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Zusammenfassung

In jiingster Zeit werden automatische Beweissysteme fiir industrielle Zwecke immer
wichtiger und im Mathematikunterricht zunehmend anwendbar. In vielen Anwen-
dungen ist es wichtig, dal das Deduktionssystem seine Beweise dem menschlichen
Benutzer in geeigneter Weise vermittelt. Daher werden spezielle Beweisprisentati-
onssysteme entwickelt.

Allerdings sind auch die modernsten Beweisprisentationssysteme in mehrfacher
Hinsicht unzulénglich. Erstens prisentieren sie lediglich die Beweise, bestenfalls in
einem lehrbuch#hnlichem Format, ohne zu motivieren, warum der Beweis so gefiihrt
wurde. Zweitens vernachlissigen alle heutigen Systeme die Benutzermodellierung
und verzichten dadurch auf die Moglichkeit, die Prisentation an den jeweiligen Be-
nutzer anzupassen, sowohl hinsichtlich der Abstraktionsebene, auf der der Beweis
dargestellt wird, als auch hinsichtlich solcher Schritte, die trivial oder vom Benutzer
leicht zu sehen sind und daher weggelassen werden sollten. Schliellich erlauben sie
dem Benutzer keine Interaktion. Der Benutzer kann das System weder informieren,
daf} er einen Beweisteil nicht versteht, noch um eine andere Erklirung bitten. Eben-
sowenig kann er Folgefragen oder Fragen zum Hintergrund des Beweises stellen.

Als ersten Schritt diese Probleme zu beheben entwickeln wir in dieser Arbeit ein
Berechnungsmodell fiir benutzeradaptive Beweiserkldrung, die in dem generischen,
benutzeradaptiven Beweiserkldrungssystem P.rex (fiir proof explainer) implemen-
tiert ist. Dafiir benutzen wir Techniken aus drei verschiedenen Gebieten, nimlich
erstens aus der mathematischen Logik, um Beweise aus verschiedenen Kalkiilen mit
mehreren Abstraktionsebenen zu reprisentieren, wobei die Korrektheit der Beweise
sichergestellt wird, zweitens aus der Kognitionswissenschaft, um das mathemati-
sche Wissen und die mathematischen Fertigkeiten des Benutzers zu modellieren,
und drittens aus der Sprachverarbeitung, um die Beweiserklirung zu planen und
um Benutzereingaben zu erlauben und auf sie geeignet zu reagieren.






Abstract

Today, automated theorem provers are becoming more and more important in prac-
tical industrial applications and more and more useful in mathematical education.
For many applications, it is important that a deduction system communicates its
proofs reasonably well to the human user. To this end, proof presentation systems
have been developed.

However, state-of-the-art proof presentation systems suffer from several deficien-
cies. First, they simply present the proofs, at best in a textbook-like format, without
motivating why the proof is done as it is done. Second, they neglect the issue of
user modeling and thus forgo the ability to adapt the presentation to the specific
user, both with respect to the level of abstraction chosen for the presentation and
with respect to steps that are trivial or easily inferable by the particular user and,
therefore, should be omitted. Finally, they do not allow the user to interact with
the system. He can neither inform the system that he has not understood some part
of the proof, nor ask for a different explanation. Similarly, he cannot ask follow-up
questions or questions about the background of the proof.

As a first step to overcome these deficiencies, we shall develop in this thesis a
computational model of user-adaptive proof explanation, which is implemented in a
generic, user-adaptive proof explanation system, called P. rex (for proof explainer).
To do so, we shall use techniques from three different fields, namely from compu-
tational logic to represent proofs from various calculi with several levels of abstrac-
tions ensuring the correctness of the proofs; from cognitive science to model the
users mathematical knowledge and skills; and from natural language processing to
plan the explanation of the proofs and to accept and appropriately react to the
user’s interactions.
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Zusammenfassung

Motivation und Problemstellung

Seit, Alters her gilt die Mathematik als eine ,, Konigsdisziplin“, insofern als sie die
herausragendsten kognitiven Fihigkeiten des Menschen fordert. Daher ist es nicht
verwunderlich, dafl bald nach der Entwicklung der ersten Computer und der Ge-
burtsstunde der Kiinstlichen Intelligenz auf der Dartmouth-Konferenz im Jahre
1956 auch die ersten Systeme zum automatischen Beweisen mathematischer Satze
vorgestellt wurden (siehe z.B. [Davis, 1957; Newell et al., 1957; Gelernter, 1959]).

In jingster Zeit werden automatische Beweissysteme immer wichtiger fiir in-
dustrielle Anwendungen. So gehoren sie heute zu den Standardwerkzeugen bei der
Hard- und Softwareverifikation. Auch in mathematischen Anwendungen gibt es be-
reits erste ernstzunehmende Erfolge. Beispielsweise wurde 1996 fiir das sogenannte
Robbins Problem, ein algebraisches Problem, das mehr als 60 Jahre ungeltst blieb,
durch das Beweissystem EQP [McCune, 1997b] eine Losung gefunden. Des weiteren
sind Beweisplanungssysteme wie QMEGA [Benzmiiller et al., 1997] und Clam [Bun-
dy et al., 1990] in der Lage, nicht-triviale mathematische Sitze aus verschiedensten
Gebieten zu 16sen. Dariiberhinaus werden Deduktionssysteme auch im Mathematik-
unterricht [Melis et al., 2001] und (in beschréinktem Mafe) in der téglichen Arbeit
des Mathematikers immer niitzlicher.

In all diesen Anwendungen ist es wichtig, dafl das Deduktionssystem seine Be-
weise dem menschlichen Benutzer in geeigneter Weise kommuniziert. Einige Sy-
steme liefern als Ausgabe lediglich ein ,Ja“ oder ,Nein“, was dem Benutzer ein
Versténdnis des Beweises vollig unmdglich macht. Systeme mit aussagekraftigerer
Ausgabe liefern dagegen eine formale Darstellung des Beweises. Allerdings basie-
ren die meisten automatischen Beweiser auf maschinenorientierten Kalkiilen wie
dem Resolutionskalkiil [Robinson, 1965], die beziiglich der Beweissuche optimiert
sind und nicht notwendigerweise beziiglich ihrer Lesbarkeit. Da die Schliisse in
diesen Beweisen oft unnatiirlich und obskur sind, sind die Beweise kaum lesbar
und nur sehr schwer zu verstehen, sogar fiir Spezialisten. Daher wurden Algo-
rithmen entwickelt [Andrews, 1980; Kursawe, 1982; Miller, 1984; Pfenning, 1987;
Lingenfelder, 1990], die Beweise aus maschinenorientierten Kalkiilen in mehr men-
schorientierte Kalkiile wie den Kalkiil des natiirlichen Schlielens (ND fiir natural
deduction) [Gentzen, 1935] iibertragen.

Allerdings stellten sich die resultierenden ND-Beweise als bei weitem nicht zu-
friedenstellend heraus. Das liegt daran, dafl die ND-Beweise im Vergleich zum Ori-
ginalbeweis sehr grofl und umstéindlich sind. Dariiberhinaus besteht im ND-Kalkiil
ein Inferenzschritt lediglich in der syntaktischen Manipulation von Quantoren und
Junktoren, wogegen in von Menschen gefiihrten Beweisen ein Ableitungsschritt oft
durch die Anwendung einer Definition, eines Axioms, eines Lemmas oder eines Theo-
rems (zusammengefafit Fakten genannt) besteht. Basierend auf dieser Beobachtung
wurden Abstraktionen von ND-Beweisen definiert, in denen Beweisschritte entweder
durch ND-Inferenzregeln oder durch Faktenanwendungen begriindet werden kénnen
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[Huang, 1994c; Horacek, 1999).

Da traditionelle automatische Beweiser im allgemeinen lediglich Beweise finden,
die Mathematiker als einfach ansehen, wurden Ansitze entwickelt, die auf Beweis-
verfahren basieren, die der menschlichen Vorgehensweise eher entsprechen, wie z. B.
Planungsansiitze [Bundy et al., 1990; Benzmiiller et al., 1997]. Die wesentliche Idee
dabei besteht darin, Beweistechniken, wie sie von Mathematikern benutzt werden,
in Planoperatoren einzubetten, die dann von einem Beweisplaner verwandt werden,
um einen Beweisplan zu finden. Da ein solcher Beweisplan eine abstrakte Reprasen-
tation eines Beweises darstellt und die entsprechende Abstraktionsebene viel besser
zur Kommunikation geeignet ist als die Kalkiilebene, entféllt die Notwendigkeit zur
Beweistransformation auf der Kalkiilebene.

Allerdings mu$ festgestellt werden, daf} es fiir die praktische Anwendbarkeit von
Beweissystemen nicht ausreicht, dal die Beweise in einem obwohl am Menschen
orientierten, dennoch aber formalen Format prisentiert werden. Stattdessen sollten
die Beweise dem Menschen so dargeboten werden, wie er es gewohnt ist, ndmlich in
natiirlicher Sprache. Zu diesem Zweck wurden spezielle Beweisprisentationssysteme
entwickelt.

Die bisher auf dem Gebiet der Deduktion entwickelten Beweisprisentationssy-
steme (z. B. [Chester, 1976; Edgar and Pelletier, 1993; Coscoy et al., 1995; Dahn et
al., 1997]) sind jedoch in mehrfacher Hinsicht unzuléinglich. Automatisch gefundene
Beweise enthalten oft unabhingig von der Abstraktionsebene Beweisschritte, die
logisch gesehen unabdingbar sind, von Menschen jedoch niemals explizit gemacht
wiirden, da sie offensichtlich erscheinen. Da die meisten Beweispréisentationssysteme
iiber keinerlei Techniken verfiigen, die solche Schritte in der Beweisdarstellung aus-
lassen kénnten, présentieren sie jeden einzelnen Beweisschritt. Dadurch werden die
Beweise viel zu detailliert dargestellt, so dafl selbst kleine Beweise nicht mehr leicht
zu tberschauen sind. Dariiberhinaus benutzen diese Systeme zur Verbalisierung der
Schritte meist Schablonen mit Versatzstiicken vorgefertiger Satze. Daher lassen die
ausgegeben Texte Verbindungen zwischen den einzelnen Textsegmenten vermissen,
wodurch der Text unzusammenhingend wirkt und ein Verstindnis des Textes er-
heblich gestért wird. Die Situation wird noch verschlimmert, wenn Beweispriisenta-
tionssysteme nur die Inferenzregeln natiirlichsprachlich ausdriicken, die Pramissen
und Konklusionen der Beweisschritte aber als logische Formeln ausgeben, die oft
unverstindlich sind.

Um diese Probleme zu beheben wurden auf dem Gebiet der Sprachgenerierung
weit ausgefeiltere Beweisprisentationssysteme entwickelt (z. B. [Huang and Fiedler,
1997; Holland-Minkley et al., 1999]). Diese Systeme entscheiden, welche Information
in der Prisentation enthalten sein soll, und planen die rhetorische Struktur des Tex-
tes im voraus, um einen kohdrenten, das heifit inhaltlich zusammenhingenden Text
zu erhalten. Dariiberhinaus planen sie auch die innere Struktur der einzelnen Sétze
und die Morphologie der einzelne Worte. Auflerdem stellen sie geniigend Variabi-
litéit in der Verbalisierung dadurch sicher, dafl sie zwischen mehreren moglichen
Alternativen auswihlen. Sie vermeiden Redundanzen dadurch, dal sie Informa-
tionen miteinander kombinieren, und verbessern den Zusammenhalt der einzelnen
Satze durch Verwendung passender Referenzausdriicke. Zusammengenommen erlau-
ben diese Techniken den heutigen Beweisprasentationssystemen die Beweise in fast
lehrbuchéhnlicher Form auszugeben.

Allerdings leiden auch die fortgeschrittensten Beweisprisentationssysteme an ei-
nigen prinzipiellen Schwichen. Erstens gehen diese Systeme von einem einzigen kom-
munikativen Ziel aus, ndmlich den Beweis lehrbuch&hnlich zu prisentieren. Wahrend
ein Mathematiker, der lediglich die Korrektheit eines Beweises tiberpriifen will, mit
einem solchen lehrbuchartigen Beweis, in dem die Abfolge der Ableitungsschritte
im Vordergrund steht, zufrieden ist, bendtigt ein Schiiler oder Student, der lernen
will, wie man solche Beweise selbst fiihrt, eine ausfiihrlichere, unterrichtsihnliche
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Erklarung des Beweises. In einer solchen wunterrichtsorientierten Erklérung sollte
der Grund, warum ein bestimmter Schritt gemacht wird, betont werden, anstatt
lediglich festzustellen, daf8 der Schritt gemacht wurde [Leron, 1983].

Zweitens vernachlissigen alle heutigen Systeme die Benutzermodellierung und
konnen deshalb die Prisentation nicht an den jeweiligen Benutzer anpassen. Sie
prisentieren den Beweis auf einer fest vorgegebenen Abstraktionsebene, die fiir einen
Anfiinger zu hoch, fiir einen Experten aber zu niedrig sein mag, ohne zu erlauben
zwischen den einzelnen Abstraktionsebenen hin und her zu wechseln. Ein #hnliches
Problem ist, dafl sie oft den Explizitheitsgrad nicht auf die kognitiven F#higkei-
ten des Benutzers abstellen. Da sie die kognitiven Fertigkeiten des Benutzers nicht
modellieren, kdnnen sie Schritte, die trivial oder leicht zu sehen sind, nicht einfach
weglassen. [Horacek, 1999 fiihrt einen Ansatz ein, wie man modellieren kann, welche
Schritte leicht zu sehen sind.

Schliefllich ist die Moglichkeit Fragen zu stellen und eine angepafit Erklarung zu
bekommen, falls der Benutzer Teile des Beweises nicht versteht, wiinschenswert oder
gar notwendig, zumindest fiir intelligente tutorielle Systeme fiir Mathematik und fiir
mathematische Assistenzsysteme. Aber die heutigen Beweisprisentationssysteme
erlauben dem Benutzer keine Interaktion. Der Benutzer kann das System weder
informieren, daf er einen Beweisteil nicht versteht, noch um eine andere Erklarung
bitten. Ebensowenig kann er Folgefragen oder Fragen zum Hintergrund des Beweises
stellen.

Losungsansatz

Als ersten Schritt diese Probleme zu beheben entwickeln wir in dieser Arbeit ein
Berechnungsmodell fiir benutzeradaptive Beweiserkldrung, die in dem generischen,
benutzeradaptiven Beweiserkldrungssystem P.rex (fiir proof explainer) implemen-
tiert ist. Dabei stellen wir die folgenden Anforderungen an das System: Das System
soll die Erklirung an den Benutzer anpassen, und zwar hinsichtlich der Abstrak-
tionsebene, auf der der Beweis erldutert wird, dem Explizitheitsgrad, mit dem der
Beweis erklirt wird, und den kognitiven Fihigkeiten des Benutzers, um leicht zu
sehende Schritte wegzulassen. Weiterhin soll die Erklérung verschiedenen Darstel-
lungsarten geniigen, wie z. B. der lehrbuchartigen und der unterrichtsartigen Dar-
stellung. Dariiberhinaus soll das System dem Benutzer erlauben, mit dem System zu
interagieren, wenn er mit einer Erklirung nicht zufrieden ist, und Folgefragen oder
Fragen zum Hintergrund zu stellen. Die Metapher, die wir hier benutzen wollen,
ist die des Mathematikers, der einen Beweis seinen Schiilern oder seinen Kollegen
erklart.

Zur Problemltsung kombinieren wir Techniken aus drei verschiedenen Gebie-
ten, ndmlich aus der Kognitionswissenschaft, der mathematischen Logik und der
Sprachverarbeitung, auf die wir im folgenden niher eingehen wollen.

Moderne Sprachgenerierungssysteme beriicksichtigen das Wissen des Benutzers
bei der Generierung von Erklirungen (vgl. z. B. [Cawsey, 1990; Paris, 1991a; Wahl-
ster et al., 1993]). Die meisten dieser Systeme passen sich an den Benutzer da-
durch an, daf sie zwischen verschiedenen Diskursstrategien auswihlen. Da Beweise
stets reich an Inferenzen sind, mufl die Beweiserklirung auch beriicksichtigen, wel-
che Inferenzen der Benutzer selbst machen kann [Zukerman and McConachy, 1993;
Horacek, 1997b; 1999]. Wegen der Beschrinkungen des menschlichen Gedichtnis-
ses sind solche Inferenzen jedoch nicht ohne Probleme einfach verkettbar. Bei der
Auswahl der zu vermittelnden Information hat sich die explizite Reprasentation
der kognitiven Zustéinde des Benutzers als niitzlich erwiesen [Walker and Rambow,
1994].

In der Kognitionswissenschaft wurden verschiedene Theorien der menschlichen
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Kognition durch sogenannte kognitive Architekturen beschrieben, das heifit durch
die festgelegte Struktur, die den kognitiven Apparat realisiert (z. B. [Newell, 1990;
Meyer and Kieras, 1997a; Anderson and Lebiere, 1998]). Eine dieser Theorien ist
ACT-R [Anderson and Lebiere, 1998], eine Theorie der Kognition, die deklaratives
und prozedurales Wissen in ein deklaratives Gedéchtnis und eine Produktionsregel-
basis aufspaltet. Die Datenstruktur eines Kellers zur Verwaltung von Zielen erlaubt
ACT-R ein Ziel dadurch zu erfiillen, dafl es in Teilziele aufgeteilt wird, die un-
abhéngig voneinander erfiillt werden kénnen.

Prozedurales Wissen wird in ACT-R durch Produktionsregeln reprisentiert, de-
ren Vorbedingungs- und Aktionsteile durch deklarative Strukturen definiert werden.
Eine Produktionsregel kann nur dann angewandt werden, wenn ihre Vorbedingun-
gen durch das derzeitig im deklarativen Gedachtnis vorhandene Wissen erfiillt wer-
den. Jedes Element im deklarativen Ged#chtnis ist mit einer numerischen Grofle,
Aktivitdt genannt, verkniipft, die den Zugriff auf das Element beeinflufit. Die An-
wendung einer Produktionsregel verindert entweder das deklarative Gedichtnis
oder miindet in einem beobachtbaren Ereignis. Wenn mehrere Produktionsregeln
gleichzeitig anwendbar sind, entscheidet eine Konfliktlosungsheuristik, die aus einer
rationalen Analyse der menschlichen Kognition abgeleitet wurde [Anderson, 1990],
welche Produktionsregel schliefilich angewandt wird.

ACT-R verbindet also die Mdglichkeit zur Benutzermodellierung einerseits und
zur Planung andererseits in einem einheitlichen Rahmen und ist daher als Basis zur
benutzeradaptiven Dialogplanung besonders geeignet. Mit ACT-R modellieren wir
einen Lehrer, der seinem Schiiler einen mathematischen Beweis erklirt. Insbeson-
dere modellieren wir die Annahmen des Lehrers iiber die kognitiven Zustéinde des
Schiilers wihrend die Erkldrung voranschreitet (was in dem Benutzermodell resul-
tiert) und das Wissen des Lehrers iiber die mathematischen Theorien und wie man
Beweise aus einer solchen Theorie erklirt (was zur Planung der Erklirung benétigt
wird). Anhand der Annahmen iiber den kognitiven Zustand des Benutzers wihlt der
Planer eine Abstraktionsebene zur Erklarung aus und entscheidet, welche Schritte
er als vom Benutzer leicht zu sehen annimmt.

Eine wichtige Voraussetzung, die P.rex die Auswahl zwischen verschiedenen Ab-
straktionsebenen erst erlaubt, ist die gleichzeitige Reprisentation eines Beweises auf
mehreren Abstraktionsebenen. Diese Reprisentation, die auch die Schnittstelle zwi-
schen P rex und angeschlossenen automatischen Beweisern definiert, ist in TWEGA
realisiert, einer Implementation einer Erweiterung des logical frameworks LF [Har-
per et al., 1993, die dem calculus of constructions (AC) [Coquand and Huet, 1988]
entspricht. LF und AC sind miichtige getypte A-Kalkiile, die erlauben andere logi-
sche Kalkiile zu reprisentieren, insbesondere auch die Kalkiile von anzuschlieflenden
automatischen Beweisern. Sowohl der Eingabebeweis, der erkldrt werden soll, als
auch alle relevante Information aus den mathematischen Theorien, die der Beweis
benstigt, werden in TWEGA kodiert und dann von P.rex benutzt. Insbesondere er-
laubt TWEGA durch einen Expansionsmechanismus, der zu einem Ableitungsschritt
einen Teilbeweis auf einer niedrigeren Abstraktionsebene definiert, einen Beweis auf
mehreren Abstraktionsebenen gleichzeitig zu repréisentieren. Die typtheoretischen
Grundlagen von TWEGA garantieren, dafl ausschliefilich solche Beweise représen-
tiert werden konnen, die gemif3 des Kalkiils des angeschlossenen Beweisers korrekt
sind.

Die erfolgreiche Kommunikation mittels eines Sprachgenerierungssystems setzt
voraus, daf3 der zu {ibermittelnde Inhalt passend strukturiert ist, um eine koh#rente
semantische Organisation der Ausgabe zu gewihrleisten. Fiir ein Erklirungssystem
ist es weiterhin wichtig, Riickmeldungen und Folgefragen durch den Benutzer zu
erlauben. Um mifiverstandene Erklirungen richtigzustellen mufl das System sowohl
die verschiedenen Teile der Erklarung, als auch die Relationen zwischen diesen Teilen
reprisentieren.
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Eine Diskurstheorie, die solche Reprisentationen erlaubt, wurde von Mann und
Thompson [1987] formuliert. Gemé&f dieser RST (fiir Rhetorical Structure Theory)
genannten Theorie konnen die Relationen zwischen Segmenten normalen englischen
Texts durch eine endliche Menge von Relationen beschrieben werden. Basierend
auf RST beschrieb Hovy [1993] Diskurse als Verschachtelung von Diskurssegmen-
ten. Nach seiner Diskurstheorie enthélt jedes Diskurssegment im wesentlichen das
kommunikative Ziel, das der Sprecher mit diesem Segment erfiillen will, und ent-
weder eine bis mehrere Untersegmente mit den dazugehorigen Relationen oder den
semantischen Inhalt, der kommuniziert werden soll.

Grosz und Sidner [1986] entwickelten eine Diskurstheorie, die drei unterschiedli-
che, aber miteinander verwobene Komponenten unterscheidet, ndmlich die linguisti-
sche Struktur, die intentionale Struktur und den attentionalen Zustand. Wihrend
die linguistische Struktur die Segmentierung des Diskurses beschreibt, beschreibt
die intentionale Struktur, wie sich die Ziele der Diskurssegmente zueinander verhal-
ten. Der attentionale Zustand ist eine Abstraktion des Aufmerksambkeitsfokus der
Gespréichsteilnehmer wihrend des Diskurses und modelliert die Salienz des Dis-
kursinhalts, das heifit, inwiefern die Gespréchsteilnehmer auf den entsprechenden
Inhalt in dem derzeitigen Kontext kognitiv zugreifen kénnen.

Fiir P.rex definieren wir Diskursstrukturbdume zur Diskursreprisentation. Diese
Reprisentation pafit Hovys Diskurssegmente fiir unsere Zwecke an und verbindet
sie mit den attentionalen Zustinden aus Grosz und Sidners Theorie. Dies erlaubt
sowohl die Diskurssegmentierung, als auch den Aufmerksamkeitsfokus in einer ge-
meinsamen Umgebung zu modellieren. Da die attentionalen Zustinde die Salienz
modellieren, werden sie zur Auswahl des Explizitheitsgrades und der Referenzaus-
driicke benutzt. Die explizite Représentation des Diskurszwecks erlaubt die Prisen-
tation in verschiedenen Darstellungsarten, wie die lehrbuchartige oder die unter-
richtsartige Darstellung. Dariiberhinaus beriicksichtigen die Diskursstrukturbdume
auch eingeschrinkte Formen von Dialog, ndmlich bestimmte Formen von Unterbre-
chungen und Kléirungsdialogen. Dies ist eine notwendige Voraussetzung, um dem
System die Reprisentation von Benutzerinteraktionen sowie die passende Reaktion
darauf zu erlauben.

Architektur und Funktionsweise

Ein Uberblick iiber die Architektur von P.rex ist in Abbildung 1 gegeben.

Wie bereits ausgefiihrt definiert TWEGA die Schnittstelle, iiber die automati-
sche Beweiser an Prexr angebunden werden konnen. Dies geschieht dadurch, daf}
der Kalkiil des Beweisers, die Beweise selbst sowie die zu ihnen in Beziehung ste-
henden mathematischen Konzepte in TWEGA kodiert werden. Die typtheoretischen
Grundlagen von TWEGA garantieren die Korrektheit der représentierten Beweise.

Die zentrale Komponente des Systems ist der Dialogplaner. Er wihlt und sortiert
den Inhalt, der dargestellt werden soll, und organisiert ihn in einem Diskursstruk-
turbaum. Der Dialogplaner ist in ACT-R implementiert. Der Diskursstrukturbaum,
der sowohl als Dialogplan, als auch als Diskursgedichtnis dient, wird im deklarativen
Gedichtnis gespeichert. Die Planoperatoren, die den Diskursstrukturbaum aufbau-
en, sind als ACT-R-Produktionsregeln definiert. Der Dialogplaner modelliert den
Benutzer dadurch, daf3 er das vermutete deklarative und prozedurale Wissen des
Benutzers im deklarativen Gedéichtnis bzw. in der Produktionsregelbasis ablegt.

Um nun einen konkreten Beweis zu erkliren, nimmt der Dialogplaner zunchst
den vermuteten kognitiven Zustand des Benutzers an, indem er sein deklaratives
Gediichtnis und seine Produktionsregelbasis mit dem entsprechenden Benutzermo-
dell abgleicht, das nach einer fritheren Sitzung in der Datenbank der Benutzermo-
delle gespeichert wurde. Jedes Benutzermodell enth#lt Annahmen iiber das Wissen
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Abbildung 1. Die Architektur von P.rex.

des Benutzers, das fiir die Beweiserkldrung relevant ist. Insbesondere enthilt es
Annahmen dariiber, welche mathematischen Theorien, Definitionen, Beweise, Infe-
renzmethoden und mathematischen Fakten er kennt.

Danach setzt sich der Dialogplaner das iibergeordnete Ziel, den Beweis zu zei-
gen. ACT-R versucht dieses Ziel dadurch zu erfiillen, daf3 es nacheinander Pro-
duktionsregeln anwendet, die Ziele entweder direkt erfiillen oder diese in Teilziele
zerlegen. Dabei erzeugt der Dialogplaner nicht nur einen Dialogplan in Form eines
Diskursstrukturbaumes, sondern verfolgt auch die kognitiven Zustinde des Benut-
zers, wahrend die Erklarung voranschreitet. Letzteres erlaubt dem System sowohl
eine benutzerangepafite Erklirung zu generieren, als auch flexibel auf die Inter-
aktionen des Benutzers zu reagieren: Der Dialogplaner interpretiert zunichst die
Interaktionen indem er neue Dialogziele erzeugt. Diese werden dann im Anschlufl
getrennt angegangen.

Der von dem Dialogplaner erzeugte Dialogplan wird dann von dem Satzplaner
weiterverarbeitet. Um die interne Struktur der Sitze in der Ausgabe von Prex
zu planen wurde der Satzplaner von PROVERB [Fiedler, 1996; Huang and Fied-
ler, 1997] angepafit und erweitert. Zu den Aufgaben des Satzplaners gehort es,
Doménenkonzepte wo moglich zu aggregieren und sie in eine linguistische Struktur
abzubilden. Diese spezifiziert die konkreten Worte und Referenzausdriicke, die die
Doménenkonzepte ausdriicken, sowie den Skopus der Phrasen und Satze.

Die linguistische Struktur wird dann durch den syntaktischen Realisierer TAG-
GEN [Kilger and Finkler, 1995], der die korrekte Morphologie der Worter sicher-
stellt, realisiert.

Die in P rex verfolgte Anordnung von Dialogplaner, Satzplaner und Realisierer
in einer Pipeline entspricht der Architektur der meisten Sprachgenerierungssysteme.
Sie wurde daher von Reiter als Konsensarchitektur charakterisiert [Reiter, 1994].

Die von P.rex erzeugten AuBerungen werden dem Benutzer schlieflich iiber eine
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Benutzerschnittstelle dargeboten, die dem Benutzer dariiberhinaus erlaubt, Anmer-
kungen, Fragen oder Befehle an das System zu richten. Ein Analysierer iibersetzt
die Interaktionen des Benutzers in neue Diskursziele, die anschliefend von dem
Dialogplaner angegangen werden. Da die Analyse natiirlicher Sprache den Rahmen
dieser Arbeit bei weitem sprengen wiirde, begniigen wir uns mit einem einfachen
Analysierer, der nur eine kleine Menge vordefinierter Interaktionen zu verstehen
vermag,.

Diskussion

Der Dialogplaner von P rex ist als hybrider Planer realisiert, das heifit, er kombi-
niert Planung mit Diskursrelationen, die fiir die Planung kleinerer Strukturen wie
einzelner aufeinanderfolgender AuBerungen besonders geeignet ist, mit schemaba-
sierter Planung, deren Vorteile in der Planung grofierer Strukturen wie z. B. Absitze
oder ganzer Textpassagen liegen. Zur Représentation des Dialogs baut er einen Dis-
kursstrukturbaum auf, der Hovys RST-artigen Ansatz [1993] mit Grosz und Sidners
Konzept attentionaler Zustiinde [1986] verkniipft. Die attentionalen Zustinde wer-
den zur Modellierung der Salienz benétigt. Der Dialogplaner kann so entscheiden,
wie explizit er sich auf ein bereits eingefiihrtes Objekt bezieht.

Neben dieser Anpassung im Explizitheitsgrad mithilfe der attentionalen Zustin-
de pafit der Dialogplaner seine Darstellung auch auf den Benutzer an, indem er den
Beweis einerseits auf einer moglichst abstrakten, aber dem Benutzer noch bekannten
Ebene erklirt, andererseits jegliche leicht vom Benutzer zu sehenende Schritte in
der Erklirung wegléfit. Des weiteren kombiniert der Dialogplaner zwei Darstellungs-
arten in Abhingigkeit davon, wie gut sich der Benutzer mit dem jeweiligen Thema,
auskennt. Wo sich der Benutzer mit der zugrundeliegenden Theorie gut auskennt
wird der Beweis lehrbuchartig dargestellt, wihrend in unbekannteren Theorien eine
unterrichtsartige Erkldrung erfolgt. Dieser Wechsel zwischen den Darstellungsarten
kann insbesondere innerhalb eines Beweise erfolgen.

Das System erlaubt es dem Benutzer jederzeit einzugreifen, wenn er mit der
Erkldrung nicht zufrieden ist. Es reagiert auf eine solche Unterbrechung mit der
erneuten Planung der beanstandeten Beweisteile. Um diese Beweisteile zu identifi-
zieren benutzt der Dialogplaner strukturelle Information, die in den Diskursstruk-
turbdumen explizit reprisentiert ist.

P rez ist anfinglich mit 91 dom#nenunabhingigen Produktionsregeln ausgestat-
tet. Durch die Definition von doméinenabhiingigen Schemata werden weitere auf
die jeweilige mathematische Theorie spezialisierte Produktionsregeln hinzugefiigt.
Dariiberhinaus kénnen durch einen Lernprozefl in ACT-R zur Laufzeit weitere Pro-
duktionsregeln dynamisch generiert werden.

P rex wurde bislang zur Erklarung von Dutzenden Beweisen aus der Gruppen-
theorie und der Theorie der Pradikatenlogik erster Stufe erfolgreich eingesetzt.

Uberblick

Diese Arbeit ist wie folgt aufgebaut: Nach einer Einleitung in Kapitel 1 wird in Ka-
pitel 2 in das Gebiet der Sprachgenerierung und der Beweisprisentation eingefiihrt.
Weiterhin werden Anforderungen an die Beweiserklirung formuliert und ein Uber-
blick iiber die Architektur von P rex gegeben. Anschlielend wird in Kapitel 3 TWE-
GA formal definiert und der ND-Kalkiil, der von mehreren automatischen Beweisern
benutzt wird, in TWEGA beispielhaft reprisentiert. Da einige Deduktionssysteme,
wie z. B. QMEGA [Benzmiiller et al., 1997] auf komplexen Kalkiilen basieren, die
dynamisch reprisentiert werden miissen, wird in Kapitel 4 anhand des Kalkiils von
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QOMEGA gezeigt, wie eine solche dynamische Reprisentation zur Laufzeit erfolgen
kann.

In Kapitel 5 wird ACT-R eingefiihrt, die kognitive Theorie, die dem Dialogpla-
ner von P rex als Basis dient. Der Dialogplaner selbst wird anschlieflend in Kapitel 6
behandelt. In diesem zentralen Kapitel werden sowohl die Diskursstrukturbdume,
als auch die Planoperatoren, die sie aufbauen, definiert. Insbesondere wird auf spe-
zialisierte Planoperatoren, die die Beweiserkldrung auf den jeweiligen Benutzer an-
passen, sowie auf die Systemreaktion auf Benutzerinteraktionen eingegangen.

In Kapitel 7 werden dann die weiteren Komponenten des Systems besprochen,
nimlich der Satzplaner, der Realisierer, die Benutzerschnittstelle sowie der Analy-
sierer. Kapitel 8 schliefft die vorliegende Arbeit ab.
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Summary

Motivation and Problem

Mathematics has been considered one of the most sublime of the human cognitive
skills. Therefore, soon after the advent of the first computers in the early fifties
and with the advent of artificial intelligence in 1956 at the Dartmouth Conference,
researchers began to devise systems for automated theorem proving (see e.g., [Davis,
1957; Newell et al., 1957; Gelernter, 1959)).

Today, automated theorem provers are becoming more and more important in
practical industrial applications. For example, they are standard routine in the veri-
fication of hardware and software, in deductive data bases and in logic programming.
They also have the first considerable successes in mathematical applications. For
example, in 1996, the so-called Robbins Problem, an algebraic problem that was
open for more than 60 years, could be automatically proved by the automated the-
orem prover EQP [McCune, 1997b]. Proof planners such as QMEGA [Benzmiiller et
al., 1997] and Clam [Bundy et al., 1990] prove non-trivial mathematical theorems
from assorted fields. Deduction systems are becoming useful in mathematical edu-
cation [Melis et al., 2001] and (to a limited extend) the mathematicians’ everyday
work.

For these applications, it is important that a deduction system communicates its
proofs reasonably well to the human user. Some systems provide as output simply a
“yes” or “no,” thus precluding the user from scrutinizing the proof. More responsive
systems return a formal account of the proof. However, most automated theorem
provers are based on machine-oriented calculi such as resolution [Robinson, 1965],
which are optimized for the process of proof search and not for human readability.
Since the lines of reasoning of the output proofs are often unnatural and obscure,
the proofs are very difficult to read and hardly comprehensible, even for specialists.
Therefore, researchers developed algorithms [Andrews, 1980; Kursawe, 1982; Miller,
1984; Pfenning, 1987; Lingenfelder, 1990] to transform proofs from machine-oriented
calculi into more human-oriented calculi such as the natural deduction (ND) calculus
[Gentzen, 1935].

But the result of the transformation into the ND calculus turned out to be
far from satisfactory. The reason is that the obtained ND proofs are very large
and too involved in comparison to the original proof. Moreover, in the ND calcu-
lus, an inference step merely consists of the syntactic manipulation of a quantifier
or a connective. In human-written proofs, in contrast, an inference step is of-
ten described in terms of the application of a definition, an axiom, a lemma or
a theorem, collectively called an assertion. Based on this observation, abstrac-
tions of ND proofs have been defined, where a proof step may be justified ei-
ther by an ND inference rule or by the application of an assertion [Huang, 1994c;
Horacek, 1999].

Since traditional automated theorem provers find proofs for theorems that are
usually considered easy by mathematicians, theorem provers based on a more human-
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oriented approach such as the application of planning techniques have been devel-
oped [Bundy et al., 1990; Benzmiiller et al., 1997]. The key idea here is that proof
techniques as used by mathematicians are encoded into plan operators, which are
used by the proof planner to find a proof plan. Because a proof plan is an abstract
representation of a proof, it provides a level that is better suited for communica-
tion such that proof transformation at the calculus level becomes obsolete for proof
planners.

To be of practical use for the human user, however, it does not suffice to commu-
nicate the proofs in an albeit human-oriented, but still formal format. Instead, the
proofs should be output in the way people are used to, namely in natural language.
To this end, proof presentation systems have been developed.

However, most proof presentation systems that have been developed so far in the
field of automated theorem proving (e.g., [Chester, 1976; Edgar and Pelletier, 1993;
Coscoy et al., 1995; Dahn et al., 1997]) suffer from several deficiencies. Regardless
of the level of abstraction, automatically found proofs often include steps that are
logically indispensable but people would not make explicit, because the steps are
considered obvious. Since most proof presentation systems employ no techniques
to exclude such steps from the presentation, they present every single step of the
derivation. Thus, the output proofs are too detailed, such that even small proofs
are not easy to follow. Moreover, these systems mostly use templates with canned
sentence chunks for the verbalization of the steps. Therefore, the output texts
lack interrelations between segments of the text. This leaves the text segments
unconnected and, thus, severely obstructs the comprehension of the proof. The
situation is even worse in those systems that verbalize only the inference rules
in natural language, but output the premises and conclusions as logical formulae,
which are still unreadable.

To overcome these problems proof presentation systems that employ more so-
phisticated techniques from the field of natural language generation have been de-
veloped (e.g., [Huang and Fiedler, 1997; Holland-Minkley et al., 1999]). These
systems decide which information to include in the presentation and they plan the
rhetorical structure of the text in advance to achieve connected texts. They also
plan the internal structure of the sentences and the morphology of the words. They
ensure variation in the verbalization by choosing between several possible alterna-
tives, avoid redundancies by aggregating information and improve the relatedness
of the sentences by choosing appropriate referring expressions. These techniques
together enable state-of-the-art proof presentation systems to output the proofs in
an almost textbook-like format.

However, even the previously mentioned state-of-the-art proof presentation sys-
tems suffer from several deficiencies. Firstly, they usually presuppose a single com-
municative purpose, namely to present the proof in a textbook-like style. However,
whereas a mathematician who wants to check the correctness of a proof is often sat-
isfied with a textbook-like presentation, a student who wants to learn how to find
a proof usually needs a more elaborate classroom-style explanation of the proof.
In such a classroom-style explanation, the reason why a step is taken should be
emphasized as opposed to just mention that the step is taken [Leron, 1983].

Secondly, the systems all neglect the issue of user modeling and thus forgo the
ability to adapt the presentation to the specific user. They present the proof at a
fixed level of abstraction that might be too high for a novice or too low for an expert
without allowing for a transition between levels of abstraction. A similar problem
is that they often do not adapt the degree of explicitness to the user’s cognitive
capabilities. Also, since they do not model the user’s cognitive skills, they cannot
omit steps that are trivial or easily inferable by the particular user. Horacek [1999]
introduced an approach how to model which steps are easily inferable.

Finally, in case the user cannot understand some part of the proof, the pos-
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sibility to ask questions about it and get an adapted explanation is desirable or
even compulsory (for intelligent tutor systems for mathematics and mathematical
assistant systems). However, current proof presentation systems do not allow the
user to interact with the system. The user cannot tell the system when he did not
understand a part of the proof and ask for another explanation of that part. Simi-
larly, the user cannot ask follow-up questions or questions about the background of
the proof.

Approach

As a first step to overcome these deficiencies, we shall develop in this thesis a
computational model of user-adaptive proof explanation, which is implemented
in a generic, user-adaptive proof explanation system, called P.rex (for proof
explainer). The demands we make on the system are the following: The system
should adapt to the user with respect to the level of abstraction at which the proof
is presented, the degree of explicitness used to explain the proof, and inferential
capabilities of the user to omit inferable steps. The explanation should account for
different presentation styles, such as the textbook-like style and the classroom-like
style. Moreover, the system should allow the user to intervene if he is not satisfied
with an explanation and to ask follow-up or background questions. The metaphor
we have in mind is a human mathematician who teaches a proof to a student or
else explains a proof to a colleague.

In our approach, we combine techniques from three different fields, namely cog-
nitive science, computational logic and natural language processing, as we shall
discuss in the following.

Modern natural language generation systems take into account the intended
audience’s knowledge in the generation of explanations (see e.g. [Cawsey, 1990;
Paris, 1991a; Wahlster et al., 1993]). Most of them adapt to the addressee by
choosing between different discourse strategies. Since proofs are inherently rich in
inferences, the explanation of proofs must also consider which inferences the audi-
ence can make [Zukerman and McConachy, 1993; Horacek, 1997b; 1999]. However,
because of the constraints of the human memory, inferences are not chainable with-
out costs. Explicit representation of the addressee’s cognitive states proves to be
useful in choosing the information to convey [Walker and Rambow, 1994].

In cognitive science various theories of human cognition have been described by
means of a cognitive architecture, that is, the fixed structure that realizes the cogni-
tive apparatus (e.g., [Newell, 1990; Meyer and Kieras, 1997a; Anderson and Lebiere,
1998]). One of these theories is ACT-R [Anderson and Lebiere, 1998], a cognitive
architecture that separates declarative and procedural knowledge into a declarative
memory and a production rule base, respectively. A goal stack allows ACT-R to
fulfill a task by dividing it into subtasks, which can be fulfilled independently.

In ACT-R, procedural knowledge is represented in production rules, whose con-
ditions and actions are defined in terms of declarative structures. A production rule
can only apply if its conditions are satisfied by the knowledge currently available in
the declarative memory. An item in the declarative memory is annotated with an
activation that influences its retrieval. The application of a production rule modifies
the declarative memory, or it results in an observable event. If several production
rules are applicable a conflict resolution heuristic derived from a rational analysis of
human cognition [Anderson, 1990] determines which production rule will eventually
be applied.

Hence, ACT-R combines the abilities for user modeling and planning in a uni-
form framework and is therefore particularly well suited as a basis for a user-adaptive
dialog planner. Using ACT-R, we model a teacher who explains mathematical
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proofs to his student. In particular, we model the teacher’s assumptions about the
students cognitive states during the explanation (which establish the user model)
and the teacher’s knowledge of the mathematical theories and the way to explain
the proof of a theorem in these theories (which is used to plan the explanation).
The assumptions about the user’s cognitive states are employed to choose the level
of abstraction at which a proof is presented and to decide which steps the user can
infer.

An important prerequisite that enables P.rez to choose among different levels
of abstraction is the simultaneous representation of a proof at several levels of
abstraction. This representation, which also serves as the interface between theorem
provers and Prez, is realized in TWEGA, an implementation of an extension of
the logical framework LF [Harper et al., 1993] that corresponds to the calculus of
constructions (AC) [Coquand and Huet, 1988]. LF and AC are very powerful typed
lambda calculi that allow us to represent other logical calculi, and thus give us the
possibility to represent the calculus of any theorem prover that is to be connected
to Prez. The input proof to be explained as well as relevant information from the
mathematical theories that relate to the proof are encoded in TWEGA and then
used by Prez. In particular, using an expansion mechanism that defines for any
derivation step a subproof at the lower level of abstraction, TWEGA allows us to
represent a proof at several levels of abstraction simultaneously.

Successful communication via a natural language generation system presupposes
that the content to be conveyed is appropriately structured to ensure a coherent
semantic organization. For an explanation system, it is also important to accept user
feedback and follow-up questions. To be able to clarify misunderstood explanations,
the system needs to represent the different parts of the explanation as well as the
relations between them.

An appropriate discourse theory that allows for these representations was for-
mulated by Mann and Thompson [1987]. This theory, called Rhetorical Structure
Theory (RST), states that the relations that hold between segments of normal En-
glish text can be represented by a finite set of relations. Based on RST, Hovy [1993]
described discourse as the nesting of discourse segments. According to his discourse
theory, each segment essentially contains the communicative goal the speaker wants
to fulfill with this segment and either one to several discourse segments with inter-
segment discourse relations or the semantic material to be communicated.

Grosz and Sidner [1986] developed a discourse theory that distinguishes three
separate, but interrelated components, namely the linguistic structure, the inten-
tional structure and the attentional state. Whereas the linguistic structure describes
the segmentation of the discourse, the intentional structure captures how the pur-
poses of the discourse segments relate to one another. The attentional state is an
abstraction of the focus of attention of the participants as the discourse unfolds and
models the salience of discourse contents.

For Prex, we define discourse structure trees as a representation of discourses.
This representation adapts Hovy’s discourse segments and combines it with the
concept of attentional spaces from Grosz and Sidner’s theory. This allows us to
model both the segmentation of the discourse and the focus of attention in a uni-
form framework. Since the attentional spaces model salience, they are employed to
decide on the degree of explicitness and to choose appropriate referring expressions.
Explicit representation of the discourse purpose allows for presentations using dif-
ferent styles, such as the textbook-like style or the classroom-like style. Moreover,
discourse structure trees also account for restricted types of dialogs as well, namely
certain types of interruptions and clarification dialogs. This is a necessary prereq-
uisite for the system to represent user interactions and to appropriately react to
them.
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Figure 2. The Architecture of Prez.

Architecture

An overview of the architecture of P rez is displayed in Figure 2.3.

As mentioned previously TWEGA defines the interface between theorem provers
and Prex. The calculus of the prover, the input proof to be explained, as well as
relevant information from the mathematical theories that relate to the proof are
represented in TWEGA for further use by P.rez. can be connected to these theorem
provers. The type-theoretic foundations of TWEGA guarantee that only those proofs
can be represented that are correct with respect to the calculus of the corresponding
prover.

The central component of P.rez is the dialog planner. It chooses the content and
determines the order of the information to be conveyed, and organizes the pieces
of information in a discourse structure tree. The dialog planner is implemented
in ACT-R. The discourse structure tree, which serves both as dialog plan and as
dialog history, is stored in the declarative memory. The plan operators of the dialog
planner, which organize the discourse structure, are defined in terms of ACT-R pro-
ductions. The dialog planner models the user by encoding his presumed declarative
and procedural knowledge in the declarative memory and the production rule base,
respectively.

In order to explain a particular proof, the dialog planner first assumes the user’s
cognitive state by updating its declarative and procedural memories. This is done
by looking up the user’s presumed knowledge in the user model, which was recorded
during a previous session. An individual model for each user persists between the
sessions. It is stored in the database of user models. Each user model contains
assumptions about the knowledge of the user that is relevant to the proof explana-
tion. In particular, it makes assumptions about which mathematical theories the
user knows and which definitions, proofs, inference methods and mathematical facts
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he knows.

After updating the declarative and procedural memories, the dialog planner sets
the global goal to show the proof. ACT-R tries to fulfill this goal by successively ap-
plying productions that decompose or fulfill goals. Thereby, the dialog planner not
only produces a dialog plan, but also traces the user’s cognitive states in the course
of the explanation. This allows the system both to always choose an explanation
adapted to the user, and to react to the user’s interactions in a flexible way: The
dialog planner interprets the interaction in terms of applications of productions.
Then it plans an appropriate response.

The dialog plan produced by the dialog planner is passed on to the sentence
planner. We adapted and extended PROVERB’s micro-planner [Fiedler, 1996;
Huang and Fiedler, 1997] to use it in Prez to plan the internal structure of the
sentences. The sentence planner aggregates domain concepts when possible and
maps them into a linguistic structure. The linguistic structure specifies the lexical
items and referring expressions that realize the domain concepts as well as the
small-scale segmentation, that is, the scope of the phrases and sentences.

The linguistic structure is then realized by the surface realizer TAGGEN [Kilger
and Finkler, 1995], which ensures the correct morphology of the surface words.

The organization of dialog planner, sentence planner and surface realizer in a
pipeline corresponds to the architecture of most natural language generation systems
and was therefore characterized as a consensus architecture [Reiter, 1994].

The utterances that are produced by P rex are presented to the user via a user
interface that allows the user to enter remarks, requests and questions. An analyzer
receives the user’s interactions, analyzes them and passes them on to the dialog
planner. Since natural language understanding is beyond the scope of this work, we
use a simplistic analyzer that understands a small set of predefined interactions.

Discussion

The dialog planner of P rex is a hybrid planner, which combines planning with dis-
course relations as captured in productions with planning with schemata. Whereas
discourse relations are particularly well suited for planning small-scale structures
such as subsequent utterances, schemata are superior in planning large-scale struc-
tures such as paragraphs or sections. To represent the dialog the dialog planner
constructs a discourse structure tree that combines the RST-like approach of Hovy
[1993] with the concept of attentional spaces from Grosz and Sidner [1986]. The
attentional spaces are employed to model the salience of the information. Based on
the information in which focus space a fact was derived, the dialog planner decides
how the fact can be referred to.

Beside adapting the degree of explicitness taking into account the attentional
spaces, the dialog planner also adapts to the user by explaining the proof at the
highest level of abstraction that it assumes to be known to the user and by omitting
steps that it assumes the user can easily infer. Moreover, it combines two different
presentation strategies depending on how familiar with the current subject the user
is. Whereas a textbook-style presentation strategy is used for those parts of the
proof where the user is more knowledgeable, a classroom-style explanation strategy
is used for the unfamiliar parts. In particular, the system can switch between the
strategies during an ongoing explanation.

The system allows the user to interrupt anytime if he is not satisfied with the
current explanation and reacts to the interruption by accordingly replanning the
parts of the proof the user complained. The dialog planner uses the structural
information that is explicitly represented in the discourse structure trees to identify
which parts of the explanation failed to convey successfully. Those parts are then
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replanned.

Initially, P rex is equipped with 91 domain independent productions. Further
domain dependent productions are added by the definition of schemata tailored to
the mathematical theory under consideration. Moreover the system can learn new
productions via the production compilation process.

P rex has been successfully used to explain dozens of proofs from group theory
and the theory of first-order predicate logic.

Overview

This thesis is organized as follows: After an introduction in Chapter 1, we shall
review relevant research in natural language generation and proof presentation, for-
mulate requirements for proof explanation, and give an overview of the architecture
of Prex in Chapter 2. Next, in Chapter 3, we shall formally define TWEGA and
give an example for the representation of a calculus that is used by several the-
orem provers. Some deduction systems such as QOMEGA [Benzmiiller et al., 1997]
are based on complex calculi that call for a dynamic representation of the proofs
in TWEGA. Since such a dynamic representation cannot be precalculated, we shall
show in Chapter 4 how a dynamic representation can be calculated at run time
using as an example the calculus of MEGA.

Chapter 5 is devoted to ACT-R, the theory of human cognition that serves as
a basis for the dialog planner of Prexz. The dialog planner itself is the subject of
Chapter 6. In this central chapter, we shall define the discourse structure trees and
plan operators to construct them. In particular, we shall show how the system uses
special plan operators to adapt its explanations to the user. Moreover, we shall
discuss the system’s reaction to a user’s interactions.

Chapter 7 is then devoted to the front end components, namely the sentence
planner and the linguistic realizer, the user interface, and the analyzer. Chapter 8
concludes the thesis.
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Chapter 1

Introduction

Mathematics has been considered one of the most sublime of the human cognitive
skills. Therefore, soon after the advent of the first computers in the early fifties
and with the advent of artificial intelligence in 1956 at the Dartmouth Conference,
researchers began to devise systems for automated theorem proving (see e.g., [Davis,
1957; Newell et al., 1957; Gelernter, 1959)).

Today, automated theorem provers are becoming more and more important in
practical industrial applications. For example, they are standard routine in the veri-
fication of hardware and software, in deductive data bases and in logic programming.
They also have the first considerable successes in mathematical applications. For
example, in 1996, the so-called Robbins Problem, an algebraic problem that was
open for more than 60 years, could be automatically proved by the automated the-
orem prover EQP [McCune, 1997b]. Proof planners such as QMEGA [Benzmiiller et
al., 1997] and Clam [Bundy et al., 1990] prove non-trivial mathematical theorems
from assorted fields. Deduction systems are becoming useful in mathematical edu-
cation [Melis et al., 2001] and (to a limited extend) the mathematicians’ everyday
work.

For these applications, it is important that a deduction system communicates its
proofs reasonably well to the human user. Some systems provide as output simply a
“yes” or “no,” thus precluding the user from scrutinizing the proof. More responsive
systems return a formal account of the proof. However, most automated theorem
provers are based on machine-oriented calculi such as resolution [Robinson, 1965],
which are optimized for the process of proof search and not for human readability.
Since the lines of reasoning of the output proofs are often unnatural and obscure,
the proofs are very difficult to read and hardly comprehensible, even for specialists.
Therefore, researchers developed algorithms [Andrews, 1980; Kursawe, 1982; Miller,
1984; Pfenning, 1987; Lingenfelder, 1990] to transform proofs from machine-oriented
calculi into more human-oriented calculi such as the natural deduction (ND) calculus
[Gentzen, 1935].

But the result of the transformation into the ND calculus turned out to be
far from satisfactory. The reason is that the obtained ND proofs are very large
and too involved in comparison to the original proof. Moreover, in the ND calcu-
lus, an inference step merely consists of the syntactic manipulation of a quantifier
or a connective. In human-written proofs, in contrast, an inference step is of-
ten described in terms of the application of a definition, an axiom, a lemma or
a theorem, collectively called an assertion. Based on this observation, abstrac-
tions of ND proofs have been defined, where a proof step may be justified ei-
ther by an ND inference rule or by the application of an assertion [Huang, 1994c;
Horacek, 1999].

Since traditional automated theorem provers find proofs for theorems that are
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usually considered easy by mathematicians, theorem provers based on a more human-
oriented approach such as the application of planning techniques have been devel-
oped [Bundy et al., 1990; Benzmiiller et al., 1997]. The key idea here is that proof
techniques as used by mathematicians are encoded into plan operators, which are
used by the proof planner to find a proof plan. Because a proof plan is an abstract
representation of a proof, it provides a level that is better suited for communica-
tion such that proof transformation at the calculus level becomes obsolete for proof
planners.

To be of practical use for the human user, however, it does not suffice to commu-
nicate the proofs in an albeit human-oriented, but still formal format. Instead, the
proofs should be output in the way people are used to, namely in natural language.
To this end, proof presentation systems have been developed.

However, most proof presentation systems that have been developed so far in the
field of automated theorem proving (e.g., [Chester, 1976; Edgar and Pelletier, 1993;
Coscoy et al., 1995; Dahn et al., 1997]) suffer from several deficiencies. Regardless
of the level of abstraction, automatically found proofs often include steps that are
logically indispensable but people would not make explicit, because the steps are
considered obvious. Since most proof presentation systems employ no techniques
to exclude such steps from the presentation, they present every single step of the
derivation. Thus, the output proofs are too detailed, such that even small proofs
are not easy to follow. Moreover, these systems mostly use templates with canned
sentence chunks for the verbalization of the steps. Therefore, the output texts
lack interrelations between segments of the text. This leaves the text segments
unconnected and, thus, severely obstructs the comprehension of the proof. The
situation is even worse in those systems that verbalize only the inference rules
in natural language, but output the premises and conclusions as logical formulae,
which are still unreadable.

To overcome these problems proof presentation systems that employ more so-
phisticated techniques from the field of natural language generation have been de-
veloped (e.g., [Huang and Fiedler, 1997; Holland-Minkley et al., 1999]). These
systems decide which information to include in the presentation and they plan the
rhetorical structure of the text in advance to achieve connected texts. They also
plan the internal structure of the sentences and the morphology of the words. They
ensure variation in the verbalization by choosing between several possible alterna-
tives, avoid redundancies by aggregating information and improve the relatedness
of the sentences by choosing appropriate referring expressions. These techniques
together enable state-of-the-art proof presentation systems to output the proofs in
an almost textbook-like format.

However, even the previously mentioned state-of-the-art proof presentation sys-
tems suffer from several deficiencies. Firstly, they usually presuppose a single com-
municative purpose, namely to present the proof in a textbook-like style. However,
whereas a mathematician who wants to check the correctness of a proof is often sat-
isfied with a textbook-like presentation, a student who wants to learn how to find
a proof usually needs a more elaborate classroom-style explanation of the proof.
In such a classroom-style explanation, the reason why a step is taken should be
emphasized as opposed to just mention that the step is taken [Leron, 1983].

Secondly, the systems all neglect the issue of user modeling and thus forgo the
ability to adapt the presentation to the specific user. They present the proof at a
fixed level of abstraction that might be too high for a novice or too low for an expert
without allowing for a transition between levels of abstraction. A similar problem
is that they often do not adapt the degree of explicitness to the user’s cognitive
capabilities. Also, since they do not model the user’s cognitive skills, they cannot
omit steps that are trivial or easily inferable by the particular user. Horacek [1999]
introduced an approach how to model which steps are easily inferable.



Finally, in case the user cannot understand some part of the proof, the pos-
sibility to ask questions about it and get an adapted explanation is desirable or
even compulsory (for intelligent tutor systems for mathematics and mathematical
assistant systems). However, current proof presentation systems do not allow the
user to interact with the system. The user cannot tell the system when he did not
understand a part of the proof and ask for another explanation of that part. Simi-
larly, the user cannot ask follow-up questions or questions about the background of
the proof.

As a first step to overcome these deficiencies, we shall develop in this thesis a
computational model of user-adaptive proof explanation, which is implemented in a
generic, user-adaptive proof explanation system, called P. rex (for proof explainer).
The demands we make on the system are the following: The system should adapt
to the user with respect to the level of abstraction at which the proof is presented,
the degree of explicitness used to explain the proof, and inferential capabilities
of the user to omit inferable steps. The explanation should account for different
presentation styles, such as the textbook-like style and the classroom-like style.
Moreover, the system should allow the user to intervene if he is not satisfied with
an explanation and to ask follow-up or background questions. The metaphor we
have in mind is a human mathematician who teaches a proof to a student or else
explains a proof to a colleague.

In our approach, we combine techniques from three different fields, namely cog-
nitive science, computational logic and natural language processing, as we shall
discuss in the following.

Modern natural language generation systems take into account the intended
audience’s knowledge in the generation of explanations (see e.g. [Cawsey, 1990;
Paris, 1991a; Wahlster et al., 1993]). Most of them adapt to the addressee by
choosing between different discourse strategies. Since proofs are inherently rich in
inferences, the explanation of proofs must also consider which inferences the audi-
ence can make [Zukerman and McConachy, 1993; Horacek, 1997b; 1999]. However,
because of the constraints of the human memory, inferences are not chainable with-
out costs. Explicit representation of the addressee’s cognitive states proves to be
useful in choosing the information to convey [Walker and Rambow, 1994].

In cognitive science various theories of human cognition have been described by
means of a cognitive architecture, that is, the fixed structure that realizes the cogni-
tive apparatus (e.g., [Newell, 1990; Meyer and Kieras, 1997a; Anderson and Lebiere,
1998]). One of these theories is ACT-R [Anderson and Lebiere, 1998], a cognitive
architecture that separates declarative and procedural knowledge into a declarative
memory and a production rule base, respectively. A goal stack allows ACT-R to
fulfill a task by dividing it into subtasks, which can be fulfilled independently.

In ACT-R, procedural knowledge is represented in production rules, whose con-
ditions and actions are defined in terms of declarative structures. A production rule
can only apply if its conditions are satisfied by the knowledge currently available in
the declarative memory. An item in the declarative memory is annotated with an
activation that influences its retrieval. The application of a production rule modifies
the declarative memory, or it results in an observable event. If several production
rules are applicable a conflict resolution heuristic derived from a rational analysis of
human cognition [Anderson, 1990] determines which production rule will eventually
be applied.

Hence, ACT-R combines the abilities for user modeling and planning in a uni-
form framework and is therefore particularly well suited as a basis for a user-adaptive
dialog planner. Using ACT-R, we model a teacher who explains mathematical
proofs to his student. In particular, we model the teacher’s assumptions about the
students cognitive states during the explanation (which establish the user model)
and the teacher’s knowledge of the mathematical theories and the way to explain
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the proof of a theorem in these theories (which is used to plan the explanation).
The assumptions about the user’s cognitive states are employed to choose the level
of abstraction at which a proof is presented and to decide which steps the user can
infer.

An important prerequisite that enables P.rex to choose among different levels
of abstraction is the simultaneous representation of a proof at several levels of
abstraction. This representation, which also serves as the interface between theorem
provers and Prez, is realized in TWEGA, an implementation of an extension of
the logical framework LF [Harper et al., 1993] that corresponds to the calculus of
constructions (AC) [Coquand and Huet, 1988]. LF and AC are very powerful typed
lambda calculi that allow us to represent other logical calculi, and thus give us the
possibility to represent the calculus of any theorem prover that is to be connected
to Prex. The input proof to be explained as well as relevant information from the
mathematical theories that relate to the proof are encoded in TWEGA and then
used by Prex. In particular, using an expansion mechanism that defines for any
derivation step a subproof at the lower level of abstraction, TWEGA allows us to
represent a proof at several levels of abstraction simultaneously.

Successful communication via a natural language generation system presupposes
that the content to be conveyed is appropriately structured to ensure a coherent
semantic organization. For an explanation system, it is also important to accept user
feedback and follow-up questions. To be able to clarify misunderstood explanations,
the system needs to represent the different parts of the explanation as well as the
relations between them.

An appropriate discourse theory that allows for these representations was for-
mulated by Mann and Thompson [1987]. This theory, called Rhetorical Structure
Theory (RST), states that the relations that hold between segments of normal En-
glish text can be represented by a finite set of relations. Based on RST, Hovy [1993]
described discourse as the nesting of discourse segments. According to his discourse
theory, each segment essentially contains the communicative goal the speaker wants
to fulfill with this segment and either one to several discourse segments with inter-
segment discourse relations or the semantic material to be communicated.

