
LEDA-SM:
External Memory Algorithms

and Data Structures in
Theory and Practice

Dissertation
zur Erlangung des Grades

Doktor der Ingenieurswissenschaften (Dr.-Ing.)
der naturwissenschaftlich-technischen Fakult¨at I

der Universität des Saarlandes

von

Andreas Crauser

Saarbr¨ucken
2. März 2001

Datum des Kolloquiums: 2. M¨arz 2001

Dekan der naturwissenschaftlich-technischen Fakult¨at I:
Professor Dr. Rainer Schulze-Pillot-Ziemen

Gutachter:
Professor Dr. Kurt Mehlhorn, MPI f¨ur Informatik, Saarbr¨ucken
Professor Dr. Paolo Ferragina, Universita di Pisa, Pisa, Italien

Deutsche Kurzzusammenfassung

Die zu verarbeitenden Datenmengen sind in den letzten Jahren dramatisch gestiegen,
so daß Externspeicher (in Form von Festplatten) eingesetzt wird, um die Datenmen-
gen zu speichern. Algorithmen und Datenstrukturen, die den Externspeicher benutzen,
haben andere algorithmische Anforderungen als eine Vielzahl der bekannten Algo-
rithmen und Datenstrukturen, die f¨ur das RAM-Modell entwickelt wurden. Wir ge-
ben in dieser Arbeit erst einen Einblick in die Funktionsweise von Externspeicher
anhand von Festplatten und erkl¨aren die wichtigsten theoretischen Modelle, die zur
Analyse von Algorithmen benutzt werden. Weiterhin stellen wir ein neu entwickelte
C++ Klassenbibliothek namens LEDA-SM vor. LEDA-SM ist bietet eine Sammlung
von speziellen Externspeicher Algorithmen und Datenstrukturen. Im zweiten Teil ent-
wickeln wir neue Externspeicher-Priorit¨atswarteschlangen und neue Externspeicher-
Konstruktionsalgorithmen f¨ur Suffix Arrays. Unsere neuen Verfahren werden theore-
tisch analysiert, mit Hilfe von LEDA-SM implementiert und anschließend experimen-
tell getestet.

Short Abstract

Data to be processed has dramatically increased during the last years. Nowadays,
external memory (mostly hard disks) has to be used to store this massive data. Al-
gorithms and data structures that work on external memory have different properties
and specialties that distinguish them from algorithms and data structures, developed
for the RAM model. In this thesis, we first explain the functionality of external mem-
ory, which is realized by disk drives. We then introduce the most important theoretical
I/O models. In the main part, we present the C++ class library LEDA-SM. Library
LEDA-SM is an extension of the LEDA library towards external memory computa-
tion and consists of a collection of algorithms and data structures that are designed to
work efficiently in external memory. In the last two chapters, we present new external
memory data structures for external memory priority queues and new external memory
construction algorithms for suffix arrays. These new proposals are theoretically ana-
lyzed and experimentally tested. All proposals are implemented using the LEDA-SM
library. Their efficiency is evaluated by performing a large number of experiments.

Deutsche Zusammenfassung

In den letzten Jahren werden immer gr¨oßere Datenmengen maschinell verarbeitet.
Die Größe der Daten bedingt, das sie im Externspeicher (realisiert durch Festplat-
ten) gespeichert werden m¨ussen und nicht in ihrer Gesamtheit in den Hauptspeicher
heutiger Computer passen. Diese großen Datenmengen stellen besondere Anforderun-
gen an Algorithmen und Datenstrukturen. Eine Vielzahl der existierenden Algorithmen
und Datenstrukturen wurde f¨ur das theoretische RAM Modell [AHU74] entworfen. Zu
den Kern-Eigenschaften des Modells geh¨ort unbegrenzter Speicher; weiterhin kostet
der Zugriff auf unterschiedliche Speicherzellen gleich viel (Einheitskostenmaß). Das
RAM Modell wurde und wird heute benutzt, um Hauptspeicher-Algorithmen zu analy-
sieren. Der Externspeicher hat jedoch andere Eigenschaften als der Hauptspeicher: ein
Zugriff ist bis zu 100.000 mal langsamer als ein Hauptspeicher- oder Cache-Zugriff.
Weiterhin liefert ein Zugriff immer einen Block von Daten zur¨uck. Algorithmen, die
im Externspeicher laufen, greifen somit auf zwei verschiedene Speicherhierarchien
(Hauptspeicher und Externspeicher) zu, die unterschiedliche Zugriffszeiten und Ei-
genschaften haben. Die Annahme des Einheitskostenmaßes bei Speicherzugriffen ist
somit fragwürdig. RAM Algorithmen und Datenstrukturen, die im Externspeicher lau-
fen, haben meist eine sehr schlechte Laufzeit, da ihre Speicherzugriffe keine Lokalit¨at
aufweisen und man daher nicht den blockweisen Zugriff auf den Externspeicher opti-
mal ausnutzen kann. Meist f¨uhren diese Algorithmen so viele Externspeicherzugriffe
aus, das man kaum noch einen Fortschritt in der Berechnung sehen kann. Ausgehend
von dieser Problematik wurden daher eigene Algorithmen und Datenstrukturen f¨ur
Externspeicheranwendungen entwickelt.

Diese Arbeit besch¨aftigt sich mit Externspeicheranwendungen, sowohl im theore-
tischen als auch im praktischen Sinn. Im ersten Kapitel gebe ich einenÜberblicküber
die Arbeit. Im zweiten Kapitel erl¨autere ich die Funktionalit¨at des Externspeichers,
der heute durch Festplatten realisiert wird. Weiterhin erkl¨are ich die Funktionalit¨at
von Dateisystemen am Beispiel des Solaris UFS Dateisystems. Anschließend stelle
ich die wichtigsten Externspeichermodelle vor, genauer das I/O-Modell von Vitter und
Shriver und die Erweiterung von Farachet al. In Vitter und Shriver’s Modell besitzt
ein Computer einen beschr¨ankten Hauptspeicher der Gr¨oßeM . Der Externspeicher ist
durchD Festplatten realisiert; ein Externspeicherzugriff (kurz I/O) ¨uberträgtD � B
Daten vom Externspeicher in den Hauptspeicher oder zur¨uck, 1 � D � B � M=2.
Farachet al’s Modell erlaubt es zus¨atzlich, I/Os in I/Os zu “zuf¨alligen” Stellen (engl.:
random I/Os) und in konsekutive I/Os (engl. bulk I/Os) zu klassifizieren. Bulk I/Os
sind vorzuziehen, da sie in der Praxis schneller sind als random I/Os. Algorithmische
Leistung wird in beiden Modellen gemessen, indem man (i) die Zahl der I/Os, (ii) die
Zahl der CPU Instruktionen (mittels des RAM Modells) und (iii) den belegten Platz
im Externspeicher ermittelt.

Im dritten Kapitel stelle ich eine von mir entwickelte C++ Klassenbibliothek na-
mensLEDA-SMvor. LEDA-SM bietet spezielle Externspeicheralgorithmen und Da-
tenstrukturen an und erm¨oglicht weiterhin durch Prototyping, schnell neue Algorith-
men und Datenstrukturen zu entwickeln. LEDA-SM ist modular aufgebaut. Der so-
genannte Kern der Bibliothek ist f¨ur den Zugriff und die Verwaltung des Externspei-
chers zust¨andig. Der Externspeicher kann durch Dateien des Dateisystems “simuliert”
werden, er kann aber auch direkt durch Festplatten dargestellt werden. Wir realisie-

ren explizit eine Abbildung von Vitter und Shriver’s I/O Modell. Der Externspeicher
wird in Blöcke eingeteilt, jede I/O ¨uberträgt ein Vielfaches der Blockgr¨oße. Der Kern
der Bibliothek stellt weiterhin Schnittstellen zur Verf¨ugung, um einfach auf Festplat-
tenblöcke zugreifen zu k¨onnen und um einfach Daten blockweise zu lesen oder zu
schreiben. Der Applikationsteil der Bibliothek besteht aus einer Sammlung von Algo-
rithmen und Datenstrukturen, die speziell f¨ur Externspeicheranwendungen entwickelt
wurden. Diese Algorithmen benutzen nur die C++ Klassen des Bibliothekskerns sowie
Algorithmen und Datenstrukturen der C++ Bibliothek LEDA. Wir erläutern die wich-
tigsten Design– und Implementierungskonzepte von LEDA-SM, geben ein Implemen-
tierungsbeispiel f¨ur ein Externspeicherdatenstruktur und f¨uhren erste Leistungstests
durch.

In den letzten beiden Kapiteln zeige ich anhand von zwei Fallstudien die Entwick-
lung und experimentelle Analyse von Datenstrukturen und Algorithmen f¨ur Extern-
speicheranwendungen. Die erste Fallstudie besch¨aftigt sich mit Prioritätswarteschlan-
gen. Wir analysieren theoretisch – mittels der I/O-Modelle von Kapitel 2 – und expe-
rimentell – durch Implementierung mittels LEDA-SM – die Leistung von Priorit¨ats-
warteschlangen. Wir stellen weiterhin zwei neue Priorit¨atswarteschlangen f¨ur Extern-
speicheranwendungen vor. Unsere erste Variante,R-Heaps, ist eine Weiterentwicklung
von Ahuja et al.’s redistributive heaps und unsere zweite Variante,array heaps, ist
eine Weiterentwicklung einer Hauptspeichervariante von Thorup. Die erste Variante
benötigt nicht negative, ganze Zahlen als Priorit¨atstyp und setzt weiterhin voraus, das
die gelöschten Minima eine nicht fallende Sequenz bilden. Weiterhin m¨ussen alle im
Heap gespeicherten Elemente im Intervall[a; : : : ; a + C] liegen, wobeia der Wert
des zuletzt gel¨oschten Minimums ist (Null sonst). Diese Anforderungen werden z.B.
von Dijkstra’s kürzestem Wege Algorithmus erf¨ullt. Dieser Heap ist sehr schnell in der
Praxis, platzoptimal im Externspeicher, jedoch nur suboptimal in Vitter und Shriver’s
D-Festplattenmodell. Er erlaubt Einf¨ugen von neuen Elementen inO(1=B) I/Os und
Löschen des Minimums inO((1=B) logM=(B logC)(C)) I/Os. Unsere zweite Varian-
te basiert auf einer Menge von sortierten Feldern. Dieser Heap erreicht Optimalit¨at
im D-Festplattenmodell und ist weiterhin platzoptimal. Er unterliegt keinen Restrik-
tionen hinsichtlich des Priorit¨atstyps, ist jedoch beschr¨ankt in der maximalen Anzahl
zu speichernder Elemente. Er unterst¨utzt Einfügen in18=B(logcM=B(N=B) I/Os und
Minimum löschen in7=B I/Os. Wir analysieren zwei Varianten des Heaps mit unter-
schiedlichen Eingaberestriktionen und zeigen, das die Gr¨oßenrestriktion in der Praxis
irrelevant ist. Diese neuen Datenstrukturen werden dann in einer Vielzahl von Ex-
perimenten gegen andere bekannte Externspeicher-Priorit¨atswarteschlangen wie buf-
fer trees, B-trees, sowie gegen Hauptspeicher-Priorit¨atswarteschlangen, wie Fibonacci
heaps, k–n¨are Heaps und andere, getestet.

Die zweite Fallstudie besch¨aftigt sich mit der Konstruktion vonSuffix Array, ei-
ner Volltext-Indexdatenstruktur zur Textsuche. Suffix arrays sind eine von Manber
und Myers eingef¨uhrte Indexdatenstruktur, die es erm¨oglicht, Volltextsuche durch-
zuführen. Suffix arrays spielen als Grunddatenstruktur eine wichtige Rolle, da an-
dere Volltextindexstrukturen direkt aus Suffix Array aufgebaut werden k¨onnen, wie
z.B. SB-Trees von Ferragina und Grossi. Weiterhin sind Suffix Array platzeffezienter
als andere Volltextindexstrukturen und besitzen eine einfache Struktur, ein Feld. Der
Aufbaualgorithmus von Manber und Myers erweist sich im Externspeicher jedoch als
nicht effektiv, da er keine Lokalit¨at ausnutzt und unstrukturiert auf den Externspei-

cher zugreift. Wir analysieren zuerst mittels der I/O-Modelle von Vitter und Shriver
sowie mittels des Modells von Farachet al.zwei bekannte Konstruktionsalgorithmen
für Externspeicher bzgl. ihres Platzbedarfs und ihrer Externspeicherzugriffe, genau-
er Karp-Miller-Rosenberg’s repeated doubling Verfahren und Baeza-Gonnet-Snider’s
Algorithmus. Ausgehend von diesen zwei Verfahren entwickeln wir drei neue Kon-
struktionsalgorithmen. Diese Algorithmen haben die gleiche I/O-Schranke wie Karp-
Miller-Rosenberg’s Algorithmus’ (O((N=B) logM=B(N=B) log(N))), benötigen je-
doch weniger Platz. Alle Konstruktionsalgorithmen werden von uns mittels LEDA-
SM implementiert und auf verschiedenen Eingaben experimentell getestet. Wir schlie-
ßen unsere Studie mit zwei weiteren theoretischen Betrachtungen. Zuerst zeigen wir,
das alle Konstruktionsalgorithmen auch dazu benutzt werden k¨onnen, um wortbasierte
suffix arrays zu konstruieren. Abschließend verbessern wir die Anzahl der I/O Ope-
rationen von Baeza-Yates-Gonnet-Snider’s Algorithmus. Obwohl der Platzbedarf von
Baeza-Gonnet-Snider’s Algortihmus gut ist, f¨uhrt der Algorithmus im schlechtesten
Fall eine Anzahl von Externspeicherzugriffen aus, die kubisch in der Gr¨oße der Ein-
gabe ist. Wir zeigen, wie man dies auf quadratische Gr¨oße reduzieren kann.

Abstract

Data to be processed is getting larger and larger. Nowadays, it is necessary to store
these huge amounts of data in external memory (mostly hard disks), as their size ex-
ceeds the internal, main memory of today’s computers. These large amounts of data
pose different requirements to algorithms and data structures. Many existing algo-
rithms and data structures are developed for the RAM model [AHU74]. The central
features of this model are that memory is infinitely large and that access to different
memory cells is of unit cost. The RAM model has been and is still used to analyze
algorithms that run in main memory. External memory, however, has different features
than main memory: an access to external memory is up to 100,000 times slower than an
access to main memory or cache memory. Furthermore, an access to external memory
always delivers a block of data. Thus, external memory algorithms access two memory
layers (main and external memory) that have different access times and features so that
assuming unit cost memory access is questionable. As a result, most RAM algorithms
behave very inefficient when transfered to the external memory setting. This comes
from the fact that they normally do not rely on locality of reference when accessing
their data and therefore cannot profit from blockwise access to external memory. As a
consequence, special external memory algorithms and data structures were developed.

In this thesis, we develop external memory algorithms and data structures. Devel-
opment consists of theoretical analysis as well as practical implementation.The first
chapter is used to give an overview. In the second chapter, we explain the functionality
of external memory that is realized by hard disks. We then explain the functionality of
file systems at the example of Solaris’ UFS file system. At the end of chapter two, we
introduce the most popular external memory I/O models, which are Vitter and Shriver’s
I/O model and the extension of Farachet al. In Vitter and Shriver’s model, a computer
consists of a bounded internal memory of sizeM , external memory is realized byD
independent disk drives. An access to external memory (shortly called I/O) transfers
up toD � B items (1 � D � B � M=2) to or from internal memory,B items from or
to each disk at a time. Farachet al.’s model additionally allows to classify I/Os into
(i) I/Os to random locations (random I/Os) and (ii) I/Os to consecutive locations (bulk
I/Os). Bulk I/Os are faster than random I/Os due to caching and prefetching of modern
disk drives. In both models, algorithmic performance is measured by counting (i) the
number of executed I/Os, (ii) the number of CPU instructions (using the RAM model),
and (iii) by counting the used disk space in external memory.

In the third chapter, we introduce our new C++ class library LEDA-SM. Library
LEDA-SM offers a collection of external memory algorithms and data structures. By
fast prototyping it is possible to quickly develop new external memory applications.
Library LEDA-SM is designed in a modular way. The so called kernel is responsible
for the realization and the access to external memory. In LEDA-SM, external memory
is either realized by files of the file system or by hard disks themselves. We realize
an explicit mapping of Vitter and Shriver’s I/O model,i.e. external memory is divided
into blocks of sizeB and each I/O transfers a multiple of the block size. The kernel
furthermore offers interfaces that allow to access disk blocks and that allow to read
or write blocks of data. The application part of the library consists of a collection of
algorithms and data structures, which are developed to work in external memory. The
implementation of these algorithms only uses C++ classes of LEDA-SM and of the

C++ internal memory class libraryLEDA. We first describe the main design and im-
plementation concepts of LEDA-SM, we then show the implementation of an external
memory data structure and give first performance results.

In the last two chapters we derive new external memory algorithms and data struc-
tures. The first case study covers external memory priority queues. We theoreti-
cally analyze (using the I/O models of Chapter 2) and experimentally compare (us-
ing LEDA-SM) state-of-the-art priority queues for internal and external memory. We
furthermore propose two new external memory priority queues. Our first variant,R-
heaps, is an extension of Ahujaet al.’s redistributive heaps towards secondary memory.
It needs nonnegative integer priorities and furthermore assumes that the sequence of
deleted minima is nondecreasing. Additionally, all elements, currently stored in the
heap, must have priorities in an interval[a; : : : ; C], wherea is the priority value of the
last deleted minimum (zero otherwise). This requirements are for examples fulfilled
in Dijkstra’s shortest path algorithm. This heap is very fast in practice, space opti-
mal in the external memory model, but unfortunately only suboptimal in the multi disk
setting of Vitter’s and Shriver’sD-disk model. Radix heaps support insert of a new ele-
ment inO((1=B) amortized I/Os and delete minimum inO((1=B) logM=(B logC)(C))
amortized I/Os. Our second proposal, calledarray heap, is based on a sequence of
sorted arrays. This variant reaches optimality in theD-disk I/O model and is also
disk space optimal. There are no restrictions according to the priority type, but the
size of the heap (number of stored elements) is restricted. Array heaps supports in-
sert in18=B(logcM=B(N=B) amortized I/Os and delete minimum in7=B amortized
I/Os. We analyze two variants with different size restrictions and show that the size re-
striction does not play an important role in practical applications. In the experimental
setting, we compare our LEDA-SM implementation of both new approaches against
other well known internal and external memory priority queues, such as Fibonacci
heaps,k–ary heaps, buffer trees andB-trees.

Our second case study covers external memory construction algorithms forsuffix
arrays, a full text indexing data structure. Suffix arrays were introduced by Manber
and Myers and allow to perform full text search on texts. Suffix arrays are an important
base data structure as other important full text indexing data structures, for example
SB-trees of Ferragina and Grossi, can directly built by using the suffix array. Addition-
ally, suffix arrays are among the most space efficient full text indexing data structures
in external memory. Unfortunately, the construction algorithm of Manber and Myers
is not efficient if transfered to the external memory setting because it does not exploit
locality of reference in its data structures. We analyze two well-known construction
algorithms, namely Karp-Miller-Rosenberg’s repeated doubling algorithm and Baeza-
Yates-Snider’s construction algorithm. We use the I/O model of Vitter and Shriver as
well as the extension of Farachet al. to analyze the number of I/Os (including bulk and
random I/Os) and the used space of different construction algorithms. We furthermore
develop three new construction algorithms that all run in the same I/O bound as the
repeated doubling algorithm (O((N=B) logM=B(N=B)) I/Os) but use less space. All
construction algorithms are implemented using LEDA-SM and tested on real world
data and artificial input. We conclude the case study by addressing two issues: we first
show that all construction algorithms can be used to construct word indexes. Secondly,
we improve the performance of Baeza-Yates-Snider’s construction algorithm. In the
worst case, this algorithm performs a cubic number of I/Os that is cubic in the size of

the text. We show that this can be reduced to a quadratic number of I/Os.

Acknowledgments

When I look back at the last four years I remember a lot of people who influenced
my work and my private life. First of all, I want to thank my advisor Prof. Dr. Kurt
Mehlhorn. It was a real pleasure to work in his group and his excellent teaching and
research style influenced me a lot. He introduced me to the topic of external memory
algorithms and also encouraged me to start a programming project. Second, I want to
thank my co-advisor Prof. Dr. Paolo Ferragina. The one and a half years, you stayed
at MPI, were a very productive and pleasant time and I missed our conversations a lot
when you went back to Pisa. It was not easy to keep in contact via email and still to
write papers together but at least we managed it.

A lot of other people at MPI deserve special thanks. First of all I want to thank
the whole algorithmics group. I enjoyed being your system administrator and you
never bored me with your questions. My special thanks are to Ulli Meyer and Mark
Ziegelmann for listening to ideas and problems of real and scientific life. Thanks
to Klaus Brengel who programmed for the LEDA-SM project. I also want to thank
the Rechnerbetriebsgruppe (J¨org, Wolfram, Bernd, Uwe, Thomas and Roland) for all
the support they gave me and for the extraordinary working conditions they provide.
It was a pleasure to work together with the RBG and I learned a lot about system
administration and support.

Life is full of ups and downs! Thanks to Ulli Meyer, Mark Ziegelmann, and
Michael Seel who celebrated my research successes with me and who also listened
to my private problems. I hope that it is possible to give some help back to you and
I hope that we will have enough time next year to go to skiing and to do some nice
motorbike trips together.

A very special thanks to Claudia Winkler for being such a true friend. You always
believed in me and helped me not to lose perspectives. However, I am by far most
grateful to my family who gave me more love and encouragement that I can ever pay
back!

Andreas Crauser
Saarbr̈ucken, M̈arz 2001

Contents

1 Introduction 1
1.1 Outline . 3

2 Disks, File Systems and Secondary Memory 7
2.1 Disk Drives . 7

2.1.1 Read/Write Heads and Head Positioning 7
2.1.2 Optimizations in Disk Geometry 8
2.1.3 Disk Controller and Bus Interface 9
2.1.4 Caching in Disk Drives . 9
2.1.5 Measuring Hard Disk Performance 10

2.2 File Systems . 11
2.2.1 UNIX-like File Systems . 11
2.2.2 Caching in File Systems . 12
2.2.3 File Access Methods. 13
2.2.4 File systems versus raw device 15
2.2.5 Solaris File Systems . 15

2.3 Modeling Secondary Memory. 16
2.3.1 A simple engineering model 16
2.3.2 Theoretical Secondary Memory Models 21

2.4 Summary . 23

3 LEDA-SM 25
3.1 Design of the Library LEDA-SM . 27
3.2 The abstract kernel . 32

3.2.1 Disk Block Identifier (BID) 32
3.2.2 User Identifier (UID) . 33
3.2.3 Logical Blocks (block<E>) 33

3.3 The concrete kernel . 41
3.3.1 Classname server . 41
3.3.2 Classext memory manager 42
3.3.3 Classext disk . 47
3.3.4 Classext freelist . 50

3.4 System startup . 56
3.5 A simple example . 59
3.6 Data Structures and Algorithms. 62

3.6.1 Specialties of LEDA-SM applications 63

i

3.7 Low-level LEDA-SM benchmarks 64
3.8 Application Benchmarks . 70

3.8.1 Sorting . .. 70
3.8.2 Simple Graph Algorithms 73

3.9 Summary . 78

4 Case Study 1: Priority Queues 81
4.1 External Radix Heaps . 83

4.1.1 One-disk model . 83
4.1.2 D–Disk Model . 87
4.1.3 Implementing radix heaps 87

4.2 External Array-Heaps . 88
4.2.1 A practical version . 89
4.2.2 Correctness and I/O-bounds 90
4.2.3 An improved version . 95
4.2.4 Array-Heaps in the D-Disk Model 97
4.2.5 Implementing array heaps 98

4.3 Experiments . 98
4.3.1 Experimental Setup . 100
4.3.2 Experimental Results . 101

4.4 Summary . 107

5 Case Study 2: Suffix Arrays 109
5.1 The Suffix Array data structure . 113
5.2 Constructing a suffix array . 113

5.2.1 The algorithm of Manber and Myers 113
5.2.2 The algorithm of BaezaYates-Gonnet-Snider. 114
5.2.3 The doubling algorithm . 116

5.3 Three new proposals. 118
5.3.1 Doubling combined with a discarding stage 119
5.3.2 Doubling+Discard and Priority Queues 121
5.3.3 Construction inL pieces . 122

5.4 Our experimental settings . 123
5.4.1 An external-memory library 123
5.4.2 System parameters . 123
5.4.3 Choosing the bulk-load size 124
5.4.4 Textual data collections . 124

5.5 Experimental Results . 125
5.5.1 Experiments on random data 132
5.5.2 Concluding remarks on our experiments 135

5.6 Constructing word-indexes . 136
5.7 The new BGS-algorithm . .. 137
5.8 Summary . 141

6 Conclusions 143

A The Elite-9 Fast SCSI-2 Wide Hard Disk 145

ii

B A short introduction to UML 147

C Manual Pages of the Kernel 151
C.1 Block Identifier (BID) . 151
C.2 External Memory Manager (extmemorymanager) 153
C.3 Name Server (nameserver) . 156

Bibliography 157

D Curriculum Vitae 163

Index 167

iii

Chapter 1

Introduction

When designing algorithms and data structures people normally have in mind minimiz-
ing the computation time as well as the working space for their solution. Theoretically,
they design algorithms for the Random Access Machine model (RAM) [AHU74]. One
of the main features of this model is the fact that the memory is infinitely large and
access to different memory cells is of unit cost. Also in practice, most software is writ-
ten for a RAM-like machine where it is assumed that there is a huge (nearly infinite)
memory where individual memory cells can be accessed at unit cost.

Todays computer architectures consist of several memory layers where each layer
has different features, sizes, and access times (see Figure 1.1). Closest to the proces-
sor (CPU) is the small cache memory that can often be accessed in one to two CPU
clock cycles. The size of the caches can vary between a few kilobytes and several
Megabytes1. The cache memory stores copies of themain memoryand, thus, allows
the CPU to access data or program code much faster. Main (internal) memory is up to
a factor of one hundred slower than cache memory, but can reach sizes of several Gi-
gabytes. Main memory is the central storage for program code and program data. The
largest and slowest memory is thesecondary / external memorythat is today provided
by hard disks. Thus, in contrast to all other memory layers, hard disks are mechani-
cal devices while the other memory layers are built of electronic devices (DRAMs or
SRAMs). Hard disks are up to a factor of one thousand slower in access time than
main memory and each disk can store up to 50 Gigabytes,i.e. it is possible to provide
Terabytes of storage in a large disk array.

In the early years of computer science, processors were quite slow, cache was often
not existent and it was reasonable to focus the optimization on internal computation
and to ignore the effects of the memory subsystem. In the last decades, processor speed
has increased by 30% to 50% per year while the speed of the memory subsystem has
only increased by 7% to 10% per year. Roughly speaking, today there is a factor of
one hundred thousand to one million in the different access times to different memory
layers so that assuming unit cost access time in algorithmic design is questionable.

Especially large-scale applications, as they can be found in geometric applica-
tions (geographic information systems), computational biology (DNA and amino acid
databases), text indexing (web search engines), and many more must manipulate and

1One kilobyte equals 1024 bytes, one Megabyte equals 1024 kilobytes.

1

Cache

memory disk

disk

CPU

main

(internal)

secondary memory

Figure 1.1:Hierarchical memory in modern computer systems.

work on data sets that are too large to fit into internal memory and that therefore re-
side in secondary memory. In these applications, communication between internal and
secondary memory is important, as data has to be exchanged between the two memory
layers. This data exchange is calledI/O operation(short I/O); a single I/O operation
always moves a block of data.

The time spent for the I/O operations is often the bottleneck in the computation,
if the applications perform huge amounts of I/Os, or the application is not designed
to work “well” in secondary memory. Today, applications often rely on the operating
system to minimize the I/O bottleneck. Large working space is provided by means
of virtual memory. Virtual memory is a combination of internal main memory and
secondary memory and is provided by the operating system. To the programmer, vir-
tual memory looks like a large contiguous piece of memory that can be accessed at unit
cost. Technically, parts of that storage space reside on secondary memory (hard disks).
The virtual (logical) address space is divided intopagesof fixed size. Pages can reside
in main memory or in secondary memory, if pages are accessed that are not in main
memory, the operating system transports them to main memory (page in) eventually
exchanging it with another page that must then be stored in secondary memory (page
out). The main memory is handled as a pool of virtual pages (page pool) that are either
occupied or free. Translating logical virtual page addresses to physical addresses in
main memory, paging in and out, as well as running the page-replacement algorithm
are the tasks of the virtual memory management system, which is part of the operating
system and is mostly implemented in hardware.

By using caching and prefetching strategies, the operating system tries to assure
that data, which is actually needed, is present in internal memory when it is accessed;
thus trying to minimize the I/O bottleneck. However, these strategies are of general
nature and cannot take full advantage of the specific algorithmic problem structure.
Most of the algorithms, developed for the RAM-model, access the secondary memory
in an unstructured way without exploiting any locality in the data. They spend most of

2

1.1 Outline

their time in moving the data between external and internal memory, and thus, suffer
from the I/O bottleneck.

To circumvent this drawback, the algorithmic community recently started to de-
velop data structures and algorithms that explicitly take the I/O communication into
account. These so-calledexternal or secondary memory algorithms(shortly often
calledexternalalgorithms) consider the memory to be divided into a limited size in-
ternal memory and a number of secondary memory devices. Internal and secondary
memory have different access time and features. Main memory cells can be accessed at
unit cost while an access to secondary memory is more expensive and always delivers
a contiguous block of data. In the external memory model, algorithmic performance
is measured by counting (i) the number of CPU operations (using the RAM-model),
(ii) the number of secondary memory accesses, and (iii) by measuring the occupied
working space in secondary memory.

In this thesis we study the complexity of external memory algorithms in theory
and in an experimental setting where we write software for several external memory
problems. These algorithms are then compared against algorithms that are solely de-
signed for main memory usage (also calledinternal memory or in-core algorithms),
and against other external memory algorithms for that problem.

1.1 Outline

Accurate modeling of secondary memory and disk drives is a complex task [RW94].
In the next chapter, we review the functionality and features of modern disk drives
and file systems. We introduce simple engineering disk models and the theoretical
secondary memory models and compare them to each other. One of the theoretical
models is the standardexternal memory modelintroduced in [VS94b]. It uses the fol-
lowing parameters:

N = the number of elements in the input instance
M = the number of elements that fit into internal memory
B = the number of elements that fit into one disk block;

whereM < N and1 � B �M=2. We will compare this model to realistic engineer-
ing models and will later on introduce some modifications that are used in Chapter 4
and 5 to allow more realistic performance predictions. This chapter serves as a ba-
sic understanding in how to implement I/O operations and how to analyze secondary
memory algorithms.

In Chapter 3 we turn to implementing secondary memory algorithms. Secondary
memory algorithms move data in the memory hierarchy (from disk to main memory
and vice versa) and process data in main memory. A platform for secondary mem-
ory computation therefore has to address two issues: performing I/O operations and
co-operation with internal memory algorithms. We proposeLEDA-SMas a platform
for secondary memory computation. LEDA-SM is a C++ class library and extends
LEDA [MN95, MN99] to secondary memory computation; therefore, LEDA-SM is
directly connected to an efficient internal memory library of data structures and algo-
rithms. LEDA-SM is portable, efficient, and easy to use. The library is divided into a

3

1.1 Outline

kernel layer that manages secondary memory and the access to it, and into an applica-
tion layer which is a collection of secondary memory algorithms and data structures.
These algorithms and data structures are based on the kernel; however, their usage
requires little knowledge of the kernel. LEDA-SM together with LEDA supports fast
prototyping of secondary memory algorithms and can therefore be used to experimen-
tally analyze new data structures and algorithms in secondary memory. In Chapter 3,
we describe the implementation of LEDA-SM, both for the kernel and for the applica-
tions. We also give an overview of implemented data structures and algorithms. At the
end of Chapter 3, we experimentally analyze the core library I/O performance as well
as the performance of basic algorithms like sorting.

Experimental analysis is often a problem, as it is not easy to find good and in-
teresting input problems. Especially for secondary memory computation it turns out
to be hard, as we have to provide very large reasonable inputs. In Chapters 4 and 5,
we perform two case studies for secondary memory algorithms and data structures.
In these chapters, algorithmic performance is studied theoretically (by using some of
the models of Chapter 2) and experimentally by implementing the algorithms and data
structures using LEDA-SM.

In Chapter 4 we study the behavior of priority queues in secondary memory. A
priority queue is a data structure that stores a set of items, each consisting of a tu-
ple which contains some(satellite) informationplus apriority value (also calledkey)
drawn from a totally ordered universe. A priority queue supports (at least) the follow-
ing operations:access minimum (returns the item in the set having minimum key),
delete minimum (returns and deletes the item having minimum key) andinsert
(inserts a new item to the set). Priority queues have numerous applications: com-
binatorial optimization (e.g. Dijkstra’s shortest path [Dij59]), time forward process-
ing [CGG+95], job scheduling, event simulation, and online sorting, just to cite a
few. Many priority queue implementations exist for small data sets fitting into inter-
nal memory,e.g k-nary heaps, Fibonacci heaps, and radix heaps and most of them
are publicly available in the LEDA library. However, in large-scale event simula-
tion or on instances of very large graphs, the performance of these internal-memory
priority queues significantly deteriorates, thus being the bottleneck of the overall ap-
plication. In Chapter 4, we study the theoretical and experimental performance of
priority queues. Some of them are internal memory priority queues running in virtual
memory (k-nary heaps, Fibonacci heaps, and radix heaps) while four others are sec-
ondary memory data structures (B-trees [BM72], buffer-trees [Arg95], external radix
heaps [BCMF99] and array-heaps [BCMF99]). The first two secondary memory data
structures are actually search tree variants while the last two approaches are our new
proposals. All data structures are theoretically analyzed using the theoretical I/O mod-
els from Chapter 2. B-trees supportinsert and delete min in O(logB(N))
I/Os, Buffer-trees support them inO((1=B) logM=B(N=B)) I/Os, radix heaps sup-
port insert in O(1=B) I/Os anddelete min in O((1=B) log M

B logC
(C)) I/Os and

array heaps supportinsert in O((1=B) logM=B(N=B)) I/Os anddelete min in
O(1=B) I/Os. In the analysis of Chapter 4, we will pose particular attention to dif-
ferentiate between disk accesses to random locations and to consecutive locations, in
order to reasonably explain some practical I/O-phenomena, which are related to the
experimental behavior of these algorithms and to current disk drive characteristics.

4

1.1 Outline

All priority queues will then be experimentally analyzed using artificial input and real
word data. We perform tests to determine the core speed of operationsinsert and
delete min , thus testing the I/O performance, as well as tests with intermixed se-
quences ofinserts anddelete mins , thus testing the speed of the internally used
structures of the priority queues. In the end, we come up with a hierarchy of secondary
memory priority queue data structures according to running time, I/O behavior, and
working space.

In Chapter 5, we investigate the construction of suffix arrays in external mem-
ory. Suffix arrays were introduced by Manber and Myers [MM93] and are a static
data structure for full-text indexing. A full text index data structure is a search data
structure, built on every text position, allowing to search for arbitrary character se-
quences. We review some well-known construction algorithms for suffix arrays, which
are Manber-Myers’ construction [MM93], BaezaYates-Gonnet-Snider’s construction
[GHGS92]
(BGS), and construction by repeated doubling [RMKR72]. Manber-Myers’ algorithm
is an internal-memory algorithm running inO(N logN) I/Os (whereN is the size of
the text in characters), BGS runs inO((N3 logM)=(MB)) I/Os and doubling runs in
O((N=B) logM=B(N=B) logN) I/Os. We furthermore introduce three new construc-
tion algorithms that all run in the same I/O-bound as the doubling approach, but that
perform substantially better by reducing internal computation, working space and I/Os.
All algorithms are theoretically analyzed using the theoretical I/O models from Chap-
ter 2. All construction algorithms will then be experimentally tested using real word
data, consisting of natural English text, amino acid sequences, and random text of vary-
ing alphabet sizes. All these text inputs have different features and characteristics that
affect the efficiency of the different construction methods. In the end we give a precise
hierarchy of the different construction approaches according to working space, con-
struction time, and I/O costs. We conclude that chapter by addressing two issues. The
former concerns the problem of building word-indexes where, in contrast to full-text
indexes, only words are indexed. We show that our results can be successfully applied
to this case too, without any loss in efficiency and without compromising the simplic-
ity of programming so to achieve a uniform, simple and efficient approach to both the
indexing models. The latter issue is related to the intriguing and apparently counterin-
tuitive ”contradiction” between the effective practical performance of the construction
by BaezaYates-Gonnet-Snider’s algorithm, verified in our experiments, and its unap-
pealing (i.e. cubic) worst-case behavior. We devise a new external memory algorithm
that follows the basic philosophies underlying BaezaYates-Gonnet-Snider’s construc-
tion but in a significantly different manner, thus resulting in a novel approach (running
in O(N2=(MB)) I/Os), which combines good worst-case bounds with efficient prac-
tical performance.

5

Chapter 2

Disks, File Systems and
Secondary Memory

Magnetic disk drives are todays media of choice to store massive data in a permanent
manner. Disk drives contain amechanismand acontroller. The mechanism is made
up of the recording components and the positioning components. The disk controller
contains a microprocessor, some buffer memory, and an interface to some bus system.
The controller manages the storage and retrieval of data to and from the mechanism
and performs the mapping between logical addresses and physical disk sectors. that
store the information. The mechanism consists of the components that are necessary
to physically store the data on the disk. The process of storing or retrieving data from
a disk is calledI/O operation(short: I/O).

2.1 Disk Drives

A disk drive consists of severalplatters that rotate on aspindle. The surface of each
platter is organized like coordinates; data is stored in concentrictrackson the surfaces
of each platter. Each track is divided into units of a fixed size (typically 512 bytes),
these are the so calledsectors.

Sectors are the smallest individually addressable units of the disk mechanism. I/O
operations always transfer data in multiples of the sector size. Acylinder describes
the group of all tracks located at a specific position across all platters. A typical disk
drive contains up to 20 platters and approx. 2000–3000 tracks per inch. The number
of sectors per track is not fixed; today more sectors are packed onto the outer tracks
than onto the inner tracks. This technique is calledmultiple zone recording. For a 3.5
inch disk, the number of sectors per track can range from 60 to 120 under multiple
zone recording. This technique increases the total storage capacity by 25 percent and
data can be read faster (up to a factor of two) from the outer zones of the disk.

2.1.1 Read/Write Heads and Head Positioning

Each platter surface has an associateddisk headresponsible for recording (writing) or
sensing (reading) the magnetic flux variations on the platter’s surface. The heads are

7

2.1 Disk Drives

Sector

Spindle

Track

Cylinder

actuator arm

Figure 2.1:A small disk drive example

mounted on theactuator armthat is moved by the disk drive’s motor. All heads move
synchronously. The disk drive has a singleread/write channelthat can be switched
between the heads. This channel is responsible for encoding and decoding the digi-
tal data stream into or from an analog series of magnetic phase changes stored on the
disk. Multichannel disks can support more than one read/write channel at a time thus
making higher data transfer rates possible. However these disks are relatively costly
because of technical difficulties such as controlling the cross talk between concurrently
active channels and keeping multiple heads aligned on their platters simultaneously. A
lot of effort was done in the last decades to improve disk heads and read/write channel
efficiency. Different disk head materials where used to improve the disk head perfor-
mance leading to todaysmagnetoresistiveheads that use different materials for read
and write elements. Together with new channel technologies (e.g. PRML channels)
this allows to pack data more closer on the disk surface, thus increasing areal density
and data throughput.

The most tricky business in disk mechanics ishead positioningalso known astrack
following. Todays disk drives rotate at speeds between 5400 to 10900 rotations per
minute (rpm). The head is flying 7 microinches above the platter surface and tracks are
300 microinches apart from each other. Besides the technical difficulties introduced by
small flying height and close track-to-track distance, a number of variables is working
against accurate head positioning. These include temperature variations as well as
shock and vibration. To counter these effects, disk drives use an electro-mechanical
technique called servo positioning, which provides feedback to the drive electronics to
control the position of the head.

2.1.2 Optimizations in Disk Geometry

Disk drives are optimized for sequential access. When larger amounts of data are read
or written, it is likely that head switches to the next platter or even track switches occur.

8

2.1 Disk Drives

During a head switch or track switch the disk keeps on rotating so that if all starting
sectors (sector zero) lay on the same position, we have to wait a full revolution of the
disk before the read or write can continue. To avoid this, the starting sector of the next
platter or track is skewed by the amount of time required to cope with the worst case
head- or track switch times. As a result, data can be read or written at nearly full media
speed. Each zone of the disk has its owncylinderor track skewfactors.

2.1.3 Disk Controller and Bus Interface

The disk controller consists of a microprocessor and an embedded cache. The disk
controller is responsible for controlling the actuator motor (thus the head movement),
it runs the track following system (thus head positioning), it decodes and encodes
the data in the read/write channel, it manages the embedded cache and transfers data
between the disk and its client. Interpreting disk requests takes some time, this time is
calledcontroller overheadand is typically in the range of 0.3 to 1 millisecond (shortly
ms).

The disk drive is connected to its client via abus interface. The most common
bus interface isSCSI(Small Computer System Interface) which is currently defined
as a bus. Todays modern hard disks can drive the SCSI bus at a speed of 20 MBps
(Megabytes per second) and the standard is defined up to 40 MBps. Because SCSI
is a bus, more than one device can be attached to it. This can lead to bus contention.
To avoid this, most disks use thedisconnect-reconnectscheme. The operating system
requests the bus and sends the SCSI command. After an acknowledge by the disk, the
disk disconnects from the bus and reconnects later if it has data to transfer. This cycle
may take 200 microseconds but allows other devices to access the bus. The limitations
of the SCSI bus are the number of drives that can be connected to it and the effective
cable length. These are currently 16 drives and an effective bus cable length of 25/12
meters (fast/ultra wide, differential SCSI interface). With todays high-speed drives
that can reach transfer rates of up to 20 MBps, the bus speed of SCSI is a limitation
when using multiple drives connected to one bus.

State-of-the art technology uses optical fiber interconnect (known asFiber Chan-
nel SCSI) to carry the SCSI protocol. It runs at 25 MBps in each direction and allows
cable length for 1000 meters and more. The latest type of fiber channel is full speed at
100 MBps in both directions.

2.1.4 Caching in Disk Drives

As most disk drives take data off the media more slowly than they can send it over
the bus, the disk drives use speed-matching buffers (or read caches) to hide the speed
difference. During read access, the drive partially fills its read cache before attempting
to start the bus data transfer. The amount of data that is read into the cache before
the transfer is initiated is calledfence. By using data prefetching during read access
(read ahead), read caching tries to take advantage of the fact that most accesses are
sequential. Should the data be requested by a subsequent command, the transfer takes
microseconds instead of milliseconds as the requested data already resides in the cache.
During write accesses, write caching (write behind) allows host–to–disk-buffer and
disk-buffer–to–disk transfers to occur in parallel. This eliminates rotational latency

9

2.1 Disk Drives

during sequential accesses and allows to overlap seek time and rotational latency with
system processing during random write accesses.

When write caching is enabled, for the user’s view the write request has finished
as soon as the data has arrived in the disk cache. This is only failsafe, if the disk is
battery-buffered so that the cache content can be written to the surface in case of a
power failure. Caching has a lot of effect for small request sizes, for large read or
write operations, the cache is bypassed [Bos99].

2.1.5 Measuring Hard Disk Performance

A lot of performance specifications are given by the manufacturer. The most common
are seek time and data transfer rate. This section will explain the most common disk
specifications.

� Seek Time
The amount of time it takes the actuator arm to move the head to a specific track
is calledseek time. Seek time is limited by the power available for the pivot
motor and by the actuator arm’s stiffness. Accelerations between 30 to 40g are
needed to achieve good seek times. A seek is composed of aspeedupwhere the
arm is accelerated, acoast(for long seeks) where the arm moves with maximum
velocity, aslowdownwhere the head is brought close to the desired track and
a settlewhere the disk controller adjusts the head position. The seek time is
not linear in the distance. Very short seeks are dominated by the settle time,
short seeks spend most time in the acceleration phase plus the settle phase (their
time is proportional to the square root of the distance plus the settle time) and
long distance seeks spend most time in moving the head at constant speed. Only
long distance seeks are proportional to the seek distance. The most common
specification is the average seek time for a request.

� Rotational Latency
Once the head is positioned over the desired track, it has to wait until the desired
sector arrives. This time is calledrotational latency(rotational delay) and is
measured in milliseconds. The rotational latency is inverse proportional to the
drive’s rotations per minute. On average the drive has to wait half a rotation
(the desired locations are drawn uniformly and independent from each other).
Typical rotational delays are 5.7 ms (5400 rpms) and 4.2 ms (7200 rpms).

� Head Switch Time
The actuator arm moves all heads synchronously. However, only one head is

active at a time. The time needed to switch between two different heads is called
head switch timeand is measured in ms.

� Cylinder or Track Switch Time
A Cylinder switch or track switch requires to move the actuator arm to the next
track. Cylinder switch timemeasures the average time it takes to switch to the
next cylinder when reading or writing data. This time is measured in ms.

� Data Access Time
One of the most common measurements is average data access time. It mea-

10

2.2 File Systems

sures the average time it takes to read or write a sector of interest. Therefore
data access time is a combination of seek time, head switch time and rotational
latency.

� Data Transfer Rate
The data transfer rate measures how much data the disk can transfer to the

host in a given time interval. It depends on two measures: the disk transfer
rate, or how fast data is transfered from the surface of the platter to the disk
controller (i.e. to the disk cache), and the host transfer rate, or how fast data can
be transfered via the bus by the disk controller. Data transfer rate is measured in
Megabytes per second (MBps).

The two most important measurements are data access time and data transfer rate
as they are used to calculate the amount of data that can be written or read from the
disk. In real situations, a lot of additional effects play an important role for the overall
performance. Internal memory performance, I/O bus speed, and the number of disk
drives connected to the bus are also important as they affect system performance and
as each of them can be the bottleneck for the overall performance. We refer to [Bos99]
who looks in more detail at the overall I/O system and effects like the number of disk
drives connected to a single I/O bus.

2.2 File Systems

File systems are part of the operating system and manage disk space in a user-friendly
way. A file itself is a collection of disk blocks (sectors). The file system provides file
access and file creation/deletion methods to the programmer and manages file storage
as well as a file integrity mechanism. Files can be referred by their symbolic names.
Additional functionality is often provided such as backup and recovery utilities for
damaged files or encryption and decryption of files. The file system also provides
user-friendly interface that allows the programmer to access the file system from a
logical view (access to files) rather than to care about the physical layout (attached
disk devices and placement of data). We now describe in more detail UNIX-like file
systems.

2.2.1 UNIX-like File Systems

Unix file systems arehierarchical file systems. The file system consists ofdirecto-
ries andfiles organized in a hierarchical tree structure with theroot directoryas the
root of the tree and the files as the leaves. Directories are a special kind of files that
allow to logically group files together. Files and directories are referenced by their
names (character strings). A Unix file system is data structure resident on the disk;
it contains asuperblockthat defines the file system, an array ofinodesthat define the
files/directories, and the actual file data blocks plus a collection of free blocks. As the
superblock is critical data, it is replicated on the file system to prevent catastrophic
loss. The file system is a collection of fixed size blocks. Thislogical disk blocksare
further divided intofragments. Each logical disk block can consist of 2, 4 or 8 frag-
ments, the number of fragments per logical disk block is fixed at the time of file system

11

2.2 File Systems

creation. Fragments are the smallest addressable and allocatable units in a file system,
a fragment must be at least as large as a disk sector (normally 512 bytes). The file
system records space availability at the fragment level. The logical disk block size is
fixed for a file system and normally varies between 4 kbytes to 8 kbytes although larger
values are possible. Inodes contain the information to locate all of a file’s physical disk
blocks. The information of an inode points directly to the first blocks of the file and
then uses various levels of indirection to point to the remaining blocks (see [Dei90]
for a detailed description). Thus the inode structure is fast on small files (which was
typical in Unix environments about 10 years ago) and is slower on larger files. Today,
large files can be supported more efficiently by decreasing the inode density during file
system creation (thus increasing the fixed block size) [Won97]. Standard disk block
and fragment values for the Solaris UFS file system are a logical disk block size of
8 kbytes and 8 fragments per logical block. Thus the smallest addressable size of a
file is 1 kbytes; this is also the minimal size of a file. Another important method is
clustering. At the time of file system creation, one can specify the maximum number
of blocks belonging to one file, that will be allocated contiguously before inserting
a rotational delay on the disk. This allows to achieve higher I/O throughput during
sequential access as one can read or write larger consecutive portions. The standard
cluster size value is 56 kbytes, this value can be increased by file system tuning com-
mands.

File system I/O is handled via a special operating system cache (buffer cache or
file system cache). All data is first transfered to this cache and then to the disk (file
write) or to the user space (file read). File system requests are always multiples of
the fragment size. When file I/O is performed by the user process, the process blocks
(stops running) to some extent. Writes are normally asynchronous, the user process
blocks until the data is placed into the caches. Cache data is synchronized with the
disk by a special daemon processflush that writes back meta data (inodes) and user
data to the disk after a specified time interval. Reads are synchronous as the program
has to wait until the data is actually read into main memory. Handling writes in an
asynchronous way allows to optimize the access pattern to the disk as writes are more
time consuming, however, if a disk failure occurs, it can happen that some of the file
data or meta data were not correctly written to the disk leaving the file system damaged.

