Algorithmic Geometry via
Graphics Hardware

Dissertation
zur Erlangung des Grades
des Doktors der Ingenieurswissenschaften (Dr.-Ing.)
der Naturwissenschaftlich—Technischen Fakultat I
der Universitdt des Saarlandes

von

Markus Oswald Denny

Saarbriicken
14. Marz 2003

Datum des Kolloquiums: 31.10.2003

Dekan der technischen Fakultét:
Professor Dr. Philipp Slusallek

Gutachter:
Professor Dr. Raimund Seidel, Universitdt des Saarlandes, Saarbriicken
Professor Dr. Philipp Slusallek, Universitdt des Saarlandes, Saarbriicken

Kurzzusammenfassung

Wir entwickeln ein pizelbasiertes Berechnungsmodell, dem die Méoglichkeiten moderner
Grafikhardware zu Grunde liegt. Auf der Basis dieses Modells untersuchen wir exemplar-
isch verschiedene Probleme aus dem Gebiet der algorithmischen Geometrie. Unser Haupt-
beispiel ist die Berechnung des Voronoi-Diagrammes einer planaren Punktmenge mittels der
unteren Einhiillenden eines Arrangements von Kegeln. Wir fiihren eine detaillierte Anal-
yse des Fehlers durch, der durch die Verwendung von pixelbasierten Algorithmen auftreten
kann. Wir stellen dann eine Methode vor, um die Berechnung des Voronoi-Diagrammes erhe-
blich zu beschleunigen. Dieser generische Algorithmus wird auch dazu benutzt, eine Vielzahl
von Verallgemeinerungen des Voronoi-Diagrammes zu berechnen, zum Beispiel Diagramme
bzgl. allgemeiner Distanzfunktionen, Diagramme basierend auf Liniensegmenten und Kreis-
bégen sowie Diagramme héherer Ordnung. Aufserdem kénnen auch Kombinationen dieser Ve-
rallgemeinerungen berechnet werden. Fiir einige dieser Verallgemeinerungen ist kein schneller
klassischer Algorithmus bekannt. Des Weiteren stellen wir einige Anwendungen vor, insbeson-
dere eine Losung fiir das folgende Problem: Gegeben sei ein Voronoi-Diagramm einer planaren
Punktmenge. Bestimme die Position eines neu einzufiigenden Punktes, dessen Voronoi-Region
im daraus resultierenden Voronoi-Diagramm maximale Flache besitzt. Soweit uns bekannt
ist, existiert keine klassische Losung fiir dieses Problem. Weiterhin prisentieren wir pixel-
basierte Algorithmen, um die Alphahiille einer planaren Punktmenge S zu berechnen, sowie
um das flichenminimale und flichenmaximale Dreieck bzw. Viereck zu bestimmen, dessen
Ecken Punkte aus S sind. Schliefslich stellen wir pixelbasierte Algorithmen vor, die das klein-
ste S umschlielfende Homothet eines sternférmigen Polygons P berechnen, sowie das grofte
leere Homothet von P beziiglich S, das vollstdndig in einer beliebigen polygonalen Region
enthalten ist. Alle in dieser Arbeit vorgestellten Algorithmen sind schnell und einfach zu
implementieren, Kenntnisse in der Grafikprogrammierung und in OpenGL vorausgesetzt.

Abstract

We develop a pizel-based model of computation relying on the power of modern graphics hard-
ware. It provides the foundation on which we exemplarily discuss various problems arising
in the field of algorithmic geometry. Our prime example is the computation of the Voronoi
diagram of a planar point set via the lower envelope of an arrangement of cones. We give a
detailed analysis of the error occurring due to the nature of pixel based algorithms. Further-
more, we present a method to achieve a significant speedup for the computation. This generic
algorithm is further used to compute various generalizations of the Voronoi diagram like di-
agrams based on generalized distance functions, line segments and circular arcs as Voronoi
sites, as well as higher order Voronoi diagrams. Additionally, we can compute combinations of
these generalizations as well. For some of these generalizations no fast traditional algorithm
is known. We further give some applications, in particular we present a solution to determine
the position for a point p such that, included in a Voronoi diagram of a planar point set, the
resulting Voronoi region of p has maximal area. As far as we know there exists no traditional
solution for this problem. Moreover, we present pixel based algorithms to compute the alpha
hull of a planar point set S, and to determine the minimum and maximum area triangle and
quadrangle spanned by points of S. Finally, we demonstrate how to determine the smallest
homothet of a star shaped polygon P enclosing S and how to find the largest empty homothet
of P completely contained inside an arbitrary polygonal region. All algorithms presented in
this work are fast and easy to implement, assuming knowledge about graphics programming
and OpenGL.

Zusammenfassung

Nehmen wir an, ein Manager einer Schnellrestaurantkette will den Markt in einer Stadt er-
schliefen, in der er noch nicht prasent ist. Natiirlich sollte das Einzugsgebiet des neuen
Restaurants so groft wie moglich sein. Um diesen optimalen Platz zu finden, konstruiert er
ein Voronoidiagramm der momentan vorhandenen Filialen seiner Konkurrenten. Der beste
Platz fiir seine Filiale ist derjenige Punkt, der, eingefiigt in das Voronoidiagramm, die neu
entstehende Region maximiert. Uberraschenderweise ist kein traditioneller Algorithmus zur
Losung dieses Settle Point Problems bekannt. Wir kénnen es in einer diskretisierten Version
16sen. Unser Ansatz basiert auf einem Berechnungsmodell, welches die Leistungsfihigkeit
moderner Hardware ausnutzt.

Sogar die billige und weitverbreitete PC-Grafikhardware ist méchtig genug, komplexe Szenen
vollig unabhéngig vom Hauptprozessor darzustellen. Diese Leistungsfihigkeit wollen wir uns
zu Nutze machen, um Probleme der algorithmischen Geometrie zu losen.

Der Einsatz der Grafikhardware fiir nicht vorgesehene Aufgaben birgt allerdings Hindernisse.
Die Information fliefst hauptséchlich in eine Richtung, ndmlich vom Hauptprozessor zum
Grafikprozessor. Der Hauptprozessor libergibt eine Beschreibung der darzustellenden Szene
an den Grafikprozessor und lésst diesen seine Arbeit ohne Riickmeldung verrichten. FEin
weiteres Merkmal von Grafikhardware ist, dass sie sich wie ein Parallelcomputer verhélt, bei
dem jedes Pixel konzeptionell von einem eigenen Prozessor verwaltet wird. Allerdings kénnen
wir den Parallelismus nur &hnlich einer SIMD-Instruktion (Single Instruction Multiple Data)
verwenden. Diese Eigenschaften finden im Modell Beachtung.

Unser Modell ist so gestaltet, dass es die zugrunde liegende Hardware moglichst genau
wiedergibt. Gleichzeitig ist es aber auch abstrakt genug, um auf verschiedene Typen von
Grafikhardware angewandt zu werden, sowohl auf hochgeziichtete Grafik-Workstations als
auch auf billige PC Grafikkarten. Deshalb ist unser Berechnungsmodell an OpenGL an-
gelehnt, der populérsten herstellerunabhingigen Grafikbibliothek.

Mit Hilfe dieses pizelbasierten Berechnungsmodells entwickeln wir schnelle Algorithmen fiir
Probleme der algorithmischen Geometrie. Eine der vielseitigsten Strukturen in der algorith-
mischen Geometrie, das Voronoidiagramm, dient uns als Paradebeispiel. Wir berechnen es
mittels der unteren Einhiillenden eines Arrangements von Kegeln. Wir prisentieren eine
detaillierte Analyse des Fehlers, der durch die Verwendung von pixelbasierten Algorithmen
auftreten kann. Zudem liefern wir korrekte obere Schranken fiir die Anzahl der benétigten
Dreiecke fiir die Approximation der unteren Einhiillenden. Des Weiteren stellen wir eine
Methode fiir eine erhebliche Beschleunigung der Berechnung vor. Anders als Manocha et al.
[HKL*99] sind wir in der Lage, das Voronoidiagramm in fast konstanter Zeit zu berechnen,
Gleichverteilung der Punkte vorausgesetzt.

Dieser generische Algorithmus wird des Weiteren dazu benutzt, verschiedene Verallge-
meinerungen des Voronoidiagrammes zu berechnen, zum Beispiel Diagramme bzgl. all-
gemeiner Distanzfunktionen, Diagramme basierend auf Liniensegmenten und Kreisbégen
sowie Diagramme hoherer Ordnung. Aufserdem kénnen auch Kombinationen dieser Verall-
gemeinerungen berechnet werden. Es ist zum Beispiel moglich, das Voronoidiagramm k-ter
Ordnung einer Menge von additiv gewichteten Liniensegmenten und Kreisen zu berechnen,
wobei die zugrunde liegende Distanzfunktion die L;,, Funktion ist. Fiir einige dieser Ver-
allgemeinerungen ist kein schneller klassischer Algorithmus bekannt.

Alle Algorithmen sind schnell und sie sind unkompliziert zu implementieren, einen erfahre-
nen Programmierer vorausgesetzt. Die Berechnung einer der oben erwdhnten Verallge-
meinerungen fiir eine gleichverteilte Punktmenge von bis zu 2000 Punkten bendétigt etwa
50 Millisekunden bei einer Bildgréfe von 1000 x 1000 Pixels. Fiir Voronoidiagramme k-ter
Ordnung braucht man allerdings etwa k-mal langer, vorausgesetzt k ist ausreichend klein.

Die Berechnung von Voronoidiagrammen und deren Verallgemeinerungen ist ohne Zweifel
schon fiir sich gesehen eine interessante Aufgabe. Voronoidiagramme sind oft der er-
ste Schritt einer Losung eines komplexerern Problems. Auf der Grundlage unseres piz-
elbasierten Modells, zeigen wir exemplarisch grafische Losungen fiir Anwendungen von
Voronoidiagrammen auf, die als pixelbasierte Algorithmen realisiert werden. Diese sind
die Berechnung der Hausdorff-Distanz zweier Punktmengen, der Durchmesser einer Punk-
tmenge sowie die Berechnung der maximalen Distanz zweier Punktmengen.

Wie oben bereits erwidhnt, dient unser Modell als Fundament, mit dessen Hilfe Algorithmen
aus ganz verschiedenen Gebieten der algorithmischen Geometrie realisiert werden kdnnen.
Um diese Vielféltigkeit zu untermauern, untersuchen wir pixelbasierte Implementationen
zur Berechnung der Alpha-Hiille einer planaren Punktmenge. Die Alpha-Hiille wurde en-
twickelt, um das Aussehen, die Form, einer Punktmenge widerzuspiegeln.

Weiterhin entwickeln wir Lésungen, die zu einer planaren Punktmenge S das flichenkleinste
und flachengrofte Dreieck bzw. Viereck berechnen, deren Ecken Punkte aus S sind.

Schlieklich stellen wir pixelbasierte Algorithmen vor, die bzgl. einer planaren Punktmenge
S das kleinste S umschliefende Homothet eines sternférmigen Polygons P berechnen, wobei
die Menge S auch aus Kreisbogen und Liniensegmenten bestehen kann. Wir kénnen als
Sperzialisierung ebenfalls den kleinsten Kreis berechnen, der die Menge S enthélt. Das
duale Problem, die Berechnung des groften leeren Homothets von P beziiglich S, das
vollstédndig in einer beliebigen polygonalen Region enthalten ist, kann sogar noch ein wenig
schneller berechnet werden, da wir auf die fiir Voronoidiagramme vorgestellte Methode zur
Beschleunigung der Berechnung zuriickgreifen kénnen.

Die in dieser Arbeit vorgestellten Algorithmen erlauben nicht nur allgemeinere Problem-
stellungen im Vergleich zu traditionellen Ansétzen, sondern sie sind effizient sowie schnell
und unkompliziert zu implementieren, Kenntnisse in Grafikprogrammierung und OpenGL
vorausgesetzt. Fiir einige der hier vorgestellten Probleme ist kein schneller klassischer Al-
gorithmus bekannt. Zu guter Letzt erhalten wir, bedingt durch die Art der pixelbasierten
Algorithmen, eine Visualisierung der Losung gratis dazu.

Summary

Assume you are the store manager of a fast food chain. You decide to capture the market in
a town you are not yet present in. Most naturally, the area to attract customers should be as
big as possible. To find the optimal place, you construct a Voronoi diagram of the presently
existing stores of your business rivals. Your store is best located on that point, that when
inserted into the existing diagram as a new site, will possess the maximum area. Surprisingly,
no algorithm was known to solve this settle point problem. We can solve it in a discretized
version. Qur approach is based on a model of computation relying on the power of modern
graphics hardware.

Even the cheap and widespread graphics hardware used in modern PCs is powerful enough for
rendering complex graphic scenes completely independent of the CPU. We want to harness
the power of such a graphic processing unit (GPU) to solve problems in algorithmic geometry.

Abusing graphics hardware for such an unintended purpose has some obstacles. The infor-
mation flow is almost unidirectional, namely from the CPU to the GPU. The CPU hands
over a description of the scene to be rendered and relies on the GPU to carry out its duty
without further feedback. This complicates the development of algorithms. Another aspect
of graphics hardware is, that although it behaves like a parallel computer where conceptually
a processor resides on each pixel, we can only use the parallelism in SIMD-like fashion (single
instruction multiple data). Of course, these properties exert influence on the development of
the model.

Our model is designed to reflect the underlying hardware as well as possible, however, ab-
stract enough to be applicable for various different types of graphics adapters, including high
end graphics workstations as well as cheap PC graphics hardware. For that, our model of
computation is designed following OpenGL, the most popular vendor-independent graphics
library.

In this pizel based model of computation, we give fast algorithms for a number of problems
in the field of algorithmic geometry. As one of the most versatile structures in computational
geometry, the Voronoi diagram serves as our prime example. It is computed via the lower
envelope of an arrangement of cones. We give a detailed analysis of the error occurring due
to the nature of pixel based algorithms. We provide correct upper bounds on the number
of required triangles for the approximation of the lower envelope. Furthermore, we present
a method to achieve a significant speedup for the computation. In contrast to the approach
of Manocha et al. [HKL99|, we are able to render the Voronoi diagram in almost constant
time, assuming a uniform distribution of the sites.

This generic algorithm is further used to compute various generalizations of the Voronoi
diagram, like diagrams based on generalized distance functions, line segments and circular
arcs as Voronoi sites, and higher order Voronoi diagrams, as well as combinations of these
generalized Voronoi diagrams. For instance, we can compute the order k£ Voronoi diagram
of a set of additively weighted line segments and circles with L; /5 as underlying distance
function. For some of these generalizations no fast traditional algorithm is known.

All these algorithms are fast and straightforward to implement for experienced program-
mers. For a uniform distribution of up to 2000 sites, about 50 milliseconds are sufficient
to compute any of the before mentioned generalization of the Voronoi diagram assuming a
picture size of 1000 x 1000 pixels (the computation of the order/degree k Voronoi diagram
takes k times longer on moderate k).

Certainly, the computation of the Voronoi diagram and its generalization is an interesting
task on its own. Besides, Voronoi diagrams are often used as a first step of an algorithmic
solution for more complex problems. Based on our model of computation, we exemplarily
give graphical solutions for applications of the Voronoi diagram realized as pixel based
algorithms. These are the computation of the Hausdorff distance between a red and a blue
set of points, the diameter of a set of points, and the maximum distance between a red
and a blue set of points.

As mentioned before, our model serves as a foundation to provide solutions for problems
of quite different areas of computational geometry. To prove the versatility, we investigate
pixel based implementations for the computation of the alpha hull of a planar point set.
The alpha hull was invented to capture the notion of the shape of a set of points.

Furthermore, given a planar point set S, we present solutions for determining the minimum
and maximum area triangle and quadrangle spanned by points of S.

Finally, we consider the problem of finding the smallest homothet of a star shaped polygon
P enclosing a set S consisting of points, line segments, and circular arcs. As a specialization,
we can also compute the mimimal circle enclosing these sites. The dual problem — given a
star shaped polygon P, find the largest empty homothet of P completely contained inside
an arbitrary polygonal region — has even a slightly faster solution, because we can make
use of the speedup idea for Voronoi diagrams once more.

As a last remark, our pixel based implementations do not only allow for much more gener-
alized problem settings, but also all algorithms presented in this work are fast and straight-
forward to implement, assuming knowledge about graphics programming and OpenGL. For
some of the discussed problems there were no or no fast traditional solutions known. Last
but not least, due to the nature of pixel based algorithms, a visualisation of the problem
under consideration is delivered for free.

ii

Contents

0 Introduction

I The model

1 Pixel based Model of Computation

II

3

1.1
1.2
1.3
14
1.5
1.6
1.7

Introduction L.
Overview
Geometry pipeline oL
Raster pipeline,
Pixel color buffer update
General settings valid for all buffers
Retrieving information

A model meets reality

2.1 OpenGL’s history
2.2 Practical aspects
Implementations

Voronoi Diagram

3.1
3.2
3.3
3.4
3.5
3.6

Introductiono
Computing lower envelope
A first graphical implementation
The error caused by the approximation
Speedupo
Voronoi diagrams based on non euclidean distance
functions oo
3.6.1 Distance functions based on the Minkowski

NOTINS © « + v v v e e e e e e e e e
3.6.2 Thecaseof £<1
3.6.3 Adapting the speedup method
3.6.4 Areas of equidistant points

10
13
16
19
19

21
21
22

27

29
30
32
33
34
40

45

46
49
50
53

iii

CONTENTS

3.6.5 Polyhedral distance function. 56
3.7 Higher order Voronoi diagrams 56
3.7.1 Furthest point Voronoi diagram 63
3.8 Weighted Voronoi diagrams 63
3.8.1 Multiplicatively weighted Voronoi diagrams 63
3.8.2 Additively weighted Voronoi diagrams . .. 65

3.9 Voronoi diagrams of a set of line segments and cir-
culararcso o 66
3.10 Yet another fast food in town 69
3.10.1 Previouswork 70
3.10.2 Properties 70
3.10.3 Pixel based adaptation 72
3104 Speedupo 75
3.10.5 Running time anomaly 77
3.11 Applicationso 78

3.11.1 Hausdorff distance between a red and a blue
setofpoints 78
3.11.2 Largest inter point difference of a set of points 79

3.11.3 Maximum distance between a red and a blue
setof points 80

3.12 Pixel based computations executed without a
graphic processor 81
3.12.1 Generic approach for Voronoi diagrams . . . 81
3.12.2 Higher order Voronoi diagrams 82
3.12.3 Settle point computation 82
Smallest Enclosing Homothet 85
4.1 Themission 85
4.2 Previous work in the traditional model 87
4.3 Pixel-based solution 87
4.4 Generalizations 89
4.4.1 Computing the smallest k—enclosing homothet 90
45 Analysis 90
Extremal polygon containment 93
51 Themission 94
5.2 Previous work in the traditional model 94
5.3 Pixel-based realization 95
54 Extensions.o 96
5.4.1 Restricting the position of the homothet . . 96
5.4.2 Line segments and circular arcs obstacles . 96
5.4.3 Weighted Facilities 97

v

CONTENTS

6 Alpha Hulls 99
6.1 The shapeof a pointset 99
6.2 Previous work in the traditional model 101
6.3 Pixel-based approach for negative oo 101
6.4 The a-hull for positivea 102

6.4.1 Implementation 102
6.4.2 Alternative implementation 103

7 Minimum and maximum area triangle and quad-

rangle 107
7.1 Introduction, 108
7.2 Previous work in the traditional model 108
7.3 Pixel-based approach 108
7.3.1 Minimum area triangle 108

7.3.2 Minimum area triangle, revised 109

7.3.3 Additionally cutting down the rendering time 110

7.3.4 Minimum area quadrangle 110

7.3.5 Maximum area triangle/quadrangle 111
Bibliography 115

CONTENTS

vi

Chapter 0

Introduction

Since the ancient days of Euclid’s straightedge-and-compass con-
structions, algorithmic geometry has always been a fascinating field
of studies. The invention of the computer turned over a new leaf,
melting algorithmic design, analysis and geometry into the new
research discipline christened computational geometry.

Meanwhile, a new branch of scientific research called computer
graphics came to life. At the very beginning, computer graphics
appeared as a rather esoteric specialty involving expensive dis-
play hardware, substantial computer resource, and idiosyncratic
software (cf. [FvDFH96]). Spurred by the enormous commercial
success activated by the invention of the personal computer and es-
pecially the graphical user interfaces, computer graphics has grown
into a recognized research discipline that a large community of re-
searchers is engaged in. In the course of this development, com-
puter graphics engines have emerged to powerful systems capa-
ble to compute and display complex graphical tasks on their own.
To some extent, this success is owed to the game industry, which
up to now is still an important catalyzer of this research branch.
Nonetheless, this has the effect that the present personal comput-
ers command cheap and yet powerful graphics hardware.

This thesis gives the answer to the following question: How can
computational geometry benefit from this powerful graphics hard-
ware?

The RAM, the standard model of computation used in compu-
tational geometry, has very little to do with the peculiarities of
graphics hardware. Thus, our first step is the development of a

CHAPTER 0. Introduction

suitable model of computation that is a realistic abstraction of
current graphics hardware. This is the topic of investigation in the
first part of the thesis. In the first chapter we present our pizel
based model of computation, and in the second chapter discuss the
relationship between our model and the real world.

There are two design criteria for our model. On the one hand,
there needs to be a sufficient high level of abstraction to ensure
that a wide range of actual graphics hardware is covered. On the
other hand, the model has to reflect the underlying hardware as
well as possible.

Hence, in the first part of this thesis, we investigate what is special
in programming graphics hardware. A major feature is the flow of
information, directed from the main processor, the CPU, towards
the graphic processor, the GPU. Usually, the CPU hands over just
a description of the scene to be rendered. Thereafter, it relies on
the GPU to carry out its duty without further feedback. There is
no need to establish more than a one-way communication directed
from the CPU to the GPU. This is the reason, why retrieving
data from the GPU is rather time expensive. The other aspect of
graphics hardware is that although it behaves like a parallel com-
puter where conceptually a processor resides on each pixel, we can
only use the parallelism in SIMD-like fashion (single instruction
multiple data). Our pixel based model of computation inherits
these aspects as it is designed following OpenGL the most popular
vendor-independent graphics library.

Now, that we have an appropriate model of computation, what
is it good for? This question is answered by several pixel based
algorithms in the second part of this thesis. Based on our model
of computation, we give fast solutions for a number of problems in
the field of algorithmic geometry.

