every k, includ-
ing k = [. So far, we have not considered yet the fact that subordinate problem
solvers can run their RAL independently. Since we can assume the parallel com-
putation of 7 RALs at the same stage, the factor 7 can be removed from the
recursive formula leading to a complexity C} at stage k:

Cr = O((1 + Cy—1) x dpg1(n, 7).

In analogy to the above case, this can be re-written for the top-staged k = [as

G = O(Z dral(na T)Z) = O(dral(n7 T)l) = O(dral(n, T)logTT)

=1

If we have to assume the worst case, where no information about the allocation
space is available, the run time of each RAL is atmost O(n7), leading to a total
run time of O(n™*°9""). Hence the corollary holds. O

Corollary 5.3.1 If E = ({a1,...,a,}, &I, A) is a multi-agent environment
according to the definition in Section 4.1.2 then for each i < n there exists an iso-
morphic multi-agent environment ({o;},E', 11", A"), in the sense of the definition
given in Section 5.3.3.

209

Proof: Without loss of generality, let + = 1. We construct an environment
E' = {1}, &, 1", A) such that & = £ x Sy X -+ X Sy, II' = II!, and for all
(e,89,...,8,) € & and a; € Ay the world function A" : &' x A; — £’ is defined as

AI((ea 52y .., Sn)a al) = (ela 8,27 SRR 8;;)

where ¢’ = A(e, a1, 93(s2, [12(€)), - . ., @2 (sn, [I"(€))) is the successor state of e in F
with respect to a; and the other agents’ actions ¢2(s;, [T(e)). st = &} (s;, IT'(e)) is
the successor state of s; in E for 2 < ¢ < n. The property of isomorphism follows
directly from the construction. O

Corollary 5.3.2 For every multi-agent environment ({aq,...,an},E, I, A)
and k < n we can construct an isomorphic multi-agent environment
o, agrt, -, ant, E, T A"), where o is a holonic merge of aq,...,ax in the
sense of the definition given in Section 5.5.5.

Proof: We construct an environment ({/, agt1, ..., a,}, €, 11", A’) with an agent
o = (8, P A", ¢') that emulates the agents a,...,q, and we adapt the per-
ception function and environment function accordingly: S’ = (S; x --- x Sg), let
P'=(P x---xP), A\ =(A; x--- X A), and for all s = (s1,...,s,) € S, p/ =
(p1,--.,pk) € P', the agent function is defined as

¢'(s', ") = (($1(s1, 1) - - B 555 k), (67 (D1, 51), - - -, DDk, 5)))

where the first(second) arity of ¢’ is a tuple of the first(second) arities of the
composed agents’ functions. Furthermore, we define the perception function IT' :
E— (P, Pey,...,P,) by

IT'(e) = ((TI'(e), ..., I*(e)), TT¥+ (e), . .., TI"(e))

for all e € £. Here, the perception of o' is composed from the perception of

aq...04. Finally, the environment function A’ : £ x A’ X Ap 4 X -+ x A, is
defined as

Ae,d,api1,---,0n) = Ale,ar, ..., a,)
foralle € £ d = (a1,...,ax) € A, agy1 € Agy1,...,0, € A,. Isomorphism

follows directly from the construction. O

210 Proofs of the Corollaries

Appendix B

Results of the Evaluation of the
Case Studies

B.1 Request Processing in MoTiV-PTA
Results of the Off-line Simulation

MicroGreedy SpaceEqual MicroNoOpt SpaceEqual MicroGreedy SpaceDist MicroNoOpt SpaceDist

N

212 Results of the Evaluation of the Case Studies

Results of the On-line Simulation

MicroGreedy SpaceEqual MicroNoOpt SpaceEqual MicroGreedy SpaceDist MicroNoOpt SpaceDist

TimeDist TimeDist TimeDist TimeDist
Run timefreq / minMacro Macro [Macro Macro [Macro Macro [Macro |Macro
NoOpt

119
4.43] 114] 107| 110, 111] 111} 109| 110[111] 113| 112} 107| 123| 114| 108| 122] 117 119 121] 125] 110
4.43] 115 107] 110 111] 111} 108 110 111 113] 113} 107| 123] 114| 109| 122} 117| 119| 120] 125 110
4.43] 114] 107| 110, 111] 111} 109| 110[111] 113| 113} 107| 123| 114| 109| 122} 117| 119 121] 125] 110
107{ 110[111 111] 108| 110] 111| 113| 113} 107| 123| 114] 109] 122§ 117 119] 120 125 110
4.43] 115] 107| 110, 111] 111} 109| 110[111] 113| 113} 107| 123| 114] 109| 122] 117 119 121] 125] 110
4.43] 114] 110 110 111] 111} 109 110 111 113] 112} 116] 123| 114| 108| 122} 117| 119| 121] 125 112
443] 115] 113] 110, 111] 112} 110] 109| 111] 113| 113} 112 110| 114| 109| 122} 117| 119 117 125] 116
443 114] 112 110, 110, 113} 111] 112] 111] 113] 113} 114| 110 114 121| 122§} 117| 119| 121] 125 108
10] 4.43] 115] 114 110[111 110} 112 113| 110] 114] 110} 112] 119 112| 112] 122} 125 118] 110] 119 111
11| 453] 114] 112] 111] 112| 105| 113 116] 110 113] 112| 115 119] 121] 110] 120] 123 127| 118 119 112
12] 4.69] 114] 118 113| 107| 106} 111] 113] 111 114] 113} 112| 128 116| 107| 119} 119| 126] 113] 120 114
13] 4.88] 112| 114] 111] 105] 107] 114 116] 112| 113| 112] 116] 124| 114] 110| 116} 117 122 115 119 113
14 4.88] 113] 115] 111[109| 101} 113| 118] 111| 112| 110y 118] 129| 107| 114| 111] 122] 121] 112] 116] 118
15 5.05] 109] 115] 105] 107| 104] 114| 122| 114| 115] 112 119] 125 113] 113] 114f 120] 124] 113] 112] 122
16 5.2 111] 119 106] 106| 103} 113] 119] 112| 114] 110} 119| 130, 110, 116] 114} 122| 123| 117| 125 112
170 5.19] 109| 117| 106| 106| 106] 112| 118| 114| 110| 112} 115 123| 112 109| 111} 115 127 117] 116] 116
18] 543] 110] 119 105| 107| 105§ 114| 122| 112| 112] 111) 116] 126 103] 114| 116} 122| 133| 118| 118 117
19 541] 111] 121] 106] 106| 106] 114| 120[110| 114] 109) 115 122| 114] 113] 112} 120| 124| 112] 111 115
200 5.59] 110[117| 106| 107| 105y 114| 125[110] 112| 111 110 123| 111| 110] 112} 123] 129 119 117| 114
21| 569 113] 118 104 109 107] 116] 122[112[110[107] 111| 123 108 114| 105 116] 128 120] 121] 107
22) 5.74] 108| 122| 105 107| 104} 113| 124| 108| 110/ 108} 116| 128| 106| 111] 111] 121] 130 121 115 116
23] 5.77) 109| 121| 104| 107| 107) 114 123] 111] 112] 110] 118] 129| 109| 115] 109] 118| 128| 116| 122| 106
24 5.94) 109 121| 108| 109| 105] 112] 124 108] 110[107] 115] 128 112| 112] 116] 119] 121| 116] 115] 120
25 5.86] 112| 121| 105| 110[102] 116] 126] 109] 113] 110] 116| 123| 116| 113| 108] 127| 130| 114| 115 111
26) 5.83] 110[119| 107) 110 102} 115] 125[111] 113] 109) 115 127| 111| 17| 111) 127| 124| 121 114] 116
27] 5.85| 112[121 109] 106] 103] 118 124[111 111| 108] 120] 128 108] 113| 101] 120 133[120 115 114
28 5.92] 112| 119| 104| 106] 102} 116] 126] 109] 113| 111] 115 123| 113| 115] 105] 116| 131] 114| 116] 108
29 6] 110 122 104| 109] 101} 117| 124| 110 111| 109} 117| 127| 118] 110[105] 117| 132 112] 117| 114
30 6] 109| 119 106| 107| 100§ 113] 127 112| 113] 107 113] 130] 107| 119 103} 121 131 112] 120] 111
31 6] 111| 122| 104| 108| 103) 117| 126 111] 114] 111] 111] 119] 109] 115] 107] 122] 133] 111| 113] 114
32 6] 113| 120/ 105/ 108| 101) 117 123| 107| 114 112] 115] 132| 110| 113] 110} 118] 135 109| 119] 110
33 5.88] 111| 119| 107| 110[101) 115] 124 109| 113] 111] 112] 127| 113] 117] 108] 126] 135 116| 117| 107
34] 6.01) 108 120 104| 107[100) 114] 124 110] 112] 109] 113| 125[109| 111] 102] 125] 129| 113| 118] 115
35] 594 112[118] 106] 105] 101] 113] 127| 107| 113[108] 118[120 111] 108 105] 121] 134] 111] 115 118
36] 5.85] 110[119| 104 109 101} 114| 124] 110] 111| 110} 111] 118| 107| 112] 109] 122| 128 114| 111] 109
37] 5.83] 109| 116| 103 107 102} 114| 123] 111] 111| 107} 114] 120| 113| 114| 106} 119 131] 109 118] 114
38 5.68] 106| 116| 103) 106 99 113| 126] 110] 111| 107} 110 119| 106| 116] 105] 118| 132 120 121| 112
39 5.69] 108| 119| 103 105 97) 112| 124| 106] 111] 106} 110, 124| 109| 110| 108} 117| 130 117| 116] 107
400 561] 107| 117| 105] 104| 98] 112| 124| 108] 111] 105y 112] 122] 103 106| 103} 118 128 107| 117| 111
41| 555] 105] 118 105 103| 101| 110] 125 106] 108] 105] 107| 127| 103[113] 99| 118 129 118 114 104
42) 5.46] 106| 116] 103| 104| 96] 112| 121| 108] 111] 103} 108 125 100 106 99§ 120] 122 115 116] 114
43] 5.46] 104| 112| 101] 103| 101} 111] 119] 105 108| 107] 104| 120 106 105 99} 123| 128 116| 116 107
44] 5.38] 105| 118| 100| 105 99} 113| 120| 106] 110[103} 112] 117 98] 104] 95| 116] 128 112] 112] 104
45] 5.00] 105 113] 102 100 95| 110[120 102| 107 104] 113 118] 106] 111 97] 118| 125/ 110 110] 109
46) 5.03] 104| 115 101| 102| 97] 110[118 103] 108] 100y 108] 123] 102 108 96f 114] 125 108 108| 105
47] 5.04] 101| 112| 100[99| 96] 111 117 102| 108| 101} 105/ 116/ 99| 108 101} 113] 128 103| 117| 109
48] 4.86] 102| 110| 97| 100| 94} 108] 116| 105 107| 102 103] 120 98] 99| 94f 113] 117| 106| 109 107
49 4.77) 103] 111 98] 98 93] 107| 116] 100] 106| 102} 110] 116] 98| 101 98] 107| 124| 107| 111] 103
500 4.66] 98| 111 96| 99| 93] 104| 118] 100] 100] 99] 103| 120, 95 105 99| 104| 117| 107| 104| 103
51)] 4.45] 102| 107| 96) 99| 90} 102| 115] 103] 105 97] 98 118 96| 98| 98] 114| 112| 104| 112| 107
52 434] 97| 106] 94| 99| 90] 103] 114 99| 100[99| 105] 106| 101| 105 99] 110| 119] 98| 107| 98
53] 4.26] 99| 106| 94) 96| 89] 104| 111] 100] 103| 94] 109 114| 97| 94| 89| 103| 110/ 102| 109] 96
54 409) 94| 105| 94| 93] 89) 101| 110 97| 101 o3| 103] 116] 92[96] 88| 112[111] 103] 97| 99
55 3.93] 98| 105/ 90, 95 89 101| 110] 94| 100[96} 98| 106] 93] 102 94] 98| 115 99| 101 99
56 3.78] 91| 104 90| 93] 87] 100] 104 95 98] 95| 104] 107 91| 100 91 105] 119| 100| 107| 93
57 3.66] 95| 103| 89 91 84 98 106) 95 95 92) 94| 103| 97| 89| 85] 109| 110[104| 103| 96
58] 3.47) 93] 101 88 89 85] 95| 105 93] 96| 89 95/ 110 96| 97| 90} 106] 102| 102| 92| 99
59) 3.3] 92| 98 87 90| 84 96| 102 91 94| 86] 100] 109 91 83 89 97 111 96| 95 96
60] 3151 87| 97| 87| 87| 83] 94/ 102 86| 89 89 88 98 89 89 80] 95 108 88 92| 85
61 3] 88 97 81 86| 81 94| 100 90| 92| 88 86| 104 87| 89| 86] 100/ 103 97| 89 93
62] 2.91 85| 94| 82 85 81 90| 100[84| 91 82] 83 100 85 89 78] 92| 100] 95 86] 82
63] 2.82] 85 93] 83 81 80] 88| 94/ 83 85 81 89| 93] 83| 93 86 92 96| 84| 94| 81
64 2.61 85| 94| 80| 82| 76] 87| 94| 84| 85 82 85 102| 81 91 78] 86| 95 91 94 84
65 248] 80| 87| 78 77| 76 84| 94| 83 85 80] 81 87| 78] 80[74 93] 94 91 95| 81
66 225] 80| 87| 77| 76| 73] 83] 93] 83 80 770 79 89 75 80 73] 91 99| 86| 86| 79
67] 217) 79| 83| 76| 77| 72) 81 89 81 79| 76] 78| 84| 75| 82| 78] 84| 99| 77| 81 78
68 2.09] 78| 83 72 75 71 80| 86| 75| 78| 75] 84| 84 71 79| 74 84| 94| 78] 78] 81
69 189 75| 84| 69 74 11 79| 86| 75| 77| 75\ 79| 84| 69 76 71 85| 91 79| 80 79
70f 1.78] 73] 76| 69 70| 5] 76| 86| 75 75 72| 75 81 68 69| 751 77| 89 72| 83 78
71 168 71 74| 69| 67 65] 74] 81 70| 74 700 73] 81 69 68 69 75 82 74| 81 76
720 156] 70 73] 66| 65| 651 73] 78 72| 72| 66| 72 82 71 68 63] 74/ 80 76 80 71
73 144 69 T 63| 67| 68] 74 76| 75 71 69) 72| 76| 67 69| 69 76| 79| 76| 74| 67
74 133] 69 70 65 69 71 75| 74| 72| 72| 72} 73] 71 63 7 76} 79| 75| 76| 75| 71
75 123] 69 67| 68 68 69 71 73] 70 74 76] 73] 72| 68| 67| 72Q 78 72| 75 76| 76