Grosz and Sidner [1986] developed a discourse theory that distinguishes three
separate, but interrelated components, namely the linguistic structure, the inten-
tional structure and the attentional state. Whereas the linguistic structure describes
the segmentation of the discourse, the intentional structure captures how the pur-
poses of the discourse segments relate to one another. The attentional state is an
abstraction of the focus of attention of the participants as the discourse unfolds and
models the salience of discourse contents.

For P rex, we define discourse structure trees as a representation of discourses.
This representation adapts Hovy’s discourse segments and combines it with the
concept of attentional spaces from Grosz and Sidner’s theory. This allows us to
model both the segmentation of the discourse and the focus of attention in a uni-
form framework. Since the attentional spaces model salience, they are employed to
decide on the degree of explicitness and to choose appropriate referring expressions.
Explicit representation of the discourse purpose allows for presentations using dif-
ferent styles, such as the textbook-like style or the classroom-like style. Moreover,
discourse structure trees also account for restricted types of dialogs as well, namely
certain types of interruptions and clarification dialogs. This is a necessary prereq-
uisite for the system to represent user interactions and to appropriately react to
them.

Prex has been successfully used for the explanation of dozens of proofs from
various domains such as group theory and the theory of first-order predicate logic.

This thesis is organized as follows: First, in Chapter 2, we shall review relevant
research in natural language generation and proof presentation, formulate require-



ments for proof explanation, and give an overview of the architecture of P rex. Next,
in Chapter 3, we shall formally define TWEGA and give an example for the repre-
sentation of a calculus that is used by several theorem provers. Some deduction
systems such as QMEGA [Benzmiiller et al., 1997] are based on complex calculi that
call for a dynamic representation of the proofs in TWEGA. Since such a dynamic
representation cannot be precalculated, we shall show in Chapter 4 how a dynamic
representation can be calculated at run time using as an example the calculus of
(OMEGA.

Chapter 5 is devoted to ACT-R, the theory of human cognition that serves as
a basis for the dialog planner of Prex. The dialog planner itself is the subject of
Chapter 6. In this central chapter, we shall define the discourse structure trees and
plan operators to construct them. In particular, we shall show how the system uses
special plan operators to adapt its explanations to the user. Moreover, we shall
discuss the system’s reaction to a user’s interactions.

Chapter 7 is then devoted to the front end components, namely the sentence
planner and the linguistic realizer, the user interface, and the analyzer. Whereas
the sentence planner plans the internal structure of a sentence, the linguistic realizer
plans the appearance of the words and produces the surface utterance. The user
interface finally presents the surface sentence to the user and accepts his interaction.
The interactions are interpreted by the analyzer and transformed into new discourse
goals for the dialog planner to fulfill. Chapter 8 concludes the thesis.
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Chapter 2

Natural Language
(Generation and Proof
Presentation

Soon after the advent of the first computers in the early fifties, researchers began
to build systems for automated theorem proving. To be of practical use for a math-
ematician, however, it is mandatory that these systems do not only communicate
their machine-found proofs to the user, but also communicate them in the way a
mathematician is used to, namely in natural language at the appropriate level of
abstraction.

In Section 2.1 we shall review the generation of natural language with emphasis
on the generation of explanations. Then, Section 2.2 will give an overview of proof
presentation systems and formulate requirements for a proof explanation system.
Section 2.3, finally, is devoted to the architecture of P.rezx.

2.1 Natural Language Generation

The field of natural language generation (NLG) is concerned with the production
of utterances in natural language as produced by human speakers or writers. Many
NLG systems are deployed as the user interface for an underlying knowledge-based
system. To fulfill its task the generator must decide on choices involving content
and organization of the information to be conveyed (what to say) and choices in-
volving the surface form of the produced utterances (how to say it). Therefore, the
processing used to be separated into two stages, called content determination (or
deep generation) and surface realization (or surface generation).

Most early work focused on surface generation (e.g., [Chester, 1976; McDon-
ald, 1984; Joshi, 1985; Matthiesen and Bateman, 1990]). Later, more and more
researchers began to concentrate on deep generation (e.g., [McKeown, 1985; Hovy,
1988; Paris, 1988; Moore, 1989]). However, a major shortcoming of the two-staged
process soon became apparent: the planning of the internal structure of the sen-
tences was widely ignored. This observation led to the introduction of a mediating
process, the sentence planning (cf. e.g., [Meteer, 1991; Hovy, 1992]).

In the following section we shall review a tentative reference architecture for
NLG systems [Cahill et al., 1999]. Then, in Section 2.1.2, we shall concentrate on
the special requirements for the generation of explanations.
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Input Content Sentence Surface Output
Determination Planning Generation

Figure 2.1. The consensus architecture for NLG systems according to Reiter
[1994].

2.1.1 The Quest for a Reference Architecture

To generate natural language we have to determine which information is to be
conveyed. The content must be appropriately structured to ensure a coherent se-
mantic organization of the utterances. The utterances, in turn, must be internally
structured to ensure a correct syntactic organization of the sentences.

Based on an analysis of five systems, Reiter [1994] claimed that there is a consen-
sus about the overall architecture for NLG systems and argued that this consensus
architecture is, at least partially, psycholinguistically plausible. As depicted in Fig-
ure 2.1 the consensus architecture consists of three components, which are arranged
in a pipeline, that is, each component receives information only from its predecessor
and sends information only to its successor. The functions of the components are
the following;:

Content Determination The content determination component takes the initial
input to the generation system and produces from it a semantic represen-
tation, that is, a specification of the meaning content of the output text in
terms of domain entities. It determines what information should be communi-
cated and organizes this information in a rhetorically coherent manner. This
component is often also called macro-planner, text planner or, in the case of
dialog systems, dialog planner.

Sentence Planning The sentence planner converts the semantic representation
into an abstract linguistic specification that specifies content words and gram-
matical relationships. It maps domain concepts and relations into content
words and grammatical relations. Moreover, it generates referring expres-
sions for individual domain entities and groups propositions into clauses and
sentences. In the literature, the sentence planner is also called micro-planner.

Surface Generation The surface generation component finally realizes the ab-
stract linguistic specification by expressing the content words and grammati-
cal relations in the target language and, thus, produces the actual text. This
component is also often referred to as surface realization or linguistic realiza-
tion component.

Motivated by Reiter’s observation of a consensus architecture, Cahill and col-
leagues [1999] examined eighteen further system and concluded that the consensus
architecture is broadly supported. However, as they pointed out, the architecture
is really defined by its data interfaces rather than by its processing components:
The information is transformed from input through semantic representation and
linguistic specification to text. To grasp the linguistic operations that are to be
performed, Cahill and colleagues described a reference architecture for generation
systems (RAGS) in terms of a functional model without imposing a processing
strategy. Without aiming to be exhaustive the functional model consists of the
following seven modules [Cahill et al., 1999):

Lexicalization Lexicalization is the mapping from a concept to a lexical item,
where we do not differentiate between lexical alternatives. The decision of
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which lexical alternative is chosen to appear in the produced text is called
lexical choice.

Aggregation Aggregation is any process that merges two or more pieces of infor-
mation that are separate at some other level.

Rhetorical Structuring Rhetorical structuring means the determination of rhetor-
ical relations between pieces of information, that is, it determines how the
pieces of information are related by the text structure.

Referring Expressions Choice of referring expressions means to decide how to
refer to concepts or entities.

Ordering Ordering means the linearization of the pieces of information in the
output text.

Segmentation Segmentation is the grouping of the pieces of information into
clauses, sentences or large-scale structures such as paragraphs.

Coherence Coherence means the senseful progression from one piece of informa-
tion to the next. It includes phenomena such as centering, salience and theme
processing. Such processing is actually relatively rare in the examined sys-
tems.

Trying to assign the functional modules to the components of Reiter’s consensus
architecture, Cahill and colleagues found that the majority of the examined systems
perform rhetorical structuring, segmentation and ordering in the content determi-
nation component. Whereas both coherence and lexicalization are approximately
equally often located in the content determination component and the sentence
planner, aggregation and choice of referring expressions are usually ascribed to the
sentence planner. Lexical choice, finally, is mostly a task of the surface generator.

Note that the functional modules need not be arranged in a pipeline architecture.
Therefore, Cahill and colleagues [1999] proposed to design an NLG system in two
stages. First, a data model defines the functional modules entirely in terms of the
data types they manipulate and the operations they can perform. Then, a more
specific process model—for example, Reiter’s consensus architecture—constrains the
order and level of instantiation of different data types in the data model.

2.1.2 The Generation of Explanations

Beside the functional modules identified in the reference architecture, further func-
tionalities are required for an explanation system.

When we want to generate explanations, it is important to tailor the explana-
tions to the current audience. To do so, we need both a model of the user, that
is, detailed knowledge about the user’s knowledge and skills in the domain under
consideration, and flexible discourse strategies that take into account the user’s ex-
pertise [Paris, 1988; 1991b]. The ability of a system to adapt its behavior to the
different users is called user adaptivity.

Since feedback from the user himself can be an important source for user model-
ing, Moore and Swartout suggested a reactive approach to explanation [Moore and
Swartout, 1991]. In their approach, the system is devised as a dialog system that
monitors the effects of its utterances on the user and accepts feedback from him. If
the feedback indicates an unsatisfying explanation the system recovers by providing
an alternative explanation. In particular, the system actively seeks feedback from
the user to determine if he is following. Moreover, the system answers follow-up
questions taking into account previous explanations.
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To be able to respond to follow-up questions in context, the system must in-
terpret questions in context. To be able to clarify misunderstood explanations the
system itself must understand the explanation it produced, that is, it must represent
the different parts of the explanation as well as the relations between parts. More-
over, the system must have several response strategies for each type of question.
Otherwise, the system cannot offer an alternative response even if it understands
why a previous explanation was not satisfactory. The capability of a system to plan
or interpret utterances taking into account the discourse as it has developed so far
is called context sensitivity.

Whereas in Moore and Swartout’s approach, the user can give his feedback only
after completion of an explanation, Mooney and colleagues emphasized that in long
explanations the user must be able to interrupt the system at any time [Mooney et
al., 1991]. They advocate an incremental planner that determines some high-level
structure of the explanations, but defers the detailed organization until the time of
presentation.

To integrate these functionalities with the reference architecture, we add the
following functional modules:

User Modeling User modeling means to represent the assumptions the system
makes about the user’s knowledge and skills with respect to the domain under
consideration. The system may or may not validate and revise its assumptions
based on the user’s interactions.

Discourse History Recording The discourse history is recorded to allow the
system to access previous discourse plans if needed.

In contrast to a pure generation system, an interactive system must also interpret
input given by the user. To introduce this functionality, we add one further module:

Analysis Analysis means here that the system accepts interactions from the user
and extracts new discourse goals from the interactions if needed.

User adaptivity and context sensitivity can then be achieved by enriching the
rhetorical structuring component with different structuring strategies that take into
account a user model and a discourse history, respectively.

When designing the process model, we can devise a hierarchical discourse plan-
ner, which decomposes the global discourse goal into increasingly detailed subgoals
until atomic plan steps are reached. Then, in each planning cycle, we can allow
the user to interrupt the system and to convey his utterances to the system. Note
that it might be useful to restrict the set of possible interactions dependent on
the discourse situation. The decomposition of the discourse goals can be done in
a depth-first manner. As soon as an atomic step is reached, it is passed on for
subsequent processing that eventually results in its realization. Thus, we achieve
an incremental generation of the system’s utterances as recommended in [Mooney
et al., 1991].

Before we turn our attention to the architecture of our proof explanation system
P rex, we shall give a brief overview of the field of proof presentation in the following
section.

2.2 Proof Presentation

While the field of automated theorem proving matured in the last four decades, it
became more and more apparent that the systems had to output proofs that can be
more easily understood by mathematicians. To provide the proofs in the internal,
machine-oriented formalisms of the theorem provers is by far not sufficient. Thus,
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proof presentation systems had to be designed that presented proofs in natural
language at an appropriate level of abstraction.

The problem of obtaining a natural language proof from a machine-found proof
can be divided into two subproblems: First, the machine-found proof is transformed
into a human-oriented calculus, which is much better suited for presentation. Sec-
ond, the transformed proof is verbalized in natural language. In the following, we
shall examine both stages in some more detail.

Already in the thirties, Gentzen devised a human-oriented calculus that aimed
to reflect the way mathematicians reason, the natural deduction (ND) calculus
[Gentzen, 1935]. However, most automated theorem provers are based on machine-
oriented formalisms, such as resolution or matings. As a consequence, proofs en-
coded in such formalisms are not suited for a direct verbalization, because their lines
of reasoning are often unnatural and obscure. To remedy this problem, researchers
developed algorithms to transform proofs in machine-oriented calculi into ND proofs
[Andrews, 1980; Kursawe, 1982; Miller, 1984; Pfenning, 1987; Lingenfelder, 1990].

Initially, the idea was that the transformation into an ND proof is sufficient
for the subsequent verbalization. But the results of the transformations into the
ND calculus turned out to be far from satisfactory. The reason is that the ob-
tained ND proofs are very large and too involved in comparison to the original
proof. Moreover, in the ND calculus, an inference step merely consists of the syn-
tactic manipulation of a quantifier or a connective. Huang realized that in human-
written proofs, in contrast, an inference step is often described in terms of the
application of a definition, axiom, lemma or theorem, which he collectively calls
assertions. Based on this observation, he defined an abstraction of ND proofs,
called the assertion level, where a proof step may be justified either by an ND
inference rule or by the application of an assertion, and gave an algorithm to ab-
stract an ND proof to an assertion level proof [Huang, 1994c]. Based on Huang’s
ideas, Meier described an algorithm to transform refutation graphs (a data structure
that represents resolution proofs) directly into assertion level proofs [Meier, 1997;
2000]. The assertion level proves to be much better suited for a subsequent ver-
balization of the proofs than a traditional calculus. However, the assertion level
sometimes includes steps that include implicit applications of modus tollens, which
prove to be difficult to comprehend for human beings. Therefore, [Horacek, 1999]
introduced the partial assertion level, where these applications are made explicit.

Since traditional search-based automated theorem provers find only proofs for
theorems that are usually considered easy by mathematicians, theorem provers
based on human-oriented approaches such as planning have been developed [Bundy
et al., 1990; Benzmiiller et al., 1997]. The key idea here is that proof techniques
as used by mathematicians are encoded into plan operators, which are used by the
proof planner to find a proof plan. Because a proof plan is an abstract representa-
tion of a proof, it provides a level that is better suited for presentation, such that
proof transformation becomes obsolete for proof planners.

Now, let us turn our attention to approaches to verbalize proofs. One of the
earliest proof presentation systems was EXPOUND [Chester, 1976]. It translated
the formal proofs directly into English. Even though sophisticated techniques were
developed to plan the paragraphs and sentences that made up the written proof,
the system verbalized every single step of the formal proof in a template driven way,
such that even small proofs are still not easy to follow.

Proofs were also used as test input for early versions of MUMBLE [McDonald,
1984], an NLG system that adopted more advanced generation techniques. However,
its main concern was not proof presentation, but to show the feasibility of its two-
staged architecture for the generation of natural language.

Whereas the previously mentioned systems focused on problems in natural lan-
guage generation and used formal proofs only as well-defined input for the gener-
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ation process, research in the field of automated theorem proving addressed the
readability of proofs as well. The following systems were developed in the field of
automated theorem proving with the aim to obtain human-readable proofs.

The x-proof system [Felty and Miller, 1988] was one of the first theorem provers
that was designed with a natural language output component. The system showed
every step of the derivation by using predefined templates with English words, but
left the formulae in their logical form. The same is true for the pseudo-natural lan-
guage presentation components of Coq [Coscoy et al., 1995] and the proof system
Theorema [Buchberger, 1997]. The latter allows the user in addition to hide or un-
hide proof parts that he considers too detailed or not detailed enough, respectively.

Natural Language Explainer [Edgar and Pelletier, 1993] was devised as a back
end for the natural deduction theorem prover THINKER. Employing several iso-
lated strategies, it was the first system to acknowledge the need for higher levels of
abstraction when explaining proofs.

Another presentation system that uses templates with canned sentence chunks
to verbalize proofs is ILF [Dahn et al., 1997]. It has been connected to several
automated theorem provers, whose output proofs are presented in natural language
at the logic level of the machine-oriented formalism of the respective prover.

None of these systems employs modules for rhetorical structuring, sentence plan-
ning or linguistic realization. The following systems, in contrast, take into account
approaches that have been developed in the field of natural language generation.

PROVERB [Huang, 1994a; Huang and Fiedler, 1997] can be seen as the first seri-
ous attempt to build a generic, comprehensive system that produces adequate argu-
mentative texts from machine-found proofs. It takes as input ND proofs, which are
abstracted to the assertion level before any subsequent processing starts. Adopting
Reiter’s consensus architecture (cf. Section 2.1.1), PROVERB consists of a macro-
planner, which chooses the information to be conveyed, a micro-planner, which
plans the internal structure of the sentences, and a linguistic realizer, which pro-
duces the output text. These three components are designed such that they cover
the functionalities of the modules of the reference architecture (cf. Section 2.1.1).!
The system uses presentation knowledge and linguistic knowledge to plan the proof
texts, which are output in a textbook-like format.

Another recently developed NLG system that is used as a back end for a theorem
prover is the presentation component of Nuprl [Holland-Minkley et al., 1999]. The
system consists of a pipeline of two components. It employs a content planner that
selects the information to be included in the output text and decides how to refer to
the information in the given context. The text plan is then passed on to the surface
realizer FUF [Elhadad and Robin, 1992], which chooses the words and outputs the
actual sentences.

To sum up, to remedy the problem that many theorem provers return proofs
in their internal, machine-oriented formalisms, which are very hard to understand,
more and more human-oriented interfaces for theorem provers have been developed.
But these interfaces are mostly used in the theorem proving community, that is, by
people who usually have an insight in the provers’ formalisms. The systems present
proofs mostly at a very low level of abstraction and none of the systems adapts
its output to the user or can handle follow-up questions. Whereas this might be
tolerable for the developers of the theorem provers, it is certainly not acceptable for
mathematicians or mathematics students who want to work with theorem provers.

Before we shall formulate requirements for a proof explanation system, we shall
take a closer look at PROVERB, the most sophisticated proof presentation system
to date.

L Actually, PROVERB is one of the systems analyzed in [Cahill et al., 1999].
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2.2.1 PROVERB

The proof presentation system PROVERB [Huang, 1994a; Huang and Fiedler, 1997]
was developed at Saarland University in Saarbriicken. Following Reiter’s consensus
architecture (cf. Section 2.1.1), it employs a pipeline of a macro-planner, a micro-
planner and a surface realizer. We shall give a brief overview of each of these
components.

Macro-Planner The macro-planner [Huang, 1994a] takes as input a natural de-
duction proof, where each proof step is justified by a natural deduction infer-
ence rule (cf. Section 3.1). First, such a proof is lifted to the so-called assertion
level [Huang, 1994c], where proof steps are no longer just an application of
an inference rule, but may be justified in terms of the application of a defi-
nition, axiom, lemma or theorem. The assertion level is hence a higher level
of abstraction, which is much better suited for presentation than the original
logic-level proof.

Next, the assertion-level proof is traversed using plan operators to choose the
information that should be conveyed to the user and to organize this informa-
tion into a linear order. While the traversal of the proof, the macro-planner
performs rhetorical structuring, ordering, and large-scale segmentation into
paragraphs.

The result of the macro-planner is a sequence of speech acts organized in
attentional spaces. This sequence of speech acts constitutes the text plan,
which is the input for the micro-planner. The macro-planner will be discussed
in more detail in Section 6.1.5.

Micro-Planner The micro-planner [Fiedler, 1996; Huang and Fiedler, 1997 trans-
forms the text plan into a linguistic specification of the output text. It per-
forms the context sensitive choice of referring expressions, aggregation, lexical-
ization and lexical choice, as well as small-scale segmentation into sentences.

The output of the micro-planner is a tree structure, which is passed on to the
linguistic realizer. We shall describe the micro-planner of PROVERB in more
detail in Section 7.1.

Linguistic Realizer PROVERB uses the surface generator TAG-GEN [Kilger and
Finkler, 1995] as its linguistic realizer. TAG-GEN, which was developed at the
German Research Center for Artificial Intelligence (DFKI) in Saarbriicken, is
responsible for the correct syntax and morphology of the produced sentences.

The output text produced by PROVERB is finally processed by the document
preparation system IWTEX. An example of a proof verbalized by PROVERB is given
in Figure 2.2.

PROVERB was designed with the aim of producing natural-language proofs
similar to proofs found in mathematical textbooks. Hence, it presents machine-
found proofs at the assertion level in a textbook-style format. Yet, the assertion
level is often still at a too low level of abstraction to be acceptable by expert
mathematicians. PROVERB uses presentation knowledge and linguistic knowledge
to plan the overall text and the sentences.

Since PROVERB was not devised as an explanation system, it lacks any fa-
cilities for user modeling, user adaptation and user interaction. Also, the internal
representation of the text plan is not powerful enough to allow for plan revision in
case some proof steps do not communicate successfully.

However, the mentioned facilities are certainly necessary if theorem provers are
to be accepted as a tool by mathematicians or mathematics students, who are mostly
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Theorem:

Let F be a group, let U be a subgroup of F, and let 1 and
1y be unit elements of F and U. Then 1y equals 1.

Proof:

Let F be a group, let U be a subgroup of F, and let 1 and
1y be unit elements of F' and U.

Because 1y is an unit element of U, 1y € U. Therefore,
there is z such that x € U.

Let u; be such an z. Since w; € U and 1y is an unit element
of U, u1 * 1y = uy. Since F is a group, F' is a semigroup.
Since U is a subgroup of F;, U C F. Because U C F' and
1y € U, 1y € F. Similarly, because u1 € U and U C F,
u1 € F. Then, 1y is a solution of w1 * £ = u;.

Because u; € F' and 1 is an unit element of F', u; *1 = u;.
Since 1 is an unit element of F'; 1 € F. Then, 1 is a solution
of ur *x = us.

Therefore, 1y equals 1. This conclusion is independent of
the choice of u;. n

Figure 2.2. An example proof produced by PROVERB taken from [Huang and
Fiedler, 1997].

not familiar with the formalisms theorem provers are based on. In the following
section, we shall discuss the requirements for a system that explains proofs.

2.2.2 Requirements for the Explanation of Proofs

When designing a proof explanation system, we should study a mathematics teacher
and examine how he explains proofs to his students.

In education, human teachers use natural language for the presentation and ex-
planation. Mathematics teachers often experience that students are demotivated
by an overload of formulae. Hence, it can be expected that a proof explanation sys-
tem, in particular if used by novices, is much more accepted if it also communicates
derivations and, to some extend, formulae in natural language.

Many concepts and ideas are much easier to understand when they are depicted
graphically; the inclusion of graphs and diagrams in addition to natural language
is standard routine in mathematics communication. The computer allows us to go
beyond these traditional ways of presentation and to include parameterized anima-
tions as well, which, for example, display how a diagram changes when parameters
are varied. That is, a multi-modal user interface would be desirable.

The major advantage of a teacher in comparison to a textbook is that the stu-
dents can interact with the teacher during the lesson. For example, they can ask
the teacher when they do not understand a derivation. These forms of interaction
should be supported by an intelligent explanation system as well.

To communicate a proof, the teacher has to present individual proof steps choos-
ing a degree of explicitness. Usually, he does not mention all proof steps explicitly
by giving the premises, the conclusion and the inference method. Often, he only
hints implicitly at some proof steps (e.g., by giving only the inference method) when
the hint is assumed to suffice for the student to reconstruct the proof step. Other
proof steps are completely omitted when they are obvious or easy to infer.

But a presentation that consists of a mere enumeration of proof steps is often
unnatural and tedious to follow. Therefore, teachers add many explanatory com-
ments, which motivate a step or explain the structure of a subproof, for example,
by stressing that a case analysis follows.
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Both decisions whether a proof step is only hinted at or omitted, and whether
an explanatory comment is given are usually made relative to the context. For
example, if a premise A of a proof step with conclusion B is used immediately after
it was derived, the teacher only hints at it by saying: “Therefore, B holds.” But if
the premise A was derived a while ago he explicitly mentions it by saying: “Since A,
we obtain B.” A similar argument holds for explanatory comments. For example,
if it is obvious that there is a case analysis it is not explicitly introduced, but the
cases are presented right away.

The level of abstraction at which the proof is presented plays a major role. For
example, the author of a textbook has an idea of his intended audience and adapts
his presentation to that audience. Likewise, a teacher takes into account the abilities
of his students when he decides at which level of abstraction he presents a derivation.
To choose between different levels of abstraction, an intelligent proof explanation
system needs a user model, which records the facts and inference methods the user
knows.

Finally, a proof explanation system should also account for different presenta-
tion strategies with respect to the purpose of the session. For example, different
strategies are needed when mere mathematical facts are to be conveyed in contrast
to when mathematical skills are to be taught. In the former case, a proof can be
presented in textbook style where the essential proof steps are shown. In the lat-
ter case, the presentation should be structured differently to convey also control
knowledge, which explains why the various proof steps are taken as opposed to just
show that they are taken [Leron, 1983]. We say, the proof is presented in classroom
style. These two strategies reflect the difference in the difficulty of checking the
correctness of a proof versus finding a proof.

P rez is the first attempt to build an interactive, user-adaptive proof explanation
system. Except for multi-modality, we shall address all the requirements formulated
in this section. Although graphs and diagrams play an important role when included
in a presentation, they occur only in certain mathematical theories and even in
these theories, they do not occur very often. Therefore, we decided for the moment
to neglect the generation of graphs and diagrams in our system. However, there
is active research (e.g., at DFKI as well as Saarland University in Saarbriicken
[Wahlster et al., 1993; Horacek, 1997a]) on the combination of natural language
with graphics. In particular, [Wahlster et al., 1993] points out that a three-staged
architecture analogous to Reiter’s consensus architecture is also appropriate for
multi-modal generation. We will incorporate these results later into P rex.

We shall now describe the architecture of P rex in the following section.

2.3 The Architecture of P.rex

Prex is a generic proof explanation system that can be connected to different the-
orem provers. Except for multi-modality, it fulfills all requirements given in Sec-
tion 2.2.2. It includes the functional modules of the reference architecture for NLG
systems as reviewed in Section 2.1.1 as well as the additional functionalities for
explanation systems described in Section 2.1.2. In this section, we shall give an
overview of the architecture of P rex, which is displayed in Figure 2.3.

As the interface between theorem provers and P.rezx, we define the formal lan-
guage TWEGA, the implementation of an extension of the logical framework LF
[Harper et al., 1993] that corresponds to the calculus of constructions (AC) [Co-
quand and Huet, 1988]. LF and AC are very powerful calculi from type theory that
allow us to represent other logical calculi and, thus, to represent the proofs of most
(if not all) currently implemented theorem provers. Hence, TWEGA ensures that
P rex can be connected to these theorem provers. The type-theoretic foundations of



16

CHAPTER 2. NATURAL LANGUAGE GENERATION AND PROOF PRESENTATION

P. rex

Dialog PI
1alo anner
Theorem 9 User
‘ ’ B S -
Prover Production Declarative Models

Rules Memory

/

Sentence Planner

Analyzer

Surface Realizer|

it
\I/

User Interface

I

User

Figure 2.3. The Architecture of P.rex.

TWEGA guarantee that only those proofs can be represented that are correct with
respect to the calculus of the corresponding prover. The calculus of the prover,
the input proof to be explained, as well as relevant information from the mathe-
matical theories that relate to the proof are represented in TWEGA for further use
by Prex. We shall define TWEGA formally in Chapter 3. The connection of the
theorem prover QMEGA [Benzmiiller et al., 1997] to P.rex will be described in detail
in Chapter 4.

The central component of P.rezx is the dialog planner. It chooses the content and
determines the order of the information to be conveyed, and organizes the pieces
of information in a rhetorical structure, called discourse structure. The discourse
structure also specifies the large-scale segmentation of the discourse into paragraphs.

The dialog planner is implemented in ACT-R, a production system that aims
to model the human cognitive apparatus [Anderson and Lebiere, 1998]. ACT-R
separates declarative and procedural knowledge into a declarative memory and a
production rule base, respectively. A goal stack allows ACT-R to fulfill a task by
dividing it into subtasks, which can be fulfilled independently. We shall review
ACT-R briefly in Chapter 5.

The plan operators of the dialog planner, which organize the discourse structure,
are defined in terms of ACT-R productions. A discourse history is represented in the
declarative memory by storing conveyed information. Moreover, presumed declar-
ative and procedural knowledge of the user is encoded in the declarative memory
and the production rule base, respectively. This establishes that the dialog planner
is modeling the user.

In order to explain a particular proof, the dialog planner first assumes the user’s
cognitive state by updating its declarative and procedural memories. This is done
by looking up the user’s presumed knowledge in the user model, which was recorded
during a previous session. An individual model for each user persists between the
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sessions. It is stored in the database of user models. Each user model contains
assumptions about the knowledge of the user that is relevant to the proof explana-
tion. In particular, it makes assumptions about which mathematical theories the
user knows and which definitions, proofs, inference methods and mathematical facts
he knows.

After updating the declarative and procedural memories, the dialog planner sets
the global goal to show the proof. ACT-R tries to fulfill this goal by successively ap-
plying productions that decompose or fulfill goals. Thereby, the dialog planner not
only produces a dialog plan, but also traces the user’s cognitive states in the course
of the explanation. This allows the system both to always choose an explanation
adapted to the user, and to react to the user’s interactions in a flexible way: The
dialog planner interprets the interaction in terms of applications of productions.
Then it plans an appropriate response. Chapter 6 is devoted to the comprehensive
description of the dialog planner.

The dialog plan produced by the dialog planner is passed on to the sentence
planner. We adapted and extended PROVERB’s micro-planner [Fiedler, 1996;
Huang and Fiedler, 1997] to use it in Prez to plan the internal structure of the
sentences. The sentence planner aggregates domain concepts when possible and
maps them into a linguistic structure. The linguistic structure specifies the lexical
items and referring expressions that realize the domain concepts as well as the
small-scale segmentation, that is, the scope of the phrases and sentences.

The linguistic structure is then realized by the syntactic generator TAG-GEN
[Kilger and Finkler, 1995], which ensures the correct morphology of the surface
words. Note that dialog planner, sentence planner and surface realizer are organized
in a pipeline as in Reiter’s consensus architecture (cf. Section 2.1.1).

The utterances that are produced by P rex are presented to the user via a user
interface that allows the user to enter remarks, requests and questions. An analyzer
receives the user’s interactions, analyzes them and passes them on to the dialog
planner. Since natural language understanding is beyond the scope of this work,
we use a simplistic analyzer that understands a small set of predefined interactions.
We shall discuss the sentence planner, the surface realizer, the user interface and
the analyzer in Chapter 7.
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Chapter 3

The Representation of Proofs

In order to explain a proof, a system needs an internal representation of the theorem
under consideration as well as its proof, the calculus in which the proof was derived,
and the mathematical theory behind the theorem (i.e., definitions that are used
in the theorem or in the proof, and more basic theorems and lemmata that are
applied in the proof). Moreover, it should be guaranteed that a proof is correct in
the sense that it constitutes a valid derivation of the theorem by a given deductive
system. Hence, we have to define a language to formulate mathematical facts and
provably correct derivations. To this end, let us examine how mathematics is usually
formalized.

A logic consists of a language to formulate expressions and of a semantics assign-
ing meaning to expressions, in particular to a specific subcategory of expressions,
called formulae. Propositions are formulae of which we want to establish their truth
given a set of formulae, called assumptions. The means to establish the truth of a
proposition is a deductive system, which is defined by a set of azioms, which are
true formulae, and a set of inference rules, which yield true formulae when given
true formulae. A logic and an appropriate deductive system constitute a calculus.

Martin-Lof provides another perspective on calculi by introducing the notion of
a judgment (such as “p is true”) as something we may know by virtue of a proof
[Martin-Lof, 1985; 1996]. For him the notions of judgment and proof are more basic
than the notions of proposition and truth, because the meaning of a proposition
is explained via the inference rules used to establish its truth. A judgment is
derivable if and only if it can be established by a deduction using the given axioms
and inference rules. The set of derivable judgments can be seen as the least set that
contains the axioms and that is closed under the inference rules. Thus, the axioms
and inference rules provide a semantic definition for a language, the so-called proof
theoretic semantics.

In the field of automated theorem proving various logics and calculi are used in
the implementation of a deduction system. Examples for such logics are first-order
predicate logic, sorted logics or higher-order logics. In practical systems, inference
rules that are based on such logics are then used to build calculi, for example,
variants of the resolution, tableauz, and natural deduction calculus. Since we aim
at a generic system, it would be inappropriate to restrict P.rex to one of these calculi
alone. Instead, we employ a meta-language in which we can formulate in a uniform
way the various calculi of candidate theorem provers.

A well investigated theory suited as a meta-language for the representation of
different calculi is the typed lambda calculus [Church, 1940]. There are several
versions of typed lambda calculi, which differ in their expressiveness. Examples are
the simply typed lambda calculus (A—), the polymorphic typed lambda calculus
(A2), the LF logical framework (sometimes called AP) [Harper et al., 1993], and the
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calculus of constructions (AC, sometimes denoted by APw or CC) [Coquand and
Huet, 1988].

The syntax of a typed lambda calculus is given by the set of terms that can
be expressed. The set of terms is restricted to the set of valid terms by a type
system, which is a deductive system that defines the types that can be assigned to
terms. The previously mentioned examples of typed lambda calculi differ in their
respective type systems. For a calculus to be of practical value the problems of type
checking (“Is a given type the type of a given term?”) and typability (“What is the
type of a given term?”) must be decidable.

It has been observed by several logicians (e.g., [Howard, 1980; de Bruijn, 1970])
that propositions in intuitionistic logic can be interpreted as types in a typed lambda
calculus where the proof of the truth of such a proposition corresponds to a term of
the respective type. In the sense of this so-called propositions-as-types interpreta-
tion, intuitionistic propositional logic corresponds to A—, intuitionistic first-order
predicate logic corresponds to AP, and intuitionistic higher-order logic corresponds
to AC. In the propositional case this correspondence is an isomorphism, called
Curry-Howard isomorphism® (for an in-depth presentation see, e.g., [Thompson,
1991; Barendregt, 1992; Geuvers, 1993)).

By adopting the proposition-as-types principle we would restrict our system to
an intuitionistic logic, which does not allow for the representation of some proofs.
For example, a proof of a theorem that is formulated in classical logic cannot
be represented in intuitionistic logic. Hence, still assuming Martin-L&f’s point of
view, we employ an alternative, albeit related, representation technique, often called
judgments-as-types [Harper et al., 1993]. This technique is characterized by map-
ping judgments to types and their proofs to terms, thus reducing the problem of
proof checking (“Is a given derivation a proof for a given judgment?”) to the prob-
lem of type checking.

First, we shall present in Section 3.1 the natural deduction calculus as an exam-
ple for a calculus various automated theorem provers are based on. Next, we shall
review in Section 3.2 the notion of a pure type system (PTS) as a uniform way to
describe many typed lambda calculi and state some of their properties. Moreover,
we shall give eight typed lambda calculi as examples of PTSs, which together con-
stitute a fine structure of the calculus of constructions AC. Then, in Section 3.3,
we shall define TWEGA, an implementation of AC, which we use in Prez as the
formalism mathematics is represented in. In Section 3.4 finally, we shall elaborate
on the judgment-as-types paradigm by showing how an example calculus, namely
the natural deduction calculus, can be represented in TWEGA.

3.1 The Natural Deduction Calculus

In this section, we shall present the natural deduction (ND) calculus, which was
introduced in [Gentzen, 1935)] as a calculus whose inference rules mirror the actual
practice of a mathematician as opposed to, for example, the Hilbert calculus or the
resolution calculus. Therefore, it is particularly well suited for the explanation of
proofs. The ND calculus is a calculus for first-order predicate logic. We essentially
present its definition as given in [Pfenning, in prep.].

1The notions propositions-as-types and Curry-Howard isomorphism are sometimes used syn-
onymously in the literature independently of the logic under consideration, although for example
the correspondence between intuitionistic higher-order logic and the calculus of constructions AC
is not an isomorphism: There are propositions that are not provable in the logic, but become
provable when mapped into A\C [Geuvers, 1993].
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3.1.1 Syntax
The ND calculus is defined on the language of terms and formulae:

Terms T ==V |P;| C¢T,...,T)
Formulae W = C,(T,...,T) | WAW |WVW | WDW |-W
| VV.W | IV.W

where V, Py, Cy, and C, are infinite collections of variables, function parameters,
function symbols, and predicate symbols, respectively. Each function symbol and
each predicate symbol has a unique arity. T, L € C, are 0-ary predicate symbols.
A (function or predicate) constant ¢ is simply a (function or predicate) symbol with
no argument, and we write ¢ instead of ¢().

A A B is the conjunction of A and B; AV B is the disjunction of A and B.
A D B denoting implication means that A implies B. —A is the negation of A. The
universal quantification Vx.A means that A holds for all x, whereas the existential
quantification Jxr.A means that there is an x such that A holds. Formulae of the
form Vz.A and Jz.A bind the variable z. T, L € C, denote the predicate that is
always true or false, respectively.

3.1.2 Deductive System

Let P, denote an infinite collection of propositional parameters. The set of valid
derivations, denoted by D, is defined on formulae and propositional parameters by
a deductive system. The main judgment of the ND calculus is the derivability of a
formula C, written as by, C, from assumptions (or hypotheses) Fyp A1,...,Fxp Ap.
We just write F instead of Fp.

Notation: For a derivation D € D of a judgment - C, we write

D
D :FC or Lo

In the ND calculus, each logical connective and quantifier is characterized by
its introduction and elimination rules. The set of natural deduction rules R that
constitutes the deductive system is defined in Table 3.1. An assumption FH is
discharged by an inference rule if the conclusion no longer depends on FH. A
discharged assumption is denoted by [ H]. We give discharged assumptions a label
uw asin [ H]* and annotate the discharging rule R as R*. P is the infinite collection
of labels for discharged hypotheses. a[8/X] denotes the result of the substitution
of 3 for all free occurrences of the variable X in «, renaming variables as necessary
to avoid name clashes. Let us examine how the rules are justified:

Conjunction A A B is derivable if both F A and I B are derivable and vice versa.
This accounts for the rules AI, AE;, and AE,.

Disjunction F AV B is derivable if FA or B is derivable, hence we have two
introduction rules VI; and VI,.. Note that the inverse of this argument does
not hold: If FAV B is derivable, we do not know whether A or B is
derivable. But we can derive FC from F AV B if FC is derivable from both
FA and F B. This principle is called case analysis in mathematics. It gives
rise to the rule VE.

Implication If we assume F A and if we can derive B from FA we can derive
FA D B. This argument justifies the rule D I. If we have a derivation of
FA D B and a derivation of FA we can obtain a derivation of -B. The
corresponding rule D E has been extensively examined in philosophical logic
under the name of modus ponens.
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Table 3.1. The Inference Rules of the Natural Deduction Calculus

Fars M Fa NE TR ANE
Disjunction [+ A]™ [+B]Y
A B FAVB FC HC o
Fave Vi Fave v FC vE
Implication [+ A]¥
FB " FADB FA
Fas>5 ! 5 F
Negation [ A]*
F—A P FC
where p is a new parameter
Truth ﬁTI
Falsehood ELl
Fo ¥
Universal FAla/z] FVz.A
——L2YT VE
Quantification FVz.A (@) FA[t/z]
where a is a new parameter
Existential [+ Ala/=]]*
Quantification .
FA[t/x] F3dz.A FC u
Fag.A ! FC AE*(a)
where a is a new parameter
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Negation If we can derive everything from an assumption, then there must be some
inconsistency. So, if we can derive any judgment Fp from an assumption - A,
we can conclude F—A. Thus, we have the rule —=I. Note that this rule is
parametric in p € P,. In particular, p must not occur in any undischarged
hypothesis. Similarly, if we have a derivation of F A and a derivation of F—A4,
then there is an inconsistency and we can derive any judgment FC. Hence,
the rule —F is justified.

Truth We can always derive - T. Note that there is no elimination rule for T.

Falsehood Since falsehood should not be derivable, there is no introduction rule
for 1. But if we can derive I L then there must be some inconsistency and we
can derive everything. The corresponding rule LE is therefore often called ez
falso quodlibet.

Universal Quantification If we have FVz.A we can conclude - A[t/z] for every
term ¢ as formulated in rule VE. Similarly, if we can derive - A[a/z] for any
new parameter a € Py, which must not occur in any undischarged assumption,
then we can also derive FVz.A. This accounts for the rule VI.

Existential Quantification If we can derive - A[t/x] we know that 3.4, hence
we have the rule 3I. But if we have -3z.4 we do not know for which term ¢
Alt/z] holds. We can only assume + A[a/z] for some new parameter a, which
must not occur in any undischarged hypothesis. If we can derive FC from
that assumption we can also derive C' from F3x.A. This argument justifies
the rule 3E.

Example 3.1
The following derivation of the theorem FAA B D B A A is an example for a valid
derivation in the ND calculus:

[FAA B

[FAA B
B NE

FA AT
oI

AE,

FBAA
FAANBDBAA

The two identical hypotheses are labeled by u each. D I* denotes that both hy-
potheses are discharged simultaneously by the rule D1I. O

3.2 Pure Type Systems

Many variants of the typed lambda calculus can be described by the notion of a pure
type system (PTS) [Barendregt, 1992]. The notation for PTSs is well suited to pin-
point subtle differences between the variants. Moreover, many important properties
can be shown for PTSs in general or for restricted classes of PTSs. [Barendregt,
1992] gives an excellent introduction to PTSs that are defined on 3-conversion.
[Geuvers, 1993] extends the definition of PTSs to allow for 5-conversion as well.

3.2.1 The Definition of Pure Type Systems

At first, we give the syntax of the language of typed lambda calculi, before we
proceed to the definition of PTSs. Our definition follows mostly [Barendregt, 1992]
and [Geuvers, 1993].

Definition 3.1 The set of all terms T is defined by the following abstract syntax
Tu=V|C|TT|AV:T.T| IV:T.T

where V and € are infinite collections of variables and constants, respectively. =
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We call a term of the form Az :A.B a A-abstraction and a term of the form ITz: A.B
a Il -abstraction or product.

Notation: Usually, we write A — B instead of IIz: A.B, if x does not occur free
in B. Moreover, A[B/x] is the result of the substitution of B for all free
occurrences of x in A, renaming variables as necessary to avoid name clashes.

To formulate judgments, we need the following definitions:

Definition 3.2 A statement is a pair A : B with A, B € T. A is the subject and
B is the predicate of A : B. A declaration is a pair z: A withz € Vand A€ T. =

Note that a declaration is a statement for variables.

Definition 3.3 A context I' is a finite ordered sequence of declarations, all with
distinct variables:

Ctx = - | Ctz,V:T L]

Notation: We write z: A € I if x: A occurs in I'. We write € dom(I") if there
is a declaration z: A € I'.

Having fixed the syntax of the language, we define some equality relations be-
tween terms via the notion of a reduction.

Definition 3.4 On T, we define the following relations:

1. B-reduction is defined by the following contraction rule:
(Az: A.B)C —3 B[C/x]

2. n-reduction is defined by the following contraction rule:

Az:A.Bx —, B if z not free in B

3. fn-reduction is defined as —g,=—g U =,
4. =% (=7, —3,) is the reflexive, transitive closure of =4 (=4, —g5)

5. =g (=g, =pn), called B- (n-, Bn-)conversion, is the symmetric, transitive
closure of =% (=7, —=%,) ]

We read A —p B as “A B-reduces to B in one step,” A =% B as “A [-reduces to
B in many steps,” and A =g B as “A is f-convertible to B.” Similarly, we say “A
n-reduces to B” or “A is fn-convertible to B” and so forth.

Definition 3.5 Let R be a reduction relation.

1. A term A is in R-normal form (short R-nf) if and only if there is no term A’
such that A —p A’.

2. R is called normalizing if and only if every term A reduces to an R-normal
form.

3. A term A is strongly normalizing for R if and only if all R-reduction sequences
starting with A terminate.

4. R is called strongly normalizing if and only if every term A is strongly nor-
malizing for R. (]

Now that we have the syntax for our language and the conversion between terms,
we proceed to the definition of the type system for our language.
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Definition 3.6 The specification of a pure type system is a triple S = (8, A, R)
where

1. 8§ is a subset of C, called the sorts

2. A is a set of azioms of the form s : s’ with and 5,5’ € §

3. Ris a set of rules of the form (sy, 82, s3) with s1,s2,53 € 8 =
Notation: We write (s1, s2) for the rule (s, s2,82).

Definition 3.7 The pure type system (PTS) AS determined by the specification
S = (8, A,R) is defined by the notion of the type derivation Fys (we just write )
that in turn is defined by the following axioms and rules:

(axioms) T if(s:s' €A)
(start) % if x ¢ dom(I")

I'HA:B I'+C:s
Iz:CHA:B

(weakening) if z ¢ dom(I")

I'-A:s; I'Nv:AF B:ss
I'FIlx:A.B: s3

(product) if (s1,82,83) € R

I'FM:Oz:A.B T'FN:A
T'F MN : B[N/

(application)

INe:A-rM:B TI'FIlz:AB:s
' Xe:AM :IIz:A.B

(abstraction)

I'rA:B I'+B':s B=B
I'-A:B

(conversion)

where x € V and s € 8. n

Note that in the conversion rule, we use the notion of definitional equality (=),
which is not further specified. In [Barendregt, 1992] the conversion rule is only
defined for B-conversion (i.e., = is defined as =g). [Geuvers, 1993] calls these PTSs
pure type systems with B3-conversion (PTSg) and also defines pure type systems with
Bn-conversion (PTSg,). We follow the second approach.

Definition 3.8 A pure type systems with 3-conversion (PTSg) is a PTS where
= is defined as =g. ]

Definition 3.9 A pure type systems with n-conversion (PTSga,) is a PTS where
= is defined as =g,. "

The type system restricts the set of terms to the set of valid terms.?

Definition 3.10 Let AS be a PTS. A term A is valid in AS if and only if there
are a context I' and a term B such that ' A: B or I' - B : A is derivable. n

Definition 3.11 Let I" be a context and A a term.
1. Ais called a type if and only if there is a sort s € 8 such that '+ A : s.

2. A is called an object if and only if there is a type B such that ' A: B. =

2Some authors (e.g., [Barendregt, 1992; Geuvers, 1993; Ghani, 1997]) use the notion ‘term’ only
for valid terms and call terms ‘pseudo-terms’ or ‘pre-terms.’
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Hence, PTSs stratify the terms in three levels: the level of objects, the level of types
and the level of sorts. In the literature, the notion ‘term’ is often used although
‘object’ is meant, in particular when put into relation to ‘type.” We adopt this
usage if no confusion can arise.

Definition 3.12 Let A be a term.

1. A is typable if and only if there are a context I" and a term B, such that
' A:B.

2. A is inhabited if and only if there are a context I" and a term M, such that
' M: A. [

Definition 3.13 Let I' be a context and A be a term.

1. The problem whether there is a term B such that I' - A : B is derivable is
called typability.

2. Let B be a term. The problem whether I' - A : B is derivable is called type
checking. [

A normal form important for PTSgys is based on S-reduction and n-expansion
(i-e., the inverse of n-reduction).
Definition 3.14 Let I' +x U : V, where U is in S-normal form. Then, the long
Bn-normal form (short Bn-Inf) of U is defined as follows:

1. Let U = Az: A.M. Then the Bn-Inf of U in I is the term Az: A’.M’, where
A’ is the An-Inf of A in I" and M' is the Bn-Inf of M in I',z: A.

2. Let U = z:A.B. Then the gn-Inf of U in I' is the term ITz: A'.B’, where
A’ is the fn-Inf of A in I and B’ is the Bn-Inf of B in I',z: A.

3. LetU=cM; ... M,and IIz;:P..... Ix,,: P,.P (where P is not an abstrac-
tion) be the pn-lnf of V. Then the pn-lnf of U is the term
Ary:Pl..... AL Pl.cM| ... M)z} ...z.,, where P! is the fn-Inf of P; in

sYmo
Izy:Py,...,zi_1:Pi_y; M] is the Bn-Inf of M; in I'; and z} is the fBn-Inf
of x;in Ixy:Py,...,z;: P;. [

Notation: We write A = NF(A') if A is the Bn-Inf of A’. Furthermore,
NF(T)={NF(A)|A e T}

Finally, let us define some restricted classes of PTSs.

Definition 3.15 A PTS A(S, A, R) is functional if and only if the following hold:
1. If 51 : 59 € A and s : s, € A then so = s).
2. If (s1, 82,83) € R and (s1, $2, 85) € R then s3 = sb. n

Note that by this definition, A and R are partial functions in a functional PTS
A8, A,R).

Definition 3.16 A PTS (S, A, R) is injective if and only if it is functional and
the following hold:

1. If sy : 89 € A and s : s2 € A then s; = ).
2. If (s1, 82,53) € R and (s}, s5,83) € R then s; = s} and s = s5. m

Note that by this definition, A and R are injective functions in an injective PTS
A8, A,R).
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Definition 3.17 A PTS A\(8, A, R) is full if and only if for all s1,s2 € 8 there is
an s3 € 8 such that (sq, s2,53) € R. n

Definition 3.18 Let R be 8- or fgn-conversion. A PTSg AS is strongly normal-
izing if and only if every term that is valid in AS is strongly normalizing for R.
|

3.2.2 Examples of Pure Type Systems

[Barendregt, 1992] introduces a collection of eight closely related lambda calculi,
the so-called A-cube. The A-cube forms a natural fine structure of the calculus of
constructions [Coquand and Huet, 1988]. It is organized according to the different
possible dependencies between objects and types, as will be elaborated later in this
section. Whereas [Barendregt, 1992] describes the A-cube by PTSgs, we extend the
definition to PTSgys.

Definition 3.19 The cube of typed lambda calculi, short A-cube, consists of eight
PTSg,s with sorts 8§ = {x, 0}, axioms A = {x: O}, and rules R as follows:

A=t (%%)
A2 : (*a *)a (Da*)
AP : (*7 *)7 (*7 D)
Aw o (%), (0,0)
Aw o (%), (3,%), (0,0)
AP2 : (*a *)a (Da*)a (*a D)
APw @ (%, %), (x,0), (O,0)
APw: (x,%), (O,%), (x0), (O,0)

Note that all eight systems in the A-cube are functional and injective. Moreover,
the last system is full. The table in the definition of the A-cube makes explicit
the inclusion relation C between the respective systems: A(8,A,R1) C A(S, A, Ra)
if and only if R; C R,. The notion ‘A-cube’ suggests another way to present the
relations between the systems, namely graphically as in Figure 3.1 where the arrows
denote the inclusion relation C. The orientation of the arrows conveys the following
information: vertical arrows indicate the addition of rule (O, *); arrows to the right
mean the addition of rule (x,0); and arrows pointing into the depth denote the
addition of rule (O, O).

The system A— is the simply typed lambda calculus (for an in-depth presen-
tation see, e.g., [Barendregt, 1992]). A2 is the polymorphic or second-order typed

/ A ——— - \Pw

A2 — +\P2

Aw

/

A=

—— APw

AP

Figure 3.1. The \-cube [Barendregt, 1992].
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lambda calculus. It is essentially the system F of [Girard, 1972]. The system Aw
is the higher-order version of A2 and is essentially the system Fw of [Girard, 1972].
The system AP was introduced under the name logical framework (LF) by [Harper
et al., 1993]. AP2 is studied under the same name in [Longo and Moggi, 1988].
Finally, the largest system, APw, which is often called AC or CC, is a version of the
calculus of constructions [Coquand and Huet, 1988).

The A-cube gives a fine structure of AC by exposing the various forms of de-
pendencies in the subsystems. Let us call expressions of the category O kinds (e.g.,
K : O establishes that K is a kind), expressions of the category * types (e.g., A :
means that A is a type), and expressions of some type objects (e.g., a is an object
in a: A, where A : *). In the systems of the A\-cube, objects and types are mutually
dependent and there are four different dependencies: (1) objects depending on ob-
jects, (2) objects depending on types, (3) types depending on objects, and (4) types
depending on types. Each rule in R introduces one of these dependencies by al-
lowing for the construction of objects or types featuring the respective dependency.
Let us examine the different dependencies more closely.

(1) Objects depending on objects: the rule (x,%) allows for the construction of
types ITx:A;.As, where Ay, As are types. Hence the judgment A:x - A —
A : % can be derived. (Recall that A; — A, is a shorthand for ITz: A;.A4,).

In the judgment

Aikx,s:tA—> A z:AFsz: A
the object sz depends on the object z. Consider for example the case where
A = nat denotes the natural numbers, s denotes the successor function and z
denotes 0. Then, the judgment states that sz is of type nat.

(2) Objects depending on types: the rule (O,*) is indispensable to form types
IIx:K.A, where K is a kind and A is a type, like the type Ha: x.a—a.

In the judgment
I'ITa: x.a—a,A:xFTA: A A

the object IA depends on the type A. Consider for example the case where
A = nat and I = Aa: *.Az:a.x, the latter denoting the polymorphic iden-
tity function. Then IA = Az: A.z denotes the identity function for natural
numbers.

(3) Types depending on objects: the rule (x,0) is needed to construct kinds
IIz:A.K, where A is a type and K is a kind. Thus the judgment A:x
A—%:0Ois derivable.

In the judgment
A:xViA-xa:AFVa:x
the type Va depends on the object a. Let A = nat and V' the collection of

types of vectors indexed by their length. Then V5 denotes the type of vectors
of length 5.

(4) Types depending on types: the rule (O, 0) enables us to build kinds ITz: K. K>,
where K7, K» are kinds, as for example the kind *—*.

A simple example of a type depending on another type is the type A — A that
depends on the type A. In

Ak, Fik—xbE FA:x

the type F'A depends on the type A. Let A = nat and F' = la: x.a—«a
the collection of self-mapping functions, then F’A = nat — nat is the type of
all functions from the natural numbers to the natural numbers. Note that
Fla: x.a—a:x—r*.
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Collections of types that depend on objects or types (e.g., V and F) are called type
families.

Many important properties of the systems of the A-cube can be shown by proving
them for PTSs in general.

3.2.3 Properties of Pure Type Systems

Without giving detailed proofs, we state a selection of properties of PTSs, which we
shall use later on. Unless otherwise mentioned, [Barendregt, 1992] gives the proofs
for PTSgs and [Geuvers, 1993] gives the proofs for arbitrary PTSs. We start with
properties that hold for all PTSs.

Lemma 3.1 (Free Variable Lemma) Let I' = z;:4;,...,2,: A, be a context,
and let M, B be terms such that I' b M : B. Furthermore, let FV (U) denote the
set of free variables in a term U. Then the following hold:

(i) The variables z1,...,x, all are distinct.
(i) FV(M),FV(B) C {z1,...,Zn}.
(i) FV(A;) C{x1,...,25-1} for 1 <i < n.
Proof: By induction on the derivation of ' M : B. n

Lemma 3.2 (Substitution Lemma) Let INz: A, I"+F M : B, and let '+ N : A.
Then
I I'[N/z] - M[N/z] : B[N/z]

Proof: By induction on the derivation of I z: A, I+ M : B. m

Lemma 3.3 (Stripping Lemma) Let I" be a context and M, N, R be terms. Then
the following hold:

(i) If ' - s : R where s € 8, then R=s" with s:s'" € A for some s' € 8.
(i) If '+ z: R where x € V, then R= A withx:A € I' for some A€ 7.

(i) If '+ Hz:A.B:R, then I' v A:s1, I,x:AF B:sy, and R = s3 with
(s1,82,83) € R for some s1, 82,83 € 8.

(w) If ' - \x:A.M : R, then INz:A+ M:B, 'tk IIz:A.B:s, and R =
IIz:A.B for some B €T and s € 8.

(v) If ' MN :R, then ' v M : [Iz:A.B, and I' + N : A with R = B[N/z]
for some A,B€T.

Proof: By induction on the derivation of I' - @ : R, where () is the subject of the
statement in the premise of the respective implication. [

Corollary 3.1 Let A be a valid term. Then the following hold:
(i) A is an object, a type, or a sort.
(i) Every subterm of A is a valid term.

The remaining theorems that we shall present here are restricted to certain
PTSs. Note that the following theorem holds for functional PTSs and hence for all
systems in the A-cube.

Theorem 3.1 (Uniqueness of Types) Let AS be a functional PTS, I' a context
and M, A, A" terms. If T’ M :A and "'+ M : A', then A = A'.
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Proof: By induction on the structure of M, using the Stripping Lemma 3.3. n

Theorem 3.2 (Decidability of Type Checking and Typability)
(i) Type checking and typability are decidable for normalizing PTSgs.

(i) Type checking and typability are decidable for AP and AC.
Proof:

(i) Decidability of type checking and typability is proved for normalizing PTSgs
in [van Benthem Jutting, 1993]. Since it can be shown that all systems of
the A-cube defined on PTSgs are strongly normalizing, type checking and
typability are decidable for them.

(ii) Decidability of type checking and typability is proved for AP in [Coquand,
1991]. [Ghani, 1997] shows the same result for A\C by proving the computabil-
ity of the long fn-normal form and showing that A =g, A’ if and only if
NF(A) = NF(A"). This proof draws on the proof of the existence of the long
Bn-normal form in AC [Dowek et al., 1993].3

3.3 The System TWEGA

In the previous section, we first introduced PTSs as a uniform way to describe typed
lambda calculi. In terms of PTSs, we then presented the A-cube as a fine structure
of the calculus of constructions AC. Finally, we presented several important prop-
erties of AP and AC, for example the uniqueness of types (Theorem 3.1) and the
decidability of type checking (Theorem 3.2). Hence, both AP and AC are powerful
calculi appropriate for our purposes, namely to represent mathematical facts and
provably correct derivations. Most importantly, both calculi allow us to represent
diverse logics such as first-order and higher-order logics, modal logics, or temporal
logics. The representation will be according to the judgment-as-types paradigm,
thus proof checking is reduced to type checking, which is decidable, as we now
know.

In this section, we describe TWEGA, an implementation of AC extended by two
additional features: signatures and constant definitions.

3.3.1 Syntax

The abstract syntax of TWEGA is given as follows (for the concrete syntax cf.
Appendix A.1):

Terms Tu=V|€|TT|AV:T.T | IV:T.T

where V and C are infinite collections of variables and constants, respectively.

Constants have not been officially introduced in PTSs, but they can be simulated
via variables by postulating an initial context containing these variables. Clearly,
the initial context cannot be changed afterwards. Therefore, following the approach
taken in the LF logical framework (which is AP) [Harper et al., 1993] we split off this
initial context to form a signature, which contains constant declarations as opposed
to variable declarations in contexts. This allows us to represent each theorem as a
judgment with an empty context.

3Note, however, that some doubt has been cast on the proof in [Ghani, 1997] in its full generality
[Harper and Pfenning, 1999], but in most applications AP suffices and the proof in [Coquand, 1991]
is unquestioned.
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Similarly to [Pfenning and Schiirmann, 1999], we generalize signatures by also
allowing for constant definitions, which are semantically transparent, that is, they
may be expanded both for type checking and operational syntax. The advantages
of constant definitions are twofold. First, they allow for the formulation of more
abstract concepts in terms of less abstract concepts. Second, constant definitions
allow us to represent different levels of abstractions in one proof: If the application of
a constant corresponds to a step at an abstract level, then its expansion corresponds
to the proof of the correctness of that step and is located at the next lower level of
abstraction.

In order to describe the basic judgments, we consider signatures (which con-
tain only constant declarations and definitions) and contexts (which contain only
variable declarations).

.| Sig,@:T | Sig,C=T:T
.| Ctz,V:T

Signatures Sig ::
Contezxts Clz ::

We stipulate that constants and variables can appear only once in signatures and
contexts, respectively. This can always be achieved through renaming.

Notation:

1. Wewritec:A € Yandc=M:A € ¥ if c: A and c=M : A occur in signature
X, respectively. Similarly, we write z: A € I', if : A occurs in context
I.

2. We write ¢ € dom(X) if there is a type A such that ¢: A € ¥ or if there
is an object M of type A such that =M :A € X¥. Similarly, we write
x € dom(I) if there is a type A such that z: A € I'.

3. We write ¥ C X' ifc:Ae X forallc:A € X and e=M:A € X' for all
c=M:A € X¥. Similarly, we write [ CI"ifz:Ae " forall z: A€ I.

Intuitively, c=M : A means that the constant c is defined as the object M of type
A. M is the expansion of c.

3.3.2 Deductive System

Recall from Section 3.2.2 that AC is the PTSg, A(S,A,R), with 8§, A and R as
follows (from now on, we shall write type for x and kind for O, since these notations
are more mnemonic):

8 = {type, kind}
A = {type : kind}
R = {(type, type), (kind, type), (type, kind), (kind, kind) }

The type system stratifies terms into three levels: objects, types, and kinds. Let X
be a signature, I" a context, and A, A’, B terms. The judgments are

F X Sig X is a valid signature

s I Ctx I' is a valid context

I'kx A:B A and B are valid terms
I'kx A= A" Ais definitionally equal to A’

The notion of definitional equality we consider here is Sn-conversion. The judg-
ments are defined via the following inference rules:
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Valid Signatures

Wqﬂgemp
FXSig FxA:s cgdom(X) .
F X, c:A Sig sigdecl
FXYSg FxA:s FxyM:A c¢¢dom(Y) .
F X, c=M:A Sig sigdefn
where ¢ € €\8 and s € 8.
Valid Contexts
F X Sig
7|_2 - Ctxctxemp
FxI'Ctx I'bx A:s z ¢ dom(I)
s [,z:A Clz ctxdec]

where x € V and s € 8.
Valid Terms

s I' Ctx b I' Ctz z:Ael’

TFs type : kind o™ Trez:4 ot
bFx I' Ctz c:Ae X b I Ctz c=M:Ae X
Trec A declstart Thyc:A defnstart

'ty A:s; INz:Abx B:ssy
by [Iz:A.B: 39

[hyM:Oo:AB ThsN:A_
I'Fx MN : B[N/z] PP

Nez:Aby M:B TI'bxIlz:A.B:s
I'bxy Ax:A.M : IIz:A.B

I'tsA:B I'tyB':s I'xB=HB
F"EA:BI

(s1,82) for 51,82 € 8

abstr

conv

where x € V and s € 8.