As one of the most versatile structures in computational geometry,
the Voronoi diagram, discussed in chapter 3, serves as our prime
example. It is computed via the lower envelope of an arrangement
of cones. We give a detailed analysis of the error occurring due
to the nature of pixel based algorithms. We provide correct upper
bounds on the number of required triangles for the approxima-
tion of the lower envelope. Furthermore, we present a method to
achieve a significant speedup for the computation. Compared to
the approach of Manocha et al. [HKL99], we are able to render
the Voronoi diagram in almost constant time, assuming a uniform
distribution of the sites.

This generic algorithm is further used to compute various gener-
alizations of the Voronoi diagram, like diagrams based on general-
ized distance functions, line segments and circular arcs as Voronoi
sites, and higher order Voronoi diagrams, as well as combinations
of these generalized Voronoi diagrams. For some of these gener-
alizations no fast traditional algorithm is known. For instance,
we can compute the order k& Voronoi diagram of a set of additively
weighted line segments and circles with L /5 as underlying distance
function.

All these algorithms are fast and straightforward to implement
for experienced programmers. Assuming a uniform distribution of
up to 2000 sites, about 50 milliseconds are sufficient to compute
any of the before mentioned generalization of the Voronoi diagram
assuming a picture size of 1000 x 1000 pixels (the computation
of the order/degree k Voronoi diagram takes k times longer on
moderate k). This result is achieved on an Intel-Pentium™ 800
equipped with a NVIDIA™GForce 2 graphic adapter.

Certainly, the computation of the Voronoi diagram and its general-
ization is an interesting task on its own. Besides, Voronoi diagrams
are often used as a first step of a more complex algorithmic solu-
tion. Based on our model of computation, we exemplarily give
graphical solutions for applications of the Voronoi diagram real-
ized as pixel based algorithms. These are the computation of the
Hausdorff distance between a red and a blue set of points, the di-
ameter of a set of points, and the maximum distance between a
red and a blue set of points.

One of the most exciting aspects of our model is that we can give
an answer to problems for which as far as we know no traditional
solutions exist. In particular, we present a solution for the settle
point problem, i.e. determine the position for a point p such that,
included in a Voronoi diagram of a planar point set, the resulting
Voronoi region of p has maximal area.

As mentioned before, our model serves as a foundation to provide
solutions for problems of quite different aeras of computational
geometry. To prove the versatility, we investigate the following
problems:

In chapter 4 we delve into the problem of finding the Smallest
Enclosing Homothet. This is a generalization of the well known
smallest enclosing circle problem in the sense that our approach
allows to determine the smallest homothet of a star shaped polygon

CHAPTER 0. Introduction

P enclosing a set S consisting of points, line segments, and circular
arcs.

The dual problem — given a star shaped polygon P, find the largest
empty homothet of P completely contained inside an arbitrary
polygonal region — is considered in chapter 5. As before, we can
allow the sites to be points, line segments, and circular arcs. In
contrast to traditional approaches, we allow the polygonal region
the homothet has to be contained in, to be be quite arbitrary, i.e.
it may also contains holes.

In chapter 6 we present pixel based implementations for the com-
putation of the alpha hull of a planar point set. Presented 1983 by
Edelsbrunner, Kirkpatrick, and Seidel, alpha hulls were invented
to capture the notion of the shape of a set of points.

Furthermore, in chapter 7 we develop efficient solutions for deter-
mining the minimum and maximum area triangle and quadrangle
spanned by points of a planar point set.

Part 1

The model

Chapter 1

Pixel based Model of

Computation

1.1 Introduction

Before defining a model of computation for the pixel based algo-
rithms we will first have a look at the usual model used to classify
algorithms in computational geometry.

First and foremost the purpose of a model is to list and explain the
available operations. On the basis of this data it is then possible
to compare competing algorithms in (asymptotic) running time or
space consumption depending on the size of the input.

Although there exist different philosophies concerning the struc-
ture and organization of a computer and a CPU, counting the
number of arithmetic operations and comparisons of the algorithm
in consideration gives a pretty good measure for the resources even-
tually consumed. This is a consequence of the fact that the time
cycles allocated by the different instructions of a CPU differ by
only a rather small constant factor. This is to bear in mind when
deriving an appropriate model for pixel based algorithms.

CHAPTER 1. Pixel based Model of Computation

Graphic engine
Geometry pipeline
Raster pipeline

Pixel color buffer
update

Figure 1.1

Structure of a graphic engine

Pixel
Position g
el
Color 475 e
alpha

Stencil stencil

Figure 1.2

Structure of a pixel

Fragment
.. x
Position él
red
Teen

Color ﬂﬁ[ue
alpha

Figure 1.3

Structure of a fragment

1.2 Overview

Motivated by the speed at which modern graphic engines can gen-
erate pictures, we transform problems arising in computational
geometry into the computer graphics framework.

The graphic engines compute a picture on the basis of triangles.
From our point of view, a picture is a two dimensional array of
pixels, each consisting of seven buffers: z, 7/, stencil, red, green,
blue, and alpha (see figure 1.2).

Based on OpenGL, a widespread free graphic library, our model
can be coarsely sketched as follows (see figure 1.4).

Geometry pipeline

One at a time, the triangles enter the graphic engine at the ge-
ometry pipeline (see section 1.3). After a triangle is colored, and
affinely transformed, parts of the triangle are clipped away with
the aid of six clipping planes.

The coloring function, and the coeflicients for the affine transfor-
mation and clipping planes define the state of geometry pipeline.
In general, state values remain valid unless explicitly changed by
the CPU, but at least for the complete lifetime of the triangle in
process.

At the end of the geometry pipeline any remaining portion of the
triangle is pushed through a sieve producing a set of fragments.
Each fragment consists of seven values derived from the originating
triangle. There are four color values, namely red, green, blue, and
alpha, and three position values, x, y, and z (see figure 1.3).

Raster pipeline

The next stage is the raster pipeline (see section 1.4). From here on
the graphic engine behaves like a SIMD! parallel computer where
conceptually a processor resides on each pixel. With respect to the
x and y values, the fragments are distributed to the pixels. Before

1SIMD refers to an architecture with a single instruction stream that is
capable of operating on multiple data items concurrently (cf. [FR97]).

1.2. Overview

the buffers of a pixel can be updated, four tests must be passed.
As soon as a test fails the processing for this fragment terminates.

In the scissor test, the fragment’s x and y values are compared to
predefined state values.

Next, the alpha value of the fragment is compared to a reference
value. The compare function and the reference value are again
part of the state of raster pipeline.

In the stencil test, a comparison between the stencil buffer value
of the pixel and a reference value is executed. The state of the
pipeline concerning this test, is composed of the compare function,
the reference value, and additionally three update operations, ap-
plied to the pixel’s stencil buffer. The first is applied if the stencil
test fails, the second if the stencil test succeeds but the depth tests
(see below) fails, otherwise the third is applied.

The depth test consecutively compares the fragment’s z value to
the values of the z and z’ buffer of the pixel. If a comparison is suc-
cessful the corresponding buffer is overwritten with the fragment’s
value. As in the former tests, the kind of applied comparisons is
selected by two state variables.

Color buffer update

After all tests are passed, the four color buffers of the pixel are
updated (see section 1.5). There are two mutual exclusive alterna-
tives applicable. The fragment’s color values can be blended with
the color buffer values of the pixel or they can be logically com-
bined. There are several different methods applicable for blending,
as well as a bunch of logical operations (see section 1.5). The se-
lection between blending and logical operations, and the number
of the applied method respectively logical operation is dictated by
state variables of the raster pipeline.

Reading back information

The current contents of the pixel’s buffers can be read back into
the main memory of the CPU (see section 1.7). One method is to
read back the specified buffers, e.g. stencil buffers, of a rectangular
area of the picture. Alternatively, there are two methods to gather

CHAPTER 1. Pixel based Model of Computation

statistical information about the picture. The histogram function
returns the occurrences of a color buffer value. The minmax func-
tion computes the minimum and maximum values for the color
buffers of the picture.

CPU
|

—¢ —

coloring
affine transformation
cutting planes

:

) SCissor test
graphic alpha test

en gi ne stencil test
depth test

:

blending
Xor
logical operation

'

:

picture

f—

Figure 1.4
Model of computation

1.3 Geometry pipeline

We now give a more detailed description of the operating sequence
of the graphics engine (see figure 1.6). The first one, the geometry
pipeline, allows geometric computations on triangles. The input

10

1.3. Geometry pipeline

for the geometry pipeline is made up of data to generate geometric
objects as well as instructions to control the state of graphic engine.

Geometric primitives

Each object is composed of geometric primitives. The graphic
generates these as fed by the CPU with three dimensional vertices
and a keyword to select between the different types (see figure 1.5).
As illustrated in the figure, only convex polygons are allowed.

Segments Segment strip Segment loop
VZ\ vy Vs,
v, A v,

ViV, A

Vo Vs A% V, V8 V2
Triangles Trianglestrip Trianglefan
VSYV4 V. & V. VA

v Vi 5 V5
2 V.

\ $ V Vo 7

V0 V1 V3 V1 2
Rectangles Rectanglestrip Convex polygon

\% Vo Ve Ve Vs
V.

v 4‘% Vo v v
= V2 V5 V7 V4
‘ V

Vo Vl Vl V3 V5 ! V2 3

Figure 1.5

Geometric primitives

For the sake of simplicity, we refer to the geometric primitives as
set of triangles, although line segments, rectangles, and polygons
are also allowed geometric primitives.

11

CHAPTER 1. Pixel based Model of Computation

Coloring

For each set of triangles there are four additional values determined
by state variables, namely the red, green, and blue as well as the
so called alpha value. The latter is a fourth color component con-
ventionally used to describe the transparency of the triangle under
consideration.

Beside the standard way to assign a color for the triangles, it is
possible to apply texturing.

A texture is a two dimensional array of color values. These values
are equidistant supporting points defining a two dimensional color
function which can be mapped upon a geometry primitive.

Using textures it is possible to define quite arbitrary shaped object.

Affine transformation

The next step to take place, is an affine transformation of the just
generated object.

Clipping planes

Now that the triangles are placed as desired, obviously superfluous
parts overlapping the viewing volume are automatically clipped
away. To further reduce the amount of eventually generated frag-
ments up to six clipping planes can be declared. Each of these is
specified as state variables in terms of A;z + B;y + Ciz + D; = 0.

Any part that survived the final clipping is rastered into small
squares called fragments, as defined above, in such a way that
each fragment corresponds to a pixel. Each of the thus generated
set of fragments inherits the same color values from its triangle.
This set is passed through as input to the next stage.

12

1.4. Raster pipeline

VO (Xo1yo !Zo)

State variables Vi (Xu:¥1.2)
V2 (XZ’yZ ’Zz)

coloring

red

green
blue texture

V,
0‘ V2
apha Vi
affine transfor mation
rotation o translation o scaling w
clipping planes J/\
N\
Al’?l’CL’Dl
E AsBsCeDs
set of fragments
[xy.zrgbalpha]

<AT-AmMZO0OMmM@E

T —T

Figure 1.6
Geometry pipeline

1.4 Raster pipeline

In contrast to the geometry pipeline, the input of the raster
pipeline is a set of fragments.

Like the triangles in the geometry pipeline, the fragments from the
input set are pushed through the pipeline, separately and indepen-
dently of each other (see figure 1.7). In a way the processing of
the fragments can be compared to a SIMD parallel processor field
with a rather simple processor residing on each pixel.

According to the x and y values of a fragment, it is attached to
the appropriate pixel.

13

CHAPTER 1. Pixel based Model of Computation

Based on the position, depth, and color values, a fragment has
to undergo four tests until it eventually alters the buffers of the
associated pixel. These tests are the scissor, alpha, depth and
stencil test.

The order of these tests as stated above is predetermined and can-
not be altered. As a result of passing the depth or stencil tests,
buffers of the corresponding pixel are changed.

As soon as a fragment fails either of the first two tests, it vanishes
from the pipeline without any further side effects.

The values and parameters of the per fragment tests define the
state of the raster pipeline. These settings are valid for the entire
set of fragments. A change of parameters can only be caused by a
new set of fragments.

Scissor test

The first test to pass is the scissor test. Here it is possible to define
a rectangular portion of window containing the picture. If a frag-
ment resides inside this area, it passes the scissor tests. Else, the
fragment is rejected without any side effects on the pixel buffers.

Alpha test

The alpha value of a fragment is compared to the value of the
corresponding state variable. Allowed comparison function is any
out of <, <, =,>, >, #. Additionally it is possible to always accept
or always reject a fragment.

Again, if the fragment does not succeed this test, it vanishes from
the pipeline without any further side effects.

Stencil test

The scissor and the alpha tests apply solely on the values of the
fragment. These tests reduce the portion of the input eventually
used for computation.

In contrast to these tests, the stencil test is applied to the pixel

14

1.4. Raster pipeline

the fragment is attached to.

Its stencil buffer value is compared to a reference value. As com-
parison function one can use one out of the set of functions as
above.

Furthermore any result of the comparison, even the negative one,
causes a side effect on the stencil buffer of the pixel. A negative
outcome of the test will erase the fragment.

In the same manner as the reference value and compare function
are specified, it is possible to execute a predefined action on the
stencil buffer. There are three cases to consider. The fragment fails
the stencil test, second it passes this test but fails the subsequent
depth test and finally it passes both tests. For each possible result
one of the following actions can be executed:

e keep the current value of the stencil buffer
e replace the stencil buffer value with zero
e replace the stencil buffer value with the reference value

e increment or decrement the stencil buffer by 1 (with or with-
out wrap around)

e bitwise invert the buffer

Depth test

The depth test splits up into two consecutive depth units. The
depth test is declared to be passed if and only if both test units
are successfully passed by the fragment. An unsuccessful test will
cause the fragment to be erased.

The first of the two tests operates on the z buffer of the pixel,
whereas the second one relies on the z’ buffer. Besides this differ-
ence they behave in exactly the same manner. For this reason we
restrict our description on the first unit of the depth test.

Similar to the stencil test the allowed compare function might be
any out of <, <,=,>,>,#. Beside these, it is possible to always
accept or always reject a fragment.

Up to now all tests compare a reference value either against a
value of a fragment or against a buffer of the corresponding pixel.

15

CHAPTER 1. Pixel based Model of Computation

The depth test is the only test in which data from the fragment is
compared directly to data belonging to the pixel.

If an incoming fragment passes the depth test, the z buffer value
of the pixel is replaced by the fragment’s value.

As described earlier the result of the depth test has side effects on
the stencil buffer.

Set of fragments

State variables [x,y,2,1.8,b,a]
Scissor test Frag ® Ref
R rectangular area Ag <Xy <Xg
A Yg<Yy;<Ix
S Alphatest Frag® Ref
T compare function S
E refere%cealphavalue e
R Stencil test Ref ® Pixel
compare function < .
P referenF():e stencil value Stencily 2 stencily
| stencil fail action
P depth fail action
E pass both action
. stencil fase/ \ true
Depth test Frag® Pixel update
compare function for z S
compare function for z’ ‘Rz oP
Zﬁ&é Zp stencil stengil
update update
Figure 1.7

Raster pipeline

1.5 Pixel color buffer update

Any fragment which passed all the per fragment tests is finally al-
lowed to appear as visual impression on the screen. Which means
that the red, green, blue, and alpha color buffers of the correspond-
ing pixel are updated.

The simplest method to accomplish an update is to overwrite the
existing values with the incoming ones. But besides this there

16

1.5. Pixel color buffer update

are two other methods. Either the values can be combined using
logical operations or the fragment data can be blended with that
of the pixel. Whatever method is specified, it is again valid for the
entire set of the remaining fragments.

Blending

Instead of just overwriting the previously stored values, blend-
ing allows the combination of the color values from an incoming
fragment with that of the attached pixel. The tradeoff between
incoming and already existing values can be made to depend on
the corresponding alpha values.

The new value for each color buffer is computed in the following
way. All values are assumed to be between zero and one. Let Rp,
Gr, Br, ar, Rp, Gp, Bp, ap be the fragment and pixel values.
Ig, Ig, Ip, 1., Egr, Eg, Ep, F, denote the blending factors of
the incoming fragment and the existing pixel. Then the new pixel
color values eventually compute to:

(RpEr+RrplIg, GpEg+Grlg, BpEp+Brlp, apEy,+arl,)

For each color the new value is computed separately and inde-
pendently. Each resulting value of this quadruplet is rounded in
the mathematical correct sense and is clamped to 1, to lie inside
the interval [0,1]. The table below contains all possible blending
factors, whereas min denotes min(ap,1 — ar) and Cg, Cg, Cg,
C, a predefined constant color. The entries for the fragment’s and
the pixel’s blending factors can be chosen independently from each
other.

Pixel color buffer update
Blending xor Logical operation

Figure 1.8

Pixel color buffer update

Blending

fragment factors selection
pixel factors selection
costant color

Figure 1.9

Blending state variables

17

CHAPTER 1. Pixel based Model of Computation

L ogical operation

Logical operation selection

Figure 1.10

Logical operation state variables

1-Rp,1—Gp,1 - Bp,1—ap

ERaEGaEB,Ea IRaIGaIB,Ia
0.0,0,0 0,0,0,0
1,1,1,1 1,1,1,1

RFaGFaBFaaF RPJGPJBP’QP

1-Rp,1-Gp,1—Bp,1—ap

ap,fF, 0, QF
l1-ap,1—ap,1—ar,1 —ap

ap,ap,ap,ap
1—ap,1—ap,1—ap,1—ap

afF,QF,QF,F
l—-ap,1 —ap,1 —ap,1 —af

ap,ap,ap,p
l—ap,l—ap,l—ap,l—ap

1—-Ca,1—=Cq,1—-0Cq,1—-0C,

CRa CG, CB, Ca CR’ CGa CBa Ca
1= Cpl=—Cal=Cp1=Cy |1=Crl=Cal=Cpl-C,
Ca; Ca; Ca; Co Ca; Cay Ca, Cq

1 —Cqa,1—=Cqy,1 =Cq,1-0C,

M, MIN, N, NN

We can for example achieve a write protection of the pixel color
buffers, if we take the (Ig,Ig,IB, I,) vector to be all zero and the
(ERr, Eq, EB, E,) vector to be all one.

Logical operations

As an alternative to blending we can also combine the fragment’s
color values with the one of the pixel using a bitwise logical oper-

ation.

Any applicable operation is listed in the following table where P
denotes the pixel color quadruplet and F' that of the fragment.

Parameter Operation | Parameter Operation
Clear Buffers all 0’s Set Buffers all 1’s
F-values F negated F-values —F
P-values P negated P-values —-P

AND FAP NAND —(F A P)
OR FvP NOR —(FV P)
XOR FxorP Equivalent —(FxorP)
OR-reversed Fv-P OR-inverted -FV P
AND-reversed F A-P AND-inverted -FAP

18

1.6. General settings valid for all buffers

1.6 General settings valid for all buffers

Beside the above mentioned settings for the per fragment opera-
tions there are some additional common features.

Any pixel buffer can be write protected. So although the fragment
succeeded all tests, a change of the buffer values can be omitted.

1.7 Retrieving information

Reading back rectangular area

In order to transfer the current contents of the pixels buffers back
to the CPU, a rectangular area of the picture and the kind of buffer
has to be specified.

Unless the exact values are needed, but only information about
their distribution, there are two alternatives to the above.

Histogram

The first function gets as arguments a color buffer type and a
positive integer n. It examines for each pixel the specified color
buffer and returns a histogram of the distribution of these values.
The number of intervals for the histogram is determined by n,
which has to be a power of two (see figure 1.11).

Minmax

The second method to collect statistical information is the minmax
function. It returns for each of the four color buffer types the
minimum and maximum color buffer values, computed over all
pixels (see figure 1.12).

Figure 1.11
Histogram on blue with eight

intervals

Figure 1.12

Minmax example

19

CHAPTER 1. Pixel based Model of Computation

20

Chapter 2

A model meets reality

In the previous chapter we declared functions and operations pro-
viding a tool set for the construction of pixel based algorithms.
But does it make sense to develop algorithms based on this model,
or is it just a theoretical phantasy?

In what follows, the answer to that question is given.

2.1 OpenGL’s history

The relationship between the model and what is feasible in reality
is established by OpenGL, an open graphics library.

As soon as a processor only for graphic demands existed, there
was a need for a language to establish a communication with it.
But it was not before 1992 that SGI™ released OpenGL, an open
so called vendor independent application programming interface
(API) fulfilling this task.

Although vendor and hardware independence was an important as-
pect for OpenGL, it is designed to reflect the underlying hardware
as well as possible to ensure fast actions.

As a consequence, commands concerning windowing tasks, and
user input as well as high level commands for describing models
of three-dimensional objects, respectively, aren’t supported at all.
These are delegated to more sophisticated libraries built on top of
OpenGL and the appropriate operating systems.

21

CHAPTER 2. A model meets reality

Nowadays OpenGL consists of about 250 commands as well as nu-
merous extensions of different hard and software developers prov-
ing OpenGL to be a vivid and most important graphics library.
The importance of OpenGL is best demonstrated by the fact that
any graphically demanding game uses OpenGL.

2.2 Practical aspects

OpenGL is structured similarly to the previously described model.
There is also a geometry and a raster pipeline. However, since the
library is built for programming actual graphic engines, OpenGL
has a lot more to offer than our model demands for. However, addi-
tional features differ in size and complexity from one to the other
graphic adapter, we rely on only a basic subset of the OpenGL
functionality, with the only exception of the z’ buffer (see below).

Our algorithms are implemented using a NVIDIA GForce graphic
adapter, a low-cost solution providing everything we need. Com-
pared to real graphic stations, the main drawback are the restricted
buffer sizes.

Buffer size management

In general, the buffer size of the red, green, blue, alpha, and stencil
buffers is limited to eight bits each. The z buffer is 24 bits wide.
In the case that there is no alpha buffer needed, the z buffer can
be enlarged to 32 bits.

What happens if a buffer value is increased beyond the maximum
value or decreased below zero? Regarded from the graphic scien-
tist’s viewpoint, it is desirable that brightening an absolute white
picture shouldn’t change it. The same holds for darkening an abso-
lute black picture. So, nothing happens at all. The only exception
is the stencil buffer, which could be advised to wrap around in case
of an overflow and underflow, respectively.