QlolNlolalsleinol s
>
IS
)
=

B.1 Request Processing in MoTiV-PTA

213

MicroGreedy SpaceEqual

TimeDist

MicroNoOpt SpaceEqual
TimeDist

MicroGreedy SpaceDist
TimeDist

MicroNoOpt SpaceDist
TimeDist

Run timefreq/ min[Macro [Macro [Macro [Macro [Macro [Macro |Macro |Macro [Macro [Macro [Macro [Macro [Macro [Macro |Macro [Macro [Macro |Macro [Macro M
Greedy |NoOpt |Heur |leam |H&L fGreedy |NoOpt |Heur |learn |H&L |JGreedy [NoOpt [Heur |learn [H&L |JGreedy [NoOpt [Heur |[Learn |aH&L
76 1.09] 67| 64 66 67 68 68 71 68 70| 72} 74| 73] 74 64 69 77| 69 74 78 74
77) 0.96] 66| 63 65 67 66) 66/ 69 66/ 67| 69 70 71 72| 65 67 75 70, 70| 71 72
78] 0.86) 63| 62| 63| 65 65] 65 67 65 64 66] 67 70 71 67| ©65] 73| 72| 67| 64 71
79 0.78] 61 62| 61 63| 64] 64 65 62 62 63 65 69 70| 69 64 71 69| 64| 63 68
80] 0.69] 59| 59 59 61 61 61 63 60 60 60] 63 65 67| 66| 63] 67 66| 62 63 65
81] 0.63] 57| 57| 57| 59| 58] 59 61 57| 58| 57 61 62 64 63 62] 63 63 60| 63 62
82] 058] 55/ 55/ 55| 58/ 55] 57| 60 55| 56| 551 59| 59| 62 60| 61 59 61 58| 63 59
83 052) 54| 53| 53] 56| 53] 55| 57| 53] 54 53] 57| 56| 59| 58/ 60] 56| 58 57| 60| 57
84 047] 52| 52| 51 55| 51 53| 55 51 52| 51 55| 54| 55| 56| 57 54| 55| 54| 57| 55
85 042] 51 51 50 53] 50p 52| 53] 49| 51 500 53| 53] 53] 55| 55 52| 52| 52| 55 53
861 0.4] 50 50 49 51 49] 51 51 47| 50 49| 51 52| 50 53] 52 50 49 50 52 51
87] 0.38] 49| 49| 49) 49| 47] 49| 49| 46| 49| 48 49 51 47) 52| 500 48] 47| 48 50, 51
88] 0.36] 48| 48| 48 47| 46] 48| 49| 46| 48| 48] 48 50| 44| 50| 47] 46| 47| 46| 50, 51
89 0.35] 48| 47| 48| 45] 45] 47| 49| 46| 48] 47] 48] 49| 44| 49| 451 45 48| 44| 50 52
90] 0.33] 47| 47| 48| 44| 46] 46| 49| 47| 47| 46] 49| 49| 45| 50| 46] 46| 49| 45| 50| 52
91| 0.31 46| 47| 47| 45] 47] 47| 49| 47| 46| 46 49 50, 46| 51 48] 47| 50[47| 50| 52
92] 03] 46| 48| 47) 47| 48] 48] 49| 48| 46| 47] 50, 50| 47| 52| 49 49 51 49| 51 53
93] 034 47| 49| 47) 48] 501 49| 49| 48] 47| 48] 50 51 48| 54| 51 50 52| 51 51 53
94 039 49| 50[49 50/ 51 50| 49| 49| 49| 500 51 52| 49| 55| 53] 52| 53] 53] 51 53
95 043] 51 51 51 52| 52] 52| 50 49 50, 51 51 52| 50| 56| 54 53] 54 54 51 54
96] 048] 53] 52| 53 53] 54 53 51 50 52| 53] 52| 53 51 58| 56] 54| 55/ 56| 51 55
97 052) 55| 53| 55| 55 55] 54/ 53] 52| 54| 54 52| 53] 52| 59| 57] 56| 57| 58] 52| 57
o8| 056] 56| 54| 57| 56| 56] 55 55 54] 55 55] 53] 54| 53] 60| 59| 57| 59 60 54 59
99 0.61 58| 55| 59| 58 58] 56| 57| 56| 57| 57) 55 55 55 62| 61 59 61 62 56| 61
1001 0.66] 60| 56| 61 60| 60 58 59| 58 58 58] 58 57| 57| 63 63] 62| 63| 64| 58 62
101 0.7 62| 58 63 61 62] 60 61 60| 60 60] 61 60 60| 65| 651 65| 65| 66| 60 64
102) 0.75) 64| 61 65| 63| 65] 62 63| 62| 62| 62] 64/ 63 62 66] 68 69| 67| 68 62 66
103] 0.84] 66| 64 67| 64 67 64 65 64 64 64 67 66 65 68 70} 72| 70| 70| 64/ 68
104 094] 69 67| 69| 66/ 70] 66| 67 67 66/ 66) 70| 69 68 70| 73} 76 71 72| 67 71
105 104 71 70 72| e8] 71 68 69 70| 68 68 71 7 4l 73| 75) 76| 73] 73] 71 75
106 1.14) 74| 72| 75 71 720 70| ™ 73] M 71 72| 73| 74| 76| 77\ 77| 74| 74| 76| 78
107) 127y 76| 75| 76| 75| 73} 72| 73] 76| 73] 74 73] 76| 78 79 80) 78 76| 75 81 82
108) 1.41 78| 78| 78| 76| 76 74| 77| 76| 75 78} 77| 80| 79| 82 81 81 81 81 80| 82
109] 154 79| 79| 80| 77 79| 76 81 77) 77| 78] 82| 85 80| 86| 83 84 87| 87| 80 83
110§ 1.68] 80 81 82 78| 82 79 81 80| 80 79] 85 90| 84| 838 85 87| 89 89 81 87
111 1.8 81 83 84 82 83 81 81 84 83 82 88 88 89 90| 85 89 92| 92| 83 92
112 1.92] 83 86| 84| 86| 84 84| 85 85 87 85 88 88 86| 89 86] 92 94 92| 84 91
113 2.05] 87 90 85 89 87] 86| 89 86| 87| 88| 88 88 84 89 Of 88| 96| 93] 86| 90
114 2.19) 91 90| 90/ 88 88 87 88 91 87| 91 86| 96/ 89| 87| 90} 88 91 96| 100[95
115 24] 89 90| 89 87| 90} 89 90| 91 89 90] 90| 96| 94| 87 90] 89| 90| 94| 96| 93
116f 252 90| 93| 89| 88 93] 93] 93 91 91 92) 95| 96/ 99| 88| 95| 98] 90[92| 93] 92
1170 259 92 97| 90| 92| 93] 95 95 92| 94| 93] 101 94| 94| 91 94 105 95| 93] 103] 102
118} 267] 94) 95| 90| 94| 93] 96| 98 95 92| 95 101 97| 94| 100[102} 104| 95 101 98| 101
119 2.91 94| 98| 92| 94| 97) 99| 99| 93] 99| 96] 103] 100[101 98| 94) 104| 109| 107| 96| 96
120§ 297) 95 97| 93] 93 9§| 100] 101 99| 93| 101} 101 98] 94| 96 9§| 97| 108[99| 105/ 110!
121] 3.12) 93] 101 94| 90| 95] 101| 103] 99| 99| 1000 96[101 98| 99| 100] 102| 106] 108] 107 99
122] 3.36] 98| 100| 94| 94| 99] 99 101 100 95| 101 96| 107] 102| 95| 1054 102 105] 99| 103] 110
123] 3.51 96| 101 90| 94| 94] 105| 105 99| 98| 105 105] 104] 93] 102| 103] 112| 112| 106| 97| 104
124] 366] 98] 102 89| 96| 95| 100, 108| 102| 102| 104 97| 109 91| 100 105f 105 109] 99| 101| 112
125] 3.75) 100| 108] 92| 97| 96] 102 110| 101| 100| 109 95 111 95| 95| 102} 111| 113] 110[100[106
126] 39 101| 108 92| 94| 95| 102 109| 100| 99| 107Q 107| 110 95| 107| 97} 113] 114 103| 107| 118
127] 4.09] 101] 107| 98| 101 94] 103| 110 105| 103| 110} 102| 121] 103] 102| 100) 113[117] 104] 99| 117
128] 4.32) 105 112| 95| 98| 92 110, 111| 101| 102| 113} 108 111] 100] 100, 99} 117| 111] 107| 112] 120
129] 4.38] 100| 108] 98| 97| 93] 106| 114| 102| 101| 111} 103] 109| 104] 112] 99} 109 111] 106| 107| 123
130] 4.45) 102 109| 95| 97| 94] 105 116| 106] 104| 113] 110[115] 106 111 95] 118 112| 110 113] 118
131] 4.59] 100] 114] 96 101 95] 106/ 116/ 105/ 103| 114] 109| 118] 101| 101 94) 109 122| 108| 109| 128
132) 4.78] 104| 112| 98| 104| 94} 109, 118| 104| 102| 116} 102| 119 110 108 105f 121| 128| 110| 105 123
133] 49 105 116] 99| 102| 97] 109| 117| 105| 105] 115Q 109| 119] 101] 111] 1044 112] 130, 109| 105 114
134] 4.94] 104] 113] 102| 104| 99 106 119| 103| 105] 113] 107| 119 103| 109 101} 111] 122| 104| 114| 115
135] 5.05) 105] 113| 102| 102| 97] 106] 122| 104| 108| 116} 115] 127| 107| 111 96 118 123] 117| 116 116
136] 5.25] 106| 117| 104| 103| 97§ 110, 119| 105 110| 118} 119 114 107| 107| 105) 116] 131| 102| 106| 115
137] 5.19] 106] 120[102| 103| 97] 112| 117| 107| 105| 118} 118] 123] 104| 109 106} 115 123 114 113] 126
138} 5.34] 106| 118| 103| 106| 98] 113 121| 108| 107| 119] 111| 121] 108 103| 102} 113| 126] 105 113| 126
139] 5.52) 106] 117| 104] 107| 98] 112] 122| 109| 108| 120] 111| 121| 109] 113| 100§ 118] 131] 116] 114| 121
140} 5.55] 110] 118| 104| 106| 100§ 111] 124| 106] 112| 119] 113| 118 107| 104| 105y 113| 131| 107| 116 120
141] 5.71) 110] 121| 104| 107| 100} 114| 121| 109| 112| 123} 120] 124| 102| 114| 102 120 120, 111] 115 125
142] 5.64] 110] 119] 107| 107| 99| 114| 126] 109| 113| 120} 110] 125 108 114| 1054 123] 128 110, 116/ 130
143] 5.76] 111| 121| 105] 105| 100} 115] 124| 111| 109| 119} 117| 126] 110 110 103§ 123] 123 116 111 124
144] 5.73] 106| 117| 104| 106| 101] 113] 123| 111] 111| 123] 114 129 107| 111] 104] 118] 122| 113] 115 133
145] 5.77) 106| 117| 106| 108| 100} 115] 125 107| 110| 123} 113] 125 103] 111] 1054 116] 124 109 124| 133
146] 592 110] 118| 106| 107| 101} 116| 125 109| 115] 123] 113| 123| 111| 111 100} 115] 132| 113| 114 128
147] 5.94) 108| 116] 103| 107| 99| 114| 123| 107| 110| 122 116] 126| 108 109 103} 116] 128 112] 115 129
148] 598 112| 119| 102| 106| 99 114| 124| 111| 113| 121) 113| 130 107| 109| 105) 121] 131| 120| 117| 122
149 6.02] 110 119 106] 107| 102] 117| 125 111] 113] 124] 110] 125] 109] 106] 104] 124] 138] 112] 118 132
150] 6.04] 112] 120] 106] 107| 101] 114] 127[112] 111] 124] 114 124] 108] 108] 105] 124] 136] 111 124] 129