Note that we added a non-empty context to the rule axiom and that we allowed
for the occurrence of the declaration in an arbitrary place in the context in the
rules declstart, defnstart and start. This allows us to omit the rule weakening,
which always can be simulated by redoing the steps of the type derivation
with adapted contexts.

Definitional Equality

b I' Ctr c=M:Ae X F"EA:Bre
F}—ECEM F"Z‘AEA

FI_EAEAISmm Fl‘zAEA' F"EA’EA"
Trs A =4 TFs A= A"
I'ty (Az:AM)N:B beta I'kxy M:IIz:A.B .
TFs (\o:AM)N = M[N/q] TFs M=Xe:AMz
Ity A=A Tz:Abs B=B
I'kFx z:A.B=1z:A".B'

fl

cngdefn

trans

ta

cngprod
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Fl‘gAEA' F,.CL':AFZMEMI

I'Fy dx:AM = Ag: A M’ cngabstr
'ty A=A 'ty B=DB |
'ty AB=A'B' cngapp

3.4 Judgments as Types

In this section, we shall examine the judgments-as-types paradigm with an example,
namely the representation of the natural deduction (ND) calculus (cf. Section 3.1).
[Pfenning, in prep.] gives an excellent presentation of this paradigm and the repre-
sentation of the ND calculus in the LF logical framework.

Our general approach is to represent deductions of an object calculus as objects
in TWEGA and judgments of the object calculus as types in TWEGA. The type
system of TWEGA will ensure that only the representation of a valid deduction
is well-typed. Hence, checking the validity of a deduction (proof checking) in the
object calculus is reduced to type checking in TWEGA.

Many calculi allow for reasoning from hypotheses. For example, in the ND calcu-
lus we can conclude the judgment - P D @ if we can infer @ from the hypothesis
FP. A judgment that ¢ is derivable under a hypothesis ¢ is called hypothetical
judgment. We can substitute a derivation of i for every use of ¢ in order to ob-
tain a derivation that no longer depends on the hypothesis ¢ (i.e., the hypothesis
plays the role of a variable for a derivation). Hence, hypothetical judgments can be
represented by a function that maps a derivation of the hypothesis to a derivation
of the conclusion. An application of this function corresponds to the previously
mentioned substitution of the derivation of 1 for every use of 1.

Another phenomenon that often occurs is reasoning with parameters. For exam-
ple, in the ND calculus, we can conclude that FVz.P if we can show that F Pla/z],
where a is a new parameter, which does not occur in any undischarged hypothesis.
A judgment that ¢ is derivable with parameter p is called a parametric judgment.
We can substitute an expression v for every occurrence of p in the derivation of ¢
in order to obtain a derivation that no longer depends on the parameter p (i.e., the
parameter plays the role of a variable for an expression). Thus, parametric judg-
ments can be represented by a function that maps an expression to a derivation of
the instantiated conclusion. Again, an application of this function corresponds to
the substitution of the expression for the parameter throughout the derivation of
the conclusion.

Let us now proceed to an illustrative example, the representation of the ND
calculus in TWEGA.

3.4.1 The Representation of the Natural Deduction Calculus

The representation of the ND calculus consists of two main parts: the represen-
tation of terms and formulae and the representation of the valid derivations. The
representation technique we use, called higher-order abstract syntaz, goes back to
Church [1940]. Its main principle is to represent constructs that bind variables by
A-abstraction. Hence, the variables bound by universal and existential quantifica-
tions are represented by variables in TWEGA. Since hypotheses and parameters play
the role of variables in the derivation, they are represented by variables as well.

In this section, we simultaneously construct the signature X (we just write X)
that represents the connectives and inference rules of the ND calculus in TWEGA
and define the encoding ™-7 that encodes terms, formulae, propositional parameters
and valid derivations of the ND calculus by TWEGA terms in long Sn-normal form.
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Terms and Formulae

We distinguish terms and formulae by attributing them with different types. In
keeping with general practice, we call the type of terms i and the type of formulae
and propositional parameters o. Hence, we start with the signature X' that only
contains: _

I type

o : type
For every n-ary function symbol f in C; and for every m-ary predicate symbol P
in C, we add to X' declarations

f @ i—=--ioi
N——
n times

P : j=---=i—o
N——

m times

Hence, since T, L € C,, we add
true : o
false : o

Since the connectives A, V, D and — compose formulae from smaller formulae we
also need the following declarations in X'

and : o—o0—o0
or : 000
imp : 0—0—0
not : o0o—o

Universal and existential quantification take a variable and a formula to form a new
formula. Recall that employing higher-order abstract syntax we represent variable
binding constructs by A-abstractions. Hence, we declare two constants that take
A-abstractions to form formulae:

forall : (i—o)—o
exists : (i—o0)—o0

Then, the encoding of terms, formulae and propositional parameters is given by

27 = forx eV
a7 = a forae PfUP,
Cf(tr, .. tn)? = fTt7. T8,
CP(t,..stm)? = Pt 0. Tty
™T7 = true
17 = false
TAANB? = andTA7TB™
TAVB? = or"A7™B?
TADB? = impTA7™B™
A7 = not™A™
"Vg. A7 = forall Az:i."A™
THz. A7 = exists Az:i." A"

Note that forall and exists both take as argument a A-abstraction of type i —o.

Valid Derivations

In order to represent derivations, we need a representation for judgments. A judg-
ment - C will be represented by a type family nd that is indexed by a formula C
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(thus justifying the notion ‘judgments-as-types’). Hence, we add to X the declara-
tion
nd : o—type

and the encoding of a judgment is given by
"C7 = nd"C™

The methodology for encoding inference rules is the following. Recall that a hy-
pothetical judgment can be represented by a function from the derivation of the
hypothesis to the derivation of the conclusion. Therefore, when representing infer-
ence rules, hypothetical judgments are encoded by

[-A]*
: = Iu:nd"A7.nd "C™

FC
Similarly, parametric judgments can be represented by a function from an expression

to the derivation of the conclusion. Thus, if p is a parameter in - C in an inference
rule to represent, we encode the judgment +C by

Mp:ind "C7 ifpe P

r il j—
RO = {Hp:o.nd TCT ifpeP,

Note that representing hypothetical and parametric judgments as functions is in
accord with higher-order abstract syntax, since hypotheses and parameters of a
derivation can be considered as variables in the derivation.

An inference rule is then represented in the signature as a constant that can
be considered as a function from the derivations of the premises of the rule to the
derivation of the conclusion of the rule. Let FWi,...,FW,,FC be judgments,
where FWy,...,FW,, may be hypothetical or parametric judgments. For each in-
ference rule

FWyoo... I—WnR
FC
with X3,..., X,, the meta-variables for formulae in W1,...,W,,,C we declare in ¥
a constant
R : IIXj:o..... IX,: 0" F-Wi = . =2THFW, "= THC™

We say that Xi,...,X,, are the implicit arguments to R. Now, let Ay,..., A,
be formulae; let Dy, ..., D, be derivations of the judgments W], ... ,F W) where
W! = WilA1/Xq,...,An/Xp]; and let C' = C[A1/Xq,...,An/Xy]. Then, the
application of the inference rule R is encoded by

r A
Dy D,
FWOT RW = RTAT...TA4,7™D;7...™D,,"

n
FC' Rk
Let us consider the inference rules AI, DI and VI as examples:

Rule AI: We declare
andi : ITA:0.IlB:o.nd A—nd B—nd (and A B)

and the encoding of an application is given by

r |
Dy Do
l_A I_B — andi I_A-l rB—l '_D]_—I |_D2—|

rarg M
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Table 3.6. The Signature X"”

Types
i T type
o : type
nd : o—rtype

Function Symbols
f i i

Predicate Symbols and Connectives

P D ioe--ioo
true : 0

false o)

and : 0—>0—0

or : 00—0
imp : 0—0—0

not : 00

forall : (i—»o0)—o
exists : (i—»o)—o

Inference Rules

andi : ITA:0.IlB:o.nd A—nd B—nd (and A B)

andel : ITA:o0.IIB:o.nd (and A B)—nd A

ander : ITA:0.IIB:o.nd (and A B)—nd B

oril : ITA:o0.IlIB:o.nd A—nd (or A B)

orir : ITA:0.IlIB:o.nd B—nd (or A B)

ore : ITA:0.lIB:0.IIC:0.nd (or A B)—(nd A—nd C)—(nd B—nd C)
—nd C

impi : ITA:0.Il1B:o.(nd A—»nd B)—nd (imp A B)

impe : ITA:o0.IlIB:o.nd (imp A B)—nd A—»nd B

noti : ITA:o.(ITp:o.nd A—nd p)—nd (not A)

note : ITA:0.II1C:0.nd A—nd (not A)—nd C

truei : nd true

falsee : IIC:o.nd false—nd C

foralli : ITA:i—o.(ITa:i.nd (A a))—nd (forall A)
foralle : ITA:i—o.nd (forall A)— (ITt:i.nd (A t))

existsi : ITA:i—o.lt:i.nd (A t)—nd (exists A)
existse : ITA:i—o0.JIC:0.nd (exists A)— (IIa:i.nd (A a)—nd C)—nd C
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Rule D I: This rule has as premise a hypothetical judgment. Hence, we declare
impi : ITA:o.IlB:o.(nd A—nd B)—nd (imp A B)

and define the encoding of a step in a derivation using DI as

[ AT
D
FB
FASB -

Note that the type of Au:nd "TA"."D7V1is nd "TA7—nd "B™.

= impi"A7 "B (Au:nd TA.TDT)
I’u

Rule VI: This rule has as premise a parametric judgment. Therefore, we declare
foralli : ITA:i—o.(IIa:i.nd (A a))—nd (forall A)

The application of VI is encoded by

r a

D
FAla/z] = foralli (Az:i.m A7) (Aa:i." D7)
FYed 1@

The encoding of the remaining rules is similar. The complete signature X*” is
summarized in Table 3.6. The full definition of the encoding function ™7 is given
in Table 3.7.

Table 3.7: The Definition of ™-7

Formulae
g7 = =z forzx eV
a7 = a fora e Py UP,
'_f(tl,...,'tn)j = frtl—l...rtn—l
CP(t, ... tm)" = Pt 7. Tty
T = true
T17 = false
TAAB? = andTA7TB™
TAVB? = or"A7™B™
TADB? = impTA7™B™
T—A7 = not™A™
"Vx.A7 = forall Az:i."m A7
M3z.A7 = exists Az:i.n A7
Derivations

T"C" = nd"C™

r A
D1 Ds
LA B N = andiTA7 TR TP Dy
FAAB
r A
D
FAAB = andel TATTBT D™
Fa N

continued on next page
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continued from previous page

r

D
FAAB
+B

[FA]* [-B]Y
Do D Dy
FAVB +C FC

uv
C VE

[+ AJ*

D

FB .
FAio>B 2!

Dy Dy
FADB FA
— v °F
[FAJ*

D

Fp w
o )

Dy Do
FA F-A
FC

r

-FE

e
D
=1

Fo tF

F Ala/x]

Fvza (@)

ander TAT "B ™D

oril TATTBTDT

orir TATTBTDT

ore I_A-I I_B-I I_C-I I_DO—I
(Auznd TAD )
(Av:nd "B."D,")

impi "A7 "B (\u:nd TA7DY)

impe I_A-I I_BT I‘Dl-l I_DZ-I

noti "A™ (Ap:o.Au:nd TALDT)

note I_A—I I_C—I '_Dl—l I_D2—I

truei

falsee "C ™D

foralli (Az:i."A7) (Aa:i."D7)

continued on next page
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continued from previous page
r A
D
FVz.A VE = foralle (Az:i."TA™) "D T¢7
FA[t/z]
r il
D
FA[t/z] I = existsi (Az:i."AT) "¢ ™D
Faz.A
r A
[~ Ala/x]]*
I—EiDlA Eé, = existse (Az:i."A7) TCT ™D,
T o 3E%(a) (Aa:i A u:nd " Ala/z]. "Dy

FExample 3.2
As an example for the representation of a derivation consider again the derivation
of the theorem HFA A B D B A A in the ND calculus from Example 3.1 on page 23:

[FAABJ* [-AABJ
L2l ne, BEE22 A g,

FB
AT
FBAA .

FAANBDBAA

Note that A:0,B:0 € X, since A and B are O-ary predicate symbols in the deriva-
tion. The derivation is represented by the TWEGA term

impi (and A B) (and B A) (Au:nd (and A B).andi B A (ander A B u) (andel A B u))

which has the type
nd (imp (and A B) (and B A))

and can be added to X as the following constant declaration:

thm’ = impi (and A B) (and B A)
(Mu:nd (and A B).andi B A (ander A B u)
(andel A B u))
nd (imp (and A B) (and B A))

A better strategy is to abstract from A and B, before adding the constant definition.
This allows us to use the theorem as a derived inference rule in later derivations.
Hence, we add

thm = AA:0.AB:o.impi (and A B) (and B A)
(Mu:nd (and A B).andi B A (ander A B u)
(andel A B u))
ITA:o0.IIB:o.nd (imp (and A B) (and B A))

3.4.2 Adequacy of the Representation

So far, we showed how the ND calculus can be represented in TWEGA. The question
now is: Is this representation adequate? In this section, we shall show how an
adequacy theorem is formulated. Then we state and prove the adequacy theorem
for the representation of the ND calculus in TWEGA. To do so, we need the following
definitions:
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Definition 3.20 An encoding function (-) : A — B is compositional if and only
if for all expressions A, B € A the following holds:

(A[B/z]) = (A)[(B)/(=)] .

Hence, in a compositional encoding function, substitution commutes with the en-
coding. In particular, by adopting higher-order abstract syntax, substitution in the
logical system is encoded as substitution in TWEGA.

Definition 3.21 A signature is an adequate representation of a logical system if
and only if there is an encoding that is a compositional bijection between syntactic
entities of the logical system and long gn-normal forms in that signature. [

Hence, the notion of adequacy ensures that an encoding does not introduce any
additional entities and that it encodes all entities uniquely.

Now, we state and prove the adequacy theorem for the encoding of the natural
deduction calculus by splitting it into three parts concerning T, W U P, and D.

Theorem 3.3 (Adequacy of the Encoding of the ND Calculus: Terms)
The encoding "7 is a compositional bijection between

terms t € T with free variables in V' C V and with parameters in
Pf’ C Pf

and
terms t € NF(T) with I' bx; t = i, where z:i € I' for every z € V' UP;'.

Proof: The encoding function "-7 on terms is evidently injective and maps every
term t € T into a term in f#n-Inf of type i. We show surjectivity by defining the
inverse function L-1 to "7 as follows:

LTy = T
Las = a
fti...tpa = f(l_tl_l,...,l_tn_l)

Let t € T. We show that LMt =t by induction over the structure of ¢:
Caset=2€ V': Then L'z 1= Lo =z.
Case t =a € P;': Then ."a"u=ca1=a.

Case t = f(t1,...,t,): By induction hypothesis L"¢;71 = ¢;. Hence,

T f(tr,.eaytn) s = FT87 L. T, 70
= f(L"t . LT )
= f(t1,.--ytn)

Finally, we show the compositionality property. Let ¢t,u € T and z € V' UP;'. We
show t[u/z]" ="t ["47/"z7] by induction over the structure of ¢:

Case t = x: Then "z[t' /2] = "t'T = 2[¢' /2] = Tz [t/ /27

Case t =a € V'UPy', a # z: Then "a[t'/z]7 ="a = "a [t/ 27

Case t = f(t1,...,t,): By induction hypothesis ";[t' /2] = "t;7["¢'7/"27]. Hence,
Tf(ty, - t)[t /2] "t /al, tat/2])”

freft'/z]™ ... TtL[t /2]

f l‘tl‘l[l‘tlﬂ/l‘x‘l] . rtn—l[rtl—l/f—mj]

(e o T[T/ T

= Tf(t1,. . tn) [/ 27
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Note that Theorem 3.3 requires only that the substitution of terms into terms
commute with the encoding. We now show that the substitution of formulae and
derivations into terms commutes with the encoding as well.

Lemma 3.4 LetteT,pe P, u € Py, p € W, and D € D. Then the following
hold:

(i) Ttle/p]T ="t T /TpT] =TT
(Z'l) l_t[D/u]-l — l_t—l[l_D—l/l_u-l] — l_t—l

Proof: Trivially true, since p and u do not occur in ¢t and hence, "p™ and "u™ do
not occur in "t [

Theorem 3.4 (Adequacy of the Encoding of the ND Calculus: Formulae)
The encoding "7 is a compositional bijection between

formulae and propositional parameters o € W UP,’ (where P,' C P,)
with free variables in V' C V and with function parameters in Py’ C Py

and

terms W € NF(T) with ' b5, W : o, where z:i € I for every z € V'UP}'
and p:o € I for every p € P,'.

Proof: As in the case of terms, the encoding function ™7 is evidently injective
and maps every formula or propositional parameter ¢ € W U Pp' into a term in
Bn-Inf of type o. We show surjectivity by extending to formulae and propositional
parameters the inverse function - from the proof of Theorem 3.3:

Lps = p
Pty .t = P(Ltl_l,...,Lth)
Ltrues = T
Lfalses = L
rand ABL, = LALALBL
orABs = LALVLB.
timpABs = LALDLB.
Lnot A = -—LAL
Lforall Az:i.AL = Vz..Al
Lexists Az:i.Al = Fz.LAL

Now, let ¢ € WUDP,'. We show that "¢ = ¢ by induction over the structure of
:

Case p=pE€ Pp': Then L"p'a=vLpi=p.

Case ¢ = P(t1,...,tm): By Theorem 3.3 ."t;"1 = t;. Hence,

LTP(t1,eaytm) 0 = PTH7 o0 Tty
= Pt g, Lty )
= P(t1,---,tm)

Case ¢ = 91 A: By induction hypothesis L™y; 1 = ;. Hence,

LT Ao cand Ty Teha
LT O A LT S
= Y1 Ay
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Cases ¢ =1 Vb2, ¢ =1 D 1p2 and ¢ = —): These cases are similar to the pre-
vious case.

Case ¢ = Vz.i: By induction hypothesis L™y 71 =

L'_VZU.’(/FJ = forall )\x:i.'_’l/)—'J
Ve Ty
V.

Case ¢ = Jz.¢p: This case is similar to the previous one.

Next, we show the compositional property for propositional parameters. Let
p,p € P,',p#p and ¢ € W. Then the following hold:

— f_p—l[l_goj/l_pj]
pl-l — l_pl—l[l_(p-l/l_p—l]
Finally, we show the compositionality property for formulae. Let ¢ € W, ¢t € T

and z € V'UP;'. We show "o[t/z]" = T [t/ 27| by induction over the structure
of :

|
-
S
2

"ple/p]" =
Ple/p]" =

Case ¢ = P(t1,...,t,): By Theorem 3.3 and Lemma 3.4 "¢;[t/z]" = "¢, [t/ z7].

Hence,
CP(t1,...,tp)[t/x]? = TP(t[t/z],...,talt/z])"
= P Ttft/z]” ... Ttpft/2]”
— P l'tl'l[l'tj/l'w'l] l_tn—l[l_t'l/l_x—l]

(P I'_tl—l . I'_tn-l)[l_t—l/l_m—l]
= TP(ty,....t)) [t/ 2T

Case ¢ = 1 At By induction hypothesis ";[t/x]7 = "; ["¢7/"z7]. Hence,

"oy Ap)[t/a]T = Tihi[t/x] Adolt/a]”
= and "y [t/x]T Tea[t/x]”
= and Ty [TE7T/T2] Tahy [T /T2
= (and Ty Tehy [T /T2 7]
= Ty Ah[TET/T2T]

Cases ¢ =1 Vb2, ¢ =11 D 1po and ¢ = —): These cases are similar to the pre-
vious case.

Case ¢ = Vy.¢p: By induction hypothesis "¢[t/z]" = "¢ ["t7/"z7]. Hence, ifz # y

T(Vy.)[t/=]” "Vy[t/z]”

= forall Ay:é."y[t/x]”
forall Ay:4." [t /T2
(forall Ay:é."p™) [t /"™
= "Wy [Tt/ 2]

Otherwise, if z = y

T(Vo.)[t/z]"

V)T

forall Az:i.m¢™

forall Az :i."y [t /2]
(forall Az:i.Fy™)[t7/x]
— rvx.d}—l[rtj/rx—l]
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Case ¢ = Jy.y: This case is similar to the previous one. [

Note that Theorem 3.4 does not require that the substitution of formulae for propo-
sitional parameters into formulae and the substitution of derivations into formulae
commute with the encoding. Therefore, we show the following lemma.

Lemma 3.5 Letyy e W, pe Py, u € Py, p € W, and D € D. Then the following
hold:

(i) “lp/p] T =TT TpT] = TepT
(i) "Y[Dfu]? =" [DYTuT] ="y

Proof: Trivially true, since, by definition of W, p and u» do not occur in ¢ and
hence "pT and "u do not occur in "7, [

Theorem 3.5 (Adequacy of the Encoding of the ND Calculus: Valid
Derivations) For every ¢ € W UP,, the encoding "7 is a compositional bijec-
tion between

valid derivations D :: k¢ € D with free variables in V' C 'V and with
parameters in P' = Py’ UP,’' (where P;' C P and P,' C P,)

and

terms D € NF(T) with I' -5 D:nd "¢, where z:i € I' for every
2 € V'UP; and p:o € I' for every p € B,'.

Proof: First, we have to prove that ™-7is injective and maps every valid derivation
D :: Fyinto aterm D € NF(T) with I' -5 D : nd "¢™. Evidently, "-7 is injective
and D is in fB7-Inf by the definition of "-7. This leaves us to show that D is of type
nd "p7. This can be done by straightforward induction over the last step of the
derivation D :: F¢. Close inspection of the inference rules shows that if the last
step is of the form
Dl e Dk
o P
Fo

then ™D = F7=RTA;T ... TA,7 ™Dy ... "Dy for some Ay,..., A, and
RFA;T...TA,7™D;7 ... "Dy is indeed of type nd "¢ ". The same result holds for
inference rules with premises that represent hypothetical or parametric judgments.

As before, we show surjectivity by extending to valid derivations the inverse
function -1 from the proof of Theorem 3.4 as follows (we show only some exemplary
cases):

nd Ca = FoLCl

D1y D24
FLAL FLBL

|_and| A B D]. D2_J = m A I

LA
LDJ
o FLBJ “
Limpl AB (/\und A.D)_I = m oI
LDJ
FLA[a/z]a

Lforalli (Az:i.A) (Aa:i.D). FVzL AL

VI(a)
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The remaining cases are similar.
Now, let D € D. We show that ."D7, = D by induction over the structure of
D:

Case D = F1: By Theorem 3.4 L"¢7"4 = 9. Hence, L"F974 = nd "1 =
LMy = k.

Case AI: Let D1 Do
b Ui Fi
F1 Ads
By induction hypothesis ."D;"s = D;. Furthermore, by Theorem 3.4
L"; 1 = ;. Hence,

AT

r A
Dy Do
bbby = Landi "1 Teh DT TD,y T
— = AT
L |—’¢1 A ¢2 N
LD LDy,
_ FLy o FLmea AT
- LT oA LT Y g
Dy D,
Fip o
= ——— = AT
Y1 A
Case DI: Let [Fa]®
’DI

19
D= ———DIJ"
F41 D 4o

By induction hypothesis ."D'"',s = D'. Furthermore, by Theorem 3.4
L; 1 = ;. Hence,

r A
(Fya]®
!
l-?ﬁ = vimpi "1 T (Au:T TDI T
2
—= D J¥
L |—'¢1 D) ¢2 3
[FLmg )
LFDI—l_I
B FLMea .
o I_Lr¢1j_l D I_r/l,bQ—I_l >1
[Fepa]®
DI
F 1o
F41 Do
Case VI: Let 24
_ Fyla/a]

By induction hypothesis L"D'74 = D'. Furthermore, L"¢71 = 4 by Theo-
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rem 3.4 and L"a1 = a by Theorem 3.3. Hence,

Lforalli (Az:i.Fy™) (Aa:i."D'7).

T
<
1S
~
B,

Il

a
L FVx.ap r
L"D'
FLpT[Fa/ T2
FVz.LMy7g

VI(L"a™])

LFDI—l_I
FLmla/z] - oA
pop, Leh)
DI
Fpla/]

The remaining cases are similar to the previous three cases.

Finally, we show the compositionality property. Let z € V' UP;', p € P, and
u € Py. Moreover, let t € T, ¢ € W and D' € D. We show

() "Dt/z]" = "Dt/ 27
(i)  "Dlp/p]” = ™D/ Tp7
(i) TD[D'/u]’ = TDITD7/ ]|

simultaneously by induction over the structure of D:

Case D =Fq:

(i) "(Fy)[E/a]

THY[t/a]

nd T[t/z]”

nd ("¢Y7["t7/T27]) by Theorem 3.4
— (nd r/(ﬂj)[rt—l/rwj]

|_|_ ¢1[l‘t‘l/l‘$1]

(i) and (ii) are similar with Lemma 3.5 instead of Theorem 3.4.

Case AI: Let Dy Dy
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@ " D, Do )
Fir by [t/x]
ForAdn

Dilt/z] Delt/z]
Fuft/z] Fooft/a]
F (1 A o)t/ 2]

= andi Ty [t/2]" Tt /2] TDL[t /2] TDy[t/2]

AT

— andi rl_,l'blj[f_tj/f_xj] I_I_ wzj[rtj/rxj]
FDIT[rtT/[—xT] FDI—I[l—tT/r:L.—I]
by Theorem 3.4 and induction hypothesis

— (andi rl_wl“l r|_,¢2‘| I'D11 I'DQ‘I)[I't‘I/I‘mW]

D1 Ds
Fi1 Fae

— r /\ I-| rt—l l‘z.‘l
For g, NTTE/

(ii) and (iii) are similar with Lemma 3.5 instead of Theorem 3.4.

The remaining cases are similar to the last case. (]

In this chapter, we defined TWEGA as a suitable formalism to encode various cal-
culi and to represent mathematical facts and derivations. An important feature
of TWEGA that makes it well suited for our purposes is the concept of constant
definitions, since these allow us to represent several levels of abstraction of a proof
simultaneously.

Then, we showed how a concrete calculus, namely the natural deduction calculus
of first-order predicate logic, can be represented in TWEGA using the judgments-
as-types paradigm. Using this paradigm has two major advantages: First, the
judgments-as-types paradigm reduces the problem of proof checking to the problem
of type checking, and since the problem of type checking is decidable, this gives us
a decision procedure to check the correctness of the proofs. Hence, TWEGA ensures
that only such proofs can be encoded that are correct with respect to the repre-
sented calculus.* Second, the explicit representation of hypothetical and parametric
judgments makes the judgment-as-types paradigm particularly well suited for the
explanation of proofs.

Moreover, we showed that the representation in TWEGA is adequate. Close
inspection shows that the type system rules (kind,type) and (kind, kind) have not
been used in the definition of "-7. Hence, the encoding "-7 can already be used
to represent the ND calculus in the logical framework LF, which can be seen as a
fragment of AC. In the following chapter, we shall examine a more complex example
which requires the full strength of AC for the encoding.

4However, note that it is also possible to represent inconsistent calculi in TWEGA that include
incorrect inference rules. Nevertheless, only correct applications of such incorrect inference rules
can be represented.



Chapter 4

The Encoding of Dynamic
Deduction Systems

In the preceding chapter, we defined TWEGA as the formalism in P.rex to represent
mathematical facts and derivations. Considering the case of the natural deduction
calculus, we saw how a concrete calculus can be encoded into TWEGA. A similar
approach can be taken for other deduction systems that implement a fixed calculus,
that is, a calculus with a predefined set of inference rules. Hence, most provers can
be connected to P.rex by providing a function that encodes the prover’s calculus in
TWEGA once and for all. We call such a function a static encoding.

However, many deduction systems, such as the IMEGA system [Benzmiiller et
al., 1997], operate on a calculus that is not fixed, that is, a calculus whose set of
inference rules can be extended later on. For example, in 2MEGA the user can define
new inference rules that may or may not be mapped into the application of a fixed
series of inference rules that existed before. The user is even allowed to discard the
built-in calculus and to provide a calculus of his own, that is, QMEGA can be seen
as a logical framework. Hence, it is not possible to statically encode the calculus of
the OMEGA system in TWEGA and to work with that for good.

Then, we should encode the calculus with which the user of QMEGA is currently
working. But this is also impossible, since QMEGA allows for high-level inference
rules, called methods, that have a flexible number of premises, that is, the exact
number of premises cannot be calculated before the method is applied.

Our approach to cope with this problem is to define a function that encodes
applications of inference rules instead of trying to encode inference rules per se in
TWEGA. We call such a function a dynamic encoding.

First, we shall present in Section 4.1 the formalism in which proofs in QMEGA
are represented. Next, in Section 4.2 we shall define the dynamic encoding of such
proofs in TWEGA.

4.1 The QOMEGA System

The system (IMEGA is an interactive system supporting theorem proving in math-
ematics [Benzmiiller et al., 1997]. Its logic engine contains a proof planner, which
may employ external reasoners, such as other deduction systems, constraint solvers,
equation solvers or computer algebra systems. 2MEGA makes use of the mathemat-
ical database MBase [Franke and Kohlhase, 2000], which organizes mathematical
knowledge in a hierarchy of theories. Beside definitions, a theory in MBase contains
theorems and methods for proving theorems, which both can be seen as derived
inference rules that can be formulated in terms of inference rules of underlying
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theories. Since the user of 2MEGA can switch back and forth between theories or
develop his own theories, the calculus of QMEGA is not fixed. Moreover, methods for
proving theorems have in general a flexible number of premises. The exact number
of premises is calculated when the method is applied in a proof. This number may
vary from application to application. As an obvious example, consider the methods
that are due to external reasoners. For instance, it is possible to define a method
SPASS, which means that a subproof is assumed to be provable by the first order
theorem prover SPASS [Weidenbach, 1997]. Clearly, the number of premises of a
proof step proved by SPASS cannot be anticipated when the method is defined.
However, when the method is applied the number of premises is clear. Certainly,
such methods cannot be encoded statically. Instead, we encode the applications
of the methods as they are embedded in the proof. That is, proofs in {IMEGA are
encoded dynamically.

The representation of formulae in QMEGA is based on a restricted polymorphic
typed lambda calculus that we shall present first by giving its syntax and type
system. Next, we shall present the representation of inference rules and proofs in
(OMEGA.

4.1.1 Syntax

The syntax of QMEGA is divided in types and terms. Type polymorphism is given
by schematic types. We use the notions polymorphic types and schematic types
interchangeably.

Simple Types Tu=VI|CT..T|T->T
Schematic Types S ==T |VV.S

where V and C are infinite collections of type variables and type function sym-
bols, respectively, where each function symbol has a unique arity. Note that the
schematic types include the simple types. In the following, we use 7, 7', 7; to denote
simple types and o,c’,0; to denote schematic types. A type y7i ..., is called an
application type; a type 7 —7' is called a function type.

Terms are defined as

Terms T ==V |C|TT | AV.T

where V and C are infinite collections of variables and function symbols, respec-
tively. Each variable and each function symbol has a unique arity. In the following,
we use e, €', e; to denote IMEGA terms. A term ee’ is called an application; a term
Az.e is called a A-abstraction or just abstraction.

In order to describe basic judgments, we consider signatures, which contain only
(type and term) constant declarations, and contexts, which contain only (type and
term) variable declarations.

Signatures  S1G == - | S1G,C:N | S1G,C:S
Contexts  CTX == -| CTX,V:TYPE | CTX,V:S

where N is the set of natural numbers. v:n means

Y: TYPE—---—=TYPE— TYPE

~~
n times

By using this notation, the formal introduction of kinds in QMEGA is avoided. (See
the usage of kinds in Chapter 3 for comparison.) We stipulate that constants and
variables can appear only once in signatures and contexts, respectively. This can
always be achieved through renaming.
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Notation: We write ¢ € dom(X) and c:0 € X if c:0 occurs in signature X;
we write v € dom(X) and v:n € X if v:n occurs in X. Similarly, we write
x € dom(I") and z:7 € I',if z:7 occurs in the context I'; we write o € dom(I")
and a:TYPE € I', if a: TYPE occurs in I'.

4.1.2 Type System

Let X be a signature, I' a context, o a simple or schematic type, and e a term. The
judgments are

I+ X Sig X is a valid signature

ks I' Ctx I' is a valid context

I'lky 0: TYPE o is a valid simple type
I'lFx 0 : PTYPE o is a valid schematic type
Ikxe:o e is a valid term

The judgments are defined via the following inference rules:

Valid Signatures

———SIGEMP
F-Sigo©

IF X Sig v ¢ dom(X)
Ik X, v:n Sig
I X Sig Iy o:PTYPE ¢ ¢& dom(X)
Ik X, c:o Sig

SIGTYPE

SIGTERM

where v € C, ¢ € C and n is a natural number.
Valid Contexts
mCTXEMP
ks I' Ctz o ¢ dom(I")
Ik Ia:TYPE Ctz
ks I' Ctz I'lrx7:7TYPE z & dom(I)

CTXTYPE

CTXTERM
b5 Ix:m Ctz
where a € V and z € V.
Valid Types
MTYPESTART
I'lFy a: TYPE
’y:nez F”‘ZTl:TYPE FH—Z Tn:TYPETYPEAPPL
'ty ~m...7h t TYPE
. I .
Iy, 7 TYPE 17 Iy 7' TYPETYPEFUNC
I'lFy, 7= 7 : TYPE
where a € V.
Valid Schematic Types
LlFy 0 : TYPE L obaTART
I'lkx 0 : PTYPE
I',a:TYPE |lFx 0 : PTYPE P TVEEARSTR

I'lFy; Ya.o : PTYPE
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Valid Terms

P I F?Iff; tt::ge 2 S1GSTART 7125 I:Ir;exl:ﬂ —CTXSTART
'ty t:Ya.o I'lkxy 7:TYPE
'y t:o[r/q]
'k z:t'=7 Tlkxt: 7
ks zt:T
z:tlkxt:7 ks 7—7 : TYPE
ks dzt:7—=7
I'a:TYPElFx t:0 I'lFxyVa.o:PTYPE
Ity t:Vao

PTERMINST

TERMAPPL

TERMABSTR

PTERMABSTR

where z € VU C.

Definition 4.1 Let X be a signature with 0:0 € X and ¢ a term, such that
IFx @ :Vag..... Ya,.0, n > 0. Then, ¢ is called a formula. [

Note that a judgment kx5 ¢ : Vay... .. Va,, .o cannot be expressed in LF, but in AC,
as we shall show later in Section 4.2.2.!
In the following, we use ¢, ¢’, ¢; to denote QIMEGA formulae.

4.1.3 Inference Rules and Proofs

Having defined the syntax and the type system of {IMEGA, a calculus can now be
given by specifying a concrete signature and a set of inference rules. Consider, for
example, the following signature X?:

t:0, 0:0,

T:0, Ll:o,

AN:o—o—o0, V:0o—0—0, D :0—0—0, —:0—0,
FORALL:(t—0) =0, EXISTS:(t—0)—0

Recall that ¢:0 and 0:0 mean +: TYPE and o: TYPE, respectively.
If we use infix notation for A, V and D, and declare the following notations:

Vz.A means FORALL(Az.A)
Jr.A means EXISTS(Az.A)

then specifying the inference rules of the ND calculus as in Table 3.1 on page 22
gives us a higher-order variant of the ND calculus. Indeed, a similarly defined
higher-order variant of the ND calculus is used in MBase as the base theory from
which all theories inherit their basic properties.

Let us consider the derivation of FAA B D B A A:

u u
FAAB! 5 [FAAB! o
FB FA N,
FBAA

FAANBDBAA

INote that Definition 4.1 is not the standard way of defining formulae, since a formula ¢ may
have type Vaj..... Va,.o for an > 0. The standard way of defining a polymorphic formula is the
following:

Definition 4.1’ Let X' be a signature with 0:0 € ¥, I" a context with a1 : TYPE,...,an:TYPE € I,
n > 0, and ¢ a term, such that IFx ¢ : 0. Then, @ is called a formula. [ ]

Note that a judgment I' IFx ¢ : o can be expressed in LF.

The non-standard definition of polymorphic formulae in Definition 4.1 is due to the unsatisfac-
tory management of contexts in the proof plan data structure of QMEGA, which does not clearly
separate the signature from the contexts for historic reasons. A reimplementation of the data
structure with the proper management of contexts is planned.
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Table 4.6. The derivation of FAA B D B A A.

Label Antecedent Succedent Justification
Ly Ly FAAB HYP

L, Ly FB AE.(Ly)

Ls Ly FA ANE; (L)

L, Ly FBAA AI(Ls, L3)
Ly FAABDBAA DI(Ls)

If we take the two identical hypotheses as one node, the derivation tree becomes a
directed acyclic graph. Making explicit the hypotheses each formula depends on, we
can also use a table to display the derivation as in Table 4.6. Each line in the table
corresponds to a node in the proof graph. Labels are used to identify the nodes.
The antecedent of each node denotes the undischarged hypotheses on which the
formula in the node, called succedent, depends. The justification finally describes
the application of an inference rule that derives the node. Note that node Ly does
not depend on the hypothesis L1, which is discharged by the application of inference
rule DI in line Ls. A hypothesis is implicitly discharged by deleting it from the
antecedent.

The tabular display of proofs suggests the representation of proofs in QMEGA
by a so-called proof plan data structure (PDS). A PDS is essentially a directed
acyclic graph, where the nodes contain a label, an antecedent, a succedent, and an
ordered list of justifications. The links between nodes are given by the premises in
justifications.

The justifications of a node are ordered by their levels of abstraction. An abstract
justification bridges a whole subgraph of the PDS as a single step. The bridged
subgraph is called the expansion of the abstract justification. Consider the following
derived inference rule

FPAQ
A Comm
FQAP
whose expansion is:
FPAQ FPAQ
AE, A E;
FQ P AT
FQAP

An example for an abstract proof using the derived inference rule AComm is given
in Table 4.7.

Table 4.7. The derivation of FA A B D B A A at an abstract level.

Label Antecedent Succedent Justification
L, Ly FAAB HYP

L4 Ll F BA A /\COWL'ITL(L]_)
Ly FAABDBAA DI(Ly)

We can combine the proofs given in Table 4.6 and Table 4.7 in a single PDS that
contains the abstract justification as well as its expansion. This combined PDS is
shown in Table 4.8.
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Table 4.8. The derivation of FA A B D B A A at two levels of abstraction.

Label Antecedent Succedent Justification

Ly Ly FAAB HYP

L, L, FB AE.(Ly)

Ls L, FA ANE; (L)

L, L, FBAA AComm/(Ly)
NI (L2, L3)

Ly FAABDBAA DI(Ly)

After this informal introduction of the PDS, we now give a formal definition.? We
start with the definition of a justification, which can be considered as an application
of an inference rule.

Definition 4.2 A justification is a 3-tuple J = (R, W, P) where R is an inference
rule, W is a sequence of formulae, called parameters, and P is a sequence of PDS

nodes, called premises. [

Although we need the notion of a justification sequence in the next definition, we
postpone its formal definition until later. Informally speaking, in a justification
sequence the justifications are ordered from most abstract to least abstract.

Definition 4.3 A PDS node is a 4-tuple N = (I, H, ¢, J) where [ is a label, H is a
set, of labels of hypothesis nodes, called antecedent, o is a formula, called succedent,
and J is a justification sequence.

A hypothesis node is a PDS node that contains its own label in its antecedent. m

The next definition specifies when a set of PDS nodes constitutes a proof.

Definition 4.4 Let N be a set of PDS nodes, let P C N and C € N. N is a proof
graph of C' from P if and only if one of the following holds:

1. C eP.

2. Let C = (l,]HI,_ap,j). For each justification J = (R, W, P) in J and for each
premise P in P there is a set N' C N that is a proof graph of P from P. =

Since N' C N this clearly defines an acyclic graph.
We now define levels of abstraction.

Definition 4.5 Let N = (I,H, ¢, J) be a PDS node, J = (R,W, P) be a justifi-
cation in J, and P = {P | P in P}.

1. The expansion of J is a set N of PDS nodes that constitutes a proof graph of
N' from P, where N’ denotes N with J deleted from its justification sequence.
We say the expansion of J proves J.

2. A justification J = (R,W,P) is more abstract than a justification J' =
(R’,WI,?I) (we write J = J' or J' < J) if and only if there is a justifi-
cation J" such that J" justifies N in the expansion of J and J" = J' or
J"' = J'.

2Since QMEGA contains a proof planner, the PDS is also defined with features other than the
logical ones. But since these features are necessary only for the planning process, we can safely
omit them here (cf. [Cheikhrouhou, in prep.] for the complete definition of the PDS).

3In QMEGA, term positions are allowed as parameters as well. But since we encode only appli-
cations of inference rules instead of inference rules themselves, we can safely neglect term positions
here.
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3. A justification sequence J is an ordered sequence of justifications Ji, ..., J,
where J; > --- = J,. n

Finally, we define the PDS formally.

Definition 4.6 Let X be a signature. A proof plan data structure (PDS) is a
5-tuple P = (T,C, A, C,N) where T C C is a set of 0-ary type function symbols and
C C C is a set of term function symbols of non-schematic type, such that for every
~v € T and every ¢ € C also 7v,c € X (we say the type and term function symbols
are locally declared in the PDS). Furthermore, N is a set of PDS nodes, A C N is
a set of hypothesis nodes, called assumptions, and C € N is the conclusion node,

where the set of the labels of the nodes in A is the antecedent of C. n
Definition 4.7 A PDS P = (T,C, A,C,N) is complete if and only if N constitutes
a proof graph of C' from A. =

We finish this section by collecting the meaningful objects in QMEGA.

Definition 4.8 Let N be the set of PDS nodes, J the set of justification se-
quences, and P the set of complete PDSs. The set {2 of all QMEGA objects is given
by

N=SUTUNUJUP n

4.2 Encoding O2MEGA Objects

Our aim in this section is the definition of an encoding -7 that encodes MEGA
objects by TWEGA terms in long fgr-normal form. Recall from Section 3.4.1 that,
as we defined the encoding for the ND calculus, we simultaneously constructed a
signature X" to ensure the declaration of constants into which ND objects and
inference rules were to be mapped. Once the signature was complete, a proof could
easily be encoded by giving its derivation in TWEGA.

In Section 4.1 we pointed out that QMEGA’s high-level methods have in general
a flexible number of premises that become fixed when the methods are applied.
Therefore, we cannot encode IMEGA’s signature X', statically, but have to construct
the TWEGA signature X' on the fly from the proof. Every single application of
an inference rule is added to X during the encoding of a PDS. Even though this
approach is more cumbersome, it has the advantage that only those parts of X,
that are used in the proof under consideration are actually encoded in TWEGA.
Hence, the TWEGA signature X' is not loaded with constants that are never used.

To formalize this dynamic approach, we implement the definition of ™7 by the
function

€ : Sig x Ctz x 2 — Sig x NF(T) x NF(T)

that simultaneously constructs a signature and the encoding of QMEGA objects. The
function & satisfies the judgment-as-types principle. It maps a TWEGA signature
XY, a TWEGA context I and an QMEGA object w into a TWEGA signature X' and
two TWEGA terms U and V (both in Bn-Inf), where ¥ C X' and I" b5 U : V.
Then, we consider the notation ™-7 as an abbreviation for £(X, I',w) and define it
as "wl=U.

We define £ inductively over 2MEGA objects w in terms of a rule system. We
start with types and terms before we shall proceed to derivations.

But first, we introduce the following notation:

Notation: We write Az, :A,.M for Az1:4;..... Ay :An.M and Iz, :A,.B for
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4.2.1 The Encoding of the Syntax

Since the syntax of QMEGA allows for the representation of higher-order logic, we
represent it similarly to the approach for higher-order logic in the LF logical frame-
work as presented in [Harper et al., 1993]. We start with the signature X7°*, which
contains the following declarations:

hol : type

= : hol—hol— hol

obj : hol—type

A : ITa:hol.113:hol.(obja— obj 8) — obj (a = B3)

ap : IHa:hol.IIf:hol.obj(a = B)—obja—objs
Here, hol stands for the type of higher-order logic types; = is the constructor of
higher-order function types (we use it in infix notation); obj is used as the type of
objects of higher-order types; A and ap are the abstraction and application operator
of higher-order logic, respectively.

The Encoding of Types

Since the representation of IMEGA is based on a typed A-calculus, every term ¢ in
QMEGA has a type o. Hence, to encode t, we have to encode ¢ as well.

In OMEGA, types consist of type variables «, application types 71 ... 7T,, func-
tion types 7 — 7', or they are schematic types Vas..... Ya,,.T.

Type Variables Let X be a signature, I" a context and « a type variable. Then,
l_a—l — o
is implemented by
a:hole I’
E(X,Ia) = (X, a,hol)
Note that we require that a:hol € I'. The rule TPOLY, which will be defined later
on in this section, ensures that this requirement is always met.

TVAR

Application Types Let X be a signature, I" a context, v an n-ary type constant
and 1,...,7, types, n > 0. Then,

"yry...m = ATt T
is implemented by
E(Xo, ') = (Z1,T1,hol)
EXn—1,Iy1,) = (X, Th,hol)
TAPPL
EX, Iy ...m) = (X,~4T1...Ty,hol)

where Yo =X

K = hol—---—hol— hol
n times
X ify:Kelory:KeX
Yn,v7: K otherwise
Note that type function symbols are added to the signature and that K cannot
contain any type variables. At first glance it might seem unnecessary to check
whether v: K occurs in I, since only variables are allowed to occur in a context.
But, since some QMEGA (type or term) function symbols are encoded by TWEGA
variables, we do have to check here. We shall elaborate on this issue in Section 4.2.2
when we describe the encoding of the PDS.

s =
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Function Types Let X be a signature, I" a context and 7 and 7' types. Then,

Cr—77 = T,
is implemented by
EXx,r,ry = (X',T,hol)
g,y = (X", T hol)
TFUNC
EX.Ir—>1) = (2", T =T hol)
Schematic Types Let X be a signature, I' a context, 7 a simple type and
Qai, ... ,0n, n > 0, all type variables occurring in 7. Then,
"Vai..... Va,.77 = Ia;:hol..... ITay, :hol.obj ™77

is implemented by

£(E,I,7) = (Z,T,hol)
S TPOLY
EX, 'Vay..... Va,.7) = (X', Ha,:hol.objT,type)
where I'" =T, a;:hol,...,a,:hol

Before we proceed to the encoding of terms, let us examine an example:

FExample 4.1
The encoding of the type Va.(a— 0) — o is done as follows:

"Va.(a—0)—0" = Ha:hol.obj™(a—0)—o0"
= Ia:hol.obj("a—o0"="0")
= ITa:hol.obj(("Tam= "o = o)
= Ia:hol.obj((a = 0) = o)

Note that the declaration o:hol is added to the signature by rule TAPPL when o™
is calculated. O

The Encoding of Terms

In OMECGA, terms consist of term function symbols ¢, term variables z, application
terms ee’, or abstraction terms Az.e, or they are terms of schematic type.

Schematic types are instantiated in (IMEGA by the rule PTERMINST without
protocoling the types replacing type variables. Therefore, we cannot tell whether
the type of a function symbol is instantiated or not without comparing it with the
type with which is was declared. In TWEGA, term function symbols of instantiated
schematic type are encoded with arguments that account for the types that sub-
stitute type variables. The arguments are calculated by comparing the schematic
type with its instance by a function Z:

Z:8igx ClaxVxTxT =T
(5, T,0,8,T) = S, I,P(X,Ta,S),T)) if P(E,_F,a,S) is defined
undefined otherwise

where the functions P and S are defined as follows:

P:Sigx Ctzx TxT - P
P(X, I,t,t') = the position p of the first occurrence of ¢ in ¢’

S:8igx Ctz xPxT =T
S(X, I, p,t) = the subterm t' at position p in ¢
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where P is the set of all positions. Hence, if a:hol € I', S a schematic type and
T its instance, Z(X, I',a, S, T) returns the subterm ¢ of T at position p, if the first
occurrence of « in S is at position p.

Term Function Symbols Let X be a signature, I' a context, X an (IMEGA
signature, and ¢ a term function symbol of simple type 7 with c:0 € X, where
o = Vaji..... Va,. 7" and 7 = 7'[n/aq]. .. [Th/ay] for some types 7,...,7, and
n > 0. Note that ¢ = 7 if and only if n = 0. Then,

¢l = ..t
is implemented by
EXx, Ity = (X',T,hol)
5(217'70) = (Z”,S,type)
. SYM
E(X,Ie) = (X", cTy...Tp,0bjT)

where S = IIay,:hol.objT’

I'" =T,aq:hol,...,ay,:hol

T, =2(X", I, a;, T",T)for1<i<n

s _ { X if ¢ € dom(I") or ¢ € dom(X")
X" ¢:S  otherwise
Note that function symbols are added to the signature. S cannot contain any free
(type or term) variables, since no free variables are allowed in o. As in rule TCONST
we have to check for the occurrence of ¢ in I' if the (IMEGA object ¢ corresponds to
a TWEGA variable (cf. Section 4.2.2).

Term Variables Let X be a signature, I" a context and z a term variable. Then,
I_:L.'I — T

is implemented by
z:objT € I
EX, Ir) = (X,z,0bjT)

VAR

Note that we require that z:0bjT € I'. The rule ABSTR, which will be defined later
in this section, ensures that this requirement is always met.

Application Terms Let X be a signature, I' a context, e a term of type 7/ — 7
and €' a term of type 7'. Then,

Fee'T = ap 7/ 1Me1men
is implemented by
E(X, Ie) = (X u,0bj(T'=T))
EX,Ie) = (X" u',0bjT")
- APPL
E(X, Iee') = (X" apT'Tuu',0bjT)

Abstraction Terms Let X be a signature, I" a context, e a term of type 7 and
z a variable of type 7. Then,

TAz.e’ = AT AziobjTr T.TeT
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is implemented by

EE,I7) = (&',Thol)
EX'IMe) = (X" u,0bjT)
ABSTR
EX, I xe) = (X', AT'T Az:0bjT .u,0bj(T' = T))

where I = I'z:0bjT".
This rule ensures that z:0bj7" is in the context in which e will be encoded.

Terms of Schematic Type Let X be a signature, I" a context and e, a term of
type 0 =Vaj..... Va,,.7, where no free variables occur in ¢. Furthermore, let e,
of type 7 be the result of the n-fold application of PTERMINST to e, and aq, ..., an,
(i.e., the terms e, and e, look alike, but the type of e; is an instance of the type of

€s)-

Tes 7 = Aag:hol..... Aay, thol.Te, ™
is implemented by
E(E,F’,er) = (EI,U,T)
POLY
E(X, Ie,) = (X' day:hol.u, ITay, :hol. T')
where I'" =TI, a;:hol,...,a,:hol

Let us now examine an example for the encoding of terms.

FExample 4.2

Let us calculate the encoding of the term Vz.x D z. Recall that this is short
for FORALL(Az.z D z). We write ap;, ;,(e1,e2) for aptitaeres and Ay, 4,(e) for
A t1 tz e.

Vz.x D27 = aprypron("FORALL, ,"Az.z D 37)
APy o0 (forall "o, Arpa ror(Az:objTo™"z D z7))

aPyeso o (forall o, A, o(Az:0bjo.aprym - (T2 D7, 727)))

(
APy o(forall 0, A, o (Az:0bjo.ap, ,(apryrrpsen("D7,727), 7))
(

= APy, (forall 0, 4, o (Az:0bjo.ap, ,(ap, .=, (imp,z),2)))
Note that the following declarations are added to the signature:

o : hol
forall : IIa:hol.obj((a = 0) = o)
imp : obj(o=0=0)

The first declaration is added by rule TAPPL when "o7 is calculated. The second
and third declaration are added by rule SYM when calculating "FORALL, ' and "D7,
respectively. O

4.2.2 The Encoding of Derivations

To adopt the judgments-as-types principle, we represent the judgment ¢ (meaning
that ¢ can be derived in QMEGA) by a type family pf that is indexed by the term
T and its type. If formulae in QMEGA always had type o, it would suffice to add
pf :objo— type to X7°', as suggested in [Harper et al., 1993]. But since formulae
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in QMEGA are in general of type Vaj....Vay,.o (cf. Definition 4.1 on page 50), we
instead add the following declaration to X#°":

pf : Hw:type.w —type

As the following type derivation shows, the type of pf is valid:

Mctxstart . axio
- w:type - w : type w:type, z:w F type : kind
—————————axiom -
F type : kind w:type F w—type : kind

m

(type, kind)

b ITw:type.w — type : kind

Note that we use rule (kind,kind) in the derivation. This rule is not defined in LF,
but it is defined in AC.*

FExample 4.3

1. Let ¢ be a formula of type o. Then, "¢ has type objo. Hence,
TF¢™ = pf(objo) "¢
2. Let 9 be a formula of type Va.o. Then, "4 has type ITa:hol.objo. Hence,
k47 = pf (ITa:hol.objo) "™ O

In the remainder of this chapter, we use 7,7, 7; to denote simple types as well
as schematic types. Moreover, we use the following notation:

Notation: For an QMEGA type 7, we write

obj ™7™ if 7 a simple type
= 3 i = ® s s e . ! i
1 = ITa, hol.obj ™' if 7 , Yal ‘ Va,.m" a schematic type
and 7' is a simple type

The Encoding of PDS Nodes

Let X be a signature, I' a context and N = (I,H,¢,J) a PDS node where
{h1,...,hy} C H are the labels of the hypotheses {H,..., H,} that are newly
introduced by N (i.e., {Hi,...,Hy} are discharged by a justification for which N
is a premise). Furthermore, let H; = (h;, H;, @;, J;) with h; € H; and 7; the type of
p;for 1 <i<mn,andlet E(X,T,p) = (X,u,T). We distinguish the two cases where
l:pfT u does or does not occur in I'. If [:pfTu € I' then N was introduced as a

4Note that this approach to encode QMEGA judgments is only a temporary solution, which is
necessary because of the current definition of formulae in QMEGA.

The declaration of pf with type ITw:type.w — type (which is not a valid type in LF, but is a
valid type in AC) is too general. It allows us to also represent unmeaningful judgments such as
pf(obj (0 = o = 0))imp (which would mean that D can be derived in QMEGA, but that is not
possible, since D is not a formula). However, the definition of the encoding ™7 ensures that such
pathological cases do not occur.

As soon as the proof plan data structure of QMEGA is reimplemented and polymorphic formulae
can be defined in a standard way (cf. Footnote 1 on page 50), pf will be declared as pf : objo— type
and the encoding of derivations described in this section will be appropriately changed.

Since LF allows for the declaration pf : objo— type, and since only the need for a declaration
pf : ITw:type.w —type was the reason to choose AC as the theoretic basis for TWEGA, we will also
eliminate the rules (kind,type) and (kind,kind) from the type system of TWEGA when the proof plan
data structure of QMEGA has been reimplemented. This will reduce TWEGA to an implementation
of LF, thus eliminating the theoretic problems with typability and decidability of type checking
(cf. Footnote 3 on page 30).
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hypothetical judgment, that is, as a hypothesis of some subproof in the PDS (cf.
the last premise of the rules NODE and JUST-SEQ, respectively; both rules will be
defined in a moment). Since labels of nodes are unique, we use them as the names
for the bound variables of abstractions that encode hypothetical judgments. Note
that we ensure in the implementation of £ that every node is encoded only once by
marking already encoded nodes accordingly.

Case [:pfTu eI

TNV = Ahy:pfTm 17 ... Ay i pf T, 17,
is implemented by
5(2071—‘7901) = (ElaulaTl)
E(Enflapa Son) = (EnaunaTn) HINODE
5(25 F’ N) = (ETL"D’C)

where Yy =X

C =ITh,:pfThun.pfTu

D = My, :pf T, up.l
Let us consider as an example the PDS from Table 4.8 on page 52. The node L
does not introduce any new hypotheses. Hence, if L;:pf(objo)"TAAB™ € I',

T[17=1L;.
Case l:pfTu g I': B
PN = Ahy:pflm 171 ... Mg i pf T, 1T, T
is implemented by
E(Xo, Iyp1) = (X1,u1,Th)
E(En—lara ‘Pn) = (ZnaunaTn)
& En Fn J = n+1, I;
( ) 7J) (2 +1 D pru) NODE
5(27F7N) = (Zn+17D7C)

where Xy =X
L, =Lhy:pfTiug, ... hy:pfThuy,
C =ITh,:pfTpUup-pf T u
D = Ah,:pfT, u,.D’

In our example PDS, Ls does not introduce any new hypotheses, but L,
introduces L as a new hypothesis. Hence, if Ly ¢ dom(I"), "L = "D 1I(L4)™.
If Ly & dom(I"), "Ly = ALq : pf (objo) "A A B."AComm(L1), AI(L2, L3)™.

The Encoding of Justification Sequences

Consider a PDS node N that is justified by a justification sequence J = Jy, ..., Ji.
Since J is a justification sequence, Jo > ... = Jz. From the definition of the
expansion we know that, for 0 < i < k, J; is proved by its expansion, whose last
step is justified by J;y1. Therefore, we encode J; by a constant definition that also
encodes the expansion of J;. Since Jj is on the lowest level of abstraction, there is
no expansion for it. Hence, we encode it by a constant declaration. We add both
constant declarations and constant definitions to the signature.

Note that constant declarations and definitions that are to be added to the
signature must not contain any free variables. This will be ensured by two functions
Ay and A, which are defined as follows:
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Let X be a valid signature, I" a valid context, and let M and A be terms such
that 'Fxy M : Aand I'x A : s for s € 8. Then we define

A, A : Sigx Ctz x T =T

AN, I M) = AEpi0m.M such that by AT, 705.M 2 T :0m.A

Ap (X, I'A) = IIy,w,.A such that by Iy, 7w,.A:s

Now, we can give the formal definition of the encoding of justification sequences.
Let X' be a signature and I' a context. Furthermore, let N = (L,H,,Jo) be a
PDS node, and let J; = J;,...,J; for 0 <i < k.
Case i = k: Hence J; = Ji. With an appropriately declared new constant ¢
er—I =cCz1--- Zl'_Pl—l . '_Pn—”_‘lpl—l . F¢m1
is implemented by

E(Xo, I P1) = (Z1,D1,C1)
E(En—la-rapn) = (EnaDnaCn)
S(Enapawl) = (En+1,U1,T1)
g(2n+m—la F, "pm) = (En—l—ma umaTm)
EX I = n+m+1, U,
( n+m; 7_90) (E +m+1, U T) JUST
ExEr,Jy) = (X¥,D,0)
where Jp = Jp = (R, (¢1,...,%m), (Pi,..., P))

S =%

I = F,yl:C’l,. . ,yn:Cn,.'I}l :Tl,. ..,:cm:Tm

C' = Apg (X", I Ty, :Cp JI 2y : Ty .pf T 1)

=Hz:8.Hy,:Cp.lxp:Th.pf T u

2= En+m+1,C:Cl

D =cz...z1Dy...Dpuy ... up

C = (pfTu)[D1/y1]. .. [Dn/yn]lur/z1]. .. [um/Tm]
Considering again our example PDS, we have "D I(L4)" = impi" A" B L4,
where the following declaration is added to the signature:

impi : ITA:objo.IIB:objo.(pf(objo)"A A B7—pf(objo)"BA A7)
—pf(objo)"TAAB D BAA™: type

Note that (pf (objo) ™A A B —pf (objo) "B A A7) is the type of "L4™.

Case i < k: This case is very similar to the previous one. The difference is that the
new constant is defined in the signature in terms of the expansion J; ;1 of the
justification .J;. Hence, we have to encode the expansion as well. Therefore,
we need the last premise of the following rule.

With an appropriately defined new constant ¢
I'JZ,‘I =cCz1-- .erP]_—I . I'Pn‘ll'wl‘l . l‘wm‘l
is implemented by

E(Xo, I P1) = (X1,D1,Ch)
E(Xn1,I,P,) = (X5, Dy, Ch)
g(ETHFJ ¢1) = (2n+1,U1,T1)
5(2n+m717[‘7_¢m) = (Zn+m7um7Tm)
E(En+m7[1,; J'i+l) = (En+m+17DI7CI)

— JUST-SE
£E,I,7;) = (&,D,0) °
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where J; = (RJ (wla' .- 7¢m); (Pla' 7Pn))

Yo =%

' = F,yl:C’l,. . ,yn:Cn,II}l:Th.. .,.Cl}m:Tm

D" = A\(Znsmits [, Ny : CpMTm : T D)

= A2;: 8, yn:Cr Az, : Ty . D'

C" = z:S8.11y,:Cp. Iz :T,.C’'

Y = XYotmy1,c=D":C" (cis a new symbol)

D =cz1...21D1...Dyuy ... um

C =CC"[Di/yi]...[Dnfyn]lur/z1]. .. [um/zm]
Note that the calculation of D" by Ay ensures that C"" does not contain any
free (type or term) variables either.

For example, "AComm/(Ly), AI(L2, L3)" = andcomm™ A" B L7, where the
following is added to the signature:

andcomm = AA:objo.AB:objo.\L;:pf(objo)"A A B"."AI(Ls, L3)"™
: ITA:objo.II B:objo.pf(objo) "A A B"—pf(objo) "B A A™
: type

Note that during the calculation of "AI(Ls, L3)™ the declaration of the con-
stant andi is also added to the signature by the rule JusT.

