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Abstract

This thesis studies the Constraint Language for Lambda Structures (CLLS), which is
interpreted over lambda terms represented as tree-like structures. Our main focus is on
the processing of parallelism constraints, a construct of CLLS. A parallelism constraint
states that two pieces of a tree have the same structure.

We present a sound and complete semi-decision procedure for parallelism constraints,
which tests satisfiability and makes structural isomorphism explicit. This procedure is
extended to a semi-decision procedure for CLLS.

We discuss two applications of CLLS. First, CLLS has been developed as a formalism
for underspecified natural language semantics. In this context, parallelism constraints
are used for modeling parallelism phenomena. Second, we consider underspecified beta
reduction, which is beta reduction on partial descriptions of lambda terms. For these
application areas, we present extensions both to the language CLLS and to the semi-
decision procedure.
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Kurzzusammenfassung

Diese Dissertation untersucht die Constraint Language for Lambda Structures (CLLS),
eine Constraint-Sprache zur Beschreibung von Lambda-Termen in einer bauméahnlichen
Reprasentation. Der Schwerpunkt der Arbeit liegt auf Verfahren fur Parallelismus-
Constraints, ein Konstrukt der Sprache CLLS. Ein Parallelismus-Constraint besagt, dass
zwei Bereiche eines Baumes dieselbe Struktur haben.

Wir stellen ein korrektes wund vollstandiges Semi-Entscheidungsverfahren fiir
Parallelismus-Constraints vor, das Erfillbarkeit feststellt und Strukturgleichheit
explizit macht. Dies Verfahren wird zu einem Semi-Entscheidungsverfahren fir CLLS
erweitert.

Wir diskutieren zwei Anwendungen der Sprache CLLS. Zum einen ist CLLS als Beschrei-
bungsformalismus fiir unterspezifizierte natirlichsprachliche Semantik entwickelt wor-
den. In diesem Zusammenhang werden Parallelismus-Constraints zur Modellierung von
Parallelismus-Phinomenen verwendet. Zum anderen betrachten wir unterspezifizierte
Beta- Reduktion, Beta-Reduktion auf partiellen Beschreibungen von Lambda-Termen.
Fiir diese Anwendungsgebiete stellen wir Erweiterungen sowohl der Sprache CLLS als
auch des Semi-Entscheidungsverfahrens vor.
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Extended abstract

This thesis studies a constraint language that is interpreted over lambda terms repre-
sented as tree-like structures. The language has been developed in the context of natural
language semantics, where it is used for an underspecified representation of meaning.
Our main focus is on determining satisfiability of these constraints, in particular for a
construct of this constraint language that can be used to model parallelism phenomena.

The constraint language that we study is the Constraint Language for Lambda Struc-
tures (CLLS), and the language construct that we focus on is the parallelism constraint.
Parallelism constraints are formulas that state that two pieces of a tree have the same
structure. The central issue of this thesis is the processing of parallelism constraints.

An important characteristic of CLLS is that it allows for statements of parallelism on a
description that leaves open the relative position of tree nodes. We consider two related
applications of parallelism constraints, which both centrally make use of this property.
First, the language CLLS has been developed as a formalism for underspecified natural
language semantics. In this framework, parallelism constraints have been used to model
the parallelism phenomenon, which is ubiquitous in linguistics. Prominent examples of
parallelism are elliptical constructions like “John sleeps, and Mary does, too”. The second
application is underspecified beta reduction. The idea is to perform beta reduction on the
partial descriptions of lambda terms, rather than on the terms themselves.

This thesis consists of two parts. The first part presents the central contribution: a pro-
cedure for solving parallelism constraints. The second part of the thesis studies questions
of the practical applicability of the formalism as well as the procedure.

Solving parallelism constraints. We present a sound and complete semi-decision
procedure for parallelism constraints and extend it to a semi-decision procedure for CLLS.
It has the following properties:

e The procedure is stated in terms of high-level transformation rules.

e The procedure computes constraints from which models can be directly read off.
In particular, it computes all minimal constraints with this property for a given
input constraint. During the computation, structural isomorphism imposed by
parallelism constraints is made explicit.

e The procedure terminates on the classes of cases relevant for the applications.

e The central concept of the procedure is correspondence: In accordance with the
node-centered perspective on trees that CLLS adopts, the procedure relates nodes
that occupy matching positions in the two parallel tree pieces.

Applicability. In the context of the two applications named above, underspecified
natural language semantics and underspecified beta reduction, the thesis focuses on two
issues:
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Empirical adequacy: Is the formal language adequate for modeling the phenomena
arising both in underspecified beta reduction and in underspecified semantics? We
present two extensions to the standard CLLS formulation of parallelism constraints,
which are of use both for underspecified beta reduction and for modeling ellipsis.

Underspecification: In solving parallelism constraints, the above procedure makes the
relative position of nodes explicit. However it may be desirable to maintain un-
derspecification as far as possible while making structural isomorphism explicit.
We discuss a procedure which, exploiting knowledge about the relative positions of
parallel tree pieces in underspecified beta reduction, can avoid disambiguation in
many cases.

For both issues, the notion of correspondence again proves essential.



A usfiithrliche Zusammenfassung

Diese Dissertation untersucht eine Constraint-Sprache zur Beschreibung von Lambda-
Termen in einer bauméahnlichen Reprasentation. Die Sprache wurde als Modellierungs-
formalismus in der natirlichsprachliche Semantik entwickelt und wird fur eine unter-
spezifizierte Beschreibung von Bedeutung verwendet. Unser Schwerpunkt liegt auf
Erfillbarkeitstests fir diese Constraints, insbesondere fir ein Sprachkonstrukt, das zur
Modellierung von Parallelismus-Phanomenen verwendet werden kann.

Die Constraint-Sprache, die wir untersuchen, ist die Constraint Language for Lambda
Structures (CLLS), und das Sprachkonstrukt, das im Mittelpunkt dieser Arbeit steht,
ist der Parallelismus-Constraint. Ein Parallelismus-Constraint ist eine Formel, die be-
sagt, dass zwei Bereiche eines Baumes dieselbe Struktur haben. Das Hauptthema dieser
Dissertation ist ein Verfahren fur Parallelismus-Constraints.

Ein wichtiger Punkt an CLLS ist, dass Parallelismus formuliert wird im Rahmen von
partiellen Beschreibungen, die die relativen Positionen von Baumknoten offenlassen.
Wir betrachten zwei Anwendungen fiur Parallelismus-Constraints, die sich beide zentral
auf diese Eigenschaft von CLLS stiitzen. Zum einen wurde die Sprache CLLS als For-
malismus fur unterspezifizierte naturlichsprachliche Semantik entwickelt. Parallelismus-
Constraints werden hier zur Modellierung des Phidnomens Parallelismus verwendet. Ty-
pische Beispiele dieses verbreiteten Phanomens sind elliptische Konstruktionen wie z.B.
,,Hans schlaft, und Maria auch.” Die andere Anwendung ist die unterspezifizierte
Beta- Reduktion. Hier geht es darum, Beta-Reduktion auf partielle Beschreibungen von
Lambda-Termen anzuwenden statt auf die Terme selbst.

Die Dissertation besteht aus zwei Teilen. Der erste Teil stellt den Hauptbeitrag der
Arbeit dar: ein Verfahren zum Losen von Parallelismus-Constraints. Der zweite Teil der
Arbeit beschaftigt sich mit Fragen der praktischen Anwendbarkeit des Formalismus sowie
des Verfahrens.

Das Losen von Parallelismus-Constraints. Wir stellen ein korrektes und
vollstandiges Semi-Entscheidungsverfahren fiir Parallelismus-Constraints vor, das wir zu
einem Semi-Entscheidungsverfahren fiir CLLS erweitern. Es hat die folgenden Eigen-
schaften:

e Das Verfahren ist in Form von Transformationsregeln auf Constraints formuliert.

e Das Verfahren berechnet Constraints, von denen Modelle direkt abgelesen werden
konnen. Fiir einen gegebenen Eingabe-Constraint berechnet es alle minimalen Con-
straints mit dieser Eigenschaft. Die Berechnung macht die Strukturgleichheit, die
ein Parallelismus-Constraint beschreibt, explizit.

e Fir die Klasse von Fillen, die fiir die Anwendungen relevant ist, terminiert das
Verfahren.

e Das zentrale Konzept des Verfahrens ist Korrespondenz: Es werden Paare von
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Knoten in Beziehung gesetzt, die in den beiden parallelen Baum-Bereichen dieselbe
Position einnehmen. Das Konzept von Korrespondenz folgt damit der Knoten-
zentrierten Perspektive auf Baume, die CLLS einnimmt.

Anwendbarkeit. Im Zusammenhang mit den zwei oben genannten Anwendungen, un-
terspezifizierter naturlichsprachlicher Semantik und unterspezifizierter Beta-Reduktion,
betrachten wir zwei Fragen:

Empirische Adaquatheit: Werden die Phinomene, die in den Anwendungen
auftreten, von dem Formalismus adaquat modelliert? Wir stellen zwei Generali-
sierungen von Parallelismus-Constraints vor, die sowohl fiir die unterspezifizierte
Beta-Reduktion als auch fiir eine Modellierung von Ellipsen-Phanomenen von
Nutzen sind.

Unterspezifikation: Das oben genannte Verfahren macht beim Lésen von
Parallelismus-Constraints relative Positionen von Baumknoten zu einem gewissen
Grad explizit. In der Anwendung auf unterspezifizierte Beta-Reduktion ist es
aber wiinschenswert, Unterspezifikation so weit als moglich aufrechtzuerhalten
und gleichzeitig Strukturgleichheit explizit zu machen. Wir stellen ein Verfahren
vor, das Wissen iiber die relativen Positionen von Baum-Bereichen in der unter-
spezifizierten Beta-Reduktion ausnutzt und so in vielen Fallen Disambiguierung
vermeiden kann.

Fiir beide Fragen erweist sich das Konzept der Korrespondenz als essentiell.
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Chapter 1

Introduction

This thesis studies a constraint language that is interpreted over lambda terms repre-
sented as tree-like structures. The language has been developed in the context of natural
language semantics, where it is used for an underspecified representation of meaning.
Our main focus is on determining satisfiability of these constraints, in particular for a
construct of this constraint language that can be used to model parallelism phenomena.

The constraint language that we study is the Constraint Language for Lambda Structures
(CLLS) [42], a logical language interpreted over lambda structures, tree-like structures
that represent lambda terms. The language construct that we focus on is the parallelism
constraint. Parallelism constraints are formulas that state that two pieces of a tree,
called segments, have the same structure. The central issue of this thesis is a procedure
for parallelism constraints.

The main question that we address is:

Given a partial description of a tree, including statements of structural iso-
morphism between some tree segments, how can we test the satisfiability of
the description and at the same time make the structural isomorphism ex-
plicit?

We examine the formalism as well as the question of processing with respect to two ap-
plication areas. On the one hand, the language CLLS has been used for an underspecified
account of natural language semantics. On the other hand, we study the question of
underspecified beta reduction, i.e. beta reduction on partial descriptions of lambda terms.

The main result that we report in this thesis is a sound and complete semi-decision
procedure for CLLS. It is a high-level, rule-based procedure that computes all minimal
result constraints for a given input constraint. We introduce extensions to the formalism
of parallelism constraints that are sufficient for modeling the phenomena occurring in
the two application areas, and we present an extension to the CLLS procedure geared at
application in underspecified beta reduction.

In the next few sections, we establish the context in which the language CLLS is situated.
There are three areas to be mentioned: CLLS is a constraint language; CLLS is a tree
description language; and it was developed to model some phenomena of natural language



2 Introduction

semantics. Next we sketch the language CLLS and its application to underspecified
semantics as well as underspecified beta reduction. Then we discuss the question of
processing CLLS: we sketch the main problems and the techniques we will use to solve
them. Finally, we summarize the results we present in this thesis, and we give an overview
of its organization.

1.1 Constraints

Constraints are formulas that describe sets of data from a specific domain, like finite
domains of integers, or (in our case) finite trees (see e.g. the overview article by Comon
et al. [24]). A constraint system comprises a constraint language and a class of inter-
pretations, which is typically given either by a theory, or by a structure in which the
formulas are interpreted. Some definitions also include a constraint solver, an algorithm
that tests satisfiability.

Constraint systems have the following interesting properties:

e Constraints give a compact and simple implicit description of possibly infinite sets.

e Constraints provide a clean separation between the description (in the constraint
language) and the computation (by the constraint solver).

e Constraint solvers can exploit knowledge about the domain, the class of interpre-
tations.

e Constraint solvers compute with data structures that are only partially known and
given only implicitly by the constraint formulas.

e Computing with constraints is often seen as simplification: The information about
the variables, which is given only implicitly in the formulas, is made as explicit as
possible.

e Constraints are well suited to handling partial descriptions that are augmented
incrementally. Adding more constraints means decreasing the size of the set of
data described.

The constraint language that we will study in this thesis is interpreted over lambda
structures, finite constructor trees augmented by a construct for lambda binding. The
main problem that we will be dealing with is: How can we test a constraint of the
Constraint Language for Lambda Structures for satisfiability, while making the data
described more explicit?



Introduction 3

1.2 Tree Description Languages

There are two standard tree representations that we will use very often.

First, ground terms are (constructor) trees. For example the ground term f
f(a,b) is the tree drawn to the right. Second, nodes of a tree can be a u/‘}-
addressed by, and encoded as, their paths from the root down, where a

path is a word of edge labels. For example in the tree to the right, € is the root, its left
child is 1, and its right child is 2. The edge labels can be just numbers, as in the example
we have just seen, or they can be arbitrary symbols, as long as different outgoing edges
of a node are labeled by different symbols. With this encoding of nodes as paths, a tree
can be described simply by the set of its nodes together with a node labeling function.

There is a large body of research on tree description languages, both in computer sci-
ence and in computational linguistics. One way of structuring it is by the languages’
perspective on trees. In the terminology of Blackburn, Meyer-Viol and De Rijke [10], a
language that takes an exzternal perspective describes relations between trees, while tak-
ing the internal perspective means talking about relations between nodes of a single tree.
The difference in perspective usually implicates a difference in the notion of identity:
In external perspective languages, identity usually means identity of structure, while in
internal perspective languages identity usually is identity of occurrence.

As an example for the external perspective, suppose that we have variables x, y standing
for trees, then a statement like x = f(y,y) could be used to say that the root of = is
labeled f, and that = has two identical subtrees — with the notion of identity of structure,
the two occurrences of y mean that we have two y-shaped trees. As an example for the
internal perspective, suppose x,y, z are variables standing for nodes, then the expression
z:f(y,z) could be used to state that the node z is labeled f and has y, z as children.
Note that with identity meaning the same occurrence, an expression like z: f(y, y) cannot
describe a tree, because it would mean that the node y occurs as two distinct children of
the node z.

In the following, we sketch three classes of tree description languages. We focus mainly
on the internal perspective, since this is the one that we will adopt, and we pay spe-
cial attention to two constructs: the ancestor relation between nodes (dominance), and
relations expressing structural isomorphism between parts of trees (parallelism).

(W)SKkS. SkS, the second-order monadic logic with & successors, and its weak variant
WSKS are among the most expressive decidable logics. The decidability of (W)SkS is
due to famous results by Doner, Thatcher and Wright and Rabin [113, 32, 98]. Doner,
Thatcher and Wright linked definability in WSkS to recognizability by finite tree au-
tomata. Rabin showed that definability in SkS coincides with recognizability by Rabin
tree automata over infinite trees.

Terms of SkS are formed from the constant ¢, first-order variables z,y, z, ..., and right
concatenation with (unary function symbols) 1, ..., k. Atomic formulas are equations and
inequations t; < t9 between terms, and expressions “¢ € X” for terms ¢ and second-order
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variables X. Formulas are built using atomic formulas, all the usual connectives, and
existential and universal quantification over both first-order and second-order variables.
While second-order variables range over arbitrary sets in SkS, they are restricted to
ranging over finite sets in WSkS.

There are several ways of encoding sets of trees in (W)SkS [78, 23]. They share the same
basic idea: The terms denote tree nodes, concatenation ¢: stands for the i-th child of the
node denoted by ¢, and < is interpreted as the prefix relation: t; < to means that the
node denoted by #; dominates the node denoted by t5.

While a huge number of properties of and relations between sets of nodes can be expressed
in (W)SkS (e.g. union, intersection, prefix-closedness), there are interesting exceptions,
relations that would be easy to state from an external perspective on trees. One example
is the statement that a certain tree has two identical subtrees at depth one. We have
already seen an “external perspective” formulation of such a situation, the equation
z = f(y,y), where z,y stand for ¢rees. This statement cannot be expressed in SkS.

Feature description languages. Feature description languages [103] describe feature
graphs, which can be regarded as logical descriptions of records. Roughly, a feature
graph is a directed graph with node and edge labels. The edge labels are called features;
different outgoing edges of a node are always labeled by different features. So if we fix one
“current node” in the feature graph, then we can address another (reachable) node by the
word of features on the path to it. Feature trees are just a special case of feature graphs.
And the tree notation that encodes nodes as words over the set of natural numbers can
be regarded as a special case of feature trees in which the features are just numbers. The
main difference between feature trees and constructor trees (ground terms) is that in a
feature tree each child of a node can be addressed individually via its feature.

Feature descriptions have their origins in phonology [20] and became a widespread for-
malism for linguistic theories in the 70s in unification grammars [68, 65], which comprise
some of the most widely used grammars in theoretical linguistics, like LFG and HPSG.
These formalisms are called constraint-based. Of the properties of constraint systems
that we have listed above, those that are relevant for these formalisms are: they provide
declarative descriptions, and they work with partial descriptions that can be augmented
incrementally.

An influential language for feature graphs is the one by Kasper and Rounds [66, 67].
The language is interpreted on one distinguished “current node” of a feature graph, and
its most important constructs can express the following things: the current node has
a certain node label; two paths (= feature words) leading off the current node end at
the same node; and some formula ¢ holds at the node that we reach from the current
one by the label /. This last statement is expressed by a formula ¢ : ¢. Smolka [110]
proposes a counstraint system over feature graphs and studies constraint solvers. He is
the first to use plain first-order logic to describe feature graphs, and he introduces the
more general notion of feature algebra. Building on this work, Backofen and Smolka
[7] introduce a first-order feature theory F'T that is complete and decidable; Ait-Kaci,
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Podelski and Smolka [1] further explore the same feature tree descriptions, presenting a
constraint system and a simplification system.

Especially interesting for our purposes are logics that pursue the modal aspect of the
Kasper-Rounds logic: They view the feature graph as the reachability relation and pro-
vide modal operators for traveling in the graph. Whereas in the Kasper-Rounds logic we
have formulas prefixed by features, expressions of the form /¢ : ¢, Blackburn [8] turns such
feature prefixes into modal operators (£). Blackburn and Meyer-Viol [9] and similarly
Kracht [79] go one step further. They work with feature trees and, abstracting over the
features labeling a path, they use a modal |* ¢ to state that ¢ is true at some node
dominated by the current node. Likewise 1* ¢ states that ¢ is true at some ancestor of
the current node. So again, as in SkS, the dominance relation plays an important role.

Context unification. Context unification [22] is a variant of linear second order uni-
fication [84, 95, 85]. A context unification (CU) equation system is a conjunction of
equations between terms. These terms may contain first-order variables standing for
trees, and context variables standing for contexts. Intuitively, a context is a tree with
a hole, which can be written as a term with a constant e, the hole, that occurs exactly
once. A context can also be seen as a context function from trees to trees, for example
the context f(e,b) would map the tree g(a) to the tree f(g(a),b): It just plugs g(a) into
the hole.

An example for a CU equation system is

f(Cla),b) = C(f(a;b)).

A solution of this formula is a mapping of context variables to contexts that gives us the
same tree on both sides of the equation. Figure 1.1 shows one such solution, which maps
C to f(e,b). The occurrences of this context are shown in the picture as shaded areas.

/f\ /f\b

/f\ b = /f\
a b a b

Figure 1.1: One solution of the CU equation system f(C(a),b) = C(f(a,b))

So this language adopts the external perspective on trees, where different occurrences of
the same context variable stand for structurally isomorphic contexts, but not the same
occurrence of the context. That means that CU can express structural isomorphism in
trees by using the same variable repeatedly. As we will see, this is quite similar to the
notion of parallelism that we have in CLLS, and the contexts that we have here are almost
the same as the segments that parallelism in CLLS is about.

Instead of describing CU as a restriction of second-order unification, we can also say that
it is a generalization of string unification from words to trees. String unification is the
problem of solving word equations. For example, all solutions of the equation az = za
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map z to a word in ¢*. String unification has been discovered and studied under several
names and in several research contexts [6]. Makanin was the first to present an algorithm
for string unification [86]. So context unification lies between string unification, which is
decidable, and second-order unification, which is not [54]. But the decidability of context
unification is still an open problem [104] — which is also interesting for our purposes,
as context unification and the parallelism constraints of CLLS are equally expressive
[93, 92].

1.3 Natural Language Semantics, Underspecification, and Parallelism
Phenomena

The language CLLS was developed to model phenomena of natural language semantics:
certain structural ambiguities and their interaction with parallelism phenomena. In this
section, we proceed in three steps: First we briefly talk about formal semantics and its
use of lambda calculus. Then we introduce the concept of underspecification and its
application to structural ambiguities with respect to quantifier scope. Finally we discuss
parallelismm phenomena and their interaction with quantifier scope ambiguity.

1.3.1 Lambda Calculus and Natural Language Semantics

Formal semantics describes those aspects of the semantic structure in natural language
that can be captured with the tools of mathematical logic. An important work in this
context is Montague Grammar [89], which is still often used as a basis for semantic
construction. The aim of Montague Grammar is to show the logical structure of natural
language and describe it with the means of universal algebra and mathematical logic.
The meaning of a sentence is constructed compositionally by assembling simpler meaning
units, according to the Fregean principle that the meaning of a sentence is built up
recursively from the meaning of its well-formed parts. The meaning of individual words
is given in the form of lambda terms. For an overview, see e.g. Gamut [49].

As an example, consider sentence (1.1). Its (oversimplified) semantics is shown in (1.2),
and the meanings of the individual words are given in (1.3). Assembling the meanings
of the words in the order prescribed by the syntax of the sentence, we first apply the
lambda term for “every” to the lambda term for “plan”. We apply the result to the
lambda term that represents the meaning of “worked”, and we get the formula shown in
(1.4). Completely beta reducing this formula, we arrive once again at the formula shown
in (1.2).

(1.1) Every plan worked.

(1.2) Vz.plan'(z) — work/(z)

every:  APAQVz.P(z) = Q(z)
(1.3)  plan:  Az.plan’(z)
worked:  Az.work'(z)
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(1.4) every plan worked: (APAQVz.P(z) — Q(z))Az.plan’(z)Az.worked' (z)

Lambda calculus plays a double role in this formalism: On the one hand it serves as a
tool for a compositional semantic construction, as sketched in the previous paragraph.
On the other hand the lambda operator is used as a class-building operator, to represent
semantic aspects of some natural language expressions.

1.3.2 TUnderspecification

Ambiguity is a pervasive problem in natural language processing, at all levels of linguistic
structure. Multiple sources of ambiguity lead to a combinatoric explosion in the number
of readings for a sentence. There are many ways of dealing with ambiguity, the simplest
being to enumerate all readings and to process them separately. The technique that we
are interested in is underspecification: the construction of a single compact description
of all readings. Underspecification has the following interesting properties:

e It provides a single representation instead of many.
e Choice points are localized.
e Operations on the underspecified representation operate on all readings at once.

e Monotonic augmentation of an underspecified description can be used instead of
destructive changes on a fully specified data structure.

e In some cases of ambiguity different readings can be distinguished, but a listener
does not necessarily decide between them (see e.g. Pinkal [95, 96]). Such cases can
be modeled by underspecification.

e In ambiguity resolution, roughly two groups of cases can be distinguished: those
that force listeners to stop and reconsider, and those that go unnoticed. For a
cognitively adequate modeling of human language understanding, the first group
of cases can be modeled e.g. by backtracking, the second group by augmentation
of an underspecified representation (see e.g. Marcus, Hindle and Fleck [87]).

Scope Ambiguity is a kind of ambiguity that is considered especially hard. It arises when
in the logical formula describing a sentence meaning, there is more than one possibility
for the scope that some element of the formula can take. This is a phenomenon for which
an underspecified representation has often been proposed.

(1.5) Every plan has a catch.

As an example for scope ambiguity, consider sentence (1.5). To get a better understanding
of its two readings, we put this sentence into a context: an escape from prison. The
sentence can either mean that there is one specific drawback that all plans suffer from;
we get this meaning if we continue (1.5) by ...namely the big watchdog in the prison
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yard. Or it can mean that each plan is flawed in a different way, e.g. plan A fails because
we do not possess the key to the prison door, and plan B will not work because we are
too lazy to dig our way out. This ambiguity results in two different logic formulas for
the sentence. The first reading is shown in (1.6) and the second in (1.7). For better
readability, we have written “a catch” for A\Q.3z.catch’(z) A Q(z), and likewise “every
plan” for AQ.Vz.plan'(z) — Q(z).

(a catch)(Az (every plan)(Ax
(1.6) (every plan)(Ay (1.7) (a catch)(A\y
(have'(z,y)))) (have'(z,y))))

The important point is that the two formulas differ only in the order of the two quantifiers
“a catch” and “every plan”. This is the basic idea of all underspecified representations of
scope ambiguity [100, 91, 15, 95, 26]. A representation like the one in Fig. 1.2 is often used:
The two upper partial formulas have holes, and these holes need to be plugged which
other partial formulas. The dotted lines stand for outscoping. That is, both quantifiers
need to outscope “have(x,y)”, but it is not specified in which order. Intuitively, there
are two ways of satisfying this description, and they correspond to the two formulas in
(1.6) and (1.7).

(every plan) (k,x (a catch) (kly

havé(x,yi))

Figure 1.2: The basic idea of an underspecified representation of scope, exemplified on
sentence (1.5), “Every plan has a catch.”

1.3.3 Parallelism

Parallelism phenomena are ubiquitous in natural language. Intuitively, parallelism means
that some structure is repeated in the same or a very similar way. Parallelism often occurs
together with ellipsis: Some linguistic material is left out even though it should have been
present by some syntactic or lexical restrictions.
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A few examples are shown in (1.8) through (1.12). Sentence (1.8) is a case of VP ellipsis:
The target sentence “Bill did” means the same as the non-elliptical “Bill found the error.”
The meaning of the target sentence can be recovered by recourse to the source sentence
“John found the error”. “John” and “Bill‘ are called the contrasting elements of the
source and target sentences. Sentence (1.9) is a bare argument ellipsis, sentence (1.10)
shows an exception phrase fragment, and sentence (1.11) is a correction: “no, the bike
has two flat tires”. The answer in (1.12) means the same as “John is the next to jump.”

There have been many different approaches to modeling ellipsis, involving different levels
of linguistic structure. Levels of linguistic structure relate the surface structure of an
expression to its meaning. Examples of such levels are (surface) syntactic structure,
morphology, and the level of formal semantic structure that we have briefly discussed in
Sec. 1.3.1. The approach of Dalrymple, Shieber and Pereira [30] focuses on the level of
formal semantics; it views ellipsis as a missing property of the target contrasting element,
which is recovered using higher order unification. In the case of our first example sentence
(1.8), the meaning of the target sentence would be given as P(bill), where the property
P could be determined by an equation like find(john,the_error) = P(john). Lappin
and Shih [82] reconstruct the missing pieces within the surface syntactic structure of
the target sentence, taking them from corresponding positions in the source sentence
syntax. Hardt [59] sees ellipsis as a case of referential identity: Both the source and
the target sentence refer to the same kind of event, much like in the sentence “John cut
himself”, “John” and “himself” refer to the same referent. Kehler [70] gives a central
role to discourse structure: In his analysis, the way in which the target sentence meaning
is recovered relies crucially on the coherence relation that holds between the source and
the target sentence.

Interestingly, ellipsis and scope ambiguity interact. This phenomenon, quantifier paral-
lelism, first became apparent in examples proposed by Hirschbiihler [62]. An example of
this interaction is shown in (1.13).

(1.13) Every linguist attended a workshop. Every computer scientist did, too.

The first sentence in (1.13) contains two scope-bearing elements, “every linguist” and
“a workshop”. So it has two readings, just like (1.5) above. The second sentence in
(1.13) means the same as “Every computer scientist attended a workshop”. Here we
have two scope-bearing elements again, so (1.13) should have four readings all in all.
But of those four, only two exist, plus an additional third reading: Either all linguists
attend one common workshop, and all computer scientists visit a (potentially different)
common workshop; or everybody has a different workshop that he or she is traveling
to; or one and the same workshop is attended by everybody. There are no “mixed”
readings in which, e.g., all linguists gather at one workshop, while the computer scientists
disperse to different workshops. That is, if “a workshop” takes wide scope in the first
sentence, it has to take wide scope in the second sentence too — parallelism enforces a
parallel resolution of scope ambiguities. The third reading, where one single workshop is
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attended by everybody, arises when “a workshop” moves out of the source sentence and
takes scope over both the source and the target sentence.

How can scope ambiguity, parallelism, and their interaction be modeled formally? This
is the question that stood at the beginning of the Constraint Language for Lambda
Structures, which we present in the next section.

1.4 The Constraint Language for Lambda Structures (CLLS)

The Constraint Language for Lambda Structures (CLLS) is a constraint language inter-
preted over the class of lambda structures [42, 41]. A lambda structure is a constructor
tree augmented by functions modeling binding. It can be described as a lambda term
viewed as a tree. A CLLS constraint describes relations between nodes of a lambda struc-
ture, i.e. it adopts the internal perspective on trees. The two most important constructs
of the language are dominance and parallelism:

(a) (b) (© (d) <
X4 X lam I 0
f 0
X ° Y. e
X E xf, Yg’ xl./'\.x2 "

var 1

Figure 1.3: Labeling, dominance, parallelism, and lambda binding

e Dominance is the ancestor relation between nodes, or, more precisely, the reflexive
and transitive closure of the “parent-of” relation. It is illustrated in Fig. 1.3 (a).
We write

X0<|*X1

to state that Xy dominates X;. (X¢ and X; are variables standing for nodes of a
lambda structure.)

e Parallelism is structural isomorphism between pairs of tree pieces, called segments.
This is illustrated in Fig. 1.3 (b). The segments are the deeper shaded regions. A
segment is a subtree from which zero or more subtrees have been cut out, leaving
behind holes. In the picture, Xy and X; delineate one segment: X addresses the
root and X7 the single hole. In the other segment, Yy stands for the root and Y; for
the hole. (Again, Xy, X1, Yy, Y] stand for nodes in a lambda structure). We write

Xo/X1~Yy/Y1

to state that the segment between Xy and X; has the same structure as the segment
between Yy and Y;. This notation is extended canonically to parallelism with O or
more holes.
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Furthermore, the language CLLS can express labeling, as shown in Fig. 1.3 (¢): A labeling
constraint states the label of a node along with all its children. The constraint drawn in
the picture is written as

X:f(Xl,Xg).

It states first that X is labeled f, and second, that X has X; as its left child and X5 as
its right child.

(&) lam Iﬂ
var

Figure 1.4: Lambda structures representing (a) Az.z, (b) (Az.z(a))f

The fourth construct in Fig. 1.3 is lambda binding. Above we have said that a lambda
structure is a constructor tree augmented by functions modeling binding. Figure 1.4 (a)
shows the lambda structure for the lambda term Az.z. The variable z of the lambda term
is completely nameless in the lambda structure. Instead, lambda binding is expressed
by the lambda binding function, which maps the var-labeled node to its binder. In the
picture this mapping is represented by the dashed arrow. Likewise, Fig. 1.4 (b) shows
the lambda structure for (A\z.z(a))f. Here, as in the rest of this thesis, we represent
application by the symbol Q.

Returning to the lambda binding constraint in Fig. 1.3 (d), this constraint states that the
(var-labeled) X is bound at the (lam-labeled) X,. We write it as

A X1)=Xp.
(@) Jam M0 (b) (c) Iam» Xo
'
\ /
f m Xo:lam(X1) A Xq:f (X2)A [r [. X2
X1/ Xo~Y1 /YN
f o7 : Y,
/7T2 X2<] Yl/\)\(Yg):XO \l:. 1
var T3
X1/ Xo~Y1/Ys

Figure 1.5: (a) A lambda structure, (b) a constraint that it satisfies, and (c) the constraint
graph for the constraint in (b)

A CLLS constraint is a conjunction of literals, atomic constraints like for example domi-
nance, parallelism, labeling and lambda binding literals. Figure 1.5 demonstrates all these
four types of literals. Picture (a) shows a lambda structure, which is non-branching for
reasons of simplicity. As a lambda term, it would read Az.f fz (modulo alpha-renaming)
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for a string ff. Picture (b) shows a constraint that is satisfied by the lambda structure
in (a) with the valuation

Xo — 7r0,X1 — 7r1,X2 — 7r2,Y1 — 7T2,Y2 = 3.

The constraint X:lam(X) is satisfied since the node 7 is labeled lam and is the parent of
w1, which is labeled f and is the parent of 79, so this satisfies X:f(X2). The parallelism
constraint X;/Xo~Y7/Y> is satisfied since the segment starting at m; and ending at mo
has the same structure as the segment starting at w2 and ending at m3: They both have

the structure f I . Note that the label of the hole node does not count as part of

the segment. The dominance constraint Xs<*Y7 is satisfied since my dominates itself,
and lam(Y2)=X is satisfied because 73 has its lambda binder at my. CLLS constraints
can easily be visualized as tree-like graphs, as picture (c) shows: It is the constraint
of picture (b) drawn as a constraint graph. Labeling and lambda binding look as in a
lambda structure. Dominance is shown as a dotted line. Parallelism is written below the
constraint graph; additionally it may be sketched using brackets, as we have done here.

How do the literals of CLLS relate to the tree description languages that we have seen
earlier on? Dominance is the same relation that we have seen in SkS and in Blackburn
and Meyer-Viol’s modal tree logic. Parallelism is similar to the repeated use of the same
context variable in CU. The segments that parallelism is about are almost the same as
the contexts of CU, except that a segment is always a segment of a lambda structure,
with which it is connected via the lambda binding function.

Another point worth noting is that apart from the lambda binding function, lambda
structures offer a second binding function, which models anaphoric binding. An anaphor
is an element or a construction that, in order to be interpreted, needs to be associated
with something else in the context. For example, in “John cut himself” the anaphoric
“himself” needs to be associated with “John”. Like the lambda binding function, the
anaphoric binding function is described by matching literals of the language CLLS.

1.4.1 CLLS in Underspecified Semantics

The language CLLS can be used to model scope ambiguity and ellipsis: Scope ambiguity
can be modeled with dominance constraints, and ellipsis with parallelism constraints
[42, 41].

Scope ambiguity. Consider again the sentence we discussed above, “Every plan has
a catch,” shown in (1.5). Its two readings, shown in (1.7) and (1.6), are lambda terms,
so they can also be seen as lambda structures. Above we have remarked that these two
readings just differ in the scope of the scope-bearing elements “a catch” and “every plan”,
where scope in the formula is the same as dominance in the lambda structure.

These two readings can be described by one common constraint: the one shown in Fig. 1.6.
(This is again a constraint graph, like the one in Fig. 1.5 (¢), a graphical representation
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Figure 1.6: Constraint for Fvery plan has a catch.

of a constraint.) The graph has all the symbols of the two higher-order formulas (1.7)
and (1.6) as node labels. Variable binding is again indicated by dashed lambda binding
edges, and dominance is again drawn as dotted lines.

The important point is this: The constraint states that the “constraint fragment” for
“every plan” outscopes the fragment for “have”, and that the fragment for “a catch”
outscopes the fragment for “have”, but it does not specify any order for the fragments
for “a catch” and “every plan”. However, trees do not branch upwards, so one of two
cases must hold: Either the fragment for “every plan” outscopes that for “a catch”, or
vice versa. So it is exactly the partial information given by the dominance constraints
that describes the scope ambiguity.

More generally, each individual reading of a sentence is represented by a lambda structure.
A CLLS constraint with several models is an underspecified representation for the set
of all these models (i.e. lambda structures). So we can view lambda calculus as our
“object-level language” and CLLS as a “meta-language” for talking about formulas in
the object-level language.!

(1.14) Every man sleeps, and so does Mary.

Ellipsis. Sentence (1.14) shows a simple case of VP ellipsis. The meaning of the target
sentence “...and so does Mary” is the same as the meaning of the source sentence “Every
man sleeps”, except that the source contrasting element “every man” is replaced by the
target contrasting element “Mary”. This can be modeled by the constraint in Fig. 1.7:
First, the part of the constraint below X, represents the meaning of the source sentence,
“every man sleeps”. Second, the part of the constraint below Yy represents the meaning
of the target sentence: We only know that it contains the meaning of “Mary”, which is
the node X. Finally, the parallelism constraint Xy/X;~Y/Y) states that the meaning of
the source and the target sentence are the same, except for the substructures representing
the contrasting elements.

!Note that we do not take the term meta-language as a formal notion here. Formally, CLLS is just an
object-level language that we use to describe objects of another object-level language.
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Figure 1.7: Constraint representing the meaning of sentence (1.14): “Every man sleeps,
and so does Mary.”

And in fact the lambda structure representing the meaning of sentence (1.14), shown in
Fig. 1.8, satisfies the constraint in Fig. 1.7.

every

sleeps sleeps
Figure 1.8: Lambda structure representing the meaning of sentence (1.14): “Every man
sleeps, and so does Mary.”

So we can model ellipsis using parallelism constraints. But how about the interaction
between ellipsis and scope ambiguity? This phenomenon, quantifier parallelism, is illus-
trated in sentence (1.13) (p. 9) above: If we have a scope ambiguity in the source sentence
of an ellipsis, then this scope ambiguity must be resolved in the same way in the source
and in the target sentence. But this is automatically enforced by parallelism: A scope-
bearing element in the source sentence and its copy in the target sentence must have the
same positions in their respective segments — that is what structural isomorphism means.

1.4.2 CLLS in Underspecified Beta Reduction

CLLS is a language for partial descriptions of lambda terms. So an obvious question to
ask is: Can we do beta reduction directly on CLLS constraints? This is the question of
underspecified beta reduction. Ideally, we would like to be able to beta reduce a CLLS
constraint without disambiguating it first in any way.

An obvious approach to solving this problem would be to lift beta reduction canonically
from term rewriting on lambda terms to graph rewriting on constraint graphs. But this
does not work. The problem is that in a CLLS constraint the structure of the lambda
term that it describes may be only partially known. And this can lead to the simple
rewriting approach generating spurious solutions — it is unsound.

But there is an alternative approach that 4s sound, an approach that is declarative instead
of procedural [11, 12]: describing the result of beta reduction using parallelism constraints.
Consider Fig. 1.9. Picture (a) is a sketch of a lambda structure with a redex, and picture
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(a) (b)
C
C
am A
/7 | A A
B A
~ovar
reducing tree reduct

Figure 1.9: Beta reduction on lambda structures — abstract schema

(b) sketches the result of beta reduction. In (a), we have the lambda abstraction with
body B and (in this case) one occurrence of the bound variable, and we have the argument
A that is to be substituted for the bound variable. The context C that surrounds the
redex will not be changed during beta reduction. All three, body B, argument A and
context C, are segments of this lambda structure. In the result of beta reduction, (b),
all three segments reappear, although their relative positions have changed.

Now the idea is to regard both the lambda term before beta reduction and the reduct
as parts of the same bigger lambda structure, and to relate the two context segments,
the two body segments, and the two argument segments by one parallelism each. Then
the parallelism constraints naturally enforce that all ambiguities in the reducing tree are
resolved in the same way there as in the reduct — this is the same effect that we get for
quantifier parallelism cases.

1.5 A Procedure for CLLS

The central topic of this thesis is a procedure for CLLS constraints, in particular par-
allelism constraints. The tasks of the procedure are to check satisfiability, and to make
explicit information that is given only implicitly in the constraint.

For a fragment of CLLS, dominance constraints, constraint solvers exist. Dominance
constraints include the dominance and labeling literals we have seen above, but not
parallelism literals.? The satisfiability problem for dominance constraints is decidable:
it is an NP-complete problem [78]. For the language of dominance constraints there
is a solver in the constraint programming paradigm, based on finite set constraints, by
Duchier and Niehren [34]. For a fragment of dominance constraints, normal dominance
constraints, which seems to suffice for the linguistic application, satisfiability can be
tested in polynomial time [76]. For this fragment Koller, Mehlhorn, Niehren, Althaus,
Duchier and Thiel have proposed polynomial-time solvers based on graph algorithms [3].

How can these solvers be extended to procedures for all of CLLS? The only constructs

2The fragment does not comprise binding constraints, but only for the sake of clarity; adding them
does not pose any problems.
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in CLLS that are not present in dominance constraints are parallelism and binding lit-
erals. The main problem is to construct a procedure for parallelism constraints; binding
constraints are relatively easy to handle. As we have mentioned above, parallelism con-
straints are equally expressive as CU, and the decidability of CU is still an open problem.
As this is a problem that we will not attempt to solve here, our aim must be to construct
a semi-decision procedure for parallelism constraints. Now a naive procedure is very easy
to put up: Just enumerate lambda structures and check for each of them if it satisfies
the given constraint. But such a procedure is of course not satisfactory — it is neither
feasible, nor does it provide insights into the nature of the problem. In contrast, we will
present a procedure that

e terminates for the linguistically relevant cases of CLLS constraints, and computes
result constraints for them.

e includes a solver for dominance constraints. Given a dominance constraint as an
input, the parallelism constraint procedure behaves exactly like the dominance
constraint solver that it encompasses. This is advantageous because dominance
constraints play an important role in the linguistic application.

e is built in a modular fashion, so that in principle different dominance constraint
solvers can be incorporated.

e introduces a data structure, correspondence, that will prove useful in stating the
formalism as well as in processing.

@) /T~ W/ (b) XX =Y 1Y,
f Tto f % ,'4.“_)<0 f I YO
Uje »Y; V,
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Figure 1.10: Parallelism in a lambda structure, and a parallelism constraint

Next we sketch the main ideas of the procedure for parallelism constraints that we in-
troduce. Consider Fig. 1.10. Picture (a) shows an example of parallelism in a lambda
structure: the two segments are structurally isomorphic up to their holes. Picture (b)
shows an example of a CLLS constraint, including the parallelism literal Xo/X;~Y/Y7.
We call the two terms Xo/X; and Yy/Y7 segment terms. A procedure for CLLS has to
check whether the two segments described by the segment terms Xo/X; and Yy/Y; can
have the same shape. But as sketched in picture (b), we only have a partial description
of these two segments: We know that either Uy dominates U; or vice versa, but we don’t
know which of the two cases holds, and we know that V;; dominates both V; and Y7, but
we don’t know the relative positions of V7 and Y;.
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How can we test such a constraint for satisfiability? Can a look at the closest relative
of parallelism constraints, CU, help us here? No, unfortunately the procedure for CU
equation systems is not particularly suitable for parallelism constraints: It determines
the shape of a context in a top-down fashion, starting at the root of the context and
working downward. In the process, it sometimes has to guess labels. However, in par-
allelism constraints there is no preferred direction, and we do not want to guess labels.
Furthermore, and more importantly, dominance constraints do not seem to correspond
to any clear-cut fragment of context unification, and it is essential for our procedure to
work well for dominance constraints.

Instead, we use a new data structure that makes use of the node-centered perspective on
trees that CLLS takes: A correspondence function between two parallel segments maps
each node in one segment to the node in the same position in the other segment. In
Fig. 1.11 (a), corresponding nodes are linked by arcs. Note that any two corresponding
nodes bear the same labels and have corresponding children, except for the holes of the
two segments. Among other things, correspondence functions allow for a straightforward
formulation of the conditions on binding in interaction with parallelism.

a b
(@) nym~ vy, | © XX, ~ Yy IY,

Figure 1.11: Correspondence: (a) correspondence function in a lambda structure, (b)
correspondence formulas in a constraint

We use the same idea in our procedure for parallelism constraints: We link corresponding
variables by correspondence formulas, which state that the two linked variables denote
corresponding nodes. Then, the general modus operandi of the procedure will be as
follows: First we copy all variables from one parallel segment term to the other, and we
link each variable to its copy by a correspondence formula. Second, any relation between
two variables “inside” the left segment term must also hold between their correspondents
in the right segment term, and vice versa; that is what structural isomorphism is about.
If we augment the constraint in Fig. 1.10 (b) accordingly, we arrive at the constraint in
Fig. 1.11 (b). For the sake of readability we have drawn in only a few correspondence
formulas, again as arcs. Third, we use the dominance constraint solver to sort out the
relative positions of the variables “inside” each of the two segment terms. All the while
we make sure that one invariant is maintained: Any relation that holds between variables
“inside” one parallel segment term will also hold between their correspondents “inside”
the other segment term.

We will formulate this semi-decision procedure for CLLS as a high-level, rule-based proce-
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dure. It transforms constraints, or more accurately, it augments them, until a saturation
is reached. A saturation is similar to a solved form: It is a constraint from which a model
can be directly read off. We are going to prove the following properties of the procedure:

e Any saturation that the procedure computes is satisfiable.

e The procedure is sound in the sense that all its rules are equivalence transforma-
tions.

e It is complete in the sense that it computes all minimal saturations for a given
input constraint.

e The notion of minimal saturation can be compared to the most general unifiers of
unification problems. While unifiers are compared by the subsumption ordering,
we compare CLLS constraints by a partial order that can be described roughly as
the subset relation modulo a-renaming of variables introduced during processing.

As mentioned above, there are two different applications of CLLS that we will study:
underspecified natural language semantics, and underspecified beta reduction. From the
point of view of these applications, the CLLS procedure enumerates readings in the case
of scope ambiguities, and makes structural isomorphism explicit in the cases of ellipsis
resolution and underspecified beta reduction. For these application areas, extensions to
both the language and the procedure are necessary.

e Is the formal language adequate for modeling the phenomena arising in underspec-
ified semantics and in underspecified beta reduction? It turns out that a straight-
forward extension of parallelism is needed for both applications: In the sketch for
beta reduction on lambda structures (Fig. 1.9), we have used several pairs of par-
allel segments to relate the reducing tree and the reduct. Similarly there are cases
of ellipsis for which several pairs of parallel segments are needed. However it is not
sufficient to use independent parallelism relationships, since normal parallelism is
too restrictive in its conditions on lambda binding. For example, in Fig. 1.9 (a) (p.
15) we need to allow a lambda binder from the B segment to the C' segment, and
this binder has to parallel a lambda binder from the B segment to the C segment in
picture (b). What we need in these cases is to be able to treat a group of segments
as if it were a single segment. The new relation that ensues is called the group par-
allelism relation. Its conditions on binding are less strict than in normal parallelism
and can be expressed straightforwardly in terms of correspondence functions.

e In the application to modeling ellipsis a further extension to the parallelism relation
will prove useful. Normal parallelism might state something like mg/m~g /1)1,
“node my up to m; is parallel to node 1y up to node 1,7, which means that the
subtrees below m and v, are excluded from the parallelism. But sometimes it is
necessary to except not subtrees but segments, stating something like “node 7 up to
the segment between m; and 79 is parallel to node ¢ up to the segment between
and 15”. As in normal parallelism, the excluded segments have to be in the same
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position within the two parallel segments, as sketched in Fig. 1.12. This can again
be described by a concept of correspondence. The new parallelism relation will be
called jigsaw parallelism. It does not add any expressive power — any situation that
the jigsaw parallelism relation can describe can already be expressed using group
parallelism. However there are cases where a single jigsaw parallelism constraint
can only be described by a disjunction of group parallelism constraints.

o o

7. ANV

Figure 1.12: Jigsaw parallelism: Segment o up to segment + is parallel to o/ up to 7/

e We use the same constraints to describe the result of a beta reduction step that we
use to describe the meaning of elliptical sentences. So in principle we can use the
same procedure to handle both applications. However, in performing underspecified
beta reduction we would like to maintain as much underspecification as possible —
the CLLS procedure that we have sketched above makes explicit more choices that
are implicit in the constraint than we would like for this application. In particular,
it disambiguates scope ambiguities.

So we introduce a procedure specialized on computing the result of an underspeci-
fied beta reduction step. It makes the structural isomorphism explicit, but, at the
cost of being incomplete, it can avoid disambiguation in many cases by exploiting
knowledge about the relative positions of parallel segments in underspecified beta
reduction. To do that, we use yet another variant of the concept of correspondence:
underspecified correspondence.

1.6 Contributions

Summing up the points mentioned in the previous section, the contributions of this thesis
are as follows:

e The most important result is a semi-decision procedure for CLLS. It is a high-level,
rule-based procedure that computes saturations, from which models can be directly
read off. We show that the procedure is sound and complete, and we introduce a
notion of minimal saturation.

A central concept both for the description of the formalism and for the procedure
is the notion of correspondence, which also proves vital for extensions both to the
language and the procedure.

e We extend the language CLLS by moving from parallelism to group parallelism,
where the conditions on binding are more liberal, and we extend the procedure for
solving the constraints accordingly.
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We further extend the language to encompass jigsaw parallelism constraints, where
segments rather than subtrees are excepted from parallelism. We show how both
these extensions can be used for modeling ellipsis.

e We present a procedure that computes the result of an underspecified beta reduction
step, building on the CLLS procedure. It is incomplete, but avoids disambiguation
in many cases.

Source Material

Part of the material presented in this thesis has already been published in the following
papers:

e Katrin Erk and Joachim Niehren. Parallelism Constraints, 2000 [46].

e Katrin Erk, Alexander Koller and Joachim Niehren. Processing Underspecified
Semantic Representations in the Constraint Language for Lambda Structures, 2000
[44].

e Manuel Bodirsky, Katrin Erk, Alexander Koller and Joachim Niehren. Beta Re-
duction Constraints, 2001 [12].

e Manuel Bodirsky, Katrin Erk, Alexander Koller and Joachim Niehren. Underspec-
ified Beta Reduction, 2001 [13].

e Katrin Erk and Alexander Koller. VP Ellipsis by Tree Surgery, 2001 [43].

Part of the discussion of underspecified beta reduction also appeared in the master’s
thesis of Manuel Bodirsky [11].

1.7 Plan of this Thesis

This thesis consists of two parts, A Procedure for CLLS Constraints and Applying Par-
allelism Constraints.

A Procedure for CLLS Constraints. In this part of the thesis we present a semi-
decision procedure for CLLS. The first chapter lays the ground for all others that follow:
It introduces the formalism, gives the basic definitions and some examples and discusses
related formalisms and modeling approaches. The following three chapters present the
semi-decision procedure for CLLS. In Chapter 3 we discuss the part of the procedure that
handles dominance constraints, and we prove soundness and completeness for this part.
We reuse and extend the same proof outlines in the two chapters that follow. Chapter 4
introduces the part of the procedure that deals with parallelism constraints. This is the
central chapter, and the one with the most interesting proofs. Chapter 5 completes the
procedure with the part that handles binding.
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Applying Parallelism Constraints. In this part of the thesis we consider two ap-
plications of parallelism constraints: modeling ellipsis in a framework of underspecified
semantics, and underspecified beta reduction. In Chapter 6 we discuss underspecified
beta reduction. We define group parallelism, and we present two procedures for com-
puting the result of a beta reduction step: a canonical extension to the CLLS procedure
that can handle group parallelism literals, and a procedure that is incomplete but can
avoid disambiguation in many cases. Chapters 7 and 8 are about modeling ellipsis with
parallelism. In Chapter 7 we introduce jigsaw parallelism, and we show how both group
parallelism and jigsaw parallelism can be used to model ellipsis. In Chapter 8§ we take
a closer look at the phenomenon of ellipsis, we discuss different approaches to modeling
ellipsis, and we position the CLLS approach in relation to them.

Finally, Chapter 9 lists further research questions, and Chapter 10 sums up and concludes.
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Chapter 2

CLLS

This chapter contains the basic concepts and definitions that we will use throughout the
thesis. It defines lambda structures and the Constraint Language for Lambda Structures
(CLLS), which was first introduced in 1998 by Egg, Niehren, Ruhrberg and Xu [42].

Lambda structures are constructor trees augmented by a function that maps bound
variables to their lambda binders, plus another node mapping function that is needed for
the application to linguistics. Each lambda structure corresponds to a lambda term that
is unique up to a-equivalence. CLLS offers constraints that describe relations between
nodes of a lambda structure.

In this chapter, we present the language CLLS as a hierarchy of three languages. The
language of dominance constraints Cq describes trees. The most important node relations
that it can describe are labeling, which describes a node’s label as well as its immediate
descendants, and dominance, which states that one node is above another, without spec-
ifying how far apart they are. The language of parallelism constraints C,, extends Cq by
parallelism, which says that two segments have the same structure. Finally, the language
CLLS extends C,, by binding and thus moves beyond tree descriptions to descriptions of
lambda structures.

The tripartite hierarchy of languages matches three major classes of linguistic phenomena
that they can be used to model: dominance constraints can be used for a compact un-
derspecified representation of scope ambiguities. Parallelism constraints can additionally
model parallelism phenomena. The binding literals of CLLS handle anaphoric binding.

2.1 Lambda Structures

In this section we introduce lambda structures in three steps: First we define constructor
trees. Then we augment trees by a parallelism relation. The third step extends trees by
binding functions, which yields lambda structures.

2.1.1 Constructor Trees

We assume a signature X of function symbols ranged over by f,g,..., each of which is
equipped with an arity ar(f) > 0. We assume that ¥ contains at least one constant and
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a symbol of arity at least 2.

A finite (constructor) tree 0 is a ground term over X. A node of a tree can be identified
with its path from the root down, expressed by a word over N (the set of natural numbers
excluding 0). We use the letters =, 1) for paths. We write € for the empty path and 77,
for the concatenation of two paths w1 and mo. A path 71 is a prefix of a path 7 if there
exists some (possibly empty) path my such that myme = 7.

A tree can be characterized uniquely by a tree domain (the set of its

paths) and a labeling function. A tree domain D is a finite nonempty foc
prefix-closed set of paths. A labeling function is a function L : D — X
from a tree domain to X fulfilling the condition that for every node 2 1 a~e 12

m € Dand k > 1, 7k € D iff k < ar(L(w)). We write Dy for the

domain of a tree § and Ly for its labeling function. For instance, the tree 8 = f(g(a,a)
shown to the right satisfies Dy = {¢,1,11,12}, Ly(e) = f, Lg(1) = g, and Ly(11) =
Lo(12).

a =

Since we will be talking about lambda structures later on, it is useful to view finite trees
as tree structures. The tree structure of a finite tree 0 over X is a first-order structure
with domain Dy. It provides a labeling relation :f for each f € X:

f ={(m,wl,...,mn) | Lo(n) = f,ar(f) = n}

Overloading notation somewhat, we also write § for the tree structure of a tree 6. We
write

0 ):Wozf(ﬂ-lu"wﬂ-n)

for (mg,m1,...,m,) € :f. This relation states that the node my of  is labeled by f and
has m; as its i-th child (for 1 < ¢ < n). The labeling relation is illustrated in Fig. 2.1 (a)
for a symbol f of arity 2.

Every tree structure # can be extended conservatively by relations for inequality, domi-
nance, and disjointness:

Definition 2.1 (Dominance, disjointness). Let 6 be a tree structure.

e The dominance relation on Dy is defined as <* = {(my, 1) | mo is a prefiz of m1}.

e The disjointness relation on Dy is defined as L = {(mg,m1) | neither mo<*m nor
T <y holds in 6}.

For better readability, we use the infix notation w<*1, w1 instead of the tuple no-
tation. The dominance relation is illustrated in Fig. 2.1 (b): It is the reflexive and
transitive closure of the parent relation. So a node 7wy dominates 7 iff it is its ancestor.
We also use strict dominance: We write mp<Tm if both mp<*m; and 7y # m; hold in
#. Two nodes my,m; lie in disjoint position iff there is some other node vy such that
Yo:f (... %, ...,1;...) holds in @ for distinct children ;, 1; of 1y, and 9;<*my while
;<*m. Disjointness is illustrated in Fig. 2.1 (c).



CLLS 27
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Figure 2.1: Labeling, dominance, and disjointness

2.1.2 The Parallelism Relation

We extend tree structures by a parallelism relation, which
states structural isomorphism between pairs of tree pieces,
called segments. b

A segment is a subtree in which some subtrees have been re- e el
placed by holes. For example, Fig. 2.2 shows a segment with
root node mp, and the holes of the segment are at the tree nodes
w1 and me. A segment is uniquely defined by its root node and
the sequence of its hole nodes from left to right. We write a
segment with root 7y and holes m; and 7y as my /7, 2.

Figure 2.2: A segment

Definition 2.2 (Segments). A segment « of a tree 0 is a tuple my/my ..., 7, of nodes
in Dy such that mo<*m; and m; Ly hold in 6 for all 1 <14 # j <n. The root r(c) of the
segment is my, and hs(a) = m,..., 7, is its (possibly empty) sequence of holes ordered

from left to right. The set b(a) of nodes of « is
b(a) = {7 € Dy | r(a)<*m, and for all 1 <i < n,—(m<Tm)}

To exclude the holes of the segment, we define b~ (a) = b(a) — hs(«), and to exclude all
“border nodes”, we use i(a) = b~ (a) — r(a).

When two segments have the same structure, there exists a correspondence function
between them:

Definition 2.3 (Correspondence function). A correspondence function between two
segments «, 5 is a bijective mapping c : b(a) = b() such that ¢ maps the root of « to the
root of 8 and the i-th hole of a to the i-th hole of B for each i, and for every ™ € b~ («)
and every label f,

m:f(rl,...,mn) < c(n):f(c(nl),...c(mn)).