2.2.2 Caching in File Systems

A few years ago, Unix operating systems used the “buffer cache” to cache all disk
data, assigning about 10% of the available main memory. Todays more advanced Unix
operating Systems (see e.g. Solaris-2 [CP98, Won97]) integrate the buffer cache into
the virtual memory system of the machine thus being more flexible with the cache
size. Hence, the cache can be as big as the total available memory, the operating
system only ensures that at least a minimum number of memory pages (specified by
system constantmin free) are always available.

Today, separate caches are used for file system caching. Reading and writing disk
data is directly handled via the virtual memory. Therefore the page pool can consist
of program data pages, program text pages (the code of the program) and file data
pages. Data that should be written to the file system resides cached in main memory
thus possibly saving read requests to the same page afterwards. As file operations are

12

2.2 File Systems

solely handled by the “buffer cache”, the cache data structure is responsible to logically
map memory pages to disk block pages or fragments (as their size can be different).

As most of todays machines have large main memories, the cache for disk I/O
is thus much larger than the originally used buffer cache. I/O intensive applications
can benefit a lot from this feature. File system meta data (as for example inodes) is
placed in different caches. If a file was read in its whole, it is likely that the inode data,
necessary to locate the physical disk blocks of the file must not be reread again from
the disk itself and still resides in the cache. As all I/Os transfer at least a fragment of a
logical disk block, data alignment problems can cause multiple I/Os:

File blocks

Portion to be
modified

B B
1 2

Figure 2.2:Data alignment problem using file I/O

The portion to be modified is not fully aligned to the underlying pages/fragments.
Therefore, if we just issue one write command to change this portion, the file system
first readsB1, modifies and writesB1, then readsB2, modifies it and writes it back.
Would the data be aligned to pages/fragments, a single write would be enough!

2.2.3 File Access Methods

File access methods are functions (provided by the operating system) that work on
the file system. There exist several classes of file access methods. As a standard,
each Unix operating system provides a number of standardizedsystem calls for file
I/O. These system calls areopen(), read(), write(), lseek(),andclose(). System call
open() opens an existing file on the file system, it can also create new files. It returns
afile descriptorwhich is a logical identification of the opened file. All later operations
on the opened file use the file descriptor to refer to that file. Files can be opened
with different privileges: read-only, write-only, read-write, and append-at-end. This is
specified by parameteroflag . There exist a lot of other additional parameters like
specifying synchronized write and so on. For a list of full parameters we refer to the
UNIX man pages (man open(2)). System calllseek() allows to seek to a specific
position in the file by repositioning the so calledseek pointer. Parameteroffset
specifies the offset in bytes to seek from either the current position, beginning of file
or end of file (this is specified by parameterwhence). System callsread andwrite
allow to read or write a specified amount of bytes starting from the position of the seek
pointer. Parameterbuf points to the data to be written or to the memory region where

13

2.2 File Systems

the data should be read into, andnbyte specifies the size of the data in bytes to be
read or written.

#include<sys/types.h>
#include<sys/stat.h>
#include<fcntl.h>

int open(const char�pathname, int oflag, ..., /�, modet mode�/);

#include<unistd.h>

ssizet read(int filedes, void�buf, sizet nbyte);

ssizet write(int filedes, const void�buf, sizet nbyte);

#include<sys/types.h>
#include<unistd.h>

off t lseek(int filedes, offt offset, int whence);

The UNIX standard application interface (API) defines that during file system I/O,
data is exchanged from an user-specified I/O buffer to a system I/O buffer and then to
the disk or vice versa. Significant amount of time can be spent in copying between the
buffers.

Memory-mappedI/O establishes a mapping between the file’s disk space and the
virtual memory. Instead of performing read and write operations on a file descriptor,
the file system places the file in the virtual memory system. The virtual memory can
then be addressed and manipulated via pointers and the effects also occur in the file.
The operating system is not involved in managing I/O buffers, instead it only manages
virtual memory. This saves costly buffer-to-buffer copy routines.

#include<sys/mman.h>

void �mmap(void�addr, sizet len, int prot, int flags, int filedes, offt off);

Before establishing the mapping, the file must be opened usingopen() . The call
mmap() returns a pointer to a memory regionpa. This is a mapping of region[off ,
off +len] of the file, specified by file descriptorfiledes to memory region[pa,
pa+len]. Parameteraddr is an implementation dependent parameter that influences
the computation ofpa, parameterprot specifies how the mapped memory region can
be accessed (read/write/execute/no access) and parameterflags provides additional
information about the handling of the mapped pages (see also man mmap(2)).

StandardI/O (short stdio) is a set of I/O routines provided by the standard I/O
library (see also man stdio(3s)). Stdio was originally introduced to handle character-
based I/O that occurs when reading from a character-based device like a keyboard.
Instead of reading single characters and thus issuing one system call per character,
stdio uses a buffer in the user-space to reduce the number of read and write system
calls. Instead of handling file descriptors, when opening or creating files we associate
a stream with the file. All actual operations are performed on that stream. The stream
is buffered, the kind of buffering is dependent on the type of the stream. Data is
written when the buffer is full. When data is read, we always read until the buffer is
full. Stdio provides similar functions to system-call I/O, now calledfopen(), fread(),
fwrite(), fseek()and fclose(). Stdio uses system call I/O to actually read or write the

14

2.2 File Systems

data, but it always reads or writes the whole buffer content. The size of the buffer is
normally 1024 bytes but can be increased or decreased.

Some UNIX systems also provide the feature to access the raw disk device. Using
the standard file system calls open(), read(), write(), lseek() and close(), they allow to
open the disk device specific file and perform read, write and seek operations directly
on the disk device. This functionality mainly bypasses the file system layer and buffer
caches.

2.2.4 File systems versus raw device

File systems and raw disk access offer different kinds of advantages and disadvan-
tages. File systems provide an easy way to handle access to disks without actually
caring about the physical data placement on the disk. Caching allows to speed-up disk
requests but can also slow down the system. Write performance is increased as we
immediately return to computation as soon as the data resides in the cache. Caching
however can also slow down the efficiency as the data resides in the page pool as long
as no other process needs main memory. The system can run into a memory shortage
and the help of the page daemon is needed to free main memory. This increases the
percentage that the CPU spends in running operating system processes and reduces the
percentage that the CPU spends for the user request. Another disadvantage is that the
file is only logically consecutive and the disk data is interspersed with the inode infor-
mation. However, on nearly empty file systems one can rely on getting almost con-
secutive physical disk blocks for newly created files. The main advantage of using file
systems is that programs, written to use file access methods, are portable across several
platforms. File systems are still efficient and are not necessarily slow. Careful tuning
of the operating system allows to increase the read and write efficiency [CP98]. Unfor-
tunately, the tuning process is not easy and needs a lot of operating system knowledge.

Raw disk device access is not portable across several platforms. For example,
Solaris platforms add the functionality of accessing the raw device via system calls,
Linux platforms however do not add this functionality. Raw disk device access by-
passes all the caches, therefore it can be faster but it may not be. The main advantage
of raw disk device access is that consecutively allocated disk blocks are now really
consecutive and there is no interspersed meta data such as inodes. However, allocation
of disk blocks and calculation of addresses is now up to the user. It is not necessarily
true that raw device access is faster than file system access. Obviously, file systems
“waste” internal memory by using the buffer cache. This is not true for raw devices as
the data is directly transfered to the disk.

2.2.5 Solaris File Systems

Most of our implementation work, which I will describe in the next chapter, was per-
formed on SUN workstations running Solaris. Solaris file systems are different from
standard Unix file systems (as they are, for example, described in [Dei90]). Work-
stations running Solaris use the whole virtual memory system to represent the buffer
cache. The standard file system is the so-calledUFS file system. It uses either 4 or
8 kbytes as logical file block size and 8 fragments per block. Thus, the smallest ad-
dressable unit is either 512 bytes or 1 kbytes, which is also the smallest possible file

15

2.3 Modeling Secondary Memory

size. As I/O data is buffered in main memory and as it is possible to use the whole
main memory for buffering, the system can run out of free pages in main memory due
to massive I/O. To circumvent that problem, a specific operating system process (page
daemon) wakes up as soon as the number of free pages in the page pool drops below
min free (a system constant). This process tries to free pages by stealing pages from
other processes. In normal mode, it is able to free 64 Mbytes/sec1. This slows down
the system as another process is competing for CPU resources. The work of the dae-
mon can be monitored by using the Solaris monitoring toolvmstat . It reports a value
sr which is the number of stolen pages per second. If this value stays above 200 for a
long time, this system is out of memory [CP98]. To circumvent this problem, Solaris
file systems are able to use the raw device on which the file system is located. This
feature calleddirect io. For larger I/O requests (larger than the standard file block size
which is either 4 or 8 kbytes), the file system does not use the buffer cache. Instead it
uses a direct path to the disk device which is quite similar to a raw device access. This
increases the performance for large sequential accesses and does not waste internal
memory.

Additionally, Solaris uses a lot of implementation tricks in the different file access
to increase their performance. First, it avoids the one copy process for system call I/O.
The Unix API specifies that the data is first copied from a user buffer to an operating
system buffer and then to disk. Solaris uses techniques from memory mapping to avoid
the first copy step. Second, it uses 8 kbytes of buffer for stdio instead of 1 kbytes. As a
consequence, the buffer perfectly aligns to the size of a virtual memory page (and also
to the size of a logical file block).

Solaris operating systems and their UFS file systems can be tuned by setting a lot
of kernel variables. Unfortunately, system tuning looks like magic but if done properly,
UFS file systems nearly achieve the same I/O throughput as raw devices.

2.3 Modeling Secondary Memory

In secondary memory computation, disks can be seen from a theoretical or engineer-
ing point of view. From a theoretical point of view, one wants to rank algorithms in
complexity classes while still modeling the main features of disk drives. The theoret-
ical model should be as simple as possible, and should hopefully allow us to compare
algorithms among the various complexity classes. Engineering models are used to pre-
dict running times for I/Os exactly, thus modeling almost every feature of modern disk
drives. Lets us take a closer look at engineering and theoretical disk models.

2.3.1 A simple engineering model

We introduce a very simple engineering model. An I/O transfersr bytes of data to the
disk or vice versa. Our model calculates the time for that transfer as follows:

tservice(r) = tseek + req size(r)=ttransfer (2.1)

1This can be changed by system tuning.

16

2.3 Modeling Secondary Memory

wheretseek is the average seek time plus rotational delay in milliseconds (ms),ttransfer
is the maximum data transfer rate in Mbytes/sec andreq size(r) is the size ofr in
bytes. ttransfer can by simply calculated by multiplying the number of sectors per
track with the sector size and the disk’s rotations per second. This transfer rate ranges
between 5.9 MB/s (9 GB, 5 ” drive with 5400 rpm) to 10 MB/s (9 GB, 3.5” drive with
7200 rpm). The calculation above ignores command overhead, cylinder switch time
and time to transfer the data from the cache to the machine. Figure 2.3 shows the data
transfer rate dependent from the request size for a 5400 rpm disk with an average seek
time of 11 ms and an average rotational delay of 5.6 ms. It is obvious that on disks
with a single read-write channel, the throughput is always limited by the amount of
data, the disk can take from the surface in a unit of time (assuming that the bus is not
saturated). In this model,tseek andttransfer are just two constants. It is obvious that
for small requests,tservice is dominated by the seek timetseek while for large requests,
the dominant part isreq size(r)=ttransfer. Service time is linear in the request size
(see Figure 2.4). There is some startup time which consists of the average access time
(average seek plus average rotational delay). Using figures 2.4 and 2.3, we can predict
a request size for a random access that achieves reasonable data throughput together
with a small service time. In our example, a good request size is somewhere between
64–128 kbytes. Service time is important because during read access, we have to wait
until the data really arrives.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000

Thr
oug

hpu
t in

 Kb
yte

s/s

Request Size in Kbytes

throughput

Figure 2.3:Disk data transfer rate for a random access using the above model. The disk used
is a 5400 rpm drive with an average seek time of 11 ms, a rotational delay of 5.6 ms and a
sequential disk-to-cache transfer rate of 4168 kbytes/s.

This formula tells us, that one should use big request sizes in order to hide the
startup timetseek. For example, an access to a single data item of one byte size would
take

17

2.3 Modeling Secondary Memory

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 500 1000 1500 2000

Ser
vice

 Tim
e in

 se
con

ds

Size of block request

Service Time

Figure 2.4:Service time for a random access using the above model. The disk is the same as
in Figure 2.3.

tservice = 0:0166 sec+ 1=(4168 � 1024) sec= 0:016600234 sec

while an access to a block of 32 kbytes takes

tservice = 0:0166 sec+ 32=4168 sec= 0:024277543 sec.

The service time for the large request is only 1.46 times higher but the large request
transfers 32868 times more data. This simple model resembles communication models
in parallel computers where there is a large startup time and a high communication
bandwidth.

Although the model describes the main disk features, it is not very accurate. In-
deed, a seek on the disk is not independent from the request. Seek time can vary from
a few milliseconds (track–to–track seek) to up to 20 milliseconds (for a full seek).
Average seek time is often calculated by using the assumption that the requests are
uniformly distributed over the surface. This also holds for rotational latency where
it is assumed that half of a rotation is necessary to access the right sector. In reality,
requests are not independent from each other and not uniformly distributed.ttransfer
is also not a fixed constant because the transfer rate varies with the zones of the disk:
the transfer rate on the outer zones can be double as high as on the inner zones.

Cache is totally ignored as well as distribution of disk requests. Caches were
introduced to speed up sequential access for read and write. During sequential access
it is not as important to use large requests, as the disk caches either read ahead data
or perform write behind. [Bos99] did a detailed measurement on a specific SCSI hard
disk to investigate more in the effects of caching and zoning.2

2Thanks to Peter Bosch for providing figures 2.5 and 2.6.

18

2.3 Modeling Secondary Memory

Figure 2.5 shows the write throughput to the disk with caching enabled. The dif-
ferent plots refer to the different zones of the disk (0 is the outmost zone). Figure 2.6
shows the read throughput with disk cache disabled. Two observations can be made:
Throughput on the inner zones is lesser than on the outer zones. With caches, it is pos-
sible to achieve the maximum data throughput already for smaller block sizes (compare
the gradient of both curves). In Figure 2.5 we see that there is a peak at a block size of
200000 where the performance on the inner zone starts to degrade. The peak is some-
how amazing. Data transfer to disk occurs at full bus speed to the disk cache. The
theoretical throughput on the inner zones however is smaller than the bus throughput.
With smaller block sizes, the cache is still able to hide the performance decrease on the
inner zones. Although still simple, this model tells us important properties: very small
block sizes are inefficient according to throughput and always increasing the block size
does not necessarily lead to increased data throughput.

It is still not possible to accurately predict the run time for an I/O trace. Even
without modeling disk caches, there is a big gap between this simple model and real-
ity. At least the following modifications should be done according to Ruemmler and
Wilkes [RW94]:

� accurate seek modeling
Both [RW94, Bos99] did exact measurements to determine the seek function.
The seek function is dependent on the seek distance. It is the square root of
the distance for short and medium seeks and is linear in the seek distance for
long seeks. Using a fixed constanttseek often overestimates seek overhead and
therefore as a conclusion we tend to choose larger block sizes (which is not
always the best choice).

� modeling accurate rotational position
It is necessary to model the exact location on the track in order to drop the
assumption that the starting position of the request is uniformly distributed and
drawn independently for each request.

� modeling cache behavior
Cache has two important properties: it allows to reduce service time and it in-
creases bandwidth for smaller requests. Figures 2.6 and 2.5 show that for a block
size of 200000 bytes the bandwidth can be a factor of two greater for disk with
caches compared to disks without caches. Thus without modeling disk caches
we would prefer larger block sizes that would also lead to larger service times.

Ruemmler and Wilkes [RW94] developed a disk simulator that was able to execute
I/O traces. They compared the accurate model to the real disk drive running the I/O
trace. They were able to predict the real running time of their I/O trace within an error
of 5.7 %.

19

2.3 Modeling Secondary Memory

1

2

3

4

5

6

7

8

9

10

0 200000 400000 600000 800000 1e+06 1.2e+06

ba
nd

w
id

th
 (

m
eg

ab
yt

es
/s

)

block size (bytes)

0
1
2
3
4
5
6
7
8
9

10
11

Figure 2.5:Measured write performance on a Quantum Atlas-II disk by using factory settings,
i.e. disk cache enabled.

0

1

2

3

4

5

6

7

8

9

0 200000 400000 600000 800000 1e+06 1.2e+06

ba
nd

w
id

th
 (

m
eg

ab
yt

es
/s

)

block size (bytes)

0
1
2
3
4
5
6
7
8
9

10
11

Figure 2.6:Measured synchronous read performance of a Quantum Atlas-II disk with the disk
cache disabled.

20

2.3 Modeling Secondary Memory

2.3.2 Theoretical Secondary Memory Models

The earliest theoretical secondary memory model was introduced by Aggarwal and
Vitter [AV88]. In their model, a machine consists of a CPU and a fast, internal memory
of sizeM . Secondary memory is modeled by a disk havingP � 1 independent heads.
An I/O movesB items from the disk to the internal memory or vice versa. IfP > 1,
P �B items can be moved from independent positions on the disk to internal memory
in one I/O. From a practical point of view,P > 1 does not exist in modern disk drives.
Although each disk drive has several disk heads, they can’t be moved independently
from each other.

This model was refined in 1994 by Vitter and Shriver [VS94b]. They use a pa-
rameterD that describes the number of independent disks drives (see Figure 2.7).
Additionally, they also specified multiprocessor disk models whereP stands for the
number of processors in the system. TheD disks are connected to the machine, so that
it is still possible to transferD �B items in one I/O. The main difference to the original
model of Aggarwal and Vitter is the fact that one single disk contains no parallelism
in forms of independent heads. Although it is still possible to transferD � B items in
one I/O, data layout on theD disks now plays an important role to achieve a speedup
of D over the one single disk case. Both models normally assume that disk blocks are
indivisible and that it is only possible to perform a computation on data that resides in
internal memory.

Disk DDisk 1 Disk D-1

Block Size B

CPU

Memory

M

. . .

Figure 2.7:The secondary memory model of Vitter and Shriver

This is up to now the standard complexity model for secondary memory computa-
tion. Algorithmic performance is measured in this model by counting:

(i) the number of executed I/O operations

21

2.3 Modeling Secondary Memory

(ii) the number of performed CPU operations (RAM model), and
(iii) the number of occupied disk blocks.

We summarize important lower bounds in that model:

1. Scanning(or streamingor touching) a set ofN items takes�(N=(DB)) I/Os.

2. Sortinga set ofN items takes�(N
DB logM=B(N=B)) I/Os [AV88].

3. Sortinga set ofN items consisting ofk distinct keys,k < N , takes�(N
DB logM=Bk)

I/Os [MSV00].

4. Online searchamongN items takes�(logDBN) I/Os.

The model is quite simple and allows to rank algorithms in form of Big Oh-
notation. It tries to capture the most important disk properties in the following way: (i)
it amortizes the seek overhead of disk drives by always transferingB items at a time.
Our simple engineering model already tells us that one should transfer large blocks of
data in order to achieve reasonable disk data throughput together with small service
times. The indivisibility assumption of blocks comes from the fact that the smallest
transfer unit of a hard disk is a sector. Some limitations still exist. This model does
not separate between random and sequential I/Os,i.e. it does not model the seek accu-
rately. In practice, there is a big difference in terms of service time and transfer time, if
we comparex requests to random disk locations withx requests to consecutive disk lo-
cations. The reasons are caching and non-linearity of seeks (see Section 2.3.1). If two
algorithms perform exactly the same number of I/Os, the one with the more sequen-
tial I/Os is faster. This fact should be integrated into the model without significantly
enlarging the number of its parameters.

2.3.2.1 The I/O Model of Farachet al.

Farachet al. [FFM98] refined the secondary memory model of [VS94b] and intro-
duced a difference between random and sequential I/Os. In the classical secondary
memory model, all I/Os are to random disk locations. Their model simply accounts
I/Os in a different way: they introduce the termbulk I/O which arec � MB I/Os to con-
secutive disk locations. All other I/Os are random I/Os. The model can estimate costly
seeks in a more reasonable way than the model of Aggarwal and Vitter. Costly seeks
are upper-bounded by the sum of bulk and random I/Os. This is still an upper bound
but it is much better than that derived by Aggarwal and Vitter where every I/O involves
a costly seek. Furthermore it helps to understand more easily the influence of caches as
they can speed up the disk throughput and thus often the running time of the algorithm
when lots of disk accesses to consecutive disk locations occur. For sorting, Farachet
al. state the following lemma:

Lemma 2.3.1. [FFM98] Sorting N items is possible inO((N=B) logM=B(N=B))
random I/Os orO((N=M) log2(N=M)) bulk I/Os, which is optimal.

A simple observation shows that choosingc = 1
2 maximizes the number of bulk

I/Os in external multiway mergesort but leads to two way merging . This is not de-
sirable as the total number of I/Os isO((N=B) log2(N=B)) I/Os while the optimal

22

2.4 Summary

number of I/Os isO((N=B) logM=B(N=B)) [AV88]. This is in some sense “strange”,
but for the experimental analysis choosing the bulk size as a constant allows to get
more deeper knowledge about the algorithmic performance. As a drawback, algorith-
mic design and analysis gets now more complicated as a detailed data layout for disk
data is necessary in order to analyze bulk and random I/Os. In later chapters, we will
explain in more detail how to choose a reasonable bulk size for a given disk system.

2.4 Summary

There is a lot of difference between theoretical secondary memory models and engi-
neering disk models. While engineering models are used to predict the running time
for I/O traces thus capturing all important disk features and hence using a lot of pa-
rameters; theoretical models are used to analyze I/O intensive algorithms and data
structures. The exact disk access pattern cannot be predicted accurately enough to use
engineering I/O models. Therefore the theoretical models are used to count in a sim-
ple way the number of performed I/O operations. Theoretical models should be simple
and use a small number of parameters. During algorithmic description, we will always
use the secondary memory model of Vitter and Shriver [VS94b] to analyze secondary
memory algorithms. The engineering model of Section 2.3.1 will be used to choose
the block sizeB in a reasonable manner, and the model of Farachet al. [FFM98] will
be used in the experiments to get some knowledge about the number of bulk I/Os and
to derive upper bounds on the number of seeks. In the next chapter, we will describe
the layout and implementation of LEDA-SM, a C++ software library for secondary
memory computation.

23

Chapter 3

LEDA-SM

During the last years, many software libraries forin-core computation have been de-
veloped. As data to be processed has increased dramatically, these libraries are often
used in avirtual memorysetting where the operating system provides enough work-
ing space for the computation by using the computer’s secondary memory (mostly
disks). Secondary memory has two main features that distinguishes it from internal
main memory:

1. Access to secondary memory is slow. Hard disks are mechanical devices while
main memory is an electronic device. An access to a data item on a hard disk
requires moving disk mechanics (see Chapter 2) and therefore takes much longer
than an access to the same item in main memory. The relative speed of a fast
cache and a slow secondary memory is close to one million and is still in the
thousands for main memory and secondary memory.

2. Secondary memory rewards locality of reference. The access time to a single
data item and a consecutive block of data items is approximately the same (see
the example in Section 2.3.1 and Figure 2.4). Therefore, secondary memory
(disks) and main memory exchange data in blocks to amortize the seek time
overhead of the disk drive. A block transfer between secondary and main mem-
ory (and vice versa) is calledI/O operation(shortly I/O).

Most of the data structures and algorithms, implemented in todays software li-
braries, are designed for the RAM model [AHU74]. The main features of this model
are unlimited memory and unit cost access to memory. It has been observed that most
of the algorithms, designed for the RAM-model, access memory in an unstructured
way. If these algorithms are transfered to a secondary memory setting they cannot
profit from the locality of reference of disk drives and hence frequently suffer an intol-
erable slowdown as they perform huge amounts of I/Os.

In the recent years, the algorithmic community has addressed this issue and has
developed I/O-efficient data structures and algorithms for many data structure, graph-
theoretic, and geometric problems [VS94b, BGV97, CGG+95, GTVV93, FG95]. The
data structure community has a long tradition dealing with secondary memory. Effi-
cient index structures,e.g. B-trees [BM72] and extendible hashing [FNPS79], have

25

been designed and highly optimized implementations are available. Besides the classi-
cal sorting and searching problems, ”general purpose” secondary memory computation
has never been a major concern for the database community. In the algorithmic com-
munity, implementation work is still in its infancy. There are few implementations of
particular data structures [Chi95, HMSV97] or I/O simulators [BKS99]. They aim at
investigating the relative merits of different data structures, but not at external memory
computation at large. There is no general concept of providing secondary memory
computation to the user, file I/O is directly done in the algorithm implementation and
the programmer has to directly care about handling files and read or write access. I/O
simulators are even more restrictive. While specialized implementations provide code
that really performs the computation and delivers a computational result in the end,
simulators only count I/Os. They do not actually perform the I/Os and are therefore
only able to compare secondary memory algorithms by counting I/Os. However, this
does not always lead to correct results as, even for secondary memory algorithms,
CPU time cannot be ignored and I/O may not always be the dominating part in the
total execution time. Thus comparing secondary algorithms only by counting I/Os
may lead to wrong results. At the moment there are only two systems that provide
secondary memory computation in a more general and flexible context. TPIE [VV95]
(Transparent Parallel I/O Environment) is a C++ library that provides someexternal
programming paradigmslike scanning, sorting and merging sets of items1. TPIE re-
alizes secondary memory by using several files on the file system. In fact, each data
structure or algorithm uses its own file. Several different file access methods are im-
plemented. TPIE only offers some more advanced secondary memory data structures
and most of them are based on the external programming paradigms. Direct access
to single disk (file) blocks is possible but somehow complicated as the design goal
of TPIE is to always use the external programming paradigms. TPIE offers no con-
nection to an efficient internal-memory library that is necessary when implementing
secondary memory algorithms and data structures. Both features were missed by users
of TPIE [HMSV97], it is planned to add both features to TPIE [Arg99].

Another different approach for secondary memory computation is ViC�, the Vir-
tual MemoryC� compiler [CC98]. The ViC� system consists of a compiler and a run-
time system. The compiler translates C� programs with shapes declaredoutofcore ,
which describe parallel data stored on disk. The compiler output is a program in
standard C with I/O and library calls added to efficiently access out-of-core parallel
data. At the moment, most of the work is focussed on out-of-core fast Fourier trans-
form [CWN97], BMMC permutations [CSW98] and sorting. No other secondary data
structures are provided. As for TPIE, there is no connection to a highly efficient in-
ternal memory library that is commonly needed for algorithmic design of new data
structures or algorithms.

In 1997, we decided to develop a new library for secondary memory computation.
The main idea was to make secondary memory computation publicly available in an
easy way. The library, later calledLEDA-SM(LEDA for secondary memory), should
be easy to use (even by non-experts) and easy to extend. LEDA-SM is a C++ library
that is connected to the internal-memory library LEDA (Library of Efficient Data types
and Algorithms) [MN99, MN95]. It therefore offers the possibility to use advanced

1TPIE is developed at the University of Duke (see also www.cs.duke/edu/˜tpie).

26

3.1 Design of the Library LEDA-SM

and efficient internal memory data structures and algorithms in secondary memory
algorithmic design and therefore saves important time in the development of new data
structures and algorithms as recoding of efficient internal memory data structures or
algorithms is not necessary.

3.1 Design of the Library LEDA-SM

We describe in detail the design of the LEDA-SM library. When we started to develop
LEDA-SM, our main idea was to follow the main design goals of the LEDA library
which areease-of-use, portabilityandefficiency.

1. Ease-of-use
Algorithms and data structures provided by the library should be easy to use.
Setup of secondary memory should be easy, all functions should be well docu-
mented. We provide a precise and readable specification for all data structures
and algorithms. The specifications are short and abstract so as to hide all details
in the implementation. This concept of specification and documentation of algo-
rithmic work was adopted from the LEDA project. We use CWEB [KL93] and
LEDA’s CWEB extensions to document our code. Secondary memory setup is
done semi-automatically by a setup-file and checked at program start. No spe-
cific knowledge about system implementation is necessary. We will describe
this in more detail in the following sections.

2. Portability
The library should be portable to several computing platforms,i.e. using sev-
eral compilers, hardware platforms and operating systems. This means that ac-
cess and management of secondary memory must be portable across several
platforms. As a consequence we must provide at least one access method to sec-
ondary memory that works on all supported platforms so that the implementation
of secondary memory and the access to it does not rely on machine-dependent
routines or information.

3. Efficiency
All supported data structures and algorithms should be efficient in terms of CPU
usage, internally used memory, disk space and number of I/Os. Portability and
efficiency can be conflicting goals: in order to be portable we cannot rely on
machine-specific implementations but these are often the most efficient ones.
We circumvent this problem by providing portable and non-portable code for
specific platforms.

The main design goal of the library was to follow the theoretical model of [VS94b]
as described in Section 2.3.2. There each disk is a collection of a fixed number of
blocks of fixed size; the blocks are indivisible and must be loaded into internal memory
if computation should be performed on them. We therefore directly pay attention to
the specific features of hard disks (sectors are the smallest accessible indivisible units,
see Section 2.1) and file systems (fractions of logical disk blocks are the smallest
accessible, indivisible units, see Section 2.2).

27

3.1 Design of the Library LEDA-SM

Library LEDA-SM is implemented in C++. The library is divided into two lay-
ers,kernel layerandapplication layer. The kernel layer is responsible for managing
secondary memory and the access to it. The application layer consists of secondary
memory data structures and algorithms. LEDA is used to implement the in-core part of
the secondary memory algorithms and data structures and the kernel data structures of
LEDA-SM. One of the central design questions is the realization of secondary memory
and the access to it. Secondary memory consists of several disks and each disk is a
collection of blocks. The following questions arose:

1. How do we provide secondary memory?
There are several choices to model secondary memory. One way is to use files of
the file system and the other is to use directly the disk devices. Furthermore, we
can either model a whole disk drive, or we can assign portions of the secondary
memory (i.e. files) to data structures.

2. How do we implement access to secondary memory?
Depending on the choice of the secondary memory realization, I/O operations
can either be done by file access methods or one can use direct disk access to
the disk drive. The latter method possibly needs specific disk device drivers.

3. Is it necessary to model disk block locations and disk block users?
If secondary memory is modeled as disk drives, we need a way to manage the
system resources of disk drives which are the individual disk blocks. As several
data structures might own disk blocks on the same disk, it is necessary that disk
block owner checks can be performed.

On the basis of these questions, the following three design methods are possible:

Method I. The first method is using several disk drives and low-level access to the
disk, thus directly providing secondary memory by means of the hard disk itself. The
advantage is that this method provides fast disk access as it does not use any additional
software layers of the operating system, such as file systems, to handle I/O operations.
Access to disk data is handled by using machine-dependent low-level disk access rou-
tines (known asdisk device drivers) to transport data to or from the disk. In order to
avoid that one data structure overwrites data of another data structure on the disk, it is
required to map used disk blocks to data structures/algorithms (users) and to check if it
is allowed to access a specific disk block. This task in general resembles the problem of
managing main memory in multitasking operating systems (see for example [Dei90]).

Methods II and III provide secondary memory by using the file system of the oper-
ating system. Secondary memory is provided by files on the file system and access is
realized by file access methods (see Section 2.2). As portability was one of the major
design goals and low-level disk access is different on every platform, we decided to
use a file system based view for secondary memory, thus concentrating on methods
II or III. Method II uses a file for each data structure/algorithm or parts of it, while
method III uses a file for each disk that is modeled. Methods II and III both have sev-
eral advantages and disadvantages.

28

3.1 Design of the Library LEDA-SM

Method II. As every data structure uses its own file(s), there is no need to manage
users and block locations directly and there is no need for a general protection mech-
anism in order to avoid overwriting data of other data structures. All these tasks are
indirectly handled by the file system itself. Logical disk block locations inside the file
can simply be translated into seek-commands, there is no need to manage these logical
disk block locations, and allocation of new space is done via an extension of the files.
There are however some limitations. Operating systems normally limit the allowed
number of open files per process. The reason is that each file descriptor needs some
amount of space that is often statically allocated to the process. As a consequence, one
could simply reach that limit and thus force the library to close and reopen files. Un-
fortunately opening and closing files is a costly process in terms of CPU usage. Much
more important is the fact that allocation and deallocation of disk space is only done by
the operating system. Since many files can be used on the file system and since files
dynamically grow throughout computation, it is very likely that most of theses files
are not physically contiguous on disk. This fact reduces I/O performance on the file
system and makes prefetching of data (read-ahead) quite useless. Furthermore it is not
possible to convert this view of secondary memory to low-level disk access without
completely changing the library design. An example where this implementation idea
was used is TPIE.

Method III. An abstract disk is modeled by a specific file of fixed size and is logi-
cally divided into blocks of a fixed size. The size of the disk (i.e. the corresponding
file) is fixed, thus modeling the fact that the size of a disk is also limited in reality.
As several data structures (users) normally use disk space on the same abstract disk,
there is a need to model abstract disk blocks and owners of these disk blocks. Disk
blocks can now be in use or free, the kernel must be able to keep track of this and must
provide methods for allocating and freeing disk blocks. During access to disk blocks,
it is necessary to perform owner checks in order to avoid overwriting data of other
users. This approach has again limitations. Depending on the platform, file size is
limited to 2 Gigabytes (32 bit file systems) thus restricting the abstract disk size. More
modern operating systems support 64 bit file systems and thus allow files to grow up
to 2 Terabytes. Method III is a software model of method I where we simulate a real
hard disk via the file system. The simulation is simplified as we do not model cylin-
ders and tracks but we see a disk as a collection of disk blocks2. The main advantage
of this form of design is the fact that it is possible to switch to a machine-dependent
low-level (raw) disk access without rewriting the whole kernel. For Solaris-based op-
erating systems, this can even be done without code changes. The raw disk device
can be accessed via standardized file system calls. As the kernel manages disk blocks,
users and allocation/deallocation by its own, one can simply switch to the low-level
disk access by using device names for the abstract disk instead of file names in the file
system. For all other operating systems that do not provide raw disk device access as
an operating system feature, it is necessary to write device drivers. At the moment, we
only support raw device access for Solaris platforms.

We have chosen design method III for the kernel of LEDA-SM. It provides the flex-

2This view is also often provided by low-level SCSI disk device drivers.

29

3.1 Design of the Library LEDA-SM

ibility of using raw disk access along with file access and therefore allows us to use
either file system independent, low-level disk access or portable file access. The file
size limit is actually not a problem for modern operating systems as most of them
provide a 64-bit file system. In the LEDA-SM library, secondary memory consists of
NUM OF DISKS logical disks (i.e. files),max blocks [d] blocks can reside on thed-
th disk,0 � d < NUM OF DISKS . A block on disk is able to storeEXT BLK SZ

items of typeGenPtr , where typeGenPtr is the generic pointer of the machine (C++
type void�). Disk blocks are indivisible,i.e. we always have to transfer whole disk
blocks during read or write.

The LEDA-SM library consists of two layers. Thekernel layeris responsible for
disk space management and disk access. It furthermore implements an interface that
allows to perform block-oriented disk access in a user friendly way. The kernel of
LEDA-SM consists of seven C++ classes and is divided into the abstract and the con-
crete kernel (see Table 3.1). The concrete kernel consists of four C++ classes. These
classes are responsible for performing I/Os, managing used and non-used disk blocks
and managing users of disk blocks. There are several different implementations for
each of these tasks. These classes are built into the library and cannot be changed.
The abstract kernel implements a user-friendly access interface to the concrete kernel.
It consists of three C++ classes; two of them model abstract disk block locations and
owners/users of disk blocks. The third class is a container class that simplifies the
block oriented access to secondary memory. It is able to transport blocks of items of
data typeE to and from secondary memory (see in detail Section 3.2.3). Theapplica-
tion layerconsists of a collection of external memory algorithms and data structures.
The current implementations of all applications use the classes of the abstract kernel to
simplify the access to secondary memory. This is not absolutely necessary but it allows
to write readable applications and simplifies the development process. In other words,
the classes of the abstract kernel define anaccess interfaceto secondary memory that
can be used by application programmers to simplify data structure and algorithm de-
velopment.

Layer Major Classes

algorithms sorting, graph algorithms,: : :
data structures ext stack , ext array , : : :
abstract kernel block<E>, B ID , U ID

concrete kernel ext memory manager ,
ext disk , ext free list ,
name server

Table 3.1:The different layers of library LEDA-SM.

Figure 3.1 summarizes the kernel layout. We use UML as modeling language
[FS00] (see Appendix B for a short introduction to UML). The dark horizontal line
separates the abstract and the concrete kernel. From now on it is necessary to distin-
guish between blocks as physical objects (= a region of storage on disk) and logical

30

3.1 Design of the Library LEDA-SM

block
+ID: B_ID
+user: U_ID
+write()
+read()

EB_ID

-valid: bool = false 1
1

U_ID

+NO_USER: bool = true

1

1

name_server

+new_id(): U_ID
+free_id(uid:U_ID)

«Generator»
UID_SERVER

«concept»

[logical block]

ext_memory_manager

«concept»
disk

«concept»
disk block management

realizes

«physical»

[disk block]

«physical»

[disk block location]

realizes

*

1

logical view
1

1

Figure 3.1:Layout of LEDA-SM’s kernel. We use UML as a modeling language.

objects (= a bit pattern of particular size in internal memory). We will use the word
disk blockfor the physical object and reserve the wordblock for the logical object.

The central classes of the concrete kernel are classname server and class
ext memory manager . Classext memory manager realizes disks and disk block
management, whilename server generates user identifiers. There is only one instance
of each of these two classes. Each disk consists of a collection of linearly ordered
disk blocks, a disk block is an array of typevoid� of sizeEXT BLK SZ , where
EXT BLK SZ is a system constant that specifies the size of a disk block (parameterB
of the secondary memory model). Classext memory manager uses classext disk to
realize the disks and the access to the disk blocks; classext freelist is used to manage
the used and free disk blocks of a disk.

The abstract kernel provides logical concepts of disk block identifiers (B ID) and
blocks (block<E>), these concepts are associated with their physical counterparts in
the concrete kernel (see Figure 3.1). Logical block identifiers are used to specify a
disk block on a specific disk. Classblock is used to provide a typed view (typeE) of
a disk block. We associate with each instance of class block one object of typeB ID

and one object of typeU ID . TypeU ID is used to model users of disk blocks as well
as logical blocks. The concepts “block ”, “B ID” and “U ID” are associated with the
concrete kernel in the following way:
each valid object of typeB ID refers to a disk block location in secondary memory,

31

3.2 The abstract kernel

and each block refers to a disk block in secondary storage via its unique block iden-
tifier (B ID). Disk blocks are either owned by a specific user or they are free (U ID

NOUSER).
The seven classes of the kernel together with the in-core algorithms of the LEDA

library are used to implement all secondary memory data structures and algorithms
currently available in the LEDA-SM library.

We will now describe the different kernel classes and their implementation in more
detail.

3.2 The abstract kernel

The abstract kernel consists of the three C++ classesB ID , U ID and block<E>.
ClassB ID is used to simplify the access to disk block locations in secondary memory.
All file access and raw device access methods specify the location as an offset in bytes
(see Section 2.2.3). We simplify this by dividing the disk file into fixed size blocks
of sizeEXT BLK SZ . These blocks are numbered linearly. Thus, blockx specifies
the disk file locations[x � EXT BLK SZ ; : : : ; (x+ 1) � EXT BLK SZ � 1]. Class
U ID models users of disk blocks. This is necessary as we manage allocation and
deallocation of disk blocks by our own, and as we need to avoid that a data structure
inadvertently overwrites disk blocks of another data structure. Parameterized class
block<E> is used to simplify access to and from disk blocks. Since data in files and
on the disk is untyped, we need a container class that is able to transport a block of
items of typeE to or from the disk. Typing and untyping of the data, it contains,
should be done automatically. We will now describe all classes of the abstract kernel
in more detail.

3.2.1 Disk Block Identifier (B ID)

An instanceBID of typeB ID is a tuple(d;num) of integers whered specifies the
disk andnum specifies the logical block of diskd. Block identifiers are abstract ob-
jects that are used to access physical locations in external memory. It is allowed to
perform basic arithmetic operations like addition, substraction, etc. on objects of
type B ID . Arithmetic operations only affect entrynum of type B ID . A block
identifier (shortlyblock id) is called valid if 0 � d <NUM OF DISKS and
0 �num<max blocks [d]. If num is equal to�1, we call the block identifierinactive.
An inactive block identifier is not connected to any physical disk location.

ClassB ID is implemented in a simple way:

32 hblock identifier32i�
class B_ID
{

int D;
int num;

32

3.2 The abstract kernel

public:
[Member functions]
};

whereD specifies the number of the disk andnum specifies the logical block number
on that disk. There exist member functions to create or modify block identifiers as well
as to perform arithmetic operations on typeB ID (see manual page of classB ID in
the Appendix). Block identifiers are used in the application code to specify logical
disk block locations in secondary memory. They are mostly used together with class
block<E> to access physical disk blocks in an easy way. They are necessary for the
management of unused and used disk blocks.

3.2.2 User Identifier (U ID)

User identifiers(shortly user id) are used to specify users of disk blocks. A user
identifier (typeU ID) is implemented by typeint . There exists a special user id
NO USER which is used by classblock . A specific concrete kernel class (name server)
is used to manage allocated and free user identifiers (see Section 3.3).

The most important class in the abstract kernel is responsible for providing a sim-
ple method to transport blocks of data typeE to secondary memory or vice versa and
for representing blocks in internal memory. This is done by the parameterized class
block<E>. The next subsection gives a detailed specification of classblock<E>. This
kind of documentation is used in the LEDA-SM manual.

3.2.3 Logical Blocks (block<E>)

Classblock was designed to provide the abstract view to secondary memory as in-
troduced in the theoretical I/O model of Vitter and Shriver [VS94b] (see also Sec-
tion 2.3.2). Physically, a disk block is a consecutive region of storage of fixed size
B on the disk. Logically, a disk block contains some fixed number of elements of
typeE, this elements can be indexed like in an array. Thus the main difference is that
disk blocks are untyped (typevoid �) while logical blocks are typed (typeE). Class
block is a container class, parameterized by typeE, that allows indexed access to the
elements of typeE and that is able to transport these items to secondary memory and
vice versa.

1. Definition

An instanceB of the parameterized typeblock<E> is a typed view of logical in-
ternal memory blocks. It consists of an array of links and an array of variables of
data typeE. The array of links stores links to other blocks, a link is an object
of data typeB ID . The second array stores variables of data typeE. The vari-
ables of typeE are indexed from0 to blk sz � 1, the links are indexed from0 to
num of bids � 1. The number of linksnum of bids is set during the creation. The

33

3.2 The abstract kernel

number of variables of typeE, blk sz , is dynamically calculated at time of construc-
tion: blk sz = (BLK SZ � num of bids � sizeof (B ID))=sizeof (E), i.e. the size of
a block is determined by the system constantBLK SZ and the possible number of
links num of bids to other blocks. We furthermore associate a block identifier and a
user identifierwith each instanceB of typeblock . The block identifier (B ID) and the
user identifier (U ID) of instanceB are used during write or read access to external
memory.

2. Creation

block<E> B; creates an instanceB of type block and initializes the number
of links to zero. At the time of creation, the block identifier is
invalid to mark that the block is not connected to a physical loca-
tion in external memory. The internal user identification is set to
NO USER.

block<E> B(U ID uid ; int bids = 0);

creates an instanceB of type block and initializes the number
of links num of bids to bids and the user id touid . At the
time of creation, the block identifier isinvalid to mark that the
block is not connected to a physical location in external memory.
There is the possibility to create a block with user identification
NO USER and to later set the user indentification to the actual
user. The user-id can only be set once.

3. Operations

int B:size() returns the the number of elements of data typeE of
B.

int B:bytes() returns the size ofB in bytes.

int B:numof links() returns the number of links to other blocks.

B ID B:write() writes the block into the disk block specified by the
block’s internal block id. If the block id is inactive,
a new unused block id is requested from the external
memory manager and the block is written.
Precondition: B’s user identification is not equal to
NO USER. Otherwise an error message is produced
and the application is stopped.

34

3.2 The abstract kernel

void B:write(B ID bid) writes the block into disk block specified bybid and
sets the block identifier ofB to the inactive block in-
dentifier.
Precondition: Block identifierbid must bevalid , the
user ofB must own the disk block specified bybid
andB ’s user id must be different fromNO USER. If
this is not the case, an error message is produced and
the application is stopped.

void B:read() reads the disk block specified byB’s internal block
identifier intoB.
Precondition: the internal block id must bevalid and
B’s internal user identification must be different from
NO USER.

void B:read(B ID bid) reads the disk block specified by block identifierbid

intoB.
Precondition: bid must be valid andB’s internal user
identification must be different fromNO USER. If
this is not the case, an error message is produced and
the application is stopped.

void B:readahead(B ID bid ; B ID ahead bid)

reads the disk blockbid intoB and starts read-ahead
of disk blockahead bid .
Precondition: The disk-I/O implementation must al-
low asynchronous I/O, all preconditions ofread()
must be fullfilled for block idsbid andahead bid .

B ID& B:bid(int i) is used to access thei–th link element ofB. A syn-
onym isB(i).
Precondition: 0 � i < num of links

B ID B:id() returns the internal block identifier ofB. This block
identifier is either inactive or bound to a specific disk
block of the external memory manager.

void B:setid(B ID newid)

sets the internal block identifier ofB to newid .

U ID B:user() returns the internal user identifier ofB.

void B:setuser(U ID uid)

sets the internal user identifier ofB to uid .
Precondition: the internal user identifier must be
NOUSER.

bool B:is active() returns true ifB has an active block identifier, false
otherwise.

35

3.2 The abstract kernel

Array Operators

E& B[int i] returns a reference to the contents of variable element
i.
Precondition: 0 � i < blk sz

B ID& B(int i) returns a reference to the contents of link element i.
Precondition: 0 � i < num of links

Assignment Operators and Copy Operators

void B = const block<E>& t

copies blockt intoB.

Static Members

void block ::genarray(array< block<E> >& A; int number ; U ID uid ;
int bids = 0)

initializes an array of blocks.A is a reference to the
array to be initialized,number is the size of the array.
The user-identifier of each block is set touid and the
number of links of each block is set tobids .

B ID block ::write array(array< block<E> >& A)

writes the array of blocksA to the external memory.
The function writes to consecutive locations in exter-
nal memory, the internal block identifier of the first
array entry ofA is used to determine the starting po-
sition (A[0]:bid()). In the case that this block iden-
tifier is inactive, disk blocks in external memory are
requested. The return value is the block identifier to
which the first array element ofA was written.
Precondition: The preconditions are the same as for
methodwrite.

void block ::readarray(array< block<E> >& A)

reads A:size() consecutive blocks from external
memory into the array of blocksB. The function
starts reading from the block position that is speci-
fied byA[0] internal block identifier (A[0]:bid()).
Precondition: The internal block identifier ofA[0] is
not inactive. All other preconditions ofread apply.

36

3.2 The abstract kernel

void block ::readarray(array< block<E> >& A; B ID bid ; int num = �1)

readsminfA:size(),numg consecutive blocks from
external memory starting at block locationbid into
A. If num is negative,A:size() blocks are read.
Precondition: All preconditions ofread (B ID) ap-
ply.

int block ::elements(int bids = 0)

returns number of elements of typeE which fit into
one block usingbids links.

4. Implementation of Classblock<E>
Parameterized data typeblock<E> is implemented as follows:

37a h block<E> 37ai�

template <class E>
class block
{

int blk_sz;
int num_of_bids;
GenPtr *A;

public:

[method declarations;]

};

An itemB of data typeblock<E> consists of two variables of typeint and a pointer
of typeGenPtr . The first variableblk sz holds the number of entries of typeE that
can be stored in itemB of type block<E>. The second variablenum of bids stores
the number of links of typeB ID to other blocks. PointerA of typeGenPtr (GenPtr
is the generic system pointer type, normally typevoid�) is later used to allocate space
of sizeEXT BLK SZ � sizeof (GenPtr) bytes. This is done at the time ofB’s con-
struction. The array ofGenPtrs is used to store the objects of typeB ID , the objects
of typeE and the internal block-id and user-id ofB. These objects are created in-place
inside the arrayA.