22

2.2. Practical aspects

The z’ buffer

To be true, there is no second z buffer in the current version of
OpenGL. But there are a lot of computer graphic scientists sup-
porting the idea of a second z buffer to be realized in OpenGL.
Besides, with the SGIX shadowing OpenGL extension developed
by NVIDIA™(cf. [cas02]'), a second z buffer can be realized in
hardware with full depth buffer precision.

Display lists

OpenGL commands can be merged together in display lists. The
contents of such lists is preprocessed and might be executed more
efficiently. Additionally, display lists reduce the amount of data
send to the graphic adapter, since it is possible to execute a com-
mand sequence by only referring to the appropriate display list
index. Geometric object composed of numerous geometric primi-
tives are good candidates for display lists.

Figure 2.1

Textures
Standard use of textures

As mentioned before, a texture is a two? dimensional array of color
values, representing equidistant supporting points defining a two
dimensional color function.

The effect textures are invented for is to generate an impression of
grain or some sort of ornamentation avoiding quite complex and
elaborate set of graphic primitives (see figure 2.1).

Textures are subject to certain conditions with respect to the size.
Any texture has to be quadratic with a side length of a power
of two. Depending on the underlying hardware it is obvious that
there are only a limited number of texture elements feasible.

On the other hand with the concept of textures it is for example Figure 2.2
possible to realize a better approximation of exact circles. Using Texture circle
standard OpenGL commands drawing a circle results in just a
square. Since a square is much easier and thus faster to draw.

Interactive Order-Independent Transparency
2Besides the two dimensional textures, OpenGL even knows one and three

dimensional textures.

23

CHAPTER 2. A model meets reality

Regarding standard applications in computer graphics, it is not
that important to have a truly round circle. In a texture we can
specify for each element a color coding the portion the element
belongs to the circle (see figure 2.2). Besides for the construction of
exact circles, applying the concept of textures in the just described
way, it is easy to define quite arbitrary shaped object, as well.

Depth textures

A depth texture is a special kind of textures, which stores depth
values instead of color values. In the same way as a normal texture
affects the color values of the geometric primitive (respectively
the values of the generated fragments) it is applied to, the depth
texture changes the depth values of the object under consideration.

Depth textures are realized as an OpenGL extension. Regarding
the NVIDIA™ production family, the GL_ARB_depth_texture
extension can be accessed by GForce 3 or higher GPU’s.

A fourth stage

In effect, there is a fourth stage as the computed pixels have to be
displayed. Although converting the digital frame buffer data into
analog video signals is in itself not a trivial task it is not a matter
of investigation in this work.

Reading back

Graphic adapters are primary constructed to display the geometry
provided by the CPU as quick as possible. Optimal performance
is achieved if most of the data just resides on the graphic adapters
memory such that the amount of data transmitted by the CPU is
small. As long as our goal is to just display our graphical compu-
tation, everything is fine.

It might happen that a buffer size is to small for the desired compu-
tation. Then intermediate backups of the buffers contents to main
memory is unavoidable. But reading back the entire picture into
the CPU’s main memory is rather time consuming. To illustrate
this statement consider the following example.

24

2.2. Practical aspects

Assume a picture size of 1000 times 1000 pixels of which just the
red, green, blue, and alpha values — each 8 bit wide — are to be
read back in main memory. Moreover assume the CPU possesses
a modern advanced graphics port to communicate with the GPU.
Nonetheless the time spent for just reading back the color buffer
equals the time required for rendering about half a million trian-
gles. So it is obviously a good idea to avoid these operations and
to use the histogram or minmax functions wherever possible.

Memory restrictions

The next problem to cope with is the restricted amount of memory
on the graphic adapter. This memory is used for example to store
display lists and texture elements. In contrast to display lists tex-
ture elements can be very space demanding. Insufficient memory
on the graphic board results in a time punishment comparable to
a CPU forced to swap data to a hard disk. Consequently the size
of the texture elements in use is an important factor. But even
nowadays low-end GPUs possess enough memory of about 64 byte
per pixel such that swapping to the CPU’s main memory is rather
seldom, as far as we are concerned.

25

CHAPTER 2. A model meets reality

26

Part 11

Implementations

27

Chapter 3

Voronoi Diagram

Figure 3.1
Voronoi diagram

29

CHAPTER 3. Voronoi Diagram

Descartes’ decomposition of space

Figure 3.2

into vortices

3.1 Introduction

In this chapter we present a pixel based computation of various
Voronoi diagrams.

Definition

A Voronoi diagram of a set of sites is defined to be a partition of
the plane into regions. Fach region corresponds to one of the sites
and is determined by the property that all points within a region are
closer to the corresponding site than to any other site, with respect
to some fized distance function (cf. figure 3.1).

Historical note

Voronoi diagrams have been known for at least four centuries, first
appearing in Descartes’ treatise "Le Monde de Mr. Descartes, ou
Le Traite de la Lumiére", published in 1644 [Des44|. Descartes
uses Voronoi-like diagrams to claim that the solar system consists
of vortices (cf. [AKO00]). He thought of space as a decomposition
into convex regions, each consisting of matter revolving round one
of the fixed stars (figure 3.2).

Illustration

The concept of Voronoi diagrams can be illustrated by the follow-
ing example. Imagine a tourist on a survival tour across a desert.
Equipped with a GPS navigation system she always knows about
her global position. A map of the desert reveals the position of
the surrounding oases to her. Assume a plot of the Voronoi dia-
gram based on the oases is also inscribed into the map. Finding
the nearest oasis is without any doubt of vitally importance. The
nearest oasis is determined by the Voronoi region her current po-
sition belongs to.

30

3.1. Introduction

Real world applications

The above mentioned illustration is a more modern variation of the
post-office problem introduced by Knuth [Knu73, page 555] and
solved as one application for Voronoi diagrams in computational
geometry by Shamos and Hoey [SH75].

But there are also many other fields besides computational ge-
ometry in which the Voronoi diagrams and related structures are
utilized to derive a description of certain phenomena.

Voronoi diagrams are used in anthropology and archeology to iden-
tify the parts of a region under the influence of different neolithic
clans, chiefdoms, ceremonial centers, or hill forts. In metallurgy
they are used for modeling grain growth in metal films and even in
zoology Voronoi diagrams are deployed for modeling and analyzing
the territories of animals (cf. [Epp]).

A proof of the versatility and importance of Voronoi diagrams may
also be found in the large number of surveys and books dealing with
Voronoi diagrams (e.g. [Aur91], [AKO00], [AA02], [OBS92]).

Algorithmic properties and computational complexity

There are many different algorithms for constructing Voronoi di-
agrams. Nearly any algorithmic design paradigm known nowa-
days in computer science may be applied to this task. There
are algorithms based on the sweep line paradigm ([For86]), di-
vide and conquer([SH75]), randomized incremental construction
(cf. [OIM84], [GKS90]) as well as algorithms exploiting the rela-
tionship between Voronoi diagrams and three dimensional convex

hulls (cf. [Bro79], [ES85]).

The lower bound for the computational complexity for the con-
struction of the Voronoi diagram of n sites in the computation-tree
model proves to be Q(nlogn) (cf. [Sha75], [PS95, 192-195]). This
holds, because the element uniqueness problem — given n numbers,
decide if any two are equal — is reducible to computing an adequate
Voronoi diagram.

31

CHAPTER 3. Voronoi Diagram

3.2 Computing lower envelope

The relationship between the Voronoi diagram of n sites and the
lower envelope of the arrangement of a set of n cones, first observed
by Edelsbrunner and Seidel (cf. [ES85]), emerges as particularly
interesting for us. It is as follows:

Let S = {s1,...,8,} C R? denote the set of points sites in three
dimensional euclidean space. Each of the sites lies in the xy-plane
at z = 0. Let C denote a right circular cone completely contained
in the half space z > 0 with the apex of C positioned at (0,0,0),
ie. C = {(z,y,2) € Rz = /22 + y2}. We now observe what
happens if we position such a cone on top of every site s € S.

Theorem 3.1 The orthogonal projection of the lower envelope of
the arrangement of the cones is exactly the partition of the plane

into Voronoi regions.

Proof: Let p = (zp, yp,0) be an arbitrary point of the xy-plane,
and r = {(zp,yp, 2) € R3|z > 0} denote an orthogonal ray starting

Figure 3.3 at p. We now examine the intersection points of the ray with each
Construction of a Voronoi diagram cone. Due to the construction of the cones, we know that the height
employing cones of the intersection point equals the distance between p and the apex

of the cone. As a consequence the first cone hit by r is located at
the site nearest to p. Since the cone is the first intersection, it is
also part of the lower envelope at that position. That concludes
our proof.

Computing the lower envelope of the arrangement is exactly the
way we compute Voronoi diagrams by using graphic adapters (cf.
[HKL*99], and section 3.3 resp.). This observation can also be
extended to derive a relationship between higher order Voronoi di-
agrams and the orthogonal projection of the parts of the arrange-
ment of the cones, which is the subject of section 3.7. Moreover,
Voronoi diagrams based on quite arbitrary distance functions can
be computed in this way by changing the shape of the bases of the
cones. In section 3.6 we investigate non euclidean distance func-
tions, and in section 3.8 we examine weighted Voronoi diagrams,
exploiting the idea of different cone shapes.

32

3.3. A first graphical implementation

3.3 A first graphical implementation

This implementation is due to Manocha et al [HKL199] initiated
by a note in the OpenGL 1.1 Programming Guide (cf. [WNDO99,
pages 587-589]). It approximates the Voronoi diagram for point
sites in the plane.

Given a point site s, the distance from s induces a function the
graph of which is a right circular cone with its apex in s. Such
a cone is created for each site, such that each cone resides in the
half space z < 0 touching the site’s origin with its apex. As shown
in the last section, the orthogonal projection of upper envelope of
the arrangement of these cones gives us the Voronoi diagram of
the sites.

Pixel based adaptation

The cone is approximated as a triangle fan (see figure 1.5 on page
11). The number of triangles required for the approximation of
the cone depends on the error we are willing to accept and the size
of the picture we generate a Voronoi diagram for. If not stated
otherwise, we assume the picture to be a square of size p x p pixels.

Manocha et al restrict their implementation to Voronoi diagrams
based on the euclidean norm. In this case, the distance function
graph is a right circular cone. Since the cone is approximated as
triangle fan, the base of the approximation is a regular polygon
with T vertices. Let M denote the center of the polygon, r the
distance between M and a vertex of the polygon, and « the angle
27 /T (see figure 3.5). The maximal radial distance between the
triangle fan and the correct cone is denoted by e. Since a site may
reside on a corner of the picture, r has to be at least as great as
the diameter of the picture (see figure 3.4).

Hence the number of required triangles T' computes as:

r—¢

cos(a/2) <

Figure 3.4

Cone size compared to picture size

aj,
M r

Figure 3.5
Maximal error in approximation of

the cone

33

CHAPTER 3. Voronoi Diagram

™

p\/ifs
arccos
pV2

= T > (3.1)

Demanding ¢ to be less than 1, and assuming a picture size of
1024 x 1024 pixels, 85 triangles are sufficient.

Each cone is assigned a unique color, e.g. the site’s index as color
value. Once generated as a display list, it is translated such that
the apex of the cone points at the appropriate site’s position. The
depth buffer is enable in order to extract the upper envelope of the
arrangement of the cones. To do so, it has to be configured such
that only the highest fragments for each pixel are allowed to pass
to make a pixel color buffer update. This concludes the proposal
due the Manocha et al.

3.4 The error caused by the approximation

As the above calculation proves, using a triangle fan of 85 triangles
guarantees, that the distance from a pixel to the apex of the cone
(i.e. the site under consideration) is at least overestimated, in the
worst case by €. This holds, because the correct distance graph is
a right circular cone bearing the property that the error made in
horizontal direction is the same as that made in vertical direction.

We denote by dbv(p) the depth buffer value of pixel p. Let S be
the set of point sites. Then, for each pixel p of the final picture
holds that

ind(s,p) < dbv(p) < mind .
mind(s,p) < dbv(p) < mind(s,p) +e

Unfortunately, an e-approximation of the minimal distance does
not imply an equally good coloring of the lower envelope of the
cones. Thus, the assignment of the pixels to their nearest site
might be wrong.

To prove this assertion, we examine the deviation in the bisector
occurring for two sites which lie at the left lower corner of the
picture at (1,0) and (0,1).

34

3.4. The error caused by the approximation

-
maximal
deviation

yellow
site

green site

Figure 3.6
Worst case deviation (in red) of correct and computed bisector of two
sites in the lower left corner

Although we constructed the triangle fan as recommended above,
i.e. within a deviation of ¢ = 1, there is a deviation in the com-
putation of the bisector of more than 50 pixels in the right upper
corner for a picture size of 1024 x 1024 pixels. This rather unex-
pected behavior is worthwhile of further investigation.

In order to distinguish the two notions for an acurate approxima-
tion, we introduce the following terms.

Definition 3.1 (distance diagram versus site diagram) In

case of we aim at a good distance approzimation for each pizel, we
call the desired diagram, a distance diagram. Otherwise, if we are
interested to bound the mazimum deviation, the diagram under

consideration is called site diagram.

With regards to this terminology, Manocha et al. compute the
number of required triangle to satisfy a € distance diagram.

35

CHAPTER 3. Voronoi Diagram

Worst case analysis

In order to derive an upper bound on the number of triangles
required to compute a site diagram, we calculate the deviation in
the case that the approximation is always as bad as possible for
one site and at the same time as well as possible for the other site.

For this reason, we investigate the intersection of two circular
cones. The first cone is the biggest possible cone which just fits
inside the triangle fan. Thus, the base of the first cone (at height
r) is a circle with radius 7 — e. The second cone is the smallest
possible cone containing the triangle fan, i.e. nothing else but the
cone we intented to approximate by the triangle fan. This is il-
lustrated in figure 3.7. In dependence on figure 3.6, the base of
the first cone is colored green and the base of the second cone is
colored yellow. The ploygonal chain in between is the base of the
approximation, i.e. the triangle fan.

In lemma 3.1, we prove that the orthogonal projection of the inter-
section of two cones (as just described) is a circle. This knowledge
can now be used to argue that the smaller the distance between
two sites is, the larger is the deviation with regards to the actual
(euclidean) bisector.

Lemma 3.1 (Intersection of cones) Given two right circular
cones with different apex angle. If the apices of both cones lie on
the plane z = 0 and their azes are perpendicular to that plane, then

the orthogonal projection of their intersection is a circle.

Proof: For the ease of calculation we assume the apex of the first
cone to be at (0,0, 0) and the apex angle to be 7/2. Then the cone
satisfies the equation

2 4+y? - 22 =0.

Without loss of generality, the second cone is assumed to have a
smaller apex angle, represented by the constant ¢ > 1. Further-
more, its apex is assumed to be at position (u,v,0). Then, the
cone satisfies the equation

c(z—u)?+(@y—v)?)—22=0, c>1

The intersection of the two cones is represented by the quadric Q)

36

3.4. The error caused by the approximation

given a the set of zero of the equation 3.2

(1372) () e () oo

—~ aT
A

(3.2)
We apply the principal axis transformation. Because of det(A) =

(1 —¢)? # 0, the equation
A(i) = —a. (3.3)

is solvable, which proves that @ is a central quadric. The solution
(cu/(c—1),cv/(c—1)) of equation 3.3 is the center of Q). Translat-
ing the coordinate system about the center, we obtain a simplified
formula

u? + v?
(1—c)*

The principal axis transformation is already completed, since A is
diagonal. In quatizon 3.4 all coefficients are positive and equal.
Furthermore, cﬁ > (. Hence, the orthogonal projection of the

Pty =c (3.4)

intersection of the two cones is a circle with center (cu/c—1,cv/c—
u2+1)2

1) and radius Clizer This concludes our proof.

With this knowledge in mind, we can now derive an upper bound

on the number of required triangles per cone. It depends on the

annulus in which the polygon chain has to be. For that, we inves-

tigate the maximal deviation of the bisector of two sites occurring co
by approximating the correct cone by a triangle fan.

Let r denote the radius of the cone, large enough to cover the entire Figure 3.7
picture. We assume ¢y to be a right circular cone with radius r—¢, Worst case study of the
touching the triangle fan from the inside, and co to be right circular
cone with radius r, touching the approximation from the outside
(see figure 3.7). In doing so, the worst case is always included in
our consideration.

co = {(z,y,2) eR’|z= /a2 +42 }
e = {(z,9,2) € R’z = Va2 +y?

approximation error

}

r—e

Let s; be the position of the apex of the cone ¢; and sp be the
position of the apex of the cone co. We denote by a the distance

37

CHAPTER 3. Voronoi Diagram

between sy and sp. For the ease of calculation, we assume sp to

be at (—§,0) and s to be at (§,0). Then the bisector B is given

as (cf. figure 3.8)

a a
Bi={(zy) €R?| ((6+5)°+1") = (- 37 +1") (1)}
5)
y_ ,,,,,
N
7 computed
actual bisector
bisector
a x
2 2
Figure 3.8

Bisector deviation

We know from lemma, 3.1 that the bisector is a circle. Furthermore,
it is easy to see that the smaller the distance between the two sites
is, the smaller is the circle defining the bisector. That means,
that the derivation between the actual and the computed bisector
increases the nearer the sites are.

If we want a maximal deviation of at most 1 pixel in the worst case
and assume a picture size of 1000 x 1000 pixels, then the number
of triangles per cone suffices our worst case study is 2642, about 30
times more triangles than assumed by Manocha et al. [HKL'99].

Overcoming the approximation problem using depth tex-

tures

Although only a few triangles are sufficient to compute a good ap-
proximation for the minimal distance picture, a huge number of

38

3.4. The error caused by the approximation

triangles is required if our goal is an appropriately good approxi-
mation of the Voronoi regions. Instead of using a triangle fan to
approximate the cone, we can also make use of depth textures to
compute the Voronoi diagram overcoming the before mentioned
approximation error.

In a precompute step, we calculate a picture wide depth texture,
which contains for each entry of the texture (for short texel) the
appropriate depth value (with regard to a virtual site at (0,0)).
The former triangle fan is now substituted by a square of twice the
length of the picture.

Each quarter of the square is rendered with the depth texture
applied, such that for any position of a site the square covers the
entire picture. Additionally, it provides the exact depth value for
each pixel as it has adopted the depth values of the applied depth
texture.

The use of depth textures guarantees not only the most accurate
approximation, but it has also the effect that we can compute other
kinds of diagrams, which formerly were not feasible. For instance,
the power diagram can be realized with depth textures. The power
diagram is a generalization of the Voronoi diagram based on the
power distance, d(p, s;) = ||p — s;||?>. The graph of distance func-
tion is a circular paraboloid and as such almost impossible to be
approximated by triangle fan.

Of course, we do not get all these advantages without paying for
it. One critical aspect of depth textures, is that up to now they are
only accessible as OpenGL extension. Thus, it might be the case,
that they are not accessible at all. A second disadvantage is, that
rendering a texture is considerably time consuming, especially if
we consider the fact that any texture has to be quadratic with a
side length of a power of two. Furthermore, using triangle fans
is sometimes more flexible, e.g. a Voronoi diagram (respectively
the distance picture) of line segments and circular arcs can be
computed in straightforward fashion using triangle fans (cf. section
3.9). Last but not least, the construction step of the distance
matrix is also time consuming.

Our conclusion is, that depth textures are the best choice, when-
ever accurate coloring is demanded. In case of only the distance
for each pixel to its nearest site is required, triangle fans are still
a good alternative.

39

CHAPTER 3. Voronoi Diagram

Figure 3.9
Width w of the blue region

R

|
T

|
\

\ *

/./[\ 7

R o

E

\.

Figure 3.10

Level three quadtree with 43 leaves

In the applications presented here, we just rely on the distance of
a pixel to its nearest site, and not in the correct coloring. Thus,
in the sequel of the chapter, we limit our considerations on cones,
constructed as triangle fans.

3.5 Speedup

Assume the picture to be a square of size p - p. As soon as the
size n of the input set for the Voronoi diagram is greater than 1,
there are ineffective fragments generated due to unnecessarily large
cones. The rendering of each cone generates a fragment for each
pixel, thus p - p - n fragments are created although p - p fragments
are sufficient.

As long as the number of sites is rather small this approach
works sufficiently well. Thus, the above described approach due to
Manocha et al. [HKL"99] works sufficiently well for a rather small
set of input.

Our idea to accelerate the computation, reduces the overhead of
needlessly generated fragments. For that reason, we define the
width of a Voronoi region and the width of a Voronoi diagram.

Definition 3.2 (width of a Voronoi region) The width of a
Voronoi region with respect to a bounded area is the mazimal dis-

tance from its site to any point belonging to that region (cf. figure
3.9).

Definition 3.3 (width of a Voronoi diagram) The width of a

Voronoi diagram is the mazimum of all widths over all regions.

Hence, the width of a Voronoi diagram with respect to a bounded
area is the radius of the largest empty circle such that the center
of the circle is inside the area. If we knew the width w of a Voronoi
diagram in advance, then we could restrict the height of the cones
appropriately. As a consequence the number of required triangles
and even more important the number of generated fragments en-
tering the shading stage decreases.

40

3.5. Speedup

Idea

Employing a quadtree structure gives us a fast approximation for
the width of the Voronoi diagram. A quadtree is a spatial data
structure, derived by recursively subdividing the picture in both
dimensions into equal sized squares. This results in a tree structure
with a branching factor of four (cf. figure 3.10). As a consequence
of the construction of the quadtree, it follows, that the leaves rep-
resent the smallest squares. An internal node represents the union
of the area of the squares the leaves in its subtree are responsible
for.

For each level of the initially empty tree and for each site, we mark
the nodes representing the area in which the site resides as being
visited (cf. figure 3.10). In terms of the quadtree, we determine
the path from the leaf representing the position of the site under
consideration to the root of the quadtree.

Our intention is an upper and lower bound for the width of the
Voronoi diagram. In order to derive such bounds, we are interested
in the highest level ¢, for which at least one node is not marked.

We will make use of the following theorem to derive an upper
bound of the width.

Theorem 3.2 (Reduction of the height of the cones) Let

S be a set of points in the plane and B C R? be a bounding area,
containing S. Assume, there is a covering of B into rectangular
cells such that each cell contains at least one point of S. let e
denote the largest diagonal of all cells. Let ¢ be a right circular
cone as described in section 3.2, but with finite height (respectively
radius) e, i.e. truncated at height e. Then the Voronoi diagram of
S restricted to B is the orthogonal projection of the lower envelope
of the arrangement of cones identical to ¢, set on top of each point

site.