Two corresponding nodes must bear the same labels and have corresponding children, ex-
cept when the nodes are holes. Whenever it exists, the correspondence function between
two segments « and [ is unique.

We now define the parallelism relation between pairs of segments. We base the definition
on correspondence functions.
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(a) (b) f o c
f a
1 a
b a b 11 a

Figure 2.3: In (a) 1/111 and 2/211 are parallel, in (b) ¢/11 and 1/111 are parallel.

Definition 2.4 (Parallelism relation). Parallelism in a tree structure 6 is the two-place
relation a ~ B on segments of 6 that holds of a pair «, B iff there exists a correspondence
function between « and .

For example, in the left tree in Fig. 2.3 the two segments 1/111 and 2/211 are parallel,
and in the right tree the two segments /11 and 1/111 are parallel. (Note that parallel
segments may overlap.)

To provide a better idea of correspondence functions, we prove the following character-
ization: A correspondence function is a bijection that relates each node in one segment
to the node that occupies the same position in the other segment.

Proposition 2.5. Ifc: b(a) — b(B) is a correspondence function, then c(r(a)w) = r(B)m
for all paths w such that r(a)m € b(a).

Proof. By induction on the length of the path . We have ¢(r(«)e) = c(r(S)e) because

¢ maps root to root. Now suppose that r(a)m € b(a) with ¢(r(a)r) = r(f)n, and
r(a)mi € b(a). Then c(r(a)mi) = c¢(r(B)m)i = c¢(r(B))mi by the last condition of Def.
2.3. U

Defining parallelism in terms of a correspondence function is in keeping with the CLLS
perspective on trees, which focuses on relations between nodes of a single tree. The
concept of correspondence functions will prove important for the CLLS procedure that
we develop, in particular for processing parallelism literals (Chapter 4).

2.1.3 Lambda Structures

A lambda structure is a constructor tree extended by two node

mappings. The mapping A encodes lambda binding. For example, lam ¢.¢
the lambda term Az.f(z) is represented by the graph to the right. - N,
In this case, the lambda binding function, represented as a dashed f 1 var-e 12

arrow, contains A(12) = e. An occurrence of a A-abstraction in

the lambda term is represented as a node labelled lam in the lambda structure, an
occurrence of an application is represented as a node labelled @, and an occurrence
of a bound variable is represented as a node labelled var. We will also allow V and 3 to
bind variables, so the range of the function A\ will consist of lam-, V- and 3-labelled nodes.
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Apart from the lambda binding function A, lambda structures possess a second mapping
ante from nodes to nodes. This second mapping will be used in the linguistic application
to model anaphoric binding, the kind of binding that is expressed by the common index
1 in sentence (2.10) (p. 38).

So we assume from now on that the signature ¥ contains, on top of the nullary and
the binary function symbol we have assumed above, the unary function symbol lam (for
lambda abstraction), the unary function symbols V and 3, the symbol @ of arity 2 (for
functional application), the constant var (for occurrences of a bound variable in a lambda
term), and the constant ana (which will be the label of all nodes in the domain of the
ante function).

Definition 2.6 (Lambda structures). A lambda structure £’ over ¥ is a tuple
(0, A, ante), where

e 0 is a tree structure over X,

o ) is a total function X : Ly'(var) — L, ({lam,3,V}) such that \(r) is always a
prefiz of w, and

e ante is a partial function ante : Lg_l(ana) — Dy.

In the following definition, we deal with the interaction of parallelism and binding: In a
lambda structure, two parallel segments need to have not only the same structure, but
also a parallel binding structure. We define the parallelism relation ~ on segments of a
lambda structure in two steps: First we define a symmetric relation ~, that describes
conditions on lambda binding, then we define ~ as a non-symmetric subrelation of ~ .

(b)

L]
lam ©
lal
var vaj

var ~

Figure 2.4: Illustrating (a) (A.same), (b) (A.out), (c) (A.hang)

Definition 2.7 (Parallelism relation). The relation ~y of a lambda structure L% is
the largest symmetric relation between segments of L£? such that o ~y B implies that
first, there exists a correspondence function c between o and B, and second, the following
conditions are fulfilled for all ™ € b~ (a):

(A.same) For a var-labeled node m bound within the segment, the corresponding node is
bound correspondingly:

A(m) € b () = Ae(m)) = c(A(m))
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(A.out) For a var-node bound outside the segment, the corresponding node has the same
binder:
A(m) ¢ b~ (a) = A(m)=A(c(r))

(Ahang) There are no "hanging binders”:
A7H(m) € b7 (@)

Parallelism ~ in a lambda structure L£° is the largest relation between segments of L°
such that

o~ p

implies o ~y B, and for the correspondence function ¢ between « and B the following
conditions are fulfilled for all m € b™(«):

(ante.same) For an ana-node bound within the segment, the correspondent has two pos-
sible antecedents:

ante(m) € b(a) = ante(c(m))=n V ante(c(m))=c(ante(r))

(ante.out) If an ana-node is bound outside the segment, then its correspondent has the
same anaphoric binder:

ante(m) ¢ b(«) = ante(c(m)) =«

(b)

Figure 2.5: Illustrating (ante.same). The dotted arcs stand for correspondence, and the
solid arrows stand for anaphoric binding.

The conditions on lambda binding are symmetric, that is, they enforce binding in « to
follow binding in B as well as the other way round, while the conditions on anaphoric
binding are not symmetric. Figure 2.4 illustrates the conditions (A.same), (A.out) and
(A.hang). (Correspondence is represented as a dashed arc.) Figure 2.5 illustrates the two
possibilities of binding that condition (ante.same) allows.

2.2 The Constraint Language for Lambda Structures

Now we define the Constraint Language for Lambda Structures [42, 41], which is inter-
preted over lambda structures.
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We assume an infinite set Var of (node) variables ranged over by X,Y, Z U, V,W. The
abstract syntax of the language CLLS is given in Fig. 2.6: A CLLS constraint is a
conjunction of predicates that describe relations between a lambda structure’s nodes.!
A a single such predicate is a literal.

XY | Xof(Xpy.. o, Xo) | XLY | XAY  (ar(f) = n)
Xg/Xl,...,XnNYO/Yl,...,Yn nZO
AX)=Y | ante(X)=Y

false|p A ¢

Abbreviations: X=Y for X<*Y A Y<*X and X<'Y for X<*Y A X#Y

1
2
3
4

¥, S

A~ N SN /N
~— e

Figure 2.6: The Constraint Language for Lambda Structures (CLLS)

For simplicity, we view inequality (#) and disjointness (L) literals as symmetric. We
also write X RY, where R € {<*,«", L, #,=}.

A parallelism literal relates two segment terms Xo/X1,...,X, and Yy/Y1,...,Y,, which
denote segments. We will use the letters A, B, C, D to denote segment terms:

A,B,C,D:::XO/Xl,...,Xn nZO

If n = 0, then the segment is a subtree. A segment term denotes a segment, but it is not
the case the the i-th hole variable of a segment term has to denote the i-th hole node:
Rather, each hole node has to interpret at least one hole variable, and each hole variable
has to denote some hole node.

In a lambda binding literal A(X)=Y, X denotes a var-labeled node that is bound at
the lambda binder for which Y stands. In an anaphoric binding literal ante(X)=Y, X
denotes an ana-labeled node for which the anaphoric binder is the node for Y.

First order formulas ® built from constraints and the usual logical connectives are inter-
preted over the class of lambda structures in the usual Tarskian way. We write Var(®)
for the set of variables occurring in ®. If a pair (£, o) of a lambda structure £’ and
a variable assignment o : G — Dy, for some set G O Var(®), satisfies ®, we write this
as (L%, 0) E ®. Overloading notation a bit, we call both £? and (£%,0) a model of ®.
We say that @ is satisfiable iff it possesses a model. Entailment ® |= ®' means that all
models of ® are also models of ®’.

So the semantics of the language CLLS is given by a class of models: the set of lambda
structures.

'The relation symbols that CLLS uses are the same as the matching relations on lambda structures.
There should be no danger of confusion, as relation symbols are always applied to node variables whereas
relations can only be applied to the nodes of a lambda structure.
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2.2.1 Sublanguages

The language CLLS can be viewed as a hierarchy of languages:

e The language Cq of dominance constraints consists of lines (1) and (4) of Fig. 2.6.

e The language C,, of parallelism constraints consists of lines (1), (2), and (4) of Fig.
2.6.

e The language CLLS counsists of lines (1), (2), (3), and (4) of Fig. 2.6.

This hierarchy of languages Cq4, C;, and CLLS corresponds to a hierarchy in the models:
tree structures, tree structures with a parallelism relation, and lambda structures.

2.2.2 Constraint Graphs

We often draw constraints as graphs with the nodes representing variables; a labeled vari-
able is connected to its children by solid lines, while a dotted line represents dominance.
For example, the graph for X:f(Xq, X9) A X;<*Y A Xo<*Y is displayed in Fig. 2.7. As
trees do not branch upwards, this constraint is unsatisfiable. In these constraint graphs,
we represent lambda binding by a curving arrow and anaphoric binding by a straight
arrow from the bound variable to the binder.

An important concept related to constraint graphs is that of a

fragment: It is a tree-shaped subgraph in which all the nodes are f
connected by solid lines. A fragment has a root and leaves; an X, .? \,Xz
unlabeled leaf is called a hole. We also call a single unlabeled
node a fragment if it is connected to the rest of the graph only by *Y
dominance edges. For example, the constraint graph in Fig. 2.7
contains two fragments. The upper fragment comprises X, X1, Xo,
while the lower fragment, consisting of Y, is a fragment of a single
unlabeled graph node.

Figure 2.7 An
unsatisfiable  con-
straint

A constraint graph does not contain all the information of the constraint that it repre-
sents, i.e. there may be literals in the constraint that are not represented in the graph:

¢ Disjointness and inequality literals are not represented in a constraint graph.

e Parallelism literals are not always represented in a constraint graph. If we want
to indicate the segment terms in the graph, we use either a shaded triangle with
holes, or a bracket connecting the root variable to the hole variable. Likewise,
correspondence is not always represented in a constraint graph. If we want to
visualize it, we use a dashed arc.

e A dominance literal X<*Y is shown only if it links two different fragments of the
constraint graph.
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That means that among others, the following dominance literals are not represented
in the constraint: reflexive dominance X<*X; a dominance literal X<*Y where X
is also the parent of Y by some labeling literal; dominance literals that are in the
transitive closure of two or more other dominance edges shown in the graph.

2.2.3 Variations

There exist a number of variations on the definition of CLLS. Several previous papers
define segments and segments terms to have exactly one hole [42, 46, 44, 41]. The reason
why we consider the more general case is that the application to underspecified beta
reduction uses segments with more than one hole.

Of the language C4 of dominance constraints, there are two quite different versions: the
one we have used here, and a language that allows for set operators on relation symbols
[34, 44]. For example, this language contains expressions like X (<* U L)Y, which states
that the node interpreting X must be either above the node for Y, or in a disjoint position
from it. Note that this is not a disjunction but a single relation. The language with set
operators allows for solvers with better propagation. However, these solvers are more
complicated than the one we present in Chapter 3, and as our focus is on parallelism, we
want to keep our account of dominance constraints as simple as possible.

Some predicates that we include in the definition of CLLS are missing in other accounts,
notably disjointness and inequality (which we will need for the processing of parallelism
constraints).

For the condition (\.out) on lambda binding and parallelism (Def. 2.7) the recent overview
paper by Egg, Koller and Niehren gives a slightly weaker version [41], which is used for
the proper treatment of an ellipsis phenomenon called antecedent-contained deletion.

2.3 Modeling Scope, Ellipsis, and Anaphora with CLLS

In this section, we illustrate the language CLLS by discussing three important linguistic
phenomena that can be modeled with it: scope ambiguity, ellipsis, and anaphoric binding.

2.3.1 Modeling Scope with Dominance Constraints

Sentence (2.1) (repeated from (1.5) in the introduction) is an example of a scope am-
biguity: There are two readings of the sentence that only differ in the scope of the two
quantifiers “every plan” and “a catch”. In the representation of these two readings as
logical formulas, shown in (2.2) and (2.3), this ambiguity translates to different scopes
of the variables = and y.

(2.1) Every plan has a catch.
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In the formula in (2.2) “a catch” takes wide scope over “every plan”, which gives us the
reading where all plans have the same catch; in the formula (2.3) “every plan” takes wide
scope, that is, each plan has its own reason for not working.

(a catch)(A\z (every plan)(Az
(2.2) (every plan)(Ay (2.3) (a catch)(A\y
(have ) y)) (have z) 1))

e

1 lam \XZ 1 Iam/ Y2
ev 3 plan~e X4 X5 a 3 catc Yy e Y5
s SRR
LN s
. ~ s

Figure 2.8: Constraint for “ Every plan has a catch.”

Figure 2.8 shows the constraint representing the meaning of sentence (2.1). It contains
three fragments. Roughly speaking, the two upper fragments represent the meanings
of the quantifiers “every plan” and “a catch”, while the lower fragment represents the
meaning of “has”. The three fragments are connected only by dominance literals, which
connect the leaves X5 and Y; of the two upper fragments to the root Zj of the lower
fragment.

The constraint graph in Fig. 2.8 is a graphical representation of the following constraint:

Xoi@(Xl,Xg) /\Xli@(Xg,X4) A X3:every A X4:p|an A X2:Iam(X5) A X54*Z0 A

YQZ@(Yl,YQ) A Ylt@(Y3,Y4) A Ys:a  AYjcatch A Yg:lam(Y5) A Ys<*Zy A

Zg @(Zl,Zg) A Zli@(Zg,Z4) A Z3:have A Z4:var A )\(Z4):Y2 A Zg:var A
A Z2)=X>

The constraint, let us call it ¢ for short, states that both X5 and Y5 must dominate Zj.
Each model of ¢ is a tree. Since trees do not branch upwards, either the node denoted
by X5 must dominate the tree node for which Y5 stands, or the other way round. If
we take a closer look at the tree fragments for “every plan” and “a catch”, we can see
that they cannot overlap: If we want to identify some variable Y; with a variable X;, we
have exactly two possibilities: We could set either Xq=Y; or Yy=X5, anything else would
make the whole constraint unsatisfiable because the labels conflict. So, as we have said,
the fragments of Fig. 2.8 cannot overlap, which means that in each model of ¢ either the
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node for X5 must dominate the node for Yy, or the node for Y5 must be above the one
that X, stands for.

have

Figure 2.9: Two models of the constraint in Fig. 2.8

Figure 2.9 shows two models of ¢ that exactly match the the two readings of sentence
(2.1). These are not the only models of ¢. In fact, it has infinitely many. One reason for
this is that CLLS cannot specify the root node of a tree. That means that any tree that
has the left or right tree in Fig. 2.9 as a subtree is also a model of ¢. Another reason is
that when we only know that Xg dominates Zj, a segment of arbitrary size can separate
them in a model.

The existence of these larger models is indispensable for a treatment of parallelism con-
straints. For our current example in Fig. 2.8 the intended models only contain nodes
that are mentioned in the constraint, i.e. nodes for which the constraint contains a vari-
able. However it is not clear how such a minimality condition could be formulated in
the presence of parallelism literals. For example the lambda structure in Fig. 2.11 is the
“intended” model of the constraint in Fig. 2.10, but the lambda structure contains nodes
that do not interpret any variable of the constraint.

(2.4) Peter began a book.

Moreoever, these larger models are necessary for a CLLS analysis of a linguistic phe-
nomenon called reinterpretation [77, 36, 37, 38] as illustrated in sentence (2.4): Peter can
only begin an activity; maybe he began to read the book, or he began to write it, etc.
In constructing the semantics of this sentence, the missing activity has to be added to
the sentence meaning. So in the end the intended model, the sentence semantics, will
contain material (e.g. the representation of “to read”) that is not present in the original
CLLS constraint that we have put up for the sentence.

2.3.2 Modeling Ellipsis with Parallelism Constraints

An ellipsis is a construction in which linguistic material is left out even though it is
necessary by either syntactic or lexical conditions. One possible reason for such an
omission is that the missing material is already present somewhere else, as for example
in sentence (2.5). The elliptical part “so does Mary”, the target sentence, means “Mary



36 CLLS

sleeps” — the missing material is found in the source sentence or antecedent “every man
sleeps”. “Every man” is the source parallel element or source contrasting element, and
“Mary” is the target parallel element (or target contrasting element).

(2.5) Every man sleeps, and so does Mary.
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Figure 2.10: Constraint for “Every man sleeps, and so does Mary.”

We represent the meaning of the sentence by the constraint in Fig. 2.10. The part of the
constraint graph dominated by Xg represents the meaning of the source sentence “every
man sleeps”. For the target sentence, we have a representation for “Mary”, as well as a
parallelism literal: The meaning of the source sentence “every man sleeps” is the same
as the meaning of the target sentence, except for the contributions of the two subjects
“every man” and “Mary”. (Note that in the semantics construction for sentence (2.5),
the function words “so does” do not receive any representation at the level of linguistic
meaning, except as the parallelism literal Xy/X;~Y;/Y7.)

In each model of the constraint in Fig. 2.10, the segment denoted by Xy/X; must be
structurally isomorphic to the one denoted by Y;/Y;. Furthermore, the lambda binding
A(Uz)=U; links Us to a binder within Xy/X7, so if Us denotes a node 7, then binding
for the correspondent of m must obey condition (A.same) of Def. 2.7. Figure 2.11 shows
a model of the constraint in Fig. 2.10; again it is the intended one.

every

sleeps sleeps

Figure 2.11: A model of the constraint shown in Fig. 2.10

2.3.3 Interaction of Parallelism and Scope: Quantifier Parallelism

Why is it interesting to deal with parallelism phenomena within a formalism for under-
specified semantics? The point is that scope ambiguity and parallelism are not indepen-
dent phenomena,; they interact in quite interesting ways, a fact that first became apparent



CLLS 37

in sentences that Hirschbiihler [62] proposed. This phenomenon, quantifier parallelism,
is exemplified in sentence (2.6), repeated from (1.13).

(2.6) Every linguist attended a workshop. Every computer scientist did, too.

The source sentence of (2.6) contains two scope-bearing elements, “ever linguist” and “a
workshop”, and thus has two readings. The meaning of the target sentence is “...every
computer scientist attended a workshop”, two scope-bearing elements again, so the sen-
tence should have 4 readings all in all. But it only has three: either “a workshop” takes
scope over both the source and the target sentence, which means that one single workshop
is attended by everybody; or “a workshop” has wide scope within both the source and
the target sentence, which means that all linguists attend one common workshop, and
all computer scientists visit a (potentially different) common workshop; or “a workshop”
takes narrow scope in both sentences, which means that everybody is travelling to his or
her own workshop. This means that parallelism enforces a parallel resolution of scope

ambiguities.
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Figure 2.12: Constraint for sentence (2.6): “Every linguist attended a workshop. Every
computer scientist did, too.”

Let us see how CLLS handles this interaction. Figure 2.12 shows the CLLS constraint
for sentence (2.6). Xj is the root of the source sentence semantics, and Yp is the root
of the target sentence semantics. The contrasting elements, “every linguist” and “every
computer scientist”, are dominated by Xy and Y respectively. But the constraint does
not contain any dominance literal between X, and U;: Most quantifiers, including uni-
versal quantifiers, must not move outside their sentence (i.e. they are dominated by the
uppermost node of their sentence); this is called a scope island constraint. But this con-
straint does not hold for indefinite quantifiers: the fragment for “a workshop” is allowed
to dominate Z.

There are three possible positions for the fragment for “a workshop”. It can either be
dominated by the fragment for “every linguist”, or it can go between Xy and Us, or it
can dominate Z. In either case, the parallelism literal enforces structural isomorphism
between the two segments interpreting Xo/X; and Yy /Y;. This gives us the three correct
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readings of the sentence, sketched in Fig. 2.13. Note that while in Fig. 2.13 (a) and (b),
lambda binding is parallel according to condition (A.same), in (c) the binder is above both
parallel segments and thus binds both a node in the source segment and its correspondent
in the target segment according to (A.out).
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Figure 2.13: Sketch of three models for the constraint in Fig. 2.12

2.3.4 Modeling Anaphoric Binding with Binding Constraints

An anaphor is an element or a construction that, in order to be interpreted, needs to be
associated with something else in the context. A few examples are given in sentences (2.7)
through (2.9). In these examples, the anaphora are underlined, and they are associated
with the italicized part of the sentence.

(2.7) Mary likes her cat.
(2.8) Mary and Sue like each other.
(2.9) Some cats who shred carpets do so repeatedly.

Coreference between an anaphoric element and its antecedent, i.e. the element that it is
associated with, is often indicated by coindexing the two elements, as shown in sentence
(2.10), where “Mary” and “her” are coindexed. So the common index 1 means that the
“her” in (2.10) refers to “Mary”.

(2.10) Mary; likes her; cat.

In lambda structures, coreference can be expressed by the anaphoric binding function
ante of Def. 2.6. Figure 2.14 shows an example of a lambda structure with anaphoric
binding: ante(w) = . This lambda structure is the semantics for sentence (2.10).2 The
semantic contribution of “her” is the ana-labeled node along with the anaphoric binding
from that node to the node labeled “mary”.

’In the lambda structure in Fig. 2.14, the representation of “Mary” is just “mary”, while in Fig.
2.11, the representation of “Mary” is “AP.P(mary)”. We use the simpler form here just for reasons of
simplicity, since it does not make a real difference: In both cases the completely beta reduced term is the
same.
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Figure 2.14: Lambda structure for sentence (2.10). Note the anaphoric binding.

2.3.5 Interaction of Parallelism and Anaphora: Strict/Sloppy Ambiguities

Again, anaphora and parallelism are not separate phenomena. An anaphor in the source
sentence of an ellipsis can lead to what is called a strict/sloppy ambiguity. Consider
sentence (2.11). As before, coindexing indicates that the “her;” in the ellipsis source
sentence refers to “Mary;”. The meaning of the elliptical target sentence is “...and Sue
likes her cat”. But what does the “her” in the target sentence refer to? There are two
possibilities: It can refer either to “Mary” or to “Sue”. The reading in which Sue likes
Mary’s cat is called strict, and the reading in which Sue likes her own cat is called sloppy.

(2.11) Mary; likes her; cat, and Sue does, too.

d
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Figure 2.15: The constraint for sentence (2.11): “Mary; likes her; cat, and Sue does,
too0.”

Handling the interaction of parallelism and anaphoric binding is exactly what the con-
ditions (ante.same) and (ante.out) of Def. 2.7 are about. We can illustrate condition
(ante.same) on the example we have just been discussing, sentence (2.11). A CLLS con-
straint representing the meaning of this sentence is shown in Fig. 2.15. Here, condition
(ante.same) licenses two possible anaphoric binders for the correspondent of X: either
the correspondent is bound by X — this gives the strict reading —, or it is bound by the
correspondent of X7, which leads to the sloppy reading.

Fig. 2.16 shows two models of Fig. 2.15 that reflect the two readings of the sentence. For
the sloppy reading (picture (b)), the anaphoric reference can be read off in a straightfor-
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Figure 2.16: Two models for the constraint in Fig. 2.15

ward way. For the strict reading in picture (a), we get a chain of anaphoric links, which
we have to follow to the end to find the referent: The ana-labeled node in the target
subtree is mapped to the ana-node in the source subtree, which again is mapped to the
mary-node.

Why is the target ana-node not linked directly to the mary-node in the source subtree?
The reason is that there are more complicated cases, called many-pronoun puzzles, like
(2.12) and (2.13), where a simpler analysis would fail. See Egg, Koller and Niehren [41]
for a discussion of sentence (2.12), and Dalrymple, Shieber and Pereira [30] for (2.13).
Xu [118] proposed the link chain analysis for CLLS and showed that it derives the right
readings for many-pronoun-puzzles like (2.12) and (2.13).

(2.12) John revised his paper before the teacher did, and so did Bill. [52]
(2.13) John realizes that he is a fool, but Bill does not, even though his wife does. [29]

2.3.6 Interaction of Scope, Parallelism, and Anaphora

In sentence (2.14), we have an interaction of ellipsis with both scope and anaphora. The
CLLS constraint for this sentence is shown in Fig. 2.17. For the sake of readability,
we have abbreviated the semantics of “a book she liked” as an empty triangle with a
ana-labeled variable Z. The definition of the parallelism relation and its conditions on
binding ensure that the scope ambiguities are resolved the same way in source and target
sentence, and that we only get the “right” anaphoric bindings. This leads to the three
correct readings sketched in Fig. 2.18: Either both Mary and Sue read the same book,
or each reads a book that she herself likes, or they read different books that Mary likes.
A more extensive discussion of sentence (2.14) and the derivation of the three readings
can be found in the recent overview paper on CLLS by Egg, Koller and Niehren [41].
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Xo/X1~Yy /Y

Figure 2.17: Constraint for sentence (2.14)

(2.14) Mary read a book she liked before Sue did.
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Figure 2.18: A sketch of the three readings of sentence (2.14)

2.3.7 A Note on Models and Readings

What does it mean for a CLLS constraint to represent the semantics of a sentence? For
each sentence that we have discussed in this section and the constraint that we put up
for it, we have been able to point out models that represent the correct readings of the
sentence. But on the other hand we have said that each CLLS constraint has infinitely
many models. How are the “intended” models distinguished from all the others?

(a) 0 (b)
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Figure 2.19: Sketch of the two saturated constraints computed for Fig. 2.8

In the following chapters, we present a semi-decision procedure for CLLS. This proce-
dures computes result constraints for a given input constraint, called saturations, which
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look almost like lambda structures. For example, for the constraint in Fig. 2.8 (p. 34),
which represents the meaning of “Every plan has a catch”, the procedure computes two
saturations sketched in Fig. 2.19. For the sake of readability, we have abbreviated the se-
mantics of “every plan” and “a catch” by empty triangles. Compare the two constraints
with the two “intended models” in Fig. 2.9 (p. 35): If we take the constraint in Fig. 2.19
(a), remove the dominance edge between X; and Y and identify the two variables, and
if we do the same with Y, and Zj, then we get a graph that looks exactly like the lambda
structure in Fig. 2.9 (a). In the same way, we can transform the constraint graph in Fig.
2.19 (b) by “contracting dominance edges”, and the result looks exactly like the lambda
structure in Fig. 2.9 (b). This idea of “contracting dominance edges” is illustrated again

in Fig. 2.20.
(a) f (b) f
a/\- a
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Figure 2.20: “Contracting dominance edges” on (a) yields (b).

For cases like those that we have discussed in this section, the CLLS procedure allows
us to compute readings. Given the CLLS constraint representing the meaning of such a
sentence, its saturations that we compute will exactly match the correct readings, in the
sense that we have sketched above: If we contract dominance edges in the graphs of the
saturations, the result looks like the lambda structures that are the correct readings.

Incidentally, it is not the case that all saturations that the procedure

could ever compute have this property that we can just contract some f
dominance edges and reach constraint graphs that look like lambda ) I )
structures. In the constraint graph shown to the right, there is a node 2 ®  b'e
with two distinct “dominance children” that cannot be identified. But

as far as I know, such constraints never occur as saturations of linguistically relevant
constraints.

2.3.8 A Note on Capturing

Usually variable binding in lambda terms is accomplished by variable names: A binder
Az binds all occurrences of the variable z in its scope. But if by some operation, another
Az gets inbetween the first Az and an occurrence of z, it captures the variable.

The usual way of excluding capturing is via freeness conditions. However, this is prob-
lematic in the case of underspecified descriptions of lambda structures. Suppose we use
variable names to indicate binding, as follows: We encode the variable names into the
labels by using new labels lam, and var, for each object-level variable x.



CLLS 43

Now consider the constraint graph in Fig. 2.21. It contains two |am, lam,
binders lam, with a scope ambiguity between them, and it is un- I I
clear which of the two is supposed to bind the var;. In each model, varg e’

the lowest binder labeled lam, wins. So when the structure of the
lambda term is not fully known, variable names are not sufficient
to make it unequivocally clear which binder binds which variable
occurrences. The problem is compounded in the presence of paral-
lelism literals.

Figure 2.21:
Lambda binding?

The solution that lambda structures offer, indicating variable binding not by variable
names but by a binding function, provides a general solution to the problem, a solution
which does not involve any overhead in processing.

The explicit binding functions of lambda structures are somewhat similar to de Bruijn
indices [31]. In this notation, a bound variable is represented by a number. A number n
means that to reach the binder of this variable, n other A-abstractions have to be passed
on the path up from the variable to the root. For example, the term Az.z(Ay.zy) is
written as AO(A10). However, every time a lambda term changes, e.g. by beta reduction,
de Bruijn indices have to be readjusted.

2.4 Related Formalisms

In this and the following section, we discuss work related to CLLS. This section is devoted
to related formalisms, i.e. tree description languages, and the following section names
some related approaches to modeling scope, parallelism, and anaphoric binding.

Three criteria for distinguishing between tree description languages will be especially
relevant for our purposes:

Feature trees vs. constructor trees. In a feature tree, each child of a node can be
addressed individually by the feature, i.e. the edge label, of the edge leading to it.

A constructor tree is a node-labeled tree corresponding to a ground term. The
children of a node can be accessed all at the same time, but not individually.
Feature trees are more general than constructor trees: A constructor tree can be
seen as a feature tree in which the edge labels are natural numbers.

CLLS describes constructor trees, as does context unification. All other formalisms
that we mention in this section describe feature trees.

Talking about nodes vs. talking about trees. This point concerns the perspective
on trees that a language takes: it can either take an internal perspective, talking
about the nodes of a single tree, or take an external perspective, describing relations
between trees. In the computer science tradition, languages that talk about trees are
more common. In the computational linguistics field, the node-centered paradigm
is prevalent.
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In CLLS, the variables stand for nodes, so we focus on “node description” languages
in this section, discussing only one language that takes the external perspective of
relations between trees, namely context unification.

Occurrences vs. Structure. Does identity mean identity of structure, or identical oc-
currence?

More concretely, suppose we have a language in which the variables denote trees,
and equality is equality of structure. Then the equation 2 = f(y,y) is satisfiable:
x is a tree with root label f and two identical subtrees as its children. However,
CLLS is a language that talks about occurrences of nodes. Here the constraint
X:f(Y,Y) is unsatisfiable — the node interpreting Y would have to be in a disjoint
position from itself.

2.4.1 Second-order Monadic Logic

Most tree description languages coming from the computer science tradition adopt the
external perspective — the most notable exception being (W)SkS [113, 114]. SkS is the
second-order monadic logic with k successors, and WSKS is its weak variant. The decid-
ability of (W)SkS is due to famous results by Doner, Thatcher and Wright and Rabin
[113, 32, 98]. Doner, Thatcher and Wright linked definability in WSKS to recognizability
by finite tree automata. Rabin showed that definability in SkS coincides with recog-
nizability by Rabin tree automata over infinite trees. The languages SkS and WSkS
are among the most expressive decidable logics. The time complexity of SkS is non-
elementary.

The language (W)SkS possesses first-order variables z,y, z ... and second-order monadic
variables X,Y,Z.... Terms are formed from the constant ¢, first-order variables, and
right concatenation with the unary function symbols 1...k. For example, x1523, ¢4112
are terms. Atomic formulas Atomic formulas are equations and inequations t; < ty be-
tween terms, and expressions “t € X” for terms ¢ and second-order variables X. Formulas
are built from atomic formulas using the usual logical connectives and existential and uni-
versal quantification over both first-order and second-order variables. While second-order
variables range over arbitrary sets in SkS, they are restricted to ranging over finite sets
in WSKS.

The interpretation that is interesting for our purposes interprets terms as strings in
{1,...,k}*, € as the empty word, = as string equality, and < as the prefix ordering.
Second-order variables are interpreted as sets of strings. The atomic formula z € X is
true iff the denotation of x is contained in the denotation of X.

How can this language be used to encode trees? In the tree definition that we have used
throughout, a path is a word in {1,...,k}*. In this encoding, ¢ is the root node, wi is
the ¢-th child of the node denoted by the term w, and the prefix ordering < on terms of
(W)SKS is the same as dominance between tree nodes. To encode a tree domain, we need
to be able to state prefix-closedness and closedness under left brother. Both properties
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can be expressed in WSKS.

The main problem in encoding node-labeled trees is the encoding of the node labels.
Different encodings are possible. Koller, Niehren and Treinen [78] encode a tree as a
single set, its tree domain. The labels of the nodes are represented by special words:
Koller, Niehren and Treinen use unary function symbols 0, ...,k instead of 1,...,k and
represent the fact that a node 7 is labelled f by a word «0" if f is the n-th function
symbol with this particular arity. Comon et al.[23] also encode a tree as its tree domain,
but they encode labeling by one set Sy for each function symbol f in the signature X
(which requires 3 to be finite). The set Sy contains all tree nodes labeled by the function
symbol f.

SkS adopts the internal, node-centered perspective on trees; although it can talk about
sets of nodes, there are some simple relations between trees that it cannot express. For
example, suppose x and y are tree-valued variables, then the equation 2 = f(y,y) cannot
be expressed in SkS because this property of having two identical subtrees is one that
can only be tested by stronger tree automata. There is even a simpler example: Suppose
z,y,z are tree-valued variables, then the equation x = f(y,z) cannot be expressed in
SkS: If we extend the language such that it allows for concatenation wi of terms w with
letters 7 to the right as well as concatenation sw of terms with letters to the left, then it
becomes undecidable. This fact is discussed e.g. in an overview article by Thomas [114]
and in an article by Miller and Niehren [90].

2.4.2 Feature Description Languages

Feature descriptions can be regarded as a logical description of records. A feature system
is an algebraic structure defined in terms of a set A of sorts and a set L of features.
Intuitively, it may be seen as a graph in which nodes are labeled with sorts (where one
node may be of more than one sort), each edge is labeled by a feature, and different
outgoing edges of a node are always labeled by different features. A node is addressed
from another node by the feature word on a path between them.

Feature descriptions originated in phonology [20] and became a widespread formalism for
linguistic theories in the 70s with Lexical-Functional Grammar [68, 65]. An influential
feature description language is the one by Kasper and Rounds [66, 67]. The description
language by Kasper and Rounds contains, among others, the following atomic formulas:
constants a € A, path equations p = ¢ for p,q € L*, and feature prefixes £ : ¢ for a
feature £ € L and a formula ¢. A Kasper-Rounds formula is evaluated at a fixed node
7 of a feature system. A constant a states that this node is of sort a, a path equation
p = q says that the two paths p,q € L* originating in 7 are equal, and the formula £ : ¢
states that the formula ¢ holds at the node reached from = via the feature ¢ € L.

Blackburn [8] investigates the modal nature of the Kasper-Rounds language. In his
formalism a sort a becomes a propositional formula ¢,, and a prefixed formula £ : ¢
becomes a modal (I)¢. In this context, the work of Blackburn and Meyer-Viol [9] and
Kracht [79] is especially interesting for our purposes: They investigate modal logics for
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finite k-ary trees, a restriction of feature systems to finite feature trees, and their tree
description languages include a modal for dominance. The basic idea is to use the tree
as the reachability relation and to provide modal operators for traveling in the tree. In
the notation of Blackburn and Meyer-Viol, a formula |¥ ¢ means that ¢ is true at the
tree node that is the k-th child of the current node. Also there are operators 1 (true at
the parent), |* (true at some node dominated by the current node) and 1* (true at some
node dominating the current node). For a propositional logic enriched with these modal
operators, validity is decidable. Blackburn and Meyer-Viol also discuss a combination of
this logic with another modal logic describing feature structures attached to each tree
node, which is viewed as an internal structure of the propositions in the modal tree
description language.

Smolka [110] studies a feature description language as a constraint language interpreted
over a feature algebra, which can be seen as a special case of feature systems: a restriction,
among other things, to finite, rooted, connected graphs. The constraint language is sim-
ilar to Kasper-Rounds, but allows for quantification over node variables. For a fragment
of the language, Smolka proposes a constraint solver. Building on this work, Backofen,
Smolka, Ait-Kaci, and Podelski [7, 1] define a constraint system F'T of feature trees. This
approach takes an external perspective on trees. A sort constraint Az says that the tree
x has a root of sort A, a feature constraint z fy states that z has a subtree y at feature
f, and an equality constraint = y says that x and y have the same shape. Satisfiability
of this language is decidable; a constraint solver (in the shape of simplification rules) is
given.

2.4.3 Context Unification

Context unification [84, 85], a variant of second-order linear unification, is the closest
relative of the language C,. However, while C,, adopts the internal perspective on trees,
CU takes the external perspective, specifying relations between trees.

Formally, CU can be defined as equation solving in the two-sorted algebra of trees and
contexts. A context v over the signature X is a tree over the extended signature ¥ & {e}
that contains exactly one occurrence of the constant .3 The hole of a context +y is the
unique path 7 € D, such that L,(7) = e. Alternatively, a context y can be regarded as
a function mapping trees to trees: In mapping a tree 6 to the tree y[#], the occurrence
of e in 7y is replaced by 0, i.e. y[0] = v[0/e].

The algebra of trees and contexts over 3 is a two-sorted algebra, the domains of which are
the set of trees and the set of contexts over X. The operations provided by this algebra
are tree construction and functional application of contexts to trees. For each sort of the
algebra, we assume an infinite set of variables: a set V) of tree variables x,y, z, and a set
Vs of context variables C. A tree-valued term t is built from tree variables, applications

3However there exists another variant of CU, studied by Lévy [84], that allows an arbitrary number
of leaves labelled e in a tree. This variant is equal to CU in expressivity.
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Figure 2.22: g(f(a,b)) = C(a)

of function symbols in 3, and application of context variables.

tu=z|Ct)| fltr,...,tn) feXar(f)=n

A CU equation system is a finite conjunction ¢, = ¢{ A... At, =t of equations between
tree-valued terms, which is interpreted over the algebra of trees and contexts; Tree vari-
ables are mapped to trees, and context variables to contexts. A mapping o is a solution
of a CU equation system if o(¢;) = o(t}) for all equations ¢; = ¢, in the system.

For instance, the CU equation
9(f(a,b)) = C(a)

has exactly one solution: C must be mapped to the context function AX.g(f(X,b))
(Fig. 2.22). This context function corresponds to the context g(f(e,b)).

One interesting point about CU is that with respect to its expressiveness it is situated
between string unification [86], which is decidable, and second-order unification, which
is undecidable (see Fig. 2.23). For CU itself, decidability is still an open problem [104].

second order unification | undecidable | see [54]

context unification (unknown) | see [104]

string unification decidable see [86]

Figure 2.23: Context unification in context

String unification is the problem of solving word equations. A string unification equation
system is a conjunction of equations wy = vy A ... A wy, = vy, where w;,v;, 1 < i < n,
are words over some alphabet ¥ U V. X is a set of terminals and V a set of variables. A
solution is a valuation o : V — ¥* such that o(w;) and o(v;) is the same word over ¥ for
all . For example, gx = zg is a string unification equation. All solutions of this equation
map z to a word in g*. String unification has been discovered and studied under several
names and in several research contexts [6]. There exists a (very complicated) algorithm
for it due to Makanin [86]. Context unification can be regarded as a generalization of
string unification from words to trees.

How exactly is CU related to CLLS? CU is equally expressive as a fragment of CLLS that
consisting of labeling literals, and parallelism literals with exactly one hole. We write
Cip for this language. On the one hand, every CU equation system can be encoded in
equality up-to constraints [93], which can be translated into Cy, constraints [92]. On the
other hand, any conjunction of labeling, dominance, and parallelism constraints can be
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Figure 2.24: Constraint for the equation g(f(C(a),b)) = C(g(f(a,b)))

written as a CU equation system [92]. Note that dominance literals can be expressed in
Cip: A dominance literal X<*Y can be written as the parallelism literal X /Y ~X /Y.

The similarity between contexts and segments is immediately obvious. However, there is
an important difference. A context is a function from trees to trees, and as such can be
regarded independently of any tree it might be embedded in. A segment is embedded in
its surrounding tree by the binding conditions. There are only segments of a tree, not
segments on their own.

To illustrate how CU equation systems can be translated into CLLS constraints and vice
versa, we sketch simpler encodings than the ones given in the literature [93, 92]. Consider
the CU equation

(2.15) g(f(C(a),b)) = C(g(f(a,b))).
We translate this equation into the Cy, constraint in Fig. 2.24, as follows:

e The left-hand side term of the equation (2.15) can be divided into three parts:

the context g(f(e,b)), the context variable C, and the tree a. Likewise, the right-
hand side term can be divided into two parts: the context variable C, and the tree
9(f(a,b)).
The parts that do not consist of a context variable can be translated to labeling
literals in a straightforward fashion: The context g(f(e,b)) is translated to the
segment X(/X; of the constraint in Fig. 2.24, the tree a is translated to the segment
X/ of the constraint, and the tree g(f(a,b)) is translated to the segment Yi/ of
the constraint.

e The two occurrences of the same context variable C are translated into a parallelism
literal: Xl/XQ NY()/Yl .
e Finally, the left-hand side term and the right-hand side term of the equation (2.15)

describe the same tree. We translate this by equating the roots of the two constraint
graphs that we have drawn: Xy=Yj.

Conversely, how can we encode a Cj, constraint in a CU equation system? The main
problem is that the two languages adopt different perspectives on trees: How can we
encode information about a specific node when we can only talk about trees? The trick



CLLS 49

in overcoming this obstacle is to employ contexts to talk about nodes: We use, for each
variable X in our Cj, constraint, a context variable C'x standing for the "tree from the
root down to X7. Additionally, we use a tree variable r to denote the entire tree.

To make the encoding simpler, we allow, besides equations between tree-valued terms,
equations s = s’ between context-valued terms. This adds nothing to the expressive
power of the language [92]. Then we can translate constraints into equations as follows:

Xa*Y as HC.(CY = CX o C)
Xef(Xi,...,Xn) as Ajcjep 371,05 Tn. ifn>1
(_C;(Z = CX o f(xl, ey Lj—1, 9, L1y - ,xn))
X:a as r=Cx(a)
XI/XZNYI/YQ as 30.(0)(2 = CXlo VAN Cy2 = Cch)

Furthermore, to make sure that a context variables C'x correctly encodes the position of
X, we use the following conjunction of equations:

ROOt(SO) —def /\ dz.r = CX (.T)
XeVar(p)

That is, there exists a single tree r such that all C'y encode positions in it.

For example, the unsatisfiable constraint ¢ = Y: f (X7, X2) AX1<4* X A X<* X is translated
to the CU equation system

Root(p) NCx, = Cx o f(e,29) ANCx, = Cx o f(z1,8) ACy = Cx, oCACy =Cx,oC".

This system is unsatisfiable: from Cy = Cx, o C and Cy = Cx, o C', we get Cx, o C' =
Cx, o C'. We can substitute Cx, by Cx o f(e,z2) and Cx, by Cx o f(z1,e), which gives
us f(e,z2) o C = f(x1,) o C'. This is clearly unsatisfiable as the holes are in different
positions on the two sides.

Note that in the translation that we have just sketched, both dominance literals and par-
allelism literals were encoded into the same CU construct, context variables. Dominance
constraints can be encoded into stratified CU, a decidable fragment of CU [108, 109],
but they do not seem to correspond to any clear-cut fragment of stratified CU. So in
CLLS we have two different language constructs, dominance constraints and parallelism
constraints, that differ in their expressive power and thus also the algorithmic complex-
ity of procedures for solving them; in CU these two correspond to just one construct,
which matches the expressive power of parallelism constraints. This point will become

important below, when we talk about approaches to modeling scope and ellipsis with
CU.

2.5 Related Modeling Approaches

In this section we discuss related approaches to modeling scope, parallelism, and
anaphoric binding.
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2.5.1 Linguistic Applications of Dominance

In computational linguistics, the dominance relation has been widely used in analyses
of both the syntax and the semantics of natural language. Its use in computational
linguistics was first proposed in the 80’s by Marcus, Hindle and Fleck [87]: The aim
of D-Theory parsing was a cognitively adequate handling of local ambiguities, i.e. cases
where after the first few words of a sentence there is more than one possible analysis,
but the ambiguity is resolved by the end of the sentence. The parsing algorithm should
not backtrack in cases where humans showed no hesitation in reading the sentence. To
that end, instead of working on a set of parse trees, D-theory uses a single underspecified
tree representation allowing for labeling and dominance statements. In this framework,
each underspecified description has to have a unique standard referent (model). Later
papers add further constraints for a closer modeling of human sentence understanding,
for example precedence, the left-of relation between nodes of a tree [55, 112, 16].

Dominance is also used for a variant of Tree Adjoining Grammars [64], a grammar for-
malism that constructs a parse tree by adjoining further trees to it. While the original
formulation of this operation uses destructive changes to a tree, Vijay-Shanker describes
it as a monotonous adding of information to quasi-trees [115, 102], tree descriptions con-
sisting of labeling and dominance information. A quasi-tree must have a unique minimal
tree that satisfies it. In contrast, this condition is not imposed on D-Trees, introduced
by Rambow, Vijay-Shanker and Weir [99].

To model scope ambiguities, dominance was first used by Reyle in the early 90’s [100]:
UDRT is the underspecified variant of Discourse Representation Theory (DRT), a formal-
ism for natural language semantics that focuses on anaphoric reference and accessibility
conditions for it, modeling accessibility by stacked bozes containing formulas and referents
(elements that can be referred to anaphorically). UDRT adds two constructs to DRT":
There may be labels attached to boxes, and between these labels, dominance statements
can be expressed.

Muskens [91] applies the same technique — labeled formulas, and dominance between
labels — to both the (syntactic) parse trees and the lambda terms of a sentence’s semantics.

With Predicate Logic Unplugged, Bos [15] generalizes the approach to a meta-formalism to
be combined with any object-level language. Again, formulas of the object-level language
are labeled, and label variables (holes) can replace a formula. Dominance constraints
state that some hole must dominate some label. A solution of such an expression is a
plugging, a mapping from holes to labels that respects the dominance constraints.

In Minimal Recursion Semantics, Copestake, Flickinger and Sag [26] use similar tech-
niques as in Predicate Logic Unplugged: A handle is either a label preceding a formula
or a label variable, and dominance between handles is expressed by the geq relation =,
“equality modulo quantifiers”: Either the label variable is directly identified with the
formula label that it dominates, or or one or more quantifiers float in between the label
variable and the formula label.
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Pinkal [95] distinguishes three levels of semantic underspecification. On the first level
are lexical ambiguities, referential ambiguities and similar local phenomena. Scope ambi-
guities constitute the second level, the level of underspecification in the global semantic
structure. The third level of underspecification arises when the syntactic information
from which the semantic representation is built is incoherent, ambiguous or incomplete.
Pinkal proposes a higher-order unification formalism called Underspecified Semantic De-
scription Language (USDL) to deal with phenomena at all three levels. The language
USDL is a variant of CU. Subsequently Niehren, Pinkal and Ruhrberg proposed a CU
treatment of both scope ambiguities and parallelism phenomena [94], which Egg and
Kohlhase extended by a dynamic treatment of referents [40]. However this analysis runs
into problems of combinatoric explosion when many scope-bearing elements are present
[74]. The problem is that this approach has to use context variables in their full expressiv-
ity for expressing scope ambiguity. As we have pointed out above when we sketched the
translation of CLLS constraints to CU equation systems, there is no obvious translation
of dominance constraints that would be computationally cheaper than CU in general. In
contrast, the CLLS analysis, which replaced the CU analysis, has the distinction between
dominance constraints and parallelism constraints, so it can use the less “expensive” for-
malism for modeling scope ambiguity.

Duchier and Gardent propose using dominance constraints for an underspecified rep-
resentation of discourse structure [33]. Ambiguities pertaining to the relation between
different discourse elements can be represented in the same way as scope ambiguities. A
similar approach is taken by Schilder [107].

2.5.2 Related Analyses of Parallelism

In this section we list only the analyses of parallelism phenomena that are most closely
related to the CLLS approach; a general discussion of ellipsis and of different types of
approaches follows in Chapter 8.

A “classical” analysis of ellipsis is the one by Dalrymple, Shieber and Pereira [30], hence-
forth DSP. They relate the source and target VP semantics using higher-order unification.
We sketch the analysis with a simple example, the sentence (2.16). The meaning of this
sentence is modeled by the formula (2.17) together with the equation (2.18): the com-
mon part of source and target sentence must be some property that holds of both the
source and target exception(s). Solving the equation yields the solution (2.19). When we
apply this property to the target exception “Mary” we obtain the meaning of the target
sentence, (2.20).

2.16) John sleeps, and Mary does too.

17) sleep(john) A P(mary)

(2.16)
(2.17)
(2.18) P(john) = sleep(john).
(2.19)

19) P = Az.sleep(z).
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(2.20) sleep(mary).

Crouch [28] follows the same idea as DSP, but uses substitution instead of full higher-
order unification. In this approach, the semantic representations are phrased in Quasi-
Logical Form (QLF) [2], a formalism based on lambda calculus in which quantifier scope
is represented by special scope nodes; they are uninstantiated until quantifier scope is
resolved. Apart from the better computational complexity of this approach in comparison
to DSP, Crouch stresses the need for a semantic formalism that is declarative, giving a
(partial) description of the intended semantic composition, rather than procedural and
dependent on the order in which ambiguities are resolved.

As we have mentioned above, Niehren, Pinkal and Ruhrberg [94] propose an analysis of
ellipsis that uses context unification rather than higher-order unification in the general
case. Their approach integrates the treatment of ellipsis with an underspecified descrip-
tion of scope ambiguities.

Higher-order unification has also been employed to model other parallelism phenomena:
For the interpretation of focus, Gardent and Kohlhase use higher-order unification to
extract the focus semantic value [50]. For example, for the sentence “John only likes
MARY” — where focus is indicated using upper-case —, the focus semantic value is the
set of properties of the form [liking y, where y is an individual. This value is then used to
describe what the semantics of the “only” is in this sentence. In corrections in discourse,
strict/sloppy ambiguities are possible, as e.g. in “John; loves his; wife.” — “No, PETER
loves his wife.” Gardent, Kohlhase and van Leusen use higher-order unification to model
these phenomena in a similar fashion as DSP [51].

Reyle [101] discusses parallelism phenomena within the formalism of UDRT. As we have
said above, UDRT attaches labels to the boxes of formulas and referents that are typical
for DRT, and between these labels, dominance can be stated. To model pararallelism,
these labels are now decorated with indices. Given two pairs of boxes with corresponding
indices, then dominance must order both pairs in the same way. Reyle uses this mecha-
nism for two purposes, on the one hand inference in an underspecified framework — from
an underspecified premise an underspecified conclusion is drawn, with parallelism linking
them —, and on the other hand for handling ambiguities related to plural: occurrences of
the same ambiguous plural expression can be indexed to ensure they are disambiguated
the same way. Schiehlen [106] takes up this coindexing technique to handle the inter-
action of scope and ellipsis in the UDRT setting. However, in this approach everything
that is included in the parallelism has to be specified explicitly, while in DSP and the
CLLS analysis all the material in the parallel regions is included by definition.

The approach by Hardt [59] focuses on the similarities of anaphora and ellipsis. Using a
DRT setting, this analysis gives the source sentence a referent in the universe that the
target sentence can then refer to. In this approach, examples where the source sentence
can only be found by inference play an important role, especially when this inference
parallels steps that need to be performed for anaphora resolution.
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2.5.3 Related Analyses of the Interaction of Ellipsis and Anaphora

Williams [117] models strict/sloppy ambiguities as ambiguities in the source rather than
in the target sentence. For example, for sentence (2.10), the source sentence of the
elliptical (2.11), there would be two representations:

1. Mary; (Az.z saw her; mother) and

2. Mary; (Az.z saw z’s mother).

The first representation results in a strict reading of the target sentence, the second in
a sloppy reading. Note that there is no separate construct for representing anaphoric
binding, rather it is modeled as lambda binding.

DSP also models anaphoric binding by lambda binding. To handle strict/sloppy ambi-
guities, they distinguish primary and secondary occurrences of the subtree that has the
shape of the exception. Consider sentence (2.21). In solving the equation (2.23) for this
ellipsis, primary occurrences — underlined in the example — have to be abstracted, while
secondary occurrences may or may not be. The underlined occurrence of “dan” is primary
because it constitutes the contrasting element; the other occurrence is secondary because
it arises from the representation of the pronoun “his”. There are four solutions to the
higher-order unification problem in (2.23). Two of them, Az.likes(dan, wife—of (dan))
and Az.likes(dan,wife—of(x)), do not obey the restriction that a primary occurrence
must be abstracted, so they are eliminated. In the other two solutions to the unification
problem, A\x.likes(z,wife—of(dan)) and Ax.likes(x,wife—of(z)), the primary occur-
rence of “dan” is abstracted, and indeed these two solutions correspond to the strict and
the sloppy reading of sentence (2.21).

(2.21) Dan likes his wife, and George does, too.
(2.22) likes(dan,wife—of(dan)) A P(george)

(2.23) P(dan) = likes(dan,wife—of (dan))

Kehler [70] connects the semantic representations of a pronoun and its antecedent by the
linking relation, which corresponds to Chomsky’s anaphoric binding relation in syntactic
representations [19]. Linking relations in the source clause determine linking relation in
the target clause, by the operations of referring and copying. The operation of referring
is similar to connecting the target anaphor to its own correspondent, while the operation
of copying is similar to connecting the target anaphor to the correspondent of the source
binder. One linking relationship in the source clause gives rise to two possible linking
relationships in the target clause. This analysis is basically the same as the conditions
on anaphoric binding in CLLS (Def. 2.7), which were proposed by Xu [118].
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2.6 Summary

In this chapter we have introduced the Constraint Language for Lambda Structures,
CLLS. Lambda structures are finite constructor trees augmented with two node mappings
for modeling lambda and anaphoric binding. CLLS is a language of partial descriptions
of lambda structures, offering constraints that describe relations between nodes.

CLLS can be seen as a hierarchy of three sublanguages:

e (4 constraints, with labeling and dominance as their most important types of liter-
als. Labeling
X():f(Xl, e ,Xn)

expresses that the node that Xy denotes bears the label f and has the nodes denoted
by Xi,...,X, (in this order) as children, and dominance

X0<|*X1

states that the node for which X stands is an ancestor of the node for X;. Models
for C4 constraints are tree structures, i.e. node-labelled trees without the additional
mappings.
e C, constraints, which extend Cq by parallelism literals. A parallelism literal
Xo/X1,..., Xp~Yo/Y1,..., Y,

states that the segment denoted by Xo/X1,..., X, has the same structure as the
segment for Yy/Y1,...,Y,. A segment is a tree from which some subtrees have been
cut out, leaving behind holes.

Models for C), constraints are tree structures extended by a parallelism relation
between pairs of segments. Parallelism between two segments can be characterized
by a correspondence function which links each node in one segment to the node at
the same position in the other segment. Corresponding nodes must bear the same
labels and have corresponding children.

e CLLS extends C, by lambda and anaphoric binding literals. A lambda binding
literal
A(X)=Y
states that the node denoted by X is var-labeled and has its lambda binder at the
node denoted by Y, and an anaphoric binding literal

ante(X)=Y

says that the node denoted by X is anaphorically bound at Y. Models for CLLS are
lambda structures. Their parallelism relation must obey a number of restrictions in
their interaction with lambda and anaphoric binding: binding within two parallel
segments is parallel; if a node is bound outside its segment, its correspondent has
the same binder; and hanging binders, i.e. a variable outside being bound inside a
segment involved in parallelism, are prohibited.
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These three parts of CLLS correspond to three main phenomena that it can model within
the application to underspecified semantics: dominance can be used to model scope
ambiguities, parallelism can be used to model ellipsis, and anaphoric binding literals can
model anaphoric binding.

A sublanguage of CLLS (consisting only of labeling and parallelism literals) is equally
expressive as context unification [93, 92], the decidability of which is still an open problem.
This is especially interesting as this class of unification problems lies right at the border
between string unification, which is decidable, and second-order unification, which is not.
Contexts of CU and segments of CLLS are closely related; however, contexts have “a life
of their own” as mappings from trees to trees, while segments are always embedded
within their surrounding tree, to which they are linked by binding relations.

The language CLLS was introduced in 1998 by Egg, Niehren, Ruhrberg and Xu [42]. A
more extensive description is given in a recent overview paper [41]. The language CLLS
as we have defined it in this chapter is the one used in the 2000 paper on parallelism [46],
except for the possibility of having more than one hole in a segment term; this extension
is first present in the first paper on underspecified beta reduction in CLLS [12].
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Chapter 3

Solving Dominance Constraints

In this and the following two chapters we develop a procedure for solving CLLS con-
straints. The procedure divides naturally into three parts, like the language CLLS: In
the previous chapter we have seen that CLLS can be regarded as a hierarchy of three
languages, dominance constraints, parallelism constraints, and all of CLLS. The three
parts of the procedure match this hierarchy. The basis of the procedure is an algorithm
for Cq4, the class of dominance constraints.

This algorithm for Cq is the topic of the present chapter. We discuss a constraint solver for
dominance constraints, a terminating procedure that tests satisfiability. We formulate it
as a saturation-based algorithm. It accumulates information, never eliminating anything
it has found, until a state of saturation is reached. When such a saturated constraint
has been found, a model can be read off it directly. For any dominance constraint, only
finitely many saturated constraints are computed. Satisfiability of Cq is an NP-complete
problem.

There are algorithms for Cq that are more sophisticated and more geared towards an
implementation [34]. But as we will formulate the parallelism constraint procedure in
this simple and abstract paradigm, we already use it for the Cq solver.

This chapter, like the previous chapter on the language CLLS, does not report new results.
Rather, it forms the background for the new procedures for parallelism constraints and
for CLLS as a whole, which we discuss in the following chapters. We use the same
techniques for the proofs in this chapter as in the two following ones. However here we
use them on a simpler problem, such that this chapter can serve as a gentle introduction
to the problems that we will be considering later.

