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Abstract

An instance of the curve reconstruction problem is a finite sample set V' of an unknown
collection of curves . The task is to connect the points in V' in the order in which they
lie on . Giesen [Gie99] showed recently that the Traveling Salesman tour of V' solves
the reconstruction problem for single closed curves under otherwise weak assumptions on
v and V'; v must be a single closed curve. We extend his result in several directions.

e we weaken the assumptions on the sample,

e we show that the Traveling Salesman based reconstruction also works for single open
curves (with and without specified endpoints) and for collections of closed curves,

e we give alternative proofs,

e we show that in the context of curve reconstruction, the Traveling Salesman tour
can be constructed in polynomial time.

Furthermore we report on experiments with a number of recent curve reconstruction
algorithms.

Zusammenfassung

Die Eingabe eines Kurvenrekonstruktionsproblems ist eine endliche Menge V' von Sam-
pelpunkten auf einer unbekannten Kurve 7. Die Aufgabe besteht darin einen Graphen
G = (V, E) zu konstruieren, in dem zwei Punkte genau dann durch eine Kante verbunden
sind, wenn die Punkte in  benachbart sind. Giesen [Gie99] hat kiirzlich gezeigt, dafl
die Traveling Salesman Tour durch die Punkte V' das Kurvenrekonstruktionsproblem fiir
einzelne geschlossene Kurven unter ansonsten schwachen Bedingunen 16st; v mufl aller-
dings eine einzelne geschlossene Kurve sein. Wir erweitern dieses Ergebnis in mehrere
Richtungen.

e wir schwichen die Bedingungen an das Sample ab,

e wir zeigen, dafl Traveling Salesman basierte Rekonstruktionen auch fir offene Kur-
ven (mit und ohne spezifizierte Endpunkte) und fiir mehrere geschlossene Kurven
funktionieren,

e wir geben andere Beweise,

e wir zeigen, daf} die Traveling Salesman Probleme die im Zusammenhang mit Kur-
venrekonstruktion auftreten, in polynomieller Zeit gelost werden kénnen.

Ausserdem berichten wir iiber Experimente mit einigen kiirzlich entwickelten Kurven-
rekonstuktionsalgorithmen.
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1 Introduction

The problem of reconstructing a shape from a given finite set of points has attracted much
attention in the literature during the last twenty years. Its importance arises from a wide
area of applications, mainly in reverse engineering. For the most important problem, the
reconstruction of a surface in the Euclidean space, many algorithms have been proposed
that produce good approximations of the surfaces. The drawback of these algorithms is
that they provide no guarantee for the correctness of the returned solution. Recently,
these reconstruction problems have been investigated from a theoretical point of view.
The results are algorithms that provably solve the reconstruction problem for a certain
class of shapes in a somewhat idealized setting.

A formal specification of this problem is stated in the next section. Before we mention
some applications for the class of shapes we have looked at, we introduce the Traveling
Salesman Problem. After that, we summarize our contribution to this problem and give
an outline of the contents of the thesis.

Problem Description

In general a shape is defined as a subset of the Euclidean space. Given a finite set of
points S C R?, called the sample points, the shape reconstruction problem asks for a
shape that approximates S. We are interested in reconstruction algorithms with guaran-
teed performance, i.e. , algorithms that provably solve the reconstruction problem under
certain assumptions on the shape and the sample set. In the case in which the shape is
a curve, i.e. , a one—manifold, the correct solution can easily be defined as the polygonal
reconstruction, i.e. , the graph G on S so that two points in S are connected by an edge
of G iff the points are adjacent in the curve. In the case of a surface it is not obvious how
to define what is meant by the correct solution. A possible answer is given by Amenta
and Bern [AB9S].

Algorithms that provably solve the problem for certain classes of curves or surfaces
have been recently proposed. Most of these algorithms require a shape that is smooth,
i.e. , twice differentiable and a sample that is rather dense, i.e. , that for every point p on
the shape, there is a sample point of distance at most €f(p), where € is a constant and f
is a function that describes the local complexity of the curve. Algorithms for the surface
reconstruction problem are mostly extensions of similar algorithms for curves. Therefore
it seems reasonable to restrict one’s attention to the simpler case of curve reconstruction,
to gain insight for the general case. In this thesis, we address the special case of a curve
in R? that is not assumed to be smooth. Figure 1 gives an example. On the left the
input, i.e. , the sample points are visualized. The result of our algorithm is shown in the
right. Note that a human being would probably immediately see the reconstruction. The
challenge is to find algorithms that are almost as good as the human eye.
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Figure 1: Part (a) shows a finite set S of points, part (b) shows the Traveling Salesman
tour of the points.

The Traveling Salesman Problem

A salesman who has to visit a given set of cities and after that has to return to his home
should select the order in which he is going to visit the cities, so that the total distance
is minimized. The problem of ordering the cities in such a way is called the Traveling
Salesman Problem (TSP). The Traveling Salesman Problem is one of the oldest and most
well studied problems in combinatorial optimization. Lawler, Lernstra, Rinnooy Kan, and
Shmoys [LLRKS92] even call their book devoted to the TSP: The Traveling Salesman
Problem - A Guided Tour of Combinatorial Optimization. This title demonstrates the
importance of the problem. It has served as a testbed for almost every new algorithmic
idea.

The traveling salesman problem has been shown to be NP—complete, even in the special
case where the distance between two cities is given by their Euclidean distance [GGJT78,
Pap77]. There were many investigations of special cases that are solvable in polynomial
time. The first overview was given in the book of Lawler et al. [LLRKS92] and later
updated by Burkard and others [BDvD7'98].

We follow the proposal of Giesen in using the Traveling Salesman Tour as the recon-
struction for a curve. Our main contribution to this issue is the proof that the instances
arising in curve reconstruction are solvable in polynomial time. This is one of the rare
special cases that has important applications in practice.

Applications of Curve Reconstruction

Although the most important application of the reconstruction problem is generating
a computer model of an existing three dimensional object that is scanned by some 3D
scanner, there are some applications where the underlying shape is a curve. All these
applications do not exactly fit our idealized setting, since there can be some noise in the
input sample, the sample points can be disturbed, the sampling condition can be violated,
or the curves do not necessarily belong to the class of curves that can be reconstructed
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with the known algorithms.

Computational Morphology

The central problem in computer vision (see [JT92]) starts with a grey—level picture of
a scene and asks for a description of the scene. There has been much research on the
low-level vision, i.e. , the analysis of the picture to separate objects from the background
or to separate different objects. One class of methods returns so—called dot patterns, i.e. ,
a set of points describing the boundary of the shape. The shape of the corresponding
object had to be found by a curve reconstruction algorithm.

There are various applications that fit into this setting. We have collected some of
them.

Geographic Analysis. Assume we are given an aerial survey of an unexplored
terrain, i.e. , from satellite images. Different types of ground have different textures in
these images. There are sophisticated methods for extracting the boundaries of these
textures. In another setting, boundaries are extracted from spatial data of an area. In
both cases these boundaries are given by dot patterns and the associated polygon has to
be computed.

Figures 2 gives an example. The data is from the USGS EROS Data Center [USG].
We have extracted the boundary by a simple algorithm that detects a boundary point if
the image—pixel changes between water and land in a left-right scan. Since this algorithm
finds some clusters of points on the boundary, we removed some points and applied our
reconstruction algorithm.

Image Interpretation. There are many applications, e.g. , OCR, automatic traffic
census, and many others, where some shapes of an image has to be interpreted.

One excellent descriptor for a shape is the medial axis as already proposed by
Blum [Blu67]in 1967. Similarity of objects are often measured by some similarity measure
on the medial axes.

Figure 3 shows a OCR-example. The boundary of the letters is extracted and re-
constructed by our algorithm. Then we have computed an approximation to the medial
axis.

3D Surface Reconstructions from Contours. In a very important special case
of 3D surface reconstruction the image is given as a set of contours, i.e. , the image is
scanned by parallel slices. Important applications of these scans are found in computer
topography (CT) and magnetic resonance imaging (MRI).

There are many surface reconstruction algorithms for this special case. All assume
that each slice is given as a set of polygons, i.e. , that the reconstruction problem for the
single slices is already solved. The reconstruction problem for a slice can be seen as a
curve reconstruction problem.

We give an example in Figure 4. The data comes from the visual human project [VHP].
For every image we try to extract the boundaries. We collect all boundaries and use an
appropriate algorithm to obtain a 3D-reconstruction.
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Figure 2: Part (a) shows a map of Corsica and Part (b) shows the reconstruction of our
algorithm.

NN

2

Figure 3: Part (a) shows a scan of the word “flower” and Part (b) shows the points of the
boundary and an approximation of the medial axis of a part of the picture.

Plotting of Implicit Functions

We want to mention one application in which the input does not come from a scanned
image.

In mathematics, some functions are given by the definition f(z,y) = 0. Such a
definition is called an implicit definition. Many mathematical software packages support
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Figure 4: Part (a) shows a CT-image of a slice of a human pelvis and Part (b) a recon-
struction.

S
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Figure 5: Part (a) shows the maple plot of the function 5|y — z| — y = 0 and Part (b)
shows the reconstruction of the sample points that were produced by maple.

the plot of such implicit functions, if they can compute for every z all values y with
f(z,y) = 0. The result of these plots is rather poor, if the function is self-intersecting or
has sharp corners. To plot such an implicit function, one computes a large set of points
on this function and reconstructs it with an appropriate algorithm (see Figure 5).

Analogously, we can plot 3D implicit functions, if we take care on our sample points.
By computing sample points on parallel slices, we can reconstruct these slices and than
use an appropriate algorithm to compute the 3D-reconstruction.

Our Contribution

If the curve is closed, smooth, and uniformly sampled, several methods for the curve
reconstruction problem are known to work ranging over minimum spanning trees [FG94],
a-shapes [BB97, EKS83|, -skeletons [KR85], and r-regular shapes [Att97]. A survey
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of these techniques appears in [Ede98]. The case of non-uniformly sampled closed curves
was first treated successfully by Amenta, Bern and Eppstein [ABE98] and subsequently
improved algorithms such as [DK99, Gol99] appeared. Open non-uniformly sampled
curves were treated in [DMRO0]. All the papers mentioned so far require the underlying
curve to be smooth.

We review the algorithms for non—uniformly sampled curves and show a variant of the
algorithm of Dey and Kumar that requires the least dense sample of any known algorithm.

Giesen [Gie99] recently obtained the first result for non-smooth curves. He considered
the class of benign semi-reqular curves. An (open or closed) curve is semi-regular if a left
and a right tangent exists in every point of the curve; the two tangents may however be
different. A semi-regular curve is benign if the turning angle at every point of the curve is
less than 7. Giesen showed that the Traveling Salesman path of the sample set S solves
the curve reconstruction problem for uniformly sampled benign open semi-regular curves.
More precisely, he showed that for every benign semi-regular curve y there exists a positive
e so that the Traveling Salesman path (tour) of S is a polygonal reconstruction provided
that for every x € «y there is a p € S with |zp| < €, where |zy| is the Euclidean distance
of the two points z and y. Giesen’s result is an existence result; he did not quantify € in
terms of properties of the curve y. We extend Giesen’s result in three directions:

e We relate € to local properties of the curve v and show that the Traveling Salesman
tour (path) solves the reconstruction problem even if the sampling is non-uniform.
For smooth curves our sampling condition is similar to the one used in [ABE98,
DK99, Gol99, DMRO00].

e We show that the Traveling Salesman tour (path) can be constructed in polynomial
time if the sampling condition is satisfied.

e We give a simplified proof showing that the Traveling Salesman tour (path) solves
the curve reconstruction problem.

e The TSP-algorithm reconstructs only single closed curves. We were able to extend
the algorithm for collections of closed curves.

Furthermore we show the following results concerning curve reconstruction:

e In the proof of the correctness of the TSP-algorithm we introduce a sampling con-
dition, different from those in the previous algorithms. We show that our sampling
condition is implied by the other sampling conditions.

e A curve-reconstruction algorithm returns a curve it “believes” to best approximate
the curve. If one adds additional sample points on the returned curve one would ex-
pect that the algorithm returns the same curve. We call an algorithm self consistent
if it has this property. We investigate which of the algorithms are self consistent.

e All known algorithms return a subgraph of the Delaunay Diagram of the sample
points. We show that the Delaunay Diagram suffices for benign semi-regular curves
too.
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e We relate our result to another known polynomial-solvable special case of the Eu-
clidean Traveling Salesman problem.

Additionally we describe a testbed for curve reconstruction algorithms and report on
an experimental evaluation of the curve reconstruction algorithms of Amenta, Bern, and
Eppstein (ABE), Dey and Kumar (DK), Gold (Gold), Dey, Mehlhorn, and Ramos (DMR),
and the TSP-algorithm. We also report on experimental results with some TSP-heuristics.

Outline

In Section 2 we collect some facts concerning linear programming and computational
geometry, which we suppose to be known in the following sections. In Section 3, we review
recent curve-reconstruction algorithms. The main results are proven in Section 4, where
we show that the Traveling Salesman path (tour) solves the reconstruction problem in
polynomial time for a large class of curves. In Section 5 we give further results concerning
curve reconstruction and in Section 6 we report on experiments with recent algorithms.
Finally, we state some related open problems in Section 7.
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2 Preliminaries

Since we use techniques from different research areas, in particular linear programming
and computational geometry, we introduce the facts we use in later sections. We start
with some notations of graph theory. Then we give a short introduction to the basics of
linear programming and Lagrangian relaxation. In the last section we introduce Delaunay
triangulations and Voronoi diagrams.

The results in this chapter are not original. They are presented only for the sake of
completeness.

2.1 Undirected Graphs

We assume that the reader is familiar with basic graph theory. The purpose of this
section is to introduce some notations we use. For an introduction to basic graph theory
we refer to [Meh84]. Since we only use undirected graphs, we refrain from introducing
the notations for directed graphs.

A undirected graph G = (V, E) consists of a set V of nodes and a set E of edges, where
E C {{u,v} | u,v e Viu#v}. It E = {{u,v} | u,v € V,u # v} we call G the complete
graph over V.

For an edge e = {u, v}, abbreviated as uv, we call v and v the endpoints of e. The
endpoints u and v of an edge uv are called the incident nodes of the edge and e is said to
be adjacent to u and v. Two edges are called adjacent if they share a common endpoint.

For a subset V' of V, we call the set of edges E’ that have exactly one endpoint in V'
the cut of V' and denote this set by 6(V'). The edges that have both endpoints in V' are
called the induced edges of V', denoted by v(V'). The graph G = (V',v(V")) the induced
subgraph of V'. For a subset E’ of E the induced subgraph is defined by (V’, E') where
Vi={veV|Juw e E'}.

A path between two mnodes wuw and v is an alternating tuple
(u, uwq, Wi, W1Wg, Wa, WoW3, W3, - .. wrv,v) of nodes of V and edges of E starting
with v and ending with v so that every node is adjacent to its neighboring edges and so
that all nodes are pairwise distinct. We call the nodes (edges) of the tuple the nodes
(edges) of the path.

A path is called a Hamilton path of G if the nodes of the path are all nodes of the
graph. A Hamilton cycle is the union of an edge uv € FE and a Hamilton path between u
and v.

A subset E’ of E is called a spanning tree of G if there is exactly one path between
every two distinct nodes of V' in the induced subgraph of F'.

If there is a bijective mapping between the nodes V' of a graph and a set S of points
in the plane, we call the graph an embedded graph. We identify the nodes of the graph
with the corresponding point in the plane and edges uv with the segment between the
corresponding points of u and v.
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2.2 Linear Programming

We briefly introduce linear programming and cite the theorems we use in the following
sections. The results are collected from the sources [NW88, Chv83, Sch86, Wol98|.
A linear program (LP) is given by

min 'z
st. Aix < b
A2$ = b2
Asx > bs.

The term ¢’z is called the objective function of the linear program and the equalities
and inequalities of the descriptions are called the constraints of the LP.

A linear program has either no solution, is unbounded or has a finite solution. Many
optimization problems can be formulated as linear programs or integer linear programs.
An integer linear program, or integer program for short, is a linear program with the
additional constraint that some of the variables have to be integral. Linear programs can
be solved in polynomial time, whereas finding an optimal solution of integer programs is
NP-complete in general.

By replacing Asx > b3 by —Aszx < —b3 and Ayx = by by — Az < —by, Aox < by we
get an LP of the form

min ¢’z

st. Az <b

without changing the optimal solution or the objective function of this solution. A
maximization problem maxc’z can be written as minimization problem by min —c’x
and vice versa. The optimal solution does not change, the objective function value of the
optimal solution is multiplied by —1. Very common inequalities are x > 0 and z < 0 for
some variable x. Variables, for which the inequality x > 0 is valid, are called non-negative
variables. If for a variable the inequality x < 0 is valid we call the variable non-positive.
If none of the two inequalities are valid, we call the variable free.

A further transformation leads to the standard form of an LP. First we replace each
non-positive variable x by a non-negative variable = and substitute x = —z~. For each
free variable z of the LP we introduce two new non-negative variables ¥ and z~ and
substitute z = zt — 2. Then we introduce a slack variable y; for every column of the
constraint matrix and replace a;x < b; by a;x 4+ y; = b;. In this manner we get an LP of

the form
min 'z
st. Ar = b
z > 0.

The objective function value of the optimal solution of this LP is the same as the
objective function value of the optimal solution of the original problem. Furthermore an
optimal solution of the new LP transforms into an optimal solution of the original LP by
setting x = 2t — z~ for the free variables and x = —z~ for the non-positive variables.
We ignore the values of the slack variables y.
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2.2.1 Some Linear Algebra

For a matrix A, A; denotes the i-th row and A7 denotes the j-th column. The n x n unit
matriz is denoted by I,.

A set of points z!,...,2F € R™ is linearly independent if the unique solution of the
system Zle Nzt = 0is A = 0. Tt is affinely independent if the unique solution of
S At =0,2F N\ =0is A =0.

Note that the maximum number of linearly independent vectors in R” is n, the maxi-
mal number of affinely independent vectors in R" is n+ 1. The following corollary makes
a connection between linear and affine independence.

Corollary 1 The following statements are equivalent:

o z'..., zF € R" are affinely independent.

k

o 22—zt ... 2F —a! € R" are linearly independent.

o (z',1),...,(z%,1) € R"* are linearly independent.
The following corollary leads to the definition of the rank of a matrix.

Corollary 2 If A is an m X n matriz, the mazimum number of linearly independent rows
of A, viewed as vectors A; € R™, equals the mazimum number of linearly independent
columns, viewed as vectors A7 € R™.

The maximum number of linearly independent rows of a matrix A is called the rank
of A and is denoted by rank(A). If A is a square matrix, i.e. , the number of columns is
equal to the number of rows, and has full rank, i.e. , the rank is equal to the number of
rows/columns, we call the matrix non-singular. If the square matrix does not have full
rank, we call it singular.

Corollary 3 If {x € R™ | Az = b} # 0, the mazimum number of affinely independent
solutions of Ax = b is n + 1 — rank(A).

2.2.2 Polyhedra

A polyhedron P C IR™ is the set of points defined by a finite number of linear inequalities,
ie., P={z € R" | Az < b}, where (A,b) is an m X (n + 1) matrix. A polyhedron is
said to be rational if there exists an m’ x (n + 1) matrix (A’,b’) with rational coefficients
so that P = {x € R" | A’z < b'}. If there is a constant U for a polyhedron P so that
P C [-U,U]", the polyhedron is called bounded polyhedron, or polytope. A set C' is called
convez, if z,y € C implies Ax + (1 — Ay € C for all 0 < A < 1. The convezr hull of a set
of points S is the smallest convex set containing S.

Theorem 4 (Finite Basis Theorem) A subset S of R™ is a polytope if and only if it
1s the conver hull of a finite number of points.
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2.2.3 Solving Linear Programs

We briefly present two different methods for solving linear programs: The simplex method,
which is the most commonly used method in practice, because it is very efficient, although
no polynomial bound on the running time is known, and the ellipsoid method, which is
the most cited method in theory, since it has a polynomial running time, but is never
used in practice, since there is no efficient implementation. We do not present interior
points methods, which are practically efficient and provide a polynomial running time.

The Simplex Method

The basic primal simplex method requires a LLP in standard form. Look at the LP

min ¢’z
st. Ax = b
z > 0,

for an m x n matrix A and an m-vector b. Assume that A has full row rank, so rank(A) =
m. Let B = {By,...,B,} aset of column indices and N = {1,...,n} \ B. Let Ap =
(AB1 ... ABm) the m x m matrix consisting of the columns given by B. Ap is called
a basis of A, if Ap is non-singular. The solution zp = Aglb, zn = 0 is called a basic
solution of Az =b. We call a basic solution primal feasible, if Az'b > 0.

A point x € p is an extreme point of a polyhedron P, if there are no two points
y,z € P,y # z so that = (y + 2)/2. We can characterize the extreme points by bases of
the matrix A.

Lemma 1

e Let x be an extreme point of a polyhedron P = {z € R™ | Ax = b,x > 0}, for a
matriz A with full row rank. Then there erists a (at least one) basis Ag of A, so
that x = A} 'zp.

e If x is a primal feasible basic solution, than x is an extreme point.

We call an extreme point, which has several bases, a degenerate solution.

Geometrically, the simplex method starts with a feasible extreme point 2°. It then
iteratively computes a feasible extreme point 2'*! that provides a better objective function
value. The algebraic counterpart to extreme points are the bases of the matrix A. If the
actual solution is not degenerate, there is a rather simple calculation that provides the
information, if the addition of an index in the actual basis leads to a basis with a better
objective function value. If there is no such variable, the actual solution is also the optimal
solution. A further calculation provides the indices, which we can remove of the basis
to preserve primal feasibility. If there is no such variable, we know that the problem is
unbounded. If we are in a degenerate basis, we perform the same algebraic steps. The
problem is, that in this case, we could end up in the same extreme point.
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Direction of the
objective function

Figure 6: Geometric illustration of the simplex method: Starting at the feasible point z°,
we iteratively move segment by segment to a better point, until we end up in z®, which
we cannot improve further.

Geometrically, an exchange of an index B; for another of a basis B corresponds to a
move along the line defined by Ag\p,75 = 0 until a further constraint is met. See Figure
6 for an illustration.

There are efficient implementations of a single iteration of the simplex method. The
crucial point for an efficient implementation is to get a small number of iterations. The
following questions and problems arise:

e If there are several indices that would lead to a better objective function value, we
must decide which of them to choose. There are several rules leading to rather few
iterations in most of the practical applications, but there is no polynomial bound
for the number of iterations on any rule. Moreover, it is not known if there can be
a rule, leading to a polynomial iteration bound.

e Analogously, we have to choose an index if there are several variables that can leave
the basis. Most implementations choose arbitrarily one of those variables. This
selection seems to be less critical for the total number of iterations.

e If we are in a degenerate basis, the algorithm could run in a cycle and hence would
not terminate. There are rules governing how to select the indices entering and leav-
ing the basis that guarantee termination. Since these rules lead to more iterations
in practice, they are only applied if the actual extreme point does not change for
some iterations with the rule that does not guarantee termination.

For the primal simplex method, we need a feasible basis to start with. Often, a feasible
basis is known for a specific problem. A general solver can solve the auziliary problem,
an LP for which a feasible basis is known, and whose optimal solution is feasible for the
original constraint system. Look at the optimization problem
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min ¢’z
st. Az = b
z > 0,

where A is a m X n-matrix and without loss of generalityb > 0 (if b; < 0 for some row i,
multiply this line by —1). We introduce m new variables y; ... y,,. The auxiliary problem
is written as follows:

min y

st. Az +1In,y = b
z > 0
y > 0.

A feasible solution for this problem is x = 0,y = b. If the original problem has a solution,
say z*, the solution x = z*,y = 0 is valid for the auxiliary problem. Furthermore it is
optimal, since the optimal function value of this solution is 0 and every feasible solution
has a non-negative objective function value, since y > 0. If there is a feasible basis for
which y = 0, this basis is also feasible for the following problem:

min 'z

st. Az+1,y = b
z > 0
y = 0.

This problem has the same optimal solution as the original problem, except that the
additional variables y have value 0. The only reason for keeping the variables y in the LP
is that the basis obtained from the auxiliary problem could contain some of the y-variables
(in the case of a degenerate basis) and so the basis is not a basis of the original LP. Each
variable y; which is not in the basis can be deleted at once. Similarly, if a variable y; leaves
the basis during the second optimization process, it can be deleted from the system.

We just described the primal simplex method. In every iteration, we have a primal
feasible basis and we iterate until there is no index whose addition could improve the
objective function value. There is also a dual simplex method. In every iteration we have
a basis, so that there is no index whose addition could improve the objective function
value, but it is not necessarily primal feasible, i.e. , there can be indices ¢ with x; < 0. In
an iteration we move in a direction that increases the value of a variable whose value is
negative, preserving the optimality of the new extreme point, if it is primal feasible.

The Ellipsoid Method

The ellipsoid method is a method for solving the strict membership problem, i.e. , given
integers m and n, an integer m X n matrix A, and an integer m-vector b, find a point in
P.={x € R" | Az < b} or show that P. = (). It can be extended to solve LPs.

