Filter Algorithms
for
Approximate String Matching

Dissertation
zur Erlangung des Grades
des Doktors der Ingenieurswissenschaften (Dr.-Ing.)
der Naturwissenschaftlich—Technischen Fakultat I
der Universitit des Saarlandes

von

Stefan Burkhardt

Saarbrucken
2002

Datum des Kollogiums:

Dekan der Naturwissenschaftlich-Technischen Fakultat:
Professor Dr. Slusallek

Gutachter:
Professor Dr. Hans-Peter Lenhof, Universitdt des Saarlandes, Saarbriicken
Professor Dr. Esko Ukkonen, Universitat Helsinki, Finnland

Abstract

In this work we present new results and methods for approximate string matching with filter
algorithms. We begin with the presentation of QUASAR, our efficient implementation of an
improved version of the filter based on the g-gram lemma. The ¢g-gram lemma, provides a method
based on matching substrings to quickly detect potential matches to a query in a subject or
target. We improved and implemented an algorithm originally introduced in 1991. This resulted
in a very efficient program for approximate string matching using an index. It was successfully
applied to EST-clustering, a problem from computational biology.

The second part of our work introduces a new class of filters based on gapped g-grams.
We analyze the potential of this somewhat more complicated approach for use in filters for
approximate string matching with an index. We consider two important distance measures
in approximate approximate string matching, the Hamming and the edit distance. For both
problems we provide all the tools required to solve them using gapped ¢-grams. This includes
threshold computation and the selection of good gapped ¢-grams using predictions of their
speed and filtration efficiency. Furthermore we consider the potential of gapped g¢-grams for
use in lossy filters. We support our findings with extensive experiments. Our results prove
that gapped g¢-grams are superior to existing filter approaches with respect to speed, filtration
efficiency and their potential for use in lossy filters.

Kurzzusammenfassung

In dieser Arbeit beschreiben wir neue Ergebnisse und Verfahren auf dem Gebiet der Filteral-
gorithmen fiir Ahnlichkeitssuche in Textdatenbanken. Im ersten Teil stellen wir QUASAR, die
Implementierung eines verbesserten Filters basierend auf dem sogenannten ¢-gram Lemma, vor.
Dieses Lemma basiert auf dem Vergleich von kurzen Teilwortern und ermdoglicht die effiziente
Erkennung der Teile einer Textdatenbank, die einer bestimmten Anfrage dhneln. Wir haben
einen 1991 vorgestellten Algorithmus der auf diesem Lemma aufbaut verbessert und implemen-
tiert. Daraus ergab sich ein sehr effizientes Programm zur Ahnlichkeitssuche in Textdaten-
banken das in der Praxis fiir sogenanntes EST-clustering, ein Problem aus der Bioinformatik,
eingesetzt wurde.

Der zweite Teil der Arbeit stellt eine neue Klasse von Filtern die g-grams mit Liicken, so-
genannte ’gapped g-grams’, benutzen vor. Wir untersuchen das Potential dieser komplexeren
g-grams fiir die Nutzung in Filteralgorithmen fiir Index-basierte Ahnlichkeitssuche in Textdaten-
banken. Dabei betrachten wir zwei wichtige Distanzmasse fiir Zeichenketten, die Hamming- und
die Edit-Distanz. Wir beschreiben Verfahren, die alle fiir die erfolgreiche Anwendung notwendi-
gen Vorraussetzungen, z.B. die Berechnung des sogenannten Threshold und die Auswahl guter
g-grams, erfiillen. Ausserdem untersuchen wir die Eignung von ¢-grams mit Liicken fiir den Ein-
satz in nicht verlustfreien Filteralgorithmen. Wir ergénzen unsere Ergebnisse mit einer grossen
Zahl von Experimenten die belegen, dass g-grams mit Liicken deutliche Vorteile in Bezug auf
Geschwindigkeit, Qualitdt der Ergebnisse und Eignung fuer nicht verlustfreie Filter gegeniiber
herkémmlichen Filterverfahren bieten.

Acknowledgements

The work on this thesis began at the Max-Planck-Institute for Computer Science in the group
of Prof. Dr. Kurt Mehlhorn under the supervision of Prof. Dr. Hans-Peter Lenhof. I finished it
at the newly founded chair of Prof. Dr. Hans-Peter Lenhof.

I want to thank Prof. Dr. Kurt Mehlhorn and Prof. Dr. Hans-Peter Lenhof for the great
work environment in their groups and the opportunity to pursue research in those areas that
were and are the most interesting to me. I am grateful for the introduction into the field of
computational biology and the new insights I gained in this area.

During my work on the thesis my main cooperation was with Dr. Eric Rivals during the
development of QUASAR and Dr. Juha Kérkkiinen in the exploration of gapped g-grams. I
very much enjoyed working with them and am thankful for their contributions to my work.

Last but not least I want to thank my family and Irene for their support, interest and
understanding.

Contents

1 Introduction

2 Preliminaries

2.1 Stringology e
2.2 Graphsand Trees o e
2.3 Pattern Matching oL
24 DNA Sequences

Indexing — Data Structures for Exact String Matching

3.1 Exact String Matchingo

3.2 On-line Exact String Matching

3.3 Off-line Exact String Matching
3.3.1 TheSuffix Tree L
3.32 TheSuffix Array
3.3.3 Other Indexes for Exact String Matching

3.4 Exact String Matching with Fixed Length ¢
3.4.1 A Word Lookup Table
3.4.2 Combining Suffix Array and Lookup Table

3.4.3 Large Values of ¢ — a Hybrid Approach

© © 0w 9w

4 Filters for Approximate String Matching 23

4.1 Some Approximate String Matching Problems 24
4.1.1 Distance Measures 24
4.1.2 Four Interesting Variants 25

4.2 Lossless and Lossy Algorithms 26

4.3 Algorithms for On-line Approximate String Matching 26

4.4 Filter Algorithms L 26
4.4.1 The g-gram Lemma 31
4.4.2 Filtering with the Pigeonhole Principle. 35
4.4.3 BLAST e 36

4.5 Using Index Structures with Filter Algorithms 37
4.5.1 From Hits to Potential Matches 38

4.6 From Global to Local Matching 40
4.6.1 A SlidingWindow 40
4.6.2 Modified Match Regions 41

4.7 Experimental Evaluation of Filter Algorithms 42
4.71 Filter Speed 42
4.7.2 Filtration Efficiency 43
4.7.3 The Minimum Coverage 44
4.74 A Closer Look — Match Zones 48
4.7.5 Describing the Match Zones 49

4.8 QUASAR . . . e 51

4.9 Concluding Remarks about Filter Algorithms 53

5 Introducing Gapped ¢-grams 55

5.1 Gapped ¢g-grams in Previous Work 55

5.2 Shapes o e e e e e 57

5.3 Gapped g-grams and the k-mismatches Problem 58
5.3.1 The Threshold, 59
5.3.2 Computing the Optimal Threshold 61
53.3 Match Regions 64
5.3.4 The Minimum Coverage of Gapped ¢g-grams 67

ii

5.3.5
5.3.6

Computing the Minimum Coverage

Some Observations on Gapped ¢-grams

5.4 An Extension to the k-differences Problem

5.4.1
5.4.2
5.4.3
5.4.4
5.4.5

The Filter Algorithm
Computing the Optimal Threshold
Match Regions
The Minimum Coverage

Evaluating One-gap g-grams for the k-differences Problem

5.5 Moving from Ungapped to Gapped ¢g-grams

5.6 Concluding Remarks about Gapped ¢g-grams

6 An Experimental Analysis of Filter Algorithms

6.1 Parameter Rangeso,

6.2 Results for QUASAR o L

6.2.1
6.2.2

Determining Optimal Block Size
QUASAR vs. BLAST

6.3 Speed and Filtration Efficiency of Different Filters

6.3.1
6.3.2
6.3.3

Choice of Gapped g-grams
g and the Minimum Coverage

Results for the Best Shapes

6.4 The Distribution of Shape Quality
6.5 The Match Zones

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6

7 Conclusion

Bibliography

Results for the g-gram Lemma and the Edit Distance
Gapped g-grams for the Hamming Distance
Gapped g-grams for the Edit Distance
BLAST . . . e
Interesting Comparisons L.

Concluding Remarks about the Constructed Databases

iii

79
80
80
81
82
83
85
85
89
93
95
96
100
104
108
110
114

117

121

Summary 129

Index 133

v

Chapter 1

Introduction

Motivation

Approximate string matching is one of the classic problems in computer science.
In contrast to the simpler exact string matching problem, which consists of locating
all exact matches between a query or pattern string and a target string or database,
it includes recognizing all approximate matches with respect to a certain measure of
similarity or distance.

There is a number of practical applications for approximate string matching. Exam-
ples include text retrieval, signal processing, optical character recognition and pattern
recognition. One that has become particularly important recently is computational
biology.

The advent of whole genome sequencing and increased genetic research resulted in
the creation of huge genomic databases. The basic blueprint of life is a long, double
stranded molecule, the DNA. Its structure can be represented by a simple, albeit very
long string over a four-letter alphabet corresponding to the four different nucleic acids.
The two main reasons why one wants to allow approximate instead of exact searches
in genomic databases are the evolutionary mutations in the genomes and the errors
introduced in the actual sequencing process. They invalidate methods that rely only
on exact string matching. For example, the genomes of different but evolutionary
related organisms will contain many regions where they still share a certain degree of
similarity. However, in order to recognize these common genetic sequences one has to

be able to cope with the mutations introduced over time.

In our case there was a particular application from computational biology that
initiated our research in the field of approximate string matching. The so-called EST-
clustering is a process where relations between a very large number of short DNA
fragments are analyzed (EST = expressed sequence tag, piece of a gene). To achieve
this, all fragments have to be compared with all other fragments. This is typically
done with approximate string matching. An important part of this thesis was the
development and implementation of QUASAR, an algorithm for efficient comparison
of many short DNA sequences with a large EST database.

Dynamic Programmang

Early methods for locating approximate matches of a pattern P in a string S were
based on dynamic programming. They compute the entries of a matrix of size |P| x |S]|
and can be used to determine the similarity or distance of P and S in time O(|P||S]).
While these algorithms can detect even very distant approximate matches, they suf-
fer from their comparatively slow runtime, especially for applications with very large
databases or many queries.

Filter Algorithms

This problem led to the development of various faster methods for approximate
string matching in general and for computational biology in particular. A common
principle shared by many of these algorithms is the idea of filtering. Filter algorithms
typically consist of two phases. Assuming a pattern or query string P and a database
S, the first phase of a filter algorithm uses a simple and highly efficient filter criterion to
analyze S. This filter criterion is a set of one or more conditions designed to recognize
regions in S that contain potential approximate matches. Usually it will only mark
small stretches of S that have a reasonable level of similarity or distance to P. In
the second phase, the verification phase, a slower, conventional approximate string
matching algorithm is used to analyze the potential candidates returned by the filtration
phase and detect those that actually contain approximate matches. A filter criterion
should be quick to evaluate, resulting in a short runtime for the filtration phase, and
have a high filtration efficiency, i.e. discard as much of S as possible without loosing
any true matches. A smaller number of potential matches will decrease the runtime of
the verification phase.

On-line and Off-line Matching

There are two subclasses of approximate string matching. One instance — called

the on-line approximate string matching problem — does not allow preprocessing of the
database S before the actual search is conducted. The time spent for any examination
of S during the search is considered part of the search time. In the other — the off-
line version — one can examine the database S, gathering information about it and
saving this information in index data structures in a preprocessing stage. The time
required for preprocessing is not considered part of the runtime of a search in this
model. The construction time of an index and the amount of space required for storing
it are nevertheless quite important to the practical usefulness of such algorithms.

Off-line string matching is useful for databases that change slowly and where a
large number of searches on the same database are necessary. Frequent changes of
the database can only be handled if the preprocessing step is sufficiently fast. On-line
string matching is more useful for rapidly changing databases and for cases where only
a small number of searches in a given database have to be performed. In these cases
the overhead for preprocessing the database becomes significant and reduces the overall
efficiency of index-based approaches.

Reasons for Off-line Algorithms

The motivation for our initial work in this area came from a project at the German
Cancer Research Center in Heidelberg. The goal was to analyze the set of all known
Mouse ESTs in order to group them into clusters of similar fragments and to build
consensus sequences out of these sets. The database containing all Mouse ESTs at that
time featured roughly 200 000 fragments with an average length of about 400 nucleic
acids resulting in a database containing 80 million characters. For the first step of
the cluster project, an all vs. all comparison of the Mouse ESTs was required. This
corresponded to executing 200000 searches in the database S. An important point
was that the desired level of similarity for grouping ESTs was relatively high. First
attempts in using BLAST, a popular, efficient tool for approximate string matching
in DNA databases, for a small subset of the searches resulted in an expected total
runtime for all searches of roughly 8 days. Since it was also planned to cluster the
Human EST database which at that time had a size of 200 million characters and
would have required an estimated total search time of 7 weeks, plans for implementing
a fast algorithm for high similarity off-line approximate string matching were made.

QUASAR

Our initial idea was to extend an approach described by Jokinen and Ukkonen.
They introduced an algorithm called g-gram filtration and a simple index structure
resulting in a very efficient filter algorithm. g¢-grams are short strings of length gq,
usually substrings of the query and/or the target. We implemented their proposal

and improved several important parts. The implementation which we called QUASAR
resulted in an executable that was able to solve the clustering about 20 times faster
than BLAST. However, the nature of the g-gram lemma which is the foundation of the
g-gram filtration limits this approach to approximate string matching with relatively
high degrees of similarity.

Improving the classic g-gram Lemma

The next natural goal was therefore to search for filters that can benefit from efficient
indices but also allow for higher sensitivity. We were able to explore the nature of
filters based on exact matching of substrings and to increase their range of possible
applications by enhancing their ability to cope with errors.

Gapped q-grams

To achieve these goals we developed two filters based on substrings with gaps, one for
the Hamming and one for the edit or Levenshtein distance. Instead of looking for exact
matches of a string of length ¢ one can decide to only match certain letters of the string.
The other characters in the gaps are basically ‘don’t-care’ characters or wildcards, i.e.
one can match them with any possible character. We call the arrangement of the gaps
a shape. For example if one uses a substring of length four where one places a gap of
size one at the third position this results in the following gapped g-gram:

#H#-#

b ¢

where a ‘#’ stands for a character that has to match and a ‘-’ describes a gap or

‘don’t-care’ character.

Developing filters that use gapped g-grams turned out to be fairly complicated.
When using the Hamming distance, most problems could be overcome with reasonable
effort. However, the case of the Levenshtein distance is much more complex. The
two main problems were the selection of good shapes, i.e. arrangements of gaps, and
the computation of the required number of matching ¢g-grams for a region of S to be
considered a potential match. In the case of the classic g-gram lemma this is simple but
for gapped ¢-grams it requires several non-trivial algorithms. Another problem which
is specific to the case of the Levenshtein distance is the question of handling insertions
and deletions in potential approximate matches. We came up with a relatively simple
method that does not have a very big impact on the runtime of our solution.

We implemented the algorithms based on gapped g-grams and analyzed their per-
formance in a number of experiments. We use two well defined measures, the number

of items that have to be retrieved from the index data structure and the number of
potential matches returned by the filter to allow an unbiased comparison of different
filter algorithms. These values allow characterizing the runtime of the filtration and
verification phase. We then compared the filter approach of BLAST, the classic g-gram
lemma and our two algorithms using gapped g-grams for the Hamming and the edit dis-
tance with each other. Since filter algorithms in general are only suitable for moderate
to high similarity searches we only looked at these cases.

For the Hamming distance we were able to provide a wide range of improved filters.
They reduced the amount of data to be processed in the filtration phase by up to
three orders of magnitude and the amount of potential matches by up to six orders
of magnitude when compared to the classic g-gram lemma. The differences to the
BLAST filter criterion were even larger. Filters that offer a tradeoff between speeding
up the filtration and the verification phase also exist. If using the edit distance, our
filters based on gapped g¢-grams reduced the amount of data to be processed in the
filtration phase and the amount of potential matches by up two oders of magnitude
when compared to the classic g-gram lemma. Again we also provided filters that offer
a tradeoff between speeding up the filtration and the verification phase.

In a second set of experiments we analysed the potential of filters based on gapped ¢-
grams for use as lossy filters, i.e. algorithms that are faster but may miss a small number
of actual matches in the filtration phase. The results imply that gapped ¢-grams are far
better suited than conventional ungapped g-grams for use in lossy filters. A comparison
with the filter criterion implemented in BLAST also yielded very encouraging results
not only for high levels of string similarity but also for moderate levels.

Conclusion

In this work we describe new achievements in the field of off-line approximate string
matching. The first part of our work consists of an improvement and a generalization of
a previously known combination of a filter with a simple index structure including their
implementation. In the second part we introduce two new filter algorithms based on
gapped g-grams which are designed to be used for off-line approximate string matching
and can make efficient use of an index structure. They offer increased speed, filtration
efficiency or a combination of these two when compared to the original filter algorithm
employed in the first section of our work. This extends the range of possible applications
for filter-based approximate string matching algorithms.

Outline

Our work is structured into six chapters apart from the introduction. We begin
with a brief description of basic terms and notions in Chapter 2. Chapter 3 features
index structures for exact string matching. In Chapter 4 we introduce filter algorithms
in general and provide specific examples of existing filters as well as a description of
QUASAR. The following Chapter 5 is devoted to gapped g-grams. Finally we present
extensive experimental results in Chapter 6 and conclude our work in Chapter 7.

Chapter 2

Preliminaries

In this chapter we will introduce some definitions and notions used in our work. Readers
familiar with the topic of the thesis may skip this section and refer to it only when
necessary.

2.1 Stringology

The notion of a string or sequence is of vital importance to this thesis.

Definition 2.1.1: A sequence or string of length n is a n-tuple S = (s1, S2,... , Sp)
over an alphabet ¥ with s; € ¥£,Vi € {1,... ,n}. One can also write S as s1s2... sp-
The length n is denoted by |S| and the set of all finite sequences by £*. Th empty
sequence has length 0 and is written as e.

Definition 2.1.2: For a given sequence S = si...s, the sequence I = s,...5,
with 1 < p < ¢ < n is called the infiz or substring from p to q of the sequence S and
denoted by S(p,q). An infix is called the i-th prefiz of S if p =1 and ¢ = 4; it is called
the i-th suffix of S if p =4 and ¢ = n. A single character at position ¢ in S is denoted
by S(i).

Definition 2.1.3: Given a string S = s1 ... sp, we define the period of S as

E{I{lin }{i|Vj e{l,...,n—1}:S()=S>GE+75)}

.

The period is basically the smallest amount of characters by which one has to shift
S to the right in order for the overlap between the shifted and the unshifted string to
be equal.

2.2 Graphs and Trees

We also need the concept of trees which are a special instance of a graph. We will list
a few important definitions here (taken from [CLR90]).

Definition 2.2.1: A directed graph G is a pair (V, E) where V is a finite set and
E is a binary relation on V. The set V is called the verter set of G, and its elements
are called wvertices. The set E is called the edge set of G, and its elements are called
edges. An edge e that connects two vertices u and v with u,v € V' is written as (u,v).

Definition 2.2.2: An undirected graph is a directed graph modified so that the
edge set E consists of unordered pairs of vertices, rather than ordered pairs. That is,
an edge is a pair (u,v) where u,v € V and u # v. In essence this means, that while
in the directed case an edge (u,v) only represents a connection from u to v, in the
undirected case it also represents a connection from v to u.

Some further graph terminology:

Definition 2.2.3: If (u,v) is an edge in a graph G = (V, E), we say that vertex
v is adjacent to vertex u. When the graph is undirected the adjacency relation is
symmetric, when it is directed this is not necessarily the case.

Definition 2.2.4: The degree of a vertex v in an undirected graph is equal to the
number of edges in £ that contain v. In a directed graph the out-degree of a vertex
is the number of edges leaving it, and the in-degree of a vertex is the number of edges
entering it. The degree of a vertex in a directed graph is the sum of in-degree and
out-degree.

Definition 2.2.5: A path of length k from a vertex u to a vertex v’ in a graph
G = (V,E) is a sequence (vg,v1,... ,vx) of vertices such that u = vg,u’ = vy, and
(vi—1,v;) € E for i = 1,2,... ,k. A path is simple if all vertices in the path are
distinct. In an undirected graph, a path (v, v1,... ,vg) forms a cycle if vy = v and
v1,... ,V; are distinct. A graph without is acyclic. An undirected graph is connected
if every pair of vertices is connected by a path.

Some graphs with specific properties are given special names. One instance is the
so-called tree.

Definition 2.2.6: A tree is a connected, acyclic undirected graph. A rooted tree

is a tree in which one of the vertices is distinguished from the others. This vertex is
called the root of the tree. We refer to the vertices of rooted trees as nodes of the tree.

Rooted trees have several notions associated with them:

Definition 2.2.7: Consider a node z in a rooted tree T' with root r. Any node y
on the unique path from r to x is called an ancestor of x. If y is an ancestor of z, then
z is called a descendant of y. Every node is both an ancestor and a descendant of itself.
If x # y, then y is a proper ancestor of x and z is a proper descendant of y. If the last
edge on the path from the root r of a tree T' to a node z is (y,), then y is the parent
of z, and z is a child of y. The root is the only node in 7" with no parent. If two nodes
have the same parent, they are siblings. A node with no children is an external node
or leaf. A non-leaf node is an internal node.

The degree of a node in a rooted tree is defined differently than that of a vertex in
a graph:

Definition 2.2.8: The number of children of a node z in a rooted tree T is called
the degree of . The length of the path from the root r to a node z is the depth of x
in T'. The largest depth of any node in 7' is the height of T

2.3 Pattern Matching

In string matching as well as in other areas of pattern matching one often uses the
following 4 descriptors to describe classes of results of a search. Assume a query P
and a database S and a definition of a match between P and an entry in S as well as
an algorithm that attempts to locate all matches according to this definition. Those
matches that are true matches according to the match definition and are reported by
the search algorithm are called true positives. Those that are true matches but are
missed by the algorithm are referred to as false negatives. Matches that are not true
matches but reported as such are false positives and those that are neither true nor
reported matches are true negatives.

2.4 DNA Sequences

Parts of this thesis discuss problems originating in the field of genetics and compu-
tational biology, namely DNA sequence databases. DNA, Deoxyribonucleic acid, can
be thought of for our purposes as a string in the four-letter alphabet of nucleotides or
nucleic acids A, T, G and C which denote the molecules adenine, thymine, guanine

and cytosine. The entire DNA of a living organism is called its genome. Genomes vary
in length from a few million letters (bacteria) to a few billion letters (mammals). DNA
forms a helix. It is usually double-stranded with each single strand being the so-called
Watson-Crick complement of the other where T pairs with A and C pairs with G.
Since the complement is well-defined it is sufficient to store only one strand of a given
sequence. Typical sequence databases contain DNA in the form of one or more strings
over the four-letter alphabet of nucleotides. For each sequence they usually store a
header with additional information about this string. The length of a DNA sequence
or DNA databases is often measured in base pairs (bp).

10

Chapter 3

Indexing — Data Structures for Exact

String Matching

Our work in the field of approximate string matching is based on filter algorithms.
When matching two strings, these algorithms use a filter criterion to search for poten-
tial approximate matches between the two strings. These potential matches are then
verified with a conventional algorithm for approximate string matching. Many filter
criteria rely on exact matching of short substrings of query and target. We will describe
filter algorithms more closely in the next chapter, but before we want to introduce some
data structures for solving the off-line exact string matching problem and explain their
properties. In this context we speak of off-line matching since we allow preprocessing
of the longer string. Since many filter algorithms only require matching g-grams, sub-
strings of a fixed length ¢, we also introduce a restricted version of the off-line exact
string matching problem. We call it off-line exact string matching with a fized string
length q and provide an efficient solution.

3.1 Exact String Matching

A vital basic operation for many methods and algorithms in approximate string match-
ing and database search is the following:

Definition 3.1.1: For a given pattern or query P = p1 ... py, and a database string
or target S = $1...8, the problem of exact string matching consists of finding all

11

starting positions ¢ in S where S(i,7 + m — 1) = P, i.e. P matches the substring of
length m that starts at position ¢ in S.

In most applications |S| > |P|.

There are two different versions of the exact string matching problem. One, the
so-called on-line version, is limited to working on two previously unknown strings P
and S. The off-line version allows the algorithm to collect and store information about
the structure of S before solving the problem. These two different versions of the
exact string matching problem have been examined very closely in the past and many
different algorithms have been developed for solving them. It should be noted that
there exist two exactly reversed naming schemes for these algorithms that switch the
terms on-line and off-line [AG97, Nav01]. We will stick to the more intuitive one used
in [Nav01].

3.2 On-line Exact String Matching

On-line exact string matching consist in solving the problem stated above without any
previous knowledge about the two strings P and S. Therefore a trivial lower bound
for the asymptotic runtime is Q(n + m) since all characters in P and S may have to be
checked in order to find all occurrences of P in S.

Various algorithms for the solution of the on-line exact string matching problem have
been published. Examples include algorithms by Knuth, Morris and Pratt [KMP77],
Boyer and Moore [BM77] or Apostolico and Giancarlo [AG86].

3.3 Off-line Exact String Matching

The advantage of the off-line exact string matching problem when compared to the
on-line version is the fact that one is allowed to examine the string S and record
information about it before searching for all approximate matches of a string P in S.
Data structures that are used to collect information about S and make them readily
available are commonly called index structures or indezes. The two main features of
such index structures are their space consumption and their access speed. Both of
these parameters are characterized in dependency on the size of S. The use of index
structures allows a much faster solution of the exact string matching problem than the
on-line version. In this section we will present a few efficient index structures that can
be used for exact string matching and describe their performance.

Two other important properties of index structures are their construction time and

12

construction space. In order to be of practical use, it is important that an index can
be constructed within reasonable time and without consuming excessive amounts of
space. Databases with frequent changes in S require faster construction algorithms
than relatively static ones.

3.3.1 The Suffix Tree

A popular data structure for exact string matching that also provides other powerful
operations is the suffiz tree [Wei73].

Definition 3.3.1: A suffiz tree T for a string S with |S| = n is a rooted tree with
exactly n leaves labeled 1 to n. Each internal node, other than the root, has at least two
children and each edge is labeled with a nonempty substring of S. No two edges from
a node to its children can have edge-labels beginning with the same character. The key
feature of the suffix tree is that for any leaf 4, the concatenation of the edge-labels on
the path from the root to ¢ exactly match the suffix of S that starts at position ¢, i.e.
it spells out S(7,n).

This definition does not guarantee that a suffix tree exists for a given string S. The
problem is that if one suffix of S matches a prefix of another suffix of S, no suffix tree
obeying the above definition is possible, since the path for the first suffix would not
end at a leaf (the tree would have to contain a node in which two outgoing edges share
the same first character). To avoid this problem one assumes that the last character of
S appears nowhere else in S. Then, no suffix of S can be a prefix of another suffix. In
practice one concatenates a unique ’termination’ character $ to S before creating the
suffix tree for S. Figure 3.1 shows the suffix tree 7 for the string abbaba

A suffix tree provides an efficient mechanism for solving the off-line exact string
matching problem. It is possible to access all occurrences of a given string P by
matching the characters in P along the unique edges of 7 until one either reaches the
end of P or one can not find further matches in 7. In the first case all leaves in the
subtree below the point of the last match are labeled with the starting positions of P
in S. In the second case there is no occurrence of P in S.

The runtime of this procedure is O(m + 0) assuming o occurrences of P in S and a
finite alphabet. The key to understanding this runtime is to note that each node in T
has at most || outgoing edges (since no edges can have edge-labels beginning with the
same character). Stepping through a node in the suffix tree therefore requires constant
time (at least for a finite alphabet, where the size is considered constant). Since each
outgoing edge of an internal node contains a non-empty substring the number of nodes
one has to access in order to find an instance of P in the concatenated edge-labels

13

S=abbaba$
1234567

Figure 3.1: The suffix tree T for the string abbaba.

is at most m. If P does not exist in S this results in visiting at most m nodes and
therefore requires O(m) time. For the case where P has o > 0 occurrences in S one has
to traverse the subtree at the end of the matching path using any linear-time traversal
method (e.g. depth-first) and record the encountered leaves. Since every internal node
has at least two children, the number of leaves accessed is proportional to the number
of edges traversed, so the time for the traversal is O(0). The total runtime is therefore
O(m + o).

The main drawback of suffix trees is their space consumption. With a properly cho-
sen representation of the edge-labels in the tree a linear space bound can be achieved.
The constants involved depend on the alphabet size. The reason for this is that any
internal node can have up to |X| outgoing edges and that the nodes have to be im-
plemented to accommodate for this. There are many problems nicely solved in theory
by suffix trees, where the typical string size is in the millions or even billions. For
those problems a linear space bound in itself is not sufficient to ensure practicability.
Consequently space-efficient implementations of suffix trees are of vital importance.
Recent examples include work by Kurtz [Kur99] who presents an implementation that
requires roughly 7 to 20 bytes per character in S with |S| limited to 227. As a side note
related to genomic databases we want to mention that the space consumption for DNA
files that Kurtz tested was roughly 12.5 bytes per character. While this is already a
considerable improvement over simpler implementations it can still be impractical for

large texts.

The first linear time algorithm for constructing a suffix tree was introduced in
Weiner’s original paper from 1973 [Wei73], although he then called his tree a position
tree. A different, more space efficient algorithm to build suffix trees in linear time was

14

introduced by McCreight [McC76] in 1976. Ukkonen developed a less complex version
in 1995 [Ukk95]. In 1997 Farach published an optimal suffix tree construction algorithm
for integer alphabets [Far97].