37b hblock<E>::block() 37bi�
template<class E>
block<E>::block(U_ID myid,int bids)
{

if(bids < 0)
{

std::cerr << "block::block\n";

37

3.2 The abstract kernel

std::cerr << "number of bids is negative:" << bids
<< std::endl;

abort();
}

if(num_of_bids*sizeof(B_ID)> BLK_SZ)
{

std::cerr << "block::block is to small, number of bids "
<< num_of_bids
<< " total size in bytes is "
<< num_of_bids*sizeof(B_ID)
<< " ,block size is "
<< BLK_SZ
<< " , application is stopped !\n";

abort();
}

num_of_bids = bids;
A = LEDA_NEW_VECTOR(GenPtr, EXT_BLK_SZ);
for(int i=0;i<EXT_BLK_SZ;i++) A[i] = nil;
if(sizeof(E) >= sizeof(GenPtr))

blk_sz = (sizeof(GenPtr)*BLK_SZ -
num_of_bids*sizeof(B_ID))/sizeof(E);

else
blk_sz = (sizeof(GenPtr)*BLK_SZ -

num_of_bids*sizeof(B_ID))/sizeof(GenPtr);

A[BID_POS] = (GenPtr) -1;
A[BID_POS+1] = (GenPtr) -1;
A[UID_POS] = (GenPtr) myid;

}

The non-default constructorblock(myid ; bids) is normally used to create a new item
B of type block<E>. Parametermyid of typeU ID identifies the user of itemB;
bids specifies the number of desired links of typeB ID that are stored inside ofB.
We dynamically allocate space for the arrayA of EXT BLK SZ entries of type
GenPtr by using the LEDA macroLEDANEWVECTOR(). BLK SZ entries are
available to store items of typeE and typeEB ID , the rest of the available space
(EXT BLK SZ �BLK SZ GenPtrs) is used to store maintainance information, con-
sisting ofB’s user identifier and block identifier. Depending on the size of typeE
(sizeof(E)) and the numberbid of links of typeB ID , we calculate the number
of entries of typeE that can be stored inA. This value is assigned to variableblk sz .
Elements of typeE and typeB ID are later created in-place of arrayA. Entries of type
B ID are stored before the entries of typeE. The in-place creation and assignment is
forced by the following code segment (for typeE):

38 hblock<E>::operator[](int it) 38i�
template<class E>
E& block<E>::operator[](int i)
{

if ((i< 0) || (i > blk_sz))
{

38

3.2 The abstract kernel

std::cerr << "block[]::index out of bound " << i
<< std::endl;

std::cerr << "block_size is " << blk_sz
<< std::endl;

abort();
}

if (sizeof(E) >= sizeof(GenPtr))
return (E&)A[(num_of_bids*sizeof(B_ID)+

i*sizeof(E))/sizeof(GenPtr)];
else

return *(E*)(&A[(num_of_bids*sizeof(B_ID))/
sizeof(GenPtr)+i]);

}

If data typeE is smaller than data typeGenPtr , we use an item of typeGenPtr
and create data typeE in-place of theGenPtr . This may possibly waste some space,
i.e. type char is one byte and typeGenPtr is four bytes (on a 32-bit CPU). The
code line�(E�)(&A[:::]) forces the in-place-assignment. If data typeE is larger than
typeGenPtr , we usedsizeof (E)=sizeof (GenPtr)e many consecutive array entries
to create the object of typeE in-place. This is done by the code line(E&)A[:::]. A
similar code segment is used to access the items of typeB ID .
The key trick of this implementation is that the underlying data structure is an array
of type GenPtr . This easily allows to directly write itemB of type block<E> to
disk using any of the discussed file access methods of Section 2.2.3 as all file access
methods assume that the data to be written or read is stored in a buffer of typevoid�.
Thus, reading or writing an itemB of typeblock<E> to disk is simple:

39 hblock<E>::write(B ID bid) 39i�

template<class E>
void block<E>::write(B_ID bid)
{

U_ID uid;
B_ID inactive;

uid = (U_ID) A[UID_POS];
if (uid != NO_USER)
{

A[BID_POS] = (GenPtr) bid.number();
A[BID_POS+1] = (GenPtr) bid.get_disk();

ext_mem_mgr.write_block(bid,uid,A);

A[BID_POS] = (GenPtr) inactive.number();
A[BID_POS+1] = (GenPtr) inactive.get_disk();

}
else
{

std::cerr << "write::current user id is NO_USER.\n";

39

3.2 The abstract kernel

abort();
}

}

This member function allows to write itemB to any disk block specified by block
identifier bid . We first extract the user identifieruid of item B. If B has no valid
user (NOUSER), we are not able to write the block to disk. Otherwise, we setB’s
internal block identifier tobid and then ask theexternal memory managerto issue
a write command. Member functionext mem mgr:write block(bid ; uid ; A) of class
ext memory manager then uses a write routine of the concrete kernel to write the
contents of itemB (i.e. arrayA) to the disk block specified bybid . The external
memory manager of the concrete kernel is responsible for performing the correctness
checks,i.e. it checks if block-idbid is valid and if user-iduid is allowed to access
the disk block specified by block-idbid . By this mechanism, classblock<E> is con-
nected to the concrete kernel (see the directed association in Figure 3.1 between block
and extmem manager). This is a one way connection in such a way that data type
block accesses member functions of classext memory manager but not the other
way around. Member functionread (B ID) basically works in the same manner.

We conclude the description of the abstract kernel by giving a simple code example
to highlight the simplicity of the abstract kernel classes. Our example shows that the
external programming paradigms of TPIE can also be easily implemented in LEDA-
SM. Our function is a simple scan function. This function scansk blocks and applies
a functionf() to each item of the block.

40 h scan.c40i�

template<class E> void scan (B_ID start, unsigned int k,
void (*f)(E&), U_ID uid)

{
block<E> B(uid);
for(B_ID i=start;i<start+k;i++)

{
B.read(i);
for(int j=0;j<B.size();j++) f(B[i]);
B.write(i);

}
}

Our function takes as input the starting block-idstart from where we want to scan
k blocks, the useruid of these blocks and a pointer to the modification functionf .
We see in this simple example, that it is not necessary to understand how the concrete
kernel performs the read or write accesses to the disk as the abstract kernel completely
relieves the programmer from that task. A general scan-routine that also takes care of
the number of links in a block and that is also able to scan linked disk blocks can be
easily derived from the simple routine above.

40

3.3 The concrete kernel

3.3 The concrete kernel

The concrete kernel is responsible for performing I/Os and managing disk space and
users in secondary memory and consists of classesext memory manager , ext disk ,
ext freelist andname server . Figure 3.2 shows the kernel layout in UML.

ext_memory_manager
block_size:int

«abstract»
ext_disk

Disk Realization

1..a

Disk block management

1..a

stdio_disk syscall_disk memory_disk raw_disk

«abstract»
ext_freelist

array_freelist new_sortseq_freelistext_array_freelistsortseq_freelist

mmapio_disk

Figure 3.2:UML specification of the concrete kernel without class nameserver.

We will now discuss in more detail the functionality and implementation of the
classes of the concrete kernel.

3.3.1 Classname server

Classname server is responsible for managing user identifiers. This class allows to
allocate a new user identifier or to free a formerly used user identifier. The class is
implemented by a variablemax name of type int and a LEDA priority queue having
priority type int and information typechar . The information type is actually useless,
therefore we use typechar to waste the least possible extra space. At time of creation
of classname server , max name is zero andpq is empty. pq is used to store freed
user-ids. As long aspq is empty, a new user-id is allocated by returningmax name
and incrementing it. Ifpq is not empty, it returns its minimal key as newly allocated
user-id. The constructor of classname server works in such a manner that it is not
possible to create more than one instance of classname server (see Appendix 3.3.2
for this implementation trick).

41

3.3 The concrete kernel

3.3.2 Classext memory manager

Classext memory manager is the central class of the concrete kernel. It manages the
library’s access to secondary storage. Therefore, only one instance of this class exists
at a time. We will later see in this section how the implementation can guarantee that
only one instance exists. In detail, the class is responsible for:

� creation of secondary storage
At the time of creation the class parses a configuration file that contains the
number of disks, the names (file or device names) of the disks, and the size of
each disk in blocks. The class checks this information for correctness and then
uses classext disk to create the secondary memory,i.e. it opens the files or
devices and sets up the disk block management (for details see Section 3.3.3).

� management of occupied and free disk blocks
At startup-time, all disk blocks on each disk are free,i.e. they don’t belong
to a specific user. It is possible to allocate block(s) for a specific user and to
free block(s). These requests are outreached to classext freelist . This class is
responsible for the actual management of disk blocks of each disk (see in detail
Section 3.3.4).

� transaction of physical I/Os
Physical I/O requests to specific disk block locations are first checked for cor-
rectness and then outreached to classext disk which does the actual physical
I/O. The correctness check contains out-of-bound checks for the block identi-
fiers as well as user checks. The initial correctness check setting allows to read
every disk block but only to write to disk blocks with matching user identifier.

Besides the functionality of initiating I/Os and managing disk space, the concrete
kernel provides other functionalities:

� Counting of I/Os
It is possible to count read and write accesses for each disk. Furthermore it al-
lows to count bulk I/Os, the size of a bulk I/O can be set by the external memory
manager (see Section 2.3.2 for a description of bulk I/Os). The routines count
“logical” I/Os, i.e. I/O requests that are scheduled by the external memory man-
ager. It can happen that the file system does not have to perform the I/O as the
data is already buffered.

� logging
The system is able to log status messages of the various tasks of the concrete ker-
nel into a log-file. The log-file can be found under‘‘/tmp/LEDA-SM-LOG’’ .

� Kernel configuration
The kernel is configured at program startup time. The constructor of class
ext memory manager reads a configuration file (named.config leda sm).
This file specifies the number of disks, name of the disk files, size of the disks
files, used I/O-implementation (implementation class for classext disk) and
freelist implementation. The last section of the configuration file specifies if
kernel recovery is enabled and if the kernel should read the recovery file during
startup (see Section 3.4 for details).

42

3.3 The concrete kernel

� Kernel and data structure recovery
Secondary memory is provided by files of the operating system. In the earlier
versions of LEDA-SM, these files were deleted when computation ended. At
start-time, the files were created from scratch again. Although data structures
and algorithms had the functionality of writing their data to output files, we
missed the important feature of recovering data structures and algorithms from
previously used disk files. This functionality avoids to write the contents of data
structures to intermediate output file and reread these files later, and additionally,
it allows to stop the computation and restart it at any later point in time (so-called
checkpointing). The recovery mechanism consists of two parts: we first save all
kernel data structures that manage disk blocks and users (kernel recovery) and
second, we save the necessary information to recover a data structure from the
disk file. The recovery mechanism is in detail described in Section 3.4.

Classext memory manager is implemented in such a way that it does not use any
classes of the abstract kernel. By this, it is possible to extend or change the abstract
kernel without touching the concrete kernel. We now describe the implementation of
classext memory manager .

43 h ext memorymanager.h43i� 44.

template<int bz>
class ext_memory_manager
{

ext_freelist **freelists;
ext_disk **disks;
int NUM_OF_DISKS;
[...]

public:

[public member functions]
};

Classext memory manager is parameterized in the disk block sizebz . The follow-
ing private member variables implement the logical disks and the disk block manage-
ment3:
VariableNUM OF DISKS stores the number of realized logical disks. Pointer vari-
able�disks points to an array of typeext disk � of sizeNUM OF DISKS ; pointer
variable�freelists points to an array of sizeNUM OF DISKS of typeext freelist�.
The first array realizes the supported disks and the second array manages the disk
blocks for each of the disks. The space for both arrays is allocated in the constructor
of classext memory manager . We now describe the most important member func-
tions of classext memory manager .

3We omit some variables to simplify the description. Most of them are variables that count random or
bulk I/Os. A full code description is given in the appendix.

43

3.3 The concrete kernel

44 h ext memorymanager.h43i+� / 43 45a.

template<int bz> B_ID
ext_memory_manager<bz>::new_block(U_ID uid, int D)
{

int i,block_num;

if (D < -1 || D >= NUM_OF_DISKS)
{

std::cerr << "new_block::disk out of bound: " << D
<< std::endl;

abort();
}

if(D == -1) // memory manager chooses disk
{

for(i=0;i<NUM_OF_DISKS;i++)
{

if ((block_num=freelists[i]->new_blocks(uid,1))>=0)
break;

}
if (i==NUM_OF_DISKS)
{

std::cerr << "new_block::no free block on any disk!\n";
abort();

}
D=i;

}
else
{

if((block_num=freelists[D]->new_blocks(uid,1))<0)
{

std::cerr << "new_block::no free block on disk " << D
<< std::endl;

abort();
}

}

return B_ID(block_num,D);
}

new block(uid ;D) tries to allocate a single disk block on diskD for useruid . If
D = �1, the system can choose an arbitrary disk. The member function first checks,
if D is out of bounds. Then, it starts asking each freelist data structure, if there is
a free block on its disk (caseD = �1) or it asks the freelist data structure of the
specific diskD. This is done by the callfreelists[i]->new block(uid,1)
that uses classext freelist . The return value of this call is either the allocated disk
block number or�1 if no block is free. If the system does not find a free disk block,
it issues a log message. The return value of the function is the block-id, consisting

44

3.3 The concrete kernel

of the allocated disk block number andD. Member functionnew blocks(uid ; k;D)
allocatesk consecutive blocks and basically works in the same manner.

45a h ext memorymanager.h43i+� / 44 47b.

template<int bz>
void ext_memory_manager<bz>::free_block(B_ID bid, U_ID uid)
{

if (check_bounds(bid,1))
{ std::cerr << "free_block " << bid << "is invalid\n";

abort();
}
if (freelists[bid.get_disk()]->free_blocks(bid.number(),uid))
{

std::cerr << "\nfree_block:access to wrong block, "
<< "you are not owner of this block "
<< "request is ignored\n";

abort();
}

}

Member functionfree block (bid ; uid) frees the block-idbid which was previously
allocated by useruid . We first check by functioncheck bounds(bid ; k), if the block-
id is valid. If this is the case, we ask classext freelist to free the block. The call
freelists[..]->free blocks() returns the freed disk block number or�1 if
it failed. The request can only fail for two reasons: the disk block was already free or
allocated by a user different fromuid . In both cases we issue an error message and
abort.

We now show how to read and write a block to disk.

45b hext memorymanager.h45bi� 47a.
template<int bz>
void ext_memory_manager<bz>::write_block(B_ID bid, U_ID uid,

ext_block B)
{

if (check_bounds(bid,1))
{

std::cerr << " invalid B_ID "<<bid<<" in write_block\n";
abort();

}

if(freelists[bid.get_disk()]->check_owner(bid.number(),uid))
{

disks[bid.get_disk()]->write_blocks(bid.number(),B);
write_count[bid.get_disk()]++;

if(count_bid[bid.get_disk()]+1 == bid)
{

45

3.3 The concrete kernel

cons_count1[bid.get_disk()]++;
if(cons_count1[bid.get_disk()] == bulk_value)

{
cons_count1[bid.get_disk()] = 0;
cons_count[bid.get_disk()]++;

}
count_bid[bid.get_disk()] = bid;

}
else

{
rand_count[bid.get_disk()] +=

cons_count1[bid.get_disk()]+1;
cons_count1[bid.get_disk()]=0;
count_bid[bid.get_disk()] = bid;

}
}

else
{

std::cerr << "ext_memory_manager::write_block\n";
std::cerr << "disk block " << bid

<< " is not owned by user "
<< uid << std::endl;

abort();
}

}

We first check again ifbid is valid. This is done by the private member function
check bounds . In the next step, we ask classext freelist if block-id bid is owned by
useruid . If this is not the case, we abort the application, because otherwise we would
overwrite data of other users. If all checks passed, we issue the write command by
information classext disk to write the block
(disks[bid.get disk()]->write blocks(bid.number(),B);). In the
rest of the member functionwrite(bid ; uid ; B) we increment our write counters and
try to determine if the I/O belonged to a bulk I/O or not. Member functionread works
similarly. The functionality of the rest of the member functions of classext memory

manager is described in its manual in Appendix C.
The implementation has to ensure that only one instance of classext memory

manager exists at a time. The reason for this is easy to see: if more than one instance
of this class exists for a single application and both instances want to manage the same
disk resources (same disk files), we can easily get into trouble as the information con-
tained in their freelists is not necessarily identical. Therefore, we need to guarantee
that only one instance can exist at a time. This is a little bit tricky if the following
situation occurs:
Several C++ files each contain a code line that includesext memory manager:h.
These C++ files are later compiled to different object-files and then linked together.
Normally, the situation is simply solved by putting the unique instance into a library.
Unfortunately, this concept does not work for the following reason:
A design goal of LEDA-SM was that it should be possible to change the disk block
size (system constantEXT BLK SZ) without the need to recompile the library. In-

46

3.3 The concrete kernel

stead a recompilation step of the application program should suffice. Therefore it was
necessary to keep constantEXT BLK SZ outside of the library code and it was not
possible to put the unique instance of classext memory manager into the library as it
directly depends onEXT BLK SZ . We have therefore chosen the following method:

47a hext memorymanager.h45bi+� / 45b
template<int bz>
class ext_memory_manager_init
{

static ext_memory_manager<bz> MM;

[private member functions of ext_memory_manager]
public:

[public member functions of ext_memory_manager]
};

We provide a special initialization classext memory manager init that is also pa-
rameterized in the constantbz . Classext memory manager init has a private static
member of typeext memory manager<bz>. This static member is initialized in
ext memory manager:h using the code line

47b h ext memorymanager.h43i+� / 45a
template<int bz>
ext_memory_manager<bz>
ext_memory_manager_init<bz>::MM=ext_memory_manager<bz>();

static ext_memory_manager_init<DISK_BLOCK_SIZE> ext_mem_mgr;

Then, a static object of typeext memory manager init<bz> is created. If we now
use several instances of fileext memory manager:h, the template instantiation mech-
anism of the compiler takes care of having only one unique instance of type
ext memory manager . Although there might be several instances of the initialization
classext memory manager init<bz>, each of these instances refers to the unique in-
stance of typeext memory manager<bz>, thus solving the described problem. This
unique instance is calledext mem mgr .

3.3.3 Classext disk

Classext disk implements the logical disk drive and the access (read or write) to it.
Classext disk is a virtual base class from which we derive the actual implementation,
i.e. classext disk only describes the functionality while the actual different implemen-
tations are encapsulated in different classes (see Figure 3.2). The actual implementa-
tion is chosen at the time of creation of classext memory manager .

47c hClass extdisk47ci�
class ext_disk
{
public:

47

3.3 The concrete kernel

virtual void open_disk(int num)=0;

virtual void close_disk()=0;

virtual int write_blocks(int block_num,ext_block B,
int k=1)=0;

virtual int read_blocks(int block_num,ext_block B,
int k=1)=0;

virtual int read_ahead_block(int block_num,int ahead_num,
ext_block B)=0;

virtual char* get_disktype()=0;
};

Member functionopen disk(num) creates the disk space for logical disknum, 0 �
num < NUM OF DISKS . Each disk consists of a fixed number of blocks of size
EXT BLK SZ items of typeGenPtr . It uses information from the external mem-
ory manager,i.e. the file name of the disk and the number of blocks of the disk.
Member functionclose disk () closes the disk files,i.e. it disconnects the disks from
the system. Member functionsread blocks() andwrite blocks() perform the actual
physical I/Os. They read/writek consecutive blocks starting from disk block number
block num. Member functionread ahead block () reads a single disk block and starts
an asynchronous read-ahead of a second disk block. This is not possible in every im-
plementation class, if read-ahead is not available, it performs a normalread block . At
the moment, five different implementation classes, derived from classext disk , are
available:

� Classmemory disk :
Classmemory disk is a realization of disks as a fixed portion of internal mem-
ory. Each disk is modeled by an array of GenPtrs, thus no external memory in
form of disk space is used. In this implementation, an I/O-operation is nothing
else then copying memory regions. This implementation can easily consume a
lot of internal memory. Therefore it should only be used for test purposes.

� Classstdio disk :
Classstdio disk uses standard file I/O (stdio.h) and the file system to implement
each disk. An I/O-operation is realized by the use offwrite andfread (see also
Section 2.2.3). The files are written in binary format to reduce their size. All read
or write operations of the standard I/O are buffered. Due to the buffering it is
possible to save I/Os as the standard I/O library only performs an I/O-operation
if the buffer is full or more data has to be written or read. However, buffering is
only effective for consecutive operations and can be the bottleneck for random
read operations because the buffer is always filled up to its total size. The size
of the buffer can be changed, it is normally set to 8 kbytes. We do not change
this value and bypass the buffering as our block size is at least 8 kbytes.

48

3.3 The concrete kernel

� Classsyscall disk :
Classsyscall disk uses the file system and the standard file I/O system calls
open , read , write , lseek andclose to access each file (see Section 2.2.3). We
do not use synchronized I/O operations to speed upread andwrite . In the
synchronized I/O mode, each operation will wait for both the file data and file
status to be physically updated on the disk. This leads to a dramatic slowdown
in the I/O performance. Classsyscall disk is portable to almost every platform
because it just uses the standard file system calls that should be implemented
in every operating system. It is also possible to use classsyscall disk for low-
level raw disk device access if the operating systems provides the corresponding
device driver interfaces (seeraw disk).

� Classmmapio disk :
Classmmapio disk uses the file system and memory mapped I/O (see Sec-
tion 2.2.3). Memory mapped I/O maps a file on disk into a buffer in memory,
so that when we fetch bytes from the buffer, the corresponding bytes of the file
are read. Similarly, when we store data in the buffer, the corresponding bytes
are automatically written to the file. The advantage of memory mapped I/O is
that the operating system is always doing the I/O directly from or to the buffer
in memory, all other file access methods like system calls and standard file I/O
first copy the data into a kernel buffer and then perform the I/Os on the kernel
buffer. We always map exactly one disk block (ork if we perform consecutive
operations). Mapping the whole file is useless as for bigger files this can easily
exceed the physical main memory so that swap space must be used to establish
the mapping (which is nonsense as swap space is disk space). Data is trans-
fered using a low-level system memory copy routine calledmemcpy . Memory
mapped I/O should be available on almost every UNIX system.

� Classaio disk :
Classaio disk uses the file system and theasynchronous I=O library (aio).
This library allows to perform asynchronous read and write requests. Besides
the standard file I/O system calls, this library supports asynchronous read calls
(aioread). The function call returns when the read request has been initiated
or queued to the file or device (even when the data cannot be delivered immedi-
ately). Notification of the completion of an asynchronous I/O operation may be
obtained synchronously through theaiowait 4. function, or asynchronously
by installing a signal handler for theSIGIO signal. The asynchronous I/O li-
brary is not available on every system, therefore it is not included in the standard
LEDA-SM package.

� Classraw disk :
Classraw disk uses standardized file system system calls and the operating sys-
tem’s special files5 to access the raw disk device. This allows to bypass the
buffering mechanisms of the file system, and therefore allows to measure real
disk performance and to save internal memory. Furthermore, logically consec-
utive disk blocks are also physically consecutive on raw devices. Raw device

4see Unix manual pageaiowat(3)
5/dev/rdsk for Solaris operating systems.

49

3.3 The concrete kernel

disk access via special files is not available on every operating system and is
therefore not portable across several platforms.

3.3.4 Classext freelist

Freelist data structures (we call themallocatorsfor the remainder of this section) have
a long tradition in the area ofdynamic storage allocationor “heap” storage allocation.
Their task is to keep track of which parts of the memory (in our specific case disk mem-
ory) are in use, and which parts are free. The design goal is to minimize wasted space
without undue time cost, or vice versa. All allocators have to deal with the problem of
fragmentation. Fragmentation is the inability to reuse memory that is free. Fragmen-
tation is classed asexternalor internal [Ran69]. External fragmentation arises when
free blocks of memory are available for allocation, but cannot be used to hold objects
of the sizes actually requested by a program. Internal fragmentation arises when a
large enough block is allocated to hold an object, but there is a poor fit because the
block is larger than needed. Two main techniques are used to combat fragmentation:
splitting andcoalescingof free blocks. Internal fragmentation often occurs because
the allocator does not split larger blocks. This may be intended to speed up the alloca-
tion or it is done as a strategy to avoid external fragmentation; splitting might produce
small blocks, if these blocks are not likely to be requested they block the freelist and
might increase the search time in the freelist. External fragmentation is combated by
coalescing adjacent free blocks (neighboring free blocks in address order), thus com-
bining them into larger blocks that can be used to satisfy requests for larger blocks.
When a request for a memory piece of sizep is processed, different strategies can be
used to choose among all free blocks. The most widely used strategies arebest-fitor
first-fit. In the former case, the algorithm chooses the smallest consecutive area ofm
blocks such thatm � n. In the second case the algorithm chooses the first consecutive
area that has more thann blocks. There are a lot of other strategies such a next-fit,
worst-fit, half-fit, just to cite a few, but we do not discuss them here in detail. We refer
to [WJNB95] for a nice overview on the work of dynamic storage allocation. All in
all, there is no clear winner among the strategies as their performance also depends on
the specific pattern of allocation and deallocation requests.

Several different data structures for allocators exist. Most of the data structures are
implemented using space in the free blocks. We will avoid this as we do not want to
perform I/Os for allocation tasks.

A classical data structure aredoubly linked lists of free blocks. For this imple-
mentation, it is important how to return free blocks to the list. Several variants exist,
among them are LIFO (last-in-first out) which inserts the block at the front of the list,
FIFO (first-in-first out) which pushes the freed block to the end of the list, and address-
ordered fit which keeps the block sorted by starting address and inserts the freed block
in the proper location. Search strategy is normally first-fit (or Knuth’s variant next-fit)
as best-fit must search the list exhaustively.

Segregated freelistsuse an array of free lists, where each list holds free blocks of
a particular size [Com64]. When a block of memory is freed, it is simply pushed onto
the free list for that size. These allocators allow splitting and coalescing of blocks.
A common variation is to use size classes for the lists, for example powers of two.
Requests for a given size can be rounded up to the nearest size class and then be

50

3.3 The concrete kernel

satisfied by any block in that list. The search strategy is normally best-fit.
Buddy systems[Kno65, PN77] are a variant of segregated lists. At the beginning,

the heap is conceptually divided in two large areas, those areas are further split into
two areas, and so on. This forms a binary tree. This tree is used to constrain where
objects are located, what their allowable sizes are and how they may be coalesced into
new larger areas. A classical example are binary buddies where the binary represen-
tation of the address space is used for the partitioning. In this scheme all sizes are
powers of two and each size is divided into two equal parts. Each size has its unique
buddy and coalescing can only be done between these two buddies. For example,
if we have block< an; an�1; : : : ; ak; 0; 0; : : : 0 > 6, its unique buddy of size2k is
< an; an�1; : : : ; ak; 1; 0 : : : 0 >. Thus, splitting and coalescing can be computed in a
simple way by bitwise logical operations. The search actually implements the best-fit
strategy as we round the request size to the nearest power of two. The main prob-
lem with binary buddies is the internal fragmentation as arbitrary splitting of blocks
is not allowed. Variants with closer size class spacing exist, for exampleFibonacci
buddies[Hir73].

Indexed fitsare a quite general class that uses indexing data structures to manage
the free blocks. It is possible to index blocks by exactly the characteristics of interest to
the desired policy and to support efficient searching according to those characteristics.
The indexing data structure can be embedded in the free blocks themselves or can
be kept separately. Supported strategies can be best-fit, all variants of first-fit (FIFO,
LIFO, address-ordered) and others. The index data structure can be totally or partially
ordered. For dynamic storage allocation of internal memory, a drawback of indexed fits
is the fact that search time is normally logarithmic in the number of the free memory
blocks.

Bitmapped fitsuse a bitmap to record which parts of the memory are free and
which not. We reserve a bit for each block of the memory (traditionally for each word
of the memory). The bit is one if the block is free, and zero otherwise. This bitmap is
stored as a separate data structure. First-fit and best-fit strategies can be easily imple-
mented. To our knowledge, bitmaps have never been used in conventional allocators.
The main reason might be the fact that searching is believed to be slow. [WJNB95]
proposes methods to speed-up searching by the use of clever implementation tech-
niques. An idea is to use lookup tables to localize the search. Heuristics can be used to
decide where to start the search, thus avoiding to scan the whole bitmap and reducing
fragmentation.

In the LEDA-SM scenario, several tasks are different from classical in-core mem-
ory allocators. First of all, we do not want to interweave the allocator data structure
with the free disk space,i.e. we are not willing to pay I/Os when allocating disk space.
Secondly, all our allocations occur in multiples of disk blocks. Therefore, internal
fragmentation does not occur. Thirdly, we have to manage different users, thus it is not
enough to mark a disk block used, we also have to remember the user of this block.
We first describe the general functionality of our allocator and then turn to the different
implementations.

Classext freelist is responsible for managing free and allocated disk blocks. Class
ext disk is implemented as a virtual base class from which we derive the actual imple-

6< an; an�1; : : : ; a0 > is the binary representation of the number
Pn

i=0 ai � 2
i.

51

3.3 The concrete kernel

mentation classes (see Figure 3.2). The actual implementation is chosen at the time of
creation of classext memory manager .

52 hClass extfreelist52i�
class ext_freelist
{
public:

virtual void init_freelist(int num)=0;

virtual int new_blocks(U_ID uid,int k=1)=0;

virtual int free_blocks(int block_num, U_ID uid,
int k=1)=0;

virtual void free_all_blocks(U_ID uid)=0;

virtual bool check_owner(int block_num, U_ID uid,
int k=1)=0;

virtual int get_blocks_on_disk()=0;

virtual int get_free_blocks()=0;

virtual int get_cons_free_blocks()=0;

virtual int get_used_blocks()=0;

virtual char* get_freelist_type()=0;

virtual int size()=0;
};

Member functioninit freelist(num) initializes the freelist for disknum, 0 � num <
NUM OF DISKS . Member functionnew blocks() allocates disk blocks, ifk > 1,
the blocks must be consecutive. The return value is the block number of the first allo-
cated block on disknum . Member functionfree blocks() returns previously allocated
disk blocks of disknum back to the freelist, andfree all blocks() frees all disk blocks
of disknum that were allocated to useruid . Member functioncheck owner () is used
to check if the disk blocksblock num; ::; block num + k � 1 are owned by useruid .
get blocks on disk () returns the number of disk blocks of this disk,get free blocks()
returns the number of free disk blocks,get cons free blocks() returns the maximum
number of consecutive free disk blocks,get used blocks() returns the number of cur-
rently allocated disk blocks,get freelist type() returns the name of the freelist imple-
mentation andsize() returns the internal memory space consumption of the freelist.

3.3.4.1 Implementation

We now describe the different implementation classes that are derived from base class
ext freelist :

52

3.3 The concrete kernel

� Classarray freelist :
array freelist implements abitmapped fit. The search strategy is first-fit. The
implementation uses an internal array to manage used and free blocks for a spe-
cific disk. Array entryA[i] is either set toNO USER or to the useruid , owning
block i. Let k be the number of requested blocks. Ifk = 1, new blocks() runs
in O(1) time, otherwise it runs inO(N) time. Operationsfree all blocks() and
get cons free blocks run in O(N) time, operationfree blocks() runs inO(1)
time if k = 1 and inO(k) time otherwise. All other operations run inO(1)
time. The space consumption in internal memory isN � sizeof (U ID) +O(1)
bytes whereN is the maximum number of blocks on the disk andsizeof (U ID)
is the size of a user-id in bytes (4 bytes on a 32-bit machine). Thus, for a 9 GB
disk with 32 kbytes disk block size, the data structure needs a little bit more than
one Mbytes of internal memory.

� Classext array freelist :
This implementation is similar to the previous implementation but in order to
save space in internal memory, the array is kept in a temporary file of the file
system. We keep a buffer of fixed size (ORG SZ) in internal memory. In
case of a hit in the buffer, we can answer the requests in main memory, oth-
erwise we load the nextORG SZ array elements and possibly write back the
old buffer contents. The implementation uses buffered standard I/O-routines for
reading and writing buffers. The internal memory space consumption is mini-
mal, onlyO(ORG SZ) bytes are used in internal memory. The disadvantage is
that we now have to perform I/Os for managing the freelist. In detail,new blocks

runs inO(1) I/Os if k = 1 and inO(N=ORG SZ) I/Os otherwise. Operation
free all blocks andget cons free blocks runs inO(N=ORG SZ) I/Os, opera-
tion free blocks runs inO(1) I/Os if k = 1 and inO(k=ORG SZ) I/Os other-
wise. All other operations run inO(1) time with no I/Os.

� classnew sortseq freelist :
new sortseq freelist is anindexed fit. It implements the best-fit strategy together
with general splitting and coalescing of blocks. The allocator consists of a freel-
ist data structure and a usedlist data structure. The freelist data structure is a
variation of LEDA’s sorted sequence (multi sortseq). Items of this data structure
consist of a key which is the size of the free block and an information which
is the starting address of the free block. We start with one big block that con-
tains the whole disk space. Multisortseqs are totally ordered by key value and
allow to maintain multiple entries with the same key value (this is not the case
for LEDA data typesortseq where only distinct keys are allowed)7. Used disk
blocks are stored in the usedlist which is of typemap<U ID ; sortseq<int ; int>
>. LEDA’s parameterized data typemap<I; E> implements hashing with chain-
ing and table doubling. TypeI is the index set (the universe) and typeE is the
information that we associate with an item of typeI. We could have chosen an
array or a list instead of typemap, the idea was that we do not assume to manage
many different users and therefore type map is faster and more space-efficient.
TypeE of the map is a sorted sequence. The key data tpyeI of the sorted se-

7Multi sortseq and sortseq are implemented by skiplists [Pug90].

53

3.3 The concrete kernel

quence is the start address of the used block and the information is the size of the
used block. Coalescing of used blocks is easy as the sorted sequence is address
ordered. We now describe member functionsnew block andfree blocks . When
there is a request of useruid for k new blocks, the following happens: We first
check if the total number of free blocks in the freelist is at leastk. This is done
by looking at a counter variable that dynamically maintains the actual number of
free disk blocks. If enough free blocks are available, we search the multisortseq
for key k, getting either an exact match or a block of sizek1; k1 > k, where
k1 is the smallest available block size which is bigger thank (best-fit). If the
search results in a block being bigger thank, the block is split into two blocks,
one of sizek which is the request size and one of sizek1 � k. If we do not
find such a block, we do not have contiguous space of the requested size in the
multi sortseq. We then start coalescing blocks in the multisortseq and then try
to satisfy the request again (coalescing on demand). Coalescing is performed
by sorting the items of the multisortseq according to the information (the start
address of the free block) and combining contiguous free blocks. If the request
cannot be satisfied after the coalescing step, we cannot proceed due to external
fragmentation of our data structure. Return value of an answered request is the
start address of the newly allocated block. After the block was allocated, we
have to change the usedlist. We hand over the triple(start address, k
,uid) to the usedlist. There, the tuple(start address, size) is in-
serted into the sorted sequence for the user, specified byuid (map [uid]). If
there are neighboring blocks, they are automatically coalesced.

Operationfree blocks(block num; uid ; k) is simple: we first check if useruid
owns the blocksblock num; : : : block num + k � 1. This is done by a simple
search in its sorted sequence (map[uid]) of the usedlist. If the user does not
own the blocks, we issue an error message and abort the application. If the user
owns the blocks, we delete the blocksblock num; : : : block num + k� 1 in the
sorted sequencemap[uid] and insert the item(k; block num) into the freelist
data structure.free all blocks(uid) works similarly. We simply delete all items
of map[uid] and insert them into the freelist.free blocks and free all blocks
increase the size of the freelist data structure (multi sortseq). As there is no
automatic coalescing of neighboring blocks in themulti sortseq , we use the fol-
lowing approach: wheneverx items have been inserted into themulti sortseq
due to calls tofree blocks or free all blocks , we start to coalesce neighboring
blocks. This is done by sorting as described above. Items in this context are
items of the usedlist and not single free blocks. An item can be a consecutive
region of blocks as the usedlist automatically coalesces neighboring blocks. We
note that thispreemptive coalescingof the freelist data structure does not neces-
sarily reduce the space (number of items) of the themulti sortseq .

We now analyze the time bounds: letN be the total number of disk blocks,F
be the number of items in the freelist structure andU be the number of items
in the usedlist structure. We note thatF + U � N and that in most cases
the sum ofF andU is much smaller thanN due to coalescing of neighboring
blocks. However, in the worst case,F = U = N=2. This situation occurs
if each occupied disk block is followed by a single free disk block. All in-

54

3.3 The concrete kernel

sert, search, and delete operations on themulti sortseq or thesortseqs of the
usedlist have time bounds logarithmic in the number of items of the structure.
Note that most of the functions have to access the map first. Access to the map
runs inO(1) expected time or in averageO(logN= log logN) worst case time.
Thus, the average worst case time is bounded above byO(logN). Compact-
ing themulti sortseq runs inO(F logF) time which is againO(N logN) in
the worst case. Operationget cons free blocks runs inO(logF) time and all
other operations run inO(1) time. The expected size of the data structure is
2 � (76=3 + 8) � (F + U) +O(1) = 67 � (F + U) +O(1) bytes [MN99].

� Classsortseq freelist :
sortseq freelist is also an indexed fit. It implements the address ordered first-fit
strategy. The allocator consists again of a freelist data structure and an usedlist
data structure. Both data structures have the same meaning as above and are
again calledusedlist and freelist . They are implemented by the LEDA data
type sorted sequence. The key type of thefreelist is the block number, the in-
formation type is the number of consecutively free blocks starting at this block
number. In theusedlist , the information type additionally stores the user iden-
tifier. Both data structures perform automatic coalescing of neighboring blocks,
i.e. if there is an item(x; u; k), wherex is the block number,u is the user-id, and
k is the number of allocated blocks, we look at both the predecessor and succes-
sor item. If this item is of the form(x� k; u; z) (resp.(x+ k; u; z)) we merge
the items together thus producing an entry of the form(x � k; u; z + k) (resp.
(x; u; z + k)). This task is easy, as both data structures are address-ordered.
The worst case situation occurs, if two different users alternately allocate sin-
gle blocks. In this situation, joining neighboring blocks is not possible and the
space consumption gets linear in the total number of requested blocks. Let us
now discuss the time bounds. Let againN be the total number of disk blocks,
F be the number of items in the freelist structure andU be the number of items
in the usedlist structure. Letk be the number of requested blocks. Operation
new blocks() runs inO(logF + logU) time if k = 1, and inO(F + logU)
time otherwise. Operationfree blocks() runs inO(logF + logU) time. Oper-
ation free all blocks(uid) runs inO(U + w logF) time, wherew is the items
in the usedlist that are associated with useruid (items(x; uid; k)). Operation
check owner () runs inO(logU) time, operationget cons free blocks() runs in
O(F) time, all other operations run inO(1) time. We again note that in the
worst case,F = U = N=2. A note to the time bounds:new blocks does not
necessarily run inO(F + logU) time if k > 1. This time bound is due to
the first-fit strategy where we start at the beginning of the freelist, check if we
can satisfy the request, and if this is not the case, look at the successor item.
In the worst-case, we always have to search to the end of the freelist. Experi-
ments [WJNB95] have shown that this situation does not occur often in practice,
and that in normal situations, one must only inspect a constant number of items.
Sorted sequences are implemented by skiplists, therefore the expected space re-
quirement is(76=3+8)�F+(76=3+12)�U+O(1) = 33:3�F+37:3�U+O(1)
bytes [MN99].

55

3.4 System startup

Clearly, the ideal approach minimizes both the internal space consumption and
the access time to the allocator data structure. Our two bitmapped fits have a running
time linear in the number of allocated disk blocks which is bad for large consecu-
tive requests. Additionally, the space cost is only acceptable, if we either have large
main memory or if we are willing to perform I/Os to access the allocator data struc-
ture (seeext array freelist). Buddy systems could improve the access time, but we
think that it is not acceptable to afford internal fragmentation and waste disk space.
Indexed fits seem to be the most compromising allocator data structures for secondary
memory. The running time is logarithmic in the number of disk blocks (best-fit, see
new sortseq freelist) and still reasonable for the first-fit approach as in most practi-
cal cases, one does not have to inspect all items of the freelist data structure during
a search. Although the space consumption per item is high (� 70 bytes), the data
structure does not consume a lot of space due to coalescing of neighboring blocks in
both thefreelist and theusedlist structure. We also do not expect to have a lot of
different users and one can assume that most of the requests of a user go to consecu-
tive disk block locations. For all the experiments that we performed, our indexed fits
consumed very little space as most of the allocation requests went to consecutive disk
block locations and the coalescing compacted the data structure.

We now proceed in the kernel description by explaining the system startup, system
configuration and system recovery.

3.4 System startup

The system starts up by creating the unique instance of classext memory manager .
At the time of creation, the following happens:
the constructor tries to open a system configuration file named.config leda-sm
which must be located in the current working directory. This configuration files con-
tains a number of setup parameters (see Table 3.2). It defines the number of disks,
the locations of the disks (disk file names or device names), and the size of each disk
measured in blocks of sizeEXT BLK SZ GenPtrs . Furthermore it defines the im-
plementation for classext disk (the value can be chosen out of the implementation
classes of Section 3.3.3) and for classext freelist (the value can be chosen out of the
implementation classes of Section 3.3.4).
The last entries specify the recovery behavior of the kernel. This part of the config file
is two-divided into recovery behavior at system startup (in the presence of a recovery
file) and generation of recovery information at program end. If the configuration file is
not of the form as described in Table 3.2, the system halts immediately. In the absence
of a configuration file, the system tries to start with predefined values,i.e. one disk
file named/tmp/disk0 of size 5000 blocks,stdio disk as I/O implementation,
sortseq freelist as freelist implementation, and no recovery. After parsing the
configuration file, a configuration check is executed. It checks if it is possible to create
the disk files on the file system or to open the device files. It furthermore checks if the
predefined space for each disk is available by examining either the file system, where
the disk files are located, or the device files if raw disk device access is used. This
check can fail for several reasons:

1. File creation error or disk device access error

56

3.4 System startup

number of disks
integer

blocks per disk
number of disks blocks, oneinteger one per line

disk names
number of disksfilenames, one per line

I/O implementation
out ofstdio disk, syscalldisk,

memory disk,mmapio disk, raw disk
freelist implementation

out ofarray freelist, sortseqfreelist,
new sortseq freelist, ext array freelist

recover to
eitherno or filename

recover from
eitherno or filename

Table 3.2:LEDA-SM config file. The value of the first column is the name of the parameter,
the description for this parameter is in the second column. The config file is line-oriented, each
parameter is separated by a new line.

The disk files cannot be created because the directory permissions are wrong or
the disk device files cannot be opened8. In this case, the system produces an
error message and aborts the application.

2. The requested disk space is not available
The total sum of required disk space is larger than the available space on either
the file system or on the raw disk device. The system then calculates the maxi-
mum available space, recalculates and downgrades the disk space for each disk,
and then informs the user that he requested more disk space then available and
that a downgrade was necessary.

3. Check not possible or faultiness
The checks that are performed rely on correct file system information or raw-
device information. On some platforms the information is either quite useless
or simply wrong. File systems for example express the number of free blocks in
their own block size. Sometimes the system reports that this block size is zero.
Low-level disk device check is device driver dependent. For some computing
platforms such checks are not available at the moment. If the system decides
that the check did not pass or was not possible, it prints a status message and
assumes that the original values as given in the configuration file are “hopefully”
correct.

After the system has checked the configuration, it sets up the disks and the disk
block management structures. This is done by the following code lines:

8One needs root-privileges to change the raw disk device permissions as Solaris assumes that there is
a file system on each disk.

57

3.4 System startup

57 hext memorymanager<bz>::ext memorymanager()57i�

for(j=0;j<NUM_OF_DISKS;j++)
{

disks[j] = new impl_disk;
freelists[j] = new impl_freelist;

}

whereimpl disk ist out ofmemory disk, stdio disk, syscall disk,
mmapio disk, raw disk andimpl freelist is out ofarray freelist,
sortseq freelist ext array freelist,new sortseq freelist .

Note that this works as all implementation classes are derived from the virtual
base classesext disk or ext freelist and therefore it is possible to convert objects of
the base class to objects of the implementation class. After executing the constructor
for the unique instanceext mem mgr the system starts with the first line ofmain() .

Recovery Mode. If the user has asked to generate recovery information at the end of
the computation, the constructor informs the destructor of classext memory manager ,
to not delete the disk files at the end (this is only done if the disk files are files on the
file system) and it informs the destructor to save the information stored in the freelists.

58 hext memorymanager<bz>:: ext memorymanager()58i�
template<int bz>
ext_memory_manager<bz>::˜ext_memory_manager()
{

int i;
if(recover_info==false)

{
for(i=0;i<NUM_OF_DISKS;i++)

disks[i]->close_disk();
}

else
{

write_recovery_information(recover_name);
}

}

The member functionwrite recovery information of classext memory manager
then writes the necessary kernel recovery information to a file, specified in the con-
fig file (entry recover to). This information consists of the information stored in
the config file,i.e. the number of disks, the disk file names, the size of each disk
file, the I/O and the freelist implementation), of the information stored in each of the
freelists plus the used user-ids that are maintained by classname server .

Recovery startup. If recovery files are present at system startup and the configura-
tion files asks to use the recovery files, the system does a recovery startup. The process
is quite the same as a normal system startup besides the fact that:

58

3.5 A simple example

� no disk files are created, instead the old disk files are used;

� the information of the freelists are restored by using the recovery file;

� thename server reinitializes its user id management structures to keep track of
already used user ids.

To recover a specific data structure, one has to additionally save some recovery
information. We will see an example in the next section.

3.5 A simple example

In this section we show the simplicity of designing data structures using LEDA-SM’s
kernel concept. Our application is simple, hence it allows to show the basic features
of data structure and algorithm design using LEDA and LEDA-SM. In the following,
we describe data structureext stack<E> which is a generalization of data typestack
towards secondary memory.
A external memory stackS for elements of typeE (ext stack<E>) is realized by an
internal arrayA of 2a blocks of typeblock<E> and a linear list of disk blocks. Each
block inA can holdblk sz elements,i.eA can hold up to2a �blk sz elements. We may
view A as a one-dimensional array of elements of typeE. The slots0 to top of this
array are used to store elements ofS with top designating the top of the stack. The
older elements ofS, i.e. the ones that do not fit intoA, reside on disk. We usebid
to store the block identifier of the elements moved to disk most recently. Each disk
block stores one link of typeB ID , used to point to the predecessor disk block, and
blk sz items of typeE. The number of elements stored on disk is always a multiple of
a � blk sz .

59 hext stack59i� 60a.

template <class E>
class ext_stack
{

array< block<E> > A;
int top_cnt, a_sz, s_sz, blk_sz;
B_ID bid;

public:

ext_stack(int a = 1);
void push(E x);
E pop();
E top();
int size() { return s_sz; };
void clear();
˜ext_stack();
void read_recovery_information(char *name);
void write_recovery_information(char *name);
};

59

3.5 A simple example

We next discuss the implementation of the operationspush andpop. We denote by
a sz = 2a the size of arrayA. A push operationS:push(x) writesx into the location
top+1 of A except ifA is full. If A is full (top cnt==a sz �blk sz �1), the first half
of A is moved to disk, the second half ofA is moved to the first half, andx is written
to the first slot in the second half.

60a hext stack59i+� / 59 60b.
template<class E>
void ext_stack<E>::push(E x)
{

int i;
if (top_cnt == a_sz*blk_sz - 1)
{

A0 = bid;
bid = ext_mem_mgr.new_blocks(myid,a_sz/2);
block<E>::write_array(A,bid,a_sz/2);
for(i=0;i<a_sz/2;i++)

A[i] = A[i+a_sz/2];
top_cnt = (a_sz/2)*blk_sz-1;

}
top_cnt++;
A[top_cnt/blk_sz][top_cnt%blk_sz] = x;
s_sz++;

}

The interesting case ofpush is the one where we have to write the first half ofA to
disk. In this step we have to do the following: we must reservea = a sz=2 disk blocks
on disk and we must add the firsta blocks of arrayA to the linked list of blocks on disk.
The blocks are linked by using the entry of typeB ID of classblock (see Section 3.2)
and the block least recently written is identified by block identifierbid . The command
A0 = bid creates a backwards linked list of disk blocks which we use during pop-
operations later. We then use the kernel to allocatea consecutive free disk blocks by
the commandext mem mgr:new blocks . The return value is the first allocated block
identifier. The first half of arrayA is written to disk by callingwrite array of class
block which tells the kernel to initiate the necessary physical I/Os. In the next step,
we copy the lasta blocks ofA to the firsta blocks and resettop cnt . Now the normal
push can continue by copying elementx to its correct location insideA.

A pop operationS:pop() is also trivial to implement. We read the element in slot
top except ifA is empty. IfA is empty and there are elements residing on disk we
movea � blk sz elements from disk into the first half ofA.

60b hext stack59i+� / 60a
template<class E>
E ext_stack<E>::pop()
{

if (top_cnt == -1 && s_sz > 0)
{

B_ID oldbid = bid;
block<E>::read_array(A,oldbid,a_sz/2);

60

3.5 A simple example

bid = A0;
top_cnt = (a_sz/2)*blk_sz - 1;
ext_mem_mgr.free_blocks(oldbid,myid,a_sz/2);

}
s_sz--;
top_cnt--;
return

A[(top_cnt+1)/blk_sz][(top_cnt+1)%blk_sz];
}

If arrayA is empty (top cnt = �1) we loada blocks from disk into the firsta array
positions ofA by calling read array . These disk blocks are identified bybid . We
then restore the invariant that block identifierbid stores the block identifier of the
blocks least recently written to disk. As the disk blocks are linked backwards, we
can retrieve this block identifier from the first entry of the array of block identifiers
of the first loaded disk block (A0). Array A now storesa � blk sz data items of
typeE. Variabletop cnt is reset to this value. The just loaded disk blocks are now
stored internally, therefore there is no reason to keep them again on disk. These disk
blocks are freed by calling the kernel routineext mem mgr:free blocks . Return value
of operationpop is the top most element ofA.

Operationspush andpop movea blocks at a time. As the read and write requests
for thea blocks always target consecutive disk locations, we can choosea in such a
way that it maximizes disk-to-host throughput rate. After the movement,A is half-full
and hence there are no I/Os for the nexta �blk sz stack operations. Thus, the amortized
number of I/Os per operations is1=blk sz , which is optimal. Stacks with fewer than
2a � blk sz elements are managed in-core.