Proof: It is easy to see, that the width of the corresponding
Voronoi diagram is at most e, since the underlying area is com-
pletely covered by at the arrangement of cones. Each cell is com-
pletely covered by a at least one corresponding cone, such that the
maximal height of the lower envelope is at most e.

!]
I 1

e

Figure 3.11

Lower bound for radius

41

CHAPTER 3. Voronoi Diagram

Lemma 3.2 (Adaption to quadtree partition) Let S and B
as in theorem 3.2. Assume there is a partition of B into quadratic
cells of diameter e such that each cell contains at least one point
of S. Let ¢ be a cone truncated at height e, as before. Then the
Voronoi diagram of S restricted to B is the orthogonal projection
of the lower envelope of the arrangement of cones identical to c,

set on top of each point site.

Consider a piece of area a node in level ¢ is accountable for. The
corresponding edge length e gives a lower bound for the width of
the Voronoi diagram (cf. figure 3.11).

The level one above level t is the lowest level for which all nodes
are marked. That is each node knows a site which is inside the
area corresponding to that node. Hence if we choose the width to
be the length of the diagonal (i.e. €2v/2), we can ensure that the
entire picture will be covered. That is our upper bound.

Construction

The quadtree is filled as follows. For each site we determine the
corresponding leaf of the quadtree and mark the path from the
root to the leaf as visited.

This can be accelerated in that we avoid marking nodes serveral
times. The idea is that we traverse the tree bottom-up and mark
every node on the path to the root of the tree until we reach the
first node already marked. For each layer, the nodes are stored in
an array such that the address of the node can easily be computed
applying a bitwise shift operation on the x and y coordinate of the
site under consideration.

Time consumption

The time consumed by the approximation procedure depends di-
rectly on the number of nodes marked as visited. This number
can be bounded from above as follows. Let n be the number of
sites and h be height of the quadtree. Assume n is less or equal
the number of leaves of the quadtree. Then the number of visited

42

3.5. Speedup

nodes v is at most (cf. figure 3.12):

[logyn]—1
v < Z 4" + n +n(h— [logyn]).
i=0
} [logyn] — 1
' n nodes
----------- n disjoint paths
Figure 3.12

Upper bound for the number of visited nodes in the quadtree

More easily, in the worst case any node of the tree as well as any
site is visited at most once. Thus, n + Z?:o 4" operations are
sufficient.

We use a quadtree of height six for a picture of size 1024 x 1024.
On an Intel-Pentium™ 800 the processing of 10000 sites requires
1.5 milliseconds.

Now that we know an upper and a lower bound, we can combine
these values. In a first attempt, we render cones with a small radius
greater than the lower bound, e.g. ev/2, where e denotes the edge
length derived of the lower bound computation. It might happen,
that we draw the cones with a too small radius. Parts of the picture
remain uncolored. If we choose the color for the cones such that
their red, green, and blue color values are all greater than zero,
then we can reveal this case with the aid of the OpenGL minmax
function (see page 19). If any pixels remain uncolored, we repeat
the rendering of the cones with a greater radius, stepping towards
the upper bound.

43

CHAPTER 3. Voronoi Diagram

Algorithm for computing the Voronoi diagram

clear buffers
enable depth test

determine radius approximation

LOOP:
generate cone as display list
forall sites s do
set color(s)
translate cone to position(s)
execute display list
test for uncolored pixels == true
increase radius
goto LOOP
Timings

To prove the effect of the speedup, we summarize some test series
in the diagram 3.13. For all series, the sites are chosen uniformly
at random from {0, ...,1023}2.

The red curve represents the time consumed by the algorithm due
to Manocha et al. [HKL99]. Since the height of the cones remains
unadapted, the number of generated fragments, and thus the run-
ning time of the algorithm, increases linearly with the number of
sites. This behavior is reflected by the red line in the diagram.

In contrast to that, the running time remains quasi unaffected of
the number of sites, if the height of the cones is adjusted.

44

3.6. Voronoi diagrams based on non euclidean distance functions

Construction of the Voronoi diagram

3000 T T T T T T T T T

2500 .
) without Speedup
g 2000 - Speedup enabled]
= 1500 1
IS
£ L i
3 1000
£
A 500 L |

p A S — ey, m— —

0 200 400 600 800 1000 _1200 1400 1600 1800 200
number of sites

Figure 3.13

Rendering time with and without the quadtree

Even for 16000 sites the running time for the algorithm with the
quadtree is about 170 milliseconds, assuming a uniform distribu-
tion of the sites.

The worst case setting for which the speedup method fails its pur-
pose is a distribution for that one of the four quarters of the picture
does not contain any points at all. Albeit, executing the quadtree
procedure increases the running time by only 1.5 milliseconds per
10000 sites. For all other distribution, the quadtree proves to be a
success.

Besides these, there is yet another aspect, we can benefit from.
Since we know the maximal radius of the cones, we thereby also
know the maximal height. This has the advantage, that we can
adapt the depth buffer range appropriately. Thus in this way, ap-
plying the speedup method also decreases the probability of errors
caused by the limited number of bits available for the depth buffer.

3.6 Voronoi diagrams based on non eu-

clidean distance functions

In the same fashion as we constructed Voronoi diagrams for the
euclidean norm, we can compute Voronoi diagrams for other, non
euclidean, distance functions. In the sequel of this section, we in-

g

Figure 3.14

Graph of the distance function for

£ = 0.5, blue represents picture

area

Figure 3.15

o
4

Graph of the distance function for

£ = 0.8, blue represents picture

area

CHAPTER 3. Voronoi Diagram

vestigate the number of required triangles to compute an € distance
diagram.

We start with distance functions induced by the Minkowski norms
Ly. Next we inspect what happens if £ lies in the open inter-
val (0;1). We conclude our investigation with special cases of the
Minkowski norms Ly in which £ = oo respectively £ = 1, the max-
norm and the Manhattan-norm. Both have the special property,
that equidistant points may form areas and not just lines.

’ 3.6.1 Distance functions based on the Minkowski

norms

A vector norm, called Minkowski norm L, and denoted || - ||¢, is

) defined as
Figure 3.16

Graph of the distance function for ’ XY,)
Julle = (Jur]® + Juzl®)/ 1</?<o0,u€R.

Commonly used Minkowski norms are the Manhattan norm and
the euclidean norm, i.e. the Li-norm and the Lo-norm.

We denote by disty : R? x R? = R the distance function induced
by the Ly norm, i.e. disty (u,v) = ||u —v||e.
Approximating the graph of the distance function

The graph of the distance function for dist, (0,v) is a cone with
apex in 0. The cone’s base B is a circle with regard to the Ly-norm.

£ = 1, blue represents picture area
Our goal is to achieve the same error bounds as for euclidean dis-

tance diagrams (cf. page 34). In order to approximate the correct

Figure 3.17 cone with a maximal error of €, we define two functions f and g.
The demanded polygonal chain lies inside the annulus defined by

Graph of the distance function for fand g (see figure 3.18).

£ = 1.2, blue represents picture

area

46

3.6. Voronoi diagrams based on non euclidean distance functions

T
T—¢€

1 polygonal

; chain

ow)

! - (tip,g(tip)

| tangential

} intersection

1 point;

| | (29, (2a))
Figure 3.18

Construction of the polygonal chain

We denote by r the radius of the circle. Let f be defined as f :
[0,7] = [0,7],z — (rf — z©)Y/f. Thus f describes the border of
the quater circle in the first quadrant. We denote by ¢ : [0,7] —
[0,7],2 — ((r — €)¢ — zt)Y/¢ a smaller quarter circle with radial
distance € to f.

The radius r depends on the picture size, as the cone has to cover
the entire picture. As before, in the euclidean case, we assume the
picture to be a square of size p x p pixels. Then r has to be at least
21/tp. To compute the polygonal chain, we proceed as follow.

We start at position (zg,f(z.)). We look for the the point
(e, f(x)), that maximizes the length of straight line segment
starting at (zq, f(z,)). For that reason we compute the tangen-
tial intersection point (tip, g(tip)). The slope of the straight line
through (z4, f(z4)) and (ze, f(z.)) is just the derivative ¢ (tip).

This computation is accomplished deploying the maple™ procedure
shown below. We use a pseudo maple™ code to ease the readability.
As soon as we know about tip we can compute z., and restart the

Figure 3.19
Graph of the distance function for
£ = 1.5, blue represents picture

area

Figure 3.20

Graph of the distance function for

£ = 2.0, blue represents picture

area

47

CHAPTER 3. Voronoi Diagram

Graph of the distance function for

Graph of the distance function for

<
-

<
-

Figure 3.21

¢ = 3.0, blue represents picture

area

Figure 3.22

£ = 5.0, blue represents picture

area

computation with z. as the new value for z,. The initial value for
Ty is 7. We terminate the computation if z, < 0, since then the
remaining value can be retrieved by reflection on the x and y axis.

proc(£) Ypolygonal-chain

e =1

p :=1000
ro=2"xp

£ o=t = a9

g = ((r—) = [aft) e
dg :=diff(g,x)
slope:= (g(z1) — f(20))/(z1 — 20) — dg(=1)

Te =T

repeat
To = Te
tip :=fsolve(slope(z,),z1,0..24)
tang := dg(tip) * (zx —) + f(2a) — f(z2)
z. :=fsolve(tang,zz,0..tip)

until z, <0

end proc

The radii and the number of vertices required for an € = 1 approx-
imation for some exemplary Ly norms are listed in the table below.
As mentioned in the beginning of the section, these values refer to
an ¢ distance diagram.

Ly norm | 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0 | 10.0
vertices 4 60 84 88 84 76 68 64 48
radius | 2000 | 1782 | 1587 | 1470 | 1414 | 1260 | 1189 | 1149 | 1072

The error caused by the approximation

In contrast to the euclidean norm, the cones don’t have in general
constant slopes. Nonetheless, our argument for the error estima-
tion (cf. page 34) still works. It relies only on the fact that the
height, at which a perpendicular ray on top of a point p intersects
the cone, is related to the distance between p and the apex of the
cone by an increasing function.

48

3.6. Voronoi diagrams based on non euclidean distance functions

3.6.2 The case of / < 1

We now examine what happens, if we allow £ to lie between 0 and
1.

Accordingly, the distance function dist, : R?> — R under investi-
gation is:

disto(u) = (Jur|’ + Juzl)7 0<<1,ueR?

As before, the graph of the distance function is a cone with apex
in 0 and the base of the cone is denoted by B. Contrary to the
first case, the distance functions are no longer founded on norms,
as the triangle inequality is violated. This can easily be verified
sincefor0 < £ < 1

diste ((0) + (1)) =2/¢ >2

and disty ((1)) + disty ((1)) =2.

Approximating the graph of the distance function

This result can also be derived by analyzing the shape of B. We
denote by f the function f : [0,7] — [0,7],z + (rf — z£)Y/¢. For
0 < £ < 1 the function f is concave. To determine the appropriate
€ approximation, we proceed as in the convex case. We denote by
g:[0,7] = [0,7],z — ((r — €)* — zf)"/¢. The only difference is
that the polygonal chain starts at (x4, g(z,)) and we search for a
tangential intersection point at f (see figure 3.25).

a
=

Figure 3.23
Graph of the distance function for
£ = 10.0, blue represents picture

area

Figure 3.24
Graph of the distance function for

£ = oo, blue represents picture area

49

CHAPTER 3. Voronoi Diagram

f(=)

/

polygonal
chain

g9(z)

tangential
intersection
point

(Te,g(ze)) (tip, f (tip))

Figure 3.25
Construction of the polygonal chain

Compared to the case for £ > 1, we need notably more triangles to
guarantee a sufficiently good approximation, as listed in the table
below.

Ly norm 0.5 0.8 1.0 2.0
vertices 392 120 4 84
radius 4000 2378 2000 1414

The concavity of the base describing function is reflected in the
fact, that in general, the resulting Voronoi diagrams are no longer
connected.

Examples of Voronoi diagrams for different values of £ are given
below. Although we present solutions for € distance diagrams (e =
1), these diagrams are site exact to allow the reader to get an
impression of what such a diagram looks like.

3.6.3 Adapting the speedup method

In theorem 3.2 we deduced a maximal height for the cones in the
arrangment. This theorem can be adapted to fit our current needs.

50

3.6. Voronoi diagrams based on non euclidean distance functions

Although the shape of the base of the cones has changed, we still
can use the quadtree structure to derive an upper bound on the
maximum height of the cones, required to cover the entire picture.

Assume the apex of an appropriate cone truncated at height A
is positioned at one of the vertices of a square. If the othogonal
projection of the cone covers the diagonal opposing vertex, then
the entire square is covered. Thus, the height h of the cone is
sufficient large.

Figure 3.26
Voronoi diagram for £ = 0.5

o1

CHAPTER 3. Voronoi Diagram

Figure 3.27
Voronoi diagram for £ = 1.0

Figure 3.28
Voronoi diagram for £ = 2.0

52

3.6. Voronoi diagrams based on non euclidean distance functions

Figure 3.29
Voronoi diagram for £ = 6.0

3.6.4 Areas of equidistant points

Although the max-norm and the Manhattan-norm, are mathemat-
ically well defined, we run into trouble, if we try to construct a
Voronoi diagram based on either of these norms.

Regarding ordinary norms, equidistant points reside on a (1-
dimensional) line. In case of the max-norm and the Manhattan-
norm this equidistant zone can extent to be a 2-dimensional area
of equidistant points.

The max-norm is defined as follows:

[l lloo = max(jusl, luz]) , u € R”.

The above mentioned effect is best illustrated by the following
example. Assume the input to built a Voronoi diagram for is made
up of two sites s; and s3. Both sides lie on a line parallel to the
x-axis, i.e. have same y-coordinate. The shaded area in figure 3.30
is the union of points which are as far away from s; as from so.

93

CHAPTER 3. Voronoi Diagram

region
of equidistant
points

region
of equidistant
points

Figure 3.30
Equidistant area as an peculiarity of the max-norm

Similar holds for the Manhattan-norm, defined as
Nully = Jut] + Ju2|, ue€ R

In this case, the effect appears if the sites lie on a diagonal line.

region
of equidistant
points

region
of equidistant
points

Figure 3.31
Equidistant areas for the Manhattan-norm

With the use of blending, we can reveal these regions. The idea is
to assign site s; the color 2¢, such that each pixel can identify all
of its nearest sites.

54

3.6. Voronoi diagrams based on non euclidean distance functions

The Voronoi diagram based on either norm is computed in two
passes. In the first pass, we proceed as before.

We built a cone the apex of which is located at each site’s position,
whereas the color of the cone is adjusted appropriately. The cone
for the max-norm consists of just four triangles (see figure 3.24).
The cone for the Manhattan-norm is similar simple. It is that of
max-norm, rotated by 7/4 (see figure 3.16). Based on the poly-
gonal shape of the base of either cone, our diagram does not suffer
from an approximation error as in the euclidean case.

As before, we extract the lower envelope by setting the compare
function for the depth buffer to '<’. At the end of the first pass
we clear the color buffers to be all zero.

In the second pass, we rerender the entire scene with the depth
buffer compare function set to equality. Additionally we enable
blending, such that the color values of successful fragments are
added to these of the yet existing pixels.

Figure 3.32 is an example of a max-norm based Voronoi diagram
with 10 sites. The pure white area in the middle of the picture
represents the set of points which are equidistant to all 10 sites.

Figure 3.32
Max-norm based Voronoi diagram

A similar example for the Manhattan-norm is shown in figure 3.33.

95

CHAPTER 3. Voronoi Diagram

Figure 3.33
Manhattan-norm based Voronoi diagram

3.6.5 Polyhedral distance function

Boissonnat et al. [BSTY98] investigate Voronoi diagrams in higher
dimensions under certain polyhedral distance functions. Polyhe-
dral distance function are distance functions for which the base of
the cone is a polygon and as such they were meant to be intergrated
in our approach. Diagrams based on these distance functions can
easily and acurately be computed provided the corresponding poly-
gon is star—shaped.

3.7 Higher order Voronoi diagrams

The ordinary Voronoi diagram is defined to be a partition of the
plane into regions according to the closest site. Higher order
Voronoi diagrams are a generalization in the sense that the points
are assigned to regions according to the k closest site, respectively
the set of k closest sites, for some 1 < k < n — 1. There are two
closely related kinds of higher order Voronoi diagrams.

In the sequel of this section, we allow any L, as underlying distance
function for £ > 0.

56

3.7. Higher order Voronoi diagrams

A degree k Voronoi diagram for 1 < k < n of a set S of n sites
is defined to be a division of the plane into regions according to
n distance functions fs : R? — R. Each region R consists of all
points = € R?, such that fs(z) has rank k in the ordered sequence
[ft(x)|t € S]. Hence, a point p is assigned to the region R; if s is
the kth nearest site. The degree k Voronoi diagram is also called
the kth nearest Voronoi diagram.

In the order k Voronoi diagram of a set S a region contains all
points which have the same set of k nearest sites. Thus there are
(Z) possibly empty regions. For any subset U C S of cardinality k
the corresponding region contains all points p such that U is the
set of the k nearest sites.

Properties

Both the degree 1 and the order 1 diagram are just the well known
Voronoi diagram. The degree n diagram is the same as the order
n — 1 diagram. It is called furthest point Voronoi diagram and is
of its own special interest. In general, the regions of the degree k
diagram are not connected any more in contrast to the regions of
the order k£ diagram (if the euclidean norm is the distance func-
tion under consideration). Compared to the Voronoi diagram, the
higher order diagrams are deployed for answering queries about the
k nearest neighbors. Besides this, they are part of many different
algorithmic solutions (cf. [OBS92]).

Computing the degree k diagram

In the computation of the Voronoi diagram, we position a cone
on each point site. For each point (z,y,0) the height of a cone
at position (z,y) is the distance between the point (z,y,0) and
the apex of the cone, respectively the corresponding site. Besides
translation, all cones are equal. Consequently, the height of the
lower envelope of the arrangement gives us the correct minimal
distance for each point.

This idea can be reused to compute the second nearest site for
each point. Namely, we cut off the lower envelope from the ar-
rangement and consider the new lower envelope of the remaining
part. Orthogonal projection of this second lower envelope gives us

o7

CHAPTER 3. Voronoi Diagram

=

| B
4
w

Figure 3.34

All degree k diagrams of 5 sites
with underlying L, distance

function

the Voronoi diagram of degree 2.

This can be extended to compute the kth nearest Voronoi diagram.
For each point, we cut off the £ — 1 lowest values out of the ar-
rangement. The lower envelope of the remaining part gives us the
degree k Voronoi diagram. (cf. figure 3.35).

This procedure is reflected in our pixel based implementation,
where we use both depth buffers, z and z’ in combination.

—— 1
IS S D
= 3
I
z=0 I 4
I I
| |
I I
| |
I I
| 2
I I
| |
I I
| |
I I
| |
| I
| |
I T T T I
| |
' furthest point diagram !
| . . |
| i.e. degree 4 diagram |
| |
I I
| |
z=1 .

Figure 3.35
Degree k Voronoi diagrams, the bold lines represent the degree 2
diagram, the shaded lines represent the furthest point diagram

In a first pass, we compute the minimal distance for each pixel
rendering the arrangement, cone by cone. A fragment is allowed
to make an update, if its depth value is less than the current value
stored in the z buffer of the corresponding pixel. Eventually, each
pixel knows about the distance to its nearest site.

58

3.7. Higher order Voronoi diagrams

In a second pass, we redo the rendering of the cones. Before that,
we set the z buffer to be write protected and change the depth test
compare functions such that only those fragments are allowed to
pass the depth test, if their depth value is greater than the value
of the z buffer and less or equal than that of the z’ buffer. At the
end of the second pass the degree 2 diagram is computed and the
7’ buffer of each pixel contains the appropriate distance.

Repeating this procedure k — 1 times eventually results in the de-
gree k Voronoi diagram, provided we interchange the functionality
of the z and the z’ buffers for each iteration.

Equidistance treatment

In principle, we are done. Unfortunately, under certain circum-
stances, this simple and nice procedure fails to compute the correct
kth nearest point Voronoi diagram.

If a pixel is equidistant to two or more sites, then this distance
will only be noticed once, although it appears as multiple distance
with regards to the pixel.

As each cone is rendered independent of each other, we store the
multiplicity of a distance for each pixel in its stencil buffer. We
maintain the following invariant.

Provided we have just terminated the computation of ith nearest
Voronoi diagram, then we do not only know about the current
distance for each pixel, but also the number the remaining mul-
tiplicity of this distance with regard to the pixel, i.e. the biggest
number j, such for the (i + j)th nearest Voronoi diagram this dis-
tance remains the same with regard to the appropriate pixel.

The key to this adjusted procedure is the use of the stencil buffer to
store the remaining multiplicity. To compute the degree k diagram,
we execute k times the following algorithm, which splits up into
four steps. We assume the stencil buffers initially to be zero.

99

CHAPTER 3. Voronoi Diagram

cone by cone
li stencil ==
depth > z
depth < z’

then
z’, color update

picture wide rectangle
if stencil > 0

then
Z:1=

cone by cone

depth > z
depth ==z’

stencil ++

picture wide rectangle
if stencil >= 0

then)
stencil — —

1. Step:

2. Step:

3. Step:

4. Step:

Register the correct distance

Cone by cone is pushed through the graphics pipeline, and
each generated fragment has to pass several tests, before it
eventually is allowed to make an update. At first, the stencil
buffer of the corresponding pixel is tested. If it is greater
than zero, then the current z buffer value remains correct.
Nothing is to be done. Otherwise, the same depth buffer
tests as before are applied.

Preserve current multiplicity counter

In order to prevent an unwanted overwriting of current stencil
buffer values, and thus a change in the number of remaining
multiplicity of the present depth value, we render a picture
wide rectangle, changing the z buffer values to oo for each
pixel which has a stencil buffer value greater than 0.

Count the multiplicity of newly determined distances

Again each cone is rendered. But now, a fragments depth
value must be greater than z and equal to z’. If both tests
are passed, then the stencil buffer is incremented by 1. Of
course, pixels affected by the second step, are now out of
question.

Reestablish the invariant

As in the second step, we render a picture wide rectangle.
But now, we decrement the stencil buffers of all pixels by 1,
accounting the fact that the current distance value is once
used for the present diagram.

Since we interchange the functionality of the two depth
buffers, z and z’, there is no need to change any of these
buffers.