Highly space-efficient implementations usually lead to increased construction times
which, while still linear, can become an issue for large datasets. Also the amount of
memory required to construct a suffix tree can be significantly higher than the actual
space required for storing it.

As a conclusion it should be mentioned that suffix trees, while offering very efficient
solutions to a wide range of problems in stringology, lack the required properties for
our applications. The main problem is their space consumption. Therefore we looked
for a more space efficient approach.

3.3.2 The Suffix Array

This data structure was introduced by Manber and Myers [MM93] in 1990. While not
as versatile, it is more space efficient than the suffix tree and can be used to solve the
off-line exact string matching problem with comparable efficiency.

Definition 3.3.2: Given a string S with |S| = n the suffiz array A for S is an array
of integers in the range 1 to n , specifying the lexicographic order of the n suffixes of
the string S. That is the suffix starting at position A[1] of S is the lexically smallest
suffix, and in general suffix A[7] is lexically smaller than suffix A[i + 1].

Again one uses a unique ’termination’ character in order to distinguish suffixes
where one is a prefix of the other. This termination character is usually defined to be
either lexicographically smaller or greater than all characters in the alphabet. Figure 3.2
shows the suffix array A for the string abbaba.

1: abbabat$ 4: aba$
2. bbaba$g 1: abbaba$
3: baba$ 6: a$
4: aba$ — e 3: baba$
5 b a$ SORT 5 ba$
6: a $ 22 bbabats
7% 7. $
S=abbaba$
1234567
Suffix Array: 4 16 3527

Figure 3.2: The suffix array A for the string abbaba.

15

In contrast to the suffix tree, the suffix array only contains integer pointers to the
suffixes of S; its size is therefore completely independent of the alphabet size |%|. Hence
it is possible to store a suffix array A for a given string S of length n in n pointers of
size [logy n] bits. In practice this usually means that one uses the next larger available
word size the hardware offers. For texts of sizes below 4 GB this means a pointer of
size 4 bytes. The total space consumption of the suffix array would therefore be 4n
bytes for such texts. The second consequence of the independence of alphabet size is
that in general, suffix arrays are faster than suffix trees for large alphabets and slower
for small alphabets [MM93]. This is related to the fact that the nodes of a suffix tree
grow with the size of the alphabet, which leads to an increase in the time required for

examining a node in the tree during a search.

In the original suffix array paper Manber and Myers also introduced two algorithms
for efficient exact string matching. One of them uses only the suffix array, the other re-
quires an auxiliary data structure containing the longest common prefizes of all suffixes
with pointers that are adjacent to each other in the suffix array.

The algorithm using only the suffix array is very simple. One can conduct a binary
search in A in order to find the two pointers A[s] and A[l] in A that point to the suffixes
in S which are the largest/smallest suffix that is lexicographically smaller /larger than a
query pattern P. In each step of the binary search one has to compare P with the suffix
that A points to. This requires at most |P| = m character comparisons. The binary
search can be completed in O(logn) steps. The total number of character comparisons
executed by this search algorithm is therefore O(mlogn). In addition to the binary
search one has to access the [— s — 1 pointers between A[s] and A[l] that point to the
occurrences in the database string S. We call this number of occurrences o. The total
time for locating and accessing all occurrences of P in S is therefore O(m logn + o).

By using a second data structure containing precomputed information about the
length of the common prefix between certain entries in the suffix array one can speed
up the search and it is possible to achieve a runtime of O(m + logn + o) character
comparisons. A detailed description of this slightly more complicated algorithm can
be found in the original suffix array paper as well [MM93]. The extra space required
for the array with the longest common prefixes is n integer entries with a value of at
most |P| = m. This results in a (theoretical) increase by n - [log, m] bytes. However,
unless one implements the array using a space optimal bit-manipulation approach it
will usually result in adding 4 - n bytes of extra storage on most systems.

Suffix arrays can in principle be constructed in linear time. This is done by first
generating the suffix tree and then extracting all the leaves from it and storing their
pointers in the suffix array. This of course means that one has to provide the space
required for building the suffix tree of a given text. It also means that while the

16

asymptotic runtime may be linear one will have to deal with quite large constants
due to the complicated nature of the suffix tree construction. Therefore in practice
one often uses other algorithms for the suffix array construction. Manber and Myers
introduced an O(nlogyn) time construction algorithm in their original work about
suffix arrays [MM93]. In case one has to construct the suffix array in external memory,
a widely used construction algorithm is the one by Baeza-Yates, Gonnet and Snider
which constructs the suffix array in place [GBYS92]. A good survey of suffix array
construction algorithms in external memory was published in 2002 [CF02].

When comparing suffix arrays with suffix trees with respect to their suitability for
solving the exact string matching problem, it turns out that while suffix arrays are of
comparable speed they offer savings in space consumption. Another important issue is
the fact that suffix arrays are relatively simple to implement.

3.3.3 Other Indexes for Exact String Matching

There exist many more indexes for exact string matching like for example patricia trees
[Mor68], prefix trees [Wei73] which are also known as position trees [AHUT74] or string
B-trees [FG99]. Because our main concern was the space consumption of the index and
since the suffix array turned out to be the best in that respect we forego further, more
detailed descriptions of these indexes.

We would like to mention that recently Ferragina and Manzini introduced the so-
called FM-index [FMO1], which is basically a compressed suffix array. It might be
interesting to evaluate the suitability of this index for our problem. The tradeoff be-
tween access time and index size might be an interesting alternative for some problem

instances. A second publication concerning compressed indices comes from Grossi and
Vitter [GV00].

3.4 Exact String Matching with Fixed Length ¢

One can restrict the problem of exact string matching to strings of a predetermined,
fixed length ¢g. The algorithms we developed only require an efficient solution for this
case since they use short g-grams to locate potential matches in S. Therefore we
concentrated on exploiting this restriction and solving what we call the problem of
exact string matching with fized length q.

Definition 3.4.1: The problem of exact string matching with a fixed length q is a
special case of the exact string matching problem. Again, for a query string P and a
database string S one wants to locate all occurrences of P in S and report them. We

17

call such occurrences hits. As a further restriction one requires the query to have a
fixed length gq.

This modified version of exact string matching allows further improvements of index
structures with respect to access speed.

3.4.1 A Word Lookup Table

An example for such improvements is a simple word lookup table, namely an array of
hit lists, employed for example by Jokinen and Ukkonen [JU91]. It requires a limited
size alphabet ¥ and allows improvements of access speed at the cost of additional space
consumption compared to approaches for the general exact string matching problem.
A drawback of this data structure is that it is only practical for relatively small values
of ¢ and moderate alphabet sizes.

Definition 3.4.2: Given a string S of length n over an alphabet ¥ and a fixed
string length ¢, the word lookup table for g-grams consist of an array W of size |X|?
and |X|? hit lists H(3),0 < ¢ < |2]9. One assigns each element z € ¥ an integer ID
Z(z) between 0 and |X| — 1 and uses the canonical encoding

qg—1
F(s)=> Z(sG+)5, sex?
=0

of all strings of length ¢ into integers of base ¥ that assigns them numbers between
0 and |X|?7—1 (see for example [KR87]). For each possible string s of length ¢ one saves
the list of all its occurrences in S in its corresponding hit list H(F(S)). In order to
be able to access this list efficiently one inserts a pointer to it into the array position

WIF(S)]-

To construct this data structure one uses the encoding of all strings of length ¢ into
integers of base |X| to uniquely identify them. For each possible string one generates
a list of all its occurrences in S. The second step is to generate an array of pointers
to the lists of occurrences or hit lists. The array is indexed by the integer IDs of all
possible g-grams.

With dynamic lists the hit lists can be generated in one pass and in time O(n).
Creating the array of pointers requires O(|2|?) time. Therefore the total construction
time for this data structure is O(n + |X|9).

In practice a two-pass construction that stores the hit lists in one large array instead
of in lists makes more sense. One generates two arrays W and H of sizes |X|?+1 and n.

18

W will later contain the starting positions (i.e. the offset) of the hit lists in the second
array. In the first pass one scans S and uses W (which has to be initialized to contain
only zeros) to count the number of occurrences of each possible string s of length ¢
by incrementing W[F(s)] every time one finds the g-gram s. One then calculates the
offsets of the hit lists in the second array by iterating over W setting W[0] to zero and
Wi] to the number of hits in all hit lists from 0 to 4 — 1. In the second pass one scans
S again and for each g-gram s one looks up the offset of its hit list in W [F(s)], writes
it position in S into H at that offset and then increments the offset in W[F(s)]. This
of course modifies W and in order to reset it to the original values one has to shift all
values in W one array element to the right and reset W[0] to 0 in a post-processing
step. Figure 3.3 shows W and H for the sample string abbaba.

q=2 123456
S=—abbaba

ab 'a al[a bl [b a] [b b]

2: b b - 3 2

3: ba 5

4: a b

5: b a

H :[1 4

Figure 3.3: The offset array W and the hit list array H for the string abbaba.

Due to the nature of F, the hit lists are stored consecutively and in ascending
lexicographic order with respect to the substrings they encode.

These two arrays provide efficient access to all occurrences or hits of a given query
P in S. One simply has to compute F(P), the integer ID of P, and access the start
offset of the hit list in W[F(s)]. The end of the hit list can be determined by looking
up the start of the next hit list, W[F(s) + 1] and subtracting one from it. Assuming
there are o occurrences of P in S, this results in an access time of O(|P| + 0). While
this is asymptotically the same as, for example, for a suffix tree, the constants involved
are much smaller.

An additional benefit of this index is that one does not have to access the actual
sequence of S anymore. All information is contained in H and W. This results in much
better locality of memory access than that of other index structures and makes this
index a good candidate for use in external memory algorithms.

19

3.4.2 Combining Suffix Array and Lookup Table

In the course of implementing an approximate string matching algorithm we wanted
to be able to experiment with variable values of ¢. In order to avoid the necessity of
constructing and storing several versions of the lookup table we used a suffix array
instead of the hit list array H. This has the advantage, that the hits in the suffix array
are sorted not only for one value of ¢, but for all. It allowed us to construct several
lookup arrays W for the different values of ¢ we were interested in. However, there
is also a small drawback to this approach. Since a suffix array considers all suffixes,
even those shorter than ¢, this will result in a few additional false hits for some queries.
In our algorithms this effect was negligible due to the small number of such cases.
Figure 3.4 shows the lookup table when combined with a suffix array instead of H as
in Figure 3.3. The single suffix shorter than ¢ is shaded gray to mark the difference to
a conventional lookup table.

4

q=2 123 56
S=abbaba

1: ab 'a ajlab] b allbb]
:bb 2
:ba
4: a b
5: b a

Suffix Array: 4 1|6

= Suffixes shorter than q

Figure 3.4: Using a suffix array instead of H for the string abbaba and g = 2.

3.4.3 Large Values of ¢ — a Hybrid Approach

Of course the practicality of this index suffers when one wants to use larger values of ¢
or large alphabets. Since the array of offsets W requires storing |X|? + 1 integers, large
alphabets and/or large values of ¢ render this approach impractical. However, one can
still combine this technique with a suffix array in order to achieve a certain speedup.

Again we assume a query string P of length ¢ and a target string S. We first
construct the suffix array for S. This suffix array is almost the same as the array of
hit lists H for a certain value of q. There are only two differences. One is the fact that
the suffix array contains pointers to suffixes that are shorter than ¢ while H does not
contain the offsets of these suffixes. It is trivial to remove these pointers from the suffix

20

array to avoid any problems. The second difference between H and the suffix array
is the way in which the hit lists are organized. While in H the hit list for a certain
g-gram will be ordered by the occurrences of the g-grams in S (at least if one uses
the construction algorithm that we described above), this is not the case for the suffix
array. Here the hit list is ordered by the lexicographic order of the suffixes to which
the entries in the hit list point to. One can make use of this fact when searching for
exact matching strings with higher lengths ¢. In order to do so one builds the array of
hit lists using the suffix array as H and using the largest practical value of ¢, gindes-
Then the search for all occurrences of a string P of length g > ¢;pder can be conducted
in two phases. In the first phase one searches for the sub-array of H that contains the
hit list for the prefix of P with length ¢;n4e,. This sub-array contains all pointers to
occurrences of suffixes that have the first ¢;;, 4., characters in common with P. In order
to actually locate the sub-array that contains pointers to matches between P and S,
the same binary search approach on the current sub-array can be applied, that is used
for searches in suffix arrays. This two-phase approach reduces the number of accesses
to the text string S which may not make much of a difference for an internal memory
index but can be quite interesting for an external one. In any case it increases the
locality of the memory access pattern of the search.

21

Chapter 4

Filters for Approximate String Matching

Our primary research goal was the development of efficient algorithms for solving cer-
tain variants of the off-line version of the approximate string matching problem. The
terms on-line and off-line have the same meaning as for exact string matching, i.e. in
the off-line version of the problem it is possible to preprocess the database and store
information about it in an index while in the on-line version it is not.

The variants of the off-line approximate string matching problem which we consider
are vital for many scientific and commercial applications. Examples include text re-
trieval, signal processing, optical character recognition and pattern recognition. They
have become increasingly important in recent years with the advent of large genomic
databases since many applications in computational biology query these databases
[Wal95]. The particular problem that initiated our work in the field of approximate
string matching was EST clustering [KV98]. More examples include genome assem-
bly [WM97, VAS*98, MSD*00, VAM™01], gene finding [BHO00], or large-scale genome
comparison[MAM™02].

In this chapter we want to introduce three different well-known filter criteria. We
also describe QUASAR, our implementation of a filter algorithm that combines one of
them with an index structure to provide a highly efficient solution of an important ap-
proximate string matching problem. The development of QUASAR lead to new results
which were published at the RECOMB conference in 1999 [BCF199]. Furthermore, in
order to be able to measure and describe important properties of filter algorithms, we
introduce methods for the theoretical and experimental analysis of filter algorithms. Of
special interest in this regard is the minimum coverage, a new measure for analysing

23

and predicting filter performance.

4.1 Some Approximate String Matching Problems

There are several variants of the approximate string matching problem. One reason
for this are the many different definitions of similarity or distance. Which is used
for a specific problem depends on the types of strings being matched as well as the
time constraints for the approximate string matching algorithm. In general, more
sophisticated measures of similarity or distance require more complicated algorithms
and data structures for solving the problem and lead to an increase in runtime. In many
cases compromises with respect to quality are made in order to speed up searches.

A second important property of approximate string matching problems is whether
they are global or local. Global approximate string matching for a given query P and
a target S is defined as locating approximate matches between P and substrings of
S. In contrast to this, local approximate string matching also locates approximate
matches between substrings of P and S. An important parameter for local matching
is the minimum length of the matches since very short matches are usually extremely
common. We call this minimum match length the window length and assign it the
variable w. Local approximate string matching would of course be able to detect a
match of the complete query against a substring of S as well. The choice between
global and local matching depends on the type of problem that is being considered.
Obviously, local matching is more powerful since it will also detect matches between
the complete query P and substrings of S, but it also introduces additional complexity.

4.1.1 Distance Measures

A very common distance measure for strings is the so-called edit distance. It is some-
times referred to as Levenshtein distance in recognition of the paper by V. Levenshtein
[Lev66] where it was probably first discussed.

Definition 4.1.1: The edit distance of two strings S; and Sy is defined as the
minimum number of character-wise edit operations necessary to transform Sy into Ss.
A single edit operation can either delete or replace a character in S; or insert a new
character into S;. We write the edit distance as dg(S1, S2).

One of the reasons for the popularity of the edit distance in computational biology

is that it is a simple but fairly accurate measure for the evolutionary proximity of two
DNA sequences that reasonably similar to each other.

24

A second, simpler distance measure is the so-called Hamming distance introduced
by R. W. Hamming [Hamb50].

Definition 4.1.2: The Hamming distance of two strings S; and So is defined as
the minimum number of character-wise replacement operations necessary to transform
S1 into So. A single operation can replace a character in S; with a different one in Ss.
We write the Hamming distance as dg (51, 52)-

This distance is clearly not as powerful and not suitable for many applications.
Nevertheless there exist practical problems for which using the Hamming distance is
sufficient or even desirable.

4.1.2 Four Interesting Variants

Using the notions from before we define four important variants of the approximate
string matching problem. The first is the so-called k-differences problem which uses
the edit distance and is based on global matching.

Definition 4.1.3: For a given query string P = p;1...p, and a database string
S = s1...8, the k-differences problem is that of finding the set M of all substrings
S(7,7) of S which have an edit distance of at most k to P, i.e. where dg(P,S(i,7)) < k.
We call members of M true matches or short matches and M the set of true matches.

The local variant of this problem is called the substring matching problem with
k-differences.

Definition 4.1.4: For a given query string P = p1 ... p,, and a database string S =
81 ... 8y the substring matching problem with k-differences is that of finding the set M
of substrings S(i, j) of S which have an edit distance of at most k to a substring P(z,y)
of P, i.e. where dg(P(z,y),S(i,7)) < k. In practice one adds a second parameter, the
window length w. One only searches for pairs of substrings where y — x + 1 > w, i.e.
where the substring of P has a certain minimum length. This is necessary to avoid
trivial matches between single characters or very short substrings of P and S. Again
we call members of M true matches and M the set of true matches.

For w = m this problem is equivalent to the k-differences problem.

Both of these problems can also be formulated using the Hamming distance. In this
case they are called the k-mismatches problem and the substring matching problem with
k-mismatches which are the global and local variants of approximate string matching
using the Hamming distance.

25

4.2 Lossless and Lossy Algorithms

When we talk about algorithms for the problems described above, we distinguish be-
tween two different classes, lossless and lossy algorithms. We speak of lossless algo-
rithms for approximate string matching if they are able to locate all true matches.
Some algorithms are not as perfect and may miss some true matches resulting in false
negatives. We call them lossy algorithms for approximate string matching. They usu-
ally offer increased speed and can be, depending on the amount of false negatives,
good alternatives for many applications. It is also possible that the same algorithm
is a lossless algorithm for certain parameters but becomes a lossy algorithm for other
parameters such as, for example, higher values of k in the above problems.

4.3 Algorithms for On-line Approximate String Matching

The on-line version of the k-differences and k-mismatches problem has been studied
quite thoroughly (see for example [AG97, Nav01]). There are several variations of an
algorithm based on dynamic programming for the so-called pairwise global alignment
problem ([NW70, Sel74, SW81]) which can be used to solve them. They are lossless
algorithms which require O(nm) time and can therefore be impractical for conducting
large numbers of searches on long target strings and databases. Myers introduced a bit-
parallel version in 1999 [Mye99] which runs in time O(nm/w) where w is the word-size
in bits. Nevertheless the runtimes can be too large for certain applications.

This lead to the development of lossy algorithms for the on-line version of the k-
differences problem. Two important algorithms from the late 1980s and early 1990s
are FASTA[PL8S8, Pea90] and BLAST[AGM 190, AMS™97]. Their expected runtime is
O(mn) with BLAST having smaller constants for most applications.

Algorithms for the on-line versions of approximate string matching usually proceed
by sequentially scanning the database. We call such algorithms sequential algorithms.

4.4 Filter Algorithms

One class of algorithms for the off-line versions of the 4 problems introduced above are
the so-called filter algorithms. Filter algorithms consist of at least two phases. In the
first pass they conduct a fast but cursory inspection of S with a filter criterion which is
a set of one or more conditions used to decide whether a given region of S is a potential
candidate for a match with P or a substring of P in the local case. We call this region
a match region. Its exact form can differ. The first stage of the filter algorithm is the

26

filtration phase and the candidates returned by it are potential matches. Evaluating
the filter criterion for the database S and a given query P is usually significantly faster
than using a conventional non-filtering algorithm to examine S. All substrings of S
that are returned as potential matches by the filter are then further analyzed with
such a conventional approximate string matching algorithm in order to detect the true
matches between P and S. This second stage of the filter algorithm is called verification
phase. Typically the filter criterion will return only a small subset of S as potential
candidates for approximate matches with P or substrings of P thus the verification
phase requires far less time than applying a conventional algorithm to the complete
database. Figure 4.1 contains a flow chart of a typical filter algorithm.

| S |

L4

Filter . .
P filtration phase

Criterion

’—mentia] matches
&S‘Zﬁ _—

Conventional I
EI—> verification phase

Algorithm

true matches

| s I

Figure 4.1: The structure of a typical filter algorithm.

In general, a good filter criterion will dramatically reduce the amount of data that
has to be evaluated in the verification phase. This can result in a significant speedup
when compared to conventional approximate string matching algorithms.

There are different types of filters. Lossless filters guarantee reporting all true pos-
itives in the set of potential candidates. Their only possible ‘errors’ are false positives,
i.e. reporting sequences that are not an approximate match as potential matches. Lossy
filters can also miss true matches which results in false negatives. They are typically
even faster than lossless filters and offer a tradeoff between speed and reliability.

Some filter algorithms apply more than one filter either in parallel (by determining
the intersection of their individual filter results) or in sequence (by iteratively applying
different filters to the filter results of their predecessors).

When analysing the speed of a filter algorithm and the ability to distinguish between
true and false positives, certain notions are important. Given a string S, we define any

27

starting position of a substring of S that is a true match to the query P (or a substring
of P in case of local matching) according to the problem definition as a matching
position. It should be noted that even though there are usually many substrings of
different lengths for a given starting position in S, in most cases only few of these
substrings will constitute true matches. In this case we still consider this starting
position a matching position. Those starting positions for which all substrings of S
starting at that position do not constitute a true match with P or a substring of P in
the local case are called non-matching positions. We define P(S) to be the set of all
matching positions and N(S) as the set of non-matching positions. A filter criterion
will return match regions that contain potential candidates and in doing so mark some
starting positions of substrings in S as potential matching positions, the set of which
we call PM (S). The set of rejected starting positions is defined as PN (S). We call the
set of true positive starting positions T'P(S), the set of false positive starting positions
FP(S), the set of false negative starting positions F'N(S) and the set of true negative
starting positions T'N(S). Figure 4.2 contains a graphical representation of all sets
mentioned above for a typical lossless filter algorithm. The set of potential matches
PM(S) contains all matching positions P(S) which form the set of true positive starting
positions T'P(S) as well as some of the non-matching positions N(S) which form the
set of false positive starting positions F'P(S). The non-matching positions that are
rejected by the filter form the set of true negative starting positions TN (S). The set
of false negative starting positions F'N(S) is empty since a lossless filter never misses
true matches.

TP(S)

PM(S)

P(S) ey

Figure 4.2: A typical lossless filter.

Figure 4.3 shows all the sets for a typical lossy filter algorithm. Here F'N(S) is not

28

empty.

FN(S)

TP(S)

P(S)

Figure 4.3: A typical lossy filter.

Using the sets defined above we can define an important concept that we call the
filtration efficiency:

Definition 4.4.1: Given a filter algorithm and a query P as well as a target string
S for which N(S) is the set of non-matching positions with P and for which the filter
algorithm rejects the starting positions PN(S), we define the filtration efficiency fe as

_ [PN(S)]

fe="Ns)

the ratio between the rejected and non-matching starting positions.

The filtration efficiency is a good measure of the ability of a filter to discard un-
interesting regions of S and reduce the amount of work necessary in the verification
phase. We would like to mention that there exist other, different definitions of filter or
filtration efficiency. However, we decided to use the one introduced above since it best
suited our needs in describing this aspect of filter algorithms.

To illustrate the filtration efficiency we present a few special cases for which it has
special values. If, for example a filter is capable of discarding all false positive starting
positions, i.e. it reports only true matches, then it has a filtration efficiency of one or
100%. Another extreme case would be a filter that recognizes all false positive starting
positions as potential matches. In this case the filtration efficiency would be zero or

0%.

29

In the following we analyze the speedup possible with filter algorithms and the
dependencies between the speed of the filter criterion and the verification algorithm.
We assume the evaluation of the filter criterion as well as the verification phase to have
a runtime linear in the size of S. If one defines vy as the throughput of the algorithm
computing the filter criterion (e.g. in characters per second) and v, as the throughput
of the verification algorithm and neglects the influence of increased similarity of the
potential matches with the query P one can approximate the speed increase for using
a filter algorithm. The time ¢, required to solve the problem solely with a conventional
algorithm can be expressed as:

151

Vy

te =

where v, is the throughput of the conventional algorithm.

Assuming no true matches, the fraction of the database remaining after the filtration
phase would be 1 — f.. Therefore, the time required by the filter algorithm using the
same conventional algorithm for verification would be the sum of the filtration phase

, sl
f vy
and the verification phase
L= (1_fe)'|S|
, = —¢ =1
Vy

Therefore the speedup can be expressed as:

S
‘ o 1

— Vy —
TS 008 | mgio
tr+t, Sl (oflsl ey 1—f.

speedup =

This formula underlines the importance of the filtration efficiency of filter algorithms
and the relation between the speed and efficiency of the filter criterion and the speed
of the conventional algorithm used for verification.

In the following sections we will describe selected filter criteria. We introduce three
different filter criteria of which two can use varying degrees of accuracy in describing
the conditions under which they detect a potential match. How accurate they actually
are depends on the definition of the match region. In general more stringent definitions
of the match region will result in better filtration efficiency at the cost of increased
runtime of the filtration phase. One has to pay for the increase in filter efficiency by

30

spending more time on the evaluation of the filter criterion. In the case of the pigeonhole
principle based filter and the g-gram lemma we will describe several different definitions
of match regions which provide a tradeoff between speed and accuracy. For these filters
we will also discuss the differences in the definitions of match regions depending on
whether using the Hamming or edit distance. For the simpler case of the filter criterion
employed by BLAST there is only one definition of a match region which is the same
for both distance measures we consider.

All three filter algorithms are based on detecting exact matching substrings of a
fixed length g between P and S. We will call such pairs of exact matching substrings
hits. To fully describe a hit we use a two-tuple (4, 7) where ¢ corresponds to the starting
position of the substring or g-gram in P and j to the starting position in S.

4.4.1 The ¢g-gram Lemma

This filter was introduced by Jokinen and Ukkonen [JU91]. They also coined the term
g-gram. The basic ¢g-gram method works as follows. First, find all matching g-grams
between the pattern and the text. That is, find all pairs (7, j) such that the g-gram at
position ¢ in the pattern is identical to the g-gram at position j in the text. Such a
pair is a hit according to our previous definition. Second, identify the match regions in
S that contain at least a certain minimum number ¢ of hits. These form what we call
the set of potential matches. We call the value t the threshold.

There are different ways of defining the match regions and counting the hits in them,
see for example [JU91, HS94, BCF99]. However, all of them have the same threshold,
the significant number of ¢g-grams. This number is given by the ¢-gram lemma.

Lemma 4.4.1 (The ¢g-gram lemma [JU91]): Let P and S be strings of length
m and n. Then P and any substring of S with (Levenshtein or Hamming) distance k
to P have at least ¢ = m — ¢ + 1 — kg common g¢-grams.

The formula for the threshold ¢ can be split into two parts. The first half, m —g+1
equals the total amount of g-grams in P. The second half, kg represents the fact that
in the worst case, a single error can invalidate up to g of the common ¢-grams, i.e. k
errors can invalidate kg common g¢-grams.

The threshold t is tight in the sense that using any lower value might miss a true
match and turn the filter into a lossy filter. We call such a tight threshold optimal.

For example, the strings ACAGCTTA and ACACCTTA have Hamming and Levenshtein
distance one and have three common 3-grams: ACA, CTT and TTA. Assuming we allow
at most k = 1 errors, the value of ¢ for this example would be |[P| —g+1—¢=3.

31

The following piece of pseudocode describes the general structure of the filtration
phase which all filter algorithms based on the g-gram lemma have in common.

Algorithm 1: Filtering with the g-gram lemma
Set hit counters for match regions to 0
for all z such that z is a ¢g-gram from P do

Determine all hits of z in S
for all hits h of z in S do
Increment the hit counter of those match regions that contain h
end for
end for
for all match regions y do
if hit counter of y > ¢ then
Report y as a potential match
end if
end for

The above description of the g-gram method just provides a guideline for actual
implementations of an algorithm based on the g-gram lemma. Different realizations
of the method are described in [JU91, Ukk92, HS94, BCF*99]. Our implementation
called QUASAR which contains new ideas improving the approach described in [JU91]
is discussed in Section 4.8.

There are several variations of the basic filter algorithm based on the g-gram lemma.
We will briefly describe them in the following:

Sampling A popular way to reduce the runtime of the filtration phase is to consider
only some of the g-grams of P and/or S [CM94, Tak94, Mye94, ST95, ST96,
Shi96, NSTTO0O].

Approximate ¢g-grams A method for improving filtration efficiency at the expense
of increased runtime of the filtration phase is to allow one or more errors in the
g-grams being matched between P and S [Mye94, CM94, ST95, NSTT00].

Gapped g-grams The use of ¢g-grams with gaps can be used to improve runtime as
well as filtration efficiency. This idea will be discussed in more detail in Chapter 5.

Multiple shapes This approach uses sets of different gapped ¢-grams [CR93, PW95].

Of course, various combinations of these methods are possible. For example, sam-
pling and approximate g-grams have often been used together [Mye94, CM94, ST95,
NSTTO00].