3.1 A Solver for Dominance Constraints: Py

In this section we present a constraint solver for the language Cq of dominance constraints,
i.e. an algorithm that decides the satisfiability of Cq constraints. Dominance constraints
are interpreted over the class of lambda structures, so testing satisfiability means that the
algorithm has to decide on the existence of a model, a lambda structure plus a valuation.
The algorithm does not just give a yes/no answer, it computes result constraints. From
each of those a model can be read off.

o7
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Let 4,41, ...,05,0), % be literals.
(a) a deterministic rule ¢1 A £y — ¢:

{...,{61,62,63},...} — {...,{61,62,63,6},...}
(b) a distribution rule ¢y A ly — (€4 N l5) V (€} A LL):

(...
- {61762763764765}7
{“.,{61’62’63},‘”} e {61762763762?6,5}7

)

Figure 3.1: Applying saturation rules to a set of clauses

We formulate the algorithm Py as a saturation algorithm, which consists of a set of
saturation rules. It operates on a set of clauses: A clause is a set of literals. Abusing
notation a little, we view a clause also as a constraint and vice versa: We regard a clause,
and also a constraint, as both the set and the conjunction of the literals occurring in it.
Hence we can say that a literal £ is in a constraint ¢ iff £ € ¢, and a constraint ¢’ is in

p iff ' C .
A saturation algorithm adds more literals to the clauses and more clauses to the set

according to the saturation rules, until the set is saturated, i.e. nothing new can be
added anymore. The saturation rules that we use have the form

n
Yo — \/ Pi

i=1
for clauses ¢g,...,p, and n > 1. A rule is deterministic if n = 1. Application of a
deterministic rule is illustrated in Fig. 3.1 (a): We choose a clause that contains the
rule’s left-hand side, and we add the right-hand side to the clause. A rule with n > 1
is indeterministic, also called a distribution rule. Consider Fig. 3.1 (b): Again, a clause
containing the left-hand side is chosen. This clause is replaced by two new clauses, each
consisting of the old clause plus either ¢4 A Z5 or £ A l.

We next define a saturation step, a single rule application. The applicability of a rule p
is dependent on an application condition appc,,.

Definition 3.1 (Saturation step, application condition). Let S be a set of satu-
ration rules. A saturation step —gs consists of one application of a rule p € S. Let

p =0 — iy @i for clauses ¢y, ..., pn. Then

wo C

———— forie{l,...,n} if appc, (¢
¢ =se N g ¢ s (%)

where the application condition is

appc,(p) =det for all 1 <i<n:p; ¢



Solving Dominance Constraints 29

What the application condition appc, says is that a saturation rule p = o — Vi piis
applicable to a clause ¢ iff ¢ contains the left-hand side ¢g but none of the right-hand
side choices ¢1,...,¢,. If @; is present in the clause for some 1 < 7 < n, then the
choice has already been made and the rule need not be applied anymore. (Note that the
application condition governs the applicability of a rule to each individual clause in a
clause set; a rule that is not applicable to one clause in the set may still be applicable to
another.)

A saturation algorithm terminates when no rule is applicable to any clause in the set
anymore. So the application condition that we have just introduced will ensure the
termination of our dominance constraint algorithm: We will formulate the algorithm
such that it never adds fresh variables to the clause set it operates on, and it can only
add finitely many different literals for each variable in its clause set.

In a saturation algorithm, the choice of the next rule to apply is don’t care indeterministic:
It does not matter which rule is chosen first. On the other hand, distribution rules are
don’t know indeterministic — each choice in the right-hand side of the rule has to be
explored.

Definition 3.2 (Clash-free, saturated, failed). Let S be a set of saturation rules. A
clause is clash-free iff it does not contain false, and S-saturated iff it is irreducible with
respect to —s and clash-free. If a clause contains false, it is also called failed.

We also call a saturated constraint a saturation for short. These saturations are the
result constraints that our dominance constraint solver computes.

3.1.1 The Rules in Detail

Remember that the class Cq of dominance constraints has the following abstract syntax:

v, u= XY | X:f(Xy,...,Xpn) | XLY | X#£Y (ar(f) =n)
| false|p A ¢

Additionally, we use the abbreviations
X=Y for Xa*Y AY<*X and X<1Y for X<*Y A X£Y.

Inequality and disjointness literals are viewed as symmetric.

Figure 3.2 shows the solver P4q for dominance constraints. The first two rules,
(D.clash.ineq) and (D.clash.disj), detect unsatisfiable constraints and extend them
by false. We call such rules clash rules. (D.clash.ineq), which has the form
X=Y A X#Y — false, states that two variables cannot denote the same tree node and
different tree nodes at the same time. The rule (D.clash.ineq), which is X L X — false,
says that no tree node can be in a disjoint position from itself. The remaining rules will
extend all unsatisfiable constraints to a point where one of these clash rules applies.
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(D.clash.ineq) X=Y N X#Y — false
(D.clash.disj) X1X — false

(D.dom.refl) o = X<*X  where X € Var(p)

(D.dom.trans) XY AN Y Z - X<t Z

(Dlab.decom)  X:f(Xi,...,Xp) A Yif(Yi,...,Y,) A X=Y = A", X;=Y;
(D.lab.ineq) X:f(...) AN Yig(...) > X#Y  where f #g¢g

(D.lab.dom) X:f(...,Y,...) = X<TY

(D.lab.disj) X:f(..Xi Xj,..) > XiLX;  where1<i<j<n
(D.disj) X1Y A X<X' A YoV - V/LX!

(D.distr.notDisj) X<*Z A Y<*Z — X<*Y V Y<*X
(D.distr.child) X<V A X:f(Xy,...,X,) = Y=X v V", X;<'Y

Figure 3.2: Solving C4 constraints: algorithm Py

The rules in the second block are deterministic saturation rules. (D.dom.refl) and
(D.dom.trans), which are ¢ — X<*X for X € Var(y) and X<*Y A Y<*Z — X<*Z,
state that dominance is a reflexive and transitive relation. The rules (D.lab...) are con-
cerned with the labeling relation. (D.lab.decom) is a decomposition rule which states
X:f(X1,...,Xn) ANY:f(Y1,...,Y,) A X=Y — AL, X;=Yj, propagating equality from
two equal variables to their children. (D.lab.ineq), by stating X:f(...) A Y:g(...) —
XAY for f # g, expresses the fact that two differently labelled variables can never
denote the same node. The rule (D.lab.dom), of the form X:f(...,Y,...) —» X<V,
declares that a parent dominates its children. The rule (D.lab.disj), which states
X:of(o . Xy, Xj,.0) = Xi1X; for 1 <4 < j < n, says that two different chil-
dren of the same node must lie in disjoint positions. The rule (D.disj), of the form
X1Y A X<*X' A Y'Y — Y/ 1L X', propagates disjointness from two variables to their
descendants.

(a) o o (b)
X Y oY '/X/lb’\K-Xn

Figure 3.3: Situations in which (a) (D.distr.notDisj) and (b) (D.distr.child) apply

(D.distr.notDisj) and (D.distr.child) describe the only two situations in which Py needs
to distribute. They are illustrated in Fig. 3.3. The rule (D.distr.notDisj) has the form
XZ NY<SZ = Xa'Y vV Ya* X, It states that if X and Y have a common descendant
Z, their denotations cannot be in disjoint positions because trees do not branch upwards.
So one of the two variables must dominate the other. The rule (D.distr.child) has the
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form X<*Y A X:f(Xy,....X,) - Y=X Vv V!, X;<"Y. It applies to a variable X
that both dominates another variable Y and is labeled. Then Y must be either equal to
X, or it lies below one of X’s children.

3.1.2 Examples

As a first example of how the saturation rules work, let us recon-

sider the unsatisfiable constraint X:f (X, Xo) A X;<*Y A Xo<*Y of f
Fig. 2.7, repeated to the right. By (D.lab.disj), we infer X; 1 X5, .? X,
to which (D.disj) adds Y LY. But then the clash-rule (D.clash.disj)

applies, signifying that the constraint is unsatisfiable. *v

Next, consider the constraint X:f(X), which is also unsatisfiable. By (D.dom.refl) we get
X<* X, which is the same as X=X, an abbreviation for X<* X AX<*X. Then (D.lab.dom)
gets us X<t X, which is the same as X<*X A X#X. But now (D.clash.ineq) applies and
adds false, since we have both X=X and X#X.

(a‘) 0 (b) f I XO g I YQ
@ lam lam ».¢ oY
ev plan 3 a catc '

3 e Zo

Q g,
Q var
have var

Figure 3.4: (a) Constraint for Every plan has a catch, and (b) a smaller, abstract version

The distribution rule (D.distr.notDisj) is central to solving constraints that model scope
ambiguities, like the one in Fig. 3.4 (a) (this is Fig. 1.6 without the binding edges). To
concentrate on the important aspects, we demonstrate our algorithm Py on a smaller,
abstract version of Fig. 3.4 (a), which is shown in Fig. 3.4 (b).

By (D.lab.dom), Xo<™X; and Yp<"Y;. Hence by (D.dom.trans) we get Xo<*Zy as well
as Yp<*Zy. So we must have either Xo<*Yy or Yy<* X by (D.distr.notDisj). We pursue
the first alternative. Now we are in the situation sketched in Fig. 3.3 (b): We have
X0<"Yy, and X is labeled. So the rule (D.distr.child) offers two possibilities: either
Xo=Yp or X;<4"Y). Again we pursue the first alternative (intuitively, we are now try-
ing to “overlap” the f-fragment with the g-fragment). However, (D.lab.ineq) gives us
Xo#Yp, so now we have Xy=Y) as well as Xy#Y), which fails by (D.clash.ineq). So let
us consider the second alternative of (D.distr.child) above, which was X;<*Y;. We now
have Xy:f(X7), X1<9*Yy, Yo:9(Y1), and Y1<*Zy. This constraint can be saturated without
any further distribution. This saturation is the one shown in Fig. 3.5 (a).

Now suppose that, instead of pursuing the choice Xo<*Yy of (D.distr.notDisj) above, we
follow the other alternative Yy<*Xy. Then the saturation proceeds just as in the case of



62 Solving Dominance Constraints

(a) fIX0 (b)gI}}io
; Dl

X1
g:YQ f:Xo
IY1 IXI
a‘Zg a‘ZO

Figure 3.5: The two saturations computed for Fig. 3.4 (b)

Xp<"Yy. Again we get a single saturation, which is shown in Fig. 3.5 (b).

The bigger constraint in Fig. 3.4 (a) is saturated in the same way as the small one we
have just considered. Again, we get two saturations, sketched in Fig. 3.6.

3.2 Some Properties of the Algorithm: Soundness, Termination,
Shape of Saturations

In this and the following sections we examine properties of the algorithm Py. All results
are collected in a theorem in Sec. 3.5.

3.2.1 Soundness

The constraint solver Py is sound in the sense that all its rules are equivalence transfor-
mations.

Definition 3.3 (Soundness). We call a saturation rule ¢ — ® sound for lambda
structures iff ¢ H @.

But we are working in a saturation paradigm: We never eliminate any literals. So a
saturation rule ¢ — @ is already sound if ¢ = ®.

It is easy to see that in each rule of Py, the left-hand side entails the right-hand side.

Lemma 3.4 (Soundness). The Cq-solver Pq is sound for lambda structures.

3.2.2 Termination

Lemma 3.5 (Termination). Py is terminating.

Proof. The algorithm Py never adds fresh variables to the clause set that it is working
on. For each variable, there are only finitely many different literals that can be added
to each clause. Finally, the application condition prohibits rules from adding the same
constraints to the same clause over and over again: For each rule p = ¢ — \/]_, ¢; of
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Pa, the application condition appc, states that p can be applied to a clause only if ¢ is
in it, but none of the ¢; is already contained. O

Satisfiability of dominance constraints is an NP-complete problem, as Koller, Niehren
and Treinen [78] have shown. They encode SAT by forcing fragments of a constraint
graph to overlap, but giving them two possible ways of overlapping, in this way encoding
true and false.

3.2.3 Saturated Constraints

For each input dominance constraint, the algorithm computes a set of saturations, con-
straints to which no rule of P4 is applicable anymore.

Lemma 3.6. For any dominance constraint, Pq computes a finite set of saturations
(which may be empty).

Proof. This is proven by the same arguments as Lemma 3.5 above: The algorithm Py
never adds fresh variables, and there are only finitely many different literals that can be
added to each clause and hence only finitely many rule applications are possible. O

If we look at other constraint solvers that work by transforming or augmenting a con-
straint, the results of their computation are often called solved forms. Typically, solved
forms are an independently defined subclass of constraints that are simpler than the orig-
inal ones. The saturations that the solver Pq computes are basically solved forms too,
except that saturations are defined not independently but in relation to Py, and that
technically they are not simpler than the input constraint since they subsume it.

Saturated constraints are like solved forms in that they are constraints from which a
model can be directly read off — we will show this in the following section. So in a
way they are more simple than dominance constraints in general; more precisely, their
constraint graphs have a very simple structure, which we are now going to characterize
informally.

(a) : (b)
lam lam
s X » Y]
0
lam lam
» Y, Aﬁ\g Xy

;‘ Zo ;ZO

Figure 3.6: Sketch of the two saturated constraints computed for Fig. 3.4 (a)
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Remember that in the previous chapter, we have said that constraint graphs do not
represent disjointness and inequality literals, and that they shows dominance literals
only when they connect two different fragments (tree-shaped pieces connected by solid
lines) of the graph.

As an example of what constraint graphs of saturated constraints look like, consider
the constraint in Fig. 3.4. For this constraint the algorithm Py3 computes two different
saturations, the constraint graphs of which are sketched in Fig. 3.6. These constraint
graphs are tree-shaped, except that some edges are dominance edges.

More generally, the constraint graph of a saturated constraint is a forest with two dif-
ferent kinds of tree nodes, labeled and unlabeled ones, and two different kinds of edges,
dominance and labeling edges. For each node we can say that

e either it is labeled, all its outgoing edges are labeling edges, and its children are
ordered;

e or it is unlabeled, all its outgoing edges are dominance edges, and its children are
unordered.

So a Pg-saturated constraint is similar to a forest of quasi-trees [115, 102] or D-trees [99]:
Duchier and Gardent [33] use a formulation of D-trees that allows for nodes with more
than one outgoing dominance edge. With this definition, each Pg-saturated Cq-constraint
can be regarded as a forest of D-trees.

3.3 Satisfiability of Saturated Constraints

In this section we show that Pgy-saturations are satisfiable, more precisely: that from
each saturation a model can be read off. The proof that we use has the same shape as
those in the papers by Koller, Niehren and Treinen [78] and by Duchier and Niehren [34].
We proceed in two steps. First we consider only a subclass of constraints, which we call
simple constraints. Then we lift the result to arbitrary Pgy-saturated constraints.

3.3.1 Simple Constraints

We first consider simple constraints, the constraint graphs of which are already tree-
shaped. We show that from each simple Py-saturated constraint, a model can be read
off.

Definition 3.7 (Labeled, simple). Let ¢ be a Cyq constraint. A variable X € Var(yp)
is called labeled in ¢ iff AX' € Var(p) such that X=X" and X':f(X1,...,X,) are in ¢
for some term f(Xy,...,X,). We call ¢ simple if all its variables are labeled and there
exists some variable Z € Var(p) such that Z<*X is in ¢ for all X € Var(y).

So in a simple constraint every variable is labeled, and there is a root variable Z domi-
nating all others.
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Lemma 3.8 (Satisfiability of simple saturations). A simple Pq4-saturated Cq-
constraint is satisfiable.

Proof. Let ¢ be a simple Py-saturated Cq-constraint. We construct a tree structure 6
that is a model for ¢. We proceed by induction on the number of literals in ¢. Let Z
be a root variable in ¢. Since all variables in ¢ are labeled, there is a variable Z’ and a
term f(Z1,...,Zy) such that Z=Z" and Z':f(Z1,...,Zy) are in ¢. Let

V =4t {X €Var(y)| Z=X in ¢} and
Vi =qet {X €Var(y) | Z;<*X in ¢}.

for all 1 <1i < n. We show that V,Vp,...,V, form a partition of Var(y):

e First, Var(p) =V UV U...UV,: Let X € Var(p) such that Z;<*X ¢ ¢ for all
1 <i < n. As Z is aroot variable, Z<*X € ¢, so by saturation with (D.distr.child),
© must contain Z=2X.

e Second, V,Vq,...,V, are disjoint sets: Suppose there is some variable X € Var(yp)
with X € V as well as X € V; for some 7. Then ¢ contains Z;<*X as well
as X<*Z, hence it contains Z;<*Z by closure under (D.dom.trans) as well as
Z<*Z;, Z#Z; by (D.ab.dom) — a contradiction since then ¢ would also contain
false by (D.clash.ineq). Now suppose there are 1 < i < j < n and a variable
X € Var(p) such that X € V; as well as X € V;. By (D.lab.disj) ¢ contains
Z;1.Z;, which with Z;<*X and Z;<*X gives us X L X by (D.disj) — again a contra-
diction since then ¢ would contain false by (D.clash.disj).

For a set W C Var(p) we define ¢|y as the conjunction of all literals ¢ € ¢ with
Var(s) C W. We show that

n
o H ¢ holds where ¢ =get 0|y A Z:f(Z1,..., Zn) A /\ olv;-
i=1

It obviously holds that ¢ |= ¢': The only literal that may be in ¢’ — ¢ is Z:f(Z1, ..., Z,),
and that is entailed by ¢ because Z':f(Z1,...,2,), Z=2Z" are in ¢. Next we show that
¢' = ¢ holds because ¢ is a Pg-saturated constraint:

e Suppose X:g(X1,...,X;,) is in ¢ for some variable X and term ¢(Xy, ..., X;,).
If Z;<*X is in ¢ for some 1 < ¢ < n, then X:g(Xy,...,X,,) is in ¢|y; since ¢ is
saturated under (D.lab.dom) and (D.dom.trans). Otherwise, Z=X is in ¢, and
thus Z=X is in @|y. In this case, f = g and n = m by saturation with (D.lab.ineq)
and (D.clash.ineq) coupled with the clash-freeness of ¢. As ¢ is saturated under
(D.lab.decom), it must contain Z;=X; for 1 <7 < n, hence Z;=X; must be in ¢|y;.
So, ¢ contains Z=X A Z:f(Z1, ..., Zy) N \}_, Zi=X;, which entails X:g(Xi, ...,
X,,) as required.
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e Now suppose XRY € ¢ for some variables X, Y and R € {<*,#, L}. There are
four possible cases:

-l X eV, Y eV, withl <i# j <mn, then R cannot be <*: In this case ¢
would contain X<*Y, Y<*Y by (D.dom.refl) and X LY by (D.disj) (because
¢ contains Z; 1. Z;), which yields Y 1Y by (D.disj), making (D.clash.disj) ap-
plicable, but ¢ is clash-free. Concerning the other two possible values for R,
¢’ entails Z; 1 Z; and thus X 1Y as well as X#Y.

— The cases where X and Y both belong to V' or to the same V; are obvious.

—If X eV andY €V for some ¢, then R cannot be L by the same argument
that we used in the first case above. Concerning the other two possible values
of R, ¢ entails Z<Z; and thus X<*Y and X#Y.

— The case of X € V; and Y € V is symmetric to the previous one, ex-
cept that now R cannot be <*: ¢ contains Z;<*X by definition, which
with X<*Y and Y=Z would mean that ¢ contains Z;<*Z. But ¢ contains
Z<*Z;, Z#Z; by (D.lab.dom), a contradiction since ¢ is clash-free and closed
under (D.clash.ineq).

Next note that all |y, are simple Py-saturated constraints. By the inductive hypothesis
there exist models (6;,0;) |= ¢ly; for all 1 <i < n. Now, since V, V1,...,V,, is a partition
of Var(yp), we can combine the models for the smaller constraints into a model of ¢:
(f(01,...,6p),0) is a model of ¢ if o|y; = 0; for 1 <4 < n, and o(X) = o(Z) is the root
node of f(6y,...,6,) for all X € V. O

3.3.2 Non-simple Constrains

Now we show that we can extend each non-simple Pg-saturated constraint ¢ to a con-
straint ¢ A ¢’ that is simple and still Py-saturated. We proceed by successively labeling
unlabeled variables. Suppose, for instance, we want to label the unlabeled variable X in
Fig. 3.7 (a). Then we would like to make all variables minimally dominated by X into
X’s children. We formalize this as follows:

(a) X (b) ./f{.\{
Z,U

% o Z=U

Figure 3.7: Extension by labeling

Definition 3.9 (Connectedness set). Given a Cq constraint ¢, we define a partial
order <, on its variables by: X <, Y holds iff X<*Y € ¢ but not Y<*X € ¢.

Let X € Var(p) an unlabeled variable. Then we define the set con,(X) of variables
connected to X in ¢ as

congy(X) ={Y € Var(yp) | Y minimal with X <, Y}
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In the constraint in Fig. 3.7 (a), con,(X) = {Y, Z,U}. However, when picking variables
to serve as children of X, we choose only one of Z,U as we have Z=U:

Definition 3.10 (Disjointness set). Let ¢ be a Cq constraint and V. C Var(p). We
call V' a p-disjointness set if for any two distinct variables Y1,Ys € V, Y1<*Y, & .

The idea is that all variables in a @-disjointness set can safely be placed at disjoint
positions in at least one of the trees that satisfy ¢. So concerning our example in Fig. 3.7
(a), we label X by some function symbol of arity 2, extending the constraint, for instance,
by X:f(Y,Z). The result is shown in Fig. 3.7 (b). However, we have to make sure that
we preserve saturatedness during extension. For example, when adding X:f(Y, Z) to the
constraint in Fig. 3.7 (a), we also add Y LZ such as not to make (D.lab.disj) applicable.

The following technical lemma by Duchier and Niehren [34] will be useful: In a Pg-
saturated constraint ¢, each variable in a connectedness set con,(X) is equal to one of
the variables in a maximal disjointness set within con,(X).

Lemma 3.11. Let ¢ be Pq-saturated and X € Var(p). If V is a mazimal p-disjointness
set within cony(X), then for all Y € cony,(X) there exists some Z € V such that Y =2
18 1N Q.

Now we proceed to the main lemma of this subsection: An unlabeled variable in a Pg-
saturation can be labeled while keeping up saturatedness.

Lemma 3.12 (Extension by labeling). Every Pq-saturated Cq-constraint with an
unlabeled variable Uy can be extended to a Pq-saturated constraint in which Uy is labeled.

Proof. Let ¢ be a Py-saturated Cq-constraint. Let Uy € Var(y) be unlabeled, and let
{U1,...,Upn} be a maximal p-disjointness set in con,,(Up). Let us assume for the moment
that > contains a function symbol f of arity m. Then we define the following extension

exty,.. . (p) of @ AU f(Uy,...,Upy):
extyy,.. Um (©) =det @ A Uo:f(Ur,...,Upn) N Nty Uo#U; A

A Z1W A
Ui<*Z,Uja*Wegp,

1<i<g<n

ZFU
/\ Z:g}...)ELp, 7& 0
97

For better readability, we abbreviate exty,, . r,,(¢) by ext(¢). We consider each rule of
Pq in turn and show that it is not applicable to ext(¢y).

(D.clash.ineq): This rule has the form X=Y A X#Y — false. ext(y) contains no new
dominance literals. Suppose a new inequality literal Uy#U; makes (D.Clash.Ineq)
applicable. Then ¢ must contain Uy=Uj;, which is impossible since U; € con,(Up).
If a new inequality literal Z#£Uj, makes the clash rule applicable, then Z:g(...) and
Up=Z must be in ¢, which is impossible since Uy is unlabeled in ¢.
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(D.clash.disj): This rule has the form X1X — false. The only new disjointness
literals in ext(p) have the form Z1W for U;<*Z,U;<*W in ¢ with i # j. Assume
Z=W is in ¢. Then by (D.dom.trans) and (D.distr.notDisj), either U;<*U; or
U;<*U; must be in ¢, which is impossible since {U;,U;} is a disjointness set.

(D.dom.refl), (D.dom.trans), (D.distr.notDisj): No new variables or dominance
literals have been added.

(D.lab.decom): This rule has the form X:f(Xi,...,X,) A Y:f(Y1,...,Y,) A X=Y —
A7, X;=Y;. For this rule to be applicable to Uy and some literal Z:g(Z,...,Z,) €
@, Z=Uy must be in ¢ already. But Uy is unlabeled in ¢.

(D.lab.ineq): This rule has the form X:f(...) A Y:g(...) = X#Y for f # g. The
only new labeling literal is Uy:f(Uy,...,Up,). Z#Uj is in ext(yp) for all Z labeled
anything but f.

(D.lab.dom): This rule has the form X:f(...,Y,...) = X<tY. Up:f(Un,...,Uy,) is the
only labeling literal in ext(¢) — ¢. We have Uy<*U; € ¢ for all 1 < i < m because
{Ui,...,Up} Ccony(Up). Up#U; is in ext(p) by definition for all 1 <i < m.

(D.lab.disj): This rule has the form X:f(...X;,...,X;,...) = X;1X; for 1 <1 <
j < n. The only new labeling literal is Uy:f(Uy,...,U,). By saturation under
(D.dom.refl), U;<*U; € ¢ for all 1 < i < m, so U; LU; is in ext(p) for all 1 < i <
j<m.

(D.disj): This rule has the form X LY A X<*X' A Y<*Y' — Y/ L X'. The only disjoint-
ness constraints new in ext(y) have the form Z1LW, where U;<*Z,U;<*W € ¢ for
some j # i. If Z<*Z' and W<*W' are in @, then by saturation under (D.dom.trans)
Uis*Z' , U;j<*W' € ¢, so Z' LW' is in ext(¢p).

(D.distr.child): This rule has the form X<*Y A X:f(X,...,X,) — Y=X VvV
Vi, Xi<*Y. Suppose Up<*Z € ¢, but neither Z<*Uy nor U;<*Z is in ¢ for any
i €{l,...,m}. Then Uy <, Z. If Z € con,(Up), we have the following situation:
The disjointness set {Uy,...,Up} is maximal within con,(Up), so Z=U; for some
i €{1,...,m} by lemma 3.11, a contradiction. So suppose Z is not minimal, i.e.
there exists some Y € con,(Up) such that Y<*Z € . But then again, U;=Y for
some i € {1,...,m}, so U;<*Z.

We now turn to the case that the signature does not contain a function symbol for the
arity we need. We can get around this problem by encoding a function symbol of arity
m with a nullary symbol and one symbol of arity > 2, the existence of which we have
assumed. This encoding may introduce new variables, but only finitely many. For a
detailed description of this construction see Koller [75], lemma 4.11. O

By adding a finite number of literals, we can label one unlabeled variable in the constraint
while keeping the constraint Py-saturated. If we repeat this process a finite number of
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times, we have extended the non-simple Pgy-saturated constraint to a simple one, from
which we can then read off a model right away.

Proposition 3.13. Every Pq-saturated Cq-constraint can be extended to a simple Py-
saturated constraint.

Proof. Let ¢ be Pg-saturated. Without loss of generality we can assume that ¢ has a
root variable. (Otherwise we choose a fresh variable X and consider ¢ A A{X<*Y | Y €
Var(y)} instead of ¢.) By lemma 3.12, we can successively label all variables in . [

Lemma 3.8 and Prop. 3.13 together yield the satisfiability of Pgy-saturated constraints.

Lemma 3.14 (Satisfiability of saturations). A Pq4-saturated Cq-constraint is satisfi-
able.

3.4 Completeness

In this section we show that the algorithm Py computes a complete set of saturated
constraints, i.e. a set of saturated constraints from which all models can be read off in a
simple way. In principle, there are at least two ways in which we could define completeness
here: either as computing a set of saturated constraints describing all minimal models, or
as computing all minimal saturated constraints. However there exists no natural notion
of a minimal model. For example, the constraint

X:aANY:b

can have many “smallest” models, depending on the signature . So we define complete-
ness as computing all minimal saturated constraints for a given constraint. We define
both minimality and the notion of a minimal saturation for a constraint in terms of a
partial order on constraints.

Definition 3.15 (Minimal saturation for a constraint). Let ¢, ¢ be clauses over
some first-order language L, S a set of saturation rules and < a partial order on clauses
over L. Then ¢ is an S-saturated constraint for ¢ with respect to < iff ¢ is an S-
saturated constraint with ¢ < ¢, and ¢ is ¢ <-minimal S-saturated constraint for ¢ iff ¢
is <-minimal with the property of being an S-saturated constraint for o with respect to
<.

For C4q constraints, the partial order that we use is simply subset inclusion. So a Cq
constraint ¢ is a Pg-saturated constraint for a constraint ¢ iff ¢ C ¢, and it is a minimal
Pg-saturated constraint for ¢ iff there exists no Pg-saturated constraint ¢’ for ¢ with
¢ Cs.

Definition 3.16 (Completeness). We call a saturation procedure complete with respect
to a partial order < on clauses iff it computes all <-minimal saturated constraints for
any given clause.
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We show that given a Cq constraint ¢ and a minimal saturated constraint ¢ for it, Py
can compute ¢ from @: If a saturation rule is applicable to ¢, we can apply it in such a
way that we stay in a subset of <.

Lemma 3.17 (Completeness). Let ¢ be a Cq constraint and < a minimal Pq-saturated
constraint for p. Then ¢ =% <.

Proof. By well-founded induction on the strict partial order D on the set {¢' | ¢' C ¢}.
If ¢ is Pg-saturated then ¢ —% ¢ = ¢ by minimality and we are done. Otherwise,
there is a rule p = g — Vi_,p; in Pq that applies to ¢. Since ¢y C ¢ C ¢ and ¢ is
Pq-saturated, there exists an ¢ such that ¢; C ¢. The constraint ¢ A ¢; is strictly bigger
than ¢, otherwise p would not apply to ¢ — see the application condition appc, in Def.
3.1 (p. 58). Furthermore by Lemma 3.5, Pgq always terminates. Hence the inductive
hypothesis already holds for ¢ A ¢;: We have ¢ A ¢; =5 ¢ and thus ¢ =5 <. O

So P4 can compute all minimal saturated constraints for a given constraint. However,
it does not compute only minimal saturated constraints. The only saturation rules that
can lead to nonminimal saturated constraints are distribution rules where the right-
hand side disjuncts are not exclusive. The algorithm P4 possesses exactly one such rule,
(D.distr.notDisj). Suppose we apply it to the constraint

X<F*ZANY<S"Z A X:a.

This yields two clauses: One of them contains X<*Y, and the other contains Y <*X. For
the clause containing X<*Y', we can now apply (D.distr.child) to X:a A X<*Y, yielding
X=Y. We apply (D.distr.child) again to the same clause, this time to X:a A X<*Z, which
gives us X=Z7. In the other clause, the one that contains Y <* X, we also get X=2 by
(D.distr.child),but not X=Y — this second clause is a proper subset of the first clause.

It is easy to show that each model of a constraint is also a model of one of its minimal
saturated constraints.

Proposition 3.18. Let ¢ be a Cq constraint and (0,0) a model for . Then ¢ possesses
a minimal Pg-saturated constraint that is also satisfied by (0,0).

Proof. Let ¢ be ¢ extended by all literals entailed by (0, 0). < is satisfiable — it is satisfied
by (6,0). It is also a saturated constraint since each saturation rule only adds entailed
constraints. There must be a minimal saturated constraint ¢’ for ¢ with ¢’ C ¢: either
it is ¢ itself, or there exists some ¢’ C ¢ such that ¢’ is a Pp-saturated constraint but no
¢"C ¢ is. O

3.5 Recapitulation: Properties of the Algorithm P4

In the previous sections we have shown a number of properties of the algorithm P4, which
Wwe now sum up.
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Theorem 3.19. The dominance constraint solver Pq has the following properties:

1. It is sound for lambda structures, i.e. all its rules are equivalence transformations.
2. It is terminating.

3. For each Cq constraint it computes a finite set of saturations.

4. Each Pq-saturated Cq-constraint is satisfiable.

5. Pq is complete: Given a Cq constraint @, Py computes all minimal Py-saturations
for .

Proof. 1. by Lemma 3.4, 2. by Lemma 3.5, 3. by Lemma 3.6, 4.by Lemma 3.14, and 5.
by Lemma 3.17. O

3.6 Related Approaches

Rogers and Vijay-Shanker [102] study a feature logic that contains literals expressing
dominance, equality, parenthood, and precedence (“left-of”), and allows for arbitrary
logical connectives (including negation). They discuss an algorithm for deriving a set
of quasi-trees [115] equivalent to a given description, and then an algorithm for reading
off satisfying trees from the quasi-trees. As we have remarked before, quasi-trees are
graphs that are very similar to graphs for Pg-saturated constraints, except that in a
quasi-tree no node has more than one dominance child. The algorithm that transforms
a tree description into a set of quasi-trees is formulated as a resolution proof system and
uses treeness axioms as inference rules. Note that this algorithm computes saturated
constraints with a unique minimal model: Quasi-trees can be characterized by the fact
that each of them has one unique minimal satisfying tree.

Cornell [27] discusses a tree description language that contains relations expressing dom-
inance, precedence and their inverses, furthermore equality, plus disjunctions of all these
relations — however this language does not comprise labeling. For example a constraint
dep(x,y) states that = either dominates, equals, or precedes y. Satisfiability of these
constraints can be tested in quadratic time, as Bodirsky and Kutz recently showed [14],
using a greedy top-down tree construction algorithm.

Duchier and Gardent [33] consider a sublanguage of C4: constraints that are conjunctions
of dominance and labeling literals. They use a constraint programming approach to solve
these constraints. The central idea is to represent the relative position of variables via
four sets for each variable X. These sets contain the variables that may be above X,
below it, equal to it, and in a disjoint position. Propagators then reduce the number of
possible relations between each pair of variables.

Duchier and Niehren [34] take the same constraint programming approach as Duchier
and Gardent, using the four position sets. The language that they work with is Cq plus
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set operators. It allows for constraints X RY, where R is a set of relations. This Cq solver
has been implemented in the language Oz [111]. The implementation centrally uses finite
set constraints and disjunctive propagators. The implementation forms part of a system
that demonstrates the use of CLLS in underspecified semantics [21]. Duchier and Niehren
show that this constraint programming algorithm is equivalent to a saturation-based one.
The saturation algorithm uses rules similar to those we have discussed in this chapter,
but allows for stronger propagation. For example, in the second example of Sec. 3.1.2,
Fig. 3.4, P4 has to use distribution to see that the two fragments for “every plan” and
“a catch” cannot overlap, while the saturation algorithm by Duchier and Niehren can
determine this by propagation.

Duchier and Thater [35] transfer this approach to d-tree grammar by introducing “elec-
trostatic trees”, dominance and labeling constraints in which the variables have positive
or negative polarities. Negative variables are similar to holes in Hole Semantics [15],
they have to be “plugged” by positive variables. The main difference to the algorithm
by Duchier and Gardent is that Duchier and Thater regard not one constraint but a
disjunction of constraints: They use the algorithm for parsing, the parser has to choose
between different lexical entries for each word, and each lexical entry contributes a dif-
ferent constraint.

Satisfiability of C4 is an NP-complete problem [78], but only because different fragments
of the constraint can overlap. Althaus, Duchier, Koller, Mehlhorn, Niehren and Thiel
[3] define a sublanguage of Cq, the language of normal dominance constraints, for which
satisfiability is testable in polynomial time. A normal dominance constraint consists of
a set of fragments plus a set of dominance edges between the fragments. The fragments
can never overlap, and solving such constraints means deriving a partial order of the
fragments that respects all dominance edges. For the satisfiability test, the problem is
reduced to the weighted perfect matching problem on graphs.

3.7 Summary

In this chapter we have discussed the constraint solver P4 for C4q. The solver processes a
set of clauses (= constraints), saturating them until nothing new can be added anymore.
Saturation is a simple paradigm, it retains all information it has ever gathered without
trying for optimizations.

The algorithm Py extends a set of clauses, which initially consists of one input clause,
using saturation rules that enforce treeness. In particular, the algorithm applies distribu-
tion in two situations: when two variables both dominate a third, and when a dominance
“hangs off” a labeled variable.

A constraint that is saturated under Py is one to which no saturation rule applies any-
more. It can be characterized as a forest of trees with two kinds of edges, labeling and
dominance edges, where each node has at most one kind of outgoing edges, and outgoing
labeling edges are ordered, while outgoing dominance edges are not. We have shown that
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each Pg-saturated constraint is satisfiable: If its constraint graph is already tree-shaped,
then a model can be read off right away. Otherwise we can transform it by successively
labeling unlabeled nodes in such a way that the constraint stays Pg-saturated.

The constraint solver is terminating, and it is sound in the sense that all rules are
equivalence transformations. It is also complete: It computes all C-minimal saturated
constraints for a given constraint, i.e. all C-minimal supersets of the constraint that are
saturations. We have shown completeness by proving that given a constraint ¢, a minimal
saturated constraint for it, and a saturation rule applicable to ¢, we can apply the rule in
such a way that the result of the rule application is still a subset of the minimal saturated
constraint.
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Chapter 4

Solving Parallelism Constraints

In this chapter we present a semi-decision procedure for parallelism constraints. The
procedure incorporates the dominance constraint solver of the previous chapter. It is
again a saturation procedure, which keeps adding material to a set of clauses until a
state of saturation is reached in which nothing new can be added anymore. For satisfiable
parallelism constraints the procedure computes saturated constraints from which models
can be read off directly.

A parallelism literal states that two segments are structurally isomorphic. In Chapter 2
we have defined the parallelism relation in terms of correspondence functions, which link
corresponding nodes in the two parallel segments. It is the same idea that we now use for
our semi-decision procedure, in the form of correspondence formulas. A correspondence
formula links “corresponding variables”, i.e. variables that will denote corresponding
nodes. We express correspondence between variables in terms of a new type of literals,
path parallelism literals. The path parallelism relation is very similar to the parallelism
relation, except that it talks about tree paths instead of segments.

The proofs of completeness and satisfiability of saturated constraints have the same
basic structure as in the previous chapter. But especially the completeness proof is more
interesting in the current case, as we now have saturation rules that introduce additional
existentially quantified variables. The proof that saturated constraints are reached after
a finite number of steps, which was trivial in the case of P4, becomes much more intricate
now.

4.1 A Semi-Decision Procedure for Parallelism Constraints: P,

It is trivial to formulate a semi-decision procedure for the language C, of parallelism
constraints: Just enumerate lambda structures and check for each if it satisfies the given
constraint. But such a procedure is of course not satisfactory — it is neither feasible, nor
does it provide insights into the nature of the problem. In contrast, the procedure that
we introduce in this section

e terminates for the linguistically relevant constraints and computes saturations that
correspond to the correct readings.

7
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e introduces correspondence formulas as a data structure for handling parallelism
within partial tree descriptions.

e includes an algorithm for solving dominance constraints. Given a dominance con-
straint as an input, the parallelism constraint procedure behaves exactly like the
dominance constraint solver that it encompasses. This is advantageous because, as
we have seen in Chapter 2, dominance constraints play an important role in the
linguistic application.

e is built in a modular fashion: a different dominance constraint solver can be sub-
stituted for the one we use here. For example, the saturation algorithm of Duchier
and Niehren [34], which needs less distribution, can be employed. Actually, a recent
overview paper on processing CLLS [44] combines this latter dominance constraint
solver with the rules for parallelism that we present in this chapter.

We extend the dominance constraint solver of the previous chapter to a saturation-
based semi-decision procedure for Cp,. As before, the procedure works on a set of clauses
(constraints). Whenever a clause contains the left-hand side of a saturation rule but not
the right-hand side, the right-hand side can be added. By applying a deterministic rule
we just extend this one clause. By applying a distribution rule we replace the clause by a
set of new ones, where each new one consists of the old clause extended by one right-hand
side disjunct. This is exactly as in the previous chapter. However now the saturation
rules have a slightly more general form: They may introduce additional existentially
quantified variables. The saturation rules that we use now have the form

n
p: o — \/ Vg if appe,
=1

for clauses @q,...,pn, n > 1, (possibly empty) sets Vi,...,V,, C Var of variables, and
Var(p;) —Var(pg) C V; for all 1 <i <n. appc, is the application condition of the rule
p. As in the previous chapter, it states that p can be applied only to a clause to which
it adds something new. But we have to adapt the application condition to the changed
shape of the saturation rules. Given a set V of variables and a constraint ¢, we call a
constraint op a V-variant of ¢ if 0 : V. — Var is a renaming of the variables in V. We
call this variant fresh if o(V') is disjoint from Var(p).

Definition 4.1 (Saturation step, application condition). Let S be a set of satu-
ration rules. A saturation step —gs consists of one application of a rule p € S. Let
p= o — i, IVig;i for clauses @y, ..., pn. Then

s €1l ' d i h Vi-variant of @;
mforz e{l,...,n} if appc, and @; s a fresh Vi-variant of ;.
13

where the application condition is

appc, (@) =der for all 1 <i < n and all Vi-variants @] of @i : i L ¢
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To make the saturation rules easier to read, we introduce formulas for some constraints
that we will use repeatedly. These formulas contain disjunctions. If a saturation rule
contains such a formula on the right-hand side, it is a distribution rule. However if such
a formula occurs on the left-hand side of a rule, it abbreviates a set of saturation rules,
as illustrated in Fig. 4.1. Note that this unfolding of rule abbreviations may have to be
iterated.

Y1 ANp3s — ¢

V A — ¢ abbreviates
(o1 ?2) 3 w2 N3 — ¢

Figure 4.1: Using a disjunctive formula on the left-hand side of a rule

4.1.1 Parallelism Literals and Symmetry

In Chapter 2 we have said that we regard inequality and disjointness literals as symmetric;
but we do not regard parallelism literals as symmetric. This is because by Def. 2.7 (p.
29) the conditions on lambda binding are symmetric, but the conditions on anaphoric
binding are not: Anaphoric binding in the “source segment term” imposes restrictions
on anaphoric binding in the “target segment term”, but not vice versa.

However, for all purposes except anaphoric binding, we make no difference between the
left and the right segment term of a parallelism literal. Let A = Xo/Xy,...,X,, B =
Yo/Y1,...,Y, be segment terms. Then we introduce the following formula for “symmetric
parallelism”:

A~ B — - A~B V B~ A

In the current chapter we will use this symmetric parallelism formula throughout. It is
only in the following chapter, when we extend the procedure to handle binding literals,
that we will make use of the asymmetry of parallelism literals.

4.1.2 Correspondence Formulas and Path Parallelism

The procedure for C;, that we present in this chapter solves parallelism literals by com-
puting a syntactic equivalent of the correspondence functions of Def. 2.3 (p. 27): corre-
spondence formulas, which we also call syntactic correspondence functions. Two variables
are linked by a correspondence formula if they denote corresponding nodes.

We express syntactic correspondence in terms of a new type of literals, path parallelism
literals. The path parallelism relation states that two tree paths are the same, as well as
the labels encountered on the paths. Figure 4.2 illustrates this.
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Figure 4.2: Path parallelism

Definition 4.2 (Path parallelism). Let 0 be a tree structure. Path parallelism is the
largest relation on 4-tuples of paths from Dy such that p(! i;) holds in 0 iff

2

e there exists a path w such that w9 = mm and 19 = Y17, and

e for each proper prefiz ' of w, Lo(m7') = Lg(¢17').

Path parallelism is the restriction of parallelism from segments to paths. In particular,
note that the labels of m9 and 9 need not be identical, only the labels of all nodes
encountered on the paths before w9 and 1. Correspondence functions can be expressed
in terms of path parallelism:

Proposition 4.3. Given a tree structure 8 with segments «, 8 such that there exists a
correspondence function ¢ between o« and B in 6. Then for all nodes w,v of 0,

co(a, B)(m)=1) iff 7 € b(a) and p("'M ")

Proof. We proceed by induction on the length of the path from r(«) to m, abbreviating
co(a, B) by c for increased readability.

“="” Concerning a path 7 of length 0, we have 7 = r(«), and ¢(r(a)) = r(8). But
r(a) € b(a) and p(:EZg Egg) hold trivially in 6.

Now let 7 € b~ () with 0 = m:f(my,...,m,), such that p(r(;rl) ZE?;) holds in 6.
By Def. 2.3, we have 0 |= c(n):f(c(m1),...,c(m,)). But that already means that
p(" r(ﬁl))) must hold in 6 for 1 <4 < n.

m c(m

r
r

“<=": For the case of T = r(a), if p(r(:) T(f)) holds then 3 = r(53), and by Def. 2.3,
c(r(a)) =r(B).
For the inductive step, suppose p(”! 1/;;) holds in @ for w € b(«a) and 7#r(a). Then

by the definition of path parallelism (Def. 4.2), there are nodes 7', 1)’ such that
(7 ﬁ}) holds in €, 7" and 9’ bear the same label, 7 is the i-th child of 7’ and v the
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i-th child of ¢’ for some 7. The inductive hypothesis applies to «’ since 7’ is strictly
shorter than m and 7' € b(«) (since 7 € b(«)), so ¢(n') = ', whence ¢(m) = 9 by
Def. 2.3.

O

On the syntactic side, we extend our constraint languages by path parallelism literals of

the form
XY

X'Yy! )
For short, we also call them path literals. Like inequality and disjointness literals, path
literals are symmetric.

p(

We write Cp,, for the language C,, extended by path literals, and CLLS,, for CLLS extended
by path literals.

Interestingly, it is not clear whether path literals can be expressed in terms of
parallelism literals. While it is true that path parallelism is the restriction of f
parallelism to path-shaped segments, a path literal is not just a restricted form 9
of a parallelism literal. A parallelism literal always specifies the (maximum)
number of exceptions in the two segments that it is about, while a path literal
does not restrict the number of exceptions in the two path-shaped segments
that it describes. See the figure to the right for an example of a path-shaped
segment and its exceptions, here drawn as shaded circles.

We use path literals to express syntactic correspondence by some formulas that we in-
troduce now. The fact that some segment term A = Xy/X,..., X, denotes a segment
is stated by the formula

n
seg(A) =def /\ Xo<* X; A /\ ((XzJ_X]) V (XZ:X]))
i=1 1<i<j<n

(As defined in in Chapter 2, p. 31, two hole variables of a segment term may denote the
same hole node, and the order of hole variables need not match the order of the hole
nodes.) Given a segment term A and a variable X of a CLLS constraint, we do not
always know whether the denotation of X lies inside the denotation of A. The cases
where we do know can be described by the following formulas: Let A be as above, then

X € b(A) =gof Xo<*X A /\?ZI(XQ*XZ' \/XJ_XZ)
X eb™ (A) =dqef X € b(A) A /\?ZI(X;AXZ \% XJ_Xi)
XQb(A) =def X<+X0 VX1XyV V?:l XZ'<+X
X¢b~ (A) =def X<+X0 VX1XyV V?:l X< X

So X € b(A) is a disjunction of constraints. Still, we write “X € b(A) is in ¢” to express
that one of the disjuncts in X € b(A) is contained in the constraint ¢, and analogously for
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the other formulas that we have just defined. Also, we sometimes write “X is inside A”
instead of “X € b(A) is in the constraint we currently consider”. Note that the negative
formula X ¢b(A) expresses that we know for sure that the denotation of X cannot be
inside the denotation of A, and analogously for X¢b™(A).

Now we can define correspondence formulas. Let A = Xy/Xi,...,X, and B =
Yg/Yl,... ,Yn. Then

co(4, B)(U)=V =qef A~™B A p(P20) A UE€b(A).

co(A,B) is the syntactic correspondence function for the two parallel segment terms A
and B.

4.1.3 The Rules in Detail

Remember that the class Cp, of parallelism constraints has the following abstract syntax:

= XY | X:f(X,. ., X)) | XLY | X£Y  (ar(f) = n)
| Xo/Xl,...,XnNYO/Yl,...,Yn n >0
| false|p A ¢

¥,S

The semi-decision procedure P, for parallelism constraints is shown in Fig. 4.3. The first
block of rules infers a syntactic correspondence function co(A,B) for each parallelism
literal A ~ B and copies constraints from variables to their correspondents.! The rule
(P.init) has the form A~B — seg(A) Aseg(B) Aco(A, B)(X;)=Y; for segment terms A =
Xo/X1,...,Xpand B=Yy/Y1,...,Y, and 0 < i < n. It makes sure that two parallel seg-
ment terms A and B denote segments, and it fixes some correspondences in the syntactic
correspondence function co(A,B): the root variables of A and B must correspond, and the
i-th hole variable of A corresponds to the i-th hole of B for all 7. For all other variables in-
side A or B, (P.new) introduces a new existentially quantified variable as a correspondent:
It has the form A~%™B A U € b(A) — 3U'.co(A, B)(U)=U'. The rule (P.copy.dom),
which is Uy RUs A N\2_, co(A, B)(U;)=V; — ViRV, for R € {<*, 1, #}, copies dominance,
disjointness, and inequality literals from variables Uy, Us to variables corresponding to
Uy,U;. Note that this rule only applies if Vi, Vs are correspondents of Uy, Us by the
same syntactic correspondence function co(A,B). Likewise, (P.copy.lab), which states
Uo:f(Ur,...,Un) N Nitgco(A,B)(Ui)=Vi A Uy € b=(A) = Vo:f(Vi,..., Vi), copies
labeling literals from variables Uy, ..., Uy, to their correspondents. This rule additionally
makes sure that Uy is not a hole of A: By Def. 2.3 and 2.4 (p. 27), two parallel segments
are isomorphic only up to their holes, excluding the hole labels.

The procedure P, contains two distribution rules in addition to the ones of Py, listed
in the second block in Fig. 4.3. (P.distr.seg) has the form A~%™"B A X <*X — X €

!Note that a variable may have more than one correspondent, even with respect to the same syntactic
correspondence function co(A,B). But if a constraint contains co(A, B)(U) = Vi and co(A, B)(U) = Vs,
then its saturation will also contain V;=V> by (P.trans.h) and (P.path.eq.2).
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Let A:X[)/Xl,...,Xn and B :Yo/Yl,...,Yn.

Core Rules
(P.init) A~B — seg(A) Nseg(B) Aco(A, B)(X;)=Y; where0<i<mn
(P.new) A~YMB AU € b(A) — AU'.co(A,B)(U)=U"  where U' is a fresh

variable
(P.copy.dom) URUs A /\?:1 co(A, B)(U;)=V; — V1RV, where R € {<*, L, #}
(P.copylab)  Up:f(Ui,...,Un) ANN~yco(A, B)(U)=V; AUy € b~ (A) —
Vorf(Viy oo, Vin)

Additional Distribution Rules

(P.distr.seg)  A~YMBA Xo<*X — X € b(4) V Vi X<t X
(P.distr.eq) o - X=Y V X#£Y  where XY € Var(p)

Rules concerning Path Parallelism

(P.path.dom) p()é ‘g) — XJ<UANY SV

(Ppatheq.1) p(3L %) A AL Xi=Yi = p(}13?)

(P.path.eq.2) p(pv) — U=V

(P.trans.h) p(§§) /\P(V W) - p()é V?/)

(P.trans.v) p(§2 Yz) (§§ 5)2) — P(f(;, 2)

(P.diff.1) P(% ) AD(R 1) A Xa< X3 A Yo<'Ys — (32 32)
(P.diff.2) PO V) ADP(R 12) A X1 Xz A Yia'Ys — p(§131)

plus the rules of the dominance constraint solver Py in Fig. 3.2, p. 60.

Figure 4.3: Solving C}, constraints: procedure Pp,.
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b(4) v Vi, X;a*X. It deals with situations like the one in Fig. 4.4 (where the two
segment terms of the parallelism literal are visualized by brackets from root to hole
variables): Here we have to decide whether U is in b(Xy/X1) or not, such that we
know whether or not to apply (P.new) to U. (P.distr.eq) is a projection rule: Stating
¢ = X=Y Vv X#Y for XY € Var(p), it guesses whether two variables should be
identified or not.

~#7%0 o
Xo/X1~Yo /Y1

Figure 4.4: Constraint graph illustrating (P.distr.seg)

The saturation rules of the last block state properties of path parallelism. They ensure
that correspondence formulas correctly mirror correspondence functions. (P.path.dom),
which is p()é ‘);) — X<*U A Y<*V, states that the existence of a path from X to U
implies dominance. By (P.path.eq.l), given a path literal we can add another in which
equal variables have been substituted: p(% §Z) A /\;1:1 X;=Y; — p(% é) At the
same time, this rule ensures that syntactic correspondence correctly models the fact that
(semantic) correspondence is a function: If two variables are equal, they will be mapped
to the same corresponding variable. (P.path.eq.2), which has the form p()é )‘f) — U=V,
states that two parallel paths starting at the same point must end at the same point. The
rule (P.trans.h), which is p()é ‘);) A p(‘); V%,) — p()é V%,), expresses horizontal transitivity:
if a path is parallel to a second one, which again is parallel to a third one, then the first

and third paths are also parallel.

The rules (P.trans.v), (P.diff.1) and (P.diff.2) are all concerned with ver-

tical transitivity. These rules are illustrated in the figure to the right: o X, %
There are variables X1, Xo, X3 with X; dominating Xo and X domi- :
nating X3, and Yi,Ys, Y3 with ¥; dominating Y5 and Y5 dominating V3. ® X2 Y,
(P.trans.v) states p(% 2) A p(§; Q) — p(% g) If the “short” path  : :
from X7 to Xy, or X7 — X5 for short, is parallel to Y7 — Y5, and the short
paths X5 — X3 and Yy — Y3 are parallel as well, then the two long paths
X1 — X3 and Y] — Y3 are also parallel. The other two rules make similar statements:
if two of the path pairs are parallel, then so is the third. The rule (P.diff.1), which is
P(RE3E) A D(FE31) A Xoa' X3 A Yaa'Ys — p(§242), says that if X) — Xp, Y1 — Y3 are
parallel and X — X3, Y7 — Y3 are parallel too, then so are Xo — X5 and Y5 — Y35. And the
rule (P.diff.2), which has the form p(§; 2) A p(§§ Q) A X1<* X2 A Y14°Yo — p())g 2),
concludes that X; — X9, Y7 — Y5 must be parallel if first X; — X3, Y7 — Y3 and second
X2 — X3, Y2 - Y3 are.

o X3 o V3
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(a) £ (b)
X5 b @ Yo
e eV eV U}
» Uy : g ‘U[L\ oV _e __gU;
.y *h Ilﬁ TTTTmmTT T ,I Ul
® 1 ..‘-55*"——_____—-"’70"
.‘XL _______ ."Yl
Xo/X1~Yo /Y1 Xo/X1~Yy/Y1
(c) (d)
?%0/0\ vy '%0/0\ Y,
L 5 : -
S ‘1 o1
gelo gl : :
Lo, Lol SV v
; X1 . Y1 . X, . Y1
XO/XINYO/YI XQ/XlNYO/YI

Figure 4.5: (a) A simple constraint with a parallelism literal, (b) a partial saturation
with correspondences drawn in, and (c¢), (d) two further advanced partial saturations

4.1.4 Examples

Example 4.4 (Illustrating the core rules). We first demonstrate the core rules of
P, (the first rule block in Fig. 4.3) and their interaction with the Py rules. We start
out with the constraint in Fig. 4.5 (a). Then P, can perform the computation shown in
Fig. 4.6. When a distribution rule increases the number of clauses, we indicate this by
dividing the box in Fig. 4.6 vertically, with one column for each clause.

Rule (P.init) is applied in line (1) of Fig. 4.6: The roots Xy, Yj correspond, as do the holes
X1,Y1. How do we go on from there? The variable Uy is inside A, and V is inside B.
But they are just dominated by Xo and Y, respectively, their position is not fixed. Rule
(P.new) gives both these variables, as well as Uy, correspondents (in lines (2) — (4) of Fig.
4.6), then leaves it to other rules to determine the positions of these correspondents. In
lines (5) — (7), (P.copy.dom) positions the images Ujj, U] within b(B), and the image V'
inside b(A). Line (10) copies the label of Uy to Ujj by (P.copy.lab). The two preceding
lines (8) and (9) make sure that (P.copy.lab) is applicable, i.e. Uy is not the hole of A.

The resulting constraint is the one in Fig. 4.5 (b). In this graph, correspondence is indi-
cated by dashed arcs. At this stage, all variables inside A or B possess a correspondent,
but the constraint is not saturated yet. Lines (11) and (12) show what happens when
we apply (D.distr.notDisj) now. If we choose the alternative V'<*U; (line (11a)), then
(P.copy.dom) can immediately infer V<*U]. This gives us the constraint shown in Fig.
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1) Xoo X1 A Yo Y1 A (P-init)
co(A, B)(Xy)=Y, /\CO(A,B)(Xl):Yl
(2)  3U|.co(A, B)(Uy)=U, (P.new)
(3)  3Uj.co(A,B)(Uy)=U (P.new)
(4) 3IV'.co(A, B)(V)=V (P.new)
(5) X<V, V'a* X, (P.copy.dom)
(6)  Yo<rUp,U)<*Yq (P.copy.dom)
(7)  Yo<*U{,Uj<*Yq (P.copy.dom)
(8)  Up<tUy (D.lab.ineq)
9) Uyt X, (D.dom.ineq)
(1) Ug(U)) (P.copy.Jab)
(11) V'<U; V U <V (D.distr.notDisj)
(lla) VI<]*U1: (11b) U1<]*V/:
(12) Va'Uy (P.copy.dom) | (13) Uj<*V (P.copy.dom)

Figure 4.6: Computation of P, on Fig. 4.5 (a)

4.5 (c). The alternative in (11b) is analogous, yielding the constraint depicted in Fig. 4.5
(d).

