Equality and Extensionality

in Automated Higher-Order
Theorem Proving

Christoph Benzmiiller

Dissertation

zur Erlangung des Grades des Doktors der Ingenieurwissenschaften
der Technischen Fakultat der Universitat des Saarlandes

Saarbrucken, April 1999

ii

Contents

English Abstract

Deutsche Kurzzusammenfassung
Acknowledgements

Deutsche Zusammenfassung

1 Introduction

1.1 Motivation e e
1.2 Higher-Order Logic e
1.3 Higher-Order Model Existence
1.4 Traditional and Extensional Higher-Order Resolution
1.5 Adding Primitive Equality o oo
1.6 The LEO System
2 Syntax and Semantics of Higher-Order Logic
2.1 Syntax and Preliminaries 0L
2.2 Pre-X-Structures
2.3 D-Structures ... e e
2.4 Functional Y-structures
2.5 Y-Models
2.6 Leibniz Equality
2.7 Primitive Equality o
2.8 A Note on Defined and Primitive Equality
3 Higher-Order Model Existence
3.1 Abstract Consistency L
3.2 Hintikka Sets
3.3 Primitive Equality o
3.4 Model Existence e

4 Extensional Higher-Order Resolution: &R

4.1 A Review of HORES and ER o oo oo o
4.2 Basic Definitions L
4.3 Lifting Properties
4.4 Completeness

iii

vi

vii

16
16
19
21
23
25
27
30
32

34
34
38
41
44

48
48
54
57
60

CONTENTS

iv

4.5 Theorem Equivalence o 63
Extensional Higher-Order Paramodulation: &P 65
5.1 A Naive and Incomplete Adaptation of Paramodulation 65
5.2 Positive Extensionality Rules 69
5.3 Basic Definitions oo 70
5.4 Lifting Properties e 71
5.5 Completeness oL 72
5.6 Theorem Equivalence 82
Extensional Higher-Order RUE-Resolution: ERUE 83
6.1 Resolution on Unification Constraints 83
6.2 Basic Definitions o 83
6.3 Lifting Properties 85
6.4 Completeness oL 85
6.5 Theorem Equivalence 91
The LEO-System 92
7.1 Basic Data-Structures and Algorithmso 0. 93
7.2 Extended SOS Architecture and Main Loop 94
7.3 New Insights gained from LEO 102
7.4 Case Study L 103
7.5 Additional Featuresof LEO L L 107
Examples 111
8.1 Extensionality in ER 111
8.2 Decomposition in ER 113
8.3 Leibniz Equality and Alternative Definitionsin ER 115
8.4 Reasoning about Sets with Leibniz Equality 116
8.5 Positive Extensionality Rules in EP and ERUE 117
8.6 Comparing EP and ERUE L 118
8.7 Raised Questions 125
Applications and Related Work 127
9.1 Cooperation and Joint Work 0oL 127
9.2 Abstract Consistency and Model Existence 127
9.3 Extensional Higher-Order Resolution 129
9.4 Primitive Equality in Higher-Order Theorem Proving 131
9.5 Theorem Provers for Higher-Order Logic 132
9.6 Examples e 132
10 Conclusion and Outlook 133
Bibliography 146
Index 147

English Abstract

This thesis focuses on equality and extensionality in automated higher-order theorem proving
based on Church’s simply typed A-calculus (classical type theory).

First, a landscape of various semantical notions is presented that is motivated by the
different roles equality adopts in them. KEach of the semantical notions in this landscape
— including Henkin semantics — is then linked with an abstract consistency principle that
can be employed for analysing the connection between syntax and semantics of higher-order
calculi.

Apart from this proof theoretic tools, the main contributions of this thesis are the three
new calculi ER (extensional higher-order resolution), EP (extensional higher-order paramodu-
lation) and ERUE (extensional higher-order RUE-resolution) which improve the mechanisation
of defined and primitive equality in classical type theory. In contrast to the refutation ap-
proaches for classical type theory developed so far, these calculi reach Henkin completeness
without requiring additional extensionality axioms. The key idea is to allow for recursive calls
from higher-order unification to the overall refutation search.

Calculus &R, which in contrast to EP and ERUE, considers equality only as a defined
notion, has been implemented in the theorem prover LEO and the suitability of this approach
for proving simple theorems about sets has been demonstrated in a case study.

Quo facto, quando orientur controversiae, non magis disputatione opus
erit inter duos philosophos, quam inter duos Computistas. Sufficiet enim
calamos in manus sumere sedere ad abacos, et sibi mutuo (accito si placet
amico) dicere: calculemus.

Gottfried Wilhelm Leibniz
(C.I. Gerhardt (ed.), Die philosophischen Schriften von

Gottfried Wilhelm Leibniz, vol. 7, Berlin 1890, p. 200.)

Deutsche Kurzzusammenfassung

Diese Arbeit untersucht Gleichheit und Extensionalitdt im automatischen Beweisen in Logik
héherer Stufe. Die betrachtete Sprache ist die klassische Typtheorie, d.h. eine Logik hoherer
Stufe basierend auf Church’s einfach getypten A-Kalkiil.

Zundchst werden unterschiedlich starke Semantikbegriffe fiir die klassische Typtheorie
erarbeitet, die durch die jeweils unterschiedlichen Rollen, die die Gleichheit in ihnen einnimmt,
motiviert sind.

Jedem der eingefiihrten Semantikbegriffe wird dann eine Menge abstrakter Konsistenz-
eigenschaften zugeordnet mit dem Ziel, die Analyse der Verbindung zwischen Syntax und
Semantik von Beweiskalkiilen fiir die klassische Typtheorie zu erleichtern.

Der Hauptbeitrag dieser Arbeit sind drei neue Beweiskalkiile: ER (extensionale Resolu-
tion hoherer Stufe), EP (extensionale Paramodulation héherer Stufe) und ERUE (extensionale
RUE-Resolution héherer Stufe). Ziel dieser Kalkiile ist es, die Mechanisierung definierter und
primitiver Gleichheit in klassischer Typtheorie zu verbessern. Im Gegensatz zu den zuvor
in der Literatur diskutierten Widerlegungsansatzen erreichen diese Kalkiile Vollstandigkeit
hinsichtlich der Henkin Semantik, ohne dem Suchraum zusdtzliche Extensionalititsaxiome
hinzufiigen zu miissen. Die wesentliche Idee der neuen Kalkiile ist es, Unifikation und Be-
weissuche sehr eng miteinander zu verzahnen: erlaubt sind nun rekursive Aufrufe an die
Beweissuche aus dem Unifikationsalgorithmus heraus.

Der Kalkiil &R wurde im Beweissystem [LEO implementiert und die Eignung dieses Systems
zum Beweisen einfacher Aussagen iiber Mengen wurde in Fallstudien gezeigt.

vi

Acknowledgements

First of all, I want to thank Jérg Siekmann and Michael Kohlhase. In his enthusiastic lec-
tures Jorg Siekmann raised my interest in Artificial Intelligence and especially in Automated
Deduction. Later he offered me a job in his research group, and he generously supported my
work during the last years. Michael Kohlhase, whose thesis decisively influenced the topic of
my work, introduced me to higher-order logic and discussed many details of this thesis with
me.

I am furthermore deeply indepted to Peter Andrews and Frank Pfenning. My research
stay at Carnegie Mellon University (CMU) in the first half of 1997, that was made possible
by Peter Andrews, offered me the chance to widen my knowledge on higher-order logic and to
discuss particular ideas on extensional higher-order resolution with him and Frank Pfenning.
With hindsight, this stay was the break-trough in my PhD study. My special thank to Frank
Pfenning for becoming the second referee of this thesis.

I also need to mention the many fruitful discussions with my colleagues in the AG Siek-
mann. Especially since the reunion of the beforehand splitted subgroups in 1997, the AG
Siekmann has provided an excellent and highly motivating research environment. As I can-
not list all my colleagues here, I representatively thank (in alphabetical order) Serge Autezier,
Lassaad Cheikhrouhou, Detlef Fehrer, Holger Gebhard, Dieter Hutter, Stephan Hess, Karsten
Konrad, Heiko Mantel, Andreas Meier, Erica Melis, and Volker Sorge. In phases of hard work
it is important to have good friends which offer their support and now and then persuade
one to have a drink (in order to prevent one from complete isolation) — in this respect |
particularly thank my colleague Volker and my office- and study-mate of many years Serge.

I am grateful to Carsten Schiirmann and my CMU office-mates Matt Bishop and Hongwei
Xi for making my stay in Pittsburgh that pleasant.

Manfred Kerber and his family provided a lovely place of refuge for a few weeks in Birming-
ham, when | tried to escape from my duties in Saarbriicken and write down the final version
of this thesis.

My special thanks to Serge Autexier, Kerstin Deckert, Christine Heinzius, Martin Pollet,
and Volker Sorge for reading and correcting parts of the final version.

I owe much to the Studienstiftung des Deutschen Volkes for their support during my PhD
study. The Studienstiftung especially funded my research stay at Carnegie Mellon University
without insisting on much paperwork.

Above all, | want to thank my wife Nicole Clemens for her understanding and patience. In
particular 1 have to apologise for the many times | promised to come home early but worked
at university until late night. T am deeply indepted to my family — especially to my parents
Marlies and Nikolaus — who always supported me, even though they often did not fully agree
with my ideas. | dedicate this thesis to my father, who lost his desperate fight against cancer,
while | was away at Carnegie Mellon University working on the core of this thesis.

Saarbriicken, April 1999 Christoph Benzmiiller

vii

Deutsche Zusammenfassung

Motivation Die Formalisierung und Mechanisierung mathematischen Denkens und Pro-
blemlésens ist ein alter Menschheitstraum, nicht zuletzt wegen der Hoffnung diese Art der
Formalisierung dann auf andere des Bereiche menschlichen Denkens iibertragen zu kdnnen.
In der griechischen Antike beschrieb vor allem Aristoteles die Schlufiregeln des menschlichen
Denkens und hinterlie uns eine begrenzte Theorie des logischen Schlieflens bestehend aus
Axiomen und Regeln (z.B. der Modus Ponens Regel). Das Ziel der Formalisierung mensch-
lichen Schliefens griff dann Gottfried Wilhelm Leibniz im 18. Jahrhundert wieder auf und
erginzte es um den Gedanken der Mechanisierbarkeit. Seine Idee war die Erschaffung einer
Lingua Charakteristika und eines Calculus Ratiocinator, also einer universellen Sprache zu-
sammen mit einem allgemeinen Beweiskalkiil, in der sich alle Probleme und Fragen durch
blofses Ausrechnen kliren lassen kénnten.

Auch die vorliegende Arbeit ist durch diese Idee motiviert. Neben vielen Errungenschaften
in der mathematischen Logik mufiten aber in diesem Jahrhundert auch herbe Riickschldge hin-
genommen werden: So zeigen uns Godels fundamentale Unvollstindigkeitsresultate [G6d31]
eindeutig die Grenzen der Mechanisierbarkeit mathematischen Schlieflens auf und die Hoff-
nung auf einen allumfassenden Kalkiil, der in der Lage ist, simtliche Wahrheiten einfach
auszurechnen mufl deshalb aufgegeben werden.

Auf der anderen Seite haben automatische Beweissysteme, basierend auf Herbrand’s
fundamentalem Resultat der Widerlegungsvollstindigkeit [Her30] in einzelnen Anwendungs-
dominen eine beachtliche Leistungsstirke errungen und werden heute erfolgreich in indu-
strienahen Anwendungen, wie der Programm- und Hardwareverifikation, eingesetzt. In der
Mathematik selbst konnten nicht-triviale Sitze erstmals mit dem Computer bewiesen wer-
den: Der Gruppe um Bill McCune am Argonne National Laboratory, lllinois, USA, gelang es
1997 das seit 60 Jahre unbewiesene Robbins Problem mit dem automatischen Beweiser EQP
zu 16sen [McC97b].

Aufgrund der enormen Komplexitdt automatischen Beweisens erscheint es aber als we-
nig realistisch, daf automatische Beweissysteme bereits in wenigen Jahrzehnten eine den
heutigen Schachcomputern! vergleichbare Leistungsfihigkeit im Vergleich zum Menschen
erreichen werden. Durch Brute-Force Suche in Kombination mit schneller Hardware, wie
in den meisten Schachcomputern, wird ein Erfolg im automatischen Beweisen aber nicht
moglich sein. Vielmehr wird die Integration und Kombination leistungsfdhiger traditioneller
Deduktionssysteme fiir Logik erster Stufe (z.B. OTTER [MW97, McC94], Spass [WGR96],
SETHEO [GLMS94], PROTEIN [BF94], BLIKSEM, WALDMEISTER [HBVLI7]) und héherer Stu-
fe (z.B. Tps [ABIT96, AINP90], HoL [GM93], Pvs [ORS92]) mit Computeralgebrasystemen

Der Schachcomputer Deep Blue von IBM hat im Mai 1997 mit 3.5 zu 2.5 Punkten den Weltmeister Gary
Kasparov geschlagen.

viii

Deutsche Zusammenfassung

(z.B. MAPLE [Red96], MATHEMATICA [WoI88, Kau92]) und Constraint-Lésern in einer ab-
strakteren und kognitiv addquateren Beweisplanungsebene (siehe z.B. [CrS98, KKS98, Mel95,
Bun88, WNB92, AH97]) wohl eher erforderlich sein. Dieser Ansatz erlaubt es, zunichst gro-
be Beweispldne aufbauend auf einem Satz theoriesperifischer Beweismethoden zu entwickeln,
um diese dann anschlieflend zu detaillierten Beweisen auf Kalkiilebene zu verfeinern. Die inte-
grierten Subsysteme kdnnen die Beweisplanung unterstiitzen, indem sie Unterbeweise fiihren,
Nebenrechnungen ausfithren oder die Erfiillbarkeit von Constraints iiberpriifen. Auch bei der
Verfeinerung abstrakter Beweispline kénnen die eingebauten Subsysteme zur Lésung wichti-
ger Unterprobleme eingesetzt werden.

Die Weiterentwicklung und Perfektionierung des traditionellen automatischen Beweisen,
insbesondere im weitgehend vernachldssigten Bereich der Logik hoherer Stufe, ist demnach
ein wichtiges Unterziel bei der Entwicklung eines leistungsfihigen Assistenzsystems fiir die
Mathematik, das auch nicht-triviale Probleme autonom lésen kann. Deshalb konzentriert sich
diese Doktorarbeit auf die noch relativ wenig untersuchte Mechanisierbarkeit von Logiken
hoherer Stufe und fokussiert dabei auf die bereits in der Logik erster Stufe schwer handhabbare
aber enorm wichtige Gleichheitsrelation. Etwas préziser formuliert, untersucht die vorliegende
Arbeit die Rolle und Mechanisierbarkeit der Gleichheit in klassischer Logik h&herer Stufe
basierend auf Church’s einfach getypten A-Kalkiil [Chu40] — dieser Ansatz zur Formalisierung
der Mathematik wird traditionell auch als (klassische) Typtheorie bezeichnet (siche [And86])
— und schligt dazu drei Kalkiile vor, die die Mechanisierung der Gleichheit verbessern sollen.

In der Untersuchung der theoretischen Eigenschaften dieser Kalkiile wird, falls nicht an-
ders erwidhnt, eine Standardsemantik, beziehungsweise bei der Vollstindigkeitsanalyse der
entwickelten Beweiskalkiile die Henkin-Semantik [Hen50, Hen96] vorausgesetzt. Wesentliches
Charakteristikum der Standardsemantik ist, dafl jedem funktionalen Typ o — 3, der in der
getypten Sprache betrachtet wird, das jeweils volle Funktionsuniversum gebildet iiber den
zugrundeliegenden Universen fiir die Typen o und 3 in der Semantikkonstruktion zugeordnet
wird. Die Wahl der Universen zu den gew#hlten Basistypen (iiblicherweise + und o, wobei als
das Universum fiir o die zweielementige Menge der Wahrheitswerte gewihlt wird) legt dem-
nach auch bereits alle Funktionsuniversen fiir die funktionalen T'ypen in dieser Sprache fest.
Der Ubergang zur Henkin Semantik bei der Analyse von Kalkiilen ist durch die bereits erwiihn-
ten Goddelschen Unvollstindigkeitsresultate [G6d31] motiviert, die aufzeigen, daf in der Typ-
theorie mit Standardsemantik keine vollstandigen Kalkiile m&glich sind. Leon Henkin hat den
auf vollen Funktionsuniversen aufbauenden Begriff der Standardsemantik in [Hen50, Hen96]
verallgemeinert, indem er auch die Betrachtung nicht voller Funktionsuniversen zuldfit; al-
lerdings unter Einhaltung der Denotatpflicht, die sicherstellt, dafi die gewdhlten Universen
reichhaltig genug sind, um jedem Ausdruck der Sprache auch ein entsprechendes Denotat
zuzuordnen. Die Henkin’sche Verallgemeinerung hat zur Folge, daf sich die Menge der all-
gemeingiiltigen Formeln verringert, weil mehr Gegenmodelle konstruiert werden kénnen, und
diese Generalisierung geht genau soweit, dafl vollstindige Kalkiile méglich werden.

Die in dieser Arbeit vorgeschlagenen Kalkiile bauen letztlich auf den Pionierarbeiten zur
Resolution héherer Stufe [And71] von Peter Andrews und zur Constraint Resolution héherer
Stufe [Hue72] von Gérard Huet auf. Direkt greifen sie auf das unsortierte Fragment des sortier-
ten Resolutionskalkiil [Koh94b] neueren Datums von Michael Kohlhase zuriick. Das Ziel be-
steht darin, Henkin-Vollstdndigkeit zu erreichen, ohne aber dabei auf zusitzliche Gleichheits-
oder sonstige Axiome angewiesen zu sein und somit die Mechanisierung der Gleichheitsrelation
im Kalkiil selbst zu verbessern. Wie auch in den traditionellen Ansdtzen wird die Gleichheit
dabei zunichst als ein nach dem Leibniz’schen Prinzip (zwei Dinge sind gleich falls sie die glei-

ix

Deutsche Zusammenfassung

chen Eigenschaften aufweisen) definiertes Konzept angesehen, das bekanntermaflen leicht in
Logik hoherer Stufe formalisiert werden kann (=% = (AX,Y,. VP,5,. P X = PY)). Leider
miissen aber in den obigen Ansitzen sowie in allen anderen dem Autor bekannten Widerle-
gungsansitzen fiir klassische Typtheorie die Extensionalititsaxiome der Leibnizgleichheit den
jeweiligen Kalkiilen hinzugefiigt werden, um Henkin-Vollstandigkeit zu erreichen. Das dieses
Problem nicht rein theoretischer Natur ist, sondern eine echte Bedeutung in der Praxis erlangt,
zeigen die in dieser Arbeit diskutierten Beispiele. Neben der Entwicklung einer geschickten
Extensionalititsbehandlung versucht diese Arbeit aber auch die Mechanisierung der primiti-
ven Gleichheitsrelation voranzutreiben und erarbeitet dazu einen paramodulationsbasierten
sowie einen differenzreduzierenden Kalkiil fiir die klassische Typtheorie.

Fiir die Vollstindigkeitsanalysen der Kalkiile war es erforderlich, die Beweismethode der
abstrakten Konsistenz zu erweitern, die urspriinglich von Smullyan [Smu63] fiir eine Logik
erster Stufe entwickelt und dann von Andrews [And71] fiir Logik héherer Stufe aufbauend
auf Ideen von Takahashi [Tak67] erweitert wurde. Die Andrews’sche Entwicklung basiert auf
einem sehr allgemeinen Semantikbegriff (der v-Komplexe), so dafl eine weitere Adaptation
der Beweismethode der abstrakten Konsistenz im Rahmen dieser Arbeit (gemeinsam mit
Michael Kohlhase) erforderlich war, um Vollstindigkeitsbeweise auch fiir die Henkin-Semantik
zu ermoglichen.

Die theoretischen Beitrige dieser Doktorarbeit werden ergdnzt und untermauert durch die
Implementierung der Kalkiile im Beweiser [.LEo und die durchgefiihrten Fallstudien.

Stichwortartig lassen sich die Ziele (und Beitrige) der Arbeit damit wie folgt zusammen-
fassen:

e Analyse und Kldrung der Rolle der Gleichheit im automatischen Beweisen in klassischer
Typtheorie.

o Adaptation der Beweismethode der abstrakten Konsistenz fiir die Henkin-Semantik.

o Entwicklung eines Henkin-vollstindigen Resolutionsansatzes, der zusdtzliche Extensio-
nalitdtsaxiome im Suchraum vermeidet.

e Entwicklung Henkin-vollstdndiger primitiver Gleichheitsverfahren, die ebenfalls ohne
zusitzliche Axiome auskommen.

e Analyse der Praktikabilitit dieser Ansdtze im Rahmen einer Implementierung und
zusdtzlicher Fallstudien.

Die skizzierten Beitrdge dieser Arbeit werden nun in chronologisch motivierter Reihenfol-
ge noch etwas niher beleuchtet. Dies bildet auch die Einleitung in Kapitel 1 (allerdings in
strukturell statt chronologisch motivierter Reihenfolge).

Probleme mit den Extensionalitdtsprinzipien In der Anfangsphase dieser Doktorar-
beit stellte sich heraus, dafl sowohl der als Ausgangspunkt gewihlte sortierte Resolutionskalkiil
hoherer Stufe [Koh94b] als auch der um eine Regel zur Behandlung der Extensionalitit auf
Wahrheitswerten erweiterte, aber ansonsten analoge Tableauxansatz [Koh95] genauso wie
die traditionellen Ansitze [And71, Hue72, JP72] weder das funktionale Extensionalititsprin-
zip noch das Extensionalititsprinzip auf Wahrheitswerten in voller Generalitdt beriicksichti-
gen. Das funktionale Kxtensionalitdtsprinzip besagt, dafl zwei Funktionen genau dann gleich
sind, wenn sie sich hinsichtlich aller Argumente gleich verhalten, d.h. punktweise gleich sind

Deutsche Zusammenfassung

(VEasyp, Gomsp (F =P G) = (VX,.(F X =P G X))), wihrend das Extensionalititsprinzip
auf Wahrheitswerten ausdriickt, daB Gleichheitsrelation und Aquivalenzrelation auf Wahr-
heitswerten iibereinstimmen (VA,, B,. (A =° B) = (A = B)). Wir werden nun die Schwiche
der beiden Ausgangskalkiile und deren Auswirkungen auf dieses Forschungsvorhaben beleuch-
ten. Beide Kalkiile behandeln die Gleichheit, ebenso wie die vorangegangenen traditionellen
Ansétze, nicht als eine primitive Relation, sondern als ein nach dem Leibniz’schen Prinzip defi-
niertes Konzept. Dieses Prinzip formuliert, dafl zwei Dinge gleich sind, wenn sie hinsichtlich ih-
rer Eigenschaften nicht unterschieden werden kénnen (=* = (AX,Y,.VP,—,. P X = PY)).
Allerdings beschreibt das Leibniz’sche Prinzip nur dann exakt die intendierte Gleichheitsre-
lation, falls man von einer geniigend starken Semantikkonstruktion — z.B. Henkin-Semantik —
fiir Logik hohere Stufe ausgeht. Eine detaillierte Diskussion dieses Aspektes wird in Kapitel 2.1
prisentiert (siehe aber auch [BK97a]). Setzt man aber beispielsweise Henkin-Semantik voraus,
so kann man jede primitive Gleichung in einem Beweisproblem der Logik hdheren Stufe durch
eine dquivalente Formulierung basierend auf der Leibnizdefinition, also ohne primitives Gleich-
heitssymbol, ersetzen. Auf dieser Idee bauen die traditionellen Ansétze [And71, Hue72, JP72],
sowie die Aufgangskalkiile [Koh94b] und [Koh95] auf, und sehen deshalb auch keine primiti-
ve Behandlung der Gleichheit im Kalkiil vor. Weil aber die Leibnizgleichheit den Suchraum
(durch das Einfiihren flexibler Literalképfe, d.h. freier Pridikatsvariablen) erheblich aufbliht
und im allgemeinen leider unendlich viele funktionale Extensionalititsaxiome (pro funktiona-
lem Typ der Sprache je ein Axiom) notwendig sind, ist es ein wesentliches Ziel dieser Arbeit,
eine primitive Gleichheitsbehandlung auszuarbeiten, die diese Nachteile vermeidet.

Ein wichtiger Aspekt klassischer Typtheorie ist nun aber, dal — wiederum eine geniigend
starke Semantik vorausgesetzt — die Gleichheit stets als definiertes Konzept behandelt wer-
den kann; sie ist mehr oder weniger a priori in die Logik eingebaut. Selbst wenn man sich
grundsitzlich fiir eine primitive Behandlung der Gleichheit entscheidet und die Signatur der
zugrundeliegenden Logik um primitive Gleichheitssymbole (fiir jeden Typ) erweitert, so be-
steht immer noch die Moglichkeit, die Gleichheit nach obiger Idee als definiertes Konzept
zu betrachten. Wie in Abschnitt 2.8 erliutert wird (sieche auch [Ben98, Ben99]), gibt es ne-
ben der obigen Leibniz’schen Formulierung noch unendlich viele alternative Moglichkeiten,
die Gleichheit als definiertes Konzept zu betrachten. Insgesamt folgt daraus, dafi es unent-
scheidbar ist, ob eine bestimmte Teilformel einer aufgelosten Gleichung entspricht, mit der
Konsequenz, dafl rein theoretisch eine rein primitive Behandlung der Gleichheit in einem
Kalkiil niemals ausreichen kann, um Vollstindigkeit (beziiglich Henkin-Semantik) zu errei-
chen. Vielmehr muf} ein Henkin-vollstindiger Kalkiil in jedem Fall — also unabh&ngig davon,
ob er nun die Gleichheit zusdtzlich auch als ein primitives Konzept betrachtet — eine geniigend
michtige Gleichheitsbehandlung auch fiir definierte Gleichungen bereitstellen.

So ist beispielsweise die Giiltigkeit der Gleichheitsaxiome (Kongruenzaxiome und zusitz-
liche Axiome fiir die funktionale Extensionalitit, sowie die Extensionalitit auf Wahrheits-
werten) ein wichtiges Testkriterium fiir die Henkin-Vollstindigkeit eines Kalkiils, selbst oder
insbesondere bei Ersetzung der Gleichheitssymbole in diesen Axiomen durch Definitionen im
Leibniz’schen Sinne.

Hier versagen nun die in der Literatur diskutierten Widerlegungsansitze und leider zum
Teil auch die Ausgangskalkiile [Koh94b] und [Koh95]. So miissen die in den Pionierarbeiten
zur Resolution in héherer Stufe [And71, Hue72, JP72] diskutierten Ansitze die Extensiona-
litdtsaxiome explizit dem Suchraum hinzufiigen um Henkin-Vollstindigkeit zu garantieren.
Und obwohl [Koh94b] noch davon ausging, dal der dort beschriebene Resolutionskalkiil zu-
mindest das funktionalen Extensionalitdtsprinzip implizit im Kalkiil beriicksichtigt und so-

xi

Deutsche Zusammenfassung

xii

mit auf dessen Axiomatisierung verzichten kann, stellte sich schnell heraus, dafl eine auf der
Grundlage der Leibnizdefinition formalisierte Variante des funktionalen Extensionalitdtsprin-
zips doch nicht mit diesem Kalkiil gezeigt werden kann. Das heifit, dafl der Resolutions-
kalkiil in [Koh94b] doch nicht die funktionale Extensionalitit implizit beriicksichtigt, sondern
es auch in diesem Kalkiil notwendig ist, simtliche Extensionalititsaxiome dem Suchraum
hinzuzufiigen. Der auf der Grundlage des Resolutionskalkiil [Koh94b] weiterentwickelte Ta-
bleauxkalkiil fiir h6here Ordnung [Koh95] stellt eine zusitzliche Regel bereit, die das Problem
der Extensionalitit auf Wahrheitswertswerten attackiert. Unter der Annahme, da§ [Koh94b]
bereits das funktionale Extensionalititsprinzip generell beriicksichtigt, geht [Koh95] deshalb
davon aus, erstmals einen Henkin-vollstindigen Widerlegungsansatz gefunden zu haben, der
ohne zusdtzliche Axiome auskommt.

Das Zusammenspiel beider Prinzipien bildet aber gerade die entscheidende Herausforde-
rung zum Erreichen der Henkin-Vollstdndigkeit und aufgrund der Schwiche von [Koh94b]
versagt hier folglich auch der in [Koh95] vorgestellte erweiterte Tableauxkalkiil.

Anhand des folgenden Beispiels soll die Schwiche sdmtlicher vor dieser Arbeit verfiigbaren
Widerlegungskalkiile fiir die klassische Typtheorie erldutert werden und die Bedeutung fiir die
Mechanisierung einfacher Probleme aus der Mathematik, z.B. triviale Aussagen {iber Mengen,
herausgestellt werden:

(AX,. rot,—, X Akreis,y, X) = (AX,. kreis,,, X Arot,—, X)

Die linke Seite dieser Gleichung beschreibt die Menge der roten Kreise ({z|rot X A kreis X })
und die rechte Seite die Menge der Kreise, die rot sind ({z|kreis X A rot X}). Obwohl die
Gleichheit dieser beiden Mengen dem Leser trivial erscheint, so ist dieser Satz fiir automati-
sche Beweiser in der Typtheorie eine grofie Herausforderung (noch weitaus grofer ist aber die
Herausforderung an einen Beweiser erster Stufe bei einer entsprechenden Kodierung dieses
Problems z.B. in Tarski Grothendieck Mengentheorie [Try89] oder Zermelo-Frinkel Mengen-
theorie [Zer08, Fra22b, Fra28]). Die Anwendung beider Extensionalititsprinzipien der Leib-
nizgleichheit ist ndmlich zundchst erforderlich, um diese Gleichung in folgende allquantifizierte
Aquivalenz zu transformieren:

VY,. (rot Y Akreis Y) = (kreis Y Arot Y)

Die transformierte Aussage enthdlt keine weiteren Anteile hdherer Stufe und ist in wenigen
Schritten beweisbar.

Obiges Beispiel unterstreicht die Bedeutung der beiden Extensionalitdtsprinzipien selbst
fiir die Mechanisierung trivialer Probleme in der Mathematik oder auch der Sprachverarbei-
tung (konkrete Beispiele werden in [KK98b] diskutiert), da in beiden Dominen Vergleiche
von Mengen oder Aussagen eine zentrale Rolle spielen.

Kurz zusammengefafit stellte sich fiir diese Doktorarbeit in der Anfangsphase also fol-
gendes Problem: Sdmtliche verfiigharen Widerlegungsansitze fiir die klassische Typtheorie
stellen keine zufriedenstellende Handhabung der Extensionalitdtsprinzipien der Gleichheit
bereit, sondern setzen die Hinzunahme unendlich vieler Extensionalitdtsaxiome in den Such-
raum voraus.

Es war also zundchst von hoher Prioritit einen Henkin vollstindigen Ansatz fiir definierte
Gleichheit zu entwickeln, der die Extensionalititsaxiome im Suchraum vermeidet, um dann
darauf aufbauend die Entwicklung geeigneter Ansidtze zur primitiven Gleichheitsbehandlung
anzustreben.

Deutsche Zusammenfassung

Extensionale Resolution hoéherer Stufe Im technischen Bericht [Ben97] wird erst-
mals ein Kalkiil fir Ertensionale Resolution hoherer Stufe (ER) diskutiert, der die Behand-
lung beider Extensionsionalitdtsprinzipien in geeigneter Weise miteinander kombiniert. Die
Vollstindigkeit des Kalkiils ER wurde im Anschluf} in [BK98a] gezeigt. Der im Rahmen dieser
Doktorarbeit entwickelte Kalkiil ER ist demnach der erste Kalkiil fiir klassische Typtheorie,
der ohne zusitzliche Axiome Henkin-Vollstindigkeit garantiert.

Wegen der Unentscheidbarkeit der Unifikation fiir Logiken hoherer Stufe besteht die Anfor-
derung an einen Resolutionskalkiil, die Suche nach Unifikatoren auf einer gemeinsamen Ebene
mit der generellen Beweissuche zu verschmelzen, bzw. Unifikationsprobleme als grundsdtzlich
unentscheidbare Constraints zu betrachten. Der Kalkiil ER geht noch einen Schritt weiter:
Er erlaubt rekursive Aufrufe an den gesamten Beweisproze aus der Unifikation heraus, das
heiflt, er verschmilzt Unifikation und Resolution noch enger. Der Kalkiil ER wird in Kapitel 4
prisentiert und die Unterschiede zu [Koh94b] und [Koh95] werden dort detailliert diskutiert.
ER ist zudem in [BK98a] und [Ben97] beschrieben.

An dieser Stelle soll die zentrale Idee des Kalkiils ER anhand unseres obigen Beispiels
kurz motiviert werden: Ein herkémmlicher Resolutionsansatz, z.B. [Hue72, Koh94b], dem
das Negat unserer Ausgangsformel eingegeben wird, erlaubt es sehr rasch die leere Klausel
abzuleiten, allerdings unter dem Unifikationsconstraint, dafl die beiden Seiten der Gleichung

aneinander angeglichen werden kénnen?:

[P(1=0)—o (AX,. (Tot X Akreis X) = p(,_0)—0 (AX,. kreis X Arot el

Ganz konkret ist dieses Unifikationsconstraint ableitbar durch Resolution zwischen den bei-
den einzigen Einerklauseln, die aus der Klauselnormalisierung des vollstindig definitionsex-
pandierten negierten Eingabeproblems resultieren. Die Konstante p,_, ist dabei entstanden
durch die Normalisierung des negierten Allquantors. Bereits nach wenigen Unifikationsschrit-
ten (Dekomposition von p und Elimination der A-Binder — was der Anwendung des funk-
tionalen Extensionalititsprinzips entspricht und den Skolemterm s einfiihrt) scheitert diese
dann an folgendem Unifikationsconstraint
[rot s A kreis s = kreis s A rot 5]

Der Grund des Scheiterns ist, daf§ die Dekomposition lediglich syntaktisch vorgeht und nicht
die Kommutativitdt von A beriicksichtigen kann. Der Kalkiil R 16st dieses Problem, indem
er an dieser Stelle das Extensionalitdtsprinzip auf Wahrheitswerten anwendet, dadurch obige
negierte Gleichung, d.h. unser Unifikationsconstraint, durch eine negierte Aquivalenz ersetzt,
die dann erneut normalisiert wird. Dadurch wird letztlich ein rekursiver Aufruf des Beweisers
aus der Unifikation realisiert, der es erlaubt, die Gleichheit der beiden (modifizierten) Terme
innerhalb des gesamten Kalkiils — und nicht nur durch rein syntaktische Unifikation —
nachzuweisen.?

Es ist offensichtlich, dafl dem Kalkiil ER die ldee der Differenzreduzierung zugrunde liegt:
Einen Resolutionsschritt begriindende Gleichungen werden zunidchst als Unifikationscons-

2Unifikationsconstraints werden in [BK98a] als negierte Gleichungsliterale kodiert. Diese Literale formulieren
also die Bedingungen unter denen eine Klausel gilt — in £R ist die Kodierung als negierte Gleichungsliterale
nicht zwingend erforderlich.

“Die Unifikation hoherer Stufe ist natiirlich keine rein syntaktische Unifikation, weil sie, durch die A-
Konversionsregeln unterstiitzt, das funktionale Extensionalitdtsprinzip bereits zu einem gewissen Grade beriick-
sichtigt. Aber eben leider nur zu einem gewissen Grade und insbesondere erméglicht sie nicht die notwendige
Kombination von funktionalen und booleschem Extensionalitatsprinzip, wie unser Beispiel zeigt.

xiii

Deutsche Zusammenfassung

xiv

traints kodiert und kénnen durch die Unifikationsregeln zu einem spdteren Zeitpunkt entwe-
der gel6st oder so weit wie moéglich modifiziert und vereinfacht werden. Die {ibrig bleibenden
Differenzen der modifizierten Unifikationsprobleme kénnen dann durch rekursive Aufrufe an
den gesamten Widerlegungsproze und nicht nur innerhalb der rein syntaktischen Unifikation
analysiert werden.

Alternative Vollstdndigkeitsbeweise Die Vollstindigkeit des Kalkiils ER wurde bereits
analysiert in [BK98a]. In dieser Arbeit wird nun ein im Vergleich zu [BK98a] alternatives
Vorgehen zur Analyse der Henkin-Vollstdndigkeit fiir ER vorgestellt, das aber leider die
zusitzliche, Instantiierungen ratende FlexFlex-Unifikationsregel (siehe Abbildung 4.2 oder
auch [SG89, Sny91]) im Kalkiil ER voraussetzt. Die Vermutung (siche Conjecture 4.22), dafl
diese Regel vermieden werden kann, konnte im Rahmen dieser Arbeit leider nicht mehr be-
wiesen werden. Motiviert ist das neue Vorgehen und der alternative Beweis wie folgt:

e Das sehr zentrale Liftinglemma in [BK98a] stiitzt sich letztlich auf das Liftinglemma
in [Koh94b] und verwendet den dort eingefiihrten, recht komplizierten und wenig intuiti-
ven Begriff der Klauselisomorphismen. Ein Ziel dieser Arbeit ist es, diesen komplizierten
Beweis des Liftinglemmas zu vereinfachen, dabei auf das (fehleranfillige, weil kompli-
zierte) Konzept der Klauselisomorphismen zu verzichten und sich enger an traditionelle,
d.h. aus der ersten Stufe bekannte, Argumentationsweisen anzulehnen. Dies ist méglich,
wie in Kapitel 4 gezeigt wird, wenn man den Kalkiil ER zunichst um die FlexFlex Re-
gel erweitert und die Liftingeigenschaft im erweiterten Kalkiil zeigt (eine weitere kleine
Modifikation betrifft die Integration der einzelnen Klauselnormalisierungsregeln in den
Kalkiil). Konsequenterweise gilt es im Anschluf}, die Theoreméquivalenz zwischen dem
erweiterten und dem reinen Kalkiil ER zu zeigen, um dadurch auf die Vollstandigkeit
von ER schlieflen zu kénnen.

e Ein zweiter Beweis der Vollstindigkeit von &R vermindert das Fehlerpotential dieser
Aussage insgesamt und bietet auch alternative Einblicke in die theoretischen Eigen-
schaften des Kalkiils.

e Der Unterschied zu Huet’s traditionellem Ansatz der Constraint Resolution hdherer
Stufe wird durch die modifizierte Beweisfiihrung besser illustriert: Huet’s Ansatz geht
davon aus, daf die (Prd-)Unifikation héherer Stufe komplett verzégert werden kann,
indem in jedem Resolutions- und Faktorisierungsschritt das zu l8sende Unifikations-
problem zunichst explizit als Constraint in der Klausel selbst kodiert wird. Sobald die
leere Klausel gefunden ist, gilt es dann die aufgesammelten Constraints zu l6sen um
die gefundene Ableitung letztendlich zu rechtfertigen. Im Kalkiil ER ist eine grundsétz-
liche Verzdgerung aber nicht mehr moglich. Wie unser obiges Beispiel (sowie viele der
Beispiele in Kapitel 8 und selbst der zentrale Vollstindigkeitsbeweis 4.16) demonstriert,
sind vorzeitige, rekursive Aufrufe des gesamten Widerlegungsansatzes aus der Unifika-
tion heraus zwingend erforderlich, um die Vollstindigkeit zu garantieren. Unifikation
und Resolution werden in der extensionalen Resolution hdherer Stufe eben noch enger
als in Huet’s Ansatz miteinander verwoben.

e Die wichtigste Motivation ist aber, ein analoges Vorgehen bei der Vollstindigkeitsanalyse
fiir alle drei in dieser Arbeit erarbeiteten Kalkiile (SR, EP und ERUE) zu ermoglichen.
Weil der Versuch einer direkten Beweisfiihrung aufbauend auf den Ideen von [BK98a]

Deutsche Zusammenfassung

und [Koh94b] miBlang, wurde fiir diese Arbeit das oben skizzierte, modifizierte Vorgehen
gewihlt.

Beweisprinzip der abstrakten Konsistenz Der Vollstindigkeitsbeweis des Kalkiils ER
setzt die Erweiterung der fiir die Logik erster Stufe durch Smullyan [Smu63] eingefiihrten
Beweismethode der abstrakten Konsistenz voraus. Zwar wurde dieses Beweisprinzip 1971 von
Peter Andrews [And71] fiir die hshere Stufe erweitert, allerdings nur fiir die sehr schwache
Semantik der v-Komplexe. In Zusammenarbeit mit Michael Kohlhase und aufbauend auf den
in [Koh93] diskutierten Vorarbeiten, ist es im Rahmen dieser Arbeit gelungen, eine entspre-
chende Erweiterung der abstrakten Konsistenzmethode fiir Henkin-Semantik auszuarbeiten
und deren Korrektheit zu beweisen. Vorgestellt wird das erweiterte Beweisprinzip in den Ka-
piteln 2.1 und 3 (sieche aber auch [BK97a]). In Kapitel [BK98a] wird es dann angewendet, um
die Henkin Vollstdndigkeit des Kalkiils ER zu zeigen.

Die theoretischen Betrachtungen in den Kapitel 2.1 und 3 zeigen aber noch mehr: ndmlich
eine ganze Reihe interessanter Semantik-Konstruktionen fiir die Logik hcherer Stufe, die im
Wesentlichen durch unterschiedliche Eigenschaften des Denotats der Leibnizgleichheit moti-
viert sind. Jedem der ausgearbeiteten Semantikbegriffe wird dann eine entsprechende Menge
abstrakter Konsistenzeigenschaften zugeordnet.

Ausgangspunkt der Semantikkonstruktionen sind ¥-Modelle, die im Wesentlichen totalen
v-Komplexen entsprechen. Das heifit, dafi im Gegensatz zu Andrews’ v-Komplexen — die
mit partiellen Valuationen arbeiten — in »-Modellen jeder Formel ein Denotat zugewiesen
wird. Die Funktionsuniversen in Y-Modellen sind nicht notwendigerweise voll. Ferner sind -
Modelle weder funktional®, noch ist das Denotat der Leibnizgleichheit notwendigerweise die
Gleichheitsrelation. Letzteres gilt auch noch fiir die Klasse der funktionalen »-Modelle, in de-
nen 7-Gleichheit explizit gefordert wird. Wie Andrews in [And72a] zeigt, gilt erst dann, dafi die
Leibnizgleichheit tatsidchlich die Gleichheitsrelation beschreibt, wenn man sicherstellen kann,
daB die Gleichheitsrelationen q® (bzw. einelementige Mengen {a} fiir alle a in D,) Elemente
der Domidnen Dy_yo-s0 (bzw. Dyyo) sind. Es ist leicht zu iiberpriifen, dafi diese Forderung
automatisch erfiillt ist, sobald die konkret betrachtete Logik ein primitives Gleichheitssymbol
in der Logik selbst vorsieht.

Ein weiteres wichtiges Charakteristikum fiir Semantikkonstruktionen in Logik h6herer Stu-
fe betrifft die Kardinalitit der Menge der Wahrheitswerte D,. In (funktionalen) ¥-Modellen
ist lediglich gefordert, dafi eine Abbildung von der konkret gewidhlten Menge D, in die Menge
der Wahrheitswerte {T,F} angegeben werden kann, so daf sich die Denotate der logischen
Junktoren entsprechend ihrer intuitiven Semantik modulo dieser Abbildung verhalten. Diese
Forderung kann man natiirlich dahingehend verstirken, dafl eine zweiwertige Menge {T,F}
von Wahrheitswerten explizit vorgeschrieben wird.

Henkin Modelle kombinieren schliellich diese beiden Forderungen: Die Leibnizgleichheit
muf} tatsdchlich die Gleichheitsrelation charakterisieren und die Menge der Wahrheitswerte
muf isomorph sein zu {T,F}. Standardsemantik ergibt sich dann aus der Henkin-Semantik
durch die zusitzliche Forderung nach vollen Funktionsuniversen. Der wissenschaftliche Bei-
trag dieser Analyse ist, daf} einerseits die oben skizzierten Semantikkonstruktionen formal
erarbeitet und analysiert und andererseits diesen Konstruktionen dann jeweils eine Menge
abstrakter Konsistenzeigenschaften zugeordnet werden.

*Das heiBt, das zum Beispiel n-Gleichheit nicht gewihrleistet ist.

XV

Deutsche Zusammenfassung

xvi

Dadurch ist es nun mdoglich, die Verbindung zwischen Syntax und Semantik fiir unter-
schiedliche Kalkiile der Typtheorie formal in einem einheitlichen Ansatz zu analysieren und
diese dann in ihrer Michtigkeit zu differenzieren. Insbesondere bietet diese Arbeit erstmals
ein entsprechendes Beweisprinzip fiir die in mathematischer Anwendungsdoméne wichtige
Henkin-Vollstandigkeit.

Primitive Gleichheit: Differenzreduzierender und Termersetzender Ansatz FEin
weiteres Ziel dieser Arbeit ist die Erweiterung der Constraint Resolution in [Koh94b] um
eine primitive Gleichheitsbehandlung. In Anlehnung an bekannte Verfahren in der Logik er-
ster Stufe soll hierzu ein differenzreduzierender sowie ein termersetzender Ansatz erarbeitet
und dann miteinander verglichen werden. Wéhrend sich in Logik erster Stufe termersetzende
Verfahren (z.B. der Superpositionskalkiil [BGLS92]) gegeniiber differenzreduzierenden in vie-
len Anwendungsdominen — sieht man einmal vom Induktionsbeweisen ab — durchgesetzt
zu haben scheinen, ist das Rennen in der Logik hdherer Stufe noch véllig offen und wird
moglicherweise auch einen anderen Ausgang nehmen.

Sicherlich wurden in den letzten Jahren Fortschritte hinsichtlich des schwierigen Pro-
blems der Konstruktion von Reduktionsordnungen fiir Terme hodherer Stufe erreicht, siehe
z.B. [JR99, LB98, JRI8], die eine Adaption termersetzender Verfahren auf Logiken hoherer
Stufe nahelegen. Auf der anderen Seite zeigen jedoch die Untersuchungen zur Integration pri-
mitiver Gleichheit in den Kalkiil ER, daB sich im Kontext des automatischen Beweisens fiir
die Henkin-Semantik im Vergleich zur ersten Stufe neue Probleme ergeben. Wieder sind es die
Extensionalititsprinzipien, die eine Herausforderung an das Beweisverfahren stellen. Konkret
stellt sich das Problem, dafl man nun grundsitzlich Einerklauseln haben kann, die aus einem
einzigen positiven oder negativen Gleichungsliteral bestehen und die bereits widerspriichlich
sind. Von der ersten Stufe ist bekannt, dafl man in einem Paramodulationsansatz ganz be-
sonders auf die Widerlegbarkeit negativer Gleichungsliterale, wie z.B. [(f X) = (f a)]F,
achten mufl. In [RW69] wird dieses Problem geldst durch die spezielle Reflexivititsregel, die
es erlaubt ein negatives Gleichungsliteral zu eliminieren, sobald beide Seiten der Gleichung
unifizierbar sind. In der Logik hcherer Stufe gelingt es aufgrund der Extensionalitatsprinzipien
nicht mit der rein syntaktischen Unifikation das Problem zu 16sen. Ausserdem sind nun auch
positive Gleichungen betroffen. Die folgenden vier Einerklauseln sollen dies demonstrieren:
[a = ==a]", [a = =a]T,[AX,. rot X = AX,. ~—rot X]7,[AX,. rot X = AX,. =rot X]T. Jede
dieser Klauseln ist widerspriichlich, doch der Widerspruch kann durch syntaktische Unifikation
nicht gezeigt werden. Insbesondere fiir die beiden letzten Klauseln ist wieder ein geschicktes
Zusammenspiel beider Extensionalitdtsprinzipien erforderlich, um den Widerspruch formal
aufzeigen zu konnen. Diese Beispiele motivieren also die Notwendigkeit spezieller Extensiona-
litdtsregeln, wie sie im Kalkiil ER bereits fiir die Unifikationsconstraints eingefithrt wurden,
um das Problem der Extensionalitdt zu iiberwinden. Auch hier sind nun rekursive Aufrufe an
den gesamten Widerlegungsprozef erforderlich, um generell alle widerspriichlichen positiven
oder negativen Gleichungsliterale berechnen zu kénnen. Wie aber bereits diskutiert wurde,
hat eine solche Extensionalititsbehandlung einen stark differenzreduzierenden Charakter, der
sich in einem Paramodulationsansatz fiir die hhere Stufe (scheinbar) uniiberwindbar mit der
Idee der Termersetzung vermischt. Die Praktikabilitit eines derart gemischten Ansatzes muf}
aber zunichst stark in Frage gestellt werden — und deshalb erscheint es sinnvoll, nach einem
rein differenzreduzierenden Ansatz zur primitiven Gleichheitsbehandlung in héherer Stufe zu
suchen und diesen mit einem gemischten Verfahren nach obiger ldee zu vergleichen. Diese

Deutsche Zusammenfassung

Fragestellung adressiert diese Arbeit in den Kapiteln 5 und 6 (siehe auch [Ben98, Ben99]).
Dort wird neben dem gemischt termersetzenden/differenzreduzierenden extensionalen Pa-
ramodulationskalkiil £P der rein differenzreduzierende extensionale RUE-Resolutionskalkiil
ERUE entwickelt. Die Henkin-Vollstindigkeit beider Ansitze wird wiederum mithilfe der in
Kapitel 3 eingefiihrten abstrakten Konsistenzeigenschaften gezeigt und beide Ansédtze werden
durch zahlreiche Beispiele in Kapitel 8 verglichen.

Vorarbeiten zur Implementierung: Datenstrukturen und Termindexing héher-
er Stufe Zunichst wurde ein generischer Algorithmus zur Pri-Unifikation hdherer Stufe
aufbauend auf der KEIM-Toolbox [HKK™194] realisiert. Eine von Michael Kohlhase betreute
Diplomarbeit [Kle97] adaptiert zudem die in erster Ordnung entwickelten Termindexing Tech-
niken [Gra95] fiir die Logik héherer Stufe. Allgemein erlauben diese Termindexing Techniken
a) effizientere Unifikationsalgorithmen, b) effizientere Subsumtionstests und c) eine schnellere
Bestimmung von Resolutionspartnern. Dabei stiitzt sich die ebenfalls auf KEIM aufgesetzte
Variante des Termindexing fiir A-Terme auf die Simplifikation als entscheidbarem und deter-
ministischen Teil der Unifikation hoherer Stufe (HOU) und verwendet diese zur Klassifikation
von A-Termen beim Aufbau eines Index.

Implementierung von LEO Die sich anschlieBende Implementierung von LEO (sie-
he [Ben97, BK98b]) bedient sich ebenfalls der KeimM-Toolbox und verwendet die oben erwihn-
ten Vorarbeiten. LEO implementiert den Kalkiil ER und basiert auf einer fiir die héhere Stufe
erweiterten Set of Support Strategie (SOS). Gleichheit wird dabei zunéchst ausschlieBlich als
ein durch das Leibniz’sche Prinzip definiertes Konzept realisiert. Implementiert wurden zwei
Suchstrategien, die in [Ben97] ausfiihrlich diskutiert werden. In dieser Arbeit wird nur die
erste der beiden Strategien diskutiert, da diese sich mittlerweile als Standardlésung fiir LEo
etabliert hat. Diese Strategie bedient sich in erheblichem Mafle der Unifikation héherer Stufe
und Subsumption als Filter, um mdoglichst friihzeitig solche Klauseln aussortieren zu kénnen,
die offensichtlich nicht zur Widerlegung beitragen kénnen oder dazu nicht ben&tigt werden.
Dabei geht diese Strategie einen erheblichen Rechenaufwand ein.

Ein interessantes Problem ergab sich im Zusammenhang mit der Verwendung der oben
erwahnten Indexing-Techniken hcherer Stufe im Beweiser LEO: Bei der Realisierung eines ex-
tensionalen Resolutionskalkiils eignen sich diese lediglich zur Unterstiitzung der Subsumption
und sind groBitenteils unbrauchbar zur Bestimmung von Resolutionspartnern oder innerhalb
der Unifikation. Dies soll wieder anhand eines Beispiels verdeutlicht werden.

Gegeben seien die folgenden Klauseln: [empty(,_y)—o(AX,. rot, o X A kreis,, X)]" und
[empty(—o)—o (A X, kreis,_, X Arot,_y,X)]F. Die erste Klausel beschreibt, daf die Menge der
roten Kreise ({X|rotX AkreisX}) leer ist, wihrend die zweite behauptet, dafl die Menge der
Kreise, die rot sind ({ X |kreisX A rotX}) nicht leer ist. Einziger méglicher Beweisschritt fiir
LEeo ist die Resolution zwischen beiden Einerklauseln. Resultat ist das Unifikationsconstraint
[EmPLY(,0)=0(AX 1. 7Ot o X A kreis, o X) = empty(o)—o(AX,. kreis, o X A rot,_, X)]
Dieses Beispiel entspricht im Wesentlichen dem Unifikationsconstraint, das bereits zu Beginn
dieses Vorworts diskutiert wurde. Mit Hilfe der Extensionalitdtsregeln des Kalkiils ER kann
die Widerlegung durch den Beweiser LEO leicht gefunden werden. Verwendet LEO allerdings
zur Bestimmung aller moglichen Resolutionsschritte zwischen zwei einzelnen Klauseln oder
Mengen von Klauseln das fiir die Logik héhere Stufe erweiterte Indexingverfahren [Kle97],
so wird obiger initialer Resolutionsschritt nicht einmal vorgeschlagen und der Beweis kann

xvil

Deutsche Zusammenfassung

xviil

nicht gefunden werden. Das Problem ist, daf§ ein Indexing Verfahren, das auf rein syntak-
tischer Unifikation, bzw. Simplifikation, aufbaut nicht beriicksichtigt, daf§ syntaktisch nicht
angleichbare Terme potentiell durch Hinzunahme der Extensionalitdtsprinzipien doch noch
angeglichen werden kénnen. Dies zeigt, dal ein Beweiser wie LEO zur Bestimmung von Re-
solutionspartnern auf ein syntaktisches Indexingverfahren verzichten muf}, oder ein erwei-
tertes Indexingverfahren entwickelt werden miifite. Das gleiche Problem stellt sich bei Ver-
wendung von Indexingverfahren innerhalb der Unifikation. Lediglich zum Subsumtionstest
kénnen Indexingverfahren weiter als Filter eingesetzt werden. Dabei werden natiirlich nur
solche Klauseln ausgefiltert, die eine andere Klausel hinsichtlich der syntaktischen Unifika-
tion, bzw. Simplifikation, subsumieren. Klauseln, die auf der Grundlage eines extensionalen
Subsumtionsbegriffes® ausgefiltert werden kénnten, bleiben dabei unberiicksichtigt.

Fallstudien Der Implementierung von LEO schlofl sich eine Fallstudie an, die die Prak-
tikabilitdt des Kalkiils ER fiir bestimmte Problemdomidnen belegen sollte. Wie bereits die
Beispiele in diesem Vorwort andeuten, hat [.LEO seine Stirken beim Beweisen einfacher Bei-
spiele iiber Mengen, fiir die die Extensionalitdtsprinzipien von essentieller Bedeutung sind. In
diesem Vorwort haben wir bereits mehrfach davon Gebrauch gemacht, dafi eine Menge A von
Individuen eines Typs « sehr einfach mit Hilfe der zugeordneten charakteristischen Funktion
AX,. @40 X beschrieben werden kann. Zum Beispiel wurde die Menge aller roten Kreise
{X|rotX A kreisX } kodiert als AX,. rot,_,, X A kreis,_,,X. Konkret untersucht wurden die
Beispiele des Artikels Boolean Properties of Sets [TS89] aus der Mizar-Bibliothek; Es handelt
sich dabei um 97 Theoreme aus der einfachen Mengentheorie. LEO findet mit Ausnahme der
Beispiele 56 und 57 alle Beweise, davon die meisten innerhalb einer Sekunde. Damit ist LEO
auf diesen Problemen leistungsfihiger als die stirksten automatischen Beweiser erster Stu-
fe (unter http://www-irm.mathematik.hu-berlin.de/"ilf/miz2atp/mizstat.html wird
das Problemltseverhalten der Systeme Spass, OTTER, PROTEIN, SETHEO (GANDALF und
LEO beschrieben). Die Fallstudie wird zur Zeit fortgesetzt — und ohne weitere Modifikatio-
nen an LEO konnten bereits zahlreiche der schwierigeren Beispiel des Mizar-Artikels Some
Basic Properties of Sets [Byl89] geldst werden.

Integration von [LEO in QMEGA [EO wurde gegen Ende dieser Doktorarbeit in das ma-
thematische Assistenzsystem Qumeca [BCE197] integriert. Damit steht QMEGA nun neben
den bereits zuvor angeschlossenen externen Beweissystemen erster Stufe (OTTER [McC97b],
Spass [WGR96], PrRoTEIN [BF94] und andere) auch ein Beweiser héherer Stufe zur Verfiigung,
der auf Extensionalitit spezialisiert ist.

Da LEo innerhalb eines gemeinsamen LISP Prozesses mit QMEGA arbeitet und zudem
auf den gleichen Datenstrukturen (KEiM-Toolbox) operiert, kann LEO im Gegensatz zu einer
rein externen Komponente auch von anderen Problemlésekomponenten in 2MEGA verwen-
det werden. So bendtigt zum Beispiel QMEGAs Beweisplaner (siehe z.B. [Mel97], [CrS98])
die extensionale Unifikation h&herer Stufe. Fiir LEO selbst ergibt sich der Vorteil, daf ei-
nerseits direkte Zugriffe auf QMEGAs zentrale Beweisdatenstruktur (PDS) und auf QMEGAs
mathematische Wissensbank [Koh98b] méglich sind.

Zur Zeit wird untersucht, inwiefern LEO in QMEGAs Agentenmechanismus [BS98a] zur Un-
terstiitzung des Benutzers bei interaktiven Beweisen integriert werden kann. Dieser Mechanis-

®Fin solcher extensionaler Subsumtionstest wire zwangslaufig unentscheidbar und sehr rechenaufwendig
und erscheint deshalb nicht praktikabel.