32

Returning to the g-gram lemma there is one aspect that deserves closer scrutiny,
the definition of ’common ¢-grams’. It is possible to come up with several more or
less stringent definitions of this term. All of them are in principle descriptions of valid
arrangements of ¢ or more hits in P and S and define a match region. A naive approach
would be to simply check whether there exist at least ¢ hits between P and S. While
easy to evaluate, for long strings S it would lead to almost certain recognition of S in its
entirety as a potential match. A simple but quite efficient definition of match regions
was introduced by Jokinen and Ukkonen. They observe that for any valid approximate
match to P in S there is a substring of S with length |P| and at least ¢ common g-
grams. Using this fact they proceed to define a match region that is very simple to
evaluate. Instead of locating all substrings of S with length m and ¢ or more hits, they
check substrings of length 2(m — 1). We call these substrings blocks and their length
the block size b. For blocks of size 2(m — 1) it is sufficient to examine every (m — 1)-th
substring. The blocks then overlap each other by m — 1 characters and all substrings
of length m are substrings of the actually checked blocks. One can therefore detect all
"] + 2 substrings. The

m—1
drawback of checking longer substrings is the increased probability of detecting ¢ or

potential matches by checking the amount of hits in only [

more hits in a block. Nevertheless the strategy proposed by Jokinen and Ukkonen can
decrease the overall runtime of filtration and verification phase. Figure 4.4 shows an
example where one only has to examine the number of hits in 4 substrings of length
2(m —1) of S.

it i) AN | .

L\ A \\ N
2(m-1) | :

4hits L 3 |
5 hits L :
3 hits

2 hits

Figure 4.4: Blocks of length 2(m — 1) as match regions.

A more stringent definition of the match region takes the ordering of the hits in
P and S into account. It was introduced by Holsti and Sutinen in 1994 [HS94]. If
one simply counts the number of hits in a given substring of S, it is possible that
potential matches are found, where the hits in S have a different order than in P. To
accurately describe this phenomen, one can define the diagonal d of a hit (i,7) with
starting positions ¢ in P and j in S asd = j — 3.

33

One can think of the diagonal as corresponding to the diagonal in the dynamic
programming matrix (used by the algorithms mentioned in Section 4.3) of the strings
P and S. For the Hamming distance, the ¢ or more hits of a true match between P and
S have to be from the same diagonal since insertions or deletions are not allowed in
an approximate match using the Hamming distance. For the case of the edit distance
things are slightly more complicated. Here insertions and deletions are allowed and can
lead to a shift in the diagonal of subsequent hits. Assuming k insertions or deletions,
this can lead to the ¢t or more hits being spread out over at most k£ 4+ 1 diagonals.
Holsti and Sutinen observed this in their 1994 paper [HS94], so we can define a match
region as a set of one (or k + 1 respectively) diagonal(s) containing ¢ or more hits. An
important observation that helps to understand why this approach is more stringent
than the one based on examining substrings is the fact that hits that are not in the
same order in P and S will have significant differences in their diagonal. While this
approach can increase the filtration efficiency, it requires more time to evaluate the
filter criterion using this match region. It depends on the actual implementation of
the filtration and verification algorithms whether it will lead to a speed-up in practice.
Figure 4.5 shows an example for two strings P and S containing a total of 6 hits where
all diagonals containing at least one hit are marked.

1 hit 1hit 2hits 1 hit

diagonal d=j-i

Figure 4.5: Single diagonals as match regions for the Hamming distance.

As for the case of checking substrings of S it is possible to consider larger sets of
diagonals. Again this reduces the number of match regions to be checked but also
reduces filtration efficiency. The best choice in practice depends on the implementation
of the filter criterion and the verification algorithm.

We would like to point out a potential problem related to the actual characters in P
and S that can affect both the likelihood and the structure of potential matches. If P,
S or both strings contain substrings that are longer than g and have a low period and
there is a matching ¢g-gram in the respective other string, this can lead to degenerate
sets of hits. Take for example the case of a query P containing only one letter from X.

34

Even if S only contains a single substring of length ¢ that consists of the same letter
as P, this will lead to |P| — g + 1 hits. While this example is an extreme case, repeats
and low-periodicity strings can still cause serious degradation of filtration efficiency.
In many practical applications this is not a problem though, since repeat sequences
are often masked out or ignored. In computational biology for example, there exist
repeat databases and tools to screen queries and/or databases for common repeats.
It is also the case that more restrictive match regions will reduce the effects of such
degenerate cases. If, for example, one uses sets of k + 1 diagonals, even a long repeat
with period 1 that has a matching g-gram in the second string can only lead to at
most k + 1 matching g-grams. To fully resolve the problems caused by repeats one can
introduce an additional restriction on the hits in a potential match by treating groups
of hits that share the same position in P or S as one hit. However, it can be quite
time-consuming to check these further restrictions and it remains questionable whether
this would increase the overall speed of an implementation. We conducted a small set
of experiments that suggested the opposite.

As a conclusion we would like to mention that while further restriction of the match
region may be possible, it appears questionable whether the increase in filtration effi-
ciency justifies the increased complexity in evaluating the filter criterion.

4.4.2 Filtering with the Pigeonhole Principle

Another very simple filter algorithm uses a filter criterion based on the pigeonhole
principle (see for example [NBY00]). If looking for approximate matches to a query P
that have an edit or Hamming distance of at most k& from P, one can cut P into k + b
segments and search for each of these pieces in the database S. Since only matches with
an edit or Hamming distance of at most &k from P are interesting, one can argue that in
the worst case the k errors will be distributed across any k segments of ¢. This means
that b of the k£ + b pieces will be unaffected by errors. By locating all exact matches
of the k + b segments of P in the database S and searching for regions of the database
that contain at least b of them in a valid arrangement it is possible to determine all
locations of potential matches. There are multiple degrees of accuracy with which
these valid arrangements can be described. Again they provide a tradeoff between time
required for the evaluation of the filter criterion and the filtration efficiency. The value
of b influences the length of the segments and therefore has a strong influence on the
behavior of the filter.

The most straightforward definition of the match region for locating potential
matches is a substring of S of length m for the k-mismatches and m + k for the k-
differences problem. As in the case of the ¢g-gram lemma this would require examining

35

a very large number of substrings. Another alternative is similar to the one introduced
in the original ¢g-gram paper by Jokinen and Ukkonen[JU91]. One only considers over-
lapping blocks in S in order to reduce the number of checks that have to be performed.
The best choice of the block size again depends on the actual implementation.

A second method to define the match region more precisely is quite similar to the
one described for the g-gram filtration. It takes into account that in order for the b
matching segments to represent a true match, they have to be arranged in the order
in which they appear in P. When using this filter for the k-mismatches problem this
means that they all have to be located on the same hit diagonal and for the k-differences
problem they can occupy up to k + 1 adjacent hit diagonals.

Again one could potentially introduce further restrictions that increase the filtration
efficiency at the cost of additional computational effort. It is also important to note
that degenerate cases like those described for the g-gram lemma can again impact the
filtration efficiency and may have to be taken into account in some applications.

As a side note it should be mentioned that this filter is a case of ¢g-gram sampling
as described in Section 4.4.1 since it only uses a subset of all g-grams in P.

4.4.3 BLAST

The program BLAST is an implementation of an approximate string matching algo-
rithm that is very popular in computational biology. The underlying algorithm was
proposed in 1990 [AGM™90] and refined for protein databases in 1997 [AMS*97].

There are two publicly available implementations of this algorithm, NCBI-BLAST
and WU-BLAST. Both offer two different versions of BLAST for databases containing
DNA (the 4 letter nucleotide alphabet) and amino acids (a 20 letter alphabet repre-
senting the different amino acids). While for DNA sequences the edit distance is a quite
valuable similarity measure this is not the case for amino acids since there are several
sets of amino acids which are quite similar in their chemical and physical properties.
Amino acids from the same set will therefore be easier to match in an alignment than
those from different sets. The simple edit distance can not take this special property of
the amino acids into account, so more complicated similarity measures based on matri-
ces have to be used. Therefore we will only describe the filter technique implemented
in blastn, the program designed for matching DNA strings. For simplicity we will still
refer to it as '/BLAST’ in the following.

BLAST uses a very simple filter technique. Given a query P and a target S the
user selects a value g that determines the word length used by BLAST. First, BLAST
generates the set of all substrings of P with the length ¢ in a similar way to the ¢g-gram

36

lemma. BLAST then proceeds to locate all hits, i.e. occurrences of substrings from
this set in S. Sets of overlapping ¢g-grams are collapsed into single, longer strings. All
matching substrings remaining after this procedure are passed to a verification stage as
potential matches. In principle the BLAST filter criterion consists of locating all hits
of g-grams between P and S.

In order to locate the matching ¢g-grams in S, BLAST constructs a deterministic
finite automaton (DFA) [Meabb, HUT79], which recognizes all ¢g-grams in P. This DFA
is used to conduct a serial scan of the string S creating a sequentially ordered list of
matching g-grams while collapsing overlapping matches into single matches on the fly.
This returns the list of all potential matches between P and S. In the verification stage
BLAST uses an iterative extension technique to enlarge potential matches into align-
ments. In each iteration all current potential matches are extended in both directions
by a fixed amount of characters. Those that do not fall below a cutoff similarity value
are considered interesting and passed on to the next iteration of the extension. This
continues until all remaining potential matches are true matches.

4.5 Using Index Structures with Filter Algorithms

Filter algorithms rely on different methods to evaluate their filter criterion across S.
Current algorithms can be divided in two groups. The first group operates only on the
two strings P and S. The two strings are not preprocessed in any way and in order to
successfully compare both strings these algorithms may have to access all characters in
both strings. The second group of methods preprocesses the string S in order to obtain
information about its structure and contents. This information is then stored in a data
structure which is called an index structure or short index. The preprocessing is done
only once and is independent of P. When a query string P has to be compared with
S these algorithms use the index to speed up the evaluation of the filter criterion and
with it the detection of potential matches.

We call algorithms which use a preprocessing step to collect information about S
and store it in an index structure indezed algorithms. Examples for such algorithms can
be found in [JU91, Mye94, HS94, ST96, NBY98, NBYSTO01]. An index can often speed
up the evaluation of the filter criterion by providing information about S in a readily
available format. The downside of this approach is the time required for preprocessing
as well as the extra space consumed by the index. Nevertheless several filter algorithms
can benefit from using an index allowing them to run much faster. Of course, indexes
only make sense when one wants to compare a larger number of queries with a string S
and when the overhead for preprocessing is small compared to the time saved by using
the indexed approach.

37

In the following sections we describe how the filters we introduced can benefit from
an index. The basic idea behind all three filters is to locate match regions in S that
contain one or more hits, i.e. pairs of exact matching substrings of P and S. While
these hits can, of course, be located with a sequential scan of S, an index can be used
to store information about them and provide fast access to all hits for a given g-gram
in P. We name this set of hits a hit list. In the previous chapter we introduced different
data structures for exact string matching and exact string matching with a fixed length
g. They can be used for off-line filter algorithms and provide fast access to the hit lists
of a given query P.

Processing the set of the hit lists of all necessary g-grams with the goal of identifying
match regions that contain potential matches is a non-trivial problem. Its complexity
depends on the type of filter and match region being used. We describe different
approaches to solve this problem in the following section.

4.5.1 From Hits to Potential Matches

All three filter algorithms we described so far have to analyze the hit list of some or
all g-grams in the query P in order to detect the potential matches in S. While this
problem was not the main focus of our work it still represents an important point and
therefore has to be considered in some depth.

BLAST uses a sequential scan to access the set of all hits between ¢g-grams in P
and S. The main drawback of this technique is the overhead introduced by examining
every character in S. However, it also has some advantages. The sequential scan yields
a list of all interesting hits that is sorted with respect to their position in S. This
facilitates the identification of overlapping hits which can then be collapsed in order to
speed up the verification process. It would also be possible to combine BLAST with an
index that provides fast access to the hit lists of all g-grams in P (in fact the authors
of the initial BLAST paper [AGM™90] also evaluated this option but discarded it due
to lower speed). However, this set of sorted lists of hits is somewhat harder to process
than a single sorted list. For high values of ¢ where the total number of hits is small,
an index will be very useful, but for smaller values the sequential scan can be faster.
The value of ¢ for which one approach becomes better than the other depends on the
actual implementation. BLAST uses a byte-compression technique to store 4 letters of
DNA in one byte which allows a quick comparison of 4 characters at once and speeds
up the scan by roughly a factor of 4 when compared to the trivial storage of one base
per byte.

For the filters based on the ¢g-gram lemma and the pigeonhole principle it is possible
to locate all hits involving the respective g-grams in P with a sequential scan. In

38

principle the general rule about larger values of g favoring indexes holds for these filters
as well. For applications that only require a fairly low sensitivity one can use high values
of ¢ in both algorithms which leaves indexes as the obvious solution. In contrast to the
BLAST filter criterion however, the fact that there is a different hit list for each of the
required g-grams from P poses a somewhat bigger problem here since match regions
containing at least ¢ hits must be located. For ¢ > 1 this introduces an additional level
of complexity since all hit lists have to be considered as a whole. We would like to
present two fundamentally different approaches in the following.

The first idea is similar to bucket sort. If we use fewer, longer substrings of S
as match regions and only need to locate those that contain at least ¢ hits, we can
use a simple array that contains an integer counter for each of the substrings in S.
We then proceed to process all hit lists and increment the counters of the block(s) in
which a hit is located. This method is simple to implement and highly efficient. It
also circumvents the problems caused by several independent hit lists. However, the
block counters discard all information about the hits in the corresponding substring.
This means that in verification phase it is necessary to locate the interesting regions
in the substrings reported as potential matches a second time. It is possible to save
additional information about the hits in each substring in a separate data structure in
order to pass more information on to the verification phase but this is of course only
interesting for verification algorithms that can actually use this information. It is also
not necessarily the case that storing this additional information leads to a faster overall
runtime than re-examining the substrings reported as potential matches. The runtime
of the whole approach is linear in the total number of hits which have to be processed
and is therefore a good candidate for large hit lists, i.e. smaller values of q.

A different method is based on sorting all hits with respect to either their position
in S or their hit diagonal. This allows identifying potential matches in a sequential
scan of the sorted list of all hits. While a conventional sorting technique for the hits
leads to a higher asymptotic runtime than for the block counter based algorithm, the
main advantage of this method is that one can retain all information about the hits and
pass it on to the verification phase together with the potential matches. Depending on
the algorithm used for verifying the potential matches this can lead to improvements
in this stage. Since the time required for sorting the hits is the main drawback of this
approach, it is better suited for smaller hit lists, i.e. higher values of q.

Again the most sensible approach is governed by many factors of the actual imple-
mentation that include the choice of the verification algorithm and the value of ¢ as
well as the chosen filter. In the Section 6.2 we provide some results that illustrate the
behavior of the block array approach.

39

4.6 From Global to Local Matching

Until now we have only considered the k-mismatches and the k-differences problem.
However, we are also interested in the local versions of these problems. Here we intro-
duce a simple but efficient method to adapt solutions of the global problems to their
local versions.

A naive solution would be the separate application of the global algorithm to all
substrings of length w of the pattern P. The second alternative is to apply the global
algorithm to P only once but use a threshold ¢ which was computed for a shorter
pattern length w, where w is not the length of P as it normally would be, but the
minimum length of the substrings that are to be detected. Basically this means that
we have to process all relevant ¢g-grams from P not just those from a substring of length
w. However, this also allows us to treat a complete pattern P as one query instead of
several.

The second approach is obviously much faster but has two drawbacks. A longer
query P will contain a larger number of different ¢-grams which leads to an increase
in the number of hits that need to be processed. This will increase the number of
potential matches due to the higher probability of detecting ¢ hits in a match region.
Our experiments showed however, that for reasonable differences between the substring
length w and the pattern length P (in our case a factor between 6 and 12) the increase
in the number of potential matches was acceptably low. For larger queries it would
however be necessary to separate them in shorter segments and handle these separately.
The optimal segment length in practice depends on the actual implementation. We did
not conduct a thorough analysis of the segment length choice in this work but for
queries with |P| about 10 times higher than w this approach still worked very well if
combined with the sliding window technique described in the next section.

4.6.1 A Sliding Window

Depending on the filter and on the method used for identifying the potential matches
one can sometimes use hybrid strategies that require little extra effort but produce the
same results as the naive approach. We will introduce a new technique based on sliding
a ‘window’ of length w across the query P in this section.

For the g-gram Lemma used in conjunction with blocks as match regions we de-
veloped an idea that only introduces an overhead of a small constant factor. Instead
of simply adding the hits contained in all hit lists of all ¢g-grams in P to the block
array, one proceeds in two stages. In the first stage one only processes the hit lists of
the first w — ¢ + 1 g-grams in P, i.e. those corresponding to the string P(1,w), and

40

records all blocks that contain at least ¢ hits as potential matches. One can check this
by examining every counter after incrementing it. Those that reach a value of exactly
t correspond to potential matches and have to be stored as such. In the second stage
one first removes all hits in the hit list of the first g-gram in P from the block array and
then adds all hits in the hit list of the (w — ¢ + 2)-th g-gram. This has the effect that
the block array now contains only the hits for P(2,w + 1). Again one can check for
counters that reach the value of ¢t when incrementing them and store the corresponding
blocks as potential matches. To avoid storing a block more than once, we decided to
never decrement counters that reach a value of ¢ or more during the whole process. This
ensures that no block ever gets assigned the value ¢ more than once and will therefore
only be recorded as a potential match once.

The technique we describe above requires accessing all hit lists twice. Once for
adding the hits and once for removing them again. However, even this apparent draw-
back can also be used to avoid re-initializing the block counter array after each search.
If all hits that are added at some point are also removed later on, all values of the block
array will be zero again after the whole process. The only exceptions are those that
correspond to blocks with potential matches. However, one can simply scan through
the list of potential matches and reset the respective counters as well to get around
this problem. For instances where the total amount of hits is smaller than the size
of the block counter array this can even reduce the overall runtime of the whole algo-
rithm. We implemented this technique in QUASAR, our software that was designed
for EST-Clustering.

4.6.2 Modified Match Regions

Another idea that can improve the simple and efficient approach described above is
the use of more specific match regions. One can for example assign separate block
arrays to distinct substrings of P that overlap each other by w — 1 characters. For long
queries this is a solution to the problems caused by the large number of g-grams in P.
If using one or k£ + 1 diagonals as a match region, one can divide these into overlapping
segments using the same idea. However, for the query lengths we used, the decrease in
filtration efficiency caused by the additional g-grams was negligible which meant that
these ideas remained untested in practice. It is definitely an interesting open question
to determine good parameter ranges for different techniques either experimentally or
theoretically.

41

4.7 Experimental Evaluation of Filter Algorithms

In order to compare different filters we had to find parameters which describe various
aspects of a filter. The most important properties are of course the quality and the
speed of a filter. Algorithms which employ an index structure should also be judged
with respect to space efficiency of the index. In addition to the parameters described in
Section 4.4 we will discuss the methods we used to experimentally evaluate the different
filter algorithms in more detail. In the following we introduce the parameters we used
to measure the quality and speed of filters experimentally.

4.7.1 Filter Speed

When it comes to comparing the speed of different filter algorithms, one can either
implement them and measure the actual runtimes of a set of experiments with test
databases or derive an implementation independent method to characterize the speed
of a filter algorithm. We decided to use the second option for several reasons.

The main reason was the fact that all algorithms we examined share the same
method of accessing their data, the hit lists of a certain amount of ¢g-grams in P. They
only differ in the number of hit lists and in the actual length of the hit lists. Apart
from this, two of the algorithms face similar problems when it comes to processing the
hit lists and detecting match regions that represent potential matches. In one respect
however, the filter method used by BLAST is simpler than the filters based on the ¢-
gram lemma or the pigeonhole principle. It does not require locating more than one hit
in a certain region since every hit constitutes a potential match candidate. This gives
the BLAST filter algorithm a certain edge with respect to speed that could be worth
exploiting in a modified version of BLAST which uses an index instead of a sequential
scan to locate all hits of g-grams from P in S. For comparing the filters with each
other we decided to simply collect the information about the number of hit lists that
needed to be accessed and the actual number of hits that were contained in the sum of
all hit lists. We denote as H(P) the set of all hits for all used ¢g-grams from P. Since
the access to a hit list can be achieved in time O(1) given an ID and every hit has to
be accessed at least once, the size of H(P) provides useful information about the speed
of the filter algorithm. The actual speed of an implementation may vary depending
on the quality of the implementation and the algorithm used to actually process the
hit lists. We were mostly interested in a relative comparison of different filters not
in absolute values, so this was a good measure of filter speed. It also allowed us to
conduct a comparison that was free of any bias induced by possible differences in the
implementations of different filters. In Section 6.3, for each filter algorithm and each
set of parameters for a given experiment we will provide |H(P)|, the sum of the length

42

of all hit lists for a given query and use this number to judge the filter speeds.

There is a simple connection between the value of ¢ and the expected number of
hits for a certain g-gram. If we assume every g-gram to be equally likely to occur in
our database S then the expected number of hits for any g-gram from P is

lSi—a+)

This is of course only an approximate value due to the uneven distribution of ¢-
gram frequencies in typical databases. In fact for natural language texts it is a very bad
estimate due to the highly uneven distribution of ¢-grams. While for DNA databases
it is still only an estimate, in this case the word distribution is far more regular and
the predicted values provide valuable information about the expected behavior of a
filter. Furthermore, we only use the expected size of H(P) for relative comparisons of
different filters. Therefore the correctness of the absolute value is of lesser importance.

4.7.2 Filtration Efficiency

It can be quite difficult to accurately describe the behavior of a filter for a given set of
parameters. These parameters include the length of P, w for the local problems, the
similarity measure being used, the value of k which describes the maximum distance
for which the filter is guaranteed to report all matches and the definition of the match
region being used. While the value of k£ for which a filter is guaranteed to be lossless
can be selected by the user, this number does not fully characterize the typical output
of the filter.

A second very important aspect of filter quality is the filtration efficiency as defined
on page 29. Ideally the set of potential matches returned by a filter would be identical
to the set of true matches. Unfortunately this is usually not the case for the filters used
in approximate string matching. Typically they also return a certain amount of false
positives. This amount varies from filter to filter and it is connected to the selected
value of k. We measure it by using the filtration efficiency. It has a big impact on the
overall runtime of filtration and verification phase.

Therefore an important goal in defining the properties of different filters lies in
predicting and measuring their filtration efficiency. Assuming a small number of true
matches, this is nearly equivalent to predicting the percentage of the database that the
filter will discard as irrelevant. This in turn is directly connected to the number of
potential matches detected by the filter. While the experimental analysis of this value
is straightforward, we also wanted to be able to predict filtration efficiency for a given

43

filter in order to allow a theoretic evaluation of filters for the same reasons as stated in
the analysis of filter speed.

4.7.3 The Minimum Coverage

In this section we want to present a property of a filter that is closely related to the
filtration efficiency. We describe it with the purpose of using it as a guideline for
predicting the filtration efficiency of a filter. While it is always possible to conduct
experiments and measure the filtration efficiency of a filter, it is also of great interest
to be able to predict the behavior of a given filter using a certain set of parameters. An
important reason for this is the quick comparison of a large number of different filters.
This will play an important role in the next chapter of this thesis.

We want to start with the observation that for any given potential match there
exists a set H of at least ¢ hits. This set of hits clearly defines which characters in
P and S have to match. Each hit is by definition a pair of matching substrings in P
and S and therefore the corresponding characters match as well. This leads us to the
definition of the cover and the coverage.

Definition 4.7.1: Given two strings P and S, a value ¢ for the length of the
g-grams used, and a g-gram hit h = (i,j) between P and S, we call the set of char-
acters positions that are defined as matching by this hit, i.e. 4,...,44+¢—1 and

Jy--- 57+ q—1the cover C of that hit for P and S respectively. We write it as:

C(h,q,P)={i,... ,i+q—1}
We say that C is the cover of h in P (respectively S). We call the cardinality of
these sets their coverage c:
c(h,q, P) = |C(h,q, P)|

c(h,q,8) = |C(h,q,5)|

One can expand this definition to sets of hits. Assuming a set H of hits hq,... , Ay
between P and S we define the cover H as the union of the covers of all hits in H:

n

C(Haq7P) = U C(hk,q,P)
k=0

44

n

C(H,q,S) = | C(he,q,9)
k=0

Again we call the cardinality of these sets their coverage c:

c(H,q,P) = |C(H,q,P)|

c(H,q,8) =|C(H,q,S)|

Depending on the actual strings P and S, the cover of a given set of hits H in P
can differ significantly from the cover of H in S. The coverage can also vary.

Turning back to potential matches, i.e. sets of £ hits, we now have a terminology
for describing the matching characters in P and S for any such potential match since a
potential match is nothing more than a set of hits. It is therefore also possible to talk
about the cover and coverage of a potential match.

We now want to introduce a distinction between a practical and an abstract view
of the strings P and S. In the first case, we work with actual, specific strings when
talking, for example, about possible arrangements of hits. In the second case we assume
that for both P and § all characters in these strings are pairwise different from all other
characters in the same string. We do this to emulate the general case where we have no
previous knowledge about the two strings and therefore have to consider all characters
as potentially different from each other. This assumption has an important effect on
the hits between two strings P and S. Since all characters in one string are considered
distinct from each other, it is impossible that two hits share a starting position in either
P or S. Of course this is not true in practice since substrings can occur repeatedly in
either P or S.

The second view of strings simplifies some aspects of the analysis of the filtration
efficiency because one can disregard certain degenerate special cases involving repeats.
We base the following analysis of general filter behavior on it even though this will
neglect the above mentioned special cases. However, we also discuss the aspects of the
practical view of P and S that lead to the special cases and how they affect our general
analysis.

A lossless filter will return a set of potential matches that contains all true matches
but usually also some false positives. In order to quantify the expected number of false
positives we need to analyze the cover of such false positives. The false positives are
in principle sets of ¢ or more hits that lie in a match region. These random potential
matches are likely to have a low number of hits and a small coverage in S. The most
likely case will usually be that of a potential match with exactly ¢ hits that are arranged

45

such that the cover in S is minimal, i.e. the set of characters in S that are ’fixed’ are
as low as possible.

We define the minimum cover and the minimum coverage as follows:

Definition 4.7.2: Given a value ¢ for the length of the ¢g-grams used, a threshold
t, two arbitrary strings P and S for which

Vi,j € {1,...,|P|} : p;i #pj
Vi,je{l,...,|S|}: 8 #sj
and the set

H*:{(Z,j)|’LE{1, 7‘P|_Q+1}1je{1a--- a|S|_q+1}}

of all possible hits, we define the minimum coverage c,, by minimizing across all
sets H with ¢ hits as follows:

, t, P) = i Ha ’ P
em(@, 1 P) HgH*,|H|=t,V(IiI$'l)1,1(k,l)6H=z‘¢k,j¢lC(“P)
cm(q,t, S) min c(H,q,S)

HgH*,|H‘:t,V(i,j),(k},l)EH:i;ﬁk,j;ﬁl
A minimum cover Cy, of the two strings is a cover with minimal coverage.

Under the assumption of pairwise different characters within the strings P and
S, a minimum cover is the arrangement of hits which requires the smallest number
of matching characters. The size ¢, of a minimum cover is an upper bound for the
minimum coverage of all possible strings. For specific pairs of strings P and S the
actual cover of ¢ hits can be smaller than the minimum cover. However, there exist
no pairs of string P and S for which no arrangement of ¢ hits are possible that have a
cover with size less than or equal to cy,.

For certain strings P and S and sets of hits H, the actual cover of H in P and/or
in S can be smaller than the minimum cover. The reason for this lies in repeated
sequences in either P, S or both strings. Such sequences that occur more than once in
the same string are called repeats. A good example for a small cover in S would be the
case where a certain g-gram is repeated ¢ times in P but occurs only once in S. This
would lead to ¢ hits for which

V(Zaj)’(kal) € H]:l

46

In this example the cover of H in S would be of size ¢ (since the ¢g-gram occurs only
once) and the cover of H in P would be ¢+t — 1 (since the g-gram occurs ¢ times in
pP).

In general, strings of length ¢ with a short period can lead to overlapping repeats.
Again a simple example would be a substring of length ¢ + ¢ — 1 in P that consists of
only one character from 3 and a substring of length ¢ in S that also contains only this
character. This would also lead to ¢ hits. In practice such cases are usually either rare
or irrelevant. In computational biology, for example, ubiquitous repeats are usually
filtered out in a process called repeat masking in order to avoid large numbers of true
matches that are basically meaningless due to their abundance in genetic sequences.

For the ¢g-gram lemma the minimum coverage can be computed as

cm=q+t—1

For the pigeonhole principle

cn =bxg

since the g-grams from the query are non-overlapping. For the BLAST filter crite-
rion

Cm = ¢

If, for example, P = ACAGCTTA, S = TCAGCTGC and one uses the ¢g-gram lemma with
g = 3 to locate potential matches with at most one difference (kK = 1) between P and
S, one has to find at least t = [P| — g+ 1 — k¢ =8 — 3 + 1 — 3 = 3 matching 3-grams
between P and a match region in S in order to consider it a potential match for P.
The configuration of three 3-grams that minimizes the number of matching characters
between two strings is the one where the starting positions of the three matching 3-
grams in P are arranged right next to each other. In our example the substring CAGCT
of P and S contains exactly three matching 3-grams with five matching characters.