Running time

Compared to the total running time, the time spend on the two
picture wide rectangles per iteration is negligible. Thus, the run-
ning time of the complete algorithm is 2k times the time required
for the computation of the ordinary Voronoi diagram. A further re-
duction of the running time can be achieved exploiting the speedup
idea of section 3.5, appropriately.

In theorem 3.2 we deduced a maximal required height for the cones
in the arrangment. This theorem, appropriately adapted, can also
be applied, if the underlying distance function is Ly for £ > 0 (see

60

3.7. Higher order Voronoi diagrams

subsection 3.6.3). For the computation of the degree k Voronoi
diagram, we can make use of a similar theorem.

In case of the degree k Voronoi diagram, we have to ensure that
each pixel is covered by the cones corresponding to its k£ nearest
sites. Theorem 3.3 guarantees us, that the result of the compu-
tation of the degree k Voronoi diagram remains the same, if we
execute the algorithm with appropriately truncated cones.

Theorem 3.3 Let S be a set of points in the plane and B C R? be
a bounding area, containing S. Assume, there is a covering of B
into rectangular cells such that each cell contains at least k points
of S. Let e denote the largest diagonal with regards to all cells.
Let ¢ be a right circular cone as described in section 3.2. Let ¢
be a the cone c truncated at height e. Let A be the arrangement
of cones indentical to c, set on top of each point site, and A; be
the same arrangement but with cones indentical to c;. Let | be
a line perpendicular to B. Then the set of the first (lowest) k
intersections of | with U is the same as the set of the first (lowest)

k intersecions of I with ;.

Proof: Fix a cell in the covering. Any truncated cone correspond-
ing to a point s € S covers the entire cell provided s is inside the
cell. Thus, there are least k intersections for any line [perpendic-
ular to the plane with regard to these cones. A lower intersection
point of I with a cone regarding the original arrangement remains

unaffected by the truncation, since the intersection occurs at a
height less than e.

Thus we have to adapt the quadtree structure mentioned in section
3.5 to count the number of sites inside a cell. The lowest level of the
tree such that all nodes are marked for at least k times, determines
the maximum required height of the cones.

Analogous to the analysis in section 3.5, the time spent on the
construction and processing of the quadtree depends directly on
the number of nodes visited, and can be bounded as follows. Each
site is visited once and each node is visited k times in the worst
case.

Compared to the ordinary Voronoi diagram, we present timings

61

CHAPTER 3. Voronoi Diagram

for the computation of the order 10 (distance) diagram. Again,
the sites are chosen uniformly at random from {0,...,1023}. As
before, the use of the quadtree cause a sizable reduction in the
running time.

order 10 euclidean distance diagram

T T T T

5

T

Iy

N

o
T

quadtree disabled
quadtree enabled

=

o

o
T

timein seconds
D [}
o o
T T

5

20 -

NI LT T N

/A e
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000
number of sites

Figure 3.36

Order 10 euclidean distance diagram with and without quadtree

Computing the order k£ diagram

Our algorithm for the order k diagram is based on the following
observation. Assume we have just computed the degree k diagram,
such that the z buffer values resemble the desired distances. Then,
we render the scene of the cones once more, but now we allow a
fragment to pass the depth test if its depth value is at most z.
In order to prevent a change of the z buffer, we enable the write
protection for it. Additionally, we enable blending to collect all
fragments passing the depth test.

Furthermore, assume that each site s; € S is assigned the color
value zero but the ith bit set to 1. Then the color value of a pixel
p is 1 at position 7 if and only if there are at most k —1 sites nearer
to p than site s;.

62

3.8. Weighted Voronoi diagrams

3.7.1 Furthest point Voronoi diagram

Regarding the furthest point Voronoi diagram, the plane is parti-
tioned in regions according to the furthest sites. We just saw, that
it can be computed by peeling all but the last lower envelopes. In
doing so, we needed an n — 1 pass algorithm. But this can also
be done in a single pass. Instead of looking from above. i.e. from
z = 0 towards negative z direction, we change the viewing direc-
tion to look upwards from z = —1 to z = 0. The same effect can
also be achieved by turning upside down the cones. The result
remains the same. Now, the lower envelope is the furthest point
Voronoi diagram, and as this, computable in a single pass.

3.8 Weighted Voronoi diagrams

Computing the Voronoi diagram of points by rendering a three di-
mensional scene of cones gives us the ability to change the distance
function in a quite arbitrarily fashion. The fundamental concept
remains invariant, only the shape of the cones alters.

Up to now, all sites are treated equally. They only differ in their
position. Besides this, it might be desirable to assign different
weights to the sites.

Subsequently, we present the multiplicatively and the additively
weighted Voronoi diagram. A more detailed and comprehensive
description can be found in [OBS92].

3.8.1 Multiplicatively weighted Voronoi diagrams

Let dists : R2 — R be one of the so far discussed distance function
sets. The multiplicatively weighted Voronoi diagram (cf. [OBS92])
of a set of sites {s; | 1<i<n} with associated weights {w; | 1<i<
n,w; > 0} is characterized by the weighted distance given by

1
dmws, (z) = — dists, (z).

wy

63

CHAPTER 3. Voronoi Diagram

L jw

Figure 3.37
Computing the apex angle a of a

weighted cone

Euclidean norm

In order to ease the description we consider at first only the eu-
clidean case. In the unweighted (or equal weighted) case, all the
cones have the same apex angle. This degree of freedom can now
be used to realize different weights for each site.

Our goal is to maintain the one-to-one correspondence between the
height of a cone at a point p = (z,y,0) and the distance between
p and the apex of the cone. As a consequence, we choose the apex
angle to be m for a cone the corresponding site of which has an
associated weight of 1. From that we can conclude that the apex
angle a, corresponding to a weight w is (cf. figure 3.37)

Qy, = 2 - arctanw.

The pixel based implementation remains the same as before. The
only difference is that the appropriate cone has to be selected from
a set of cones, each realized as a display list of its own. Each
cone could also be computed separately, with regard to the proper
weight. Moreover, we can make use of the scaling functionality
available in OpenGL. This is the more interesting as the cones
could also be replaced by a depth texture scaled appropriately.

Even if we use the ordinary euclidean distance as underlying dis-
tance function, we can observe some surprising properties of the

diagram (cf. [OBS92]).

e The regions need not to be connected, they may have holes.

o If the maximal weight is uniquely associated to one site, then
its region is the only infinite one.

e An edge is a straight line if the weights of the neighboring
regions are the same. Otherwise the edge is a circular arc
(cf. lemma 3.1).

An illustration of an weighted Voronoi diagram with underlying
euclidean distance is given below. The white numbers represent
the weights associated to the sites at that position.

64

3.8. Weighted Voronoi diagrams

Figure 3.38
Multiplicatively weight Voronoi diagram with underlying euclidean

distance. The white number represents the weight of a site.

Generalized distance functions

Weighted distance diagrams based on any of the so far discussed
distance functions can easily be realized using the scaling function-
ality available in OpenGL.

3.8.2 Additively weighted Voronoi diagrams

In contrast to the former diagram, we can also combine the weights
additively. As before, we denote by {s; | 1 <i<n} the set of sites
and by {w; | 1 <i<n,w; >0} the set of associated weights. Let
dist denote an already known distance. The additively weighted
Voronoi diagram is characterized by the distance

dow(z,8;) = dist(z, s;) + w;.

Up to now, the rendered scene consists of cones the apex of which
resides on the plane z = 0. To realize a additive weight of w;,
we translate the position of the apex of each cone from (z,y,0) to
(x,y,w;) (cf. figure 3.39).

w

Xy plane

Figure 3.39
An additive weight w causes a
translation of the cone in z

direction

65

CHAPTER 3. Voronoi Diagram

Compound weight Voronoi diagram

The compound weight Voronoi diagram is a composition of the
multiplicatively and the additively diagram. Each site s; has an
associated pair of weights (m;, a;), such that the distance is mea-
sured as
..
dc’w(xasi) - dlSt(l‘,Sz‘) + a;.

my

Since both, the apex angle (i.e. the scaling factor) and the z co-
ordinate of the apex of a cone are independent from each other,
the pixel based implementation is a straightforward combination
of the last two algorithms.

Running time

Actually, the algorithm to compute the weighted Voronoi diagram
remains the same as computing the unweighted. The only differ-
ence is that we have to adopt the speedup method, too, comprising
the multiplicative and/or additive weights. For that, we assume for
all cone the worst case, i.e. the smallest multiplicative respectively
biggest additive weight.

3.9 Voronoi diagrams of a set of line seg-

ments and circular arcs

Up to now, we restrict the generalization of Voronoi diagrams to
point sites. In this section, we inspect what happens if we allow
line segments and circular arcs as sites.

| D ;
% Ve Line segments

Figure 3.40 Considering the euclidean space, the shortest distance between a
line site [and a point site p is determined by a line segment which
starts at p and is perpendicular to I. As a result, the distance
function graph for a line is a saddle roof on top of the line, whereas
the apex angle is that of a point site of equal weight.

Distance graph of a line segment

site

66

3.9. Voronoi diagrams of a set of line segments and circular arcs

Almost the same holds for the distance function graph of a line
segment site. It is combined out of a saddle roof and two halfcones
matching the endpoints of the segment (see figure 3.40). For a
pixel based implementation, the only thing to take care of is that
all three parts, the saddle roof and the two cones, get the same
color, as they belong to the same site.

This idea could also be exploited to compute the Voronoi diagram
based on arbitrary distance function Ly for 0 < £ < 0co. A change
in the distance function cause the base of the corresponding cone
to be rather arbitrarily shaped. Nevertheless, we can still compute
the graphical representation of the graph of the distance function.

Let C be the cone representing the distance function graph for
a point site. Let P be the (star-shaped) polygon, defining the
base of C'. We denote by e; and e; the two endpoints of the line
segment under consideration. Then, we position a copy of C at
both endpoints e; and e;. Furthermore, we render a rectangle
for each vertex v of P. The corresponding rectangle is spanned
between the apices of the cones at e; and e; and the vertices vy, vy
of both copies of C corresponding to v. The swept volume is given
by the Minkowski sum of the two cones and the line segment (see
figure 3.41).

Vs

Ut

€s

€t

Figure 3.41
Line segment computation for arbitrary distance function Ly

This idea could also be exploited to compute the Voronoi diagram
of areas which can be described by a polygonal chain.

67

CHAPTER 3. Voronoi Diagram

Figure 3.42

Distance graph of a circle site

Figure 3.43

Distance graph of a (red) circular
arc site (to ease perception,
without the two ordinary cones at

es and e;)

Circles

For circles it is even easier. The shortest distance between a point
and a circle is determined by a line radial through p. This remains
true for £ chosen arbitrary, 0 < £ < oo.

Let M be the center of a circle C' and r its radius. The distance
function graph for C' is a combination of a cone and cone frustum,
residing in the half space z > 0. The cone is positioned such that its
apex has the same x and y coordinates as M and its base coincides
with C. The smaller base of the cone frustum also coincides with
C, such that the combination of both resembles a straw hut (see
figure 3.42).

Circular arcs

The just presented idea to realize circle sites can be extended such
that circular arc sites can be admitted, too, provided the distance
function is the euclidean norm.

Let es; and e; be the two endpoints of the circular arc under consid-
eration. As before, we construct a straw hut. But now, we slice it
radially at e; and e; and remove this piece, such that the removed
part resembles a piece of cake. Additionally, we set two ordinary
cones at both endpoints e; and e;. In figure 3.43 we present such a
distance graph. For the sake of simplicity, we omit the two cones
at the endpoints.

To prove our assumption consider the distance between a point p
and an arc, as sketched in figure 3.44.

Po
€t

Y4

Figure 3.44
Distance between a point and and circular arc

68

3.10. Yet another fast food in town

If p is outside the shaded area, e.g. p = p,, then its nearest distance
to the arc is determined by either point e; or e;. Otherwise, if p is
inside the shaded area, then neither e; nor e; will be the nearest
arc point for p.

Below is an Voronoi diagram of a set of points, line segments and
circles, based on the euclidean distance.

Figure 3.45
Voronoi diagram of a set of points, line segments and circular arcs

based on the Ly norm

3.10 Yet another fast food in town

In the last sections we presented a fast implementation of Voronoi
diagrams exploiting the power of graphic adapters. Now, we turn
our focus to a closely related problem.

Assume you are the store manager of a fast food chain. You decide
to capture the market in a town you are not yet present in. Most
naturally, the area to attract customers should be as big as possi-
ble. To find the optimal place, you construct a Voronoi diagram of
the presently existing stores of your business rivals. The new store
is best located on that point, that when inserted into the existing
diagram as a new site, will have the biggest region. More precisely,

69

CHAPTER 3. Voronoi Diagram

the problem states as follows:

Definition 3.4 Given a set S of n sites within a bounding box B.
Find the position for a new site s such that in the Voronoi diagram

for the set S U {s} the Voronoi region Rs of s has mazimum area.

To ease the further description we call this point the settle point
of a Voronoi diagram.

3.10.1 Previous work

Cheong et al [CHLMO02] describe a related problem. Consider the
following game, in which a first player chooses an n-point set R
inside a square Q. Thereafter, a second player places another n-
point set B inside Q. The payoff for the second player is the fraction
of the area of Q occupied by the regions of B in the Voronoi diagram
of RU B. Cheong et al [CHLMO02] give a strategy for the second
player that always guarantees him a payoff of at least % + « for a
constant a > 0.

Although this work resembles our problem, the point bearing the
largest area is not determined. For the convex case, Dehne et al
[DKS02] describe a method to maximize a Voronoi region. But up
to now, we are not aware of any previous solution delivering the
settle point in a general setting.

3.10.2 Properties

The problem appears to be rather challenging as the position of
the settle point can be quite arbitrary. In general, it coincides
neither with an edges of the Voronoi diagram nor with one of the
furthest point Voronoi diagram.

Figure 3.46 illustrates such a case, based on a Voronoi diagram of
set of eight points. To ease perception, the eight sites are colored
in green. Further, the slim lines represent the edges of the Voronoi
diagram, and the fat lines represent those of the furthest Voronoi
diagram. The settle point is marked by a red circle. For the rest
of the points the brightness of the color of a point represents its

70

3.10. Yet another fast food in town

potential area, i.e. the area of the corresponding region if the point
would be included in the diagram.

Figure 3.46
Voronoi and furthest point Voronoi diagram of eight sides with

superposed settle point computation

We can derive another property from the following observation.
Consider a point p at distance d from its site. If p changes its
affiliation as a new site t is inserted, then the distance between ¢

and p is at most d. That means, that the width of the Voronoi // \/‘5 m
diagram is monotonically decreasing if new sites are inserted.

Nevertheless, the area of the biggest region can grow although a ®

new site enters the diagram. Consider the following example. Re- d/4 d/2
garding the euclidean space, place n sites on the greatest possible

circle such that the position for each site coincide with a vertex of

a regular n-gon. The circle is chosen to fit just inside a square of d'

with edge length d.

If we place a new site at the center of the circle, then its corre- Figure 3.47
sponding area will be at least /16 d?, independent of n. Provided Increase in the maximum region
the first n sites are equidistant on the border of the circle, then the

biggest region will always be less than (7w(v/2/2d)% —n(1/4d)?)/n.

Thus, for n > 7 we have the desired result (cf. figure 3.47).

71

CHAPTER 3. Voronoi Diagram

3.10.3 Pixel based adaptation

The easiest method to compute the settle point is the following.
Insert all possible points, one at a time, in the existing Voronoi di-
agram, compute the size of the area of the just constructed region,
and delete the point again.

One of the drawbacks is, that there is no counter in OpenGL, which
logs the number of successful fragments. Consequently, after each
inserted point, the entire picture had to be read back into CPU
memory to count the number of newly colored pixels.

Inspired by John F. Kennedys key note "Ask not what your coun-
try can do for you, ask what you can do for your country"!, we
investigate for which potential new sites the pixel p under consid-
eration would contribute to their regions (cf. figure 3.48).

For that reason, we draw a circle with radius r around p, such that
r equals the distance between p and its corresponding site s,. If a
pixel g;,, inside the circle is chosen to be the new site, then p will
belong to its region, since the distance between p and ¢;;, is less
than the distance between p and s,. Similarly, p will never belong
to the region of a pixel gy, outside the circle.

For each pixel p we do the following;:

1. Determine the site s, in which region p resides.

2. Draw a circle around p with radius r equal the distance be-
tween p and sp.

3. p contributes 1 to the potential area of any pixel inside the
circle (e.g. ¢;,). For this purpose, we administer for each
pixel an area counter’? accumulating these events.

'Inaugural address of president John F. Kennedy, Washington, D.C. Jan-

uary 20, 1961
2The area counter is realized deploying the color buffers as explained later.

72

3.10. Yet another fast food in town

Figure 3.48
Contribution area of p

After all pixels are processed, the area counter of any pixel rep-
resents the size of its region, if the pixel were inserted into the
existing Voronoi diagram.

Correctness

Let Q be the pixel grid under consideration, i.e. the picture to be
drawn. Let S = {s1,...,s,} be the set of sites, and dist be the
distance function on which the Voronoi computations are based on.
To prove the correctness of the above applied method, we define
for each t € Q

zone(t) = {p|p € Q and Vs € S : dist(¢,p) < dist(s,p)}.
Then by definition, the settle point is the point with the largest
zone. For any pixel p we denote by s, its nearest site. Let C(p)
be the circle with center p and radius dist(p, sp). We are done, if
we can prove, that for every p,t € Q :

p € zone(t) iff t e C(p).

p € zone(t) implies dist(t,p) < dist(s,,p) implying ¢ € C(p), and
vice versa. As a consequence it follows that:

zone(t) = {p|p € Qand t € C(p)}.

73

CHAPTER 3. Voronoi Diagram

Drawing color

red, green, blue, alpha: [1,0,0,0]

Stencil
initialize to: 1
compare function: ~ ==0
actions: incr_wrap, incr_wrap, inrc_wrap|

Blending

frag factors:
pixel factors:

[1,1,1,1]
[1,1,1,1]

Figure 3.49
OpenGL settings for the settle

point computation

Sketch of algorithms

At first, we have to determine for each pixel its nearest site in order
to draw a circle of the appropriate size. Therefore, we compute
the Voronoi diagram of the given set of sites. The depth buffer
value of each pixel encodes the distance between the pixel and its
corresponding site.

After this step, we know for each pixel the radius of the circle we
have to draw around it.

How do we realize the area counter? We abuse the pixels’ color and
stencil buffers to count the number of covering circles. Whenever
a circle overlaps a pixel its stencil buffer increments by 1. When
an overflow in the stencil buffer occurs, the fragment is allowed to
pass the stencil test. This has the effect, that one of the four color
buffers value increases by 1, provided that blending is appropriately
enabled.

This is, why for all pixels we initialize the color buffers with zero
and the stencil buffers with 1. We select the blending factors to
be all one (cf. blending on page 17). Furthermore, we use the test
of equality with zero as stencil compare function and reference
value. All stencil actions are set to increment with wrap around
the stencil buffer by 1. In addition to that, the circles are at first
colored with red equals® 1 and green, blue and alpha equal zero.

Then we draw a circle with radius r around each pixel p with
r = distance(color(p), position(p)). This can be accomplished by
either a triangle fan similar to the cone approximation, or by using
a texture with inscribed circle (cf. figure 2.2 on page 23).

Whenever a circle overlaps a pixel, its stencil buffer increments.
Every 256 times? the stencil buffer wraps around, and due to the
blending settings, the red color buffer increments by 1. Accord-
ingly, we can count 256 x 256 — 1 hits in the red buffer. After
that, we rotate the color values of the circles to sum up the hits
successively in the remaining three color buffers. In doing so, we
can count 4 X 256 x 256 — 1 — 3 x 256 = 261375 events before
we have to read back the picture and reset the color and stencil

3For the sake of simplicity, we interpret the contents of a byte as integer

between 0 and 255.
4Only the first wrap around happens after 255 hits since the stencil buffer

is initialized to 1.

74

3.10. Yet another fast food in town

buffers to continue counting. Finally, we add up all intermediate
pictures together with the last picture in the CPU’s main memory
to get the final picture. Thus, for a picture of 1024x1024 pixels,
we have to read back the entire picture five times. Any pixel with
the greatest value is the requested candidate.

A variation for successful stores

Let us recall the example of the store manager from the beginning
of the section. Assume you are already involved in the city, thus
some of the stores are already your stores. Then we can easily
restrict the search for the new settle point excluding your current
trading area. The pixels belonging to your area are just disre-
garded, i.e. no new site can profit from them.

3.10.4 Speedup

The idea to speed up the algorithm is based on the observation
that the computation made for a set of pixels repeats exactly for
other sets.

To gain a better insight, we trace the computation for a horizontal
row of pixels p1,...,ps all belonging to the site s,. Pixel p; is at
distance ¢ away from s,.

In the course of the computation, a circle with radius ¢ is drawn
around each p; with the effect that the area counters of pixels inside
the circle are changed. Assume we construct a stamp 7' combin-
ing all the affected pixels inside any of the drawn circles. T is a
rectangle sufficiently large to enclose all circles. This is illustrated
in figure 3.50. The gray shaded area resembles the computation,
respectively the circles, done so far for the pixels p1, ..., ps.

75

CHAPTER 3. Voronoi Diagram

______ sﬂ.......u

q1,---5,95

Figure 3.50
Repeated computation

This stamp can now be used in the course of the computation.
For any row of pixels qi,...,gs belonging to a site s;, we omit the
rendering of the single circles. Instead, we use 7" to stamp the area
around the pixels appropriately, all at once.

Q000000000
Q000000000

Figure 3.51
Repeated computation

This could be exploited in the following way. We precompute the
circles for various groups of pixels. Instead of restricting ourselves
just to pixel rows, we make sample triangular groups, located
around a virtual site, and compute the effect of these pixel tri-
angles on the surrounding area. Hence, for every member of the

76

3.10. Yet another fast food in town

group, we draw an appropriate circle. Every pixel triangle yields a
corresponding pixel patch including all the influenced pixels of the
surrounding (e.g. in figure 3.50 the gray shaded area), such that
for each pixel triangle the resulting patch consists of any pixel the
area counter of which is greater than zero.

Armed with a large set of precomputed patches, we can now reduce
the number of pixels we have to process in the ordinary way. After
the Voronoi diagram of the initial n sites is computed, we do the
following for each site.