CONTENTS

mus hat das Ziel, dem Benutzer in interaktiven Sitzungen mdoglichst geeignete Beweisschritte
fiir das weitere Vorgehen vorzuschlagen. Dazu arbeiten im Hintergrund des 2MEGA-Systems
eine Vielzahl kleiner Agenten, die den aktuellen Beweiszustand analysieren und ihre Ein-
zelanalysen iiber eine hierarchische Blackboardarchitektur miteinander kommunizieren. Die
besten Vorschlige werden ausgefiltert und dann an den Benutzer weitergereicht. LEO kann
nun selbst in einen solchen Beweisagenten eingebettet werden. Dieser Agent analysiert an-
hand heuristischer Kriterien, ob die Anwendung auf ein Unterziel im aktuellen Beweiszustand
erfolgversprechend ist und ruft dann LEO auf. Sobald — fiir den Benutzer zunichst unbe-
merkt — ein Beweisproblem im Hintergrund durch LEO geldst wurde, wird das Unterziel in
QMEGAs PDS automatisch geschlossen und dies dem Benutzer signalisiert.

Parallel zur Integration von LEO wurde auch das an der Carnegie Mellon University ent-
wickelte Beweissystem hoherer Stufe Tps [AINP90, ABIT96] an QMEGA angebunden (sie-
he [BS98b]). Im Gegensatz zum Resolutionsbeweiser LLEo baut Tps auf dem Matrixverfahren
auf. Gerade bei der Extensionalititsbehandlung hat Tps allerdings Schwichen und kann
viele der in diesem Bericht diskutierten Beispiele nicht automatisch (ohne explizite Zuga-
be der jeweils erforderlichen Extensionalitdtsaxiome) l6sen. Andererseits ist das seit ca. 20
Jahren entwickelte TPs-System in der Lage, tiefer in grofie Suchriume abzutauchen, als es
derzeit noch im prototypischen LEO-System moglich ist. Zudem stellt T'ps einen geschickten
Mechanismus zur selektiven Expansion von Definitionen in Beweisproblemen [BA98] bereit.
Leistungsvergleiche zwischen beiden Systemen werden nun durch die gemeinsame Verfiigbar-
keit im QMEGA-System erheblich erleichtert. Im Hinblick auf das Fernziel der Mechanisierung
mathematischen Problemltsens erscheint es aber wesentlich interessanter, daf nun eine Ko-
operation der sich ergdnzenden Systeme in QMEGA moglich wird. Die Idee dabei ist, auf
OMEGAs Beweisplanungsebene spezielle Beweismethoden zu spezifizieren, um eine geschickte
und informierte Kooperation beider Systeme zu realisieren. Diese Idee wird in [BBS99] niher
beleuchtet und durch Beispiele motiviert.

Ein langfristige Hoffnung des Autors ist es, dafi durch die zielgerichtete Kooperation von
Tps, LEO und den zahlreichen verfiighbaren Beweisern erster Stufe in QMEGA durch QMEGA’s
Beweisplaner gesteuert, weitaus schwierigerere und herausfordernde Beweisprobleme gel6st
werden kénnen und dies damit einer Mechanisierung mathematischer Beweisens nidher bringt.

Xix

CONTENTS

XX

Chapter 1

Introduction

1.1 Motivation

The dream of formalising and mechanising mathematical reasoning — which also motivates
this thesis — reaches back to Gottfried Wilhelm Leibniz. He conceived a lingua charac-
teristica and a calculus ratiocinator, i.e., a most general framework to mechanise human
reasoning, which was certainly inspired by his own contributions to the mechanisation of
simple arithmetical operations: He developed and realised a mechanical calculator capable of
multiplication. But Leibniz’ contributions to the mechanisation of mathematical reasoning in
general did not go beyond elemetnary stages and it was not until the end of the 19th century
that the field of modern mathematical logic was born. Taking the important contribution of
the ancient Greeks (mostly Aristoteles) into account, who already investigated the laws of
human thought and developed a theory of well-chosen axioms and rules, it is probably better
to say ‘It was not until the 19th century that modern mathematical logic was reborn’. It
was mainly the work of George Boole (1815-1864), Gottlob Frege (1848-1925) and Bertrand
Russel (1872-1970) that stimulated the new and deep interest of many researchers in the
field of mathematical logic. Frege’s fundamental Begriffsschrift is described by Davis [Dav83]
not only as the direct ancestor of contemporary systems of mathematical logic but also as the
ancestor of all formal languages, including computer programming languages.

Another milestone in the formalisation of mathematics to be mentioned is Hilbert’s am-
bitious program at the very beginning of this century [Hil04, Hil27], which aimed at the
complete development of modern mathematics in a formal system. In the early 30’s results
came fast: Whereas Kurt Gdédel, Jacques Herbrand and Thoralf Skolem proved the complete-
ness of the (first-order) predicate calculus in 1930 [G6d30, Her30, Sko28] — i.e., every valid
formula in the language of the predicate calculus is derivable from its axioms — it was Godel
who showed in his famous incompleteness theorems [G6d31] that it is impossible to develop a
generally complete calculus that mechanises mathematical reasoning. More precisely, Godel
showed that as soon as a system is rich enough to encode peano arithmetic, one can construct
sentences that are valid in peano arithmetic but which are not derivable in the system itself.

Caused by the development of electronic computers in the 40’s and 50’s disappointment
gradually gave away to attempts of developing and implementing proof procedures in practice.
It took quite a few years until J.A. Robinson achieved a first important break-through with his
resolution approach in 1965 [Rob65]. The most important improvement of this approach com-
pared to former ones is that in order to prove a theorem it tries to refute the negated theorem

CHAPTER 1. INTRODUCTION

in a goal directed way, thereby employing first-order unification as a powerful filter instead of
simply enumerating the Herbrand universe like most earlier methods. Robinson’s ideas are
still employed in many state of the art theorem provers such as OTTER [MWI7, McC94], EQP
(which recently solved the Robbins Problem [McC97b]), or the superposition based prover
Spass [WGR96]. Even tableaux based provers like PROTEIN [BF94] or SETHEO [GLMS94] are
rather closely related to the resolution approach and unification became an essential (filtering)
tool for the whole field.

Unfortunately rather few pioneers dared to tackle the mechanisation of higher-order logic
based on the simply typed A-calculus — also called classical type theory. For instance, Robin-
son presents in [Rob68, Rob69] a higher-order proof procedure based on the tableaux idea
that itself employs many ideas from the calculi given in [Sch60] and [Tak53]. The most
important works to be mentioned are Peter Andrews’ investigation of higher-order resolu-
tion [And71], Jensen and Pietrowski’s approach [JP72] and especially Gerard Huet’s con-
strained resolution approach [Hue72, Hue73a]. It is well known that one of the great chal-
lenges for the mechanisation of classical type theory is the undecidability of higher-order
unification [Luc72, Hue73b, Gol81]. Whereas Andrews’ resolution approach still avoids uni-
fication (and instead employs an enumeration of the universe), Huet’s constrained resolution
approach [Hue72] solves the problem by encoding the particular unification problems as uni-
fication constraints and by delaying the application of higher-order unification until the end
of a refutation. Huet’s approach additionally gains from the higher-order pre-unification al-
gorithm [Hue75] which avoids the guessing aspects of full higher-order unification (for early
non-complete approaches to higher-order unification see [Gou66, Dar71, Ern71]; the first com-
plete approaches are presented in [Hue72] and [JP72]) and which fortunately turned out to
be sufficient within a refutation approach.

At present, the most powerful higher-order theorem prover is the Tps-system [ABIT96,
AINP90] developed at Carnegie Mellon University which is based on the mating ap-
proach [And76, And81, And80, Bib83]. This system and the LEO-prover described in this
thesis demonstrate the practical feasibility of automated higher-order theorem proving — at
least for simple mathematical theorems.

All approaches to automated higher-order theorem proving mentioned above necessarily
lack completeness with respect to the intuitive notion of standard semantics as shown by
Godel in 1931 [G6d31]. Instead modern calculi (and systems) aim at completeness with
respect to Henkin semantics, which has been invented by Leon Henkin [Hen50, Hen96] and
is known as the most general notion of semantics for classical type theory so that complete
calculi are possible. Henkin semantics, in [And71] also called general models, thus became
the theoretical surveyor’s wooden rod for all calculi in this field.

An interesting aspect of classical type theory is that equality is definable in a very natural
way (if the underlying notion of semantics is strong enough). For instance, one can express
the Leibniz principle of equality — two things are equal, iff they have the same properties —
very easily in classical type theory:!

=% == (AX,Y,.VPssyo. PX = PY)

In this sense, all approaches mentioned above provide for a very natural equality treat-
ment. But in order to ensure Henkin completeness, they all (including the more recent

Note that this formula describes an implication instead of an equivalence as one may expect. This is
sufficient as one easily gets the other direction by contraposition when instantiating P with = P.

1.2. HIGHER-ORDER LOGIC

calculi [Wol93], [Koh94b] and [Koh95]) require the extensionality axioms of Leibniz equality
(i.e. the infinitely many functional extensionality azioms® and the aziom for Boolean exten-
sionality®) to be added to the search space. Furthermore, there are no special techniques for
the mechanisation of equality reasoning as in first-order theorem proving.

We can now precisely formulate the goals of this thesis, which are:

1. The clarification of the role of equality and extensionality in automated higher-order
theorem proving.

2. The development of proof techniques for analysing higher-order calculi with respect to
Henkin completeness.

3. The development of a Henkin complete resolution calculus that avoids the extensionality
axioms in the search space.

4. The development of Henkin complete approaches to primitive equality in higher-order
resolution based theorem proving.

5. The demonstration of the practicability of these approaches via an implementation.

In the remaining parts of the introduction we will illustrate the different aspects of this
thesis in more detail.

1.2 Higher-Order Logic

A higher-order logic is any simply typed logical system that allows quantification over function
and predicate variables. It was Bertrand Russel [Rus02, Rus03] who first pointed out in 1902
that in connection with the comprehension principles* this may allow for paradozes. The most
prominent example is the set of all non-self-containing sets (also called Russel’s paradoz). As
a possible solution Russel suggested a few years later in [Rus08] a theory of types as a basis for
the formalisation of mathematics that differentiates between objects and sets (or functions)
consisting of these kinds of objects. This idea was also taken up by Alonzo Church in 1940,
who invented the simply typed \-calculus [Chu40] in order to prevent such paradoxes in the
untyped A-calculus, which he developed with Schénfinkel and Curry ten years earlier. Needless
to mention that typed and untyped A-calculi play an important or even central role in many
research fields of modern computer science. Consequently there are several modern textbooks
for the typed and untyped A-calculus available and we refer to [Bar92, And86, HS86, Bar84]
for details.

The avoidance of paradoxes like Russel’s paradox is also a main reason why we employ a
logic based on Church’s simply typed A-calculus [Chu40] — i.e., classical type theory — in this
thesis. There are certainly other approaches, e.g., Zermelo-Friankel [Zer08, Frd22b, Fri28] or

2The functional extensionality axioms express that two functions are equal, iff they are equal on all argu-
ments, and they are of form: YF._ 5. YGass(VXs. F X =G X) = F =P G. We need one axiom for each
pair of types o and 3.

#The Boolean extensionality axiom expresses that on the domain of truth values, which contains exactly
two truth values in standard or Henkin semantics, the equality relation and equivalence relation coincide:
VA,, B,. (A=° B)=(A=B).

*These principles assure the existence of certain functions, cf. the type restricted comprehension axioms
below.

CHAPTER 1. INTRODUCTION

von Neumann’s [Neu25] set theory, that solve the paradox problems and they are often more
popular among mathematicians as a basis for the formalisation of mathematics.

An argument for type theory, however, is that it allows for more natural and intuitive prob-
lem formulations as well as solutions (see the introduction in Andrews’ textbook [And86]).
Furthermore, the choice of classical type theory has additional advantages as the A-binding
construct in combination with the A-conversion rules in these languages have the effect that
the type restricted comprehension axioms become derivable (see also [And86]). The compre-
hension axioms are of the form Uz _, ;. VX7, (U X™) = By (for an arbitrary term B such
that the variable U does not occur free in B, types o” and 3, and n > 0) and their intention is
to guarantee for each expression B the existence of the functions (or sets) referred by Uz=_, 5.
For instance, if § is the type o of truth values the comprehension principle asserts that for
any respective formula B there exists a set u (referred to by the variable U) which contains
exactly all those elements v™ (referred to by variables V™) for which B evaluates to true. But
fortunately the required sets and functions u can easily be directly described in the A-calculus
by the term AX7. B, so that the implicit requirement that each term in our language indeed
has a denotation (which we call Denotatpflicht), already ensures their existence.

Another advantage of classical type theory is that the functional extensionality princi-
ple is, at least to some extent, automatically built into the language. This is due to the
A-conversion rules — especially the n-rule which expresses the convertibility of all terms of
the form (AX. A X) to A in case variable X does not occur free in A — and the exis-
tence of respective normal forms allows us to reduce all terms, e.g., to gn-normal form or
fBn-head-normal-form (see [Bar92, Bar84]). Also the standard higher-order unification or
pre-unification algorithm [Hue75, SG89, Sny91] already applies the functional extensionality
principle in a straightforward way in case at least one of the two terms to be unified is a
A-abstraction.®

Unfortunately the importance of the Boolean extensionality principle for the mecha-
nisation of classical type theory has widely been overlooked. If one is interested only
in syntactical term rewriting or narrowing in the simply typed A-calculus (see for in-
stance [Pre98, NP98, NM98b, Pre95, Pre94, vO94, Wol93]) then the Boolean extensionality
principle certainly is not of importance as the special type o denoting the (exactly two valued)
set of truth values and the logical connectives, which have fixed instead of arbitrary denota-
tions, do not occur in the language. We clarify our notion of syntactical term rewriting: As
already mentioned, higher-order (pre-)unification (as well as higher-order matching) indeed
unifies terms modulo the functional extensionality principles. And in this sense unification
and matching in the simply typed A-calculus can certainly be seen as an K-unification al-
gorithm, where F is the theory defined by the functional extensionality axioms. But the
functional extensionality principles are quite naturally and without much effort built-in into
the A-calculus as well as the traditional unification and matching algorithms. Thus, when
we speak of syntactical higher-order unification or term rewriting we mean this in the latter
sense and consider functional extensionality as automatically built-in.

The interest in syntactical higher-order term rewriting is motivated by potential applica-
tions in different fields such as functional programming or program verification. The main
challenge recently is to develop suitable term-orderings in order to orientate and complete

5 Obviously, if one requires the unification terms to be in 8np-normal form, any two terms of functional type
must be A-abstractions. If instead one considers only gn-head-normal form terms they not necessarily have to
be A-abstractions. In the latter case additional rules are probably needed in the unification calculus (see for
instance the sorted higher-order unification calculus discussed in [Koh94b]).

1.2. HIGHER-ORDER LOGIC

the equations of a rewriting system. All results on syntactical rewriting are therefore of great
interest for the field of automated (or interactive) higher-order theorem proving, too, as there
are many application domains in this fields in which syntactical rewriting can fruitfully be
employed.

But in this thesis we will illustrate that equational theorem proving in classical type
theory is generally much more challenging and complicated as pure syntactical term rewriting.
Apart from the functional extensionality principle — which is to some extent addressed by
syntactical term rewriting — the Boolean extensionality principle is of importance, too. For
example, in equational theorem proving for classical type theory one is also interested in
unifying — and rewriting — on extensionally equal terms like (AX. red X A circle X)) and
(AX. circle X Ared X) or (AX. AV -A) and (AX. B = B). It is quite obvious that
the pure syntactical higher-order unification approach (i.e., syntactical modulo functional
extensionality only) is much too weak to solve such unification problems. This example
also illustrates that higher-order unification with respect to both extensionality principles
requires the application of a general higher-order theorem prover in the sense of a embedded
subsystem within higher-order unification in order to examine whether two terms of type o
are equal. This illustrates the challenging difference between simple syntactical rewriting,
where at most the functional extensionality principle is taken into account, and equational
reasoning in classical type theory where both extensionality principles are of importance.

Another aspect of higher-order logic to be clarified concerns the aziom of choice and
the description operator. 1t is well known (see [Frd22a, G6d40]) that the axiom of choice
is independent and consistent in set theory. A respective result for classical type theory is
shown in [And72b]. The axiom of choice expresses that there exists a function f that chooses
exactly one element out of each set belonging to an arbitrary family of sets. This axiom —
more precisely this axiom scheme — has a non-constructive character and, e.g., allows a very
simple but non-constructive proof, first presented by Zermelo [Zer04] in 1904, for Cantor’s
conjecture that every set can be well ordered (for a modern discussion of the axiom of choice
see also [Jec77]). As many mathematicians have objections to the non-constructive character
of the axiom of choice we will not treat it as an imperative in our logic. Analogously we
do not treat the description operator as automatically built-in. The description operator,
which allows for the description of possibly non-existing objects like Santa Claus (note that
introducing a constant in a signature for Santa Clause automatically requires his existence by
the Denotatpflicht), was first examined by Alfred N. Whitehead and Bertrand Russel [WR10]
(see also [Sco67, And72b] for a discussion).

We want to point out that although the axiom of choice is not built-in, non-constructive
proofs are possible in our framework. We still consider a classical notion of higher-order logic
in which, e.g., the tertium-non-datur principle is valid and proofs can be carried out indirectly.

This is in contrast to intuitionistic type theory [ML.94, GJ98] which was invented by
Martin L6f in the early 70°s to provide a formal foundation for constructive mathematics. In-
tuitionistic type theory has become a very important and active field in computer science and
is successfully applied, for instance, for the verification of computer programs and languages.
Hofmann discusses in [Hof97] that the extensionality principles are quite important even in
intuitionistic type theory for the formalisation of mathematics, but they unfortunately cause
major problems in the mechanisation.

Summing up, we employ in this thesis a classical higher-order logic based on the simply
typed A-calculus (classical type theory) and treat the axiom of choice and the description
operator as optional. With respect to semantics we are interested in standard semantics and

CHAPTER 1. INTRODUCTION

with respect to the completeness of our calculi we shall refer to Henkin semantics. In standard
as well as in Henkin semantics both extensionality principles (the functional as well as the
Boolean) are valid and for equational reasoning in classical type theory both principles need to
be mechanised in an appropriate way. This differentiates higher-order equational reasoning,
which is the topic of this thesis, from syntactical higher-order term rewriting.

In this thesis we shall differentiate between five notions of equality: If we define a concept
we use = (e.g., let D :={T,F}) and = represents meta-equality. We denote the equality
relation as an object of our semantical domains with q; note that there is at most one q* in
each domain D,. The remaining two notions, = and =, are related to syntax, where =* may
occur as a constant symbol of type a in a signature ¥ and finally = as an abbreviation for the
respective formula expressing Leibniz equality. Whereas =" only denotes semantical equality
relation q” if the underlying semantical notion is strong enough (e.g., in Henkin semantics),
=% always denotes the respective semantical equality relation.

1.3 Higher-Order Model Existence

In classical first-order predicate logic, it is straightforward to assess the deductive power of a
calculus: first-order logic has a well-established and intuitive set-theoretic semantics, relative
to which completeness can be verified using, for instance, the abstract consistency method
(see the introductory textbooks [And86, Fit96]). This well-understood meta-theory supported
the development of different calculi well.

In higher-order logics, the situation is rather different: the intuitive set-theoretic standard
semantics cannot give a sensible notion of completeness [G6d31]. However, there is a more
general notion of semantics (the so-called Henkin semantics [Hen50]), that allows complete
calculi and which sets the standard today for deductive power of calculi.

Peter Andrews’ Unifying Principle for Type Theory [And71] provides a method of higher-
order abstract consistency that has become the standard tool for completeness proofs in
higher-order logic, even though it can only be used to show completeness relative to a certain
Hilbert style calculus ¥. A calculus C is called complete relative to a calculus %, iff C proves
all theorems of ¥. Since ¥ is not necessarily complete with respect to Henkin models, the
notion of completeness that can be established by this method is a strictly weaker notion
than Henkin completeness.

As a consequence, the calculi developed for higher-order automated theorem prov-
ing [And71, Hue72, Hue73a, JP72, Mil83, Koh94b, Koh95] and the corresponding theorem
proving systems such as Tps [ABI196], are not complete with respect to Henkin models.
Moreover, they are not even sound with respect to %, since all of them utilise n-conversion,
which is not admissible in ¥. In other words, their deductive power lies somewhere between
% and Henkin models.

Here the aim of this thesis is to provide a semantical meta-theory that will support the
development of higher-order calculi for automated theorem proving just as the corresponding
methodology does in first-order logic. To reach this goal, we establish

e classes of models that adequately characterise the deductive power of existing theorem-
proving calculi (making them sound and complete), and

e a standard methodology of abstract consistency proof methods (by providing the nec-
essary model existence theorems, which extend Andrews’ Unifying Principle), so that

1.3. HIGHER-ORDER MODEL EXISTENCE

the completeness analysis for higher-order calculi will become as simple an exercise as
in first-order logic.

Due to the inherent complexity of higher-order semantics we give an informal exposition
of the issues covered and the techniques applied.

| total
v
Mg | Ve, Vo, W, Va, W, V3, Vs
b
f
q Ms; | Vi Mso | Vi
q b f
Vg [Mg i DMsyo
b q

Figure 1.1: The landscape of Higher-Order Semantics

Let us now explore the particular semantic notions (see Figure 1.1). We will discuss the
model classes from bottom to top, from the most specific notion of standard models (&%)
to the most general notion of v-complexes, motivating the respective generalisations as we
go along. In Chapter 2.1, we will proceed the other way round, specialising the notion of a
Y-model (9M3) more and more.

The symbols in the boxes in Figure 1.1 denote model classes, the symbols labelling the
arrows indicate the properties inducing the corresponding specialisation, and the V-symbols
next to the boxes indicate the clauses in the definition of the corresponding abstract consis-
tency class (cf. 3.4) that are needed to establish a model existence theorem for this class of
models.

A standard model (8%, cf. Definition 2.31) for our higher-order logic provides a fixed set
D, of individuals, and a set D, := {T,F} of truth values. All the domains for the complex types
are defined inductively: D,z is the set of all functions {f|f:D, — Ds}. The evaluation
function Z, with respect to an interpretation Z:¥ — D of constants and an assignment

CHAPTER 1. INTRODUCTION

¢ of variables is obtained by the standard homomorphic construction that evaluates a A-
abstraction with a function, whose operational semantics is specified by G-reduction.

The notion of Henkin models (Mpqp or $)) generalises that of standard models in the
sense that instead of requiring D,z to be the full set of functions it only requires that
D, p has enough members such that any well-formed formula can be evaluated.® Note
that with this generalised notion of a model, there are fewer formulae that are valid in all
models (intuitively, for any given formulae there are more possibilities for counter-models).
In fact the generalisation to Henkin models restricts the set of valid formulae sufficiently, so
that all of them can be proven by a Hilbert-style calculus [Hen50]. Thus, whereas standard
semantics does not allow complete calculi due to Gédels result [G6d31], Henkin semantics
does [Hen50, Hen96].

It is matter of folklore that a primitive notion of equality (expressed by a primitive equa-
lity constant =€) is not strictly needed, since it can be expressed by the Leibniz formula.
However, the Leibniz formula only denotes the semantic equality relation if D,_,, contains
enough properties to discern members of D,; in fact, we have to ensure that for all « € D,,
the singleton set {a} is in Doy, (see the proof of Lemma 2.36).7 In other words, we are in the
somewhat paradoxical situation, that Leibniz equality (which is commonly used as a substitute
for primitive equality) will only denote semantical equality, if we can guarantee that the
identity relation is already present in the model (we call this property g, cf. Definition 2.27).
Hence we introduce the corresponding semantical structures, namely Henkin models without
property q (Mgp), in which property q is not necessarily valid and thus Leibniz equality
does not necessarily denote the equality relation. An example of a theorem which is valid
within the class of Henkin models but is not in the class of Mgg’s is given by the axiom of
functional extensionality for Leibniz equality (VF,—p5. VGasyp(VXg. FX =GX) = F = @),
cf. Lemma 2.37.

The next generalisation of model classes derives from the fact that we want to charac-
terise the deductive power of higher-order theorem provers at a semantic level (we will take
Tps [ABIT96] as an example). Note that T'Ps cannot be complete with respect to Henkin
models and is even not generally complete for Mg’s, although there is some ‘extensionality
treatment’ built into the proof procedure. The incompleteness of TPs for Henkin models®
can be seen from the fact that it fails to refute formulae such as cA, A —¢(—=—A), where
c is a constant of type 0 — o0 or ¢(AX,. BX A AX) = ¢(AX,. AX ABX), where ¢ is a
constant of type (o — 0) — o. The problem in the former example is that the higher-order
unification algorithm employed by TPs cannot determine that A and ——A denote identical
semantic objects (by Boolean extensionality as already mentioned before), and thus returns
failure instead of success. In the second example the principle of functional extensionality is
needed in addition in order to prove the theorem.

The lack of completeness of refutation procedures like I'PS occurs especially in a situation,
where formulae contain occurrences of propositional formulae dominated by uninterpreted
constants or variables or where this problem is mixed with the problem of functional exten-

%In other words: the functional universes are rich enough to satisfy the comprehension axioms.

"On a similar note, Peter Andrews remarked in [And72a] that if the set Daya—o is so sparse that the
semantic identity relation is not present, it is then possible to construct a Henkin model where Leibniz equality
is non-extensional.

81n case the extensionality axioms are not available in the search space. Note that one can add extensionality
axioms to the calculus in order to achieve, at least in theory, Henkin completeness. But this increases the
search space drastically and is not feasible in practice.

1.3. HIGHER-ORDER MODEL EXISTENCE

sionality; in our examples the function constant ¢ dominates the proposition A, or the set
expression AX,. BX A AX. To give a semantical characterisation of the deductive power of
the T'Ps procedure, we have to generalise the class of Henkin models further, so that there
are counter-models to the examples above. Obviously, this involves weakening the assump-
tion that D, = {T,F} (we call this assumption for Henkin models property b), since this
entails that the values of A and —=—A are identical: In functional X-models (Mg, Mg, Mgy,
cf. Definitions 2.28 and 2.24) we only insist that there is a valuation v of D,, i.e., a func-
tion v: D, — {T,F} that is coordinated with the functions Z(=), Z(A), Z(IT1*) and (possibly)
Z(="), where 7 is the interpretation function (i.e., a family of interpretation functions) for
the constants given in the signature. Thus we have a notion of validity for ¥: we call a
proposition A valid in M = (D,Z, v) under an assignment ¢, iff v(Z,(A)) = T. In our first
example, there is a ¥-model structure M = (D,Z, v), where Z,(A) # Z,(——A), and therefore
Ty(cA) # Z,(c(——A)) if we take Z(c) to be the identity function on D,. In particular, we
can have v(Z,(cA)) # v(Zy(c(——A))), and therefore v(Z,(cA, A —c(——A))) = F, since v is
a valuation.

Clearly, for functional ¥-models we have the same choices concerning the role of equality,
therefore, we distinguish the classes Mg and Mg, of functional ¥-models without/with prop-
erty q. Furthermore, we have the class Mgy of functional X-models with (only) property b,
which expresses that the set of truth values contains exactly two elements, i.e., D, = {T,F}.
Since functional ¥-models with properties b and q are defined to be ¥-Henkin models, we can
also view Mgy as “Henkin models without property g”.

Finally, we drop the requirement of functional extensionality for »-models, which is
encoded as property f (cf. Definition 2.24). This is the most general notion of semantics we
will discuss in this thesis; we only insist that the evaluation function is a homomorphism which
respects instantiation. In such models, a function is not uniquely determined by its behaviour
on all possible arguments. For the construction of such models we therefore need labelings
for functions (e.g., a green and a red version of a function f) in order to differentiate between
them, even though they are functionally equivalent. As already done for functional ¥-models
we analyse properties q and b for non-functional >-Models. Whereas b may or may not hold for
non-functional »-Models, it turns out that property g, i.e., the requirement that the intended
equality relations are provided in the respective domains, only makes sense in connection with
functionality. More precisely, property ¢ is not independent from functionality.

Peter Andrews has pioneered the construction of non-functional models with his v-
complexes in [And71]. These are even more general constructions than our ¥-models, since
totality of the evaluation function is not assumed. His construction is based on Schiitte’s
semi-valuation method [Sch60], which only needs partial valuations to construct a model for
a given Hintikka set.

In this thesis, we concentrate on the other aspects of higher-order models and ensure
totality of our evaluation functions by a saturation condition (cf. 3.9) in our abstract consis-
tency classes. This does not restrict the applicability of our model existence theorems, since
saturation is relatively simple to prove for a given calculus (see [Koh94b, Koh98a, BK97b]).
For all the notions of a model we present model existence theorems tying the differentiating
conditions of the models to suitable conditions in the abstract consistency classes (see Chap-
ter 3). We can use the classical construction in all cases: abstract consistent sets are extended
to Hintikka sets 3.13, which induce a valuation on a term structure (see Definition 2.14). In
some cases, we have to take a quotient structure (see Definition 2.12) to ensure that the set
of truth values is exactly {T,F} for property b.

CHAPTER 1. INTRODUCTION

10

The simplest way to ensure property q is by assuming that the signature contains a prim-
itive connective for equality, which is evaluated as semantical identity (we call this property
¢). We will study the case in Section 3.3. On the one hand, the semantical situation becomes
much simpler now (see Figure 2.1), since Mg, My and Mgy are identified, just as Mgy, Myp
and £, on the other hand, the existence of another logical constant induces further conditions
in the definition of the abstract consistency classes.

1.4 Traditional and Extensional Higher-Order Resolution

As we have seen, traditional higher-order resolution approaches [And71], [JP72], [Hue72]
as well as the TpPs-system generally need to add all extensionality axioms to the search
space in order to ensure Henkin completeness. And this holds for more recent approaches
like [Koh94b] and [Wol93] as well. Although the functional extensionality principles taken
alone is integrated into syntactical higher-order unification both extensionality principles still
have to be additionally axiomatised in the search space in order to reach Henkin completeness.
This can be seen for problems like (AX,. red X A (circle X A (large X V =(large X)))) =
(AY,. circle X A red X). It does not help at all that functional extensionality is already
integrated in higher-order unification as we here obviously need an appropriate combination of
both principles in order to equalise the terms. And in the above approaches — which all follow
the idea of generally delaying higher-order unification in order to overcome the undecidability
problem — such a combination can only be achieved by adding all extensionality axioms to
the search space.

Wolfram [Wol93] applies higher-order F-unification instead of pure syntactical higher-
order unification, but he does not provide an explicit account of theories K containing
both extensionality principles: they require potential recursive calls to an (again) Henkin
complete higher-order theorem prover. And also the higher-order F-unification algorithm of
Snyder [Sny90] provides no solution to the problem with the extensionality principles, as the
suggested approach is restricted to first-order theories and, e.g., does not take the Boolean
extensionality principle into account.

The idea of such recursive calls was wirst mentioned in [Koh95]. But unfortunately this
approach still lacks Henkin completeness as the single rule added to the calculus (which is
analogous to the rule Fquiv in our approach; see Figure 4.2) is not strong enough to realize
all the necessary aspects of a suitable interaction of Boolean and functional extensionality.

Another unfortunate aspect about [Koh94b] and [Koh95] is that both approaches not only
lack a general extensionality treatment but also lack soundness. E.g., in both approaches it
is possible to prove that each function has a fixed point, which can be formulated as follows:
VFoso.3Xs. FF X = X. This is caused by the extra logical treatment of Skolemisation with
the so called variable conditions employed in both approaches. But the conditions added with
each eliminated existential quantifier are not strong enough to prevent a proof of the above
statement. As the author was not able to suitably fix this problem we employ in this thesis
traditional Skolemisation again and avoid the usage of variable conditions.? More precisely,
we employ Miller’s sound adaptation of traditional first-order Skolemisation [Mil83], which
associates with each Skolem constant the minimum number of arguments the constant has to

?Michael Kohlhase remarked that he is currently working on a solution to the problem. If this solution
turns out to be sound, it can an probably should be employed instead of traditional Skolemisation within the
calculi presented in this thesis as well.

1.4. TRADITIONAL AND EXTENSIONAL HIGHER-ORDER RESOLUTION

be applied to. Higher-order Skolemisation becomes sound!?, if any Skolem function f™ only
occurs in a Skolem term, i.e., a formula S = f"A", where none of the A’ contains a bound
variable. Thus the Skolem terms only serve as descriptions of the existential witnesses and
never appear as functions proper.

As already mentioned, a main motivation for this thesis is to get rid of the drawback of the
above approaches, which have to add the (generally infinitely many) extensionality axioms
to the search space in order to reach Henkin completeness. In fact, none of the currently
available systems for classical type theory actually adds the extensionality to the search space
but they instead accept incompleteness. The TPs-system [ABIT96] probably offers the most
practicable solution to the situation: It avoids the extensionality axioms and instead analyses
the input problems in order to try to modify them in an appropriate way (e.g., by applying
the functional extensionality principles to input equations of functional type or by replacing
equations on type o by equivalences). But Example ES™ in Section 8.1 demonstrates that
there are many examples which can not be appropriately modified this way before being
passed to the refutation process. Also the Hol-system [GM93] and the ISABELLE-system,
which are other prominent theorem provers for higher-order logic, do not automatically add
all extensionality axioms to the search space when proving subgoals automatically.

In order to back up the motivation for this thesis we will briefly sketch the drawbacks of
the option to add the extensionality axioms to the search space. This will also clarify why the
available systems indeed avoid this option. First, we remember the definition of the functional
and Boolean extensionality principles (for Leibniz equality):

EXTS 7 =V, 5. VGais (VX F X =G X) = F = G

EXTS :=VA,.VB,. (A =" B) = (A= B)

One challenging problem for the mechanisation of these principles, namely the general need
for infinitely many axioms EXT%_”Q, has already been mentioned. But even apart from this
problem these axioms would cause an enormous explosion of the search space. This becomes
immediately clear if one considers the clauses obtained by the normalisation of just one single
extensionality axiom. Note that Leibniz Equality = is just an abbreviation for a higher-order
term and that the expanded axioms are thus of form:

EXT; 7 =
VEossp. VGassg. (VX5 (VEso0. P (F X) = P (G X)) = (VQasp)me- @ F = Q G)

EXT} := VA,.VB,. (VP,,. (P A) =° (P B)) = (A= B)

Note that normalising these formulas introduces many flexible variables into the search
space.!'’ And the problem with the free predicate variables at head position in literals —
which are also called flexible literal heads — is that the primitive substitution rule Prim

becomes applicable to them (cf. [And71] or rule Prim in Figure 4.2 in Chapter 4). This

""Without this additional restriction the calculus does not really become unsound, but one can prove an
instance of the axiom of choice, which we want to be optional in our approach.

"n Chapter 2.8 we will illustrate that there are infinitely many more or less natural ways of defining
equality in classical type theory apart from Leibniz equality. Thus it may be possible to find some slightly
more appropriate formulations of the extensionality principles for defined equality as the ones presented here,
even though this seems to be rather unlikely. It will certainly not be possible, though, to avoid all the free
predicate variables introduced here.

11

CHAPTER 1. INTRODUCTION

12

rule, which is very important in higher-order theorem proving for reaching completeness,
blindly instantiates each flexible literal head with a most general binding (partial binding)
that imitates a logical connective, i.e., with a most general formula that introduces a logical
connective at head position. Note that there are infinitely many universal quantifiers (one
for each type) and thus the primitive substitution rule is infinitely branching. And as this
principle aims at introducing most general terms apart from the new logical connective at
head position, new free predicate variables are generated which subsequently become — after
the necessary normalisation of the modified clauses — new flexible literal heads. And not
enough, the primitive substitution rule can thereby even duplicate flexible literals. It is
thus obvious that each single clause derived from an extensionality axiom with a flexible
literal leads to explosion of the search space that is awkward to handle in practice. Thus,
in principle a higher-order theorem prover can spend an arbitrary amount of time just in
applying primitive substitution to the clauses belonging to the extensionality principles. And
unfortunately the primitive substitution principle cannot be generally avoided as otherwise
a higher-order resolution approach even fails to prove such trivial theorems like 3X,. X, or
dP,.VY,. PY.

The illustrated serious drawbacks of the option to add all extensionality axioms to the
search space was the main motivation for the development of the extensional higher-order
resolution calculus ER presented in Chapter 4, which instead of adding these axioms employs
the idea of recursive calls to the overall refutation process from within syntactical higher-
order pre-unification as first mentioned in [Koh95]. But in contrast to [Koh95] the approach
presented here (which is also described in [BK98a]) realises the necessary interaction of both
extensionality principles in a suitable way, and this finally makes it the first Henkin complete
refutation approach for classical type theory. Note that this approach can also be viewed
as a test calculus for general higher-order F-unification in the following sense: If we pass
the conditional equations (VX" (L1 = Ry) A...A (L, = Ry)) = (3Y™. (L = R)) to our
extensional higher-order resolution calculus, then this calculus tests for the K-unifiability of
the term (L = R), where F is the theory defined by the equations (VX7. (Ly = Rj) A... A
(L, = Ry)) and the extensionality principles.

1.5 Adding Primitive Equality

Whereas the research in the field of higher-order term rewriting is very active (see for in-
stance [Pre98, NP98, NM98b, Nip95, Pre95, Pre94, vO94, Wol93] for higher-order term rewrit-
ing and narrowing or [JR99, JR98, L.P95] for recent work on higher-order term orderings) the
integration of primitive equality and the application of term rewriting techniques in a refuta-
tion based higher-order theorem proving context is still rather unexamined. At a first glance
one might assume that as soon as suitable higher-order rewriting techniques are available —
the currently most challenging problem is to find suitable term-orderings in higher-order logic
— they can be successfully employed in an automated higher-order theorem proving context
as well. And furthermore one may argue that because automated first-order provers that
are heavily based on term rewriting techniques (such as WALDMEISTER [HBVLI7], BLIKSEM
or SPAss [Wei97]) seem to have taken the lead in many application domains over systems
that employ difference reducing techniques, an analogous situation will arise in higher-order
logic as soon as the available higher-order term rewriting approaches become strong enough.
Whereas this may indeed happen in specific domains, this thesis provides a counterargument

1.5. ADDING PRIMITIVE FQUALITY

for the overall success of term rewriting techniques in automated higher-order theorem prov-
ing by pointing out new serious problems that in addition to the term-ordering problem need
to be solved:

e As already motivated higher-order unification takes only the functional but not the
Boolean extensionality principle into account.

e In Chapter 2.8 we illustrate that in classical type theory infinitely many different terms
(apart from the Leibniz definition) define equality and that we cannot decide whether a
(probably automatically generated) proof problem contains a defined equation at some
subterm position. Thus, even if we consider a higher-logic with primitive equality and
try to employ term rewriting techniques, we cannot generally restrict equality handling
in a calculus that aims at Henkin completeness only to primitive equality as our input
problem may still contain some defined equations we cannot even detect. And Examples
E5" and ES*" in Section 8.1 illustrate that there are even theorems which neither
contain a defined nor a primitive equation but where the extensionality principles are
nevertheless of central importance for the proof. Furthermore, in classical type theory
with a primitive notion of equality one unfortunately has to take care of both kinds
of extensionality principles, those for Leibniz equality as well as those for primitive
equality. And a Henkin complete approach therefore also needs to realise a general
interleaving between both concepts of equality. This sharply contrasts with the situation
in first-order theorem proving where one can choose between defining equality (e.g., by
axiomatising it) or considering a primitive notion of equality and providing new calculus
rules. In classical type theory one simply does not have this choice: Defined equality is
always built-in.

e In Chapter 5 we adapt traditional first-order paramodulation [RW69] to higher-order
logic and define a higher-order paramodulation approach EP based on the extensional
higher-order resolution calculus ER. Whereas the important reflexivity rule (or ax-
iom) known from first-order paramodulation is naturally built-in in our approach, we
will show that in order to ensure Henkin completeness additional extensionality rules
(or axioms) for primitive equality are needed. The problem is that in classical type
theory even single positive equations can be contradictory, which again contrasts with
the situation in first-order logic. Unfortunately the needed additional extensionality
rules further strengthen (as would the respective axioms) the already strong difference-
reducing character of the underlying calculus ER. It will be motivated by examples
in Chapter 8 that a proper term rewriting approach will be quite hard to achieve as
the realisation of a suitable interaction of the functional and Boolean extensionality
principles has a rather natural difference-reducing character.

As the development of suitable heuristics for the higher-order paramodulation approach &P
with its intrinsic mixed term rewriting and difference reducing character seems to be quite dif-
ficult (if possible at all) we additionally develop in Chapter 6 the difference-reducing approach
ERUE which adapts the ideas of first-order RUE-resolution [Dig79] to our higher-order setting.
This approach faces the same problem about primitive equality as the paramodulation ap-
proach &P and has to add new extensionality for primitive equality in order to reach Henkin
completeness. The only difference between ER and ERUE is actually that the latter avoids the
paramodulation rule and instead allows to resolve and factorise on unification constraints.

13

CHAPTER 1. INTRODUCTION

14

Thereby ERUE gains a pure difference-reducing character that may be easier to guide and
handle in practical applications than the intrinsic mixed term rewriting/difference-reducing
character of EP. This aspect is illustrated by examples ES® and ES5?* in Section 8.6.

1.6 The LEO System

LLEO realises the calculus ER and is based on an extended set of support architecture, that
adapts this well known technique from first-order theorem proving (e.g., see [McC94]) with
respect to the very specific requirements of extensional higher-order theorem proving. The
system is implemented in Common Lisp [Ste90] and employs many data structures and basic
algorithms offered by the KEM-toolbox [HKK*94] for deduction systems. This toolbox,
e.g., provides the higher-order term indexing module described in [Kle97] that adapts the
first-order term indexing techniques of [Gra95] to the higher-order setting.

The prototypical prover LEo has been implemented mainly during a 5 months stay at
Carnegie Mellon University, Pittsburgh, USA, and is discussed in Chapter 7 in detail in (see
also [Ben97]).

Originally two contrary search strategies have been developed. In this thesis we only
discuss the one that has become the standard strategie in LEo. This strategy employs like
most first-order approaches unification and subsumption as filter in order to sort out clauses
which are either superflous or which cannot contribute to the refutation. The main difference
to first-order theorem provers is that these filtering side-computations are computatationally
much more expensive in the higher-order setting and generally even undecidable. Thus, LEO
artificially restricts and interrupts these side-computations with the result that these filter
become quite imperfect. Especially the employed subsumption check is based only on the
simplification part of higher-order unification and we do not develop and realise a notion
of extensional higher-order subsumption, which would lead to a much stronger and more
appropriate (but undecidable) filter for our purposes.

Anyhow the extensionality principles cause new practical problems for [.Lko. E.g., term
indexing techniques cannot be employed to the same extent and for the same purposes as in
first-order automated theorem proving. This is illustrated by the following example, which
shows that the usage of term indexing techniques within the computation of resolution part-
ners causes incompleteness: Assume we want to prove

VP50)—o- {X,|red X Acircle X} € P = {X,|circle X Ared X} € P

while coding sets as characteristic functions and defining € = AX,. AM,_,. M X. Definition
expansion and clause normalisation leads to the clauses

Ci: [p(b_m)_m (AX,.red,—, XAcircle,—, X)]T Cy: [p(L_,O)_m (AX,. circle,o X Ared,—, X)]F

where p(,_,,)_s, is a new Skolem constant. LEO can easily solve this problem by first resolving
between Cy and Cz, decomposing p(,_,,), in the resulting unification constraint and employing
the functional extensionality principle, thereby deriving the constraint

[red,—, s A circle,_, s = circle,, s Ared,_, s]F

Now LEO employs the Boolean extensionality principle, i.e., replaces = by =, and performs
a recursive call to the overall refutation search, thereby deriving the empty clause in a quite

1.6. THE LEO SYSTEM

straightforward way. To come to the point, the sketched goal-directed refutation is not possi-
ble when employing syntactical term indexing techniques within the computation of resolution
partners as the first, essential resolution step between Cy and Cy would not even be suggested.
The problem is that syntactical term indexing lacks the extensionality principles, and for the
same reason LLEO can generally not employ term indexing techniques in unification.

We want to point out that the prototypical implementation of LEO is not a complete
refutation procedure and in Chapter 7 we will discuss the different sources of incompleteness
in detail. But we will also sketch possible solutions to the incompleteness problems.

A case study, which is illustrated in chapter 7, has demonstrated that LEO is indeed
capable of solving simple theorems about sets, which require the application of the exten-
sionality principles. In this experiment LEO could solve 95 of 97 theorems from the arti-
cle Boolean Properties of Sets [TS89] of the Mizar library [Rud92]. This experiment also
showed that on this domain LEO outperforms well known first-order theorem provers, which
cannot exploit the expressiveness of classical type theory and encode this examples in the
case study in Tar-ski Grothendieck set theory [Try89] (see the results of this case study
at http://www-irm.mathematik.hu-berlin.de/~ilf/miz2atp/mizstat.html. At present
the case study with LEO is continued with the slightly more challenging examples from the
Mizar-article Some Basic Properties of Sets [Byl89], and without any modifications LEO can
already solve about 40% of them.

In Chapter 7 we also sketch further aspects of LLEo like its features as an interactive
theorem prover or its integration to QMEGA [BCFT97].

15

Chapter 2

Syntax and Semantics of
Higher-Order Logic

2.1 Syntax and Preliminaries

! Apart from the

In this section we introduce the preliminaries in a quite compact form.
notational conventions most of the introduced concept are as defined as usual.

We start with a higher-order logic based on Church’s simply typed lambda calculus [Chu40]
and choose the set of base types BT to consist of the types ¢ and o, where o denotes the set
of truth values and ¢ the set of individuals. The set of all types 7T is inductively defined over
BT and the type constructor —.

We define the order of types and A-terms as in [SG89, Sny91].

We assume that our signature Y contains a countably infinite set of variables V, and
constants C, for every type 7 € 7. Additionally we postulate the existence of the logical
connectives =0, Voryomos Higmo)—o (in short T1*) for every type @ € 7 in ¥. A signature
that contains additionally the logical connectives =,_,—, (in short =) for all types o € T
is noted by ¥X=. All the logical connectives in ¥ or ¥~ denote their intuitive semantical
counterparts.

The remaining logical connectives are defined as abbreviations of the given ones: A A
B:=-(-AV-B),A == B=-AVB,A & B:=(A = B)AB = A),YX,. A,:=
H(a_m)_m()\Xa. A),3X,. A, :=-VYX,. 7A,. All other constants are called parameters, since
the argumentation in this paper is parametric in their choice?.

Unlike stated otherwise, variables are printed as upper-case (e.g., X,), constants as lower-
case letters (e.g., ¢,), and arbitrary terms appear as bold capital letters (e.g., T,). If the
type of a symbol or term is either not of importance or uniquely determined by the given
context, we do not explicitly mention it.

We denote the set of all terms over a signature X (X7) by wff(X) (resp. wff(X7)), and
wff,(X) (resp. wff,(X7)) denotes the set of all 3-terms of type a. Terms of type o are also
called propositions or formulae, and closed propositions are also called sentences. The set of
propositions is abbreviated as wff,(X) and the set of all sentences as cuff,(X). A is called

"We apologise that all the important defintions are introduced here at once, instead of introducing them
when needed. The motivation is to provide a compact reference.

2In particular, we do not assume the existence of description or choice operators. For a detailed discussion
of the semantic issues raised by the presence of these logical constants see [And72b].

16

2.1. SYNTAX AND PRELIMINARIES

atomic, if its n-normal form (cf. below) does not have a logical connective at head position.

We will take the order of a formula to be the highest order of the type of any of its
subterms, and the order of a set of formulae to be the maximum of the orders of its members.

In order to avoid confusion we clarify the meaning of the different equality symbols used
in this paper. =®¢€ Y is the syntactic equality constant in our higher-order language. We will
illustrate below that equality can also be defined in higher-order logic and we refer to this
definition by =. The intuitive semantical equality relations in D,_,_,, are denoted by q2.
For the meta-level argumentation we use = and := for definitions.

To ease readability we assume right-associativity for the type constructor — and left-
associativity of function application: A, B, Cg:= ((Asss=sy Ba) Cg). Further-

more, we sometimes abbreviate function applications by hg, ...50,—3 U% , which stands
for (- (hayssa,sp Ub,)--- UL). A dot “. 7 occurring in a A-term stands for a left
bracket whose mate is as far to the right as consistent with all other brackets and the con-
struction of the term. We avoid brackets in every case where the construction of an expression
is uniquely determined by the context.

The structural equality relation in our higher-order logic is induced by gn-reduction
(AX.A) B—3 [B/X]A (AX.CX)—,C

where X is not free in C. It is well-known (c.f. [Bar84]), that the reduction relations 3, n,
and (3n are terminating and confluent, so that there are unique normal forms for each term T
denoted by T, ,T,, T, . Theinduced structural equality relations are denoted by =g,, =g,
=, (and =, for the equality relation induced by the renaming of bound variables). Another
important normal form used in this paper is the head-normal form (which is unique only with
respect to An-equality): a term AX7”. h U™ is in head-normal form, iff A is a variable or a
constant. The head-normal form of a term T is denoted by T, .

The definitions of free and bound variables, substitutions and the application of substitu-
tion are as usual (see [Bar84]). In this paper we denote the set of free variables of a term T
(analogously for literals and clauses) by free(T). Whereas the usual application of a substi-
tution [A/X] to T is denoted by [A/X]T, we denote with T[4 ,x] the combination of usual
substitution with subsequent reduction of the resulting term (literal or clause) to head normal
form.

We define satisfiability, unsatisfiability, and validity of a formula F or set of formulae ®
with respect to a model® M as usual.

When we speak of a Skolem term s, for a clause C and free(C) = {X,,..., X7}, then
S is an abbreviation for the term (f21—>...—>a"—>aX1 - X™), where f is a new constant from
Coies...csan—yo and n specifies the number of necessary arguments for f. The latter is important
as a naive treatment of Skolemisation results in a calculus that is not sound with respect to
Henkin models, since Skolem functions are special choice functions?, which are not guaranteed
to exist in Henkin models. A solution due to [Mil83] is to associate with each Skolem constant
the minimum number of arguments the constant has to be applied to. Skolemisation becomes
sound, if any Skolem function f” only occurs in a Skolem term, i.e., a formula S = f"A”",
where none of the A’ contains a variable that is bound outside of S. Thus the Skolem terms
only serve as descriptions of the existential witnesses and never appear as choice functions.

9The different notions of models, e.g. Henkin models and standard models will be introduced in Sections 2.2
2.7.

They choose an existential witness from the set of possible witnesses for an existential formula.

17

CHAPTER 2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

Let o := (8" — 7) and let h be a constant or variable of type (3, —) in %, then
G = /\Xél. h V™ is called a partial binding of type a and head h (see also [SG89, Sny91]), if

Vi=H Xll and the H® are new variables of types BY = 8. 1t is easy to see that general
bindings indeed have the type and head claimed in the name and are most general in the
class of all such terms. _

Partial bindings, where the head is a bound variable Xé7 are called projection bindings

(we write them as GZ) and imitation bindings (written G") otherwise. Since we need both
imitation and projection bindings for higher-order unification, we collect them in the set of
approzimating bindings for h and o (AB" = {G"YU{GL |7 < 1}).

For a general introduction to higher-order unification we refer to [SG89, Sny91].

The calculi in this paper are defined on clauses, which are disjunctions of literals (e.g.,
[GosoXa]T V [PacsoXa]f Vo = X,]F). For literals we differentiate between pre-literals and
proper literals. A pre-literal consists of a proposition N, in head-normal form (atom) and
a polarity 'I' or I’ which states whether this literal is positive or negative. We call a literal
proper, iff it contains no logical constant beside = at head position.

We further differentiate between positive literals, negative literals, and unification con-
straints. Unification constraints refer to negative literals with primitive equations as atoms.
For the calculi discussed in this paper unification constraints are handled in one of the fol-
lowing ways:

e As special negative literals with a special head symbol =2¢ ¥, i.e., = is not a logical
constant. By special literal we mean that this literal is treated as a unification constraint
only, such that no rule but the unification rules are allowed to operate on them. This will
be the case in the extensional higher-order resolution calculus ER discussed in Chapter 4.
E.g., consider the clauses C; : [H,_.a,]7 and Cy : [X = A]F. Clause C, consists only of
a unification constraint, which is encoded as a negative primitive equation. This literal
is not treated as usual negative literal in ER, such that resolving between Cy and Cs is
forbidden and positive primitive literals like [f = ¢]” are not allowed.

o As special negative literals with a logical constant =€ X as head symbol. Special
negative literal means that despite the fact that = is a logical constant provided by the
signature, no rule other than the unification rules are allowed to operate on them. This
will be the case in the extensional higher-order paramodulation calculus EP in Chapter 5.
Now positive primitive equations like [f = g]* are allowed (since =€ X, but resolution
(e.g., between C; and Cy above), factorisation, etc. on unification constraints is still

forbidden.

e As ordinary negative literals with the logical constant =*€ 3 as head symbol. In this
case all rules, e.g., the resolution and factorisation rules, are allowed to operate on these
literals. This holds for the extensional higher-order paramodulation calculus ERUE in
Chapter 6. Now resolution beetween clauses C; and Cy from above is allowed.

A clause C is called a proper clause, iff it is in clause normal form, i.e., if all literals of C
are proper. Otherwise we call C a pre-clause. Similarly a clause C is in head-normal form, iff
all its literals are.

An unification constraint U = [X, = N,]¥ or U =[N, = X,]¥ is called solved, iff
X, ¢ free(N,). In this case X is called the solved variable of U. Furthermore, a unification

2.2. PRE-X-STRUCTURES

constraint in head-normal form [(H U™) = (G V™)]F for n,m > 1 is called a flez-flex
constraint (flez-rigid constraint), iff H and G are variables (either H or (G is a variable).

We define a clause C to be empty (denoted by O), iff C consists only of flex-flex constraints.
As it is well known that any set of flex-flex constraints is unifiable, such that they evaluate
to F, we know that O is unsatisfiable (cf. [Hue75]).

Let C:= L'V .VL*VU'V..-VU™ be a clause with unification constraints U!,..., U™
(1 < m). Then a disjunction U V-V U* (i; € {1,+--,m}; 1< j < k) of solved unification
constraints occurring in C is called solved for C, iff for every U% (1 < j < k) holds: the solved
variable of U% does not occur free in any of the U for { £ j;1 <[< k.

Given a calculus R, i.e., a set of rules r,,(n > 0) defined on clauses, we define the following
derivation relation: ® F™ C (C' " C), iff C is the result of one application of rule r, € R to
premise clauses C! € ® (to premise clause C'). Multiple step derivations within a calculus R,
e.g., &y F L F @ (or €y F L "% Cy) where £ > 0 and r;; € Rfor 1 < k < n, are
abbreviated by ®; Fr ®; (or Ci Fr Cx). Derivations in a calculus R of exactly n steps are
symbolised by F%4.

A rule r is called admissible in one of our resolution calculi R, iff adding rule r to R does
not increase the set of refutable formulae. Furthermore, a rule r is called derivable in R, iff
each application of rule r can be replaced by an alternative derivation in R.

We shall now introduce a variety of semantical constructions for classical type theory
motivated by the different of roles equality and extensionality. We will start out by defining
Y-structures (and as an intermediate step pre-X-structures) as algebraic semantics for the
simply typed A-calculus and then specialise them to our notions of models by requiring a
special treatment of the propositional formulae.

2.2 Pre-Y-Structures

Definition 2.1 (Pre-X-Structure). A collection D : =Dy :={D, | a € T} of sets D,,
indexed by the set 7 of types, is called a typed collection (of sets). Let Dy and &7 be typed
collections, then a collection Z :={Z*:D, — &, | @ € T} of mappings is called a typed
mapping : D — 7. We call the triple A := (D,Q,7) a pre-X-structure, iff D = Dt is a
typed collection of sets and

and Z:3 — D are typed total functions.

The collection D is called the frame of A, the set D, the universe of type «, the function
@ the application operator, and the function Z the interpretation of constants.

We call a pre-Y-structure A := (D, Q,7) functional, iff the following statement holds for
all f,g € D,5: f =g, if for all a € D, we have that f@a = gQa. Note that functionality is a
restriction on the function universes only.

Remark 2.2. The application operator @ in a pre-X-structure is an abstract version of func-
tion application. It is no restriction to exclusively use a binary application operator, which
corresponds to unary function application, since we can define higher-arity application oper-
ators from the binary one by setting (“Currying”)

fa(a',...,a") == (...(f@a')...@a")

19

CHAPTER 2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

20

Erample 2.3. If we define AQB:= (A B) for A € wff,(¥) and B € wuwffz(X), then
Q: wff,5(X) x wff,(¥) — wffz(¥) is a total function. Thus (wff(X),@,lds) is a pre-
Y-structure. The intuition behind this example is that we can think of the formula
A € uwff,3(2) as a function A:wff, (¥) — wffs(3) that maps B to (A B).

Analogously, we can define the pre-X-structure (cwff(X), @, Ids) of closed formulae.

Ezample 2.4. The following is a (trivial) example for a functional pre-X-structure:

1. ({a} x 7,@?,7?), where a@%a = a and 7?(c) = a for all constants ¢ € X, is called the
singleton pre-X-structure.

Definition 2.5 (X-Homomorphism). Let A := (D,@4, 7) and B := (£,@5,7) be pre-%-
structures. A Y-homomorphism is a typed mapping k: D — & such that

1. koZT = 7.
2. For all types a, 3 € T, all f € D,_p5, and g € D,, we have: k(f)@Bx(g) = r(fa4g).

The most important method for constructing >-structures with given properties in this
thesis is well-known for algebraic structures and consists in building a suitable -congruence
and passing it to the quotient structure. We will now develop the formal basis for it.

Definition 2.6 (X-Congruence). Let A := (D,Q,7) be a pre-X-structure, then a typed
equivalence relation ~ is called a X-congruence on A, iff f ~ ' € D5 and g ~ g’ € D,
imply fQg ~ f'@g’. Let f € D,, then the equivalence class of f modulo ~, [f]., is the set of
all ¢ € D, such that f ~ g.

A 3-congruence is called functional, iff for all types , 8 and all f,g € D,_,5 the fact that
f@Qa ~ g@a holds for all a € Dg implies f ~ g. Note that, since ~ is a congruence, we also
have the other direction, so we have

fQa ~ gQa foralla€ Dy, iff f~g

Lemma 2.7. The 8 and (1 equality relations =g and =g, are congruences on the pre-X-
structures wif(X) and cwff(X) by definition. Moreover, fn-equality is functional on wff(X)

and cwff(X).

Proof: The congruence properties are a direct consequence of the fact that 37y reduction
rules are defined to act on sub-term positions. We will establish functionality of =g, on wff(¥)
first and then use this to obtain the assertion for closed formulae.

Let (A,5a Cy)=p,(Bysa C) for all C, then in particular, for any variable X € V, that
is not free in A or B, we have (A X)=g,(B X) and (AX. A X)=4,(AX.B X). By definition
we have (A=,(AX,. A X)=4,(AX,. B X)=,B.