We conjecture that the minimum coverage is a good number for approximate pre-
dictions about the filtration efficiency of the different filters. Similar to the expected
amount of hits for a given ¢g-gram we expect a certain amount of potential matches to oc-
cur by chance in a string S. For a minimum cover Cy, of length max{C, } —min{Cy, } +1
there are |S| — max{Cy,} + min{C),} possible placements in S. At each of these posi-
tions a potential match with ¢, matching characters is possible and its probability is

47

proportional to ﬁ Hence the expected number of false positives a filter will return
is proportional to the following term:

1
|Xfem

(|S| — max{C,,} + min{C,, })

We analyze the prediction quality of our conjecture in the experiments chapter in
Section 6.3.2. It appears to be the case that even though we neglect false positives with
a higher coverage than c¢,, and we also ignore repeats, the minimum coverage can be
a valuable tool for the analysis of filtration efficiency of different filters and for their
relative comparison.

4.7.4 A Closer Look — Match Zones

Apart from the filtration efficiency, the value of k plays a major role in describing the
behavior of a filter algorithm. It defines an error level up to which a lossless filter reports
all approximate matches in the string S. For many applications there is sufficient time
available to use a lossless filter. However, it can also be interesting to use a lossy filter
or use a lossless filter and also look at ’good’ false positives, i.e. potential matches that
have slightly more errors than k. While high values of £ will result in slower algorithms
and one may be unable to afford the increased runtime to report all matches for such a
high value of k, one can instead use a lower value of k and still report all those potential
matches that have slightly more than k errors. The filter will probably miss a certain
percentage of those matches but the ones it finds may be valuable nevertheless. BLAST
is an example for this strategy. While the values of k for which BLAST is guaranteed
to report an approximate match are relatively low, there is still a high probability of
finding matches with more than k errors. This probability of course decreases with the
increase in the number of errors.

In order to examine the behavior of filter algorithms for error levels above k we
decided to use the following descriptions of filter performance at different error levels.
We defined three different match zones, error or distance ranges for which a filter
algorithm behaves differently. Each of them is a pair of a lower and upper bound
representing the smallest/largest number of errors/distance for which a filter functions
according to the following definitions.

The first zone is defined as the range of errors or distance for which the filter will
never miss any matches, i.e. where all true matches between P and S that lie within
this range are reported by the filter as potential matches. We call this zone the lossless
zone. For the lossless filters we introduced it represents the set of strings that are within
a distance k from P and are always recognized as potential matches.

48

The next zone is the range of errors for which the filter will only report a certain
fraction of all approximate matches between P and S that have a distance within this
range. We call this zone the lossy zone and the percentage of all matches recognized
by a filter the recognition rate. Depending on the filter, parts of this zone can still be
interesting for practical use, especially if the recognition rate for a given error level e is
very high. BLAST is typically used to search for matches in the lossy zone. While not
all true matches will be found, a large portion will be and that alone can be sufficient
for various applications.

The third zone is the range of errors for which a filter will not find any matches at
all. We call this zone the negative zone.

Determining the recognition rate of a filter algorithm for a given error level or
distance e is by no means trivial. While it is usually fairly simple to determine the
borders between the zones using k¥ and the minimum coverage, we were unable to
make theoretic predictions about the behavior of a filter in the lossy zone. However,
we developed an experimental set-up that allowed us to gain insight into aspect of a
filter. The recognition rates in the lossy zone directly influence another property of the
filter, its ability to distinguish between matches and non-matches. When comparing
the filtration efficiency and the recognition rates of different filters it is necessary to
take into account the parameters of the filter, i.e. the intended value of k£ and the query
length.

4.7.5 Describing the Match Zones

Determining the amount of errors or the distance bound up to which a given filter will
still include all true matches in the list of potential matches is fairly trivial for the
filters described above. It is by definition the level of similarity that defines the border
between the lossless and the lossy zone. For the filters we introduced in this chapter it
is equal to k.

While for most filters it is quite trivial to come up with the similarity level that
defines the border between the lossless and the lossy zone, things get a little trickier
for the border between lossy and negative zone. In principle the minimum coverage
yields a good approximation since for repeat-free strings the minimum coverage is the
minimum number of matching characters required for a match. This in turn means that
pairs of repeat-free strings with a distance higher than | P|— ¢, will never be recognized
as potential matches. Of course it is possible, depending on the match region being
used, that due to the existence of repeats, potential matches will be found with an
even higher distance. See Section 4.4.1 for a discussion of such degenerate cases. Less
stringent match regions will increase the tendency towards potential matches with more

49

than |P| — ¢, errors.

Figure 4.6 shows a schematic containing the three match zones for a typical filter
based on the g-gram Lemma.

100 % +
Recognition
Rate
ErrorgDistance
0% - - ‘
0 K IPl-Cy, P
\ \ | |
lossless zone lossy zone negative zone

Figure 4.6: The three match zones with typical recognition rates for the g-gram Lemma.

We would like to make some observations to support the understanding of this
graph. First of all, for each error value e and a given string P there is a set of strings
with a distance of exactly e. Often this set is called the e-neighborhood. The recognition
rate of a filter algorithm for a string P at this error rate is then the fraction of all strings
in the e-neighborhood that would be recognized as potential matches by the filter. For
e < k this rate is 100% for a lossless filter. In the lossy zome it drops below 100%
towards 0% at the border to the negative zone. The second observation is the size of
the e-neighborhood. It grows nearly exponentially with e, i.e. the amount of strings in
the neighborhood sets for high values of e is much higher. This in turn means that even
the low recognition rate for values of e that are close or equal to |P| — ¢, multiplied
with the size of the e-neihgborhood is far larger than the same product for lower values
of e. In practice this means that even though the recognition rate for high values of e is
relatively low, most randomly occurring false positives have ¢, or close to ¢, matching
characters.

While principle it is possible to compute this figure given a specific string P and a
filter algorithm, we are not aware of an efficient method (full enumeration of all possible
strings in each e-neighborhood is only feasible for relatively small values of |P| and/or

e).

In addition to these theoretical considerations, we also wanted to conduct an exper-
imental analysis of the match zones. For this purpose we constructed databases with a
certain amount of sample sequences for each error level between 1 and P — ¢q. We then
used different filters for searching in these databases and recorded the percentage of
the samples that were recognized for each error level e. This allowed us to produce ap-
proximate versions of the theoretical figure. The results of these experiments including

50

a discussion can be found in Section 6.5.

4.8 QUASAR

An important part of our work was the development and implementation of QUASAR,
which stands for Q-gram Alignments using a Suffix ARray. It was specifically designed
for efficient EST clustering and is based on the g-gram lemma and the word lookup
table as well as the idea of a block array, all introduced in the paper by Jokinen and
Ukkonen in 1991 [JU91]. However, we were able to develop several improvements of
the approach described by the authors of this paper. The three main improvements
were the introduction of a more flexible index structure, the use of an increased block
size to decrease the runtime of the algorithm and the adaption to local approximate
string matching using a sliding window. In the following we present an overview of the
algorithm and recap the techniques used and some additional implementation details
worth noting. We start with a pseudocode description of the implementation.

The use of a simple word lookup table to locate g-grams in the database S is
sufficient for a fixed set of parameters. However, during the development of QUASAR
we wanted to experiment with different values of ¢ without having to reconstruct the
whole index every time. Due to space constraints it was impossible to store separate
indexes for all interesting values of ¢g. This lead to the use of a suffix array as a word
lookup table. We already described this idea in Section 3.4.1. The two main benefits
are increased index flexibility and the extensibility to higher values of ¢ using the hybrid
approach described in Section 3.4.3.

The second improvement was prompted by the observation that using a block array
with blocks larger than the 2(m — 1) proposed by Jokinen and Ukkonen can speed up
our algorithm significantly [BCF199]. We stuck to the idea of Jokinen and Ukkonen
of using blocks that overlap each other by half the block size in order to be able to
locate potential matches that cross block boundaries. It would in principle be possible
to use blocks that only overlap each other by m — 1 characters. However, the increased
simplicity of blocks overlapping by % characters saved more time in practice than the
increase in verification time resulting from the larger potential matches cost. The
choice of the block size b allowed us to obtain a tradeoff between filter speed and
filtration efficiency as larger values of b lead to a smaller number of blocks in S which
in turn decreased the runtime of the filtration phase. The downside of this approach is
that each potential match the filter returns becomes larger and requires more time for
processing in the verification phase. Also the expected number of matching ¢g-grams
for one block increases and leads to a larger number of blocks that contain at least ¢
matching g-grams. This tradeoff effect is very useful for optimizing the combination

51

Algorithm 2: Filtering with the QUASAR

Set all hit counters for blocks of the block array to 0
fori=1tow—¢g+1do
for all hits h of the g-gram starting at position ¢ in P do
for all blocks y that contain h do
Increment the block counter of y
end for
end for
end for
fori=w-q+2to|P|—g+1do
for all hits A of the g-gram starting at position ¢ —w + ¢ — 1 in P do
for all blocks ¢ that contain h do
if block counter of y < ¢t then
Decrement the block counter of y
end if
end for
end for
for all hits A of the g-gram starting at position ¢ in P do
for all blocks y that contain h do
Increment the block counter of y
end for
end for
end for
for all blocks y do
if block counter of y > ¢ then
Consider block y a potential match
end if
end for
for all potential matches p do
Use BLAST to verify p
end for

52

of filtration and verification phase for a given set of parameters and even for different
algorithms used in the verification phase. In Section 6.2.1 we take a closer look at the
influence of the block size on the runtimes of the filtration and verification phase.

The third new idea we developed for our implementation was the use of a sliding
window to locate local approximate matches. When matching EST sequences, one
usually wants to detect terminal overlaps between two sequences. These overlaps are
often just a fraction of the whole EST. This caused us to extend the initial approach
to local approximate string matching. We created and implemented an algorithm that
sequentially traverses the query P and at any point only considers a substring of length
w of P. While this technique, described in more detail in Section 4.6.1, leads to a
certain overhead, it allows us to use QUASAR for local approximate string matching
and not just for the global variant.

For the verification phase of QUASAR we used BLAST to simply match P against
the substrings of S that corresponded to the blocks with at least ¢ hits. This solution
turned out to be quite efficient in practice, even though the amount of time required to
adapt BLAST for use as a C function within our own implementation was substantial.

Experimental results illustrating the performance of QUASAR can be found in
Section 6.2. For our application QUASAR achieved a speed-up of a factor of roughly
30 compared to BLAST.

4.9 Concluding Remarks about Filter Algorithms

In this chapter we described three different filter criteria for off-line approximate string
matching. We discussed several variants and details and introduced QUASAR, a pow-
erful implementation of an algorithm based on the ¢-gram Lemma and a simple in-
dex that provides a highly efficient solution to the substring matching problem with
k-differences. QUASAR also contains several new ideas to increase the overall perfor-
mance of the implementation. Furthermore we defined measures, including the new
minimum coverage, for analysing the behavior of different filters and comparing them
with respect to filter speed and filtration efficiency.

53

Chapter 5

Introducing Gapped ¢-grams

After successfully combining several techniques into a practical algorithm for approx-
imate string matching, we looked at all the components with the goal of improving
them. While the approach we describe in the previous chapter is an efficient solution
for relatively low error levels k, it quickly breaks down for higher values of k. The main
reason for this is the connection between k and the values of ¢, the substrings used
by the filter criterion. Higher values of k require lower values of ¢ which has a direct
impact on filtration speed since the expected length of a hit list grows exponentially
with a decrease of ¢ and the runtime of the filtration phase is at least linear in |H (P)|,
the total number of hits for a query. We therefore decided to develop an improved filter
criterion with increased speed and filtration efficiency.

In this chapter we will describe two new filter algorithms based on a modification
of the g-gram lemma. We first introduce the basic concept behind the modification
and then present a filter algorithm for the k-mismatches problem and one for the k-
differences problem. Both algorithms can be applied to the local versions of these
problems as well. We discuss the benefits of our algorithms and describe the modifica-
tions necessary to adapt existing algorithms to the new technique.

5.1 Gapped g-grams in Previous Work

A generalization of the ¢g-gram method uses gapped g-grams. Basically they are patterns
of length s > ¢ where instead of matching all characters one only matches ¢ fixed

55

characters and considers the gaps to be ‘don’t care’ characters or wildcards. We call
the arrangement of the gaps the shape of the gapped ¢-gram. For example, the gapped
3-grams of shape ##-# in the string ACAGCT are AC-G, CA-C and AG-T. Gapped ¢-
grams have been used by 3 groups so far [CR93, PW95, LST96]. In [CR93, PW95],
the motivation is to increase the filtration efficiency of an approximate string matching
algorithm by considering multiple shapes. Pevzner and Waterman [PW95] use ‘regular’
g-grams that match every (k+1)-st character together with ordinary contiguous g-grams
for the Hamming distance. Califano and Rigoutsos [CR93] describe a lossy filter that
uses as many as 40 different random shapes. Their approach is effective for high &
but they need a huge index (18 GB for a 100 million nucleotide DNA database). The
Grampse system of Lehtinen et al. [LST96] uses a shape containing every h-th character
for some h (similar to [PW95]) for exact matching. Their motivation of using gapped
g-grams is to reduce dependencies between the characters of a g-gram.

In contrast to the motivation of previous work on gapped ¢-grams, we studied
gapped ¢-grams very thoroughly in order to show that they have a more fundamental
advantage over contiguous (i.e. ungapped) g-grams. When used correctly, even single
gapped g-grams can provide much faster and/or more efficient filtering. It is not at all
necessary to use sets of g-grams to achieve this. In fact we have observed improvements
of several orders of magnitude in our experiments.

Our approach to gapped g-grams differs from previous work in two important ways.
First, while certain well-defined shapes are used in [PW95, LST96] and randomly se-
lected shapes in [CR93], we carefully select the shapes for use in filter algorithms. We
performed an exhaustive search of all feasible shapes and chose the best. Our approach
allows us to choose the best shapes with respect to speed and filtration efficiency.
Good shapes typically possess little or no regularity, but are rare and significantly bet-
ter than randomly chosen shapes. Some regular shapes, including contiguous shapes,
are actually among the worst shapes. A similar observation was made by Califano and
Rigoutsos [CR93], who observed in their experiments that randomly generated sets of
shapes outperform deterministically generated sets. They also mention the idea of us-
ing optimized (sets of) shapes but did not provide any method for choosing the shapes
beyond experimental comparison.

The second deviation from previous work is that we use an optimal and shape-
dependent threshold. Pevzner and Waterman [PW95] give equations for the threshold
of their regular shapes that guarantee losslessness but are optimal only in certain special
cases. Califano and Rigoutsos [CR93] determine the threshold based on probabilistic
calculations and experiments. Their threshold does not depend on the actual shapes
and may lead to false negatives turning their filter into a lossy filter. We have not
found a closed form formula for the optimal threshold of arbitrary shapes like the one

56

provided by the ¢g-gram Lemma. However, we present a simple definition of the optimal
threshold and an efficient dynamic programming algorithm for computing it.

After we published our results, another group presented work that improves BLAST
by using gapped g-grams [MTL02]. They also use only one type of gapped ¢-grams and
present a method to select good shapes. However, the scope of their work is limited
since they only consider a BLAST-like approach with a threshold value of 1.

The rest of this chapter is organized as follows. We first formally define shapes as
a way of characterizing gapped ¢-grams. Then we describe a filter algorithm for the
k-mismatches problem based on gapped g-grams and introduce a method to compute
the optimal threshold for a single gapped g-gram. We explain how to compute the
minimum coverage for gapped ¢-grams and use it together with the value of ¢ to predict
the filtration efficiency and speed of shapes used in our filter. We discuss the importance
of the minimum coverage in the context of gapped g-grams. In the second half of the
chapter we characterize the problems arising when adapting gapped g¢-grams to the
k-differences problem and provide solutions that lead to a second filter algorithm. We
present methods to predict filtration efficiency and speed for this class of filters. Finally
we proceed to discuss the adjustments that have to be made to existing filter algorithms
in order to adapt them to gapped g¢-grams and discuss the overhead incurred by these
modifications.

5.2 Shapes

We start by introducing some basic terminology and notation on shapes and gapped
g-grams.

Definition 5.2.1: Let I be a set of integers. The size of I, denoted by |I|, is the
cardinality of the set. The span of I is span(l) = max] — min] + 1. The position of
I is min7, and the shape of I is the set {t — minl | ¢ € I}. An integer set @) with
position zero is called a shape. A shape) with size ¢ and span s is called a g-shape or
a (g, s)-shape if we also want to denote its span.

For any shape) and integer %, let (); denote the set with shape) and position 7,
ie, Qi={i+j|j€Q} Let Q; ={i1,i,...,14}, where i =43 < iy < -+ < iy, and
let S = s182...8, be a string. For 1 <4¢ < m — span(Q) + 1, the g-gram at position i
in S, denoted by S[Q;], is the string s;, s;, ... s;,. A g-gram is also called a (g, s)-gram,
where ¢ = |@Q| and s = span(Q).

As an example, let @ = {0,1,3,6} be a shape. Using the same notation as above,
@ is the shape ##-#--#. Its size is 4 and its span is 7. Thus @ is a 4-shape and a (4, 7)-

57

shape. The string S = ACGGATTAC has three g-grams: S[Q1] = s1s25487 = AC-G--T,
S[Q2] = CG-A--A and S[Q3] = GG-T--C. This is illustrated below.

S=ACGGATTAC
AC-G--T
CG-A--A

GG --C

1
—

We say that two strings P and S of length m share a g-gram or have a common
g-gram at position ¢ if P[Q;] = S[Q;]. The g-gram similarity sg(P,S) of P and S is
the number of their common g-grams, i.e.,

sQ(P,S8) = [{i € {1,... ,m —span(Q) + 1} | P[Qi] = S[Q4]}|

Let @ and S be as in the example above and let P = ACTGACTAG. Then sq(P, S) = 1,
since P and S share only the g-gram CG-A--A at position 2:

P= ACGTACTAG

AC-7--T
CG
G?7-7--7

|
=

1

|
=

S= ACGGATTAC

5.3 Gapped ¢g-grams and the k-mismatches Problem

When we first took a closer look at gapped g-grams it quickly became obvious that while
they are well-suited for approximate string matching using the Hamming distance, the
case of the edit or Levenshtein distance is more complicated. The reason for this is the
fact that a replacement in a gap will not affect a hit of a gapped ¢-gram but an insertion
or deletion will. For this reason we first concentrated our efforts on the k-mismatches
problem. We started with a simple analysis of the potential of gapped shapes in filters
very similar to those based on the g-gram lemma. The only difference is the use of a
certain gapped ¢-gram instead of an ungapped g-gram. This leads to complications in
computing the threshold and the minimum coverage. We address these problems and
present solutions in the following subsections. The contents of this section as well as
some experimental results were published in 2001 [BKO01].

58

5.3.1 The Threshold

The basic idea of a ¢-gram filter is to identify those match regions that contain a
certain minimum number ¢, the threshold, of hits between P and S. The value of ¢
is an important parameter for such a filter since it directly influences the number of
potential matches that will be generated. It is desirable to use an optimal threshold,
i.e. the highest value for ¢ for which the filter remains lossless. In some applications
lossy filters are interesting as well due to their increased speed. For these cases one can
either use a value of k that is below the actually desired value and analyze the filter
behavior in the lossy zone or one can simply increase ¢ and evaluate the effects of the
increase. We present a set of experiments concerning the lossy zone in Section 6.5, but
restrict the scope of this chapter to lossless filters.

The g-gram lemma, provides a simple formula for the optimal value of the threshold
t for contiguous g-grams. A straightforward generalization for gapped g¢-grams with
shape @ and at most k errors yields the formula t = |P| — span(Q) + 1 — |Q|k (see
Lemma 5.3.3 below). Pevzner and Waterman [PW95] give this formula for their regular
shapes. In addition to this they present a better formula for shapes with a span close
to the length of the pattern. However, their general formula is not optimal for gapped
g-grams as shown by the following example.

Let |P| = 11 and k = 3, and consider the 3-shapes ### and ##-#. The above
formula gives thresholds zero and minus one, respectively, for the two shapes. Thus,
neither shape would seem to be useful for lossless filtering in this case. However, the
optimal threshold for the shape ##-# is actually one. By an exhaustive search of all
possible arrangements of three mismatches one can verify that at least one ¢g-gram is
always unaffected by the mismatches. The following figure contains an example of a
worst possible arrangement of three mismatches for both shapes.

C O T =T] HEEI RN
L] [X
L]] [X
HEN [Ix] [
[T Ix] xIx] [
L]] X [X
HEN [O
[T Ix] [Ix] [
LI]] O
HEN

The above example already hints at how the optimal threshold value can be defined.

59

We formalize this next.

Let P = p1,... ,pm and S = s1,..., Sy, be two strings of length m. Let M(P,S)
denote the set of positions where P and S contain the same character, i.e., M (P, S) =
{i €{1,...,m} | pi = si}. Then m — |M(P,S)| is the Hamming distance of P and S.
Also, the g-gram similarity sg(P, S) can be expressed using the set M (P, S):

Lemma 5.3.1: sg(P,S)=|{ie{l,...,m —span(Q) +1} | Q; € M(P,S)}|.

The optimal threshold is by definition the largest value for which the filter is still
lossless. In other words, it is the lowest g-gram similarity of two strings of length m with
Hamming distance k. By Lemma 5.3.1, it is sufficient to consider the worst possible
combination of the mismatches. Hence, we get the following general g-gram lemma.

Lemma 5.3.2: Let @) be a shape. For any two strings P and S of length m that
are within Hamming distance k of each other, the g-gram similarity sg(P, S) of P and
S is at least

tq(m, k) = i€ {1,... .m—span(Q) + 1} | Qs € M}.

min
MC{1,...,m},|M|=m—k
Furthermore, for every string P of length m, there exists a string S that is within
Hamming distance k of P, such that sg(P,S) is exactly tg(m, k).

We have not found a closed form for the optimal threshold in the general case. The
following lower bound we already saw in the beginning of this section.

Lemma 5.3.3: tg(m, k) > max{0,m — span(Q) + 1 — |Q|k}.

Proof. Let M be the set minimizing the value of tg(m,k). For each j ¢ M there
is exactly |Q| integers i such that j € @Q;. Therefore, at most k|Q| of the sets @,
i€{l,...,m —span(Q) + 1}, are not in M, and at least m — span(Q) + 1 — k|Q| are
in M. O

Tighter bounds can be provided for special cases. In particular, the classic g-gram
lemma, for contiguous g-grams yields the optimal threshold as shown by the following
lemma.

Lemma 5.3.4: Let @ be a contiguous shape, i.e., @ = {0,... ,¢ — 1}. Then
to(m, k) = max{0,m — span(Q) + 1 — |Q|k} = max{0,m — g+ 1 — kq}.

Proof. The lower bound is shown by Lemma 5.3.3. Let M = [1,m]\ {¢,2q,... ,kq}.
Then @Q); is contained by M if and only if i € {kg+ 1,... ,m — ¢ + 1}. This shows the
upper bound. O

60

Using the lower bound of Lemma 5.3.3 (or any other lower bound) as the threshold
guarantees the losslessness of the filter, but a non-optimal value reduces the filtration
efficiency dramatically. In Section 5.3.6, we show that an increase of one in the threshold
reduces the expected number of potential matches by a factor of at least |X|, where
3. is the alphabet, and in many cases by significantly more. The example on page 59
shows that the optimal threshold may be required to achieve any filtration at all.

In the next section we describe a dynamic programming algorithm for computing
the optimal threshold. We have implemented the algorithm and used it, together with a
pruning technique, to compute the optimal thresholds for a very large number of shapes
with different values for m and k. For m = 50 and k € {4, 5} the tables 5.1 and 5.2 on
pages 65 and 66 give the highest threshold among (g, s)-shapes for all combinations of
g and s that have shapes with positive thresholds (except ¢ = s = 1).

The tables show that our threshold example was not an isolated case: often, espe-
cially for higher values of ¢, the best gapped shapes have much higher thresholds than
contiguous shapes of the same or even smaller size.

However, it is not sufficient just to have gaps; the shape has to be chosen care-
fully. For instance, for the parameters of the threshold example, m = 11, k = 3,
q = 3, the shape ##-# and its mirror image #-## are the only ones that have a
positive threshold. As a more impressive example, for the parameter values m =
50, £ = 5 and ¢ = 12, there are just the two shapes, ###-#-—###-#-—###-# and
#-#-#———#-—————#-#-#-——#-————#-#-#—4# (and their mirror images) with a positive
threshold. In most cases shown in Tables 5.1 and 5.2, only a few shapes achieve the
highest threshold. This is also true for the minimum coverage. The distribution of
threshold values and minimum coverage for a typical case is shown in Figure 6.7 on
page 94. It is not always the case that the shapes with the highest minimum coverage
have the highest threshold values and vice versa.

5.3.2 Computing the Optimal Threshold

The optimal threshold can be computed by an exhaustive search of all possible arrange-
ments of k mismatches according to Lemma, 5.3.2, but this is prohibitively expensive for
large values of m and k. We have developed a significantly faster dynamic programming
algorithm for computing the threshold.

Let us first define some notation. For a set I of integers let I @ j denote the set
{i + 7| ¢ € I}, and define the operator © similarly. Let [cond]| be 1 if the condition
cond is true and 0 otherwise.

The computation is based on the following conditional threshold.

61

Definition 5.3.1: Let @ be a shape with span s. For non-negative integers m,
kE <m,and aset M C{1,...,s =1}, M| > s —1—k, let tg(m,k, M) denote the
optimal threshold for pattern length m and Hamming distance k under the additional
condition that the matches in the last s — 1 positions correspond to M. That is (cf.
Lemma 5.3.2)

to(m,k, M) = min Hie{l,...,m—s+1}| Q; C M'}|.
M C{1,... ,m},|M'|=m—k
(Me(m—-s+1)N{l,...,s—1}=M

The actual optimal threshold is easily computed by minimizing over the appropriate
conditional thresholds:

Lemma 5.3.5: tQ(m, k)) = minMg{l’___’5_1}7|M|Zs_1_k tQ(m,k,M)

The dynamic programming algorithm is based on the fact that the values tg (i, *, *)
can be computed from the values tg(i — 1, %,). Note that it is not possible to compute
to(i,*) from tg(i — 1, *). The matches in the last s — 1 positions have to be recorded
as well. The following lemma gives the detailed recursion.

Lemma 5.3.6: Fors<i<m,0<j<kand M C{1,...,s—1}, | M| >s—1—7,
we have

to(s—1,5,M) = 0
teli—1,j—[s—1¢ M],(MU{0}\{s —1}) ®1)
toi — 1,7 —[s—1¢ M, (M\{s—1})®1)

Proof. 1f i is less than s = span(Q), tg(i, *, *) is always zero since a string shorter than
the span can not contain a matching g-gram. Let then ¢ > s and consider the value
to(i, 5, M). If we want to compute it from ¢g (i —1, 5%, M*) for some j* and M* we need
to make two important observations. First, 7* is either equal to j or to j — 1 depending
on whether there is a character match at position ¢, i.e. whether M contains s—1. This
is due to the fact that we only increase ¢ by one and can therefore only introduce one
additional mismatch. The second observation is that the threshold ¢g (7,7, M) is either
equal to tg(i — 1,j*, M*) (if we do not introduce an additional matching g-gram) or
equal to tg(i —1,7*, M*) +1 (if we do, i.e. if @ C (M U{0})). Furthermore the set M*
must agree with M on s—2 positions, i.e. M*N{2,... ,s—1} = (MnN{1,...,s—2})P1.
The reason for this is that M overlaps M* by s — 2 characters. This leaves us only with
the two possibilities given in the lemma. The use of the conditions combined with the
minimization provides us with the correct choice. O

62

Given the recurrence from Lemma 5.3.6 and Lemma 5.3.5 we are now able to com-
pute the optimal threshold. We achieve this by generating the values tg(4, *, *) for all
error values below or equal to k, for all possible sets M describing the matches in the
last s — 1 positions and for i < m. Out of all values tg(m, k,*) we select the lowest
threshold.

To speed up computation, all the values tg(7, *,*) are stored in a single array of
size f(k,s) = Zﬁ:o (sgl) (k—a+1). For each possible error value a between 0 and k it
contains the threshold values tg(i,a, M) for all possible sets M containing between 0
and a errors. One can therefore also write the array size as f(k,s) = ZZ:O Y heo (5;1).
The binomial term describes the amount of possible placements of b errors in a string

of length s — 1.

Updating the array from tg(i — 1,%,%) to contain the new values for tg(i, *,*)
requires evaluating the formula given in Lemma 5.3.6 for every entry of the array. This
can be done in constant time since only two possibilities have to be considered. Thus
one update can be computed in time O(f(k,s)). In order to compute tg(m,*,*) we
have to update the array O(m) times. We arrive at the following result:

Theorem 5.3.1: The optimal threshold value tg(m, k) can be computed in space
O(f(k,s)), where s = span(Q) and f(k,s) = ZZ:O (3;1)(k —a+ 1) and in time
O (mf(k, s)).

The above dynamic programming algorithm is much faster than an exhaustive
search but is still not fast enough to process all possible shapes. As shown in this
thesis, there are useful shapes with large size and span. Even with the faster algorithm
it would be impossible to compute the threshold for all shapes up to that size and
span. To reduce the search space we used a pruning technique based on the following
observation.

Lemma 5.3.7: If Q' C Q, then tgy/(m, k) > tg(m, k).