A n x n matrix D is positive definite, if 7 Dx > 0 for all z € R™\ {0}. An ellipsoid
with center y is a set E = {z € R" | (z — y)TD7}(x — y) < 1}, where D is a positive
definite n x n matrix. We write this ellipsoid as E(D,y). The volume of an ellipsoid F is
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denoted by vol(E). We refrain from giving an exact definition of the volume of a subset
S of R".
Let T be the largest integer of A and b. We assume that P. is bounded. An important
observation is that if P. # ( then P. C E((nT)"-1,,0) is and vol(P.) > n ™(nT) *(+1),
The ellipsoid method iteratively computes ellipsoids that cover P.. The volume of
these ellipsoids decreases geometrically. It works as follows:

e Start with the ellipsoid F(D°, z°), where 2° = 0 and D% =T"- I,,. Let k = 0.

o If vol(E(D*,x¥)) < n_n(nT)_nz(n“), we know that P. is empty, because otherwise
we have a contradiction according to n~"(nT) ="+ < vol(P.) < vol(E(D¥,x¥)) <
nfn(nT)fnz(n—{—l)'

o If zF € P_, we are done. Otherwise let 7 be an index so that A;z* > b;.

e Find an ellipsoid F (D! z*+1) containing the relevant part F(D*, z*) N {z € R" |
Az < b} of the ellipsoid with volume at most e~'/2"*+Vvol(E(DX, x¥)).

e Set £k =k + 1 and iterate.

For an illustration of the ellipsoid method see Figrue 7.

E(Di+17 .Z'H_l)

Figure 7: Illustration of the ellipsoid method: The line L separates the center of the ellip-
soid E(D*, x') from the polytope P. So we can construct the new ellipsoid E (D!, z¢+1)
with smaller volume. Since the ellipsoid E(D?, %) covers the polytope P and P is com-
pletely “right” of L, the constructed ellipsoid E (D!, z'*1) covers P.

We refrain from giving the formula for finding the new ellipsoid E(D¥*1 z%1) from
E(D* z¥) and the index 1.
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The ellipsoid method above solves the strict membership problem. To use the method
for linear programming, we need to extend it in two directions. We need to find an
optimal point, and the ground set is a polyhedron. The details of this extension are
rather complicated and omitted here. An important insight is that if x* is an extreme
point of a polyhedron, every coefficient z} of z* is a rational with denominator at most
L = (nT)".

Exponential Number of Constraints

An interesting fact concerns linear programs with an exponential number of constraints.

If we look carefully at the ellisoid method, we see that the only part of the algorithm
which depends on the problem is deciding whether a point z is in the polyhedron and, if
not, finding a hyperplane separating x from the polyhedron. This problem is called the
separation problem.

If the separation problem is solvable in polynomial time, the ellipoid method for the
linear program runs in polynomial time. We note that the analysis of the runnning time
does not depend on the number of constraints, without proving this.

But we can solve such linear programs in a practically efficient way with the simplex
method. We start with a small subset of the constraints and solve the corresponding
linear program with the simplex method. Let z be the optimal solution. We solve the
separation problem for z. If x is in the polyhedron, it is also the optimal solution and
we are done. Otherwise, we add a violated constraint to the actual subset of constraints
and iterate. Note that the optimal basis of the old problem is dual feasible for the new
problem, thus we can start the dual simplex method with this basis. One oberves that
the dual simplex needs only very few iterations to solve the new problem.

A surprising observation is that this method terminates after a rather small number
of iterations. We now mention some improvements of the basic algorithm, that are often
used in practice to accelerate the algorithm.

e Instead of adding only one violated constraint in an iteration, we add several, clev-
erly chosen, violated constraints.

e If a constraint is not tight, i.e. , is not satisfied with equality, for a number of
iterations we remove the constraint of the actual subset of constraints. We do this
to keep the solved constraint set small.

2.2.4 Linear Programming Duality

We look at the maximization problem

max clz
st. Az < b
x > 0.
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We call this problem the primal problem (P). The corresponding dual problem (D) has
a variable for every constraint in (P) and a constraint for every variable in (P). It writes

as follows
min b'p
st. ATp > ¢
p = 0.

There are rules for transforming a general LP directly to its dual without transforming
it to a LP as (P). The resulting dual is similar to the LP one gets if one first makes the
transformations.

Lemma 2 The dual of the dual is the primal.

Proof: If we rewrite the dual in a form as (P) we get

st. —ATp < —c.
p > 0.
The dual of this problem is
min —c'x
st. —(ADTz > —c
r > 0.
Rewriting this LP leads to the original LP. 1

The following lemmas and theorems make a connection between the primal and dual
problem. These facts are only a small fraction of the large number of theoretical and
practical applications of the dual.

Lemma 3 (Weak duality) If z* is primal feasible and p* is dual feasible than cTz* <
bTp*.

Proof: Since p*7 A > ¢ and z* > 0 we have ¢’ 2* < p*T Az*. Furthermore since Az* < b
and p* > 0 we have p*Tb > p*T Az*. These two inequalities together form the claim of the
Lemma. |

We now state one of the fundamental results of linear programming.

Theorem 5 (Strong duality) If the primal or the dual LP has an optimal finite solu-
tion, then both LPs have finite solutions and the objective function values are equal.

We can use this theorem to prove the optimality of a pair of primal and dual feasible
solutions by the following theorem.
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Theorem 6 (Complementary slackness) If z* is a primal feasible solution and p* is
a dual feasible solution then x*,p* are primal-dual optimal if and only if

b —Aiz" =0 o0rp; =0 for all constraints i
and
(AT)jp; —¢;=00rz;=0 for all variables j.

2.2.5 Minimum Spanning Trees and Linear Programming

Given a graph G = (V, E) and edge weights ¢, for all edges e € F a minimum spanning
tree of (G, c) is a spanning tree of G with minimal weight. The weight of a subgraph
G' = (V, E') is defined as Y .cp Ce.

There are simple algorithms for solving the minimum spanning tree problem, i.e. the
problem of finding a minimum spanning tree of a given graph G. We describe two well-
known algorithms without proving their correctness.

Both algorithms start with the empty edge set and iteratively add edges until the
current edge set forms a spanning tree of G. Kruskal’s algorithm maintains a forest and
inserts in every iteration the shortest edge which does not close a cycle. If there are
several edges of the same length, choose one arbitrarily.

Prim’s algorithm maintains a spanning tree of a subset of the nodes. It starts with
the set Vo = {u} for any node u € V. It then iteratively adds the shortest edge leaving
the current node set V;. If this edge is not unique, we can again choose one arbitrarily.
The new set V;,; is the union of the current set V; and the node reached. The first
algorithm can be implemented with running time O(|E|log|E]), the second with running
time O(|V|log |V]).

We now look at the vectors © = (Z¢)ecr € R'”/, ie. , the vector has a real valued
entry for every edge of the graph. The incidence vector x of a subset £’ C F is defined

by 2. — 1 ifee E'
Y Le = 0 otherwise

Lemma 4 The incidence vectors of spanning trees of G are feasible for the following
linear program. Moreover the incidence vector of a minimum spanning tree is an optimal
solution of the LP.

min Z CeTe

eckE
st. Y =z < |S|-1 forall@£SCV
e€y(S)
Z . = |[V[-1 (1)
ecl

z, > 0

Proof: We obtain a somewhat extended result. This extension is not of general interest,
but we need it for a proof in section 4.4.
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For any real constant r with 0 < r < |V| — 1 we look at the linear program where we
exchange the constraint (1) of the above system for

er:r.

ecE

For r = |V| — 1 we have the same LP as above. We claim that an optimal solution for
the LP is obtained by the following two steps:

e Run Kruskal’s algorithm. Let T be the edges chosen in the first |r] iterations. Let
f be the edge chosen if the |r] + 1st iteration, if 7] < |V| — 1 and an arbitrary
edge which is not in 7" otherwise.

1 forallee T
o Let £ = (Z¢)ecp Withz, =¢ r—|r] fore=f
0 otherwise.

We call this algorithm the modified Kruskal’s algorithm. Note that if r is integral, z; = 0.
In particular, if » = |V| — 1, the choice of the arbitrary edge does not matter.

We use the modified Kruskal’s algorithm to construct a primal and dual solution
simultaneously. The primal and dual solutions will satisfy the complementary slackness
conditions (see Theorem 6).

The dual has a variable ygi for every subset R C V. The constraints of the dual are
as follows:

Yy + Z yr <c, forallee E (2)
RCV|e€vy(R)

yrp <0 forallRCV. (3)

After the i-th iteration, the actual forest has ¢ edges. The incidence vector of the actual
subsolution is called *, the actual dual solution is called y'. Let P* = {P{,... P}, _;} be
the current partition of the nodes (after inserting the i-th edge) in the connected subtrees.
We call the sets P; the active sets of phase i.

We start with z° = 0, y° = 0 and P? is the set of all singleton sets {v | v € V'}.

We maintain the following invariants:

e After every iteration 4, x° satisfies all primal constraints except ¥ ,cg Z, = 7. This
constraint is satisfied after the |r| + 1st iteration.

e For all active sets P} € P*, we have «*(P}) = |P}| — 1, except after the last iteration.
e For all edges e with 2% # 0 we have yi, + 2 RCVleey(R) Yh = Ce.
e All dual solutions ¥’ are dual feasible.

e In an iteration i, we change the dual constraint i, + 3 gcviecy(r) Y Of an edge e
only for edges which are selectable in iteration 7, i.e. , edges which we can add to
the current primal solution without closing a cycle.
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These invariants hold for the initial solution z°, 3/°.

The complementary slackness conditions are written as follows: ¥}, + X gcvieey(r) Yr =
c. for all edges e with 2, # 0 and z(R) = |R— 1| or all R C V with 4% # 0. These
conditions are satisfied, if the invariants hold.

In the i-th iteration we increase y!{ and decrease all Ypi at the same rate until a
constraint gets tight. This happens for 4%, = c,, where e is the edge the modified Kruskal’s
algorithm selects in the i-th iteration. This can be seen as follows. As long as an edge
is selectable, the corresponding constraint % + 3 RCV|e€y(R) Y% < c. gets tighter, because
none of the subsets {R C V | e € y(R)} is in a partition P’ for any j < i. As soon as
an edge is no longer selectable, exactly one of the sets {R C V | e € v(R)} decreases its
value at the same rate as 1%, increases, so the tightness of the constraint does not change
in this case. If the constraints of several edges get tight at the same time (if several edges
have the same cost) select the same edge as Kruskal’s algorithm and continue.

Now we set 2 as defined above and preserve the invariants above. ]

2.2.6 TSP and Integer Programming

Given a set S of points in the plane, the Traveling Salesman tour is the shortest Hamil-
tonian cycle in the complete embedded graph with nodes corresponding to S and edge
costs corresponding to the Euclidean distance between the two endpoints. For two points
a,b € S, the Traveling Salesman path between a and b is the Hamiltonian path between
a and b in the same graph.

The construction of Traveling Salesman paths or tours is an NP-hard problem. A
successful method for solving the Traveling Salesman problem is to formulate the problem
as an integer linear program (ILP) and to use a branch-and-cut algorithm based on the
LP-relaxation of the problem. We give the formulation for Traveling Salesman paths with
fixed endpoints a and b. We introduce a variable z,, for every edge uv between two points
and describe the set of all Hamiltonian paths with endpoints a and b in the following way:

>ty = 2forallueV\{a,b} (4)
veV
> 2w = 1forue€ {a,b} (5)
veV
Z Ty < |V'|=1for V' CV, V' #£0 (6)
ueV’' veV’
Ty € {0,1} for all u,v € V. (7)

We refer to this program as the Subtour-ILP for the Traveling Salesman problem with spec-
ified endpoints. The equality constraints (4) and (5) in the Subtour-ILP are called degree
constraints, the inequality constraints (6) are called subtour elimination constraints, and
the constraints z,, € {0,1} are called the integrality constraints. Relaxing the integrality
constraints to 0 < x,, < 1 gives the Subtour-LP for the Traveling Salesman problem with
specified endpoints. The objective function for both programs is 32, ey [uv|Zuy, i-e., the
total Euclidean length of the edges selected.
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Lemma 5 The feasible incidence vectors of the integer program above are exactly the
Hamilton path between a and b of the complete graph over V.

Proof: Let z be a feasible solution of the above system. Since x is a 0/1-vector, x
corresponds to a set of edges. Since z satisfies the constraints (4), every node has exactly
two adjacent edges, except a and b, which have exactly one adjacent edge. If one adds
the edge ab, every node has exactly two adjacent edges. Thus the new set of edges is a
2-factor, i.e. , a set of disjoint cycles meeting all nodes. Assume that we have more than
one cycle. Then at least one cycle does not contain the edge ab, and thus the subtour
elimination constraint (6) for the nodes of this cycle is violated, a contradiction. Thus the
modified set of edges is a Traveling Salesman Tour and so x corresponds to a Traveling
Salesman Path between a and b. |

It is well known that the Subtour-LP can be solved in polynomial time in the size of
the bit representations of the distances by use of the ellipsoid method, see [Sch86]. A
potentially exponential, but practically very efficient algorithm uses the simplex method
and the cutting plane framework. One starts with the LP consisting only of the degree
constraints and then solves a sequence of LPs. In each iteration one checks whether the
solution of the current LP satisfies all subtour elimination constraints and, if not, one
adds a violated subtour elimination constraint to the LP. We use the latter algorithm in
our experimental framework for curve reconstruction.

Assuming that all degree constraints are satisfied, the test whether there is a violated
subtour elimination constraint can be made by computing the minimal cut in the graph
with edge weights equal to the the current LP solution for all edges different from ab and
the LP solution plus 1 for the edge ab. A violated subtour elimination constraint exists
if and only if this minimal cut is less than 2. This can be seen as follows. For every
node v, the sum of the values of the edges adjacent to v is exactly 2. Let V' be one
side of the cut not containing both a and b. Thus 2|V'| ¥ ,cy' (Xpev Tuv + Xy Tuw) =
2 Y wwea(vh) Tuv T Xuves(vr) Tup- Thus the value of all edges with both endpoints in the cut
is larger than |V'| — 1, if the value of the cut is less than 2 and since the edge ab does not
have both endpoints in V', the value is equal to the sum of the LP values of the edges.
Since the computation of the minimal cut in a graph is a polynomial time algorithm, on
can check whether there is a violated degree constraint or a violated subtour elimination
constraint in polynomial time.

Remark: We stress the fact that we cannot optimize the Subtour-LP with one of the
methods of section 2.2.3, since the Euclidean lengths are not necessarily rational.

2.2.7 Lagrangian Relaxation

Consider the following linear program:
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min 'z
st. Aix = b
Ayx = by
r > 0

and assume that dropping the constraint Asx = by, makes the problem “easy”. Lagrangian
Relazation is a method for making use of this fact. If we dualize the problem above, we
get

max lebl + y2T bo
s.t. yfAl + y2TA2 < CT.

We rewrite the dual as double maximization:
max Ya ba + (max Y1 b
sit. yl Ay < ' —ys Ay)
and redualize the inner maximization problem
max YT by + (min (' —yd)z

s.t. Al,’IJ = b1
x > 0).

None of the transformations above have changed the objective value. Thus we can
formulate the following theorem.

Theorem 7 (Lagrangian Relaxation) The following two problems have the same o0b-
jective value

e minc'z s.t. Ajx =by, Ayx = by, z > 0.

e maxy, y; by + (min(c” — yJ As)z s.t. Ayx = by, z > 0).

A straightforward extension to problems which are not in standard form leads to the
following corollary.

Corollary 8 The following two problems have the same objective value
e minclz s.t. Ajx < by, Agx < by.
o 3y + (min(c” — yd Ag)z s.t. Ayz < by).
MaX{y,|y>>0} Y2 U2 C — Yy A2)T 8 17 < by
Remark: Note that in the case in which only equalities are relaxed, the order of the
feasible solutions does not depend on the potential function, whereas in the general case,

the order can change for different potential functions. However, for the optimal potential
function, the optimal solution for the original cost functions remains optimal.



2 PRELIMINARIES 22

Example

We look at the linear program for the traveling salesman path problem given above. If
we add the redundant constraint

wa = n—1

wveE

and relax the equality constraints (4) and (5) we get a dual variable for every node
of the graph. We call the value of this variable the potential of the node. In the context
of the traveling salesman problem a variable for a node v is often called p,. Thus we
reformulate the problem as follows.

mliix—i-(min Ha + Mo + 2 Z My + Z (HU’U” = My — ﬂ'v)xuv

veV\{a,b} uwveE
s.t. Z Tyw = Nn—1
weE
Yo Ty < V=1 for V'CV, V' #0
ueV’!' veVv’
0<m,y, < 1 for all uv € E).

The inner linear program is the description of the spanning trees of G, thus we can
solve this linear program in time O(|V|log|V|). We will see in the next section how to
use this fact to efficiently get an approximation of the value of the linear program for the
traveling salesman problem.

The optimal bound one can obtain with any potential function is known as the Held-
Karp bound. We have just seen that the Held-Karp bound is equal to the bound obtained
by solving the Subtour-LP.

We will see other examples of a Lagrangian Relaxation later.

Solving the Lagrangian Dual

There are several methods for solving the Lagrangian dual, i.e. ; to compute a potential
function y which leads to the optimal or to an almost optimal bound.

The most common technique is the subgradient optimization. Let L(y) = min(c” —
yl Ay)x s.t. Ajx = b,z > 0 be the bound obtained for the potential function y. The

function L : R™ +— R has the following important properties:
e L(y) is piecewise linear, and therefore differentiable except in a finite set of vectors
Y.
e L(y) is concave, i.e. , for all y1,y, € R™, and « € [0, 1] we get L(ay; + (1 — a)ys) >
aL(y) + (1 — a)ye.
The subgradient optimization is a method for optimizing a concave function. A sub-

gradient of a concave function L : R™ — R at y* € R™ is a vector y(y*) € R™ so
that

1) —y) = L(y) — L(y") for all y € R™.
The set of all subgradients at y* is called 6 L(y*). Some facts of subgradients:
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e If L is continuous and differentiable at u then 0L(y*) is the differential of L at
y*. Furthermore v(y*) is a direction of increase, i.e. , there exits # > 0 such that

L(y* + 0v(y*)) > L(y*).

e In general v(y*) is not a direction of increase. But there is a justification for moving
in the direction normal to a subgradient. Any point with a larger objective value
than y* is contained in the half-space y(y*)(y* —y) > 0. In particular there exits a
6 > 0 so that y* + 6~v(y*) is closer to the optimal point than y*.

e y* is optimal if and only if 0 € §(y*).

These observations lead to the following algorithm for solving a subgradient optimiza-
tion problem.

1. Start with ¢ = 0 and any .
2. Solve the Lagrangian dual for ;. If 0 € 6L(y;) the current solution is optimal.

3. Set Y1 = Y + 0yy(y:). We explain below how to choose 6;. Set ¢ « t + 1 and
continue with step 2.

We have to select the sequence (6;)$2,. Similarly to the different algorithms for solving
LPs, there are theoretical and practical good choices.

o A series (0;)2, with }-¢°, 6; = oo and lim;_,, = 0, so a divergent series. This setting
theoretically converges to an optimal point. The convergence is slow in practice.

e A geometric series §; = fyp’, where 0 < p < 1. This setting often leads to an
algorithm which converges fast in practice. Theoretically, it converges to the optimal
solution only if 8, and p are chosen sufficiently large.

It remains to show how to compute a subgradient in the case of a linear program.
It can be computed directly from the optimal solution: The vector b; — A;x?, where z?
is an optimal solution of L(y') is a subgradient of L at y*. This can be seen as follows.
Let y(y') = b — Ax' and let y be any vector. Then L(y) < cf'zt + (y")T(b — Az?) =
L") — )" (0 — Az*) + y" (b — Az") = L(y) — (v — y)"v(y")-

2.3 Delaunay Triangulations and Diagrams

In this section we follow the presentation in [MN99].

The convex hull of a set of points S is the minimal convex set of points covering S.
Recall that a set X is called convex if for any two points p and ¢ of X the entire line
segment pq is contained in X. A triangulation of a set of points S in the plane is a
partition of the convex hull of S into triangles with three points of S as its vertices. If
all points of a point set S are collinear, there is no triangulation of S. A triangulation is
called Delaunay triangulation(DT) if the interior of the minimum enclosing disk of any
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Figure 8: A Delaunay triangulation and the Voronoi diagram of a point set

triangle in the triangulation contains no point of S (see Figure 8). We show the existence
of a Delaunay triangulation for every set S.

Remark: Note that in a triangulation every edge has two adjacent faces, i.e. edges of
the convex hull have exactly one adjacent triangle and the other adjacent face is the
unbounded face, and all other edges have two adjacent triangles.

Lemma 6 A point set S has a Delaunay triangulation unless all points of S are collinear.

Proof: The proof is by construction. Starting at any triangulation, we show that, if the
triangulation does not have the Delaunay property, we can increase the lexicographical
order of all inner angles of the triangles sorted from the smallest to the largest angle.
Since there is only a finite number of triangulations this process has to terminate. Since
the process only terminates if the triangulation has the Delaunay property, it follows that
there is a triangulation with the Delaunay property.

We first look at the very special case of only four non-collinear points in convex position
and show that the triangulation with the larger smallest angle has the Delaunay property.
Then we show that every triangulation that has not the Delaunay property has a subset
of four points in convex position, so that the induced subgraph is triangulated and does
not have the Delaunay property.
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Figure 9: Four points and the two possible triangulations.

Let p,q,r, s be four points in convex position in the plane so that the order of the
points in the convex hull is p, ¢, 7, s. Look at the triangulation Ap, g, r U Ar, s, p. Assume
the triangulation does not have the Delaunay property. The critical observation is the
following. If the minimum enclosing disk of Ap, ¢, contains the point s, the minimum
enclosing disk of Ar, s, p contains the point ¢q. Furthermore the point p is not contained
in the minimum enclosing disk of Agrs and r is not contained in the minimum enclosing
disk of Aspq. Thus we replace the diagonal pr by the diagonal ¢gs and get a Delaunay
Triangulation. We call this transformation a diagonal-flip.

Figure 10: By the Inscribed Angle Theorem, we know that angles with the same name
have the same value.

We now show that the smallest of the six angles of the two triangles increases for every
diagonal-flip. Look at the intersection of the line through ¢ and s with the circumcircle



2 PRELIMINARIES 26

of pgr different from ¢, and call this point s’ (see Figure 10 for an illustration). By the
Inscribed Angle Theorem applied to the secant rq we know that /(s'q, s'r) = (pg, pr).
We call this angle ;. Analogously we can apply the Inscribed Angle Theorem to the
secants gp, ps' and s'r and obtain £(rp, 7G) = L(s'p, s'q) = Ba, L(qs', Gp) = L(rs',7D) = Ba,
and Z(p?“,pg’) = /(gt, qg’) = f3. We show that for any inner angle of the two triangles
Ap,q,s and Agq,r, s there is an angle of Ap,q,r or Ap,r, s that is smaller. We can see
that ay + B2 > a4 and a3 + B1 > a3, since the points are in convex position. Furthermore
oo > P9, a; > By, B3 > az and By > ay, since moving a point § from s’ to s increases the
angles at 5§ and decreases the angles at p and r.

Figure 11: If the point s lies in the shaded region, but is not connected to p and g, one of
the two edges pt or qt is closer to s than pq.

It remains to show that any triangulation which is not Delaunay contains two triangles
Ap,q,r and Ar, s, p, sharing an edge so that the point s is in the minimum enclosing disk
of Ap,q,r and the points are in convex position. If the triangulation is not Delaunay,
there is a triangle Ap, ¢,r and a point s, so that s is in the minimum enclosing disk of
Ap,q,r (see Figure 11). If Ar, s, q is a triangle of the triangulation, we are done. Now
assume otherwise. Notice that no point can lie in the interior of a triangle. Without loss
of generality let s be in the part bounded by the segment p,q and the bounding arc of
the minimum enclosing disk between p and ¢, not containing r. Let ¢ be the third point
of the second triangle adjacent to pq. The point s is in the disk of Ap,q,t, since the
minimum enclosing disk of Ap, ¢,t contains the region we have described. The distance
from s to the triangle Ap,q,t is shorter than the distance to the triangle Ap,q, s, since
the triangle intersects the perpendicular from s to pg. We repeat the argument for the
triangle Ap, g, r. After a finite number of iterations, we must arrive at the first case. The
points lie in convex position, because the point lies in the minimum enclosing disk of the
triangle and outside the triangle itself. 1

Delaunay triangulations are not unique. The set of edges that are contained in every
Delaunay triangulation is called the Delaunay diagram. We will now characterize the
edges of the Delaunay diagram.
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Lemma 7 An edge pq is in the Delaunay diagram, iff there is a closed ball B with BNS =

{p,q}.

Remark: Note that if an edge pg has a ball B with BN S = {p, ¢} we can choose the
ball B so that p and g are on the boundary of B. Such a ball is called a protecting ball of
pq. Its center lies on the perpendicular bisector of pg. For an edge pg the center ball of
pq is defined as the ball centered at the midpoint of pg with radius |pq|/2.

Proof: We first prove, that every edge which has a protecting ball is indeed in every
Delaunay triangulation. Assume otherwise. Let pg be an edge, B a closed ball with
BNS ={p,q} and T be a Delaunay triangulation not containing the edge pg. Move along
the edge pq and observe that an initial part of the segment starting at p is contained in
another triangle as an initial part starting at q. So the segment pq crosses a segment, say
ab of the triangulation 7. Let a' and b’ be the intersections of ab with B. Since p,q,a’
and ' are cocircular, every closed ball containing a' and b’ either contains p or ¢. So the
protecting ball of a, b contains either p or ¢ in its interior, a contradiction.

We now come to the converse. Let st be an edge of a Delaunay triangulation DT. We
show that either there is a Delaunay triangulation DT’ that does not contain st, or there
is a ball B containing only s and t.