Find the biggest pixel triangle out of our precomputed samples,
which fit inside the sites region, such that the virtual site’s position
maps onto the real sites position. Thereafter, any pixels inside the
triangles are marked (see figure 3.52). For the rest of the pixels
we proceed as before, hence we draw circles of appropriate radius
and color around these. At the end of the ordinary algorithm we
just add the corresponding patches to the picture in order to get
the complete result.

Exploiting this idea yields another additionally accelerating effect,
we can benefit from. Since fewer pixels have to be processed, buffer
overflows occur less frequently. Thus we can reduce the number of
times, the buffers have to be read back in order to prevent a buffer
overflow.

In our implementation, the number of pixels which remain to pro-
cess is reduced by 60 percent on average exploiting an underlying
sample space of about 600 MBytes of precomputed data.

3.10.5 Running time anomaly

Interestingly, there is an apparent anomaly concerning the running
time. The greater the input set of sites, the quicker the settle
point can be computed. This is because the area and width of the
Voronoi regions decrease the more sites share the same bounded
area. Circles from points far away from their corresponding site
cause a lot more fragments than these points which are near the
site (see figure 3.53). Consequently the running time increases the
fewer sites are involved. The rendering time varies between 10
seconds for set of about 100 sites and up to four minutes for set of
two sites.

Figure 3.52

Voronoi diagram with blank

patches of precomputed areas

Figure 3.53

Running time anomaly

7

CHAPTER 3. Voronoi Diagram

3.11 Applications

In the last sections we presented pixel based algorithms for a va-
riety of different Voronoi diagrams. This is an interesting task on
its own. Besides, Voronoi diagrams are often used as a first step
of a more complex algorithmic solution. At a first glance, it seems
to be unavoidable to reload the picture into main memory in oder
to use the result of the pixel based computation.

To prove the contrary, we present three examples how to benefit
from the Voronoi diagram picture in a more complex solution. We
start with the computation of the Hausdorff distance between two
finite sets of points in the plane.

3.11.1 Hausdorff distance between a red and a blue
set of points

The Hausdorff distance owes its name Felix Hausdorff (1868-1942),
a mathematician known for his work on topology and set theory.
The Hausdorff distance is of important role in the field of image
comparison, i.e. pattern matching. It may be described as the
maximum distance of a set to the nearest point in the other set
and vice versa [Rote91].

P More formally, let B be a set of blue points and R be a set red
points. The directed Hausdorff distance h(B,R) from B to R is
@ h@{,‘%\ defined to be the function
h(B,R) .
[h(B,R) = maxmin|[b —r||.
. beB reR
[
Figure 3.54 In general, this function is not symmetric (cf. 3.54). Let b, € B
Directed Hausdorff distance the point that is farthest away from any point r € R, then h(B,R)

between the set of red and blue is the distance from by to its nearest neighbor in R.

points, and vice versa The Hausdorff distance H(B,R) is defined to be
H(B,R) = max(h(B,R), h(R,B)).

Intuitively, H(B,XR) is a measure for the degree of divergence of
the two sets. If we place a circle with radius h(B,R) around each
r € R, then any b € B lies inside of at least one of these circles,
and the same holds vice versa.

78

3.11. Applications

We solve the problem of finding the pair of points determining the
Hausdorff distance with the aid of Voronoi diagrams.

In a first step we compute the directed Hausdorff distance h(B,R).
For that we build the Voronoi diagram of the red points whereas
each red point receives its own unique color. We then inspect for
each blue point its depth and color buffer value. The blue point
with the maximal depth buffer value and the corresponding red
point, encoded in the color value of the blue point, is the pair of
points we are looking for.

In a similar way, we determine h(R,B)) and eventually H(B,R).

3.11.2 Largest inter point difference of a set of points

The next problem we turn our focus to is the largest inter point
difference of a set of points, also known as the diameter of set of
points.

Given a set S of n points in the plane. The diameter of S is defined
to be the maximal distance between any two points of S:

diameter(S) = ,max |s1 — s2ll.
1,52

To compute the diameter of S we exploit the following property.
Let p,q € S be the pair of points such that the distance between
p and g is the diameter of S. Then both p and ¢ are convex hull
points of S (cf. [HY61], [PS95, p. 177], [Lee80], [TB81]).

This leads to the following solution. Compute the furthest point
Voronoi diagram of S. The diameter is determined by the point
with the largest depth value. Again the color value of this point
reveals the missing second point.

Considering the algebraic computation tree model, this method is
still optimal, since computing the diameter of set of points in the
plane can be used to solve the Disjointness problem any solution
of which needs Q(nlogn) time (cf. [PS95, pp 176-177], [BO83]).

A practical approach for computing the diameter of a point set
S C R? is presented by Har-Peled [Har01] in 2001.

79

CHAPTER 3. Voronoi Diagram

3.11.3 Maximum distance between a red and a blue
set of points

As a last example we investigate the mazimum distance between
two sets of points B and R. It is defined to be:

The maximum distance between two sets of points is closely related
to the diameter of the union of the sets.

More precisely, diameter(BUR) > dmax(B,R), since a partitioning
of {BUR} into two set only reduces the number of possible pairs
of points, i.e. distances, to be considered. Actually, it is quite
easy to construct two sets of points such that diameter(B UR) >
dmax(B,R). Figure 3.55 illustrates such an example invented by
G. Toussaint et al. [TB81]|, [BT83|, and [TM82].

by @

o
b; @

Figure 3.55
An exemplary configuration in which diameter(B U R), given by b; and
bs, is greater than dpmax (B, R) defined by by and rs

They were the first to come up with an (nlogn) algorithm. Inter-
estingly, they explicitly abandon the idea to use the furthest point
Voronoi diagram to solve this task. And that is just the way, we
solve this problem.

Having computed the furthest point Voronoi diagram of the blue
points, we look for the red point p,eq with highest depth buffer

80

3.12. Pixel based computations executed without a graphic processor

value. The point corresponding to the color of p.eq and ppeq are
the points defining the maximum distance.

3.12 Pixel based computations executed

without a graphic processor

Nowadays graphic adapters are quite cheap and powerful. Anyhow,
there are still enough computers not supplied with a OpenGL ca-
pable graphic processor, for short GPU. Against this background,
we present pixel based algorithms solely relying on the main CPU.

3.12.1 Generic approach for Voronoi diagrams

Our algorithm consists of several cycles. In each cycle we inspect
pixels at distance d away from their nearest site, where d is in-
creased in every cycle.

1. In a round robin fashion, we determine for each site s; the
pixel p; at distance d.

2. If p; is not yet colored, we assign p; the color of s;.

3. Eventually the distance d is increased, such that the next
nearest pixel can be inspected.

We start our algorithm with the direct neighbors of the sites and
grow circular around the sites. To resolve ambiguities, we inspect
the pixels distance in counter clockwise order.

The algorithms has to terminate as soon as all pixels are colored.
For this reason, we increase a global counter whenever a pixel is
colored, and check this counter as a first step in each cycle.

To find the next nearest pixel, we use a precomputed array con-
taining the positions of all possible pixels sorted by ascending dis-
tances. In doing so, the distance function is implicitly given as an
order relation. As a consequence, quite arbitrary distance func-
tions can be realized. This is the same array, we have to compute
if we use depth textures instead of triangle fans (cf. section 3.4).

81

CHAPTER 3. Voronoi Diagram

Running time

The runnning time is determined by the width w of the Voronoi
diagram, i.e. the largest empty circle. As soon as d > w, all pixels
are visited. Thus, the running time is bounded by O(n * w). This
resembles the runnning time for the algorithms using the GPU.

3.12.2 Higher order Voronoi diagrams

As in the OpenGL algorithm for computing the order/degree k
Voronoi diagram, we can here use a similar idea to draw these
diagrams.

We proceed as describe above with the following differences. We
store for each pixel the first k£ colors in an individual array. Com-
pared to the above described algorithm, we increase the global
counter only for pixels which are colored k times.

Running time

Any pixel is colored at least k times. For p - p -k is a trivial lower
bound assuming a picture of p- p pixels. Similar to analysis in the
case of the computation with a GPU, we can bound the time from
above using theorem 3.3. Let e be the width of the best possible
covering, then the running time of the algorithm can be bounded
from above by O(e - n).

3.12.3 Settle point computation

As stated before the problem is to place a new site such that it pos-
sess the biggest possible region. Again the straightforward method
- insert a new site, compute its region and delete it again - is ob-
viously a bad choice. Since Voronoi regions can be disconnected,
e.g. based on the Lg 5 distance, every pixel would have to be tested
for membership. This can be circumvented using the same idea as
before. Draw a circle around every pixel p choosing the distance
between p and its corresponding site as radius.

For our current needs, this idea can even be improved. Instead
of increasing the area counter for the entire set of pixels inside

82

3.12. Pixel based computations executed without a graphic processor

the circle, it is sufficient to walk around the border of the circle.
For each row we add 1 to the area counter of the first pixel inside
the circle and subtract 1 from the area counter of the first pixel
outside the circle. At the end of the entire circle drawing part of
the algorithm, a prefix summation over each row yields the correct
size of the area for all pixels.

Running time

Assuming a picture of p - g pixels, the time consumed is bounded
from above by O(p - ¢q - (p + q)) operations, as drawing a circle
involves no more than O(p + ¢q) pixels.

As a matter of fact, precomputed patches reduce in the same way
as before the number of circle to be drawn, hence the time decreases
similarly.

Figure 3.56 illustrates a settle point computation of 18 sites based
on the Lg 5 distance.

Figure 3.56
Settle point computation based on the Lg 5 distance, the settle point is

colored in blue

83

CHAPTER 3. Voronoi Diagram

84

Chapter 4

Smallest Enclosing
Homothet

Figure 4.1

Smallest Enclosing Homothet Computation

4.1 The mission

Imagine the alliance of several communities sharing the wish for a
common radio station. To keep down costs, they agree in building

85

CHAPTER 4. Smallest Enclosing Homothet

just one radio transmitter station capable to cover all communities.
If we think of the communities as points in the plane, the goal is
to determine the point that minimizes the distance to its farthest
community. As we will see, the center of the smallest enclosing
circle is the desired place. Furthermore, the radius of the circle
gives a lower bound on the transmitting power which has to be
deployed to cover all the communities.

In the sequel of this chapter, we identify, for the sake of simplicity,
a circle with a regular n-gon with infinitely many vetrices. Thus,
if we state @ to be a star—shaped polygon, we also allow @ to be
a circle.

The minimal enclosing circle, for short MEC- problem as intro-
duced above is a special case of the smallest enclosing homothet
problem, defined as follows:

Definition 4.1 (Homothet) Given a polygon Q. The polygon
H is called a homothet of Q, if H can be generated by scaling and
translating Q.

Definition 4.2 (Smallest enclosing homothet) Let S be a set
of n points in the plane and Q be a simple star—shaped polygon.
Determine the smallest homothet H of Q) such that all points of S

are contained inside H.

This problem can also be stated as a facility location problem.
Given the set S and the star-shaped polygon @, such that (0,0) is
contained in the kernel. we search for a translation vector t € R?
minimizing the scaling factor A € R such that s € (t+ AQ) for
all s € S.

A straightforward application of our more general approach ad-
dresses quality assurance systems. Think of the predetermined
polygon as a reference value for a machine-made component. Then
the scaling factor computed for a set of sample data points scanned
from an actual component gives us the deviation factor as a mea-
sure for the quality of the production process.

86

4.2. Previous work in the traditional model

4.2 Previous work in the traditional model

Choosing the euclidean norm as the underlying distance function,
leads us back to the former mentioned MEC—problem, where the
polygon @ takes the shape of a circle, i.e. a convex n-gon with
n = oo. For that special case the prune-and-search techniques for
linear programming developed by Nimrod Megiddo in 1983 can be
adapted to solve this problem in linear time [Meg83].

It was not before 1991, that a further enhancement for the com-
putation of the minimum enclosing circle was presented by Welzl
([Wel91]). He came up with a fast randomized method, which
could also be used to compute smallest enclosing ellipsoids. Later

on, this method was further improved by Gértner and Schénherr
(cf. [GS98)).

A related problem is considered by Schwarz et al.[STWE94], who
presented a linear time algorithm for finding a minimal area paral-
lelogram enclosing a convex polygon in 1994. About twenty years
earlier, Freeman and Shapira faced the problem of computing the
minimum area rectangle [FS75]. In 1985 Aggarwal, Chang and
Yap [ACY85b] provided an O(nlognlogk) algorithm computing
the minimum area k-gon circumscribing a convex n-gon. They
exploited a lemma stated by DePano in [DA84], who on his part
proposed solutions for the minimal enclosing equiangular or regular
k—gon polygon.

Although these problems are related to the one stated here, there
are two major differences. First, we compute the minimal en-
closing homothetic dilation, thus rotation of the polygon is not
allowed. Second, our constraints on the shape of the polygon is
less demanding. It does not have to be convex but star—shaped.

4.3 Pixel-based solution

In a primary step, we develop an algorithm to solve the MEC-
problem in our model of computation. Then this algorithm is
extended to solve the more general problem.

Given a set S of n point sites in the plane, it is a well known fact,
that the requested circumscribing circle C' is determined either by
the diameter of the set, thus by two sites, or by three of the point

87

CHAPTER 4. Smallest Enclosing Homothet

sites. In the first case, the center ¢ of C lies on an edge of the
furthest point Voronoi diagram of S, fVod(S) (cf. 3.7.1), and in
the second case, it lies at a vertex of the fVod(S).

In our pixel-based approach to compute the fVod(S), we render
circle-based cones from above, i.e. compute the upper envelope of
these cones. In doing so, we allow only the highest fragments to
pass to the frame buffer and make an update of the depth buffer.
Eventually, the depth buffer resembles the fVod(S).

Fixing an arbitrary pixel, let us ask for the smallest circumscribing
circle located at the pixel’s position. Then the radius of the circle
corresponds to its depth buffer value, resembling the fVod(S) at
that position. Thus the pixel with the lowest depth buffer value
gives us the center ¢ of the requested circle, and the radius equals
that of the depth buffer value. Moreover, let p. be the pixel with
the lowest depth buffer value h. Then rendering a cone upside
down at position p, and height A will draw the desired circle (pro-
vided a cutting plane at z = 0).

Stepping towards star—shaped polygons

Let @ be the requested star-shaped polygon, and kg be a kernel
point of @), i.e. an interior point such that all the boundary points
of @) are visible from k.

In principle, the procedure remains the same. We compute the
lower envelope of an arrangement of cones. Each cone is a trans-
lation of a cone the base of which corresponds to the polygon Q.
However, we have to be careful about the shape of the cone we put
at every site in order to compute the upper envelope. A problem
arises if the requested polygon @ is not centrally symmetric about
the kernel point.

In order to ease the understanding, one might think of @) as the
unit circle of a distance function dist g : R? — R such that the
kernel point k¢ is mapped to center of the unit circle.

To gain some insight into the problem, examine the following ex-
ample. Let @ be a star-shaped polygon with kernel point kq.
Moreover, @ is assumed to be not centrally symmetric about kq.
Let p be a point on the boundary of Q). Let @, be the polygon
@ translated by p — kg. Then kg is in general not part of the

88

4.4. Generalizations

boundary of translated polygon @, (see figure 4.2).

Figure 4.2

Asymmetrical star—shaped polygon

Mathematically stated, let @ be a star-shaped polygon. Without
loss of generality, we assume (0,0) inside the kernel of Q. Let k¢
be a point. Our goal is to find the polygon Q such that for all
points p on the boundary of the homothet kg + AQ holds that kg
is on the boundary of p + A\Q, for A € R20.

p € bd(kg + Q)
— kg € bd(p—-2Q)

= Q = —Q
We obtain —@) as a central reflection of Q.

The finial pixel based procedure to compute the smallest enclosing
homothet with regard to a star-shaped polygon @ starts with the
computation of the upper envelope of the arrangement of (iden-
tical) cones, where the base of the cones is the centrally reflected
polygon). Thereafter, we determine the lowest pixel of the upper
envelope. The position of the pixel is the center of the desired
homothet, and the depth buffer value encodes the scaling factor.

4.4 Generalizations

Smallest enclosing homothet of line segments and circles

Let () be the polygon we search a smallest enclosing homothet for.
If we consider Q = —(Q to represent a unit circle of a distance func-

180 degree
rotation

Figure 4.3
Construction of the base of the

cones

89

CHAPTER 4. Smallest Enclosing Homothet

tion, we can apply the algorithm to compute the furthest Voronoi
distance diagram for a set line segments and circles based on a non
euclidean distance function. Thereafter, we proceed as before.

As a consequence, we can use our algorithm to compute the mini-
mal enclosing circle of circles in the plane.

4.4.1 Computing the smallest £—enclosing homothet

Let us consider the following problem, first stated by Efrat et al.
[ESZ93].

Definition 4.3 (smallest k—enclosing circle) Given a set of n
points in the plane, the smallest k—enclosing circle is the smallest

circle enclosing at least a set of k points.

This can be generalized in the same sense as before, asking for the
smallest k—enclosing homothet.

Adopting the algorithms for higher order Voronoi diagrams, pre-
sented in chapter 3 in the most natural way, enables us using this
approach to give the appropriate answer.

4.5 Analysis

For the upper envelope computation based on n points and a poly-
gon @ with v vertices we need n triangular fans consisting each of
v triangles. In case of () being a circle, this is the computation of
the furthest point Voronoi diagram.

Furthermore, in oder to find the center of the smallest enclosing
homothet, we have to read back the depth buffer values of the
entire frame buffer. Based on the hardware at our disposal, it
takes about 30 milliseconds to read back 4 bytes for each of the
1000 x 1000 pixels.

Compared to the computation of Voronoi diagrams in chapter 3,
we do not use any color information, only the depth buffer values
matter. Hence, except for the errors made by the graphic engine,
our computation is exact. Even the computation of the minimum

90

4.5. Analysis

enclosing circle is only affected by vertical approximation errors
caused by the computation of the furthest point Voronoi diagram,
respectively the corresponding distances.

91

CHAPTER 4. Smallest Enclosing Homothet

92

Chapter 5

Extremal polygon

containment

Figure 5.1

Biggest empty star—shaped polygon (in red with yellow kernel point)
constrained to be completely inside the convex hull, the blue area
represents the lower envelope computation

93

CHAPTER 5. Extremal polygon containment

5.1 The mission

Recall our example of the alliance of communities from chapter 4.
But now, instead of establishing a transmitting station for their
citizens, they are faced with the problem of finding the best place
for a waste disposal site. Of course, nobody wants to live near a bad
smelling waste disposal. Accordingly, the best place is further away
from its nearest city, i.e. the distance between the waste disposal
and the next city should be as large as possible. Additionally, the
choice for a place is limited by the area the cities have at their
disposal. This leads to the following definition.

Definition 5.1 (Extremal polygon containment) Let S be a
set of n points in the plane, A be a subset of the plane, and Q) be a
simple star—shaped polygon. Determine the biggest homothet H of
Q such that no point of S is contained inside H and H s contained
in A.

The problem is also called largest empty homothet emphasizing the
duality with the smallest full homothet of the last chapter.

A variation of the problem asks for the largest empty circle the
center of which is inside a predefined bounding box, which normally
is the convex hull of the points in S (e.g. see [PS95, pp. 256 et

sqq.])-

This can also be stated as a facility location problem. Given the set
S of sites. Let A be a subset of the plane and (Q be a star-shaped
polygon such that (0,0) is contained in the kernel. We search for
a translation vector ¢ € R? maximizing the scaling factor A € R
such that t+ A\Q NS = 0 and t € A, respectively t+ AQ C A.

5.2 Previous work in the traditional model

Restricted to the largest empty circle, Shamos and Hoey present
an O(nlogn) time algorithm based on Voronoi diagrams in [SH75].
In 1986, Lee and Wu [LW86]| settled a lower bound of Q(nlogn)
for the algebraic decision tree model proving optimality of the pre-
ceding algorithm.

94

5.3. Pixel-based realization

Sharir and Toledo [ST94] developed an algorithm used for placing
the largest copy of a convex polygon P with k—vertices inside a
bounded two dimensional environment consisting of a collection
of polygonal obstacles having altogether n corners. The copy is
not allowed to intersect any of the obstacles and may have arisen
from P by translation, rotation and scaling. The running time
for that algorithm is O(k%nX4(kn)log?(kn)loglog(kn)) (A\,(r) is
the maximum length of an (r,q) Davenport Schinzel sequence, i.e.
almost linear in 7 for fixed q).

Fortune [For85| and Leven and Sharir [LS87] attended the prob-
lem to find the largest homothetic copy of a polygon P inside an
arbitrary polygonal environment. One result is an O(knlog(kn))
time algorithm provided P is a convex polygon with k vertices and
the environment consists of at most n vertices.

The more general question — nesting two non—convex, possibly
non—connected polygons — is answered by Avnaim and Boisson-
nat [AB88] with an O(k*n3log(kn)) time algorithm.

5.3 Pixel-based realization

Let S = {s1,...,sp} beaset of n points in the plane, and @ a star—
shaped polygon. Our aim is to compute the largest homothet H of
@ such that no point of S is contained in (). In a basic approach
we do not impose any constraint on the position of kernel point
kg of H but to be inside the rectangular area of the screen.

The way we determine the kernel point of H is quite similar to
the one from chapter 4 for determining the smallest enclosing ho-
mothet. In contrast to there, we use now the lower envelope of
the arrangement of cones to discover kg. As before, all cones are
translations of a cone the base of which has the shape of @ ro-
tated about 7 around kg. The kernel point £y of the requested
homothet is determined by the pixel with the highest depth buffer
value, which is also a measure for the scaling factor .

95

CHAPTER 5. Extremal polygon containment

5.4 Extensions

5.4.1 Restricting the position of the homothet

There are a several ways to extent the basic algorithm. A frequent
one is to demand the kernel point to be contained inside a prede-
fined polygon. In the pixel based world, it is rather easy to comply
with this requirement (even if the polygon has holes).

Before we determine the highest depth buffer value, we just reset
the depth buffer values of all forbidden pixel. This can be accom-
plished by drawing a polygon corresponding to the desired region
without altering the depth buffer values but the stencil buffer val-
ues. After that we re-allow altering of the depth buffer, and limit
a frame buffer update to these pixels the stencil buffer value of
which is 0. Eventually we render a screen size wide rectangle at
height z = 0.

In case that the idea behind this constraint is to avoid irritations
with your neighbors, we can do better. Deploying the idea of
Voronoi diagrams for line segments, we can force H to lie com-
pletely inside the predefined polygonal region (cf. figure 5.1).