214 Results of the Evaluation of the Case Studies

MicroGreedy SpaceEqual MicroNoOpt SpaceEqual MicroGreedy SpaceDist MicroNoOpt SpaceDist

TimeDist TimeDist TimeDist TimeDist
Run timefreq / minfMacro [Macro |Macro |Macro |Macro [Macro [Macro [Macro [Macro |Macro Maco [Macro [Macro [Macro [Macro [Macro [Macro [Macro [Macro |M
[Greedy [NoOpt _[Heur Leam H&L [Greedy |NoOpt _[Heur Learn H&L [Greedy [NoOpt [Heur Learn H&L [Greedy [NoOpt |Heur Learn aH & L

151] 6.02] 110, 116| 104| 108| 101] 116 127| 107 111] 122) 114| 126] 112] 110| 105) 128| 132| 117| 125] 126
152) 5.94] 110, 118| 106| 108| 100} 114| 126/ 109 111] 122} 109| 120[110] 118| 104} 127| 135 114| 120| 128
153] 5.88] 107| 117| 105] 105] 100] 114| 124| 109 114| 123} 116] 132| 109| 113| 111] 120] 132| 114| 119] 126
154 5.98] 112| 117| 104| 106| 102] 114 125 111 112| 123} 117| 130[111] 113| 105§ 123] 132| 114| 117] 124
155 5.91] 109 116] 103[105] 102] 116] 125] 111] 112| 122] 114] 122 109] 116] 106] 124[128] 115] 114[130
156] 5.88] 108| 118| 101| 107 101] 114] 124] 108 113 121] 110 119 110| 109| 106} 118| 132| 113| 114 132
157] 582 107| 119| 101| 108 102} 115 124| 109, 111 121} 110 118 106| 111| 107} 122| 130] 116] 118| 126
158] 5.68] 109| 116| 101| 105 101} 115 125 110, 113] 121] 114 115 111] 106| 105Q 121| 128 118 119 128
159 5.73] 107 118| 104| 104| 102] 113| 121| 109 111] 116} 113| 122| 114] 114 100 112] 130] 112| 119] 126
160 5.71] 108 118| 101| 104] 99| 113| 124 107 112] 119} 109| 124[109| 113| 104} 112] 131| 112| 118] 122
161] 5.49] 107| 116| 101| 105 99} 113] 122] 112] 111] 117} 110 124| 114| 103] 103} 113| 131| 111] 113] 122
162] 5.43] 104| 117| 100] 103] 97] 113| 118/ 110, 110] 115} 118| 116[109] 107| 99| 122| 134| 114| 107| 116
163} 5.31] 106| 114] 99| 101 96] 111] 121] 105 109 116] 112[127 107| 111] 108] 122 127| 107 112| 129
164] 5.31] 107| 114| 100] 104 99} 112 121] 105 108 116} 112 121] 107| 114 106} 121| 122| 110 111| 117
165 5.25) 102] 112] 100| 101 94 110 118] 104[108] 115] 106] 127| 109] 106| 104] 116 124 111] 117] 118
166] 5.11] 103| 116] 99| 102| 96} 112] 121] 107| 105 115f 107| 111] 104] 100, 100} 114| 116| 113] 109 121
167] 5.01] 106| 112| 98| 100 96} 110] 120] 104| 107 114} 109, 115 103 111 99] 118 121| 106| 113] 116
168] 4.85] 99| 110] 98| 100] 94 107| 120] 103| 104] 112) 114| 122| 104] 106| 104} 113] 122| 115] 105] 117
169 4.71 99| 110] 99| 97| 91) 108 119| 105] 104| 111] 110] 112| 103] 100| 103] 114| 115 102| 113| 116
170) 4.53] 100| 108] 98| 100] 93] 106/ 114 103 102] 1104 111 115[102] 102| 99§ 113] 116] 105 115] 117
171 451] 102) 108] 93| 99| 92| 105/ 114/ 99| 105/ 110} 108| 108| 98| 99| 100§ 106] 113] 99| 107| 105
172] 432 97| 108] 95 96| 91} 104| 113] 101 100 110} 105 108 102 101 92 109, 117| 101 108| 105
173] 4.19] 98| 105 94| 97| 90} 102 109] 98] 99| 106} 108 105 92| 104| 95] 100| 120] 107| 99| 107
174 4.09] 97| 103] 91 97| 90) 99| 113] 97| 98| 108] 99| 104 101 96| 92 103| 115 108| 100[113
1750 399] 93| 103 89| 93] 87 99 109 93 99| 101 96| 103| 97| 92| 94) 105| 121] 102] 97| 106
176] 3.78] 91| 103| 92| 95| 850 98 107] 92] 95 100f 99| 103] 98 96| 84 99| 115 105 97| 101
177 3.65] 94| 101 88| 93] 86] 97| 107] 95| 93] 102 94| 111] 100, 95/ 85] 102| 107| 93| 102| 104
178 3.51 91| 102] 90| 92| 85] 94| 106| 90| 94| 100] 91 99| 86| 88 91 106] 102| 100| 96| 107
179 336] 90, 97| 86| 88/ 86] 96| 105 89 95 97] 90| 105 84| 94| 83] 98 106 92| 101] 103
1801 3.21 90| 96| 82| 88 80) 95| 99| 86| 91 o8] o7] 100] 87] 88 83| 102[107] o1 91 95
181 3.09) 86 97| 83| 87| 78] 94| 98 89 89 95 96| 98] 92| 95 87 90| 101 93| 89 101
182] 288 87| 95 83 81 81 92) 95| 85| 92| 94 89 93] 89 91 79 97) 105 86| 92| 104
183] 282) 86 90| 83| 83 79 91 98| 87| 88 89 91 94| 89| 85 78] 94| 106/ 88 90| 102
184 267) 86| 89 80| 79 77} 87 94 82 83 93] 88 96 77| 88 78 95 93 81 88 90
185 243] 79] 88| 76| 78 76] 83| 94| 82 81 87] 88| 92| 80 79| 79| 93] 94| 81 84| 95
186] 225 79| 86| 77| 77] 74 82 ot 82 82 88] 89 88 78 77| 79 91 92 81 81 89
187) 217} 77| 87| 75| 77| 74 83| 89 78 81 84) 82| 90| 76| 76| 78] 88 91 85| 86| 90
188) 2.09) 76| 82 73] 73] 69 80 89 76/ 80 83 81 86| 74| 82| 750 88| 95 79| 78] 91
189 1.89) 74| 80 71 72| 68] 78| 83 74 75 83] 81 86| 72| 77| 72 81 87| 81 76| 80
190 1.8] 73] 78| 70| 72| 67] 74| 81 72| 74| 79 81 86| 70| 73] 74) 75| 83 83 74 82
191) 1.71 73| 76| 69| 70| 66 74| 80| 70| 74| 77) 73| 77| 73] 75| 68 79| 79| 75 74 85
192 150 69| 74| 68 70| 650 74 79 72 71 76 73] 77) 74 74 63] 80 81 4l 75| 81
193] 1.36) 69 72| 67| 71 69) 74| 78 75| 72| 75\ 74| 77| 76| 73| 68 81 84| 68 74| 77
194 123] 69 71 68 69 74) 74| 76| 73| 73| 74 70| 74| 74| 74 74 79| 81 14l 76| 78
195 1.13] 68 69| 69| 68 701 71 75| 171 75| 71 67 71 73| 75| 72} 77| 79| 74 78 79
196 1.04] 67 68 65 67 67] 69 71 70| 72| 69) 66| 69 69 73 71 75| 73| 73| 80| 73
197) 0.96) 66| 66| 62| 66/ 66] 66/ 68 67| 70 66) 65 67 65 71 700 69| 68 72| 72| 68
198} 0.86] 64| 65 61 65| 65] 63 65 65 66| 63] 65 66| 62 69 69 64 66| 71 64| 67
199 0.78) 62| 64| 61 62| 65] 61 63 62 63 61 63| 65| 60 66| 69 63 64 67 63 66
2004 0.69] 61 61 61 60| 62] 59 61 60| 60 58] 62| 64 59| 63| 66] 63 62| 64 63 65
201) 062] 59| 58] 61 58| 59 57| 59 57| 58 56] 61 63| 59| 60 63] 63 61 61 62 62
202) 055y 57| 56| 58 56| 57] 55 57| 55| 56| 54] 60| 63| 56| 57| 60] 63] 58 58 62| 59
203) 048] 55| 54 55| 54| 55| 54| 55| 53] 54| 52| 58 60| 54 55 57 59| 56| 55 59 57
204 042 53] 52| 52| 52| 53] 52| 53 51 52| 51 56| 57| 52| 53] 55| 56| 54| 52| 57| 54
205 04] 51 51 50, 50 51 51 51 49| 50| 500 54| 54| 50[51 54 53] 52| 49| 55 52
206] 0.38] 50] 50| 49| 48[49] 50, 50| 47| 49| 49 52| 51 48| 49| 53] 50/ 51 47| 53| 51
207] 036] 49| 48] 48] 46| 47] 49| 49 46 48 48] 50 49 48] 49 59 47| 51 47 51 50
208) 0.35] 47| 47| 48| 46| 47] 48] 49| 46| 47| 471 50 49| 49| 49 51 48| 51 47 51 49
209 033] 46| 47| 47| 46| 47] 47| 48] 47| 46| 46] 50| 49) 49| 50, 50 49 51 47 51 48
2104 0.31 45| 48| 46| 47| 48] 47| 47| 47| 45| 46] 50 49| 50/ 50[51 50| 50[48| 52| 47
211) 03] 44| 49| 46| 47| 48] 48] 47| 48] 44 471 51 49| 50| 50| 52 51 50[48| 52| 46
212] 0.34] 45] 49| 45| 48[49 49 46| 48| 45 48] 51 49 51 51 53] 52| 50/ 48| 53] 45
213 0.39] 47| 50| 45| 48] 49 50 46| 49| 47 49 51 49| 51 51 54 53] 50, 48| 53] 46
214] 043] 49| 51 47| 49 500 51 48| 49| 48| 500 52| 49 52| 52| 56] 54| 52| 49| 54| 48
215] 048] 51 51 49| 49| 500 52| 50 50| 50 52 52| 50 53] 53] 57| 55 54 50, 54 50
216} 0.52) 53] 52| 51 50 51 53] 52| 51 52| 53] 53] 52| 55| 55 58 57| 56| 52| 55 51
217) 0.56] 54| 53| 53| 52| 53] 54/ 54 53| 53] 54 55 55| 57| 57| 59 58 59| 54 57| 53
218 0.61 56| 54| 55| 54/ 55| 55 56| 55| 55 55) 57| 57| 59 58 60] 60| 61 55| 60| 55
219 066] 58 56| 57| 56| 57| 56| 58 57| 57| 56] 60| 60| 61 60 62] 61 63| 57| 63 56
2200 0.7 60| 58 59 58 590 58 60| 59| 58 58 62| 62| 63 62| 64 63 66/ 59| 66| 58
221 0.75] 62| 61 61 60 61 60| 62| 61 60| 60] 64/ 65 65 63 67 64 68 60 69 60
222 083 63| 63| 63 62 63] 63 64 63 62| 63] 67 67| 67 65 70} 66| 70| 62| 72| 62
223 0.91 65| 65| 66| 64/ 65 65 67| 66/ 64 651 69 70 70| 67| 73] 68/ 73] 64| 75 65
224, 099 67| 68 68 66| 68] 68 69 68 66| 68 72| 71 73| 70| 76} 70| 73] 66] 74| 68
225 1.08] 69 70 70| 69 9] 70 71 7 68 71 75 73] 771 74 78] 73] 74 69 74 71