For each combination of ¢ and s, we generated a set of candidate (g, s)-shapes from
the set of (¢ — 1, s)-shapes with positive threshold with the guarantee that every (g, s)-
shape with positive threshold is among the candidates. To achieve this we first locate
all sets of (g—1, s)-shapes which differ from all others in the same set only in the second
to last position, i.e. any two shapes Q' = {i1,... ,9g—1} and Q" = {j1,... ,jg—1} with
Vk € {1,... ,q— 3,9 — 1} : iy, = jx. The following shapes could be in such a set for
g =>5and s = 6:

{07 1, 27 5}7 {07 1, 37 5}’ {07]‘7 4, 5}

63

Given such a set of shapes we then generate a new shape

RQ=QUQ"={i1,.-. ,ig—2,4q—2,%q-1}

for all pairs @', Q" from the set. The new shape @ has size ¢ since it contains
all entries from @' plus an extra entry from @Q”. Returning to our example we would
generate the shapes

{0’ 17 2’ 37 5}7 {07 17 27 4’ 5}7 {07 17 374, 5}

Since we can assume that we generated all (¢ — 1, s)-shapes with positive threshold
and due to Lemma 5.3.7, all (g, s)-shapes with positive threshold have to be supersets of
(g —1, s)-shapes with positive threshold. Pairing shapes which differ only in the second
to last entry to produce new shapes is only one method of generating all (g, s)-shapes
with positive £, however it sufficiently reduces the amount of shapes generated by this
algorithm to make it practical for our purposes.

Finding the sets of (¢ — 1, s)-shapes that differ only in the second to last position
can be achieved very quickly in a lexicographically sorted list of all (¢ — 1, s)-shapes
with a positive threshold.

With this simple but effective pruning method it became feasible to analyze very
many different shapes. For example it allowed us to find all shapes with a positive
threshold for m = 50 and k € {4, 5}, a total of more than 25 million shapes.

The following Tables 5.1 and 5.2 contain the highest threshold and minimum cov-
erage of all shapes with a positive threshold for m = 50 and k € {4,5}. They show
the highest minimum coverage and the highest threshold for all (g, s)-shapes and for
all combinations of ¢ and s.

5.3.3 Match Regions

For the filter we describe based on gapped g-grams, the same match regions can be
used as for the case of the ¢g-gram Lemma, applied to the k-mismatches problem. Again
one can divide S into overlapping blocks or use single diagonals and check whether
a block or a single diagonal contains ¢ or more hits. We can also use oversize blocks
or sets of more than one diagonal to speed up the location of potential matches while
introducing more of them. In practice the best match region for a given problem is
determined by the choice of parameters and the actual implementations of the filtration
and verification phase. The general statements about the choice of the match region in
Section 4.4.1 for the g-gram lemma hold for gapped g-grams as well.

64

s 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13| 14

2 | 41/42

3| 40/41 | 36/38

4| 39/40 | 35/38 | 31/34

5| 38/39 | 34/38 | 30/34 | 26/30

6 | 37/38 | 33/38 | 29/34 | 25/30 | 21/26

7| 36/37 | 32/38 | 28/34 | 24/30 | 20/26 | 16/22

8 | 35/36 | 31/38 | 27/34 | 23/30 | 19/26 | 15/22 | 11/18

9 | 34/35 | 30/38 | 26/34 | 22/30 | 18/26 | 14/22 | 10/18 | 6/14
10 | 33/34 | 29/38 | 25/34 | 21/30 | 17/26 | 13/22 | 9/18 | 5/14 | 1/10
11 | 32/33 | 28/36 | 24/34 | 20/30 | 17/27 | 14/24 | 10/20 | 7/17 | 4/14 | 0/0
12 | 31/32 | 27/35 | 23/34 | 20/31 | 17/28 | 13/24 | 10/21 | 8/19 | 5/16 | 2/13 | 0/0
13 | 30/31 | 26/34 | 22/34 | 19/31 | 16/28 | 13/25 | 10/22 | 8/20 | 6/18 | 3/15 | 1/12 | 0/0
14 | 29/30 | 25/33 | 21/34 | 18/31 | 15/28 | 12/25 | 10/23 | 8/21 | 5/18 | 4/17 | 2/15 | 1/13 | 0/0
15 | 28/29 | 24/32 | 20/34 | 17/31 | 14/28 | 12/26 | 9/23 | 7/21 | 5/19 | 3/17 | 2/16 | 1/13 | 0/0
16 | 27/28 | 23/31 | 19/34 | 16/31 | 14/29 | 11/26 | 9/24 | 7/22 | 5/20 | 3/18 | 2/16 | 1/13 | 0/0
17 | 26/27 | 22/30 | 18/33 | 16/31° | 13/29 | 11/27 | 9/25 | 7/23 | 5/21 | 4/20 | 2/17 | 1/13 | 0/0
18 | 25/26 | 21/28 | 17/32 | 15/31 | 12/29 | 10/27 | 8/25 | 6/23 | 5/22 | 3/20 | 2/18 | 1/13 | 0/0
19 | 24/25 | 20/27 | 17/30° | 14/30 | 12/29 | 9/27 | 7/25 | 6/24 | 4/22 | 3/20 | 2/18 | 1/13 | 1/14
20 | 23/24 | 19/26 | 16/29° | 13/30 | 11/29° | 9/28 | 7/26 | 5/24 | 4/23 | 3/21 | 2/18 | 1/13 | 0/0
21 | 22/23 | 18/25 | 15/29 | 12/29 | 10/28 | 8/27 | 6/26 | 5/24 | 3/20 | 2/18 | 2/17 | 1/13 | 0/0
22 | 21/22 | 17/24 | 15/28° | 12/29° | 9/29 | 7/26 | 6/24 | 4/22 | 3/21 | 2/18 | 1/12 | 1/13 | 0/0
23 | 20/21 | 17/24 | 14/28 | 12/28° | 9/28 | 7/26° | 5/25 | 4/22 | 2/17 | 2/17 | 1/12 | 0/0 | 0/0
24 | 19/20 | 17/24 | 15/26 | 12/29° | 10/27° | 7/27 | 5/25 | 4/20° | 2/17 | 1/11 | 1/12 | 0/0 | 0/0
25 | 20/21 | 17/24 | 15/28° | 12/29° | 10/29° | 7/26 | 5/25 | 4/23 | 3/20 | 2/17 | 1/12 | 0/0 | 0/0
26 | 21/22 | 17/24 | 16/29° | 12/30 | 11/31° | 8/28 | 6/27 | 4/24 | 3/22 | 2/18 | 1/12 | 1/13 | 0/0
27 | 20/21 | 16/23 | 16/29" | 12/30 | 12/30" | 8/27 | 7/28° | 5/26 | 4/24 | 3/21 | 2/18 | 1/13 | 0/0
28 | 19/20 | 15/21 | 15/29 | 11/30 | 11/30° | 8/29 | 7/29% | 6/25 | 4/25 | 3/22 | 2/19 | 1/13 | 1/14
29 | 18/19 | 14/20 | 14/28 | 10/28 | 10/30 | 8/27° | 7/27% | 5/27 | 4/25 | 3/22 | 2/19 | 1/13 | 1/14
30 | 17/18 | 13/19 | 13/26 | 9/25 | 9/30 | 7/27 | 6/27 | 4/25 | 4/24 | 3/23 | 2/19 | 1/13 | 1/14
31| 16/17 | 12/18 | 12/25 | 9/24 | 9/28" | 6/27 | 6/27° | 4/25 | 4/24 | 2/19 | 2/19 | 1/13 | 1/14
32 | 15/16 | 11/17 | 11/23 | 9/24® | 7/25 | 5/25 | 5/25 | 3/22 | 3/22 | 2/18 | 2/18 | 1/13 | 1/14
33 | 14/15 | 12/17° | 10/20 | 8/24 | 8/24 | 5/25 | 4/24 | 3/22 | 2/18 | 2/18 | 1/12 | 1/13 | 0/0
34 | 13/14 | 12/18 | 9/19 | 8/24 | 8/24% | 5/24 | 4/23 | 4/21°| 2/18 | 2/17 | 1/12 | 1/13 | 0/0
35 | 12/13 | 12/18 | 8/18 | 8/24 | 8/25° | 4/22 | 4/23 | 4/21 | 2/17 | 2/17 | 2/16 | 1/13 | 1/14
36 | 11/12 | 11/17 | 7/16 | 7/22 | 7/24 | 4/22 | 4/21 | 4/21 | 2/17 | 2/17 | 2/16 | 1/13 | 1/14
37 | 10/11 | 10/15 | 8/16* | 6/19 | 6/21 | 4/22 | 4/21 | 3/18 | 2/16 | 2/17 | 2/16 | 0/0 | 0/0
38 | 9/10 | 9/14 | 8/16* | 5/15 | 5/20 | 4/22 | 4/19° | 3/18 | 2/17 | 2/14 | 1/12 | 0/0 | 0/0
39 | 8/9 | 8/13 | 8/16% | 5/14* | 4/18 | 4/21 | 4/19° | 2/16 | 2/17 | 2/14 | 1/12 | 0/0 | 0/0
40 | 7/8 | 7/12 | 7/16 | 5/14 | 3/15 | 3/18 | 3/19 | 2/15 | 2/12 | 1/11 | 1/12 | 0/0 | 0/0
41| 6/7 | 6/10 | 6/15 | 6/14* | 4/14* | 2/13 | 2/14 | 2/14 | 1/10 | 1/11 | 1/12 | 1/13 | 0/0
42 | 5/6 5/9 | 5/13 | 5/14 | 4/14° | 2/12 | 2/13 | 2/14 | 1/10 | 0/0 | 0/0 | 0/0 | 0/0
43 | 4/5 | 4/8 | 4/10 | 4/14 | 4/14 | 3/12° | 2/9 | 1/9 | 1/10 | 0/0 | 0/0 | 0/0 | 0/0
44| 3/4 | 3/6 3/9 | 3/12 | 3/14 | 3/12%| 2/10 | 1/9 | 1/10 | 0/0 | 0/0 | 0/0 | 0/0
45 | 2/3 2/5 2/7 2/9 | 2/11 | 2/12 | 2/11 | 1/9 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0
46 | 1/2 1/3 1/4 1/5 1/6 17 | 1/8 | 1/9 | 1/10 | 0/0 | 0/0 | 0/0 | 0/0

“The shapes with the highest threshold and the highest minimum coverage are different.

Table 5.1: The best thresholds/minimum coverage for m = 50 and k = 4.

65

q
s 2 3 4 5 6 7 8 9 10 | 11 | 12
2 | 39/40
3| 38/39 | 33/35
4| 37/38 | 32/35 | 27/30
5| 36/37 | 31/35 | 26/30 | 21/25
6 | 35/36 | 30/35 | 25/30 | 20/25 | 15/20
7 | 34/35 | 29/35 | 24/30 | 19/25 | 14/20 | 9/15
8 | 33/34 | 28/35 | 23/30 | 18/25 | 13/20 | 8/15 | 3/10
9 | 32/33 | 27/35 | 22/30 | 18/26 | 14/22 | 9/17 | 5/13 | 0/0

10 | 31/32 | 26/34 | 21/30 | 18/27 | 13/22 | 10/19 | 6/15 | 3/12 | 0/0

11 | 30/31 | 25/33 | 20/30 | 16/26 | 13/23 | 10/20 | 7/17 | 4/14 | 2/12 | 0/0

12 | 29/30 | 24/32 | 19/30 | 16/27 | 12/23 | 9/20 | 7/18 | 4/15 | 2/13 | 0/0 | 0/0

13 | 28/29 | 23/31 | 19/30% | 15/27 | 12/24 | 9/21 | 6/18 | 4/16 | 2/14 | 1/11 | 0/0

14 | 27/28 | 22/30 | 17/30 | 14/27 | 11/24 | 8/21 | 6/19 | 4/17 | 2/14 | 1/11 | 0/0

15 | 26/27 | 21/28 | 17/29° | 13/27 | 10/24 | 8/22 | 5/19 | 3/17 | 2/15 | 1/11 | 0/0

16 | 25/26 | 20/27 | 16/29° | 13/27 | 10/24 | 7/22 | 5/20 | 3/17 | 2/15 | 1/11 | 0/0

17 | 24/25 | 19/26 | 15/28 | 12/27 | 9/25 | 7/23 | 5/21 | 3/18 | 2/15 | 1/11 | 0/0

18 | 23/24 | 18/25 | 14/27 | 11/27 | 8/25 | 6/23 | 4/20 | 3/18 | 2/16 | 1/11 | 0/0

19 | 22/23 | 17/24 | 14/26° | 11/26° | 8/25 | 6/22 | 4/20 | 2/15 | 1/10 | 1/11 | 1/12

20 | 21/22 | 16/23 | 13/25° | 10/24 | 7/24 | 5/22 | 3/18 | 2/15 | 1/10 | 1/11 | 0/0

21 | 20/21 | 15/21 | 12/25 | 9/23 | 7/22 | 5/21 | 3/18 | 2/15 | 1/10 | 0/0 | 0/0

22 | 19/20 | 15/21 | 12/23* | 9/23 | 6/21 | 4/20 | 2/14 | 1/9 | 1/10 | 0/0 | 0/0

23 | 18/19 | 15/21 | 12/23* | 9/23 | 6/21 | 4/19 | 2/14 | 1/9 | 0/0 | 0/0 | 0/0

24 | 18/19 | 15/21 | 13/24 | 9/23 | 7/20° | 4/19 | 2/14 | 1/9 | 0/0 | 0/0 | 0/0

25 | 19/20 | 15/21 | 13/25% | 9/23* | 7/22 | 4/20 | 3/16 | 1/9 | 1/10 | 0/0 | 0/0

26 | 20/21 | 15/21 | 14/26° | 9/24 | 8/24 | 5/23 | 3/19 | 2/15 | 1/10 | 0/0 | 0/0

27 | 19/20 | 14/20 | 14/26° | 9/24 | 9/24° | 6/23* | 4/19 | 2/15 | 1/10 | 1/11 | 0/0

28 | 18/19 | 13/19 | 13/26 | 8/24 | 8/24 | 5/22 | 4/20 | 3/17 | 2/15 | 1/11 | 0/0

29 | 17/18 | 12/18 | 12/25 | 8/23 | 8/24° | 5/22 | 5/22 | 2/15 | 2/15 | 1/11 | 0/0

30 | 16/17 | 11/17 | 11/23 | 7/21 | 6/21 | 4/20 | 4/20 | 2/15 | 2/15 | 1/11 | 0/0

31 | 15/16 | 10/15 | 10/20 | 7/21 | 7/20° | 4/18 | 4/18*| 2/14 | 2/14 | 1/11 | 0/0

32 | 14/15 | 10/15 | 9/19 | 7/19* | 5/19 | 3/17 | 3/16 | 1/9 | 1/10 | 0/0 | 0/0

33 | 13/14 | 10/15* | 8/18 | 6/19 | 6/19° | 3/17 | 2/14 | 1/9 | 1/10 | 1/11 | 0/0

34 | 12/13 | 11/17 | 7/16 | 6/19 | 6/20° | 3/17 | 3/14 | 2/12 | 1/10 | 1/11 | 0/0

35 | 11/12 | 11/17 | 6/15 | 6/19 | 6/20° | 3/16 | 3/14 | 2/14 | 1/10 | 1/11 | 0/0

36 | 10/11 | 10/15 | 6/13* | 5/15 | 5/20 | 2/13 | 2/13 | 2/14 | 1/10 | 0/0 | 0/0

37 | 9/10 | 9/14 | 7/15% | 4/14 | 4/18 | 3/13%| 2/13 | 2/13 | 1/10 | 1/11 | 1/12

38 | 8/9 | 8/13 | 7/15% | 4/12¢ | 3/15 | 2/13 | 2/12 | 1/9 | 1/10 | 1/11 | 0/0

39| 7/8 | 7/12 | 7/15° | 4/12 | 3/12 | 2/12 | 2/12 | 1/9 | 1/10 | 1/11 | 0/0

40 | 6/7 | 6/10 | 6/15 | 4/13 | 2/10 | 2/11 | 1/8 | 1/9 | 1/10 | 0/0 | 0/0

41 | 5/6 5/9 | 5/13 | 5/13* | 3/10 | 1/7 | 1/8 | 1/9 | 0/0 | 0/0 | 0/0

42 | 4/5 4/8 | 4/10 | 4/13 | 3/10 | 1/7 | 1/8 | 1/9 | 0/0 | 0/0 | 0/0

43| 3/4 | 3/6 3/9 | 3/12 | 3/12 | 2/8 | 1/8 | 0/0 | 0/0 | 0/0 | 0/0

44 | 2/3 2/5 2/7 2/9 | 2/10 | 2/9 | 1/8 | 0/0 | 0/0 | 0/0 | 0/0

45 | 1/2 1/3 1/4 1/5 1/6 | 1/7 | 1/8 | 0/0 | 0/0 | 0/0 | 0/0

“The shapes with the highest threshold and the highest minimum coverage are different.

Table 5.2: The best thresholds/minimum coverage for m = 50 and k = 5.

66

5.3.4 The Minimum Coverage of Gapped ¢-grams

When examining the huge amount of shapes with a positive threshold for a given set of
parameters, one quickly arrives at an important observation. The threshold of a shape
and the value of ¢ are not very good parameters to measure the filtration efficiency of
that shape. While f, clearly depends on tg(m, k), the correlation is not as strong as
one might expect. In fact we were able to find a large number of instances where shapes
with lower thresholds produce fewer potential matches. A simple example illustrating
this phenomenon follows.

Let m = 13 and k£ = 3. Then both shapes ### and ##-# have a threshold of two. If
two strings have four consecutive matching characters, they have two common 3-grams
of shape ###. In contrast, to have two common 3-grams of shape ##-# two strings need
to have at least five matching characters.

This is where the minimum coverage comes into play. While we were already aware
of it during our work involving the g-gram lemma, it was examples like the one above
together with the huge amount of possibly interesting shapes that convinced us of its
importance. In contrast to the classic, ungapped g-grams where the set of available
filters is very limited due to the fact that one can only modify the value of ¢, the choice
of a good shape becomes much harder for gapped g-grams. For contiguous ¢g-grams a
relatively small set of experiments allowed us to pick good values of ¢ but it is virtually
impossible to experimentally evaluate all shapes with positive threshold for a given
set of parameters. We therefore analyzed the potential of the minimum coverage as a
measure for the filtration efficiency of gapped ¢-grams.

As a first step we decided to determine a method for computing the minimum
coverage of a gapped shape. It turned out to be somewhat more difficult than for
the ungapped case where the minimum coverage can be derived from a simple explicit
formula.

5.3.5 Computing the Minimum Coverage

We have designed and implemented a branch-and-bound algorithm for computing the
minimum coverage for any shape @, threshold ¢ and an arbitraty string S with |S| >
t - span(Q@). Given a specific shape @, t and the length of S it uses sets of integers to
store the starting positions of up to ¢ matching shapes in S. The cover of such a set
A is then defined as U;c 4Q;. The algorithm starts off by placing the first shape in a
set A at position 1, i.e. A ={1}. It then recursively adds the remaining ¢ — 1 shapes.
For each extra shape the algorithm generates span(@)) — 1 many new versions of the
set A by adding the new shape at positions {max A + 1,... ,max A + span(@) — 1}.

67

However, it only considers those new sets A’ for which | Ujc 4 Q;| +t — |A’| is smaller
than the current minimum coverage. This cutoff condition stems from the fact that
adding t — |A’| more shapes will increase the cover of A’ by at least ¢t — |A’|. In order
to quickly compute a good lower bound for the minimum coverage we use a depth-first
approach that computes the coverage for the set A = {1,... ,t} first. In most cases
the coverage of this set is very close or equal to the minimum coverage and provides
a good cutoff condition which reduces the amount of sets generated in each iteration.
After computing all viable sets containing ¢ shapes, we select the set with the smallest
coverage which is then equal to the minimum coverage.

We would like to mention that the minimum coverage computation can easily be
adapted to shorter strings S by only adding new shape positions to A if the shapes lie
completely within §.

The efficiency of the above algorithm was sufficient to compute the minimum cov-
erage of a large number of different of shapes in a reasonable amount of time (several

million shapes in our case).

5.3.6 Some Observations on Gapped g-grams

When computing the minimum coverage for gapped g-grams we made two interesting
observations.

One is the connection between the minimum coverage and the threshold of a shape.
Given a contiguous shape and a threshold ¢, the minimum coverage of that shape will
increase by exactly one if ¢ is incremented by one. For gapped shapes an increase of ¢
by one will often raise the minimum coverage by two or even more.

As an example, for ¢ = 1, the shapes ### and ##-# have a minimum coverage of
three. If we increase t to two, the contiguous shape has a minimum coverage of four and
the gapped shape one of five. A second contiguous g-gram can be overlapped with the
first one by adding one extra matching character, but for the gapped case the second
g-gram adds one extra character at the end of the ¢g-gram and one in the gap.

- ## - # -
-### -## - #
###HHH

This property of gapped ¢-grams explains why some of them have a much higher
minimum coverage than ungapped ¢-grams and why they are better suited for filtering.

68

Given the same error level k, a filter based on a good gapped ¢-gram requires a potential
match to have a much larger minimum cover, i.e. more matching characters between a
pattern P and a text string S are necessary. This makes false positives far less likely.

A second observation was the fact that while for ungapped g-grams there exists
exactly one minimum cover, this may not be the case for gapped ¢-grams. Here it is
possible that several different minimum covers exist. This is not very common and
usually the number of alternatives is fairly small. Nevertheless it can lead to a mod-
erate increase in the expected number of potential matches. We will come back to
this observation in the experiments section where we analyze how well the minimum
coverage can be used to predict the filtration efficiency of a filter based on a certain
shape.

After laying the groundwork for a thorough analysis of the suitability of gapped g¢-
grams for solving the k-mismatches problem we conducted extensive experiments and
compared the results with the predicted behavior of the different shapes. We used the
same measures for speed and filtration efficiency as in the case of the contiguous ¢-
grams. The experimental results and the correlation between predicted and measured
behavior can be found in Chapter 6.

5.4 An Extension to the k-differences Problem

While the k-mismatches problem is quite interesting in itself, in many practical applica-
tions the k-differences problem is of much greater importance. We therefore wanted to
overcome the problems described before concerning insertions or deletions in the gaps
of a gapped ¢-gram. In this section we will introduce our approach. One of the main
obstacles in realizing this algorithm was the computation of the threshold. We include
a brief description of a solution by Juha Karkkdinen [Kar02] in this work for the sake
of completeness. The remaining contents of this section as well as some experimental
results were published in 2002 [BK02].

5.4.1 The Filter Algorithm

The basic idea behind the gapped ¢-gram filters for the Levenshtein distance is the use
of more than one shape to compensate for possible insertions or deletions in gaps of the
shape. The simplest form of this technique is the application to shapes with only one
gap. For these shapes we needed to find an approach that allows us to detect matching
g-grams even if there was an insertion or deletion in the gap.

To achieve this goal we use three different shapes from the query to detect matches

69

in the database string. A basic shape with only one gap and two other shapes formed
from the basic shape by increasing and decreasing the length of the gap by one. For
example, with the basic shape ##--# we would also use the shapes ##---# and ##-#. For
each of these shapes we compute the IDs of the corresponding ¢-grams in P. However,
when searching for these g-grams in S we treat the three different shapes all as instances
of the basic shape, basically transforming them into the basic shape. The filter therefore
compares the g-grams of all three shapes in the pattern P to the g-grams of the basic
shape in the text S. If S contains an insertion in the gap of the g-gram, the basic shape
could be invalidated by this insertion, however the shape with reduced gap length from
P would still result in a match with S when transformed into the basic shape. For
a deletion, the shape with increased gap length matches with S at the same starting
position when transformed into the basic shape. This ensures that matching ¢-grams
are found even if there is an insertion or deletion in the gap.

In the following example we show which g-grams are generated in the pattern P.

P = GTACTA

== = =
Qoo Q
QR Q Q Q Q Q
H 3 3 4 |
1 1
1 Q
|
=

= = =
1
|
=

1

1

1
=

It is important to point out that we transform all these ¢-grams with different gap
lengths into g-grams of the basic shape when searching in S. A ¢-gram GT-C from P
would be transformed into GT--C when searching for it in S. So except for the fact
that we now use three shapes instead of one for each position in P, the basic approach
remains the same. Again we have to detect match regions that contain at least ¢ hits.

When creating the three distinct g-grams for a given starting position in P, it is
possible that two or all three of them result in the same g-gram if the characters behind
the gap are repeats. In this case we only count the two or three hits as one hit. In the
next example, the first two g-grams would result in the same g-gram for search in S.

70

We would only search for the g-grams AC--A and AC--C.

P= ACGAAC

AC
AC
AC

1 1 |
1 1 =
1 =

«Q

5.4.2 Computing the Optimal Threshold

The new approach based on the use of three shapes for generating g-grams from the
pattern P complicates threshold computation even further. To solve this problem
we first needed to find a definition of the threshold under the new circumstances.
Furthermore it was necessary to develop an algorithm to actually compute the threshold
given this definition. Juha Karkkiinen [K&ar02] developed a two-stage algorithm that
provides a general framework for computing thresholds. However, the algorithm still
requires a so-called profit function for a specific filter in order to actually compute
the threshold. Deriving this profit function can be quite difficult depending on the
complexity of the filter.

We now present the definition of the threshold we used for our filter algorithm. We
then proceed to define profit functions in general and the @ + 1-profit for the filter
based on three one-gapped ¢-grams. This profit functions is required by the algorithm
for the threshold computation. We also briefly sketch the actual algorithm in the last
third of this section.

Following [Gus97] we define an edit transcript as a string over the alphabet of
M(atch), R(eplace), I(nsert) and D(elete) operations, describing a sequential character-
by-character transformation of one string into another. In such a transcript an M
stands for a character that matches between both strings. An R stands for a character
replacement in, an I for an insertion into and a D for a deletion from the first of the
two strings.

For two strings P and S, let 7 (P, S) denote the set of all transcripts transforming
P to S. For example, 7 (ACTG,ACCT) contains MMRR, MMIMD, MIMMD, IRMMD, IDIMDID,
etc.

For a transcript 7 € T (P, S), the source length slen(r) of 7 is the length of P, i.e.,
the number of non-insertions in 7.

The Edit cost cg(7) is the number of non-matches in the edit transcript. The
Hamming cost cy(7) is infinite if 7 contains insertions or deletions, otherwise it is the

71

number of replacements in the edit transcript. The Edit and Hamming distance of P

and S are
dg(P,S) = i
e(P,S) Ter,;l(llgs)CE(T)
and
du(P,S) = Tegl(i]gs) cr (7)
respectively.

After having defined distance measures for strings using cost functions for edit
transcripts we can also define the g-gram similarity measure for strings using profit
functions for edit transcripts. An example for such a profit function is the Q-profit
defined below. We introduce the concept of profit functions with the simple case of
only one shape.

A match alignment M, of a transcript 7 is the set of pairs of positions that are
matched to each other. For example, M1rmmtrpMR = {(1,3), (2,4), (5,7)}. For a set I
of integers, let M. (I) be the set to which M, maps I, i.e.,

M.(I)={j|i€Iand (i,j) € M;}.

A Q-hit in a transcript T is a pair (4,) of integers such that M, (Q;) = Q;. Note
that, if 7 € T(P,S), then a Q-hit (4, j) in 7 implies P[Q;] = S[Q;]-

The Q-profit pg(7) of a transcript 7 is the number of its Q-hits, i.e., po(r) =
{(,7) | M (Qi) = Q;}|- Using pg as the profit function defines the Q-similarity of
two strings P and S as sq(P, S) = max,c7(p,s) PQ(7)-

We would like to point out that the corresponding similarity measure sqg is not
exactly the one used by the filter algorithms. However, there is a close connection. If
T € T(P,S), then a Q-hit (¢,7) in 7 implies P[Q;] = S[Q,]. Therefore, the number
of matching g-grams between P and S is at least sg(P,S), and thus at least ¢ if
d(P,S) < k. The number of matching g-grams may be higher than sg(P,S). For
the 1-gram @ = {0}, AB and BA have two matching 1-grams (A and B) even though
570y (AB,BA) = 1. The exact value of sg(P,S) could be computed by a more careful
analysis of the matching ¢g-grams, but it may not be worth the computational effort. It
again boils down to the definition of the match region and choosing the right balance
between getting as close as possible to sg and spending additional time to do so.

We can now define the threshold using edit transcripts as follows:

72

Definition 5.4.1: Given a pattern length m and a maximum distance k, the thresh-
old for a cost function ¢ and a profit function p of edit transcripts is

ty(m, k) = mTin{p(T) | slen(t) = m,c(1) < k}.

This leads to the following lemma for the filter criterion.

Lemma 5.4.1: Let ¢ be a cost function and p a profit function for edit transcripts.
Define a distance d of two strings P and S as d(P, §) = min,¢(p,s) ¢(7) and a similarity
s as s(P, S) = max,c7(ps) (7). Now, if d(P,S) <k, then s(P,S) > t;(|P|, k).

The lemma, holds for any choice of cost ¢ and profit p.

For ¢ = cyg and p = pg, Definition 5.4.1 results in the thresholds that were used for
the k-mismatches problem. If @) is the contiguous shape {0,1,... ,q— 1}, the threshold
is the same as given by the ¢g-gram lemma.

However, we still lack a profit function that defines the ¢g-gram based similarity for
the case of one-gapped ¢-grams when using 3 shapes to compensate for insertions and
deletions. Let b1, g,be > 0 and (b1, g,b2) denote the one-gap shape {0,... ,by —1,b1 +
Gy--- b1 + g+ by — 1}. For a one-gap shape Q = (b1, g,b2), let Q! = (b1, g9 + 1,b0)
and Q7! = (b1,9—1,b2) (or Q1 ={0,... ,by + by — 1} if g = 1). Then, a Q + 1-hit in
a transcript 7 is a pair (7, j) of integers such that Q; € {MT(Q;I), M, (Qy), MT(Qz-“)}.
The Q£ 1-profit of 7, denoted by pg+1(7), is the number @ +1-hits in 7, i.e., po+1(7) =
{G,5) | Q; € {M-(Q; 1), M- (Qi), M (Qf1)}}|. The Q £ 1-similarity of two strings P
and S is s@+1(P, S) = max,c7(p,5) Po+1(7).

