
Combinatorial Curve Reconstruction
and the

Efficient Exact Implementation

of Geometric Algorithms

Dissertation

zur Erlangung des Grades
des Doktors der Ingenieurswissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

von

Stefan Funke

Saarbrücken
31. Juli 2001



Datum des Kolloqiums: 30. Juli 2001

Dekan der naturwissenschaftlich-technischen Fakultät I:

Professor Dr. Rainer Schulze-Pillot-Ziemen

Gutachter:
Professor Dr. Kurt Mehlhorn, MPI für Informatik, Saarbrücken

Professor Dr. Stefan Näher, Universität Trier



Abstract

This thesis has two main parts. The first part deals with the problem of curve reconstruction.
Given a finite sample set S from an unknown collection of curves Γ, the task is to compute

the graph G(S,Γ) which has vertex set S and an edge between exactly those pairs of vertices
that are adjacent on some curve in Γ. We present a purely combinatorial algorithm that
solves the curve reconstruction problem in polynomial time. It is the first algorithm which

provably handles collections of curves with corners and endpoints.
In the second part of this thesis, we will be concerned with the exact and efficient im-

plementation of geometric algorithms. First, we develop a generalized filtering scheme to
speed-up exact geometric computation and then discuss the design of an object-oriented ker-

nel for geometric computation.

Kurzzusammenfassung

Diese Dissertation besteht aus zwei Teilen. Der erste Teil beschäftigt sich mit dem Prob-

lem der Kurvenrekonstruktion. Gegeben eine endliche Menge von Stichprobenpunkten S von
einer Menge von unbekannten Kurven Γ, besteht die Aufgabe darin, den Graphen G(S,Γ)

zu konstruieren, welcher die Knotenmenge S und Kanten zwischen genau den Knotenpaaren
besitzt, welche auf einer der Kurven in Γ adjazent sind. Wir präsentieren einen rein kombi-
natorischen Algorithmus, der das Kurvenrekonstruktionsproblem in polynomieller Zeit löst.

Es ist der erste Algorithmus, der beweisbar Mengen von Kurven rekonstruieren kann, wenn
diese auch Ecken und Endpunkte beinhalten dürfen.

Der zweite Teil dieser Dissertation handelt von der exakten und effizienten Implemen-
tierung von Geometrischen Algorithmen. Wir entwickeln zunächst ein generalisiertes Filter-

schema, um exakte geometrische Berechnungen zu beschleunigen, und entwerfen dann das
Design eines objektorientierten Kernels für geometrische Berechnungen.





Acknowledgments

This thesis couldn’t have been written without the help of many people. First of all, I thank

my advisor Prof. Dr. Kurt Mehlhorn. His guidance, advice, and encouragement have been

invaluable throughout my master’s and doctoral studies.

During the last three years I had many fruitful discussions with almost every member of

our group. In particular, I am grateful to my coadvisor Edgar Ramos with whom I have spent

hours discussing our work.

In addition, I am grateful to Ernst Althaus, Christoph Burnikel, Piotr Krysta, Stefan

Näher, Stefan Schirra, Michael Seel, and Mark Ziegelmann for many interesting discussions

(not only) concerning research related topics.





Contents

Preface 1

I Combinatorial Curve Reconstruction 3

1 Reconstructing a Collection of Curves with Corners and Endpoints 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Convex Hulls and Triangulations . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Delaunay Triangulations and Voronoi Diagrams . . . . . . . . . . . . . 9

1.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Terminology and Basic Properties of Curves . . . . . . . . . . . . . . . 13

1.3.2 Medial Axis and Local Feature Size . . . . . . . . . . . . . . . . . . . 14

1.3.3 The Algorithms of Amenta, Bern, and Eppstein . . . . . . . . . . . . . 16

1.3.4 Variations on the CRUST algorithm . . . . . . . . . . . . . . . . . . . 21

1.3.5 The Algorithm of Dey, Mehlhorn, and Ramos . . . . . . . . . . . . . . 22

1.3.6 The TSP-based algorithms by Giessen and Althaus/Mehlhorn . . . . . 23

1.4 Sampling Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4.1 Our Sampling Condition . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.2 Medial axis sampling condition implies our sampling condition . . . . 31

1.5 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5.1 Exploring a corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5.2 Removal of interfering corners . . . . . . . . . . . . . . . . . . . . . . . 38

1.5.3 Removal of interfering red edges . . . . . . . . . . . . . . . . . . . . . 38

1.6 Correctness of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.6.1 Good edges are captured (Theorem 2) . . . . . . . . . . . . . . . . . . 40

1.6.2 Captured edges are good (Theorem 3) . . . . . . . . . . . . . . . . . . 50

1.6.3 Setting the Parameters for the Algorithm and the Sampling Condition 50

1.7 Further Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1.7.1 How to obtain exactly the correct reconstruction ? . . . . . . . . . . . 52

1.7.2 Tuning the Parameters for best Practical Performance . . . . . . . . . 54

1.7.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.8 Running Time and Experimental Results . . . . . . . . . . . . . . . . . . . . 55

1.9 Discussion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

i



II The Efficient and Exact Implementation of Geometric Algorithms 59

2 The Exact Computation Paradigm 61

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.2 Preliminaries and Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.2.1 Exact Number Types in LEDA . . . . . . . . . . . . . . . . . . . . . . 65

2.2.2 Deriving Error Bounds for Floating-Point Computations . . . . . . . . 66

2.2.3 Filtering of Geometric Predicates . . . . . . . . . . . . . . . . . . . . . 70

3 Structural Filtering – a New Approach to Filtering 73

3.1 Filtering Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.1 Mergesort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.2 Quicksort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2.3 Heapsort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.1 Binary Search on Trees followed by Linear Search through the Leaves 82

3.3.2 Point Location for Delaunay Triangulations . . . . . . . . . . . . . . . 82

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.1 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.2 Randomized Incremental Delaunay Triangulation . . . . . . . . . . . . 85

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 LOOK – a Lazy Object-Oriented Kernel for Geometric Computation 89

4.1 Designing a Kernel for Exact Geometric Computation . . . . . . . . . . . . . 89

4.2 Features of LOOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Implementation Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Floating-point filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.2 Cartesian and Homogeneous Representations . . . . . . . . . . . . . . 93

4.3.3 Reference Counting and Handles . . . . . . . . . . . . . . . . . . . . . 94

4.3.4 Lazy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.5 Progressive Exact Evaluation . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.6 Conservative Memory Management . . . . . . . . . . . . . . . . . . . . 99

4.4 How to Use it as a Programmer . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.1 ’Normal’ Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.2 Extending LOOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.1 LOOK compared to LEDA’s RatKernel . . . . . . . . . . . . . . . . . 105

4.5.2 LOOK as a CGAL Kernel Traits Class . . . . . . . . . . . . . . . . . . 107

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

ii



Summary 111

Zusammenfassung 113

iii



iv



Preface

In this thesis we will present results in two areas which belong to the broad field of compu-

tational geometry.

Concepts of computational geometry concepts can be found in many places of everyday

life. For example, imagine being in a big city and you are looking for a post office. There are

several post offices in the city, but naturally you would prefer to know which one is closest to

your current position. A city map which shows the exact position of each post office would be

helpful, but still, there might be several post offices which are similarly close to your current

position. To find exactly the post office which is closest, it would be nice if the map was

subdivided into areas which have one particular post office as closest, like in the figure above.

Now the question is, how do these areas look like and how can one compute them ?

Even though you probably do not really care if you go to a post office which is not the

closest but almost as close, this problem describes a fundamental geometric concept, which

has many applications. The subdivision of the map is a so-called Voronoi diagram. It can

be used to model areas of influence of radio transmitters, guide robots and, even to describe

and simulate the growth of crystals. There are many more geometric concepts which can be

found in everyday life.

In the first part of this thesis we will theoretically investigate a problem from computa-

tional geometry, whereas the second part will be more concerned with some practical aspects

of implementing geometric algorithms.

1



Combinatorial Curve Reconstruction

Given a set S of sample points from a collection of open and closed curves Γ, curve recon-

struction is the problem of computing the graph G(S, Γ), called the correct reconstruction,

whose vertex set is S and which has an edge between two samples if and only if they are

adjacent on a curve in Γ.

Obviously, it is not possible to correctly reconstruct a given curve from an arbitrary sample

set from it. Therefore, some restrictions on the sample set are needed. Several Algorithms

have been proposed that provably reconstruct certain classes of curves. In the first part of

this thesis we present the first algorithm which provably reconstructs a collection of curves

with corners and endpoints. This result has been published at the 12th Annual ACM-SIAM

Symposium on Discrete Algorithms 2001 ([FR01]).

The Efficient Exact Implementation of Geometric Algorithms

When computer scientists design geometric algorithms, they usually assume the availability

of exact arithmetic on real numbers (like we do for example in the first part of this thesis).

Since no computer provides exact arithmetic on real numbers in hardware, programmers

implementing these algorithms must find some substitution. Quite commonly, they resort to

floating-point arithmetic due to its support by hard- and software. The resulting programs

may not behave as expected, though. The roundoff errors accumulating during floating-point

computation very often make the programs crash or produce inconsistent results. There are

several ways to overcome this problem, first, one can design algorithms which explicitely deal

with the problem of roundoff errors. Only very few such robust algorithms exist, mainly for

very simple problems. The other possibility is the so-called exact computation paradigm, which

advocates to give the implementer of a geometric algorithm the illusion of exact arithmetic on

real numbers by providing exact number types and exact geometric predicates. Unfortunately,

providing this ’illusion’ has its cost which is usually considerably higher than pure floating-

point arithmetic.

In the second part of this thesis, we will present two filtering concepts which reduce

the overhead compared to floating-point arithmetic when adhering to the exact computation

paradigm. These results have been published at the 11th Canadian Conference on Computa-

tional Geometry 1999 ([FMN99]) and the 16th Annual ACM Symposium on Computational

Geometry 2000 ([FM00]).

2



Part I

Combinatorial Curve

Reconstruction

3





Chapter 1

Reconstructing a Collection of

Curves with Corners and Endpoints

1.1 Introduction

The problem of reconstructing a shape from a given finite set of points has attracted much

attention in the literature during the last twenty years. Its importance arises from a wide

area of applications, mainly in reverse engineering. For the most important problem, the

reconstruction of a surface in the Euclidean space, many algorithms have been proposed

that produce good approximations of the surfaces. The drawback of these algorithms is

that they provide no guarantee for the correctness of the returned solution. Recently, these

reconstruction problems have been investigated from a theoretical point of view. The results

are algorithms that provably solve the reconstruction problem for a certain class of shapes. In

the following we will give a formal specification of this problem, summarize our contribution

to this problem and give an outline of the contents of this chapter.

Problem Description

In general a shape Γ is defined as a subset of the Euclidean space Rd. Given a finite set of

points S from an unknown shape Γ, called the sample points, the shape reconstruction problem

asks for a shape Γ′ ⊃ S that approximates Γ.

We will only be concerned with reconstruction algorithms with guaranteed performance,

i.e., algorithms that provably solve the reconstruction problem under certain assumptions on

the shape Γ and the sample set S. Of course, we also need a notion of what the correct

reconstruction is. In the case where the shape is a curve, i.e., a one–manifold, the correct

solution can easily be defined as follows:

Definition 1 The correct reconstruction, also called polygonal reconstruction, G(S,Γ) of a

sample set S with respect to a collection of non-intersecting curves Γ is defined as the graph

G with vertex set S and an edge between two vertices if and only if they are adjacent in Γ.

Already in the case of a surface in R3, i.e., a two–manifold, the definition of the cor-

rect reconstruction takes some deliberation. A possible answer was given by Amenta and

5



6 Chapter 1. Combinatorial Curve Reconstruction

Bern [AB99].

While the problem of curve and surface reconstruction has been looked at by researchers in

the computer vision and computer graphics community, only recently researchers in the area

of computational geometry have started to work on the problem more intensely. They have

proposed algorithms that provably solve the problem for certain classes of curves or surfaces,

if they are appropriately sampled. Most of these algorithms required the shapes to be closed

and smooth. Only for the case where the shape is a curve, algorithms are known which allow

the shape to be open or non-smooth, i.e. differentiable in all but a finite number of points.

But still, the problem of reconstructing a collection of possibly open and non-smooth curves

has been open so far. For the reconstruction of surfaces in R3, current algorithms can only

deal with smooth, closed surfaces; they are mostly based on the same ideas as the curve

reconstruction algorithms in R2.

In this thesis, we address the general case of a collection of curves in R2 that are neither

assumed to be closed nor smooth, i.e. we only require the curves to be differentiable in all but

a finite number of points. Figure 1.1 gives an example. On the left the collection of curves

Γ is shown, in the middle, a sample set S from Γ is visualized. The correct reconstruction

G(S,Γ) of S with respect to Γ is shown on the right. The reader might say just by looking at

this example, that it is obvious how to correctly reconstruct the sample points. The challenge

is to design algorithms which do this ’obvious’ job as good as a human being.

Figure 1.1: A collection of curves Γ, a sample S from Γ, and the correct reconstruction G(S,Γ)

Practical Applications

The problem of reconstructing a surface from scattered sample points arises in many appli-

cations such as computer graphics, medical imaging, and cartography. Nevertheless there are

applications where the underlying shape is a curve.

Computer Vision

Given a digital image of a scene with several objects, simple edge detection algorithms are

used to select image pixels which are likely to belong to edges, often delimiting the boundaries



1.1. Introduction 7

of objects. Curve reconstruction algorithms then can be used to group these pixels into likely

curves which then hopefully represent the shapes of the objects in the scene.

Surface Reconstruction from Layered Sample Sets

In some applications of surface reconstruction in R3, the sample sets are acquired in parallel

slices, for example in computer tomography (CT) and magnetic resonance imaging (MRI).

Each slice or layer is a sample from the shape that is the intersection of the scanned object

with a plane. One approach to reconstruct the surface is first to reconstruct the shapes

(=curves) in each layer and then connect adjacent layers appropriately. For example if two

adjacent layers consist of a single curve each, the problem reduces to finding a cylindrical

surface that connects the two polygons.

Plotting of Implicit Functions

In mathematics, some functions are given by the definition f(x, y) = 0. Such a definition is

called an implicit definition. Many mathematical software packages support the plot of such

implicit functions, if they can compute for every x all values y with f(x, y) = 0. The result

of these plots is rather poor, if the function is self-intersecting or has sharp corners. To plot

such an implicit function, one computes a large set of points on this function and reconstructs

it with an appropriate algorithm.

Our Contribution

If the curve is closed, smooth, and uniformly sampled, several methods for the curve re-

construction problem are known to work ranging over minimum spanning trees [dFdMG95],

α-shapes [BB97, EKS83], β-skeletons [KR85], and r-regular shapes [Att97]. A survey of these

techniques appears in [Ede98]. The case of non-uniformly sampled closed curves was first

treated successfully by Amenta, Bern and Eppstein [ABE98] and subsequently improved al-

gorithms such as [DK99, Gol99] appeared. Open non-uniformly sampled curves were treated

in [DMR99]. All the papers mentioned so far require the underlying curve to be smooth.

The first algorithm to treat one non-smooth curve was given by Giessen and later refined

by Althaus/Mehlhorn. They showed that an open or closed non-smooth curve can be recon-

structed using a TSP-tour. They were also able to show that an Integer-LP formulation of the

problem can be solved in polynomial time. But still they failed for the general case where the

sample set is taken from a collection of open and closed non-smooth curves. In this chapter

we will present the following results:

• We give the first algorithm which provably can reconstruct a collection of non-smooth,

open and closed curves Γ from a non-uniform sample set S. Our algorithm is completely

combinatorial, does not rely on linear programming, and runs in polynomial time.

• In the proof of the correctness of our algorithm we introduce a sampling condition,

different from those in the previous algorithms. We show that our sampling condition

is implied by the other sampling conditions.



8 Chapter 1. Combinatorial Curve Reconstruction

• As it was shown in [DMR99], allowing open curves but only giving a lower bound

for the sampling density makes it impossible for an algorithm to compute exactly the

correct reconstruction. So we prove that the output of our algorithm contains the

correct reconstruction and that any extra edges in the output are justified by providing

a collection of witness curves Γ′ for which S is a valid sample and the output of our

algorithm is exactly the correct reconstruction of S w.r.t. Γ′. Nevertheless, we also

propose a slightly sharpened sampling condition, such that a modified version of our

algorithm computes exactly the correct reconstruction. This is the first result of the

type: For any collection of curves with corners and endpoints, there exists a finite

sample set such that it can be correctly reconstructed exactly by an algorithm.

Additionally we have implemented a prototype of our algorithm that shows that it can be

used in practice.

Outline

This chapter is organized as follows: In Sections 1.2 and 1.3 we start with some preliminaries

and briefly review recent previous work on curve reconstruction. In Section 1.4, we discuss

and present our choice of a sampling condition. Based on this sampling condition we develop

our algorithm in Section 1.5 and prove its correctness in Section 1.6. Section 1.7 presents

further results and variations of our algorithm and the sampling condition; in Section 1.8 we

discuss the running time of our algorithm, its implementation, and present some experimental

results. We conclude this chapter with some discussion and open problems.



1.2. Preliminaries 9

1.2 Preliminaries

The following sections will heavily use terms, algorithms, and techniques from computational

geometry, hence we first introduce the basic facts about Voronoi diagrams and Delaunay

triangulations that are needed to understand the following presentation.

The results in this section are not original. They are presented only for the sake of

completeness.

1.2.1 Convex Hulls and Triangulations

The convex hull of a set of points S is the minimal convex set of points covering S. Recall

that a set X is called convex if for any two points p and q of X the entire line segment pq is

contained in X .

A triangulation of a set of points S in the plane is a partition of the convex hull of S into

triangles with three points of S as its vertices. Only if all points of a point set S are collinear,

there is no triangulation of S.

Remark The convex hull CH(S) of a set S of n points in the plane can be computed in

O(n log f), where f is the number of points in S which lie on the boundary of the convex

hull. A triangulation of S can be obtained in O(n log n).

Figure 1.2: The convex hull and a triangulation of a point set

1.2.2 Delaunay Triangulations and Voronoi Diagrams

A triangulation of a point set S is called Delaunay triangulation(DT(S)) if the interior of

the minimum enclosing disk of any triangle in the triangulation contains no point of S. For

example, the grey edges in Figure 1.3 connect the points in a Delaunay triangulation.

Interestingly one can show that the following alternative definition is equivalent to the one

given above: A triangulation is a Delaunay Triangulation if for every edge e = (p, q) there



10 Chapter 1. Combinatorial Curve Reconstruction

Figure 1.3: A Delaunay triangulation and the Voronoi diagram of a point set

exists a ball B with p and q on the boundary of B and no other points of S inside the ball.

Any triangulation of a point set can be turned into a Delaunay triangulation using sev-

eral iterations of a local operation called Delaunay flip, see Figure 1.4. Starting from any

triangulation of S, one inspects each edge e = (p, r) and its adjacent triangles, here ∆pqs and

∆qrs. If r is in the circumcircle of ∆pqs or p in the circumcircle of ∆qrs – we say, e is not

locally Delaunay – a flip of the edge (q, s) to (p, r) is performed, making this new edge locally

Delaunay.

This procedure terminates when all edges are locally Delaunay. One can show that after

at most O(n2) flip operations, all edges are locally Delaunay, and the resulting triangulation

is a Delaunay triangulation.

���
�

���
�

���
�

���
�

p

s

r

q

Figure 1.4: Delaunay Flip operation



1.2. Preliminaries 11

Delaunay triangulations are not unique. Four cocircular points might introduce ambiguity

as can be seen in Figure 1.5; either (p, r) or (s, q) can be part of a Delaunay triangulation.

For the rest of this chapter, we will assume general position in a sense that no four points

are cocircular. So for the point sets we are considering, there is only one unique Delaunay

triangulation.

���
�

������������

�������
�

���
�

p

s

r

q

Figure 1.5: Cocircular points: ambiguous Delaunay triangulations

Remark The approach of first computing some triangulation of a point set S and then

making it Delaunay by a sequence of flips can take O(n2) time in the worst case. There are

other algorithms, though, which can compute the Delaunay triangulation of a point set in

O(n log n).

Let S be a set of points in the plane. The Voronoi diagram VD(S) of S is defined as

the set of points in the plane with more than one nearest neighbor in S. VD(S) consists of

Voronoi nodes (which have three or more nearest point in S) and Voronoi edges (which have

exactly two nearest points in S), which might be either segments, rays or lines (lines only

occur in the degenerate case that all points in S are collinear). Voronoi edges do not intersect

and only meet in Vornoi nodes. Each point p ∈ S has a Voronoi region VR(p) associated with

it. VR(p) might be unbounded but is delimited by Voronoi edges and Voronoi nodes. We call

VR(p) also a face of the Voronoi diagram. VR(p) is a convex polygon and corresponds to the

region which has p as closest point in S.

In Figure 1.3, the black edges show the Voronoi diagram of the point set. Voronoi diagrams

and Delaunay diagrams are closely related structures. In fact, each one of them can be easily

obtained from the other. For simplicity, we assume that the points in S are not collinear.

We show how to obtain the Voronoi diagram VD(S) from the Delaunay triangulation DT(S)

using the following duality transformation:

• The Voronoi nodes of VD(S) are the centers of the circumcircles of the Delaunay trian-

gles.

• Let e = (p, q) be an edge of the Delaunay Diagram:



12 Chapter 1. Combinatorial Curve Reconstruction

– If e is not an edge of the convex hull of S, then there is a Voronoi edge e′ between

the two Voronoi nodes created by the the two triangles which have e as one of their

sides.

– If e is an edge of the convex hull, the Voronoi diagram has the ray, which is part of

the bisector between p and q, starting at the Voronoi node defined by the triangle

containing e.

Thus we have a node in VD(S) for every triangle in DT(S), an edge in VD(S) for every

edge in DT(S), and a face in VD(S) for every node in DT(S). These are called the dual

node, dual edge, and dual face, respectively. The reader is encouraged to check the duality

transformation on the example in Figure 1.3, where both, the Voronoi diagram as well as the

Delaunay triangulation of the point set are shown.



1.3. Previous Work 13

1.3 Previous Work

Many algorithms have been proposed for the curve reconstruction problem. In the following

we will be only concerned with reconstruction algorithms that come with a guarantee, i.e.

under certain assumptions on Γ and the sample set S taken from Γ, they output the correct

reconstruction as defined in section 1.1.

The first algorithms like [dFdMG95], α-shapes [BB97, EKS83], β-skeleton [KR85], and

r-regular shapes [Att97] are known to work if the curve is closed, smooth and uniformly

sampled, i.e. the distance between two adjacent samples must be less than some constant,

which is determined by the most detailed area of the curve. A survey on these techniques

appears in [Ede98].

The case of non-uniformly sampled closed curves was first treated successfully by Amenta,

Bern and Eppstein [AB99] and subsequently improved algorithms such as [DK99, Gol99] ap-

peared. Open non-uniformly sampled curves were treated in [DMR99]. All these algorithms

follow a ”Delaunay Filtering” approach in a sense that they start from the Delaunay trian-

gulation of the point set and locally decide for each edge whether it should remain in the

reconstruction. A different approach was presented by Giesen [Gie99]. He showed that for a

sufficiently dense sampling, the TSP (travelling salesperson) tour is the correct reconstruction

for a single closed – not necessarily smooth – curve. Later Althaus and Mehlhorn [AM00]

extended this result by showing that in this special instance of the TSP problem, the TSP

tour can be computed in polynomial time using linear programming techniques.

We review some of the algorithms which work for non-uniform sample sets. Before we

sketch these algorithms, we introduce some notations for curves and prove some basic facts.

1.3.1 Terminology and Basic Properties of Curves

We will identify a curve by an embedding: A single open curve is given by an embedding

γ : [0, 1] → R2 and a single closed curve is given by an embedding γ : S2 → R2, where S2 is

the unit circle.

We call a single curve γ semi-regular or non-smooth, if at any point of the curve left and

right tangents exist and only at a finite number of points they disagree. If the tangents always

coincide, we say the curve is regular or smooth. A more rigorous definition of regularity can

be found in [Gie99].

In the following we will also be concerned with a collection of curves Γ, which is a finite

set of disjoint single semi-regular curves γ1, . . . , γk.

Figure 1.6 shows a closed smooth curve and an open non-smooth curve with disagreeing

left and right tangents at c. We call c a singularity or corner point of the curve, and α the

corner angle.

A sample set S of a collection of curves Γ is a finite set of points s ∈ Γ. Two points p1

and p2 are adjacent in Γ, if they both lie on some γi ∈ Γ, and there is a path from p1 to p2

on γi without visiting any sample s ∈ S.

As we have already mentioned, the correct reconstruction of a sample set S with respect

to some Γ is defined as the graph G(S, Γ) with with node set S and an edge between two



14 Chapter 1. Combinatorial Curve Reconstruction

cα

Figure 1.6: A closed smooth curve and an open non-smooth curve with corner angle α at c

vertices p and q if and only if p and q are adjacent in Γ.

1.3.2 Medial Axis and Local Feature Size

The medial axis M of a collection of Curves Γ is defined as the closure of all points having

more than one nearest neighbour in Γ. See Figure 1.7 for an example of a curve and its medial

axis.

Figure 1.7: The light curves are the medial axis of the heavy curves. Courtesy of N. Amenta,

M. Bern, and D. Eppstein.

Amenta, Bern and Eppstein [ABE98] use the medial axis to define a very elegant, non-

uniform sampling condition. The non-uniformity comes from the fact, that in detailed areas

of Γ, the medial axis is close to Γ, whereas in less detailed areas, the medial axis is far away

from Γ.

They define the local feature size lfs(p) of a point p ∈ Γ as the distance of p to the medial

axis of Γ. For any ε > 0, a sample set S is called a ε-sample – or ε-sampled –, if for every

p ∈ Γ there is a sample s ∈ S with dist(s, p) ≤ εlfs(p).

Remark Note that if there is a corner in a curve γ, the medial axis actually touches the curve

in the corner point. Therefore, the local feature size near the corner point gets arbitrarily

small, and no finite ε-sample exists for this γ. But as for now we will only be concerned with



1.3. Previous Work 15

collections of smooth curves, this case never happens, and a finite ε-sample always exists.

For the further discussion we need the notion of a curve Voronoi vertex between two

adjacent samples p and q which is defined as the intersection of the curve between p and

q and the bisector of p and q (assuming that from every closed curve γ ∈ Γ at least three

samples were taken). We now summarize a few relations between the medial axis, the local

feature size and the correct reconstruction. The first Lemma is a simple application of the

triangle-inequality.

Lemma 1 lfs(p) ≤ lfs(q) + dist(p, q) for all p, q ∈ γ.

As direct consequence of this Lemma we can bound the length of a segment adjacent to

some sample point p ∈ Γ in terms of the local feature size in p.

Lemma 2 The length of a segment pq of the polygonal reconstruction of ε-sampled collection

of smooth curves Γ is at most (2ε/(1− ε))lfs(p).

Proof. Let r be the curve Voronoi vertex of Γ between p and q. Then dist(p, r) ≤ εlfs(r)

and dist(p, r) ≥ dist(p, q)/2. By Lemma 1 we have lfs(r) ≤ dist(p, r) + lfs(p). So dist(p, r) ≤
ε(dist(p, r) + lfs(p)). Algebraic transformations lead to dist(p, r) ≤ ε/(1 − ε)lfs(p). Thus

dist(p, q) ≤ 2ε/(1 − ε)lfs(p).

The following two Lemmas make the intuition precise that in detailed areas of the curve,

the medial axis is close.

Lemma 3 Let B be a ball so that B ∩ Γ is not connected. Then B contains a medial axis

point.