At this point (after lines (12) and (13) of the computation in Fig. 4.6 respectively) we
have reached constraints that are almost saturated. It remains to apply (P.distr.eq) to
guess which variables should be equal. We consider the constraint we have reached after
line (12) of the computation, the one depicted in Fig. 4.5 (c). If (P.distr.eq) now guesses,
for example, Xo#V', V'#£Uy, U1 #X1, then we get Yo#V, V£Uj, U #Y1 by (P.copy.dom)
and a saturation that again is visualized by the constraint graph in Fig. 4.5 (c).

Example 4.5 (Quantifier Parallelism). In Section 2.3 we have discussed the phe-
nomenon of quantifier parallelism: If a scope ambiguity occurs in the source sentence of
an ellipsis, then this ambiguity has to be resolved the same way in the source and the
target sentence, as witnessed e.g. by sentence (2.6) (p. 37), repeated here as (4.1).

(4.1) Every linguist attended a workshop. Every computer scientist did, too.

The constraint representing the meaning of this sentence is shown in Fig. 2.12, p. 37.

In the previous example we have discussed the mechanism that ensures that the “ambi-
guity” between V' and Uj in Fig. 4.5 (b) is resolved the same way as the “ambiguity”
between V and U{. The same mechanism sees to it that quantifier parallelism is handled
correctly: When the ambiguity between the two scope-bearing expressions in the source
sentence is resolved, the ambiguity between their copies in the target sentence has to
be resolved in the same way because corresponding nodes must have the same positions
within their respective segments.
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(a‘) ® XU (b) [ ] XU
oY) e Y)
o X ) X]L‘.'-' YO,
oY, oY,

Xo/X1~Yo /Y1 | Xo/X1~Yo /Y3

Figure 4.7: (a) Overlapping parallelism literal and (b) a partial saturation

Example 4.6 (Overlap and infinitely many saturations). Figure 4.7 (a) shows a
very simple constraint in which the parallelism literal “overlaps itself”. For this con-
straint the procedure P, computes infinitely many different saturations. One saturation
contains Xo=X;=Y,=Y]. Another contains XyaX;=Yy«"Y;. If the constraint contains
Xo<aTYp<aT X1<7Y7, then the variable Yy € b(Xo/X1) needs a correspondent by (P.new),
e.g. co(Xo/X1,Yy/Y1)(Yo)=Y], and (P.copy.dom) gives us the constraint depicted in Fig.
4.7 (b). Now (D.distr.notDisj) is applicable to Y and X;. It can either place Y] between
X, and Y;. Then Y] is inside Y; /Y7 but not inside Xy/X;. Or (D.distr.notDisj) can place
Y, between Yy and X, where it is in the “overlap region” belonging to both segment
terms. Then Yj is inside X/X; and needs a correspondent in Y;/Y7, and so on.

Example 4.7 (Nontermination). The figure to the right shows an f I Xo
unsatisfiable constraint. For this constraint, P, does not terminate. :]§0
It copies the f-label from Xj to Yp. But as Yj is inside Xo/X7, it & I Yll

copies the f-label from Y{ to Yy’s child. This child of Y} is again
inside X/X;, so the f-label gets copied from that variable to its  Xo/X;1~Yy/Y3
child, and so on ad infinitum.

(a‘) L XU (b) [ ] XU
v, «Y)
»- X ) Xi'.'-. YOI

XO/XlNYO/Yl A XQ/YQNXl/Yl XO/XlNYO/Yl A XQ/YONXl/Yl

Figure 4.8: (a) Guessing equalities: For this constraint, (P.distr.eq) is needed.
(b) A partial saturation.

Example 4.8 (Guessing equalities). If we introduce a correspondent using (P.new),
there are only two possibilities: Either the new variable will denote the same node as
some variable that we already had in the constraint, or it will denote a node that did not
interpret any variable of the constraint up to then. We definitely make progress in our
computation when we decide which of the two cases applies. If we do not decide between
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the two cases, we might end up inventing more and more new variables that in the end
all denote the same node.

The rule (P.distr.eq) decides between the two cases by guessing equalities and inequalities
between nodes. However, it is surprisingly hard to construct a constraint where this
rule is actually needed — i.e. a constraint that is satisfiable but for which P, would
never terminate without guessing equalities. Figure 4.8 (a) shows what seems to be
the simplest such constraint. Remember that in discussing the “overlapping parallelism
literal” constraint in Fig. 4.7 (a), we have called the part of the constraint between Yy and
X the “overlap region”, which belongs to both segment terms of the parallelism literal,
and we have distinguished it from the segment terms above Yy and below X7, which both
belong to only one of the two parallelism segment terms. Now in the constraint in Fig.
4.8 (a) , we have two parallelism literals and three “overlap regions”.

Now suppose that again we want to find a correspondent for Yy € b(Xy/X1). We intro-
duce a variable Y with co(Xy/X1,Yy/Y1)(Yy)=Yy, and (P.copy.dom) adds Yy<*Y{, Y <*Y;
as shown in Fig. 4.8 (b). Again (D.distr.notDisj) is applicable to Yj and X;. If Y] is
placed between Yy and X, it is inside Y;/Y7 and will need a correspondent inside X/ X} .
And if Y] is placed between X; and Y7, it is inside X; /Y] and will need a correspondent
inside X/Yp. So wherever Y] is placed, (P.new) is again applicable to it.

The constraint in Fig. 4.8 (a) is satisfiable, and P, should be able to compute saturations
for it. And indeed P, can compute saturations (infinitely many different ones, as for the
constraint in Fig. 4.7 (a)), but only because (P.distr.eq) guarantees that progress is made
in the computation.

e X, el ety levielyery ez el ey

Uy L Xy AU LXy AN UF#Us A
A~BAB~CAC~AN

co(A, B)(Ur)=Uj A co(A, B)(U)=U} A

co(B, C)(U7)=U{ A co(B,C)(U})=UY

where A = Xg/X1 and B = Yg/Y1 and C' = Zo/Zl.

Figure 4.9: A constraint illustrating the path parallelism transitivity rules

Example 4.9 (Path parallelism transitivity). The path parallelism rules see to it
that corresponding variables are assigned in o consistent way over the different syntactic
correspondence functions. We now discuss an example which without the horizontal tran-
sitivity rule (P.trans.h) could receive spurious saturations. Consider Fig. 4.9. There are
three parallelism literals. In any model, their three syntactic correspondence functions
must match the actual (semantic) correspondence functions (because their path literals
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must be satisfied and because of the correlation between path parallelism and correspon-
dence functions stated in Prop. 4.3, p. 78). If for example U; denotes the first child of
the node interpreting Xy, then U] must denote the first child of the node interpreting
Yy, and analogously Us and U), according to the definition of correspondence functions
(Def. 2.3).

The constraint in Fig. 4.9 has already been partially saturated, as the correspondence
formulas show. Figure 4.10 shows a possible further computation. Line (3) and (4) attach
the correspondents (with respect to A ~ C') of Uy, U, in C' “the wrong way round”: At
that point the constraint states that Up,U] denote corresponding nodes, and U7, U{
denote corresponding nodes, and Uy, U denote corresponding nodes. That constraint is
unsatisfiable. This can be detected, as the rest of the computation in Fig. 4.10 shows,
but only using (P.trans.h).

(1) 3Ui.co(4,C)(U1)=U. (P.new)

(2)  3Va.co(4,C)(U2)=Us (P.new)

(3) U=U} (P.distr.eq)
(4)  U=U7 (P.distr.eq)
) P ) P ) (P.trans.h)

(6) p( 5? 5—?), p( 52, 5—3) (P.trans.h)

(1) U'=Uy, UY=U, (P.path.eq.2)
8) U=U, (D.dom.trans)
9) U110y (P.copy.dom)
(10) false (D.clash.ineq)

Figure 4.10: A further computation on Fig. 4.9

4.1.5 A Note on Saturations and Readings

At the beginning of the current chapter we have argued that one of the good properties
of the procedure P, is that, for the linguistically relevant constraints, it can compute
constraints that directly match the correct readings. Now it is time to take a closer look
at this statement.

How many saturations does the constraint for our standard quantifier parallelism sentence
(4.1) have? We repeat the constraint here (without the lambda binding literals, which we
cover in the following chapter) as Fig. 4.11. The sentence has three readings. And indeed
the constraint in Fig. 4.11 has three different partial saturations sketched in Fig. 4.12.
But the constraint has more saturations than three, because of (P.distr.eq): For each of
the dominance edges shown in the sketches in Fig. 4.12, (P.distr.eq) guesses whether to
identify the upper and the lower variable that the dominance edge connects.

But as we have said above, it is difficult to find a constraint for which (P.distr.eq) is
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C) lam ‘}m ev /’\§.
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Xo/X1~Yy/Y1

attend var

Figure 4.11: Constraint for Fvery linguist attended a workshop. Every computer scientist
did, too. (minus lambda binding)

) T, b) T, D s
ev. ling ev. cs aws aws /‘\

aws. aws. ev. ling ev. cs ev. ling ev. cs

attend attend attend attend attend attend

Figure 4.12: Sketch of three partial saturations of the constraint in Fig. 4.11

actually needed. The one constraint that we have discussed above involves multiple
self-overlap of parallelism literals. However, in linguistically relevant constraints the
parallelism literals are much simpler — it seems that “self-overlap” does not occur at all.
In a first implementation of the procedure P, [21] the rule (P.distr.eq) is disabled, which
means that the saturations computed e.g. for the constraint in Fig. 4.11 are actually the
three constraints sketched in Fig. 4.12.

In Chapter 9, where we give an outlook over further work, we discuss a restriction of the
language of parallelism constraints that excludes “self-overlap”: This language fragment
is decidable and could have interesting processing properties (and it should suffice for
handling parallelism phenomena).

4.2 Some Properties of the Procedure: Soundness, Nontermination,
Control, Saturations

In this and the following sections we examine properties of the semi-decision procedure
P,. All results are collected in a theorem in Sec. 4.6.
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4.2.1 Soundness

In Def. 3.3 (p. 62), we have stated the notion of soundness that we use: We call a
saturation procedure sound if all its rules are equivalence transformations. We have
noted that because we are working in a saturation framework it suffices to show that in
all rules the premise entails the conclusion.

It is easy to show that in all rules of the procedure Py, the left-hand side entails the right-
hand side: The two additional distribution rules are obviously sound, and the rules about
path literals describe valid properties of path parallelism. Concerning the core rules,
Prop. 4.3 (p. 78) implies that satisfaction for correspondence formulas works the same
way as satisfaction of a literal: A correspondence formula co(A, B)(U)=V is satisfied by
a lambda structure iff the correspondence function for the segments interpreting A, B
maps the denotation of U to the denotation of V. And that means that the core rules of
P, are obviously sound by the definition of parallelism (Def. 2.4, p. 28).

Lemma 4.10 (Soundness). The semi-decision procedure P, for C,, is sound for lambda
structures.

4.2.2 Nontermination

As we have seen in Ex. 4.7, there are unsatisfiable constraints for which P, does not
terminate. But if a Cj, constraint is satisfiable, then the procedure P, will compute all
its minimal saturations, as we show below in Sec. 4.5.

4.2.3 Fairness

Basically, we will call a sequence of saturation steps fair if whenever a rule is applicable,
one of the disjuncts in its conclusion will ultimately be added. That is, our notion of
fairness is one of exhaustiveness.

Definition 4.11 (Fairness). Let S be a set of saturation rules and let @g,p1,... be
clauses. We call a sequence pg =g p1 —>s ... fair iff either there exists some ¢ > 0 such
that @; is failed, or the following holds:

For all + > 0 such that some rule p = ¢ — \/Z:1 AVisk in S is applicable to @;, there
exists some j > i, and some k such that g, is in @; for some Vi-variant g, of .

For the Cq-solver Py of the previous chapter, fairness is not a problem. Each sequence
of Pg-saturation steps is finite because there are only finitely many different literals that
that algorithm can add for each variable. And if we reach a saturated constraint, the
above fairness condition must hold or the constraint would not be saturated: By Def. 4.1
(p. 76) a saturation rule is applicable only if it can add something new to the constraint
(by the application condition appc, of a rule p). So it can happen that two different
rules p;, p2 are applicable to a constraint ¢, and the rule p; is chosen to produce the
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constraint ¢’ by a saturation step ¢ {1} ¢, but ps is not applicable to ¢’ anymore.
Suppose that is the case, and suppose ps = ¢ — \/i_; IV;¢; is the rule that did not get
chosen. Then a Vj-variant of some ¢; must already be in ¢', this is the way that the
application condition appc,, is defined. That is, one of the disjuncts in po’s conclusion
has been added, and if not by pe, then by some other rule (in the case we have just
sketched it must have been py).

For the procedure P, however, things are different. Because of (P.new), there are infinite
sequences of Pp-saturation steps. So we introduce the following condition to ensure
fairness:

Fairness condition. (P.new) is applied only to constraints saturated under
P,— {(P.new)}. (P.new) is applied to variables in the order of their introduc-
tion into the constraint.

It is easy to verify that this condition guarantees fairness as defined above. But why
this particular condition? With this condition, we make progress after each application
of (P.new), in the sense that we have discussed in Ex. 4.8: After each application of
(P.new) we determine whether the newly introduced corresponding variable denotes the
same node as some variable we already had, or if it denotes a node that up to then did
not interpret any variable of the constraint. And it is this fairness condition (or rather
its first half) that we will use in our argument for the completeness of the procedure Pp.

4.2.4 Saturated Constraints

For a satisfiable parallelism constraint, the procedure computes a set of saturations,
constraints to which no rule of P, is applicable anymore.

Lemma 4.12. There are satisfiable parallelism constraints for which P, computes in-
finitely many saturations.

Proof. This is the case e.g. for the constraints discussed in Ex. 4.6 and 4.8. O

In Sec. 4.4, where we discuss minimal saturated constraints, we introduce a partial order
on CLLS, constraints. There we will show that whenever P, computes more than one
saturation for a constraint, the saturations will be incomparable by that order.

Pp-saturated constraints basically look like the Pg-saturated constraints of the previous
chapter, with a few additional restrictions. Remember that we have informally described
Pqg-saturations as follows: The constraint graph of a saturated constraint is a forest with
two different kinds of tree nodes, labeled and unlabeled ones, and two different kinds of
edges, dominance and labeling edges. A node is either labeled, all its outgoing edges are
labeling edges, and its children are ordered; or it is unlabeled, all its outgoing edges are
dominance edges, and its children are unordered.
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What is different in a Pp-saturated constraint? It may contain parallelism literals. In
that case, if we draw the correspondence formulas into the constraint graph in the shape
of correspondence arcs, then given a parallelism literal, every constraint graph node “in-
side” one of its two segment terms will be linked, via a correspondence arc, to exactly
one node “inside” the other segment term. Arcs always link labeled with labeled nodes,
and unlabeled with unlabeled nodes, except for the holes of a segment term. Arcs linking
labeled nodes respect the label and the order of the children. And we can order the “dom-
inance children” of all unlabeled nodes in the graph in such a way that a correspondence

arc always links an i-th “dominance child” to an i-th “dominance child”.

This last point, that correspondence arcs must in some way also respect the “order”
of “dominance children”, concerns cases such as the one in Fig. 4.9 (p. 86). In that
constraint we have 3 parallelism literals. The constraint is partially saturated, already
containing some correspondence formulas. The variables Xy and Y correspond via the
first parallelism literal, Yy and Zj via the second, Zy and X via the third. Each of X, Y)
and Zj have 3 “dominance children”. In the further saturation of the constraint in Fig.
4.10 we have used (P.trans.h) to ensure that there exists an order on the “dominance
children” of Xg, Yy and Z; that is respected by all correspondence formulas. As the
saturation in Fig. 4.10 contains correspondence formulas that violate any possible order
on the “dominance children”, the result is a clash.

4.3 Satisfiability of Saturated Constraints

In this section we show that from any saturated constraint that P, computes we can read
off a model. We proceed as in the previous chapter: We first consider simple constraints,
for which the constraint graph already looks like a tree. Then we lift the result to
arbitrary P,-saturated constraints.

4.3.1 Valuations and Segment Terms

However, there are two technical issues that we have to address first. The first is an
additional piece of notation: we lift valuation functions canonically from variables to
segment terms.

Let A= Xy/Xy,...,X,. We write 0(A) = « iff the following holds: a = mo/71,..., T,
such that o(Xp) = m, and o({X1,..., Xpn}) = {71,..., "}

4.3.2 Generatedness

The second issue that we have to consider is this: P,-saturated constraints are not C,
constraints but Cp, constraints — they may contain path literals. The procedure P}, does
not accept path literals in the input, and it does not check whether path literals in arbi-
trary places in a constraint are satisfiable; but it checks the satisfiability of path literals
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that it has introduced for recording correspondence. To formalize this, we introduce gen-
erated constraints, where each path literal either establishes a correspondence for some
parallelism literal or is the result of combining several such correspondence statements
by a path parallelism rule.

Definition 4.13 (Correspondence-generated). Let ¢ be a Cpp-constraint. A path
literal p(g; %) € ¢ 1is correspondence-generated in ¢ iff there exists some literal A ~
B e ¢ with A=Uy/... and B =Vy/... such that either Uy € b(A) or Vo € b(B) is in ¢.

Intuitively, a path literal is correspondence-generated if it has been introduced as part
of a correspondence formula and thus expresses a correspondence. Now we define what
it means for a path literal to be generated: It must be entailed by the non-path literals
together with the correspondence-generated path literals.

Definition 4.14 (Generated). Let ¢ be a Cpp-constraint, let ¢y be ¢ without all its
path literals, and let 1 be the set of correspondence-generated path literals in .

Then a path literal p(g; %) € s generated in ¢ iff

U V
o N1 | p(U;V;) .

Whenever P, computes a saturation of a constraint, that saturation is generated.

Lemma 4.15 (Generatedness). Let ¢ be a C, constraint with ¢ —7 ¢'. Then ¢ is
generated.

Proof. Any path literal in ¢’ must have been introduced by either (P.init), (P.new),
(P.path.eq.1), (P.trans.h), (P.trans.v), (P.diff.1) or (P.diff.2). We proceed by induction
on the length of the saturation from ¢ to ¢'. The constraint ¢ does not contain any path
literals, so it is generated by definition. Now suppose ¢ —% ¢" = ¢, where p is an
instance of either (P.init), (P.new), (P.path.eq.1), (P.trans.h), (P.trans.v), (P.diff.1), or
(P.diff.2), and the inductive hypothesis holds for ¢".

If p is an instance of (P.init), then any path literal in ¢’ — ¢"” must be correspondence-
generated because (P.init) also infers U; € b(A) as well as Us € b(B). If p is an instance of
(P.new), then any additional path literal in ¢’ is again correspondence-generated because
(P.new) has U € b(A) in its premise.

The rules (P.path.eq.1), (P.trans.h), (P.trans.v), (P.diff.1) and (P.diff.2) only infer new
path literals from existing ones. They are equivalence transformations by Lemma 4.10.
This means that if ¢” is generated, then so is ¢’. O

The aim of this section is to show that whenever P, computes a saturation, we can
construct a model from it. And since we have just shown that anything that 7, computes
from a C}, constraint is generated, we can safely restrict ourselves to generated constraints
for the rest of this section.
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4.3.3 Simple Constraints

In Def. 3.7 (p. 64) we have introduced simple constraints: they possess a root variable
dominating all others, and every variable is labeled. This definition can be lifted canoni-
cally from dominance constraints to Cpp, constraints: A Cp, constraint ¢ is called simple
iff the maximal subset of ¢ that is a Cq constraint is simple.

Lemma 4.16 (Satisfiability of simple generated saturations). A simple generated
Py -saturated Cpp-constraint is satisfiable.

Proof. Let ¢ be a simple generated Py-saturated Cpp-constraint. In Chapter 3 we have
shown that any simple Pg-saturated Cq-constraint is satisfiable (Lemma 3.8, p. 65). Now
we proceed as follows: We construct a model for the maximal subset of ¢ that is a
dominance constraint, in the same way as in Lemma 3.8, and we show that this model
also satisfies the path literals and parallelism literals of . So let pg4o, be the maximal
subset of ¢ that is a Cq constraint, and let (6,0) be a model for gy, constructed as in
the proof of Lemma 3.8. Note that the model has been constructed in such a way that
for any node m € Dy there exists some X € Var(y) with 0(X) = w. It remains to show
that all path literals and parallelism literals of ¢ are satisfied in that model.

Path literals. A simple constraint already has a tree-shaped constraint graph. For
path literals, we make use of this as follows: Whenever Xo<*U is in ¢ — as for example
when we have p()[(]0 }‘/})) in ¢—, there exists a path from o(Xy) to o(U) with the following
property: For any node 7 such that o(X)<*m<*o(U) holds in 6, there exists a variable

U' € Var(y) such that first o(U’') = 7w, and second, if § |= m:f(...), then U":f(...) is in
®.

We only need to show that all correspondence-generated path literals of ¢ are satisfied
by 6, all others are entailed anyway by the definition of generatedness (Def. 4.14). So
let p()[(]0 }‘/})) be a correspondence-generated path literal in ¢, which by Def. 4.13 means
that there exists some parallelism literal A ~ B € ¢ with A = Xy/X4,...,X,, B =
Yo/Y1,...,Y,, and either U € b(A) or V € b(B) is in ¢; but if U € b(A) is in ¢, then

V € b(B) is in ¢ as well by closure under (P.copy.dom).

We proceed by induction on the length of the path from o(Xy) to o(U). If Xo=U is in ¢,

then we must also have Yp=V in ¢ by saturation under (P.copy.dom). As (¢, o) satisfies

©dom, o must map Xg and U to the same node, and likewise Yy and V. So (0, 0) also
. . Xo Yt

satisfies the path literal p(7 (7).

Now suppose that the path from o(Xy) to o(U) has length m + 1. Let m € Dy be such

that o(Xo)<*w<*o(U) holds in € and the path from o(Xy) to m has length m. Figure

4.13 shows this situation. Then we must have § = 7:f(7l,...,n¢) for some f of arity ¢,

with 75 = o(U) for some i < £.

As noted above there exists some U’ € Var(p) with o(U’) = 7 such that U":f(Uy, ..., Uy)
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n=c(U’)
o(U)

Figure 4.13: Induction step in the model construction for path literals

is in ¢ for some Uy,...,Up € Var(p). As 0 is a model of p4o,,, we must have U;=U in ¢
for the same ¢ for which mi = o(U).

Next we show that U’, Uy, ..., U, must all be inside A. Since Xo<*U’ is in ¢, (P.distr.seg)
must have been applied to yield either U’ € b(A) or X;<*U’ for some j, 1 < j <
n. Suppose the latter is the case. Then, since ¢ contains U'<*U by (D.lab.dom) and
(D.dom.trans), it also contains X;<*U by (D.dom.trans). By (P.distr.eq) we must have
either X;#U or X;=U. We regard the first case first. Above we have assumed that ¢
contains U € b(A), so it must contain either U<*X; and thus X;=U, which is impossible
by (D.clash.ineq) and the fact that ¢ is clash-free, or ULX; and thus U_LU by (D.disj),
which is impossible by (D.clash.disj). So only the second case, X;=U, remains. In this
case ¢ must contain U<*U’ and hence also U=U'=U; by (D.dom.trans), but also U'#£U;
by (D.lab.ineq), which is impossible by (D.clash.ineq) and the fact that ¢ is clash-free. So
both cases are impossible, which means that ¢ must contain U’ € b(A). Furthermore by
closure under (P.distr.eq) ¢ contains either U’ € b~ (A4) or U'=X; for some j,1 < j < n.
But the latter can be excluded in a similar fashion as we just excluded X;<*U’, by closure
of ¢ under (D.lab.dom), (D.dom.trans), (P.distr.eq), and (D.clash.ineq).

Now we turn to Uy,...,Up. By closure under (D.lab.dom) and (D.dom.trans) we have
Xo<*Uy in ¢ for 1 < k < ¢, so (P.distr.seg) has been applied to Uy and b(A). If it has
not chosen Uy, € b(A), there must be some X;,1 < j < n, with X;<7 Uy and thus X;<*U’
by (D.distr.notDisj), (D.distr.child), (D.dom.refl), (D.dom.trans), (D.disj) and the fact
that ¢ is clash-free. But that is impossible since ¢ contains U’ € b~(A). Thus, to sum
up, U’ € b~ (A) must be in ¢, as well as Uy, € b(A) for 1 <k < 4.

This means that by closure under (P.new), there must be some V' € Var(y) such that ¢

contains p()é‘,) go,) As the path from o(Xy) to o(U’) has only length m, we can use the

inductive hypothesis and conclude that p()é‘,) ‘);9) is satisfied by (0, 0). Again by (P.new)
there must be V1,...,V; € Var(y) such that co(A4, B)(U;)=V; isin ¢ for 1 <i < /. And
as U' € b= (A) is in ¢, ¢ contains V':f(V1,..., V) by (P.copy.lab).

Above we have said that U=U; is in . We also have p()[(]0 )‘/}’), so V=V; is in ¢ too by
(P.copy.dom) and (P.path.eq.1). So (#,0) must satisfy the literal p(){]0 1‘/}’) It satisfies

p()é‘,) ‘);9), o(U') and o(V') bear the same label, and o(U) is the i-th child of o(U’) just

as o(V) is the i-th child of o(V").
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Parallelism literals. Let A ~ B € ¢ with A = Xy/X1,...,X,, B=Yy/Y1,...,Y,.
Let 0(A) = a and o(B) = f (as defined in Sec. 4.3.1 above), with o = m/71,..., T
and B = ¥o/¢1,...,%m. We have to show that there exists a correspondence function
between b(a) and b(/). So we define a function ¢ : b(ar) = b(5) by

Xo Y
c(r) =9 iff m =0(X),9 = o(Y) such that X € b(A) in ¢ and p( XO Y(')) in ¢.

It remains to show that c is the correspondence function for a ~ .

c is well-defined: Assume p())((0 ?),p(ﬁ? 59) € ¢ with 0(X)=0(X"). Then X=X"is in
¢ by the construction of @ in the proof of Lemma 3.8, so by (P.trans.h) and (P.path.eq.1)
we have Y=Y" in ¢.

The domain of ¢ is b(a): We first show that the domain of ¢ is a subset of b(«).
Let X € b(A) be in ¢. As 0 is a model of @4y, m<*c(X) holds in 6, along with
either o(X)<*m; or o(X)Lm; for each 1 < i < m. So o(X) € b(a). We now show
that b(a) is a subset of the domain of ¢. Let m € b(«), then, as noted above, there
exists an X with o(X) = m. We need to show that X € b(A) is in ¢. ¢ possesses
a root variable, call it Z, and we have Z<*Xy, Z<*X in . Let Z' be a <t-maximal
variable such that Z'<* Xy, Z'<*X € ¢. If Z’=X is in ¢, then X<*X is also contained
by saturation under (D.dom.trans), and ¢ must contain X=X, by (P.distr.eq) because
no<*w. W Z'=2",2":f(Z,. .., Zy) are in @, then we cannot have Z;<* X, Z;<*X € ¢ for
1 <i# j <m,since then X1 Xy € ¢ by (D.dom.trans) and (D.distr). We cannot have
Z;<* X, Z;<*X € @ for any 7 € {1,...,m} since we have chosen Z’' to be maximal. The
only remaining possibility is Z'=X( in ¢ and Z;<*X in ¢ for some i € {1,...,m}. In
any case, Xo<*X is in . By (P.distr.seg), we must have chosen either X<*X; or X L X;
for all 1 <14 < n. By an analogous argument, one can see that the range of ¢ is b(3).

c is one-to-one (injective) because if p())((0 ?),p()}(,‘)?) € ¢ for X,Y € b(A), then

X=Y isin ¢ by (P.copy.dom). It is onto (surjective) by (P.new).
c(m;) = p; for 0 < i < n by (P.init).

c is structure-preserving: Suppose m; € b (a), and § = m:f(n,..., 7). Then
there exists a Uy € Var(yp) with o(Uy) = m(, and, as shown above, Uy € b(A) is in ¢.
As ¢ is simple, Uy must be labeled: ¢ must contain Uy=U], U}:f(Uy,...,U,) for some
U, Ur,...,Up. (P.distr.seg) and (P.distr.eq) must have chosen Uy € b~ (A) since 7, €
b~ (). Thus U; € b(A) isin ¢ for 1 <4 < {. By (P.new), ¢ contains p()é‘: }‘2), 0<i<Y,
for some Vj,...,Vp, and by (P.path.eq.1) and (P.copy.lab), it contains Vy:f(Vi,..., Vo).
By the construction of ¢, we have c¢(w}) = c(o(U;)) = o(V;) for 0 < i < £, so we must
have 0 |= o(Vo):f(c(V1),...,0(Ve)) = c(m):f(c(m]),...,c(m)). The opposite direction,
starting from 0 = c(n():f (c(n}), ..., c(7})), is proved by an analogous argument. O

4.3.4 Non-simple Constrains

Now suppose we have a P,-saturated constraint that is not simple. As we have done
in the case of dominance constraints (in the previous chapter), we extend a non-simple
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saturation by labeling previously unlabeled variables while keeping the constraint satu-
rated, until we finally reach a simple saturated constraint. We reuse the definitions of
the partial order <, (Def. 3.9, p. 66), con,(X) for a node’s minimal dominance children
(Def. 3.9, p. 66), and ¢-disjointness sets, which we use to determine minimal dominance
children that may denote different nodes (Def. 3.10, p. 67).

e Xo e Yy
[éX [QY
o X, oY,

Xo/X1~Yy/Y1 A
CO(X()/XI, Yo/Yl)(X):Y

Figure 4.14: Extension by labeling

However, to keep the constraint saturated during extension, we now have to take par-
allelism literals into account. Consider Fig. 4.14, where we have Xy/X1~Y;/Y1 and
co(Xo/X1,Y/Y1)(X)=Y. We have to be careful when labeling Xo: X is in b(Xo/X1),
and when we add Xjy:g(X) for some unary g, we also have to add Yy:¢g(Y'), otherwise
(P.copy.lab) would be applicable. In general, we have to label all corresponding variables
in the same way at the same time. We formalize this in the notion of the copy set.

Definition 4.17 (Copy set). Let ¢ be a Cp,, constraint. Then the relation —, on tuples
of variables from Var(p) is defined by

(U(),Ul, .. .,Um) ‘—>§0 (VO,VI, .. .,Vm)

iff there exists segment terms A, B of ¢ such that A ~%™ B is in ¢ and co(A, B)(U;)=V;
is in @ for all 0 <i < m, and U; € b(A) is in ¢ for 1 <i < m, and Uy € b~ (A) is in .

Furthermore, we define copy sets of variable tuples by

COwa(UO,Ula- . aUm) —def {(‘/Oavla .. an) |
(U07U17"'7Um) ‘_):; (‘/Oa‘/laavm)}

where as usual <7, is the reflexive and transitive closure of <.

Note that the relation <, is symmetric because A ~*™ B is symmetric. Members of
the same copy set share some properties:

Lemma 4.18. Let ¢ be a Py-saturated Cpp,-constraint with Uy, ..., Up, € Var(y), and let
(Vo, Vi,..\, Vm) S COppr(Uo, Uy,..., Um).

e If Uy is unlabeled in @, then so is Vj.
o If{Ui,...,Un} C cony,(Uy), then {V1,...,Vin} C cony,(Vo).
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o If{Ui,...,Up} is a mazimal p-disjointness set in cony,(Up), then {Vi, ..., Vip} is
a mazimal p-disjointness set in cony,(Vp).

Proof. By well-founded induction on the strict partial order C on {S |
{Uo:f(U1,...,Un)} €8 C copy, (Uo,Ur,...,Un)}.

The case of & = {(Up,Un,...,Up)} is trivial. Otherwise, S has the form S§' U
{(Vo,Vi,...,Vin)} and there exists some (Wy, W1,...,W,,) € 8" with (Wy, W1,...,Wy,)
=, (Vo,Vi, ..., Vin): we have (Up,Ui,...,Uy,) € S, so if there were no such
(Wo,W1,...,Wn) € 8, then § Z copy,,(Up,U1,...,Up). Let A ~»™ B be in ¢ with
A = XO/XI,---aXn, B = Yg/Yl,...,Yn, W; € b(A) in ¢, Wy € b (A) in ¢, and
co(A,B)(W;))=V; € ¢ for 0 < i < m. Then V; € b(B) is in ¢ for 1 < i < m and
Vo € b~ (B) is in ¢ by closure of ¢ under (P.copy.dom).

e Suppose Wy is unlabeled. Then V) must be unlabeled too, as any labeling literal
would have been copied by (P.copy.lab).

e Suppose {Wi,...,Wp} C con,(Wy). Then by closure under (P.copy.dom),
Vo'V € o but Vi<*Vy € ¢ for 1 < ¢+ < m. Assume that V; is not minimal
with Vo <, Vi, i.e. there exists some Z with Vy <, Z <, V;. Then Z € b(B) is
in ¢ by closure under (D.dom.trans), (D.prop.disj), (P.distr.seg). So by (P.new)
there exists some Z’ with Z' € b(A) in ¢ as well as co(4,B)(Z')=Z. But then
Wo<*Z', Z'<*W; € ¢ by (P.copy.dom), but neither Z'<*Wy nor W;<*Z' is in ¢, so
W, is not minimal either, a contradiction.

e Suppose {W1,..., W, } is a maximal ¢-disjointness set in con,(Wy). Assume that
{Vi,V;} is not a disjointness set for some 1 < i < j < n. So either V;a*V; or V;<*V;
is in . But then by (P.copy.dom), W; and W} do not form a disjointness set either,
a contradiction.

Assume {Vi,...,V;,} is not maximal, i.e. there exists some V' ¢ {Vi, ..., V,}
such that {Vi,...,V;,, V'} C cony,(Vp) is a disjointness set. We must have Yo<*V’
by (D.dom.trans), and by (P.distr.seg) either V'<*Y; or V' LY; or Y;<TV' for each
1 <4 < n. But if Y;<*V’ for some i, then V' ¢ con,(Vp) because Vy € b (B)
is in 9. So V' € b(B) is contained as well. By closure under (P.new) and
(P.copy.dom), there exists a W' with W’ € b(A) in ¢ as well as co(4, B)(W')=V"',
and W' € cony,(Wp). W' cannot be in {Wi,..., Wy, }: If W'=W; is in ¢ for some
i€ {l,...,m}, then p()Vf}z ‘1;9),p(€§}; )‘2’) is in ¢ by (P.path.eq.1), so V'=V} is in ¢ by
(P.path.eq.2). Hence, {W1,..., Wy, W'} is a ¢-disjointness set in con,(Wp) that
is bigger than {Wy,...,W,,}, a contradiction.

O

Now we proceed like in Lemma 3.12 (p. 67) of the previous chapter: we extend a saturated
non-simple constraint by labeling at least one previously unlabeled variable.
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Lemma 4.19 (Extension by labeling). Every P,-saturated Cpp-constraint with an
unlabeled variable Uy can be extended to a Pp-saturated constraint in which Uy is labeled.

Proof. Let {Uy,...,Un} be a maximal ¢-disjointness set in con,(Up). Assume that 3
contains a function symbol f of arity m. (If it does not, then we can encode it using
a nullary function symbol and a symbol of arity 2, as in Lemma 3.12.) We define the
following extension exty,, . u,. () of @ AUp:f(Uy,...,Upy):

XtUs,... U () =aet @ A (Vo:f (Vi Vi) A A Vo Vi A
(Vo Vi, Vin)€ A ogvawen, ZLW A
copy , (U0,U15e-,Um) 1l§<]i<j’7n<1 €,
Z V)
/\ Z:g}...)@p, 7& 0
97

This definition of extensions is the same as in Lemma 3.12, except that all members of
a copy set are labeled at the same time. We now show that no P,-rule is applicable to
extyy,... v, (p). For better readability, we abbreviate extyy, ... 1,. () by ext(yp).

We first consider the most interesting rules:

(D.lab.decom): This rule has the form X:f(Xi,...,X,) A Y:f(Y1,...,Y,) A X=Y —
A7, X;=Y;. If this rule has become applicable in ext(y), then it must concern a
newly labeled variable Vj (since we have not added any dominance literals): So
suppose (Vo,Vi,..., V) € copyw(Uo,Ul,...,Um), and Vo = Wy is in . Then
Vo must be unlabeled in ¢ by Lemma 4.18, so Wy must be unlabeled in ¢ too.
Hence, for (D.lab.decom) to be applicable, both Vy:f(V,...,V,,) and Wy: f(W7,
..., Wy,) must be in ext(yp) — ¢, which means that (Wy, W1,...,W,,) must be in
copy., (Uo, Ui,...,Uy) too.

If copy,, (Uo, Ui,...,Upy) is a singleton, then we must have U;=V;=W; for 1 < i <
m. So suppose otherwise. We show the following auxiliary lemma:

Lemma 4.20. Let (Zy,Z1,...,Zp) € copyw(Ug,Ul, ...sUn). Then p(g? ?l’) €
for 1 <i<m.

Proof. We wuse induction on the length of a <, sequence starting in
(Uo,Uy,...,Uy) and ending in (Zy, Z1, . . ., Zy). We start with a sequence of length

zero, i.e. we show that p(g‘? g‘)) isin ¢ for 1 <7 < m.

COPY,, (U(), Ui,...,Upy) is not a singleton

= there exists some A ~™ B in ¢, A = Xo/Xi1,...,Xpn, B =
Yo/Y1,...,Y,, with U; € b(A) in p for 0 <i <m

= by (P.new), there exist Uy, ..., U}, such that co(A, B)(U;)=U/ in ¢ for
0<i<m

= by (P.trans.h), p()é? )5?) inpfor0<i<m

=

by (P.diff.1) and the fact that Up<*U; € ¢, ({0 0) € p for 1 <i<m
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Now suppose (Zy, Z1,...,2),) € copyw(Ug,Ul,...,Um) with p(U Z,) eptorl <
i <m,and (Zy,Z1,...,2),) =y (Zo, Z1, ..., Zp). Then ¢ contains some A ~%™ B
defined as above with Z] € b(A) (X0 YO) in ¢ for 0 < ¢ < m. Then by closure under

(P.diff.1), ( 9 ?’) is in ¢ for 1 <14 <m, and so, by (P.trans.h), is p(UO ZO) O

This concludes the proof of the auxiliary lemma. By that lemma, p(U0 VO)
p(g? VV[K?) € ¢ for 1 < i < m. By closure under (P.trans.h), ¢ contains p(‘él’ VWV,?),

and as Vo=Wj is in ¢, p (W0 WO) in ¢ by (P.path.eq.l), whence by (P.path.eq.2),

V;=W; in ¢ already (all for 1<i< m).

(P.copy.dom): This rule has the form U;RUs A /\?:1 co(4, B)(U;)=V; — V1RV, for
R € {<*,1,#}. We consider all possible cases of R. Any dominance literal in
ext(p) is in ¢ already, so the case of R being <* does not apply.

Now suppose R is L. Let ZLW be in ext(¢) — ¢, where V;,<*Z, V;,<*W in ¢ for
some (Vo,Vi,..., V) € copyw(Ug,Ul,...,Um) and some 1 <4 < ig < m. (Thus,
{Vi,..., Vi } #0.) Suppose ¢ contains A ~™ B, with A, B defined as usual, with
Z €b(A), W € b(A) in ¢.
= by (P.new), there exist Z', W' such that p(~} )Z/‘?),p()é? V};}),) €p
=  X<*"Z, Xo<*W € ¢ and by (D.dom.trans), Vo<*Z, Vo<*WW € ¢
= by (D.distr.notDisj), ¢ contains either Vy<* Xy or Xo<*Vj
Suppose ¢ contains Vp<* Xg but not Vp=Xo, i.e. Vo <, Xo.
Suppose Xg € cony,(V)).
=  Xo=Vj isin ¢ for some k € {1,...,m} since {V1,..., Vi } is
a maximal ¢-disjointness set in con, (V) by Lemma 4.18.
Suppose Xg & cony,(Vp).
= there exists some V' € con,(V)) such that V' <, Xy
— by Lemma 3.11, ¢ contains V'=V}, for some k € {1,...,m}
= by (D.dom.trans), Vy<*Xj € ¢
but at least one of V;, LV} and V;, LV} is in ¢, and ¢ is clash-free
=—> we cannot have both Xy<*Uy and Xg<*Vj in ¢
= (D.distr.notDisj) must have made the choice Xy<*V}
Now suppose Xg<*Vj is in .
We have Vp<tZ,Vo<tW in ¢ by (D.dom.trans), (D.lab.dom),
(P.distr.eq)
either Vp<™ X; in ¢ or VL X; in ¢ for each 1 <4 < n by (P.distr.seg)
and (P.distr.eq) since Z € b(A), W € b(A) in ¢
Vi € b(A) in ¢ for 0 < i < m by (P.distr.eq), (D.disj) and the fact
that all V; are minimal with Vy <, V;
by (P.new), there are Vj, ..., V! such that p()‘(/? ‘);?) cpfor0<i<m
(Vg, Vs, Vi) € copy,,(Uo, UL, ..., Up,) since Vo=X; is not in ¢ for
any 1 <1 <n
by (P.copy.dom), V/ <*Z',V; <*W' in ¢

A
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= Z'LW' € ext(yp) by definition

Now suppose R is #. Let (Vo,Vi,...,Vp) € copyw(Uo,Ul,...,Um) Suppose
Vo#Vi € ext(p) — ¢ for some k € {1,...,m}. (Again, {V1,...,V;,} # 0.) Suppose
further that A ~®™ B is in ¢ with A, B defined as usual, and V) € b(A), Vj € b(A)

in .

=> by (P.new), there exist Vj, V) such that p()ég ﬁg),p()ég ‘);Z) €p

by (P.distr.seg), (P.distr.eq) and the fact that Vi € b(A) is in ¢, we
must have Vo<t X; in g or VgL X;inpfor1 <i<n

= by (P.distr.seg), V; € b(A) in p for 1 <i <m
Xi<+Vj cannot have been chosen for any 1 < ¢ < n,1 <75 <m
because Vj € b7 (A) in ¢ and each V; is minimal with Vj <, V;

— there are V/,..., V! such that p()‘(/‘_) W)yepfor1<j<m
J

= (Vi V,...,V! )Gcopyw(Ug,Ul, .., Up) since Vy € b~ (A) is in ¢

r'm

= Vy#V] is in ext(¢p) by definition

Now suppose Z#V, € ext(p) — ¢, where Z:g(...) is in ¢ for some g with either
g # f or ar(g) # ar(f). Suppose further that A ~%™ B is in ¢, with A, B defined
as usual, with Vj € b(A), Z € b(A) in ¢. By closure under (P.distr.eq), we have
either Z=V} in p or Z#Vy in ¢. Z=Vj in ¢ is impossible since Vj is unlabeled by
Lemma 4.18. So Z#V, must be in ¢ already.

(P.copy.lab): This rule has the form Up:f(Uy,...,Un) A N2y co(A, B)(Us)=V; AUy €

b= (A4) — Vo:f(Vi,...,Vin). Let (Vo,Vi,...,Vp) € COpyw(Ug, Ui,...,Upy) with
Vorf(Vi, ..., Vi) € ext(p) — ¢. Suppose A ~*™ B is in ¢, with A, B defined
as usual, with V; € b(A) in ¢ for 0 < i < m. Then there exist V{,..., V], such that

p()‘(/f‘);?)EgoforOSigm.

By closure under (P.distr.seg), either Vp#X; is in ¢ or Vp=X; is in ¢ for all 1 <
i < n. If Vo#X; is in ¢ for all 4, then (V{,V/,..., V) € copy,(Uo,Ut,...,Un), so
the labeling literal V{:f(V{/,... V) has been added to ext(y). If Vy=X; is in ¢ for
some i, then (P.copy.lab) is not applicable since it does not copy the label of the
exception.

(P.new): This rule has the form A~Y™BAU € b(A) — 3U".co(A, B)(U)=U', where U’

is a fresh variable. We have not added any parallelism or dominance literals to the
constraint, so the only possibility is that a correspondence formula is new in ext(¢p)
by the new inequality and disjointness literals. So suppose A ~*™ B and Xo<*V
are in ¢ and V € b(A) is in ext(¢) — ¢. But then by closure under (P.distr.seg),
one of V<*X;, VLX;, X;<V must already be in ¢ for each i.

For the rules (D.clash.ineq), (D.clash.disj), (D.lab.dom), (D.distr.child), we just lift the
proofs from Lemma 3.12 using Lemma 4.18, which transfers all the necessary properties
of (Uo,Uy,...,Un) to any (Vo,V1,..., Vi) € copy,, (Uo,Ut,...,Up):
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(D.clash.ineq): ext(¢) contains no new dominance literals. If a new inequality literal
Vo#V; were to make (D.Clash.Ineq) applicable, then ¢ must contain Vy=Y;, but
Vo:f (Vi,...,Vp) € copyw(Uo,Ul,...,Um), so V; € cony,(Vp) by Lemma 4.18.

If a new inequality Z#V} were to make the clash rule applicable, then Z:g(...) and
Vo=Z must be in ¢, but by Lemma 4.18, Vj is unlabeled because Uy is.

(D.clash.disj): The only new disjointness literals in ext(y) have the form ZL1W for
Vi<*Z, V;<*W in ¢ with ¢ # j. Assume Z and W are the same variable. Then by
(D.distr.notDisj), either V;<*V; or V;<*V; must be in . But {U;,U;} is a disjoint-
ness set, and so, by Lemma 4.18, is {V;, V;}.

(D.lab.dom): Suppose Vo:f(Vi,..., V) € ext(p) — ¢. We have Vy<*V; € ¢ by Lemma
4.18. Vy#V; € ext(p) by definition.

(D.distr.child): Suppose Vy:f(Vi,...,Vy) € ext(p) — ¢ and Vp<*Z € .

If Za*Vy € @, then (D.distr.child) is not applicable in ext(¢). Otherwise Vj <, Z.
If Z is minimal with Vy <, Z, then Z € con, (1), and as {Vi,...,V},} is a maximal
p-disjointness set in cony,(V)g, we have Z=V; in ¢ for some i € {1,...,m}. If Z is
not minimal, there exists some V' € con,(Vp) such that V'<*Z is in ¢. But then
again, V;=V" for some i € {1,...,m}, so V;<*Z.

The rules (P.init), (P.path.dom), (P.path.eq.1), (P.path.eq.1), (P.distr.eq),(P.distr.seg),
(P.trans.h), (P.trans.v), (P.diff.1), (P.diff.2) cannot become applicable because no new
variables or new dominance, parallelism, or path literals have been added.

For the proofs concerning (D.dom.refl), (D.dom.trans), (D.lab.ineq), (D.lab.disj),
(D.prop.disj), (D.distr.notDisj), the change from labeling single variables to labeling copy
sets of variables does not make any difference.

O

By extending a non-simple constraint sufficiently often, we can finally obtain a simple
Pp-saturated constraint:

Proposition 4.21. Every generated P,-saturated Cpp-constraint can be extended to a
simple generated Py-saturated Cpp,-constraint.

Proof. The proof is the same as for Prop. 3.13 (p. 69). Generatedness is preserved because
no further path literals are added during the extension. U

Lemma 4.22 (Satisfiability of generated saturations). A generated P,-saturated
Cpp-constraint is satisfiable.

Proof. We get this result by combining Lemma 4.16 and Prop. 4.21. O
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4.4 A Partial Order on C, Constraints

In this and the following section we show that P, is complete. In Chapter 3 we have de-
fined completeness as computing all minimal saturated constraints for a given constraint,
dependent on a partial order < on constraints (Def. 3.15, p. 69). The partial order we
have used for Cq is subset inclusion. But for Cp, constraints we would like to have a
partial order that generalizes over variables introduced during saturation. Intuitively, we
want to consider two constraints equal if their constraint graphs look the same and if
they agree on the variables that were already present in the input constraint.?

@gex, go¥o |Pgex, goevp () g o X g9

g[X gHY g eX gIY:X' geX=Y g{Y

X1 Yy X1 Yy X1 Yy
Xo/X1~Yo /1 Xo/X1~Yo /Y1 Xo/X1~Yo/Y1

Figure 4.15: Illustrating the problem of existentially quantified variables.

Consider the constraint in Fig. 4.15 (a). If (P.new) is applied to X first, this yields
the constraint 3X’.co(Xo/X1,Yy/Y1)(X)=X' for a fresh variable X', plus Yj:g(X') and
X'=Y by (P.copy.lab) and (D.lab.decom) — the result is shown in picture (b). Accord-
ingly, if (P.new) is applied to Y first, we get 3Y".co(Xo/X1,Yo/Y1)(Y")=Y A Xp:9(Y') A
Y'=X for a fresh variable Y’ — this constraint is shown in picture (c). The indeterminism
in applying (P.new) eventually leads to two Pp-saturated constraints incomparable by C
which, however, we do not want to distinguish.

(1) Eliminating/introducing a variable
X=Z N o=F o it X G, X ¢&Var(p), Z € Var(p)

(2) Renaming a variable
o =g plY/X] fX &G, Y ¢Var(p)UG

(3) Exchanging representatives of an equivalence class in a constraint
X=Y N p=g" X=Y A oY/ X]

(4) Set equivalence (associativity, commutativity, idempotency)

—€ET

p=5s ifp=¢

Figure 4.16: The equivalence relation =g" on constraints.

Definition 4.23 (=g%). Let G C Var, then =¢° is the smallest equivalence relation on
Cpp constraints satisfying the axioms in Fig. 4.16.

2The definition of the partial order is more complex here than in the paper by Erk and Niehren
[46]. For the previous definition, some proofs required well-foundedness, which the partial order did not
possess. For the current definition of the partial order, the proofs do not require well-foundedness.
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The idea in distinguishing a set G C Var of variables is as follows: We use an equivalence
relation =Z¥ to compare minimal saturated constraints for an input constraint containing
only variables from G, while all variables introduced during saturation are from Var - G.

Consider again the constraint in Fig. 4.15 and the two different constraints that we have
obtained depending on where we applied (P.new). Let G = {Xy, X1, Yo, Y1,X, Y}.
Then we get Xo:g(X) A Yo:g(Y) AYp:g(X') A X'=Y =3 Xo:9(X) AYo:g(Y) A X'=Y by
axioms (3) and (4). This, in turn, is =& equivalent to Xo:g(X) A Yp:9(Y) by axiom
(1). Again by axiom (1), this is =§" equivalent to Xo:g(X) A Yp:9(Y) A Y'=X, which
equals Xp:g(X) A Xo:9(Y') AYy:9(Y) AY'=X by axioms (4) and (3). So the equivalence
relation =¢° identifies the two constraints that only differ in a (superfluous) additional
existentially quantified variable not in G.

In the rest of this section we combine the equivalence relation =g* with set inclusion to
obtain a partial order on Cp,, constraints, and we show properties of this partial order.

We first define a normal form for Cp;, constraints depending on the set G. A normal form
has exactly one variable ¢ G in each =&" equivalence class, and the constraint has the
form ¢ A @eq, where Var(¢) NG =0, and ¢, is a set of equations that link the variables
of each =g" equivalence class to their representative.

For a constraint ¢ and X € Var(p), let Eq,(X) be the reflexive and transitive closure
of = in p, i.e. X € Eq,(X), and if Y € Eq,(X) and Y=Z in ¢, then Z € Eq,(X).

Definition 4.24 (G-normal form). Let ¢ be a Cy, constraint, and let G C Var. Then
the Cpp constraint < is a G-normal form for ¢ iff the following condition holds: There
exists a function v : Var(p) — (Var — G) such that v(X) = v(X') iff X' € Eq,(X),
and with Var(p) = {X1,...,Xn}, it holds that

¢ =p(X1)/X1,.. ., v(Xn)/ XA N\ X=v(X).
XeVar(p)NG

This normal form has the following properties:
Lemma 4.25 (Properties of G-normal forms). Let ¢ be a C,, constraint, G C Var,
and ¢ a G-normal form for ¢. Then

1. ¢ =¢ p;

2. < is a G-normal form for all ¢ =g’ »;

3. ¢ is unique modulo a-renaming of the variables in Var(s) — G.
Proof. 1. Let Var(p) ={Xy1,..., X} with X;,..., Xy € G and Xy41,...,X,, € G for

some k < n. Let v: Var(p) — (Var — G) be as in Def. 4.24. Let Y1,...,Y, € Var
with Y7,...,Y, € GUVar(p) U{r(X;) |1 <i<n}. Then
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=G Xi=YiA... AXp=Y,Ag by axiom (1)
:eg:l: X1:Y1/\.../\Xn:YnA(p[Yl/Xl,...,Yn/Xn] by axiom (3)
:Ex X1:Y1/\.../\Xk:Yk/\gD[Yl/Xl,...,Yn/Xn] by axiom (1)
:eg:l: Y1:I/(X1)/\.../\Yn:I/(Xn)/\X1:Y1/\.../\Xk:Yk

NplY1/X1,..., Y/ X, by axiom (1)
:gx Y1:I/(X1) VANRAAY Yn:I/(Xn) A X1:I/(X1) VAN Xk:I/(Xk)

Np[v(X1)/ X1, ..., v(Xn)/Xn] by axiom (3)
=g Xi=v(X1) A ... A Xp=v(Xg) A plv(X1)/ X, .., v(Xy)/Xy] by axiom (1)
= S
The Y7,...,Y,, are necessary to first name variables apart in case Var(y) — G and

the range of v are not disjoint.

. It suffices to show that if ¢ is a G-normal form of ¢i, and ¢ =F° ¢1 by a single

axiom from Fig. 4.16, then ¢ is a G-normal form of .

Suppose the axiom used is (1), and o1 = X=Z A @3 for X & G U Var(ps), Z €
Var(ps). Then ¢ is a G-normal form of ¢y with the function v/ : Var(ps) —
(Var — G) defined as /' = V|Var(np2)'

If the axiom used is (1), and @3 = X=Z A ¢; for X € GUVar(e1), Z € Var(ei1),
then we can use the function v’ : Var(ps) — (Var — G) defined by v/(Y) = v(Y)
for all Y € Var(y1) and V(X)) = v(2).

The cases of axioms (2), (3), and (4) are obvious.

. We define a reduction —¢g that is convergent modulo a-renaming of variables not in

G. This reduction reduces each constraint to its G-normal form. Let Names C Var
with Names NG = (. Then we define the relation —g on Cpp, constraints by two
rules.

(a) ¢ —g name(Eq,(U), X) Ay
if X € Names, U € Var(p), name(Eq,(U),Y) & ¢ for any Y € Names,
name(S, X) ¢ ¢ for any S C Var(p), and there exists no Y € Names with
Y € Eq,(U), Eq,(U) = {Ui,...,Uy,} such that ¢ = /\U’EgﬁEqp(U) U'=Y A
OY/UL,...,Y U,]

(b) name(S, X) A =g Apyesng U=X A p[X/Un, ..., X/U,]
for S ={Uy,...,U,}

The reduction —¢g is terminating: Let ¢’ be the “input constraint”. The rule
(a) is applicable at most |Eq,,| times, once to each Eq,-equivalence class, unless it
already has a representative in the sense of Def. 4.24. Likewise, rule (b) is applicable
at most |Eqy| times, its applicability is bounded by the number of name(S,U)-
atoms in the constraint. Note that the right-hand side of (b) exactly matches the
last condition on the applicability of rule (a), hence rule (a) is inapplicable to an
equivalence class to which rule (b) has already been applied.
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The reduction —¢ is confluent modulo a-renaming of variables in Names: The
reduction is terminating, so it suffices to show local confluence. If ¢ —¢
name(S1, X1) A p and ¢ —g name(Sz, X2) A ¢ by (a), then either the two re-
sulting constraints are equal modulo a-renaming of Names-variables, or both can
be reduced in one further application of (a) to name(Si, X1) Aname(Sa, X2) Ap (in
this case, S1,S2 are not the same Eq,-equivalence class). If ¢ —¢ @1 and ¢ —g @2
by rule (b), then these two rule applications must concern different Eq,-equivalence
classes, hence there exists a constraint 3 with 1 =g 3 and g2 —¢g ¢3. The same
is true if ¢ —¢g @1 by (a) and ¢ —¢g 2 by (b).

If ¢ is a —g-normal form for ¢, then ¢ is a G-normal form for ¢: Rule (a) sees to it
that each equivalence class either already has the form demanded by Def. 4.24 or
has a “designated representative”. Rule (b) then transforms an equivalence class
to the form that Def. 4.24 prescribes for G-normal forms.

O

We combine set inclusion and the equivalence relation =g"

constraints.

into a partial order on C,

Definition 4.26 (<g). Let 1,2 be Cp, constraints and let G C Var. Then

01 <g P2

iff there exist G-normal forms ¢; of v;, 1 = 1,2, such that ¢1 C <.

The relation <g is actually a partial order:

Lemma 4.27 (Partial order). Let G C Var. Then <g is a partial order on Cpp
constraints.

Proof. Reflexivity is obvious. Now for transitivity: let ¢; <g w2 <g 3, i.e. there are
G-normal forms ¢; for ¢;, i = 1,2, with ¢; C ¢, and G-normal forms ¢, for ¢;, i = 2,3,
with ¢5 C ¢§. Since the normal forms are unique up to a-renaming of non-G-variables,
there exists a renamed normal form <] of ¢; with ¢ C }. O

We write =g for <g N >g, and <g for <g — =¢.

We will compare Cp, constraints and also CLLS,, constraints using the family of partial
orders <g. We specify the partial order we use by specifying the set G.

Definition 4.28 (Saturation for a constraint with respect to G). Let ¢, ¢ be
CLLS,, constraints and let G C Var. Then < is a Pp-saturated constraint for ¢ with
respect to G iff ¢ is a Pp-saturation with ¢ <g .
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Unfortunately, this partial order is not well-founded on Cp, constraints in general.
While the empty constraint is smaller than all other constraints, there may be an
infinite chain ¢ <g ... <g @2 for two given constraints ¢;,s. For example, let
G =def {X1,X2,Y1,Y5}. Let @1 =der P(g Q) and g2 =gef P(g 2) N X1=Xo=Y1=Y5.
Then ¢ <g @2 with

X1
e B ) e B el 2
. - . ! g "
XV X X v
<g p(X2 Yz)/\ (X2 Yl’)/\ (Xz Y//)/\p(XZ Y”’)
<G...