For ¢ = cg and p = pg+1, Definition 5.4.1 provides the thresholds used by the one-
gapped ¢-gram filters for the Levenshtein distance. What was said about the relation
of the filter and the similarity measure s above, holds for this case as well.

We now have a definition of the threshold for the filter we want to use for the
k-differences problem. To actually compute the threshold from this formula we need
the two-stage algorithm by Juha Kéirkkéinen [K&ar02]. It is based on automata for
computing the values slen(7), ¢(7) and p(7) for any transcript 7. These automata have
an initial state representing the empty transcript and four transitions out of each state
labeled with M,R,I and D. Each transition has three output values, which represent the
changes in the computed values slen(7), ¢(7) and p(7) caused by this transition. For
a given transcript 7, the computed value is the sum of the output values of the path
representing 7 in the automaton. Such automata are more generally known as weighted
finite automataBGWO0] or string-to-weight transducers[Moh97]. Constructing such
automata is a non-trivial task for all but the simplest filter algorithms. However, it

73

requires far less effort than developing a method for computing the threshold of a given
filter from scratch since one can rely on a well-founded framework for generating the
automata.

To actually compute the threshold one combines the three automata for slen(7),
¢(r) and p(7) into one larger automaton. The state set of the combined automaton
is the Cartesian product of the state sets of the three simple automata, but since the
automata for source length and Levenshtein or Hamming cost have just one state the
combined automaton is simply the profit automaton with three output values on each
edge.

One can think of this automaton as a directed graph G = (V, E) in which each
edge e € E is labeled with three non-negative values I(e), ¢(e) and p(e) corresponding
to the output value for source length, cost and profit of that edge. Now the threshold
computation problem can be stated as follows:

Find the path 7,,;, in G starting from the initial state with the empty edit transcript
that has the lowest profit p(7,,:,) and satisfies ¢(7,i,) < k and I(7:,) = w, i.e. has
the lowest number of matching ¢-grams (profit), k errors (cost) and a length of w.

The problem stated above is very similar to the classic constrained shortest path
(CSP) problem|Zie01]. There exist pseudo-polynomial algorithms, i.e., algorithms that
work in polynomial time when the edge values are polynomial, which can be adapted
to this problem.

We implemented the whole algorithm in C++ using LEDA [MN95] with a graph
construction algorithm based on dynamic programming that was designed specifically
for one-gap shapes and the Levenshtein distance. With this implementation we were
able to conduct an exhaustive analysis of all shapes for the parameter sets used in our
experiments within a reasonable amount of time.

5.4.3 Match Regions

For the filter based on one-gapped ¢-grams, the types of match regions that can be used
are the same as for the case of the g-gram Lemma, applied to the k-differences problem.
Again one can use a division of S into overlapping blocks or use sets of k + 1 diagonals
and check whether such a block or set of diagonals contains ¢ or more hits. We can
also use oversized blocks or sets of more than k£ 4+ 1 diagonals to speed up locating
potential matches while introducing more of them. In practice the best match region
for a given problem is determined by the choice of parameters and the implementations
of the filtration and verification phase. The statements made about the choice of the
match region in Section 4.4.1 for the g-gram lemma hold for gapped ¢-grams as well.

74

5.4.4 The Minimum Coverage

When using one-gap shapes as filters in the way outlined above, the question of shape
choice arises again. However, there are some important differences to k-mismatches
problem. Since we only allow one gap, the total number of shapes with positive thresh-
old, i.e. the set of potentially interesting shapes, is far lower. For many sets of pa-
rameters m, ¢ and k it is actually small enough to conduct an experimental analysis
of speed and filtration efficiency for all possible shapes. Nevertheless we decided to
evaluate how well one can predict the filtration efficiency of this filter class with the
minimum coverage.

Our first observation was that the minimum coverage with respect to the target
string S remains the same. Since one only uses the basic shape and not all three on S,
the minimum cover remains unchanged when compared to using only one shape and
can be computed with the algorithm described in Section 5.3.5.

However, there are some effects on the expected number of potential hits that stem
from the use of three shapes in the pattern P. While the size of the minimum cover
remains the same, there are more distinct character patterns for the minimum cover
since they can be constructed from the three different shapes at each position. A
simple example would be the basic shape ##--# with a threshold of two. The minimum
coverage for this example is five. However, potential matches with minimal cover can be
caused by several different arrangements of matching characters in P like, for example,
(two of the pattern shapes with gap size reduced by one), ###-## (two basic
shapes), ###--## (two of the pattern shapes with increased gap size) or ####-# (the
first shape with reduced gap length, the second a basic shape). This leads to more
potential matches than expected.

Another effect that is most pronounced for small alphabets and shapes for which
one of the two contiguous matching pieces is very short is also caused by using three
alternate shapes. The generation of three usually different ’tail-ends’ of the shape
increases the likelihood of a hit. Take for example the shape ##--# and the string
P = ACAGCT. For the first position in P we will look for the g-grams AC--G, AC--C and
AC--T in the text S. Combined with a small alphabet size this will make a hit with
that starting position in P more likely than when using only a single shape.

It is very hard to quantify the influence of these effects on the expected number
of potential matches but our experiments still showed the minimum coverage to be a
reasonable measure for predicting the filtration efficiency. For m = 50 and k € {4,5}
we calculated the minimum coverage of all shapes with positive threshold and ¢ > 8
and ran experiments for these shapes in order to compare expected and actual values
for filtration efficiency. The results can be found in Section 6.3.

75

5.4.5 Evaluating One-gap ¢-grams for the k-differences Problem

After laying the groundwork for a thorough analysis of the suitability of one-gap ¢-
grams for solving the k-mismatches problem we conducted extensive experiments and
compared the results with the predicted behavior of the different shapes. We used
the same measures for speed and filtration efficiency as in the case of the contiguous
g-grams. It turns out to be the case that our filter based on one-gap g-grams can be
significantly better than previously published filters. However, the advantages are not
as big as for the the k-mismatches problem. It is also the case that the correlation
between predicted and measured filter behavior is not as good as for the k-mismatches
problem. This is not a real drawback though, since it is usually viable to conduct an
experimental analysis of all interesting shapes for a given set of parameters which was
not the case for arbitrary gapped shapes. More information on the experimental data
and the correlation between predicted and actual behavior can be found in Section 6.3.

5.5 Moving from Ungapped to Gapped ¢-grams

So far we have not talked about the modifications to existing algorithms and imple-
mentations required for the use of gapped g-grams. Filter algorithms typically rely on
matching g-grams between a pattern P and a string S. To locate these hits, some form
of index for S is used. For ungapped g-grams a lookup table is a very simple yet efficient
solution. It has size O(|S| + |X]?), where ¥ is the alphabet. It can be constructed in
time O(|S| + |2]9) and all hits of a pattern can be found in time O(|P| + h) where h
is the number of hits. It is very simple to modify the lookup table to work for gapped
g-grams as well by simply creating hit lists for all possible gapped g-grams for a given
shape and value of q. Gapped ¢-grams increase the construction time of the index to
O(|S|g + |X|?) and the query time to O(|P|g 4+ h) due to the more complex nature of
computing unique IDs for the g-grams in S and P respectively. In practice the dif-
ference in construction time is not very important since it only adds a small constant
factor to the linear time preprocessing phase. The difference in query time is not much
of an issue for large databases since the number of hits typically dominates the query
time. The use of a suffix array for contiguous g-grams of varying length is of course
impossible for gapped g-grams. However, it is feasible to adapt the hybrid approach
for large values of g to gapped g-grams. It is therefore quite simple to modify existing
implementations to use gapped g¢-grams efficiently. The main problems lie in the choice
of good shapes and in the computation of their threshold. However, these are one-time
costs and we provide efficient algorithms and their implementations for this task.

76

5.6 Concluding Remarks about Gapped g-grams

The most important results of our work are the general superiority of gapped ¢g-grams for
filter algorithms in approximate string matching. While we have so far only developed
two algorithms based on their use, there is still potential for additional development
for which we provide the basic tools including, for example, the development of filters
based on sets of shapes or the sequential or parallel use of filters using different shapes.
Other areas of potential interest are the use of gapped g-grams in lossy filters and the
combination of gapped g-grams with approximate g-grams.

7

Chapter 6

An Experimental Analysis of Filter

Algorithms

This chapter presents the results of various experiments with filter algorithms discussed
in this thesis. The experiments have two main goals — to evaluate and compare speed
and filtration efficiency of different filters and to analyze their behavior in the different
match zones. For gapped g-grams we present some results illucidating the distribution
of shape quality that emphasize the importance of careful shape selection. Furthermore
we compare experimental results with the predicted values for speed and filtration
efficiency provided by computations based on the value of ¢ and the minimum coverage
¢m in order to analyze the quality of our predictions.

We begin this chapter with some experimental results for QUASAR in Section 6.2.
Then we proceed to a comparative analysis of ungapped and gapped ¢-grams for the
k-mismatches and the k-differences problem in Section 6.3. In Section 6.4 we illustrate
the large variance in the quality of different gapped ¢g-grams and underscore the impor-
tance of careful shape selection. Finally, Section 6.5 covers our experiments concerning
the three match zones and the potential of the different algorithms for use as lossy
algorithms.

Since one of the main applications of approximate string matching is computational
biology with its huge genomic databases, we used either randomly generated or actual
DNA data for our experiments.

79

6.1 Parameter Ranges

Part of the motivation for our research were problems from computational biology,
namely EST clustering and shotgun sequencing. We therefore used values for the
parameters w and k that are typical for these areas. In both applications one searches
for local matches that have a minimum length between 40 and 60 base pairs. We set
w = 50. The second parameter, k depends on the quality of the sequences one works
with. In EST clustering the data quality is often quite low and values of k£ between
3 and 5, i.e. an error rate between 6 and 10%, are of potential interest. Most data
produced for shotgun sequencing however is very recent and contains less errors. This
means that one can usually get away with a value of K = 3 which corresponds to 6%
error rate for w = 50.

In the applications described, queries are basically fragments of DNA that have
been sequenced in one piece. Current sequencing technology limits the length of such
fragments to roughly 500 base pairs. We therefore only conducted experiments with
query lengths between 300 and 600 base pairs.

For large databases lower values of ¢ result in huge hit lists and therefore very large
sets H(P). This leads to an explosion of the runtimes. For this reason we only ran few
experiments with ¢ < 7. On the other hand a lookup table becomes less practical for
higher values of ¢ so we did not conduct any experiments with ¢ > 14.

6.2 Results for QUASAR

We will begin this chapter with some results for QUASAR, our implementation of
a filter algorithm based on the g-gram lemma combined with a suffix array and a
lookup table. This software was designed for EST clustering in 1999 and used to
cluster the Mouse EST database. In EST clustering one basically has to run an all
vs. all comparison of all EST sequences in a large sequence database. It is possible to
think of the sequences as nodes in a graph and the approximate matches which meet
certain criteria as edges connecting nodes that potentially belong to the same gene.
Our 1999 version of the Mouse EST database had a size of 75.2 million base pairs and
contained 198323 sequences. It was preprocessed for clustering by removing sequences
with common repeats and sequence tails containing poly-X (X= {4, C, G, T, N}) which
are frequently introduced by sequencing inaccuracies and are usually clipped by the
sequencing centers. We also removed poly-AT signals at the beginning or end of EST
sequences. For additional tests we used the Human EST database which at that time
contained 279.5 million base pairs in 723675 sequences. It was preprocessed in a similar

80

fashion.

Our implementation used a modified version of NCBI BLAST 2.0.3 for the verifica-
tion phase. We spent a considerable amount of time to incorporate NCBI BLAST code
into our implementation in order to be able to pass the potential matches reported in
the filtration phase to BLAST for verification via main memory. This was necessary to
avoid the overhead of writing data into a file and calling BLAST to operate on that file.
Coding the direct interface turned out to be quite difficult and memory leaks caused by
sloppy memory management in the BLAST became apparent. This resulted in mem-
ory consumption continuously increasing with every query and limited the amount of
queries we were able to search for with one call of the program.

We conducted the searches for EST sequences in batches of 1000 queries against the
complete database. The machine we used was a single SUN Ultra Sparc II processor
with 333 MHz in a dedicated Sun Enterprise 10000 that was able to store all necessary
data structures in main memory. For reference purposes we ran the same batch of
queries using NCBI BLAST 2.0.3 against the EST database. In both cases we did not
include the time required to read data from disk in the runtimes.

For QUASAR we used the ¢g-gram lemma with a window length w = 50, the g-grams
had length ¢ = 11 and an error level of £k = 3. This results in a threshold of ¢t = 7.
BLAST was executed with an E-value of E = 10~ and a word length of ¢ = 11. The
remaining parameters were left unchanged.

We conducted two sets of experiments. In the first we used different values for the
block size b in which we divided the database to determine the optimal block size. The
second set of experiments is a speed comparison between QUASAR and BLAST using
the optimized block size.

6.2.1 Determining Optimal Block Size

One result of the development of QUASAR was the use of blocks with block sizes b that
are greater than 2(m — 1), the value proposed by Jokinen and Ukkonen. Depending on
the filter parameters and the implementation this can significantly speed up the overall
matching. In order to determine the best value for b we conducted experiments with
different values of b. Due to the use of shift operations in our code we were restricted to
powers of two. In Figure 6.1 we present the results of these experiments. We analyzed
the time consumed in the filtration and verification phase as well as the total time. We
also plot the percentage of the blocks that were recognized as potential matches. This
is roughly equivalent to 1 — f,

The main result of our experiments was the optimal value for b, which turned out to

81

0.9 — T T T T

Percentage of recognized blocks <—
Total time -+~

0.8 Verification time -8--

Filtration time -

Time in sec, recognized blocks in %

o L 1 1 1 1
4096 8192

2048
Block size (bp)

Figure 6.1: Running times and percentage of recognized blocks for various block sizes.

be 2048 for local matching with substrings of length 50 and k£ = 3. Another interesting
observation is the fact that while the correct choice of b is important, the range of
values for which one achieves good overall speed is fairly broad. The restriction of b to
powers of two is therefore only minor.

6.2.2 QUASAR vs. BLAST

After determining the optimal value for b, we ran experiments to compare the speed
of our algorithm with that of standard BLAST. We used the Mouse and Human EST
databases available in 1999. The results are shown in Table 6.1. At the time we did not
use the notion of filtration efficiency or actually counted potential matches. However,
we protocolled the number of blocks marked as potential matches and compared it to
the total amount of blocks in the database. We used the percentage of blocks with a
threshold of ¢ or more, i.e. the percentage of recognized blocks to illustrate the filtration
efficiency.

For our applications QUASAR turned out to be up to 35 times faster than BLAST
which allowed us to complete the all vs. all comparison of the Mouse EST database in
roughly six hours, a process that would have required about a week using BLAST.

82

DB Size Query Recognized | CPU times in seconds

Mbps | Size(bps) | Blocks(in %) | quasar BLAST
Mouse 73.5 368 0.38% | 0.121 3.37
Human 279.5 393 0.33% 0.37 13.27

Table 6.1: Running times of searches in Mouse and Human EST databases with block size of
2048bps. From left to right: database and its size, average query size, percentage of
recognized blocks and the average CPU times per query for QUASAR and BLAST. All results
were averaged over a batch of 1000 queries.

We would like to point out that the filtration phase accounts for roughly two thirds
of the total running time (for a block size of 2048bps) even though it uses the sim-
plest possible match region. Thus, the speed of QUASAR would benefit most from
improvements in the filtration phase. One problem of the implementation was the
crude interface between our code and BLAST which lead to a substantial overhead and
was virtually impossible to keep up to date with newer versions of NCBI BLAST due
to continued changes in their function structure. A second problem of the interface
was that we had to pass all sequences from the database that were part of potential
matches to BLAST in their entirety. We were also unable to provide additional in-
formation about the potential matches to BLAST via this interface so BLAST had to
locate the g-grams causing the potential matches a second time by constructing and
using it’s automaton. For large scale application it would probably make more sense
to implement an algorithm similar to BLAST from scratch. Due to the magnitude of
this software engineering feat we decided against this within the scope of this thesis.

6.3 Speed and Filtration Efficiency of Different Filters

The purpose of this section is the presentation and discussion of experimental results for
various filter algorithms. In order to allow a meaningful comparison between different
filters we decided to measure speed and filtration efficiency using the two parameters
described in Section 4.7. They are |H(P)|, the total amount of hits for a query and
|PM(S)|, the total number of potential matches returned for a given filter, a query P
and a database S. While we have provided means to predict these parameters for a
given filter we also wanted to measure them directly in an experimental setting.

We implemented a universal filter algorithm which can use different filter criteria
and apply them to a query P and a database S. We set up a test environment in which
we searched for a large number of different queries P in synthetic and actual DNA
databases. The length of these queries was 500 base pairs each. They are randomly

83

generated DN A sequences with an independent and equal distribution of the four nucleic
acids. We used two databases, one contains 50 million base pairs of sequences from
the Human EST database, the second is an equally sized, randomly generated DNA
database with equal and independent distribution of the four nucleic acids. We will
refer to these two databases as the EST and the random database. We would like to
point out that, even though the queries were randomly generated, none of them had
actual matches in either database for any error level used in the experiments. This
means that all potential matches are false positives and that the filtration efficiency
can be simplified to

_ [PM(S)]
fe= 5|

There were several reasons against using actual DNA as queries. The most impor-
tant is our interest in the amount of potential matches that are generated by a filter. It
is usually the case that the amount of false positives with ¢, or slightly more matching
characters by far outweighs the amount of relatively similar false positives. Only in the
rare instances where the query is a repeat with a very high copy number and the filter
has a high minimum coverage will this relation be reversed. The amount of meaningful
but unwanted potential matches can then be higher than the amount of low similarity
false positives occurring by chance. For such cases, while better filter algorithms with
a higher filtration efficiency will still perform better, the disproportionate amount of
relatively close false positives will lead to smaller than expected differences between the
filters. Usually however, such queries are filtered out with repeat masking. The second
reason for using random queries was the goal of comparing the results for the EST and
random database.

The single most important goal of the following experiments was the relative analysis
of different filter algorithms with respect to speed and filtration efficiency. While the
absolute numbers for the amount of hits and potential matches may be somewhat
different in practice depending on the actual data being used, the results regarding
the relative performance of the different algorithms retain their significance. This is
important for two reasons. We of course wanted to compare our developments with
previously known filters and determine by how much we were able to improve their
performance. Indirectly however, it is also a prerequisite for the selection of good
gapped shapes. We decided to evaluate the performance of filters based on the ¢g-gram
lemma, the filter criterion used by BLAST and compare them with filters using gapped
g-grams. We look at both the k-mismatches and the k-differences problem but present
their results separately. We used single diagonals and sets of k + 1 diagonals as match
regions for our tests. All results were averaged across the set of queries.

84

6.3.1 Choice of Gapped g-grams

For BLAST and the classic ¢-gram filter the set of possible parameter choices was very
small. In all cases there exists exactly one filter for a given value of ¢q. This allowed us
to evaluate all potentially interesting filters in a reasonable amount of time. However,
for gapped ¢-grams things are different. For the k-mismatches problem where we have
to consider a very large amount of shapes, shape choice becomes very important due
to the huge variance in shape quality between the best and the worst shapes. We will
illustrate this variance further in Section 6.4

In principle one could envision two approaches to arrive at good shapes for filtering
with gapped ¢-grams. One would be the development of a method to construct or
design good or even optimal shapes. The second is an exhaustive search of all possible
shapes with either a theoretical or practical analysis of their properties. We have not
been able to come up with a solution for the first idea and therefore decided to follow
the second approach.

6.3.2 ¢ and the Minimum Coverage

In order to select the best gapped shapes for the use in filter algorithms, we had to
conduct an exhaustive search of all possible shapes that includes either a theoretical
or practical analysis of the different shapes and leads to a selection of optimal or near-
optimal shapes. Due to the large number of shapes a method for quick judgement
of the expected filter speed and filtration efficiency of a given gapped shape is vital.
The selected value of ¢ and the minimum coverage, defined in Section 4.7.3 are used
to predict the performance of a shape. In order to support our claims regarding the
accuracy of our predictions we conducted several tests in which we used different gapped
g-grams to match a set of 1000 random query strings of length 500 against the EST
and the random database. For some tests with very high runtimes we restricted our
experiments to only 100 of the 1000 queries.

Figure 6.2 contains the results of the experiments concerning the expected filtration
efficiency. The z-axis is used to represent the minimum coverage of the filters and the
y-axis is used for the average number of potential matches per query. As a comparison
the figure also contains a line which represents the function used for predicting the
number of potential matches with a constant factor chosen to place the line amidst the
experimental data points. Two important results are displayed in this plot. The first
is the good correlation between the predicted and the expected behavior. While by
no means exact, the prediction based on the minimum coverage is nevertheless a good
method to quickly compare different gapped shapes and select those which promise to
have good filtration efficiency. The second result is the increased variance for higher

85

220 K T T T T T T T T T
random data X
EST data O
2.5+10%/4m
216 | 4
=l
212 - v i
2 256 o % B
S &
5 %
2 < x
2 16 - 5 B i
L2
e B
s 1F g x E
= el x
2
9 5] X
o [m]
1/16 g g E
H £
R N\E® X
1/256 |- u
1/4096 u
1 1 1 1 1 1 1 1 1
8 10 12 14 16 18 20 22 24

minimum coverage

Figure 6.2: Correlation between expected and actual number of potential matches

values of the minimum coverage. These two combined suggest that a more advanced
formula for predicting the filtration efficiency or an experimental analysis for a set of
the best shapes with respect to minimum coverage could further improve the process
of shape choice. As a first step in this direction we implemented code that counts the
number of covers that are minimal for a given shape. For some gapped ¢g-grams there
exist more than one cover with minimal size. In this case the filtration efficiency is
reduced due to the increased number of possible arrangements of the matching charac-
ters. Taking the number of different arrangements into account improves the prediction
quality but also requires more time. It also might be interesting to analyze the covers
of size ¢, + 1 or maybe even ¢, + 2.

To give an impression about the number of different shapes for a given set of param-
eters we would like to mention that for the case of the Hamming distance our exhaustive
search considered roughly 25 million different gapped shapes. This number shows how
important a simple and efficient method to judge shape quality is.

For shapes with only one gap and reasonable parameter values it is possible to
experimentally evaluate all available shapes. While somewhat time-consuming this
method provides an alternative to computing the minimum coverage of all shapes and
using it as a guideline for filter selection. For the k-differences problem we analyzed
all possible shapes for w = 50 and k € {3,4,5}, in total about 300. We then examined
the minimum coverage of the shapes with the best experimental results. In all but one

86

case these shapes had maximal minimum coverage in the class of shapes with the same
parameters. The single exception was a shape with the best experimental result but a
minimum coverage one below the maximal minimum coverage of all shapes. However,
in this case the shape with the highest minimum coverage only produced 10 % more
potential matches than the shape with the best experimental results. This also supports
the value of the minimum coverage as a measure of a shapes filtration efficiency.

Our measure for predicting filter speed based on the expected size of H(P) turned
out to be even more accurate. This is apparent, for example, in Figures 6.3 and 6.4.
All filters with the same value of ¢ end up producing sets of hits H(P) of nearly the
same size. In the figures this results in data points that have the same z-position. Also
the data points of filters using one-gapped g¢-grams for the k-differences problem are
shifted along the z-axis by a factor of roughly three which was expected due to the use
of the three shapes from P.

After establishing two good measures for filter speed and filtration efficiency that
can be evaluated quickly, we were able to select interesting shapes in our exhaustive
search of all possible shapes. For each value of ¢ we selected the shape with the highest
minimum coverage for our experiments. For the k-mismatches problem we decided to
include an ‘average quality’ shape, i.e. one with median minimum coverage, in our
experiments. The purpose of this second class of shapes was to analyze and underscore
the importance of a careful shape choice. For the k-differences problem, where we only
use one-gapped shapes, the number of available shapes was much lower. In fact, in this
case there were few enough shapes to allow a full experimental analysis of all shapes.
We also used the minimum coverage to find good shapes. As we mentioned before in
all but one case the shapes with the best experimental results had maximal minimum
coverage among all shapes. We define three shape classes for the different values of ¢
and k& to which we will refer in our plots and in the discussion of the results:

o Best Homming For the k-mismatches problem this is the shape with the highest
minimum coverage. To choose between multiple shapes with the same minimum
coverage we used the number of distinct covers of minimal size, the number of
distinct covers of the minimum size plus one, and the threshold as secondary keys
(in this order).

o Median Hamming For the k-mismatches problem and for each span s, all
(g, s)-shapes (without mirror images but including those with threshold zero)
were ordered by the minimum coverage, and by the same secondary keys as for
the best shape, and the median shape in this order was identified. Of these shapes
(one for each s) the best one was used in the experiments. The chance that a
randomly chosen shape is better than this shape is at most half. We added this

87

class of shapes to illustrate the importance of a good shape choice. The results
for theses shapes make it clear that the best shapes are highly likely to be far
better than randomly selected shapes.

o Best Edit
shapes used for the k-differences problem. In all cases except one, this shape also

This is the shape with the best experimental results of all one-gap

had maximal minimum coverage. The single exception was a case where the shape
with the highest minimum coverage had a large number of distinct arrangements

with minimal cover.

For k = 4,5 and w = 50 the chosen shapes are shown in Table 6.2. A missing shape
means that the shape in that category had a threshold of zero. This also implies that for
this value of ¢ there will be no experiment with this class of shapes. For higher values
of ¢ it is quite common that more than half of all possible shapes have a threshold of
zero. In this case the median shape also has a threshold of zero and no median data
point is shown in the plots displaying our experimental results.

k=4
q best Hamming median best edit
8 #H--#--———- #-————— #-——-H##-# #-#-——#-#--##---H#-# HE#HE-——H#HH
9 ##H—-#-#-—————-- #-———— ##-—-#-# #EHS-—H-#-—————H#H## BHAHEHH———HH#
10 #H——#-H$-—————#——————H-——#H—-H-# #HH-HH#H—-H————- ##4 | #HHHEHE-—-HHH
11 | ##-#-——#——————#——————#-#-#——## HHHHHS-HEH-H-H# HESH B -—H RS
12 | ##-#-#-——-##——-———— #-##-#-——H#4# HE-HH-HHHH-HEH-# HERHHHHHE - HHH#
13 #EHAHAHRA - HHHH BHAHFHHRH-HHEH
14 #H4H-dH-——-HH4H-H#H

k=5
q best Hamming median best edit
8 #H--#-#-—-——-—————— #H—-#-4 #-#-—-#H#4H#-——#-# HHAHEH-——##
9 #H#-——#--#-#——-H#-## #H#HHS—-H-#-# HHAHEH———#H#H#
10 HHH——#-—#-H—-HHH-# HE-H#-——H-#-HHH-# HERHEHH-HHH
11 HEHHBEH-HE-HH
12 #H#4-H#-—4H#H-H--H4H-#

Table 6.2: Some of the shapes used in Figures 6.3 and 6.4.

88

6.3.3 Results for the Best Shapes

After determining the best shapes according to our quality measures, we were able
to conduct experiments with two main goals. The first was a comparison between
different filters. The second was to support our predicted filter properties by additional
experimental results. Both goals were achieved and the results of the experiments are
presented in this section. We first discuss the k-mismatches problem and then proceed
to the k-differences problem.

For the k-mismatches problem we display the results of our experiments in several
plots contained in Figures 6.3 and 6.4. We present data for Kk = 4 and k£ = 5. In order to
avoid side effects caused by repeats in actual DNA data we used the random database
for these tests. However, we also conducted some tests on the EST database. The
results of those experiments are shown in Figure 6.5. For each value of k there are two
different plots. One shows the values of ¢ and the minimum coverage ¢, for all shapes
we considered, the other contains the experimental results, namely the average number
of hits and potential matches per query. In both cases we used the same axis and scaled
the plots to visualize the correlation between the predicted and the experimental values.
For the case of kK = 4 some data points for gapped g-grams are missing since they had
zero potential matches and could not be displayed on the logarithmic scale.

There are several things of interest in Figures 6.3 and 6.4. First, there is a good
correlation between the predicted behavior and the actual experimental results. In
most cases the correlation is very good, only for £ = 5 and ¢ = 8 we see a moderate
difference between the two values. A possible reason for this lies in the low absolute
number of potential matches. The total amount of potential matches recorded for all
1000 queries was only 12.

Second, the performance of the median shapes shows that while a randomly chosen
shape is likely to be better than a contiguous one, much better results can be achieved
with a careful shape selection. In many cases there are huge differences between the
best shape and the median shape. Also, for high values of ¢ it is quite unlikely that a
randomly picked shape is one of those with a positive threshold.

Finally we would like to point out that given a fixed value of ¢ the best gapped
shapes can reduce the amount of potential matches by several orders of magnitude if
compared to ungapped shapes. It is also worth noting that due to the higher values of
q that are possible with gapped shapes, the size of H(P) can be reduced by a factor of
roughly 28 for both k = 4 and k = 5.