Proof. For a point x let x∗ be a point on Γ with minimal distance to x. Let p and q be

two points of Γ in different connected components with respect to B. Assume we are moving

a point x from p to the center of B and then to q. In the beginning, the nearest point of Γ

is p and at the end, the nearest point of Γ is q. Since dist(x, x∗) is continuous, either the x∗

remains in the component of p or there are at least two points on Γ with distance dist(x, x∗)
to x. This x is a medial axis point of Γ.

Lemma 4 Let S be an ε-sample set from a collection of closed smooth curves Γ, ε ≤ 1, and

c be the curve Voronoi vertex between two adjacent samples p and q. Then the open disk D

centered at c touching p and q is empty of samples.

Proof. According to Lemma 3, D ∩ Γ consists of one component only, otherwise D would

contain a point of the medial axis. p and q are the points, where this component enters and

leaves D without any samples between p and q on Γ. This proves the Lemma.

The next Lemma exhibits the connection between the Voronoi diagram and the medial

axis, namely the property that the Voronoi vertices approximate the medial axis. One can



16 Chapter 1. Combinatorial Curve Reconstruction

even show that if the sampling density goes to infinity, the Voronoi vertices converge to the

medial axis (this is only true in two dimensions, in three dimensions, Voronoi vertices can be

arbitrarily far away from the medial axis).

Lemma 5 Let S be some sample set from a collection of closed smooth curves Γ, D the

maximal closed disk centered at a Voronoi vertex of VD(S) which contains no samples in its

interior. Then D must contain a medial axis point.

Proof. Assume first that in the neighbourhood of one of the samples s ∈ S on the boundary

of D, Γ − s is contained completely in D. Then either D ∩ Γ is entirely contained in the

boundary of D and the center of D is a point of the medial axis, or shrinking D around s will

produce a smaller disk Dρ, contained in D, with Dρ ∩ Γ consisting of at least two connected

components. By Lemma 3, Dρ contains a point of the medial axis.

If there is no such s, then the intersection of F with B already consists of at least two

connected components, and B contains a point of the medial axis by Lemma 3.

1.3.3 The Algorithms of Amenta, Bern, and Eppstein

After defining the concept of local feature size and ε-sample, Amenta, Bern, and Eppstein

in [ABE98] present two algorithms – CRUST and β-CRUST – which they prove to correctly

reconstruct a collection of closed smooth curves Γ if the sample set S is an ε-sample for

ε < 0.252 in case of the CRUST And ε < 0.297 in case of the β-CRUST.

The β-CRUST Algorithm

We will first present the β-CRUST, an algorithm which was known before to be correct for

uniform sample sets. It works as follows:

1. Compute the Delaunay Triangulation T of S.

2. Keep an edge e = (p, q) of T iff the two closed balls of radius β · |e|/2 touching p and q

– also called β-balls – are empty of other samples.

See Figure 1.8 for the β-balls of an edge (p, q).

In the following we will prove that for β = 2, β-CRUST computes the correct reconstruc-

tion if S is a 1/3-sample from Γ.

Lemma 6 Let γ be the angle between an edge e = (p, q) and the tangents of its β-balls in p

or q. Then γ = arcsin 1
β .

Proof. Consider the edge e and and one of its β-balls as in the left picture of Figure 1.9.

We have cosα = cos(π
2 − γ) = |e|/2

β·|e|/2 = 1/β. Hence γ = arcsin 1
β .



1.3. Previous Work 17

p q p q p q

Figure 1.8: β-balls for an edge (p, q) and β = 1, 3/2, 2

.

Lemma 7 Let o, p, q be three points in the plane such that both edges e1 = (o, p) and e2 =

(p, q) have empty β-balls. Then we have that the angle between e1 and e2 is larger than

π − 2 · arcsin 1
β .

Proof. Consider the ball B of radius r touching o,p and q as in the right picture of Figure

1.9. Clearly, r ≥ β · |e1|/2 and r ≥ β · |e2|/2, as both e1 and e2 have empty β-balls. Hence we

know that for i = 1, 2: γi ≤ arcsin 1
β and therefore α = π − γ1 − γ2 ≥ π − 2 · arcsin 1

β .

Lemma 8 If S is ε-sampled from a collection Γ of smooth closed curves, then the β-CRUST

contains all edges of the correct reconstruction for ε ≤ 1/(2β − 1) and ε ≤ cos arcsin 1
β .

Proof. Let us consider an edge e = (p, q) in the correct reconstruction G(S, Γ).

Assume now that an edge e of the correct reconstruction is not part of the output of the

β-CRUST, i.e. at least one of the two balls B1, B2 centered at b1,b2 of radius r = β · |e|/2

touching p and q is not empty of other samples. Let c be the curve Voronoi vertex between p

and q, Bc the ball centered at c touching p and q. According to Lemma 4 Bc has no samples

in its interior.

We will distinguish two cases. First assume that c lies on the segment b1b2, as in the

left picture of Figure 1.10. We show that when moving the center c towards either b1 or b2,

no other sample can enter the ball Bc (always centered at c and touching p and q) hence

contradicting the assumption that the interior of B1 ∪ B2 is non-empty. Assume otherwise,

i.e. at some point, before reaching either b1 or b2, Bc touches a third sample x with a radius

of r′. According to Lemma 5 we know that inside Bc there must be a medial axis point.

But as c is still between b1 and b2, r′ < β · |e|/2, and hence lfs(p) < 2 · r′ < β · |e|. On the



18 Chapter 1. Combinatorial Curve Reconstruction

r

p
α
γ q

p

γ1

α
γ2

q

ro

Figure 1.9: Properties of edges and their β-balls.

.

b1

c

r

p q

α

r

α′

d

b1

r c
r′

q

b2

r

p

Figure 1.10: Emptiness of β-balls

other hand, according to Lemma 2 we have |e| ≤ 2ε
1−ε lfs(p), which yields a contradiction for

ε ≤ 1
2β−1 .

Now assume w.l.o.g. that c is on the bisector of p and q above b1, as in the right picture

of Figure 1.10. But then we know that there must be a medial axis point inside the ball

touching p,q and c (as we could simply place a sample at c), i.e. the local feature size of c can

be at most the diameter d of this ball Bc. Let α be the angle between the bisector of p and q

and pc. As c lies above b1, we know that α < α = arcsin 1
β . and hence d = dist(p, c)/ cosα <

dist(p, c)/ cosarcsin 1
β . If S is really ε-sampled, d(p, c) < ε · d or d > d(p, c)/ε which gives a

contradiction for ε < cos arcsin 1
β .

Lemma 9 For β ≥ 2, every sample has at most two edges in the β-CRUST.

Proof. The angle between two edges in the β-CRUST is at least π − 2 · arcsin 1
β according

to Lemma 7. For β ≥ 2, this angle is larger than 2 · π/3.



1.3. Previous Work 19

So we have shown that in the output of β-CRUST, each edge of the correct reconstruction

has survived, and each sample has at most two adjacent edges. As each sample has also

two edges in the correct reconstruction, those have to be identical and we get the following

corollary:

Corollary 1 For β = 2, the β-CRUST computes the correct reconstruction G(S, Γ) of a

ε-sampled set S with respect to a collection of closed smooth curves Γ if ε ≤ 1
3 .

The CRUST Algorithm

The second algorithm – CRUST – which Amenta, Bern, and Eppstein present in their paper

[ABE98] is slightly different. In some sense it reflects more directly the property of the

sampling condition that the medial axis should be far away from an edge relative to its

length. They prove that CRUST correctly reconstructs a collection of closed smooth curves

Γ if the sample set S is an ε-sample for ε < 0.252. It works as follows:

1. Compute the Voronoi diagram V of the sample points.

2. Compute the Delaunay Triangulation T of V ∪ S.

3. Select all edges of T which connect two sample points.

Intuitively, their algorithm makes use of the fact that for a sufficiently dense sample set

S, i.e. for a sufficiently small ε, the vertices of the Voronoi diagram of S approximate the

medial axis (see Lemma 5). They only keep those edges of the Delaunay triangulation of S,

for which there exists a ball touching the endpoints and empty both of samples and Voronoi

vertices. It turns out that that these edges indeed are the correct reconstruction of S with

respect to Γ.

For sake of simplicity we only prove the correctness for a slightly weaker bound of ε = 0.23.

The proof again proceeds in two steps, we first prove that all edges of the correct reconstruction

are selected and then that no edge which is not part of the correct reconstruction is selected.

Lemma 10 If S is an 1/3–sample of a collection smooth closed curves Γ, the CRUST algo-

rithm selects all edges of the correct reconstruction.

Proof. We prove that for ε ≤ 1/3, each edge e = (p, q) of the correct reconstruction has a

ball touching p and q which is empty of Voronoi vertices of the Voronoi diagram of S.

Consider the curve Voronoi vertex c between p and q as in Figure 1.11. We claim that

this ball is empty of Voronoi vertices. Assume otherwise, i.e. there exists a Voronoi vertex

x inside the curve Voronoi disc Dc centered at c. We know that Dc has radius r < ε · lfs(c),
therefore d(p, x) < 2 · ε · lfs(c), i.e. the maximal empty ball Dx around x has radius at most

R = 2 · ε · lfs(c). According to Lemma 5, there must be medial axis point inside Dx. So we

have lfs(c) < r + R < 3 · ε · lfs(c), which gives a contradiction for ε ≤ 1/3.



20 Chapter 1. Combinatorial Curve Reconstruction

x

r

R

q

c

p

Figure 1.11: Construction of a ball empty of Voronoi vertices

Lemma 11 If S is a 0.23–sample of a smooth closed curve γ, the CRUST algorithm returns

no edges that are not in the correct reconstruction.

Proof. Assume there exists an edge st which is not part of the correct reconstruction, but

which has ball B touching s and t empty both of other samples and Voronoi vertices as in

Figure 1.12. Let s1, s2 be the neighbours of s in the correct reconstruction.

δ1

α
δ2

s1 s2

v1 v2

s

t

θ

Figure 1.12: There is no ball empty of samples and Voronoi vertices!

Consider the intersection points v1 and v2 of B with the perpendicular bisector between

s and t. Observe that the balls centered at v1 and v2 touching s and t are empty of samples,

as B was empty of Voronoi vertices.

We will lower bound the angles around s. According to Lemma 7, θ > π − 2 · arcsin 1/β.

Furthermore, α = π/2 as s lies on the circle with equator v1v2. It remains to give lower

bounds for δ1 and δ2. First observe that the edges s1s and ss2 have empty β-balls on both

sides (for which β is determined by the choice of ε). Look at Figure 1.13. s1s has two β-balls

centered at b1 and b2. Therefore we know that b1b2 is part of the boundary of the Voronoi



1.3. Previous Work 21

cell of s. Furthermore d(v1, s1) ≥ d(v1, s) and hence we know that v1 lies to the right of

the bisector between s1 and s. As Voronoi cells are convex, v1 cannot lie inside the triangle

∆smb1. So γ is a lower bound for δ1, i.e. δi ≥ γ = π/2− arcsin 1/β according to Lemma 6.

δ1

γ

v1

s1 s

b2

b1

m

Figure 1.13: β-balls imply large δi!

So summing up the angles around s we have

α + θ + δ1 + δ2 > π − 2 · arcsin 1/β + π/2 + 2 · (π/2− arcsin 1/β)

= 2 · π + π/2− 4 · arcsin 1/β > 2 · π

for β > 2.62 or equivalently (Lemma 8) ε < 0.23.

1.3.4 Variations on the CRUST algorithm

Following the work of Amenta, Bern, and Eppstein, other algorithms were presented which

also use the framework of medial axis and local feature size.

Gold and Snoeyink [Gol99] observed that it suffices to select each Delaunay edge for which

there exists a touching ball empty of samples and which does not contain the endpoints of

its dual Voronoi edge. Note that our proof for the CRUST algorithm also applies to the

Gold-Snoeyink algorithm. Gold and Snoeyink also provided an improved analysis showing

that their algorithm works for ε ≈ 0.42.

An algorithm rather different from the ones mentioned so far was given by Dey and Kumar

in [DK99]. It is basically a ’connect-to-the-nearest-neighbor’ approach. What is interesting

about it, is the fact that they could prove its correctness in the framework of the local feature

size sampling condition. It works as follows:

1. For each sample s insert an edge to its nearest neighbour n(p).



22 Chapter 1. Combinatorial Curve Reconstruction

2. Each sample s which has only one adjacent edge to n(s), picks the nearest neighbor

n′(s) which forms an angle of more than π/2 with sn(s).

They show that this simple algorithm computes the correct reconstruction for a collection

of smooth closed curves if ε ≤ 1/3. Althaus in [Alt01] showed that for a slightly modified

version of the algorithm (picking n(s) in a smaller cone), the algorithm computes the correct

reconstruction for ε ≤ 0.5.

1.3.5 The Algorithm of Dey, Mehlhorn, and Ramos

The first algorithm that comes with a guaranteee for a collection of open and closed curves was

given by Dey, Mehlhorn, and Ramos in [DMR99]. Here we will restrict to a quick summary

of their result and discuss the problems which arise when allowing open curves.

When allowing open curves it is not possible for an algorithm to compute exactly the

correct reconstruction G(S, Γ) without assuming any condition additional to the local feature

size sampling condition. Look at the example in Figure 1.14. Assume we have a valid sample

set S for the open circular arc from p to q in the left picture. Unfortunately, this sample set

S is also valid for the circle in the right picture, if we use the sampling condition with respect

to the local feature size. So it is impossible for an algorithm to know whether to connect p

and q or not unless it knows the original collection of Curves Γ where S is sampled from.

p p qq

Figure 1.14: Connect p and q or not ?

So what kind of guarantee can we expect from an algorithm which claims to reconstruct

open and closed curves ? First, we can expect that the output of the algorithm at least

contains all edges which are in the correct reconstruction. But as we have seen, we cannot

guarantee that there are no additional edges in the output. So the idea is to make sure that

each additional edge can be justified. How do we do that ? We only return edges for which

there exists a collection of open and closed curves Γ′, also called witness curves, such that S

is a valid sample set (with a slightly weakened sampling condition) for Γ′ and the output is

the correct reconstruction G(S, Γ′) of S with respect to Γ′. Note that in this case we have

G(S, Γ′) ⊇ G(S, Γ).

As mentioned, the sampling condition for which S is a valid sample set for Γ′ is weaker

than the sampling condition which guarantees that all edges of G(S, Γ) are part of G(S, Γ′).
So the algorithm of Dey, Mehlhorn, and Ramos has a parameter ρ to adjust the required and

the guaranteed sampling density. The exact result is stated as follows:



1.3. Previous Work 23

Theorem 1 (Dey, Mehlhorn, Ramos (99)) Let S be a set of points in the plane and

ρ < 1. The reconstruction G and the curve Γ′ returned by the algorithm of Dey, Mehlhorn,

and Ramos with parameter ρ satisfy the following two properties:

• If ρ < 1/2 and S is a (ρ/8)–sample from a collection of open and closed curves Γ then

the correct reconstruction G(S, Γ) of S w.r.t. Γ is a subset of G.

• Let c = 13.35. If ρ < 1/8 then S is a (cρ)–sample from Γ′ and G = G(S, Γ′), i.e. G is

the polygonal reconstruction of S w.r.t. Γ′.

As the algorithm has to justify each edge of the output, it has to be more strict in when

pruning edges. While the CRUST variants required only the existence of one touching ball

empty both of Voronoi vertices and other samples for an edge e = (p, q) to ’survive’, the

algorithm by Dey, Mehlhorn, and Ramos has to make sure that in the close neighbourhood

of e there are no Voronoi vertices at all (since a close Voronoi vertex implies a point of the

medial axis nearby according to Lemma 5) and no endpoints of the curve (as this also induces

a nearby point of the medial axis with arguments similar to the ones used in Lemma 3).

More precisely, their algorithm removes edges until for each edge (p, q), the ball of radius

dist(p, q)/ρ centered at the midpoint of pq is empty of Voronoi vertices of S and the ball

centered at the midpoint of (p, q) with radius dist(p, q)/(4ρ) contains no node with degree

less than 2.

The proof techniques to show that the edges of the correct reconstruction have these

properties are very similar to the ones we have seen in this section. The last step of their

algorithm is the construction the collection of witness curves Γ′.

1.3.6 The TSP-based algorithms by Giessen and Althaus/Mehlhorn

So far, we have always assumed the existence of a valid sample set with respect to the local

feature size criterion. But as briefly mentioned, this framework does not work if Γ contains

non-smooth curves, as in this case, the medial axis actually passes through the points of

non-smoothness – the corner points, demanding an infinite sampling density near the corners.

Giesen in [Gie99] obtained the first result for one closed non-smooth curve Γ 1. He showed

that for a sufficiently dense sample set from Γ, the Travelling Salesman tour of the sample

set S is the correct reconstruction of S w.r.t. Γ.

Later Althaus [Alt01] and Althaus/Mehlhorn [AM00] improved this result in several ways:

• they provide a non-uniform sampling condition similar to the one using the concept of

local feature size, for which the travelling salesman tour is the correct reconstruction

• they show that the travelling salesman tour can also be used to reconstruct one open

curve with endpoints or several closed curves

• they show that this special instance of the travelling salesman problem can be solved in

polynomial time if S is a valid sample set

1Actually Giesen excluded the case that in a corner left and right tangent make an angle of π.



24 Chapter 1. Combinatorial Curve Reconstruction

Their algorithm is based on techniques from linear programming, so we will not go into

further details. We only remark that the general case where the task is to reconstruct a

collection of curves with corners and endpoints was still not solved.



1.4. Sampling Conditions 25

1.4 Sampling Conditions

The problem of curve reconstruction as stated in the introduction only postulates that we

connect all samples which are adjacent on the original curve. The sampling condition with

respect to the medial axis does more, though. It also makes sure that the correct reconstruc-

tion does not miss a single feature or ’wiggle’ of the original curve. So it even guarantees that

we get a faithful approximation to the curve. The question is whether we really want that.

See for example Figure 1.15.

Figure 1.15: Wiggling Curve sampled according to the local feature size

If we apply the medial axis sampling condition, we are forced to sample this curve very

densely as the ’wiggling’ implies a very small local feature size for any point of the curve, and

the correct reconstruction of the sample set is a pretty good approximation of the original

curve not missing a single ’wiggle’. But if the only thing that we want is connecting the right

samples (as stated in our definition of the curve reconstruction problem), a far less dense

sampling should also do, like in Figure 1.16.

Figure 1.16: Wiggling Curve with a sparser sampling

Of course, now the correct reconstruction does not approximate the curve as with the

higher sampling density, but nevertheless, a correct reconstruction should be possible as well.

So what we propose is the following: The decision of whether a given sample set S from

a collection of curves Γ is valid should not be stated with respect to the original curve, but

rather with respect to the correct reconstruction G(S, Γ) of this sample set. Such a sampling

condition would allow to ’skip’ details of a curve if this does not affect the possibility to cor-

rectly reconstruct the curve (in the sense of our original definition of the curve reconstruction

problem).

As mentioned in the introduction, one problem with a sampling condition with respect to

the medial axis is the fact that for curves with corners, the medial axis passes through the

corners, hence requiring a infinitely dense sampling near corners. This can be fixed by relaxing

the sampling condition within controlled areas around the corners as in [Alt01, Gie99]. We

will use the same idea for our sampling condition in the next section.



26 Chapter 1. Combinatorial Curve Reconstruction

We believe that a sampling condition expressed with respect to the correct reconstruction

G(S, Γ) is more sensible than a sampling condition expressed directly with respect to the

curve (and the medial axis). However, since the medial axis sampling condition has become

quite standard in recent work on curve reconstruction, we will also show that our sampling

condition is implied by the medial axis condition, i.e. all sample sets of a curve that are

valid with respect to some medial axis sampling condition are also valid with respect to our

sampling condition, i.e. our sampling condition is strictly weaker.

1.4.1 Our Sampling Condition

Our sampling condition describes how the correct reconstruction G(S, Γ) of a sample set S

with respect to a collection Γ of open and closed curves (possibly with corners) must look like

to guarantee certain properties of the output of our algorithm.

Let us first consider a collection of open and closed curves without corners. Our sampling

condition is as follows:

Sampling Condition for Smooth Areas: A sample set S for a collection of open and

closed smooth curves Γ is valid, if for every edge e = (p, q) of the correct reconstruction

G(S, Γ) the following holds (also see Figure 1.17):

1. the two closed balls B1, B2 of radius r1 = β · |e|/2 touching p and q are empty of

other samples

2. all samples within the ball B3 of radius r3 = fdiam · |e| centered at the midpoint of

e are connected to e in a chain that makes a total turn of less than θball < π/2 on

each side of e. We call B3 the diametral ball of e, though it is not ’diametral’ in

the common sense.

Basically, part one of our sampling condition resembles the properties of the β-CRUST,

whereas part two expresses the additional constraint that in the neighbourhood of an edge

(where the size of the neighbourhood is relative to the length of the edge), the correct recon-

struction is a relatively straight polygonal chain. This also resembles the condition checked

in [DMR99].

As with the medial axis sampling condition, the problems arise near corners. To solve

them, we first have to identify areas near a corner and then define a weaker sampling condition

for edges of the correct reconstruction which are completely contained in such a corner region.

In the following we need the concept of a cone of slope. For a curve segment s the cone of

slope of s is defined as the set of all lines through the origin which have the same slope as the

tangent at some point in the interior of s, see Figure 1.18.

Now we can identify the corner areas:

Identification of corner areas: For each corner grow a ball around the corner point as

long as:

1. the ball intersects the curves in Γ in two smooth curve segments, which we refer

to as the legs of the corner, each with an endpoint in the corner and the other on

the boundary of the ball



1.4. Sampling Conditions 27

r1

B1

r3 r1

e

B2

B3

Figure 1.17: Sampling Condition for smooth areas

The sampling condition in B3 implies that the samples left of e must be connected in decreas-

ing order of their x-coordinates.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

tmax

tmin

tmax

tmin

s

Figure 1.18: Cone of slope for a curve segment s.

2. on each leg of the corner the tangent varies by at most θslope

3. the cones of slope for each leg do not intersect

We call the maximal ball obtained by this procedure the unshrunken corner ball of this

corner. It is then shrunken by a factor of fshrink to obtain the shrunken corner ball.

The area within the shrunken ball defines a corner area.

Intuitively, part one and two make sure that the curve segments ending in a corner are

relatively flat, part three excludes cases like in Figure 1.19, whereas the shrinking process

ensures that corner areas are well separated from each other and other detailed areas of Γ.

For a shrunken or unshrunken corner ball, the two legs ending at the corner partition the

corner ball into two regions. We call the region which contains the angle at the corner point

less than π the inside of the corner, the other region is called the outside of the corner.

Now we have to state a weaker sampling condition for these corner areas. First we drop



28 Chapter 1. Combinatorial Curve Reconstruction

c
c

Figure 1.19: Excluded cases when growing the corner ball.

the second part of the sampling condition for smooth areas of the curve, and allow samples

on the other corner leg in the β-ball touching an edge from ’inside’. Additionally, we add a

condition that makes sure that we can somehow locally decide to which leg a sample belongs

to. Otherwise it seems difficult to decide locally whether there is a corner or not as it can be

seen in Figure 1.20 (unless, we make further assumptions, e.g. that there are no open curves).

(b)

(a)

’Smooth with 2 endpoints’

Corner

Figure 1.20: How to connect these samples ?

So our sampling condition for edges of the correct reconstruction completely inside a corner

region is stated as follows:

Sampling Condition for Corner Areas: Let e = (p, q) be an edge of the correct recon-

struction completely inside a corner region, then we postulate (also see Figure 1.21):

1. the closed ball B1 of radius β · |e|/2 touching p and q from the ’outside’ of the

corner is empty of other samples

2. the closed ball B2 of radius β · |e|/2 touching p and q from the ’inside’ of the corner

may only contain other samples of the opposite leg ending in that corner (with

the exception of the edge connecting the last two samples of each leg, whose inner

β-ball may contain samples of both legs) which are inside the unshrunken corner

ball

3. the turn between e and its adjacent edges in the correct reconstruction must be less

than θturn (again with the exception of the edge connecting the last two samples



1.4. Sampling Conditions 29

of each leg, but including the ’virtual’ edges connecting those last two samples to

the actual corner point)

4. the closed ball b1 of radius βlow · |e|/2 touching p and q from the ’outside’ of the

corner is empty of other samples

Intuitively, parts one, two, and three of this sampling condition ensure that the chains of

the correct reconstruction that correspond to the legs in a corner area are rather straight,

whereas part four makes sure that edges of different legs are well separated from each other

unlike in Figure 1.20,(b).

One may find such a sampling condition rather artificial, and in fact, it is possible to

formulate a more ”natural condition”, if we make the amount of ”wiggling” (expressed in

the angles θturn and θslope) dependent on the actual angle at the corner point like it is done

in [AM00, Gie99]. The reason why we did not follow this approach is the following: Our

algorithm at the end can only output edges which it can justify by presenting the appropriate

witness curve (unlike the TSP-based reconstructions of [AM00, Gie99], as they do not treat

the general case with several open curves). If we had set θturn and θslope to a fraction of

the actual corner angle, this would mean for small corner angles that the incoming legs must

be basically straight lines, which is not very likely to occur in practice. So in theory the

algorithm would reconstruct corners, but in practice it would fail completely. As it turns out,

with our choice of sampling condition, many corners are detected in practice.

r1
B1

b1
r2

e

r1

B2

Figure 1.21: Sampling Condition for corner areas

We can now summarize our sampling condition.

General Sampling Condition: A sampling S for a collection of open and closed curves Γ



30 Chapter 1. Combinatorial Curve Reconstruction

(possibly with corners) is valid if for any edge e ∈ G(S, Γ)

• Sampling Condition (smooth area) holds if e is (at least partly) outside a corner

region

• Sampling Condition (corner area) holds if e is completely inside a corner region

• Any smooth component of the correct reconstruction consists of at least 3 samples

Figure 1.22 illustrates the unshrunken and shrunken corner balls in a collection of curves

with corners and endpoints. Inside the solid circles, the sampling condition for corner areas

must hold.

Figure 1.22: Corner balls for a collection of curves with corners and endpoints

Before we proceed, we list some notation and conventions, and make some basic observa-

tions that will be used throughout the paper.

Notation/Conventions

corner sample: We call the last samples of each leg corner samples. If there is a sample

close to the actual corner, we may say that there is only one corner sample as this

sample fits into both legs.

corner spanning edge: We call the edge connecting the last samples of each leg corner

spanning edge.



1.4. Sampling Conditions 31

smooth/corner area: We call the area in the shrunken corner ball corner area, the rest is

called smooth area.

smooth/corner edge: We call an edge which lies completely inside a corner area a corner

edge, the other edges are smooth edges

red/blue edge: We say an edge e is red, if it has two empty β-balls; we say e is blue, if it is

not red, but has empty β- and βlow-balls on one side. (Remark: clearly all smooth edges

must be red, but some of the corner edges and even some edges that do not belong to

the correct reconstruction might also be red.)

In the figures, we draw a small normal arrow at the midpoint of an edge to indicate that

it has β- and βlow-balls on that side. So every red edge has two such arrows, whereas

every blue edge has only one arrow, as can be seen in Figures 1.17 and 1.21.

θbeta, θlow: To simplify notation we write θbeta for arcsin 1
β and θlow for arcsin 1

βlow

Observations

Intersection of βlow-balls: Observe that for any blue or red edge, the intersection of the

two touching βlow-balls is empty of samples, for 1 ≤ βlow < β.

Monotonicity of corner legs: Observe that from any point on one leg of a corner, the

Euclidean distance to the other points on that leg grows when moving away from that

point on the leg, if θslope < 900.

Red chains: Observe that for β ≥
√

2 there cannot be a sample which has more than

three adjacent red edges, as the angle between two adjacent edges must be larger than

π − 2 · θbeta according to Lemma 7. For β ≥ 2, there can be at most 2 adjacent red

edges, i.e. the β-CRUST outputs a collection of chains.