<g PR 31) A X1=Xo=Y =Yo=Y/=Y/"=. .

=2 p(y1) A X1=X,=Y1=Y)

The problem is that we can add equalities that may collapse an arbitrary number of
= equivalence classes. If we eliminate that possibility, <g is indeed well-founded: we
consider constraints in which for each X,Y either X=Y or X#Y is contained.

Definition 4.29 (Projected). A Cy,, constraint ¢ is called projected iff for all X,Y,Z €
Var(p),

e cither X=Y in ¢ or X#Y in ¢, and
o X=Y, X=27 in op=Y#Z not in .

Lemma 4.30 (Well-foundedness of >g for projected constraints). Let ¢y be
a projected Cpp constraint and let G C Var. Then there ewists no infinite sequence of
projected constraints @1, s, ... such that g >g p1 >g Y2 >g ...

Proof. For Cp, constraints ¢1, p2 we have @1 >g @9 iff ¢; has a normal form ¢;, 1 = 1,2,
such that ¢; D ¢ and ¢; #gx 9. To show that there cannot be an infinite se-
quence of projected constraints smaller than a given projected constraint g, we embed
({0, ¥1,...},>¢g) into (N,>) by a monotone measure function y, i.e. for all projected
constraints ¢’ with ¢ >¢g ¢’ it holds that p(p) > p(e').

To embed ({vo, ¢1,...},>¢) into (N, >), we use the following measure function: For any
constraint ¢, let ¢ be a G-normal form for ¢, then

p) = [Var(s) =G|

pa(

:U*Q(SD) = |§|Var(§ ,g|

ps(p) = [Var(s) NG|

plp) = pilp) + p2(p) + p3le)

The value p1(p) is the number of = equivalence classes in ¢, u2(p) is the number of
literals in p[v(X1)/X1,...,v(X,)/X,] (where v is the function that defines ¢ as in Def.
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4.24, and Var(yp) = {X1,...,Xn}), and ps(p) is the number of G-variables in . For all
¢ =g ¢, we have u(¢') = u(p), as only ¢, not ¢ itself, is used to compute p(p).

It remains to show that © is monotone, i.e. it assigns a strictly bigger number to a strictly
bigger projected constraint. W.l.o.g. we consider the normal forms themselves, i.e. the
case that ¢ D ¢ and ¢ #F ¢'. We must have p3(¢) > u3(¢') and pa(e) > pa(e’)
because ¢ D ¢' and the two constraints are both in normal form. Can p(¢’) be larger
than 1 (p), i.e. can ¢’ possess more variable equivalence classes w.r.t. =7 As ¢ D ¢/,
¢ could contain equalities that ¢’ lacks. But ¢ and ¢’ are both projected, so if ¢’ was
lacking some equalities of ¢, it would have to contain additional inequalities, which is
impossible. O

As all Pp-saturated constraints are projected, we can use <g to compare the saturated
constraints that P, computes for a given input constraint ¢, setting G = Var(yp).

Note that there are constraints for which the procedure P, computes infinitely many
saturated constraints that are incomparable by <g. A case in point is the constraint in
Fig. 4.7 (p. 85).

Next we show a lemma that will be quite useful in later proofs: we can factor the partial
__€ET

order <¢ into the relational composition of its components, i.e. <g is C o =g".
Lemma 4.31 (Factoring <g into C and =§*). Let 1,2 be Cp, constraints and
G CVar. If ¢1 <g g2, then there ezists a Cpp constraint @b such that

exr

©1 C ¢y =G 2.

Proof. By the definition of <g there exist G-normal forms ¢ of @1 and ¢}, of @9 such
that o1 =g" ¢} C ¢ =¢" pa. In the proof of Lemma 4.25, part 1, we have shown a
transformation from a Cp, constraint to a G-normal form. This transformation only uses
a finite number of single axiom applications, as can easily be checked. So there exists
a sequence q,...,s, of constraints such that ¢; = ¢, ¢, = ¢}, and for 0 <7 < n —1,
Gi =G Si+1 by a single axiom from Fig. 4.16.

Now we transform this sequence ¢, ..., ¢, step by step, moving the C “to the left beyond
the =g"”. We use induction on the length n of the sequence.

If n =0, then ¢ is in G-normal form and we are done. So suppose n > 1. We show that
there exists a constraint ¢ such that ¢ :g’: :g’: Sn—1 C ¢ :8’” <p’2 holds, i.e. we shift
the C one =" to the left.

Suppose we currently have ¢y =G ... =G Sn-1 =g sn C ¢' for some constraint ¢’. We
consider all possible ways in which we might have ¢, 1 =g" ¢, by a single axiom.

® Suppose ¢,—1 =¢" ¢, by axiom (1) of Fig. 4.16, and ¢, has the form X=Z A g,
where X ¢ G UVar(s,) and Z € Var(sy).
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The constraint ¢’ has the form X=Z7 A ¢, A¢”, where X may occur in ¢”. We set
¢ =X=Z AN¢'[X'/X] where X' ¢ G does not occur in (J", ;:

o1 =X=Z N, Csc=X=Z N5, N [X'/X]
= J[X'/X] =5 (/[X/X)X/X] =

Suppose ¢, 1 =g" ¢, by axiom (1) of Fig. 4.16, and ¢, has the form X=2Z A¢, 1
where X ¢ G U Var(s,—1) and Z € Var(s,—1). But then we already have ¢,_; C
s S

Suppose ¢, 1 =g ¢, by axiom (2) of Fig. 4.16. Then ¢, has the form ¢, 1[Y/X]
for X ¢ G and Y ¢ Var(s,—1) UG. This time, we define ¢ in two steps, making it
depend on a constraint ¢’ that we define first.

— ¢ has the form ¢, A¢"’, where X may only occur in ¢"’. So let " = ¢'[X'/X] =
sn N[ X'/ X], where X' ¢ G does not occur in |J;; ;.

— If' Y € Var(¢'), then it has to be replaced by X while ¢’ is moved to the left
of ¢,. Let ¢ =¢"[X/Y].

We have

-1 € ¢ =g <[Y/X] =" ([Y/X])[X/X'] ="
Suppose 6,1 =G ¢, by axiom (3) of Fig. 4.16, and suppose ¢,_1 has the form
X=Y Ag) 1, sp has the form X=Y A¢,_,[Y/X], and ¢’ has the form X=Y A
g 1Y/ X] A" We set ¢ = X=Y Ag], | A<". Then

1 C s =G X=Y A(q 1 AY/X] =G <"
Suppose ¢, 1 =G s, by axiom (3) of Fig. 4.16, and suppose g, has the form X=Y A
¢;, while ¢,_1 has the form X=Y A ¢/|[Y/X] and ¢’ is X=Y A ¢, A<". We set
¢ =X=Y A¢[Y/X] A", then

-1 € ¢ =¢" X=Y A (u[V/X]AS)[Y/X] =G "

O

We can make the result of the previous lemma even stronger: given a constraint ¢ and
a saturated constraint for it, we can always find another equivalent saturated constraint
that is a superset of .

Lemma 4.32. Let 1,2 be Cp, constraints and G C Var such that o1 <g @2 and @2 is
Py-saturated. Then there exists a Py-saturated constraint b such that o1 C ¢y =& @o.
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Proof. Suppose @1 <g 2 where ¢ is Pp-saturated. By Lemma 4.31, there exists a
constraint ¢ with ¢1 C @b =& @o. ¢ need not be P,-saturated, but we show that a
constraint Pad(y}), the padded constraint of ¢}, is. We proceed as follows: We define the
concept of padded constraints, then we show that for any C;,, constraint ¢ and its padded
version Pad(yp), it holds that Pad(y) =& ¢. Next, we show that Pad(y5) is saturated.
Finally we prove that ¢; C Pad(¢}).

Let ¢ be a Cp}, constraint, then

Pa‘d((p) —def {()OIZ[ZI/XD R ZZ/XZ] | ()0,2 literal in ©s va'lr((pIQ) = {X17 s 7X£}a
Z; € Eqy,(X;) for 1 < </}

That is, the padded constraint Pad(y) of a C,, constraint ¢ contains the same literal for
all members of an Eq,, equivalence class.

Now we show that Pad(p) =g" ¢. Let |Eq,| = n, i.e. there are n equivalence classes of
the equivalence relation Eq, on Var(p). For 1 <i < n, let the i-th equivalence class be
(Zi,...Zi.}. Let Ya,..., Y, & GUVar(p). Then

o= ZI=Y1 N ... NZL=Y1 A ... A
Z0=Y, A ... AN Z =Y, A
oW1 /Z1,. Y1/ Zh s Yol 2T, Yu 2,

1°?

This holds by axiom (1) for the introduction of the ¥;, 1 < i < n, and axiom
(3) for replacing Zjl: by Y; for 1 < j < my, 1 < ¢ < n. Now by duplicating
eMi/Zt,... 1/ Z} .. Yo/ Z], ... Yy /Z1 | asuitable number of times, using axiom (4),
replacing Y; by each Z} according to axiom (3), and then dropping Y1, ..., Y, according

to axiom (1), we arrive at Pad(yp).

So we know Pad(p) =& ¢ for any C,, constraint ¢. Now we show that Pad(y}) is

saturated. Let w2 = ¢ =g" c1 =" ... =" m = ¢f, where for all 1 <7 < m — 1, we have
Si =g Si+1 by a single axiom from Fig. 4.16. As remarked in the previous lemma, this
finite sequence <, ...,y exists by the proof of Lemma 4.25, part 1. We use induction

on m to show that Pad(s;) is Pp-saturated for all i < m. For ¢y = 9, this is trivial.

Suppose ; =¢" ;11 by axiom (1) of Fig. 4.16, and ¢; has the form X=2Z A ¢; 1, where
X € GUVar(si4+1) and Z € Var(gi4+1). Then X is a superfluous non-G variable in ¢;, and
Eq, (X) N Var(gy1) # 0. So the constraint Pad(s)|yar(s;)—{x} = Pad(i+1) must be
saturated, too.

Suppose ¢; =g" ;11 by axiom (1), and ¢;41 has the form X=Z A g; for variables X ¢
G UVar(s;) and Z € Var(s;). Then Pad(s;11) = Pad(X=Z A¢;). Pad(s;4+1) is a saturated
constraint: For all saturation rules that would become applicable because of the added
dominance literals X=7, the consequent has already been added by Pad.

Suppose ; =¢° ;11 by axiom (2) of Fig. 4.16, and ;41 has the form ¢;[Y/ X] where X ¢ G
and Y & Var(s;) UG. So all occurrences of a variable X ¢ G have been replaced by a
new variable Y ¢ G, and if Pad(;) is saturated, then so is Pad(s;)[Y/X] = Pad(¢}).
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In both cases where ¢; =¢" ¢;1.1 by axiom (3), we obviously have Pad(s;) = Pad(ci11)-

So we have py =g" ¢y =" Pad(py), and Pad(py) is Pp-saturated. It remains to show
that ¢1 C Pad(g,). This last step is easy: We have ¢; C ¢/, since that is what we have
assumed in the beginning, and ¢}, C Pad(y)) by the definition of padded constraints. [

So, having set up the family <g of partial orders that we are going to use to compare
CLLS,, constraints, we now make use of these orders as follows:

Definition 4.33 (Computation with respect to G). Let ¢,¢ be Cpp, constraints,
and let G C Var. Then P, can compute ¢ from ¢ with respect to G iff there exists a
Py -saturation ' for ¢ with respect to G such that ¢ —>}‘,p ¢, and ¢ =¢g ¢'.

4.5 Completeness of Procedure P,

In this section we show that P, is complete, i.e. that it computes all <y ;(,)-minimal
saturated constraints for a given constraint ¢. We proceed in two steps. The first step
is as in the previous chapter (Lemma 3.17, p. 70): Given a constraint and a minimal
saturated constraint for it, we show that we can apply each applicable rule in such a way
that we move closer to this saturated constraint. However whereas this one step sufficed
in the previous chapter, we now have to add a second step: We have to show additionally
that after a finite number of steps we actually reach the saturated constraint towards
which we are moving.

Lemma 4.34 (Approaching a saturation). Let ¢ be a Cp, constraint, G C Var, and
S a Py-saturated Cpp-constraint with ¢ <g <. If a rule p € P, is applicable to ¢, then
there exists a constraint @' satisfying ¢ — ¢, ¢ and ¢’ <g <.

Proof. By Lemma 4.32 there exists a Pp-saturated constraint ¢’ with ¢ C ¢’ =& «.
Suppose p is a rule  — \/;", @; that is not an instance of (P.new). Then by the same
argument as in the proof of Lemma 3.17 there exists an i such that ¥; C ¢, hence
© ANp; C ¢'. Now suppose that p is an instance of (P.new). Let p be p — IX'.A ~™
B /\p()){g’}?,) A X € b(A) with X' € G U Var(p). We must have p())((o?) € ¢ for some
variable Y. But then by axiom (2) of Fig. 4.16, we have ¢ =¢® ¢'[Z'/X'] for some
Z' ¢ GUVar(s") UVar(p), which by axiom (1) is =g° equivalent to ¢'[Z'/X'] A Y =X",
which in turn equals '[Z'/ X | AY =X" A p()){(1 )1?,) by axiom (3). Call this last constraint
¢", then p A p())((1 ?,) Cd'"=¢s. O
For the algorithm P4 that we have discussed in the previous chapter, we have argued
that the saturation rules never introduce additional variables, so there are only finitely
many literals that the algorithm can possibly add to a constraint. Hence after a finite
number of steps we must reach the minimal saturated constraint we are moving towards.

However, things are different with Py, since (P.new) introduces additional variables into
the constraint. To prove completeness of P,, we use a distance measure between a
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constraint ¢ and a minimal saturated constraint ¢ for it. The two elements of the measure
are: the number of nodes in the constraint graph for ¢ that are not present in the
constraint graph for ¢; and the number of correspondences still to be computed for the
variables that are present in ¢. Then, to show that P, can actually reach any given
minimal saturated constraint of a constraint, we show that after applying one instance
of (P.new) and then saturating the constraint under all other rules, we have made the
distance from the minimal saturated constraint strictly smaller.

Definition 4.35 (Lacking correspondents). Let ¢ be a Cp, constraint and S C
Var(p). Then we define the number Ic(S, @) of lacking correspondents in ¢ by

le(S, ) = Y {IchP(X, ) + 1P X, 0) | X € S and A~¥™ B in ¢}

where we fix the values of the auziliary terms by setting for all segment terms A with root
variable Xy and B with root variable Yy and for all X € Var(p):

B (X, ) = 1 if X € b(A) in ¢ but p())({0 }?0,) is not in @ for any X'
PPZ 0 otherwise

Definition 4.36 (Inequality set). For Cp, constraints ¢1Co, let diff(p1,p2) be the
size of the set {X € Var(ps) | X#Y € pa for allY € Var(p1)}.

We call a set S C Var(p) of variables an inequality set for ¢ iff X#£Y € ¢ for any
distinct X, Y € S.

For constraints ¢ that are saturated with respect to (P.distr.eq), diff(¢1,2) is the
number of variables X in ¢y such that X=Y not in ¢y for all Y € Var(p;).

Definition 4.37 (G-measure). Let ¢, ¢ be Cpy, constraints and G C Var with ¢ <g .
Then the G-measure pug(p,<) for ¢ and < is the pair (ug(p,<), u?(p)), where:

o 15(p,<) = min{diff(p,d') | ¢ C ¢ =& ¢ and ¢ is Ppy-saturated }
o 12(p) = min{lc(S, ) | S is a mazimal inequality set for p}.

We order G-measures by the lexicographic ordering < on sequences of natural numbers,
which is well-founded.

Let Ppew be the set of all instances of (P.new), and let P, be P, — Pyew. The main
idea of the following proof is that after each —p, . step and subsequent P, saturation,
the G-measure between a constraint and the minimal saturation that we are moving
towards has strictly decreased: Either we have introduced a new node in the constraint
graph, which decreases ;!, even though the new variable may need more correspondents,
thus increasing ;2. Or we have made a correspondent-lacking variable correspond to a
variable already present in the constraint. This leaves p! unchanged but decreases p?.
In formulating the following lemma, we make use of Def. 4.33:
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Lemma 4.38 (Completeness). Let ¢ be a Cp, constraint and G C Var(p). Then P,
can compute from @, in a finite number of steps, any minimal Pp-saturation for ¢ with
respect to G.

Proof. Let ¢ be a minimal Pp-saturation for ¢ with respect to G. What we want to show
is that there is a Pp-saturation ¢’ =g ¢ such that ¢ —>}‘,p ¢’ in a finite number of steps.

W.Lo.g. let ¢ be P,y-saturated. If no rule from Py is applicable to ¢ then ¢ =g ¢ by
the minimality of ¢. If a rule p € Ppew is applicable to ¢, then by Lemma 4.34 there exist
¢, ¢" such that p =, ¢ =5 ¢ <g ¢, and ¢' is P,-saturated.

We show that for the Py-saturated ¢, the constraint ¢’ that results from one application
of (P.new) and subsequent P,-saturation, and the minimal Py-saturation ¢ for ¢, we have
pg (@', ) < pg(ep,s). Note that because ¢ is P,-closed, a maximal inequality set within ¢
contains exactly one variable from each syntactic variable equivalence class represented
in ¢; and Ic({X},p) = Ic({Y'}, ») whenever X=Y is in ¢ because of saturation under
(P.path.eq.1). For any Pp-saturation ¢’ with ¢ C ¢’ =g ¢, the value of diff(yp,¢’) is
minimal (i.e. equal to ug(p,<)) if for any Y € Var(¢') such that Y#X in ¢/ for all X €
Var(y) the following holds: Y is not in G (since Var(s') NG = Var(s) NG = Var(p) NG,
otherwise ¢ would not be a minimal saturation for ¢ with respect to G) and there is no
variable Z € Var(<") distinct from Y with Y=2 in ¢’

Let the rule p be 3X’.co(A, B)(X')=X, i.e. X' € G is the variable newly introduced by p.

exr

In ¢', (P.distr.eq) has been applied to X’ and all variables in Var(p). Let ¢’ =" ¢ with
X1V

V) for some Z. W.lo.g.

¢ C ¢" and minimal diff(p,¢’). The constraint ¢’ contains p(
we pick a ¢’ that does not contain X'.

o If X'=Y is in ¢ for some Y € Var(p), then p?(¢') < p?(p) and pg(¢',<) =
g (@',<): We first show that p?(¢') < p?(p). We have lc({V},¢') < lc({X}, p)
for all variables V' € Var(p) such that V=X is in ¢/, and either X or some other
member of its equivalence class must be in each maximal inequality set. At the
same time, a maximal inequality set within ¢’ can contain only one of X’ and Y,
so X' contributes nothing additional to u?(¢').

Now we show that ug(¢',<) = p5(¢’,<). Let ¢" be Pad(¢' A X'=Z). Then ¢ is
P,-saturated by the proof of Lemma 4.32, and ¢’ C ¢ C Pad(¢' A X'=Z). We have
diff(¢’,<") = diff(p,<’) because Var(¢') — Var(p) = Var(s") — Var(s") = {X'},
and X' belongs to the same equivalence class as Y, which occurs in ¢ and ¢ too.
Furthermore diff(¢’, ¢”) is minimal because diff(¢,<’) is, and the only variable in
Var(s") —Var(s') is X', which is not different from all variables in ¢’ and thus does
not contribute to diff(¢’,¢").

o If X'#£Y is in ¢ for all Y € Var(p), then pj(¢',¢) < pglp,s): We must have
Z#Y € ¢ for all Y € Var(¢') because (P.distr.eq) has contributed X'#Y to ¢
for all Y € Var(yp), and we have assumed that all rules are applied in such a way
that the resulting clause is still <g ¢. And this means that by the minimality of
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diff(p, constrII'), Z ¢ G and that Z=Z' is not in ¢’ for any variable Z' distinct
from Z, as pointed out above.

Now let ¢ be ¢'[X'/Z]. Then we have ¢’ =& ¢" by axiom (2) since Z ¢ G. For the
same reason ¢" is a Pp-saturated constraint, and we have ¢’ C ¢”. Furthermore,
diff (¢, ") = diff (¢, ) — 1 because we must have had Z#V in ¢’ for all V' € Var(y).

So in any case, the u-distance between ¢’ and ¢ is strictly smaller than the p-distance
between @ and ¢. Since we can always decrease the distance from ¢ in a finite number of
Pp-computation steps, the procedure P, can compute a saturation for ¢ that is =g-equal
to ¢ in a finite number of steps. O

So P, can compute all minimal saturations for a given constraint. We can say even
more: P, computes eractly the minimal saturations. In Chapter 3, p. 70, we have argued
that the only rules that can lead to the computation of nonminimal saturations are
distribution rules, and only those where the right-hand side disjuncts are not mutually
exclusive. In Py, and also in P, there is exactly one such rule, (D.distr.notDisj). With
P4, (D.distr.notDisj) can indeed lead to the computation of nonminimal saturations,
where one saturated constraints contains an equality X=Y and another contains neither
X=Y nor X#Y. But P, contains the rule (P.distr.eq), which guesses either X=Y or
X#Y for each pair of variables. So P, only computes minimal saturations.

Each model of a constraint is also a model of one of its minimal saturations.

Proposition 4.39. Let ¢ be a Cpp,-constraint for which (6,0) is a model, and let G C
Var(yp). Then ¢ possesses a <g-minimal Pp-saturated constraint that is also satisfied by
(0, 0).

Proof. The proof of this proposition is the same as for Prop. 3.18 (p. 70). O

4.6 Recapitulation: Properties of the Procedure P,

In the previous sections, we have shown a number of properties of the procedure P,
which we now sum up.

Theorem 4.40. The semi-decision procedure Py for parallelism constraints has the fol-
lowing properties:

1. It is sound for lambda structures.
2. There are unsatisfiable parallelism constraints for which it does not terminate.

3. A generated Py-saturated Cpp,-constraint is satisfiable.
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4. Pp is complete: Given a Cpp constraint ¢ and a set G C Var(p), Pp can compute
from @, in a finite number of steps, any minimal Py-saturation for ¢ with respect

to G.

5. This set of minimal Py-saturations for a parallelism constraint may be infinite.

Proof. 1. by Lemma 4.10, 2. by Ex. 4.7, 3. by Lemma 4.22, 4. by Lemma 4.38, 5. by
Lemma 4.12. U

4.7 Related Work

The closest relative of parallelism constraints is context unification (CU), which we have
sketched in Chapter 2. In this section we compare the parallelism constraint procedure
that we have just introduced to a context unification procedure. There are different
rule-based procedures for CU [84, 93]. We choose the simpler version as a basis for our
comparison. This CU procedure is from a paper by Niehren, Pinkal and Ruhrberg [93].
It is shown in Fig. 4.17.

Decomposition:  f(t1,...,tn) = f(t],...,t,) — Nio ti=t; | Id

Substitution: z=t—trueifx & Var(t) |z —1

Orient: t=X —>X=t|Idfor X e VUV

Projection: [ty tn) =C{t') — f(t1,...,tn) =t | C = Azx
Imitation [ty . ty) =C{") — t; = C'(t)

| C = Ax.f(tr,. .., tio1,C'(x), tig1, -, tn)
Simplification:  C(t) =C(t') —t=1t"|Id
Flex-Flex1: Cit)y=C'(t') —t=C"(t") | C" = Xz.C(C"(x))
Flex-Flex2: C(t) =C'(t") — true

| C = Ay.Ci(f(w(z, Caly), C5(1')))),

C' = \z2.C1(f(w(T, Ca(t), C5(2)))),

where w is a permutation

Figure 4.17: A procedure for context unification

The procedure has the form of a state transformer. A state is a pair (FE, o) of a set
of equations and a substitution o (which we lift canonically from terms ¢ to equation
systems E over terms). For a given equation system F the procedure starts in the state
(E, Id). The equation system is solved if a final state of the form (), o) can be reached
by an (indeterministic) application of transformation rules, where a transformation rule
has the form ¢t = ¢’ — E | 0. When applied to the state ({t = '} U E’, 0’} it yields the
new state (c(F U E'),0 00'). As above, we view contexts as context functions, linear
second order lambda terms of the form Az.t, where ¢ is a second order term in which the
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first order variable z occurs exactly once. We assume that in performing a substitution
o(E) we also beta reduce the terms.

The state transformation rules of the procedure for context unification are given in Fig.
4.17. The two most interesting cases are the Flex-Flex rules. Given a context v, let us
call the path 7 with L, () = e its exzception path. Then we can describe the two rules as
follows. Given an equation C(t) = C'(t'), there are two possibilities: Either the hole of
C lies on the exception path of C’, or the exception paths of C and C’ branch at some
point. Flex-Flex1 covers the first case. Here t' is a subtree of t. Flex-Flex2 covers the
second case. It has to guess a function symbol f (of some arity n) at which the two
exception paths branch and a permutation w of an n-ary sequence consisting of contexts
Cy and C3 “leading to” the holes of C' and C’, respectively, and n — 2 fresh variables T.

As we have remarked in Chapter 2, CLLS has evolved from a CU approach to underspec-
ification [95]. In that analysis, both scope and ellipsis were modeled by context variables.
To process the ensuing CU equation systems, the procedure in Fig. 4.17 was used, but the
two Flex-Flex rules were omitted to keep the computation tractable [74], which makes
the procedure incomplete.

So what are the advantages of using a dedicated procedure for parallelism constraints
instead of falling back on the CU procedure? The biggest advantage is that the parallelism
constraint procedure incorporates a dominance constraint solver: It can use a dedicated,
faster sub-procedure for handling dominance constraints, while a CU procedure cannot
discriminate between dominance and parallelism — dominance constraints do not seem
to correspond to any clear-cut fragment of context unification. Furthermore the CU
procedure determines the shape of a context in a top-down fashion, starting at the root
of the context and working downward. In the process, it sometimes has to guess labels.
In contrast, the parallelism constraint procedure handles parallelism literals without any
preferred direction, and it never has to guess labels.

4.8 The Search Tree that P, Explores

In the search tree that P, explores, the nodes are constraints, and if a saturation rule
o = Vi, IViy; is applied to a constraint ¢, then the node ¢ has n children ¢ A ¢ for
1 <4 < n and fresh Vj-variants ¢ of ¢;. A leaf of the search tree can be either succeeded,
in which case it is a P,-saturated constraint that does not contain false, or failed, in
which case it contains false.

What does completeness of P, mean stated in terms of search trees? The first thing to
note is that there may be more than one search tree starting with the same constraint
at the root, since the application of saturation rules is don’t care indeterministic. So
completeness means that in all search trees with the same constraint ¢ at the root and
for each model 6 of ¢ there must be a succeeded leaf at finite depth satisfied by 6. There
are search trees with infinite branches, for example any search tree for the unsatisfiable
constraint of Ex. 4.7. For the constraint of Ex. 4.8 the fairness condition — (P.new) is
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applied only to constraints saturated under P, — is necessary to ensure that there are
success nodes at finite depth.

Another interesting question to study in connection with the search tree of P, is finite
failure. Suppose that for a given constraint ¢ there exists a search tree with root ¢ that
is finite, and all its leaves are failed. Then, is P, guaranteed to find that search tree, or
can it still diverge into an infinite branch of some other search tree with root ¢? The
question of finite failure has been extensively studied in connection with Negation as
Failure [4]. A literal A is in the finite failure set of a program P if there exists a finitely
failed SLD-tree with < A as root. Lassez and Maher [83] show that for programs P and
ground atoms A, A is in the finite failure set of P iff every fair SLD-tree with < A as
root is finitely failed. Here, fairness means that the tree is either finite, or every atom
appearing in it is eventually selected.

Is the two-level control we use with the saturation rules of P, sufficient to guarantee that
we find each finitely failed search tree? The answer to this question is not known yet.
The failed search tree might include some edges that are instances of (P.new). Can we
guarantee that we can always find the “right” instances, the ones that do not lead to
infinite search tree branches?

4.9 Summary

In this central chapter we have introduced the procedure Py, for parallelism constraints. It
extends the solver P4 for dominance constraints, which we have discussed in the previous
chapter. Like P4, P, is a saturation procedure. It keeps on extending a set of clauses
until a state of saturation is reached, and it never eliminates any information it has
gathered.

The main idea in solving parallelism literals is to compute syntactic correspondence func-
tions. The procedure makes sure that each variable occurring in one of the two parallel
segment terms has a correspondent in the other segment term, and copies all material
from one parallel segment term to the other.

The correspondence formulas that make up a syntactic correspondence function are ex-
pressed by path parallelism literals. Path parallelism states that the tree path between
two nodes is the same as the path between two other nodes, including the labels encoun-
tered on the way. The properties of path parallelism literals, expressed as saturation
rules, enforce the right interaction between different syntactic correspondence functions.

Fairness is ensured by a control on the order of rule applications: the rules that introduce
new variables are applied only to constraints saturated under all other rules.

The procedure is sound: All rules are equivalence transformations. Also, each Pp-
saturated constraint is satisfiable. We have shown how to construct a model from a
given saturated constraint. For saturated constraints that already look like trees, we can
name a satisfying tree directly, using the models for P4-saturated constraints that we
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have constructed in the previous chapter. For other saturated constraints we again label
unlabeled variables until a tree-shaped constraint is reached, but this time we have to
label all variables linked by correspondence at the same time.

The procedure Py, is complete: It computes all minimal saturated constraints for a given
input constraint. While in the previous chapter we have considered minimality with
respect to subset inclusion, we now use the family of partial orders <g, parametrized by
a set G C Var of variables, that can be described as subset inclusion modulo a-renaming
of variables introduced during computation with Pp,.

We have shown that Py, is complete: First, given a constraint to which a rule is applicable,
and a minimal saturation for it, we can apply the rule in such a way that we move closer
to the minimal saturation in question. Second, when we move towards such a minimal
saturation by consecutive rule applications, the saturationis actually reached in a finite
number of steps. To show this, we have used a distance measure between constraint
and saturation, a measure that counts the number of variables that still need to be
introduced in the constraint and the number of correspondences still to be fixed. The
fairness condition plays a critical role in the completeness proof.



118 Solving Parallelism Constraints



Chapter 5

Solving CLLS Constraints

In this chapter we complete the semi-decision procedure for CLLS. It incorporates the
procedures we have been discussing in the previous two chapters: the semi-decision proce-
dure P, for parallelism constraints, and hence also the solver P4 for dominance constraints
(which forms part of the procedure P,,). What we add to the procedure P, in the current
chapter are rules for handling lambda and anaphoric binding. We again formulate the
procedure within the framework of saturation: It keeps on adding material to a set of
clauses until a state of saturation is reached (i.e. a set of saturated constraints), in which
nothing new can be added anymore.

The new saturation rules that we introduce in the current chapter are rather simple: They
just implement the conditions on the interaction of parallelism and binding in lambda
structures that we have laid down in Chapter 2.

We prove the semi-decision procedure for CLLS sound and complete, using again the
same proof schemata as in the previous chapter. Finally, we sum up all saturation rules
of the procedure, the new rules as well as those that we have discussed in the previous
two chapters.

5.1 A Semi-Decision Procedure for CLLS: P

In this section we present a semi-decision procedure for the constraint language CLLS.
Again, the procedure tries to find out, for a given constraint, whether there exists a
model, a lambda structure that satisfies the constraint. Given a satisfiable constraint,
the procedure computes a set of saturations. From each of those a model can be read off.

We again formulate this procedure as a saturation procedure: It operates on a set of
clauses, adding more and more material to them until nothing new can be added anymore.
A saturation rule p has the form ¢y — V?Zl Vi, where for 0 < ¢ < n, ¢; is a clause and
for 1 <14 < mn, V;is a set of variables. The rule is applicable to a clause ¢ if the application
condition appc, holds. This condition, laid down in Def. 4.1 (p. 76), basically states that
p is applicable only if none of its consequences @;, 1 < i < n, is already in ¢ (modulo
renaming of the existentially quantified variables V;). See the beginning of Chapters 3
and 4 for formal definitions and more detailed explanations of saturation procedures.

119
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In the previous chapter we have introduced a few formulas that we reuse here. Remember
that these formulas may contain disjunctions: A disjunction on the right-hand side of
a saturation rule just makes it a distribution rule, but if a disjunction occurs on the
left-hand side of a rule, then this rule is actually an abbreviation for a set of rules, in
the way explained at the beginning of Chapter 4. We reuse the following formulas: Let
A=Xo/X1,...,Xpn, B=Yy/Y1,...,Y, be segment terms. Then

A~ B =4 A~B V B~A
seg(A) =der AiZj X0 Xi A /\1<i<j§n ((XiJ-XJ') v (Xi:Xj))

X €b(A) =gqer Xoo*X A AL (X< X;VXLX))
X eb™ (A) =def X € b(A) A A?ZI(X#XZ V X_LXZ')
XQb(A) =def X<+X0 VX1XyV \/?:1 XZ'<]+X
X¢b~ (A) =def X<+X0 VX1XyV V?:l X;<* X

co(A, B)(U)=V =g A~YmB A p(X0¥0) A U €b(A).

5.1.1 The Rules in Detail

Remember that the language CLLS has the following abstract syntax:

v, u= XY | X:f(Xy,...,Xpn) | XLY | X#Y ar(f) =n) (1)
| Xo/Xl,...,XnNYO/Yl,...,Yn nZO (2)
| AX)=Y | ante(X)=Y (3)
| false|y A g (4)

The semi-decision procedure P for CLLS is shown in Fig. 5.1. The first block of rules in
Fig. 5.1 implements the conditions laid down in Def. 2.6 (p. 29). (D.A.func) states that
A is a function: It has the form A(X)=Y AANU)=V A X=U — Y=V, i.e. each node of a
lambda structure has at most one image under \. The rule (D.ante.func) does the same
for ante. (D.A.dom), which is A\(X)=Y — Y<* X, implements the condition that a lambda
binder always dominates its bound nodes. (D.A.var) fixes the label of bound nodes: By
stating A(X)=Y — X:var, it says that node with a lambda binder must be labeled var.
Likewise, (D.ante.ana) states that a node with an anaphoric binder must be labeled ana.
The rule (D.A\.lam), which says A(X)=Y — Y. (YV:lam(Y") VY:V(Y") VY:3(Y’)), makes
sure that a lambda binder is labeled either lam, V, or 3.

The second block of rules realizes the conditions of Def. 2.7 (p. 29). The rule (P.A.same)
matches the condition (\.same) by stating A\(U;)=U A A7_, co(4, B)(U;)=V; AU, €
b= (A) — A(V3)=Va: For a variable bound within the same segment term, the corre-
sponding variable is bound correspondingly. (P.A.out) implements the condition (\.out):
It says A(U1)=Y Aco(A, B)(U)=V1 AUy € b (A)AY <t Xy — A\(V1)=Y for A= Xy/ ...,
i.e., if a variable is bound above its segment term, then its correspondent must be bound
at the same binder. For the condition (A\.hang) we have (P.A\.hang), an additional clash
rule, which is A(U1)=Us AN A ~ BAUy € b~ (A) AU ¢b (A) — false. It declares a
constraint unsatisfiable if a lambda binder inside a segment term binds a variable that
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Let A:Xo/Xl,...,Xn andB:Yg/Yl,...,Yn.

(D..func) AMX)=Y AANU)=VAX=U - Y=V
(DAdom)  AMX)=Y — Y<*X

(D.A.var) AX
(D.A\.lam) AX
(D.ante.func) ante(X)=Y Aante(U)=V AX=U — Y=V

(D.ante.ana)  ante(X)=Y — X:ana

P.)\.same) ANUp)=U;y A /\?:1 co(A, B)(U;))=V; ANUL € b (A) = A(V1)=V,
P.\.out) (U1)=Y Aco(A,B)(U1)=V1 AUy € b~ (A) ANY<T Xy = A(V1)=Y

(
( A
(P.X\.hang) ANUp)=Uy;NA~BAU; €b™(A) ANU1¢b™ (A) — false
(

P.ante.same) ante(U;)=Us A /\?:1 co(A,B)(U;j))=V; AU €b (A)NA~B —
ante(V1)=U; V ante(V})=V;

(P.ante.out)  ante(U;)=Us Aco(A, B)(U1)=Vi ANUs¢gb(A)ANU; € b= (A)NA ~ B —
ante(Vl):Ug

(P.ante.distr) ante(U;)=Us AA ~ BAU; € b= (A) = Xo<*Us V U<t Xy V Uy L Xy

plus the rules of the parallelism constraint procedure P, in Fig. 4.3, p. 81.

Figure 5.1: Solving CLLS constraints: procedure P.

is below the segment term. The distribution rule (P.ante.same) implements the con-
dition (ante.same): It says ante(U;)=Us A /\?Z1 co(A,B)(U;)=Vi ANU; € b7 (A)NA ~
B — ante(V1)=U; V ante(Vy)=Va, ie. if a variable has its anaphoric binder within
the same segment term, there are two possible anaphoric bindings for its correspon-
dent. These two bindings match the strict and the sloppy reading of anaphora occurring
within an ellipsis. (This phenomenon is discussed in Sec. 2.3.4, p. 38.) Note the con-
dition A ~ B in the premise of this rule: The correspondence formula only contains
A~ B Here, for the first time, we need to make use of the fact that parallelism
literals are not symmetric, the reason being that the conditions for anaphoric binding
are not symmetric. The condition (ante.out) is realized by the rule (P.ante.out), which
is ante(U1)=Uz A co(A, B)(U1)=V1 AU2¢b(A) AUy € b (A) N A ~ B — ante(Vy)=Uy: If
a variable is anaphorically bound outside its segment term, then its correspondent must
have the same anaphoric binder. Again, we have A ~ B in the premise because the
condition (ante.out) is not symmetric. The distribution rule (P.ante.distr), which states
ante(U1)=Us ANA ~ BAU; € b= (A) — Xo<*Uy V Uy<™ Xy V Uy L Xy, makes sure that we
can always decide whether to apply (P.ante.same) or (P.ante.out). A similar rule is not
needed for lambda binding: (D.A\.dom) together with (D.distr.notDisj) already enforces
a decision between (P.\.same) and (P.A.out).
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NG
C] lam C] 1 lam ev o/%-

a ws . ev ling

Xo/X1~Yy/Y1

attend var

Figure 5.2: Constraint for sentence (2.6): “Every linguist attended a workshop. Every
computer scientist did, too.”

(a) and s W (b) n (c) lam o U
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var- e U3 ; 2 /X0 ; YO,
var‘e Us var‘e U; | var-e Us var oU;
Xo/~Yo/ Xo/~Yo/ Xo/~Yo/

Figure 5.3: Applying lambda binding rules to a simpler version of Fig. 5.2

5.1.2 Examples

Example 5.1 (Lambda binding). The constraint in Fig. 5.2 shows the representation
of the sentence “Every linguist attended a workshop. Every computer scientist did, too.”
What is interesting for our current purpose is the lambda binding from U; to Us, and
where its copy in the “target segment term” will be. So we concentrate on the essentials

(1)  co(4, B)(Xo)=Yo (P.init)

(2)  Xoa*Us V Us<*Xg (D.distr.notDisj)
(28.) X0<]*U2: (Zb) UQ<]*X0:
A X0<1*U1 . UQQ*W
(3) 3U!.co(A, B)(U;)=U, (8) 3UL.co(A, B)(Us)=U.

1<i<3 (P. new) (P. new)
(4) Yo<*Up,Us<*Uj (P.copy.dom) | (9) Yo<*Uj (P.copy.dom)
(5)  Uj:lam(UJ) (P.copy.lab) (10) Ul:var (P.copy.lab)
(6) Uj:var (P.copy.lab) (11) U<t X, (D.lab.ineq),
(1)  \NU3;)=U (P.\.same) (P.distr.ineq)
(12) \NU})=U; (P.\.out)

Figure 5.4: Computation of P, on Fig. 5.3 (a)
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of the constraint and regard Fig. 5.3 (a) instead. The relevant part of the computation
by the procedure P is shown in Fig. 5.4. Line (2) basically decides between two possible
positions for the “a workshop” fragment. This choice determines which lambda binding
rule will be applied: Either the rule (P.\.same) applies in line (7), stating that binding
within the two parallel segment terms must be parallel — the constraint that we have at
this point is depicted in Fig. 5.3 (b). Or rule (P.A\.out) comes to bear in line (12), binding
Uz and its correspondent Uj at the same variable outside the two parallel segment terms
— at this point, we have the constraint shown in Fig. 5.3 (c).

d
:D/(O\Yo

sue o Y]
Q Iam/
cat_of ana>» X .
- T T 7 P
}%‘W X,
likes vare

Xo/X1~Yo /Y1

Figure 5.5: The constraint for sentence (2.11): “Mary; likes her; cat, and Sue does, t00.”

(a) an
Q '/‘)%\ Yo
sue o Y;
ana /{0‘\-

[ :
| mary e X5

Xo/X1~Yo /Y1

_——— — — = _——— — — = _——— — — =

X[)/XlNYO/Yl XO/XlNYO/YI

Figure 5.6: Applying anaphoric binding rules to a simpler version of Fig. 2.15

Example 5.2 (Anaphoric binding). Figure 5.5 shows the constraint representing the
semantics of the sentence “Mary; likes her; cat, and Sue does, too” (where the indices
signify that the “her” relates to “Mary”, i.e. that Mary likes her own cat). What is
interesting for our current purpose is the anaphoric binding edge ending at the variable
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1) Xoo X1 A Yo Vi A (Pimit)
co(A, B)(Xo)=Yy A co(A, B)(X1)=Y;
(2)  3Uj.co(A, B)(Uy)=U] (P.new)
(3)  Xo<*Uy (D.dom.trans)
4)  UplX, (D.disj)
(5)  ante(U))=Uy V ante(Uy)=U (P.ante.same)

Figure 5.7: Computation of P, on Fig. 5.6 (a)

Xy. So again, we use a simplified version of the constraint in Fig. 5.5: the constraint
in Fig. 5.6 (a). On this constraint, the procedure P works as shown in Fig. 5.7. The
most interesting line is (5), where (P.ante.same) is applied. It guesses an anaphoric
binder for the variable Uj in the “target segment term”. This binder can be either the
correspondent of U|, which is Uy. This is the strict reading; if we saturate the constraint
further by copying all labeling literals from the “source segment term” to the “target
segment term”, we get the constraint depicted in Fig. 5.6 (b). Or the binder of Uj can
be Y7, which corresponds to the binder X; of Uy. This is the sloppy reading. If we now
copy all labeling literals from the “source segment term” to the “target segment term”,
we get the constraint drawn in Fig. 5.6 (c).

5.2 Some Properties of the Procedure: Soundness, Saturations

In this and the following sections we examine properties of the semi-decision procedure
P for CLLS. All results are collected in a theorem in Sec. 5.5.

5.2.1 Soundness

In Sec. 3.5, Def. 3.3, we have stated the notion of soundness that we use: We call a
saturation procedure sound if all its rules are equivalence transformations. As we are
working in a saturation framework, it suffices to show that in all rules the premise entails
the conclusion.

The rules in Fig. 5.1 are direct translations of the conditions laid down in Def. 2.6 and
2.7. So the following lemma obviously holds:

Lemma 5.3 (Soundness). The semi-decision procedure P for CLLS is sound for lambda
structures.

5.2.2 Nontermination, Fairness

There are constraints for which the procedure P does not terminate: This is obvious
from the fact that it incorporates the procedure P, which has the same property.
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In Sec. 4.2.3, Def. 4.11, we have laid down what we mean by fairness: Whenever a rule is
applicable, one of the disjuncts in its conclusion will ultimately be added. The fairness
condition we use for the procedure P is a straightforward adaptation of the condition for
the procedure Pp:

Fairness condition. (P.new) is applied only to constraints saturated under
P— {(P.new)}. (P.new) is applied to variables in the order of their introduc-
tion into the constraint.

5.2.3 Saturated Constraints

In the previous two chapters we have given a sketch of what constraint graphs of Py-
saturations and Pp-saturations look like. Basically, a constraint graph for a Py-saturation
is a forest, and we have on the one hand labeled nodes — all their outgoing edges are
labeling edges, and their children are ordered — and on the other hand unlabeled nodes —
all their outgoing edges are dominance edges, and their children are unordered (p. 63). In
the constraint graph of a P,-saturation, there are additional conditions on the “parallel
regions of the forest” (p. 90). So what additional features does a constraint graph for a
P-saturation have? This is simple: It contains two additional sorts of edges, lambda and
anaphoric binding edges, and they basically obey the conditions that we have laid down
in the Definitions 2.6 and 2.7 (p. 29) and 29).

5.3 Satisfiability of Saturated Constraints

In this section we show that from each saturated constraint that 7P computes, a model
can be read off. We proceed as in the two previous chapters: We regard first simple
constraints, then we extend non-simple saturated constraints to simple ones.

As before, we restrict ourselves to generated constraints: They only contain path paral-
lelism literals that could have been added to process parallelism literals, but not path
parallelism literals in arbitrary places. We lift the definition of generatedness (Def. 4.14)
canonically from Cp, to CLLS,. Lemma 4.15, which states that all Cp,,, constraints com-
puted by P, are indeed generated, trivially also holds for CLLS,, constraints and P.

5.3.1 Simple Constraints

In Def. 3.7 (p. 64) we have introduced simple constraints: they possess a root variable
dominating all others, and every variable is labeled. This definition can be lifted canoni-
cally from dominance constraints to CLLS,, constraints: A CLLS, constraint ¢ is called
simple iff the maximal subset of ¢ that is a Cq constraint is simple. In this paragraph we
show that every simple generated P-saturated CLLS,-constraint is satisfiable.

First, we state that in a simple P-saturated constraint, we have complete information
about which variables are inside which segment terms.
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Lemma 5.4. Let ¢ be a simple P-saturated CLLS,-constraint. Then for each variable
U € Var(p) and each segment term A of p with seg(A) in p, ¢ contains either U € b(A)
or U ¢ b(A), and either U € b~ (A) or U ¢ b~ (A).

Proof. Suppose we have a variable U € Var(y) and a segment term A of ¢ such that
seg(A) is in ¢. We want to show that ¢ contains either U € b(A) or U & b(A). Let
A = X/.... The easy case is X<*U € ¢ — here we get the desired result by the closure
of ¢ under (P.distr.seg). So suppose otherwise.

As ¢ has a root variable, there exists a variable Z that is the “lowest” dominating both
X and U: Z<*U, Z<*X are in ¢, and all Z' dominating both U and X in ¢ also dominate
Z. Z is labeled, w.l.o.g. let us assume ¢ contains a literal Z:f(Z1,...,Z,). By closure
of ¢ under (D.distr.child) there are four possibilities: Either Z=X is in ¢, but that is
impossible, since we have assumed that X does not dominate U in ¢; or Z=U is in ¢,
then U<t X is in ¢ by closure under (P.distr.eq); or the same child of Z dominates both
U and X, but that is impossible, since we have assumed that Z is the lowest variable
dominating both U and X; or there are two different children Z;, Z; of Z, 1 <i # j <n,
with Z;<*X and Z;<*U, then ULX € ¢ by closure under (D.lab.disj) and (D.disj). In
any case, ¢ contains either U € b(A) or U ¢ b(A).

Furthermore, we know that ¢ also contains either U € b~ (A) or U ¢ b~ (A) because it is
closed under (P.distr.eq). O

Lemma 5.5 (Satisfiability of simple generated saturations). A simple generated
P-saturated CLLS,-constraint is satisfiable.

Proof. Let ¢ be a simple generated P-saturated CLLSy-constraint. In Chapter 4 we have
shown that any simple generated Pp-saturated Cpp,-constraint is satisfiable (Lemma 4.16,
p. 93). Now we proceed as follows: We construct a model for the maximal subset of ¢
that is a parallelism constraint, in the same way as in Lemma 4.16, and then we extend
this model to a lambda structure satisfying ¢. So let ¢, be the maximal subset of ¢ that
is a parallelism constraint, and let (6,0) be a model for ¢, constructed as in the proof
of Lemmas 3.8 (p. 65) and 4.16. We now extend 6 to a lambda structure £? that is a
model of .

We have to make sure that every var-labeled node possesses a binder. Suppose S C
Var(yp) is the set of var-labeled variables without a lambda binder in ¢. We construct a
new tree 6’ by adding one lam-labeled node “above” 6: let 8’ = lam(f). Now we define
the binding functions we are going to use in the model:

_J oY) ifAX)=Y in
A(U(X))_{ . itxes

and
ante(o(X))=0(Y) if ante(X)=Y in ¢
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for all X € Var(yp). It remains to show that for £/ = (0', A, ante), (£?,0) is indeed a
model of .

The function A is well-defined: Concerning the variables in Var(p) — S this follows by
the closure of ¢ under (D.A.func), and for the variables in S this is due to the fact that
we map them all to the same binder . The function ante is well-defined by the closure
of ¢ under (D.ante.func). Each node in the domain of A is labeled var: For the nodes
interpreting variables in Var(y) — S this is because ¢ is closed under (D.\.var), and for
the nodes denoting variables in S, this is true by the definition of §. Each node in the
domain of ante is labeled ana by (D.ante.ana). Each node in the range of X is labeled
lam,3 or V by (D.A.]Jam) and the way we have constructed 6’ from #. The function A
is total on the var-labeled nodes of @ by the way we have defined it. For each 7 in the
domain of A\, A(7) is a prefix of m by (D.\.dom) and the construction of .

It remains to show that the conditions of Def. 2.7 on the interactions of parallelism and
binding are met. For a var- or ana-labeled variable that possesses a binder in ¢, the rules
(P.A...) and (P.ante...) take care of this because by Lemma 5.4 we know, for each variable
in p and each segment term involved in a parallelism literal, whether the variable is inside
the segment term or not. For a var-labeled node that is not bound in the constraint ¢, the
construction of the function A makes sure that the conditions of Def. 2.7 are fulfilled: For
all A ~ B in ¢, the lam-node we have newly introduced in 6’ is outside of the segments
that A, B denote. So we have not introduced any hanging binders, and if some var-labeled
node of @’ is inside some parallelism segment and is bound at e, then its correspondent
is bound at € too — if a var-labeled variable in ¢ is unbound, then all its correspondents
are unbound too by closure under (P.\.same) and (P.\.out). O

5.3.2 Non-simple Constrains

Now we consider the case of non-simple P-saturated constraints. We first show that
given a non-simple P-saturation containing an unlabeled variable, we can extend it by
labeling that variable in such a way that the extension is still P-saturated.

Lemma 5.6 (Extension by labeling). Every P-saturated CLLS,-constraint with an
unlabeled variable Uy can be extended to a P-saturated constraint in which Uy is labeled.

Proof. Let {Uy,...,Un} be a maximal ¢-disjointness set in con,(Up). Assume that 3
contains a function symbol f of arity m. (If it does not, then we can encode it using a
nullary function symbol and a symbol of arity 2, as in Lemma 3.12 (p. 67).) We use the
same definition of an extension exty, . v, (¢) of ¢ AUp:f(Us,...,Uy) as in Lemma 4.19
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(p- 98). We repeat it here:

e S0 A (Vo (Vayoo Vi) A AL VoV A
Vo:f(V1,...,Vm)€ g ZLW A
Copy, UO:UI,---,Um) 1§<j,_7: Eop,
Z V)
:g(...)E@, # 0

Z
gZf V ar(g)#ar(f)

Without loss of generality we can assume that f is neither var, lam or ana: In Chapter 2
we have defined the signature X in such a way that it contains these symbols in addition
to at least one nullary and one at least binary function symbol.

We show for each rule of P, unless it is already in Pp, that it is not applicable to
eXtUO,...,Um(SD)'

(D.A...), (D.ante...) We have not added any var- or lam-labels. Also, we have not added

any binding literals. Thus, none of these rules are applicable.

(P.\.same), (P.A\.out): (P.A.same) is \Up)=Uz A /\?:1 co(A,B)(U;)=V; N Uy €

b= (A) = \(V1)=Va, and (P.A.out) is A(U1)=Y Aco(A, B)(U1)=V1 AUy € b (A) A
Y<at Xy — A(V1)=Y. We have not added any lambda binding or parallelism liter-
als. Also, we cannot recently have acquired new information on whether a binder
or a bound variable is situated inside a segment term: if we have A\(W;)=W, and
Wy € b~ (A) in ¢ for some segment term A = Xy/X1,..., X, involved in a paral-
lelism literal, then ¢ contains either Wy € b™(A) or Wa & b™(A) by closure under
(D.distr.notDisj), (P.distr.seg) and (P.distr.eq). And if Wy € b (A) is in ¢ then
¢ contains either W, € b™(A) or Wi € b™(A) by closure under (P.distr.seg) and
(P.distr.eq).

(P.M\.hang): (P.\.hang) is N(U1)=Us AN A ~ BAUy; € b~ (A) AU1¢b (A) — false.

We have not added any new parallelism literals or lambda binding literals. Also,
we have not introduced new dominance literals. So if A(W1)=W2 € ¢ and there
is a segment term A = Xo/X1,..., X, with Xo<*W; € ¢, then ¢ contains either
W1 €b (A) or Wi € b~ (A) by closure under (P.distr.seg) and (P.distr.eq).

(P.ante.distr): (P.ante.distr) is ante(Uy)=Us A A ~ B AUy € b (A —

Xo<*Uy V Ux<tXy V UsLXy. We have not introduced any new parallelism
or anaphoric binding literals. Also, we have not introduced new dominance literals.
So if ante(W1)=W, € ¢, and we have a segment term A = Xy/X1,..., X, such that
Xo<*W7 € p already, then by the closure of ¢ under (P.distr.seg) and (P.distr.eq)
¢ contains either W, € b~ (A) or Wi € b~ (A).

(P.ante.same), (P.ante.out): (P.ante.same) is ante(U;)=Uz A /\?:1 co(A, B)(U;)=Vi A

U € b (A)ANA ~ B — ante(V1)=U; V ante(V;)=Vs, and (P.ante.out) is
ante(U;)=Uz Aco(A, B)(Up)=Vi ANU2¢b(A) AU, € b~ (A)NA ~ B — ante(V})=Us.
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We have not added any anaphoric binding literals. It remains to show that we
have not recently acquired new information on whether an anaphoric binder or a
ana-labeled variable is situated in a segment term involved in some parallelism.
Suppose A ~ B and ante(W;)=W; are in ¢, and W; € b™(A4) is in exty,,.. v, (¢).
Then W7 € b~ (A) is in ¢ already, as pointed out above, and by closure of ¢ under
(P.ante.distr), either Wy € b=(A) is in ¢ or Wy & b~ (A) is. So either (P.ante.same)
or (P.ante.out) has been applied to W7 and Wy in ¢ already.

O

By extending a non-simple P-saturated constraint a finite number of times until all
variables are labeled, we obtain a simple saturated constraint.

Proposition 5.7. Every generated P-saturated CLLS,-constraint can be extended to a
simple generated P-saturated constraint.

Proof. As for Prop. 4.21 (p. 101). O

Hence, any generated P-saturated constraint is satisfiable.

Lemma 5.8 (Satisfiability of generated saturations). A generated P-saturated
CLLS,,-constraint is satisfiable.

Proof. By Lemma 5.5 and Prop. 5.7. U

5.4 Completeness of Procedure P

Given a partial order < on constraints, a solver is complete with respect to =< iff it
computes all <-minimal saturated constraints for a given constraint (Def. 3.16, p. 69).
The family of partial orders that we use is <g, parametrized by a set G C Var. We have
introduced it in Sec. 4.4. It can be described as subset inclusion modulo a-renaming of
the variables not in G.

For the proof that P is complete, we lift the equivalence relations =" and the partial
orders <g from Cp}, to CLLS,. All lemmas of Sec. 4.4 still hold. The proof of completeness
proceeds in two steps: First, given a constraint ¢ and a minimal saturated constraint ¢
for o, any saturation rule that is applicable to ¢ can be applied in such a way that the
result is “closer to” ¢. This step is the same as in the previous chapter: Lemma 4.34 (p.
110) holds for P as well as for P,.

Now, in the second step, we show that P can not only move closer to any given minimal
saturation ¢ of a constraint ¢, but that it can actually reach it. It turns out that the
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arguments laid out in the proof of Lemma 4.38 for P, cover the case of P as well. We
again make use of Def. 4.33 in formulating the following lemma:

Lemma 5.9 (Completeness). Let ¢ be a CLLS, constraint and G C Var(p). Then P
can compute from @, in a finite number of steps, any minimal P-saturation for ¢ with
respect to G.

Proof. In Lemma 4.38 (p. 112) we have shown that the parallelism constraint P, can
compute each minimal saturation of a given parallelism constraint in finite time. The
only saturation rules that are explicitly used in the proof are (P.new) and (P.distr.eq).

In P, there is one additional saturation rule that introduces new variables, namely
(D.A.Jam). But this rule is applicable at most once per lambda binding literal. Hence,
the proof of Lemma, 4.38 covers the current lemma as well. ]

It is interesting to note that for the proof of completeness the actual saturation rules play
almost no role. The only rules that are mentioned are those that introduce additional
variables — they are the ones that make the more complex proof via a distance measure
necessary — and the projection rule (P.distr.eq), which for each additionally introduced
variable enforces a choice between the introduction of a new node in the constraint graph,
and identification with an already existent variable.

As before, each model of a constraint is also a model of one of its minimal saturated
constraints. This holds by Prop. 4.39 (p. 113).

5.5 Recapitulation: Properties of the Procedure P

In the previous sections, we have shown a number of properties of the procedure P, which
we now sum up.