We described in the previous section how the kernel saves recovery information.
Additionally, each data structure has to store some information which is necessary to
set up the data structure after a kernel recovery startup. For the stack, it is necessary to
know the block-id of the last disk block that was written to disk as all other blocks are
linked together. We additionally need the user-id, the contents of the arrayA, and the
variablesa size, top cnt , blk sz , ands size.

61 h ext stack61i�

template<class E>
void ext_stack<E>::write_recovery_information(char *name)
{

std::ofstream ofile(name);
recovered=true;
ofile << "Recovery information\n";
ofile << "a_size:" << a_size << std::endl;
ofile << "top_cnt:" << top_cnt << std::endl;
ofile << "blk_sz:" << blk_size << std::endl;
ofile << "s_size:" << s_size << std::endl;
ofile << "myid:" << myid << std::endl;
ofile << "bid:" << bid << std::endl;
for(int i=0;i<=top_cnt;i++)

ofile << A[i/blk_size][i%blk_size] <<std::endl;

61

3.6 Data Structures and Algorithms

}

Operationwrite recovery information saves all the necessary information to recover
the data structure at any later point. The information is saved into filename. Recovery
information includes the size of the internal arrayA (a size), the pointer to the topmost
element ofA (top cnt), the block size (blk sz), the size of the stack (s size), the user-id
(uid) of the stack, and the block id (bid) of the topmost disk block of the stack. Finally,
the firsttop cnt elements of arrayA are saved. Operationread recovery information

now simply consists of parsing that file and setting all class variables according to
these values.

3.6 Data Structures and Algorithms

We survey the data structures and algorithms currently available in LEDA-SM. Theo-
retical I/O-bounds are given in the classical external memory model of [VS94b], where
M is the size of the main memory,B is the size of a disk block, andN is the input
(see also Section 2.3.2). For the sake of simplicity we assume thatD, the number of
disks, is equal to one.

Stacks and Queues:External stacks and queues are simply the secondary memory
counterpart to the corresponding internal memory data structures. Operationspush ,
pop, andappend are implemented in optimalO(1=B) amortized I/Os.

Priority Queues: Secondary memory priority queues can be used for large-scale event
simulation, in graph algorithms, or for online-sorting. Three different implementations
are available. Buffer trees [Arg96] achieve optimalO((1=B) logM=B(N=B)) amor-
tized I/Os for operationsinsert anddelete min . Radix heaps are an extension
of [AMOT90] towards secondary memory. This integer-based priority queue achieves
O(1=B) I/Os for insert andO((1=B) logM=B(C)) I/Os fordelete min whereC
is the maximum allowed difference between the last deleted minimum key and the ac-
tual keys in the queue. Array heaps [BK98, BCMF99] achieveO((1=B) logM=B(N=B))
amortized I/Os forinsert andO(1=B) amortized I/Os fordelete min . We will
do an extensive comparison of internal and external priority queues in Chapter 4.

Arrays: Arrays are a widely used data structure in internal memory. The main draw-
back of internal-memory arrays is the fact that when used in secondary memory, it is
not possible to control the paging. Our external array data structure consists of a con-
secutive collection of disk blocks and an internal-memory data structure of fixed size
that implements a multi-segmented cache. When we access indexi of arrayA, we first
look if elementA[i] resides in the cache. If this is not the case, we load a block ofB
elements, includingA[i] into the cache. As the cache has a fixed size, we possibly have
to evict a block from the cache. This task is done by the page replacement algorithm.
Several page-replacement strategies are supported like LRU, random, fixed, etc. The
user can also implement his/her own page-replacement strategy. The cache has several
advantages: its fixed size allows to control the internal-memory usage of the external
array. The blockwise replacement allows to scan an external array in an optimal num-
ber of I/Os and furthermore, as the cache is multi-segmented, it is possible to index

62

3.6 Data Structures and Algorithms

different regions of the external array by using different segment of the cache for each
region.

Sorting: Sorting is implemented by multiway-mergesort [Knu97]. Internal sorting
during the run-creation phase is realized by LEDA’s quicksort algorithms, which is a
fast and generic code-inlined template sorting routine. SortingN items takes optimal
O((N=B) logM=B (N=B)) I/Os.

B-Trees: B-Trees [BM72] are the classical secondary memory online search trees. We
use aB+-implementation and support operationsinsert , delete , delete min ,
and search in optimal O(logB(N)) I/Os. Parent pointers are avoided inside the
nodes, instead the implementation stores the parent pointers (which are necessary for
the rebalancing process) in a small external stack. We support two algorithms to con-
struct B-trees; one is by repeatedly inserting elements (online construction), the other
is by sorting all items and then build the tree bottom-up (offline version). To speed
up version one, we implemented some kind of path-caching. The B-tree caches the
most frequently used disk pages in a small buffer. This allows to save I/Os: consider
the case of doing an online-insertion of an increasingly sorted set. All insertions take
place in the leftmost leaf and the B-tree will cache the path to the leftmost leaf.

Suffix arrays and strings: Suffix arrays [MM93] are a full-text indexing data structure
for large text strings. We provide several different construction algorithms [CF99] for
suffix arrays as well as procedures to perform exact searching, 1- and 2-mismatch
searching, and 1- and 2-edit searching routines. Suffix arrays are discussed in detail in
Chapter 5.

Matrix operations: We provide matrices with entry typedouble . The operations+,
�, and�, as well as scalar operations, are realized for dense matrices within optimal
I/O-bounds [UY91].

Graphs and graph algorithms: We offer a data type external graph and simple
graph algorithms like depth-first search, topological sorting, and Dijkstra’s shortest
path computation. The external graph data type uses an adjacency list representation,
the implementation is based on external arrays. Nodes and edges are template con-
tainer classes, auxiliary node or edge information is stored inside the container class.
The graph data type isstatic, i.e. updates are not possible9. Node and edge container
need 16 bytes plus the space for the additional information. Graph algorithms are
eithersemi-externalor fully external. The semi-external variant assumes that either
node or edge information can be stored in main memory, while the fully-external vari-
ant assumes that neither node nor edge information can be completely stored in-core.
We will explain the difference between fully-external and semi-external algorithms in
more detail in Section 3.8.2 where we discuss depth first search.

3.6.1 Specialties of LEDA-SM applications

Secondary-memory data structures and algorithms use a specific amount of internal
memory. LEDA-SM allows the user to control the amount of memory that each data
structure and/or algorithm uses. The amount of memory is either specified at the time

9Updates can be implemented but they are expensive in terms of I/Os.

63

3.7 Low-level LEDA-SM benchmarks

of construction of the data structure or it is an additional parameter of a function call.
If we look at our stack example in Section 3.5, we see that the constructor of data
typeext stack has a parametera, the number of blocks of sizeblk size that are held
in internal memory. We therefore immediately know that the internal memory space
occupancy isa � blz size + O(1) bytes. If we use several data structures together, the
total amount of internally used space is the sum of the used internal space per data
structure. This method has some drawbacks because we also have to take into account
that LEDA’s data structures use space. Other libraries use different methods to control
the internal amount of space:
TPIE uses an overloadednew operator to automatically keep track of the used space.
Unfortunately, this does not work for LEDA-SM as LEDA already overloadsnew .
Additionally, this method is not able to count non-dynamically allocated space,i.e.
C-style arrays. Therefore, both methods are not accurate. The best way is always to
use system commands liketop to check that the application does not use too much
memory. However, using mechanisms like the one of LEDA-SM or that of TPIE allows
to find useful start settings.

3.7 Low-level LEDA-SM benchmarks

In a first experiment we want to analyze the speed of LEDA-SM’s kernel. Our simple
test programs write and read consecutive blocks, or write and read random blocks
to disk. We test all different I/O methods, which aresyscall , stdio , mmapio ,
and raw device access. The tests are performed on a SUN UltraSparc-1 with a single
143 MHz processor and a local 9 GB SCSI hard disk running Solaris-2.6 as operating
system. The specifications of the disk vendor are given in Appendix A. In a first step,
the blocks are written to disk and in a second step they are read back. To prevent the
operating system from buffering the I/O operations after the write step, we clean the
memory before we proceed with the read step. Our test measures the user time (also
called CPU time), the system time, and the total time.

Table 3.3 compares sequential and random I/O performance of LEDA-SM’s kernel
usingstdio as I/O method. Sequential write is 2.2 times faster than random write.
Sequential read is 4 times faster than random read. The data transfer rate for sequential
write is approximately 4722 kbytes and 5723 kbytes for sequential read. The transfer
rate for random operations drops to 2153 kbytes for write (1437 kbytes for read).

Table 3.4 compares sequential and random I/O performance of LEDA-SM’s kernel
using syscall as I/O method. Sequential write is 2.31 times faster than random
write. Sequential read is 4 times faster than random read. The data transfer rate for
sequential write is approximately 5000 kbytes and 5890 kbytes for sequential read.
The transfer rate for random operations drops to 2162 kbytes for write (1445 kbytes
for read).

Table 3.5 compares sequential and random I/O performance of LEDA-SM’s kernel
usingmmapas I/O method. Sequential write is 4.27 times faster than random write.
Sequential read is 2.07 times faster than random read. The data transfer rate for se-
quential write is approximately 4794 kbytes and 5048 kbytes for sequential read. The
transfer rate for random operations drops to 1122 kbytes for write (2435 kbytes for
read).

64

3.7 Low-level LEDA-SM benchmarks

Sequential, stdio, 32 kbytes

N write read
u-time s-time t-time u-time s-time t-time

200 0.05 0.15 1.32 0.03 0.14 2.74
400 0.14 0.23 2.51 0.13 0.24 3.3
800 0.19 0.57 4.95 0.18 0.47 5.31
1000 0.29 0.67 6.25 0.24 0.61 7.11
2000 0.58 1.34 12.66 0.57 1.13 12.07
4000 0.96 2.99 25.85 1.06 2.25 23.37
6000 1.6 4.28 38.33 1.81 3.26 33.31
8000 2.24 5.54 51.08 2.28 4.68 45.74
10000 2.95 7.34 66.31 2.66 5.94 54.8
20000 5.9 15.36 133.2 5.81 11.65 111.61
30000 8.17 23.84 199.78 8.97 16.9 164.06
40000 11.4 31.38 270.01 11.17 23.48 218.22
50000 13.98 38.72 338.78 13.54 30.06 279.56

Random, stdio, 32 kbytes

N write read
200 0.06 0.16 1.85 0.07 0.1 3.82
400 0.13 0.27 4.29 0.14 0.25 5.85
800 0.29 0.64 8.71 0.26 0.53 11.82
1000 0.36 0.56 10.9 0.27 0.54 15.72
2000 0.73 1.48 22.25 0.47 1.41 30.87
4000 1.2 2.9 46.95 0.92 3.16 61.46
6000 1.64 4.48 73.55 1.55 4.69 95.1
8000 2.48 6.14 100.88 2.44 6.4 130.76
10000 3 7.08 127.49 2.93 7.95 164.51
20000 6.53 15.79 269.19 5.68 16.19 342.9
30000 9.62 24.54 417.57 8.89 25.7 560.3
40000 12.12 34.12 573.96 11.8 34.92 823.52
50000 15.38 41.9 743.72 14.07 45.14 1113.81

Table 3.3:Performance of LEDA-SM kernel using stdio as I/O method. We use a block size of
32 kbytes.N is the number of operations. u-time (user), s-time (system) and t-time (total) are
given in seconds.

syscall is the overall fastest I/O-method for sequential I/Os. It is slightly faster
than stdio . If we look at the performance ofmmap, we see that it is the second
fastest method for sequential write and the slowest for sequential read. If we consider
random operations,stdio andsyscall perform nearly identical whilemmapper-
forms differently. mmaphas the worst random write performance (1.92 times slower
thansyscall) while random reads are 1.67 times faster compared tostdio and
syscall . The winner among these different methods is not easy to find as it depends
on whether we expect to execute more random or more sequential I/O operations. If
we expect to execute more sequential operations, one should either choosestdio or
syscall as I/O-method for the LEDA-SM kernel. We note that the outcome of our
experiments may change on other systems.
In a second test we add raw-device disk access. We use Solaris’ character-special de-

65

3.7 Low-level LEDA-SM benchmarks

Sequential, syscall, 32 kbytes

N write read
u-time s-time t-time u-time s-time t-time

200 0 0.14 1.22 0.01 0.08 1.26
400 0.03 0.22 2.35 0.02 0.18 2.55
800 0 0.52 4.68 0.01 0.38 4.99
1000 0.01 0.6 5.9 0 0.41 5.3
2000 0.01 1.28 12.25 0.05 0.95 10.82
4000 0.06 2.53 24.62 0.04 1.96 21.91
6000 0.17 3.7 36.39 0.06 2.91 31.66
8000 0.14 5.02 48.73 0.12 4.07 42.62
10000 0.2 7.02 62.89 0.2 5.13 52.99
20000 0.34 14.27 126.18 0.31 10.4 108.51
30000 0.53 21.21 190.72 0.52 15.47 160.96
40000 0.78 28.56 254.59 0.66 20.97 220.68
50000 0.92 35.59 320.27 1.05 25.51 271.62

Random, syscall, 32 kbytes

N write read
200 0 0.14 2.06 0 0.05 2.47
400 0.03 0.3 3.88 0.01 0.27 4.91
800 0.02 0.47 9.01 0.04 0.52 11.03
1000 0.02 0.63 10.68 0.06 0.71 14.13
2000 0.04 1.36 22.14 0.08 1.36 29.01
4000 0.08 2.61 47 0.07 2.84 58.15
6000 0.09 3.76 73.09 0.08 4.24 88.66
8000 0.13 5.42 101.89 0.18 5.77 124.83
10000 0.21 6.55 126.93 0.15 7.02 162.96
20000 0.62 14.38 269.28 0.32 14.62 341.63
30000 0.77 22.25 415.04 0.63 23.37 561.33
40000 1.06 30.45 571.09 0.73 31.59 809.85
50000 1.18 38.57 740.64 0.89 42.28 1107.99

Table 3.4:Performance of LEDA-SM kernel using syscall as I/O method. We use a block size
of 32 kbytes.N is the number of operations. u-time (user), s-time (system) and t-time (total)
are given in seconds.

vice file 10 to access the same disk. It may seem strange to use the character-special
device to access a block-driven disk device, but under Solaris, block-special files use
the normal file buffering mechanism while character-special files access the raw disk
device without using buffering mechanisms. We note that we used a second partition
on the same disk, this partition was located on the innermost cylinders. Therefore, we
expect a performance decrease compared to the file-access (which was located on the
outer cylinders) due to disk zoning.

Table 3.6 summarizes the test results. We experience a slowdown of a factor of two
for sequential writes using disk blocks of size 32 kbytes. Sequential read is slightly
slower compared tosyscall andstdio . This test shows the effect of operating
system buffers compared to raw device access: the file system also buffers the write
requests and then writes big chunks at a time. The raw disk access performs a physical
I/O for each write request and is therefore slowed down. An obvious consequence is

10These files are located in directory /dev/rdsk/.

66

3.7 Low-level LEDA-SM benchmarks

Sequential, mmap, 32 kbytes

N write read
u-time s-time t-time u-time s-time t-time

200 0.04 0.17 0.24 0.04 0.09 1.42
400 0.12 0.31 0.44 0.17 0.17 2.37
800 0.08 1.07 1.18 0.24 0.58 6.3
1000 0.23 1.17 1.44 0.19 0.66 7.96
2000 0.38 2.52 9.79 0.36 1.64 16.88
4000 0.88 4.93 20.61 1.11 3.26 28.12
6000 1.33 7.34 31.44 1.47 4.82 52.06
8000 1.89 10.25 47.58 2.02 6.22 69.92
10000 2.25 9.23 60.08 2.32 3.95 87.14
20000 4.25 19.3 107.18 4.8 7.54 150.09
30000 6.92 42.2 196.82 7.04 23.25 205.59
40000 8.74 38.69 250.88 9.74 15.81 262.04
50000 11.14 70.57 333.73 11.78 38.86 316.91

Random, mmap, 32 kbytes

N write read
200 0.06 0.13 0.2 0.02 0.06 2.74
400 0.06 0.3 0.38 0.11 0.1 1.48
800 0.22 0.48 0.72 0.18 0.3 4.93
1000 0.26 0.63 0.93 0.21 0.3 8.98
2000 0.42 1.36 1.84 0.55 0.71 30.65
4000 0.79 2.79 3.89 0.89 1.41 34.24
6000 1.16 4.31 5.76 1.38 2.3 74.96
8000 1.81 8.6 34.81 2.2 6.21 130.95
10000 2.15 6.94 56.89 2 4.36 148.31
20000 4.51 15.42 459.48 4.63 9.6 247.79
30000 6.73 24.19 760.61 7.41 14.6 377.86
40000 9.04 32.5 1083.46 10.09 19.51 520.83
50000 11.94 40.66 1425.12 12.47 25.23 657.57

Table 3.5:Performance of LEDA-SM kernel using mmap as I/O method. We use a block size
of 32 kbytes.N is the number of operations. u-time (user), s-time (system) and t-time (total)
are given in seconds.

thatB = 32 kbytes is not an optimal block size for raw device access. For sequential
read, there is no big performance difference as the disk itself is doing read ahead.
We experience the same behavior for random write operations. However, random read
behaves differently; it is faster thanstdio andsyscall . The time overhead induced
by the buffering mechanism of the file system does not speed up read operations very
much. Indeed, for random reads the buffering mechanism leads to a slowdown. We
also see that the system and user time for the raw device accesses are much lower than
for file accesses. Indeed, there is no copying between user address space and kernel
buffer space for raw devices. This notably decreases system time. It is obvious that
bigger block sizes can speed up the raw disk device access method. We therefore tried
to figure out the “optimal” block size (see Table 3.7).

A change in the block size has no big effect on the overall read performance of
consecutive requests. This can be easily explained by the disk cache and the read
ahead strategy of the disk drive. For write, however, we see that the total time to

67

3.7 Low-level LEDA-SM benchmarks

Sequential, raw, 32 kbytes

N write read
u-time s-time t-time u-time s-time t-time

200 0.03 0.04 3.35 0.01 0.02 1.25
400 0.02 0.01 6.88 0 0.03 2.38
800 0.03 0.06 13.78 0.01 0.06 4.62
1000 0.06 0.2 17.36 0 0.08 5.63
2000 0.03 0.11 33.72 0.05 0.14 13.07
4000 0.06 0.26 68.43 0.05 0.28 22.5
6000 0.12 0.54 100.4 0.09 0.52 36.34
8000 0.22 0.66 134.71 0.16 0.53 46.49
10000 0.17 0.85 167.36 0.16 0.73 57.87
20000 0.31 1.54 335.62 0.35 1.39 113.07
30000 0.63 2.32 504.73 0.4 2.14 170.72
40000 0.91 2.89 675.66 0.65 2.77 229.53
50000 0.96 3.87 845.16 0.76 3.56 288.5

Random, raw, 32 kbytes

N write read
200 0 0.02 2.94 0.01 0 3.2
400 0 0.05 6.07 0.02 0.03 6.36
800 0.02 0.06 12.13 0.01 0.04 12.67
1000 0.03 0.08 15.3 0.01 0.1 16.19
2000 0.03 0.06 31.76 0.05 0.14 31.18
4000 0.06 0.29 67.17 0.06 0.27 65.23
6000 0.13 0.47 101.74 0.11 0.57 99.42
8000 0.2 0.65 138.79 0.15 0.58 133.1
10000 0.2 0.67 175.28 0.12 0.66 170.1
20000 0.34 1.34 366.48 0.5 1.55 354.71
30000 0.53 2.15 563.12 0.64 2.31 544.25
40000 0.82 3.01 766.1 0.69 3 739.11
50000 1.09 3.56 975.38 0.68 3.97 939.8

Table 3.6:Performance of LEDA-SM kernel using raw disk device access. We use a block size
of 32 kbytes.N is the number of operations. u-time (user), s-time (system) and t-time (total)
are given in seconds.

write the data decreases with increasing block size. Although the total system time is
already negligibly small forB = 32 kbytes, it can further be reduced. The optimum is
achieved forB = 1024 kbytes. The transfer rates are 5380 kbytes for write and 5520
kbytes for read. Table 3.8 performs a similar test as for the other file access methods
(see Tables 3.3, 3.4, 3.5) but uses blocks of size 1 Mbytes. The same amount of data
is transfered, but with less I/O operations as for the tests in Tables 3.3, 3.4, and 3.5.

We notice the following: using the “optimal” disk block size for raw devices we
achieve approximately the same performance as for the file system tests. Actually, the
write test is a little bit faster while the read test is a little bit slower. We note that the
raw device was located on the innermost cylinders of the disk and the file system was
located on the outermost cylinders. Thus, we expect the raw device to be faster than
the file system as the throughput on the outermost cylinders is higher.

68

3.7 Low-level LEDA-SM benchmarks

Sequential, raw, variable block size

write read
B (in kbytes) u-time s-time t-time u-time s-time t-time
32 0.17 0.85 167.36 0.16 0.73 57.87
64 0.09 0.5 112.38 0.05 0.45 56.3
128 0.03 0.25 83.77 0.05 0.21 56.17
256 0.04 0.14 69.7 0.03 0.14 57.21
512 0 0.04 62.75 0.01 0.05 56.89
1024 0.02 0.03 59.47 0 0.03 57.97
2048 0 0.03 59.72 0.01 0.02 60.19

Table 3.7:Performance of LEDA-SM kernel using raw disk device access. We use a variable
block size and write or read 320 Mbytes. u-time (user), s-time (system) and t-time (total) are
given in seconds.

Sequential, raw, 1 Mbytes

N write read
u-time s-time t-time u-time s-time t-time

7 0 0 1.33 0 0.02 1.46
13 0 0 2.49 0 0.01 2.47
25 0 0 4.72 0 0.02 5.12
32 0 0 6.03 0 0 6.55
63 0 0.01 11.9 0 0 12.01
125 0 0 23.79 0 0 23.33
250 0.01 0.04 48.14 0.02 0.08 46.29
313 0.01 0.07 59.7 0 0.09 57.8
625 0 0.08 119.87 0.01 0.09 115.58
938 0 0.11 181.77 0.04 0.06 173.49
1250 0.02 0.18 242.36 0.02 0.18 234.27
1563 0.01 0.24 304.72 0.03 0.22 293.13

Table 3.8:Performance of LEDA-SM kernel using raw disk device access. We use a block size
of 1 Mbytes.N is the number of operations. u-time (user), s-time (system) and t-time (total)
are given in seconds.

69

3.8 Application Benchmarks

3.8 Application Benchmarks

Our second set of benchmarks covers application algorithms. The first algorithm we
choose issorting a set of items. Sorting is a frequent operation in many applications.
It is not only used to produce sorted output, but also in many sort-based algorithms
such as grouping with aggregation, duplicate removal, sort-merge join, as well as set
operations including union, intersect, and except.

3.8.1 Sorting

Sorting is possible as either anofflinevariant where the set of items is available at the
beginning and one has to produce the sorted order using a defined linear order ’�’ on
the items, or as anonlinevariant where the items arrive over time and at each time step,
one must be able to access the sorted set of items (that are available at that time step).
The second (online) variant is normally solved by search tree data structures (see buffer
trees [Arg95, Arg96] and B-trees [BM72]). Offline sorting in secondary memory is ei-
ther handled bymultiway mergesortvariants ordistribution sortvariants. Distribution
sort recursively partitions theN data items to be sorted byS�1 partition elements into
S buckets. TheS � 1 partition elements are chosen so that the buckets have roughly
the same size. When this is the case, the bucket size decreases by a�(S) factor from
one level of recursion to the next so thatO(logS(N=B)) levels are enough. In each
level, theN items are read (usingO(N=B) I/Os) and thrown into the corresponding
buckets (usingO(N=B) I/Os). The partition elements must be chosen usingO(N=B)
I/Os. Deterministic methods [NV93, VS94a] choose

p
M=B partition elements re-

sulting in an algorithm that overall performsO((N=B) logM=B(N=B)) I/Os, which is
optimal. Multiway mergesort works somehow orthogonal. In the run-creation phase
the input data is read andO(N=M) sorted runs of sizeO(M) each are created. This
takesO(N=B) I/Os. In the merge-phase,R runs are iteratively merged into one single
run until afterO(logR(N=M)) iterations we end up with one sorted run of sizeN (the
sorted input). ChoosingR = O(M=B) leads to overallO((N=B) logM=B(N=B))
I/Os which is optimal. Both methods also work for theD-disk case, but things get
more complicated: for distribution sort, it is not easy to find�(S) partitioning ele-
ments withO(N=(DB)) I/Os. Nodine and Vitter showed [NV93] how this can be
solved for the generalD-disk case (see also [VS94a]). For mergesort the question is
how to mergeR runs together in each merge pass usingO(N=(DB)) I/Os. This was
positively answered by Barveet al. using a randomized merge approach [BGV97].

Other variants were developed, most of them addressed the problem of sorting ef-
ficiently in the multi-disk case. The Greed Sort method of Nodine and Vitter [NV95]
was the first optimal deterministic algorithm for sorting with multiple disks. It is merge
based, but relaxes the merge condition so that only an approximately merged run is
created but its saving grace is that no two inverted items are too far apart. Then it
invokes Columnsort [Lei85] to produce the final order. Another approach is bundle-
sort [MSV00] which assumes that the input consists ofk < N different keys. Bundle-
sort (which is a variant of distribution sort) sorts these keys inO((N=B) logM=B k)
I/Os which is optimal. The advantage of bundle sort is that it sorts in-place.

Our test consists of comparing multiway mergesort in the single disk case with

70

3.8 Application Benchmarks

standard internal-memory quicksort approaches. Both are classical offline sorting ap-
proaches. Multiway mergesort is the classical external sorting algorithm for single
and multiple disks. Compared to the distribution sort approach, it offers the advan-
tage that we do not rely on how to choose partition elements. Deterministic meth-
ods choose

p
M=B partition elements which has the effect that the number of levels

in the recursion isdlogp
M=B

(N=B)e and is hence doubled compared to mergesort

(dlogM=B(N=B)e). Random sampling methods are normally superior to deterministic
methods. If the sample size (number of randomly picked elements) is chosen carefully,
it is possible to achieve the optimal number of recursive levels or the optimal number
of levels plus one.

Mergesort approaches have the advantage that one can produce initial runs of size
bigger thanM . By a technique callednatural selection[FW72], it is possible to create
initial runs of average lengtheM wheree is the Euler constant. This technique can
effectively decrease the number of recursive merge steps.

Quicksort [Hoa62] is one of the standard internal memory sorting algorithms. The
average run time of quicksort isO(N log(N)) time. The advantage of quicksort is that
it runs in-place.

We perform the following test: we sort random integer numbers using either quick-
sort or multiway mergesort. The test is performed on a SUN UltraSparc-1 with a single
143 MHz processor and a local 9 GB SCSI hard disk running Solaris-2.6 as operating
system. The machine has 256 Mbytes internal memory. Table 3.9 summarizes the
results. The external sorting algorithm uses approx. 16 Mbytes of internal memory

Sorting random integers
mergesort quicksort

N(in million) u-time s-time total u-time s-time total
1 2.55 0.15 3.14 1.95 0 1.96
2 5.31 0.25 6.6 4.07 0 4.08
4 11.06 0.45 13.31 8.6 0 8.64
8 30.62 1.83 36.83 17.96 0 18.03
10 39.14 1.86 46.31 22.91 0 22.98
20 82.49 4 96.45 47.98 0 48.22
40 183.94 10.02 270.39 99.83 0 100.13
60 305 17.4 442.06 155.27 2.22 289.09
80 444.01 22.77 597.14 210.37 10.82 967.95
100 592.1 28.37 770.65 265.99 21.2 1751.18
120 760.59 34.3 968.21 331.01 35.3 2622.38
140 953.87 40.46 1200.65 379.56 35.64 2763.28
160 1157.11 45.19 1445.08 440.89 37.87 3122.1
180 1365.2 51.61 1669.22 499.12 47.02 3786.7
200 1603.87 56.42 1950.44 559.54 65.3 4830.88

Table 3.9:Sorting random integers with LEDA quicksort and LEDA-SM multiway mergesort.
The disk block size is 32 kbytes and mergesort uses 512 internal blocks (of size 32 kbytes) for
sorting. A “-” indicates that the test could not be started due to insufficient swap space.

while quicksort is allowed to use the whole internal memory plus swap-space which
resides on the same local disk. For multiway mergesort, it is possible to merge all
initially created runs in one phase. If we look in more detail at Table 3.9, we notice

71

3.8 Application Benchmarks

the following: the user time (u-time) of multiway mergesort is more than twice as high
as the user time of quicksort. System time (s-time) is quite the same with mergesort
being a little bit faster. Concerning the total time, for our last test (200 million random
integers), mergesort is2:47 times faster than quicksort. The higher user time of merge-
sort can be easily explained: the run creation step of multiway mergesort has the same
CPU time complexity as the quicksort algorithm and additionally, we have to merge
the runs. The run creation phase accounts for at least half the total running time as all
runs are merged in a single phase. Multiway mergesort is CPU bound, it takes longer
to create a sorted run in internal memory via an internal sorting algorithm than to load
the run from disk,i.e. a single run of4 Mbytes size is created in3 seconds, reading
and writing takes about1:1 seconds and sorting takes1:9 seconds. We notice that the
CPU time (u-time) accounts for 80% of the total time (t-time).

In the next example, we will sort random tuples of two integer values. A compar-
ison of tuple(i; j) and(i0; j0) is done lexicographically,i.e. (i; j) < (i0; j0), if i < i0

or i = i0 andj < j0. We sort the same number of items as in the previous test, the
results are summarized in Table 3.10. Thus, the total amount of data that we transfer
to/from the disk in each stage of the mergesort is double as high as for our first test (a
tuple is8 bytes while an integer is4 bytes). However, a comparison of a tuple is more
complicated than a comparison of integers so that we expect that the total executed
time will be more than double as high.

Sorting random tuples
mergesort quicksort

N(in million) u-time s-time total u-time s-time total
1 7.65 0.5 9.16 2.53 0.08 2.69
2 15.64 1.04 18.81 5.31 0.2 5.61
4 27.48 2.32 34.12 11.01 0.44 11.61
8 47.45 3.98 59.97 23.14 0.95 27.2
10 58.21 4.77 78.01 29.25 5.81 396.07
20 118.58 11.52 194.94 63.15 25.48 1808.49
40 269.91 24.65 435.08 133.57 66.92 4573.72
60 455.88 35.2 677.54 207.39 110.57 9322.54
80 684.07 47.21 995.2 - - -
100 954.31 61.51 1412.86 - - -
120 1246.43 74.3 1875.19 - - -
140 1583.1 86.88 2393.79 - - -
160 2012.9 102.33 3029.53 - - -
180 2373.47 120.79 3638 - - -
200 2832.32 139.41 4517.16 - - -

Table 3.10:Sorting random tuples with LEDA quicksort and LEDA-SM multiway mergesort.
The disk block size is 32 kbytes and mergesort uses 512 internal blocks (of size 32 kbytes) for
sorting. A “-” indicates that the test could not be started due to insufficient swap space.

We see again that mergesort is CPU bound. The user time accounts for more than
2=3 of the total execution time. Mergesort has approximately double the user time than
quicksort. The reason for this is again the fact that mergesort consists of two phases
and each phase has the same time complexity as the internal quicksort approach. For
quicksort we see that it is I/O bound: user and system time account for only 3 % of the

72

3.8 Application Benchmarks

total time. As a result, external mergesort is now up to 10 times faster than the internal
quicksort approach. We now look in more detail at the different phases of mergesort
and compare our two tests for integers and tuples. For both tests, the run creation
phase is faster than the merge phase. Both phases have the same CPU-complexity of
O(N log2N). In the run creation phase we perform I/Os to consecutive disk block
locations, while in the merge phase we expect a larger number of random I/Os. Thus,
with increasingN , the merge phase dominates the run time (see Table 3.11).

Mergesort phases
integers tuples

N(in million) run creation merge run creation merge
1 3 0 9 0
2 7 0 19 0
4 14 0 28 6
8 27 10 46 14
10 32 14 55 23
20 64 33 119 76
40 128 141 244 191
60 241 196 337 340
80 293 295 447 549
100 369 401 555 858
120 432 536 671 1204
140 500 700 780 1614
160 571 873 895 2135
180 650 1019 1014 2624
200 719 1231 1127 3390

Table 3.11:Time distribution for run creation and merging in LEDA-SM multiway mergesort.
The disk block size is 32 kbytes and mergesort uses 512 internal blocks (of size 32 kbytes) for
sorting. Time is given in seconds.

3.8.2 Simple Graph Algorithms

In this subsection, we look at simple graph algorithms. Our tests consist of depth-
first search and Dijkstra’s shortest path algorithm [Dij59] on directed graphs. Graph
algorithms are considered to be hard problems in external memory. The I/O com-
plexity of several basic graph algorithms remains open, including depth-first search,
breadth-first search and shortest paths. We first review some known results for exter-
nal memory graph algorithms and then perform some experiments using a LEDA-SM
implementation of these algorithms.

Let G be a directed graph, letV be its set of nodes,E � V � V be its set of edges.
We denote byjV j the size of the set of nodes (jEj respectively for the size of the set of
edges). Lete = (u; v) be an edge ofG; u is called thesource nodeof e, v is called the
target nodeof e. u andv are also called endpoints ofe. An edge is said to beincident
to its endpoints. All edges having source nodeu are said to beadjacentto u. Graphs
are often represented by so calledadjacency lists. Here, the graph representation con-
sists ofjV j lists, where the list, labeledx, stores all edges that are adjacent tox. Both,
LEDA-SM and LEDA use adjacency list representations for graphs.

73

3.8 Application Benchmarks

Our first example consists of doing a depth-first search traversal (DFS) ofG. In
internal memory, this problem can be solved inO(jV j + jEj) time, which is optimal.
Below is the original LEDA code for depth-first search.

74 hinternal dfs74i�
static void dfs(node s, node_array<bool>& reached,

list<node>& L)
{

L.append(s);
reached[s] = true;
node v;
forall_adj_nodes(v,s)

if (!reached[v]) dfs(v,reached,L);
}

list<node> DFS(const graph&, node v,
node_array<bool>& reached)

{
list<node> L; dfs(v,reached,L); return L;

}

Boolean arrayreached is used to store the nodes ofG that were already reached during
the traversal. At the end, listL stores the result of the depth-first search traversal.

In external memory, graph algorithms can be classified to be eitherfully-externalor
semi-external. Fully-external graph algorithms assume that it is not possible to store
information of size�(jV j) or �(jEj) in internal memory. Semi-external graph al-
gorithms are able to store information of that size in internal memory. The above
example for DFS is semi-external, if we assume thatreached can be stored in internal
memory, and then it runs inO(jV j + jEj=B) I/Os. Chianget al. [CGG+95] showed
that a natural extension of the internal memory algorithm is able to solve the DFS in
O((jV j=M) � (jEj=B)) I/Os for the fully-external case. The algorithm assumes that
the boolean arrayreached cannot be stored in internal memory. Instead, the algorithm
keeps a dictionary of size at mostM . Visited nodes are stored in the dictionary. When
the dictionary gets full, the graphG is compacted,i.e. edges that are pointing to nodes
that were already visited are deleted fromG, the dictionary is cleared and we proceed
with the algorithm.

Kumar and Schwabe [KS96] proposed a different algorithm that solves DFS in
O(jV j log2 (jV j) + (jEj=B) log2 (jEj=B)) I/Os using so called tournament trees plus
an external memory priority queue. The original algorithm of Kumar and Schwabe
only worked for undirected graphs. Buchsbaumet al. [BGVW00] extended the al-
gorithm to the directed graph case without changing the I/O bounds. Meyer [Mey01]
showed that DFS on undirected planar graphs needsO(jV j

�log3 B
+Sort(jV j �B
)) I/Os

andO(jV j �B
) external space, for any0 <
 � 1=2. Unfortunately, no lower bound
is known for this simple graph algorithm. However, the community believes that the
�(jV j) term in the I/O-bound cannot be reduced for arbitrary graphs. In practice,
fully-external algorithms are not useful. For many practical cases,jEj = O(jV j) and
the termjEj=B is negligible compared to theO(jV j) term. Therefore, the focus is on

74

3.8 Application Benchmarks

semi-external algorithms as even for very large graphs like telephone call graphs, one
can assume that it is possible to store information of sizeO(jV j) in internal memory
[Abe99].

We implemented the algorithm of Chianget al. for the fully-external case and
the semi-external algorithm (the semi-external case is the standard DFS using an in-
core boolean array, but an external memory graph data structure). Additionally, we
implemented a DFS variant where we use an external arrayext array<bool> instead
of an internalnode array<bool>. This algorithm performsO(jV j + jEj) I/Os in the
worst case. We then performed several tests on a SUN UltraSparc-1 with a single
143 MHz processor, 256 Mbytes main memory and a local 9 GB SCSI hard disk
running Solaris-2.6 as operating system. We used a block size of8 kbytes for the
external memory algorithms so that the external disk block size equals the page size
of the virtual memory subsystem. By this, we were able to fairly compare in-core and
secondary memory algorithms as both use the same disk block size so that only the
algorithmic and data structure features matter.

In a first test, we compared the different external-memory DFS variants against
each other on random graphs withn nodes andm edges. We tested Chianget-al.’s
algorithm with varying dictionary sizes against our external memory variant of DFS
that uses an external arrayext array<bool> to keep track of already visited nodes,
and against a semi-external variant that uses an internal memory array to keep track of
visited nodes. We note that all tests execute at least
(n) I/Os. Table 3.12 summarizes
the results.

External memory DFS variants
Chiang-et-al ext. bit-array int. bit-array

(n;m) 1k 4k 8k 16k 32k
103; 4 � 104 76 66 66 77 78 95 48
104; 5 � 104 99 81 77 89 90 139 54
104; 105 150 106 96 100 101 227 57
105; 105 491 309 286 289 297 275 179
105; 5 � 105 1798 695 511 421 380 1272 219
105; 106 3034 1015 675 507 427 2321 227
106; 106 3496 1148 756 561 468 2345 226
106; 2 � 106 6311 1922 1199 836 652 4467 258
106; 5 � 106 14374 4355 2651 1769 1344 10946 395
106; 107 27924 8483 5323 3574 2699 21861 750

Table 3.12:Comparison of external memory DFS variants on random graphs withn nodes
andm edges. The first five variants are Chiang-et-al.’s algorithm with dictionary size 1000,
4000, 8000, 16000 and 32000. The last two variants use an external memory bit-array and an
internal memory bit-array. All run times are given in seconds.

Chianget al.’s algorithm gets faster with increasing dictionary size. The run time
converges towards the run time of external DFS with an internal bit array, if the dic-
tionary size of Chianget al.’s algorithm is large enough. The variant that uses the
external memory bit array is the overall slowest algorithm. Clearly, the semi-external
DFS variant that uses an in-core boolean array is the fastest algorithm.

In the next test we compare LEDA’s DFS algorithm against LEDA-SM’s the semi-

75

3.8 Application Benchmarks

external DFS variant that uses an internal boolean array to keep track of nodes that
were already visited. Our tests are performed on different graph types, namely random
graphs withn nodes andm edges, complete graphs withn nodes, andn � m grid
graphs. The graph types have different features. For the random graphs, we choose
m to be in the interval[n; 10 � n]. Thus, the number of edges is small compared to
the number of nodes and hence theO(n) I/O term in the semi-external DFS variant
dominates theO(m=B) term. The graphs are chosen in such a way that for the larger
graphs, swap space must be used for the in-core DFS algorithm. We expect that the
semi-external graph variant outperforms the in-core DFS algorithm, as the operating
system is not able to perform the paging in a clever way.

For complete graphs,m =
(n2). n is quite small so that theO(n) I/O term of the
semi-external algorithm does not play an important role if compared to theO(n2=B)
I/O term used to scan the edges. It is therefore interesting to see if the semi-external
variant is faster than the in-core algorithm.

n � m grid graphs consist ofm � n nodes and2 � n � m � n � m edges. The
graph consists ofn rows, each havingm nodes. The edge set is formed of the edges
(vi;j ; vi;j+1), i = 1; : : : ; n; j = 1; : : : m� 1 and(vi;j ; vi+1;j), i = 1; : : : ; n� 1; j =
1; : : : ;m. For this test, the number of edges is again small compared to the number of
nodes. As for random graphs it is interesting to experiment if the semi-external variant
can beat the in-core variant. The results of our tests are summarized in Table 3.13.

External memory DFS against LEDA DFS
Random graphs complete graphs grid graphs

(n;m) LEDA LEDA-SM n LEDA LEDA-SM n�m LEDA LEDA-SM
103; 4 � 104 1 48 2000 3 220 110000,10 4 85
104; 5 � 104 1 54 2100 4 248 120000,10 5 98
104; 105 1 57 2200 4 273 130000,10 9 103
105; 105 1 179 2300 29 290 140000,10 50 133
105; 5 � 105 3 219 2400 137 319 150000,10 88 155
105; 106 5 227 2500 231 323 160000,10 208 161
106; 106 7 226 2600 327 364 170000,10 273 184
106; 2 � 106 25 258 2700 428 404 180000,10 313 203
106; 5 � 106 1767 395 2800 469 454 190000,10 366 227
106; 107 20122 750 2900 527 489 200000,10 498 232
Aver. Time 2193 241.3 215.9 338.4 181.4 158.1

Table 3.13:Comparison of LEDA DFS and external memory DFS with an internal bit array
on random graphs withn nodes andm edges, on complete graphs withn nodes and onn�m
grid graphs. All execution times are given in seconds. The last row gives the arithmetic mean
execution time.

For random graphs, in-core DFS is much faster than semi-external DFS on the
first eight test graphs. Only for large random graphs (the last two inputs) there is a
dramatic slowdown of in-core DFS and semi-external DFS is faster. If we look at the
mean execution time, the semi-external variant is superior to the in-core variant. If we
additionally consult Table 3.12, we see that also Chianget al.’s algorithm is able to
beat the in-core DFS routine. The largest LEDA graph has a size of approximately
492 Mbytes so that surely swap space must be used. Obviously, the paging algorithm
of the operating system is not able to exploit locality of reference, although the LEDA

76

3.8 Application Benchmarks

graph data structure (adjacency list) shows locality of reference. If one could tell the
operating system to always keep boolean arrayreached in internal memory, in-core
DFS would be as fast as semi-external DFS.

For complete graphs, in-core DFS is superior to semi-external DFS. Although we
are able to beat in-core DFS on the last 3 graphs, the mean execution time of in-core
DFS is lower than that of semi-external DFS. However, we expect that for larger graphs
than the ones we tested, the gap between in-core DFS and semi-external DFS will
close resulting in semi-external DFS being much faster than in-core DFS. We note that
Chianget al.’s algorithm will not be much slower than semi-external DFS asjV j, the
number of nodes, is small so that one or two rounds are enough to complete Chianget
al.’s algorithm. If we look at grid graphs, we see that for half of the tests, semi-external
DFS is faster than in-core DFS. Again as for random graphs, the number of nodes is
large compared to the number of edges. However, the gap between the execution time
is not as large as for random graphs.

The tests show that the external DFS algorithms are fast ifn, the number of nodes,
is quite large compared to the number of edges. We do not think that very large com-
plete graphs (jV j � M) can occur in practice as then, the total input size would be
�(M2), which is not reasonable for today’s machines with Gigabytes of main mem-
ory as in that case, the total input size would be in the range of Hexabytes. Hence, in
practical applications, the average outdegree of a node is a constant and for this setting,
semi-external and fully-external DFS algorithms are superior to in-core variants.

In a second test we compare in-core Dijkstra’s shortest path algorithm against a
semi-external variant. In external memory, the problem of Dijkstra’s algorithm is the
fact that it relies ondecrease priority operations for the priority queue and
this operation is not yet supported in an efficient way for external memory priority
queues. The use ofdecrease priority operations in Dijkstra’s algorithm en-
sures that there are at mostn nodes in the priority queue. This problem of a lacking
decrease priority operation is circumvented in the semi-external case as fol-
lows: We only performinsert anddelete min operations on the priority queue.
In the case that Dijkstra’s internal-memory algorithm performs adecrease priority
operation on nodeu, we simply insert nodeu with its new distance value into the pri-
ority queue. Therefore, for any nodeu there can be multiple entries ofu with different
distance values in the priority queue. Whenever a nodeu is deleted from the priority
queue, we know that its distance is the shortest distance from the starting nodes to
u. All other occurrences ofu that still remain in the priority queue are spurious hits.
To circumvent the problem of revisiting nodeu again, we use an internal bit array to
memorize that nodeu was deleted. The above algorithm performsjEj priority queue
operations. It runs inO(jV j + j(E=B)j logM=B(jEj=B)) I/Os under the hypothesis
that we are able to maintain a bit array forjV j entries in internal memory.

We tested this algorithm against the internal memory Dijkstra algorithm, imple-
mented with LEDA. Table 3.14 summarizes the results for random graphs withn nodes
andm edges.

We see again a tremendous slowdown of the in-core algorithm if compared to
the semi-external variant. Although the in-core Dijkstra algorithm is much faster, if
the graph and the necessary data structures fit into main memory, the semi-external
algorithm outperforms the internal memory algorithm for the last four test graphs. In
the end, it is more than22 times faster.

77

3.9 Summary

External memory Dijkstra against LEDA Dijkstra
n m LEDA LEDA-SM
10000 30000 1 16
10000 50000 1 23
10000 100000 1 20
100000 100000 1 77
100000 500000 3 98
100000 1000000 5 105
1000000 1000000 5 107
1000000 2000000 25 132
1000000 3000000 451 168
1000000 3500000 1767 201
1000000 5000000 6931 316
1000000 10000000 15942 717

Aver. time 2094.41 165

Table 3.14:Comparison of Dijkstra’s algorithm implemented with LEDA and LEDA-SM on
random graphs withn nodes andm edges. All execution times are given in seconds. The last
row gives the arithmetic mean execution time.

3.9 Summary

In this chapter we introduced the library LEDA-SM. Our library is an extension of
the well known LEDA library towards external memory computation. LEDA-SM pro-
vides a simple but yet quite exact model of underlying hard disks by modeling each
disk as a collection of fixed sized blocks. Although this might seem to be nonelastic
from the programmer’s point of view, it is conform with the functionality that hard
disks provide. By the use of simple C++ classes likeblock identi�ers (B ID) and
logical blocks (block<E>), it is relatively easy to develop external memory algorithms
and data structures. The connection to LEDA’s huge collection of in-core data struc-
tures and algorithms simplifies that process. The kernel of LEDA-SM seems to be
too complex, there is the necessity of disk block and user management. Other libraries
like TPIE and VIC� used much simpler approaches. However, these libraries are not as
flexible as LEDA-SM. External memory is provided by hard disks and the disk drives
themselves are quite complex (Chapter 2 tried to give some intuition). File systems are
one layer above the real hard disk and they are developed for other kinds of application
patterns than the ones that external memory algorithms create. Although file systems
can be tuned, this process is quite difficult and not straightforward at all. Some things
are still quite uncontrollable like the space used for the buffer cache. Raw devices al-
low to circumvent some of these problems at the cost of the need to manage disk blocks
directly. As secondary memory algorithms access the hardware of the computers, we
believe that it is natural to give low-level access to the hardware.

The tests in Section 3.8 are quite simple so that people might say that it is obvious
that the external memory algorithms are faster. Although the external memory algo-
rithms are faster for all the tests, the gap is sometimes not as big as one might expect.
Especially sorting is not dramatically faster. Some speedups are however amazing,
e.g. for the graph examples. In the next two chapters we will develop new external
memory algorithms and data structures. These algorithms will not only be compared

78

3.9 Summary

against their in-core counterparts but also against existing external memory algorithms.
We will use LEDA-SM to implement all these external memory algorithms and data
structures.

79

Chapter 4

Case Study 1: Priority Queues

A priority queueis a data structure that stores a set of items, each one consisting of
a tuple which contains some(satellite) informationplus apriority value (also called
key), drawn from a totally ordered universe. A priority queue supports the following
operations on the processed set:access minimum (returns the item in the set hav-
ing minimum key),delete min (returns and deletes the item in the set having the
minimum key), andinsert (inserts a new item into the set). Priority queues (here-
after PQs) have numerous important applications: combinatorial optimization (e.g.
Dijkstra’s shortest path algorithm [Dij59]), time forward processing [CGG+95], job
scheduling, event simulation and online sorting, just to cite a few. Many PQ implemen-
tations currently exist for small data sets fitting into theinternal memoryof the com-
puter,e.g. k–ary heaps [Wil64], Fibonacci heaps [FKS84], radix heaps [AMOT90],
and some of them are also publicly available to the programmers (seee.g. the LEDA
library [MN99]). However, in large-scale event simulations or on instances of very
large graph problems (as they recently occure.g. in geographical information sys-
tems), the performance of theseinternal-memoryPQs may significantly deteriorate,
thus being a bottleneck for the overall underlying application. In fact, as soon as parts
of the PQ do not fit entirely into the internal memory of the computer, but reside in its
external memory (e.g. on the hard disk), we may observe a heavy paging activity of
the external storage devices, because the pattern of memory accesses is not tuned to
exhibit any locality of reference.

In this chapter1, we study the behavior of priority queues in a secondary mem-
ory setting. We will compare several known internal memory and secondary memory
priority queue data structures both theoretically and experimentally. We use the clas-
sical secondary memory model of Vitter and Shriver to measure the I/O performance
(see also Section 2.3.2). Later on, we will consider bulk I/Os [FFM98] in a practical
setting where we implement all priority queues using LEDA-SM. Furthermore, we in-
troduce two novel priority queues that are especially designed for an external memory
setting. The first PQ proposal is an adaptation of thetwo-level radix heap[AMOT90]
to the external memory. This external PQ supports monotone insertions and manages
integer keys in a range-sizeC. It achieves an amortized I/O-bound ofO(1=(DB))
for the insert andO((1=(DB)) log M

(DB logC)
C) for the delete min operation.