To show functionality of 47 on closed formulae, let A, B € cwff,_,3(X), such that A Zg,
B. Since 7 is functional on wff(X), there must be a formula C with (A C) #g, (B C). Now
let C’ be a ground instance of C, i.e., C' := ¢(C), where ¢ is a closed substitution®, then we
have (A C') #Z3, (B C’). Thus we have shown that A #Zg, B entails A C’ Z3, B C’, which
gives us the assertion. O

5This has to exist, since we have assumed infinetely many constants for each type « in our signature X,
i.e., all types are inhabited.

2.3. L-STRUCTURES

Definition 2.8 (Quotient Pre-Y-Structure). Let A := (D,Q,7) be a pre-X-structure, ~
a Y-congruence on A, DY = {[f]. |f € Do}, and Z%(¢,) := [Z(ca)]., for all constants ¢, €
Y. Furthermore let @~ be defined by [f]_ @™ [a]. := [f@a]_. To see that this definition
only depends on equivalence classes of ~, consider f' € [f]_ and g’ € [g]., then [fQg]_ =
[f'ag]. = [f'ag'].. = [fQg'].. So @~ is well-defined and total, thus A/, == (D~,@~,ZI7) is
also a pre-Y-structure. We call A/ the quotient structure of A for the relation ~ and the
typed function 7o: A — A/o that maps f to [f]_ its canonical projection.

This definition is justified by the following theorem.

Theorem 2.9. Let A be a pre-X-structure and let ~ be an X-congruence on A, then the
canonical projection w., is a surjective Y.-homomorphism. Furthermore, A/. is functional, iff
~ s functional.

Proof: Let A := (D,@Q,7) be a pre-X-structure. To convince ourselves that 7., is indeed
a surjective X-homomorphism, we note that 7. is surjective by definition and Z~ = 7. o Z.
Now let f € Dg_yq, and g € domain(f) C Dg, then g’ € [g]., for all g’ € domain(f) and there-
fore [g].. = 7~(g) € domain([f].,) = domain(7.(f)) and 7. (f)@~r.(g) = [f]. Q™ [g]l. =
[fag]. = r~(fQg).

The quotient construction trivialises ~ to (meta-)equality, so functionality of ~ is equiv-
alent to functionality of A. Formally we have [f], = [g]., iff f ~ g, iff f@a ~ g@Qa, iff
[f@a] = [g@a]., iff [f]. @~ [a]. = [g]. @™ [a].. for all a € D, and thus for all [a]_, € D7 .

|

2.3 Y-Structures

Y-structures are pre-X-structures with a notion of evaluation for wff(X).

Definition 2.10 (2-Structure). Let A := (D, @Q,7) be a pre-Y-structure. A typed function
¢V — Dis called a variable assignment into A. We call a total typed mapping® £: F(V; D) x
wff(¥) — D an evaluation function for A, iff for any assignment ¢ into A, we have

1. &lg =T and &, |y = ¢

2. &, is a Y-homomorphism

3. £,(A) = Ey(A), whenever ¢ and) coincide on free(A)
4. E,([B/X]A) = &, 1e,(By/x1(A)

We call A= (D,Q, &) a X-structure, iff (D,@Q,7) is a pre-YX-structure and & is an evaluation
function for A. We call £,(A,) € D, the denotation of A, in A for ¢.

If A is a closed formula, then £,(A) is independent of ¢, since free(A) = (). In these cases
we sometimes drop the reference from £,(A) and simply write £(A).

5We write F(V; D) for the set of functions f:V — D

21

CHAPTER 2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

22

Fzample 2.11. The singleton pre-X-structure is a X-structure if we take £(A) = a, where a
is the (unique) member of D,,.

For a detailed discussion on the closure conditions needed for the function universes to be
rich enough, we refer the reader to [And72a, And73].

Note that the pre-X-structure wff(¥) from 2.3 cannot be made into a Y-structure by
providing an evaluation function, since there is no formula C = Z,(AX,. B) € uff,_5(),
such that CQA = CA =7, 4,x)(B). In particular, the “obvious” choice AX,. B for C does
not work, since (AX,. B)A # T, 1a/x1(B). In fact, if wff(X) were a ¥-structure, S-equality
would have to be valid in wff(X) (cf. 2.17), which it is clearly not.

Definition 2.12 (Quotient -Structure). Let A = (D,Q,€) be a Y-structure, ~ a X-
congruence on A and let A/, = (D~,Q~,Z~) be the quotient pre-X-structure of A, where
T :=_¢|s.

For any assignment v into A/., there exists an assignment ¢ into A such that ¢ =

T~ O, since T~ is a surjective ¥-homomorphism. So we can define £ as 7., o &y, and call
A/ = (D™, @~ ™) the quotient X-structure of A modulo ~.

Theorem 2.13 (Quotient Y-Structure). Let A be a X-structure and let ~ be a Y-
congruence on A, then A/, is a ¥-structure.

Proof: We prove that £~ is a legal value function by verifying the conditions in 2.10: Let
¢ and 1 be assignments, such that ¢ = 7. o ¢, then
L &g =(rnoly)lg=mnolylg=nvol =17 and
EFly = (mnoly)ly=maolyly =m0 =0
2. £F =7~ 0 &y is a X-homomorphism, since 7 and &y are.

3. E3(A) = [Ep(A)]. = [Ev(A)] L = EX(A), iff ¢ and ¢’ coincide on free(A), since this
entails that v and %' do too.

4. £7([B/X]A) = [Eu([B/X]A)], = H&p[g (B)/X](A)HN = g:;,[sg(B)/X](A)v since
[€4(B)]. = £7(B) and therefore m. 0 9, [E4(B)/X] = ¢,[£7(B)/X]

O

Definition 2.14 (Term Structures for). Let cwﬁ(E)lﬁ be the collection of closed well-
formed formulae in S-normal form and AGQ°B be the S-normal form of (A B). For the defini-
tion of an evaluation function let ¢ be an assignment into cwff(X lﬁ Note that o = 9°|free

is a substitution, since free(A) is finite. Thus, we can choose Eﬁ(= lﬁ, where A¢ﬁ

is the f-normal form of A. We call 7§(X)ﬁ = (cwff(¥ lﬁ, ,EP) the ﬂ term structure for
3.

Analogously, we can define TS(X)°7 == (cw (E)lﬁn,@ﬁ”, EPM) the Bn-term structure for
3.

The name term structure in the previous definition is justified by the following lemma.

Lemma 2.15. ’TS(E)ﬁ is a Y-structure and ’TS(Z)[%7 is a functional Y-structure.

2.4. FUNCTIONAL £-STRUCTURES

Proof: Note that constants are 3-normal forms, therefore TS(Z)B is the quotient structure
of cuff(X) for the congruence =g. As we have remarked in 2.11, wff(¥) is not a X-structure,
so we cannot use 2.13, but have to convince ourselves directly that TS(E)E is a X-structure
by verifying the conditions of 2.10. The first three are direct consequences of the definition
of £P as substitution application.

1. &8|x =7° = 1dg and E£|V =g
2. Eg is a ¥-homomorphism
3. Eg(A) =0(A)=0'(A)=Ey(A),iff g and ¢ coincide on free(A)

4. €;([B/X]A) = o([B/X]A) = [0(B)/X](c/(A)) = 0,[0(B)/X]A = &7 (A),

0l£5(B)/X]
where o’ is o, [X/ X].

Since =g, is a super-relation of =g, a similar argument shows that TS(E)M is a Y-structure.
Furthermore, =g, is a functional Y-congruence on wff(¥) (cf. 2.7), so we know by 2.9 that

TS(X)P7 is functional. O

Remark 2.16. Note that ’TS(E)E is not a functional Y-structure since, e.g., (AX,. Y, ;X)@’
C, = Y@PC for all Cin 78, (¥)” but (A\X.Y X)ZY.

In a general Y-structure A := (D, @Q,), the constants are given a meaning by the inter-
pretation function Z:¥ — D, and variables get their meaning by assignments ¢:V — D.
Furthermore, the evaluation function has to respect instantiation as in first-order logic. This
is enough to ensure soundness of B-equality. We do not have to show soundness of a-equality,
since this is trivial as we have assumed alphabetic variants to be identical.

Lemma 2.17 (Soundness of -equality). Let A := (D, Q&) be a X-structure and ¢ an
assignment into A, then £,((AX. A)B) = E,([B/X]A) provided that X is not bound in A.

Proof: By the definition of ¥-structures, we have £,((AX. A)B) = £,(AX. A)QE,(B)
Eqle,(B)/x)(A) = E,([B/X]A)

O

2.4 Functional Y-structures

For functional Y-structures, there is another way to define evaluation: Since well-formed
formulae are inductively built up from constants and variables we can extend ¢ and Z to a
¥-homomorphism on well-formed formulae.

Definition 2.18 (Homomorphic Extension). Let A := (D,@,7) be a functional pre-X-
structure and let ¢ be an assignment into .[A. Then the homomorphic extension I, of ¢ to
wff(X) is inductively defined to be a typed partial function Z,: wff(3) — D, such that

1. Z,(X) = ¢(X), if X is a variable,
2. T,(c) = Z(e), if ¢ is a constant,

3. Z,(A B) = Z,(A)QZ,(B),

23

CHAPTER 2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

24

4. Zp(AX,4. Bp) is the function in D,_,p, such that Z,(AX,. B)Qz = Z,,,x)(B). Note
that this function is unique, since we have assumed A to be functional.

We have to assume that the universes of functions D,_,5 are rich enough to contain a value
for all A, € wff,,5(3) for this construction to yield a total function.

Lemma 2.19. Let A:= (D,Q,T) be a functional pre-X-structure, then E:¢ — T, is an
evaluation function for A.

Proof: To prove the assertion, we have to show the conditions of 2.10. The first one is
trivially met by construction, the second is a direct consequence of the fact that Z, o Idy =
Zolds =7 on X.

For the third condition, we prove that the value of a function depends only on its free
variables (by induction on the structure of A). The only interesting case is the one, where
A is an abstraction, since the assertion is trivial for constants and variables, and a sim-
ple consequence of the inductive hypothesis for applications. So let A := (AX. B), then
Z,(A)Qa = T, ./x1(B) = Ty [a/x1(B) = Zy,(A)@a by inductive hypothesis, since ¢,[a/X]
and 1, [a/X] coincide on the free variables of B. Thus we obtain the assertion from the
definition of Z,.

Finally, we prove the fourth condition by induction on the structure of A. If A is a
constant or variable, then the assertion is trivial. The case where A is the application C D
is entailed by the fact, that substitution and homomorphic extension are defined inductively
on the structure of applications: We have

Z,([B/X](C D)) = Z,([B/X]C)aZ,([B/X]D)

= Iw,[zw(B)/X](C)@Iw,[Iw(B)/X](D)
= T,jz.8)/x)(C D)

If A= (\Y.D) and ¢ = ¢, [a/Y], then
7,([B/X]A)8a = T,(\Y. [B/X]D)Ga = 7, (B/XID) = T, 7, (s x)(D)

by inductive hypothesis. Note that @ and ¢ coincide on the free variables of A, there-
fore by the third condition, which we have proven above, we have 7,7 B)/x](D)
Ly z.(B)/x](AY. D)@a, which implies the assertion, since A is functional.

il

In fact, for functional X-structures, the two notions of evaluation coincide:

Lemma 2.20 (Evaluation in functional ¥-Structures). If A:= (D,Q,§) is a func-
tional X-structure, then £, = I, for any assignment ¢ into A.

Proof: Let A € wff(X), we prove the assertion by induction over the size of A. The
assertion is trivial, if A is a constant or variable, and a simple consequence of the inductive
hypothesis, if A is an application. So let A := (AX. B), furthermore let Y be a variable not
in free(A) and 9 = ¢, [a/Y]. Then

E,(A)Qa = Ey(A)Qa = EL(A)QEL(Y) = Ey(AY) = Eu([Y/X]B)
since (-equality is sound in ¥-structures. Now [Y/X]B is smaller than A, so we can use the
inductive hypothesis to obtain

£,(A)Qa = T,([Y/X]B) = Z,(AY) = Z,(A)QZ,(Y) = Z,(A)Qa

which entails the assertion since A is functional. O

2.5. X-MODELS

Lemma 2.21. Let A= (D,
free in A, then £,(AX. AX)

@, &) be a functional L-structure and X be a variable that is not
= E,(A) for all assignments ¢ into A.

Proof: With 2.10.3 and the fact that X is not free in A we have
ELP(AAX. AX)@a = E%[B/X](A)@E%[B/X](/Y) = Ew(A)@a
which implies the assertion £,(AX. AX) = £,(A), as A is functional. O
We now specialise the notion of X-structures to the classical general model semantics for
A~
Definition 2.22 (X-Algebra). A pre-X-algebra A := (D,Z) is a pre-X-structure (D, @,7),

such that D3 C F(D,;Dp) and fQa = f(a). A pre-X-algebra is called full, iff D5 =
F(Dy;Dg). We call a pre-X-algebra a Y-algebra, iff it is a Y-structure.

Remark 2.23. Note that pre-X-algebras are functional, since they are defined as structures of
mathematical functions. On the other hand, for any functional X-structure A, we can define
an isomorphic X-algebra A’.

Proof: For a functional X-structure A := (D, @,Z) we define a ¥-algebra A" := (D', 7)
and a bijective ¥-homomorphism x: A — A’ by an induction on the type:

e D! =D, for all @ € BT and « := Idp; obviously & is bijective.

o D! ;= k(Dasp) and k(f) := ko (@f) o k=1 for f € Dyop. Note that with this con-
struction x is a homomorphism, since

K(F) (5(2)) = K(FA(x™" (5(2)))) = K(f@a)

k is surjective by construction and injective, since A is functional: If f £ g € D,p,
then there is an a € D,, such that f(a) # g(a), in particular, we have

(1(2)) = #(F)Br(a) # r(F)Ox(a) = n(g(2)
since k is injective on Dg. Thus and therefore s(f) Z r(g), since k(f), k(g) € F(Dy; Dp)

Now, we only have to choose 7’ := k 0 Z to complete the construction of A’. O

As a consequence, we can always consider functional Y.-structures as Y-algebras.

2.5 Y-Models

The semantic notions so far are independent of the set of base types. Now, we specialise these
to obtain a notion of models by requiring specialised behaviour on the type o of truth values.
For this we use the notion of a Y-valuation, which intuitively gives a truth-value interpretation
to the domain D, of a ¥-structure, which is consistent with the intuitive interpretations of
the logical constants. Since models are semantic entities that are constructed first of all to
make a statement about the truth or falsity of a formula, the requirement that there exists
a Y-valuation is perhaps the most general condition under which one wants to speak of a
model. Thus we will define our most general notion of semantics as Y-structures that have
Y-valuations.

25

CHAPTER 2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

26

Definition 2.24 (X-Model). Let A := (D, @, &) be a X-structure, then a surjective total
function v: D, — {T,F} such that

1. v(€(n)@a) =T, iff v(a) =F,
2. v(€(V)@Qa@b) =T, iff v(a) =T or v(b) =T,
3. v(E(I1*)Qf) =T, iff v(fQa) =T for each a € D,

is called a X-valuation for A and M = (D,Q, &, v) is called a X-model. The class of all
Y-models is denoted by IMg.

We say that an assignment ¢ satisfies a formula A € wff,(X) in M (M £, A), iff
v(€s(A)) =T and that A is wvalid in M, iff M |=, A for all assignments ¢. Finally, we say
that M is a X-model for a set H C wff,(¥X) (M | H) iff M satisfies all A € H.

Lemma 2.25 (Truth and Falsity in ¥-Models). Let M = (D, @, £, v) be a X-model and
@ an assignment. Furthermore let T, := A,V —(A,) for some A, € wff, and let F, .= —-T,.
Then v(€4(T,)) =T and v(E,(F,)) =F.

Proof: We have v(€,(T,)) = T iff v(E,(A, V =(A,))) = T. Evaluation shows that this
statement is equivalent to v(€,(A)) = T or v(€,4(A)) = F, which is valid since ¢ : V, = D,
and v : D, — {T,F} are total functions.

Note further that v(€,(F,)) = F evaluates to v(€4,(T,)) = T, which we already know. O

Remark 2.26. We only constrain the functional behaviour of the values of the logical con-
stants. In particular this does not fully specify these values, since

e M need not be functional,

e and there can be more than two truth values.

Definition 2.27 (Properties g, b, and {). Given a Y-model M := (D,Q, £, v), we say
that M has property

f iff M is functional,

q iff M has property f and for all a € T there is a function q* € D,—4—0, such that for all
a,b € D, holds v(q*@a@b) = T iff a = b,

b iff D, has at most two elements. Note that D, must always have at least the two elements
E4(T,) and &,(F,) by Lemma 2.25, so we can assume without loss of generality that
D, ={&,(F,) =F,&,(T,) =T} and that v is the identity function.

Definition 2.28 (Specialised Model Classes). We define special classes of ¥-models de-
pending on the validity of the properties f, q and b. Thus we obtain the specialised classes
of ¥-models Mg, Mge, Mg;, Mpge by requiring that the properties specified in the index are
valid.

2.6. LEIBNIZ EQUALITY

Remark 2.29 (Property q). The idea of property ¢ is to ensure for all types a that the intu-
itive equality relation q,—o—0, i-€., a functional congruence relation, is contained in D, ;.
This ensures the existence of unit sets in the domains D,_,, which in turn makes Leibniz
equality the intended equality relation, as the membership in this unit sets can be used as
a strong argument in order to distinguish between different elements of D,. For a detailed
discussion see [And72a].

Property q as stated in [BK97a] is not correct. Whereas the motivation for the formulation
there was the same as sketched above, this formulation does unfortunately not ensure func-
tionality (although this was intended), which is needed in the proof of Lemma 2.35. We want
to thank an unknown referee of the Journal of Symbol Logic for pointing to this problem.

Remark 2.30 (Property q in Henkin models). As Peter Andrews has noted in [And72al,
Leon Henkin unintendedly introduced Mgy in [Hen50] instead of the class of Henkin models
in the sense below. An element of Mg does not necessarily have property q and as Andrews
has shown in [And72a], a consequence is, that such an element may lack the principle of

functional extensionality EXT%_W, which he corrected by introducing property g.

Definition 2.31 (3-Henkin models). A functional ¥-model is called a ¥-Henkin model,
iff it has properties q and b. The class of all ¥-Henkin models is denoted by $ or Mgee. If
furthermore, all domains D,_,5 are full then we call H a X-standard model (G%).

Now let us extend the notion of a quotient structure to X-models.

Definition 2.32 (Quotient ¥-model). Let M = (D,Q, &, v) be a ¥-model, ~ a congru-
ence on the corresponding Y-structure A := (D, @Q,), and A/, be the quotient X-structure
of A= (D,Q@, &) modulo ~ as defined in 2.12.

If v(A) = v(B) for all A,B € wff,(¥) with A ~ B, then ~ is called a congruence
for M. Then M/ = (D~,Q@~ £~ ,v™) is called the quotient X-model of M modulo ~, if
v™([a].) = v(a) for all a € D,.

Remark 2.33. Note the importance of the additional requirement for functional congruence
relations stated in 2.32. Without this requirement the quotient ¥-models are not well-defined.

Lemma 2.34. Let M be a X-model, H C wff,(¥), and ~ be a congruence for M, then
MfWEH, if M=, H.

Proof: Let A, € H. We have v™(£7 (A,)) = v~ ([€,(AL)].) = v(EL(AL)). O

2.6 Leibniz Equality

Definition 2.35 (Extensionality for Leibniz equality). We call the following formula
schemata

EXTI?P = VE, 5. YGanys(VX5 F X =G X) = F =P @
EXTY VA,.VB,. (A& B) < A="B

the azioms of full extensionality for Leibniz equality; we refer to the first as aziom of functional
extensionality and to the latter formula as the extensionality axziom for truth values. Note
that EXT%_W specifies functionality of the relation denoted by the Leibniz formula =. We
will use the terms functionality and extensionality interchangeably.

27

CHAPTER 2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

28

Lemma 2.36 (Leibniz Equality in ¥-models). Let M = (D,Q, &, v) be a ¥-model and
@ be an assignment.

1.
2.
3.

If E,(A) = E,(B), then v(E,(A ="B)=T.
If M € Mg, and v(E,(A =° B)) =T, then £,(A) = E,(B).

If M € Myq and v(E,(A =" B)) =T, then £,(A) = £,(B).

Proof: Let a,b € D, and ¢ := ¢, [a/X],[b/Y].

1.

We show that v(€,(=")@a@b) =T, if a = b, which entails the assertion. By definition
Eo(=") = EL(AX.AY.VP. P X = PY) and thus ,(=")@Qa@b = £, (VP. P X = PY).
Now let r € Dyyo, then v(Ey . p)(P X)) =r@a =F or v(Ey,[r/p)(PY)) =r@b=rQa=
T, since v is total and a = b. So we see that v(&,(=)@a@b) = v(Ey [/p(P X = PY)) =
T for all r € Dy, which yields the assertion.

. First note that by property b we have D, = {T,F} and v is the identity function on D,.

Let us assume that v(E,(A =° B)) = Ey(VP. P A = P B) =T but £,(A) £ £,(B),
which means that either £,(A) = T and £,(B) = F or vice a versa. In the first
case we choose a predicate r = £,(AX,. X,) and get from the first assumption that
Eor/PI(P A) = Egy/p)(A) = Ep(A) = F or Eqyp)(P B) = Eqyp)(B) = E,(B) =T,
which gives us the contradiction. Note that P does not occur free in A or B by definition
of =.

The second case is analogous with r = £,(AX,. =X,).

. We show that if v(£,(=")@a@b) = T, then a = b, which entails the assertion. Sup-

pose a Zb € D, and r = q"@a, where q” € Dyq—, is the function guaranteed by
property q. We know that q*@a@a = T and q®*@a@b = F, since a Z b by assump-
tion. Hence v(&,(=")@a@b) = v(Ey(YP. P X = P Y) =F for ¢ :== ¢, [a/X],[b/Y],
since v(Ey /PP X = PY)) = F, as v(Eyyp(P X)) = q°@aQa = r@a = T and
v(Ey /P (P Y)) = q*@a@b = r@b =F.

Lemma 2.37 (Extensionality in ¥-models).

1.

2.

There exists a model M € Mg which is not functional.

There exists a model M € Mgy, for which EXT%_W is not valid.

3. There exists a model M € Mgy for which EXTY is not valid.

4.
5.
As a

EXT%_W is valid in model M, if M € Mg,.
EXTY is valid in model M, if M € Mgy.

consequence the following table characterises the different properties of the introduced

semantical structures. If a formula is valid for a certain semantical structure we use a “+’

and a
above

‘— otherwise. Fach entry is further marked with a justification referring to one of the

statements.

2.6. LEIBNIZ EQUALITY

valid in Ma/ Mz Mg Mae/Mse Maqe
EXT{7 | - 4 —(2) +4)
EXTS -3~ +(5) +5)

Proof: Let v be a Y-valuation and let M be a Y-model based on the §-termstructure
TS(E)B for ¥, i.e., M = (cwﬁ(Z)lﬁ, @7, &P, v). Note that M need not to be functional by
Remark 2.16 and 2.26.

For the proof of 2. we refer to [And72a], where Andrews constructs a functional ¥-Model
(actually a M € Mgg) that lacks the principle of functional extensionality of Leibniz equality.

For 3. note that EXT can only be valid if D, = {o, ¢}, which is not required for M € Myg,.
For a concrete example of a M € Mgy, which lacks EXTY, see 3.29 (for Accgy).

Next we consider 4.: Let 1 := ¢, [f/F],[g/G]. From V,(VA,. F A = G A) = T we
get that for all a € Dy Vya/a)(FF A = G A) = T. By lemma 2.36(3) we can conclude
that &y aa (£’ A) = Eyaya)(G A) for all a € D, and hence & o/4)(F)QEy 2/4)(A) =
Ey [a)a)(G)QEy [a)4)(A) for all a € D,. By definition of property g, which includes prop-
erty f and thus ensures functionality, we get &y (F) = &,(G). This finally gives us that
Vy (F =270) = T with lemma 2.36(1).

And finally in 5. we have that for all a,b € D, and all assignments ¢: v(E, [a/a1p/B](A &
B)) = T, iff v(E,a/ayp/B)(A)) = v(Eq aza)b/p)(B))- From b we further know that v is the
identity function and hence this statement is valid, iff &, 2/ a1p/81(A) = E; a/a)p/m)(B). For
the left to right direction of our statement we can now apply lemma 2.36(1) and in the right
to left direction the assertion follows with 2.36(2). a

Next we discuss the role of Leibniz equality within the different semantic structures.

Theorem 2.38 (Properties of Leibniz Equality). Let M be a X-model. For all assign-
ments ¢ and all terms A, B, C € wff,(¥) and F,G € wff,_,5(%) we have:

Mg If M € Mg, then E,(=") is an equivalence relation on D, with respect to v. In particular:
re: v(EL(A)) =T
sy: If v(& (B)
tr: If v(E,(A =" B)
Mg If M € Mp;, then E (=

=T, thenv(E,(B="A)) =T
=T and v(€,(B = C)) =T

//

then v(E,(A =" C)) =T.
%) is a congruence relation on D, with respect to v. In particular:
co: If v(E (A =" B)) =T, then v(£,(F A="F B)) =T

Msq If M € Mg, then E,(=") is a functional congruence relation on D, with respect to v.
In particular:

fu: v(ELF =""" G) =T, if v(E,(F A="F A)) =T for all A € wff,.
Mege If M € 9, then E,(=") is the equality relation on D,.
Proof:

Ms re v(E,(A =" A)) = T, iff for all p € Dyy, we have that v(E,p/p)(P A)) = F or
V(g p/P](P A)) = T, which is obvious since v is total and surjective.

29

CHAPTER 2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

30

sy Suppose v(E,(A = B)) = T, but v(£,(B =" A)) = F. From the latter we get
that v(Ey p/p) (P B)) = T and v(&, p/p) (P A)) = F for some p € Dy With-
out loss of generality, let p:=&,(V) for a fresh variable V € X,.,,. From the
former assumption we know that for all q € Dy, holds v(E, q/p (P A)) =
F oor v(€,qp(P B)) = T and hence v(E, s x. vxyp(P A)) = F
V(€ e.0x. vxy/ (P B)) = T which is equivalent with v(&, ,/p (P> A)) =T or
V(€4 p/p)(P B)) =F and contradicts the latter assumption.

tr Similar to sy.

My co Suppose v(EL(F =77 G)) = T, but v(£,(F A =* G A)) = F. From the
latter we get that v(E,p/p(P (F A))) = T and v(E,p/p(P (G A))) = F for
some p € Dyyo. Without loss of generality let p:=&,(V) for a fresh variable
V € Valo. From the former assumption we know that for all q € D,_, holds
V(g a1 @ F)) = Forv(&y(q/01(@Q G)) = Tand hence v(Ey (e, 3 x. v (x a))p)(PF)) =
For v(€,e.(0x. v (x ay)/p)(P F)) =T, which is equivalent with v(E, [p/p)(P (F A))) =
For v(&,p/p(P (G A))) =T and contradicts the former assumption.

Mgy fu A direct consequence of lemma 2.37(4).

Mpqe By property b we know that v is the identity relation on D, and thus we have that =
denotes a relation for which the principles reflexivity, symmetry, transitivity, congruence
and functionality hold. Hence = denotes the equality relation.

O

2.7 Primitive Equality

The situation of higher-order semantics becomes much simpler if we introduce equality as a
primitive logical constant = in 3, which we will assume for the rest of this section. Since
= is logical, we have to specialise the notion of X-valuation (cf. 2.24) by requiring that
v(€(=")@a@b) =T, iff a = b. In this case, we call v a X-valuation with equality.

Furthermore, we say that a ¥-model M has property ¢ , iff M has property f and for all
types a, v(£(=")@a@b) =T, iff a =b.

Definition 2.39 (Henkin Model with Primitive Equality).
A (functional) X-model, which has property ¢ is called a (functional) X-model with primitive
equality and a functional one with additional property b is called a X-Henkin model with
primitive equality. The class of all ¥-models with primitive equality are denoted by 9g, and
the class of all ¥-Henkin model with primitive equality by $sep.

Remark 2.40 (Property ¢ implies q). It is easy to see that property ¢ implies q. The only
difference between both properties is, that property q only ensures the existence of the in-
tended semantical equality relation, while ¢ additionally requires that our new logical connec-
tives = are indeed associated with this relations. The connection between property ¢ and
¢ is already discussed in [And72a]. Andrews concludes that it seems natural to require the
existence of logical connectives =% in the signature, if one is interested in extensionality. In
this thesis we are especially interested to shed some light on both: in extensionality of Leibniz
equality in case ="¢ ¥ and in extensionality of Leibniz equality and/or primitive equality in
case =“¢ X.

2.7. PRIMITIVE EQUALITY

I'total
m VC,V—.,V\/,V/\,VV
Pl <&, Vs, Vi, Var, Ves
b
Mo = e | W
full

Figure 2.1: The landscape of Higher-Order Semantics with primitive equality

As property ¢ implies g which in turn implies property f, it is easy to see that the landscape
of higher-order semantics from Figure 1.1 at Page 7 collapses to the one in Figure 2.1.

Definition 2.41 (Extensionality for primitive equality). Analogous to the extension-
ality axioms for Leibniz equality, we can define such for primitive equality.

EXT? = VF,,5.VGasps(VX5. F X =G X)=> F =G
EXT? = VA,.VB,. (A& B)& A="B

the azioms of full extensionality for primitive equality.

The following lemma shows that in a ¥-model with full equality the denotations of prim-
itive equations and corresponding Leibniz equations are identical modulo v.

Lemma 2.42 (Primitive and Leibniz equality). If M = (D,Q,&,v) € Mg, we have
that v(E4(A = B)) = v(E,(A = B)) for all A, B € wff(X).

Proof: By lemma 2.36(3) we have v(£,(A = B)) =T, iff £,(A) = £,(B), since each
M € Mg, is also in Myy. By property e this is equivalent with v(£,(A =B)) =T. O

Lemma 2.43 (Extensionality in Y-models with primitive equality).
1. There exists a M € Mg, for which EXT? and EXT] are not valid.
2. EXT*?% and EXT;7" are valid in M, if M € Mg,
3. EXT? and EXTY is valid in M, if M € Mpep.

Thus we can extend the table in Lemma 2.37 to the following one:

valid in Mse Mpew
EXTS7P EXT |+ 4+
EXT?, EXT® - 4+

31

CHAPTER 2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

32

Proof: The assertions follow from their respective counterparts in Lemma 2.37(3) with
Lemma 2.42 and the fact that each M € Mg, is also in M. a

Theorem 2.44. Let M € Mg, then E,(=") and E,(=") are equivalence relations on D,
with respect to v for all assignments ¢. If M € Mgep, then E,(=") = E,(=") is the equality
relation on D,,.

Proof: If M € 9Mg,, then the proofs for = are provided by lemma 2.38. For = they follow
immediately with 2.42.

If M € Mgep, then the argumentation is analogous, and we first show that = and = denote
a functional congruence relation. As furthermore v is the identity relation on D, we have
that = and = indeed denote the intended semantical equality relations. O

2.8 A Note on Defined and Primitive Equality

The extensional higher-order resolution approach discussed in Chapter 4 treats equality as
a concept defined by Leibniz’ principle. While this way of handling equality is theoretically
convenient and suitable it turns out that it is quite inappropriate in practice’, mainly because
Leibniz equality introduces new flexible literals into the search space and thereby increases the
amount of blind search with primitive substitution rule Prim. Furthermore proofs containing
Leibniz equations are rather unintuitive and hard to understand for non-experts. lllustrating
examples for such unintuitive problem formulations and proofs when using Leibniz equality
are E§”" and E£** presented in Section 8.1.

Our aim therefore is to avoid Leibniz equality and to use primitive equality instead. But in
contrast to first-order logic we do not have the choice in higher-order logic to consider equality
as a primitive notion only. The reason is, that infinitely many definitions of equality are always
implicitly provided by our higher-order language (if we choose Standard- or Henkin semantics
as the underlying semantical notion), and that there is no way to get rid of them. A definition
of equality different from Leibniz equality, e.g., is discussed in Andrews’ textbook [And86]
(page 155), where he defines =% = AX,. AY,. VQuo—a—0o- (VZ0. (Q Z Z)) = (Q X Y). This
definition is based on a reflexivity property, whereas Leibniz equality in some sense employs
a substitutivity property. A proof for the eqivalence of both definitions of equality (and the
one introduced below) in calculus ER will be presented in Section 8.3.

Apart from all the sensible definitions of equality in higher-order logic, one can always
introduce additional artificial ones by adding arbitrary tautologous sub-formulae to a sensible
definition of equality. For instance, if A'... A" and B'...B" are tautologous sentences, then
we can define equality based on the Leibniz idea also by =% := AX,,. AY,. VP,_,. (A'A...A
A"AP X)= (PYANA"ANA|A...ANA"). By employing this idea, it is easy to see, that
there are infinitely many valid but different ways of defining equality. As it is undecidable,
whether a formula is a tautology, we also have the unfortunate fact that it is undecidable,
whether a formula is equivalent to Leibniz equality. This argument immediately leads to the
following corollary:

" Anyhow, the already mentioned successful case study with the LEO-system on the the examples from the
MIZAR-articles Boolean and Basic Properties of sets showed that Leibniz equality can be handled at least to
some extent in practice. Also the TPs-system [ABI*96, AINP90], which has proven non-trivial theorems that
require substantial amount of equational reasoning (e.g., theorem THM15b in [AF¥I+96])7 still employs leibniz
equality.

2.8. A NOTE ON DEFINED AND PRIMITIVE EQUALITY

Corollary 2.45 (Defined equality in higher-order logic).
Given a higher-order sentence A. It is undecidable whether A contains a sub-formula that
expresses the equality between two terms.

A consequence of this lemma is that we generally have to assume the presence of some
defined equations in the input problems. We cannot generally detect all defined equations
and remove them by primitive equations, as one might wish to. Consequently, even if we add
a primitive equality treatment to the calculus, we still have to ensure that the calculus can
handle Leibniz equality and all alternative definitions of equality as well (we want to point out,
that calculus ER indeed can handle all forms of defined equality). This obviously contrasts
with the situation in first-order logic, where one has the choice to either define equality (e.g.,
by axiomatising equality as a congruence relation) or to consider it as a primitive notion and
to add special inference rules for equality (e.g., paramodulation rules) to the calculus.

Hence we have the requirement that we still have to take care of defined equality even if
our calculus can handle primitive equality and we cannot remove the extensionality or other
rules for defined equality from the calculus, as one might wish to. Of course, when adding
some special primitive equality rules we can afterwards examine if some of the other rules
became admissible and hence superfluous (c.f. remark 8.1).

A first approach to primitive equality treatment in higher-order logic is presented in Chap-
ter 5, where we adapt the first-order paramodulation approach to our higher-order setting.
The anticipated result of this attempt is, that just adapting the first-order paramodulation
rules is not sufficient to ensure Henkin completeness. Incompleteness is caused by missing
extensionality principles — this time with respect to positive primitive equations. At first
glance the resulting higher-order paramodulation calculus seems to be inappropriate for some
problem domains — e.g., for comparisons of sets, when sets are coded as characteristic func-
tions, such that the extensionality properties play an important role. The reason is that
the developed paramodulation approach combines term rewriting with difference reduction,
whereas the difference reduction aspect comes from the the extensionality treatment already
provided by calculus ER as well as from the new extensionality rules for positive primitive
equations that are added to the calculus.

Hence, apart from the problem that well founded reduction orderings for improved
paramodulation approaches are hard to develop in higher-order logic, the adapted paramod-
ulation approach has to face a second problem: it has an intrinsic mixed term rewriting and
difference reducing character which will be quite hard to control in practice.

As an alternative we therefore develop in Chapter 6 a second approach to primitive equality
treatment in higher-order logic which adapts the ideas of first-order RUE-resolution [Dig79].
In contrast to the intrinsic mixed term rewriting and difference reducing character of the ex-
tensional higher-order paramodulation approach this extensional higher-order RUE-resolution
approach has a pure difference reducing character which is probably much easier to guide in
practice.

We assume for the Chapters 5 and 6 that the considered signature contains the primitive
equality symbols = for all types a, and that the denotation of these symbol is fixed to
the intended semantical equality relations of appropriate type. Furthermore, the primitive
substitution rule is automatically extended, such that the new logical connectives =% are now
imitated as well.

33

Chapter 3

Higher-Order Model Existence

In this section we introduce abstract consistency properties and respective model existence
theorems for the different semantical notions discussed in Chapter 2.1. These theorems have

the following form, where x € {8, 86, 5f, 54, 5b, Sqb B¢, Seb}:

Theorem (Model Existence): For a given abstract consistency class Ucc, and a set
H € Ucc, there is a X-model M of H, such that M € 9M,.

The most important tools used in the proofs of the model existence theorems are the Y-
Hintikka sets. These sets are maximal elements in abstract consistency classes, and allow
computations that resemble those in the considered semantical structures (e.g., X-Henkin
models). These allow to construct *-valuations for the term structures that turn those into
x-models.

The key step in the proof of the model existence theorems is an extension lemma, which
guarantees a X-Hintikka set H for any set H of sentences in Iy. Apart from this, the proofs
for the model existence theorems are standard.

3.1 Abstract Consistency

Let us now review a few technicalities that we will need for the proofs of the model existence
theorems.

Definition 3.1 (Compactness). Let C be a class of sets.

1. C is called closed under subsets, iff for all sets S and T’ the following condition holds: if
SCTand T €C, then S €C.

2. C is called compact, iff for every set S the following condition holds: S € C, iff every
finite subset of S is a member of C.

Lemma 3.2. IfC is compact, then C is closed under subsets.

Proof: Suppose S C T and T € C. Every finite subset A of S is a finite subset of 7', and
since C is compact, we know that A € C. Thus S € C. O

Definition 3.3 (Sufficiently Pure). Let ¥ be a signature and 7 be a set of Y-sentences.
T is called sufficiently YX-pure, iff for each type « there is a set of constants P, C C, with
equal cardinality to wff,(X), such that the elements of P do not occur in 7.

34

3.1. ABSTRACT CONSISTENCY

We will always presuppose that sets of sets of sentences are sufficiently -pure in order to
have enough witness constants. This can be obtained in practice by enriching the signature
with spurious constants. Another way would be to use specially marked variables (which may
never be instantiated) as in [Koh94b].

Definition 3.4 (Properties for Abstract Consistency Classes). Let [y be a class of
sets of Y-sentences. We need the following conditions, where A,B € cuff,(¥) and F,G €

Cwﬁa—)ﬁ(z)zl
V. If Ais atomic, then A ¢ ® or ~A ¢ ®.

V. If -—A € ®, then & x A € .

Vs If A€ ® and B is the S-normal form of A, then B x ® € Ix.
Vi If A€ ®and Bis the 3g-normal form of A, then B+ ® € 1.
W IfAvBEe® thenPxAclzordxBels.

Va If 2(AVB) €, then PU{-A,-B} € I3.

VW I II°F € @, then @ « (F W) € Iy for each W € cuff,(X).

V5 If =lI*F € @, then ® « —(F w) € Iy for any constant w € ¥,, which does not occur in
D,

Vo If-(A =° B) € &, then PU{A,-B} €y or®PU{-A,B} € Ix.

Vy I =(F —o=p G) € @, then ® x =(F w ! w) € Iy for any constant w € X, which
does not occur in @.

(Additional abstract consistency conditions for primitive equality will be introduced later in

Section 3.3.)

Remark 3.5. Note that for the connectives V, 11* there are two conditions — a positive and a
negative one — given in the definition above, namely W, /Vj, for V and V&/V3 for 11%. For =°
and =77 the situation is different, as we need only conditions for the negative cases. The
positive cases can be inferred at the level of Hintikka sets by expanding the Leibniz definition
of equality (see the proofs of Vj in lemma 3.15 and v; in lemma 3.17).

Definition 3.6 (Abstract Consistency Classes). Let X be a signature and Iy, be a class
of sets of Y-sentences. Using the properties from the previous definition we introduce the
following abstract consistency classes:

AUceg If Vi, V4, V5, W, VA, VW and V3 are valid for [, then I3 is called an abstract consis-
tency class for X-models (Uccg).

Based upon this definition we introduce the following specialised abstract consistency classes:
Accgp, Accgs, Accgy, Accgyp, Accggp, where we indicate by indices which additional properties from
{V, Yy, Vo } are required.

Sometimes we do not want to differentiate between the particular notions above. In this
cases we simply speak of an abstract consistency class, with which we refer to an arbitrary
but one in {QLccﬁ, Q[CCgb, QLCCm, QLCCﬁq, QLCCﬁb, ﬁccﬁqb}.

'In the following we will use ¢ * A as an abbreviation for ¢ U {A}.

35

CHAPTER 3. HIGHER-ORDER MODEL EXISTENCE

36

Remark 3.7. Note that 2ccg corresponds to the abstract consistency property discussed by
Andrews in [And71]. The only (technical) difference is that Andrews does not consider
a-conversion as built-into the logic but needs a condition similar to Vp that requires a-
standardised forms to be abstract consistent.

Lemma 3.8 (Non-atomic Consistency). Let Iy be an abstract consistency class and A €
cuff,(X), then for all ® € Iy, we have A ¢ & or -A ¢ O.

Proof: Let A € wff,(3) and ® € I3, such that A € ®. By V3 we can assume that A is a
f-normal form. So we prove the assertion by an induction over the structure of A.

If A is atomic we get the assertion immediately by V.. If A is not atomic, then its head
must be a logical constant, therefore we can proceed by a case-analysis over the connectives
and quantifiers.

Suppose A has the form =B and {-B,—-—B} C ®. By V., we know that {-B,B} U® €
Is;, which contradicts the induction hypotheses. Now suppose A has the form B Vv C and
{B Vv C, —|(B V C)} C &. By W, VA we know that {B Vv C, —|(B V C), B,—-B, —|C} Uod e ly
or {BVC,~-(BVC),C,-B,~C}U® € Ix. In both cases the contradiction is given by the
induction hypotheses. Suppose A has the form II[(AX. B) and {II(AX. B),-lI(AX.B)} C ®.
By V5, W and V3 we know that {II(AY. B), -lI(AY. B),[W/Y]B,-[W/Y]|B}U® € I} which

contradicts again the induction hypotheses. O

In contrast to [And71], we work with saturated abstract consistency classes in order to
obtain total Y-valuations, which makes the proofs of the model existence theorem much
simpler and, e.g., yields much more natural models.

Definition 3.9 (Saturated). We call an abstract consistency class Iy, atomically saturated,
iff for all ® € [y and for all atomic sentences A € cuff,(X), we have P+ A € Iy or P+x—A € 3.
If this property holds for all sentences A € cwff,(X), then we call Iy saturated.

Remark 3.10. Clearly, not all abstract consistency classes are saturated, since the empty set
is one that is not, even if > is empty.

In the definition of abstract consistency class, we only had to require atomic consistency,
i.e., that there are no atomic propositions that contradict each other in one abstract consistent
set, to ensure consistency (see 3.8). The conjecture is that a similar theorem can be proven
for saturatedness:

Conjecture: Let Iy be an atomic saturated abstract consistency class. Then there
exists an saturated abstract consistency class I3}, with Iy is a subclass of I3.

Such a result would be of practical importance, as it allows to reduce the problem of proving
saturatedness of a given calculus to proving atomic saturatedness.

Lemma 3.11. let Iy be a saturated abstract consistency class, ® € ly and A an atomic
sentence. Then ® x (AV -A) € Ix.

Proof: Since Iy is saturated and ® € Iy, we must have ® x (AV-A) € Iy or P x (A V
—A) € Ix. We prove the assertion by refuting the second alternative. If & x ~(AV -A) € Iy,
then @ U {-(AV -A),-A,—-—A A} € Iy by V) and V.. Since A is an atomic sentence we
get a contradiction with lemma 3.8. O

3.1. ABSTRACT CONSISTENCY

Lemma 3.12 (Compactness of abstract consistency classes). For each abstract con-
sistency class Iy there exists an abstract consistency class I, of the same type, such that
Iy C I, and I, is compact. Furthermore |y is saturated, iff 13, is.

Proof: (following and extending [And86], proposition no. 2506)
We choose [J, := {® C cuff, () | every finite subset of ® is in I }. Now suppose that ¢ € Ix.
I3 is closed under subsets, so every finite subset of ® is in Iy, and thus ® € I}, Hence Iy, C [3.

Next let us show that each I3} is compact. Suppose ® € [J\ and W is an arbitrary finite
subset of ®. By definition of I, all finite subsets of ® are in I3 and therefore W € I§;. Thus
all finite subsets of ® are in I} whenever ® is in I. On the other hand, suppose all finite
subsets of ® are in I§}. Then by the definition of I3, the finite subsets of ® are also in Iy, so
® € I}. Thus [is compact.

Next we show that if Iy satisfies V,, then I3, satisfies V,, by considering the cases of
definition 3.6. First note that by lemma 3.2 we have that I3 is closed under subsets.

V. Let ® € I} and suppose there is an atom A, such that {A,-A} C . Then {A,-A} € I}
contradicting V..

V. Let ® € I, == A € &, ¥ be any finite subset of ® x A and © := (V\ {A})* -—A. O is
a finite subset of ®, so © € [x. Since Iy is an abstract consistency class and =—A € 0O,
we get O x A € Iy by VL. We know that ¥ C © x A and Iy is closed under subsets,
so W € Iy. Thus every finite subset ¥ of & * A is in Iy and therefore by definition
P x A€l

Vs, Vi, W, VA, Wy, V3 Analogous to V..

Vo Let ® € I, =(F =228 G) € ® and U be any finite subset of ® x =(F W = G W).
We show that ¥ € [3. Clearly © = (¥ \ {=(F W = G W)}) « ~(F = G) is a finite
subset of ® and therefore © € Iy. Since Iy satisfies V; and =(F = G) € O, we have
Ox-(FW=GW,) e Iy by V,. Furthermore, V C © x~(F W =G W) and Iy is
closed under subsets, so W € Iy. Thus every finite subset W of ® x =(F W = G W) is
in Iy, therefore by definition we have ® x -(F W = G W) € [J.

Ve Let ® € T§ with (A =B) € ® but PU{A,-B} ¢ ® and PU{-A,B} ¢ . Then there
exists finite subsets ®; and @3 of ®, such that ®; x {A, -B} ¢ [y and ®3 x {-A,B} ¢
I;. Now we choose ®3:= ®; U Py x =(A = B). Obviously ®3 is a finite subset of
® and therefore ®3 € Iy. Since Iy satisfies V4, we have that ®3 U {A,-B} € I} or
®3U{—-A,B} € I3;. From this and the fact that extensional abstract consistency classes
are closed under subsets we get that ®; U{A,-B} € Iy, or &3 U{—=A,B} € I3, which
contradicts our assumption.

For the proof that I, is saturated, let ® € I, but neither ® + A nor ® x ~A be in I\. Then
there are finite subsets ®* and ®~ of ®, such that ®* x A ¢ I3 and ®~ x =A ¢ I3 (since
all finite subsets of ® are in I;). As ¥ := &+ U @~ is a finite subset of ®, we have ¥ ¢ Ty.
Furthermore, ¥ x A € Iy or ¥ x =A € I3, because Iy is saturated. Iy is closed under subsets,
so ®T x A € I} or ®~ x =A € ;. This is a contradiction, so we can conclude that if ® € [%,
then ®x A € I} or ® x-A € [{. O

37

CHAPTER 3. HIGHER-ORDER MODEL EXISTENCE

38

3.2 Hintikka Sets

Now we define Hintikka sets, which are maximal elements in an abstract consistency class.
Hintikka sets connect syntax with semantics as they provide the basis for the model construc-
tions in the model existence theorem 3.29.

Definition 3.13 (3-Hintikka Set). Let Iy be an abstract consistency class, then a set H
is called a Y- Hintikka set for 1y, iff it is maximal in Iy, i.e., iff for each sentence D € cuwff,(¥),
such that H * D € [y, we already have D € H.

In the following we discuss properties of ¥-Hintikka sets. Since we have different types of
abstract consistency classes, depending on the additional requirements f, q and b, we have to
discuss different Hintikka lemmata.

Theorem 3.14 (Hintikka Lemma for Qccg). If Iy is a saturated Accg and H is mazimal
in Iy, then the following statements hold for all A,B € cuff,(X), F € cuwff,,,(X) and
C,D,E € cuff,(¥):

1

V.

C

A¢Hor-Ag¢gH.
V., AcH, iff ~A¢gH.
V. A€W iffA¢T
V. (-—A)EH, iff AcH.
Vs IfA=gB, then A € H, iff B € 1.
W (AVB)eH,iff AcHorBEecH.
Va —(AVB)eEH, iff A€ H and =B € H.
W [°F € U, iff for each D € cwff,(X) we have (F D) € H.
Vi —l°F € H, iff there is a D € cwff,(X), such that =)F D) € H.
Ve A="AcH
IfF[C], € H and C =" D € H, then F[D], € X
V2l C="DeH,if D="CecH
Vo C="DeHand D="EcH, then C="EcH
V. (AV-A) e H for any sentence A.
Proof:
vl

c

By 3.8.

Vj ,VCB Both are direct consequences of the saturation of Iy and V;.

V. If =—A € H, then H * A € I by V.. The maximality of H now gives us that A € H.
To obtain the converse, let us assume that A € H. Then by 702 we know that =A ¢ H
and by Vj -—A € H.

3.2.

HINTIKKA SETS

vy

Suppose A=gB. Since 3-reduction is terminating and confluent there is unique C, such
that C is the f-normal-form of A and B. Without loss of generality we show that if
A € H, then B € H. For that we suppose that A € H but B ¢ H. From the latter we

get by VCS that =B € H. Note that the S-normal-form of A is C and of =B is =C. By
Vs and the maximality of % we know that {C,—~C} € H, which contradicts Vcl.

We get the first direction by Vi, and the maximality of H. For the converse direction let

us assume that A € 7 or B € H but (AVB) ¢ 7. Then by V. we get ~(AVB) € # and
by the first direction of V, we have {~A,-B} C H which contradicts the assumption

I
with V..
Analogous to the Vi, case; note that the argumentation is not circular. In both cases we
use the forward direction of the counterpart to verify the backward direction, whereas

forward directions are proven directly. The same holds for the proofs of Y and V5
below.

Again, we get the first direction by V& and the maximality of H. For the converse
direction let us assume that (F D) € H for each D € cwff, (X), but I[I°F ¢ #. Then

—IlI°F € H by ch and by the first direction of V3 there is a D € cwff,(X), such that
—(F D) € #H which is a contradiction.

Analogous to V.

Suppose A =% A ¢ H. By VCZ, the definition of =, V5 and V| we have =(-Q A V
Q A)) € M for a Q € cwffs_,,(X). Applying V, contradicts VCQ.
Suppose F[C], € # and C = D € H. From the latter we obtain (AP. =P CV

P D)(AX. F[X],) € H by the definition of = and V. Note that X is free for F[Y], so
we have ~F[C], V F[D], € H by Vs. From this we conclude with W, that —=F[C], € H

or F[D], € H. Since the first option contradicts our assumption with Vcl, it must be
the case that F[B], € H.

By V: and V:.
By Vi, V£ and sz.
Saturation of [y and maximality of H entails that A € H or =A € H. We now get the

assertion by V4. 0

Depending on the kind of abstract consistency class we are considering, Hintikka sets have
different properties. We discuss this different properties in the Hintikka lemmata below.

Theorem 3.15 (Hintikka Lemma for Qccg). If I% is a saturated Uccgs and H is mazimal
in Iy, then for all A, B, C € cuff, (%)

\

If A=3,B, then A € H iff B € H.

Proof: Analogous to Vj in Theorem 3.14 a

Theorem 3.16 (Hintikka Lemma for QAccgy). If Iy is a saturated Uccgg and M is mazimal
in 1%, then for all C € cuff,(¥), and F, G € cuff,_5(X):

39

CHAPTER 3. HIGHER-ORDER MODEL EXISTENCE

40

vV, ~(F ="7% G) e H, iff there is a C € cuff, (), such that -(F C =" G C) € .

=+

V.o F=""PGeH, iff FC="G CeH forall C € cuff,(¥)

Proof:

V; We get the first direction by the definition of =, V; and the maximality of #. Lor the
converse let us suppose that =(F C = G C) € H but =(F = G) ¢ . From the latter
we know by VCQ, that F = G € H and by V- we have that (G C = G C) € H which
contradicts V- and Vcl.

V;— Suppose F =G € H but F C = G C ¢ H, which means by VCS, that «(F C =G C) €
7. From this we get by the definition of =, V5 and V3, that -(-Q (F C)VQ (G C)) ¢
for some Q € wff,_,,(X). On the other hand we know from F = G € H by the definition
of = and W that (AP—8)—0- 7P FV P G)(AXasp. Q (X C)) € H, and hence by Vs
that -Q (F C) v Q (G C) € H, which contradicts Vcl. For the converse assume that
FC=GCeHforall CEHbut F=G ¢ . We get by V. that =(F = G) €

which contradicts the assumption with Vq_ and Vcl. .

Theorem 3.17 (Hintikka Lemma for QAccgy). If1y is a saturated Uccgy and 1 is mazimal
in Iy, then for all A, B € wff,(¥):

Vo “(A=B)eH, iff (-A,B}CH or {A,-B}CH
(A=°B)cH, iff {A,B} CH or {~A,-B} C H.

V2 (A& B)eH, iff(A="B) e H.

V- FEither A=°BeH or A=°-BecH.

Vif_—'(To =F,) €N, if T, and F, are defined as in lemma 2.25.

VeI Bither A =° T, € H or A =°F, € .

Proof:

Ve We get the first direction by the definition of =, ¥, and the maximality of H. Now
assume that {-A, B} C % or {A,-B} C H but =(A = B) ¢ H. From the latter we
know by the definition of = and W that {(AP,_,. "PAVPB)(AX,. X), (AP,_,. =P AV
P B)(AX,. =X)} C #H and by V5 and V4, that one of {-A,--A}, {B,-B}, {-~A,-B}

or {B,=—A} must be a subset of . All four cases contradict V; together with the
assumption.

V, Since I% is saturated we have A € H or A € H. From this we easily get the first
direction by V:. For the converse suppose that {A,B} € H or {-A,-B} € H but
(A = B) ¢ # which means by V. that ~(A = B) € . By V; we have {-A,B} € #
or {A,-B} € H. In each of the four cases the contradiction follows by Vcl.

3.3. PRIMITIVE EQUALITY

Vj’ If we assume (A < B) € H, then by the definition of < and V, we have {-AV B, AV
-B} C H, and by W, that {-A, A} C H or {-B,B} C H or {-A,-B} C H or
{A,B} C #H. Note that the first two alternatives are impossible because of Vj. Now

we assume that A = B ¢ #H from which we obtain by VCS and V, that {-A,B} C H or
{A,-B} C H. We have to consider four cases and in each case we get a contradiction
with Vcl.

Vi Assume that A = B ¢ H and A = -B ¢ #. By VCS we have =(A = B) € H
and ~(A = —B) € #, and by V| we get from the former that {=A,B} C # or
{A,-B} C # and from the latter that {A,-B} C H or {=A,=-B} C H. We have to
consider four cases and in each we get a contradiction with Vcl. Analogous we can show
with V; that A=B € H and A = -B € H leads to a contradiction.

Vif_ From V, we know that T, € . Hence by V. and V. that —=F, € # and finally by Y
we get =(T, =" F,) € H.

Vif+ Follows immediately from V.

3.3 Primitive Equality

We now define abstract consistency properties for primitive equality. For this we have dif-
ferent options, e.g. we could introduce primitive equality by postulating = to be a functional
congruence relation or alternatively we could state properties connecting = with =.

Our concrete choice, namely a property postulating reflexivity and substitutivity of =, is
motivated from a practical point of view, as we believe that reflexivity and substitutivity are
more easy to verify in practical applications.

Definition 3.18 (Abstract Consistency with Primitive Equality). Let ¥ be signa-
ture and let Iz be a Qdccg, then we define the following condition, where ® € I3:
V' (A= A)¢o.

Ve 1 F[A], € ® and A =B € ¢, then ®x F[B], € Ix.

Using this properties we introduce the abstract consistency classes 2Accg, and RAccgy based
upon the definition of 2ccg.

Instead of using reflexivity and substitution principles we can also introduce the following
alternative definition for abstract consistency with primitive equality:

Definition 3.19 (Alternative Abstract Consistency with Primitive Equality). Let
Y be signature and let I, be a 2ccg, then we define the following condition, where ® € I3:

V= If +(A =B) € &, then ® x~(A = B) € [3.

VZ If +(A =B) € ®, then ® x ~(A = B) € I3..

41

CHAPTER 3. HIGHER-ORDER MODEL EXISTENCE

42

Using this properties instead of V" and V;? we can introduce analoga to the abstract consis-
tency classes 2ccg, and RAccgep above.

Remark 3.20. Just as in the case with Leibniz equality, we can extend a abstract consistency
clags with primitive equality so that it is compact.

Proof: We proceed just as in the proof of Lemma 3.12 but check the cases for V] and
\AR
For V] let ® € I and suppose there is an A € cwff, with =(A = A) € ®. Then
{-(A = A)} € Iy contradicting V.

For V7 let @ € [, {F[A],,A = B} C ®, ¥ be any finite subset of ® « F[B], and
© = (V\ {F[B],}) U{F[A],, A = B}. O is a finite subset of ®, so © € I5. Since [y is an
Accgp and {F[A],, A =B} C 0, we get © x F[B], € Iy by V;>. We know that ¥ C © « F[B],
and Iy is closed under subsets, so U € Ix. Thus every finite subset ¥ of ® x F[B], is in [}
and therefore by definition ® x F[B], € [J. O

The next lemma shows the connection between Leibniz equality and primitive equality
for Accge.

Lemma 3.21 (Leibniz versus Primitive Equality). Let I3 be a saturated ccg,. For all
¢ eIy, all A,B € uwff,(X) and F, G € wff,_,3(X) holds:

1. If (A =" B) € @, then ® x (A => B) € I3

2. If-(A="B) € P, then ®x—=(A =" B) € Iy

3. IfA="Bcd, then®xA="B ¢ I}

J FA="Bec®, thn®+A="Bel}

5. If «(F =270 G) € @, then ® + «(Fw = Guw) € Iy for any constant w € C,, which
does not occur in .

Proof:

1. Suppose =(A =" B) € @, but ® x (A =2 B) ¢ . Since I3 is saturated we have
®x A ="B €Iy and by V7, that ® x A =* Bx —=(B =" B) € [x. From the definition
of = we further conclude with V3 that ®* A =*B*=(B="B)+~(-p BVpB) € Iy
for any constant p € C,_,. From this we get the contradiction with V, and lemma 3.8.