If st is not an edge of DT, we are done. If st is an edge of the convex hull, there is
a ball B containing only s and ¢. In the remaining case, there are two triangles in DT
adjacent to st, say As,t,a and As,t,b. Let B, and B, be the minumum enclosing disks of
As,t,a and As,t,b. If the four points s, t, a and b are cocircular, we can flip the segments
st and ab and get a Delaunay triangulation DT” without the segment st. Otherwise look
at the ball B centered at the midpoint of the centers of the balls B, and B, through s
and ¢. It is completely contained in B U BY U {s, ¢}, thus it contains no point and we are
done. ]

2.3.1 The Voronoi Diagram

Let S be a set of points in the plane. The Voronoi diagram VD of S is defined as the
set of points in the plane with more than one nearest neighbor in S. Notice that VD
consists of segments of the perpendicular bisectors of two points of S, i.e. , VD consists
of line segments, rays, and lines. So VD is a graph-like structure with nodes in some
of the intersection points of the perpendicular bisectors. The edges of VD are either
segments between two nodes or rays starting at one node. The exception is, if all points
are collinear, then the Voronoi diagram is formed by the complete perpendicular bisectors
of "neighbored “ points.

For simplicity, we assume that the points in .S are not collinear. Then this structure
can be obtained from a Delaunay triangulation of S with the following simple rules:

e The nodes of VD are the centers of the minimum enclosing disks of the triangles
of the Delaunay triangulation. So the nodes are the common intersection of the
perpendicular bisectors of the three edges of the triangle.
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e The edges of VD are obtained from the edges of the Delaunay Diagram. Let e be
an edge of the Delaunay Diagram.

— If e is not an edge of the convex hull of S, the Voronoi diagram has a segment
between the two nodes, defined for the two triangles containing e.

— If e is an edge of the convex hull, the Voronoi diagram has the ray, which is
part of the perpendicular bisector of s, starting at the node, defined for the
triangle containing s.

Thus we have a node in VD for every triangle in DT, an edge in VD for every edge in
DT, and a face in VD for every node in DT. These are called the dual node, dual edge,
and dual face, respectively. Note that the only case in which the Voronoi diagram has a
line is the one in which all points are collinear. In this case, the Voronoi diagram is the
set of all perpendicular bisectors of neighbored points with respect to the common line.

Lemma 8 The rules above construct the Voronot diagram from a Delaunay triangulation.

Proof: We prove the Theorem in two steps. First we show that the edges we construct
belong to the Voronoi diagram and in the second step we derive that all edges of the
Voronoi diagram are covered by the construction.

Let S be the set of points for which we construct the Delaunay triangulation and the
Voronoi diagram. Let pq be an edge of a Delaunay triangulation. Assume first that the
dual edge is a line segment, say st. Then s and ¢ are the centers of two triangles of the
Delaunay triangulation sharing one edge, say pg. The minimum enlcosing disks B, and
B; of the two triangles are empty of points of S. Thus s and ¢ have at least three nearest
neighbors and belong to the Voronoi diagram. Look at any point z on the segment st
and the ball with center x and radius |zp|. Since this ball is contained in the union of
the balls B, and B, its interior is empty of points of S. Thus = has at least two nearest
neighbors, namely s and ¢ and thus belongs to the Voronoi diagram (see Figure 12). Now,
look at the case in which the dual edge is a ray, starting at a point s. Let  be a point on
this ray. The ball B, with center z and radius |zp| is contained in the union of B, and
the halfspace, defined by the line through p and ¢ not containing s. Since ps is an edge
of the convex hull of S, this halfspace contains no point of S. Thus the interior of B, is
empty of points of S and z has at least two nearest neighbors (see Figure 12).

We now turn to the proof that no point of the Voronoi diagram is missing. Assume
there is a point with at least two nearest neighbors in S which is not constructed. Since
the set of points with at least three nearest neighbors is discrete and the Voronoi diagram
and the constructed diagram is closed and connected, there is a point p with exactly two
nearest neighbors, say s and ¢, which is not constructed S. Thus the ball with center
p and radius |pt| is a protecting ball for the edge st and thus the edge st is in every
Delaunay triangulation. We show that the dual edge of st contains all points that have s
and ¢ as nearest neighbours. Assume the dual edge is terminated on the Voronoi point v
and let = be the third point of the triange defining v. A point y behind v is closer to x
than to s and ¢, since it is behind the perpendicular bisector of sx. ]
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Figure 12: On the left we see the contruction of a segment of the Voronoi diagram and
on the right the construction of a ray.
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3 Previous Work

Many algorithms have been proposed for the curve reconstruction problem. We are in-
terested in reconstruction algorithms with guaranteed performance, i.e. , algorithms which
provably solve the reconstruction problem under certain assumptions on v and S. If the
curve is closed, smooth and uniformly sampled, several methods are known to work rang-
ing over minimum spanning tree [FG94|, a-shapes [BB97, EKS83|, 3-skeleton [KR&5],
and r-regular shapes [Att97]. A survey on these techniques appears in [Ede98]. The case
of non-uniformly sampled closed curves was first treated successfully by Amenta, Bern
and Eppstein [ABE98| and subsequently improved algorithms such as [DK99, Gol99]
appeared. Open non-uniformly sampled curves were treated in [DMROO].

We review some of the algorithms which work for non-uniform sample sets. Before
we explain these algorithms and prove their correctness, we introduce some notations for
curves and prove some basic facts. Furthermore we introduce a variant of the algorithm
by Dey and Kumar [DK99] that requires a weaker sampling density than the known
algorithms.

3.1 Terminology and Basic Properties of Curves

The following definitions and Lemmas are collected from the papers [Gie99, ABE9S,
DK99]. A single open curve is given by an embedding v : [0,1] — R? and a single closed
curve is given by an embedding 7 : S? — R?, where S? is the unit circle.

Definition 1 ( [Gie99]) Let
T = {(tl,tz) sl < to,t1,10 € [0, 1]}

and
v(t2) — (1)

[y(t2) = y(t) [

The single curve vy is called left (right) reqular at v(to) with left (right) tangent t;(y(to))
(t-(v(t0))) if for every sequence (&,) in T which converges to (to,to) from the left (right)
in the closure of T the sequence 7(&,) converges to t(y(ty)). We call v semi-reqular if it
is left and right reqular in all points y(t), t € [0,1]. We call y regular if it is semi-reqular
and the left and right tangent coincide in every point of the curve.

7:T — 52,(t1,t2) —

A curve is a finite collection of disjoint single curves. It is called smooth if all single
curves are regular, and it is called closed if all single curves are closed.

Remark: In other papers, e.g. , [ABE98] a curve is defined as a closed, compact, twice-
differentiable one-manifold, without boundary, embedded in the plane. Thus in their
definition, a curve is always smooth and closed.

Figure 13 shows two semi-regular curves. Tangents are unit vectors. The angle between
two vectors with the same source is the smaller of the two angles between the vectors.
The angle is zero if the two vectors point in the same direction and the angle is 7 if the
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Figure 13: Two semi-regular curves, one benign and one not. In the left curve, the two
tangents ¢; and ¢, at a point p of the curve are shown. The turning angle at p is a. In
the curve on the right the turning angle at ¢ is 7 as the left and right tangents at ¢ point
to opposite directions.

vectors point in opposite directions. The angle between the left and right tangent at a
point p € 1y is called the turning angle at p. If the curve has a tangent at p, the turning
angle at p is zero. If the turning angle at p is non-zero, we call p a singularity of the
curve. A semi-regular curve is benign if the turning angle is less than 7 at every point of
the curve.

A sample set S of a curve v is a finite set of points p € . For every point p € v,
the adjacent sample points are defined as the two sample points one reaches first, if one
moves along v in one of the two possible directions. The polygonal reconstruction of y
wrt. S is an embedded graph with node set S and edge set E defined by pg € E if and
only if p and ¢ are adjacent on 7.

The medial axis M of a curve 7y is defined as the closure of all points having more than
one nearest neighbour in 7. The local feature size f(p) of a point p € + is the distance of
p to the medial axis. For any ¢ > 0, a sample set S is called a e-sample, if for all p € v
there is a sample s € S with |sp| < ef(p). If one extends a sufficiently dense sample set
by additional sample points, the new set should also be sufficiently dense. The following
corollary makes this intuition formal, for all sampling conditions of the form above.

Corollary 9 Let e < 1. If S is an e—sample of a smooth curve v, and S" O S is a sample
set of 7y, than S" is an e—sample of .

We now summarize a few facts on the local feature size. The first Lemma is a simple
consequence of the triangle-inequality.

Lemma 9 f(p) < f(q) + |pg| for all p,q € 7.

We can use this Lemma to bound the length of a segment, adjacent to some sample
point p € 7.

Lemma 10 The length of a segment pq of the polygonal reconstruction of an e-sampled
smooth curve 7 is at most 2¢/(1 — €) f(p).
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Proof: Let r be the point on v between p and ¢ that lies on the perpendicular bisector of
p and g. Then |pr| < ef(r) and |pr| > [pg|/2. By Lemma 9 we have f(r) < [pr| + f(p).
So |pr| < e(|pr| + f(p)). Algebraic transformations lead to |pr| < ¢/(1 — €)f(p). Thus
Ipgl < 2¢/(1 —€)f(p). I

To prove the correctness of an algorithm, it is important to have an upper bound of
the distance of a point p € 7 to its nearest medial axis point.

Lemma 11 Let B be a closed ball so that B N~y is not connected. Then B contains a
medial axis point.

Proof: For a point x let z* be a point on v with minimal distance to x. Let p and ¢
be two points of v in different connected components with respect to B. Assume we are
moving a point z from p to the center of B and than to ¢. In the beginning, the nearest
point of v is p and at the end, the nearest point of « is ¢. Since |xz*| is continous, either
the x* remains in the component of p or there are at least two points on v with distance
|zz*| to z. This z is a medial axis point of ~. I

Corollary 10 Letp € v and S be a 1-sample of v. The point in S with smallest distance
to p is one of the two adjacent sample points.

Proof: The ball around p through the sample ¢ with shortest distance to p must intersect
v in a connected component, since the distance from p to ¢ is less than f(p). Thus ¢ is
adjacent to q. |

Our next goal is to bound the angle between two adjacent segments of the polygonal
reconstruction. Therefore we prove the following Lemma.

Lemma 12 Let B be a ball, tangent to v at a point p with radius f(p). Then B contains
no point of v in its interior.

Proof: Let m be the center of B. Let B’ be the largest ball, tangent to v at p on
the same side of the curve as B which contains no point of v in its interior. Since B’ is
maximal and v is compact, B’ has a point ¢ of ~, different from p in its boundary. So
p and ¢ have the same distance from the center m’ of B’ and since the interior of B’ is
empty of terminals they are both nearest neighbors of p on v. We conclude that m’ is a
point of the medial axis and so [pm| = f(p) < [pm/|. Since B and B’ are tangent balls
at p on the same side, B is completely contained in B’ and so the interior is empty of
points of 7. 1

The sampling condition states that the distance from any point of the curve to its next
sample point is at most € times the distance to the medial axis. A crucial point, which we
often use to derive a contradiction, is the point on the curve which has the same distance
to both adjacent sample points. We will see later that this point is unique.
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Definition 2 ( [ABE98]) Let v be a smooth curve and S an e-sample for an ¢ < 1.
Let st be an edge of the polygonal reconstruction of v. The curve Voronoi point of st is
defined as the intersection of the perpendicular bisector of the segment st with the curve
between s and t, i.e. , the part of the curve which contains no other sample point.

Remark: An 1-sample of any curve has at least 3 sample points, thus the part between
two adjacent sample points is well defined.

We are now ready to bound the angle of two adjacent segments. We do so by bounding
the angle between segments and the tangent in one of its endpoints. From this it is a
simple corollary to bound the angle between two adjacent segments.

Lemma 13 Let e < 1, 7 be a smooth curve and S be an e—sample of y. Let s,t be two
adjacent sample points of v and p be the curve Voronoi point of st.

o The angle /(st, sp) is at most arcsin(e/2).
e The angle between the tangent at s and the segment sp is at most arcsin(e/2).

Corollary 11 The angle between two adjacent segments of the polygonal reconstruction
of an e-sampled smooth curve is at least m — 4 arcsin(e/2).

Proof: [of Lemma 13|

Let s, t and p be defined as in the Lemma (see Figure 14).

We show the first item. By Lemma 12 we know that s is outside the two tangent
circles in p with radius f(p). By the sampling condition, we know that ||ps| and |pt| is
at most ef(p). The angle /(st, sp) is maximized if |ps| = |pt| = ef(p) and s and ¢ lie
on the boundary of the same tangent circle. In this case the angle Z(S_;f, sp) is exactly
arcsin(e/2).

We turn to the second item. Let g be the angle between the tangent in s and the
segment sp. Let without loss of generalityt(s) be a horizontal line and p be below t(s).
Look at the largest tangent circle in s below t(s) so that its interior does not intersect .
Let m be its center. Since the circle is maximal, it meets at least two points of . Thus
m is a point of the medial axis.

Let ¢ = |[mp]|/|ms]|. Since p ¢ B°(m, |[ms|), we have ¢ > 1. By the low of cosine, we

have ) ) ) )
Isp|® + |sm|* — c¢*|sm]|

sin(8) = cos(m/2 —~ f) = 2lsp|[sm]

The right hand side increases with the distance |sp||, so it is maximized if |sp|| is maximial.
Since |sp| < ef(p) < ec|sm| we have
€ |sm|? + [sm|? — |sm|> 14 (e —1)

sin(f3) < = <e€/2

2ce|sm|? 2ce

The last inequality holds since the term (1 + (e —1))/(2ce) is decreasing in ¢ and ¢ > 1.
1



3 PREVIOUS WORK 34

Figure 14: p is the curve Voronoi vertex between s and ¢. The points s and ¢ must lie
outside the tangent balls of p with radius f(p).

Figure 15: The point p lies outside the largest empty tangent ball of s. The angle is
maximized if p lies on the boundary of this ball.
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3.2 Algorithm of Dey and Kumar

Although the algorithm of Dey and Kumar was not the first algorithm, we start with this
algorithm, since it is the simplest one. The algorithm works as follows:

e For every sample point s include the edge from s to one of its nearest neighbours.

e For every sample point s which has only one adjacent edge, say st, include the edge
from s to one of the nearest neighbours which form an angle of more than /2 with
st.

To prove the correctness, we show that in both phases of the algorithm, only edges of
the polygonal reconstruction are added to the returned graph. Since we add only correct
edges in the first phase and the angle between two adjacent segments is more than 7 /2
by Corollary 11, we conclude that every node has at least two adjacent edges. Thus all
edges of the polygonal reconstruction are added.

Lemma 14 If S is an 1/3-sample of a smooth closed curve v, only edges of the polygonal
reconstruction are added in the first phase of the algorithm.

Proof: Assume otherwise. Let ¢ be the nearest neighbour of s and st not in the polyg-
onal reconstruction. Let p be one of the adjacent sample points of s in the polygonal
reconstruction. Using Lemma 10, we conclude |st| < |sp| < 2¢/(1 —¢€)f(s) < f(s). The
center ball B of st splits v in more than one component (since both neighbours of s are
outside B) and thus Lemma 11 for B shows that there is a medial axis point on st, a
contradiction. 1

Lemma 15 If S is an 1/3—-sample of a smooth closed curve v, only edges of the polygonal
reconstruction are added in the second phase of the algorithm.

Proof: Assume otherwise. Let st be an edge added in the second phase that is not
in the polygonal reconstruction. Let p be the nearest neighbour of s and ¢ be the other
sample point adjacent to s in the polygonal reconstruction.

Corollary 11 shows that /(sp, sq) > /2, thus st is shorter than sq. Again the center
ball B of st splits v in more than one component. The same argument as above leads to
a contradiction. |

We summarize the two Lemmas in the following corollary.

Corollary 12 If S is an 1/3-sample of a smooth curve 7, the algorithm of Dey and
Kumar returns the polygonal reconstruction.
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3.3 Algorithm of Amenta, Bern, and Eppstein

Amenta, Bern, and Eppstein [ABE98] developed the notion of “non-uniform sampled”
and prove the correctness of two algorithms: The S—crust, which was known to be correct
for uniform samples, and the CRUST, an algorithm they present in the paper. They
discovered that the f—crust finds the correct reconstruction for every 0.297-sample and
the CRUST for every 0.252-sample. Gold and Snoeyink improved the analysis and came
with a faster variant. They showed that a 0.42—sample suffices for both variants. We now
show the correctness of both variants for e = 1/3.
The algorithm of Amenta, Bern, and Eppstein [ABE98] works as follows:

e Compute the Voronoi diagram V' of the sample Points.
e Compute the Delaunay Triangulation 7" of V U S.
e Keep all edges of 7" which run between two sample points.

Another view of the algorithm is that the algorithm selects all edges of the Delaunay
diagram which have an protecting ball empty of sample points and Voronoi points. Gold
and Snoeyink [Gol99] noticed that it suffices that there is a ball with the two sample
points on its boundary which has none of the two endpoints of the dual edge in its interior.
This can be checked by a simple incircle test of the endpoints of the two edges. Thus the
second computation of a Delaunay Triangulation can be omitted.

To prove the correctness of the algorithm, we first prove that all edges of the polygonal
reconstruction are in the solution and then that no edges which are not in the polygonal
reconstruction are in the solution.

Lemma 16 If S is an 1/3-sample of a smooth closed curve v, the algorithm of Amenta,
Bern, and Eppstein (Gold and Snoeyink) has all edges of the polygonal reconstruction in
the returned graph.

Proof: Certainly the algorithm of Gold and Snoeyink returns more edges than the
algorithm of Amenta, Bern and Eppsein. So it suffices to prove the Lemma for the second
algorithm.

For every segment of the polygonal reconstruction we define a protecting ball and show
that it is empty of sample points, as well as of Voronoi points.

Let st be an edge of the polygonal reconstruction. Look at the ball B centered at the
curve Voronoi vertex p between s and ¢ with radius |ps| < f(p)/3 (see Figure 16).

Assume first that there is a sample point in B. Then B splits v into more than one
component and thus there is a medial axis point in B, which is a contradiction to the
definition of local feature size.

Assume now that there is a Voronoi vertex v in B. Let R be the radius of the Voronoi
circle of v. Then R < |vs| and R < |vt|.

If V' has no point of the curve in its interior, the center of V' has at least three nearest
neighbours on +, thus it is a medial axis point. Otherwise there is a ball V! C V that
splits v into more than one component. In both cases V' contains a medial axis point.
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Figure 16: The construction of the protecting ball and the proof that it is empty of
Voronoi vertices.
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It remains to show that V is completely contained in B(p, f(p)). Since /(p5,pt) <
m—2 arcsin(e/2), either /(ps, pv) or /(pt, pb) is at most 8 = m/2-+arcsin(e/2). Furthermore
Isp| < f(p) and |pv| < f(p). Thus R/2 < f(p)/3sin(m/2 + arcsin(5/2)) and hence
R < f(p)/2. I

Lemma 17 If S is a 1/3-sample of a smooth closed curve 7y, the algorithm of Amenta,
Bern, and Eppstein (Gold and Snoeyink) has no edges that are not in the polygonal re-
construction in the returned graph.

Proof: We show that for an edge st not in the polygonal reconstruction, there is no ball
with s and ¢ on its boundary which has no endpoint of the dual edge of st in its interiors.
This shows the Lemma for both algorithms.

Assume otherwise. Let B be such a ball, and v and v’ the intersections of B with the
perpendicular bisector of st. Let m be the midpoint of st (see Figure 17).

Figure 17: If the sampling condition is satisfied and v and v’ are outside the two balls,
the sum of the angles around s is more than 27.

We derive a contradiction by showing that the sum of the angles around s is more
than 27.

The ball B(v, |vs|) contains no sample point in its interior, since it is enclosed by one
of the balls centered at the dual Voronoi points of the edge st through s and ¢. These
balls have at least three sample points on their boundary and no sample point in their
interior.
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Thus there is a medial axis point on st (y has at least two components in B(m, |[ms|),
one containing s and another one containing t. Move along st. In s the closest curve
point is s and in ¢ the closest curve point is t. Between s and ¢, the closest curve point is
always in B(m, |[ms|) and thus it must jump from the component of s to the component
of . At this point we have a medial axis point). Let without loss of generalitya medial
axis point on sm and |sm| = 1.

Let v and v’ be the sample points adjacent to s and p, p’ the curve Voronoi points
of su and su/. By Corollary 11, we know that /(st,su') > m — 4 arcsin(e/2). The angle
£(sb, sv') is exaclty 7/2, according to the Theorem of Thales.

Let ¢ < 1/3. We bound the angle /(su,sb). Since ¢ < 1/3 we have by
Lemma 10 |su| < 1. Thus /(s&,sb) > arccos(1/24/|sv|?+ 1). Analogously we have

/(st, sv") > arccos(1/24/|sv’|2 +1). Since either |sv| or |sv| is at least 1, we have
/(st, $b) + /(st, sv') > m/3 + arccos 1/4.

We summarize 21 = / (s, su!) + /(8b, s0') + £ (51, §b) + £ (sU, sv') > 7 — 4 arcsin(e/2) +
/2 + m/3 4 arccos 1/4 > 27, a contradiction. |

3.4 A New Algorithm

We derive a variant of the algorithm of Dey and Kumar for which we can prove that a
1/2—sample suffices to guarantee the correct reconstruction.
To prove this, we use the following Lemma.

Lemma 18 Let S be a 1/2-sample of a smooth curve . Let s and t be two non-adjacent
sample points of S so that the center ball of st is empty of sample points. Then there is
a medial axis point on the segment st with distance at most 3/4|st| from s.

Proof: Assume otherwise. Move a point x along the segment st until it initially meets
the medial axis and call this point m (see Figure 18). Lemma 11 states that there is a
medial axis point on this segment.

Since none of the interior points is a medial axis point, m is in the same connected
component of y N B(s,s + st/2) as s. Thus the connected component of s touches the
circle centered at m with radius |mt|. Let p be the intersection point of v with this circle.
If we add p to the sample set, the new sample set is clearly a 1/2 sample. Since the center
ball of st contains no sample point and the component of v between s and p does not
leave the ball (since it is a component with respect to this ball), p is adjacent to s in the
new sample set. Let u be the curve Voronoi point of sp. So |up| = |us| > 1/4|st| and
f(u) < |up|+|st|/2. From Corollary 10, we know that either p or s is the nearest sample
point of u, but |up|— f(p)/2 > |up| — |up|/2 —|st|/4 > 0. This contradicts the sampling
condition. |

We now derive the promised variant of the algorithm of Dey and Kumar.
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Figure 18: Adding the point p to the sample set leads to a contradiction.

e For every point p € S, add the edge between p and the nearest neighbour of p.

e For every point p of degree 1, add the edge between p and the nearest neighbour
that forms an angle of at least m — 2 arcsin(1/4) with the edge adjacent to p.

Lemma 19 If S is a 1/2-sample of a smooth closed curve 7y, the modified algorithm of
Dey and Kumar returns the polygonal reconstruction.

Proof: As above, it suffices to show that the algorithm adds only edges of the polygonal
reconstruction.

Assume there is an edge st, added in phase one, which is not of the polygonal re-
construction. Let without loss of generalityt be the nearest neighbour of s. Let p and
g be the two adjacent samples of s and v and v the curve Voronoi points between sp
and sq (see Figure 19). Lemma 18 states that there is a medial axis point on st with
a distance of at most 3/4|st| from s and Lemma 14 states that /(si,sb) is at least
7 — 2arcsin(1/4). Thus either /(st, si) or /(st,sb) is at most 7/2 + arcsin(1/4). Let
without loss of generality/(st, si) < m/2+arcsin(1/4) and |su| = 1. Then |st| < 2, since
t is the nearest neighbour from s and |sp| is at most 2. Thus

flu) < |p(s +3/4s1)| < /12 + (2 3/4)2 — 2 - 3/4 cos(pi/2 + arcsin(1/4)) < 2,

a contradiction to the sampling condition.

We turn to phase two. Assume there is an edge st added in phase two, which is not
of the polygonal reconstruction. Let without loss of generalityt be the nearest neighbour
of s which forms an angle of at most 2arcsin(1/4) with s. Let p be the point, adjacent
to s, which is not added in phase 1 and let u be the curve Voronoi point between s and
p (see Figure 20). Let without loss of generality|su| = 1. Lemma 18 states that there is
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Figure 19: Either the angle /(st, s) or /(st, s0) is small and thus the distance from either
u or v to the medial axis point is less than two times the distance to s.

a medial axis point and st with a distance of at most 3/4|st| from s. Furthermore the
angle /(st, su) is at most 3 arcsin(1/4) and |st| < 2. Thus

f(u) < |p(s + 3/4st)| < /12 + (2-3/4)2 — 2 - 3/4 cos(3arcsin(1/4)) < 2

yeilds a contradiction to the sampling condition.

Figure 20: The angle /(st, si) is small and hence the distance from u to the medial axis
point is less than twice the distance from u to s.

3.5 The Algorithm of Dey, Mehlhorn, and Ramos

Dey, Mehlhorn, and Ramos developed the first algorithm that comes with guarantees for
collections of open and closed curves. We do not present this algorithm in detail, but
discuss the problems which arise when open curves are allowed and how to overcome
these difficulties.

The first problem they had to overcome is defining the problem properly. Assume the
sampling condition should be such that if S is a sufficiently dense sample, every superset
S" O S which is a sample set, is also sufficiently dense. Then there are open curves that
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have no sufficiently dense sample: Assume otherwise. Let S be a dense sample for the
unit-circle and let p and ¢ be two neighboured sample points. Let S’ be a sufficiently
dense sample for the unit-circle, without the arc between p and ¢. Then SU S’ is a dense
sample for both curves.