Theorem 5.10. The semi-decision procedure P for CLLS has the following properties:

1. It is sound for lambda structures.
2. There are unsatisfiable CLLS constraints for which it does not terminate.
3. A generated P-saturated CLLS,-constraint is satisfiable.

4. P is complete: Given a CLLS constraint ¢, Pcomputes all minimal P-saturations
for .

5. This set of minimal P-saturations for a CLLS constraint may be infinite.

Proof. 1. by Lemma 5.3, 2. by Ex. 4.7, 3. by Lemma 5.8, 4. by Lemma 5.9, 5. by Ex. 4.6
and 4.8. U
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5.6 All Rules of P Collected

In this section we list all saturation rules of the solver P for CLLS, collected from Fig.
3.2, 4.3 and 5.1.

Let A:Xg/Xl,...,Xn andB:Yg/Yl,...,Yn.

Rules of P4

(D.clash.ineq)
(D.clash.disj)

(D.dom.refl)
(D.dom.trans)
(D.lab.decom)
(D.lab.ineq)
(D.lab.disj)
(D.lab.dom)
(D.disj)

(D.distr.notDisj)

(D.distr.child)

X=Y AN X#Y — false
X1X — false

¢ - X<*X  where X € Var(p)

XY NYS*Z — X< Z

X:f(Xp, .. X)) AY (Y1, ... V) AX=Y — AL X;=Y;
X:f(..)AYg(...) > X#Y  where f #g¢g
X:f(...Xi,...,Xj,...)—>XZ'_LX]' where 1 <i<j<n

X:f(....Y,..) = XatY
X1IY AXGX' AY Y = V' LX'

X<FZAYZ = XY V YX
XY AX:f(Xy,. ., X)) = Y=X V V", X;<a*Y

Additional Rules of P,

(P.init)
(P.copy.dom)
(P.copy.lab)

(P.new)

(P.distr.seg)
(P.distr.eq)

(P.path.dom)
(P.path.eq.1)

A~B — seg(A) Aseg(B) A co(A, B)(X;)=Y;
UL RU; A N7, co(A, B)(U;)=V; — ViRV,

where 0 <7 <n
where R € {<*, L, #}

Uo:f(Un,...,Upn) AN~y co(A,B)(U;))=V; AUy € b= (A) —

V()Zf(vl, e ,Vm)

A~YMB AU € b(A) — AU'.co(A,B)(U)=U"  where U’ is a fresh
variable

A~SYB A Xp<* X — X € b(A) V V?:l Xj<+X
o = X=Y V X#Y  where X,Y € Var(p)

p()é‘);) — XU ANY SV

X1 X 4 Y1 Y:
P(X; XZ) ANi= Xi=Yi — P(y; yi)
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P.path.eq.2)
P.trans.h)

P.diff.1)

(

(
(P.trans.v)
(
(P.diff.2)
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p(yv) = U=V

p(3v) AP i) = p(5 i)

p(x;13) AP(x23]) = p()vh)

P(X ) AD(XE 1) A Xoa" X3 A Yaa"Ys — p(3212)
P(E 1) ADP(E32) A X19* Xo AY1<'Yy = p(E )

Additional Rules of P

(D.A.func)
(D.X.dom)
(D.\.var)
(D.A.lam)
(D.ante.func)
(

D.ante.ana)

P.)\.same)
P.)X.out)
P.\.hang)

P.ante.same)

(
(
(
(

(P.ante.out)

(P.ante.distr)

5.7 Summary

)=Us A N\i—, co(A, B)(U;))=V; AU, € b~ (A) = A\(V1)=V4

AUL=Y Aco(A, B)(Uy)=Vi AU, € b=(A) AY<at Xy — A(V1)=
1)=Us ANA~BAU; €b™(A) AU ¢b™ (A) — false

ante(U1)=Us A N7, co(4,B)(U;)=V; AU, € b (A)AA ~ B —

Il
S
>
i
Sy
>
S
Mm
o
=
1
£
A
S
<
S
A

+
b
<
S
'_
£

In this chapter we have completed the presentation of the semi-decision procedure P for
CLLS. We have extended the semi-decision procedure C,, for parallelism constraints by
saturation rules for lambda and anaphoric binding. These rules implement the definitions
of lambda and anaphoric binding of Chapter 2, in particular the conditions that govern
the interaction of binding and parallelism.

While it is not hard to formulate a semi-decision procedure for CLLS constraints (just
enumerate lambda structures and check for each if it satisfies the given constraint), the
procedure P has the following properties:

e It terminates for the linguistically relevant constraints. For these constraints it
computes saturations that correspond to the correct readings.
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e It introduces correspondence formulas as a data structure for handling parallelism
within partial tree descriptions.

e It includes an algorithm for solving dominance constraints. Given a dominance con-
straint as an input, the procedure behaves exactly like the dominance constraint
solver that it encompasses. This is advantageous because, as we have seen in Chap-
ter 2, dominance constraints play an important role in the linguistic application.

e It is built in a modular fashion: a different dominance constraint solver can be
substituted for the one we use here. For example, the saturation algorithm of
Duchier and Niehren [34], which needs less distribution, can be employed. Actually,
a recent overview paper on processing CLLS [44] combines this latter dominance
constraint solver with the rules for parallelism that we present in this chapter.

A central notion in the procedure P is that of a correspondence formula: Such a for-
mula states that the denotations of two variables correspond with respect to a certain
parallelism relationship. Correspondence formulas enable us to handle parallelism in a
framework of underspecified descriptions of lambda structures: Even though the posi-
tion of the nodes interpreting these two variables may not be completely determined,
the correspondence formula states that the two nodes must be situated at corresponding
positions in the two parallel segments. And the procedure can test the satisfiability of a
correspondence formula by copying all constraints that concern one of the two variables
to the other variable.

The procedure P is a saturation procedure that extends a set of clauses until nothing
new can be added anymore. It is sound, i.e. all its rules are equivalence transformations.
All the saturations that it computes are satisfiable: We have shown how to construct a
model from a given saturated constraint. The procedure is also complete in the sense
that it computes all minimal saturated constraints for a given constraint. We have de-
fined minimality via a family <g of partial orders (parametrized by a set G C Var of
variables). These partial orders can be described as subset inclusion modulo a-renaming
of the variables not in G; alternatively we could say that they identify all variables that
constitute the same node in the constraint graph. Interestingly, the proof of complete-
ness for the procedure P is the same as for the procedure P, i.e. the proof is almost
independent of the set of saturation rules used.
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Chapter 6

Underspecified Beta Reduction

The parallelism relation was originally introduced to model parallelism phenomena in
linguistics. But it also allows a declarative description of rewriting steps on lambda
terms, and more generally rewriting of trees. This surprising fact was first discovered in
the context of underspecified beta reduction.

Underspecified beta reduction is a question that arises naturally when we study CLLS
constraints, partial descriptions of lambda terms: Can we lift beta reduction from lambda
terms to partial descriptions? By beta reducing a description, we could reduce all lambda
terms that it describes at the same time. But the problem turns out not to be so easy: The
simplest approach, graph rewriting, fails. The reason is that, given a CLLS constraint
with a redex that we want to reduce, we may not yet know where in the lambda term
some material will end up being — for example, it may or it may not be part of the redex’
argument.

The solution to this problem is to reduce it to solving parallelism constraints [12]: Ba-
sically, if we take a lambda term and perform a beta reduction step, the result consists
of segments of the term we had before, arranged in a different way. So if we view the
original term and the resulting term as parts of the same bigger lambda structure, we can
relate segments of both terms by parallelism. That is, the idea is to give a declarative
description of the result of a single beta reduction step.

In the current chapter, we are going to discuss the following issues:

e We give the definitions of two additional relations on nodes of a lambda structure:
The relation between segments of the lambda terms before and after a beta reduc-
tion step is described by the beta reduction relation, which in turn can be expressed
using the group parallelism relation [11, 12]. Group parallelism is a generalization
of parallelism, the only difference being the conditions on lambda and anaphoric
binding.

e We generalize the semi-decision procedure P for CLLS such that it also handles
group parallelism literals and inverse lambda binding literals. Extended in this way,
the procedure can compute the result of a single underspecified beta reduction step.

e However, we would like to keep the lambda term description “as underspecified as it
was” while we perform a beta reduction step. The procedure P may disambiguate
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too much for that purpose. For example, given a constraint from the linguistic
application, P resolves all scope ambiguities — while ideally ambiguity resolution
and beta reduction should be kept independent.

We present a variant of the above procedure that in many cases can perform an
underspecified beta reduction step without disambiguation. The idea is to exploit
the fact that we know the relative positions of the segments that stand in the
beta reduction relation. In this procedure we employ underspecified correspondence
formulas.

e Finally, we show how either of the two procedures for a single beta reduction step
can be integrated into a procedure for underspecified beta reduction (which can
perform more than one beta reduction step in a row).

6.1 The Problem of Underspecified Beta Reduction

The problem of underspecified beta reduction is the following:
Given an underspecified description of some set of higher-order lambda terms
(in the form of a CLLS constraint), compute an underspecified description of

all first-order formulas that can be derived from that set by beta reduction.

Of course, we would like to do this without enumerating readings inbetween.

(a) (b)
Cc
C
I/@\ B
am A
/7 | A A
B A
~ovar
reducing tree reduct

Figure 6.1: Beta reduction on lambda structures — abstract schema

We first take a look at “normal” beta reduction. Consider Fig. 6.1, a sketch of two lambda
structures. The sketch in (a) is the reducing tree, the lambda structure to which beta
reduction is applied. One beta reduction step yields the reduct in picture (b). The redex
of the reducing tree starts at the @-labeled node. It contains the body B as well as the
argument A. The beta reduction step replaces all occurrences of the object-level variable
shown in the picture by occurrences of the argument. The rest of the term around the
redex, the context C, remains unchanged.

Figure 6.2 shows an instance of this abstract schema. Again, picture (a) contains the
reducing tree and (b) the reduct. Redex, context, body and argument in the reducing tree



Underspecified Beta Reduction 139

(b) Q@ s
g @ 1
f 'l,bg a
9((\z.z(a))f) 9(f(a))

Figure 6.2: A beta reduction step performed on the lambda structure in (a) produces

(b).

are segments: The redex has the form 71/, the context is the segment 7p/71, the body
is the segment 74 /75 and the argument is 73/.

. D

Figure 6.3: An underspecified description of a reducing tree

Up to now we have just considered lambda structures. If we move on to partial descrip-
tions in the form of CLLS constraints, what changes? Consider Fig. 6.3, a sketch of a
CLLS constraint. Again, C, B, A are context, body and argument of the reducing tree.
D is some segment term that is dominated by some variable in C' and dominates some
variable in A, but that is all that is known about it. So we do not know whether D
belongs to the context C or the argument A of the reducing tree — can we still compute
the reduct without disambiguating the position of D first? The situation sketched in
Fig. 6.3 is one that we will be discussing frequently in this chapter. So in reference to
this figure we will informally refer to a segment term in a position that is underspecified
between context, argument and body of a reducing tree as a D segment term.

This particular situation is actually a quite common one in the linguistic application.
It occurs, for example, in the constraint in Fig. 6.4 (a), which represents the meaning
of the sentence “Every student does not pay attention”. This sentence contains a scope
ambiguity between “every student” and ”not”. In the reading with “every student”
taking wide scope, it states that of all students it is true that their minds are wandering.
In the reading with “not” taking wide scope, the sentence says that it is not the case that
all students pay attention.! The constraint in Fig. 6.4 (a) reflects this scope ambiguity.

'Some speakers of English consider the use of “not” in this second fashion to be very colloquial;
however, they do not judge it as ungrammatical.
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Figure 6.4: A simple beta reduction step: “Every student does not pay attention”

Z, | (b) foX Z
o1 % SO

0 o X
- P
a e’

Figure 6.5: The graph rewriting approach fails

In the constraint there is a redex starting at X, within the representation for “every
student”. With respect to this redex, the representation of “not” (consisting of Zy, Z1, Z2)
is a D segment term (as in Fig. 6.3). It dominates X2 in the argument, but it could also
be part of the context above X;. But in this case, it is not hard to write down an
underspecified description of the reduct: it is the one in Fig. 6.4 (b). In this constraint,
the object-level variable (the one bound by the lambda binder X; in (a)) has just been
replaced by the argument.

For the example we have just seen, we can compute the result of an underspecified beta
reduction step with a simple graph rewriting approach. But that is not always the case.
Consider Fig. 6.5, which again shows two constraints. Picture (a) is a reducing tree,
and picture (b) shows what the graph rewriting approach yields as the reduct. But this
reduct is wrong, it has too many solutions: In the reducing tree in (a), there is again
a D segment term. In this case, it counsists of Zy and Z;, and it may be either above
Xy or below Xo. However, in the reduct in (b) there are three possible positions for the
D segment term: It may additionally be placed inbetween X3 and X4. So one of the
solutions of the constraint in (b) is f(not(b(a)), which cannot be obtained by reducing
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any of the terms described by (a). This means that the naive graph rewriting approach
is unsound; the ensuing descriptions may have too many solutions. In performing the
destructive graph rewriting step, we have lost important information that was present in
the reducing tree: the fact that the D segment term cannot go between X3 and Xjy.

There is an alternative approach that is sound: modeling the result of a beta reduction
step by parallelism. Take another look at Fig. 6.1: If we compare the reducing tree (a) and
the reduct (b), we see that the context, body and argument segment of the reducing tree
all reappear in the reduct; the context and body segments reappear exactly once, and the
argument appears in the reduct as often as there are occurrences of the bound object-level
variable in the reducing tree.

So we regard reducing tree and reduct as parts of the same big lambda structure, and
we relate the context in reducing tree and reduct by parallelism, likewise the two bodies,
and the argument in the reducing tree with each argument copy in the reduct. In this
way, we keep all the information of the reducing tree.

How does that help us with constraints like the one in Fig. 6.5 (a), where the simple
rewriting approach resulted in too many solutions for the reduct in (b)? We now have
one big constraint which includes both the reducing tree constraint in Fig. 6.5 (a) and
the reduct constraint in (b) as subconstraints. The two subconstraints are related by
parallelism literals. This will exclude the wrong solution that we got for the reduct
constraint in Fig. 6.5 (b) on its own: In any solution of the constraint (a), the “not”
fragment must go either above X or below X5, and so, by the isomorphic structure that
the parallelism imposes, the “not” fragment in (b) must be either above X or below Xj.

6.2 Beta Reduction and Group Parallelism

In this section we introduce the beta reduction relation [11, 12], which, inside a single
lambda structure, relates the segments belonging to the reducing tree and the segments
belonging to the reduct. Furthermore we introduce the group parallelism relation, a
generalization of the parallelism relation (the only difference being in the conditions on
binding), with which we can express the beta reduction relation. For both relations, we
add matching new literals to the language CLLS. We also add inverse lambda binding
literals, which specify the set of all variables bound by a binder.

6.2.1 The Beta Reduction Relation

First we make our notions of a reducing tree and a reduct precise.

Definition 6.1 (Reducing tree, reductlike). Let £ be a lambda structure.

o A reducing tree in L% is a sequence (v, 8, a) of segments of L such that there exists
nodes my, w1 of LY with the following properties.

hs(7y) = mo, T:Q(7y, (), m:lam(r(B)), and A\~ (my) = {hs(B)}.
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o We call a sequence of segments (v',0',al,...,al) of L£? reductlike iff hs(y') =
r(B"), and r(dl) is the ith hole of B' for all 1 <i < n.

)

Recall that hs(a) is the sequence of holes of the segment «, ordered from left to right.
Also, A7! is the inverse of the lambda binding function of Def. 2.6 (p. 29).

In a reducing tree the hole of the context segment v, the node 7y, must be labeled @.
Its left child, 71, is labeled lam, and its right child is the root of the argument segment
«. Concerning the lambda binder 7y, its child must be the root of the body segment S,
and the var-nodes that 7; binds must be exactly the holes of the body segment .

For a sequence of segments to be reductlike, it must contain one “context segment” ~'
directly “on top” of a “body segment” 3', and the holes of 5’ must be the roots of the
af. Note that not every reductlike segment sequence is a potential reduct: If there is a
binder from the argument into the body, the sequence cannot be a reduct because that
would violate the freeness condition of beta reduction.

Now, using the notions of a reducing tree and a reductlike segment sequence, we can
define the beta reduction relation on sequences of segments.?

Definition 6.2 (Beta reduction relation). Let £? be a lambda structure. Then the
beta reduction relation —? is a relation on sequences of segments of L?, defined as
follows:

(’y,ﬂ7a) —>6 (7’7/6,7a,17"'7a;1)

holds in L iff first, (7, B8,a) form a reducing tree and (7,3, c},...,al) are reductlike.
Second, there are correspondence functions c, between y,7', cg between (3,5 and c,
between a, o (for 1 < i < n), such that for each §,0" among these segment pairs with
correspondence function ¢ between them and for each m € b~ (), the following conditions

hold:

(B.A.same) For a var-labeled node bound in the same segment, the correspondent is
bound by the c-corresponding binder node.

(A(m) €b7(8) V Ale(m)) € b (8)) = Ale(m)) = e(A(m))

(B.A.diff) For a var-labeled node bound in a different segment €, the correspondent is
bound by the cc-corresponding binder node.

V(E, ElaCE) € {(’)’,’)’I,C»y), (/67/6,70[3)}
()\(7‘(’) €b7(e) V Ae(m)) € b_(e’)) = Ae(m)) = ce(A(m))

%In earlier texts by Bodirsky [11] and Bodirsky, Erk, Koller and Niehren [12] the conditions on lambda
binding in the beta reduction relation are not symmetric. But these nonsymmetric conditions are not
strong enough in cases where the reducing tree segments and the reduct segments overlap: They do not
force lambda binding to behave exactly as in group parallelism.
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(B.A.out) For a var-labeled node bound above the reducing tree, the corresponding node
s bound at the same place:

(A(m) ¢ b(r(m)/) vV Ale(m)) ¢ b(r(v')/)) = Ale(w)) = Alr)

(B.ante.same) For an ana-labeled node bound in the same segment, the correspondent
has two possible antecedents, matching the strict and the sloppy reading:

ante(m) € b(§) = ante(c(m))=n V ante(c(m))=c(ante(m))

(B.ante.diff) For an ana-labeled node bound inside another segment € of the
reducing tree, there are again two possible antecedents, only this time with respect
to c.: '

V(e,ce) € {(7,¢y), (B,¢p)} Ul i) | 1 < i <}
ante(m) € b(e) = ante(c(m))=n V ante(c(m))=cc(ante(r))

(B.ante.out) If an ana-labeled node is bound outside the reducing tree, then its corre-
spondent has the same anaphoric binder:

ante(m) & (b(y) Ub(8) Ub(a)) = ante(c¢(m)) =7

The beta reduction relation on lambda structures models beta reduction on lambda terms
faithfully. This even holds for lambda terms with global variables, although lambda
structures can only model closed lambda terms. Global variables correspond to var-
labeled nodes that are bound in the surrounding tree, i.e. above the reducing tree.
Condition (5.A.out) of Def. 6.2 thus ensures a proper treatment of global variables.

The definition of the beta reduction relation consists of two conditions:

e First, the segments concerned need to have the right relative positions: we must
have a reducing tree and a reductlike sequence as defined above.

e Second, the segments in the reducing tree and the reduct must be parallel, ex-
cept that the conditions on binding are less strict than in ordinary parallelism.
Specifically, a lambda binder from the body (or argument) to the context of the
reducing tree has to parallel a lambda binder from the body (or argument, respec-
tively) to the context of the reduct.

This second condition can be cast in a more general form, a group parallelism relation.

6.2.2 The Group Parallelism Relation

Group parallelism relates a group (a sequence) of segments to another group of segments,
specifying parallelism between each segment in the left group and its counterpart in the
right one. The difference between one group parallelism and several “normal” parallelisms
is that in group parallelism the restrictions on binding are more liberal.
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Like in the case of the parallelism relation (Def. 2.7, p. 29), we define the group parallelism
relation ~ in two steps: First we define a symmetric relation ~ ) that describes conditions
on lambda binding, then we define ~ as a non-symmetric subrelation of ~ .

Definition 6.3 (Group parallelism relation). The relation ~y of a lambda structure
LY is the largest symmetric relation between equal-size groups (sequences) of segments of
LY such that (cu,...,an) ~x (B, ..., Bs) implies there are correspondence functions cy, :
b(akx) = b(Bk) for all 1 < k < n that satisfy the following properties for all 1 <i,j5 <n
and ™ € b~ (a):

(gp-A.same) For a var-labeled node bound in the same segment, the corresponding node
s bound correspondingly:

A(m) € b~ (i) = Alci(m)) = ci(A(r))

(gp-A.diff) For a var-labeled node bound outside c; but inside «j, the correspondent is
bound at the corresponding place with respect to c;:

A(m) € b () A A(m) € b (ai) = Alci(m))=c;(A(m))

(gp-A.out) Corresponding var-labeled nodes with binders outside the group segments are
bound by the same binder:

n

M) ¢ | b () = Alci(m)) = A(n)

k=1

(gp-A.hang) There are no hanging binders:

The group parallelism relation ~ of a lambda structure L9 is the largest relation between
equal-size groups (sequences) of segments of L7 such that

(Oq,...,Oln)N(,Bh...,,Bn)

implies (aq,...,an) ~x (B1,-..,0n), and the correspondence functions ¢ : b(ag) —
b(Br), 1 < k < n, satisfy the following properties for all 1 <i,7 <mn and m € b~ ()

(gp.ante.same) For an ana-node bound within the segment, the correspondent has two
possible antecedents, matching the strict and the sloppy reading:

ante(m) € b(w;) = ante(c;(m))=n V ante(c;(m))=c;(ante(m))
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(gp-A.same)(a, ) ~ (o, 8') | (gp-Adiff)(a, B) ~ (o, 8') | (gp-A-out)(a, B) ~ (o, 5)

Figure 6.6: Possible bindings in a group parallelism.

(gp-ante.diff) For an ana-node bound outside o; but inside o, there are again two
possible antecedents, only this time with respect to c;:

ante(m) € b(cj) A ante(n) ¢ b(a;) = ante(c;(7))=n V ante(c;(7))=c;(ante(r))

(gp.ante.out) If an ana-node is bound outside the group, then its correspondent has the
same anaphoric binder:

n

ante(r) ¢ ] b(ax) = ante(ci(m)) =7

k=1

Again, as in Def. 2.7 (p. 29), the conditions on lambda binding are symmetric, but the
conditions on anaphoric binding are not.

The first three conditions are illustrated in Fig. 6.6. Condition (gp.A.diff) is the main
difference between parallelism and group parallelism. It allows lambda binding from one
segment to another of the same group, provided that there is a parallel binder in the
other group. If the segment pairs a, ' and 3, 5’ of picture (b) were related by ordinary
parallelism, the bound node in 5 would be bound outside the segment £, thus the (A.out)
condition would apply, and the corresponding node would have to be bound by the same
binder. Ordinary parallelism is now simply a special case of group parallelism, with
groups of size one.

Another interesting observation in Fig. 6.6 is that the conditions (gp.A.same) and
(gp-A.diff) must be mutually exclusive. If (gp.A.diff) was applicable in picture (a), it
would enforce A(ci(w)) = co(A(m)), which is clearly wrong.

6.2.3 Beta Reduction Literals and Group Parallelism Literals

Beta reduction literals are interpreted by the beta reduction relation. They have the form

(C7B7A) —>6 (Cl,BI, 117"'7A;L)
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for segment terms C, B, A,C', B, A|,...  Al,.  Group parallelism literals are interpreted
by the group parallelism relation. They take the form

(A1,...,Apn) ~ (Bi,...,Bn).
for segment terms Aq,... A, B1,...,By. Inverse lambda binding literals of the form
AT YV)={X1,. .., X}

for m > 1 are interpreted by the inverse of the lambda binding function. Such a literal
is true in ((6, A, ante), o) iff A1 (o(Y)) = o({X1,...,Xp}). That is, X1,..., X, are all
occurrences of the object-level variable bound by Y. The variables X;,..., X, need not
denote distinct nodes.

We are going to extend the language CLLS not by all three types of literals but only by
group parallelism and inverse lambda binding literals, because they can already express
beta reduction literals. The formula that expresses a beta reduction literal makes use of
formulas that state that a sequence of segments forms a reducing tree or is reductlike.

Let C = X()/Xl, B = YQ/Yl,...,Yn and A = X3/, then

redtreey, (C, B, A) =qer seg(A) A seg(B) A seg(C)
A Xll@(Xg,Xg) A X2:Iam(Y0)
N >‘71(X2) = {Yb'" 7Yn}

This formula states that the interpretations of the segment terms C, B, A form a
reducing tree. Recall that we have defined seg(A), for segment terms A = Xo/ X1, ..., X,
as seg(4) = Aily Xo<* Xi A N\ jcicjan (X LX)V (Xi=X;)).

We need an inverse lambda binding literal in this formula because the form of the reduct
depends in part on the number of occurrences of the bound object-level variable — it
determines the number of copies of the argument segment in the reduct. And in an
underspecified description of a reducing tree, the only way of knowing how many times
the object-level variable occurs is to have an inverse lambda binding literal, because it
explicitly states that we have collected all var-variables bound by this lambda binder.

Now we give a formula stating that the interpretations of a sequence of segment terms
form a reductlike segment sequence. Let C' = Xo/X1, B =Yy/Y1,...,Y, and A; = Z;/
for 1 <i <n, then

reductlike(C, B, A1, ..., An) =dqef seg(A1) A--- Aseg(Ay) A seg(B) A seg(C)

n
A X1=Yy A /\ Y;=Z;
=1

Then we can express beta reduction literals as follows:
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Lemma 6.4 (Expressing beta reduction literals with group parallelism liter-
als).

(C,B,A) =" (C",B'A,,...,A") H 3 Xyredtreex,(C, B, A)
A (C,B,A,...,A) ~ (C",B' A},..., A")
A reductlike(C’, B', A}, ... Al)

Proof. We will check the two-side entailment separately, first from right to left. Let o
be a variable assignment into some lambda structure that solves the right hand side.
Then the conditions (gp.A.same), (gp.A.diff), (gp.A.out), (gp.ante.same), (gp.ante.diff),
and (gp.ante.out) of group parallelism (Def. 6.3) subsume the corresponding conditions
on the beta reduction relation (Def. 6.2).

For the other direction, let (£%, 0') solve the beta-reduction literal on the left hand side,
with ¢/(C) = v, o/(B) = B, 0'(4) = «, o/(C") =+, o'(B") = ', and o¢'(4]) = « for
1 < i < n. (Remember that we have extended valuations from variables to segment
terms in Sec. 4.3.1, p. 91.) Then by Def. 6.2, (v, 8, a) must form a reducing tree in £’
with nodes 7y, 7 as in Def. 6.1. Let o be the variable assignment o'[my/Xg, 71/ X1]. It
remains to check that (£, o) solves the group parallelism literal on the right hand side.

We consider the relation ~ which relates the group (v, 8, a, ..., @) to (v, 5, &,...,al).
We show that = satisfies all conditions in the definition of group parallelism (Def. 6.3),
which means that = is subsumed by the group parallelism relation ~. By Def. 6.2 there
exist correspondence functions ¢, between the segments v and ', c¢g between § and £,
and ¢, between a and o) for 1 < i < n. By the definition of group parallelism (Def.
6.3), we have to check the conditions (gp.A.same), (gp.\.diff), and (gp.\.out) both for
the correspondence functions and their inverse functions. For the rest of the proof, let
(6,0) € {(1:7), (B, )} U {(aral) | 1 < i < m}, let S = b (7) Ub~(8) Ub~(ar), and let
§'=b(v) Ub~(8) UUL, b (a).

(gp-A.same): If 7 is a var-labeled node in b~ (J) that is bound within the same segment
(i.e. A(m) € b (d)), then its correspondent ¢g(7) must have its lambda binder within
b~ (0") by (5.).same).

Likewise, if 7’ is a var-labeled node in b~ (") that is bound in the same segment,
that is, A(7') € b™(&"), then its correspondent c; ' (') must be lambda bound in
b~ (d) by (B8.\.same).

(gp-A.diff): Suppose 7 is a var-labeled node in b~ (¢) that is bound in a different segment.
Then we must have A(7) € b~ (y) because the lambda binder must dominate all the
var-nodes that it binds, and v, 8, « are arranged into a reducing tree. But then we
must have A(¢cs(m)) = ¢, (A(m)) by (8.A.diff), so the condition (gp.\.diff) is fulfilled.

Now suppose 7' is a var-labeled node in b~ () that is bound in a different segment,
ie. A(1) € 8" — b~ (a;). There are three possibilities: Either A\(n') € b™(«]) for

)

J # i, or AM(r') € b=(p') or A(7') € b™(y'). The first case is impossible as the
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holes of the segment 3’ are disjoint (Def. 2.2, p. 27). The second case is impossible
by condition (B.A.diff) and the fact that no node of b() dominates any node of
b(c). The only remaining case is the third one: A(n') € b~ (y'). Let m be the
correspondent of 7', i.e. ¢!, () = 7'. Then by condition (8.\.diff), we must have
A7') = ¢y(A(7)), so (gp.A.diff) is fulfilled. The case that ' is a var-labeled node
in b~ (f’) that is bound in a different segment is completely analogous.

(gp-A.out): The case of a var-labeled node © € b~ (§) with A\(w) € S is subsumed by
(B.A.out), and likewise the case of a var-labeled node 7' € b= (d').

(gp-A.hang): Both above groups satisfy condition (gp.A.hang). This is clear for the
group (7,3, ¢, ..., al), which covers the complete subtree below r(v'). A similar
argument applies to (7,5, «,...,a). This group covers the whole tree below r(7)
exept the @-labeled node 7, the lam-labeled node 7 and the var-labeled nodes
hs(). But these var-labeled nodes are bound by .

(gp.ante.same), (gp.ante.diff), (gp.ante.out): These properties of group paral-
lelism are subsumed by the corresponding conditions on the beta reduction relation
(Def. 6.2).

O

So it suffices to extend CLLS by group parallelism and inverse lambda binding literals
to be able to express beta reduction literals. In the rest of this chapter, we regard
(C,B,A) =P (C',B',Al,...,Al) as a formula abbreviating the right-hand side of the
equation in Lemma 6.4. We call CLLS extended by group parallelism literals and inverse
lambda binding literals the language CLLSg,.

6.3 Extending the Semi-Decision Procedure for CLLS to Group
Parallelism and Inverse Lambda Binding Literals

In this section we extend the semi-decision procedure P for CLLS such that it can also
handle group parallelism and inverse lambda binding literals. As we have seen in the
previous section, the thus extended procedure will also be able to handle beta reduction
formulas.

We use some more formulas to make the rules easier to read. First we introduce a
symmetric group parallelism formula: Let A = A;,..., A, and B = By,..., By, then

A~ B =gy A~B v B~ A

This is simply an extension of the symmetric parallelism formula A ~%™ B to group
parallelism. Similarly we extend the formulas that state that some variable is (or is not)
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inside some segment term. They are defined in Chapter 4, p. 79.

X € b(Al, .. ,Am) =def V:’llX S b(Az)
X € b_(Al,...,Am) =def \/;n:lX c b_( z)
X ¢b(Ar,...,An) =aer N2y X & b(4)
X gb (A1, s Am) =daer N1 X & b7 (4))

Next we generalize correspondence formulas to the group parallelism case. Let A =
Aq,...,A, and B = By,...,B,. Then

cop (A, B)(U)=V  =qer A~ BA p(Xe¥) AU €b(Ay)
cop (A, B)(U)=V =qet cop(A,B)(U)=V AU € b (A;)

for1 <k <mn, Ay =XQ/..., By =Y?/.... There are some more formulas that we discuss
when we get to the rules that use them.

6.3.1 Solving CLLS,, Constraints: Procedure Pg,.

Let A=Ay,...,A, and B=By,...,B,.
Lifting the Core Parallelism Rules

(GP.init) A~ B — seg(Ay) A seg(By) A cop(4, B)(X])=Y]
where 1 <k <n, Ay = X/ X},..., X",
B, =Y2/Y} ... Y™ and 0 < j < my,

(GP.new) A~ BAU € b(Ag) — 3U'.cop(A, B)(U)=U'
where U’ is a fresh variable, 1 < k <n

(GP.copy.dom)  URUy A N\, cop(4, B)(U;)=V; — ViRVa  where 1 < k < n,
Re {a*, 1, #}

(GP.copy.lab) Uo:f (U, ..., Un) ANy cor(A, B)(U;)=V; AUy € b=(4Ag) —
Vorf(Vi,...,Vn)  where 1 <k <n

(GP.distr.seg) A~vmBAXIHX = X €b(Ay) V VI X[t X
where 1 <k <n, A, = X)/X}, ..., X"

Binding

(D.A.equal) AX1)=Xo AN Xi=Y; — M(Y1)=Y,
(D.A.inverse) AHX)={Y1,.... Y} = AL AY)=X
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(D.\.distr.inv) A X)=N,.... Y} AXNZ2)=X — VX, Z=Y;

(GP.\.same) A(Uy)=Us A N2, co (A, B)(Ui)=V; — A\(V1)=Vs
where 1 <k <n

(GP)\.diff) )\(Ul):UQ A /\?:1 CO]; (Z, F)(Uz):Vz A Ugﬁbf (Akl) — )\(Vl):VQ
where 1 < k1, ky <mn

(GP.).out) MU)=Y Aco, (A, B)(U)=V AY¢b™(A) = A(V)=Y
where 1 <k <n

(GP.)\.ha,ng) )\(Ul):UQ ANA~SYD B A Useb™ (Z) — U1€b™ (Z)

(GP.ante.same)  ante(U;)=Us A coi (4, B)(U1)=Vi A cox(4, B)(Uz)=Vo AA ~ B
— ante(V1)=U; V ante(V1)=V, where 1<k <mn

(GP.ante.diff) ante(U1)=Us A co (A,B)(U1)=V1 A cok, (A, B)(Us)=Va A
Us@b(Ag,) NA ~ B — ante(V1)=U; V ante(V1)=Vs
where 1 < ki,ks <n

(GP.ante.out) ante(U)=Y Aco, (A, B)(U)=V AY ¢b(A)ANA ~ B — ante(V)=U

(GP.A.diStr.l) )\(Ul):UQ ANA~SYD B A Uieb™ (Z) — diStr%(Ug)
(GP.A.diStr.Q) )\(Ul):UQ ANA~SYD B A Us € b~ (Z) — distr%(Ul)
(GP.ante.distr.l) ante(Ul):Ug ANA~ BA Uieb™ (Z) — diStrz(Ug)
(GP.ante.distr.Z) ante(Ul):Ug ANA~ BA U, € b(Z) — diStri(Ul)

(GP.\.inverse) A HX)=51 Acoy (A, B)(X)=Y Aco (A, B)(S1)=S2U S3 A
Avess MV)=Y A Ay eg, AV)AY = A1(Y)=8,
where 1 <k <n

plus the rules of the semi-decision procedure P for CLLS in Sec. 5.6.

6.3.2 The Rules in Detail

Section 6.3.1 shows the semi-decision procedure Py, for CLLSgr.3 The first block of rules
lifts the core rules of the parallelism constraint procedure to the group parallelism case.
(GP.init), (GP.copy.dom), (GP.copy.lab), (GP.new), and (GP.distr.seg) are straightfor-

3The procedure as we present it here is more extensive than in the paper by Bodirsky, Erk, Koller and
Niehren [12]. This is due mostly to the fact that they used correspondence literals rather than formulas
and thus could reuse more rules of the CLLS procedure.
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ward generalization of their counterparts in Section 5.6. The tasks of the new rules are the
same as those of the old ones: (GP.init) introduces correspondence formulas for roots and
holes of a pair of parallel segment terms, (GP.copy.dom) copies dominance, inequality,
and disjointness literals, (GP.copy.lab) copies labeling literals, (GP.new) introduces cor-
respondence formulas for variables inside a segment term involved in a group parallelism
literal, and (GP.distr.seg) guesses whether a variable is inside a segment term involved
in a group parallelism literal. Compare (GP.new), which is A ~»™ B AU € b(4;) —
U’ cop(A, B)(U)=U", where A = Ay,...,A,, B= By,...,By, U'is a fresh variable and
1 <k < n, to (Pnew), which is AMY"B AU € b(A) — 3U'.co(4, B)(X)=U', where
again U’ is a fresh variable. The only difference is that (GP.new) picks out the k-th of n
parallel segment pairs.

The rule (D.\.equal), of the form A(X;)=X2 A /\?:1 Xi=Y; — XY1)=Y2, will help
us make the other rules easier to write down. The rule (D.A.inverse), which
is A Y X)={V1,...,Yn} — AL A(Y;)=X, infers lambda binding literals from
the matching inverse lambda binding literal. The rule (D.A.distr.inv), which is
AU X)={Y1,.... Y} AXNZ)=X — V', Z=Y;, states that when {Y1,...,Y,,} are all
the variables bound at X, then any variable Z bound at X must be equal to one of the Y;.
The rules (GP.\.same) through (GP.A.hang) and (GP.ante.same) through (GP.ante.out)
express the conditions on lambda binding and anaphoric binding laid down in Def. 6.3.
(GP.\.same) has the form \(U;)=Us A \Z_, coy (4, B)(U;)=V; = A(Vi)=Va; it handles
the case of both U; and Us being inside the same segment term of a group. The rule
(GP.Adiff) is A(Uy)=Uz A /\?:1 €Oy, (A, B)(U;)=V; A Ux¢b™ (Ag,) — A(V1)=Va. It han-
dles the case that Us is inside a segment term of the group, but not the same segment
term that U; is in. (GP.X.out) handles the case of U being bound outside the whole
group, and (GP.\.hang) states that hanging binders (lam-labeled nodes inside the group
binding variables outside the group) are not permitted. (GP.ante.same), (GP.ante.diff),
and (GP.ante.out) handle the cases of a variable being anaphorically bound inside the
same segment term, in a different segment term of the group, and outside the group,
respectively.

In the procedure P, we did not need any distribution rule for determining which of
(P.A.same) or (P.A.out) applied to a lambda binder. (This is shown in the discussion of
(P.A.same) and (P.A.out) in the proof of Lemma 4.19, p. 98.) But for the new CLLSg,
procedure this is different because now we have to consider all segment terms of the same
group. The distribution rules (GP.A.distr...) and (GP.ante.distr...) use the formulas

diStri(U) =def /\?:1 (U € b (A;) vVU¢b™ (Az))
distr(U) =der Ai—; (U € b(4;) VU¢Zb(A;))

again for A = Ay,..., A,. Given a lambda binding literal A(U;)=Us, if U; € b~ (A) is
in the constraint for a group A of a group parallelism literal, then (GP.).distr.1) guesses
whether Us is inside a segment term of the same group, and if Uy is inside the group, then
(GP.\.distr.2) guesses whether U; is, too. For an anaphoric binding literal ante(U; )=Us,
the rules (GP.ante.distr.1) and (GP.ante.distr.2) perform the same guesses.
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s, =W
xx) = {u} s, ={V}
S, ={W}

Figure 6.7: Illustrating the rule (GP.\.inverse)

The most complex rule is (GP.A.inverse), which handles the copying of inverse lambda
binding literals. This rule is important in the application of group parallelism to beta
reduction: Inverse lambda binding is needed to identify reducing trees, so we need to
copy these literals to the reduct in case we want to perform a second beta reduction step.
The rule uses two more formulas, the first just being

AX)£Y =geof AZNX)=Z N Z#Y).

The second formula collects, for a finite set Sy of variables, all correspondents with respect
to A ~ B. Let S1,.5; stand for finite sets of variables, and let A = A; ..., A,. Then

CO?(Z, E)(51)252 —def /\?:1 /\XESl (ngf(Ai) X\/_YESE CO; (Z, F) (X):Y)
A Aves, Vxes, Viei coj (4, B)(X)=Y

Using these two formulas, the rule (GP.\.inverse), of the form A7}(X)=S; A
co, (A, B)(X)=Y A co (4, B)(51)=52 U S3 A Ayes, A(V)=Y A Apes, AV)AY —
A~H(Y)=8y, collects all correspondents of a variable bound by X. We have to know,
for each of these correspondents, whether it is bound by Y or definitely bound by some-
thing else. Only then can we determine A~!(Y’). The rule is illustrated in Fig. 6.7: The
leftmost segment term A is parallel to both the middle segment term B and the rightmost
segment term C. The variable X inside A corresponds to both Y in B and Z in C', and
U, which is bound at X, corresponds to both V in B and W inside C'. As usual, we
draw correspondence formulas as dotted arcs. We have A}(X) = {U}, so Sy ={U}. V
is bound at Y, but W is bound at Z following condition (gp.A.same). So for the binder
X and its first correspondent Y, we have Sy = {V'} and S3 = {W}. For the constraint
sketched in Fig. 6.7, we get A™1(Y)) = {V'} by rule (GP.).inverse).

6.3.3 An Example

We illustrate the procedure Pg; on the constraint in Fig. 6.8. It contains the reducing tree
(C,B, A), along with a group parallelism literal (C,B, A, A)~(C',B', A', A”) that de-
scribes the result of a beta reduction step for this reducing tree. Furthermore, there is
the lam-labeled variable Y7, which may belong either to the context C' or to the argument
A. Thus, the variables Y; and Y5 form a “D segment term” like the one in Fig. 6.3.
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(C,B,A,A) ~ (C',B', A", A") e X

with C' = X/ Xy, Xy E
:XI/X(I)v

B =X;/X1,Xo,

BI:X(I)/XivXév

A=X,/,

A= X1/, and

=X}/.

A
AHXy) = {X1, Xo},
A

') ={Z}.

Figure 6.8: A group parallelism constraint encoding a beta reduction step

Figure 6.9 and 6.10 list computation steps that the procedure Py can perform on this
constraint. In step (4), the procedure guesses whether Y7, Y2 belong to the context C or
to the argument A. We have to disambiguate the position of the fragment consisting of
Y1,Y> before we can fully solve the group parallelism literal. The left column, starting
with (4a), explores the case that Y7, Y5 belong to A, and the right column, starting with

(1) Yl#Xo (D.lab.ineq)
(2) YiatYs, Xoat X, (D.lab.dom)
(3) Yh<*Z, Xo<*Z (D.dom.trans)
(4) Xo<'Y: V Yi<* X (D.distr.notDisj)
(4 ) X0<1*Y1: (4:b) Y1<1*X0:
(5) Xo=Y1 V X;q"Y1 V Xo<* Yy (D.distr.child) (7) Y1=X, V Yo<* Xy (D.distr.child)
(53.) X0:Y1: (5b) Xg<]*Y1: (73.) Y1:X0
both lead to false (8) false (D.clash.ineq)
(5C) Xa<] Y1 (7b) Y2<]*X0
(9)  co(A4,A)(X,)=X (P.init) (17)  co(C,C")(X)=X',  (P.init)
(10) co(4,A")(Y1)= Yl, (P.new) co(C, C")(Xo)=X),
co(A4, A")(Yy)=Y5, (18) co(C,C")(Y1)=Y{,  (P.new)
co(A, A" (Z2)=2' co(C,C")(Ye)=Yy
(11) X{<*Y!, Yj<*Z' (P.copy.dom) | (19) X'<*Y{,Yj<*X] (P.copy.dom)
(12)  Y{:lam(Y3) (P.copy.lab) | (20) Y{:lam(Y5) (P.copy.lab)
(13) co(A,A")(X,)=X)  (P.init)
(14) co( LAY (Y1)=Y!",  (P.new)
co(A, A7) (Y5) =YY,
co(A, A")(2)=2"
(15) Xéq*Yl”,YQ”Q*Z” (P.copy.dom)
(16) Y/:lam(Yy) (P.copy.lab)

Figure 6.9: Solving the group parallelism constraint in Fig. 6.8
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Continuing (5¢)

(21) MZN) =Y/, \(Z") =Y (GP.\same)

(22)  Zgb~(B) V Z€b(B) (GP.\distr.2)

(22a) Z¢b™(B) (22b)  Z¢b™(B)
(23) Z¢gb (C) vV Z€b (C) (GP.A\.distr.2) false
(23a)  Z¢gb—(C) (23b) Zeb (C)

(24) Y{#Y! v Y/=Y/ (P.distr.eq) false

(24a)  Y/#Y{ Iy

(25) >\71(Z//) 7& Yll (24b) Yl_Yl

(26)  A'(Y!)={Z'} (GP.\.inverse) false

(27) A Y =1{Z"} (GP.).inverse)

Figure 6.10: Inverse Binding in case (5c)

(4b), explores the case that they belong to the context C. In the left column we make
two copies of Y7 and Y5 each. This is because A receives two copies in the reduct, A" and
A" (which in turn is caused by X, binding two occurrences of the object-level variable,
X, and X5). In the right column, on the other hand, Y7 and Y3 are only copied once:
They belong to the context C, which is parallel only to C.

Figure 6.10 continues the left column of Fig. 6.9, i.e. Y7, Y5 belong to the argument A.
The purpose of this figure is to demonstrate rule (GP.A.inverse): All steps from (22) on
prepare the determination of A~!(Y{) and A~1(Y{") in (25) and (26).

So, to sum up, the procedure P, can solve this group parallelism literal, and the beta
reduction formula that it is part of, but it has to disambiguate the position of the fragment
consisting of Y7, Ys. In the following section we introduce a procedure for a single beta
reduction step that can avoid disambiguation in many cases. (However, it will not be
able to handle this particular example without disambiguating.)

6.3.4 Properties of the Procedure P,

We now prove properties of the procedure Py, extending the proofs from Chapter 4. At
the end of this section, we sum them up in one theorem.

Soundness. As we have defined in Def. 3.3 (p. 62), a saturation rule is sound iff it is
an equivalence transformation. And as we have remarked there, it suffices to show that
the left-hand side of the rule entails the right-hand disjunction because we are working
in a saturation framework.

The rules (GP.nit), (GP.new), (GP.copy.dom), and (GP.copy.lab) are sound for
the same reason as their (P...) counterparts — see Sec. 4.2.1 (p. 89). For rules
(GP.distr.seg), (D.X.equal), (D.)X.inverse) and (D.\.distr.inv) soundness is obvious, like-
wise for (GP.A.distr.1), (GP.A.distr.2), (GP.ante.distr.l), and (GP.ante.distr.2). The
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rules (GP.\.same), (GP.\.diff), (GP.\.out), (GP.A\.hang), (GP.ante.same), (GP.ante.diff),
and (GP.ante.out) are direct translations of the conditions laid down in Def. 6.3. It re-
mains to show the soundness of (GP.\.inverse), which is not obvious: Is it really sufficient
to look among the correspondents of A™'(X) to compute A~'(Y)? The following lemma
shows that it is.

Lemma 6.5 (Inverse lambda binding). Given a lambda structure in which the group
parallelism (o, ..., ) ~ (&, ..., al,) holds with correspondence functions cy, ..., cp.
Then for all 1 <k <mn and all T € b~ (),

A He(m) € (ULe() | 7' € A7 (m) nb~ ()}
1=1

Proof. Let 9" € A~ !(cg(n)). The "no hanging binders” condition (gp.X.hang) of Def. 6.3
is critical here. It enforces ¢’ € |J;_, b~ (c}). There are two possibilities. Either we have
¢' € b”(c},). Then there is a node ¢ € b~ (ay) with ¢;(¢)) = ¢'. 1 is var-labeled by
Def. 2.3 (p. 27) and has a binder since X is total. We must have A(ck (%)) = cx(A(9)))
by condition (gp.\.same). Now A(ck(¢)) = cx(7) and ¢ is a bijection, so ¥ € A~ !(x).
The other possibility is that 1’ & b™(«}) but 9" € b™(c;) for some j # k,1 < j < n.
Then there is again a node 1 with ¢;(¢0) = 9', and A(¢;(¢))) = cx(A(¢')) by condition
(gp.\.diff), so again ¢ € A~1(r). O

To sum up, we have shown the following;:

Lemma 6.6 (Soundness). The semi-decision procedure Pgx for CLLSg is sound for
lambda structures.

Nontermination. The procedure Py, subsumes the procedure P, which for some input
constraints does not terminate. An example is shown in Ex. 4.7.

Fairness. In Sec. 4.2.3 (p. 89) we have stated what we mean by fairness: Whenever a
rule is applicable, one of the disjuncts in its conclusion will ultimately be added. For the
procedure Py, we adapt the fairness conditions of Chapter 4 and 5 in a straightforward
way':

Fairness condition. (P.new) and (GP.new) are applied only to constraints
saturated under Py— {(P.new), (GP.new)}. (GP.new) and (P.new) are ap-
plied to variables in the order of their introduction into the constraint.

That is, the fairness condition simply treats (P.new) and (GP.new) the same way.
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Saturated constraints. As in the previous chapters, we attempt to give an indepen-
dent description of saturated constraints by describing what their constraint graphs look
like (i.e. we attempt no more than an informal description of saturations). In the current
case, this is particularly easy: A Py -saturation looks just like a P-saturation, except that
the properties of lambda binding and anaphoric binding for some parallel regions (more
concretely, those parallel regions that arise from group parallelism literals) are different.

Satisfiability of saturated constraints. We show that each saturated constraint
that Py computes is satisfiable. To this purpose, we extend the definitions and lemmas
of Section 5.3, which proves the same result for P-saturated constraints.

As before, we restrict ourselves to generated constraints, which only contain path literals
that have been added to process parallelism literals, but not path literals in arbitrary
places. We have to adapt the definition of generatedness: Path literals can be licensed
not only by segment terms of parallelism literals, but also by those of group parallelism
literals. We write CLLSg,,, for the language CLLS,, extended by path literals.

Definition 6.7 (Correspondence-generated). Let ¢ be a CLLSgp,-constraint. A path

literal p(g; %) € ¢ s correspondence-generated in ¢ iff

e cither there exists some literal A ~ B € ¢ with A =U;/... and B =Vy/... such
that either Uy € b(A) or Vo € b(B) is in ¢.

e or there exists some literal (Ay,...,A,) ~ (Bi,...,By) € ¢ and some k €
{1,...,n} with Ay, = Uy/... and By = V1/... such that either Uy € b(Aj) or
Vo € b(Bg) is in .

We lift the definition of a generated constraint (Def. 4.14, p. 92) canonically to this new
definition of correspondence-generatedness. Lemma 4.15 (p. 92) still holds for the new
definition of generatedness.

In Chapters 3, 4 and 5 we showed satisfiability of saturated constraints in two steps: We
showed first that every simple generated saturation is satisfiable, then we showed how
to reduce a non-simple saturation to a simple one. We proceed in the same way here.
According to Def. 3.7 (p. 64), a simple C4-constraint possesses a root variable dominating
all others, and every variable of the constraint is labeled. We lift this definition canoni-
cally: A CLLSg,p, constraint is called simple iff its maximal subset that is a Cq constraint
is simple.

Lemma 6.8 (Satisfiability of simple generated saturations). A simple generated
Pyr-saturated CLLSgy,-constraint is satisfiable.

Proof. Let ¢ be a CLLSg, constraint that is a simple generated Pg-saturation. Since
group parallelism is a canonical extension of parallelism that only differs in its conditions
on binding, we can basically reuse the proofs of Lemmas 4.16 and 5.5 (p. 93 and 126).
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First, let @40, be the maximal subset of ¢ that is a Cq constraint, and let (6,0) be a
model for gy, constructed as in the proof of Lemma 3.8 (p. 65). Then each path literal
and each group parallelism literal of ¢ is satisfied in 8: The proof is completely analogous
to the one for parallelism literals in Lemma 4.16, except that in the argument the rules
(GP.init), (GP.new), (GP.copy.dom), (GP.copy.lab), (GP.distr.seg) replace their (P...)
counterparts.

It remains to consider the binding literals. As in the proof of Lemma 5.5, we extend 0
to a lambda structure £ that is a model of ¢: Let S C Var(y) be the set of var-labeled
variables without a lambda binder in ¢, then we construct our new tree 8" as 8’ = lam(6).

As before, we set
oY) ifAX)=Y ing
’\(“(X))_{ e ifXesS

and
ante(o(X))=0(Y) if ante(X)=Y in ¢

for all X € Var(y). We have shown in Lemma 5.5 that both functions are well-defined,
the binders and the bound nodes are labeled as they should be, and that A is a total
function in which a binder dominates each node that it binds. The binding functions
of £7 interact correctly with its group parallelism relation: Either a rule (GP.)...) or
a rule (GP.ante...) is applicable to each bound variable of ¢ because of Lemma 5.4 (p.
126), so the rules (GP.A.same), (GP.A.diff), (GP.A.out), (GP.A.hang), (GP.ante.same),
(GP.ante.diff), and (GP.ante.out) enforce the conditions of Def. 6.3. If a var-labeled
variable is not bound in ¢, our definition of #’ ensures that the variable’s binder interacts
correctly with the group parallelism relation (again in the same way as in Lemma 5.5).
Furthermore, all inverse lambda binding literals of ¢ are satisfied in Lo If © contains a
literal A1 (X)={Y1,..., Y} then by closure under (D.\.inverse) and the fact that m > 1,
o(X) is not bound at ¢ in £%, and by closure under (D.\.distr.inv) and our construction
of the function X, if \(7)=c(X) in L%, then o(Y;)= for some i € {1,...,m}. O

Next we show that we can again extend any non-simple saturated constraint to a simple
one. To that end, we have to adapt the definition of <, slightly: It has to build on
group parallelism (which subsumes normal parallelism) now.

Definition 6.9 (Copy set). Let ¢ be a CLLSyy, constraint. Then <, is the largest
relation on equal-sized sequences of variables in Var(p) such that

(Ug,Ul, .. .,Um) ‘—)w (Vg,Vl, .. .,Vm)

implies that there exists a group parallelism literal (Ay,...,Ay) ~ (B1,...,By) in ¢
and some k < n such that U; € b(Ax) and Uy € b~ (Ag) are in ¢ for 1 < i < m and
cop(A, B)(U;)=V; is in ¢ for 0 <i < m.

The definition of copy,, (U(), Ui,...,Up) is lifted canonically to the new definition of <.
Lemma 4.18 (p. 96) still holds: Sequences (U, Uy,...,Uy), (Vo,Vi,...,Vy) in the same
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copy set share the properties that first, if Uy is unlabeled, then so is Vp; second, if
(Uy,...,Uy) is in the connectedness set (Def. 3.9, p. 66) of Uy, then (V1,...,V,,) is in the
connectedness set of Vp; third, if (Uy,...,U,) are a maximal disjointness set (Def. 3.10,
p. 67) within the connectedness set of Uy, then the same holds of (V1,...,V,,) and V}.

Now we show, like in the previous chapters, that given a generated saturation that is not
simple, we can extend it by labeling at least one previously unlabeled variable.

Lemma 6.10 (Extension by labeling). Every Py.-saturated CLLSgy-constraint with
an unlabeled variable Uy can be extended to a Pg-saturated constraint in which Uy is
labeled.

Proof. Let {Ui,...,Upn} be a maximal ¢-disjointness set in con,(Up). As in the proof of
Lemma 5.6 (p. 127), we assume that 3 contains a function symbol f of arity m that is
neither var, lam or ana. (If it does not, then we can encode it using a nullary function
symbol and a symbol of arity 2, as in Lemma 3.12.) We use the same definition of an
extension exty,,... v, (¢) of @ AUy:f(Ui,...,Up) as in Lemma 4.19 (p. 98). We repeat it
here:

extyy,...,.Un (9) =det ¢ A /\ (Vo:f(Vl,...,Vm) AN VotV A
Voi:f(Vi,...,Vin)€ /\ . ) ZLW A
copy, Uo,U1,...,Um) ¥§<Zj,\_/: Wep,
Z V)
:g(...)E@, # 0

z
9#f Vv ar(g)#ar(f)

For simplicity, we write ext(¢y) for exty,. .. v,,(¢) in the rest of the proof.

To show that ext(y) is a Pg-saturation, we examine each of the rules in Sec. 6.3.1 and
show that none of them is applicable to the constraint. (For the other rules of P, listed
in Sec. 5.6, we have already shown in Lemmas 3.12, 4.19, and 5.6 (p. 67, 98, and 127)
that they are not applicable.)

(GP.init), (GP.new), (GP.copy.dom), (GP.copy.lab), (GP.distr.seg): These
rules are just group parallelism versions of the matching (P...) rules. The only
difference is that the group parallelism rules pick out the k-th of n segment terms
of a group while in the parallelism rules there is only one segment term in each
“group” (i.e. on each side of the ~). The constraint ext(y) is closed under the
group parallelism rules for the same reasons that it is closed under their (P...)
counterparts — see Lemma 4.19.

(D.).equal), (D.\.inverse), (D.\.distr.inv): We have not added any lambda bind-
ing, inverse lambda binding, or dominance literals.
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(GP.\.distr.i), (GP.ante.distr.i), ¢ = 1,2: (GP.\.distr.1) has the form \(U;)=Ux A
A~ B AUED™ (A) — distr(Uz), and the other three rules are very similar.
We have not introduced any new group parallelism, lambda binding or anaphoric
binding literals. Also, we have not introduced new dominance literals. So the
only thing that could be new in ext(y) could be the information U; € b~ (A). Let
A = (Ay,...,Ay). Now if there exists some k < n with 4, = X2/X}, ... X"
and X2<*U; € ¢, then by the closure of ¢ under (GP.distr.seg) and (P.distr.eq) the
constraint ¢ contains either U; € b~ (Ay) or Uy & b~ (Ay) already.