2. Suppose =(A =" B) € ®, but ® x =(A =" B) ¢ I3. Since I} is saturated we have
®x A =" B € & and by definition of =, Y& and the subset closure of [}; that & x
(APy50. 7P AV P B)(AX,. A =X) € Ix. By Vs, W and the subset closure of I3 we
finally get that ®x—(A = A) € [y or P+ A =B € [5. The former is contradictory with
V. and lemma 3.8, and the latter with the assumption =(A =* B) € ® and lemma 3.8.

3. Suppose A =% B € @, but ®x A => B ¢ [3;. Since I is saturated we have ® x —(A =2
B) € Iy and by (2) and the subset closure of I} that ® * =(A =" B) € I3 which
contradicts the assumption with lemma 3.8.

4. Analogous to (3) with (1).

5. From —=(F =>7% G) € ® we can derive with (2), V;, (1) and the subset closure of [}
that ® + =(FC =277 GC) ¢ L}.

3.3. PRIMITIVE EQUALITY

O

Remark 3.22. Lemma 3.21 again shows that in an M € Mg, the symbol = defines the same
relation as =, namely a functional congruence relation modulo v. And if we are considering
an M € Mg then both describe the equality relation. This shows that the conditions V;
and V;? are sufficient for this purpose. We could alternatively introduce primitive equality by
requiring the statements 1. and 2. of lemma 3.21, i.e., as suggested in definition 3.19

We now discuss two new Hintikka lemmata, which take the logical nature of = into account

Theorem 3.23 (Hintikka Lemma for Qccg,). If1y is a saturated Uccge and H is mazimal
in Iy, then the following statements hold for all A,B,C € wff,(X), F,G € wff,,5(¥) and
D,E € uff,(¥):

T

V. (A="A)ecH.

V. IfD[A], € H and A =° B € H, then D[B], € H.

VY A="BcH, iff (B="A)cH.

V' A="BcHandB="CcH, then A="CcH

VI7 =(F =22F G) € H, iff there is a C € wff, (%), such that -(F C = G C) € 1.

VIP F==8Ge, iff FC=F G CeH forall C € wff,(X).

TAZ"BeH, iffA="B¢cH.

" (A="B) e, iff ~(A="B) €.
Proof:

V. Follows by V/ and Vj.

V. By maximality of # and V.

Viy ,V:“’ By V;" and Vi

V=T By maximality of A, 3.21(3.) and 3.21(4.)
Vj_ By maximality of H, 3.21(1.) and 3.21(2.)

V2™ Follows from V, with Vj-l-.

V" Follows from Vq_ with Vj_. -

Theorem 3.24 (Hintikka Lemma for ccaey). If Iv is a saturated Uccgp and H is mazi-
mal in 1y, then for all A,B € wff,(¥X):
VT <(A="B) €, iff {(~A, B} CH or {A,-B} CH.

Vot A="BeH, iff {A,B} CH or {~A,-B} C H.

43

CHAPTER 3. HIGHER-ORDER MODEL EXISTENCE

44

Vo AeBeH, iff A=BeH.
V. Fither A=BeH orA=-BeH.

Proof: The statements follow direct from their counterparts V, - VE in lemma 3.17 with

the help of Vj-l- and Vj_. O

3.4 Model Existence

We shall now present the proof of the abstract extension lemma, which will nearly immediately
yield the model existence theorems. For the proof we adapt the construction of Henkin’s
completeness proof from [Hen50, Hen96].

Theorem 3.25 (Abstract Extension Lemma). Let ¥ be a signature, Iy, be a compact
abstract consistency class and let H € 1y be sufficiently YX-pure. Then there exists a X-
Hintikka set H for 1y, such that H C H.

Proof: We construct H by inductively constructing a sequence of sets H' such that
H' € [5. Then the Y-Hintikka set is H = Usen W e lx.
Let Ay, Ay, ...be an enumeration of cuff,(X). We define H° := H and the set H"*! according
to the following table 3.1. Since the construction is uniform for all kinds of abstract consistency
classes H"*! depends on the respective kind of abstract consistency class I}; we are interested
in and in the properties of A,, with respect to this Iy;. (How to read the table: Assume I3 is an
an Accgg and A, is of form =(F =278 G). The table defines H™+! to be H" x A, x ~(F w ="
G w) for a fresh w € C, in case A, € Iy and H" otherwise.)

Aceg /Accgy/ | Ucesq /Accsqn/ Accg, /Accaes /

HrH Q[CCﬁf/QlCCgfb

A,, of form H™ « A, * H? « A, * H? x A, *

-11*B -(B w) -(B w) -(B w)

A,, of form H™ x A, H™ « A, * H™ « A, *
H x A, | ~(F=""" Q) S(Fuw="Guw) | =(Fw="Gw)
€Iy and | A, of form H™ x A, H™ x A, H™ x A, *

-(F =" G) -(Fw =" G w)

A,, of other form H™ x A, H™ x A, H™ x A,

w € C, 1s a constant which 1s fresh for H"

Figure 3.1: Hintikka set construction: How to construct sets #"*' from H"

Next we show by induction, that H™ € Iy for all n € IN. The base case holds by
construction (for all kinds of abstract consistency classes). So let H™ € Ix. We have to show
that #**t! € Ix. This is trivial in case H™ % A,, ¢ Iy (again for all abstract consistency
classes). In case H" * A,, € Iy we have to consider four sub-cases:

1. If A, is of form —[1*B, then we get the conclusion trivially by V5 (for all cases).

3.4. MODEL EXISTENCE

2. If A, is of form —(F —o=h G) the conclusion is either trivial (by V5 in case of ccg,
ccgy, Uccg or Acesgp), or follows by Vg in case of Uccgg or Accgp, or follows by V; and
Lemma 3.21(1), 3.21(5), and 3.21(2) in case of 2ccge or Accsep.

3. If A, is of form =(F =7# G) the conclusion is either trivial (by VA in case of an Accg,
ceay, Accsy, Uecgpp, Accy, Accsqp) or follows by 3.21(5).

4. If A,, is of any other form, then the conclusion is trivial (for all cases).

Since Iy is compact, we also have H € I5.

Now we know that our inductively defined set H is indeed in Iy and that H C H. It only
remains to show that 7 is maximal in I5. So let A, € wff,(X) be the n-th sentence from
the above sequence, such that H x A, € ly. Since H is closed under subsets we know that
H” x A, € Ix. By definition of #**! we conclude that A, € H"*! and hence A, € H. O

Next we define two congruence relations which we need in the model existence theorems
below in order to build quotient models.

Definition 3.26 (Congruence Relations ~3 and ~y). Let Iy be an abstract consis-
tency class and H be a Hintikka set for [5. For all A, B € wff(¥X) we define:

A,y B, iff A" Be .

A=B ifv=1.
A, ~y B, iff { {A/BleHor{A,B}INnH=0 ify=o
AC~y BCforal Ceuff,(¥) ifyv=a—p

Lemma 3.27 (Functional Congruence Relations). Let [y be an abstract consistency
class and H be a Hintikka set for Iy. Then ~y is a functional congruence relation, if Iy
is an Accg and ~y is a functional congruence relation, if Iy, is an Uccggp.

Proof: ~y is a functional congruence relation by VL, sz, Vj, Vq‘ and Vq-l-, which are
valid in case I3 is an Rlccggp-
Note that ~% is a functional congruence by construction. O

Remark 3.28. Note that in Lemma 2.37 EXT%_W does not hold for = and hence ~% is not
a functional congruence in case I3 is not at least an Rdccgg. Hence ~7; is unsuitable for the
model construction of an M € Mgy (or M € Mpgp) from a given M’ € Mg (or M’ € Mpg)
as demonstrated below but fits well for the construction of an M € Mggp. Fortunately the
relation ~g is already a functional congruence in case Iy is an 2lccg.

We now use the X-Hintikka sets, guaranteed by lemma 3.25, to construct a X-valuation
for the Y-term structure that turns it into the desired model M.

Theorem 3.29 (Model Existence Theorem). Let Iy be an saturated Ucc and let H €
I, be a sufficiently Y-pure set of sentences. For all i € {3,pf,5fb,Bq,5qb, e, Beb}
(cf. Def. 2.28, 2.31 and 2.39) we have: If Is is an Ucc; (cf. Def. 3.6 and 3.18), then there
exists a countable model in M € IM; that satisfies H.

Proof: Let Iy be an abstract consistency class. We can assume without loss of generality
(see lemma 3.12) that I3 is compact, so the preconditions of 3.25 are met, and therefore there
exists a X-Hintikka set % C wff,(X) for Iy, such that H C H.

45

CHAPTER 3. HIGHER-ORDER MODEL EXISTENCE

46

Now, for each different kind of abstract consistency class, we will construct a countable
model M™ of the corresponding type. These model constructions closely reflect the relations
of the different model types as discussed in Chapter 2.1 and shown in figures 1.1 and 2.1. We
start with the construction of an Mi’t € Mg and an M;" € Mg based upon the non-functional
termstructure 7S(X)” and the functional 78(X)"". The remaining model constructions are
then based upon these two basic constructions.

Mg Let Iy be an RAccg. Given the X-Hintikka set H with H C #H from above, we choose
v(C) =T, iff C € H. Note that we have v(C) :=F, iff -C € H by Vf. By V3 we know
that v is well-defined on cwﬁ(E)lﬁ and by ch, VCS we have that v is a total function
on T8,(%)”.

Furthermore by 702, VCS, VW and W we have that v is a ¥-valuation of the ¥-term
structure 7S(X)” and thus M¥ == (TS(2)?, v) is a B-model by construction. We have
M?{ = H,since H C H. Note that M?‘ is indeed countable, since the sets of well-typed
formulae are countable.

Mg Let I3 be an Accg; and hence also an ccg. Analogous to the previous case we construct
the countable ¥-model M7 := (TS()7, v) with M3t = H. Note that in this case v is
well-defined on 7S,(X)"" because of V. By lemma 2.15 we know that M} is functional
and hence M is in 9Mg;.

We proceed with the construction of an M* ¢ Mpq and MM ¢ Mgp based upon the previous
construction of an ./\/li" € My and accordingly of an MH ¢ Mpq and an MH ¢ Mgjp based
upon an M} € M. Thus we start out with a countable S-model M¥ := (TS(X)?, v) or
M= (TS(X)"), such that MM = H, for i = 1,2. Property q is easy to verify, as it
follows from the properties discussed in the Hintikka-lemmata 3.14 and 3.16.

Mpq Let I3 be an Accgg. From Ve, Viy, V:?r, Vq_ and Vq-l- we can derive that =" is indeed
the q required by property q and hence M™ is a countable ¥-model in Mg

To verify property b instead we have to construct an M? from M¥ (i = 1,2) by reducing
the set of truth values to {T,F}, which can be done with the help of a functional congruence
relation.

Mpe,Mpge Let I1 be an Accgg or Acegp. By lemma 3.27, V(f and VCS we can show that
the relation ~% defined in 3.26 is a functional X-congruence for M* and thus, by
lemma 2.34, the quotient structure MZ"/NH is a functional ¥-model that satisfies H.

From VCZ, VCS and the choice of v we conclude that ~ has exactly two equivalence
classes on TS,(2)%". Thus we have D, = {T := [T,].,F:= [F,].}, if we define T,
and F, as in lemma 2.25. Using V; and Vf we further get that v is the identity relation.
Finally note that MZ"/NH is countable since MZ" is.

We finish the constructions for the cases without a primitive notion of equality with the
construction of a ¥-Henkin model N# ¢ Mpgp in case we are considering an Accggp.

We start with M € 903, guaranteed by the discussion above. Analogous to the construc-
tion of an M™ € Mgy, we make use of a functional congruence relation in order to construct a
quotient model which fulfills property b. But instead of the relation ~4 we had to use before,
we apply the simpler relation ~3 which is a functional congruence relation for the elements

3.4. MODEL EXISTENCE

$ = Mpge By lemma 3.27 and V;,VCS we know that the relation ~g is a functional X-
congruence for M™, so the quotient structure N7 := MH/,;,H € Mgy with N = H by
lemma 2.34. Now we can conclude that D, = {T,F} with the same argumentation as in
the Mg case.

It remains to discuss the cases with primitive equality and we start with the M* ¢ Mg,
resp. M ¢ Mpqp from above.

Mpe Let I3 be an Accge and hence an Acczy. We construct the countable £% € 9Mg, with
E™ = H as discussed above. It remains to show that property e is valid for £ which

follows from property q by Vj-l- and Vj_.

Mpee This case is analogous: Let I3 be an RAccgp and hence an RAccge. We construct a
countable £ := (’TS(Z)ﬁ", v) € § with &% |= H. Again property ¢ is valid for £% by

property d, V_i-l-, and V_ .

O

47

Chapter 4

Extensional Higher-Order
Resolution: &R

In this chapter we introduce the calculus ER for extensional higher-order resolution. The
key idea of ER is to integrate the search for unifiers and for refutations on the same level,
i.e., we allow for recursive calls to the refutation process from within higher-order unification
and vice versa. ER is Henkin complete without additional axioms. In Section 4.1 we shall
first discuss calculus ER and illustrate the connections, modifications and extensions with
respect to the underlying calculus HORES as introduced in [Koh94b]. We then formally
introduce calculus R in Section 4.2 and define ER¢ and ERy., which generalise £R by unfolding
clause normalisation derivations and additionally providing the FlexFlez-unification rule. In
Section 4.3 we present a simplified proof (compared to the technique employed in [Koh94b])
of a lifting lemma for the generalised calculus Ry before we examine Henkin completeness
of ERy. in Section 4.4. As we are actually more interested in calculus ER than in ERg or ERy,
we discuss the equivalence of these three calculi in Section 4.5.

4.1 A Review of HORES and ER

Traditional first-order resolution [Rob65] can be seen as a two layered approach, where the
overall search for a refutation (based on the resolution rule resolve and the factorisation rule
factorise) is performed at a layer above: this layer passes subproblems to the lower layer,
such as the initial clause normalisation process or the intermediate unification problems. An
important fact is that all the side computations performed at the lower layer are decidable.
First-order unification is the main engine of first-order resolution, it is in a sense a filter
in the refutation search in order to separate inappropriate clauses from the search space
and to compute most general representations for all suitable variable instantiations for the
appropriate ones.

In our higher-order setting clause normalisation remains uncritical and the set of clauses
CNF(®) for a given set of higher-order formulae ® can easily be computed with the clause
normalisation rules as follows: Initially all formulae A € ® are replaced by pre-clause [A},]7.
Then the clause normalisation rules are exhaustively applied to ®. Thus, in calculus &R
clause normalisation does not cause any decidability problems and can still be employed as a
side computation (evoked by rule Cnf of Figure 4.2) whenever it appears to be appropriate.

In contrast however to clause normalisation, higher-order unification is undecidable [SG&9,

48

4.1. A REVIEW OF HORES AND ER

CVvI[AvVB]T ’ CV[AAB]Y . CV[AAB)Y
cv Ay BT Y CvAlF cvBlF
Ccv[-A]T . Cv[-A]" .
[AVAV-NL cvA]T

Cv[1*A]" X, new variable
cvI[A x]"

C Vv [M*A]" sk, is a Skolem term for this clause
CVI[A sk,])"

Figure 4.1: The Clause Normalisation Calculus CNF

Sny91] and can thus no longer be employed as a side computation like in the traditional
first-order setting. Huet solved the undecidability problem in [Hue72, Hue73a] by delaying
unification in his original constraint resolution approach instead of employing it as a filter.
This is somewhat unrealistic in practice, as the filter effect is now delayed until the end
too, and there are just too many candidates which fail only at the end of the computation.
Therefore Kohlhase allows within his sorted variant of Huet’s resolution calculus HORES
(see [Koh94b]) for eager unification, i.e., the unification filter is (inspite of its theoretical
undecidability) employed as early as possible during the refutation process. This is realistic
as undecidable unification problems do rarely occur in practice.

The unsorted variant of HORES provides the basis for our calculus ER (as well as for
EP and ERUE). The first modification of calculus ER with respect to HORES concerns
Skolemsisation: the Skolemisation technique employed by HORES is not sound. HORES
adds special variable conditions to each clause in which the binding restrictions obtained
from the Skolemisation steps are encoded. Consequently, after modifications of a clause (like
the renaming of free variables) these variable conditions have to be updated as well. As
the employed variable conditions and the updating mechanisms are not strong enough to
prevent HORES from proving obviously invalid statements like Fach function has a fiz-point
(VFysp. 3X,. (F X) = X), we employ in calculus ER traditional Skolemisation again. More
precisely, we use Miller’s sound approach for higher-order Skolemisation [Mil83]. Another,
more notational modification belongs to the encoding of unification constraints which we
uniformly present as negated equations in all calculi introduced in this thesis. The most
important modification of ER over HORES is that we add new extensionality rules to the
calculus in order to reach Henkin completeness without the need for extensionality axioms.
The rules of HORES that are directly reflected in ER are the clause normalisation rules
presented in Figure 4.1 and basically the resolution and the pre-unification rules as stated in
Figure 4.2 — except for the extensionality rules Fquiv and Leib, and partly the extensionality
rule Func.

The rules of calculus ER can be divided into the following three groups: clause normal-

49

CHAPTER 4. EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

50

‘Cla,use Normalisation: ‘ (defined for arbitrary clauses)

D CeCNF(D)
C

(defined on proper clauses only)
[A]*VC [BlVD a#3
CvDV[A=B])"

Cnf

Res

[Al*V[B]*VC aed{l,F}
[A]*V CVI[A =B]"

Fac

[Q, TFrv C P e ABVIBIBETY e 1y
— Prim

[Q, Uk~ v CVI[Q=P]"

Extensional (Pre-)Unification: ‘ (defined for arbitrary clauses)

cv [Ma—m:Na—w]F s, Skolem term for this clause

F,
CV[M s=N s]F e
Ccv [Aa_m C, = Ba_>ﬁ DQ]F
o 7 Dec
CVI[A=B]"v[C=D]
Cv[A=A)" CV[X=A]" X ¢ free(A)
—— Tri Subst

C Cia/xy

CVI[E, U=h V7' GeAB!
————— FlexRigid
CV [F=G]' v [Ur=h V7)F

Ccv [Mo:No]F . Cv [Ma:Na]F
7 Lquwv =
CV[M, < N,] CVI[VP,5,. PM = P N]

Leib

h o
AB. is the set of partial bindings of type v for head h as defined in [SG89]

Figure 4.2: The Extensional Higher-Order Resolution calculus &R

4.1. A REVIEW OF HORES AND ER

isation rules, resolution rules, and extensional higher-order pre-unification rules. The set of
clause normalisation rules are displayed in Figure 4.1 and the resolution and unification rules
of ER in Figure 4.2. For all rules we assume commutativity of V, symmetry of =, and as-
sociativity of V. Furthermore, we assume that the literals of our clauses are always kept in
head-normal form. Consequently we suppose that the newly generated or modified clauses
are always immediately transformed into head-normal form.!

We now discuss the rules of ER in detail and start with those that are directly imported
from HORES. We then describe extensionality rules that are new in £R and which make ER
Henkin complete.

The higher-order resolution rule Res and factorisation rule Fac employed in ER and
HORES obviously differ from their first-order counterparts. Instead of using unification
as a filter, which checks the rules applicability and even computes a most general representa-
tion of all suitable variable instantiations justifiying the particular resolution or factorisation
steps, they add — as suggested by Huet — respective unification constraints to the generated
clauses and generally delay the application of unification. Consequently, the search space
thereby explodes as any two literals with contrary polarities can be resolved upon and any
two literals in a clause with identical polarities can be factorised.

In order to avoid this search space explosion ER and HORES allow for eager pre-
unification. This is realised by rule Subst which propagates (partly) solved unification con-
straints back to the other literals of the same clause. Thus, the idea is not to delay unification
in &R till an empty clause is derived, but to employ it early and parallel to the overall refu-
tation search, thereby partly regaining the filter properties of unification. Clearly, as higher-
order unification and pre-unification is generally undecidable we still cannot prematurely
decide all unification problems — but many.

After applying rule Subst (or analogously the extensionality rules Fquiv or Leib as intro-
duced below), clause normalisation may become necessary in order to obtain proper clauses
again. This is due to the fact that instantiating predicate variables at head positions of
some literals, i.e., flexible literal heads, may lead to pre-clauses instead of proper ones. The
clause normalisation process is evoked by the application of rule Cnf. It performs exhaustive
CNF-derivations from a pre-clause D to a proper clause C € CNF (D) according to the rules
presented in Figure 4.1. Thus, the whole derivation according to the CNF-rules is hidden
inside the single rule application of Cnf in calculus ER.

It is well known for higher-order resolution that a primitive substitution rule (as suggested
in [And89]) or a splitting rule (see [Hue72]) is needed, as unification is too weak to compute
all necessary instantiations for flexible literal heads.

The primitive substitution rule Prim provided by calculus ER is a variant of the rule
suggested in [And89] and is conceptually simpler as Huet’s splitting rule. Rule Prim allows
to instantiate flexible heads of the literals by a partial binding that imitates a logical constant.
The important role of this rule can be illustrated by the example 3X,3Y,. X VY which is
obviously a theorem with respect to Henkin semantics. By negation and clause normalisation
we obtain the two unit clauses [X]!" and [Y]¥. Both clauses consist of exactly one negated
literal with a flexible head. Neither resolution nor factorisation is applicable and thus without
the primitive substitution rule we cannot find a refutation. The application of Prim with the

!For the formal proofs in this chapter we do not assume that £R automatically takes idempotency of V into
account and does not automatically factorise identical literals in the clause normalisation process, since this
eases our argumentations. In practice, however, one is certainly interested to optimise clause normalisation as
far as possible.

51

CHAPTER 4. EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

52

partial binding {X ¢ =X’} on clause [X]F results after clause normalisation with rule Cnf
in [X']T. Thus, by applying rule Prim we add important but missing logical structure to our
clauses, such that a refutation with the other calculus rules becomes possible.

HORES is not completene with respect to Henkin semantics. The problem is that despite
the primitive substitution rule Prim, which in some sense supports higher-order unification
algorithm in computing instantiations of variables?, the unification rules are still too weak
to handle the extensionality principles sufficiently. More precisely, higher-order unification as
employed in HORES or in Huet’s original approach is a pure syntactically oriented algorithm
for unifying terms. But for reaching Henkin completeness we need unification with respect
to the theory defined by the extensionality principles, as we are interested to unify terms like
A, ANB,and B,AA, oreven AX,. Ao XAB,,, X and AX,. By XANA,_, X.

Clearly, HORES as well as the traditional approaches [And71, Hue72] can be made Henkin
complete by adding the extensionality axioms to the search space, which is unfeasible in
practice.

As a solution to this problem, the calculus ER adds the three new extensionality rules
Leib, Fquiv, and Func to the unification rules and thereby avoids the extensionality axioms
in the search space. Rule Leib (see Figure 4.2) simply instantiates the equality symbol within
unification constraints by its Leibniz definition and Equiv reflects the extensionality property
for truth values in a negative way: if two formulae are not equal, then they are also not
equivalent. Rule Func analogously reflects functional extensionality: if two functions are not
equal then there exists a witness s, on which these functions differ. To ensure soundness, s,
has to be a new Skolem term that contains all the free variables occurring in the given clause.
Why is rule Func presented as a new extensionality rule but also as a usual unification rule?
The reason is that the pre-unification rules o and 7 as presented in HORES already partially
realise the negative aspect of the functional extensionality principle:

CV[(AX,. A)=(\Y,. B)]¥ 34 Skolem term for this clause

o
CVI[ALxy=Bml”

CV[(AX,. A)=B]" S Skolem term for this clause 0
CVI[ALxy = (B)"

Note that the purely type information based rule Func extends and generalises these two rules
and thus rule Func has the following two meanings in our calculus: If one or both unification
terms is a A-abstraction, it works like the traditional o~ and n-rules as, e.g., used in HORES
and [BK98a]. If on the other hand neither of the unification terms is a A-abstraction rule,
Func realises the functional extensionality principle.

In cooperation the new extensionality rules connect the unification part of our calculus
with the resolution part by allowing for recursive calls of the overall refutation process from
within higher-order unification.

We want to point out that none of the three new extensionality rules introduces any
flexible literal and even better, they introduce no new free variable at all; even if they heavily
increase the search space for refutations, they behave much better — as the experiments (see

2(Clause normalisation removes logical structure from the input formulas and translates them into the clause
structure. The primitive substitution rule on the other hand can always introduce new logical structure for
flexible literal heads, which cannot be computed by unification. In this sense primitive substitution supports
higher-order unification in a refutation approach.

4.1. A REVIEW OF HORES AND ER

Section 7.4) with the LEO theorem prover [BK98b, Ben97] showed — than the addition of
extensionality axioms in the traditional approaches, which introduces many flexible literals
in the refutation process.

One important aspect that is illustrated by the examples in this thesis as well as the
examples discussed in [BK98a] is that eager pre-unification becomes essential in ER and
many proofs cannot be found when delaying the unification process until the end.

Another important modification of ER with respect to HORES concerns the encoding of
unification constraints. In ER they are encoded as negated equational literals. In this sense a
clause CV[L' = R']Fv.. . V[L" = R"]¥ can also be read as the implication ([L' = R']TA...A
[L” = R"]T) = C, i.e., the unification constraints describe the conditions under which clause
rest C holds. Consequently the question arises whether or not resolution and factorisation rules
are allowed to be applied on these unification constraints, which look like ordinary literals.
In order to obtain a Henkin complete calculus this is not necessary — as the completeness
proofs in [BK98a, BK97b] and the alternative one in this thesis show. Consequently the
unification constraints do not necessarily have to be encoded as negative equational literals,
any other form will work as well. But the encoding of unification constraints as negated
equational literals becomes essential for the extensional higher-order RUE-resolution calculus
presented in Chapter 6 and the extensional higher-order paramodulation calculus presented
in Chapter 5.

We briefly sum up the particular modifications with respect to [BK98a]:

e The unification rules a and 1 employed in [BK98a] are avoided as they are subsumed
by rule Func.

o Instead of employing clause normalisation in the definitions of rule Subst and the ex-
tensionality rules Fquiv and Leib we add the extra clause normalisation rule Cnf to the
calculus.

e We slightly modify the decomposition rule Dec. This modification is illustrated in detail
by Example EP¢ in Subsection 8.2.

We will present in this chapter an alternative proof for the Henkin completeness of calculus
ER to the one given in [BK98a, BK97b]. The motivation for this new proof is threefold:

e We have slightly modified the calculus R in this thesis.

e The completeness proofs of the new, further extended calculi EP (extensional higher-
order paramodulation) and ERUE (extensional higher-order RUE-Resolution) are carried
out analogously, such that many lemmata can be either directly reused or with minor
modifications.

e The lifting lemma in the completeness proofs in [BK98a, BK97b] builds upon an ar-
gument also employed in [Koh94b] which uses a quite complicated notion of clause
isomorphisms susceptible to errors. In this thesis we present a lifting argument that
omits the notion of clause isomorphisms. This is possible as we analyse a generalised
resolution calculus Ry instead of ER. This enriched calculus additionally employs the
instantiation guessing FlexFlex-rule (see Figure 4.3) and applies the single clause nor-
malisation rules instead of grouping them into exhaustive clause normalisation chains
with rule Cnf. Consequently, in Subsection 4.5 we will discuss the theorem equivalence

between Ry and ER.

53

CHAPTER 4. EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

54

An important convention for this and the following chapters concerns a-equality of clauses
and the arity of Skolem terms:

Remark 4.1 (Equality of clauses). In resolution based theorem proving one usually as-
sumes all clauses to be variable disjoint. In practice this is achieved by automatically re-
naming the variables within each newly generated clause. In this thesis we implicitly use this
convention, too.

Another implicit convention concerns the Skolem terms. We briefly illustrate this aspect
by an example. Assume that the following pre-clause is given:

Ci: VX, piso X, VT VIVZ.. quso 2]
Clause normalisation either leads to
Cy: [PL—m X, }/L]T \ [QL—M) (3}_H YL)]F orto Cs: [pL—m X, YL]T \ [%—m (SLZ—H—H X, YL)]F

1L, Y,) and (s%,,,, X, Y,) are new Skolem terms. The first clause C; is the result
of applying rule II” first and IT to the result, whereas the second clause C3 is the result
of applying first 117 and then 117, Both results differ with respect to the arity of the new
Skolem terms. It is well known for refutation approaches that each refutation using only one
of these clauses can be analogously carried out with the other one. For a discussion of this
Skolemisation aspect in the context of of sequent calculi we refer to [AMS98]. In the following
we will therefore ignore the different arities of Skolem terms caused by switching the order of
single applications of clause normalisation rules (switching the order of clause normalisation

where (31

rules will be employed in some of the proofs in this thesis).

4.2 Basic Definitions

Instead of a direct proof of Henkin completeness for ER, we first analyse the slightly enriched
calculus ERy.. Aside from the unfolding of exhaustive clause normalisation derivations this
calculus provides the well known FlexFlex unification rule displayed in Figure 4.3. In case a
clause contains a flez-flez-unification constraint this rule allows to guess an instantiation for
one of the flexible heads such that the unification process can proceed with its eager unification
attempts. It was already pointed out by Huet [Hue72] that in practice we are interested in
avoiding this possibly infinitely branching rule (there may be infinitely many constants in
the signature) and it turned out that within a refutation approach one can in fact avoid the
FlexFlex-rule and delay the operations on flez-flex-constraints until one of the head variables
gets bound. However, employing this additional rule within the lifting lemma eases the proofs
as it turns our eager pre-unification approach into an eager unification approach. This allows
to omit the clause isomorphisms that are needed in the respective proofs in [Koh94b]. The
motivation for the unfolding of exhaustive clause normalisation derivation by rejecting rule
Cnf and lifting the clause normalisation rules to calculus level is analogous: We want to ease
the proofs in this section and especially the analogous but slightly more complicated ones
for the extensional higher-order paramodulation calculus &P and extensional higher-order
RUE-resolution calculus ERUE in the following sections.

A formal proof for the admissibility of rule FlexFlex has not been carried out yet, but
evidence is given by the direct proof of Henkin completeness in [BK98a] (which admittedly
lacks a bit of transparency and clarity within the lifting argument) and the case studies with

4.2. BASIC DEFINITIONS

CV[Fr,, U = Ho V7V GEAB:— fora h; € C;

e Mo e

CV[FU*=HV™"v[F=G]"

=2

FlexFlex

Figure 4.3: The FlexFlex unification rule

the LEO prover [BK98b]. Actually, there is no example known to the author that requires
the application of rule FlexFlex.

Definition 4.2 (Clause Normalisation). The calculus CNF consists of the clause normal-
isation rules displayed in Figure 4.1. We assume that the result of each rule application is
transformed into head-normal form3. By applying these rules exhaustively to a pre-clause
[A]* (0w € {T, F'}) one can derive the set CNF([A]?) of proper clauses derivable from [A]*.

Lemma 4.3 (Soundness of CNVF). The rules CNF\{I1F'} preserve validity and the rule 11¥
preserves satisfiability with respect to Henkin semantics.

Proof: The proofs for the rules in CNF\{I1¥'} are analogous to the first-order case and
Skolemisation has been corrected for higher-order logic by Miller in [Mil83, Mil91, Mil92]. O

Definition 4.4 (Unification). We define the following two calculi for higher-order unifica-
tion and higher-order pre-unification:

UNT The calculus UNZ consists of the pre-unification rules Triv, Func, Dec, FlexRigid and
Subst as presented in Fig 4.2. We assume that the result of each rule application is
transformed into head-normal form.* These rules form a quite close variant of the
higher-order pre-unification calculus discussed in [Koh94b] and [SG89, Sny91]. We
already mentioned that rule Func, which simply applies the functional extensionality
principle, subsumes the rules « and 7 used in [BK98a] and [Koh94b].

UNZ The calculus UNT; is defined as UNTU {FlexFlex}.

Theorem 4.5 (Higher-Order Unification and Pre-Unification).

Soundness UNT; (resp. UNT) is a sound calculus for higher-order unification (resp. higher-
order pre-unification). More precisely, for each derivation A : E :=[L; = Ry]" v
VL, = R bunr B! (resp. A @ B by E'), where E' is in solved form and
corresponds with unifier (pre-unifier) o, holds that o is a unifier (resp. pre-unifier) of

{Li ="' Ry,...,L, =" R, }.

Completeness UNZ; (resp. UNZ) is a complete calculus for higher-order unification
(resp. higher-order pre-unification). More precisely, for each higher-order unification
problem {L, =" Ry,...,L, =" R,} with unifier (resp. pre-unifier) o, there ezists a
derivation A : E = [L; = R4]" V...V [L, = R,]F Fuag B (resp. A E by '), such
that E' is in solved form and corresponds with unifier (resp. pre-unifier) o.

Remember the special definition of head-normal form for unification constraints as given in Chapter 2.1.
*Note that this is the main difference to the pre-unification rules presented in [SG89] which presupposes
that all results are reduced to Sn-normal form.

55

CHAPTER 4. EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

56

Proof: We will not present a formal proof here and instead refer to [Koh94b]. The only
difference of our rules to the respective ones used in [Koh94b] is, that the latter consider
sorts as well and employ a extra-logical form of Skolemisation. Note that our set of rules
furthermore only slightly modifies the set of unification rules discussed in [SG89, Sny91]. O

The first complete set of transformations for higher-order unification was defined in [Pie73,
Hue73a] and undecidability of higher-order unification was first discussed in [Hue73b]. Huet
then introduced higher-order pre-unification in [Hue75]. For a modern presentation of higher-
order unification and pre-unification we refer to [SG89, Sny91]. Sorted higher-order unification
and pre-unification is discussed in [Koh94b].

As the calculus UNZ; realises higher-order unification and as rule Subst allows to propagate
solutions back to the non-unification constraints of a clause we get the following corollary.

Corollary 4.6 (Higher-Order Unification). Let CV E be a clause with unification con-
straints K. Then for each unifier o of K we have that CV E g Co

Definition 4.7 (Extensional Higher-Order Resolution).

ER The calculus ER consists of the following inference rules displayed in Figure 4.2, i.e.,
ER .= {Cnf, Res, Fac, Prim} UUNZU { Leib, Equiv}
ERs The extension &Ry of calculus ER that employs full higher-order unification instead
of higher-order pre-unification is defined as ERy := ER U {FlexFlex}.
ERs. The calculus ERy. that employs stepwise instead of exhaustive clause normalisation

is defined by &Ry == (ER\{Cnf}) UCNF.

A set of formulae ® is refutable in calculus R € {ER,ERy, ERy}, iff there is a derivation
A : @, Fr O, where @, :={[F},]"|F € ®} is the set obtained from ® by simple pre-
clausification. We remark again, that unification constraints are treated as special literals,
which are only accessible to the unification rules.

Remark 4.8 (General Higher-Order E-Unification). The extensional higher-order reso-
lution calculus &R (ERy or ERy) can also be viewed as a test calculus for general higher-order
FE-pre-unifiability (F-unifiability): Assume an arbitrary set of equations E; ...E,, describing
a theory F and an E-unification problem T; = Ty is given. If we pass clauses [E{]7 .. .[E,]"
and [T; = Ty]¥ as an input problem to our calculus, then the calculus ER tests if the unifica-
tion constraint [T = T3]" is solvable with respect to theory E enriched by the extensionality
properties. The overall answer substitution computed by the refutation is obviously also an
answer substitution to our E-unification problem.

Theorem 4.9 (Soundness of Extensional Higher-Order Resolution).

The calculi ER, ERy and ERy. are sound for Henkin semantics, i.e., let ® be a set of formulae,
such that ® Fr O, then ® is unsatisfiable with respect to Henkin semantics (and consequently
standard semantics).

Proof: We already know by lemma 4.3 that the rules in CNF either preserve validity or
satisfiability with respect to Henkin models and thus the latter also holds for compound rule
Cnf. The extensionality principles are valid in Henkin models (see Lemmata 2.37 and 2.43)
and thus the extensionality rules Leib and Fquiv preserve validity wrt. Henkin semantics,
whereas rule Func only preserves satisfiabilty as it immediately applies Skolemisation after

4.3. LIFTING PROPERTIES

employing the functional extensionality principle. All remaining unification rules as well as
the resolution rules Res, Fac, and Prim can easily be shown to preserve validity with respect
to Henkin models. Now the assertion follows from the well known result that preservation of
satisfiability ensures soundness within a refutation approach. O

The following lemma states that each non-proper clause C in a clause set ® can be replaced
by its corresponding set of proper clauses CNF(C), without affecting the set of derivable
proper clauses. We want to remark that this lemma implicitly employs the convention of
Remark 4.1. This lemma is applied in the completeness proof of calculus Ry, more precisely,
in Lemma 4.15, which is then applied in the completeness proof to verify the consistency
properties WV, and Vg, and to show saturatedness. In the completeness proofs for &Py and
ERUE ., analoga of this lemma will be additionally employed to verify the abstract consistency
property V;° (again indirect within the proofs of respective lemmata). The Lemma can be
proven for all three calculi, but we will need it only for calculus ER;..

Lemma 4.10 (Proper Derivations). For each clause set ®, clause C, and proper clause

C', such that ® x C Fep, C', we have ® UCNF(C) Fer,, C'-

Proof: The proof is by induction on the length of the derivation ® * C Fgg, C'. In
the base case (n = 0) we know that C’ € ® as C’ must be different from C. Thus, the
assertion holds trivially. In the induction step (n > 0) we consider the first step in derivation
Q+CH @+CxD bFer, C', where D is a clause. If C is not a premise clause for the application
of rule r then the assertion follows immediately by induction hypotheses. Thus, let us assume
that C is a premise clause for the application of rule r. By induction hypotheses applied to
clause D we get that (® * C) UCNF (D) bgr, C'. As the resolution rules Res, Prim, I'ac are
only defined on proper clauses, we know that the only rules that are possible for r are the
unification rules in N7 and the rule Cnf. It is easy to check that in all those cases we have
that CNVF(C) Fer, CNF(D). And thus, we finally get that ® UCNF(C) Fer, ® UCNF(C) U
CNF (D) ker, C'. O

4.3 Lifting Properties

This subsection examines some lifting properties of the calculus £Ry. We shall prove a lifting
argument for all clause normalisation rules in CVF before we then present the lifting lemma for
ERy.. The lifting lemma for calculus ERy., which states that each derivation in ERy. performed
on an instantiated level has a direct counterpart on the uninstantiated level as well, turns out
to be quite trivial. The reason is that £Ry. provides rule FlexFlex, which can be employed in
addition to rule Prim to introduce the necessary instantiations on the abstract level whenever
the replay of the derivation given on the instantiated level is blocked caused by missing clause
or unification term structure. Furthermore, clause normalisation rules are not grouped into
one single rule Cnf but treated as single inference rules of their own, which also eases the
particular argumentations.

Lemma 4.11 (Lifting Lemma for Clause Normalisation). Let Dy, Dy be clauses and o
be a substitution. For each derivation Ay : (Dy), I—(lwf Dy exists a clause D3, a substitution
8, and a derivation Ay : Dy tgr,. D3, such that (D3)sos = Ds.

Proof: The proof is by case distinction on the rules in CNF. As all cases are analogous
we only consider the VI rule here. In this case we have that (D1)s = (L1)s V...V (Ln)s V

57

CHAPTER 4. EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

58

[A, VB, and Dy == (I1), V...V (L), V[A,]" for some literals (L;),, 1 < i < n, and terms
A,;,B,. We now consider the possible structure of the focused literal in the uninstantiated
clause Dy : L1 V...V L, V[C]F.

In case [C]" = [A vV B]" we can obviously apply V! leading to D3 : L; V...V L, V[A]",
such that the assertion follows trivially.

Otherwise we have [C]" = [H U™]F, such that (H U™), = A, V B,, as either (i) H, =
AX™. LV R, with (L[U"/X"™]), = A, and (R[U"/X"]), = B,, or (ii) H, = AX". X" T
(for 1 > n > m), with ((X™ T)[U™/X™])), = A, V B,.

Case (i): we now apply rule Prim to clause Dy with general binding AX™. (H' X™) Vv
(H? X™) for predicate variable H (H', H? are new predicate variables of appropriate type)
and obtain the clause

Dy: Ly V...V L, V[H=XX". (H' X™) v (H?* X™)]F
With rule Subst we get clause
Ds:(L1): V...V (Ly), V[(H' T™) v (H? T

where 7 := [AX™. (H' X™)V (H* X™)/H]. Now rule V! is applicable which leads to clause
D3t (L1)> V...V (Ln)s V[(HY U™)]F. It is easy to verify that 7 is more general than o
(beacause of the flexible variables H' and H?) and that hence there must be a substitution
v that appropriately instantiates the new predicate variables H! and H? and that coincides
with o on all other variables, such that we have (L;)yor = (Li)s, (H! U—m)WOT = A,. This
finally proves the assertion as (D3)yor = Da.

Case (ii): In this case the assertion follows analogously if we apply rule Prim with the
projection binding AX™. X™ (H X™). O

We are now ready to prove the lifting lemma for calculus ERy.. The main result (a special
case of statement 4.12(2)) is that for any substitution o and clause set ® holds that & is
refutable in calculus ERy provided that @, is. Here we even prove a more general result,
stating that lifting is even possible for general derivations and not only for refutations.

Lemma 4.12 (Lifting Lemma for ER;). Let @ be a set of clauses, Dy be a clause and o
a substitution. We have that:

1. For each derivation Ay : &, '_b?fc D1 there exists a substitution &, a clause Dy and a
derivation Ay : ® beg, Dy, such that (D2)s = D;.

2. For each derivation Ay : ®, l—mfc D, there exists a substitution &, a clause Dy and a
derivation Ay : ® beg, Dy, such that (D2)s = D;.

Proof:
(1) The proof is by case distinction on all rules in Ry and in all cases we construct a
derivation Ag as required.

Res Assume the first step in A; employs resolution rule Res to clauses [A,]* V C, and
[B,]? v D, with resolvent Dy : C, V D, V[A,=B,]". Then an analogous resolution
step is possible between [A]* vV C and [B]? V D leading to resolvent Dy : C'V DV
[A=B]". We trivially have that (D;), = D.

4.3. LIFTING PROPERTIES

Prim Assume the first step in A; employs rule Prim to a flexible literal in a clause
C, V[H (A,)"]* leading to clause Dy : C, V [H(A,)"]* V [H = G]F, where G is
a general binding for variable H imitating a logical connective. Then an analogous
proof step with an identical partial binding is possible on the uninstantiated clause
CV[H A"]* leading to Dy : C'V [H A"]*V [H = G] such that (D,), = D;.

Fac This case is analogous to Res.

Triv, Dec, Fune, Flextlex, Leib, Equiv These cases are all analogous to Prim. Note that
= is a special symbol not available in the signature and thus the abstract literal must
also have head =. Therefore, all these rules must be applicable on the abstract level
as well.

Subst In this case the ground literal is of form [X = A,]¥. If X, is of base type, the
corresponding abstract literal obviously must have form [Y, = A]" for a variable Y.
Then the assertion follows immediately. If X,_,3 is of functional type the correspond-
ing abstract literal can principically also be of form (i) [Y,—(amps) By = A]" or (i)
[Cra(anp) By = A]¥ where C is a A-abstraction. Case (ii) can actually be excluded
due to our special head-normal form convention of unification constraints. In case (i)
rule Subst can not immediately be replayed at abstract level. But in a straightforward
derivation which employs the rules FlexzRigid or FlexFlex one can finally subsequently
unify apply a substitution that is identical or more general than [A,/X]. E.g., let the
ground derivation be C, : [X,, b]T V[X,50 = A2, Do Z]F 5%t Dy [p 6], and
let C: [(Yimumso @) B]T V(Y @) = MZ,. Py, Z]¥ such that o = [AW,. X,_,/Y,p/P).
We consider the following derivation on the abstract level (s, is a Skolem term, and
H' and H? are new free variables of apropriate type): C FF%" [(Y a) 5]TV[(Y a) s =
P s pFleaFlez [(y q) 0]T V(Y @) s = P s]F V[P = AV,. p (H,, V)]F |-5ubst
[(V @) BTV[(Y a) 5 = p (H)] FFesRiaid [(V) BTV[(Y a) s = p (H! $)]FV[Y =
AU AV, p (HE,, o, U5 [p (H? a b)]"V[p(H? a s) = p (H' s)] FPeeTriv
b (H? a)TV [(H? a's) = (H' $)]F FFeFles [(12 a BTV [(H? a 5) =
(Hl g)]F vV [Hl — AXL' X]F l_Subst [P (HQ a b)]T vV [(HQ a S) — S]F l_Flez‘Rigid
[p (H2a b)]T V[(H? a s) = s V[H? = AU,. \V,. V]I B5ubstTrivpy [p]T. Thus,
the subsequent instantiations computed on the abstract level in our example lead to
clause Dy, i.e., the result of the substitution step on the ground level.

FlexRigid Whereas the abstract literal must have head = it is probably a FlexFlex-
constraint such that we cannot immediately replay the FlexRigid step. In this case
we employ the rules FlexFlex and Subst in order to introduce the corresponding
rigid head of the instantiated literal. Thereby the FlezRigid step performed on the
instantiated level becomes possible on the abstract level as well. It is easy to verify
that the resulting clause on the abstract level is more general than the instantiated
counterpart.

r € CNF By clause normalisation lifting lemma 4.11.

(2) The proof is by induction on the length of derivation Aj. The base case is trivial and
in the induction step we first employ statement (1) and then the induction hypothesis. O

CHAPTER 4. EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

60

4.4 Completeness

We now focus on the Henkin completeness proof for the calculus ERy.. Towards this end we
first prove a lemma stating that reduction to head-normal form is sufficient in calculus Ry
(note our special definition of head-normal form for unification constraints as described in
Chapter 2.1). A second lemma then provides some important refutational properties of ER.
Finally in theorem 4.16 we show that the set of propositions that cannot be refuted in calculus
ERy. defines an abstract consistency property for Henkin models as defined in 3.6. The latter
entails Henkin completeness for &Ry by theorem 3.29.

Lemma 4.13 (Head-Normal Form). Let ® be a set of clauses. If A: @y, Fer, O then
A" dy, Feg, O

Proof: The proof is by induction on the length n of A and the base case (n = 0) is
trivial. In the step case (n > 0) we consider the first derivation step in @, " &'+ [O. In
case r € {Res, Fac} the assertion follows immediately by induction hypotheses as both rules
are applicable independently from the structure of the literals atoms we focus on. In case
r € {Prim} UCNZF the heads of the atoms obviously play an important role. But note that
the head symbols in the gn-normal form and the head-normal form coincide, such that rule
r is applicable in the head-normal form case as well. Therefore, we again get the assertion
by induction hypotheses. In case r € UNZ our special definition of head-normal form for
unification constraints (which requires both hand sides of the constraint to be reduced to
head-normal form) ensures the assertion with an analogous argument as in the previous case.
(Note that the other direction of this lemma, which we do not need in this thesis, can be
proven analogously.) O

Remark /.14 (Head-Normal Form). It is not essential for our calculi whether we keep our
clauses and literals in head-normal form or 3n-normal form. The reason why we have chosen
reduction to head-normal form is that we expect that reduction to head-normal form is less
expensive in practice (which has not been investigated yet). One can also choose fn-normal
form. This variation will hardly influence any of the further discussions and theorems in this
thesis.

Lemma 4.15. Let ® be a set of clauses and A, B be formulae. It holds:
1. 1f @ x [A]T Fer, O and ® « [B] Feg, O, then @ x [AV B]! kg, 0.
2. If @ x[A]" « [B]" ber, O and @ x [A]" « [B]" ber, O, then ® x [A & B]" Fer, O

Proof: (1) Without loss of generality we assume that the pre-clauses [A]” and [B]” are
variable-disjoint. We can replay derivation @ [A]" Fgr, O in context @ x [A V B]", such
that we get for each clause C € CNVF([B]") @ x[A V B]” Foyr [A]T VC Fer, CV E for a set
of FlexFlex constraints F containing no variables occurring in [B]¥ or C. By corollary 4.6 we
know that each unifier o of K can be derived in N7 and thus we get for each unifier o of
clause CV E that CV E by C,. Now the assertion follows by lemma 4.10 as @ * B]" Fer,. O
and as the domain of ¢ contains none of the free variables in C, such that C, = C for each
clause C € CNF([B]T).

(2) This statement (which is also well known from first-order resolution) can be proven
by a tedious but straightforward computation which we only roughly sketch here. From the

4.4. COMPLETENESS

two assumptions we get by lemma 4.10 that (i) ® x CNF([A]T) « CNF([B]F) Fer, O and (i)
@+ CNF([A]") *CNF([B]") Fer, O. The idea now is to apply exhaustive clause normalisation
to the clause [A < B]” and then to show that (iii) ® « CVF([A < B]") beg, 0. Note that
CNF([A & B]Y) == {C v D|C € CNF([A]?) and D € CNF([B]?) for a € {T, F}}. Thus, the
task is to show that (iii) is a consequence of (i) and (ii), which is possible, e.g., by simultaneous
induction on the structure of A and B. O

Theorem 4.16 (Completeness of ERy). The calculus ERy is complete with respect to
Henkin models.

Proof: We adapt the proofs given in [BK98a] and [Koh94b] which in turn are based on
the ideas of [And71].

Let Iy be the set of Y-sentences which cannot be refuted by the calculus ERy. (Ix == {® C
cwff,(¥X)|®e Fer, O}), then we show that I3 is a saturated abstract consistency class for
Henkin models 3.6 which entails Henkin completeness for R4 by theorem 3.29.

In particular we have to verify that Iy ensures the abstract consistency properties V., V-,
Vs, W, VA, W, V3, WV, V4. Furthermore we have to show that Iy is saturated.

V. Suppose that A,—~A € &, where A € cwff,(X). Since A is atomic we have @ *

[A]T % [2A]T Feng @4 % [A]T % [A]Y and hence we can derive O with Res and T'riv.
This contradicts our assumption.

In all of the remaining cases, we show the contrapositives, e.g., in the next case we prove, that
for all ® € Iy, if ® x =—A x A ¢ I3, then ® x =—A ¢ I3, which entails the assertion.

V. Let us assume that @, * [-=A]T x [A]T Fer,, 0. We immediately get the assertion
since [-=A]" Feovr [A]T.

Vi If @« [A]T % [A¢ﬁn]T Fer,, O, then we get that . * [A]T Fer,, O by lemma 4.13
(note that A is assumed to be in head-normal form).

W @ x[AVB]T+[A]" ber, Oand @*[AVB]«[B]” Fer, O, then ®ox[AVB]T Fer, O
by lemma 4.15(1).

Va Analogous to V- as [<(A V B)]" Fevr [FA]T and [-(A v B)]" Fevr [-B]7.

VW Let @y« [11* F]T « [F A]" bgg, O for each closed formula A. By lifting lemma 4.12
we get that @+ [I1* F]” % [F X]" Fgp, O for a new variable X, and thus obviously
@+ [11* F]7 ber, O.

Vz Let us assume that @y x [<(I1 F)]T x [<(F w)]” bFgp, O. Note that —(I1 F) is a
closed formula and furthermore that w does not occur in @ * [=(IT F)]T. We get
the assertion as [~(I1 F)]T Feyr [-(F w')]T for a Skolem constant w’, which is just
a renaming of w above.

Ve We show that if @, x [-(A =° B)]” x [~A]” [B]” tex, O and &g+ [-(A =°
B)]” «[A]" [-B]" Fgr, O, then @ % [=(A = B)]" Fgr, 0. Note that @, [~(A =
B)]T =@y [I(AP,5,. "P AV P B)]T Fenr @ + [r A]T * [r B]Y, where ro_, is
a new Skolem constant. Now consider the following derivation

[r A]" [rBJY

Re:
[r A =r B]F ° ,
ﬁ De(,’, Triv
Q Equiv
[A & B]F

61

CHAPTER 4. EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

62

Hence @, + [<(A = B)]” ter, @ * [7(A = B)]" [A & B)]F and we get the
conclusion as a consequence of lemma 4.15(2).

Vy We show that if &y * [=(F =P G)T [~(F w e w)]” Fer, O, then @y *
[—|(F = G))]T }—ngC O. Note that & * [—|(F = G)]T * [—|(F w =G w)]T = o, *
sy ~(Q F)V (@ G # [IAPso (P (F)V (P (G w))] Fonr
o+ [¢ F]T x[¢ GIF * [p (F w)]T * [p (G w)]¥ and that &, x [~(F = G)] Fenr
@+ [r F]T «[r G]F, where ps_.,, U(a—B)—o and 743, are new Skolem constants.

Now consider the following derivation:
¥ [r GJ¥

[r F=r G| ,
——— X Dec, Trw
F=G
5 Func
[F s=G s Leib
[t (F)
[t (G s))"
Here again s, and t5_,, are new Skolem constants. Hence &, * [r F]T [r G]¥ Fery,
Sy x[r F]T «[r G + [t (F s)]" « [t (G s)]". Now the conclusion follows from the
assumption as s,t and r are only renamings of the Skolem symbols w,p and ¢ and
as all do not occur in &.

Res

To see that I3 is saturated let A € cwff,(X) and @ C cuff, () with & /e, 0. We have to
show that &, * A |7[g]qfc Oor ®,+-A |71572fc 0. For that suppose ® |7’g;;:fc O, but @ %A Fep, O
and @, x ~A Fgg, 0. By lemma 4.15(1) we get that ®, + AV —A b, 0, and hence, since
AV—A is a tautology, it must be the case that @ Fgg, 0, which contradicts our assumption.

|

Remark .17 (Eager Unafication). In contrast to Huet [Hue72, Hue73a] eager unification
is essential within our approach. This is illustrated by the argumentations for Vg and Vj in
the completeness proof 4.16 as well as many of the examples presented in Chapter 8.

Conjecture 4.18 (Restricted rule Leib). Fven though rule Leib is employed to terms of
arbitrary types in the completeness proof (see 4.16(Vy)) we conjecture, that this rule can be
restricted to unification constraints between terms of primitive type:

CV[M,=N,]" ac€{o,:}
CV[VP,,. PM = P NI¥

Leib!

Unfortunately a formal proof for this conjecture, whose validity would be of practical impor-
tance, is still missing. In order to prove this conjecture, it would suffice to prove that if
d, «[A =77 B)F Fer,, O then @+ [A s =7 B §F Fer,, O for any new Skolem term s, .
Note that VXo. A X =" B X]Fevr [A s =" B s]F. Thus, this lemma expresses one direction
of the functional extensionality property formulated with Leibniz equality and with this lemma
we could reduce the applications of rule Leib in all three calculi (ER, EP and ERUE) discussed
in this thesis and employ the restricted rule Leib’ instead. 'This result would be of practical
importance as it allows us to restrict the search space. In the extensional RUFE-Resolution
approach rule Leib may even become redundant (c.f. remark 8.1).

4.5. THEOREM EQUIVALENCE

4.5 Theorem Equivalence

With respect to our theoretical goal of proving Henkin completeness it does not make a
difference whether exhaustive clause normalisation derivations are grouped together into one
rule Cnf like in calculi Ry and R, or if the single clause normalisation rules are lifted as single
inference rules to calculus level like in ERy.. But note that thereis a practical motivation for the
ungrouping of CNF-derivation as well: Calculus ERy, allows to avoid redundant applications
of identical unification derivations to all proper clauses belonging to the same abstract clause.
For instance, it may be more appropriate first to apply unification rules to a non-proper clause
and then to apply clause normalisation rule to the result than the other way around.

Remark 4.19 (Convention).

1. Whereas the CNF and the UNT rules aside from Subst do not directly influence each
others applicability, they may indirectly influence each others applicability via Skolemi-
sation. More precisely if ry is rule IT7 and rq is rule Func the arity of the Skolem term
that is introduced in Func increases its arity when switching ry and rs.

2. Another important and simplifying convention in all proof transformations in this thesis
is to consider proper proof trees instead of proof graphs, such that each derived clause
in a derivation is used exactly once as a premise clause in the subsequent derivation
steps.

Lemma 4.20 (Derivability of Proper Clauses). For each proper clause C and clause

set @, such that Ay : @ Feg, C, there is a ERg-derivation Ay : @ Feg, C.

Proof: The proof idea is to show that the single, distributed clause normalisation steps
can be grouped in exhaustive CNVF-chains, which can then be replaced by rule Cnf. The proof
is by induction® on the length n of derivation A; and the base case (n = 0) is trivial. In the
induction step (n > 0) we consider the first step in derivation Ay : @ F™ @Dy g, C, where
r1 € ERy.. We proceed by examining all possibilities for ry:

r1 € {Res, Fac, Prim} As these rules operate on proper clauses only, we have on the one

hand that r; is also a proper &Ry derivation step. On the other hand we know by
induction hypothesis that there is a proper &Ry derivation ® x Dy Fgr, C. Thus,
S ber, C.

r1 € UNZ U Leib, Equiv Analogous to above the first step is also a proper ERy derivation

step, such that the assertion follows immediately by induction hypotheses.

r1 € CNF 1In this case we look for the first step in derivation A; that employs a non-

CNF-rule. Without loss of generality let us assume that this happens in step n for
n > 1. Then A; has form Ay : @F"* @ +«Dy F2 ... F1 @ «Dy*...xD,_1 F™
O+ Dy +...x Dy gr, C, such that r; € CVF for 1 < j < n. Without loss of generality
let us assume that each of the steps r; employs the newly generated clause from the
previous step as premise clause (we can reorder the derivation steps in A; without

5Note that with convention 4.19, which says that we consider proof trees rather than proof graphs, this
induction proof (and many others in this thesis) should actually be carried out by induction on the structure
of the proof tree or by induction on the depth of the proof tree. But note that the derivations described by
proof trees can be linearised in a unique way, such that the length of the linearised proof trees gives us an
well-founded ordering as well.

63

CHAPTER 4. EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

64

any influence to the particularly derived clauses such that this assumption is met).
In case r, € {Res, Fac, Prim}, D, must be a proper clause, such that we can
obviously replace the initial n — 1 derivation steps in A; by a single application
of rule Cnf in calculus €Ry. Now we again employ the convention that we consider
proper proof trees instead of proof graphs in our formal proofs such that each derived
clause in a derivation is used exactly once as a premise clause in one of the following
derivation steps. Consequently Ay : ® Feyr @ Dy, Fer,, C and the assertion follows
by induction hypotheses.

In case r,, € UNZ, we verify that the clause normalisation steps r; for 1 < j < n do
not affect the unification constraints of the involved clauses. Thus we can obviously
apply rule r, in the first place in A; as well. Furthermore, the clause normalisation
steps r; for 1 < j < n are applicable to the result of this new first step in A; and
the result of this derivation chain in the n-th step is clause D,. Now the assertion
follows again by induction hypotheses.