Figure 21: The same sample set is a dense sample for curves with different polygonal
reconstructions

A feasible reconstruction G for S is a set of edges, so that there exists a curve 7, for
which S is a “dense” sample and G is the polygonal reconstruction. Dey, Mehlhorn, and
Ramos overcome this problem in the following way. They looked at all polygonal recon-
structions, for which they can prove feasiblility and return the polygonal reconstruction
which is “maximal”. They prove that this reconstruction is a superset of the polygonal
reconstruction of the underlying curve. So they return the maximum feasible reconstruc-
tion they can justify, i.e., beside the maximal reconstruction G, they return a curve I'
connecting the points as defined by G, so that the input sample is a dense sample for
the curve. Certainly the sampling condition to guarantee that the result is a superset of
the polygonal reconstruciton has to be stronger than the guaranteed sampling density of
the returned curve I'. The algorithm has an parameter p to adjust the required and the
guaranteed sampling density. The exact result is stated as follows:

Theorem 13 (Dey, Mehlhorn, Ramos (99)) Let S be a set of points in the plane and
p < 1. The reconstruction G and the curve I" returned by the algorithm of Dey, Mehlhorn,
and Ramos with parameter p satisfy the following two properties:

e Ifp<1/2 and S is a (p/8)—sample from a curve y then the polygonal reconstruction
of v for S is a subset of G.

o Let ¢ =13.35. If p < 1/8 then S is a (cp)-sample from I and G is the polygonal
reconstruction of I' for S.

The algorithm starts with a set of edges obtained from a known algorithm. Then they
delete edges until they can justify the result. The result of the algorithm is such that, for
any edge pq, the two balls with radius |pg|/p are empty of Voronoi points of S and the
ball centered at the midpoint of pg with radius |pg|/4p contains no node with degree less
than 2. Notice that no point can have degree higher than 2.



3 PREVIOUS WORK 43

The proof that the edges of the polygonal reconstruction satisfy the properties above
is very similar to the proof of Amenta, Bern, and Eppstein. Furthermore Dey, Mehlhorn,
and Ramos gave a construction for the curve I'.
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4 The TSP-Algorithm

In this section we show that the Traveling Salesman path or cycle solves the curve-
reconstruction problem for single open or closed curves, respectively, for sufficient dense
sample sets. We derive this by showing that the Held-Karp relaxation is equal to the
polygonal reconstruction. In addition, we show how this relaxation can be computed in
polynomial time Furthermore, we extend the result for collections of closed curves.

4.1 Statement of the Results

Our research was motivated by the following recent result of Giesen [Gie99]. He proves
that the Traveling Salesman tour solves the curve reconstruction problem for uniformly
sampled benign semi-regular curves. The result was stated as follows.

Theorem 14 ( [Gie99]) For every benign semi-reqular closed curve v there exists an
€ > 0 with the following property: If V s a finite sample set of vy, so that for every x €
there is a p € V with |pv| < €, the optimal Traveling Salesman tour is the polygonal
reconstruction of .

An efficient successful method for solving the Traveling Salesman problem is to use a
branch-and-cut algorithm based on the Subtour-LP. In general, the optimal solution of the
Subtour-LP is fractional. Our main result states that the optimal solution of the Subtour-
LP is integral, whenever V is a sufficiently dense sample of a benign semi-regular curve.
The reader might be interested to know that we discovered this fact in our experiments
on curve reconstruction. We had implemented a branch-and-cut algorithm based on the
Subtour-LP, the algorithm which solves the Subtour-LP and is then supposed to branch
on a fractional variable. We observed that the algorithm never branched. After seeing
this behavior in a large number of examples, we formulated it as a conjecture and set out
to prove it.

Theorem 15 (Main Theorem) Let y be a closed benign semi-reqular curve, let V be a
finite set of samples of v. If V satisfies the sampling condition given below, then:

o The optimal Traveling Salesman tour of V' is a polygonal reconstruction of .

o The Subtour-LP for Traveling Salesman tours has an optimal integral solution and
this solution is unique.

In the case of an open curve, let a and b be the first and last sample point, respectively (in
the order on 7). The statements above hold true for the optimal Traveling Salesman path
with endpoints a and b and the Subtour-LP for Traveling Salesman paths with specified
endpoints; furthermore they also hold for the Traveling Salesman path with unspecified
endpoints and for the Subtour-LP for Traveling Salesman paths with unspecified endpoints.
The latter result required a stremgthened sampling condition.
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We will prove our main theorem for open curves with specified and unspecified end-
points in Sections 4.2 and 4.3, respectively. The proof for closed curves follows in Sec-
tion 4.4.

Our main theorem suggests a reconstruction algorithm for benign semi-regular curves:
Solve the Subtour-LP. If the optimal solution is integral, output it. We briefly discuss two
strategies for solving the Subtour-LP.

As stated in Section 2.2.3, there are several methods for solving the Subtour-LP. A
potentially exponential, but practically very efficient algorithm uses the simplex method
and the cutting plane framework. One starts with the LP consisting only of the degree
constraints and then solves a sequence of LPs. In each iteration one checks whether the
solution X* to the current LP satisfies all subtour elimination constraints and, if not,
one adds a violated subtour elimination constraint to the LP. The check for a violated
subtour elimination constraint has been explained in Section 2.2.6. We use a simplex-
based strategy in our experiments on curve reconstruction (see Section 6).

The Ellipsoid method [Sch86] solves the Subtour-LP in polynomial time in the size
of the bit representations of the coefficients of the cost function. Distance values are, in
general, non-rational numbers and hence the Ellipsoid method is not directly applicable
in our setting. In Section 4.5, we extend our results to the situation where the position
of the points and the distances between points are only approximately known and show
how to obtain a polynomial time algorithm.

4.2 Open Curves

We assume that our open curve is oriented and write p < ¢ if p precedes ¢ on v. We
use B(p,r) and B°(p,r) to denote the closed and open ball with center p and radius r,
respectively.

4.2.1 The Held-Karp Bound

Our proof of Theorem 15 exploits the connection between the Subtour-LP and the Held-
Karp bound briefly introduced in Section 2.2.7. The purpose of this section is to review
the relevant facts about the Held-Karp bound.

Let G = (V, E) be an undirected graph, let a and b be two designated vertices of G,
and let ¢ be an arbitrary cost function on the edges of G. A function p : V — R is
called a potential function. It gives rise to a modified distance function ¢, via ¢, (u,v) =
c(u,v) — pu(u) — p(v). Consider now any Traveling Salesman path 7' with endpoints a
and b. Its costs under ¢ and ¢, are related by c,(T) = ¢(T) — 2 Y,y p(v) + p(a) + w(b)
since the path uses two edges incident to every vertex except for a and b. Observe that
¢u(T) — ¢(T) does not depend on T and hence the optimal Traveling Salesman path for
endpoints a and b is the same under both cost functions. Let Ty be an optimal Traveling
Salesman path for endpoints a and b.

Let MST, be a minimum spanning tree with respect to the cost function ¢, and let
C, = ¢,(MST,) be its cost. Then C, < ¢,(Tp), since a Traveling Salesman path is a
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spanning tree.

Fact 1 Let p be any potential function. If MST, is a Traveling Salesman path with
endpoints a and b, it is an optimal Traveling Salesman path for endpoints a and b.

Proof: From C, < ¢,(Tp), we conclude that MST), is an optimal Traveling Salesman
path with respect to c,. Since the ranking of paths is the same under both cost functions,
it is also optimal with respect to c. ]

The inequality C, < ¢,(Tp) = ¢(Tp) — 23 ey 1(v) + u(a) + w(b) is valid for every
potential function and hence

max Cy, +2 3 p(v) = p(a) = p(b) < o(Tp) -
veV
The quantity on the left is called the Held-Karp bound. The following fact which was
shown in Section 2.2.7, is crucial for our proof.

Fact 2 The Held-Karp bound is equal to the optimal objective value of the Subtour-LP.

Proof: The fact follows by relaxing the degree constraints of the Subtour-LP in a
Lagrangian fashion. For a short introduction to Lagrangian Relaxation see Section 2.2.7.
|

We note that an optimal choice of y in the Held-Karp bound is given by the optimal
solution of the linear programming dual of the Subtour-LP; px corresponds to the dual
variables for the degree constraints. We next draw a simple consequence from the two
facts above, which forms the basis of our proof.

Lemma 20 Let p be any potential function. If MST, is the unique minimum spanning
tree with respect to ¢, and it is a Traveling Salesman path with endpoints a and b, then
the Subtour-LP has a unique optimal solution and this solution is integral.

Proof: If MST, is a Traveling Salesman path, it is optimal (Fact 1) and hence
¢(MST,) = ¢(T,). The Held-Karp bound is therefore equal to ¢(7p) and the same holds
true for the optimal objective value of the Subtour-LP (Fact 2). The incidence vector
of MST, is a feasible solution of the Subtour-LP of cost ¢(MST,) and hence it is an
optimal solution of the Subtour-LP. We will next argue that it is the unique optimal so-
lution. Assume that there is an optimal solution of the Subtour-LP with z, > 0 for some
e ¢ MST,. Since MST), is unique, there is a 7 > 0 so that decreasing the cost of e by 7
the minimum spanning tree will not change and hence the value of the Held-Karp bound
will not change. However, the objective value of the Subtour-LP will decrease. This is a
contradiction to the equality of the two bounds. ]
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We can now describe our proof strategy for open curves. We define a potential function
p so that MST, is the unique minimum spanning tree in the complete network G =
(V,V x V,¢), where c is the Euclidean distance function, and moreover MST,, coincides
with the polygonal reconstruction (and hence is a Traveling Salesman path with endpoints
a and b, where a and b are the first and last sample point, respectively). Then MST,, and
hence the polygonal reconstruction is the unique optimal solution of the Subtour-LP. We
want to stress that the definition of p is only needed for the proof of our main theorem.
The reconstruction algorithm simply solves the Subtour-LP.

4.2.2 Intuition

When will the minimum spanning tree of the sample set be the correct reconstruction?
Let V' = {wy,vq,...,v,} where we assume the points to be numbered according to
their order on the curve. Kruskal’s algorithm considers the edges v;v; in increasing order
of length and adds an edge to the spanning tree if it does not close a cycle. Kruskal’s
algorithm will therefore construct the path v;—vs—. .. v, if the potential function p is such
that
(Vi vig1) < ¢u(vp,v;) whenever h <i<jj—h>2. (8)

Let us consider two special situations: < is essentially straight (any two left or right
tangents to v form an angle of less than 7/3) or 7 consists of a sharp corner (a point in
which 7 turns by at least 77/24) and two incident straight line segments (see Figure 22).
We will show in Section 4.2.3 that any curve 7 can be decomposed into subcurves which are
either essentially straight or which consist of a sharp corner with two incident essentially
straight legs.

For an essentially straight curve the minimum spanning tree will reconstruct for a large
choice of potential functions. It will work without a potential function, i.e., u(p) = 0 for all
p, and, more generally, it will work for any potential function that does not change too fast
as a function of the position of its argument. For a point p which belongs to an essentially
straight part of v, we will essentially! define u(p) = d(p)/3, where d(p) is maximal, such
that B%(p,d(p)) N 7 is connected and essentially straight and B%(p,r) denotes the open
ball with center p and radius r. This choice guarantees that u(p) changes slowly with
the position of its argument (with at most one third of the change in argument) and that
1(p) depends on local properties of the curve and is large in parts of v that are intuitively
simple to reconstruct. For sharp corners, the definition above leads to a potential value
of zero.

Corners with a turning angle of more than 7/2 will confuse the minimum spanning tree
when used without a potential function, as Figure 22 shows. One of our insights is that a
simple potential function can be used to make the minimum spanning trees work. Assume
that our curve consists of the two line segments y = £m -z for 0 <z <1 and let V' be
a finite set of samples. We define the potential as a function of the z-coordinates of the
sample points. Fix 7(O) arbitrarily, let p(z) = (z, mz) and ¢(z) = (z, —mz) and define

!The precise definition given in Section 4.2.4 is more involved.
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( =

Figure 22: In the figure on the left, the Euclidean distance between p and py grows as p

moves away from py along . In the figure on the right, the distance first grows and then
shrinks again as p moves around the corner. The minimum spanning tree with u(p) = 0
for all p will reconstruct the curve on the left, but may fail on the curve on the right.

m(p(x)) = m(q(x)) = 7(0O) —z. Then c;(p(z),p(x)) = V1 +m?|z — x¢ | —27(0) + 20+ 2

and c;(q(),p(xg)) = \/(x — 20)? + (mz + mxy)? — 27(0) + 20 + 2. It is an easy exercise

in calculus to show that c,(p(z),p(xo)) is an increasing function of |z — x| and that
cr(q(z), p(xp)) is an increasing function of . We conclude that the minimum spanning
tree for the modified distance function reconstructs. In the argument above the choice
of m(0) is arbitrary. The actual choice of 7(O) will depend on local properties of the
curve. For every sharp corner s we will consider the largest open disk B%(s, c,) such that
yN B°(s, ¢,) is connected and is essentially a sharp corner with two incident straight legs.
We set m(0) = cs.

We can now sketch our definition of p. For every point p € <, the first definition
w(p) = d(p)/3 is applicable. It assigns potential zero to sharp corners. Near sharp corners
we use the second definition, namely p(p) = ¢s — ||sps|, where p is near the sharp corner
s and p; is the projection of p onto the angular bisector of the two tangents at s (see
Figure 27).

The analysis above suggests that with this definition of y, the minimum spanning
tree solves the reconstruction task locally, i.e., if given the points in V N/, where +/
is a subcurve of v that is either essentially straight or a sharp corner with two incident
straight legs. In other words, inequality (8) holds if vs,v;, and v; belong to the same 7'

Does it also hold globally?

Consider the situation shown in Figure 23. We have two points p and ¢ that belong
to distinct essentially straight parts of 7. We have max(d(p),d(q)) < |pg| and hence
cu(p, q¢) > 0. More generally, we will show in Section 4.2.3 that any edge pg, where p and
g do not belong to an either essentially straight subcurve or to a sharp corner with its
incident legs, has positive modified cost.

The previous paragraph suggests our sampling condition. We require that any edge
of the polygonal reconstruction has non-positive reduced cost. Then (8) certainly holds
when ¢, (vj,v;) > 0. When ¢, (vs,v;) <0, v, and v; are guaranteed to lie in a common
essentially straight subcurve or near a common sharp corner, and the local analysis applies.
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Figure 23: The edge pq does not belong to the polygonal reconstruction. Our definition
of the potential function ensures that ¢,(p,¢) > 0. Our sampling condition that any edge
in the polygonal reconstruction has non-positive reduced cost.

This ends the informal description of our proof.

4.2.3 The Sampling Condition and the Global Reasoning for Open Curves

We will give the detailed definition of our potential function in Section 4.2.4; it assigns a
positive real p(z) to every point z of . Define the turning angle of a subcurve ' of 7 as
the opening angle of the smallest double-cone that contains all left and right tangents to
points p € 7. We require:

Sampling Condition:

(a) For any two adjacent (on ) samples v and v: ¢, (u,v) <0

(b) For any two adjacent samples u and v: y[u, v] turns by less than 7. For two adjacent
points p, ¢ on the curve, v[p, ¢| denotes the subcurve of v with endpoints p and ¢
not containing another sample point (In the case of closed curves we always have at
least 3 sample points).

Condition (a) implies condition (b) in the case of open curves as we will see below.
For closed curves, condition (a) is not sufficient as the example in Figure 24 indicates.
Condition (a) states that adjacent sample points must be sufficiently close in a metric
sense and condition (b) states that the curve must not turn too much between adjacent
sample points.

The sampling condition is easily satisfied. Let € = inf,e, p(z). Then € > 0 since
v is compact and hence a sample set in which v turns by less than 7 between adjacent
samples and in which there is at least one sample point in every curve segment of length ¢/2
satisfies the sampling condition. We want to stress that the sampling condition can also
be satisfied with non-uniform sampling. In regions of v where p is large, the sampling
may be less dense than in regions where p is small. In Section 5.3 we will relate our
sampling condition to the conditions used in other papers on curve reconstruction.

In order to show that MST, is the polygonal reconstruction of v from V', we define a
family I" of (overlapping) subcurves 7' of v so that:

(P1) Each subcurve 7' is connected and the minimum spanning tree (with respect to
cost function c,) of the points in V' N+’ is unique and coincides with the polygonal
reconstruction of +'.
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Figure 24: p and ¢ are adjacent sample points and ¢,(p,¢) < 0 if p and ¢ are sufficiently
close. However, the sample set contradicts our intuition of what constitutes a dense
sample set. Condition (b) excludes the case.

(P2) For every edge e with ¢, (e) < 0 there is a subcurve 7' € I' containing both endpoints
of e.

We show that these conditions imply that MST), is the polygonal reconstruction of ~.

Lemma 21 Conditions (P1) and (P2) imply that MST, is the polygonal reconstruction
of 7.

Proof: Let MST, be any minimum spanning tree in (V, E,¢,) and let e = uv be any
edge which does not belong to the polygonal reconstruction. We show that e ¢ MST,.
Observe first that any edge in the minimum spanning tree has non-positive modified cost
since there is a spanning tree, namely the polygonal reconstruction, in which every edge
has non-positive cost. This follows from the cycle rule for minimum spanning trees. So
assume c,(e) < 0. Then there is a subcurve 7' € I' containing both endpoints of e by
(P2). We even have «[u,v] C 7 since 7' is connected by (P1). Moreover, the minimum
spanning tree of V' N+’ is unique and coincides with the polygonal reconstruction of +'.
Thus ¢, (€') < c,(e) for every edge €' on the part of the polygonal reconstruction between
v and v. We conclude that e ¢ MST,,. 1

4.2.4 The Definition of the Potential Function

In this section, we give the precise definition of our potential function. The definition
depends on the thresholds 0,05 sharp, Oturns fscates furiggie, Quriggie, and fsnrink, Whose choice
is somewhat arbitrary but not completely independent. In Section 4.2.6 we summarize
the conditions.

Singularities cause difficulties for most curve reconstruction algorithms; the difficulties
grow with the turning angle. We call a singularity p a sharp corner if the turning angle
at p is at least Opmagz_sharp = 77/24 = 52.5°.
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Figure 25: A semi-regular curve with an infinite number of corners

A semi-regular curve may have an infinite number of singularities. For example, the
convex hull of the points (cos(w/n),sin(w/n)), n > 2, has an infinite number of singulari-
ties (see Figure 25). However, a semi-regular curve can have only a finite number of sharp
corners. Assume otherwise. Then the sharp corners have an articulation point p. Let p;,
P2, ... be an increasing sequence of sharp corners converging to p. For any sharp corner
p; we can choose two points ¢; and r; in the vicinity of the corner so that the tangents at
¢; and r; form an angle of at least 7/6 and so that the sequence ¢y, 71, go, 2, ... increases
and converges to p. The sequence shows that v has no left tangent at p.

We use S to denote the set of sharp corners of 7.

We are now ready to define our potential function. The definition consists of two
parts dealing with the neighborhoods of sharp corners and curve parts “far away” from
all sharp corners, respectively. We start with the latter parts.

For every point p € v, let d(p) be maximal so that the open ball B%(p,d(p)) has the
following properties:

e B%p,d(p)) NS =0.
e B(p,r) N+ is connected for all  with r < d(p).
e BY%p,d(p)) N~ turns by less than 6, = 7/3.

We will define our potential in parts that are far away from sharp corners as fsqed(p)
and choose fsee = 1/3. We will define later what we mean exactly by “far away”.

Observe that the closed ball B(p,d(p)) has one of the following properties: it has a
point in S on its boundary, it intersects v in more than one component, or v turns by
7/3 in the ball (see Figure 26). For sharp corners s € S, we have d(s) = 0 and for points
p € v\ S, we have d(p) > 0. The function p — d(p) is continuous. Thus d(p) will be an
increasing function of p as p moves away from a sharp corner for a neighborhood of any



4 THE TSP-ALGORITHM 52

Figure 26: The closed ball intersects v in more than one part, has a singularity on its
boundary, or v turns by 7/3 in the ball.

2]

Figure 27: Tllustration of the definition of b; and p;,.

sharp corner. In Section 5.3 we will relate d(p) to the distance of p to the medial axis of
7.

For sharp corners we define a quantity d,. For a sharp corner s € S let by be the
bisector of the angle between the right tangent and the reversal of the left tangent, let
be the turning angle at s (we have oy > 7m/24).

For an angle o, let @ = m — . For a point p € v, let p; be the orthogonal projection
of p onto b,. See Figure 27 for an illustration of these definitions. For every s € S, let d;
be maximal, so that

e YN BY(s,4,) is connected. We call the two components of (v\ s) N B%(s, §,) the two
legs of 7 incident to s.

e The angle between any segment with both endpoints on one leg and the tangent in
s of the same leg is less than min{ furiggieQs, Ouwriggie }- We choose fypigge = 1/4 and
Ourigge = m/9. The second bound guarantees that the angle between any segment
and the perpendicular bisector is less than 7 /2.

e For either of the two legs d(p) increases as p moves away from s.
e BY(s,26,) contains no sharp corner different from s.

The last condition ensures that the balls B(s,d,), s € S, are pairwise disjoint. For an
illustration of the definition, see Figure 28. Clearly, d, > 0 for all s € S.
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B(s,2dy)

Figure 28: By the definition of §,, we know that + is connected in B°(s,d,), there is no
sharp corner in B%(s,2d,), the angle between a segment through two points of a leg in
B%(s,d,), say pq, and the tangent of this leg, say t,, is less than min(a,/4,7/9), and the
d values are increasing in B(s, ;).

Recall from Section 4.2.2 that we want to define the potential near a sharp corner as
¢s — | sps|- The change from the potential for sharp corners and smooth areas is made by
choosing the maximum of the two possibilities. We use the constant ¢ to specify the exact
point where we change from one definition to the other. We choose ¢; maximal under
the restriction that all points outside the B(s, 0s fsprink) ball (fsnrink = 1/5) have potential
d(p)/3. Thus let ¢' and ¢ be the points where the two legs intersect the boundary of the
circle B(s, d5/5) and let

ce = min {d(q")/3+ |sqi] ;i =1,2}.

Then ¢, < 26,/5 since d(¢') < |sq¢'| = d5/5 and |¢%| < |sg| = ds/5.

Remark: In the proofs of Section 4.2.5, we will only use the fact that 0 < ¢; < 2§,/5,
the exact value of ¢; does not matter. This will become important in Section 4.4.

We are now ready to define our potential-function u:

_ |d(p)/3 if p is in no B(s, d;).
wp) = {max{cs — |sps|, d(p)/3) it p € B(s, 5).

Observe that this definition “combines” the two cases discussed in Section 4.2.2. We use T’
to denote the set of points p € v with u(p) = d(p)/3, i.e. , the points that are not affected
by the singularities. Then ¢* € T since ¢, < d(¢*)/3+ |s¢'| and hence ¢, — |s¢t| < d(¢*)/3.
Since d(p) and |sp| increase as p moves away from s (at least as long as p € B%(s, d,)),
we have p € T for any curve point p that is not contained in U,c5B(s,d5/5). This also
implies that p is a continuous function. For a point p € B(s, d,/5), we have d(p) < §5/5
and hence p(p) < ¢s.
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We will frequently use the following simple observation.

Lemma 22 Let u € T N B(s,d5) for some s € S and let v be a point on the other leg of
s. Then d(u) < |uv|.

Proof: Assume otherwise, i.e. , |uv| < d(u). We have d(u) < |us| and hence
B°(u,d(u)) N~y consists of at least two components, one containing u and one containing
V. 1

4.2.5 Local Reasoning

We consider the following family I' of subcurves:
1. Bp,d(p))NTN~forallpeT.
2. BY%s,d8,) Ny forall s € S.

We call the subcurves of the first kind regular subcurves and the subcurves of the second
kind singular subcurves.

Lemma 23 The subcurves v' € T' are connected.

Proof: This is obvious for singular subcurves. So consider a subcurve 7' = B%(p, d(p)) N
T N~y for some p € T. The subcurve B%(p,d(p)) N is connected by definition. If 4/ is
not connected, B(p,d(p)) Ny decomposes into three non-trivial segments v;, 7o, and 73
with yy T # 0, %»NT = and y3NT # (. This implies that v, passes through a sharp
corner, a contradiction to the definition of d(p). 1

Lemma 24 Let u and v be adjacent sample points and let v € T'. If v contains u and
v, then vy[u,v] C v

Proof: ' is connected and hence either y[u,v] C 4" or v\ v[u,v] C 7'. The latter case
is impossible, since v \ [u, v] is not connected in the case of an open curve and turns by
more than 7 according to our second sampling condition in the case of a closed curve.
However #' turns by less than 7 according to the definition of T. |

For open curves Lemma 24 holds true without the second sampling condition. Since
curves 7/ € T turn by less than 7, the second sampling condition is implied by the first
for open curves. We will next verify the properties (P1) and (P2).

Lemma 25 (Property (P2)) Let e = pg be an edge with non-positive modified cost.
Then there is a subcurve v' € T' containing p and q.
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D1 P2 P

Figure 29: The situation in the proof of Lemma 27. We have ||pips| > |pips| > |pip2| +
|pops| cos /3.

Proof: We have |pg| < u(p) + p(g) by assumption. If p € T and g € T, p(p) = d(p)/3
and yi(q) = d(¢)/3 and hence |pg| < (d(p) +d(q))/3 < 2max(d(p), d(¢))/3. Thus {p,q} C
B%(z, d(x)) for one of the endpoints z of e.