(GP.A.same), (GP.A.diff), (GP.A.out), (GP.A.hang): We focus on (GP.\.out),
which is A(U)=Y A co; (4, B)(U)=V AY ¢b™ (A) — A(V)=Y. We have not added
any lambda binding literals. The correspondence formula stands for A ~5™
BA p(Xi¥) AU €b(Ap) AU € b™(Ag), where A = Ay,..., Ay, B= By, ..., By,
1<k<n, Ay = X2/... and By = Y/.... We have not added any group paral-
lelism or path literals. The only thing that could still be new in ext(y) is a formula
U € b(Ag) or U € b=(Ag) or Y ¢ b=(A). So suppose U € b(Ay) is new in ext(y).
Since we have not added any dominance literals, X)<*U must be in ¢ already.
But since ¢ is closed under (GP.distr.seg), ¢ already contains either U € b(Ay) or
U ¢ b(Ax). And likewise U € b~ (Ag) cannot be new in ext(y) because ¢ already
contains either U € b(Ay) or U ¢ b(Aj) and is closed under (P.distr.eq), which
guesses equality or inequality between U and the holes of Ap. Furthermore, if
U € b~ (Ag) is in ¢ already, then by closure of ¢ under (GP.\.distr.1) we know for
each j <n whether Y € b™(4;) or Y¢b™(A;). So one of (GP.A.same), (GP.A.diff),
and (GP.)\.out) has been applied to U and Y in ¢ already.

For the rules (GP.A.same), (GP.\.diff) and (GP.\.hang), the argument is the same.

(GP.ante.same), (GP.ante.diff ), (GP.ante.out): We focus on (GP.ante.out), which
is ante(U)=Y Aco, (4,B)(U)=V ANY ¢b(A) N A~ B — ante(V)=U. We have not
added any anaphoric binding literals or group parallelism literals. Concerning the
correspondence formula, the argument is the same as for the rules (GP.\.same)
through (GP.\.hang): We have not added any group parallelism or path literals,
and the formula U € b~ (Aj) cannot be new because we have added no dominance
literals and ¢ is closed under (GP.distr.seg). It remains to be shown that the
formula Y ¢ b(A) cannot be new in ext(p). So suppose (4, ..., A,) ~ (Bi,...,By)
and ante(U)=Y are in p, and U € b~ (A); is in ext(p) for some k < n. Then in ¢
(GP.ante.distr.1) has already decided, for each j < n, whether Y belongs to b(A;)
or not.

For the rules (GP.ante.same) and (GP.ante.diff) the argument is analogous.

(GP.\.inverse): This rule is A™1(X)=5; A co, (4, B)(X)=Y A co (4, B)(S1)=S2 U
S3 A Aves, \V)=Y A Apeg, MV)AY — A7H(Y)=S;. We have not added
any inverse lambda binding literals or lambda binding literals. Con-
cerning correspondence formulas, we have argued above (for the rules
(GP.A.same) through (GP.A\.hang)) that they cannot be new in ext(p).
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Next, the formula co™ (4, B)(S1)=S> U S stands for Al A,cq (Z¢b™ (4As) V

Vyes,us, €0 (A B)Z)=Y) A Ayeg,us, Vzes, Vier 00 (4, B)(Z)=Y. We show
for each part of the formula that it cannot be new in ext(y). Since ¢ contains
A~ 1(X)=8; and is closed under (D.).inverse), it contains A\(Z)=X for each Z € 5.
So by (GP.\.distr.2) and the fact that X € b= (A), the constraint ¢ contains either
Z €b (4;) or Z & b (4;) for each 1 <4 < n. Again, a correspondence formula
co; (A, B)(Z)=Y cannot be new in ext(y), for the same reasons as above. Finally,
A(V)#Y cannot be new in ext(¢) because we have not added any lambda binding

literals, and ¢ is closed under (P.distr.eq).

O

Completeness. For completeness, no new proofs are needed. Lemma 4.34 (p. 110)
is general enough to cover the new saturation rules as well, and the proofs of Lemmas
4.38 and 5.9 (p. 112 and 130), which handle fresh variables introduced by (P.new) and by
(D.X.Jam), apply to (GP.new) and (GP.\.inverse) as well. So we directly get the following
result (for the notation see Def. 4.33, p. 110):

Lemma 6.11 (Completeness). Let ¢ be a CLLSyy, constraint and G C Var(p). Then
Pgr can compute from @, in a finite number of steps, any minimal Pgc-saturation for ¢
with respect to G.

Recapitulation

In this section we have shown a number of properties of the procedure Py, which we now
sum up.

Theorem 6.12. The semi-decision procedure Py, for CLLSg, has the following properties:

1. It is sound for lambda structures.
2. There are unsatisfiable CLLSgy: constraints for which it does not terminate.
3. A generated Pgyr-saturated CLLSgyy-constraint is satisfiable.

4. Pgr is complete: Given a CLLSy constraint ¢ and a set G C Var(p), Py can
compute from ¢ any minimal Pgc-saturation for ¢ with respect to G in a finite
number of steps.

5. This set of minimal Pgr-saturations for a CLLSg constraint may be infinite.

Proof. 1. by Lemma 6.6, 2. by Ex. 4.7, 3. by Lemma 6.8, 4. by Lemma 6.11, 5. by Ex.
4.6 and 4.8. U
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6.4 Disambiguating Less: A Second Procedure for a Single Beta
Reduction Step

Xl\k/@\ AD
Xt A

B
var

Figure 6.11: An underspecified description of a reducing tree

In the previous section, we have discussed the procedure Py for CLLSg. It is com-
plete, so it computes all minimal saturations for a constraint containing a beta reduction
formula. However, it may not be exactly the procedure we want to use to perform an
underspecified beta reduction step. In Sec. 6.3.3 we have illustrated Py on an example
constraint, which contained a D segment term, i.e. a segment term in a position that
is underspecified between two segment terms of the reducing tree. This situation is de-
picted in Fig. 6.3, repeated here as Fig. 6.11. To solve the beta reduction literal, Py,
first had to disambiguate the position of the D segment term. However, we would like
to separate the two tasks, on the one hand underspecified beta reduction, on the other
hand the enumeration of readings.

In this section we present a second procedure Pg for a single beta reduction step that
differs from Py, in the following ways:

e It includes all deterministic saturation rules of Py, but none of the distribution
rules.

e There are reducing trees for which the procedure cannot compute the reduct. But
for a large class of reducing trees, one that is important in the linguistic application,
it can compute the reduct without any disambiguation.

e To that end, the procedure Pg contains additional deterministic saturation rules
that make use of underspecified correspondence literals to handle D segment terms.

The main problem in performing a beta reduction step on a partial description of a
lambda structure is that we do not always know which part of the reducing tree a variable
belongs to. We have referred to this as the problem of “D segment terms”. Figure 6.11
shows a schematic view of such a situation: there is a segment D which may belong either
to the context C or to the argument A of the reducing tree.

The main idea about Pg is that as soon as we are certain that a variable must be in one
of b(C), b(B), or b(A) (in the notation of Fig. 6.11), we can copy that variable to the
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reduct, even if we do not know yet which of the three segment terms the variable belongs
to. That is, we just have to make sure that the variable cannot be above the root of C,
and it cannot be X5 (again in the notation of Fig. 6.11).

The data structure we use for this are underspecified correspondence literals of the form
u-co({(C1, D1),...,(Cn, Dp)})(X)=Y, which state that co(C;, D;)(X)=Y holds for some
1,1 < 12 < n. We define them as literals, not as formulas, because we want to avoid
distribution whenever possible. For the same reason, we now redefine some formulas of
the previous chapters as literals.

Definition 6.13 (Underspecified correspondence literal). Let A, B, Ay,..., Ay,
Bi,..., B, be segment terms, and let (L%, o) be a pair of a lambda structure and a valu-
ation. Then the correspondence literal

co(A, B)(X)=Y

is satisfied by (L%, o) iff there exists a correspondence function ¢ in L0 between o(A) and
o(B),and c(o(X)) = o(Y). The symmetric group parallelism literal

(Ay,...,Ap) ~Y(By,...,By)

is satisfied by (L% 0) iff either (0(A1),...,0(4,)) ~ (0(By),...,0(By)) or
(0(By),...,0(By)) ~ (0(A1),...,0(Ay)) holds in L°. The underspecified correspon-
dence literal

u-co({(A1, B1), ..., (An, Bn) })(X)=Y

is satisfied by (LY, o) iff three conditions are met: First, for 1 <i < j < n, b(c(4;)) and
b(c(A;)) are disjoint. Second, for all 1 <1i < n there exists a correspondence function c;
between o(A;) and o(B;). Third, there exists an i, 1 < i < n, such that ¢;(0(X)) = o(Y).

Like path literals, these literals are used during the computation, but they do not belong
to the language that may be used for the input constraint to the procedure.

We redefine the formulas coy (A4, B) and COA(Z, B) from earlier in this chapter according
to the new literals that we now have: Let A = Ay,..., A, and B = By,...,B,, then

J(U)=V  =qet co(Ag, Bi)(U)=V
J(U)=V  =qet co(Ag, Bp)(U)=V AU € b (4Ay)

cog(
coy, (

AB
A,B
for 1 < k < n. Furthermore, we use the following formulas for beta reduction steps and
underspecified correspondence (with 1 < i < n):

betay,, =qet redtreex,(C,B,A)A(C,B,A,...,A)~ (C",B',A",..., A"\
reductlike(C’, B', A},..., A)
beta, =gder betax,,
u-co;(Z)=2Z" =q4er u-co({(C,C"),(B,B'),(A,A)})(2)=Z".
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That is, we use betay,, when we need to talk about the variable Xy and beta, else.
Furthermore, with C = Xy/X; and B =Y;/Y1,...,Y,, we use

u—coi_(Z):Z’ =def u-co({(C, C,)v (BvBl)v (AvA;)})(Z):Z, NZ#Xy A /\ Z#Y;.
=1

Note that the formulas for reducing tree and reductlike use subformulas of the form seg(A),
which contain disjunctions. Hence we have to be careful in using these formulas in a
framework where we want to restrict indeterministic rules as far as possible. But we will
only use these formulas on left rule sides, where they do not present a problem.

6.4.1 A procedure that partially solves CLLSg, constraints: Pg

Let C = Xo/Xl, B = Yg/Yl,. .. ,Yn, and A = X3/
All rules are parametrized by 1 <i < n.

(UB.init) (A1,...,An) ~ (Bi1,...,Bn) Nseg(Ag) A seg(By)
— co(Ay, B)(Z;)=W;
where 1 S k S m, Ak = Zg/Zl,...,ka, Bk = Wg/Wl,...,ka,
and 0 < 5 < my

(UB.new) betax, , A Xo<*Z N Z#Xy — 3Z' u-coi(Z2)=27'

(UB.copy.lab)  betan A Zo:f(Z1, ..., Ze) A Ny—g 104 (Zr) =2} A Zo# X1 NN, Zo#Y;
= Zy:f(Z1,..., Zy)

(UB.copy.dom) beta, A \i_, u-co;(Zy)=Z% N Z\<* Zg — Z}<*Z}
(UB.copy.ineq) ~ beta, A Aj_y u-coi(Z)=2Z} A Z1#£Z2 A Npey (Z#X1 A N)—y Z1#Y))

— Z\#Z},
(UB.\.in) beta, A Af_; u-co; (Zy)=2Z;. N N(Z1)=2Zy — NZ|)=2}
(UB.X.out) beta, AX(Z1)=Z3 ANu-co; (Z1)=Z] N(Z29* X0V Zo LX) = N(Z])=2>
(UB.A.1) betax, , A XN(Z1)=2Z2 A u-co; (Z2)=2Z)
S Xot LI ANZL#E XA D # Xa AN 20 # Y
(UB.A.2) betan A MZ1)=Z A u-co; (Z1)=2, — Xoa* Zy V Zoa™ X V Zo L X,

(UB.\.inverse)  beta; A1 (Zo)={Z1,...,Zn} A
Mo u-cor(Zk)=2Z;, — XY Z)={Z},...,Z],} redex linear

(UB.co.path)  co(D,D")(U)=V — p(7"°)  where D =Zy/..., D' =Wy/...
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(UB.co.corr)  p(% ") A (A1,...,Am) ~¥™ (Bi,...,Bm) AU € b(4y) —
CO(Ak,Bk)(U):V where 1 < k < m, Ak = Z()/- cey Bk = Wo/. ‘e
(UB.co.u-corr)  beta, A co(D,D")(U)=V — u-co;(U)=V
where (D, D') € {(C, ("), (B, B'), (4, A})}
~B = A~Y"BAB~Y" A  where A=Ay,..., A,
=B,...,Bnp

(UB.sym)

ol R

(D.diffParent)  Z:f(Z,..

(D.diffChild) Z:f(Zy,..
where 1 <57 <m

D) NWig(Wh, . W) A ZEW = NIy Ny Zi# Wi,
D) NWif(Wh, oo, W) N Zj#F W — Z#W
plus all rules of the semi-decision procedure Py for CLLS,, in Sec. 6.3.1 and 5.6

that are deterministic if correspondence and symmetric group parallelism

are literals rather than formulas, plus (D.A\.lam) and (D.A.distr.inv).

6.4.2 The Rules in Detail

Section 6.4.1 shows the procedure Pg. The first block of rules are the core rules dealing
with group parallelism literals, but this time geared to the special case of beta reduc-
tion formulas. The main idea is to copy all material from the reducing tree to the
reduct, except the part between the hole of the context and the roots of body and ar-
gument, and except the parts below the holes of the body. The rule (UB.init), which is
(A1,...,Am) ~ (B, ..., Bny) Nseg(Ay) ANseg(By) — co(Ay, By)(Z;)=Wj, for 1 <k < m,
Ay =20/Z0, ..., Zmy,s By = Wo /Wi, ..., Wp,,and 0 < j < my, states that in two paral-
lel segment terms, the two roots correspond, and matching holes correspond as well. The
difference between this rule and (GP.init) is that (UB.init) demands seg(Ay) and seg(By)
in the premise, while (GP.init) states it in the conclusion (which makes it a distribution
rule). The rule (UB.new), of the form betax, , A Xo<*Z A Z#Xy — 37" .u-co;(Z)=2',
states that all variables of the reducing tree have a correspondent in the reduct ex-
cept X9 (which is the lam-labeled variable between C and B, see Fig. 6.11). The rule
(UB.copy.lab) has the form beta, A Zy:f(Z1,...,Zs) A /\ﬁ:o u-co;(Zy)=2Z;, N Zo#X1 A
/\;-L:1 Zo#Y; = Z):f(Z1,...,Z;). It states that all labeling literals of the reducing tree
reappear in the reduct, except the labels of X, Xy and Y7 through Y,,. (UB.copy.dom)
says that all dominance literals of the reducing tree must also hold between the corre-
sponding variables in the reduct: beta, A /\z:1 u-coi(Zy)=2;, N Z1\<*Zy — Z1<*Zj. The
rule (UB.copy.ineq) copies inequalities. All inequalities from the reducing tree are copied
to the reduct, except the following: The correspondent of X; and the correspondent
of B’s root are equal in the reduct. And the correspondent of Y; and the root of the
i-th argument copy are equal in the reduct. (UB.copy.ineq) expresses this by stating
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betan, A Aj_y w-coi(Zp) =24 A Z#Za N No—y (Ze# X1 NN_y ZedY5) — Z3#7.

The rule (UB.\.in), which is beta, A\7_, u-co; (Zx)=ZLANZ1)=Zy — \(Z})=Z}, copies
lambda binding literals from the reducing tree to the reduct. The rule (UB.\.out), of
the form beta,, A A(Z1)=Z2 A u-co; (Z1)=Z] N (Z2<* Xy V Zy L Xo) = X(Z])=2Z>, handles
the case of a lambda binder outside the reducing tree. The rule (UB.A.1), of the form
betaxz,n A )\(Zl):Z2 A u—co;(Zg):Z£ — XoQ*Zl N Zy 7é X1 N2, ;lé X9 A /\;-L:l Al ;lé Y}',
states that if the lambda binder is inside the reducing tree, then so is any bound variable.
The rule (UB.).2) is a distribution rule, of the form beta,, AX(Z1)=2Z5 Au-co; (Z1)=Z] —
Xo<*Zy V Za<t Xy V Zy1 Xy: Given a bound variable in the reducing tree, it guesses
whether the binder is in the reducing tree too. The rule (UB.\.inverse) is beta; A
N Y Z0)={Z1,..., Zn} N Ny u-co1(Zk)=2; — N NZ))={Z,...,Z],}. Tt copies in-
verse lambda binding literals, i.e. the information that all variables bound by a lambda
binder are known. It is a special case of (GP.\.inverse). The segments of a beta reduc-
tion literal, those in the reducing tree group as well as those in the reduct group, do not
overlap properly, so we need not consider the possibilities that any correspondents of
Z1, ...y 2y might be bound somewhere else than at the correspondent of Zj. Note that
the rule (UB.).inverse) is restricted to linear redexes: In a linear redex there is exactly
one occurrence of the bound object-level variable. For the nonlinear case, we have to
take recourse to disambiguation. In section 6.6 we will discuss an example that shows
why nonlinear redexes are a problem.

Now that we have correspondence literals rather than correspondence formulas, we have
to make the connection between them and path literals explicit by saturation rules:
The rules (UB.co.path) and (UB.co.corr), which are co(D,D')(U)=V — p(%0 V‘I;O) for
D = Zy/..., D' = Wy/... and p(2"°) A (A1,..., An) ~¥™ (B1,...,By) AU €
b(Ax) — co(Ag, Bg)(U)=V for 1 < k < m, Ay, = Zy/ ..., B = Wy/ ..., describe this
connection. The rule (UB.co.u-corr), of the form co(D,D’)(U)=V — u-co;(U)=V for
(D,D") € {(C,C"),(B,B’), (A, Al)}, infers underspecified correspondence literals from
normal ones. Note that if D’ = A], then we can only infer u-co;(U)=V for that same
i. Because of this rule, we can use the (UB.copy...) rules to copy information for
variables for which we know which segment term they are in, as well as for variables
for which we only have underspecified correspondence literals. The rule (UB.sym) is
A~B — A~ BAB~Y™ A Since we now have ~*™ literals rather than formulas,
we make the connection between them and group parallelism literals explicit in this rule.

The rules (D.diffParent), which is Z:f(Z1,...,Zn) A Wig(Wy,...,Wy) N Z#W —
/\T:1 /\i:l Zj#Wy, and (D.diffChild), which is Z:f(Z1,...,Zn) NW:if(Wi,...,Wy) A
Zi#FW; — Z#W for 1 < j < m, infer additional inequalities: Two inequal parent vari-
ables must have inequal child variables, and vice versa. We will need these rules to trigger
(UB.new).

Design decisions. The procedure Pg contains three distribution rules: the rule
(UB.A.2), which lets us choose between (UB.\.in) and (UB.X.out) for copying lambda
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student

(b)

student

O o
payatt /%3

Figure 6.12: A simple beta reduction step: “Every student does not pay attention”

binding literals; the rule (D.A.lam), which determines the label of a binder; and the rule
(D.\.distr.inv), which enforces compliance with an inverse lambda binding literal. Why
do we allow these distribution rules, and omit all others?

The idea is that the procedure Pg, which focuses on beta reduction steps, has to make
decisions concerning lambda binding, because we may need the information on lambda
binding for subsequent beta reduction steps; all other disambiguation rules, which may
lead to an enumeration of readings in a constraint from the linguistic application, are
avoided. In particular, the procedure Pg does not make decisions about anaphoric binding
literals, nor does it disambiguate scope ambiguities like the one in Fig. 2.8, p. 34.

6.4.3 Examples

Figure 6.4 (a), repeated (and extended by the root variable of the context) in Fig. 6.12
(a), shows the constraint that represents the semantics of the sentence “Every student
does not pay attention.” This constraint in picture (a) is the reducing tree. To perform
a single underspecified beta reduction step, we extend it by

(C,B,A) =8 (C',B', A}) A XoLX], with
C=Xo/X1, B=Yy/Y1, A=X3/,
C'=Xp/X1, B'=X1/Y|, Aj=Y]/

for new variables X, X],Y{. Actually, this is inexact: Instead of the disjunction seg(C)
that is part of redtreex, (C, B, A) (which is itself part of the beta reduction formula) we
add Xo<*X; A X1=X1, and likewise for all other seg(.) formulas.

Now the procedure Pg can work as shown in Fig. 6.13. To be able to apply (UB.new)
and the (UB.copy...) rules, we have to derive inequalities: For (UB.new) we have to
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(1) Z(ﬁéXQ (D.lab.ineq) (7) Zo;éYl (D.lab.ineq)

2) Zi£X, (D.lab.neq) | (8) Z):@(Z!,7})  (UB.lab)

(3) Zo#£X, (D.iffChild) | (9) Zi1£X, (D.lab.ineq)

(4) 3Z!.u-co1(Z;)=Z! (UB.new) (10) Z1#Y1 (D.lab.ineq)
i=0,1,2 (11) Zj:mot (UB.copy.lab)

(5) Z1#Xo (D.lab.ineq) (12) X(<*Z) (UB.copy.dom)

(6) Zop#X4 (D.diffParent)

Figure 6.13: Computation of Pg on Fig. 6.12.

Figure 6.14: A nonlinear redex: Constraint for “Peter and Mary do not laugh.”

show that Zy, Z1, Z5 in Fig. 6.12 (a) are not the variable X9 between the context and the
body. And for (UB.copy.lab) we have to show that they are not equal to a hole of the
context or the body segment term. Figure 6.13 only shows the part of the computation
that pertains to Zy, Z1, Z>. For all other variables in the reducing tree, it is known inside
which segment term they are. So to them the “normal” group parallelism literal rules
(of Sec. 6.3.1) apply. The result of the computation is the constraint in Fig. 6.12 (a) plus
the constraint in Fig. 6.12 (b).

Figure 6.14 (a) shows the constraint that represents the semantics of the sentence “Peter
and Mary do not laugh.” This constraint contains a nonlinear redex: The lambda binder
X5 binds two occurrences of the object-level variable, at Y and Y;. We extend the
constraint in (a) by

(C,B, A) =8 (C",B', A}, AY) A Xo LX)y with
C=Xy/X1, B=Yy)/(11,Y2), A=X3/,
C'=Xy/X1, B =X{/(YY;), Al=Y{/,A, =Y,/
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for new variables X{, X{,Y/,YJ. Again, this is inexact, since we do not add disjunctions
for the seg(.) formulas: In the case of B we add Yp<*Y; AY;=Y; AY1 1Y, for 1 = 1,2, and
likewise for B’.

From this constraint, the procedure Pz computes the constraint in Fig. 6.14 (a) plus (b):
As the redex is 2-ary, the rules produce two copies of the negation fragment, one via
u-co; and one via u-coy. We return to this example in a minute.

6.4.4 Properties of the Procedure Pg

Soundness. As we have defined in Def. 3.3 (p. 62), we call a saturation rule sound iff it
is an equivalence transformation. And as we have remarked there, it suffices to show that
the left-hand side of the rule entails the right-hand disjunction because we are working
in a saturation framework.

(UB.init) is sound for the same reason as (P.init) is (see Sec. 4.2.1, p. 89). The u-co;
literals in (UB.new) through (UB.copy.ineq) are fulfilled because redtreex,(C, B, A) is
part of the formula beta,: The segments interpreting C, B, A do not share any nodes.
Concerning (UB.new), if Xy is the root variable of C' and X, the lam-labeled variable
that is the child of C’s hole, then all variables that are inside b(X/) and inequal to
X5 must denote a node in either the context, the body or the argument segment of
the reducing tree. According to the definition of correspondence functions (Def. 2.3,
p. 27), (UB.copy.lab) must additionally exclude the holes of B and C before copying
labeling literals. Similar arguments yield the soundness of the rules (UB.copy.dom)
and (UB.copy.ineq). The rule (UB.\.in) is sound by the conditions (8.\.same) and
(B.A.diff) of the beta reduction relation (Def. 6.2, p. 142). (UB.A.1) is sound because
a lambda binder must dominate the variables it binds, so if we have A(Z;)=Z2, and
Zy € b(Xy/) and Zy#Xy are in ¢, then Z; must be dominated by X, and must
not be the hole of either C', B or A by condition (gp.A.hang) of the group paral-
lelism relation (Def. 6.3, p. 144). (UB.A.2) is obviously sound. (UB.\.inverse) is a
simplified version of (GP.\.inverse): (UB.\.inverse) is beta; A A™1(Zo)={Z1,..., Zm} A
Mgucor(Zy)=2;, — X YzZh)={Z;,...,Z],}. (GP.\inverse) is A 1(X)=S; A
cop, (A4, B)(X)=Y A co™(4,B)(S51)=82 U S5 A Ay, A\(V)=Y A Apes, A\V)AY —
A 1(Y)=S,. Since the redex in (UB.\.inverse) is linear, Zy will have exactly one cor-
respondent in the reduct, as will Z1,..., Z,,. Furthermore all of the correspondents of
Zi,...,Zmy have to be bound at the correspondent of Zy by (UB.\.in). So the distinc-
tion of Sp and S3 which is necessary in (GP.A.inverse) can be omitted in (UB.\.inverse)
because S3 will always be empty. Returning to the question of soundness: We have
shown the soundness of (GP.A.inverse) in Lemma 6.5, so (UB.\.inverse) is sound as well.
(UB.co.path) and (UB.co.corr) spell out the connection between correspondence literals
and their previous definition as a formula, and (UB.sym) does the same for symmetric
group parallelism literals. (UB.co.u-corr) is sound because the context, body, and argu-
ment segments of the reducing tree must be disjoint. (D.diffParent) and (D.diffChild)
are obviously sound.
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Saturated constraints. It is not easy to describe what a Pg-saturated constraint looks
like. It need not be saturated under Py, because in Pg we have left out a number of rules.
The procedure Pg may have partially solved the beta reduction formulas occurring in
the input constraint. Below we describe conditions under which the procedure can solve
beta reduction formulas.

Fairness. Above (p. 155) we have stated a fairness condition for the procedure Py,.
For the procedure Pg, we extend this condition canonically by treating (UB.new) the
same way as (P.new) and (GP.new).

Satisfiability of saturated constraints? While the procedure Py, checks a constraint
for satisfiability and enumerates readings for a linguistically relevant constraint, the pro-
cedure Pg is concerned just with beta reduction formulas. Accordingly, a Pg-saturated
constraint need not necessarily be satisfiable. In the procedure Pg we have left out,
among other rules, (D.distr.child), which means for example that Pg cannot detect the

unsatisfiability of this constraint: R I
ae b

Which constraints can the procedure handle? The procedure Pg allows us to
perform an underspecified beta reduction step for many examples from underspecified
natural language semantics without any disambiguation. Why is this so? We now take
a closer look at the constraints that occur in the linguistic application.

The semantic representation of a sentence is constructed according to the syntactic struc-
ture of the sentence, in the syntax/semantics interface. A recent overview paper on CLLS
by Egg, Koller and Niehren [41] describes the syntax/semantics interface currently in use
with CLLS. With this semantic construction, a CLLS constraint representing a sentence’s
semantics has the following properties: The constraint possesses a root variable as defined
in Def. 3.7, p. 64: a variable that dominates all others. The constraint does not contain
any disjointness literals X 1 Y. For all lam-labeled variables X, there exists an inverse
lambda binding literal A=!(X)={...}. If the constraint contains labeling literals X:f(...)
and Y:g(...) for two distinct variables X,Y", then it also contains X#Y', independent of
whether f and g are the same symbol. And finally, the constraint graph has no “empty
fragments”, fragments that consist of a single node.

To perform a single underspecified beta reduction step, we extend such a constraint as
follows*:

e We add a beta reduction formula (C, B, A) =8 (C', B', A}, ..., Al) for appropriate
segment terms C for the context, B for the body, and A for the argument. This

4A discussion of a procedure for underspecified beta reduction that automates this step follows in the
next section.
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beta reduction formula also states that any two distinct holes of the body segment
term B are disjoint: If B = Y/Y1,...,Y, then we also add Y; LY for 1 <i < j <mn.

e The variables that form the reduct segment terms C’, B', A ,..., A/, are all fresh.

e If Z is the root variable of the constraint and C" = X}/ ..., then we also add X LZ.

What can Pg compute for such a constraint ¢? Suppose C = Xo/X1, B=Y/Y1,...,Y,,
and X, is the parent of X5 like in Fig. 6.11. Now first, if we have a variable U with
Xo<*U € ¢, then Pg can derive either U=X3 or U#X> using the fact that all variables
U,Us with Uy:f(...), Us:g(...) are inequal in ¢, the fact that we have no empty frag-
ments, and the rule (D.diffParent). For such a variable U we can further derive either
U=X; or U#X4, and U=Y; or U#Y; for 1 < i < n, in the same way. This is all the
information that is needed for the (UB.copy...) rules of Pg.

For all variables in the reducing tree that have a lambda binder, we additionally need to
know whether (UB.\.in) applies or (UB.\.out). This is determined by (UB.A.2). So we
can copy lambda binding literals from the reducing tree to the reduct. But how about
inverse lambda binding literals? The rule (UB.\.inverse) is restricted to linear redexes,
in which there is exactly one occurrence of the bound object-level variable. So we can
copy inverse lambda binding literals with Pg only if the redex that we are working with is
linear. Otherwise we need to fall back on the procedure Py, to disambiguate the position
of the lambda binder and the bound variables. But note that this does not mean that
we cannot handle nonlinear redexes at all: The second example for Ps that we have
discussed in Sec. 6.4.3 contained a nonlinear redex, and Pg could handle it without any
problem. This was due to the fact that in this case the D segment term did not contain
any lambda binder or bound variable.

Since the reducing tree and the reduct in ¢ are disjoint, and the variables of the reduct
are not involved in any (group) parallelism literals except the one introduced by the beta
reduction formula, we can say in advance how many new variables P, will add at most
to compute the reduct: as many variables as Xy dominates in ¢. So if the constraint ¢
contains no further (group) parallelism literals that could cause trouble (or if we have
temporally removed any such literals), Pg terminates on ¢.

6.5 Underspecified Beta Reduction

Underspecified beta reduction means performing a series of beta reduction steps on an
underspecified description of a lambda term, with the aim of achieving a description
of a first-order term. This task can be broken up into two parts, each handled by a
different procedure: on the one hand a procedure that performs a single beta reduction
step (i.e. solves a beta reduction formula), and on the other hand a procedure that
performs multiple beta reduction steps one after the other, in each step identifying a
redex, constructing a suitable beta reduction formula and calling the first procedure to
have the constraint solved.
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Z/{BPTOC(SOa Z, X) =
if all reducing trees in ¢ below X are reduced then return (¢, X)
else
pick a reducing tree redtreey, (C, B, A) in ¢ that is unreduced,
a reducing tree with an n-ary redex such that X is the root variable of C'
add ¢ = (C,B, A) =P (C",B', A,..., Al) to ¢
where C', B', Al, ..., A], are segment terms consisting of fresh variables
let C' = X|/..., then
add ¢' = Z":f(Z, X{) to ¢ for a fresh variable Z'
for all Proc-solved forms ¢’ of ¢ A ¢ A<' do UBproc(¢', Z', X))
end

Figure 6.15: Underspecified beta reduction

In the current section we present a procedure for the second part of the task. It knows a
“current term” within the constraint, within which it identifies a reducing tree. It adds
a suitable beta reduction formula to the constraint and solves it using either Py or Pg.
This yields a new “current term”, the reduct. So the whole constraint represents a chain
of lambda terms that arise during the beta reduction process, and the “current term” is
the latest lambda term in this chain.

This procedure UB for underspecified beta reduction is shown in Figure 6.15. It is
parametrized by a procedure Proc for computing the result of a single beta reduction
step. As arguments, UB takes a constraint ¢, a root variable Z € Var(p) of the whole
constraint ¢, and a variable X which is the root variable of the “current term”. For
example for the constraint in Fig. 6.12 (a) both the root variable Z and the current term
root variable X would be X.

The procedure selects an unreduced redex within the “current term”. By this we mean a
reducing tree (C, B, A) such that (C, B, A) —=# (C',B', A}, ..., Al) is not in ¢ for any seg-
ment terms C’, B, A, ..., Al and a suitable n. Once such an unreduced reducing tree
redtreex, (C, B, A) is found, the procedure UB adds a description of the reduct, con-
structed out of fresh variables, and forces the reduct to be a disjoint position from all of
¢ by adding the labeling literal Z': f(Z, X)) for a new root variable Z'.

To this constraint the procedure Proc is applied to solve the beta reduction formula.
This procedure can be either Py or Ps. Finally, UB calls itself recursively with each new
constraint that Proc has computed. The new root variable is Z’, and the new current
term starts at X{, the root variable of the reduct.

6.6 Discussion: Nonlinear Redexes

The rule (UB.\.inverse) requires the redex of the reducing tree under consideration to
be linear, with exactly one occurrence of the bound object-level variable. So what does a
constraint look like that this rule cannot handle? Figure 6.16 (a) shows such a constraint.
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var var

Figure 6.16: A problematic nonlinear redex

There is a reducing tree starting at X, with two occurrences of the bound object-level
variable, and there is a D segment term starting at Y;. This segment term again contains
a lambda binder, Y5, which binds two occurrences of its object-level variable.

Figure 6.16 (b) shows the result of a beta reduction step at the reducing tree that starts
at Xi. This reduct contains two copies of the D segment term starting at Y;. Now
suppose the constraint shown in (a) contains A~ (Y3)={Y3, Y5} for the lambda binder Y,
within the D segment term. Then what is A~(Y;)? This actually depends on whether
Y5 is inside the context or the argument segment term of the reducing tree in (a). If Y is
inside the context, then Y and Y3 denote the same node, and A~ (Yy)={Y{, Y{, Y, Y{'},
but if Y5 is inside the argument segment term, then Y; and YJ' lie at disjoint positions,
and A\~ H(Y))={Y{,Y{}.

There is another interesting problem with this constraint. Suppose that we do have
inverse lambda binding literals for Y, and Y’ in picture (b), and that we want to do
a second beta reduction step, this time for the reducing tree starting at Y{. Then the
reduct of this beta reduction step will contain two copies of the fragment starting at Y.
Each of these copies contains another reducing tree (again supposing that we get the
inverse lambda binding literals from somewhere). And if we then perform another beta
reduction step at one of these reducing trees, this gives us two copies of the other copy,
and so on at infinitum.

Both problems disappear if we disambiguate the position of the D segment term. But
how can we solve these problems without enumerating readings? I think a solution to
this problem would be to put up a constraint stating that the redexes at Y{ and Y} have
to be reduced simultaneously. It is easy to list all the variables bound by Yy and Y.’
together: we must have A= (Yy) UA~L(Yy")={Y/, Y{, YY", Y{'}. Furthermore, if we reduce
at both redexes at the same time, we can make sure that neither the fragment starting
at Y] nor the one starting at Y]’ gets copied to the reduct more than once.
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6.7 Summary

Underspecified beta reduction is beta reduction on partial descriptions of lambda terms.
While a naive rewriting approach may generate spurious solutions, a sound approach
is to give a declarative description of the result of the rewriting step using parallelism
constraints.

We have defined the beta reduction relation, which holds between the reducing tree and
the reduct. Furthermore we have introduced the group parallelism relation, a generaliza-
tion of the parallelism relation that relates two groups of segments instead of two single
segments, the only difference being the conditions on binding. We have shown that the
beta reduction relation can be expressed by the group parallelism relation plus condi-
tions detailing the relative position of the context, body, and argument segments in the
reducing tree, and likewise of the context, body and argument segments in the reduct.
Accordingly, we have defined the language CLLS,,, which extends the language CLLS by
group parallelism literals and inverse lambda binding literals. In this language, a beta
reduction formula expresses that a beta reduction relationship holds.

We have presented a sound and complete procedure Py for CLLS,,. This procedure can
also compute the result of a single beta reduction step.

However, performing underspecified beta reduction and enumerating readings are two
separate tasks, and we would like to keep them separate. So we have introduced a second
procedure Pg for solving beta reduction formulas, which can perform an underspecified
beta reduction step without any disambiguation for many examples from underspeci-
fied semantics. This is made possible by the specific layout of the segment terms in a
reducing tree, along with underspecified correspondence literals.

Finally we have discussed a procedure for underspecified beta reduction. It identifies a
reducing tree in the current term to be considered, generates a suitable beta reduction
formula, and calls either Py or Pg to solve it. This yields a new current term under
consideration, which may again be reduced.



174 Underspecified Beta Reduction



Chapter 7

Modeling Ellipsis with Group Parallelism and
Jigsaw Parallelism

The current chapter focuses on modeling ellipsis: We look at problems for modeling
ellipsis with parallelism constraints, and we show how these problems can be solved.

e Up to now we have assumed that the semantics of a contrasting element is a subtree
of the lambda structure. But there are cases where the semantics of a contrasting
element forms a segment rather than a subtree. To put it differently: In these
cases, a group of tree segments for the source sentence semantics are structurally
isomorphic to a group of tree segments for the target sentence semantics.

This problem can be solved using group parallelism rather than normal parallelism
for modeling ellipsis. Group parallelism is a canonical extension to parallelism that
we have introduced in the previous chapter, in the context of underspecified beta
reduction. The difference between parallelism and group parallelism lies in the
conditions on binding, where the group parallelism conditions on binding are more
permissive.

e The semantic contribution of a contrasting element may partake in scope ambigu-
ities. In some cases this means that a disjunction of group parallelism literals is
needed to model the meaning of an elliptical sentence, because the position of the
contrasting element semantics is not sufficiently specified. This is unsatisfactory:
We want our modeling language to be flexible enough to model ellipsis without
explicit disjunction.

We solve this problem by introducing jigsaw parallelism. While the jigsaw paral-
lelism relation does not add any expressive power with respect to the group par-
allelism relation, a jigsaw parallelism [iteral may express a disjunction of group
parallelism literals.

7.1 The Phenomenon

In this section we discuss ellipsis cases that can only be modeled by a language that goes
beyond normal parallelism constraints.

175
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7.1.1 Modeling Ellipsis with Parallelism Constraints

We briefly recall the way we model ellipsis with parallelism constraints. Consider again
the simple elliptical sentence (7.1), repeated from (2.5).

(7.1) Every man sleeps, and so does Mary.

'#d/\'
: 0 Yo

mary . Y1
@ X4 lam™e.
every man : \\\XO/XINYO/YI

.}0\'\
sleeps var

Figure 7.1: Constraint for “Every man sleeps, and so does Mary.”

We represent the meaning of the sentence by the constraint in Fig. 7.1, repeated from
Fig. 2.10: The meaning of the source sentence “every man sleeps” (represented by the
part of the constraint graph dominated by Xj) is the same as the meaning of the target
sentence (represented by the part of the constraint graph dominated by Yj), except for
the contributions of the two subjects “every man” and “Mary”. In each model of the
constraint, the segment denoted by Xy/X; must be structurally isomorphic to the one
denoted by Yy/Y;.

7.1.2 Problematic Cases

Consider the elliptical sentences (7.2) through (7.6). Sentence (7.2) has two pairs of
contrasting elements: On the one hand “George” in the target sentence contrasts “Dan”
in the source sentence; on the other hand the “not” in the target sentence contrasts to
an empty contrasting element in the source sentence. So, the source sentence semantics
except for the contribution of “Dan” has the same structure as the target sentence se-
mantics except for the contributions of “George” and “not”. Seen as a lambda structure,
the semantics of this sentence follows the general schema shown in Fig. 7.2 (b): The
semantics of “not” is sketched as the deeper shaded segment within the right segment.
The remainder of the right segment, the segments a; and s, put together have the same
structure as the segment o in the left of picture (b).

(7.2) Dan left, but George did not.
(7.3) Bob has wisely walked to work, at least he has claimed he has. [56]

(7.4) Heute hat sich anscheinend Peter das letzte Stiick Kuchen genommen, und
gestern hat er das auch getan. [106]
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(7.5) Every colleague paid attention, but every student did not.

(7.6) John went to the station, and every student did, too, on a bike.

(b)

Figure 7.2: Cutting out a contrasting element in the middle: extra contrasting element
(a) in the source sentence, (b) in the target sentence

Sentence (7.3) follows the schema in Fig. 7.2 (a): The target sentence means the same
as “...at least he has claimed he has walked to work”. The “wisely” of the source
sentence does not reoccur in the target. So the deeper shaded segment within the left
segment of Fig. 7.2 (a) represents the meaning of “wisely”. Sentence (7.4) evinces the
same phenomenon as sentence (7.3), but for German. Sentences (7.5) and (7.6) conform
to the schema in Fig. 7.2 (b): In sentence (7.5) the “not” in the target sentence is a
contrasting element that is parallel to nothing in the source sentence, and the same holds
for “on a bike” in the target sentence of (7.6).

How can we describe these phenomena? In both pictures of Fig. 7.2, we have two segments
on one side being structurally isomorphic to one bigger segment on the other side. We
have decided on the generalization shown in Fig. 7.3:

e All cases of ellipsis that we have seen in previous chapters follow the schema, de-
picted in Fig. 7.3 (a). The semantics of the source and the target sentence, the
subtrees my/ and 1/, have the same structure, except for the semantics of the
contrasting elements, the subtrees 71/ and 1/, drawn as deeper shaded areas.

e The cases of ellipsis that we have seen in the current section can be generalized
to the schema in Fig. 7.3 (b): The semantics of the source and target sentences,
the subtrees mp/ and 1/, have the same structure, except for the semantics of
the contrasting elements, the segments mi/mo and 11 /1s. (Again, the excepted
segments are drawn as deeper shaded areas.)

Note that there are mixed cases, with subtree-shaped as well as segment-shaped
contrasting element semantics. (In fact, all the examples we have considered above
are of this type.) Note further that in the examples that we have considered above,
we have either a non-singleton excepted segment for the source sentence, and a
singleton excepted segment for the target (sentences (7.3) and (7.4)), or vice versa
(sentences (7.2), (7.5), (7.6)), where a singleton segment has the form 7 /7 for some
node 7.

The sentences (7.5) and (7.6) are interesting for a further reason. We focus on (7.5), the
simpler of the two. The target sentence means the same as “...but every student did not
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(a) (b) T, Yo
Lo Yo 1 ~ 1
~ @ 2

Figure 7.3: Modeling ellipsis: semantics of the contrasting element (a) a subtree, (b) a
segment of the sentence semantics

pay attention”; it contains a scope ambiguity between “every student” and ”"not”. In the
reading with “not” taking wide scope, the sentence says that it is not the case that all
students pay attention. In the reading with “every student” taking wide scope, it states
that of all students it is true that their minds are wandering.

@)

NSl N S

Figure 7.4: Sketch of the two readings of sentence (7.5): “Every colleague paid attention,
but every student didn’t.”

These two readings are sketched in Fig. 7.4. The darker shaded segments are the seman-
tics of the contrasting elements. Note the relative position of the two excepted segments,
the one for “every student” and the one for “not”: In Fig. 7.4 (a), the “not” segment
dominates the “every student” segment, while in picture (b) the two excepted segments
are in disjoint positions from each other in the lambda structure. So the target sentence
semantics in (a) follows the schema sketched in the upper right-hand corner of that pic-
ture: We have a included segment in the middle with one excluded segment above and
another below. For the target sentence semantics in (b), we have again sketched the
schema in the upper right-hand corner: It comprises two included segments separated by
one excluded segment, and another excluded segment in a disjoint position.

7.2 Modeling Ellipsis with Group Parallelism Constraints

How can we model the ellipsis phenomena that we have just sketched? Reconsider the
schema in Fig. 7.3 (b). We have two parallel groups of segments, each consisting of two
segments. We have seen something similar in the previous chapter, when we studied un-
derspecified beta reduction. And in fact we can now reuse the group parallelism relation,
which we introduced to model the result of an underspecified beta reduction step.

Recall that the group parallelism relation relates groups, tuples of segments, of a lambda
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AN

var var var var

(@)

Figure 7.5: Possible bindings in a group parallelism.

structure. Group parallelism

(al,...,an)w(ﬂl,...,ﬂn)

holds if first, there exists a correspondence function for each segment pair «;,3;, 1 <
1 < n, and second the group parallelism conditions on lambda and anaphoric binding are
met. The conditions on lambda binding are sketched in Fig. 7.5: For a var-labeled node
bound within the same segment, the corresponding node is bound within its own segment
as shown in picture (a). For a var-labeled node of a segment «; bound inside a different
segment «; of the same group, the correspondent is bound at the corresponding place
within f3;, as shown in picture (b). This condition constitutes the main difference from
normal parallelism. And for a var-labeled node bound outside its group, its correspondent
is bound by the same binder, as shown in picture (c). Apart from that we have the familiar
exclusion of hanging binders. The conditions on anaphoric binding are extended in the
same way: An anaphoric binder between two segments of one group has to be paralleled
by an anaphoric binder between the corresponding segments of the other group.

In the previous chapter we have defined the language CLLS,,. It extends CLLS by inverse
lambda binding literals and by group parallelism literals of the form

(A1,...,An) ~ (Bi,...,Bm).

for segment terms Ai,... Ay, B, ..., By,. We can use this language to model the seman-
tics of the ellipses in the previous chapter as follows.

a
@ 'ﬁo/nd»\@,‘ Yo
left -/.(%- X neg o/\ Y5

george . Y1
((Xo/X0), (Xo/X1)) ~ ((Yo/Y0), (Y2/Y1))

Figure 7.6: Constraint for sentence (7.2): “Dan left, but George didn’t.”

We first consider sentence (7.2), “Dan left, but George didn’t.” Figure 7.6 shows the
constraint representing the semantics of this sentence. We want to state that the subtrees
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Xy/ and Yy/ are structurally isomorphic, except for the contributions of “Dan” and
“George” and “not”. Here we have done this by stating two pairs of not-excepted segment
terms: The target segment term above the contribution of “not” and its counterpart in the
source, and the target segment term below the “not” and its counterpart. The first pair
of segment terms, Xo/ X and Yy/Yp, denote “singleton segments” consisting of just one
node. We have chosen this representation because it generalizes to more complex cases
where the segment terms above the excepted segments denote non-singleton segments.

.......... Q. s Y,
Xq lam 1 lam not o/\

~ .
every colleagug » . every studen o Y;

pay_att. vare

(Xo/X2), (X2/X1)) ~ (Yo/Y2), (Y3/Y1)) V ((Xo/X1,X3),(X3/)) ~ (Yo/Y1,Y2), (Y3/))

Figure 7.7: Constraint for the sentence (7.5): “Every student paid attention, but every
colleague didn’t.”

Now we turn to sentence (7.5), “Every colleague paid attention, but every student didn’t.”
The constraint representing the semantics of this sentence is shown in Fig. 7.7. As
sketched in Fig. 7.4, this sentence has two readings, and to model its meaning using the
language CLLS,;, we have to use a disjunction of group parallelism literals: The situation
where “not” takes wide scope (Fig. 7.4 (a)) is described by the first disjunct in Fig. 7.7:
Y3 dominates Y;. The situation where “every student” takes wide scope (Fig. 7.4 (b)) is
described by the second disjunct: Y; and Y5 lie in disjoint positions.

Note that in the reading sketched in Fig. 7.4 (b), a var-labeled node in the target “paid
attention” fragment is bound by a binder in the “every student” fragment. This lambda
binding obeys the condition sketched in Fig. 7.5 (b), i.e. it connects a var-labeled variable
in one segment to a lam-labeled variable in another segment of the group. So to model the
semantics of sentence (7.5), we truly need group parallelism literals; normal parallelism
would not suffice because it does not allow for this kind of lambda binding.

However, this model is not quite satisfactory: We would like to model the meaning of
sentences like this without resorting to disjunction. In the rest of this chapter, we show
how this can be done.

7.3 Jigsaw Parallelism

In this section we introduce the jigsaw parallelism relation, which relates pairs of jigsaw
segments, and we extend the language CLLS, by jigsaw parallelism literals, which are
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interpreted by the jigsaw parallelism relation. In the next section we then show how
jigsaw parallelism literals can be used to model the semantics of sentences like (7.5)
without disjunction.

Figure 7.8: Sketch of (a) a jigsaw segment «/vi,72,73 and (b) its remainder set
{011701270[37014}

We start with a sketch of the idea of jigsaw segments and jigsaw parallelism, then we
define the concepts formally.

A jigsaw segment has the form

a/fyla"'a’yn

for segments a,7v1,...,7, of a lambda structure. It can be read as “the segment «
except for the segments vq,...,v,”. What does that mean? Consider Fig. 7.8. Picture
(a) shows a sketch of a jigsaw segment «/71,y2,73. The segment « has two holes, and
segments vy, y2,7s are being excluded from «. <y overlaps only partially with «, and
3 is a singleton segment. Picture (b) shows what we get when we exclude ~vi,...,73
from «. It is a set of segments, the remainder set {a1, a2, a3, a4} of a/v1,v2,v3: The
segment « is cut along the segments 1,2, 73 (hence the name jigsaw segment). We call
the excluded segments (in our example 71, ...,73) gamma segments, and the elements of
the remainder set (in our example «q,...,ay) alpha segments for short.

Figure 7.9: Sketch of jigsaw parallelism a/vy1,7v2,73 ~ &' /], V5, 74

Jigsaw parallelism relates pairs of jigsaw segments. We write

AV~ AT
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to state that the jigsaw segments «/vy1,...,v, and &/9],...,,, are parallel. The two
jigsaw segments need to have an equal number of gamma segments as well as an equal
number of alpha segments. Two jigsaw segments are parallel if group parallelism holds
between their remainder sets. How do we determine which pairs of alpha segments should
be parallel in the group parallelism? We use the relative positions of alpha and gamma
segments. Consider Fig. 7.9, a sketch of a jigsaw parallelism a/v1,v2,7v3 ~ &' /7], 75, 75-
The order of gamma segments is important: It states that 7; is at the same position with
respect to « that ] occupies with respect to o/, and likewise for the pairs 72,7+, and
7v3,75- This order then determines that segments «; and ) have to be parallel because
their roots coincide with the holes of matching gamma segments 1,7 and their holes
coincide with the roots of matching gamma segments 72,7, and -3, v4. In the same way,
all segment pairs a;,«}, 1 < i < 4, are matched. So the group parallelism that needs
to hold in this case is (a1, a9, a3,a4) ~ (&, dh, oh, a)). Note that matching gamma
segments y;,y, do not need to have the same structure; after all, they are ezcluded from
the parallelism.

7.3.1 Jigsaw Segments

We now define jigsaw segments and remainder sets. We proceed in two steps: First we
define unary jigsaw segments a/7y, then we generalize the definition to jigsaw segments
with several gamma segments.

Two segments «, 8 of a lambda structure overlap properly iff either b= (a) Nb~(8) # 0,
or « is a singleton with r(a) € i(5). (Recall that by Def. 2.2, p. 27, the set of “interior
nodes” i(f) is b= (8) — {r(B8)}.) We call a segment « of a lambda structure a singleton
iff |b(a)| = 1.

Definition 7.1 (Unary jigsaw segment, remainder set). A unary jigsaw segment
of a lambda structure L is a tuple a/y of segments o,y of L. The remainder set of
a/v, js(a/vy) is defined as follows.

1. js(a/y) = {} if b(e) S b(y).
2. js(a/v) ={a} if « and v do not overlap properly.

3. For non-singleton « to which the first two cases do not apply, let

roots(a/7) = ({r(e)} = b~ (7)) U (hs(y) Ni(a))

holes(cr/) = (hs(ar) — (i(v) U hs(7))) U ({r(v)} Ni(a))

and for m € roots(a/7y), let

holes—of (7, /v) = {1 € holes(a/7) | 7<) and Ar’ € roots(a/7)
such that (matn'atep)}

Then

js(a/y) = {mo/m1,..., 7 | mo € roots(e/7y), m1,..., 7 are the

members of holes—of (mg, a/7y) ordered left to right}.
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The segment « is broken into pieces by cutting out v. What remains is a set of segments
rooted by the members of roots(a/y). A remainder segment rooted by 7 has as its
exceptions the nodes in holes—of (7, a/7). They are those members of holes(a/7y) that
are dominated by 7 such that no other member of roots(a/7y) intervenes. Figure 7.10
illustrates the definition of roots(«/7) and holes(a/7y): Picture (a) shows a case where
is “in the middle of” «. Then the root of o and the hole of v are in roots(«/7), and the
root of v and the hole of « are in holes(c /). In picture (b) r(«) lies in i(y). The root of
« is in roots(a /) only if it does not lie in b~ (), and the root of «y lies in holes(c/y) only
if it is in i(v). So roots(a/7y) only contains the hole of v, and holes(«/7) consists of the
hole of a. In picture (c) the hole of «y is also the hole of «. This excludes the hole of 7
from roots(a/y) and the hole of « from holes(c/), which leaves us roots(a/y) = {r(a)}
and holes(a/y) = {r(vy)}. In all three pictures, the remainder set, js(«/7), consists of the
remaining light-shaded segments, conforming to our intuition about cutting « along ~.

root of o,

@ root of o (b)
roots(ou/y) roots(ov/y)

(©
roots(ov/y)

holes(o/v)

hole of .

hole of ol hole of .

Figure 7.10: Illustrating Def. 7.1: roots and holes

This definition is rather complex. To show that it conforms to the above sketch of what a
jigsaw segment is, we prove the following four properties: The remainder set only contains
non-singleton segments, unless « is a singleton; no two members of the remainder set
overlap properly; all are contained within «, and together with -y, they cover all of a.

Lemma 7.2 (Remainder set consists of segments). If a/y is a unary jigsaw seg-
ment, then all elements of js(a/7y) are segments. If a is non-singleton, then so are all
elements of js(a /7).

Proof. By definition 7.1, the set js(a/y) consists of elements my/7y,...,m, such that

mo strictly dominates all of 71,...,m,. It remains to show that m,...,m, are pairwise
disjoint.
The nodes my,...,m, are from the set hs(a) U {r(y)}. The nodes in hs(«) are pairwise

disjoint by the definition of segments. It remains to consider r(y). Suppose r(y) €
holes(«/) and suppose there is a node © € hs(a) with r(y)<*n. If r(y)=n we are
done. So suppose r(y)<Tw. There are two possibilities: Either 7 is in i(y) U hs(7y), then
7 ¢ holes(c/7). Or there is a hole 9 of v with <™ 7, and we have 7 € holes(«/). In this
case all of v lies in the interior of @: On the one hand r(vy) € i(«) since r() € holes(a/7)
and on the other hand <t m and 7 is a hole of a. So we also have 1) € roots(«/y). But
in that case, r(7) lies in holes—of (r(«), a/7), and 7 does not lie in holes—of (r (), a/7)
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but rather in holes—of (¢, a/7), i.e. m and r(-y) are not holes of the same element of the
remainder set js(a/7y). O

Lemma 7.3 (Remainder segments are non-overlapping). Let a/y be a unary jig-
saw segment of some lambda structure, then its remainder set js(a/7y) is a set of segments
that do not overlap properly.

Proof. Only the third case of Def. 7.1 is of interest here. If the root of each segment in
js(a/v) is in hs(y) Ni(a), then the segments lie in disjoint positions. Now suppose js(a/7)
contains a segment «; with r(ay) = r(a) € b~ (y). If js(o/7) contains another segment
ay besides «ay, then we must have r(as) € hs(y) Ni(a). Suppose a1 and ay properly
overlap, then r(ap)<r(az). As r(a) € b~(y) but r(«) dominates a hole of v, we must
have (1)<t r(y). So we get r(y) € i(«) since r(as) € i(«). Thus, r(v) € holes(a/y) and
also r(y) € holes—of(r(1), a/7) since it cannot be dominated by any other element of
roots(c/7v). Which means that a; and «y do not properly overlap, after all. O

This is even true of {v} U js(a/y): The only interesting case is the one where
js(a/y) contains a segment «; with r(a;) = r(a) € b7(y). Suppose «; and v
overlap properly, then r(ai)<*r(y). If r(y) & holes(a/7y), then there must be some
7w € hs(a) N holes—of (r(ay), /y) dominating it. If r(y) € holes(a/7y), then it is in
holes—of (r(ay ), @/7) since r(a1) € b~ (7).

Lemma 7.4 (Remainder segments are contained in «). If a/v is a unary jigsaw
segment of some lambda structure, with js(ca/v) = {a1,...,an}, then J;_; b(e;) C b().

Proof. Again, we need only consider the third case of Def. 7.1. By the definition of
roots(a/7y), js(a/y) contains no segment with a root that strictly dominates r(«). It
remains to check that no segment of js(«/7) extends below a hole of .

Let m € hs(a) with m & holes(a/7). Then 7 € i(v), so r(y)<tn. Let 9 € roots(a/7) with
<*m. Then 9 ¢ hs(y) by the definition of the “interior” function i. If ¢ = r(«) then
1 & b (y) so ¢p<tr(y) and r(y) € i(a). So r(y) € holes—of (¢, /), and the segment
beginning at 1) ends above 7 already.

Now suppose m € hs(a) with © € holes(a/7y). If there is some 3 € hs(y) N roots(a/7)
with r(a)<t¢p<*m, then m € holes—of (1), /) since ¢y € i(a). Otherwise, ® €
holes—of (r(c), a/7): we have 7(a)<" 7 since « is non-singleton. O

Lemma 7.5 (Partitioning a with v and the remainder set). If a/vy is a unary
jigsaw segment of some lambda structure with js(a/vy) = {a1,...,an}, then b(a) C b(y)U

U?:l b(cv;).

Proof. As above, we need only consider the third case of Def. 7.1. Suppose 7w € b(«a) —
Ui~ b(e;) and 7 & b(7y). Then r(a)<*m. There are two cases.
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Either (o) € b (y). Then there must be some 1) € hs(y) such that ¢<*7. Then
Y € i(a), so there exists some j € {1,...,n} with ¢ = r(«;). As m € b(c;), there must
be some w € hs(a;) with w<™ 7. But then by the definition of holes(r/7), we must have
w € hs(a), hence m ¢ b(«), a contradiction.