B.1 Request Processing in MoTiV-PTA

215

MicroGreedy SpaceEqual

MicroNoOpt SpaceEqual

MicroGreedy SpaceDist

MicroNoOpt SpaceDist

TimeDist TimeDist TimeDist TimeDist
Run timefreq /minfMacro [Macro |Macro [Macro |Macro |Macro [Macro [Macro [Macro [Macro Macro [Macro [Macro [Macro [Macro [Macro [Macro [Macro [Macro |M
[Greedy [NoOpt [Heur Leam H&L [Greedy |NoOpt [Heur Learn H&L [Greedy [NoOpt [Heur Learn H&L [Greedy [NoOpt _|Heur Learn aH & L
2260 1.2] 71 72 72| 72| T 72| 73| 73| 70| 73] 78| 74| 81 77| 80) 75| 75| 72| 73| 74
227) 1.31 73| 74| 74| 75 7§I 75| 75| 76| 75| 75] 82| 76| 80| 81 82 78 76| 73] 73] 80
228) 144 76| 77| 76| 77| 750 77| 77| 77| 80| 78 82 80 79 83 85 81 77| 75| 78| 87
229 1.56] 78| 81 78 80| 78] 79| 80| 78 80| 78] 82| 85 79| 85 89 85 78] 77| 84 86
2300 1.68] 81 81 81 82 81 81 80| 80 80 79 85 87 86 84 87 87 81 82 85 86
231) 1.8] 82| 81 84) 84 85 83 81 82 81 82] 89 90| 93] 84| 86] 90| 84| 87| 86 87
232) 192] 84/ 83| 84 86| 86] 86| 84| 85 84| 86] 86 89 92| 87| 86] 89 88 90| 86 89
233 2.04] 85 86| 85 88 88 90| 88 88 85 87| 84 89 92 91 86] 89 92| 93 87 93
234 2.16] 87| 92[86 ot 9 o1 92| 89 87| 88| 89 93 95 85 94| o1 99| 96| 87 97
235 2.34] 89| 92| 89| 92| 91 93] 93 91 93| 89 90| 96| 95| 89| 94] 96| 98| 100| 92| 94
236) 254 90| 92| 91 93] 93] 90| 94| 92| 90| 94 91 99| 96| 94| 94] 101] 100 99| 98] 97
237) 2591 90| 92| 93] 92 91 96| 95| 94| 91 94] 100, 103] 98| 90| 91 103| 102] 99| 101 96
238 2.64] 91 99| 92| 92 o8] 95 o7 97 92| 971 90 96 ot 96| 100] 103| 96| 91| 102| 95
239 284 91 97| 95| 92| 93] 98] 99| 93] 97| 1000 100] 102 92| 90| 92] 95| 98| 103] 95 99
2400 297] 96| 99| 94| 92| 951 98| 102 99| 98| 101} 102] 109| 97| 103] 96} 100| 111] 107) 94| 108
241) 3.18] 95| 98] 95 91 94 100, 102] 95 97| 103] 102| 112] 98| 92| 100] 109| 112] 95/ 109 110
242) 3270 93] 101 94) 93| 1000 97| 105 99| 98| 1000 92| 101 91| 101| 104} 103| 108 110] 102| 113
243 3.51 93| 101 93] 91 97y 101 102] 100, 97| 103] 102| 107| 89| 98| 104) 111| 111] 100] 109 115
244) 369] 96| 106] 92| 95| 98] 99| 108| 102| 102| 107] 103] 106| 99| 106| 94f 100| 112 108 102 116
245 3.87] 100| 104] 96| 94| 96] 101| 110| 100{ 98| 109} 103| 109| 100 98 101} 107| 111 103] 112 117
246 3.87] 100] 109| 94| 95| 96] 104| 108| 101| 104| 107] 110[110| 100| 98] 100§ 110] 121] 103| 104| 107
247) 406 100] 110 96| 96| 91 104 112| 102| 104| 107] 109| 119 96| 96| 102§ 110] 122| 104| 105/ 116
248] 419 99| 113 96| 96] 95| 108[111 102[105] 110] 102] 121] 106] 99 94 107| 119 106| 104| 112
249 438 100] 112 96| 97| 93] 106 109 106| 103| 112] 101| 122| 96| 97| 950 108] 111| 107| 108| 124
2500 45| 102] 114] 99| 98| 94] 105 113] 102| 102| 110] 106| 121| 107 108/ 106} 109] 111| 101| 105] 118
251) 4.65] 102] 110] 100| 101 95| 107) 117 104 101| 114] 105 120/ 101| 110| 94) 114 124| 114] 102| 112
252) 4.75] 106| 115] 100| 103| 95] 106| 116| 104| 103| 115) 108| 123| 111| 101| 104} 107| 125 107| 108 122
253) 4.87] 104] 115] 103| 102| 99| 105| 115] 102| 105| 113} 107| 127| 106| 105 99§ 121] 125 109 117 116
254] 5.09] 108| 115] 101| 101 96 109 117 104 104 116] 113| 116] 104| 105 107] 113| 125 102| 116 126
255 5.13) 106| 114| 101] 102] 950 113] 116| 105 106| 117] 109] 120[103| 114/ 108} 112] 128] 109| 109| 120
256 5.17] 106| 114| 104| 106| 98] 109| 120| 104| 106| 119} 109 120| 108 109 107] 120 120, 108 104 121
257 527y 107| 113| 100[104] 99) 112| 117 105 108| 120] 107| 120[107 113| 98} 117| 126] 104| 105 126
258) 5.46] 106| 117| 103| 105] 99] 111| 124| 105 109| 118} 112| 120| 110| 107| 104} 113] 128 105 109 127
259 553 109| 116] 102| 108| 100p 114 121 106] 109| 119] 113] 124| 107| 107| 105 123] 125 112| 108| 120
260] 5.58] 109| 116] 104| 106| 102] 115] 124| 108| 109| 121} 109| 126| 110| 111] 106§ 113] 129 119 118 127
261] 5.64] 107| 118] 103| 107| 100p 113] 123] 105 110[123] 111] 123| 114 110/ 107 118] 132| 117| 124] 120
262] 5.76] 111| 117| 105] 106| 100} 112| 125| 112| 111| 121} 115 117| 108| 106| 110§ 119] 135 113] 121] 125
263 5.77] 108] 117| 101| 104] 99| 113| 122| 106| 110[120§ 112| 125 111| 114] 101} 118 127 112 118 125
264] 5.8] 108| 116] 104| 104| 100] 115| 123| 111| 110[120§ 111| 120| 106| 108| 106§ 121| 131 114] 113 119
265 5.82] 109| 118| 104| 106| 100} 116| 122| 107| 112| 122} 113] 129| 112] 113] 109} 120| 126| 117 117| 127
266 5.97] 110| 117| 104| 106| 991 115] 124| 109| 114| 119} 112| 126| 109| 112| 105f 122| 130 119 121| 130
267 597 109| 120[103] 107| 101 113] 126| 112| 114| 120] 117] 122| 107 111| 108} 120] 128| 113| 115] 124
268 6.01] 109| 120[104| 106| 101] 114| 126| 109| 111| 123} 112| 132| 113] 113] 104} 121] 130 112 114| 126
269 6] 111| 118 104| 106| 100§ 113| 126 110 111 123} 111] 127| 105 112] 109) 117| 128 118 118| 127
270) 5.98] 109| 117| 103| 109| 101] 114| 123| 109| 112| 120y 115] 120| 107| 109| 108} 121| 133] 110 120| 135
271] 5.91] 110] 118 105] 105] 102] 116| 123| 111| 112| 121 113] 127| 106| 105 107} 117| 132 115 119 124
272 6] 110/ 116| 105/ 108| 102§ 116] 124| 109 110/ 121 116| 127| 108| 111] 109) 118 130, 117 117| 130
273 597y 112| 119| 105] 106[101) 112] 126| 108| 112| 124] 116] 119 115 107| 107 118] 134| 113| 116] 126
274 594] 107| 118] 105] 106| 99] 116| 126| 110| 112| 120§ 115] 125 110| 110] 106§ 121| 138 121] 117 125
275 5.83] 110] 116] 103| 107| 991 113| 124| 110[111| 121] 113] 127| 108| 114| 108} 118] 138 119 124| 127
276) 5.86] 108| 116] 105] 107| 100} 112| 123| 109| 113| 119} 109] 129| 102| 112] 98 123| 126| 121] 120, 119
277) 5.85] 108| 121| 103| 107| 991 114| 125| 109| 112| 120§ 114 126| 107| 111] 106§ 111] 124] 114] 114] 125
278] 5.86] 109| 114| 103| 104| 101 115 125 108] 112| 119] 113] 122| 102| 109| 107 112] 126] 119] 115] 125
279 5.82] 108| 115] 104| 104| 100] 112| 125| 107| 113| 119} 111| 122| 107| 105 104} 115 135 107| 113] 125
280} 567 109] 113| 104] 104] 98] 116 123| 107| 110[117] 107| 123| 109| 103| 974 112] 132 111] 119] 124
281] 562 109| 115] 102| 106] 99] 112| 125 107| 112| 117] 111] 119 106| 105 103} 115] 128| 107| 117| 125
282 55 106| 117| 100[107| 950 111| 121] 107| 107| 117] 103] 122| 107| 108 99} 119] 121| 117| 116] 126
283] 5.37] 103] 116] 100| 101 97] 110, 122| 109, 108| 118] 105 120/ 109| 109| 108} 113| 133| 119| 110 124
284) 5.34] 104] 114| 102| 105 97] 111| 119| 106| 107| 115y 103| 117| 108 103] 99} 117| 124| 106| 116] 117
285] 5.25] 106] 116] 100] 102| 99| 108[120] 105] 109 113] 107| 118] 107| 105] 103| 119] 126] 105] 110 117
286 5.14] 102] 112| 99| 99| 98] 107| 121| 105 106| 113} 113] 120| 104| 105 1054 108| 122 108 118 113
287] 5.02] 102] 111 96| 101 95) 109, 116 107| 104 111} 109| 110 102| 104| 98] 117| 129| 101| 117] 111
288 4.86] 102] 111 97) 102| 95] 109| 116| 104| 103| 115] 113] 109| 102] 99| 96] 115] 127| 106| 108| 119
289 4.74 103] 111 98| 98| 94] 107| 115 100| 104| 109] 107| 115] 103] 100[94] 112| 123| 110] 103| 114
290] 4650 100] 108] 97| 99| 94) 108 113] 102| 102| 106} 111] 120[107| 105 92§ 111] 117 110[105] 113
291] 4.57] 101] 111 97| 100/ 94] 106| 112| 100| 102| 112] 99| 106| 103] 109] 95| 113| 121| 105] 101| 110
292) 443 97| 107| 93] 94| 91) 101| 114| 102] 99| 104] 101| 104| 103| 105 92§ 109| 126| 108| 106| 114
293 4.21 95| 108| 95| 97| 92] 101] 111 97| 98| 110] 96| 108| 100| 97| 95] 103| 115 98] 103| 113
294) 4.08] 97| 104] 94| 97| 89| 104| 110 96| 99| 104] 100 105 97| 100, 100} 105 120, 101| 104 111
295 39| 95 104] 92| 92| 88] 101| 109] 95 99| 105] 101| 108] 95| 99| 93] 105 120| 96| 104| 106
29¢) 3.81 95| 103| 90| 92| 86) 97| 108 94/ 98| 105] 105] 106| 100] 99| 91| 109] 107| 96| 108| 107
297] 369] 96/ 99| 89| 88| 83] 98| 107| 92| 95 102 97| 112| 95| 96| 93] 101 115 94| 101 112
298] 3.51 94| 100] 89| 92| 86) 96| 104 90| 97| 102) 95 111 94| 94| 83] 101 112] 102] 104| 100
299 338] 93] 98| 88| 89 82 96| 102 91 91 98] 92| 101 93] 91 81] 103] 104] 99| 95 96
300f 3.21 89 94/ 83 86 81 94| 105 89 89| 96] 89 101 92| 94| 91] 103] 105 89 99| 104