To simplify the implementation multiple occurrences of justifications in different
justification sequences are distinguished and individually encoded by £ using a new
constant for every occurrence.

The Encoding of the PDS

Let X be a signature, I" a context and let P = ({v1,...,Ym},{c1,---,¢n}, A N,N)
be a complete PDS.

The locally declared (type and term) function symbols 71, ..., Ym, 1, - - -, €y CaN
be seen as parameters of the PDS, which play the role of variables whose scopes en-
compass the whole PDS. Employing higher-order syntax, we represent such function
symbols by variables. Therefore, in the rules TAPPL and sSYM we had to check for
the occurrence of variables that encode function symbols in the respective contexts.

Let 7, ..., 7, be the types of ¢y, ..., cy,, respectively. Recall from Definition 4.6
that ~; is O-ary for 1 <14 < m and 7; is not schematic for 1 < i < n.

rpl—rpNT
is implemented by

E(Zo, I'm) = (Z1,7,hol)
S(Emflapa’ym) = (Em,’)’m,hOD

E(Em,F,Tl) = (2m+1,T1,h0|)

5(2m+n717[‘7 Tn) = (Em+n7Tn7 hOI)
E(Em+n7FI>N) = (Em+n+1>Dac) PDS
5(25 ‘Z—" P) = (EI’D’ C)

where Yo =X
I'" =T,v:hol,...,ym:hol,ci:0bjTy, ..., ¢cn:0bj T,
D' = Ay\(Zpi1,I",D) = \z1:85;.D
C' = H.Zl :Sl.C
Y = Ymint1,c=D':C"  (cis a new symbol)

Let P be the PDS of Table 4.8. Then, "P™ = "L and the following definition is
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added to the signature:

THM = M\A:objo.AB:objo." L™
: [T A:objo.IIB:objo.pf(objo)"TAANB D BAA™
: type
Ezxample 4.4

We now give the encoding of the PDS of Table 4.8 (see page 52). For the sake
of readability, we do not descend into the encoding of formulae. (Recall that,
for example, "TA A B" = apoo(apo(o = o)and A) B.) Nevertheless, we give the
declarations of the connectives.

o : hol:type
and : obj(o= 0= o0):type
imp : obj(o= 0= 0):type
pf : Hw:type.w—type : kind
ander : ITA:objo.IIB:objo.pf(objo)"A A B"— pf(objo)"B™ : type
andel : ITA:objo.IIB:objo.pf(objo)"A A B"— pf(objo)"A™ : type
andi : ITA:objo.Il B:objo.pf (objo) B— pf (objo) A—pf(objo)"BA A™
: type
andcomm = AA:objo.AB:objo.\L; :pf(objo)"AA B™.

andi A B (ander A B L;) (andel A B L,)
: [T A:objo.II B:objo.pf (objo)"A A B"—pf (objo) "B A A™

: type
impi : ITA:objo.IIB:objo.(pf(objo)"A A B™"—pf(objo) "B A A7)
—pf(objo)"TAAB D BAA"
: type
THM = AA:objo.\B:objo.

impi A B AL; :pf(objo)"A A B.andcomm A B L,
: ITA:objo.IIB:objo.pf (objo)"TAANB D> BAA™
: type

4.3 Correctness and Adequacy of the Encoding

After having defined the encoding of QMEGA objects, we want to ensure that the en-
coding behaves as intended. Therefore, we prove the correctness of £ in Section 4.3.1
and show its adequacy in Section 4.3.2.

4.3.1 Correctness of the Encoding

In this section, we aim at proving that £ meets its specifications as spelled out in
Section 4.2 on page 53, namely that ¥’ C X' and I' by U : V. We tackle this
problem by splitting the correctness theorem into several lemmata with respect to
the correctness of the encoding of the constituents of PDSs.

Before we start, we formulate a lemma that we often apply tacitly in the re-
mainder of this section.

Lemma 4.1 Let X and X' be valid signatures, where X C X'. Furthermore, let I
be a valid context and U,V € 7.

FrrsU:VthenTFsU:V.

Proof: Easy by structural induction. [
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First, we prove that £ meets its specification when we encode types.

Lemma 4.2 (Correctness for Types) Let T € S, let X be a valid signature
with X% C X' and I' be a valid context, and let E(X, I, 1) = (X,U,V). Then the
following hold:

(i) £ C 5 and £ is valid.

(i) T U:V and I' -5 V i s for some s € 8. In particular, s = type if T is a
simple type and s = kind if T is a schematic type.

(iii) U,V € NF(T).

Proof: We prove the assertions simultaneously by induction over the construction
of ¥, U and V.

Case TVAR:

(i) Since & = X, the assertion holds trivially.

(ii) The first part of the assertion follows directly by rule start. For the
second part, I 5 hol : s with s = type follows from rule declstart.

(iii) Obvious.

Case TAPPL: By definition, 7 is n-ary and K = hol—---— hol— hol.
—_—

n times

(i) By definition, either X' = X or X' = ¥, v:K. In the first case the
assertion follows trivially. In the second case, clearly X~ C X'. To show
the validity of X' we only have to show that Fx K : type. This follows
by n applications of the rule (type, type) to Fx hol : type, which in turn
follows from the rule declstart.

(ii) Since v:K € I' or v: K € X', we obtain I" k5 v : K by rule start or
declstart, respectively. By induction hypothesis, for 0 < ¢ < n, I' I,
T; : hol. Hence, I' Fx: 4Ty ... T, : hol by n applications of rule appl.

I' Fx hol : s with s = type follows from rule declstart.
(iii) By induction hypothesis 11, ..., T, in Bn-Inf. Then, the assertion holds,
since +y is fully applied in 471 ...T,, and hol is trivially in B7n-Inf.

Cases TFUNC:

(i) The assertion follows directly from the induction hypothesis.

(ii) By declstart, I Fxn=- : hol — hol — hol. Thus, the first part of the
assertion follows from the induction hypothesis by twofold application
of rule appl. The second part is as in case VAR.

(iii) Obvious.
Cases TPOLY:

(i) The assertion follows directly from the induction hypothesis.

(ii) By induction hypothesis, I k5! T : hol, since I is valid by application
of ctxdecl. By declstart, I'” -5 obj : hol > type. Thus, I" 5 objT : type
by rule appl. Then, the first part of the assertion follows by n-fold
application of rule (type,type).

I' b5 type : s for s = kind by rule axiom.

(iii) Obvious. m
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Corollary 4.1 £ is well defined on QOMEGA types.

Next, we prove the correctness of £ for terms.

Lemma 4.3 (Correctness for Terms) Lett € T be a valid term, let X be o valid
signature with X7 C X and I' be a valid context, and let E(X,I,t) = (X,U, V).
Then the following hold:

(i) X C 5 and £ is valid.
(i) TEgU:V and I'-5 V : type.
(i11) U,V € NF(T).
Proof: Similarly to the proof of Lemma 4.2, the assertions are shown simultane-
ously by induction over the construction of X, U, and V. The proof is spelled out
in Appendix A.2. [
Corollary 4.2 £ is well defined on QMEGA terms.

An important property of the encoding is that it preserves the types of terms,
that is, if ¢ is a term of type 7 and £(X, I',t) = (X', u,T) for signatures X, X' and
a context I', then "t7 = u and 71 = T. We formulate this property more precisely
in the following lemma:

Lemma 4.4 (Type Preservation) Lett € T be a term of type 7, let X be a valid
signature with X#°" C X and I be a valid context, and let E(X,I,t) = (X', u,T).
Then, the following hold:

(i) If 7 a simple type, then T = objT" and E(X, I, 1) = (X", T',hol) for a
xrc .

1 T a schematic type ,I,T) = , ', type) for a c .
ii) If h ) E(X, T T f xnhcx

Proof: Using Lemma 4.3, close inspection of the rules SYM, VAR, APPL, ABSTR and
pPOLY shows that this is indeed the case. [

Since, a formula in QMEGA has type Va;..... Ya,,.o for an n > 0 by definition,
we obtain the following corollary:

Corollary 4.3 Let ¢ be a formula, let 3 be a valid signature with X"°" C X and
T be a valid context, and let E(X, I, ) = (X',u,T). Then

o:hol € X' and T = Hay, :type.objo.

for some n > 0.

Lemma 4.3 and Corollary 4.3 state the correctness of the encoding of the first
constituents, the formulae of a PDS. The correctness of the encoding of the remain-
ing constituents is stated in the following:

Lemma 4.5 (Correctness for Derivations) Letw be a PDS node, a justification
sequence, or a PDS. Furthermore, let X be a valid signature with X%°* C X' and I'
be a valid context, and let E(X, [w) = (X,U,V). Then the following hold:

(i) £ C X and X is valid.
(i) T'FgU:V and I' -5 V : type.
(iii) U,V € NF(T).
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Proof: Like in the proofs of Lemma 4.2 and Lemma 4.3, we prove the assertions
simultaneously by induction over the construction of X, U, and V. The complete
proof is shown in Appendix A.2. [

Corollary 4.4 & is well defined on PDS nodes, justification sequences and complete
PDSs.
Now, we can state and prove our main theorem:

Theorem 4.1 (Correctness of the Encoding) Let w € 2, let X be a valid
signature with X" C X' and I' be a valid context, and let E(X, Iw) = (X,U, V).
Then the following hold:

(i) € is well defined.

(i) X C 5 and £ is valid.
(iii) T'FgU:V and I' -5 V i s for some s € 8.
(iv) U,V € NF(T)

Proof: (i) follows from Corollary 4.1, Corollary 4.2 and Corollary 4.4. (ii), (iii)
and (iv) follow directly from Lemma 4.2, Lemma 4.3 and Lemma 4.5. n

4.3.2 Adequacy of the Encoding

Now, we state and prove the adequacy theorem for the encoding of OMEGA by
splitting it into three parts concerning types, terms and derivations.

Theorem 4.2 (Adequacy of the Encoding for Types) The encoding £ is a
compositional bijection between

types T € S with free variables in V' C V

and

terms T € NF(T) with I' bx T : K, where X% C X, a:hol € T for
every a € V' and

| hol if T a simple type

o { type if T a schematic type

Proof: Obviously, £ is injective and maps (IMEGA types into terms in long [n-
normal form with the required constraint by Lemma 4.2. Surjectivity is shown by
giving the inverse function -1 to -7 such that "7, = 7 for all 7 € §. Com-
positionality is finally proved by showing "7[r'/a]™" = "7 ["7'7/Ta™] for arbitrary
7,7 € S and a € V by induction over the structure of 7. [

Theorem 4.3 (Adequacy of the Encoding for Terms) The encoding £ is a
compositional bijection between

terms t € T with free variables in V' C V, where t has type T with free
variables in V' C V

and

terms u € NF(T) with I'bx u : T, where X% C X, z:obj 7' € I for
every = of type 7' in V' and a:hol € I' for every a € V' and
T { obj™r7  if T a simple type

R if T a schematic type
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Proof: Obviously, £ is injective and maps 2MEGA terms into terms in long S7-
normal form with the required constraint by Lemma 4.3 and Lemma 4.4. Surjec-
tivity is shown by giving the inverse function L-4 to 7-7 such that "¢t = ¢ for
all t € T. Similarly to the proof of Theorem 3.4, compositionality is shown by
induction over the structure of ¢. [

Theorem 4.4 (Adequacy of the Encoding for Derivations) The encoding £
is a compositional bijection between

QMEGA objects w depending on a set of assumption formulae @, where w
is a PDS node, a justification sequence or a PDS and has free variables
in F=V'UV' (where V'CV and V' C V)

and

terms D € NF(T) with ' bx, D : C and I' b5 C : type, where X%t C
X, h:pflT17 ¢ € I for every assumption o € & of type T, z:0bj"7'7 €
I for every x of type 7' in V' and a:hol € I' for every o € V'.

Proof: Close inspection of the definition of £ shows that it is indeed injective and
maps (IMEGA objects into terms in long fn-normal form with the required con-
straint by Lemma 4.5 and Corollary 4.3. Surjectivity is shown by giving the inverse
function -1 to -7 such that L"w'4 = w. Similarly to the proof of Theorem 3.5,
compositionality is shown by induction over the structure of w. [

Having defined TWEGA as the representation of proofs in P.rex, we shall now turn
our attention to the process of planning the explanation of a proof. In the following
chapter, we shall review ACT-R, a theory of human cognition that combines the
abilities for user modeling and planning in a uniform framework and is therefore
particularly well suited as a basis for a user-adaptive dialog planner.
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Chapter 5

The Cognitive Architecture
ACT-R

Unification of theories is one of the ultimate goals of any science, or, as Allen
Newell puts it, it is “an apple pie of science” [Newell, 1990, p. 17]. He suggests
that cognitive scientists should strive to attain unified theories of cognition, that is,
theories that gain their power by formulating a single structure of mechanisms that
operate together to produce the full range of human cognition. Unified theories
of cognition try to conceptualize mental structures and processes of the cognitive
apparatus and reflect the constraints on the structure of the cognitive apparatus.
For Newell, it is most important that—like the mind—a single system produces all
aspects of behavior.

Although it is almost certainly too early in the history of cognitive science to
already formulate such a theory, it is nevertheless a worthwhile goal to strive for
one. By describing unified theories of cognition as theories of the cognitive architec-
ture, that is, the fixed structure that realizes the cognitive apparatus, we commit
ourselves to a set of basic structures and primitive operators. The combination
and cooperation of only these primitive operators manipulating the basic structures
effects complex cognitive behavior.

In the literature, several cognitive architectures have been described, the most
important ones being ACT-R [Anderson and Lebiere, 1998], Soar [Newell, 1990],
EPIC [Meyer and Kieras, 1997a] and 3CAPS [Carpenter and Just, 1995]. In this
chapter, we shall review ACT-R, a theory of the human cognitive architecture,
which is implemented as a production system. Anderson and Lebiere [1998] de-
scribed ACT-R 4.0, the latest in a series of formalizations of ACT-R. Throughout
the thesis, we mean ACT-R 4.0 whenever we speak of ACT-R. First, in Section 5.1,
we shall review production systems as the basis to implement cognitive architec-
tures. Next, in Section 5.2, we shall give an overview of ACT-R. Then, Section 5.3
and Section 5.4 are devoted to describe the declarative and procedural memory,
respectively. In Section 5.5, finally, we shall describe which features of ACT-R are
used in P rex and which are neglected.

5.1 Production Systems

The implementation of most cognitive architectures is based on production systems.
A production system consists of the following four components (see, e.g., [Rich and
Knight, 1991; Russell and Norvig, 1995]):

1. A data base, which contains any information that is needed for the particular
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task. Some parts of the data base may be permanent whereas other parts
may pertain only to the solution of the current problem.

2. A rule base, which contains the production rules (or short: productions). Each
production consists of a condition, which determines the applicability of the
rules, and an action, which describes the operation to be performed if the rule
is applied.

3. A control strategy, which specifies the order, in which the productions will
be applied to the knowledge base, and a way to resolve conflicts, which arise
when several productions are applicable.

4. A rule applier, which actually applies the productions.

Production systems operate in a cycle, which can be divided into three phases:
First, in the match phase, the system computes the set of applicable productions
by comparing the condition of each rule with the data base. Second, in the conflict
resolution phase, the system decides which of the applicable productions should be
executed. Third, in the final step of each cycle, the act phase, the chosen production
is actually executed, the data base is updated accordingly and the cycle starts anew.

5.2 Overview of ACT-R

ACT-R [Anderson and Lebiere, 1998] is a theory of the nature of human knowledge,
a theory of how this knowledge is deployed, and a theory of how this knowledge is ac-
quired. In psychology, it is widely accepted that knowledge in general can be divided
into declarative and procedural knowledge. Declarative knowledge corresponds to
the things that we are aware we know and can usually describe to others, such as
“three plus four is seven.” Procedural knowledge is knowledge that we display in
our behavior but that we are not conscious of.! ACT-R adopts this distinction and
provides two types of knowledge bases or memories to store permanent knowledge:
the representations of declarative and procedural knowledge are explicitly separated
into the declarative memory and the procedural memory. To properly model human
cognition, it is necessary to represent the current purpose and organize behavior in
response to that purpose. To this end, ACT-R employs a third memory, the goal
stack, which is a transitory memory that encodes the hierarchy of intentions, which
guide the behavior.

Figure 5.1 depicts the architecture of ACT-R. The three memories—goal stack,
declarative memory and procedural memory—are organized through the goal on
top of the goal stack, the current goal, which represents the focus of attention.

Procedural knowledge is represented in productions, whose conditions and ac-
tions are defined in terms of declarative structures. A production can only apply if
its conditions are satisfied by the current goal and the knowledge currently available

INote that this definition of declarative and procedural knowledge in psychology considerably
differs from the definition of declarative and procedural knowledge in computer science and ar-
tificial intelligence. In psychology, declarative knowledge is knowledge that we can express and
procedural knowledge is knowledge about actions that we can perform but cannot express (i.e.,
we cannot describe how we perform it). In computer science and artificial intelligence, declarative
knowledge is any knowledge that is viewed as data to a program, whereas procedural knowledge is
any knowledge that is viewed as a program. However, both declarative and procedural knowledge
can be represented either declaratively (i.e., the knowledge is specified, but it is not specified how
this knowledge is used) or procedurally (i.e., the knowledge contains information about how it is
used). Note the distinction between the knowledge per se and its representation. For example,
in logic programming languages such as Prolog, logical assertions, that is, declarative knowledge,
is procedurally represented. (Cf., e.g., [Rich and Knight, 1991] for a detailed discussion.) In
this thesis, whenever we speak of declarative and procedural knowledge, we use the terms in the
psychologists’ connotation.
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Figure 5.1. Flow of information among the various modules of ACT-R, taken from
[Anderson and Lebiere, 1998].

in the declarative memory. The application of a production usually modifies the
goal stack by transforming the top goal, by popping it or by pushing new goals. It
also may result in an observable event or it may pose a retrieval request from the
declarative memory. The retrieval result can be returned to the current goal. The
set of productions that match the current goal is called the conflict set. A conflict
resolution heuristic derived from a rational analysis of human cognition determines
which production in the conflict set will eventually be applied (cf. [Anderson, 1990]
for the details of the rational analysis). New declarative knowledge is acquired as
popped goals or as perceptions from the environment. New procedural knowledge
can be acquired from declarative knowledge by a process called production compi-
lation.

ACT-R can be described as a symbolic system, in which discrete items of the
declarative memory interact with productions in discrete cycles. ACT-R also has a
subsymbolic level, in which continuously varying quantities are processed to produce
much of the qualitative structure of human cognition. The subsymbolic level is the
basis, on which the conflict resolution process operates.

The following two sections describe the declarative and procedural knowledge,
respectively, both at the symbolic and the subsymbolic level.

5.3 Declarative Knowledge

Declarative knowledge is represented in terms of chunks in the declarative mem-
ory. Chunks encode small independent patterns of information as sets of slots with
associated values. In the implementation of ACT-R 4.0, they are realized as declar-
ative data structures. The following is an example for a chunk C; = factFsubsetG
encoding the fact that FF C G, where subset-fact is a concept and Cs = F and
C3 = G are contextual chunks associated to C1:
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subset-fact

Figure 5.2. Network representation of the chunk factFsubsetG (adapted from
[Anderson and Lebiere, 1998)).

factFsubsetG
isa subset-fact
setl F
set2 G

Figure 5.2 depicts the same chunk graphically. In addition to the data structure
of the chunk, the figure also displays the subsymbolic parameters that are associ-
ated with the data structure. We shall elaborate on these parameters, which are
summarized in Table 5.1 on page 77, in the following two sections.

5.3.1 Activation of Chunks

Chunks are annotated with continuous activations that influence their retrieval. The
activation A; of a chunk C; consists of its base-level activation and the weighted
activations of contextual chunks:

A;=B; + Z WjS',i (5.1)

J

where B; is the base-level activation of C;, W} is the source activation of a contextual
chunk C}, and S;; is the strength of the association of C; with C;. We shall not
go into detail of how the components of A; are formalized, but only sketch their
definitions briefly (cf. [Anderson and Lebiere, 1998] for a thorough presentation).

The base-level activation B; represents how recently and frequently the chunk
C; has been accessed. B; is defined such that it grows with repeated use of C; and
decreases logarithmically when C; is not used. Thus, ACT-R models the fact that
used declarative knowledge becomes better accessible and that unused declarative
knowledge fades away over time. By adding a noise term, ACT-R introduces a
stochastic element into the calculation of the base-level activation.

The source activations W; reflect the amount of attention given to the elements
of C;. ACT-R assumes that there is a fixed capacity for source activation and that
each element has an equal amount, that is, if the capacity is assumed to be 1 and
if there are n elements, then W; = 1/n for each element.

The strength S;; of the association of C; with C; is a measure of how often Cj
was needed when C; was an element of the goal. It can be thought of an estimation
of the likelihood of C; being a source present if C; is retrieved. S;; is defined as
the logarithmic deviation of the probability of C; in the context of C; from its base
probability.

Note that the definition of the activation establishes a spreading activation to
adjacent chunks, but not further. That is, multi-link spread is not supported.
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5.3.2 Chunk Retrieval

The only way declarative knowledge can be accessed is by productions retrieving
the corresponding chunks. The constraint on the capacity of the human working
memory is approached by defining a retrieval threshold 7, where only those chunks
C; can be matched whose activation A; is higher than 7. Chunks with an activation
less than 7 are considered as forgotten.
Hence, failure of matching a chunk that falls below the retrieval threshold result
in errors of omission. Errors of commission, in contrast, are produced when a
chunk is retrieved that only partially matches the retrieving production. Intuitively
speaking, ACT-R prefers a high activation in a partial match to a low activation in
a perfect match. The matching between a production P, and a chunk C; is modeled
by the match score M; p:
Mi’p = Az - Di’p (52)

where A; is the activation of C; as defined in Equation 5.1. D;, is the degree
of mismatch between C; and P,, that is, it reflects the number of slots that fail to
match. Again, ACT-R adds some stochasticity by including approximately normally
distributed noise in the match score.
The time t;, a production P, needs to retrieve a chunk C; is defined as:?

tip = Fem/(MintSr) (5.3)
where S, is the strength of the production (cf. Section 5.4) and F' and f are scal-
ing factors, on which we shall not elaborate. Hence, the higher the activation of
the chunk and the strength of the production, the faster the production matches
the chunk. Since the activation must be greater than the retrieval threshold T,
T constrains the time maximally available to match a production with a chunk.
Therefore, the time spent for a failing retrieval is:

trax = Fe /(7450 (5.4)

5.3.3 Learning Chunks

New chunks are learned when they enter the declarative memory. There are two
sources for chunks: They can be either encoded directly from the environment as
a perception, or created during a production’s firing. According to the theory of
ACT-R, only goal chunks can be created. They enter the declarative memory when
they are popped from the goal stack. When an already existing chunk is recreated
as a goal chunk ACT-R avoids its duplication in the declarative memory. When the
goal is popped it is merged with the existing chunk by combining their subsymbolic
parameters.

5.4 Procedural Knowledge

The operational knowledge of ACT-R is formalized in terms of productions. Intu-
itively, productions are supposed to correspond to steps of the cognitive process. As
mentioned earlier, a production consists of a condition and an action. In ACT-R,
the condition in turn consists of a goal condition and some chunk retrieval. In
the goal condition, some tests on the goal state are made. Only if these tests are
successful the chunk retrieval is performed, where chunk patterns are matched to
the declarative memory to retrieve information. If the retrieval is successful the
production can fire and the action is performed. The actions that can be initiated

2In this context, time does not mean the CPU time needed to calculate the match, but the
time a human would need for the match according to the cognitive model.
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by ACT-R productions are goal transformations: the state of the current goal can
be changed or new subgoals can be created and pushed onto the goal stack. These
subgoals are then fulfilled by firing more productions or by performing some motor
program. A subgoal return mechanism allows for passing results from a subgoal to
the supergoal. In the implementation of ACT-R 4.0, productions are represented
procedurally: when a production is defined its action side is immediately compiled
into a Lisp function.
An example for a production is the following:
IF it is known that z € S1 and S1 C S2
THEN conclude that z € Ss.

Similarly to the base-level activation of chunks, the strength .S, of a production
P, is defined such that it grows with repeated use of the production and decreases
logarithmically when the production is not used.

Note that we give productions only paraphrased in English but not in ACT-R
syntax. We shall give the concrete syntax of productions in Appendix C.2.1.

5.4.1 Conflict Resolution

If the goal test does not filter out a single production a conflict resolution process
is initiated that chooses a production. When a single production has been chosen
usually several ways of retrieving chunks (each way is called an instantiation) are
possible and the conflict resolution process has to choose a single instantiation.
Both choices are determined by subsymbolic processes.

Productions that satisfy the current goal are placed into the conflict set, that is,
the only test is if the goal matches the production’s goal condition. Chunk retrievals
required for the condition are only attempted if a production has been selected from
the conflict set.

The productions in the conflict set are ordered in terms of their net utility E:

E=PG-C (5.5)

where P is the expected probability that the goal will be achieved by the produc-
tion’s firing, G is the value of the goal and C is the expected cost of achieving
the goal. As in the case of the chunk retrieval, stochastic behavior is achieved by
including approximately normally distributed noise in the net utility.

The scale for measuring cost in ACT-R is time. Hence, C' can be seen as an
estimation of the time needed to achieve the goal. G is the amount of time ACT-R
should be willing to spend on the goal. Hence, the term PG corresponds to the
expected gain and the term C' corresponds to the expected cost.

Intuitively, Equation 5.5 can be read as a rule for trading off the probable cost
against the value of the goal.

Both probability and cost consist of subterms that reflect quantities associated
with the current production and quantities associated with subsequently applied
rules.

The probability P is defined as:

P=gr (5.6)

where q is the probability of the production working successfully and r is the prob-
ability of achieving the goal if the production works successfully. Both ¢ and r are
estimated by relating the number of successful events (i.e., production firing for ¢
and achieving the goal for r) to the overall number of events (cf. [Anderson and
Lebiere, 1998] for details).
The cost C' are defined as:
C=a+b (5.7)
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where ¢ is the amount of time that the production will take and b is an estimate of
the amount of time from when the production completes until the goal is achieved.
Both a and b are estimated by relating the effort spent when applying the production
to the overall number of applications of the production. For a, effort means the
retrieval time and action time needed by the production. For b, effort means the
cost for subsequent production cycles until the goal succeeds or fails. (Again, cf.
[Anderson and Lebiere, 1998] for details.)

Note that the parameters ¢ and a refer to the production and any subgoal it
might set.

Even if a subgoal is achieved there remains uncertainty about whether the su-
pergoal will be achieved and there remains some potential cost, and this has to be
taken into consideration. The value G’ of a subgoal is defined as:

G'=rG-b (5.8)

Hence, the value assigned to a subgoal depends on the context in which it occurs.
ACT-R will value a goal less the more deeply it is embedded into uncertain subgoals.
That is, ACT-R will more likely abandon deeply embedded subgoals.

Separating probability parameters (i.e., ¢ and r) from cost parameters (i.e., a
and b) allows the system to be differentially sensitive to probability and cost as a
function of the value of a goal. Separating quantities associated with the current
production (i.e., ¢ and a) from the quantities associated with future rules (i.e., r
and b) allows ACT-R to appropriately discount the value of a subgoal.

When a production is selected, there is no guarantee that its non-goal chunks
can be successfully matched. If the matching fails the next production in the conflict
set with the highest utility E is chosen. If no production is found the current goal
is popped with failure. When a goal is popped with failure it can return a failure
value to a slot of the supergoal. This allows higher goal levels to detect and deal
with subgoal failure.

To sum up, in ACT-R the choice of a production is determined as follows:

1. The conflict set is determined by testing the match of the productions with
the current goal.

2. If the conflict set is empty the goal is popped with failure and this production
cycle is concluded. Otherwise, the production P, with the highest utility is
chosen.

3. The actual instantiation of P, is determined via the activations of the corre-
sponding chunks. If no instantiation is possible (because of 7), P, is removed
from the conflict set and the algorithm resumes in step 2, otherwise the in-
stantiation of P, is applied and this production cycle is concluded.

The equations and parameters of the conflict resolution mechanism are summa-
rized in Table 5.1 on page 77.

5.4.2 Production Compilation

The theory of ACT-R models the learning of procedural knowledge by the processing
of chunks of a certain type, called dependency. A dependency goal reflects the
intention to understand a problem solving step. When such a goal is fulfilled, and
hence popped from the goal stack, a production that performs the corresponding
problem solving step is automatically compiled. Hence, this learning mechanism is
called production compilation.

To encode goal condition, chunk retrieval and action of the production to be
compiled, the following slots are defined for dependency chunks:



74

CHAPTER 5. THE COGNITIVE ARCHITECTURE ACT-R

e The goal slot describes what the goal was before the problem solving step,
that is, the goal condition of the production to be compiled.

e The constraint slot reflects the chunk retrieval patterns.

e The modified slot encodes what the changed goal looks like, that is, the goal
transformations of the production to be compiled.

e The stack slot describes any changes of the goal stack such as popping the
goal or pushing a subgoal.

When a production is compiled patterns that occur only once are considered as
specific patterns and are, hence, treated as constants. Patterns that occur twice
or several times, in contrast, are considered as general patterns and are treated
as variables. If this default variabilization is not appropriate the following slots of
dependency chunks can be used to tailor the variabilization to the case in point:

e The generals slot contains the patterns considered as general patterns. They
are treated as variables.

e The specifics slot contains the patterns considered as specific patterns.
They are treated as constants.

e The don’t-cares slot contains any patterns that are to be omitted in the
compiled production.

e The differents slot describes which patterns should not occur for the com-
piled production to be applicable.

To elucidate the production compilation process, consider the following example:

FExample 5.1

Assume our aim is to calculate the largest set of which a given element is a member.
Furthermore, assume that a € F, a € G and F' C G have been derived earlier, that
is, let the following chunks be in the declarative memory:

factAelementF factFsubsetG
isa element-fact isa subset-fact
element a setl F
set F set2 G
factAelementG
isa element-fact

element a
set G

The problem solving step that achieves factAelementG from factAelementF and
factFsubsetG can be described by the following dependency chunk (which we as-
sume is the current goal):

Dependency
isa dependency
goal factAelementF
modified factAelementG

constraints factFsubsetG

Then, when the current goal is popped the following production is compiled:
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IF =goal>
isa element-fact
element
set S1
=subset>
isa subset-fact
setl S1
set2 Sa
THEN =goal>
set S

where z, S; and Sy are variables.
Note that this production changes the goal chunk by changing its set slot. The
production can be paraphrased as:

IF it is known that z € S; and S1 C S2
THEN conclude that z € Ss.

Clearly, repeated application of this production rule calculates the largest set a
given element is a member of. O

5.5 The Use of ACT-R in P.rex

Since ACT-R combines the abilities for user modeling and planning in a uniform
framework, it is well suited to serve as a basis for a proof explanation system such
as Prer that has to have a model of the user (in particular of his mathemati-
cal knowledge and skills) in order to plan an appropriate presentation. However,
ACT-R models human cognition in much more detail than necessary for our pur-
poses. Therefore, we can neglect some of its features, as we shall discuss in this
section.

When we base our proof explanation system Prex on ACT-R, we model an
idealized teacher who explains mathematical proofs to his student. We assume that
the teacher has a perfect understanding of the mathematical theories he explains
and, in particular, of the way to explain proofs of theorems in these theories.

Explaining proofs to a student has to take his knowledge and skills into account.
Therefore, we have to model which mathematical facts and methods the user knows
and which he does not know. We do this by making use of the learning of chunks Cj,
the learning of activations A; of chunks and the dependency of the chunk retrieval
on the retrieval threshold 7.

In contrast to a tutorial system, teaching mathematical skills is beyond the scope
of Prex. Hence, we do not let the user of the system solve problems or exercises
and, hence, we need neither analyze his solutions and nor model the mistakes he
might make. Therefore, we dispense with partial matching, that is, we can always
assume that D; , = 0 in Equation 5.2.

When we assume an ideal teacher, we assume in particular that he has perfectly
adapted explanation skills. Since we model his explanation skills by giving appro-
priate production rules, assuming perfectly adapted skills means that the choice
of productions for application is perfect and need not adapt. That is, the chosen
productions always succeed in fulfilling the ultimate goal. Therefore, we switch off
the learning of production parameters (i.e., ¢,r,a and b) but fix the parameters at
their initially given values. Since the main reason for adding noise to ACT-R is
to allow for adaptation to a changing environment, we do not use any noise either.
Nevertheless, we draw on learning new explanation skills by production compilation.

The theory of ACT-R sometimes includes restrictions that are not enforced by
the implementation of ACT-R 4.0. For example, according to the theory, lists of
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chunks are not allowed as values of chunks (except for dependency chunks), pro-
ductions should not include more than a few chunks and only goal chunks can be
created by productions. It is always possible to meet these restrictions by defining
an extra chunk slot for chaining chunks, by splitting a production into several coop-
erative productions and by pushing newly created chunks onto the goal stack and
have them popped immediately by additional productions, respectively. This does
not result in qualitatively different behavior, but the predictions of the cognitive
model with respect to time and number of production cycles needed to produce
that behavior are no longer valid.

Thus, if only qualitative behavior is important and quantitative behavior can
be ignored, as is the case in P rex, it makes sense to deviate from the previously
mentioned restrictions in favor of attaining a more efficient implementation of the
cognitive model.

In the following chapter, we shall give a thorough presentation of P.rex’s dialog
planner, which is implemented in ACT-R.
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Table 5.1. Equations and parameters in ACT-R.

Chunk Retrieval

A; =B; + Zj st',i Equation (51)
A; activation of chunk Cj
B; base-level activation of chunk C}

W;  activation of source chunk C;
S;i  strength of the association of chunk C; with chunk Cj

Mi,p = Ai — Dz’,p Equation (52)
M;, match score of production P, with chunk C;
D;, degree of mismatch between production P, and chunk Cj

tip = Fe=f(MiptSp) Equation (5.3)
t;p  time production P, needs to retrieve chunk Cj

Sp strength of production P,
F,f scaling factors

tix = Fe~/(T+5) Equation (5.4)
t7s™  time maximally available for production P, to retrieve
chunk C;
T retrieval threshold: only a chunk C; with A; > 7 can be
matched

Conflict Resolution

E=PG-C Equation (5.5)
E net utility of a production
P expected probability that the goal will be achieved by the
production’s firing
G value of the goal
C expected cost of achieving the goal

P=gr Equation (5.6)
q probability of the production working successfully
r probability of achieving the goal if the production works
successfully
C=a+b Equation (5.7)
a amount of time the production takes
b estimate of the amount of time from when the production
completes until the goal is achieved
G'=rG-b Equation (5.8)

G value of a subgoal
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Chapter 6

The Dialog Planner

An important task that any natural language generation system has to fulfill is
determining the content of the utterances to be produced. To comply with the needs
of interactive explanation, pure content determination must be augmented by dialog
management facilities to allow also for user turns in the dialog. To account for such
dialogs, we designed an accordingly enhanced content determination component,
the dialog planner. It plays a central role in P rezx.

In Section 6.1, we shall briefly review approaches to content determination and
give an overview of our dialog planner. Section 6.2 is devoted to the representation
of discourses in P rex. Next, in Section 6.3, we shall introduce the basics of content
determination in P.rex. Then, in Section 6.4, we shall enrich the content determi-
nation by user-adaptive and context-sensitive planning decisions. In Section 6.5, we
shall describe how the dialog planner allows for user interaction. We shall conclude
this chapter with a final discussion.

6.1 Approaches to Planning Discourses

A discourse is generally seen as a structured collection of utterances such as texts
or dialogs. For a discourse to be successful, it is crucial that the hearer knows
the communicative role of each portion of it. If the hearer knows how the speaker
intends each clause to relate to each other clause the discourse is coherent [Hovy,
1993]. Since a system generating natural language will hardly be accepted by the
users unless it produces coherent discourse, the content planner has to take into
account some theory of discourse.

In Section 6.1.1, we shall review two approaches to discourse that describe dis-
courses from different perspectives. Subsequently, we shall examine several ap-
proaches to the implementation of discourse theories. The Sections 6.1.2, 6.1.3
and 6.1.4 are devoted to static, dynamic and hybrid approaches to planning of dis-
courses, respectively. Then, in Section 6.1.5, we shall review the macro-planner
of PROVERB, the most sophisticated proof presentation system to date that uses
natural language generation techniques. It can be considered as a predecessor to
Prex. In Section 6.1.6, finally, we shall give an overview of the dialog planner of
Prex.

6.1.1 Discourse Theories

In the field of natural language processing, two competing approaches, which Hovy
[1993] calls formalist and functionalist approaches, describe discourses from dif-
ferent perspectives. First, according to formalist theories, the discourse exhibits
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an internal structure, where structural segments capsulate semantic units that are
closely related. Second, in functionalist theories, the discourse exhibits an internal
structure, where the segments are defined by their communicative purpose. In the
following, we shall review two major theories that influenced our work.

In formalist theories, the discourse is seen as a collection of segments, which are
defined in terms of structure (e.g., [Kamp, 1981; Reichman, 1985]). Concerned with
natural language analysis, Grosz and Sidner [1986] developed a discourse theory that
distinguishes three separate, but interrelated components, namely the linguistic
structure, the intentional structure and the attentional state.

The linguistic structure describes the segmentation of the discourse. It consists
of discourse segments of various sizes with utterances as basic elements and an
embedding relation between discourse segments. Cue words and phrases indicate
segment boundaries. These boundary markers are classified according to whether
they indicate changes in the intentional structure or in the attentional state.

Each discourse segment has a purpose, called discourse segment purpose. The
intentional structure captures how the purposes of the discourse segments relate to
one another. As Grosz and Sidner emphasized, the range of intentions that can
serve as discourse segment purposes is open-ended. Since the participants in a con-
versation therefore can never know the whole set of intentions, they must recognize
the relevant structural relationships between intentions. Although the number of
intentions is potentially infinite, there are only a small number of relations relevant
to discourse structure that can hold between them. It is this small set of rela-
tions that defines whether a discourse is coherent or not. The original theory was
formulated with only two relations. First, a dominance relation describes that a
discourse segment purpose P; dominates another discourse segment purpose P, or,
vice versa, that the satisfaction of P, contributes to the satisfaction of P;. Sec-
ond, a satisfaction precedence relation defines a partial order on discourse segment
purposes by specifying which discourse segment purposes must be satisfied before
which other ones.

The attentional state, finally, is an abstraction of the focus of attention of the
participants as the discourse unfolds. Without including the intentional structure
as a whole, the attentional state records objects, properties and relations that are
salient at each point of the discourse.

The major feature of Grosz and Sidner’s theory is that it approaches the dis-
course in terms of its structure. The functions of the individual segments play only
a minor role.

Functionalist theories advocate the combination of linguistic structure and in-
tentional structure and define the segments by their communicative purposes. For
natural language analysis, Mann and Thompson [1987] formulated a discourse the-
ory called Rhetorical Structure Theory (RST). The theory states that the relations
that hold between segments of normal English text can be represented by a finite set
of relations. The relations are used recursively, connecting segments of various sizes
down to single clauses. A paragraph is considered to be coherent only if all parts fit
into a single overarching relation. Most relations are associated with characteristic
cue words or phrases, which inform the hearer how to relate the segments. Thus,
the role of each part of the discourse can be determined with respect to the whole.

The major feature of RST is that it describes the discourse in terms of function
without elaborating on its structure. Moreover, no notion of attentional states of
the interlocutors is covered by the theory.

Similarly to Mann and Thompson, Hovy [1993] argues in favor of a single dis-
course tree. He considers a discourse as a structured collection of clauses, which
are grouped into segments by their semantic relatedness. The discourse structure
is expressed by the nesting of segments within each other according to specific rela-
tionships (i.e., RST relations). Hence, a discourse can be represented by a discourse
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structure tree, in which each node governs the segment beneath it. At the top level,
the discourse is governed by a single root node. At the leaves, the basic segments are
single grammatical clauses. The discourse segment purposes are the communicative
goals of the speaker and are represented at each node of the discourse structure tree.
As Hovy points out, such a discourse structure tree can be used for the generation
of natural language as well.

Comparing these discourse theories, we can conclude the following: As a for-
malist theory, Grosz and Sidner’s theory is a theory of the structure of discourse.
It describes the structural relationships among discourse segments, that is, the em-
bedding of the segments and their order. In the intentional structure, the theory
captures only a weak notion of the functional relationships among the discourse
segments.

Mann and Thompson’s RST, in contrast, is a functional theory, that is, it makes
strong claims about the functional relationships between the discourse segments. It
also describes the embedding of discourse segments, but does not determine their
order. The same is true for Hovy’s theory, which is closely related to RST.

Note that the complementary characteristics of formalist and functional theories
manifest themselves in the use of the theories in practical systems. Whereas formal-
ist theories are widely used as the basis for systems for natural language analysis,
functional theories are implemented in most natural language generations systems.

In the following, we shall examine several approaches to the implementation of
discourse theories in NLG systems.

6.1.2 Planning with Schemata

Early systems concerned with multi-sentence text simply ignored the issue of dis-
course structure. One of the first systems to take into account discourse structure
was TEXT [McKeown, 1985], a system producing descriptions of complex objects.
It used predefined schemata as templates that organize the content and order of
clauses in a paragraph. An example for a schema taken from [McKeown, 1985] is
depicted in Figure 6.1.

IDENTIFICATION
(1) Identification (class & attribute/function)
(2) {Analogy/Constituency/Attributive/Renaming/Amplification}*
(3) Particular-illustration/Evidence+
(4) {Amplification/Analogy/Attributive}
(5) {Particular-illustration/Evidence}
Example:
Eltville (Germany) (1) An important village of the Rheingau region. (2) The
vineyards make wines that are emphatically of the Rheingau style, (3) with

a considerable weight for a white wine. (4) Taubenberg, Sonnenberg and
Langenstuck are among vineyards of note.

Figure 6.1. The IDENTIFICATION schema in TEXT taken from [McKeown,
1985]. Note that “{-}” and “/” mean optionality and alternative, respectively.
Moreover, “+” indicates that an object can appear one or more times, and “x”
indicates that the item is optional and may appear zero to n times for some n.

The schemata can be employed recursively to progressively build up the whole
text. They are particularly well suited for the generation of stereotypical portions
of a discourse. Their essential shortcoming lies in the lack of the representation
of the purpose of each part in the schema with respect to whole. Because of this
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deficiency, the system can neither replan any portion of the discourse in case that a
portion should not communicate successfully, nor motivate why it said what it said.
That is, schemata cannot be used flexibly; they represent static chunks of text.

A dynamic approach developed to overcome this problem is reviewed in the
following section.

6.1.3 Planning with Discourse Relations

To overcome the main drawback of schemata, namely that the purpose of segments
and the relations between segments in the schema are not represented, dynamic
approaches to assemble coherent discourse were developed. Rhetorical Structure
Theory (RST) [Mann and Thompson, 1987] became an influential theory for natural
language generation and has been used as the basis for assorted systems (e.g., [Hovy,
1991; Reithinger, 1991]). As described in Section 6.1.1, the theory decomposes texts
into ever smaller segments, which are connected with one another via RST relations.

Most RST relations contain two parts. Whereas the Nucleus contains the major
material, the Satellite contains ancillary material that supports the Nucleus. The
Satellite is incomprehensible without a Nucleus, but a Satellite can be replaced
by a completely different one to better support the Nucleus. Most relations have
characteristic cue words or phrases, which inform the hearer about how to relate the
segments, such that the role played by each clause can be determined with respect
to the whole. An example relation is given in Figure 6.2.

relation name: EVIDENCE
constraints on N: R might not believe N to a degree satisfactory to W
constraints on S: The reader believes S or will find it credible.

constraints on the N + S combination:

R’s comprehending S increases R’s belief of N
the effect: R’s belief of N is increased
locus of the effect: N

Figure 6.2. The definition of the relation EVIDENCE, taken from [Mann and
Thompson, 1987]. N stands for the Nucleus, S for the Satellite. W and R denote
the writer and reader, respectively.

An example for a dynamic planner is Hovy’s paragraph structure planner, which
was applied to several domains such as a multi-modal database information display
system [Hovy, 1991]. In this planner, RST relations play a twofold role. First, they
are used as inner nodes of the paragraph structure tree, whereas the leaves of the
paragraph structure tree are input units. Second, RST relations are formulated as
plan operators (cf. Figure 6.3 for an example) where Nucleus and Satellite require-
ments, depending on the hearer’s knowledge, are treated as semantic preconditions
on the material to be conveyed. Possible paths of expansion of the Nucleus or Satel-
lites are given in growth points of subgoals, that is, plan operators that are allowed
by coherence to apply to the Nucleus or Satellites. The plan operators recursively
relate some units of the input or another relation (cast as Nucleus) to other units of
the input or another relation (cast as Satellite). By this top-down refinement, which
serves both content selection and organization, the planner constructs a paragraph
structure tree. Since the tree captures the internal organization and rhetorical de-
pendencies between clauses in the text, it allows for powerful reasoning about the
text.

Note that the plan provided by the paragraph structurer simultaneously serves
as a discourse structure and as a plan for achieving the desired communicative goal.
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Name: SEQUENCE

Results:
((BMB SPEAKER HEARER (SEQUENCE-OF ?PART ?NEXT)))

Nucleus requirements/subgoals:
((BMB SPEAKER HEARER (TOPIC ?7PART)))

Satellite requirements/subgoals:
((BMB SPEAKER HEARER (TOPIC ?NEXT)))

Nucleus+Satellite requirements/subgoals:
((NEXT-ACTION ?PART ?NEXT))

Nucleus growth points:
((BMB SPEAKER HEARER (CIRCUMSTANCE-OF ?PART ?CIR))
(BMB SPEAKER HEARER (ATTRIBUTE-OF ?PART ?VAL))
(BMB SPEAKER HEARER (PURPOSE-OF 7PART ?PURP)))

Satellite growth points:
((BMB SPEAKER HEARER (ATTRIBUTE-QF ?NEXT 7VAL))
(BMB SPEAKER HEARER (DETAILS-OF ?NEXT ?7DETS))
(BMB SPEAKER HEARER (SEQUENCE-OF 7NEXT 7FOLL)))

Order: (NUCLEUS SATELLITE)

Relation-phrases: ("" "then" "next")

Activation-question:
"Could "A be presented as start-point, mid-point, or end-point
of some succession of items along some dimension? -- that is,
should the hearer know that "A is part of a sequence?"

The contents of the RST relation/plan SEQUENCE can be paraphrased as follows: the plan,
when used successfully, guarantees that both speaker and hearer will mutually believe that
the relationship SEQUENCE-OF holds between two input entities (that is to say, that one
entity follows another in temporal, ordinal, or spatial sequence). That is the contents of
the Results field. To ensure proper ordering and focus, one input entity is bound to the
variable 7PART in the Nucleus requirements field and the other to the variable ?NEXT in
the Satellite requirements field. No other semantic requirements hold on the input entities
individually. There is, however, the requirement that they be semantically related by
some kind of sequential link (in the current domain, the temporal relation NEXT-ACTION),
as stated in the Nucleus+Satellite requirements field; that is, that ?PART does in fact
precede 7NEXT. Suggestions for including additional input material related to the nucleus
are contained in the Nucleus growth points field: these call for circumstantially related
material (time, location, etc.), attributes (size, color, etc.) and purpose. They are stated
in terms of mutual beliefs in order to act as subgoals that the planner must try to achieve.
A similar set is associated with the Satellite. The typical order of expression in the text
is Nucleus first and the Satellite, using either no cue word, “then”, or “next”.

Figure 6.3. The RST plan operator SEQUENCE taken from [Hovy, 1993]. The
term (BMB x y P) stands for P follows from x’s beliefs about what x and y mutually
believe.
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That is, the discourse structure is simultaneously a linguistic construct and a plan
of action.

The major disadvantage of the dynamic planning approach is that it is not fea-
sible in practice to plan longer texts without some explicit representation of the
structure of spaces of text that are longer than single paragraphs. Since schemata
can easily represent longer spaces of text, hybrid approaches lead the way to over-
come this problem.

6.1.4 Hybrid Planning

Although schemata do not explicitly represent the purposes of discourse segments
and hence forgo the ability to reason about the discourse, they are useful to include
stereotypical discourse elements and to plan longer text plans. Discourse structure
operators such as RST operators, in contrast, enable powerful reasoning about the
discourse by producing explicit discourse structure trees. However, these operators
do not produce longer texts satisfactorily.

An appropriate way to combine the complementary strengths of both approaches
without committing to their weaknesses is to consider schemata as fossilized subtrees
of the discourse structure that represent formulaic texts. Whereas the application
of discourse structure operators includes only single nodes in the discourse structure
tree, the application of a schema includes the corresponding subtree. Since such a
subtree includes information about purpose and discourse relation, it allows us to
reason about the function and interrelation of each portion of the discourse. Vice
versa, the effect of a discourse structure operators can be seen as that of a mini-
schema. Hence, we do not only obtain the strength of both approaches, we also
gain homogenity in the representation.

6.1.5 PROVERB: Hierarchical Planning and Local Naviga-

tion

The proof presentation system PROVERB [Huang, 1994a; Huang and Fiedler, 1997]
can be considered as the first serious attempt at a comprehensive computational
model that produces adequate natural language text from machine-found proofs.
Since it can be seen as the predecessor of P.rex, we shall examine PROVERB’s
macro-planner in some detail in this section.

The macro-planner of PROVERB accepts as input a natural deduction style
proof, and produces speech acts, called proof communicative acts (PCAs), which
are structured into hierarchical attentional spaces. To do so, it uses a strategy that
combines hierarchical planning and local navigation.

The previous sections acquainted us with various approaches to planning the
structure of a discourse. However, there is psychological evidence that language
has an unplanned, spontaneous aspect as well [Ochs, 1979]. Based on this obser-
vation, Sibun [1990] implemented a system for generating descriptions of objects
with a strong domain structure, such as houses, ships and families. While a hierar-
chical planner recursively breaks generation tasks into subtasks, local organization
navigates the domain object following the local focus of attention.

PROVERB combines both of these approaches within a uniform planning frame-
work [Huang, 1994b]. Top-down operators for hierarchical planning split the task
of presenting a particular proof into subtasks of presenting subproofs. Bottom-
up operators for local navigation simulate the spontaneous aspect, where the next
conclusion to be presented is chosen under the guidance of a local focus mechanism.

The two kinds of plan operators are treated differently in PROVERB. Since
top-down operators embody explicit communicative norms, they are given a higher
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priority. Only when none of them is applicable a bottom-up operator will be cho-
sen. The cooperation of top-down and bottom-up operators naturally leads to the
organization of the produced PCAs in a hierarchical structure of attentional spaces.

As discourse plan, PROVERB produces a sequence of PCAs. The discourse
history consists of the proof tree to be presented with the nodes marked as conveyed
or unconveyed and the sequence of PCAs produced so far.

In the following, we shall review the definition of PCAs and the planning frame-
work of PROVERB. All examples for PCAs and plan operators are taken from
[Huang, 1994a).

Proof Communicative Acts

Proof communicative acts (PCAs) are the primitive actions planned by the macro-
planner of PROVERB. As speech acts, they can be defined in terms of the com-
municative goals they fulfill as well as their possible verbalization. An example of
a PCA conveying the derivation of a formula is

(Derive Reasons: (a € F,F C G) Derived-Formula: a€ G
Method: def-subset)

Depending on the reference choices, a possible verbalization is

“Since a is an element of F' and F' is a subset of GG, a is an element of
G by the definition of subset.”

There are also PCAs that predicate actions planned for further presentation and
thereby update the global attentional structure. For instance, the PCA

(Begin-Cases Goal: Formula Assumptions: (A B))

creates two attentional spaces with A and B as the assumptions, and Formula as
the goal by producing the verbalization:

“To prove Formula, let us consider the two cases by assuming A and
B.”

[Huang, 1994a) defines 14 PCAs in total. [Huang and Fiedler, 1997] adds two
further PCAs to mark the begin and end of attentional spaces, respectively.

Hierarchical Planning

Hierarchical planning operators represent communication strategies concerning how
the task of presenting a proof can be split into subtasks of presenting subproofs, and
how the subproofs can be mapped onto some linear order. Since these operators
proceed from the root of the proof tree toward the leaves, they are also called
top-down operators.

As an example, Huang [1994a)] gives an operator that handles the goal of pre-
senting a proof by case analysis. The operator applies to a proof tree where the
subproof rooted at 7L, leads to F'V GG, while subproofs rooted at 7Ly, and ?7L3
are the two cases proving ) by assuming F' and G, respectively. The applicability
condition encodes the two scenarios of case analysis, where either 7L; is to be pre-
sented next or ?L4 has just been presented. In both circumstances this operator
first presents the part leading to F'V G, and then proceeds with the two cases. It
also inserts certain PCAs to mediate between parts of proofs.
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Case-Implicit

e Proof:
F G

Ly : FVG 7Ly :Q ?L3:QvE
L1 AFQ

e Applicability Condition: ((task ?L;) V (local-focus 7L4))
A (not-conveyed (?La ?7Ls))

o Acts:
1. if 7L, has not been conveyed, then present ?L4 (subgoal 1)
. produce the PCA (Case-First F')
. present ?Ls (subgoal 2)
. produce the PCA (Case-Second G)
. present ?L3 (subgoal 3)

U o W N

6. mark 7L, as conveyed

e features: (top-down compulsory implicit)

The features indicate that this is a higher priority operator (compulsory) and should
be chosen when a more implicit style is preferred by the user.
[Huang, 1994a] defines 16 top-down operators in total.

Local Navigation

The local navigation operators simulate the spontaneous part of proof presentation.
Instead of splitting presentation goals into subgoals, they follow the local derivation
relation to find a proof step to be presented next. Since these operators proceed
from the leaves of the proof tree toward the root, they are also called bottom-up
operators.

The node to be presented next is suggested by the mechanism of local focus. In
PROVERB, the local focus is the last derived step, while focal centers are semantic
objects mentioned in the local focus. Although logically any proof node that uses
the local focus as a premise could be chosen for the next step, usually the one with
the greatest semantic overlap with the focal centers is preferred. As Huang puts it,
if one has proved a property about some semantic object, one will tend to continue
to talk about this particular object, before turning to a new one. As an example,
[Huang, 1994a] gives the situation where the following proof is to be presented:

[1]: P(a,b) [1]: P(a,b), [3]: S(c)
2] : Q(a,b) [4] : R(b,c)
[5]: Q(a,b) A R(b,c)

Assume that node [1] is the local focus, {a,b} is the set of focal centers, [3] is a
previously presented node and node [5] is the current task. [2] is chosen as the next
node to be presented, since it does not (re)introduce any new semantic objects and
its overlap with the focal centers (i.e., {a,b}) is larger than the overlap of [4] with
the focal centers (i.e., {b}).

When a node is chosen by the local focus mechanism, a bottom-up operator is
invoked to present it. The following is an example for a bottom-up operator:
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Derive-Bottom-Up

e Proof:
Ny,...,N,

Nn+1

M

e Applicability Condition: N, is chosen as the next node, Ny,..., N,
are conveyed

e Acts: produce the PCA
(Derive Reasons: (Np,...,N,) Derived-Formula: Npi;
Method: M)
e features: (bottom-up general explicit detailed)

The features indicate that this is a low priority operator (general) and should be
chosen when a more explicit and detailed style is preferred by the user.
[Huang, 1994a] defines seven bottom-up operators in total.

Discussion

The macro-planner of PROVERB is a schema-based text planner that combines
hierarchical planning with local navigation to simulate the unplanned aspect of the
production of utterances.

Since the system follows the static planning approach, it suffers from the typical
shortcoming of schema-based text planners: The plan operators do not represent
the purpose of each part of the text plan with respect to the whole. Thus, flexible
replanning of unsuccessfully communicated parts of the text is not possible.

Moreover, the text plan consists of a sequence of PCAs that is only structured
by markers for the begin and the end of attentional spaces. No interrelation among
PCAs is made explicit, although such interrelations have been used while planning
the sequence of PCAs. The discourse history does not compensate for this draw-
back either, since it consists only of the proof tree, which is enhanced by marking
conveyed nodes, and of the sequence of PCAs, such that the interrelations cannot
be recovered without major effort.

For these reasons, it is not easily possible to extend the macro-planner of
PROVERB to an interactive dialog planner that can cope with discourse parts
that failed to communicate successfully.

A second major disadvantage of PROVERB’s macro-planner is that it has no
user model that would allow the system to adapt its presentation to the knowledge
and skills of the respective audience. The only influence the user can have is to
implicitly restrict the set of applicable plan operators when he chooses an explicit
vs. implicit and an abstract vs. detailed presentation. Note, however, that abstract
presentation in PROVERB means that some steps may be omitted, but not that
the proof is presented at a higher level of logical abstraction.

Therefore, we decided to design a new dialog planner for P.rex from scratch.
In the following section, we shall give an overview of that dialog planner before we
shall present it in detail in the remainder of this chapter.

6.1.6 Dialog Planning in P.rex: An Overview

The task of the dialog planner of Prex is to construct a discourse structure tree as
the representation of the dialog. We base the definition of our discourse structure
tree on Hovy’s approach [1993]. Therefore, it reflects the segmentation of the dis-
course in its subtree relation. In its leaves, it stores the individual utterances, the
speech acts. To account for the notion of salience, we add the concept of attentional
spaces to the discourse structure tree. Later, we shall use the attentional spaces to



88

CHAPTER 6. THE DIALOG PLANNER

model how salient an already conveyed piece of information is to decide whether
the user has to be reminded of this piece of information.

The dialog planner invokes plan operators that add single nodes to the discourse
structure tree and schemata that add whole subtrees to the discourse structure tree.
Thus, it implements a hybrid planning approach as discussed in Section 6.1.4. Apart
from monologs, the dialog planner allows for commands and interruptions entered
by the user and for clarification dialogs.

Assorted natural language generation systems take into account the intended
audience’s knowledge in the generation of explanations (see e.g. [Cawsey, 1990;
Paris, 1991a; Wahlster et al., 1993]). Most of them adapt to the addressee by
choosing between different discourse strategies. Since proofs are inherently rich in
inferences, the explanation of proofs must also consider which inferences the audi-
ence can make [Zukerman and McConachy, 1993; Horacek, 1997b; 1999]. However,
because of the constraints of the human memory, inferences are not chainable with-
out costs. Explicit representation of the addressee’s cognitive states proves to be
useful in choosing the information to convey [Walker and Rambow, 1994]. As dis-
cussed in Chapter 5, the cognitive architecture ACT-R is particularly well suited
as a basis for the dialog planner for the following reasons: First, it combines the
abilities for user modeling and planning in a uniform framework. Next, the conflict
resolution mechanism, which chooses a production when several productions are
applicable, allows for the definition of more general productions to be applied when
no more specific ones are available. Moreover, the subgoal return mechanism allows
the planner to pass results from fulfilled subgoals to the supergoal. Furthermore,
new productions can be learned by the system via the production compilation pro-
cess. Finally, the chunk retrieval mechanism takes into account which information
can be retrieved best and which information cannot be retrieved at all.

Hence, the dialog planner of P.rex is implemented in ACT-R. In particular, the
nodes of the discourse structure tree are defined as chunks in the declarative mem-
ory, and the plan operators and schemata are realized as productions. Note that we
model an idealized teacher who explains mathematical proofs to his student. We
assume that the teacher has a perfect understanding of the mathematical theories
he explains and, in particular, of the way to explain proofs of theorems in these
theories. Since the perfect explanation knowledge is encoded by productions, we
can safely turn off parameter learning for productions.

We assume that the proof is available at several levels of abstraction. The dialog
planner adapts to the user by explaining the proof at a level of abstraction and a
degree of explicitness that it assumes to be the most appropriate for the current
user. Moreover, it combines two different presentation strategies depending on how
familiar with the current subject the user is. If the user is more familiar with the
subject, the dialog planner chooses a textbook-style presentation strategy where it
merely derives the conclusion from the premises. However, in case the user is less
familiar with the subject under consideration, the system uses a classroom-style
explanation strategy where it gives more information about what is being done and
why. In any style, the system allows the user to interrupt anytime if he is not
satisfied with the current explanation and adapts its presentation accordingly.

Finally, the dialog planner also models that the user forgets information. This is
done by ACT-R via the chunk retrieval mechanism. If the base activation of a chunk
and the activations of its contextual chunks are too low the chunk’s activation falls
below the retrieval threshold (cf. Section 5.3.2). Since chunks with activations below
the retrieval threshold cannot be accessed anymore, such forgotten information has
to be derived anew by the dialog planner.

In the following section, we shall define the discourse structure tree as the repre-
sentation of discourses in P.rex. Then, in subsequent sections, we shall define plan
operators and schemata, which manipulate the discourse structure tree.
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6.2 The Representation of Dialog Plans

Successful communication between an NLG system and its user presupposes that
the content to be conveyed is appropriately structured to ensure a coherent semantic
organization of the utterances. For an explanation system, it is also important to
accept user feedback and follow-up questions. To be able to clarify misunderstood
explanations, the system needs to represent the different parts of the explanation
as well as the relations between them. In this section, we shall introduce how the
discourse and the utterances are represented in P.rex.

Based on RST [Mann and Thompson, 1987], Hovy [1993] described a discourse
by a nesting of discourse segments. According to his discourse theory, each segment
essentially contains the communicative goal the speaker wants to fulfill with this
segment and either one to several discourse segments with intersegment discourse
relations or the semantic material to be communicated. In Section 6.2.2, we shall
present, our representation of discourses, which adapts Hovy’s discourse segments,
combines it with some aspects of a structural approach to discourse adapted from
Grosz and Sidner’s theory [1986] and extends it to account for certain types of
dialogs as well. But first, we shall define in the following section how the semantic
material to be communicated is represented in P rez.