Turn of smooth edges: We also call the turn angle between to adjacent edges the turn of

these edges. For the turn between smooth edges we can give even a stronger bound

than the one implied by the edges being red. Due to the sampling condition, we know

that if fdiam ≥ 3/2, the turn between two smooth edges is at most θball, or in other

words, the angle between two adjacent smooth edges is at least π − θball.

1.4.2 Medial axis sampling condition implies our sampling condition

In the following we will show that our sampling condition is weaker than one possible sam-

pling condition based on the local feature size criterion, i.e. every collection of curves Γ

which satisfies this sampling condition w.r.t. the local feature size also satisfies our sampling

condition.

First we identify the corner areas in the same way as for our sampling condition but with

θslope = θturn. We then define a new local feature size lfs′(p) for any point p on the curve as

follows:



32 Chapter 1. Combinatorial Curve Reconstruction

• if p is not in any shrunken corner ball, lfs′(p) = lfs(p), where lfs(p) denotes the distance

to the medial axis of Γ

• if p is contained in a shrunken corner ball, we set lfs′(p) to the distance from p to the

medial axis of the collection of curves obtained by removing the leg not containing p

within the corner ball 2.

The sampling condition is then stated as follows:

Sampling Condition w.r.t. the medial axis :

• for every point p on the curves there must be a sample within distance ε · lfs′(p)

• for any edge e = (p, q) of the correct reconstruction inside the shrunken corner

ball, the angle determined by e at some other sample t inside the corner ball is less

than θangle = π − θlow

• every component of the collection of curves must contain at least 3 samples

Before we can prove that this sampling condition w.r.t. the local feature size is stronger

than our sampling condition, we need to prove a small auxiliary lemma.

Lemma 12 Let s, t, u be three points in R2, π/2 ≤ 6 stu = α ≤ α∗. Then we have for the

radius r of the circumcircle through s, t, u: r ≤ d(s,u)
2·cos(α∗/2).

Proof. Look at the picture in Figure 1.23. When moving t on the circular arc between

s and u, the angle at t remains constant according to Thales’ theorem. So it suffices to

consider the case where t lies on the bisectore between s and u. But then it is easy to see

that cos(α/2) = d(t,u)
2·r or r = d(t,u)

2·cos(α/2). But as he have α ≥ π/2, clearly d(t, u) < d(s, u) and

hence r ≤ d(s,u)
2·cos(α∗/2) .

t

us

α

t
′

r

Figure 1.23: An application of Thales’ theorem.

2We define the local feature size of the corner point as the minimum distance to either medial axis



1.4. Sampling Conditions 33

Lemma 13 Any sample set S valid with respect to the medial axis sampling condition is valid

with respect to our sampling condition for

ε ≤ MIN(
1

4fdiam + 2fdiam+1
sin(θball/4) + 1

,
1

2β − 1
)

Proof. We start with the sampling condition for smooth areas.

1. According to Lemma 8 every smooth edge has empty β-balls for ε ≤ 1/(2β − 1).

2. Now assume that although S is an ε-sample, the chain left or right of e connecting the

samples inside the ball B3 of radius fdiam · |e| centered at the midpoint of e makes a

turn of more than θball. We will show in the following that this implies the existence of

three samples s, t, u in the diametral ball which make an angle of at most π − θball/2

at t. According to Lemma 12 this implies a Voronoi vertex at distance less than dv =

fdiam · |e|+ (fdiam+1/2)·|e|
(2·sin(θball/4)) from p or q. But this Voronoi vertex implies that for p or q we

have a local feature size less than 2 · dv (Lemma 5). Hence for For ε ≤ 1
4· dv

|e|
+1

we get a

contradiction to Lemma 2.

Assume w.l.o.g. in the chain right of e there exist two edges e1 = (o, p) and e2 = (q, r)

(one of them might be e itself) such that the angle α at the intersection x of the

supporting lines of e1 and e2 is larger than θball. Let e1, e2 be such that α is maximized.

If one of the angles 6 opq, 6 opr, 6 oqr, 6 pqr is smaller than π − θball/2 we are already

done. Otherwise, e1 and e2 lie mutually in their cones with opening angle 2 · θball as in

Figure 1.24. Look at the triangle ∆pxq. The angle at x inside the triangle is π−α, but

r

q
po

x
α

Figure 1.24: Finding s, t, u

as the sum of the angles in triangle is π, either the angle at p or the angle at q must be

larger than α/2. As we have α > θball, we obtain three samples – either o, p, q or p, q, r

which make an angle smaller than π − θball/2.

Now we have a look at the sampling condition for corner areas.

1. According to Lemma 8, there exist empty β-balls touching edges of the corner from

’outside’.



34 Chapter 1. Combinatorial Curve Reconstruction

2. When removing the other leg, the edges of the corner have empty β-balls on both sides,

so when adding the other leg again, only samples from that leg can enter the β-ball

touching from ’inside’.

3. Follows from the fact that we have identified the corner areas with θslope = θturn.

4. Assume an edge e = (p, q) has no empty βlow-ball touching from ’outside’. Assume that

’inside’ the corner is below e. Then it is clear that there can be no samples inside the

βlow-ball above e as e has an empty β-ball touching from outside; so we concentrate on

the part below e. But then notice that according to Thales’ theorem for all points x on

the boundary of the βlow-ball the angle at 6 pxq is exactly π − arcsin 1/βlow. For points

inside the βlow-ball this angle is larger, a contradiction to the sampling condition.



1.5. The algorithm 35

1.5 The algorithm

The main idea of our algorithm is that we first detect the edges that can be justified as being

’smooth’. Then starting from these edges we explore potential corner areas, possibly removing

some of the edges previously discovered as smooth.

The following is a high-level description of our algorithm:

1. Compute the Delaunay triangulation DT (S).

2. Extract the β-CRUST from DT (S) and colour all edges of the β-CRUST red, which

belong to red chains of length at least 3. Of the remaining edges colour those blue that

have at least on one side empty β- and βlow-balls.

3. Let T be the set of samples which are adjacent to exactly one red edge

4. As long as there are elements in T , remove one of them and start exploration of a

potential corner. If successful, add this corner to the set M of detected corners.

5. Remove interfering corners from M

6. Remove some of the red edges if they interfere with the corners in M to get H(S).

7. Construct a collection of witness curves Γ′ from H(S) by adding small ’caps’ and corners

points

Of course, the most interesting part is how to actually explore potential corners. From

now on, we assume that a corner is represented as two sequences corresponding to the upper

and lower leg ending in that corner.

1.5.1 Exploring a corner

The idea of the corner exploration is that we consider a sample s ∈ T as starting point of a

potential corner. s is adjacent to exactly one red edge es, and we first try to continue this red

edge with a blue edge. As we do not know the orientation of es, i.e. we do not know where

the ’outside’ of the potential corner is, we simply try both possibilities.

For this step and the steps to follow, a crucial part is how to determine the next edge in

a leg. This is done using the following procedure (also look at Figure 1.25):

s

s
′ e

′

θturn

θturn

e
si

el si−1

Figure 1.25: Picking the next edge of the potential corner



36 Chapter 1. Combinatorial Curve Reconstruction

FindNextEdge(si, si−1): Let el = (si, si−1) be the last edge detected in one leg of a corner.

Assume we are also given an orientation, i.e. we know where the ’outside’ of the corner

is (which implies that there are empty β- and βlow-balls on that side).

Let M be the set of all blue or red edges e′ = (s′, si) which make a turn of less than

θturn with el and which have empty βlow- and β-balls on the same side as the orientation

of el.

As next edge e = (s, si), pick the shortest among the edges in M .

Having found this adjacent blue edge eb, we use the fact that this blue edge builds a

Delaunay triangle with a sample o on the opposite leg (follows from the sampling condition). If

o has no adjacent red edge, we abort the exploration, otherwise we pick one of the (potentially

two) red edges adjacent to o – let’s call it eo which does not contain a sample already part of

es or eb. Then we follow both potential corner legs until finding the

o
o o

eb eb eb

Figure 1.26: Choosing the orientation and direction of eo

corresponding corner. The orientation of eo, i.e. where with respect to eo the ’outside’

of the corner is, and the direction of eo, i.e. in which direction the corner lies, is determined

by the relative position of eo with respect to eb and o. Look at Figure 1.26 for the possible

orientations and directions of eb. Assume eo is above the parallel line to eb through o. If eo

lies to the left of the triangle formed by eb and o, eo points from o towards the corner point, if

it lies to the right, this cannot be the start of a corner exploration. If eo lies below the parallel

line to eb through o, o is ’on the way’ from eo to the corner point. The ’outside’ of the corner

is always to the left of eo. There might be cases, where only one of the (potentially two) red

edges adjacent to o leads to a correct corner exploration, so we try both possibilities3.

Following the legs actually works step by step. We first determine for each of the two

current reconstructed legs whether there exist potential continuation edges (using the Find-

NextEdge procedure). We take the shorter of them and then verify whether the things

reconstructed so far justify a corner. If so, we add it to the temporary set M ′ but neverthe-

less continue to follow the candidate legs until either

• for both sequences no continuations are found, or

• the two legs meet, or
3There is one case, where one of the red edges leads to an incorrect corner exploration, namely when one

of them is a corner spanning edge.



1.5. The algorithm 37

• the angle between any two segments in one candidate leg is larger than θslope

• the cones of slope of the two legs intersect

When this procedure terminates, we take all explored corners in M ′ and add them to the

set M of all potential corners (with all edges of the grown corner ball as determined in the

verification stage which we will describe in the following).

1.5.1.1 Verifying a corner

The task of the verification stage, which is called after every continuation step, is to check

whether the connections found so far make up a justifiable corner. To do this, we compute a

tentative corner point and check whether there exists a large enough ball to cover all of the

blue edges in our current reconstruction which is empty of other samples (samples that are

not part of the corner to be verified).

Let su and sl be the last samples in the upper and lower legs reconstructed so far, and

let eu and el be the corresponding last edges. To determine a tentative corner, we consider

the two cones of angle 2 · θturn at su and sl w.r.t. eu and el. The tentative corner point C is

determined as (in this order) – also see Figure 1.27:

• if su is contained in the other cone, set C = su (and vice versa)

• if the cones do not intersect, the corner verification has failed

• if the cones intersect, take the ’inner’ intersection point of their boundaries

su

sl

su

sl

C

su = C

sl

Figure 1.27: Determining the tentative corner point C.

We then determine the maximum distance D from C to any point in one of the sequences

found so far which has a blue adjacent edge. We call the ball centered at C with radius D

the ungrown corner ball. We extend the two candidate legs by red edges (if such exist) as

long as the cone of slope (including the edges from the tentative corner point C to the last

samples of the candidate legs) has angle less than θslope + θturn in each leg and as long as the

furthest point of each leg has distance less than fgrow ·D from C. If no such red edges can be

found, the verification fails, otherwise, we consider the ball around C with radius fgrow ·D –



38 Chapter 1. Combinatorial Curve Reconstruction

this ball is called the grown corner ball. If it contains other samples than the one present in

the two sequences, the verification fails, otherwise we check that all blue edges only contain

in their inner βlow-balls samples of the opposite leg within the grown ball.

1.5.2 Removal of interfering corners

Our algorithm by now has produced a collection of possible corners (represented as the two

reconstructed legs ending in that corner) which might possibly interfere with each other, where

we say that two corners interfere with each other, if the overlay of the corresponding graphs

has a degree 3 vertex. We distinguish two kinds of interference: overlap and intersection.

Two corners

(a) (b)

Figure 1.28: Cases of agreeing overlap

• overlap If the degree 3 vertices are only caused by (at most two) corner spanning edges

which cross the interior of the other corner. We also distinguish between:

agreeing overlap: if both corners point into the same direction, see Figure 1.28 for a

schematic outline of these cases.

disagreeing overlap: if the corners do not point into the same direction. We can

exclude this case as the cones of slope cannot be non-intersecting in both directions.

• intersect if they interfere but do not overlap

We first get rid of the intersecting corners by just deleting any pair of corners that intersects

each other. For the remaining overlapping ones, we always delete the corner that starts inside

the other one, so in Figure 1.28, the dashed corners would be deleted. If two overlapping

corners start at the same points, we delete the shorter of the two.

1.5.3 Removal of interfering red edges

At that stage we have identified a set of potential corners, but some of them might interfere

with red edges found in the first step, i.e. some red edges might touch or cross a potential

corner causing a degree 3 vertex. We will prove later on that these red edges cannot be part

of the correct reconstruction, so we simply delete them.



1.6. Correctness of the algorithm 39

1.6 Correctness of the algorithm

First we have to prove is that if a collection of curves Γ is sampled according to our sampling

condition, then the correct reconstruction is part of the output graph H(S) of our algorithm

(’Good edges are captured’). It might produce some more edges, though, so the second thing

we have to prove is the existence of a collection of curves Γ′ for which S is a valid sampling

(with a slightly weaker sampling condition) and H(S) is the correct reconstruction of S with

respect to Γ′ (’Captured edges are good’) like in [DMR99]. So Γ′ is in some sense a certificate

for the reasonability of each edge our algorithm has constructed.

Choosing appropriate parameters for the sampling condition and in the algorithm, for

example

β = 2 ⇔ θbeta = 300 βlow = 2√
3
⇔ θlow ≈ 60

θturn = 10o θslope = 30o

θball = 30o fdiam ≈ 2.84

fshrink ≈ 4.71 fgrow ≈ 1.86

we obtain our two main Theorems:

Theorem 2 Let Γ be a collection of open or closed curves possibly with corners, S be a set

of samples of that collection meeting our sampling condition. Then each edge of the correct

reconstruction G(S, Γ) is present in the graph H returned by our algorithm with the only

possible exception of edges spanning a corner of a curve.

Theorem 3 For any input sample set S, our algorithm returns a graph H and a collection

of curves Γ′ such that S is a valid sample set for Γ′ with:

β′ = β β′
low = βlow

θ′turn = θturn θ′slope = θslope + θturn

f ′
diam = 1

2 θ′ball = θball

f ′
shrink =

fgrow√
1− 1

β2

and H = H(S, Γ′), i.e. H is the correct reconstruction of S with respect to Γ′.

Remarks

One might wonder why Theorem 2 excludes corner spanning edges of G(S, Γ) in the guarantee

for the output of our algorithm. One reason for this is, that if the two legs of a corner are

sampled so densely that there is no blue edge, our algorithm cannot find a starting point for

the corner exploration, so it finds all edges except for the corner spanning edge, see Figure 1.29.

Observe that this also makes sense, because if the two legs are very densely sampled, it may

well be the case that the original curve does not have a corner there but just two endpoints.

We will need this ’conservative’ behaviour of our algorithm later on when we modify the



40 Chapter 1. Combinatorial Curve Reconstruction

Figure 1.29: Densly sampled legs of a potential corner

Figure 1.30: ’Extended’ corner

sampling condition and our algorithm to get a result of the type: For every collection of

curves with corners and endpoints, there exists a sampling such that our algorithm outputs

exactly the correct reconstruction.

The other reason for the corner spanning edge not being detected is that our algorithm

managed to extend the corner by further samples (which either form themselves a real corner

or some smooth part), see Figure 1.30. Here the actual corner would be the dashed one,

but the algorithm was able to justify the extended corner which also includes a group of

additional samples (which, of course, have to be outside the unshrunken corner ball of the

correct corner). Note that this can only happen for very small corner angles and is due to

our relaxed sampling condition which uses a constant for θturn independent of the angle at

the actual corner. Later we will show how to exclude that case as well without sacrificing the

constant θturn angle.

1.6.1 Good edges are captured (Theorem 2)

Let G(S, Γ) be the correct reconstruction of S with respect to a collection of curves Γ. We

will show in the following that if S is a valid sampling of Γ, then every edge of of G(S, Γ) will

be detected and ’survive’ throughout the course of the algorithm, and therefore be present in

the output H of our algorithm (with exception of some corner spanning edges).

The following lemma does not require proof:

Lemma 14 Smooth edges are detected and colored red by the algorithm after the first 2 steps.

What we have to prove now is that smooth edges will not be killed later on because of

interference with a potential corner:

Lemma 15 A smooth edge cannot:



1.6. Correctness of the algorithm 41

1. ’touch’ a (wrong) corner from outside at a sample which is not a corner sample

2. ’touch’ a corner at a corner sample

3. ’cross’ an incorrectly detected corner

if the following holds:

• θturn ≤ π − 4 · θbeta

• fdiam ≥ 3/2

• θball ≤ θlow

• fgrow ≥ 1 + 2
fdiam− 1

2

• θslope ≤ π − 2 · θbeta

• θball ≤ π
2 − θturn

2

• θturn ≤ θlow − θball − 2 · arctan 1
2·fdiam

Proof.

1. Consider the three adjacent samples s0, s1, s2 on one leg ending in a (wrong!) corner

detected by the algorithm as in Figure 1.31. Assume the smooth edge e = (p, s1) touches

the corner at s1 from outside. e must have empty β-balls on both sides. Hence we know

that α1 > π − 2 · θbeta and α2 > π − 2 · θbeta. As the turn between (s0, s1) and s1, s2 is

at most θturn, this leads to a contradiction for θturn ≤ π − 4 · θbeta.

s0 s1

α1 α2

p

s2

Figure 1.31: Smooth edge touching wrong corner from outside at non-corner sample

2. Let e = (x, o) be a smooth edge touching an incorrectly detected corner c at a corner

sample o as in Figure 1.32. Let q be the next sample on the same (wrong) leg as o, p

the first sample on the other leg ending in c. Furthermore let r be the radius of the

ungrown corner ball of the incorrect corner. Clearly, |e| ≥ (fgrow − 1) · r. Hence for

fgrow ≥ 1 + 2
fdiam− 1

2

and fdiam ≥ 3/2, the ungrown ball is completely contained in the

diametral ball around e, in particular p and q are both contained in the diametral ball.



42 Chapter 1. Combinatorial Curve Reconstruction

It remains to show that it is not possible that they are connected in a single chain within

that center ball. But this can easily be seen by considering the triangle 4opq. Due to

the βlow-balls, we have α, γ < π − θlow. Hence for θball ≤ θlow it is obvious that there

is no way that o, p, q are connected within the center ball in one single ’flat’ chain. As

if the chain first visits p, it would have to make a turn of at least θlow to get to q and

vice versa.

o

α

p

γ

q

x

Figure 1.32: Smooth edge touching wrong corner at corner sample

3. We consider two adjacent smooth edges e1 = (p, q) and e2 = (q, r). If one of them

touches the corner from outside, we are already done and can use the proofs of the

first two cases. Otherwise, these two edges either jump from one side of the corner to

the other and back, or one of them overlaps with the corner and the other crosses the

corner.

(a) Assume p and r lie on the same leg whereas q lies on the opposite leg as in Figure

1.33. First assume that there is no sample between p and r. But then we know

that due to the βlow-ball around (p, r), δ < π − θlow. On the other hand, the turn

between (p, q) and (q, r) can be at most θball if fdiam ≥ 3/2, i.e. δ > π − θball,

which gives a contradiction for θlow ≥ θball.

If there are samples between p and r, though, we claim that there is no way that

p and r can be linked by edges which make turn of less than θslope in total. To

see that, let p1 be the sample adjacent to p on the way to r. Clearly α < θbeta,

as well as γ < θbeta. Hence to get from p1 to r one would need a turn larger than

π − 2 · θbeta which gives a contradiction for θslope ≤ π − 2 · θbeta.

(b) Assume that e1 overlaps with the (incorrectly) detected corner, and e2 crosses the

corner. The sample s which is adjacent to q in the (wrong) corner, must be outside

the β-balls around e2 as well as within a cone of width 2 · θturn. Look at Figure

1.34, especially at the triangle ∆qsr and the angle δ = 6 srq. Due to the sampling

condition we know that α ≤ θball + θturn.

We want to show that δ must be large and hence contradicting the empty βlow-

balls for e′ = (q, s). To get to a contradiction, consider the diametral ball of radius

fdiam · |e2| around e2.



1.6. Correctness of the algorithm 43

p

α
γ

p1

r

δ

q

Figure 1.33: Smooth edges zig-zag-crossing wrong corner

Assume first s lies within the diametral ball around e2 of radius fdiam · |e2|. Then

either α or δ must be larger than π−θball. In the latter case, if θlow ≥ θball, we have

a contradiction as due to the βlow-ball around e′, δ < π − θlow must hold. In the

former case where α is very large, we would get a contradiction to the maximum

turn angle for θball ≤ π−θturn

2 .

Now assume that s lies outside the diametral ball. Then we have γ ≤ 2·arctan 1
2·fdiam

.

As we also know that α ≤ θball+θturn, we get δ ≥ π−θball−θturn−2 ·arctan 1
2·fdiam

,

which leads to a contradiction for θturn ≤ θlow − θball − 2 · arctan 1
2·fdiam

.

p e1

q e′
s

α γ

e2

δ

r

Figure 1.34: Smooth edges overlapping and crossing wrong corner

So now we know that every smooth edge of the correct reconstruction will survive the

stages of our algorithm and hence be present in the output. Let us now consider the non-

smooth edges of one particular corner. We will show that there is a canonical element s ∈ S

such that if the algorithm starts a corner exploration from s, it will detect a potential corner

which covers all the edges of the real corner we are considering.

To prove this we first have to state a small lemma which implies that if we are given a

correct part of the sequence of samples on either leg (together with an orientation where the

’outside’ is), our procedure FindNextEdge() will find the next edge of this leg (if it exists).

Lemma 16 Let e = (s1, s0) be an edge of the correct reconstruction within a corner area,

oriented such that the ’outside’ of the corner lies to the left of −−→s1s0, and let s be the other



44 Chapter 1. Combinatorial Curve Reconstruction

sample which s1 is adjacent to. Assuming that s lies on the same leg as s1 and s0, then there

is no other sample s′ such that the following conditions all hold at the same time:

• the turn-angle between e and e′ = (s′, s1) is less than θturn

• d(s1, s
′) ≤ d(s1, s)

• there is an empty β-ball to the left of
−−→
s′, s1

if we have θturn ≤ θlow−θbeta

2

ecorr

ασ

δ e′
s1

s0

s′

s

Figure 1.35: Only one correct edge is possible

Proof. Look at Figure 1.35 and assume the contrary. Let e′ = (s′, s1) be the ’wrong’ edge,

ecorr = (s, s1) the ’correct’ edge. Note that s′ must be on the other leg ending in that corner,

if it had been on the same leg or not part of this corner area, we would have e′ > ecorr . We

consider the triangle 4s1ss
′. Clearly α = 6 s′s1s ≤ 2 · θturn, as both ecorr and e′ make a

turn-angle of less than θturn with e. Let δ = 6 ss′s1 and σ = 6 s′ss1. We have σ = π − α − δ,

and σ ≤ π
2 , as |e′| ≤ |ecorr|. We want to compute an upper bound for the ratio r

|e′| where r is

the radius of the circumcircle of 4s1ss
′. A simple observation shows r

|e′ | = 1
2·sinσ . To get a

contradiction we have to show that β > 1
sinσ , or in other words σ > θbeta (i.e. the ball around

e′ is not large enough). If we make sure that δ < π − θbeta − 2 · θturn we are done.

For a bound on this δ observe that due to the sampling condition, δ < π − θlow . Hence

we get as final condition θturn ≤ θlow−θbeta

2

Now we know that if we have somehow managed to find the right ’start’ of the corner, i.e.

correctly determined the start of the two legs ending in that corner, there will be a time during

the algorithm’s execution where exactly the correct edges of the corner have been detected

(except for the corner spanning edge). This can be easily seen by the fact that we always

extend with the shorter continuation edge and therefore first all edges within the corner area

are picked before connecting to outside the corner area.

To show that for every corner there exists a good starting point for the exploration, follow

both legs of the corner from the intersection of the unshrunken corner ball to the corner

point until hitting the first Delaunay edge crossing the inside of the corner which is part of

a triangle with a blue edge of the correct reconstruction. The red edge adjacent to this blue



1.6. Correctness of the algorithm 45

edge is clearly a good starting point for the corner exploration. We call this the canonical

corner exploration.

Now we have to prove that at the point when exactly the correct edges have been detected,

the verification test will pass.

Lemma 17 At the time when the correct edges of a ’real’ corner have been detected, the

verification test will pass for fgrow ≤ (fshrink − 1)/2.

Proof. Consider a real corner with corner point C and its shrunken corner ball of radius

R. Clearly the tentative corner c computed by the algorithm lies inside the shrunken corner

ball and the radius r of the ungrown corner ball around the tentative corner c (which has to

cover all blue edges in the two legs) is at most 2 · R. As the shrunken corner ball has been

shrunken by a factor of fshrink , the samples which are not part of the two chains making a

total turn of at most θslope, have distance at least fshrink · R from C and hence distance at

least (fshrink − 1) ·R ≥ (fshrink − 1) · r/2 from c. So we must have fgrow ≤ (fshrink − 1)/2.

So now we know that for each corner of the correct reconstruction, there is at least one

reconstruction (namely the correct reconstruction) in M which covers all edges of that corner.

It remains to show that for every corner, the correct reconstruction or an ’extension’ of it

covering all edges survives the next stages. For this we will first make a simple observation.

Observation[Detour] Let e = (p, q) be a red or blue edge. Then there is no path in the

Delaunay triangulation DT (S) of a point set S from p to q which makes a turn of less than

θslope for θslope ≤ θlow.

Proof. Let p2, p2 be the samples which build triangles with e in DT (S). As e is a red or

blue edge, we know that the intersection of the two βlow-balls touching p and q is empty of

samples. Hence for the angles α1, α2 at p1 and p2 in the respective Delaunay triangles we

have αi ≤ π−θlow. So any chain going from p to q would have to get around the quadrilateral

pp1qp2, which requires a turn of at least θlow .

Lemma 18 The reconstruction of a correct corner cannot be intersected by the reconstruction

of a ’wrong’ corner for

• θturn ≤ θlow−θbeta

2

• θturn ≤ θlow

4

• θslope ≤ θlow − 3 · θturn

Proof. We restrict to the area of the shrunken corner ball, as outside the shrunken ball all

edges of the correct corner must be ’smooth’ and hence the proofs for ’smooth edges are not

intersected by wrong corners’ can be used. We will distinguish several cases, always assuming

that if we are in one particular case, all the cases before did not apply:



46 Chapter 1. Combinatorial Curve Reconstruction

1. Consider the case that a ’wrong’ edge e′ touches at a sample p of either leg of the correct

reconstruction but not a corner sample. Clearly, e′ cannot come from another sample

of the same leg as this would be a detour. So it has to come either from outside the

unshrunken corner ball or from the other leg crossing the inside of the corner.

• Assume e′ comes from ’outside’. Due to the shrinking process, e′ has length at

least (fshrink − 1)-times the length of any edge in the shrunken corner ball. Let q

and s be the adjacent samples of p in the correct reconstruction. Look at Figure

1.36. q must be adjacent to p in the wrong corner reconstruction as it has to be

contained in the corner ball of the wrong corner but any indirect way to p would

be a detour. Note that if p was a corner sample, it would be impossible to cover

all samples within the corner ball of the correct corner with the other branch. So

q p
s

e′

γ
α1

α2

Figure 1.36: Wrong edge touching corner inbetween

the turn angle between (q, p) and e′ is less than θturn, and hence α1 ≤ 2 · θturn.

On the other hand, α2 < θbeta due to the β-ball touching (p, s) from outside. So

γ > π − θbeta − 2 · θturn. But with γ < π − θlow due to the βlow-ball around e’, we

get a contradiction for θturn ≤ θlow−θbeta

2 .