If one of the endpoints does not belong to T, say p ¢ T, then p € B%(s,d,/5) for some
sharp corner. If ¢ € B%(s,d;) we are done. So assume otherwise. We have u(p) < 26,/5
and |pq| > 46,/5. If ¢ € T, then pu(q) = d(g)/3 < |sq|/3 < (lpg| + 5/5)/3 and hence
gl < (Ipq| + 65/5)/3 + 26,/5 or 2|pq|/3 < 785/15 or |pq| < 216,/30, a contradiction to
lpq| > 465/5. If ¢ ¢ T then q € B°(t,4,/5) for some sharp corner ¢ different from s and
hence |pg| > 4(ds + 6:)/5. But u(p) < 24,/5 and p(q) < 26,/5, a contradiction. 1

In order to show that the MST, coincides with the polygonal reconstruction, we show
that the modified distance between two points p and r is either non-negative, or the
modified distance from p to r is greater than the modified distance from p to any point ¢
between p and r. Since we also want to use these Lemmas if we treat the problem with
finite precision arithmetic, we quantify the change of the modified distance in the distance
of ¢ and r.

Lemma 26 Let p, q, and r be sample points on a regular subcurve with p < q < r. If
{p.q,r} € B(t,d(t)) for some point t € 7 then c,(p,7) — cu(p,q) > |qr]/6.

Proof: Lett € yandp<q<r € B(t,d(t)). Since the points are contained in a regular
subcurve, we have /(pg, ¢7) < m/3 and hence |pr| > |pgq| + |qr| cos7/3 = |pq| + |qr|/2
(see Figure 29). Furthermore observe that d(r) < d(q) + |¢r|. Thus

cu(p;7) = culp, @) = lprl — u(p) — p(r) = Ipal + p(p) + p(r) = larl/2 — lar|/3 = lar]/6.

Lemma 27 (Prop. (P1) for regular regions) MST, coincides with the polygonal re-
construction for regular subcurves.

Proof: The Lemma above for both possible orientations of the curve directly implies
that Prim’s minimum spanning tree algorithm finds the polygonal reconstruction. |
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Figure 30: Illustration of the definition of 8; and fs, if p, ¢, and r are on the same leg.

Lemma 28 Let p, q, and r be sample points of v withp < g < r. If {p,q,r} € B(s, ;)
for some sharp corner s € y then c,(p,7) > 0 or ¢,(p,7) — cu(p,q) > |qr|(sin as/4)?/3.

Proof: We first argue that it is sufficient to prove the claim for the situations where either
g and r belong to T or neither of them does. Assume for the moment that those two cases
have been dealt with. If exactly one of ¢ and r belongs to 7', there is a point u between ¢
and r which belongs to the boundary of 7. For this point, we have d(u)/3 = ¢; — ||sus| and
hence u can be considered to be in T or outside 7. The triples (p,q,u) and (p,u,r) are
both in one of the special situations and hence we have ¢, (p,u) > 0 or ¢, (p, u) —c,(p, q) >
lqu|(sin&s/4)?/3 and ¢, (p,7) > 0 or c,(p, ) —cu(p,u) > |ur|(sin@,/4)?/3. Iif c,(p,7) > 0,
we are done. Otherwise ¢,(p,r) < 0 and hence c,(p,u) < 0. Thus c,(p,7) — c.(p,q) =
cu(p,m) — culp,u) + cu(p,u) — cu(p, @) > (lqu| + Jur])(sines/4)?/3 > |gr|(sina,/4)%/3,
where the last inequality follows from the triangle inequality. From now on we may assume
that either ¢ and r belong to T or neither of them does.

We need some further case distinctions. The first distinction is according to the sign
of ¢,(p, q). The case ¢,(p,q) > 0 is dealt with in the last paragraph of the proof.

We start with the assumption ¢,(p, ¢) < 0. We make a further case distinction accord-
ing to the position of s in the sequence p < ¢ < r. In all four cases we employ a common
strategy. We have ¢, (p,7) —cu(p, q) = ([pr| —[pal) — (u(r) — 1(g)). We bound |pr| —[pq|
from below and u(r) — p(g) from above and estimate the difference of the bounds. In all
cases we also use the estimates a, < 177/24, sina,/4 < 0.5281, (sina,/4)?/3 < 0.1 and
cos2m/9 > 2/3.

s<p<qg<r:U{qgr}nT =0, u(r) < p(q),and if {g,r} C T, pu(r) < u(q) + |gr|/3. In
either case®, p(r) < u(q) + [qr[/2.

Let 35 be the angle between the vectors pg and ¢. Then |pr|—|pq| > |qr| cos f2. By
the sampling condition, we have £, < 27/9, since the angle between pr, respectively
gr, and the left tangent at s is at most 7/9. Thus

cu(p,7) — cu(p, @) = ar|(cos(Bz) — 1/2) > |lgr]/6 > |gr|sin(a,/4)*/3 .

2In Section 4.4.2 we will consider a modified potential function for which we only know u(r) <
u(q) + |gr|/2. We want to reuse the proof there.
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Figure 31: The case p < s < ¢ < r: In the left part ¢, is closer to s than p; and in
the right part the converse is true. In both situations the definitions of #; and [, are
illustrated.

p<qg<r<s:I{gr} CT, pur) < ulq) < u(g) + |gr|/2. Let B, be the angle between
the vectors pg and ¢i. Then |pr| — |pq| > |gr| cos B2 and By < 27/9 and hence the
argument used in the case s < p < ¢ < r applies.

Assume next that {q,7} NT = (). Let B; be the angle between the vectors ¢ and
bs. Then pu(r) — u(q) = |gr| cos B;. By the sampling condition, we have 8, > 3/4a;.
Thus u(r) — p(q) = |gr|cos3/4a,. Let Py as above be the angle between the
vectors pg and ¢r (for an illustration, see Figure 30). Then 5, < a,/2 (since the
angle between pq, respectively ¢r, and the right tangent at s is at most @;/4) and

lpr = Ipgl = lgr| cos B2 = |lgr| cos @, /2.

Combining bounds, we obtain

> |gr|/(cos(@s/2) — cos(@s/2 + @s/4))

> |gr||(cos(@s/2) — cos(@s/2) cos(as/4) + sin(as/2) sin(a;/4))
> qr|sin(as/4)*

C,u(pa T) - Cu(p, Q)

p < s < g <r: Assume first that {q,7}NT = (). If g, is at least as far from s as p,, we have
lprl—lpql = 0and p(q) = p(r) = lgr| cos(17m/48+7/9) = |gr| cos(m/2—5m/144) =
lgr| sin(5m/144) > 0.1 - |qr| > |gr|(sin @;s/4)?/3. The claim follows.

If ¢, is closer to s than pg, let 5; be the angle between the vectors ¢p and b, and B
be the angle between the vectors ¢i and I;S; for an illustration see the left part of
Figure 31. We have 1(q) — u(r) = |gr| cos B, and |pg| — [pr| < |gr| cos(Br + B2)-
By the sampling condition, we have 8y > as/4 and §; > /(sp,bs) > as/4, since
L(gh,bs) > L(sp,bs) (moving along the line g increases the angle). Combining

bounds, we obtain:

cu(psr) —cu(p,a) = [gr|(cos Bz — cos(B1 + f2))
= |gr|(cos Ba — cos 31 cos B2 + sin By sin fBs)
> Jgr|sin(a,/4)*
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We come to the case that {¢,r} CT: If p € T, we have c,(p,r) = |pr| — d(p)/3 —
d(r)/3 >0, since d(p) < [lpr| and d(r) < [pr|.

So assume p ¢ T. Since ¢ € T, we have d(q)/3 > ¢; — |sqs| and hence ¢; <
d(q)/3 + |sgs|. Thus® 0> cu(p,q) = [pgl — (cs — [sps) — d(q)/3 > |pgl — (|sqs] —

Ispsl) — 2d(q)/3 > |pqgl/3 — (Isgs| — Isps|) and hence [sqs| — [sps| > |pgl/3. In
particular, g, lies further away from s than p, does.

Let 5; be the angle between the vectors ¢p and 55 and [ be the angle between
the vectors g7 and b,; for an illustration see the right part of Figure 31. Then
cos B1 > 1/3, By > @,/4, and |pr| — |pq| > |gr| cos(m — By — Ba).

Combining bounds we obtain c,(p,7) — c.(p,q) > |gr|(cos(B — Bo) — 1/3). If
cos(fB1 — Ba) — 1/3 > 4/27, we are done since 4/27 > (sina,/4)?/3. So assume
cos(B1 — B2) < 1/3+4/27=13/27 < 1/2. Then B — 8, > 7/3 and hence 3, > 7/3
and hence (1—cos 3;)/B; > 1/2. Since cos(B; —z) is convex in [0, 3;] and is therefore
above the line through the points (0,1) and (i, cos B;), we have

cos(f1 — Ba) —1/3 > cos By + (1 — cos B1)(B2/B1) — 1/3 > B2/2 > (sin &, /4)?/3.

p<q<s<r: Wehave |gr| < |gs|+]sr|. One of the previous cases applies to the triples
(p,q,s) and (p, s, ) and therefore c,(p,7) — c.(p, q) = cu(p,7) — cu(p, 8) + cu(p, ) —
cu(P,q) = (lgsl + [sr])(sina,/4)*/3 = |qr(sin 6/4)*/3.

The discussion of the case c,(p, ¢) < 0is now completed. So let us assume ¢, (p, ¢) > 0.
If ¢,(p, ) < 0, there is a point ¢’ between ¢ and r with ¢,(p, ¢') = 0. The first case applies
to the triple (p, ¢’,r) and hence ¢, (p, ) > c,(p, ¢'), a contradiction. Thus ¢,(p,7) > 0. 1

Lemma 29 (Prop. (P1) for singular regions) MST, coincides with the polygonal
reconstruction for singular subcurves.

Proof: The Lemma above for both possible orientations of the curve directly implies
that Prim’s minimum spanning tree algorithm finds the polygonal reconstruction. 1

4.2.6 Conditions on the Thresholds

In the preceding sections we showed that properties (P1) and (P2) hold, if one chooses
the thresholds as in Section 4.2.4. There are other possible choices for the thresholds that
make the arguments work. We now collect the conditions on the thresholds. Note that
the Subtour-LP has an unique integral solution if there is a choice of the thresholds that
make the MST,, unique and equal to the polygonal reconstruction.

We introduced six thresholds:

3Recall that we work under the assumption ¢, (p,q) < 0.
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Omaz_sharp: The minimum turning angle of a singularity that we call sharp. We have
chosen 0,45 _sharp = 77/24.

O1urm: The maximal turning angle in a B(p, d(p)) ball. We have chosen 6,y,, = 7/3.

fscate: The factor by which we scaled the d(p) value for the potential. We have chosen
f scale — 1 / 3.

furiggie: The factor by which we scaled the o, as maximal angle between a tangent and a
segment in a sharp corner. We have chosen fyrigge = 1/4.

Ourigge: The maximal angle between a tangent and a segment in a sharp corner. We have
chosen Oyyrigge = /9.

fsnrink: The factor by which we shrunk the J, ball to define the area where we use the
potential function for sharp corners. We have chosen fsping = 1/5.

First of all, we must guarantee that u > 0, which is equivalent to

Htum < emaw_sharp-

We start our investigations by looking at property (P2), i.e. , to guarantee that all
edges which are not contained in a region have positive modified cost. Look at any edge
pq with negative reduced cost. If p and ¢ are in T', we have to show that there is a point
x with |pz| < d(z) and |gz| < d(z). For simplicity, we have assumed that z is either p
or q. This is reasonable, since the conditions we get are weaker than the conditions we
need later. Thus we require max(d(p), d(q)) > |pq|. Since |pq| < fscare(d(p) + d(q)), it is
sufficient that

fscale < 1/2

If exactly one of p,q is not in T, we require that 2fsprink0s + fscate|sq| < |pg| (the
first summand is an upper bound for the potential of p, the second for the potential of
q). Using |pg| > 1 — fsnrink for all points outside the B(s,d,) ball, we conclude that it is
sufficient that

‘sthm'nk + fscate < 1,‘

Assume next that p and ¢ are not in 7. Then p € B(S1, fshrinkds;) and g €
B(sg, fshrink0s,) for different sharp corners s; and so. Let without loss of generalityds, >
0s,- It is sufficent that

fshm'nk < 1/3

Let us now turn to property (P1). In regular regions, we require that “potential change
takes place more slowly than the change in distance”. Thus we need

Cos(eturn) > fscale-
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For singular regions, we have to go through all cases of Lemma 28. If s <p < ¢ <,
we need similar to the case of regular cures

c08(uriggie) > [fscale-

Analogously, if p<¢g<r<sandqgand rareinT. If p< ¢ <r < s and ¢ and r are not
in 7', we require that cos(1 — furiggre) < c0S(2furiggie), Which is equivalent to

fwriggle < 1/3

If p<s<g<randgqr¢T, we additionally require that

emaz_sharp/z + ewriggle < 7T/2

If g,r € T, we compute that cos(B;) > 1—2 fscue and require that cos(81— furigges) > 1/3.
This is equivalent to

fscale S 1/3

Note that the last requirement is the only one where the condition can also be satisfied

with equality, since we subtract a positive number in the derivation. This ends our
discussion.

4.3 Open Curves with Unspecified Endpoints

In the preceding sections we assumed that the first and last sample point (= endpoints of
the Traveling Salesman path) are specified as part of the input. In this section, we show
that the Subtour-LP can also reconstruct when the endpoints are not specified. Of course,
the requirements on the sample will be stronger. The argument used in this section is a
variant of the argument used in Section 4.2.

We use the following formulation of the Subtour-ILP. The goal is to select a total of
n — 1 edges so that at most two of them are incident to any node and so that no subset
V! with V' # ) is “overfilled”.

min Z Cuv T
u,veEV

s.t. Z Ty

vEV

Yoy < V=1 forV CV, V' £0
u, eV’

Z Tyw = n—1
u,veV?’

Ty € {0,1} for all u,v € V.

2 foralu eV

IN

Selecting a total of n — 1 edges so that at most two of them are incident to any node
amounts to selecting a path and a set of cycles covering all nodes. The constraint that
no set can be overfilled implies that no cycles can be used and hence any solution must
be a Traveling Salesman path. The Subtour-LP is obtained by replacing the integrality
constraints z,, € {0,1} by the linear constraints 0 < x,, < 1.
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As in the case of open curves with specified endpoints, we have to show that the
separation problem can be solved in polynomial time. The separation algorithm works as
follows:

Let z* be the optimal solution. We assign a capacity of z} to edge e for every edge e.
Furthermore, we introduce an artificial vertex s and edges us with capacity 2 — 3 c5) ©
for any node u of the graph. We compute a minimal cut in this graph and take as
subset for the subtour elimination constraint the side of the cut that does not contain the
artificial node s.

To see the correctness of this separation algorithm, we show that the subtour elimi-
nation constraint for S is violated iff the size of the cut is less than 2. Let S C V be a
subset of the nodes. First notice that the sum of the capacities of edges adjacent to a
node is exactly 2 for every node in the graph above. Thus 23 c,s) Tt + Xecs(s) Te = 2[S/,
since for every node u € S, we sum the capacities of the adjacent edges. We conclude
that Y.eos) 75 < 2 Xeeyy 25 > [S]— 1.

We consider only non- posmve potential functions p < 0 in this section. Let a and b
be fixed vertices and consider any Traveling Salesman path 7" with endpoints a and b. Its
costs under ¢ and ¢, are related by ¢,(T) = ¢(T) — 2 X ,ev u(v) + p(a) + w(b), since the
path uses two edges incident to every vertex except for a and b. Observe that ¢, (1) —c(T)
does not depend on 7 and hence the optimal Traveling Salesman path for endpoints a
and b is the same under both cost functions. However, the relative order of Traveling
Salesman path with distinct endpoints is changed.

Let MST, be a minimum spanning tree with respect to the cost function ¢, and let
C,, = c,(MST),) be its cost. Then C, < ¢,(T) for any Traveling Salesman path 7.

Fact 3 Let u < 0 be any potential function. If MST, is a Traveling Salesman path and
p(a) = u(b) =0 for the endpoints of this path, it is an optimal Traveling Salesman path.

Proof: Let T be an optimal Traveling Salesman path, say with endpoints u and v. Then
C, < ¢,(Tp), since Tj is a spanning tree, ¢(MST),) = ¢,(MST,) + 2 X ,cv p(v) — p(a) —
p(b) = ¢, (MST,) +2 X ,cv 1(v), since MST), is a path with endpoints ¢ and b and @ and b
have potential zero, and ¢(Ty) = ¢, (To)+2 X ey p(v) —p(uw) —p(v) > cu(To)+2 X ,ev p(v),
since Ty is a path with endpoints u and v, and since the potentials of u and v are non-
positive. Thus

o(To) > cu(To) +2 D pu(v) > ¢,(MST,) + 2> u(v) = ¢(MST,,).

veEV veEV

The inequality Cy, < ¢,(To) = ¢(To) =2 Xpev 1(v) + p(u) + p(v) < o(To) =2 Xyey 1(v)
is valid for every non-positive potential function (the last inequality uses non-positivity)
and hence

max (Cy, +2 > u(v)) < ¢(Tp) -
#<0 veV

The quantity on the left is called the Held-Karp bound. The following fact is crucial for
our proof.
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Fact 4 The Held-Karp bound is equal to the optimal objective value of the Subtour-LP.

Proof: The proof follows from [CCPS98, page 259]. Relaxing the degree constraints
Y wev Tuy < 2 in a Langrangean fashion, we obtain the problem

maxmin = Y c(uv)Zyy + > p(u)(2 = ) Zyy)

p<0 z20 u,veV vEV
st Y Ty < |V'[=1 for V' CV,V'#£0
u,weV’
Z Tyw = n—1
u,veV
Tuw < 1 for all u,v € V.

Observe that we are only maximizing over non-positive potential functions p. This
stems from the fact that in contrast to Section 4.2, the degree constraints are now inequal-
ities instead of equalities. The reformulation has the same objective value. The objective
function of the LP can be reformulated as }°,, ey (c(uv) — p(u) — p(v))Tuy + 2u(V). We
conclude that the LP is simply a minimum spanning tree problem for the cost function
Cu- 1

We note that the optimal choice of y in the Held-Karp bound is given by the optimal
solution of the linear programming dual of the Subtour-LP; u corresponds to the dual
variables for the degree constraints. We next draw a simple consequence from the two
facts above.

Lemma 30 Let ;1 <0 be any potential function. If MST, is the unique minimum span-
ning tree with respect to ¢, and it is a Traveling Salesman path, and p(a) = p(b) =0 for
its endpoints a and b, then the Subtour-LP has a unique optimal solution and this solution
18 integral.

Proof: If MST, is a Traveling Salesman path, it is optimal (Fact 1) and hence
¢(MST,) = ¢(Tp). The Held-Karp bound is therefore equal to ¢(7;) and the same holds
true for the optimal objective value of the Subtour-LP (Fact 2). The incidence vector of
MST,, is a feasible solution of the Subtour-LP of cost ¢(MST,) and hence it is an optimal
solution of the Subtour-LP. We will next argue that it is the unique optimal solution. As-
sume that there is an optimal solution of the Subtour-LP with z. > 0 for some e ¢ MST,,.
Since MST), is unique there is a 7 > 0 so that decreasing the cost of e by n will not change
the minimum spanning tree and hence the value of the Held-Karp bound will not change.
However, the objective value of the Subtour-LP will decrease. This is a contradiction to
the equality of the two bounds. |

It remains to define the appropriate potential function. We obtain it as a modification
of the potential function defined in the preceding section. We use i to denote it. Let V'
be a set of sample points and let @ and b be the first and the last sample point.
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Let m = min(f(a), z(b)) and set ¢; = min(cs, m) for all sharp corners. This changes
it; it makes i smaller for some points near sharp corners. Define new potential functions
i and p by

fi(p) = min(f(p),m) and  p(p) = fi(p) —m

for all p € v, i.e., first all potential values are capped at m and then m is subtracted.
Then fi(p) > p(p) for all p and p(p) < 0 for all p. Also p(a) = u(b) = 0.

We strengthen the sampling condition and require cz(pg) = |pg| — i(p) — ii(g) < 0 for
all edges in the reconstruction.

Since ¢; < m for all sharp corners, we have [i(p) = fi(p) for all p ¢ T. Here f denotes
the original potential function with the capped c-values.

Suppose that V' satisfies the strengthened sampling condition. Then the minimum
spanning tree with respect to c; is equal to the polygonal reconstruction. This requires a
check of Lemmas 25 to 29; we leave the straightforward but tedious check to the reader.
The minimum spanning tree with respect to u is the same as the minimum spanning tree
with respect to fi, since p and fi differ only by a constant. We conclude that the minimum
spanning tree with respect to i is equal to the polygonal reconstruction. Moreover it is
unique. We finally observe that u is non-positive and that p(a) = p(b) = 0. Thus MST,
is the unique optimal solution of the Subtour-LP by Lemma 21.

4.4 Closed Curves

We extend the result to closed curves in two steps.

e In Section 4.4.2 we alter the potential function to u', so that the two longest edges of
the polygonal reconstruction have the same modified cost and so that the minimum
spanning trees with respect to the new modified cost are precisely the polygonal
reconstruction minus one of the edges of maximal modified cost.

e In Section 4.4.1 we show that the preceding sentence implies our main theorem for
closed curves.

Observe in our write-up that the second step is dealt with first.

Readers familiar with the Held-Karp bound for Traveling Salesman tours may wonder
why we are not arguing about 1-trees. We tried but could not get the argument to work.
A 1-tree is defined as follows. An arbitrary node v € V is fixed. A 1-tree consists of
the two cheapest edges incident to v plus a minimum spanning tree of V' \ v. We were
unable to construct a potential function for which the optimal 1-tree coincides with the
polygonal reconstruction. We were able to construct a potential function where the two
cheapest edges incident to v were indeed the edges to the two neighbors in the polygo-
nal reconstruction and were able to construct a potential function where the minimum
spanning tree on V' \ v coincided with the polygonal reconstruction minus the two edges
incident to v. We were unable to satisfy both conditions simultaneously.
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4.4.1 The Subtour-LP and the Global Reasoning

Assume that the potential function u' has been constructed. The Subtour-LP for the
traveling salesman problem can be formulated as follows:

min Z Cuv Ty

u, eV
s.t. Z Tyw = 2 forueV
veV
S my < |V =1 fox VICV,0£V' #V
ueV’ veVv!
Z Tyy = ‘V‘
u,veV

0 < @y, < 1

The last equality is redundant but helpful for our Lagrangian-relaxation. The length of
the polygonal reconstruction is an upper bound for the objective value of the Subtour-LP.
We relax the set of degree equalities to the objective function and obtain the following
problem with the same objective value [CCPS98, pages 258-260]:

max 2 Y p(u) +min D ¢, (uv)zy,

ueVv u, eV
s.t. Yo my < V=1 for VICV,0#£V' £V
ueV' veV!
Y = |V
u,veEV

0 < =z <1

In this formulation the maximization is over all choices of u. For fixed p the inner
minimization is over the choices for the z,,. We will show that for y = y' the polygonal
reconstruction is the unique optimal solution for the minimization problem and hence
the objective value of the maximization problem is at least the length of the polygonal
reconstruction. It cannot be larger and hence the objective value of the maximization
problem is equal to the length of the reconstruction. This proves that the polygonal
reconstruction is an optimal solution of the Subtour-LP. We still need to argue uniqueness.
Assume that there is another optimal solution for the Subtour-LP. Since the solution
satisfies the degree constraints, it will give the same value to the inner minimization
problem as the polygonal reconstruction and hence the polygonal reconstruction is not
the unique optimal solution of the inner minimization problem.

It remains to prove that for u = y, the polygonal reconstruction is the unique optimal
solution for the inner minimization problem. Orient 7 arbitrarily, let e; and e, be edges
in the polygonal reconstruction which have maximal modified cost, and let u and v be the
starting nodes of e; and es, respectively, and let R; and Ry be the sample points from u
to v respectively from v to u with respect to the order of the points along the curve (see
Figure 32). Then R URy; =V and |R; N Ry| = 2. Let E;, ¢ = 1,2, be the set of edges
having both endpoints in R; and let C' be the remaining set of edges. Then e; € E; and
any edge e € C has a modified cost larger than e; (and hence ey). Otherwise, there would
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€1

R>

€2

Figure 32: The notation used in the reformulations of the Subtour-LP. We have e; € E;.

be a minimum spanning tree that is not contained in the polygonal reconstruction. In an
optimal solution of the inner LP, the total weight of the edges in E; is | R;| — 1 — o; for
some o; > 0, 1 = 1, 2; the total weight of the edges in C' is 0; + 02. Thus the inner LP is
relaxed by:

,min min > (uv)zy,

u, eV
s.t. > zw < |Ri|-1 for all R} C Ry, with R} # ()
u€ER) wER]
Y x4 = |R|[-1-0
u,vER
> zw < |Ry-1 for all R, C Ry, with R # ()
u€ R} vER),
Z Typy — |R2‘—1—02
u,vE Ra
Z Tyy = 01+ 02
uveC
0 < 7y <1

Observe that we have dropped some of the subtour elimination constraints.