O

As [0 is also a proper clause we immediately get the following corollary.

Corollary 4.21 (Theorem Equivalence of ERs. and ERy). The calculi ERy. and ERy are
theorem equivalent, i.e., ® Fep, O, iff @ ber, O

It is no longer possible to delay all (pre-)unification rules, but our claim is that the
additional rule FlexFlex can still be delayed until the end of a refutation. This result would
give us that rule FlexFlex is not needed at all, as [is defined modulo flex-flex constraints.

Conjecture 4.22 (Theorem Equivalence of £R and &Ry (or ERy)).
The calculi ER and ERy. (or ERy) are theorem equivalent.

There is evidence given for its validity. None of the challenging examples discussed in
this thesis or in any of the papers [BK98a, BK98b, Ben97, BK97b] needs rule FlexFlez.
Furthermore, our case study with the extensional higher-order resolution prover LEo [BK98b]
showed that none of the examples from the MIZAR-articles Boolean and Basic Properties of
Sets [T'S89, Byl89], which are very interesting with respect to extensionality principles, require
the application of the FlexFlex rule. Additional evidence for this claim is given by the direct
proof carried out in [BK98a].

Chapter 5

Extensional Higher-Order
Paramodulation: &P

In this chapter we shall try to adapt traditional first-order paramodulation to higher-order
logic. The paramodulation rule is not sufficient to ensure Henkin completeness as we run
into problems with the Boolean and functional extensionality principles of primitive equality,
hence additional extensionality rules are needed.

5.1 A Naive and Incomplete Adaptation of Paramodulation

Figure 5.1 shows the traditional paramodulation rule and introduces a more elegant higher-
order reformulation.! Note that we assume the symmetric case for both rules.

The paramodulation rule Para replaces any subterm Tg (which contains no variable that
is bound outside T) by Rg provided that T and L are unifiable. Analogously to higher-order
resolution and factorisation, unification has to be delayed and thus a unification constraint
[T = L]¥ is added to the resulting clause. Unfortunately, we thereby introduce with each
application of rule Para twice as many (because of symmetric application of equations) new
clauses into the search space as there are subterms T, of type « in the given term A. To il-
lustrate applications of rule Para we consider the following two unit clauses Cy : [p (f (f))]*
and Cy : [f = h]Y, where p,_y,, f.—., h.—, and a, are constants. By application of paramodula-
tion in left to right direction we obtain the follwing two clauses: Cs : [p (b (f a))]TV[f = fIF
and Cq : [p (f (h a))]"V[f = f]¥. In our trivial example the generated unification constraints
can be immedietaly eliminated in eager unification attempt with rule Triv.

Rule Para’ combines the expressivness of our higher-order language with the power of
higher-order (pre-)unification and avoids the introduction of too many clauses into the search
space. Instead only one new clause with a new flexible literal head is created. The idea of
this rule is very simple: it describes the respective resolution step between the left premise
clause and the clause that corresponds to the right premise clause when replacing the positive
primitive equation by a (normalised) positive Leibniz equation (the modified right clause
would have form [P L}J¥ v [P R]T Vv D — or with an additional primitive substitution step
[P LITv[PR]" VD).

When applying rule Para’ to the clauses C; and Cy from left to right, we introduce only

!This rule was suggested by Michael Kohlhase.

65

CHAPTER 5. EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

66

Paramodulation: ‘ (defined for proper clauses only)

[A[Tg]°vC [L=R]TvD
[A[R]]>VCvVDV[T =° L)

Para

[Al*vC [L="R]TvD
[Pasyo RI*VCV DVI[A=° Ps,, L]

2
+ Para

In Para subterm T of A must not contain free variables that are bound outside

Figure 5.1: The Paramodulation rules Para and Para’

one new clause: Cs : [P h]TV[p (f (f a)) = P f]¥'. By eager pre-unification we can generate
the following four instantiations for P? and propagate this partial solutions with rule Subst to
the literal [P A]7:

)P X,.p(f(fa) Q)P X, ,.p(Z (f a)
)P A,—,.p (f(Z a)))P A—,.p (7 (7 a))

The pure imitation solution (1) introduces clause C; again and is thus redundant.? By
instantiating solutions (2) and (3) we obtain exactly the clauses C3 and C4 (clearly with-
out the trivial pairs), which are identical to the result of the applications of the traditional
paramodulation rule. Solution (4) is the most interesting one as it encodes the simultaneous
application of [f = A]T to both subterms f in [p (f (f a))]¥. As we have illustrated, the
only clause resulting from the application of rule Para’ encodes all the possible traditional
paramodulation steps together with all simultaneous applications and even the original clause
itself. The only problem for practical applications is, that we introduce a new flexible literal
head with each application of Para’, such that the primitive substitution rule becomes ap-
plicable. As this seems to be rather useless, a good heuristic in practice might be to avoid
primitive substitution steps on flexible heads generated by rule Para’.

Remark 5.1 (Reflexivity Resolution). Note that a reflexivity resolution rule is already nat-
urally integrated into calculus ER, as it is derivable with the help of the unification rules. The
unification rules already operate on negative primitive equational literals, i.e., unification con-
straints, like [f X = @ a]”, such that each negative equation between two unifiable terms
can be refuted by them.

We want to point out, that the encoding of unification constraints as negated literals
is essential here, whereas it is not of importance for calculus ER. If we would not encode
unfication constraints as negative primitive equational literals and would differentiate between
both concepts, then we obviously have to face the reflexivity resolution problem.

Remark 5.2 (Paramodulation into Unification Constraints). It turns out that para-
modulation into unification constraints is not neccessary, and in fact we can show its deriv-

20n the other hand this possibly leads to interesting heuristics in practice: When applying rule Para’ with
a right premise clause which is a unit equation, we can remove the left premise clause from the search space
as this clause gets encoded into the result of the paramodulation step itself.

5.1. A NAIVE AND INCOMPLETE ADAPTATION OF PARAMODULATION

ability:

Ci:CVIA[T,] =B]" C:[L=R]TVvD

Para

C3:CVDVIA[R, =B} v[T == L)"

Each such step can be replaced by the following derivation (p is a Skolem constant):

Leib(Cy), CNF : D, :CVp A[T,)]T

Dy :CVI[pB]F
Para(Dy,C) : Dy :CVDVI[p AR, V[T ="L"
Res(D3,Dy), Fac, Triv: Dy:CVDV[(pA[R,]) = (p B)]F V[T =~ L)

Dec(Dy), Triv:

:CVDV[A[RQ]:B]F€

On the one hand paramodulation into unification constraints may shorten proofs and in some
examples this seems to be very appropriate, but on the other hand such an approach may be
hard to guide in practice.

Remark 5.3 (Functional Eztensionality and rule Para’). It has been claimed by an un-
known referee of [Ben98], that rule Para’ already captures full extensionality, such that
rule Para’ should be preferred over Para. Example E{“nc (VX,. fi. X = g, X) =
(Ps)—o [= P(1=s1)—o 9)) discussed in Section 8.6 demonstrates that this is not true: even
rule Para’ requires additional extensionality rules to ensure full functional extensionality.

Definition 5.4 (EPpaive). The calculus EP 44, consists of the rules of calculus ER (see Fig-
ure 4.2) enriched by the paramodulation rule Para (see Figure 5.1). We assume that the result
of each rules application is transformed into head-normal form. A set of formulae ® is refutable
in calculus EPyqive, iff there is a derivation A : @, Fgp, . O, where &y = {[F¢h]T|F € o}
is the set of clauses obtained from ® by simple pre-clausification. We want to point out that
primitive equations are not expanded by Leibniz definition.

Next, we discuss soundness of the extended calculus EP,,4:,,. and show by a counterexample
that EP e 18 not complete with respect to Henkin semantics.

Theorem 5.5 (Soundness of naive higher-order paramodulation).
The calculus EP paive s sound with respect to Henkin semantics.

Proof: Soundness of the traditional paramodulation rule Para is obvious (note that
we avoid the replacement of subterms 7" with free variables that are bound outside): given a
standard model M for the two premise clauses, then one can easily see that the paramodulant
is also valid in M, as either the unification constraint evaluates to F and we are done or it
evaluates to T giving rise to the validity of literal [A[R]]]?, in case [A[T]]]* guaranteed the
validity of the first premise clause and [L = R]? guaranteed the validity of the second premise
clause (all other cases are trivial).

The proof of soundness for the new rule Para’ is analogous, even though this rules looks
more complicated: we consider all possible variable assignments ¢ which map variable P,_,
to a function in the domain D,_,, and employ an analogous argumentation like above. O

Theorem 5.6 (Incompleteness of EP,4ive). The calculus EPpuine is incomplete with re-
spect to Henkin semantics.

Proof: The assertion is proven by the following counterexamples to the assumption of
Henkin completeness of calculus EP qive:

67

CHAPTER 5. EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

68

Fzample 5.7 (Incompleteness of EP uive)

Para
El

Para
E2

Para
ES

Para
E4

Para
ES

-3X,. (X =-X)

This formula expresses, that the negation operator is fix-point free, which is obviously
the case in Henkin semantics. Our calculus is not able to find a proof as clause normal-
isation of the negated assertion leads to the single clause

Cr: [a=-a)t

where a, is a new Skolem constant. The only rule that is applicable is self-
paramodulation on positions (1), (2) and () leading to the following clauses:

Para(C1,C1) at (1) : Co: [a=-a]" V[~a=da]" C3: [~a=-d]"V[a=a]"
Para(Ci,Ci) at (2): Cq: [a=—a]t' V]a=-alf C5: [a=da]lV][-a=a)l
Para(Cy,C1) at () C¢: [a]T V[~a=(a=-a)]F Cr: [a)f V]a=(a=-a)]F

Case distinction on the possible denotations {T,F} for a shows that all these clauses are
tautologies. Thus no refutation is possible in EPqive-

-3AG, 0. VP, 3X,. G X =7 P

This is a simple formulation of cantor’s theorem stating that there exists no surjective
function from the set of individuals into the set of sets of individuals. Clause normali-
sation results in

C1:[G X =""p"

where p,_,, is a Skolem constant. Similar to the case above, a refutation in EP 4. is
not possible.

IM,—,. M # 0, where §,_,, is defined as AX,. F,. This formula expresses, that there
exists a set of truth values that is not empty. As the set of truth values is fixed in
Henkin semantics and has exactly two elements, this assertion is obviously valid. Clause
normalisation results in

Ci: [M=2xX,. 1]F
where M,_,, is a free variable. Analogous to Ef“m no refutation is possible.

—-3IM,,. M = M, where the set complement operator ~(0—0)—(0—0) 18 defined
by AS,so. AXoe 2(X € S) and €,(o—0)—0 as function (predicate) application
AX,. AS,,. S X. This formula expresses, that there is no set M of truth values
in Henkin semantics, such that M and its complementary set M are identical. Clause
normalisation leads to

Ci: [m=XX,. =(m X)]"

where m,_, is a fresh Skolem constant for M. In contrast to EPI?“’” there is no free
variable. Again no refutation is possible.

If VP(L—H—)‘O)—)‘(L—H—H—)‘O)‘ (P qis10 = P Ty5550), then (VX,. ¢ X # MZ,. =(r X 2)).
The first equation expresses, that all relations of type : — ¢+ — ¢ — o that can be defined
based upon relation ¢ or r, are equal (which in fact means that ¢ and r must be
equal). The second inequation expresses that ¢ is the complement set of r, but uses an
artificially complicated form (we employed the functional extensionality property once

5.2. POSITIVE EXTENSIONALITY RULES

to ¢ # AV;. AZ;. =~(r V Z)). This assertion is again valid, as in Henkin semantics the
set of truth values contains exactly two elements. Our problem normalises to

Cl . [P q =0 p T]T CQ . [P X —t—o /\ZL- —|(T' X Z)]T

where P, ;) .(,5.=1-50), X, are free variables and ¢,,—,,7,,, are function con-
stants. Note that apart from self-paramodulation no rule is applicable. Especially there
is no paramodulation step possible between the clauses C; and C,, as there is no subterm
of type ¢ — o in C; and no subterm of type ¢« — ¢ — ¢ — o in Cy, such that a type
conform term rewriting becomes possible.

O

The overall problem in the first four examples is, that our calculus provides no mecha-
nism to detect positive equations with an implicitly embedded contradiction. For example
the clause [a, = —a]T is implicitly contradictory with respect to the Boolean extensionality
principle. Examples EY%"® and EF® show, that also functional extensionality is involved
as the implicit contradiction follows here only with respect to both extensionality principles.
The general problem is that in higher-order logic (when considering Henkin semantics as well
as some weaker notions like discussed in Chapter 2.1) infinitely many semantical domains
contain a fix-point free function, such as the negation operator or the set complement oper-
ator on a non-empty domain (such as the set of truth values or the domain of all functions
from truth values to truth values, etc.).

In example EL%" none of the positive equational literals is unsatisfiable taken alone, but
it is contradictory in connection with the other ones. Here again a refutation is not possible
in calculus EPqve, as we would have to employ the functional extensionality principles to
the positive equation in order to obtain a corresponding equation of appropriate type, such
that the paramodulation rule becomes applicable.

Remark 5.8 (Fiz-point free functions). Given a predicate type a:== a3 — ... = @, — 0
(n > 0). The semantical domain domain,_,, contains a fix-point free function provided that
it is not empty (which must be the case in Henkin Semantics, as at least the identity function,
i.e., the evaluation of AP,. P,, must be an element of this domain). Note, that these fix-
point free functions map predicates to predicates. An example in domain,_, is the negation
operator. And in domain((,_s,)0)5((,—s.)=0) ONe can choose the set complement operator
defined with the help of the negation operator: AS(,_,)0. Al =(S F). It is easy to see,
that analogously to the latter example one can easily construct a fix-point free function in
any of the domains domain,_,,.

These fix-point free functions cause the problems with positive equations in higher-order
logic: Let term T,_,, be an A-expression that denotes such a fix-point free function in domain
Dy—o (it has been illustrated above how to construct such A-expressions). Then the positive
equation T X, = X, is obviously unsatisfiable. Note that such single contradictory equations
do not occur in first-order logic.

5.2 Positive Extensionality Rules

Before going further into the investigation of the extensionality problem with positive equa-
tional literals, let us first reconsider the analogous problem for negative equations. For exam-

ple, [a, = =—a]” is a negative equation literal, which is implicitly contradictory with respect

69

CHAPTER 5. EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

70

CV[M,=N,]"
CV[M, & Nt

Equiv'

CV[Mysp= Na_>@]T X new free variable
Cv[MX =N x]"

Func

Figure 5.2: The extensionality rules for positive primitive equations.

to Boolean extensionality. Just as for reflexivity resolution (cf. 5.1) our calculus already pro-
vides a solution to this problem as it interprets negative equational literals automatically as
unification constraints and offers an appropriate extensionality treatment by the extensional-
ity rules Leib, Func and Fquiv:

Remark 5.9 (Exztensionality for Negative Primitive Equations).

Our calculi encode unification constraints as negative primitive literals and do not differenti-
ate between unification problems and negative primitive equations. Therefore an additional
extensionality treatment for negative primitive equations is not needed as the unification al-
gorithm has already been extended by the special extensionality rules Leib, Func and FEquiv.
When differentiating between negative primitive equations and unification constraints, the
unit clause [a, = —=a]? is not refutable in the resulting approach, and we would need an
additional extensionality treatment for negative primitive equations.

In contrast to this pleasent result, we do have to face the lack of extensionality principles
in the case of positive equational literals. And, as we have seen in the examples above, our
calculus so far does not provide a solution to it. What we need is a way to test the inequality
of the two sides of a positive equation with respect to the extensionality principles and also
with respect to the knowledge provided by the other clauses in the search space (see for
example EF?"%). This suggests to introduce analogous extensionality rules to Func, Equiv,
and Leib, that operate on positive equations. To anticipate the results of the analysis of
Henkin completeness, it turns out that a positive counterpart to rule Leib is not needed, and
thus our new extensionality for primitive positive equations are Func’ and Fquiv’ as given in
Figure 5.2.

Remark 5.10 (Rule Leib’). A positive counterpart for rule Leib would have the following
form:

CV[M,=N,"T «aco} -

CV [VPaso. P M = P N|T Leib

This rule is neither needed in our motivating examples nor in the completeness proof below,
and as a consequence it should be possible to directly prove hat rule Leib’ is admissible for

calculus &P.

5.3 Basic Definitions

We further extend our extensional higher-order paramodulation approach by adding rule
FlexFlex as in Chapter 4, and lift the single clause normalisation rules to calculus level,

5.4. LIFTING PROPERTIES

instead of grouping exhaustive clause normalisation derivations together in rule Chnf.

The definitions for clause normalisation calculus CNF (cf. 4.2), UNZ and UNZ; (cf. 4.4)
need not to be modified and the lemmata 4.3 (Soundness of CNF), 4.5, and 4.6 (properties of
higher-order unification) will be employed in this section again.

Definition 5.11 (Extensional Higher-Order Paramodulation).

EP The calculus EP consists of the rules of calculus ER (see Figure 4.2) enriched by the
paramodulation rule Para in Figure 5.1 and the positive extensionality rules displayed
in Figure 5.2, i.e., EP := ER U { Para, Equiv’, Func'}.

EP; The extension EP; of calculus &P, that employs full higher-order unification instead of
higher-order pre-unification, is defined as &Py := EP U {FlexFlex}.

EPs. The calculus EPy., that employs stepwise instead of exhaustive clause normalisation, is

defined by EPf = (EPF\{Cnf}) UCNF.

For all calculi we assume that the result of each rule application is transformed into head-
normal form. A set of formulae ® is refutable in calculus &P, iff there is a derivation
A : @y Fgp O, where @y := {[F},]T|F € ®} is the set obtained from @ by simple pre-
clausification. Unification literals are still only accessible to the unification rules.

Theorem 5.12 (Soundness of Extensional Higher-Order Paramodulation).
The calculi EP, EPy and EPy. are sound with respect to Henkin semantics.

Proof: We already know by 5.5, that calculus EP,,4;, is sound. The soundness of the new
positive extensionality rules is obvious in Henkin semantics (see Lemmata 2.37 and 2.43), as
they simply apply the extensionality properties, which are valid in standard semantics. O

Lemma 5.13 (Proper Derivations). For each non-proper clause D, proper clause C, and
clause set @, such that ® D Fgp, C, we have & UCNF (D) F¢p, C.

Proof: Analogous to lemma 4.10. In the induction step the case r = Para is analogous
to the cases r € {Res, Fac, Prim}, and the cases r € {Func’, Fquiv'} are analogous to the

case r € UNT;. O

5.4 Lifting Properties

The clause normalisation lifting property stated in lemma 4.11 is not affected by the modifi-
cation of the calculus and will be employed in the following lifting lemma for calculus EPy..
The new problem within this lemma is, that we have to take care of the additional logical
connectives = in the extended signature. But fortunately rule Prim became automatically

[}

extended as well and allows now to introduce the logical connectives =% at head position

analogous to the connectives =, V, 1 so far.

Lemma 5.14 (Lifting Lemma for £P.). Let ® be a set of clauses, Dy be a clause, and o
a substitution. We have that:

1. For each derivation Ay : &, I—}:Pf D1 exists a substitution &, a clause Dy, and a deriva-
tion Ag : ® gp, Do, such that (Dg)s = Ds.

71

CHAPTER 5. EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

72

2. For each derivation Ay : &, }—gpfc D exists a substitution &, a clause Dy, and a deriva-
tion Ag : ® bgp, Do, such that (D3)s = Ds.

Proof:
(1) The proof is by case distinction on all rules in EPg and in all cases we will motivate
that there is a derivation A as required.

Res, Prim, Fac, Cnf, Subst The corresponding argumentations in 4.12 are not affected
by the additional rules or the availability of primitive equality symbols =% in the
signature.

Leib’, Kquiv’, Para The argumentations for these new rules are analogous to the previous
cases.

Triv, Func, Dec, FlexRigid, FlexFlex, Fquiv, Leib These cases are indeed affected by the
new primitive equality symbols = « in the signature, as we may have a unification
constraint [T; = T3]¥ on the instantiated level, but an ordinary negative literal
with a flexible head [H U”]F on the abstract level. In order to enable the appli-
cation of the particular unification rule on the abstract layer as well we can use
primitive substitution rule Prim in connection with rule Subst in order to introduce
the logical connective = at head position, i.e., we get the abstract unification con-
straint [H; U™ = H, U”]¥. The remaining argumentations are now analogous to
the corresponding ones discussed in 4.12.

(2) The proof is by induction on the length of derivation Aj. The base case is trivial and
in the induction step we first employ statement (1) and then the induction hypothesis. O

5.5 Completeness

We first analyse Henkin completeness of the extended calculus EPp. The calculi Py and EP
are then examined in Subsection 5.6.

Before we present the Henkin completeness theorem 5.27 for EPy, we first adapt the two
lemmata 4.15 and 4.15. The first one compares refutability of clause sets in head-normal
form with the refutability of clauses in fn-normal form, and the second one discusses some
important refutational properties.

Lemma 5.15 (Head-Normal Form). Let ¢ be a set of clauses. If A : ®,,, Fer, O, then
A (I)~Lh }—gpfc O

Proof: The proof is analogous to lemma 4.13. In the induction step we additionally
have to consider the cases where r € {Para, Func', Fquiv'}, which are analogous to the cases
where r € {Prim} UCNF.

(One can also prove the other direction, which is not needed in this thesis.) O

Lemma 5.16. lLet ® be a set of clauses and A, B be formulae. We have that:
1. If® % [A]T Fep, O and @ % [B]” Fgp, O, then ® x [AV B]” bgp, O.

2. If © x[A]T % [B]F bgp, O and & « [A]" « [B] bgp, O, then ® « [A & B]F

5.5. COMPLETENESS

Proof: Analogous to lemma 4.15. The new rules do not affect the argumentations. O

The main completeness proof of calculus EPy, (cf. 5.27) will employ a generalised paramod-
ulation rule G'Para that is allowed to operate also on non-proper clauses, but which only
rewrites identical terms and employs only unit equations instead of conditional equations.

Definition 5.17 (Generalised Paramodulation Rule).
The generalised paramodulation rule G‘Para is defined as follows (subterm A od T must not
contain free variables that are bound outside):

[T[Ag]*vC [A="B]
[T[B]]*vC

G Para

This rule is not restricted to proper clauses and is furthermore allowed to operate on unifica-
tion constraints. Thus, GPara generalises rule Para. On the other hand G Para also restricts
Para as unification is not employed and thus only identical terms can be replaced by apply-
ing this rule. Furthermore, the second premise clause is assumed to consists only of a single
positive equation literal.

We want to point out, that rule GPara is especially designed for the completeness
proof 5.27 to ensure the abstract consistency property V?, and the only reason why we
introduce the latter restriction for rule GPara is, that we want to ease the proofs of the
lemmata below as much as possible.

Rule G Para will be proven to be admissible® in calculus Py, which completes the com-
pleteness proof. For the proof of the admissibility of rule GPara (in fact we even proof a weak
derivability property) we employ additional generalised calculus rules: generalised resolution,
factorisation and primitive substitution, which are also admissible or even weakly derivable.
Instead of formulating these rules as general as possible, we again (analogously to rule G Para)
restrict ourself to the structures that are needed for our completeness proof.

We want to point out that the investigation of the generalised calculus rules also prepares
the investigation of a respective non-normal form calculus.

Definition 5.18 (Generalised Resolution Rules).
The generalised resolution rules G Res;, GResy, and GRess are defined as follows (for all
rules we assume «, 3 € {T, F'} with a # 3, and for G Resy we assume that Y ¢ free(A)):

(A TV C [Agy KEPVD a#§

G Res
(C'V D) g 57 1
A, Y**vC [X, T'PVD a#f
(G Res,
(CV D) a/x 7777
A, TP*vC [X,Y")°VvD
[7y] [v] aF B GRess

(CV D) a/x 7777

“Remember the definition of admissible and derivable in our refutation approach: A rule r is called admis-
sible in one of our resolution calculi R, iff adding rule r to R does not increase the set of refutable formulae.
Furthermore, a rule r is called derivable in R, iff each application of rule r can be replaced by an alternative
derivation in R.

73

CHAPTER 5. EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

74

These rules are not restricted to proper clauses and in this sense they extend rule Res. But
the new rules are defined within special contexts only, and in this sense they also restrict the
rule Res.

Definition 5.19 (Generalised Primitive Substitution Rules). The generalised primi-
tive substitution rule is defined by (H' is a new free variable)

—or (VH))or AX. X ify=o
\% ify=0—o0

([H T,)* VC)ig/m

This rule is not restricted to proper clauses, but note that it applies very special instantiations
only and that these instantiations are less general as usual partial bindings. E.g., the usual
imitation binding AX,. ~(Q"' X) is combined with the subsequent projection binding AY. Y
for Q1, such that we get AX,. =X, or simply = as combined binding. An imitation binding for

[H T,]*VC GE{

G Prim

Il is avoided as it is not needed in the completeness proof, i.e., the proof that the generalised
resolution rules — and thus the generalised paramodulation rule — are weakly derivable in

EPp.

Definition 5.20 (Generalised Factorisation Rule). The generalised factorisation rule

G'Prim is defined by
[Al*V[B]*V(C A, =, B,

([A]* v C)s

This rule is not restricted to proper clause but only factorises syntactically unifiable literals.

GFac

We will now show, that all our generalised calculus are in a weak sense — modulo sub-
sequent clause normalisation and a kind of lifting — derivable in calculus £Pg. The proof
for the weak derivability of GPara thereby employs the generalised resolution rule G Res;.
G Resy; and GRess are only needed to ensure the weak derivability property for the gener-
alised resolution rules itself. This also holds for the generalised factorisation and primitive
substitution rule.

Remark 5.21. One could omit all the generalised rules and prove the crucial substitutivity
property V7 in the main completeness proof of £Py.. Most likely nested induction proofs will
then be needed. Thereby we would loose clarity and also the interesting information on the
derivability of the special form generalised calculus rules defined above.

Lemma 5.22 (Weak Derivability of GFac). Let Ci,Cy be clauses and D be a proper
clause. If Ay : C; FOF% Cy bonr D, then there is a derivation A, : Cy Fep, D.

Proof: The proof is by induction on the length of the CNF-derivation. In the base case
the clauses C; and Cy must be proper, such that we can employ the non-generalised rules Fac
and then full higher-order unification UNZ to replace GFac. In the induction step at least
one of the literals of clause rest C' must be non-proper. Without loss of generality we can
therefore assume, that the first step in the CNVF derivation operates on one of the literals
in C'. We can now switch this first CVF-step with the application of GPara and apply the
induction hypotheses, which leads to the assertion. We want to point out, that we need to
employ the conventions stated in Remark 4.19 in this proof. O

5.5. COMPLETENESS

Lemma 5.23 (Weak Derivability of GPrim). Let Ci,Cy be clauses and D be a proper
clause. If Ay : Cy pGPrim ¢, Fevre D, then there exists a substitution o and a derivation
Ay :Ci Fep, £, such that £ =, D.

Proof: Analogously to G'Fac the proof is by induction on the length of the CANF-derivation.
In the base case the clauses C; and Cy must be proper, and thus for all instantiations we can
employ the normal primititive substitution rule Prim instead. Note that the partial bindings
introduced by Prim are more general than the quite special instantiations of rule G Prim, and
consequently in all this cases we have that the result of Prim is indeed more general than the
application of GPrim. The induction step is analogous to the respective argumentation for
G'Fac in lemma 5.22 above. O

Lemma 5.24 (Weak Derivability of GGRes;, GResz, and G Ress).

1. Let Cy,C2,Cz3 be clauses and Cy be a proper clause, such that Ay : {C1,C2} F C3 FyGrac)
Ca Fenre D forr € {GResy,GResy, GRess}. If both resolution literals of the generalised
resolution step (i.e., the resolution literals in Cy and Cy) are proper, then there exists

AQ : {Cl,CQ} "gpfc D.

2. Let C1,Cq,Cs,Cq be clauses and D be a proper clause, such that Ay : {C1,C2} F"
Cs FiGFac) Ca Fenr D for r € {GResi,GResy,GRess}. Then there ervists a substi-
tution o and a derivation Ag : {C1,Ca} Fep,, €, such that £, =, D.

Proof:

(1) The proofis by induction on the length of the CNVF-derivation. In the base case the clauses
C1 and Cy must be proper (i.e., all literals and not just the resolution literals are proper) and
thus the application of the generalised resolution rule can be replaced by an application of the
ordinary resolution rule Res and subsequent eager unification. Furthermore the GFac steps
can be replaced by an EPj. derivation as guaranteed by lemma 5.22.

In the step case we simply switch? the generalised resolution step with the first clause
normalisation step (which is obviously applicable either to C; or C; as well and does not
operate on [A]T or [B]T as these literals are assumed to be proper). The assertion then
follows by induction hypotheses.

(2) The proof is by induction on the number of logical connectives in the resolution liter-
als. In the base case, where both resolution literals must be proper, the conclusion follows
immediately by (1). In the induction step we examine the three rules separately:

G Res;: Note that in this case the clauses {C1,Cs,C3} are of form C; : [A5, T2]* V C,
Ca : [Ayoo X21PV D, and Cs : (C'V D) xm), where X7 ¢ free(A). We have to consider the
following cases: [Az_, T_;L]CY can be (i) proper (i.e., the logical connectives occur not at head
position), (ii) of form (a®): [V Ty Tg]* for n = 2, (iii) of form (e*): [= T]*, (b*): [II T]*,
(e¢*): [(Vv M) T]* for n = 1, or (iv) of form (a*): [M]?, (b*): [I1 M]*, (¢*): [V M NJ]* for
n = 0. As representatives we discuss here the cases where [Ay_,, TZ]* is of form (iv)(c?):
[V M N7 for n = 0, (iii)(b7): [IT T]7, and (iii) (b™): [IT T]F for n = 1. Note that case (i) is
trivial and follows by (1).

“Note that we here need to employ the conventions of Remark 4.19.

75

CHAPTER 5. EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

76

(iv)(cT) Tn this case clause Cy must be of form [v M NJF v D. We first perform the
following clause normalisation steps:

C;:[VMNIFvD

T Vi,V
G:VMN've Co:[M)F'vD LT
C IMTVINTVC Y and Cr:[NJFVD

Thus, we can derive C3 (and consequently Cy) also from clauses {Cs,Cg,C7} with G Resy:

Ci:[VMN]TvC T Co:[VMNFvD

\%
Cs: M]IVINTve Y Co:M"VD G VMNPV D
€S
Cs:[N]TVCVD ! CoN"VD T
C32(}'VD esy, ac
: CNF
Ca

By induction hypotheses (applied to the latter application of G Res;) we know that there is
a derivation of the form

such that Cj is more general than C4. Our aim is to apply the induction hypotheses now also
to the first application of GResy, but unfortunately the preconditions are not met, as Cg is
not necessarily a proper clause. Therefore we first apply lemma 5.13, which gives us that

Cy Cy

Cs C Ce G Res; CSCJ G Res;
8 8
i CNF CNF C2 yF
D1 D, Cr 'r
: EPy:
Ci

where CNF(Cs) = {D1,...,D,}. The preconditions for the induction hypotheses are now met
for Dy, ..., D, and by applying the induction hypotheses for n times we get

C_l T C_2 F Ci T C_2 F
C VG eV G
L EPy L EPy

D] D,

such that the D! (i =1,...,n) are more general than the D;. And as we already know that
{D1,..., Dy, Cs} Fer, Cj we get with the lifting lemma for ER (cf. 5.14), that there must
be a derivation {Dj,...,D;,,Cs} Fer, Cf, where C{ is more general than Cj and C4, which
completes the proof.

5.5. COMPLETENESS

(iii) (bT) Obviously we have that (note that C, must be of form [T X]¥ v D)

Cr: [T Toso]"VC - Co: [l Xoso]" VD
Cs:[TY,]TvC i Ce:[X S.]FVvD
Cs 1 (CV D)ryx.,s/v]

. CNF
Ca

HF
GR@SQ

In this derivation Y is an new variable and S a new Skolem term of appropriate type. Induc-
tion hypotheses is applicable and we get that

C:NT"vCe - C:[X]TVD
Cs:[TYIFvC | Co:[XSTvD !
: P
Ci

where C} is more general than C4. This proves the assertion.
(iii) (") Obviously we have that (note that Cy must be of form [II X]¥ v D)

Ci:[ll Too,)F VO - Cy: [l Xouol' VD
Cs:[TS,]TvC Ce:[X Y,]FVD
Cs : (CV D)r/x 5/v)]

. CNF
Ca

HF
GR@Sg

where Y is an new variable and S a new Skolem term of appropriate type. Induction hy-
potheses is applicable and we get that

C:uT"ve Gl X]TvD
Cs:[TS]FvC CG:[XY]TVDH
. P
Ci

where C} is more general than C4. This proves the assertion.
G Resy: In this case, the clauses {C1,C2,C3} are of form C; : [A Y7]*V C, Cy: [X TPV
D, C3: (CV D)[A/X,W/Y_n]a where n € {0,1}. The argumentation is similar to the above

case for GResy, and we have to consider the following cases: [A Y] can be (i) proper, (ii)
of form (a®): [V Y1 Y3]® for n = 2, (iii) of form (a®): [= Y]?, (b*): [I1 Y]?, (¢*): [(V M) Y]®
for n = 1, or (iv) of form (a”): [M]*, (b%): [II M]?, (¢*): [V M NJ” for n = 0. Case
(i) again follows immediately by (1), as both resolution literals must be proper. And as a
representative for the other cases we exemplarily discuss the induction step for (iii)(aF), i.e.,
in this case the two resolution literals [A Y"]* and [X T7]?) are of form [(= Y)]¥ and [X T]".

77

CHAPTER 5. EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

78

We have that
Cy:[XT]TVD
C:[-YiFve G (X TV D)y, ~(xv)/x]
Cs:[Y've Cr: ([T]F vV D)4
Cs: (CV D)-/x1/7]
. CNF
on

G Prim
G Prim
/X] GRESQ

By Induction hypotheses we get that

C:[XTI'VvD
Ci:[-Y)FvC p Co : ([T V D)y, —/x]
Cs:[Y]"ve Cr: ([T]" V D)oy x]
: &Py
Ci

G Prim

—

where Cj is more general than C4. By applying weak derivability of GPrim (cf. 5.23) two times
in connection with the lifting lemma for &P (cf. 5.14), we now get that {C1,Ca} Fep, CY',
where Cj’ is obviously more general than C4, and which proves the assertion.

G Ress: In this case the clauses {C;,Cs,C3} are of form C; : [A T7]*V C, Cy : [X Y7V
D, C3 : (CV D)[A/X,W/W]v where n € {0,1}. We have to consider the following cases
(analogous to G'Res;): [A5, TZ]* can be (i) proper (i.e., the logical connectives occur not
at head position), (ii) of form (a®): [V Ty Tg]* for n = 2, (iii) of form (a”): [= T]*, (b°):
[II T]*, (¢*): [(V M) T]* for n = 1, or (iv) of form (a®): [~ M]*, (b*): [II M]*, (¢*):
[V M NJ]* for n = 0. Case (i) again follows by (1). As a representative for the other cases
we briefly sketch induction step for (iii)(c™), i.e., the resolution literals [A ¥7]* and [X Y7]?
are of form [(V M) T]* and [X Y]T. We first employ rule GPrim and obtain

Co:[XY]"VD
Cs (v H) YTV D) (v my/x)

GPrim

The rest of the proof is analogous to the case (iv)(cT) for GRes; as discussed before. The
main difference is, that we additionally have to get rid of the initial G'Prim step here, which
can be done analogous to the case discussed for GResy above. O

The following paramodulation lemma now shows, that the generalised paramodulation rule
G Para is weakly derivable in EPp, too. The proof employs the (weakly derivable) generalised
resolution rules GRes; and G Ress.

Lemma 5.25 (Weak Derivability of GPara).
1. Let Cy be a clause and Cy be a proper clause.

(a) IfCy : [A]*VD and Cy : [A = B]T, then there exists Ay : {C1,C2} Fep, D : [C]*VE,
and a substitution o, such that D, =, [B]*V D (i.e., D is more general than the
clause we would obtain by a respective generalised paramodulation step)

5.5. COMPLETENESS

(b) If G+ [Ays0 T21*V D and Cy : [(Ayo, X7) = (Byoo X_ﬁ)]T,_where Xn ¢
free(T2) U free(A), then there erists Ag:_{C1,C2} Fep, D : [C, D2V E and a

substitution o, such that D, =, [By, T2V D.

2. LetCy : [T[A]]*VD, Cy : [A = BT and Cs : [T[B],]*VD, such that there is a derivation
Ay : {Cy,Co) FEP e Cy bor Cy, for a proper clause D derived by clause normalisation
from Cs. Then there exists a derivation Ay : {C1,Cs} Fepy D' and a substitution o, such

that D! = D.
Proof:
(1) We first concentrate on case (1a) and consider the following CN.F-derivation:
Cy:[A =B]!
2}]] = Equiv’
Cs:[A] & [B]
CNF

Depending on the polarity a of literal [A]* in clause C1, we now apply the generalised resolu-
tion rule G Res; either to C; and Cs, or to Cy and Cg, thereby deriving clause C3 : [B]*V D. By
weak derivability of G Res; (cf. 5.24(2)) we get a derivation A; : {C1,C} Fep, D as required,
i.e., D is more general than [B]* VvV D. The case (1b) is analogous as

Cy: [(Aﬁ—m X—%z) = (BV—H’ 3)]T
Ca: [(Aqmso XT) & (Bysy X7)]"

Co : [Ay—so XJ]TV [Baso X3)]7

17V [Byoso X717

and thus the application of G Res; to Cy and Cs, or to Cy and Cg derives clause C3 : [By, ﬁ]av
D. Again the assertion follows by weak derivability of GRes; (cf. 5.24(2)).

(2) The tedious proof is by induction on the length n of the embedded CNF derivation
C3 }_c/\/}' C4.

n =0 : In the base case C3 must be a proper clause, i.e., the clause rests) consist only
of proper literals and the literal [T[B],]* is proper. We now consider the possible cases for
literal [T[A]]*.

1. [T[A],]7 is a proper literal and C; is a proper clause. Instead of generalised paramodu-
lation we can apply in this case the standard paramodulation rule Para to Cy in order
to derive Cq by Ay : {C1,Co} FP22 [T[B],]T Vv Dy V[A = A]F 17 Cy. In this case o
is the empty substitution.

Fis not a unification

2. [T[A],]F is a proper literal and C; is a proper clause. If [T[A],]
]F

constraint, then the argumentation is analogous to the above case. In case [T[A],
is a unification constraint, it is (without loss of generality) of form [T[A] = Ty]F.
In this case we employ a derivation that is analogous to the one already discussed in

79

CHAPTER 5. EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

remark 5.2:

Leib(Cy),CNF : Dy :CV[p Ti[A]]T
Dy:CV[p Ty
Para(Dy,Cy), Triv: Dy :CV[p T:[B,]]T
Res(Ds, Dy), Fac, Triv: Ds:CV DV[(p Ti[B,]) = (p T2)]"
Dec(Dy), Triv: Ds: CV DV [T[B,] = Ty

Again we have that o is the empty substitution.

3. [T[A],]” is not a proper literal, i.e., has a logical connective different from = at head
position. We consider the possible subterm positions p of term A in T (noted T[A],).

As this would contradict our assumption ([T[B],]* is a proper literal), we know that

for literal [T[A],]” the following cases are impossible: [- (M[A],)]*, [V (M[A],) N]%,
[VM (N[A],)]* and [II (M[A]p/)]". The remaining cases are:

(a) Literal [T[A] has form [~ M]*, [VM NCY or [IT M]*. Then C; is of form

[(-M) = B]T, [(v M N) = B]T and [(I1 = B]7 respectively. For all these
cases the assertion now follows by (la)

A A
——
(b) Literal [T[A],]* has form [- vV M NJ* M]* or [(V M) NJ~.
Then analogous to above Cg is of f01m [~ =]T, [V = B]7, [H = B]? and

(VM) = B]7 respectively. Applying positive extensionality rule Func’ to these
clauses leads to [(= X) = (B X)]T, (v X V)= B X V)], (1 P) = (B P)|"
and [(VM X) = (B X)]T. For all these cases the assertion now follows by (1b).

n > 0 : In the induction step we know that literal [T[B],]* must have a logical connective
at head position, as otherwise the length of the CNVF-derivation C3 Fear Cy is zero. We now
distinguish the following two cases:

1. At least one of the literals in D is not proper. In this case, it is obvious that we can
reorder the CNF-derivation, such that one of the clause normalisation steps that modifies
D comes first.> Without loss of generality, let us assume that CNF-rule r transforms
in step k& (1 < k < n) of derivation Ay the clause rest D into D'. Then we can reorder
derivation A, and obtain a derivation Ay : {Cy,Cqy} FET Cy 7 L+ [T[B],]*V D' Fenr
C4, such that rule r is applied first. Obviously, we can also switch the first two steps
in Az, such that we get Ay : {C1,Co} F" {C} : [T[A],]* V D', Co} FEP™ 0 CL v Ca.
Now induction hypotheses is applicable and we get that there is Pp-derivation Aj :
{C1,Ca} Fep,. Cy-

2. D consist only of proper literals. We again examine the structure of literal [T[A],]*
and distinguish between all possible subterm positions p of term A in T.

(a) Literal [T[A],]* is of form [- (M[A],)]?, [V (M[A],) N], [V M (N[A],/)]?, or
[IT (M[A],/)]*. As the proofs are analogous we only present the case where C; is of
form [V M (N[A],/)]" V D. Consider now derivation Ay, which obviously applies

5Note that we here need to employ the conventions of Remark 4.19.

5.5. COMPLETENESS

the CNVF-rule VT first within the normalisation process (note that D contains only
proper literals). Thus we have A : {Cy,Cy} FGPara ¢4 HVT ¢4 [M]T v [N[B],]" v
D Fenre Cq. We can obviously switch the first two steps in Ay, such that we get
an alternative derivation® A/ : {Cy,Co} FY" {C! : [M]T v [N[A],)TV D,Cy} FGFara
Ch Fenr Cq. By induction hypotheses we now get that there is a derivation Al :
{C1,Ca} FVT {C},Ca} Fep, Ca.

A
(b) Literal [T[A],]* is of form [- M]%, [V M N]* or [Il M]*. Then C; is of form

[(-= M) = B]*, [(VM N) = B]* or [(Il M) B] . In all cases the assertion
follows 1mmed1ate1y by (1a)
A A
——

(c) Literal [T[A],] is of form [- M NJ M]~ or [(V M) NJ°.
Then C3 is of form [- = B]*, [V = B] ll =B]" and [(V M) = B]T respectively.
Applying positive extenswnahty rule Func to these clauses leads to [(— X) =
(B X)) [(v X Y) = (B XYl [(II P)= (B P and [(V M X) = (B X)]*.
For all these cases the assertion now follows by (1b).

As [0 is just a special proper clause we immediately get the following corollary.

Corollary 5.26 (Admissibility of Generalised Paramodulation Rule).
The generalised paramodulation rule GPara is admissible in calculus EP;..

Theorem 5.27 (Completeness of £Pr). The calculus EPy. is complete with respect to
Henkin models.

Proof: Let Iy be the set of X-sentences which cannot be refuted by the calculus EPy
(Iz ={® C cuff,(¥)|®y /er, O}), then we show that I is a saturated abstract consis-
tency class for Henkin models with primitive equality (cf. Definition 3.18). This entails
completeness with the model existence theorem for Henkin models with primitive equality
(cf. Theorem 3.29).

First we have to verify that I3 validates the abstract consistency properties V., V5, Vg, W,
Vas W, Va, W, V, and that g is saturated. For all of these cases, the proofs are identical
to the respective argumentations in theorem 4.16. The only difference is that we employ
lemmata 5.14 and 5.16 instead of 4.12 and 4.15. Thus, all we need to ensure is the validity of
the additional abstract consistency properties V,” and V;? for primitive equality.

VI ~(A="A)¢ 0.

[4

Vs IfF[A], € ® and A =B € ®, then & x F[B], € .

4

(V7)) We have that [A = A]F 17 (O, and thus (A =* A) cannot be in ®.
(V?) Analogous to the cases in 4.16 we show the contrapositive of the assertion, i.e., we
assume that there is derivation Ay : @, x [F[B],]7 Fgp, O, and then ensure that A, :

®. + [F[A]]T x[A = B]T ep, 0. Now consider the following EPp-derivation:

G Para

%Note that we here need to employ the conventions of Remark 4.19.

81

CHAPTER 5. EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

82

By Corollary 5.26 the generalised paramodulation rule G Para is admissible for calculus Py,
which guarantees, that there is a derivation Ay : @ % [F[A]]" x[A = B]” kgp, O, that does
not apply GPara. This proves the assertion. O

5.6 Theorem Equivalence

We shall now prove that &Py and £P; are theorem equivalent. Theorem equivalence of Py,
and &P is only presented as a conjecture.

Lemma 5.28 (Proper Clauses in P and EPy). For each non-proper clause C and clause
set @, such that ®* Fgp, C, we have ® Fep, C.

Proof: Analogous to lemma 4.20. In the induction step, the case for rule Para is treated
analogously to the cases r € {Res, Fac, Prim}, and the rules Func’ and Fquiv’ are treated
analogously to the unification rules. O

As [0 is also a proper clause we immediately get the following corollary:

Corollary 5.29 (Theorem Equivalence of P and EPf). The calculi EPy. and EP; are
theorem equivalent.

Conjecture 5.30 (Theorem Equivalence of P and EPy. (or £Py)). The calculi EP and
EPy. (or EPy) are theorem equivalent.

The proof for the latter conjecture will most likely be analogous to the proof of the
theorem equivalence for calculi €Ry. and ER. This conjecture also gains evidence by the
examples carried out with the LEO-prover [BK98b] for extensional higher-order resolution as
well as the new challenging examples for extensional higher-order paramodulation discussed
in Chapter 8.

Chapter 6

Extensional Higher-Order
RUE-Resolution: ERUE

6.1 Resolution on Unification Constraints

In this section we will extend the Resolution by Unification and Equality approach of Di-
gricoli [Dig79] to higher-order logic. The key idea of the resulting calculus ERUE is to allow
resolution and factorisation rules also to operate on unification constraints.! More precisely,
our approach allows to compute partial K-unifiers with respect to a specified theory F (where
F is given in form of a set of unitary or conditional equations in clause form in the search space)
by employing resolution on unification within constraint the calculus itself. This is due to the
fact that the extensional higher-order resolution approach already realises a test calculus for
general higher-order F-pre-unification (or general higher-order K-unification in case we also
add rule FlexFlex; cf. Remark 4.8). Furthermore, each partial instantiation can be applied to
a clause with rule Swubst. Finally, like in the traditional first-order RUE-resolution approach,
the non-solved unification constraints are encoded as still open unification constraints within
the particular clauses itself.

Remark 6.1 (Incompleteness of a naive RUE-Resolution approach). Similar to our
naive adaptation of the first-order paramodulation approach, we obtain a Henkin incomplete
RUE-resolution approach, if we do not additionally add the positive extensionality axioms.
This is illustrated by example EF?™® already used in the incompleteness proof 5.6 for EP.
In a naive ERUE approach, i.e., without positive extensionality rules, no single rule would be

applicable to the contradictory unit clause C; : [a = —a].

6.2 Basic Definitions

Similar to the approaches ER and EP discussed in the previous chapters, we further extend
the extensional higher-order RUE-resolution approach by adding rule FlexFlex and lifting the
single clause normalisation rules to calculus level.

Definition 6.2 (Extensional Higher-Order RUE-Resolution).

"The idea to resolve on unification constraints arose while discussing the necessity of Rule Leib within
extensional higher-order resolution with Frank Pfenning during a stay at Carnegie Mellon University.

83

CHAPTER 6. EXTENSIONAL HIGHER-ORDER RUE-RESOLUTION: ERUE

84

ERUE The calculus ERUE consists of the rules of calculus ER (see Figure 4.2) enriched by the
positive extensionality rules displayed in Figure 5.2. The most important aspect is that
we allow to resolve and factorise on unification constraints. Furthermore we want to
point out that unification constraints are assumed to be symmetric which could also be
formulated by the following rule:

C,:CVI[A=BJF
C,:CV[B=AJ

Sym

We employ this convention despite the fact that the symmetry rule Sym is derivable
(cf. remark 6.3) in ERUE — as well as in ER and EP — as it shortens and eases
derivations and is acceptable with respect to its complexity in practice.

ERUEs The extension ERUEs of calculus ERUE that employs full higher-order unification instead
of higher-order pre-unification is defined as ERUE; = ERUE U { Flex Flex}.

ERUE. The calculus ERUEs. that employs stepwise instead of exhaustive clause normalisation

is defined by ERUEs. = (ERUEN{Cnf}) UCNF.

We assume furthermore, that the result of each rule application is transformed into head-
normal form. A set of formulae ® is refutable in calculus ERUE, iff there is a derivation
A : &y Fege O, where &, = {[F]T|F € ®} is the set obtained from ® by simple pre-

clausification.

Remark 6.3 (Symmetric Unafication Constraints). The following derivation shows that

the symmetry rule Sym is derivable in ERUE (ER and EP):

Leib(Cy) : D, :CVp AT

D, :C'V [p B]F
Res(Dy,Dy), Fac,Triv: D3:CV[pB=pAl"
Dec(D3), Triv: Cy:CV[B=AF

Theorem 6.4 (Soundness of Extensional Higher-Order RUE-Resolution).
The calculi ERUEy, ERUE;, and ERUE are sound with respect to Henkin semantics.

Proof: Soundness of most of our calculus rules have already been discussed in lemmata 4.9
and 5.12. We additionally have to verify that resolution and factorisation on unification
constraints is sound wrt. Henkin semantics. Note that unification constraints are treated as
ordinary negative literals with a primitive equality symbol at head position. Thus, there is
nothing new to show here and we can employ the standard argumentation for soundness of
the resolution and factorisation rule. O

Lemma 6.5 (Proper Derivations). For each non-proper clause C, proper clause C', and
clause set @, such that ® xC Ferg,, C', we have that ® UCNF(C) Fep, C'.

Proof: Analogous to lemmata 4.10 and 5.13. It does not cause any problems that we
allow to resolve on unification constraints. O

6.3. LIFTING PROPERTIES

6.3 Lifting Properties

The clause normalisation lifting lemma 4.11 is not affected by the modifications to the calculus
and can be safely employed in the following lifting lemma for calculus ERUE. .
The proof of the adapted main lifting lemma is analogous to the one presented for ERy..

Lemma 6.6 (Lifting Lemma for ERIL}).
Let @ be a set of clauses, Dy be a clause and o a substitution. We have that:

1. For each derivation A, : @, I—}:,;Mfc D1, there exists a substitution &, a clause Dy, and a
derivation Ay : @ Ferg, Do, such that (D2)s = Dy.

2. For each derivation Ay : @, Fegg, D1 there exists a substitution o, a clause Dz, and a
derivation Ag : ® Fere, D2, such that (D3)s = D1. (Note that this claim is stronger
than: ® is refutable by ERUEs., provided that ®, is.)

Proof:

(1) ERUE, only slightly modifies calculus EPy. as it does not employ rule Para but a slightly
extended resolution instead. This does not cause new problems and the argumentation is
analogous to 5.14(1). The main idea is again to employ rule Prim in order to introduce
logical connectives at head position, such that the needed structure becomes available at the
abstract level as well.

(2) Analogous to 5.14(2) O

6.4 Completeness

Analogous to the Subsections 4.4 and 5.5, we analyse in this subsection Henkin completeness
of calculus ERUEs.. The calculi ERUE; and ERUE are then examined in Subsection 6.5. Like in
the case of extensional higher-order resolution, theorem equivalence between ERUE and ERUE.
has not been proven formally yet and will only be presented as a conjecture.

We first adapt the two lemmata 5.16 and 5.24. The former compares refutability of clause
sets in head-normal form with refutability of clauses in fSn-normal form and the latter one
discusses some important refutational properties.

Lemma 6.7 (Head-Normal Form).
Let @ be a set of clauses. If <I>¢/377 l—g;z,gfc O, then @, I—g/z,gfc O.

Proof: The proof is analogous to lemma 4.13. In the induction step we additionally

have to consider the cases where r € {Para, Func', Fquiv'}, which are analogous to the cases
where r € {Prim} UCNF. O

Lemma 6.8. lLet ® be a set of Y-sentences and . be the corresponding set of pre-clauses.
Furthermore let A, B be formulae and C,D be clauses. We have that:

1. If @+ [A]T Fere, O and @ [B]T Fere, O, then @4+ [AV B]T bege, 0.

2. If ® + [A]" « [B] beme, O and @, + [A]" + [B]! bepe, O, then 4« [A < B]F.

85

CHAPTER 6. EXTENSIONAL HIGHER-ORDER RUE-RESOLUTION: ERUE

86

Proof: Analogous to lemma 4.15 and 5.16. The new or slightly modified rules do not
affect the argumentations. O

As in Chapter 5, we will now show that the generalised rules GFac, GPrim, GRes,, G Res,
and G Ress are in a weak sense (modulo subsequent clause normalisation and a kind of lifting)
derivable in calculus ERUEs. Derivability of GRes; will then be employed to establish the
admissibility of generalised resolution rule GPara for calculus ERUE,. We will finally use
the latter result in the main completeness proof for calculus ERUE; to prove the crucial
substitutivity property V; of primitive equality.

Lemma 6.9 (Weak Derivability of GFac). Let Ci,C2 be clauses and D be a proper
clause. If Ay : Cq FOF Cy bonr D, then there is a derivation Ay : C; Fere, D

Proof: Analagous to the corresponding Lemma 5.22 for £Py.; resolution and factorisation
on unification constraints does not cause serious new problems. O

Lemma 6.10 (Weak Derivability of GPrim). Let C1,Cy be clauses and D be a proper
clause. If Ay : Cy FOP™™ Cy beyr D, then there exists a substitution o and a derivation
Ay : C1 Fere, €, such that & =, D.

Proof: Analagous to the corresponding Lemma 5.23 for £Py.; resolution and factorisation
on unification constraints causes no extra problem. O

Lemma 6.11 (Weak Derivability of GRes;, GResy, and G Ress).

1. Let Cy1,C2,C3 be clauses and Cy4 be a proper clause, such that Ay : {C1,C2} F" C3F(grac)
Cs Fenre D forr € {GResy,GResy, GRess}. If both resolution literals of the generalised
resolution step are proper, then there exists Ay : {C1,Ca} Fere, D-

2. Let Cy,C2,C3,Cq be clauses and D be a proper clause, such that Ay : {C1,C2} F"
Cs FiagFacy Ca Fevr D for r € {GResi,GResy, GRess}. Then there exists a substi-
tution o and a derivation Ay : {C1,C2} Fere, €, such that &, =, D.

Proof: The argument is analogous to 5.24 and resolution on unification constraints does
cause new problems. O

The following paramodulation Lemma 6.12 now shows that the generalised paramodula-
tion rule G'Para is admissible in ERUE;..

Whereas Lemma 6.12(1) is again analogous to Lemma 5.25(1), we can prove in 6.12(2)
only admissibility instead of the weak derivability property in 5.25(2). This is because in 5.25
we were able to reduce the applications of the generalised paramodulation rule either to the
generalised resolution rules and thus finally to the proper resolution rule Res or to the proper
paramodulation rule Para. Whereas the reduction to rule Res is analogous here as well, we
cannot employ the reduction to the proper paramodulation Para. Instead we have to show
that alternative reductions are possible which employ the RUE-resolution idea to resolve
against unification constraints. The latter causes the loss of the weak derivability property.
But fortunately admissibility is sufficient for our purposes.

Lemma 6.12 (Admissibility of Generalised Paramodulation Rule).

1. Let Cy be a clause and Cy be a proper clause.

6.{. COMPLETENESS

(a) If Cy : [A]*V D and Cy : [A = B]T, then there exists Ay : {C1,Cs)} Fere,, D -
[C]*V E, and a substitution o, such that Dy =, [B]*V D (i.e., D is more general
than the clause we would obtain by a respective generalised paramodulation step)

(b) If C1 : [A5s0 T2]*V D and Cy : [(Agoo X2) = (Byoo X2)]T where X2 ¢
free(T_;L) U free(A), then there exists Ay : {C1,Ca} Fere, D o [Cy—0 D_Z/L]o‘ v E

and a substitution o, such that D, =, [Bx_, TQ]CY Vv D.

2. Let C1[A/B]p be a clause that is obtained from clause C be replacing the occurrences
of term B at positions p € P by term A and let ® be a set of clauses. If Ay : ® %
Ci[A/Blp [A = B]" £¢P** & « C1[A/Blp « [A = B]" « C1[A/Blp\ (3 Fere, O, then
there is a derivation Ay : ® x [A = B]" Fere, O

Proof:
(1) For the cases (1a) and (1b) the proof is analogous to the corresponding argumentation
in lemma 5.25(1). The only difference is that we here employ Lemma 6.11 instead of 5.24.
(2) The proof is by induction on the length of Ay and the base step is the most complicate
one as we cannot reduce GGPara paramodulation steps to Para steps, but instead have to
replace them by pure ERUE;. derivations.

n=1:IfO¢€ ®+C,[A/B]p*[A = B] the assertion follows trivially. Therefore let us assume
that O = C1[A/B]p\(p}. Hence C1[A/B]p has form C{[A/Blp, V [T[A/B]p,]*, where
all but one literal must be flex-flex unification constraints. Without loss of generality
we assume that this is the literal [T[A/B]p,]*. Then the new clause Ci[A/B]p\(p
looks like C{[A/B]p, V [T[A/B]p,\(,1]% where position p’ in literal [T[A/Blp,\ (1]
specifies the position where the replacement has been taken place. Obviously this clause
must consist only of flex-flex unification constraints, and hence, polarity o must be F/,
as otherwise it would be different from 0. Thus, the literal [T[A/B]p, (1] is a
flex-flex constraint. We now consider the position p’ in literal [T[A/B]p,]¥, where
the generalised paramodulation step has been applied to. The first two possibilities
concentrate on replacements that include the head position in this literal.

o If p' specifies the replacement of the whole atom of the literal in focus, i.e.,
T[A/B]p, = A, then we get the assertion by (1a).

o If p' specifies the replacement of a proper prefix term of the atom T[A/B]p,
(i.e., T[A/B]p, looks like (A U”)), then we first apply the positive functional
extensionality rule Func’ for n-times to [A = B]’, thereby generating a proper
clause [A X7 = B X7]T. Now (1b) is applicable, which gives us the assertion.