• Consider the case that e′ = (p, q) crosses inside the correct corner like in Figure

1.37, but e′ is not a corner spanning sample, i.e. not both q and p are corner

samples of the wrong corner 4. Let s and o be the adjacent samples of p in the

correct corner, r and t the adjacent samples of q, respectively.

Clearly e′ cannot be the only edge of the wrong corner, so p or q must have another

adjacent edge. First assume that q has another adjacent edge e′′. Clearly e′′ cannot

end in some sample outside the corner ball (covered by the previous case). On the

other hand it cannot touch any sample of the other branch from ’outside’ due to

the cone of slopes constraint in the sampling condition. So q has to be connected to

either r or t or some sample on the opposite leg left of p (right of p is not possible

due to the same argument as in Figure 1.33).

If q is not a corner sample of the wrong corner and is connected to t or some

sample on the opposite leg, clearly α ≤ 2 · θturn. And as e′ has a β-ball to the

outside, δ < θbeta. Hence γ > π − 2 · θturn − θbeta which gives a contradiction for

4If e′ is a corner spanning sample of the wrong corner, we have the case of agreeing or disagreeing overlap,

which is treated separately.



1.6. Correctness of the algorithm 47

θturn ≤ θlow−θbeta

2 , as we should have γ > π−θlow due to the βlow-ball around (q, r).

Now assume q is not a corner sample and is connected to r. If p is also not a corner

sample, it has to be connected to s and we get σ ≤ 2 · θturn and τ + κ ≤ 2 · θturn.

So of course, κ ≤ 2 · θturn. But then we have χ ≥ π − 4 · θturn, which contradicts

to χ < π − θlow due to the βlow-ball around e′ when choosing θturn ≤ θlow

4 . So in

this case, p has to be a corner sample and we have the a symmetric case of the

following.

W.l.o.g. we can assume that q is a corner sample. So p must have another adjacent

sample, which cannot be on the same side as q, as we could use the same argument

as for the smooth ZigZag case. On the other hand it cannot connect to any sample

other than s or o as we would then have a detour. But as p is not a corner sample

(because q is and we assume that not both are corner samples), it must be adjacent

to s. So σ ≤ 2 ·θturn. We also know that κ < π−θlow and hence χ > θlow −2 ·θturn

and ε < π − θlow + 3 · θturn.

For θturn ≤ θlow−θbeta

2 and because of χ > θlow − 2 · θturn, we know that o must

be contained in the other β-ball of e′, hence o must be part of the opposite leg

of e′ (in the wrong corner). Clearly o must have two adjacent edges in the wrong

corner, both of which have to be in the angle between uo and oq which has angle

ε (due to the detour and visibility properties). Let u′ be the sample adjacent to o

which is further away from q. The edges of that leg must make a path from u′ to

q without turning more than θslope to the left (note that this holds even if there

is another corner sample on the way to q). But this leads to a contradiction for

θslope ≤ θlow − 3 · θturn.

t q

τ κ
α

δ

r

e′

s
p

γ
σχε

o
u

Figure 1.37: Wrong edge crossing corner inside

2. Consider the case that exactly one edge touches the correct corner from outside at a

corner sample. When looking at the shrunken corner ball of the correct corner, it is

clear that it must be completely contained in the grown corner ball of the wrong corner,

so all samples must be part of the ’wrong’ corner. On the other hand the intersection

of a corner with any ball must have an even number of intersections on the boundary

of the ball, which is not the case here.

3. Consider the case that two edges touch the correct corner from outside at the same

corner sample c. Look at Figure 1.38. Again, observe that the whole shrunken corner



48 Chapter 1. Combinatorial Curve Reconstruction

ball must be contained in the grown corner ball of the wrong corner, hence the other

samples in the correct corner must all be connected in one single leg. Let p and q be

the samples adjacent to c in the correct corner reconstruction, p on the same leg as c.

It is easy to see that the wrong corner must connect the samples exactly the same way

as the correct reconstruction of the corner, but with a shortcut from p to q leaving out

c as this is already used. Any other case would imply a detour which cannot happen.

Looking at the triangle 4cpq, it is then obvious that the angles at p and q must be

≤ 2 ·θturn. On the other hand, as p and q are connected by an edge, the angle at c must

be less than π − θlow , giving a contradiction for θturn ≤ θlow

4

c

p

q

Figure 1.38: Two long edges touching at one corner sample

4. Consider the case that two edges touch the correct corner from outside at two different

corner samples c1 and c2. Two cases can be distinguished:

• c1 and c2 are not adjacent in the ’wrong’ corner. But then clearly, c1 and c2 cannot

be part of the same leg of the wrong corner, as this ’other’ path from c1 to c2 would

be a detour.

Now look at how the branch going through c1 continues:

– if it follows the upper leg of the correct corner until leaving, the other branch

must be covered by the other leg and we have an overlap case

– if it jumps somewhere ’outside’, we have already covered that case

– if it jumps inside from some sample s1 to the other leg, it cannot jump back to

a sample s2 on the same leg and adjacent to s1 as we would have a detour then.

If s2 is on the same leg as s1 but not adjacent to s1, we would have ’separated’

some samples between s1 and s2 which cannot be connected to c2. So after

jumping to the other side, the leg has to follow the other leg until leaving the

corner ball, hence separating the rest of the upper leg from c2 again.



1.6. Correctness of the algorithm 49

• c1 and c2 are adjacent in the wrong corner. Let d1, d2 be the next samples on each

of the legs, as in Figure 1.39. As no detour is allowed, the other leg of the wrong

corner must follow exactly the correct corner, but with a shortcut (d1, d2) as c1

and c2 are already covered. Look at the triangle ∆d2d1c1. For the angles at d1

and d2 we get upper bounds of 2 ·θturn. On the other hand, as d1, d2 are connected

by an edge with β- and βlow-balls, the angle at c1 must be smaller than π − θlow,

giving a contradiction for θturn ≤ θlow

4 .

c1

d1

c2

d2

Figure 1.39: Two long edges touching at two different corner samples

Lemma 19 At least one corner exploration covering (at least) all edges of a corner in the

correct reconstruction survives all stages of the algorithm if we have fshrink ≥ 2.

Proof. We have already proven that the canonical corner exploration cannot be intersected

by a wrong corner, so it definitely survives the ’removal of intersecting corners’ stage. It

remains to show that if a corner exploration E1 covering all edges of a real corner is killed by

another corner exploration E2 in the ’removal of overlapping corners’ stage, E2 also covers

all the edges of the real corner. Clearly case (a) in Figure 1.28 fulfills our requirement. So

we have to look at case (b). Assume the dashed – ’good’ – corner exploration E1 covers all

edges of the correct corner, but is killed by the other – ’bad’ – corner exploration E2 which

does not cover all edges of the correct corner.

Observe, that E2 has to start outside the unshrunken corner ball of the correct corner,

as all edges which are in the unshrunken, but not in the shrunken corner ball of the correct

corner have to be red and a corner exploration can only start at blue edges. Furthermore,

the corner spanning edge must be inside the shrunken corner ball of the correct corner (and

therefore also in the ungrown corner ball of E1), as otherwise the ’smooth edge cannot touch

wrong corner’ case applies. So the radius of the ungrown corner ball of E2 must be at least

(fshrink − 1) · r, where r is the radius of the ungrown corner ball of the correct corner.



50 Chapter 1. Combinatorial Curve Reconstruction

So for fshrink ≥ 2, all samples of the correct corner must be contained in the ungrown

corner ball of E2, which gives a contradiction. The case where the two overlapping corners

start at the same points and the ’shorter’ one is deleted does not require any discussion.

To sum up, we have proven that every edge of the correct reconstruction is detected by

the algorithm and survives till the end. So ’all good edges are captured’.

1.6.2 Captured edges are good (Theorem 3)

Basically almost all statements of Theorem 3 follow directly from the algorithm. The only

statement that requires a proof is the statement that for every corner, the ball of radius

r ·
√

1 − 1
β2 does not intersect any segments of the output graph which are not part of the

two legs ending in that corner, where r is the radius of the grown corner ball. But this can

be easily seen, as the distance of any edge e to the center of the grown corner ball must be

greater than r ·
√

1− 1
β2 , since this e must have an empty β-ball on that side, hence the ball

of radius r ·
√

1 − 1
β2 cannot intersect any of these segments.

1.6.2.1 Construction of a collection of Witness Curves Γ′

As our sampling condition does not directly refer to the curvature of the curve, we can

construct witness curves by simply taking the polygonal reconstruction computed by our al-

gorithm and adding very small ’caps’ at every sample which is adjacent to two non-corner

spanning edges. Corner spanning edges are replaced by two edges to the corner point esti-

mated by the algorithm.

Using the same idea as in [DMR99], one could prune the output of our algorithm even

further and then construct curves as in [DMR99], which are then witness for the sampling

condition with respect to the medial axis, though we have not elaborated this further.

1.6.3 Setting the Parameters for the Algorithm and the Sampling Condi-

tion

The proofs of this section have led to the following constraints on the constants of the sampling

condition and the algorithm:

θturn ≤ π − 4 · θbeta θturn ≤ θlow−θbeta

2

θturn ≤ θlow

4 θlow ≥ θball

θslope ≤ π − 2 · θbeta θslope ≤ θlow − 3 · θturn

fdiam ≥ 3
2 θball ≤ π−θturn

2

fgrow ≥ 1 + 2
fdiam− 1

2

fgrow ≤ fshrink−1
2

fshrink ≥ 2

θturn ≤ θlow − θball − 2 · arctan 1
2·fdiam

In the following we compute a possible setting of this parameters which we consider

reasonable. β should preferably be chosen as small as possible to keep the required sampling



1.6. Correctness of the algorithm 51

density especially in the smooth parts low. Its value should be at least 2, though, as we

want to make sure that no sample is adjacent to more than 2 red edges, hence we fix β = 2,

i.e. θbeta = 30o. βlow must be chosen smaller than β, but as large as possible to be not too

restrictive in the sampling condition for the corner areas. Let us fix βlow = 2√
3
, i.e. θlow = 60o.

With this choice of β and βlow we get an upper bound of 15o for θturn. But as we need

some ’slack’ for the other parameters as well, we choose θturn = 10o and with that information

we choose θslope = 15o. It remains to determine values for θball, fdiam, fgrow and fshrink . A

balanced choice for these parameters could be θball = 30o, fdiam ≈ 2.84, fgrow ≈ 1.86,

fshrink ≈ 4.71

So finally we end up with the following choice of parameter values:

β = 2 ⇔ θbeta = 30o βlow = 2√
3
⇔ θlow = 60o

θturn = 10o θslope = 30o

θball = 30o fdiam ≈ 2.84

fshrink ≈ 4.71 fgrow ≈ 1.86

The reader is encouraged to check that these values satisfy all the constraints.



52 Chapter 1. Combinatorial Curve Reconstruction

1.7 Further Results

1.7.1 How to obtain exactly the correct reconstruction ?

The algorithm as outlined so far guarantees that all edges of the correct reconstruction G of

the original collection of curves Γ are present in the output H of our algorithm, but there

might be additional edges in the output, though our algorithm can ’justify’ each of them.

The ultimate goal, of course, is to find a sampling condition and an algorithm which

for any collection Γ of curves with endpoints and corners guarantees that the output of the

algorithm is exactly the correct reconstruction G(S, Γ), if the sample set S conforms to this

sampling condition.

To reach this goal, one first has to restrict the possible curves allowed in Γ. Given any

sample set S, it is always possible that the original collection of curves Γ consists exactly of

those sample points, i.e. each curve in Γ is degenerate in a sense that it only consists of a

single point. There is no way the algorithm can detect this. So it seems reasonable to restrict

the curves allowed in Γ to be non-degenerate, i.e. each curve must consist of more than just

one point.

The second difficulty arises in cases as sketched in Figure 1.40. With the current sampling

condition and algorithm, the algorithm would connect p and q even if they are endpoints in

the correct reconstruction, provided there are no samples in the neighbourhood which are

inside the β-balls of (p, q).

(a)

(b)

... ...

p

q

q

p1 q1 qkppk

Figure 1.40: Connect p and q or not ?

Note that in Figure 1.40,(a) it really seems reasonable not to connect p and q as the edge

(p, q) would be very long compared to the other edges in that chain. On the other hand, one

should definitely not reject an edge (p, q) just because let’s say q’s other adjacent edge is very

short as shown in Figure 1.40,(b).

So what we propose is some kind of local uniformity condition. The length of an edge

shouldn’t be much longer than the longest edge in some specified neighbourhood, where

neighbourhood describes nearby edges in the same chain as e. Clearly the neighborhood

shouldn’t be too small as just one very short edge should not prevent a long edge like in

Figure 1.40,(b). Hence our local uniformity condition is defined as follows:

Local Uniformity Condition (I): Let e = (p, q) be an edge in a potential reconstruction of



1.7. Further Results 53

a sample set. Furthermore let q1, q2, q3, . . .qk be the samples in the chain when following

the chain adjacent to q, and let p1, p2, p3, . . . qk the samples adjacent to p.

We say e is not reasonable due to oversampling, if either

• q1, . . . qk exist and ∀i = 1 . . .(k − 1) we have |e| > fstretch · d(qi, qi−1),

• p1, . . .pk exist and ∀i = 1 . . .(k − 1) we have |e| > fstretch · d(pi, pi−1),

This means for one particular edge e to be reasonable, the longest edge amongst its k

neighbours to either side must have length at least |e|/fstretch.

For the whole thing to make sense, of course we need to require that each component of

the curve has at least 2k + 1 samples taken from it:

Minimum Sampling Condition: At least 2k + 1 samples must be taken from every single

curve in the collection of curves Γ.

It should be clear how to modify the algorithm to reject edges which are unreasonable due

to local non-uniformity. In following we give an alternative local uniformity condition which

is more in the spirit of the sampling conditions we have met so far:

Local Uniformity Condition (II): For any edge e of the correct reconstruction, the balls

centered at the midpoint of e with radius r, |e|/2 ≤ r ≤ |e|/2 + |e| · (k − 1) + fstretch · |e|
must intersect the correct reconstruction in one component.

Lemma 20 If the local uniformity condition (II) is fulfilled, no open ends of the correct

reconstruction are closed by our modified algorithm.

Proof. Consider a gap closing edge g = (p, q) and let e = (pi, pi−1), i ≤ k be the longest

edge amongst its neighbours. As g is not discarded by our modified algorithm, we know that

d(pi−1, q) > |e| · (k− 1+ fstretch), and d(pi−1, p) ≤ (k− 1) · |e|. Therefore d(p, q) > fstretch · |e|
and our algorithm would have discarded edge g.

Another problem is the fact that our algorithm might capture a corner spanning edge, if

the samples on both legs are so dense that there is no blue edge which could trigger a corner

exploration (see Figure 1.29). We can circumvent this by postulating:

Corner Triggering: For any corner there must be a blue edge in the correct reconstruction.

Observe that it is very simple to generate such a blue edge by placing a sample close to the

actual corner point of the corner. Either both edges connecting the formerly last samples of

either leg to this additional sample are red then we are done anyway, or one of them is blue,

so it triggers the corner exploration.

Furthermore our algorithm might extend a corner further than it is supposed to do as we

have seen in Figure 1.30. This can also be avoided by placing a sample point close to the

actual corner point which is then chosen by both legs and terminates the corner exploration

(or by using the local uniformity condition).

So with this additional sampling conditions and a slightly restricted definition of curves,

we get the following result:



54 Chapter 1. Combinatorial Curve Reconstruction

δ

p

α

γ

p1

p2

Figure 1.41: Sample with 3 red adjacent edges

Theorem 4 For every collection of curves Γ there exists a finite sample set such that our

modified algorithm exactly returns the correct reconstruction.

1.7.2 Tuning the Parameters for best Practical Performance

In our experiments it turned out that the most limiting factor of our algorithm when it comes

to sparse sample sets is the fact that not enough red edges are detected. So tweaking the

algorithm to allow a smaller β-value would improve the performance considerably in practice.

With a small modification of the algorithm this is possible without losing the theoretical

guarantees. The main problem is that if we allow smaller values for β, we cannot be sure that

all samples have at most 2 adjacent red edges. For example for
√

2 ≤ β < 2, there might be

samples with three adjacent red edges. Fortunately we can clean-up the β-skeleton after step

2 of our algorithm easily by uncoloring the longest red edge for each degree-3-sample. Then

we continue with the algorithm as described above. It remains to show that this clean-up

procedure does not uncolor any smooth edges:

Lemma 21 Smooth edges are detected and colored red by the algorithm after the first 3 steps

for β ≥
√

2 and fdiam ≥ 3
2 and θball < π

2 − θbeta.

Proof. Clearly all smooth edges are colored red in step 2. Now assume that a ’smooth’ edge

e = (p, q) is uncolored in step 3 of the algorithm, i.e. it is adjacent to a sample q which has

two other red edges e1 = (q, p1), e2 = (q, p2), where |e| > |e1|, |e2|, as in Figure 1.41. Note

that for fdiam > 3
2 , p1 and p2 are contained in the diametral ball of e of radius |e| · fdiam ≥ 2.

Due to the sampling condition for smooth areas we know that α = 6 pqp1 ≥ π − θball as well

as γ = 6 pqp2 ≥ π − θball. Hence δ = 6 p2qp1 < 2 · θball. On the other hand, because of the

empty β-balls around e1 and e2, we know that δ > π− 2 · θbeta, which leads to a contradiction

for θball < π
2 − θbeta.

With this little modification we can choose β ≈ 1.55, which is equivalent to θbeta ≈ 40o,

but still keep the values for all other parameters.

Another parameter that strongly influences practical performance is fgrow . It should be

chosen as small as possible to keep the area where the curve must remain ’flat’ around the



1.8. Running Time and Experimental Results 55

corner to a minimum. Note that fgrow can be decreased quite freely, if in turn fdiam is

increased. (Note that fdiam only appears in the sampling condition but not in the algorithm

!) But just to make sure that at least the ball covering all blue edges of a detected corner

does not intersect any other parts of the curve, we want fgrow ≥ 1√
1− 1

β2

= 2√
3
, and hence

fshrink = 4√
3

+ 1 and fdiam = 2·
√

3
2−

√
3

+ 1
2 ≈ 13.43. This choice of fdiam also allows us to set

θball ≈ 45o.

1.7.3 Related work

Concurrently with our conference submission of this paper [FR01], Dey and Wenger submitted

a paper to the same conference in which they present an algorithm based on their previous

work in [DW00]. Their improved algorithm can reconstruct a collection of closed curves with

corners (no open curves). They also use the idea of first detecting allegedly ’smooth’ areas

and then exploring potential corner areas. While we have described our algorithm mostly in

terms of empty β-balls, they use what they call the ’ratio condition’ which denotes the ratio

between the lengths of Delaunay edges and their dual Voronoi edges. In fact these concepts

are quite the same. The conditions for which they guarantee correct exploration of corners

differ from ours.

In [BP01], Boyer and Petitjean have also sketched a sampling condition and an algorithm

which refers more to properties of the correct reconstruction rather than the original curve.

They do not provide a rigourous proof of correctness, though.

1.8 Running Time and Experimental Results

We haven’t attempted to optimize the running time of our algorithm. Assuming that of the

n = ns + nc samples we have nc samples in corner regions and ns samples in regular parts,

we can obtain the following bounds with a very näıve implementation:

• Computation of the Delaunay Triangulation: O(n · log n)

• Colouring the red and blue edges: O(n)

• At most 4 · nc corner exploration can happen, each of which requires at most n steps.

After each of these steps there is a corner verification step which costs at most O(n),

so we obtain a total running time for corner explorations and verification of: O(nc ·n2)

• detecting interfering corners and red edges can be done in time: O(n)

So the overall running time for a very näıve implementation is dominated by the corner

explorations and verifications which is O(nc · n2).

Note though that the estimation of cost O(n) for each verification step is very pessimistic,

as in most cases, when the verification stage has to verify a corner explorations of two se-

quences qkqk−1 . . . q1 and plpl−1 . . . p1, the potential ’next picks’ qk+1 or pl+1 are contained

in the corner ball around the potential corner, so the verification test can be aborted after



56 Chapter 1. Combinatorial Curve Reconstruction

just one comparison. In fact, to design an input which requires a full O(n) verification after

every extension of the sequences would require that the distance between the samples grows

geometrically. So in practice, one would expect a running time of O(nc · n).

We have implemented a prototype of our algorithm (currently without the local uniformity

condition) using LEDA [MN00], which seems to behave pretty well in practice, even when

using the parameters determined in section 1.6.3.

Compared to for example the CRUST algorithm by Amenta, Bern, Eppstein [ABE98] or

the Dey-Kumar algorithm [DK99], it did a much better job in connecting corners as can be

seen in Figures 1.42, 1.43, 1.45.

Figure 1.42: The Crust algorithm

Figure 1.43: The Dey-Kumar algorithm



1.8. Running Time and Experimental Results 57

Figure 1.44: The Dey-Mehlhorn-Ramos algorithm

Figure 1.45: Our algorithm



58 Chapter 1. Combinatorial Curve Reconstruction

1.9 Discussion and Outlook

We presented the first algorithm for curve reconstruction which provably can handle a col-

lection of curves with corners and endpoints and also introduced a new sampling condition

which is not as restrictive as the sampling conditions based on the medial axis. In practice our

algorithms seems to perform quite well compared to existing algorithms like the ones men-

tioned in the introduction. As a more theoretical result we also proved that for any collection

of curves with corners and endpoints, there exists a finite sample set from that collection for

which a slight modified version of our algorithm outputs exactly the correct reconstruction.

In two dimensions, the problem of reconstructing open and closed curves with branching

points is still open. But the really interesting problem is the reconstruction of surfaces in R3.

In three dimensions, as of now algorithms with a guarantee only exist for closed smooth

manifolds. These algorithms like the algorithms in R2 are based on a Delaunay filtering

approach, so as a first step, they all compute the Delaunay triangulation of the sample

set. Unfortunately the complexity of a Delaunay triangulation in R3 can be θ(n2). So

even though the complexity of the surface to be reconstructed is O(n), all these algorithms

have an inherent running time of θ(n2). Recently we have developed a modification of one

of these algorithms which only locally computes part of the Delaunay triangulation. With

an additional sampling condition similar to the local uniformity condition, we could prove

that the surface reconstruction problem can be solved in O(n logn) time for smooth closed

manifolds. Still, it would be nice to get rid of this additional condition and, of course, to

provably reconstruct open surfaces or even surfaces with sharp ridges and corners. The main

idea of our algorithm, first to detect parts of the curve that are likely to be smooth and then

explore potential corners might also apply there.



Part II

The Efficient and Exact

Implementation of Geometric

Algorithms

59





Chapter 2

The Exact Computation Paradigm

2.1 Introduction

Geometric algorithms are usually designed and proven to be correct in a computational model

that assues exact computation over the real numbers. Since no computer provides exact

arithmetic on real numbers in hardware, programmers must find some substitution when

implementing these algorithms. Quite commonly, they resort to fast finite precision arithmetic

due to its support by hard- and software as well as its convenient use. For some problems

and restricted sets of input data, this approach works well, but in many implementations the

effects of squeezing the infinite set of real numbers into the finite set of floating-point numbers

can cause catastrophic errors in practice.

There are several ways geometric algorithms may misbehave when exact arithmetic is

replaced by floating-point arithmetic. In the best case, they produce quite usable results in

spite of some incorrect decisions, but most algorithms do not; they either produce completely

inconsistent results, crash or loop.

To give you an idea how easily a simple predicate can be decided incorrectly when replacing

exact arithmetic by finite precision computation, look at the example in Figure 2.1:

0.38

0.39

0.4

0.41

0.42

0.43

0.74 0.75 0.76 0.77 0.78 0.79

f(x) = 1.4
2.7

x

P(0.76, 0.40)

u

u

Figure 2.1: Point P is clearly above line f

Consider a line f given by the equation y = f(x) = 1.4 · x/2.7. What we are interested

61



62 Chapter 2. Efficient & Exact Geometric Computation

in, is the position of the point P (0.76/0.40) with respect to f , i.e. does P lie above or below

the line f . This test occurs in almost any geometric algorithm and is called the sidedness

predicate. Using exact arithmetic, it is not hard to see that P actually lies above f as

f(Px) = f(0, 76) = 1.4 · 0.76/2.7 < 0.40 = Py

Now assume we are restricted to a floating-point system with base 10, mantissa length 2,

and rounding to nearest, i.e. after an arithmetic operation the result is always rounded to

two significant digits. Let’s do the calculation with this restricted precision. �,� denote the

floating-point counterparts of multiplication and division.

f(Px) = f(0.76) = 1.4 � 0.76� 2.7 = 1.1� 2.7 = 0.41 > 0.40 = Py

And hence we conclude that P is below f which is clearly wrong !

Conditionals like this are the most critical parts in a program because they determine

the flow of control. If in every test the same decision is made as if all computations would

have been done over the reals, the algorithm is always in a state equivalent to its theoretical

counterpart. But still, if some predicates are decided incorrectly, why is this such a big prob-

lem ? It might only produce a slightly perturbed output. The problem is, that conditionals

are usually not independent. So if due to roundoff errors a conditional is decided incorrectly,

this might contradict some other conditionals already decided or going to be decided in the

future. Algorithms are usually not designed to cope with such inconsistencies, so they crash,

loop or produce garbage output.

The exact computation paradigm

There are two obvious approaches for solving the precision problem. The first is to change the

model of computation: design robust algorithms that can deal with imprecise computation,

i.e. algorithms that can cope with inconsistencies incurred by incorrect predicate decisions.

Unfortunately, there is no generic way to derive such algorithms, and only for a small number

of (easy) problems, such algorithms have been developed. The second approach is the exact

computation paradigm ([YD95]); it advocates to guarantee correctness of the implementation

by ensuring that every single predicate is evaluated correctly. This is achieved by providing

software-based exact number types and hence exact predicate implementations.

As we have seen, the evaluation of a geometric predicate amounts to the computation of

the sign of an arithmetic expression. So the naive way to compute the sign of an expression is

to compute the value of the expression (using exact arithmetic) and to read off the sign from

the value. Unfortunately, computing these expressions using exact arithmetic has its cost,

which is considerably higher then pure floating-point arithmetic; an overhead of a factor of

10-100 can be expected.

Floating-point filters

A much more efficient technique is the use of floating-point filters [FV96, KLN91]. A floating-

point filter computes an approximate value of an expression and a bound for the maximal



2.1. Introduction 63

deviation from the true value. If the error bound is smaller than the absolute value of the

approximation, approximation and exact value have the same sign and hence the sign of the

approximation may be returned. In this way the true sign can be obtained quickly. The

advocates of floating-point filters claim that filters at the predicate level realize the exact

computation paradigm at little cost; the running time is claimed to be no more than twice

the running time of a pure floating-point implementation.

Of course, this statement is only true if the floating-point filter always succeeds in de-

ciding the predicate, and the floating-point filter mechanism can be applied for the whole

computation. Very often these conditions are not met in practice, though.

First, the given geometric setting might be such that very often the floating-point filter

fails (usually due to degenerate or nearly-degenerate configurations like 3 (almost) collinear

points, 4 (almost) cocircular points, etc.). In these cases, we will always have to resort to exact

arithmetic with its implied overhead. And even in the cases where the floating-point filter

succeeds in deciding the predicate, it would be desirable to reduce the overhead compared to

double arithmetic even further.

Secondly, if the algorithms construct new geometric objects, the floating-point filtering

concept cannot be used directly. What is the problem with the construction of new objects?

In most geometric kernels like the ones of the popular libraries CGAL [CGA99] and LEDA

[MN00], points (and all other geometric objects) are represented by their coordinates (either

cartesian or homogeneous) and hence the construction of an object requires the exact compu-

tation of its coordinates. This has two undesirable consequences. On one hand the running

time increases dramatically when operating with constructed objects due to the increased nu-

merical complexity, but maybe even more importantly, the space consumption grows rapidly.