6.2.1 Speech Acts

Speech acts are the primitive actions planned by the dialog planner. They represent
frozen rhetorical relations between exchangeable semantic entities. The semantic
entities are represented as arguments to the rhetorical relation in the speech act.
Each speech act can always be realized by a single sentence.! Some speech acts are
preferably realized as formatting directives, which affect the layout of the presenta-
tion. We use speech acts in P.rez not only to represent utterances that are produced
by the system, but also to represent utterances from the user in the discourse. In
the following, we introduce a taxonomy of speech acts in our domain along with
examples for some types of speech acts. All speech act types are defined formally
in Appendix B.

We distinguish two major classes of speech acts. First, mathematical commu-
nicative acts (MCAs) are employed to present or explain mathematical concepts or
derivations. MCAs suffice for those parts of the discourse, where the initiative is
taken by the education system. The taxonomy of MCAs is shown in Figure 6.4.
Second, interpersonal communicative acts (ICAs) serve the dialog, where both the
system and the user alternately take over the active role. Figure 6.5 displays the
taxonomy of ICAs.

Note that, for pragmatic reasons, we sometimes introduce on the lowest level of
the taxonomy also speech acts that inherently carry content (such as Obvious-Step,
what-is? and too-difficult) instead of keeping the speech acts separate from
the content they convey.

Mathematical Communicative Acts

Mathematical communicative acts (MCAs) are speech acts that are employed to
present or explain mathematical concepts or derivations. Our class of MCAs was
originally derived from PROVERB’s PCAs [Huang, 1994a), but has been substan-
tially reorganized and extended. In particular, we sometimes merged several closely
related PCAs into a single MCA and sometimes split a PCA into several MCAs
to separate their derivational and explanatory functions. Finally, compared to the

L Although it is possible to allow for speech acts that are realized by a sequence of sentences,
no such speech acts occur in P rez.
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Figure 6.4. The taxonomy of MCAs.

hierarchy of PCAs, we organized the MCAs in a finer grained taxonomy. We dis-
tinguish two classes of MCAs (cf. Figure 6.4):

e Derivational MCAs convey steps of the derivation, which are logically neces-
sary. Failing to produce a derivational MCA makes the presentation logically
incorrect. We identify six types of MCAs in this class.

An MCA of the first type, Derive, derives a fact from some premises, called
reasons, by some inference method. The following is an example for a Derive
MCA given with a possible verbalization:

(Derive :Reasons (a € F,F CG) :Conclusion a € G

:Method DefC)
“Since a is an element of F' and F' is a subset of G, a is an element
of G by the definition of subset.”

An MCA of the second type, Hyp-Intro, introduces the hypothesis of a hy-
pothetical judgment. We again give an example with a possible verbalization:
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(Hyp-Intro :Hypothesis F C G)
“Let F be a subset of G.”

An MCA of the third type, Par-Intro, introduces the parameter of a para-
metric judgment:

(Par-Intro :Parameter G :Type Set)
“Let G be a set.”

MCAs of two further types, Obvious-Step and Trivial-Derivation, indi-
cate that a proof step or a derivation is obvious or trivial, respectively. An
MCA of type Open-Step, finally, conveys the information that it is still open
how to derive a fact.

e FExplanatory MCAs comment on the steps of a derivation or give information
about the structure of a derivation. This information is logically unnecessary,
that is, omission leaves the derivation logically correct. However, inclusion
of explanatory MCAs makes it much easier for the addressee to understand
the derivations, since these comments keep him oriented. Explanatory MCAs
usually come in pairs: an introductory or opening explanation is paired with
a closing explanation. Together, the opening and the closing explanations
usually mark the boundaries of a focus space. For example, an MCA of type
Case-Analysis introduces a case analysis:

(Case—Analysis :Goal z <a :Cases (a<bb<a))
“To prove ¢ < a, let us consider the two cases where a < b and
b<a”

End-Case-Analysis is the corresponding closing MCA type:

(End-Case-Analysis :Goal z < a)
“This completes the case analysis.”?

There also exist MCA types Case and End-Case to explain the individual
cases:

(Case :Number 1 :Hypothesis a < b)
“Case 1l: a < b” or

“Let us consider the first case where a < b.”
(End-Case :Number 1 :Hypothesis a < b)
“This completes the first case.” or

silence if the second case follows right away.

Similar explanatory MCAs exist not only to comment on other structures that
are often found in proofs such as induction and indirect proofs, but also to
include calculations or diagrams in the proofs. For example, a Calculation
MCA is interpreted as the start of a focus space, in which derivations are
displayed in a chain of equations or inequations. End-Calculation marks the
end of that focus space. The Calculation/End-Calculation MCA pair is
also an example, where the realization as a formatting directive is preferred
to a direct verbalization.

There are also bracketing explanatory MCAs to mark the focus spaces for
large-scale structures such as theorems, proofs or definitions. For example,
the presentation of a proof is always preceeded by a Proof MCA and followed
by a Qed MCA which may be realized as “Proof:” and “w”, respectively.

2Note that the example verbalization is not appropriate for nested case analyses. When nested
case analyses occur the verbalization must make clear which case analysis is closed, as in “Hence,
the case analysis proves that x < a.”
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next?
understood?

— Questions known?
which-not-known?
what-is?

Show!

Repeat!

— Requests Stop!
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too-abstract
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Figure 6.5. The taxonomy of ICAs.

Interpersonal Communicative Acts

MCAs, which only convey information to the dialog partner without prompting any
interaction, suffice to present mathematical facts and derivations in a monolog. To
allow for dialogs we also need interpersonal communicative acts (ICAs), which are
employed for mixed-initiative, interpersonal communication. In our taxonomy we
distinguish five classes of ICAs (cf. Figure 6.5):

o Questions are used to ask the user what to do next (next?), whether he un-

derstood a presentation or a part thereof (understood?), whether he knows
a fact or concept (known?), and what concept or fact he does not know
(which-not-known?). Moreover, the user can ask the system, what a con-
cept or entity is (what-is?).

Requests are used to ask the user or the system to perform a task. Whereas
Show! means that a derivation should be shown, Repeat! means that a
the previous presentation of a derivation should be repeated. Stop! and
Continue! mean that a task should be stopped or continued, respectively.
Exit! means that Prex is to be exited.

Acknowledgments such as yes or no are used to answer easy questions. Further
acknowledgments such as ok, correct and incorrect inform the user that
the system will perform his request or that the user answered correctly or
incorrectly, respectively.

Notifications can be used by the user and the system to inform the inter-
locutor about something. The notifications too-detailed, too-implicit,
too-abstract and too-difficult mean that the explanation of a proof step
was too detailed, too implicit, too abstract or too difficult, respectively. Next,
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identify is used to assign an object to its conceptual class, as in “F'is a set.”
The notifications least-abstract-available or most-abstract-available
indicate that a derivation was explained at the least or most abstract level
available, respectively. Finally, premises can be used to pick some premises
by their ordinal number in the list of premises of a proof step, as in “the
second premise.”

o (reetings, finally, are used to start or end a session.

Note that the user never enters speech acts directly into the system. Instead, the
user’s utterances are interpreted by the analyzer (cf. Section 7.3) and mapped into
the corresponding speech acts.

ICAs are especially important to allow for clarification dialogs. If the system
failed to successfully communicate a derivation, it starts a clarification dialog to
detect the reason for the failure. Then, it can replan the previously failed part
of the presentation and double-check that the user understood the derivation. We
shall come back to this issue in Section 6.5.

Note that our taxonomy of speech acts relates to the metafunctions of language as
defined in systemic-functional grammars [Halliday, 1994]. Derivational MCAs relate
to the ideational metafunction, which is the function of the propositional content
of language. Explanatory MCAs resemble the textual metafunction, which is the
function of making a use of language appropriate to its particular context of use.
ICAs, finally, correspond to the interpersonal metafunction, which is the function
concerned with the relationships between the interlocutors.

6.2.2 Discourse Structure Trees

In the previous section, we introduced speech acts as the primitive actions planned
by the dialog planner. Now, the question arises how to organize speech acts in a
discourse structure that represents a coherent discourse. We shall give one possible
answer in this section.

According to Grosz and Sidner [1986), we can always identify a purpose that is
foundational to the discourse, called the discourse purpose. The discourse purpose
can be seen as providing the reason the discourse is being performed (rather than
some other action) and the reason the particular content of the discourse is being
conveyed (rather than some other content). Similarly, we can single out a pur-
pose for each discourse segment, called the discourse segment purpose. Intuitively
speaking, the discourse segment purpose specifies how this segment contributes to
achieving the overall discourse purpose.

To obtain a representation of discourses, [Hovy, 1993] defines a discourse segment
as a triple (name, purpose, content), where the name is a unique identifier for the
segment; the purpose consists of one or more communicative goals the speaker
has with respect to the hearer’s mental state (i.e., the discourse segment purpose
as introduced in [Grosz and Sidner, 1986)); the content is either an ordered list
of discourse segments together with one or more intersegment discourse relations
that hold between them, or a single discourse segment, or the semantic material
to be communicated. Note that this definition results in a tree of nested discourse
segments. Based on the definition of the discourse segment, the discourse structure
is then defined as a discourse segment that is not contained in any other discourse
segment and all of whose leaves contain semantic material to be communicated.

Following Hovy’s approach, we describe a discourse by a discourse structure tree
that consists of discourse structure nodes, where each node corresponds to a segment
of the discourse. The nesting of segments is captured by the subtree relation, such
that the direct children of a node IV correspond to direct subsegments of the segment
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corresponding to N. Hence, the root of a discourse structure tree represents the
whole discourse. The speech acts, which correspond to minimal discourse segments,
are represented in the leaves. We achieve a possible linearization of the speech acts
by traversing the discourse structure tree depth-first from left to right. Comparing
our approach with Grosz and Sidner’s theory [1986] (cf. Section 6.1), we can say
that we model their dominance relation by the subtree relation and their satisfaction
precedence relation by the ordering of the child nodes, as Hovy did in his approach.

As discussed in Section 6.1.3, RST relations play a twofold role in Hovy’s ap-
proach. First, they are used as the relationships between nodes in the discourse
structure tree. Second, they are formulated as plan operators that assemble dis-
course structure trees. Because of that dual role, the certainty that only coherent
discourses are produced is based solely on RST relations. We deviate from Hovy’s
approach in this aspect by separating the relations between nodes from the plan
operators. The different relations that may occur between segments and their di-
rect subsegments are reflected by the role a node plays with respect to its parent
node. The plan operators construct the discourse structure trees. They will be
discussed in detail in subsequent sections of this chapter. Because of this separa-
tion, certainty that only coherent discourses are planned must be based on both the
discourse structure tree and the plan operators.

The communicative goal of a discourse segment is represented in the purpose
of the discourse structure node. A purpose consists of two parts. The purpose
intention captures the intention that underlies the communicative goal, for example,
to explain something, to inform about something or to ask something. What is to be
explained, informed about or asked is captured in the purpose content. Whether or
not the purpose of a segment is assumed to be known to the addressee is annotated
in the status of the corresponding node.

To adopt Grosz and Sidner’s theory of attentional spaces in a discourse [1986],
we distinguish basic nodes, which correspond to ordinary segments, from focus space
nodes, which correspond to segments that are associated with an attentional space.
If a subtree is rooted by a focus space node an attentional space is considered as
enclosing the discourse segment that corresponds to the root node.

Note that the definition of appropriate roles and purpose intentions enable us
to represent certain types of dialogs as well.

Before we define discourse structure nodes formally, let us first define purpose
intentions, roles and status.

Definition 6.1 The set I = Ip U Iy is the set of purpose intentions, where
Ip = {Explain, Present, Omit, Reverbalize, Clarify, Repeat} is the set of planning
intentions and Iy = {Inform, Ask, Answer, Request, Acknowledge} is the set of ut-
terance intentions. ]

The distinction between planning and utterance intentions reflects different com-
plexities of intentions. Whereas a goal that includes an utterance intention can be
fulfilled by producing a single speech act, a goal that includes a planning inten-
tion has to be decomposed into subgoals to be fulfilled. Intuitively speaking, an
utterance intention is restricted to a single proof step, whereas a planning intention
encloses a larger subproof. As a consequence, planning intentions are progressively
refined by the dialog planner and therefore occur only in inner nodes of a discourse
structure tree. Utterance intentions, in contrast, stop the further refinement of a
branch and hence occur only in the leaves of a discourse structure tree. They always
trigger the production of a speech act.

The individual purpose intentions have the following meanings:



6.2 THE REPRESENTATION OF DIALOG PLANS

95

Planning Intentions

e Explain stands for a classroom-style explanation of a subproof, where
the students are taught how to proceed in proving a theorem, that is,
the emphasis lies on the process of finding a proof.

e Present stands for a textbook-style presentation of a subproof, where the
correctness of the proof is the main concern.

e Omit stands for the omission of a subproof. A subproof can be omitted
if it has been shown before, or if it is obvious or easily inferable by the
user of the system.

e Reverbalize means the reverbalization of a proof step that was not suc-
cessfully communicated previously. During the reverbalization of the
step, any reasoning that was left implicit before is made explicit.

e Clarify means a clarification dialog, which is entered if the user interrupts
the system, but his remark is not specific enough to allow the system to
plan a response.

e Repeat means the repetition of a previous presentation of a proof.

Note that Explain and Present represent different strategies how a proof can
be shown. In the remainder, we often use Show to denote either one of the
planning intentions Explain or Present. Moreover, note that, in contrast to the
other planning intentions, the dialog planner does not refine goals that include
an Omit intention. Instead, Omit makes the dialog planner stop a branch
without producing a speech act and therefore occurs only in leaves. The
rationale behind Omit is that some subproofs may be omitted for pragmatic
reasons, although they are necessary for the logical correctness of the overall
proof. Clarify, finally, allows for a special type of dialogs, the clarification
dialog.

Utterance Intentions

e Inform means the production of a speech act that expresses or comments
on a single proof step (i.e., an MCA).

e Ask, Answer, Request and Acknowledge mean the production of speech
acts that express a question, an answer, a request and an acknowledg-
ment, respectively (i.e., ICAs).

The function of a discourse segment with respect to its dominating segment is
captured by the following definition:

Definition 6.2 R = {verbalizes, contributes, commands, interrupts, clarifies, opens,
closes} is the set of roles. (]

Consider the case where a derivation is to be shown. In general, the derivation
D of a conclusion C consists of the application of an inference rule R to premises
Py,...,P,, leading to C and the derivations D; of P; for each 1 < i < n (cf.
Figure 6.6). Therefore, to show the derivation D, we usually have to show the
derivations Dy, ..., D, as well as the last step of D, that is, the step that leads to
C from Py,..., P, by application of R.

Now, the role verbalizes captures that a discourse segment that expresses the
last step of the derivation D is necessary to understand D. The discourse segments
that correspond to the subderivations Dy, ..., D, contribute to the understanding
of D, too. Therefore, they are annotated with the role contributes.

The necessity of the distinction between the roles verbalizes and contributes
becomes clearer when we consider the representation of derivations in TWEGA (cf.
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p - P,

D{ Dy - D,
C

R

Figure 6.6. The relationship between a derivation and its subderivations.

Chapter 3). Since a derivation D is represented by a proof term D, the last step of
D cannot easily be represented without the derivations of the premises of the last
step, which are represented by subterms of D. Let us elucidate that problem with
the following example:

FExample 6.1
Recall from Example 3.2 on page 39 that the derivation of FAA B D B A A in the
ND calculus

u u
FANB o [FAAB o
FB FA AT
FBAA

FAANBDBAA

is represented by the proof term
impi (and A B) (and B A) (Au:nd (and A B).andi B A (ander A B u) (andel A B u)).

Note that (and A B) and (and B A) are parameters to the inference rule impi. The
subterm Au:nd (and A B).andi B A (ander A B u) (andel A B u) represents the
derivation of the premise B A A of the last step of the derivation. The premise
itself cannot be represented without its derivation. O

Since we cannot represent a proof step without the derivations of its premises, we
have to make clear when we identify a proof term with the derivation it represents
and when we identify a proof term with the last step of the derivation it represents.
The role verbalizes indicates that only the last step is meant, whereas contributes
indicates that the whole derivation is meant.

We can summarize the distinction between contributes and verbalizes as follows:
Whereas contributes describes the composition of the structure, verbalizes refers to
the semantic content of the structure.

The role commands indicates that the user wishes P.rex to fulfill a new task,
whereas interrupts means that the user interrupts the system—for example, to tell
the system that he does not understand a step in the derivation. The role clarifies
captures that a clarification dialog contributes to the fulfillment of the dominating
purpose. We shall examine commands, interruptions and clarification dialogs in
more detail in Section 6.5.

The roles opens and closes only occur in the first respective last child of a focus
space node. They mean that the subsegment (usually a single utterance) marks the
begin and the end of the focus space, respectively. Moreover, the segment that opens
a focus space usually has the rhetorical function of a motivation for the derivation
shown in the focus space, whereas the closing segment serves as a verbal indicator
for the end of the focus space.

Clearly, in comparison to RST relations, our roles capture only a weak notion
of the functions of discourse segments.

Whether the purpose of a discourse segment is assumed to be known by the user
is captured by the following definition:

Definition 6.3 S = {known, unknown, inferable} is the set of status. n
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The status known or unknown represents the assumption of the system that the
user does or does not know the purpose of the corresponding segment, respectively.
The status inferable indicates that the purpose is easily inferable by the user. As
soon as a segment has been conveyed its status is set to known. If the dialog shows
later that the communication of the purpose of a segment was not successful its
status can be reset to unknown.

Now, let us define discourse structure nodes formally.

Definition 6.4 A discourse structure node D is a 6-tuple (P,C,G, p, s, A), where

(i) the purpose P is a pair (Py, Po) where Py € 1is the purpose intention and Pc
is the purpose content. Pg is a list of judgments, a single judgment, a speech
act, or the association of a judgment with a speech act.

(if) C is the content of the node. It is either an ordered list of discourse structure
nodes or a single speech act.

(iii) G is the parent discourse structure node which dominates D, that is, D is in
the content of G.

(iv) p € R is the role of D with respect to G.
(v) s € S is the status of D.
(vi) A is a tuple, called an annotation. ]

An association of a judgment with a speech act indicates that the judgment is
conveyed by uttering the speech act.

Notation: We often write (Pr P¢) to denote a purpose. We often write (Pr X by Y)
if Po is an association of a judgment X with a speech act Y.

The annotations A are used for bookkeeping during the construction of discourse
structure trees. We distinguish two types of discourse structure nodes, namely
basic nodes and focus space nodes, which differ in their annotations. But first, we
introduce the following notation:

Notation: We use € for the empty value.

Definition 6.5 A basic node D is a discourse structure node, where Py is a
single judgment, a speech act or an association of both, and the annotation is a
triple A = (u¢, J,up), where the following hold:

(i) If the node has not been conveyed, uc is the one-element list containing only
Pg, otherwise uc = e.

(ii) If Pc is a judgment or an association of a judgment and a speech act, then
J=Rci...cPi... P, is the justification chosen to convey the judgment,
where R is an inference rule, ¢;, 1 < i < m, are parameters and P;, 1 <1i <n,
are premises. If Pg is a speech act J = e.

iii) If Py is a judgment or an association of a judgment with a speech act up C
Judg
{Po,..., Py} are the unconveyed premises of J. If Pc is a speech act up = €. m

Basic nodes represent ordinary discourse segments. The dialog planner uses uc
and up to keep track of the tasks that are still to do. In .J, the dialog planner
records which justification is used in the verbalization of a judgment. Thus, in case
the communication is not successful, the planner can ensure a different verbalization
when replanning the presentation.
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Definition 6.6 A focus space node D is a discourse structure node, where P is
a list of judgments and the annotation is a pair A = (u¢,d), where

(i) ue C Pc is a list of unconveyed judgments.

(ii) d is the list of facts that have been derived in the focus space corresponding
to D. -

Focus space nodes are necessary to structure the presentation. As in the case of
basic nodes, the planner uses u¢c to keep track of the tasks that remain to be done.
All facts that have been derived in a focus space are dynamically recorded in d.
Hence, d represents the facts that are most salient in a focus space. Even though d
is not needed theoretically its rationale is to achieve a more efficient implementation.

Since not all combinations of value assignments in discourse structure nodes
make sense, we restrict ourselves to valid discourse structure nodes.

Definition 6.7 A discourse structure node D = ((Pr, Pc),C, G, p, s, A) is valid
if and only if the following hold:

(i) D is a basic node or a focus space node.

(ii) If Pr € Ip then Pc is a list of judgments or a single judgment and C' is a list
of discourse structure nodes.

(iii) If P; = Omit then Pg is a single judgment and C is the empty list.

(iv) If Pr € Iy then Pg is a single judgment, a speech act or an association of
both. If P¢ is a speech act or an association of a judgment with a speech act,
then C' is the same speech act.

(v) If p € {opens, closes} the parent node G is a focus space node.

(vi) If D is a focus space node, then the first node in C has role opens or contributes,
the last node in C has role closes or contributes and all other nodes in C' have
contributes as roles.

(vii) The status s = known if and only if all nodes in C have status known or C is
a speech act or P; = Omit. [

In (i), we stress that there are no other discourse structure nodes than basic nodes
and focus space nodes. As (ii) indicates, when the purpose intention is a planning
intention, the purpose content must be one or several judgments, and the content of
the node must be a list of discourse structure nodes. These content nodes contribute
to the fulfillment of the purpose of the discourse structure node. In (iii), we consider
the special case where the purpose intention is Omit. Then, the purpose content
is a single judgment and the content is empty, as the derivation of the judgment is
omitted. In (iv), we ensure that the purpose content of an utterance intention is
a judgment, a speech act or the association of both. Moreover, if a speech act is
involved in the purpose content, this speech act is also the content of the discourse
structure node, because it is this speech act that fulfills the purpose of the discourse
structure node. In (v) and (vi), we require that discourse structure nodes with roles
opens or closes can occur only in the content of a focus space node and only as the
first or last node, respectively, since these roles mark the begin or end of a focus
space, respectively. All other content nodes of focus space nodes must have the
role contributes. That means, in particular, that no commands, interruptions or
clarification dialogs may be adjoined in focus space nodes. Finally, (vii) guarantees
that a discourse structure node has status known if its content is a speech act (which
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fulfills the purpose—see (iv)), or its purpose intention is Omit (which means that
a derivation is omitted®—see (iii)), or all its content nodes are known.

We allow only valid discourse structure nodes in discourse structure trees, as
the following definition states.

Definition 6.8 A discourse structure tree is a tree of valid discourse structure
nodes. n

Let us first give an example for a discourse structure tree that represents a
monolog:

Ezxample 6.2
Consider the following judgment:

I' AH:nd(a € U).DefU H :nd(a € U)—nd(a e UUYV)

where DefU means the definition of U. This hypothetical judgment corresponds to
the following ND-style proof:

FaeU
FaeUUV

The proof can be explained by the following discourse segment:

DefuU

“Let a € U. Then a € U UV by the definition of U.”

This verbalization can be produced by the following speech acts:

S1 : (Hyp-Intro :Hypothesis nd(a € U))
S : (Derive :Reasons (nd(a € U)) :Conclusion nd(a € UUYV)
:Method DefU)

The bar on the left indicates that a focus space encompasses both speech acts.
The corresponding discourse structure tree is shown in Figure 6.7. For the sake of

(Show I' F AH:nd(a € U).Def U H : nd(a € U) —snd(a € UU V))
c
(Show I'y H:nd(a € U) + H : nd(a € U))
"

D : (Inform I'yH:nd(a € U) + H : nd(a € U))

o

D : (Show I, H:nd(a € U) F DefU H :nd(a € U U V))
/
(Show I'y H:nd(a € U) + H : nd(a € U))
i
(Omit I'y H:nd(a € U) + H : nd(a € U))

D; : (Inform I', H:nd(a € U)  DefU H :nd(a € UUV)

Figure 6.7. Example discourse structure tree. The box indicates a focus space. ¢
stands for contributes, v stands for verbalizes.

readability, we display only the purposes of the nodes and the roles. The speech act
S1 is the content of node D; and the speech act S5 is the content of the node D-.

The box indicates that the root node is a focus space node and that the focus
space encloses the whole discourse structure tree. ad

3Note that the dialog planner must ensure that a derivation is only omitted if its conclusion is
known or easily inferable (cf. Section 6.4.2).
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Aside from monologs, P.rex allows for commands and interruptions entered by
the user and for clarification dialogs. A discourse structure subtree whose root
is marked with the role commands or interrupts represents a command or an in-
terruption, respectively, and is always contributed by the user. Thus, the system
cannot initiate a command or an interruption. A clarification dialog is characterized
by the role clarifies. It consists of two segments: a question asked by the system
and the user’s answer. Hence, it can always be determined, which segments of the
discourse are contributed by which participant: only commands, interruptions and
answers in clarification dialogs originate from the user; all other discourse segments
are produced by the system.

Let us extend the previous example to show a dialog and how it is represented
as a discourse structure tree:

Ezxample 6.2a (continued)

Assume that the explanation produced by the system did not satisfy the user, such
that he enters a dialog. To elucidate the representation of dialogs in discourse
structure trees, it suffices to examine the following simplistic dialog:

P.rex: [...] Then a € U UV by the definition of U.
User: This step is too difficult.

P.rex: Do you understand the premises?

User: Yes.

P.rex: [produces a different explanation)

Since the explanation produced by the system is not satisfactory, the user interrupts
the system complaining that he does not understand the last step. To find out
where the problem exactly is, the system enters a clarification dialog asking the
user whether he understood the premises of the last step. When the user answers
with yes, the system has enough information to replan the explanation of the last
step. The discourse structure tree that represents this dialog is shown in Figure 6.8.

O

D : (Show I' H:nd(a € U) + Def U H : nd(a € U U V))
La—

D5 : (Inform I'y H:nd(a € U) +
DefU H :nd(a € UUYV))

(Inform (too-difficult D))

(Clarify (understood? premises))
AT T

(Ask (understood? premises)) (Answer (yes))

(Show I'yH:nd(a € U) - DefU H :nd(a € UUYV))

L]

Figure 6.8. A discourse structure tree representing a dialog. ¢ stands for
contributes, v for verbalizes, i for interrupts and cl for clarifies.

To build a proof explanation system that allows for the user’s interaction as
well as the system’s reasoning about its own explanations, we need a powerful
representation of the discourse. To obtain such a representation, we adopted Hovy’s
discourse structure trees [1993] and adapted them to account for some aspects of
Grosz and Sidner’s theory [1986] and for certain types of dialogs.
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Most prominently, in P.rez, we allow for two types of discourses besides monologs:

interruptions by the user and clarification dialogs initiated by the system. Monologs,
interruptions and clarification dialogs are represented in one common structure, the
discourse structure tree.

Moreover, we model Grosz and Sidner’s theory of the attentional structure of
discourses [1986] by defining special nodes that reflect the focus spaces. The focus
spaces will be used later for reference and format decisions (cf. Sections 6.4.4 and
7.1).

The definition of discourse structure trees alone does not guarantee the pro-
duction of coherent dialogs. It is in cooperation with the plan operators that the
discourse structure tree strives for a coherent discourse. The plan operators are the
subject of the remainder of this chapter.

In Prex, discourse structure nodes are implemented as chunks. The formal
definition of the respective chunk types is given in Appendix C.1.2. During the
construction of a discourse structure tree, the nodes are created and added to the
declarative memory. Since the nodes persist in the memory, the discourse structure
tree can be used later as a dialog history. Hence, a discourse structure tree serves
both as dialog plan and as dialog history.

In the following section, we shall show in detail how the dialog planner constructs
discourse structure trees.

6.3 Plan Operators

Operational knowledge concerning the presentation is encoded as productions in
ACT-R. Each production either fulfills the current goal directly or splits it into
subgoals. The goals to be fulfilled are, for example, the goal to show a subproof (as
captured in a discourse structure node) or the goal to choose one of several possible
justifications for a proof step.

In this section, using ND proofs as examples we shall show which productions
are appropriate to plan a discourse that explains a proof and how these productions
interact to construct a discourse structure tree. Recall from Section 3.3 that we
can represent diverse logics in TWEGA, such as first-order or higher-order logics,
modal logics, or temporal logics. The productions in P.rex are independent of
the represented logic, some of them, however, depend on inference rules of the
represented calculus. We shall first introduce the general planning principle in
Section 6.3.1. Then, we give the actual productions that are used by Prez in
Section 6.3.2. In Section 6.3.3, finally, we shall define schemata as descriptions of
standardized parts of the presentation in mathematics.

In the following we give derivations as TWEGA terms. Sometimes, we also add
an ND-style description to improve readability, but keep in mind that the dialog
planner operates on TWEGA terms directly. We consider only TWEGA terms D and
¢ with I' - D : ¢ for some context I', where according to the judgments-as-types
principle (cf. Section 3.4) ¢ stands for a judgment in a calculus that is embedded
in TWEGA, and D stands for a derivation of ¢ in this calculus. We call ¢ judgment
term* and D its proof term. Moreover, we call the subterm of a judgment term that
represents a calculus-level formula formula term and the formula’s type type term.
We often write I' |- ¢ if the proof term is not further considered.

FExample 6.3
Let us consider the signature X" from Table 3.6 on page 36. Furthermore, let

4Do not confuse the calculus-level judgment term ¢ with the meta-level judgment I' - D : ¢
in TWEGA!
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I'=A:0,B:0,H;:ndA, Hy:ndB. Then, we can derive the following judgments:
I'and AB:o and I'tandi A B Hy Hy:nd(and A B)

In these judgments, nd(and A B) is the judgment term and andi A B H; H, is its
proof term. Moreover, and A B is the formula term and o is the type term of the
formula term. O

In the remainder of this chapter, we often identify an ND expression ¢ with the
TWEGA representation of its judgment "™

6.3.1 The Dialog Planning Principle

To elucidate the general principle of how proofs are explained, let us for now neglect
discourse structure and concentrate only on the speech acts to be produced.
General Productions

The patterns that occur in general in proofs are applications of inference rules and
introductions and discharges of hypotheses and parameters. The most prominent
pattern is the application of an inference rule, in ND notation

For o Fo
X

Inference rules in TWEGA are declared in the signature and have the form

R

R:Ia;:A;..... IHap:ApPr—...w»P,—CeX

Here, ay, ..., a,, are implicit arguments of type Ay, ..., A,,, respectively, that may
occur in the inference rule. Pi,..., P, are the premises of the inference rule, C is
its conclusion. Thus, an application of an inference rule has the form

T'FRei...cwDi...Dn:tp

where the ¢; with I' F ¢;: A; are the instances of a; for 1 < i < m,
¥ = Cler/aq,...,cm/am] is the conclusion, and ¢; = PBi[e1/ai,...,cm/am] are
the premises with I' b D; : ¢; (i-e., D; are the proof terms of the premises) for
1<i<n.

If we want to show such a proof step, it makes sense to show its premises first.
To do so, we need a production that ensures that all premises are shown before the

proof step. To this end, we introduce the following production:

(N1) IF the current goal is to show I' - ¢
and R is the most abstract known rule justifying the current goal
and @ = {¢;|I" F ¢; is unknown for 1 <7 < n} #0
THEN for each ¢; € & push the goal to show I' F ;.

This production is an example for a production that splits the current goal into
several subgoals.

If the premises ¢4, ..., ¥, have already been shown, the proof step can be pre-
sented by the following production:

(N2) IF the current goal is to show I' - ¢
and R is the most abstract known rule justifying the current goal
and I' - ¢1,...,I' F ¢, are known
THEN produce MCA
(Derive :Reasomns (gi1,...,®n) :Conclusion 1) :Method R)
and pop the current goal (thereby storing I" 1) in the declarative memory).
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This production is an example for a production that directly fulfills the current
goal, in this case by producing the MCA. Hence, the current goal can be popped
from the goal stack. Note that the conditions of (N1) and (N2) differ only in the
knowledge of the premises ¢; for rule R. (N1) introduces the subgoals to show the
unknown premises in . As soon as those are derived, (N2) can apply and derive
the conclusion.

As discussed in Section 3.4, introduction and discharge of hypothesis and pa-
rameters are encoded in TWEGA by hypothetical and parametric judgments, re-
spectively. Hypothetical judgments have the form

't Ap:p.D:Ip:p.a

where D is a proof term and ¢ and 9 are judgment terms. The following produc-
tion verbalizes the introduction of the hypothesis and pushes the goal to show the
conclusion of the hypothetical judgment:

(N3) IF the current goal is to show I' - ITp: .1
THEN produce MCA (Hyp-Intro :Hypothesis ¢),
store I''p:p F ¢ in the declarative memory,
pop the current goal,
and push the goal to show I p:p I .

This production splits the current goal into the subgoals to introduce the hypothesis
(therefore, we can store the judgment expressing the hypothesis in the declarative
memory) and to show the conclusion. Hence, the current goal will be fulfilled and
can be popped from the goal stack.
Parametric judgments have a form that is similar to hypothetical judgments,
namely
I'tXa:AD: IIa: A

where A is a type term or a formula term, D is a proof term and ¢ is a judgment
term. Similarly to (N3), the following production verbalizes the introduction of
the new parameter and pushes the goal to show the conclusion of the parametric
judgments:

(N4) IF the current goal is to show I' - ITa: A
THEN produce MCA (Par-Intro :Parameter a :Type A),
store I'a: A F a: A in the declarative memory,
pop the current goal,
and push the goal to show I'ja: A F .

Similarly to the previous production, this production splits the current goal into
the subgoals to introduce the parameter (therefore, we can store the judgment
expressing the declaration of the parameter in the declarative memory) and to
show the conclusion. Hence, the current goal will be fulfilled and can be popped
from the goal stack.

Since these four productions already cover all patterns that occur in proofs, they
suffice in principle to present any proof. However, the presentations they produce
are often very tedious to follow and hard to comprehend, because they do not include
any explaining comments or motivations. Hence, further specialized productions
that overcome these problems are desirable. Nevertheless, the productions (N1)—
(N4) guarantee that a presentation can always be produced.

To examine how the productions work together in the presentation of a proof,
let us consider the following example:

FEzxample 6.4
Let X¥ be the signature encoding the ND calculus as given in Table 3.6 on page 36.
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We add the following declarations to X*? (for the sake of readability, we omit
implicit arguments to inference rules and show instead only their premises and
conclusions):

€ :i=>(imo)—o

U : (imo)—=(i—o)—(i—0)

DefU; : nd(z € S)—»nd(z € SUS')

DefUy : nd(z € S')—>nd(z € SUS")

Recall that the inference rule VE is encoded by
ore:nd(A V B)—(ndA—ndC)— (ndB—ndC)—ndC € X.
Now, let us consider the following judgment:

I'kore H
()\Hl :nd(a S U).Def Ur Hl)
()\ngnd(a S V).Def Us HQ)
indlaeUUYV)

where I' = a:i,U:i—0,V:i—o0,H:nd(a € UVa € V). This judgment corresponds
to the following ND proof:

FaeUVaeV FGEUUVDerl I—aEUUVDeﬂJ2vEH1,Hz
FacUUV

To examine how the presentation of this proof is planned, let us assume the
following situation:

e The goal stack has only one goal, namely:

Gl: Show I'tore H
()\H]_ :nd(a (S U).Derl H]_)
()\HQ:nd(a S V).Def Us HQ)
:nd(a € UUV)

Since the top goal on the goal stack is always the current goal, G1 is the
current goal.

e Considering all justifications that prove the current goal, VE is the most ab-
stract rule known to the user. (In fact, VE is the only rule that justifies the
current goal in our proof. We assume that the user is familiar with this rule.)

e Each declaration in I" has been shown earlier, that is, in particular, the user
already knows the first premise to the rule VE, the so-called major premise:

I'rH:ndlaeUVac€eV).

e The hypothetical judgments that are the second and third premises to the
rule VE, called cases, namely

I' AHi:nd(a € U).DefU; Hy :nd(a € U)—nd(aec UUV) and
I't MAHy:nd(a € V).Def Uy Hy : nd(a € V) —nd(a € UUYV),

are unknown to the user.

To fulfill the current goal G1 in this situation, we cannot apply (N2), since the
second and third premises, the hypothetical judgments, are still unknown. But we
can apply (N1), which pushes the goals to show the hypothetical judgments (but
not the first premise, I' - H : nd(a € U V a € V), which is already known). Thus,
the application of (N1) results in the following goal stack:
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Gl1.1: Show Ik /\lend(ae U)-Derl H1
:nd(a € U)—nd(a e UUYV)
G1.2: Show Ik /\ngnd(a € V).Def Us H2
:nd(a € V)—=nd(a e UUV)
Gl: Show I\ ore H
()\Hl :nd(a S U)-Derl Hl)
()\H2:nd(a € V).Def Uz H2)
ind(a e UUYV)

Thus, G1.1 becomes our current goal. Since it includes a hypothetical judgment,
we apply (N3), which produces the MCA

(Hyp-Intro :Hypothesis nd(a € U))

and stores I', Hy:nd(a € U) - H; : nd(a € U) as known in the declarative memory.
Moreover, (N3) replaces G1.1 on the goal stack by G1.1.1 as follows:

G1.1.1: Show I, Hj:nd(a€U)F DefUs Hy:ndlaeUUYV)
G1.2: Show I'F AH2:nd(a € V).Def Uy Ho
:nd(a € V)—=ndlae UUYV)
G1: Show It ore H
()\Hl:nd(a S U)-Derl Hl)
()\Hg:nd(a S V).Def Us Hz)
:ndla e UUYV)

Now, G1.1.1 is the current goal. Since I', H; :nd(a € U) + Hy : nd(a € U) is the
only premise of the current goal and is known because of the previous step, we can
apply (N2). This production produces the MCA

(Derive :Reasons (nd(a € U)) :Conclusion nd(a € UUYV)
:Method DefU)

and pops the current goal from the goal stack:

G1.2: Show Ik )\Hz:nd(a S V)-DerQ H2
:nd(a€V)—=ndlac UUYV)
G1: Show I+ ore H
()\Hl :nd(a S U)-Derl Hl)
(AHQan(Cl S V).Def U2 HQ)
:nd(ae UUYV)

Now, we have shown the first case and G1.2, the goal to show the second case,
becomes the current goal. Tt is fulfilled similarly to G1.1 by the productions (N3)
and (N2) producing the following MCAs:

(Hyp-Intro :Hypothesis nd(a € V))
(Derive :Reasons (nd(a € V)) :Conclusion nd(a € UUYV)
:Method DefU)

Hence, we obtain the following goal stack:

Gl: Show I'Fore H
()\Hl:nd(a S U)-Derl Hl)
()\HQ:nd(a S V).Def Us HQ)
:nd(a € UUYV)

This goal stack is identical to our initial goal stack. But since the cases have been
presented in the meantime and are therefore now known to the user, we can apply
(N2), which produces the MCA



106 CHAPTER 6. THE DIALOG PLANNER

(Derive :Reasons (nd(a e UVa€V),ndlaeUUV),nd(lace UUYV))
:Conclusion nd(a € UUV) :Method VE).

and leaves us with an empty goal stack after popping the current goal.
To sum up, the following MCAs are produced to explain our proof:

(Hyp-Intro :Hypothesis nd(a € U))

(Derive :Reasons (nd(a € U)) :Conclusion nd(a e UUYV)
:Method DefU)

(Hyp-Intro :Hypothesis nd(a € V))

(Derive :Reasons (nd(a € V)) :Conclusion nd(a € UUYV)
:Method DefU)

(Derive :Reasons (nd(a € UVa€V),ndlae UUV),nd(ac UUYV))
:Conclusion nd(a € UUV) :Method VE)

The following is a possible verbalization:

Let a € U. Then, a € UUV by the definition of U. Let a € V. Then,a € UUV
by the definition of U. Therefore, a € U UV by VE.

Specific Productions

Clearly, even though every step of the proof has been shown, a presentation as given
in Example 6.4 is sometimes not satisfying. Since the inference rule VE corresponds
to the case analysis in mathematics, we often prefer an explanation such as the
following:

To prove a € UUV, let us consider the cases where a € U and a € V, respectively.
Case 1: Let a € U. Then, a € U UV by the definition of U.
Case 2: Let a € V. Then, a € U UV by the definition of U.

This completes our case analysis.

We can obtain such an explanation by introducing a specialized production that
handles only case analyses:

(N5) IF The current goal is to show I" - 1)
and VE is the most abstract known rule justifying the current goal
and the major premise I' F @1 V 2 is known
and the cases I' - IIpi:p1.¢ and I' b IIps:po.1p are unknown
THEN pop the current goal
and push the goals
to produce MCA (Case-Analysis :Goal 1 :Cases (p1,p2)),
to produce MCA (Case :number 1),
to show I' F IIp;: 1.9,
to produce MCA (Case :number 2),
to show I' F ITps: 2.1,
and to produce MCA (End-Case-Analysis :Goal ).

This production introduces as new subgoals the cases of the case analysis and mo-
tivates them by producing the corresponding explanatory MCAs.

Comparing the preconditions of the productions (N1) and (N5), it is easy to see
that both are applicable to goal G1 in the initial situation of Example 6.4. But
since (N1) is less specific than (N5), the latter should be preferred to the former.
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The proofs we investigated so far indicate that, in general, more specific pro-
ductions should be preferred to more general ones, since more specific rules treat
common communicative standards used in mathematical presentations. To en-
sure this, more specific productions are assigned lower costs, that is, in particular,
C(ns) < Cnyy (cf. Equation 5.5 in Section 5.4.1). If a general rule should be pre-
ferred in the presentation to a specific one, it is also possible to achieve that by
assigning higher costs to the specific production.

Moreover, we suppose that each user knows all ND rules. This is reasonable,
since ND rules are the least abstract possible logical rules in proofs. Hence, for
each production p that is defined such that its goal is justified by an ND rule in the
proof, the probability P, that the application of p leads to the goal to explain that
proof step equals one. Therefore, since VE is such an ND rule, Pxs) = 1.

Since (N5) cannot produce the bracketing MCAs directly (the presentation of
the individual cases has to be placed in between), we need another production that
actually produces the speech acts.

(N6) IF the current goal is to produce a speech act
THEN produce it and pop the current goal.

To examine how the presentation is planned with these additional productions,
we consider again our example:

Ezample 6.4a (continued)

Let us go back to the initial situation from Example 6.4. This time both productions
(N1) and (N5) are applicable. Recall that the conflict resolution mechanism chooses
the production with the highest utility £ (cf. Equation 5.5). Since Pn5) = 1 and
P, <1 for all productions p, we obtain

Pinsy > Pinyy-

Since the application of (N1) or (N5) would serve the same goal, G(ns) = G(n1)-
Since (N5) is more specific than (N1), Cns) < C(n1)- Thus

Ensy = Pins)G(ns) — Ciws) > Py Gy — O vty = Eqny

Therefore, the dialog planner chooses (N5) for the explanation, thus resulting in
the following goal stack:

G1.0: Produce (Case-Analysis :Goal nd(a € UUV)
:Cases (nd(a € U),nd(a € V)))

Gl.la Produce (Case :number 1)
Gl1.1: Show Ik )\Hl:nd(ae U)-Derl H1

:nd(a € U)—nd(a e UUV)
Gl.2a Produce (Case :number 2)
G1.2: Show Ik )\HQ : nd(a € V)Der2 H2

:nd(a € V)—=ndlae UUYV)
G1.3: Produce (End-Case-Analysis :Goal nd(a € UUYV))

Note that the initial goal G1 is popped from the goal stack before the new goals
are pushed onto the goal stack.

Now, (N6) pops first G1.0 and then Gl.la and produces the corresponding
MCAs. Then G1.1 becomes the current goal. It is handled as previously by the
productions (N3) and (N2) leaving G1.2a on top of the goal stack. This goal is also
popped by (N6) producing the corresponding MCA and leaving G1.2 as the current
goal. Again, (N3) and (N2) apply and leave G1.3 as the only goal on the goal stack.
A final application of (N6) produces the corresponding MCA and leaves the goal
stack empty.

Hence, the following MCAs are produced:
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(Case-Analysis :Goal nd(a € UUV) :Cases (nd(a € U),nd(a € V)))
(Case :number 1)
(Hyp-Intro :Hypothesis nd(a € U))
(Derive :Reasons (nd(a € U)) :Conclusion nd(a € UUV)
:Method DefU)
(Case :number 2)
(Hyp-Intro :Hypothesis nd(a € V))
(Derive :Reasomns (nd(a € V)) :Conclusion nd(a € UUYV)
:Method DefU)
(End-Case-Analysis :Goal nd(a € UUYV))

A possible verbalization of these speech acts is the following;:

To prove a € UUV, let us consider the cases where a € U and a € V, respectively.
Case 1: Let a € U. Then, a € U UV by the definition of U.
Case 2: Let a € V. Then, a € U UV by the definition of U.

This completes our case analysis.

6.3.2 Planning Discourse Structure Trees

In the previous section, we examined how we can define productions that present a
proof by producing a sequence of speech acts. However, the dialog planner should
not produce just a mere sequence of speech acts but a discourse structure tree.
In this section, we shall modify the productions from the previous section and
introduce additional productions to allow the dialog planner to build a discourse
structure tree as defined in Section 6.2.2. Moreover, using the example from the
previous section, we shall examine how these productions cooperate to present a
proof.

Let us now examine what has to be changed in the productions to construct
discourse structure trees. The goals on the goal stack are discourse structure nodes.
Whenever a production pushes a new discourse structure node onto the goal stack,
it also has to ensure that this new node is inserted in the discourse structure tree
that is under construction.

In contrast to the approach shown in the previous section when we introduced
the general principle, we do not produce any speech acts when the purpose of a
goal is a planning intention. Instead, we produce MCAs only if the purpose is an
utterance intention.

Recall from Section 5.4.1 that ACT-R’s conflict resolution process chooses the
production to apply by calculating its utility. Since we switched off production pa-
rameter learning (cf. Section 6.1.6), the productions maintain their initial parameter
values. The default values are ¢ = r = 1.0, a = 0.05 and b = 1.0.

We often define first general productions that apply in many situations and later
more specific productions for special situations. Since these specific productions
should be preferred to the general ones when both are applicable, we usually set the
cost parameter a for the specific production to a lower value than for the general
production. The rationale behind this is that it can be expected that the cost a to
fulfill the goal by a specific production is lower than the cost a to fulfill the same
goal by a general production, since the discourse is more structured by the specific
production than by the general one. Therefore, fulfilling the subgoals set by the
specific production takes less effort than fulfilling the subgoals set by the general
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one. (Recall from Section 5.4.1 that a includes the cost of applying the production
and to fulfill any subgoals it sets.)
Let us again consider the proof step

T'FRei...cmDi...Dn: )

where I' + D; : ¢;. A discourse segment that shows this proof step must include for
each premise a segment for the derivation of that premise as well. To ensure that
the premises are shown before the proof step, the discourse structure nodes that
represent the premises must be pushed onto the goal stack and processed before the
proof step is shown. Hence, the naive production (N1) is replaced by the following
production:

(P1) IF the current goal is the basic node G = (Show I' |- )
and R is the most abstract known rule justifying the current goal
and there is a 1 < ¢ < n such that I' - ¢; has not yet been conveyed
THEN push the basic node G; = (Show I' I ;) onto the goal stack
and append it to the content of G.

This production extends the discourse structure tree in node G as shown in Fig-
ure 6.9. Note that while (N1) pushed the goals to show all unknown premises at
once, (P1) pushes only one goal, namely the goal to show one unconveyed premise.
Which premise is chosen depends on a global flag. Among the options are the first
unconveyed premise and the unconveyed premise with the shortest derivation.

(Show I' = Re1 . ..cmD1 ... Dy 1 %)

T~

(Show I' D1 : 1) -+ (Show I'+ D;_1: pi_1)

. (P1)
v
(Show I' = Req .. .cmD1 ... Dy 1 %)

(Show I' = D1 : 1) --- (Show I'kD;_1: @;_1) (Show I' - D; : ¢;)

Figure 6.9. Extension of the discourse structure tree by production (P1).

Moreover, note that successive applications of (P1) ensure that for every premise
a goal is pushed to show the premise. (N1), in contrast, pushes only goals to show
unknown premises. The production (O1), which will be defined later in this section,
will ensure that only unknown premises will eventually be derived.

When all premises have finally been conveyed, the proof step itself may be
conveyed. This is triggered by the following production, which replaces (N2):

(P2) IF the current goal is G = (Show I' I )
and R is the most abstract known rule justifying the current goal
and all I' F ¢; for 1 < ¢ < n have been conveyed
THEN push the goal G’ = (Inform I' - 1))
and append it to the content of G.
G will inherit the status of G’ by the subgoal return mechanism.

This production extends the discourse structure tree in node G as shown in Fig-
ure 6.10. Note that G inherits the status of G’ by ACT-R’s subgoal return mecha-
nism (cf. Section 5.4).
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(Show I' = Rey ... cmD1 ... Dy 1 @)

T~

(Show I' - D1 : 1) -+ (Show I' - Dy, : @5)

 (P2)
v
(Show I' - Req ... cmD1 ... Dy 1Y)

e

(Show '+ Dy :¢1) -+ (Show '+ Dy, :¢n) (Inform T+ Rei...cmDi...Dn )

Figure 6.10. Extension of the discourse structure tree by production (P2).

While (N2) directly produced a corresponding MCA, (P2) pushes an Inform
goal. The following production then verbalizes the proof step by producing the
corresponding MCA and sets the status to known:

(I1) IF the current goal is G = (Inform I' - R ¢y ...cpD1 ... Dy 1 ),
where ' D;: p; for 1 <i<mn
THEN produce the MCA
(Derive :Reasomns (i,...,¢n) :Conclusion % :Method R),
set the content of G to the MCA,
and set the status of G to known.

Note that (P1) and (P2) only test whether the premises have been conveyed and not
whether the premises are known to the user. But it may happen that a proof step
has not yet been conveyed, but the fact derived by this step is already known to the
user, for example, because the same fact was already derived earlier in the proof.
Then, the fact should not be derived again. The following production prevents the
dialog planner from deriving a known fact several times:

(01) IF the current goal is G = (Show I I 1),
and I' - 1) is known to the user
THEN set the content of G to the discourse structure node G' = (Omit I' - 1),
and set the status of G and G’ to known.

Since G’ is not pushed onto the goal stack, this branch of the discourse structure tree
is not further extended. Note that (P1) or (P2) may be applicable even when (O1)
is applicable. To ensure that the dialog planner chooses (O1), we assign lower costs
to it, namely we set a(o;) = 0.003. This is reasonable, since the goal is immediately
fulfilled and no subgoals are introduced.

Since we produce MCAs only indirectly via Inform goals, we can handle hypo-
thetical and parametric judgments in a single production. Hence, we replace (N3)
and (N4) by the following production:

(P3) IF the current goal is the basic node G = (Show I' - ITz:(.4),
where ( is a type term, a formula term or a judgment term
THEN append to the content of G the discourse structure subtree rooted by the focus
space node Go from Figure 6.11,
and push the goals Go, G2 and Gi.
Go will inherit the status of G2 and G will inherit the status of Go by the
subgoal return mechanism.

This production extends the discourse structure tree in node G as shown in Fig-
ure 6.11. Note that the box indicates a focus space that encompasses the whole
subtree. The introduction of this focus space is necessary to represent the scope
of the hypothesis of the hypothetical judgment or the parameter of the parametric
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P3
G : (Show I' b ITz:{ ) v > G :(Show I' - IIz:¢.%)

Go : (Show I' - ITz:¢.%)

N

G1:(Show I'yz:CF z:¢) Go:(Show I',z:( F )

Figure 6.11. Extension of the discourse structure tree by production (P3).

judgment, respectively. Since the production pushes Gy, G2 and G in that order,
it leaves (G1 on top of the stack.

To verbalize the introduction of a hypothesis or a parameter, we need two further
productions similar to (I1) that produce the corresponding MCA and set the status
to known:

(12) IF the current goal is G = (Inform I' - p : ),
where p:p € I' and ¢ is a judgment term

THEN produce the MCA (Hyp-Intro :Hypothesis ¢),
set the content of G to the MCA,
and set the status of G to known.

(I13) IF the current goal is G = (Inform I' - a : A),
where a: A € I' and A is a type term or a formula term

THEN produce the MCA (Par-Intro :Parameter a :Type A),
set the content of G to the MCA,
and set the status of G to known.

Note that none of the productions we introduced so far in this section ever pops
a goal from the goal stack. Hence, we need a production that pops goals with status
known:

(P4) IF the current goal is a discourse structure node with status known
THEN pop it.

To examine how these productions plan a discourse structure tree, let us come

back to Example 6.4 from page 103.

Ezample 6.4b (continued)
This time, we assume that the initial situation is the following:

e The goal stack has only one goal, namely:

Gl: Show I'Fore H
(AHl :nd(a S U).Derl Hl)
()\sznd(a S V).Def Us HQ)
nd(a € UUY)

e Considering all justifications that prove the current goal, VE is the most ab-
stract rule known to the user.

e Each declaration in I" has been shown earlier, that is, in particular, the user
already knows the major premise to the rule VE, namely

I'rH:ndlaeUVaceV).
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e The hypothetical judgments that are the second and third premises (the cases)
to the rule VE, namely

I' AHi:nd(a € U).DefU; Hy :nd(a € U)—nd(aec UUV) and
I' AHz:nd(a € V).Def Uz Hs : nd(a € V)—nd(a € UU V),

are unknown to the user.

In this situation, the only applicable production is (P1). Assume, the global flag
indicates that from all unconveyed premises, the first one is always chosen. Then,
application of (P1) results in the following discourse structure tree

G1: (Show I' - ore H (AH1:nd(a € U).Def Uy Hy) (AH2:nd(a € V).Def Uz Ha) : nd(a € U U V))

Gl.1: (Show I' - H:nd(a € U Va € V))

and the following goal stack:

Gl.1: Show I'FH:ndlaeUVa€V)
G1: Show I+ ore H
(/\Hl :nd(a S U)-Derl Hl)
(/\ngnd(a S V).Def Us HQ)
:nd(ae UUYV)

Hence, G1.1 becomes the new current goal. Now, since the proof term in
G1.1 has no premises at all, (P2) is applicable. But since the user already knows
't H:nd(a € UVac€V),(O1) is applicable too. Since a(01) < a(p2), the conflict
resolution mechanism of ACT-R chooses (O1). Its application extends the discourse
structure tree by the new node G1.1.1:

G1: (Show I' + ore H (AHy:nd(a € U).Def Uy Hy) (AH2:nd(a € V).Def Uz Ho) : nd(a € U U V))

G1l.1: (Show I' - H:nd(a € UVa € V))

G1.1.1: (Omit I' - H :nd(a € UV a € V))

The goal stack remains unchanged. Note that (O1) sets the status of G1.1 to known.
Hence, (P4) applies and pops G1.1 from the goal stack leaving G1 on top of the
goal stack.

Now, (P1) is again the only applicable production. This time, it results in the
following discourse structure tree

G1: (Show I' - ore H (AH1:nd(a € U).Def Uy Hy) (AH2:nd(a € V).Def Us Hz) : nd(a € U U V)

i

Gl.1 G1.2: (Show I' - AHy:nd(a € U).Def Uy Hy : nd(a € U) —nd(a € UUV))

G1.1.1

and the following goal stack:

Gl1.2 Show I'F AH;:nd(a € U).DefU; Hy :nd(a € U)—nd(a e UUYV)
Gl: Show I'koreH
()\Hl :nd(a € U)Derl Hl)
()\Hz:nd(a € V).Def Us HQ)
:nd(ae UUYV)

Hence, G1.2 becomes the new current goal. Since its purpose content is a hypo-
thetical judgment, the only applicable production is (P3). Its application adjoins a
subtree to the discourse structure tree in node G1.2:
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G1: (Show I' + ore H (AHy:nd(a € U).Def Uy Hy) (AH2:nd(a € V).Def Us Ha) : nd(a € U U V))

it

G1.1 G1.2: (Show I' - AH1 :nd(a € U).Def U1 Hy : nd(a € U)—nd(a € UU V))

Gl.1.1 G1.2.0: (Show I'  AH; :nd(a € U).Def Uy Hy : nd(a € U)—nd(a € U U V))

/

G1.2.1: (Show I'" + Hy :nd(a € U)) G1.2.2: (Show I'' + DefU; Hy : nd(a € U U V))

where I'" = I', Hy :nd(a € U). Recall that the box indicates a focus space, that is,
G1.2.0 is a focus space node. The goal stack is now as follows:

G1.2.1 Show I'F H;:nd(a€U)
G1.2.2 Show I't DefU; Hy:ndlaeUUYV)
G1.20 Show Ik AHi:nd(a€U).DefUs Hi:nd(a€eU)—nd(acUUYV)
G1.2 Show I+ AHi:nd(a € U).DefU; Hy :nd(a € U)—nd(a e UUYV)
G1 Show I\ ore H

()\Hl:nd(a S U)-Derl Hl)

()\Hg:nd(a S V).Def Us HQ)

:nd(a e UUYV)

Now, G1.2.1 becomes the current goal. Since its proof term has no premises, (P2)
can be applied. It extends the discourse structure tree in node G1.2.1 as follows:
G1.2.1: (Show I'' + H; : nd(a € U))

G1.2.1.1: (Inform I'' + H; : nd(a € U))

and pushes the node G1.2.1.1 onto the goal stack. Now, since Hy:nd(a € U) € I,
(12) applies, produces the MCA

(Hyp-Intro :Hypothesis nd(a € U))

and sets the status of G1.2.1.1 to known. Hence, (P4) can be applied and G1.2.1.1is
popped from the goal stack. Thus, G1.2.1.1 passes its status by the subgoal return
mechanism to G1.2.1, whose status is therefore set to known as well, and G1.2.1 is
then popped by (P4) leaving G1.2.2 as the new current goal.

Next, (P1) applies extending the discourse structure tree in node G1.2.2 by

G1.2.2: (Show I'" + Def Uy Hi :nd(a € UUV))

G1.2.2.1: (Show I'' + Hi : nd(a € U))

and pushing G1.2.2.1 onto the goal stack. Since I'" + H;j :nd(a € U) is now
known to the user because of the last produced MCA, (O1) applies and changes the
discourse structure subtree rooted by G1.2.2 to

G1.2.2: (Show I'" + Def Uy Hy : nd(a € UUV))

G1.2.2.1: (Show I'' = H; : nd(a € U))

G1.2.2.1.1: (Omit I'" + H; : nd(a € U))

Furthermore, (O1) sets the status of G1.2.2.1 to known, such that (P4) can apply,
which pops G1.2.2.1 from the goal stack, again leaving G1.2.2 as the new current
goal. This time, all premises have been conveyed and (P2) applies resulting in

G1.2.2: (Show I'' + Def Uy Hy : nd(a € UU V))

/ \

G1.2.2.1 G1.2.2.2: (Inform I'" - Def U1 Hy : nd(a € UUV))

G1.2.2.1.1
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and pushing G1.2.2.2 onto the goal stack:

G1.2.2.2 Inform I'}\ Defu; Hy:ndlaeUUYV)
G1.2.2 Show It DefU; Hy :nd(a e UUYV)
G1 Show I'Fore H
(}\Hl :nd(a S U)-Derl Hl)
()\HQ:nd(a S V).Def Ua HQ)
ind(ae UUY)

This goal is then fulfilled by (I1), which produces the MCA

(Derive :Reasons (nd(a € U)) :Conclusion nd(a € UUYV)
:Method DefU)

and sets the status of G.1.2.2.2 to known. Hence, (P4) can apply and pops G1.2.2.2,
thereby passing the status known to G.1.2.2 and initiating a cascade of popping
goals and passing the status known to the next goal on the stack, such that G1.2.2,
G1.2.0 and G1.2 are successively popped from the goal stack by (P4).

Thus, G1 becomes the current goal. Now, one further premise is unknown and
(P1) applies resulting in the following discourse structure tree:

G1: (Show I' + ore H (AH1:nd(a € U).DefU1 H1) (AH2:nd(a € V).Def U2 H2) : nd(a € U U V))

_— N

G1.1 G1.2 G1.3: (Show I' = AHs:nd(a € V).Def Us Ha : nd(a € U) —nd(a € U U V))
G1.1.1 G1.2.0
G1.2.1 G1.2.2

| /N

G1l.2.1.1 G1.2.21 G1.2.2.2

G1.2.2.1.1

and the goal stack

G1.3 Show TI'F AHy:nd(a € V).DefUy Hy :nd(a € U)—nd(a € UUYV)
Gl1: Show I+ ore H
()\H]_ :nd(a € U)Derl H]_)
()\Hz :nd(a S V)-Der2 H2)
:nd(ae UUV)

The new current goal, G1.3, is processed analogously to G1.2 producing the MCAs

(Hyp-Intro :Hypothesis nd(a € V))
(Derive :Reasons (nd(a € V)) :Conclusion nd(a €e UUYV)
:Method DefU)

and finally resulting in the following discourse structure tree
G1: (Show I' + ore H (AH1:nd(a € U).Def Uy H1) (AH2:nd(a € V).Def Uz Hz) : nd(a € U U V))

ol

Gl1.2 Gl‘.3
| |
Gl.1.1 G1.2.0 G1.3.0
RN RN
G1.2.1 G1.2.2 G1.3.1 G1.3.2

| /N | /N

G1.2.1.1 G1.2.2.1 G1.2.2.2 G1.3.1.1 G1.3.2.1 G1.3.2.2

G1.2.2.1.1 G1.3.2.1.1
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(cf. Figure 6.12 for the purposes of the nodes of the subtree rooted by node G1.3).
Afterward, the goal stack is as follows:

Gl: Show I'Fore H
()\Hl:nd(a S U)-Derl Hl)
()\Hz:nd(a S V).Def Us HQ)
nd(a € UUY)

Now, G1 is again our current goal. This time all premises are conveyed, so (P2)
applies resulting in the discourse structure tree displayed in Figure 6.12 and the
following goal stack:

Gl.4 Inform I'Fore H
(/\Hl :nd(a S U)-Derl Hl)
()\sznd(a S V)-Der2 H2)
:ndlae UUYV)
Gl1: Show I'ore H
(/\H]_ :nd(a € U).Derl Hl)
(/\Hg:nd(a € V).Der2 Hg)
:nd(ae UUYV)

This goal is then fulfilled by applying (I1), which produces the MCA

(Derive :Reasons (nd(a € UVa€V),ndlae UUV),nd(a e UUYV))
:Conclusion nd(a € UUV) :Method VE)

and (P4) applies twice leaving an empty goal stack.