Consider the inner minimization problem for fixed values of 0; and 0,. The first two
lines describe a partial minimum spanning tree for R; while the next two lines describe
a partial minimum spanning tree for R,. More precisely, the system is minimized if one
chooses the [|R;| — 1 — 01| shortest edges of the minimum spanning tree and fills the
fractional part with the next edge (as seen in Section 2.2.5). The same is true for Rs.
The LP takes its minimum for 0; = 0, = 0, since any edge in C' has higher cost than any
edge in the minimum spanning tree. For 0, = 05 = 0, the system describes the minimum
spanning trees for R; and Ry. Thus the polygonal reconstruction is the unique optimal
solution of the inner minimization problem and hence of the Subtour-LP.
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4.4.2 The Modified Potential Function and the Local Reasoning

We show how to alter the potential so that the two longest edges of the polygonal re-
construction have the same modified cost and so that all minimum spanning trees for
V remain part of the polygonal reconstruction. Note that the new potential is defined
according to a given sample set, whereas the original potential only depends on the curve.

Let e,,4; be the edge of the polygonal reconstruction with highest modified cost. We
claim that one of the following cases arises:

(1) There is a sharp corner so that both endpoints of e,,,, are outside the ball B(s, d,/5).

(2) There is a point v € 7, so that |vu|/2 > u(u) for both endpoints u of €4, and so
that v does not lie in the B%(s, d,) ball of any sharp corner s.

The first case certainly arises when there are at least three sharp corners. Assume that
the first case does not hold. We make a further case distinction: Either both endpoints
of €4, lie in T (this will certainly be the case when there is no sharp corner) or one
endpoint of e, lies in B(s,d;/5) \ T for a sharp corner s. In the former case, the curve
must leave the union of the B(u,d(u)) balls of the two endpoints u of e,,q,,because the
curve can turn by at most 27 /3 within the union of these balls. As a result any curve point
v outside the two balls (since |uv| > d(u) = 3u(u) for any of the endpoints) and outside
UsesBY(s, d5) will work; v exists since the regions (B%(s, d,))scs are pairwise disjoint and
since 7 turns by less than 7 in any such region. So assume that some endpoint of e,,,; lies
in B(s,0ds/5) \ T of some sharp corner s. Consider the leg of s that does not contain the
other endpoint of e,,,,. It contains no endpoint of e,,,, that liesin 7. Let v be the point
on this leg of s with distance d, from s and let u be an endpoint of e,,4,. If u € B(s,d5/5)
then ||uv| > 465/5 and p(u) < max(cs, d(u)/3) < 24,/5; if u & B(s,d5/5), then v € T and
hence u does not lie on the same leg as v does. Consequently d(u) < |uv| by Lemma 22
and we are done. In either case we have shown that one of the items above holds. We
also need the following Lemma.

Lemma 31 Let s be a sharp corner and let x and y be adjacent sample points so that
s € y[z,y]. Then z,y € B(s,3d5/5) and either x ory lies in B(s,05/5) \ T.

Proof: Since the regions B%(p,d(p)) N T do not contain any sharp corner and since the
regions (BY(t, 8;))scs are pairwise disjoint, we have x,y € B%(s,d,) by Lemmas 24 and 25.
Assume z & B(s,3d5/5). Then

cu(z,y) > culs, ) > |sz| —265/5 — |sz|/3 > 2|sz|/3 — 205/5 > 255/5 — 26,/5 = 0,

where the first inequality follows from the third claim in the proof of Lemma 29. Assume
next that =,y € T. Lemma 22 implies d(z), d(y) < |zy| and hence ¢, (z,y) > |zy[/3 > 0.
|
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both endpoints of €.,4. lie here

Figure 33: The construction of the potential function p'.

We now turn to the definition of the modified potential function and the proof that all
minimum spanning trees for V' with respect to the modified potential function are subsets
of the polygonal reconstruction.

Assume first that there is a sharp corner s, so that both endpoints of e,,,; lie outside
the B(s, d5/5) ball. We decrease ¢, continuously to zero. For ¢, = 0, we have p(z) = d(p)/3
for all z € B(s,d;). Hence the edge xy in the reconstruction connecting the two legs of s
(it is existent by Lemma 31) has positive modified cost: ¢,/ (z,y) = |zy| — p'(z) — ¢ (y) >
lzy| — |zy|/3 = |zy|/3 > 0, since d(z),d(y) < |zy| and hence c,(z,y) > |zy|/3 > 0 by
Lemma 22. The modified cost of the edge e,,,, is not affected by the change of ¢;,. Thus
there must be a value of ¢, for which the two largest modified costs in the reconstruction
are the same. All edges in the reconstruction still have non-positive modified cost (because
€maz has non-positive modified cost) and the minimum spanning tree with respect to c,;
remains the polygonal reconstruction, as noted in Section 4.2.4 that only 0 < ¢, < 26,/5
is used in our proofs. This completes the discussion of the first case.

In the next case, there is a point v € 7, so that u(u) < |vu|/2 for both endpoints u
of €maz- S0, v lies outside the B(s,d,) balls of all sharp corners. We split the curve at
v and orient the resulting open curve arbitrarily. For any [ € R, 0 <1 < p(v), we define
a as the first point with u(a) = |va|/2 + [ and b as the last point with u(b) = |vb||/2 + 1
and define a potential y' by

! _ ,u(p) ifa<p<b
wip) = { |lvp|/2+1 otherwise

Observe that a, b, and y' depend on [. For simplicity of notation we do not make this
dependence explicit in the notation. Figure 33 illustrates the definition of 4.

We need to argue that a and b are existent for all choices of [, that the cost of ez
does not depend on [, that there is a choice of [ for which the two largest modified costs
are the same, and that every minimum spanning tree with respect to c,» uses only edges
of the polygonal reconstruction.
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We first show the existence of a and b for all choices of I. For [ = pu(v) we have
a=0b=wv. For 0 <! < u(v), we have p(v) > 1+ |ov|/2 and p(u) < |uv|/2 <1+ |uv|/2
for either endpoint of e,,4,. From the continuity of 1 we conclude that there is a point «
between v and u, for which u(a) = |val/2 + [, and a point b between u and v, for which
w(b) = |vb|/2 + 1. We have shown that a and b exist and that e, does not depend on
[. Furthermore, we know that p'(p) < u(p) for all p by the definition of a and b.

We next show that a < r, where r is the first point on v with |sr| = 3d,/5 for some
sharp corner s, hence a € T. We have |rv| > 26,/5 and pu(r) = d(r)/3 < |sr||/3 = 65/5 <
[rv]/2 < |rv|/2 4 1. Continuity of x implies that a lies between v and r. Similarly, b lies
in T after the last point r on vy with |sr| = 3d,/5 for some sharp corner.

We next argue that there is a choice of [ for which the two largest modified costs in the
reconstruction are the same. From a < u < b for any endpoint u of e,,,, we conclude that
the modified cost of e,,4, does not depend on [. For ! = p(v), we have a = b = v and hence
p = p'. Thus €4, has the maximal modified cost ¢, among all edges in the reconstruction.
For [ = 0, we consider the reconstruction edge between the last and the first sample points
x and y, respectively, and show that it has positive modified cost c,(zy). There must
be a subcurve 7' containing [z, y] and hence v. Since v ¢ B(s, ds) for any sharp corner,
~' is a regular subcurve and hence v[x,y] C T. We first show that « < z and y < b is
impossible. So assume otherwise. Then pu(z) < u(a) + |az|/3 = |va|/2 + |az|/3 and
puly) < p(b)+ byl /3 = [vbl/2+|by|/3 and |zy| > |za|/2+ |ab] + |by|/2 since ¥ turns by
less than 7/3. Thus ¢,(z,y) > 0, a contradiction to our sampling condition. Thus either
v<z <aorb<y<wvorboth. We may assume without loss of generality that v < z < a.
Ity < b, we have p(y) < p(b) + [by[/3 = [vb]/2 + [byl/3, |zy] > |zv]/2 + vb] + [byl/2,
and p'(z) = |vz|/2, hence cy(x,y) > 0. If b < y, we have |zy| > |zv|/2 + |vy|/2,
W(y) = |vy|/2 and p'(z) = |vz|/2 and hence ¢y (x,y) > 0. In either case we have
shown that for [ = 0 there is an edge in the reconstruction with positive modified cost.
Continuity implies that there is a value of [ for which the two largest modified costs in
the reconstruction are the same; this completes the definition of the modified potential
function in the second case.

In order to verify that all minimum spanning trees are subsets of the polygonal recon-
struction, it is sufficient to show that Lemma 25 holds for the new potential function and
that ¢,y (p,7) > ¢ (p, ¢) for any three points with p < ¢ < r and {p,¢,7} C 7/ for some
v eT.

From p/(z) < p(z) for all z, we conclude ¢, (pg) < c,(pg) for all edges pg. Thus
Lemma 25 still holds.

If {p,q,7} C B(u,d(u)) NT for some r € 7, we have /(pg,¢i) < m/3 and hence
lpr| = Ipgl > lgr(/2 and 4'(r) < 1'(g) + lgr|/2. Thus ¢ (p,7) > cw (p; @)

Assume next that {p,q,r} C B(s,d;) for some sharp corner s. If ¢,/(p,r) > 0 we are
done. Otherwise c,(p,r) < 0, since the modified distance with respect to y is at most the
modified distance with respect to x'. We make the same case distinction as in the proof
of Lemma 28. In this proof, we bounded |pr| — |pg| from below and u(r) — p(q) from
above. Now we need to bound p/(r) — p'(q). Since p'(x) = p(z) for x ¢ T, we only need
to reconsider the case that r and ¢ are in T. We have p/(r) < u/(q) + |lgr|/2; hence the
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arguments used in the cases p < ¢g<r <s,s<p<g<r,and p<q < s < r stay valid.
We only need to reconsider the case p < s < g <.

If u(p) # u'(p), we have u(q) = p'(¢) and u(r) = p/'(r) and are done. So assume
u(p) = p'(p). If plq) = 1'(q) we have ¢y (p,7) — cw(p,q) 2 cu(p, 1) — culp,q) 2 0, since
w'(r) < p(r). Otherwise p'(r) — p'(q) < 0 < u(r) — p(q), since r is closer to v than ¢ and
both are in T'N B(s, ds). Thus c,v(p, ) — cw(p, q) > cu(p,7) — cu(p,q) > 0.

4.5 Solving the Subtour-LP

The Subtour-LP has an exponential number of constraints. The ellipsoid method [Sch86]
allows to solve LPs with an exponential number of constraints in polynomial time in the
number of variables if the following conditions are satisfied:

e the coefficients of the variables in the constraints are polynomially bounded. This
is the case for the Subtour-LP.

e the separation problem can be solved in polynomial time; i.e., given a vector z;, of
polynomially bounded values for the variables, one can decide in polynomial time
whether the vector satisfies all constraints and, if not, exhibit a violated constraint.
This is the case for the Subtour-LP. It is trivial to check the degree constraints and
the constraint that all values lie between zero and one. In order to check the subtour
elimination constraints (we discuss the case of tours, having already discussed the
cas of path in Sections 4.2 and 4.3), we consider the complete network on V' and
assign capacity z, to edge uv. Consider any subset V' of V' with () # V' # V and
observe that 2| V'| = Y epr Xoev oy = 2 Xuevrvev Toy T Luev! Logvr Typ- We
conclude that the subtour elimination constraint for V' is satisfied iff the capacity
of the cut (V', V\ V") is at least two. Some subtour elimination constraint is satisfied
if the minimum cut is less than two. A minimum cut can be computed in polynomial
time.

e The coefficients in the objective function are polynomially bounded. This is not
the case since the bit-representation of an Euclidean length is in principal infinite.
Furthermore there are curves where the bit-representation of any point is infinite.

We show that it suffices to know the sample points and their Euclidean distances only
approximately. More precisely, we show the following: Let S be a set of points. Let m
be the minimal distance between any two points in S and for a point p € S let p* be a
closest point of 7. If

1. |pp*| < pm/10 for all p € S, where p is a constant depending on +y, and
2. the set S* = {p* | p € S} satisfies a strengthened sampling condition

then the Subtour-LP has a unique optimal integral solution even when the distances
between sample points are only known up to an error of mp/10. Moreover, the Subtour-
LP can be solved in polynomial time and the optimal solution is a tour connecting the
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points in S in the order in which the points S* lie on v. We also show how to estimate p
from the sample set and without knowledge of ~.

Now we make precise what we mean by a approximate sample set of a curve . Recall
that for an angle o we have defined @ by @ = 7 — a. Let ay = max,cs ;. We define
ag = 177 /24, if there is no sharp corner.

Definition 3 Let v be a benign semi-reqular curve. We call a set S of points p € Q?* an
approximate sample set of a curve v, if for allp € S

[py] < (sin ag/4)*m/30.

For the following let p = (sinay/4)*>m/3. Then m > Tp (since @y < 177/24) and
lpp*|| < p/10 for the points in an approximate sample. We need the following sampling
condition.

Sampling Condition for Approximate Sample Sets:
(a) For any two adjacent (on 7) samples u* and v*: |u*v*| < 9/10(u(u*) + p(v*)).

(b) For any two adjacent samples u* and v*: y[u*,v*] turns by less than 7. For two
adjacent points p, ¢ on the curve, ¥[p, q] denotes the subcurve of v with endpoints
p and ¢ not containing another sample point.

Let v be a benign semi-regular curve and S an approximate sample set satisfying the
sampling condition. For any two sample points p and ¢ let ||pg||~ be a rational number,
so that ||pg| — ||pgl|~| < p/10. Then ||p*¢*| — ||pg||~| < 3p/10. Note that for all p,q € S
there exists a choice of ||pg||~ which has a bit representation of polynomial size in m and
a@p. We consider the approximate Subtour-LP of the approximate sample set S.

Theorem 16 Let y be an open (closed) benign semi-reqular curve and S be an approxi-
mate sample set of v satisfying the sampling condition above.

e The approzimate Subtour-LP for S has a unique optimal integral solution.

e The approrimate Subtour-LP can be solved in polynomial time.

Proof: We define the potential function of an approximate sample point p as p(p) :=
p(p*). We call the new modified cost function c};. We show:

1. if p and g are adjacent sample points, then ¢} (p,q) < —3p/10 and hence there is a
minimum spanning tree in which each edge has length less than —3p/10.

2. if p and ¢ are sample points which are not contained in some 4’ € I, then &y (p,q) >
—3p/10 and hence none of these edges belong to a minimum spanning tree.

3. if p < ¢ < r are three sample points contained in some 7' € I'and ¢ (p, ) < —3p/10,
then cf(p,7) > c}(pg), and hence the minimum spanning tree reconstructs locally.
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We turn to the first item. Let p and g be adjacent sample points. We have 6p <
m—p < |pql —p < |p"q"| +2p/10 — p < |p*q*| < pu(p*) + p(q*). Thus

(0, q) = lpgll~ — p(p) — 1(g)

< |p*¢*| + 3p/10 — 1/10(p(p*) + p(q*)) — 9/10(u(p") + u(q"))
lp*q"| — 3p/10 — 9/10(u(p*) + 1(q*))
—3p/10.

IN A

For the second item, consider two points p and ¢ that are not contained in any common
subcurve 7' € I'. We have

(g > [p°¢"| —3p/10 — u(p*) — p(q*)
= ¢,(p*,¢") — 3p/10
> —3p/10.

We come to the third item. Consider three sample points p < g < r that are contained
in some 7' € T" and for which ¢ (pr) < —3p/10. Then c,(p*,r*) < 0 and hence (using
Lemmas 26 and 28 and the fact that (sinag/4)%/3 < 1/6):

cu(p” 1) — cu(p”, ¢") — 6p/10
lgr||(sin 6o /4)? /3 — 6p/10
p—6p/10 > 0.

c;(p,r) —c;(p,q)

v IV IV

What have we achieved at this point? We have shown that the Subtour-LP recon-
structs provided that our sample set S satisfies the sampling condition for approximate
sample sets and that we are given approximate distances of polynomial size that differ by
at most p/10 from the true distances. We could compute approximate distances with the
required property, if we were given p or alternatively « as an additional input. We now
show how to compute a lower bound on o, which leads to a polynomial precision in the
input size, without any additional knowledge of the curve.

Lemma 32 Let m and M be the minimal and mazrimal distance between two sample
points, respectively. Then sin(ag/4) > m/(15M).

Proof: If v has no sharp corners, oy = 177/24 and there is nothing to show. So assume
otherwise and let s be any sharp corner. We prove that there is a sample point p in
B(s,ds) N'T on each leg of the sharp corner and we use this fact to bound &; from below.

We look arbitrarily at one of the two orders obtained by splitting the curve at s and
prove that there is a sample point behind s in B(s,ds) N T. Assume otherwise. Let z be
the first sample point behind s outside B(s, ds) and let y be the sample point preceding
x. Since every edge of the polygonal reconstruction must lie in at least one subcurve
~" € T', y must lie behind s. By assumption, y does not lie in 7. Assume first that
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z € T. Then |zy| > 46,/5 and u(y) < 26,/5. Thus c,(z,y) = |zy| — p(z) — ply) >
|lzy| — 2d5/5 — |zy|/3 > 2|zy|/3 — 205/5 < 805/15 — 26,/5 > 0, a contradiction. Assume
now z ¢ T. Let s’ be the corner so that © € B(s',dy) and assume without loss of
generalityds > dy. Then p(z) < 26,/5, u(y) < 265/5 and |zy| > 265 — 65/5 — 95 /5 > .
Thus c,(z,y) > 0, a contradiction.

Let p be the first sample point after s in B(s, ds) N7 and let g be the adjacent sample
point after p. Then g € T'; if ¢ ¢ T then g € B(s',dy) for some sharp corner s’ and hence
s would have no sample point in B(s',dy) NT. The distance between p and q is at least
m. Also |pg| < d(p)/3 + d(q)/3 < d(p)/3 + (d(p) + |pq|)/3 and so d(p) > |pg| > m.
Consider the intersections of the two legs of s with the boundary of the d,-ball centered
at s. The intersections have distances of at least m (since d-values grow along each leg)
and s sees the intersections under an angle of at least &y/2. Thus sinay/4 > m/(26;).
Since there is at least one sample outside the ball B(s, ds) and at least one sample inside
the ball B(s,ds/5), we have M > 46,/5. Thus sin ay/4 > 4m/(10M). 1

4.6 Collections of Closed Curves

In the preceding sections we showed that the Subtour-LP formulation of the Traveling
Salesman problem is able to reconstruct single closed and open curves. In this section
we extend the algorithm so that it can handle collections of closed curves. We do not
know how to handle collections of open and closed curves. Please note that the algo-
rithms [DMRO0, FRO1] can handle open and closed curves.

The algorithm works in rounds. The first round constructs an initial partition of the
sample points and subsequent rounds merge blocks of the partition. The construction of
the initial partition and the merging is done conservatively, i.e., all points in the same
block provably belong to the same curve. In the first round, every point is joined to points
close to it; Section 4.6.1 gives the details. In later rounds (see Section 4.6.2) we solve the
Subtour-LP for each block and then analyze the solution. If the Subtour-LP fails on a
block or if curves constructed for different blocks interfere, some blocks are merged.

Throughout this section we assume our set of sample points to satisfy a strengthened
sampling condition. The strengthened sampling condition leads to denser sampling near
sharp corners. We change u to y' by decreasing the §- and c-values of sharp corners.
We set ¢! < 65, so that for any two points p and ¢ in B(s,d./7), the angle between the
segment pg and the corresponding tangent in s is at most 7/40. Furthermore, we decrease
the value ¢, to ¢, so that ¢, — |sps| < d(p)/3 for every p & B(s, d./60). This enlarges the
region in which the potential is defined by d(p)/3 from T to T". Recall that the choice of
¢s only guaranteed that the points outside B(s, d;/5) belonged to T', whereas 7" contains
all points outside the balls B(s, ¢’ /60).
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Figure 34: The points p' up to p° are joined with p°, but p® is not joined.

4.6.1 The Initial Partition

We define a graph on our set of sample points. The connected components of this graph
form the initial partition. For a sample point p = p°, let p!, p?, ... be the other sample
points in order of increasing distance (ties are broken z\xrbitrarély). We always join p°
with p! and p?. We join p° and pi, i > 3, if /pF~1ph=2 pF~1pF > 27 /3 for all k with
2 < k < i—1. Observe that the decision of whether p* is joined to p° depends only

on the points p° up to p'~!, but not on the point p* itself. This is essential for making
connections between the points on different legs of a sharp corner but also hinders the
extension to open curves. Figure 34 illustrates the definition.

Lemma 33 If p and its two adjacent sample points are in T', then p is only joined with
points in B(p,d(p)) and is joined with both adjacent sample points.

Proof: Since pisin T', v N B(p,d(p)) consists of a single component and turns by less
than 7/3. Also the two sample points ¢, r adjacent to p on v lie in B(p, d(p)). We show
this for ¢. We have d(q) < d(p) + |pql, 1(q) = d(q)/3 since ¢ € T", and, according to
our sample condition, [pqg| < d(p)/3 +d(q)/3. Thus |pg| < d(p)/3 + (d(p) + [pq[)/3 and
hence [pg| < d(p). .

Assume without loss of generalitythat ¢ is considered before r = p’. Orient v N
B(p,d(p)) so that < p < ¢g. Then ¢ = p' and p' <p* <... <p'"'. Since yN B(p,d(p))

turns by less than 7\r/3, we have Zpk_lpk_é,pk_lp)6 > 27 /3 for all k with 2 < k <i-—1
i—1,i—2
p

and /p ,p"'p' < m/3. Thus p is joined with p! up to p', but not with pt*L. 1

We turn to the non-smooth parts of the curve. We first show that our sampling
condition implies that each leg of a sharp corner must contain several sample points.

Lemma 34 a) Let p be a sample point in B(s,d.) \ B(s,20./60). Then both adjacent
sample points lie on the same leg as p, the one closer to s has distance at most |ps|/2
from p and the one further from s has distance at most |ps| from p.

b) For every leg £ of a sharp corner s we have at least one sample point in B(s,?2 -
274! /60) \ B(s,274"/60) for j =1,2,3,4.

Proof: a) We have p/(p) < |sp|/3. The point g on the same leg as p with distance exactly
Isp[/2 to s lies in T" and hence p'(q) < |sp|/6. Thus ¢,/ (p,q) > |sp|/2—|sp|/6—|sp|/3 =
0. Lemma 28 implies that ¢,/ (p,z) > 0 for any point = between s and ¢ and for any point
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x on the other leg. Thus there must be a sample point between p and ¢q. We conclude
that both adjacent sample points lie on the same leg as p and that the one closer to s
satisfies the stated distance constraint. For the one further from p, we consider the point
g on the same leg as p, further away from s than p, and having distance |sp| from p.
Then /(q) < 2|sp|/3 and hence ¢, (p, q) > ||sp| — 2|sp|/3 — |sp|/3 = 0. We now argue
as above.

We turn to part b). Part a) implies that if one of the annuli contains a point, the
adjacent annuli do also and hence all annuli do. We conclude that either all annuli contain
a sample point or none does. Assume the latter and let p be the first sample point
on ¢ outside B(s,d%). The sample point ¢ preceding p must lie in B(s, 24./60). Thus
Ipal > Ips| — 26,/60, 4'(p) < |ps|/3, Ips| > &, and s'(g) < max(25./60,c,) < 2675, a
contradiction. 1

Lemma 35 A sample point p is only joined with points of the same curve.

Proof: Consider a sample point p. If p and both adjacent sample points of p are in 7",
the claim follows from Lemma 33.

Otherwise p € B(s,24!/60) according to Lemma 34, part a). Let p = p°, p', ..., p’ be
the sample points in B(s, ¢) ordered accordingly to their distance from p. Since both legs
of the sharp corner contain sample points in the annuli B(s,2 - 276"/60) \ B(s, 2’4" /60)
for 7 = 2, 3,4, we must have a subsequence of length at least three, so that the first and
the last element of the subsequence, call them ¢ and r, respectively, lie on the same leg
as p and further away from s than p from S, and the points in between (there is at least
one) lie on the other leg. Figure 35 illustrates the situation. We show that no point after
r is joined to p. Assume otherwise. Let ¢’ be the point added directly after ¢ and let r’
be the point added directly before r.

We want to bound the angle between the segments ¢'q and r'r. If ¢ is equal to ', this
angle is at least 27 /3. Otherwise, the angle between ¢’q and the segment between ¢' and
the sample ¢” added after ¢’ is at least 2w /3 and the angle between 7'r and the segment
between 7' and the sample 7" added before 7’ is at least 27/3 (since r is not the last point

" and 7' lie all on the same leg and hence the angle between

joined to p). Also ¢/, ¢", r
¢'q and 7'r is at least /3 — 47 /40. Here we use the strengthened sampling condition.
Let = be the intersection between the lines supporting ¢¢' and rr'. We have d(q) <
d(r) < d(q) + lar|, |rr'| > d(r) and |g¢'| > d(q) by Lemma 22, |qr| < (d(q) +d(r))/3 by
our sampling condition, and hence |rz| > |rr'| > d(r) > (d(r) + d(q))/2 > 3|qr|/2 and
lgz| > lqq'| = d(q) > (d(q) + d(r) — [pgl)/2 > |gr|. The application of the “theorem of
cosines?” with D = |qr| yields cos(Z(¢'q,r'r)) > [(3D/2)*+ D?*—D?|/(2-D-3D/2) = 3/4
and hence /(¢'q,7'r) < /3 — 7 /10, a contradiction. |

Lemma 36 For any curve vy, all sample points in T' Ny, belong to the same component.

Ylarl? = lgzl” + Irzl” — 2lgz| - lrz] - cos(Z(¢'q,r'r))
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Figure 35: The angle between ¢'q and r'r must be large, otherwise the region would not
be grown further. This contradicts the fact that the distance between ¢ and r is short.