1Parts of this work appeared in [BCMF99] and will also appear in [BCMF00].

81

The space requirement is optimal, and the I/O-constants are actually very small, thus,
we expect good practical performances. Our second PQ proposal is a simplification
of [BK98], carefully adapted to exploit the advantage of a collection of fixed-size lists
over balanced tree structures. The resulting array-based PQ is easy to implement, is
I/O-optimal in the amortized sense, does not impose any constraints on the priority val-
ues (cfr. radix heaps), and involves small constants in the I/O, time, and space bounds.
Consequently, this structure turns out to be very promising in the practical setting and
therefore deserves a careful experimental analysis to validate its conjectured superior-
ity over the other PQs.

In the second part of the chapter, we will perform an extensive set of experi-
ments comparing the implementation of four external-memory PQs: one based on
buffer trees [Arg95], another based on B-trees [BM72], and our two new propos-
als: r-heaps and array-heaps. Additionally, we will compare these PQs against four
internal-memory priority queues: Fibonacci heaps [FT87],k-ary heaps [Meh84a] ,
pairing heaps, [SV87] and internal radix heaps [AMOT90]. Our experimental frame-
work includes some simple tests, which are used to determine the actual I/O-behavior
of insert anddelete min operations, as well as more advanced tests aimed to
evaluate the CPU-speed of the internally used data structures. As a final experimental
result, we will also test the performance of our proposed PQs in a real setting by con-
sidering sequences ofinsert /delete min operations that were traced from runs of
Dijkstra’s shortest path algorithm. These sequences will allow us to check the behavior
of our PQs on a “non-random”, but application driven, pattern of disk accesses.

Previous Work It has been observed by several researchers thatk–ary heaps perform
better than the classical binary heaps on multi-level memory systems [NMM91, LL96].
Consequently, a variety of external PQs, already known in the literature, follow this
design paradigm by using amulti-way treeas a basic structure. Buffer trees [Arg95,
HMSV97] andM=B–ary heaps [KS96, FJJT99] are multi-way trees and achieve op-
timal O((1=B) logM=B N=B) amortized I/Os per operation. Unfortunately, most of
these data structures are quite complex to implement (the simplest proposal is given
in [FJJT99]), and the constants hidden in the space and I/O bounds are not negligi-
ble. For instance, all these data structures require the maintenance of some kind of
child pointers and some rebalancing information, which induce space overhead and
entail to write non-trivial rebalancing code. Recently, starting from an idea of Tho-
rup [Tho96] for RAM priority queues, Brodal and Katajainen [BK98] designed an
external-memory PQ consisting of ahierarchy of sorted liststhat are merged upon
level– or internal-memory overflows2. Their main result is to achieve optimal worst-
case I/O-performance. However, their focus on worst-case efficiency complicates the
algorithm such that it is less attractive for practical applications. We remove this deficit
by redesigning the data structure. Additionally, we provide an implementation of the
hierarchical approach, which combines attractive amortized bounds with simplicity.
We show in Section 4.2 that thishierarchical approachoffers some advantages over
the tree-based data structures, which make it appealing in practice.

2A similar idea was used by Sanders to design cache efficient priority queues[San99].

82

4.1 External Radix Heaps

4.1 External Radix Heaps

4.1.1 One-disk model

Our first external-heap proposal consists of a simple and fast data structure based on
two-level radix heaps [AMOT90] (hereafter shortlyR–heaps). Let C be a positive
integer constant and assume that the element priorities are no-negative integers. R–
heaps work under the following condition:

Condition 4.1.1 (R-Heaps).Upon insertion, any priority value must be a non-negative
integer in the range[m; m+C], wherem is the priority value of the last element removed
from the heap via a deletemin operation (m = 0 if no deletemin was performed up to
now).

Hence the queue ismonotonein the sense that the priority values of the deleted
elements form anondecreasingsequence. This requirement is fulfilled in many ap-
plications,e.g. in Dijkstra’s shortest path algorithm. The need for integer priorities is
not severe, since interpreting the binary representation of a non-negative floating point
number as an integer does not change the ordering relation [IEE87]. R–heaps with
C = 264 can therefore also be used for64 bit floating point numbers.

The structure of theexternalmemory version of the R-heap data structure is de-
fined as follows. Letr be an arbitrary positive integer (also calledradix) and choose
the parameterh to be the minimum integer such thatrh > C (i.e. h = dlogr(C+1)e).
Let k be the priority of an arbitrary element in the queue and letkv : : : khkh�1 : : : k0
be its representation in baser. Similarly, letmv : : : mhmh�1 : : : m0 be the represen-
tation in baser of the current minimum prioritymin. According to Condition 4.1.1,
we know that if an element with priorityk belongs to the queue, thenk � min � rh.
Consequently,kv = mv; kv�1 = mv�1; : : : ; kh+1 = mh+1 and eitherkh = mh or
kh = (mh + 1) mod r. The latter case only occurs, ifmh = r � 1 andkh = 0.
Namely, if the two priorities differ, they must differ in their least significanth digits.

The external R–heap consists of three parts (see also Figure 4.1):

1. A collection ofh arrays, each of sizer. Every array entry is a linear list of
blocks called abucket. Let B(i; j) denote the bucket associated with thej–th
entry of thei–th array for0 � i < h, 0 � j < r. Each bucket keeps its first
block (disk page) in main memory. BucketB(0;m0) stores the first two blocks
in main memory.

2. A special bucketN that also stores its first block in main memory. The internal
space requirement of point 1 and 2 constrainr to satisfy the relation(h � r+2) �
B �M .

3. An internal memory priority queueQ containing all indices of the non-empty
buckets. These indices are ordered lexicographically,i.e. (i; j) < (i0; j0) if
eitheri < i0 or i = i0 andj < j0. Q never stores more thanh � r indices.

All elements of the R-heap reside in any of the buckets, either in bucketN or in a
bucketB(i; j). An element with priorityk is stored according to the difference between
its r-ary representation and the r-ary representation ofmin . Let k = kv; : : : ; k0 and

83

4.1 External Radix Heaps

min= mv; : : : ;m0 be the corresponding r-ary representations. The element with
priority k is stored in bucketN if kh = (mh+1) mod r, in all other cases it is stored
in bucketB(i; j) where

i = max(fl jml 6= kl; 0 � l < hg [f0g) and j = ki: (4.1)

The elements inside a bucket are not sorted. Note that an element with priority equal to
min is stored in bucketB(0;m0). Furthermore, all elements that are stored in buckets
B(0; j) must have the same priority valuej and the bucketsB(0; j),with j < m0 must
be empty. We now describe operationsinsert anddelete min .

r buckets
per array

0 (r-1)1

h-1

1

0

N-bucket

h arrays

Figure 4.1:The structure of the external radix heap.

Insert: In order to insert a new element with priorityk in the external R–heap, we
first compute the least significanth+1 digits ofk in baser , thus takingO(h) time and
no I/Os. Then, we insert that element into the bucketN wheneverkh = (mh+1) mod
r; otherwise, we insert that element into the bucketB(i; ki), wherei = max(fl jml 6=
kl; 0 � l < hg [f0g). This takesO(1) time. If bucketB(i; ki) was empty before
theinsert operation, we also insert the index(i; ki) intoQ takingO(log (rh)) time.
Notice that the insertion of an element with priorityk into the first block of bucket
B(i; ki) can completely fill it. In this case, we write that block to the disk and link it
with the previous heading block of that bucket,i.e. the disk block is inserted at the
front of the linked list. This takesO(1) I/Os, thus amortizedO(1=B) I/Os per inserted
element. BucketB(0;m0) is treated in an special way. We keep two blocks in main
memory,i.e. bucketB(0;m0) works as an external stack. When the second block is
filled by inserted elements, we move the second block two disk and copy the first block
to the second block (see also Section 3.5 were we describe external stacks in detail).
This also takesO(1=B) I/Os per inserted element. The special treatment of bucket
B(0;m0) is necessary because of thedelete min operation. This will be explained
below.

84

4.1 External Radix Heaps

Delete min: If the bucketB(0;m0) is not empty, we delete an arbitrary element
from this bucket. Notice that all elements in bucketB(0;m0) have the same priority
and they are all equal tomin . It may be necessary to load a block from disk, as a
previously occurringdelete min operation completely deleted both internal blocks
of bucketB(0;m0). As bucketB(0;m0) is treated as an external stack, we are able
to guaranteeO(1=B) I/Os andO(1) time per operation in an intermixed sequence of
inserts and delete operations on bucketB(0;m0). Note that this is not possible, if we
only store a single block in-core.

If instead the bucketB(0;m0) is empty, we access the internal priority queueQ and
determine the lexicographically first non-empty bucket, which is either some bucket
B(i; j) or the bucketN . In both cases, we scan the selected bucket and determine
the new value for the minimum elementmin . Since the minimum has changed, we
need to reorganize the elements in the current bucketB(i; j). These elements are re-
distributed according to the rule exploited for theinsert operation, thus they are
moved to buckets in lower levels. These buckets were empty before the redistribution,
so that their filling induces a change into the internal priority queueQ. It is crucial to
observe that all bucketsB(i0; j0), i0 > i or i0 = i andj0 > j, including bucketN do
not change, because the newmin has changedonly in the least significanti digits wrt.
the oldmin . Hence, the elements that differed in thei-th digit from the oldmin also
differ in the i-th digit from the newmin . Therefore, these elements remain in their
buckets and overall no other bucket, except thanB(i; j), must be reorganized.

We point out that each element in the PQ can be redistributed at mosth times, namely
once for each of theh arrays. In fact, each time an element is redistributed, it moves
from a bucketB(i; j) to a bucketB(i0; j0) with i > i0. The redistribution process
touches each element of a bucket twice, when it is read out of the current bucket and
when it is written to its new bucket according to the redistribution rule. This amounts
for two scans of the current bucket; thus the total number of I/Os is linear in the size
of the current bucket andO(1=B) amortized I/Os per moved element suffice. The
CPU time isO(log(hr)), since that time amount is required to find the first non-empty
bucket (by usingQ). Consequently, the cost we spend for each element, from its in-
sertion up to its deletion (as minimum), isO(h log (hr)) time andO(h=B) I/Os.

It remains to determine the appropriate values forr andh that allow the R–heap
data structure to work efficiently. The constraint we previously imposed on these pa-
rameters was that(r � h + 2) � B + O(r � h) � M . This ensured that the first block
of every bucket, and the internal queueQ, fit in internal memory. The second additive
term is nearly negligible becauseB is large, and thus will not be taken into account.
Now, sinceh = �(logr C), it suffices to choose the maximum value ofr such that
(settingm =M=B):

r logr C � m , r

log r
� m

logC
(4.2)

Settinga := m
logC , the solution of equation 4.2 has the following form:

r = a � (log a+ log (a+ log (a+ log (: : :))))

85

4.1 External Radix Heaps

Thus, we set

r = �(
m

logC
log

m

logC
) (4.3)

From the previous discussions we derive the following result:

Theorem 4.1.2. Letm = M=B, r = �(m
logC log m

logC) . Aninsert into an external
R–heap takes amortizedO(1=B) I/Os andO log(r logr C)) amortized CPU time. A
delete min takesO((1=B) logr C) amortized I/Os andO((logr C) � log(r logr C))
amortized CPU time.

Proof. According to the discussion aboveO(h log (hr)) time andO(h=B) I/Os are
required to manage a single element from its insertion up to its deletion from the queue
(as minimum element). Upon insertion, each element getO(h=B) credits. Operation
insert needsO(1=B) credits. The cost of the redistribution process accounts for
O(h=B) credits and is charged to thedelete min operation. The bound follows by
settingh = �(logr C).

We remark that the amortized cost of thedelete min is larger than the one of the
insert , but this is just a matter of the accounting. Nonetheless, thedelete min
operation is so simple that it will be very fast in practice, as we experimentally prove
in Section 4.3. Notice that for typical values of the parametersM , B, andC, the
value oflogr C is about two or three, and thus negligible in the final performance. As
far as the radixr is concerned, we observe that its setting depends onM , B, andC.
To better evaluate the relationship among all these values we plot them by assuming
m = M=B = 2x andC = 2y (hencer = (2x=y) � (x � log(y))). See Figure 4.2 for
details. External radix heaps are efficient in applications whereC is small. Examples

10
12

14
16

18
20

x

10

12

14

16

18

y

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

Figure 4.2:Relationship betweenr;M;B andC. M=B = 2x andC = 2y. The z-axis shows
the dependancy of radixr onx andy.

86

4.1 External Radix Heaps

are time-scheduling, whereC is the time at which an event takes place, or in Dijk-
stra’s shortest path computations, whereC is an upper bound on the edge weight. It is
also possible to use radix heaps as an online-variant for bundle sorting [MSV00] (see
Section 3.8).

As far as the disk space consumption is concerned, we observe that onlyonedisk
page can be non-full in each bucket (by looking at a bucket as a stack). But this page
does not reside on the disk, so that there are no partially filled disk pages. We can
therefore conclude that:

Lemma 4.1.3. An external R–heap storingN elements occupies no more thanN=B
disk pages.

4.1.2 D–Disk Model

Radix-heaps can be easily extended to work efficiently in the D–disk model by means
of thedisk stripingtechnique. TheD disks are not seen independently, instead we read
exactly one block of each disk from the same location in a synchronized way. Thus,
disk striping onD disks can be seen as using a single disk with block sizeB0 = D �B.
If we apply this to our R–heaps, we need to change the constraintr � h � B � M into
r � h � B �D � M and store the firstD blocks of each bucket internally. This implies
that we can chooser = �((m= logC) log (m= logC)) with m = M=DB.

Theorem 4.1.4. Letm = M=DB and letr = �(m
logC log m

logC). An insert into an
external R–heap takes amortizedO(1=(DB)) I/Os and adelete min takes
O((1=(DB)) logr C) amortized I/Os.

We note that this bound is not optimal in theD-disk secondary memory model
because it is notD-times smaller than the bound for the one-disk case. Actually,D
occurs in the base of the logarithm. In Section 4.2 we will introduce a priority queue
that achieves optimality in theD-disk model.

4.1.3 Implementing radix heaps

Radix heaps are implemented using LEDA-SM in a natural way. Each bucket is or-
ganized as a linked list of blocks. ConstantC is specified at time of construction.
The internal priority queue is implemented by a LEDA Fibonacci heap. To achieve
higher throughput when reading or writing to disk, it is possible to keep a constant
numberc of disk blocks per bucket in main memory thus changing the condition
r � h � B � M to r � h � cB � M . Instead of linking single disk blocks, we link
chains ofc consecutive disk blocks. The constantc can also be specified at time
of construction. Operationsinsert anddelete min need to compute ther-ary
representations of eithermin or the element to be inserted. This computation can
be done by a bitwise rightshift ifr is a power of two. Otherwise one has to use
modulo-computation ifr is not a power of two. Bitshift computation is faster than
modulo computation. This was tested in an early development phase of radix heaps
(see [CMA+98]). Therefore,r is chosen to be a power of two. We note two special-
ties for the actual bucket implementation. Normally, all buckets store items that are
parameterized in< P; I >, whereP is the priority data type andI is the information
data type. BucketsB(0; k); k = 0; : : : ; r�1 and bucketsB(j; 0); j = 1; : : : ; h�1 are

87

4.2 External Array-Heaps

implemented differently. In the first case, all items in a bucketB(0; k) have exactly
the same priority valuek. Therefore it is sufficient to store only information typeI.
In the second case, bucketsB(j; 0); j = 1; : : : ; h � 1 will never store items accord-
ing to equation 4.1. This holds because thej-digit in ther-ary representation is zero
and must be bigger than thej-digit of min which is a contradiction. Thus it is not
necessary to allocate any space for these buckets.

4.2 External Array-Heaps

Radix heaps can be used if the priority data type are non-negative integers and if the
queue ismonotone, i.e. if the priority values of the deleted elements form a non-
decreasing sequence. For certain applications, this form of priority queue is not suit-
able and a more general form of priority queues without any restrictions is necessary.
Furthermore, radix heaps do not achieve optimality in theD-disk model. Our second
proposal (calledarray heap) is a general priority queue and it achieves optimal I/O
bounds in theD-disk model.

We start with a rough description of the data structure. The heap structure is a
simplification of [BK98]3 and consists of two parts: an internal heapH and an external
data structureL consisting of a collection of sorted arrays of different lengths. The
external part,L, is in turn subdivided intoL levelsLi, 1 � i � L, each consisting of
� = (cM=B) � 1 arrays (calledslots) having lengthli = (cM)i=Bi�1; c < 1. Each
slot ofLi is either empty or it contains a sorted sequence of at mostli elements.

l3 = (+1) l2µ

Internal Memory

H

External Memory

µ µ µ

L1

L2

L3L

H1

H2

l2

Figure 4.3:The array heap

3Brodal and Katajainen as well as Crauser, Ferragina and Meyer independently discovered the same
heap structure.

88

4.2 External Array-Heaps

The following property is easy to prove:

Property 4.2.1. The total size of(� + 1) slots, each containingli elements, is equal
to li+1.

Proof. (�+ 1)li = cM=B � (cM)i=Bi�1 = (cM)i+1=Bi := li+1

Elements are inserted intoH; if H gets full, thenl1 = cM of these elements are
moved to the disk and stored in sorted order (according to the order defined on the
keys) into a free slot ofL1. If there is no such free slot (we call thisoverflow), we
merge all the slots ofL1 with the elements coming fromH, thus forming a sorted list
which is moved to the next levelL2. If no free slot ofL2 exists, the overflow pro-
cess is repeated onL2, searching for a free slot inL3. We continue until a free slot is
eventually found.

Thedelete min operation maintains the invariant that the smallest element al-
ways resides inH (see Lemma 4.2.2). ThereforeH needs to be refilled by deleting
some appropriate blocks from the sorted slots ofL whenever the minimum element is
removed from the internal heapH orH runs out of elements.

We describe now in more detail two versions of this heap. The first is a simplified
non-optimal structure intended to be fast in practice (see Section 4.2.1). The second
proposal (see Section 4.2.3) is slightly more complicated but reaches I/O-optimality.

4.2.1 A practical version

The internal heapH is divided into two parts,H1 andH2. H1 stores the newly inserted
elements (at most2cM in total), whereasH2 stores at most the smallestB elements
of each non-empty slot in (any level of)L. As a result, less thancM(2 + L) elements
reside in internal memory. Furthermore,(� + 1)B = cM internal memory space
is needed upon level overflow, in order to merge the� slots of any level plus one
sequence arriving from the previous level. This imposes thatL must behave as a
constant in order to ensure that we have enough internal memory to host the required
data structures. We will further comment on this at the end of this section, and now
just observe that for practical values ofM ,B andN , we haveL � 4 so that the above
relation can be fulfilled in practice by settingc = 1=7. In the following, we describe
four basic tools that are used in operationsinsert and delete min to manage
overflows and insufficient fillings of slots.

� Merge-Level(i,S,S’)produces a sorted sequenceS0 by merging the sorted se-
quences of the� slots inLi (including their first blocks inH) and the sorted
sequenceS. This operation takesO((jSj+ li+1)=B + 1) = O(li+1=B) I/Os.

� Store(i,S)assumes thatLi contains an empty slot and that sequenceS has a
length in the range[li=2; li]. S is stored into an empty slot ofLi and its smallest
B elements are moved toH, thus requiringO(jSj=B + 1) = O(li=B) I/Os.

� Load(i; j) fetches the nextB smallest elements from thejth slot ofLi into the
internal heapH. It therefore takes one I/O.

89

4.2 External Array-Heaps

� Compact(i)is executed if there are at least two slots in levelLi for which the
sum of their elements, including those inH, is at mostli. Then these two slots
(plus their first blocks inH) are merged into a new slot, thus freeing a slot of
Li. S is moved to the freed slot and the smallestB elements of the new slot are
moved toH. Globally, this needs at mostO(li=B) I/Os.

Insertion. A new element is initially inserted intoH. If H gets full, the largestcM
elements ofH form the setS which is moved to the levelL1 (the smallestB ele-
ments among them stay in internal memory,i.e. they are copied toH2). This insertion
may influence theL levels inL in a cascading way. In fact at a generic step, the
sorted sequenceS has been originated from levelLi�1 (initially L0 = H) and must
be moved to the next levelLi. If Li contains an empty slot, thenS is stored into it
(via Store(i,S)). Otherwise a further overflow occurs atLi and, since all slots ofLi
contain at leastli=2 elements, they are merged withS thus forming a new sorted se-
quenceS0 (Merge-Level(i,S,S’)). Such a sequenceS0 is moved to the next level and
the loop above is repeated withS0 playing now the role ofS. Of course, at mostL it-
erations of the loop suffice to find a free slot, because we eventually reach the last level.

Deletion. The smallest element is removed from the internal heapH. If it was the
last element coming from a slotj of some levelLi, we load the nextB elements from
this slot intoH2 (Load(i,j)). This way, the corresponding internal buffer is refilled
with the smallestB elements of that slot. In order not to use unreasonably many par-
tially filled slots, we check the sizes of the slots after each load operation and possibly
execute theCompactoperation. Compactmerges two partially filled slots into one.
Consequently, every levelLi consists of at most one slot containing fewer thanli=2
elements. TheCompactoperation moves the smallestB elements of the newly formed
sequence to internal memory, so that the block of the slot containing the largest ele-
ments might be partially filled in external memory. This partially filled block resides
in external memory.

4.2.2 Correctness and I/O-bounds

To prove correctness of our data structure we must show that during overflows, there
is enough space in one of the next level to store the newly arriving elements, and we
must guarantee that the minimum element is always in the internal heapsH1 or H2.
As elements only move to levels with increasing level-number, we do not lose any
elements during the overflow process. Therefore elements either reside in the internal
H or in the externalL.

Lemma 4.2.2. The smallest element is always stored inH. After the execution of
Store(i,S), Compact(i) and Merge-Level(i,S,S’) the smallest element still resides inH.

Proof. The minimum element was either newly inserted and is therefore stored inH1

or it belongs to a specific slot in some level of the external structure. As the elements
in the slots are linearly ordered, the smallest element is stored in the first block of this
slot and is therefore copied toH2. Therefore, we inductively assume that the smallest
elements resides inH before the execution of any of these operations.Compact(i)
merges two slots of leveli including the elements inH. As the slots are linearly

90

4.2 External Array-Heaps

ordered and the firstB elements of the newly formed slot are moved toH, the smallest
element still resides inh after the execution ofCompact(i). Similar arguments hold for
Merge-LevelandStore: linearly ordered slots (including their first elements) inH are
merged into a new sequence and the smallestB elements of this sequence are moved
toH.

We now show that newly arriving elements can always be stored in leveli. Ele-
ments come from the previous level either by executingMerge-Level(i-1,S,S’)and then
Store(i,S’)or by only executingStore(i,S’).

Lemma 4.2.3. When Store(i,S) is executed (after an overflow in leveli � 1) we are
guaranteed thatS contains at leastli=2 elements and at mostli elements.

Proof. The first inequality comes from the algorithm;i.e. Store(i,S)is only executed
if the size ofS is at leastli=2. In the worst case, all previous levels were full, thus
S was formed by a recursive merge of all previous levels including the elements from
H1. From property 4.2.1 it follows that the size ofS is exactlyli thus proving the last
part of the lemma.

For the remainder odf this section we assume thatcM > 3B. We now turn on
proving the I/O-bounds for operationsinsert anddelete min . We first observe:

Lemma 4.2.4. AfterN operations the heap consists of at mostL � logcM=B(N=B)
levels.

Proof. In the worst case, no deletions occur and therefore each overflow moves the
maximum possible number of elements from one level to another. Thus, the number

of elements inj levels is
Pj

i=1
(cM)i+1

Bi < (cM)j+2

Bj+1 . We must choose the smallestj so
that(cM)(cM=B)j+1 � N . It follows thatcM(cM)j+1 � B(cM)j+1 � N because
cM > 3B. Hence,j � logcM=B(N=B)� 1.

In a next step we determine the cost of our toolsStore, CompactandMerge-Level.

Lemma 4.2.5. Store(i,S) takes no more than3 � li=B I/Os. Compact(i+1) and Merge-
Level(i,S,S’) take no more than3 � li+1=B I/Os.

Proof. WhenStore(i,S)is executed,S is read and then stored into an empty slot ofLi
and its smallestB elements are moved toH. This takes at most2dli=Be � 3li=B
I/Os sinceli � l1 = cM > 3B. Merge-Level(i,S,S’)produces a sorted sequenceS0

by merging the sorted sequences in the� slots ofLi (including their first blocks in
H) and the sorted sequenceS. Every block of sequenceS and every block of each
of the slots inLi is read and written once. Therefore, the operation takes at most
2d(jSj + �li)=Be � 2d(li+1)=Be � 3li+1=B I/Os becauseli+1 � l1 = cM > 3B.
Compact(i)is executed if there are at least two slots in levelLi for which the sum of
their elements, including those inH, is at mostli. Then these two slots (plus their
first blocks inH) are merged into a new slot, thus freeing a slot ofLi. Let j andk
be the slots of levelLi that are merged during the execution ofCompact(i)and letej
(resp. ek) be the number of elements in slotj (resp. k). Compact(i)needs at most

91

4.2 External Array-Heaps

dej=Be + dek=Be+ dli=Be � (ej + ek)=B + li=B + 3 � 2li=B + 3 � 3li=B I/Os
sinceli � l1 = cM > 3B.

We are now ready to show:

Theorem 4.2.6. LetN � B � (cMB)
1
c
�3; 0 < c < 1=3 andcM > 3B. In a sequence

of N intermixedinsert and delete min operations,insert takes amortized
18
B (logcM=B(N=B)) I/Os anddelete min operations take7=B amortized I/Os.

Proof. We prove our amortized bounds by using an accounting argument. We asso-
ciate with each non-empty slotj of level Li a depositDi;j that accounts for6x=B
credits, wherex is the number of its empty entries. Initially, all slots are empty and
thus the accounts have zero credits. Furthermore, we associate with the internal heap
H a deposit for that we ensure to contain at least 1 credit in the case that aLoad
operation must be performed. This credit will be used to pay for theLoad.

Each element is to be inserted with18L=B credits. Each element uses18=B cred-
its from that amount everytime it moves from one level to the next one according to
the Merge-Leveloperation. In case of a deletion,7=B credits are left in the internal
heapH (notice that the deleted element resided inH before deletion).

It remains to show that whenever an operationinsert or delete min is
executed we have enough credits to pay for them. Recall thatinsert relies on
operationsMerge-LevelandStore, whereasdelete min usesCompactandLoad.

In the case of an overflow at levelLi triggered by aninsert operation, we
useMerge-Level(i,S,S’)and then executeStore(i+1,S’) to store the sequenceS0 in a
free slot of levelLi+1 (if any). From above,Merge-Level(i,S,S’)needs3li+1=B I/Os
andStore(i+1,S’)needs3li+1=B I/Os, so that merging and storing these elements is
possible in6li+1=B I/Os. Since the size ofS0 is between[li+1=2; li+1], this I/O-cost
can be payed by taking12=B credits from the deposit of each element affected by this
moving operation. In fact, we are moving at leastli+1=2 elements from levelLi to
level Li+1, and thus we can employ the credits associated with theiri–th level. We
note that the slot of levelLi+1, sayj, might be partially filled after the storage of the
elements and hence it is necessary to put credits in its depositDi+1;j to maintain the
property thatDi+1;j accounts for the number of its empty entries. We observe that the
number of empty entriesli+1 � S0 is at mostli+1=2 so that we have to fill in3li+1=B
credits. SincejS0j � li+1=2 we can take6=B credits from each of its elements and put
them in the depositDi+1;j . Globally,18=B credits have been used to move an element
fromLi toLi+1, and this is the amortized cost associated with theinsert operation
for one level. In all,18L=B credits suffice to pay for the cost ofinsert .

In the case of adelete min operation, we leave7=B credits in the deposit of
H. If a Load is required, its cost is paid by usingB(1=B) = 1 credit from the deposit
of H. These credits were left by theB elements removed before thatLoad. The
otherB(6=B) credits left by these elements, are added to the deposit of the slotj on
which theLoadoperated, thus preserving the invariant on the slot accountDi;j. If the
element later participates again in an overflow operation, it will re-enter the external
level structure exactly in levelLi. Therefore it still has enough credits to pay for the
following Merge-Leveloperations.

92

4.2 External Array-Heaps

Finally, we recall thatCompact(i) needs3li=B credits, and this can be paid by
using the credits associated with the deposits of the slots to be compacted. In fact,
when the compaction is executed on two slots, sayj0 andj00, their number of empty
entries is at leastli and hence,6li=B credits are available in the accountsDi;j0 and
Di;j00 . When we merge the two slots, slotj00 becomes empty and slotj0 contains at
mostli=2 empty entries. Hence we use3li=B credits from the available6li=B credits
above to pay for the compaction, and the other3li=B credits are used to refill the
deposit ofDi;j0 (thus accounting for at mostli=2 empty entries). Summing up the
credits, the bound for thedelete min operation follows.

Sinceinsert anddelete min operations are based upon the above four tools
and their cost can be paid using the credits associated with the inserted and deleted
items, the theorem follows. The bound onN , the number of elements stored in the
heap, comes from the internal space bound of Lemma 4.2.8. The array heap uses
c �M(3 + logcM=B(N=B)) internal space so that if we solve the equationc �M(3 +
logcM=B(N=B)) �M for N , the bound follows.

Brengel [Bre00] reanalyzed the constants in his master thesis and showed that the
version of array heaps that he implemented performsinsert operations in4=B I/Os
anddelete min operations in7=B I/Os.

Let us consider the space requirements of the array heap.

Lemma 4.2.7. Every levelLi contains at most one slot which is non-empty and con-
sists of less thanli=2 elements.

Proof. The jth slot inLi only looses elements after the execution ofLoad(i; j). By
induction, let us assume that at most one slot inLi stores less thanli=2 elements, say
thej0th slot. AfterLoad(i; j), the deletion operation checks if the number of elements,
stored in slotsj and j0 is less thanli. If this is the case, it callsCompact(i)thus
emptyingj and refillingj0. Otherwise, slotj0 is still the only slot in levelLi that has
less thanli=2 elements and slotj must have more thanli=2 elements, or we have a
contraction thatj0 is the only slot storing less thanli=2 elements.

After Compact(i), no other non-empty slot inLi has less thanli=2 elements, so
that the invariant is preserved.

Lemma 4.2.8. The total number of used disk pages is bounded above by2(X=B)+L,
whereX is the number of elements currently in the heap. The total required internal
space iscM(3 + L).

Proof. Partially filled pages are created by thedelete min operation. Recall that
a Load operation may trigger aMerge-Levelor a Compactoperation; in this case
the internal-memory blocks of the slots involved by these operations are merged thus
possibly causing some elements inH of these slots to be moved to external memory.
As a consequence the smallestB of these elements remain intoH, but the moved
elements might create a partially filled block in external memory. In any slot (of any
level), only one page can be partially filled (the one on the top). Additionally, only one
slot per level is non-empty and stores less thanli=2 elements (see Lemma 4.2.7), so
that in the worst case, it can consist of only one partially filled page (thus giving the
termL). For all the other slots, since they are at least half full, they consist of at least

93

4.2 External Array-Heaps

one full page. Therefore, the number of their top (partially filled) pages is no more
than the total number of occupied pages, which is indeedX=B. For what concerns the
internal space,H1 stores2cM elements andH2 stores one disk page per slot which is
(cMB � 1) � B � L � cM � L. An additional amount of(� + 1)B is used to merge the
slots of any level. If we sum up, we achievecM(3 + L) thus proving the bound.

We take a closer look at the internal memory constraint of Lemma 4.2.8. Assume
thatM = 109, B = 106. Thus

c �M(3 + logcM=B(N=B)) �M , logcM=B(N=B) � 1

c
� 3

, N � B � (cM
B

)
1
c
�3

, N � 106 � (c � 103) 1c�3

(4.4)

If we fix c = 1
7 , it follows that:

N � 106 � (10
12

74
) = 0:416 � 1015 (4.5)

In fact,L � 4.

4.2.2.1 Reducing the working space

Our goal is to reduce the working space. We first identify, how partially filled disk
pages are produced and then show, how to circumvent the problem of partially filled
disk pages.

At the beginning, when a sequenceS of elements is stored in the first levelL1, we
assume that the size ofS is a multiple ofB. The firstB elements ofS are moved to
H2, thus the number of remaining elements ofS, that are still stored inL1, is still a
multiple ofB. In the absence of thedelete min operation, no partially filled disk
pages are produced asMerge-Level(i,S,S’)always merges slots that contain a multiple
of B elements and thusStore(i,S)always stores a sequence without producing any par-
tially filled disk pages.

Disk pages become partially filled by the use of thedelete min operation. The
first B elements (the first disk page) of slotj in level i is brought toH2 via Load(i,j).
If this page loses elements viadelete min and then later takes place in aCompact
or Merge-Leveloperation before it is exhausted, we might produce a sequence of el-
ements whose size is not divisible byB. This results in a disk page which resides in
the external partL and which is not completely filled. Partially filled disk pages can
thus be avoided if the implementation of the array heaps takes care of the following
property:

Property 4.2.9. If the elements ofH2 do not take part in Merge-Slot and Compact
operations and8i : li mod B = 0 and li mod (2B) = 0, then no partially filled disk
pages are produced.

94

4.2 External Array-Heaps

Two implement this property we pose the following assumptions:

1. We replaceli by l0i and� by �0. We set�0 = cM�B
B � 1 = cM

B � 2 and
l0i = (cM �B)i=Bi�1

2. We assume that(cM) modB = 0 and (cM)=B is odd. Both conditions are
needed to ensure that for alli; li can be properly divided byB and2B.

3. OperationsMerge-LevelandCompactdo not take into account the elements of
the slots stored inH2.

4. Store(i,S)stores the sequenceS is a free slot (sayj). If there are stillx; 0 < x �
B elements of slotj of level i in H2 we mergeS with thex elements and keep
the smallestx elements inH2. Otherwise, we simply storeS in in slot j and
move the smallestB elements toH2.

Assumptions 1 to 4 ensure that all pages that are stored in the external levelsLi are
always completely filled. Assumptions 3 and 4 ensure that thedelete min oper-
ation does not produce partially filled pages that take place in aCompactor Merge-
Leveloperation. Assumptions 1 and 2 guarantee that for alli: l0i mod B = 0 and
l0i mod (2B) = 0. This can be easily proved by induction overi.

We now show that these changes do not effect correctness and that the I/O bounds
of Theorem 4.2.6 hold, possibly with a change of the leading constants.
Property 4.2.1 still holds if we replace� by �0 and li by l0i. Clearly, point 4 ensures
that the elements of any slot (including its elements inH2) are always linearly ordered
so that Lemma 4.2.2 still hold. We now show why these four assumptions only change
the leading constants of the I/O bounds. Clearly Lemma 4.2.4 still holds. We therefore
only have to show that the assumptions 1 to 4 do not change our credit argument in
the proof of Theorem 4.2.6. The important changes are thatStore(i,S)possibly merges
the sequenceS with some elements inH2, this needsO(jSj=B) I/Os, thus�(1=B)
credits per element. The elements inH2 might go back to a level but only if we try
to store a sequenceS with smaller elements in their corresponding slot. If an element
goes back, it goes back to the levelLi where it came from. Thus if an element reenters
a level it still has enough credits left to pay for furtherMerge-Levelcalls. We therefore
know thatO(L=B) credits can pay for insert.Load(i,j) still needs one credit and it
is still true that this credit can be found inH and that aLoad only follows afterB
delete min operations. AsStoreandCompactgot a little bit more complicated, the
leading constants ofinsert anddelete min can increase. However, we have
shown

Theorem 4.2.10.Under assumptions 1 to 4 the simplified array heap can be imple-
mented usingX=B pages whereX is the number of elements currently stored in the
heap. The amortized I/O bounds forinsert and delete min are the same as in
Theorem 4.2.6 besides the leading constants.

4.2.3 An improved version

We introduce a slight modification to the external structureL. The idea is to avoid
the need of copying the first block of each non-empty slot to main memory. In fact,

95

4.2 External Array-Heaps

this is the reason why we get the additive termL�B = cML in the internal space
requirement.

We associate with each levelLi a slot of lengthli, calledmin-bufferi. Themin-
bufferi stores the smallestli elements of levelLi. The idea is that instead of moving
these elementsdirectly intoH2 (as done in the simplified version with the smallestB
elements of each slot), we store them into the intermediate slotmin-bufferi, and we
moveonly one blockof this slot into the internal heapH2. IndeedLi moves toH2

just its smallestB elements, instead of the smallestB elements of each slot, namely
B� elements. Hence,H consists now of2cM elements (the elements inH1) plusLB
elements coming from the external structureL.

In order to maintain the correctness of thedelete min operation we must ensure
two facts: first,min-bufferi must hold a set of elements which arealways smallerthan
the ones stored in the slots ofLi; second, we must ensure that themin-buffersnever run
out of elements until the whole level gets empty.

The first requirement can be fulfilled for a givenLi by checking each arriving
overflow fromLi�1 against the elements inmin-bufferi : smaller elements are included
into the sorted sequence ofmin-bufferi without changing their total number, the other
elements are managed as in the previous section and they constitute to the ‘moved’
setS. The total number of used slots does not change in comparison to the basic
algorithm, the worst-case complexity of a level-overflow increases only by a factor of
two(two merges instead of one). The cost of these two merges can be (clearly) charged
on the account ofS’s elements.

The second property is fulfilled by maintaining the invariant thatminbufferi stores
betweenli=2 andli elements if the number of elements in levelLi is bigger thanli, all
elements ofLi otherwise.This invariant is maintained as follows:
After somedelete min operations all theB elements that moved frommin-bufferi
to H2 could have been deleted. We may therefore need to load another page ofB
elements frommin-bufferi . This is done by the operationLoad(i)which constitutes the
natural simplification ofLoad(i,j) described in the previous section (now it is executed
only on the slotmin-bufferi). After this loading process,min-bufferi might contain
less thanli=2 elements so that arefilling step is needed.Refill(i) operation takes care
of this by merging the� slots (includingmin-bufferi) in Li until we computed their
smallestli elements. The merge cost can be charged on theli=2 deletions that have
been performed beforemin-bufferi became empty.Compact(i)must be changed be-
causemin-bufferi can’t take place in aCompact(i)operation as otherwise, we might
destroy the invariant thatmin-bufferi stores the smallest elements of levelLi. We note
that after aRefill operation, it might be necessary to executeCompact(i)because the
Refill operation can produce slots that store less thanli=2 elements.

The cost of theRefilloperation can be easily charged to the cost of thedelete min
operation. As a result, the above changes increase the amortized costs for bothinsert
anddelete min by only aconstant factor. As far as the space occupancy is con-
cerned we observe that: Internally, we hold2cM + BL elements. Settingc �
(1=2)(1�BL=M) we guarantee that our internal structureH can be kept into internal
memory. As a consequence, our bound onN also changes. Notice thatM � BL
is very reasonable. This still allows to deal with problems that have exponential size
in the number of blocks fitting in main memory. Externally, each element is stored
in exactly one slot (possibly amin-buffer). Only the last block of each slot may be

96

4.2 External Array-Heaps

partially full. By an argument similar to the one adopted in Lemma 4.2.8, it easily
follows that the total number of occupied pages is2N=B + L over the sequence ofN
updates, which turns out to be asymptotically optimal. We are therefore ready to state
the following result:

Theorem 4.2.11.Under the assumptionN � B �(cMB)(1�3c)M
B ; 0 < c < 1=3, the new

variant of the array heap occupiesO(N=B) disk pages,insert requires amortized
O((1=B) logM=B(N=B)) I/Os anddelete min requiresO(1=B) amortized I/Os in
a sequence ofN intermixedinsert anddelete min operations.

4.2.4 Array-Heaps in the D-Disk Model

Since our aim is to get a simple and effective heap data structure for multiple disks, we
combine array-heaps with the elegant approach of Barve, Grove and Vitter [BGV97].
Indeed, we stripe the blocks of each sorted-sequence among the disks using arandom
starting point. This idea was introduced in [BGV97] where it was used for multiway-
merging in a randomized multiway mergesort approach. We discuss only the imple-
mentation ofMerge-Level(i,S,S’)and Refill(i) because all the other basic tools (i.e.
Store, Compact, Load) easily generalize to theD-disk setting in an optimal way by
just assuming that each slot of any level is stored in astripedway among theD disks.

The efficiency of the randomized mergesort algorithm of [BGV97] relies on the
random starting disks for the striped runs and also on aforecastdata structure that
makes sure to have in internal memory the appropriate disk blocks when they are
needed.

The following result is from [BGV97]:

Theorem 4.2.12 (Barve, Grove, Vitter).The expected number of I/O read operations
during one merge step is bounded byN

0

RBC(R;D).

This means thatto proceed byR blocks in the merging, the number of reads, the
merging step needs, is less than the maximum whenR blocks are randomly thrown
into D bins. HereC(X;D) is the expectation of the maximum number of balls in
any bin whereX is the number of thrown balls andD is the number of bins. See for
example [KSC78] for balls-into-bin results.

Our main idea is therefore to use the merge-pass of that algorithm to produce just
the first` elements of the final sorted sequence, thus requiring onlyO(`=(DB)) I/Os.
For Merge-Level(i,S,S’)we set` � li+1, for Refill(i) we set` = li. Having this
tool in our hands, we can use it to implementMerge-Level(i,S,S’)andRefill(i) taking
O(li+1=(DB)) andO(li=(DB)) optimal I/Os, respectively. Slight modifications to
the forecast data structure will be needed in the case that the merging stops before all
runs are consumed and shall be continued at some later point; this situation will occur
whenRefill(i) is invoked. We therefore save the forecast information to disk between
two consecutive calls ofRefill(i). This does not change the asymptotic I/O bounds.

By reasonably assuming thatD = O(B) we get:4

4According to [BGV97], the number of runs merged at each round of randomized mergesort isR =
(M=B � 4D)=(2 +D=B) which is�(M=B) for D = O(B); and this is optimal.

97

4.3 Experiments

Theorem 4.2.13.Given a sequence ofN operations, the Array Heap data structure
requiresO((1=(DB)) logM=B(N=(DB))) amortized expected I/Os for aninsert
andO(1=(DB)) amortized expected I/Os for adelete min . The total occupied
space isO(N=B) disk pages, which is optimal.

It is also possible to use Nodine and Vitter’s deterministic merge approach as
proposed in GreedSort [NV95]. This leads to a similar result for the caseD =
O(M=B
); 1=2 �
 < 1 (see also [CFM98]).

4.2.5 Implementing array heaps

The simplified version of the array heap was implemented in the master thesis of
K. Brengel [Bre00]. We review the highlights of the implementation.
H1 is implemented as a capacity restricted binary heap. The heap structure is imple-
mented by arrays. Brengel implemented 5 different methods to handle an overflow of
H1 where thejH1j=2 biggest elements are moved toL1. The first method sorts the
array (this does not violate the heap property) then moves the upper half toL1. The
second method uses aselectalgorithm to determine the median and then partitions the
array into two halvess. Then it creates a heap on both halves of the array (viaheapify)
and uses the second heap (created on the upper half) to write these elements toL1.
Methods 3 and 4 actually do not move the biggestjH1j=2 elements toL1, instead they
simply move anyjH1j=2 elements toL1. Note that this does not effect the correctness
of the array heap. Method 3 simply sorts the lastjH1j=2 elements, method 4 simply
divides the array of the original heap into two halves, builds a heap on both halves and
uses the second heap to move its elements toL1. The fifth method simply writes the
whole heapH1 to levelL1. All these methods have the same asymptotic run time of
O(jH1j log jH1j) time for moving the overflow toL1.

H2 is implemented in two different ways. The first implementation uses a list of
arrays, the second method uses a list of small binary heaps. The first method sup-
ports insert inO(1) and deletemin in O(�) time, the second method supports both
operations inO(log �) time. Thus overall 10 different combinations exist. The most
efficient combination is method 1 for both,H1 andH2. This was experimentally found
in the master thesis of Brengel [Bre00].

The external part consists ofLi levels where a level is formed of�+1 slots of size
li. Each slot is a linked list of disk blocks. The pointers for the link information are
kept inside the disk blocks. The linked disk blocks are allocated by LEDA-SM in such
a way that they are consecutive on the disk (like an array of disk blocks). Keeping
the blocks additionally linked allows us to support an easy and efficientdelete min
operation. During theLoad operation (see Section 4.2.1), we can simply use the
pointer information to easily identify the interesting disk block.

4.3 Experiments

We compare eight different PQ implementations, namely array heaps, external radix
heaps, buffer trees, B-trees, Fibonacci heaps,k-ary heaps, pairing heaps and internal
radix heaps. The first four priority queues are explicitly designed to work in exter-
nal memory, whereas the last four ones are LEDA-implementations of well-known

98

4.3 Experiments

internal-memory priority queues.
B-trees[BM72] are a natural extension of(a; b)-trees to external memory where

the fanout of each internal node is increased toO(B), so that the entire node fits in a
single disk page.

7 725322

partition

elements

fanout O(B)

O(log n)
B

N elements
n=N/B blocks

Insert anddelete min requireO(logB (N)) I/Os in the worst case. B-trees
are implemented asB+-trees,i.e. the original items consisting of keys and information
are only stored in the leaves of the tree. The internal nodes of the tree just contain rout-
ing information and pointers to their child nodes. The tree structure is implemented by
linking disk blocks via pointers; these pointers are stored inside the blocks themselves.

Buffer-Trees[Arg95] are also an extension of(a; b)-trees but they are intended
to reach better amortized I/O-bounds for theinsert anddelete min operations,
namelyO((1=B) logM=B (N=B)) amortized I/Os. The fanout of the internal nodes
is �(M=B), so that in practice the height is reduced toO(logM=B (N=B)), unlike
the heightlogB (N=B) of B-trees (notice that the caseM = O(B) does not occur in
practice). Each internal node has associated a buffer of size�(M). Instead of storing
a newly inserted element directly in the correct leaf position, the element is put into
the root’s buffer. When this buffer is full, we empty it and move its elements to the
appropriate buffers of the internal nodes in the next level. The smallest element now
resides somewhere in the buffers of the nodes on the leftmost path. The whole PQ data
structure now consists of two parts: one kept in internal memory and one stored on
the disk. The internal part keeps at most�(M) elements stored into a standard PQ
(implemented by LEDA’s sorted sequence); the external part contains the rest of the
elements and is implemented by a buffer tree as indicated in [Arg95].5 Newly inserted
elements are checked against the ones stored in the internal part; if the internal data
structure becomes full then�(M) of its elements are moved to the buffer tree. If
the internal structure runs out of elements due to a sequence ofdelete min s, then
we empty all buffers on the leftmost path, take the smallest�(M) elements stored in
the leftmost leaf (the overall smallest�(M) elements stored in the buffer tree) and
store them in the internal data structure. Internal buffer tree nodes are implemented by

5Starting from the original search tree implementation, we add functionality so that the buffer tree can
work as a priority queue.

99

4.3 Experiments

O(log n)
m

N elements
n=N/B blocks

Internal
Nodes

partition
elements

1 block

7 22 53 72

buffer

super-node

m blocks

fan-out
1/4 m ... m

an array of disk blocks; buffers are implemented by linked lists of disk blocks. The
original buffer tree of Arge assumes that a buffer that is attached to an internal node
may only containM elements. The condition for the buffer size can be relaxed; it is
also possible to not restrict the buffer size for internal nodes. This change was also
observed by Hutchinson-et-al [HMSV97]. It speeds upinsert at the cost of slowing
downdelete min . Actually, after allinsert operations, all elements are stored
in the root buffer. The firstdelete min operation constructs the whole tree and is
therefore very expensive. However, early tests showed (see [CMA+98]) that this is
faster than the original buffer tree of Arge[Arg95]. For completeness we also give the
results for the standard buffer tree implementation with a restricted buffer.

4.3.1 Experimental Setup

We use the following three tests to analyze the performance of these PQs:

Insert-All-Delete-All We performN insert followed byN delete min oper-
ations. This test allows us to compare the raw I/O-performance of the various
PQs. The keys areintegers , randomly drawn from the interval[0; 107].

Intermixed insertions and deletions This test is used to check the I/O- and the CPU-
speed of the internal-memory part of the external PQs. We first insert20 million
keys in the queue and then randomly performinsert anddelete min op-
erations. Aninsert occurs with probability1=3 and adelete min occurs
with probability2=3.

Dijkstra’s shortest-path algorithm We simulate Dijkstra’s algorithm in internal mem-
ory on a large graph (using a large compute server). We use a modified Di-
jkstra algorithm where onlyinsert and delete min operations are per-
formed on the PQ (see Section 3.8.2). We store the sequence ofinsert and
delete min operations executed by the algorithm on its internal PQ. This

100

4.3 Experiments

sequence is then used to test our external PQs, thus allowing us to study the be-
havior of the external heaps in the case of “non-random”, but application driven,
update operations.