89

g vs. minimum coverage for k=4

28 T T T T T T
26 best -+
B T median —<—]
° 24 T contiguous --*-- _
@ i
o
>
O —
(&)
= i
>
£ _
=
S A4
|
13 14
q
hits vs. filter efficiency for k=4
I I I I I I
best -4
> median —>—
9] contiguous ----
o
» 1/256 1
2
5] 1/16 N
©
S 1]
<
= 16 N
g 8 1
S 2 oo .
12 i
2 1 1 ! 1 1 1
18 516 514 512 10 8
hits / query

Figure 6.3: Comparison of three classes of shapes, random DNA, k = 4, Hamming distance

90

g vs. minimum coverage for k=5

26 T T T T T
best -+
24 = median —>—]
° e contiguous -----
g 22 T 7
g
G>-’ 20 > 7
3
% 18 7
£ 16 7
£
€ 14 7
12 1
-
10 '
6 11 12
hits vs. filter efficiency for k=5
T, T F1 T T T
; + best -+
> 1/16 median —<— -
o contiguous ----
o
= 1| T
[%2]
[}
S
= 16 - |
£ *
& ‘"
= 28 | _
i
2 * |
]]]]
222 520 518 516 514 12

hits / query

Figure 6.4: Comparison of three classes of shapes, random DNA, k = 5, Hamming distance

91

The plots in Figure 6.5 contain results for £ = 4 when using the EST database
instead of the random database.

The results look very similar to those for the random database. The reason for this
is the use of random strings as queries. If using queries with many repetitive elements
the performance drops significantly. In practice this problem is usually avoided by
repeat screening before searching in a DNA database.

g vs. minimum coverage for k=4

)
(@]
o
o
>
o
o
S
>
£
£
S
q
hits vs. filter efficiency for k=4, EST database
I I I I I I
best -t
> median —>x—
o contiguous ----
o 4
o 1/256 -
2
S 1/16 N
©
1S 1 —
<
€ 16 i
Q 1
12 i
2 K]]
518 516 514 512 510 8

hits / query

Figure 6.5: Comparison of three classes of shapes, EST DNA, k = 4, Hamming distance

92

For the k-differences problem we ran similar tests. This time we only used the
random database and used the previously described one-gap shapes for filtering. We
compare the results with those of contiguous, i.e. ungapped ¢-grams in Figure 6.6. In
order to better take the 3 shapes per starting position in the query into account we
show the expected number of hits in the first plot instead of the value of q. For the
contiguous case the experiments were conducted with ¢ € {7,8,9,10} for ¥ = 4 and
q € {6,7,8} for k = 5. For the one-gap shapes we used ¢ € {8,9,10,11,12,13} for
k=4and g€ {8,9,10} for k=5

expected number of hits vs minimum coverage

22 T =T T T - T T
contiguous, k=4 --—+---
[0) 20 F x contiguous, k=5 ---x--- -
e best one-gap, k=4 —*«—
g 18r S best one-gap, k=5 —=— -
<] ~ N
o
16 -
g >,
E 14r) T
£
£ 12 F .
10 | | ~ | | S | |
222 220 518 216 14 4096 1024
expected number of hits
hits vs matches
T = T T T - T T
116 contiguous, k=4 -——--]
o contiguous, k=5 ---x---
2 1k best one-gap, k=4 —x— |
] best one-gap, k=56 —=—
= 16 F e i
@ R
S
£ 256 - -
€
4096 | . . -
]] ™]] Sy]]
922 920 218 216 ol4 4096 1024
hits / query

Figure 6.6: Comparison of ungapped with gapped shapes for k = 4, 5, edit distance.

Which value of ¢ and which shape should be chosen in practice depends on the
actual implementations of filtration and verification phase and the match region being
used. The total amount of hits |[H(P)|, for example, plays a greater role when using
more complex match regions. However, the results and measures we provide are good
guidelines for choosing suitable parameters and shapes for a specific implementation.

6.4 The Distribution of Shape Quality

An important part of our work was the development and analysis of methods for predict-
ing filter speed and filtration efficiency of a given filter. To emphasize how important

93

these techniques are, we want to illustrate the great variance in filtration efficiency of
the different gapped shapes that can be used for filtering. The large differences between
the best and the worst or average shapes and the small number of good shapes justify
the efforts we underwent to find good shapes. While the idea of using random gapped
shapes, which was introduced in 1993 [CR93], will still deliver better results than the
use of ungapped shapes (as can be seen by looking at the median shapes in Figures 6.3
and 6.4), careful choice of the gapped g-grams vastly improves performance and allows
taking full advantage of their potential.

In Figure 6.7 we display the distribution of the minimum coverage of all gapped
shapes with ¢ = 8 and a span of 17 for patterns with w = 50 and at most k¥ = 5 errors
and the k-mismatches problem. We only consider shapes with a positive threshold and
treat pairs of shapes where one is a mirror image of the other as one shape.

600 -

i

500 -

400

300 -

200

shapes with minimum coverage x

0 1 1 =
8 10 12 14 16 18 20 22

minimum coverage

Figure 6.7: Distribution of threshold and minimum coverage of (8,17)-grams for w = 50, k =5

It is quite obvious that the difference between the shape with the smallest and the
largest minimum coverage is huge in terms of expected filtration efficiency. The shape
with the highest minimum coverage has ¢, = 21, the one with the lowest has ¢, = 8.
This results in a difference of 13 which would reduce the expected number of potential
matches by a factor of |3|'?
that can be used to search for patterns of length w = 50 with at most k = 5 errors, the

difference between the best and the worst shape increases even further. The highest

. When looking at the set of all gapped shapes with ¢ = 8

minimum coverage for the set of all possible shapes with ¢ = 8 is in fact 22 for a span
of 29 as can be seen in Table 5.2. Another important fact is also nicely displayed in
Figure 6.7: the amount of shapes with maximal minimum coverage is very low and
picking a random shape will usually result in a value for ¢, significantly below the
optimal value. Distribution plots for different parameters look similar.

94

While the minimum coverage does not exactly predict the filtration efficiency of
a given filter, it is the best method we have available as of now to quickly compare
different filters and for the case of gapped ¢-grams to pick those that have optimal or
close to optimal filtration efficiency. It provides the important ability to select gapped
shapes that are far better than randomly chosen gapped shapes and use them for
approximate string matching.

6.5 The Match Zones

We also conducted experiments to evaluate filter behavior for the different match zones.
Since it is sometimes sufficient to use a lossy filter, these experiments were conducted
to gain insight into how different filters work in the lossy zone. Of course those error
levels in the lossy zone are of special interest for which the filter has a high recognition
rate, i.e. recognizes most of the approximate matches with that amount of errors
as potential matches. See Section 4.7.4 for the definition of the lossy zone. A good
example for such an algorithm is BLAST. When using the default parameters, i.e. a
word length of 11, BLAST is only guaranteed to find patterns of length 50 with edit
distance at most £k = 3 which corresponds to an identity of 94 %. This means that
there exist pairs of strings of length 50 with an edit distance of four which are not
reported as potential matches by BLAST. However, the chances of having the four
errors distributed in an arrangement that does not produce a single 11-gram match is
quite low, i.e. there are only a small number of strings in the 4-neighborhood of a query
of length 50 that are not recognized by BLAST. This is equivalent to a high recognition
rate. In practice researchers routinely use BLAST with these parameters to search for
approximate matches with much more than just three errors. The reason why this still
works is the relatively high recognition rate for error values not too far above k.

In order to characterize filter behavior in the lossy zone, we decided to construct an
artificial test database. This database is based on a randomly generated query string
P of length 50 which was checked to contain no repeats of length g or longer. Using
P as a base, we constructed sets of strings with a fixed amount e of errors placed
at random locations in P. We ensured that no two errors were located at the same
position. For each error level e that was of interest we generated a set of sample strings
that had a distance of exactly e from P and stored all these samples in a database
Se. In principle these sets of samples are subets of the e-neighborhoods of P. We then
used different filters to compare P with S, for all relevant values of e. For each value
of e we counted how many samples from S, were recognized as potential matches by
the filter. The percentage of samples that were recognized provides an estimate of the
probability that a given filter will detect a match with distance e. We are well aware

95

of the fact that the distribution of errors in practical applications will most likely be
different from our simple assumption. Also, the use of samples introduces additional
errors into these experiments. Nevertheless the results we generated for a set of 1000
samples per value of e show good consistency with the results of our experiments on
the EST and random database.

An interesting side-effect of our experiments were approximations of Figure 4.6
on page 50. Even though they are just approximations, they still allow a visual
comparison of the filter behavior and the filtration efficiency of different algorithms.
The experiments with the constructed database result in relatively smooth curves when
plotted with e along the z-axis and the recognition rate along the y-axis. Generating
more samples for each value of e could further improve this though. the In the following
we will present and interpret results for various filters.

6.5.1 Results for the ¢-gram Lemma and the Edit Distance

Our initial tests used the classic g-gram lemma to detect potential matches. The
Figures 6.8, 6.9 and 6.10 show the results for | P| = 50 and ¢ computed with k € {3,4, 5}.
For values of e close to but above k, i.e. the lowest values of e in the lossy zones, the
recognition rate is still high but then starts to drop rapidly. In Figure 6.8, for example,
all filters have a recognition rate above 70% for e = 4. A second interesting observation
is the effect the choice of ¢ has on the recognition rate. Higher values increase the
recognition rate in the lossy zone but also increase the error range covered by the lossy
zone, i.e. extend it to the right. In the plots this results in a curve that drops off slower
and reaches the bottom further to the right. There are two advantages of higher values
for use in lossy filters. One is the higher recognition rates for error values e that are
higher but close to k. This extends the useful error range for many applications. The
second advantage is of course the size reduction of H(P), the set of hits that need to
be processed in the filtration phase. However it also leads to an increase in recognition
rate for values of e that are much higher than k. This is a major disadvantage since it
leads to substantially more false positive resulting in a sharp decrease of the filtration
efficiency.

96

g-gram lemma, k=3, w=50

100 I I I
q=8
q=9 -
g=10 -------
80 - S — -
g=12 --——-
g
S 60k _
c
RS
S
(@]
S 40 .
o
20 .
0 oo] I
15 20 25 30
number of errors
g-gram lemma, k=3, w=50
100 T T T
q=8
- q:g 777777 B
98 =10 -
q=11 e
96 - g=12 --——- -
g
S o4l _
c
RS
€ 92} i
(@]
o
o
L o9}]
88 - —
86 - —
1 1 1
2 6 8 10 12

number of errors

Figure 6.8: Recognition rates for the g-gram lemma, ¢t computed with k£ = 3, w = 50 and
g€ {8,...,12}

97

g-gram lemma, k=4, w=50

100 T T T
q=7
q=8 —---—
80 G=10 -
g
S 60k _
c
RS
S
(@]
g 40 .
o
20 .
0 S AT I R A4
15 20 25 30
number of errors
g-gram lemma, k=4, w=50
100 T T T
q=7
. q=8 ————— -
98 =9 -
q=10 e
96 - —
e
€ g4 |-]
c
RS
c 92 | _
(2]
o
(8]
® o0+ -
88 - —
86 - \ \ X —
\\ l “ l l
2 4 6 8 10 12

number of errors

Figure 6.9: Recognition rates for the g-gram lemma, ¢t computed with k = 4, w = 50 and
qe{7,...,10}

98

g-gram lemma, k=5, w=50

100 NS T T T T
N g=6
q=7 -=----
=8 -------
80 a -
g
S 60k _
c
RS
S
(@]
3 40 | .
o
20 -
0 1 1 1
5 20 25 30
number of errors
g-gram lemma, k=5, w=50
100 T T T
q=6
B q=7 - i
98 q=8 -------
96 -
g
S o4l _
c
RS
c 92 -
(@]
o
o
L o9}]
88 - -
86 - -
1 1 1
2 4 8 10 12

number of errors

Figure 6.10: Recognition rates for the g-gram lemma, ¢t computed with £ = 5, w = 50 and
g€ {6,...,8}

99

6.5.2 Gapped ¢g-grams for the Hamming Distance

The next set of filters we tested were filters using gapped g¢-grams to solve the k-
mismatches problem. The Figures 6.11, 6.12 and 6.13 show the results for |P| = 50 and
t computed with k € {3,4,5}. For the lowest values of e in the lossy zones recognition
rate is still high but again it starts to drop rapidly for higher values of e. While the
choice of ¢ has the same general effect on the recognition rate as for the case of the
ungapped ¢-grams, there is a deviation for k € 3,4 and ¢ = 8. Here the filter with g = 8
has a higher recognition rate for error values just above k than those with ¢ € 9,10, 11.
However, for higher error values the expected behavior can be observed and the filter
with ¢ = 8 has the lowest recognition rates.

A general observation is the fact that the drop in recognition rate is much sharper
than for the classic g-gram lemma. This visualizes the dramatically reduced amount of
false positives for the gapped g-grams. It is of course caused by the higher minimum
coverage which narrows the error range for the lossy zone. An interesting pair of two
filters with roughly the same amount of potential matches are the classic filter for k = 4
with ¢ = 8 (see Figure 6.9) and the gapped filter for k¥ = 4 with ¢ = 12 (see Figure 6.12).
The amount of false positives these filters produce is roughly comparable (in fact, the
classic filter produces about four times more, see also Figure 6.3) but the amount of
hits they have to process differs by approximately a factor of |%|%. This means that the
verification phase requires far less time while the verification phase will be comparable.
In addition to that the gapped g-gram achieves significantly higher recognition rates
for e € {5,6,7} (99%, 93% and 82% compared to 95%, 81% and 48%). This makes the
gapped filter better suited for use as a lossy filter since it’s recognition rate remains
relatively high for e < 7. It is an important new result that we only arrived at while
conducting these experiments.

100

gapped g-grams, Hamming distance, k=3, w=50

100 T T T T
q=8
9=9 ——--—
g=10 -------
80 - S — -
g=12 --——-
© q=13 ------
S 60 |- 9=14 .
c
RS
S
(@]
S 40 + .
g
20 —
0 Ny L L 1
5 10 15 20 25 30
number of errors
gapped g-grams, Hamming distance, k=3, w=50
100 T T T
q=8
- q:g 777777 B
98 =10 -
q=11 e
96 - g=12 ———-- -
© q=13 ------
S o4l q=14 _
c
RS
e 92 | i
(@]
(@]
(8}
L o9}]
88 - —
86 - —
1 1 1
2 6 8 10 12

number of errors

Figure 6.11: Recognition rates for gapped ¢-grams and the Hamming distance, ¢ computed
with k =3, w =50 and q € {8,...,12}

101

gapped g-grams, Hamming distance, k=4, w=50

100 T T T
q=8
9=9 ——--—
g=10 -------
80 - S — -
g=12 --——-
© q=13 ------
S 60k _
c
i)
S
(@]
8 40 —
g
20) —
0 e B | !
15 20 25 30
number of errors
gapped g-grams, Hamming distance, k=4, w=50
100 T T
q=8
- q:9 777777 |
98 G=10 -
q=11 e
96 - g=12 —--——- -
) g=13 ------
€ g4 |-]
c
i)
c 92 -
(2]
o
(&)
® o0+ -
88 |- -
86 - .
1 1
2 8 10 12

number of errors

Figure 6.12: Recognition rates for gapped ¢-grams and the Hamming distance, ¢ computed
with k =4, w =50 and q € {7,...,10}

102

gapped g-grams, Hamming distance, k=5, w=50

q=8
9=9 ——--—
g=10 -------
80 - S — -
g
S 60k _
c
i)
S
(@]
8 40 -
g
20 -
0 T S
15 20 25 30
number of errors
gapped g-grams, Hamming distance, k=5, w=50
100 T T
q=8
; 9=9 ——--— i
98 q=10 -------
q=11 e
96 -
g
S o4l _
c
i)
€ 92 -
(@]
(@]
(8}
L o9}]
88 - -
86 \ [=
1 1 1 IR
2 4 6 8 10 12

number of errors

Figure 6.13: Recognition rates for gapped ¢-grams and the Hamming distance, ¢ computed
with k =5, w =50 and ¢ € {6,...,8}

103

6.5.3 Gapped g-grams for the Edit Distance

We also tested filters using one-gap g-grams to solve the k-differences problem. The
Figures 6.14, 6.15 and 6.16 show the results for |[P| = 50 and ¢ computed with k €
{3,4,5}. For the lowest values of e in the lossy zones recognition rate is still high but
again it starts to drop rapidly for higher values of e. For the one-gap ¢g-grams the value
of ¢ has the same general influence on the recognition rate as for the case of the filter
based on the g-gram lemma.

A comparison with the results for classic g-grams yields results along the lines of
those presented in Figure 6.6. Gapped filters with higher values of ¢ have a comparable
behavior in the lossy zone for higher values of e (e.g. for k = 4 gapped ¢ = 11
and classic ¢ = 9). However, for values of e close to but above k£ they have higher
recognition rates (same filters for e € {5,6,7}: 99.7%, 95.6% and 82% compared to
98%, 91.8% and 81%). This further supports the suitability of gapped filters for lossy
filtering. Again we can observe that for the k-differences problem gapped g-grams are
superior to contiguous ¢g-grams. However, the advantages are not as pronounced as for
the k-mismatches problem.

104

gapped g-grams, edit distance, k=3, w=50

q=8
9=9 ——--—
g=10 -------
80 g=11 -
g=12 --——-
© q=13 ------
S 60 =14 e
c
RS
S
(@]
S 40 - .
g
20 -
0 S I 1
15 20 25 30
number of errors
gapped g-grams, edit distance, k=3, w=50
q=8
; 9=9 ——--— i
98 q=10 -------
q=11 e
96 - g=12 —--——- -
© q=13 ------
S o4t q=14 i
c
RS
€ 92 -
(@]
(@]
(8}
L o9}]
88 - -
86 - -
1 1 1
2 6 8 10 12

number of errors

Figure 6.14: Recognition rates for gapped ¢-grams and the edit distance, t computed with
k=3, w=>50and g€ {8,...,12}

105

gapped g-grams, edit distance, k=4, w=50
100 o~ T T T T

80

40 |

recognition rate

number of errors

gapped g-grams, edit distance, k=4, w=50
100

98 -

96

94 -

recognition rate

10 12
number of errors

Figure 6.15: Recognition rates for gapped ¢-grams and the edit distance, t computed with
k=4, w=50and g€ {7,...,10}

106

gapped g-grams, edit distance, k=5, w=50

100 SN T T T T
) g=8

80

40 |

recognition rate

—=

e N
20 25 30

number of errors

gapped g-grams, edit distance, k=5, w=50
100 T

98 -

96

94 -

recognition rate

| | o |
2 4 6 8 10 12
number of errors

Figure 6.16: Recognition rates for gapped ¢-grams and the edit distance, ¢ computed with
k=5,w=>50and q € {6,...,8}

107

6.5.4 BLAST

Finally we also ran BLAST on the constructed databases to evaluate its behavior and
compare it with other filter algorithms. Figure 6.17 contains the results for |P| = 50
and BLAST word lengths ¢ € {7,...,14}. Here the general behavior with respect to
the value of ¢ is the same as for all other filters. A notable difference however is the
much slower drop-off of the recognition rates for higher values of e. The reason for this
is of course the low minimum coverage especially for lower values of g. It depends on the
practical problems whether the results stemming from error levels with a low recognition
rate are still worth the effort. For applications where any match with a high distance is
valuable, the BLAST filter criterion is more powerful than the other methods discussed
above. Assume, for example, that a search for very distant approximate matches (i.e.
a high error e) has to be conducted in a limited amount of time but relatively small
fraction of the true matches is sufficient. For such an application dynamic programming
may be too slow and an algorithm like BLAST would be a good solution. If one requires
a high or very high recognition rate however, the BLAST filter criterion falls behind
filters based on gapped g¢-grams for moderate values of k.

As a side note, we would like to point out BLAST’s relatively poor performance
in regions of medium similarity. With default word length our experiments show a
recognition rate of only 81% at an error rate of 16% (i.e. e = 8) that drops to just
below 20% for e = 15 (still 70 percent identity!). Of course things look better for
matches longer than just 50 characters since error distributions that knock out all
matching substrings of length ¢ become less likely. Nevertheless we were somewhat
surprised by these figures.

108

100

80

60

40

recognition rate

20

100

98

96

94

92

recognition rate

90

88

86

Figure 6.17: Recognition rates for BLAST with word length ¢ € {7, ...

BLAST,w=50

number of errors

BLAST,w=50

==

number of errors

109

,13}

6.5.5 Interesting Comparisons

After analysing different filter algorithms we wanted to compare their performance
using the results of the constructed databases.

Figure 6.18 shows a comparison of filters that are guaranteed to locate all approx-
imate matches with at most £ = 3 errors for w = 50. We include contiguous g-grams,
gapped g-grams and BLAST in this comparison and fixed ¢ at a value of 11 in order to
keep the amount of expected hits roughly equal. For BLAST we also allowed a value
of ¢ = 12, which is the highest value of g for which BLAST is guaranteed to detect all
approximate matches to a pattern P of length 50 with edit distance of at most k = 3.
For use as a lossless filter, the amount of false positives generated is lowest for gapped
g-grams and the case of the Hamming distance, somewhat higher for gapped ¢-grams
and the edit distance, higher again when using the classic g-gram Lemma and highest
for BLAST.

For k = 4 and k = 5 we show the comparisons in Figures 6.19 and 6.20 (dropping
to ¢ = 10 and g = 8 respectively). For k& = 4 the g-gram lemma has a threshold of
1 and therefore the same behavior as BLAST. In both cases we can observe relative
performance similar to the case of k = 3 for all filter algorithms.

110

Comparison of different filters

100 < T I |
BLAST, g=12
BLAST, =11 —-—-—-
g-gram lemma, k=3, =11 -----
gapped Hamming, k=3, =11 ------
or gapped edit, k=3, g=11 ---------- -
Q
s 60 i
c
2
=
[=2)
3
o 40 i
20 i
0 = 1
number of errors
Comparison of different filters
100 : |
BLAST, g=12
BLAST, q:]_]_ —_
% g-gram lemma, k=3, q=11 ----- a
gapped Hamming, k=3, =11 ------
gapped edit, k=3, q=11 -
96 i
Q
s 94 i
c
2
S 9 |
o
(8]
o
90 i
88 i
\
86 \.\ |
A\ l l
? 8 10 12

number of errors

Figure 6.18: Recognition rates for several different filters with the lossless zone extending up
tok=3

111

Comparison of different filters

100 < I : | |
\ BLAST, g-gram lemma, k=4, g=10
\ gapped Hamming, k=4, g=10 -----
hy gapped edit, k=4, q=10 ------
80 - i
Q
s 60 i
c
2
=
[=2]
3
o 40 i
20 - i
0 |
’ 30
number of errors
Comparison of different filters
100 o | I
BLAST, g-gram lemma, k=4, g=10
N gapped Hamming, k=4, q=10 -----
9% - N gapped edit, k=4, q=10 ------ _
96 |
5]
s 94 i
c
il
S 92 |
o
[&]
g
90 i
88 [~ \ |
i
i
1
86 \‘ |
l l\ v l l
? 4 6 8 10 12

number of errors

Figure 6.19: Recognition rates for several different filters with the lossless zone extending up
tok=4

112

100

80

o]
o

N
o

recognition rate

20

100

Comparison of different filters

T

I

BLAST, q

g-gram lemma, k=5, q
gapped Hamming, k=5, q
gapped edit, k=5, q

98

recognition rate
(o] © ©
N S (o]

©
o

[or]
[ee]

86

5 10 15 20 25 30
number of errors
Comparison of different filters
T —
1 1
2 4 6 8 10 12

Figure 6.20: Recognition rates for several different filters with the lossless zone extending up

number of errors

tok=>5

113

Things are different if using these filters as lossy filters. It is difficult to define a
good measure of quality for such filters since the goals can vary from application to
application. The reason for this are the different motivations for using such a filter.
Sometimes one is simply interested in a very fast filter that detects nearly every true
match up to an error bound e,,,; and for which a small amount of false negatives is
acceptable. Often one only considers matches with a similarity above a certain cutoff for
further evaluation in a different algorithm. An example of this is again EST clustering
where the selection of similar sequences is based on such a cutoff. The second scenario
is a highly efficient search for relatively distant approximate matches in which even a
large number of false negatives can be accepted. For the former case gapped ¢-grams
are extremely useful. Their recognition rate shows a property that is quite desirable
for solving this problem. Initially it drops slower but then much more rapidly than for
example that of BLAST or of the classic ¢g-gram lemma. This means that while the
recognition rate is high for the region that is just above the error bound k£ but below
or equal to e, the number of false positives reported is still low, i.e. there are fewer
false negatives and false positives. If using the g-gram Lemma or BLAST to achieve
the same recognition rate up to €,,4,, one has to allow for much more false positives,
i.e. matches with more than ey, errors. Figure 6.21 illustrates this for an error bound
emaz = 7 and a recognition rate bound of 98%. This is equivalent to a search in which
one wants to find at least 98% of all true matches with up to 7 errors. For the second
problem where approximate matches with very high error levels are desired even if
the recognition rate for that error level is low, BLAST is the best solution since using
BLAST with a low value of g results in a very low minimum coverage and therefore the
most matches with very low similarity.

The above conclusions were only possible due to the additional information about
filter behavior which is provided by the experiments with the constructed databases. Of
course they have to be taken with a grain of salt since the placement of the errors and
the sequences themselves are artificial. Nevertheless, since we are mainly interested
in a relative comparison of different algorithms they still provide us with important
insights.

6.5.6 Concluding Remarks about the Constructed Databases

Even though the experiments based on constructed databases have several limitations,
they still provide a good general impression of the behavior of a given filter. They
contain more information than the simple error limit k£ and can be quite useful for
choosing the right filter for a given application. A large database of filters and their
corresponding curves could therefore be a valuable tool for decisions about algorithm
and parameter choice for approximate string matching problems. A second benefit of

114

Comparison of different filters
100 S T . I I
; BLAST, q=9
> g-gram lemma, k=5, q=8 -----
RN gapped Hamming, k=5, q=11 ------
RN gapped edit, k=5, g=10 -
80 RN]
(4]
g 60 i
o
K]
'S
(=]
3
] 40 a
20 -
0
5 30
number of errors
Comparison of different filters
100 —
BLAST, g=9
g-gram lemma, k=5, q=8 - ----
gapped Hamming, k=5, g=11 ------
gapped edit, k=5, q=10 -
995 |- N N .
\‘.. ~ .
\\' ~
A Se
e
(0] \ .
g \ :
c \ “
))
2 99t ‘ i
c N\ '
Iy '.‘\)
8 R\ |
o DN '
‘".\ 1
N :
"\ \
".\ 1
98.5 [~ ERN . -
A\ .
L\
N
AN
AN
L\ \
[
A '
98 | 1Ly
number of errors

Figure 6.21: Recognition rates for several different lossy filters with an error bound e, = 7

for which at least 98% of the actual matches are recognized

115

these experiments was the additional correctness check of our implementations. It was
simple to create the databases S, for which e < k and use those databases to check
whether all samples were recognized as potential matches by our filter implementations.

116

Chapter 7

Conclusion

In this work we discuss filter algorithms for approximate string matching. We review
existing algorithms and describe an implementation of an algorithm based on existing
work combined with new, own ideas. This algorithm, QUASAR, turns out to be signif-
icantly faster than current implementations for approximate string matching with low
error levels. We also introduce two new filter algorithms for the k-differences and the
k-mismatches problem that are based on using gapped substrings, so-called g-grams,
of the query to locate potential matches in a target string or database.

QUASAR is a filter algorithm based on ideas by P. Jokinen and E. Ukkonen which
we improved and adapted to our requirements. It uses their g-gram lemma in com-
bination with a match region that is a modified version of one introduced in their
initial g-gram paper. The index structure is a combination of two well known data
structures, a word lookup table and a suffix array. Furthermore we implemented a
new technique for adapting the global algorithm to local approximate string matching.
QUASAR was designed for high similarity approximate string matching and was used
in EST clustering by a group of researchers at the German Cancer Research Center in
Heidelberg.

For the two new filters based on gapped ¢-grams we had to solve several problems.
The first and most important was the computation of the optimal threshold for a given
filter and shape. This is a prerequisite for applying such a filter. We developed two
different algorithms for computing the threshold of the respective filters, implemented
and successfully tested these algorithms for a range of parameters. Our algorithms are
efficient and suitable for application on a large number of different gapped ¢-grams.

117

The next question that arises is that of g-gram selection. Since there is a large
number of available shapes to choose from, we had to devise a method to select good
shapes, i.e. those with low runtime and high filtration efficiency. We developed two
measures which allow us to predict the approximate amount of hits a filter has to
process as well as the expected number of potential matches it will produce. We also
provide efficient methods to compute these measures. This allows a full exhaustive
search of all potentially interesting shapes for a given set of parameters in a reasonable
amount of time with the goal of selecting optimal or near-optimal shapes for these
parameter values. We conducted an experimental analysis of the prediction quality of
the two measures that yielded encouraging results.

Apart from the techniques required for choosing good gapped g-grams we also ana-
lyzed the variation in shape quality across the set of available shapes. In previous work
on gapped shapes these shapes were selected randomly. We show that the variation in
shape quality is very large and that a careful selection of the gapped ¢-grams results in
significant performance gains. This underlines the importance of the tools we developed
for measuring shape quality.

We also discuss the changes to existing filter algorithms necessary to adapt them
to gapped g-grams. They are very straightforward and the overhead introduced by
gapped shapes is very low for large databases.