216 Results of the Evaluation of the Case Studies

B.2 Task Allocation Protocols in TELETRUCK

Results of the Vickrey Auction

2linitial trucks | ninitial trucks
order (run no. of \ run no. of
set time |trucks cost surplus payments
6 r101 0.03 2| 1577] 1700 3277] 0.03 2| 1577] 1700 3277
r102 0.04 2| 1149 2368, 3517] 0.04 2| 1149 2368 3517
r103 0.04 2] 1149 2368 3517 0.04 2] 1149 2368| 3517
c101 0.03 2| 140 290 430 0.03 2] 140 290 430
c102 0.04 2| 191 239 430, 0.04 2] 191 239 430
c103 0.04 2 191 239 430 0.04 2 191 239 430
15 [r101 0.1 6| 5173 1805 6978 0.11 6] 2270| 3822 6092
r102 0.11 5| 4526| 3255 7781 0.1 5| 3304] 3810 7114
r103 0.1 5 4812 3390 82020 0.12 5| 3304| 3473 6777
c101 0.11 2| 895 1028 1923 0.1 2| 895 1028 1923
c102 0.07 2| 1324 871 2195 0.07] 2| 1324 871 2195
c103 0.08 2] 1324] 1273 2597] 0.08 2] 1324] 1273 2597
30 101 0.35 11[10395] 2393 12788 0.51 9| 4572| 4699 9271
r102 0.35 9| 8300] 4439 12739 0.41 8| 5266| 5950 11216
r103 0.28 7| 7372| 5885 13257 0.45 7| 4406] 5716 10122
c101 0.19 3] 1695 1028 2723 0.23 4| 2080| 4765 6845
c102 0.22 4] 3619 2716 6335 0.33 9| 3621| 3316 6937
c103 0.18 3| 2639 3300 5939 0.25 3| 3247| 3734 6981
60 |r101 1.38 17]16949] 4085 21034 1.86 1612533 9064 21597
r102 1.16 14{14844(9800 24644) 1.43 14{12281| 7256 19537
r103 1.22 1213785 8661 22446 1.35 12| 7819 9960 17779
c101 0.73 6] 5352 2012 7364) 0.98 7| 8024| 16721 24745
c102 0.64 7| 8020 6321 14341 1.1 7| 9368 20063 29431
c103 0.87 7] 8624 6299 14923 0.97 6| 8235| 20935 29170
90 |r101 249 24|26585 5169 31754 3.16 24]19166| 12042 31208,
r102 2.3 20[23409| 15598 39007 3.32 1918727 10561 29288
r103 2 17]19465] 13283 32748 2.68 18[13053| 14964 28017
c101 1.14 10[10936] 6615 17551 24 12[15044| 22103 37147
c102 1.58 10[12779] 13157 25936 2.14 11[14151] 23160 37311
c103 1.13 10[14259| 13733 27992) 1.92 10[15762| 24715 40477
120 |r101 4.22 27]29427| 5821 35248 4.59 25(21409| 13149 34558
r102 3.63 22|25812| 16328 42140 4.37| 21|21437] 12142 33579
r103 3.53 21]22166| 17735 39901) 4.89 1816590 17757 34347
c101 2.51 1213623| 10882 24505 2.98 14{18010[24690 42700
c102 2.22 12(15800[19234 35034) 2.76 13]20106 29106 49212
c103 2.71 12[19163| 19327 38490 2.8 13|23683| 27845 51528

B.2 Task Allocation Protocols in TELETRUCK

217

Results of the M A-2 Auction

2initial trucks |

ninitial trucks

order [run no. of | | run no. of
set time trucks cost surpluspaymentsitime trucks cost [surplus
6 |r101 0.05 2| 1753] 2199 3952] 0.05 2| 1753] 2199 3952
r102 0.05 2| 1753] 2199 3952] 0.05 2| 1753] 2199 3952
r103 0.05 2| 1753] 2199 3952] 0.05 2| 1753| 2199 3952
c101 0.05 2 180 300 480] 0.05 2| 180 300 480
c102 0.06 2| 185 300 485 0.06 2| 185 300 485
c103 0.07 2| 185 300 485 0.07 2| 185 300 485
15 r101 0.28 6| 5481 6030 11511] 0.36 6| 4406| 5157 9563
r102 0.25 5| 4937 5504 10441] 0.42 4| 3401 4929 8330
r103 0.2 3| 3038| 3636 6674 0.34 4| 3401 5540 8941
c101 0.16 2| 1404] 1842 3246] 0.16 2| 1404| 1842 3246
c102 0.13 2| 1404] 1842 3246] 0.13 2| 1404| 1842 3246
c103 0.18 2| 1404] 1842 3246] 0.18 2| 1404| 1842 3246
30 |r101 1.33 11/10589| 12605 23194 1.5 10[6914| 11390 18304
r102 1.35 11]10589| 12605 23194| 1.65 11] 5664 9682 15346,
r103 0.82 7] 8109 9288 17397] 1.01 7] 5040[9999 15039
c101 0.51 3| 1735 3221 4956 0.51 3| 1762 4986 6748
c102 0.48 3| 2204| 3165 5369 0.64 4| 3248| 5490 8738
c103 0.42 3| 2674| 3798 6472 0.68 3| 3197 5325 8522
60 |r101 3.88 17|15306| 20548 35854 4.36 16/14400[25024 39424
r102 3.02 13|14606| 21785 36391 3.18 13(11761] 18040 29801
r103 2.47 10]13429| 17276 30705 3.28 12{10250| 19407 29657
c101 1.36 6] 5392 8412 13804] 1.65 6| 5332 19886 25218
c102 1.5 7| 7022 8516 15538, 2.08 7] 7497| 15364 22861
c103 1.53 7] 9515| 13066 22581 2.23 7] 9066 16991 26057
90 |r101 7.57 24|122149| 31215 53364 8.62 23|121952[34915 56867
r102 6.95 21|23831| 34404 58235 7.36 20|19288(30542 49830
r103 5.49 18]19325| 26237 45562| 6.58 18({15822| 28943 44765
c101 3.2 10]10973| 17427 28400] 4.51 10[{10528| 32526 43054
c102 3.09 10]13260| 15615 28875 4.69 11{13670] 26712 40382
c103 3.15 10]15499| 23642 39141) 4.96 10)14861| 32655 47516
120 [r101 13.7 24125507| 35998 61505 - - - - -
r102 15.7 24125507| 35998 61505 - - - - -
r103 9.75 20|122639| 32212 54851 - - - - -
c101 4.43 1213791 22200 35991 - - - - -
c102 4.9 13|18443| 24438 42881 - - - - -
c103 5.48 12|20268| 30238, 50506| - - - - -

218 Results of the Evaluation of the Case Studies

Results of the M A-3 Auction

2initial trucks ninitial trucks

order run no. of run no. of
set time |trucks cost surpluspaymentsjtime trucks cost surpluspayments

6 r101 0.17 2| 1577 1176 2753 0.17 2| 1577 1176 2753

r102 0.11 2| 1149 1176 2325 0.11 2[1149 1176 2325

r103 0.14 2| 1149 1176 2325 0.14 2| 1149 1176 2325

c101 0.12 1] 140 127 267 0.12 1| 140 127 267

c102 0.11 1 145 122 267] 0.1 1| 145 122 267

c103 0.11 1] 145 122 267 0.11 1 145 122 267

15 [r101 0.77 6| 4377 2037 6414] 0.81 5[2987 1682 4669
r102 0.54 4{ 3807 2117 5924| 0.54 4| 3816] 2364 6180

r103 0.52 4| 3804 1466 5270, 0.54 4{ 3813] 1713 5526

c101 0.27 2| 1505 295 1800] 0.27 2| 1505 295 1800

c102 0.39 2| 1364 320 1684 0.39 2 1364 320 1684

c103 0.3 2| 1364 320 1684 0.3 2| 1364 320 1684

30 101 2.7 11] 9222 4064 13286] 3.31 9| 5959 3096 9055
r102 2.2 8| 7996 2842 10838 2.08 7| 4873| 4377 9250

r103 1.4 6| 6414 3810 10224 1.67 6 2452 2761 5213

c101 0.92 4{ 3362 932 4294 0.59 4{ 2860] 1304 4164

c102 0.73 3| 2186 899 3085 0.66 4 2918| 1552 4470

c103 0.55 3| 2897 725 3622 1.19 4{ 3216 1739 4955

60 [r101 9.58 16|14244| 7660 21904| 8.84 15|13325| 6565 19890
r102 7.16 13|13982| 7578 21560] 9.79 13|11000(7709 18709

r103 5.52 11]13407| 8287 21694] 10.06 11]11000f 7709 18709

c101 3.46 7| 6882 932 7814 5.08 8 8659 8901 17560

c102 2.82 6| 5922| 2648 8570, 4.49 7] 6936 8899 15835

c103 3.16 6| 6732 2336 9068 4.78 6| 6511| 6934 13445

90 101 19.09 22|123043| 10226 33269| 11.67 11]20952| 9626 30578
r102 28.03 22|22842| 10456 33298] 30.66 22|20474| 10898 31372

r103 13.61 16/18139] 10885 29024 21.38 17115994 10771 26765

c101 7.08 10]10207| 1748 11955 11.33 11]12874| 8786 21660

c102 7.56 10]10233| 4018 14251 12 10]10572| 18410 28982

c103 4.7 9|12793| 4873 17666] 12.15 9]12676 16432 29108

120 [r101 67.84 25|26421| 11067 37488| 90.55 26|23637| 10473 34110
r102 76.24 24125993| 12308 38301 84.64 24|23392| 13175 36567

r103 37.76 18|20487| 12961 33448| 49.56 19|17612 13224 30836

c101 12.12 12|12531] 3959 16490] 20.17 13|14957 11557 26514

c102 11.95 12|16378| 6917 23295] 20.99 13|16091| 22646 38737

c103 11.25 11]18416] 7535 25951] 20.66 12|18152| 17906 36058

B.2 Task Allocation Protocols in TELETRUCK

219

Results of the M A-4 Auction

[

2linitial [trucks |

ninitial Trucks

no.of |order |run \ \ run

orders |set time cost surplus paymentsjtime cost surplus payments
6 r101 0.24 2| 1577 970 2547] 0.24 2| 1577 970 2547
r102 0.23 2| 1149 1128 2277 0.23 2[1149 1128 2277

r103 0.39 2| 1149 1128 2277| 0.39 2| 1149] 1128 2277
c101 0.2 1| 159 135 294 0.2 1| 159 135 294
c102 0.35 1| 175 85 260] 0.35 1| 175 85 260
c103 0.2 1 175 85 260 0.2 1 175 85 260

15 |r101 1.81 6| 4377 2974 7351 1.81 4] 2918] 1122 4040
r102 1.11 4{ 3854 2035 5889 1.06 4{ 3454| 1862 5316

r103 0.9 4{ 3854 2035 5889 1.32 4{ 3454| 1862 5316

c101 0.34 3] 108 312 420 1.08 3| 1052 350 1402
c102 0.82 3] 1135 251 1386| 0.921 3| 1044 358 1402
c103 0.83 3[1135 251 1386 1 3[1044 358 1402

30 |r101 4.75 8| 7066 3466 10532] 6.54 7| 4480 3685 8165
r102 2.41 6] 6793 4114 10907 4.99 7] 6172 5361 11533

r103 3.2 6| 7659 3229 10888 4.96 6| 4406 3599 8005

c101 5.48 7] 6172 5361 11533 7.25 6| 2492 852 3344
c102 1.94 4{ 2501 680 3181 2.29 4{ 2901 744 3645
c103 1.72 3] 2869 959 3828 2.31 3| 2923 642 3565

60 |r101 23.78 14|14794] 8619 23413] 3.28 15|10822| 8431 19253
r102 28.6 14|14351] 8365 22716] 57.96 15|10464| 6140 16604

r103 16.52 12|15820] 7112 22932] 33.32 11| 9172] 9016 18188
c101 7.4 7| 6808 2295 9103 14.34 8| 7009| 4225 11234
c102 0.8 7] 7011 2022 9033 14.61 7| 7681 5442 13123
c103 6.79 6| 7575 3693 11268 1.28 7| 7217| 3540 10757

90 |r101 85.38 22|22996| 14327 37323 114.4 23{19130| 13140 32270
r102 82.11 19|121768| 15097 36865] 262.5 23[19996| 8492 28488

r103 111.8 18|20876| 11660 32536] 60.4 15|15234| 11932 27166

c101 15.29 10|10157| 4672 14829 45.39 11]12535(11469 24004

c102 17.6 10]10697| 2501 13198 48.5 10{12035| 12039 24074

c103 16.86 10|14594| 5704 20298 5.62 10{10082| 10817 20899

120 [r101 974.3 25|26829| 15238 42067 1003 25[21739| 14046 35785
r102 410.4 22|24523| 17337 41860 1063 25[22795| 10975 33770

r103 254.2 20|24303| 14810 39113] 10.49 20[22639| 9573 32212

c101 47.81 12|13409] 6743 20152] 79.37 13|15150| 13103 28253

c102 38.12 12|15424| 8569 23993 68.69 12|17868| 14946 32814

220 Results of the Evaluation of the Case Studies

Results of the M A-5 Auction

\ 2initial trucks | ninitial trucks

order |run no. of \ run no. of
set time |trucks cost surpluspaymentsitime trucks cost surplusPayments