So in practice, users either write their own routines to allow for filtering on construction

level (which can be supported by tools like our EXPCOMP expression compiler [BFS98]) or

use rounding schemes after every construction to keep the numerical complexity and space

requirements low, see [For99] for example. Note though, that these rounding schemes ac-

tually require a proof that they do not affect the final result considerably. These proofs

are non-trivial and usually cannot be generalized. So each application has to be considered

separately.

Both these problems we have actually experienced in our implementation work and there-

fore tried to come up with solutions.

Our Contribution

Of course, the ultimate challenge is to achieve exact geometric computation at the cost of

floating-point arithmetic. Our results are a step into this direction:

• We develop the concept of structural filtering which is a generalization of floating-point

filtering. Structural filtering can reduce the overhead compared to pure floating-point

arithmetic further by allowing some predicates to err, without sacrificing the guarantee

for an exact outcome. Structural filtering views the execution of an algorithm as a

sequence of steps and applies filtering at the level of steps. A step can be anything



64 Chapter 2. Efficient & Exact Geometric Computation

between a simple predicate and the execution of the whole algorithm.

As an interesting subresult on its own, we exhibit differences in the behaviour of sorting

algorithms under erroneous comparisons.

• We present the design of a geometric kernel called LOOK (Lazy Object Oriented Kernel

for geometric computation), which is the first of its kind that makes use of filtering tech-

niques not only on the predicates level but also on the level of geometric constructions.

The main idea is to represent geometric objects not by their coordinates, but by the

geometric operation that produced them and compute coordinate representations only

on demand in a lazy fashion.

We thoroughly discuss all issues arising in the design of such a kernel, in particular the

choice of numerical representation and space consumption.

Both of these approaches have been successfully tested and used in the framework of the

LEDA and CGAL libraries.

Outline

In Section 2.2 we first present some preliminaries and discuss previous work which we will

build upon. Chapter 3 will introduce the new concept of structural filtering whereas in

Chapter 4 we present the design of LOOK, our new kernel for geometric computation.



2.2. Preliminaries and Previous Work 65

2.2 Preliminaries and Previous Work

In this section we will briefly review the state of the art in software packages for exact

arithmetic and filtering techniques.

2.2.1 Exact Number Types in LEDA

There exist several software packages providing means for exact computation like the Gnu

Multiprecision library GMP [Gra96], the CORE library [KLPY99], and the number types in

LEDA (Library of Efficient Datatypes and Algorithms) [MN00], which we will concentrate on

in the following.

In LEDA, the programmer has access to three C++ classes for integer, rational and

algebraic computation. They can be used very similarly to the standard C/C++ number

datatypes due to operator overloading, but also have additional functions for conversion, sign

determination etc.

Integer Arithmetic

The LEDA type integer represents integer numbers of arbitrary size. Amongst others the

arithmetic operations +,-,* are available for that datatype. LEDA integers guarantee exact-

ness in a sense that each operation is performed numerically exactly.

An integer is essentially implemented by a vector of unsigned long numbers with the sign

and the size stored separately.

The use of LEDA integers induces quite an overhead compared to double arithmetic, which

increases with increasing bit-lengths of the input values, since every operation is performed

numerically exactly.

Rational Arithmetic

A rational is implemented by two integer numbers – one for the numerator and one for the

denominator, where the sign of the numerator determines the sign of the rational.

As for LEDA integers, the use of LEDA rationals induces quite an overhead compared to

double arithmetic, which also increases with increasing bit-lengths of nominator and denom-

inator.

Algebraic Arithmetic

The LEDA type real represents algebraic numbers. Amongst others the arithmetic operations

+,-,*,/,sqrt are available for the datatype. Unlike LEDA integers or rationals, LEDA reals

do not guarantee exactness in a sense that each operation is performed numerically exactly,

but if a sign of a real is asked by calling the sign(real &) function, it is guaranteed that

this result is correct.



66 Chapter 2. Efficient & Exact Geometric Computation

b

2

a

*

*

+

E

*

Figure 2.2: Expression Graph for E = a2 + 2 · a · b

A real expression E is represented by its expression graph G(E) and a double approxima-

tion ẽ with error bound err such that

|e − ẽ| ≤ err

G(E) is a directed acyclic graph with a single root. The root is associated with E itself,

and inner nodes correspond uniquely to the arithmetical operations that define E. The input

values of E are contained in the leaves of its expression graph. Figure 2.2 shows an example.

When the sign of a real number x needs to be determined, the datatype first computes a

number qx – called separation bound for x –, such that |x| < qx implies x = 0 . Using

bigfloat arithmetic — LEDA bigfloats are a generalization of floating-point numbers with

exponents and mantissa of arbitrary length according to the IEEE standard [IEE85] —, the

datatype then computes successively intervals of decreasing length that include x, until the

interval does not contain zero (then the sign is obvious) or else until the length of the interval

is smaller than qx (then the sign must be zero).

Two shortcuts are used to speed up the computation of the sign. Firstly, as long as the

double approximation x̃ is known to be exact, i.e. x̃ = x, no expression graph is constructed

and only the (exact) double approximation x̃ represents x.

Secondly, if the double approximation x̃ suffices to determine the sign of x i.e. 0 /∈
[x̃− err, x̃ + err], it is returned and no bigfloat arithmetic is used. This technique is called a

floating-point filter and we will discuss several variants in the next subsection.

As to be expected, the overhead of LEDA reals is quite high compared to double arith-

metic. The construction of the expression graph and the computation of the error bound

has its costs. Even if large parts of the computation do not require the construction of an

expression graph due to the double arithmetic still being exact, some overhead is imposed by

the tests for the exactness of the double results.

2.2.2 Deriving Error Bounds for Floating-Point Computations

In this section we will have a closer look at floating-point arithmetic. If the floating-point

arithmetic on a machine complies to the IEEE standard, one can guarantee an error bound



2.2. Preliminaries and Previous Work 67

for the error occurring in one single operation: Let x = x1opx2 be the exact outcome of

an arithmetic operation on two floating-point numbers x1, x2, x̃ = x1fopx2 the result under

floating-point arithmetic. Then the IEEE standard guarantess that |x̃ − x| ≤ 2−(p+1) where

p is the mantissa length of the floating-point representation (p = 52 for the C/C++ type

double).

But as we evaluate complex expressions involving more than one operator, errors are

propagated in some way from the “earlier stages” of computation to the final result. Assuming

we have evaluated a complex expression e with floating-point arithmetic to ẽ, what we then

want is an upper bound err for the error of this value, i.e. something like:

|e − ẽ| ≤ err

We briefly present several techniques that can be used to compute this error bound. For

a more detailed description of these techniques and their proofs see [BMS96, BBP98, Fun97].

2.2.2.1 Fully-Dynamic error analysis

Fully-dynamic error analysis means that the error bound is computed completely at run-time,

and hence can make use of the actual values of the expressions. We present two schemes for

fully-dynamic error analysis:

Relative Error Bounds In [BMS96], relative error bounds are derived for floating-point

computations, i.e. for every expression e and its floating-point evaluation ẽ, an εe is calculated

such that the following is true at all times:

|ẽ − e| ≤ εe · |ẽ|

The following shows a list of the formulas for inductively computing the εe-values always

assuming that the for the operands x, y the invariant is fulfilled:

εx±y = 2−p−1 + | x̃
ẽ
| · εx + | ỹ

ẽ
| · εy

εx·y = (εx + εy + εx · εy) · (1 + 2−p−1) + 2−p−1

εx/y = 2−p−1 +
εx + εy

1 − εy
· (1 + 2−p−1)

ε√x = eps + εx · (1 + 2−p−1)

For more detailed information and the proofs see [BMS96]. Note though that

• The relative errors must be computed dynamically at runtime, since computing the rela-

tive error of an addition requires the actual values of the floating-point approximations.



68 Chapter 2. Efficient & Exact Geometric Computation

• The overhead compared to simple floating-point evaluation is quite high. For example,

the addition x + y requires – apart from the computation x + y itself – 2 additions, 2

multiplications, 2 divisions and 2 absolute values for computing the new relative error.

These error bounds are used as built-in floating-point filter of the LEDA type real to filter

out easy tests which do not require the arbitrary precision calculation.

Interval arithmetic More recently, Burnikel, Brönnimann, and Pion in [BBP98] presented

another fully-dynamic scheme for computing error bounds, which was previously known in

the numerical analysis community but not used in the context of computational geometry

before. Their approach is based on the possibility to switch rounding modes if the floating-

point arithmetic on a machine complies with the IEEE standard. A value x is represented

by an interval [x̃] = [x̃l, x̃u]. Assuming x and y are represented by intervals [x̃] and [x̃], the

following rules are used to compute the interval resulting from an arithmetic operation:

[x̃] + [ỹ] = [x̃l + ỹl, x̃u + ỹu]

[x̃]− [ỹ] = [x̃l − ỹu, x̃u − ỹl]

[x̃] · [ỹ] = [min{x̃lỹl, x̃lỹu, x̃uỹl, x̃uỹu}, max{x̃lỹl, x̃lỹu, x̃uỹl, x̃uỹu}]

[x̃]/[ỹ] =

{
[x̃] · [1/ỹu, 1/ỹl]] , 0 /∈ [ỹ]

R , otherwise

[x̃]1/2 =

{
[x̃l

1/2, x̃u
1/2] , 0 /∈ [ỹ]

R , otherwise

If one of the intervals is infinite, we set the resulting interval to R = [−∞,∞]. Since the

computed intervals [x̃] in general have bounds xl, xu which are not exactly representable by

a floating-point number, we always round downwards (resp. upwards) to obtain an interval

[x̃l, x̃u] that encloses the ’real’ interval and is exactly representable by floating-point upper

and lower bounds. This rounding can be cheaply implemented by switching the rounding

mode of the IEEE floating-point unit. Unfortunately, not all currently used platforms adhere

to the IEEE floating-point standard.

Again we note, though, that the overhead compared to pure floating-point arithmetic is

rather high. In case of the multiplication, 4 times more operations have to be performed,

not even counting the comparisons to determine the maximum and minimum for lower and

upper bounds. Furthermore, switching the rounding-modes on most architectures is a very

costly operations. Still, at the cost of this higher overhead, interval arithmetic gives the best

possible error bounds.

2.2.2.2 Semi-static Error analysis

As we have seen, fully-dynamic error analysis has the drawback of implying a rather large

overhead during runtime.

This suggests dividing the computation of the error bounds in a static part and a dynamic

part. The static part can be precomputed before runtime without any knowledge of the actual



2.2. Preliminaries and Previous Work 69

expr. e approx. ẽ supremum ẽsup index inde

x + y x̃ ⊕ ỹ x̃sup ⊕ ỹsup 1 + MAX(indx, indy)

x − y x̃ 	 ỹ x̃sup ⊕ ỹsup 1 + MAX(indx, indy)

x · y x̃ � ỹ x̃sup � ỹsup 1 + indx + indy

x/y x̃ � ỹ
(|x̃|�|ỹ|)⊕(x̃sup�ỹsup)

(|ỹ|�ỹsup)	(indy+1)·2−p
1 + MAX(indx, indy + 1)

x
1

2

√
x̃





(x̃sup � x̃) �
√

x̃ if x̃ > 0√
x̃sup � 2

p
2 if x̃ = 0

1 + indx

Table 2.1: Rules for computing approximations, suprema and indices.

values of the expressions, whereas the dynamic part is computed during runtime, but with

hopefully much less operations than the error calculations we have seen in the last paragraph.

We will review the semi-static scheme which we have presented in [BFS98]. For sake of

simplicity we neglect the problems of underflow and refer the reader to [Fun97] for a complete

discussion.

For every expression e we not only compute the floating-point approximation ẽ but also

an upper bound ẽsup for |ẽ|, called the supremum of ẽ, and an integer inde – the index of e–,

such that the following bound for the absolute error of the floating-point approximation is

true at all times:

|ẽ − e| ≤ ẽsup · inde · 2−p (2.1)

An input value x exactly representable by a double has the floating-point approximation

x̃ = x, the supremum x̃sup = |x̃| and the index 0. An input value not exactly representable

by a double has the floating-point approximation x̃ = round(x), the supremum x̃sup = |x̃| =

|round(x)| and the index 1.

The index inde may be computed statically whereas ẽ and ẽsup must be computed at

runtime using the inductively given rules in table 2.1. +,−, ·, /, .
1

2 denote exact addition,

subtraction, multiplication, division, and square root, whereas ⊕,	,�, /,
√

denote their

floating-point counterparts.

We see that the computation of the supremum is quite similar to the computation of the



70 Chapter 2. Efficient & Exact Geometric Computation

floating-point approximation itself and therefore the implied overhead is reasonably small. In

case of +,−, ·, only twice as many operations are needed, three times as many in case of
√

.

The division has a considerably higher overhead but its use often can be avoided in practice.

This scheme for error analysis is similar to the one given in [Bur96] but refined in some

respects. In contrast to [Bur96], our scheme unrestrictedly supports divisions and square

roots.

2.2.2.3 Fully static error analysis

If the input data consists of integer values of a bound bit-length and +,−, · are the only

operators used, an upper bound for ẽsup can be determined statically such that no overhead

for the computation of the supremum occurs at runtime . (This is even possible for non-integer

input values where the bit-length of d|e|e is bounded.) An upper bound for the bit-length of

the supremum can be inductively computed using the following formulas:

bitlen± = 1 + MAX(bitlenop1
+ bitlenop2

)

bitlen· = bitlenop1
+ bitlenop2

So there is no overhead at runtime for computing the error bound inde · 2bitlenesup · 2−p.

2.2.3 Filtering of Geometric Predicates

As we have seen with these schemes for computing error bounds of floating-point calculations,

there is always a tradeoff between tightness of the error bound and the run-time overhead

implied by the computation of the error bound. This suggests the following evaluation strategy

for the sign evaluation of an arithmetic expression e:

1. evaluate e using double arithmetic to ẽ

2. check the sign of ẽ with the fully-static determined error bound (if available); only if

this fails, continue

3. compute the semi-static error bound and check the sign of ẽ with that; only if this fails,

continue

4. compute the fully-dynamic error bound and check the sign of ẽ with that; only if this

fails continue

5. evaluate e using exact arithmetic to obtain the sign of e

In this way, easy instances are always decided in early stages of this cascaded evaluation

and the implied overhead is reasonably small. The generation of such cascaded evaluation

schemes can even be automated by tools like EXPCOMP [Fun97, BFS98] which we have

developed.



2.2. Preliminaries and Previous Work 71

The overhead observed in practical applications when comparing such an exact but filtered

implementation with a (not necessarily reliable) floating-point implementation very often is

around a factor of 2 (only measuring the time to evaluate the predicates and not taking into

account the time spent on the combinatorial part of the algorithm). It gets worse, though, if

• the input data exhibits a lot of (near-)degeneracy, i.e. many of the critical expressions

end up with a value of zero or close to zero, which makes it much harder for the filter

stages to decide the predicate, of course.

• the predicates do not only operate on input data but on geometric objects constructed

during the course of the algorithm; remember that if all filter stages fail, the last stage

of the predicate evaluation falls back to exact arithmetic assuming that the input data

is available in an exact representation. So in these cases the filtering only takes place

in the predicate evaluation but not in the constructions.

In the next two Chapters we will present results which try to remedy these drawbacks.



72 Chapter 2. Efficient & Exact Geometric Computation



Chapter 3

Structural Filtering – a New

Approach to Filtering

3.1 Filtering Strategies

The topic of this section is a general discussion of filtering strategies. We view the execution

of an algorithm as a sequence of steps. A step may be anything from the execution of a single

instruction over the execution of a large subprogram to the execution of the entire program.

If every step of an algorithm produces the correct result, the entire computation will produce

the correct result.

The execution of a step consists of the evaluation of conditionals (predicates) and the

execution of the straight-line code between the conditionals. The simplest way to ensure

the correct execution of a step is to guarantee that all conditionals in the step are evaluated

correctly.

An alternative way to ensure the correct execution of a step is to allow errors in the

evaluation of the conditionals, to check at the end of the step whether the step performed

correctly, and, if not, to repair the errors made. Of course, this approach is only viable if

the “unsafe” execution of a step is faster than its “safe” execution, if the correctness check is

simple, if errors occur rarely, and if the repair is simple. Observe that there are four “ifs” in

the preceding sentence. We will show that there are many situations where the answer to all

four ifs is yes.

We start by refining our view of the execution of an algorithm. We view algorithms as

manipulating an underlying data structure and distinguish between search and update steps.

Update steps are pieces of code that may change the underlying data structure and search

steps are pieces of code that do not change the underlying data structure but are otherwise

arbitrary. Structural filtering applies to search steps. It does not modify update steps. Thus

the underlying data structure stays correct. We give three examples to illustrate the concepts.

1. Any algorithm falls under the paradigm if we call the value of all program variables the

underlying data structure, the evaluation of each predicate1 in a conditional a search

1We assume that predicates in conditionals have no side-effects, a minor restriction. In geometric programs

73



74 Chapter 3. Efficient & Exact Geometric Computation

step (the step “searches” for the value of the expression), and call the straight-line pieces

of code between conditionals update steps.

2. Consider a dictionary implementation based on a balanced tree. The tree constitutes

the data structure manipulated by the algorithm. An insert operation consists of a

search step, which determines the position in the tree at which the new key is to be

added, followed by an update step, which adds the key to the tree.

3. Consider an incremental algorithm for constructing Delaunay diagrams. The data struc-

ture is the current Delaunay triangulation and a search structure for locating points in

the triangulation. An insertion of a new point consists of a search step, which locates

the triangle of the current triangulation containing the new point, and an update step

which inserts the point, performs flips to construct the new Delaunay triangulation, and

modifies the search structure.

We postulated that a search step does not change the underlying data structure. A

search step computes information (= the value of a predicate, a position in a tree, a triangle

in a triangulation) which the subsequent update step uses to perform changes on the data

structure. A search step evaluates some number of predicates. We assume that a predicate

can be evaluated in two ways; the expensive way guarantees the correct value and the cheap

way will usually give the correct result, but may err. In this general discussion we make

no assumption about when a cheap comparison errs. In the context of geometric programs

a cheap evaluation of a predicate is the evaluation with floating-point arithmetic, and an

expensive evaluation is the evaluation with exact arithmetic (maybe with a floating-point

filter).

The safe way to perform a step is to use only expensive predicate evaluations. Assume

now that we use cheap predicate evaluations instead. The following observation is trivial but

powerful. If a search step amounts to a walk in an acyclic graph where predicate evaluations

are used to determine the edges to be followed, then a search step will always terminate. In

our three examples above the search is a walk in an acyclic graph2.

The search step, if executed with cheap predicates, may not end in the right sink of the

acyclic graph. We postulate that it is easy to check whether the correct sink is reached. In

our first example, the check amounts to the error-bound computation in the floating point

evaluation of the underlying arithmetic expression, in our second example, the check amounts

to the (exact) comparison with the two neighboring elements, and in the third example, the

check amounts to orientation tests with three sides of a triangle.

If the search step ends in the correct sink of the search graph, we are done at this point.

If the check reveals an error, we still have to find the correct sink. There is a generic way of

reaching the correct sink. Repeat the search with expensive predicate evaluations. Observe

that this is possible because we postulated that a search step does not change the underlying

data structure. In our first example, the generic strategy amounts to an evaluation with

the predicates in conditionals are typically the evaluation of the sign of an arithmetic expression.
2In the first example the graph is a tree with three nodes. In the root the boolean expression is evaluated

and the two children correspond to true and false.



3.1. Filtering Strategies 75

exact arithmetic. In the two other examples, there are better ways to correct the error. In

the second example, we may walk along the leaves of the tree and in the third example, we

may use a walk through the triangulation.

Let us summarize. Structural filtering applies to search steps. If the search step amounts

to the walk in an acyclic graph then it can be performed with cheap comparisons without

the danger of looping. An error in the search step can always be corrected by redoing the

search with expensive comparisons. Better strategies may exist and we gave two examples.

The verification of the search step is problem dependent. With the generic solution to error

correction, only the verification requires additional programming.

What can we hope to gain by structural filtering? The cost of an update step is unchanged.

The cost of a search step is its cost when executed with cheap comparisons, plus the cost of

the check, plus the cost of the repair. Structural filtering is particularly useful if the search

steps dominate the running time of the algorithm. This is the case for our second and third

example and, more generally, for many incremental constructions in geometry. In an insertion

into a tree, the search step has cost O(logn) and the update step has cost O(1). The same

holds true for randomized incremental algorithms for convex hulls, Delaunay triangulations,

Voronoi diagrams, and many other problems.

There is a second phenomenon which is exploited by structural filtering. Predicate eval-

uations may be redundant. There may be several paths to the correct sink and hence errors

in predicates may be corrected by later predicates. Figure 3.1 illustrates the phenomenon for

our third example.

We will next compare structural filtering with filtering on the predicate level and filtering

on the algorithm level.

Filtering on Predicate level

Filtering at the predicate level amounts to evaluate all predicates correctly, but to do so in

a clever way. The evaluation of a predicate amounts to the computation of the sign of an

arithmetic expression. Predicate filtering computes the sign in three stages: In stage one

the expression is evaluated using floating-point arithmetic, in stage two an error bound for

the floating-point computation is computed, and in stage three the expression is evaluated

with exact arithmetic, if the error bound does not suffice to conclude that the sign computed

in stage one is the correct sign. The cheap evaluation of the predicate uses only stage one.

The implementation of predicate filters is discussed in [BFS98] and [MN00]. The efficacy of

floating-point filters is discussed experimentally in [FV96, MN00, Sch99] and theoretically

in [DP99].

Let us consider the extreme cases. If the floating-point computation always computes the

correct sign, the cheap evaluation never errs and saves the computation of the error bound.

The computation of the error bound has typically about the same cost as the computation of

the sign and hence a cheap comparison has about half the cost of an expensive comparison.

Thus we may expect that structural filtering can make significant savings; we should not

expect to see a factor of two since the search step has to do some work outside the predicate

evaluations and since structural filtering has to verify the result of the search.



76 Chapter 3. Efficient & Exact Geometric Computation

If the floating-point computation never computes the correct sign, predicate filtering al-

ways has to resort to exact arithmetic. Since the cost of exact arithmetic is significantly

larger than the cost of floating-point arithmetic (around 10-100 times the cost; see [Sch99],

for example), stage three will dominate the cost of an expensive predicate evaluation and

a cheap comparison is much cheaper than an expensive comparison. Thus, even with the

generic repair technique, the cost of structural filtering is not much larger than the cost of

predicate filtering; observe that the cost of the search step with cheap predicates will be much

smaller than the cost of the search with expensive predicates.

The advantage of predicate filtering is its genericity. Once ”filtered” versions of the pred-

icates are available, all algorithms using them benefit. There is no change required in an

algorithm to switch from unfiltered predicates to filtered predicates. Moreover, the techniques

for writing filtered predicates are well developed and even software supported [BFS98].

The disadvantage of predicate filtering is the fact that the error-bound computation is

always made. Structural filtering avoids it at the cost of the verification of the search step.

Filtering on Algorithm level

While the filters on predicate level work on the level of the most basic (low-level) operations

of an algorithm, filters on algorithm level work on the highest level possible. Here the idea is:

compute with floating-point arithmetic, check the result, and repair, if necessary, to get the

exact result.

There are two problems with filtering at the algorithm level. First, the design of robust

algorithms using only floating-point arithmetic is a difficult task even if robustness only

means that the program should always run to completion. The papers [FM91, Mil88, SOI90]

illustrate the difficulty of designing robust algorithms. Second, the repair step is non-trivial

if the floating-point algorithm does not come with a strong guarantee of what it computes.

The purpose of restricting filtering to the search steps is precisely to guarantee that errors

in predicate evaluations do not corrupt the data structure. Only the paper [KW98] discusses

filtering at the algorithm level and the repair step. The main disadvantage of filtering at

the algorithm level is that there are no widely applicable techniques for obtaining robust

floating-point implementations.

Of course, filtering at the algorithm level approach also has its advantages. If no cheap

evaluation errs, the result will be correct, and the only additional cost is the cost of checking.

In the following sections we will try to give an idea of our new filtering scheme on some

simple examples.



3.2. Sorting 77

3.2 Sorting

In the following we examine how simple sorting algorithms behave when comparisons are

allowed to err. How difficult the repair step is, depends on that behaviour. Surprisingly we

will show that there are differences between sorting algorithms when analyzing them with

respect to robustness against erroneous comparisons.

We consider the problem of sorting a set S = {x1, . . . , xn} from a linearly ordered universe.

Our algorithms may use cheap and expensive comparisons. An expensive comparison always

gives the correct result whereas a cheap comparison may err in a comparison of xi and xj ,

if |rank(xi) − rank(xj)| ≤ k, where rank(x) is the number of elements in S that are smaller

than x.

As a measure for the quality of the outcome xs(1), . . . , xs(n) of a sorting algorithm, we

count the number of inversions, i.e.:

I = |{(i, j) : i < j, xs(i) > xs(j)}|

Lemma 22 Any sorting algorithm using cheap comparisons only may produce a result with

I = ((k − 1) · n)/2 inversions.

Proof. Let x1, . . . , xn be the elements to be sorted (in increasing order). Group them

into n/k groups G0, G1, . . . , Gn/k−1 of adjacent elements, i.e., Gi = {xk·i+1, . . . , xk·i+k}. An

algorithm cannot distinguish between the elements in one group and hence may output them

in decreasing order even if all comparisons between elements of distinct groups are correct.

Each group then contributes (k · (k − 1))/2 inversions.

An immediate consequence of this lemma is the following corollary:

Corollary 2 In our model, any sorting algorithm requires Ω(n · logk) expensive comparisons

to exactly sort a sequence of n elements.

Proof. We only need to observe that O(k · logk) expensive comparisons are needed for each

group of size k to obtain a correct result.

An (almost) sorted sequence containing I inversions can be sorted using (2,4)-finger search

trees with O(n · log(2 + I/n)) expensive comparisons or using insertion sort with O(n + I)

expensive comparisons ([Meh84]). Hence, if we can prove a sorting algorithm to produce

O(k · n) inversions when using cheap comparisons only, we can combine this algorithm with

(2,4)-finger search trees to an exact sorting algorithm which is optimal with respect to the

number of expensive comparisons.

Now we turn to actual sorting algorithms. In particular, we will we will examine merge-

sort, quicksort and heapsort (according to the description in [CLR90] )when executed with

cheap comparisons. It turns out, that quicksort is optimal whereas mergesort is suboptimal.

Heapsort may be optimal, but we can only prove a suboptimal bound.



78 Chapter 3. Efficient & Exact Geometric Computation

3.2.1 Mergesort

Lemma 23 Mergesort with cheap comparisons produces a result with at most k · n · log n

inversions.

Proof. We show that for a (by mergesort possibly incorrectly sorted) list x1x2x3 . . . xn

and elements xi, xj , i < j, we have rank(xi) ≤ rank(xj) + k · logn. The lemma follows

immediately.

We use induction on the number of merging levels. Level 0 with n = 1 is trivial. Now assume

we have two lists x1x2 . . .xn/2 and xn/2+1 . . . xn which we want to merge. Consider w.l.o.g.

an element xj from the first list. By induction hypothesis, all elements xi, i < j have rank

at most rank(xj) + k · logn/2. So the largest element of the second list that is moved to the

result list before xj can have at most rank k + rank(xj) + k · logn/2 = rank(xj) + k · logn.

Lemma 24 For k = 1 mergesort may produce Ω(n · log n) inversions (with cheap compar-

isons).