Even though we provide two filter algorithms that are ready for practical applica-
tions, we would also like to point out that they are just a first step in the research of
filter algorithms based on gapped g-grams. There are many interesting open questions
that remain and further development in this area could lead to even better filters.

Examples for further directions could be the use of more than one gapped shape
at once. Rigoutsos and Califano already provide a first use of sets of shapes in their
work on FLASH. However, the careful selection of shapes that work well in combination
could vastly improve their approach.

Another idea for approximate string matching is the use of approximate g-grams.
This approach could be extended or combined with gapped g-grams to allow higher
values of q or k.

Substrings or ¢g-grams are used in many areas outside of approximate string match-
ing. It could be interesting to analyze these problems and evaluate whether gapped
g-grams offer potential for improving existing algorithms.

Returning to our work on approximate string matching we would like to point
out that there are two interesting open problems left. While we managed to provide
efficient tools for an exhaustive analysis of all gapped g-grams suitable for a given set
of parameters, we were not able to devise an algorithm for designing or constructing a

118

good gapped g-gram for a certain problem. This would be interesting for applications
where the parameters change frequently, making an exhaustive analysis too expensive.
Another interesting problem would be an improvement of the measure for predicting
filtration efficiency. While our formula based on the minimum coverage works quite
well in practice, it would still be interesting to increase its accuracy even more, for

example by taking covers slightly larger than the minimum cover into account.

Another goal could be the development of a filter database containing a collection
of good filters including the parameter ranges for which these filters make sense. One
of the problems of approximate string matching remains the strong dependency on the
problem parameters. There exist many different algorithms and filter algorithms for
approximate string matching and which of them is actually the best depends heavily
on the required value of k£ and the length of query and database. So far no satisfying
database or algorithm for selecting the best or a near-optimal implementation for a
given problem exists.

Recently results on compressed index structures have been reported [FMO01, GV00).
For large scale application it may be interesting to replace the simple, uncompressed
indexes used in many filter algorithms by these space-saving data structures.

119

[AG86]

[AGYT]

[AGM+90]

[AHU74]

[AMS*97]

[BCF+99]

[BGWOO]

Bibliography

A. Apostolico and R. Giancarlo. The Boyer-Moore-Galil string searching
strategies revisited. STAM Journal of Computing, 15:98-105, 1986.

A. Apostolico and Z. Galil, editors. Pattern matching algorithms. Oxford
University Press, 1997.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic
local alignment search tool. Journal of Molecular Biology, 215:403-410,
1990.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of
computer algorithms. Addison-Wesley, 1974.

S.F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller,
and D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Research, 25:3389-3402,
1997.

S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and
M. Vingron. ¢g-gram based database searching using a suffix array. In S. Is-
trail, P. Pevzner, and M. Waterman, editors, Proceedings of the 3rd Annual

International Conference on Computational Molecular Biology, pages 77—
83, Lyon, France, 1999. ACM Press.

A. 1. Buchsbaum, R. Giancarlo, and J. R. Westbrook. On the deter-

minization of weighted finite automata. SIAM Journal of Computing,
30(5):1502-1531, 2000.

121

[BHO0]

[BKO1]

[BK02]

[BM77]

[CF02]

[CLRYO]

[CM94]

[CR93]

[Far97]

[FG99]

[FMO1]

V. Bafna and D. H. Huson. The conserved exon method for gene finding.
In Proceedings of the 8th International Conference on Intelligent Systems
for Molecular Biology, pages 3—12, 2000.

S. Burkhardt and J. Karkkainen. Better filtering with gapped g¢-grams.
In Proceedings of the 12th Annual Symposium on Combinatorial Pattern
Matching, volume 2089 of Lecture Notes in Computer Science, pages 73—
85. Springer, 2001.

S. Burkhardt and J. Karkkidinen. One-gapped g-gram filters for Leven-
shtein distance. In Proceedings of the 13th Annual Symposium on Com-
binatorial Pattern Matching, volume 2373 of Lecture Notes in Computer
Science, pages 225-234. Springer, 2002.

R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commu-
nications of the ACM, 20:762-772, 1977.

A. Crauser and P. Ferragina. A theoretical and experimental study on the
construction of suffix arrays in external memory. Algorithmica, 32(1):1-35,
2002.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algo-
rithms. The MIT Press, 1990.

W. I. Chang and T. G. Marr. Approximate string matching and local
similarity. In Proceedings of the 5th Annual Symposium on Combinatorial
Pattern Matching, volume 807 of LNCS, pages 259-273. Springer, 1994.

A. Califano and I. Rigoutsos. FLASH: A fast look-up algorithm for string
homology. In L. Hunter, D. Searls, and J. Shavlik, editors, Proceedings

of the First International Conference on Intelligent Systems for Molecular
Biology, pages 5664, Bethesda, MD, 1993. AAAT Press.

M. Farach. Optimal suffix tree construction with large alphabets. In
Proceedings of the 38th Annual Symposium on Foundations of Computer
Science, pages 137-143, 1997.

P. Ferragina and R. Grossi. The string B-tree: A new data structure
for string search in external memory and its applications. Journal of the
Association for Computing Machinery, 46:236-280, 1999.

P. Ferragina and G. Manzini. An experimental study of an opportunistic
index. In Proceedings of the 12th ACM-SIAM Symposium on Discrete
Algorithms, pages 269-278, 2001.

122

[GBYS92]

[Gus97]

[GV00]

[Ham50]

[HS94]

[HUT7Y]

[JU91]

[K:ir02]

[KMP77]

[KR87]

[Kur99]

[KV98]

[Lev66]

[LSTY6]

G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. New indices for text:
PAT trees and PAT arrays. Prentice-Hall, 1992.

D. Gustield. Algorithms on Strings, Trees and Sequences: Computer Sci-
ence and Computational Biology. Cambridge University Press, 1997.

R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. In Proceedings of the
32nd ACM Symposium on the Theory of Computing, pages 397-406, 2000.

R. W. Hamming. Error detecting and error correcting codes. Bell System
Technical Journal, 29:147-160, 1950.

N. Holsti and E. Sutinen. Approximate string matching using g¢-gram
places. In Proceedings of the 7th Finnish Symposium on Computer Science,
pages 23-32, 1994.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

P. Jokinen and E. Ukkonen. Two algorithms for approximate string match-
ing in static texts. In Proceedings of the 16th Symposium on Mathematical
Foundations of Computer Science, volume 520 of Lecture Notes in Com-
puter Science, pages 240-248. Springer-Verlag, 1991.

J. Kérkkidinen. Cpmputing the threshold for ¢g-gram filters. In Algorithm
Theory — SWAT 2002, volume 2368, pages 348-357, 2002.

D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in
strings. SIAM Journal of Computing, 6:322-350, 1977.

R. Karp and M. Rabin. Efficient randomized pattern matching algorithms.
IBM Journal of Research and Development, 31:249-260, 1987.

S. Kurtz. Reducing the space requirements of suffix trees. Software-
Practice and Ezrperience, 29:1149-1171, 1999.

A. Krause and M. Vingron. A set-theoretic approach to database searching
and clustering. Bioinformatics, 14:430-438, 1998.

V. L. Levenshtein. Binary codes capable of correcting deletions, insertions
and reversals. Soviet Physics Doklady, 6:707-710, 1966.

O. Lehtinen, E. Sutinen, and J. Tarhio. Experiments on block indexing.
In R. Baeza-Yates N. Ziviani and K. Guimaraes, editors, Proceedings of

123

[MAMT02]

[McC76]

the 3rd South American Workshop on String Processing, pages 183-193,
Recife, Brazil, 1996. Carleton University Press.

R. J. Mural, M. D. Adams, E. W. Myers, H. O. Smith, G. L. Miklos,
R. Wides, A. Halpern, P. W. Li, G. G. Sutton, J. Nadeau, S. L. Salzberg,
R. A. Holt, C. D. Kodira, F. Lu, L. Chen, Z. Deng, C. C. Evangelista,
W. Gan, T. J. Heiman, J. Li, Z. Li, G. V. Merkulov, N. V. Milshina, A. K.
Naik, R. Qi, B. C. Shue, A. Wang, J. Wang, X. Wang, X. Yan, J. Ye,
S. Yooseph, Q. Zhao, L. Zheng, S. C. Zhu, K. Biddick, R. Bolanos, A. L.
Delcher, I. M. Dew, D. Fasulo, M. J. Flanigan, D. H. Huson, S. A. Kravitz,
J. R. Miller, C. M. Mobarry, K. Reinert, K. A. Remington, Q. Zhang, X. H.
Zheng, D. R. Nusskern, Z. Lai, Y. Lei, W. Zhong, A. Yao, P. Guan, R. R.
Ji, Z. Gu, Z. Y. Wang, F. Zhong, C. Xiao, C. C. Chiang, M. Yandell, J. R.
Wortman, P. G. Amanatides, S. L. Hladun, E. C. Pratts, J. E. Johnson,
K. L. Dodson, K. J. Woodford, C. A. Evans, B. Gropman, D. B. Rusch,
E. Venter, M. Wang, T. J. Smith, J. T. Houck, D. E. Tompkins, C. Haynes,
D. Jacob, S. H. Chin, D. R. Allen, C. E. Dahlke, R. Sanders, K. Li, X. Liu,
A. A. Levitsky, W. H. Majoros, Q. Chen, A. C. Xia, J. R. Lopez, M. T.
Donnelly, M. H. Newman, A. Glodek, C. L. Kraft, M. Nodell, F. Alj,
H. J. An, D. Pitts, K. Y. Beeson, S. Cai, M. Carnes, A. Carver, P. M.
Caulk, A. Center, Y. H. Chen, M. L. Cheng, M. D. Coyne, M. Crow-
der, S. Danaher, L. B. Davenport, R. Desilets, S. M. Dietz, L. Doup,
P. Dullaghan, S. Ferriera, C. R. Fosler, H. C. Gire, A. Gluecksmann, J. D.
Gocayne, J. Gray, B. Hart, J. Haynes, J. Hoover, T. Howland, C. Ibeg-
wam, M. Jalali, D. Johns, L. Kline, D. S. Ma, S. MacCawley, A. Magoon,
F. Mann, D. May, T. C. MclIntosh, S. Mehta, L. Moy, M. C. Moy, B. J.
Murphy, S. D. Murphy, K. A. Nelson, Z. Nuri, K. A. Parker, A. C. Prud-
homme, V. N. Puri, H. Qureshi, J. C. Raley, M. S. Reardon, M. A. Regier,
Y. H. Rogers, D. L. Romblad, J. Schutz, J. L. Scott, R. Scott, C. D.
Sitter, M. Smallwood, A. C. Sprague, E. Stewart, R. V. Strong, E. Suh,
K. Sylvester, R. Thomas, N. N. Tint, C. Tsonis, G. Wang, G. Wang, M. S.
Williams, S. M. Williams, S. M. Windsor, K. Wolfe, M. M. Wu, J. Za-
veri, K. Chaturvedi, A. E. Gabrielian, Z. Ke, J. Sun, G. Subramanian,
and J. C. Venter. A comparison of whole-genome shotgun-derived mouse
chromosome 16 and the human genome. Science, 296(5573):1661-1671,
2002.

E. M. McCreight. A space-economical suffix tree construction algorithm.
Journal of the Association for Computing Machinery, 23:262-272, 1976.

124

[Meab5]

[MM93]

[MNY5]

[Moh97]

[Mor68]

[MSD00]

[MTLO2]

[Mye94]

[Mye99]

[Nav01]

[NBY98]

[NBY00]

G. H. Mealy. A method for synthesizing sequential circuits. Bell System
Technical Journal, 34(5):1045-1079, 1955.

U. Manber and E. W. Myers. Suffix arrays: a new method for on-line
search. SIAM Journal of Computing, 22:935-948, 1993.

K. Mehlhorn and S. Niher. Leda, a platform for combinatorial and geo-
metric computing. Communications of the ACM, 38(1):96-102, 1995.

M. Mohri. Finite-state transducers in language and speech processing.
Computational Linguistics, 23:269-311, 1997.

D. R. Morrison. Patricia: Practical algorithm to retrieve information coded
in alphanumeric. Journal of the Association for Computing Machinery,
15:514-534, 1968.

E. W. Myers, G. G. Sutton, A. L. Delcher, I. M. Dew, D. P. Fasulo, M. J.
Flanigan, S. A. Kravitz, C. M. Mobarry, K. H. Reinert, K. A. Remington,
E. L. Anson, R. A. Bolanos, H. H. Chou, C. M. Jordan, A. L. Halpern,
S. Lonardi, E. M. Beasley, R. C. Brandon, L. Chen, P. J. Dunn, Z. Lai,
Y. Liang, D. R. Nusskern, M. Zhan, Q. Zhang, X. Zheng, G. M. Rubin,
M. D. Adams, and J. C. Venter. A whole-genome assemble of drosophila.
Science, 287:2196-2204, 2000.

B. Ma, J. Tromp, and M. Li. Patternhunter: faster and more sensitive
homology search. Bioinformatics, 18:440-445, 2002.

E. W. Myers. A sublinear algorithm for approximate keyword searching.
Algorithmica, 12(4/5):345-374, 1994.

E. W. Myers. A fast bit-vector algorithm for approximate string matching
based on dynamic programming. Journal of the Association for Computing
Machinery, 46(3):395-415, 1999.

G. Navarro. A guided tour to approximate string matching. ACM Com-
puting Surveys, 33:31-88, 2001.

G. Navarro and R. Baeza-Yates. A practical ¢g-gram index for
text retrieval allowing errors. CLEI Electronic Journal, 1(2), 1998.
http://www.clei.cl.

G. Navarro and R. Baeza-Yates. A hybrid indexing method for approxi-
mate string matching. Journal of Discrete Algorithms, 1(1):205-239, 2000.

125

[NBYSTO01] G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing meth-

[NSTTO0]

[NW70]

[Pea90]

[PL8S]

[PW95]

[Sel74]

[Shi96]

[ST95]

[ST96]

[SW81]

[Tak94]

ods for approximate string matching. IEEE Data Engineering Bulletin,
24(4):19-27, 2001. Special issue on Managing Text Natively and in DBMSs.

G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing text with
approximate g-grams. In Proceedings of the 11th Annual Symposium on
Combinatorial Pattern Matching, volume 1848 of LNCS, pages 350-363.
Springer-Verlag, 2000.

S. B. Needleman and C. D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequences of two proteins. Journal
of Molecular Biology, 48:443-453, 1970.

W. R. Pearson. Rapid and sensitive sequence comparison with fastp and
fasta. Methods in Enzymology, 183:63-98, 1990.

W. R. Pearson and D. J. Lipman. Improved tools for biological sequence
analysis. Proceedings of the National Academy of Science, USA, 85:2444—
2448, 1988.

P. A. Pevzner and M. S. Waterman. Multiple filtration and approximate
pattern matching. Algorithmica, 13(1/2):135-154, 1995.

P. H. Sellers. On the theory and computation of evolutionary distances.
SIAM Journal of Applied Mathematics, 26:787-793, 1974.

F. Shi. Fast approximate string matching with ¢-blocks sequences. In
Proceedings of the 3rd South American Workshop on String Processing,
pages 257-271. Carleton University Press, 1996.

E. Sutinen and J. Tarhio. On using ¢g-gram locations in approximate string
matching. In P. G. Spirakis, editor, Proceedings of the 3rd Annual Euro-
pean Symposium on Algorithms, volume 979 of Lecture Notes in Computer
Science, pages 327-340. Springer-Verlag, 1995.

E. Sutinen and J. Tarhio. Filtration with g-samples in approximate string
matching. In Proceedings of the Tth Annual Symposium on Combinatorial
Pattern Matching, volume 1075 of Lecture Notes in Computer Science,
pages 50—63. Springer, 1996.

T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences. Journal of Molecular Biology, 147:195-197, 1981.

T. Takaoka. Approximate pattern matching with samples. In Ding-Zhu
Du and Xiang sun Zhang, editors, Proceedings of the 5th International

126

[Ukk92]

[Ukk95]

[VAM*01]

Symposium on Algorithms and Computation, volume 834 of Lecture Notes
in Computer Science, pages 236—242. Springer-Verlag, 1994.

E. Ukkonen. Approximate string matching with g-grams and maximal
matches. Theoretical Computer Science, 92(1):191-212, 1992.

E. Ukkonen. On-line construction of suffix-trees. Algorithmica, 14:249-260,
1995.

J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G.
Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, J. D. Go-
cayne, P. Amanatides, R. M. Ballew, D. H. Huson, J. R. Wortman,
Q. Zhang, C. D. Kodira, X. H. Zheng, L. Chen, M. Skupski, G. Subrama-
nian, P. D. Thomas, J. Zhang, G. L. Gabor Miklos, C. Nelson, S. Broder,
A. G. Clark, J. Nadeau, V. A. McKusick, N. Zinder, A. J. Levine, R. J.
Roberts, M. Simon, C. Slayman, M. Hunkapiller, R. Bolanos, A. Delcher,
I. Dew, D. Fasulo, M. Flanigan, L. Florea, A. Halpern, S. Hannenhalli,
S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K. Remington, J. Threideh,
E. Beasley, K. Biddick, V. Bonazzi, R. Brandon, M. Cargill, I. Chan-
dramouliswaran, R. Charlab, K. Chaturvedi, Z. Deng, V. Di Francesco,
P. Dunn, K. Eilbeck, C. Evangelista, A. E. Gabrielian, W. Gan, W. Ge,
F. Gong, Z. Gu, P. Guan, T. J. Heiman, M. E. Higgins, R. R. Ji, Z. Ke,
K. A. Ketchum, Z. Lai, Y. Lei, Z. Li, J. Li, Y. Liang, X. Lin, F. Lu,
G. V. Merkulov, N. Milshina, H. M. Moore, A. K. Naik, V. A. Narayan,
B. Neelam, D. Nusskern, D. B. Rusch, S. Salzberg, W. Shao, B. Shue,
J. Sun, Z. Wang, A. Wang, X. Wang, J. Wang, M. Wei, R. Wides, C. Xiao,
. Yan, A. Yao, J. Ye, M. Zhan, W. Zhang, H. Zhang, Q. Zhao, L. Zheng,
. Zhong, W. Zhong, S. Zhu, S. Zhao, D. Gilbert, S. Baumhueter, G. Spier,
. Carter, A. Cravchik, T. Woodage, F. Ali, H. An, A. Awe, D. Baldwin,
. Baden, M. Barnstead, I. Barrow, K. Beeson, D. Busam, A. Carver,
. Center, M. L. Cheng, L. Curry, S. Danaher, L. Davenport, R. Desilets,

Dietz, K. Dodson, L. Doup, S. Ferriera, N. Garg, A. Gluecksmann,
. Hart, J. Haynes, C. Haynes, C. Heiner, S. Hladun, D. Hostin, J. Houck,
. Howland, C. Ibegwam, J. Johnson, F. Kalush, L. Kline, S. Koduru,
. Love, F. Mann, D. May, S. McCawley, T. McIntosh, I. McMullen,
M. Moy, L. Moy, B. Murphy, K. Nelson, C. Pfannkoch, E. Pratts, V. Puri,
H. Qureshi, M. Reardon, R. Rodriguez, Y. H. Rogers, D. Romblad, B. Ruh-
fel, R. Scott, C. Sitter, M. Smallwood, E. Stewart, R. Strong, E. Suh,
R. Thomas, N. N. Tint, S. Tse, C. Vech, G. Wang, J. Wetter, S. Williams,
M. Williams, S. Windsor, E. Deen, K. Wolfe, J. Zaveri, K. Zaveri, J. F.
Abril, R. Guigo, M. J. Campbell, K. V. Sjolander, B. Karlak, A. Kejari-

mE e oD OHEQ0

127

[VAS™08]

[Wal95]

[Wei73]

[WM97]

[ZieO1]

wal, H. Mi, B. Lazareva, T. Hatton, A. Narechania, K. Diemer, A. Muru-
ganujan, N. Guo, S. Sato, V. Bafna, S. Istrail, R. Lippert, R. Schwartz,
B. Walenz, S. Yooseph, D. Allen, A. Basu, J. Baxendale, L. Blick, M. Cam-
inha, J. Stine, P. Caulk, Y. H. Chiang, M. Coyne, C. Dahlke, A. Mays,
M. Dombroski, M. Donnelly, D. Ely, S. Esparham, C. Fosler, H. Gire,
S. Glanowski, K. Glasser, A. Glodek, M. Gorokhov, K. Graham, B. Grop-
man, M. Harris, J. Heil, S. Henderson, J. Hoover, D. Jennings, C. Jor-
dan, J. Jordan, J. Kasha, L. Kagan, C. Kraft, A. Levitsky, M. Lewis,
X. Liu, J. Lopez, D. Ma, W. Majoros, J. McDaniel, S. Murphy, M. New-
man, T. Nguyen, N. Nguyen, M. Nodell, S. Pan, J. Peck, M. Peterson,
W. Rowe, R. Sanders, J. Scott, M. Simpson, T. Smith, A. Sprague,
T. Stockwell, R. Turner, E. Venter, M. Wang, M. Wen, D. Wu, M. Wu,
A. Xija, A. Zandieh, and X. Zhu. The sequence of the human genome.
Science, 291:1304-1351, 2001.

J. C. Venter, M. D. Adams, G. G. Sutton, A. R. Kerlavage, H. O. Smith,
and M. Hunkapillar. Shotgun sequencing of the human genome. Science,
280:1540-1542, 1998.

M. M. Waldrop. On-line archives let biologists interrogate the genome.
Science, 269:1356-1358, 1995.

P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th
Annual IEEE Symposium on Switching and Automata Theory, pages 1-11,
Washington, DC, 1973.

J. Weber and E. W. Myers. Human whole-genome shotgun sequencing.
Genome Research, 7:401-409, 1997.

M. Ziegelmann. Constrained Shortest Paths and Related Problems. PhD
thesis, Universitiat des Saarlandes, Germany, 2001.

128

Summary

Approximate string matching is one of the classic problems in computer science.
In contrast to the simpler exact string matching problem, which consists of locating
all exact matches between a query or pattern string and a target string or database,
it includes recognizing all approximate matches with respect to a certain measure of
similarity or distance.

Early methods for locating approximate matches of a pattern P in a string .S were
based on dynamic programming and had a runtime of O(|P||S|). While these algo-
rithms can detect even very distant approximate matches, they suffer from their com-
paratively slow runtime, especially for applications with very large databases or many
queries.

This problem led to the development of various faster methods for approximate
string matching in general and for computational biology in particular. A common
principle shared by many of these algorithms is the idea of filtering. Filter algorithms
typically consist of two phases. In the first, the filtration phase, a highly efficient filter
criterion is used to detect potential matches between query and subject. In the second
phase the potential matches have to be analyzed to detect the true matches with a
conventional algorithm. The second phase is called verification phase.

There are two subclasses of approximate string matching. One instance — called
the on-line approximate string matching problem — does not allow preprocessing of the
database S before the actual search is conducted. The time spent for any examination
of S during the search is considered part of the search time. In the other — the off-
line version — one can examine the database S, gathering information about it and
saving this information in index data structures in a preprocessing stage. The time
required for preprocessing is not considered part of the runtime of a search in this
model. The construction time of an index and the amount of space required for storing
it are nevertheless quite important to the practical usefulness of such algorithms.

Off-line string matching is useful for databases that change slowly and where a
large number of searches on the same database are necessary. Frequent changes of
the database can only be handled if the preprocessing step is sufficiently fast. On-line
string matching is more useful for rapidly changing databases and for cases where only
a small number of searches in a given database have to be performed. In these cases
the overhead for preprocessing the database becomes significant and reduces the overall
efficiency of index-based approaches.

The first part of our work resulted in the development of QUASAR. We extended

an approach described by Jokinen and Ukkonen and implemented it. They introduced
an algorithm called g-gram filtration and a simple index structure resulting in a very
efficient filter algorithm. g¢-grams are short strings of length ¢, usually substrings of
the query and/or the target. We implemented their proposal and improved several
important components. The implementation which we called QUASAR resulted in
an executable that was able to solve EST-clustering, a problem from computational
biology, about 20 times faster than BLAST.

The nature of the g-gram lemma which is the foundation of the g-gram filtration
limits the classic g-gram lemma to approximate string matching with relatively high
degrees of similarity.

In the second part of our work we therefore introduce two new filters that can benefit
from efficient indices but also allow for higher sensitivity. They are based on substrings
with gaps, one for the Hamming and one for the edit or Levenshtein distance. Instead
of looking for exact matches of a string of length ¢ one can decide to only match certain
letters of the string. The other characters — those in the gaps — are basically ‘don’t-care’
characters or wildcards, i.e. one can match them with any possible character.

Developing filters that use gapped g-grams turned out to be fairly complicated.
When using the Hamming distance, most problems could be overcome with reasonable
effort. However, the case of the Levenshtein distance is much more complex. The two
main problems were the selection of good gapped g-grams, i.e. arrangements of gaps,
and the computation of the required number of matching g-grams for a region of S to be
considered a potential match. In the case of the classic g-gram lemma this is simple but
for gapped ¢-grams it requires several non-trivial algorithms. Another problem which
is specific to the case of the Levenshtein distance is the question of handling insertions
and deletions in potential approximate matches. We came up with a relatively simple
method that does not have a very big impact on the runtime of our solution.

We implemented the algorithms based on gapped g-grams and analyzed their per-
formance in a number of experiments. We use two well defined measures, the number
of items that have to be retrieved from the index data structure and the number of
potential matches returned by the filter to allow an unbiased comparison of different
filter algorithms. These values allow characterizing the runtime of the filtration and
verification phase. We then compared the filter approach of BLAST, the classic g-gram
lemma and our two algorithms using gapped ¢-grams for the Hamming and the edit dis-
tance with each other. Since filter algorithms in general are only suitable for moderate
to high similarity searches we only looked at these cases.

For the Hamming distance we were able to provide a wide range of improved filters.
They reduced the amount of data to be processed in the filtration phase by up to

130

three orders of magnitude and the amount of potential matches by up to six orders
of magnitude when compared to the classic g-gram lemma. The differences to the
BLAST filter criterion were even larger. Filters that offer a tradeoff between speeding
up the filtration and the verification phase also exist. If using the edit distance, our
filters based on gapped g¢-grams reduced the amount of data to be processed in the
filtration phase and the amount of potential matches by up two oders of magnitude
when compared to the classic ¢g-gram lemma. Again we also provided filters that offer
a tradeoff between speeding up the filtration and the verification phase.

In a second set of experiments we analysed the potential of filters based on gapped ¢-
grams for use as lossy filters, i.e. algorithms that are faster but may miss a small number
of actual matches in the filtration phase. The results imply that gapped ¢-grams are far
better suited than conventional ungapped g-grams for use in lossy filters. A comparison
with the filter criterion implemented in BLAST also yielded very encouraging results
not only for high levels of string similarity but also for moderate levels.

131

: matching character

- : gap or don’t care

3. : alphabet

A : suffix array [MM93]
BLAST [AGM*90, AMS*97] 26,
b : block size

block size b

blocks

C : cover of hit

Cyn : minimum cover

¢ : coverage

Cmp : Minimum coverage
cover C

coverage ¢

d : diagonal of a hit [HS94]
database S

diagonal d [HS94]

dynamic programming
[NW70, Sel74, SW81]

e = error level

edit transcript [Gus97]

edit distance [Lev66]

error level e

exact matching

exact matching with fixed length ¢
FASTA [PL88, Pea9d0]
FN(S)

FP(S)

fe : filtration efficiency

Index

55
55

15
36
33
33
33
44
46
44
46
44
44
33
11
33

26
95
71
24
95
11

26
28
28
29

133

false negative

false positive

filter algorithm

filter criterion

filtration efficiency f.
filtration phase

global matching

H : hit list array

H : hits in a potential match
H(P) : hit lists for a query
Hamming Distance [Ham50)]
hit

hit list

hit list array H

index structure

indexed algorithm

infix

k : error limit

k-differences problem
k-mismatches problem
Levenshtein distance [Lev66]
local matching

lossless algorithm

lossless zone

lossy algorithm

lossy zone

M : set of true matches
M(P,S)

m = |P| : length of pattern

26
26
29
27
24
18
44
42
25
17
18
18
12
37

25
25
25
24
24
26
48
26
49
25
60
11

match region

match

matching position
matching positions, set of, P(.S)
N(S)

n = |S]| : length of subject
negative zone
non-matching position

o : number of occurrences
offset array W

off-line matching

on-line matching

optimal threshold

P : query or pattern
P(S)

PM(S)

PN(S)

pattern P

period of a string

pigeonhole principle filter [NBY00]

potential match
potential matching positions,
set of, PM(S)

prefix
Q@ : shape
q:

matching characters in shape
g-gram length in ¢g-gram lemma
word length for BLAST
g-gram

g-gram Lemma [JU91]
g-gram similarity

g-shape

rejected starting positions,
set of, PN(S)

S : database/target/subject
subject S

s : span of a gapped ¢-gram
sequential algorithm

shape

26
25
28
28
28
11
49
28
13
18
12
12
60
11
28
28
28
11

35
27

28

o7

31
36
11
31
60
o7

28
11
11
o7
26
o7

134

substring matching w. k-differences 25

substring matching w. k-mismatches 25

suffix

suffix array A [MM93]
suffix tree 7 [Wei73]
T : suffix tree [Wei73]
TN(S)

TP(S)

t : threshold

target S

threshold ¢

true match

true negative

true positive
verification phase

W : offset array

w : window length

word lookup table [JU91]

7
15
13
13
28
28
31
11
31
25

9

9
27
18
25
18