Proof: Breaking «y; at its sharp corners gives us a collection of subcurves ;. Consider
any subcurve 7;;. The sample points on -, come in three groups: first a group of points
outside 7", then a group of points in 7", and finally a group of points outside 7”. Lemma 33
implies that all sample points in ~,, N T" belong to a single component. Consider now two
adjacent subcurves incident to a sharp corner s. In both subcurves, all points in 7" belong
to the same component. Let p and ¢ be the points in the components containing the points
T' which are closest to s and do not connect to both neighbors. We claim that p and ¢ are
connected to points on the other leg. Assume otherwise, say p is not connected to a point
on the other leg. Since p is not connected to both neighbors we have p € B(s, §%/60). Let
p = p°,p',...,p" be the sample points connected to p and ordered accordingly to their
distance from p. Then s < p < p! < ... < p*, since p is not connected to both neighbors
and since p is not connected to a sample point on the other side. We have also shown in
the proof of Lemma 35 that p' € B(s,d%) Thus /(p'~1p*=2, p*~1p*) > 27/3, a contradiction
to the fact that p’ is the last point joined with p.

Thus p connects to a point u on the other leg and ¢ connects to a point v on the other
leg. If either u or v belong to the component containing the points in 7’; we are done. So
assume otherwise. Then u is closer to s than ¢ to s and v is closer to s than p to s and
hence pvuq builds a convex quadrangle. The two segments pu and quv are crossing. Thus
either [pv| < |pu or |qu| < |qu| (since |pv| + |qu| < |pu] + |qv|) and hence either p or
g will be joined with a sample closer to s, a contradiction. ]

We call the component containing all sample points in 7; N 7" the main component of
Vi

Lemma 37 The Subtour-LP applied to the main component of y; reconstructs ;.

Proof: We show that the sample points in v;N7T" satisfy our original sampling condition.
Consider two points p and ¢ in y;NT" which are adjacent along ;. If they are also adjacent
in the full sample, we are done. Assume otherwise. Then {p,q} C B(s, 24./60) for some
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B(s, 26 /60)
B(s,6,/5)

Figure 36: The definition of ¢.

sharp corner s. Let ¢ be the point so that ¢, = d(t)/3 + |sts| (see Figure 36). We have
lpg| < 2-(26./60)-sin 3a,/4+ || sps| — [ sgs|], since £(sp, sps) < 3a,/4 and similarly for ¢,
d(t) > 6 /5sin@,/2, since the ball around ¢ with radius d,/5 sin @, /2 does not intersect the
other leg, 1u(p) > cs — | sps| = d(t)/3+ |sts] — |sps| = d(t)/3+ |tsps] > % sin@,/2+ [£,ps]
and, by the same argument, u(q) > % sin@,/2 + |tsqs|. Thus c,(p,q) < % sin 3@ /4 +
spall — Isas || — 22 2sin3,/4 — [£,p,] — tuqs] < 0. :

4.6.2 Merging Components

The initial partition may contain too many components. For every curve v;, there is a
main component which contains all sample points in ;7" and maybe other components.
We call them minor components. Each minor component is contained in B(s, 26’ /60) for
some sharp corner s. The reconstruction based on the Subtour-LP is guaranteed to
succeed for the main component of every curve. For the minor components it may or may
not produce a tour. In this section we describe a strategy for merging components.

We define a region R,, for every edge pq of the computed reconstruction. If the region
R, for an edge pgq of the computed reconstruction contains a sample point from another
component, we join the component containing p and ¢ with the component of the point
closest to pq and lying in another component. We continue until the components stabilize.

Before we define the regions R,, we draw an important consequence of the merging
rule. For an edge in a minor component the point closest to it and in another component is
guaranteed to lie on the same curve. This follows from the fact that a minor component is
contained in B(s, 20%/60) for some sharp corner, that the corresponding major component
has a point in B(s, 49./60), and that any point within B(s, ¢) belongs to the same curve.

In the arguments to follow we can therefore concentrate on edges in the reconstruction
of the main component. In particular, we can use the fact that the Subtour-LP correctly
reconstructs the main component. We come to the definition of the regions R,,. We
define I, as the union of a region R, and the circumcircle of the segment pg. For every
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Figure 37: The definition of R,,.

sample point p we define 3, to be the angle between the two segments incident to p. The
following paragraph motivates our definition of the region R,

Assume pq is the segment in the main component connecting the two legs of a sharp
corner s (we say that the edge straddles the sharp corner) and let @ be the angle between
the two tangents at s. Let s, be a segment defined by two adjacent sample points on
the leg of p, let s, be a segment defined by two adjacent sample points on the leg of
g, both lying in B(s,d./7). Let 65 be the angle formed by the segments. Since either
segment forms an angle less than a;/4 with the corresponding tangent at s, we have
as/2 < 0 < 3a,/2 or 20,/3 < ay < 26, i.e. , 6, is a good estimator for @,. Since again
the angle between any tangent on a leg and the appropriate tangent in the corner is at
most «,/4, we know that the angle between the corner point and the points p and ¢ is
between a;/2 and 3a,/2, thus between 6,/3 and 36;.

We come to the definition of I, . For an edge pq let p* and ¢™ be the other neighbors
of p and ¢, respectively, and let f, be the angle between the segments pp™ and gq™, i.e.
0s = By + By — m. We define R as the set of all points r with

o /(TP,Tq) > 0,/3,

e /(p?,pg) < m— B, +min(r/20,6,) and 7 lies on the opposite halfspace with respect
to the line pg as p™, and

e /(q7,p¢) > m — B, +min(r/20, 6,) and 7 lies on the opposite halfspace with respect
to the line ¢gp as ¢*.

For an illustration of this definition see Figure 37. Note that 7 — 3, + min(7/20,6s) <
7T—Bq+93:ﬁpg7r.

Lemma 38 If the main component of a curve does not yet contain all sample points from
the curve, it will grow.

Proof: The main component contains all points in 7”. Consider a sample point on 7;
which does not belong to the main component and let p and ¢ be its adjacent sample
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Figure 38: The Inscribed Angle Theorem: The central angle is equal to twice the inscribed
angle

points in the main component. Then {p,q} C B(s,20%/60) for some sharp corner. If p
and q lie on the same leg of s the centerball of pq contains the subcurve between p and ¢
and if pg straddles the sharp corner, the region R, contains the subcurve. |

To prove that we do not merge components that do not belong to the same curve, we
need the following three Lemmas.

Lemma 39 Every point r in R, has distance at most |pq|/sin(0/3) from p and q.

Proof: Let m; and my be the points on the perpendicular bisector of pg with distance
|pg|/(2sin(fs/3)) from p and ¢ (see Figure 38).

By the Inscribed Angle Theorem, every point which sees pq under an angle of at least
fs/3 lies inside the union of the the balls with center m; or msy through p and ¢. Thus
any point in the region R, has a distance of at most |pg|/sin(fs/3) from p and g. 1

Lemma 40 6, > a,/2.

Proof: If the segment pq straddles the corner, §; > a;/2, since pp* lies completely on
one leg and ¢q* lies completely on the other leg. If p™ and ¢ are on the same leg, this
follows directly from the sampling condition. If the segment pp* straddles the corner,
the angle formed by the segments pp* and gg* is smaller than the angle formed by the
segments sp' and ¢g*, which is at least ay/2. |

Lemma 41 Let pq be a segment of the polygonal reconstruction, with p,q € T and d(p) >
d(q). Then d(p) > 3|pq]/2.
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Figure 39: The segments rp and rq form a small angle with the segment pq. Thus |pr|
can not be much larger than |pg|.

Proof: Assume otherwise. Than ¢,(p,q) = |pg| — d(p)/3 — d(q)/3 > |pq| — 2d(p)/3 >
Ipal + lpql| = 0. I

We now turn to the proof that we do not merge a curve with points from another
component.

Lemma 42 The region Ry, of an edge pq in the polygonal reconstruction of the main
component contains no sample point of another component.

Proof: This is obvious for the center ball of pg. We turn to the region R;q.

Assume first p and ¢ are in 7" and without loss of generalityd(p) > d(g). Assume
there is a point 7 outside the the B(p,d(p)) ball in R,,,. Then |pr| > d(p) > 3|pq|/2 by
Lemma 41.

We know 1(@,]?) > 27/3 and Z(W,ﬁ) > 197/20. Hence /(pg,pt) < (7 —
2m/3) + (m — 197/20) = 237/60, see Figure 39. Analogously /(gp,q") < 237/60, thus
L(7D,7¢) > Tn/30. So® |pr| < sin(237/60)/ sin(77/3)|pq| < 3|pql /2.

Assume next that one of p and ¢ does not belong to 7".

We will show that R, C B(s,d;). Let r be any point in R, and let § be the angle
under which 7 sees the segment pg. Then 6 > 0,/3 by the definition of R.

Assume first 0, > 7/6. We know [pr| < |pg|/sin(fs/3) < 6|pg|. Thus |sr| <
6(80./60) + 24./60 < 4.

Assume now 0y < 7/6. Look at the triangle Apgr and assume without loss of
generalityr — 3, > m/2 (see Figure 40). We show that the corner point s is almost as far
away from p as r. The angle at r is at least 65/3, the angle at p is at most 7 + 6, — f,.
Thus [pr| < |pq| sin(7 + 5 — B,)/ sin(65/3).

The sharp corner s forms an angle of at most 36, with points p and ¢, since a; < 26,
according to Lemma 40. The angle at p of the triangle Apgs is between 7 4 65 — 3, and
T — 05+ Bp.

We have to distinguish two cases according to §3,. Assume first 8, > 7 — 26,. We
conclude |rs| < |[ps| + |pr| < 26,/60 + |pq|sin(m + 0, — B,)/sin(6s/3) < 25,/60 +
|pg| sin(365)/ sin(f;s/3) < 24%/60 + 10|pq| < 26%/60 + 406’ /60 < 4.

5In this proof we make frequent use of the fact that a/sina = b/sin 8 = ¢/sin+y for a triangle with
sides a, b, ¢ and corresponding angles «, 3, and 7.
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Figure 40: The two triangles pgr and pgs.

Assume now 3, < m — 20. We conclude |rs| < |ps| + |pr| < 24./60 + |pq| sin(m +
s — B,)/ sin(0s/3) < 247 /60 + |ps|(sin(30)/ sin(m — 05 + B,)) (sin(7 + 05 — 8,)/ sin(65/3)) <
26" 60+ |ps| (sin(365)/ sin(6;)) (sin(365)/ sin(8s/3)) < 24./60+27|ps| < 24./60+524" /60 <
L. 1
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5 Further Results Concerning Curve Reconstruction

In this section we present some further interesting results on curve-reconstruction. For
computational purposes it is desirable to restrict the search for the reconstruction to a
sparse graph defined on the sample set. We show that the edges of the polygonal recon-
struction are in the Delaunay Diagram for a slightly strengthened sampling condition.
Curve reconstruction problems are allowed to “invent” curves, if the input does not sat-
isfy the required sampling condition. This issue is discussed in Section 5.2. All previous
algorithms use a sample condition based on the medial axis. In Section 5.3 we relate our
sample condition to the medial-axis bases sample conditions. In Section 5.4, we relate our
result to so-called necklace tours. Necklace tours are a polynomially solvable case of the
Traveling Salesman Problem.

5.1 Curve Reconstruction and the Delaunay Diagram

Most previous curve reconstruction algorithms use sampling conditions that guarantee
that the polygonal reconstruction is a subset of the Delaunay diagram. Our sampling
condition does not imply that the Traveling Salesman Tour is a subgraph of the Delaunay
triangulation, see Figure 41. This fact can be interpreted positively and negatively: pos-
itively, as an indication of the strength of the TSP-reconstruction, and negatively, since
the optimal Traveling Salesman tour must be searched for in the complete graph on the
sample set. In this section we show that a slight strengthening of our sample condition
implies that the polygonal reconstruction is contained in the Delaunay Diagram.

Figure 41: The edge pq does not belong to the Delaunay Triangulation; p is a sharp corner
with 6, = |pr|/2. Also ¢, =~ 26,/5 = |pr|/5. If |pg| < |pr|/5, the edge pq has negative
reduced cost. Thus our sampling condition is satisfied.

Additional condition on the sample set: An edge pg of the polygonal reconstruction
with an endpoint not in 7" has length of at most 44, sin(a;/2)/5, where s is the sharp
corner with {p, ¢} C B(s, ds).

Lemma 43 If the sample set V' satisfies the strengthened sampling condition, the polyg-
onal reconstruction is contained in the Delaunay diagram of V.
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Figure 42: The sample z must lie on the upper leg behind ¢ and in the shaded lune.

Proof: Let pg be an edge of the polygonal reconstruction. We construct a Delaunay
ball B for it.

Assume first that {p,¢q} C T. The center ball of pg is contained in B(p,d(p)) and
hence empty of sample points; otherwise, the curve v would either intersect the ball in
more than one component or turn by more than 7/3 within the ball.

Assume next that one of the endpoints of the edge, say p, does not lie in T'. Let s be
the sharp corner with p € B(s,d;). We distinguish the cases whether p and ¢ are on the
same leg of s or not.

Assume first that p and ¢ lie on different legs, see Figure 42. We put the center m
of B into the halfspace containing s and having p and ¢ in its boundary and set the
radius r of B to (|pg|/2)/sin(@s/2) < 2J,/5; the upper bound on the radius follows from
the strengthened sampling condition. Since one of p or ¢ is contained in B(s,ds/5), we
conclude B(m,r) C B(s,ds).

Assume now that there is a sample point z € B(m,r). We discuss the case in which x
lies on the same leg as ¢ and leave the other case to the reader. Since p and ¢ are adjacent
samples, z cannot lie on the segment sq and hence /(sp,qt) = /(sp, $q) + /(sq,Gx) <
L(gD, $4) + £($4, q&) = /(gp,qx) (We have Z(sp, sq) < Z(Gp, $q), since moving along the
segment $¢ increases the angle). Since z lies in the lune of B(m,r) defined by pq, we have
[(gk, gp) < as/2. Thus /(sp, gx) < @s/2. On the other hand, the angle between the two
tangents at s is @, and hence /(sp, %) > as — 2a,/4 = @,/2, a contradiction.

Assume next that p and ¢ lie on the same leg, see Figure 43. The center m of B lies
on the same side of the angular bisector of the cone defined by the tangents t,.(s), —t;(s)
as p and ¢ and sees the segment pg under an angle of ;. As above, we conclude that
B(m,r) C B(s,ds). Then z must be contained in the lune of B(m,r) defined by the
segment pg. Since p and ¢ are adjacent sample points, x must lie on the other leg.
Assume without loss of generalitythat p is closer to s than q. We have /(pg, pt) < @s/2
and hence a; = /(t,(s), —t;(s)) < £(p$, p) + 2(as/4) < @s, a contradiction. 1
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Figure 43: The sample z must lie on the upper leg and in the shaded lune.

5.2 Monotonicity

Intuitively, a larger sample set makes the reconstruction task simpler. We discuss how
various sampling conditions and reconstruction algorithms behave with respect to larger
sample sets.

A sampling condition is called monotone if any superset of a set satisfying the sampling
condition also satisfies the sampling condition.

For closed curves and open curves with specified endpoints, our sampling condition
is monotone. For open curves with unspecified endpoints the superset must satisfy the
additional constraint that the additional points must lie in 7[a,b], where a and b are
the extreme sample points in the old sample. The sampling conditions used in the pa-
pers [ABE98, DK99, Gol99, DMRO00] are also monotone; again the additional constraint
is needed for open curves. The conditions in [FRO1] are not monotone.

All algorithms mentioned in this thesis come with a guarantee of the form: If the
curve v is from a certain class of curves and the sample set V is sufficiently dense, the
algorithm will reconstruct . It is not specified what the algorithm does if the hypothesis
of the theorem is not satisfied. The algorithm may either fail, i.e., indicate that it could
not find a curve, or “invent” a curve. From a practical point of view this situation
is unsatisfactory as a user has in general no way of distinguishing reconstruction from
invention. The situation is aggravated by the fact that the sampling densities required
by the theorems are quite high and that the algorithms tend to work for smaller densities
and hence are likely to be used in situations not covered by the theorems. It would be
nice to have algorithms that never invent curves.

A reconstruction algorithm is called self-consistent if it has the following property.
On an input V it either outputs FAILURE or SUCCESS. In the latter case it also outputs
a curve I’ passing through V so that for any sample V' from I with V' C V", it will also
output I'. A reconstruction algorithm that is not self-consistent can change its mind if
given additional sample points that seem to confirm the output of the algorithm.

Theorem 17 The algorithm in [DMRO00] and the TSP-algorithm are self-consistent, the
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DR N A .

Figure 44: For the sample set in the left figure, the algorithms in [ABE98, DK99, Gol99|
produce the hexagon, as shown. If one adds a sample point in the middle of one of the

long segments, the algorithm in [DK99] produces the output of the middle figure, the
algorithms in [ABE98, Gol99] produce the output of the right figure. Thus none of these
algorithms is self-consistent.

algorithms in [ABE98, DK99, Gol99, FR01] are not self-consistent.

Proof: The algorithm in [DMRO00] is constructed to be self-consistent. For the algo-
rithms in [ABE98, DK99, Gol99, FRO01] it is easy to come up with examples that show
non-self-consistency (see Figure 44).

It remains to show self-consistency for the TSP-algorithm. We show that if the solution
for the Subtour-LP for a set V' is unique and integral then the same is true for the Subtour-
LP for V U{z} for any z on an edge of the integral solution of the Subtour-LP of V' (and
different from all points in V).

The claim is a simple consequence of the so-called splitting-off lemma (see [Lov79],
Problem 6.53). Consider an optimal solution of the Subtour-LP for V U {z}. The value
C of this solution is at most the length Cy of the optimal tour of V' (since the tour for V
is also a tour for V' U {z}). The splitting-off lemma allows the construction of a solution
for the Subtour-LP for V from the solution for V' U {z}. It implies the existence of a set
of triples (e, f,7), where e and f are edges incident to z and r is a non-negative real, so
that

e for each edge e incident to z the sum of the third components of all triples containing
e is equal to z. (the value of the edge e in the Subtour-LP for V U {z}) and

e a solution for the Subtour-LP for V' can be obtained by modifying the solution for
the Subtour-LP for V' U {z} as follows: for each edge uv with v # z and v # 2
increase x,, by the sum of the third components of all triples (uz, zv, ). Delete all
edges incident to z.

For any edge e = uv let y. be the increase of z. in this construction. The cost of the
solution obtained is C'+Y",, Yuv (Cup — Cur — C2v)- This cost is at most C' (and hence at most
Cp) since cyy < €y, + ¢4y by the triangle inequality. Since the solution for the Subtour-LP
for V is unique and is equal to the tour for V', the cost of the solution cannot be smaller
than Cj and hence for any edge e = uv with 1,, > 0 we must have ¢y, = Cy, + C.y, i-€., 2
lies on the line segment wv. Moreover, y, + x. must be integral for every edge e = uwv.

In the tour for V' there is only one edge passing through z (since optimal tours are

non-self-intersecting) and hence there can be only one edge uv with y,, > 0. Thus our
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set of triples consists of a single triple (uz,zv,r) and since the degree constraint at z
must be satisfied for the optimal solution of the Subtour-LP for V' U{z} we conclude that
r = 1. We conclude that the optimal solution of the Subtour-LP for V' U {z} is unique
and integral. 1

5.3 Our Sample Condition and the Local Feature Size

The papers [ABE98, DK99, Gol99, DMRO0] investigated the reconstruction problem for
smooth curves. A curve is smooth if it is twice-differentiable. They expressed the sampling
condition in terms of the so-called local feature size. The local feature size f(p) at a curve
point p is the distance of p from the medial axis of v. The medial axis of a curve is the
closure of the set of points in the plane which have at least two nearest (with respect to
the Euclidean metric) points on the curve. They required a sampling condition of the
form: For any p € 7 there must be a sample point v € V' with [pv| < e- f(p); here € is a
parameter which depends on the algorithm. All algorithms require € < 1/2.

The experimental results of Section 6 suggest that the TSP-algorithms works for
sparser sample sets than the algorithms mentioned above. We do not know whether
this observation is a fact and can prove only a much weaker result.

Lemma 44 Let v be a smooth curve and ¢ < 1/10. If for any p € «y there is a sample
point v € V with |pv| < €- f(p), then V satisfies our sampling condition.

Before we prove Lemma 44, we show the following Lemma.

Lemma 45
f(p) < 3d(p)

Proof: The following fact is a reformulation of Corollary 11.

Fact 5 Let r be a point of a smooth curve . Furthermore let ¢ and s be points on v with
distance less than f(r) from r with ¢ <r < s. Then /(rq,75) > /3.

By the definition of d(p), either B(p, d(p)) Ny is not connected or B(p, d(p)) contains
three points turning by /3.

In the first case, there is a medial axis point in B(p,d(p)) by Lemma 1 of [ABE9S§]
and hence f(p) < d(p).

We turn to the second case. Let ¢ < 7 < s € B(p, d(p)) Ny forming an angle of 7/3. By
Fact 5 we conclude f(r) < max(|gr], [rs|). Thus f(p) < [pr|+max(]gr, |rs|) < 3d(p).
1

Proof: [of Lemma 44|
We have to show that for an e-sampled curve, with € < 1/10, the modified cost of the
edge between two adjacent sample points is less then 0.
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Figure 45: The underlying part of the curve is a line segment. Hence, there is no condition
on the sample set. In a necklace tour the disks centered at a and b have radius at most
2z. Thus the two disks will not intersect.

Let p and ¢ be adjacent sample points. Let without loss of generalityd(p) < d(q).

Lemma 10 states |pg| < 2¢f(p)/(1 —¢€) = 1/5f(p)/(1 — 1/10). Thus c.(p,q) = |pg| —
d(p)/3 —d(q)/3 <1/5f(p)/(1 —1/10) — f(p)/9— f(p)/9 <0 i

Our sample condition depends on several parameters and we have set these parameters
to particular values in Section 4.2. In Section 4.2.6 we discussed the dependency between
the parameters. For smooth curves we can set fseqe to 1/2 and then the argument above
works for e = 1/7

5.4 Necklace Tours

We have shown that curve reconstruction gives rise to a polynomially solvable case of the
Euclidean traveling salesman problem. In this section we relate our results to a known
solvable case, the so-called necklace tours. Let V be a set of points in the plane and
assume that there is a set of disks centered at the points in V' so that each disk intersects
with exactly two other disks and so that the intersection graph of the disks is connected.
The intersection graph of the disks defines a tour on V; the two neighbors of a point v
correspond to the two disks that intersect the disk associated with v. The tour is called a
necklace tour and is known to be an optimal traveling salesman tour of V; see [BDvD198].

We cannot claim that necklace tours are a special case of our result, since there is no
curve underlying a necklace tour. The optimality proof for necklace tours is a special case
of our argument. We simply define the potential of any point v as the radius of the disk
associated with v. Then exactly the edges in the tour have non-positive cost. Any tour
which uses an edge outside the necklace tour must include edges of positive cost and can
include only a subset of the edges in the necklace tour. This implies that the necklace
tour is optimal.

Figure 45 shows an example of a TSP problem which is covered by Theorem 15 and
whose solution is not a necklace tour.
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Figure 46: A screen-shot of the testbed and the Internet demo.

6 Experiments

In the preceding sections we have seen several algorithms for the curve reconstruction
problem that guarantee the correct reconstruction under some assumptions on the curve
~v and the sample set S. In this section we make an experimental comparison of the
algorithms.

6.1 The Testbed

Reproducibility of experiments is a major concern for experimental algorithms. We there-
fore provide our reconstruction algorithms and problem generators as a LEDA extension
package. As part of the package we provide a literate programming document describ-
ing all the implementations. The package also contains a testbed that allows one to
experiment with reconstruction algorithms (not just ours) and visualizes the outcome of
the reconstructions. Figure 46 shows a screen-shot of the testbed. The package will be
available at http://www.mpi-sb.mpg.de/LEDA/friends/leps.html.

We also offer an Internet interface to our implementations. It is available at
http://review.mpi-sb.mpg.de:81/Curve-Reconstruction/ . It consists of a JAVA-
applet that allows the user to construct problem instances and to select an algorithm.
The applet contacts a server at the MPI to run the algorithm and displays the result of
the reconstruction.

6.2 About the Implementation

All our implementations are based on LEDA [LED, MN99]. All algorithms use the graph
data type, the geometry kernels, and the Delaunay diagram algorithm. ABE and Gold’s
algorithms also use the Voronoi diagram algorithm and DMR uses a data structure for
nearest neighbor queries. The TSP algorithm uses, in addition, the min-cut and the
connected components algorithm, it uses SOPLEX [Wun97] or CPLEX [ILO99] to solve
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Figure 47: Our sample curve (5 periods and 300 points).

linear programs. All geometric programs can be run with either the rational or the floating
point kernel of LEDA.

The implementations of the previous known algorithms are straight forward. Given
the sample set S, we first compute the Delaunay Triangulation of S using the algorithm
provided by LEDA. Than the filtering of the edges is done.