Proof. Let x1x2 . . . xn be the result sequence of mergesort. The idea of the proof is that

we construct an input for mergesort and the outcome of all comparisons such that there are l

disjoint subsequences of length d ≈ n
l , where each of these subsequences is decreasing. Hence

we get about d2 · l inversions in the resulting sequence. For l = n/ logn and d = log(n/ logn)

this is Ω(n · logn). Note, that only comparisons of elements may err whose ranks differ by

one.

We construct the input recursively. Let L be the set of sequences {L1, L2, . . . , Ll} where

Li = {xi1 , xi2 . . . , xid} with xij = xij−1
− 1 for j = 2 . . .d. And for all i 6= j, Li ∩ Lj = ∅. We

now look at the complete binary tree representing the computation of mergesort.

Starting at the root, we distribute the contents of the sequences to the subtrees. From each

sequence Li we send the first element to one subtree and the remaining sequence to the other

subtree.

More formally, each node v with children vleft, vright is given a set of sequences Sv =

{Lv
1, L

v
2, . . . , L

v
m} and a set of “processed” elements Ev. For the root we have Sroot = L

and Eroot = ∅. Intuitively, Ev are the elements to be distributed amongst the leaves of the

subtree rooted at v.

The procedure for a node v works as follows: first we partition the set Ev into two sets of

equal size Ev = Evleft
] Evright

. We send the heads of the first m/2 sequences to the left

child node, i.e., Evleft
:= Evleft

∪ {head(Lv
i )|i = 1 . . .m/2} and the tails to the right child

node, i.e., Svright
:= {tail(Lv

i )|i = 1 . . .m/2}. The same the other way around with the

second half of the sequences, i.e., Evright
:= Evright

∪ {head(Lv
i )|i = (m/2) + 1 . . .m} and

Svleft
:= {tail(Lv

i )|i = (m/2) + 1 . . .m}.

It is easy to see that the number of elements in Ev of a node v on level k is ek = k · l/2k,

the number of elements in Sv of the same node v is sk = l/2k. Our construction goes through



3.2. Sorting 79

as long as ek, sk ≥ 2. Hence for a given l, the upper bound d for k is given by d = log l. So

we can choose l = n/ logn and d = log(n/ logn). As d < logn, our construction ends a few

levels above the leaves. We then distribute the elements of each Ev arbitrarily among the

leaves of the subtree rooted at v and assign arbitrary values to the still unoccupied leaves.

It remains to show that each of these sequences in L appears in the resulting sequence

of mergesort in reverse (i.e. decreasing) order. This can be easily seen by induction on the

merge steps where such a sequence ”participates” with some of its elements.

Let us consider a sequence Li. When we merge sequences s1, s2, some elements S ⊂ Li

may be present in s1 or s2. If so, exactly one, the largest element x1 of S is in one sequence –

let’s say w.l.o.g. in s1 – and all the rest of S, i.e. x2, x3, . . . , xd′ (xi = xi−1−1 for i = 2 . . .d′),
is in s2 and by induction hypothesis in reverse order. As we assume that elements of different

sequences Li, Lj are compared correctly, the elements of S present in s2 are not interleaved

with elements of other sequences Lj . Again, as elements of different sequences are compared

exactly, there will be a point in the merging process of s1 and s2 where x1 is compared with

x2. This comparison may err since x1 = x2 + 1 and hence x1 is moved to the result sequence

before x2, i.e. S ends up in reverse order in the result sequence of this merging step.

For k = 1, our upper and lower bound have the same order. We leave it as an open

problem to prove a lower bound for k > 1. The lower bound shows that mergesort is not

optimal. The running-time is clearly not affected by the use of erroneous comparisons.

3.2.2 Quicksort

Lemma 25 Quicksort (with cheap comparisons) produces a list with at most 2·k·n inversions.

Proof. We show that for a fixed element y, the rank of an element x right of y in the result

of quicksort is greater than rank(y) − 2k. This implies that the number of such pairs (y, x)

where x < y is at most 2k.

If x < y, but x ends up to the right of y then there must be a node z at which y is routed

to the left or y = z and x is routed to the right or x = z. The element z is either smaller

than x, equal to x, lies between x and y, is equal to y, or is larger than y.

In the first case the comparison between z and y is incorrect and hence the ranks of z and

y differ by at most k. Since x lies between z and y the ranks z and y differ by at most k. The

last case is symmetric.

In the second case the comparison between y and x is incorrect and hence the ranks of x

and y differ by at most k. The next to last case is symmetric.

In the third case the comparisons between x and z and between y and z are incorrect and

hence the rank of either element differs by at most k from the rank of z. Thus the rank of x

and y differs by at most 2k.

This lemma shows that quicksort is optimal up to a constant factor with respect to ro-

bustness against imprecision of the comparison operation.



80 Chapter 3. Efficient & Exact Geometric Computation

It is not obvious that the expected number of comparisons of quicksort is still O(n logn).

The standard argument is that the rank of the root is a random integer in {1, . . . , n} and hence

we get balanced subproblems. This argument does not hold any longer since comparisons may

be incorrect. The argument is basically correct as long as the number of elements in a subset

is much larger than k, say larger than 5k. Once a subset is smaller than 5k the depth of the

resulting tree is at most 5k and hence the depth of the entire tree is O(k+logn). The number

of cheap comparison required by quicksort is therefore O(n · k + n logn). We next improve

the bound to O(n · log n)

Consider the following directed graph on S. We have an arc from x to y if x is declared

smaller than y by a cheap comparison. The indegree of a node is then the number of elements

that are declared smaller and the outdegree of a node is the number of elements that are

declared larger. For each node the sum of the indegree and the outdegree is equal to n − 1.

The total indegree is equal to the total outdegree; both are equal to n(n − 1)/2, the number

of arcs.

The claim is that in any such graph the number of “middle” elements, i.e., those elements

which have their indegree as well as their outdegree bounded by 7n/8 is at least a fixed

fraction of the elements. Here is a proof.

Partition S into sets A, B, and C, where A contains all elements whose outdegree is

at least 7n/8, C contains all elements whose indegree is at least 7n/8, and B contains the

remaining elements. For an element in B the indegree and the outdegree are bounded by

7n/8.

Lemma 26 |B| ≥ n/10.

Proof. Assume that |B| < n/10. Also assume that |A| ≥ |C|. Then |A| ≥ (n − n/10)/2 =

9 · n/20 and hence |B| + |C| ≤ 11 · n/20. Each x ∈ A has an outdegree of at least 7 · n/8; at

most 11 ·n/20 of its outgoing edges can end in B∪C and hence at least (7/8−11/20) ·n > n/8

edges have to end in A. Since every node in A has more than n/8 outgoing edges to nodes in

A there must be at least one node in A whose indegree is larger than n/8, a contradiction to

the definition of A.

The Lemma above shows that at least n/10 elements are good splitters and hence the

recursion depth of quicksort is O(logn) with high probability; see [MR95]. Thus quicksort

uses O(n logn) cheap comparisons with high probability.

3.2.3 Heapsort

Lemma 27 In our model starting with a correct heap, heapsort (with cheap comparisons)

produces a result with at most 2 · k · n · logn inversions.

Proof. Heapsort operates in phases. In each phase it outputs the root of the heap, moves

the key of a leaf into the root and lets the element sink down to its correct position by a

sequence of downheap operations. We show that at the beginning of each phase and for each

node n and its children ci, i = 1, 2:



3.2. Sorting 81

rank(key[n]) − rank(key[ci]) ≤ 2 · k

where key[x] denotes the key stored at node x. It follows that the maximum rank of an

element within the heap is rank(key[root]) + 2 · k · logn, and hence each phase can create at

most 2 · k · log n inversions. The lemma follows.

Let n be a node in the tree, c1, c2 its children, p its parent and key′[x], x ∈ {p, n, c1, c2}
the key stored at x after a downheap operation on node n.

We show that after a downheap operation on node n,

rank(key′[p])− rank(key′[n]) ≤ 2 · k

rank(key′[n]) − rank(key′[ci]) ≤ 2 · k

and if there was a swap with child cs, s ∈ {1, 2}

rank(key′[n]) ≤ rank(key′[cs]) + k

As the downheap operation before the current one has kept the above invariant, we know

that rank(key[p]) − rank(key[n]) ≤ k. We now compare key[n] with min(key[c1], key[c2]).

If no swap happens, we know that rank(key[n]) ≤ rank(key[ci]) + 2 · k and the downheap

operation stops.

If a swap happens with let’s say c1, we have: rank(key′[n]) ≤ rank(key′[c1]) + k and

rank(key′[n]) ≤ rank(key′[c2]) + 2 · k. Hence also rank(key′[p])− rank(key′[n]) ≤ 2 · k. The

downheap operation continues with node c1.

A correct heap can be constructed with a linear number of expensive comparisons. Heap

building with inexact comparisons also yields a heap which satisfies for any node n and its

children c1, c2, rank(key[n]) − rank(key[ci]) ≤ 2 · k.

Summary: We showed that quicksort is optimal in our model up to a constant factor,

and that mergesort is suboptimal. For heapsort we leave the exact behaviour as an open

question.

With a repair step – either finger search trees or insertion sort –, quicksort allows exact

sorting of a sequence with O(n logk) (using finger search trees) or O(k · n) (using insertion

sort) expensive comparisons. The former bound is optimal as we have proved in corollary 2.

Note that for this application, incorrect comparisons always require a repair later on. So

we can only gain by saving the cost of computing the error bound and possibly some exact

arithmetic computations where the error bound is too weak to prove the correctness of a

(correct) floating-point result.



82 Chapter 3. Efficient & Exact Geometric Computation

3.3 Searching

In a comparison based search structure which is a directed acyclic graph (e.g. a tree), we can

use cheap comparisons during the location of a new point without taking the risk of looping.

The only thing we have to make sure is that there is an easy way to get from a possibly

incorrect result of the search to the correct result.

In the following we will consider binary search trees and a search structure for point

location during the randomized incremental construction of the Delaunay Triangulation of

points in the plane.

3.3.1 Binary Search on Trees followed by Linear Search through the Leaves

Consider a comparison based search structure for a linearly ordered set S of objects x1 <

x2 < . . .xn. We use x0 and xn+1 to denote the fictitious points −∞ and +∞. The search

structure divides space into 2n + 1 cells, n cells corresponding to the points in S and n + 1

cells for the open intervals between adjacent points in S. There is a natural linear order on

the cells. Each cell is either a closed or an open interval. In the linear arrangement of the

cells open and closed cells alternate and the extreme cells are open. The following lemma

bounds the maximal “error” of a search in terms of the set of points whose comparison with

the query point is erroneous. It assumes that all comparisons are between the query point

and points in S. All comparison-based realizations of dictionaries have this property.

Lemma 28 Consider a query point q and let i be such that xi < q < xi+1 or xi = q. If the

comparisons between q and xj are correct for |i− j| ≥ k then the cell delivered by a search for

q has distance at most 2k from the cell containing q.

Proof. Assume that a search for q produces a cell C ′ different from C. We may assume

w.l.o.g. that C ′ is to the left of C. Then q was compared with the right endpoint, say xj ,

of C ′ and the outcome of this comparison was erroneous. There are at most the cells xj ,

(xj , xj+1), . . . , xi between C ′ and C. By our assumption we have i − j < k and hence the

distance between C ′ and C is at most 2k.

Under the assumptions of the preceding Lemma the cost of a search for q is O(logn) cheap

comparisons plus O(k) expensive comparisons.

As for sorting, we remark that incorrect decisions always lead to a repair step at the end;

so we only may gain by not having to compute the error bounds and possibly some exact

arithmetic evaluations due to the error bound being too weak.

3.3.2 Point Location for Delaunay Triangulations

In the randomized incremental algorithm for computing the Delaunay triangulation of a set of

points in the plane, a search structure is maintained to locate each new point to be inserted in

the current triangulation. This is usually implemented as a history graph, which is a directed

acyclic graph recording all insertions and flips executed in the algorithm so far. Again, we



3.3. Searching 83

can perform all comparisons cheaply and still get to some sink corresponding to a triangle.

Then we have to check whether the query point in fact lies inside this triangle. If not, we walk

across one side of the current triangle whose inequality was violated to an adjacent triangle.

We continue like that until we reach the correct triangle.

We remark that even if some comparisons are incorrect, the correct triangle may still be

reached directly (see Figure 3.1). So the potential gain in running time is due to saving error

bound computations as well as exact arithmetic evaluations of non-crucial predicates.

A B

C

P

Q
1 2 3

AP BP

PC

1
3

2

Figure 3.1: When locating Q, the orientation of Q w.r.t
−−→
PC is not important.



84 Chapter 3. Efficient & Exact Geometric Computation

3.4 Experimental Results

We performed two experiments to evaluate the benefits of structural filtering. In the first

experiment we sorted points lexicographically and in the second experiment we computed the

Delaunay triangulation of a set of points. For both experiments we used the rational geometry

kernel of the LEDA system [MN00]. In this kernel, points (type rat point) are represented

by homogeneous coordinates of type integer (the arbitrary precision integer type of LEDA)

and also by floating-point approximations of type double. The kernel uses a floating-point

filter on the predicate level (see [MN00, Section 8.7]). An exact evaluation of a geometric

predicate operates in three steps: (1) Compute the value using floating-point arithmetic, (2)

compute an error bound, (3) if necessary, evaluate the predicate using integer arithmetic. A

cheap evaluation performs only step (1).

LEDA, Version 3.8, provides means for easily implementing algorithms according to the

”structural filtering” paradigm. Using a global flag (rat point::float computation only),

the programmer can tell the kernel to always take the sign of the floating-point computation

(step (1)) when evaluating a predicate. Hence implementing a ”cheap” locate procedure just

means turning on this flag and performing the location procedure as usual. To check for the

correctness of the outcome, the ”exact” mode has to be switched on again, of course. Our

experience shows that modifying existing implementations to make use of structural filtering

usually is a matter of a few minutes, adding just a few lines of code.

The rational geometry kernel of LEDA can be used as a kernel traits class with the

algorithms of CGAL and hence structural filtering is also available for programmers using

CGAL [CGA99].

3.4.1 Sorting

Sorting a set of points lexicographically is a very common subroutine in many geometric

algorithms. We have implemented a ”structurally filtered” version of quicksort, i.e., after

choosing the splitter, all elements are distributed to the left or right according to a possibly

inexact floating-point comparison. A call of quicksort is still guaranteed to return a sorted

sequence. This requires the use of a non-trivial conquer-step. The conquer-step is essentially

insertion sort of the splitter and the ”right” sequence until no swaps take place anymore. In

the worst case, this requires O(k2) comparisons per recursion, but overall, the number of such

comparisons is bound by O(n · k) as we have shown. In practice, this turned out to be more

efficient than a ”repair run” over the final result. Usually, only 2 (exact) comparisons are

necessary (to check that the splitter is greater than the rightmost element of the left sequence

and smaller than the leftmost element of the right sequence).

Observe, that repairing the final result could be regarded as a filter on ”algorithm level”,

whereas repairing after every recursion is more the ”intermediate level filter” we are advocat-

ing.

We have compared both implementations, the exact quicksort and the structurally filtered

quicksort with a floating-point-only implementation. As input for all three implementations

we chose randomly generated rat points. The output was the sequence of points in lexi-



3.4. Experimental Results 85

1 · 105 2 · 105 4 · 105 8 · 105 1.6 · 106

qs exact 2.58 5.65 12.5 28.0 63.4

qs repair 1.93 4.35 9.56 21.1 49.7

qs float 1.80 4.05 8.94 19.8 47.2

Table 3.1: Quicksort: total running time in secs, 2 · 105 to 1.6 · 106 points

cographic order. Our experiments show an advantage of about 20–25 % compared to the

”normal”, exact version of quicksort, which is due to not having to compute the error bounds

for most comparisons (see Table 3.4.1). Surprisingly, the version which uses only floating-

point operations, does not perform twice as fast as the exact, predicate filtered version. This

is probably due to cache and memory effects. So the version using structural filtering is only

about 5–7 % slower than the floating-point version. See table 3.4.1 for our results.

3.4.2 Randomized Incremental Delaunay Triangulation

We have implemented the randomized incremental algorithm for computing the Delaunay

Triangulation of a point set in the plane using the LEDA rational geometry kernel. We

call this version dt exact in the following. Then we modified the search structure in our

implementation to make use of structural filtering, i.e., we did the comparisons in the directed

acyclic Delaunay graph using inexact floating-point comparisons and performed ”walking” at

the end to guarantee that we reach the correct triangle. We call this version dt search.

Finally, a simple observation allowed us to even perform all incircle tests (which trigger

”flips”) inexactly. If we guarantee that a flip only takes place in a convex quadrilateral, we

always have a valid triangulation. At the end of the algorithm we start the flipping algorithm

to make sure that the triangulation we have computed is indeed the Delaunay triangulation.

As in the version dt search, we perform the point location with floating-point arithmetic

only, followed by ”walking”. This version is called dt flip.

Why do we hope for an improvement in running time compared to the dt exact version?

In the following we assume that floating-point arithmetic always gives the exact result and

has cost 1 per predicate evaluation. We also assume that the floating-point filter always can

decide the predicate but has cost 2 per predicate evaluation. This is a reasonable assumption

on the overhead imposed by current floating-point filter schemes.

For the query structure, instead of c · log n exact orientation tests – for some constant c

–, we have c · logn floating-point tests followed by three exact orientation tests to verify that

we are in the correct triangle. Hence overall we may decrease our cost by n · ((c · logn) − 3).

For the incircle tests, things are not quite that good. The expected number of incircle

tests is about 9 ·n during the algorithm. Hence the exact algorithm has to pay a cost of 18 ·n.

The modified algorithm where the incircle tests are first done in floating-point arithmetic

only, has to pay a cost of 9 ·n , but has to perform about 3 ·n exact incircle tests at the end,

to check that the local Delaunay property is fulfilled. Hence overall we can only decrease our

cost by 3 · n which probably will be negligible.



86 Chapter 3. Efficient & Exact Geometric Computation

Figure 3.2: Incircle tests are not important, if a center point is inserted later on.

In both cases, though, a considerable gain in performance can be achieved if there were

tests which required arbitrary precision when done exactly, but are not important for the

outcome of the algorithm. An example for this phenomenon was given for the query structure

in Figure 3.1. For the incircle tests, imagine that in the set of input points there is a subset of

more than 3 points lying (almost) on a circle. As long as no point inside this circle is inserted,

all tests involving triangles of 4 of these points are (nearly) degenerate and hence are hard to

decide by the floating-point filter on predicate level. Nevertheless the outcome of any of these

tests does not affect the final result at all as these edges are ”flipped away” later-on when a

point inside the circle is inserted (see Figure 3.2).

The results of our experiments can be found in Tables 3.2, 3.3, 3.4 and 3.5. As input

data we used rat points with homogeneous integer coordinates of different bit-lengths. As

to be expected, for random inputs (Table 3.2), the dt search version gains about 10-15 %

in the overall running time against the dt exact version, due to not having to compute the

error bounds for most predicates. The dt flip version, though, performs much worse since

the additional check over all edges of the triangulation is rather expensive in that case, even

if no flips take place. A similar result can be observed for input data on a grid (see Table

3.3), but here, the advantage of inexact search is even bigger than in the random case.

Looking at the location time only, we have a difference in running time of 20-29 % between

the exact and ”structurally filtered” search (see Table 3.4).

For points near a circle, the picture changes drastically (see Table 3.5). Here the dt flip

version performs much better than the two other versions, and since the dominating cost are

the incircle tests (almost all of them are ”difficult”, i.e., require exact arithmetic) the dt exact

and dt search version do not differ significantly in their running times. The dt flip version

performs more than 30 % better than the other two implementations, since there are many

difficult tests during the algorithm which are not important for the final result. Note that

this difference increases substantially (up to a factor of 3!) if we place one additional point

for example in the center of the circle.



3.4. Experimental Results 87

32 40 52 80 100 128

dt exact 194 195 192 197 194 198

dt search 174 170 169 171 170 175

dt flip 204 204 201 204 206 207

Table 3.2: Delaunay Triangulation: running time in secs; 400000 random points, 32–128 bit

32 40 52 80 100 128

dt exact 208 216 228 268 351 462

dt search 177 188 197 233 314 402

dt flip 216 232 246 290 591 645

Table 3.3: Delaunay Triangulation: running time in secs; 600x600 grid, 32–128 bits

grid random

dt exact 90 86

dt search 64 67

Table 3.4: Point location time in secs, 40bit, 600x600 grid and 400000 random points

32 40 52 80 100 128

dt exact 75.4 74.7 74.8 75.2 75.1 75.8

dt search 73.0 72.8 73.0 73.3 73.1 72.0

dt flip 48.2 48.3 48.4 47.7 48.3 48.5

Table 3.5: Delaunay Triang.: running time in secs; 100000 points near a circle, 32–128 bits



88 Chapter 3. Efficient & Exact Geometric Computation

3.5 Discussion

We have presented a simple filtering scheme which can be used in addition to (or maybe

instead of) the well-known predicate filtering when implementing geometric algorithms. The

main idea is to allow predicate decisions to be erroneous but still guarantee a correct final

result. Of course, this requires some predicates to be evaluated exactly. But the number of

those predicates can be kept rather low as we have shown.

As we have seen in our experimental results, running time can be improved either due to

fewer error bound computations (as in the example of quicksort), or due to exact computations

saved because the result of the predicate is not important (Delaunay triangulation of points

near a circle). The gain in performance varies from 20 % (quicksort and point location in

Delaunay triangulation algorithm) to 30 % (inexact flipping during the insertions).

Our idea is generic in a sense that it can be applied to almost all algorithms whose

operation can be divided into location and update procedures. Structural filtering addresses

the location stage, which usually dominates the running time for incremental algorithms. The

next chapter will focus on how to make the update stages more efficient and also deals with

the efficient construction of geometric objects.



Chapter 4

LOOK – a Lazy Object-Oriented

Kernel for Geometric Computation

4.1 Designing a Kernel for Exact Geometric Computation

Geometric Algorithms consist of different layers, the bottommost layer – the kernel – being

basic objects and predicates, and the arithmetic used to do the computations. The next layer

are basic algorithms and datastructures. Further layers convert data to different representa-

tions, to output, and from input. A geometric algorithms library provides components for the

different layers. Ideally, the layers should only communicate using a well-defined interface,

such that replacing one implementation of a layer by another should not affect the function-

ality of the whole system. While the geometric part of the LEDA library [MN00] still has a

rather monolithic design, the CGAL library (Computational Geometry Algorithms Library

[CGA99]) is completely modular in way that single layers can be replaced by alternative

implementations.

In this Chapter we will be only concerned with the design of a kernel for a geometric algo-

rithms library, i.e. the bottommost layer where basic objects like points, lines and predicates

like the sidedness test are implemented. We will discuss the suitable representation, storage,

and construction of geometric objects as well as the use of floating-point filter techniques.

In particular the last item will be discussed and treated extensively. The difficulty of

integrating floating-point filter techniques in a kernel design lies in the fact that in ”usual”

kernel designs (e.g. LEDA or CGAL) geometric objects like points and lines are represented

by their coordinates (either cartesian or homogeneous) and hence the construction of an

object requires the exact computation of its coordinates. Otherwise there is no way we can

guarantee the correct evaluation of each predicate, as in the worst case (i.e. when all filter

stages fail), the exact representation of the involved objects must be available.

The exact computation of object coordinates has two undesirable consequences. On one

hand the running time increases dramatically when operating with constructed objects due to

the increased numerical complexity, but maybe even more importantly, the space consumption

grows rapidly. So in practice, users either write their own routines to allow for filtering on

construction level (which can be supported by tools like EXPCOMP [BFS98]) or use rounding

89



90 Chapter 4. Efficient & Exact Geometric Computation

schemes after every construction to keep the numerical complexity and space requirements

low, see [For99] for example. Note though, that these rounding schemes actually require a

proof that they do not affect the final result considerably. These proofs are non-trivial and

usually cannot be generalized. So each application has to be considered separately.

In this Chapter we present a new kernel design called LOOK (Lazy Object-Oriented

Kernel for geometric computation) which supports filtering also for geometric constructions.

The main idea is that geometric objects are not represented by their coordinates, but by the

geometric operation that produced them. Hence exact computation of the coordinates is still

possible, but does not have to be performed on construction, and only if needed at all.

In section 4.2 we will briefly survey the features of LOOK which are fairly standard and

match existing kernels for geometric computation. Section 4.3 is the core of this Chapter, as

it discusses in detail the concepts of the implementation that allow for filtering on geometric

object level. Section 4.4 shows how to use and extend the framework provided by LOOK.

Finally, Section 4.5 gives extensive experimental results, which show the benefits of lazy-

construction for nested computations.

4.2 Features of LOOK

Like the LEDA RatKernel [MN00], the standard geometric kernel in LEDA, which builds

upon exact homogeneous integer representation, or the CGAL kernels, LOOK provides class

representations for 2d points and may other 2d geometric objects that can be constructed

from points, like circles, lines, segments, etc. In LOOK they are called OPOINT, OCIRCLE,

OLINE, OSEGMENT , etc.

Similar to the CGAL kernels when parameterized with leda real as representation type

([BFMS99]), LOOK also provides support for computation with algebraic geometric objects

as they occur for example when intersecting circles. (Actually we only allow geometric objects

created by a subset of the algebraic numbers, namely the numbers that can be generated as

the result of an expression involving +,−, ·, / and k-th root.)

The geometric constructions supported by LOOK currently include line (segment) inter-

section, computing the center of a triangle, intersection of circles, etc. Of course, all common

geometric predicates like orientation test, incircle test etc. are also available.

Programmers can easily replace the default LEDA RatKernel in LEDA’s geometric algo-

rithms by LOOK. Due to the genericity of CGAL, it is also no problem to use LOOK as a

kernel implementation for the algorithms in CGAL.



4.3. Implementation Concepts 91

4.3 Implementation Concepts

What distinguishes our kernel from other existing kernels is the idea of ’bookkeeping’ on

object level. This approach was already suggested in [FV96] as ’lazy constructor evaluation’,

but so far if a programmer wanted to use it, he had to hand-code everything — from the object

representations to the predicates. We have developed a tool called EXPCOMP [BFS98] which

supports implementations with lazy constructor evaluation but it does not provide a general

framework for geometric computation; the programmer still has to implement all predicates

and constructions from scratch.

The main idea of our implementation is the following: when we construct a geometric ob-

ject, we do not compute its coordinates exactly, but only their floating-point approximations

and also store references to the objects which were involved in the construction. If later a

more precise or exact coordinate representation of the object is required, we can compute this

using this ’history’ of the object. So with every geometric object we have a so called object

dependency graph associated, which is a directed acyclic graph recording the ’construction’

of the object. Every node of this directed acyclic graph corresponds to a geometric construc-

tion. Figure 4.1 shows the object dependency graph for a point object resulting from a line

segment intersection of two segments PQ and RS followed by a centerpoint computation of

the intersection point and S and T .

Centerpoint

Segment Intersection

P Q R S T

Figure 4.1: Object dependency graph for a segment intersection followed by a center compu-

tation

The same approach, but on the level of operators in arithmetic expressions is taken in

the number type LEDA real. First, one only computes a floating-point approximation

for the expression, but also builds an acyclic directed graph recording its ’construction’ with

the nodes corresponding to arithmetic operators. If the current floating-point approximation

of an expression value does not suffice e.g. for a sign determination, one can recompute

a better approximation using this ’history’ information. But as it was already mentioned

in [FV96] and can be seen in [BFMS99], this bookkeeping on arithmetic operator level has

its cost. An overhead factor of around 10–50 compared to pure floating-point computation

can be expected just for computing the floating-point approximation and storing the history



92 Chapter 4. Efficient & Exact Geometric Computation

information.

When performing ’bookkeeping’ on object level, the overhead occurs only once for every

geometric construction instead of every arithmetic operation, so we can expect a considerable

gain in running time. But what can we expect when comparing with the present kernels for

rational geometric objects like the LEDA RatKernel or the parametrized kernels of CGAL?