The other case is r(a) € b~ (y). Then there exists some segment «; € js(a/vy) with
r(cy) = r(a). We have 7 ¢ b(ay) so there must be some 9 € hs(ay) with <t . Since
7 € b(a), it must hold that ¢ ¢ hs(«), so 9 = r(vy) € i(a). Now 7 & b(y), and we can
proceed as in the previous case and get a contradiction the same way. O

We extend the definition from unary to general jigsaw segments, where we can except
several segments vy, ...,7y, from one segment «. To that end, we first generalize our
notion of a remainder set as follows:

Definition 7.6 (Remainder set). Given segments a,...,an,y of a lambda structure
such that for all 1 <4 < j < n, a; and o do not properly overlap; then the remainder
set of {a1,...,a,} and 7y is

jS({Oél, s ,Oén} / 7) —def UJS(O‘Z/V)
=1

Now we can define the concept of a jigsaw segment.

Definition 7.7 (Jigsaw segment, remainder set). A jigsaw segment w of a lambda
structure L9 is a tuple

W=a/ Y, yTn
of segments a,y1,...,vn of LC.

The remainder set of w is
js(w) =der Js(. .- js(s(a/v1) [ v2) - [ )

js(w) is a set of segments. By Lemma 7.3, js(...js(js(a/v1) / 72).-- / 7) is a set of
non-overlapping segments for 1 < i < n, so js(w) is well-defined. We use

b(w) =aer | J b(c).
o' €js(w)

In the following two lemmas we show that the definition of jigsaw segments conforms to
the sketch we have given earlier: The above observations on coverage and partitioning
hold for general jigsaw segments as well, and the order in which gamma segments are
excluded does not matter.

Lemma 7.8 (Partitioning a with the alpha and gamma sets).

Let w=a/v1,...,v. Lemmas 7.4 and 7.5 scale up:
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1. b(w) C b(a).

2. b(a) C U, b() Ub(w).
Proof. We proceed by induction on n.

1. Suppose the first claim is true for wy = « / y1,...,7; for some £, 1 < ¢ < n. Let
js(we) ={c),...,a}}. Then for each 1 <i <k, js(c}/ve41) C b(a}) by Lemma 7.4.
Hence, js(a / y1,- .- ye41) S sl / v1,---57) € b(a).

2. Suppose the second claim is true for wy = a / 7y1,...,7¢ for some ¢, 1 < ¢ < n. Let
is(we) = {af,...,a}}. Thenforeach 1 <i <k, b(a;) Cb(yer1)Ujs(a) /7155 Yet1)
by Lemma 7.5. Hence, b(a) C Ufill b(yi) Ujs(a / v1y---yYe41)-

O

Lemma 7.9 (Order-independence of gamma segments). Let o, ..., ap, 71,72 be
segments of the same lambda structure such that for all 1 <i < 3 <n, o; and «; do not
overlap properly. Then

jsis{ens - an} /) /) =Jsls(far, s an} [ 72) /1)

Proof. We write S; = js({a1,...,an} / 7i), i = 1,2, for short. Let o € js(S1/72). We
have to show that o/ € js(S2/71) holds as well. As o is in js(S1/72), there must be some
" € 8 with o € js(a'/v2) and some k, 1 < k < n, with o € js(ag/v1). We reason
over the possible positions of o/ and .

Suppose o = ai. Then o and ; do not overlap properly, and neither do o' and ;.
So o' € js(ag/7v2) and also o' € js(js(ag/v2) / 71)-

Now suppose otherwise. W.l.o.g. we consider the case that r(a”) = r(ag) but r(y1) €
hs(a”). (The case where () € hs(y1) and hs(a”) C hs(ay) is analogous.)

If (y1) € b(c), then o/ € Sy already, and o' and ; do not overlap properly, so o €
js(S2/71). Now suppose r(y1) € b(c/). If additionally b(y2) Nb(e/) = 0, then o/ = o
and there are two possibilities: either o does not properly overlap «y, i.e. a € Ss, so
o' € js(S2/71); or r(y1)<*r(y2) and there exists a segment "' € Sy with r(y2) € hs(a)
and o € js(a" /7).

Now suppose 7(71) € b(¢) as well as b(y2) Nb(c’) # 0. Then there are two possibilities:
either r(y1) = r(72) and o' = o/ € S as well as o/ € js(S2/71); or 71,v2 do not overlap
properly, that is, they except pieces of aj that do not overlap properly either, so the
order in which the two exclusions take place does not matter. ]
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(b)

Figure 7.11: Jigsaw segments and alpha-gamma trees.

7.3.2 The Jigsaw Parallelism Relation

Now we define the jigsaw parallelism relation, which relates two jigsaw segments
(/) Yiseeoymm) ~ (& [~ ...,7)). Two jigsaw segments are parallel if group paral-
lelism holds between their remainder sets, where we use the relative positions of alpha
and gamma segments to determine which pairs of alpha segments should be parallel. For
example, we have argued that in Fig. 7.9 the segments «; and «) have to be parallel
because their roots coincide with the holes of matching gamma segments 71, y] and their
holes coincide with the roots of matching gamma segments -2,y and 73,~v5. We formal-
ize the relative positions of alpha and gamma segments in the notion of an alpha-gamma
tree.

Consider Fig. 7.11. Picture (a) again shows the jigsaw segment «/71,72,y3 that we have
discussed above, and picture (b) again shows how the remainder set {ay,..., a4} of this
jigsaw segment is obtained by cutting a along the gamma segments. Note that adjacent
segments generally share a node, which is the root of one and a hole of the other segment.

The way that the alpha and gamma segments are plugged into each other is represented
in the alpha-gamma tree shown in picture (c). An alpha-gamma tree is a tree which
contains exactly one node with label «; for each ¢, at most one node with label ~y; for
each 4, and nodes with label e for holes of alpha or gamma segments that are not roots
of another segment (in Fig. 7.11 represented as o). The children of a node labelled «; are
labelled by the segments plugged into the holes of «; in the correct left-to-right order;
the same holds for a node labelled ;.

Definition 7.10 (Alpha-gamma tree). An alpha-gamma tree for a jigsaw segment
w=a/Y,...,Vn of a lambda structure is a tree 6 such that the following conditions are
fulfilled, with S = js(w) U{vy; |7 € {1,...,n},vi and o overlap properly} :

1. the nodes in 6 all bear labels from the set S U {o};

2. for all B € S, there is exactly one node labeled B in 6;

3. for all B € S, the node labeled 5 has exactly |hs(B)| children;
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4. if a node labeled B has as its i-th child a node labeled B', then the i-th hole of the
segment 8 (in left-to-right order) is v(5'); if a node labeled B has as its i-child a
node labeled o, then the i-th hole of 8 is not in b~ («).

Below, we will use alpha-gamma trees to define jigsaw parallelism: Two parallel jigsaw
segments need to have matching alpha-gamma trees, and the way that they match will
determine which pairs of alpha segments have to be parallel. But before we define the
jigsaw parallelism relation, we need to show that alpha-gamma trees are defined in a
useful way. In the following two lemmas, we show that if the gamma segments do not
overlap properly, the jigsaw segment possesses alpha-gamma trees; and if they exist,
alpha-gamma trees are unique up to permutations of equal singleton gamma segments.

Lemma 7.11 (Existence of alpha-gamma trees). Let w = a/7y1,...,7n be a jigsaw
segment of a lambda structure such that for all 1 < i < j < n, vy; and vy; do not overlap
properly. Then w possesses an alpha-gamma tree.

Proof. We proceed by induction on n.

n=1: Then w = a/y. If js(w) = {} then 6 = (e, ..., @) is the only alpha-gamma tree
for w. If js(w) = {a} then 8 = af(e, ..., e) is the only alpha-gamma tree for w.

Now suppose « is not a singleton, and the two first cases of Def. 7.1 do not apply.
Then there exists a single alpha-gamma tree 6 for w, which is constructed as follows:
let the holes of «, ordered left to right in the tree, be my,..., 7, and the holes
of v, similarly ordered, 91,...,1,. Suppose there exists some a; € js(a/7) with
r(a1) = r(a). Then there exist 1 < i < j < m such that hs(ay), ordered left to
right, is w1,...,m,r(y), 7, ..., . Then 6 has the form

al(.a"'a.afY(ela"'aeﬁ)a ®,...,o )
——— ~—
i times (m—j+1) times
for trees 01,...,0; that we explain below. If, on the other hand, there exists no
such aq, then 6 has the form (01, ...,0;), again for trees 601,...,6; that we explain
next.
For 1 < i < ¢, if ¢ = r(d/) for some o € js(w), then 0; = o/( e,...;0 ).
N—_——
|hs(a')| times
Otherwise, 6; = e.
(n —1) — n: Let 0" be an alpha-gamma tree for w' = « / (y1,...,7m—1). Such a tree

exists by the inductive hypothesis. There are three possibilities: (1) 7, and «
do not overlap properly; or (2) 7, and « overlap properly, but there exists no
o' € js(w') such that v, and o« overlap properly; or (3) there exists exactly one
segment o € js(w') such that +y, and o' overlap properly. No further cases exist:
any two segments in js(w') must be separated by some 7;, 1 < i < n, otherwise they
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would not be separate segments, but 7y, does not properly overlap with any other
Yi-

In case (1), € is also an alpha-gamma tree for w. Case (2) implies that -y, must be
a singleton segment, and that there exists some j, 1 < j < n — 1, such that either
(2a) 7(yn) = r(v4) or (2b) r(yn) € hs(y;). (There may be more than one such j.)
In case (2a), #' contains a subtree y;(6;) for some #;. Replacing this subtree by
Yn(7j(0;)), we obtain an alpha-gamma tree for w. In case (2b), suppose r(vy,) is
the 4-th hole of ;. #' has a subtree v;(...,0;,...), where the root of 6; is the i-th
child of the node labeled +;. Replacing 6; by v,(0;), we obtain an alpha-gamma
tree for w.

We now consider case (3). Let 0y, be the only alpha-gamma tree for o'/, con-
structed as shown above. €' contains a subtree (61, ...,60,,) for some m and some
trees 01,...,0,,. For 1 < i < m, let 8; be the label of the root of #;. Now for
each 8 € js(&'/vn) U {vn}, let © be the node in 6., labeled g; if the j-th hole of
B is equal to 7(f;), then exchange the j-th child of 7 by ;. (In that case, the j-th
child of 7 must be labeled e in 6,,,.) Let 6!, be the tree that results from all

these substitutions. (Note that if for some i € {1,...,m}, 6; did not get picked,
then 6; = e because 7, does not overlap any segments of js(w') except o’.) Then

the tree 6 obtained from €' by replacing the subtree o'(64,...,60,,) by /., is an
alpha-gamma tree for w.

]

Lemma 7.12 (Uniqueness of alpha-gamma trees). Let w = a / v1,...,7, be a

Jigsaw segment of some lambda structure such that for all 1 < i < j < mn, 7; and vy; do
not overlap properly, and w admits two different alpha-gamma trees 01,0s. Then 02 can
be obtained from 01 by permuting the singleton ~y; labels.

Proof. This follows from the proof of the previous lemma: The only case in the construc-
tion of an alpha-gamma tree where we had any choice was case (2), the choice of -y; for
the case where -y, was singleton. O

Now we define the jigsaw parallelism relation: Two jigsaw segments are parallel if their
alpha-gamma trees can be matched by a tree isomorphism, such that gamma segments
with the same index are matching nodes in the alpha-gamma trees, and alpha segments
that are matching nodes in the alpha-gamma trees are structurally isomorphic.

Definition 7.13 (Jigsaw parallelism relation). The jigsaw parallelism relation ~ of
a lambda structure L%s the largest relation between jigsaw segments with equal numbers
of gamma segments such that

(a/y1,mm) ~ (@ )Y, m)

for jigsaw segments w = [ Y1, ..., Y, W' = [, ..., implies
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e there exists a bijection f :js(w) — js(w') such that, for js(w) = {a1,...,an},

(ala"' ,Oém) ~ (f(a1)7"' 7f(am))
holds in LP.

e there are alpha-gamma trees 0,0 for w,w' and a tree isomorphism h : Dy — Dy
that satisfies the following condition:
A node m of 0 is labeled vy; iff h(r) is labeled v, 1 < j < n; m is labeled cv; iff h(m)
is labeled f(cj), 1 < j < m; and © is labeled o iff h(r) is.

Note that the jigsaw parallelism relation is defined only for jigsaw segments in which the
gamma segments do not overlap properly.

Figure 7.12 illustrates the isomorphism A on alpha-gamma trees. The two trees in the
figure have the same shape. Whenever we have a node labeled «y; in the left tree, the
matching node in the right tree is labeled 'y;-: The order of gamma segments in the
jigsaw segments is obeyed, in that matching gamma segments are in the same positions
in the alpha-gamma tree. And parallel alpha segments are characterized by the fact that
their roots are the holes of matching gamma segments, and their holes are the roots of
matching gamma segments. We could say that the condition that we are imposing is
actually an extended notion of correspondence, this time correspondence between two
alpha-gamma trees.

Figure 7.12: Matching two alpha-gamma trees by the tree isomorphism h of Def. 7.13:
Some h-mappings are drawn in.

The jigsaw parallelism relation gives us no additional expressive power:

Lemma 7.14 (Jigsaw parallelism subsumed by group parallelism). Given a
lambda structure £° in which w ~ W' holds for jigsaw segments w,w' of L?. Then the
group parallelism w(js(w)) ~ @’ (js(w')) holds in L° for some permutations w,w' of the
remainder sets js(w),js(w').

Proof. This follows from Def. 7.13. U

There are group parallelism relationships that cannot be expressed using jigsaw paral-
lelism, since group parallelism allows segments of the same group to overlap, while the
alpha segments of a jigsaw segment do not overlap properly (Lemma 7.8, p. 185).
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7.3.3 Jigsaw Parallelism Literals

A jigsaw segment term has the form
AO/Ala"'aAn

for segment terms Ay, ..., A,. We extend CLLS by jigsaw parallelism literals that are
interpreted by the jigsaw parallelism relation. A jigsaw parallelism literal has the form

AO/Al,...,AmNBO/BI,...,Bm

for segment terms Ay,...,Amn,Bo,...,Bn. We write CLLS; for the language CLLS,,
extended by jigsaw parallelism literals.

Whenever two jigsaw segments are parallel, their remainder sets are related by group
parallelism, as Lemma 7.14 shows. However a single jigsaw parallelism literal can express
a disjunction of group parallelism literals. We state this in the following lemma.

The gamma segments of a jigsaw segment term may not overlap properly. We can use
the following formula: Let A = X,/ ..., then

nonovl (A, {Ay, ..., An}) =aer [\ Xo &b~ (4i).

=1

Lemma 7.15 (Jigsaw p. literals express disjunctions of group p. literals). Given
a jigsaw parallelism literal Co /Ch, ..., Cp ~ Cy [/ CY, ..., Cy,, there exist group parallelism
literals Ay ~ B, ..., A, ~ B, such that

Cy / Ciy...,Cp ~ C(I) / C{, .. 707,n |:1 /\;11 TLOTLOUZ(CZ',{CL .. ,Cm} — {CZ})/\
/\;11 nonovli z(’ {C{v e '707,71} - {C’LI})/\

(V?:l Zi ~ Bz’)-

Proof. We abbreviate the jigsaw parallelism literal Cy / Cy,...,Cp ~ C)/ CY,...,C), by
. Given a set V of variables, the formula

disamb(V) =qet \/ X=Y VXY VYT XVXLY
X,Yev

disambiguates the relative positions of all variables in V' without guessing labels. Let ¢
be a constraint in the clause set ¢ A disamb(Var(y)). In ¢ the relative positions of the
root and hole variables of the segment terms occurring in the jigsaw parallelism literal are
disambiguated. So we can put up alpha-gamma trees for the two jigsaw segment terms
Cy/Ch,....,Cp and C} / C,...,C], in ¢ in the way described in the proof of Lemma
7.11. Note that while that proof uses the fact that the left-to-right order of holes of a
segment is known, this is not really necessary; it suffices to impose an arbitrary order on
the holes of each of Cy,...,Cp, and to impose the same order on the holes of C! as on Cj
for each 0 <17 < m.
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If there is an isomorphism between the two alpha-gamma trees that fulfills the conditions
of Def. 7.13, we can read off one of the group parallelism literals from the set {A; ~
Bi,..., A, ~ B,}. As the formula disamb(Var(p)) exhaustively enumerates all possible
relative positions of variables in Var(yp), we find all of A} ~ By,..., A, ~ B, in this
way. ]

7.4 Modeling Ellipsis with Jigsaw Parallelism Constraints

ev col . . ev st Yo

(Xo/X1) / (Xa/X3)) ~ ((Yo/Y1) / (Y3/Y4))

Figure 7.13: Constraint for sentence (7.5): “Every colleague paid attention, but every
student didn’t.”

Consider again the sentence (7.5), “Every colleague paid attention, but every student
didn’t.” Above we used a disjunction of group parallelism literals to model the semantics
of this sentence — see Fig. 7.7. Now we can use a single jigsaw parallelism literal instead,
as shown in Fig. 7.13. For the source sentence, there are fragments for “every colleague
and “paid attention”, and for the target sentence, there are fragments for “every student”
and “not”. The relative scoping of these latter two fragments is left open. Furthermore
there is the jigsaw parallelism literal that models the ellipsis. Intuitively it states that the
source sentence semantics except for the contribution of “every colleague”, and except
for a singleton segment term X,/Xo, is isomorphic to the target sentence semantics
except for the contribution of “every student”, and except for the contribution of “not”.
Additionally, the singleton segment term in the source sentence semantics must be “in
the same position” as the segment term Y3/Y, in the target sentence semantics. In this
way, the singleton segment term in the source sentence semantics restricts the “not”
fragment in the target sentence semantics to the correct positions: It may be situated
either above the “every student” fragment, or between the “every student” fragment and
the copy of the “paid attention” fragment. Note that we could also have formulated the
jigsaw parallelism literal for Fig. 7.13 as ((Xo/) /(X1/, X2/X2)) ~ ((Yo/)/ (Y1/,Y3/Y4)).

7.5 A Look at Other Formalisms

We now take a look at related approaches to modeling ellipsis to see whether they can
handle the kind of cases that we have discussed in this chapter. An approach that is
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especially interesting to compare to CLLS is the one by Dalrymple, Shieber and Pereira
[30] (DSP). As sketched in Chapter 2, Sec. 2.5.2, they model ellipsis using higher order
unification. The sentence we have been discussing above, “Dan left, but George didn’t”, is
a variant of a sentence that they analyze, shown here as (7.7). They model the semantics
of this sentence by the formula (7.8) together with the equation (7.9): The semantics of
source and target sentence share some property P, which in the source sentence is stated
of “Dan” and “not” and in the target sentence of “George” and the identity function (i.e.
an empty element).

(7.7) Dan didn’t leave, but George did.
(7.8) neg(left(dan)) A P(george)(Az.x)

(7.9) P(dan)(neg) = neg(left(dan))

The solution that is computed for (7.8) and (7.9) is P = Az Q.Q(left(x)), which gives
the correct semantics for the target sentence.

But now consider again the sentence (7.2), “Dan left, but George didn’t”, which we have
studied above. For this sentence the DSP formalism derives the formula (7.10) and the
equation (7.11).

(7.10) left(dan) A P(george)(neg)

(7.11) P(dan)(Az.z) = left(dan)

One solution we get is P = A\zAQ.Q(left(x)), which indeed corresponds to the correct
meaning of the sentence. But unfortunately we also get wrong solutions such as P =
Az AQ.left(Q(x)). The core of the problem is that HOU performs silent beta conversions,
to the effect that it can no longer easily distinguish between the different occurrences
of Ax.x in P(dan)(Azx.z). We could say that what is missing is a way of fixing the
position of the “neg”. Interestingly, this is similar to the problem of fixing the position
of the excluded tree segment in the CLLS approach, which we have solved by demanding
“correspondence” of alpha-gamma trees in Def. 7.13.

This particular example could be saved by imposing well-typedness restrictions, but the
general problem remains. (Lappin and Shih [82] comment on problems of DSP with cases
where the target sentence contains additional adjuncts, as in example (7.6).)

The ellipsis analysis of Crouch [28] is closely related to DSP and cannot handle examples
like sentence (7.2) for similar reasons. The approach of Schiehlen [106] does not share
this problem, but he pays for this by having to explicitly specify all the parallel material.
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7.6 Discussion

In this section we raise three points: We look at remaining problems with modeling
ellipsis, we speculate on a procedure for processing jigsaw parallelism literals, and we
consider the problem of automatically deriving the semantics of elliptical sentences.

7.6.1 Modeling Ellipsis

Jigsaw parallelism literals are a very flexible tool for modeling the semantics of elliptical
sentences. However, I believe that with a further extension it can be made even more
useful: Group parallelism and jigsaw parallelism could be combined by allowing group
parallelism literals to incorporate jigsaw segment terms as well as normal segment terms.
This yields literals

(A1,...,A,) ~(By,...,By)

where the A; and B; are jigsaw segment terms. Again, this does not raise the expressivity
of the formalism. These new extended group parallelism literals can be used, for example,
to model sentences like the following:

(7.12) Every man kissed his wife before John did.

The point about this sentence is that there is a scope ambiguity between “every man”
and “before”. The sentence has three readings, which can be sketched as follows:

(7.13) (every man)(Az.x kissed z’s wife, then J kissed J’s wife).
(7.14) (every man)(A\z.x kissed z’s wife), then (every man)(Az. J kissed z’s wife)

(7.15) (every man)(Az.z kissed z’s wife, then J kissed z’s wife)

The reading (7.13) is sloppy, while (7.14) is strict. The third reading, (7.15), is strict too.
It differs from the second reading in that it has “every man” outscope “before”. That is,
while in (7.14) John waits until all men have finished kissing their wives before he starts
kissing them, (7.15) is an “interleaved” reading.

It is this third reading that makes it impossible to model this elliptical sentence with
normal parallelism, because here the semantic contribution of the source contrasting
element, “every man”, outscopes the root of the source sentence semantics.

The analysis of (7.12) is shown in Fig. 7.14. We first take a quick look at the “simpler”
strict reading (7.14). In this case, X is dominated by X, which makes the jigsaw literal
behave exactly like the ordinary parallelism literal Xo/X;~Y(/Y].

The most interesting reading, however, is (7.15), where “every man” outscopes “before”,
i.e. X39*Xy. As the denotation of X/ is not part of the alpha-gamma tree of the left-
hand jigsaw segment, Y; cannot be below Y either. That means that the two gamma
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(Xo/ /) X1/), X2/ (X1, X3)) ~ ((Yo/ / Y1/), Y2/ (V1,Y3))

Figure 7.14: Constraint for sentence (7.12): “Every man kissed his wife before John did.”

segments X/ and Y7/ do not overlap with X,/ and Y/ at all, so the first pair of (jigsaw)
segment terms in our extended group parallelism literal force the two subtrees below X
and Yy to be completely parallel. The second pair of segment terms ensures the correct
lambda binding: the correspondent of X4 must be bound at the right child of Y5. This
binding also forces Y3 to dominate the correspondent of X4. The group parallelism rules
for anaphoric binding further ensure that the strict/sloppy ambiguity in our sentence
(7.12) is modeled correctly.

7.6.2 Processing Jigsaw Parallelism Literals

How can jigsaw parallelism literals be processed? Jigsaw parallelism can be expressed by
group parallelism. So one possible approach is to disambiguate the position of the gamma
segment terms and then to solve a jigsaw parallelism literal by solving the appropriate
group parallelism literal, using the procedure Py, of the previous chapter.

But a much more appealing solution would be to proceed in a similar way as the procedure
Pg for underspecified beta reduction steps: to devise a jigsaw parallelism constraint
procedure that copies a variable as soon as it is known that it cannot be inside any of the
gamma segment terms, and likewise copies dominance, inequality, and labeling literals
whenever it can safely do so. This procedure could again make use of the underspecified
correspondence literals that we have introduced in the previous chapter. The reason why
I think such a procedure would be sufficient is that in the linguistic application, gamma
segment terms are usually fragments.

7.6.3 Deriving the Semantics of Elliptical Sentences

For the language CLLS, there exists a syntax/semantics interface [41]. Based on the
syntactic structure of a sentence, it constructs a CLLS constraint that represents the
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semantics of that sentence. For elliptical sentences, it generates the appropriate par-
allelism constraint linking the source and target sentence semantics (provided that the
source and target sentences are known, as well as the contrasting elements). Can this
approach be extended to generating jigsaw parallelism constraints? As the contrasting
elements are known, it is not hard to generate the appropriate gamma segment terms.
The only problem is to constrain the position of gamma segment terms, in the way that
we did with the singleton gamma segment term X5/X5 in Fig. 7.13. One possibility is to
impose less constraints on the position of the gamma segment terms — in the example in
Fig. 7.13, this could be done by omitting the dominance X9<*U — and to infer the proper
position later.

7.7 Summary

In this chapter we have extended the definition of parallelism, turning it into a very flex-
ible tool for replacing tree parts by other tree parts, within a fully declarative formalism.

We have pointed out that the semantics of a source or target sentence may consist not
of a single segment but of a group of segments. This may be the case for example when
negation or adjuncts are involved. Such cases can be handled using group parallelism
instead of normal parallelism for modeling the ellipsis. Group parallelism is an extension
to parallelism that we have introduced in the previous chapter.

Furthermore an ellipsis may possess contrasting elements partaking in scope ambigui-
ties. In some cases this means that the sentence semantics cannot be described by a
single group parallelism, only by a disjunction of group parallelism literals. To address
this problem we have introduced jigsaw parallelism. In jigsaw parallelism, the excluded
segments are explicitly stated, along with a maximal included segment. The jigsaw par-
allelism relation is strictly less expressive than the group parallelism relation. However
in a jigsaw parallelism literal, the position of an excluded segment term may be more
underspecified than is possible in a group parallelism literal, such that a single jigsaw
parallelism literal can describe the semantics of elliptical sentences that would require a
disjunction of group paralellism literals.



Chapter 8

Modeling Ellipsis: A Comparison of Approaches

The central topic of this thesis is parallelism, especially the processing of parallelism
constraints. But while we concentrate on the formal aspects of parallelism, we also have
to address the question of how it fares as a model.

In this chapter, we attempt an assessment of the CLLS approach to modeling ellipsis.
First we need to clarify what exactly it is that we mean by “modeling ellipsis”. We do
this by asking three questions: First, what is the nature of ellipsis phenomena? Second,
what problems need to be solved in connection with ellipsis phenomena? Third, which
is the level of linguistic structure on which a formalism for modeling ellipsis should act?

We will use the third question to structure and group different ellipsis formalisms. We
compare the analyses they propose and the classes of examples that they cover. On
the basis of this comparison, we reach a tentative assessment of the CLLS approach to
modeling ellipsis.

8.1 What is the Nature of Ellipsis?

Perhaps the earliest theory of the nature of ellipsis was to see it as deletion within the
framework of generative syntax, as Sag [105] does. In this tradition, the surface form
of a sentence is generated by a sequence of transformations on several underlying levels
of representation. Ellipsis then arises from a removal of whole syntactic constituents, or
just of their phonological features.

Another widely held view regards ellipsis as reconstruction: Some material is copied
or generated into the place of an empty element. This element has been left empty
throughout the syntactic analysis, up to the point at which reconstruction takes place.
A comparison of these two views on ellipsis can be found in a paper by Williams [117].

A third possibility is to regard ellipses as a kind of anaphora, and thus to handle them in
an anaphora resolution framework [59, 5]. This approach is similar to the reconstruction
view, but the kind of identity that holds between the target sentence and its antecedent
is a different one here: It is referential identity.
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8.2 What Problems Need to be Solved in Connection with Ellipsis?

Johnson [63] asks three questions in connection with ellipsis (specifically VP ellipsis, the
kind of ellipsis that we have mostly been considering throughout this thesis):

1. In which syntactic environments is VP ellipsis licensed?
2. What structural relation may a VP ellipsis and its antecedent have?

3. How is the meaning of the ellipsis recovered from its antecedent?

The first question is: Suppose we have a sentence (or a sequence of sentences) in which
elements of similar meaning occur twice, but in one instance these elements are not
expressed on the surface, under which circumstances do we get a well-formed sentence?
An especially interesting question in this context is: Are there other phenomena with the
same, or similar, licensing conditions? There is a large body of work on this, reviewed
e.g. in Johnson’s overview article [63].

The second question asks how, given an elliptical target sentence, we can determine the
matching source sentence. There are only few papers on this topic; Gregory and Lappin
[67, 81], Hardt and Romero [60, 61], Ginzburg and Cooper [53] have worked on it, as
well as Egg and Erk [39] for the CLLS approach. The most comprehensive account is the
one by Hardt [60], who uses heuristics to find the most suitable antecedent candidate.
He stresses the need to take many different factors into account. The analysis by Egg
and Erk, which uses the CLLS framework, determines source sentence candidates from
strict syntactic conditions and then generates the appropriate parallelism constraint. But
while this approach at the moment uses solely syntactic information, and only secure
knowledge, it has been designed to be extensible to other sources of information and to
an integration of preferences with secure knowledge.

The third question is the one that we have been concerned with in this thesis: Given
both the source and the target of an ellipsis, how can the meaning of the target sentence
be determined? It is with respect to this question that we will compare different ellipsis
approaches in Sec. 8.4.

8.3 At Which Level of Linguistic Structure should an Ellipsis Theory
be Situated?

Ellipsis theories can be distinguished by the types of linguistic structure that they access.
In this section we first briefly list different types of linguistic structure that can be
distinguished, then we recount arguments for why an account of ellipsis should have
recourse to one type of structure or another.

There are several levels of linguistic structure, dimensions of linguistic information. They
relate the surface form of an expression to the meaning that it conveys. For example,
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“near the surface” one normally distinguishes at least prosody, morphology, and some
kind of (surface) syntactic structure. The level of linguistic structure closest to the “mean-
ing” side is taken up by the proposition that an expression conveys. Some theories add a
level of deep syntactic structure between surface syntactic structure and the proposition
level [17]. The difference between the two syntactic structures is that in deep syntactic
structure, arguments are closer to the positions they occupy in the semantic structure
than they are in surface syntactic structure. Another intermediate level posited in some
theories is the level of logical form [19, 88], at which in particular scope is represented
and disambiguated. The rules for deriving logical form from surface structure are subject
to syntactic constraints, hence logical form, like deep and surface syntactic structure, is
seen as a syntactic level of representation.

Basically, there are two ways in which these levels can interact. A traditional, Chomskyan
perspective is that each level lives on a separate stratum of representation. In such a
theory, each stratum can interact only with its immediate neighbors. An example of such
a theory is Government & Binding [19]. The other possibility is to combine several levels
into a single, multidimensional representation. That is, even though we still distinguish
the different levels of linguistic structure, we only have a single stratum of representation.
In such a monostratal approach, all levels can (in principle) interact. An example of such
a theory is HPSG [97].

Before we get back to the subject of ellipsis, there is one further remark to be made about
the notions of “syntax” and “semantics”: We use the term syntaz to talk about levels
of linguistic structure that describe how surface form can be organized; by semantics we
mean those levels of structure that describe how meaning is structured — where this is
just meant to be a loose distinction, not an exact classification.

Now, coming back to the subject of ellipsis, there has been a long-standing dispute on
whether ellipsis should be analyzed on a syntactic or a semantic level. Both sides can
show examples to bolster their claim — on the one side sentences that point to syntactic
constraints on the licensing of ellipsis, and on the other side sentences where (semantic)
inferences are required to find the ellipsis antecedent. We briefly present a few examples
for each of the two sides.

Sentences (8.1) through (8.3) have been used to argue that syntax must play a role in
the resolution of ellipsis.! The point is that the unacceptability of these sentences is
predicted by syntactic constraints, and that this only comes to bear if the treatment of
an elliptic construction is tried within the syntactic structure and fails. For sentences
(8.1) and (8.2) the syntactic constraints come from Binding Theory [19], which makes
predictions on anaphoric binding based on relative positions of nodes in a syntactic tree:
In (8.1) a pronoun gets bound in an inadmissible way, and in (8.2), a proper name gets
bound, which is not allowed. The difference in acceptability between sentences (8.4) and
(8.3) can be explained using the subjacency principle [18]: In this theory, some word order
phenomena are explained by movement — elements are moved from the position they had

'The “*” at the beginning of an example sentence indicates that it is not well-formed.
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in an underlying level of representation to the position they have in surface structure
—, and by the subjacency principle movement is blocked if it crosses the boundaries of
two or more designated classes of constituents. We only list the sentence here to give
an impression of the kind of arguments raised for a syntactic analysis of ellipsis; see e.g.
Kehler [70] for a detailed discussion of examples like these.

(8.1) * John; blamed himself;, and Bill, did too. [blamed him;] [73]

(8.2) * I hit Bill;, and he; did, too. [hit Bill] [47]

(8.3) * John read everything which Bill believes the claim that he did. [58]
(8.4) John read everything which Bill believes he did. [58]

On the other hand, it has been argued that sentences (8.5) through (8.10) can only be
properly analyzed by taking recourse to some level of semantic structure. The point is
that in all these cases, there is no source sentence of appropriate form in the syntactic
structure. In (8.5) the target sentence means “but he can’t speak anymore”, so the noun
“speaker” is the antecedent. In (8.6) the target sentence is in the active voice, but we have
a passive source sentence. Sentences (8.7) and (8.8) are examples of split antecedents: In
(8.7) the target sentence must mean something like “neither of them can do what he or
she wants to do”, and in (8.8) the target sentence means “Gerry can talk and chew gum?”.
In sentence (8.9) the preferred reading of the target sentence is something like “just as
[all schoolboys|; give their; girlfriends their; school pictures.” Kehler [71] suggests that
this reading may be derived as part of an inference process of generalization.

(8.5) Harry used to be a great speaker, but he can’t anymore, because he lost his voice.
[59]

(8.6) This problem was to have been looked into, but obviously nobody did. [70]

(8.7) Wendy is eager to sail around the world and Bruce is eager to climb Kilimanjaro,
but neither of them can because money is too tight. [116]

(8.8) I can walk, and I can chew gum. Gerry can too, but not at the same time. [116]
(8.9) Mary’s boyfriend gave her his school picture, just as all schoolboys do.[71]
(8.10) Every linguist attended a workshop. Every computer scientist did, too.

Also, quantifier parallelism sentences like (2.6), repeated here as (8.10), have been put
forward as an argument for an analysis on a semantic level, since they show an inter-
action of scope ambiguities with ellipsis. But this depends on where one would draw
the dividing line between syntax and semantics; phenomena like quantifier scope and
anaphoric binding have been assigned to semantic structure by some theories, by others
to syntactic logical form.
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8.4 Approaches to Modeling Ellipsis

In this section we discuss different theories of how the meaning of the elliptical target
sentence can be determined. We first discuss approaches that treat ellipsis solely on a
syntactic level, then approaches that analyze the phenomenon on a semantic level, finally
approaches that take multiple sources of information into account.

8.4.1 Syntactic Approaches

Theories like the ones by Sag, Williams, Fiengo and May, and Lappin and Shih [105, 117,
47, 82] handle ellipsis at some level of syntactic structure, either at the surface syntactic
level or at the level of syntactic logical form.

To give an example of a treatment of ellipsis at a level of logical form, Fiengo and May
[47] study VP ellipsis in the context of a discussion of anaphoric binding and thus focus
on strict/sloppy ambiguities. They consider the target sentence VP as a copy of the
source sentence VP, where the anaphoric binding need not be the same (i.e. strict). For
the sloppy reading, there is a parallelism condition on anaphoric binding: Index change is
permitted between antecedent and ellipsis if the indexed elements participate in parallel
dependencies, where a dependency is a sequence of syntactic categories connecting a
dependent category with its antecedent. Furthermore Fiengo and May allow for vehicle
change: Some syntactic properties may be different between matching source and target
anaphora, for example “he” in the source sentence may change to “she” in the target.

Lappin and Shih [82], on the other hand, recover the missing material in the target
sentence within the surface syntactic structure. They take the head verb of the source
sentence, copy it to the target sentence and then fill all argument positions: if an argument
of an appropriate type is present in the target sentence, they use that, otherwise the
argument occupying the same slot in the source sentence is copied.

8.4.2 Semantic Approaches

Now we turn to theories that propose an analysis of ellipsis on some level of semantic
structure. We have already discussed a number of such theories in Sec. 2.5.2, where
we have listed ellipsis approaches related to the CLLS analysis. So now we just briefly
recuperate that previous discussion.

The “classical” semantic analysis of ellipsis is the one by Dalrymple, Shieber and Pereira
[30] (DSP). In this theory, the same property is expressed of the source contrasting
elements and the target contrasting elements. For the sentence “John sleeps, and Mary
does, too”, for example, the meaning of the target would be P(mary) for some property
P of which we know (from the meaning of the source) that P(john) = sleep(john). By
solving this equation using higher-order unification (HOU), the meaning of the target
sentence is retrieved.
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Crouch [28] follows the same idea basic as DSP, but restricts the formalism to substi-
tution, achieving a clean distinction of the modeling and the enumeration of readings
(while in the DSP analysis the order of discharge of scope bearers determines the scope
reading). Schiehlen [106] treats ellipsis in an UDRT setting, using index sequences to
ensure the right interaction of scope and ellipsis. Schiehlen also discusses cases where
inference is required to construct an adequate source sentence, like the split antecedent
sentence (8.7). However in this framework scope bearers have to be explicitly included
in the parallelism, while in DSP and the CLLS analysis any material inbetween the root
and the holes of a parallel segment is automatically included in the parallelism.

The approach of Hardt [59] focuses on the similarities of anaphora and ellipsis. Using a
DRT setting, this analysis places possible source sentences as referents into the universe.
The target sentence can then refer to the appropriate source referent. In this theory
examples where the source sentence can only be found by inference, like e.g. (8.5) or
(8.7), play an important role. Asher [5] puts up a hierarchy of abstract entities that
anaphora can refer to and discusses the kinds of abstract entities that can serve as
ellipsis antecedents. He proposes an operation of Concept Abstraction within the DRT
framework; this operation extracts abstract entities that are suitable antecedents.

8.4.3 Hybrid Approaches

In Sec. 8.3 we have seen a list of examples that seem to indicate that in determining the
meaning of an ellipsis, access to some level of syntactic structure is needed, and likewise
sentences that have been used to argue that access to semantic structure is necessary.
Some theories suggested that this evidence means that multiple sources of information
have to be taken into account.

Lappin [80] proposes to use completely different mechanisms for different types of ellip-
sis: a treatment within surface syntactic structure, a semantic HOU approach, and a
“quantifier storing” approach similar to Cooper storage [25].

But a uniform analysis for all kinds of ellipsis is aesthetically more pleasing; indeed, if
ellipsis is perceived as a single phenomenon, there should be a uniform treatment for all
its forms. In Kehler’s [70] analysis, discourse structure plays a central role, in particular
the coherence relation between source and target sentence. The question of whether
syntactic or semantic information is needed for the treatment of an ellipsis becomes a
question of discourse inference: If recourse to syntactic information is necessary during
discourse inference, then the missing elements have to be recovered within the syntax,
otherwise a semantic process of anaphora resolution suffices.

Kempson [72] takes a proof-theoretic approach to natural language interpretation. The
formalism she uses is Labelled Deductive Systems [48]. The approach combines semantic
and pragmatic aspects and can also incorporate syntactic information. For handling
ellipsis, a higher-order variable is used in a similar way as in the DSP approach, but the
variable is determined not by solving an equation but by inference — which should cover
examples like (8.7).
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8.5 A Tentative Assessment of the CLLS Approach to Modeling
Ellipsis

In this section we attempt an assessment of the CLLS approach to ellipsis. First we
position it with respect to the three questions we have raised in Sec. 8.1, 8.2, and 8.3.
Then we reflect on the question which other approaches the CLLS analysis is most similar
to. Finally, we look at possible frameworks in which this approach might be applied.

In Sec. 8.1, 8.2, and 8.3 we have raised three questions: What is the nature of the ellipsis
phenomenon? Which problems need to be solved in connection with ellipsis? At which
level of linguistic structure should an ellipsis theory be situated? So which positions does
the CLLS approach take with respect to these questions?

e Concerning the nature of ellipsis, we have distinguished theories viewing it as either
deletion, reconstruction, or reference. The CLLS approach is neutral with respect
to this question. Even though the CLLS procedure of Chapters 3, 4 and 5 looks like
it were performing reconstruction, this is not inherent in the modeling of ellipsis.

e The main problem with respect to ellipsis that we have been discussing here is: How
can the meaning of the elliptical target sentence be determined? In the CLLS ap-
proach, the meaning of the target is determined by relating the semantics of source
and target sentence by a parallelism literal, excluding the semantic contributions
of the contrasting elements.

e CLLS, a formalism for underspecified semantics, models ellipsis within the seman-
tic structure. But while this approach recovers the meaning of the target sentence
within the semantic structure, it is clear that many factors contribute to determin-
ing the antecedent.

How can we position CLLS analysis in relation to other approaches? The CLLS analysis
is similar to DSP: They are both unification-like approaches that determine the mean-
ing of an ellipsis within the semantic structure. CLLS uses Kehler-style link chains to
model the interaction of ellipsis and anaphora [69, 70]. Used in combination with domi-
nance constraints, it integrates an underspecified treatment of scope ambiguities with an
analysis of ellipsis, yielding the right results for quantifier parallelism cases like (8.10).

For a clear understanding of the formalism, we think the differences between DSP and
the CLLS analysis are especially interesting. We repeat the most important differences
(which we have noted in passing in different places):

e While DSP uses general higher-order variables to describe the structurally identical
areas, the CLLS analysis uses a less expressive fragment, parallelism constraints,
which are equally expressive as context unification.

e In DSP the integration of scope and ellipsis is procedural, depending on the order
in which scope-bearers are discharged, in CLLS it is completely declarative: There
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is a clean distinction between the description of all readings of a sentence in the
form of a CLLS constraint on the one hand, and the enumeration of the readings
using a procedure like P on the other hand.

HOU and CLLS differ in their perspective on trees. HOU adopts the external
perspective, talking about properties of trees, while CLLS takes the internal per-
spective, talking about relations between nodes of a single tree. This makes a
difference in the way that the material excluded from parallelism is specified. For
example, the equation P(john) = see(john,john) can affect none, either one,
or both occurrences of the subtree john in see(john,john) (if we leave the is-
sue of primary versus secondary occurrences aside for a moment). Parallelism
70/ 71y Tn~o /%1, ..., ¢y on the other hand specifies that there are exactly n
exceptions and gives their exact positions in terms of the tree nodes at which they
start.

Strict/sloppy ambiguities are handled differently: The mechanism that DSP uses
is unification (which, as we have just said, can pick out all “john”-formed subtrees
automatically) together with the primary/secondary occurrence restriction. CLLS,
on the other hand, uses link chains as first introduced by Kehler [69] — see Sec.
2.3.4.

Another difference is that in HOU, £ and 7 conversions are built-in, but not so in
CLLS. Underspecified beta reduction can be performed (we have shown a procedure
in Chapter 6), but this does not happen automatically.

In the previous sections, we have raised some interesting issues about modeling ellipsis,
which, however, go beyond the scenario of the CLLS approach as we have presented it
in this text.

e In examples (8.5) through (8.9), some kind of inference is needed for deriving the

source sentence. Could such examples be analyzed using parallelism constraints?
In principle, yes, by delaying the statement of the parallelism constraint that mod-
els the ellipsis: First derive just a dominance constraint modeling the semantics of
the sentence except for the ellipsis; use some form of inference to derive the source
sentence (of course, this is the crucial point, just like in any other approach relying
on inference within the semantic structure, but with CLLS the situation is exacer-
bated because we need to do direct deduction on an underspecified structure); then
state a parallelism constraint to model the ellipsis.

We have discussed ellipsis approaches that argue that access to multiple sources of
information is needed, notably the approaches by Kehler [70] and Kempson [72].
Both approaches have at their core a process operating on semantic structure. So
could the CLLS analysis form the core of such a multi-level approach to ellipsis? Yes
— both Kempson and Kehler name HOU as one possible mechanism for recovering
the target sentence semantics, and we have already discussed the similarity between
the HOU approach and parallelism constraints. However, this would again require
performing direct deduction on an underspecified semantic representation.
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But why use CLLS in such a multi-level analysis? One advantage is the underspec-
ified framework in which the interaction of scope ambiguity and ellipsis is modeled.
Another advantage lies in processing: the parallelism constraint procedure of Chap-
ter 4 performs well on constraints from the linguistic application, and there may
even be a decidable fragment of CLLS that suffices for handling ellipsis — we take
up both these points in the following chapter.

8.6 Summary

In this chapter we have first discussed issues connected with modeling ellipsis, in the form
of three questions: First, what is the nature of ellipsis? Is it a phenomenon of deletion,
reconstruction, or reference? Second, what problems need to be solved in connection
with ellipsis? The problem we focus on is to determine the meaning of the elliptical
target sentence. Third, at which level of linguistic structure should an ellipsis theory
be situated? We have seen that there are arguments both for an analysis in syntactic
structure and an analysis within semantic structure.

We have given a brief overview of approaches to modeling ellipsis, structured by whether
they access some level of syntactic structure, semantic structure, or both, and we have
stated a tentative assessment of the CLLS approach: It determines the meaning of the
elliptical target sentence within the semantic structure (while for determining the an-
tecedent multiple levels of linguistic structure have to be taken into account), in a style
similar to DSP [30], but there are important differences in the perspective on trees as
well as in the question of processing. CLLS is neutral with respect to the question of
the nature of ellipsis, and it could in principle form the core of a multi-level analysis of
ellipsis.
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Chapter 9

Outlook

This chapter presents ideas for future work. We first briefly list a number of open
questions, then we focus on the first two in the list.

e In this thesis we have presented an abstract semi-decision procedure for CLLS. How
could it be turned into a practical procedure for CLLS?

e The decidability of CLLS is still an open problem. Can we find fragments of the
language with good properties?

e We have presented two procedures for performing a single underspecified beta re-
duction step. They both have drawbacks: One procedure uses more distribution
than necessary for just performing a beta reduction step, the other procedure is
incomplete.

One possibility would be to combine the two procedures but place strong restrictions
on the application of distribution rules. The idea is to solve a beta reduction formula
without distribution whenever that is possible, and to resort to a strongly controlled
application of distribution otherwise.

Another possibility would be to extend the incomplete procedure. The problematic
cases are those with nonlinear redexes. The problem could maybe be solved by
reducing groups of redexes at the same time, and requiring redexes generated as
copies of the same original redex to be reduced simultaneously, as sketched in
Chapter 6.

e We have presented two applications of the language CLLS. Which other areas can
CLLS be applied to? In particular, are there other kinds of ambiguity for which
CLLS can furnish an underspecified description?

One possible application is an underspecified description of discourse structure
[107]. Furthermore, a recent application to parsing with resource-sensitive catego-
rial grammar [45] uses not CLLS itself, but a variant based on finite set constraints
that has previously been used for an implementation of dominance constraints [34].
The variant was chosen because it allows stronger statements about dominance.

e Among the questions on ellipsis that we have raised in Chapter 8, one was: Given
an ellipsis, how do we determine its most likely antecedent?
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It seems that multiple sources of information have to be considered to determine
the most suitable antecedent, and that certain knowledge is involved as well as
preferences [60, 61]. First steps towards an analysis within the CLLS framework
have been made [39], focusing on a subclass of ellipsis phenomena.

In the following two sections, we focus the first two questions in the list.

9.1 A Decidable Fragment of CLLS

Can we find decidable fragments of CLLS with good processing proper-

ties? Intuitively, the cases that are problematic for the CLLS procedure _e X
that we have presented are those with “self-overlapping” parallelism con- e Yj
straints. The simplest such constraint is shown in Fig. 4.7 (a), repeated |:E X1

here to the right. But self-overlap need not be as obvious as it is in that n

case. It can also occur in constellations as the one sketched in Fig. 9.1. X, /X1~Yy/Y;
In this picture, equal-colored segments are parallel. A subsegment of «

also belongs to 8 and is parallel to a subsegment of 3. A sub-subsegment of this also
belongs to v and reappears in 7/, where it overlaps with /.

a8
’

a~d NB~B ANy~

Figure 9.1: Sketch of a more complex case of “self-overlap”

How can the idea of prohibiting “self-overlap” be exploited for a decidable fragment? We
are currently working on a fragment of CLLS in which overlap is forbidden altogether:
Any two tree segments involved in the parallelism relation (but not necessarily parallel
to each other) may not overlap unless one is properly nested in the other. Parallelism
constraints are then interpreted not over the parallelism relation in general but over this
restricted parallelism relation. This fragment of CLLS is decidable, in fact satisfiability
testing is only NP-complete, which is the same as for dominance constraints. Furthermore
it seems that for all CLLS constraints that arise in modeling ellipsis, this restricted
fragments suffices.

Can a bigger decidable fragment be defined in the same vein? Is it possible to prohibit
solely “self-overlap”, not overlap in general? The notion of “self-overlap”, though intu-
itively clear, is not easy to define formally. One possibility could be to make use of the
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notion of correspondence functions, employing the transitive closure of the correspon-
dence relationship to detect “overlap cycles” like the one in Fig. 9.1.

Normal dominance constraints [76, 3] are a fragment of dominance constraints for which
satisfiability can be tested in polynomial time. Here the concept of fragments (see p.
32) is central: In normal dominance constraints fragments cannot overlap, and satisfia-
bility becomes a problem of arranging the fragments in such a way that all dominance
constraints between them are satisfied. Can this language fragment, which is important
in the linguistic application, be extended by parallelism constraints, or a decidable frag-
ment of parallelism constraints? The answer is not obvious because some parallelism
constraints (which also occur in the linguistic application) cancel normality.

9.2 Processing CLLS Constraints

For dominance constraints, the first solver was a high-level saturation algorithm [78].
Building on this, a solver based on constraint programming techniques [34] was pro-
posed, a solver that already shows good average-case behavior. Then normal dominance
constraints were introduced, along with a polynomial graph-based solver [3].

For parallelism constraints, and for CLLS in general, there now exists a high-level sat-
uration procedure. So the next step is to develop practical procedures for this larger
language.

One possibility of doing this is to interleave a dominance constraint solver with a copy-
ing step that makes explicit the structural isomorphism of one pair of segment terms.
Preferably the language used should be a decidable fragment of parallelism constraints,
a fragment that yields a partial order on parallel segment term pairs, in such a way that
the copying step only needs to be applied exactly once to each segment term pair.
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Chapter 10

Conclusion

This chapter summarizes the main contributions of this thesis. The main formalism
that we have studied in this thesis are parallelism constraints, which are part of the
Constraint Language for Lambda Structures. A parallelism constraint states that two
segments of a lambda structure are structurally isomorphic and have parallel bindings.
The main result that we have presented is a procedure for parallelism constraints, which
we have extended to a procedure for all of CLLS. In the second part of the thesis, we have
studied questions of the practical applicability of the formalism as well as the procedure.
We have considered two applications: underspecified natural language semantics, and
underspecified beta reduction.

10.1 A Procedure for CLLS Constraints

We have introduced the semi-decision procedure P for CLLS constraints. It is a high-
level, rule-based saturation procedure, consisting of saturation rules that add more and
more literals to a constraint until a saturation is reached. The procedure P has the
following properties:

e It terminates for the linguistically relevant constraints. For these constraints, it
computes saturations that correspond to the correct readings.

e It includes a solver for dominance constraints. Given a dominance constraint as an
input, the procedure behaves exactly like the dominance constraint solver that it
encompasses, which is important for the linguistic application.

e It is built in a modular fashion, such that different dominance constraint solvers
can be incorporated.

e It never has to guess labels.

e It introduces correspondence formulas as a data structure for handling parallelism
within partial tree descriptions.

The procedure makes explicit the information that is present only implicitly in a con-
straint. From the point of view of the linguistic application, which uses dominance
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constraints for modeling scope ambiguity and parallelism constraints for modeling ellip-
sis, the procedure enumerates scope readings and recovers the meaning of an elliptical
sentence from its antecedent.

The notion of correspondence features both in the definition of the parallelism relation, in
the form of correspondence functions, and in the CLLS procedure, in the form of corre-
spondence formulas. A correspondence function maps each node in one parallel segment
to the node at the same position in the other parallel segment. A correspondence formula
states that correspondence holds between the denotations of two variables. It is expressed
in terms of path parallelism literals, which state that two tree paths are isomorphic. The
properties of path parallelism literals, expressed as saturation rules, enforce the correct
interaction between different correspondence formulas. In using correspondence formu-
las as the central data structure, the CLLS procedure benefits from the node-centered
perspective of the language.

The CLLS procedure P is sound in the sense that all its rules are equivalence transfor-
mations. The saturations that it computes are satisfiable: A model can be directly read
off each saturation. The procedure is complete in the sense that it computes all minimal
saturations for a given input constraint, in fact it only computes minimal saturations.
We have defined minimality in terms of a family of partial orders <g, parametrized by
a set G C Var of variables. This family of partial orders can be described as subset
inclusion modulo a-renaming of variables introduced during computation with P (where
Var — G is the set of variables that may be renamed).

10.2 Applying Parallelism Constraints

We have discussed two applications of CLLS: underspecified natural language semantics,
and underspecified beta reduction. In natural language semantics, parallelism constraints
can be used to model ellipsis. In underspecified beta reduction, parallelism can be used
for a declarative description of the result of a single underspecified beta reduction step.
For these applications, we have added the following extensions to the formalism and the
procedure.

Group parallelism. Group parallelism relates two groups of parallel segments instead
of just two segments. It differs from “normal” parallelism in its weaker conditions on
lambda and anaphoric binding. This extension to parallelism is needed both in the
application to modeling ellipsis and in the application to modeling underspecified beta
reduction steps.

Jigsaw parallelism. Ordinary parallelism relates pairs of segments, subtrees from which
one or more subtrees have been cut out. Jigsaw parallelism relates pairs of jigsaw seg-
ments, segments from which one or more segments have been cut out. The position of
the included as well as the excluded segments is specified in terms of an extended notion
of correspondence. Jigsaw parallelism is needed in the application to modeling ellipsis.
It is subsumed by group parallelism, however it allows for a more flexible and elegant
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modeling of ellipsis: Some cases of ellipsis require partial disambiguation of scope before
they can be modeled using group parallelism; with jigsaw parallelism, the ellipsis can be
described without any preceding disambiguation.

A procedure for CLLS plus group parallelism constraints. We have extended
the CLLS procedure P to handle group parallelism constraints as well as more expressive
constraints for lambda binding, which are necessary for the application to underspecified
beta reduction.

A procedure for computing the result of an underspecified beta reduction
step. In computing the result of an underspecified beta reduction step it is desirable to
keep the description of the lambda termas underspecified as it was before beta reduc-
tion. In particular, the procedure should not disambiguate quantifier scope. We have
presented a procedure that can perform an underspecified beta reduction step without
any disambiguation for many examples from underspecified semantics. The procedure,
which is a modification of the CLLS plus group parallelism procedure, relies crucially
on the specific layout of the segment terms in a reducing tree, along with underspecified
correspondence literals.
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ellipsis, 8, 13, 35, 197
extension by labeling, 66
external perspective on trees, 3, 43

failed, 59

fairness, 89, 124, 155, 169

feature description language, 4, 45
feature tree, 4, 43

finite failure, 116

fragment, 32

gamma segment, 181
generatedness, 91, 125, 156
group parallelism, 18, 144
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group parallelism literal, 146

inequality, 26

inequality set for ¢, 111

internal perspective on trees, 3, 43
inverse lambda binding, 146, 155

jigsaw parallelism, 19, 181
jigsaw parallelism literal, 191
jigsaw parallelism relation, 189
jigsaw segment, 181, 182, 185

labeled, 64

labeling, 11

lambda binding, 11, 122
lambda calculus, 7

lambda structure, 10, 28, 29
licensing, 198

linear redex, 165

linguistic structure, 9, 198
literal, 11

logical form, 199

many-pronoun puzzle, 40

minimal saturated constraint, 17, 69, 102
minimal saturation, 17, 69, 102

model, 31

Montague Grammar, 6

non-simple, 66, 95, 127

nonlinear redex, 165, 167, 171
nontermination, 155

normal dominance constraint, 15, 72, 209

padded constraint, 108
parallelism, 10, 27, 30
parallelism constraint, 32
parallelism phenomena, 8
path literal, 79

path parallelism, 77

path parallelism literal, 79
projected, 106

proper overlap, 182

quantifier, 8
quantifier parallelism, 9, 14, 37, 84, 200
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reconstruction, 197

redex, 138

reducing tree, 138, 141
reduct, 138

reductlike, 141

remainder set, 181, 182, 185
root, 27

root variable, 64

satisfiable, 31

saturated constraint, 59

saturated constraint, 87, 90, 125, 156,
169

saturation, 17, 57, 59

saturation, 87, 90, 125, 156, 169

saturation procedure, 57

saturation rule, 58, 76

saturation step, 58, 76

scope ambiguity, 7, 12, 33

search tree, 115

second-order monadic logic, 44

segment, 10, 12, 27

segment term, 16, 31

self-overlap, 85, 208

set operator, 33

simple, 64, 93, 125, 156

simplification, 2

singleton segment, 182

SkS, 3, 44

sloppy, 39

solved form, 63

soundness, 62, 89, 124, 154, 168

source contrasting element, 35

source parallel element, 35

source sentence, 9, 35

split antecedent, 200

stratum, 199

strict, 39

strict dominance, 26

strict /sloppy ambiguity, 39, 123

string unification, 5, 47

subjacency, 199

surface form, 198

symmetric group parallelism literal, 162
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target contrasting element, 35
target parallel element, 35
target sentence, 9, 35
termination, 62

tree domain, 26

tree structure, 26

underspecification, 7

underspecified beta reduction, 14, 138,
170

underspecified correspondence, 19

underspecified correspondence literal,
162

V-variant, 76
VP ellipsis, 9

WSKS, 3, 44
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