Next we examine the cases where a proper subterm of the atom of [T[A/B]p,]" is
replaced. As the replacement must lead to a flex-flex unification constraint we already
know that [T[A/B]p,]" must be a unification constraint and thus must have form
[T:[A/B]p, = T2[A/B]P4]F-

e If p’ refers to proper subterm of either Ty[A/B]p, or T2[A/B]p,, then it must be
the case that the generalised paramodulation step was not necessary as the literal
[T[A/B]p,]" already is a flex-flex unification constraint and thus C;[A/B]p = O,
which trivially gives us the assertion.

87

CHAPTER 6. EXTENSIONAL HIGHER-ORDER RUE-RESOLUTION: ERUE

e Without loss of generality let us assume that p’ refers to a prefix of term
Ti[A/Blp,. We then know that [T{[A/Blp, = T2[A/Blp,]" must have form
[A (U[A/B]%4n) =H V[A/B]%Sm]F, where n,m > 0. As the replacement of A
by B introduces a flex-flex constraint, we know that term B must have a flexible
head, i.e., B has form (I RI), such that [> 0. Now consider term A: If the head
of A is a variable then again the replacement of A is not necessary as we already
have a flex-flex constraint without employing generalised paramodulation rule. If
on the other hand A has a rigid head, i.e., A has form (a W) for £ > 0, then the
proof is a bit more complicate as we have to construct a refutation using C1[A/B]p
and [A = B]? without employing generalised paramodulation. Before discussing
this derivation let us sum up the structural restrictions that are given: The clause
C:[A/Blp looks like C{[A/Blp, V [((« WF) (U[A/BJ,)) = (H V[A/BJ,)l
and clause [A = B]” has form [(¢ WF) =%~ (F R]T, where a is a predicate
constant and F a predicate variable of appropriate type. We apply rule FlexRigid
to the former clause and positive extensionality rule Func’ for n-times to the latter
clause, such that we get:

G2 CilA/Blp, v [((« WE) (UIA/BE;,)) = (H VIA/BTE, I
VIH = Z™. a (K Z™)k+n)l
Cy: [(a WF) Y7 =0 (F RY) Y77

The variable K in Cy and the variables Y in C3 are new free variables. Next,
we instantiate the imitation binding in clause Cy with rule Subst. (Thereby we
assume that variable H does not occur in any of the literals in C{[A/B]p,. If on
the other hand H occurs in C;[A/B]p,, then we only get a problem if H occurs
at literal head positions. In these cases we can use an analogous argumentation to
the following one for these literals as well.)

Cs:CiIA/Blp, V [(« WF) (UTA/Blp,) =* (a(K VIA/BJ5,)]

By resolving? between C4 and C3 we get (note that the unification terms of both
unification constraints must have the same type)

Cs : C{[A/Blp, v [((« WF) (UTA/BT3,) =* (a(K VIA/BJ,_)*+")
— (o WF) V7 =2 (I R) Vo)F
We now apply the decomposition rule (2 times) and immediately delete the trivial
pair [===]" with rule Triv.

Cs: Ci[A/Blp, v [((« W*) (U[A/B],)) = ((a W¥) Y7)I
V[(a(K V[A/B]p)*+) = ((F R)) Y™))¥

We know that C{[A/B]p, contains only flez-flez-constraints and that I and Y™ do
not occur in them. And as the latter two unification constraints of C5 are obviously
solvable with substitution

[(T[A/Blp,)/V" AZ" . (a(K V[A/BJp,)+")/F]

2We do not need to switch the latter unification constraint here as Cs and Cs already have the right
constellation. But generally it might be necessary to employ the symmetry rule to clause Cs.

6.{. COMPLETENESS

we know that Cs by O, which proves the assertion.

n > 1: In the step case we consider the second derivation step in Ay : ® xC1[A/B]p * [A =
B|T Pt & 4 C1[A/B]p «C1[A/Blpy (53 " @ +Ci[A/Blp xCi[A/Blpy (1 %Ca Fere, O,
i.e., we focus on the first step following the generalised paramodulation step. If the
premise clause(s) within the application of rule r are different from Ci[A/B]p\ () we
can obviously switch the first two derivation steps of Ay, such that we get the assertion
trivially by employing the induction hypothesis.®> This even holds if the application of
rule r indeed uses C1[A/B]p\(p} but operates on a literal that was not affected by the

initial generalised paramodulation step, i.e., on a literal different from the position where
p refers to. Thus, for all of the following cases let us assume that clause C1[A/B]p\) is
of form [T1[A/B]pn (,13]* VC{[A/B]pn (for respective position lists £/, P and position
p’, i.e, p’ and p are equal is one removes the first element from position p, specifying the
subterm that was modified within the initial generalised paramodulation step) and that
r operates in the second derivation step on literal [T1[A/B]pn,1]*. Note that under
this assumption the non-modified original clause C;[A/B]p is of form [T1[A/B]p/]* V
Ci[A/B]pn.

r € {Res, Fac}: As both rules do not depend on the term structure of the resolution or
factorisation literals, we can in both cases switch the initial derivation steps, such
that the assertion easily follows by induction hypothesis. We will briefly illustrate
this here for rule Res; the argumentation for Fac is analogous. Let us assume that
there is a clause Cy € ® that is of form [T,)” vV C} and that

(T2 [A/Blpn " V CA/Blpo [Ta)V €4
Ci[A/Blpn v Cy V [(T1[A/Blpn) = Tl

Res

Then an analogous resolution proof step is possible between C; and the non-
modified clause [T1[A/Blp/]* V C{[A/B]lpn

[T\[A/Bp]* v Ci[A/Blpr [Ta)’ v C4
CiTA/Blp v C3 v [(T1[A/Bp) = To)"

€S

We can obviously apply generalised paramodulation rule G'Para to the latter clause
(at position p’ in the left term of the new unification constraint) thereby generating
exactly the same clause as in the above original derivation.

Ci[A/Blpn vV Cy V[T, = (T, [A/B]p/)]" [A=B]"
Ci[A/Blpr vV CyV [(T1[A/B]pn) = Ta]”

G Para

Now the assertion follows by induction hypothesis.

r € {Prim, Func', Equiv'}: The three cases are similar and therefore we only discuss
rule Prim here. Thereby we consider the position p’ of the subterm that has been
rewritten in the generalised paramodulation step. (i) If the position p’ in literal
[T1[A/B]pn(pry]” refers to a proper subterm, then we get the assertion analogously
to the cases for r € {Res, Fac} above by switching the first two derivation steps

“Note that we here need to employ the conventions of Remark 4.19.

CHAPTER 6. EXTENSIONAL HIGHER-ORDER RUE-RESOLUTION: ERUE

90

and employing the induction hypothesis. (ii) In the other case position p’ refers to
a flexible prefix term of T1[A/B]pn 1, i.e., this literal has form

A

N

(. (..(HUy...Up... U (+)

for 0 < k < n. In case k = n we can replace the initial paramodulation step
in Ay by an alternative one not employing generalised paramodulation by (1a)
and get the assertion by induction hypothesis. In case k¥ < n we first apply pos-
itive extensionality rule Func’ for (k — n)-times to the clause [A = B]? leading
to [A Yk = B Y*=7]T. This time we can employ (1b) to replace the initial
paramodulation step in A; by an alternative one. Again, the assertion follows by
induction hypothesis.

r € UNZ 1f position p' in literal [T1[A/B]pn(,n]* refers to a flexible prefix term as
illustrated in () above, we get the assertion analogously to the previous case by
(1a) and induction hypothesis, or by (1b) in combination with an appropriate
modification of clause [A = B]”T with rule Func’. If on the other hand position p
refers to a proper subterm of [T [A /B]pn (], then we get the result by employing
derivation that is analogous to one already employed in Remark 5.2 (which shows
that paramodulation into unification constraints is derivable).

r =Cnf: We again differentiate between the following two cases: (i) position p’ in
[T1[A/B]pn(p]* refers to proper subterm of the literals atom and (ii) position
p'in [T1[A/Blpn(py]* refers to a prefix term of the atom (like in (x) above).
In case (i) the assertion follows by induction hypothesis after switching the first
two derivation steps.?. This is possible as derivation step r is obviously also ap-
plicable to the initial clause first, such that an subsequent application of rule
Para leads to Cy. In case (ii) the argumentation is analogous to the case (ii) for
r € {Prim, Func', Equiv'} discussed above, i.e., we get the assertion by employing
either (1a) and induction hypothesis or by (1b) in combination with an n-times
application of rule Func’ to literal [A = B]T and induction hypothesis.

O

Theorem 6.13 (Completeness of ERUEL). The calculus ERUE. is complete with respect to
Henkin models.

Proof: Let Iy be the set of ¥-sentences which cannot be refuted by the calculus ERUE
(I = {® C cuff,(X)|®y Vere, O}), then we show that I3 is a saturated abstract consistency
class for Henkin models with primitive equality (cf. Def. 3.18). This entails completeness with
the model existence theorem for Henkin models with primitive equality (cf. Theorem 3.29).

First we have to verify that Iy validates the abstract consistency properties V,, V., V3,
Wi Va, W, Va3, W, V; and that I3 is saturated. For all of these cases the proofs are identical
to the corresponding argumentations in theorem 4.16. The only difference is that we employ
the lemmata 6.6 and 6.8 instead of 4.12 and 4.15. Thus, all we need to ensure is the validity
of the additional abstract consistency properties V" and V;’ for primitive equality.

*Note that we here need to employ the conventions of Remark 4.19

6.5. THEOREM FEQUIVALENCE

Vi ~(A="A)¢ 0.

[4

Ve If F[A], € ® and A =B € @, then ¢ x F[B], € I},.

(V7)) We have that [A == A]" F17% O, such that —(A =* A) ¢ &.

(V) Analogously to 5.27 we show the contrapositive of the assertion. Therefor we assume,
that there is derivation A; : ®, * [F[B]p]T Fere, O, and show, that there exists Ay :
@ * [F[A],)T *[A = B]T ere,, 0. Consider the following ERUE.-derivation:

[F[A]]" [A=B]"
[F[B,]"

G Para

By lemma 6.12(2) we know that the generalised paramodulation rule GPara is admissible
for calculus ERUE.., such that must be a pure ERUE;. derivation Ay : &y * [F[A])]T * [A =
B]” Fere,, O that avoids rule G Para. O

6.5 Theorem Equivalence

We now prove that ERUE, and ERUEs are theorem equivalent. Theorem equivalence of ERUES
and ERUE is then only presented as a conjecture.

Lemma 6.14 (Proper Clauses in ERUE and ERUE;). For each non-proper clause C and
clause set @, such that ®x l—g;z,gfc C, we have that ® l—g/z,gf C.

Proof: Analogously to lemmata 4.20 and 5.28. Resolution on unification constraints does
not cause additional problems. O

As [is also a proper clause we immediately get the following corollary:

Corollary 6.15 (Theorem Equivalence of ERUE, and ERUEs). The calculi ERUEs and
ERUE; are theorem equivalent.

Conjecture 6.16 (Theorem Equivalence of ERUE and ERUE, (or ERUEs)). The calculi
ERUE and ERUE;. (or ERUEs) are theorem equivalent.

Again the author expects that the proof for this conjecture will be analogous to the proof of
the theorem equivalence for calculi ERy. and ER (or EPy. and EP). This conjecture gains some
evidence by the examples carried out with the LEo-prover [BK98b] for extensional higher-
order resolution as well as the new challenging examples discussed for extensional higher-order
paramodulation in Chapter 8. There is no example known to the author that demonstrates
the necessity of rule FlexFlex.

91

Chapter 7

The LEO-System

In this chapter we present the theorem prover LEO, which realises the extensional higher-order
resolution approach ER. LEo is implemented in Cros [Ste90], a object-oriented extension of
Lisp, and its input language is POST, which is also used in the QMEGA-system [BCFT97].

Despite the theoretical completeness results on &R, the most recent implementation
(LEO03) of LEO is not Henkin complete. The main lesson learned from the implementation
and the case studies is that developing a theoretically Henkin complete approach to mechanise
classical type theory is one thing, but implementing it, such that non-trivial theorems can be
proven in practice, is certainly a much more challenging task.

The difference between unification and proof search disappears in extensional higher-order
theorem proving and all rules have to be integrated at the same level in order to realise ar-
bitrary calls from the overall proof search to unification and from unification again to the
overall proof search. Implementing calculus R in such a theoretically Henkin complete but
practically naive way is certainly not very complicated, however, the search spaces generated
in such a system would be enormous. Therefore LEO employs the extensionality rules only
in a restricted way and furthermore guides their application by additional heuristics. This
enables LEO to prove simple theorems which require the application of the extensionality
principles, such as the theorem discussed in Subsection 7.2.4, which is currently not auto-
matically provable in any other higher-order theorem prover. The drawback is, that these
restrictions and heuristics are the main sources of LEO’s incompleteness.

[.Leko adapts well known ideas and techniques from first-order automated theorem prov-
ing and modifies them with respect to the special requirements and aspects of the exten-
sional higher-order resolution approach. More precisely, LEO is based on an extended SOS-
architecture that provides two additional stores. The two new constructions are the store of
extensionally interesting clauses and the store of unification continuations; the ideas of these
concepts will be illustrated in detail below.

The most important feature of the [LEo-system is that it employs, like traditional first-
order resolution, eager unification as a kind of filter, i.e., LEO tries to get rid of newly
generated clauses with a non-solvable unification constraint as early as possible. The main
problem thereby is the undecidability of higher-order (pre-)unification and the general need
for recursive calls from unification to the general refutation process in order to unify terms
also with respect to the extensionality principles. A compromise between completeness and
practicability is needed for LEO in order to realise the eager unification idea and hence LEO
should be viewed as higher-order theorem prover specialised in extensionality reasoning rather

92

7.1. BASIC DATA-STRUCTURES AND ALGORITHMS

than a general purpose automated theorem-prover for classical type theory.

The LEO-system has been implemented by the author mainly during a stay at Carnegie
Mellon University (see [Ben97]). The implementation is still quite prototypical and leaves
much room for improvements.

LLEO’s main strength is not to compete with other theorem-provers, such as TpPs [ABI196,
AINP90], but rather more to complement their weakness in the treatment of the extensionality
principles. TPs, for instance, can in contrasts to LEO explore rather deep search spaces and
has its strengths, e.g., in the handling of the primitive substitution principles or the handling
of definitions [BA98]. Real mathematics will only be mechanisable by combining specialised
automated higher-order and first-order theorem provers guided and controlled, e.g., by a
cognitively more adequate proof planning approach (see [Bun88, CrS98, Mel95, Mel94]) or an
intelligent agent mechanism like [BS99, BS98a].

We shall now discuss LLEO’s extended SOS-architecture and its main loop in a greater
detail. A case study will then be sketched and typical examples that can be solved with the
LEO system will be given.

7.1 Basic Data-Structures and Algorithms

KEIM-Toolbox The implementation of LLEO employs the KEmM-toolbox [HKK*94] for de-
duction systems. This toolbox, which also underlies the mathematical assistant system
OmEGA [BCFT97], provides many useful data structures (e.g., higher-order terms, literals,
clauses, and substitutions) and basic algorithms (e.g., application of substitution, subterm
replacement, copying, and renaming). Thus, the usage of KEiM allows for a rather quick
implementation of new higher- or first-order theorem proving systems. In addition to the
code provided by the KriM-package, LEO consists of 6900 lines of Lisp code. Whereas the
KEiM-toolbox indeed turned out to be very useful to support a prototypical development of
a system like LEO, the experience with LEO also showed, that the datastructures offered by
KEIM are in many cases too extensive and costly. Especially the implementation of LEO’s
latest version, LE03, which employs the fully polymorphic data structures offered by Krim3
(the latest version of KEIm) is roughly 5-10 times slower than the former version LEo1, which
was based on the non-polymorphic data structures of KrimM2.

Higher-Order Unification The author (in cooperation with Karsten Konrad) imple-
mented higher-order unification by rather closely realising the rules of [SG89, Sny91]. In
all branching cases (branching may only happen in the FlezRigid or FlexFlex case) this algo-
rithm employs the variable binding mechanism offered by the Keim-package. This mechanism
avoids copying of terms and maintains variable instantiations by pointers instead of explicitly
instantiating, i.e., modifying, the term data structures. Unfortunately the current implemen-
tation does not allow for an explicit maintenance of the variable bindings itself, such that
a heuristically guided higher-order unification algorithm cannot be realised in this setting
(the aim was to realise a most general, heuristically guided backtracking in the unification
search tree, where an user definable heuristics selects — probably in dependence of the cur-
rent proof goal — the particular partial binding to be examined first when branching in the
FlexRigid-case). As KEIM is written in Lisp, the implemented unification algorithm can fur-
thermore not exploit cuncurrency like, e.g., employed in the unification algorithm of LEO’s
brother HoT [Kon98], which is written in the programming language Oz [Sb98, SSW94]. HoT

93

CHAPTER 7. THE LEO-SYSTEM

94

translates and realises the main ideas of calculus ER in a tableaux setting.

Higher-Order Term indexing In most state of the art theorem provers for first-order
logic, term indexing techniques [Gra95] are successfully employed as strong filters in unifica-
tion, subsumption, and the computation of resolution partners. The basis for higher-order
term indexing has been laid by the masters thesis of Lars Klein [Kle97], supervised by Michael
Kohlhase, which adapts first-order term indexing ideas as presented in [Gra95] to A-terms.
The key idea of this adaptation is to employ the simplification part of higher-order unifica-
tion, which is in contrast to general higher-order unification decidable, as the overall filtering
criterion. When sending a request for a given A-term T to this higher-order term indexing
approach, it filters out those terms T’, given in its database, for which pure simplification can
not detect a counterargument to its unifiability with T. This obviously realises an imperfect
filter, as each delivered T’ may still fail to unify with T. But because of the undecidability of
general higher-order unification it is easy to see that a perfect eager unification filter cannot
be achieved.

Subsumption The subsumption filter [Tam98, BHJB92, Fit96], which is well known from
resolution based first-order theorem proving, checks whether a given clause C : Ny V...V N, is
more general than another clause D : My V...V M,,. To be more precise, subsumption checks
whether there exists a substitution o, such that the particular literals of Co are entailed in
D. If so, then the more specialised clause D can be removed from the search space without
affecting completeness. In practice, many resolution based first-order theorem prover spend
most of their computation time in filtering out subsumed clauses in order to minimise the
search space. As matching is involved, term indexing techniques are thereby employed to
lower the computation costs and to speed up the subsumption tests.

LLEo employs a higher-order subsumption test that is, apart from the technical details,
very similar to the ones employed in first-order provers. Instead of first-order matching, the
criteria for comparing the single literals is higher-order simplification matching, i.e., matching
with respect to the deterministic higher-order simplification rules. As matching is known to
be decidable up to fourth-order logic [Pad95], it is theoretically possible to develop and employ
a much stronger subsumption filter in [LEo. This has been avoided so far, as the respective
matching algorithms seem to be rather complex. But at least higher-order pattern unification
or matching [Mil91], which is decidable in linear time [Qia93], should be employed in LEO.
Consequently, the higher-order subsumption filter that is currently employed in LEO is —
just as the higher-order unification filter — a quite imperfect one, as not all subsumed clauses
can be determined in the search space.

But note that even if higher-order matching would be generally decidable for all orders
(which is still an open and challenging question), we still could not develop a perfect higher-
order subsumption filter for LEO, as this would require a higher-order extensional subsump-
tion approach instead of one that is based solely on syntactical higher-order matching. The
problem of extensional higher-order subsumption will be illustrated in detail in Section 7.3.

7.2 Extended SOS Architecture and Main Loop

7.2.1 Problems

The most important aspects and problems for an implementation of the LEO-system are:

7.2. EXTENDED SOS ARCHITECTURE AND MAIN LOOP

1. Extensional higher-order (pre-)unification The necessary combination of the tra-
ditional syntactical higher-order unification rules with the new extensionality rules'
Fquiv and Leib is probably the most challenging aspect in the implementation of &R,
as a non-restricted application of this rules obviously leads to a search space explosion.
But because of the goal directed application of the extensionality principles in ER, even
such a general integration would still have advantages over an unrestricted usage of the
infinetely many extensionality rules in the traditional constrained resolution approach
(cf. the discussion in Section 1.4). Anyhow, the challenge in LEo is to find suitable
heuristics to restrict the application of the extensionality rules in calculus &R and to
avoid too many recursive calls from within higher-order unification to the overal search
process.

2. Eager unification is essential but undecidable In contrast to Huet’s original con-
straint resolution approach, eager unification becomes essential in ER and cannot be
generally delayed. The reason is, that whenever both extensionality principles are in-
volved in the search for a proof, then calculus ER needs to employ recursive calls to
the overall search procedure from within a unification attempt, i.e., eager unification
is essential in ER and LLEo. Therefore we need to develop a mechanism, which allows
to interrupt eager unificatioon attempts. For example, when reaching a user-definable
unification search depth limit the unification process terminates and is resumed later.

3. Primitive substitution is infinitely branching The primitive substitution problem
is well known in resolution based higher-order theorem proving and is thus not a specific
problem of calculus ER. Informally the problem is that one generally has to ensure
that free predicate variables can be instantiated with arbitrary formulae. In order to
illustrate the problem, assume that the single unit clause [P a]* (e.g., obtained from
the negation and normalisation of the theorem 3P,_,. P a,) is given in the search space,
where P,_,, is a free variable. The only way to refute this unit clause is to guess the right
instantiation for P; in our case AX,. =P’ X. With this instantiation we get another
unit clause [~(P'a)]", which normalises to [F’a]”. Now the empty clause can easily be
derived by resolving between [P a]t" and [P'a]’.

Fortunately, a blind guess of instantiating formulae can be avoided as it is sufficent to
subsequently instantiante the free variable heads with partial bindings imitating the
logical connectives in the signature (which in some sense subsequently enumerates all
formulas schemes). But as experienced in the Tps-project (cf. [ABIT96]) it can never-
theless be very fruitful for some proof attempts to instantiate free variables immediately
with special formulae, such as Leibniz Equality.

It is easy to see that the primitive substitution principle causes an enormous explosion
of the search space when applied in an unrestricted and non-guided way.

Apart from these challenging aspects of the implementation of LEO, there are many other,
mostly technical problems (see [Ben97]).

7.2.2 Extended SOS Architecture

LEO’s basic architecture adapts the well known set of support approach (cf. [McC94]) with
respect to the special requirements and challenges of calculus ER. The four cornerstones of

!We here consider the modified rule Func as belonging to syntactical higher-order unification.

95

CHAPTER 7. THE LEO-SYSTEM

96

USABLE SOS

Architecture of LEO

—— implemented
---= not yet implemented

[Factorised] | Prim-Subst | ®

& |
paramodulate with USABLE
‘ © ‘ (5) factorize lightest

: (6) primitive substitution on lightest
[Ext-Mod } [Uni-Cont] extensionality treatment on EXT

(1) choose lightest from SOS

(2) Integratelight. to USABLE
(3) resolve with USABLE
@

Procwd’ Unified ’

| (8) pre-unification on CONT

| isi process results (tautology deletion)
: pre-unification on Processed

- (1D store continuation object

(@ check if extensionally interesting
@ Integrate Unified into SOS

@

EXT

Figure 7.1: LEO’s main architecture

LEO’s architecture (see the figure 7.1) are:

USABLE The set of all usable clauses, which initially only contains satisfiable clauses, i.e.,

the clauses stemming from the assumptions of the theorem to prove (same idea as in
first-order resolution [McC94]).

S0S The set of support, which initially only contains the clauses belonging to the negated
theorem (same idea as in first-order resolution [McC94]).

EXT The set of all extensionally interesting clauses, i.e., clauses which are assumed to be
unifiable, when the new extensionality rules Fquiv and Leib are taken into account (but
probably not by pure higher-order (pre-)unification alone). Initially this set is empty.

CONT The set of all continuations created by the higher-order unification algorithm when
reaching the search depth limit in a particular branch of the unification search tree. The
idea of this objects is to allow for the continuation of interrupted unification attempts
at a later time.

7.2.3 LEO’s heuristically guided Main Loop

As a suitable realisation of ER we suggest a computation consisting of the steps 1-13 as de-
scribed below (the Initialise step is applied only at the very beginning of the proof attempt
and is not part of the main loop). The main loop, whose dataflow is graphically illustrated in
Figure 7.1, is executed until an empty clause, i.e., a clause consisting only of flexflez-unification

7.2. EXTENDED SOS ARCHITECTURE AND MAIN LOOP

constraints, is detected. The described algorithm is an abstract and slightly idealised presen-
tation of the working principles of the currently actual version (LEO3) of LEO. Furthemore,
this description of LE0’s working mechanism abstracts from many technical details and men-

tions

only the most important user definable flags and heuristics that influence its problem

solving behaviour.

Initialise The proof problem formalised in POST-syntax is read from a file. Then the

Step

Step

Step

Step

Step

Step

Step

specified assumptions and the assertion are pre-clausified, i.e., the assumptions become
positive unit (pre-)clauses and the assertion becomes a negative unit (pre-) clause. The
assumption clauses are passed to USABLE and the assertion clause to S0S. Thereby the
S0S store is automatically sorted (with respect to a heuristics H1, that is based on the
clauses weights; this weights are computed from the accumulated weights of the term-
symbols and from the clause age, i.e., the number of the loop in which the clause has
been created).

1 (Choose Lightest) Lo chooses the lightest, i.e., topmost, clause from S0S. If this
clause is a pre-clause, i.e., not in proper clause normal-form, then LEO applies clause
normalisation to it and integrates the resulting proper clauses into SOS while employing
subsumption (depending on the flag-setting forward and /or backward subsumption; see
also step 13). Within the clause normalisation process the positive primitive equations
are replaced by respective Leibniz equations. Negative primitive quations are not ex-
panded but immediately encoded as extensional unification constraints. Furthermore,
identical literals are automatically factorised.

In case the lightest clause was not proper, LEO chooses the next clause from SOS and
proceeds with this as described. Otherwise the lightest clause is passed to the store
Lightest.

2 (Insert to USABLE) LEO inserts the lightest clause into USABLE while employing for-
ward and/or backward subsumption depending on the flag-setting.

3 (Resolve) The lightest clause is resolved against all clauses in USABLE and the results
are stored in Resolved.

4 (Paramodulat) Paramodulation is applied between all clauses in USABLE and the
lightest clause, and the results are stored in Paramod. (This step is currently not
realised in LEO3)

5 (Factorise) The lightest clause is factorised and the resulting clauses are stored in
Factorised.

6 (Primitive Substitution) LLEO applies the primitive substitution principle to the
lightest clause. The particular logical connectives to be imitated in this step are specified
by a flag. The resulting clauses are stored in Prim-Subst.

7 (Extensionality Treatment) The heuristically sorted (with a heuristics H2) store
EXT contains extensionally interesting clauses (i.e., clauses with unification constraints
that may have additional pre-unifiers, if the extensionality rules are taken into account).
LEO chooses the topmost clause and applies the compound extensionality treatment to
all extensionally interesting literals of it. Assume the chosen clause has form C; :

97

CHAPTER 7. THE LEO-SYSTEM

98

Step

Step

Step

Step

Step

DV (Lo = RQ_W]F, where the latter literal is extensionally interesting (determined
by a heuristics H3), then the compound extensionality treatment proceeds as follows:

1. First rule Func is applied exhaustively to C;. This means that Func is subse-
quently applied until the unification constraint has form [((Lo—p s')...s") =
(Ramp 81) ...8™)]F, where both hand sides are of primitive type 7 € {¢,0}.

2. If 7 = o, then the compound extensionality treatment applies rule Fquiv, and if
T =1, then rule Leib is applied.

The resulting clauses are stored in Ext-Mod.

8 (Continue Unification) The heuristically sorted (with a heuristics H4) store CONT
contains continuations of interrupted higher-order pre-unification attempts from the
previous loops (cf. step 10). If the actual unification search depth limit (specified by
a flag, whose value can be dynamically increased during proof attempts) allows for
a deeper search in the current loop, then the additional search for unifiers will be
performed. The resulting, instantiated clauses are passed to Uni-Cont and the new
continuations are sorted (wrt. heuristics H4) and integrated into CONT. (This step is
currently not realised in LLEO3)

9 (Collect Results) In this step LEO collects all clauses, that have been generated
within the current loop, from the stores Resolved, Paramod, Factorised, Prim-Subst,
Ext-Mod, and Uni-Cont, eliminates obvious tautologies, and stores the remaining clauses
in Processed.

10 (Pre-Unify) LEO tries to pre-unify the clauses in Processed. Thus, it applies the
pre-unification rules exhaustively, thereby spanning a unification tree until it reaches the
unification search depth limit specified by a special flag. The unification search depth
limit specifies how many subsequent FlexRigid-branchings may at most occur in each
path through the unification search tree. The pre-unified, i.e., instantiated clauses,
are passed to Unified. The main idea of this step is to filter out all those clauses
with syntactically non-solvable unification constraints (modulo the allowed search depth
limit). But note that there are exemptions, which are determined in steps 11 and 12.
That means, that not all syntactically non-unifiable clauses are removed from the search
space as this would, e.g., also remove the extensionally interesting clauses.

11 (Safe Continuations) Each time a pre-unification attempt in step 10 is inter-
rupted by reaching the unfication search depth limit, a respective continuation is cre-
ated. This object stores the state of the interrupted unification search process, i.e.,
it contains the particular unification constraints as given at the point of interruption
together with the remaining literals of the clause in focus and some information on the
interrupted unification process (in principle a continuation is just a new clause with
some additional information). Continuations allow to continue the interrupted unifica-
tion process at any later time. The set of all such continuations is integrated (employing
sorting heuristics H4) in the sorted store CONT. (This step is not realised in LEO3.)

12 (Safe Extensionally Interesting Clauses) In the pre-unification processin step
10 LEO analyses the unification pairs in focus (with heuristics H3) in order to estimate
whether this unification constraint and thus this clause is extensionally interesting,

7.2. EXTENDED SOS ARCHITECTURE AND MAIN LOOP

i.e., probably solvable with respect to both extensionality principles. The motivation
thereby is obvious: we want to avoid recursive calls to overall search procedure for all
generated unification pairs and instead employ such calls only selectively. We present
two exemplifying criteria for H3: (i) never apply the extensionality treatment to two
constants of type ¢ that clash (which are quite a lot unification pairs in practice) and
(ii) never apply the extensionality treatment to flez-flex-constraints.? All extensionally
interesting clauses are passed to EXT, which is heuristically sorted with a heuristics H5.
While integrating the clauses to EXT forward and/or backward subsumption is applied
in order to minimise the number of clauses in this store (cf. the discussion of syntactical
and extensional subsumption below).

Step 13 (Integrate to SOS) In the last step LEO integrates all pre-unified clauses in
Unified into the sorted (with heuristics H1) store S0S. Forward and/or backward
subsumption is employed depending on the flag-setting.

7.2.4 An illustrated Example

Let us illustrate LLEo’s working with the following example (this example is graphically illus-
trated in Figure 7.5 in Subsection 7.5.2 and also mentioned as example E§” in Section 8.1):

paApb=p(aAb)

where p,_,, @, and b, are constants. Despite it’s simplicity, this theorem cannot be solved au-
tomatically by any other theorem proving system known the author (apart from the tableaux
based higher-order theorem prover HoT which is based on the tableaux calculus HTE [Koh98al;
HTE [Koh98a] translates the calculus ER presented in this thesis in a tableaux context). Nega-
tion and clause normalisation introduces the following three clauses:

Cr:[pa” Cy:[p 0T Cs:[p (anb)F

In Figure 7.5 these clauses are represented by the nodes 5, 7 and 12.

In order to derive the empty clause [.EO proceeds as follows: First, it inserts C3z into SOS,
and the two others into USABLE. In the first loop Cs is chosen as the lightest clause (step 1),
inserted into USABLE (step 2), and resolved against C; and Cy (step 3), thereby yielding the
clauses C4 : [p (@ Ab) = p a]” and Cs : [p (a A b) = p b]". Paramodulation (step 4) is not
employed in LEo3 and factorisation (step 5) as well as primitive substitution (step 6) are not
applicable. Thus, the clauses passed to Processed (step 7) are C4 and Cs. The stores EXT
(step 8) is still empty and continuation of (pre-)unification (step 9) is not employed in LEo.
Next LEO tries to pre-unify both clauses in Processed (step 10). After decomposition the
unification process ends up with a clash in both cases: Cq : [(¢Ab) = a]” and C7 : [(aAb) = b]"
such that no clause is passed to Unified. As continuation of (pre-)unification (step 9) is not
employed in LLEO no clause is passed to CONT: the maximal unification search depth limit
(usually 5 FlexRigid branchings) is not reached in both unification processes. Then the
non-unifiable clauses C4 and C7 are analysed whether they are extensionally interesting (step
12). As unification constraints between terms of Boolean type are generally classified as

?Whereas the criterions (i) and (ii) mentioned here are fair, LEO currently employs additional criterions
which are not so obvious and which are most likely not fair, e.g., never apply the extensionality treatment to

flex-flez-pairs.

99

CHAPTER 7. THE LEO-SYSTEM

100

extensionally interesting, both clauses are subsequently stored in EXT. Unified is empty and
thus no clause is passed to SOS (step 13), such that SOS is empty at the end of the first loop.

Nothing happens and no new clause is generated in the next loops until LEO is allowed
to perform its extensionality treatment. The loops in which the extensionality treatment
is applied are specified by a flag, and here we assume that the extensionality treatment
is employed in every 6th loop. When reaching this loop LEO, e.g., chooses Cs from EXT
(in step 7) and applies its compound extensionality treatment, thereby generating clause
Cs : [(a A b) = a]”, which passes the unification filter (in step 9) as it contains no further
unification constraints, and which is inserted to Processed. From Processed Cg is finally
passed (in step 10) to SOS.

In the 7th loop clause Cg is chosen from SOS and immediately normalised (step 1), leading
to Co : [a]”, Cio : [a]T V [6]7, and Ciy : [a]" Vv [b]". These clause are then integrated to SOS,
and as subsumption is applied, the clause Ciq is removed.

In the following two loops LLEO subsequently chooses Cg and Cy; as new lightest clauses,
and proceeds with its processing as described. The only interesting clause generated in these
two loops is Ciz : [0]F (by resolution between Cy and Cq1). This clause is itself integrated to
USABLE in one of the following loops.

In the 12th loop [LEO then chooses clause C7 from EXT and applies its compound exten-
sionality treatment to it (in step 7), thereby generating clause Ci3 : [(a A b) = b]", which is
passed to SOS at the end of this loop.

Clause normalisation of Cy3 at the beginning of loop 13 leads to C14 : [b]T, Ci5 : [a]T v [b]T
and Cig : [a]™ V [6]"; both are immediately integrated (modulo subsumption) into S0S. Cy4 is
chosen as the new lightest clause, and as the complementary clause Cy9 is already contained
in USABLE, the empty clause is derived in this loop by resolution and (trivial) unification.

7.2.5 Realisation of the Challenges and the main Sources of Incompleteness

Within the current version of LEO the basic challenges mentioned in 7.2.1 are realised as
follows:

1. Extensional higher-order (pre-)unification Instead of a full integration of the
new extensionality rules into the employed higher-order pre-unification algorithm, we
decided to separate the extensionality treatment from higher-order pre-unification (see
steps 7, 10, and 12 above). Thereby the pre-unification filter simply passes extensional-
ity interesting clauses to the store EXT in order to prevent from being removed from the
the search space. The store EXT is itself heuristically sorted, such that the (heuristically)
most interesting clauses (this notion clearly depends on the quality of the criterions em-
ployed by the sorting heuristics H5) are considered first in the exensionality treatment.
This mechanism allows to delay the extensionality treatment in order to avoid an early
search space explosion. It is obvious, that because of the possibly delay of the exten-
sionality treatment, the sorting heuristics H5 for EXT strongly influences LEO's overall
performance on examples, which indeed require the application of the extensionality
principles. The extensionality treatment itself is exhaustive, i.e., it is applied to all
extensionally interesting literals of the chosen clause from store EXT in once.

Whereas the original motivation for the separation of the extensionality treatment was
to avoid a complete re-implementation of the pre-unification algorithm provided by the
KeiM-package and to examine first in a prototypical implementation of LEO whether

7.2. EXTENDED SOS ARCHITECTURE AND MAIN LOOP

the ER approach is in principle able to solve some simple theorems requiring the exten-
sionality principles, it turned out that this separation and the possibility to delay the
extensionality treatment is very fruitful if not even essential in practice.

Another interesting experience gained from practice is, that when allowing an extension-
ality treatment only in each, e.g., 6th loop, and when restricting primitive substitution
to the logical connective =, LEO refutes many of the examples mentioned in Section 7.4
as follows: In the first 2 or 3 loops [LEO performs a couple of interesting resolution,
factorisation and primitive substitution steps. In the following loops he then often pro-
duces less interesting clauses which are often already subsumed by already given ones.
Sometimes the SOS even becomes empty, just like in the example discussed in the pre-
vious section. But, meanwhile the store EXT contains some extensionally interesting
clauses and from this LEO chooses then in the 6th loop the most promising one, ap-
plies the extensionality treatment thereby often generating new interesting facts which
then subsequently positively influence the amount of interesting clauses derived in the
following loops. This illustrates that LEO indeed applies the extensionality principles
in a goal directed way, which contrasts ith the traditional approaches, as they would —
provided that the extensionality axioms are added to the search space — always operate
on the extensionality axioms and/or their consequences.

2. Eager unification is essential but undecidable The current version of LEO employs
higher-order (pre-)unification only with respect to a certain search depth, which is
specified by a flag. When reaching this depth LEO simply terminates its search in
the current path and backtracks to the next one. It has already been pointed out
by other authors (see for instance [Wol93, Pau94, BS94, Nad87]) that non-terminating
higher-order unification constraints rarely occur in practice, such that the syntactical
unifiability of many clauses can indeed be decided even when restricting the unification
search depth to a certain limit. And for the rather simple examples discussed here,
a unification search depth of 5 allowed nested branchings with rule FlexRigid turns
out to be sufficient.®> But not that LEO’s architecture and main loop already presents
with the (currently not realised) steps 8 and 11 a general solution to the problem. This
solution consists in the generation of continuations for interrupted unification processes.

The generated continuations® are heuristically sorted and stored in CONT, from where
they can be chosen in a later loop of LLEo. Thus, the idea is to realise a delayed
continuation of interrupted unification processes with respect to a steadily increasing
unification search depth in order to overcome the problems induced by the undecidability
of higher-order (pre-)unification. The KEIM-toolbox already provides data structures
and algorithms for unification continuations. Even though they are not yet employed
in LEO — mainly as there was no need for increasing the unification search depth
within the currently considered example domains (e.g., simple examples about sets as
discussed in Subsection 7.4) and as it seems to be more promising to concentrate on the
improvement of other aspects in [LEO prototypical implementation first.

3. The primitive substitution principle is infinitely branching When using its

9Peter Andrews mentioned that his experience with the TPs-system is similar: Most of the examples
examined within the TPS-system can been proven when restricting the unification depth in this sense. A
unification depth of more than 15 FlexRigid branchings seems to be rarely needed in practice.

*Note that continuations are basically just ordinary clauses with additional information on the interrupted
unification process (e.g., the particular search depth).

101

CHAPTER 7. THE LEO-SYSTEM

102

default settings LEO3 only imitates the logical connective = when applying the primitive
substitution principle in step 6. Analogously to the restriction of the unification search
depth, this restriction turns out to be sufficient for proving simple examples about sets
discussed in Subsection 7.4. Whereas the additional imitation of the logical connective
V only slightly influences the time LLEO needs to solve these problems, the situation is
quite different when imitating also universal quantifiers, e.g., all quantifiers up to order

5.

For more complicated examples it is certainly not sufficient to restrict the primitive
substitution rule to the connective - as, e.g., example THM15b discussed in [ABIT96]
illustrates. The proof of this example in the TPs-system requires the primitive sub-
stitution of primitive or Leibniz equality (in LEO the latter would in fact mean to
subsequently build up the respective instantiation by single primitive substitution steps
imitating V and - in a row).

In order to improve LEO’s treatment of the primitive substitution principle one can
introduce a delay mechanism for primitive substitution similar to the stores EXT and
CONT. The idea is to start a proof attempt by, e.g., only imitating — and V, and then to
subsequently add primitive substitutions of universal quantifiers in a delayed manner.

We briefly summarise the main sources of incompleteness in LEO3, i.e., the current version of
LEo:

1. the restricted (pre-)unification depth in step 10 of the main loop,
2. the restricted application of the primitive substitution principles in step 6,

3. the heuristics employed for determining of extensionally interesting clauses in step 12,
which have not been proven to ensure a Henkin completeness yet,

4. the compound extensionality treatment in step 7, which has not been proven to ensure
a Henkin completeness yet,

5. the heuristics employed to sort the stores SOS, EXT (and CONT) which have not been
proven to ensure fairness yet.

7.3 New Insights gained from LEO

7.3.1 Extensionality and Term indexing

Syntactical higher-order term indexing (see Subsection 7.1) must not be employed in the
computation of resolution partners as otherwise no resolution step on only extensionally but
not syntactically unifiable literals would be suggested.

This drawback is illustrated by the example discussed in Subsection 7.2.4: the key steps
in this refutation — namely the resolution steps between C3 : [p (a A b)]" and C; : [p a] or
Cy : [p b]T at the very beginning — will not be performed in case syntactical higher-order
term indexing is employed as a filter within the computation of possible resolution partners.
Thus, LEO would fail to prove this theorem.

What we would need in extensional higher-order theorem proving is term indexing modulo
extensionality the extensionality principles, which is obviously undecidable.

7.4. CASE STUDY

7.3.2 Extensionality and Subsumption

With respect to our higher-order subsumption filter — we face a problem, similar to the one
sketched for the higher-order term indexing filter above. LLEO’s subsumption filter is a quite
weak one, as it only looks for matchable literals on the basis of higher-order simplification,
i.e., only employs first-order matching, when examining whether one clause subsumes another
one. Analogous to the situation in higher-order term indexing, this filter does not take
the extensionality principles into account. Clearly, this does not affect the completeness of
our approach and the only effect of employing a weak subsumption filter when inserting
clauses to a clause store is, that probably much more clauses are inserted as needed to ensure
the completeness of the system. KEspecially the store EXT is affected, which maintains the
extensionality interesting unification constraints. As the compound extensionality treatment
is strongly delayed in LEO, it is consequently very important to avoid as many as possible
subsumed clauses in store EXT. We illustrate this problem by the following two clauses (p, ¢
and r are constants):

Cy: [()‘XL Pi—o X) = ()‘XL Giso X N7 X)]F

Co:[(AX, T XA Qoo X) = (AX,. pisso X)]F

It is obvious that with respect to a syntactical higher-order matching approach neither
one of both clauses is subsumed by the other. Even though, when applying the compound
extensionality treatment and normalisation to them, they introduce identical proper clauses
(modulo the names of the new Skolem constant si) into the search space:

Ci— Ca:lps'T"VIgs')Vrs'T" Cailps']"Vigs'l" Cs:lps']"v[rs')
Cov Co:[ps’1" Vg 1" VI ss" Crilps’]T Vg st Cs:lp stV [rsTT

The problem is that C; and C, subsume each other only with respect to a notion of extensional
higher-order subsumption, but not with respect to a notion that is only based on syntacti-
cal higher-order matching or simplification. And, as extensional higher-order matching or
unification is undecidable extensional higher-order subsumption seems not to be feasible in
practice.

A practical solution that has yet not been examined in LLEO, could be to employ the
extensionality treatment before inserting a extensionally interesting clause into the store EXT
and to insert the resulting clauses (clauses Cj . ..Cs in our example) instead of the extensionally
interesting clauses itself. One could then try to develop a higher-order subsumption approach
that abstracts from the names of the Skolem constants introduced by the extensionality
treatment and employ it as a filter for store EXT. In our example, this could prevent LEO
from inserting all the clauses Cs...Cg into EXT and to filter out, for instance, Cs,C4 and Cs.
In such a modified approach, the idea of the store EXT would be to delay and control the
insertion of the clauses obtained from the compound extensionality treatment rather than to
delay the extensionality treatment of the extensionally interesting clauses itself.

7.4 Case Study

Boolean Properties of Sets A case study on the examples provided by the article Boolean
Properties of Sets [TS89] has demonstrated that LEO sometimes outperforms state of the

103

CHAPTER 7. THE LEO-SYSTEM

104

art theorem provers when reasoning about simple examples from set theory. Article [TS89]
presents 97 quite trivial theorems about sets. To provide an impression, we present the
examples 28, 80, 99, 104 and 111 (the examples in [T'S89] are numbered, but not each natural
number is associated with an example — this explains the example numbers greater than 97).

Examples:

set28) If X CY and Y C X, then X =Y
set80) If (X NY)U (X\Y) =

set99) (X—-Y)-Z = X-(Y-Z%)

set104) X misses ()

setlll) (X NY) misses (X Y)

To formalise these theorems and to mechanise their proofs in a first-order theorem prover
one has to axiomatise set theory in the system. In a case study carried out in the
ILF-project [Dah97], Tarski Grothendieck set theory was employed. The results of this
case study are presented in detail at http://www-irm.mathematik.hu-berlin.de/"ilf/
miz2atp/mizstat.html and are summarised by Figure 7.2. We want to point out that ex-
amples 99, 104 and 111 could not be proven by any of the employed first-order theorem
provers.

Figure 7.2 also relates the ILE case study to the respective case study carried out with
LLEo. Instead of employing Tarski Grothendieck set theory the above examples were encoded
in this case study in classical type theory. This encoding fully exploits the expressiveness
of the higher-order language based on the A-calculus and describes sets by characteristic
functions. For instance, the set {X,|p X} is encoded by the A-expression AX,. p X or simply
p (by n-reduction). Based on this idea one can for instance define the notions €,C,N, U, \,
—, meets and misses as follows:

Ea—)((a—)o)—)o) = AXg AS4n0.- 5 X

AMy_vo. ANgso. VXo. X €M = X eN
AMy 0. ANgo. AXo. X EMAX EN
AM 0. ANGyyo. AXy. X EMVX EN
AMoso. ANayo. AXo. X EMAX ¢ N
AMa_yo. ANoso. (M\N)U (N\M)
meets(q—0)—s (a—so)—o AMoy_o. ANgo. Xy X EMAX EN
Misses(o—o)(amo)mo = AMaor ANaoo. 7(M meets N)

a—o)—=(a—0)—o

MN(a—0)—(a—0)—(a—r0)

U
\

—0)—(a—0)

a—o0)—(a—o)

((
(a—o0)—=(
((
“(a (

—0)—=(a—0)—=(a—0)

Cloms

)

)
a—o)—

)

(

(

Leo’s (version 1.0) detailed performance in seconds when solving the theorems of the
article Boolean Properties of Sets [TS89] is presented in Figure 7.3. The reader may wonder
how some problems can be solved without consuming any time. This comes from the fact, that
the initial definition expansion (which is done by QMEGA) and initial clause normalisation was
not measured in this case study. And surprisingly some examples, which seem to be hard to
solve for the first-order provers (e.g., set104), can be proven just by normalising the expanded
formula. A simple example is the theorem V.X,. X ¢ (), which expands and normalises to [1]7
(LEO immedately detects such contradictory clauses).

7.5. ADDITIONAL FEATURES OF LEO

LLEo was able to prove 95 of the 97 theorems and the only reason why the system cannot
prove theorems 56 and 57 is, that after applying its extensionality treatment in one of the first
loops in the proof attempt, LEO simply generates too many — in their sum contradictory —
first-order clauses to be refuted in its prototypical implementation. By simply combining LEO
with a sophisticated first-order theorem prover like Spass (e.g., within the QMEGA-system),
such that LEO could pass all the essentially first-order clauses generated by its extensionality
treatment to this first-order reasoner, this two problems should easily be solvable as well.
LLEO’s task in such a combined system would be to concentrate on the extensionality aspects
and the first-order reasoner would perform brute-force search on the results in order to check
if the extensionality reasoning performed so far by LEO is already sufficient to ensure the
contradiction by straightforward first-order reasoning.

Solved theorems (of 97)
Waldmeister (pure equality prover, only Th 72 and 99 have been tried) | 1
Spass v0.78 (on Ultra Sparc 170) 72
Setheo v3.3 (“on” PVM) 76
CM v10-15-97 (ME Prover in Prolog) 72
CM v10-15-97 (with special cost function [hdef(d1,6,1,6)]) 76
CM v9-22-97 (with definition expansion in the theorem) 79
Otter (auto) 60
Gandalf v. ¢-1.0b 47
Spass v0.54 52
Setheo 53
All Together 94
Lo 95

Figure 7.2: Case study with LLEO on simple example about sets

set ex. 8 9 10 12 13 15 17 18 19 20 23 24 25 27 28

sec .03 .02 .04 .05 .06 .04 .05 1.90 1.80 1.93 .05 .60 5.89 0 .22
set ex. 29 30 31 32 33 34 35 37 38 39 40 41 42 44 45

sec .12 .05 .02 .13 .07 12 11 0 .02 .14 .08 .14 11 .26 2.06
set ex. 46 47 48 49 50 51 52 53 54 55 58 59 60 61 62

sec .07 .08 12 .03 .04 .20 1.98 .21 17 17 .04 1.56 .02 .02 .03
set ex. 64 65 67 68 69 70 71 72 73 74 75 76 77 78 79

sec .13 .03 .14 .04 .05 17 17 .57 .04 .03 .02 .04 .10 .05 .09
set ex. 80 81 82 83 84 85 86 87 88 89 90 91 92 93 95

sec .08 .18 .09 .09 2.36 .14 17 .14 .14 .19 .27 .16 .24 .05 .15
set ex. 96 97 98 99 100 101 102 104 110 111 112 113 114 115 116
sec .16 .54 .47 2.00 25.66 .10 .06 0 .24 .02 .03 .07 .18 .50 .14
set ex. | 117 118 119 120 121

sec .18 1.67 1.64 .25 .15

Figure 7.3: LEO’s performance in seconds on simple examples about sets

105

CHAPTER 7. THE LEO-SYSTEM

106

LEo-Command

Description

beta-normalise
cd
decompose
delete-clause
end-report
ezrecute-log
ezt

ext

factorise
help

imitate
new-log

para
pre-unifiers
pre-unify
prim-subst
proj-imz
project

prove
read-problem

resolve

set-flag
set-tactic
show-clause
show-clauses
show-derivation
show-flags
show-problem
show-proof
show-tactics
show-vars
step-log
subsumes
write-derivation
write-loutproof
write-proof

G-normalises a clause

changes the current directory

applies the decomposition rule Dec to a clause

deletes a clause from the current environment

closes the report stream

subsequently executes the commands in a report file

quits the current interpreter session

applies the compound extensionality treatment to a clause
applies the factorisation rule Fac to a clause

lists a short description of all commands

applies the FlezRigid rule to a clause (only with imitation bindings)
opens a new report-file

applies the paramodulation rule Para to two clauses
computes and displays the syntactical pre-unifiers of a clause
pre-unifies a clause

applies the primitive substitution Prim rule to a clause
applies the FlexRigid rule to a clause

applies the FlezRigid rule to a clause (only with projection bindings)
calls LEO in automatic mode to the current system state
reads a problem file containing a proof problem in POST syntax,
applies pre-clausification and stores the clauses either in the
set of support or the set of usable clauses

applies the resolution rule Res to two clauses

modifies the setting of a global flag

modifies the setting of a global tactic

displays a clause

displays the content of clause stores

displays a linearised derivation of a clause

displays the settings of all global flags

displays the given problem (POST input)

displays a found proof in linearised form

displays the available tactics (heuristics)

displays the settings of all global variables

interactively executes the commands stored in a log file
determines whether a clause subsumes another clause

writes a derivation of a clause in a file

writes a proof in Lout format in a file

writes a proof in a file

Figure 7.4: Some interactive commands provided by the LLEO-system

7.5. ADDITIONAL FEATURES OF LEO

7.5 Additional Features of LEO

7.5.1 The Interactive Theorem Prover LEO

LEO can also be employed as an interactive theorem prover for extensional higher-order res-
olution. The main idea thereby is to provide a system that enables the user to analyse and
illustrate the working principles of extensional higher-order resolution step by step. Espe-
cially in LEO’s first implementation stages the interactive features turned out to be a very
useful tool for experimenting with the calculus ER. Figure 7.4 presents the most important
interactive commands of LEO.

7.5.2 Loul as a Graphical Interface for LEO

L.out is a generic graphical user interface developed by Stephan Hess within his masters the-
sis [Hes99] and it is described in detail in [SHB198, SHB*99]. Among the systems which
already employ LOUI as an interface or which are currently connected to it are: the math-
ematical assistant QMEGA [BCF197], the induction theorem prover INkA [AHMS99, HS96],
the higher-order proof planner A-Cram [RSG98], and the L.LEO system described in this thesis.
Apart from other useful information, Lour displays a proof graph (more precisely, a proof
tree with co-references to already given nodes in the tree) and a linearised proof protocol.

[LEO’s connection to L.ouT allows for the graphical presentation of extensional higher-order
resolution derivations and proofs with the gain for the user, that the structure of interactively
or automatically created derivations become much more transparent to him.

Figure 7.5 presents LLouT’s visualisation for the proof of the small but challenging example
(Pomsoo N Poyobo = Poso(@s A b,) discussed in Subsection 7.2.4. Figure 7.6 presents another
simple example about sets, which states that the power set of the empty set is the set that
contains only the empty set.

In the Lourt interface triangles represent initially given clauses stemming either directly
from the assumptions or from the negated theorem. Derived clauses are presented as round
nodes with links to their ancestors and their successors. Rhombi symbolise co-references to
already displayed sub-derivations in order to avoid their duplication in the display.

7.5.3 Integration to OMEGA

The LEO prover is integrated into the mathematical assistant system QMEGA [BCFT97], and
the main aspects of this integration are:

e LLEO and QQMEGA rely on the same data structures and run in a single LISP process.
Hence, LEO can be viewed as QMEGA’s logical engine, which can be employed to solve
minor subproblems and to support QMEGA’s proof planner [CrS98, Mel95, Mel94].

e [LEO can be employed as an integrated higher-order theorem prover just like any other
of the (currently) 10 external systems, that have been integrated to QMEGA.

e [LEO can be employed as an interactive theorem prover for extensional higher-order reso-
lution in QMEGA. This is supported by the Loul-interface, which provides menu entries
supporting an easy selection for each of LEO’s interactive commands (cf. Figure 7.4).

Within the QMEGA system, LEO and Tps [ABIt96, AINP90], which is the only other higher-
order theorem prover integrated to QMEGA (the integration of Tps and QMEGA is decribed

107

CHAPTER 7. THE LEO-SYSTEM

108

EXAMPLE: po—m y /\ po—m bo = p0—>0 <a’0 /\ bO)

Resl1l

Res21
Ext 1 Ext 1

Dec

Cnf Cnf Res1

Cnf

©

— = =
L DN

O~ O O W N —

[—

0

[6]"

[b=(aAb)"

[(p b) = (p (a A D))
[p b]"

[((pa) A (p b)) = (p (a AB))IF
[p (a AD)T

[b)"

[a]™ v [b]F

[a = (a AD)]"

[(pa) =(p (anb))”
Al

Figure 7.5: Loul-Visualisation of LEO’s proof for example E§*!

7.5. ADDITIONAL FEATURES OF LEO

EXAMPLE: p(0) = {0}

Uni {kUX9}

Def.: BC4

p =)\A4a_>.o. ABO{—)O' V. XQB X = A X
{} =AXg. A\Y5. Y = X

0 =AY, F,
To show:
ﬁ((ABa—)O' (V/X'a. (B /Y) :> J_)) p—
Uni {sk1/X5} (ABasyo. B=AY,. 1))
1: O
2: [eé—m Xg = eé—m Skl]F
37 4: [eé—m "YE]T
5 [e}x—m XOSZ = e}z—m Skl]F \ [e}z—m XS]F
6: [ea—so x2"v [ea—so X3
R A S VI SIS VA
8,9: [(ABgyso. (VXu. (B X) = 1)) =
(ABaoyo. B=2Y,. J_)]F
et [e%_m Sfl]T 1 TIF \/ [l 1T
- 12: [e e“=ce X" vie sk']
Uni {e2/X a—o a—o Mo a—o
e 130 el TV, SR
14 : [eh ., = AY,. J_]F Ve, Skl]T
15: [eé—m)(é]F \% [e}y—m Skl]T

Figure 7.6: Loul-Visualisation of LEO’s proof for example EE*.

109

CHAPTER 7. THE LEO-SYSTEM

110

in [BBS99, BS98b]) complement each other. The TPs system can explore rather deep search
spaces and employs a clever mechanism for selectively expanding definitions [BA98]. But the
extensionality treatment in TPs is rather weak (e.g., TPs can not solve our little problem

illustrated in Figure 7.5 and Subsection 7.2.4).

Chapter 8

Examples

This chapter presents various examples that illustrate the basic ideas of the calculi ER, EP,
and ERUE and compare refutations in the different calculi with each other. These examples
especially demonstrate the importance of an appropriate extensionality treatment in higher-
order theorem proving.

8.1 Extensionality in ER

This section discusses five simple, but with respect to their mechanisation nevertheless chal-
lenging examples for an higher-order automated theorem prover. As already mentioned in
Subsection 7.2.4, example E*" is currently not automatically provable in any higher theorem
prover apart form LEO. Note that all refutations are quite trivial and straightforward in the
extensional higher-order resolution approach &R.

E* a,=b, = (VPoyo. Pa = Pb)

The non-trivial direction of the extensionality property for truth values: if a, is equiv-
alent to b, then a, is Leibniz equal to b,. In the following refutation p,_, is a new
Skolem constant).

Cnf(—-E"™) : Ci:[pa)” Co: [p 6] Ca:[d" V)" Ca:[b]"VI[a]"
Res(Cy,Cq) : Cs:[pa=pbF

Dec(Cs), Triv: Cs:[a=0b]F

Equiv(Cs),Cnf: Cr:[a]" V] Cs:[a]T v [b]T

The rest of the refutation with clauses Cs3,C4,Cr, and Cg is obvious.

E5™ poyo (ao Aby) = p (b A a).

Any property which holds for a A b also holds for b A a. This statement can also be read
as: whenever a A b is in a set of truth values p,_,, then also b A @ is in p,_,.

Cnf(—E5*") : Ci:[p (aNb)]F Ca:p (bAa)]”

Res(C1,Cy) ¢ Ca:[p(and)=p (bna)F

Dec(C3),Triv: Cq:[aANb=0bAa]"

Equiv(Cq),Cnf: Cs:[a]" v [b]F Co:[a)Tv[b]T Cr:la]T Cs:[b]T

The rest of the refutation is obvious: resolve Cs against C7 and Csg.