We can just add the boundary of the constraint polygon as an ad-
ditional site, deploying the idea of site in the shape of line segments
for the compuation of generalized Voronoi diagrams.

It is easy to see, that after this rendering step, the depth buffer is
adequately altered to yield the desired result. From there on, we
execute the basic algorithm.

As a consequence of the construction, the forbidden area can be
an arbitrarily shaped polygonal region, i.e. with holes in it, with
only a marginal impact on the complexity of the algorithm.

5.4.2 Line segments and circular arcs obstacles

As a consequence of the before mentioned idea to realize the con-
straint polygon, we can also compute the largest empty homothet
in the case that the obstacles are in the shape of line segments
and/or circular arcs.

96

5.4. Extensions

5.4.3 Weighted Facilities

Compared to the standard problem, the the weighted maximum
facility location problem asks for the best place under the condition
that each point of the input set has a associated weight.

Definition 5.2 (Weighted maximum facility location)

Let S = {s1,...,sn} be a set of n points in the plane. Let
{wi,...,wy} be the set of associated weights, with w; > 0, and A
be a subset of the plane. Find the point ¢ € A such that

¢ = maxmin w; * d(p, s;).
pEA 14

Follert et al. [FSS95] give a subquadratic O(nlog*n) time algo-
rithms, exploiting parametric search, which is a bit surprising as
the computation of weighted Voronoi diagrams of n points is known
to have quadratic complexity.

To solve this problem in the pixel based world, we maintain our
basic algorithm but scale each cone appropriately in the render-
ing step of the arrangement of cones — the same method already
applied to compute the weighted Voronoi diagrams (cf. chapter 3).

97

CHAPTER 5. Extremal polygon containment

98

Chapter 6

Alpha Hulls

S
———?

Figure 6.1

The alpha hull (in red) of a (blue) point set where the associated « is
negative, the yellow area represents a cutting plane that arose from the
pixel-based construction

6.1 The shape of a point set

In 1983, Edelsbrunner, Kirkpatrick, and Seidel [EKS83] presented
a new structure christened to the name a—shapes. They were in-

99

CHAPTER 6. Alpha Hulls

vented to grasp the notion of the shape of a set of points. For ex-
ample, one representative for such a description is the (ordinary)
convex hull, a special case for the a—hull for o = 0.

In a sense, a—shapes are intended to reflect the distance between
the point set under consideration and an observer. From a suffi-
ciently large distance, the single points are not recognized individ-
ually but as an agglomeration. The more you approach the set of
points, the more points emerge visible out of the melted set. For
2 an appropriate small value of « nothing but the points remain as
the a—hull (cf. figure 6.2).

|
RN

For the definition of the a—hull of a set of points we refer to the
initial paper presented by Edelsbrunner, Kirkpatrick, and Seidel
[EKS83].

3 Definition 6.1 (a—hull of set of points (« > 0)) Let a be a
positive real. The a—hull of a set S of points is the intersection

of all closed discs with radius 1/« that contain all the points of S.

In case of o = 0, the closed discs degenerate to half spaces (discs
with infinite radius), such that the resulting hull is nothing else but
4 the convex hull.

Definition 6.2 (a—hull of set of points (« < 0)) For an arbi-

trary negative real o, the a—hull of a set S is the intersection of all

closed complements of discs (of radius —1/a) that contain all the
5 points of S.

For negative values of o the a-hull can also be regarded as the
entire plane subtracted by the area of the union of empty discs of
radius —1/a.

A sequence of six different alpha hulls based on the same set of

6 points is shown in figure 6.2. The corresponding values for « is
increasing from top to bottom, whereby the first four values are
negative. Integrated in the fifth and sixth picture is the convex
hull, i.e. the @ = 0 hull. The smallest enclosing circle is represented
in the sixth picture as another special case for an « hull.

Figure 6.2 As stated above, the entire plane, the minimal enclosing circle,

A sequence of alpha hulls with the convex hull, and the set itself can each be viewed as special

increasing a value

100

6.2. Previous work in the traditional model

cases of the continuous family of a—hulls. Each member of this
family satisfy the relationship that if a; < awo, then the q;—hull is
contained in the ap—hull (cf. [EKS83]).

6.2 Previous work in the traditional model

Edelsbrunner et al.[EKS83] presented a O(nlogn) time algorithm,
which is optimal as the convex hull can be expressed as an a—hull.
Further aspects of a—hulls can also be found in [Ede87, on page
309-315], [KF], as well as [Ede].

Concerning the three dimensional space, Edelsbrunner and Miicke
introduces in [EM92| the formal notion of the family of alpha-
shapes of a finite point set in R3. Visualization and modeling, for
example in molecular shape analysis [Akk96], [Mor96|, [Fac96], as
well as surface reconstruction [GMW97] and curve approximation
[SC99] are some of the fields in which alpha-shapes prove to be
useful.

6.3 Pixel-based approach for negative «

In a first step, we regard the entire plane as a coarse approach to
the correct hull. Given a set of point sites and a fixed radius a we
could draw a circle of radius « around each pixel whenever none
of the sites is covered. How can we be sure that no site is covered
without testing for it?

To solve this problem, we compute the lower envelope of the union Figure 6.3

of cones positioned at the point sites. Then, we draw a circle of Construction of the a—hull of a
radius a around each pixel at height a. Clearly, none of the sites
is contained in any circle. In fact each circle has at least one site
on its boundary. In a sense, these circles erase the area around
the sites without touching them, since the center of each circle is
always at distance « away from its nearest site guaranteed by the
lower envelope computation.

point set

Despite, there might still be area not belonging to the a—hull, i.e.
pixels at distance more than two times a away from its nearest site.
Accordingly, these are not covered by any circle. This problem can
be tackled in drawing a picture wide rectangle at depth « erasing

101

CHAPTER 6. Alpha Hulls

——

Figure 6.4
A boulder with a moving ring
around it, the a—hull is made up of
the boulder and the green area, as

it cannot be reached by the ring

the remaining wrongly colored pixels.

In figure 6.3 the construction of the a—hull is made visible. The
light yellow area is caused by the picture wide rectangle at depth
a. The « circles are drawn in blue whereas the center of the circles
are marked in green. Eventually, the dark red part of the picture
is the actual a—hull.

In case that the points are too near to the border of the picture
we run into trouble. It might happen that some of the circles,
respectively the centers of them, might fall outside of the picture,
and as such remain undrawable. It is because the initially com-
puted lower envelope might be too high at the border. As a result
we compute an overestimation of the desired a—hull. However, we
can determine the part of the picture (the a—hull), which might be
wrong. At least all pixels at distance a away from the border of
the picture are correctly colored.

6.4 The a—hull for positive «

In order to get a notion of the shape of the positive a—hull of a
set of points imagine we have a massive boulder in the shape of
the convex hull of the point set. Around this boulder there is a
ring which can be moved freely but such that the boulder is always
inside it. However, in whatever position you move the ring, there
will be always some space between the ring and the boulder since
the boulder has straight edges whereas the ring is round. In our
example, the positive a—hull is the union of the boulder and the
space which cannot be reached by the ring for whatever position
it is moved t (see figure 6.4).

6.4.1 Implementation

Before we start the actual computation of the a—hull, we first verify
that the demanded radius is big enough, i.e. at least as big as the
minimal enclosing circle (cf. chapter 4.1). In the computation
of the hull, we use LEDA [MN99] to precompute the convex hull
points, as it is by far the fastest method.

We process the convex hull points subsequently in counterclockwise
order. Let s, and ¢ be two subsequent points of the convex hull.

102

6.4. The a—hull for positive «

The first step is to draw a circle with radius « such that s and ¢ lie
at the border of the circle. The second step is to test whether this
circle covers all convex hull points. If that is the case, we redo the
first step with ¢ and ¢/, the convex hull point succeeding t. If the
test fails, we undo the drawing and continue the first step with s
and t' until any point of the convex hull was processed (cf. figure
6.5).

During the course of the algorithm, we maintain the following in-
variant. Let s and ¢ be a pair of points for which the corresponding
circle denoted by Cs; covers all other convex hull points, i.e. Cg
is a valid circle. Then any other valid circle covers the part of the
area of Cy on the left to the line segment between s and ¢t. As a
consequence from the definition, this area determines the a—hull
limited to the left of the segment.

The test whether a circle covers all convex hull points is accom-
plished by enabling the stencil buffer. We set the stencil buffer
function such that for any modified pixel the stencil buffer value
is increased by one. Next, we check for each pixel on the convex
hull if it was hit by the circle in testing the color buffer values.
Unless all the convex hull defining pixels are covered, we redo the
drawing of the circle by rendering the same circle again, but now Visualization of the construction of
with stenciling enabled decreasing the stencil buffers each by one. the a—hull of a point set

Figure 6.5

The intersection of all valid drawn circles is given by the pixels
with the highest stencil buffer values, here denoted by k. Thus,
the a—hull is gained by rendering a picture wide rectangle allowing
a color update only for pixels the stencil buffer value of which is k.

Running time

The running time is made up of the time required to compute the
convex hull and the time spent on the rendering of the circles. In
the worst case we draw at most two circles for each point of the
convex hull, as the undo operation might demand a redraw of a
circle.

6.4.2 Alternative implementation

The above presented implementation has the drawback, that we
rely on LEDA (or any comparable tool) to precompute the set of

103

CHAPTER 6. Alpha Hulls

convex hull points. If we do not want to include any other tools,
than the one OpenGL provides, we can still compute the alpha
hull for positive values of alpha. In a sense, we map the definition
of the alpha hull into graphics.

Let C be the circle of appropriate size, corresponding to the alpha
under consideration. Our idea for the pure pixel-based algorithm
subdivides into two parts.

First, we determine the set of points, where we can place the center
of the circle C covering all points. This is accomplished by drawing
a circle for each site, such that the center of the circle is at the
position of the site. The intersection of all circles is the desired set
of points.

Second, for each point ¢ of the just computed set of points, we
draw a circle centered at q. The intersection of these circles is the
desired alpha-hull.

Both intersections are realized by counting for each pixel, the num-
ber of times it undergoes an update. This can be implemented ei-
ther be enabling blending in the same fashion as used for counting
in section 3.10 of chapter 3. Provided the number of sites is small,
we can also use stenciling to reckon for each pixel the number of
times it is covered by a circle. Using solely the stenciling mech-
anism is slightly faster and less complicated to use for counting
than blending.

Compared to the computation in chapter 3, we now only have to
pay attention to the pixels the stencil buffer of which are equal
to the number of just processed sites. Thus, we do not have to
read back any stencil values but we can render a picture wide
rectangle to reset the stencil buffer values correctly. Hence, to
prevent a buffer overflow, we render a first rectangle resetting the
stencil buffer of all pixels to zero, which have a stencil buffer value
of less than the number of currently processed sites. A second
(picture wide) rectangle reduce the stencil value to 1 of all the
remaining pixels, which are still candidates to be contained in the
final intersection set.

104

6.4. The a—hull for positive «

In the second part, we do not know the maximum number we have
to count to. Thus, the misuse of blending is the first choice for
counting.

Running time

For the advantage of relying solely on OpenGL, we have to pay for
by an increase in the running time. This is founded in the fact,
that the set of pixels computed in the first step can be very large.
Consequently, the number of rendered circles in the second part,
i.e. the number of processed triangles, may be very large, which
can cause a considerable increase in the running time compared to
the first implementation. This unwanted behavior appears every
time, the radius of the circle C' is sizeably larger than the diameter
of the point set.

An example of such a worst case is shown in figure 6.6.

Figure 6.6

Worst case for alternative alpha hull computation

Speedup

Considering the before mentioned algorithm, we actually do not
need to draw all the circles of the part. Since the intersection of
convex sets is also convex, it is sufficient to draw circles only for

105

CHAPTER 6. Alpha Hulls

the points on the boundary of the intersection resulting from the
first part. This can be accomplished by choosing only the first
and the last pixel of each row to draw a circle for. This reduce
the number of rendered circles in the worst case to be bounded by
2(w + h), assuming a rectangular picture of size w x h.

106

Chapter 7

Minimum and maximum
area triangle and

quadrangle

Figure 7.1
Minimum and maximum area triangle and quadrangle

107

CHAPTER 7. Minimum and maximum area triangle and quadrangle

Minimum area triangle with base

Figure 7.2

line through p and ¢

Figure 7.3
Saddle roof on top of two points p

and ¢

7.1 Introduction

In this chapter we are primarily interested in the problem of finding
these three points out of the input set that form the minimum area
triangle. The pixel-based approach is based on an elementary
geometric property concerning the area of triangles. This idea is
further exploited to compute the maximum area triangle, as well
as the minimum and maximum quadrangle.

7.2 Previous work in the traditional model

As one application of the construction of arrangements of lines
and hyperplanes [EOS82|, Edelsbrunner, O’Rourke, and Seidel
presented in 1982 an O(n?) time algorithm exploiting the power
of duality. Further development was made by Eppstein et al.
[EORW92|. They presented solutions for determining convex
(empty) k-gon.

7.3 Pixel-based approach

7.3.1 Minimum area triangle

The minimum area triangle can be found by exploiting the follow-
ing property. Suppose we know two of the three points that define
the minimum area triangle. The remaining point is the one nearest
the line through the former two as pictured in figure 7.2. Thus,
the desired triple of points can be found by examining for every
pair of points the minimum area triangle.

We can transform the idea in the pixel-based world as follows: For
each pair of points (p,q), we put a saddle roof like object upside
down with its roof edge onto the pair (p,q) (cf. figure 7.3). Then,
we read back the depth buffer values for all other points. The one
with the lowest value is the one we search for.

108

7.3. Pixel-based approach

7.3.2 Minimum area triangle, revised

For the computation of the minimum area triangle, we can avoid
reading back the depth buffer values in every pass. More properly,

we can render the (g) saddle roof in only one pass.

For that, we exploit a yet unused degree of freedom. We can adapt
the apex angle to encode the length of the segment between the
two fixed points p and g, i.e. we can choose the angle such that
the appropriate depth values encode the areas of the corresponding
points.

Let g the length of the segment between p and ¢, the two points
under consideration. We denote by (the apex angle of the saddle
roof and choose it to be

¢ =2 -arccot(g/2).

Let s be an arbitrary point with distance d to the line through p
and ¢q. After the rendering of the saddle roof, the height z of s is

z=d-cot({/2) = d - cot(arccot(g/2)).

Hence, z equals the area of the triangle defined by p, ¢ and s (cf.
figure 7.4).

Figure 7.4
Choosing the appropriate apex angle

The minimum area triangle can now be found in a single pass,
provided the depth buffer function is set to "<". To identify the
triple of points defining the demanded triangle, we color the saddle

109

CHAPTER 7. Minimum and maximum area triangle and quadrangle

roofs with one of its defining points. Additionally, we have to take
care that a saddle roof does not change the buffer values of its
defining points. This can be accomplished with the use of the
stencil buffer. Eventually, we search for the point p with the lowest
depth buffer value. The point s nearest the line through p and the
point determined by the color value of p completes the desired
triple of points.

7.3.3 Additionally cutting down the rendering time

We can even further accelerate our algorithm sizeably exploiting
the following idea. Assume we know an upper bound on the mini-
mum area of the demanded triangle. Then we can adjust the width
of the saddle roofs appropriately, such that only pixels within this
bound are covered. Hence, determine the minimum area triangle
of a small sample set of the points may result in a further acceler-
ation.

Moreover, we can make use of a pigeon hole argument to derive a
upper bound on the area of the minimum area triangle. Consider
an arbitray triangulation of the n points, the picture is partitioned
into at least n—2 triangles. That means, that the area of the mini-
mum area triangle is at most (w-h)/(n—2), assuming a rectangular
picture of size w X h.

7.3.4 Minimum area quadrangle

In order to compute the minimum area quadrangle, we can make
use of the same methods as before except the adaptation of the
apex angle is of no use. But, the acceleration in precomputing
an upper bound of the area can also be applied, although slightly
modified. In determining the maximal height of the saddle roof,
we have to take into consideration, that the minimum quadrangle
can be almost completely on one of the both sides, i.e. thus in the
red or the blue plane.

Assume we know the two points p and ¢, determining the diagonal
of the minimum area quadrangle. Then the nearest point to the
left and the right of the diagonal gives us the quadrangle we search
for. We use the before mentioned construction to accomplish this
task.

110

7.3. Pixel-based approach

For n points in the plane we need (721) rendering passes, each con-
sists of the following steps.

e Reset the depth buffer values.

e Draw a saddle roof on the pair of points under consideration.
To distinguish the points to the left from the one on the right,
we color the right side of the saddle roof blue, the left one
red.

e Read back the depth buffer values of the n — 2 remaining
points. The red and blue points with minimum depth buffer
value are the one we searched for.

7.3.5 Maximum area triangle/quadrangle

We can use the same algorithms to compute the maximum instead
of the minimum area triangle and quadrangle, respectively. The
only difference is that we now have to determine the points with
the maximum depth buffer values.

Concerning the algorithm to compute the minimum/maximum
area triangle, we cannot make use of acceleration achieved by re-
ducing the width of the saddle roof. The same holds for the mini-
mum/maximum area quadrangle.

111

CHAPTER 7. Minimum and maximum area triangle and quadrangle

112

List of Figures

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13
3.14

3.15

Structure of a graphic engine 8
Structure of a pixel 8
Structure of a fragmento 8
Model of computation 10
Geometric primitives 11
Geometry pipeline 13
Raster pipeline 16
Pixel color buffer update 17
Blending state variables 17
Logical operation state variables 18
Histogram on blue with eight intervals 19
Minmax example o0 19
Standard use of textures 23
Texturecircle 000 23
Voronoi diagram 29
Descartes’ decomposition of space into vortices . . 30
Construction of a Voronoi diagram employing cones 32
Cone size compared to picture size 33
Maximal error in approximation of the cone 33
Worst case deviation of correct and computed bisector 35
Worst case study of the approximation error 37
Bisector deviation 38
Width w of the blue region 40
Level three quadtree with 43 leaves 40
Lower bound forradius 41
Upper bound for the number of visited nodes in the

quadtreeo 43
Rendering time with and without the quadtree . . 45
Graph of the distance function for £ = 0.5, blue

represents picture area L. 45
Graph of the distance function for £ = 0.8, blue

represents picture area L. 45

113

LIST OF FIGURES

3.16

3.17

3.18
3.19

3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34

3.35

3.36

3.37
3.38

3.39

3.40
3.41

3.42

Graph of the distance function for £ = 1, blue rep-
resents picture area
Graph of the distance function for £ = 1.2, blue
represents picture area L.
Construction of the polygonal chain
Graph of the distance function for £ = 1.5, blue
represents picture area
Graph of the distance function for £ = 2.0, blue
represents picture area
Graph of the distance function for £ = 3.0, blue
represents picture area
Graph of the distance function for £ = 5.0, blue
represents picture area
Graph of the distance function for ¢ = 10.0, blue
represents picture area
Graph of the distance function for £ = oo, blue rep-
resents picture area
Construction of the polygonal chain
Voronoi diagram for £=0.5
Voronoi diagram for £=1.0
Voronoi diagram for £=2.0
Voronoi diagram for £=6.0
Equidistant area as an peculiarity of the max-norm
Equidistant areas for the Manhattan-norm
Max-norm based Voronoi diagram
Manhattan-norm based Voronoi diagram
All degree k diagrams of 5 sites with underlying Lo
distance function0
Degree k Voronoi diagrams, the bold lines represent
the degree 2 diagram, the shaded lines represent the
furthest point diagram
Order 10 euclidean distance diagram with and with-
out quadtree
Computing the apex angle « of a weighted cone

Multiplicatively weight Voronoi diagram with un-
derlying euclidean distance.
An additive weight w causes a translation of the
cone in z directiono
Distance graph of a line segment site
Line segment computation for arbitrary distance
function Ly, oo
Distance graph of a circle site

46

46
47

47
47
48
48
49
49
50
51
52
52
93
o4
54
95
56

o8

o8

62
64

65

65
66

114

LIST OF FIGURES

3.43

3.44
3.45

3.46

3.47
3.48
3.49
3.50
3.51
3.52

3.53
3.54

3.55

3.56

4.1
4.2
4.3

5.1

6.1
6.2
6.3
6.4

6.5

6.6
7.1

7.2
7.3
7.4

Distance graph of a (red) circular arc site (to ease
perception, without the two ordinary cones at e

and e;) . ..o 68
Distance between a point and and circular arc . . . 68
Voronoi diagram of a set of points, line segments

and circular arcs based on the Lo norm 69
Voronoi and furthest point Voronoi diagram with

superposed settle point computation 71
Increase in the maximum region 71
Contribution areaof p 73
OpenGL settings for the settle point computation . 74
Repeated computation 76
Repeated computation 76
Voronoi diagram with blank patches of precomputed

ATEAS « « « v .+ e e e e e e e e e e e e e 77
Running time anomaly 7
Directed Hausdorff distance between the set of red

and blue points, and vice versa 78

An exemplary configuration in which diameter(B U
R), given by by and be, is greater than dpyax(B,R)
defined by by andrg 80
Settle point computation based on the Lg s distance 83

Smallest Enclosing Homothet Computation 85
Asymmetrical star—shaped polygon 89
Construction of the base of the cones 89

Biggest empty star—shaped polygon constrained to

be completely inside the convex hull 93
The alpha hull of a point set with negativea . . . 99
A sequence of alpha—hulls with increasing a value 100
Construction of the a—hull of a point set 101
A boulder with a moving ring around it. The green

area cannot be reached by thering 102
Visualization of the construction of the a—hull of a

pointset Lo 103

Worst case for alternative alpha hull computation . 105

Minimum and maximum area triangle and quadran-

gle . .o 107
Minimum area triangle with base line through p and ¢108
Saddle roof on top of two points pand g 108
Choosing the appropriate apex angle 109

115

LIST OF FIGURES

116

Bibliography

[AA02]

[AAPO02a]

[AAPO2b]

[ABSS]

[ACY85a]

[ACY85b]

[AES4]

0. Aichholzer and F. Aurenhammer. Voronoi
diagrams - computational geometry’s favorite.
Special Issue on Foundations of Information
Processing of TELEMATIK, 1:7-11, 2002.

O. Aichholzer, F. Aurenhammer, and B. Palop.
Quickest paths, straight skeletons, and the city
voronoi diagram. In Proc. 18" Ann. ACM Symp.
Computational Geometry, Barcelona, Spain, 2002.