The tests were performed on a SPARC ULTRA 1/143 with 256 Mbytes of main
memory and a local 9 Gbytes fast-wide SCSI disk. The internal memory priority
queues use swap-space on the local disk to provide the necessary working space and
a page size of 8 kbytes. The external memory priority queues used a disk block size
of 32 kbytes6. Each external memory data structure uses about 16 Mbytes of main
memory for the in-core data structures. Using only 16 out of 256 Mbytes of internal
memory leaves enough space for the buffer cache of the file system. In order to have
a better picture of the I/O-behavior of the experimented data structures, we decided
to estimate also the actual “distribution” of the I/Os so to understand their degree of
“randomness”. This is a very important parameter to be considered since it is very
well known [RW94] that accessing one page from the disk in most cases decreases the
cost of accessing the page succeeding it, so thatbulk I/Os are less expensive per page
thanrandomI/Os. This difference becomes much more prominent if we also consider
the reading-ahead/buffering/caching optimizations which are common in current disks
and operating systems. In order to take into account this technical feature, without
introducing new parameters that would make the analysis much more complex, we
follow [FFM98] by choosing a reasonable value for thebulk load sizeand by counting
the number of random and total I/Os. Since the transfer rates are more or less stable
(and currently large) while seek times are highly variable and costly (because of their
mechanical nature), we choose a value for the bulk size which allows to hide theextra
costinduced by the seek step when data are fetched.

According to the accounting scheme we adopted in this paper, we need to choose
a reasonable value for thebulk load size(notice that the parametersB andM are fixed
by default according to the computer features). Since the transfer rates are more or less
stable (and currently large) while seek times are highly variable and costly (because of
their mechanical nature), our idea is to choose a value for the bulk size which allows
to hide theextra costinduced by the seek step when data are fetched. This would
allow us to “uniformly” access every datum stored on the disk, thus working at the
highest speed allowed by its bandwidth. In some sense, we would like tohide the
mechanical nature of the disk system [Coo]. For the disk used in our experiments,
the averaget seek is 11 msecs, thedisk bandwidth is 7 Mbytes/sec. We have
chosenbulk size = 8 disk pages for a total of512 kbytes. It follows thatt seek
is 24% of the total transfer time needed for a bulk I/O. Additionally, the bulk size of
256 kbytes allows us to achieve75% of the maximum data transfer rate of our disk
while keeping the service time of the requests still low. Using a page size of32 kbytes,
we still keep the service time for random blocks reasonably small and the throughput
rate reasonably high.

4.3.2 Experimental Results

We comment below on the experimental results obtained for the tested priority queues.
Table 4.1 summarizes the running time in seconds and the number of I/Os on the

6This value is optimal for request time versus data throughput.

101

4.3 Experiments

insert-all-delete-all test.

Insert/Delete min time performance of the external queues (in secs)
N [�106] radix heap array heap buffer tree buffer tree (orig.) B-tree
1 6/24 18/11 56/34 62/43 11287/259
5 17/97 74/63 148/309 235/345 66210/1389
10 35/178 353/89 201/882 415/741 -
25 85/372 724/295 311/2833 1096/2302 -
50 164/853 1437/645 445/6085 3462/7592 -
75 246/1416 2157/1005 569/9880 7042/11907 -
100 325/1957 2888/1408 734/19666 12508/16909 -
150 478/3084 4277/2297 * 25051/27181 -
200 628/4036 5653/3234 * * -

Random/Total I/Os for external queues
N [�106] radix heap array heap buffer tree buffer tree (orig.)
1 44/420 24/720 228/668 228/668
5 422/3550 120/4560 16722/21970 13381/15501
10 1124/8620 168/9440 35993/47297 30950/35374
25 2780/21820 570/29520 93789/123285 86495/97879
50 7798/56830 1288/66160 190147/249955 179809/201921
75 12466/89370 2016/102480 286513/376625 275713/310977
100 17736/124740 2776/139760 383518/504134 381023/426615
150 27604/192500 4216/210080 * 595157/659933
200 38284/211570 5712/284320 *

Insert/Delete min time performance of the internal queues (in secs)
N [�106] Fibonacci heap k-ary heap pairing heap radix heap
1 3/32 4/33 3/19 3/11
2 6/73 8/75 6/45 5/27
5 17/208 21/210 14/126 11/71
7.5 172800�/- 32/344 22/207 18/124
10 -/- 43/482 30/291 23/162
20 -/- 172800�/- 172800�/- 172800�/-

Table 4.1: Experimental results on the insert-all-delete-all test. In the time performance
tables, the notationa=b indicates thata (resp. b) seconds were taken to performN insert
(resp.N delete min) operations. A ’-’ indicates that the test was not started,x� indicates
that the test was stopped afterx seconds and a� indicates that the test was not started due to
insufficient disk space.

4.3.2.1 Results for Buffer Trees

Our implementation follows an idea proposed in [HMSV97] and uses big unbounded
buffers instead of buffers of sizeM [Arg95]. This allows to save much time in the
costly rebalancing process which does not occur as often as in the standard imple-
mentation. Another speed-up in our implementation is induced by the use of a simple
in-core data structure (sorted sequence of LEDA) which reduces the CPU time.
As a result, theinsert operation is very fast as shown in Table 4.1. It is faster than
array heaps, but not faster than radix heaps. However,delete min is slower than
that of radix heaps and array heaps, and this is due to the costly rebalancing step. If
we sum up the time required for theinsert anddelete min operations, we find
that buffer trees are three times slower than array heaps and six times slower than radix
heaps (see Table 4.1). They perform approximately four (resp. three) times the number
of I/Os executed by radix heaps (array heaps), see Table 4.1. The75% of these I/Os

102

4.3 Experiments

are random I/Os, which are mainly executed during thedelete min operation and
are triggered by the costly rebalancing code. Overall, buffer trees are the second best
“general-purpose” PQ, when no restriction is imposed on the priority value.

In a second test, we used the standard buffer tree (buffer tree orig.) with restricted
internal buffer size. We immediately see that the time for operationsinsert and
delete min are now more balanced. However, operationinsert gets slower as
we also need to rebalance the data structure duringinsert operations. As a result
the buffer tree with restricted buffer is slower than the buffer tree with unrestricted
buffers but it executes slightly fewer I/Os. Hutchinsonet al. [HMSV97] experienced
similar results as ours. Earlier experiments [CM99, HMSV97] have already shown
that the internal buffer size heavily influences the performance of buffer trees. Un-
fortunately, the optimal value of the buffer is machine dependent and must be found
experimentally.

4.3.2.2 Results for B-Trees

B-Trees are not developed to work well in a priority queue setting. The worseinsert
performance ofO(logB N) I/Os leads to an experimentally large number of I/Os, large
running time, and hence to an overall poor performance. The B-tree executes only ran-
dom I/Os during the various operations.delete min can be speeded up by caching
the path leading to the leftmost child. However, the final performance does not yet
reach any of the other external priority queues.

4.3.2.3 Results for R-heaps

External radix heaps are the fastest integer-based PQ. Their simple algorithmic design
allows to support very fastinsert anddelete min operations. There is no need
to maintain an internal data structure for the minimum elements as it is required for
array heaps and buffer trees. This obviously reduces the CPU time. If we sum up the
time required for theinsert anddelete min operations, radix heaps are about2:5
times faster than array heaps and six times faster than buffer trees (see Table 4.1). They
execute the smallest number of I/Os (see Table 4.1), and additionally only15% of these
I/Os are random. These random I/Os mainly occur during the operationdelete min .
Unfortunately, there are two disadvantages incurred by radix heaps: they cannot be
used for arbitrary key data types, and the queue must be monotone. Consequently
their overall use, although very effective in practical applications, is restricted.

4.3.2.4 Results for Array Heaps

The array heap obviously needs a tricky in-core data structure to differentiate between
newly inserted elements (structureH1 is implemented by a modified binary heap) and
between minimum elements coming from the external slots (structureH2 is imple-
mented by a set of arrays). This leads to a slowdown in the CPU-time for the operation
insert , which is actually substantial. Indeedinsert is up to ten times slower
than in radix heaps or in buffer trees7 even if, in the latter case, array-heaps execute a
smaller number of both random and total I/Os. Hence, on our machine theinsert

7However, array heaps are faster than the original buffer tree.

103

4.3 Experiments

Time performance on mixed operations
N[�106] radix heap array heap buffer-tree

50 544 770 4996
75 609 945 5862
100 619 1027 6029

Random/Total I/Os on mixed operations
50 2935/19615 22325/26997 153321/177201
75 5128/26752 24256/28384 171615/196647
100 5782/30094 24220/28380 171658/196578

Table 4.2:Execution Time and I/Os (random/total) for the mixed operation test

behavior of array-heaps is not I/O-bounded, but the CPU-cost is predominant (see also
Section 4.4). On the other side, array heaps achieve a slightly better performance on
the delete min operation than radix heaps, and they result up to nine times faster
than buffer trees. In this case, there is no costly rebalancing operation as it instead
occurs in buffer trees. In conclusion, if we sum up the time for both update operations,
we find that array heaps are more than three times faster than buffer trees and2:5 times
slower than radix heaps. Consequently, array heaps are the fastest general-purpose pri-
ority queue among the ones we have tested. If we look at the I/O-behavior, we see that
array heaps perform only slightly more I/Os than radix heaps, and only about2% of
them are random. These random I/Os are quite evenly distributed betweeninsert
anddelete min operations.

4.3.2.5 Internal-Memory Priority Queues

Our tests considered standard PQs whose implementations are available in LEDA. All
these data structures are very fast when running in internal memory, and among them
the best choice are again the radix heaps. However, there is a dramatic degradation of
their performance (see Table 4.1) when the item set is so large that it cannot be fit into
the internal memory of the computer. In this case, the PQs make heavy use of the swap
space on disk. This jump occurs between5 and7:5 million items (Fibonacci heaps)
or 10 and 20 million items (radix heaps, pairing heap andk-ary heap). The early
breakdown for Fibonacci heaps is due to the fact that a single item occupies a large
amount of space: about40 bytes for a4 byte priority value and a4 byte information
value. As we expected, none of the tested internal memory PQs is a good choice for
large data sets: the heavy use of pointers causes these data structures to access the
external memory in an unstructured and random way, so that hardly any locality can
be exploited by the underlying caching/prefetching policies of the operating system.

4.3.2.6 Mixed Operations

The test on an intermixed sequence ofinsert anddelete min operations is used
to check the speed of the internal data structures used in the best external PQs. The
results of this test are summarized in Table 4.2. We see again that radix heaps are
superior to array heaps because they do not need to manage a

104

4.3 Experiments

Time performance
on the Dijkstra’s test (graph fanout 3)

N[�106] radix heap array heap buffer tree
1 55 139 263
3 208 375 1350
5 423 597 2480
7 507 988 3579
10 708 1435 5331
15 1103 2202 8415

Total/Random I/Os
1 136/1232 32/1040 2973/3557
3 598/5110 136/5360 32174/37710
5 1096/9016 256/10000 6406/72733
7 1558/12950 328/14240 95051/107483
10 2246/18774 488/24160 141016/159496
15 3500/28868 832/41440 221567/250279

Time performance
on the Dijkstra’s test (graph fanout 5)

N[�106] radix heap array heap buffer tree
1 95 211 657
3 422 755 2598
5 621 1313 4709
7 878 1811 6958
10 1376 2642 10694
15 2030 4115 *

Total/Random I/Os
1 328/3080 80/3120 16156/19380
3 1028/9716 240/11040 66599/76887
5 1774/16758 456/3760 124935/143575
7 2546/23730 728/36560 185329/214537
10 3574/32998 1128/56800 275748/318268
15 6916/58772 1816/90800 */*

Table 4.3:Execution Time and I/Os (random/total) for the Dijkstra test applied on a random
d-regular graph consisting ofN nodes anddN edges,d 2 f3; 5g. A � indicates that the test
was not started due to insufficient disk space.

Time performance
on the Dijkstra’s test (graph fanout 7)

N[�106] radix heap array heap buffer tree
1 232 425 1147
3 747 1384 4069
5 1262 2368 7332
7 1897 3309 11029

Total/Random I/Os
1 464/4648 128/5040 25486/30510
3 1310/13118 392/19280 97596/112620
5 2210/22106 752/38480 182328/211248
7 3646/33334 1136/56880 267891/314395

Table 4.4:Execution Time and I/Os (random/total) for the Dijkstra test applied on a random
d-regular graph consisting ofN nodes and7N edges (d = 7).

105

4.3 Experiments

complicated internal data structure, which reduces CPU-time, and also execute
much fewer random (and fewer total) I/Os. This leads to a speed up of a factor1:5.
Buffer trees are more complicated and rebalancing is costly. The buffer tree is about six
times slower than array heaps and seven times slower than radix heaps. They execute
about nine times more I/Os and nearly all of them are random.

4.3.2.7 Tests for Dijkstra’s Algorithm

We consideredd-regular random graphs withN nodes anddN edges,d 2 f3; 5; 7g.
Edge weights are integers drawn randomly and uniformly from the interval[1; 1000].
Figure 4.4 shows the priority queue behavior of Dijkstra’s algorithm on a random reg-
ular graph with 7 million nodes and 49 million edges (d = 7). The algorithm performs
96 million priority queue operations. At the beginning, we perform more insert op-
erations than deletemin operations until the queue reaches it maximum number of
elements. After that, more elements are deleted than new elements come into the
queue. This behavior is typical for Dijkstra’s algorithm on randomd-regular graphs
(see also [CMS98]).

10000

100000

1e+06

1e+07

1e+08

0 5 10 15 20

RANDOM7_7

insert
del_min

queue_height

Figure 4.4:Queue behavior on a random graph example with 7 million nodes and 49 million
edges (d = 7).The y-axis counts the number of elements that are inserted, deleted or currently
in the queue. The x-axis counts the number of rounds. Each round consists of1=20-th of the
totally performed operations on the queue.

Again radix heaps execute fewer total I/Os than both the other priority queues,

106

4.4 Summary

and result in being the fastest PQ (see Tables 4.3 and 4.4). Array heaps perform the
least random I/Os but they are two times slower than radix heaps because they perform
approximately double the number of total I/Os and theinsert operation is CPU-
intensive. Buffer trees are four times slower than array heaps and eight times slower
than radix heaps; they perform a huge amount of I/Os (compared to the other heaps)
and most of these I/Os are random. Although buffer trees have many different nice
applications, they are not designed to work well in a priority queue setting. We also
see from this example that external radix heaps perfectly fit in Dijkstra’s shortest path
algorithm because they can profit from bounded edge weights (see also [AMOT90]).

4.4 Summary

We have compared eight different priority queue implementations: four of them were
explicitly designed for external memory whereas the others were standard-internal
queues available in LEDA. As we expected, all in-core priority queues failed to of-
fer acceptable performance when managing large data sets. The fastest PQ turns out
to be the radix heap: its simple structure allows to achieve effective I/O and time
performances. Unfortunately, radix heaps are restricted to work on integer keys and
monotone heaps. In the general case, array heaps become the natural choice. In the
light of their good performance, it would be interesting to re-engineer this data struc-
ture concentrating the attention on its internal part in order to hopefully speed up the
operationinsert (recall that it was CPU-bounded). Another interesting topic would
be to experimentally investigate the best choice for the parameters involved in the
buffer-tree design (see also [HMSV97]). We believe that buffer trees can be tuned to
perform better in a priority queue setting.

107

Chapter 5

Case Study 2: Suffix Arrays

In the information age, one of the fastest growing category of databases are the tex-
tual databases—like AP-news, Digital Libraries, Genome databases, book collections
[FAFL95, RBYN00, WMB94]. Their ultimate impact heavily depends on the ability
to efficientlystoreandsearchthe information contained in them. Because of the con-
tinued decline in the cost of external storage devices (like disks and CD-ROMs), the
storage issue is nowadays no big problem, compared to the challenges posed by the
fast retrieval of the user-requested informations. In order to achieve fast retrieval of
data, specialized indexing data structures and searching tools have been introduced.
Their main idea is to build anindexthat allows to focus the search for a given pattern
string only on a very small portion of the text collection. The improvement in the
query-performance is paid by the additional space necessary to store the index. Most
of the research in this field has been directed to design indexing data structures which
offer a good trade-off between the query time and the space usage. The two main
approaches are:word indexes andfull-text indexes.

Word-indexes exploit the fact that for natural linguistic texts the universe of distinct
words is small. They store all the occurrences of each word in a table that is indexed via
a hashing function or a tree structure (they are usually calledinverted lists[WMB94]).
To reduce the size of the table, common words are either not indexed (e.g. the, at,
a) or the index is later compressed. The advantage is to support very fast word (or
prefix-word) queries, while a weakness is related to the inefficiency of indexingnon
natural linguistic texts, like DNA-sequences or Chinese texts [Fen97]. (For alternative
approaches to word-indexes see [WMB94].)

Full-text indexes have been designed to overcome the limitations discussed above
by dealing with arbitrary texts and general queries, at the cost of an increase in the
additional space occupied by the underlying indexing data structure. Examples of
such indexes are: suffix trees [McC76, CM96], suffix arrays [MM93] (cfr. PAT-
arrays [GHGS92]), PAT-trees [GHGS92] and String B-trees [FG96]. They have been
successfully applied to fundamental string-matching problems as well as text compres-
sion [BW94, Lar96], analysis of genetic sequences [Gus97] and recently to the index-
ing of special linguistic texts [Fen97]. General full-text indexes are therefore the natu-
ral choice to perform fast complex searches without any restrictions. The most impor-
tant complexity measures for evaluating their efficiency are [BYBZ96, ZMR96]: (i) the
time and the extra space required to build the index, (ii) the time required to search for

109

a string, and (iii) the space used to store the index. Points (ii) and (iii) have been
largely studied in the scientific literature [CM96, FG96, GHGS92, MM93, McC76].
In this chapter, we will investigate Point (i) by addressing the efficientconstruction
of full-text indexes on very large text collections. This is a hot topic nowadays1 be-
cause the construction phase may be a bottleneck that can even prevent these indexing
tools to be used in large-scale applications. In fact, known construction algorithms are
very fast when employed on textual data that fit in the internal memory of comput-
ers [AN95, MM93, Sad98, Kur99] but their performance immediately degrades when
the text size becomes so large that the texts must be arranged on (slow) external storage
devices [CM96, FG96].

For simplicity of exposition, we will useN to denote the size of the whole text
collection and we will assume that the index is built ononly onetext, obtained by
concatenating all the available texts separated by proper special characters (i.e. end-
markers).

The most famous full-text indexing data structure is thesuffix tree[McC76]. In
internal memory, a suffix tree can be constructed inO(N) time [McC76, FFMar];
in external memory, Farachet al. [FFMar] showed that a suffix tree can be optimally
constructed within the same I/O-bound as sortingN atomic items. Nonetheless, known
practical construction algorithms [CM96] for external memory still operate in a brute-
force manner requiring�(N2) total I/Os in the worst-case. The main limit of these
algorithms is inherent in the working space, which depends on the text structure, is not
predictable in advance and turns out to require between16N and26N bytes (assuming
thatN � 232 [Kur99, MM93]). 2 This makes them impractical even for moderately
large text collections (consider what happens forN � 100 Mbytes, the suffix tree
would occupy1:7Gbytes !). Searching for an arbitrary string of lengthp takesO(p)
time in internal memory (which is optimal for bounded alphabets), but it does not gain
any speed up from the block-transfer when the suffix tree is stored on the disk [FG96].

To circumvent these drawbacks, theString B-treedata structure has been intro-
duced in [FG96]. Searching for an arbitrary pattern string of lengthp takesO(p=B +
logB N) random I/Os (which is optimal for unbounded alphabets). The total occupied
space is asymptotically optimal and needs exactly12:3N bytes. The String B-tree is a
dynamicdata structure which supports efficient update operations, but its construction
from scratch on a text collection of sizeN takesO(N logB N) random I/Os. Hence,
space and construction time may still be a bottleneck in large-scale applications.

Since the space occupancy is a crucial issue when building and using full-text
indexes on large text collections, Manber and Myers [MM93] proposed thesuffix array
data structure (cfr. PAT-array [GHGS92]), which consists of an array of pointers to
text positions and thus occupies overall4N bytes (thus being 4 times smaller than a
suffix tree, and3 times smaller than a String B-tree). Suffix arrays can be efficiently
constructed inO(N log2N) time [MM93] andO((N=B)(log2N) logM=B (N=B))
random I/Os [AFGV97]. Recently, Ferragina and Manzini[FM00] showed that an idea
calledopportunistic data structureallows to construct a full-text index in-core using

1Zobelet al. [ZMR96] say that: “We have seen many papers in which the index simply ‘is’, without
discussion of how it was created. But for an indexing scheme to be useful it must be possible for the index
to be constructed in a reasonable amount of time,”.

2In [Kur99] the working space has been reduced to10:1N to 20N , assuming also thatN < 227.

110

O(Hk(N) + o(1)) bits per input symbol, whereHk(T) is the k-th order empirical
entropy ofT . Searching is possible inO(p+ occ log�(N)) for any� > 0. However, it
is not clear if this approach can be efficiently transfered to external memory.

In external memory, searching is not as fast as in String B-trees but it still achieves
good I/O-performances. Suffix arrays have been recently the subject of experimen-
tal investigations in internal memory [MM93, Sad98], external memory [GHGS92]
and distributed memory systems [KNRNZ97, NKRNZ97]. The motivation has to be
probably found in their simplicity, reduced space occupancy, and in the small con-
stants hidden in the big-Oh notation, which make them suitable for achieving reason-
able performance on large text collections. Suffix arrays do not require the text to be
composed of natural linguistic words, instead they allow to handle any sequence of
symbols. They are also able to perform more complex queries at pattern-matching
level including simple words and phrases, regular expressions, and in the presence of
errors. Suffix arrays do allow to compute statistics over the indexed texts, like longest
repeated substrings and even compare a text against itself to find auto-repetitions with
and without errors. Suffix arrays also present some natural advantages over the other
indexing data structures for what concerns the construction phase. Indeed, their sim-
ple topology (i.e. an array of pointers) avoids all the problems related to the efficient
management of tree-based data structures (like suffix trees and String B-trees) on ex-
ternal storage devices [Knu81]. Additionally and more importantly, efficient practical
procedures for building suffix arrays are definitively useful for efficiently constructing
suffix trees, String B-trees and other indexing data structures, so that they can allow to
overcome their main bottleneck (i.e. expensive construction phase).

With the exception of some preliminary and partial experimental work [MM93,
GHGS92, NKRNZ97], to the best of our knowledge, no full-range comparison exists
among the known algorithms for building large suffix arrays. This will be the main
goal of this chapter3, where we will theoretically analyze and experimentally study
sevensuffix-array construction algorithms. Some of them are the state-of-the-art in
the practical setting [GHGS92], others are the most efficient theoretical ones [MM93,
AFGV97], whereasthreeother algorithms are our new proposals obtained either as
slight variations of the previous ones or as a careful combination of known techniques
which were previously employed only in the theoretical setting. We will study these
algorithms by evaluating their working space and their construction complexity both
in terms of number of (random and bulk) I/Os and CPU-time. In the design of the new
algorithms we will address mainly two issues: (i) simple algorithmic structure, and
(ii) reduced working space. The first issue has clearly an impact on the predictability
and practical efficiency of the proposed algorithms, which are alsoflexibleenough to
be used in distributed memory systems. In fact, since our new algorithms will be based
on two basic routines—sorting and scanning of a set of items—they will immediately
provide us with very fast suffix-array construction algorithms forD-disk array systems
(thus achieving a speedup factor of approximatelyD [NV95]) and clusters ofP work-
stations (thus achieving a speedup factor of approximatelyP [Goo99]). Additionally,
our algorithms will be not faced with the problems of carefully setting some system
parameters, as it happens in the results of [KNRNZ97, NKRNZ97]. The second issue
(i.e. space usage) will be also carefully taken into account because the real disk size

3Part of this work appeared in [CF99] and [CF01].

111

is limited and thus a large working space could prevent the use of a construction algo-
rithm even for moderately large text collections (see Knuth [Knu81][Sect. 6.5] “space
optimization is closely related to time optimization in a disk memory”). Our aim will
therefore be to keep the working space of our algorithms as small as possible without
worsening their total running time.

We will discuss all the algorithms according to these two resources and we will
pose particular attention to differentiate between random and bulk I/Os (see Farachet
al’ ’s disk model in Section 2.3.2). For the asymptotic analysis, this allows to take the
most significant disk characteristics into account, thus making reasonable predictions
on the practical behavior of these algorithms. To validate our conjectures, we will per-
form an extensive set of experiments based on three text collections—English texts,
Amino-acid sequences and random data. As a result of the theoretical and experimen-
tal analysis, we will give a precise hierarchy of suffix-array construction algorithms
according to their working-space vs. construction-time tradeoff; thus providing a wide
spectrum of possible approaches for anyone who is interested in building large full-text
indexes.

We further regard two issues: construction of word-indexes and worst-case per-
formance of the BaezaYates-Gonnet-Snider’s algorithm [GHGS92], one of the most
effective algorithms in our proposed hierarchy. As far as the former issue is concerned,
we show that our new algorithms can be successfully applied to construct word-indexes
without any loss in efficiency and without compromising the ease of programming so
to achieve a uniform, simple and efficient approach to both the two indexing models.
The latter issue deserves much attention and is related to the intriguing, and appar-
ently counterintuitive, “contradiction” between the effective practical performance of
the BaezaYates-Gonnet-Snider’s algorithm [GHGS92], verified in our experiments,
and its unappealing (i.e. cubic) worst-case behavior. This fact motivated us to deeply
study its algorithmic structure and exploit finer external-memory models [FFMar] for
explaining its experimental performances. This has finally lead us to devise anew
external-memory construction algorithm that follows the BGS’s basic philosophy but
in a significantly different manner, thus resulting in a novel approach which combines
good practical qualities with efficient worst-case performances.

In the next section, we give some basic definitions and fix our notation. In Sec-
tion 5.2, we review three well-known algorithms for constructing suffix arrays and an-
alyze their space requirements. In Section 5.3, we describe three new external-memory
algorithms for constructing suffix arrays on large text collections. In Section 5.4, we
introduce our benchmark suite and discuss our experimental settings. In Section 5.5,
we present and discuss the experimental results on the three data sets: Reuters corpus,
Amino-acid collection and random texts. In Section 5.6, we address the problem of
constructing word-indexes and show how our results can be easily extended to this
indexing model. In Section 5.7, we describe a new algorithm for suffix-array construc-
tion which follows the basic philosophy of the BaezaYates-Gonnet-Snider’s algorithm
but in a significantly different manner, thus resulting effective both in theory and in
practice.

112

5.1 The Suffix Array data structure

5.1 The Suffix Array data structure

Given a stringT [1; N], letT [1; i] denote thei-th prefix ofT andT [i;N] denote thei-th
suffix of T . The symbol�L denotes thelexicographic orderbetween any two strings
and the symbol�i denotes the lexicographic order between their length-i prefixes:
S �i T if and only if S[1; i] �L T [1; i].

The suffix arraySA built on the textT [1; N] is an array containing the lexico-
graphically ordered sequence of text suffixes, represented via pointers to their start-
ing positions (i.e. integers). For instance, ifT = ababc thenSA = [1; 3; 2; 4; 5].
This way,SA occupies4N bytes ifN � 232. Manber and Myers [MM93] intro-
duced this data structure in the early 90s and proposed an interesting algorithm to
efficiently search for an arbitrary stringP [1; p] in T by taking advantage of the in-
formation coded intoSA. They proved that all theocc occurrences ofP in T can be
retrieved inO(p log2N + occ) time in the worst-case using the plainSA, and that this
bound can be further improved toO(p + log2N + occ) time if another array of size
4N is provided. IfSA is stored on the disk, divided into blocks of sizeB, the search
for P takesO((p=B) log2N + occ=B) random I/Os. In practical cases,p << B,
so thatp=B = 1. The simplicity of the search procedure, the small constants hid-
den in the big-Oh notation, and the reduced space occupancy are the most important
characteristics that make this data structure very appealing for practical applications.

5.2 Constructing a suffix array

We now review three known algorithms for constructing the suffix array data struc-
ture on a stringT [1; N]. We analyze their construction time in terms of CPU-time
and number of I/Os (both random and bulk) in the external-memory model. We also
address the issues related to their space requirements, by assumingN � 232 so that
4 bytes are sufficient to encode a (suffix) pointer. We remark that the working space
of all algorithms islinear in the lengthN of the indexed text, and thusasymptotically
optimal. However, since the constants hidden in the big-Oh notation differ a lot and
since the available disk space is not unlimited, we will carefully evaluate the space
usage of these algorithms in order to study their practical applicability (see Table 5.1
for a summary).

5.2.1 The algorithm of Manber and Myers

It is the fastest theoretically known algorithm for constructing a suffix array in in-
ternal memory [MM93]. It requiresO(N log2N) worst-case time and consists of
dlog2 (N + 1)e stages, each takingO(N) time. In the first stage, the suffixes are put
into buckets according to their first symbol (via radix sort). Before the generich-th
stage starts, the algorithm has inductively identified a sequence of buckets, each con-
taining a set of suffixes. Any two suffixes in the same bucket share the first2h�1

characters, whereas any two suffixes in two different buckets are�L-sorted according
to the bucket-ordering (initially, we have just one bucket containing all ofT ’s suffixes).
In stageh, the algorithm lexicographically sorts the suffixes of each bucket according
to their first2h characters, thus forming new smaller buckets which preserve the in-
ductive hypothesis. After the last stage, all the buckets will contain exactly one suffix,

113

5.2 Constructing a suffix array

Algorithm Working space CPU–time total number of I/Os
Manber–Myers (Sect. 5.2.1) 8N N log2N N log2N
BGS (Sect. 5.2.2) 8N (N3 log2M)=M (N3 log2M)=(MB)
Doubling (Sect. 5.2.3) 24N N(log2N)2 N

B
(logM

B

(N
B
)) log2N

Doubl.+Discard (Sect. 5.3.1) 24N N(log2N)2 N
B
(logM

B

(N
B
)) log2N

Doubl.+Disc.+Radix (Sect. 5.3.1) 12N N(log2N)2 N
B
(log M

B logN
(N)) log2N

Doubl.+Disc.+aheap (Sect. 5.3.1) 12N N(log2N)2 N
B
(logM

B

(N
B
)) log2N

Constr. inL pieces (Sect. 5.3.3) max f 24N
L
; N(log2N)2 N

B
(logM

B

(N
B
)) log2N

2N + 8N
L
g

New BGS (Sect. 5.7) 8N N2(log2M)=M (N2=MB)

Table 5.1: The CPU-time and the number of I/Os are expressed in big-Oh notation; the
working space is evaluated exactly;L is an integer constant greater than1. BaezaYates-
Gonnet-Snider algorithm (BGS), and its new variant (callednew BGS), operate via only disk
scans, whereas all the other algorithms mainly execute random I/Os. Notice that with a tricky
implementation, the working space of BGS can be reduced to4N .

thus giving the final suffix array. The efficiency of this algorithm depends on the speed
of the sorting step in a generic stage. Manber and Myers [MM93] showed how to
perform it in linear time by using only two integer arrays, for a total of8N bytes. If
this algorithm is used in a virtual memory setting, it tends to perform�(N log2N)
random I/Os.

5.2.2 The algorithm of BaezaYates-Gonnet-Snider

The algorithm [GHGS92] incrementally computes the suffix arraySA of the text string
T [1; N] in �(N=M) stages. Let̀ < 1 be a positive constant fixed below, and assume
to set� = `M . The latter parameter will denote the size of the text pieces loaded
into internal memory at each stage. We also assume for the sake of presentation that�
dividesN .

At each stage, the algorithm maintains the following invariant:

At the beginning of stageh, whereh = 1; 2; : : : ; N=�, the algorithm has stored an
array SAext on the disk, which contains the sequence of the first(h� 1)� text suffixes
ordered lexicographically and represented via their starting positions inT .

During theh–th stage, the algorithmincrementally updatesSAext by properly insert-
ing into it the text suffixes which start in the substringT [(h � 1)� + 1; h�], and by
maintaining their lexicographic order. This preserves the invariant above. Hence, after
all N=� stages are executed,SAext = SA. We are therefore left to show how the
generich-th stage works.

The text substringT [(h � 1)� + 1; h�] is loaded into internal memory, and the
suffix arraySAint containing only the suffixes starting in that text substring is built
by possibly accessing the disk, if needed.4 Then,SAint is merged with the current
SAext to produce the new array and to preserve the invariant. This merging process is

4The comparison between any two suffixes can require to access the substringT [h�+ 1; N], which
is still on disk, thus inducing some random I/Os.

114

5.2 Constructing a suffix array

executed in two steps with the help of a counter arrayC[1; �+ 1]. In the former step,
the textT is scanned rightwards and the lexicographic positionj of each text suffix
T [i;N], 1 � i � (h�1)�, is determined inSAint via a binary search. The entryC[j] is
then incremented by one unit in order to record the fact thatT [i;N] lexicographically
lies between theSAint[j � 1]-th and theSAint[j]-th suffix of T . In the latter step,
the information, kept in the arrayC, is employed to quickly mergeSAint with SAext:
entryC[j] indicates how many consecutive suffixes inSAext follow theSAint[j�1]-th
text suffix and precede theSAint[j]-th text suffix. This implies that a simple disk scan
of SAext is sufficient to perform such a merging process. At the end of these two steps,
the invariant onSAext has been properly preserved so thath can be incremented and
the next stage can start correctly.

Some comments are in order at this point. It is clear that the algorithm proceeds
by mainly executing two disk scans: one is performed to loadT [(h � 1)� + 1; h�] in
internal memory, and another is performed to mergeSAint andSAext via the counter-
arrayC. However, some random disk accesses may be necessary in two distinct situa-
tions: either whenSAint is built or when the lexicographic positions of each text suffix
T [i;N] is determined inSAint. In both cases, we may need to compare a pair of text
suffixes which share a long prefix not entirely available in internal memory (i.e. out of
T [(h � 1)� + 1; h�]). In the worst case, this comparison will require two sequential
disk scans (initiated at the starting positions of these two suffixes) takingO(N=M)
bulk I/Os.

As far as the worst-case I/O-complexity is concerned, let us consider the patho-
logical case in which we haveT = aN . Here, we needO((� log2 �)N=�) bulk I/Os
to build SAint; O((h � 1)�(log2 �)(N=�)) bulk I/Os to compute the arrayC; and
O(h�=M) = O(h) bulk I/Os to mergeSAint with SAext. No random I/Os are ex-
ecuted, so that the global number of bulk I/Os isO((N3 log2M)=M2). Since the
algorithm processes each loaded block, we may assume that it takes�(M) CPU-time
to operate on each of them thus requiringO((N3 log2M)=M) overall CPU-time. The
total space required is4N bytes forSAext and8� bytes for bothC andSAint; plus
� bytes to keepT [(h � 1)� + 1; h�] in internal memory (̀’s value is derived conse-
quently). The merging step can be easily implemented using some extra space (indeed
additional4N bytes), or by employing just the space allocated forSAint andSAext

via a more tricky implementation. For simplicity, we adopt the former strategy.
Since the worst-case number of total I/Os is cubic, a purely theoretical analysis

would classify this algorithm much less interesting than the others discussed in the
following sections (see Table 5.1). But there are some considerations that are crucial
to shed new light on it, and look at this algorithm from a different perspective. First
of all, we must observe that in practical situations, it is very reasonable to assume
that each suffix comparison usually finds the constant number of characters, needed
to compare the two involved suffixes, in internal memory. Consequently, the prac-
tical behavior is more reasonably described by the formula:O(N2=M2) bulk I/Os
andO((N2 log2M)=M) CPU time. Additionally, the analysis above has pointed out
that all I/Os aresequentialand that the effective number of random seeks is actually
O(N=M) (i.e. at most a constant number per stage). Consequently, the algorithm takes
fully advantage of the large bandwidth of current disks and of the high computation-
power of current processors [Coo, RW94]. Moreover, the reduced working space facil-
itates the prefetching and caching policies of the underlying operating system (remem-

115

5.2 Constructing a suffix array

ber Knuth’s quote cited in this chapter’s introduction) and finally, a careful look to the
algebraic calculations shows that the constants hidden in the big-Oh notation are very
small. As a result, the adopted accounting scheme does not label the BGS-algorithm
as “worse” but drives us to conjecture good practical performances, leaving the final
judgment to depend on disk and system specialties. These aspects will be addressed in
Section 5.5.

Implementation Issues. The implementation of this algorithm is tricky if one wants
to avoid various pathological cases occurring in the merging step ofSAint andSAext,
and in the construction ofSAint. These cases could force the algorithm to execute
many I/Os that wouldapparentlybe classified as random (according to the accounting
scheme of Farachet al.) but which are likely to be buffered by the system and thus can
be executed much faster. Our main idea is twofold:

� The arraySAint is built only on the first��B suffixes ofT [(h� 1)�+1; h�],
thus we discard the lastB suffixes (one page) of that text piece. These dis-
carded suffixes will be (re)considered in the next stage. In such a way, during
the construction ofSAint, each suffix is guaranteed to have aprefix of at leastB
characters available in internal memory, hencesignificantlyreducing the proba-
bility of a page fault for a suffix comparison.

� To mergeSAint andSAext we need to load the suffixes starting inT [1; (h�1)�]
and to search them inSAint. These suffixes are loaded via a rightward scan of
T , which brings text pieces into internal memory, whose size istwice the size
of a bulk I/O. Then, only the suffixes starting in thefirst half of this piece are
searched inSAint, thus guaranteeing to have in internal memory at leastcM
characters for their comparison.

These two simple tricks avoid some“border cases”which are very likely to induce
random I/Os and that instead can be easily canceled via a careful programming. We ex-
perimented a dramatic reduction in the total number of random I/Os and consequently
a significant speedup in the final performance of the implemented BGS-algorithm (see
Section 5.5).

5.2.3 The doubling algorithm

This algorithm was introduced in [AFGV97] as a variant of thelabeling technique
of [RMKR72], properly adapted to work in external memory. The main idea is first to
logically padT with N specialblank characters which are smaller than any other text
character; and then to assign names (i.e. small integers) to the power-of-two length
substrings ofT [1; 2N] in order to satisfy the so calledlexicographic naming property:

Property 5.2.1. Given two substrings� and� of length2h occurring inT , it is � �L

� if and only if the name of� is smaller than the name of�.

These names are computed inductively by exploiting the following observation:

Observation 5.2.2. The lexicographic order between any two substrings�; � of length
2h can be obtained by splitting them into two equal-length parts� = �1�2 and

116

5.2 Constructing a suffix array

� = �1�2, and by using the order between the two pairs of names inductively as-
signed to(�1; �2) and(�1; �2).

After q = dlog2 (N + 1)e stages, the algorithm has computed the lexicographic
names for the2q-length substrings ofT [1; 2N] starting at positions1; : : : ; N (where
2q � N). Consequently, the order between any two text suffixes, sayT [i;N] and
T [j;N], can be obtained in constant time by comparing the lexicographic names of
T [i; i + 2q � 1] andT [j; j + 2q � 1]. This is the rationale behind the doubling algo-
rithm in [AFGV97], whose implementation details are sketched below.

At the beginning, the algorithm scans the stringT [1; N] and creates a list ofN tu-
ples each consisting of four components, sayh0; 0; i; T [i]i (the third component is
fixed throughout the algorithm).5 During all q = dlog2 (N + 1)e stages, the algo-
rithm manipulates these tuples by preserving the following invariant:

At the beginning of stageh (initially h = 1), tupleh�; �; j; nji keeps some information
about the substringT [j; j + 2h�1 � 1] and indeednj is its lexicographic name.6

After the lastq-th stage, the suffix array ofT is obtained by executing two steps:
(i) sort the tuples in output from stageq according to their fourth component; (ii) con-
structSA by reading from left-to-right the third component of the tuples in the ordered
sequence.

We are therefore left with showing how stageh can preserve the invariant above by
computing the lexicographic names of the substrings of length2h with the help of the
names inductively assigned to the2h�1-length substrings. This is done in four steps as
follows.

1. TheN tuples (in input to stageh) are sorted according to their third component,
thus producing a list such that itsi-th tuple has the formh�; �; i; nii and thus
keeping the information regarding the substringT [i; i+ 2h�1 � 1].

2. This list is scanned rightwards and thei-th tuple is substituted with
hni; ni+2h�1 ; i; 0i, whereni+2h�1 is the value contained in the fourth component
of the(i+ 2h�1)-th tuple in the list.7

3. The list of tuples is sorted according to their first two components (lexicographic
naming property).

4. The sorted sequence is scanned rightwards and different tuples are assigned (in
their fourth component) withincreasinginteger numbers. This way, the lexi-
cographic naming property is preserved for the substrings ofT having length
2h.

5The blank characters are onlylogically appended to the end ofT .
6In what follows, the symbol� is used to denote an arbitrary value for a component of a tuple, which

is actually not important in the discussion.
7The rationale behind this step is to represent each substringT [i; i+ 2h � 1] by means of the lexico-

graphic names assigned to its prefix and its suffix of length2h�1. These names are inductively available
at the beginning of stageh.

117

5.3 Three new proposals

The correctness of this approach immediately derives from the lexicographic nam-
ing property and from the invariant preserved at every stageh which actually guaran-
tees that:

Property 5.2.3. Each tupleh�; �; i; �i contains some compactlexicographic informa-
tion about the2h-length prefix of the suffixT [i;N].

As far as the I/O complexity is concerned, each stage applies twice a sorting routine
(steps 1 and 3) and twice a scanning routine (steps 2 and 4) on a sequence ofN tuples.
The total number of random I/Os is thereforeO(sort(N) log2N), and the total num-
ber of bulk I/Os isO((N=M) log2N), wheresort(N) = (N=B) logM=B(N=B) is
the (random) I/O-complexity of an optimal external-memory sorting algorithm [Vit98].
The CPU-time isO(N log22N) since we performO(log2N) sorting steps onN items.
As far as the space complexity is concerned, this algorithm sorts tuples of four com-
ponents, each consisting of an integer (i.e. 4 bytes). Hence, it seems that16 bytes per
tuple are necessary. Instead, by carefully redesigning the code it is possible to save
one entry per tuple, thus using only12 bytes8. In summary, the total space complexity
is 24N bytes because the implementation of the multiway mergesort routine [Knu81],
used in our experiments to sort the tuples, needs2Xb bytes for sortingX items of
b bytes each (see Section 5.4).

In [WMB94], a variant of the multiway mergesort is discussed that usesNX +
(N=B)� bytes to sortN items of sizeX bytes each (� > 0). Although this approach is
I/O-optimal, we do not believe that it will outperform the standard mergesort approach.
The reason for this is the fact that the pattern of disk accesses is distributed randomly
and the algorithm produces a linked list of sorted disk blocks as output. Hence, the
approach introduces a lot of random I/Os in order to save space. Furthermore it is
questionable if this approach is transferable to theD-disk model. We will use different
approaches in Section 5.3 to reduce the working space.

Two practical improvements are still possible. The first improvement can be ob-
tained by coding four consecutive characters ofT into one integer before the first
stage is executed. This allows to save the first two stages and hence overall four sort-
ing and four scanning steps. This improvement is not negligible in practice due to the
time required by the sorting routine (see the sorting benchmarks in Section 3.8). The
second improvement comes from the observation that it is not necessary to perform
�(log2N) iterations, instead the doubling process can be stopped as soon as all the
2h-length substrings ofT are different (i.e. all tuples get different names in step 4).
This modification does not change the worst-case complexity of the algorithm, but it
ensures that only six stages are usually sufficient for natural linguistic texts [CM96].

5.3 Three new proposals

In this section we introduce three new algorithms which asymptotically improve the
previously known ones by offering better trade-offs between total number of I/Os and
working space. Their algorithmic structure is simple because it is based only uponsort-
ing andscanningroutines. This feature has two immediate advantages: The algorithms

8One can drop the fourth entry of the tuple as it can be temporarily coded in the first and second
entries.

118

5.3 Three new proposals

are expected to be fast in practice because they can benefit from the prefetching of the
disk [Coo, RW94]; they can be easily adapted to work efficiently onD-disk arrays and
clusters ofP workstations. It suffices to plug-in proper sorting/scanning routines to
obtain a speed-up of a factorD [NV95] or P [Goo99] (cfr. [KNRNZ97, NKRNZ97]).

5.3.1 Doubling combined with a discarding stage

Our first new algorithm is based on the following observation:

Observation 5.3.1. In each stage of the doubling approach, all tuples are considered
although the final position of some of them inSA might already be known.

Therefore all those tuples could be discarded from the succeeding sorting steps,
thus reducing the overall number of operations, and hence I/Os, executed in the next
stages (cfr. [Sad98]). Although this discarding strategy does not determine an asymp-
totic speed up on the overall performance of the algorithm, it is nonetheless expected
to induce a significant improvement on experimental data sets because it tends to re-
duce the number of items on which the sorting/scanning routines are required to work
on.9

The main idea is therefore to identify in step 4 of the doubling algorithm (see Sec-
tion 5.2.3), all those tuples whose final lexicographic position can be inferred using the
available information. These tuples are then discarded from the next stages. However,
these tuples cannot be completely excluded because they might be necessary in step 1
of the succeeding stages in order to compute the names of longer prefixes of suffixes
whose position has not yet been established. In what follows, we exploit Property 5.2.3
to cope with this problem.

As in the original doubling algorithm, we assume that a tuple has three entries (the
fourth one has been dropped, see Section 5.2.3). We call a tuplefinished if its second
component is set to�1. The new algorithm inductively keeps two lists of tuples:
FT (finished tuples) andUT (unfinished tuples). The former is a sorted list of tuples
corresponding to suffixes whose final position inSA is known; they have the form
hpos;�1; ii, wherepos is the final position of suffixT [i;N] in SA (i.e. SA[pos] = i).
UT is a list of tupleshx; y; ii, corresponding to suffixes whose final position is not yet
known. Here,x; y � 0 denotelexicographic namesandT [i;N] is the suffix to which
this (unfinished) tuple refers.

At the beginning, the algorithm creates the listUT with tuples having the form
h0; T [i]; ii, for 1 � i � N , setsFT to the empty list and initializes the counterj = 0.
Then, the algorithm proceeds into stages each consisting of the following steps:

1. Sort the tuples inUT according to their first two components. IfUT is empty
goto step6.

2. ScanUT, mark the “finished” tuples and assign new names to all tuples inUT.
Formally, a tuple is “finished” if it is preceded and followed inUTby two tuples
which are different in at least one of their first two components. In this case, the
algorithm marks the current tuple “finished” by setting its second component to

9Knuth [Knu81][Sect. 6.5] says: “space optimization is closely related to time optimization in a disk
memory”.

119

5.3 Three new proposals

�1. The new names for all tuples ofUT are computed differently from what it
was done in step 4 of the doubling algorithm (see Section 5.2.3). Indeed, the
first component of a tuplet = hx; y; �i is now set equal to(x+c), wherec is the
number of tuples that precedet in UTand have the formhx; p; �i with p 6= y.

3. Sort UT according to the third component of its tuples (i.e. according to the
starting position of the corresponding suffix).

4. Merge the listsUTandFT according to the third component of their tuples.UT
will keep the final merged sequence, whereasFT will be emptied.

5. ScanUT and for eachunfinishedtuple t = hx; y; ii (with y 6= �1), take the
next tuple at distance2j (sayhz; �; i + 2ji) and changet to hx; z; ii. If a tuple
is marked “finished” (i.e. y = �1), then discard it fromUT and put it intoFT.
Finally setj = j + 1 and go to step 1.

6. (UT is empty)FT is sorted according to the first component of its tuples. The
third components of the sorted tuples, read rightwards, form the final suffix ar-
ray.

The correctness can be proved by the following invariant:

Property 5.3.2. At a generic stagej (j � 0), the execution of step2 ensures that a
tuple t = hx; y; ii satisfies the property thatx is the number ofT ’s suffixes whose
prefix of length2j is strictly smaller thanT [i; i+ 2j � 1].

Proof. Before step 2 is executed,x inductively accounts for the number of suffixes in
T whose2j�1-length prefix is lexicographically smaller than the corresponding one
of T [i;N]. At the first stage (j = 0), the algorithm has indeed safely set the first
component of each tuple to0. When step 2 is executed and tuplet is processed, the
variablec accounts for the number of suffixes whose2j�1-length prefix is equal to
T [i; i + 2j�1 � 1] but their2j-length prefix is smaller thanT [i; i + 2j � 1]. From
the inductive hypothesis on the value ofx, it then follows that the new value(x + c)
correctly accounts for the number of suffixes ofT whose2j-length prefix is lexico-
graphically smaller than the corresponding one ofT [i;N].

The logic underlying the algorithm above is similar to the one behind the original dou-
bling algorithm (see Section 5.2.3). However, the new names are assigned by follow-
ing a completely different approach, which does not only guarantee the lexicographic
naming property but also a proper coding of some useful information (Property 5.3.2).
This way when a tuple is marked “finished”, its first component correctly determines
the final suffix array position of the corresponding suffix (denoted by its third compo-
nent). Therefore, the tuple can be safely discarded fromUTand put intoFT (step 5).

Doubling combined with the discarding strategy performsO(NB (logM
B
(NB) log(N))

random I/Os,O((N=M) log2N) bulk I/Os, and occupies24N bytes (see Section 5.2.3),
exactly the same I/O-complexity as the Doubling algorithm. In our implementation,
we will also use the compression scheme discussed at the end of Section 5.2.3, to save
the first two stages and thus four sorting and four scanning steps. As conjectured at the
beginning of this section, we expect that the discarding strategy induces a significant
speed-up in the practical performance of the Doubling algorithm.