111

CHAPTER 8. EXAMPLES

112

exrt
EB

exrt
E4

exrt
E5

(po—m o AN p bo) =7p (b/\a)

If the truth values a, and b, are in set p,_,, then a, A b, is in p,_, as well.

Cnf(—E§?) : Ci:[pal® Cy: [p b]" Cz:[p (a AB)F
Res(Cs,Cy) : Ca:[p(anbd)=pa)’
Res(Cs,Cq) : Cs:[p(anbd)=pb)"

Dec(Cq), Triv: Cs:[aAb=a]l

Dec(Cs), Triv: Cr:lanb=0bF
Equiv(Cs),Cnf: Cs:[a]" v [b]" Co:[a]" V[B]T Cio:[a]”
Equiv(Cr),Cnf: Ciy :[a]" v [b]F Cig: [a]T V[B]T Cis:[b]"

The rest of the refutation is obvious: Resolve Cg against C1g9 and Cys.

(VX,.VP_s. (P (m—=,X)= P (n,5,X)))

= (YQ(5)=0- Q@ (AX,. mX) = Q (AX,. nX))
This formula is an instance of the &-rule (VX,. m,—, X = n,4,X) = (AX,. mX) =
(AX,. nX) for Leibniz equality; for details on the &-rule, e.g., see [HS86].

Cnf(-BF"): Co: [P (m X)F VP (n X)]T
Co:[q (AX. m X7 Cs:[q (AX. n X))F

Unfortunately the idea to resolve Cs and Cs immediately against C; does not lead to
successful refutation as the resulting unification constraints are not solvable. Therefore
we choose another way and resolve between Cy and C3 (in the following derivation
Pi—os q(1—s1)—s0, and s; are new Skolem constants):

Res(Cq,C3) : Ca:lg(AX.m X)=¢q (AX.n X))¥

Dec(Cq),Triv: Cs:[AX.m X =AX.n X]F

Fune(Cs) : Co:[ms=ns]V

Leib(Ce),Cnf: Cr:[p (m s)]T Cs:[p (n s)]F

We made a detour to the pre-unification part of the calculus and modified the clauses Cy
and Cs3 in an extensionally appropriate way and Cy and C3 have now their counterparts
in C7 and Cg But in contrast to Cy and C3 the new clauses can successfully be resolved
against Cy.

In our refutation q(,_,)s,, S;, P.—o are new Skolem constants.
(VX VB o P(mi, X) = P(ni5, X)) = (VQ(150)50- @m = Qn)

This is an instance of the non-trivial direction of the functional extensionality axiom for
type ¢ — ¢ (in the following derivation p,_,, (1—1)—s0; and s; are new Skolem constants):

Cnf(=E&): Ci:[P (m X)]F V[P (n X)]"
Cy:[g m]" Cy:[g m)"
Res(Cy,Cs) : Cs:[qgm=qn]"
Dec(Cq), Triv: Cs:[m=mn]"
Func(Cs) : Ce:[ms=mns]"
Leib(Ce),Cnf: Cr:[p (m s)] Cs:[p (ns)F

8.2. DECOMPOSITION IN ER

The rest of the refutation is (like above) obvious: resolve C7 and Cs against Cy.

In our refutation q(,_,)0, 5., Pi—so are new Skolem constants.

EZ™ 0(0) = {0}
A (similar) proof for this example in calculus ER is also illustrated by Figure 7.6.

Cnf(=E) : Ci : [(ABoa. (VX4 (B X) = 1)) = (ABos. B=2Y,. 1)]¥
Func(Cy), Equiv,Cnf: Cy:[e' X]¥ Ve = M2 J_]T
Cs:[et s]Tviel = Az 1]F
Cy:[e! s]T v et X]F
Func' (Cy), Equiv',Cnf: Cs:[e!' X]F v[e' Y]V
Fac(Cs),UNT: Ce :: [e! X]F

Fund (C3), Equiv,Cnf: Cr:Cy:[e' s]T vi]e' e}
Res(Cy4,C7), Fac,UNT: Cg:[e' s]T
Res(Cg,Cs) : O

8.2 Decomposition in ER

Example EP® below demonstrates the basic ideas of extensional higher-order resolution and
illustrates why this approach can also be seen as test calculus for extensional higher-order
F-unification. This example furthermore focuses on the role of the decomposition rule in
connection with the extensionality rules and compares the slightly modified decomposition
rule Dec employed in this thesis with the rule Dec’ as used in [BK98a]:

CV[hTU"=h V¥
Cv[U'=Vv)v.. . v[U»=Vv"]F

Dec!

Our example extends EE”* from the previous section: suppose we have four function constants,
Jlamso)sasas J(asa)sasas Nasa, and joya, and we know that f equals g and £ equals j
(in the F-unification perspective we can assume that this two equations define our theory F).
We want to prove that under this assumptions (under this theory) application (f k) equals
application (g 7). Depending on the actual encoding of the assumptions and the assertion, a
respective proof is either trivial or quite complicate to mechanise in classical type theory. A
formulation that is not trivial to mechanise (as the application of the extensionality principles
is required) and which uses Leibniz equality is:

EP (VXooa VYo (f X Y)Z (g X Y)ANZs. (R 2)=(j Z)) = (f h) = (9 j)

When expanding the definition of =, negating the theorem and applying pre-clausification we
obtain the following pre-clauses for this example:

C1 tVPysso VX VYo 2(P (F X YY) V(P (g X YT
. [VQa—m- VZa' _'(Q ()) (Q (Z))]T
cs (VR (am0)—or (H(R (F 1)V (R (g 5]

Clause normalisation leads to:

Ca:[P(fFXY)NVIP (g X YN C5:[Q (R 2)FVIQ (G 2))F
Co: [r (f W)]T Crelr (g 7))"

113

CHAPTER 8. EXAMPLES

The reader may check that resolving Cg and C7 against C4 does not lead to successful refutation
(c.f. discussion of example E1 in [BK98a]). Instead we resolve between Cg and C7 and proceed
by employing the difference reduction idea.

The first refutation we present here employs rule Dec. Below we will present a second
refutation that alternatively use rule Dec’.

Res(Cs,Cr) : Cs:[r (fh)=r (9]
Dec(Cg), Triv: Co:[fh=g]]F
Dec(Co) : Cio: [f=9l" V[h=3j]"
2 X Funec(Cyo) : Cll:[fts:gts]F\/[hu:] u]F
2x Leib(Cr1) i Ciz: [VPasso- (P (ft5) V(P (gt s)]F
V VQaso. 2(Q (h w)) V(Q (5)]
Cnf(Ciz) : Cis:[p (ft)] Vg (hu)t Ciatp (ft9)]" Vg (5 u)]"
Cis:[p (gt sV [q (h u)]” Cie:[p (gt s))F Vg (5 u)F
Prim(Cy) : Cir: [P (f X Y)] VIP (g X Y)]¥
Prim(Cs) : Cis: [Q" (R)T VIQ (G 2))F

Within this derivation o4, Sa, %a; Paso and ¢a—s, are new Skolem terms and P/, , Q..
are new predicate variables. The rest of the refutation employs straightforward resolution
between the clauses C13—C16 and our assumption clauses Cy4,Cs,C17 and Cys.

A alternative refutation that uses the rule Dec’ is a bit more tricky:

RES(CG,C7) : (g [7’ (f h) =r (g])]F

Decd (Cs) : Co:[fh=yg "

Func(Cy) : Cio:[fhs=gjsF

Leib(Cyp) : Ci1: [VPasso- ~(P (f h8)) V(P (g7 3)]F

Cuf(Cu): Cua:[p (fhs)] Cia:[p (97 9)]"

Res(Cr2,Ca) : Cra: [P XYV (fhs)=P (fXY)"
Res(C13,Cq): Cis: [P (fF XY))FVp(gis)=P (g X V)

Note that the unification constraints in C14 and Cy5 are solvable by first imitating p and then
either projecting to the argument of P or imitating to the argument of p. In our refutation
we choose for Cy4 the partial projection solution o1 = [(AX,. p X)/P,h/X,s/Y] and for C;5
the partial imitation solution o3 := [(AX4. p (9 j s))/P']. Both solutions can be computed
in ER by applying eager unification. We propagate this solutions back to the non-unification
literals of the clauses and proceed as follows:

WI(C]4) : C]6 : [p (g h S)]T

UNI(Cy5) Ciz:[p (g7 91"

Res(Ci6,Ci7): Cis:[p(ghs)=p (g7 s)]"

2x Dec'(C1g): Cig:[hs=7] s]F

Leib(C1o) Cao : [VQa—so- "(Q (hs))V(Q (7)"

Cnf(Cao) : Co1: [q (h 8)]" Caz2:[q (7 9)]"

Res(Ca1,Cs) = Caz:[Q (5 2)) Vg (hs)=Q (b 2)]"

Res(Ca2,Cs) 1 Caa: [Q" (R ZNF Vg (j5)=Q (5 Z')]

Res(Cy3,Ca) 0 [Q (5 2)=Q (h 2N VIg(hs)=Q (h 2)]" Vg (55)=Q (5 2"

With unifier o := [(AX,. ¢ (h 5))/Q, (AX,. ¢ X)/Q',s/Z'] this unification constraint is obvi-
ously solvable, such that the empty clause is obtained by applying pre-unification.

114

8.3. LEIBNIZ EQUALITY AND ALTERNATIVE DEFINITIONS IN ER

This discussion raises the question whether rule Dec or rule rule Dec’ is better suitable
within calculus ER. This problem can and should be clarified by experiments in practice. As
an alternative to [BK98a] and in order to simplify the formal completeness proofs at certain
points we decided in this paper to use Dec.

8.3 Leibniz Equality and Alternative Definitions in ER

The examples discussed in this section focus on the equivalence of Leibniz equality and alter-
native definitions for equality in classical type theory.
The definitions for equality that are compared are:

Leibniz Equality
=" = AX,. \Y,. VP, ,. PX = PY
Reflexivity Definition
=0 = AX . Ao VQansamso. (Va. (Q Z 7)) = (Q X Y)
Modified Leibniz Equality
= = AX,. AY,. VP ((ao Vo a) AP X)= ((bbV—b,)APY)

Leibniz equality employs the substitutivity principle to define equality, whereas the second
alternative definition, which is presented and discussed in Andrews textbook [And86] at page
155, employs the reflexivity principle. The third (artificial) definition illustrates that there are
infinetely many modifications of Leibniz equality (and analogously of the Reflexivity Defini-
tion) which all denote the same relation in Henkin semantics, namely equality. The examples
furthermore illustrates that it is impossible to decide whether a given formula denotes the
equality relation as this requires to decide whether two arbitrary formulae are equivalent.

Er (i) (u="v)= (u="v) and (ii) (u="v) = (v =" v)
In case (i) we use the following refutation (¢s—n—o, i @ new Skolem constant):

CNF (i) : Ci:[Pu)f vIPv]T
Cy:lg 7z 72T
Ca:[quv]”
Res(Cy,C3) ¢ Ca:[Pulf' VIPv=quv]"
UNTI(Cq) with [(AX.qu X)/P): Cs:[quv]T
Res(Cq,Cs), Triv : O
In case (ii) we proceeed as follows (p,—, is a new Skolem constant):
CNF (i) Ci:[Q 22" V[Q uv]"
CQ : [p U]T
Cs: [pv]F
Prim(Cy), Subst : Ca: [Q 22T VIQ uv]¥
Res(C1,Cs) : C::[Qz2"VIQuv=po]"
UNTI(Cs) with [AX,Y.pY)/P]: Cs:[p 2"
Res(Cq,C2) ¢ Cr:[Q 22" VIQ uwv=pulF
UNI(Cs) with [(AX,Y.p X)/P]: Cs:[p=2]"
Res(Cs,Cs), Triv : O

115

CHAPTER 8. EXAMPLES

116

Alternatively one can directly prove ===, but the proof is a little more bulky.
E; (i) (v =%v) = (v 2" v) and (i) (v =% v) = (u =% v)

In case (i) we proceed as follows:

CNF (i) Ci:[Pulf vIP T
Cy:[pultVvia®
Cs:[p u]T Vv [a]F
Ca:[pv]fvia”
Cs : [p v]" v [a]
Res(Ca,C3), Fac,2 x Triv: Cs: [p u]”
Res(C4,Cs), Fac,2 x Triv: Cr:[pv]l
Res(Cy,Ce) : Cs:[Pv]" V[P u=pu"
Res(Cs,Cr) : Co:[Pu=pulf V[Pv=pv]l
UNI(Cy) with [p/P]: O
In case (ii) we employ the following derivation:
CNF (i) : Ci:[a)f VP ulf vIb]F V[P]
Co:[a)f vIPu)F v[o]T V[P v]T
Cs:[a]t vIPu v VvIP T
Ca:[a]T VP« vI[o]T VI[P v]T
Cs:[pu]”
Co : [p v]F
Res(C1,Cq),3 x Fac,dx Triv: Cr:[d" V[P u]" v [P v]"
Res(C3,C4),3 X Fac,4 x Triv: Cg:[a]l V[P u]f v [P v]T
Res(C7,Cg),2 x Fac,3 x Triv: Co: [P ulf vI[Pv]T
Res(Cy,Cs) : Cio: [Pv]TV[Pu=pul"
Res(Cy0,Cs) : Cihi:[Pu=p u]F [Pv=p U]F

a:-a—>a—>o£a)

Alternatively one can directly prove that = . Again the proof is a little

more bulky.

8.4 Reasoning about Sets with Leibniz Equality

The case study carried out with LEO on the examples presented in the Mizar article Boolean
Properties of Sets [TS89] has already been discussed in Section 7.4. This case study makes
use of the expressivness of classical type theory and encodes sets as characteristic functions
instead of employing, e.g., Tarski Grothendieck set theory [Try89].

The particular proofs generated by LEO are in most cases quite short and elegant. Very
interesting is, that some proofs are found immediately by definition expansion and clause
normalisation.

LEO’s performance together with the detailled proofs is reported at http://www.ags.
uni-sb.de/projects/deduktion/projects/hot/leo/.

Currently the author experiments with the examples of the article Basic Properties of

Sets [Byl89].

8.5. POSITIVE EXTENSIONALITY RULES IN EP AND ERUE

8.5 Positive Extensionality Rules in P and ERUE

The examples discussed in this section demonstrate that the positive extensionality rules (or
extensionality axioms which we want to avoid) are unavoidable in order to reach Henkin
completeness approaches for primitive equality. As discussed in detail in chapter 2.8 none of
these examples can be proven in EP or ERUE without employing the additional extensionality
rules.

EFare ¢, i [a = —a]T

Refutation in P and ERUE

Equiv'(Cy),CNF : Cy: [AIF VAR C3:[A]T v [A]T
Fac(Cy),UNT, Fac(C3),UNT: C4:[A]F Cs : [A]F
Res(Cq,Cs5),UNT: Ce : O

As rule Para is not needed this refutation is also possible in calculus ERUE.
Efara Cl . [G X —t—o p]T

Refutation in P and ERUE

Fund' (Cy) : C:[GXY=pY]
Equiv'(Cy) : Cs:[GXYFVvpY]T C:[GXY]TV[]pY]F
Prim(Cs), Subst: Cs:[G' X YT v[pY]"

Prim(C4), Subst : C¢ : [G" X Y]F' Vv [p Y]"
Fac(Cs),UNT: Cr:[pY)!
Fac(Cg),UNT: Cs:[p Y]
Res(C7,Cs),UNT: Co:0

As rule Para is not needed this proof is also possible in calculus ERUE.
Ef e ¢ [m = AX,. (3X,. X A-X)]T

Refutation in €P and ERUE

Fund (Cy) : Cy:[MY,=(3X,. X A-X)]T

Equiv'(Cy) : Cz:[MY]Fv[s]T Cq:[M Y]V I[s]"
Prim(Cs), Subst : Cs:[H Y] v[st

Fac(Cq),UNT, Fac(Cs),UNT: Cg : [s]T Cr: [s]F
Res(Ce,Cr), UNT: Cs : O

where s, is a Skolem constant for X. As rule Para is not needed this proof is also
possible in calculus ERUE.

EPera ¢y [m = AX,. »(m X)]¥

Refutation in P and ERUE

Fund (Cy) : Cy:[mY ==(mY)]¥

Equiv'(Cy) : C3:[mY]TV[mY]T Cy:[mY]FVvimyY)F
Fac(Ca),UNT, Fac(Ca),UNT: Cs:[m Y]' Ce:[m Y]
RES(C5,C6-),WII C7 :d

As rule Para is not needed this proof is also possible in calculus ERUE.

CHAPTER 8. EXAMPLES

118

E?ara Cl . [P q =0 P T‘]T CQ : [q X =t—° —|(T‘ X)]T

where Plisim0)=(1=1—130), X, are free variables and ¢,—,—0, 7.—.—, are function con-
stants.

Refutation in &P

3x Func'(Ch): Cy:[PqYrY2Y3=Prylyv2y?"
Fund (C) : Ca:lg X Z, ==(r X 2)]T
Para(Cs,C3): Cs:[PrYrY2Y3IVIPqYY2Y2=(¢ X Z="~(r X Z))|F

By pre-unifying Cs one can compute the following unifier for its unification constraint:
(AU, S5m0, Vi, W, T, UV W =° =(r VW))/P,V/YY W/Y?]. Thus by eager unifica-
tion applied to Cs with get:

UNI(Cs), Subst : Co :[r X Z ="=(r X Z)]¥
The rest of the refutation is analogous to EFere,

Refutation in ERUE

3X Func(Cr): Cy:[PqY!Y2Yi=pPryly?2y?3T
Fund (Cy) : Ca:lq X Z, = —|(r X Z)]T
Equiv'(Cs) : Cs:[PqY! Y Y3 viPrYrY2Y3T
Co [P g Y} Y2 YT VIPrY! Y Yo
Equiv'(C4),Cnf: Cr:[q X Z] vir X Z2)F Cs:[q X Z)'vr X 2)F
The rest of the refutation is straightforward resolution on Cs, ..., Cs.

8.6 Comparing &P and ERUE

Properties of Primitive Equality The following examples demonstrate that primitive
equality denotes an extensional congruence relation in all Henkin models (i.e., the intended
equality relation). The single properties to be checked are reflexivity (Ef), symmetry (E),
transitivity (E7), congruence (EZ) and extensionality (EZ).

E- VA,. A= A.

C

Negation and clause normalisation leads to (@, is a new Skolem constant):

Refutation in £P: immediately by unification.
Refutation in ERUE: immediately by unification.

E= VA,, By. (A= B) = (B =2 A).

Negation and clause normalisation leads to (aq, by, Pa—yo are new Skolem constants):

Refutation in EP:

Leib(Cy),CNF Cs:[palm Cq:[pb)"
Para(Cy,Cs3),Triv: Cs:[p bt
Res(Cy4,Cs), Triv: O

8.6. COMPARING EP AND ERUE

Refutation in ERUE:

Res(Cy,Cq), Triv: O (possible beause of symmetry convention in ERUE)

EZ VAu. VBo. ¥Co. (A= B)A(B=C) = (A=0).

Negation and clause normalisation leads to (aq, ba, Ca, Pa—o are new Skolem constants):
Cr:la=b" Cy:[b=¢T Cs:la=c"
Refutation in EP:

Leib(Cs),CNF - Ca:lpa” Cs:[pc”
Para(Cy,Cq),Triv: Ces:[p b)"
Para(Cy,Cg), Triv: Cr:[pc]’
Res(Cs,Cr), Triv: O

Refutation in ERUE:
Res(c3,¢2) : Ca:[la=c)=(b=20)]"
2 x Dec(ed), Triv: Cs:[a=b]"
Res(cl,¢b),UNT: C¢: 0O

EZ VF,.5.YVA,.VB,. (A=" B) = (F A= F B).
Negation an clause normalisation leads to (@q,ba, fomsp, Ps—o are new Skolem con-
stants):
Cy :[a=0b]" Cy:[fa=fb"
Refutation in EP:
Leib(Cy),CNF - Cs:[p(fa)]T Ca:lp(fO)F
Para(Cy,C3),Triv: Cs:[p (f b)]T
Res(Cs,C4), Triv: O

Refutation in ERUE:
Dec(c2),Triv: Cs:[a=0]F
Res(cl,¢3),UNZ: C4:0

ES VEasp. VGoassp. (VAL (B A=P G A)) = (F=G).
Negation and clause normalisation leads to (fa— g, ga—g, Pg—o, Sg are new Skolem con-
stants):

Ci:[fA=g A" Cr:[f=g]"
Refutation in &P:

Func(Cy) : Ca:[fs=gs]"
Leib(C3),CNF : Ca:lp (fs)]F Cs:[p (9 9]
Para(Cy,Cq),UNT: Cs:[p (g 5)]T

R@S(Cg, Cs),Z/{/\[IZ U
Refutation in ERUE:

Fune(Cy) : Cs:[fs=gs]"
Res(cl,e3),UNI: C4:0

119

CHAPTER 8. EXAMPLES

120

Note that the ERUE refutations are in all cases shorter and more elegant.
Especially EZ shows that in extensional higher-order paramodulation it might be useful
to allow paramodulation also on unification constraints in order to get shorter and simpler

proofs whithout recursive calls from within the unification process. On the other hand it
seems to be quite complicated to guide an approach that simultaneously paramodulates into
unification constraints and employs recursive calls to the overall refutation procedure from

within unification.

Primitive Equality and Leibniz Equality We analyse in calculi EP and ERUE whether
Leibniz equality and primitive equality denote the same relation.

ET We prove that ="=>7279=%je. that (AX,. AY,. VPas,. P X = P Y) =07070=2

Refutation in EP (uq, ve and pa—yo, Ga—os Ta—o are Skolem constants)

CNF(ET) :
2 x Func(Cy) :
Equiv(Cy), CNF :

Res(Cs,Cy), Triv :
2 x Leib(Cg) :
CNF(Cr) :

Prim(Cs) :

Subst(Cy2) :
Fac(Cy3) :

2 x Dec(Cy4), Triv :

2 X FlexRigid(Cys) :

2 X SUbSt(Clg) :
3 X Triv(Cir) :

(AKX Ao VP P X = PY) =000l

[(VPasso. P u= Pv)=°(u="0v)]F

cpu)t Vv [u=>v]"

dp W]V [u=")"

POtV u =20t v[Put

tu=2 vV [u=2 0]l

:VQasso. Q u=Q v]" V[VR4s0o. Ru= R v]"

: %q u]T v [ru]?
q

u)T v [r v]F

Cig: [Pv]TV[u=>v]T V[P u)F

V[P =7 (AXa. (Hasye X) =2 (H!

a—rQ

Cus = [(H v) =2 (1)] v T == o] v [(H) = (H')"
Cia:[u="v]T V[(H w) =2 (H' u)]F

VI((H v) =2 (H' v)) =° (u="0)]"

Cis: [u="v]T V[(H u)=> (H" u)]¥ V[(H v)=u]"

S

V[(H" v) = v]

Cig: [u="v]T V[(H u)=> (H' u)]¥ V[(H v) =u]"

VI(H v) =v]F V[H = (A X,. w)]F V[H = (A X, X)]F

Cir:fu="v]" Vu=>u]" vu=ul"vv=r0]"

Cig:[u="v

]T

4 x Para(Cis,{Cs,Co,C10}),3 X Triv :
Cio:[qgv)]TVvru]T Cy:[qv]TV[rov]F Cou:lgv)fVv[ro]T
Straightforward Resolution on Cig,C99,C21,C11: O

Refutation in ERUE
We replay the derivation above and instead of the paramodulation steps between Cig
and Cg, Cg,C1g we resolve between Cig and the unification constraint Cg.

E; We prove that ==%797%=2 je. that VQ(asa—o)—o)- (@ (AX.AY. VP, 4,. P X =

PY))=(@ =)

8.6. COMPARING EP AND ERUE

Refutation in &P (Q(a—m—m)—m is a Skolem constant):

CNF(ED): G

C2:

Res(Cl,Cg) : Cg
Dec(Cs3), Triv: C4
C4 is identical to 4

Refutation in ERUE

q (AX.AY. VP, P X = PY)]T
q :a]F

(@ AX.AY. VP, P X = PY)) =707 (g =))F
(AX.AY. VP, P X = P Y) =000zl

in the refutation for ET above:...O

We employ the previous initial derivation and then an refutation that is analogous to
the ERUE-refutation for ET .

Reasoning about Sets with Primitive Equality

E:¢ Let the set of odd numerals be defined as the set of non-even numerals. Then the power
set of the set of odd numerals greater than 100 is equal to the power set of the set of
even numerals greater that 100:

{X|odd X Anum X} ={X|-ev X Anum X} =
p{X| odd X Anum X A X > 100} = p{X| = ev X Anum X A X > 100}

where the power set is defined by p := AM,_,. AN4_,. VX,. N X = M X. Negation
and clause normalisation leads to:

C1:[(AX.0dd X Anum X) = (AX. = ev X Anum X)]T
Cy: [(AN.VX. N X = ((odd X Anum X)A X > 100)) =
(AN.VX. N X = ((= ev X Anum X)A X > 100)))]"

The probably simplest refutation in calculus &P is:

Fund'(Cy) :
Fune(Cy) :

Equiv(Cy) :

Para(Cs,Cs), Triv :

Fac(Cr), Triv :
Para(Ce,Cs), Triv :

Fac(Co), Triv :
Res(Cg, Cyp), Triv:

63:
C4I

C5:
Cs :
Cr:

Cs:
Cg:

[(odd Y Anum Y) = (= ev Y Anum Y)]¥
[(VX.n X = ((odd X Anum X)A X > 100))
=(VX.n X = ((-ev X Anum X)A X > 100)))]F
VX.n X = ((odd X Anum X)A X >100)]Tv
VX.n X = ((-ev X Anum X)A X > 100)]7
VX.n X = ((edd X Anum X)A X > 100)]"V
VX.n X = ((-ev X Anum X)A X > 100)]F
VX.n X = ((mev X Anum X)A X > 100)]7V
VX.n X = ((-ev X Anum X)A X > 100)]7
VX.n X = ((mev X Anum X)A X > 100)]7
VX.n X = ((-ev X Anum X)A X > 100)]F'V
VX.n X = ((nev X Anum X)AX > 100)]F

Cio:[VX. n X = ((mev X Anum X)A X > 100)]F

O

The following ERUE-refutation has a more goal directed character and is at least not

121

CHAPTER 8. EXAMPLES

122

more complicated than the above paramodulation proof:

Fund (Cy) : Cs:[(odd Y Anum Y) = (= ev Y Anum Y)]¥

Fune(Cy) : Cq:[(VX.n X = ((odd X Anum X)A X > 100))
=(VX.n X = ((-ev X Anum X)A X > 100)))]"

Dec(Cy), Triv : Cs: [(AX.n X = ((odd X Anum X)A X > 100))
=(AX.n X = ((-ev X Anum X)A X > 100)))]F

Func(Cs) : Co : [(n s = ((odd s ANnum s) A s > 100))

= (n s= ((- ev s Anum s) A s> 100)))]"
2 x Dec(Cg),4 x Triv: Cr:[(odd s Anum s) = (= ev s Anum s)]¥
Res(Cz,Cs3),UNT: O

If we slightly modify, i.e., complicate, the example by switching the first two conjuncts
in the definition of odd numerals, such that Cy : [AX. (num X Aodd X) = AX. (- ev XA
num X)]" and Cz : [(odd X Anum X) = (= ev X Anum X)]", both refutations obviously
need to employ additional recursive calls from within unification in order to show that
[(num X Aodd X) = (odd X Anum X)]¥ is a solvable extensional unification problem.
More precisely in an analogous paramodulation refutation to above additional recursive
calls are necessary to justify the paramodulation steps leading to Cs and Cyo (note that
Triv is not applicable in both cases to justify the resolution step immediately). These
clauses would look like

Cs: VX.n X = ((mev X Anum X)A X > 100)]Tv
[(num X Aodd X) = (odd X Anum X)]F

and
Cio: [VX.n X = ((-ev X Anum X)A X > 100)]v

[(num X Aodd X) = (odd X Anum X)]F

In both cases the unification constraints can be eliminated only by recursive calls to
overall proof procedure.

A RUE-resolution refutation analogous to the above one would result in Res(Cs,Cs) :
Cr : [(odd s Anum s) = (= ev s Anum s) = (num sA odd s) = (= ev s Anum s)]¥ such
that decomposition and subsequent elimination of trivial pairs leads to Cs : [(num X A
odd X) = (odd X Anum X)]¥. Then an recursive call to the overall proof procedure
leads to the refutation.

This modified example demonstrates that calculus EP in some cases unavoidably needs to
perform recursive calls to the overall refutation process in order to justify single paramodula-
tion steps. These side computations obviously follow the difference reduction idea. Thus, in
practice the paramodulation approach requires both: appropriate heuristics in order to guide
a proof along the paramodulation, i.e., term rewriting idea, and appropriate heuristics that
guide the side computations based on the difference reduction idea.

The following example demonstrates that in some situations the term rewriting idea even
seems to be completely inappropriate and useless. Therefore we further modify and complicate
our example above. The idea is to restructure the single conjuncts in the assertion, such
that rewriting with the assumtion equation at the right subterm of the assertion becomes
impossible. This final modification additionally illustrates that an efficient paramodulation
approach is probably not easy to mechanise in practice, completely independent from the
question if suitable reduction orderings are available or not.

8.6. COMPARING EP AND ERUE

E$? We complicate problem E${* by switching the conjuncts in the assertion:

{X]odd X Anum X} ={X|-ev X Anum X} =
o{X| (odd X AN X > 100) Anum X} = p{X| (mev X AX > 100) Anum X}

Negation and clause normalisation leads to:

C1:[AX. (odd X Anum X)=AX. (= ev X Anum X)]T
Cy: [(AN.VX. N X = ((odd X A X > 100) A num X))
= (AN.VX. N X = ((-=ev X A X > 100) A num X))]F

We first try to proceed analogous to example E{*:

Func' (C1) : Cs:[(odd X Anum X) = (= ev X Anum X)]¥
Func(Cq) 1 Cq:[(VX.n X = ((odd s A s> 100) Anum s)) =
(VX.n X = ((— ev sA s> 100) A num s))]"

Followowing the paramodulation based refutation for E{ we perform a recursive call
to the refutation process with rule Fquiv and then try to rewrite the resulting clauses
in an appropriate way:

Equiv(Cys): Cs:[VX.n X = ((odd X A X > 100) A num X)]Tv
VX.n X = ((-ev X A X >100) A num X)]T

Ce:[VX.n X = ((odd X A X > 100) A num X)]F'v
VX.n X = ((-ev X AX >100) A num X)]F

Surely, there are many different rewrite steps possible with C3 on these clauses, but
as the reader may convince himself, none of these rewrite steps lead to unification
constraints that are solvable (even recursive calls to the overall proof procedure cannot
help and unfortunately only overwhelm the search space with useless clauses). The
problem is that the right paramodulation step is simple not possible because of the
improperly modified term-structure. The only possible way to proceed that the author
explored is to employ a difference reducing refutation as motivated by the respective
ERUE refutation in example E$¢* above:

Dec(Cy),Triv: Cs:[(AX.n X = ((odd X A X > 100) A num X))

=(AX.n X = ((-ev X AX >100) A num X)))]"
Fune(Cs) : Co : [(n s = ((odd s A's > 100) A num s))

= (ns= ((-evsAs>100)Anum s)))]F
Dec(Cs), Triv: Cr:[((odd s A s> 100) A num s) = ((- ev s As > 100) A num s)]F

Instead of immediately resolving beetween C; and Cs as in the corresponding deriva-
tion for E{* we employ the extensionality rules to both clauses and proceed with a

123

CHAPTER 8. EXAMPLES

straightforward resolution proof.

Equiv(C7)CNF,

Fac,UNT: Cs : [odd 5]V [ev 5]
Cy : [odd s]" v [s > 100]" (subsumed by C12)
Cio : [odd s]T V [num S]T (subsumed by Cy¢)
Ci1:[s > 100]7 Vv [ev s]F (subsumed by Cy3)
Cig : [s > 100]7
Ciz : [s > 1007 V [num s]T (subsumed by Ci2)
Ciy : [num s]T V [ev s]¥ (subsumed by Ci6)
Cis : [num s]T v [s > 100]7 (subsumed by Cy¢)
Cig : [num s]”
Ci7 : [odd s]¥ v [s > 100]F V [num s]¥" V [ev s]¥

Straightforward resolution refutation with Cg,Cqy,Cag,Ca3

An alternative Refutation in RUE-resolution approach that illustrates the difference
reduction idea even better is the following:

Res(Cs,C7) : Cs :[((odd X Anum X) = (= ev X Anum X)) =
(((odd s A's > 100) A num s) = ((— ev s As > 100) A num s)]"

Fquiv(Cs),Cnf :
Cr :[(edd X Anum X) = (= ev X Anum X)]TV
[((odd s A s > 100) A num s) = ((— ev s A s > 100) A num s)]7
Cs : [(odd X Anum X) = (= ev X Anum X)]Fv
[((odd s A s> 100) A num s) = ((— ev s A's > 100) A num s)]"

2 x Equiv' (C7) Cnf, Fac, Triv :
Co : [odd s]T Vv [ev s]T V [odd X]T V [ev X]T V [num 5] v [s > 100]F V [num X]F
Cio : [odd X]T Vv [ev X]T V [ev s]7 V [num s]F Vv [s > 1007 V [odd s]F v [num X]F
Ci1 : [odd s]T v [ev s]T v [num s]¥ v [s > 100]F V [ev X]F'V [num X'V [odd X]F
Cia : [ev 8]V [num s]¥ V [s > 100] V [odd s]* V [ev X]F V [num X]F V [odd X]F
2 x Equiv'(Cr),Cnf, Fac, Triv:
Cy3 : [num S’]T V [num X7

Cia:[s> 100] V [num X7

Cis : [odd s]T Vv [num X]TV [ev s]F

Cio: [s > 100] V[odd X7V [ev X]F

Ci7 : [odd s]T Vv [odd X7V [ev s]¥ V [ev X]¥

Cig:[s > 100] V [ev X]T V [odd X]F V [num X]F

Cig : [ev s]T V [num X] V [odd 5] v [num s]¥ v [s > 100]F
[

Cyo : [ev 8T V [odd X] V [odd s]F' v [num s]F v [s > 10017 Vv [ev X]F
Cor : [ev s]T V [ev X]T V [odd s]" V [num s]" Vv [s > 100]" V [odd X]*" V [num X]*

Straightforward resolution proof on Cy,...,Cq : O

We could even resolve immediately between C3 and C4 and proceed with a recursive call
to the overall proof procedure as illustrated above. The resulting set of clauses then
again increases a bit but a straightforward resolution proof is still easy to find.

With this example we demonstrated that a pure termrewriting is most likely impossible in
extensional higher-order resolution as a combined extensionality treatment that takes func-

124

8.7. RAISED QUESTIONS

tional and Boolean extensionality into account seems to require the application of difference
reduction techniques.
The following example illustrates that neither rule Para nor rule Para’ capture full func-

tional extanionality.!

E{unc (VXL fa—)LX =g, /Y) = (p(L—H)—)o f = p(A—)L)—m g)

This problem normalises to:

Ci:[f X=gX]" Co:[pfl" Cs:lpgl”

Note that neither with rule Para nor with rule Para’ a fruitful rewriting step is possible
(when applying rule Para’in order to rewrite f in C3 we obtain the unification constraint
[P (f X)=p f]¥, which is not solvable with a projection binding). Instead we have to
employ difference reducing derivations and again the ERUE derivation is more elegant:

Refutation in EP

Res(Cy,C3), Dec: Cq:[f=g]"

Func(Cy) : Cs:[fs,=gs]"

Leib(Cs) : Co:[p (f)" Crilp (g s)]"
Para(Cy,Ce),UNT: Cs:[p (g s)]*

Res(Cs,Cr), Triv: O
Refutation in ERUE

Res(C2,Cs), Dec: Cq:[f=g]"
Func(Cy) : Cs:[fs =g SL]T
RGS(CE,,Cl),WIZ g

8.7 Raised Questions

The examples examined so far (an excerpt has been presented in this Chapter) raise various
questions concerning the calculi R, EP, and ERUE:

1. Is rule FlexFlex indeed admissible in all three approaches, i.e. can this rule be avoided
(as already realised in LEO)? As to the best of my knowledge there is no counterexample
to this conjecture.

2. Can rule Leib be restricted to base types as conjectured in Remark 4.18 and as already
employed in LEO’s extensionality treatment (cf. step 7 in LEO’s main loop as presented
in Subsection 7.2.3)7 For the examples examined so far, this restriction is indeed possible
without affecting refutability.

3. Is decomposition rule Dec, as used in this thesis, or rule Dec’, as used in [BK98a],
better suited for applications in practice? The difference between both rules has been
illustrated in Subsection 8.2.

'It has been claimed by an unknown referee of [Ben98], that rule Para’ in contrast to rule Para captures
full functional extensionality, which is not the case as our examples illustrates.

125

CHAPTER 8. EXAMPLES

126

4. Is the traditional paramodulation rule Para (cf. Figure 5.1) or its higher-order counter-

part Para’ (cf. Figure 5.1) better suited in applications of calculus EP in practice. The
connection between both rules has been illustrated in Section 5.1.

. In 5.2 it has been remarked that paramodulation into unification constraints may

shorten some proofs, but it might be quite complicated to guide this in practice. This
question needs further investigation.

. The following example demonstrates that in calculus ERUE various applications of rule

Leib can be substituted by alternative derivations applying resolution on unification
constraints instead.

Remark 8.1. In ERUE one can prove example EE" (cf. Section 8.1), which formulates an
instance of the functional extensionality property for Leibniz equality, as follows (the
idea of this refutation is due to Frank Pfenning):

Cnf(-EE) : Ci:[P (m X)FVIP (n X)]T
Cy: [qg m]"
Cs:[qn]¥
Res(Cq,Cs), Dec, Triv: Cq:[m=n]
Fune(Cy) : Cs:[ms=ns)l
Res(Cy,Cs) : Ce: [P (m X) Fvip (n X)=((ms)=(n s))]F

UNI(Cs, [AX. (m s) = X/P]): O

Hence the question arises if rule Leib can be avoided completely in ERUE. As rule Leib
is obviously not avoidable in calculus EP (there is no proof in EP for the above problem
that avoids the application of rule Leib) this result would be another strong argument
in favour of calculus ERUE and against calculus EP.

. The calculi do not provide sufficient restrictions of the extensionality and equality rules

that allow for a fruitful guidance of the proof search in difficult examples. Thus, further
investigations in order to restrict and specialise the developed approaches is important
and can probably lead to much more powerful implementations as the [LEo-system.

. It should be examined whether EP and ERUE bring essential advantages at all over

a pure defined equality treatment as employed in ER. Clearly, one advantage of &P
and ERUE is that the primitive substitution rule in these approaches allows to im-
mediately instantiate a flexible literal by a primitive equation, whereas in calculus
ER the instantiation of Leibniz equality requires two subsequent primitive substitu-
tion steps (which can be improved by extending the primitive substitution rule in ER,
such that it also instantiates the free literal head by most general Leibniz equations,
i.e., AX". VP,—,. ~(P (Hy X™))V (P (Hy X™)), where H; and Hy are new free vari-
ables of appropriate type). The importance of primitive substitutions of equality is
demonstrated by the Tps-example THM15b discussed in [ABI*96].

Chapter 9

Applications and Related Work

In this chapter we discuss related work and sketch some applications. The discussion is
structured with respect to the different kinds of contributions.

9.1 Cooperation and Joint Work

The contributions of the Chapters 2.1 and 3 have been developed in cooperation with Michael
Kohlhase. Some main aspects of this chapter were also positively influenced by discussions
with Frank Pfenning and Peter Andrews during a research stay at Carnegie Mellon University,
Pittsburgh, USA.

As already mentioned, the resolution calculus ER in Chapter 4 is based on, extends, and
corrects Michael Kohlhase’s approaches presented in [Koh94b] and [Koh95]. And the first
completeness proof for ER, which is presented in [BK98a] and which differs from the one
presented in this thesis, has been developed in cooperation with Michael Kohlhase. The
author gained important insights about &R, the completeness proof for ER and the ideas for
ERUE in discussions with Frank Pfenning.

9.2 Abstract Consistency and Model Existence

The abstract consistency method, which has been extended in this thesis, was first devel-
oped by Hintikka and Smullyan [Hin55, Smu63, Smu68] for first-order logic and extended
to higher-order logic by Andrews [And71]. The new results can clarify the relationship be-
tween syntax and semantics for a variety of higher-order deduction calculi. Up to now cal-
culus development in higher-order logic has been guided by Andrew’s Unifying Principle for
Type Theory [And71]. This model existence theorem has set the completeness standard for
higher-order calculi such as [And71, Hue72, Hue73a, ALCMP84], even though it is weaker
(i.e., with respect to this principle less formulae are valid) than the intuitive one given by
Henkin Models. The new model existence theorems, e.g., allow to analyse completeness of
the traditional higher-order resolution calculi [And71, JP72, Hue72, Hue73a] or the more re-
cent ones [Wol93, Koh94b, Koh95] with respect to Henkin semantics or, if the extensionality
axioms in these approaches were avoided, with respect to the ¥-Models. Both was hardly
possible before, i.e., only when using direct proofs and without the help of a proof tool.

The semantical notions in Chapter 2.1 stem from earlier attempts of Kohlhase to achieve
completeness with respect to Henkin models for higher-order tableaux [Koh95, Koh98a] and

127

CHAPTER 9. APPLICATIONS AND RELATED WORK

128

especially from the attempts of the author in cooperation with Kohlhase to achieve complete-
ness for higher-order resolution [Koh94a, Ben97, BK97b, BK98a).

A model existence theorem for a logical system £ is a theorem of the form: If a set of
sentences ® in L is a member of an abstract consistency class ', then there exists an L-model
for ®. Thus if we want to show the completeness of a particular calculus £, we first prove
that the class I' of sets of sentences ® that are L-consistent (cannot be refuted in £) is an
abstract consistency class, then the model existence theorem tells us that £-consistent sets
of sentences are satisfiable in £. Now we assume that a sentence A is valid in £, so = A does
not have a £-model and is therefore L-inconsistent. From this it is easy to verify that A is
a theorem of £. Note that with this argumentation the completeness proof for £ condenses
to verifying that [' is an abstract consistency class, a task that does not refer to £-models.
Thus the usefulness of model existence theorems derives from the fact that it replaces the
model-theoretic analysis in completeness proofs with the verification of some proof-theoretic
conditions (membership in I'). In this respect a model existence theorem is similar to a
Herbrand Theorem, but it is easier to generalise to other logic systems like higher-order logic.

Another application of model existence theorems is that they allow for very simple (but
non-constructive) proofs of cut-elimination theorems. In [And71] Andrews applies his Unify-
ing Principle to cut-elimination in a non-extensional sequent calculus, by proving the calculus
complete (relative to ¥) both with and without the cut rule and concludes that cut-elimination
is valid for this calculus. In the extensional case, where a cut-elimination theorem can be
found in [Tak68, Tak87], we can directly model a cut-elimination proof following Andrews’
approach, using the model existence theorem for Henkin models.

Takahashi discusses in [Tak68] a non-constructive cut-elimination theorem for simple type
theory with extensionality. This work is based on [Tak67], where a respective result has
been shown for simple type theory without extensionality. Cut-elimination addresses the
question: ”Given a deductive system, a proof for A = B and one for B = C. How can we
construct a proof for A = B?” Takahashi analyses this problem for a Gentzen style sequent
calculus [Gen35]. His system is also used by Takeuti in [Tak87]. A constructive proof of
cut-elimination for intuitionistic type theory is presented by a student of Gandy in [Unkar].

With respect to the connection of the primitive substitution principle and higher-order
model existence the author wants to point to the theorem 2 in [BK98a]. A consequence of
this restricted model existence theorem would be that depending on the maximal order 7 of
an input problem the primitive substitution of universal quantifiers at head positions could
be restricted to those types with an order < 7. Unfortunately at CADE-15 Peter Andrews
presented a counterexample to the argumentation in the proof of theorem 2 given in [BK98a]
and [BK97a] so that we had to withdraw the theorem. The author is grateful to Peter Andrews
for his advice (and not only for this particular one) but also wants to point out that the lack
of theorem 2 does not affect the other results presented in [BK98a] as they do not depend on
theorem 2. The overall role of the primitive substitution principle in higher-order theorem
proving and the question whether there are ways to restrict this principle is, at least for the
author, still not obvious.

In all these applications, the leverage added by the work presented in Chapters 2.1
and 3 is that we can now extend non-extensional results to extensional cases. However,
the generalised model classes have a merit of their own, for instance in higher-order logic pro-
gramming [NM94], where the denotational semantics of programs can induce non-standard
meanings for the classical connectives. For instance, given a SLD-like search strategy as in
A-PROLOG [Mil91], conjunction is not commutative any more. Therefore, various authors

9.3. EXTENSIONAL HIGHER-ORDER RESOLUTION

have proposed model-theoretic semantics, where property b (which expresses that the domain
D, contains exactly T and F) fails. For instance Wolfram uses Andrews v-complexes [Wol94]
as a semantics for A-PROLOG and Nadathur uses “labeled structures” for the same purpose
in [NM94]. It is plausible to assume that the results of this thesis will be useful for further
developments in this direction as well.

9.3 Extensional Higher-Order Resolution

Higher-order resolution has been first discussed in [And71]. Andrews calculus still avoids
higher-order unification and instead provides a substitution rule, i.e., a instantiation rule for
free variables, that basically allows to enumerate the Herbrand universe. Most important
about [And71] is, that it adapts Smullyans unifying principle to higher-order logic in order
to prove completeness of the developed resolution approach with respect to the semantical
notion of v-complexes; see also the discussion in Section 9.2 above.

The first mechanisable higher-order resolution calculi were presented by Jensen/Pietrowski
in [JP72] and Huet in [Hue72, Hue73a]. Especially Huet’s Constrained Resolution Approach
is closely related to the work presented here, as the non-extensional fragment of calculus ER
is essentially a variant of Huet’s Constrained Resolution Approach. The differences of exten-
sional higher-order resolution to Huet’s constrained resolution approach have been illustrated
in this thesis; especially remark 4.17 pointed to the fact, that in contrast to Huet’s approach
eager unification becomes essential in ER, such that unification can not be delayed until the
end of the refutation process.

The resolution calculus HORES in [Koh94b] influenced the development of calculus ER
to a large extent. The particular connections between ER and HORES have been discussed
in detail in Section 4.1. Furthermore, extensionality rule Fquiv is motivated by an analogous
rule already given in the higher-order tableaux calculus [Koh95]. Whereas this calculus claims
to be Henkin complete it can easily be shown by a counterexample, for instance by examples
E*" and E£”) that it is not. The problem is that [Koh95] does not realise a sufficient
interplay between the functional and the Boolean extensionality principles. Such an interplay
is realised in ER by the modified rule Func (which extends the a- and n-unification rules
employed in [Koh95]) and the rule Leib which connects unification constraints with Leibniz
equations in connection with rule Fquiv. The extensional tableaux calculus HTE [Koh98a]
which extends [Koh95] translates the rules of calculus ER presented in this thesis in a tableaux
setting. In difference to [Koh95] the calculus in [Koh98a] provides an extended unification
rule Func as discussed in this thesis (the extended unification rule Func applies the functional
extensionality principles also to non-A-abstractions within higher-order unification).

Wolfram suggests in his resolution approach [Wol93] to employ general higher-order E-
unification, but does not present a concrete higher-order F-unification algorithm for theories
E that include full extensionality principles. And it has been illustrated in this thesis, that
general calls to a Henkin complete theorem prover are needed to realise extensional higher-
order F-unification. In other words, extensional higher-order unification unavoidably needs
to employ higher-order theorem proving for side computations, such that the difference be-
tween extensional higher-order unification and Henkin complete higher-order theorem proving
disappears. Instead, both algorithms have to be closely integrated. In order to reach Henkin
completeness the resolution approach in [Wol93] therefore either needs to add the exten-
sionality axioms or has to address the problem for mutual recursive calls from resolution to

129

CHAPTER 9. APPLICATIONS AND RELATED WORK

130

FE-unification and vice versa.

The difference of higher-order unification as employed in ER with respect to the higher-
order K-unification approach discussed in [Sny90] is, that the latter is restricted to first-order
theories only and does not take the Boolean extensionality property into account. Hence, it
does not allow to unify terms like AX. red X A circle X and AX. circle X A red X, whereas
ER allows to tests for the unifiability of two terms with respect to an arbitrary higher-order
theory including both extensionality principles. Restricted transformation based approaches
to higher-order F-unification, where as much computation as possible is pushed to a first-
order F-unification procedure, are discussed in [QW96, NQ91], and a restricted combinatory
logic approach is presented in [DJ92]. Like [Sny90], these approaches do not take the Boolean
extensionality into account and do not allow to consider arbitrary higher-order theories. The
study of higher-order E-unification was first suggested by Siekmann in [Sie84] and a complete
overview on first-order F-unification is provided by [BS94].

The ”theorem proving modulo” approach described in [DHK98] is a way to remove com-
putational arguments from proofs by reasoning modulo a congruence on propositions that is
handled by via rewrite rules and equations. In their paper the authors present a higher-order
logic as a theory modulo.!

Pfenning addresses in [Pfe87] the problem of translating machine found proofs in higher-
order logic into natural deduction [Pra65] or sequent style calculi [Gen35]. The proposed
solution, which is based on previous works by Andrews [And80] and Miller [Mil83], first
translates the machine found proof into a so-called expansion tree proof, where it can be
cleaned up and brought into a certain standard form, before it is translated into a natural
deduction or sequent calculus proof. Pfenning’s work especially focuses on the problem of
extensionality and primitive equality and it extends Miller’s work [Mil83] by introducing
the notion of extensional expansion proofs. The proof translation mechanism developed by
Pfenning is employed in the Tps-System in order to translate mating proofs [And76] into
natural deduction proofs and it is applicable to other machine oriented calculi as well. The
only prerequisite is a translation from the deductive system used by the theorem prover
into extensional expansion proofs. The relation to the calculi sketched in this thesis is thus
quite obvious: By defining a respective translation algorithm from extensional higher-order
resolution into extensional expansion proofs, one can exploit Pfenning’s translation mechanism
to generate natural deduction proofs.

The role and importance of extensionality in intensional type theory [Str93] is examined
by Hofmann in [Hof97]. He illustrates that the identity type in intensional type theory is
not powerful enough for the formalisation of mathematics or program development as it lacks
the principles of extensionality. Hofmann investigates to what extent extensional constructs
of interest (i.e., quotient types) can be added to intensional type theory without sacrificing
decidability and existence of canonical forms. He also points to the problem of adding full
extensionality to intensional type theory (which is then called extensional type theory) by
proving the undecidability of typing in the resulting system. A new idea to extensional
equality in intensional type theory is presented in [Alt99].

The treatment of the functional extensionality principles in term rewriting in intuitionistic
type theory is furthermore addressed in [DCK93, DCK96].

Typical applications of extensional higher-order resolution (as well as extensional higher-

T'he author does not fully see yet to what extend the "theorem proving modulo” approach can handle full
extensionality in the sense of this thesis.

9.4. PRIMITIVE EQUALITY IN HIGHER-ORDER THEOREM PROVING

order paramodulation or RUE-resolution) are comparisons of sets, functions or function-
als. Both in mathematics as well as in applications like the verification of functional pro-
grams these concepts play an important role. Hence, a subsystem that is capable of at least
some basic extensionality reasoning is very important for a mathematical assistant system
like QMEGA [BCFT97] or a system employed in program verification like Pvs [ORS92] or
Hor [GM93].

A rather new but nevertheless interesting and challenging application of extensional
higher-order resolution lies in the semantical construction in natural language processing.
In this context the use of higher-order unification and especially coloured higher-order
unification [HK99, HK97], for instance in the dissolving of ellipsis, has been illustrated
in [DSP91, GK96a, GK96b, GK97]. The gain of full extensional higher-order theorem proving
in this context is motivated by the examples discussed in [KK98b].

9.4 Primitive Equality in Higher-Order Theorem Proving

Equality is usually treated as a defined notion in approaches and systems for automated
higher-order theorem proving. This is probably the main reason why the problem of mecha-
nising primitive equality in higher-order logic while preserving Henkin completeness has (to
the best knowledge of the author) not been addressed in literature so far.

In contrast, the field of higher-order term rewriting and narrowing has become very active
in recent years (see [Pre98, NP98, NM98b, Nip95, Pre95, Pre9d4, vO94, Wol93]).

The probably most challenging tasks in this field addresses the development of confluent
and terminating term rewriting orders (see for instance [JR99, JR98, .LP95]) For a summary to
the most recent approaches and developments we refer to [Pre98]. Higher-order term rewriting
and narrowing is obviously of great importance for the mechanisation of primitive equality in
automated higher-order theorem proving, too. But one should not confuse higher-order term
rewriting — where the Boolean extensionality property does simply not occur — with higher-
order equational reasoning. The difference has been illustrated in detail in Chapter 5, where
we show that if one is interested in problem domains which require a combined application
of functional and Boolean extensionality principles (e.g., when reasoning on sets described by
characteristic functions), then traditional higher-order term rewriting techniques alone cannot
be sufficient. And even worse, it has been motivated by the example in Subsection 8.6 that
it will be very hard, if not impossible, to integrate the Boolean extensionality principle in
higher-order term rewriting (and analogously in syntactical higher-order narrowing [Pre98] or
superposition [Vir95]), thereby safely preserving a pure term rewriting character. Neverthe-
less, it seems to be promising to integrate term rewriting and simplification techniques into
higher-order theorem proving approaches and to apply these techniques in all those problem
domains, where the extensionality principles, especially the Boolean extensionality, are not
needed and for which suitable rewrite orderings are available. The calculus EP presented in
this thesis provides a primitive equality treatment based on paramodulation and therefore
provides a basis to integrate term rewriting techniques into higher-order equational reason-
ing. In this sense, the developed approaches EP and ERUE can probably fruitful influence and
support the development of an (full) extensional higher-order term rewriting approach.

The areas of application for the developed approaches to primitive equality EP, and ERUE
are identical to those for extensional higher-order resolution £R: They improve the mechani-
sation of reasoning on sets, functions or functionals in mathematics or program verification

131

CHAPTER 9. APPLICATIONS AND RELATED WORK

132

and can support the semantical construction in natural language processing.

Another interesting application of extensional higher-order equality reasoning might be
within the field of logic programming [MNPS91, NM98a]. Also in this research field the
treatment of (full) extensional equality has to best knowledge of the author not been addressed
so far.

9.5 Theorem Provers for Higher-Order Logic

In the last two decades several higher-order theorem proving system have been built, among
them are T'Ps [ABIT96], Hot, [GM93], or Pvs [ORS92]. Neither one of these systems provides
a full extensionality treatment in the sense of this thesis. The TpPs-system, which is very likely
the most powerful higher-order theorem prover currently available, at least provides a partial
solution: it looks for equations between functional terms in input problems and modifies them
by initially applying the extensionally principles in an appropriate way.

The ISABELLE-system [Pau94] and the TwELF-system [SP98] (TWELF is the successor of
ELF [Pfe91]) provide logical frameworks, i.e., this systems provide logic languages powerful
enough to allow for the specification of object logics as well as the specification of respective
proof tactics in order to mechanise reasoning at the object logic level. Both system have
reached a considerable degree of automation and have been successfully applied in case studies
in the area of programming languages and logics, e.g., the formal verification of Java Byte
Code Verifier of Java with ISABELLE and the type preservation and value soundness properties
of Mini ML with TWELF (see [Pfe96, Pfe]). Whereas the degree of automation in both
systems is steadily increasing, both systems do, to best knowledge of the author, currently
not address the problem of mechanising full extensionality reasoning.

Quite closely related to LEO is Konrad’s extensional higher-order theorem prover
HoT [Kon98], which is based on the higher-order tableaux calculus HTE [Koh98a] that has
already been mentioned above. HoOT is implemented in Oz [Sb98, SSW94] and can thus
exploit concurrency when branching within tableaux extensions. Therefore, and as HOT is
based on more efficient data structures, HoT is (at least) on some examples more efficient
as LEO (see [Kon98]). It seems to be interesting to reimplement LEO in Oz using the same
datastructures and then to compare the tableaux based prover HoT with LEoO.

9.6 Examples

The presented examples can support the development of new approaches and systems for
extensional higher-order theorem proving, as they point to the weaknesses of current ap-
proaches. Especially the examples discussed in Subsection 8.6 emphasize the difference be-
tween higher-order term rewriting and higher-order equational reasoning. And it seems to
be very interesting to investigate if and how these examples can be tackled in a pure term
rewriting approach.

Chapter 10

Conclusion and Outlook

The role of equality and extensionality higher-order automated theorem proving is not well
understood, in particular with respect to its potential for a mechanical treatment. To this
end we have developed three calculi ER, EP, and ERUE, which improve the current situation.
The practicability of calculus ER has been demonstrated in case studies with the LEO-system.

Future work should be concerned with the calculi ER, EP, and ERUE as stated in Sec-
tion 8.7, namely to investigate the role of the FlexFlex-rule, to further restrict the application
of the extensionality and equality rules, and to compare the three approaches in practical ap-
plications in order to find out, whether a primitive treatment of equality (as in EP and ERUE)
yields any advantages over a purely defined equality treatment (as in ER). Furthermore, the
link to general higher-order E-unification needs further study.

Although the experiments with the MIZAR set theory were successful, I do not expect
that such a classical theorem-proving approach will ever attain the problem solving expertise
of human mathematicians. An integration of various heterogeneous reasoners (e.g., an inte-
gration of I'Ps with the extensionality reasoner LEO and first-order provers like OTTER as
motivated in [BBS99]) is a more promising alley. Clearly, in order to model human problem
solving behaviour the crucial task will be to appropriately guide the collaboration of the in-
tegrated systems. Two options in this respect are: (i) to guide their collaboration by a proof
planner (deliberative approach), and (ii) to realise the integrated systems as autonomous,
specialised proof agents and to guide their collaboration on the basis of evaluations and re-
source allocations in a resource adaptive agent architecture (reactive approach). Also a mix
of these two approaches as in the INTERRAP-architecture [Miil96] may be worth while to
explore.

We shall concentrate on the latter option in order to realise a cooperation between TPs,
LEo, and OTTER in QMEGA, thereby exploiting the agent architecture that is already provided
by the QMEGA-system (see [FHJT99, BS98a, BS99]).