Also the TSP—-algorithm first computes the Delaunay Triangulation. For every edge
of the Delaunay triangulation, we introduce a binary variable and set up a matrix with
the degree constraints. We iteratively solve the LP, using a LP-solver as black-box and
look for violated subtour elimination constraints until we can not find further violated
constraints. If the solution of the last LP is integral, we return the induced graph, oth-
erwise we return the empty graph. It remains to explain how we find violated subtour
elimination constraints. We run a fast heuristic, and if the heuristic fails to find a violated
constraint, we run the exact algorithm to compute the minimal cut in the appropriate
graph, as explained in section 4. The heuristic works as follows. Let G’ be the sub-
graph of the Delaunay Triangulation with nodes corresponding to the sample points and
edges corresponding to those edges of the Delaunay Triangulation that have a value 1 in
the current LP solution. We test the subtour elimination constraints for the connected
components of G’ for violation. If we find violated inequalities, we add them to the LP,
otherwise the heuristic fails.

6.3 The Experiments

We performed experiments that compare the reconstruction quality and the running time
of our implementations. All experiments were carried out with the floating point geometry
kernel of LEDA. We used several curves for our experiments. Since the results are fairly
consistent over the curves, we report only about the experiments for the curve shown in
Figure 47. The curve is essentially a sinusoidal curve. We use p to denote the number of
periods, n to denote the number of sample points and p = n/p to denote the number of
points per period.

6.3.1 Reconstruction Quality

In order to test the reconstruction quality of the different algorithms we used a fixed curve
and varied the sampling density. More precisely, we used a fixed number n of points and
varied the number p of periods in our curve. For each value of p we chose n random
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Figure 48: A reconstruction with the TSP-algorithm and the algorithm of Dey and Kumar.
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Figure 49: The abscissa shows the number of periods and the ordinate shows the running
time (average over ten runs). The numbers on the curves indicate the fraction of problems
solved, e.g., 0.4 indicates that 40% of the problems were solved. For all experiments we
used n = 3000 points. The curve Delaunay indicates the time of the Delaunay diagram
computation.

points on the curve. We repeated each experiment ten times. We measured the running
time and in what percentage of the cases the algorithms found the reconstruction. The
results are shown in Figure 49. We observe that the TSP-algorithm can work with much
sparser samples than the other algorithms. Figure 48 shows a reconstruction example.
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Figure 50: The running times for a curve with p = 100 points per period and varying
number of periods. We used n = i - 10* sampling points for ¢ = 1,2,...,5. The running
times of the algorithms follow approximately the relation DK : Gold : ABE : DMR : TSP
=1:13:3:6:13.

Among the other algorithms, DMR, does worst (this is to be expected, since it is designed
to reconstruct open and closed curves and hence omits more edges), DK is best, followed
by Gold and ABE.

6.3.2 Running Time

In order to compare efficiency we performed two experiments: One for varying sampling
density and a fixed number of points, one for fixed sampling density and a varying number
of points. The first experiment was described in the previous section. For the second
experiment we used a curve with p = 100 points per period, varied the number n of
points, and kept the number of periods at p = n/100. We used sampling densities for
which all algorithms were able to solve the reconstruction problem. The results of the
second experiment are shown in Figure 50.

All filtering algorithms start by computing the Delaunay triangulation of the sample
set V. DK and Gold do linear additional work, DK selects the nearest of each points
and then the nearest neighbor in the other halfspace for each point of degree one. Gold
constructs the Voronoi diagram (= a linear time process, when the Delaunay diagram is
available) and then performs a local test for the each pair of primal and dual edge. The
running time of our Delaunay program [Dwy87] is O(n) in the best case and O(nlogn)
in the worst case. For the instances in Figure 49 the running time improves as a function
of the number of periods. This is due to the fact that the algorithm uses divide-and-
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conquer on the z-coordinates of the points and that the running time of the conquer step
decreases as the number of periods increases (observe that the number of points contained
in a vertical stripe decreases as the number of periods increases). In Figure 49 the running
times of DK and Gold are shifts of the cost of the Delaunay computation.

The algorithms ABE and DMR use O(nlogn) (DMR may use O(n?) additional time
in the worst case, but we do not know of a worst-case example) additional time. ABE
constructs the Delaunay triangulation of V U V', where V' is the set of Voronoi vertices
of V. The running time of the second Delaunay computation seems to be independent
of the number of periods. DMR uses a data structure for proximity queries which has a
running time of ©(nlogn).

The running time of the TSP-algorithm also conforms to intuition. For fixed problem
size the running time in addition to the time for computing the Delaunay triangulation
decreases as a function of sampling density (= increases as a function of the number
of periods), since the reconstruction problem becomes simpler as the sampling density
increases. For sparse samples the number of phases of the cutting plane algorithm goes
up. Moreover, the connected components heuristic is no longer able to find the required
cuts. For fixed sampling density and varying n the running time grows linearly in n.
The explanation is that a few (typically 5 or 6) iterations of the cutting plane algorithm
suffice for sampling densities where the other algorithms are able to find solutions, that
the linear time heuristic for finding cuts is sufficient, and that the expected running time
of the simplex algorithm is linear in the number of constraints and variables.

6.4 Robustness

The DMR and ABE implementations suffer from robustness problems when run with the
floating point kernel of LEDA. We discuss the issue for the ABE algorithm. The ABE
first constructs the Voronoi diagram of V' and then the Delaunay triangulation of V UV,
where V' is the set of Voronoi vertices of V. If V' contains nearly co-circular points (which
might be a frequent situation in the curve reconstruction scenario), V' contains clusters
of points and this makes the construction of the Delaunay diagram of V U V' a difficult
task.

The robustness problems can be removed by switching to the rational kernel of LEDA
which guarantees that all geometric predicates are evaluated correctly (and uses a floating
point filter for speed). The switch to the rational kernel can cause a significant increase
in running time. It is the greatest increase that we have ever experienced. The reason is
that the construction of the Delaunay diagram of V U V' requires many exact tests, if V'
contains many co-circular points.

We propose to overcome the robustness problem in the ABE algorithm by rounding the
Voronoi vertices to a fine grid. This will identify Voronoi vertices that lie close together.
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Figure 51: Part (a) shows an example where the heuristics NM, NA, and FA fail, part (b)
an example where CH, NN, and MF fail. Part (c) shows a three optimal tour different
from the traveling salesman tour.

Figure 52: A star with 10 spikes and 300 sample points.

6.5 TSP Heuristics

We have implemented some TSP- and tour improvement heuristics. The TSP heuristics
are an iterative version to compute the Held-Karp Bound, Christofides Algorithm (CH),
the nearest merger algorithm (NM), the nearest neighbor heuristic (NN), the multiple
fragment greedy heuristic (MF), the nearest addition algorithm (NA) and the farthest
addition algorithm (FA). In addition we have implemented the 2-opt and 3-opt improve-
ment heuristics. For details of these algorithms we refer to [Ben90].

No heuristic reconstructs the tulip of Figure 1 correctly. Furthermore no heuristic
solves the reconstruction problem, i.e., for all TSP-heuristics mentioned above there is
a closed curve and an arbitrary dense sample for which the algorithm does not find the
optimal tour and hence fails to reconstruct. For the improvement heuristics an initial
(bad) tour is also chosen. Figure 51 shows examples in which the heuristics fail.

The heuristics NM, NA and FA fail even on smooth curves. They do not reconstruct
any of the curves considered in Section 6.3. The remaining heuristics (CH, NN, and MF)
reconstruct uniformly sampled smooth curves (even the minimum spanning tree does) but
fail by construction in sharp corners.

The improvement heuristics do quite well. We give experimental results for the curve
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Figure 53: The abscissa shows the number of spikes of the star and the ordinate shows the

running time (average over ten runs). The numbers on the curves indicate the fraction of

problems solved. For all experiments we used n = 3000 points.

shown in Figure 52, a simple star with a varying number of spikes. The results are shown
in Figure 53. For dense samples both heuristics succeed, 3-opt can cope with smaller

sampling density than 2-opt and the TSP-algorithm can cope with even smaller sampling
density. This was to be expected. For sampling densities where the heuristics worked,
the T'SP-algorithm is almost as fast as 2-opt and considerably faster than 3-opt. We find
this surprising. We have to admit however, that our implementations of the improvement

heuristics are fairly crude.
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7 Discussion

7.1 Curve Reconstruction

Our algorithm solves the curve reconstruction problem for collections of closed curves.
There are several possible extentions of the algorithm.

One desire could be, as in the case of smooth curves, to extend the set of curves
to collections of semi-regular open and closed curves. Funke and Ramos [FRO1] gave
an algorithm that provably reconstructs such curves, but their sample condition is not
monotone.

A further useful extention of the class of curves could concern curves with branching
points. For example the drawing of implicit functions or the reconstruction of road or
river networks requires the capability of handling branching points.

In the case of open curves the reconstruction is usually justified by a curve, i.e. , beside
the polygonal reconstruction, the algorithm returns a curve for which the given sample is
dense with respect to a sampling condition that is only slightly weaker than the original
sampling condition (see [DMRO00, FRO1]). The graph returned by the TSP—-algorithm is
not justified by a curve.

7.2 Shape Reconstruction and the Minimization Principle

Although Giesen was the first to propose the minimal tour for curve reconstruction, there
is earlier work that proposes minimization or maximization for other shape reconstruction
problems.

For the surface reconstruction problem from contours, Keppel [Kep75] proposes to
maximize the volume in 1975. In 1977, Fuchs et al. [FKU77| propose area minimization
and presented an algorithm that can efficiently mimimize the area if both contours are
single closed polygons. This algorithm was extended to the case where one contour consists
of two closed polygons and the other contour consists of one closed polygon by Kaneda
et al. [HSKKO98] in 1998.

In the more general case of arbitrary point clouds, O’Rouke [O’R81] also proposed
area minimization in 1977. He derives a heuristic for area mimimization similar to the
merging algorithms (i.e. , start with a tour through three cities and iteratively add another
city to the tour) for the traveling salesman problem.

7.3 Surface Reconstruction from Contours

As mentioned, area minimizing is a successful method for the problem of reconstructing
surfaces from planar contours. Exact algorithms are only known if both contours are
single closed polygons [FKUT77], or if one contour consists of two single closed polygons
and the other contour is one single closed polygon [HSKK98]. These algorithms could be
extended to handle contours that consist of more polygons, but the running time would
explode.
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Another possiblity is to formulate the problem as an integer linear program. Similar to
the TSP case, we introduce a binary decision variable for every triangle of the Delaunay
triangulation of the union of the two point sets. Let F' be the set of all triangles and
ay denote the area of the triangle f, for all f € F. The restrictions are that we have to
select exactly one triangle that is adjacent to a segment of a polygon and either zero or
two triangles adjacent to any other edge. These conditions lead to the following integer
linear program. Let V' be the set of all sample points, E be the set of all edges, E* be the
set of all edges that are segments of a polygon and E™ = E \ F the remaining edges.

min Z arXf
fer
s.t. > zy = 1 foralledgesee E*
feFleCf
> 1y > =z for all triangles f and edges e € E” with e C f.
geF\{f}eCSf
Z zg < 2 forall edgese € E"
fEF|eCf

The set of equalites ensures that exactly one triangle adjacent to every segment of a
contour is selected and the set of inequalities ensures that for all other edges either zero
or two adjacent triangles are selected.

Together with Christian Fink, we have implemented a branch—&—cut algorithm for the
above integer linear program. We used the inequalities above as initial constraint system
and separated the following class of inequalities. Let u,v,w be three adjacent points in
one polygon. Than the inequalities

> xy > 1 for all sets S with {u} C S C V' \ {v,w}
fEFvef,|Snf|=1

are valid for the above polytope. They express the following. Look at the triangles in
a valid surface that are adjacent to a node v. The edges of these triangles that do not
contain v must form a path between v and w. We separate the inequalities by iterating
over all points v and computing the minimal cut separating the two adjacent points of v
say v and w in the graph over G \ {v} and edge capacities ¢, = «
actual LP solution of triangle vxy.

The algorithm is quite efficient in practice. We are able to solve all reconstruction

* * 3
vays Where 27, is the

problems of the Organ Data Set of Dr. Gill Barequet [Bar|. The reconstruction quality
seems to be very high. For an example see Figure 54.

There is no algorithm for the surface reconstruction problem from planar contours
that comes with any guarantee. If the contours are close together and the samples in one
contour are dense, the sample set would satisfy the sampling condition that is defined
for the surface reconstruction problem from arbitrary point clouds. For this problem, an
algorithm that is provably correct for smooth surfaces is known (see below).
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Figure 54: The reconstruction of the pelvis of the Organ Data Set.

7.4 Surface Reconstruction

We have also tried to apply the area minimization paradigm to the general surface recon-
struction problem from point clouds. As in the above case, we introduce a binary decision
variable for every triangle of the Delaunay Triangulation and formulate the inequality
that requires every edge to have either zero or two adjacent triangles. Furthermore, we
require that at least three adjecent triangles for every sample point are selected and that
the reconstructed surface is connected. These conditions are encoded in the following
integer linear program.

min Z arZf
feF
s.t. Yoo zy > xy for all triangles f and edges e C f
geF\{f}eCyg
Yooy <02 for all edges e
feF|eCf
SNfNSfNV\S\ Zlzy > 6—2|Z| forall ZCV with |Z] <2 and
feF
pcScv\z

The first two classes of inequalities state that for every edge there are either 0 or 2 ad-
jacent triangles selected and the last class of inequalities expresses the three—connectivity
of the graph of the induced edges, i.e. , the edges for which two adjacent triangles are
selected.
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We implented a branch and cut algorithm for the above integer linear program. Beside
the inequalities above, we include some inequalities that force the triangle adjacent to one
sample point v to form a cycle around v. Bauer [Bau97] describes some facets of the
circuit polytope.

Branch and Cut does not yet work in practice, even if we restrict our attention to
surfaces with genus 0 to obtain additional inequalities (the total number of triangles is
2|V| —4 and in every subset there are at most 2|V | — 5 triangles). We can solve instances
with up to 40 sample points. This number is much too small to describe interesting
surfaces. We looked at some instances, where we know the triangulated surface with
mimimal area and observed that the gap between the solution of the linear program
and the integer program was very large, so that there is no hope that this integer linear
program can be used unless we find a very effective class of valid inequalities.

Amamy, Giesen and John [AGJ00] propose using a combinatorial algorithm to detect
most of the triangles of the surface and use integer linear programming to make some
local repairs.

The heuristic of O’Rouke is not sufficient for computing an appropriate surface for
complicated point cloulds.

Amenta and Bern [AB98] have developed an algorithm that provably reconstructs a
smooth surface, if a sampling condition similar to the medial axis condition in the case of
curves is satisfied. They define a triangle to be correct, iff the dual edge in the Voronoi
diagram intersects the surface. This definition makes also sense if the surface is not
smooth. In this case no algorithm with theoretical gurarantees is known. It also remains
an open question whether the surface with mimimal area is the correct reconstruction
even for smooth surfaces.
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Summary

An instance of the curve reconstruction problem is a finite sample set V' of an unknown
collection of curves v. The task is to construct a graph G on V so that two points in V'
are connected by an edge of GG iff the points are adjacent on . The curve reconstruction
problem and the related surface reconstruction problem have received a lot of attention
in the graphics and the computational geometry community. We are interested in recon-
struction algorithms with guaranteed performance, i.e., algorithms which provably solve
the reconstruction problem under certain assumptions on v and V.

Many curve reconstruction algorithms have been proposed in the past; we restrict our
discussion to algorithms that provably solve the reconstruction problem for a certain class
of curves and under certain assumptions on the sample set. The algorithms differ with
respect to the following aspects:

e Whether a collection of curves or just a single curve can be handled.

e Whether (collections of) open and closed curves can be handled or only (collections
of) closed curves.

e Whether the sampling must be uniform or not. Uniform sampling with density €
requires that the sample set V' contain at least one point from every curve segment
of length €. In non-uniform sampling, the sampling frequency may depend on local
properties of the curve, e.g., can be lower in parts of low curvature.

e Whether non-smooth curves can be handled or not. A smooth curve has a tangent
everywhere.

For uniformly sampled collections of closed smooth curves, several methods are known
to work, ranging over minimum spanning trees [FG94], a-shapes [BB97, EKS83|, -
skeletons [KR85|, and r-regular shapes [Att97]. A survey of these techniques appears
in [Ede98]. The case of non-uniformly sampled collections of closed smooth curves was
first successfully treated by Amenta, Bern and Eppstein [ABE98]| and has been subse-
quently improved by [DK99, Gol99]. Non-uniformly sampled collections of open and
closed smooth curves were treated in [DMROO0]. All papers mentioned so far require the
curves to be smooth.

Giesen [Gie99] recently obtained the first result for non-smooth curves. He considered
the class of benign semi-reqular curves. An (open or closed) curve is semi-regular, if a
left and a right tangent exists in every point of the curve; the two tangents may however
be different. A semi-regular curve is benign, if the turning angle at every point of the
curve is less than 7. Giesen showed that the Traveling Salesman tour of the sample set V'
solves the curve reconstruction problem for uniformly sampled benign closed semi-regular
curves. More precisely, he showed that for every benign semi-regular closed curve v, there
exists a positive €, so that the optimal Traveling Salesman tour of V' is the polygonal
reconstruction of  provided that for every x € 7 there is a p € V with |zp| < ¢, where
|zy| is the Euclidean distance of the two points = and y. Giesen’s result is a prove of
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existence; he did not quantify € in terms of properties of the curve v. We extend Giesen’s
result in several directions:

e We relate € to local properties of the curve v and show that the optimal Traveling
Salesman tour solves the reconstruction problem even if sampling is non-uniform.

For smooth curves our sampling condition is similar to the one used in [ABE98,
DK99, Gol99, DMR00].

e We show that the Traveling Salesman path is able to reconstruct open curves for a
suitable sampling condition. We treat the case of paths with and without specified
endpoints.

e We show that the optimal Traveling Salesman tour (path) can be constructed in
polynomial time if our sampling condition is satisfied.

e We give a simplified proof that the Traveling Salesman tour (path) solves the curve
reconstruction problem.

e We show that an extension of the Traveling Salesman tour algorithm is able to
reconstruct non-uniformly sampled collections of closed non-smooth curves.

For computational purposes it is desirable to restrict the search for the reconstruction
to a sparse graph defined on the sample set. We show that the edges of the polygonal
reconstruction are in the Delaunay diagram for a slightly strengthened sampling condition.
Furthermore, we relate our sampling condition to the sampling conditions used by most
of the other papers, and we relate our result to so-called necklace tours. Necklace tours
are a polynomially solvable case of the Traveling Salesman problem. Curve reconstruction
problems are allowed to “invent” curves, if the input does not satisfy the required sampling
condition. This issue is also discussed.

We have implemented a number of curve reconstruction algorithms. The JAVA-Applet
http://review.mpi-sb.mpg.de:81/Curve-Reconstruction/ makes our implementa-
tions available. Our experiments show that the TSP-based curve reconstruction is able
to solve the reconstruction problem for surprisingly small sampling density and that its
speed is comparable to Delaunay diagram-based reconstruction algorithms.



ZUSAMMENFASSUNG 100

Zusammenfassung

Die Eingabe eines Kurvenrekonstruktionsproblems ist eine endliche Menge V' von Sam-
plepunkten auf einer unbekannten Kurve . Die Aufgabe besteht darin, einen Graphen
G = (V, E) zu konstruieren, in dem zwei Punkte genau dann durch eine Kante verbun-
den sind, wenn die Punkte in v benachbart sind. Dem Kurvenrekonstruktionsproblem
und dem verwandten Oberflaichenrekonstruktionsproblem wurde viel Aufmerksamkeit von
Seiten der Computergrafik und der Computergeometrie entgegengebracht. Wir sind an
Algorithmen mit garantierter Korrektheit interessiert, d.h. an Algorithmen, die unter bes-
timmen Annahmen an v und V garantiert die richtige Losung zuriickliefern.

In der Vergangenheit wurden viele Algorithmen fiir das Kurvenrekonstructionsproblem
vorgeschlagen; wir beschranken unsere Aufmerksamkeit auf Algorithmen, die das Rekon-
struktionsproblem beweisbar fiir eine bestimmte Klasse von Kurven unter bestimmten
Annahmen an die Menge von Samplepunkten 16sen. Die Algorithmen unterscheiden sich
beziiglich folgender Aspekte:

e ob eine Menge von Kurven oder nur einzelne Kurven behandelt werden konnen,

e ob jeweils offene und geschlossene Kurven oder nur geschlossene Kurven behandelt
werden konnen,

e ob die Menge der Samplepunkte gleichmafig sein mufl oder nicht. Ein gleichméfiges
Sample mit Dichte € hat die Eigenschaft, dal V' ein Samplepunkt auf jedem Kur-
venstiick der Lange € enthilt. Dahingegen hangt beim ungleichméafligen Sample die
Sampledichte von lokalen Eigenschaften der Kurve ab, d.h. die Sampledichte kann
geringer sein, wenn die Kurve in einem Bereich weniger gekriimmt ist,

e ob nur glatte Kurven behandelt werden konnen oder nicht. Eine glatte Kurve besitzt
in jedem Punkt eine Tangente.

Fir gleichmaflige Samplemengen von geschlossenen, glatten Kurven gibt es mehrere
beweisbare Methoden, wie z.B. minimale aufspannende Biume [FG94], a-shapes [BB97,
EKS83], B-skeletons [KR85], und r-regular shapes [Att97]. Ein Uberblick iiber diese
Methoden ist in [Ede98] zu finden. Der Fall von ungleichméfiigen Samplemengen wurde
erstmals von Amenta, Bern und Eppstein [ABE9S8] erfolgreich behandelt und schrittweise
durch Algorithmen wie z.B. [DK99, Gol99] verbessert. Ungleichméfiige Samplemen-
gen von offenen und geschlossenen Kurven wurden in [DMRO00] behandelt. Alle bisher
erwahnten Artikel funktionieren nur fiir glatte Kurven.

Giesen [Gie99] hat kiirzlich das erste Ergebnis fiir Kurven gezeigt, die nicht glatt
sind. Er betrachtete zutrdglich einseitig glatte Kurven. Wir nennen eine (offene oder
geschlossene) Kurve einseitig glatt, wenn in jedem Punkt die linke und rechte Tangente
existiert; allerdings diirfen die beiden Tangenten verschieden sein. Eine einseitig glatte
Kurve heifit zutraglich, wenn in jedem Punkt der Winkel zwischen rechter und linker
Tangente weniger als m betragt. Giesen zeigte, dafi die Traveling Salesman Tour durch
die Punkte V' das Kurvenrekonstruktionsproblem fiir gleichméflige Samplemengen von
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einzelnen geschlossenen zutraglich einseitig glatten Kurven 16st. Genau genommen hat
er gezeigt, dafl fiir jede zutraglich einseitig glatte geschlossene Kurve v ein positives €
existiert, so da} die Traveling Salesman Tour durch die Punkte V' die polygonale Rekon-
struktion ist, falls fiir jeden Punkt z € v ein Punkt p € V existiert, mit |zp| < €, wobei
|zy| den Euklidischen Abstand zwischen z und y bezeichnet. Giesen’s Ergebnis ist eine
Existenzaussage; er bestimmt e nicht in Abhéngigkeit von Eigenschaften der Kurve ~.
Wir erweitern Giesen’s Ergebnis in mehrere Richtungen:

e Wir beziehen € auf lokale Eigenschaften der Kurve und zeigen, daf} die Traveling
Salesman Tour das Kurvenrekonstruktionsproblem auch fiir ungleichmaflige Sam-
plemengen 16st. Fiir glatte Kurven ist unsere Bedingung an das Sample &dhnlich zu
denen, die in [ABE98, DK99, Gol99, DMRO00| benutzt wurden.

o Wir zeigen, daf} der Traveling Salesman Weg das Rekonstruktionsproblem fiir offene
Kurven l6sen kann. Wir betraten die Falle mit und ohne vorgegebene Endpunkte.

e Wir zeigen, daf die kiirzeste Traveling Salesman Tour bzw. der kiirzeste Traveling
Salesman Weg in polynomieller Zeit berechnet werden kann, wenn unsere Bedingung
an die Samplemenge erfiillt ist.

e Wir geben einen einfacheren Beweis, dafi die Traveling Salesman Tour bzw. der
Traveling Salesman Weg das Kurvenrekonstruktionsproblem 16st.

e Wir zeigen eine Erweiterung von dem Traveling Salesman basierten Algorithmus, der
Mengen von zutraglich einseitig glatten geschlossenen Kurven fiir ungleichmafige
Samplemengen rekonstruieren kann.

Aus Effizienzgriinden ist es wiinschenswert, die Suche nach der Rekonstruktion auf
einen diinnen Graphen iiber der Samplemenge zu suchen. Wir zeigen, dafl die Kanten
der Rekonstruktion im Delaunay Diagramm enthalten sind, wenn man die Bedingung an
die Samplemenge etwas verscharft. Auflerdem setzen wir unsere Bedingung an die Sam-
plemenge in Beziehung zu der Bedingung, die in den meisten anderen Artikeln benutzt
wurde. Zusatzlich vergleichen wir unser Ergebnis zu sogenannten Necklace Tours. Neck-
lace Tours sind Instanzen des Traveling Salesman Problems, die in Polynomzeit gelost
werden konnen. Kurvenrekonstruktionsalgorithmen diirfen Kurven “erfinden”, wenn die
Samplebedingung nicht erfiillt ist. Dieser Aspekt wird auch betrachtet.

Wir haben einige Kurvenrekonstruktionsalgorithmen implementiert. Das JAVA-
Applet http://review.mpi-sb.mpg.de:81/Curve-Reconstruction/ macht diese Im-
plementierungen verfiighar. Unsere Experimente zeigen, dal Traveling-Salesman basierte
Algorithmen das Kurvenrekonstruktionsproblem fiir iiberraschend diinne Samplemengen
16sen kann und dafl die Laufzeit mit der anderer Algorithmen vergleichbar ist.
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