6 r101 0.64 2| 1577 411 1988 0.64 2| 1577 411 1988

r102 0.68 2| 1614 197 1811] 0.68 2| 1614 197 1811

r103 0.73 2| 1614 197 1811] 0.73 2[1614 197 1811

c101 0.43 2| 140 1 138 0.43 2[140 1 138

c102 0.69 11 140 1 128 0.69 1] 140 1 128

c103 0.75 11 140 1 128 0.75 1] 140 1 128

15 |r101 4.82 5[4639 1829 6468 6.23 6| 3170[3232 6402

r102 5.38 5[4403 2047 6450, 0.66 4| 3322| 2087 5409

r103 4.23 4 4715 1280 5995 3.96 4 3955 1781 5736

c101 1.88 2| 895 357 1252] 1.88 2| 895 357 1252

c102 2.66 3| 977 193 1170] 2.66 3 977 193 1170

c103 0.26 2 1006 66 1072) 0.26 2| 1006 66 1072

30 |01 26.14 11] 9254| 3073 12327| 77.78 10| 5280| 4586 9866

r102 13.77 8| 8204 2800 11004 32.29 8| 4686 4586 9272

r103 10.37 6 8117[1539 9656| 32.29 8| 4686 4586 9272

c101 3.65 3| 1695 923 2618] 4.24 3| 2064 1010 3074

c102 5.67 4 2906 1589 4495 4.94 3 2458 1392 3850

c103 4.45 3| 3465 70 3535] 5.83 3[3339 622 3961

60 [r101 14.52 15|13945| 6394 20339 245.1 16|11999| 7771 19770

r102 96.6 13|13134]| 4427 17561 264 14|11518| 7957 19475

r103 97.59 13|13134| 4427 17561 298.7] 8 7834 3810 11644

c101 20.92 7| 6237 3039 9276| 61.21 7| 6558 6546 13104

c102 33.58 7| 6758 2023 8781 52.9 6| 6991 6573 13564

c103 22.2 6| 7169 810 7979 449 7[9774 4581 14355

90 |01 928.8 24|22281] 10417 32698| 2002 23|18489| 11321 29810

r102 231.5 21|19558| 12339 31897| 2470 22[20729| 13020 33749

r103 552.4 17]120302] 9588 29890) 907.8 22|15380| 11798 27178

c101 58.75 10]10296] 6669 16965| 254.5 11]112111] 11105 23216

c102 68.65 9(13034 2228 15262] 70.29 9[13034 2228 15262

c103 91.84 11]12488| 2350 14838] 390.7 10]15273| 8463 23736

120|101 19402 26|24623| 12013 36636 14516 25(21202| 12582 33784
r102 - - - - - - - - - -
r103 - - - - - - - - - -

c101 317.6 12|13201] 7932 21133| 525.4 13|15013| 12436 27449

c102 251.6 13|17655] 5221 22876| 513.7 13|18570] 14021 32591

B.2 Task Allocation Protocols in TELETRUCK

221

Results of the Simulated Trading Procedure

!

2 initial trucks |

o. of orders |order set |run time |no. of trucks cost

n initial trucks |

un time no. of trucks cost
6 r101 0.27 2l 1577 0.27| 2| 1577
r102 0.2 2l 1149 0.2 2| 1149
r103 0.23 2 1149 0.23 2| 1149
c101 0.2 2 140 0.2 2 140
c102 0.2 2 140 0.2 2 140
c103 0.28 2 140 0.28 2 140
15 r101 1.04 5 4380 1.31 6| 2973
r102 0.81 4] 3960 0.91 4 3960
r103 0.84 4 3960 0.85) 4 3960
c101 0.54 2 895 0.54] 2 895
c102 0.6 2 1712 0.6 2| 1712
c103 0.49 2l 1712 0.49 2 1712
30 r101 8 10| 8573 6 10| 4227
r102 5 8| 7388 6 8] 5318
r103 4 7 6562 4 7] 4400
c101 3 3 1717 3 4] 2592
c102 3 4 2597 3 3] 3094
c103 3 3 3166 2 3] 2970
60 r101 28 14| 12205 23| 14] 10650
r102 16 12| 10594 18] 13| 9912
r103 14 10| 9457 19 10| 6946
c101 12 71 6121 14 8] 7930
c102 9 8| 8947 15) 9 9530
c103 10 6| 6523 11 7] 9388
90 r101 74 21| 18085 88| 22| 16701
r102 52 18 14556 48| 20| 16538
r103 27| 14{ 13537 31 15| 11240,
c101 17, 10| 10608 22 12| 14094
c102 17, 10| 12483 21 11| 16869
c103 21 9 11879 28| 11| 12857
120 r101 115 22| 20300 175 23| 17540
r102 75 20| 18644 97| 21| 17123]
r103 58 16| 15668 58| 16| 12726
c101 29 12| 12931 36 14| 16982
c102 29 13| 19595 30| 13| 20519
c103 30 13| 16434 30 13| 23018

222 Results of the Evaluation of the Case Studies

B.3 Geographical Structurizations in TELETRUCK

Short-distance Settings

Run time Travel time | Travel dist. Idle time

(msec) (W) (km) (W)
Hamburg
5 orders 413 476 409 11377
10 orders 1187 653 508 11493
15 orders 1750 959 747 11384
20 orders 1766 1076 825 11267
25 orders 2274 1187 1053 11794
30 orders 4896 1284 1184 11865
Hanover
5 orders 438 378 312 11568
10 orders 1297 587 519 11359
15 orders 1453 750 645 11996
20 orders 1765 1012 856 11734
25 orders 2360 1375 1134 11371
30 orders 4954 1501 1231 11245
Berlin
5 orders 500 623 588 8642
10 orders 1398 835 602 9655
15 orders 1672 1090 652 10644
20 orders 1969 1352 790 10382
25 orders 2255 1875 1011 9858
30 orders 4344 1905 1075 9829
Saarbriicken
5 orders 234 253 219 5603
10 orders 1641 359 326 7365
15 orders 625 484 440 9085
20 orders 1578 504 494 11526
25 orders 1875 491 508 11539
30 orders 1343 582 586 11448
Munich
5 orders 478 288 266 5893
10 orders 1286 318 378 6187
15 orders 1812 384 413 6363
20 orders 1703 468 528 6279
25 orders 2034 712 809 7555
30 orders 4203 829 929 7438
Centralized
25 orders 11860 902 823 451
50 orders 34579 1011 924 1661
75 orders 76781 1642 1225 2645
100 orders 63906 1511 1318 3663
125 orders 92672 1771 1356 4442
150 orders 92547 1979 1433 4934

B.3 Geographical Structurizations in TELETRUCK

223

Medium-distance Settings

Run time Travel time Travel dist. Idle time

(msec) (h) (km) (h)
Hamburg
5 orders 407 320 327 941
10 orders 1188 772 775 2277
15 orders 1140 1239 1217 3893
20 orders 2453 1500 1529 6195
25 orders 1953 2945 1911 6719
30 orders 4015 3231 2210 9866
Hanover
5 orders 266 275 253 599
10 orders 1188 318 342 692
15 orders 1766 1328 1343 8323
20 orders 2031 2349 1411 7302
25 orders 2594 2684 1798 6967
30 orders 3797 2893 2036 6758
Berlin
5 orders 406 437 394 1198
10 orders 1219 646 578 2693
15 orders 1218 1075 959 4381
20 orders 2516 1362 1151 5404
25 orders 2203 1775 1464 8244
30 orders 4484 2235 2883 9376
Saarbriicken
5 orders 907 462 536 9234
10 orders 1078 454 536 8441
15 orders 812 1044 1224 11340
20 orders 1500 974 1128 8722
25 orders 2938 823 973 11561
30 orders 2953 792 909 10452
Munich
5 orders 515 362 366 895
10 orders 844 675 680 2794
15 orders 1860 979 1013 4277
20 orders 1782 1326 1474 5516
25 orders 2047 1712 1817 5960
30 orders 3969 2069 2228 8614
Centralized
25 orders 16888 1055 1042 369
50 orders 44672 1249 1136 1409
75 orders 60703 1500 1158 2687
100 orders 92265 1772 1422 5944
125 orders 139870 2099 1547 5830
150 orders 233469 2354 1676 6795

224

Results of the Evaluation of the Case Studies

Long-distance Settings

Run time travel time (h) Travel dist. Idle time

(msec) (km) (W]
Hamburg
5 orders 313 326 483 2694
10 orders 656 398 517 2974
15 orders 1484 454 565 3226
20 orders 1922 1441 948 4347
25 orders 3047 2260 1571 5704
30 orders 4109 2585 1917 5065
Hanover
5 orders 468 555 593 630
10 orders 1093 1037 1145 1825
15 orders 1250 1197 1295 2281
20 orders 2359 1630 1718 3917
25 orders 2250 2096 2162 5461
30 orders 3922 2587 2619 7904
Berlin
5 orders 328 238 165 297
10 orders 1031 1572 447 1444
15 orders 1000 2091 924 2306
20 orders 2422 2524 1303 4207
25 orders 2094 3525 2158 7115
30 orders 4156 3770 2366 7595
Saarbriicken
5 orders 375 815 920 5692
10 orders 703 887 1027 7793
15 orders 1234 1510 875 2438
20 orders 750 2422 1741 8198
25 orders 2203 2400 1781 10173
30 orders 2672 2102 1387 4487
Munich
5 orders 407 611 660 1785
10 orders 1219 2090 1158 2957
15 orders 1156 2400 1501 3440
20 orders 2485 2750 1914 4189
25 orders 2047 2909 2068 4829
30 orders 4422 3453 2701 7631
Centralized
25 orders 12438 1201 1058 412
50 orders 35069 1056 829 632
75 orders 47551 2402 1745 4957
100 orders 81972 2383 1771 5633
125 orders 79577 2409 1787 5687
150 orders 149670 2238 1701 6116

B.4 Topology Modules in IFMS 225

B.4 Topology Modules in IFMS

Produced work Used Produced work Used capacity

pieces per capacity per pieces per per

station station functionality functionality
Chain
0% Fault time 10.4 100 10.4 100
6% Fault time 7.4 80 7.4 80
12% Fault time 6 68 6 68
18% Fault time 5.3 59 5.3 59
Scope
0% Fault time 10.1 100 5.5 76.9
6% Fault time 74 87 4 66.8
12% Fault time 6.1 79 3.3 59.9
18% Fault time 6 70 3.2 53.1

Parallelism (3;4)

0% Fault time 10.3 100 8 88.9
6% Fault time 7.7 84 6 74.7
12% Fault time 6.4 74 5 65.5
18% Fault time 5.7 65 4.4 58.3
Parallelism (3;4;5)

0% Fault time 10.3 100 5.5 76.9
6% Fault time 7.9 83 4.2 55.9
12% Fault time 6.9 69 3.7 52.5
18% Fault time 6.1 66 3.3 50
Parallelism (1;2 - 5;6)

0% Fault time 10.3 100 6.5 81.8
6% Fault time 7.7 82 4.9 67
12% Fault time 6.9 74 4.4 53.8
18% Fault time 5.9 65 3.7 53.6
Parallelism (2;3;4 - 5;6;7)

0% Fault time 10 100 3.7 68.4
6% Fault time 8.3 87| 3.1 58.6
12% Fault time 6.7 78 2.5 52.4

18% Fault time 5 70 1.8 46.6

226 Results of the Evaluation of the Case Studies

Produced work Used Produced work Used capacity
pieces per capacity per pieces per per

Istation station functionality functionality

Multi-station

0% Fault time 6 71 0.9 40.6
6% Fault time 4 67 0.6 38.3
12% Fault time 4 62 0.6 35.4
18% Fault time 3 56 0.4 32
Double multi-station

0% Fault time 9 72 1.3 451
6% Fault time 7.5 68 1.1 38.9
12% Fault time 7.5 65 1.1 37.4
18% Fault time 6.5 61 0.9 34.9
Triple multi-station

0% Fault time 8.7 72 1.2 41
6% Fault time 8 66 1.1 37.7
12% Fault time 7.3 62 1 35.4
18% Fault time 6.3 57 0.9 32.4
Chain with multi-

station

0% Fault time 10 100 5.7 78.6
6% Fault time 8.1 86 4.6 70.6
12% Fault time 6.8 77 3.9 65.1
18% Fault time 5.8 66 3.3 59.3
Scope with multi-

station

0% Fault time 9.9 100 4 70
6% Fault time 7.9 88 3.2 62.9
12% Fault time 7.3 83 2.9 60.2
18% Fault time 6 77 2.4 56.5

Bibliography

[AD9S]

[AFHS95]

[AMO93]

[Aus62]

[Axe84]

[BB8Y]

[BFG99a)

[BFG99D)

[BFV98al

F. Aeken and Y. Demazeau. Minimal multi-agent systems. In Pro-
ceedings of the Third International Conference on Multi-Agent Sys-
tems, 1998.