Hence, the discourse structure given in Figure 6.12 is the final discourse structure
tree. During its generation, the following speech acts are produced (the bars on the
left indicate the focus spaces):

(Hyp-Intro :Hypothesis nd(a € U))

(Derive :Reasons (nd(a € U)) :Conclusion nd(a € UUYV)
:Method DefU)

(Hyp-Intro :Hypothesis nd(a € V))

(Derive :Reasons (nd(a € V)) :Conclusion nd(a € UUYV)
:Method DefU)

(Derive :Reasons (nd(a € UVa € V),ndlae UUV),ndla e UUV))
:Conclusion nd(a € UUV) :Method VE)

We have already seen the following possible verbalization:

Let a € U. Then, a € UUV by the definition of U. Let a € V. Then,a € UUV
by the definition of U. Therefore, a € U UV by VE.

O

Recall from Section 6.3.1 that the VE rule should be presented as a case analysis,
as it is common practice in mathematics. We shall examine how this is done in P rex
in the next section.

6.3.3 Schemata

The presentation of derivations is standardized in mathematics. For example, the
individual cases of a case analysis are usually explicitly introduced, or an induction
argument is in general presented by showing the base case before the step case. We
can capture such schematic presentations by defining schemata that are associated
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to inference rules. A schema is a predefined discourse structure subtree that is
inserted in the discourse structure tree by one to several productions.

In this section, using the example of the case analysis, we shall show how a
schema, is inserted, first by a single production and then, to grasp a more general
notion of case analyses, by the cooperation of three productions. Finally, we shall
conclude this section with the definition of a formal language to define schemata
for inference rules.

A First Approach to Case Analysis

Recall that the ND rule VE corresponds to a case analysis with two cases. Such a
case analysis is handled by the following production:

(C1) IF the current goal is G = (Show I + )

and VE is the most abstract known rule justifying the current goal
and the major premise I' - ¢1 V @2 has not yet been conveyed
and the cases I' - IIpi:p1.¢ and I' + IIps: 2.1 have not yet been conveyed

THEN pop the current goal,
append to the content of G the node G' = (Show I' F ¢1 V ¢2), the dis-
course structure tree with root G” as given in Figure 6.13 and the node
G" = (Omit '+ 1),
and push the g03|S G”’, G”, G4, Gs, G3_3, Gs_z, G3_1, Gz, 02_3, G2_2, G2_1, G1
and G'.
G inherits the status of Gs.3, G2 inherits the status of G2.3, G” inherits the
status of G4 and G inherits the status of G'"’ by the subgoal return mechanism.

Since this is a production specific to case analyses, we assign lower costs to it,
namely a(cq) = 0.01. In Figure 6.13, (Inform X by Y') means that the judgment

G : (Show T' b 4p) ool G : (Show I' - 1)

/ \

G' : (Show I' + 1 V ¢2) G'"" : (Omit I' + )

: (Show I' + )

: (Inform (Case—Analys1s :Goal 7
:Cases (p1,¢2)))

(Inform (End-Case-Analysis
:Goal %))

G2 : (show I' b ITp1:p1.7)

e

Ga.1 : (Inform I'y + p1: @1 Ga.3
by (Case :Number 1
:Hypothesis 1))

: (Inform (End-Case)) |G

22(5h0WF1 "’(IJ)

G3 : (show I' b ITps:¢2.7)

e

1 : (Inform I's & pa : 2 G3.3 : (Inform (End-Case)
by (Case :Number 2
:Hypothesis ¢2))

2 (ShOW[‘Ql— ’(ﬁ)

Figure 6.13. Extension of the discourse structure tree by production (C1).

F1:F,p1:(,02 and F2=F,p2:Q02.

X is verbalized by the speech act Y. Therefore, the judgment can be considered

as known to the user after the verbalization.

production:

This is realized by the following

(14) IF the current goal is G = (Inform I' - ¢ by S)

THEN produce the speech act S
set the content of G to S,
and set the status of G to known.
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Production (C1) also introduces subgoals that have speech acts as purpose con-
tents. These subgoals are fulfilled by the following production:

(I15) IF the current goal is G = (Inform S) and S is a speech act

THEN produce the speech act S
set the content of G to S
and set the status of G to known.

Let us once more consider our example proof.
Ezample 6.4c (continued)
Again, we assume that the initial situation is the following:

e The goal stack has only one goal, namely:

Gl: Show I'Fore H
()\Hl :nd(a S U).Derl Hl)
()\HQZHd(Cl S V).Def Us HQ)
:nd(a € UUV)

e Considering all justifications that prove the current goal, VE is the most ab-
stract rule known to the user.

e Each declaration in I" has been shown earlier, that is, in particular, the user
already knows the proposition of the major premise to the rule VE, namely

F'FH:ndl@aeUvVa€eV).

e The cases of the rule VE, namely

I' MHy:nd(a € U).DefUy Hy :nd(a € U)—nd(a e UUV) and
I' AHz:nd(a € V).Def Us Hy : nd(a € V)—=nd(a € UU V),

are unknown to the user.

In this situation, the productions (P1) and (C1) are both applicable. Since the
costs of (C1) are lower, the conflict resolution mechanism of ACT-R chooses (C1)
for application. It results in the following discourse structure tree

G1: (Show I' + ore H (AH1:nd(a € U).Def Uy H1) (AH2:nd(a € V).Def Uz Ha) : nd(a € U U V))

— T~

Gl.1: (Show I' - H:nd(a € UV a € V)) G1.3: (Omit I' + nd(a € U U V))

G1.2: (Show I' - ore H (AH1:nd(a € U).Def Uy Hy) (AH2:nd(a € V).Def Us Hs) : nd(a € U U V))

G1.2.1: (Inform (Case-Analysis
:Goal nd(a e UUYV)
:Cases (nd(a € U),
nd(a € V))))

G1.2.4: (Inform (End-Case-Analysis
:Goal nd(a € UUV)))

G1.2.2: (show I' = AHy:nd(a € U).Def Uy Hy : ITHq:nd(a € U).nd(a € U U V))
/ \
G1.2.2.1: (Inform I' + Hy : nd(a € U) by G1.2.2.3: (Inform (End-Case))
(Case :Number 1
:Hypothesis nd(a € U)))

G1.2.2.2: (Show I'y + Def Uy Hy : nd(a € UUV))

G1.2.3: (show I' - AH2:nd(a € V).Def U2 Ho : ITHo:nd(a € V).nd(a € UU V))
/ \
G1.2.3.1: (Inform I'> + Hs : nd(a € V) by G1.2.3.3: (Inform (End-Case))
(Case :Number 2
:Hypothesis nd(a € v)))

G1.2.3.2: (Show I> + DefUs Ho : nd(a € UU V)
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and the goal stack G1, G1.3, G1.2, G1.2.4, G1.2.3, G1.2.3.3, G1.2.3.2, G1.2.3.1,
G1.2.2, G1.2.2.3, G1.2.2.2, G1.2.2.1, G1.2.1, G1.1 (the leftmost goal is the top
goal). These goals are then processed canonically. We will not go into detail here,
but turn the attention to the crucial parts only.

Note that the major premise is presented first, since G1.1 lies on top of the goal
stack. Next, the case analysis is introduced by processing G1.2.1 by (I5), before
the individual cases are presented. Moreover, note that the goals to introduce the
cases, G1.2.2.1 and G1.2.3.1, are fulfilled by (I4), which verbalizes the hypotheses
of the cases and sets their status to known. Hence, during the fulfillment of the
goals G1.2.2.2 and G1.2.3.2, the respective hypotheses are not verbalized again, but
omitted by (O1). The case analysis is finally concluded by processing G1.2.4.

Since the goals G1.2.2, G1.2.3 and G1.2 inherit the status known from their
respective last child, they are immediately popped by (P4). G1.3 is then fulfilled by
(O1) and popped by (P4) returning the status known to G1. G1 is finally popped
by (P4). The complete discourse structure is displayed in Figure 6.14.

Altogether, the following speech acts are produced:

[(Case-Analysis :Goal nd(a € UUV) :Cases (nd(a € U),nd(a € V)))
[(Case :Number 1 :Hypothesis nd(a € U))
(Derive :Reasons (nd(a € U)) :Conclusion nd(a€ UUYV)
:Method DefU)
|(End-Case)
[(Case :Number 2 :Hypothesis nd(a € V))
(Derive :Reasons (nd(a € V)) :Conclusion nd(a € UUYV)
:Method DefU)
(End-Case)
(End-Case-Analysis :Goal nd(a € UUV))

A possible verbalization is:

To prove a € UUV, let us consider the cases where a € U and a € V, respectively.
Case 1: Let a € U. Then, a € U UV by the definition of U.
Case 2: Let a € V. Then, a € U UV by the definition of U.

This completes our case analysis.

A Second Approach to Case Analysis

The main drawback of the production (C1) is that it is only applicable for case
analyses with exactly two cases. But in mathematics, a case analysis usually has
a varying number of cases. We can realize the presentation of case analyses with
arbitrarily many cases by employing three cooperative productions. The first pro-
duction ensures that the major premise is presented first and that the case analysis
is bracketed by an opening and a closing explanatory MCA:

(C2) IF the current goal is G = (Show I' F )
and VE is the most abstract known rule justifying the current goal
and the major premise I' - 1 V - - - V ¢, has not yet been conveyed
and no case I' F IIp;: ;.1 for 1 < i < n has been conveyed
THEN append to the content of G the node G' = (Show I' F @1 V --- V ¢,,), the
discourse structure tree with root G” as given in Figure 6.15 and the node
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G1: (Show I' - ore H (AH1:nd(a € U).Def Uy Hy) (AHz2:nd(a € V).Def Uz H3) : nd(a € U U V))

\ /

G1.1: (Show I' - H:nd(a € UV a € V)) G1.3: (Omit I' - nd(a € U U V))

G1.1.1: (Omit I' - H:nd(a € UV a € V))

G1.2: (Show I' - ore H (AH1:nd(a € U).Def Uy H1) (AH2:nd(a € V).Def Us Ha) : nd(a € U UV))

G1.2.1: (Inform (Case-Analysis :Goal nd(a € UU V)

G1.2.4: (Inform (End-Case-Analysis :Goal nd(a € U U V)))
:Cases (nd(a € U),nd(a € V))))

G1.2.2: (show I' - AH1:nd(a € U).Def Uy Hy : ITH1:nd(a € U).nd(a € U U V)) G1.2.3: (show I' - AHz:nd(a € V).Def Us H2 : ITH2:nd(a € V).nd(a € UUV))
G1.2.2.1: (Inform It + Hy :nd(a € U) by G1.2.2.3: (Inform (End-Case)) G1.2.3.1: (Inform I's + Hs : nd(a € V) by G1.2.3.3: (Inform (End-Case))
(Case :Number 1 (Case :Number 2
:Hypothesis nd(a € U))) :Hypothesis nd(a € V)))
G1.2.2.2: AmﬁTUmﬁCHmu. nd(a € UUV)) G1.2.3.2: Om@TDm*Cmmm. nd(a € UUYV))

G1.2.2.2.1: (Show I - Hi :nd(a € U)) G1.2.3.2.1: (Show Is - Hs : nd(a € V))
G1.2.2.2.1.1: (Omit It + Hy : nd(a € U)) G1.2.3.2.1.1: (Omit I'y - Hy : nd(a € V))

G1.2.2.2.2: (Inform I'y + Def Uy Hy : nd(a € UUV)) G1.2.3.2.2: (Inform I'> + DefUz Hz : nd(a € U U V))

Figure 6.14. The final discourse structure tree from Example 6.4c. I1 = I',Hy:nd(a € U) and I3 = [, Hy:nd(a € V).
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G" = (Omit T'F ),

and push the goals G"', G, G3,G2,G1 and G'.

G" inherits the status of G and G inherits the status of G'"’ by the subgoal
return mechanism.

The effect of this production on the discourse structure tree is shown in Figure 6.15.

(C2)
G :(Show ' p) oo > G : (Show I' - )
G :(Show I'- 1 V-V @) G'"" : (Omit I' + %)
G" : (Show I' - %)
Gq (Inform (Case-Analysis :Goal 3 Gs: (Inform (End-Case-Analysis

:Cases (@1,...,9n))) :Goal %))

Go : (Show (I' - IIp1: 1.9, ..., I'F Ipp:9n.¥)s)

Figure 6.15. Extension of the discourse structure tree by production (C2). The
index n of the list (I' + ITpy : 1.4, ..., IIpy:pn.a)), indicates that there are n
cases in total.

The second production then presents the individual cases, each with an opening
and a closing explanatory MCA:

(C3) IF the current goal is G = (Show (I' - Hp1: 1.1, ..., F Ipg: ppap)n)

THEN remove I' - ITp; : 1.1 from the purpose content of G,
append to the content of G the discourse structure tree with root G’ as given
in Figure 6.16,
and push the goals G, G3,G> and Gj.
G’ inherits the status of G5 as soon as G35 is popped from the goal stack.

The index n in (IT F 4,..., I}, F %), indicates that the initial length of the
judgment list was n when the node G was created, that is, there are n cases in
total. Note that the production uses n to calculate the number of the case under

G : (Show (I' - IIp1:p1.9, '+ Ipaipatp,..., '+ Hpr:9ok.)n)

JAY

()

A4
G : (Show (I' + IIpa:p2.t, ..., ' = Ipg:9p.)n)

G’ : (Show I' + Hp1:p1.9)

/ \

G4 : (Inform I'y + ¢ by G3 : (Inform (End-Case))
(Case :Number (n—k+1)
:Hypothesis 1))

Go : (Show I't + %)

Figure 6.16. Extension of the discourse structure tree by production (C3).
I7 = I,py:p1. The triangles represent the content of G before the application of
(C3).



122 CHAPTER 6. THE DIALOG PLANNER

consideration (cf. Figure 6.16).

The production (C3) successively removes judgments from the current goal.
The third production then removes a node with an empty judgment list from the
discourse structure tree by replacing the node by its contents:

(L) IF the current goal is G = (Show (),,) with content G1,...,Gx,
and G’ with the content G, ...,G%, G,Gyi1, ..., Gy, is the parent of G

THEN pop G from the goal stack
and replace G in the contents of its G’ by its own content G1,...,G,.

The effect of this production on the discourse structure tree is displayed in Fig-

ure 6.17.
(L1)
Gl ................... > G/
Gy -+ Gi, G:Show ()n G§c+1~~~ G Gy G Gi1- Ga G;e+1"' G,
Gy -+ Gn

Figure 6.17. Modification of the discourse structure tree by production (L1).

For one last time, let us consider our example to examine how these productions
work together to present a case analysis.

Ezample 6.4d (continued)
Let us again assume the start situation from Example 6.4c. This time, the produc-
tion (C2) applies to goal G1 resulting in the discourse structure tree

G1: (Show I' + ore H (AH1:nd(a € U).Def U1 H1) (AH2:nd(a € V).DefUs Ha) : nd(a € U U V))

— T~

Gl1.1: (Show I' - H:nd(a € U Va € V)) G1.3: (Omit I' + nd(a € UU V))

G1.2: (Show I' - ore H (AH1:nd(a € U).Def Uy Hy) (AH2:nd(a € V).Def Uz Hz) : nd(a € U U V))

G1.2.1: (Inform (Case-Analysis G1.2.4: (Inform (End-Case-Analysis
:Goal nd(a € UU V) :Goal nd(a € UUV)))
:Cases (nd(a € U),
nd(a € V))))

G1.2": (Show (I' - AHj :nd(a € U).Def Uy Hy : ITH;:nd(a € U).nd(a € U U V),
I' - AHa:nd(a € V).DefUg Hy : ITHo:nd(a € V).nd(a € UUV))2)

and the goal stack G1, G1.3, G1.2, G1.2.4, G1.2’, G1.2.1, G1.1. The top goals G1.1
and G1.2.1 are processed as in Example 6.4c. Then, (C3) applies to G1.2’ inserting
the following discourse structure subtree in node G1.2’

G1.2": (show I' - AHz:nd(a € V).Def Us Ha : ITH2:nd(a € V).nd(a € U U V))2

G1.2.2: (show I'  AH1:nd(a € U).Def Uy Hy : ITHy :nd(a € U).nd(a € UU V))
/ \
G1.2.2.1: (Inform I'1 + Hy : nd(a € U) by G1.2.2.3: (Inform (End-Case))
(Case :Number 1
:Hypothesis nd(a € U)))

G1.2.2.2: (Show Iy + DefUy Hy :nd(a € UUV))

and resulting in the goal stack G1, G1.3, G1.2, G1.2.4, G1.2°, G1.2.2, G1.2.2.3,
G1.2.2.2,G1.2.2.1. Note that (C3) also deletes the first judgment from the judgment
list of G1.2’.
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Next the goals G1.2.2.1, G1.2.2.2, G1.2.2.3 and G1.2.2 are processed as in Ex-
ample 6.4c. Thus, G1.2’ becomes again the top goal:

G1.2 Show (F F /\Hg:nd(a S V)DerQ H2
:I[THy:nd(a € V).nd(a € UUV)),

Hence, (C3) applies again deleting the second judgment from the judgment list and
inserting another discourse structure subtree (with root G1.2.3), which is built like
the tree rooted by G1.2.2. This subtree is then processed analogously, leaving again
G1.2’ on top of the goal stack:

G1.2 Show ()2

Now, (L1) applies and deletes G1.2’ from the discourse structure tree. Finally,
G1.2.4, G1.2, G1.3 and G1 are processed as in Example 6.4c.

Hence, a discourse structure tree that is identical to the tree in Figure 6.14 from
Example 6.4c is build. Consequently, the same speech acts are produced, too:

[(Case-Analysis :Goal nd(a € UUV) :Cases (nd(a € U),nd(a € V)))
[(Case :Number 1 :Hypothesis nd(a € U))
(Derive :Reasons (nd(a € U)) :Conclusion nd(a€ UUYV)
:Method DefU)
(End-Case)
[(Case :Number 2 :Hypothesis nd(a € V))
(Derive :Reasons (nd(a € V)) :Conclusion nd(a € UUYV)
:Method DefU)
(End-Case)
(End-Case-Analysis :Goal nd(a € UUV))

O

As the previous two examples elucidate, the productions (C2), (C3) and (L1)
result in the same discourse structure tree and thus in the same speech acts as (C1).
Even though the former need more production cycles, they are more general than
the latter, since they also handle case analyses that have more than two cases.

Defining Schemata

To describe abstractly the schemata that are to be inserted in the discourse structure
tree, we define a formal language. This schema language allows us to formulate
schema definitions in terms of the desired presentation without the need to consider
productions. The operational semantics of the schema language ensures that schema
inserting productions such as the productions (C1), (C2) and (C3) are automatically
built from the schema definition. Only the production (L1), which is not restricted
to case analyses, is predefined.

Syntax The syntax of the schema language is given by the following grammar:

schema ;= (schema~define rule-name strategies schema-def)

rule-name n=  string

strategies u= ALL | purpose | (purpose+)

purpose n= symbol

schema-def == (premise-roles premise-order mc-begin mc-end
premise-defk)

premise-roles = premise-role+ [(LIST premise-role)] | (LIST premise-role)

premise-role = symbol | (HYP symbol) | (PAR symbol)

| (IGNORE symbol) | MAJOR-PREMISE
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premise-order = numberlist | SIZE | RSIZE | PRESORTED | NIL
premise-def == (symbol mc-begin mc-end)

mc-begin = NIL | me-def | (LIST mc-def*) | IGNORE
mc-end u= NIL | me-def | (LIST mc-def*) | IGNORE
me-def u= (symbol [:symbol arg]*)

arg == T7HYP | 7PAR | ?TYPE | ?PREM | 7CONC | 7i

Here, mc-begin and mc-end stand for speech acts that give explanatory comments
on the goal or subgoals to be presented. In accordance with [Zukerman, 1991], we
call such explanatory comments meta-comments, since they are not necessary for
the logical validity. In the definition of schemata, we distinguish between the main
meta-comments, which comment on the presentation of the goal and the premise
meta-comments, which comment on the presentation of the premises of the goal.

Definition 6.9 A schema is valid if the following hold:

purpose must be a planning intention, such as Explain or Present.

premise-roles is NIL if and only if premise-order is NIL if and only if premise-
defs is empty.

The symbol premise-rolein (LIST premise-role) must not be MAJOR-PREMISE.
In premise-def, symbol must be a premise role symbol.

premise-roles and premise-defs must correspond to each other, respectively.
That is, they must have the same length, and the ith premise-role and the ith
premise-def must coincide in the symbol.

In mec-def, symbol must be a speech act type and :symbol must be an argument
keyword for that speech act type.

Main meta-comments may have ?CONC as an argument. They may have 7HYP
as an argument if at least one of the premise roles is of type (HYP symbol).

Premise meta-comments may have 7PREM as an argument. They may have
7HYP as an argument if the premise role is of type (HYP symbol). They may
have 7PAR and ?TYPE as arguments if the premise role is of type (PAR symbol) .
They may have 71 as an argument if the premise role is of type (LIST premise-
role) . [

In the remainder, whenever we speak of schemata, we mean valid schemata.
Before we move on to the operational semantics of schemata, let us first describe
the meaning of the components of such a definition informally.

The rule-name is the name of the inference rule that is to be presented by the
schema.

The schema will be applicable to any current goal with a purpose intention
as given in strategies. It will pass this purpose intention to the new subgoals.

If one of the main meta-comments is not NIL, the presentation of the current
goal will be enclosed in a focus space and no explicit verbalization of the proof
step is given. The rationale behind this is that the main meta-comments give
the explanation of the proof step. However, IGNORE means that the corre-
sponding meta-comment is not expressed. Main meta-comments may have
?HYP or 7CONC as arguments. PHYP means all the hypotheses that are intro-
duced by any premises of the current goal. ?CONC stands for the conclusion of
the current goal.
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e If both main meta-comments are NIL the proof step is explicitly mentioned.
e The premise roles define the premises that are considered by the schema:

— The premise with role MAJOR-PREMISE is always presented first, even
before the first main meta-comment.

— If one of the premise meta-comments is not NIL the presentation of that
premise is enclosed in a focus space.

— A HYP role means that the respective premise must be a hypothetical
judgment. Then, ?HYP can be used in its meta-comments to denote the
hypothesis.

— A PAR role means that the respective premise must be a parametric
judgment. Then, ?PAR and ?TYPE can be used in its meta-comments to
denote the parameter and its type, respectively.

— An IGNORE role means that the derivation of the respective premise is
ignored for the presentation of the current goal.

— A LIST role describes all remaining premises collectively, regardless of
their number. In particular, these premises will all be handled the same
way. 7i can be used in the premise meta-comments as a counter for these
premises.

— In any premise meta-comment 7PREM can be used to denote that premise.

Note that the actual rule may have more premises than defined by premise-
roles. Excess premises will simply be ignored. Hence, the schema definition

(schema“define "R" ALL (nil nil nil nil))

produces only the speech act (Derive :Conclusion 7 :Method R) for the
presentation of such a derivation without showing the premises. Similarly, the
schema definition

(schema~define "R" ALL (nil nil IGNORE nil))

prevents the dialog planner from showing any derivation that ends with an
application of rule R, that is, any judgment '+ R Py ... P, : % is ignored.

e The premise order determines in which order the premises will be presented.

— PRESORTED means the premises are presented in the order given in the
proof term.

— SIZE or RSIZE mean the premises are presented according to the size
of the derivation ordered from the smallest to the largest or vice versa,
respectively. The size of a derivation is defined as the number of nodes
in the proof tree at the highest level of abstraction.

— numberlist is a list of numbers that indicate the place of the premises
in the proof term. For example, (2 3 1) means the second premise is
presented first, then the third and finally the first one.

e Note that the meaning of arg in main meta-comments may differ from its
meaning in meta-comments for premises:

— 7HYP means all hypotheses in main meta-comments and the hypothesis
of the premise in premise meta-comments.
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— 7PAR means the parameter of the premise in premise meta-comments and
?TYPE means the type of the parameter.

— 7CONC means the conclusion of the main rule in main meta-comments.
— 7PREM means the premise in premise meta-comments.

— 7i is a counter for the premises for premise roles of type (LIST symbol).

Operational Semantics A schema has the general form

(schema“define "R" p
((ry...rp) w Moy Mo
(rf Mig M)

(T;L Mn,l Mn,2) ))

where R is an inference rule, p a purpose intention and w an order. Moreover,
for 1 < i < m, r; is a premise role and r} is its symbol, that is, without HYP,
PAR, IGNORE or LIST. Furthermore, My; and My are the opening and closing
main meta-comments and M;; and M;2 the opening and closing premise meta-
comments. In the following, we shall write w(Ay,..., Ay) for the list Af,..., A}
that results from the reordering of Aj,..., Ay according to w. A schema as given

previously is expanded to the following production:
IF the current goal is G = (p ' R P1... Py : 4)
and G has not yet been conveyed
THEN do the following:

1. Let Pi,...,P, = w(P;...Py)
Ml,l,---,Ml,n = w(Ml,l,...,Mn,l)
M1,2,...,Mn,1 = w(Ml,z,...,Mn,z)

2. For0<i<mnandje€ {1,2} let

S .= (Inform Mi,]’) if NIL # M; . ; # IGNORE
“J 7 1 the empty node ¢ otherwise

3. For 1 <i < nandfori=nifr, # (LIST r;) let

(pTFP:y) if Si1=S8i2=¢
_ I'tPi:g;
Gi _ PIERe) if Sip£eor SipAe
Si1 Gi:(pTF P;:g;) Sie

4. Fori=nif r, = (LIST ;) let
an(p(Fl_Pn“pn:---vF}_Pn’:San’)l)

where [ =n' —n+ 1.

5. Let
G _ [ (Inform I' 1) if Mo,1 = Mo = NIL
it (Omit '+ 1)  otherwise

6. If So,1 # € or So,2 # €, then do the following:
e [f there is a 1 < k < n such that r, = MAJOR-PREMISE, then let

G’= /E/FF\

So0,1 G1° " Grk—1 Gr4+1 " Gn So2

add G, G’ and G, 41 to the contents of G;
push Gpnt1,G’, So2,
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foreachn >i>1,i# k if S;1 = Si,2 = € push G;,
otherwise push G, Si 2, G5, Si.1;
push So 1;
if Sk,l = Sk,z =€ push Gk,
otherwise push Gy, Sk,2, G}, Sk,1.
e Otherwise, let

o= B

So,1 G177 Gn So,2

and add G’ and G 41 to the content of G;

push Gri1,G’, So,2,

for each n >i12>1 if 51,1 = Si,z = € push G,
otherwise push G;, S; 2, Gi, Si 1;

pUSh 50,1.
7. Otherwise do the following:
e If there is a 1 < k < n such that r, = MAJOR-PREMISE, then
add Gg,G1,...,Gr-1,Gk+1,-- -, Gn, Gry1 to the contents of G;
puSh Gn+1,
for each n Z 7 2 l,i ;é k if S@',1 = Sq;,z =€ push Gi,
otherwise push G;, Si2, G5, Si1;
if Sk‘l = Sk’2 =€ push Gk,
otherwise push G, Sk,2, G, Sk,1-
e Otherwise
add G1,...,Gn, Gr+1 to the contents of G;
puSh Gn+1,
for each n Z 7 2 1if Si,1 = Si,z =€ push Gi,
otherwise push G;, Si2, Gj, Si1.
8. Each root of an inserted subtree that is pushed onto the goal stack inherits the
status of the last node of its contents by the subgoal return mechanism.

Note that Step (1) ensures that the premises and their meta-comments are in the
right order with respect to w. Then, Step (2) builds the discourse structure nodes for
all defined meta-comments. Moreover, Step (3) builds for each premise that is not
of type (LIST premise-role) a discourse structure subtree (which is a focus space
if and only if one of the corresponding premise meta-comments is defined). As a
supplement, Step (4) builds a single node for all premises that are collected by (LIST
premise-role). Step (5) serves the goal to give or omit an explicit verbalization of
the proof step. The explicit verbalization is given when there are no main meta-
comments that comment on the proof step, otherwise it is omitted. Next, Step (6)
collects the main meta-comments and the premises in a focus space tree, whereas
Step (7) adds the subtrees that show the premises to the goal.

Hence, for each premise of the proof step a new discourse structure node is added
to the discourse structure tree. For each premise with a meta-comment this new
node is in the scope of a new focus space. If at least one main meta-comment is
defined, the subtrees for minor premises are placed in another focus space and no
explicit verbalization of the proof step except in the main meta-comments is given.
If no main meta-comment is defined the proof step is explicitly mentioned.

If r, = (LIST r!) for some premise role 7l the following additional production
is produced from the schema definition as well:

IF the current goal is G = (p (' F D1 : Y1,..., ' F Dy, : 1 );) for some m > 1 and
some [ > m and
I' - Dy : 91 has not yet been conveyed

THEN do the following:

1. for j € {1,2} let

g = (Inform M, ;) if NIL # M, ; # IGNORE
77 1 the empty node ¢ otherwise



128

CHAPTER 6. THE DIALOG PLANNER

2. let

(pF|—D1:1[)1) ifS1=Sz=E

G = (pT'F Di:91) )
| T if S1 #eor Sy #e
S1 G":(pI'+FDy:41) So

3. remove I' F Dy : 1 from the purpose content of G

4. add G’ to the content of G

5. if S1 = S2 =€ push G,

otherwise push G}, S2,G”, S1;
G’ inherits the status of G” by the subgoal return mechanism.

Note that this production processes only the first judgment in the purpose content
of the current goal. Step (1) builds the discourse structure nodes for the premise
meta-comments. Step (2) builds the discourse structure subtree for the judgment.

Example 6.5
It is not difficult albeit rather tedious to see that the schema definition

(schema~define "ORE" all

((major-premise (hyp case-1) (hyp case-2)) presorted

(case-analysis :goal 7conc :cases Thyp)

(end-case-analysis :goal 7conc)

(major-premise nil nil)

(case-1 (case :number 1 :hypothesis 7hyp)
(end-case))

(case-2 (case :number 2 :hypothesis 7hyp)
(end-case))))

expands to the production (C1) and that the schema definition

(schema~define "ORE" all
((major-premise (list (hyp cases))) presorted
(case-analysis :goal 7conc :cases Thyp)
(end-case-analysis :goal 7conc)
(major-premise nil nil)
(cases (case :number 7i :hypothesis 7hyp)
(end-case))))

expands to the productions (C2) and (C3). O

Note that the production (L1) is not produced by a schema. Instead, it is provided
separately.

To sum up, schemata provide a powerful tool to define the presentation of a proof
step. In particular, by defining for one inference rule several schemata that differ in
the purpose intention, several presentation strategies can be implemented. Clearly,
new strategies can be added by defining corresponding schemata.

In this section, we described how the dialog planner invokes plan operators to
plan the presentation of a proof. In the following section, we shall examine ways
to adapt the presentation to the user and to take into account the context of the
presentation.

6.4 User Adaptivity and Context Sensitivity

In the previous section, we introduced productions that the dialog planner uses to
traverse the proof tree and to build up a discourse structure for presenting the proof.
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But since these productions do not allow for much flexibility in the presentation,
the proofs are still a little mechanic. To achieve a broad acceptance from diverse
users, it is indispensable both to tailor the utterances to the intended audience and
to flexibly embed the utterances in the context. In the following, we shall examine
how the dialog planner adapts the presentation to the assumed needs and skills of
the user and to the context, in which the presentation occurs.

The first two sections are devoted to user adaptivity. In Section 6.4.1 we shall
show how the dialog planner chooses the most abstract justification of a proof step
that is assumed to be known to the user. In Section 6.4.2 we shall then see how the
system handles trivial and user-inferable subproofs.

The remaining sections discuss context sensitivity. Section 6.4.3 will show how
the dialog planner context-sensitively omits certain explanations. Then, in Sec-
tion 6.4.4 we shall examine the choice of the reference to premises that have been
introduced earlier in the proof. Section 6.4.5, finally, is devoted to the mechanism
that switches between different presentation strategies.

6.4.1 Levels of Abstraction

In the previous sections, many productions were applicable only when the most
abstract rule known to the user had been determined. In this section, we now
introduce a set of productions that together determine which rule from a given
sequence of justifications is the most abstract one known to the user. We assume
that the justifications are ordered from most abstract to least abstract. This is a
valid assumption, since the expansion of abstract rules defines an order on the level
of abstraction.

First, we need a production that pushes the goal to find the most abstract
justification:

(J1) IF the current goal is G = (Show I - ¢),
Di,..., Dy are all proof terms that justify G, ordered from most abstract to
least abstract,
and the most abstract known justification has not been determined
THEN push the goal G' = (Choose (D1, ..., Dr)).
G will inherit a justification from G’ by the subgoal return mechanism.

Note that G’ is not a discourse structure node but a chunk defined for choosing a
proof term.
The next production chooses the first justification if it is known:

(J2) IF the current goal is G = (Choose (Dy,...,Dy)),
and D1 =R Py ... Py,
and R is a known rule

THEN mark R P: ... P,, as chosen.

Note that, since the justifications are ordered by levels of abstraction, the most
abstract rule in the sequence of justifications is chosen. We set the costs a(j2) to
0.01.

The next production removes the first justification:

(J3) IF the current goal is G = (Choose (D1, Ds,...,Dr))
THEN set G to (Choose (D, ..., Dr)).

Note that (J3) is always applicable when (J2) is applicable. Moreover, note that
a(y2) < a¢ys)- The conflict resolution mechanism of ACT-R ensures that (J2) is
applied whenever applicable, even though (J3) is also applicable. Hence, since the
justifications are ordered from most abstract to least abstract, the orchestration of
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the productions (J2) and (J3) ensures that always the most abstract justification
known to the user is chosen.

Only if none of the justifications is known to the user the least abstract one (i.e.,
an ND level justification in our examples) should be chosen:

(J4) IF the current goal G = (Choose ())
and D =R Py ... P, was the last deleted justification in G

THEN mark R Py ... P,, as chosen.

Hence, if all justifications are unknown to the user, the least abstract one is chosen
to ensure some explanation of the proof step.

The following production pops the goal to choose a known justification, if one
has been chosen:

(J5) IF the current goal is G = (Choose (Dx, ..., Dy)),
and D is marked as chosen

THEN pop G returning D.

6.4.2 Omission of Subproofs

Prex should in general avoid to state or even derive facts that are clear to the
addressee, since their presentation does not give any new information but distracts
from the crucial focus of the line of reasoning. (Situations where repetitions are use-
ful are discussed in Sections 6.5.2 and 6.5.3.) To this end, we introduce productions
that omit the derivations of facts that are trivial or easy to infer.

We have already seen in Section 6.3.2 the following production that omits sub-
proofs that are already known to the user.

(01) IF the current goal is G = (Show I' - 1),
and I' - %) is known to the user

THEN set the content of G to the discourse structure node G' = (Omit I - 1),
and set the status of G and G’ to known.

Recall that we set a(o1) = 0.003 to ensure that this production is preferred.
A similar production omits derivations of facts that are easily inferable by the
user:

(02) IF the current goal is G = (Show I' F 1),
and I' - 1) is easily inferable by the user
THEN set the content of G to the discourse structure node G' = (Omit I' F 1),
and set the status of G and G’ to known.

Since this production should be preferred, its cost parameter a o) is set to 0.003.

What is in fact easily inferable by the user depends on the mathematical theory
under consideration and the expertise of the user. We give only a straightforward
example from the theories of numbers, such as integers or real numbers.

Example 6.6

Let the current goal be G = (Show I' + a < z). If a < b and the user already
knows that x > b, then we consider a < z as easily inferable. This is captured in
the following production:

IF the current goal is G = (Show I' - a < x)
and I' F a < b is known
and I' -z > b is known

THEN consider I' F a < z as easily inferable by the user. O
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6.4.3 Omission of Explanatory Comments

Explanatory comments are very useful when larger structures in the proof are to be
elucidated. But when the structures are small such that the closing comment follows
soon after the opening comment, the closing comment is often more disturbing than
helpful. Thus, we introduce the following production, which omits such closing
comments:

(03) IF the current goal is to produce a speech act that closes a focus space
and the focus space is small

THEN omit the speech act by setting the status of the current goal to known.

To prefer this production to (I5) we set its cost parameter a(og) = 0.01.

If the closing comment is realized as a layout directive and is hence needed for
a balanced layout, like in the case of theorems, proofs or definitions, it should not
be omitted. This is enforced by the following production:

(I6) IF the current goal is to produce a speech act that closes a theorem, a proof, a
definition, an example or an exercise

THEN produce the speech act and set the status of the current goal to known.

To prefer this production to (03) we set its cost parameter a(g) = 0.005.

6.4.4 Reference Choice for the Premises of a Proof Step

Subgoals that have been derived within a proof must often be referred to later on.
The reference can be made explicitly by mentioning them or implicitly by only
hinting at them.

Definition 6.10 We distinguish between three methods to refer to the premises
of a proof step:

e The reference method implicit means that the system only hints at the premise,
for example, by uttering “Then, a € V.7

o The reference method explicit means that the premise is explicitly mentioned,
asin “Sincea € U,a e V.”

e The reference method link means that the premise is explicitly mentioned
and in addition furnished with a hyperlink to the place where it was initially
derived. [

Do not confuse the omission of a subproof, where the whole derivation of a fact
is omitted, with the omission of a reference expression that refers to a fact that was
previously derived or mentioned. The following productions determine the reference
method for referring to premises.

(R1) IF the current goal is to produce for the discourse structure node N the MCA
(Derive :Reasons (@1,...,¢n) :Conclusion %) :Method R)
and the reference method for the premises g, ..., @, has not been chosen
THEN push the goal to determine the reference method for ¢y, in discourse structure
node V.
(R2) IF the current goal is to determine the reference method for ¢ in discourse struc-
ture node V

and ¢ was derived in the focus space to which IV belongs
THEN pick implicit as reference method and pop the current goal.
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(R3) IF the current goal is to determine the reference method for ¢ in discourse struc-
ture node N
and ¢ was derived in a focus space that dominates the focus space to which
N belongs

THEN pick explicit as reference method and pop the current goal.

(R4) IF the current goal is to determine the reference method for ¢ in discourse struc-
ture node V

THEN pick link as reference method and pop the current goal.

We set arg)y = 0.07, which is greater than the default value 0.05, such that (R4)
will be applied only when no other production is applicable.

FExample 6.7

Consider the discourse structure tree in Figure 6.14 from Example 6.4c on page 120.
When the speech act in the discourse structure node G1.2.2.2.2 = (Inform I'1 F

Def Uy Hy : nd(a € U UV)) is produced, the system has to refer to the premise of

this proof step, namely the hypothesis I F H; : nd(a € U). Since this hypothesis

was introduced in the same focus space, namely in node G1.2.2, it is only hinted at

implicitly by uttering “Then, a € U UV by the definition of U.” O

Even though it is possible to determine the reference choice by the previously
defined productions, we decided for efficiency reasons to implement it by a small
Lisp function that is invoked whenever a Derive speech act is produced.

6.4.5 Presentation Strategies

As Wick and Thompson [1992] argued, a human expert, when asked to account
for complex reasoning, rarely does so exclusively in terms of the process used to
solve the problem. This problem solving process corresponds to the expert’s line
of reasoning. Instead, an expert tends to reconstruct a story that accounts for the
solution of the problem. This story reflects the expert’s line of explanation. Sim-
ilarly, an author, when writing a textbook, knows where the reasoning is leading
and can therefore present an elegant method of moving from the assumptions to
the conclusion. However, this prior knowledge is seldom available during the orig-
inal problem solving, requiring reasoning that is often more obscure and indirect.
Therefore, Wick and Thompson advocated a decoupling of the line of explanation
from the line of reasoning, which correspond to the two main focus alternatives,
namely solution and process, respectively. Since they dealt with expert systems,
which usually only represent knowledge for the problem solving process, they argued
in favor of a reconstructive approach that recovered the line of explanation.

In mathematics, the situation is similar. The authors of mathematical textbooks
usually describe theories and proofs in terms of the solution, but rarely in terms of
the process of constructing theories or proofs. We call this presentation style the
textbook style. To allow for textbook-style presentations, most current automated
theorem provers actually construct and output a proof instead of only providing the
user with a trace of the proof finding process.

Although acknowledging that the textbook style is well suited for securing the
validity of proofs, Leron [1983; 1985] attacked the textbook style as being unsuit-
able to communicate mathematics. He argued that it obscures many ideas and
connections, which are essential to any real understanding of the proof. Instead,
he proposed a structured presentation of proofs where the structure reflects the
composition of the parts to build the whole (cf. also [Melis and Leron, 1999]). The
presentation moves on from the general idea to more and more detailed subproofs
until the bottom is reached. Thus, the structural presentation makes explicit the
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global idea and the ideas behind the parts of the proof. These ideas are crucial for
a real understanding of the proof. Since the structural presentation is the method
by which teachers usually explain proofs to their students in class, we call it the
classroom style of presenting proofs.

To elucidate the distinction between textbook-style and classroom-style presen-
tations, let us consider the following example:

FEzxample 6.8
The limit of a function f: A — B can be defined by

lim f(z) =L if and only if

r—c

for all € > 0 there exists a § > 0 such thatifx € Aand 0 < |xr —¢| <4
then |f(z) — L| < e.

A textbook-style presentation of the proof of lim 22 = ¢? starts with choosing
—

€T c
d = inf{1, 777} and then shows that if 0 < |z — c| < d then |2* — c?| < & to prove
the proposition.

A classroom-style explanation of the same proof, in contrast, proceeds as follows:
It is first shown that |22 —c?| < (2|c|+1)|z—c| if |z —¢| < 1. Also (2|c|+1)|z—c| <&
[

if |z — ¢ < sToi- Lherefore, 6 can be chosen as inf{1

[
> B

Hence, in the textbook-style presentation an instantiation of & is chosen at first
and then the property is shown to be true. In the classroom-style presentation, in

contrast, it is shown how an appropriate instantiation for § can be found. O

By distinguishing the purpose intentions Explain and Present, the dialog plan-
ner allows for the two presentation strategies: Whereas Explain stands for the
classroom-style explanation, Present means a textbook-style presentation. Recall
from Section 6.3.3 that the schema language requires that the schemata be assigned
to a purpose intention. Hence, it is possible to devise different schemata for the
same inference rule for the two presentation strategies. Clearly, the system is eas-
ily extensible to account for further presentation strategies simply by defining new
purpose intentions and corresponding schemata.

For a proof explanation system, it seems reasonable to allow for switching be-
tween the presentation strategies. When a proof that belongs to a mathematical
theory T is to be shown by a classroom-style explanation, all inference rules that
belong to T should be presented by a classroom-style explanation. However, any
inference rules that belong to a theory that underlies T should be shown in a
textbook-style presentation. The rationale behind this is that theory T is consid-
ered as the topic of the current session. Therefore, the explanation focuses on the
inference rules in 7. Any underlying theories are assumed to be familiar to the
user and should therefore only be presented in textbook style without an elabo-
rate explanation. Only if the user intervenes because he cannot understand the
textbook-style presentation the system should replan the corresponding proof steps
to present them in a classroom-style explanation. We shall elaborate on this issue
in Section 6.5, when we discuss user interactions.

To ensure that the appropriate presentation strategy is chosen, we introduce the
following two productions:

(81) IF the current goal is G = (Explain '+ R Py ... P, : 1)
and T is the theory the current proof belongs to
and R belongs to a theory underlying T’

THEN set the purpose intention of G to Present.

(S2) IF the current goal is G = (Present I' - R Py ... P, : 9)
and T is the theory the current proof belongs to



134

CHAPTER 6. THE DIALOG PLANNER

and R belongs T
and the global presentation strategy is Explain

THEN set the purpose intention of G to Explain.

To ensure that both productions (S1) and (S2) are applied before the presentation is
started, we assign them with lower cost: a(s1) = a(s2) = 0.001. Let us now examine
how P rex reacts to user interaction.

6.5 User Interaction

As discussed in Section 2.1.2, the ability for user interaction is an important feature
of explanation systems. Moore and Swartout [1991] presented a context-sensitive
explanation facility for expert systems that, one the one hand, allows the user to
ask follow-up questions and, on the other hand, actively seeks feedback from the
user to determine whether the explanations are satisfactory. Mooney and colleagues
[1991] emphasized that the user must be able to interrupt the explanation system
at any time.

In Prex, the user can interact with the system at any time. When the system is
idle—for example, after starting it or after completion of an explanation—it waits
for the user to tell it the next task. During an explanation, P.rex checks after each
production cycle whether the user wishes to interrupt the current explanation—for
example, to complain about the current explanation. However, a complaint might
be so unspecific that several new discourse goals are possible. Then, the system
enters a clarification dialog to single out a unique discourse goal.

Each interaction is analyzed by the analyzer (cf. Section 7.3) and passed on the
dialog planner as a speech act, which is included in the current discourse structure
tree to represent the user’s utterance. From the speech act, specialized productions
then extract one or several new discourse goals to be fulfilled subsequently.

In the following section, we shall present the different types of messages a user
can direct to P.rex. Then, in the subsequent two sections, we shall examine how the
system reacts to those messages. Section 6.5.4 will elucidate the system’s behavior
with two example dialogs. In Section 6.5.5, finally, we shall show how a discourse
is started.

6.5.1 Messages from the User

We allow for three types of user interaction in Prex: A command tells the system
to fulfill a certain task, such as explaining a proof. An interruption interrupts the
system during an explanation to inform it that the explanation is not satisfactory
or that the user wants to move on to a different task. In clarification dialogs, finally,
the user is prompted to give answers to questions that P rex asks when it cannot
identify a unique task to fulfill. A user message is first analyzed by the analyzer
(cf. Section 7.3) by mapping it into a speech act. The speech act is then passed on
to the dialog planner, which includes it into the discourse structure tree.

In the following, we shall present each type of user interaction in more detail.
We shall give the messages as speech acts as rendered by the analyzer.

Commands

Whenever P rez is idle, the user is supposed to enter a command that specifies the
next discourse goal the system should fulfill. The following speech acts represent
the commands that are possible in P rez:
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(Show! :Proof P :Strategy S)
Show the proof P using the presentation strategy S. Note that P stands for
the name of the proof.

(Repeat! :Proof P)
Repeat the presentation of the previously shown proof P. Again, P stands
for the name of the proof.

(what-is? :0bject A)
Explain a concept or an entity. Here, A can be a variable declared in a context
or a constant declared in the signature.

(Exit!)
Exit Prex.

Interruptions

The user can interrupt P rex anytime to enter a new command or to complain
about the current explanation. In addition to the command speech acts from the
previous paragraph, the following speech acts are allowed as messages to interrupt
the system:

(Obvious-Step :Conclusion C)
The step leading to C' is obvious and should not be mentioned. For example,
the user can inform the system that the step deriving As from A; A--- A Aqg
is obvious. Note that the conclusion suffices to allow Prez to identify the
appropriate proof step.

(Trivial-Derivation :Reasons Py,..., P, :Conclusion C)
The whole subderivation that derives C from the premises Py, ..., P, is trivial
and should be omitted. For example, the user can inform the system that the
derivation of a # 0 from a < 0 is trivial. Note that it is necessary to give both
the premises and the conclusion to allow Prex to identify the appropriate
subderivation.

The following two speech acts allow the user to navigate through the different levels
of abstraction in a proof. We call a higher level of abstraction abstract and a lower
level of abstraction detailed.

(too-detailed :Conclusion ()
The explanation of the derivation leading to C is too detailed, that is, the
derivation should be explained at a more abstract level.

(too-abstract :Conclusion ()
The explanation of the step leading to C is too abstract, that is, the step
should be explained at a more detailed level.

(too-implicit :Conclusion C)
The explanation of the step leading to C is too implicit, that is, the step should
be explained more explicitly. For example, in “That implies that > 0.” the
reference to the premises is made implicitly by using the word “that”. The
premises are mentioned explicitly in “Since z # 0 and z € IN, we conclude
that z > 0.”

(too-difficult :Conclusion ()
The explanation of the step leading to C' is too difficult.
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(Continue!)
Continue with the current explanation.

(Stop!)
Discard the current explanation.

Answers

In clarification dialogs, the system asks the user questions that he is supposed to
answer. P.rex only asks simple questions that can be answered with the speech acts
(yes) or (no), and questions where the user must pick one or several options from
a set given by Prex. In the latter case, the analyzer can attribute to each option a
node from the current discourse structure tree.

Let us now examine, how P.rex reacts to the user’s interactions. We shall start with
commands before we shall move on to interruptions.

6.5.2 Commands

Whenever the user enters a command S while the system is idle, the dialog planner
generates a new discourse structure node C' and includes it in the discourse structure
tree by appending it to the content of the root. To represent the user’s command
in the discourse structure tree, the new node C has purpose (Request S), content S
and role commands.

To trigger a reaction to the user’s command, C is also pushed onto the goal
stack. Productions specialized to the different commands are then invoked to plan
the system’s reaction. We shall now give a detailed description of these productions.

The Reaction to S = (Show! :Proof P :Strategy S)

Since the user wants the system to show the proof P using strategy S, a corre-
sponding goal is to be pushed onto the goal stack. This is done by the following
production:

(Rel) IF the current goal is (Request (Show! :Proof P :Strategy S))
with parent D

THEN push the basic node G = (S P)
and append it to the content of D.

Since the new goal G has purpose (S P), the proof P is presented using the strat-
egy S by invoking appropriate productions as shown in Section 6.3.

The Reaction to S = (Repeat! :Proof P)

Now, the user demands to repeat the presentation of proof P. The following pro-
duction pushes the corresponding goal onto the goal stack:

(Re2) IF the current goal is (Request (Repeat! :Proof P))
with parent D
THEN push the basic node G = (Repeat P)
and append it to the content of D.

Subsequently, a previous presentation of proof P is repeated by invoking produc-
tions that traverse the corresponding discourse structure tree and again verbalize
the speech acts in it. We omit these productions here, they are included in Ap-
pendix C.2.2.
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The Reaction to S = (what-is? :0bject A)

The user asks the system about some object. Hence, a goal to explain that object
is to be pushed onto the goal stack. This is ensured by the following production:

(Re3) IF the current goal is (Request (what-is? :0bject A))
with parent D
THEN push the basic node G = (Explain A)
and append it to the content of D.

Note that Request indicates that the question what-is? plays the role of the request
to explain the object A. If A was introduced by a declaration, it is explained by
stating the declaration. If A corresponds to a definition, it is explained by stating
the definition. This is ensured by the following production.

(P5) IF the current goal is G = (Explain A) with '+ A : 4,
where 9 is a formula term or a type term
THEN push the basic node G’ = (Inform (Identify :object A :class 1))
and append it to the content of G.

The Reaction to S = (Exit!)

The user wants the system to exit. The system’s reaction is mediated by the
following production:

(Rcd) IF the current goal is (Request (Exit!))
with parent D
THEN push the goal G’ = (exit)
and push the basic node G = (Inform (Good-bye))
and append G to the content of D.

Since G has purpose (Inform (Good-bye)), the production (I5) (cf. page 118) applies
in the next cycle, such that the system expresses the speech act (i.e., it says “Good
bye!”). Then, another production is invoked that applies to G' and ensures that
P rex exits.

6.5.3 Interruptions

Similarly to the case of commands in Section 6.5.2, a new discourse structure node I
is generated and included in the discourse structure tree when the user interrupts
the system by entering a message S. To represent the user’s interruption in the
discourse structure tree, the new node I has purpose (Request S), content S and
role interruption. Even though most messages that interrupt P.rex are notifications,
we use Request to indicate that the messages play the role of requests. Recall that
the user can also enter a command speech act to interrupt the system. In contrast to
the case of commands entered while the system was idle, however, I is not inserted
at the root of the tree, but either at the node the message S refers to, or—if S does
not refer to a node—at the current node.

To trigger a reaction to the user’s interruption, I is also pushed onto the goal
stack. Productions specialized to the different interruptions are then invoked to plan
the system’s reaction. We shall now give a detailed description of these productions.

The Reaction to § = (Obvious-Step :Conclusion C)

The user informs the system that a proof step is obvious. The system should learn
to omit such steps in the future. To this end, the following production pushes an
appropriate dependency goal onto the goal stack:
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(Ril1) IF the current goal is G : (Request (Obvious-Step :Conclusion C))
and inference rule R was used to explain G
THEN push the dependency goal Dependency shown in Figure 6.18.

Dependency is a dependency goal ensuring that a production is learned that will
omit in the future any proof steps justified by rule R. It is shown in Figure 6.18.

Dependency before
isa dependency isa basic-node
goal before purpose inform
modified after status unknown
constraints ruleR rule ruleR
specifics (inform omit uncon-prems empty
known unknown after
e@pty) isa basic-node
dont-cares (nil) .
purpose omit
status known

unconveyed empty

ruleR
isa rule
name R

Figure 6.18. The dependency goal and adjacent chunks to learn to omit a step.
The slots uncon-prems and unconveyed correspond to up and uc from Defini-
tion 6.5, respectively. Similarly, the slot rule corresponds to the rule in the justifi-
cation J from Definition 6.5.

Recall from Section 5.4.2 that popping a dependency goal from the goal stack
initiates the compilation of a new production that performs the problem solving
step encoded in the dependency goal. Here, the before chunk stands for the goal
before the application of the new production, whereas after reflects the situation
afterwards. Hence, when Dependency is popped from the goal stack the following
production is compiled:

IF =goal>
isa basic-node
purpose inform
status unknown
rule =rule

uncon-prems empty

=rule>
isa rule
name R
THEN =goal>
purpose omit
status known

unconveyed empty
This production can be expressed more intuitively as follows:
IF the current goal is (Inform I' - )
and the most abstract rule justifying ¢ is R
and all premises are known
and the status of G is unknown
THEN set the purpose intention of G to Omit
and set the status of G to known.

Since this new production sets the purpose intention of the current goal to Omit and

its status to known without triggering any verbalization, the corresponding step is
de facto omitted.
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The Reaction to S = (Trivial-Derivation :Reasons Pi,...,P, :Conclusion C)

Now, the user tells the system, that the derivation of the conclusion C from the
premises P, ..., P, is trivial. The system should learn to avoid the detailed pre-
sentation of such a derivation in the future. The following production marks the
conclusion C' of the derivation as inferable:

(Ri2) IF the current goal is
G : (Request (Trivial-Derivation :Reasons Pi,..., P,

:Conclusion C))
and the premises Pi, ..., P, are known

THEN set the status of the fact C to inferable.

In subsequent situations, then, production (O2) from page 130 omits the derivation
of C, since C is marked as inferable.

The Reaction to S = (too-detailed :Conclusion C)

When the user complains that the derivation of a conclusion C was too detailed,
the dialog planner checks whether there is a higher level of abstraction on which
C can be shown. If so, the corresponding higher level inference rule is marked as
known, so that it is available for future explanations. Then, the explanation of the
derivation of C' is re-planned. Otherwise, the dialog planner paraphrases the used
inference rule. This reaction of the system is depicted in Figure 6.19. Note that
every arrow corresponds to a production. How the inference rule is paraphrased will
be shown later in this section. An example dialog where the user complained that
the original explanation of a proof was too detailed will be given in Example 6.9 in
Section 6.5.4.

Start replanning step S

Check whether there is a higher level of abstraction-2°
yes
Return Replan S on the next lower higher of abstraction (S’)
— paraphrase the inference rule in S

Figure 6.19. The reaction of the dialog planner if a step S was too detailed.

The Reaction to S = (too-abstract :Conclusion C)

When the user complains that the derivation of a conclusion C' was too abstract,
the dialog planner checks whether there is a lower level of abstraction on which C
can be shown. If so, the inference rule used in the previous explanation is marked
as unknown, so that it is not available for future explanations any more. Then,
the explanation of the derivation of C' is re-planned. Otherwise, the dialog planner
paraphrases the used inference rule. This behavior of the system is depicted in
Figure 6.20. Note that every arrow corresponds to a production. How the inference
rule is paraphrased will be shown later in this section.

The Reaction to § = (too-implicit :Conclusion C)

When the user complains that the derivation of a conclusion C' was too implicit,
the dialog planner reverbalizes that step with explicit premises. This is encoded by
the following production:
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Start replanning step S

Check whether there is a lower level of abstraction —2

yes

Return Replan S on the next lower level of abstraction (S)

V\ ) .
paraphrase the inference rule in S

Figure 6.20. The reaction of the dialog planner if a step S was too abstract.

Ri3) IF the current goal is
13
G : (Request (too-implicit :Conclusion C))

THEN push the goal G’ : (Reverbalize C).

The Reaction to S = (too-difficult :Conclusion C)

When the user complains that the derivation of a conclusion C' was too difficult,
the dialog planner enters a complex clarification dialog to find out which part of the
explanation failed to remedy this failure. The control of the behavior of the dialog
planner is displayed in Figure 6.21, where every arrow corresponds to a production.
Note that the dialog planner first tries to find out whether the previous explanation
was too implicit or too abstract and then reacts accordingly.

To elucidate the diagram in Figure 6.21, an example dialog where the user
complained that the original explanation of a proof was too difficult will be given
in Example 6.9a in Section 6.5.4.

Paraphrasing Inference Rules

When the system is confronted with user messages too-detailed, too-abstract or
too-difficult, and no alternative explanation can be generated, the dialog planner
paraphrases the proof step under consideration as shown in Figure 6.22. Again,
every arrow corresponds to a production. The paraphrase consists in notifying the
user either that the step is hypothesis, or that no more respectively less abstract
explanation can be generated.

The Reaction to S = (Continue!)

When the user tells the system to continue, the dialog planner ignores the interrup-
tion and continues with its previous task. Note that neither the interruption nor
the speech act is included in the discourse structure tree.

The Reaction to § = (Stop!)

With this message, the user indicates that he wants the system to stop the current
task. The system’s reaction is mediated by the following production:

(Ri4) IF the current goal is (Request (Stop!))
with parent D

THEN pop all goals from the goal stack
and push the goal to read a user command.

By applying this production the dialog planner empties goal stack and starts over.
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Start replanning step S

Check whether S has any premises

yes

Check whether all premises of S were explicitly verbalized
no yes

Reverbalize S with explicit premises

Y®Ask whether S is understood

no

Ask whether all premises of S are understood ves
no

Recursion with all premises that are not understood
Reverbalize S with explicit premises

Y%A sk whether S is understood

no

Check whether there is a lower level of abstraction no

yes

Replan S on the next lower level of abstraction (S')

/ye%sk whether S’ is understood
no

Return Recursion with S’

\

paraphrase the inference rule in S

Figure 6.21. The reaction of the dialog planner if a step S was too difficult.

Start paraphrasing rule R of step S

Check whether there S is a hypothesis — Y
l no “This is a hypothesis.”
Previous explanation was too abstract
yes no

“This is the most abstract explanation available.”

“This is the least abstract explanation available.” Return

Figure 6.22. The paraphrasing of an inference rule.
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6.5.4 Example Dialogs

Let us examine more closely how P.rex reacts to user interaction with the help of
two example dialogs. In first dialog, the user complains that the explanation is too
detailed. In the second dialog, in contrast, the user complains that the explanation
is too difficult.

The following example will elucidate the reaction of the dialog planner as shown
in Figure 6.19.

Example 6.9

Let X¥” be the signature encoding the ND calculus as given in Table 3.6 on page 36.
As in Example 6.4, we add the following declarations to X*” (for the sake of read-
ability, we omit implicit arguments to inference rules and show instead only their
premises and conclusions):

€ i (i—mo)—o

U : (imo)—(i—mo)—(i—o0)
DefU; : nd(z € S)—nd(z € SUS")
DefUs : nd(z € S')—nd(z € SUS")

Recall that the inference rule VE is encoded by
ore:nd(AV B) = (ndA—ndC)— (ndB—ndC)—ndC € X.
We also add the following constant definition to our signature:

ULemma = Au:nd(z € SVz € S').ore u
(Aug:nd(z € S).Def Uy uq)
(Augz:nd(z € S').Def Uz us)
:nd(zeSvzeS)—>nd(zeSUS)

Hence, in terms of the ND calculus, the corresponding inference rule U-Lemma

FzeSvzels

U-Lemma,
FxeSus’
is a derived rule with the expansion
Fz e S]" [Fz € Sz
+ o rze s rre>l p
TESVIES fresus ™ fresusM™ i
FxeSus

Now, let us consider the following situation:

e The top goal on the goal stack is
G: 'k ULemma(H):nd(a e UUYV)
with expansion

I'tore H
()\Hl :nd(a S U)-Derl Hl)
()\HQ:nd(a S V)-DerQ Hg)
:nd(ae UUYV)
where I' = a:i,U:i—o0,V:i—o,H:ndlac UVa€eV).