Clearly there is a potential for improving the performance, too, as they always perform

geometric constructions exactly using a datatype for exact/arbitrary precision arithmetic;

only the predicate evaluations are tuned using floating-point filter mechanisms. Especially

when we deal with deeply nested geometric constructions, where the exact constructions get

very expensive, our approach should pay off.

When designing a geometric kernel, it is very important to wrap these techniques as

transparently as possible to the programmer. In the following we will touch upon the main

issues in our kernel implementation and how it is wrapped up. Note that the core object of

our kernel is the point (we call it OPOINT ), since all other geometric objects in our kernel are

represented by tuples of points. This does not always seem very natural for example when a

line is given by its line equation ax + by = 1, but observe that in this case, one can obtain

a point-based representation of the same numerical complexity, namely the points P1(0, 1, b),

P2(1, 0, a). Things get more difficult, though, when it comes for example to the representation

of circles. They can be represented by three points on the circle, one centerpoint and one point

on the circle, or by a centerpoint and the radius. Switching between these representations

might increase the numerical complexity, so care has to be taken when choosing the most

appropriate representation for the given application. Of course, one might consider adding

other core objects to the kernel if the necessity arises.

4.3.1 Floating-point filters

The use of floating-point filters to speed up the exact evaluation of predicates has become

standard when implementing geometric algorithms. If a predicate is expressed as the sign

of an arithmetic expression, the idea is first to evaluate this expression using floating-point

arithmetic but also compute an error bound to determine whether the outcome reliable.

According to the way this error bound is computed, we can classify floating-point filters

into static (error bound is computed completely before runtime), semi-static (the error bound

is partly computed before runtime) and dynamic (the error bound is computed completely

at runtime). Obviously, static error bounds incur the least overhead at runtime but tend to

be rather weak, whereas the dynamic bounds are typically pretty tight but incur a larger

overhead. Examples for these techniques can be found in [BBP98, BFS98, DP99, FV96,

KLN91]

As we are dealing with possibly nested computations, using static filters seems to be a

bad idea because after few levels of computation their error bounds get very imprecise. So we

decided to use dynamic filtering techniques for all constructions and predicates, but also use

semi-static filters as the very first step in predicate evaluations. In the actual implementation,

we use the new LEDA datatype INTERVAL which is the interval arithmetic implemetation from

[BBP98] making use of the IEEE rounding modes to keep the overhead compared to floating-



4.3. Implementation Concepts 93

point computation relatively low (around a factor of 4–6) and – for some predicates – the

preprocessing tool EXPCOMP [BFS98] which automatically generates semi-static filter code

(which usually has an overhead of only about 1–2). For this purpose, we had to slightly modify

the version of EXPCOMP presented in [BFS98] to make it compatible with the INTERVAL

datatype.

4.3.2 Cartesian and Homogeneous Representations

When designing a geometric kernel, one can choose between a representation of the points

in the plane using cartesian or homogeneous coordinates. With cartesian coordinates, a

point is represented by two (integer, rational or algebraic) values px, py. With homogeneous

coordinates, the point is represented by three values pX , pY , pW s.t. px = pX/pW and

py = pY /pW .

One advantage of the homogeneous representation is the fact that if we restrict ourselves to

rational objects, we can perform all computations using integer arithmetic without divisions.

This is the approach taken in the LEDA RatKernel. There is one problem, though: if the

computation is nested, the homogeneous coordinates tend to get very large. Consider the

following example:

Given three points p, q, r represented using homogeneous integer coordinates of bitlength

16. Compute the center c of these points. The expressions for computing the homogeneous

coordinates of c have degree 6, so the bitlength of cX , cY ,cW will be around 96.

This becomes especially a problem if we use this homogeneous representation for the

floating-point approximation of c as well. Since an incircle test expressed in homogeneous co-

ordinates has a degree of 12, we would get a value of bitlength more than 1100! Remembering

that a variable of type double according to the IEEE standard [IEE85] can have a value of

at most 21024, we see that in these cases, a floating-point filter will always fail. Note that this

failure is not due to geometric ’difficulty’ but only due to the numerical representation.

For this reason we decided to compute the floating-point approximation of a point using

cartesian coordinates first, and only if necessary, compute its homogeneous floating-point

coordinates (as in some cases they allow for detection of degenerate cases with the floating-

point filter, which is not as easy with the cartesian representation). With the cartesian

representation, only predicates difficult in a geometric sense (i.e. almost or exactly collinear,

cocircular, etc.) cannot be decided by the filter.

For the exact representations we decided to store homogeneous leda integer coordinates

and cartesian leda real coordinates. Remember though, that – as for the homogeneous

floating-point approximations – memory for these representations is only allocated if their

value is actually requested and computed. We will go into more detail how this works in

section 4.3.4.

Furthermore, we have ensured that arbitrary precision computations are performed using

leda integer arithmetic as long as possible. So only objects which have square roots involved

in their construction may have leda real representations.



94 Chapter 4. Efficient & Exact Geometric Computation

4.3.3 Reference Counting and Handles

Before we define an actual object representation for our points, we have to think about some

requirements. It is clear that the points we are dealing with may be defined by input data,

but they also might be the result of some geometric construction. Nevertheless, when we use

a point later on, we shouldn’t have to care about that. Current geometry kernels solve this

problem by simply computing the coordinates of the point using exact arithmetic; then there

is no difference to a point defined by input data with the exactly those coordinates. But

as we do not want to perform the constructions exactly, we have to think about something

different.

A first approach would be to write an abstract base class base point which defines the

properties of a point. Then for every possible construction, we derive a specialized class from

base point . For example a class doubleC point representing points initialized by cartesian

double coordinates fills in the necessary functionality based on the double precision input data

it is initialized with, another example would be a class Intersection Point , also derived from

base point , which fills in the functionality using the data computed by the intersection of

two lines.

With this scheme, we could write all predicates in terms of pointers or references to the

abstract base class base point and still plug-in pointers/references to different derived in-

stances into the predicates. There are some caveats when using the pointer- or reference-based

scheme, though, in particular one has to be very careful when allocating and deallocating

memory for the objects.

One possible solution for this problem is the use of reference counting. For every distinct

point object there exists exactly one representative and the programmer can access this repre-

sentative only via a so called handle. If an assignment takes place (which is between handles,

then), only the pointer to the representative is copied and a reference counter associated

with it is incremented. The representative lives as long as it is referenced by at least one

handle. The advantage of this scheme, apart from faster assignments of large objects, is the

simplification in memory handling. And, of course, if the same object is copied frequently,

the memory consumption is also much lower.

In our concrete implementation, we have a handle class OPOINT , which basically just

contains a pointer of type base point . base point itself is the abstract base class for all

point types. Figure 4.2 gives an overview of the class scheme in LOOK.

So if one wants to add a construction to LOOK (for example computing the midpoint of

two points), one has to derive from the abstract base class base point and implement the

necessary virtual member functions. As we will see in section 4.4, these member functions

basically describe how this midpoint is computed using different arithmetic datatypes.

4.3.4 Lazy Evaluation

4.3.4.1 Constructions

As mentioned, we use a lazy evaluation scheme for all geometric objects in our kernel. This

implies that on construction of a geometric object, we only compute its floating-point approx-



4.3. Implementation Concepts 95

doubleH_point

concrete representatives

handle

OPOINT
base_point abstract representative

segment

intersection

Figure 4.2: Object classes in LOOK

imation and store references to its defining objects. Only if later on, the exact coordinates as

leda real or leda integer are requested, they are computed using the information about

the defining objects. Of course, this usually triggers an exact evaluation of these defining

objects as well.

To wrap the lazy-evaluation functionality in a transparent manner, we allow the pro-

grammer to access the coordinates of a geometric object only using member functions. The

member function for the exact integer X-Coordinate looks as follows:

leda_integer base_point::X()

{

if (!(Status&COMPUTED_HEXACT))

SharpenHEXACT();

return Ext->_XCoord;

}

It is first checked, whether we already have computed the exact homogeneous coordi-

nates, and if not, we compute them by calling the SharpenHEXACT() member function.

SharpenHEXACT() again is a wrapper function:

void base_point::SharpenHEXACT()

{

if (Ext==NULL) // memory allocation necessary ?

Ext=new ExtendedBlock;

ComputeHExact();

// sharpen homog. FP-APX

Ext->_XCoordAPX=INTERVAL(Ext->_XCoord);

Ext->_YCoordAPX=INTERVAL(Ext->_YCoord);



96 Chapter 4. Efficient & Exact Geometric Computation

Ext->_WCoordAPX=INTERVAL(Ext->_WCoord);

// sharpen cart. FP-APX

leda_rational xR(Ext->_XCoord,Ext->_WCoord),

yR(Ext->_YCoord,Ext->_WCoord);

__xCoordAPX=INTERVAL(xR);

__yCoordAPX=INTERVAL(yR);

Status|=(COMPUTED_HAPX|COMPUTED_HEXACT

|COMPUTED_CAPX);

Birthday++;

}

We first check if we have to allocate the memory for the extended datastructure, since

by default we only store (and allocate memory for) the cartesian double approximation of an

object. Then we call the actual function computing the coordinates and use this exact value

to sharpen the floating-point approximations of the current object. Finally we increment the

’birthday’ of the current object. Intuitively speaking, an object is ”reborn” each time a more

precise coordinate representation of it is computed. The next section will explain the purpose

of that in more detail.

Note that the code for triggering the lazy evaluation mechanism is completely encapsu-

lated in the ::X() and ::SharpenHEXACT() member functions. If a new class is derived

from base point , the programmer only has to provide the member functions which actually

compute the coordinates (here: ComputeHExact() ).

To sum it up, every point object derived from base point in our kernel provides the

following member functions for accessing the coordinates in different formats and types:

name Type Format

::x() ::y() leda real cartesian

::xAPX() ::yAPX() INTERVAL cartesian

::X() ::Y() ::W() leda integer homog.

::XAPX() ::YAPX() INTERVAL homog.

::WAPX()

Keep in mind that because of the lazy evaluation mechanism, the corresponding values

are only computed when requested by a call to one of these member functions. Only the

cartesian floating-point approximations are computed on instantiation to save a redirection

in this case.

4.3.4.2 Predicates

Of course, the predicates must also know about the lazy-evaluation mechanism in the objects

they are working on. We will briefly sketch how we implemented the very common orientation

test. Note that this code fragment includes special statements which are preprocessed by

EXPCOMP ([BFS98]) – a tool for automatically generating efficient floating-point filter code.

In this example we use EXPCOMP to generate a first filter stage which uses a semi-static

floating-point filter based on the cartesian representation.



4.3. Implementation Concepts 97

int orientation(const OPOINT &a, const OPOINT &b,

const OPOINT &c)

{

int sgn_res=NO_IDEA;

BEGIN_FILTER // 1st stage generated by EXPCOMP

{

DECLARE_ATTRIBUTES real_apx_type FOR a.x() a.y()

b.x() b.y() c.x() c.y();

exact AX=a.x(); exact AY=a.y();

exact BX=b.x(); exact BY=b.y();

exact CX=c.x(); exact CY=c.y();

exact D=(AX-BX)*(AY-CY)-(AY-BY)*(AX-CX);

sgn_res=sign(D);

}

END_FILTER

if (sgn_res==NO_IDEA) // 2nd stage

{

INTERVAL AX=a.xAPX(); INTERVAL AY=a.yAPX();

INTERVAL BX=b.xAPX(); INTERVAL BY=b.yAPX();

INTERVAL CX=c.xAPX(); INTERVAL CY=c.yAPX();

fpu::round_up();

INTERVAL D=(AX-BX)*(AY-CY)-(AY-BY)*(AX-CX);

sgn_res=msign(D);

fpu::round_nearest();

}

if (sgn_res==NO_IDEA) // 3rd stage

{

if ((a.RatType() && b.RatType() && c.RatType())

{

/*homogeneous test using */

/*interval-arithmetic */

/*accessing a.XAPX() .... c.WAPX() */

if (sgn_res==NO_IDEA)

/*homogeneous test using exact */

/*exact integer arithmetic */

}

else // 4th stage

sgn_res=sign((a.x()-b.x())*(a.y()-c.y())

-(a.y()-b.y())*(a.x()-c.x()));

}

return sgn_res;

}

The evaluation strategy is as follows:

1. cartesian evaluation using a fast filter implementation generated by EXPCOMP (this

accesses the ::xAPX() and ::yAPX() member functions)

2. cartesian evaluation using interval arithmetic (tighter error bounds, but slower; accesses

the ::xAPX() and ::yAPX() member functions)



98 Chapter 4. Efficient & Exact Geometric Computation

Centerpoint

P T

Segment Intersection

ORIENTATION

Q R S

U V

Figure 4.3: Object dependency graph for an orientation test

3. If the involved objects are all of rational type:

(a) homogeneous evaluation using interval arithmetic (accesses the ::XAPX() , ::YAPX()

and ::WAPX() member functions)

(b) homogeneous evaluation using exact LEDA integer arithmetic (accesses the

::X() , ::Y() and ::W() member functions)

4. If they are of algebraic type:

(a) cartesian evaluation using exact LEDA real arithmetic (accesses the ::x() and

::y() member functions)

So only if a predicate cannot be decided by the earlier stages, additional time and space

is spent on a more accurate computation of the involved objects and the predicate itself.

4.3.5 Progressive Exact Evaluation

Using the lazy evaluation scheme, we first try to evaluate the predicate using floating-point

arithmetic and if the outcome cannot be proved to be correct, we trigger an exact computation

for all objects involved in that predicate (which in turn triggers exact computations of their

’defining’ objects) and then evaluate the predicate using exact arithmetic. But can we do

better?

Let us first extend the definition of the object dependency graph and also allow geometric

predicates as nodes (actually we only allow them as the root of an odg). Consider the object

dependency graph in figure 4.3. Let us define the depth of an object in the object dependency

graph as the maximum length of a path from the root to that object.

So far, if the floating-point evaluation of the orientation test fails, exact arithmetic compu-

tation of all objects involved (P, Q, R, S, T,U, V , intersection point, centerpoint) is triggered.

But it may help only to compute the coordinates of the objects on depth 2 (here: the in-

tersection point) exactly, improve their floating-point approximations using the exact values



4.3. Implementation Concepts 99

and then recompute the floating-point approximations of the ’higher’ objects (here: the cen-

terpoint). Since we get better error bounds now, this may suffice to decide the orientation

predicate. Hence, if the floating-point evaluation of a predicate fails, we proceed as follows:

1. determine the deepest node in the object dependency graph which has not been evalu-

ated exactly; assume its depth is d; if d = 1, evaluate the predicate exactly

2. evaluate all objects with depth d exactly and improve their floating-point approxima-

tions

3. reevaluate the floating-point approximations of all objects with distance less than d to

the root

4. if no decision could be made, start from 1. again

Note that actual ’exact evaluation’ is possible only for rational objects. For algebraic

objects, ’exact evaluation’ means determining the value as a leda real and ’improving the

floating-point approximations’ means evaluating the leda real representation to double

precision.

To allow for an efficient implementation, we store a birthday for every object. Objects

built of input data have birthday 0. When a new geometric object is constructed (and its

floating-point approximation is computed), it gets as birthday the sum of the birthdays of its

defining objects. When the leda integer or leda real representations of the coordinates

of an object are triggered and the floating-point approximation are improved accordingly, its

birthday is incremented by one. Then, in the process of progressive exact evaluation, if an

object realizes that the sum of the birthdays of its defining objects is greater than its own

birthday, it knows that it can improve its floating-point approximation by just recomputing

using the improved floating-point approximations of its defining objects.

We skip this additional code in the predicate evaluation, but it only adds a few lines to

the code given for the orientation test.

4.3.6 Conservative Memory Management

So far our strategy is to perform exact computation only on demand, but once computed

keep the result such that if later the same result is required, no recomputation is necessary.

For some applications, though, where memory consumption is an issue, it may be more

appropriate not to keep the exact results, i.e. after a predicate evaluation which possibly

triggered a sequence of arbitrary precision computations, we discard the arbitrary precision

results and only keep the refined floating-point approximations.

We have incorporated a simple toggle in the LOOK kernel to switch between discarding

and keeping results computed using arbitrary precision arithmetic. If a predicate evaluation

required arbitrary precision arithmetic and the ’discard’ toggle is set, it recursively frees all

extended blocks allocated during the evaluation of the predicate.

As it turns out, there are cases where discarding the computed results in a better runtime

than keeping them. This is probably due to the cache getting less effective, if memory

consumption is very high.



100 Chapter 4. Efficient & Exact Geometric Computation

4.4 How to Use it as a Programmer

4.4.1 ’Normal’ Use

The nice thing about LOOK is the fact that it encapsulates and hides all of the above mech-

anisms from the programmer. If he does not want to introduce new geometric constructions

or predicates, he can use the geometric object representations provided by LOOK in exactly

the same manner as if he was using a geometric kernel of LEDA or CGAL.

4.4.2 Extending LOOK

Nevertheless, adding functionality to LOOK is not hard either. For instance adding additional

predicates is very easy, given the examples already present in LOOK. They show how the

different floating-point filter stages are combined to get best performance. For very efficient

code, we also recommend using EXPCOMP [Fun97] for the first filter stage as it was done in

case of the orientation predicate.

But even if she wants to extend LOOK beyond the geometric constructions already pro-

vided, the effort is not much more than writing these constructions for another kernel, for

example the LEDA or CGAL kernels. Basically she only has to derive a new point class

from the abstract class base point and implement the member functions which actually

compute the coordinates of the new point. With little more effort, she can also support the

progressive exact evaluation code. In the following we will consider the simple example of

line intersections.

4.4.2.1 Example: Intersection of Lines

For sake of simplicity, we neglect the case where the lines are parallel or identical. Of course,

in the actual implementation these cases are treated as well.

We first derive a new class from the abstract representation class base point rep . An

instance of this new class line intersection upon instantiation stores the defining lines,

determines its type (either rational or algebraic), triggers the computation of its approx-

imated cartesian coordinates and stores its ’birthday’ which is needed for the progressive

exact evaluation mechanism.

class line_intersection : public base_point_rep

{

OLINE L1, L2;

public:

line_intersection(const OLINE &l1,

const OLINE &l2)

{ L1=l1;L2=l2; SharpenCAPX();

if (L1.RatType() &&

L2.RatType())

Status|=RAT_TYPE;

Birthday=L1.Birthday()+L2.Birthday();

}



4.4. How to Use it as a Programmer 101

private:

virtual int ComputeHExact();

virtual int ComputeHApprox();

virtual int ComputeCExact();

virtual int ComputeCApprox();

virtual void Reincarnate(); //optional

virtual int DeepestInexact(); //optional

virtual void SharpenAtDepth(int d); //optional

};

The programmer only has to implement the virtual ComputeXXX() member functions

as they are called from the lazy-evaluation mechanism of the parent base point rep class.

Optionally, if the new class should also make use of the progressive exact evaluation scheme,

implementations for the Reincarnate() , DeepestInexact() and SharpenAtDepth() member

functions can be given, though these implementations are almost generic and only depend on

the number and type of ’defining’ objects.

As we neglect the degenerate cases of identical or parallel lines, the implementation of

our IntersectLines() 1 function is trivial. We just initialize a new OPOINT -handle with the

representative of the line intersection:

int IntersectLines(const OLINE &l1,

const OLINE &l2,

OPOINT &s)

{

s=OPOINT(new line_intersection(l1,l2));

return 1;

}

Of course, what is really interesting now, are the implementations of the virtual ComputeXXX()

member functions.

int line_intersection::ComputeCExact()

{

OPOINT S1=L1.Source(), T1=L1.Target(),

S2=L2.Source(), T2=L2.Target();

leda_real dx1=T1.x()-S1.x();

leda_real dy1=T1.y()-S1.y();

leda_real dx2=T2.x()-S2.x();

leda_real dy2=T2.y()-S2.y();

leda_real w=dy1*dx2-dx1*dy2;

leda_real c1=T1.x()*S1.y() -

S1.x()*T1.y();

leda_real c2=T2.x()*S2.y() -

S2.x()*T2.y();

1the only thing of this section a ’normal’ programmer will ever see



102 Chapter 4. Efficient & Exact Geometric Computation

_xCoord()=(c2*dx1-c1*dx2)/w;

_yCoord()=(c2*dy1-c1*dy2)/w;

return 1;

}

and

int line_intersection::ComputeCApprox()

{

OPOINT S1=L1.Source(), T1=L1.Target(),

S2=L2.Source(), T2=L2.Target();

INTERVAL t1x=T1.xAPX(), t1y=T1.yAPX();

INTERVAL s1x=S1.xAPX(), s1y=S1.yAPX();

INTERVAL t2x=T2.xAPX(), t2y=T2.yAPX();

INTERVAL s2x=S2.xAPX(), s2y=S2.yAPX();

fpu::round_up();

INTERVAL dx1=t1x-s1x, dy1=t1y-s1y;

INTERVAL dx2=t2x-s2x, dy2=t2y-s2y;

INTERVAL w=dy1*dx2-dx1*dy2;

INTERVAL c1 = t1x*s1y - s1x*t1y;

INTERVAL c2 = t2x*s2y - s2x*t2y;

_xCoordAPX()=(c2*dx1-c1*dx2)/w;

_yCoordAPX()=(c2*dy1-c1*dy2)/w;

fpu::round_nearest();

return 1;

}

The code for the pair ComputeHExact() / ComputeHApprox() is analogous. In fact, the

code for computing the approximation is in most cases just a copy of the ’exact’ code with

the arbitrary precision number type replaced by the interval type.

Note that in the code for computing the approximations, we have to switch rounding

mode of the floating-point unit before doing any calculations as the interval type INTERVAL

relies on the correct IEEE rounding mode when determining upper and lower bounds of the

intervals (there is also a version, where the switch of the rounding mode is done implicitly,

but it is considerably slower as it has to be done before and after every arithmetic operation),

see [BBP98] for more details.

By just providing the above code, points generated by intersection of lines can ben-

efit from all advantages of our framework; in particular, an OPOINT constructed using

IntersectLines(...) can be plugged into any predicate within the LOOK kernel. If the

predicate turns out to be ’difficult’ the exact evaluation of the intersection point is automat-

ically triggered. The code allowing for that is all inherited from class base point rep , so

the programmer does not have worry about that.



4.4. How to Use it as a Programmer 103

To be complete we state the missing code for the optional Reincarnate() , DeepestInexact()

and SharpenAtDepth() member functions.

virtual int line_intersection::Reincarnate()

{

if (Status&COMPUTED_HEXACT)

return 0;

L1.Reincarnate(); L2.Reincarnate();

int NewBirthday=L1.Birthday()+L2.Birthday();

if (NewBirthday>Birthday)

{

Birthday=NewBirthday;

ComputeCApprox();

return 1;

}

else return 0;

}

virtual int line_intersection::DeepestInexact()

{

if (Status&COMPUTED_HEXACT) return 0;

int l1=L1.DeepestInexact();

int l2=L2.DeepestInexact();

return MAX(l1,l2)+1;

}

virtual void line_intersection::SharpenAtDepth(int d)

{

if (d==1) SharpenHEXACT();

else if (d>1)

{

L1.SharpenAtDepth(d-1);

L2.SharpenAtDepth(d-1);

}

}

Just as a remark, the implementation of the IntersectSegments() function is trivial

when reducing it to the line intersection:

int IntersectSegments(const OSEGMENT &s1,

const OSEGMENT &s2, OPOINT & p)

{

int s1_s, s1_t, s2_s, s2_t;

s1_s=orientation(s1,s2.Source());

s1_t=orientation(s1,s2.Target());

s2_s=orientation(s2,s1.Source());

s2_t=orientation(s2,s1.Target());

if ((s1_s!=s1_t) && (s2_s!=s2_t))

{



104 Chapter 4. Efficient & Exact Geometric Computation

p=OPOINT(new line_intersection(s1,s2));

return 1;

}

return 0;

}

Note that the orientation tests called from this function are, of course, fully filtered.



4.5. Experiments 105

4.5 Experiments

In this section we compare implementations of geometric algorithms using our LOOK kernel

with implementations based on the LEDA RatKernel and the CGAL kernel. The test platform

was a Sun UltraSparc 333 Mhz with 128 MB RAM running Solaris 2.7. We used g++ 2.95.3,

LEDA 4.0, and CGAL 2.2.

4.5.1 LOOK compared to LEDA’s RatKernel

In our first example, we examine how different geometry kernels behave when we increase the

nesting depth of geometric constructions.

We have tested seven different implementations of Dwyer’s divide-and-conquer algorithm

for computing the Delaunay triangulation of a set of points in the plane ([Dwy87]). First

one using the floating-point kernel of LEDA (FPKernel), then two variants using the rational

kernel of LEDA. In both variants, constructions are always performed using exact integer

arithmetic; in the first variant (which is the one in the current LEDA version), though, predi-

cates are filtered using a floating-point filter based on homogeneous coordinates, whereas the

second variant additionally incorporates a floating-point filter based on cartesian coordinate

representation to overcome the problem of overflow as discussed in section 4.3.2.

Finally there are four variants using the LOOK kernel. The first one keeps all results com-

puted using arbitrary arithmetic and uses the progressive evaluation scheme (MaxMem/PEE);

the second one also keeps all results but does not use the progressive evaluation scheme

(MaxMem/no PEE). The third one deletes all results computed using arbitrary precision

arithmetic after each predicate evaluation and uses the progressive evaluation scheme (Min-

Mem/PEE) whereas the fourth variant neither keeps exact results nor uses the progressive

evaluation scheme (MinMem/no PEE).

As a benchmark we iterated Voronoi diagram computations. Starting with a point set

S0, in iteration i we determined Si+1 from Si by computing the Delaunay triangulation of Si

and adding the circumcenters of all triangles. By this procedure, the number of elements in

Si roughly tripled in each iteration. Note that about 2/3 of the elements in Si are created in

the (i − 1)-th iteration, so most predicate evaluations involve data points constructed in the

previous stage.

As S0 we generated a set of N randomly distributed points on a 32bit integer grid such

that the final iteration computes the Delaunay triangulation of about 8000 points. To keep

the comparison between lazy construction in LOOK and the immediate exact arithmetic

construction in the RatKernels fair, we always skipped the construction of the circumcenters

in the last iteration. Tables 4.1 and 4.2 show the results for different numbers of iterations.

We give both, the total running time and the time spent for constructing the circumcenters.

Of course, the variants using LOOK use very little time for construction as they only store

the involved objects and compute a floating-point approximation. But if later, during the

computation of the Delaunay triangulation in the next iteration, the coordinates are requested

in arbitrary precision arithmetic, the arbitrary precision computation is triggered.

We now look in more detail at the (MaxMem/PEE) instance where we initially start with



106 Chapter 4. Efficient & Exact Geometric Computation

# of Initial FPKernel RatKernel

Iter. N cart.FP no cart.FP

1 8100 (0/0.56) (0/0.58) (0/0.56)

2 2700 (0.09/0.76) (0.42/1.11) (0.43/1.22)

3 900 (0.11/0.81) (0.75/1.84) (0.83/73.1)

4 300 (0.11/0.85) (3.63/103) (3.95/836)

5 100 (0.12/0.80) (33.6/1009) (37.6/8065)

Table 4.1: Iterated Voronoi computations (1); time in secs. (construction/total)

# of Initial LOOK

Iter. N MaxMem/PEE MaxMem/no PEE MinMem/PEE MinMem/no PEE

1 8100 (0/1.12) (0/1.11) (0/1.21) (0/1.26)

2 2700 (0.11/1.61) (0.13/1.60 (0.12/1.91) (0.14/1.98)

3 900 (0.15/2.07) (0.16/2.03) (0.14/2.91) (0.14/2.99)

4 300 (0.15/3.93) (0.14/7.67) (0.16/6.51) (0.14/12.0)

5 100 (0.15/24.23) (0.17/51.8) (0.16/21.6) (0.15/78.5)

Table 4.2: Iterated Voronoi computations (2); time in secs. (construction/total)

100 points and perform 5 iterations of Voronoi computations. Table 4.3 shows how many of

the extended blocks (which store the coordinates of type leda integer ) are allocated after

the i-th iteration. Note that for the ’MinMem’ schemes, the number of extended blocks will

be at most 100 after every predicate evaluation. Of course, during a predicate evaluation

some extended blocks have to be allocated temporarily.