Oswin Aichholzer, Franz Aurenhammer, and Belén
Palop. Quickest paths, straight skeletons, and the
city voronoi diagram. In Proceedings of the eighteenth
annual symposium on Computational geometry, pages
151-159. ACM Press, 2002.

F. Avnaim and J.-D. Boissonnat. Polygon placement
under translation and rotation. In M. Wirsing R.
Cori, editor, Proceedings of the 5th Annual
Symposium on Theoretical Aspects of Computer
Science (STACS ’88), volume 294 of LNCS, pages
322-333, Bordeaux, France, February 1988. Springer.

Alok Aggarwal, J. Chang, and Chee Yap. Minimum
area circumscribing polygons. Technical Report NYU
Courant Report 160, Robotics Report 42, May, 1985,
IBM-TJW/NYU-Courant, 1985.

Alok Aggarwal, J. S. Chang, and Chee K. Yap.
Minimum area circumscribing polygons. The Visual
Computer, 1(2):112-117, October 1985.

F. Aurenhammer and H. Edelsbrunner. An optimal
algorithm for constructing the weighted Voronoi
diagram in the plane. Pattern Recognition,
17(2):251-257, 1984. [IIG-Report-Series F109, TU
Graz, Austria, 1983].

117

BIBLIOGRAPHY

[AH35|

[AI87]

[AKO0]

[AkK96]

[Ata99]

[Aur84]

[Aur86al

[Aur86b|

[Aur91]

P. Alexandroff and H. Hopf. Topologie. L. Julius
Springer, Berlin, 1935.

F. Aurenhammer and H. Imai. Geometric relations
among Voronoi diagrams. In Proc. 4" Ann. STACS,
Lecture Notes in Computer Science, volume 247,
pages 53—65, Passau, Germany, 1987. Springer
Verlag.

F. Aurenhammer and R. Klein. Voronoi diagrams.
In J. Sack and G. Urrutia, editors, Handbook of
Computational Geometry, pages 201-290. Elsevier
Science Publishing, 2000. [SFB Report F003-092, TU
Graz, Austria, 1996].

Nataraj Akkiraju. Molecule surface triangulation
from alpha shapes. Technical Report
UIUCDCS-R-96-1942, University of Illinois at
Urbana-Champaign, June 1996.

Mikhail J. Atallah, editor. Algorithms and theory of
computation handbook. CRC Press, 2000 N.W.
Corporate Blvd., Boca Raton, FL 33431-9868, USA,
1999.

F. Aurenhammer. Gewichtete Voronoi Diagramme:
Geometrische Deutung und
Konstruktions-Algorithmen. PhD thesis, IIG-TU
Graz, Austria, 1984. Report B53.

F. Aurenhammer. The one-dimensional weighted

Voronoi diagram. Information Processing Letters,
22(3):119-123, 1986. [IIG-Report-Series F110, TU
Graz, Austria, 1983].

Franz Aurenhammer. A new duality result
concerning Voronoi diagrams. In Laurent Kott,
editor, Automata, Languages and Programming, 13th
International Colloguium, volume 226 of Lecture
Notes in Computer Science, pages 21-30, Rennes,
France, 15-19 July 1986. Springer-Verlag.

F. Aurenhammer. Voronoi diagrams — a survey of a
fundamental geometric data structure. ACM
Computing Surveys, 23(3):345-405, 1991.
Habilitationsschrift. [Report B 90-09, FU Berlin,
Germany, 1990].

118

BIBLIOGRAPHY

[BKOS97]

[BKST00]

[BMS94]

[BOS3)

[Bro79]

[BSTY98]

[BT83]

[cas02]

[CD85]

[CDS6]

Mark de Berg, Marc van Kreveld, Mark Overmars,
and Otfried Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Berlin
Heidelberg, 1997.

S. N. Bespamyatnikh, Klara Kedem, Michael Segal,
and Arie Tamir. Optimal facility location under
various distance functions. International Journal of

Computational Geometry and Applications,
10(5):523-534, 2000.

C. Burnikel, K. Mehlhorn, and S. Schirra. How to
compute the Voronoi diagram of line segments:
Theoretical and practical results. Lecture Notes in
Computer Science, 855:227, 1994.

Michael Ben-Or. Lower bounds for algebraic
computation trees. pages 80-86, 1983.

Kevin Q. Brown. Voronoi diagrams from convex
hulls. Information Processing Letters, 9(5):223-228,
December 1979.

Boissonnat, Sharir, Tagansky, and Yvinec. Voronoi
diagrams in higher dimensions under certain
polyhedral distance functions. GEOMETRY:
Discrete & Computational Geometry, 19, 1998.

Binay K. Bhattacharya and Godfried T. Toussaint.
Efficient algorithms for computing the maximum

distance between two finite planar sets. J.
Algorithms, 4(2):121-136, 1983.

Cass Everitt cass@nvidia.com. Interactive
order—independent transparency. Technical Report
OpenGL Applications Engineering, NVIDIA, 2002.

L. P. Chew and R. L. Drysdale, ITI. Voronoi
diagrams based on convex distance functions. In
Joseph O’Rourke, editor, Proceedings of the
Symposium on Computational Geometry, pages
235-244, Baltimore, MD, June 1985. ACM Press.

L. Paul Chew and Robert L. Scot Drysdale. Finding
Largest Empty Circles with Location Constraints.
Technical Report PCS-TR86-130, Dartmouth
College, Computer Science, Hanover, NH, 1986.

119

BIBLIOGRAPHY

[CDSS]

[CES7]

[Che93|

[CHLMO02)

[CY84]

[DAS4]

[Des44]

[DKS02]

IDLO1]

J. Canny and B. Donald. Simplified voronoi
diagrams. Discrete and Computational Geometry,
3:219-236, 1988.

B. Chazelle and H. Edelsbrunner. An improved
algorithm for constructing K sup th -order voronoi
diagrams. IEEE Trans. Comput., C-36:1349-1354,
1987.

L. Paul Chew. Near-quadratic bounds for the L
voronoi diagram of moving points. Technical Report
TR93-1348, Cornell University, Computer Science
Department, May 1993.

O. Cheong, S. Har-Peled, N. Linial, and J. Matousek.
The one-round voronoi game. In Proc. 18th Annu.
ACM Sympos. Comput. Geom., pages 97-101, 2002.

J. S. Chang and C. K. Yap. A polynomial solution
for potato-peeling and other polygon inclusion and
enclosure problems. In IEEE, editor, 25th annual
Symposium on Foundations of Computer Science,
October 24-26, 1984, Singer Island, Florida, pages
408-416, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1984. IEEE Computer Society
Press.

DePano and Aggarwal. Finding restricted
k-envelopes for convex polygons. In ALLERTON:
22th Annual Allerton Conference on Communication,
Control, and Computing, pages 81-90. Allerton
House, Monticello, Illinois, 1984.

René Descartes. Principia Philosophiae. Ludovicus
Elzevirius, Amsterdam, 1644.

Frank Dehne, Rolf Klein, and Raimund Seidel.
Maximizing a voronoi region: The convex case. In
ISAAC, International Symposium on Algorithms and
Computation, volume 13, November 2002.

Hristo Djidjev and Andrzel Lingas. On computing
the Voronoi diagram for restricted planar figures. In
F. Dehne, J.-R. Sack, and N. Santoro, editors,
Algorithms and Data Structures, 2nd Workshop
WADS ’91, volume 519 of Lecture Notes in Computer
Science, pages 54—64, Ottawa, Canada, 14-16 August
1991. Springer-Verlag.

120

BIBLIOGRAPHY

[DWE02]

[Dwy91]

[Ede]

[Ede85]

[Ede87]

[EKS83]

[EM92]

[EORW92]

[EOS82]

[Epp]

[Epp92]

J. Diepstraten, D. Weiskopf, and T. Ertl.
Transparency in interactive Technical Illustrations.
In Proc. EuroGraphics ’02, volume 21 of 3, page 11,
August 2002.

R. A. Dwyer. Higher-dimensional Voronoi diagrams
in linear expected time. Disc. and Comp. Geometry,
6:343-367, 1991.

Herbert Edelsbrunner. Alpha shapes on web.
http:/ /www.alphashapes.org/.

H. Edelsbrunner. Computing the extreme distances
between two convex polygons. J. Algorithms,
6:213-224, 1985.

Herbert Edelsbrunner. Algorithms in Combinatorial
Geometry, volume 10 of EATCS Monographs on
Theoretical Computer Science. Springer-Verlag,
November 1987.

Herbert Edelsbrunner, D. G. Kirkpatrick, and
Raimund Seidel. On the shape of a set of points in
the plane. IEEE Trans. Information Theory,
IT-29:551-559, 1983.

Herbert Edelsbrunner and Ernst P. Mucke.
Three-dimensional alpha shapes. 1992 Workshop on
Volume Visualization, pages 7582, 1992.

David Eppstein, Mark Overmars, Giinter Rote, and
Gerhard J. Woeginger. Finding minimum area
k-gons. Discrete & Computational Geometry,
7(1):45-58, 1992.

H. Edelsbrunner, J. O’Rourke, and R. Seidel.
Constructing arrangements of lines and hyperplanes
with applications. In 24th Annual Symposium on
Foundations of Computer Science, pages 83-91, Los
Alamitos, Ca., USA, November 1982. IEEE
Computer Society Press.

David Eppstein. Geometry in action.
http:/ /www.ics.uci.edu/ eppstein/geom.html.

David Eppstein. New algorithms for minimum area
k-gons. In Frances, editor, Proceedings of the 3rd
Annual ACM-SIAM Symposium on Discrete

121

BIBLIOGRAPHY

[ES85)

[EST95]

[ESZ93]

[Fac96]

[For85]

[Forg86|

[For92]

[FR97]

Algorithms (SODA ’92), pages 83-88, Orlando, FL,
USA, January 1992. STAM.

Herbert Edelsbrunner and Raimund Seidel. Voronoi
diagrams and arrangements. In Joseph O’Rourke,
editor, Proc. 1st ACM Symp. Computational
Geometry, pages 251-262, 5-7 June 1985.

B. L. Evans, C. Schwarz, J. Teich, A. Vainshtein, and
E. Welzl. Minimal enclosing parallelogram with
application. In Proceedings of the 11th Annual
Symposium on Computational Geometry, pages
C34-C35, New York, NY, USA, June 1995. ACM
Press.

Alon Efrat, Micha Sharir, and Alon Ziv. Computing
the smallest k-enclosing circle and related problems.

In Workshop on Algorithms and Data Structures,
pages 325-336, 1993.

Michael Allen Facello. Geometric techniques for
molecular shape analysis. Technical Report
UIUCDCS-R-96-1967, University of Illinois at
Urbana-Champaign, October 1996.

S. J. Fortune. A fast algorithm for polygon
containment by translation (extended abstract). In
Wilfried Brauer, editor, Automata, Languages and
Programming, 12th Colloguium, volume 194 of
Lecture Notes in Computer Science, pages 189-198,
Nafplion, Greece, 15-19 July 1985. Springer-Verlag.

Steven J. Fortune. A sweepline algorithm for Voronoi
diagrams. In Proc. 2nd ACM Symp. Computational
Geometry, pages 313-322. ACM Press, 2-4 June
1986.

Steve Fortune. Voronoi diagrams and Delaunay
triangulations. In F. K. Hwang and D.-Z. Du,
editors, Computing in Euclidean Geometry. World
Scientific, 1992.

Flynn and Rudd. Parallel architectures. In Allen B.
Tucker, Jr. (Editor-in-Chief), The Computer Science
and Engineering Handbook, CRC Press, in
cooperation with ACM, 1997. 1997.

122

BIBLIOGRAPHY

[FS75]

[FSS95]

[FT92]

[FvDFHY6]

[GKS90]

[GMW97]

[GO97]

[GS98]

[Har01]

[HKL+99)

Herbert Freeman and Ruth Shapira. Determining the
minimum-area encasing rectangle for an arbitrary
closed curve. Communications of the ACM,
18(7):409-413, July 1975.

Frank Follert, Elmar Schéomer, and Jiirgen Sellen.
Subquadratic algorithms for the weighted maximin
facility location problem. In Proc. 7th Canadian
Conference on Computational Geometry, pages 1-6,
1995.

Gordon Fuller and Dalton Tarwater. Analytic
geometry. Addison-Wesley, 7th ed. edition, 1992.

J. Foley, A. van Dam, S. Feiner, and J. Hughes.
Computer graphics: Principles and practice in C.
Addison-Wesley, 2nd edition, 1996.

Leonidas J. Guibas, Donald E. Knuth, and Micha
Sharir. Randomized incremental construction of
Delaunay and Voronoi diagrams. In Michael S.
Paterson, editor, Automata, Languages and
Programming, 17th International Colloquium, volume
443 of Lecture Notes in Computer Science, pages
414-431, Warwick University, England, 16-20 July
1990. Springer-Verlag.

B. Guo, J. Menon, and B. Willette. Surface
reconstruction using alpha shapes. Computer
Graphics Forum, 16(4):177-190, 1997. ISSN
1067-7055.

Jacob E. Goodman and Joseph O’Rourke, editors.
Handbook of Discrete and Computational Geometry.
CRC Press, 1997.

Bernd Gértner and Sven Schonherr. Exact primitives
for smallest enclosing ellipses. Information
Processing Letters, 68(1):33-38, 1998. a preliminary
version appeared in Proc. 13th Annu. ACM Symp. on
Computational Geometry, 1997, pages 430-432.

S. Har-Peled. A practical approach for computing
the diameter of a point-set. In SOCG2001, pages
177-186, 2001.

Kenneth E. Hoff III, John Keyser, Ming Lin, Dinesh
Manocha, and Tim Culver. Fast computation of

123

BIBLIOGRAPHY

generalized Voronoi diagrams using graphics
hardware. Computer Graphics, 33(Annual
Conference Series):277-286, 1999.

[HY61] J. G. Hocking and G. S. Young. Topology.
Addison—Wesley, Reading, Massachusetts, 1961.

[J&n01] Klaus Janich. Topologie. Springer, Berlin, 2001.

[KF] kfischer@iiic.ethz.ch Kaspar Fischer. Introduction to
alpha shapes.
http://n.ethz.ch/student/fischerk/alphashapes/as/as.html.

[Kil96] Mark J. Kilgard. OpenGL Programming for the X
Window System. Addison-Wesley, Reading, MA,
USA, 1996.

[KKS95] Matthew J. Katz, Klara Kedem, and Michael Segal.
Improved algorithms for placing undesirable facilities.
In Proceedings of the 11th Canadian Conference on
Computational Geometry, pages 65—67, 1995.

|KL85] V. Klee and M. Laskowski. Finding the smallest
triangles containing a given convex polygon. Journal

of Algorithms, 6, 1985, pages 359-375, 1985.

[KL94| R. Klein and A. Lingas. Hamiltonian abstract
Voronoi diagrams in linear time. Lecture Notes in
Computer Science, 834:11 et seqq., 1994.

[Kl1e89] Rolf Klein. Concrete and abstract Voronoi diagrams,
volume 400 of Lecture Notes in Computer Science.
Springer-Verlag Inc., New York, NY, USA, 1989.

[K1e97] Rolf Klein. Algorithmische Geometrie.
Addison-Wesley-Longman, 1997. ISBN
3-8273-1111-x.

[Knu68| D. Knuth. The Art of Computer Programming,
Fundamental Algorithms, volume 1. Addison-Wesley,
Reading, Mass., 1968.

[Knu73| Donald E. Knuth. The Art of Computer
Programming. Volume III: Sorting and Searching.
Addison-Wesley, Reading, Massachusetts, 1973.

[KW87| Rolf Klein and Derick Wood. Voronoi diagrams
based on general metrics in the plane. Technical

124

BIBLIOGRAPHY

[KWS8S]

[Le94]

[Lee80]

|Lee82]

[L.S87]

[LW86]

[Meg83]

[Meh84al

[Meh84b]

[Meh84c|

Report report00005, Albert-Ludwigs-Universitaet
Freiburg, Institut fuer Informatik, November 1, 1987.

R. Klein and D. Wood. Voronoi diagrams based on
general metrics in the plane. In M. Wirsing R. Cori,
editor, Proceedings of the 5th Annual Symposium on
Theoretical Aspects of Computer Science (STACS
’88), volume 294 of LNCS, pages 281-291, Bordeaux,
France, February 1988. Springer.

N.-M. Le. On Voronoi diagrams in the L,-metric in
higher dimensions. Lecture Notes in Computer
Science, 775:711, 1994.

D.T. Lee. Farthest neighbor voronoi diagrams and
applications. Technical Report 80-11-FC-04,,
Northwestern University, November 1980.

Der-Tsai Lee. On k-nearest neighbor Voronoi
diagrams in the plane. IEEE Trans. Computers,
C-31(6):478-487, June 1982.

D. Leven and M. Sharir. Planning a purely
translational motion for a convex object in a two
dimensional space using generalized voronoi
diagrams. Discrete and Computational Geometry,
2:9-31, 1987.

D. T. Lee and Y. F. Wu. Geometric complexity of
some location problems. Algorithmica, 1:193-211,
1986.

Nimrod Megiddo. Linear-time algorithms for linear
programming in R and related problems. SIAM
Journal on Computing, 12(4):759-776, 1983.

Kurt Mehlhorn. Data Structures and Algorithms 1:
Sorting and Searching, volume 1 of EATCS
Monographs on Theoretical Computer Science.
Springer-Verlag, Berlin, Germany, 1984.

Kurt Mehlhorn. Data Structures and Algorithms 2:
Graph Algorithms and NP-Completeness, volume 2 of
EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, Berlin, Germany, 1984.

Kurt Mehlhorn. Data Structures and Algorithms 3:
Multi-dimensional Searching and Computational

125

BIBLIOGRAPHY

[MN99]

[Mor96]

[OAMBSE6]

[0BS92]

[OIMS84]

[O’R93]

[PS95]

[Rap89]

Geometry, volume 3 of EATCS Monographs on
Theoretical Computer Science. Springer-Verlag,
Berlin, Germany, 1984.

Kurt Mehlhorn and Stefan Ndher. LEDA: A
Platform of Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge,
England, January 1999.

Patrick Joseph Moran. Visualization and modeling
with shape. Technical Report UIUCDCS-R-96-1945,
University of Illinois at Urbana-Champaign, March
1996.

J. O'Rourke, A. Aggarwal, S. Maddila, and

M. Baldwin. An optimal algorithm for finding
minimal enclosing triangles. J. of Algorithms, 1986,
7:258-269, 1986.

Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara.
Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams. Probability and Mathematical
Statistics. John Wiley & Sons, Chichester, England,
September 1992. foreword by D. G. Kendall.

Takemasa Ohya, M. Iri, and K. Murota. A fast
Voronoi-diagram algorithm with quaternary tree
bucketing. Information Processing Letters,
18(4):227-231, May 1984.

Joseph O’Rourke. Computational Geometry in C.
Cambridge University Press, 1993. ISBN
0-521-44034-3.

Franco P. Preparata and Michael Ian Shamos.
Computational Geometry: An Introduction. Texts
and Monographs in Computer Science.
Springer-Verlag, New York NY, 1995. corrected and
expanded second printing, 1988.

David Rappaport. Computing the furthest site
Voronoi diagram for a set of discs (preliminary
report). In F. Dehne, J.-R. Sack, and N. Santoro,
editors, Algorithms and Data Structures, Workshop
WADS ’89, volume 382 of Lecture Notes in Computer
Science, pages 5766, Ottawa, Canada, 17-19 August
1989. Springer-Verlag.

126

BIBLIOGRAPHY

[Rot91]

[SA93]

[SC99)]

[SHT5]

[Sha75|

[Smi00]

[ST94]

[STWE94]

[TBS1]

Giinter Rote. Computing the minimum Hausdorff
distance between two-point sets on a line under
translation. Information Processing Letters,

38(3):123-127, May 1991

Mark Segal and Kurt Akeley. The OpenGL graphics
system: A specification. Technical report, Silicon
Graphics Computer Systems, Mountain View,
CA,USA, 1993.

Takis Sakkalis and Ch. Charitos. Approximating
curves via alpha shapes. Graphical models and image
processing: GMIP, 61(3):165-176, May 1999.

Michael Tan Shamos and Dan Hoey. Closest-point
problems. In Proc. 16th Annual Symp. Foundations
of Computer Science, pages 151-162. IEEE
Computer Society, 13—-15 October 1975.

Michael Tan Shamos. Geometric complexity. In
ACM, editor, Conference record of Seventh Annual
ACM Symposium on Tth Theory of Computing:
papers presented at the Symposium, Albuquerque,
New Mezico, pages 224-233, New York, NY, USA,
May 1975. ACM Press.

Michiel Smid. Closest-point problems in
computational geometry. In Handbook

of Computational Geometry, J.-R. Sack, and
J. Urrutia, editors, Elsevier, 2000. 2000.

Sharir and Toledo. Extremal polygon containment
problems. CGTA: Computational Geometry: Theory
and Applications, 4, 1994.

Christian Schwarz, Jiirgen Teich, Emo Welzl, and
Brian Evans. On finding a minimal enclosing
parallelogram. Technical Report TR-94-036,
Berkeley, CA, 1994.

G.T. Toussaint and B.K. Bhattacharya. On
geometric algorithms that use the furthest point
voronoi diagram. Technical Report SOCS-81.3,
School of Computer Science, McGill University,
January 1981.

127

BIBLIOGRAPHY

[TM82]

[Tol91]

[Wel91]

[WNDOYY]

G. Toussaint and J. McAlear. A simple o(n log n)
algorithm for finding the maximum distance between
two finite planar sets, 1982.

S. Toledo. Extremal polygon containment problems.
In ACM-SIGACT ACM-SIGGRAPH, editor,
Proceedings of the Tth Annual Symposium on
Computational Geometry (SCG ’91), pages 176-185,
North Conway, NH, USA, June 1991. ACM Press.

E. Welzl. Smallest enclosing disks (balls and
ellipsoids). In Hermann Maurer, editor, Proceedings
of New Results and New Trends in Computer
Science, volume 555 of LNCS, pages 359370, Berlin,
Germany, June 1991. Springer.

Mason Woo, Jackie Neider, Tom Davis, and OpenGL
Architecture Review Board. OpenGL programming
guide: the official guide to learning OpenGL, version
1.2. Addison-Wesley, Reading, MA, USA, third
edition, 1999.

128