The next goal on the stack is

G' : '+ ULemma(H') : nd(a € FUG)
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with expansion

It ore H'
(AH{:nd(a € F).DefU; Hi)
(AH}:nd(a € G).Def Uy Hj)
:nd(a € FUQ)

where I'" = a:i, F:i—0,G:i—o,H':nd(a € FVac€Qq).
e The rules VE and DefU are known, the rule U-Lemma is unknown.

e Each declaration in I and I has been shown earlier. In particular, the user
already knows that

I'-H:ndlaeUVa€eV) and
I'+H' :ndla € FVac€eQ@G).

e The cases of both case analyses, that is,

I't MAHy:nd(a € U).Def Uy Hy :nd(a € U)—=nd(a e UUYV),
I'+ MHy:nd(a € V).DefUy Hy : nd(a € V)—nd(a € UUYV),
I+ X\H{:nd(a € F).DefU; H{ : nd(a € F)—>nd(a € FUG), and
I+ AH}:nd(a € G).Def Uz H) : nd(a € G)—nd(a € FUQG)

are unknown.

Note that G is the current goal. Since U-Lemma is unknown to the user, VE
is the most abstract known rule justifying the current goal. Thus, P rez explains
G with the case analysis as in Example 6.4d, that is, the following speech acts are
produced (we omit the discourse structure trees in this example):

[(Case-Analysis :Goal nd(a € UUV) :Cases (nd(a € U),nd(a € V)))
[(Case :Number 1 :Hypothesis nd(a € U))
(Derive :Reasons (nd(a € U)) :Conclusion nd(a € UUYV)
:Method DefU)
(End-Case)
[(Case :Number 2 :Hypothesis nd(a € V))
(Derive :Reasons (nd(a € V)) :Conclusion nd(a € UUYV)
:Method DefU)
| (End-Case)
(End-Case-Analysis :Goal nd(a €e U UYV))

Suppose now that the user interrupts the system throwing in that the presen-
tation is too detailed. Then, the analyzer passes the speech act (too-detailed
:Conclusion a € UUV) to the dialog planner. Since the inference rule U-Lemma,
which is more abstract than VE, also justifies the conclusion, the U-Lemma is marked
as known and the goal G is again pushed onto the goal stack. Then, (P2) is the
only applicable production. Since U-Lemma is more abstract than VE and both
are known, it is chosen to instantiate (P2). Hence, the dialog planner produces the
MCA

(Derive :Reasons (a€ UVae€eV) :Conclusion ac UUV
:Method U-Lemma)

Since U-Lemma is now marked as known to the user, it is also used for presen-
tation in subsequent situations. In particular, when G’ is to be fulfilled, U-Lemma
is the most abstract rule known to the user, such that (P2) is the only applicable
production. The whole dialog takes place as follows:
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P.rex: In order to prove that a € U UV let us consider the following cases.

Case 1: Let a € U. Then a € U UV by the definition of U.
Case 2: Let a € V. That implies that a € U UV by the definition of U.

User: This derivation is too detailed.

P.rex: Since a € U ora € V, a € UUYV by the U-Lemma. Since a € F or
a € G,a € FUG by the U-Lemma.

O

Let us now turn our attention to the case where the user complains that the
explanation is too difficult. To elucidate the behavior of the dialog planner as
depicted in Figure 6.21, let us examine the following example:

Ezample 6.9a (continued)

Let us again assume the initial situation from Example 6.9, but now, the user is
assumed to know U-Lemma. This time, the only applicable production is (P2).
Since U-Lemma is more abstract than VE and both are known, it is chosen to
instantiate (P2). Hence, the dialog planner produces the MCA

(Derive :Reasons (a € UVa€V) :Conclusion a€e UUV
:Method U-Lemma)

Suppose now that the user points to this utterance and interrupts P.rex throwing
in that this step was too difficult. The analyzer translates the user’s interaction to
the speech act (too-difficult :Conclusion a € U U V). Now, the dialog plan-
ner enters the clarification dialog as displayed in Figure 6.21. Since all premises were
explicitly mentioned, the system does not reverbalize the step, but asks whether all
premises are understood, what the user affirms. Hence, the system checks whether
there is a lower level of abstraction, at which the step can be presented. Since this
is the case, P.rex replans the explanation of the step by marking the inference rule
U-Lemma as unknown and pushing the goal G again onto the goal stack. Now, (P2)
is not applicable, since U-Lemma is unknown, but (P1) and (C2) are applicable.
Hence, the system proceeds as in Example 6.4d and verbalizes the case analysis.
Since U-Lemma is unknown, it is not used in subsequent situations either. There-
fore, goal G' is also explained using the case analysis. The whole dialog takes place
as follows:

P.rex: Sinccea€ Uora€V,a€ UUYV by the U-Lemma.

User: This step is too difficult.

P.rex: Do you understand the premises?

User: Yes.

P.rex: In order to prove that a € U UV let us consider the following cases.

Case 1: Let a € U. That leads to a € U UV by the definition of U.
Case 2: Let a € V. Then a € U UV by the definition of U.

Do you understand this step?
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User: Yes.
P.rex: In order to prove that a € F'U G let us consider the following cases.

Case 1: Let a € F. Therefore a € F'U G by the definition of U.
Case 2: Let a € G. Then a € F UG by the definition of U.

6.5.5 The Initiation of a Discourse

When P rex is launched, the dialog planner starts a new discourse. To do so, before
the production cycle starts, the dialog planner pushes the goal Gy to read a user
command. Then, it creates the following initial discourse structure tree

D

@1 : (Inform (hello))

and pushes G onto the goal stack. Note that D is the root of the discourse structure
tree. Then, the dialog planner starts the production cycle. Since G; is on top of
the goal stack, it is the current goal. Hence, the dialog planner invokes production
(I5) and, thus, says “Hello.” Then, the goal Gy to read a user command becomes
the current goal, that is, P rez waits for the user to tell it the next task.

6.6 Discussion

The dialog planner of Prex is a hybrid planner, which combines planning with
discourse relations as captured in productions with planning with schemata. To
represent the dialog, it constructs a discourse structure tree that combines the RST-
like approach of Hovy [1993] with the concept of attentional spaces from Grosz and
Sidner [1986].

Note that the attentional spaces are employed to model the salience of the
information. Based on the information in which focus space a fact was derived, the
dialog planner decides how the fact can be referred to. Do not confuse this with
the forgetting of information modeled by ACT-R via the retrieval threshold. A fact
that cannot be retrieved anymore is derived anew by the dialog planner.

Beside adapting the degree of explicitness taking into account the attentional
spaces, the dialog planner also adapts to the user by explaining the proof at the
highest level of abstraction that it assumes to be known to the user and by omitting
steps that it assumes the user can easily infer. Moreover, it combines two different
presentation strategies depending on how familiar with the current subject the user
is. Whereas a textbook-style presentation strategy is used for those parts of the
proof where the user is more knowledgeable, a classroom-style explanation strategy
is used for the unfamiliar parts.

The system allows the user to interrupt anytime if he is not satisfied with the
current explanation and reacts to the interruption by accordingly replanning the
parts of the proof the user complained. The dialog planner uses the structural
information that is explicitly represented in the discourse structure trees to identify
which parts of the explanation failed to convey successfully. Those parts are then
replanned.

With the current productions, P.rex plans its explanations locally, that is, it ex-
amines isolated steps of the derivation and decides how to present them. However,



146

CHAPTER 6. THE DIALOG PLANNER

to implement global planning it is easily possible to define productions that examine
a whole subproof by considering not only the top symbol of the proof term, which
corresponds to the last step of a derivation, but also its subterms, which correspond
to subderivations (cf. Example 6.1 on page 96 for the relationship between sub-
derivations and subterms in TWEGA). Such global planning should prove useful in
situations where one step cannot be well presented without taking into account its
surroundings. For example, when nested case analyses occur in a formal proof they
are often preferably presented as one large flat case analysis. Only global planning
can detect that a case analysis contains further nested case analyses and present
them as one large case analysis.

Initially, Prex is equipped with 91 domain independent productions, that is,
they are independent of the represented logic and the mathematical theory under
consideration. These productions are listed in Appendix C.2.2. Further domain de-
pendent productions are added by the definition of schemata tailored to the mathe-
matical theory under consideration. Moreover the system can learn new productions
via the production compilation process.

In this chapter, we discussed the dialog planner, which provides a discourse plan
as a representation of the dialog. In the following chapter, we shall describe fur-
ther components of P.rex that ensure that the information in the discourse plan is
conveyed to the user and that his interactions are accepted and analyzed.
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Front End Components

As discussed in Chapter 2 and, in more detail, in Chapter 6, the dialog planner is the
central component of Prex. It plans and structures the overall discourse between
the system and the user, essentially by placing speech acts in a discourse structure
tree. However, the speech acts still need to be conveyed to the user and the user
must be allowed to make utterances himself, which in turn are to be transformed
into speech acts to be included in the discourse structure tree.

In Prex, the dialog planner pipes the speech acts to the generation components,
which verbalize them by producing appropriate sentences. Section 7.1 is devoted to
the generation components. The sentences are then passed on to the user interface.
The user interface, which we shall present in Section 7.2, displays the system’s
utterances and accepts the user’s utterances. The user’s utterances are passed to
the analyzer, which interprets them in terms of speech acts. The analyzer, which is
the subject of Section 7.3, pipes the speech acts to the dialog planner for inclusion
in the discourse structure tree and further processing.

7.1 The Generation Components

As discussed in great detail in Chapter 6, the dialog planner produces a dialog
plan based on decisions that concern the presentation. More detailed linguistic
decisions are made by the sentence planner. It makes reference choices, chooses
between linguistic resources for domain concepts, and combines and reorganizes
such resources into paragraphs and sentences. To include a sentence planner in
Prex, we adapted PROVERB’s micro-planner [Huang and Fiedler, 1997; Fiedler,
1996] and enriched its linguistic resources to support the extended set of speech acts
used by Prex. In this section, we shall briefly sketch the sentence planner.

To allow for all previously mentioned operations, the sentence planner is based
on an intermediate representation called text structure, which was initially proposed
by Meteer [1992]. The text structure reflects linguistic constraints, while abstracting
away from syntactic detail. Similarly to the discourse structure tree, which reflects
the constituency of the segments of the discourse, the text structure is a tree that
reflects the constituency of words and phrases in a sentence.

To specify how subtrees of the text structure may be combined, we consider two
orthogonal dimensions of semantic categories. Each text structure node is classed
with respect to the ideational dimension in terms of the upper model, and the
textual dimension in terms of textual semantic categories.

The upper model [Bateman et al., 1990] is a domain-independent property inher-
itance network of concepts that are hierarchically organized according to how they
can be linguistically expressed. Figure 7.1 shows a fragment of the upper model in
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P rezx. For every concept used in the speech acts, a domain concept is inserted to the
upper model, primarily including the rhetorical relations, and the logic predicate
and function symbols.

— modified-concept

conscious-being
— object {
non-conscious-being

concept — arbitrary-place-relation

relational-process {
I process { discrete-place-relation
mental-process

modal-quality
— quality {
material-world-quality

Figure 7.1. A fragment of the upper model in P.rez.

The hierarchy of textual semantic categories [Panaget, 1994] is also a domain-
independent property inheritance network. The concepts are organized in a hier-
archy based on their textual realization. For example, the concept clause-modifier-
rankingl is realized as an adverb, clause-modifier-rankingll as a prepositional phrase,
and clause-modifier-embedded as an adverbial clause. Figure 7.2 shows a fragment
of the hierarchy of textual semantic categories.

— text
— sentence
- clause
category —| clause-modifier-rankingll

- vp

clause-modifier clause-modifier-rankingl
- np

vp-modifier clause-modifier-embedded
— modifier

np-modifier

intensifier

Figure 7.2. A fragment of the hierarchy of textual semantic categories in P.rezx.

The content of the text structure nodes can be an application object (such as
a speech acts or a formula) or an upper model object. Starting from a single-node
text structure containing a list of speech acts, the sentence planner progressively
maps application objects into appropriate linguistic realizations. This is done in
two stages: First, the sentence planner decides for the current text structure leaf
node to which of possibly several allowed upper model object its application object
is mapped. Then, taking into account the set of allowed textual semantic categories
for the leaf node, a reified instance of a text structure subtree is chosen to expand
it. Thus, the text structure evolves by expanding leaves top-down and from left
to right. While doing so, the sentence planner draws on various rules, including
aggregation to remove redundancies, insertion of cue words to increase coherence,
lexical choices, sentence scoping and layout. A more detailed discussion of the
sentence planner is given in [Huang and Fiedler, 1997]. A thorough description can
be found in [Fiedler, 1996].
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A text structure constructed in this way is the output of the sentence planner,
and is transformed into the input formalism of TAG-GEN [Kilger and Finkler,
1995], the linguistic realizer we use in Prer. TAG-GEN, which is based on the
grammar formalism of tree adjoining grammars [Joshi, 1985], then produces the
surface sentences taking into account the morphology of the individual words. The
surface sentences are finally displayed to the user via the user interface, which is
the subject of the following section.

7.2 The User Interface

Having described the generation components of P.rez, we now turn our attention to
the component that mediates between the system and the user, the user interface.
The task of the user interface is twofold. First, it exposes to the user the system’s
utterances, which it receives from the linguistic realizer. Second, it accepts the user’s
interactions and either passes them on to the analyzer or executes them directly.

When we design the user interface, we must bear in mind that P.rex is devised
as a generic system that can be connected to different theorem provers. Many au-
tomated theorem provers (e.g., Otter [McCune, 1994], SPASS [Weidenbach, 1997))
have only simple file interfaces and are not necessarily optimized for human interac-
tion. When used with such systems P.rex needs an elaborate user interface to allow
the user the convenient interaction with the proof explanation system. In contrast,
other theorem provers, especially interactive systems (e.g., QMEGA [Benzmiiller et
al., 1997], Theorema [Buchberger, 1997]), have elaborate graphical user interfaces,
which allow the user to interact with the system easily. In such an environment,
a generic interface that can be integrated easily into the existing graphical user
interface is to be preferred.

Therefore, we equip P.rex with a generic interface that can be connected to the
existing user interface of a theorem prover. The generic interface will be defined in
Section 7.2.1. Moreover, for the direct use by the human user, P rez is distributed
with an Emacs interface, which is built on top of the generic interface. We shall
describe the Emacs interface in Section 7.2.2. We also used the generic interface to
couple P.rex with the proof development system QOMEGA [Benzmiiller et al., 1997]
via a socket connection.

7.2.1 The Generic Interface

We define the generic interface in terms of the output produced by P rex and the
input it allows the user to enter. Thereby, we distinguish between two types of
input: Whereas input of the first type, an instruction, is directly processed by the
interface, input of the second type, a dialog turn, is passed on to the analyzer for
further interpretation. Any input of the second type is considered as quasi—natural-
language input and therefore also added in natural language in the output, such
that the output contains the complete dialog. That is, the generic interface outputs
both the system’s utterances and the user’s utterances. In addition, when entering
a command or an interruption, the user can refer to an utterance made by the
system previously.
Let us first define the output of the generic interface.

Definition 7.1 The output of the generic interface is a triple (S, id, s), where
S € {system,user} is the speaker, id is the identifier of a discourse structure node
and s is the uttered sentence. [

Since the generic interface outputs both the system’s and the user’s utterances, S
can be used to distinguish the utterances from both interlocutors—for example,
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by using different typefaces or colors. The identifier id stands for the discourse
structure node that contains the speech act that represents the utterance. The
sentence s, finally, is the output string of the linguistic realizer.

Technically, the output of the generic interface is a single string, whose syntax
is given by the following grammar:

output = speaker id sentence
speaker 1= system | user
id = NIL | symbol

where sentence is an output string of the linguistic realizer and symbol is the iden-
tifier of a discourse structure node.
Now, let us define the input to the generic interface.

Definition 7.2 The input to the generic interface is a triple (4, a, s), where a is
the action of type A taken by the user and s the arguments to a. [

The action a that can be taken is either an instruction or a dialog turn. Instruc-
tions are technical commands that are considered as outside the dialog, such as
the instruction to load a TWEGA signature, in which a proof is represented. The
instructions are appropriately processed by the generic interface directly. Dialog
turns in contrast, are considered part of the dialog. Each dialog turn entered by
the user is passed on to the analyzer without further examination. This has the
advantage that the replacement of the current analyzer by a more powerful one does
not effect the generic interface. The dialog turns will be defined formally as input
to the analyzer in Section 7.3.

Whether the action a is an instruction or a dialog turn is annotated by its type
A. The arguments s to a are defined with respect to a. This is done in Appendix D.1
for instructions and in Section 7.3 for dialog turns. To refer to an utterance made
previously by the system, the user can include in s the identifier of the corresponding
discourse structure node as given in the output.

Technically, the input to the generic interface is a single string, whose syntax is
given by the following grammar:

nput == type-action arguments
type-action = instruction instruction | dialog dialog-turn
instruction = NewProof | ReadSgnEntry |ReadInfoEntry | ReadJudgment

| Reset | SetTheory | Load

where arguments is a string of arguments to the action and dialog-turn is a dialog
turn as will be defined in Section 7.3.

7.2.2 The Emacs Interface

The distribution of P.rex features an Emacs interface, which is built on top of the
generic interface. It uses an Emacs buffer where the dialog is displayed and where
the input can be entered by the user. In this section, we shall give an overview of
the Emacs interface.

The Emacs interface accepts the output of the generic interface, say (S, id, s),
and displays the sentence s in the Emacs buffer. To account for the speaker S,
it uses different colors for the sentences, for example, black for the system and
brown for the user (cf. Figure 7.3). Moreover, it stores the relationship between the
sentence s and the identifier id of the discourse structure node that contains the
speech act that represents s. Furthermore, it keeps track of where in the buffer the
sentences are displayed.

The Emacs interface parses the sentence s for any PML directives and interprets
them appropriately. As a sublanguage of the Hypertext Markup Language HTML,
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L #rex =0
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Proof:
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Show the current proof. (C-c =)
a in U union ¥ since a 1n U or a in ¥ by the Uni REPESF
step? What is...?
Exit!
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Do vou understand the premises? This step is chwvious.

This derivation is triwial.
This step is too detailed.
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Case 1: This step is too difficult.
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down—-mouse—3— L]

Figure 7.3. A screen shot of the Emacs interface to P.rex.

the Prex Markup Language (PML) allows for the inclusion of layout information
in the sentence. For example, <B> starts writing the text in boldface, </I> ends
writing the text in italics and <FONT color=red> starts writing the text colored
red. PML is formally defined in Appendix D.2.

Since the current analyzer of P.rex is not powerful enough to understand natural
language, the user cannot enter free text or speech. Therefore, he is not allowed to
type directly into the Emacs buffer. Instead, the Emacs interface allows the user to
interact with the system by mouse events or key strokes. Instructions can be chosen
by using a pop-up menu. Dialog turns can be entered via a context menu. The
menu entries for dialog turns are given in natural language (e.g., “This step is too
difficult.” or “This derivation is trivial.”, cf. Figure 7.3). All instructions and some
commands can also be invoked by key strokes. The menu choices and key strokes
are transformed appropriately and piped into the input of the generic interface.

When the user chooses a dialog turn that includes a reference expression he has
to point to the sentence that verbalizes the appropriate step. Since the Emacs inter-
face stored the identifier of the discourse structure node that contains the speech act
that verbalizes the sentence, it can add this identifier to the input string to be passed
to the generic interface. For example, let DS123 be the discourse structure node with
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speech act (Derive :Reasons (nd(a € UVa € V)) :Conclusion nd(a € UUYV)
:Method U-Lemma), which was verbalized earlier as “Thus, a € U UV by the
U-Lemma.” When the user points with the mouse to that sentence and simultane-
ously chooses “This step is too difficult.” from the context menu by clicking with the
right mouse button, the Emacs interface pipes the string “dialog too-difficult
DS123” into the input of the generic interface.

Figure 7.3 shows a screen shot of the Emacs interface. Note that the system’s
utterances are typed in black, whereas the user’s utterances are brown. The sentence
to which the mouse is pointing is highlighted using red letters on a green background.
Since the user was pressing the right mouse button while pointing at the sentence,
the context menu is displayed to allow him to choose an utterance. Note that the
context menu items, which are displayed in natural language, are ordered according
to their type (that is, whether they are commands, interruptions or answers). The
pop-up menu with the instructions can be accessed via the menu bar entry “P.rex”
at the top of the Emacs window.

Note that the Emacs interface described in this section is one possible solution,
which is tailored to the current output and input capabilities of P.rez. In particular,
if the analyzer were to be replaced by a more powerful one, the Emacs interface
might need to be adapted as well.

7.3 The Analyzer

Since the development of a natural language analysis component is far beyond the
scope of this work, we are content for the time being with a simplistic analyzer that
produces speech acts from a small set of allowed input objects. In this section, we
shall describe this analyzer.

The analyzer receives its input from the generic interface and transforms it to
speech acts.

Definition 7.3 Let (dialog,a,s) be the input to the generic interface. Then,
(a, s) is the input to the analyzer. n

Recall from Section 7.2.1 that a is a dialog turn. Possible dialog turns are com-
mands, interruptions and answers, that is, the action taken is mapped by the
analyzer to the command, interruption and answer speech acts as defined in Sec-
tion 6.5.1.

Technically, the input to the analyzer is a single string, whose syntax is given
by the following grammar:

input == dialog_turn arguments

dialog_turn == command | interruption | answer

command = Show! |Repeat! |what-is? |Exit!

interruption = O0Obvious-Step |Trivial-Derivation |too-detailed
| too-abstract | too-implicit | too-difficult
| Stop! | Continue!

answer i= yes |no |premises

where arguments is a string of arguments to the action.
In the following, we use € to denote empty arguments. The mapping from the
analyzer’s input to its output is given as follows:

Commands

Show!
Let (Show!, s) be the input, where s = (P, S) with a proof name P and a
strategy S € {Explain, Present}. Then, the analyzer returns the speech
act (Show! :Proof P :Strategy S).
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Repeat!
Let (Repeat!, P) be the input, where P is a proof name. Then, the
analyzer returns the speech act (Repeat! :Proof P).

what-is?
Let (what-is?,s) be the input, where s = (A4, id) for an object A and the
identifier id of a discourse structure node N. Then, the analyzer returns
the speech act (what-is? :0bject A :ds-node N).

Exit!
Let (Exit! €) be the input. Then, the analyzer returns the speech act
(Exit!).

Interruptions

Obvious-Step, Trivial-Derivation, too-detailed, too-abstract,
too-implicit, too-difficult

Let (Sa4,id) be the input to the analyzer, where S4 € {Obvious-Step,
Trivial-Derivation, too-detailed, too-abstract, too-implicit,
too-difficult} and id is the identifier of a discourse structure node
N that contains a speech act. Furthermore, let C' be the conclusion that
was verbalized by the speech act contained in N. Then, the analyzer
returns the speech act (S5 :Conclusion ().

Continue!, Stop!
Let (Sa,e€) be the input where S4 € {Continue!, Stop!}. Then, the
analyzer returns the speech act (S4).

Answers

yes, no
Let (Sa,€) be the input where S4 € {yes,no}. Then, the analyzer
returns the speech act (S4).

premises
Let (premises,!) be the input where [ is a list of numbers. Then, the
analyzer returns the speech act (premises :items [).

If the input can be successfully analyzed, the corresponding speech act is passed
on to the dialog planner for the inclusion in the discourse structure tree and further
processing. Moreover, it also piped to the sentence planner for verbalization and
subsequent inclusion as a user’s utterance in the output of the generic interface.
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Chapter 8

Conclusion

This thesis is about a computational model of user-adaptive proof explanation,
which is implemented in the generic proof explanation system P rex.

The powerful logical framework TWEGA defines the interface via which theorem
provers can be connected: The calculus of the prover, the input proof to be ex-
plained as well as relevant information from the mathematical theories that relate
to the proof are represented in TWEGA. The representation of the proofs is accord-
ing to the judgment-as-types paradigm. This paradigm not only guarantees the
correctness of the proofs with respect to the calculus in which they were found, but
is also well suited for the subsequent explanation because of its explicit representa-
tion of hypothetical and parametric judgments. Moreover, constant definitions in
TWwEGA allow for the simultaneous representation of several levels of abstraction of
one proof, an important prerequisite for user-adaptive explanation.

The dialog planning is based on the cognitive architecture ACT-R, which allows
us to combine user modeling and planning in a uniform framework. ACT-R is a
production system that relates procedural knowledge in a production rule base to
declarative knowledge in a declarative memory. We model the knowledge of the
user in the declarative memory of ACT-R. In the production rule base, we model
the system’s knowledge of how to explain proofs.

Besides the user model, we also represent the discourse structure tree, which
serves as both a dialog plan and a dialog history, in the declarative memory of
ACT-R. The discourse structure tree combines the RST-like approach of [Hovy,
1993] with the attentional spaces of [Grosz and Sidner, 1986] and, thus, allows us to
model both the segmentation of the discourse and the focus of attention in a uni-
form representation. Since the attentional spaces model salience, they are employed
to decide on the degree of explicitness and to choose appropriate referring expres-
sions. Explicit representation of the discourse purpose allows for presentations using
different styles, such as a textbook-like style or a classroom-like style. Moreover,
discourse structure trees also account for restricted types of dialogs as well, namely
certain types of interruptions and clarification dialogs. This is a necessary prereq-
uisite to enable the system to represent user interactions and to appropriately react
to them.

The plan operators that modify the discourse structure tree are realized as pro-
ductions. Meeting the characteristic of a hybrid planner, we distinguish between
two types of plan operators: simple plan operators, which add single nodes to the
discourse structure tree, and schemas, which add whole subtrees to the discourse
structure trees. Using special plan operators, the dialog planner adapts to the user
by explaining the proof at a level of abstraction and a degree of explicitness that is,
according to the user model, the most appropriate for the current user. Moreover,
depending on how familiar with the current subject the user is, it combines two
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different presentation strategies (textbook-like and classroom-like styles), which are
represented by overlapping sets of plan operators.

The system also allows for user interaction. The interactions are translated into
new discourse goals, which the dialog planner tries to fulfill. In particular, the
system is capable of dialog-driven user adaptation, that is, the user can intervene
if he is not satisfied with an explanation and the system replans the complained
parts of the proof. Then, similar proof parts are explained accordingly in future
situations.

P rex has been tested with proofs from group theory and the theory of first-order
predicate logic. An in-depth case study with proofs from limit theory is under way.

Possible Extensions

Prex has the potential to further improvements and extensions. The modular
architecture of Prez and the fixed interfaces between the modules ensure that
the possible improvements and extensions discussed subsequently can be realized
without major re-implementation.

Since P rex cannot modify the input proofs, it depends on them in the quality
of the explanations. In particular, proofs that are input only at a low level of
abstraction can also be explained only at that low level. It is not possible to find
a generic approach to achieve a logical abstraction of the input proof independent
of the attached theorem prover, since such a logical abstraction can be defined only
with respect to the calculus in which the proof was found. However, it is possible to
define some conceptual notion of abstraction, which is independent of the calculus,
but relative to the mathematical theory under consideration. This approach has
been pursued in QMEGA [Benzmiiller et al., 1997].

P rez allows for the use of mathematical formulae in natural language sentences.
However, many concepts and ideas are much easier to understand when they are
depicted graphically. The inclusion of graphs and diagrams is standard routine in
mathematics communication. Therefore, the ability of multi-modal presentations is
desirable for a proof explanation system as well. As [Wahlster et al., 1993] points
out, a three-staged architecture as realized in P rex is also appropriate for multi-
modal generation. To do so, a multi-modal extension of speech acts and productions
specialized for planning graphics must be defined. Moreover, the sentence planner
and linguistic realizer must be either appropriately extended or supported by graph-
ics generation components. Finally, the user interface must be extended to support
graphics as well.

To extend Prex to a real dialog system, a more powerful analyzer that under-
stands natural language is needed, and a speech-based user interface is desirable.
Systems that transform natural language text into spoken language are already
available. It should be only a minor problem to connect one to P rex. However,
an extension that only reads P rex output to the user does not seem appropriate.
Instead, P.rex should be extended to plan the speech separately from the text to
imitate a teacher who does not read loud what we writes on the board, but who
explains his writing using different words.

Prex is a system to explain only proofs. However, an extension to also explain
definitions and theorems and the structure of mathematical theories is desirable.
An appropriately extended system should answer questions as why a concept is
defined as it is if alternative definitions are possible. To generate such explanations
additional knowledge about the mathematical theories is needed—knowledge that
is usually not represented by theorem provers. Instead, the proposed extension
aims at a tutorial system for mathematics that draws on a comprehensive database
containing the mathematical theory under consideration.
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Since ACT-R is a powerful theory of human cognition, it has the potential to
allow for an extension of Prex towards a tutorial system for mathematics. In
Prex, we already trace the user’s cognitive states during an explanation. Clearly, it
is also possible to trace a student’s cognitive states when he is proving a theorem or
solving a mathematical exercise. Moreover, ACT-R allows for the definition of an
error model that captures misconceptions in problem solving methods. In addition,
the functionality of partial matching in ACT-R can be employed to account for
incorrect applications of problem solving methods by the student.

Availability

Prez is implemented in Allegro Common Lisp with CLOS and has been tested on
dozens of input proofs. The implementation (currently Version 1.0) can be accessed
via the Prex homepage at http://www.ags.uni-sb.de/ prex.
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Appendix A

Representing Proofs

This chapter is devoted to technical details concerning the representation of proofs
in TWEGA that have not been presented in the main part of this thesis. In the first
section, we shall give the concrete syntax of TWEGA. In the second section, we shall
give the proofs of the lemmata and theorems that we omitted in Chapter 4.

A.1 The Concrete Syntax of TWEGA

Whereas the abstract syntax is a means that allows us to easily talk about objects,
the concrete syntax determines how these objects must be written so that the system
can understand them. The abstract syntax of TWEGA was given in Section 3.3.1 as
follows:

Terms Ta=V|C|TT|AV:T.T | IV:T.T
Signatures Sig = - | Sig,C:T | Sig,C=T:T

where V and € are infinite collections of variables and constants, respectively.
The concrete syntax of TWEGA is given by the following grammar. It defines
the non-terminals sig, decl, term and uses the terminal type.

sig n= empty signature
| decl sig signature entry
decl := name (num) : term constant, declaration C:T
| name (num) = term : term constant definition C=T:T
term = type type
| name variable V or constant €
| termterm application JT
| [name : term] term A-abstraction AV:T.T
| {name : term} term IT-abstraction ITV:T7.T
| term->term T—7 (ie., I_:T.7)

As usual in type theory, A -> B is treated as an abbreviation for {x : A} B, where x
does not occur in B.

The non-terminal name stands for a name string that must not contain colons or
whitespaces. To distinguish names from reserved characters, the following strings
are not allowed as name strings: ‘{’, ‘[’, ‘C, 97, ‘1°, ‘}’. Furthermore, the names
‘=>” and ‘type’ are predefined and therefore also disallowed.

The non-terminal num stands for a natural number (including 0). It denotes
the implicit arguments of the constant declaration or definition (cf. 3.4.1). Techni-
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cally speaking, implicit arguments are those arguments that can be typed by type
reconstruction. From a pragmatic point of view, implicit arguments do not carry
intuitive information and are therefore omitted in the verbalization.

The following agreements, which are ordered by precedence, disambiguate the
syntax:

1.
2.
3.
4.

Application is left associative and has the highest precedence.
‘=>’ is right associative and has the second highest precedence.

2 is left associative.

‘{}’ and ‘[]’ are weak prefix operators.

Example A.1

As an example for a signature we give the TWEGA representation the ND calculus
(cf. Section 3.4.1) enriched by the derived inference rule AComm and a theorem
stating the commutativity of the conjunction (cf. Section 4.1.3).

i (0)
o (0)

: type
: type

and (0) : o > 0 -> o

imp (0) : o => 0 => o

or (0) : o => 0 -> o

true (0) : o

forall (0) : (i -> o) -> o

exists (0) : (i > 0) > o

nd (0) : o —> type

andi (2) : {A : o} {B : 0} nd A -> nd B -> nd (and A B)
andel (2) : {A : o} {B: 0o} nd (and A B) -> nd A

ander (2) : {A : o} {B : o} nd (and A B) -> nd B

impi (2) : {A : o} {B : o} (nd A -> nd B) -> nd (imp A B)
impe (2) : {A : o} {B : o} nd (imp A B) -> nd A -> nd B
oril (2) : {A : o} {B : o} nd A -> nd (or A B)

orir (2) : {B : o} {A

o} nd B -> nd (or A B)

ore (3) : {A : o} {B : o} {C : o} nd (or A B) >

(nd A->ndC) -> (ndB->ndC) ->nd C

truei (0) : nd true

foralli (1) : {A :
foralle (1) : {A :
existsi (1) : {4 :
existse (2) : {A :

-> o} ({a : i} nd (A a)) -> nd (forall A)
-> o} nd (forall A) -> {T : i} nd (A T)
-> o0} {T : i} nd (A T) -> nd (exists A)
-> o} {C : o} nd (exists A) —>

({a : i} nd (A a) > nd C) -> nd C

He e e e

andcomm (2) = [A : o] [B : o] [u : nd (and A B)] andi B A (ander A B u)

thm (2)

(andel A B u)
: {A : o} {B : o} nd (and A B) -> nd (and B A)
[P: o] [Q: o] impi (and P Q) (and Q P)
[u : nd (and P Q)] andcomm P Q u
: {P : 0} {Q : o} nd (imp (and P Q) (and Q P))
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A.2 Correctness Proofs

In this section, we shall give the formal proofs of the lemmata and theorems we
omitted in Chapter 4.
First, we shall prove the correctness of the encoding of terms:

Lemma 4.3 (Correctness for Terms) Lett € T be a valid term, let X be o valid
signature with X% C X and I' be a valid context, and let £(X,T,t) = (X,U, V).
Then the following hold:

(i) ¥ C 5 and £ is valid.
(i) TEgU:V and I' -5 V : type.
(iii) U,V € NF(T).

Proof: Similarly to the proof of Lemma 4.2, the assertions are shown simultane-
ously by induction over the construction of ¥, U, and V.

Case SYM:

(i) By definition, either X" = X" or X" = X" ¢:T. In the first case
the assertion follows directly by Lemma, 4.2. In the second case, clearly
X" C X" and X" is valid by Lemma 4.2. To show the validity of X"’
we only have to show that Fx» T : s for an s € §. This follows directly
by Lemma 4.2, since T does not contain any free variables.

(if) The second part of the assertion follows from the second premise of SYm
by applying Lemma 4.2.
Now, we prove the first part of the assertion.
By rule declstart or start, respectively, we obtain

r I—Em c: T (A].)

Recall that T = Aay,:hol.obj S. For n = 0, T = obj S = objT" and we
are done.

Now, let us consider the case where n > 0.

Since 7 = 7"[r/au]...[tn/an] we have T' = S[T|/a1]... [T}, /o] for
some T4, ...,T),. The definition of the function Z ensures, that T; = T}
for 1 <4 < n. Hence, T' = S[T1/a1]...[Tn/an]. Therefore, and since
I'Fxm T : type by Lemma 4.2, the judgments

r I—Em Tz : hol for 1 S ) S n (A2)

must be derivable. Hence, n applications of rule appl to (A.1) and (A.2)
lead to

r |_Z"” CT1 - Tn : ObjTI
(iii) By induction hypothesis, 7' € NF(T), and thus, T1,...,T, € NF(T)
as well. Therefore, on the one hand objT” € NF(T), and on the other
hand cT; ... T, € NF(T), since c is fully applied.

Case VAR:

(i) Since ¥ = X, the assertion holds trivially.
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(i)

(iii)

The first part of the assertion follows directly by rule start.

By definition of VAR, z:0bjT € I'. Close inspection of the rules for
& shows that this declaration could only be added to the context by
rule ABSTR.

Application of Lemma 4.2 to the first premise of rule ABSTR gives us
I' b5 T : hol. By declstart, we obtain I'" k5 obj : hol — type. Hence,
application of rule appl establishes that I" 5 obj T : type.

The assertion follows directly from case ABSTR.

Case APPL:

(1)
(i)

(iif)

The assertion follows directly from the induction hypothesis.

By declstart, I' Fxn ap  : ITa:hol.II3:hol.obj (o = ) — obja — obj 3.

By induction hypothesis, I' Fxn u : obj (T" = T') and I' Fxn u' : objT".

Thus, there must be judgments I' v T :hol and I' Fxi T : hol.

Hence, fourfold application of rule appl givesus I' Fxr apT' T u v’ : obj T.
Since I' Fxi obj : hol - type and I' Fxn» T : hol as just argued, I' Fxn

obj T : type by rule appl.

Obvious, since T',T,u,u’ € NF(T) by induction hypothesis and

apT'Twuu' and objT are fully applied.

Case ABSTR:

()
(i)

(iii)

(i)
(i)

(iii)

The assertion follows directly from the induction hypothesis.

By declstart, I' b5 A : ITa:hol.IT 3 :hol.(obj a— obj 8) = obj (o = f).
By induction hypothesis I' Fxn T' : hol and I',z:0bjT' Fxn u:objT,
since I'z:0bjT" is a valid context by ctxdecl. Since QMEGA does not
allow for dependent types, £ cannot occur in T'. Hence, the judgment
I' bxn T : hol must be derivable. Application of rule abstr then gives us
I'bsu Axz:objT'au : objT' — objT. Thus, threefold application of rule
appl establishes that I' bxr AT' T Axz:obj T'.u : obj (T' = T).

By declstart, I' kx5~ obj : hol = type and I' Fx»= : hol — hol — hol.
As we argued previously, I' bx» T' : hol and I' Fx» T : hol. Hence,
threefold application of rule appl gives us I' b5 obj (T" = T) : type.
By induction hypothesis, T',T,u € NF(T). Hence, objT,objT" €
NF(T) and Az:objT'.u € NF(T). Therefore, AT'T Az:objT'.u €
NF(T) as well.

Case POLY:

The assertion follows directly from the induction hypothesis.

The assertion follows by n-fold application of rule abstr and rule
(type,type) to the induction hypothesis.

Obvious. -

Next, we shall show the proof of the correctness of the encoding of derivations:

Lemma 4.5 (Correctness for Derivations) Letw be a PDS node, a justification

sequence, or a PDS. Furthermore, let X be a valid signature with X7 C X' and I'
be a valid context, and let E(X, [ w) = (X,U,V). Then the following hold:

(i) ¥ C 5 and £ is valid.

(ii) Tk

U:VandI'tg V : type.

(iii) U,V € NF(T).
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Proof: Like in the proofs of Lemma 4.2 and Lemma 4.3, we prove the assertions
simultaneously by induction over the construction of X', U, and V.

Case HINODE:

(i) The assertion follows directly from the induction hypothesis.

(i) We have to show I'bx, Ay, :pfT,un.d: Hhy,:pf T upn.pf Tu and
I' b5, ITh,:pfT, un.pfT u : type. Instead, we show the following
stronger property:

Let for all1<i<n

I, =T

iy = hpgr ot a1 i Uny1—;
X =1

Ai = Mg i pf T Ung1—icAica
Iy, =pfTu

II; = IThpy1—i:pfThy1—iung1—i-Jli 1

Then, for all 0 < i < n the following hold:

(a) I is a valid context.
(b) Ii by, Ai: I
(¢) I; by, II; : type
Note that the assertion follows from this property with i = n.

To prove the stronger property, note that I'; Fx_ pf : ITa:type.a—type
for all 0 <i < n by rule declstart.

First, we show (a). Since I}, = I', its validity holds trivially. The
application of Corollary 4.3 to the premises of HINODE establishes that
I'ty,u;:T; and 'y, Tj:type for 1 < j < n, and hence,
I' -5, pfT}u; : type by applying rule appl twice. Since this conclusion
holds for all 1 < j < m, it is in particular true for j =n+1—4 and [
is valid for 1 <4 < n by ctxdecl. This concludes the proof of (a).

Next, we show (b) and (c¢) simultaneously by induction over 3.
1 =0:
Since [:pfTuw € I' C Iy, (b) follows directly by rule start.
Now, we show (c).
Since l:pfTu € I' C Iy and I' is a valid context, there must be
al" C I and an s € 8, such that I Fyx  pfTu:s. Hence,
the judgment Iy Fx, pfT u:s must be derivable. Since Iy Fx,
pf : ITa:type.a — type, the judgments Iy Fx, u:T and [y Fx,
T : type must be derivable. Thus, rule appl applied twice to these
judgments leads to Ip Fx, pfT u : type, that is, s = type.
(i—1)—q:
First, we show (c).
By induction hypothesis,

i hpy1—i:pf D1 —iung1—i Fx, 11 : type

From the proof of (a) we know that I'; by, pfT,11- i Unt1; : type.
Hence, applying rule (type,type) gives us

Iibx, Mhpyy i pfTog1 s ng1 -1 1 : type

This completes the proof of (c).
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(iii)

Next, we show (b).
By induction hypothesis,

i hppr—i i pf T Ung1—i Fx, Xicr 1 Ll

By (c), we know that I; b, IThyy1—i:pf Tpt1—i Uny1—i-I1;—1 : type.
Hence, applying rule abstr gives us

ibs, Mg pf T —iUny1—i-Ai1
s IThpy1—i:pf T i Uny1—i-I1; 1

This completes the proof of (b).
Obviously, D and C are in long Sn-normal form.

Case NODE:

(i)
(i)

(iii)

The assertion follows directly from the induction hypothesis.

The proof is similar to the one in case HINODE. The only difference is
that we define A\¢g = D’ in the stronger property and that [:pfTu & I.
Therefore, the base step of the induction to prove (b) and (c) follows
directly from the induction hypothesis of the main proof applied to the
(n+1)st premise of rule NODE. The rest of the proof remains unchanged.

Obvious.

Case JUST:

()

(iif)

By induction hypothesis and Lemma 4.3, X' C X, 1 ;41 and X441 i
valid. Clearly, X1 my1 € X'. To show the validity of X', we only have
to show that

Fxnime C 2 type
Lemma 4.3 applied to the (n + m + 1)st premise of rule JUST leads
tol'ty, oy u:Tand I' by, .. T :type. Rule declstart gives us
I'tx, .. pf : Ho:type.a — type. Then, applying appl twice estab-
lishes that I" Fx, .., pfT u : type.
C; : type for 1 < i < mn. Applica-
mimer Li 2 type for 1 <i <m.
Thus, applying rule (type,type) n + m times leads to

By induction hypothesis, I' Fx, ...,
tion of Lemma 4.3 gives us I' k5,

I'ky Iy, :CpJlxp, : Ty .pf T u : type

n+m+1

and Fy C : type follows by the definition of the function Ap.

n4m+1
From (i), we know that I' b5 pfT u : type. Therefore, I' Fxr C : type
must be derivable, where

C = (pfTu)[D1/y1]---[Dn/yn]ur/z1] - .- [m/Zm]

We now show I'tsvez1...20D1...Dpuy ... up, = C.

By declstart, I' bty c:Iz: 8. Hyy:Cp. Iz, : T .pf T u. Since
A (Z",I,0") = I#:85,.C", we know that z;:S; € I'for 1 < i <
and therefore I' by z;: S;. Furthermore, by induction hypothesis,
I'tsr D;:C; for 1 < i < n, and by Lemma 4.3, I' Fx: u; : T; for
1 < i < m. Hence, [ + n + m applications of appl establish that
I'bsieczi...2z1D1...Dput ... um : C.

Obviously, D and C are in long fn-normal form.
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Case JUST-SEQ:

(i) By induction hypothesis and Lemma 4.3, ¥ C X1 m41 and Xpppmy1 is

valid. Clearly, En+m+1 g P

Thus, we only have to show Fx,, ..., C" : type and F-x
derive the validity of X' by sigdefn.

S D" :C" to
First, we prove the following property:
Let for1<i<n+m

—n . . ) Tmti— for1<i<m

a0 =D e = { Ymtnti—i form <i<m+n

Ay =C ; A = { Crnp1-i for1<i<m
I, I

Trinti—i form<i<m+4n

Inym=1T > i-1 = z;az’:Ai
)\0 = Qg H )\i = )\ai :Ai-)\i—l
HO = AO 3 Hz = Hai:Ai.Hi_l

Then, for all 0 < i < m + n the following hold:

(a) I is a valid context.
(b) Fz |_2n+m+1 )‘z H,
(C) I; |_Z'n+m+1 II; : type.

To prove (a), note that, since Iy, y, = I, its validity holds trivially. By
induction hypothesis, I' b5, ..., C; : typefor 1 <i <n. By Lemma 4.3,
I'tx, ... Ti:type. Hence, I' b5 A; s type and [;_; is valid for
0<i<n+m.
Next, we prove (b) and (c) simultaneously by induction over i.
1=0:
It Fxpipyy D':C and Iy kg, ., C:type follow from the in-
duction hypothesis of the main proof applied to the (n + m + 1)st
premise of rule JUST-SEQ.
(i —1) = it
First, we show (c).
By induction hypothesis, I, a;: A; Fx IT;_q : type. In the
proof of (a), we showed that I' Fx, . ., A;:type, and hence,
I Fx, ... Ai:type. Application of rule (type,type) then leads
to I Fx, iy a;: Ajdl; o : type. This completes the proofs of
().
Next, we show (b).
By induction hypothesis, I;,a;: A; Fx
we have I by, . .,
rule abstr gives us I, by, ..,
completes the proof of (b).

n4m41

ntm41

et mt1 )\z'—l . Hz'—l- By (C),
Ila;: A;.II;_1 : type. Hence, application of
)\ai:A,’.)\i_l :Hai:Ai.Hi_l. This

From this property, we can conclude I' ks, . ... Amin i Iy, and
I Fspimir Dmgn : type. Note that D" = Ax(Zpymet, [ Admyn) =
Az 251 Am4n. By definition of Ay, we obtain

|—2n+m+1 /\Zl H Sl-/\m+n H Hzl H Sl-Hm+n

and

Fx Iz : S 0y, : type

n4m+1
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(i)

(iii)
Case PDS:

(i)

(i)
(iii)

First, we show I' x5 D : C.

By declstart, I' by ¢ : II2:S;.1Ty,,:C,,.Iz,,:T,,.C'. Clearly, z;:S5; €
I' for 1 < i <. Hence, I' Fyr z; : S;. Furthermore, by induction hy-
pothesis, I |_2/ Dz : Cz for 1 S ) S n, and by Lemma 43, r I_EI U; : T,'
for 1 < i < m. Hence, l+n+m applications of appl establish that I" -5
cz1...21D1...Dpuy .. .up : C'[D1/wa] - .. [Dn/yn][ur/z1] - - - [Um/Tm)-
Next, we show I' k5 C' : type.

From the induction hypothesis applied to the (n +m + 1)st premise we
know that I b5 C':type. Then, clearly I' b5 C : type must also be
derivable.

Obviously, D and C are in long Sn-normal form.

By Lemma 4.2 and induction hypothesis, X' C X, 4,41 and X, 4,41 is
valid. Clearly, X+ n+1 C X’. This leaves us to show 5 C' : type
and Fx, ..., D':C"

First, we prove the following property:

Let for 1<i<n

m4n+1

ag =D
@ = { Ymt1—i  for1<i<m

¢ Tl Cmanti—i form<i<m+n
AO = C
A _{hol for1<i<m

¢ T objThinti—i form<i<m-+n
Fm—i—n =

i =150 A

Then, I is a valid context for all 0 < i < n+m.

To prove the property, note that, since I+, = I, its validity holds
trivially. By Lemma 4.2, I' by, .., A; : type for 1 <4 < m. Further-
more, b5, . .. obj : hol—type by declstart. Hence, by Lemma 4.2 and
rule appl I' b5, .., A; : type for m < i < m +n. Then, I;_, is valid
for 1 <i <m +n by ctxdecl.

From this result, we can conclude in particular that I = I} is valid.
By induction hypothesis, I +x,.,.., D:C and I'" b5, . .. C:type.
Hence, Fx,. .4 AT1:51.D : IIx;:5;.C and k5, .., I2;:5..C : type by
definition of Ay. Application of rule sigdefn finally establishes that X'
is valid.

The assertion follows directly by induction hypothesis
Obvious, since D, C € NF(T) by induction hypothesis. "
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Appendix B

Speech Acts

In Chapter 6.2.1 we introduced the notion of speech acts in P.rex and gave an infor-
mal overview of our taxonomy of speech acts. This taxonomy consists of two major
classes, mathematical communicative acts (MCAs) and interpersonal communica-
tive acts (ICAs), which are depicted in the Figures B.1 and B.2, respectively.

In this chapter, we shall define all speech acts formally and explain their intu-
itive meaning, often by giving possible verbalizations. But first, we introduce the
following notation:

Notation: We write (S (C) :s1 f1 ...:sn fn) for the definition of a speech
act of class S, which is a subclass of C and has slots :s1,...,:sn and fillers
f1,...,fn. In fillers, we use t,t',#1,%2,... to denote terms and 4,41, ...,4, to
denote natural numbers.

The top classes of speech acts are the following:
e (SA ()) is the class of all speech acts.
e (MCA (SA)) is the class of MCAs.

e (ICA (SA)) is the class of ICAs.

B.1 Mathematical Communicative Acts

MCAs are employed to present or explain mathematical concepts or derivations.
We distinguish two subclasses of MCAs:

e (derivational (MCA)) is the class of derivational MCAs.

o (explanatory (MCA)) is the class of explanatory MCAs.

B.1.1 Derivational MCAs

Derivational MCAs convey information that is necessary to establish logical cor-
rectness. The first derivational MCAs stands for a derivation step:

e (Derive (derivational)
:Reasons (t1,...,t,) :Method (name) :Conclusion t)
“Since t1,...,tn, t by (name).”

The next two MCAs introduce an hypothesis or a parameter, respectively, in the
derivation:
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— Derive
— Hyp-Intro

— Par-Intro
— Obvious-Step

— Trivial-Derivation
L— Open-Step

_[ Proof

Qed

_[ Split-Goals
End-Split-Goals

_[ Subgoal
End-Subgoal
MCAs — oy Case-Analysis

End-Case-Analysis

— derivational —

_[ Case

End-Case

_[ Indirect
End-Indirect

_[ Induction
End-Induction

_[ Induction-Start
End-Induction-Start

'— explanatory —— Induction-Hyp

Induction-Step

End-Induction-Step

_[ Calculation
End-Calculation

- Display

End-Display

_[ Axiom
End-Axiom

_[ Definition
End-Definition

_[ Lemma
End-Lemma
_[ Theorem
End-Theorem
Example
{ End-Example

_[ Exercise
End-Exercise

Figure B.1. The taxonomy of MCAs.

e (Hyp-Intro (derivational) :Hypothesis ¢)
“Let t.”
e (Par-Intro (derivational) :Parameter t :Type t')
“Let t be a t'.”
Obvious steps and trivial derivations call for special derivational MCAs:
e (Obvious-Step (derivational) :Conclusion t)
“Obviously, t.”
e (Trivial-Derivation (derivational) :Conclusion t)
“t is trivially true.”
Finally, we define a derivational MCA for unproved assertions:

e (Open-Step (derivational) :Conclusion t)

“It is an open question how to prove ¢.”
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B.1.2 Explanatory MCAs

Explanatory MCAs give auxiliary information that helps to understand a derivation.
Most explanatory MCAs come in pairs where an opening explanation is associated
with a closing explanation. This is grasped by the following two subclasses:

e (open (explanatory)) is the class of opening MCAs.
e (close (explanatory)) is the class of closing MCAs.

We first define explanatory MCAs that structure a proof. The first two MCAs
encapsulate a proof:

e (Proof (open))
“Proof:”

e (Qed (close))

[
|

The next four MCAs structure a proof part where a goal is shown by splitting it
into subgoals, which are presented individually:

e (Split-Goals (open) :Goal t :Subgoals ti,...,t,)

“To prove t we prove t1,...,t,.”

e (End-Split-Goals (close) :Goal t)

“Therefore t.”

e (Subgoal (open) :Number i :Goal t)

“{First, Second, Next}, we prove ¢.”

e (End-Subgoal (open) :Number ¢ :Goal t)
“This completes the proof of ¢.”

The next four MCAs structure a case analysis:

e (Case-Analysis (open) :Goal t :Cases t1,...,%t,)

“To prove t, we consider the following cases:”

e (End-Case-Analysis (close) :Goal t)

“This completes the case analysis.”

e (Case (open) :Number ¢ :Hypothesis t)

“Case i: t”

e (End-Case (close) :Number ¢ :Hypothesis t)

“This completes the ith case.”
The following two MCAs encapsulate an indirect proof:

e (Indirect (open) :Goal t)
“We show ¢ indirectly.”

e (End-Indirect (close) :Goal t)

“Therefore t.”

The next seven MCAs structure an induction proof:
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e (Induction (open) :Goal t :Type (type))
“We show t by (type) induction.”

e (End-Induction (close) :Goal t :Type (type))

“This completes the induction proof.”

¢ (Induction-Start (open))

“Base case:”

e (End-Induction-Start (close))

“This completes the base case.”

e (Induction-Hyp (explanatory) :Hypothesis t)
“Induction hypothesis: ¢.”

e (Induction-Step (open))

“Step case:”

e (End-Induction-Step (close))

“This completes the step case.”
The following four MCAs encapsulate calculations and figures, respectively:
e (Calculation (open)) marks the start of a calculation.
e (End-Calculation (close)) marks the end of a calculation.
e (Display (open)) marks the start of a displayed figure.
e (End-Display (close)) marks the end of a displayed figure.
The remaining explanatory MCAs structure a mathematical lesson:

e (Axiom (open))

“Axiom:”
e (End-Axiom (close)) marks the end of an axiom.

e (Definition (open))

“Definition:”

e (End-Definition (close))

[
|

e (Lemma (open))

“Lemma:”
e (End-Lemma (close)) marks the end of a lemma.

e (Theorem (open))

“Theorem:”
e (End-Theorem (close)) marks the end of a theorem.

e (Example (open))

“Exzample:”
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next?
understood?

— Questions known?
which-not-known?
what-is?

Show!

Repeat!

— Requests Stop!

Continue!

Exit!

yes
no

ICAs —— Acknowledgments ok

correct

incorrect

too-detailed
too-implicit
too-abstract
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Figure B.2. The taxonomy of ICAs.

¢ (End-Example (close))
(CD”

e (Exercise (open))

“Exercise:”

e (End-Exercise (close)) marks the end of an exercise.

B.2 Interpersonal Communicative Acts

ICAs are used in situations, where the system and the user alternately take over
the active role in the discourse. We distinguish five classes of ICAs:

e (Question (ICA)) is the class of questions.

e (Request (ICA)) is the class of requests.

(Acknowledgment (ICA)) is the class of acknowledgments.

(Notification (ICA)) is the class of notifications.

(Greeting (ICA)) is the class of greetings.

B.2.1 Questions

e (next? (Question))

“What next?”



174 CHAPTER B. SPEECH ACTS

e (understood? (Question) :Goal t)

“Do you understand the step ¢?”

e (known? (Question) :Goal t)

“Do you know ¢?7”

e (which-not-known? (Question) :Goal t)

“Which ¢ don’t you know?”

o (what-is (Question) :Goal t :ds-node t')

“What is t?”

B.2.2 Requests

e (Show! (Request) :Proof t :Strategy (strategy))
“Show the proof ¢!”

e (Repeat! (Request) :Proof t)

“Repeat the proof t!”

e (Stop! (Request))
((Stop!”
e (Exit! (Request) )

“Exit!”

e (Continue! (Request) )

“Continue!”

B.2.3 Acknowledgments

e (yes (Acknowledgment))

“Yes.”

e (no (Acknowledgment))
“NO.”

e (ok (Acknowledgment))
MOK"’

e (correct (Acknowledgment))

“This is correct.”

e (incorrect (Acknowledgment))

“This is not correct.”
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B.2.4 Notifications

(too-detailed (Notification) :Conclusion t)

“The step t is too detailed.”

(too-difficult (Notification) :Conclusion t)

“The step t is too difficult.”
(too-implicit (Notification) :Conclusion t)
“The step t is too implicit.”

(too-abstract (Notification) :Conclusion t)

“The step t is too abstract.”

(hypothesis (Notification))
“This is a hypothesis.”

(identify (Notification) :object t :class t')
“t is tl-”
(least-abstract—-available (Notification))

“This is the least abstract explanation available.”

(most-abstract-available (Notification))
“This is the most abstract explanation available.”

(premises (Notification) :items i1,...,%p)

“The premises are 1,...,4,."

B.2.5 Greetings

(Hello (Greeting))
“Hello.”

(Good-Bye (Greeting))
“Good bye.”
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Appendix C

Cognitive Knowledge Bases

In this chapter, we shall present the declarative and procedural knowledge that is
predefined in Prex.

C.1 Declarative Knowledge

In this section, we shall describe the predefined declarative knowledge of P rex.
First, in Section C.1.1 we shall present the syntax to define chunk types. Then, in
Section C.1.2, we shall define the chunk types in P.rex. In Section C.1.3, finally, we
shall introduce all predefined chunks.

C.1.1 Syntax

The syntax to define chunk types is as follows:

chunktypedef ::= (chunk-type
{chunktype | (chunktype (:include chunktype))}
{slot | (slot value)}* )

The non-terminal symbols chunktype, slot and value denote chunk types, slots and
values, respectively.

Note that ‘type (:include parenttype)’ means that the chunk type type
inherits the slots of parenttype. However, ACT-R allows only single inheritance
in chunk types, that is, parenttype must not inherit any slots and no chunk type
may include type to inherit its slots. Moreover, ‘(slot value)’ means that the
slot slot has the default value value.

C.1.2 Chunk Types

In this section, we shall give the chunk types that are defined in P rez.
(chunk-type empty) ;;; a chunk type for a special chunk for empty slots
;# discourse structure trees

(chunk-type DS ;;; a chunk type for nodes of discourse structure trees
purpose the intention of the node (a PURPOSE chunk)

to-convey the information to be conveyed:

iff type is ’basic a proof node chunk or speech act

iff type is ’focus-space a list of proof node chunks
content an ordered list of DS chunks (iff planning purpose), or

the EMPTY chunk (iff purpose is OMIT), or
a speech act (iff utterance purpose)
the parent node (a DS chunk)

content-of
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(chunk-type

(chunk-type

(chunk-type

(chunk-type

(chunk-type

(chunk-type

(chunk-type

(chunk-type

(chunk-type

(chunk-type

(chunk-type

role ; the relation to the parent node:

; ’contributes (iff planning purpose)

; ’verbalizes (iff utterance purpose)

; ’opens or ’closes (if utterance purpose and

; parent is of ’focus-space type)
(status ’unknown) ; status w.r.t. the user (’known or ’unkown)
;3 bookkeeping slots
unconveyed ; unconveyed chunks in ‘to-convey’

; iff Basic-DS a proof node chunk or a speech act

; iff Focus-Space-DS a list of proof node chunks
)
(basic-DS (:include DS)) ;;; basic DS nodes

;5 bookkeeping slots

rule
premises
uncon-prems

)

only ’basic type: inference rule of the most abstract known
justification of the proof node in to-convey

only ’basic type: list of premises of the most abstract known
justification of the proof node in to-convey

only ’basic type: list of unconveyed premises of the unconveyed
chunk (a list of proof node chunks)

(focus-space-DS (:include DS)) ;;; focus space DS nodes
;; bookkeeping slot to speed up the implementation

derived

only iff ’focus-space type: chronologically ordered list of
formulae that have been derived in this focus space

purpose ;;; chunk types for purposes
class ; ’planning or ’utterance for planning and utterance purposes, resp.

)

proof ;;; a chunk type for proofs
proof ; a proof

name ; a string

)

proof-node ;;; a chunk type for proof nodes

node

justs

)

; the proof node
fact ; its fact (a FACT chunk)
; its justifications (a list of JUST chunks)

proof-node-list ;;; a chunk type for proof node lists (used in DS trees)

purpose ;
nodes ;
total ;
type ;
content H
content-of ;

)

purpose

list of proof nodes

total number of proof nodes
the type of the proof nodes
as in DS

as in DS

assoc ;;; association of a proof node with a speech act
proof-node ; a proof-node chunk
speech-act ; a speech act

)

fact ;;; a chunk type for facts
(antecedent empty) ; list of FORMULA chunks or EMPTY

succedent ; a FORMULA chunk
(status ’unknown) ; status w.r.t. the user (’known or ’unkown)
)

formula ;;; a chunk type for formulae
wif ; the term

)

rule ;;; a chunk type for rules

name

; the name of the rule as string

H
(status ’unknown) ; status w.r.t. the user (’known or ’unkown)

)

find-just ;;; a chunk type for finding a known justification
justs ; a list of justificatioms

previous ; the next more abstract justification
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rule ; a "rule" chunk
premises ; a list of proof nodes: the premises used by RULE
)
(chunk-type identify ;;; a chunk type to identify objects
object ; the object to identify (a twa+proof-node)
)
(chunk-type format ;;; a chunk type for format directives
type ; the format type: ’begin-focus or ’end-focus
)

;# chunk types for user interaction

(chunk-type interaction ;;; a chunk type for interaction goals
type ; a string for goal type
content ; a speech act
)

(chunk-type failed-presentation ;;; a chunk type to react to a failed presentation
node ; the DS node whose presentation failed
lower ; a DS node that shows node at a lower level of abstraction
problem ; a string indicating the problem why presentation failed
remedy ; a string indicating how to repair the presentation
(fact-unknown t) ; a boolean indication that the fact should be set to unknown
answer ; the answer of the user to possible questions
)

(chunk-type command ;;; a chunk type for commands
type ; the command type ("exit", "stop")
)

C.1.3 Predefined Chunks

The following chunks are predefined in P rex:

; special chunk for empty slots
(Empty ISA empty)

; planning and utterance purposes

(explain ISA purpose class ’planning)
(present ISA purpose class ’planning)
(omit ISA purpose class ’planning)
(reverbalize  ISA purpose class ’planning)
(clarify ISA purpose class ’planning)
(repeat ISA purpose class ’planning)
(inform ISA purpose class ’utterance)
(ask ISA purpose class ’utterance)
(answer ISA purpose class ’utterance)
(request ISA purpose class ’utterance)

(acknowledge ISA purpose class ’utterance)

; interaction chunks
(read-interaction ISA interaction)
(read-interruption ISA interaction type "interruption")

; known inference rules

(assertion ISA rule name "ASSERTION" status ’known)
(hyp ISA rule name "HYP" status ’known)

(dec ISA rule name "DEC" status ’known)

(open ISA rule name "QPEN" status ’known)

C.2 Procedural Knowledge

In this section, we shall describe the predefined procedural knowledge of P rex.
First, in Section C.2.1, we shall give the syntax to define productions in ACT-R.
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Then, in Section C.2.2, we shall introduce all predefined production, which represent
the plan operators of the dialog planner (cf. Chapter 6).