120

5.3 Three new proposals

5.3.2 Doubling+Discard and Priority Queues

Although the doubling technique gives the two most I/O-efficient algorithms for con-
structing large suffix arrays, it has the major drawback that its working space is large
(i.e. 24N bytes) compared to the other known approaches (see also Table 5.1). This
is due to the fact that it uses an external mergesort [Knu81] to sort the list of tuples
and this requires an auxiliary array to store the intermediate results. Our new idea is to
reduce the overall space requirements by making use of some of the external priority
queues, introduced in Chapter 4.

External radix heaps (see Section 4.1) use an exact numberN=B of disk pages to
storeN items (see Lemma 4.1.3). Unfortunately, the I/O complexity of radix heaps
depends on valueC, i.e. all elements in the queue must have priority values in the
range[min; : : : ;min+ C] wheremin is the minimal priority value, currently stored
in the queue , andC is a constant that must be specified in advance. Hence radix
heaps are space efficient but their I/O-performance degenerates whenC is large. Our
new construction algorithm replaces the mergesort in the Doubling+Discard algorithm
(see steps 1 and 3 in Section 5.3.1) with a sorting routine based on an external radix
heap. This reduces the overall required space to12N bytes, but at the cost of increas-
ing the I/O–complexity toO((N=B) (logM=(B log2 N)N)) log2N) random I/Os (and
O((N=M) log2N) bulk I/Os), becauseC = N in the step 3 of Section 5.3.1 (the
third component of the sorted tuples ranges in[1; N]). We observe that this algorithm
should outperform the doubling approach during the first stages because the range of
assigned names, and thus the value ofC, is sufficiently small to take advantage from
the radix-heap structure. On the other hand, the algorithm performance degenerates as
more stages are executed becauseC becomes larger and larger. It is therefore inter-
esting to experimentally investigate this solution since it significantly saves space and
is expected to behave well in practice even in the light of the reduction in the number
of tuples to be sorted in each stage. Probably, this reduction compensates the time in-
crease of the radix heap approach and thus it is worth to be experimented on real data
(see Section 5.5).
Array heaps (see Section 4.2) are able to storeN elements usingN=B+ logM=B(N=B)
disk pages (see Theorem 4.2.10). This is worse compared to radix heaps but still nearly
optimal. In contrast to radix heaps, there is no restriction on the priority values so that
insert runs inO((1=B) logM=B(N=B)) I/Os and deleteminimum inO(1=B) I/Os. It
is not necessary to use the space-improved version of array heaps as the secondary
memory usage (see Lemma 4.2.8) reduces toN=B for the special case of how array
heaps are used in the construction of suffix arrays. Actually, as we first perform all
insert operations and then all deletemin operations, we do not produce any partially
filled pages. Thus, this approach reduces the overall required space to12 N bytes and
maintains the original I/O cost ofO((N=B)(logM=B(N=B)) log2(N)). It is there-
fore worth to experimentally explore whether this solution is able to reduce both the
space and the construction time if compared to the doubling+discard variant that uses
a mergesort approach.

121

5.3 Three new proposals

5.3.3 Construction inL pieces

The approaches described before are I/O-efficient but they use at least8N bytes of
working space. If the space issue is a primary concern, and we still wish to keep the
total number of I/Os small, different approaches must be devised that require much
fewer space but still guarantee good I/O-performance10. In this section, we describe
one such approach which improves over all previous algorithms in terms of both I/O
complexity, CPU time and space occupancy. It constructs the suffix array intopieces
of equal sizeand thus it turns out to be useful either when the underlying application
does notneed the suffix array as a unique data structure, but allows to keep it in a
distributed fashion [BCF+99], or when we operate in a distributed-memory environ-
ment [KNRNZ97, NKRNZ97].

The most obvious way to achieve this goal might be to partition the original text
stringT [1; N] into equal-length substrings and then apply any known suffix-array con-
struction algorithm on these pieces. However, this approach should cope with the prob-
lem of correctly handling the suffixes whichstart close to the borderof any two text
pieces. To circumvent this problem, some authors [KNRNZ97, NKRNZ97] reduce the
suffix array construction process to a string sorting process associating to each suffix
of T , its prefix of lengthX, and then sortingN strings of lengthX each. Clearly, the
correctness of this approach heavily depends on the value ofX which also influences
the space occupancy (it is actuallyNX bytes). Statistical considerations and structural
informations about the underlying text might help, but anyway the choice of the param-
eterX strongly influences the final performance (seee.g.[KNRNZ97, NKRNZ97]).

The approach, we introduce below, is very simple and applies in a different way,
useful for practical purposes, a basic idea known so far only in the theoretical setting
(seee.g. [FFMar]). Let us denote byAsa any external-memory algorithm for building
a suffix array,Astring any external-memory algorithm for sorting a set of strings, and
let L be a constant integer parameter to be fixed later. For simplicity of exposition,
we assume thatN is a multiple ofL, and thatT is logically padded withL blank
characters.

The new approach constructsL suffix arrays, saySA1;SA2; : : : ;SAL each of
size�(N=L). Array SAi stores the lexicographically ordered sequence of suffixes
fT [i;N]; T [i + L;N]; T [i + 2L;N]; : : : ; g. The logic underlying our algorithm is to
first constructSAL, by usingAsa andAstring, and then to derive all the others arrays
SAL�1;SAL�2; : : : ;SA1 by means of a simple external-memory algorithm for sorting
triples of integers.

The suffix arraySAL is built in two main stages: In the first stage, the string set
S = fT [L; 2L�1]; T [2L; 3L�1] : : : ; T [N �L;N �1]; T [N;N +L�1]g is formed
and lexicographically sorted by means of algorithmAstring. In the second stage, a
compressed textT 0 of lengthN=L is derived fromT [L;N +L� 1] by replacing each
string having the formT [iL; (i + 1)L � 1], for i � 1, with its rank in thesortedset
S. Then, algorithmAsa builds the suffix arraySA0 of T 0, and finally derivesSAL by
settingSAL[j] = SA0[j] � L, for j = 1; 2; : : : ; N=L.

Subsequently, the otherL � 1 suffix arrays are constructed by exploiting the fol-
lowing observation:

10See the footnote 9 and refer to [ZMR96] where Zobelet al. say that: “A space-economical index is
not cheap if large amounts of working storage are required to create it.”

122

5.4 Our experimental settings

Observation 5.3.3. Any suffixT [i+ kL;N] in SAi can be seen as the concatenation
of the characterT [i+ kL] and the suffixT [i+ 1 + kL;N] occurring intoSAi+1.

Therefore, ifSAi+1 is known, the order betweenT [i + kL;N] andT [i + hL;N]
can be obtained by comparing the two pairs of integershT [i + kL]; posi+1+kLi and
hT [i + hL]; posi+1+hLi, whereposs is the position of suffixT [s;N] in SAi+1. This
immediately means that the construction ofSAi can be reduced to sorting�(N=L)
tuples, onceSAi+1 is known.

Sorting the short strings of lengthL via algorithmAstring needsO(Sort(N)) ran-
dom I/Os and2N+8N=L bytes of storage, whereSort(N) = (N=B) logM=B(N=B)
[AFGV97]. Building theL suffix arraysSAi takesO(Sort(N=L) log2(N=L) +
L Sort(N=L)) = O(Sort(N) log2N) random I/Os,O(N=M log2(N)) bulk I/Os
and24N=L bytes. Of course, the larger the constantL, the larger is the number of
suffix arrays that will be constructed, but the smaller is the working space required.
By settingL = 4, we get an interesting algorithm for constructing large suffix arrays:
it needs6N working space,O(Sort(N) log2N) random I/Os andO(N=M log2(N))
bulk I/Os. Its practical performance will be evaluated in Section 5.5. Notice that this
approach builds four suffix arrays, thus its query performance is slowed down by a
constant factor four, but this is practically negligible in the light of suffix-array search
performance.

5.4 Our experimental settings

5.4.1 An external-memory library

We implemented all algorithms discussed so far by using libraryLEDA-SM. For what
concerns the implementation of our suffix-array construction algorithms, we used the
external array data structure and the external sorting/scanning algorithms provided by
LEDA-SMlibrary. In particular, we used an implementation of multiway mergesort
that needs2Xb bytes for sortingX items ofb bytes each. Radix heaps and array heaps
are implemented as described in Sections 4.1.3 and 4.2.5. The other in-core algorithms
and data structures used in our experiments are taken from theLEDAlibrary. To avoid
that the internal-memory size prevents the use of Manber-Myers’ algorithm on large
text collections, we run it in a virtual memory setting by using swap space. All other
algorithms are not faced with this problem because they are directly designed to work
in external memory.

5.4.2 System parameters

The computer used in our experiments is a SUN ULTRA-SPARC1/143 with64Mbytes
of internal memory running the SUN Solaris 2.6 operating system. It is connected to
one single Seagate Elite-9 SCSI disk via a fast-wide differential SCSI controller. We
used a standard Solaris file system on the local disk to provide LEDA-SM’s logical
disk, the disk is divided into blocks ofB = 8 kbytes. The block size is actually small
and higher transfer rates could be achieved by larger block sizes (see Section 3.7). We
have chosen 8 kbytes as this is exactly the page size of the operating system. There-
fore, the comparison of secondary memory algorithms and in-core algorithms is fair

123

5.4 Our experimental settings

because the secondary memory algorithms can only take advantage of a better algorith-
mic structure and not of bigger block sizes. We have chosen the standard I/O (stdio)
for the file system accesses because it is available on almost every system. We have
designed our external-memory algorithms so that they use approximately48 Mbytes
of internal memory. This is obtained by properly choosing the internal memory size
dedicated to the external memory data structures (e.g. external arrays and mergesort
buckets). Thus, we guarantee that the studied algorithms do not incur in thepaging
phenomenoneven for accessing their internal data structures and furthermore, that
there is enough internal memory to keep the I/O buffers of the operating system.

5.4.3 Choosing the bulk-load size

As discussed in Section 4.3.1 we need a realistic value for the bulk size. Let the trans-
fer time be described by the formula
t seek + bulk size/disk bandwidth [RW94] (see also Section 2.3.1). We
wish that the first term is much smaller than the second one. Consequently, from one
side we should increasebulk size as much as possible (at maximumM=B), but
from the other side a largebulk size might reduce the significance of our account-
ing scheme because manylongsequential disk scans could result in being shorter than
bulk size and thus would be counted as ‘random’, whereas they nicely exploit the
disk caching and prefetching strategies [FFMar]. Hence a proper “tuning” of this pa-
rameter is needed according to the mechanical features of the underlying disk system.

In the disk used for our experiments, the averaget seek is 11 msecs, the
disk bandwidth is 7 Mbytes/sec. We have therefore chosenbulk size = 64
disk pages, for a total of512 Kbytes. It follows thatt seek is 15% of the total
transfer time needed for a bulk I/O. Additionally, the bulk size of 512 Kbytes allows
us to achieve 81% of the maximum data transfer rate of our disk while keeping the
service time of the requests still low.

According to our considerations above (see also [Coo]), we think that this is a
reasonable choice even in the light of the disk cache size of1 Mbytes. Our choice is
different from the one of Section 4.3.1 as we now especially focus on algorithms that
perform a large number of bulk I/Os. Surprisingly, we also noticed in our experiments
that this value allows us to catch the execution of numerous bulk I/Os by subroutines
(e.g. multiway mergesort) which were defined “mainly random” in a theoretical in-
vestigation. Clearly, other values forbulk size might be chosen and experimented,
thus achieving different trade-offs between random/bulk disk accesses. However, the
qualitativeconsiderations on the algorithmic performance drawn at the end of the next
section will remain mostly unchanged, thus fitting our experimental desires.

5.4.4 Textual data collections

For our experiments we collected over various WEB sites three textual data sets. They
consist of:

124

5.5 Experimental Results

� The Reuters corpus11 together with other natural English texts whose size sums
up to26 Mbytes. This collection has the nice feature of presenting long repeated
substrings.

� A set of amino-acid sequences taken from a SWISSPROT database12 summing
up to around26 Mbytes. This collection has the nice feature of being an un-
structured text so that full-text indexing is the obvious choice to process these
data.

� A set of randomly generatedtexts consisting of three collections: one formed
by texts randomly drawn from an alphabet of size4, another formed by texts
randomly drawn from an alphabet of size16, and the last one formed by texts
randomly drawn from an alphabet of size64. These collections have two nice
features: they are formed by unstructured texts, and they constitute a good test-
bed to investigate the influence of thelength of the repeated substringson the
performance of some studied algorithms. For each alphabet size we consider
texts of25 Mbytes and50 Mbytes, thus further enlarging the spectrum of text
sizes on which the algorithms are tested.

At a first look one might think that, although this chapter is on constructing suffix
arrays onlarge text collections, our experimental data sets seem to be small! If we
just look at their sizes, the involved numbers are actually not big (at most50 Mbytes);
but, as it will soon appear clear, our data sets are sufficiently large to evaluate/compare
in a fair way the I/O-performance of the analyzed algorithms, and investigate their
scalability in an external-memory setting. In fact, the suffix arraySA needs4N bytes
to index a text of lengthN . Hence, the text plusSA globally occupy200 Mbytes, when
N = 50 Mbytes. Additionally, each of the algorithms discussed in our paper requires
at least8N bytes (the space of the BaezaYates-Gonnet-Snider algorithm) of working
space; this means400 Mbytes for the largest text size. The doubling variants either
need between600 Mbytes and1200 Mbytes of working space. In summary,more than
600 Mbytes and up to1400 Mbytes will be used during the overall construction ofSA

in each of the experimented algorithms, whenN = 50 Mbytes ! Now, since64 Mbytes
is the size of the available internal memory of our computer, all the experiments will
run on disk, and therefore the performance of the studied algorithms will properly
reflect their I/O-behavior.

5.5 Experimental Results

We now comment the results obtained for our seven different construction algorithms:
Manber and Myers’ algorithm (MM), BaezaYates-Gonnet-Snider’s algorithm (BGS),
original doubling (Doubl), doubling with discarding (Doubl+Disc), doubling with
discarding and external radix heaps (Doubl+Disc+Radix), doubling with discarding
and array heaps (Doubl+Disc+aheap) and the ‘construction into pieces’ approach (L-
pieces). The overall results are reported in Figure 5.1, and they are detailed in Ta-
bles 5.2 and 5.3 below.

11We used the text collection “Reuters-21578, Distribution 1.0” available from David D. Lewis’ pro-
fessional home page, currently:http://www.research.att.com/ �lewis

12See the site:http://www.bic.nus.edu.sg/swprot.html

125

5.5 Experimental Results

The Reuters corpus
N MM BGS Doubl Doubl+Disc Doubl+Disc+ Doubl+Disc+ L-pieces

radix aheap
1324350 67 125 1201 982 1965 1288 331
2578790 141 346 2368 1894 3739 2645 582
5199134 293 1058 5192 4070 7833 6223 1119
10509432 223200 4808 11530 8812 16257 13369 2701
20680547 – 16670 28944 20434 37412 27466 5937
26419271 – 27178 42192 28937 50324 36334 7729

The Amino-Acid Test
26358530 – 20703 37963 24817 41595 28498 6918

Table 5.2: Construction time (in seconds) of all experimented algorithms on two text collec-
tions: the Reuters corpus and the Amino-acid data set.N is the size of the text collection in
bytes. The symbol ‘–’ indicates that the test was stopped after63 hours.

The Reuters corpus
BGS Doubl Doubl+Disc Doubl+Disc+ Doubl+Disc+ L-pieces

radix aheap
120/7865 2349/256389 2242/199535 4872/377549 3689/284491 837/57282

317/20708 4517/500151 4383/395018 10075/787916 7650/590482 1693/177003
929/60419 9095/1009359 8916/809603 22466/176127316196/1249236 3386/360210

4347/28232018284/204128518126/1655751 47571/372815935354/2718016 6849/730651
14377/93306435935/401766435904/3293234 96292/755079473544/564337814243/1530995

24185/156894745911/513282245842/4202902129071/1000115295074/729239318178/1956557

The Amino-Acid Test
24181/156877341709/465657839499/3539148 105956/822223674463/574304616118/1719883

Table 5.3: Number of I/Os (bulk/total) of all experimented algorithms on two text collections:
the Reuters corpus and the Amino-acid data set.N takes the same values as in Table 5.2 and
is the size of text collection in bytes;64 disk pages form a bulk-I/O.

Results for the Manber-Myers’ algorithm. It is not astonishing to observe that the
construction time of MM-algorithm is outperformed by every other studied algorithm
as soon as the working space exceeds the memory size. This worse behavior is due to
the fact that the algorithm accesses the suffix array in an unstructured and unpredictable
way. In fact its paging activity almost crashes the system, as we monitored by using the
Solaris-toolvmstat. The vmstat valuesr, which monitors the number of page scans per
second, was constantly higher than 200. According to the Solaris system guide, this
indicates that the system is constantly out of memory. Looking at Table 5.1, we infer
that MM-algorithm should be chosen only when the text is shorter thanM=8. In this
case, the data structures fit into internal memory and thus the disk is never used. In our
experimental setting, this actually happens forN � 8 Mbytes. WhenN > 8 Mbytes,
the time complexity of MM-algorithm is stillquasi-linearbut the constant hidden in
the big-Oh notation is very large due to the paging activity, thus making the algorithmic
behavior unacceptable.

126

5.5 Experimental Results

0

10000

20000

30000

40000

50000

60000

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

Ru
nn

ing
 tim

e i
n s

ec
on

ds

Input size in characters

BGS
Doubl

Doubl+Disc
Doubl+Disc+Radix

L-pieces
Doubl+Disc+aheap

Figure 5.1:Run-time of all construction approaches on the Reuters corpus.

Results for the BaezaYates–Gonnet–Snider’s algorithm. As observed in Section
5.2.2, the maintheoreticaldrawback of this algorithm is thecubic worst-casecom-
plexity; but its small working space, its regular pattern of disk accesses and the small
constants hidden in the big-Oh notation has led us to think favorably of BGS for prac-
tical uses as discussed in the previous sections. Moreover, we conjectured a quadratic
I/O-behavior in practice because of theshort repeated substrings which usually occur
in real texts. Our experiments show that we were right with all these assumptions.
Indeed, if we double the text size, the running time increases by nearly a factor of four
(see Table 5.2), and the number of bulk and random I/Os also increases quadratically
(see Table 5.3). The number of total and bulk I/Os is nearly identical for all data sets
(Reuters, Amino-Acid and Random, see Table 5.3 and 5.5), so that thepractical be-
havior is actually quadratic. Furthermore, it is not astonishing to experimentally verify
that BGS isfaster than any Doubling variant on the Reuters corpus and the Amino-
Acid data set (see Figure 5.1). Consequently, it turns out to be the fastest algorithm for
building a (unique) suffix array whenN � 25 Mbytes. This scenario probably remains
unchanged for text collections which are slightly larger than the ones we experimented;
after that, the quadratic behavior of BGS will be probably no longer“hidden” by its
nice algorithmic properties.

Using Table 5.3, we can compute that (i) only the1% of all disk accesses are

127

5.5 Experimental Results

random I/Os13 (hence, most of them are bulk I/Os !); (ii) the algorithm performs
the least number of random I/Os on both the data sets when building a unique suffix
array; (iii) BGS is the fastest algorithm to construct one unique suffix array, and it is
the second fastest algorithm in general. Additionally, we observe that the quadratic
CPU-time complexity of the BGS-algorithm heavily influences (i.e. slows down) its
efficiency and thus I/O is not the only bottleneck.

In summary, the BGS-algorithm is amazingly fast onmedium-sizetext collections,
and remains reasonably fast on larger data sets. It is not the absolutely fastest on
larger and larger text collections because of its quadratic CPU- and I/O-complexities.
Nonetheless, the small working space (possibly4N bytes via a tricky implementation)
and the ease of programming make the BGS-algorithm very appealing for software
developers and practitioners, especially in applications where the space issue is the
primary concern.

Results for the Doubling algorithm. The doubling algorithm performs11 stages on
the Reuters corpus, hence it performs21 scans and21 sorting steps onN tuples, where
N is the text size. Consequently, we can conclude that there is a repeated substring in
this text collection of length about212 (namely we detected a duplicated article). Fig-
ure 5.1 shows that the Doubling algorithm scales well in the tested input range:14 If the
size of the text doubles, the total running time doubles too. Among all disk accesses,
41% of them are random, and the number of bulk and random I/Os is larger than the
one executed by every other tested algorithm, except the Doubl+Disc+Radix variant
which has higher worst-case complexity but smaller working space (see Table 5.3 and
Section 5.3). Due to the high number of random I/Os and to the large working space
(see Table 5.1), the Doubling algorithm is expected to surpass the performance of BGS
only for very largevalues ofN .

In summary, although theoretically interesting and almost asymptotically opti-
mal, the Doubling algorithm is not appealing in practice. In fact, this motivated
us to develop the two variants discussed in Section 5.3 (namely, Doubl+Disc and
Doubl+Disc+Radix algorithms).

Results for the Doubl+Disc algorithm. If we add the discarding strategy to the
Doubling algorithm (as described in Section 5.3.1), we achieve better performance as
conjectured. The gain induced by the discarding step is approximately 32% of the
original running time for both the Reuters corpus and the Amino-acid data set. If
we look in detail at the number of discarded tuples (see Figure 5.3), we see that for
the Reuters corpus, this is small in the first two stages, while it becomes significant
in stages three and four, where nearly55% of the tuples are thrown away. Since we

13Random I/Os are computed by means of the following formula:IOrandom = IOtotal � (IObulk �
64).

14Notice that the curve for Doubling is not always linear. There is a “jump” in the running time as
soon as the input has size21 � 106. This is due to the system’s pager-daemon that is responsible for
managing the memory-pages. During the merge-step of multiway-mergesort, the number of free pages
falls below a given threshold and the pager-daemon tries to free some memory pages. This goal can’t be
achieved because the mergesort constantly loads new blocks into memory. Therefore, this pager process
runs almost all the time and increases the CPU-time of the merge-step of a factor of two.

128

5.5 Experimental Results

0

20000

40000

60000

80000

100000

120000

140000

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

Nu
m

be
r o

f b
ul

k
I/O

s

Input size in characters

BGS
Doubl

Doubl+Disc
Doubl+Disc+Radix

L-pieces
Doubl+Disc+aheap

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

Nu
m

be
r o

f r
an

do
m

 I/
O

s

Input size in characters

BGS
Doubl

Doubl+Disc
Doubl+Disc+Radix

L-pieces
Doubl+Disc+aheap

Figure 5.2:Bulk and Random I/Os for all construction approaches. The bulk size is64 disk
pages.

double the length of the substrings at each stage and we use the compression scheme of
Section 5.2.3, we can infer that the Reuters corpus has a lot of substrings of length16 to
32 characters that occur once in the collection but their prefixes of length8 to 16 occur
at least twice. We also point out that the curve indicating the number of discarded
tuples is nearly the same as the size of the test set increases. This means that the
number of discarded tuples is a “function” of the structure of the indexed text. For our
experimental data sets, we save approximately19% of the I/Os compared to Doubling.
The percentage of random I/Os is28%, this is much fewer than Doubling (42%), and
hence discarding helps in reducing mainly the random I/Os (see also Table 5.3). The
savings induced by the discarding strategy are expected to pay off much more on larger
text collections, because of the significant reduction in the number of manipulated
tuples at the early stages, which should facilitate caching and prefetching operations.
Consequently, if the time complexity is a much more important concern than the space
occupancy, the Doubl+Disc algorithm is definitively the choice for building a (unique)
very largesuffix array.

Results for the Doubl+Disc+Radix algorithm. This algorithm is not as fast as we
conjectured in Section 5.3.2, even for the tuple ordering of Step 2. The reason we
have drawn from the experiments is the following. Notice that radix heaps are inte-
ger priority queues, and thus we cannot keep the parameterC small (to exploit Radix
Heaps properties) by defining the first two components of a tuple as its priority. Hence,
the sorting in Step 2 must be implemented via two sorting phases and this naturally
doublesthe work executed in this step. Additionally, the compression scheme of Sec-
tion 5.2.3 cannot be used here because it would increaseC too much in the early
stages. Hence, the algorithm performs two more stages than Doubl-algorithm, and

129

5.5 Experimental Results

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12

Pe
rc

en
ta

ge
 o

f d
isc

ar
de

d
tu

ple
s

Stage number

1324350
2578790

 5095006
10316810
27015118

Figure 5.3:The percentage of discarded tuples at each stage of the Doubl+Disc algorithm on
the Reuters corpus.

furthermore it does not take advantage of the discarding strategy because the number
of discarded tuples in this two initial stages is very small. This way, it is not surprising
to observe in Table 5.3 that the Doubl+Disc+Radix algorithm performstwice the I/Os
of the other Doubling variants, and it is the slowest among all the tested algorithms.
Hence thecompensationbetween the number of discarded tuples and the increase in
the I/O-complexity, conjectured in Section 5.3.2, does not actually arise in practice.

In summary, the Doubl+Disc+Radix algorithm can be interesting only in the light
of its space requirements. However, if we compare space vs. time trade-off we can
reasonably consider the Doubl+Disc+Radix algorithmworsethan the BGS-algorithm
because the former requires larger working space and it is expected to surpass the
BGS-performance only forvery largetext collections (see Section 5.8 for further com-
ments).

Results for Doubling+Disc+aheap algorithm. The algorithm is the second fastest
Doubling+Discard variant and also the second fastest of all Doubling approaches. It
executes 12 rounds as the compression scheme of Section 5.2.3 can be used. The total
number of I/Os is nearly double the number of I/Os of the Doubling+disc variant (see
Table 5.3) and17% of the I/Os are random. Unfortunately, the array-heap leads to a
higher I/O rate and also to a higher CPU time usage than the Doubling+Discard ap-
proach which uses a mergesort algorithm for sorting. The constants in the I/O-bounds
of the array-heap operations are higher than that of multiway-mergesort (see Lemma
4.2.6 in Section 4.2.2) . Therefore, Doubl+Disc+aheap executes twice the number of
total I/Os if compared to Doubl+Disc. Additionally, the internal heap structureH of
the array heap is more complicated than the internal structure of the mergesort so that
we pay this by an increase in the CPU time. Overall the Doubl+Disc+aheap approach
is about1:3 times slower than the Doubl+Disc approach. We conclude that the small
number of random I/Os compensates the higher number of total I/Os and the slightly

130

5.5 Experimental Results

higher CPU time. The Doubl+Disc+aheap approach is a good choice if the space
complexity is important and one does not want to sacrifice a lot of time.

Results for the L-pieces algorithm. We fixedL = 4, used multi-way mergesort for
sorting short strings and the Doubl-algorithm for constructingSAL (see Section 5.3.3).
Looking at Table 5.3 we notice that40% of the total I/Os are random, and that the al-
gorithm executes slightly more I/Os than the BGS-algorithm. Nonetheless, as shown
in Figure 5.1 this algorithm is the fastest one. It is three to four times faster than BGS
(due to its quadratic CPU-time) and four times faster than the Doubl+Disc algorithm
(due to the larger number of I/Os). The running time distributes as follows:63% of
the overall time is used to build the compressed suffix arraySAL; the sorting of the
short strings required only4% of the overall time; the rest is used to build the other
three suffix arrays. It must be said that for our test sizes, the short strings fit in internal
memory at once thus making their sorting stage very fast. However, it is also clear
that sorting short strings never takes more time thanonestage of the Doubl-algorithm.
Furthermore, the construction of the other three suffix arrays, when executed entirely
on disk, would account for no more than1:5 stages of the Doubl-algorithm. Conse-
quently, even in the case where the short strings and the other three suffix arrays reside
on the disk, it is not hazardous toconjecturethat this algorithm is still significantly
faster than all the other approaches. Its only “drawback” is that it constructs the suf-
fix array in four distinct pieces. Clearly, if the underlying text retrieval applications
does not impose to haveone uniquesuffix array, then this approach turns out to be
de-facto‘the’ choice for constructing such a data structure (see Section 5.8 for further
discussions).

Comparison of all construction approaches. We first compare all algorithms with
respect to their time performance for increasing text lengths (see Figure 5.1). It is
obvious from the discussions above that the MM-algorithm is the fastest one when
the suffix array can be built entirely in internal memory. As soon as the working
space crosses the ‘memory border’, there are various possible choices. The L-pieces
algorithm is the natural choice whenever the splitting of the suffix array does not pre-
vent its use in the underlying application. If instead a unique suffix array is needed,
then the choice lies between the BGS-algorithm and the Doubl+Disc algorithm. For
text collections which are not very big, the BGS-algorithm is preferable: it offers fast
performance and very small working space. For larger text collections, the choice de-
pends on the primary resource to be minimized: time or space ? In the former case, the
Doubl+Disc algorithm is the choice; in the latter case, the BGS-algorithm is the best.

Doubling+Disc+aheap is a very interesting alternative as it allows to use only 12
N bytes and is able to construct the suffix array in a reasonable amount of time. It is
only slightly slower than Doubl+Disc. but uses only half the space. We note that if we
restrictN to be at most231, this variant can be tuned to use only 8N bytes.

With respect to the ease of programming, the BGS-algorithm still seems to be the
best choice, unless the software developer has a library of general external sorting
routines, in which case all Doubling variants turns out to be simple too.

131

5.5 Experimental Results

5.5.1 Experiments on random data

Three important questions were left open in the previous section:

1. How do the structural properties of the indexed text influence the performance
of the Doubl+Disc algorithm ? Do these properties decrease the number of
stages, and thus significantly improve its overall performance ? How big is the
improvement induced by the discarding strategy on more structured texts ?

2. What happens to the BGS-algorithm if we increase the text size ? Is its practical
behavior “independent” of the text structure ?

3. What happens to the L-pieces algorithm when the four suffix arrays reside on
disk ? Is this algorithm still significantly faster than all the other ones ?

In this section we willpositivelyanswer all these questions by performing an extensive
set of experiments onthree sets of textual data which arerandomly and uniformly
drawn from alphabets of size4 (random-small), size16 (random-middle), and size64
(random-large). For each alphabet size, we will indeed generatetwo text collections
of 25 Mbytes and50 Mbytes.

The choice of “randomly generated data sets” is motivated by the following two
observations. By varying the alphabet size we can study the impact that theaverage
length of the repeated substrings has on the performance of the discarding strategy.
Indeed, the smaller is this length, the larger should be the number of tuples which
are discarded at earlier stages, and thus the bigger should be the speed-up obtained
by the Doubl+Disc algorithm. The experiments carried out on the Reuters corpus
(see Section 5.5) did not allow us to complete this analysis because of the structural
properties of this text collection. In fact, the Reuters corpus represents a pathological
case because it has manylong repeated text-substrings and this is usually no typical
for natural linguistic texts. This was the reason why we conjectured at the end of
Section 5.5 a much larger gain from the discarding strategy on more structured texts.
An early validation of this conjecture was provided by the experiments carried out
on the Amino-acid data set (see Table 5.2). Now we expect that the random data
collections will be a good test-bed for providing further evidence. The same thing can
be said about the BGS-algorithm whose “independent behavior from the structure of
the indexed text in practice”, conjectured in Section 5.5, can now be tested onvarious
structuredtexts.

Second, by varying the size of the indexed collection we can investigate the be-
havior of the L-pieces algorithm when the ordering of the short strings and the con-
struction of the suffix arraysSA1;SA2;SA3 operates directly on the disk (and not in
internal memory). We can also test if the average length of the repeated substrings can
influence the performance ofAsa when buildingSA4. We notice that the construction
of the other three suffix arrays is clearly not influenced by the structure of the underly-
ing text, because it consists of just three sorting steps executed on a sequence of integer
triples. In Section 5.5 we conjectured that a larger text collection should not signifi-
cantly influence the overall performance of the L-pieces algorithm because, apart from
the construction ofSA4, all the other algorithmic steps account for2:5 stages of the
Doubl-algorithm. Consequently, the overall work should be always much smaller than

132

5.5 Experimental Results

Running times on the random texts
N L-pieces Doubl+Disc Doubl+Disc+aheap BGS

Alphabet Size 4
25000000 4133 14130 19570 21485
50000000 8334 34599 46296 72552

Alphabet Size 16
25000000 3838 11011 14143 16162
50000000 7753 26450 32367 62001

Alphabet Size 64
25000000 3400 10080 12528 15195
50000000 6802 25606 31567 58417

Table 5.4: Construction time (in seconds) required for random texts built on alphabet-sizes
4, 16 and64.

the one executed by all the Doubling variants. In what follows, we will validate this
conjecture by running the L-pieces algorithm on larger data sets.

Results for the BGS-algorithm. It may appear surprising that BGS is theslowest
algorithm on the random texts, after its successes on real text collections claimed in
Section 5.5. It is more than twice as slow as Doubl+Disc and up to nine times slower
than L-pieces. However, nothing strange is going on in these experiments on random
data because if we compare Table 5.5 to Table 5.3, we notice two things: (i) the number
of bulk and total I/Os executed by BGS does not depend on the alphabet size and they
are almost identical to those obtained on the Reuters corpus; (ii) the execution time of
BGS decreases as the alphabet size grows, and it is smaller than the time required on
the Reuters corpus (whenN � 25 Mbytes, see also Table 5.4). The former observation
implies that our conjecture on the “ quadratic I/O-behavior in practice” is true, and
in fact if we double the text size, the total number of I/Os increases by a factor of
approximately four. The latter observation allows us to conclude that the CPU-time
of BGS is affected by the length of the repeated substrings occurring in the data set.
As the alphabet size increases, this length decreases on the average, and in turn the
running time of BGS decreases. Such a dependence also shows thatboth I/O and
CPU-time are significant bottlenecks for BGS, as already pointed out in Section 5.5.

Results for the Doubl+Disc algorithm. The algorithm performs four stages on al-
phabet size4, and three stages on alphabet sizes16 and64. Therefore, the random test
with alphabet size4 is theworst casefor Doubl+Disc. In fact, the gain of the first two
stages is negligible (0:8 �10�8% discarded tuples); in the third stage,98% of the tuples
are discarded; the rest of the tuples is thrown away in the last fourth stage. This gives
us the following insight: There are manydifferenttext substrings of32 characters (i.e.
98%) whose16-length prefix occurs at least twice in the collection. This validates our
conjecture that the Doubl+Disc performance heavily depends on the average length of
the repeated text-substrings.

If we look at the results on alphabet size64, we see that the gain of the first stage
is much bigger (about5%), whereas the second stage throws away about94% of

133

5.5 Experimental Results

I/Os (bulk/total) on the random texts
N L-pieces Doubl+Disc Doubl+Disc+aheap BGS

Alphabet Size 4
25000000 9466/970256 20661/2068791 721425/4197393 22347/1449884
50000000 18912/1942979 41418/4143990 1468183/8555351 85481/5543929

Alphabet Size 16
25000000 8499/860120 15320/1518126 537060/2937508 22347/1449884
50000000 16984/1722707 30738/3042700 1091591/5986951 85481/5543929

Alphabet Size 64
25000000 7531/749984 14643/1434118 499036/2674076 22347/1449884
50000000 15056/1502435 30375/2996868 1070563/5844131 85481/5543929

Table 5.5: Bulk and total I/Os required for random texts built on alphabets of size4, 16 and
64.

the tuples. Consequently, for increasing alphabet sizes (approaching natural texts),
Doubl+Disc gets faster and faster. Apart from the Reuters corpus, which seems indeed
to be a pathological case, we therefore expect a much better performance on natural
(and more structured) texts, so that we suggest its use in practice in place of the (plain)
Doubling algorithm.

At this point it is worth to notice that the former two stages of Doubl+Disc do not
discard any significant number of tuples (like on Reuters). Looking carefully to their
algorithmic structure, we observe that these stages execute more work than the one
required by the corresponding stages of Doubling because of Step 4 (Section 5.3.1).
We experimentally checked this fact by running the Doubling algorithm on the ran-
dom data sets and verifying an improvement of a factor of two ! Clearly, in the early
two stages, the algorithm compares short substrings of length1 to 16 characters, and
therefore it is unlikely that those substrings occur only once in a long text (and can
then be discarded). Consequently, an insight coming from these experiments is that
a tunedDoubl+Disc should follow anhybrid approach to gain the highest advantage
from both the doubling and the discarding strategies: (plain) Doubling executed in the
early (e.g. two) stages, Doubl+Disc for the next stages.

Results for Doubl+Disc+aheap. The algorithm performs four stages on alphabet
size4 and three stages on alphabet size16 and64. As for Doubl+Disc, the gain of
the first two stages is negligible and nearly all tuples are thrown away in stage3. We
can naturally conclude that all the textual results that we obtained in the analysis of
Doubl+Disc on random texts also hold for the Doubl+Disc+aheap algorithm as both
algorithms only use different sorting variants. As a consequence, if a unique suffix
array is required and time as well as space is important, this variant is the definite
choice.

Results for the L-pieces algorithm. We again fixL = 4 and use the Doubling
algorithm to constructSA4. By using bigger texts (up to50 Mbytes), we are ensured
that all the steps of this algorithm operate on disk. The running time distributes as
follows: 6% is used to sort short strings,37% is used to buildSA4, and47% is used to

134

5.5 Experimental Results

build the other three suffix arrays (via multiway mergesort).15 Comparing Table 5.2 to
Table 5.4, we conclude that the ordering of the short strings remains fast even when it is
executed on disk, and it will never be a bottleneck. Moreover, the time required to build
SA4 clearly depends on the length of the longest repeated substring (see comments on
Doubling), butAsa is executed on acompressedtext (of sizeN=4) where that length
is reduced by a factor4. Consequently, the L-pieces algorithm is usually between2:9
and8:3 times faster than Doubl+Disc (see Table 5.4). This speed-up is larger than
the one we observed on the Reuters corpus (see Section 5.5), and thus validates our
conjecture that a bigger text collection does not slow down the L-pieces algorithm.

5.5.2 Concluding remarks on our experiments

We first compare all experimented algorithms with respect to their time performance
for increasing text lengths (see Table 5.2 for a summary). It is obvious from the previ-
ous discussions that the MM-algorithm is the fastest one when the suffix array can be
built entirely in internal memory. As soon as the working space exceeds the memory
size, we can choose among different algorithms depending on the resource to be min-
imized, eithertimeor space. The L-pieces algorithm is the obvious choice whenever
splitting of the suffix array does not prevent its use in the underlying application. It is
more than3 times faster on the Reuters corpus than any other experimented algorithm;
it is more than twice as fast as the best Doubling variant on random texts. If, instead, a
unique suffix array is needed, the choice depends on the structural properties of the text
to be indexed. In presence of long repeated substrings, BGS is a good choice tillrea-
sonably largecollections. Forvery largetext collections or short repeated substrings,
the hybrid variant of the Doubl+Disc or Doubl+Disc+aheap algorithm is definitely
worth to be used.

If the space resource is of primary concern, then BGS is a very good choice till
reasonably large text collections. For huge sizes, Doubl+Disc+aheap is expected to be
better in the light of its asymptotic I/O- and CPU-time complexity. However if one is
allowed to keep the suffix array distributed into pieces, then the best construction al-
gorithm results definitely the L-pieces algorithm: It is both the fastest and the cheapest
in term of space occupancy (it only needs6N bytes).

We wish to conclude this long discussion on our experimental data and tested al-
gorithms by making a further, and we think necessary, consideration. Therunning
timeevaluations indicated in the previous tables and pictures are not clearly intended
to be definitive. Algorithmic engineering and software tuning of the C++-code might
definitively lead to improvements without anyway changing the algorithmic features
of the experimented algorithms, and therefore without significantly affecting the sce-
nario that we have depicted in these pages. Consequently, we do not feel confident
to give anabsolute quantitativemeasure of the time performance of these algorithms
in order to claim which is the “winner”. There are too many system parameters (M ,
buffer size, cache size, memory bandwidth), disk parameters (B, seek, latency, band-
width, cache), and structural properties of the indexed text that heavily influence those
times. Nevertheless, thequalitativeanalysis developed in these sections should, in our

15An attentive reader might observe the the distribution of the time only sums up to90% of the total
construction time. The missing10% is required to copy back the computed suffix array.

135

5.6 Constructing word-indexes

opinion, safely route and clarify to the software developers which algorithm fits best
to their wishes and needs.

We conclude this chapter by addressing two other issues. The former concerns
with the problem of building word-indexes on large text collections; we show in the
next section that our results can be successfully applied to this case too without any
loss in efficiency and without compromising the ease of programming so to achieve a
uniform, simple, and efficient approach for both indexing models. The latter issue is
related to the intriguing, and apparently counterintuitive, “contradiction” between the
effective practical performance of the BGS-algorithm and its unappealing worst-case
behavior. In Section 5.7, we deeply study its algorithmic structure and propose a new
approach that follows itsbasic philosophybut in a significantly different manner, thus
resulting in a novel algorithm which combines good practical qualities with efficient
worst-case performances.

5.6 Constructing word-indexes

By using a simple and efficient preprocessing phase, we are also able to build a suf-
fix array on a text where only the beginning of each word is indexed (hereafter called
word-basedsuffix array). Our idea is based on a proposal of Anderssonet al. [ALS96]
which was formulated in the context of suffix trees. We greatly simplify their presen-
tation by exploiting the properties of suffix arrays. The preprocessing phase consists
of the following steps:

1. Scan the textT and define asindex pointsthe text positions where a non-
alphabetic character is followed by an alphabetic one.

2. Form a sequenceS of strings which correspond to substrings ofT occurring
between consecutiveindex points.

3. Sort the strings inS via multiway mergesort.

4. Associate with each string itsrank in the lexicographically ordered sequence, so
that givens1; s2 2 S: if s1 = s2 thenrank(s1) = rank(s2), and ifs1 <L s2
thenrank(s1) < rank(s2).

5. Sort (backwards)S according to the starting positions in the original textT of
its strings.

6. Create a compressed textT 0 via a simultaneousscanof T and (the sorted)S.
Here, every substring ofT occurring inS is replaced with itsrank.

The symbols ofT 0 are nowintegersin the range[1; N]. It is easy to show that the
word-basedsuffix array forT is exactly the same as the suffix array ofT 0. Indeed,
let us consider two suffixesT [i;N] andT [j;N] starting at the beginning of a word.
They also occur inT 0 in acompressed formwhich preserves their lexicographic order
because of the naming process. Consequently, the lexicographic comparison between
T [i;N] andT [j;N] is the same as the one among the corresponding compressed suf-
fixes ofT 0.

136

5.7 The new BGS-algorithm

The cost of the preprocessing phase is dominated by the cost of sorting the string
setS (step 3). As the average length of an English word issix characters [CM96],
we immediately obtain from [AFGV97] (model A, strings shorter thanB) that the
I/O complexity of step 2 is�((N=B) logM=B(N=B)), whereN is the total number
of string characters. Multiway mergesort is therefore an optimal algorithm to solve
the string sorting problem in step 3. In general, we can guarantee that each string
of S is always shorter thanB characters by introducing somedummy index points
that split the long substrings ofT into equal-lengthshorter pieces. This approach
does not suffer from the existence of very long repeated substrings that was reported
by the authors of [NKRNZ97] in their quicksort/mergesort–based approaches; and
therefore it is expected to work better on very large texts. With respect to [ALS96],
our approach does not usetries [Meh84b] to manage the strings of setS and thus it
reduces the overall working space and does not incur in the very well-known problems
related to the management of unbalanced trees in external memory. Finally, since
the preprocessing phase is based on sorting and scanning routines, we can again infer
that this approach scales well on multi-disk and multi-processor machines, as we have
largely discussed in the previous sections.

From the experiments executed on the L-pieces algorithm, we know that step 3 and
step 5 above will be fast in practice. Furthermore, the compression in step 6 reduces
the length of the repeated substrings inT , so that Doubl+Disc is expected to require
very few stages when applied onT 0. Consequently, we can expect that constructing
word-indexes via suffix arrays is effective in real situations, and can benefit a lot from
the study carried out in this chapter.

5.7 The new BGS-algorithm

The experimental results of the previous sections have led us to conclude that the
BGS-algorithm is attractive for software developers because it requires only4N bytes
of working space, it accesses the disk in a sequential manner, and is very simple to be
programmed. However, its worst-case performance is poor and thus its real behavior
is not well predictable but heavily depends on the structure of the indexed text. This
limits the broad applicability of BGS, making it questionable at theoretical eyes.

In this section, we propose a new algorithm which deploys thebasic philosophy
underlying BGS (i.e. very long disk scans) but in a completely different manner:the
textT is examined from the right to the left. The algorithm will choreograph this new
approach with some additional data structures that allow to perform the suffix com-
parisons using only the informationavailable in internal memory, thus avoiding the
random I/Osin the worst case. The resulting algorithm still uses small working space
(i.e. 8N bytes on disk), it is very simple to be programmed, it hides small constants
in the big-Oh notation, and additionally it achieves effectiveworst-case performance
(namelyO(N2=M2) worst-case bulk I/Os). Thisguaranteesa good practical behavior
of the final algorithm forany indexed textindependent of its structure, thus overcom-
ing the (theoretical) limitations of the BGS-algorithm, and still keeping its attractive
practical properties.

Let us set� = `M , where` < 1 is a positive constant to be fixed later in order
to guarantee that some auxiliary data structures can be fit into the internal memory.

137

5.7 The new BGS-algorithm

In order to simplify our discussion, let us also assume thatN is a multiple of�, say
N = k� for a positive integerk.

We divide the textT into k non-overlapping substrings of length� each, namely
T = TkTk�1 � � � T2T1 (they are numbered going from the right to the left, thus re-
flecting the “stage” when the algorithm will process each of them). For the sake of
presentation, we also introduce an operator� that allows to go fromabsolute positions
in T to relative positionsin a text pieceTh. Namely, ifT [x] lies in the text pieceTh
thenT [x] = Th[x � �], wherex � � = ((x� 1) mod �) + 1; 1 � x � N .

The algorithm executes�(k) = �(N=M) stages (like BGS) and processes the
text from the right to the left(unlike BGS). The following invariant is inductively kept
before stageh starts:

S = Th�1Th�2 � � � T1 is the text part processed in the previous(h � 1) stages. The
algorithm has computed and stored the following two data structures on disk: The
suffix arraySAext of the stringS and its “inverse” arrayPosext, which keeps at each
entryPosext[j] the position of the suffixS[j; jSj] in SAext.

After all k stages are executed, we haveS = T and thusSA = SAext. See
Figure 5.4 for an illustrative example.

The main idea underlying theleftward-scanning of the text is that when theh-th
stage processes the text suffixes starting inTh, it has already accumulated intoSAext

andPosext some information about the text suffixes starting to the right ofTh. This
way, the comparison among the text suffixes starting inTh will eventually exploit these
two arrays, and thus use onlylocalizedinformation to eliminaterandom I/Os. The next
Lemma formalizes this intuition:

Lemma 5.7.1. A text suffixT [i;N] starting in substringTh can be represented suc-
cinctly via the pair(T [i; i + � � 1];Posext[(i + �) � �]). Consequently, all the text
suffixes starting inTh can be represented using overallO(�) space.

Proof. Text suffixT [i;N] can be seen as the concatenation of two stringsT [i; i+��1]
andT [i+�;N], where the second string is an arbitrarily long text suffix. The position
i+� occurs inTh�1 � � � T1 (= S) and in particularT [i+�;N] = S[(i+�)��; jSj]. This
string can be succinctly represented with the numberPosext[(i+�)��] which denotes
its (lexicographic) position amongS’s suffixes. The space-bound easily follows by
storing in internal memory the text substringTh Th�1 and the arrayPosext[2; � +
1].

Stageh preserves the invariant above and thus updatesSAext andPosext by prop-
erly inserting the information regarding the text suffixes which start inTh into SAext.
This way, the newSAext andPosext will correctly refer to theextendedstringTh S,
thus preserving the invariant for the(h+1)th stage (whereS := ThS = ThTh�1 � � � T1).
Details on the stageh follow (see Figure 5.4 below).

1. LoadTh andTh�1 in the internal memory and setT � = Th Th�1. (O(1) bulk
I/Os.)

2. Load the first� entries ofPosext into the arrayPos int. (O(1) bulk I/Os.)

138

5.7 The new BGS-algorithm

T3 T2
SA*

refer to T [1,µ]
*

S

T1

T = a b a b c a b a b a b a b d d a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

T*

1 2 3 4 5 6 7 8

SA

ext

ext
= [8, 2, 4, 1, 3, 5, 7, 6]

= [4, 2, 5, 3, 6, 8, 7, 1]Pos

refer to

string S}

Pos ext
[1,µ]Pos = [4, 2, 5, 3]int

= [4, 1, 3, 2]Pos*

= [2, 4, 3, 1]

}

Figure 5.4:The figure depicts the data structures used during stageh = 3, whereT � = T3 T2
andS = T2 T1. SA

� contains only the first� suffixes ofT �. Notice the order inSA� of the
two text suffixes starting at positions2 and4 of T � (i.e. 6 and 8 of T). Restricted to their
prefixes lying intoT �, these two suffixes satisfy the relation4 �L 2, but considering them in
their entirety (till the end ofT), it is 2 �L 4. We can represent compactlyT [6; 16] via the pair
h ‘abab’; 2i andT [8; 16] via the pairh ‘abab’; 3i; hence the comparison of those pairs gives
the correct order and can be executed in internal memory (Lemma 5.7.1).

3. Construct the suffix arraySA� which contains the lexicographically ordered se-
quence of the text suffixes starting inTh (recall that they extend till the end of
T). This is done by means of three substeps which exploit the information kept
in internal memory:

(a) Build the suffix array of the stringT � using any internal memory algorithm
(e.g. [MM93]). Then, throw away all suffixes ofT � which start in the
second half ofT �. (No I/Os are required.)

(b) Store the remaining� entries intoSA�. 16 (No I/Os are required.)