133

Bibliography

[ABI+96]

[AHO7]

[AHMS99]

[AINP9O]

[ALCMP84]

[Alt99]

[AMS98]

[And71]

[And72a]

[And72b]

[And73]
[And76]

Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning,
and Hongwei Xi. TPS: A theorem proving system for classical type theory.
Journal of Automated Reasoning, 16(3):321-353, 1996.

Serge Autexier and Dieter Hutter. Equational proof-planning by dynamic ab-
straction. In Maria P. Bonacina and Ulrich Furbach, editors, International
Workshop on First-Order Theorem Proving - F'T'P97, Linz, Austria, 1997. RISC-
Linz Report Series No. 97-50.

Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. Inka 5.0 — a
logic voyager. To appear in the Proceedings of the 16th International Conference
on Automated Deduction (CADE-16), Trento, Italy, 1999.

Peter B. Andrews, Sunil Issar, Dan Nesmith, and Frank Pfenning. The TPS
theorem proving system. In Stickel [Sti90].

Peter B. Andrews, Eve Longini-Cohen, Dale Miller, and Frank Pfenning. Au-
tomating higher order logics. Contemp. Math, 29:169-192, 1984.

Thorsten Altenkirch. Extensional equality in intensional type theory. To appear
at the IEEE Symposium on Logic in Computer Science (LLICS’99), Trento, July
1999, 1999.

Serge Autexier, Heiko Mantel, and Werner Stephan. Simultaneous quantifier
elimination. In Otthein Herzog and Aandreas Giinter, editors, KI-98: Advances
in Artificial Intelligence, 22nd Annual German Conference on Artificial Intelli-
gence, number 1504 in LNAI, Bremen, Germany, 1998. Springer.

Peter B. Andrews. Resolution in type theory. Journal of Symbolic Logic,
36(3):414-432, 1971.

Peter B. Andrews. General models and extensionality. Journal of Symbolic

Logic, 37(2):395-397, 1972.

Peter B. Andrews. General models descriptions and choice in type theory. Jour-

nal of Symbolic Logic, 37(2):385-394, 1972.
Peter B. Andrews, 1973. Letter to James Roger Hindley dated January 22, 1973.

Peter B. Andrews. Refutations by matings. IEFFE Trans. Comp., C-25(8):801—
807, 1976.

134

BIBLIOGRAPHY

[AndS0]

[And81]

[AndS6]

[And89]

[BA9S]

[Barg4]

[Bar92]

[BBS99]

[BCF+97]

[Ben97]

[Ben98]

[Ben99]

[BF94]

[BGLS92]

Peter B. Andrews. Transforming matings into natural deduction proofs. In
Wolfgang Bibel and Robert Kowalski, editors, Proceedings of the 5th Interna-
tional Conference on Automated Deduction (CADE-5), number 87 in LNCS,
pages 281-292. Springer, 1980.

Peter B. Andrews. Theorem proving via general matings. Journal of the Asso-
ciation for Computing Machinery, 28(2):193-214, April 1981.

Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof. Academic Press, 1986.

Peter B. Andrews. On Connections and Higher Order Logic. Journal of Auto-
mated Reasoning, 5:257-291, 1989.

Matthew Bishop and Peter B. Andrews. Selectively instantiating definitions. In
Kirchner and Kirchner [KK98a].

Hendrik P. Barendregt. The Lambda Calculus - Its Syntax and Semantics. North
Holland, 1984.

Hendrik P. Barendregt. Lambda-calculi with types. In Samson Abramsky,
Dov M. Gabbay, and Thomas S. Maibaum, editors, Handbook of Logic and Com-
puter Science, volume 2, pages 118-309. Oxford University Press, 1992.

Christoph Benzmiiller, Matthew Bishop, and Volker Sorge. Integrating TPs and
QMEGA. Journal of Universal Computer Science, 5(3):188-207, March 1999.
Special issue on Integration of Deduction System.

Christoph Benzmiiller, Lassaad Cheikhrouhou, Detlef Fehrer, Armin Fiedler,
Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Karsten Konrad, Erica
Melis, Andreas Meier, Wolf Schaarschmidt, Jorg Siekmann, and Volker Sorge.
QOMEGA: Towards a mathematical assistant. In McCune [McC97a], pages 252—
255.

Christoph Benzmiiller. A calculus and a system architecture for extensional
higher-order resolution. Research Report 97-198, Department of Mathematical
Sciences, Carnegie Mellon University, Pittsburgh,USA, June 1997.

Christoph Benzmiiller. An adaption of paramodulation and RUE-resolution to
higher-order logic. SEKI-Report SR-98-07, Fachbereich Informatik, Universitat
des Saarlandes, 1998.

Christoph Benzmiiller. Extensional higher-order paramodulation and RUE-
resolution. To appear in the Proceedings of the 16th International Conference
on Automated Deduction (CADE-16), Trento, Italy, 1999.

Peter Baumgartner and Ulrich Furbach. PROTEIN: A PROver with a Theory
Extension INterface. In Bundy [Bun94], pages 769-773.

Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Snyder. Basic
paramodulation and superposition. In Kapur [Kap92], pages 66-78.

135

BIBLIOGRAPHY

136

[BHIB92]

[Bib83]

[BK97a]

[BK97b]

[BK98a]

[BK9Sb]

[BS94]

[BS98a]

[BSO8b]

[BS98c]

[BS99]

[Bun88]

[Bun94]

[Byl89]

Karl Hans Blisius and editors Hans-Jiirgen Biirckert. Deduktionssysteme, Au-
tomatisierung des Logischen Denkens. R. Oldenbourg Verlag, 2nd edition, 1992.

Wolfgang Bibel. Matings in matrices. Communications of the ACM, 26:844-852,
1983.

Christoph Benzmiiller and Michael Kohlhase. Model Existence for Higher-Order
Logic. SEKI-Report SR-97-09, Fachbereich Informatik, Universitdt des Saarlan-
des, 1997. Also submitted to Journal of Symbolic Logic.

Christoph Benzmiiller and Michael Kohlhase. Resolution for Henkin Mod-
els. SEKI-Report SR-97-10, Fachbereich Informatik, Universitit des Saarlandes,
1997.

Christoph Benzmiiller and Michael Kohlhase. Extensional higher-order resolu-
tion. In Kirchner and Kirchner [KK98a], pages 56-72.

Christoph Benzmiiller and Michael Kohlhase. LEO — a higher-order theorem
prover. In Kirchner and Kirchner [KK98a], pages 139-144.

Franz Baader and Jorg Siekmann. Unification theory. In Dov Gabbay, editor,
Logic in Artificial Intelligence and Logic Programming. Oxford University Press,
1994.

Christoph Benzmiiller and Volker Sorge. A blackboard architecture for guiding
interactive proofs. In Giunchiglia [Giu98], pages 102-114.

Christoph Benzmiiller and Volker Sorge. Integrating Tps with QMEGA. In Jim
Grundy and Malcolm Newey, editors, Theorem Proving in Higher Order Logics:
Emerging Trends, Technical Report 98-08, Department of Computer Science
and Computer Science Lab, The Australian National University, pages 1-19,
Canberra, Australia, October 1998.

Wolfgang Bibel and Peter Schmitt, editors. Automated Deduction — A Basis for
Applications. Kluwer, 1998.

Christoph Benzmiiller and Volker Sorge. Critical agents supporting interactive
theorem proving. SEKI-Report SR-99-02, Fachbereich Informatik, Universitit
des Saarlandes, 1999.

Alan Bundy. The use of explicit plans to guide inductive proofs. In Ewing L. Lusk
and Ross A. Overbeek, editors, Proceedings of the 9th Conference on Automated
Deduction (CADE-9), number 310 in LNCS, pages 111-120, Argonne, lllinois,
USA, 1988. Springer.

Alan Bundy, editor. Proceedings of the 12th Conference on Automated Deduction
(CADFE-12), number 814 in LNAI, Nancy, France, 1994. Springer.

Czeslaw Bylinski. Basic properties of sets. Journal of Formalized Mathematics,
1, 1989.

BIBLIOGRAPHY

[Chu40]

[CrS98]

[Dah97]

[Dar71]

[Dav83]

[DCKO3]

[DCK96]

[DHK9S]

[Dig79]

[DJ92]

[DSPI1]

[Ern71]

[FHJ*99]

[Fit96]

Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56—68, 1940.

Lassaad Cheikhrouhou and Jorg Siekmann. Planning diagonalization proofs. In
Giunchiglia [Giu98], pages 167-180.

Ingo Dahn. Integration of automated and interactive theorem proving in ILF.
In McCune [McC97a], pages 57-60.

J. L. Darlington. Deductive plan formation in higher-order logic. Machine
Intelligence, 7:129-137, 1971.

Martin Davis. The prehistory and early history of automated deduction. In Jorg
Siekmann and Graham Wrightson, editors, Automation of Reasoning, volume 2
Classical Papers on Computational Logic 1967-1970 of Symbolic Computation.
Springer, 1983.

Roberto Di Cosmo and Delia Kesner. A confluent reduction for the extensional
typed A—calculus with pairs, sums, recursion and terminal object. In Andrzej
Lingas, Rolf Karlsson, and Svante Carlsson, editors, Proceedings of International
Conference on Automata, Languages and Programming (ICALP ’91), volume
700 of LNCS, pages 645—656. Springer, 1993.

Roberto Di Cosmo and Delia Kesner. Combining algebraic rewriting, extensional
lambda calculi, and fixpoints. Theoretical Computer Science, 169(2):201-220,
1996.

Gilles Dowek, Thérese Hardin, and Claude Kirchner. Theorem proving modulo.
Rapport de Recherche 3400, Institut National de Recherche en Informatique et
en Automatique, April 1998.

Vincent J. Digricoli. Resolution by unification and equality. In William H.
Joyner, editor, Proceedings of the 4jth Workshop on Automated Deduction,
Austin, Texas, USA, 1979.

Daniel Dougherty and Patricia Johann. A combinatory logic approach to higher-
order F-unification. In Kapur [Kap92], pages 79-93.

Mary Dalrymple, Stuart Shieber, and Fernando Pereira. Ellipsis and higher-
order-unification. Linguistics and Philosophy, 14:399-452, 1991.

G. W. Ernst. A matching procedure for type theory. Technical report, Case
Western Reserve University, 1971.

Andreas Franke, Stephan Hess, Christoph Jung, Michael Kohlhase, and Volker
Sorge. Agent-Oriented Integration of Distributed Mathematical Services. Jour-
nal of Universal Computer Science, 5(3):156-187, March 1999. Special issue on
Integration of Deduction System.

Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer,
2nd edition, 1996.

137

BIBLIOGRAPHY

138

[Fra22a]

[Fra22b]

[Fri28]

[Gen35]

[Giu98]

[GJOS]

[GK96a]

[GK96b]

[GK97]

[GLMS94]

[GMO3]

[G5d30]

[God31]

[G5d40]

[Gol81]

Adolf A. Frankel. Der Begriff definit und die Unabhangigkeit des Auswahlaxioms.
Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch
Mathematische Klasse, pages 253-257, 1922.

Adolf A. Frankel. Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre.
Mathematische Annalen, 86:230-237, 1922.

Adolf A. Frankel. Zusatz zu vorstehendem Aufsatz Herrn v. Neumanns. Math-
ematische Annalen, 99:392-393, 1928.

Gerhard Gentzen. Untersuchungen iiber das logische Schliefen T & II. Mathe-
matische Zeitschrift, 39:176-210, 405-431, 1935.

Fausto Giunchiglia, editor. Proceedings of the of the 8th International Conference
(AIMSA’98), number 1480 in LNAI, Sozopol, Bulgaria, 1998. Springer.

Sambin Giovannin and Smith Jan. Twenty-five Years of Constructive Type The-
ory. Oxford University Press, 1998.

Claire Gardent and Michael Kohlhase. Focus and higher—order unification. In
Proceedings of the 16th International Conference on Computational Linguistics,
Copenhagen, 1996.

Claire Gardent and Michael Kohlhase. Higher—order coloured unification and
natural language semantics. In Proceedings of the 34th Annual Meeting of the
Association for Computational Linguistics, Santa Cruz, 1996. ACIL..

Claire Gardent and Michael Kohlhase. Computing parallelism in discourse. In
Proceedings of IJCAI ‘97, pages 1016-1021, Tokyo, 1997.

Christoph Goller, Reinhold Letz, Klaus Mayr, and Johann Schumann. SETHEO
v3.2: Recent developments. In Bundy [Bun94], pages 778-782.

Michael J. C. Gordon and Tom F. Melham. [Introduction to HOL — A theorem
proving environment for higher order logic. Cambridge University Press, 1993.

Kurt Gddel. Die Vollstindigkeit der Axiome des logischen Funktionenkalkiils.
Monatshefte fiir Mathematik und Physik, 37:349-360, 1930. English translation
in [vH67].

Kurt Gédel. Uber formal unentscheidbare Sitze der Principia Mathematica und
verwandter Systeme 1. Monatshefte der Mathematischen Physik, 38:173-198,
1931. English translation in [vH67].

Kurt Godel. The Consistency of the Aziom of Choice and of the Generalized
Continuum-Hypothesis with the Axioms of Set Theory, volume 3 of Annals of
Mathematics Studies. Princeton University Press, Princeton, New Jersey; eighth
printing 1970, 1940.

Warren D. Goldfarb. The undecidability of the second-order unification problem.
Theoretical Computer Science, 13:225-230, 1981.

BIBLIOGRAPHY

[Gou66]

[Gra95]

[HBVLIT]

[Hen50]

[Hen96]

[Her30]

[Hes99]

[Hil04]

[Hil27]

[Hin55]

[HK97]

[HK99]

[HKK*94]

[Hof97]

[HSS6]

[HS96]

William Eben Gould. A matching procedure for w-order logic. Technical report,
Applied Logic Corporation, One Palmer Square, Princeton, NJ, 1966.

Peter Graf. Term Indexing. PhD thesis, Fachbereich Informatik, Universitit des
Saarlandes, Saarbriicken, Germany, July 1995.

Thomas Hillenbrand, Arnim Buch, Roland Vogt, and Bernd Léchner. Waldmeis-
ter: High-performance equational deduction. Journal of Automated Reasoning,

18(2), 1997.

L.eon Henkin. Completeness in the theory of types. Journal of Symbolic Logic,
15(2):81-91, 1950.

L.eon Henkin. The discovery of my completeness proofs. The Bulletin of Symbolic
Logic, 2(2):127-157, 1996.

Jaques Herbrand. Recherches sur la théorie de la démonstration. PhD) thesis,
Université de Paris, 1930. Englisch translation in [vH67].

Stephan Hess. Software-Ergonomie in einer Beweisentwicklungsumgebung. Mas-
ter’s thesis, Fachbereich Informatik, Universitit des Saarlandes, 1999. Forthcom-

ing.
David Hilbert. Uber die Grundlagen der Logik und der Arithmetik. In Verhand-

lungen des Dritten Internationalen Mathematiker-Kongress in Heidelberg, pages
174-185. Teubner, Leibzig, 1904.

David Hilbert. Die Grundlagen der Mathematik. In Abhandlungen aus dem
mathematischen Seminar der Hamburgischen Universitit 6, pages 65—85, 1927.

K. J. J. Hintikka. Form and content in quantification theory. Acta Philosophica
Fennica, 8:7-55, 1955.

Dieter Hutter and Michael Kohlhase. A coloured version of the A-calculus. In
McCune [McC97a], pages 291-305.

Dieter Hutter and Michael Kohlhase. A coloured version of the A-calculus.
Journal of Automated Reasoning, 1999. Forthcoming.

Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Nesmith,
Jorn Richts, and Jorg Siekmann. Keim: A toolkit for automated deduction. In
Bundy [Bun94], pages 807-810.

Martin Hofmann. Fztensional Constructs in Intensional Type Theory. Springer,

London, 1997.

James R. Hindley and Jonathan P. Seldin. [Introduction to Combinators and
Lambda Calculus. Cambridge University Press, 1986.

Dieter Hutter and Claus Sengler. INKA - the next generation. In McRobbie
and Slaney [MS96].

139

BIBLIOGRAPHY

140

[Hue72]

[Hue73a]

[Hue73b]

[HueT5]

[JecTT]

[JP72]

[TROS]

[JR99]

[Kap92]

[Kau92]

[KK98a]

[KK98b]

[KKSO8]

[K1e97]

[Koh93]

Gérard P. Huet. Constrained Resolution: A Complete Method for Higher Order
Logic. PhD thesis, Case Western Reserve University, 1972.

Gérard P. Huet. A mechanization of type theory. In Donald E. Walker and
Lewis Norton, editors, Proceedings of the 3rd International Joint Conference on

Artificial Intelligence (IJCAI173), pages 139-146, 1973.

Gérard P. Huet. The undecidability of unification in third order logic. Informa-
tion and Control, 22(3):257-267, 1973.

Gérard P. Huet. An unification algorithm for typed A-calculus. Theoretical
Computer Science, 1:27-57, 1975.

Thomas J. Jech. About the axiom of choice. In Jon Barwise, editor, Handbook
of Mathematical Logic, pages 345-371. North Holland, Amsterdam, 1977.

D. C. Jensen and T. Pietrzykowski. A complete mechanization of (w)-order type
theory. In Proceedings of the ACM annual Conference, volume 1, pages 82-92,
1972.

Jean-Pierre Jouannaud and Albert Rubio. Rewrite orderings for higher-order
terms in n-long G-normal form and the recursive path ordering. Theoretical
Computer Science, 1998.

Jean-Pierre Jouannaud and Albert Rubio. The higher-order recursive path
ordering. To appear at the IEEE Symposium on Logic in Computer Science
(LICS’99), Trento, July 1999, 1999.

Deepak Kapur, editor. Proceedings of the 11th Conference on Automated De-
duction (CADE-11), number 607 in LNCS, Saratoga Spings, NY, USA, 1992.
Springer.

Stefan Kaufmann. Mathematica als Werkzeug: eine Finfithrung. Birkhiuser,
1992.

Claude Kirchner and Helene Kirchner, editors. Proceedings of the 15th Confer-
ence on Automated Deduction, number 1421 in LNAI, Lindau, Germany, 1998.
Springer.

Michael Kohlhase and Karsten Konrad. Higher-order automated theorem prov-
ing for natural language semantics. Seki Report SR-98-04, Fachbereich Infor-
matik, Universitdt Saarbriicken, 1998.

Manfred Kerber, Michael Kohlhase, and Volker Sorge. Integrating Computer
Algebra Into Proof Planning. Journal of Automated Reasoning, 21(3):327-355,
1998.

Lars Klein. Indexing fiir Terme héherer Stufe. Master’s thesis, Fachbereich
Informatik, Universitit des Saarlandes, 1997.

Michael Kohlhase. A unifying principle for extensional higher-order logic. Tech-
nical Report 93-153, Dept. of Mathematics, Carnegie Mellon University, 1993.

BIBLIOGRAPHY

[Koh94a] Michael Kohlhase. Higher-order order-sorted resolution. Seki Report SR-94-1,
Fachbereich Informatik, Universitiat des Saarlandes, 1994.

[Koh94b] Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on
the Resolution Principle. PhD thesis, Fachbereich Informatik, Universitit des
Saarlandes, 1994.

[Koh95] Michael Kohlhase. Higher-Order Tableaux. In Peter Baumgartner, Rainer
Hahnle, and Joachim Posegga, editors, Theorem Proving with Analytic Tableauz
and Related Methods, number 918 in LNAI, pages 294-309, 1995.

[Koh98a] Michael Kohlhase. Higher-order automated theorem proving. In Bibel and
Schmitt [BS98c].

[Koh98b] Michael Kohlhase. Towards mathematical vernacular in a mathematical knowl-
edge base. Seki Report SR-99-77, Fachbereich Informatik, Universitit des Saar-
landes, 1998.

[Kon98] Karsten Konrad. HOT: An automated theorem prover based on higher-order
tableaux. In Jim Grundy and Malcolm Newey, editors, Proceedings of the
11th International Conference on Theorem Proving in Higher Order Logics

(TPHOLs’98), number 1479 in LNCS, Canberra, Australia, 1998. Springer.

[1.B98] Maxim Lifantsev and Leo Bachmair. An LPO-based termination ordering for
higher-order terms without A-abstraction. In Jim Grundy and Malcolm Newey,
editors, Proceedings of the 11th International Conference on Theorem Proving
in Higher Order Logics (TPHOLs’98), number 1479 in LNCS, pages 277-293,
Canberra, Australia, 1998. Springer.

[L.P95] Olav Lysne and Javier Piris. A termination ordering for higher-order rewrite
systems. In Jich Hsiang, editor, Proceedings of the 61" International Consference
on Rewriting Techniques and Applications, number 914 in LNCS, pages 26—40.
Springer, 1995.

[Luc72] Claudio. L. Lucchesi. The undecidability of the unification problem for third
order languages. Report CSRR 2059, University of Waterloo, Waterloo, Canada,
1972.

[McC94] William McCune. Otter 3.0 reference manual and guide. Technical Report
ANT.-94-6, Argonne National Laboratory, Argonne, Illinois 60439, USA, 1994.

[McC97a] William McCune, editor. Proceedings of the 1/th Conference on Automated
Deduction, number 1249 in LNAI, Townsville, Australia, 1997. Springer.

[McC97b] William McCune. Solution of the Robbins problem. Journal of Automated
Reasoning, 19(3):263-276, 1997.

[Mel94] Erica Melis. How mathematicians prove theorems. In Proc. of the Annual
Conference of the Cognitive Science Society, Atlanta, Georgia U.S.A., 1994.

141

BIBLIOGRAPHY

142

[Mel95]

[Mel97]

[Mil83]

[Mil91]

[Mil92]

[ML94]

[MNPS91]

[MS96]

[Miil96]

[MW97]

[Nad87]

[Neu25]

[Nip95]

[NM94]

[NM98a]

Erica Melis. A model of analogy-driven proof-plan construction. In Chris S.
Mellish, editor, Proceedings of the 14th International Joint Conference on Arti-
ficial Intelligence (1JCAI95), pages 182-189, Montreal, Canada, 1995. Morgan
Kaufmann.

Erica Melis. Progress in proof planning: Planning limit theorems automatically.
Seki Report SR-97-08, Fachbereich Informatik, Universitiat des Saarlandes, 1997.

Dale Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon Uni-
versity, 1983.

Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 4(1):497—-
536, 1991.

Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14:321-358, 1992.

Per Martin-L&f. Intuitionistic Type Theory. Bibliopolis, 1994.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andrew Scedrow. Uniform
proofs as a foundation for logic programming. Annals of Pure and Apllied Logic,
51:125-157, 1991.

Michael A. McRobbie and John K. Slaney, editors. Proceedings of the 13th
Conference on Automated Deduction (CADFE-13), number 1104 in LNAI, New
Brunswick, NJ, USA, 1996. Springer.

Jorg P. Miiller. The Design of Intelligent Agents: A Layered Approach. Number
1177 in LNAI. Springer, December 1996.

William McCune and Larry Wos. Otter CADE-13 competition incarnations.
Journal of Automated Reasoning, 18(2):211-220, 1997. Speacial Issue on the
CADE-13 Automated Theorem Proving System Competition.

Gopalan Nadathur. A Higher-Order Logic as the Basis for Logic Programming.
PhD thesis, University of Pennsylvania, Philadelphia, 1987.

John von Neumann. Eine Axiomatisierung der Mengenlehre. Journal fiir die
reine und angewandte Mathematik, 154:219-240, 1925.

Tobias Nipkow. Higher-order rewrite systems. In Jieh Hsiang, editor, Proceedings
of the 6th International Conference on Rewriting Techniques and Applications
(RTA-95), number 914 in LNCS, pages 256-256, Kaiserslautern, Germany, 1995.
Springer.

Gopalan Nadathur and Dale Miller. Higher-order logic programming. Technical
Report CS-1994-38, Department of Computer Science, Duke University, 1994.

Gopalan Nadathur and Dale Miller. Higher-Order Logic Programming. To ap-
pear in the Handbook of Logic in Artificial Intelligence and Logic Programming,
Dov M. Gabbay, Christopher J. Hogger, and John A. Robinson (eds.), Oxford
University Press, 1998.

BIBLIOGRAPHY

[NM98b]

[NP9Sg]

INQ91]

[ORS92]

[Pad95]

[Pau94]

[Pfe]

[Pfe87]

[Pfe91]

[Pfe96]

[Pie73]

[Pra65]
[Pre94]

[Pre95]

[Pre98]

[Qia93]

Tobias Nipkow and Richard Mayr. Higher-order rewrite systems and their con-
fluence. Theoretical Computer Science, 192:3—-29, 1998.

Tobias Nipkow and Christian Prehofer. Higher-order rewriting and equational
reasoning. In Bibel [BS98c].

Tobias Nipkow and Zhenyu Qian. Modular higher-order F-unification. In
Ronald V. Book, editor, Proceedings of the 4" International Conference on
Rewriting Techniques and Applications, number 488 in LNCS, pages 200-214.
Springer, 1991.

Sam Owre, John Rushby, and Natarajan Shankar. PVS: a prototype verification
system. In Kapur [Kap92], pages 748-752.

V. Padovani. On equivalence classes of interpolation equations. In M. Dezani-
Ciancaglini and G. Plotkin, editors, Typed Lambda Calculi and Apllications,
number 902 in LNCS. Springer, 1995.

Lawrence C. Paulson. Isabelle. A Generic Theorem Prover, volume 828 of Lec-
ture Notes in Artificial Intelligence LNAI Springer, 1994.

Frank Pfenning. Computation and deduction. Unpublished lecture notes, 312
pp. April 1997.

Frank Pfenning. Proof Transformations in Higher-Order Logic. PhD thesis,
Carnegie-Mellon University, Pittsburgh Pa., 1987.

Frank Pfenning. Logic programming in the LF logical framework. In Gérard P.
Huet and Gordon D. Plotkin, editors, Logical Frameworks. Cambridge University
Press, 1991.

Frank Pfenning. The practice of logical frameworks. In Helene Kirchner, editor,
Proceedings of the Collquium on Trees in Algebra and Programming, number
1059 in LNCS, pages 119-134. Springer, 1996.

Thomasz Pietrzykowski. A complete mechanization of second-order type theory.
Journal of the Association for Computing Machinery, 20:333-364, 1973.

Dag Prawitz. Natural Deduction. Almquist & Wiksell, 1965.

Christian Prehofer. Higher-order narrowing. In Logic in Computer Science
(LICS 94), pages 507-516. IEEE Computer Society Press, 1994.

Christian Prehofer. Solving higher-order equations: From logic to programming.
Technical Report TUM-19508, Institut fiir Informatik, Technische Universitit
Miinchen (TUM), Miinchen, 1995.

Christian Prehofer. Solving Higher-Order Fquations: From Logic to Program-
ming. Progress in theoretical computer science. Birkhauser, 1998.

Zhenyu Qian. Linear unification of higher-order patterns. In J.-P. Jouannaud M.-
C. Gaudel, editor, Proceedings of TAPSOFT(CAAP)’93, number 668 in LNCS,
pages 391-405. Springer, 1993.

143

BIBLIOGRAPHY

144

[QW96]

[Red96]
[Rob65]

[Rob68]

[Rob69]

[RSG9S]

[Rud92]

[Rus02]
[Rus03]

[Rus08]

[RW69)]

[SbOg]

[Sch60]

[Sco67]

[SG89)

[SHB+98]

[SHB*99]

Zhenyu Qian and Kang Wang. Modular higher-order equational preunification.
Journal of Symbolic Computation, 22:401-424, 1996.

Darren Redfern. The Maple Handbook: Maple V Release /. Springer, 1996.

John A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the Association for Computing Machinery, 12(1):23-41, 1965.

John A. Robinson. New directions in theorem proving. In Proceedings of 1FIP
Congress in Information Processing, volume 68, pages 63—67. North Holland,
1968.

John A. Robinson. Mechanizing higher order logic. Machine Intelligence, 4:151-
170, 1969.

Julian Richardson, Alan Smaill, and Ian Green. Proof planning in higher-order
logic with AClam. In Kirchner and Kirchner [KK98a], pages 129-133.

Piotr Rudnicki. An overview of the mizar project. In Proceedings of the 1992
Workshop on Types and Proofs as Programs, pages 311-332, 1992.

Bertrand Russell. Letter to Frege. Printed in [vH67], 1902.

Bertrand Russell. The principles of mathematics. Cambridge University Press,
Cambridge, England, 1903.

Bertrand Russell. Mathematical logic as based on the theory of types. American
Journal of Mathematics, XXX:222-262, 1908.

George A. Robinson and Larry Wos. Paramodulation and TP in first order
theories with equality. Machine Intelligence, 4:135-150, 1969.

Programming Systems Laboratory Saarbriicken, 1998. The Oz Webpage:
http://www.ps.uni-sb.de/oz/.

Kurt Schiitte. Semantical and syntactical properties of simple type theory. Jour-
nal of Symbolic Logic, 25:305-326, 1960.

Dana S. Scott. Existence and description in formal logic. In Schoenmann, editor,
Bertrand Russell: Philosopher of the Century. Allen and Unwin, 1967.

Wayne Snyder and Jean Gallier. Higher-Order Unification Revisited: Complete
Sets of Transformations. Journal of Symbolic Computation, 8:101-140, 1989.

Jorg Siekmann, Stephan Hess, Christoph Benzmiiller, Lassaad Cheikhrouhou,
Detlef Fehrer, Armin Fiedler, Michael Kohlhase, Karsten Konrad, Erica Melis,
Andreas Meier, and Volker Sorge. Lour: A Distributed Graphical User Interface
for the QMEGA Proof System. Proceedings of the International Workshop on
User Interfaces for Theorem Provers, 1998.

Jorg Siekmann, Stephan Hess, Christoph Benzmiiller, Lassaad Cheikhrouhou,
Armin Fiedler, Helmut Horacek, Michael Kohlhase, Karsten Konrad, Andreas
Meier, Erica Melis, Martin Pollet, and Volker Sorge. L.out: Lovely QMEGA User
Interface. submitted, 1999.

BIBLIOGRAPHY

[Sie84]

[Sko28]

[Smu63]

[Smu68]
[Sny90]
[Sny91]

[SP9S]

[SSW4]

[Ste90]

[Sti90]

[Str93]

[Tak53]

[Tak67]

[Tak68]

[Tak87]

[Tam98]

[Try89]

Jorg Siekmann. Universal unification. In R. E. Shostak, editor, Proceedings of
the 7th International Conference on Automated Deduction (CADE-7), number
170 in LNCS, pages 1-42. Springer, 1984.

Thoralf Skolem. Uber die mathematische Logik. Norsk matematisk tidsskrift 10,
1928.

Raymond M. Smullyan. A unifying principle for quantification theory. Proc.
Nat. Acad Sciences, 49:828—-832, 1963.

Raymond M. Smullyan. First-Order Logic. Springer, 1968.
Wayne Snyder. Higher order E-unification. In Stickel [Sti90], pages 573-578.

Wayne Snyder. A Proof Theory for General Unification. Progress in Computer
Science and Applied Logic. Birkhduser, 1991.

Carsten Schiirmann and Frank Pfenning. Automated theorem proving in a sim-
ple meta-logic for LF. In Kirchner and Kirchner [KK98a], pages 286-300.

Christian Schulte, Gert Smolka, and Jorg Wiirtz. Encapsulated search and
constraint programming in Oz. In Alan H. Borning, editor, Proceedings of the
24 PPCP, volume 874 of LNCS, pages 134-150, Orcas Island, Washington,
USA, May 1994. Springer.

Guy L. Steele. Common Lisp: The Language, 2nd edition. Digital Press, Bed-
ford, Massachusetts, 1990.

Mark Stickel, editor. Proceedings of the 10th Conference on Automated De-
duction (CADE-10), number 449 in LNCS, Kaiserslautern, Germany, 1990.
Springer.

Thomas Streicher. Investigations into intensional type theory. Unknown Pub-
lisher, 1993. Habilitationsschrift.

Gaisi Takeuti. On a generalized logic calculus. Japan Journal of Mathematics,

23:39 f., 1953.

Moto-o Takahashi. A proof of cut-elimination in simple type theory. Journal of
the Mathematical Society of Japan, 19:399-410, 1967.

Moto-o Takahashi. Cut-elimination in simple type theory with extensionality.
Journal of the Mathematical Society of Japan, 19, 1968.

Gaisi Takeuti. Proof Theory. North Holland, 1987.

Tanel Tammet. Towards efficient subsumtion. In Kirchner and Kirchner
[KK98a], pages 427-441.

Andrzej Trybulec. Tarski grothendieck set theory. Journal of Formalized Math-
ematics, Axiomatics, 1989.

145

BIBLIOGRAPHY

[TS89]

[Unkar]

[VH67]

[Vir95]

[vO94]

[Wei97]

[WGR96]

[WNB92]

[Wolsg]

[Wol93]

[Wol94]

[WR10]

[Zer04]

[Zer08]

146

Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Journal
of Formalized Mathematics, 1, 1989.

Unknown. Unknown Title. PhD thesis, Worcester College, Unknown Year. 1|
have a manuscript of the thesis without a title page. (the author is a student
advised by Professor Gandy).

Jean van Heijenoort. From Frege to Godel : a source book in mathematical logic
1879-1931. Source books in the history of the sciences series. Harvard University
Press, Cambridge, MA, USA, 3rd printing, 1997 edition, 1967.

Roberto Virga. Higher-order superposition for dependent types. Carnegie mellon
university, Carnegie Mellon Univ., Pittsburgh, PA, 1995.

V. van Qostrom. Confluence for Abstract and Higher-Order Rewriting. PhD
thesis, Vrije Universiteit, Amsterdam, 1994.

Christoph Weidenbach. SPASS: Version 0.49. Journal of Automated Reason-
ing, 18(2):247-252, 1997. Special Issue on the CADE-13 Automated Theorem
Proving System Competition.

Christoph Weidenbach, Bernd Gaede, and Georg Rock. Spass & flotter, version
0.42. In McRobbie and Slaney [MS96].

Toby Walsh, Alex Nunes, and Alan Bundy. The use of proof plans to sum series.
In Kapur [Kap92], pages 325-339.

Stephen Wolfram. Mathematica. A System for Doing Mathematics by Computer.
Addison-Wesley, 1988.

David A. Wolfram. The Clausal Theory of Types. Cambridge University Press,
1993.

David A. Wolfram. A semantics for A-PROLOG. Theoretical Computer Science,
136(1), 1994.

Alfred N. Whitehead and Bertrand Russell. Principia Mathematica, volume 1.
Cambridge University Press, Cambridge, Great Britain; 2nd edition, 1910.

Ernst Zermelo. Beweis, dafl jede Menge wohlgeordnet werden kann. Mathema-
tische Annalen, 59:514-516, 1904.

Ernst Zermelo. Untersuchungen iiber die Grundlagen der Mengenlehre. I. Math-
ematische Annalen, 65:261-281, 1908.

Authorindex

Altenkirch, Thorsten 130

Andrews, Peter B. viii, ix, x, xi, xv, xix, 2, 3, 4, 5, 6, 8, 9, 10, 11, 16, 22, 27, 29, 30, 32, 36,
37, 51, 52, 61, 93, 95, 102, 107, 110, 115, 126, 127, 128, 129, 130, 132

Autexier, Serge ix, 54, 107

Baader, Franz 101, 130

Bachmair, Leo xvi

Barendregt, Hendrik P. 3, 4, 17

Baumgartner, Peter viii, xviii, 2

Benzmiiller, Christoph xi, xiii, xiv, xv, xvii, xviii, xix, 9, 12, 14, 15, 27, 52, 53, 54, 55, 61,
64, 67, 82, 91, 92, 93, 95, 107, 110, 113, 114, 115, 125, 127, 128, 131, 133
Bibel, Wolfgang 2

Bishop, Matthew viii, xix, 2, 6, 8, 11, 32, 93, 95, 102, 107, 110, 126, 132, 133
Blasius, Karl Hans 94

Buch, Arnim viii, 12

Bundy, Alan ix, 93

Bylinski, Czeslaw xviii, 15, 64, 116

Cheikhrouhou, Lassaad ix, xviii, 93, 107
Cheikhrouhou, Lassaad xviii, 15, 92, 93, 107, 131
Church, Alonzo ix, 3, 16

Dahn, Ingo 104

Dalrymple, Mary 131
Darlington, J. L. 2

Davis, Martin 1

Di Cosmo, Roberto 130
Digricoli, Vincent J. 13, 33, 83
Dougherty, Daniel 130
Dowek, Gilles 130

Ernst, G. W. 2

Fehrer, Detlef xviii, 15, 92, 93, 107, 131
Fiedler, Armin xviii, 15, 92, 93, 107, 131
Fitting, Melvin 6, 94

Franke, Andreas 133

Frankel, Adolf A. xii, 3, 5

147

BIBLIOGRAPHY

Furbach, Ulrich viii, xviii, 2

Gaede, Bernd viii, xviii, 2

Gallier, Jean xiv, 4, 16, 18, 49, 50, 55, 56, 93
Ganzinger, Harald xvi

Gardent, Claire 131

Gentzen, Gerhard 128, 130

Giovannin, Sambin 5

Godel, Kurt viii, ix, 1, 2, 5, 6, 8
Goldfarb, Warren D. 2

Goller, Christoph viii, 2

Gordon, Michael J. C. viii, 11, 131, 132
Gould, William Eben 2

Graf, Peter xvii, 14, 94

Green, lan 107

Hans-Jiirgen Biirckert, editors 94

Hardin, Thérese 130

Henkin, Leon ix, 2, 6, 8, 27, 44

Herbrand, Jaques viii, 1

Hess, Stephan 107, 133

Hilbert, David 1

Hillenbrand, Thomas viii, 12

Hindley, James R. 3, 112

Hintikka, K. J. J. 127

Hofmann, Martin 5, 130

Horacek, Helmut 107

Huang, Xiaorong xvii, xviii, 14, 15, 92, 93, 107, 131
Huet, Gérard P. ix, x, xi, xiii, 2, 4, 6, 10, 19, 49, 51, 52, 54, 56, 62, 127, 129
Hutter, Dieter ix, 107, 131

Issar, Sunil viii, xix, 2, 6, 8, 11, 32, 93, 95, 102, 107, 126, 132

Jan, Smith 5

Jech, Thomas J. 5

Jensen, D. C. x, xi, 2, 6, 10, 127, 129
Johann, Patricia 130

Jouannaud, Jean-Pierre xvi, 12, 131
Jung, Christoph 133

Kaufmann, Stefan ix

Kerber, Manfred ix, xvii, xviii, 14, 15, 92, 93, 107, 131

Kesner, Delia 130

Kirchner, Claude 130

Klein, Lars xvii, 14, 94

Kohlhase, Michael ix, x, xi, xii, xiii, xiv, xv, xvi, xvii, xviii, 3, 4, 6, 9, 10, 12, 14, 15, 27, 35,
48, 49, 52, 53, 54, 55, 56, 61, 64, 82, 91, 92, 93, 99, 107, 113, 114, 115, 125, 127, 128, 129,
131, 132, 133

148

BIBLIOGRAPHY

Konrad, Karsten xii, xviii, 15, 92, 93, 107, 131, 132
Konrad, Karsten 107

Letz, Reinhold viii, 2
Lifantsev, Maxim xvi
Léchner, Bernd viii, 12
Longini-Cohen, Eve 127
Lucchesi, Claudio. L. 2
Lynch, Christopher xvi
Lysne, Olav 12, 131

Mantel, Heiko 54, 107

Martin-L&f, Per 5

Mayr, Klaus viii, 2

Mayr, Richard 4, 12, 131

McCune, William viii, xviii, 2, 14, 95, 96

Meier, Andreas xviii, 15, 92, 93, 107, 131

Melham, Tom k. viii, 11, 131, 132

Melis, Erica ix, xvii, xviii, 14, 15, 92, 93, 107, 131
Miller, Dale 6, 10, 17, 49, 55, 94, 127, 128, 129, 130, 132
Miiller, Jorg P. 133

Nadathur, Gopalan 101, 128, 129, 132

Nesmith, Dan viii, xvii, xix, 2, 6, 8, 11, 14, 32, 93, 95, 102, 107, 126, 132
Neumann, John von 4

Nipkow, Tobias 4, 12, 130, 131

Nunes, Alex ix

Owre, Sam viii, 131, 132

Padovani, V. 94

Paulson, Lawrence C. 101, 132

Pereira, Fernando 131

Pfenning, Frank viii, xix, 2, 6, 8, 11, 32, 93, 95, 102, 107, 126, 127, 130, 132
Pietrzykowski, T. x, xi, 2, 6, 10, 127, 129

Pietrzykowski, T"homasz 56

Piris, Javier 12, 131

Pollet, Martin 107

Prawitz, Dag 130

Prehofer, Christian 4, 12, 131

Qian, Zhenyu 94, 130

Redfern, Darren ix
Richardson, Julian 107
Richts, Jorn xvii, 14, 93
Robinson, George A. xvi, 13
Robinson, John A. 1, 2, 48
Rock, Georg viii, xviii, 2

149

BIBLIOGRAPHY

150

Rubio, Albert xvi, 12, 131
Rudnicki, Piotr 15
Rushby, John wviii, 131, 132
Russell, Bertrand 3, 5

Saarbriicken, Programming Systems Laboratory 93, 132
Scedrow, Andrew 132

Schaarschmidt, Wolf xviii, 15, 92, 93, 107, 131

Schairer, Axel 107

Schulte, Christian 93, 132

Schumann, Johann viii, 2

Schiirmann, Carsten 132

Schiitte, Kurt 2, 9

Scott, Dana S. 5

Seldin, Jonathan P. 3, 112

Sengler, Claus 107

Shankar, Natarajan viii, 131, 132

Shieber, Stuart 131

Siekmann, Jorg ix, xvii, xviii, 14, 15, 92, 93, 101, 107, 130, 131
Skolem, Thoralf 1

Smaill, Alan 107

Smolka, Gert 93, 132

Smullyan, Raymond M. x, xv, 127

Snyder, Wayne xiv, xvi, 4, 10, 16, 18, 49, 50, 55, 56, 93, 130
Sorge, Volker ix, xviii, xix, 15, 92, 93, 107, 110, 131, 133
Steele, Guy L. 14, 92

Stephan, Werner 54

Streicher, Thomas 130

Swieczkowska, Halina xviii, 15, 64, 103, 104, 116

Takahashi, Moto-o x, 128

Takeuti, Gaisi 2, 128

Tammet, Tanel 94

Trybulec, Andrzej xii, 15, 116

Trybulec, Zinaida xviii, 15, 64, 103, 104, 116

Unknown 128

van Heijenoort, Jean 138, 139, 144
van Qostrom, V. 4, 12, 131

Virga, Roberto 131

Vogt, Roland viii, 12

Walsh, Toby ix

Wang, Kang 130

Weidenbach, Christoph viii, xviii, 2, 12
Whitehead, Alfred N. 5

Wolfram, David A. 3, 4, 10, 12, 101, 127, 129, 131

BIBLIOGRAPHY

Wolfram, Stephen ix

Wos, Larry viii, xvi, 2, 13

Wiirtz, Jorg 93, 132

Xi, Hongwei viii, xix, 2, 6, 8, 11, 32, 93, 95, 102, 107, 126, 132

Zermelo, Ernst xii, 3, 5

151

Index

Y-algebra, 25
full, 25
Y.-model, 25
Y-valuation, 25
A-calculus, 3
simply typed, 3, 16
A-conversion, 4
POST, 92
KemM, 14
LEo, 2, 14, 92
LEO clause store
CONT, 95, 96, 98
Uni-Cont, 98
Ext-Mod, 98
EXT, 95-97, 99
Factorised, 97, 98
Lightest, 97
Paramod, 98
Prim-Subst, 97, 98
Processed, 98
Resolved, 97, 98
s0s, 95, 96
Unified, 98, 99
USABLE, 95-97
set of support, 95
QMEGA, 92
Trs, 2, 6, 8, 10, 11
KEeiM-toolbox, 93

abstract consistency classes, 9, 35
compactness of, 36
non-atomic, 36
properties for, 35
abstract consistency method, 6
abstract consistency properties, 35, 41
with primitive equality, 41
abstract extension lemma, 44
admissibility, 19

152

of generalised paramodulation rule, 81
of generalised paramodulation rule, 86

application operator, 19
approximating binding, 18
assignment, 21

atom, 18

axiom of choice, 5

axioms of choice, 5

base type, 16

binding
approximating, 18
general, 18
imitation, 18
projection, 18

bound variable, 17

calculus, 19

&P, 13

ER, 12,13

ERUE, 14
calculus ratiocinator, 1
canonical projection, 20
carrier set, 19
characteristic function, 104
clause, 18

empty, 19

normal form, 18

normalisation, 55

pre-, 18

proper, 18
closed under subsets, 34
compactness, 34, 36
completeness, 6

Henkin, 2

of &Py, 81

of ERy, 61

of ERUES., 90

INDEX

comprehension

principles, 3
comprehension principles, 4
congruence, 20
connective, 16
consistency

non-atomic, 36
constant, 16
constraint, 18

flex-flex, 18

flex-rigid, 18
convention, 63
conversion

a-, 36

ﬂTh 17

A, 17

A-, 4

denotation, 21, 23
Denotatpflicht, 4
derivability, 19

of proper clauses, 63
description operator, 5
difference-reduction, 33
domain, 19

eager unification, 62
empty clause, 19
equality
properties of Leibniz equality, 29
at defining, 6
defined, 13, 32
Leibniz, 2, 6, 8, 13, 28, 32, 42
meta-, 6
notions of, 6
of clauses, 54
primitive, 6, 8, 9, 13, 30, 32, 42
semantical relation, 6, 8
evaluation
function, 7
in functional structures, 24
evaluation function, 21
expressivness, 104
extension lemma, 34, 44
extensional higher-order paramodulation,
71

extensional higher-order resolution, 56, 83

extensional higher-order RUE-Resolution,
83

extensionality

additional rules for primitive equality,
13

Boolean, 3-5, 11, 13
Boolean, for Leibniz equality, 27, 31
Boolean, for primitive equality, 31
for Leibniz equality, 27
for negative primitive equations, 70
for positive primitive equations, 70
for primitive and Leibniz equality, 31
for primitive equality, 31
full, for Leibniz equality, 27, 31
full, for primitive equality, 31
functional, 3-5, 8, 11, 13
functional, for Leibniz equality, 27
functional, for primitive equality, 31
in models, 28
in models with primitive equality, 31
treatment, 8, 97

factorisation
generalised rules, 74
falsity, 26
fix-point free functions, 69
flexible literal heads, 11
formula, 16
frame, 19
free variable, 17
full pre-¥-algebra, 25
fully invariant, 20
function application, 19
functional
congruence relation, 20, 45
pre-structure, 19
types, 16
functionality, 20

general binding, 11, 18

generalised factorisation rule, 74
generalised paramodulation rule, 73
generalised primitive substitution rule, 74
generalised resolution rules, 73

Henkin model, 8, 27
Henkin model with primitive equality, 30
higher-order logic, 16

153

INDEX

154

Hilbert style calculus, 6
Hilbert’s program, 1
Hintikka lemma

for Acegp, 40
for Aceg, 38

for Acege, 43
for Accgep, 43
for Q[CCgf, 39
for 2Accgq, 39

Hintikka set, 9, 34, 38
homomorphic extension, 23
homomorphism, 20

imitation bindings, 18
incompleteness, 92, 100, 102

of gpnawm 67
of naive RUE-Resolution, 83

incompleteness theorems, 1
individuals, 7
interpretation, 7

function, 9
of constants, 19

Lego, Coq, type theory

constructive, 132

lifting lemma

for &Py, 71
for &Ry, 58
for ERUES., 85

for clause normalisation, 57

lingua characteristica, 1
literal, 18

negative, 18

positive, 18

pre-, 18

proper, 18

unification constraint, 18

logical connectives, 16

maximal, 38

model, 7

Henkin, 27

Henkin, with primitive equality, 30
quotient, 27

standard, 7, 27

with primitive equality, 30

model class

Mg, 26

Me;, 26
Mssp, 26
Mg, 26
Mpq, 26
model existence, 44
model existence theorem, 45
models
functional, 9
non-functional, 9

normal form
577-7 47 16
fOn-head-, 4
head-, 18, 60, 72, 85

order, 16, 17, 128

paradoxes, 3
Russel’s, 3
parameters, 16
paramodulation, 65
first-order, 13
higher-order, 13
into unification constraints, 66
partial binding, 11
polarity, 18
pre-X-algebra, 25
pre-clause, 18
pre-literal, 18
pre-structure, 19
singleton, 20
total, 19
primitive equality, 12, 41
primitive substitution, 11, 95, 101
generalised rules, 74
restricted, 128
projection bindings, 18
proper
clause, 18
clause in &P and &Py, 82
clause in ERUE and ERUES, 91
derivation, 57, 84
proper derivations, 71
property
b, 8,9, 26
f, 26
q, 8,9, 26
property e, 30

INDEX

proposition, 16
pure, 34

quotient
model, 27
pre-structure, 20
structure, 21, 22

reduction
ﬁn'a 17
reflexivity resolution, 66
resolution
extensional higher-order, 56, 83
extensional higher-order RUE-, 83
generalised rules, 73
higher-order, 2, 10
higher-order constrained, 2
on unification constraints, 83
rule
GFac, 74
GPrim, 74
G Resy, 73
GResy, 73
Equiv’, 70
Fune’, 70
GPara, 73
Leib’, 70
Leib, 62
Para’, 66
Para, 66
Prim, 11
Sym, 84
admissible, 19
derivable, 19

satisfies, 25
saturated, 36
atomically, 36
saturation, 9
semantics
Henkin, 2, 5, 6
standard, 2, 5, 6, 8
semi-valuation, 9
sentence, 16
set
of support, 14
of variables, 16
theory, 3, 103

set of constants, 16
set of support, 92
signature, 16
singleton pre-Y-structure, 20
Skolem term, 17
Skolemisation, 10, 17
solved
for, 18
variable, 18
SOS-architecture, 92, 95
soundeness
of CNF, 55
soundness
of (-equality, 23
of gpnaz'vea 67
of extensional higher-order paramodu-
lation, 71
of extensional higher-order resolution,
56
of extensional higher-order RUE-reso-
lution, 84
standard model, 27
structure, 19, 21
substitution, 17
application of, 17
subsumption, 14, 94
extensional higher-order, 103
higher-order, 103
sufficiently pure, 34
symmetric unification constraints, 84

term indexing, 14, 15
extensional higher-order, 102
higher-order, 14, 94
syntactical higher-order, 102

term rewriting, 4, 33
higher-order, 12
syntactical, 4

term structure, 22
-, 22
/677'7 22

theorem equivalence
of Ry and ERy, 64
of ERUE, and ERUE; , 91
of &P and &Py, 82
of ER and &Ry, 64
of ERUE and ERUEs. (or ERUES), 91

155

INDEX

156

truth, 26
truth values, 7
type, 16
function, 19
type theory
classical, 2, 3, 5
extensional, 130
intensional, 130
typed
collection, 19
collection of sets, 19
mapping, 19
typed binary relation, 19
typed function, 19

unification, 55
continuation, 100
eager, 62, 95, 101
extensional higher-order, 95, 100
higher-order, 2, 55, 56, 93
higher-order E-, 12, 56
higher-order pre-, 2, 55
unification constraint, 18
unifying principle, 6
universe of type a, 19

valid, 25

valuation, 8, 25, 26
with equality, 30

value, 23

variable, 16
assignment, 7
conditions, 10
solved, 18

variable assignment, 21

weak derivability
of generalised factorisation rule, 74, 86
of generalised paramodulation rule, 78
of generalised primitive substitution
rule, 74, 86

of generalised resolution rules, 75, 86

Symbol Index

[A/X] ... substitution, 17

[A/X]T ... application of substitution, 17
Qcegp . . . abstract consistency class, 35, 46
Accg ... abstract consistency class, 46
Accg, ... abstract consistency class, 41, 47
Accep - . . abstract consistency class, 41, 47
RAccgs ... abstract consistency class, 35, 46
Accgyp . . . abstract consistency class, 35, 46
RAccgg ... abstract consistency class, 35, 46
Aceggp - . - abstract consistency class, 35
BT ... base types, 16

O ... empty clause, 19

Cr ...set of constants, 16

q . ..semantical equality relation, 6, 17

EPere || example for incompleteness of
gpnai'um 68

Ef“m ... example for incompleteness of
Epnaivea 68

EFere || example for incompleteness of
gpnaive; 68

EPera . example for incompleteness of
gpnaiuev 68

Efere .. example for incompleteness of
gpnaiuea 68

EPy. ... extensional higher-order paramo-

dulation with full unification and
unfolded clause normalisation, 71

ERy. ... extensional higher-order resolution
with full unification and unfolded
clause normalisation, 56

ERUES. ... extensional higher-order RUE-
resolution with full unification and
unfolded clause normalisation, 83

&Py ... extensional higher-order paramodu-
lation with full unification, 71

ERy ... extensional higher-order resolution
with full unification, 56

ERUE; . . . extensional higher-order RUE-te-
solution with full unification, 83

EPpaive - - - naive higher-order paramodula-
tion, 67
EP ... extensional higher-order paramodu-

lation, 13, 71

INDEX

ER ... extensional higher-order resolution,
12, 13, 56

ERUE ... extensional higher-order RUE-re-
solution, 14, 83

H ... model class, 10

= ... Leibniz equality, 6, 17, 42

EXT%_W ... functional extensionality for
Leibniz equality, 11, 27, 31

EXTY ... Boolean extensionality for Leib-
niz equality, 11, 27, 31

Mgp ... model class, 9, 10

Mg ... model class, 7, 9, 10

5 - - . model class, 8, 10

Mgip . .. model class, 8, 10

3q - - - model class, 8, 10

... meta-equality, 6, 17

o - .. a-equality, 17

gy -- . Bn-equality, 17, 20

=3 ... F-equality, 17, 20

n - - m-equality, 17

... logical connective, 16

= ... primitive equality, 6, 16, 17, 42

EXTe*# . functional extensionality for
primitive equality, 31

EXT? ... Boolean extensionality for prim-
itive equality, 31

&% ... model class, 7

3 ... signature, 16

3= .. .signature with primitive equality, 16

T[a/x] - - - application of substitution with
subsequent head-normalisation, 17

T,y ... pn-normal form, 17

T,, ... #-normal form, 17

T, ... n-normal form, 17

Ty, ... head-normal form, 17

TS(X) ... term structure, 22

TS(E)ﬁ ... f-term structure, 22

TS(X)P7 ... By-term structure, 22

T ...set of types, 16

V; ...set of variables, 16

wff,(£7) ... set of ¥=-terms of type «, 16

wff(¥7) ... set of ¥=-terms, 16

wff,(X) ... set of all X-terms of type «, 16

wff(X) ... set of Y-terms, 16

wff,(X) ... set of propositions, 16

cuff,(X) ... set of sentences, 16

VA ... abstract consistency property, 35

=

=

=l

8

Vb - .. abstract consistency property, 35

V; ... abstract consistency property, 35

Vs ... abstract consistency property, 35

V. ... abstract consistency property, 35

V3 ... abstract consistency property, 35

Wy ... abstract consistency property, 35

VT ... abstract consistency property, 41

V. ... abstract consistency property, 35

W ... abstract consistency property, 35

V= ... abstract consistency property, 41

Vy - .. abstract consistency property, 35

@ ... application operator, 19

@~ ...application operator for equivalence
classes modulo ~, 20

@*# ... application operator, 19

— ... type constructor, 16

\ ... set operator in classical type theory,
104

D~ ... domain of equivalence classes mod-
ulo ~, 20

D, ... domain of type «, 19

D, ...domain of truth values, 7

D, ...domain of individuals, 7

£ ... evaluation function, 21

&, ... evaluation function, 21

gg ... set of imitation bindings, 18

5 - ..set of projection bindings, 18

Z ...interpretation function, 7, 9, 19

I~ ... interpretation of constants modulo
~, 20

T, ...evaluation function, 7, 23

N ... set operator in classical type theory,
104

—3 ... #-reduction, 17

—y ... n-reduction, 17

U ... set operator in classical type theory,
104

‘= ...equality at defining, 6, 17

— ... set operator in classical type theory,
104

F, ... falsity, defined concept, 26

free(T) ... free variables of, 17

ABE .. set of partial bindings, 18

Vi ... Hintikka set property, 38

Vs ... Hintikka set property, 40
V;’ ... Hintikka set property, 40

157

INDEX

158

Vi ... Hintikka set property, 39

Vs ... Hintikka set property, 38

.. Hintikka set property, 38
V. ... Hintikka set property, 38
.. Hintikka set property, 38
V- ... Hintikka set property, 40
V= ... Hintikka set property, 40
V- ... Hintikka set property, 38
.. Hintikka set property, 38
V- ... Hintikka set property, 38
V.Y ... Hintikka set property, 38

V5 ... Hintikka set property, 38
VW ... Hintikka set property, 38
V. ... Hintikka set property, 38
W ... Hintikka set property, 38
V:._ ... Hintikka set property, 43
Vj* ... Hintikka set property, 43
V:(H_ ... Hintikka set property, 43
V™ ... Hintikka set property, 43
Vﬁ* ... Hintikka set property, 43
Vj ... Hintikka set property, 43
V:b‘ .. Hintikka set property, 43
V. ... Hintikka set property, 43
V. ... Hintikka set property, 43
V. ... Hintikka set property, 43
V: ... Hintikka set property, 43
V2V ... Hintikka set property, 43
V, --- Hintikka set property, 39
7{‘_ ... Hintikka set property, 39
V; ... Hintikka set property, 38
Vif‘ ... Hintikka set property, 40

Vif+ ... Hintikka set property, 40

€ ...set operator in classical type theory,
104

[f]. --- equivalence class of f modulo ~,
20

meets ... set operator in classical type the-
ory, 104

misses . ..set operator in classical type the-
ory, 104

E ...semantical validity, 25

o ...semantical satisfiability, 25
= ... logical connective, 16

ord ... order of a type, 16

¢ ... variable assignment, 7, 21
T~ ... canonical projection, 20

b ... property for models, 8, 9, 26
¢ ... property for models, 30

f ... property for models, 26

q ... property for models, 8, 26
A/ ... quotient structure, 22
A/ ... quotient model, 27

A/~ ...quotient pre-structure, 21

v ... valuation, 8, 26

~ ... congruence, 20

~q ... functional congruence relation, 45

~g ... functional congruence relation, 45

C ... set operator in classical type theory,
104

T, ... truth, defined concept, 26

Fr= ... single step derivation with rule r,,
19

Fr ... derivation in calculus R, 19

F% ... derivation in calculus R of length n,
19

V ... logical connective, 16