O. Arnold, W. Faisst, M. Hartling, and P. Sieber. Virtuelle Un-
ternehmen als Unternehmenstyp der Zukunft? In Handbuch der
modernen Datenverarbeitung, volume 185 of Theorie und Prazis der
Wirtschaftsinformatik. Heidelberg: Hiithig-Verlag, 1995.

R. Ahuja, T. Magnanti, and J. Orlin. Network Flows. Prentice-Hall,
1993.

J. L. Austin. How to do Things with Words. Oxford University Press,
1962.

R. Axelrod. The Evolution of Cooperation. Basic Books, 1984.

G. Bamberg and F. Baur. Statistik. Oldenbourg, Miinchen Wien,
6th edition, 1989.

T. Bohnenberger, K. Fischer, and C. Gerber. An agent-based ap-
proach for production scheduling and plant topology optimization in
manufacturing. In Proceedings of the Fourth International Confer-
ence and Ezhibition on the Practical Application of Intelligent Agents
and Multi-Agents (PAAM), 1999.

T. Bohnenberger, K. Fischer, and C. Gerber. Agents in manufac-
turing: Online scheduling and production plant configuration. In

Proceedings of the 1st International Symposium on Agent Systems
and Applications (ASA/MA), 1999.

H.-J. Biirckert, K. Fischer, and G. Vierke. TeleTruck: A holonic fleet
management system. In Proceedings of the 14th Furopean Meeting
on Cybernetics and Systems Research, 1998.

228

BIBLIOGRAPHY

[BFV98D|

[BHM92)|

[BMOY]

[Bra87]

[BRJO7|

[Cas90]

[Cas95]

[Cd96]

[CDCYY]

[CL90]

[CML93]

[CMT79]

H.-J. Biirckert, K. Fischer, and G. Vierke. Transportation scheduling
with holonic MAS — the TeleTruck approach. In Proceedings of the

Third International Conference on Practical Applications of Intelli-
gent Agents and Multiagents (PAAM), 1998.

A. Bachem, W. Hochstéttler, and M. Malich. Simulated Trading:
A New Approach For Solving Vehicle Routing Problems. Techni-
cal Report 92.125, Mathematisches Institut der Universitit zu Koln,
Dezember 1992.

K. Barber and C. Martin. Applying dynamic planning frameworks to
agent goals. In AAAT Spring Symposium on Agents with Adjustable
Autonomy, 1999.

M. E. Bratman. Intention, Plans, and Practical Reason. Harvard
University Press, Cambridge, Mass., 1987.

G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language
User guide. Addison Wesley Longman, 1997.

C. Castelfranchi. Social power - a point missed in multi-agent, DAI
and HCI. In Y. Demazeau and J. Miiller, editors, Decentralized A.
1. North Holland, 1990.

C. Castelfranchi. Guarantees for autonomy in cognitive agent ar-
chitecure. In M. Wooldridge and N.R. Jennings, editors, Intelligent
Agents: Theories, Architectures and Languages, volume LNAI Vol-
ume 890, pages 45-70. Springer-Verlag, Heidelberg, Germany, 1995.

B. Chaib-draa. Interaction between agents in routine, familiar and
unfamiliar situations. International Journal of Intelligent and Coop-
erative Information Systems, 5(1), 1996.

A. Cesta, D. D’Aloisi, and M. Collia. Adjusting autonomy of agent
systems. In AAAI Spring Symposium on Agents with Adjustable Au-
tonomy, 1999.

P. R. Cohen and H. J. Levesque. Intention is choice with commit-
ment. In Artificial Intelligence, volume 42, pages 213-261. 1990.

M. Cini, R. Moreland, and J. Levine. Group staffing levels and
responses to prospective and new group members. Journal of Per-
sonality and Social Psychology, 65:723-734, 1993.

N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing prob-
lem. In Combinational Optimizations. John Wiley & Sons, 1979.

BIBLIOGRAPHY

229

[DBSS]

[DBK*98]

[DDY6]|

[Dee94|

[DGMTY5]

[DPY5]

[Esh9s]

[Fal95]

[FC99)

[FF94]

[FG98]

T. Dean and M. Boddy. An analysis of time-dependent planning. In
Proceedings of the Seventh National Conference on Artificial Intelli-
gence, 1988.

G. Dorais, R. Bonasso, D. Kortenkamp, P. Pell, and D. Schreck-
enghost. Adjustable autonomy for human-centered autonomous sys-
tems on Mars. In Proceedings of the Mars Society Conference, 1998.

W. Domschke and A. Drexl. Logistik: Standorte. Oldenbourg, Mu-
nich, Vienna, 1996.

S. M. Deen. A cooperation framework for holonic interactions in
manufacturing. In S. M. Deen, editor, Proceedings of the Second
Internatinal Working Conference on Cooperating Knowledge-Based
Systems. DAKE Centre, University of Keele, 1994.

J. Doran, N. Gilbert, U. Miiller, and K. Troitsch. Social science mi-
crosimulation: A challenge to computer science. Technical Report 12,
Dagstuhl-Seminar Report, 1995.

J. Doran and M. Palmer. The EOS project: integrating two models
of palaeolihic social change. In N. Gilbert and R. Conte, editors,
Artificial Societies, pages 103 —125. VCL Press, 1995.

K. Eshghi. Abductive planning with event calculus. In Procedings
of the Fifth International Conference on Logic Programming, pages
562-578, 1998.

J. Falk. FEin Multi-Agentensystem zur Transportplanung und -
steuerung bei Speditionen im Trampuverkehr. PhD thesis, Friedrich-
Alexander-Universitéit, Erlangen, Niirnberg, 1995.

R. Falcone and C. Castelfranchi. Levels of delegation and levels of
help for agents with adjustable autonomy. In AAAI Spring Sympo-
stum on Agents with Adjustable Autonomy, 1999.

T. Finin and R. Fritzson. KQML — a language and protocol for
knowledge and information exchange. In Proceedings of the 13th
Intl. Distributed Artificial Intelligence Workshop, pages 127-136,
Seattle, WA, USA, 1994.

J. Ferber and O. Gutknecht. A meta-model for the analysis and
design of organizations in multi-agent systems. In Proceedings of the
Third International Conference on Multi-Agent Systems, 1998.

230

BIBLIOGRAPHY

[FGCd™99] K. Fischer, C. Gerber, B. Chaib-draa, J.P. Miiller, and M. Pischel. A

[FGLS98|

[FIP9g]

|Fis94|

[FMP96]|

[Fre87]

[FRV9S]

|Gar83|

[Ger97|

|Ger98a

[Ger98b|

[Ger99|

simulation approach based on negotiation and cooperation between
agents: A case study. IEEE Journal on transaction on Modeling and
Computer Simulation—Simulation of Scalable Systems, 1999.

P. Funk, C. Gerber, J. Lind, and M. Schillo. SIF: An agent-based
simulation toolbox using the EMS paradigm. In Proceedings of the
3rd International Congress of the Federation of EUROpean SIMula-
tion Societies (EuroSim), 1998.

FIPA 98 Specification. volume 1-13. The Foundation for Intelligent
Physical Agents, 1998. Version 1.0.

K. Fischer. The design of an intelligent manufacturing system. In
S. M. Deen, editor, Proceedings of the 2nd Intl. Working Conference
on Cooperating Knowledge-based Systems (CKBS) (Selected Papers),
pages 83-99. DAKE Centre, 1994.

K. Fischer, J. P. Miiller, and M. Pischel. Cooperative transportation
scheduling: an application domain for DAIL. Journal of Applied Ar-
tificial Intelligence. Special issue on Intelligent Agents, 10(1), 1996.

J. Free. Pheromones of Social Bees. Chapman and Hall, London,
1987.

K. Fischer, C. Rufs, and G. Vierke. Decision theory and coordination
in multiagent systems. Research Report RR-98-02, DFKI, 1998.

M. Gardner. Wheels, Life and other Mathematical Amusements.
W.H. Freeman and Company, 1983.

C. Gerber. An artificial agent society is more than a collection of
“social” agents. In Socially Intelligent Agents - Papers from the 1997
AAAI Fall Symposium. Technical Report FS-97-02, AAAI, 1997.

C. Gerber. Bottleneck analysis for self-adapting multi-agent societies.
In Proceedings of the IEEE Joint Conference on the Science and
Technology of Intelligent Systems, 1998.

C. Gerber. Evolution-based self-adaption as an expression for the
autonomy degree in multi-agent systems. In Proceedings of the IEEE
Joint Conference on the Science and Technology of Intelligent Sys-
tems, 1998.

C. Gerber. Performance optimization in the MoTiV-PTA agent sys-
tem. In Proceedings of the First International Symposium on Impact
of agent Technology on telecommunications, 1999. Invited paper.

BIBLIOGRAPHY

231

(G198

[GJ97]

[GJos]

[GooT1]

[Gor69]

[GROT]

[GRHLSY]

|GRV99)

[GS98]

[GSBYY

[GSV99a]

C. Gerber and P. Imhof. Generalised media of interaction and ab-
stract resources: Two concepts on social control derived in sociology
and computer science. In Proceedings of the Workshop on Socionics
at the German Conference for Artificial Intelligence (KI’98), 1998.

C. Gerber and C. G. Jung. Towards the bounded optimal agent
society. In K. Fischer, C. G. Jung, and S. Schacht, editors, Work-
ing Notes of the KI 97 Workshop on Distributed Cognitive Systems,
1997.

C. Gerber and C. Jung. Resource management for boundedly optimal
agent societies. In Proceedings of the ECAI Workshop on Monitoring
and Control of Real-Time Intelligent Systems, 1998.

I. Good. Twenty-seven principles of rationality. In V. Godambe
and D. Sprott, editors, Foundations of Statistical Inference. Holt,
Rinehart, and Winston, Toronto, 1971.

G. Gordon. System Sitmulation. Prendice-Hall, Englewoods Cliff, NJ,
1969.

C. Goldman and J. Rosenschein. Evolving organizations of agents. In
Proceedings of the Workshop on Machine Learning at the fourteenth
National Conference on Al 1997.

L. Gasser, N. Rouquette, R. Hill, and J. Lieb. Representing and using
organizational knowledge in distributed ai systems. In L. Gasser
and M. Huhns, editors, Distibuted Artificial Intelligence, volume II.
Pitman, 1989.

C. Gerber, C. Ruf, and G. Vierke. On the suitability of market-
based mechanisms for telematics applications. In Proceedings of the
International Conference on Autonomous Agents (Agents’99), 1999.

I. Gilboa and D. Schmeidler. Case-based decision: An extended ab-
stract. In Proceedings of the 13th European Conference on Artificial
Intelligence (ECAI), 1998.

C. Gerber, D. Steiner, and B. Bauer. Resource adaptation for a
scalable agent society in the MoTiV-PTA domain. In A. Hazelden
and J. Bigham, editors, Software Agents for Future Communication
Systems. Springer Verlag, 1999.

C. Gerber, J. Siekmann, and G. Vierke. Flexible autonomy in holonic
multi-agent systems. In AAATI Spring Symposium on Agents with
Adjustable Autonomy, 1999.

232

BIBLIOGRAPHY

[GSV99b]

|GSWoS

[Har93]

[Hay98|

[HLT99]

|[Hor87a|

[Hor87b]

[HS98]

[Hub99]

[HZ96]

[IEES1]

[Jam97|

C. Gerber, J. Siekmann, and G. Vierke. Holonic multi-agent systems.
Research Report RR-99-01, German Research Center for Artificial
Intelligence, 1999.

P. Gomber, C. Schmidt, and C. Weinhardt. Efficiency incentives and
computational tractability in the coordination of multi-agent sys-
tems. In Proceedings of the Workshop Kooperationsnetze und Elek-
tronische Koordination, 1998.

J. Harrington. Computer integrated manufactoring. Technical re-
port, Malabar, Florida, 1993. Reprint.

A. Hayzelden. Telecommunications multi-agent control system (Tele-
MACS). In Procedings of the European Conference on Artificial In-
telligence (ECAI), 1998.

H. Hexmoor, M. Lafary, and M. Trosen. Adjusting autonomy by
introspection. In AAAI Spring Symposium on Agents with Adjustable
Autonomy, 1999.

R. Horst. Nichtlineare Programmierung. In Grundlagen des Opera-
tions Research. Springer, 1987.

E. Horvitz. Reasonig about beliefs and actions under computational
resource constraints. In Proceedings of the Third Workshop on Un-
certainty in Artificial Intelligence, 1987.