C.2.1 Syntax

The syntax to define productions is given by the following grammar:

production u= (P rhs* ==> lhs™)
lhs chunkdef | lhscommand
rhs chunkdef | rhscommand
chunkdef == =chunk>
[ISA chunktype]
[[-] slot {value | =variable | =chunk}]*

lhscommand = leval! expression

| 'bind! =variable expression
rhscommand = lhscommand

| 'push! =chunk

| 'pop!

| tfocus-on! =chunk

| tdelete! =chunk

| Istop!

| trestart!

| toutput! formatstring expression™

Note that the non-terminal symbols chunktype, chunk, slot and wvariable stand for
the names of chunk types, chunks, slots and variables, respectively.

The symbol value stands for the value a slot can assume. It can be a chunk, a
Lisp symbol or string, or a number. Also lists thereof are allowed.

The non-terminal symbol ezpression can be any valid Lisp expression. Any
symbol beginning with ‘=’ such as =symbol is interpreted as a Lisp variable, where its
first appearance in the production definition denotes its binding. Hence, if =symbol
first occurs in a chunk slot, it is bound to the filler of this slot. Otherwise, the first
appearance must be as the variable in a !'bind! command, which explicitly binds
the variable to the value of the subsequent Lisp expression. Note that variables
cannot be bound to NIL on the left-hand side of a production. In P.rez, we use the
special chunk Empty as the filler of an empty slot.

The first appearance of a chunk definition starting with =chunk> must be fol-
lowed by a type identification of the form ‘ISA chunk-type’. In subsequent exten-
sions or modifications of the same chunk =chunk>, the type identification can be
omitted. The chunk definition may contain any number of slot descriptions, which
are interpreted as conditions for the chunk retrieval on the left-hand side of a pro-
duction, and as initializations or modifications of the chunk on the right-hand side
of a production. On the left-hand side, the condition may start with a ‘=’, which is
interpreted as the negation of the condition.

Note that the first chunk on the left-hand side is always matched against the
current goal, that is, the chunk on top of the goal stack.

The commands have the following meanings:

leval! ezpression
Evaluate the Lisp expression expression. On the left-hand side of a production,
the result must be non-NIL for the production to be applicable.

'bind! =wvariable expression
Bind the variable =variable to the result of the evaluation of the Lisp expres-
sion expression. On the left-hand side of a production, the result must be
non-NIL for the production to be applicable.
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'push! =chunk
Push the chunk =chunk onto the goal stack.

1pop! Pop the top goal from the goal stack.

'focus-on! =chunk
Replace the top goal on the goal stack by chunk =chunk. This corresponds to
Ipop! followed by !push! =chunk.

!delete! =chunk
Delete the chunk =chunk from declarative memory.

!'stop!
Stop the production system after completing the current cycle.

'restart!
Pop all goals from the goal stack and restore the top-most goal.

toutput! formatstring expressions
Print a message. The syntax is as for the Lisp function format.

C.2.2 Productions
The following productions are predefined in P rez.

;### Planning the Explanation of Proofs
;## General Productions
;# Discourse Structure Nodes

;33 The following production marks DS chunks whose informations have been
;33 conveyed as known.
(P mark-conveyed-DS-as-known
"IF Goal is a DS with no unconveyed chunks,
THEN mark it as known."
=goal>
ISA DS
unconveyed empty
- status ’known

=goal>
status ’known
)
; This production should be preferred to all other ones. We therefore set lower
; costs.
(spp mark-conveyed-DS-as-known
:a 0.003)

;33 The following production pops basic-DS chunks that are known by the user.
(P pop-known-DS
"IF Goal is a DS that is known,
THEN pop it."
=goal>
ISA DS
role =role
status ’known
leval! (not (find (cadr =role) ’(commands interrupts)))

!pop!
)
; This production should be preferred to all other ones except pop-known-focus-space-DS.
; We therefore set lower costs.
(spp pop-known-DS
:a 0.002)



182

CHAPTER C. COGNITIVE KNOWLEDGE BASES

;35 The following production pops focus-space-DS chunks that are known by the user.
;; It ensures that the last verbalized fact is carried to the governing
;33 focus-space-DS’s derived-list.
(P pop-known-focus-space-DS
"IF Goal is a focus space DS that is known,
THEN append the last derived fact to its ‘derived’ slot and pop it."
=goal>
ISA focus-space-DS
status ’known
derived =derived
content-of =pa
- content-of empty

'eval! (dst"fact-derived-in-dominating-focus-space (car (last =derived)) =pa)
1 1
!pop!

; This production should be preferred to all other ones. We therefore set lower costs.
(spp pop-known-focus-space-DS
ta 0.001)

;3; The following production pops DS chunks that want to convey known facts
(P omit-DS-known-non-hyp-fact
"IF Goal is a basic DS with a non-hypothesis proof node whose fact is known,
THEN fulfill the goal by omitting it and mark as conveyed and known."
=goal>
ISA basic-DS
to-convey =proof-node
rule =rule

=rule>
ISA rule
- name "HYP"

=proof-node>
ISA proof-node
fact =fact
=fact>
ISA fact
status ’known

=omit>
ISA basic-DS
purpose omit
to-convey =proof-node
unconveyed empty

content empty
content-of =goal

role ’contributes
status ’known

=goal>

unconveyed empty
content =omit

status ’known

)
; This production should be preferred to all other ones except pop-known-DS. We
; therefore set the costs slightly higher than those of pop-known-DS.
(spp omit-DS-known-non-hyp-fact
:a 0.003)

(P omit-DS-known-hyp-fact
"IF Goal is a basic DS with a hypothesis proof node whose fact has been derived
in a dominating focus space,
THEN fulfill the goal by omitting it and mark as conveyed and known."
=goal>
ISA basic-DS
to-convey =proof-node
rule =rule
=rule>
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ISA rule

name "HYP"
=proof-node>

ISA proof-node

fact =fact
=fact>

ISA fact

status ’known

'eval! (dst”fact-derived-in-dominating-focus-space-p =fact =goal)

=omit>
ISA basic-DS
purpose omit
to-convey =proof-node
unconveyed empty

content empty
content-of =goal

role ’contributes
status ’known

=goal>

unconveyed empty
content =omit

status ’known

)

; This production should be preferred to all other ones except pop-known-DS. We
; therefore the costs slightly higher than those of pop-known-DS.

(spp omit-DS-known-hyp-fact
:a 0.003)

(P omit-DS-inferable-fact

"IF Goal is a basic DS with a proof node with status ’inferable
THEN fulfill Goal by omitting it and set the status to ’known"

=goal>

ISA DS

to-convey =proof-node
=proof-node>

ISA proof-node

fact =fact
=fact>
ISA fact

status ’inferable

=omit>
ISA basic-DS
purpose omit
to-convey =proof-node
unconveyed empty

content empty

content-of =goal

role ’contributes

status ’known
=goal>

unconveyed empty
content =omit
status ’known

)

; This production should be preferred to all other ones except pop-known-DS. We
; therefore the costs slightly higher than those of pop-known-DS.

(spp omit-DS-inferable-fact
:a 0.003)

;# Proof Node Chunks

;33 The following production pushes proof nodes on the goal stack to eventually
;33 extract facts and justificationms.

(P push-proof-node

"IF Goal is a DS with a proof node to convey whose fact and justification are not
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yet made explicit,

THEN push the proof node onto the goal stack for completion."
=goal>

ISA DS

to-convey =proof-node
=proof-node>

ISA proof-node

node =node

fact nil

justs nil
'push! =proof-node

)

(P prepare-assoc
"IF Goal is to convey an association of a proof node and a speech act and the
fact of the proof node has not been extracted yet,
THEN push the goal to extract the fact."
=goal>
ISA basic-DS
to-convey =assoc
unconveyed =assoc
=assoc>
ISA assoc
proof-node =proof-node
=proof-node>
ISA proof-node
fact nil
!push! =proof-node

)

;33 The following production pops proof nodes whose facts have been extracted.
(P pop-proof-node

"IF Goal is a proof node whose fact has been extracted,

THEN pop the proof node."

=goal>

ISA proof-node
- fact nil
!pop!

)

;35 The following two productions extract the fact and the list of justifications of
;33 a proof-node.
(P extract-fact-and-justs
"IF Goal is a proof node to convey whose fact and justification are not yet made
explicit,
THEN extracts its fact and justifications and make them explicit."
=goal>
ISA proof-node
node =node
fact nil
justs nil

'bind! =abstract (actr~abstract =node)
'bind! =ante (actr“nil-2-empty (actr”find-or-create-antecedent-chunks =abstract))
'bind! =succ (actr"find-or-create-succedent-chunk =abstract)
=fact>

ISA fact

antecedent =ante

succedent =succ
'bind! =justs (actr~all-justs =abstract)
=goal>

fact =fact

justs =justs
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(P extract-existing-fact-and-justs
"IF Goal is a proof node to convey whose fact and justification are not yet made
explicit, and whose fact is already known,
THEN extracts its fact and justifications and make them explicit."
=goal>
ISA proof-node
node =node
fact nil
justs nil
'bind! =abstract (actr~abstract =node)
'bind! =ante (actr"nil-2-empty (actr”find-or-create-antecedent-chunks =abstract))
'bind! =succ (actr”find-or-create-succedent-chunk =abstract)
=fact>
ISA fact
antecedent =ante
succedent =succ
'bind! =justs (actr~all-justs =abstract)
=goal>
fact =fact
justs =justs
)
; This production should be preferred to extract-fact-and-justs. We therefore set
; lower costs.
(spp extract-existing-fact-and-justs
ta 0.01)

;# Choosing the Most Abstract Rule and Corresponding Premises

;35 The following production pushes the goal to find the most abstract justification.
(P get-justification
"IF Goal is a basic DS with a proof node whose most abstract known justification
has
not been determined,
THEN push the goal to choose the most abstract known justification."
=goal>
ISA basic-DS
to-convey =proof-node
rule nil
premises nil
=proof-node>
ISA proof-node
justs =justs
=find-most-abstract>
ISA find-just
justs =justs
rule =method
premises =premises
=goal>
rule =method
premises =premises
uncon-prems =premises
'push! =find-most-abstract

The following three productions choose the most abstract known rule, if the list
of justifications in the "justs" slot of the "find-just" goal is ordered from
most abstract to least abstract.

; The following production chooses the rule of the first justification in the list,
; if it is known.
first-justification-is-known
"IF Goal is to find a known justification and the first justification’s method is
known,
THEN extract its method and premises."

~
C T



186

CHAPTER C. COGNITIVE KNOWLEDGE BASES

=goal>
ISA find-just
justs =justs
rule nil
'bind! =first (car =justs)
'bind! =method (actr method =first)
=rule>
ISA rule
name =method
status ’known
'bind! =premises (actr“nil-2-empty (actr”premises =first))
loutput! ""&;;; Choosing Rule “A with premises "A" =rule =premises
=goal>
rule =rule
premises =premises
)
; This production should be preferred to remove-first-justification. We therefore set
; a higher value or lower costs.
(spp first-justification-is-known
:a 0.01)
;33 The following production chooses the rule of the first justification in the list,
;3 it this an assertion with a known method.
;55 (The first premise of an assertion is its method.)
(P first-justification-is-known-assertion
"IF GOAL is to find a known assertion justification and the first justification’s
method is known,
THEN extract its method and premises."
=goal>
ISA find-just
justs =justs
rule nil
'bind! =first (car =justs)
leval! (actr~assertion-p (actr method =first))
'bind! =premises+ass (actr”premises =first)
'bind! =method (actr“assertion-method (car =premises+ass))
=rule>
ISA rule
name =method
status ’known

'bind! =premises (cdr =premises+ass)
loutput! "“&;;; Choosing Rule "A with premises A" =rule =premises
=goal>
rule =rule
premises =premises
)
(spp first-justification-is-known-assertion
:a 0.005)

;35 The following production removes the first justification from the list.
(P remove-first-justification
"IF Goal is to find a known justification,
THEN remove the first justification."
=goal>
ISA find-just
justs =justs
rule nil
'bind! =first (car =justs)
!bind! =rest (cdr =justs)
=goal>
justs =rest
previous =first
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(P no-justification-found
"IF Goal is to find a known justification but none could be found,
THEN pick the least abstract justification."

=goal>
ISA find-just
justs nil
previous =previous
rule nil

!bind! =method (actr“method =previous)

=rule>

ISA rule

name =method

status ’unknown
'bind! =premises (actr“nil-2-empty (actr”premises =previous))
loutput! "“&;;; Choosing Rule "A with premises A" =rule =premises
=goal>

rule =rule

premises =premises

;33 The following production pops the goal to find a known justification, if a rule is
;3; chosen
(P pop-find-justification
"IF Goal is to find a known justification and the justification is already found,
THEN pop Goal."

=goal>

ISA find-just
= rule nil
!pop!
)

;# Produce Speech Acts

;33 The following production produces a speech act and sets the unconveyed slot of the
;33 governing DS chunk to EMPTY. Since no fact is derived by this production, NIL is
;3; added to the derived-list of the governing focus-space-DS
(P produce-SA
"IF Goal is a basic DS with a speech act to convey,
THEN produce the speech act and pop Goal."
=goal>
ISA basic-DS
to-convey =speech-act
unconveyed =speech-act
leval! (typep =speech-act ’sa+sa)

leval! (sa“produce =speech-act)
leval! (dst'fact—derived—in—dominating—focus—space nil =goal)
=goal>

unconveyed empty

status ’known

content =speech-act

(P omit-closing-sa
"IF Goal is a basic DS with a closing speech act to convey, and the corresponding
focus space is small,
THEN omit the speech act by setting the status of Goal to ’known."
=goal>
ISA basic-DS
to-convey =speech-act
unconveyed =speech-act
content-of =focus
=focus>
ISA focus-space-DS
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leval! (sa"p =speech-act ’close)
leval! (dst~small-focus-space-p =focus)

=goal>
purpose omit
status ’known
content nil
)
(spp omit-closing-sa
:a 0.01)

(P never-omit-closing-sa
"IF Goal is a basic DS with a closing speech act to convey that should never be
omitted,

THEN produce the speech act."

=goal>
ISA basic-DS
to-convey =speech-act
unconveyed =speech-act
content-of =focus

=focus>
ISA focus-space-DS

leval! (sa”p =speech-act ’(qed end-definition end-theorem end-example end-exercise))
leval! (sa"produce =speech-act)
leval! (dst~fact-derived-in-dominating-focus-space nil =goal)
=goal>
unconveyed empty
status ’known
content =speech-act
)
(spp never-omit-closing-sa
:a 0.005)

(P process-format
"IF Goal is a format chunk
THEN produce the corresponding speech act."
=goal>
ISA format
type =format

leval! (sa"produce (sa"make-sa (eval =format))) ; get rid of quotes

!pop!
)

(P process-assoc
"IF Goal is a basic DS to convey a fact by a speech act,
THEN mark the fact as known and set to-convey and unconveyed to the speech act"
=goal>
ISA basic-DS
to-convey =assoc
unconveyed =assoc
=assoc>
ISA assoc
proof-node =proof-node
speech-act =speech-act
=proof-node>
ISA proof-node

fact =fact
=fact>

ISA fact
=fact>

status ’known
=goal>

to-convey =speech-act
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&

unconveyed =speech-act

; The following production verbalizes a DS by producing the corresponding speech act.
; It ensures that the conveyed fact is marked as known and added to the derived-list
; of the governing focus-space-DS.

produce-verbalization
"IF Goal is a basic DS with a speech act to convey,
THEN produce the speech act and pop the goal."
=goal>
ISA basic-DS
to-convey =proof-node
unconveyed =speech-act
=proof-node>
ISA proof-node

fact =fact
=fact>
ISA fact

'eval! (typep =speech-act ’sat+sa)

leval! (sa"produce =speech-act)
=fact>
status ’known
'eval! (dst~fact-derived-in-dominating-focus-space =fact =goal)
=goal>
unconveyed empty
status ’known
content =speech-act

)

(spp produce-verbalization

(P

:a 0.005)

produce-derive

"IF Goal is a basic DS with the intention to inform about a proof node,

THEN set unconveyed to a ‘derive’ SA choosing appropriate reference methods for
the premises.”

=goal>
ISA basic-DS
purpose inform

to-convey =proof-node
unconveyed =proof-node

rule =rule

premises  =premises
=rule>

ISA rule

name =rule-name
=proof-node>
ISA proof-node

fact =fact
=fact>

ISA fact

succedent =succ
=succ>

ISA formula

wif =wff

'bind! =args (list :reasons

(mapcar #’(lambda (pre) (ref~reference-succedent pre =goal))
(actr~empty-2-nil =premises))

:method (prex::ref-reference-rule (sa"make-rule =rule-name))
:conclusion =wff
:ds-node =goal)

'bind! =speech-act (sa"make-sa ’derive =args)

=goal>

unconveyed =speech-act

)

This production should not be preferred to any omitting productions that are learned.
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; Therefore we set higher costs.
(spp produce-derive
ta 1)

(P produce-open
"IF Goal is a basic DS with the intention to inform about an open proof node,
THEN set unconveyed to an ‘open’ SA."

=goal>
ISA basic-DS
purpose inform

to-convey =proof-node
unconveyed =proof-node

rule =rule
=rule>

ISA rule

name "QOPEN"

=proof-node>
ISA proof-node

fact =fact
=fact>

ISA fact

succedent =succ
=succ>

ISA formula

wif =wff

'bind! =args (list :conclusion =wff
:ds-node =goal)

'bind! =speech-act (sa"make-sa ’open-step =args)
=goal>

unconveyed =speech-act
)

(spp produce-open
:a 0.001)

(P produce-hyp-intro
"IF Goal is a basic DS with the intention to inform about a hypothesis proof node,

THEN set unconveyed to a ‘Hyp-Intro’ SA."

=goal>
ISA basic-DS
purpose inform

to-convey =proof-node
unconveyed =proof-node

rule =rule

premises =premises
=rule>

ISA rule

name "HYP"

=proof-node>
ISA proof-node

fact =fact
=fact>

ISA fact

succedent =succ
=succ>

ISA formula

wif =wff

'bind! =args (list :hypothesis =wff :ds-node =goal)
'bind! =speech-act (sa"make-sa ’hyp-intro =args)
=goal>
unconveyed =speech-act
)
(spp produce-hyp-intro
ta 0.001)

(P produce-par-intro
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"IF Goal is a basic DS with the intention to inform about a parameter
introduction proof node,
THEN set unconveyed to a ‘Par-Intro’ SA."

=goal>
ISA basic-DS
purpose inform

to-convey =proof-node
unconveyed =proof-node

rule =rule

premises  =premises
=rule>

ISA rule

name "DEC"

=proof-node>
ISA proof-node
node =node

fact =fact
=fact>

ISA fact

succedent =succ
=succ>

ISA formula

wif =wiff

'bind! =args (list :parameter =wff :type (twa"judgment =node) :ds-node =goal)
'bind! =speech-act (sa"make-sa ’par-intro =args)
=goal>
unconveyed =speech-act
)
(spp produce-par-intro
:a 0.001)

;## Operators (Bottom-Up Planning)

;33 The following production chooses the premises with the shortest subproof to be
;33 conveyed next, if there are unconveyed premises.
(P convey-premise-with-shortest-subproof
"IF Goal is a basic DS with unconveyed premises,
THEN push as a subgoal to convey the unknown premises with the shortest subproof
and remove it from the list of unconveyed premises."
=goal>
ISA basic-DS
purpose =purpose
uncon-prems =premises
- uncon-prems empty
'bind! =next (actr”get-next-node-to-explain =premises :choose ’shortest)
'bind! =new-prems (actr"nil-2-empty (remove =next =premises))
=proof-node>
ISA proof-node
node =next
=subgoal>
ISA basic-DS
purpose =purpose
to-convey =proof-node
unconveyed =proof-node
content-of =goal
role ’contributes
=goal>
uncon-prems =new-prems
leval! (actr~add-to-chunk-slot =goal ’content =subgoal)
'push! =subgoal
)

;33 The following production pushes a basic DS with purpose inform.
(P verbalize-actual-node
"IF Goal is a basic DS with no unconveyed premises that has not been conveyed,
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THEN push the subgoal to verbalize the goal."

=goal>
ISA basic-DS

- purpose inform
to-convey =to-convey

- unconveyed empty
uncon-prems empty

rule =rule

premises =premises
=verbalize>

ISA basic-DS

purpose inform

to-convey =to-convey
content-of =goal

role ’verbalizes
unconveyed =to-convey
uncon-prems empty

rule =rule

premises  =premises

status =status
=goal>

status =status

unconveyed empty
leval! (actr”add-to-chunk-slot =goal ’content =verbalize)
'push! =verbalize

)
;## Schemas (Top-Down Planning)

;3; The following production inserts a proof schema in a DST.
(P proof-schema

"IF Goal is a focus space DS to convey a proof,

THEN insert a proof schema."

=goal>
ISA focus-space-DS
purpose =purpose

- purpose repeat

to-convey =to-convey
- unconveyed empty
=to-convey>

ISA proof

proof =proof

!bind! =root (actr“conclusion =proof)
'bind! =abstract (actr”abstract (twa”judgment =proof))
'bind! =loc-ass (actr~local-assumptions =abstract)
'bind! =mca-theorem (list :reasons

(mapcar #’(lambda (ass)

(ref~fixed-reference-succedent ass ’implicit))

=loc-ass)

:conclusion (actr~succedent =root))

=begin-focus>

ISA format

type ’begin-focus
=end-focus>

ISA format

type ’end-focus

'bind! =sa-begin-th (sa"make-sa ’theorem)
=begin-th>

ISA basic-DS

purpose =purpose

to-convey =sa-begin-th

unconveyed =sa-begin-th

role ’opens
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leval! (sa"set-ds-node =sa-begin-th =begin-th)

=assumptions>
ISA proof-node-list
purpose =purpose
nodes =loc-ass
type ’assumptions
content empty
'bind! =sa-th (sa“make-sa ’derive =mca-theorem)
=theorem>
ISA basic-DS
purpose =purpose
to-convey =sa-th
unconveyed =sa-th
role ’verbalizes
leval! (sa"set-ds-node =sa-th =theorem)

'bind! =sa-end-th (sa“make-sa ’end-theorem)
=end-th>

ISA basic-DS

purpose =purpose

to-convey =sa-end-th

unconveyed =sa-end-th

role ’closes
leval! (sa"set-ds-node =sa-end-th =end-th)

'bind! =th-focus-content (list =begin-th =assumptions =theorem =end-th)

=th-focus>
ISA focus-space-DS
purpose =purpose

to-convey =sa-th
unconveyed empty

content =th-focus-content
content-of =goal
role ’contributes

leval! (actr modify-chunks =th-focus-content ’content-of =th-focus)

'bind! =sa-begin-pf (sa“make-sa ’proof)
=begin-pf>

ISA basic-DS

purpose =purpose

to-convey =sa-begin-pf

unconveyed =sa-begin-pf

role ’opens
leval! (sa"set-ds-node =sa-begin-pf =begin-pf)

=root-node>
ISA proof-node
node =proof
=proof-root>
ISA basic-DS
purpose =purpose
to-convey =root-node
unconveyed =root-node
role ’contributes

!bind! =sa-end-pf (sa"make-sa ’qed)
=end-pf>

ISA basic-DS

purpose =purpose

to-convey =sa-end-pf

unconveyed =sa-end-pf

role ’closes
leval! (sa"set-ds-node =sa-end-pf =end-pf)

'bind! =pf-focus-content (list =begin-pf =proof-root =end-pf)
'bind! =pf-focus-to-convey (list =root)
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=pf-focus>
ISA focus-space-DS
purpose =purpose

to-convey =pf-focus-to-convey
unconveyed empty

content =pf-focus-content
content-of =goal
role ’contributes

leval! (actr modify-chunks =pf-focus-content ’content-of =pf-focus)

'bind! =goal-content (list =th-focus =pf-focus)
=goal>
unconveyed empty
content =goal-content
'push! =pf-focus
'push! =end-focus
!push! =end-pf
'push! =proof-root
!push! =begin-pf
'push! =begin-focus
!push! =th-focus
'push! =end-focus
'push! =end-th
!push! =theorem
!push! =assumptions
!push! =begin-th
'push! =begin-focus

)

(P judgment-schema
"IF Goal is a focus space DS with a proof node that has not been conveyed,
THEN push the goal to convey a corresponding basic DS and add this to Goal’s

content."
=goal>
ISA focus-space-DS
purpose =purpose

to-convey =to-convey
- unconveyed empty
=to-convey>

ISA proof-node

=subgoal>
ISA basic-DS
purpose =purpose
to-convey =to-convey
=goal>
content =subgoal
unconveyed empty
!push! =subgoal
)
(spp judgment-schema
ta 1)

;3; The following production conveys a hypothetical or parametric judgment by
;33 splitting it into two separate proof nodes.
(P convey-hyp-par-judgment
"IF Goal is a DS with a hypothetical or parametric judgment in its proof node,
THEN open a focus to convey first the declaration, then the expression."
=goal>
ISA DS
purpose  =purpose
to-convey =proof-node
=proof-node>
ISA proof-node
node =node
fact =fact
justs nil
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=fact>
ISA fact
succedent =succ
=succ>
ISA formula
wif =pi-term
leval! (actr hp-judgment-p =pi-term)
'bind! =split (actr~split-hp-judgment* =node)
'bind! =first (butlast =split)
'bind! =second (car (last =split))

=ass>
ISA proof-node-list
purpose =purpose

nodes =first
type ’assumptions
content empty
=conc-node>
ISA proof-node
node =second
=conc>
ISA basic-DS
purpose =purpose
to-convey =conc-node
unconveyed =conc-node

role ’contributes
'bind! =contents (list =ass =conc)
=focus>

ISA focus-space-DS

purpose =purpose

to-convey =proof-node
unconveyed empty

content =contents
content-of =goal
role ’contributes

leval! (actrmodify-chunks =contents ’content-of =focus)
'bind! =goal-content (list =focus)
=goal>
content =goal-content
unconveyed empty
'push! =focus ; necessary to carry on the entries in the derive slot
!push! =conc
!push! =ass

)

;33 The following production processes the first node of a proof node list.

~
o

process-proof-node-list

"IF Goal is a proof node list

THEN process the first node by pushing an appropriate DS node."

=goal>
ISA proof-node-list
purpose =purpose
nodes =nodes

- nodes empty

content =content

'bind! =actual (car =nodes)
'bind! =rest (cdr =nodes)
=node>
ISA proof-node
node =actual
=DS>
ISA basic-ds
purpose =purpose
to-convey =node
unconveyed =node
role ’contributes



196 CHAPTER C. COGNITIVE KNOWLEDGE BASES

content-of =goal
'bind! =new-content (append (actr~empty-2-nil =content) (list =ds))
=goal>

nodes =rest

content =new-content
!push! =ds

;33 The following production removes empty proof node list from the discourse
;35 structure tree.
(P pop-empty-proof-node-list
"IF Goal is an empty proof node list,
THEN remove it from the discourse structure tree."
=goal>
ISA proof-node-list
nodes nil
content-of =parent-DS
content =content
=parent-DS>
ISA DS
content =parent-content

'bind! =new (actr~replace =content =goal =parent-content)
=parent-DS>
content =new
!pop!
)

;### Reacting to User Interactions
;## Productions for User Interaction
;335 The following productions read and process interactions by the user.

;33 The following production reads a user interaction.
(P read-interaction
"IF Goal is to read a user interaction,

THEN read the interaction with type and content and push the subgoal to process
an interaction of that type and content with removing Goal form the goal
stack."

=goal>
ISA interaction
content nil

'bind! =type-and-content (ana”get-user-input)

'bind! =type (car =type-and-content)

!bind! =content (cdr =type-and-content)

=subgoal>
ISA interaction
type =type
content =content

!focus-on! =subgoal

;33 The following production processes a user command.
(P process-command
"IF Goal is to process a user command,
THEN push the subgoal to process a corresponding DS node with removing Goal
from the goal stack"
=goal>
ISA interaction
type "command"
content =to-convey

'bind! =root (actr~find-root)
=command>
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;33 The following production processes a user interruption.

leval!

ISA basic-DS

purpose request
to-convey =to-convey
content =to-convey
content-of =root
role ’commands
status ’known

!focus-on! =command

(P process-interruption

(P

(P

wIfF

Goal from the goal stack."

=goal>

ISA interaction
type "interruption"
content =to-convey

=interrupt>

ISA basic-DS

purpose request
to-convey =to-convey
content =to-convey
role ’interrupts
status ’known

!focus-on! =interrupt

)

Commands

show-proof

Ly

=goal>

leval!

ISA basic-DS
purpose request
to-convey =sa
content =sa
content-of =parent
role =role

leval! (sa™p =sa ’show!)

'bind! =purpose (sa”strategy =sa)
'bind! =pf (actr~proof (sa~proof =sa))
!bind! =name (actr proof-name =pf)
=proof>

ISA proof

proof =pf

name =name

=show>

leval! (actr~add-to-chunk-slot =parent ’content =show)

ISA focus-space-DS
purpose =purpose
to-convey =proof
unconveyed =proof
content-of =parent

!focus-on! =show

)

repeat-proof

uIfF

(actr~add-to-chunk-slot =root ’content =command)

Goal is to process an interruption from the user,
THEN push the subgoal to process a corresponding DS node with removing

Goal is a basic DS with the request to show a proof
THEN push the goal to show the proof."

(find (cadr =role) ’(commands interrupts))

Goal is a basic DS with the request to repeat the presentation of a proof
THEN push the goal to repeat the presentation."
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=goal>
ISA basic-DS
purpose request
to-convey =sa
content =sa
content-of =parent
role =role
leval! (find (cadr =role) ’(commands interrupts))
leval! (sa”p =sa ’repeat!)
'bind! =name (sa"proof =sa)

=proof>
ISA proof
proof =pf

name =name

=repeat>

ISA basic-DS

purpose repeat

to-convey =proof

unconveyed =proof

content-of =parent

role ’contributes
leval! (actr~add-to-chunk-slot =parent ’content =repeat)
!focus-on! =repeat

)

(P exit-prex

"IF Goal is a basic DS with the request to exit P.rex
THEN push the goals to say ‘‘good bye’’ and to exit."
=goal>

ISA basic-DS

purpose request

to-convey =sa

content =sa

content-of =parent

role =role
leval! (find (cadr =role) ’(commands interrupts))
leval! (sa”p =sa ’exit!)

'bind! =good-bye (sa"make-sa ’good-bye)

=exit>
ISA command
type "exit"
=bye>

ISA basic-DS
purpose inform
to-convey =good-bye
unconveyed =good-bye
content-of =parent
leval! (actr~add-to-chunk-slot =parent ’content =bye)
'push! =exit
!push! =bye
)

(P stop-prex
"IF Goal is a basic DS the request to stop P.rex
THEN push the goal to stop it."
=goal>
ISA DS
purpose request
to-convey =to-convey
role =role
leval! (find (cadr =role) ’(commands interrupts))
'eval! (sa™p =to-convey ’stop!)

=stop>
ISA command
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type "stop"
!push! =stop

(P process-what-is
"IF Goal is a basic DS with the question what an object is
THEN push the goal to explain that object."
=goal>
ISA basic-DS
purpose request
to-convey =sa
content =sa
role =role
leval! (find (cadr =role) °’(commands interrupts))
leval! (sa”p =sa ’what-is?)
'bind! =ds-node (sa"ds-node =sa)
=ds-node>
ISA basic-DS
to-convey =node
=node>
ISA proof-node
fact =fact
=fact>
ISA fact
succedent =wff
=wff>
ISA formula
wff =formula
'bind! =ex (sa“goal =sa)
'bind! =expl (actr~make-proof-node =formula =ex)
=explanandum>
ISA identify
object =expl
=show>
ISA basic-DS
purpose explain
to-convey =explanandum
unconveyed =explanandum
content-of =ds-node
leval! (actr~add-to-chunk-slot =ds-node ’content =show)
!focus-on! =show

)
;## Interruptions

(P too-implicit
"IF Goal is a DS with the notification that a step is too implicit,
THEN push the goal to repair the presentation by a more explicit presentation."
=goal>
ISA DS
purpose request
to-convey =to-convey
role ’interrupts
leval! (sa™p =to-convey ’too-implicit)
'bind! =node (sa”“conclusion =to-convey)

loutput! ""&;;; Node: ~S" =node
=failed>
ISA failed-presentation
node =node
problem "too implicit"
remedy "more explicitly"
=goal>
content-of =node
status ’known
leval! (actr”add-to-chunk-slot =node ’content =goal)
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!focus-on! =failed

)

(P too-abstract
"IF Goal is a DS with the notification that a step is too abstract,
THEN push the goal to repair the presentation at a lower level of abstraction.”
=goal>
ISA DS
purpose request
to-convey =to-convey
role ’interrupts
leval! (sa”p =to-convey ’too-abstract)
'bind! =node (sa“conclusion =to-convey)

loutput! ""&;;; Node: ~S" =node
=failed>

ISA failed-presentation

node =node

problem "too abstract"

remedy "check lower level"
=goal>

content-of =node

status ’known
leval! (actr~add-to-chunk-slot =node ’content =goal)
!focus-on! =failed

)

(P too-difficult
"IF Goal is a DS with the notification that a step is too difficult,
THEN push the goal to repair the presentation."
=goal>
ISA DS
purpose request
to-convey =to-convey
role ’interrupts
leval! (sa”p =to-convey ’too-difficult)
!bind! =node (sa“conclusion =to-convey)

loutput! ""&;;; Node: ~S" =node
=failed>
ISA failed-presentation
node =node
problem "too difficult"
remedy "start repair"
=goal>
content-of =node
status ’known
'eval! (actr~“add-to-chunk-slot =node ’content =goal)
!focus-on! =failed

)

(P too-detailed
"IF Goal is a DS with the notification that a step is too detailed,
THEN push the goal to repair the presentation at a higher level of abstraction."
=goal>
ISA DS
purpose request
to-convey =to-convey
role ’interrupts
leval! (sa”p =to-convey ’too-detailed)
'bind! =node (sa”conclusion =to-convey)

loutput! ""&;;; Node: ~S" =node
=failed>

ISA failed-presentation

node =node

problem "too detailed"
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(P

(P

remedy "repair too detailed"
=goal>

content-of =node

status ’known
leval! (actr”add-to-chunk-slot =node ’content =goal)
!focus-on! =failed

)

obvious
"IF Goal is a DS with the notification that a step is obvious,

THEN push a dependency goal that allows for learning a production to omit that

step.

=goal>

ISA DS

purpose request

to-convey =to-convey

role ’interrupts
leval! (sa”p =to-convey ’obvious-step)
'bind! =node (sa"conclusion =to-convey)
=node>

ISA basic-DS

rule =rule
=rule>

ISA rule

name =rule-name

=before>
ISA basic-DS
purpose inform
rule =rule
uncon-prems empty
=after>
ISA basic-DS
purpose omit
status ’known
unconveyed empty
=omit>

ISA dependency
goal =before
modified =after
constraints =rule
specifics (inform omit empty ’known)
dont-cares (mnil)
!focus-on! =omit

)

trivial-derivation
"IF Goal is a DS with the notification that a derivation is trivial,
THEN mark the derived fact as ’inferable."
=goal>

ISA DS

purpose request

to-convey =to-convey

role ’interrupts
'eval! (sa™p =to-convey ’trivial-derivation)
'bind! =ds-node (sa“conclusion =to-convey)
=ds-node>

ISA basic-DS

to-convey =node
=node>

ISA proof-node

fact =fact
=fact>

ISA fact

'output! "“&;;; Node: "S" =node
=fact>
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status ’inferable

!pop!
)

(P continue-prex
"IF Goal is a DS with the request to continue,
THEN pop Goal."
=goal>
ISA DS
purpose request
to-convey =to-convey
role ’interrupts
leval! (sa”p =to-convey ’continue!)

!pop!

(P stop-proof
"IF Goal is a DS with the request to stop the current proof,
THEN stop the current proof."
=goal>
ISA DS
purpose request
to-convey =to-convey
role ’interrupts
leval! (sa™p =to-convey ’stop!)

leval! (actr”stop)

!pop!
;## Reactions to Commands
(P process-exit

"IF Goal is to exit P.rex
THEN throw a prex+exit error."

=goal>
ISA command
type "exit"

leval! (error (sys“make-condition ’prex+exit))

)

(P process-stop
"IF Goal is to stop P.rex
THEN throw a prex+stop error."

=goal>
ISA command
type "stop"

leval! (error (sys“make-condition ’prex+stop))

)

;33 Repeating a proof
(P repeat
"IF Goal is a DS to repeat a proof,
THEN reverbalize the last presentation of that proof."
=goal>
ISA DS
purpose repeat
to-convey =proof
unconveyed =proof
status ’unknown

leval! (dst~verbalize actr*current-root)
=goal>
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unconveyed nil
status ’known

;3; Identifying an Object
P identification
"IF Goal is to explain an object,
THEN push the goal to verbalize its identification."

=goal>
ISA basic-DS
purpose explain

to-convey =exp

unconveyed =exp
=exp>

ISA identify

object =expl

'bind! =sa (sa"make-sa ’identify
(list :object (twa"make-judgment (twa"context =expl)
(twa=proof-term =expl))
:class (twa”judgment =expl)))

=verbalize>
ISA basic-DS
purpose inform

to-convey =sa
content-of =goal

role ’verbalizes

unconveyed =sa

status =status
=goal>

status =status

unconveyed empty
'eval! (actr~add-to-chunk-slot =goal ’content =verbalize)
!push! =verbalize

)

;35 Reverbalization of a Proof Step

reverbalize

"IF Goal is a basic DS to reverbalize a proof step with all premises expressed
explicitly,

THEN push the goal to produce the appropriate ‘derive’ SA."

=goal>

ISA basic-DS

purpose reverbalize

to-convey =proof-node
=inform>

ISA basic-DS

purpose inform

to-convey =proof-node

content-of =parent

role ’verbalizes

rule =rule

premises =premises
=rule>

ISA rule

name =rule-name
=proof-node>

ISA proof-node

fact =fact
=fact>

ISA fact

succedent =succ
=succ>

ISA formula

wif =wiff
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'bind! =args (list :reasomns
(mapcar #’(lambda (pre)
(ref~fixed-reference-succedent pre ’explicit))
(actr”empty-2-nil =premises))
:method (prex::ref reference-rule (sa“make-rule =rule-name))
:conclusion =wff)
'bind! =new-sa (sa"make-sa ’derive =args)
=reverbalize>
ISA basic-DS
purpose inform
to-convey =proof-node
content-of =goal
role ’verbalizes
unconveyed =new-sa
rule =rule
premises =premises
status =status
'eval! (sa"set-ds-node =new-sa =reverbalize)
'bind! =content (list =reverbalize)
=goal>
status =status
content =content
content-of =parent
'eval! (actr“add-to-chunk-slot =parent ’content =goal)
!push! =reverbalize
)
(spp reverbalize
:a 0.03)

;## Repairing a Failed Presentation
;# Repair a Proof Step

(P start-repair-step
"IF Goal is to repair a proof step,
THEN start by setting checking whether all premises were explicitly derived."
=goal>
ISA failed-presentation
remedy "start repair"

=goal>
remedy "check premises"

)

(P stop-repair-step
"IF Goal is to repair a proof step and fact is known,
THEN pop the goal."
=goal>
ISA failed-presentation
fact-unknown nil
!pop!
)
(spp stop-repair-step
ta 0.001)

(P set-fact-unknown
"IF Goal is to repair a proof step whose fact is still marked as known,
THEN mark the fact as unknown."
=goal>
ISA failed-presentation
node =node
fact-unknown t
=node>
ISA DS

to-convey =proof-node
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=proof-node>
ISA proof-node

fact =fact
=fact>
ISA fact

status ’known

=fact>
status ’unknown
)
(spp set-fact-unknown

:a 0.001)
;# Check Presence of Premises

(P repair-step-with-premises

"IF Goal is to repair a proof step that has some premises

THEN check their explicitness."
=goal>

ISA failed-presentation

node =node

remedy "check premises"
=node>

ISA basic-DS

premises =premises
- premises empty

=goal>
remedy "check explicitness"

)

(P repair-step-with-empty-premises

"IF Goal is to repair a proof step that has no premises
THEN check the existence of a lower level of abstraction."

=goal>
ISA failed-presentation
node =node
remedy "check premises"
=node>
ISA basic-DS
premises empty

=goal>
remedy "check lower level"

)

(P repair-step-without-premises

"IF Goal is to repair a proof step that has no premises
THEN check the existence of a lower level of abstraction."

=goal>
ISA failed-presentation
node =node
remedy "check premises"
=node>
ISA basic-DS
premises nil

=goal>
remedy "check lower level"

)
;# Check Explicitness

(P repair-not-all-premises-explicit

"IF Goal is to repair a proof step whose premises were not all explicit,
THEN try to repair it by reverbalizing it."

=goal>
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ISA failed-presentation

node =node

remedy "check explicitness"
=node>

ISA DS

to-convey =to-convey
=inform>

ISA basic-DS

purpose inform

to-convey =to-convey

content =speech-act

role ’verbalizes

leval! (not (sa“all-premises-explicit-p =speech-act))

=goal>
remedy "reverbalize"

)

(P repair-all-premises-explicit

"IF Goal is to repair a proof step whose premises were all explicit,
THEN check whether all premises were understood."

=goal>
ISA failed-presentation
node =node
problem =problem
remedy "check explicitness"
=node>
ISA DS
to-convey =to-convey
=inform>
ISA basic-DS
purpose inform
to-convey =to-convey
content =speech-act
role ’verbalizes

leval! (sa“all-premises-explicit-p =speech-act)

=subgoal>
ISA failed-presentation
node =node
problem =problem

remedy "understood all premises?"

fact-unknown =fact-unknown
=goal>

fact-unknown =fact-unknown
'push! =subgoal
)

;# Check Existence of Lower Level

(P repair-with-lower-level

"IF Goal is to check whether there is a lower level of abstraction and there is

one,
THEN use it."
=goal>
ISA failed-presentation
node =node
remedy "check lower level"
=node>
ISA basic-DS
to-convey =to-convey
rule =rule
=to-convey>
ISA proof-node
justs =justs
=rule>
ISA rule
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name =name
leval! (actrlower-level-p =name =justs)

=goal>
remedy "lower level of abstraction"

)

(P repair-without-lower-level
"IF Goal to check whether there is a lower level of abstraction, but there is
none,
THEN paraphrase the proof step."
=goal>
ISA failed-presentation
node =node
remedy "check lower level"
=node>
ISA basic-DS
to-convey =to-convey
rule =rule
=to-convey>
ISA proof-node
justs =justs
=rule>
ISA rule
name =name
leval! (not (actr”lower-level-p =name =justs))

=goal>
remedy "paraphrase"

)
;# Reverbalize

(P repair-by-reverbalizing
"IF Goal is to repair a proof step by reverbalizing it,
THEN push the goal to first reverbalize it and then ask if the proof step is now
understood."
=goal>
ISA failed-presentation
node =node
problem =problem
remedy "reverbalize"
fact-unknown t
=node>
ISA DS
to-convey =to-convey

=reverbalize>
ISA basic-DS
purpose reverbalize
to-convey =to-convey
content-of =node
role ’verbalizes
=subgoal>
ISA failed-presentation
node =node
problem =problem
remedy "understood proof step?"
fact-unknown =fact-unknown
=goal>
node =reverbalize
fact-unknown =fact-unknown
!push! =subgoal
!push! =reverbalize

)

;# Lower Level of Abstraction
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(P lower-level-of-abstraction
"IF Goal is to repair a proof step by showing the next lower level of abstraction,
THEN push the goals to first show the next lover level of abstraction and then ask
whether the proof step is understood."
=goal>
ISA failed-presentation
node =node
problem =problem
remedy "lower level of abstraction"
=node>
ISA basic-DS
purpose =purpose
to-convey =to-convey
rule =rule
=rule>
ISA rule
=rule>
status ’unknown
=lower>
ISA basic-DS
purpose =purpose
to-convey =to-convey
unconveyed =to-convey
content-of =node
role ’contributes
leval! (actr~add-to-chunk-slot =node ’content =lower)
=subgoal>
ISA failed-presentation
node =lower
problem =problem
remedy "understood proof step?"
fact-unknown =fact-unknown
=goal>
lower =lower
fact-unknown =fact-unknown
'push! =subgoal
!push! =lower

)
;# Paraphrase a Proof Step

(P repair-by-paraphrasing-hyp
"IF Goal is to paraphrase a hypothesis,
THEN push the goal to inform that this is a hypothesis."
=goal>
ISA failed-presentation
node =node
remedy "paraphrase"
=node>
ISA basic-DS
rule =rule
to-convey =proof-node

=rule>
ISA rule
name "HYP"

=proof-node>
ISA proof-node

fact =fact
=fact>
ISA fact

'bind! =sa (sa"make-sa ’hypothesis)
=inform>

ISA basic-DS

purpose inform
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to-convey =sa
unconveyed =sa
content-of =node
role ’contributes
leval! (actr~add-to-chunk-slot =node ’content =inform)
=fact>
status ’known
=goal>
fact-unknown nil
'push! =inform
)
(spp repair-by-paraphrasing-hyp
ta 0.01)

(P repair-no-lower-level

"IF Goal is to paraphrase that there is no lower level of abstractionm,
THEN push the goal to inform that ther is no lower level of abstraction."
=goal>

ISA failed-presentation

node =node

problem =problem

remedy "paraphrase"
'eval! (find =problem ’("too abstract" "too difficult") :test #’string=)
=node>

ISA basic-DS

rule =rule

to-convey =proof-node
=proof-node>

ISA proof-node

fact =fact
=fact>
ISA fact

'bind! =sa (sa"make-sa ’least-abstract-available)
=inform>

ISA basic-DS

purpose inform

to-convey =sa

unconveyed =sa

content-of =node

role ’contributes
leval! (actr~add-to-chunk-slot =node ’content =inform)
=fact>

status ’known
=goal>

fact-unknown nil
'push! =inform

)

(P repair-no-higher-level
"IF Goal is to paraphrase that there is no higher level of abstraction,
THEN push the goal to inform that there is no higher level of abstraction."
=goal>
ISA failed-presentation
node =node
problem "too detailed"
remedy "paraphrase"
=node>
ISA basic-DS
rule =rule
to-convey =proof-node
=proof-node>
ISA proof-node
fact =fact
=fact>
ISA fact



210 CHAPTER C. COGNITIVE KNOWLEDGE BASES

'bind! =sa (sa"make-sa ’most-abstract-available)
=inform>

ISA basic-DS

purpose inform

to-convey =sa

unconveyed =sa

content-of =node

role ’contributes
leval! (actr~add-to-chunk-slot =node ’content =inform)
=fact>

status ’known
=goal>

fact-unknown nil
'push! =inform

;# Recursion on Premises

(P indices-to-premises
"IF Goal is a failed presentation with a ‘premises’ SA as answer,
THEN replace the speech act by the corresponding premises nodes."
=goal>
ISA failed-presentation
node =node
remedy "understood all premises?"
answer =answer
leval! (sa”p =answer ’premises)
=node>
ISA basic-DS
premises =premises

!bind! =unknown-premises (actr~indices-2-premises (sa"items =answer) =premises)
=goal>
answer =unknown-premises
)
(spp indices-to-premises
:a 0.001)

(P recursion-on-premises
"IF Goal is to recurse on the premises,
THEN push the goal to recurse on the first premises and remove that node from the
premises to recurse on."

=goal>
ISA failed-presentation
node =nodes

- node empty
problem =problem
remedy "recursion on premises"

'bind! =first (car =nodes)
'bind! =rest (actr"nil-2-empty (cdr =nodes))
=failed-premise>

ISA failed-presentation

node =first

problem =problem

remedy "recursion on single premise"
=goal>

node =rest
'push! =failed-premise

)

(P recursion-on-single-premise
"IF Goal is to recurse on a single premise,
THEN push the goal to repair the explanation of that premise."
=goal>
ISA failed-presentation
node =node
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remedy "recursion on single premise"
=proof-node>

ISA proof-node

node =node
=premise>

ISA basic-DS
- purpose omit

to-convey =proof-node

=goal>
node =premise
remedy "start repair"

(P all-premises-done
"IF Goal is to recurse on the premises and the premises are empty,
THEN pop Goal."

=goal>
ISA failed-presentation
node empty

remedy "recursion on premises"

=goal>

fact-unknown nil
!pop!
)

;# Repair Explanation more Explicitly

(P repair-more-explicitly
"IF Goal is to repair a proof step by reverbalizing it more explicitly,
THEN push the goal to reverbalize it."
=goal>
ISA failed-presentation
node =node
remedy "more explicitly"
fact-unknown t
=node>
ISA DS
to-convey =to-convey
=reverbalize>
ISA basic-DS
purpose reverbalize
to-convey =to-convey
content-of =node
role ’verbalizes
=goal>
node =reverbalize
fact-unknown nil
'push! =reverbalize

)
;# Repair too Detailed Explanation

(P repair-too-detailed
"IF Goal is to repair a proof step that was explained too detailed,
THEN push the goal to show that step on the next higher level of abstraction."
=goal>
ISA failed-presentation
node =node
remedy "repair too detailed"
=node>
ISA basic-DS
purpose =purpose
to-convey =proof-node
rule =rule
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premises =premises
=proof-node>
ISA proof-node
fact =fact
=fact>
ISA fact
=find-just>
ISA find-just
previous =previous
rule =rule
premises =premises

!bind! =rule-name (actr~“method =previous)
=fact>

status ’unknown
=known>

ISA rule

name =rule-name

status ’known
=subgoal>

ISA basic-DS

purpose =purpose

to-convey =proof-node

role ’contributes
=goal>

fact-unknown nil
'push! =subgoal
)

(P least-detailed-available

"IF Goal is to repair a proof step and there is no higher level of abstraction,
THEN paraphrase the proof step instead."
=goal>

ISA failed-presentation

node =node

remedy "repair too detailed"
=node>

ISA basic-DS

purpose =purpose

to-convey =proof-node

rule =rule

premises =premises
=proof-node>

ISA proof-node

fact =fact
=fact>

ISA fact
=find-just>

ISA find-just

previous nil

rule =rule

premises =premises
=goal>

remedy "paraphrase"

)
;## Clarification Dialogs

(P get-answer
"IF Goal is to get an answer of the user,
THEN get the answer."
=goal>
ISA basic-DS
purpose answer
to-convey nil
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(P

'bind! =answer (cdr (ana“get-user-input))

=go

al>

to-convey =answer
content =answer
unconveyed empty
status ’known

Ask if Proof Step Understood

understood-proof-step?

wIf

=go

'bind! =sa (sa"make-sa ’understood? (list :goal nil))

Goal is to ask if a proof step is understood,
THEN push the goals to enter a clarification dialog consisting of a question and

an answer."
al>

ISA failed-presentation

node =node

remedy "understood proof step?"

=question>

ISA basic-DS
purpose ask
to-convey =sa
unconveyed =sa
role ’contributes

leval! (sa“set-ds-node =sa =question)

=answer>

ISA basic-DS
purpose answer
to-convey =response
role ’contributes
status =status

'bind! =contents (list
=clarification>

leval! (actr“modify-chunks =contents ’content-of =clarification)
; add =clarification to content of the DS node =node

leval! (actr~add-to-chunk-slot =node ’content =clarification)

ISA focus-space-DS
purpose clarify
to-convey =sa
content =contents
content-of =node
status =status
role ’clarifies

=goal>

answer =response

'push! =clarification
!push! =answer
!push! =question

)

=question =answer)

(spp understood-proof-step?
ta 0.7)

(P

proof-step-understood

uIfF

THEN pop the goal."
=goal>

ISA failed-presentation

remedy "understood proof step?"

answer =yes

leval! (sa™p =yes ’yes)

=goal>

fact-unknown nil

Goal is to repair a proof step and the user answered to the question whether
he understood the proof step with yes,
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!pop!
)

(P proof-step-not-understood-1
"IF Goal is to repair a proof step and the user answered to the question whether
he understood the proof step with no,
THEN ask whether he understood all premises."
=goal>
ISA failed-presentation
node =node
remedy "understood proof step?"
answer =no
leval! (sa”p =no ’no)

=goal>
remedy "understood all premises?"
answer nil
)
(spp proof-step-not-understood-1
ta 0.04)

(P proof-step-not-understood-2
"IF Goal is to repair a proof step and the user answered to the question whether
he understood the proof step with no, and he has been asked whether he
understood all premises,
THEN check whether there is a lower level of abstraction."
=goal>
ISA failed-presentation
node =node
remedy "understood proof step?"
answer =no
leval! (sa"p =no ’no)
=premises>
ISA failed-presentation
node =node
remedy "understood all premises?"

=goal>
remedy "check lower level"
answer nil
)
(spp proof-step-not-understood-2
:a 0.03)

(P proof-step-not-understood-3
"IF Goal is to repair a proof step and the user answered to the question whether
he understood the proof step with no, and there is a lower level of
abstraction,
THEN push the goal to repair the step on the next lower level of abstraction."
=goal>
ISA failed-presentation
node =node
problem =problem
remedy "understood proof step?"
answer =no
leval! (sa”p =no ’no)
=higher>
ISA failed-presentation
remedy "lower level of abstraction"
lower =node

=recursion>
ISA failed-presentation
node =node
problem =problem
remedy "start repair"
fact-unknown =fact-unknown



C.2 PROCEDURAL KNOWLEDGE

215

=higher>

remedy "done"
=goal>

answer nil

fact-unknown =fact-unknown

!push! =recursion
)
(spp proof-step-not-unders
:a 0.02)

tood-3

;# Ask if Premises Understood

(P understood-all-premises?

"IF Goal is to ask the user whether he understood all premises of a proof step,
THEN push the goals to enter a clarification dialog consisting of a question and

an answer."
=goal>

ISA failed-presentation

node =node

remedy "understood all premises?"

'bind! =sa (sa"make-sa ’understood? (list :goal ’premises))

=question>
ISA basic-DS
purpose ask
to-convey =sa
unconveyed =sa
role ’contributes
leval! (sa"set-ds-node

=answer>
ISA basic-DS
purpose answer
to-convey =response
role ’contributes
status =status
'bind! =contents (list
=clarification>
ISA focus-space-DS
purpose clarify
to-convey =sa
content =contents
content-of =node
status =status
role ’clarifies

leval! (actr modify-chunks =contents ’content-of =clarification)
; add =clarification to content of the DS node that presented =node
leval! (actr~add-to-chunk-slot =node ’content =clarification)

=goal>

answer =response
'push! =clarification
!push! =answer
'push! =question

)

=sa =question)

=question =answer)

(spp understood-all-premises?

ta 0.7)

(P all-premises-understood

"IF Goal is to repair a proof step and the user answered to the question whether
he understood all premises of the proof step with yes,
THEN re-explain the proof step on a lower level of abstraction."

=goal>

ISA failed-presentation

node =node

remedy "understood all premises?"

answer =yes
leval! (sa™p =yes ’yes)
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=goal>
remedy "check lower level"
answer nil

(P not-all-premises-understood-explicit
"IF Goal is to repair a proof step and one of the premises has not been understood,
THEN repair that premise."
=goal>
ISA failed-presentation
node =node
problem =problem
remedy "understood all premises?"
answer =answer
leval! (listp =answer) ; must be a list of DS nodes
=node>
ISA DS
to-convey =to-convey
=failed-premises>
ISA failed-presentation
node =answer
problem =problem
remedy "recursion on premises"
=reverbalize>
ISA basic-DS
purpose reverbalize
to-convey =to-convey
content-of =node
role ’verbalizes
=subgoal>
ISA failed-presentation
node =node
problem =problem
remedy "understood proof step?"
fact-unknown =fact-unknown
=goal>
fact-unknown =fact-unknown
!push! =subgoal
!push! =reverbalize
'push! =failed-premises

)

(P all-premises-repaired
"IF Goal is to repair a proof step and all premises are repaired
THEN ask whether the proof step is now understood."
=goal>
ISA failed-presentation
remedy "understood all premises?"
answer empty
=goal>
remedy "understood proof step?"
answer nil

(P not-all-premises-understood-implicit
"IF Goal is to repair a proof step and some premises have not been understood,
THEN ask which ones."
=goal>
ISA failed-presentation
remedy "understood all premises?"
answer =no
leval! (sa”p =no ’no)

=goal>
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remedy "which premises not understood?"

answer nil

;# Ask Which Premises Not Understood

(P which-premises?

"IF Goal is to ask which premises have not been understood,

THEN push the goals to enter a clarification dialog consisting of a question and

an answer."
=goal>

ISA failed-presentation

node =ds-node

remedy "which premises not understood?"

answer nil

'bind! =sa (sa"make-sa

=question>
ISA basic-DS
purpose ask
to-convey =sa
unconveyed =sa

role ’contributes
leval! (sa"set-ds-node

=answer>
ISA basic-DS
purpose answer

to-convey =response
role ’contributes

status =status

'bind! =contents (list

=clarification>

ISA focus-space-DS
purpose clarify

to-convey =sa

content =contents
content-of =ds-node

status =status

role ’clarifies

’which-not-known? (list :goal ’premises))

=sa =question)

=question =answer)

leval! (actr"modify-chunks =contents ’content-of =clarification)

; add =clarification to content of the DS node that presented =node

leval! (actr~add-to-chunk-slot =ds-node ’content =clarification)

=goal>

remedy "understood all premises?"

answer =response
'push! =clarification

!push! =answer
!push! =question

)

;### Learning New Productions

(P learn-production

"IF GOAL is a dependency,
THEN learn a new production by popping the goal."

=goal>
ISA dependency

!pop!
)



218 CHAPTER C. COGNITIVE KNOWLEDGE BASES




219

Appendix D

The Interface

In this chapter, we shall give technical definitions we omitted in Section 7.2. First,
we shall define arguments to instructions in Section D.1. Next, in Section D.2 we
shall define the P.rex Markup Language (PML) formally.

D.1 Instructions

Recall from Section 7.2.1 that the generic interface takes as input a triple (4, a, s),
where a is the action A taken by the user and s the arguments to a. In this section,
we shall define the arguments to instructions for the generic interface, that is, we
consider the case where A = instruction. Recall that instructions a are defined
by the following grammar:

instruction = NewProof |ReadSgnEntry | ReadInfoEntry |ReadJudgment
| Reset | SetTheory | Load

The following arguments s are allowed:
NewProof: s is the name of the new proof. A new current signature will be defined.

ReadSgnEntry: s is a signature entry (cf. Appendix A.1 for the syntax) to be added
to the current signature.

ReadInfoEntry: s is an info entry.

ReadJudgment: s is a judgment to be explained.

Reset: s is empty or the name of a theory, which becomes the current theory.
SetTheory: s is the name of the new current theory.

Load: s is the pathname to a signature file, which will be loaded.

D.2 P.rex Markup Language

The Prex Markup Language (PML) allows for the inclusion of layout information
in the text, which is interpreted by the Emacs interface. As a small sublanguage
of the Hypertext Markup Language HTML, it uses HTML syntax to encode the
layout information. Note that hyperlinks are not supported in PML.

A PML string has one of the following forms:

<directive> or <directive arguments*> tert </directive>
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where directive is the PML directive, arguments is a string of the form
keyword=value and text is arbitrary text.
The following directives are supported:

<BR> A new line is started.

<I>text</I> The text is set in italics.

<B>text</B> The text is set in boldface.

<FONT COLOR=color>text</FONT> The text is set in color color.
Note that the layout information can be nested, as the following example illustrates:
Ezample D.1
The string

"This text is normal, <I>italics</I>, <B>bold, <I>bold
and italics</I>, <FONT COLOR=red>bold and red <I> and
italics</I></FONT>, only bold</B>, normal again and
<FONT COLOR=blue>blue</FONT>."

is displayed in the emacs interface as follows:

This text is normal, italics, bold, bold and italics, bold and red
and italics, only bold, normal again and blue.
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parametric, 23
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knowledge
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label, 51
language, 19
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lexicalization, 8
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line of explanation, 132
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linguistic realization, 8
linguistic specification, 8
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logic, 19
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major premise, 104
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method, 47
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natural deduction, 11, 19, 20, 33

judgment, 21
natural language, 14
natural language generation, 7
ND, see natural deduction
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nf, see normal form
NLG, see natural language generation
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long fn-nf, 26
normalizing, 24
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relation, 24
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ordering, 9
output
generic interface, 149, 149

parameter, 33, 35
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parametric
inference rule, 23
judgment, 33, 35
partial assertion level, 11
PCA, 84, 85
PDS, see proof plan data structure
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pipeline, 8
plan operator, 88, 94
planning intention, 94
PML, see P.rex Markup Language
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predicate, 24
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premises, 52
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Prez, 3
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process model, 9
product, 24
production, 68, 71
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proof checking, 20, 30, 33
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question, 92
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B-reduction, 24
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reference method, 131
explicit, 131
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inference, see inference rule
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valid, 32
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static approach, 82
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surface generation, 7, 8
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system
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system Fw, 28

tableau, 19
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in natural deduction, 21
in pure type systems, 23
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