(c) Refine the order inSA� taking into account the suffixes in their entirety
(i.e. considering also their characters outsideT �). Let T �[x; 2�] and
T �[y; 2�] be two suffixes which are adjacent in the current arraySA�,
namelySA�[j] = x and SA�[j + 1] = y for some valuej, and such
that one of them is theprefixof the other. Their order inSA� may possi-
bly be not correct (see Figure 5.4). Hence, the correct order is computed
by comparing the two pairshT �[x; x + � � 1];Pos int[(x + �) � �]i and
T �[y; y+�� 1];Pos int[(y+�) ��] (see Lemma 5.7.1).17 This compari-
son is done for all the suffixes ofT � for which the ambiguity above arises.
(No I/Os are required.)

16Notice that this is not yet the correctSA� because there might exist two text suffixes which start in
T � but have a common prefix which extends outsideT �. The next Step 3c takes care of this case without
accessing the disk !

17This step is executed by using the unused space of arrayC.

139

5.7 The new BGS-algorithm

4. Scan simultaneously the stringS and the arrayPosext (O(h) bulk I/Os in total).
For each suffixS[j; jSj] do the following substeps:

(a) Via a binary search, find the lexicographic positionpos(j) of that suf-
fix in SA� so thatS[j; jSj] follows the suffix ofT starting at position
SA�[pos(j) � 1] of Th and precedes the suffix ofT starting at position
SA�[pos(j)] of Th. Lemma 5.7.1 allows to perform the suffix comparisons
of the binary search using only informations kept in internal memory.

(b) IncrementC[pos(j)] by one unit.

(c) Update the entryPosext[j] = Posext[j] + pos(j)� 1.

5. Build the new arraySAext[1; h�] by merging the old (external and shorter) ar-
ray SAext with the (internal) arraySA� by means of the information available
into C[1; � + 1]. This requires a single disk scan (like BGS) during which the
algorithm also executes the computationSAext[j] = SAext[j] + �, in order to
take the fact into account that in the next(h + 1)th stage the new stringS has
been appended to the front of the text pieceTh. (GloballyO(h) bulk I/Os.)

6. Process arrayC in internal memory as follows (no I/Os are executed):

(a) Compute the Prefix-Sum ofC.

(b) SetC[j] = C[j] + j, for j = 1; : : : ; �+ 1.

(c) ComputePos�[1; �] as the inverse ofSA�, and then permuteC[1; �] ac-
cording toPos�[1; �]. Namely,C[i] = C[Pos�[i]], simultaneously for all
i = 1; 2; : : : ; �.

7. Build the new arrayPosext[1; h�] by appendingC[1; �] to the front of the cur-
rentPosext. (O(h) bulk I/Os.)

The correctness of the algorithm immediately derives from Lemma 5.7.1 and from the
following observations. As far as Step 6 is concerned, we observe that:

� Step 6a determines for each entryC[j] the number of text suffixes which start
in S and arelexicographically smallerthan the text suffix starting at position
SA�[j] of Th.

� Step 6b also regards the number of suffixes which start inTh and arelexico-
graphically smallerthan the text suffix starting at positionSA�[j] of Th. These
are(j � 1) suffixes, so that the algorithm sumsj to compute the final rank of
that suffix (i.e. the one starting atTh[SA

�[j]]) among all the suffixes of the string
Th S.

� Step 6c permutes the arrayC so thatC[j] gives the rank of the text suffix starting
atTh[j] among all suffixes of the stringTh S = Th � � � T1.

Since the stringTh � � � T1 corresponds to the stringS of the next(h + 1)th stage,
we can conclude that Step 6 correctly stores inC the first� entries of the new array
Posext (Step 7). Finally, we point out that Step 4c correctly updates the entries of

140

5.8 Summary

Posext[1; (h � 1)�] by considering the insertion of the� text suffixes starting inTh
into SAext. Step 5 correctly updates the entries ofSAext[1; (h � 1)�] as it regards to
insert the� suffixes, starting inTh, to the front ofS. In summary we can state the
following result:

Theorem 5.7.2. The suffix array of a textT [1; N] can be constructed inO(N2=M2)
bulk-I/Os, no random-I/Os, and8N disk space in the worst case. The overall CPU time
isO(N

2

M log2M).

The above parameter` is set to fitSA�,Pos�,Pos int, T � andC into internal mem-
ory (notice that some space can be reused). We remark that the algorithm requires4N
bytes more space than the space-optimized variant of the BGS-algorithm (see Sec-
tion 5.2.2). Nonetheless, we can still get the4N space-bound if we accept to compute
only the arrayPosext = SA�1 (implicit SA). In any case, the overall working space is
much less than the one required by all Doubling variants, and it is exactly equal to the
one required by our implementation of the BGS-algorithm. The new BGS-algorithm
is also very simple to be programmed and has small constants hidden in the big-Oh
notation. Therefore, it preserves the nice algorithmic properties of BGS, but it now
guarantees good worst-case performances.

5.8 Summary

It is often observed that practitioners use algorithms which tend to be different from
what is claimed as optimal by theoreticians. This is doubtless because theoretical
models tend to be simplifications of reality, and theoretical analysis needs to use
conservative assumptions. This chapter provided to some extent an example of this
phenomenon—apparentlybad theoretical algorithms are good in practice (see BGS
and new-BGS). We actually tried tobridge this difference by analyzing more deeply
some suffix array construction algorithms via the I/O accounting scheme of Farachet
al., i.e. by taking the specialties of current disk systems more into account. This has
lead us to a reasonable and significant taxonomy of all these algorithms. As it appears
clear from the experiments, the final choice of the best algorithm depends on the avail-
able disk space, on the disk characteristics (which induce different trade-offs between
random and bulk I/Os), on the structural features of the indexed text, and also on the
patience of the user to wait for the completion of the suffix array construction. The
moral we draw from our experiments is that the design of an external-memory algo-
rithm must take the current technological trends more and more into account, which
boost interest toward the development of algorithms which prefer bulk rather than ran-
dom I/Os because this paradigm can take advantage of the large disk-bandwidth and
the high computational power of current computer systems.

Algorithms from this chapter were used to construct larger suffix arrays than the
one constructed in the experimental part of this chapter. A novel database searching
tool for DNA and protein databases, called QUASAR [BCF+99] uses suffix arrays
for the proximity search. We constructed the suffix array for the HUMAN Unigene
database whose size is approx. 610 Mbytes18. This took around 22 hours.

18The construction space is more than 5.4 Gbytes so that it is not possible to compute that index on a
32-bit machine in main memory.

141

5.8 Summary

A number of questions remains open:
The algorithm presented in Section 5.3.3 is very efficient both in terms of I/Os and
working space, but it producesL = 4 distinct suffix arrays. It would be interesting to
establish how much it costs in practice tomergethese four arrays into one unique suffix
array. In this respect, it would be worth to use thelazy-trie data structure proposed
in [AFGV97].

Recently, Farachet al.[FFMar] devised the first I/O-optimal algorithm for building
suffix trees. Although asymptotically optimal (both in time and space), this algorithm
uses more space than the algorithms discussed in this paper because it operates on
a tree topology. Additionally, it uses a lot of subroutines from the area of PRAM-
simulation [CGG+95] from which it is known that they are not efficient in a practical
setting. It is not yet clear how this approach could be used todirectly construct suffix
arrays. This is an important problem both theoretically and experimentally.

Ferragina and Manzini [FM00] showed that in internal memory, suffix arrays can
be compressed and that it is possible to search in the compressed index without un-
compressing all of it. Although we believe that the tested algorithms can be used to
construct the their “opportunistic data structure”, it is not yet clear if it would be better
to construct a unique data structure on a large file, or to build a pool of data structures
on parts of the file.

142

Chapter 6

Conclusions

In this thesis, we studied external memory algorithms and data structures in theory
and practice. While the community of researchers in external memory has grown in
the last years and more and more theoretical results are published, implementation
and experimental work is still in its infancy. Although algorithmic classification is
possible using the I/O-model of Vitter and Shriver [VS94b], performance prediction is
often not easy as this model ignores the structure of I/Os (random/bulk) and sometimes
the internal work. Our main goal was therefore to provide a library of algorithms and
data structures especially designed for external memory usage, so that every algorithm
or data structure can be implemented and experimentally tested.

We introduced our library LEDA-SM in Chapter 3 where we described the main
software layout and the most important implementation details. LEDA-SM was de-
signed to model the one-disk case of Vitter and Shriver’s I/O model directly. We espe-
cially set great store on modeling disks, disk blocks and disk block locations. As we
manage disk block allocation by our own and do not rely on file system functionality
for disk block management, we are able to switch to raw disk device access without the
need to change or extend our library design. We showed for Solaris-based machines
that this is possible for the current LEDA-SM library. Additionally, our abstract ker-
nel classes free the application programmer of issuing complicated I/O calls and thus
simplify the development process of new applications. We also showed by some low
level experiments that our additional library layers do not significantly decrease the
I/O throughput.

The modular design of LEDA-SM’s kernel will in the future allow to easily extend
the library to the parallel disk case of Vitter and Shriver’s I/O model. Peter Sanders
together with some students did some experiments where they implemented Barve
et.al.’s randomized mergesort [BGV97] for the parallel independent disk case. They
used threads to provide the parallelism; one thread per supported disk was used to
manage the I/Os. This basic approach can be easily integrated into LEDA-SM’s con-
crete kernel so that in the future it will also be possible to support parallel I/Os to
independent disks.

In Chapters 4 and 5, we introduced several new external memory algorithms and
data structures. The fourth chapter covered priority queue data structures. We intro-
duced external memory radix heaps which are an extension of Ahujaet.al.’s redistribu-
tive heaps [AMOT90]. This heap is very fast in practice, uses onlyN=B disk pages

143

but needs integer keys and monotonicity. Our second proposal, called array heap, is
a general priority queue that also usesN=B disk pages and that supportsinsert
anddelete min in optimal I/O bounds, even in theD-disk model. Both proposals
were experimentally tested against a variety of existing in-core and external memory
priority queues. Radix heaps are the fastest external memory priority queue and array
heaps are the second fastest.

In the fifth chapter, we analyzed seven different construction algorithms for suffix
arrays, were four of them are new approaches. Most of these algorithms perform the
same amount of I/Os according to big Oh-notation. Even constant analysis for the I/Os
does not allow to rank the algorithms as we experimented during our practical tests.
We realized that the structure of I/Os (random or bulk) is really important so that it is
necessary to either analyze this part or get an insight by performing experiments. Our
large number of experiments in the end allowed to rank the algorithms. We finished
this chapter by showing that our construction algorithms can be used to construct a
word-based suffix array; and finally we showed that the run time and the I/O bound
of BaezaYates-Gonnet-Snider’s construction algorithm can be improved from cubic to
quadratic.

I want to conclude this thesis by exposing some wishes: TPIE and LEDA-SM are
clearly the two larger external memory libraries that currently exist. A lot of work
was wasted in the last years as each group independently worked on its project and we
did not manage to merge or join both libraries. Although both libraries use different
concepts, I believe that it is possible to combine both approaches. A lot of implemen-
tation work could be saved and the resulting library could profit from the strengths of
LEDA-SM and TPIE. My hope is that this will happen in the future.

144

Appendix A

The Elite-9 Fast SCSI-2 Wide
Hard Disk

ST-410800W Elite 9
Unformatted capacity 10800
Formatted capacity(512 byte blk) 9090
Average sectors per track 133
Actuator type rotary voice coil
Tracks 132975
Cylinders 4925
Heads 27
Disks(5.25 in) 14
Media type thin film
Head type thin film
Recording method ZBR RLL (1,7)
Internal transfer rate(mbits/sec) 44-65
Internal transfer rate avg(mbyte/sec)7.2
External transfer rate(mbyte/sec) 20 (burst)
Spindle speed 5400
Average latency(msec) 5.55
Command overhead(msec) <0.5
Buffer 1024 kbytes
Bytes per track 63000 - 91000
Sectors per drive 17845731
Bytes per cylinder 1058400 to 1587600
TPI(tracks per inch) 3921
Average access(msec) read/write 11/12
Single rack seek(msec) read/write 0.9/1.7
Max full seek(msec) read/write 23/24

Table A.1:Technical Data of the Seagate Elite-9 Fast SCSI-2 Wide Disk. mbytes are defined
as106 bytes.

145

Appendix B

A short introduction to UML

TheUnified Modeling Language(UML) is the successor to the wave of object-oriented
analysis and design methods that appeared in the late ’80s and early ’90s. The model-
ing language uses a graphical notation to express designs. We will shortly describe the
main concepts of this notation. A short introduction to UML can be found in the book
of Martin Fowler [FS00]. We use UML in three ways: we either use theconceptual
view, where we want to present the concepts of a design. These concepts will often
relate to classes that implement them but there is often no direct mapping. The second
view that we use is thespecificationview where we look at the interfaces of the soft-
ware. The third view is theimplementationview where we really have classes and we
are laying the implementation bare.

Classes and Objects The central concept of UML is theclass. Classes haveat-
tributes andoperations. Classes are pictured by a rectangle with the class name on
top.The lower part is divided into two sections, one containing the attributes, the other
containing the operations. Attributes come in three categories, public (prefix by “+”),
private (prefixed by “-”) and protected (prefixed by “#”). Operations are processes that
a class knows to carry out. An operation has the following syntax:
visibility name (parameter list):return-type-expression
where

� visibility is +(public), #(private) or -(protected)

� nameis a string

� parameter-listcontains comma-separated parameters whose syntax is similar to
that for attributes

� return-type-expressionis a comma-separated list of return types.

Abstract operations are typeset in italics. Objects (i.e. instances of classes) are pictured
by a rectangle containing the underlined object name, followed by a colon and the class
name.

147

Class Name

template class
attributes

+ public operation(parameter:type): return type

Class Name

+ public abstract operation()

#protected attribute: type

operations

+public attribute: type = initial value
-private attribute: type

parameter

Class

attributes and operations
supressed

object

template class

name:class name

Relationships Relationships between objects and classes are represented by differ-
ent kinds of lines and arrows.

1. AssociationAssociations represent relationships between instances of classes.
Each association has two association ends, each end is attached to one of the
classes. An association can be labeled with its role name. Each association
end has a multiplicity indicating how many objects may participate in the given
relationship. Multiplicity may be given in ranges ([a::b], � represents infinity).
Associations can represent conceptual relationships (conceptual view), respon-
sibilities (specification perspective), or data structure relationships/pointers (im-
plementation view). In the implementation and specification perspective, we
often add arrows to the association end. These arrows indicate navigability. As-
sociations are represented as solid lines.

2. GeneralizationGeneralization at implementation level is associated with inheri-
tance in programming languages. Within the specification model, generalization
means that the interface of the subtype must include all elements of the interface
of the supertype. Generalizations are represented as solid lines from the special-
ized class to the base class with a hollow triangle at the end of the base class.

3. Aggregation/CompositionAggregation models part-of-relationship. It’s like say-
ing that a computer has a CPU. A stronger variant of aggregations are composi-
tions. In compositions, the part object may belong to only one whole, further-
more one often assumes that the parts live and die with the whole. Solid lines
with hollow(filled) diamonds represent aggregations(compositions).

4. DependencyA dependency exists between two elements if changes to the defini-
tion of an element may cause changes to the other. Dependencies are represented
by a dashed line with an arrow.

148

bidirectional association

generalization

dependency

navigable association

aggregation

composition

149

Appendix C

Manual Pages of the Kernel

C.1 Block Identifier (B ID)

1. Definition

An instanceBID of typeB ID is a tuple(d;num) of integers whered specifies the
disk andnum specifies the physical block of diskd. Block identifiers are abstract
objects that are used to access physical locations in external memory. It is allowed to
perform basic arithmetic operations like addition, substraction, etc. on objects of type
B ID . Arithmetic operations only effect entrynum of typeB ID . A block identifier
is calledvalid if 0 � d <NUM OF DISKS and0 �num<max blocks [d]. If num is
equal to�1, we call the block identifierinactive. An inactive block identifier is not
connected to any physical disk location.

2. Creation

B ID BID ; creates an instance of typeB ID and initializes it to the inactive
instance.

B ID BID(const int& i; const int& j);

creates an instance of typeB ID and initializes the block number
to i and the disk toj.

3. Operations

int BID:getdisk() returns the disk number of instanceBID .

int BID:number() returns the block number of instanceBID .

void BID:setnumber(const int& j)

sets the block number ofBID to j .

151

C.1 Block Identifier (B ID)

void BID:setdisk(const int& d)

sets the disk number ofBID to d

void BID:setinactive() setsBID to inactive.

Comparison Operators

bool const B ID& t1 != const B ID& t2

Not Equal.

bool const B ID& t1 > const B ID& t2

Greater.

bool const B ID& t1 < const B ID& t2

Lower.

bool const B ID& t1 � const B ID& t2

Greater Equal.

bool const B ID& t1 � const B ID& t2

Lower Equal.

bool const B ID& t1 == const B ID& t2

Equal.

Assignment Operators

B ID& BID = const B ID& t

Assignment.

B ID& BID �= int k Subtract integer and Assign.

B ID& BID �= int k Multiply integer and Assign.

B ID& BID == int k Divide by integer and Assign.

Increment and Decrement

B ID& ++BID Increment Prefix.

B ID BID++ Increment Suffix.

B ID& �� BID Decrement Prefix.

152

C.2 External Memory Manager (ext memory manager)

Arithmetic Operators

B ID t+ int s Addition of integer as friend.

B ID t� int s Subtraction of integer as friend.

B ID t � int s Multiplication of integer as friend.

B ID t = int s Division by integer as friend.

I/O Operators

ostream& ostream& s � id

writesB ID id to the output streams.

istream& istream& s � B ID& id

readsB ID from input streams into id . Block Iden-
tifiers are read in the format (nr ,d) wherenr is the
block number of the block identfier to read andd is
the disk.

4. Implementation

We use the obvious implementation with twoint values.

C.2 External Memory Manager (ext memory manager)

1. Definition

An instanceext mem mgr of data typeext memory manager is an abstract realiza-
tion of external memory. It consists ofD abstract disks that are modeled by data type
ext disk . We connect to each disk a data strucutre of typeext freelist that is re-
sponsible for managing disk blocks of this specific disk.

2. Creation

There is only one instance of the external memory manager. It is defined in
ext memory manager.h

3. Operations

B ID ext mem mgr:newblock(U ID uid ; int D = �1)

allocates a block on diskD with user identifieruid .
Block identifierbid is returned to identify the block.

153

C.2 External Memory Manager (ext memory manager)

B ID ext mem mgr:newblocks(U ID uid ; int k; int D = �1)

allocatesk consecutive blocks on diskD with user
identifier uid . The block identifier bid of the
first block is returned. The otherk � 1 following
blocks are represented by block identifiersbid + 1,
bid + 2,: : : ,bid + k � 1.

void ext mem mgr:freeblock(B ID bid ; U ID uid)

frees the block with block identifierbid . User iden-
tifier uid is used to check if blockbid was allocated
by useruid before. If this is not the case, the request
is ignored and an error message is produced.

void ext mem mgr:freeblocks(B ID bid ; U ID uid ; int k)

freesk consecutive blocks.bid is the block identifier
of the first block to free. The otherk � 1 following
blocks are represented by block identifiersbid + 1,
bid + 2,: : : ,bid + k � 1.uid is used to check if the
disk blocks were allocated by the user before. If this
is not the case, the request is ignored and an error
message is produced.

void ext mem mgr:freeall blocks(U ID uid)

frees all blocks of useruid on all disks.

void ext mem mgr:write block(B ID bid ; U ID uid ; ext block B)

writes blockB to the blockbid of external memory.
Precondition: Useruid is the owner of blockbid in
external memory. Otherwise, the access is invalidated
and an error message is produced.

void ext mem mgr:write blocks(B ID bid ; U ID uid ; ext block B; int k)

writes k consecutive blocksB to the block bid
of external memory. The target locations on the
disks are represented by the block identifiersbid ,: : : ,
bid + k � 1.
Precondition: User uid is the owner of blocks
bid ,: : : ,bid + k � 1 in external memory. Otherwise,
the access is invalidated and an error message is pro-
duced.

void ext mem mgr:readblock(B ID bid ; U ID uid ; ext block B)

reads blockbid of external memory intoB.
Precondition: Useruid is the owner of blockbid in
external memory. Otherwise, the access is invalidated
and an error message is produced.

154

C.2 External Memory Manager (ext memory manager)

void ext mem mgr:readblocks(B ID bid ; U ID uid ; ext block B; int k)

readsk consecutive disk blocks starting from disk lo-
cationbid intoB.
Precondition: User uid is the owner of blocks
bid ,: : : ,bid + k � 1 in external memory. Otherwise,
the access is invalidated and an error message is pro-
duced.

void ext mem mgr:readaheadblock(B ID bid ; U ID uid ; B ID ahead bid ;
ext block B)

reads disk blockbid of external memory intoB and
starts read-ahead of disk blockahead bid . Precon-
dition: Useruid is the owner of disk blocksbid and
ahead bid . Otherwise, the access is invalidated and
an error message is produced.

bool ext mem mgr:checkowner(B ID bid ; U ID uid)

checks if useruid is the owner of disk blockbid .

int ext mem mgr:unusedblocks(int D = �1)

returns the number of unused disk blocks of diskD
(of all disks ifD=-1).

int ext mem mgr:unusedconsblocks(int D = �1)

returns the number of unused consecutive disk blocks
of diskD (of all disks ifD=-1).

int ext mem mgr:usedblocks(int D = �1)

returns the number of used disk blocks of diskD (of
all disks ifD=-1).

long ext mem mgr:unusedmemblocks()

returns the number of unused blocks of internal mem-
ory. This command is operating system specific and
does not work on every platform.

int ext mem mgr:write counter(int D = �1)

returns the number of blocks written to diskD till
now (to all disks, ifD=-1).

int ext mem mgr:readcounter(int D = �1)

returns the number of blocks read from diskD (from
all disks,ifD=-1).

void ext mem mgr:print statistics(int D = �1)

prints statistics of diskD (of all disks, ifD=-1).

155

C.3 Name Server (nameserver)

void ext mem mgr:resetstatistics(int D = �1)

resets statistics of external memory manager (ifD==-
1) or diskD. This includes the resetting of the write
and read counters.

C.3 Name Server (nameserver)

1. Definition

The name server is used to allocate user identifications. An user identification is a
value of typeU ID . There is a special user identification calledNO USER. User
identificationNO USER can only be used to create logical blocks of typeblock<E>

any write or read requests for this user are invalidated.

2. Creation

There is only one instance of data type name server calledUID SERVER. It is defined
in name server.h .

3. Operations

U ID name svr:newid() returns a new user-identifier

void name svr:freeid(U ID uid)

frees user-identifieruid .

4. Implementation

An user identifier is implemented by data typeint . Data structurename server uses
a LEDA-priority queue to keep track of freed user-identifiers. The running time of
operationsnew id and free id are dependent of the priority queue implementation
(O(log n) andO(1) if Fibonacci heaps are used).

156

BIBLIOGRAPHY

Bibliography

[Abe99] J. Abello. personal communication, 1999.

[AFGV97] Lars Arge, Paolo Ferragina, Roberto Grossi, and Jeffrey Scott Vitter. On sorting
strings in external memory. InProceedings of the 29th Annual ACM Symposium
on Theory of Computing, pages 540–548, El Paso, May 1997. ACM Press.

[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman.The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[ALS96] A. Andersson, N. J. Larsson, and K. Swanson. Suffix trees on words. InProceed-
ings of the 7th annual symposium on Combinatorial pattern matching (CPM),
volume 1075 ofLecture notes in computer science. Springer, 1996.

[AMOT90] R. Ahuja, K. Mehlhorn, J.B. Orlin, and R.E. Tarjan. Faster algorithms for the
shortest path problem.Journal of the ACM, 3(2):213–223, 1990.

[AN95] A. Andersson and S. Nilsson. Efficient implementation of suffix trees.Software
Practice and Experience, 2(25):129–141, 1995.

[Arg95] L. Arge. The buffer tree: A new technique for optimal I/O-algorithms. InPro-
ceedings of the 4th International Workshop on Algorithms and Data Structures
(WADS’95), volume 955 ofLNCS, pages 334–345. Springer, 1995.

[Arg96] L. Arge.Efficient external-memory data structures and applications. PhD thesis,
University of Aarhus, 1996.

[Arg99] L. Arge. personal communication, February 1999.

[AV88] A. Aggarwal and J.S. Vitter. The input/output complexity of sorting and related
problems.Communications of the ACM, pages 1116–1127, 1988.

[BCF+99] S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and M. Vin-
gron. q-gram based database searching using a suffix array. InProceedings of
the 3rd Annual International Conference on Computational Molecular Biology
(RECOMB), pages 77–83, Lyon, France, 1999. ACM Press.

[BCMF99] K. Brengel, A. Crauser, U. Meyer, and P. Ferragina. An experimental study
of priority queues in external memory. InProceedings of the 3rd International
Workshop on Algorithmic Engineering (WAE), volume 1668 ofLecture notes in
computer science, pages 345–359. Springer, 1999.

[BCMF00] K. Brengel, A. Crauser, U. Meyer, and P. Ferragina. An experimental study of
priority queues in external memory.Journal of Experimental Algorithms, page
to appear, 2000.

[BGV97] R. D. Barve, E.F. Grove, and J.S. Vitter. Simple randomized mergesort on par-
allel disks.Parallel Computing, 23(4):601–631, June 1997.

157

BIBLIOGRAPHY

[BGVW00] A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. R. West-
brook. On external memory graph traversal. InProceedings of the 11th Annual
SIAM/ACM Symposium on Discrete Algorithms, pages 859–860, 2000.

[BK98] G. S. Brodal and J. Katajainen. Worst-case efficient external-memory priority
queues. InProceedings of the 6th Skandinavian workshop on Algorithm theory
(SWAT-98), volume 1432 ofLecture notes in computer science. Springer, 1998.

[BKS99] J. Bojesen, J. Katajainen, and M. Spork. Performance engineering case
study:heap construction. InProceedings of the 3rd International Workshop on
Algorithmic Engineering (WAE), volume 1668 ofLecture notes in computer sci-
ence, pages 301–315. Springer, 1999.

[BM72] R. Bayer and E. McCreight. Organization and maintenance of large ordered
indizes.Acta Informatica, 1:173–189, 1972.

[Bos99] H. G. P. Bosch.Mixed-media File Systems. PhD thesis, Universiteit Twente,
Netherlands, 1999.

[Bre00] K. Brengel. Externe Priorit¨atswarteschlangen. Master’s thesis, Max-Planck-
Institut für Informatik, Universität des Saarlandes, Germany, 2000.

[BW94] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical Report TR 124, Digital SRC Research, 1994.

[BYBZ96] R. Baeza-Yates, E. F. Barbosa, and N. Ziviani. Hierarchies of indices for text
searching.Information Systems, 21(6):497–514, 1996.

[CC98] A. Colvin and T.H. Cormen. ViC*: A compiler for virtual-memory C*. InPro-
ceedings of the 3rd International Workshop on High-Level Parallel Program-
ming Models and Supportive Environments, pages 23–33, 1998.

[CF99] A. Crauser and P. Ferragina. On constructing suffix arrays in external memory.
In Proceedings of the 7th Annual European Symposium on Algorithms (ESA),
volume 1643 ofLecture notes in computer science, pages 224–235. Springer,
1999.

[CF01] A. Crauser and P. Ferragina. A theoretical and experimental study on the con-
struction of suffi x arrays in external memory.Algorithmica, page to appear,
2001.

[CFM98] A. Crauser, P. Ferragina, and U. Meyer. Efficient priority queues in external
memory. MPI für Informatik, working paper, 1998.

[CGG+95] Y.-J. Chiang, M.T. Goodrich, E.F. Grove, R. Tamassia, D.E. Vengroff, and J.S.
Vitter. External-memory graph algorithms. InProceedings of the 6th An-
nual ACM-Siam Symposium on Discrete Algorithms (SODA), volume SODA 95,
pages 139–149, San Francisco, 1995. ACM-SIAM.

[Chi95] Y.-J. Chiang.Dynamic and I/O-Efficient Algorithms for Computational Geome-
try and Graph Algorithms. PhD thesis, Brown University, 1995.

[CM96] D.R. Clark and J.I. Munro. Efficient suffix trees on secondary storage. InPro-
ceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 383–391. ACM/SIAM, 1996.

[CM99] A. Crauser and K. Mehlhorn. LEDA-SM, extending LEDA to secondary mem-
ory. InProceedings of the 3rd International Workshop on Algorithmic Engineer-
ing (WAE), volume 1668 ofLecture notes in computer science, pages 228–242.
Springer, 1999.

158

BIBLIOGRAPHY

[CMA+98] A. Crauser, K. Mehlhorn, E. Althaus, K. Brengel, T. Buchheit, J. Keller,
H. Krone, O. Lambert, R. Schulte, S. Thiel, M. Westphal, and R. Wirth. On
the performance of LEDA-SM. Technical report, Max-Planck-Institut f¨ur Infor-
matik, November 1998.

[CMS98] A. Crauser, K. Mehlhorn U. Meyer, and P. Sanders. A parallelization of dijkstra’s
shortest path algorithm. InProceedings of the 23rd international symposium on
Mathematical foundations of computer science (MFCS), volume 1450 ofLecture
notes in computer science, pages 722–73. Springer, 1998.

[Com64] W.T. Comfort. Multiword list items.Communication of the ACM, 7(6), October
1964.

[Coo] Quantum Cooperation. Storage technology and trends.
http://www.quantum.com/src/tt/storagetech trends.htm.

[CP98] A. Cockcroft and R. Pettit.Sun Performance and Tuning. Prentice Hall, 1998.

[CSW98] T. H. Cormen, T. Sundquist, and L. F. Wisniewski. Asymptotically tight bounds
for performing BMMC permutations on parallel disk systems.SIAM Journal on
Computing, 28(1):105–136, 1998.

[CWN97] Thomas H. Cormen, Jake Wegmann, and David M. Nicol. Multiprocessor out-
of-core FFTs with distributed memory and parallel disks. InProceedings of
the Fifth Workshop on Input/Output in Parallel and Distributed Systems, pages
68–78, San Jose, CA, November 1997. ACM Press.

[Dei90] H. M. Deitel. Operating Systems. Addison Wesley, 1990.

[Dij59] E.W. Dijkstra. A note on two problems in connection with graphs.Num. Math.,
1:269–271, 1959.

[FAFL95] E.A. Fox, R.M. Akcyn, R.K. Furuta, and J.J. Leggett. Digital libraries.Commu-
nications of the ACM, 38(4):22–28, April 1995.

[Fen97] C.L. Feng. Pat-tree-based keyword extraction for chinese information retrieval.
In Proceedings of the 20th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SIGIR), volume 31,special
issue ofSIGIR Forum, pages 50–58. ACM Press, 1997.

[FFM98] M. Farach, P. Ferragina, and S. Muthukrishnan. Overcoming the memory bottle-
neck in suffix tree construction. InProceedings of the 39th Annual Symposium
on Foundations of Computer Science, pages 174–185. IEEE Computer Society,
1998.

[FFMar] M. Farach, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity of
suffix tree construction.Journal of the ACM, 2000 (to appear).

[FG95] P. Ferragina and R. Grossi. A fully-dynamic data structure for external substring
search. InProceedings of the 27th Annual ACM Symposium on the Theory of
Computing (STOC ’95), pages 693–702. ACM, May 1995.

[FG96] P. Ferragina and R. Grossi. Fast string searching in secondary storage: Theoreti-
cal developments and experimental results. InProceedings of the Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 373–382. ACM/SIAM,
1996.

[FJJT99] R. Fadel, K.V. Jakobsen, J. Katajainen J., and Teuhola. Heaps and heapsort on
secondary storage.Theoretical Computer Science, 220, 1999.

[FKS84] M.L. Fredman, J. Komlos, and E. Szemeredi. Storing a sparse table withO(1)
worst case access time.Journal of the ACM, 31:538–544, 1984.

159

BIBLIOGRAPHY

[FM00] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
IEEE Foundations on Computer Science, 2000.

[FNPS79] Ronald Fagin, J¨urg Nievergelt, Nicholas Pippenger, and H. Raymond Strong.
Extendible hashing — A fast access method for dynamic files.ACM Trans-
actions on Database Systems, 4(3):315–344, September 1979. Also published
in/as: IBM, Research Report RJ2305, Jul. 1978.

[FS00] Martin Fowler and Kendall Scoot.UML Distilled, A brief guide to the standard
object modeling language. Addison-Wesley, 2000.

[FT87] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms.Journal of the ACM, 34:596–615, 1987.

[FW72] W. D. Frazer and C. K. Wong. Sorting by natural selection.Communications of
the ACM, 15(10):910–913, October 1972.

[GHGS92] R. A. Baeza-Yates G. H. Gonnet and T. Snider.Information Retrieval – Data
Structures and Algorithms. W.B. Frakes and R. BaezaYates Editors, Prentice-
Hall, 1992.

[Goo99] T. Goodrich. Communication-efficient parallel sorting.SICOMP: SIAM Journal
on Computing, 29, 1999.

[GTVV93] M.T. Goodrich, J-J Tsay, D.E. Vengroff, and J.S. Vitter. External-memory com-
putational geometry. InIEEE Symposium on Foundations of Computer Science
(FOCS), pages 714–723, 1993.

[Gus97] D. Gusfield.Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge University Press, 1997.

[Hir73] D.S. Hirschberg. A class of dynamic memory allocation algorithms.Communi-
cations of the ACM, 16(10):615–618, October 1973.

[HMSV97] D. Hutchinson, A. Maheshwari, J. Sack, and R. Velicescu. Early experiences in
implementing buffer trees.In Proceedings of the 2nd International Workshop on
Algorithmic Engineering, pages 92–103, 1997.

[Hoa62] C. A. R. Hoare. Quicksort.Computer Journal, 5(1):10–15, 1962.

[IEE87] IEEE. Ieee standard 754-1985 for binary floating-point arithmetic. reprinted in
SIGPLAN 22, 1987.

[KL93] D.E. Knuth and S. Levy. The CWEB System of Structured Documentation.
Addison-Wesley, 1993.

[Kno65] K.C. Knowlton. A fast storage allocator.Communications of the ACM,
8(10):623–625, October 1965.

[KNRNZ97] J. P. Kitajima, G. Navarro, B. Ribeiro-Neto, and N. Ziviani. Distributed gen-
eration of suffix arrays: A quicksort based approach. InProceedings of the 4th
South American Workshop on String Processing, pages 53–69, Valparaiso, Chile,
1997. Carleton University Press.

[Knu81] D.E. Knuth.The Art of Computer Programming (Volume 3): Sorting and Search-
ing. Addison-Wesley, third edition edition, 1981.

[Knu97] D.E. Knuth. The Art of Computer Programming (Volume 1): Fundamental Al-
gorithms. Addison-Wesley, third edition edition, 1997.

[KS96] V. Kumar and E.J. Schwabe. Improved algorithms and data structures for solving
graph problems in external memory. InSPDP, pages 169–177, 1996.

160

BIBLIOGRAPHY

[KSC78] V.F. Kolchin, B.A. Sevastyanov, and V.P. Chestyakov.Random allocations. Win-
ston & Sons, Washington, 1978.

[Kur99] S. Kurtz. Reducing the space requirement of suffix trees.Software – Practice
and Experience, 29(3):1149–1171, 1999.

[Lar96] N.J. Larsson. Extended application of suffix trees to data compression. InDCC:
Data Compression Conference. IEEE Computer Society TCC, 1996.

[Lei85] T. Leighton. Tight Bounds on the Complexity of Parallel Sorting.IEEE Trans-
actions on Computers, April 1985.

[LL96] A. LaMarca and R. Ladner. The influence of caches on the performance of
heaps. Technical Report TR-96-02-03, University of Washington, Department
of Computer Science and Engineering, February 1996.

[McC76] E. M. McCreight. A space-economical suffix tree construction algorithm.Jour-
nal of the ACM, 23(2):262–272, 1976.

[Meh84a] K. Mehlhorn.Data structures and algorithms 1,2, and 3. Springer, 1984.

[Meh84b] K. Mehlhorn. Data Structures and Algorithms 3: Multidimensional Seaching
and Computational Geometry. Springer Verlag, 1984.

[Mey01] U. Meyer. External memory BFS on undirected graphs with bounded degree. In
Proceedings of the 12th Annual SIAM/ACM Symposium on Discrete Algorithms,
to appear, 2001.

[MM93] U. Manber and G. Myers. Suffix arrays: a new method for on-line string
searches.SIAM Journal of Computing, 22(5):935–948, 1993.

[MN95] K. Mehlhorn and S. N¨aher. Leda, a platform for combinatorial and geometric
computing.Communications of the ACM, 38:96–102, 1995.

[MN99] K. Mehlhorn and S. N¨aher. LEDA a platform for combinatorial and geometric
computing. Cambridge University Press, 1999.

[MSV00] Y. Matias, E. Segal, and J.S. Vitter. Efficient bundle sorting. InProceedings of
the 11th Annual SIAM/ACM Symposium on Discrete Algorithms, 2000.

[NKRNZ97] G. Navarro, J.P. Kitajima, B.A. Ribeiro-Neto, and N. Ziviani. Distributed gen-
eration of suffix arrays. InCombinatorial Pattern Matching, pages 103–115,
1997.

[NMM91] D. Naor, C.U. Martel, and N.S. Matloff. Performance of priority queues in a
virtual memory environment.The Computer Journal, 34(5):428–437, 1991.

[NV93] M. H. Nodine and J. S. Vitter. Deterministic distribution sort in shared and dis-
tributed memory multiprocessors.Proceedings of the 5th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, pages 120–129, June-July 1993.

[NV95] Mark H. Nodine and Jeffrey Scott Vitter. Greed sort: Optimal deterministic
sorting on parallel disks.Journal of the ACM, 42(4):919–933, July 1995.

[PN77] J.L. Peterson and T.A. Norman. Buddy systems.Communications of the ACM,
20(6):421–431, June 1977.

[Pug90] W. Pugh. Skip lists: A probabilistic alternative to balanced trees.Communica-
tions of the ACM, 33(6):668–676, 1990.

[Ran69] Brian Randell. A note on storage fragmentation and program segmentation.
Communications of the ACM, 12(7):365–372, July 1969.

161

BIBLIOGRAPHY

[RBYN00] A. Moffat R. Baeza-Yates and G. Navarro.Handbook of Massive Data Sets.
Kluwer, 2000.

[RMKR72] R. E. Miller R. M. Karp and A. L. Rosenberg. Rapid identification of repeated
patterns in strings, arrays and trees.4th ACM Symposium on Theory of Comput-
ing, pages 125–136, 1972.

[RW94] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling.IEEE
Computer, pages 17–28, 1994.

[Sad98] K. Sadakane. A fast algorithm for making suffix arrays and for burrows-wheeler
transformation. InIEEE Data Compression Conference, 1998.

[San99] P. Sanders. Fast priority queues for cached memory. InWorkshop on Algorithmic
Engineering and Experimentation (ALENEX), volume 1619 ofLecture notes in
computer science, pages 312–327. Springer, 1999.

[SV87] J.T. Stasko and J.S. Vitter. Pairing heaps: Experiments and analysis.Communi-
cations of the ACM, 30:234–249, 1987.

[Tho96] M. Thorup. On RAM priority queues. InProceedings of the Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 59–67, New
York/Philadelphia, January 28–30 1996. ACM/SIAM.

[UY91] Ullman and Yannakakis. The Input/Output Complexity of Transitive Closure.
Annals of Mathematics and Artificial Intelligence, 3:331–360, 1991.

[Vit98] J.S. Vitter. External memory algorithms.ACM Symposium on Principles of
Database Systems, 1998. Also invited paper in European Symposium on Algo-
rithms,1998.

[VS94a] J.S. Vitter and E.A.M. Shriver. Optimal algorithms for parallel memory II:two-
level memories.Algorithmica, 12(2-3):148–169, 1994.

[VS94b] J.S. Vitter and E.A.M. Shriver. Optimal algorithms for parallel memory I:two-
level memories.Algorithmica, 12(2-3):110–147, 1994.

[VV95] D. E. Vengroff and J. S. Vitter. Supporting I/O-efficient scientific computation in
TPIE. InSymposium on Parallel and Distributed Processing (SPDP ’95), pages
74–77. IEEE Computer Society Press, October 1995.

[Wil64] J.W.J. William. Algoritm 232 (heapsort).Communication of the ACM, pages
347–348, 1964.

[WJNB95] P.R. Wilson, M.S. Johnstone, M. Neely, and D. Boles. Dynamic storage al-
locaton:a survey and critical review. InProceedings of the 2nd international
workshop on Rules in database systems (RIDS), volume 985 ofLecture notes in
computer science, pages 1–116. Springer, 1995.

[WMB94] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes. Van Nostrand
Reinhold, 115th Avenue, New York, 1994.

[Won97] B. L. Wong.Configuration and Capacity Planning for Solaris Servers. Prentice
Hall, 1997.

[ZMR96] J. Zobel, A. Moffat, and K. Ramamohanarao. Guidelines for presentation and
comparison of indexing techniques.SIGMOD Record (ACM Special Interest
Group on Management of Data), 25(3):10–15, 1996.

162

Appendix D

Curriculum Vitae

Andreas Crauser
Richard-Wagner-Str. 64
66125 Dudweiler
Germany

Date of Birth 13.06.1971.

Citizenship German.

Education MAX -PLANCK -INSTITUT FÜR INFORMATIK SAARBRÜCKEN,
GERMANY

1996–present
PhD student.

UNIVERSITÄT DES SAARLANDES SAARBRÜCKEN, GERMANY

1991–1996
Diplom (� Master’s degree) in Computer Science in 1996. Thesis:Im-
plementierung des PRAM Betriebssystems PRAMOS: PRAM Seite, advisor
Prof. Dr. Wolfgang J. Paul.
Vordiplom (� Bachelor’s degree) in Computer Science in 1993.

WILLI -GRAF GYMNASIUM SAARBRÜCKEN, GERMANY

1990

German Abitur (� Highschool Diploma).

Work and
Teaching
Experience MAX -PLANCK -INSTITUT FÜR INFORMATIK SAARBRÜCKEN,

GERMANY

1996–2000
Teaching experience in several lectures (Algorithms for Large Data Sets,
various seminars). Responsible for hard- and software acquisition, mainte-
nance of software, and system support for the research group of Prof. Dr.
Kurt Mehlhorn.

Advisor of two master students in the area of external memory algorithms

163

UNIVERSITÄT DES SAARLANDES SAARBRÜCKEN, GERMANY

1991–1996

Teaching assistant for the following lectures:
Computer Science I
Computer Science III
Computer Science IV
Fortgeschrittenen-Praktikum (one-term programming project) simulation
of parallel algorithms (implementation of mesh sorting algorithms in C).

Publications

Journal
Publications 1. BRENGEL, K., CRAUSER, A., MEYER, U., AND FERRAGINA, P. An

experimental study of priority queues in external memory.Journal of
Experimental Algorithms(2000), to appear.

2. CRAUSER, A., AND FERRAGINA, P. A theoretical and experimental
study on the construction of suffix arrays in external memory.Algorith-
mica(2001), to appear.

Conference
Publications 3. CRAUSER, A., MEHLHORN, K., MEYER, U., AND SANDERS, P. A

parallelization of dijkstra’s shortest path algorithm. InProceedings of
the 23rd International Symposium on the Mathematical Foundations of
Computer Science (MFCS-98)(Brno, Czech Republic, August 1998),
L. Brim, J. Gruska, and J. Zlatuska, Eds., vol. 1450 ofLecture Notes
in Computer Science, Springer, pp. 722–731.

4. BRENGEL, K., CRAUSER, A., MEYER, U., AND FERRAGINA, P. An ex-
perimental study of priority queues in external memory. InProceedings
of the 3rd International Workshop on Algorithmic Engineering (WAE)
(1999), vol. 1668 ofLecture notes in computer science, Springer, pp. 345–
359.

5. BURKHARDT, S., CRAUSER, A., FERRAGINA, P., LENHOF, H.-P., RI-
VALS, E., AND VINGRON, M. q-gram based database searching using a
suffix array. InProceedings of the 3rd Annual International Conference
on Computational Molecular Biology (RECOMB)(Lyon, France, 1999),
ACM Press, pp. 77–83.

6. CRAUSER, A., AND FERRAGINA, P. On constructing suffix arrays in ex-
ternal memory. InProceedings of the 7th Annual European Symposium
on Algorithms (ESA)(1999), vol. 1643 ofLecture notes in computer sci-
ence, Springer, pp. 224–235.

7. CRAUSER, A., FERRAGINA, P., MEHLHORN, K., MEYER, U., AND

RAMOS, E. A. I/O-optimal computation of segment intersections. In
Proceedings of the DIMACS Workshop on External Algorithms and Visu-
alization(New Brunswick, New Jersey, October 1999), J. M. Abello and
J. S. Vitter, Eds., vol. 50 ofDIMACS Series in Discrete Mathematics and
Theoretical Computer Science, DIMACS, AMS, pp. 131–138.

8. CRAUSER, A., AND MEHLHORN, K. LEDA-SM, extending LEDA to
secondary memory. InProceedings of the 3rd International Workshop

on Algorithmic Engineering (WAE)(1999), vol. 1668 ofLecture notes in
computer science, Springer, pp. 228–242.

Technical
Reports 9. CRAUSER, A., MEHLHORN, K., ALTHAUS, E., BRENGEL, K., BUCH-

HEIT, T., KELLER, J., KRONE, H., LAMBERT, O., SCHULTE, R., THIEL,
S., WESTPHAL, M., AND WIRTH, R. On the performance of LEDA-
SM. Tech. Rep. MPI-I-98-1-028, Max-Planck-Institut f¨ur Informatik,
November 1998.

Colloquia 10. Graph data types in internal and external memory. Given at theSIAM
Annual Meeting, 1999.

11. I/O-optimal computation of segment intersections. Given at theDI-
MACS Workshop External Memory Algorithms and Visualization, 1998.

12. On contructing suffix arrays in external memory. Given at the7th An-
nual European Symposium on Algorithms (ESA-99), 1999.

165

Index

A
accessminimum . 81
actuator arm. .8
adjacency list. .73
aio disk (LSM class) 49
algorithm

external memory 3
in-core . 3
internal memory 3
secondary memory 3

allocator . 50
array

external . 62
array heap . 62,88
arrayfreelist (LSM class) 53

B
B-tree . 63,99
B ID (LSM class) 31,32
best-fit .50
bitmapped fit . 51
block

identifier . 31
logical . 31

block<E> (LSM class) 31,33
bucket . 83
buddy system . 51
buffer tree . 62,99
bus . 9

C
cache

buffer . 12
channel

PRML . 8
read-write . 8

checkpointing . 43
coalescing . 50
Compact(i) .90
cylinder . 7

switch time . 10

D
data

access time . 10
transfer time . 11

deleteminimum . 81
directory . 11
disk

block . 11, 31
cache . 9
controller . 9
drive . 7
head . 7

magnetoresistive 8
positioning . 8
switch time.10

disk striping .87

E
ext array freelist (LSM class) 53
ext disk (LSM class) 31,47
ext freelist (LSM class) 31,50
ext memmanager (LSM class) . 31,42

F
file . 11

access methods 13
system . 11

first-fit . 50
fragmentation . 50

external . 50
internal . 50

full text index . 109

G
graph

directed . 73
graph algorithm

fully external 74
semi external 74

I
I/O .7, 25

167

memory-mapped14
standard .14

indexed fit . 51
insert . 81

K
kernel

abstract . 30,32
concrete . 30,41
configuration of 42
recovery of . 43

L
LEDA-SM . 26

application layer of 28,30
B ID. .32
design goals of 27
kernel layer of 28,30
recovery mode of58
system startup of 56

LEDA-SM class
aio disk . 49
arrayfreelist .53
B ID . 31
block<E> 31,33
ext array freelist 53
ext disk .31,47
ext freelist 31,50
ext memmanager 31,42
memorydisk 48
mmapiodisk 49
nameserver 31,41
new sortseqfreelist 53
raw disk . 49
sortseqfreelist 55
stdio disk . 48
syscalldisk .49
U ID . 31,33

Load(i,j) . 89

M
memory

external . 1
internal .1
main . 1
secondary . 1
virtual .2

memorydisk (LSM class) 48
Merge-Level(i,S,S’) 89
min-buffer . 96
mmapiodisk (LSM class)49
monotone . 83
multiway mergesort 70

MZR . 7

N
nameserver (LSM class) 31,41
new sortseqfreelist (LSM class) . . . 53

O
overflow . 89

P
page . 2

daemon . 16
pool of . 2

platter . 7
priority queue .81

Q
queue

external . 62

R
radix . 83
radix heap . 62,83
RAM-model .1, 25
raw disk (LSM class)49
Refill(i) . 96
rotational latency . 10

S
SCSI . 9
sector .7
seek . 10

time . 10
segregated freelists.50
slot . 88
sorting

offline. .70
online . 70

sortseqfreelist (LSM class) 55
source node . 73
spindle. .7
stack

external . 62
stdio .14
stdio disk (LSM class)48
Store(i,S) . 89
suffix array . 63,113
suffix array construction

Baeza-Yates-Gonnet-Snider 114
construction into pieces122
doubling with discarding.119

using priority queues 121
improved. BGS 137
Manber Myers 113

168

repeated doubling 116
word-based construction 136

syscalldisk (LSM class) 49

T
target node . 73
TPIE . 26
track. .7

switch time . 10

U
U ID (LSM class) 31,33

V
VIC* . 26

W
word index .109

169