Iter. #Point Objects # Extended blocks

2 299 0

3 848 245

4 2528 788

5 7562 4865

Table 4.3: Memory allocation

To compare the running time for ’easy’ examples, we computed 2 iterations on a set

of 10000 randomly generated points with 32bit integer coordinates. This computation is

basically the crust computation as described in [ABE98]. See table 4.4 for the results.

It turns out, that if the computation does not involve more than one level of construction,

LOOK is about 2–3 times slower than the (tuned) LEDA RatKernel. With increasing nest-

ing depth of the constructions, LOOK performs better and better compared to the LEDA

RatKernel.

One reason for that is the use of the lazy evaluation scheme. As can be seen in table

4.3, only some of the constructed points have been evaluated exactly during the algorithm,

whereas the RatKernels always perform the constructions using exact arithmetic. If we get to

higher nesting depths than 5, though, exact arithmetic evaluation of almost all point objects

has been triggered. A closer examination of the results showed that this is due to degeneracies

which lead to difficult predicate evaluations triggering the exact evaluations of constructions.



4.5. Experiments 107

FPKernel RatKernel(1) RatKernel(2) LOOK

3.06 5.47 4.47 6.68

Table 4.4: Crust computation of 10000 points

But nevertheless, the LOOK implementations are still much faster in these cases than the

RatKernel implementations due to the improved filtering techniques (interval filters which

yield closer error bounds than the semi-static filters used in the RatKernels).

Surprisingly, the LOOK variant using the memory saving scheme of deleting all arbitrary

precision results after a predicate evaluation together with the progressive exact evaluation

performs very well, especially with increasing nesting depth. Although the deletion of all

intermediate arbitrary precision computations requires some recomputations, the reduced

memory allocation seems to lead to a more efficient caching, so the overall running time is

even better. Note that the progressive exact evaluation scheme helps considerably for both

memory management schemes.

4.5.2 LOOK as a CGAL Kernel Traits Class

In the CGAL library [CGA99] all algorithms and data structures are generic in the sense

that a programmer can plug-in any geometric kernel that meets certain requirements into the

algorithms provided by CGAL. But CGAL also provides templates for geometric kernels where

the user only has to plug-in a number type that is used for the coordinate representation.

For example, by plugging-in the number type leda real for exact arithmetic with algebraic

numbers into the cartesian kernel template, we get a kernel for exact computation with

algebraic geometric objects.

We have accommodated LOOK to be compatible with CGAL’s algorithms by wrapping

it in a so-called kernel-traits class. In the following we will compare the performance of the

LOOK kernel with other kernels when plugged into the CGAL algorithms. We have tested

the following kernels:

• LOOK the LOOK kernel as CGAL plugin

• RatKernel the LEDA RatKernel as CGAL plugin

• C<leda real> the CGAL cartesian kernel with leda real representation

• C<double> the CGAL cartesian kernel with double representation 2

As the first example we computed the convex hull of 50000 random points with 32bit inte-

ger coordinates using the default convex hull algorithm of CGAL. Note that this computation

does not involve any geometric constructions, so we expect the RatKernel to perform best of

the exact kernels. The results can be seen in table 4.5.

2Note that this kernel does not guarantee exact computation.



108 Chapter 4. Efficient & Exact Geometric Computation

RatKernel LOOK C<leda real> C<double>

0.38 1.00 3.02 0.16

Table 4.5: ConvexHull of 50000 32bit integer points

A more complex example is the computation of the convex hull of points which are not

available as input data, but computed as the intersection of circles. Note that this computa-

tion involves square-roots and hence we cannot use the RatKernel for this experiment. Table

4.6 shows the result for the intersections of 500 circles (they have about 26000 intersection

points). Also compare with the experimental results in [BFMS99].

LOOK C<leda real> C<double>

intersection 0.52 7.51 0.11

total 1.08 10.1 0.17

Table 4.6: ConvexHull of the intersections of 500 circles; cartesian integer coordinates

As we have seen in the previous section, we have to pay a little bit for the more involved

filtering-techniques, so for very simple examples, where no constructions take place, we lose

about a factor of 2–3 compared to the RatKernel, but are still 3 times faster than the cartesian

leda real kernel. If constructions take place, though, as in the example for the convex hull of

circle intersections, we gain a factor of about 10 compared to the cartesian leda real kernel.

As we have predicted in our discussion in the previous sections, this is due to reducing the

bookkeeping overhead from expression level to geometric construction level.



4.6. Discussion 109

4.6 Discussion

We have presented LOOK, a lazy object-oriented kernel design for exact geometric compu-

tation. In contrast to previous kernels, LOOK supports various kinds of floating-point filter

techniques both on predicate level as well as on construction level. If a problem involves many

geometric constructions, LOOK performs about 3–40 times better than the LEDA RatKernel

or CGAL kernels for exact computation.

The technique of bookkeeping on object level also allows for many evaluation strate-

gies. If memory consumption is a big issue, one can keep this very low – even close to pure

floating-point computation, as the arbitrary precision representation of at most one predicate

evaluation is present in memory at any given time. To our very surprise, this approach of

discarding all arbitrary precision results after a predicate evaluation performed quite well,

especially for more complicated examples. So it seems as if memory allocation is not the

main difficulty for deeply nested exact constructions.

Of course, LOOK is not a panacea for exact implementations of geometric algorithms.

Although the advanced filtering techniques allow the decision of most predicates without

resorting to exact arithmetic computations, the evaluation of really difficult predicates which

require exact arithmetic, gets very expensive with increasing nesting depth. Here is a point

where algorithmic changes may help. There is the idea to design algorithms with only low-

degree predicates and thus reducing the numerical complexity, for example [BS99]. On the

other hand one could try to reduce the number of arbitrary precision evaluations even further

by allowing some of the predicates to err. Of course, as we want a correct final result, it

all depends on which predicates we allow to err. In [FMN99] we show that a very simple

but powerful idea can reduce the number of arbitrary precision evaluations considerably, in

particular in (almost) degenerate cases. Part of our future work will be devoted to combining

this approach with LOOK to improve performance for deeply nested computations.

Furthermore we want to increase the number of ’algebraic’ constructions in our kernel,

e.g. the constructions for Voronoi nodes in the Voronoi diagram of points and line segments.

Of course it may be also interesting to apply these ideas to construct a kernel for higher-

dimensional geometric computation.



110 Chapter 4. Efficient & Exact Geometric Computation



Summary

In the first part of this thesis we investigate theoretically a problem from computational geom-

etry. Given a finite set S of sample points from a collection of curves Γ, curve reconstruction

is the problem of computing the graph G(S, Γ), called the correct reconstruction, whose vertex

set is S and which has an edge between two samples if and only if they are adjacent on a

curve in Γ.

Obviously, it is not possible to correctly reconstruct a given collection of curves from

an arbitrary sample set from it. Therefore, some restrictions on the sample set and/or the

curves are needed. Several Algorithms have been proposed that provably solve this problem

for certain classes of curves. The algorithms differ with respect to (a) whether they can

deal with just a single curve or a collection of curves, (b) whether the samples might come

only from closed or also from open curves, (c) whether they require non-uniform or uniform

sampling (i.e. whether the required sampling density locally adapts to the level of detail or

is determined for the whole curve by the most detailed part of the curve), and (d) whether

the curves have to be smooth or corners are allowed, i.e. points where left and right tanget

disagree.

We present an algorithm which is the most general to date and which under a non-uniform

sampling condition provably reconstructs a collection of curves which might be open or closed

and contain finitely many corners. Our algorithm is completely combinatorial and runs in

polynomial time.

As most previous algorithms for the curve reconstruction problem, our algorithm identifies

a subgraph of the Delaunay triangulation of the sample set as the correct reconstruction. The

novelty of our approach lies in the fact that for reconstructing corners of a curve, we do not

follow a simple filtering approach where for each edge it is locally decided whether it is part

of the output or not, but we kind of ”walk into” the corners from allegedly smooth areas of

the curve. We have first presented this result at the 12th Annual ACM-SIAM Symposium on

Discrete Algorithms 2001 ([FR01]).

In the second part of this thesis we are concerned with an issue arising when implementing

geometric algorithms. When computer scientists design geometric algorithms, they usually

assume the availability of exact arithmetic on real numbers (like we do for example in the

first part of this thesis). Since no computer provides exact arithmetic on real numbers in

hardware, programmers implementing these algorithms must find some substitution. Quite

111



commonly, they resort to floating-point arithmetic due to its support by hard- and software.

The resulting programs may not behave as expected, though. The roundoff errors accu-

mulating during floating-point computation very often make the programs crash or produce

inconsistent results. There are several ways to overcome this problem, first, one can design

algorithms which explicitely deal with the problem of roundoff errors. Only very few such

robust algorithms exist, mainly for very simple problems. The other possibility is the so-

called exact computation paradigm, which advocates to give the implementer of a geometric

algorithm the illusion of exact arithmetic on real numbers by providing exact number types

and exact geometric predicates. Unfortunately, providing this ’illusion’ has its cost which is

usually considerably higher than pure floating-point arithmetic.

The evaluation of a geometric predicate amounts to the computation of the sign of an

arithmetic expression. So the naive way to compute the sign of an expression is to compute

the value of the expression (using exact arithmetic) and to read off the sign from the value.

This way we suffer an overhead of a factor between 10 and 100 compared to floating-point

arithmetic. One way to speed up exact geometric predicates is the use of so-called floating-

point filters. The idea is first to compute a floating-point approximation together with an

error bound for the maximal deviation from the true value. If the error bound is smaller

than the absolute value of the approximation, approximation and exact value have the same

sign and hence the sign of the approximation may be returned. The advocates of floating-

point filters claim that filters at the predicate level realize the exact computation paradigm

at little cost; the running time is claimed to be no more than twice the running time of a

pure floating-point implementation.

Of course, this statement is only true if the floating-point filter always succeeds in de-

ciding the predicate, and the floating-point filter mechanism can be applied for the whole

computation. Very often these conditions are not met in practice, though.

First we develop the concept of structural filtering which is a generalization of floating-

point filtering. Structural filtering can reduce the overhead compared to pure floating-point

arithmetic further by allowing some predicates to err, without sacrificing the guarantee for

an exact outcome, of course. Structural filtering views the execution of an algorithm as a

sequence of steps and applies filtering at the level of steps. A step can be anything between

a simple predicate and the execution of the whole algorithm. As an interesting subresult not

restricted to the computational geometry domain, we examine how sorting algorithms behave

under erroneous comparisons. We show, for example, that quicksort stays an optimal sorting

algorithm when comparisons may err, but mergesort becomes suboptimal. We have presented

these results at the 11th Canadian Conference on Computational Geometry 1999 ([FMN99]).

Secondly we develop the design of a geometric kernel called LOOK (Lazy Object Oriented

Kernel for geometric computation), which is the first of its kind that makes use of filtering

techniques not only on the predicate level but also on the level of geometric constructions.

The main idea is to represent geometric objects not by their coordinates, but by the geomet-

ric operation that produced them and compute coordinate representations only on demand

in a lazy-fashion. We have presented this result at the 16th Annual ACM Symposium on

Computational Geometry 2000 ([FM00]).



Zusammenfassung

Im ersten Teil dieser Arbeit untersuchen wir eine theoretische Fragestellung aus dem Ge-

biet der Algorithmischen Geometrie – das Problem der Kurvenrekonstruktion. Gegeben eine

endliche Menge S von Stichprobenpunkten von einer Familie von Kurven Γ, besteht die Auf-

gabe darin, den Graphen G(S, Γ) – auch die korrekte Rekonstruktion genannt – zu berechenen,

dessen Knotenmenge S ist, und welcher eine Kante zwischen zwei Knoten genau dann besitzt,

wenn diese auf einer der Kurven in Γ adjazent sind.

Es scheint unmöglich zu sein, die korrekte Rekonstruktion einer gegebenen Familie von

Kurven für eine beliebige Stichprobenmenge zu berechnen; daher muß man gewisse An-

forderungen sowohl an die Stichprobenmenge als auch an die Kurvenmenge stellen. Ver-

schiedenste Algorithmen wurden in der Vergangenheit entwickelt, welche dieses Problem für

gewisse Klassen von Kurven beweisbar lösen können. Die Algorithmen unterscheiden sich

hinsichtlich (a) ob eine Menge von Kurven oder nur eine einzelne Kurve rekonstruiert werden

kann, (b) ob nur geschlossene Kurven behandelt werden können, oder auch offene Kurven, (c)

die Stichproben uniform sein müssen (d.h. ob die erforderliche Stichprobendichte sich lokal

an die Detailliertheit der Kurve anpassen kann, oder ob die Dichte global für die ganze Kurve

durch den detailliertesten Teil bestimmt wird) und (d) ob die Kurven ”glatt” sein müssen

oder ob Ecken erlaubt sind, d.h. Punkte, an denen keine Tangente existiert.

Wir präsentieren den bislang allgemeinsten Algorithmus, welcher für eine nicht uniforme

Dichtebedingung der Stichproben beweisbar eine Familie von Kurven rekonstruiert, welche

sowohl offene und geschlosse Kurven als auch endlich viele Ecken beinhalten darf. Unser

Algorithmus ist kombinatorischer Natur und benötigt polynomielle Zeit.

Wie die meisten bisherigen Algorithmen zur Kurvenrekonstruktion identifiziert unser Al-

gorithmus einen Teilgraphen der Delaunay Triangulierung der Stichprobenmenge als korrekte

Rekonstruktion. Die Neuerung unseres Ansatzes besteht darin, Ecken dadurch zu erkennen,

sich nicht nur auf lokale Betrachtungen zu beschränken, sondern die Ecken ausgehend von

glatten Teilen der Kurve inkrementell zu ”erschliessen”. Dieses Resultat haben wir auch auf

dem 12th Annual ACM-SIAM Symposium on Discrete Algorithms 2001 vorgestellt ([FR01]).

Im zweiten Teil der Arbeit beschäftigen wir uns mit einem Problem, welches häufig bei

der Implementierung von geometrischen Algorithmen auftritt. Beim Entwurf geometrischer

Algorithmen wird üblicherweise die Verfügbarkeit von exakter Arithmetik auf reellen Zahlen

angenommen (wir haben diese Annahme z.B. im ersten Teil dieser Arbeit getroffen). Da

113



allerdings kein Computer exakte Arithmetik auf reellen Zahlen durch Hardware unterstützt,

müssen Programmierer, die diese Algorithmen implementieren wollen, sich anderweitig be-

helfen. Sehr häufig greifen sie auf Gleitkomma-Arithmetik zurück, zumeist wegen der guten

Unterstützung durch Programmiersprachen und Hardware. Die so erstellten Programme

verhalten sich allerdings häufig nicht wie erwartet. Rundungsfehler, die sich während den

Gleitkomma-Rechnungen akkumulieren, lassen die Programme häufig abstürzen oder inkon-

sistente Resultate liefern. Es existieren verschiedene Ansätze, dieses Problem anzugehen; zum

einen kann man Algorithmen a priori so entwerfen, daß sie mit dem Problem der Rundungs-

fehler umgehen können. Nur sehr wenige dieser robusten Algorithmen existieren, meist auch

nur für sehr einfache Probleme. Die andere Möglichkeit ist das sogenannte Exact Compu-

tation Paradigma, welches dem Implementierer eines geometrischen Algorithmus die Illusion

von exakter Arithmetik auf reellen Zahlen gibt, indem man exakte Zahlentypen und exakte

geometrische Prädikate zur Verfügung stellt. Leider ist diese Illusion mit Kosten verbunden,

die im Vergleich mit reiner Gleitkomma-Arithmetik bedeutend höher liegen.

Ein geometrisches Prdikat kann durch die Bestimmung des Vorzeichens eines arithmetis-

chen Ausdruckes ausgewertet werden. Die naive Art und Weise, das Vorzeichen zu bestim-

men, besteht darin, den Wert des Ausdrucks mittels exakter Arithmetik zu berechnen und das

Vorzeichen vom Ergebnis abzulesen. Dieses Vorgehen dauert etwa 10 und 100 mal länger als

dieselbe Rechnung in Gleitkomma-Arithmetik. Eine Möglichkeit, die Auswertung zu beschle-

unigen, besteht in der Benutzung sogenannter Gleitkomma-Filter. Die Idee ist folgende: man

berechnet zuerst eine Gleitkomma-Approximation des Ausdruckes und eine Fehlerschranke für

die maximale Abweichung vom echten Wert des Audrucks. Wenn die Fehlerschranke kleiner

ist als der Wert der Approximation, ist das Vorzeichen des exakten Wertes bekannt. Nur

für den Fall, daß der approximierte Wert unter der Fehlerschranke liegt, ist die Auswertung

mittels exakter Arithmetik erforderlich. Von den Gleitkomma-Filtern wird behauptet, daß

sie das exakte Rechnen ohne große Zusatzkosten ermöglichen. Die Laufzeiten würden sich

verglichen zu einer reinen Gleitkomma-Implementierung nur etwa verdoppeln.

Diese Aussage gilt natürlich nur, wenn das Vorzeichen immer durch die Gleitkomma-

Filterstufe bestimmt werden kann (d.h. keine Auswertung mit exakter Arithmetik nötig ist)

und der Gleitkomma-Filtermechanismus bei allen arithmetischen Berechnungen zur Anwen-

dung kommt. In der Praxis treffen diese Bedingungen allerdings oft nicht zu.

In diesem Teil der Arbeit entwickeln wir zunächst das Konzept der ”Strukturellen Fil-

terung”, welches eine Verallgemeinerung des Gleitkomma-Filters ist. Diese neue Technik

erlaubt es, den Geschwindigkeitsunterschied im Vergleich zu reiner Gleitkomma-Arithmetik

noch weiter zu reduzieren, indem einige Prädikate falsch ausgewertet werden dürfen. Nichts-

destotrotz wird ein exaktes Endergebnis garantiert. Strukturelle Filterung betrachtet die

Ausführung eines Algorithmus als eine Folge von Schritten und wendet Filterung auf der

Ebene dieser Schritte an. Ein Schritt kann alles zwischen einer arithmetischen Operation und

der Ausführung eines ganzen Algorithmus sein.

Als Teilresultat, welches nicht nur für unseren Kontext von Interesse ist, zeigen wir, wie

sich Sortieralgorithmen bei fehlerhaften Vergleichsoperationen verhalten. Wir beweisen zum

Beispiel, daß Quicksort ein optimaler Sortieralgorithmus bleibt, wenn Vergleichsoperationen



fehlerhaft sein können, wohingegen Mergesort suboptimal wird. Wir haben dieses Resultat

auf der 11th Canadian Conference on Computational Geometry 1999 ([FMN99]) vorgestellt.

Schließlich entwickeln wir das Design eines Geometriekernels, genannt LOOK (Lazy Ob-

ject Oriented Kernel for geometric computation), welcher Gleitkomma-Filterungstechniken

nicht nur auf der Ebene der Prädikate, sondern auch auf der Ebene der geometrischen Kon-

struktionen anwendet. Die Kernidee ist es, geometrische Objekte nicht durch ihre Koordi-

naten zu repräsentieren, sondern durch die Operationen, durch welche sie erzeugt wurden, und

Koordinatenrepräsentationen nur bei Bedarf zu berechenen. Dieses Resultat haben wir auf

dem 16th Annual ACM Symposium on Computational Geometry 2000 ([FM00]) vorgestellt.





Bibliography

[AB99] Nina Amenta and Marshall Bern. Surface reconstruction by Voronoi filtering.

Discrete Comput. Geom., 22(4):481–504, 1999.

[ABE98] Nina Amenta, Marshall Bern, and David Eppstein. The crust and the β-skeleton:

Combinatorial curve reconstruction. Graphical Models and Image Processing,

60:125–135, 1998.

[Alt01] E. Althaus. Curve Reconstruction and the Travelling Salesman Problem. Phd

thesis, Universitaet des Saarlandes, 2001.

[AM00] E. Althaus and K. Mehlhorn. Polynomial time TSP-based curve reconstruction.

In Proc. 11th ACM-SIAM Sympos. Discrete Algorithms, pages 686–695, January

2000.

[Att97] D. Attali. r-regular shape reconstruction from unorganized points. In Proc. 13th

Annu. ACM Sympos. Comput. Geom., pages 248–253, 1997.

[BB97] Fausto Bernardini and Chandrajit L. Bajaj. Sampling and reconstructing man-

ifolds using alpha–shapes. In Proc. 9th Canad. Conf. Comput. Geom., pages

193–198, 1997.

[BBP98] Hervé Brönnimann, Christoph Burnikel, and Sylvain Pion. Interval arithmetic

yields efficient dynamic filters for computational geometry. In Proc. 14th Annu.

ACM Sympos. Comput. Geom., pages 165–174, 1998.

[BFMS99] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Efficient exact geometric

computation made easy. In Proc. 15th Annu. ACM Sympos. Comput. Geom.,

pages 341–350, 1999.

[BFS98] C. Burnikel, S. Funke, and M. Seel. Exact geometric predicates using cascaded

computation. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 175–

183, 1998.

[BMS96] Christoph Burnikel, Kurt Mehlhorn, and Stefan Schirra. The LEDA class “real”

number. Technical Report MPI-I-96-1-001, Max-Planck-Institut für Informatik,

Saarbrücken, 1996.

117



[BP01] E. Boyer and S. Petitjean. Regular and non-regular point sets: Properties and

reconstruction. Comput. Geom. Theory Appl., 19(2–3):101–126, 2001.

[BS99] J.-D. Boissonat and J. Snoeyink. Efficient algorithms for line and curve seg-

ment intersection using restricted predicates. In Proc. 15th Annu. ACM Sympos.

Comput. Geom., pages 370–379, 1999.

[Bur96] Christoph Burnikel. Exact Computation of Voronoi Diagrams and Line Segment

Intersections. PhD thesis, Universitaet des Saarlandes, 1996.

[CGA99] The CGAL Reference Manual, 1999. Release 2.0.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

MIT Press, Cambridge, MA, 1990.

[dFdMG95] L. H. de Figueiredo and J. de Miranda Gomes. Computational morphology of

curves. Visual Comput., 11:105–112, 1995.

[DK99] T. K. Dey and P. Kumar. A simple provable algorithm for curve reconstruction.

In Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, pages 893–894, January

1999.

[DMR99] T. K. Dey, K. Mehlhorn, and E. A. Ramos. Curve reconstruction: Connecting

dots with good reason. In Proc. 15th Annu. ACM Sympos. Comput. Geom.,

pages 197–206, 1999.

[DP99] Olivier Devillers and Franco P. Preparata. Further results on arithmetic filters

for geometric predicates. Comput. Geom. Theory Appl., 13:141–148, 1999.

[DW00] T. K. Dey and R. Wenger. Reconstructing curves with sharp corners. In Proc.

16th Annu. ACM Sympos. Comput. Geom., pages 233–241, 2000.

[Dwy87] R. A. Dwyer. A faster divide-and-conquer algorithm for constructing Delaunay

triangulations. Algorithmica, 2:137–151, 1987.

[Ede98] H. Edelsbrunner. Shape reconstruction with delaunay complex. In Proc. 2nd

Latin Amer. Sympos. Theoret. Informatics, volume 1380 of Lecture Notes Com-

put. Sci., pages 119–132. Springer-Verlag, 1998.

[EKS83] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the shape of a set of

points in the plane. IEEE Trans. Inform. Theory, IT-29:551–559, 1983.

[FM91] S. Fortune and V. Milenkovic. Numerical stability of algorithms for line arrange-

ments. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 334–341, June

1991.

[FM00] S. Funke and K. Mehlhorn. LOOK – a lazy object-oriented kernel for geometric

computation. In Proc. 16th Annu. ACM Symposium on Computational Geome-

try, pages 00–00, 2000.



[FMN99] S. Funke, K. Mehlhorn, and S. Naeher. Structural filtering – a paradigm for

efficient and exact geometric programs. In Proc. 11th Canad. Conf. on Comput.

Geom., 1999.

[For99] S. Fortune. Vertex-rounding a three-dimensional polyhedral subdivision. Discrete

Comput. Geom., 22(4):593–618, 1999.

[FR01] S. Funke and E. A. Ramos. Reconstructing a collection of curves with corners

and endpoints. In Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, pages

344–353, January 2001.

[Fun97] Stefan Funke. Exact arithmetic using cascaded computation. Master’s thesis,

Universität des Saarlandes, 1997.

[FV96] S. Fortune and C. J. Van Wyk. Static analysis yields efficient exact integer

arithmetic for computational geometry. ACM Trans. Graph., 15(3):223–248,

July 1996.

[Gie99] J. Giesen. Curve reconstruction, the TSP, and Menger’s theorem on length. In

Proc. 15th Annu. ACM Sympos. Comput. Geom., pages 207–216, 1999.

[Gol99] C. Gold. Crust and anti-crust: A one-step boundary and skeleton extraction

algorithm. In Proc. 15th Annu. ACM Sympos. Comput. Geom., pages 189–196,

1999.

[Gra96] Torbjörn Granlund. GMP, The GNU Multiple Precision Arithmetic Library,

2.0.2 edition, 1996. http://www.swox.com/gmp/.

[IEE85] IEEE Standard for binary floating point arithmetic, ANSI/IEEE Std 754−1985.

New York, NY, 1985. Reprinted in SIGPLAN Notices, 22(2):9–25, 1987.

[KLN91] M. Karasick, D. Lieber, and L. R. Nackman. Efficient Delaunay triangulations

using rational arithmetic. ACM Trans. Graph., 10(1):71–91, January 1991.

[KLPY99] Vijay Karamcheti, Chen Li, Igor Pechtchanski, and Chee Yap. The CORE Li-

brary Project, 1.2 edition, 1999. http://www.cs.nyu.edu/exact/core/.

[KR85] D. G. Kirkpatrick and J. D. Radke. A framework for computational morphology.

In G. T. Toussaint, editor, Computational Geometry, pages 217–248. North-

Holland, Amsterdam, Netherlands, 1985.

[KW98] L. Kettner and E. Welzl. One sided error predicates in geometric computing. In

Kurt Mehlhorn, editor, Proc. 15th IFIP World Computer Congress, Fundamen-

tals - Foundations of Computer Science, pages 13–26, 1998.

[Meh84] Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching, vol-

ume 1 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag,

Heidelberg, Germany, 1984.



[Mil88] V. Milenkovic. Verifiable Implementations of Geometric Algorithms using Finite

Precision Arithmetic. Phd thesis, Carnegie Mellon University, 1988.

[MN00] K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric

Computing. Cambridge University Press, Cambridge, UK, 2000.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, New York, NY, 1995.

[Sch99] S. Schirra. A case study on the cost of geometric computing. In Proc. 1st Work-

shop on Algorithm Engineering, LNCS 1619, pages 156–176. Springer-Verlag,

1999.

[SOI90] K. Sugihara, Y. Ooishi, and T. Imai. Topology-oriented approach to robustness

and its applications to several Voronoi-diagram algorithms. In Proc. 2nd Canad.

Conf. Comput. Geom., pages 36–39, 1990.

[YD95] C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du and F. K.

Hwang, editors, Computing in Euclidean Geometry, volume 4 of Lecture Notes

Series on Computing, pages 452–492. World Scientific, Singapore, 2nd edition,

1995.