M. Huhns and M. Singh. Agents and multiagent applications:
themes, approaches, and challenges. In M. Huhns and M.Singh,
editors, Readings in Agents, pages 1-23. Morgan Kaufmann, San
Fransisco, CA, 1998.

M. Huber. Considerations for flexible autonomy within BDI intelli-
gent agent architectures. In AAAI Spring Symposium on Agents with
Adjustable Autonomy, 1999.

E. Hansen and S. Zilberstein. Monitoring anytime algorithms.
SIGART Bulletin Special Issue on Anytime Algorithms and Delib-

eration Scheduling, 1996.

IEEE. Transactions on Systems, Man and Cybernetics, volume 11,
1981.

A. Jameson. Adaptivitdt und Benutzermodellierung in interaktiven
Softwaresystemen. In R. Schifer and M. Bauer, editors, Modeling the
user’s processing resources: Pragmatic simplicity meets psychological
complezity, pages 149-160. Universitit des Saarlandes, 1997.

BIBLIOGRAPHY

233

[JB9g]

[JL85)

[JLG*99]

[JLG*00]

[Jun98|

[Jun99|

[JW9g]

[KAK+97]

[KE96]|

[Ket93]

[Koe67]

[Lan98]

A. Jameson and K. Buchholz. Einleitung zum Themenheft
“Ressourcenadaptive kognitive Prozesse”. Kognitionswissenschaft,
7(3):95-100, 1998.

H. Juel and R. Lowe. The facility location problem for hyper-
rectilinear distances. IEEE Transactions, 17:94 — 98, 1985.

C. Jung, J. Lind, C. Gerber, M. Schillo, P. Funk, and A. Burt. An ar-
chitecture for co-habited virtual worlds. In Proceedings of the Virtual
Worlds and Simulation Conference, 1999. Invited paper.

C. Jung, J. Lind, C. Gerber, M. Schillo, P. Funk, and A. Burt. Eine
integrierte Systemarchitektur fiir Agenten und Benuter in virtuellen
Welten. KI - Kiinstliche Intelligenz; Schwerpunktthema Intelligente
Virtuelle Umgebungen, 2000. Invited paper, to appear.

C. G. Jung. Experimenting with layered, resource-adapting agents in
the robocup simulation. In Proceedings of the ROBOCUP’98 Work-
shop, 1998.

C. Jung. Theory and Practice of Hybrid Agents. PhD thesis, Univer-
sitidt des Saarlandes, Saarbriicken, 1999.

N. Jennings and M. Wooldridge. Agent Technology: Foundations,
Applications, and Markets. Springer Verlag, 1998.

H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa.
Robocup: The robot world cup initiative. In Proceedings of The

First International Conference on Autonomous Agents (Agents’97),
Marina del Ray, 1997. The ACM Press.

A. Klein and H. Eckardt. Engpafanalyse - eine neue Methode zur
Systembewertung. Research report, Siemens AG, Zentrabteilung
SW2, 1996.

S. Ketchpel. Coalition forming among autonomous agents. In Pro-
ceedings of the 5th European Workshop on Modelling Autonomous
Agents and Multi Agent Worlds (MAAMAW’93), Neuchatel, Switzer-
land, August 1993.

A. Koestler. The Ghost in the Machine. Hutchinson, 1967.

D. Lange. Mobile agents: Environments, technologies, and applica-
tions. In Proceedings of the Third International Conference on Practi-
cal Applications of Intelligent Agents and Multiagents (PAAM), 1998.

234

BIBLIOGRAPHY

[Ld95]

[LIG99)

[Mey90|

[MMTS8]

[Mor96]

[MP82]

[Miil96)]

[Nag61]

|Nas88]

[Neu92|

[Num92]

[NW8S]

[Par69]

[Pic93]

M. Luck and M. d’'Inverno. A formal framework for agents and auton-
omy. In Proceedings of the First International Conference on Multi-
Agent Systems, 1995.

J. Lind, C. Jung, and C. Gerber. Adaptivity and learning in intelli-
gent real-time systems. In Proceedings of the International Confer-
ence on Autonomous Agents (Agents’99), 1999.

R. Meyer. Meyers Konversationslexikon, volume 14. Verlag des Bib-
liographischen Instituts, 4th edition, 1890.

C. Ma, J. Moore, and S. Turnbull. Stopping agents from “cheating”.
In Journal of Economic Theory 46: pp. 355-372, 1988.

R. Moreland. Creating the ideal group: Composition effects at work.
In E. Witte and J. Davis, editors, Understanding Groupd Behavior,
volume 2. Lawrence Erlbaum Associates, Publishers, Mahway, NJ,
1996.

J. Miiller and H. Peters. Finfihrung in die Volkswirtschaftslehre.
Verlag Neue Wirtschafts-Briefe, 1982.

J. P. Miiller. An Architecture for Dynamically Interacting Agents.
PhD thesis, Universitiat des Saarlandes, Saarbriicken, 1996.

E. Nagel. The structure of science. Harcourt, Brace and World, 1961.

D. Nasser. How to run a focus group. Public Relations Journal,
44:33-34, 1988.

O. Neumann. Theorien der Aufmerksamkeit: von Methaphern zu
Mechanismen. Psychologische Rundschau, 43:81-103, 1992.

C. Numaoka. Conversation for organizatorial activity. In E. Werner
and Y. Demazeau, editors, Decentralized A. 1., volume 3. North Hol-
land, 1992.

G. Nemhauser and L. Wolsey. Integer and Combinatorial Program-
ming. Wiley, New York, 1988.

T. Parsons. Politics and Social Structures. Free Press, New York,
1969.

A. Picot. Organisationsstruktur in der Wirtschaft und ihre An-
forderungen an die Informations- und Kommunikationstechnik. In
Handbuch des Informationsmanagements, Aufgaben - Konzepte -
Prazislosungen , pages 49-68. A.W. Scheer, 1993.

BIBLIOGRAPHY 235

[RCA98] R. Rabelo, L. M. Camarinha, and H. Afsarmanesh. Multiagent per-
spectives to agile scheduling. In L. M. Camarinha, H. Afsarmanesh,

and V. Marik, editors, Intelligent Systems for Manufacturing, pages
51-66. Kluwer Adademic Publishers, 1998.

[RGI1] A. S. Rao and M. P. Georgeff. Modeling agents within a BDI-
architecture. In R. Fikes and E. Sandewall, editors, Proceedings of
the 2rd International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR’91), pages 473-484, Cambridge, Mass.,
April 1991. Morgan Kaufmann.

[RN95] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 1995.

|RS95] S J. Russell and D. Subramanian. Provably Bounded Optimal
Agents. Journal of Artificial Intelligence Research, 2, 1995.

[Rum96] R. Rummer. Kognitive Beanspruchung beim Sprechen. Beltz, Wein-
heim, 1996.

[RV98| C. Ruf and G. Vierke. Agent-based configuration of virtual en-
terprises. In Proceedings of the Workshop on Intelligent Agents in

Information- and Process Management at the German Conference
for Artificial Intelligence (KI’98), 1998.

[RW89] S. Russell and E. Wefald. Principles of metareasoning. In R. Brach-
man, editor, Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning. Morgan
Kaufmann, 1989.

[RWO1] S J. Russell and E. Wefald. Do the Right Thing. MIT Press, 1991.

[San96] T. Sandholm. Negotiation among Self-Interested Computationally
Limited Agents. PhD thesis, University of Massachusetts at Amherst,
Department of Computer Science, 1996.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. Wiley,
Chichester, 1986.

[Sch87] O. Schwemmer. Handlung und Struktur. Suhrkamp, Frankfurt, 1987.

[Sch89) A. Scharf. How to change seven rowdy people. Industrial Manage-
ment, 31:20-22, 1989.

[See85] T. Seeley. Honeybee Ecology - A Study on Adaptation in Social Life.
Princeton University Press, Princeton, NJ, 1985.

236

BIBLIOGRAPHY

[Sho91]

[Sie95]

[SLG*99]

[SMH90]

[Smi80|

[Sol87]

ISSR95|

[Sta79]

[Ste92]

[SWS6]

[Tam98|

[TJ77]

[Var87]

Y. Shoham. Agent-oriented programming. In Proceedings of the 11th
International Workshop on DAI, pages 345-353, 1991.

Siemens AG, Zentralbereich Forschung und Entwicklung SN5
Mensch-Maschine-Kooperation. Personal Trip Assistant: Dokumen-
tation zur ZFE-Pressekonferenz Verkehr, 1995.

M. Schillo, J. Lind, C. Gerber, P. Funk, and C. Jung. SIF - the
social interaction framework system description and user’s guide to
a multi-agent system testbed. Research Report RR-99-02, German
Research Center for Artificial Intelligence, 1999.

D. Steiner, D. Mahling, and H. Haugeneder. Human computer coop-
erative work. In Proceedings of the 10th International Workshop on
Distributed Artificial Intelligence, ACT-AI-355-90, MCC, 1990.

R. G. Smith. The contract net protocol: High level communications
and control in a distributed problem solver. IFEE Transactions on
Computers, 29:1104-1113, 1980.

M. Solomon. Algorithms for the vehicle routing and scheduling prob-
lems with time window constraints. Operations Research, 1(35):254—~
265, 1987.

G. Smolka, C. Schulte, and P. Van Roy. PERDIO: Persistent and
Distributed Programming in Oz. Technical report, German Research
Center for Artificial Intelligence, Saarbriicken, March 1995.

C. Starr. Origin and evolution of insect sociality: A review of modern
theory. In H. Herrmann, editor, Social Insects, volume 1, chapter 2,
pages 35—80. Academic Press, 1979.

D. Steiner. MEKKA: Eine Entwicklungsumgebung zur Konstruktion
kooperativer Anwendungen. In J. Miiller and D. Steiner, editors,
Kooperierende Agenten, D-92-24, pages 17-21. Saarbriicken, 1992.

Stanfill and Waltz. Towards memory-based reasoning. Communica-
tions of the ACM, 29(12), 1986.

M. Tambe. Implementing agent teams in dynamic multi-agent envi-
ronments. Applied Artificial Intelligence, 12, 1998.

B. Tuckman and M. Jenson. Stages of small-group development re-
visited. Group and Organization Studies, 2:419-427, 1977.

H. Varian. Intermediate Microeconomics. W. W. Norton and Com-
pany, 3rd edition, 1987.

BIBLIOGRAPHY

237

[VDP87|

|Vie0O|

[Wer89|

[Whel1]

[Wil71]

[WJ95]

[Woh81]

[Wo094]

[WT97]

[Zi193]

|Zou76]

[ZR96]

H. Van Dyke Parunak. Manufacturing experience with the contract
net. In M. Huhns, editor, Distributed Artificial Intelligence, pages
285-310. Pitman Publishing: London and Morgan Kaufmann: San
Mateo, CA, 1987.

G. Vierke. Cooperative and Competitive Resource and Task Alloca-
tion in the Haulage Domain with a Holonic Multi-Agent System. PhD
thesis, Universitit des Saarlandes, Saarbriicken, 2000. To appear.

E. Werner. Cooperating Agents: A Unified Theory of Communi-
cation and Social Structure. In L. Gasser and M. Huhns, editors,
Distibuted Artificial Intelligence, volume II. Pitman, 19809.

W. Wheeler. The ant-colony as an organism. Morphology, pages
307-325, 1911.

E. Wilson. The Insect Societies. The Belknap Press of Harvard
University Press, Cambridge, MA, 1971.

M. J. Wooldridge and N. R. Jennings. Intelligent agents: Theory
and practice. Knowledge Engineering Review, 10(2):115-152, 1995.

G. Wohe. FEinfiihrung in die Allgemeine Betriebswirtschaftslehre.
Verlag Wahlen, 14th edition, 1981.

M. Wooldridge. This is myworld: the logic of an agent-oriented
DALI testbed. In M. Wooldridge and N.R. Jennings, editors, Intelli-
gent Agents: Theories, Architectures and Languages, volume LNAI
Volume 799, pages 401-456. Springer-Verlag, Heidelberg, Germany,
1994.

W. Wahlster and W. Tack. SFB 378: Ressourcenadaptive Kognitive
Prozesse. In M. Jarke, K. Pasedach, and K. Pohl, editors, Infor-

matik 97 - Informatik als Innovationsmotor, 27. Jahrestagung der
Gesellschaft fiir Informatik, pages 51-57. Springer, 1997.

S. Zilberstein. Operational Rationality through Compilation of Any-
time Algorithms. PhD thesis, University of California at Berkley,
1993.

G. Zoutendijk. Mathematical Programming Methods. North-Holland,
Amsterdam, 1976.

S. Zilberstein and S. Russell. Optimal composition of real-time sys-
tems. Artificial Intelligence, 1996.

